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ABSTRACT 

Wang, Mengying. M.S.M.E., Purdue University, April 2018. Mixing by Cutting and Shuffling 
a Line Segment: The Effect of Incorporating Diffusion. Major Professor: Ivan C. Christov, 
School of Mechanical Engineering. 

Dynamical systems are commonly used to model mixing in fluid and granular flows. We 

consider a one-dimensional discontinuous dynamical system model (termed “cutting and 

shuffling” of a line segment), and we present a comprehensive computational study of finite-

time mixing. The properties of the system depend on several parameters in a sensitive 

way, and the effect of each parameter is examined. Space-time and waterfall plots are 

introduced to visualize the mixing process with different mixing protocols without diffusion, 

showing a variety of distinct and complex behaviors in this “simple” dynamical system. To 

improve the mixing efficiency and avoid pathological cases, we incorporate diffusion into this 

model dynamical system. We show that diffusion can be quite effective at homogenizing 

a “mixture.” To make this effect clear, we compare cases without diffusion to those with 

“small” diffusivity and “large” diffusivity. Illustrative examples also show how to adapt 

mixing metrics from the literature, namely the number of cutting interfaces and a mixing 

norm, to quantify the degree of mixing in our cutting and shuffling system. To study the 

evolution of mixing through a large set of possible cutting and shuffling parameters, we 

introduce fit functions for the number of cutting interfaces and the mixing norm. These fits 

allow us to determined time constants of mixing for each different system considered, thereby 

quantifying the “speed” of mixing. Systems with various different permutations (shuffling 

protocols) are considered, then average properties can be computed, which hold true (on 

average) for all allowed permutations. The relationship between the fit parameters and 

the system parameters is also investigated through scatter plots in the fit parameter space. 

Next, universal mixing behaviors are identified by specifically introducing a critical half-

mixing time, which must be found computationally. Using the latter, a rescaling of different 
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dynamical regimes (decay curves of the mixing norm) fall onto a universal profile valid across 

all parameters of the cutting and shuffling dynamical system. Then, a prediction for this 

critical half-mixing time is made on the basis of the evolution of the number of subsegments of 

continuous color (unmixed subsegments). This prediction, which is called a stopping time in 

the finite Markov chain literature, must also be found numerically. The latter compares well 

with the previously computed half-mixing time, which provides an approach to determine 

when a system has become uniform. Finally, we examine the dependence of the half-mixing 

times on the characteristic Péclet number of the system (an inverse dimensionless diffusivity), 

and we show that as the Péclet number becomes large, the system transitions more sharply 

from an unmixed initial state to a mixed final state. This phenomenon, which is know as a 

“cut-off” in the finite Markov chain literature thus appears to be well substantiated by our 

numerical investigation of cutting and shuffling a line segment in the presence of diffusion. 



1 

1. INTRODUCTION 

Even simple discontinuous dynamical systems can exhibit highly nontrivial dynamics and 

mixing behaviors. One recently studied class of such systems are piecewise isometries (PWIs) 

[1–3]. Unlike the stretching and folding mechanism of chaotic fluid mixing [4], which is 

underpinned by horseshoe dynamics [4, 5] and is sometimes provably the “best” mixing 

possible [6], cutting and shuffling underlies granular mixing [7–10]. Cutting and shuffling, 

much like the “mixing” of a deck cards, involves breaking apart the material being mixed 

into discrete pieces and then putting it back together in a length-preserving (i.e., isometric) 

way [11]. Mixing by cutting and shuffling via PWIs on non-Euclidean spaces (e.g., surface of 

a hemispherical shell) remains an active topic of research [12, 13]. Meanwhile, fluid mixing 

by stretching and folding dynamics in physical space is, by now, well-understood [4, 5, 14]. 

The interaction between stretching and folding and cutting and shuffling, on the other hand, 

remains a research frontier in the field of dynamical systems. As evidence for the latter point, 

we refer the reader to the detailed studies by Smith et al. [15–17] of shear maps coupled to 

discontinuous motions (such as “slip deformations”), showing a wealth of distinct types of 

dynamical behaviors including enhanced mixing and exotic bifurcations. 

The simplest example of cutting and shuffling is the one-dimensional (1D) PWI known 

as an interval exchange transformation (IET) [21, §14.5]. Recently, a class of IETs relevant 

to granular mixing and their mixing properties were studied by Krotter et al. [19]. This IET 

construction and its requisite simulation methodology were introduced to model the intuitive 

process of cutting and shuffling a line segment. The reason for considering such apparently 

simple 1D dynamics is that they are arise in more complex mixing flows, often underlying 

the mixing behavior, as shown in Figure 1.1. Specifically, in Figure 1.1(a), a granular mixing 

simulation in a spherical tumbler is shown and, if we consider only the outer edge dynamics 

in the tumbler, the process can be idealized as a cutting and shuffling of a line segment after 

unwrapping the circle. After several time periods, the distribution of different materials 
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(a) (b)

Figure 1.1. (a) View from below of a piecewise isometry (PWI) simulation 
of mixing of two granular materials (black and gray) in a “blinking spherical 
tumbler flow” [10,18]. Image in panel (a) reproduced, with permission, from 
[19] c 2012 World Scientific Publishing Co. (b) A lamellar structure can be 
sampled to generate an interval of different gray/black subsegments similar 
to (a). Thousands of striations of distributed thicknesses can be obtained 
by taking a cross-cut through the middle of a fluid undergoing mixing in a 
square cavity flow. Image in panel (b) reproduced, with permission, from [20] 
c 1989 American Physical Society. 

can become randomized (mixed). Figure 1.1(b) shows another example of how 1D cutting 

and shuffling dynamics might emerge. A lamellar structure with striations of distributed 

thicknesses, which vary in time as the lamella interact, is produced by taking a cross-cut 

through the middle of a chaotic fluid mixing in a cavity flow. The evolution of distribution of 

materials along this one intersection can also be idealized as a cutting and shuffling process, 

perhaps with reaction and diffusion as well. 
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Yu et al. [22] extended the work in [19] to account for possible uncertainty in the lo-

cation of cuts along the line segment, as might be the case when fractionating a granular 

material such as a powder. Consequently, the length of each portion of the cut and shuffled 

line segment is random, potentially leading to enhanced mixing. Most recently Smith et 

al. [23] introduced a new metric to quantify mixing by IETs, combining the length of the 

largest uncut subsegment and the evenness of color distribution across subsegments. They 

demonstrated that cutting in half the longest unmixed subsegment of distinct color at each 

iteration, which proves to be computationally inexpensive, can lead to optimal mixing in 

the sense of minimizing the proposed mixing metric. Such “optimal” mixing can also be 

achieved with a fixed shuffling protocol if the cut locations change at each iteration (be-

yond just the addition of uncertainty in cut locations as in [22]). Beyond the computational 

work of [19, 22], the mathematical theory of IETs is, in fact, quite daunting. The “weak 

mixing” properties of IETs were only recently established [24, 25] in work that required the 

development of abstract mathematical notions at such a high level that one of the authors 

of [25] (A. Avila) received the 2014 Fields Medal for his contributions to dynamical systems 

theory [26]. 

The IET construction introduced by Krotter et al. [19] has several parameters that can be 

varied to produce distinct mixing behaviors, including pathological poor-mixing cases that 

were examined in detail therein. Some connections between abstract mathematical notions 

of mixing and numerical experiments with IETs were also summarized in [19,22], leading to 

several basic “design principles” for how to best cut and shuffle a line segment. Specifically, 

the number of cuts (subsegments, N , introduced in each cutting step) can be varied, the 

shuffling order (a permutation, Π, of the integers up to N) can be changed, and the lengths 

of each subsegment (parametrized by a fixed adjacent subsegment length ratio r) can be 

chosen so as to enhance mixing. In [19,22], mixing was quantified through the percentage of 

the line segment’s length that is unmixed (i.e., the proportion of the line segment composed 

of the same continuous “color”) or as measured by the number of cutting interfaces (i.e., 

interfaces between different “colors” present). Yu et al. [22] additionally showed that even 
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slightly perturbing the cut locations stochastically can break periodicity in the system, again 

leading to mixing. 

Figure 1.2. Information decay due to shuffling for a deck of fifty-two cards, 
showing how many shuffles are required to randomize it (i.e., decrease the 
information content to zero). Image is reproduced, with permission, from [27] 
c 2000 The Royal Society. 

Our study of cutting and shuffling is also motivated, in part, by the shuffling a deck of 

cards. Numerical results by Trefethen and Trefethen [27] illustrate a well-known phenomenon 

of “cut-offs” in card shuffling, as shown in Figure 1.2. Given the number of n cards to be 

shuffled, it has been shown that the number of shuffles required to reach total randomization 

scales as log2 n. In particular for n = 52 (a typical deck of cards), log2 52 ≈ 6. Indeed, in the 

simulation from [27] shown in Figure 1.2, we see that the “amount of information” decays 

as the deck of cards is shuffled, reaching zero around 6 or 7 iterations. More specifically, it 

is known from work by Diaconis et al. [28–30], based on probability theory of finite Markov 

chains, that it takes about seven riffle shuffles to randomize a fifty-two card deck (see also 
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the New York Times article [31] on this fascinating result) 1 . Any further shuffling does 

not significantly improved the “mixedness” of the deck. Hence, seven shuffles represents a 

stopping time for the shuffling process, and the dynamical system exhibits a cut-off there, 

at which a sudden change in the mixedness of the cards from poorly to well mixed occurs, as 

shown in a schematic way in Figure 1.3 below (inspired by the illustration in [28, Figure 2]). 

Figure 1.3. Cartoon diagram of a cut-off in a mixing process. 

Recently, such cut-offs were demonstrated [33] through the numerical simulation of 

chaotic fluid mixing in a staggered-herringbone microfluidic channel [34]. By varying the 

Péclet number (an inverse dimensionless diffusivity), an appropriate global measure of “mixed-

ness” can be rescaled and shown to fit the notion of a cut-off, just like in card shuffling. To 

this end, in this work, we incorporate diffusion into the one-dimensional cutting and shuffling 

process, and we address the existence of cut-offs in this model system. Understanding such 

admittedly “simple” systems that yet exhibit “complex” dynamical behavior can often be 

impactful for statistical [35] and material physics [36]. 

1A simple counting argument by Keller [32] provides a similar estimate of how the cut-off number of shuffles 
scales with the number of cards. 
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Though there have been a number of theoretical and computational studies of IETs, there 

is still much to be understood about the basic cutting and shuffling model discussed above. 

Just as Ashwin et al. [37] pointed out that “the mixing properties of interval exchange maps 

are very subtle and relatively poorly understood and depend on parameters in a sensitive 

way,” our aim is to explore how different parameters influence the system’s mixing behaviors 

and whether there is any “universality” in the phenomenon. 

Figure 1.4. Combining a weakly mixing IET with diffusion creates a more 
efficient mixing process (as measured by how fast a “MixNorm” decays with 
iterations of the mixing protocol) than either cutting and shuffling by IET 
alone or mixing by diffusion alone. Image is reproduced, with permission, 
from [38] c 2012 Elsevier, Inc. 

Going beyond the simple IETs of Ashwin et al. [37], Sturman [38] provides a comprehen-

sive review of mathematical theories relevant to discontinuous mixing. Examples of IETs 

with diffusion were discussed in the context of simulating the mixing of a black-and-white 

line segment. By computing the decay of the so-called “MixNorm,” as shown in Figure 1.4, 

mixing with diffusion alone or by cutting and shuffling alone was found to be much less 

effective than when the two mechanism were combined. Going further, Froyland et al. [39] 

proposed local perturbations to speed up mixing in various dynamical systems. Specifically, 

they sought to optimize how diffusion is added across the system, including one-dimensional 
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line segments undergoing cutting and shuffling. Dynamical system with different fixed diffu-

sion protocols (termed “none,” “uniform,” “Gaussian,” and “optimal”) were compared [39], 

showing that optimizing the diffusion protocol leads to enhanced mixing at any Péclet num-

ber. Here, we consider only Gaussian diffusion. 

Most recently, Kreczak et al. [40] studied a one-dimensional model of mixing of a line 

segment with a combination of stretching, permutations and diffusion. Their results show 

that the global mixing rate depends on both the choice of permutation and the diffusion 

coefficient. Contrary to expectation (and the results of Ashwin et al. [37]), increasing the 

diffusion coefficient leads to a deceleration of the mixing rate when both stretching and folding 

and cutting and shuffling are present. Given just four detailed studies [37–40] on this topic 

exist, the dynamics of cutting and shuffling a line segment in the presence of diffusion remain 

largely unexplored. 

Our work aims to fill the latter knowledge gap in this field. After introducing the IET 

construction in Chapter 2, which is the basis of our cutting and shuffling model, we proceed to 

discuss in detail the effects of diffusion on cutting and shuffling in Chapter 3. Although many 

measures of mixing exists (see, e.g., the detailed review [41]), including multiscale mixing 

norms [42], we use the definition of mixing norm introduced in [37] (Section 3.3), which 

determines how far the line segment’s color distribution is from the uniform average color 

of the initial condition. Then, having quantified mixing, we verify that diffusion generically 

leads to decay of the mixing norm (Section 3.3). To explore the parameter space of this 

system and see how mixing proceeds under different protocols, we introduce a fit function 

for the decay of the mixing norm with the number of iterations (Section 3.3). Specifically, 

from the fit function, we extract a decay time constant for each protocol in the parameter 

space. Next, we define the “half-mixing time,” which quantifies how many iterations it takes 

to reach the halfway point of the mixing norm decay. With the half-mixing time in had, 

in Section 3.4 we rescale the concentration/color mixing norm decay curves for different 

cutting and shuffling systems with diffusion to show that a universal mixing behavior exists. 

Then, in Section 3.5, we predict this critical number of iterations using the average length 

of unmixed subsegments of continuous color during cutting and shuffling and a Batchelor-
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scale-type diffusion argument. We argue that, on the basis of these numerical results, there is 

strong numerical evidence for the existence of a cut-off phenomenon for IETs with diffusion, 

as we hypothesized. Finally, conclusions and avenues for future work are stated in Chapter 

4. 
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2. SIMULATION METHODOLOGY 

In this chapter, we describe the simulation methodology that we employ to study mixing of 

a line segment by cutting and shuffling, including incorporating the effect of diffusion. In 

Section 2.1, we defined a class of interval exchange transformations (IETs) that represent 

our cutting and shuffling protocols, and we also defined critical parameters to construct 

the dynamical system. In Section 2.2, the rules for choosing the parameters were clarified, 

including how to sort out good mixing cases and exclude pathological ones. In Section 2.3, 

two ways of quantifying the degree of mixing were introduced as cutting interfaces and the 

mixing norm, and we defined how to calculate them. In Section 2.4, we choose two types of 

plots to visualize the mixing process, which were space-time plot and waterfall plot. In the 

last Section 2.5, details of how to incorporating diffusion into the dynamical system were 

presented, which improved the mixing rate efficiently. 

2.1 Parameters of the Model 

The model of an IET construction of cutting and shuffling a line segment was shown in 

Figure 2.1. The behavior of this dynamical system sensitively depends on four parameters: 

the number of initial subsegments N , the length ratio between adjacent subsegments r, the 

shuffling permutation Π and the iterations T . The top row of Figure 2.1 shows how a line, of 

total length L, is divided into N = 4 subsegments at each iteration of this dynamical system, 

which represents the cutting process. Given this value of N = 4, the line is cut into N pieces 

and each piece is, additionally, given a distinct color. The color may, for example, represent 

different kinds of materials, or the same material but with different “concentration” of some 

tracer being mixed by cutting and shuffling. The ratio r is defined as the ratio of the lengths 

of adjacent subsegments, for example, r equals to the length of the second subsegment 

divided by the first subsegment, and also equals to the length of the third subsegment 
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divided by the second subsegment, while ξ is the length of the first subsegment. Therefore 

Figure 2.1 clearly shows that the initial length of each subsegment is ξ, rξ, r2ξ, r3ξ, which 

is a geometric sequence. The permutation Π determines the rearrangement order, which 

represents the shuffling process. Figure 2.1 shows a specific example with N = 4, r = 1.5 

and Π = [3142]. Here, we use the notation “[3142]” to denote the permutation that maps 

the integers [1234] to [3142] in that order. To be more specific, after cutting the line into 

four initial pieces, we put the third piece to the first place, the first piece to the second place, 

the fourth piece to the third place, and then the second piece to the last place. Therefore 

we finished one shuffling process with a specific permutation Π = [3142]. Here, we do not 

consider N ≥ 10, so there is no fear of confusion in dropping the spaces between the integers 

in our notation. The cutting location remains the same at every iteration and subsegments 

are rearranged according to the same pattern. Then we could repeat the same cutting and 

shuffling process as many iterations as possible. Therefore we introduced the last parameter 

T as the iteration counter, which represents how long the cutting and shuffling process will 

last. In Figure 2.1, two iterations of the cutting and shuffling process are performed with 

the permutation Π = [3142], so T = 2. And Tmax refers to the total number of iterations 

of cutting and shuffling performed. The color map of Figure 2.1 is arbitrary, and the color 

values are normalized between 0 and 1 with equal interval, for example, if we have four colors 

(N = 4), the first and last color have a value of 0 and 1, the second color has a value of 

1/3 ≈ 0.333, and the third color has a value of 2/3 ≈ 0.667. 

As can be observed from the bottom row in Figure 2.1, when the number of iterations T 

increases, the number of subsegments of continuous color varies, often increasing. If we do 

not consider other factors, the number of subsegments of continuous color will increase then 

decrease, if the iterations are large enough, it always shows a periodic pattern as indicated 

in [19]. Figure 2.1 also highlights the two measures of mixing discussed in [19, 22]: the 

percent unmixed U(T ) (i.e., the percent out of L corresponding to the longest continuous 

color subsegment, in Figure 2.1, the second white subsegment has the longest length of 0.23L 

at iteration 2, here U = 23% at T = 2) and the number of distinct cuts C(T ) (i.e., interfaces 
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Figure 2.1. IET construction representing cutting and shuffling of a line 
segment. Here, a line segment is cut into N = 4 (in this case) line segments 
with adjacent length ratio r and initial subsegment length ξ. Two iterations 
of the cutting and shuffling process (without diffusion) are performed with 
the permutation Π = [3142]. Key terminology is labeled. The color map is 
arbitrary, and the color values are normalized between 0 and 1. 

between distinct colors, in Figure 2.1 the number of interfaces between distinct color is 6 at 

iteration 2 as the green arrow indicated, here C = 6 at T = 2). 

2.2 Choosing the Parameters: Design Rules 

A major conclusion of Krotter et al. [19] was that mixing under this type of IET reaches 

a “point of diminishing returns” as N increases with four to five subsegments being sufficient 

to produce significant shuffling of the material. Thus, in the present work, we restrict our 

attention to the cases N = 4 and N = 5. 

As discussed in [19] and further elucidated in [22], in choosing the shuffling permutation 

Π, we should exclude ones that lead to pathological behaviors. Based on the study of 
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Krotter et al. [19], irreducible permutations are the most practical for good mixing behaviors. 

Specifically, we exclude more pathological cases only consider permutations Π that are (i) 

irreducible, (ii) non-rotational, (iii) without the first or last element fixed, and additionally 

for the cases with N > 3, (iv) without a number of elements > 1 and ≤ N − 2 being 

consecutive. For example, if N = 4, there are 24 possible permutations, however, only nine 

of them are “allowed” based on our rules: Π = [2413], [2431], [3142], [3241], [3421], [4132], 

[4213], [4312], [4321].1 In particular, Π = [2143] is exclude by rule (i) for being reducible, 

i.e., elements 1 and 2 are interchanged and 4 and 3 interchanged, splitting (“reducing”) the 

permutation into two sub-permutations. Meanwhile, Π = [2341] and Π = [3412] are excluded 

by rule (ii) for being a rotation, i.e., elements are shifted one to the right without significant 

re-arrangement. And Π = [1423] and Π = [3124] are exclude by rule (iii) with the first or 

last element fixed. Then, Π = [4231] is excluded by rule (iv) because elements and 2 and 3 

remain consecutive in the permutation. 

Additionally, consonant with the available theory of IETs [43], Krotter et al. [19] showed 

that the initial cuts should break apart the interval in such a way that the adjacent segment 

length ratio r is “closer” to an irrational number. Moreover, it was concluded in [19] that the 

initial distribution of subsegment lengths should be “balanced,” that is, r should be chosen 

close (but not equal) to unity. Thus, in the present work, without loss of generality, the ratio 

r is taken to be r > 1, then as shown in Figure 1.1, the total length L of the line segment is 

NX 
L = rj−1ξ. (2.1) 

j=1 

In order to realize the shuffling process within a MATLAB code, while ensuring length-

preservation of the line segment without being subject to round-off errors, the initial lengths 

of all subsegments, i.e., {ξ, rξ, r2ξ, . . . , rN−1ξ}, should all be integers. If the latter condition 

is met, then cuts always fall at unique indexes in the discrete array that represents the line 

segment computationally, which ensures that no length can be “lost” by rounding potentially 

1For N = 5, the allowed permutation are [2 4 1 5 3], [2 4 3 5 1], [2 5 1 4 3], [2 5 3 1 4], [2 5 4 1 3], [2 5 4 3 
1], [3 1 5 2 4], [3 1 5 4 2], [3 2 5 1 4], [3 2 5 4 1], [3 5 1 4 2], [3 5 2 1 4], [3 5 2 4 1], [3 5 4 2 1], [4 1 3 5 2], [4 
1 5 3 2], [4 2 1 5 3], [4 2 5 1 3], [4 2 5 3 1], [4 3 1 5 2], [4 3 2 5 1], [4 3 5 2 1], [5 1 3 2 4], [5 1 4 3 2], [5 2 1 4 
3], [5 2 4 1 3], [5 2 4 3 1], [5 3 1 4 2], [5 3 2 1 4], [5 3 2 4 1], [5 4 1 3 2], [5 4 2 1 3], [5 4 3 2 1]. 
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fractional indexes up or down. To restate this important point: by guaranteeing that cuts 

fall at unique array elements, then we automatically ensure that the line segment’s length 

cannot change, i.e., we enforce conservation of mass. 

To ensure that the subsegment lengths {ξ, rξ, r2ξ, . . . , rN−1ξ} are all integers, we convert 

r to a fraction as rn/rd, where rn is the nominator (an integer) and rd is the denominator 

(also an integer). This conversion is always possible as long as r is a rational number. Since, 

in MATLAB, we use finite-precision floating point arithmetic, then any r we could pick must 

be representable as a fraction, though it might be quite a “complicated” fraction. Now, once 

2 N−1 we have written r = rn/rd, it is clear that multiplying the list {1, r, r , . . . , rN−1} by rd 

yields a set of integers with greatest common divisor 1. Thus, we conclude that 

ξ = rd
N−1 (2.2) 

will guarantee that every subsegment’s length is an integer. Finally, substituting the expres-

sion for ξ from Equation (2.2) into the total length of the line given in Equation (2.1), we 

find that 
N � �X N 

j−1 N−1 1 − r N−1L = r r = r . (2.3)d 1 − r d 
j=1 

In plots, we will generally normalize the horizontal axis by L so that the line segment [0, L] 

becomes the interval [0, 1], and subsegments’ positions along this unit interval are displayed. 

In particular, we conclude that L only depends on N and r for a given cutting and shuf-

fling protocol for our integer-arithmetic IET construction. Figure 2.2 shows the relationship 

between different L, N and r as predicted by Equation (2.3). For larger number of subseg-

ments N , the total length L increases by orders of magnitude (note the logarithmic vertical 

scale in the figure), while maintaining that same periodic pattern. The smallest integer L 

occurs for the ratio r = 1.5 for all three values of N . Also, notice the sensitive dependence 

of L on r, which is likely fractal (becomes more complex as more values of r are added). 

Specifically, if we have a system with N = 5 subsegments and ratio r = 1.2, the total line� � 
1−1.25 

segment length L that we consider is × 54 = 4651. In plots, we will generally nor-
1−1.2 

malize the horizontal axis by L so that the line segment [0, L] becomes the interval [0, 1], 

and subsegments’ positions along this unit interval are displayed. 
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Figure 2.2. Relationship between the total segment length L (when using 
integer arithmetic to ensure cuts coincide with array elements) and the sub-
segment length ratio r for three choice of initial subsegment counts (N = 3, 
4 and 5). 

2.3 Quantifying Mixing: Cutting Interfaces and the Mixing Norm 

After T iterations of the cutting and shuffling map, the initially coherent sets of colors 

assigned to the pieces of the line segment can form a complex and intricate pattern [19,22]. 

There are many measures of mixing that can be used to quantify the degree of mixing 

produced by cutting and shuffling. On the one hand, there are discrete measures such as 

counting the number of distinct cuts between different colors, as discussed earlier. On other 

hand, there are a variety of so-called “mixing norms” that can be used to quantify the degree 

of mixing in a more “global” way, as discussed in the review by Thiffeault [42]. In this work, 

we will utilize the number of cuts C(T ) and the Lp function-space norm, denoted ||c||p(T ), 

to quantify mixing. 

As discussed in Section 2.1, the number of cutting interfaces C(T ) refers to the number 

of distinct interfaces between two different continuous color subsegments after T iterations. 
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This is a clear and intuitive metric of how much rearrangement our cutting and shuffling 

protocol has achieved. Taking Figure 2.1 as an example, after the first iteration, there 

are 3 interfaces since 4 subsegments are generated, therefore C(1) = 3. After the second 

iteration, there are 6 interfaces between distinct components, therefore C(2) = 6. Given a 

color distribution {ci}L across the line segment (represented by the lattice i = 1, 2, . . . , L)i=1 

after T iterations, we can explicitly define the number of cutting interfaces as 

L−1X 
C(T ) = dci+1 − cie, (2.4) 

i=1 

since 0 ≤ ci ≤ 1 by construction. Thus, the number of cuts is not a true proxy of mixing as 

it does not take into account whether or how the color changes on average. Nevertheless, the 

number of cuts is meaningful because, if reactions and diffusion are added into the cutting 

and shuffling protocol, then it is expected that having a wide distribution of cuts will lead 

to fast homogenization of the material [20, 44]. The number of cuts (discontinuities) is also 

a quantity of interest in abstract mathematical discussion of IETs [45]. 

To mitigate some of the weakness of C(T ) as a measure of mixing, we also use a mixing 

norm to quantify mixing. Specifically, we define an “Lp norm” of a function c(X, T ) as R L 
!1/p

|c(X, T ) − c̄|p dX 
||c||p(T ) = 0 R L , (2.5) 

dX
0 

where 1 ≤ p < ∞ and R L 
0 c(X, T ) dX 

c̄ = R L (2.6) 
dX

0 

is the average color of the line segment. Here, X is continuous variable running along the 

length of the line segment: 0 ≤ X ≤ L. For concreteness, when initially constructing the 

line segment, we assign each subinterval i a color value (i − 1)/(N − 1) (i = 1, . . . , N), which 

is always between 0 and 1. Thus, the mixing norm ||c||p(T ) measures how far the segment’s 

color distribution is from the uniform average concentration/color c̄, in an appropriately 

global way. The case of p = 2 is of interest as it measures the variance, or root-mean-square 

deviation, of the color distribution. As discussed by Thiffeault [46, p. 5], “[v]ariance is thus 

a useful measure of mixing: the smaller the variance, the better the mixing.” And, while 
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the average c̄  remains constant in time and unchanged by diffusion for periodic boundary 

conditions, the variance is depleted as long as there is diffusion and non-zero color gradients 

along the line segment [46], with the cutting and shuffling process controlling how gradients 

are created and, thus, the decay rate. 

To compute the mixing norm from the discrete data of our cutting and shuffling simula-

tions, consider a distribution of colors c(X, T ) across the line segment 0 ≤ X ≤ L. After T 

iterations of cutting and shuffling, cj represents the color value of the jth continuous-color 

piece, where j = 1, . . . , k(T ), and k(T ) is the number of continuous-color subsegments after 

T iterations. For example, in Figure 2.1, when T = 0, k(T ) = 4, cj = 0, 1/3, 2/3, 1 for the 

color “black,” “red,” “yellow” and “white,” respectively. While when T = 1, k(T ) = 4 and 

c1 = 2/3, c2 = 0, c3 = 1, c4 = 1/3 because the cutting and shuffling process changed the 

location of the colors. And when T = 2, k(T ) = 7 and cj = 0, 1, 2/3, 1, 1/3, 2/3, 0 shows that 

the color distribution has become more complex due to mixing. In addition, each lj is an 

integer and can be calculated based on the cutting and shuffling algorithm. Then, we can 

compute the integrals in the definition of the mixing norm exactly over each continuous-color 

piece and reduce the definition from Equation (2.6) to Pk(T ) 
!1/p

|cj − c|plj||c||p(T ) = j=1Pk(T ) 
, (2.7) 

j=1 lj 

where PN 
j=1 cj lj 

c̄ = c̄(r, N) = PN (T = 0) (2.8) 
j=1 lj 

is, as before, the uniform average concentration/color of the initial condition. Note that Pk(T ) 
j=1 lj = L by definition, where L is given by Equation (2.3), and lj is the length of jth 

subsegment of continuous color. At iteration T , there are 1 ≤ k(T ) ≤ L pieces of continuous 

color with k(0) = N . For p = 2, Equation (2.7) describes the standard deviation (square 

root of the variance) of the mixture. If normalized appropriately, the p = 2 mix norm can be 

made to agree with Dankwerts’ classical definition of the intensity of segregation [47], which 

he used to quantify mixing. 
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2.4 Visualizing Mixing: Space-time and Waterfall Plots 

Mixing of a line segment by cutting and shuffling can be visually represented by space-

time plots as initially discussed in [19]. To create a space-time plot, we combine all line 

segments after each iteration and arrange them from bottom to top in a two-dimensional 

(2D) space-time plot. The horizontal axis is the dimensionless lattice position X/L, while the 

vertical axis represents the number of iterations T . From space-time plots, we can visually 

identify the evolution of mixing, including periodic behavior and poor mixing. Figure 2.3(a) 

shows an example of a space-time plot of a cutting and shuffling protocol. 
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Figure 2.3. Mixing by cutting and shuffling with N = 5, r = 1.5, Π = 
[52413], T = 50. (a) Space-time plot of the color evolution. (b) Growth 
of the number of cutting interface C(T ). (c) Evolution of the mixing norm 
kckp(T ). 

In Figure 2.3(b), we plot the number of cuts C(T ), which grows in time but levels out 

after a while and starts decreasing. This protocol is ultimately periodic, so even over many 

iterations it does not produce good mixing. In Figure 2.3(c), we plot the mixing norm kckp(T ) 

for this case. The mixing norm remains constant, meaning that the color distribution never 

approaches the average color. Of course, since cutting and shuffling merely redistributes the 

color pieces, without changing their individual colors, the distribution cannot approach the 

average (see also [39, Section 4]). The latter is, of course, the classical distinction of stirring 

versus mixing [4, 48, 49]. That is to say, while cutting and shuffling (the “mechanical” 
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stirring process in our approach) can significantly disperse the initially continuous color 

segments, diffusion (such as molecular diffusion in a fluid or collisional diffusion in a granular 

flow) is needed to ultimately homogenize and mix the material. This distinction and the 

interplay between stirring and mixing brings us to a key contribution of the present work: 

incorporating diffusion into IETs and examining the resulting universal mixing behaviors. 
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Figure 2.4. Example of mixing with N = 5, r = 1.5, Π = [42315], Tmax = 50. 

Figures 2.4 and 2.5 show two additional examples of mixing by cutting and shuffling with-

out diffusion under different permutation (shuffling) protocols. On the one hand, Figure 2.4 

shows a case of a permutation that maintains the last subsegment fixed. Therefore, only 

the first four subsegments are cut and shuffled in this example, thus the cutting interfaces 

reaches a maximum and begins to follow a periodic pattern after only a few iterations. On 

the other hand, Figure 2.5 shows an example with the same shuffling permutation as Fig-

ure 2.3 but with a different ratio r = 1.25. In this case, within the 50 iterations shown, the 

cutting interfaces has not shown a periodic pattern. Therefore, it should be clear that the 

ratio r has a nontrivial impact on the dynamics and (potential) periodicity of the number 

of cutting interfaces. 

Another approach to visualize mixing of a line segment by cutting and shuffling can 

be presented by a three-dimensional (3D) waterfall plot. In MATLAB, we can create a 

3D matrix to store the color distribution after multiple cutting and shuffling processes. The 

matrix can be displayed by the built-in function waterfall. One in-plane axis is the rescaled 
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Figure 2.5. Example of mixing with N = 5, r = 1.25, Π = [52413], Tmax = 50. 

lattice position X/L as in the space-time plot, the other in-plane axis again represents the 

number of iterations T , while the vertical axis in the waterfall plot is the color value c as 

mentioned in Section 2.3. From waterfall plots, we can visualize the change of color values 

between different lattices and how cutting and shuffling influence the distribution of different 

colors. Specifically, it is much easier to see the abrupt change of colors due to the step-wise 

distribution of the initial color values along the subsegment. Figure 2.6 shows an example of 

a waterfall plot with the same cutting and shuffling protocol as Figure 2.3. For completeness, 

Figures 2.7 and 2.8 show examples of the waterfall plots with the same cutting and shuffling 

protocols as Figures 2.4 and 2.5, respectively. 

2.5 Incorporating Diffusion 

To ensure complete and thorough mixing of a line segment, i.e., c(X, T ) → c̄  for all 

X ∈ [0, L] as T → ∞, we must incorporate diffusion into the system. As is well known, 

diffusion by itself would mix an initial line segment (such as the one shown in the top row of 

Figure 2.1) very slowly. Thus, here we are interested in the nontrivial interaction of cutting 

and shuffling (redistribution of color) and diffusion (relaxation of the color distribution to 

the mean). 
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Figure 2.6. Waterfall plot with N = 5, r = 1.5, Π = [52413], Tmax = 50, 
corresponding to Figure 2.3(a). 
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Figure 2.7. Waterfall plot with N = 5, r = 1.5, Π = [42315], Tmax = 50, 
corresponding to Figure 2.4(a). 

Following Pierrehumbert [50], we would like to incorporate a time-discrete diffusion step 

between cutting and shuffling steps. To this end, consider a generic diffusion equation for 

the concentration/color c(X, T ) with characteristic diffusivity D: 

∂c ∂2c 
= D , (2.9)

∂T ∂X2 



21 

Figure 2.8. Waterfall plot with N = 5, r = 1.25, Π = [52413], Tmax = 50, 
corresponding to Figure 2.5(a). 

where X ∈ [0, L] and T ∈ [0, Tmax]. We can discretize Equation (2.9) using the usual 

forward-time, central-space (FTCS) scheme [51]: 

n+1 n n n n c − c c − 2c + ci i i+1 i i−1 = D , (2.10)
ΔT (ΔX)2 

where ci
n ≈ c(Xi, T n) with Xi = iΔX and T n = nΔT . This discretization is stable if 

DΔT ≤ 1
2 (ΔX)2 . 

However, in our cutting and shuffling protocols, the color is only defined on integer lattice 

points, and we iterate by integer increments in time, i.e., ΔX = ΔT = 1. Then, given the 

standard stability criterion for the scheme in Equation (2.10), we must restrict our equivalent 

diffusion coefficient such that D ≤ 1/2. 

Therefore, diffusion can be incorporated into cutting and shuffling by an additional sweep 

through the lattice at each iteration of the IET. That is to say, after the line segment is cut 

and shuffled as described above, an additional sweep through the lattice points is performed 

using the replacement rule: 

ci 7→ (1 − 2D)ci + Dci+1 + Dci−1, (2.11) 
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where ci is the color value at the ith lattice point (i = 1, 2, . . . , L). A common choice 

is D = 1/2, in which case our replacement rule from Equation (2.11) becomes a simple 

averaging: ci 7→ 1
2 (ci+1 + ci−1). Given a particular diffusion coefficient D, we would like to 

show that the line segment can be completely mixed in much fewer iterations than by the 

IET alone. To completely specify the diffusion rule, periodic boundary conditions are used 

to set cL+1 = c1 and c0 = cL. 

We would like all of our simulations to have the same “effective” diffusion coefficient, D, 

as it might arise from inter-particle collisions in a granular medium (see, e.g., [52]). However, 

the length L of the lattice depends on N and r as discussed in Section 2.2, see Table 2.1. 

Hence, a fixed diffusion coefficient does not yield the same behavior on different lattices, 

over the same number of iterations, simply because of the change in the line segment’s 

length. To ensure an “equivalent” diffusion behavior across lattices of different L, we apply 

dimensional analysis to connect the number of iterations that a given IET is required to 

run for, given a fixed diffusivity D but different domain lengths. The problem reduces to 

matching dimensionless diffusion coefficients once the domain is mapped from [0, L] to [0, 1] 

and the number of iterations (from 0 to T ) is normalized to a discrete time-like variable 

running from 0 to 1. 

To this end, consider two cases of cutting and shuffling protocols with diffusion, the first 

with D1, Tmax,1 and L1 and the second with D2, Tmax,2 and L2. From dimensional analysis, we 

should ensure that the dimensionless diffusion coefficients (i.e., the inverse Péclet numbers 

assuming the intrinsic velocity scale L/T ) match: 

D2Tmax,2 D1Tmax,1 
= . (2.12)

L2 L2 
2 1 

Assuming equal diffusivity (D1 = D2), the diffusion coefficient cancels out, and we can relate 

the number of iterations Tmax,2 needed on a lattice of length L2 to those (Tmax,1 and L1) of 

the reference lattice: � �2
L2

Tmax,2 = Tmax,1. (2.13)
L1 

To illustrate the importance of using dimensional analysis, specifically Equation (2.13) to 

match the number of iterations of different cutting and shuffling protocols, Figure 2.9 shows 
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Table 2.1. Dependence of L on r, here specifically for N = 4, and the 
corresponding variation in the number of iterations, via Equation (2.13), 
with the first row (r = 1.25 and Tmax = 50) being the reference system for 
the remaining. 

r rn ξ L Tmax 

1.25 5 64 369 50 

1.2 6 125 671 166 

1.4 7 125 888 290 

1.6 8 125 1157 492 

1.8 9 125 1484 809 

1.1 11 1000 4641 7910 

1.3 13 1000 6187 14057 
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the decay of the mixing norm for three different values of r, (a) without normalizing the num-

ber of iterations using Tmax and (b) after properly normalizing the number of iterations using 

dimensional analysis. In other words, in Figure 2.9(a), we did not use dimensional analysis 

and fixed the maximum number of iterations to 50. Then, it is clearly seen that because 

different r correspond to different L, the mixing behavior is incommensurately different in 

the three cases, so no conclusions can be drawn from Figure 2.9(a). On the other hand, in 

Figure 2.9(b), we used dimensional analysis to properly match Tmax across different r (and, 

thus, L). The result is that, when the ratio r is more “complex,” the mixing norm should 

decrease much faster because mixing is enhanced for these cases as argued in [19, 22]. This 

behavior is now clearly observed in Figure 2.9(b). Thus, Figure 2.9 clearly illustrates the 

importance of dimensional analysis when incorporating diffusion into cutting and shuffling, 

and the significance of Equation (2.13). 
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Figure 2.9. Decay of the mixing norm for fixed N = 5, Π = [52413], 
D = 0.5, and three choices of the segment ratio r. In (a), all three cases 
are ran for the same 50 iterations, showing incomparable behaviors. In (b), 
the maximum number of iterations is properly match via Equation (2.13), 
allowing a comparison across the three protocols. 
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3. RESULTS AND DISCUSSION 

In this chapter, we examine the mixing outcomes of cutting and shuffling in the presence 

of diffusion. Specifically, we address the hypothesis that cut-offs and universal behavior 

exists in the family of IETs with diffusion that we have described/constructed above. In 

Section 3.1, after defining how to incorporate diffusion into the system, we compare cases 

with “large” and “small” diffusivity. In Section 3.2, a fit function of cutting interfaces was 

introduced to quantify the degree of mixing. The fitting parameters of different systems are 

compared. In Section 3.3, the mixing norm can also be fitted into an exponential function. 

The relationship between system parameters and fitting parameters is also clarified. In 

Section 3.4, a universal mixing behavior was discovered among different systems after we 

introduce the half-mixing time TPe. In Section 3.5, we tried to predict the stopping time TPe 

and verified with the average subsegment length. 

Previous work has sufficiently addressed the non-diffusive (i.e., deterministic) mixing by 

IETs both mathematically and through simulation studies. Therefore, in this subsection, we 

summarize just the key results. From [19,22], it is clear that the number of subsegments N , 

the permutation Π and the ratio r greatly affect the mixing outcomes. Specifically, three 

“design rules” have been suggested to improve the mixing behavior (recall the discussion in 

Section 2.2): 

(i) Reducible and rotational permutations, as well as those that exhibit unsatisfactory 

shuffling, should be excluded. 

(ii) The line segment should be cut into no more than six subsegments (i.e., N ≤ 6), larger 

N do not significantly improve mixing. 

(iii) The ratio r should not be “large,” i.e., it should ideally be an irrational number close 

to 1. (Continued fraction expansions can be used to quantify “how irrational” r is.) 
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3.1 Mixing Behavior of IETs with Diffusion 

In the present work, motivated by the hypothesis that IETs with diffusion exhibit cut-offs 

in the sense of card shuffling, we are first interested in establishing how the mixing behaviors 

previously studied are affected by the presence of diffusion. Specifically, we study the effect 

of the diffusion coefficient’s magnitude (e.g., D = 0, 0.01, 0.5, . . .), having matched the total 

iterations T using the dimensional analysis rules from Section 2.5 to ensure comparable 

“amounts” of diffusion across lattices of different lengths. 

As an introductory example, let us consider how a typical space-time plot, such as the one 

shown in Figure 2.3(a) changes when diffusivity with D = 0.5 is incorporated into the cutting 

and shuffling process. Under the same parameters as Figure 2.3(a), Figure 3.1(a) shows the 

space-time plot of mixing by cutting and shuffling including diffusion. The most obvious 

effect is that the space-time plot becomes “fuzzy” as diffusion now blurs the different colors 

of the subsegments being cut and shuffled about. Figure 3.2 also shows the distribution of 

different color value after incorporating diffusion, in the form of a waterfall plot. We can see 

that the difference between distinct colors is vanishing, and the value of colors is becoming 

more uniform with increasing T . 
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Figure 3.1. Incorporating diffusion with D = 0.5 into the IET from Fig-
ure 2.3 with N = 5, r = 1.5, Π = [52413], and Tmax = 50. 

We can also examine how the number of cutting interfaces C(T ) and the mixing norm 

kckp(T ) evolve in the presence of diffusion. Compared with Figure 2.3(b), the number of 
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Figure 3.2. Waterfall plot with N = 5, r = 1.5, Π = [52413], Tmax = 50, 
D = 0.5, corresponding to Figure 3.1(a). 
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Figure 3.3. Incorporating diffusion with D = 0.5 with N = 5, r = 1.5, Π = 
[42315], Tmax = 50, corresponding to Figure 2.4. 

cutting interfaces in Figure 3.1(b) grows quickly and reaches an absolute maximum. This 

difference in how C(T ) evolves is due to the fact that material is now not just cut and 

shuffled but also mixed by diffusion. Diffusion changes the color of nearby lattice points 

through the diffusion rule [given by Equation (2.11)], thereby quickly causing nearby lattice 

points to have slightly different color values. In a small number of iterations, the number 
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Figure 3.4. Incorporating diffusion with D = 0.5 with N = 5, r = 1.25, Π = 
[52413], Tmax = 50, corresponding to Figure 2.5. 

of cutting interfaces C(T ) increases without exhibiting periodic patterns, and reaches its 

absolute maximum value maxT C(T ) = L − 1. This upper bound is due to the fact that 

eventually the color of every lattice is distinct from every other (even if just slightly so) due 

to cutting, shuffling and diffusion. 

The mixing norm ||c||p(T ), on the other hand, now decreases (asymptotically to 0) with 

T , as seen in Figure 3.1(c), instead of remaining constant as in Figure 2.3(c). In the presence 

of diffusion, the cutting and shuffling process eventually drives the color of the line segment 

to the average one, c̄, which is set by the initial conditions. Figures 3.3 and 3.4 also show the 

effect of incorporating diffusion but for the protocols shown (without diffusion) in Figures 2.4 

and 2.5, respectively. As in Figure 3.1, the number of cutting interfaces continues to grow 

with T , while the mixing norm decays. 

Next, we would like to establish the effect of varying the diffusion coefficient D (i.e., 

“small” diffusivity versus “large” diffusivity). For smaller diffusion coefficient D = 0.01, 

the mixing behavior is shown in Figure 3.5. The growth of cutting interfaces C(T ) in 

Figure 3.1(b) is almost the same as in Figure 3.5(b), showing a weak sensitivity to the 

diffusivity 1 . And Figure 3.6 shows the waterfall plot corresponding to Figure 3.5. This 

1In our definition of C(T ), i.e., Equation (2.4), any slight change in the color of nearby lattice points 
is counted as a cut. We use this definition so that C(T ) can be generalized to the case with diffusion 
considered herein. 
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Figure 3.5. Incorporating “small” diffusion with D = 0.01 into the IET from 
Figure 2.3 with N = 5, r = 1.5, Π = [52413], and Tmax = 50, corresponding 
to Figure 2.3. 
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Figure 3.6. Waterfall plot with N = 5, r = 1.5, Π = [52413], Tmax = 50, 
D = 0.01, corresponding to Figure 3.5(a). 

observation suggest that C(T ) might not be an effective way to measure the degree of 

mixing among systems with different diffusion coefficients. While in the deterministic (no 

diffusion) case, insightful mathematical results can be obtained about the growth of the 

number of cuts [45], any amount of diffusion perturbs the color values so that differences 
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in color that are counted as “cuts” appear immediately. Although one can invent threshold 

criteria for how much change |ci − ci+1| should signal a “cut,” this is ultimately a fruitless 

task. Meanwhile the mixing norm kckp(T ) in Figure 3.5(c) decays much more slowly that in 

Figure 3.1(c), showing (as is to be expected on the basis of previous studies, e.g., [37–40]) 

that the mixing norm effectively quantifies the differences in the mixing process with “small” 

diffusion (D = 0.01) versus “large” diffusion (D = 0.5). Figure 3.6 also shows the waterfall 

plot of color distribution for a small diffusivity (D = 0.01), which is quite similar with the 

no diffusion case. 

3.2 Quantifying the Evolution of the Number of Cutting Interfaces 

Based on the numerical evidence in Figures 3.1(b) and 3.5(b), we suggest that the evo-

lution of C(T ) can be approximated by a parametrization involving the “error function”: � �� �α�� 
T 

C(T ) ' (2a − b) + (b − a) 1 + erf , (3.1)
τ 

where a = minT C(T ) = C(0) and b = maxT C(T ) = L − 1, but τ and α are a priori 

unknown fitting parameter. For a fixed ratio r and number of subsegments N , we average 

the C(T ) curves across different permutations and fit the averaged curve to Equation (3.1), 

providing the values of τ and α tabulated in Table 3.1. Figure 3.7 shows an example of this 

procedure, the gray curves represent C(T ) for the different permutations considered, while 

the red curve is the average value of C(T ) across permutations, and the blue dashed line is 

the curve according to Equation (3.1). We observe that the proposed fit function captures 

the overall trend of the average number of cuts quite well. 

The second step is to vary the diffusion coefficient D and subsegment length ratio r, 

and Figure 3.8 shows the fit curve of the average for a range of r and D values. The more 

complex r is, the less time it takes to reach complete mixing. And generally a larger diffusion 

coefficient (D = 0.5) takes less time to reach complete mixing compared with a smaller one 

(D = 0.01). Table 3.1 summarizes the fitting parameters among all these different systems. 

The constant τ becomes smaller when the system reaches complete mixing earlier. Therefore, 
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Figure 3.7. Fit C(T ) with Tmax = 50, r = 1.25, N = 4, D = 0.5, a = 3, 
b = 368, the fitting parameters are τ = 0.3335, α = 1.4866. 
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Figure 3.8. Different average C(T ) fit curves, such as the specific one shown 
in Figure 3.7, but as r and D are varied with N = 4. 
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Table 3.1. Fitting parameters τ and α of C(T ) (N = 4) according to the 
model in Equation (3.1), for different choices of r and D. 

D = 0.5 D = 0.01 

r τ α τ α 

1.25 0.3335 1.4866 0.2760 1.3503 

1.2 0.1782 1.2422 0.2573 0.6941 

1.4 0.0848 1.7301 0.0981 1.1428 

1.6 0.0657 1.6464 0.0735 1.2172 

1.8 0.0571 1.3389 0.0939 0.7574 

1.1 0.0101 1.2957 0.0287 0.5576 

1.3 0.0109 0.7208 0.0137 0.7440 
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we understand τ as a time constant (with units of numbers of iterations), which characterizes 

the speed of mixing in the system. 
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Figure 3.9. Scatter plot in the (α, τ) plane of C(T ) from Figure 3.8 (see also Table 3.1). 

Figure 3.9 shows the scatter plot of τ and α values. This figure and approach to analyzing 

our data is inspired by the so-called τ -bias scatter plots of McIlhany and Wiggins [53]. 

In [53], the normalized variance of concentration was used to quantify the degree of fluid 

mixing in a microfluidic device. The parameters τ and bias were introduced to quantify 

the evolution of concentration variance curve and, thus, mixing. The parameter τ is, just 

as in the present work, interpreted as a time constant describing the temporal decay of the 

variance of concentration, while bias quantifies the “unmixedness” of the final asymptotic 

state. For our analysis of the C(T ) curves, the concept of bias is not applicable, so instead 

we have the skewness parameter α, in addition to τ . 

The best cases are on the bottom of the Figure 3.9, since the time constant τ is relatively 

small, which means the mixing process is completed quickly. In these cases, the subsegment 

ratio r is, for example, r = 1.1 and 1.3. The worst cases are on the top of Figure 3.9, which 

have large time constants. Comparing cases with the same ratio r and different diffusivity 
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D, we see that when D is quite small (D = 0.01), it usually takes longer for the system to 

mix (larger τ). 

3.3 Quantifying the Effect of Diffusion on the Decay of the Mixing Norm 

Based on the numerical evidence in Figures 3.1(c) and 3.5(c), we suggest that the evolu-

tion of ||c||p(T ) can be approximated by a stretched-exponential function:2 

−(T/τ)α 

||c||p(T ) ' M · e , (3.2) 

where M = ||c||p(0) is the initial norm before mixing but τ and α are a priori unknown fitting 

parameters. The time constant τ quantifies how fast the mixing norm decays with T , while 

α determines how skewed the decay curve is. If α = 1, the fit function in Equation (3.2) is a 

“perfect” exponential, while for α < 1, it is skewed and decays more slowly (asymptotically 

as T →∞). 

For a fixed ratio r and number of subsegments N , we average the mixing norm evolution 

curve ||c||p(T ) across different permutations as shown in Figure 3.10, then we fit the averaged 

profile to Equation (3.2). MATLAB’s nonlinear least-squares subroutine is used to obtain 

the best-fit values of the parameters. This procedure provides the numerical values of τ 

and α. We use the same approach to obtain the curves of averaged mixing norm, which are 

shown in Figure 3.11, as r and D are varied. Table 3.2 tabulates the values of τ and α for 

the different cutting and shuffling systems considered in Figures 3.10 and 3.11. 

Figure 3.10 shows an example of this procedure, the gray curves represent ||c||p(T ) for 

the different permutations Π considered, while the red curve is the average value of ||c||p(T ) 

across permutations, and the blue dashed line is the fit curve according to Equation (3.2). 

We observe that the proposed fit function captures the overall trend of the decay of the 

mixing norm’s average across permutations quite well. 

The second step is to vary the diffusion coefficient D and subsegment length ratio r, 

plotting the fit curves of the average in Figure 3.11. The more “complex” r is (see, e.g., the 

2The choice of a stretched-exponential function is based on the fact that such a parametrization arises and 
accurately describes a wide range of relaxation processes in disordered condensed matter systems [54]. 
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Figure 3.10. Mixing norm decay curves ||c||p(T ) with N = 4, r = 1.25, 
M = 0.3650, D = 0.5 and Tmax = 1000 iterations for various Π (as chosen 
according to the rules in Section 2.2), shown as gray curves. The average 
mixing norm decay curve is shown in red, and its fit in dashed blue. The 
best-fit parameters, according to Equation (3.2), for the average curve are 
τ = 0.0682 and α = 0.7866. 

Table 3.2. Fitting parameters of ||c||p(T ) according to the model in Equa-
tion (3.2) for the average mixing norm decay curves shown in Figure 3.11. 

D = 0.5 D = 0.01 

r τ α τ α 

1.25 0.0682 0.7866 0.3333 0.6471 

1.2 0.0397 0.8118 0.1411 0.6385 

1.4 0.0203 0.7772 0.1226 0.6660 

1.6 0.0128 0.8526 0.0732 0.6794 

1.8 0.0137 0.7708 0.0604 0.6017 
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Figure 3.11. The average (across permutations) mixing norm ||c||p(T ) decay 
curve from Figure 3.10 as D (dashed for D = 0.01 and solid for D = 0.5) 
and r (different colors) are varied. 

discussion in [19] about defining r as a continued-fraction expansion of increasing length), 

the less time it takes to reach complete mixing. Generally, though there are exceptions, as a 

careful examination of Figure 3.11 revels. Nevertheless, it takes less iterations to homogenize 

the line segment with a larger diffusion coefficient (D = 0.5) than with a smaller diffusion 

coefficient (D = 0.01), as expected. As discussed above, the connection between the value of 

r and the resulting cutting and shuffling behavior is highly nontrivial. Thus, our approach of 

computing the average mixing curve (over all permutations considered) and fitting it via two 

parameters provides a clear and quantitative way to compare different systems with different 

r and D. From the values of the fitting parameters summarized in Table 3.2, we infer that 

the time constant τ is smaller for systems that reach complete mixing in fewer iterations, as 

expected. Thus, amongst the five choices of r considered, 

1 
r = 1.6 = 1 + 1 (3.3)

1 + 
1+ 1

2 

results in the swiftest mixing (smallest time constant τ). 
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Ashwin et al. [37] suggested that, in the mixing process, we would like to know how many 

iterations are required to reach 95% mixing. Thus, we introduce T95% as the solution to 

||c||2(T95%) ≤ 0.05c. (3.4) 

This last equation is easy to solve using our fit function from Equation (3.2), 

−(T95%/τ)α 
M · e = 0.05c. (3.5) 

Hence, � � 
τ M 

T95% = ln , (3.6)
α 0.05c 

where the average concentration c̄  depends on r and N as given in Equation (2.8), while 

some values for τ and α are given in Table 3.2. 
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Figure 3.12. Scatter plot in the (α, τ) plane of the fit constants for the 
mixing norm decay curves from Figure 3.11 (see also Table 3.2). “Good” 
mixing is observed near the bottom-right corner of the scatter plot, while 
“poor” mixing is observed near the top-left corner. 

Finally, Figure 3.12 shows again the scatter plot of τ and α values based on the idea 

from [53]. In this work, bias = 0 in all cases because the cutting and shuffling process with 
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diffusion leads to ci → c̄  for every lattice site i as T → ∞. In [53], it was suggested that 

small values of both τ and bias correspond to “good” mixing cases. For our problem, the 

best mixing case is on the bottom right side of Figure 3.12, which corresponds a small τ but 

α closer to 1 (i.e., not small). The worst mixing case is on the top left side of the scatter 

plot, which corresponds to large τ and α significantly different from 1. Therefore, under this 

interpretation we have a direct relationship between fitting parameters and mixing behaviors. 

The time constant τ depends most strongly on the ratio r, while α depends most strongly 

on the diffusion coefficient D, as can be seen from Table 3.2. 

3.4 Universal Mixing Curves and Cut-offs 

So far, we have shown (a) how to incorporate diffusion into the mixing of a line seg-

ment by cutting and shuffling and (b) how quantify mixing across families of protocols via 

the number of cutting interfaces and the mixing norm. In this section, we would like to 

substantiate, through numerical results, the central hypothesis of this work: namely that 

“cut-offs” (and the associated concept of a “stopping times”) exists in IETs with diffusion 

and, furthermore, all mixing behaviors exhibited by cutting and shuffling with diffusion are, 

in a sense, universal. Guided by the work in [27,29,33], we now turn our attention collapsing 

the mixing norm decay curves of different IETs with diffusion onto a universal profile. As 

Liang and West [33] note, “[t]o prove the existence of a cutoff is in general very hard, relying 

on special features of the sequence of systems,” thus, for the present purposes, we also settle 

for numerical evidence thereof. 

To this end, let us first consider the number of iterations, denoted by TPe, required to 

decrease the initial value of the mixing norm by 50%: 

||c||p(TPe) ≈ 0.5||c||p(0) = 0.5M. (3.7) 

In the literature on finite Markov chains, the number of iterations TPe would be called the 

stopping time. In other words, this is the time-to-half-mixing, and the Pe = DT/L2 (recall 

Section 2.5) subscript reminds us that this number depends on the relative “strength” of 

diffusion in the problem. 
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Figure 3.13. Rescaled mixing norm of the concentration/color versus the 
rescaled iterations, for a diffusion coefficient of D = 0.5. A cut-off emerges 
as all curves collapse, passing through ||c||p(T )/M = 0.5 at T/TPe = 1; 
p = 2. The fitting parameters of the average “universal” mixing curve are 
τuniversal = 1.6706 and αuniversal = 0.7938. 

Next, we rescale each averaged mixing norm decay curve (recall Section 3.3) as ||c||p(T ) 7→ 

||c||p(T )/M so that the mixing norm will range from 0 to 1; and, we rescale T 7→ T/TPe. 

Then, we plot ||c||p(T )/M versus T/TPe, for all simulations that we have performed, onto 

the single plot shown in Figure 3.13. A clear collapse of all the data is observed, with 

all curves passing through ||c||p(T )/M = 0.5 at T/TPe = 1, which is the stopping time, 

as defined in [33]. In this plot, error bars denote one standard deviation from the mean 

(errors bars are bounded by 0 from below, obviously) of all the concentration curves over all 

permutations that we have considered. Error bars are used in order to be able to provide 

a sense for the behavior of all the possible (i.e., across the allowed permutations Π) mixing 

norm decay profiles in a single plot. Here, each curve corresponds to a given IET with a 

fixed diffusion coefficient D, segment ratio r and number of pieces N . The most enticing 

aspect of Figure 3.13 is that a single universal profile of the form given in Equation (3.2) 
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can be fit to the average of all the average curves. It can be calculated that this profile has 

τuniversal = 1.6706, αuniversal = 0.7938 (for the chosen D = 0.5), which are now independent 

of N and r (unlike Table 2.1 and Figure 3.11)! 
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Figure 3.14. Rescaled mixing norm of the concentration/color versus the 
rescaled iterations, with fixed N = 5, r = 1.2, Tmax = 2000 and considering 
ever smaller diffusivities D = 0.5, 0.1, 0.01, 0.001. 

In Figure 3.14 we use the same approach to get the value of TPe and rescale the system. 

In this case, we consider the average mixing norm with fixed N = 5, r = 1.2, Tmax = 2000 

but take into consideration different diffusion coefficients, specifically D = 0.001, 0.01, 0.1, 

0.5. In Figure 3.15, we show a zoom of Figure 3.14 for smaller values of T/TPe on the 

horizontal axis. From these two figures, we observe that when the diffusivity is relatively 

large (D = 0.01, 0.1, 0.5), the averaged mixing norm behavior is similar across the choices 

of D. However, when the diffusivity is quite small (e.g., D = 0.001), the mixing norm starts 

to have the tendency of staying approximately constant (at least for a large initial number 

of iterations), which leads to the very large error bars on the purple curves. Eventually for 

D = 0, the mixing norm does not change at all with T , hence as D → 0, the error bars must 

fill the entire plot. 
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Figure 3.15. Zoom of Figure 3.14 for small values of T/TPe. 
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Figure 3.16. Choosing one specific cutting and shuffling dynamical system 
from Figure 3.13 with parameters N = 5, r = 1.2, and Π = [52413], and 
computing the decay of the mixing norm for ever smaller diffusivities D = 
0.5, 0.1, 0.01, 0.001. 
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Though Figure 3.13 shows the relaxation of the line segment’s color to the mean through 

many different mixing protocols, it is clear that (after the appropriate rescaling) all IETs 

with diffusion behave in a universal way. Therefore, we conclude that there is clear numerical 

evidence of the existence of a “cut-off phenomenon” in the set of dynamical systems that 

we have constructed. However, to “prove” such a cut-off, we need to observe the transition 

from unmixed to mixed sharpening as D becomes small as in [33]. 

To this end, in Figure 3.16, we show some select curves from Figure 3.13 as D becomes 

very small, zooming near T/TPe = 1. There is some sharpening of the transition but a clear 

conclusion cannot be drawn from this plot. Thus, we conjecture that a physically based 

estimate of TPe is needed, rather than the numerical one from Equation (3.7), to clearly 

define the cut-off. This physically based estimate is the subject of the next section. 

3.5 Predicting the Stopping Time TPe 

Schlick et al. [55] proposed a simple one-dimensional analysis of diffusion between two 

subsegments of unequal color (on a normalized domain with given Pe), using the an analytic 

solution to the diffusion equation [i.e., Equation (2.9)]. (Muzzio and Ottino [56] previously 

considered the related case of reaction-diffusion.) In [55], the line segment was taken to have 

length 2` (i.e., each subsegment was of length `), and the colors were taken to be c1 = 0 

and c2 = 1 without loss of generality. A solution was developed using eigenfunctions, from 

which it was determined that a subsegment length of `∗ , where s 
ˆ 

` ∗ = ` ∗ (T̂ ) = π 
T

, (3.8)
2Pe 

will be “washed out” in a characteristic normalized/dimensionless time T̂  to be made precise 

below (given a specific Péclet number Pe) 3 . Thus, based on this analysis from [55], we 

pose the following question: when will the average continuous-color subsegment length, 

denoted ` m, in our cutting and shuffling process without diffusion reach `∗? This question 
√ 

3Since Equation (3.8) introduces a length `∗ ∝ D, it can be considered as a type of Batchelor scale [46,57], 
which describes the smallest length scale of fluctuations that can persist in a fluid flow before they are 
homogenized by molecular diffusion. 
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is important because, if ` m ' `∗ then T̂  iterations of the cutting and shuffling with diffusion 

(D 6= 0, for a given Pe) later, the concentration of the striation will be damped out (decrease) 

by e−2 ≈ 13.5% [55, p. 15]. 

For cutting and shuffling without diffusion (D = 0), we first rescale the problem as in 

Section 2.5, which yields the Péclet number definition (using a velocity scale L/Tmax): 

L2 

Pe = . (3.9)
DTmax 

Under this rescaling both X̂ := X/L and T̂  := T/Tmax run from 0 to 1. Then, the average 

subsegment length (i.e., the average of the lengths of subsegments of continuous color) can 

be trivially shown to be given exactly by 

` m(T̂ ) = 
1 

. (3.10) 
Ĉ(T̂ ) + 1 

Here, as before, Ĉ(T̂ ) := C(T ) is the number cutting interfaces as defined after T̂  normalized 

iterations so the number of distinct subsegment of continuous color is clearly Ĉ(T̂ )+1. Next, 

we seek to estimate the number of iterations T̂  required for diffusion to “wash out” the color 

gradients. 

To this end, in Figure 3.17, we show visually how to determine when `∗ ' ` m. In the 

absence of diffusion, the number of iterations required for the latter condition to hold is 

given by the T̂  values at the intersections of the ` m and `∗ curves in Figure 3.17. At these T̂ , 

we can expect that diffusion dominates the dynamics, leveling the concentration gradients. 

Thus, we would like to argue that these values of T̂  are estimates of the stopping times. Let 

us introduce the notation T̂ = T̃  
Pe/Tmax (with the tilde introduced to clearly distinguish this 

value from the one in Section 3.4) for this normalized stopping time, which is now defined 

based on Eqs. (3.8) and (3.10) as the solution of s 
T̂ 1 

π 
2P e 

= . 
Ĉ( ̂T ) + 1 

(3.11) 

Unfortunately, since the number of cutting interfaces C(T ) is a complicated function, for 

which we do not have a closed form solution, Equation (3.11) must be solve numerically. 
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˜After obtaining the value of TPe/Tmax numerically from Equation (3.11), we can verify 

whether the foregoing argument about the influence of diffusion is valid by calculating the 

mixing norm decay with the specific Pe given initially, from which we immediately get the 

corresponding diffusion coefficient to be used in a cutting and shuffling simulation: 

L2 

D = . (3.12)
PeTmax 

To summarize: supposing a Péclet number (inverse dimensionless diffusivity) is known for a 

line segment of length L normalized to 1, then `∗ is estimated by Equation (3.8) based on [55]. 

Next, the number of normalized iterations T̃  
Pe/Tmax of the diffusionless (D = 0) cutting and 

shuffling process until diffusion would “take over” is estimated from Equation (3.11), from 

˜which TPe trivially follows. Next, to verify the latter is an estimate of the stopping time, 

a cutting and shuffling simulation with diffusion is performed, using the properly matched 

diffusivity according to Equation (3.12). 
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ˆ ˜Figure 3.17. Graphical illustration of solving for T = TPe/Tmax such that 
`∗(T̂ ) = ` m(T̂ ). The average subsegment length ` m (in the absence of dif-
fusion) is shown as the gray curves for N = 4, r = 1.2, Tmax = 500 and 
D = 0 for various Π. The intersections of this averaged curve with the `∗ 

curves (different colors correspond to different Pe values, as in the legend) 
yield T̃  

Pe/Tmax = 0.074, 0.102, 0.136, 0.196, 0.284, 0.408. 
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Figure 3.18. Average mixing norm ||c||p(T ) with N = 4, r = 1.2, rescaled 
˜using TPe = 45.01, 57.995, 78.995, 124.005, 141.995, 189 for D = 0.4506, 

0.2253, 0.1126, 0.0563, 0.0375, 0.0282, respectively, as per Figure 3.17. 

A result from this numerical approach is illustrated in Figure 3.18 for a select choice of 

N and r. Clearly, some collapse of the otherwise disparate mixing norm curves is observed 

against T/T̃  
Pe for the estimated values of T̃  

Pe obtained from Equation (3.11) and as shown 

visually in Figure 3.17. More importantly, however, the collapse is “imperfect,” specifically 

showing a “steepening” of the profiles as Pe →∞. This steepening (as in [33]) is suggestive 

of a cut-off (sharp transition from a unmixed state to a mixed state), the ideal form of which 

is represented by the dashed vertical line connecting 1 to 0 at T/T̃  
Pe = 1 in Figure 3.18. 

Figures 3.20 and 3.22 show similar results. In Figure 3.20, we have again N = 4 subseg-

ments but with a ratio r = 1.4, while in Figure 3.22 we use N = 5 and r = 1.5. Although 

less pronounced, the cut-off phenomenon appears to be present in both of these figures, 

and we have confirmed this is the case for other choices of N and r as well (not shown for 

brevity). The corresponding estimates, T̃  
Pe, are obtained in the same way as before and as 

illustrated in Figures 3.19 and 3.21, respectively. The grouping of the curves is now much 

tighter, suggesting that the case in Figure 3.18 is, in a sense, “special” in clearly showing 
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ˆ ˜Figure 3.19. Graphical illustration of solving for T = TPe/Tmax such that 
`∗(T̂ ) = ` m(T̂ ), as in Figure 3.17, but for N = 4, r = 1.4, Tmax = 350 and 
D = 0 for various Π. The intersections of ` m with the `∗ curves yield the 
values of T̃  

Pe/Tmax = 0.1286, 0.1657, 0.2257, 0.3543, 0.4057, 0.54. 

the steepening. Nevertheless, a steepening with increasing Pe is observed in Figure 3.20 as 

well, confirming that the cut-off phenomenon is present for other choices of N and r in our 

cutting and shuffling process with diffusion. 

Finally, having considered the effect of different N and r, we would like to compare the 

various predictions in the above discussion to understand the relationship between T̃  
Pe and 

Pe. This dependence is shown in Figure 3.23. In general, the estimated stopping time T̃  
Pe 

increases with Pe, which should be expected given the hypothesis of a cut-off phenomenon. 

However, the specific dependence appears to be sensitive upon the choice of N and r, and 

no clear pattern emerges. Thus, it remains the subject of future inquiry whether a specific 

functional form could be determined to specify the relationship between T̃  
Pe and Pe a priori. 

Finally, we consider the relationship between the computed half-mixing time TPe and 

˜ ˜the predicted stopping time TPe. Figure 3.24 shows the scatter plot of TPe values versus 

TPe values. In this type of plot of predicted versus expected values, a linear relationship 

between TPe and T̃  
Pe would signify that the prediction is valid. In Figure 3.24, we observe 
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Figure 3.20. Average mixing norm ||c||p(T ) with N = 4, r = 1.4, rescaled 
˜using TPe = 37, 51, 68, 98, 142, 204 for D = 0.45024, 0.22512, 0.11256, 

0.045024, 0.022512, 0.011256, respectively, as per, as per Figure 3.19. 

an approximately linear relationship, though the slope is not one. Nevertheless, we can 

˜conclude that we can use TPe to predict the half-mixing time of the system. 
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ˆ ˜Figure 3.21. Graphical illustration of solving for T = TPe/Tmax such that 
`∗(T̂ ) = ` m(T̂ ), as in Figure 3.17, but for N = 5, r = 1.5, Tmax = 200 and 
D = 0 for various Π. The intersections of ` m with the `∗ curves yield the 
values of T̃  

Pe/Tmax = 0.07, 0.09, 0.13, 0.16, 0.2, 0.25. 
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Figure 3.22. Average mixing norm ||c||p(T ) with N = 5, r = 1.5, rescaled 
˜using TPe = 14, 18, 26, 32, 40, 50 for D = 0.4452, 0.2226, 0.1113, 0.0742, 

0.0557, 0.0445, respectively, as per, as per Figure 3.21. 
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Figure 3.23. The curves with circle symbols show the dependence of the 
stopping time T̃  

Pe, as calculated through Equation (3.11), as a function of Pe 
for three pairs of N and r values. The curves with triangle symbols show the 
dependence of the stopping time TPe, as calculated through Equation (3.7), 
as a function of Pe for same three pairs of N and r values. Lines connecting 
individual data points are a guide-to-eye. 
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Figure 3.24. Scatter plot for predicted T̃  
Pe values, via Equation (3.11), and 

calculated TPe, via Equation (3.7), showing an approximately linear scaling 
of predicted with calculated. 
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4. CONCLUSIONS 

In the present work, we discussed the effects of incorporating diffusion into one-dimensional 

cutting and shuffling maps represented by interval exchange transformations. The most ob-

vious conclusion is that diffusion leads to significantly enhanced mixing compared to cutting 

and shuffling alone. However, in the presence of diffusion, we must additionally be careful 

how we quantify mixing. Specifically, a “mixing norm” is a more effective way to quantify 

the degree of mixing compared to the number of cutting interfaces, a quantity of interested 

in the dynamical systems theory of interval exchange transformations. 

Next, we proposed a parametrization of the possible mixing behaviors. Indeed, the class 

of cutting and shuffling protocols considered has a large parameter space: the number of 

initial subsegments N , the adjacent subsegment length ratio r, the shuffling permutation 

Π, and the diffusivity D can all be varied independently. Our parametrization consists of 

fitting the decay of the mixing norm with the number of iterations to two parameters: a 

time constant τ and a skewness parameter α, which were both found to depend on the ratio 

r and on the diffusion coefficient D, for fixed N . Through this approach, we showed that, 

even though a large number of dynamical behaviors are possible, an appropriate rescaling 

of the mixing norm decay curves leads to a universal mixing curve, describing (within some 

error margin) all cutting and shuffling protocols. This universality rests upon the fact that 

a number of iteration for the mixing norm to decay by 50%, denoted TPe, can be defined 

(and found numerically) for each protocol. 

Another question we sought to address is whether cut-offs, and the concomitant concept 

of stopping times, from finite Markov chain theory apply here. To this end, we sought to 

determine a critical number of iterations T̃  
Pe *the stopping time) at which diffusion would 

“kick in” thus homogenizing the mixture. In doing so, we explored the limit of vanishing 

diffusivity (i.e., Pe → ∞), confirming (at least numerically) that the transition from an 

unmixed stated becomes sharper as Pe →∞. Thus, we have completed the analogy to cut-
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offs and stopping times, which so gracefully explains that a deck of fifty-two cards requires 

about seven (and not any more) shuffles to become randomized. Of course, unlike card 

shuffling, interval exchange transformations possess significant complexity. Even tough such 

maps are easy to describe qualitatively, their mathematical theory remains an advanced and 

difficult topic in dynamical systems. Our results on cut-offs are also distinct from those by 

Liang and West [33] because they considered chaotic maps in several dimensions, while our 

interval exchanges are at best weakly mixing (though never truly so since we work on finite 

grids and with integer arithmetic). 

A possible avenue of future work involves extending our cutting and shuffling approach 

with diffusion to consider chemical reactions occurring between the subsegments of different 

color. Such an extension could connect to the classical work on evolution and coarsening of 

lamellar structures in chaotic mixing [20, 44, 56, 58]. (Lamellar models of mixing remain an 

active topic of research today [59].) The interplay between the lamellar width distribution, 

coupled to chemical reactions and diffusion processes, plays a key role in the evolution 

toward a steady state and, thus, the final yield of a chemical reaction. Clifford et al. [44] 

discussed these issues at length, however, overall they initially considered only “simple” 

initial arrangement. Specifically, Clifford et al. noted that a weakness of their approach was 

that “lamellae can have only two different widths, while realistic fluid flows generate lamellae 

with a wide range of widths” [44, p. 305]. Meanwhile, earlier work by Sokolov and Bluman 

concluded that “the course of reaction is governed mainly by mixing and not by diffusion or 

kinetics.” [58, pp. 3698–3699]. Thus, cutting and shuffling a line segment with reaction and 

diffusion presents a natural model in which to capture such complexity. 

As we have shown in the present work, when permutations leading to poor mixing and 

pathological cases are excluded, the behavior of the remaining protocols of cutting and 

shuffling with diffusion is, in a sense, universal although the “stopping time” TPe is highly 

sensitive to the details of the protocol. Conceivably, such universality persist in the presence 

of reactions with the stopping time becoming the quantity one may wish to optimize. Indeed, 

the lamellar distributions under pure reaction and diffusion have been shown to evolve in 
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a self-similar manner [20, 56], suggesting some level of universality already exists in the 

process. Nevertheless, these remain questions that must be addressed in future work. 

Some additional future work can also include examining the sensitivity of the dynamical 

system to all the parameters. For example, the complexity of adjacent subsegment length 

ratio r could be varied in a more systematic way than we have here, to determine possible 

“resonance” or other system behaviors. In combination with the number of subsegments 

N and diffusivity D, varying r could have nontrivial impact on the mixing behavior of the 

system. Our work only discussed a small part of the parameter space, focusing on the 

fundamental effects of incorporating diffusion into cutting and shuffling. Also, since the 

initial condition is linked to the subsegment ratio r and number of initial pieces/cuts N , 

another open question is whether there still exists a universal behavior if we start from 

other/arbitrary initial condition. 
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