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ABSTRACT 

Kepley, Paul A. PhD, Purdue University, May 2018. Techniques for Reconstructing 
a Riemannian Metric via the Boundary Control Method . Major Professor: Maarten 
V. de Hoop. 

In this dissertation, we consider some new techniques related to the solution of 

the inverse boundary value problem for the wave equation with partial boundary 

data. Most results are formulated in a geometric setting, where waves propagate in 

the interior of a smooth manifold with smooth boundary M , and the wave speed is 

modelled by an unknown Riemannian metric g. For data, we focus mostly on using 

the Neumann-to-Dirichlet (N-to-D) map with sources and receivers restricted to a 

measurement set Γ ⊂ ∂M . The goal of the inverse problem, in this setting, is to 

use these wave boundary measurements to recover the geometry of (M, g) near the 

measurement set. We note that this geometric perspective accomodates, as special 

cases, both the scalar acoustic wave equation and elliptically anisotropic wave speeds. 

We consider three problems. In the first problem, we provide a technique to use 

the N-to-D map to construct the travel times between interior points with known 

semi-geodesic coordinates and boundary points belonging to Γ. Such travel times can 

be used to reconstruct the metric in semi-geodesic coordinates using one of several 

existing techniques, so this procedure can be viewed as providing a data processing 

step for a metric reconstruction procedure. In the second problem, we consider a 

redatuming procedure, where we use data on the boundary and known near-boundary 

geometry to synthesize wave measurements in this known near-boundary region. This 

allows us to construct a map which plays a similar role to the N-to-D map, but for 

interior sources and interior measurements. Our motivation for this procedure is that 

it can serve as a data propagation step for a layer stripping reconstruction method, 

in which one first reconstructs the metric near the boundary and then propagates 



xi 

data into this region to serve as data for an interior reconstruction step. In the third 

problem, we restrict attention to the case where M is a domain in Rn , and consider 

two related procedures to use the N-to-D map or Dirichlet-to-Neumann (D-to-N) map 

to directly reconstruct the metric. In the anisotropic case, we construct the metric 

in semi-geodesic coordinates via reconstruction of the wave field in the interior of the 

domain. In the isotropic case, we can go further and construct the wave speed in the 

Euclidean coordinates via reconstruction of the coordinate transformation from the 

boundary normal coordinates to the Euclidean coordinates. 

In addition to providing constructive procedures, we analyze the stability of some 

steps from these procedures. In particular we consider the stability of the redatum-

ing procedure and the stability of the metric reconstruction procedure from internal 

data (for the third problem). Moreover, we provide computational experiments to 

demonstrate our three main procedures. 
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1. INTRODUCTION 

In this dissertation, we study techniques related to the solution of the inverse bound-

ary value problem (IBVP) for the wave equation. The idea behind this problem is to 

use wave measurements made on the boundary of a domain in order to reconstruct the 

wave speed inside of the domain. This problem is related to problems in disciplines 

such as exploration seismology, medical imaging, and non-destructive testing. 

For the most part, the results in this dissertation will be presented in a geometric 

setting, and we will consider waves propagating with respect to a weighted or un-

weighted Riemannian wave equation on a smooth orientable manifold with smooth 

boundary. We remark that this geometric setting encompasses, as special cases, both 

the standard acoustic wave equation and the case of waves propagating inside of a 

domain filled with an elliptically anisotropic media. To make the geometric setting 

precise, M will denote a smooth orientable compact connected manifold with smooth 

boundary ∂M , and g will denote a smooth Riemannian metric defined on M . In 

general, we will suppose that the geometry of (M, g) is unknown, and our interest 

will be in recovering information about (M, g) from boundary measurements of waves 

propagating in M . The precise information that we seek to recover will be specified 

below. 

For the forward problem we will mostly focus on a weighted or unweighted Rieman-

nian wave equation defined on (M, g). To make this explicit, let f ∈ C0 
∞((0, ∞)×∂M), 

and let u = uf denote the solution to the wave equation on M with source f : 

∂t 
2u(t, x) − Δg,µu(t, x) = 0, (t, x) ∈ (0, ∞) × M, 

Nµu(t, x) = f(t, x), (t, x) ∈ (0, ∞) × ∂M (1.1) 

u(0, ·) = ∂tu(0, ·) = 0, x ∈ M. 
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For the weighted case, the weight µ ∈ C∞(M) will be assumed to be an unknown 

strictly positive function, however, we will not will not seek to reconstruct µ. The 

unweighted case corresponds to the case where µ ≡ 1. In this wave equation, the 

operator Δg,µ denotes the weighted Laplace-Beltrami operator, given by 

Δg,µw(x) := µ −1 divg(µ gradg w), 

where, divg and gradg are respectively the divergence and gradient on (M, g). The 

operator Nµ denotes the Neumann derivative associated with Δg,µ through integration 

by parts, and is given by 

Nµw := −µ hν, gradg wi g = −µ∂ν w 

where ν is the inward pointing unit normal vector to ∂M in the metric g, and h·, ·ig 

denotes the inner-product with respect to the metric g. 

We remark that the purpose of considering the weighted Riemannian wave equa-

tion, is that it allows us to formulate the usual acoustic wave equation within a geo-

metric perspective. Indeed, if M ⊂ Rn is a domain equipped with a strictly positive 

wave speed c ∈ C∞(M), then c defines a conformally Euclidean metric g = c−2dx2 

that governs the kinematics of acoustic wave propagation in M . Defining the weight 

µ = cn−2 then yields Δg,µ = c2Δ, with Δ denoting the Euclidean Laplacian. Likewise, 

Nµ = −c(x)n−1∂n, where n denotes the inward point Euclidean normal field on ∂M . 

Plugging this information into (1.1), one recovers the usual acoustic wave equation, 

albeit with an additional factor c(x)1−n multiplying the boundary source term. 

Next, we describe the data that will be used in the IBVP. Let T > 0 and let 

Γ ⊂ R ⊂ ∂M be given open sets. For most results in this dissertation, we will 

suppose that the restriction of the Neumann-to-Dirichlet (N-to-D) map on (0, 2T )×R 

is known, which we will denote by Λ2Γ 
T
,R. This map is defined by 

ΛΓ
2T
,R : f 7→ u f |(0,2T )×R, f ∈ C0 

∞((0, 2T ) × Γ), (1.2) 

and we can think of the N-to-D map as follows. The datum Λ2Γ 
T
,Rf models the result 

of an experiment in which the extended source f , supported in (0, 2T ) × Γ, is applied 
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to the boundary of M and receiver measurements for the corresponding wave uf are 

recorded in the set (0, 2T ) ×R. For the most part, we will suppose that R = Γ, and 

we will denote the N-to-D map in this case by 

Λ2Γ 
T := Λ2Γ 

T
,Γ. (1.3) 

In the final chapter, we will consider a problem where the Neumann boundary con-

dition from (1.1) is replaced by a Dirichlet boundary condition (see 5.4). In that 

case, our data will be the Dirichlet to Neumann (D-to-N) map which is defined in an 

analogous fashion (see 5.3). We will use the same notation for the D-to-N map. 

The goal of the inverse problem in this geometric setting is to reconstruct the 

geometry of (Ω, g) for a suitable region Ω near Γ using the map Λ2Γ 
T
,R as data. We 

expand upon this goal further. First, by suitable region, we mean that the set Ω must 

satisfy Ω ⊂ {x ∈ M : d(x, Γ) < T }. This is necessary, since if d(x, Γ) > T , then finite 

speed of propagation for (1.1) implies that the data Λ2Γ 
T cannot contain reflections 

or transmissions from x, thus the data Λ2Γ 
T will not contain any information about 

the geometry of (M, g) near x. We note that, even if Γ ( R, the techniques that we 

employ will still require this restriction on Ω. Second, by reconstructing the geometry 

of (Ω, g), we are primarily interested in reconstructing the the metric tensor g in local 

coordinates over Ω. In the special case that M is a domain in Rn and g is conformal 

to the Euclidean metric (i.e. g has the form g = c(x)−2dx2), one can do a bit better, 

as it is possible to reconstruct the conformal factor in Cartesian coordinates. Put 

differently, in the acoustic case, it is possible to reconstruct the wave speed c(x) in 

Cartesian coordinates. 

The IBVP for the wave equation was first solved in the multidimensional acous-

tic case by Belishev [1], using a method that he introduced and referred to as the 

Boundary Control (BC) method. The BC method was first extended to a geometric 

setting in [2], and for a thorough overview of the BC method, we refer to [3] and [4,5]. 
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The BC method is based upon using the boundary data Λ2Γ 
T
,R to approximately solve 

control problems of the form, 

find f for which u f (T, ·) = φ (1.4) 

where the target function φ ∈ L2(M) belongs to an appropriate class of functions 

for which the problem can be approximately solved without knowing the wave speed 

in M . By selecting the target functions φ correctly, one can extract information 

about the wave speed or metric in the interior. In this dissertation, we will use 

a variant of the BC method that is based upon regularizing the control problem 

(1.4). Regularization theory was first combined with the BC method in [6] and was 

utilized also in [7]. We will use variants of both of these techniques throughout this 

dissertation. We provide a brief overview of the BC method and a sketch of its history 

in Chapter 2. 

This dissertation is organized into three main chapters, in which we consider 

different aspects of the application of the BC method to the solution of the IBVP for 

the wave equation. Each of these three main chapters was intended to be published 

separately, so each chapter has its own introduction. The presentation of the results 

in these chapters has been lightly edited from the published or submitted versions 

prior to inclusion in this dissertation. We summarize these below. 

Constructing interior point source travel times 

In Chapter 3, we present a technique to use the N-to-D map Λ2Γ 
T to construct 

travel time distances to points belonging to a semi-geodesic neighborhood of Γ. To 

motivate our results, we note that for a Riemannian manifold with boundary (M, g), 

the set of travel times {d(x, y) : x ∈ M, y ∈ ∂M} has previously been shown to 

determine the geometry of M (see e.g. [3]). Thus the results of this chapter can be 

seen as an indirect method to reconstruct the geometry of (M, g) from the N-to-D 

map. The method of this chapter is based upon using the boundary data Λ2Γ 
T to 

construct volumes of certain domains of influence (using the result of [7]). By varying 
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these domains of influence in a particular fashion, and using the volumes of these 

sets to check when subsets known as wave caps are intersecting, we can determine 

travel time distances between boundary points and interior points with specified semi-

geodesic coordinates. The technique employed to reconstruct these travel times is 

distinct from the technique employed in [7] and allows for partial boundary data, i.e. 

Γ 6= ∂M . We present a numerical implementation of our results. The results of this 

chapter were published as [8] M. V. de Hoop, P. Kepley, and L. Oksanen. On the 

construction of virtual interior point source travel time distances from the hyperbolic 

Neumann-to-Dirichlet map. SIAM Journal on Applied Mathematics, 76(2):805-825, 

2016. 

Redatuming 

In Chapter 4 we consider a redatuming procedure for the IBVP for the wave 

equation. The term redatuming comes from the seismic literature, where it is used to 

refer to procedures that use data collected on one set to synthesize measurements for 

another set where data has not been recorded (see e.g. [9]). In particular, in Chapter 

4, we will show how to “move” data into a region Ω near the boundary set Γ provided 

that the geometry is known there. By “moving” data, we mean that we will use the 

known geometry and data Λ2Γ 
T to synthesize a map L that is analogous to the N-to-D 

map for body sources supported in Ω. The results of this chapter are likely to be of 

independent interest, but we note that our motivation for this procedure was to allow 

for the propagation of data into the interior, and hence, for a layer-stripping type 

procedure for the IBVP. That is, after one has first obtained g in local coordinates in 

Ω, one could then use the redatuming procedure to propagate data into Ω and use this 

internal data as the basis for a reconstruction procedure. We consider the stability of 

the redatuming procedure and provide computational examples. The results of this 

chapter were published as [10] M. V. de Hoop, P. Kepley, and L. Oksanen. An exact 
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redatuming procedure for the inverse boundary value problem for the wave equation. 

SIAM Journal on Applied Mathematics, 78(1):171-192, 2018. 

Wavefield and harmonic function based direct reconstruction 

In Chapter 5, we turn our attention toward explicit reconstruction procedures, 

and unlike the indirect method described in Chapter 3, the techniques used in this 

chapter provide a direct reconstruction of a wave speed or metric in a relevant set 

of coordinates. We specialize to the case where M is a domain in Rn , and study 

the case of isotropic (i.e. conformally Euclidean) and anisotropic metrics separately. 

The rationale for separating these cases is that, as mentioned above, the wave speed 

can be reconstructed in Cartesian coordinates in the isotropic case, whereas only the 

geometry of M can be reconstructed in general in the anisotropic case. The procedures 

in this chapter work by first using the boundary data to reconstruct certain internal 

data, and then using this internal data to reconstruct the wave speed or metric. 

In the anisotropic case, for internal data, we will reconstruct the values of wave 

fields in semi-geodesic coordinates. In the isotropic case, the internal data will be 

harmonic functions in semi-geodesic coordinates. In both cases, we consider the 

stability of the reconstruction step from these interior data. Finally, we provide a 

computational experiment to demonstrate the recovery procedure in the isotropic 

case. The results of this chapter have appeared previously as a preprint [11] M. V. de 

Hoop, P. Kepley, and L. Oksanen. Recovery of a smooth metric via wave field and 

coordinate transformation reconstruction. Submitted. Preprint arXiv:1710.02749, 

2017. 



7 

2. Overview of the Boundary Control Method 

In this chapter, we give an overview of the variant of the Boundary Control method 

(BC method) that we will use in this dissertation. We begin by describing the opera-

tors and notation used in the BC method. After this, we briefly sketch the history and 

alternate approaches to the BC method. Finally, we provide a lemma that provides 

an explicit formula to solve the approximate control problems that we utilize in this 

dissertation. 

2.1 Operators for the Boundary Control method 

The BC method derives its name from the fact that it considers solutions to the 

wave equation (1.1) as a linear dynamical system, in which sources (controls) are 

applied to the boundary of M and produce waves (states) in the interior of M . That 

is, when a source f ∈ L2([0, T ] × Γ) is applied to the boundary of M , it produces a 

wave uf in the interior of M according to (1.1), and one considers the wave uf (t, ·) to 

be the state of the system at time t. As indicated above in (1.4), we will be especially 

interested in the case t = T , for which we define the control map 

W T : f 7→ u f (T, ·), W T : L2([0, T ] × Γ) → L2(M). 

In words, the control map is the map that takes a control f to its associated state, 

uf (T, ·) at time T . Problem (1.4) can then be rephrased in terms of the control map, 

as follows: Given a function φ on M , find a boundary source f for which 

W T f = φ. (2.1) 

Using this terminology, one can describe solving the problem (1.4) as finding a source 

f that controls the wave equation into the state φ at time T . We recall that the 
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map W T is continuous, compact even, as a map from L2([0, T ] × Γ) into L2(M), see 

e.g. [12, 13]. Also, we recall that when the Neumann boundary condition considered 

in (1.1) is replaced by a Dirichlet boundary condition, the control operator W T is 

likewise a bounded linear operator [14], although it is not compact in that case. 

The output of the operator W T is a wave in the interior of M and cannot be 

observed directly from boundary measurements or computed when the metric is un-

known. On the other hand, the normal operator for (2.1) can be computed in terms 

of the boundary data. One typically refers to this normal operator as the connecting 

operator, and denotes it by KT = (W T )∗W T . The adjoint here is defined with respect 

to the weighted Riemannian volume measure Volµ = µdVg. The operator KT can be 

computed by processing the data Λ2Γ 
T via the Blagovescenskii identity, see below (2.2). 

The fact that the operator KT can be computed in terms of the boundary data was 

first observed by Blagoveschenskii in the 1+1-dimensional case [15]. In a multidimen-

sional context, this identity was first established by Belishev, see the discussion in 

Section 3.4 of [4]. We give the identity in the form that is used in our computational 

implementations, 

KT = JT Λ2Γ 
T ΘT − RT ΛΓ 

T RT JT ΘT . (2.2) 

We refer to [16] for a derivation of the formula used here. Here, ΘT : L2((0, T )×Γ) → 

L2((0, 2T ) × Γ) is the inclusion (zero padding) given by: ⎧ ⎨ f(t, ·) 0 < t ≤ T, 
ΘT f(t, ·) := ⎩ 0 T < t < 2T, 

RT : L2((0, T ) × Γ) → L2((0, T ) × Γ) is the time reversal on (0, T ) given by: 

RT f(t, ·) := f(T − t, ·) 0 < t < T, 

and JT : L2((0, 2T ) × Γ) → L2((0, T ) × Γ) is the time integration, given by: 

1 
Z 2T −t 

JT f(t, ·) := f(s, ·) ds 0 < t < T. 
2 t 
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We remark that the normal operator KT is referred to as the “connecting operator” 

since it connects the inner product on boundary sources with the inner product on 

waves in the interior. That is, for f , h in L2(Sτ ), 

hu f (T, ·), u h(T, ·)iL2(M ;dVµ) = hf, KT hiL2(Sτ ; dt⊗dSg ). (2.3) 

Next, we discuss some mapping properties of W T that follow from finite speed of 

propagation for the wave equation. Let τ : Γ → [0, T ], and define the set 

Sτ := {(t, z) ∈ (0, T ) × Γ̄ : t ∈ (T − τ(z), T )}. (2.4) 

Then, finite speed of propagation implies that if f is a boundary source supported in 

Sτ , the wavefield uf (T, ·) will be supported in the domain of influence M(τ), defined 

by 

M(τ) := {x ∈ M : d(x, Γ) < τ(y) for some y ∈ Γ}, (2.5) 

were d denotes the Riemannian distance on (M, g). We depict the relationship be-

tween Sτ and M(τ ) in Figure 2.1 When W T is restricted to L2(Sτ ) it satisfies, 

=⇒ 

Γ

M

M(τ)

τ

Figure 2.1.: The support set Sτ for a function τ ∈ C(Γ), along with the domain 

of influence M(τ) associated with τ . The profile of τ has been superimposed on the 

domain of influence. 

W T : L2(Sτ ) → L2(M(τ)). Defining the projection Pτ : L2([0, T ] × Γ) → L2(Sτ ), 

we can then define a restricted control map 

Wτ := W T ◦ Pτ , (2.6) 
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which satisfies Wτ : L2(Sτ ) → L2(M(τ )). The point here is that, although we do 

not have access to the the output of Wτ , we know that the waves in its range will be 

supported in the domain of influence M(τ). Likewise, we can define the restricted 

connecting operator 

Kτ := (Wτ ) 
∗ Wτ = Pτ K

T Pτ , (2.7) 

and note that Kτ can be computed by first computing KT via (2.2) and then applying 

the operator Pτ . That is, � � 
JT Λ2T ΘT − RT ΛT RT JT ΘTKτ = Pτ Γ Γ Pτ . (2.8) 

In the case that τ is a multiple of a characteristic function, we will use a special 

notation for M(τ). Specifically, we will denote the characteristic function of a set S 

by 1S , and for s ≥ 0 we will use the notation M(Γ, s) := M(s1Γ) and M(y, s) := 

M(s1{y}). 

2.2 Overview of BC method variants 

There are many variants of the BC method in the literature, and in this section, 

we give a brief overview of its variants and history. We note that more extensive 

surveys can be found in the reviews [4, 5] and the monograph [3]. 

All variants of the BC method are based upon using boundary data to approxi-

mately solve control problems of the form (2.1), and then using the solutions to these 

problems to extract information about the metric or wave speed in the interior of M . 

To explain what we mean by approximately solving control problems, we note that 

equation (2.1) will typically fail to have a solution, since the range of Wτ is not closed 

in general. However, it can be shown that approximate controllability holds, that is, 

there is a sequence (fj )∞ 
j=1 ⊂ C0 

∞(Sτ ) for which 

lim Wτ fj = 1M(τ )φ, in L2(M), (2.9)
j→∞ 
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and finding such a sequence is referred to as approximately solving (2.1). The ap-

proximate controllability follows from the hyperbolic unique continuation result by 

Tataru [17] and is demonstrated via a duality argument, see e.g. [3, p. 157]. 

The original version of the BC method [1] considered the case of an acoustic wave 

equation, ∂t 
2 −c(x)2Δ, and utilized a Gram-Schmidt orthonormalization procedure for 

the inner-product hf, giK := hKT f, giL2([0,T ]×Γ) to find a sequence (fj )∞ 
j=1 satisfying 

(2.9). Beginning with [18], information about the wave speed was extracted using 

these sources by means of the amplitude formula from geometric optics. The am-

plitude formula is obtained by constructing certain orthoprojectors in the completed 

inner-product space resulting from the Gram-Schmidt procedure. The method was 

implemented numerically in [19], and requires choosing an initial system of boundary 

sources, see step 2 in [19, p. 233]. No constructive way to choose the initial boundary 

sources is given, and some choices may lead to an ill-conditioned orthonormalization 

process, see the discussion in [6]. A more recent numerical implementation of this 

method was provided in [20,21], which employed a regularization of the control prob-

lem while still utilizing a Gram-Schmidt procedure. In [2], the BC method was first 

extended to a geometric setting to recover a metric in semi-geodesic coordinates from 

boundary spectral data. In [22], Gaussian beams were introduced to the BC method 

for the recovery of a metric from the dynamical data, Λ2Γ 
T . 

More recently, Bingham, Kurylev, Lassas and Siltanen introduced a variant of the 

BC method that replaced the Gram-Schmidt process by a quadratic optimization [6]. 

Their method is posed in a geometric setting with full boundary data (i.e. in the case 

that Γ = ∂M) and their application of the BC method is based upon constructing a 

sequence (fj )∞ 
j=1 such that the limit (2.9) becomes focused near a point. To elaborate, 

their method considers an arbitrary h ∈ L2((0, T ) × ∂M) with φ chosen to be φ = 

uh(T, ·) = W T h. For a point y ∈ ∂M and small enough 0 < s, r < T , they choose 

appropriate τ to produce a sequence of sources (fj )j 
∞ 
=1 ⊂ Sτ such that Wτ fj → 

1cap∂M (y,s,r)u
h(T, ·) (refer to (3.3) for the definition of cap∂M (y, s, r)). No constructive 

procedure to choose the boundary source h is given, and some choices may lead to 
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sequences such that this limit vanishes also near the point where it should be focused, 

see the assumption on the non-vanishing limit in [6, Corollary 2]. 

In [7, 23], Oksanen introduced a variant of the BC method that employed a 

quadratic optimization similar to [6], but differed from it by selecting φ = 1 in place 

of W T h. Solving approximate control problems with this choice of φ allows for the 

computation of volumes m(τ) := Volµ(M(τ )) for certain functions τ : Γ → [0, T ]. 

These volumes are computed from the limit, m(τ) = limα→0hKτ fα, biL2([0,T ]×Γ;dt⊗dSg ), 

where b is a fixed known function (see Lemma 4 below). In [7], these volumes are used 

to compute boundary distance functions in a procedure that requires that Γ = ∂M , 

T ≥ diam(M), and that the boundary distance functions satisfy a certain compa-

rability condition. This comparability condition essentially imposes a constraint on 

the geometry of (M, g), which is satisfied at least in the case that (M, g) is a simple 

manifold, however it is not satisfied in general. 

In addition to [19–21], the only multidimensional computational implementations 

of a variant of the BC method, that we are aware of are [24, 25]. These variants 

are based on solving the control problem (2.1) without the constraint supp(f) ⊂ Sτ . 

The target function φ is chosen to be harmonic, and the method exploits the density 

of products of harmonic functions in L2(M). Such an approach works only in the 

isotropic case, that is, for the wave equation ∂t 
2 − c(x)2Δ where the wave speed 

c(x) > 0 is scalar valued. We also mention that in [16], an approach similar to [25] 

was shown to recover a lowpass version of the wave speed in a Lipschitz stable manner 

under additional geometric assumptions. 

2.3 Solving the approximate control problem 

Throughout this dissertation, we will use the following lemma to solve approximate 

control problems. This result is known, however we provide a proof for reference. 
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Lemma 1 Let τ : Γ → [0, T ] either be a linear combination of characteristic func-

tions of open subsets of Γ or let τ ∈ C(Γ). For α > 0, consider the following Tikhonov 

minimization problem, 

find f ∈ L2(Sτ ) minimizing ku f (T, ·) − φkL 
2 
2(M ;dVµ) + αkfk2 

L2(Sτ ;dt⊗dSg )
. (2.10) 

Then, for each α > 0, (2.10) has a unique solution, fα, which can be computed by 

solving the following linear system, 

(Kτ + α)fα = Wτ 
∗ φ. (2.11) 

Furthermore, the solutions fα satisfy 

lim Wτ fα = lim u f (T, ·) = 1M(τ)φ. (2.12)
α→0 α→0 

Before proving Lemma 1, we observe that in order to apply (2.11), one must either 

know Wτ 
∗φ or be able to compute it. As Wτ 

∗φ generally depends upon g, this will 

not be possible for arbitrary φ. There are, however, cases where this quantity can 

be computed from the boundary data. For instance, when φ = W T f , this quantity 

can be obtained from the boundary data, since Wτ 
∗φ = Pτ (W T )∗W T f = Pτ KT f , 

which can be computed using (2.2). Likewise, it is possible to compute Wτ 
∗φ if φ 

is g-harmonic. In particular, one can compute Wτ 
∗1 (refer to the function b used in 

Lemma 3.4). 

Our proof is a slight modification of the approach given in [7], for the case φ = 1. 

To prove Lemma 1, we first recall two results about Tikhonov regularization. For 

proofs see e.g. [26, Th. 2.11] and [27], respectively. 

Lemma 2 Suppose that X and Y are Hilbert spaces. Let y ∈ Y and let A : X → Y 

be a bounded linear operator. Then for all α > 0 there is a unique minimizer of 

kAx − yk2 + α kxk2 

given by xα = (A
∗A + α)−1A∗ y. 
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Lemma 3 Suppose that X and Y are Hilbert spaces. Let y ∈ Y and let A : X → Y 

be a bounded linear operator with range R(A). Then Axα → Qy as α → 0, where 

xα = (A
∗A + α)−1A∗ y, α > 0, and Q : Y → R(A) is the orthogonal projection. 

Proof [Of Lemma 1] Since Wτ is bounded, the Lemma 2 implies that (2.10) has 

a unique solution fα for each α > 0, and that we can compute it by solving the 

regularized normal equation (2.11). 

To apply the second lemma to our current setting, we recall that supp(Wτ f) ⊂ 

M(τ) by finite speed of propagation. When g is smooth and τ is a linear combination 

of characteristic functions of open sets, Tataru’s unique continuation [17] implies that 

the inclusion 

{Wτ f ; f ∈ L2(Sτ )} ⊂ L2(M(τ)), (2.13) 

is dense, see e.g. [3, Th. 3.10]. The result was extended to the case of τ ∈ C(Γ) in [7]. 

Thus R(Wτ ) = L2(M(τ)) for the functions τ under consideration. 

Applying Lemmas 2 and 3 to the observations above, we see that for each α > 0, 

equation (2.10) has a unique solution fα, given by: 

fα := (Wτ 
∗ Wτ + α)−1Wτ 

∗ φ = (Kτ + α)−1Wτ 
∗ φ, (2.14) 

thus fα can be obtained from Kτ and Wτ 
∗φ. Moreover, the waves Wτ fα satisfy Wτ fα → 

Qτ φ in L2(M) as α tends to zero, where Qτ is the projection of L2(M) onto the 

subspace R(Wτ ) = L2(M(τ)). Finally, since Qτ φ = 1M(τ )φ, we see that Wτ fα → 

1M(τ )φ as α → 0. 

We remark that the results of Lemma 1 hold even when the control problem 

Wτ f = φ is unattainable, that is, when φ ∈ L2(M(τ)) but 1M(τ )φ 6∈ R(Wτ ). This is 

especially important, because Tataru’s theorem only states that Wτ has dense range, 

but does not state whether its range is closed. In general, the operator W T does not 

have closed range. In particular, if C ⊂ M(τ), then a geometric condition known as 

exact controllability must hold for every point x ∈ C in order that L2(C) ⊂ R(Wτ ), 
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see [28,29]. We will say a bit more about this concept in the discussion in Chapter 3.4, 

and we will use exact controllability in sections 4.2.4 and 5.5. We also point out that, 

although the limit (2.12) holds regardless of whether the control problem (1.4) is 

attainable; when the control problem is unattainable, the family of sources fα will 

diverge. That is, if φ 6∈ R(Wτ ), then one has that kfαk → ∞ as α → 0, see 

e.g. [30, Prop. 3.6]. 
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3. CONSTRUCTING BOUNDARY DISTANCE 

FUNCTIONS 

3.1 Introduction 

In this chapter, we present a new method to use the restriction of the Neumann-

to-Dirichlet map Λ2Γ 
T to determine travel time distances of the form d(x, y) where 

y ∈ Γ and x belongs to a semi-geodesic neighborhood of Γ. That is, y is a point in 

the set where we have boundary measurements, and x ∈ M belongs to a region near Γ 

where the semi-geodesic coordinates of Γ are valid (see Section 3.2.1 for definitions). 

The precise subset of M for which we can determine travel times depends upon the 

data and the geometry of M , however we remark that this subset is not necessarily 

a thin layer about Γ. We refer to these travel times as point source travel time data, 

since the distance d(x, y) corresponds to the first arrival travel time from a (virtual) 

interior point source located at x as recorded at the boundary at y. We emphasize 

that our method synthesizes the travel times from a point source in the interior of M 

without requiring an actual receiver or source at that location. 

To motivate our results, we note that for a Riemannian manifold with boundary 

(M, g), the set of travel times {d(x, y) : x ∈ M, y ∈ ∂M} has previously been shown 

to determine the geometry of M , see e.g. [3]. In particular, in the full boundary data 

case, it has been shown that this determination is even stable [31]. Furthermore, 

it can be shown that travel times determine shape operators that appear as data 

for the generalized Dix method [32]. This is of particular interest in the isotropic 

case, since that method allows for the local nonlinear reconstruction of a wave speed 

near geodesic rays. We also note that in [33], an explicit reconstruction method is 

developed for conformally Euclidean metrics, wherein travel times for points in a 
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semi-geodesic neighborhood of Γ and properties of Killing vector fields are used to 

determine the metric in the same neigborhood in Euclidean coordinates. 

Our method to determine boundary distances works by first solving a collection of 

regularized ill-posed linear control problems, as discussed in Chapter 2, to determine 

volumes of subdomains of M referred to as wave caps. We note that this procedure 

was introduced in [7]. We then introduce a procedure that uses volumes of wave caps 

to construct point source travel time data for points near Γ. This, in turn, reduces 

the inverse boundary value problem to the stable problem of determining a Rieman-

nian submanifold of (M, g) near Γ from point source travel time data. In particular, 

our procedure splits the inverse boundary value problem into an ill-posed but lin-

ear step (the volume computation) and a non-linear but well-posed step (distance 

determination and reconstruction of the submanifold). 

We describe an algorithmic approach for our method, and provide computational 

experiments to demonstrate our technique. We remark that our computational ex-

periments provide the first computational realization of a geometric variant of the BC 

method. Moreover, we explain how the instability of the volume computation step is 

manifest in our computational experiments. All variants of the BC method that use 

partial data contain similar unstable components, and we believe that the instability 

of the method reflects the ill-posedness of the inverse boundary value problem itself. 

However, contrary to Calderón’s problem, that is, the elliptic inverse boundary value 

problem [34, 35], it is an open question whether the inverse boundary value problem 

for the wave equation is ill-posed in general. For results concerning the stability of 

Calderón’s problem we refer to [36, 37]. 

Also, we point out that under favorable geometric assumptions, the hyperbolic 

inverse boundary value problem is known to have better stability properties than 

Calderón’s problem, see e.g. [16, 38–42] and references therein. These results assume 

data on the whole boundary or that Γ is strictly convex. 
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3.2 Statement of the results 

In this section, we describe our data and assumptions, and what we intend to 

recover from the data in this chapter. Our primary interest will be in constructing 

distances with respect to the Riemannian metric g, and we denote the Riemannian 

distance between the points x, y ∈ M by d(x, y). To simplify our distance computa-

tion procedure, we assume: 

Assumption 1 The distances d(y, z) are known for y, z ∈ Γ with d(y, z) < T . 

We note that this is not a major limitation since for y, z ∈ Γ with d(y, z) < T , the 

data Λ2Γ 
T determines d(y, z), see e.g. [43, Section 2.2]. 

3.2.1 Construction of the point source travel time data 

We define R(M) to be the set of boundary distance functions on M , 

R(M) = {rx : x ∈ M, and for z ∈ ∂M , rx(z) := d(x, z)}. (3.1) 

We note that, for x ∈ M and z ∈ ∂M , rx(z) gives the minimum travel time from x 

to z. With this interpretation, rx(z) represents the first arrival time at z from a wave 

generated by a point source located at x. 

In Section 3.3 we develop a method to synthesize values of rx from Λ2Γ 
T for points 

x that are sufficiently near Γ, and which are indexed by a set of coordinates known as 

semi-geodesic coordinates1 . We refer to this procedure as forming point source travel 

time data, since our procedure reproduces the travel time information for a point 

source located at x without having a source or receiver there. 

We denote the unit sphere bundle SM := {ξ ∈ TM : |ξ|g = 1}, and define the 

inward/outward pointing sphere bundles by ∂±SM := {ξ ∈ ∂SM : (ξ, ±ν)g > 0}, 

where ν is the inner unit normal vector field on ∂M . We define the exit time for 
1Such coordinates are considered in seismology, where they are referred to as image ray coordinates 
[44]. 
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(x, ξ) ∈ SM \ ∂+SM , by τM (x, ξ) := inf{s ∈ (0, ∞) : γ(s; x, ξ) ∈ ∂M} where 

γ(·; x, ξ) is the geodesic with the initial data γ(0) = x, γ̇ (0) = ξ. 

For y ∈ Γ we define σΓ(y) to be the maximal arc length for which the normal 

geodesic beginning at y minimizes the distance to Γ. That is, 

σΓ(y) := max{s ∈ (0, τM (y, ν)] : d(γ(s; y, ν), Γ) = s}. 

We recall, see e.g. [3, p. 50] that σΓ(y) > 0 for y ∈ Γ. Moreover, σΓ is lower 

semi-continuous, see e.g. [45, Lemma 12]. We define 

x(y, s) := γ(s; y, ν) for y ∈ Γ and 0 ≤ s < σΓ(y). (3.2) 

The mapping (y, s) 7→ x(y, s) is a diffeomorphism from {(y, s) : y ∈ Γ, 0 ≤ s < σΓ(y)} 

onto its image, so we will refer to (y, s) as semi-geodesic coordinates for x(y, s). This 

is a slight abuse of terminology, since the pair (y, s) belongs to Γ × [0, ∞) instead 

of a subset of Rn . On the other hand, by selecting local coordinates on Γ these 

“coordinates” can be made into legitimate coordinates. 

Next, we recall the definition of the cut locus of Γ, which is the set of points 

given by C = {x (y, σΓ(y)) : y ∈ Γ}. We depict C in Figure 3.1a. Due to the lower 

semi-continuity of σΓ and boundedness of Γ, the distance between Γ and C is positive. 

Γ

M

C

Γ

M

s

s+h

y

x(y,s)

capΓ(y,s,h)

(a) (b) 

Figure 3.1.: (a) The cut locus of Γ along with a pair of equal length geodesics showing 

the break-down of the semi-geodesic coordinates at C. The shaded region is the subset 

of M that supports semi-geodesic coordinates. (b) A wave cap 
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We will use the following notions of volume: let dVg and dSg denote the Rieman-

nian volume densities of (M, g) and (∂M, g|∂M ) respectively. We remark that dSg is 

determined on Γ by Λ2Γ 
T , see e.g. [43, Section 2.2] so we assume that it is known. We 

define the natural Riemannian volume density associated with Δg,µ by dVµ := µdVg. 

We remark that its name derives from the fact that Δg,µ is self-adjoint on L2(M ; dVµ) 

with domain H0
1(M)∩H2(M). The volume density dVµ determines a volume measure 

which we denote Volµ. In addition, we will use the following shorthand notation for 

volumes of domains of influence m(τ) := Volµ(M(τ)). 

We now describe a set of geometrically relevant subsets whose volumes will allow 

us to determine distances. Let y ∈ Γ, and let s, h > 0 satisfy s + h < σΓ(y). We 

define the wave cap, 

capΓ(y, s, h) := M(y, s + h) \ M◦(Γ, s), (3.3) 

where M◦(Γ, s) = {x ∈ M : d(x, Γ) < s}. Refer to Figure 3.1b for an illustration. 

Note that under the above hypotheses, x(y, s) belongs to capΓ(y, s, h). We will use 

wave cap volumes to determine distances. 

Our main result is an algorithm to use the data Λ2Γ 
T to construct distances of 

the form rx(y,s)(z) for y, z ∈ Γ and s > 0 with d(x(y, s), z) < min(σΓ(y), T ). Our 

procedure can also be viewed as a constructive proof of the following known result, 

see e.g. [3]: 

Theorem 3.2.1 Let y, z ∈ Γ and s > 0 with d(x(y, s), z) < min(σΓ(y), T ). Then 

Λ2T 
Γ determines rx(y,s)(z). 

The constructive proof will be given in Section 3.3. We note that this construction 

can also be viewed as a series of experiments. Following the proofs in Section 3.3.2, 

we provide an algorithmic overview of our distance computation procedure. 
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3.3 Constructing distances 

In this section, we present our proof of Theorem 3.2.1. We accomplish this through 

a sequence of lemmas that are designed to illuminate the steps required to turn the 

theorem into an algorithm. Also, we provide an alternative technique to determine 

distances, which we use in our computational implementation. 

3.3.1 Constructive proof of Theorem 3.2.1 

To compute volumes of domains of influence, we use the following lemma from [7], 

and we provide a proof for reference. 

Lemma 4 Let τ : Γ → [0, T ] either be a linear combination of characteristic func-

tions of open subsets of Γ or let τ ∈ C(Γ). Define b(t, x) = T − t. Then, letting 

fα := (Kτ + α)−1Pτ b, (3.4) 

we have 

m(τ ) = lim hfα, Pτ biL2((0,T )×Γ;dt⊗dSg). (3.5)
α→0+ 

Proof We will apply Lemma 1 with φ = 1. The main thing that we need to show 

is that W ∗1 = b. To see this, let f ∈ C0 
∞([0, T ] × Γ). We recall that uf satisfies (1.1), 

that Δg,µ1 = 0 and Nµ1 = 0, and apply the divergence theorem to obtain: 

d2 

dt2 
hu f (t), 1iL2(M ;dVµ) = hΔg,µu f (t), 1iL2(M ;dVµ) 

= hΔg,µu f (t), 1iL2(M ;dVµ) − hu f (t), Δg,µ1iL2(M ;dVµ) 

= hNµu f (t), 1iL2(∂M ;dSg ) − hu f (t), Nµ1iL2(∂M ;dSg ) 

= hf(t), 1iL2(Γ;dSg ). 

Defining U(t) := huf (t), 1iL2(M ;dVµ), we see that U satisfies a second order ordinary 

differential equation, and because uf (0) = ∂tuf (0) = 0, we have that U(0) = U 0(0) = 

0. Solving this differential equation we find: Z T 

hu f (T, ·), 1iL2(M ;dVµ) = hf(t), tiL2(Γ; dSg ) dt = hf, biL2([0,T ]×Γ; dt⊗dSg). (3.6) 
0 
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Thus, for f ∈ C∞([0, T ] × Γ) we have hW f, 1iL2(M ;dVµ) = hf, biL2([0,T ]×Γ; dt⊗dSg ), and0 

since C0 
∞([0, T ] × Γ) is dense in L2([0, T ] × Γ) we conclude that W ∗1 = b. 

Now we apply Lemma 1 with φ = 1, and see that, for fα given by (3.4), one has 

Wτ fα → 1M(τ ) as α → 0. So, 

limhfα, Pτ biL2([0,T ]×Γ; dt⊗dSg ) = limhWτ fα, 1iL2(M ;dVµ) = m(τ ) (3.7)
α→0 α→0 

Which completes the proof. 

The following lemma provides a bound on the distance between a point and a 

wave cap, 

Lemma 5 Let y ∈ Γ, s ∈ (0, σΓ(y)), and h ∈ (0, σΓ(y) − s). Let z ∈ Γ and r > 0. 

Then d(z, capΓ(y, s, h)) < s + r if and only if 

m(s1Γ + r1z + h1y) − m(s1Γ + r1z) < m(s1Γ + h1y) − m(s1Γ). (3.8) 

We note that (3.8) tests whether there is an overlap between the sets capΓ(y, s, h) and 

capΓ(y, s, r), see Figure 3.2. 

Proof Since h > 0 and h < σΓ(y)−s, we see that capΓ(y, s, h) contains a non-empty 

open set. In particular, it has strictly positive measure. Moreover, if d(z, capΓ(y, s, h)) < 

s + r then the intersection of capΓ(y, s, h) and M(z, s + r) contains a non-empty open 

set and has strictly positive measure. 

We note that m(s1Γ + h1y) is the measure of M(y, s + h) ∪ M(Γ, s) and that 

m(s1Γ + h1y) − m(s1Γ) is the measure of capΓ(y, s, h). Indeed, 

Volµ(M(y, s + h) ∪ M(Γ, s)) = Volµ(capΓ(y, s, h)) + Volµ(M(Γ, s)). 

Analogously, m(s1Γ + r1z + h1y) − m(s1Γ + r1z) is the measure of 

M(y, s + h) \ (M(Γ, s) ∪ M(z, s + r)) = capΓ(y, s, h) \ M(z, s + r). 

If d(z, capΓ(y, s, h)) < s + r then the intersection of capΓ(y, s, h) and M(z, s + r) has 

strictly positive measure, whence (3.8) holds. 
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On the other hand, if d(z, capΓ(y, s, h)) ≥ s + r then capΓ(y, s, h) ∩ M(z, s + r) 

is contained in the topological boundary of M(z, s + r) which is of zero measure [7]. 

Thus 

m(s1Γ + r1z + h1y) − m(s1Γ + r1z) = m(s1Γ + h1y) − m(s1Γ), 

and (3.8) does not hold. 

Γ

M

y

z

s

s+r

s+h

x(y,s)

Γ

M

y

z

s

s+h

s+r
x(y,s)

(a) s + r > d(z, capΓ(y, s, h)) (b) s + r ≤ d(z, capΓ(y, s, h)) 

Figure 3.2.: The light gray regions indicate the wave caps used in Lemma 5 and the 

dark gray region indicates the overlap between the caps. 

The next lemma demonstrates that when s < σΓ(y), the wave caps capΓ(y, s, h) 

tend, in a set-theoretic sense, towards x(y, s). 

Lemma 6 Let y ∈ Γ and s ∈ (0, σΓ(y)). Then, \ 
capΓ(y, s, h) = {x(y, s)}. (3.9) 

h>0 

Proof Let y, s as above, and let I(y, s) denote the left hand side of (3.9). Let w be 

any point belonging to I(y, s). Then w ∈ capΓ(y, s, h) for all h > 0, so s ≤ d(Γ, w) and 

d(y, w) < s+h for all h > 0, thus d(y, w) ≤ s. Since y ∈ Γ, we conclude s = d(Γ, w) = 

d(y, w). On the other hand, if w is a point in M satisfying s = d(Γ, w) = d(y, w), 

then w ∈ capΓ(y, s, h) for any h > 0, hence w ∈ I(y, s). We conclude, 

I(y, s) = {w ∈ M : d(y, w) = d(Γ, w) = s}. (3.10) 
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Because s < σΓ(y), we have d(x(y, s), y) = d(x(y, s), Γ) = s, so x(y, s) ∈ I(y, s). It 

remains to show that no other points belong to I(y, s). 

Let w belong to I(y, s), we will show that w = x(y, s). If we knew for certain 

that w belonged to the image of the semi-geodesic coordinates, then this would be 

immediate from the definition of these coordinates. On the other hand, if we did not 

require Γ to be open, then simple examples show that for points y in the topological 

boundary of Γ it is possible that I(y, s) has many points. We demonstrate that when 

Γ is open this cannot happen. 

Since M is a compact connected metric space with distance arising from a length 

function, the Hopf-Rinow theorem for length spaces applies and we conclude that 

there is a minimizing path β : [0, l] → M from y to w. By [46], β is C1 and we 

may assume that it is unit speed parameterized. Hence l = s. As β is minimizing 

˙from both y and Γ to w, we see that β(0) = ν. Thus β coincides with x(y, t) 

for t ≤ min(s, τM (y, ν)). But s < σΓ(y), hence s < τM (y, ν). Thus we see that 

w = β(s) = x(y, s). 

We use the preceding lemma to show that, when h is small, the distance between a 

point z ∈ Γ and the wave cap capΓ(y, s, h) surrounding x(y, s) yields an approximation 

to d(z, x(y, s)). 

Lemma 7 For y, z ∈ Γ, and s < σΓ(y), d(z, capΓ(y, s, h)) → d(z, x(y, s)) as h → 0. 

Proof Let {hj } ⊂ R+ be a sequence for which hj ↓ 0. Then each capΓ(y, s, hj ) is 

compact, so there exists wj ∈ capΓ(y, s, hj ) such that d(z, wj ) = d(z, capΓ(y, s, hj )). 

Because M is a compact manifold, the sequence {wj } has a convergent subsequence 

{wjk } converging to a point w. Since the wave caps capΓ(y, s, h) nest, the tail of 

{wjk } belongs to the closed set capΓ(y, s, hjk ) for each jk, hence w ∈ capΓ(y, s, h) for 

each h > 0. By the previous lemma, we conclude w = x(y, s). 

Together, continuity of the distance function and the particular choice of the 

wjk imply that, d(z, capΓ(y, s, hjk )) = d(z, wjk ) → d(z, x(y, s)). Since the wave caps 

nest, the sequence {d(z, wj )} is monotone non-decreasing, and since it is bounded 
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above it has a limit. In particular, any subsequential limit coincides with the limit. 

Thus we conclude that d(z, capΓ(y, s, hj )) → d(z, x(y, s)) as j → ∞, and in turn, 

d(z, capΓ(y, s, h)) → d(z, x(y, s)) as h → 0. 

The volumes appearing in Lemma 5 cannot be computed directly with the τ ’s 

appearing in the regularized volume determination. That is, the lemma requires us 

to compute volumes such as m(s1Γ + r1z + h1y), but the function τ = s1Γ + r1z + h1y 

is equivalent to s1Γ in L2((0, T ) × Γ). As a result, the set L2(Sτ ) will produce waves 

that fill L2(M(s1Γ)) as opposed to the desired set L2(M(τ)). The problem is that the 

spikes h1y and r1z have supports with dSg measure zero. The remedy is to replace 

the spikes by functions that produce the same domains of influence but have better 

supports. To accomplish this, for y ∈ Γ and R ∈ [0, ∞), we define τyR on Γ by: 

τy
R(z) := R − d(z, y) for z ∈ Γ. (3.11) 

Note that τy
R is continuous. We recall that under Assumption 1 the distances d(y, z) 

for y, z ∈ Γ with d(y, z) < T are known (or, alternatively, that they have been 

computed in some other fashion from Λ2Γ 
T ). Thus under our assumptions the functions 

τy
R are known. 

Lemma 8 Let y, z ∈ Γ, s, r, h > 0. We will use the notation f ∨ g to denote the 

function obtained by taking the pointwise maximum of f and g. Then, we have the 

following equalities, 

M(τy
r) = M(r1y), (3.12) 

M(τy
s+h ∨ τz

s+r ∨ s) = M(h1y + r1z + s1Γ), (3.13) 

M(τz
s+r ∨ s) = M(s1Γ + r1z). (3.14) 

Proof Let x ∈ M(r1y), then d(y, x) < r. Since τy
r(y) = r, we have that d(y, x) < 

τy
r(x), hence x ∈ M(τy

r). Now let x ∈ M(τy
r). Then there is a point z ∈ Γ for 

which d(x, z) < τy
r(z). Applying the definition of τy

r , we find r > d(x, z) + dΓ(y, z) ≥ 

d(x, z) + d(y, z) ≥ d(x, y). Hence x ∈ M(r1y). We conclude that M(τy
r) = M(r1y). 
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We demonstrate equality (3.13) and note that (3.14) is proved in an analogous 

fashion. Let τ = τy
s+h ∨ τz

s+r ∨ s. Then x ∈ M(τ) just in case d(x, p) < τ (p) for 

some p ∈ Γ, which happens if and only if d(x, p) is less than τy
s+h(p), τz

r+h(p), or s. 

The preceding paragraph implies that this happens just in case x belongs to M((s + 

h)1y),M((s + r)1z), or M(s1Γ), which happens if and only if x ∈ M(s1y + r1z + s1Γ). 

We are finally in a position to prove Theorem 3.2.1. 

Proof [Of Theorem 3.2.1] First, let r and h be positive numbers satisfying s+r < T 

= τ s+h = τ s+r = τ s+hand s + h < T . Define functions τ1 = s, τ2 ∨ s, τ3 ∨ s, and τ4 ∨y z y 

τ s+r z ∨s. Using the regularized volume determination from equation (3.5), we compute 

the volumes m(τi) for i = 1, . . . , 4. Then, Lemma 8 implies that m(τ1) = m(s1Γ), 

m(τ2) = m(s1Γ + h1y), m(τ3) = m(s1Γ + r1z), and m(τ4) = m(s1Γ + h1y + r1z), thus 

we have determined the volumes appearing in (3.8). By Lemma 5 we can compute 

d(z, capΓ(y, s, h)) by 

d(z, capΓ(y, s, h)) = s + inf{r : 0 ≤ r < T − s, and (3.8) holds}. (3.15) 

Finally, by Lemma 7, we can compute d(z, x(y, s)) by 

d(z, x(y, s)) = lim d(z, capΓ(y, s, h)). (3.16) 
h→0 

3.3.2 Alternative distance determination method 

The method to determine distances derived from Theorem 3.2.1 uses the fact 

that, under the hypotheses of the theorem, the distance between a point z ∈ Γ and 

the wave cap capΓ(y, s, h) serves as an approximation to d(z, x(y, s)), and that this 

approximation improves as h → 0. However, in the case where g is the Euclidean 

metric, d(z, capΓ(y, s, h)) converges to d(z, x(y, s)) with the rate O(h1/2). Thus the 
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convergence is typically slow. In this section, we provide another technique to deter-

mine the distance to points which we find, for a given nonzero h, tends to provide 

better distance estimates. 

The idea of this alternative distance determination method is to once again check 

for overlap between the sets capΓ(y, s, h) and capΓ(z, s, r), but instead of seeking the 

minimum r for which these wave caps overlap, we seek r for which Volµ(capΓ(y, s, h)∩ 

capΓ(z, s, r)) is half of Volµ(capΓ(y, s, h)). 

Before proving that our alternative distance determination procedure is valid, we 

provide a lemma that shows that the diameter of a wave cap vanishes as the height 

of the cap goes to zero. 

Lemma 9 Let y, z ∈ Γ, s ∈ (0, σΓ(y)). Then, 

lim diam(cap(y, s, h)) = 0. (3.17) 
h→0 

Proof Suppose the claim were false. Then there exists a sequence of positive real 

numbers hi ↓ 0 and points pi ∈ capΓ(y, s, hi) such that d(x(y, s), pi) 6→ 0. Since 

M is compact, the sequence {pi} has a convergent subsequence. Relabeling this 

subsequence by pi we have that there exists p ∈ M such that pi → p. But this implies 

that d(p, x(y, s)) =6 0, hence p =6 x(y, s). On the other hand, since pi ∈ capΓ(y, s, hi) T 
we must have that p ∈ h>0 capΓ(y, s, h), but this gives a contradiction, since by 

Lemma 6 this implies that p = x(y, s). 

We now present our alternative distance determination method. 

Lemma 10 Let y, z ∈ Γ, s ∈ (0, σΓ(y)), and 0 < h < σΓ(y)−s. Let rh be the solution 

to, 
1 

Volµ(capΓ(y, s, h) ∩ capΓ(z, s, rh)) = Volµ(capΓ(y, s, h)). (3.18)
2 

Then, for dh := s + rh, we have that dh → d(z, x(y, s)) as h → 0. 

Proof First, we recall that for s and h as above, capΓ(y, s, h) will contain a non-

empty open set, hence the right-hand side of (3.18) will be nonzero. Thus, from 
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the definition of rh, we conclude that capΓ(y, s, h) ∩ capΓ(z, s, rh) is a non-empty 

and proper subset of capΓ(y, s, h). Using the definition of capΓ(z, s, rh) and rh we 

conclude that s + rh ≥ d(z, capΓ(y, s, h)). On the other hand, since the intersection 

between the wave caps is a proper subset of capΓ(y, s, h) we see that there exists 

p ∈ capΓ(y, s, h) \ capΓ(z, s, rh). In particular, this implies that s + rh ≤ d(z, p) ≤ 

dist(z, capΓ(y, s, h)) + diam(capΓ(y, s, h)). Hence, 

d(z, capΓ(y, s, h)) ≤ dh ≤ d(z, capΓ(y, s, h)) + diam(capΓ(y, s, h)). 

Since d(z, capΓ(y, s, h)) → d(z, x(y, s)) and diam(capΓ(y, s, h)) → 0 as h → 0, we 

conclude that dh → d(z, x(y, s)) as h → 0. 

We summarize the steps of the proof in an algorithmic form in Algorithm 1. 

Algorithm 1 Continuum level distance determination using the alternate procedure. 
Let: y, z ∈ Γ and s > 0 with rx(y,s)(z) < T. 

Let: h0 > 0 small enough that s + h0 < min{σΓ(y), T }. 

for all 0 < h < h0 : 

for all 0 < r < T − s : 

= τ s+h = τ s+rLet: τ1 = s1Γ, τ2 y , τ3 z , τ4 = τ1 ∨ τ2 ∨ τ3 

for all α > 0 : 

for i = 1, . . . , 4 : 

Let: fα,i be the solution to (Kτi + α)Pτi f = Pτi b 

for i = 1, . . . , 4 : 

Compute: m(τi) = limα→0hfα,i, biL2(Sτ ; dt⊗dSg,µ) 

Compute: mtarget cap(h) := m(τ2) − m(τ1) 

Compute: moverlap(h, r) := m(τ4) − m(τ3) − m(τ2) + m(τ1) 

1Let: r = rh solve moverlap(h, r) = mtarget cap(h).2 

Compute: rx(y,s)(z) = s + limh→0 rh. 
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3.4 Computational experiments 

In this section we present computational experiments demonstrating the distance 

determination procedure we have described in the previous sections. We demonstrate 

our procedure in both Euclidean and hyperbolic geometries. However, we stress that 

our method can be applied in the general Riemannian setting. 

3.4.1 Numerical method for the direct problem 

In our computational experiments, we take M to be the 2-dimensional lower half-

space M = {(x, y) : y ≤ 0} equipped with a conformally Euclidean metric g = 

c−2dx2 . We consider the Euclidean case where c(x, y) = 1 and the hyperbolic case 

where c(x, y) = 1 − y. In both cases, our weight is given by µ = cn−2 , so the 

weighted Laplace-Beltrami operator that we consider is c−2Δ, where Δ denotes the 

2-dimensional Euclidean Laplacian. Hence, in our experiments, the Riemannian wave 

equation (1.1) simplifies to the standard 2 + 1-dimensional wave equation with wave 

speed c. In order to simulate partial data, for our source/receiver set, Γ, we take 

Γ = [−L, L] ×{0} ⊂ ∂M with L = 2.05. We simulate waves propagating for 2T time 

units, where T = 1.25. 

For sources, we use a basis of Gaussian pulses of the form 

� � 
ϕi,j (t, x) = C exp −at(t − ts,i)

2 − ax(x − xs,j )
2 , 

with parameters at = ax = 5.562 · 103 , and we choose C to normalize the ϕi,j in 

L2([0, T ] × Γ, dt ⊗ dSg). Sources are applied at regularly spaced points (xs,j , 0) with 

xs,j = −2 + (j − 1)Δxs for j = 1, . . . , Nx,s and times ts,i = 0.05 + (i − 1)Δts for 

i = 1, . . . , Nt,s. The source offset Δxs and time between source applications Δts are 

both set as Δxs = Δts = .0125. At each of the Nx,s = 321 source positions we apply 

Nt,s = 93 sources. For each basis function, we record the Dirichlet trace data at 

regularly spaced points (xr,k, 0) with xr,k = −2.05 + (k − 1)Δxr for k = 1, . . . , Nx,r 

and times tr,l = (l − 1)Δtr for l = 1, . . . , Nt,r. The receiver offset Δxr, satisfies 
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Δxr = 0.5Δxs resulting in Nx,r = 657 receiver positions. The time between receiver 

measurements, Δtr, satisfies Δtr = 0.1Δts, resulting in Nt,r = 2001 measurements at 

each receiver position. 

We discretize the Neumann-to-Dirichlet map by solving the forward problem for 

each source ϕi,j and recording its Dirichlet trace at the receiver positions and times 

described above. That is, we simulate the following data, ⎧⎨ 
⎫⎬i = 1, . . . , Nt,s, j = 1, . . . , Nx,s, 

Λ2T ϕi,j (tr,l, xr,k) = u ϕi,j (tr,l, xr,k) :⎩ (3.19)⎭ 
. 

l = 1, . . . , Nt,r, k = 1, . . . , Nx,r 

To perform the forward modelling, we use a continuous Galerkin finite element 

method with piecewise linear Lagrange polynomial elements and implicit Newmark 

time-stepping. In particular, we use the FEniCS package [47]. We use a regular 

triangular mesh, where the time step and mesh spacing are selected so that 8 points 

per wavelength (in directions parallel to the grid axes) are used at the frequency f0 

where the spectrum of the temporal portion of the source falls below 10−6 times its 

maximum value. 

3.4.2 Solving the control problem 

We discretize the connecting operator K by approximating its action as an oper-

ator on span{ϕi,j }. That is, we use the discrete Neumann-to-Dirichlet data, (3.19), 

to discretize Kτ by formula (2.8), where τ ≡ T . To be specific, we first compute 

the Gram matrix [G]ij = hϕi, ϕj iL2([0,T ]×Γ,dt⊗dSg ) and its inverse [G−1]. Then, for 

A = JΛ2T , RΛT and RJ , we compute the matrix for A acting on span{ϕi,j } by: Γ Γ X 
[A]ij = [G−1]ikhϕk, Aϕj iL2([0,T ]×Γ,dt⊗dSg ). 

k 

Finally, we use these matrices to compute the matrix for K: 

[K] = [JΛ2Γ 
T ] − [RΛT 

Γ ][RJ ]. (3.20) 

For τ ∈ C(Γ), with 0 ≤ τ ≤ T , we obtain the matrix [Kτ ] discretizing the con-

necting operator Kτ by masking the entries in [K] that correspond to basis functions 
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ϕi,j with centers (ts,i, xs,j ) 6∈ Sτ . We note that, in practice, we find that this tends to 

provide a better approximation to Kτ than computing the matrix [Pτ ] and computing 

the product [Pτ ][K][Pτ ]. 

We consider the discretized control problem 

([Kτ ] + α[Pτ ])[fα] = [Pτ ][b], (3.21) 

where we use the matrix [Pτ ] to refer to the mask described above, and use α = 10−5 . 

Here, [b] denotes the coefficient vector for the approximation to b in span{ϕij } and 

we recall that b(t, x) = T − t, which was defined in Lemma 4. To solve (3.21) for [fα], 

we use restarted GMRES. In Figures 3.3 and 3.4 we depict control solutions fα = P 
i[fα]iϕi and their associated wavefields ufα (T, ·). A volume estimate m̂(τ ) for m(τ) 

is obtained from [fα] by computing the discretized inner product m̂(τ) = [fα]T [G][b], 

which approximates m(τ) as in (3.5). For the remainder of this paper we will continue 

to use the notation m̂(τ) to indicate the approximation to m(τ) computed like this. 

Figure 3.3.: Illustration, in the Euclidean case, of a source fα (top) and the corre-

sponding wavefield ufα (T, ·) (bottom) for which ufα (T, ·) ≈ 1M(τ). Here, τ corresponds 

to τ4 from Figure 3.4. To show both plots with the same horizontal axis, we have 

extended fα to zero outside of [0, T ] × Γ and plotted time on the y-axis. 
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τ fα ufα (T, ·) 

τ1 

τ2 

τ3 

τ4 

Figure 3.4.: Illustration, in the Euclidean case, of the essential features of sources 

and waves used in distance estimation procedure. See Figure 3.3 for interpretation of 

axes. Solutions, fα, to the discretized control problem plotted next to their associated 

τ s+h τ s+rwavefields ufα (T, ·) approximating 1M(τ). Here, τ1 = s1Γ, τ2 = y , τ3 = z , and 

τ4 = τ1 ∨ τ2 ∨ τ3, where y = (0, 0), z = (0.5, 0), h = .05, and r = 0.125. The black 

markers in the wavefield plots indicate the points y and z. 
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3.4.3 Estimating distances 

We estimate distances between z ∈ Γ and points of the form x(y, s) where y = 

(0, 0). In particular, for each fixed s we estimate the distances d(x(y, s), (zi, 0)) for 

uniformly spaced (zi, 0) ∈ [−1, 1] × {0} ⊂ Γ. We take the offset Δz between the 

points zi equal to Δz = 4Δxs = 0.05, and select the points (zi, 0) to coincide with 

every fourth source position. As a proxy for estimating the distance to x(y, s), we 

use a target wave cap of the form capΓ(y, s, h) with height h = 0.025, and estimate 

the distances rx(y,s)((zi, 0)) for s = 0.125, 0.25, 0.375, 0.5. 

For each s we solve the discrete control problem (3.21) in order to obtain estimates 

m̂(s1Γ) and m̂(τy
s+h) for the respective volumes of M(Γ, s) and M(y, s + h). From 

these, we estimate the volume of the target cap by, 

m̂ target cap = m̂(τy
s+h) − m̂(s1Γ). 

For each point (zi, 0), we also solve control problems to obtain volume estimates 
rj +s rj +s 

m̂(τ ) and m̂(τ ∨ τ s+h ∨ s1Γ), where we select the parameters rj , j = 1, . . . , Nr(zi,0) (zi,0) y 

so that the two sets {s+rj : j = 1, . . . , Nr} = {ts,k : ts,k > r} coincide. We implement 

the distance estimation procedure described in Lemma 10 to estimate rx(y,s)((zi, 0)) 

as follows: for each rj we estimate Volµ(capΓ(y, s, h) ∩ capΓ((zi, 0), s, rj )) by, 

rj +s rj +s 
m̂ overlap,j = m̂(τ ∨ τ s+h ∨ s1Γ) − m̂(τ ) − m̂(τh+s) + m̂(s1Γ).(zi,0) y (zi,0) y 

We then find the indices j, j + 1 for which 

1 
m̂ overlap,j ≤ m̂ target cap ≤ m̂ overlap,j+1, (3.22)

2 

and estimate rh by linearly interpolating between rj and rj+1. This procedure ap-

proximates (3.18). We depict the results of the volume overlap estimation in Figure 

3.5. Since the volumes in these images have all been normalized by the target cap 

volumes, computing rh by (3.22) corresponds to finding the x-value where the curve 

connecting the data points passes through the line y = 0.5. We depict the distance 

estimation results in Figure 3.6. 
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Figure 3.5.: Euclidean case examples of relative overlap volumes, moverlap/mtarget cap, 

versus r. For s = 0.25, h = 0.025 and z = 0.15, 0.3, 0.45, 0.60 (left to right, by row). 

The markers denote relative overlap volumes estimated in the distance estimation 

procedure, and the curves indicate analytical relative overlap volumes. 

3.4.4 Discussion of sources of numerical errors and instability 

Examining Figure 3.6, one can see that in each of the estimated distance curves, 

the distances are over-estimated for z = (zi, 0) near y = (0, 0). This error results 

in part from the distance estimation method. For example, when z = y the correct 

distance d = s + r would be obtained by taking r = 0. On the other hand, when 

z = y, both of the wave caps used in the distance estimation procedure are centered 

on the same point, so for 0 ≤ r ≤ h the variable wave cap, capΓ(z, s, r), coincides 

with capΓ(z, s, r) ∩ capΓ(y, s, h). From the definition of rh, we find that we will have 

0 < rh < h. Thus the distance estimate dh will necessarily over-estimate d(y, x(y, s)). 

Similar remarks apply for estimating d((zi, 0), x(y, s)) for (zi, 0) near y, although the 
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(a) Euclidean distances (b) Hyperbolic distances 

Figure 3.6.: Distance estimates (markers) for d(x(y, s), (zi, 0)) for y = (0, 0) and for 

s = 0.125, 0.25, 0.375, 0.5, plotted along with the true distances (solid curves). 

strength of this effect decreases as (zi, 0) gets further from y. We call this source of 

error geometric distortion, since it results entirely from the geometry of our distance 

estimation procedure and is independent of errors arising from the control problems. 

In Figure 3.7 we depict the geometric distortion by repeating our distance estimation 

technique with exact volume measurements. Note that the distances in Figure 3.7 

are overestimated at all points, which contrasts most with the distances estimated at 

large offsets in Figure 3.6. 

Our numerical tests suggest that the dominant source of error comes from the 

control step. In order to discuss this instability, we return to considering the con-

tinuum problem. Taking τ ∈ C(Γ), we can ask whether there exists f ∈ Hs(Sτ ) for 

some s ∈ R for which Wτ f = 1M(τ ). This question can be answered by considering 

the more general problem of exact controllability, in which one seeks to determine 

when the equation (uf (T, ·), ∂tuf (T, ·)) = (w0, w1) has a solution in Hs(Sτ ) for any 

(w0, w1) belonging to an appropriate space of Cauchy data for the wave equation. 

In [28], the question of exact controllability is considered. One of the main results 

of that paper is that the ray geometry of the wave equation can be used to determine 

necessary and sufficient conditions for exact controllability. Using the same set of 
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Figure 3.7.: Demonstration of geometric distortion in the Euclidean case. Distances 

(markers) are estimated by using the distance estimation technique on exact volumes 

and plotted for d(x(y, s), (zi, 0)) for y = (0, 0) and s = 0.125, 0.25, 0.375, 0.5, along 

with the true distances (solid curves). 

ideas to those in [28], it is shown in [29] that in order for exact controllability to hold 

for Wτ in M(τ) from Sτ , the following geometric controllability condition must hold: 

Each generalized bicharacteristic (x(t), t) satisfying x(T ) ∈ M(τ), passes over 

Sτ ∪ Sτ 
0 in a non-diffractive point. 

Here, S 0 = {(t, x) ∈ Γ × (T, 2T ) : T ≤ t ≤ T + τ(x)}. We recall that Sτ isτ 

defined by (2.4), and note that Sτ 
0 is the temporal reflection of Sτ across t = T . For 

a generalized bicharacteristic (x(t), t), the path x(t) is a unit speed geodesic in the 

interior of M and it is reflected according to Snell’s law when it intersects the boundary 

∂M transversally. Tangential intersections with the boundary can cause the path to 

glide along the boundary, and in the case of an infinite-order contact, the path x(t) 

can be continued in many ways, see [28]. We refer also to [28] for the definition of 

non-diffractive points. The geometric controllability condition is necessary for exact 

control to hold from Sτ , since when it fails for (x, ξ) ∈ S∗(M(τ)), propagation of 

singularities implies that for any s ∈ R and any f ∈ Hs(Sτ ), (x, ξ) 6∈ WF(uf (T, ·)), see 

e.g. [48, Section 23]. Here, WF(uf (T, ·)) denotes the wave front set of uf (T, ·), and we 
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refer to [49, Def. 8.1.2] for its definition. Thus, if w ∈ L2(M(τ)) has (x, ξ) ∈ WF(w) 

then, for each s ∈ R, there does not exist f ∈ Hs(Sτ ) for which Wτ f = w. 

In our computational experiments, the geometric controllability condition actually 

fails over every point in M(τ). This is due to the fact that at each x ∈ M(τ) there 

exists a family of unit-speed geodesic rays with (γ(T ), γ̇(T )) = (x, ξ) ∈ Sx(M) and 

ξ belonging to a cone over x, for which the corresponding geodesics γ fail to pass 

over Sτ ∪ Sτ 
0 . For an approximate control solution uf (T, ·) approximating 1M(τ ), we 

observe instabilities near x ∈ M(τ) where WF(1M(τ)) meets the cone over which 

exact control fails. In particular, for the τ considered in our experiments, WF(1M(τ)) 

meets the uncontrollable cone only above points x ∈ ∂M(τ ) where ∂M(τ) fails to 

be C∞ smooth. Above all other points, WF(1M(τ )) is either empty or only contains 

controllable directions. We note that for those points x where ∂M(τ ) fails to be 

smooth, {x} × (R2 \ 0) ⊂ WF(1M(τ)), and refer to Appendix A for further analysis. 

In the case of τ = τy
s+h ∨s1Γ, instabilities occur for x in the corners of capΓ(y, s, h), 

where ∂M(τ) fails even to be C1 . Additionally, we observe instabilities near the 

points (±L, −s), where the flat portion of ∂M(τ) transitions into a circle and fails to 

be C2 . We demonstrate these effects in Figure 3.8a, by plotting a wavefield uf (T, ·) 

approximating 1M(τ ) for y = (0, 0), s = 0.5, and h = .2. The former instabilities occur 

near the points (±0.5, −0.5), and the latter instabilities occur near (±1.25, −0.5). We 

τ s+hcontrast this with the case where τ = y , which we show in Figure 3.8b. In this 

second example, the domain of influence is a disk and every co-vector in WF(1M(τ)) 

can be controlled, and unlike the first example, we observe no instabilities. Note that 

in all of the examples in Figure 3.8 we restrict our computations to Γ = [−1.25, 1.25]. 

In Figure 3.8c we plot the wavefield uf (T, ·) that approximates 1M(s1Γ). Note 

τ s+hthat as in the case of τ = y ∨ s1Γ, we observe instabilities near the points 

(±1.25, −0.5). In Figure 3.8d we plot the difference between the wave fields approxi-

mating 1M(τ s+h and 1M(s1Γ), and note that this difference yields an approximation 
y ∨s1Γ) 

to the characteristic function of capΓ(y, s, h). In particular, we note that the instabili-

ties observed near (±1.25, −0.5) in Figures 3.8a and 3.8c appear to cancel upon taking 
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(a) 

(b) 

(c) 

(d) 

Figure 3.8.: (a) A wavefield demonstrating instability of the solution to the con-

trol problem when WF(1M(τ)) contains uncontrollable directions over (±0.5, −0.5) 

and (±1.25, −0.5) (b) A wavefield for which all directions in WF(1M(τ )) are con-

trolled. (c) Another wavefield demonstrating instability, with uncontrollable direc-

tions in WF(1M(τ)) over (±1.25, −0.5). (d) The difference between the wavefields (a) 

and (c). Note that this corresponds to an approximation to 1cap(y,s,h). Moreover, the 

instabilities in (a) and (c) located over (±1.25, −0.5) appear to cancel each other. 

the difference in Figure 3.8d. On the other hand, instabilities near the corners of the 

caps at (±0.5, −0.5) persist after taking the difference. Since our distance determi-

nation procedure relies primarily on the volumes of wave caps, which are obtained by 

taking differences in this fashion, we find that the instabilities near the corners of the 

caps tend to provide the main source of error for our distance estimation procedure. 
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4. AN EXACT REDATUMING PROCEDURE FOR THE 

WAVE EQUATION IBVP 

4.1 Introduction 

In this chapter we consider an exact redatuming procedure for the inverse bound-

ary value problem for the wave equation. We suppose that the metric g is known, for 

some fixed r > 0 and in some fixed coordinates, in the domain of influence M(Γ, r), 

defined by: 

M(Γ, r) := {x ∈ M : d(x, Γ) ≤ r}. (4.1) 

Outside of this set, the metric will be assumed to be unknown. For simplicity, we 

will suppose that µ ≡ 1 in M , however we note that the results of this chapter also 

extend to the case where µ is known in semi-geodesic coordinates in M(Γ, r). To be 

specific, in this chapter we will consider the wave equation 

(∂t 
2 − Δg)u(t, x) = 0, (t, x) ∈ (0, ∞) × M, (4.2) 

∂ν u(t, x) = f(t, x), (t, x) ∈ (0, ∞) × ∂M, 

u(0, x) = ∂tu(0, x) = 0, x ∈ M, 

where Δg denotes the Laplace-Beltrami operator for the metric tensor g on M . We 

will suppose that g is smooth in M(Γ, r), but we will allow g to possess singularities 

of conormal type in the complement of this set. 

The term redatuming comes from the seismic literature, where it is used to refer 

to procedures to synthesize measurements for another set where data has not been 

recorded (see e.g. [9]). In the present setting, we suppose that data has been collected 

on an open subset Γ ⊂ ∂M in the form of the Neumann-to-Dirichlet map (N-to-D 
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map). Specifically, we suppose that for a fixed fixed time T > 0, we have the N-to-D 

map Λ2Γ 
T , defined by: 

Λ2T 
Γ f = u f |(0,2T )×Γ, f ∈ C0 

∞((0, 2T ) × Γ) 

where uf is the solution of (4.2). Let Ω ⊂ M(Γ, r) be the set into which we would 

like to “move” the sources and receivers. To make this precise, let F be an interior 

source supported in [0, T/2] × Ω, and let wF solve 

(∂t 
2 − Δg)w(t, x) = F (t, x), (t, x) ∈ (0, ∞) × M, (4.3) 

∂ν w(t, x) = 0, (t, x) ∈ (0, ∞) × ∂M, 

w(0, x) = ∂tw(0, x) = 0, x ∈ M. 

We define the map: 

L : F 7→ w F |[0,T/2]×Ω, for F ∈ L2([0, T/2] × Ω). (4.4) 

Then, redatuming into Ω can be accomplished by constructing the map L using the 

data Λ2T and g|M(Γ,r). Thus the central focus of this chapter is the following problem: Γ 

(P) Given Λ2Γ 
T and g|M(Γ,r), determine the map L. 

In Section 4.3 we develop an algorithm to solve problem (P) constructively. 

Our primary motivation for studying the problem (P) stems from the fact that it 

arises as a step in several variations of the Boundary Control (BC) method, see [1] 

for the original formulation of the method. In theory, the BC method allows one 

to reconstruct (M, g) given ΛΓ
2T for T > maxx∈M d(x, Γ). This reconstruction is 

based on a layer stripping argument, for which the first step is to recover g in the 

semigeodesic coordinates of Γ. As these coordinates do not cover the whole M , we 

refer to this procedure as the local recovery step. The second step is to solve the 

redatuming problem (P), and consequently we refer to this step as the redatuming 

step. Solving Problem (P) allows one to propagate the data Λ2Γ 
T into the interior of 

M and thus enables one to repeat the local recovery step with data in the interior. 

By alternating between the local recovery and redatuming steps, one can reconstruct 
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the Riemannian structure (M, g) further and further away from Γ. In particular, one 

can reconstruct the structure outside the domain where the semigeodesic coordinates 

of Γ are applicable. 

Such an alternating iteration has been used in several uniqueness results for inverse 

boundary value problems [3, 45, 50, 51], however, the iteration is unstable, and it has 

not been implemented computationally to our knowledge. In order to understand 

how to regularize the iteration, we need to study the inherent instability of the local 

recovery and redatuming steps. The present paper considers the redatuming step, 

that is, the problem (P), while we have previously studied the local recovery step [8]. 

We divide our redatuming procedure into two steps, which we call moving receivers 

and sources, respectively. The moving receivers step concerns solving the following 

time-windowed problem: 

(WP) Given Λ2Γ 
T f |(T −r,T +r)×Γ for f ∈ L2([0, T − r] × Γ), determine 

uf (T, ·) in Ω. Here, g is known in M(Γ, r). 

Figure 4.1.: Geometry of the windowed problem (WP). The shaded region indicates 

where the metric is unknown. 

Time-windowing arises naturally in the redatuming problem, and it also allows us to 

consider the problem (WP) as a unique continuation problem for the wave equation on 

(T −r, T +r)×M(Γ, r). We illustrate the geometry of (WP) in Figure 4.1. Let us note 

that, as f is assumed to be supported on [0, T − r] × Γ, uf satisfies the homogeneous 

Neumann boundary condition on (T −r, T +r)×∂M . In our computational procedure, 
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we will allow f to have support in [T − r, T ] × Γ. This does not affect the stability 

properties of the moving receivers step, since if f ∈ L2([T − r, T ] × Γ), then solving 

(4.2) in M to obtain uf (T, ·) is a classical well-posed problem, when g is known on 

M(Γ, r). 

We will show that, after a transposition, the moving sources step reduces to a 

problem analogous to (WP). For this reason, we develop stability theory only for the 

moving receivers step. 

The problem (WP) is a special case of the following unique continuation problem 

(UC) Given Cauchy data (u, ∂ν u) on (T − r, T + r) × Γ, determine 

u(T, ·) near Γ. Here, u satisfies ∂t 
2u − Δgu = 0, and g is known 

in M(Γ, r). 

Thus, the stability of (WP) can be no less favorable than that of (UC). On the other 

hand, since problem (WP) considers waves that satisfy a global Neumann boundary 

condition, while no such boundary conditions are imposed in (UC), it is not imme-

diately evident how the stability of (WP) compares to that of (UC). Nonetheless, we 

will show that (WP) enjoys the same stability as (UC), and we present sharp stability 

theory for the problem (WP) in Section 4.2. 

Let us briefly summarize the stability theory. Under suitable conditions, the 

problem (UC) is known to be conditionally Hölder stable, see e.g. [52, Thm. 3.2.2]. 

We give a geometric reformulation of this result in terms of convexity of Γ, and show 

that conditional Hölder stability is optimal for (UC). Our counterexample establishing 

the optimality of Hölder type stability works in the case of strictly convex Γ, and 

moreover, we show that a refined version of this counterexample also works in the case 

of the windowed problem (WP). In particular, this shows that the global homogeneous 

Neumann boundary condition on (T − r, T + r) × ∂M in (WP) does not improve 

the stability. This should be contrasted with [29], where unconditional Lipschitz 

stability is obtained for a problem of the form (WP), with strictly convex Γ, under 

the additional assumption that uf (T, ·) and ∂tuf (T, ·) are supported near Γ. 



45 

Unique continuation problems have been studied from computational point of 

view, for example, the so-called quasireversibility method has been used to solve 

(UC) in [53]. In this paper we propose to use the iterative time-reversal control 

method due to Bingham et. al. [6] to solve (WP). In [6] this method was applied 

to the coefficient determination problem to find g given Λ2Γ 
T , however, as explained 

in Section 4.3, it can be used to solve (WP) as well. We describe also the moving 

sources step in Section 4.3 and give there a complete algorithm solving (P). Finally, 

we give computational examples in Section 4.4. To our knowledge, this is the first 

computational implementation of the iterative time-reversal control method. 

4.2 Stability Theory for the Windowed Problem 

In this section, we consider the stability theory for the windowed problem (WP). 

We begin by recalling the stability theory for the more general problem (UC). We 

were not able to find all the results in Sections 2.1-3 in the literature, however, the 

techniques used there are well-known. 

4.2.1 Conditional Hölder stability for UC under convexity conditions 

We use ideas from [52,54] to prove the following conditional Hölder stability esti-

mate: 

Lemma 11 Let T > 0, x0 ∈ Γ, and suppose that Γ ⊂ ∂M is strictly convex in the 

sense of the second fundamental form. Then there exist a neighbourhood U of (0, x0) 

in (−T, T )×M , κ ∈ (0, 1) and C > 0 such that for all u ∈ H2((−T, T )×M) satisfying 

∂t 
2u − Δgu = 0 it holds that 

kukH1(U) ≤ C(F + A1−κF κ), (4.5) 

where F = kukH3/2((−T,T )×Γ) + k∂ν ukH1/2((−T,T )×Γ) and A = kukH1((−T,T )×M). 

Proof Let Γ0 ⊂ Γ be a coordinate neighbourhood of x0, let s0 > 0 be small, and set 

Ω = (−s0, s0) × Γ0 . We will use semigeodesic coordinates (s, y) ∈ Ω associated to Γ0 . 
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Here a point x ∈ M near x0 has the coordinates (s, y) where y is the closest point to 

x in Γ0 and s = d(x, y). Furthermore, we choose the coordinates so that x0 = (0, 0), 

and extend g smoothly to Ω. All norms, inner products, gradients and Hessians will 

be taken with respect to the Riemannian structure associated with g on Ω. 

Let Q = (−T0, T0) × Ω for some T0 ∈ (0, T ]. We recall that if a function φ is 

strongly pseudo-convex in Q with respect to the wave operator P := ∂t 
2 − Δg, then, 

for v ∈ C0 
∞(Q) one has the Carleman estimate [55, Thm. 28.2.3]: Z Z 

τ e 2τφ(|∂tv|2 + |rv|2 + τ 2|v|2)dtdx ≤ C e 2τφ|Pv|2dtdx, τ > 1. (4.6) 
Q Q 

By approximation, this estimate also extends to v ∈ H0
2(Q) . 

To obtain a function φ that is strongly pseudo-convex in Q , we follow the approach 

from [54]. Specifically, we construct a function ψ satisfying: 

(i) |∂tψ| 6= |rψ| in Q, 

(ii) Hp 
2ψ > 0 on T ∗(Ω) \ 0 whenever ψ = p = Hpψ = 0, 

where, Hp denotes the Hamiltonian flow associated with principal symbol p of P . If 

ψ satisfies (i)-(ii), then the function φ := exp(βψ) − 1 will be strongly pseudo-convex 

in Q, provided that β � 1. Moreover, when ψ(t, x) = θ(t) + ρ(x), condition (ii) is 

equivalent to 

∂t 
2θ + D2ρ(ξ, ξ) > 0, ξ ∈ SxM, (t, x) ∈ Q, (4.7) 

holding whenever ∂tθ ± (ξ, rρ) = 0, see e.g. [54]. Here, we use SxM to denote the 

unit sphere at x. 

In order to derive (4.5) from (4.6) via a cut-off argument, the function ψ needs to 

be chosen so that it decays when the distance to the origin (t, s, y) = (0, 0, 0) grows 

in the region s > 0. Let R, δ, µ > 0, and consider the polynomial 

ψ(t, s, y) = (R − s)2 − δt2 − µ|y|2 − R2 . 

Here, we identify y with its coordinate representation and use |y| to denote the Eu-

clidean length of the coordinate vector for y. The function ψ decays as needed when 
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0 < s < R. Let us show that R, δ and µ can be chosen so that ψ satisfies (4.7). 

Consider first the case µ = 0. Then, on the boundary, s = 0 and this inequality 

reduces to 

−δ + σ2 + R II(η, η) > 0, ξ = (σ, η), 

where II denotes the second fundamental form for Γ. By strict convexity, it holds 

that R II(η, η) ≥ |η|2 for large enough R > 0. Moreover, σ2 + |η|2 = |ξ|2 = 1, and 

therefore (4.7) holds if δ < 1. The inequality (4.7) remains valid in a neighbourhood 

of the origin for small µ > 0 by smoothness. To show that (i) holds, we note that 

∂tψ(0, 0) = 0 and |rψ(0, 0)| ≥ 2R, thus |∂tψ| 6= |rψ| at the origin. Smoothness of ψ 

implies that this condition also holds in a neighborhood of the origin. Then, we can 

shrink Q by decreasing s0, T0, and Γ0 , in order to ensure that ψ satisfies (i) and (ii) 

on Q. 

Figure 4.2.: A cartoon illustrating the geometry for Lemma 11 at t = 0. The lightly 

shaded region represents Q+ ∩ {t = 0}, while the dark region depicts U(�) ∩ {t = 0}. 

For this simple case we have taken Γ0 = Γ. 

We write Q+ = Q ∩ {s > 0}, and use the right inverse of the trace map to get 

w ∈ H2(Q+) with Cauchy data (u, ∂ν u) on (−T, T ) × Γ0 satisfying kwkH2(Q+) ≤ CF . 

Then, v = u − w has zero Cauchy data on (−T, T ) × Γ0 and we extend v by zero as a 

function on Q. Then, f = Pv = −Pw satisfies kfk ≤ CF . We note that ψ < 0L2(Q+) 

in Q+ so φ < 0 there too. Choose � > 0 sufficiently small so that the set 

U(�) = {(t, s, y) ∈ R1+n; φ(t, s, y) ≥ −�, s > 0} 

satisfies U(�) ⊂ Q+ , and choose χ ∈ C0 
∞(Q) such that χ = 1 in U(�). See Figure 4.2 

for an illustration. 
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We will apply (4.6) to χv. Note that 

P (χv) = χP v + [P, χ]v = χf + [P, χ]v, 

where the commutator [P, χ] is a first-order differential operator that vanishes on the 

set U(�). Thus Z � � 
τ e 2τφ |∂tv|2 + |rv|2 + τ 2|v|2 dtdx 

U(�/2)�Z Z � 

≤ C e 2τφ|f |2dtdx + e 2τφ|[P, χ]v|2dtdx . 
Q+ Q+\U(�) 

Using that τ > 1, and setting p = 2 kφk + �, it holds thatL∞(Q) � � 
τp kfk2 −τ� kvk2kvk2 ≤ C e + e .H1(U (�/2)) L2(Q+) H1(Q+) 

Since v = u + w and kwkH2(Q+) ≤ CF we have that kvkH1(Q+) ≤ C(A + F ). Recalling 

that kfkL2(Q+) ≤ CF , we find: � � 
τpF 2 −τ�(A + F )2kvk2 ≤ C e + e .H1(U(�/2)) 

Choosing τ as in [52, Thm. 3.2.2], we obtain 

kvk ≤ CF κ(A + F )1−κ ,H1(U(�/2)) 

where κ = �/(p+�). Then, since 0 < 1−κ < 1, we see that (A+F )1−κ ≤ A1−κ +F 1−κ . 

Finally, we again use that v = u + w and the bound on kwkH2(Q+) to conclude: 

kuk ≤ C(F + A1−κF κ).H1(U(�/2)) 

4.2.2 Convexity is necessary for Hölder stability 

In this section, we demonstrate that a convexity condition must hold between the 

sets Γ and U in order for a Hölder stability estimate of the type (4.5) to hold. We 

follow ideas from [56], and show that if there is a bicharacteristic ray that passes over 

U but does not meet [−T, T ] × Γ, then (4.5) can not hold. 
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Figure 4.3.: Example where a geodesic γ passes through U but fails to intersect Γ. 

The dark shaded region is a slice of U at some time t, and the light shaded region is 

the spatial projection of the effective support of a Gaussian beam centered on γ. 

Let γ be a unit speed geodesic on M and consider the corresponding bicharac-

teristic ray β(t) = (t, γ(t)). We suppose that there exists t0 ∈ (−T, T ) for which 

(t0, γ(t0)) ∈ U but γ(t) 6∈ Γ for all t ∈ [−T, T ]. Let us consider a Gaussian beam 

u� concentrated on γ. We refer to [3, 56] for the construction of Gaussian beams, 

and recall here only that, for � > 0, u� is a family of solutions to the wave equation 

∂t 
2u� − Δgu� = 0 on (−T, T ) × M satisfying for any j ∈ N0 and multi-index λ ∈ Nn 

0 

∂λ|∂j (u�(t, x) − χ(t, x)UN (t, x))| ≤ Cj,λ,N �
N−(j+|λ|+n/4), t ∈ (−T, T ), x ∈ M. t x � 

Here, χ is a smooth function having small support around β and satisfying χ = 1 

near β, and in local coordinates (t, z), U�
N is a smooth function of the form 

N� �X 
U�
N (t, z) = �−n/4 exp i�−1Θ(t, z) �j aj (t, z), N ∈ N. 

j=0 

Here, Θ is a complex valued function whose imaginary part vanishes on β, and satisfies 

=Θ(t, z) ≥ θ(t)|z − γ(t)|2 for some continuous strictly positive function θ. Moreover, 

the function a0 does not vanish on β. 

First we discuss how the right hand side of (4.5) behaves with respect to the family 

u�. We define, for an integer r > 0 and each � > 0, the quantities, 

A� := ku�kHr ([−T,T ]×M), F� := ku�kHr ([−T,T ]×Γ) + k∂ν u�kHr−1([−T,T ]×Γ), 

and investigate how they behave as � → 0. Since β does not intersect [−T, T ] × Γ, 

we can choose χ so that it vanishes on [−T, T ] × Γ. Then, 

|∂j u�(t, x)| ≤ Cj,λ,N �
N−(j+|λ|+n/4), for (t, x) ∈ [−T, T ] × Γ.t ∂x

λ 
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Consequently, for any r ∈ N, it holds that F� ≤ Cr,N �
N−(r+n/4). Now, let us consider 

the quantity A�. We have U�
N ≤ Cr,N �

−r−n/4 , and therefore also A� ≤ 
Hr ([−T,T ]×M) 

Cr,N �
−r−n/4 . Thus, for any fixed 0 < κ < 1, there exists a constant Cr,N > 0 such 

that � � 
�N −(r+n/4) + �κN−(r+n/4)F� + A1−κF κ ≤ Cr,N .� � 

Finally, we choose N sufficiently large such that κN > r + n/4, and conclude that 

F� + A� 
1−κF�

κ → 0 as � → 0. (4.8) 

We now consider how the left-hand side of (4.5) behaves with respect to the 

family u�. In view of (4.8), it remains to show that ku�kHr (U) stays positive as � → 0. 

Since ku�kHr (U) ≥ ku�kL2(U), we can consider only the L2 norm. Let B be a ball 

containing the point γ(t0) and satisfying {t0} × B ⊂ U . On [3, p. 176], it is shown 

that lim�→0 ku�(t, ·)kL2(B) = a(t), where a is a continuous strictly positive function. 

Thus for small δ > 0 it holds that lim�→0 ku�kL2([−δ,δ]×B) > 0. This concludes the 

proof, showing that if there is a bicharacteristic ray passing over U that does not 

meet [−T, T ] × Γ, then (4.5) cannot hold. 

4.2.3 A counterexample to Lipschitz stability for UC 

In this section, we give a counterexample showing that (4.5) cannot hold with 

κ = 1. This example is a variation of the classical counterexample by Hadamard [57, 

p. 33], adapted to a strictly convex setting. 

Let us consider a case where M is contained in the half disk 

iθ ∈ C;{re r ∈ (0, 1], |θ| < π/2}. 

We assume that M is equipped with the Euclidean metric and suppose that Γ ⊂ ∂M 

is of the form Γ = {eiθ ∈ C; |θ| < θ0}, for some θ0 ∈ (0, π/2). 

We consider a family of stationary waves in M . For n ∈ N, we define 

iθ) := r −n inθφn(re e . 
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Then, we recall that in polar coordinates (r, θ) 7→ reiθ the Laplacian has the form 

−2∂2Δ = ∂2 + r −1∂r + rr θ . 

Using this formula, it is straightforward to check that the φn are harmonic in M (note 

that 0 6∈ M). Letting un(t, x) = φn(x), it is immediate that (∂t 
2 −Δ)un = 0 on R×M . 

Next, we observe that φn(1, θ) = einθ and ∂ν φn(1, θ) = ineinθ . Thus, 

kk(φn, ∂ν φn)kHk(Γ)×Hk−1(Γ) ≤ kφnkHk(Γ) + nkφnkHk−1(Γ) ∼ n . 

Then, we let �, θ1, s > 0 be small and define the sets Ω = (1 − �, 1) × (−θ1, θ1) and 

U = (T − s, T + s) × Ω. We note that, if θ1 ≤ θ0 and � is sufficiently small, then 

Ω ⊂ M . Letting q = 1 − �, we observe that 

−2(n−1)Z 1 Z θ1 qkφnk2 = r −2nrdr |e inθ|2dθ ∼L2(Ω) n − 1q −θ1 

for large n > 0. Thus, a Lipschitz stability estimate of the form 

kuk ≤ C k(u, ∂ν u)kHk(U) Hk×Hk−1((T −s,T +s)×Γ) 

leads to a contradiction when we take u = un. To see this, we first note that the 
√ 

left-hand side is bounded below by Cq−(n−1)/ n − 1, where C is independent of n. 

This holds because kunkL2(U) = 2skφnkL2(Ω). On the other hand, the right-hand side 

of this inequality is comparable to nk . Thus, we get the contradiction that 

√ −(n−1) k q . n n − 1 

for large n. 

4.2.4 A counterexample to Lipschitz stability for WP 

In this section, we construct a counterexample to Lipschitz type stability for the 

problem (WP) in the strictly convex boundary setting. Our construction is based on 

finding a family of Neumann sources {fn} producing a family of waves {ufn } solving 

(4.2) that exhibit similar stability properties to the waves considered in Section 4.2.3. 
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The waves ufn will then satisfy the hypotheses of (WP), and show that Lipschitz type 

stability does not hold for (WP). We carry out our construction in two steps. First, 

for some � > 0, we find waves un with vanishing Neumann traces that behave like the 

waves from Section 4.2.3 on t ∈ [T − �, T + �]. Then, we use exact controllability to 

obtain Neumann sources fn ∈ L2([0, T − �] × Γ) that reproduce these waves, in the 

sense that ufn (t, ·) = un(t, ·) for t ≥ T − �. 

We consider the case where M is the unit disk equipped with the Euclidean 

metric, and Γ = (−θ0, θ0) for some θ0 ∈ (π/2, π) in polar coordinates. Let 0 < � < T 

and Ω ⊂ M a neighborhood of M(Γ, �), and select � and Ω sufficiently small that 

(0, 0) 6∈ Ω. We will make use of a fixed cut-off function χ ∈ C∞([0, 2T ]×M) which we 

choose to have the form χ(t, x) = χt(t)χx(x) with χt ∈ C∞([0, 2T ]) and χx ∈ C∞(M). 

In particular, we choose χt so that it satisfies χt = 1 on a neighborhood of [T − �, 2T ] 

and χt = 0 on a neighborhood of [0, T − 2�]. Also, we choose χx to satisfy χx ≡ 1 on 

M(Γ, �) and χx ≡ 0 on M \ Ω. 

Let φ be any harmonic function in Ω. Using φ, we define w to be the solution to: 

(∂t 
2 − Δ)w(t, x) = 0, (t, x) ∈ (0, 2T ) × M, 

∂ν w(t, x) = ∂ν (χ(t, x)φ(x)), (t, x) ∈ (0, 2T ) × ∂M, 

w(T, x) = χxφ, ∂tw(T, x) = 0, x ∈ M, 

and, let v solve 

(∂t 
2 − Δ)v(t, x) = 0, (t, x) ∈ (0, 2T ) × M, 

∂ν v(t, x) = ∂ν (χ(t, x)φ(x)), (t, x) ∈ (0, 2T ) × ∂M, 

v(T − 2�, x) = ∂tv(T − 2�, x) = 0, x ∈ M. 

We define u = w − v and study the properties of u in terms of w, v and φ. Let us 

observe that ∂ν u = 0 on (0, 2T ) × ∂M , since ∂ν w and ∂ν v coincide there. 

To begin our analysis of u, we show that w(t, x) = φ(x) for (t, x) ∈ K, where 

K = {(t, x) ∈ [T − �, T + �] × M(Γ, �) : d(x, M \ M(Γ, �)) > |t − T |} . 
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In order to show that w = φ on K, let us abuse notation and identify φ with its 

constant extension in time. Then, we note that φ is harmonic in Ω and constant in 

time, thus, (∂t 
2 − Δ)φ(t, x) = (∂t 

2 − Δ)w(t, x) = 0 on (T − �, T + �) × Ω. Next, we 

note that w(T, ·) = φ and ∂tw(T, ·) = ∂tφ = 0 in M(Γ, �). Finally, we observe that 

∂ν w = ∂ν φ on [T − �, T + �] × (∂M ∩ M(Γ, �)), since χ = 1 there. Thus, finite speed 

of propagation for (4.2) implies that w and φ coincide in K. 

We define Σ = [T − �, T + �] × Γ and Σ0 = [T − 2�, T + 2�] × ∂M . Then, for a set 

U ⊂ [T − �, T + �] × M , we investigate how the size of u on U compares to the size 

of (u, ∂ν u) on Σ. To that end, we note that ∂ν u = 0 on Σ and observe that 

k(u, ∂ν u)kHk (Σ)×Hk−1(Σ) = kukHk (Σ) ≤ kwkHk (Σ) + kvkHk(Σ). 

We will bound the norms on the right in terms of norms of φ. First, we bound the 

Hk norm of v. Since χt is identically zero on a neighborhood of T − 2�, ∂ν v = ∂ν (χφ) 

vanishes identically on a neighborhood of {T − 2�} × ∂M . Because v(T − 2�, ·) = 

∂tv(T − 2�, ·) = 0, we see that v satisfies compatibility conditions to all orders at 

t = T −2�. Appealing to standard estimates for the wave equation and trace theorems, 

we can then show that 

kvkHk(Σ0) . k∂ν vkH ̀  (Σ0), 

where ` > k (in particular ` = 2k + 1 works). Combining this with the previous 

estimate and using that ∂ν v = ∂ν w on Σ0 yields: 

k(u, ∂ν u)kHk(Σ)×Hk−1(Σ) . kwkHk (Σ) + k∂ν wkH ̀  (Σ0). 

Then, since ∂ν w = ∂ν (χφ), w = φ on K, and both Σ ⊂ K and Σ ⊂ Σ0 we conclude: 

k(u, ∂ν u)kHk (Σ)×Hk−1(Σ) . kφkHk(Σ0) + k∂ν φkH ̀  (Σ0). 

Next, we let q = 1 − 
2 
� and note that 0 < q < 1. We consider the set n o� � 

U := (t, r, θ) : T − < t < T + , q < r < 1, θ ∈ Γ . 
2 2 

Observe that U ⊂ K, so w = φ on U . Again, using standard estimates for the wave 

equation and that ∂ν v = ∂ν (χφ) on Σ0 , we can show that 

kvkHk(U) . k∂ν vkH2k(Σ0) . k∂ν φkH2k(Σ0). 
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Whereas, w = φ on U , so kwkHk (U) = kφkHk(U). 

Let us now take φ = φn from the preceding section, and note that φn is harmonic 

in Ω. We let wn, vn and un denote the waves associated with φn as constructed above. 

Then, the estimates given in Section 4.2.3 imply that, for any j ∈ N, kφnkHj (Σ0) ∼ nj 
√ 

j+1 −(n−1)/and k∂ν φnkHj (Σ0) ∼ n , while kφnkHj (U) ≥ kφnkL2(U ) & q n − 1. So, 

√ −(n−1)/kunkHk (U) = kwn − vnkHk(U) & kφnkHk (U) − k∂ν φnkH2k(Σ0) & q n − 1. 

On the other hand, 

k `+1k(un, ∂ν un)kHk(Σ)×Hk−1(Σ) . kφnkHk(Σ0) + k∂ν φnkH ̀  (Σ0) . n + n . 

Thus, a Lipschitz stability estimate of the form kukHk(U) ≤ Ck(u, ∂ν u)kHk (Σ)×Hk−1(Σ) 

leads to the contradiction that for all n, 

√ −(n−1) k `+1)q . (n + n n − 1. 

We now show that, if τ := T −� is sufficiently large, there exists a Neumann source 

fn ∈ L2([0, T −�]×Γ) for which ufn = un on [T −�, T +�]×M . To see this, we first recall 

that M is the unit disk equipped with the Euclidean metric and that Γ contains a 

neighborhood of the half-circle θ ∈ (−π/2, π/2). This setting is considered on p. 1030 

of [28], where it is noted that if τ > 6, then any bicharacteristic ray beginning above 

a point x ∈ M will pass over [0, τ ] × Γ in a non-diffractive point. Thus by choosing T 

large enough that τ = T −� > 6, the hypotheses of [28, Th. 4.9] for exactly controlling 

M from [0, τ ] × Γ will be satisfied. Specifically, the map f 7→ (uf (τ, ·), ∂tuf (τ, ·)) 

taking L2([0, τ ] × Γ) → H1(M) × L2(M) is surjective (see [28, ex. 2], p. 1059). It 

is straightforward to check that (un(T − �, ·), ∂tun(T − �, ·)) ∈ H1(M) × L2(M), thus 

there exists a source fn ∈ L2([0, T − �] × Γ) for which (ufn (T − �, ·), ∂tufn (T − �, ·)) = 

(un(T −�, ·), ∂tun(T −�, ·)). Finally, we note that the Cauchy data of ufn and un agree 

at t = T −�, and the Neumann traces of both ufn and un vanish on [T −�, T +�]×∂M . 

Hence, uniqueness for solutions to (4.2) implies that ufn |[T −�,T +�]×M = un|[T −�,T +�]×M . 

To conclude, we have constructed a family of waves {ufn } that satisfy the hy-

potheses of (WP). Because these waves coincide with the waves in the family {un} on 

both U and Σ, we see that a Lipschitz type stability estimate cannot hold for (WP). 
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4.3 Redatuming 

In this section, we present our redatuming procedure, which gives a constructive 

solution to (P). As discussed in the introduction, our approach to redatuming is 

accomplished in two steps: subsection 4.3.2 is devoted to moving receivers, while 

subsection 4.3.3 is devoted to moving sources. 

4.3.1 Operators and notation 

In addition to the operators introduced in Section 2.1, we will use the restriction, 

ρT : L2([0, 2T ] × Γ) → L2([0, T ] × Γ), given by 

ρT f = f |[0,T ]×Γ. 

We will also use, for s ∈ [0, T ], the family of orthogonal projections Ps
T : L2([0, T ] × 

Γ) → L2([T − r, T ] × Γ), which too are obtained by restriction. Note that 

P T .s = Ps1Γ 

Lastly, for s > 0, we will use time delay operators, given by ⎧ ⎨ 0 for t ∈ [0, s]
Zsφ(t, ·) := (4.9)⎩ φ(t − s, ·) for t > s. 

The operators introduced above and in Section 2.1 all act upon functions defined 

in subsets of [0, 2T ] × ∂M , but in this chapter we will need analogous operators that 

act in subsets of [0, 2T ] × M . Specifically, we will need operators that are defined 

analogously to the operators R, J, Θ defined on spaces of the form L2([0, S] × A), 

where A ⊂ M and S > 0. For these operators, we will use similar notation. For 

instance, we will also write RS to denote the time-reversal operator on L2([0, S] × A). 

We note that, in all cases, our notation will only indicate the appropriate final time 

S, since all four operators R, J, Θ, ρ act essentially in the temporal domain. We do 

not indicate the spatial domain in our notation since it will be evident from context. 
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Finally, in some longer equations, we will suppress the spatial dependence of 

functions in our notation. For example, let F : [0, T ] × M → R and t ∈ R. Then, we 

will occasionally write F (t) to denote F (t, ·). 

4.3.2 Moving Receivers 

In this section, we will construct the map L, 

L : f 7→ u f |[0,T ]×M(Γ,r), for f ∈ L2([0, T ] × Γ). (4.10) 

We refer to the procedure for constructing L as moving receivers, since evaluating L is 

tantamount to extrapolating receivers into M(Γ, r). Moving receivers is accomplished 

through Algorithm 2, and we demonstrate the correctness of this algorithm via Lemma 

12. We note that Lemma 12 is essentially demonstrated in [6, Lemma 7]. However, 

we repeat the proof here, since it is constructive and forms the basis for Algorithm 2. 

Algorithm 2 Continuum level moving receivers procedure. 
for f ∈ C0 

∞([0, T ] × Γ) : 

for all 0 < t < T : 

for all 0 < α : 

Let : h = hα,t denote the solution to 

P T (KT + α)P T h = P T KT ZT −tfr r r 

hα,t (T, Solve : the wave equation in [T − r, T ] × M(Γ, r) to obtain u ·) 

Compute : 

Lf(t) = u f (t, ·)|M(Γ,r) = lim u hα,t (T, ·). 
α→0 

Lemma 12 The map L can be constructed from the data Λ2Γ 
T and the known sub-

manifold (M(Γ, r), g). Furthermore, L is a bounded operator, 

L : L2([0, T ] × Γ) → L2(M(Γ, r) × [0, T ]). (4.11) 
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Proof We first note that the continuity of L is demonstrated in [58, Thm 2.0.0], 

where it is shown that the map f 7→ uf is bounded from L2([0, T ] × Γ) → Hβ([0, T ] × 

M) for β = 3/5 − � and any � > 0. Since Hβ ([0, T ] × M) ⊂ L2([0, T ] × M) for 

0 < � < 3/5, and M(Γ, r) ⊂ M , it follows that L is bounded. 

Because L is bounded and C0 
∞([0, T ] × Γ) is dense in L2([0, T ] × Γ), it will suffice 

to show that Lf can be constructed for any smooth f . We let f ∈ C0 
∞([0, T ]×Γ), and 

obtain Lf by computing wavefield snapshots Lf(t) = uf (t, ·)|M(Γ,r) for t ∈ [0, T ]. To 

compute the snapshot Lf(t), we construct a family of sources hα,t ∈ L2([T −r, T ]×Γ) 

satisfying 

lim u hα,t (T, ·)|M(Γ,r) = u f (t, ·)|M(Γ,r), (4.12)
α→0 

where the limit is taken in L2(M(Γ, r)). Then, since supp(hα,t) ⊂ [T − r, T ] × Γ, finite 

hα,t (s,speed of propagation for (4.2) implies that supp(u ·)) ⊂ M(Γ, r) for 0 ≤ s ≤ T . 

hα,t (T, Thus, the waves u ·) can be evaluated by solving (4.2) in M(Γ, r), and the 

wavefield snapshot Lf(t) can be obtained from the limit (4.12). 

We will obtain the sources hα,t by approximately solving the control problem (1.4) 

posed over L2([T − r, T ] × Γ) with target φ = uf (t, ·). To that end, we first notice 

that, since ∂t 
2 − Δg commutes with time translations, we can re-write φ as 

φ = u f (t, ·) = ZT −tu f (T, ·) = u ZT −tf (T, ·) = W T ZT −tf. (4.13) 

Setting τ = s1Γ, we see L2(Sτ ) = L2([T − r, T ] × Γ). We then apply Lemma 1 with 

this choice of φ and τ to conclude that for, 

hα,t = (Kτ + α)−1 Wτ 
∗ W T ZT −tf, 

we have 

hα,t (T, lim u ·) = lim Wτ hα,t = 1M(τ)u f (t, ·) = 1M(Γ,r)u f (t, ·). 
α→0 α→0 

Thus, the limit (4.12) holds. 

Next, we re-write hα,t. Recalling that Pr
T = Pr1Γ and that K = (W T )∗W T , we see 

that hα,t can be expressed as � �−1 
hα,t = Pr

T KT Pr
T + α Pr

T KT ZT −tf. (4.14) 
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Since KT can be computed in terms of the data Λ2Γ 
T by the Blagovescenskii identity 

(2.2), expression (4.14) shows that hα,t can be obtained from the data Λ2Γ 
T . 

4.3.3 Moving Sources 

As stated above, we refer to the procedure for constructing L from L as moving 

sources. We present the moving sources procedure as Algorithm 3 and demonstrate 

its validity in Lemma 15. 

Algorithm 3 Continuum level moving sources procedure. 
for F ∈ C0 

∞([0, T/2] × Γ) : 

for all 0 < t < T/2 : 

for all 0 < α : 

Let : h = hα,t denote the solution to 

P T/2(KT/2 + α)P T/2h = P T/2 
r r r K∗ ZT/2−tF, 

where K is given by (4.19). 

hα,t (T/2,Solve : the wave equation in [T/2 − r, T/2] × M(Γ, r) to obtain u ·) 

Compute : 

LF (t) = w F (t, ·)|M(Γ,r) = lim u hα,t (T/2, ·)
α→0 

We show that L can be constructed from L via a transpostion argument. With 

that goal in mind, let us introduce a final value problem that coincides with the 

time-reversal of (4.3), 

(∂t 
2 − Δg)v(t, x) = H(t, x), (t, x) ∈ (0, T ) × M, (4.15) 

∂ν v(t, x) = 0, (t, x) ∈ (0, T ) × ∂M 

v(T, ·) = ∂tv(T, ·) = 0, x ∈ M. 

Here, H ∈ L2([0, T ] × M(Γ, r)), and we denote the solution to (4.15) by vH . We have 

the following result concerning the transpose of L. 
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Lemma 13 Let F ∈ L2([0, T ] × M(Γ, r)), then, 

RT L ∗ RT F = w F |[0,T ]×Γ. (4.16) 

Proof We first note that by [58, Thm 2.0.0], the map F 7→ vF |[0,T ]×Γ is bounded 

from L2([0, T ] × M(Γ, r)) → Hβ ([0, T ] × Γ) where β = 3/5. Thus it is also a bounded 

operator mapping L2([0, T ]×M(Γ, r)) → L2([0, T ]×Γ). Since the map F 7→ wF |[0,T ]×Γ 

is the time reversal of this map, it is also bounded. 

To prove (4.16), we let F ∈ C0 
∞([0, T ] × M(Γ, r)), h ∈ C0 

∞([0, T ] × Γ), and argue 

by density. Using the divergence theorem, the fact that uh solves (4.2), and that vF 

solves (4.15), we see, 

hF,LhiL2([0,T ]×M(Γ,r)) = hF, uhiL2([0,T ]×M) 

F F , (∂2 = h(∂t 2 − Δg)v , u hiL2([0,T ]×M) − hv t − Δg)u hiL2([0,T ]×M) 

F F = h−∂ν v , u hiL2([0,T ]×∂M) − hv , −∂ν u hiL2([0,T ]×∂M) 

= hv F , hiL2([0,T ]×Γ). 

On the last line, we have used (4.16) and the support properties of F and h. By 

the density of C0 
∞ spaces in their respective L2 spaces and the boundedness of the 

operator L, we conclude that 

L ∗ F = v F |[0,T ]×Γ. (4.17) 

Let us denote R = RT and show that RvRF = wF . To see this, we first note that: 

(∂t 
2 − Δg)(Rv

RF )(t) = (∂t 
2 − Δg)v RF (T − t) = RF (T − t) = F (t). 

Furthermore, ∂t(RvRF )(0) = −∂tvRF (T − 0) = −∂tvRF (0) = 0, and (RvRF )(0) = 

vRF (T ) = 0. Finally, (RvRF )|[0,T ]×∂M = R((vRF )|[0,T ]×∂M ) = 0. Hence, RvRF solves 

(4.3) with right-hand side F . By uniqueness of solutions to (4.3), it follows that 

wF = RvRF . Thus, in conjunction with (4.17), 

RL ∗ RF = RvRF |[0,T ]×Γ = w F |[0,T ]×Γ, 

which is what we wanted to show. 
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Next, we introduce a Blagoveščenskĭı type identity relating the inner-product be-

tween wF (T/2, ·) and uh(T/2, ·) to an inner-product between F and an operator ap-

plied to h. We remark that our proof follows an analogous strategy to the technique 

used to derive (2.2). 

Lemma 14 Let F ∈ L2([0, T/2] × M(Γ, r)) and h ∈ L2([0, T/2] × Γ). Then, 

hwF (T/2, ·), uh(T/2, ·)iL2(M) = hF, KhiL2([0,T/2]×M(Γ,r)), (4.18) 

where, K : L2([0, T/2]×Γ) → L2([0, T/2]×M(Γ, r)) is bounded and can be constructed 

by, 

K = JT/2LΘT/2 − ρT/2RT LRT ΘT/2JT/2ΘT/2 . (4.19) 

= JT/2 , Θ = ΘT/2Proof To simplify our notation, for this proof we let R = RT , J , 

and ρ = ρT/2 . 
T/2 T/2

To see that K is bounded, let us write Wint : F 7→ wF |[0,T/2]×M(Γ,r). Then Wint 

T/2
)∗W T/2is bounded by [59]. By definition, K = (Wint , hence K is bounded since it is 

a composition of bounded operators. 

Since K is bounded, we argue by density. Let F ∈ C0 
∞([0, T/2] × M(Γ, r)) and 

h ∈ C0 
∞([0, T/2] × Γ). Because we are interested in obtaining the inner-product 

hwF (T/2, ·), uh(T/2, ·)iL2(M), we will consider the family of inner-products I(t, s) := 

hwF (t, ·), uh(s, ·)iL2(M), parametrized with 0 ≤ s ≤ T and 0 ≤ t ≤ T/2. We note that 

this quantity behaves like a one-dimensional wave with a forcing term: 

(∂2 − ∂2)I(t, s) = (∂2 − ∂2)hw F (t), u h(s)iL2(M )t s t s 

= hΔgw F (t) + F (t), u h(s)iL2(M ) − hw F (t), Δgu h(s)iL2(M), 

since wF and uh solve (4.3) and (4.2) respectively. Next, we apply the divergence 

theorem, use Lemma 13 and the fact that ∂ν w
F = 0, and appeal to the support 

properties of F and h, to find 

(∂t 
2 − ∂s 

2)I(t, s) = hF (t), u h(s)iL2(M) − hw F (t), ∂ν u h(s)iL2(∂M) 

= hF (t), LΘh(s)iL2(M(Γ,r)) − hRL ∗ RΘF (t), Θh(s)iL2(Γ). 
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Then, we note that I(0, ·) = ∂tI(0, ·) = 0, since wF (0, ·) = ∂twF (0, ·) = 0. Thus 

I solves an inhomogeneous one dimensional wave equation in the rectangle (t, s) ∈ 

(0, T/2)×(0, T ), with unit wavespeed and vanishing initial conditions. By finite speed 

of propagation, the boundary condition at s = 0 does not affect the solution I(t, s) 

when s ≥ t. Hence, for s ≥ t we can solve for I(t, s) by Duhamel’s principle, Z Zt s+(t−τ) 
I(t, s) =

1 hF (τ), LΘh(σ)iL2(M(Γ,r)) − hRL ∗ RΘF (τ), Θh(σ)iL2(Γ) dσ dτ. 
2 0 s−(t−τ ) 

(4.20) 

Setting s = t = T/2 we see, 

I(T/2, T/2) = hw F (T/2), u h(T/2)iL2(M) Z T/2 Z T −t 
=
1 hF (t), LΘh(s)iL2(M(Γ,r)) − hRL ∗ RΘF (t), Θh(s)iL2(Γ) ds dt 
2 0 t 

= hF, JLΘh) − hRL ∗ RΘF, ΘJΘhiL2([0,T/2]×Γ)L2([0,T/2]×M(Γ,r)) 

= hF, (JLΘ − ρRLRΘJΘ)hiL2([0,T/2]×M(Γ,r)) . 

Thus we conclude that K = JLΘ − ρRLRΘJΘ. 

Lemma 15 The map L can be constructed from the operator L and the known sub-

manifold (M(Γ, r), g). Moreover, L is a bounded operator, 

L : L2([0, T/2] × M(Γ, r)) → L2([0, T/2] × M(Γ, r)). (4.21) 

Proof We begin by noting that the boundedness of L is known, see e.g. [59]. 

We will ultimately need to obtain K∗ , and any method to transpose K will suffice. 

However, we remark that evaluating K∗ by transposing the operator expression (4.18) 

would require one to construct L∗ , which would entail a similar cost to constructing 

K∗ itself. We give an efficient method to evaluate K∗ in Section 4.4.4. 

The strategy that we use to construct L follows a similar pattern to the method 

which we used to construct L. For a source F ∈ C0 
∞([0, T/2] × M(Γ, r)) and time 

t ∈ [0, T/2], we will obtain the wavefield snapshot LF (t) = wF (t, ·)|M(Γ,r) by finding a 

family of sources hα,t ∈ L2([0, T/2−r]×Γ) for which uhα,t (T/2, ·) → wF (T/2, ·)|M(Γ,r). 
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hα,t (T/2,We then evaluate u ·) by solving (4.2) in [0, T/2] × M(Γ, r) and obtain LF (t) 

by taking the limit as α → 0. 

Let α > 0. To obtain the source hα,t we approximately solve the control problem 

(1.4) posed over L2([T/2 − r, T/2] × Γ) with target φ = wF (t, ·). We note that 

this regularized control problem is structurally similar to the problem considered in 

Lemma (12), however the present problem has a control time of T/2. Thus by the 

argument given in the proof of Lemma 12, this problem has a unique solution, hα,t, 

given by, 

= (P T/2KT/2P T/2 + α)−1P T/2(W T/2) ∗ hα,t w F (t, ·). (4.22)r r r 

Then, because wF (t, ·) = wZT/2−tF (T/2, ·), we can use equation (4.18) to conclude 

that (W T/2)∗ wF (t, ·) = K∗ZT/2−tF . Hence, 

= (P T/2KT/2P T/2 + α)−1P T/2hα,t r r r K∗ ZT/2−tF. (4.23) 

Thus hα,t can be obtained from known quantities. As in Lemma 12, we conclude that 

uhα,t (T/2, ·)|M (Γ,r) → wF (T/2, ·)|M(Γ,r). 

4.4 Computational examples 

In this section, we present computational examples that demonstrate both the re-

ceiver moving procedure discussed in Section 4.3.2 and the source moving procedure 

discussed in Section 4.3.3. We demonstrate our methods in a conformally Euclidean 

setting, however, we stress that our techniques can be applied in the general Rieman-

nian setting. 

4.4.1 Forward modeling and discretization 

In our computational experiment, we take M = R × [−1, 0] with a conformally 

Euclidean metric g = c−2dx2 . For the wave-speed c, we use c(x, y) = 1 − y. We 

simulate waves propagating for 2T time units, where T = 2.0, and make source and 

receiver measurements on the set [0, 2T ] × Γ, where Γ = [−`, ̀ ] × {0} ⊂ ∂M and 
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` = 3.1. The wave-speed c is known in Euclidean coordinates on the subset M(Γ, r) 

where r = 0.5. Let us point out that Γ is strictly convex in the sense of the second 

fundamental form of (M, g). 

As in Section 3.4, we use a basis of sources consisting of Gaussian pulses of the 

form 

ϕi,j (t, x) = C exp 
� 

−at(t − ts,i)
2 − ax(x − xs,j )

2 , 

with parameters at = ax = 1.382 · 103 , and we choose C to normalize the ϕi,j in 

L2([0, T ] × Γ, dt ⊗ dSg). Sources are applied at regularly spaced points (xs,j , 0) with 

xs,j = −3.0 + (j − 1)Δxs for j = 1, . . . , Nx,s and times ts,i = 0.025 + (i − 1)Δts 

for i = 1, . . . , Nt,s. The source offset Δxs and time between source applications Δts 

are both taken to be Δxs = Δts = .025. At each of the Nx,s = 241 source posi-

tions we apply Nt,s = 79 sources. For each basis function, we record the Dirichlet 

trace data at regularly spaced points (xr,k, 0) with xr,k = −3.1 + (k − 1)Δxr for 

k = 1, . . . , Nx,r at times tr,l = (l − 1)Δtr for l = 1, . . . , Nt,r. The receiver offset Δxr, 

satisfies Δxr = 0.5Δxs resulting in Nx,r = 497 receiver positions. The time between 

receiver measurements, Δtr, satisfies Δtr = 0.1Δts, resulting in Nt,r = 1601 measure-

ments at each receiver position. The forward modelling and discrete Neumann-to-

Dirichlet map simulation is performed exactly as described in Section 3.4. That is, 

we simulate the following data, ⎧⎨ 
⎫⎬i = 1, . . . , Nt,s, j = 1, . . . , Nx,s, 

Λ2T ϕi,j (tr,l, xr,k) = u ϕi,j (tr,l, xr,k) :Γ (4.24)⎭ 
.⎩ l = 1, . . . , Nt,r, k = 1, . . . , Nx,r 

we define Sτ
τ 
1
2For 0 ≤ τ1 < τ2 ≤ T := span{ϕi,j : τ1 < ts,j < τ2}, and let Sτ = S0 

τ . 

We note that, since the sources ϕij are well localized in time, the space Sτ
τ 
1
2 serves as a 

finite dimensional substitute for the spaces L2([τ1, τ2]×Γ). Then, to apply the moving 

receivers and moving sources procedures we need the operators Kτ for τ = T and 

τ = T/2 respectively. Thus, for τ = T, T/2 we discretize the connecting operator Kτ 

by computing its action as an operator on Sτ . We accomplish this by restricting the 

discrete Neumann-to-Dirichlet data, (3.19), to Sτ and computing a discrete analog of 

(2.2). Specifically, we first compute the Gram matrix [Gτ ]ij = hϕi, ϕj iL2([0,τ ]×Γ,dt⊗dSg ) 
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and its inverse [Gτ ]−1 . Then, for A = Jτ Λ2Γ 
τ , Rτ Λτ Γ and Rτ Jτ , we compute the matrix 

for A acting on Sτ by: X 
[A]ij = [Gτ ]ik 

−1hϕk, Aϕj iL2([0,τ ]×Γ,dt⊗dSg ). 
k 

Finally, we use these matrices to compute the matrix for Kτ : 

[Kτ ] = [Jτ Λ2Γ 
τ ] − [Rτ Λτ Γ][R

τ Jτ ]. (4.25) 

The control problems introduced in the moving receivers and moving sources prob-

lems are posed over L2([τ − r, τ ] × Γ) for τ = T, T/2 respectively. In both cases we 

must solve linear problems of the form (PKτ P + α)hα = Pb where b is a function in 

L2([0, τ ] × Γ) and P is the projection P : L2([0, τ ] × Γ) → L2([τ − r, τ ] × Γ). To ap-

proximate the action of P , we construct a mask [P ] that selects the indices belonging 

to Sτ
τ 
−r. We then recast the control problem in the finite dimensional case by finding 

the coefficient vector [hα] for a function hα ∈ Sτ
τ 
−r satisfying: 

([P ][Kτ ][P ] + α)[hα] = [P ][b], (4.26) 

where [b] denotes the coefficients of the projection of b onto Sτ . We solve (4.26) using 

restarted GMRES with an appropriate choice of α, documented below. 

The last step in both the moving receivers and moving sources procedures is to 

solve (4.2) with the source hα given by (4.26) in order to compute uhα (τ, ·)|M(Γ,r). To 

do this, note that hα ∈ Sτ
τ 
−r, so hα is effectively supported in [τ − r, τ ] × Γ. Thus by 

finite speed of propagation and the fact that c is known in M(Γ, r) we can compute 

uhα (τ, ·) by solving (4.2) using the same computational scheme as used to generate 

(3.19) and then restricting the result to M(Γ, r). 

4.4.2 Computational implementation of moving receivers 

We now specialize the preceding discussion to the moving receivers setting. For 

this problem, we want to compute an approximation to uf (t, ·)|M (Γ,r) for t ∈ [0, T ] 

and f ∈ L2([0, T ] × Γ). By Lemma 12, the control problem we must solve for this 
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procedure is a discrete version of (4.14). Thus the parameters for the discrete control 

problem (4.26) are τ = T and b = KT ZT −th. So we let hα,t denote the solution to: 

([P ][KT ][P ] + α)[hα,t] = [P ][KT ][ZT −tf ]. (4.27) 

hα,t (T, We finally approximate uf (t, ·)|M(Γ,r) by computing u ·), as described after 

(4.26). 

For the discrete moving sources procedure we need a discrete version of L. We 

partially discretize L by applying the moving receivers procedure to each the basis 

functions ϕ1,j ∈ ST , at regularly spaced times tl = 0, Δts, ..., T and saving the receiver 

measurements on a regularly spaced grid of points pk ∈ [−`, ̀ ]×[0, r] ⊂ M(Γ, r), where 

the spacing between adjacent pk is equal to Δxs in both directions. More explicitly, 

we let hjl denote the solution to (4.27) with f = ϕ1,j , t = tl, and α = 10−4 . We then 

ϕ1,j (tl,compute the wave uhjl (T, ·) approximating u ·) in M(Γ, r) and save the values 

hjl of u at the points pk. In total, we compute the following data: ⎧⎨ ⎩ 

j = 1, . . . , Nx,s, l = 1, . . . , Nt,s, 
Lϕ1,j (tl, pk) = u hjl (T, pk) : 

k = 1, . . . , Np 

⎫⎬ 
(4.28)⎭ 

. 

Note that we do not explicitly compute Lϕi,j for i > 1. We avoid carrying out these 

computations because Lϕi,j (tl, ·) = Lϕ1,j (tl−(i−1), ·) for l ≥ i and Lϕi,j(tl, ·) = 0 for 

l < i. This follows because the time between source applications coincides with the 

temporal spacing between measurement times and because the wave equation is time 

translation invariant. Thus it would be redundant to compute Lϕi,j for all i > 1. 

Moreover, storing every such value would increase the amount of data by a factor of 

Nt,s, which would be prohibitively costly. 

Finally, we mention that for the discrete version of the moving sources procedure, 

we must compute inner-products between Lϕij and certain functions in L2([0, T ] × 

M(Γ, r)). To approximate these integrals we use a tensor product of trapezoidal rules 

on the data (4.28). 
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4.4.3 Moving receivers example 

We provide an example to demonstrate our moving receivers procedure. For a 

source we use: � � 
f(t, x) = exp −((t − tc)

2 + (x − xc)
2)/σ2 , 

with parameters tc = 0.25, xc = 0.0, and σ = 0.1. We solve (4.27) with α = 5 · 10−5 

for several times t, and compare the results with the true wavefields in Figure 4.4. 

Since r = 0.5, we note that, for t > 0.5, it would not be possible to directly simulate 

uf (t, ·) without knowing the metric in the complement of M(Γ, r). Thus the wavefield 

snapshots depicted in Figure 4.4 with t > 0.5 could not be directly simulated under 

our assumption that the wave-speed is only known in M(Γ, r). Of particular interest 

are the snapshots with t ≥ 1.25. There, we observe a reflection off ∂M \ Γ that 

has traveled through the unknown set M \ M(Γ, r) before returning to the known 

set M(Γ, r), yet our moving receivers procedure was able to capture this reflected 

wave-front. 

4.4.4 Computational implementation of moving sources 

To apply the moving sources procedure to a source F ∈ L2([0, T ] × M(Γ, r)) 

we need the quantity K∗F . The formula (4.19) for computing K uses the quantity 

L, and as discussed above, it is costly to fully dicretize L. In order to avoid this, 

we instead compute the action of K∗ by transpostion. To that end, we note that 

= (W T/2)∗K∗F wF (T/2, ·), thus it will suffice to approximate (W T/2)∗ wF (T/2, ·). 

We first recall from Lemma 13 that L∗F = RwRF |[0,T ]×Γ. Thus, for a basis function 

ϕi ∈ ST we have, 

hϕi, RwF iL2([0,T ]×Γ) = hLϕi, RF iL2([0,T ]×M(Γ,r)). (4.29) 

After applying the receiver moving technique to compute Lϕi, we can compute the 

right hand side of this expression. Then, (4.29) allows us to compute the inner-

product between RwF |[0,T ]×Γ and any basis function, which allows us to compute 
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hα,t (T, True wavefield uf (t, ·) Approximate wavefield u ·) 

Figure 4.4.: True wavefields (left) along with wavefields obtained from the moving 

receivers procedure (right) at times t = 0.5, 0.75, . . . , 2.0. Sources and receivers are 

placed in Γ = [−3.1, 3.1] × {0}, i.e. the top of the images. The known region 

is M(Γ, r) with r = 0.5. In the snapshots, the known region corresponds to the 

rectangle [−3.1, 3.1] × [−s, 0], where s = e1/2 − 1 ≈ 0.649, above the solid black line. 

the coefficients of the projection of RwF |[0,T ]×Γ onto ST . Computing the function 

associated with these coefficients and time-reversing the allows us to approximate 

wF |[0,T ]×Γ. 

We now return to the derivation of (4.19) in order to show how to approxi-

(W T/2)∗ mate wF (T/2, ·). Let us suppose that F ∈ C∞(M(Γ, r) × [0, T/2]) and 

∈ ST/2ϕi . Then, we define I2(t, s) := hwF (t, ·), uϕi (s, ·)iL2(M), and observe that 

hϕi, (W T/2)∗I2(T/2, T/2) = wF (T/2, ·)i . We note that I2 is defined analogously to 
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I from the derivation of (4.19), the only difference between these expressions is that 

we have exchanged the roles of t and s. Then, a similar computation to our earlier 

derivation shows, 

(∂t 
2 − ∂s 

2)I2(t, s) = hw F (t), ∂ν u ϕi (s)iL2(∂M) − hF (t), u ϕi (s)iL2(M). 

Applying the definition of L, noting that ∂ν u
ϕi = ϕi, and using the support properties 

of ϕi and F we can rewrite this as, 

(∂2 − ∂2)I2(t, s) = hw F (t)|Γ, ϕi(s)iL2(Γ) − hF (t), Lϕi(s)iL2(M(Γ,r)).t s 

We then use Duhamel’s principle and set t = s = T/2 in the result to obtain, 

hϕi, (W T/2) ∗ w F (T/2, ·)iL2([0,T/2]×Γ) = hϕi, JT w F |[0,T ]×ΓiL2([0,T/2]×Γ) 
(4.30) 

− hLϕi, JT F iL2([0,T/2]×M(Γ,r)). 

To approximate JT wF |[0,T ]×Γ, we use the approximation to wF |[0,T ]×Γ computed from 

(4.29) and apply the definition of JT . We compute the other term on the right by 

directly applying (4.29) with JT F in place of F . Finally, we use the inner-products 

(4.30) to compute the coefficients of (W T/2)∗ wF (T/2, ·) in the basis for ST/2 . 

We now describe our computational implementation of the moving sources pro-

cedure. Let us recall that our goal is, for a source F ∈ L2([0, T/2] × M(Γ, r)), to 

approximate the wave wF in M [0, T/2] × (Γ, r). By Lemma 15, our first step in ap-

proximating wF (t, ·)|M(Γ,r) is to solve a discrete version of (4.23). So we solve (4.26) 

with τ = T/2 and b = (W T/2)∗ wZT/2−tF (T/2, ·). That is, we compute hα,t by solving 

([P ][KT/2][P ] + α)[hα,t] = [P ][(W T/2) ∗ ZT/2−tw F (T/2, ·)], (4.31) 

where we use (4.30) to compute the right-hand side of this expression. Finally, we 

hα,t (T/2,compute the wave u ·) as in the moving receivers implementation. 

4.4.5 Moving sources results 

To demonstrate our moving sources procedure, we consider a source � � 
F (t, x, y) = exp −a((t − tc)

2 + (x − xc)
2 + (y − yc)

2) , (4.32) 
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where tc = 0.1, (xc, yc) = (0, 0.25), and a = at. We use the moving sources procedure 

to approximate wF (t, ·)|M(Γ,r) for several times t. That is, for these t we solve (4.31) 
hα,t (T/2,using α = 10−4 and compute the associated wavefield u ·) approximating 

wF (t, ·) in M(Γ, r). We compare the results of our procedure with the true wavefields 

in Figure 4.5. 

hα,t (T, True wavefield wF (t, ·) Approximate wavefield u ·) 

Figure 4.5.: We plot the true wavefields (left) along with wavefields obtained from 

the moving sources procedure (right) at times t = 0.125, 0.25, . . . , 1.0. We again 

note that, for the moving sources wavefields, the sources and receivers are placed in 

Γ = [−3.1, 3.1] × {0}, i.e. the top of the images. The known region corresponds to 

the rectangle [−3.1, 3.1] × [−s, 0], where s ≈ 0.649, above the solid black line. 



70 



71 

5. DIRECT RECONSTRUCTION OF A RIEMANNIAN 

METRIC FROM THE HYPERBOLIC 

NEUMANN-TO-DIRICHLET OR 

DIRICHLET-TO-NEUMANN MAP 

5.1 Introduction 

In this chapter, we continue to study the inverse boundary value problem for the 

wave equation from a computational point of view, but we now turn our focus toward 

techniques that directly reconstruct a wave speed or metric. We consider the case 

where M ⊂ Rn is a compact connected domain with smooth boundary ∂M , and 

study techniques specialized to both isotropic and anisotropic wave equations. 

For the isotropic case, let c(x) be an unknown smooth strictly positive function 

on M . Let u = uf denote the solution to the wave equation on M , with Neumann 

source f , 

∂t 
2u − c2(x)Δu = 0, in (0, ∞) × M, 

∂~nu|x∈∂M = f, (5.1) 

u|t=0 = ∂tu|t=0, = 0, 

where ~n is the inward pointing (Euclidean) unit normal vector on ∂M . Let T > 0 

and Γ ⊂ R ⊂ ∂M be open sets for which 

M(Γ, T ) ∩ ∂M ⊂ R. (5.2) 

We suppose that the restriction of the Neumann-to-Dirichlet (N-to-D) map on (0, 2T )× 

R is known, which we recall is defined by 

Λ2T f ∈ C∞ 
Γ,R : f 7→ u f |(0,2T )×R, 0 ((0, 2T ) × Γ). (5.3) 

Our goal will be to use the data Λ2Γ 
T
,R to determine the wave speed c in a subset 

Ω ⊂ M modelling the region of interest in Cartesian coordinates. 
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For the anisotropic problem, we consider a variation where the data is given by 

the Dirichlet-to-Neumann map rather than the Neumann-to-Dirichlet map. As in 

previous chapters, g will be allowed to be an arbitrary smooth Riemannian metric on 

the domain M , but we will now consider waves solving the wave equation 

∂t 
2u − Δgu = 0, in (0, ∞) × M, 

u|x∈∂M = f, (5.4) 

u|t=0 = ∂tu|t=0, = 0. 

together with the map 

Λ2T 
Γ,R : f 7→ −∂ν u f |(0,2T )×R, f ∈ C0 

∞((0, 2T ) × Γ). (5.5) 

For this problem, we will show how to determine the metric g in a subset Ω ⊂ M in 

the semi-geodesic coordinates of Γ. 

Because we are motivated by potential applications to seismic imaging, we are 

particularly interested in the problem with partial data, that is, the case R 6= ∂M . 

As alluded to in Chapter 2, all known variants of the Boundary Control method that 

work with partial data require solving ill-posed control problems, and this appears to 

form the bottleneck of the resolution of the method. In this chapter we consider this 

issue from two perspectives: we show that the steps of the method, apart from solving 

the control problems, are stable; and present an algorithm with a regularization for 

the control problems. 

Our method in the isotropic case combines two techniques that have been success-

fully used in the previous literature. To solve the ill-posed control problems, we use 

the regularized optimization approach that originates from [6], which we outlined in 

Chapter 2. This is combined with the use of the eikonal equation as in the previous 

computational studies [19, 20]. One difference between [19, 20] and the present work 

is that in [19,20] the ill-posed control problems, and the subsequent reconstruction of 

internal information (see Section 5.3 below), are carried out using the so-called wave 

bases rather than regularized optimization. Another distinction is that we do not rely 

upon the amplitude formula from geometric optics to extract internal information. 
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Instead, we obtain localized averages of waves and harmonic functions in the interior 

by solving two ill-posed control problems, and by considering the difference of the 

two solutions, see (5.8) and (5.12)–(5.13) below. As discussed on p. 21 of [20], the 

amplitude formula needs to be regularized when implemented computationally. On 

the other hand, our approach avoids this additional regularization: only the ill-posed 

control problems need to be regularized. 

For the anisotropic case, we propose a computational method to reduce the inverse 

boundary value problem to a problem with data in the interior of M . Analogously to 

elliptic inverse problems with internal data [60], this hyperbolic internal data problem 

may be of independent interest, and we show a Lipschitz stability result for the prob-

lem under a geometric assumption. We show the correctness of our method without 

additional geometric assumptions (Proposition 5.4.1). However, for the stability of 

the internal data problem in the anisotropic case we require an additional convexity 

condition to be satisfied (Theorem 5.5.2). 

Our motivation to study the Boundary Control method comes from potential 

applications in seismic imaging. The prospect is that the method could provide a good 

initial guess for the local optimization methods currently in use in seismic imaging. 

These methods suffer from the fact that they may converge to a local minimum of 

the cost function and thus fail to give the true solution to the inverse problem [61]. 

On the other hand, the Boundary Control method is theoretically guaranteed to 

converge to the true solution, however, in practice, we need to give up resolution in 

order to stabilize the method. The numerical examples in this chapter show that, 

when regularized suitably, the method can stably reconstruct smooth variations in 

the wave speed. 

We reconstruct the wave speed only in a region near the measurement surface R, 

since at least in theory, it is possible to iterate this procedure in a layer stripping fash-

ion. The layer stripping alternates between the local reconstruction step as discussed 

in this chapter and the so-called redatuming step that propagates the measurement 
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data through the region where the wave speed is already known, which we considered 

earlier in Chapter 4. 

We will not attempt to give an overview of algorithms for coefficient determination 

problems for the wave equation that are not based on the Boundary Control method. 

However, we mention the interesting recent computational work [62] that is based on 

the so-called Bukhgeim-Klibanov method [63]. We note that the Bukhgeim-Klibanov 

method uses different data from the Boundary Control method, requiring only a 

single instance of boundary values, but that it also requires that the initial data are 

non-vanishing. We mention also another reconstruction method that uses a single 

measurement [64, 65]. This method is based on a reduction to a nonlinear integro-

differential equation, and there are several papers on how to solve this equation (or 

an approximate version of it), see [66, 67] for recent results including computational 

implementations. 

5.2 Preliminaries 

The procedures developed in this chapter will employ the regularized variant of 

the BC method discussed in Chapter 2. All of the techniques considered in that 

chapter apply to both the isotropic and anisotropic cases and to both choices of data, 

either the N-to-D map or the D-to-N map. We note that the negative sign was chosen 

in (5.5) so that the Blagovescenskii identity (2.2) would hold without modification 

for either choice of data. 

As stated in the introduction, we focus on direct reconstruction methods, but the 

techniques that we present here will be based on the control problem discussed in 

Chapter 3. In the present chapter, we describe an approach to the Boundary Control 

method that combines what we view as the best techniques appearing in the literature. 

Contrary to [19, 20], we capture the instability of the method in quadratic optimiza-

tion problems. Solving these problems, we recover internal information, rather than 

boundary distance functions as in Chapter 3, and then the remaining inversion is 
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stable. In the isotropic case, the information that we will recover will be the values 

of harmonic functions in the interior in semi-geodesic coordinates. In the anisotropic 

case, the internal information is the data operator that gives wavefields solving (5.4) 

in semi-geodesic coordinates. In the next two sections, we will describe techniques 

that allow us to carry out this approach in both the isotropic and anisotropic cases. 

Since semi-geodesic coordinates play a central role in both reconstruction meth-

ods considered in this chapter, we now recall some facts about them. Recall from 

Chapter 3 that, for y ∈ Γ, and ν the inward pointing unit normal to ∂M at y, that 

d(γ(s; y, ν), Γ) = s for s ∈ [0, σΓ(y)], 

and that γ(s; y, ν) 6∈ ∂M for s ∈ (0, σΓ(y)). Moreover, σΓ(y) is the largest arc-length 

for which both of these conditions hold, and one can show that σΓ(y) > 0. We will 

continue to use the notation 

x(y, s) := γ(s; y, ν) 

to denote points along the inward pointing normal geodesics. Then, the mapping 

Φg : {(y, s) : y ∈ Γ and s ∈ [0, σΓ(y))} → M, 

given by Φg(y, s) := x(y, s) is a diffeomorphism onto its image in (M, g). We refer 

to the pair (y, s) as the semi-geodesic coordinates of the point x(y, s). We note that 

these semi-geodesic “coordinates” are not strictly coordinates in the usual sense of the 

term, since they associate points in M with points in R×Γ instead of points in Rn . To 

obtain coordinates in the usual sense, one must specify local coordinate charts on Γ. 

Denoting the local coordinates on Γ associated with these charts by (y1 , . . . , yn−1), one 

1 n−1can then define local semi-geodesic coordinates by (y , . . . , y , s). We will continue 

to make this distinction, using the term “local” only when we need coordinates in the 

usual sense. 

In both the scalar and anisotropic cases, our approach to recover interior infor-

mation relies on constructing localized averages of functions inside of M . One of 

the main components used to calculate these averages is a family of sources that 
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solve control problems with target functions of the form φ = 1B, where B is a wave 

cap. The use of wave caps in the context of the Boundary Control method originates 

from [68]. We will discuss the construction of these sources below in Lemma 16, but 

before doing this, we remind that for y ∈ Γ, s, h > 0 with s + h < σΓ(y), the wave 

cap, capΓ(y, s, h), is defined as: 

capΓ(y, s, h) := {x ∈ M : d(x, y) ≤ s + h and d(x, Γ) ≥ s} 

See Figure 5.1 for an illustration. 

We recall from Chapter 3 that, for all h > 0, the point x(y, s) belongs to the set 

capΓ(y, s, h) and diam(capΓ(y, s, h)) → 0 as h → 0. So, when h is small and φ is 

smooth, averaging φ over capΓ(y, s, h) yields an approximation to φ(x(y, s)). These 

observations play a central role in our reconstruction procedures. 

Figure 5.1.: Geometry of a wave cap in the Euclidean case. In this case, Pythagoras’ 

theorem suffices to show that diam(capΓ(y, s, h)) = O(h1/2), but this is also true in 

general. 

To construct sources that produce approximately constant wavefields on wave 

caps, we use the procedure discussed in Chapter 3. This procedure uses the fact that 

a wave cap can be written as the difference of two domains of influence, and requires 

that distances between boundary points are known. Specifically, we will suppose that 

for any pair x, y ∈ Γ the distance d(x, y) is known. As noted in Chapter 3, this is not 

a major restriction, since these distances can be constructed from the data Λ2Γ 
T . We 

recall that these distances can be used to construct the functions τy
R : Γ → R+ by: 

for y ∈ Γ and R > 0, define τy
R(x) := (R − d(x, y)) ∨ 0. 
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As before, we use the notation φ ∨ ψ to denote the point-wise maximum between φ 

and ψ, and we will continue to use this notation throughout. Finally, we recall that 

capΓ(y, s, h) = M(τys+h ∨ s1Γ) \ M(s1Γ). We also note that, since ∂M(τ) has measure 

zero provided that τ is continuous on Γ [7], one has that 

1capΓ(y,s,h) = 1M(τys+h∨s1Γ) − 1M(s1Γ) (5.6) 

almost everywhere. 

The following lemma is a straightforward consequence of the results of Chapter 3, 

and shows that there is a family of sources ψh,α that produce approximately constant 

wavefields uψh,α (T, ·) on wave caps, and that these sources can be constructed from 

the boundary data Λ2Γ 
T
,R. 

= τ s+hLemma 16 Let y ∈ Γ, s, h > 0 with s+h < σΓ(y). Let τ1 = s1Γ and τ2 y ∨s1Γ. 

Define b(t, y) := T − t. Let eb = b in the Neumann case, and eb = (ΛΓ 
T
,R)

∗b in the 

Dirichlet case. For each α > 0, let fα,i ∈ L2(Sτi ) be the unique solution to 

(Kτi + α) f = Pτi 
eb. (5.7) 

Then, defining 

ψh,α = fα,2 − fα,1, (5.8) 

and letting Bh = capΓ(y, s, h), it follows that 

lim u ψh,α (T, ·) = 1Bh and limhψh,α, Pτ2 b̃iL2(Sτ ) = Volµ(Bh). (5.9)
α→0 α→0 

Proof In the Neumann case, we can directly apply Lemma 4 to see that, for i = 1, 2, 

the sources fα,i solving (5.7) satisfy 

fα,i (T, ˜lim u ·) = 1M(τi) and limhfα,i, Pτi biL2(Sτ ) = m(τi). (5.10)
α→0 α→0 

Lemma 4 also holds in the Dirichlet case, with eb = (ΛT 
Γ,R)

∗b, see e.g. [16]. Combining 

the first limit with (5.6), we see 

ψh,α (T, fα,2 (T, fα,1 (T, lim u ·) = lim u ·) − u ·) = 1M(τ2) − 1M (τ1) = 1Bh . α→0 α→0 
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Likewise, we conclude 

˜ ˜limhψh,α, Pτ2 biL2(Sτ ) = limhfα,2, Pτ2 biL2(Sτ2 ) 
− hfα,1, Pτ2 b̃iL2(Sτ2 )α→0 α→0 

˜= limhfα,2, Pτ2 biL2(Sτ2 ) 
− hfα,1, Pτ1 b̃iL2(Sτ1 )α→0 

= m(τ2) − m(τ1) 

= Volµ(M(τ2)) − Volµ(M(τ1)) = Volµ(Bh). 

Note that we have used that Sτ1 ⊂ Sτ2 on the second line. 

5.3 Recovery of information in the interior 

Propositions 5.3.1 and 5.3.2 below can be viewed as variants of Corollaries 1 and 

2 in [6], the difference being that we use the control problem setup discussed in the 

previous section. One advantage of this setup is that we do not need to make the 

auxiliary assumption that the limit (14) in [6] is non-zero. Proposition 5.3.2 is also 

related to the amplitude formula (3.27) in [20], however, contrary to (3.27) we do not 

rely on geometric optics. The advantage of this is that we avoid the Gibbs oscillations, 

and the associated regularization, discussed on p. 21 of [20]. 

5.3.1 Wave field reconstruction in the anisotropic case 

We begin with reconstruction of wavefields sampled in semi-geodesic coordinates, 

as encoded by the following map. 

Definition 5.3.1 Let (y, s) ∈ Domain(Φg) and f ∈ L2([0, T ] × Γ). The map Lg : 

L2([0, T ] × Γ) → L2(Domain(Φg)) is defined pointwise by 

Lgf(y, s) := u f (T, x(y, s)). (5.11) 

We now show that Lg can be obtained from the N-to-D map. 
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Proposition 5.3.1 Let f ∈ C0 
∞([0, T ] × Γ). Let t ∈ [0, T ], y ∈ Γ and s, h > 0 with 

s + h < σΓ(y) and h sufficiently small. The family of sources {ψh,α}α>0 given in 

Lemma 16 satisfies 

hψh,α, KfiL2([0,T ]×Γ)
lim = u f (t, x(y, s)) + O(h1/2). (5.12)
α→0 hψh,α, Pτ biL2([0,T ]×Γ) 

Proof Applying Lemma 16, we have that 

hψh,α, KfiL2(Sτ ) limα→0hWψh,α,WfiL2(M) h1Bh , u
f (T, ·)iL2(M)

lim = = . 
α→0 hψh,α, Pτ biL2(Sτ ) limα→0hψh,α, Pτ biL2(Sτ ) Volµ(Bh) 

Thus it suffices to show that: 

h1Bh , u f (T, ·)i = Volµ(Bh)u f (T, x(y, s)) + Volµ(Bh)O(h1/2). 

Suppose that h is sufficiently small that Bh is contained in the image of a coordi-

nate chart (p, U) (that is, we use the convention that p : U ⊂ Rn → p(U) ⊂ M). We 

denote the coordinates on this chart by (x1 , . . . , xn), and also suppose that x(y, s) 

corresponds to the origin in this coordinate chart. Since f is C0 
∞ , it follows that uf 

is smooth. Thus we can Taylor expand uf (T, ·) in coordinates about x(y, s) ∈ Bh, 

giving, X 
n) = u i 1 n)x β u f (T, x1 , . . . , x f (T, 0, . . . , 0) + ∂iu f (T, 0, . . . , 0)x + Rβ (x , . . . , x 

|β|=2 

Where Rβ is bounded by the C2 norm of uf (T, x1 , . . . , xn) (i.e. of uf (T, ·) in coor-

dinates), on any compact neighborhood K satisfying 0 ∈ K ⊂ U . In particular we 

choose K such that Bh ⊂ p(K) for h sufficiently small. Combining these expressions 

and using that x(y, s) corresponds to 0 in U , 

h1Bh , u f (T, ·)iL2(M) − Volµ(Bh)u f (T, x(y, s))Z X 
≤ C |∂iu f (T, 0, . . . , 0)x i| + |Rβ(x 1 , . . . , x n)x β1 x β2 | dx1 · · · dxn 

p−1(Bh) |β|=2 

Then for points p(x) ∈ M with coordinates x ∈ U sufficiently close to 0, there 

exist constants g∗, g ∗ such that g∗|x|e ≤ d(p(x), 0) ≤ g ∗|x|e, where |x|e denotes the 
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Euclidean length of the coordinate vector x in Rn . So, let x = (0, . . . , xi , . . . , 0), then 

note that |xi| = |x|e ≤ (1/g∗)d(0, p(x)) ≤ (1/g∗) diam(Bh). Thus, for h sufficiently 

small, 

|h1Bh , u f (T, ·)iL2(M ) − Volµ(Bh)u f (T, x(y, s))| 

≤ ku f kC1(K)C diam(Bh) Volµ(Bh) + ku f kC2(K)(C diam(Bh))
2 Volµ(Bh) 

Finally, the discussion in [6] implies that diam(Bh) = O(h1/2), which completes the 

proof. 

Corollary 1 For each f ∈ C0 
∞([0, T ]×Γ), Lgf can be determined pointwise by taking 

the limit as h → 0 in (5.12). Since C0 
∞([0, T ] × Γ) is dense in L2([0, T ] × Γ) and Lg is 

bounded on L2([0, T ] × Γ), we have that Lgf is determined for all f ∈ L2([0, T ] × Γ). 

Proof First, let f ∈ C0 
∞([0, T ] × Γ). Taking the limit as h → 0 in the preceding 

lemma shows that Lgf(y, s) can be obtained for any pair (y, s) ∈ Domain(Φg), and 

thus Lgf can be determined in semi-geodesic coordinates. 

Now we show that Lgf can be determined for any f ∈ L2([0, T ]×Γ). First we note 

that Lgf = Φ∗ 
gWf . Since the pull-back operator Φ∗ 

g just composes a function with a 

diffeomorphism, and Γ is compact, we have that Φ∗ 
g is bounded as an operator Φ∗ 

g : 

L2(Range(Φg)) → L2(Domain(Φg)). Thus Lg is a composition of bounded operators, 

and hence Lg : L2([0, T ] × Γ) → L2(Domain(Φg)) is bounded. Let f ∈ L2([0, T ] × Γ) 

be arbitrary. Since C0 
∞([0, T ] × Γ) is dense in L2 one can find a sequence {fj }∞ ⊂j=1 

C0 
∞([0, T ] × Γ) such that fj → f . Then, since Lg is bounded, Lgf = limj→∞ Lgfj . 

5.3.2 Coordinate transformation reconstruction in the isotropic case 

The map ΛT is invariant under diffeomorphisms that fix the boundary of M ,∂M 

and therefore in the anisotropic case it is not possible to obtain g in the Cartesian 

coordinates. The same is true for the wavefields. In the isotropic case, on the other 

hand, it is possible to construct the map Φg(y, s), and in fact, the wave speed was 
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determined in Belishev’s original paper [1] by first showing that the internal data 

uf (t, x) can be recovered in Cartesian coordinates, and then using the identity 

Δu(t, x) 
= c −2(x). 

∂t 
2u(t, x) 

It was later observed that the wave speed can be recovered directly from the map 

Φg without using information on the wavefields in the interior, see e.g. [6, 19]. In the 

present chapter we will construct Φg(y, s) by applying the following lemma to the 

Cartesian coordinate functions. 

Proposition 5.3.2 Suppose that g is isotropic, that is, g = c−2(x)dx2 . Let φ ∈ 

C∞(M) be harmonic, that is, Δφ = 0. Let t ∈ [0, T ], y ∈ Γ, and s, h > 0 with 

s + h < σΓ(y). Then, for h small, the family of sources {ψh,α}α>0 given in Lemma 

16 satisfies 
B(ψh,α, φ)

lim = φ(x(y, s)) + O(h1/2), (5.13)
α→0 B(ψh,α, 1) 

where 

B(f, φ) = hf, bφiL2([0,T ]×Γ;dy) − hΛT 
Γ,Rf, b∂ν φiL2([0,T ]×R;dy). (5.14) 

Where b(t) = T − t. 

Proof The proof is analogous to that of Proposition 5.3.1 after observing that 

B(ψh,α, φ) h1Bh , φiL2(M ;c−2dx)lim = . 
α→0 B(ψh,α, 1) h1Bh , 1iL2(M ;c−2dx) 

To see this, it suffices to show that for φ harmonic and f ∈ L2([0, T ] × Γ), 

B(f, φ) = hu f (T ), φiL2(M ;c−2dx), (5.15) 

since then 

lim B(ψh,α, φ) = limhu ψh,α (T ), φiL2(M ;c−2dx) = h1Bh , φiL2(M ;c−2dx). α→0 α→0 

This expression holds, in particular, for the special case that φ ≡ 1, since constant 

functions are harmonic. 
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The demonstration of (5.15) is known, and is based upon the following computa-

tion, 

∂t 
2huf (t), φiL2(M ;c−2dx) = hΔuf (t), φiL2(M ;dx) − huf (t), ΔφiL2(M ;dx) 

= hf(t), φiL2(∂M ;dy) − hΛf(t), ∂ν φiL2(∂M ;dy), 

where we have written Λf = uf |∂M . Thus, the map t 7→ huf (t), φi satisfies an ordinary 

differential equation with vanishing initial conditions, since uf (0) = ∂tuf (0) = 0. 

Solving this differential equation and evaluating the result at t = T , we get an explicit 

formula for huf (T ), φi depending upon f and Λf : 

hu f (T ), φiL2(M ;c−2dx) = hf, bφiL2([0,T ]×Γ;dy) − hΛT 
Γ,Rf, b∂ν φiL2([0,T ]×R;dy). (5.16) 

Which completes the demonstration of (5.15). Notice that we only require Λf |R, 

since, for t ∈ [0, T ], Λf(t) vanishes outside of R by finite speed of propagation. An 

analogous derivation can be found in [16] (with full boundary measurements and the 

D-to-N map instead of the N-to-D map). 

As in Corollary 1, letting h → 0, we see that the map 

Hc : {φ ∈ C∞(M); Δφ = 0} → C∞(Domain(Φg)), Hcφ(y, s) = φ(Φg(y, s)), 

can be obtained from the N-to-D map, where g = c−2(x)dx2 . To see this, first note 

that Φg(y, s) := γ(s; y, ν). Since γ(·; y, ν) is a geodesic and ν has unit-length vector 

with respect to the metric g, we have that |∂sΦg(y, s)|g = 1. Next, note that for 

x ∈ M and v ∈ TxM , the length |v|g is given by |v|g 
2 = c(x)−2|v|e 

2 , where |v|e is the 

jEuclidean length of v. Then, writing x , j = 1, . . . , n, for the Cartesian coordinate 

functions on M , it follows that 

Φg(y, s) = (Hcx 1(y, s), . . . , Hcx n(y, s)), c(Φg(y, s))
2 = |∂sΦg(y, s)|2 . (5.17)e 

Thus c can be constructed in the Cartesian coordinates by inverting the first function 

above and composing the inverse with the second function. We will show in Section 

5.5 that this simple inversion method is stable. 
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The recovery of the internal information encoded by Lg and Hc is the most unsta-

ble part of the Boundary Control method as used in this chapter. The convergence 

with respect to h is sublinear as characterized by (5.12) and (5.13), and the conver-

gence with respect to α is even worse. In general we expect it to be no better than 

logarithmic. The recent results [69, 70] prove logarithmic stability for related control 

and unique continuation problems, and [8] describes how the instability shows up in 

numerical examples. 

5.4 Recovery of the metric tensor 

Due to the diffeomorphism invariance discussed above, we cannot recover g in the 

Cartesian coordinates and it is natural to recover g in the semi-geodesic coordinates. 

This is straightforward in theory when the internal information Lg is known, and 

analogously to the elliptic inverse problems with internal data [60], we expect that 

the problem has good stability properties when suitable sources f are used. 

We will next describe a way to choose the sources by using again a quadratic 

optimization technique to solve a control problem, see (5.20) below. This should 

be compared to the scheme (6.7) in [4], where g is recovered using a C0 
N -complete 

system of controls, see (6.2) there. Contrary to [4], we choose the controls explicitly 

via solving (5.20), and this allows us show that our scheme is stable under suitable 

convexity assumptions. It is not clear to us how the stability of solving the sequence 

of algebraic systems (6.7) in [4] depends on the actual choice of the C0 
N -complete 

system of controls. 

Lemma 17 In any local coordinates (x1 , . . . , xn), 

� � 
lk(x) =

1 l k) − x kΔgx l − x lΔgx k g Δg(x x . (5.18)
2 
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Proof. Let (x1 , . . . , xn) be local coordinates on M . Write α := 
√ 
g. Then 

1 � � 
l αgij ∂j (x l k)Δg(x x k) = ∂i x 

α 
1 � � � � �� 

αgil k αgik l = ∂i x + ∂i x 
α 

1 � � 1 � � 
kl k lk l = g + x ∂i αg

il + g + x ∂i αg
ik 

α α 
lk l k = 2g + x kΔgx + x lΔgx . � 

Proposition 5.4.1 The metric g can be constructed in local semi-geodesic coordi-

nates using the operator Lg as data. 

Proof Let Ω = Range(Φg), and ω ⊂ Ω be a coordinate neighborhood for the semi-

geodesic coordinates. Let (x1 , . . . , xn) denote local semi-geodesic coordinates on ω. 

Fix 1 ≤ j, k ≤ n and for ` = 1, 2, 3 choose φ` ∈ C0 
∞(Ω), ` = 1, 2, 3, such that for all 

x ∈ ω, 

j k j kφ1(x) = x x , φ2(x) = x , φ3(x) = x . (5.19) 

Consider the following Tikhonov regularized problem: for α > 0 find f ∈ L2([0, T ]×Γ) 

minimizing 

f − φ ` k2kLg L2(Ω) + αkfk2 
L2([0,T ]×Γ). 

It is a well known consequence of [17], see e.g. [3], that Lg has dense range in L2(Ω). 

Thus this problem has a minimizer fα,` which can be obtained as the unique solution 

to the normal equation, see e.g. [26, Th. 2.11], 

(L ∗ 
gLg + α)f = L ∗ 

gφ ` . (5.20) 

It follows from [27, Lemma 1] that the minimizers satisfy 

lim Lgfα,` = φ ` . 
α→0 

As the wave equation (5.4) is translation invariant in time, we have Lg∂t 
2f = Δgu

f (T, ·), 

and therefore 

∂2 fα,` (T, lim kLg t fα,` − Δgφ ` kH−2(Ω) = lim kΔg(u ·) − φ ` )kH−2(Ω)
α→0 α→0 

fα,` (T, ≤ C lim ku ·) − φ ` kL2(Ω) = 0. 
α→0 
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Thus for ` = 1, 2, 3, Lg∂t 
2fα,` → Δgφ ` in the H−2(Ω) sense. Using expression (5.18), 

and the definitions of the target functions φ ` , then in the local coordinates on ω we 

have 

gjk = lim 
1
(Lg∂t 

2fα,1 − x kLg∂t 
2fα,2 − xj Lg∂t 

2fα,3), (5.21)
α→0 2 

where the convergence is in H−2(ω). Finally, since Ω can be covered with coordinate 

neighborhoods such as ω, this argument can be repeated to determine glk in any local 

semi-geodesic coordinate chart. 

5.5 On stability of the reconstruction from internal data 

When discussing stability near the set Γ, we will restrict our attention to Ω ⊂ M 

and a set G of smooth Riemannian metrics on M for which 

Ω ⊂ Φg̃(Γ × [0, r0)), g̃ ∈ G, (5.22) 

where r0 > 0 is fixed. 

We begin by showing the following consequence of the implicit function theorem. 

Lemma 18 Let U ⊂ Rn be open and let Φ0 : U → Rn be continuously differentiable. 

Let p0 ∈ U and suppose that the derivative DΦ0 is ivertible at p0. Then there are 

neighbourhoods W ⊂ Rn of Φ0(p0) and U ⊂ C1(U) of Φ0 such that 

Φ−1 − Φ−1 ≤ C kΦ − Φ0k Φ ∈ U .0 C0(W ) C1(U) , 

Proof Define the map 

F : C1(U) × Rn × Rn → Rn , F (Φ, q, p) = Φ(p) − q. 

Then F is continuously differentiable, and DpF (Φ0, p0) = DΦ0(p0). Thus the im-

plicit function theorem, see e.g. [71, Th 6.2.1], implies that there are neighbourhoods 

V, W 0 ⊂ Rn of p0, Φ0(p0) and U 0 ⊂ C1(U) of Φ0, and a continuously differentiable map 

H : U 0 × W 0 → V such that F (Φ, q, H(Φ, q)) = 0. But this means that H(Φ, ·) = Φ−1 

in W 0 . Choose a neighbourhood W of Φ0(p0) such that W ⊂ W 0 and that W is 
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compact. As H is continuously differentiable, there is a neighbourhood U ⊂ U 0 of Φ0 

such that 

|H(Φ, q) − H(Φ0, q)| ≤ 2 max kDΦH(Φ0, q)k kΦ − Φ0k Φ ∈ U .C1(U)→Rn C1(U) , 
q∈W 

We have the following stability result in the isotropic case. 

Theorem 5.5.1 Consider a family G of smooth isotropic metrics g̃ = c̃−2dx2 satis-

fying (5.22). Let c−2dx2 ∈ G and suppose that 

kc̃  − ckC2(M) ≤ �, c̃−2dx2 ∈ G. (5.23) 

Then for small enough � > 0, there is C > 0 such that 

c̃2 − c 2 ≤ C kHc̃  − Hck C(Ω) C1(M)→C1(Γ×[0,r0)) . 

Proof We write Σ = Γ × (0, r0), g̃ = c̃−2dx2 and g = c−2dx2 . Then (5.17) implies 

that 

kΦg̃ − Φgk ≤ C kHc̃  − HckC1(Σ) C1(M)→C1(Σ) . 

Moreover, again by (5.17), 

c̃2 ◦ Φ˜ − c 2 ◦ Φg ≤ C kHc̃  kC1(M)→C1(Σ) .g C0(Σ) 
− Hc 

This together with 

2 ◦ Φ−1 ◦ Φ−1 c̃2 − c 
C0(Ω) 

≤ c̃2 ◦ Φg̃ g̃ − c 2 ◦ Φg g̃ C0(Ω) 

+ c 2 ◦ Φg ◦ Φ−1 − c 2 ◦ Φg ◦ Φ−1 
g̃ g C0(Ω) 

Φ−1 − Φ−1implies that it is enough to study g̃ g . 
C0(Ω) 

Note that (g̃, y, s) 7→ Φg̃(y, s) is continuously differentiable since it is obtained 

by solving the ordinary differential equation that gives the geodesics with respect to 

g̃. Indeed, this follows from [71, Th. 6.5.2] by considering the vector field F that 
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generates the geodesic flow. In any local coordinates, F (x, ξ, h) = (ξ, f(x, ξ, h), 0) 

where f , . . . , fn), f j (x, ξ, h) = −Γj (x, h)ξkξ ` , and Γj (x, h) are the Christoffel= (f 1 
k` k` 

symbols of a metric tensor h at x, that is, � � 
1 ∂hmk ∂hm` ∂hk` 

Γj hjm (x, h) = + − .k` 2 ∂x` ∂xk ∂xm 

In particular, if ω is a neighbourhood of p0 ∈ Σ and ω ⊂ Σ, then the map c̃  7→ Φg̃ 

is continuous from C2(M) to C1(ω). Thus, for small enough � > 0 in (5.23), we may 

apply Lemma 18 to obtain 

Φ−1 − Φ−1 
g̃ g ≤ C kΦg̃ − Φgk C0(W ) C1(Σ) , 

where W is a neighbourhood of Φg(p0). As Ω is compact, it can be covered by a finite 

number of sets like the above set W . Thus 

Φ−1 − Φ−1 ≤ C kΦg̃ − Φgk ≤ C kHc̃  − Hck g̃ g C0(Ω) C1(Σ) C1(M)→C1(Σ) . 

We now consider the anisotropic case, and describe a geometric condition on (M, g) 

that will yield stable recovery of g in the semi-geodesic coordinates of Γ from Lg in 

the set Ω. Specifically, we will assume that the following problem, which is the dual 

problem to (5.4), 

∂t 
2w − Δgw = 0, in (0, T ) × M, 

w|x∈∂M = 0 (5.24) 

w|t=T = 0, ∂tw|t=T = φ. 

is stably observable in the following sense. 

Definition 5.5.1 Let G be a subset of smooth Riemannian metrics on M . Then, 

(5.24) is stably observable for Ω and G from Γ in time T > 0 if there is a constant 

φ φ,g ofC > 0 such that for all g ∈ G and for all φ ∈ L2(Ω) the solutions w = w = w 

(5.24) uniformly satisfy 

kφk ≤ C ∂ν w φ . (5.25)L2(Ω) L2((0,T )×Γ) 
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A complete characterization of metrics exhibiting stable observability is not presently 

known, however, it is known that stable observability holds under suitable convexity 

conditions. Indeed, if (M, g) admits a strictly convex function ` without critical 

points, and satisfies 

{x ∈ ∂M ; (r`(x), ν)g ≥ 0} ⊂ Γ, 

then there is a neighbourhood G of g and T > 0 such that (5.24) is stably observable 

for M and G from Γ in time T > 0, see [16]. Note that this result gives stable 

observability over the complete manifold M but we will need it only over the set Ω. 

Stable observability in the case of Neumann boundary condition is poorly under-

stood presently. For instance, stable observability can not be easily derived from an 

estimate like [72, Th 3], the reason being that the H1-norm of the Dirichlet trace of a 

solution to the wave equation is not bounded by the L2-norm of the Neumann trace, 

while the opposite is true [72, Th. 4]. See also [13] for a detailed discussion. For this 

reason we restrict our attention to the case of Dirichlet boundary condition. 

We use the notation 

Wgf(x) = u f (T, ·)|Ω, f ∈ L2([0, T ] × Γ). 

The stable observability (5.25) says that Wg 
∗ is injective, and by duality, it implies 

that Wg : L2([0, T ] × Γ) → L2(Ω) is surjective (see [29]). In this case (5.4) is said to 

exactly controllable on Ω, and in particular, for any φ ∈ L2(Ω) the control problem 

Wgf = φ has the minimum norm solution f = Wg 
†φ given by the pseudoinverse of 

Wg. 

Theorem 5.5.2 Consider a family G of metrics g̃ satisfying (5.22) and suppose that 

(5.24) is stably observable for Ω and G from Γ in time T > 0. Let g ∈ G and suppose 

that 

kg̃ − gk ≤ �, g̃ ∈ G. (5.26)C2(M) 

Then for small enough � > 0, there is C > 0 such that 

kΨ ∗ g̃ − gk ≤ C kL˜ k∗ , g̃ ∈ G,H−2(Ω) g − Lg 
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where Ψ∗ = (Φ∗ 
g)
−1Φ∗ 

g̃ and 

kLgk = kLgk + Lg ◦ ∂2 .∗ L2((0,T )×Γ)→L2(Γ×(0,�)) t L2((0,T )×Γ)→H−2(Γ×(0,�)) 

Proof We use again the notation Σ = Γ×(0, r0) and write also ΣT = Γ×(0, T ). Let 

p ∈ Σ, and denote by (x1 , . . . , xn) the coordinates on Σ corresponding to local semi-

geodesic coordinates (y, r). Let j, k = 1, . . . , n and let ω ⊂ Σ be a neighbourhood of 

p. Choose φ` ∈ C0 
∞(Σ), ` = 1, 2, 3, as in (5.19). Note that solving (5.20) and taking 

the limit α → 0 is equivalent with computing L†φ ` see e.g. [30, Th. 5.2]. 

Analogously to (5.21), writing the change to local coordinates explicitly, it holds 

that 

g)jk(x) = 
1 

∂2 kLg∂
2 j Lg∂

2(Φ ∗ (Lg h1(x)− x h2(x) − x h3(x)),g t t t2 

where h` = L† gφ`, ` = 1, 2, 3. It will be enough to bound 

Lg̃∂
2L† φ` − Lg∂

2L† φ` , ` = 1, 2, 3,t g̃ t g 
H−2(ω) 

in terms of the difference Lg̃ − Lg. We have 

∂2 † ∂2L†L˜ L φ` − Lg φ`g t g̃ t g 
H−2(ω) 

† † †≤ Lg̃∂
2L φ` − Lg∂

2L φ` + Lg∂
2L φ` − Lg∂

2L† φ` t g̃ t g̃ t g̃ t g
H−2(ω) H−2(ω) 

≤ (Lg̃ − Lg) ◦ ∂2 L† kφ`kt L2(ΣT )→H−2(Σ) g̃ L2(Σ)
L2(Σ)→L2(ΣT ) 

+ Lg ◦ ∂2 L† − L† kφ`kt L2(ΣT )→H−2(Σ) g̃ g L2(Σ) . 
L2(Σ)→L2(ΣT ) 

We omit writing subscripts in operator norms below as their meaning should be 

clear from the context. Pseudoinversion is continuous in the sense that � � 
L† − L† L† L†≤ 3 max , kLg̃ − Lgk ,g̃ g g̃ g 

see e.g. [73]. It remains to show that L† is uniformly bounded for g̃ satisfying (5.26). g̃ 

Note that Lg̃ = Φ
∗ 
g̃Wg̃ and that (5.25) implies (Wg̃ 

∗)† ≤ C, which again implies that 

W g̃ 
† ≤ C. Here the constant C is uniform for g̃ ∈ G. Moreover Lemma 18 implies 
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that, for small enough � > 0 in (5.26), we have (Φ∗ 
g̃)
−1 ≤ C. To summarize, there 

is uniform constant C for g̃ satisfying (5.26) such that 

Φ ∗ g̃ − Φ ∗ g ≤ C kLg̃ − Lgk kφ`kg̃ g H−2(ω) ∗ L2(Σ) . 

The claim follows by using a partition of unity. Note that the functions φ` can be 

chosen so that they are uniformly bounded in L2 when ω is varied. 

5.6 Computational experiment 

In this section, we provide a computational experiment to demonstrate our ap-

proach to recovering an isotropic wave speed from the N-to-D map. We conduct our 

computational experiment in the case where M is a domain in R2 , however, we stress 

that our approach generalizes to any n ≥ 2. 

5.6.1 Forward modelling and control solutions 

For our computational experiment, we consider waves propagating in the lower 

half-space M = R × (−∞, 0] with respect to the following wave speed: 

1 1 � � �� 
c(x1, x2) = 1 + x2 − exp −4 x12 + (x2 − 0.375)2 . (5.27)

2 2 

See Figure 5.2. Waves are simulated and recorded at the boundary for time 2T , 

where T = 1.0. Sources are placed inside the accessible set Γ = [−` s, ` s] ×{0}, where 

` s = 3.0, and receiver measurements are made in the set R = [−` r, ` r] × {0}, where 

` r = 4.5. 

For sources, we use a collection of Gaussian functions spanning a subspace of 

L2([0, T ] × Γ). Specifically, we consider sources of the form 

� � 
ϕi,j (t, x) = C exp −a((t − ts,i)

2 + (x − xs,j )
2) . 

Here, the pairs (ts,i, xs,j ) are chosen to form a uniformly spaced grid in [0.025, 0.975]× 

[−` s, ` s] with spacing Δts = Δxs = 0.025. In total, we consider Nt,s = 39 source times 
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(a) 

(b) 

(c) 

Figure 5.2.: (a) True wave speed c. (b) Semi-Geodesic coordinate grid associated 

with c. (c) Some example ray paths with non-orthogonal intersection to ∂M . 

ts,i and Nx,s = 241 source locations xs,j . The constant a, controlling the width of 

the basis functions in space and time, is taken as a = 1381.6, and the constant C is 

chosen to normalize the functions ϕi,j in L2([0, T ] × Γ). 

Wave propagation is simulated using a continuous Galerkin finite element method 

with Newmark time-stepping. Waves are simulated for t ∈ [−t0, 2T ], where t0 = 

0.1, although N-to-D measurements are only recorded in [0, 2T ]. The short buffer 

interval, [−t0, 0.0], is added to the simulation interval in order to avoid numerical 

dispersion from non-vanishing sources at t = 0. The sources are extended to this 

buffer interval. Receiver measurements are simulated by recording the Dirichlet trace 

Λ2T ϕi,j at uniformly spaced points xs,r ∈ [` r, ` r] with spatial separation Δxr = 0.0125Γ,R 

at uniformly spaced times ts,r ∈ [0, 2T ] with temporal spacing Δtr = 0.0025. Note 
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Figure 5.3.: Power spectrum of ϕij (t, xs,i), measured in Hz. We have re-scaled the 

power spectrum so that it has a maximum value of 1. 

that our receiver measurements are sampled more densely in both space and time 

than our source applications. In particular, Δxr = 0.5Δxs and Δtr = 0.1Δts. In 

total, we take Nt,r = 801 receiver measurements at each of the Nx,r = 721 receiver 

positions. 

We briefly comment on the physical scales associated with the computational 

experiment. In the units above, the wave speed is approximately 1 at the surface. If 

we take this to represent a wave speed of approximately 2000m/s and suppose that the 

receiver spacing corresponds to Δxr = 12.5m, then in the same units Δtr = .00125s. 

In addition, we have that ` s = 4.5km and T = 1.0s, which implies that receivers 

are placed within a 9.0km region and traces are recorded for a total of 2.0s. In Fig. 

5.3 we plot the power spectrum for one of the sources at a fixed source location, 

to give a sense of the frequencies involved. Note that the source mostly consists of 

frequencies below 15Hz. In particular, note that we have used sources that have 

a significant frequency component at 0 Hz. Such zero frequency contributions are 

not representative of physical source wavelets, so it may be of interest to note that 

the data we have used can be approximately synthesized from sources which lack 

0 Hz components. Specifically, we show in Appendix B that these data used can be 
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approximately synthesized by post-processing data from sources that are products 

of Gaussians in space and Ricker wavelets in time. We refer to [74] for a detailed 

discussion of the BC method in the context of geophysical imaging. 

We introduce some notation, which we will use when discussing our discretiza-

tion of the connecting operator and control problems. First, let f ∈ L2([0, T ] × Γ). 

We use the notation [f ] to denote the vector of inner-products with entries [f ]i = 

hf, ϕiiL2([0,T ]×Γ). In addition, we let f̂  denote the coefficient-vector for the projec-

tion of f onto span{ϕi}. Let A be an operator on L2([0, T ] × Γ). We will use the 

notation [A] to denote the matrix of inner-products [A]ij = hAϕi, ϕj iL2([0,T ]×Γ). We 

approximate all such integrals by successively applying the trapezoidal rule in each 

dimension. 

After the N-to-D data has been generated, we use the data Λ2Γ 
T ϕi,j to discretize the 

connecting operator. We accomplish this using a minor modification of the procedure 

outlined in [8]. In particular, we discretize the connecting operator by constructing a 

discrete approximation to (2.2): 

[K] = [JΛ2Γ 
T ] − [RΛT 

Γ ]G
−1[RJ ]. 

Here, G−1 denotes the inverse of the Gram matrix Gij = hϕi, ϕj iL2([0,T ]×Γ). 

Next, we describe our implementation of Lemma 16. Let y ∈ Γ, s ∈ [0, T ] and 

h ∈ [0, T − s]. To obtain the control ψα,h associated with capΓ(y, s, h), we solve two 

discrete versions of the boundary control problem (5.7). Specifically, for τ1 = s1Γ and 

= τ s+hτ2 y ∨ s1Γ, we solve the discretized control problems: 

([Kτk ] + α)f̂ = [bτk ]. (5.28) 

This yields coefficient vectors f̂  
α,k, for k = 1, 2 associated with the approximate 

control solutions. Here, we use the notation [Kτk ] to denote a matrix that deviates 

slightly from the definition given above. In particular, we obtain [Kτk ] from [K] 

by masking rows and columns corresponding to basis functions ϕi,j localized near 

(ts,i, xs,j ) 6∈ Sτk . This gives an approximation to the matrix for Kτk = Pτk KPτk , which 
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we have observed performs well for our particular basis. The right-hand side vector 

[bτk ] is a discrete approximation to Pτk b and we obtain it by first generating the vector 

of inner-products [b]l = hb, ϕliL2([0,T ]×Γ), and then masking the entries of [b] using the 

same strategy that we use to obtain [Kτk ]. We solve the control problems (5.28) using 

Matlab’s back-slash function. For all discretized control problems considered in this 

section, we use a fixed value of α, with α = 10−5 . After computing the solutions fα,k, 

we then obtain ψh,α = fα,2 − fα,1. 

In the inversion step, we use the boundary data to approximate harmonic functions 

in semi-geodesic coordinates in the interior of M . To describe this step, let φ be a 

harmonic function in M . Fix y, s, and h, and let ψα,h denote the control constructed 

as in the previous paragraph. We define: 

B(ψh,α, φ)
Hc,hφ(y, s) := , (5.29)

B(ψh,α, 1) 

and we calculate the right hand side directly using (5.14). Note that this expression 

coincides with an approximation to the leading term in the right-hand side of (5.12), 

so for small h and α, Hc,hφ(y, s) will approximate Hcφ(y, s). However, note that (5.12) 

is only accurate to O(h1/2), and in practice we found that (5.29) tends to be closer to 

Hcφ(y, s + h/2) = φ(x(y, s + h/2)). This is not unexpected, since (5.29) approximates 

Hcφ(y, s) by approximating the average of φ over Bh = capΓ(y, s, h), and the point 

x(y, s) belongs to the topological boundary of Bh, whereas x(y, s+h/2) belongs to the 

interior of Bh. Consequently, we will compare Hc,hφ(y, s) to Hcφ(y, s + h/2) below. 

5.6.2 Inverting for the wave speed 

Our approach to reconstruct the wave speed c consists of two steps. In the first 

step, we implement Proposition 5.3.2 to construct an approximation to the coordinate 

transform Φc on a grid of points (yi, sj ) ∈ Γ×[0, T ]. The second step is to differentiate 

the approximate coordinate transform in the s-direction and to apply (5.17) to obtain 

the wave speed at the estimated points. 
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To approximate the coordinate transform Φc, we first fix a small wave cap height 

h > 0, which we use at every grid point. The wave cap height controls the spatial 

extent of the waves uψh,α (T, ·) in the interior of M . Because the vertical resolution of 

our basis is controlled by the separation between sources in time, we choose h to be 

an integral multiple of Δts. In particular, we select h = 2Δts = 0.05. Likewise, we 

choose the grid-points (yi, sj ) to coincide with the source centers for a subset of our 

basis functions. Specifically, we take yi = xs,i and sj = ts,j for the source locations 

xs,i ∈ [−1.5, 1.5] and times ts,j ∈ [0.05, 0.65]. In total, the reconstruction grid contains 

Nx,g = 121 horizontal positions, and Nt,g = 27 vertical positions. Then, for each grid 

point (yi, sj ) we solve (5.28) for k = 1, 2, and obtain the source ψi,j = ψα,h for the 

point (yi, sj ). Since the Cartesian coordinate functions x1 and x2 are both harmonic, 

we then apply (5.29) to both functions at each grid point, and define � � 
Φc,h(yi, sj ) := Hc,hx 1(yi, sj ), Hc,hx 2(yi, sj ) . (5.30) 

This yields the desired approximate coordinate transform. We plot the estimated 

coordinates in Figure 5.4a and compare the estimated transform Φc,h(yi, sj ) to the 

points Φ(yi, sj + h/2) in Figure 5.4b. 

The last step is to approximate the wave speed. To accomplish this, we first recall 

that c(Φc(y, s))2 = |∂sΦc(y, s)|2 . Thus, for each base point yi, we fit a smoothing e 

spline to each of the reconstructed coordinates in the s-direction, that is, we fit a 

smoothing spline to the data sets {Hc,hx
k(yi, sj ) : j = 1, . . . , Nt,g} for k = 1, 2 for each 

i = 1, . . . , Nx,g. We then differentiate the resulting splines at sj , for j = 1, . . . , Nt,g to 

approximate the derivatives ∂sHc,hx
k(yi, sj ), at each grid point. Finally, we estimate 

c(Φc,h(yi, sj )) by calculating |(∂sHc,hx
1(yi, sj ), ∂sHc,hx

2(yi, sj ))|e. We plot the results 

of this process in Figure 5.5, along with the true wave speed for comparison. We 

also compare the reconstructed wave speed against the true wave speed in Figure 5.6 

along coordinate slices. 

Inspecting the bottom row of Figure 5.6, we see that the reconstruction is generally 

good at the estimated points. In particular, the reconstruction quality generally 

decreases as sj increases, which is expected, since the points Φc,h(yi, sj ) with large 
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(a) 

(b) 

Figure 5.4.: (a) The estimated coordinate transform. We have only plotted points for 

half of the yi and sj . (b) Estimated points Φc,h(yi, sj ) (purple dots) compared to the 

semi-geodesic coordinate grid Φc(yi, sj + h/2) (black lines) and wave speed. 

sj correspond to the points which are furthest from the set Γ. Hence the N-to-D 

data contains a shorter window of signal returns from these points, and thus less 

information about the wave speed there. We note that the reconstruction results 

presented here are qualitatively similar to the reconstruction results in [20]. 
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(a) 

(b) 

Figure 5.5.: (a) True wave speed c. (b) Reconstructed wave speed, plotted at the 

estimated coordinates given by Φc,h. 
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(a) (b) (c) 

Figure 5.6.: Top: Reconstructed wave speed with three approximated geodesics. Bot-

tom row: true wave speed (blue curve) and reconstructed wave speed (red triangles) 

evaluated at the estimated coordinates for each of the indicated geodesics. The x-axis 

denotes the x2-coordinate (depth) along the approximated geodesic. 
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A. WAVE FRONT SET OF 1M(τ) 

In Section 3.4 all of the functions τ that we consider give rise to sets M(τ) with 

piecewise smooth boundary. For these functions, if x ∈ ∂M(τ) is a point at which 

∂M(τ) is not smooth, then ∂M(τ) either fails to be C1 or C2 at x. We compute 

the wave front set of 1M(τ) over a point x where ∂M(τ) fails to be C1 . In particular, 

we show that {x} × (R2 \ 0) ⊂ WF(1M(τ)). Put differently, WF(1M(τ )) contains all 

cotangent directions above the point x. The case where ∂M(τ) fails to be C2 at a 

point is similar and we omit it. 

We begin by noting that if h ∈ R, u ∈ C0 
∞(R), and φ ∈ C∞(R) is real valued and 

has no critical points in supp(u), then: Z h iu(h)e−iλφ(h) ∂x(u/φ
0)| e−iλφ(h) R(λ, h, φ, u)−iλφ(x)dx = x=h u(x)e + + . (A.1) 

−∞ λφ0(h) λ2φ0(h) λ3 

Here, |R| is bounded by a constant that depends only on supp(u), minx∈supp(u) |φ0(x)| 

and the C3 norms of u and φ. The proof of (A.1) follows from repeated integration 

by parts and the fact that for L := iφ0−1∂x, Le−iλφ = e−iλφ . 

Since ∂M(τ) is assumed to be piecewise smooth with a discontinuous derivative 

at x, after a rotation and translation we may assume that x = (0, 0) and locally 

identify M(τ) with A := {(x1, x2) : x2 ≤ h(x1)} where h : R → R is smooth on R \ 0, 

h 6∈ C1(R), and h(0) = 0. Thus, it will suffice show that {(0, 0)}×(R2 \0) ⊂ WF(1A). 

Let u ∈ C0 
∞(R2) with u = 1 near the origin. We consider the Fourier transform Z Z+∞ h(x1) 

−iλξ1x1 −iλξ2x2d e u(x)e dx2dx1 ,u1A(λξ) = 
−∞ −∞ 

where ξ is a unit vector and λ > 0. First we suppose that ξ2 6= 0. Then by (A.1), Z h(x1) 1)e−iλξ2h(x
1) 1)e−iλξ2h(x

1)iw(x v(x R−iλξ2x u(x)e 
2 
dx2 = + + ,

λ2ξ2 λ3 
−∞ λξ2 2 

where w(x1) = u(x1, h(x1)) and v(x1) = ∂x2 u(x1, h(x1)). Note that R, w, and v 

are compactly supported with respect to x1 since u is. Also note that w = 1 near 
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x1 = 0. If we choose u such that supp(u) is small enough then h will be smooth in 

(supp(w) ∪ supp(v)) \ 0. In particular, w and v are smooth away from 0. 

We define φ(x1) = ξ1x1 + ξ2h(x1), φ± = φ|±x1>0, and define also h± analogously. 

Suppose that φ0−(0) = ξ1 + h−
0 (0)ξ2 =6 0. Then φ has no critical points in the set 

{x1 < 0} ∩ supp(w) if supp(w) is taken small enough. Thus by (A.1), Z 0 i R+(λ, h, φ, u)−iλφdx1 we = + . 
λφ0−(0) λ2 

−∞ 

A similar expression holds for the integral from 0 to ∞ if φ0 +(0) =6 0. Applying an R +∞ −iλφdx1analogous argument to v, we see that −∞ ve = O(λ−1). Hence, � � 
1 1 1d λ−2 + O(λ−3).u1A(λξ) = − 

φ0 (0) φ0−(0)ξ2 + 

Thus d does not decay rapidly if φ0 +(0) 6= φ−
0 (0), equivalently if h0 +(0) 6= h−

0 (0).u1A 

To summarize, if h+ 
0 (0) 6= h0−(0) then over the point (0, 0), WF(1A) contains all 

directions except possibly (1, 0) and the four directions (−h0±(0)ξ2, ξ2), where |ξ2| = 

(|h0±(0)|2 +1)−1/2 . Finally, since a wave front set is a closed conic set [49], we conclude 

that {(0, 0)} × (R2 \ 0) ⊂ WF(1A). 
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B. ALTERNATIVE SOURCES FOR THE 

COMPUTATIONAL EXPERIMENT 

In Section 5.6.1, we remarked that the data used in the computational experiment 

could be approximately synthesized by post-processing data from sources that are 

products of Gaussians in space and Ricker wavelets in time. Here, we describe how 

this may be accomplished. 

Before discussing this point, we first note that uIf = I(uf ), where I denotes the R 
integral Ih(t, ·) := 

0 
t 
h(s, ·) ds. To see this, we first observe that, �Z t � Z t 

∂t 
2(Iuf ) = ∂t 

2 u f (s, ·) ds = ∂tu f (t, ·) = ∂t 
2 u f (s, ·) ds − ∂tu f (0, ·) Z t 

0 0 

= c 2(x)Δu f (s, ·) ds = c 2(x)Δ(Iuf ). 
0 

Here, we have used the fact that ∂tuf (0, ·) = 0 and (∂t 
2 −c2(x)Δ)uf = 0 since uf solves 

(5.1). Likewise, because uf solves (5.1), it follows that ∂n(Iuf ) = I(∂nuf ) = If and R 0
that ∂tIuf (0, ·) = uf (0, ·) = 0. Note also that Iuf (0, ·) = 

0 u
f (s, ·) ds = 0. Putting 

these observations together, we see that Iuf satisfies: 

∂t 
2w − c2(x)Δw = 0, in (0, ∞) × M, 

∂~nw|x∈∂M = If, 

w|t=0 = ∂tw|t=0, = 0, 

and hence Iuf solves (5.1) with Neumann source If . Since solutions to (5.1) are 

unique, we see that Iuf = uIf , as claimed. An immediate consequence is that, 

IΛ2T = Λ2T 
Γ,Rf = Iuf |R = u If |R Γ,RIf. (B.1) 

Thus, Λ2Γ 
T
,RI

j f = Ij ΛΓ
2T
,Rf for j ∈ N. 

We now describe how the data used in the computational experiment can be 

approximately synthesized using sources that are products of Gaussians in space and 
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Ricker wavelets in time. To that end, let ψi,j = ∂t 
2ϕi,j , where ϕi,j denotes the sources 

described in Section 5.6.1. Since ϕi,j is a product of Gaussians in both time and space, 

ψi,j is a product of a Ricker wavelet in time (since it is the second time derivative of 

a Gaussian function) and a Gaussian in space. Then, observe that, 

ϕi,j (t, x) = ϕi,j (0, x) + t∂tϕi,j (0, x) + I2ψi,j (0, x). 

Under the parameter choices for ϕi,j used in that computational experiment, the first 

two terms are considerably smaller than the third for i ≥ 4, since t = 0 belongs to the 

tail of the Gaussian ϕij. Likewise, for i ≤ 3, the same comment holds if we replace 

t = 0 by the start-time for the buffer interval, t = −t0 (note that we would also need 

to replace t = 0 by t = −t0 when applying I). In either event, 

ϕi,j ≈ I2ψi,j , and Λ2Γ 
T
,Rϕi,j ≈ Λ2Γ 

T
,R(I

2ψi,j ) = I2(ΛΓ
2T
,Rψi,j ), 

where the last equality holds by (B.1). For our particular set-up, I2(Λ2Γ 
T
,Rψi,j ) agreed 

with the data Λ2Γ 
T
,Rϕi,j to within an error of about 1 part in 10−4 . Hence, the data 

Λ2T 
Γ,Rϕi,j that we have used in the computational experiment could be approximately 

synthesized by first using the (more) realistic sources ψi,j to simulate the data Λ2Γ 
T
,Rψi,j , 

and then post-processing these data by integrating twice in time. 
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