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GLOSSARY 

Logistic regression – a regression model based on the “natural logarithm of an odds ratio,” 

and can be “well suited for describing and testing hypotheses about relationships 

between a categorical outcome variable and one or more categorical or continuous 

predictor variables.” (Peng, Lee, & Ingersoll, 2002) 

Parallel computing – a computing technique that can “switch from sequential to modestly 

parallel computing” on multiple computing cores, which can enhance the 

effciency of massive computations (Asanovic et al., 2009). 

Spark – Apache Spark is “a general framework for distributed computing that offers high 

performance based on resilient distributed dataset (RDD).” (Zaharia, Chowdhury, 

Franklin, Shenker, & Stoica, 2010) 
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ABSTRACT 

Author: Wang, Mengyao. M.S. 
Institution: Purdue University 
Degree Received: May 2018 
Title: Performance Enhancement of Logistic Regression for Big Data on Spark 
Major Professor: Baijian Yang 

This research proposes a new ftting algorithm of logistic regression on IRWLS that 

utilizes the procedure of scanning data row-by-row and has the ability to acquire an exact 

result with only a few iterations. Furthermore, this research also realizes the distributed 

parallelization of the proposed method on Spark and conducts various experiments to 

manifest its memory-wise advantage over the traditional methods such as Spark MLlib 

package. The results show that the proposed method can provide an exact result rather 

than an approximated one within 5 or 6 iterations; achieve a satisfying accuracy for fight 

delay prediction within 1 or 2 iterations; has a better potential for parallelization and a 

better performance than MLlib with a 3-4x faster speed without full optimizations; and its 

performance is not undermined by an increasing data memory ratio. 
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CHAPTER 1. INTRODUCTION 

This chapter provides an overview of the research study. It introduces the research 

by presenting a background of the problem area and research questions. In addition, it 

covers the research signifcance, assumptions, limitations and delimitations which defne 

the extent of the study. 

1.1 Background 

Generalized linear regression models are fundamental and have been given much 

attention in machine learning area. The focus of this thesis, logistic regression, is one of 

the most commonly used training models. Although there are already many integrated 

packages or modules that can perform those regression models and are being applied to 

real-world applications, the frst step is always loading the complete dataset into the 

memory, which has become unrealistic if the data size is too large for the memory size of 

a single computing system. 

Because the computation and time complexity of such a regression algorithm can 

increase exponentially with the need to load and iterate data matrix from hard disks, and 

the speed of hardware improvement in memory can barely keep up with the rate of data 

growth nowadays, the researcher would like to conduct a research of the algorithm itself, 

and explore a much more effcient approach to perform it in a way that can achieve both 

better time and space effciency. And such a new computational method will be applied 

using distributed parallel computing and a multi-core computing network, which will also 

be include in the scope of this research. 

1.2 Scope 

This research falls into two major domains of science: statistics, as in classical 

linear regression model; and computer science, as in applied machine learning. A better 

way to explain the goal is to adapt certain mathematical transformations in generalized 
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linear models for the purpose of being utilized into practical computing that analyzes and 

extracts information out of a massive data input, with minimized loss of the truth, and an 

optimized effciency. 

From theoretical angle, this research will touch multiple classical linear regression 

models, especially logistic regression, while from technical angle, it will relates to 

commonly used techniques of big data analysis like Spark, MapReduce, parallel kernels, 

feature selection, etc. 

1.3 Signifcance 

Logistic regression has been regarded as one of the most commonly applied 

training models with already some integrated packages or modules that can perform it. 

However, such procedures always need their frst step to load the massive dataset to the 

cache memory, which can be extremely hard nowadays due to the dramatic increase of 

data size. 

Because the speed of hardware improvement in memory can barely keep up with 

the rate of data growth nowadays, if this research can explore a much more effcient 

approach to perform it both time and space effciently, the classical logistic regression can 

break its bottleneck and be applied to more exciting areas. Also, parallel computing, the 

main technique that will be exploited, also has been paid much attention in the world of 

machine learning. Hopefully, this research work can demonstrate a general idea on how to 

transform classical statistic models into a form that can well adapt parallel realization for 

big data analysis. 

1.4 Research Question 

Can the performance of logistic regression be enhanced using distributed parallel 

computing, therefore it can overcome the diffculties of memory loading bottlenecks for 

big data, and achieve an exact results with limited number of iterations? 
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1.5 Assumptions 

The study conducted for this project is done so assuming the follow: 

• The expected prediction results will be representable in a binary form. 

• The amount of data exceeds the size of RAMs. 

• And for further proof of parallel effciency, the size of data set can also exceed the 

storage of a single computer. 

• A few times of iterations of the proposed Logistic Regression algorithm will be 

enough for an accuracy acceptable by the semantic meaning of the data. 

1.6 Limitations 

This research is conducted with the following limitations acknowledged: 

• The focus on this study will be only on the Logistic Regression model. 

• The dataset should be labeled or pre-processed for the training process. 

• Only batch learning will be considered at the current stage. 

1.7 Delimitations 

This research is conducted with the following delimitations acknowledged: 

• Other training models within the family of Generalized Linear Regression will not 

be focused on currently. 

• The parallelization speedup will be bounded by the theoretical maximum potential 

due to the specifc thread schedule setting. 

• The time consumed by data pre-processing and system idling will not be considered 

or calculated into the total latency. 
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1.8 Summary 

This chapter provided readers with the scope, signifcance, research question, 

assumptions, limitations, delimitations, defnitions, and other background information for 

this research. The next chapter writes about a relevant review of the literature. 
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CHAPTER 2. REVIEW OF LITERATURE 

Generalized linear regression models are fundamental and have been paid much 

attention in machine learning area. The focus of this thesis, logistic regression, is one of 

the most commonly used training models. Although there are already many integrated 

packages or modules that can perform those regression models, and being applied to 

real-world applications, yet the frst step is always to load the complete dataset into the 

memory, which has become impossible now if the data size is too large for the memory 

size of a single computing system. While the computation and time complexity of such a 

regression algorithm can increase exponentially with the need to load and iterate data 

matrix from hard disks, the speed of hardware improvement in memory can barely keep 

up with the rate of data growth. This research aims to explore a much more effcient 

approach to perform it in a way that can achieve both better time and space effciency. 

And most likely, such a new computational method will be applied using parallel 

computing and a multi-core computing network. So literature reviews have been 

conducted on current academic achievements of both logistic regression and parallel 

computing, as well as sub-topics related to them. 

2.1 Logistic Regression 

Speaking of linear regression models for machine learning there is one basic yet 

pragmatic member of the family that has been utilized for decades, and that is logistic 

regression. In this study, this algorithm realizing this specifc regression model will be 

re-evaluated and hopefully re-designed with a new structure that can accommodate large 

scale parallel computing. 

2.1.1 Defnition 

Logistic regression is “also called logit regression, is commonly used to estimate 

the probability that an instance belongs to a particular class,” where an instance can be 
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predicted to be positive as 1 or negative as 0, making the whole process to be a binary 

classifer (Géron, 2017). Morgan and Teachman (1988) have emphasized that the key 

concept to understand the logistic regression models “is the odds ratio,” which is “the ratio 

of the number of events to the number of nonevents,” and should also has a clear semantic 

interpretation. More generally, logistic regression is a regression model “based on the 

natural logarithm of an odds ratio,” and can be “well suited for describing and testing 

hypotheses about relationships between a categorical outcome variable and one or more 

categorical or continuous predictor variables.” (Peng et al., 2002) Summarized from work 

of Géron (2017), The working mechanism of logistic regression can be basically 

interpreted as this: just similar to a linear regression model, a logistic regression model 

combines a bias term together with a computed weighted sum of the input features, but 

“instead of directly outputting the results like a linear regression model does, it outputs the 

logistic of those results using the logistic regression model estimated probability 

(vectorized form),” as shown in Eq. 2.1: 

p̂ = hθ (x) = σ(θ T · x) (2.1) 

where the logistic, noted σ(·), “is a sigmoid function (i.e., S-shaped) that outputs a 

number between 0 and 1,” and is defned via a logistic function as Eq. 2.2 shows: 

1
σ(t) = 

1 + exp(−t) 
(2.2) 

which yields a model prediction equation as Eq. 2.3 shows: 

⎧ ⎪⎨0 
ŷ = ⎪⎩1 

if p̂ < 0.5, 

if p̂ ≥ 0.5. 
(2.3) 

Using those fundamental equations, the logistic regression model can make the 

prediction easily, once it has estimated the probability p̂ = θ (x) , where it predicts 1 if an 

instance x belongs to the positive class, and 0 if negative. 
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2.1.2 Signifcance 

But why is logistic regression important? And how it becomes essential and 

fundamental to machine learning area? According to Lemeshow and Hosmer Jr (1982), 

back to the 90s of 20th century, the usage logistic regression model was dominating for a 

decade and “regarded as a standard method for data analysis in epidemiologic studies,” 

which had its rapid development at that time; and as assumed by them, “its widespread 

application is probably due to its ease of interpretation as well as its relationship to 

log-linear discriminant function analysis.” And it was claimed by Schein and Ungar 

(2007) that “the last decade has also seen increased use of the logistic regression classifer 

in machine learning applications, though under different names: multinomial regression, 

multi-class logistic regression or the maximum entropy classifer.” From all those articles 

that was published ten years or even thirty years ago, it is shown that logistic regression 

has been rather a mature and fully researched method than a fresh and newly born 

terminology. However, its long history does not lessen its signifcance and usefulness over 

the decades, and in the opposite, the public source codes of many cutting-edge machine 

learning products leading the market these years have indicated their originating from 

logistic regression, or even still utilizing it as the main training model. 

On the other hand, logistic regression is an outstanding representative of the family 

of generalized linear models (GLMs), which are fundamental and have been paid much 

attention to in statistic since they were proposed. GLMs represent a broad of statistical 

approaches corresponding to binary, binomial, multinomial, or Poisson data for a count 

response, and normal or gamma data for a continuous response. However, except for the 

normal case, maximum likelihood estimators (MLEs) of model parameters cannot be 

analytically resolved. Thus when using logistic regression, numerical methods must be 

used, including the Netwon-Raphson, the Fisher-scoring, and the iteratively re-weighted 

least square methods (IRWLS). Those methods mentioned above have been incorporated 

in many standard packages such as R and SAS. But to use these packages, the frst step is 

always loading the complete dataset into the memory, which is not doable if the data size 

is much exceeding the memory size of the computing system. Therefore, the signifcance 
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of this research can be revealed, since the goal is to propose a new approach which can 

overcome this diffculty, and to make logistic regression more compatible to modern 

large-scale machine learning projects. 

2.1.3 Logistic regression in machine learning 

To build a legal case, materials that proving a close relationship between logistic 

regression and machine learning are provided as the followings. 

Artifcial neural networks (ANN), one of the most popular machine learning 

methods nowadays, has been proved sharing many similarities with logistic regression. 

Mathematically, they “both provide a functional form and parameter vector to express as,” 

where the parameters “are determined based on the data set, usually by 

maximum-likelihood estimation,” and “as the functional form of differs for logistic 

regression and artifcial neural nets, the former is known as a parametric method, whereas 

the latter is sometimes called semi-parametric or non-parametric.” (Dreiseitl & 

Ohno-Machado, 2002) So to some extends, connections can be drawn such that artifcial 

neural networks are derived forms of the basic logistic regression model. 

Also, from the angle of application, it shows the trace of usage of logistic 

regression in many popular felds, for example, the text categorization, or in another name, 

natural language processing. Genkin, Lewis, and Madigan (2007) claimed that in text 

categorization, it is often to use Ridge logistic regression “in combination with certain 

feature selection, producing sparser and more effective classifers”; on the other hand, 

Lasso logistic regression also fts the criterion because it can provide “state-of-the-art text 

categorization effectiveness while producing sparse and thus effcient model,” and also 

because of its usefulness in “other high-dimensional data analysis problems, such as 

predicting adverse drug events.” 

Combining logistic regressions relationship with artifcial neural network, and 

their usages in medical feld, there is also an interesting comment from Tu (1996), as the 

following: 
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“Artifcial neural networks are algorithms that can he used to perform 

nonlinear statistical modeling and provide a new alternative to logistic 

regression, the most commonly used method for developing predictive models 

for dichotomous outcomes in medicine. Neural networks offer a number of 

advantages, including requiring less formal statistical training, ability to 

implicitly detect complex nonlinear relationships between dependent and 

independent variables, ability to detect all possible interactions between 

predictor variables, and the availability of multiple training algorithms. 

Disadvantages include its ‘black box’ nature, greater computational burden, 

proneness to overftting, and the empirical nature of model development.” 

This comparison reveals the fact that, although artifcial neural network is 

sometimes regarded as an alternative of logistic regression, the former can bring more 

unnecessary burden due to its complexity while the latter, if improved properly, has a 

potential to boost both the effciency and accuracy. 

2.1.4 Bottlenecks of large-scale logistic regression 

Although logistic regression has been widely used in large-scale machine learning 

projects, it still has some bottlenecks that have been tried to tackle for years. One of them 

is overftting. Liu, Chen, and Ye (2009) analyzed this diffculty in their research, by 

stating that if logistic regression is applied to applications with large amount of features 

but limited training data samples, then it tends to overft the model, and then it usually 

needs further regularization to obtain a classifer that is more robust. They also proposed 

an algorithm called “Lassplore” to solve the large-scale sparse logistic regression. More 

specifcally, they “formulate the sparse logistic regression problem as the ball constrained 

smooth optimization problem,” and they also proposed to “solve the problem by the 

Nesterovs method, an optimal frst-order black-box method for the smooth convex 

optimizatio.” However, another critical issue along with their solution was the diffculty to 

estimate the “step size at each of the optimization iterations.” 
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Furthermore, in the study conducted by Mood (2010), he emphasized that when 

interpreting the estimates as cause-effect relationships when using linear regression such 

as logistic regression, researches should be more cautious because “it is diffcult to control 

for all factors related to both independent and dependent variables, but it is of course even 

more diffcult to control for all variables that are important for explaining the dependent 

variable.” Because of the mathematical mechanism behind logistic regression, if a small 

variance has been found and explained, an “unobserved heterogeneity is almost always 

present,” so the risk to conclude causal relationships should always be considered. 

And fnally, the effciency of data loading is also an obvious barrier, which this 

research is aiming to solve. The trouble in classical techniques is caused by the two steps 

ftting procedure. Since statistical methods are not involved in the frst step, the entire date 

set must be completely loaded to memory for further analysis. In other words, as the two 

steps are conducted separately and independently, classical techniques are not effcient in 

operations of computing resources. To solve the problem, the technique of scanning data 

by rows should be proposed. Since logistic regression only loads individual rows to 

memory, the technique can handle extremely large data with size exceeding the memory 

size of the computing system. After individual rows are loaded sequentially, a summary 

information set of previous records is obtained, so that the fnal result of the summary 

information should be obtained after the last row is loaded. 

Since the estimates of model parameters and its variance-covariance matrix are 

computed from the summary information, such a technique of scanning data by rows will 

be extremely effcient in ftting a linear regression model, and therefore can overcome 

both the memory and computational effciency barriers, which are the two most important 

to be addressed in big data analysis. And to be noted, this research tends to design a data 

scanning method that only accesses the entire data set once, which should be able to 

further enhance the effciency. 
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2.2 Parallel Computing 

The data nowadays expands dramatically on size, soon the data set can be too large 

to be accessed to a single or a few hard disks. And parallel computing is one of the major 

topics for exploring plausible solution to the bottlenecks of logistic regression mentioned 

above. 

2.2.1 Signifcance of parallel computing in machine learning 

A prospective view that “driven by the capabilities and limitations of modern 

semiconductor manufacturing, the computing industry is currently undergoing a massive 

shift towards parallel computing, and this shift brings dramatically enhanced performance 

to those algorithms which can be adapted to parallel computers” has been highlighted in 

the research work of Catanzaro, Sundaram, and Keutzer (2008). And by studying their 

research achievement around utilizing GPU computation on support vector machine 

method, it is found that GPU is a way with very low cost yet guarantees such high 

performances. Catanzaro et al. (2008) also pointed out that “new machine learning 

algorithms that can take advantage of this kind of performance, by expressing parallelism 

widely, will provide compelling benefts on future many-core platforms.” And there are 

also many research work out there indicating parallel computing is an inevitable 

improvement for modern big data analysis. 

2.2.2 Spark 

Spark, a framework that “supports applications with working sets while providing 

similar scalability and fault tolerance properties to MapReduce,” and according to Zaharia 

et al. (2010), to achieve those goals, Spark also introduces an abstraction which is called 

resilient distributed datasets (RDDs), a “read-only collection of objects partitioned across 

a set of machines that can be rebuilt if a partition is lost.” Also, comparing to Hadoop, its 

main competitor, Spark “outperform by 10x in iterative jobs of machine learning, and also 
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can be used to query a dataset with size of 39 GB with sub-second response time,” which 

means for this research to boost performance of logistic regression, Spark will be the top 

on the preference list. 

This research will utilize the Hadoop Distributed File System (HDFS) to store the 

input data, and partitioning functions of Spark to parallelize the input RDD over different 

cores of the cluster, thus realize the distributed computations. 

2.2.3 MapReduce 

MapReduce is an essential component in a machine learning pipeline. To optimize 

the classical logistic regression, map-reduce is a key part to concur, and provide related 

optimization on that as well. This concept frstly came from Google, who specializes it for 

clusters that generate unreliable communication and in which process individual 

computers may shut down in an unexpected way. However, map-reduce now has been 

widely utilized in various kinds of machine learning projects, where its basic steps can be 

concluded as the following: the master engine coordinates the sub-engines called mappers 

and reducers, and it is responsible for splitting the data and assigning them into different 

mappers and collects the intermediate data transferred back from the mappers, while the 

reducer will be asked by the master to process the data and then return fnal results (Chu et 

al., 2007). 

Also, mentioned by Dean and Ghemawat (2008), MapReduce has an outstanding 

performance on easing the burden of network bandwidth, by “reducing the amount of data 

sent across the network: the locality optimization allows us to read data from local disks, 

and writing a single copy of the intermediate data to local disk saves network bandwidth.” 

They also pointed out that “the model is easy to use, even for programmers without 

experience with parallel and distributed systems, since it hides the details of 

parallelization, fault tolerance, locality optimization, and load balancing.” Therefore, it is 

preferred to use MapReduce on Spark to complete the data processing for this research. 



13 

2.2.4 Paralleling logistic regression 

In the research work of Singh, Kubica, Larsen, and Sorokina (2009), they 

proposed an optimized algorithm for logistic regression that has been paralleled, which is 

“based on the map-reduce framework, for performing feature evaluation,” and it “makes 

feature evaluation tractable on massive datasets,” and furthermore, it “can trivially be 

applied to the SFO heuristic as well as other known heuristics.” Although their work 

sounds promising, but it still has not resolved the data loading issue completely, where 

there is a great potential to make improvements using the same MapReduce procedure. 

Because of the nice property of the technique of scanning data by rows, as 

proposed in the previous chapter, it is possible to extend GLMs and logistic regression for 

big data. The size of suffcient statistics in a logistic model does not depend on the sample 

size, but mostly the size of suffcient statistics in GLMs for non-Gaussion data cannot be 

lower than the size of the whole data, therefore the simply using of suffcient statistics 

cannot overcome the memory barrier in ftting GLMs as well as logistic regression for big 

data. 

So to solve the problem, two scenarios must be addressed. In the frst, it is 

assumed that the data size is lower than the storage capacity limitation of a single 

computer so that the proposed approach will be applied on a single processor. In the 

second, it is assumed the size of big data exceeds the limit of storage capacity of single 

computer, where multiple disks must be used, then the proposed approach will be applied 

to multiple processors. 

For the multiple processors scenario, the implementation needs data-parallel 

computation executed on clusters of processors by a distributed fle system, where 

MapReduce will be the pioneer solution. With MapReduce, identical computations are 

applied onto a enormous number of data records by a lot of processors. Different jobs will 

be specifed as the Maps and Reduces, and divide the input data into independent small 

data sets that can be processed in a parallel pattern. 

The major task in the initial parallelized implementation is the derivation of the 

coeffcients and parameters. Once they are computed, the computation burden will be 
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independent of the data size, and theoretically, the entire computation will need only 

O((p + 1)2) memory size, where is the number of processors. And as the computational 

time is linear to the data size, the usage of parallel computation can increase the speed of 

the overall process. 

And fnally, it is still important to study the theoretical relationship between the 

proposed approach with the classical approach in ftting GLMs for big data. After the 

results of classical ftting procedures provided by existing packages run on the same 

cluster and data set, it can be shown that results from the proposed approach are identical 

to those from the traditional methods, indicating that it is able to classify this new method 

as an exact approach. 

2.3 Summary 

This chapter provided a review of the literature relevant to Logistic Regression, 

Parallel Computing and their potentials.The next chapter provides the framework and 

methodology to be used in the research project. 
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CHAPTER 3. FRAMEWORK AND METHODOLOGY 

The aim of this research is to enhance the performance of logistic regression, a 

popular approach of classifcation in machine learning. A full description of the 

methodology is provided in this chapter, including framework research, hypotheses, the 

proposed ftting algorithm on IRWLS, distributed parallelization on spark, assessment 

instrument, variables, and procedures of testing and analysis. 

3.1 Framework of Research 

The framework of research includes four stages: 

First, algorithm design: 

• Derive and refne the new method of scanning data row-by-row using 

Fisher Scoring and Iterative Reweighted Least Square (IRWLS). 

Second, simulation: 

• Realize algorithm with Python in serial programming with one iteration; 

• Feed fake data for testing the validity of algorithm; 

• Implement the iterative method; 

• Set up Spark cluster; 

• Distributively parallelize the program onto Spark using MapReduce and 

Aggregation method. 

Third, data preparation: 

• Feature selection; 

• Data merging and cleaning; 

• Handle categorical feature with one-hot encoding. 

Fourth and the last, conducting experiments: 
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• Train the models; 

• Design performance metrics and related experiments; 

• Testing, scoring, summarizing. 

So some key milestones in the research framework includes: combine Fisher Scoring and 

Iteratively Re-weighted Least Squares (IRWLS) in the proposed algorithm to change the 

data loading pattern from entirely to row-by-row; and on single CPU, deriving the frst 

iteration of algorithm, then developing on further iterations to fnd a pivot for acceptable 

accuracy; utilizing distributed fle system like Spark to further overcome the memory-wise 

and computational bottlenecks; fnally, conducting experiment with a baseline of existing 

logistic regression packages. In general, the primary goal of the research is to complete an 

exact approach development by adapting the classical algorithm to parallelization via new 

data loading method and rules of iteration, making it well performed on multi-core 

environment. 

3.2 Hypotheses 

Since after certain amount of work in implementation, the new algorithm and 

model will be tested on data of big size and analyze the performance, this research is 

therefore mainly a quantitative one and has the following hypotheses: 

• H0: The proposed method cannot achieve an exact result with a better memory-wise 

performance than the baseline. 

• H1: The proposed method can achieve an exact result with a better memory-wise 

performance than the baseline. 

3.3 The Proposed Fitting Algorithm on IRWLS 

The IRWLS algorithm has an initial guess of the linear component using Eq. 3.1, 

and an initial guess of the weight using Eq, 3.2 
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(0)
= η(0)z (3.1)i,F i 

= b00[h(η(0)w(0) 
)][h0(η(0)

)]2 (3.2)i,F i i 

And for iterative calculations, this research proposes the ways to obtain the weight 

β , the estimator σF 
2, and the variance-covariance matrix V using Eq. 3.3, 3.4, and 3.5, 

respectively. 

(t) 
xx,F }

−1sxz,F (3.3)β (t+1) = {S(t) 

n o1 (t) (t) (t){σF 
2}(t+1) = szz,F −{sxz,F }

>{S( 
xx 
t) 
,F }

−1sxz,F . (3.4)
n 

V(t+1) = (X>W( 
F
t)X)−1 . (3.5) 



18 

Algorithm 3.1 Fisher Scoring and IRWLS for β̂ and φ̂ Based on A single Processor 
Hence the proposed ftting algorithm on IRWLS can be designed as demonstrated in 

Algorithm 3.1. 

Input: data read row-by-row from the hard disk 

Output: β̂ , σ̂ 2, V̂ (β̂ ) 

1: procedure ITERATIVE ALGORITHMS WITH THE TECHNIQUE OF SCANNING 

DATA BY ROWS 

Initial Computation: 
(0) (0)

2: Let szz,F , sxz,F , and S( 
xx 
0) 
,F be a value, a p-dimentional vector, and a p × p-dimensional 

matrix, all equal to zero 

3: For each the ith row of data do 
(0) (0)

4: Defne zi,F by Eq. 3.1 and wi,F byEq.3.2 
(0) (0) (0) (0)

5: Update s = s i,F {zi,F }2 
zz,F zz,F + w 
(0) (0) (0) (0)

6: Update sxz,F = sxz,F + wi,F {zi,F }xi 

= S(0) (0) T7: Update Sxx 
(0) 
,F xx,F + wi,F xixi 

8: end for 

9: Compute β (1) by Eq. 3.3, σ2(1) by Eq, 3.4, and V(1) by 3.5 F 

Iterative Computation: 
(t) (t)

10: Let szz,F , sxz,F , and S( 
xx 
t) 
,F be a value, a p-dimentional vector, and a p × p-dimensional 

matrix, all equal to zero 

11: For each the ith row of data do 

T (t)
= g−1(η

(t) (t) (t)
= η(t)

12: Let ηi 
(t)

= xi β (t), µi i ), wi,F = b00[h(η(t))][h0(ηi 
(t)
)]2 and zi,F F,i − 

(t) (t)
(yi − µ )/wi F,i 

(t) (t) (t) (t)
13: Update szz,F = szz,F + wi,F {zi,F }2 

(t) (t) (t) (t)
14: Update sxz,F = sxz,F + wi,F {zi,F }xi 

= S(t) (t) T15: Update S( 
xx 
t) 
,F xx,F + wi,Fxixi 

16: end for 

17: Compute β (t+1) by Eq. 3.3, σ2(t+1) by 3.4, and V(t+1) by 3.5 F 

18: Iterate Step 10 to Step 17 until convergence 

19: end procedure 



19 

3.4 Distributed Parallelization on Spark 

The implementation structure of the proposed method on Spark can be illustrated 

as Figure 3.1. 

Initial values of   , , and  s
(t)(0)

zz,F s
(t)(0)

xz,F S
(t)(0)

xx,F
Row 0: calculate ,  

, and   

w
(t)

i,F{ }z
(t)

i,F

2

{ }w
(t)
i,F z

(t)
i,F x0 w

(t)
i,Fx0x

T

0

Row 1: calculate ,  

, and   

w
(t)

i,F{ }z
(t)

i,F

2

{ }w
(t)
i,F z

(t)
i,F x1 w

(t)
i,Fx1x

T

1

Aggregate to , , and  s
(t)(1)

zz,F s
(t)(1)

xz,F S
(t)(1)

xx,F

Row m-1: calculate ,  

, and   

w
(t)

i,F{ }z
(t)

i,F

2

{ }w
(t)
i,F z

(t)
i,F xm−1 w

(t)
i,Fxm−1x

T

m−1

......

Aggregate to , , and  s
(t)(m)

zz,F s
(t)(m)

xz,F S
(t)(m)

xx,F

Aggregate to , , and  s
(t)(2)

zz,F s
(t)(2)

xz,F S
(t)(2)

xx,F

......

Aggregate to , , and  s
(t)(2m)

zz,F s
(t)(2m)

xz,F S
(t)(2m)

xx,F

Aggregate to , , and  s
(t)(3m)

zz,F s
(t)(3m)

xz,F S
(t)(3m)

xx,F

Aggregate to , , and  s
(t)(4m)

zz,F s
(t)(4m)

xz,F S
(t)(4m)

xx,F

Spark Worker 1

Spark Worker 2

Spark Worker 3

1. Sum up to get  , , and  
2. Compute , , and  
3. Do prediction and acquire accuracy 

s
(t)(n)

zz,F s
(t)(n)

xz,F S
(t)(n)

xx,F

β(t+1) σ
2(t+1)

F
V

(t+1)

Spark Worker 0

+Core 3

Core 2

Core 1

Core 0

Calculate  and  
using   

w
(t+1)

i,F z
(t+1)

i,F

β(t+1)

Figure 3.1. Distributed parallelization implementation of the proposed method on Spark 
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The data is randomly split into p number of RDD partitions, each of which has m 

number of rows of records, and they are assigned to each core of each Spark worker as a 

parallelized task. Within each partition, each row is mapped with the function calculating 

the working suffcient statistics, and then the results of each row are reduced by 

aggregation into a fnal output. The tasks of different partitions can be distributed 

parallelized and executed no matter of the order. Eventually the partial working suffcient 

statistics will be collected and summed up to get the ultimate result for an iteration, based 

on which the weight β as well as other necessary values will calculated. Using β (t+1) of 
(t+1) (t)+1the tth iteration, z and w can be updated and fed into the (t + 1)th iteration. This i,F i,F 

circulation continues until manual stopping or automatic result convergence. 

3.5 Assessment Instrument 

In this section the experiment environment including both hardware and software 

will be introduced, as well as the dataset information and pre-processing methods. 

3.5.1 Hardware environment 

The spark cluster is built on four virtual machines with the following 

specifcations: 

Table 3.1. Hardware specifcations of a single virtual machine 

CPU model AMD Opteron(TM) Processor 6272 

Number of cores 4 

CPU MHz 2100.025 

Memory 8 G 

Disk size 250 GiB 

Hence the cluster has 16 cores and 32G of memory in total. 
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3.5.2 Software environment 

Apache Spark 2.0.0 is installed over the four virtual machines, with one master 

nodes and worker nodes. The master node not only acts as a driver, but also has a 

secondary name node as a worker, so the cluster can be considered to have four workers 

with 16 CPU cores and 32 GB of memory in total. The program of new algorithm is 

written in Python 2.7 using some common packages such as Numpy and Pandas. Also the 

logistic regression package from MLlib, a machine learning library of Spark, is utilized as 

the baseline for performance comparison. 

The baseline package is called LogisticRegressionWithLBFGSF, which is a 

logistic regression algorithm that has been already optimized using Limited-memory 

BFGS and Tree Aggregation, the latter of which can effectively shorten the time of result 

aggregation and communication cost among parallelized tasks. So readers should note 

that the advantage of the method proposed by this research is actually even more than it 

manifests in the experiments due to the normal aggregation method that has been used 

during the implementation. 

3.5.3 Dataset and data pre-processing 

For the purpose of testing the proposed logistic regression algorithm, this research 

selects to predict whether the arrival of a pre-scheduled fight will be delayed (“true” if 

delayed more than 15 minutes, and “false” otherwise), based on the historical on-time 

performance provided by Bureau of Transportation Statistics. 

The data contains more than 100 columns, among which only 13 (12 features and 

one label) are used, which is shown in Table 3.2. ARR DEL15 is the label to be predicted 

while the 12 features will be used fully or partially according to the need of different data 

size or semantic meaning. The Bureau of Transportation Statistic database provides data 

from the year of 1988 - 2016, however data before the year of 1995 has signifcant 

differences such feature missing, old version of identifcation numbers, etc., so only data 

of the year 1995 - 2016 has been used. The total data size of this year length is about 35 
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GB, and after being trimmed to the selected 13 columns it has approximately 10 GB 

remained. 

Although 8 GB of data can hardly be recognized as Big Data, the purpose of this 

research will not be undermined for the following two reasons: frstly, Spark allows users 

to specify memory usage for each node, enabling simulation of the scenario when data 

size is much larger than the total memory size even with dataset that is not actually huge; 

and secondly, One-hot Encoding, a well-known method of data pre-processing that 

enlarges an 1 × n column of p number of distinct values to a p × n matrix, where each row 

contains p− 1 0s and one “1” to indicate which value this record has, can be applied to the 

several categorical features such as FL NUM, AIRLINE ID, ORIGINAL AIRPORT ID, and 

DEST AIRPORT ID. One-hot Encoding will not only make categorical feature more 

scientifcally presented, but also can signifcantly enlarge the dataset that has limited size 

because of real-world collection for the purpose of manifesting the memory-wise 

advantage of the proposed algorithm in this research. 

Table 3.2. Selected Columns (features/label) of Flight Data 

MONTH 

DAY OF MONTH 

DAY OF WEEK 

AIRLINE ID 

FL NUM 

ORIGIN AIRPORT ID 

DEST AIRPORT ID 

CRS DEP TIME 

CRS ARR TIME 

DEP DEL15 

TAXI OUT 

DISTANCE 

Month 

Day of Month 

Day of Week 

Identifcation number of a unique airline (carrier) 

Flight Number 

Identifcation number of a unique origin airport 

Identifcation number of a unique destination airport 

CRS departure time (local time: hhmm) 

CRS arrival time (local time: hhmm) 

Departure delay indicator, 15 minutes or more 

Taxi out time, in minutes 

Distance between airports (miles) 

1-12 

1-31 

1-7 

e.g. 32575 

e.g. 1933 

e.g. 14492 

e.g. 12266 

e.g. 1350 

e.g. 1912 

1 or 0 

e.g. 21 

e.g. 1042 

ARR DEL15 Arrival delay Indicator, 15 minutes or more 1 or 0 
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3.6 Variables 

The independent variables of this research include the size of data input (decided 

by number of features and records across time), the assigned memory size of Spark nodes, 

the number of partitions of RDDs, and the number of iterations of the proposed IRWLS 

method. And the dependent variables that will be measured include accuracy predictions, 

predicted weights (β ), running time, parallelization speedup, size of communication 

throughputs, and garbage collection time of Spark tasks, 

3.7 Procedures of Testing and Analysis 

After the proposed IRWLS method has been successfully tested to run in the serial 

version, i.e., with only one core making correct calculations for both training and 

predicting over multiple iterations, and giving results that are acceptable in both time and 

accuracy manner, the implementation will be adapted onto Spark cluster for further 

speedup with distributed parallelization using the schema described in section 3.3. Then 

once the numerical results such as accuracy and the weight β are identical to the serial 

version, it can be safe to say the algorithm is prepared for performance testing and 

analysis. 

The experiments will be conducted in three stages as the followings: 

• Parallelization performance analysis 

• Accuracy and β convergence examination over iterations 

• Performance analysis with different settings of data memory ratio 

Firstly, the parallelization performance analysis experiment will be conducted on a 

relatively small data consisting of one year of records, fve features and one label. In this 

research the fight data in year of 1995 has been used. The aim of using a dataset smaller 

than granted memory size is to exclude the effect of data loading diffculty and purely test 

the speed enhancement of the parallelization alone. The baseline package MLlib will be 
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run on the same degree of parallelization and its results and metrics will be compared to 

the proposed logistic regression method. 

Secondly, since the proposed method of this research emphasizes the need of only 

a small number of iterations and an exact result instead of an approximated one can be 

derived in the end of the algorithm, it is necessary to make an observation on running 

multiple iterations of the proposed method until the result converges, and evaluate its 

actual performance with the theoretical expectations. Since only the mathematical results 

will be examined and a larger number of iterations will be run, this part of experiment will 

also use the single year of dataset in year 1995 as well as the fve features used in the 

previous experiment. 

The third experiment has its focus on the main advantage about how reading data 

row-by-row can free the performance of logistic regression from growing data memory 

ratio that is happening in Big Data analysis. Dataset from the year of 1995 to 2015 will be 

used to compose training inputs with different size and all the 12 selected features will be 

introduced for a full performance analysis, and a part of data of the year 2016 of the same 

amount of features will act as the testing dataset. Both the proposed method and the 

baseline package will be tested in two scenarios: fxed small memory size with increasing 

data size, and fxed large data size with decreasing memory size. 

A major advantage for using Spark is that it has a well-integrated web UI that 

monitors all the performance metrics of each stage of jobs submitted, and furthermore the 

results can be viewed even after stopping the applications in the history server that Sparks 

provides. Hence this research will combine the results from the web UI and outputs from 

the program itself for further analysis. And after the experiments are done, charts and 

tables will be demonstrated in a variable-controlling manner to manifest the performance 

enhancement of the proposed method. 

3.8 Summary 

This chapter provided the framework and methodology to be used in the research 

study. 
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CHAPTER 4. RESULTS AND DISCUSSION 

In this chapter, the different stages of experiments designed in section 3.7 are 

conducted and results have been collected. Both the proposed IRWLS method and the 

baseline MLlib package LogisticRegressionWithLBFGS are tested using the same 

groups of data input and memory settings on Spark cluster whose specifcations can be 

found in section 3.5. The frst experiment analyzes the performance enhancement due to 

distributed parallelization; the second experiment examine the accuracy and result 

convergence over iterations of the proposed IRWLS method; and the third experiment 

records and compares performances of the two methods with different settings of data 

memory ratio to prove the memory effciency of the proposed method. This research will 

provide further analysis and discussion at the end of each stage of experiments. 

4.1 Parallelization Performance Analysis 

Spark is well-known as a fast large-scale data processing engine due to many of its 

brilliant features including fault-tolerant RDD implementation, which provides a great 

platform for distributed parallelization. In this experiment, the serial version of the 

proposed IRWLS method will be adapted to run in parallel over cluster cores to achieve a 

signifcant speed up. And the baseline MLlib logistic regression package will perform the 

same tasks under the same conditions for comparison. 

4.1.1 Testing parameters and input conditions 

The basic information of this experiment is illustrated in Table 4.1. As discussed 

in section 3.7, for the purpose of testing parallelization performance alone, this research 

picks up a relatively small dataset compared to the assigned memory size for this stage. 
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Table 4.1. Parameters for single year test for parallelization performance analysis 

Parameters Value 

Year of data 1995 

Total size 1.54GB 

Number of features 5 

Features MONTH, AIRLINE ID, FL NUM, DEP DEL15, DISTANCE 

Actual size being computed 122 MB for training + 34MB for testing 

Number of records 4,177,444 for training + 1,044,361 for testing 

Memory size 4 GB * 4 = 16 GB 

Number of partitions 1, 2, 4, 8, 12, 16 

The data of the year 1995 has been shuffed and split in a ratio of 0.8 for training 

and 0.2 for testing. The proposed IRWLS method will run for three iterations that would 

be enough for performance analysis at the current stage. And the RDD will be partitioned 

into 1, 2, 4, 8, 12, and 16 for different level of parallelization. Since the cluster is built on 

4 × 4 cores, the task will be executed with a task/executor ratio of 1/1, 2/2, 4/4, 8/4, 

12/4, and 16/4, respectively. 

4.1.2 Illustration of results 

For a more precise analysis, each experiment element is conducted 10 times with 

the same parameters and environment, and a fnal result of average will be recorded. For 

this stage of experiment, the full set of original results are illustrated in Table 4.2, 4.3 and 

4.4. Those tables list the training time results from 10 identical tests and the average is 

calculated and shown at the rightmost column. The rest of the experiments of this research 

use the same procedure to acquire the average of 10 identical tests. And for the reason of 

simplicity, only this stage shows the expanded table of full records while the later stages 

will only present the fnal average results. 

The dependent variable, the number of partitions, i.e., the max number of active 

tasks running concurrently with distributed parallelization over the 16 cores, is noted as p, 
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which spreads from 1 to 16, which is the maximum number of effective partitions due to 

the 16 cores provided by the Spark cluster. For the proposed IRWLS method, this 

experiment records the result of the frst three iterations for each setting of p. 

Table 4.2. Running Time of the proposed IRWLS method (part 1) 

p Iteration 

Time for Training (s) 

Test 1 

Test 6 

Test 2 

Test 7 

Test 3 Test 4 Test 5 

Test 8 Test 9 Test 10 
Average 

1 

1 
327.51 

330.22 

334.10 

324.94 

331.53 314.36 335.58 

326.62 332.59 331.68 
328.91 

2 
552.34 

549.68 

556.90 

557.39 

557.44 565.88 549.68 

562.60 559.02 553.69 
557.62 

3 
557.63 

560.79 

559.72 

562.17 

548.41 554.01 568.47 

564.36 550.78 558.65 
558.50 

2 

1 
165.32 

170.50 

157.06 

158.71 

162.29 160.62 172.83 

165.22 165.48 164.08 
164.21 

2 
280.85 

283.28 

280.29 

285.09 

284.40 277.73 286.51 

282.05 281.42 282.71 
282.43 

3 
279.16 

276.25 

280.73 

278.79 

280.13 274.11 277.78 

274.65 275.55 280.10 
277.72 

4 

1 
92.08 

92.30 

87.95 

90.48 

90.04 91.65 91.12 

93.17 89.04 86.73 
90.46 

2 
151.51 

152.51 

151.84 

151.67 

149.96 152.54 154.63 

151.76 157.32 154.36 
152.81 

3 
151.58 

150.86 

153.14 

153.51 

153.34 153.42 153.89 

150.90 150.90 149.92 
152.10 
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Table 4.3. Running Time of the proposed IRWLS method (part 2) 

p Iteration 

Time for Training (s) 

Test 1 

Test 6 

Test 2 

Test 7 

Test 3 Test 4 Test 5 

Test 8 Test 9 Test 10 
Average 

8 

1 
52.69 

51.26 

49.77 

53.23 

49.77 50.38 49.87 

54.57 50.06 51.70 
51.17 

2 
87.61 

81.88 

87.61 

85.72 

83.03 81.02 84.81 

88.40 82.92 79.12 
83.67 

3 
92.68 

91.69 

90.39 

95.25 

93.10 92.81 90.53 

93.66 93.70 92.89 
92.67 

12 

1 
38.17 

40.13 

38.98 

37.99 

38.36 39.03 36.58 

37.97 36.58 38.74 
38.25 

2 
64.18 

62.80 

61.43 

60.59 

58.70 64.70 61.40 

61.93 60.26 62.27 
61.83 

3 
63.58 

64.34 

64.30 

63.63 

67.64 67.92 63.19 

66.80 65.22 66.61 
65.32 

16 

1 
30.55 

29.78 

29.92 

29.03 

27.89 29.01 27.01 

28.77 28.81 26.77 
28.75 

2 
48.26 

47.42 

47.41 

47.28 

48.00 47.05 48.44 

46.49 48.71 48.34 
47.74 

3 
50.70 

49.78 

47.64 

49.26 

51.14 50.36 50.94 

49.35 50.30 48.33 
49.78 
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Table 4.4. Running Time of the MLlib Baseline Package 

p 

Time for Training (s) 

Test 1 

Test 6 

Test 2 

Test 7 

Test 3 Test 4 

Test 8 Test 9 

Test 5 

Test 10 
Average 

1 
1467.82 

1456.30 

1464.28 

1453.50 

1445.59 1449.43 

1469.99 1455.07 

1465.07 

1447.27 
1457.43 

2 
790.22 

772.01 

763.49 

779.96 

774.11 783.66 

798.91 782.59 

790.74 

776.02 
781.17 

4 
499.95 

502.93 

506.05 

512.12 

506.83 510.33 

502.52 497.85 

501.54 

522.18 
506.23 

8 
320.84 

320.23 

320.83 

322.00 

323.18 314.90 

333.37 321.83 

317.54 

321.40 
321.61 

12 
245.73 

240.04 

242.86 

245.61 

242.81 237.81 

239.84 238.01 

243.98 

238.82 
241.55 

16 
196.87 

195.72 

198.38 

197.13 

196.00 195.26 

187.82 195.32 

197.93 

197.66 
195.81 

To better show the statistics of the above results, box plots have been drawn on 

both the IRWLS method (frst iteration) and the MLlib method, as shown in Figure 4.1 

and 4.2. 
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Figure 4.1. Box plot of training times using 

IRWLS (frst iteration). 
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Figure 4.2. Box plot of training times using 

MLlib. 

A signifcant running time advantage of the proposed IRWLS method can already 

be observed from the Table 4.2, 4.3, and 4.4. The proposed method fnishes the slowest 

task (329.91 s for iteration 1) when p = 1 only roughly 1.5 times slower than how long 

MLlib package spends with its full potential (195.81 s) when p = 16. 

A better observation can be illustrated using a bar chart as shown in Figure 4.3, 

where it shows training time of the frst three iterations of the proposed IRWLS method 

and MLlib over different values of p. Although the speeds of the both methods are 

enhanced due to the increasing level of parallelization, major differences occur in the term 

the training time, where the frst iteration of the proposed IRWLS method outperforms the 

MLlib package by about three or four times, and not much less regarding the second and 

the third iteration. 
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Figure 4.3. Training time summary using data of the year 1995. 

For a more scientifc analysis of parallelization performance, the system speed up, 

one of the commonly used metrics is calculated via Eq. 4.1, and its results are illustrated 

in Figure 4.4. As expected, the three curves of the proposed IRWLS method are much 

nearer than that of MLlib package to the theoretical linear line, which means the system 

speed up in perfect scenario without any additional communication cost, computing 

overhead, etc.. Another fact worth noticing is that the curve of IRWLS separates with that 

of MLlib at a very early stage, i.e., the difference already becomes obvious when p is 

small, and when communication costs should not be a large burden that undermines the 

performance of MLlib this much. The reason of this phenomenon will be analyzed in 

section 4.1.3 with more proof. 

Time(serial)speed up = (4.1)
Time(parallel) 
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Figure 4.4. Speed up comparison using data of the year 1995. 

To search for the reason behind the signifcant performance and speed up 

difference, this research demonstrates at an interesting fnding that can be observed in the 

Spark Web UI - the garbage collection time. Garbage collection time refers to the time 

needed by Java Virtual Machine (JVM) when it has to evict existing objects for the 

purpose of making room for new ones. Basically the value of garbage collection time is 

proportional to the amount of Java objects created during a task, and it can be further 

raised by the increasing need of cleaning and reflling the memory for more space. This 

research has collected the garbage collection times of the same experiments and calculated 

the ratio shown in Eq. 4.2 

Garbage collection time 
GC ratio = (4.2)

Total task time 
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Figure 4.5. Garbage collection time ratio using data of the year 1995. 

The GC ratio results are illustrated in Figure 4.5, where tremendous difference are 

found between the two methods. The MLlib package, in this observation, has a 

non-negligible GC ratio from about 0.03 to as high as about 0.21, whereas those of the 

proposed IRWLS method never exceed 0.003 and mostly lie under 0.001, which are 

basically ignorable when compared to those of MLlib. 

4.1.3 Discussion 

According to the results obtained by the current stage of experiments, the proposed 

IRWLS method manifests signifcant advantages against the baseline MLlib Logisic 

Regression package, in terms of both pure training time and parallelization speeding up 

performance. 

The GC ratio illustrated in Figure 4.5 explains in one of the many possible ways 

why the proposed IRWLS method has its strength as manifested. As explained before, a 
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large garbage collection time may be caused by a large amount of Java objects created 

during a task, i.e., the input size, or a frequent need to clean and refll the memory for 

making more room for new data. Since this experiment is conducted in away that the 

memory size much exceeds the input size, which is actually small, and all the tests are 

done with the same p for the both methods, the reason behind the tremendous difference 

of GC ratios can only be in the manner of algorithms themselves. As pointed out in 

section 3.3, the proposed method has a signifcant advantage because it only needs to do 

matrix algebra on the working suffcient statistics that has the largest size of O(m2), where 

m is the number of features selected, and a better fact is that it does not need to reuse the 

calculated matrix once they are aggregated into the computation of the next row. This 

advantage in algorithm means the proposed method has a much lower need in memory 

space because the input data will be only scanned once row-by-row, and no further entries 

of processed data will be necessary, thus the garbage collection time is as low as 

ignorable. On the other hand, the traditional algorithm that MLlib uses has more complex 

mechanism that generates, stores, and communicates much larger mathematical results, 

which is the reason why it needs such a high GC ratio to clean and re-cache the memory 

for more space for new data coming into the computation. 

And this need of a large Garbage Collection time also explains the speed up curves 

as shown in Figure 4.4. As noted in the previous section, the speed up of MLlib separates 

with that of IRWLS at a pretty early stage where communications cannot be the leading 

overhead yet. It can be assumed that the traditional algorithm behind MLlib package is 

not memory effcient enough to avoid addition cost caused by factors such us Garbage 

Collection, even when the granted memory size is much lager than the data input size. 

And this insuffciency further highlights the memory-wise advantage of the proposed 

IRWLS method. 

Although the advantage in training time needs to be further examined due to the 

unknown number of iterations needed to achieve the expected accuracy and result 

convergence, it can already be concluded for now that if very few number iterations of the 

proposed IRWLS can guarantee an optimistic result, then the proposed algorithm is 

greatly promising from the angle of performance, because it has not been fully optimized 
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yet in many aspects, as opposed to the already well-integrated MLlib package. And the 

next experiment will examine the accuracy level performance of the proposed method. 

4.2 Accuracy and Result Convergence Examination over Iterations 

As known to public, logistic regression needs multiple iterations to acquire a 

convergent β as the fnal weights for predictions, and so does the proposed method, one 

highlight of which is the ability to achieve an exact result with only a few number of 

iterations provided. Once the exact result can be acquired, an optimal accuracy of 

prediction comes naturally with it. In the previous stage of experiments, this research has 

demonstrated that the proposed method has a speed advantage when only a few of 

iterations are needed, so this current experiment will run it for 10 iterations to observe how 

many are necessary to achieve a convergent result and satisfying accuracy of prediction. 

4.2.1 Testing parameters and input conditions 

The dataset used in this stage is identical to the one used in the previous stage. The 

difference is that only running it using the number of partition p = 16, and set the number 

of iterations to 10. And the parameters used for this stage are listed in Table 4.5. 
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Table 4.5. Parameters for result convergence examination over iterations 

Parameters Value 

Year of data 1995 

Total size 1.54GB 

Number of features 5 

Features MONTH, AIRLINE ID, FL NUM, DEP DEL15, DISTANCE 

Actual size being computed 122 MB for training + 34MB for testing 

Number of records 4,177,444 for training + 1,044,361 for testing 

Memory size 4 GB * 4 = 16 GB 

Number of partitions 16 

Number of iterations 10 

4.2.2 Illustration of results 

The results of running the proposed method for 10 iterations are shown in Table 

4.6, where 10 sets of β value, indicating the calculated weights of MONTH, AIRLINE ID, 

FL NUM, DEP DEL15, DISTANCE, and the intercept, are presented. The results show that 

though the value of β fuctuates in the frst four iterations, the fuctuation decreases to 

none at the ffth iteration, after which the value of β converges and never changes again. 

This behaviors proves the ability of the proposed method for guaranteeing an exact result, 

and the number of iterations needed is incredibly low compared to the traditional method. 
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Table 4.6. Calculated β using the proposed IRWLS method over 10 iterations 

Iteration 
β (weights) 

MONTH AIRLINE ID FL NUM DEP DEL15 DISTANCE Intercept 

1 -4.9283e-04 3.8551e-05 -6.2039e-06 1.3247e+00 6.8284e-05 -2.0421e+00 

2 -1.6464e-03 1.2949e-04 -2.0423e-05 3.3464e+00 2.2402e-04 -4.7537e+00 

3 -2.7872e-03 2.2325e-04 -3.3827e-05 3.9011e+00 3.6665e-04 -7.0157e+00 

4 -3.1244e-03 2.5290e-04 -3.7445e-05 3.9776e+00 4.0314e-04 -7.6779e+00 

5 -3.1369e-03 2.5409e-04 -3.7562e-05 3.9795e+00 4.0424e-04 -7.7037e+00 

6 -3.1369e-03 2.5409e-04 -3.7562e-05 3.9795e+00 4.0424e-04 -7.7037e+00 

7 -3.1369e-03 2.5409e-04 -3.7562e-05 3.9795e+00 4.0424e-04 -7.7037e+00 

8 -3.1369e-03 2.5409e-04 -3.7562e-05 3.9795e+00 4.0424e-04 -7.7037e+00 

9 -3.1369e-03 2.5409e-04 -3.7562e-05 3.9795e+00 4.0424e-04 -7.7037e+00 

10 -3.1369e-03 2.5409e-04 -3.7562e-05 3.9795e+00 4.0424e-04 -7.7037e+00 

And on the accuracy side, the results are even more promising. For the purpose of 

a more credible results, this research choses to show 12 digits for accuracy calculation, 

and the results of 10 iterations are listed in Table 4.7 

Table 4.7. Accuracy using the proposed IRWLS method over 10 iterations 

Iteration Accuracy 

1 0.903213543976 

2 0.903214501499 

3 0.903214501499 

4 0.903214501499 

5 0.903214501499 

6 0.903214501499 

7 0.903214501499 

8 0.903214501499 

9 0.903214501499 

10 0.903214501499 
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According to the results, the proposed method can already achieve a steady 

accuracy of 0.903214501499 at as early as the second iteration, where the unchanged 

pattern means that the model already reaches the optimal accuracy. And another fact 

worth noticing is that even though the accuracy still gets better when moving from the frst 

iteration to the second, but it only gets slightly improved on the sixth digit, which merely 

migrates from 3 to 4. So this accuracy sequence shows that at least for the purpose of 

predicting fight delay using the given dataset, the accuracy reaches its optimal at the 

second iteration, whereas that of the frst iteration is already fair enough for real-world 

applications. 

Then the test with the same parameters is conducted using the baseline MLlib 

logistic regression package, and results are listed in the same manner in Table 4.8 and 4.9. 

The results show that the acquired β is noticeably different with that of the proposed 

method, even though they are same on the exponent part. This fnding means that 

unfortunately the MLlib method actually cannot provide an exact value of β as result, 

which again emphasizes the strength of the proposed method compared to it. As for the 

accuracy, MLlib gives a result of 0.903214501499 that is exactly the same with that of the 

proposed method, which further proves the accuracy acquired by IRWLS is indeed the 

optimal one. 

Table 4.8. Calculated β using MLlib method 

β (weights) 

MONTH AIRLINE ID FL NUM DEP DEL15 DISTANCE Intercept 

-4.6254e-03 -1.3393e-04 -3.6295e-05 3.9754e+00 4.1171e-04 -7.5707e+00 

Table 4.9. Accuracy using MLlib method 

Accuracy 

0.903214501499 

A closer look and a more thorough examination on convergence can be achieved 

by an additional experiment, where the training set of the year of 1995 has been shuffed 
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for fve times to calculate β using the both methods. And the results are shown in Table 

4.10 and 4.11. 

Table 4.10. Calculated β using the proposed IRWLS method on identical input shuffed 
for 5 times 

shuffe 
β (weights) 

MONTH AIRLINE ID FL NUM DEP DEL15 DISTANCE Intercept 

1 -3.13695002e-03 2.54097311e-04 -3.75626882e-05 3.97953484e+00 4.04243698e-04 -7.70373001e+00 

2 -3.13695002e-03 2.54097311e-04 -3.75626882e-05 3.97953484e+00 4.04243698e-04 -7.70373001e+00 

3 -3.13695002e-03 2.54097311e-04 -3.75626882e-05 3.97953484e+00 4.04243698e-04 -7.70373001e+00 

4 -3.13695002e-03 2.54097311e-04 -3.75626882e-05 3.97953484e+00 4.04243698e-04 -7.70373001e+00 

5 -3.13695002e-03 2.54097311e-04 -3.75626882e-05 3.97953484e+00 4.04243698e-04 -7.70373001e+00 

Table 4.11. Calculated β using the MLlib method on identical input shuffed for 5 times 

shuffe 
β (weights) 

MONTH AIRLINE ID FL NUM DEP DEL15 DISTANCE Intercept 

1 -4.62540296e-03 -1.33939297e-04 -3.62950323e-05 3.97544934e+00 4.11710031e-04 -7.57071738e+00 

2 -4.62539179e-03 -1.33939307e-04 -3.62949365e-05 3.97544882e+00 4.11710062e-04 -7.57071668e+00 

3 -4.62540245e-03 -1.33939297e-04 -3.62950280e-05 3.97544932e+00 4.11710033e-04 -7.57071423e+00 

4 -4.62540253e-03 -1.33939297e-04 -3.62950287e-05 3.97544932e+00 4.11710032e-04 -7.57071457e+00 

5 -4.62546963e-03 -1.33939264e-04 -3.62950491e-05 3.97544935e+00 4.11709617e-04 -7.57071464e+00 

As listed, the β results of the proposed method are all identical due to a steady 

convergence after the ffth iteration, while those of MLlib, though similar, still have 

observable fuctuations on the ffth digit and after. Since the training sets used are strictly 

identical except being shuffed using different random seed, results should be output as 

strictly the same if a method can achieve good convergence and an exact result, which is 

the case for the proposed method but not for MLlib. 

4.2.3 Discussion 

Result convergence and prediction accuracy have always been concerns of this 

research because only good results of those can prove the claim made for the proposed 

method being able to provide an exact result within limited number of iterations. And this 

stage of experiment has demonstrated promising results supporting this claim. 
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According to the recored results, the proposed method takes approximately fve 

iterations to achieve a strictly converged value of β , which is an exact result due to the 

steadiness of it in the following iterations. And meanwhile the well-integrated and heavily 

optimized MLlib logistic regression package can only approximate the fnal result of β 

with much more time spent. This fnding further supports the advantage of the proposed 

method over many traditional ones such as MLlib regarding the result convergence. 

Furthermore, the tests using the identical training set shuffed by fve times show that only 

the proposed method can achieve perfect convergence and an exact result while MLlib 

cannot. 

As for accuracy, it is also promising to observe that the proposed method can 

generally reach the strict optimal at the second iteration, whereas the accuracy of the frst 

iteration only differs at the sixth digits, which means for real-world applications like 

predicting fight delay using the given dataset, running only one iteration of the proposed 

method can be regarded as suffcient. Hence the experiments after this stage will only use 

the frst iteration for further performance analysis. 

4.3 Performance Analysis with Different Settings of Data Memory Ratio 

To manifest the advantage of loading data row-by-row when solving diffculties 

caused by large input data size compared to memory size. This experiment simulates the 

scenario when the input size is lower or higher than the assigned memory to observe the 

performance of both the proposed method and the baseline MLlib package. In this stage 

of experiments, two different ways of simulation are conducted: fxed memory size with 

various input size and fxed input size with various memory size. For the purposes above, 

this research introduces a concept of data memory ratio, which is calculated using Eq. 4.3. 

Input size
Data memory ratio = (4.3)

Memory size 

Performance tests will be conducted using different settings of data memory ratio in both 

ways of simulation, and results will be collected and analyzed. 
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Furthermore, the dataset fnally expands from a single year to multiple, and also 

the number of features selected expands from the fve used in previous experiments to the 

fnal 12 ones as listed in section 3.5.3. 

4.3.1 Testing parameters and input conditions (fxed memory size) 

The testing parameters of this experiment are listed in Table 4.12. Feature 

selection expands to the version of 12 ones.The dataset being used changes from the year 

of 1995 to the year of 1996 - 2001, plus the year of 2006 - 2015. The reason of not using 

data from the year of 2002 - 2005 is that there are much loss of records regarding some of 

the features selected in those years, which are voided for a more scientifc result. And for 

testing, data of the frst quarter of the year 2016 has been used. The maximum of the real 

input size is 5.1 GB in total, thus the memory size of this experiment is set to 512 MB per 

nodes and 2 GB in total to make the data memory ratio distributed more evenly on both 

side of the value of 1. Again, for the maximum potential of the proposed method, the 

partition number has been set to 16, and only one iteration will be tested. 

There are 13 different values of data memory ratio used, corresponding to the 

usage of 13 years of data for training. So 13 performance tests of both the methods are 

conducted, whose results will be collected and analyzed. 
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Table 4.12. Parameters for data memory ratio experiment (fxed memory size) 

Parameters Value 

Year of data 1996 - 2001, 2006 - 2015 (training); 2016 (testing) 

Total size 24 GB 

Number of features 12 

Features 

MONTH, DAY OF MONTH, DAY OF WEEK , AIRLINE ID, FL NUM, 

ORIGIN AIRPORT ID, DEST AIRPORT ID, CRS DEP TIME, 

CRS ARR TIME, DEP DEL15, TAXI OUT, DISTANCE 

Actual size being computed 5.1 GB for training (maximum) + 64.6 MB for testing 

Memory size 512 MB * 4 = 2 GB 

Number of partitions 16 

Number of iterations 1 

Data memory ratio 
0.15, 0.36, 0.60, 0.75, 0.95, 1.15, 1.35, 

1.55, 1.80, 2.00, 2.20, 2.40, 2.55 

4.3.2 Illustration of results (fxed memory size) 

The training time results of the tests based on 13 different values of data memory 

ratio are illustrated in Figure 4.6. According to the chart, the training time of the proposed 

IRWLS method is generally lower than that of the baseline MLlib package, and the gap 

between two curves grows dramatically with increasing data memory ratio. To highlight 

where the input size equals to the assigned memory size, i.e., when data memory ratio 

equals to 1, this research has introduced a vertical reference dash line at x = 1. With the 

help of this reference line, analysis of both sides can be given clearly. 
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Figure 4.6. Training time of both methods with different data memory ratios (fxed

memory size).

When data memory ratio is less than 1, at frst both curves rise at a same speed

linearly until when data memory ratio becomes nearer to 1, at which point the training

time of MLlib suffers a dramatic jump across the reference line, making its curve no

longer linear but concave upward. And after data memory ratio exceeds 1, the rising speed

of MLlib curve does not drop down back to before, but drives the curve up continuously at

a pace much faster than that of the proposed method, making the gap larger and larger.

However on the side of the proposed method, whose curve only rises linearly before the

x = 1 reference line, beyond which its rising speed becomes even lower than before,

making the ascension noticeable but gentle.

With this observation, for now it can be assumed that with a data memory ratio

growing nearer to 1, the MLlib method suffers a memory-wise burden that becomes larger

and larger, which does not ease after passing the reference line, but even having sign of

further growth since the curve becomes more concave with a data memory ratio larger
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than 2. But this burden on memory does not affect the proposed IRWLS method since 

passing the reference line does not boost the training time at all. 

This research discovers another interesting fndings in the Spark Web UI that 

seems to support this dramatical difference between the performances of the two methods 

- a metric called Input Size that accumulates over tasking process. After closer 

observations, this value of Input Size summarizes the amount of data transferring from a 

stage of computation to another, therefore the total Input Size can be regarded as a total 

data throughput over the whole process of training. The data throughput of the both 

method has been recored and illustrated in Figure 4.7 
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Figure 4.7. Data throughput of both methods with different data memory ratios (fxed 

memory size). 

In the same way regarding the GC time ratio introduced in section 4.1, the MLlib 

method has a signifcantly large data throughput in unit of GB and growing fast 

corresponding to data memory ratio, while that of the proposed IRWLS method is 

between 0 - 3 MB, and nearly negligible compared to MLlib. As surprising as this fnding 

is, it makes sense since the proposed method only scan the data once and has the small 

matrix of working suffcient statistics to transfer between stages, which only generates the 
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data throughput less than several megabytes. However the traditional method used by

MLlib has a much more complex mechanism that produces tremendous data throughput as

high as 25 - 231 GB while the input data only has a maximum size of 5.1 GB in this

experiment, which means a huge amount of data has been calculated back and forth,

causing a heavy burden on both the computing power and memory resource.

To back up the relationship between the fnding of data throughput and the

performance difference, this research also illustrates the curve of data throughput over

data memory ratio of the both methods, as shown in Figure 4.8 and 4.9.
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Figure 4.8. Data throughput using IRWLS

with different data memory ratios (fxed

memory size).
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Figure 4.9. Data throughput using MLlib

with different data memory ratios (fxed

memory size).

It is not a surprise to fnd out that both curves share a similar shape to the training

time curves shown in Figure 4.6. The growth rate of the data throughput of the proposed

IRWLS method basically keeps as a constant, while that of the MLlib method suffers a

sudden jump nearer and after the x = 1 reference line. Hence at this stage, it can be

assumed that the huge difference between the data throughput of both methods is one of

the reasons behind the signifcant performance gap.

4.3.3 Testing parameters and input conditions (fxed input size)

For a more thorough experiment, this research also conducts the data memory ratio

test in a manner of using a fxed input size and various sizes of assigned memory to Spark
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nodes. The data of fxed size that being used is the one double merging the year of 1996 -

2001 and 2006 - 2015, which is 10.1 GB in total. The other parameters are similar except 

that the memory size varies from 2 GB to 16 GB to generate different and larger values of 

data memory ratios. The specifc parameters are listed in Table 4.13 

Table 4.13. Parameters for data memory ratio experiment (fxed input size) 

Parameters Value 

Year of data 1996 - 2001, 2006 - 2015 (training, doubled); 2016 (testing) 

Total size 48 GB 

Number of features 12 

Features 

MONTH, DAY OF MONTH, DAY OF WEEK , AIRLINE ID, FL NUM, 

ORIGIN AIRPORT ID, DEST AIRPORT ID, CRS DEP TIME, 

CRS ARR TIME, DEP DEL15, TAXI OUT, DISTANCE 

Actual size being computed 10.1 GB for training + 64.6 MB for testing 

Memory size 16, 14, 12, 10, 8, 7, 6, 4, 3.5, 3, 2 GB 

Number of partitions 16 

Number of iterations 1 

Data memory ratio 0.63, 0.72, 0.84, 1.01, 1.26, 1.44, 1.68, 2.53, 2.89, 3.37, 5.05 

4.3.4 Illustration of results (fxed input size) 

The tests are conducted in the same way as the previous ones except that the 

assigned memory size becomes the dependent variable at this stage resulting the different 

values of data memory ratio. The initial test is still the training time performance, whose 

result is illustrated in Figure 4.10. 
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Figure 4.10. Training time of both methods with different data memory ratios (fxed input

size).

The proposed IRWLS method still presents a promising performance that is

relatively constant to the change of data memory ratio, which manifests the fact that the

proposed method has the ability to keep its performance the same even with big data with

limited memory resource. On the other hand, the MLlib package again suffers a sudden

jump of training time when the data memory ratio comes near and exceeds 1.

Furthermore, when the data memory ratio exceeds 3, the application running MLlib

suffered a vital failure named BlockFetchException, which stopped the whole process,

giving none result as output. It seems that MLlib has no ability to handle data that is too

larger than the memory size and has to terminate the computation due to major data

fetching failures.

In the same manner as before, this research also records the condition of data

throughput and illustrates the results in Figure 4.11, 4.12, and 4.13.
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Figure 4.11. Data throughput of both methods with different data memory ratios (fxed

input size).

0

0.002

0.004

0.006

0.008

0.01

0 1 2 3 4 5 6

Da
ta

th
ro
ug
hp

ut
(G
B)

Data memory ratio

Figure 4.12. Data throughput using IRWLS

with different data memory ratios (fxed

input size).
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Figure 4.13. Data throughput using MLlib

with different data memory ratios (fxed

input size).

The curves of data throughput again support the performance difference in the

ways of both the tremendous amount difference and similar shapes.
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4.3.5 Discussion 

This experiment summarizes the performances of both the proposed IRWLS 

method and the baseline MLlib package under situations when data memory ratio varies 

from less than 1 to larger than 1. With the previous experiments already showing the 

strength of the proposed method in manners of parallelization potential, result 

convergence, and speed of training, this experiments focuses more on how it performs 

with the changing of data memory ratio and aims to manifest the advantage of loading 

data row-by-row. 

In the testing series of both ways of simulation (fxed memory size and fxed input 

size), the proposed method shows not only a fast speed in general, but also an “immunity” 

to changes of data memory ratio. However the baseline MLlib package always suffers a 

sudden jump in training time, tends to have a much higher cost when the data memory 

ratio grows near to 1 and beyond, and even encounter major memory fetching failures that 

terminate the who computation process, which demonstrates the limitation of the 

traditional method when handling dataset that has size similar or larger to the memory 

size. 

This experiment also provides the fnding of data throughput to support the 

observations of performance gap. The term of data throughput used here does not refer to 

the rate at which data transfers, but a accumulated sum of data transfered over Spark job 

stages. This criteria indicates the degree at which data being reused for calculation and 

additional intermediate results being generated, cached, and transfered. The difference in 

data throughput comes out surprisingly that an input size of 10.1 GB can cause more than 

400 GB in data throughput using MLlib method, while merely less than 5 MB using the 

proposed method. Furthermore the curves of data throughput has similar shape with the 

performance curves, having same behaviors when data memory ratio comes near to and 

exceeds 1, which further proves the assumption that the proposed method benefts from 

the scanning row-by-row procedure and has a signifcant memory-wise advantage over the 

traditional method used by the baseline MLlib package. 
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The design of this experiment appropriately simulates and scales down the 

scenario when doing logistic regression training using real-world Big data on a limited 

memory resource. And the proposed method has again demonstrates its memory-wise 

strength and constant performance with various data memory ratios. 

4.4 Summary 

This chapter provides details of experiment results together with corresponding 

analysis and discussion. The advantage of the proposed method has been demonstrated in 

manners of parallelization performance, result convergence and accuracy, and 

performance with different data memory ratio. The next chapter provides the conclusion 

of this research. 
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CHAPTER 5. CONCLUSION 

This research proposes a new ftting algorithm of logistic regression on IRWLS 

that utilizes the procedure of scanning data row-by-row and has the ability to acquire an 

exact result with only a few iterations. Furthermore, this research also realizes the 

distributed parallelization of the proposed method on Spark and conducts various 

experiments to manifest its memory-wise advantage over the traditional method used by 

Spark MLlib package. The following conclusions can be made out of the experiment 

results: 

• The parallelization performance analysis demonstrates a much faster running speed 

and higher potential for parallelization in terms of the system speed up of the 

proposed method. And the analysis of Garbage Collection time further supports the 

performance enhancement, indicating the simplicity of the proposed method and 

advantage of scanning data row-by-row. 

• The accuracy and β convergence examination over iterations shows that the 

proposed method takes approximately fve iterations to achieve a strictly converged 

value of β , which is an exact result. And it can generally reach the optimal accuracy 

at the second iteration. And for real-world applications like predicting fight delay 

using the given dataset, running only one iteration of the proposed method can be 

already regarded as suffcient. 

• Performance analysis with different settings of data memory ratio simulates the 

scenario when doing logistic regression training using real-world Big data on a 

limited memory resource. And the results show that the proposed method has 

constant performance to various data memory ratio and has extremely small data 

throughput between Spark job stages. This experiments further demonstrates the 

memory-wise strength of the proposed method 
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All the experiments show a tendency that the proposed IRWLS method is more 

parallelization friendly, memory effcient, performance-wise constant than the baseline 

MLlib package, and might also outperforms many other traditional methods. 

The future work of this research includes more testing on large-scale data such as 

categorical data that is one-hot encoded, as well as further optimization in manners of data 

streaming, input vectorization, aggregation method, etc. It is promising to picture the fully 

optimized and integrated version of the proposed method solving the real-world Big Data 

machine learning problems with an even better performance of the next level. 
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