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ABSTRACT 

Jebakumar, Anand Samuel PhD, Purdue University, May 2018. Multi-Scale Modeling 
of Particle-Laden Flows. Major Professor: John Abraham, School of Mechanical 
Engineering. 

Particle-laden flow occur in a wide range of engineering applications such as com-

bustors, gasifiers, fluidized beds and pollution control systems. Particle-flow interac-

tions are complex, especially in turbulent and confined flows. A proper understanding 

of these interactions is critical in designing devices with better performance charac-

teristics. In this work, particle-laden flows in channels are numerically investigated 

with the lattice-Boltzmann method (LBM). A three-dimensional parallelized lattice-

Boltzmann method code is developed to carry out these studies. The code resolves 

the particle surface and the boundary layer surrounding it to gain fundamental in-

sights into particle-flow interactions. The lattice-Boltzmann method is assessed for 

its accuracy in solving several standard single-phase and multi-phase, laminar and 

turbulent flows. Direct numerical simulations (DNS) of particle-laden channel flows 

are then performed. 

When the particle diameter is smaller than the Kolmogorov length scale, direct 

numerical simulations (DNS) with the point-particle approximation show that the 

Stokes number, St, mass loading of particles, i.e. ratio of mass of dispersed to carried 

phase, and particle diameter, are important parameters that determine the distribu-

tion of the particles across the channel cross-section and the impact of the particles 

on the flow field. When the St is infinitesimally small, the particles are uniformly 

distributed across the cross-section of the channel. As St is increased, the particle 

concentration near the wall increases. At even higher St, the particle concentration 

near the wall decreases, but it increases at the center of the channel. These changes 

in concentration are attributed to turbophoresis which causes preferential movement 
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of the particles. The impact of the turbophoretic force is affected by St and particle 

diameter. The parameters that influence the mean flow field of the carrier phase is 

primarily the mass loading. 

To further improve the understanding of the physics of the flow, particle-resolved 

direct numerical simulations (PR-DNS) are carried out. Particle motion in a laminar 

channel flow is initially studied. The trajectory of a single particle is examined. It is 

shown that the mean equilibrium position of the particle in the channel depends on 

the St. Particles with low St reach an equilibrium position that lies between the wall 

and the center of the channel (Segre-Silberberg effect) while those with high St begin 

to oscillate about the center of the channel as they are transported by the fluid. The 

particle location and motion are determined by the interplay of three forces acting 

on the particle in the wall normal direction: the Saffman lift, Magnus lift and wall 

repulsion. Saffman lift and Magnus lift act to move the particle towards the wall 

while wall-repulsion opposes this motion. 

Direct numerical simulations of turbulent flow past stationary particles in a chan-

nel are then carried out. These simulations provide information about particle-flow 

interactions when the particle is near the wall and at the center. Multiple particles 

fixed in a cross-sectional plane are also considered. The position of the particles in 

the channel, the particle size, the Reynolds number and the number of particles are 

varied. The details of the flow field are analyzed to provide insight into the factors 

that control the distance of influence of the fixed particle on the flow field. With 

a single particle case, the effect of the particle is felt for about 20 diameters down-

stream. When multiple particles are present, interaction between the vortices shed by 

the particles lengthens the distance to about 40 diameters downstream. The results 

suggest that in a particle-laden flow, if particles are separated by an average distance 

greater than 40 diameters, particle-fluid-particle interactions can be neglected. At 

shorter distances, these interactions become important. 

Next particle-resolved direct numerical simulations (PR-DNS) in a turbulent chan-

nel flow are carried out to study the particle motion when the particle diameter is 
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larger than the Kolmogorov length scale. It is shown that in a turbulent channel flow, 

the dominant forces are the Saffman lift and the turbophoresis. When the particle 

is larger than the Kolmogorov length scale, turbophoresis can act in a local sense 

whereby the more intense exchange of momentum of eddies on the side of the particle 

with higher turbulent kinetic energy relative to the opposite side move the particle 

toward the lower turbulent kinetic energy region or in a global sense whereby even 

when the particles do not directly feel the effect of eddies, particles tend to diffuse 

down gradients of turbulent kinetic energy. The simulations show that particles with 

relatively lower St move preferentially toward the wall while those with higher St 

exhibit a relatively uniform concentration. This is consistent with the conclusion 

from the point-particle simulations. As particle size is increased, the St at which 

uniform distribution is reached increases. The likely reason is that the effect of lo-

cal turbophoresis and Saffman lift increases for larger particles and these forces tend 

to concentrate particles near the wall. Higher St, i.e. higher inertia, is needed to 

overcome these forces. 
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1. INTRODUCTION 

1.1 Background 

Particle-laden flows are common in many applications of engineering interest like 

engines, combustors and gasifiers. In these devices, the flow is confined and turbu-

lent in nature and as a result particle-wall and particle-turbulence interactions are 

important. These interactions are complex and not fully understood. While direct 

numerical simulations of the flows can provide physical insight and improve under-

standing, the wide range of length and time scales of the flow makes it impractical to 

do a fully-resolved simulation for engineering applications with current computational 

resources. This necessitates the use of models to account for the complex interactions. 

In order to develop such models, however, a firm understanding of particle-wall and 

particle-turbulence interactions is required. Experimental investigations themselves 

are not adequate to clarify the physics on account of the wide separation of scales. 

Numerical simulations play an essential role. 

Particle-laden flows exhibit a variety of interesting features that become impor-

tant in the presence of turbulence. Turbulent dispersion and turbulence modulation 

are two such phenomena that are relevant to many devices. Turbulence modulation 

refers to the attenuation/augmentation of turbulence by the particles. Such modu-

lation can significantly alter the behavior of these flows. Dispersion of particles by 

turbulence is another aspect of interest in several applications. It has been shown 

through measurements that even in homogeneous isotropic turbulence, the particle 

concentration is not uniform [1]. Understanding the dispersion of particles is critical 

in designing engineering systems. 

For instance, in a pulverized coal combustor, finely ground coal particles are car-

ried by air in a pipe and are injected into the burner. Improper mixing of these 
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particles and/or wall deposition can negatively affect the combustion efficiency and 

might increase the pollutants in the exhaust gases. Particle-laden flows are also en-

countered in several pharmaceutical applications and effects such as clustering and 

wall deposition can significantly influence the outcome of pharmaceutical processes. 

The clustering effects can also be an advantage in some devices. For example, in a 

fly ash collection system, the flow can be adjusted so that the particles aggregate 

thereby making it easier to remove them from the flue gases. 

Another application of interest is a solar thermochemical reactor. A solar reactor 

is a device that uses solar energy to aid the gasification of carbonaceous feedstock. 

The use of solar energy increases the conversion efficiency of the gasification process. 

One such design of a reactor, the vortex flow solar reactor of Z’Graggen et al. [2] 

is shown in Fig. 1.1. In this particular design, the feedstock is ground into small 

particles and is injected with steam. The particles are injected tangentially to form 

a vortex thereby maximizing its residence time inside the reactor. Solar radiation 

is incident on an optical window through which the particles are heated up. It is 

critical in this process to prevent the deposition of particles on the optical window as 

that would reduce the efficiency of the system considerably. Moreover, effects such 

as clustering/agglomeration and wall-deposition would decrease the effective surface 

area available for reaction with the steam. Numerical simulations can be employed 

to identify these undesirable effects and prevent them. Models that faithfully capture 

these effects are thus essential to these computations. This work aims at developing 

models that addresses issues such as these. 

Motivated by the need to improve the understanding of particle-laden flows where 

particle-distribution is important, direct numerical simulations of particle-laden flows 

are carried out in this work. In the limit when the particle size is smaller than 

the Kolmogorov length scale, point-particle simulations are carried out. When the 

particle size is larger than the Kolmogorov length scale, particle-resolved simulations 

are carried out. 
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Figure 1.1: The vortex flow solar reactor of Z’Graggen et al. [2]. 
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1.2 Objectives 

The specific objectives of this work are the following: 

1. Develop a highly parallelized numerical code to perform direct numerical simu-

lations of particle-laden flows. 

2. Conduct numerical simulations in laminar particle-laden flows to understand 

the mechanism responsible for particle transport. 

3. Conduct numerical simulations in turbulent particle-laden flows to understand 

the mechanism responsible for particle transport. 

4. Improve the understanding of two-way coupling between the carrier and dis-

persed phases. 

1.3 Outline of Thesis 

In Chapter 2, prior works on particle-laden flows are reviewed. After an intro-

duction of various parameters involved in describing particle-laden flows, analytical 

studies on particle-laden flows are reviewed. This is then followed by a review of 

several experimental works. The current limitations in measurement techniques of 

particulate flows are discussed. After this, various computational approaches that 

are commonly in use to simulate particle-laden flows are reviewed. Modeling aspects 

that account for various particle-turbulence and particle-wall interactions are then 

presented. The chapter concludes with a summary that establishes the motivation 

for the present work. 

The lattice-Boltzmann method is employed in this work for carrying out the Par-

ticle Resolved - Direct Numerical Simulations (PR-DNS). The general framework for 

the lattice Boltzmann method (LBM) is presented in Chapter 3. The derivation of 

the lattice Boltzmann equation (LBE) from the continuous Boltzmann equation and 

the derivation of Navier-Stokes equations from the LBE are described. Then, the 
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implementation of boundary conditions in the LBM framework is discussed. This is 

followed by a description of the implementation of the particle motion in the LBM 

framework. Computational cost and parallel scalability are important considerations 

in a DNS solver. This chapter concludes with information about the scaling charac-

teristics of the LBM. 

A series of tests are carried out to assess the accuracy of the code. The results 

of these tests are presented in Chapter 4. Comparisons are done with problems for 

which analytical solutions are available: the Taylor-Green vortex, the Couette flow 

and a channel flow. In addition, a lid-driven cavity problem is solved and results 

are compared with results available in literature. A 3D flow is also simulated for 

a channel flow with periodic boundaries in the stream-wise direction. The multi-

phase implementation of LBM is then assessed. Comparisons of the LBM predictions 

with results from literature are reported for two problems: a particle sedimenting in a 

channel under the action of gravity and a neutrally buoyant particle in a channel flow. 

A spherical particle sedimenting in a three dimensional duct is also compared with 

experimental and other numerical results. The code is then assessed for its accuracy 

in predicting single phase turbulent flows. Direct Numerical Simulations (DNS) are 

carried out using the LBM for a turbulent channel flow. Comparisons of various 

statistical quantities such as the mean velocity, turbulence intensity, Reynolds shear 

stress, fluctuating pressure and vorticity with standard DNS data from literature are 

presented. 

The LBM is then used to simulate particles smaller than Kolmogorov length scale 

by treating them as point particles. These results are presented in Chapter 5. Two-

way coupling and particle-particle collisions are implemented within the LBM frame-

work. Results are presented for both the effect of turbulence on particle motion and 

the effect of particles on mean velocity and turbulent intensities. 

Chapter 6 presents results for a single particle moving in a laminar channel flow 

at various St. They aid in explaining the particle-wall and particle-flow interactions 
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that are important in such flows. The mechanism of particle migration is explained 

in terms of various forces acting on the particle in the wall-normal direction. 

Results for the effect of stationary particles on turbulence in a channel flow is 

presented in Chapter 7. The effect of particle size, Reynolds number, position of 

particles within the channel and the number of particles are investigated. The region 

of influence of the particles on the turbulent flow field is presented. 

In Chapter 8, results are presented for particles in a turbulent channel flow at 

different St. The effect of turbophoresis and Saffman lift in the context of a turbulent 

flow is explained in this chapter. The influence of these forces on the particle motion 

at various St is studied. 

Chapter 9 concludes with a summary of the thesis and the contributions of this 

project followed by a discussion of possible future work. The future work includes 

development of adaptive meshes, large-eddy simulation (LES) and Reynolds averaged 

Navier-Stokes (RANS) model development for particle dispersion and effects of non-

spherical and polydisperse particles. 
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2. LITERATURE REVIEW 

2.1 Introduction 

In this chapter, a review of prior studies on particle-laden flows is discussed. 

Several relevant parameters that are used in the characterization of particle-laden 

flows are listed in Section 2.2. In Section 2.3, various kinds of particle-turbulence 

interactions are presented and discussed. Then in Section 2.4, analytical studies on 

particulate flows are reviewed. Experimental works done on particle-laden flows are 

presented in Section 2.5 while Section 2.6 explains different computational approaches 

to particle-laden flows. In Section 2.7, various Direct Numerical Simulation (DNS) 

studies on particle-laden flows are presented. Works on RANS modeling of particle-

laden flows are presented in Section 2.8 while LES modeling of particulate flows are in 

Section 2.9. Finally in Section 2.10, a summary of the gaps in existing understanding 

of particle-turbulence interactions are presented to motivate the present work. 

2.2 Relevant Parameters 

The important non-dimensional parameters that are used in the characterization 

of particle-laden flows are presented in this section. The volume fraction of the 

dispersed phase, Φv is defined as: 

δVp
Φv = , (2.1)

δV 

where δVp is the volume occupied by the particles in a suspension of volume δV . (The 

averaging volume is chosen large enough so that Φv is independent of the size of the 
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volume). The mass loading ratio, Φm is defined as the ratio of particle mass, mp, to 

the fluid mass, mf , in a given volume, i.e. 

mp
Φm = . (2.2) 

mf 

This can be related to Φv through the density ratio of the particle to the fluid as 

follows: � � 
ρp Φv

Φm = , (2.3)
ρf 1 − Φv 

where ρp and ρf are the density of the particle and fluid, respectively. The Reynolds 

number, Re, is defined as the ratio of the inertial forces to the viscous forces, i.e. 

ρf UL 
Re = , (2.4) 

µ 

where U is a velocity scale, L is a length scale and µ is the viscosity of the fluid. 

Depending on the length scale and the velocity scale chosen, there can be different 

Re. A Re based on the length scale of the particle is known as the particle Reynolds 

numbers, Rep, and is given by 
ρf Udp

Rep = , (2.5) 
µ 

where dp is the diameter of the particle. In turbulent flows, another Re is defined 

based on the friction velocity uτ and the viscous length scale lv as follows: 

ρf uτ lv
Reτ = . (2.6) 

µ 

The Stokes number, St, is another important parameter in describing particle-

fluid interaction. It is defined as the ratio of particle response time τp to the flow 

response time τf , i.e. 
τp

St = . (2.7)
τf 

The particle time constant is generally used as a measure of the response time of the 

particle. The particle time constant is defined here as the time taken by a particle 
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released in a quiescent fluid to slow down to 36% (1/e) of its initial velocity. For a 

spherical particle at low Rep, the particle time constant is given by, 

(2ρp + ρf )d
2 
p

τp = . (2.8)
36µ 

If the particle density is much higher than the fluid density, then Eq. (2.8) reduces 

to 
d2ρp

τp = p 
. (2.9)

18µ 

The flow response time can be obtained as 

L 
τf = , (2.10)

U 

where L represents a length scale and U a velocity scale. For instance, in the case of 

a channel flow, L can be taken as the channel height and U as the maximum mean 

velocity. Another time scale that can be defined in the case of a turbulent flow is the 

Kolmogorov time scale, τk, which denotes the time scale of the smallest eddy beyond 

which viscous effects dominate. τk is given by 

�ν �1/2 
τk = , (2.11)

� 

where ν represents the kinematic viscosity of the fluid and � the average rate of 

dissipation of turbulent kinetic energy. A particle with a low St follows the fluid 

element, while one with a high St is not affected significantly by the flow. Particles 

with St of the order unity exhibit interesting behavior and often form clusters. 

2.3 Particle-Fluid Interactions 

Particle-laden flows are complex on account of the non-linear interactions between 

the dispersed and carrier phase. In most industrial applications where particle-laden 

flows are present, the flow field is turbulent. Predicting single phase turbulent flows, 
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in itself is not trivial and has several aspects that are not completely understood. 

The addition of a dispersed phase to this problem makes it even more challenging. 

Two important features of this class of flow that are of relevance to various industrial 

devices are particle dispersion and turbulence modulation. Both these effects are 

discussed in detail below. 

2.3.1 Particle Dispersion 

Particle dispersion refers to the transport of particles by the turbulent flow. In-

stinctively, one would expect particles in a turbulent flow to be distributed uniformly 

on account of enhanced mixing due to turbulence. This, however, is not the case in 

most flows. Particles in a turbulent flow often tend to form clusters. Even in an ho-

mogeneous isotropic turbulent flow, the particle concentration is highly non-uniform. 

Figure 2.1 shows the laser image of particles in an homogeneous isotropic turbulence 

with no mean flow [3]. It can be seen that the particles are densely concentrated 

in certain areas while the concentration is sparse in other areas. This is referred 

to as preferential accumulation and has been studied by several researchers in the 

past [3–6]. Some of the key findings of these studies are as follows: 

• Particles that are heavier than the fluid tend to aggregate in regions of high 

strain rate and avoid regions of intense vorticity. 

• Particles that are lighter than the fluid tend to aggregate in vortical regions. 

An important effect of turbulence on particle motion is the ”crossing trajectories” 

effect. Yudine [7] observed that heavy particles falling in a turbulent flow field under 

the effect of gravity moves from one eddy to another due to inertia. This can happen 

even in the absence of gravity if the response time of the particle is large such that 

it moves out of the eddy. Thus if a particle is captured in an eddy there are two 

things that might happen: If the St is small, the particle follows the fluid element 

and behaves as a tracer particle. If the St is large and/or if there is a potential field 
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Figure 2.1: Experimental image of particles in homogeneous isotropic turbulence at 
St = 0.57 (Adapted from [3]). 
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(gravity for instance), then the particle crosses an eddy and moves to another. This is 

referred to as the ”crossing trajectories” effect. This effect has been studied by many 

researchers in the past [8,9]. The influence of this effect on preferential concentration 

has been explained by Eaton and Fessler [10]. 

Another example of preferential migration/aggregation is shown in a recent ex-

perimental study of Lau and Nathan [11]. The main objective of their study was to 

examine the effect of St on the structure of a turbulent particle-laden jet. In order 

to do this, particles were introduced into a turbulent pipe flow and were transported 

by the flow. The length of the pipe was sufficiently long to achieve a fully developed 

flow. They noticed that the particle concentration at the exit of the pipe was not 

uniform. The particles migrated toward or away from the axis depending on their 

St. Figure 2.2 shows the concentration profile of particles normalized by the bulk 

concentration at the exit of a turbulent pipe flow. At a low St of 0.3, the particle 

concentration near the wall is about 2.5 times the bulk concentration. For a St of 

11.2, the particle concentration is high near the axis of the pipe. Particles with a 

St of 1.4 are distributed almost uniformly. Thus, as the St increases from 0.3 to 

11.2, the radial concentration profile changes from a ’U-shape’ to a ’∧-shape’. Thus 
turbulence might not necessarily cause uniform mixing of the dispersed phase and 

can sometimes inhibit effective mixing, but the reasons are not well understood. 

Understanding this phenomena is important in several applications. For example, 

when fuel particles are delivered to a combustor, these particles are carried by a 

stream of air through a pipe. It is, of course, desirable to avoid deposition of particles 

on the walls of the pipe as this can affect the particle flow rates and distribution. 

The uniformity of the particle distribution in the pipe and at the exit of the pipe 

is an important consideration in the design of the delivery system and possibly in 

the performance of the combustor. Some applications require effects such as wall-

deposition. For example, in a pollutant control system, small particulate matter can 

be isolated and removed if it deposits on the wall. 
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Figure 2.2: Concentration profile of particles at the exit of a turbulent pipe flow 
(Adapted from Lau and Nathan [11]). 
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2.3.2 Turbulence Modulation 

Another interesting aspect of particle-laden flows is turbulence modulation. At 

low particle mass loading ratios (Φm), the turbulent flow field of the carrier phase is 

similar to its single phase counterpart. However, as Φm increases, the dispersed phase 

begins to affect the turbulence in the carrier phase. This is referred to as turbulence 

modulation. 

Elghobashi [12] classified particle-laden flows into three regimes based on the vol-

ume fraction of the dispersed phase, Φv. Figure 2.3 shows these regimes as a function 

of the volume fraction of the dispersed phase (Φv). For low values of Φv, there exists 

a one-way coupling regime where the particles are affected by the flow field, but not 

vice versa. As Φv increases, two-way coupling becomes important i.e. the flow field 

and the particles influence each other. For even higher values of Φv, the inter-particle 

interactions also become important. In this regime, the two phases interact with the 

other and with itself, i.e. four-way coupling exists. The ratio of the particle charac-

teristic time to the flow time, the Stokes number (St), is also a controlling parameter; 

it is depicted on the ordinate in Fig. 2.3. In the two-way coupling regime, particles 

can either enhance production or dissipation of turbulent kinetic energy depending 

on the value of St. This regime is of particular interest in the current study. 

There are several mechanisms that contribute to turbulence modulation in a dilute 

suspension [1]: 

• Enhanced dissipation or production of turbulent kinetic energy due to the par-

ticles. 

• Transfer of kinetic energy from the particles to the fluid and vice versa. 

• Vortex shedding behind the particles. 

Understanding of turbulence modulation is still limited. This is because in or-

der to study the physics, the dissipation of turbulent kinetic energy near the surface 

of the particle has to be measured. This, however, is challenging with our current 
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measurement techniques. In the case of numerical simulations, the particle itself has 

to be resolved to ensure that the dissipation is properly captured. This is computa-

tionally expensive and very few works have attempted to carry out particle-resolved 

Direct Numerical Simulations (DNS) of turbulent flows. This limited understanding 

has contributed to the paucity in models to account for turbulence modulation. 

2.4 Analytical Studies on Particulate Flows 

Stokes [13] was the first to study the force on a particle in creeping flow. He 

derived an analytical expression for the force acting on a fixed sphere in a uniform 

flow at Re approaching zero which is given as: 

Fp = 3πµdu. (2.12) 

In later works, Basset [14], Boussinesq [15] and Oseen [16] independently examined the 

motion of a sphere in a quiescent incompressible fluid. Recent studies have extended 

these results to include cases such as particle motion in a compressible fluid [17]. 

Bretherton [18] showed through an analytical study that a particle in a Stokes flow 

does not migrate across streamlines in a shear flow. Saffman [19] investigated the 

effects of inertia using perturbation analysis and found that a particle in a linear 

unbounded shear flow experiences a lateral force. Hence, lateral migration arises due 

to an inertial force at non-zero Re. This force is generally referred to as Saffman lift 

and denotes the force acting on a particle on account of the velocity gradient across 

it in a direction perpendicular to the flow when the particle leads or lags the flow. 

The Saffman lift force tends to push a particle that leads the fluid into a region with 

lower velocity and vice versa. McLaughlin [20] analyzed the inertial lift acting on a 

particle in a wall-bounded linear shear flow. While analytical studies provide useful 

insight into the fluid dynamics involved, their scope is limited to low Re. 
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2.5 Experimental Works on Particle-Laden Flows 

2.5.1 Measurement Techniques 

Experimental research in multi-phase flows has focused on measuring the mean 

and root mean square velocity of the carrier phase as well as the particle velocity 

and concentration. Photographic techniques have been used in the past [21–25] to 

determine the particle velocity and concentration. Later works [26–30] have adopted 

laser-Doppler anemometer (LDA) techniques to study turbulent multi-phase flows. 

This technique involves measuring the velocity of small particles (also known as 

tracer particles) that are introduced into the fluid. These particles have very low 

St and hence are assumed to portray a faithful representation of the flow dynamics. 

Larger particles (the dispersed phase) produce a stronger signal thus making it easy 

to distinguish the dispersed phase from the tracer particles. 

Particle-image velocimetry (PIV) is being increasingly used in several recent works 

[11, 31]. The fluid is seeded with tracer particles as in LDA. However, PIV produces 

two-dimensional (or three-dimensional) velocity fields while LDA measures the fluid 

velocity at a point. The measurement of carrier phase velocity near the surface of the 

dispersed phase is still a challenge. Measurement of dissipation of turbulent kinetic 

energy is critical to understand the physics behind turbulence modulation. This, 

however, is difficult owing to the need to know the spatial derivatives of all velocity 

components. This problem can be overcome by employing very high spatial resolution 

PIV measurements. 

2.5.2 Interesting Findings 

Segré and Silberberg [21–23] used an optical system to study the motion of neu-

trally buoyant spherical particles in a Poiseuille flow. They observed that a particle 

released close to the axis is displaced radially outward while one released close to the 

wall moves inwards. They report a build up of concentration at about two-thirds of 
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the radius of the pipe. This was the first observation of preferential migration of par-

ticles in a carrier phase. This effect has been confirmed by several researchers in later 

works [24, 25, 32, 33] and is referred to as the Segré-Silberberg effect. This indicates 

that even in the case of a laminar flow, particles exhibit a tendency to migrate to 

an equilibrium position. This position could possibly depend on several parameters 

including the particle-fluid density ratio, the particle Reynolds number Rep, the ratio 

of particle diameter to the pipe diameter and the St, among others. 

Rogers and Eaton [27] used LDA to study the effect of particles in a flat plate 

boundary layer. The St of the particles considered in the study was between 1 and 

10 and the mass loading, Φm, was 0.2. They report that particles with St of the 

order unity tends to suppress the fluid turbulence significantly. They also state that 

particles appear to take energy from all fluid scales equally. Kulick et al. [28] have 

reported measurements of particle-laden turbulent channel flow. They observe that 

the attenuation of turbulence due to the particles increase with St and Φm. Further, 

they report that the turbulence attenuation is stronger in the transverse direction 

than the streamwise direction. Sato et al. [29] studied particle-laden turbulent wall 

jets using the LDA. They report that particles of St close to unity are concentrated 

near the wall where the shear is largest, while those with higher St are distributed 

nearly uniformly. 

Suzuki et al. [34] have reported measurements of particle-laden turbulent flow 

using the Particle Tracking Velocimetry. They found that particles augment the 

streamwise turbulent intensity significantly near the center of the channel while it is 

unchanged at y+ < 20. They also observed that the particles are densely distributed 

near the low speed streaks. Tanak and Eaton [31] carried out sub-Kolmogorov resolu-

tion PIV measurements of particlulate flow in forced isotropic turbulence. They found 

that the turbulent kinetic energy was attenuated by 25 % because of the particles. 

However, the change in dissipation is relatively small. 
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2.6 Computational Studies on Particle-Laden Flows 

Computational studies of particle-laden flows can be divided into two categories: 

simulations where all the relevant length (and time) scales are resolved (DNS) and 

those where the effect of particles are taken into account through models (RANS 

and LES). While DNS studies yield insight into the physics behind complex particle-

turbulence interaction, they cannot be used to study engineering systems owing to 

the prohibitively high computational cost. Computational work is thus often two-

fold: DNS studies of canonical flows are carried out to improve our understanding of 

the basic mechanisms; this understanding is used to develop models that can capture 

these effects with a desired level of accuracy. 

2.7 Direct Numerical Simulation of Particle-Laden Flows 

DNS studies of particle-laden flows can be broadly classified into two methods: 

1. Point Particle - Direct Numerical Simulation (PP-DNS). 

2. Particle Resolved - Direct Numerical Simulation (PR-DNS). 

2.7.1 Point Particle DNS 

In this method, the particle is assumed to be a point and the interphase coupling 

is achieved through drag force relations. There is an implicit assumption that the 

particle is smaller than the smallest length scale of the flow, i.e. the Kolmogorov 

length scale. 

Squires and Eaton [5] have reported DNS studies of particulate flows in forced 

isotropic turbulence using the point particle approach. They have carried out com-

putations of cases with three different particle time constants (normalized by the 

large eddy turnover time): 0.075, 0.150 and 0.520. They report that particle iner-

tia causes a bias in the trajectory toward regions of low vorticity and high strain 
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rate. This preferential concentration is most pronounced for the case where the non-

dimensional time constant (i.e. St) is 0.15. In another work [35], they show that the 

turbulent kinetic energy increased at higher wave numbers (smaller length scales) and 

decreased at smaller wave numbers. They also report that the turbulence modulation 

is different for each case of St. This is because in the case of the intermediate St, 

the preferential concentration is more pronounced. These studies suggest that an 

appropriate model for turbulence modulation would have some dependence on the 

St. 

Ferrante and Elghobashi [36] have carried out DNS of isotropic turbulence laden 

with particles using the point particle approach. They have performed cases with 

three different St (based on the Kolmogorov time scale): a) micro particles where 

St << 1, b) critical particles for which St ≈ 1 and c) large particles where St > 1. 

The mass loading is unity and the volume loading is 10−3 . Their findings are as 

follows: Micro particles act as tracers and remain in their initial surrounding vortices. 

Large particles cross over and enter new eddies. Critical particles are ejected from 

the core of the vortices to the periphery. After this, they do not move over to new 

eddies but accumulate in convergence regions. 

2.7.2 Particle Resolved DNS 

Particle-resolved simulations involve the numerical resolving the particle as a mov-

ing boundary by enforcing the no-slip boundary condition on its surface. These kind 

of simulations are computationally very expensive. They often involve a limited num-

ber of particles, far less than what one would encounter practically. One of the earliest 

particle-resolved studies is that of Feng et al. [37,38] who performed two-dimensional 

numerical simulations of circular ”particles” settling in a channel with no mean flow, 

transported in a Couette flow and in a Poiseuille flow. All flow cases considered were 

in the laminar regime. For a particle in a channel flow, they were able to observe 

the Segré-Silberberg effect. They identified Saffman lift (corrected to account for the 
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velocity profile curvature of an undisturbed Poiseuille flow), Magnus lift, and wall 

repulsion to be the dominant forces that cause the particle migration. They have 

reported the dependence of the particle migration trajectories on parameters such as 

the Rep , the ratio of channel height to the particle diameter (H/d ratio) and the 

density ratio of the particle to the fluid. Mortazavi and Tryggvason [39] performed 

similar simulations with deformable drops in a channel flow. They observed that at 

high Re, the drops began to oscillate about the center of the channel. Zeng et al. [40] 

performed numerical simulations of a spherical particle in a wall-bounded flow and 

studied the dependence of the lift-coefficient on the Re based on a particle length 

scale . Nourbakhsh et al. [41] have done 3D simulations of drops in a Poiseuille flow 

and have studied the effect of capillary number (Ca), the Re and the volume fraction 

on the drop migration. 

Burton and Eaton [42] have carried out particle-resolved DNS studies of a fixed 

particle in a decaying homogeneous isotropic turbulence. The particle diameter is 

approximately twice the Kolmogorov length scale of the unladen turbulence. They 

report a significant attenuation of the turbulent kinetic energy within one diameter 

of the particle surface. Outside 5 diameters, the turbulence modification is negligible. 

Bagchi and Balachander [43] have carried out DNS simulations of a particle in a 

frozen isotropic turbulence to study the prediction of the drag force on a particle 

by integrating the pressure and shear stress on its surface. They found that the 

standard drag correlation based on the mean relative velocity results in a reasonably 

accurate prediction of the mean drag obtained from the DNS. However, the accuracy 

of prediction of the instantaneous drag decreases with increasing particle size. In a 

later work [44], they study the effect of turbulence on the wake of an isolated particle. 

They observe that at particle Re less than 210, the effect of free stream turbulence is 

to introduce wake oscillations. At higher Re, the turbulence promotes early onset of 

vortex shedding. 

One of the main advantages of the particle-resolved method is that the force acting 

on the particle is computed directly from the viscous stresses acting on the particle 
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and no model is used. Moreover, as the flow field around every particle is resolved, the 

dissipation of kinetic energy at the surface is resolved and need not be modeled [45]. 

2.7.3 Approaches in Particle-Resolved DNS 

Since this work involves particl- resolved DNS (PR-DNS), various techniques that 

are commonly employed for PR-DNS are discussed. The general strategy in any 

PR-DNS computation involves the following [45]: 

• Solve for fluid flow by imposing no-slip and no penetration boundary condition 

at the particle surface. 

• Compute the hydrodynamic forces acting on the particle. 

• Update the position and velocity of the particle due to the hydrodynamic forces 

as well as other forces such as ones due to inter-particle collision. 

It can be seen that PR-DNS eliminates the need for any force equation/drag model 

for the particle. Since the flow field around the particle is resolved, effects such as 

dissipation of turbulent kinetic energy, k, at the particle surface and augmentation of 

k due to vortex shedding behind the particle are resolved. 

There are different techniques to carry out a PR-DNS. These approaches can be 

broadly divided into two classes: 

• Those that use a body fitted mesh to represent the surface of the particle. 

• Methods where a regular Cartesian grid is used to solve for the flow and the 

particle surface is tracked separately. 

The first approach has been used in several works [37,38,42–44,46,47]. One of the 

main drawbacks of using a body-fitted mesh is that the solution domain has to be 

re-meshed after the particle moves and the solution on the older grid has to be cast 

on the newer grid through interpolation. This is no longer necessary when Cartesian 
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grids are used and the particle surface is tracked separately. Examples of works where 

the second approach is adopted includes Ref. [48–50]. 

Figure 2.4 shows the particle representation by a body fitted mesh. This mesh 

is taken at some time instant during the simulation. Now as the particles move in 

the domain, they would occupy/cover certain fluid cells. Similarly, areas that were 

occupied by the particle in prior time steps might become fluid cells. Thus a new mesh 

should be generated for this current particle position. The hydrodynamic variables 

in the new cells are obtained from the old cells through interpolation. Fig. 2.5 shows 

the particle representation on a Cartesian grid. In this method, since the grid is 

fixed, no remeshing/interpolation is needed. Each grid point has a flag variable that 

tracks if the node is a solid or fluid node. There are special rules to treat newly 

appeared/disappeared fluid nodes. 

In this work, we have used a relatively new computational approach, called the 

Lattice Boltzmann Method (LBM), to carry out the particle-resolved DNS compu-

tations. The LBM involves solution of the Boltzmann equation with discrete ve-

locity directions. The local and explicit nature of the collision operator makes the 

code highly parallelizable. The particle implementation is relatively easy compared 

with traditional methods. The LBM has been used for particle-laden flows in the 

past [51–54]. In recent works, the LBM has been used in PR-DNS as well [55, 56]. 

The details of the method as well as its implementation is done in Chapter 3. 

2.8 RANS Computations of Particle-Laden Flows 

While DNS studies provide valuable insight into the particle dynamics in a tur-

bulent flow, they cannot be used in the prediction of flows of engineering interest 

owing to the high Re and the number of particles in such systems, which renders 

the computations impractical with current resources. Thus modeling of some sort is 

required. A common approach used in the prediction of turbulent flows for practical 

purposes is to solve the Reynolds Averaged Navier Stokes (RANS) equations. The 
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Figure 2.4: Body-fitted mesh for a two-dimensional channel with circular particles 
(Adapted from [57]). 

Figure 2.5: A circular particle in a fixed Cartesian grid (Adapted from [58]). 
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RANS equations are obtained by averaging the Navier-Stokes equations to obtain the 

mean flow properties. Since only the mean quantities are of interest for most engi-

neering applications, the RANS equations should give enough information about the 

flow. However, the process of averaging yields terms that are dependent on the fluc-

tuating quantities. These are similar to the viscous stresses and are called Reynolds 

stress. 

The effect of the Reynolds stress needs to be modeled to solve the RANS equa-

tions. This is done by employing the Boussinesq assumption which approximates the 

Reynolds stress to an eddy viscosity times the strain rate tensor. The eddy viscosity, 

νt, is modeled from a turbulent length scale, l, and velocity scale q, 

νt = Cql. (2.13) 

This, in fact, is done by drawing an analogy between the eddy viscosity which is a 

measure of diffusion of momentum due to random turbulent eddies and the molecular 

viscosity which represents diffusion of momentum due to random molecular colli-

sions. The eddy viscosity is also referred to as turbulent diffusivity and represents 

the enhanced diffusive properties of the flow due to turbulent mixing. 

Different RANS models find the eddy viscosity through various methods. In al-

gebraic models such as the mixing length model, the eddy viscosity is found from 

an algebraic relation between the velocity gradient and a mixing length specified a 

priori. More often, the models involve the solution of one or more partial differential 

equations (PDEs). The Spalart-Allmaras model involves a PDE for the eddy viscos-

ity. This is referred to as a one-equation model. Two equation models (where two 

additional PDEs are solved to get the eddy viscosity) are more commonly used in 

practice. Some of the two equation models are: k − �, k − ω and SST k − ω among 

others. These two equations are used to get a velocity scale and length scale of the 

turbulent flow from which the eddy viscosity is computed. Other models such as the 

Reynolds stress model have a PDE for each of the Reynolds stress component. In 
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all these methods, the additional PDEs have terms that remain unclosed. These are 

often modeled using various assumptions (e.g. gradient diffusion hypothesis). 

In the context of particle-laden flow, the addition of particles affects the turbu-

lent diffusivity. As discussed earlier in the section, particles can either augment or 

attenuate turbulence. This effect has to be modeled. Further, to include the effect 

of turbulent dispersion, we need models to get a random velocity component. In this 

section, RANS models for particle-laden flows that are currently in use are discussed 

and their ability to predict flows of interest is examined. 

There are different approaches to model particle-laden flows. Each approach has 

certain limited range of applicability depending on parameters such as the St, the 

relative size of the particle with respect to a length scale of the flow (for instance, 

the Kolmogorov length scale) among others. There are several reviews [1,59–62] that 

discuss various approaches commonly employed in numerical simulations of multi-

phase flows. These methods can be divided into two broad sections: 

1. Eulerian-Eulerian approach. 

2. Eulerian-Lagrangian approach. 

2.8.1 Eulerian-Eulerian Approach 

The Eulerian-Eulerian approach was first formulated for numerical computations 

by Spalding [63, 64]. In the Eulerian-Eulerian approach (also known as two-fluid 

approach), the dispersed and the carrier phase are assumed to be inter-penetrating 

fluid. The particulate phase are obtained by volume averaging over the computational 

cell. The averaging volume should be large enough so that the properties do not 

depend on the size of the averaging volume. Further, the averaged properties should 

have continuous spatial derivatives. This places a restraint on the minimum resolvable 

length scale. Conservation equations for mass and momentum are developed for the 

volume averaged particle properties. The interphase coupling is taken care of through 

source and/or sink terms in these equations. 
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If the particle size is smaller than the Kolmogorov length scale, η, the particles 

can be treated as point sources. However, if the particles are comparable to or larger 

than η, the contribution of particles to the dynamics of the turbulent flow should be 

included. 

In two-fluid approach, transport equations for the dispersed phase should be de-

veloped and corresponding transport properties should be defined. Elghobashi and 

Abou-Arab [65] used volume average equations to derive equations of mass and mo-

mentum transfer. They have also proposed constitutive equations based on gradient 

transport assumption. These equations have been used extensively in several works 

that adopt two-fluid approach. The transport properties for the particle phase are 

usually based on experimental works or empirical relations. In a later work, Rizk 

and Elghobashi [66] incorporated a semi-empirical correlation proposed by Picart et 

al. [67] to account for crossing trajectory effect. 

If two-fluid models are used to compute wall-bounded flows, then the specification 

of the boundary condition for the dispersed phase at the wall poses a problem. For 

the dispersed phase continuity equation, if the wall absorbs the particles, then the 

bulk particle density at the wall cannot be specified as zero. If the particles collide 

with the wall elastically, then the normal gradient of the bulk particle density can be 

set to zero. Similarly in the particle momentum equation, the tangential velocity of 

the particles at the wall cannot be set to zero. Chung et al. [68] set the gradient of the 

particle velocity to be equal to the velocity gradient of the fluid at the wall. Ding et 

al. [69] introduced a slip velocity for the particles analogous to rarefied flows. Another 

approach is to use probability density function to describe the particle velocity and 

position and develop equations for its evolution. 

2.8.2 Eulerian-Lagrangian Approach 

The Eulerian-Lagrangian approach was proposed by Crowe et al. [70]. In this 

approach, the carrier phase is solved by Eulerian equations while the dispersed phase 
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is tracked by a Lagrangian approach. The particle is assumed to be smaller than 

the relevant fluid scale and is treated as a point (it does not occupy any volume). 

Equations of motion are solved to track the position, velocity and energy of the 

particles. The interphase-coupling is often achieved by employing semi-empirical 

relations. 

Practical systems often have a large number of particles the tracking of which are 

beyond current computer capability. In order to resolve this issue, Lagrangian models 

identify a parcel of particles as a single computational particle with the same proper-

ties as the physical particles. There are two issues that merit discussion with regards 

to modeling of particle-laden flows: particle dispersion and turbulence modulation. 

Particle Dispersion: In the Lagrangian approach, the force acting on the parti-

cle is used to obtain the velocity and position of the particle. The Basset-Boussinesq-

Oseen (BBO) equation gives the unsteady force acting on the particle at low Re. 

Maxey and Riley [71] have derived the BBO equation from first principles for spheri-

cal particles at low Re. At higher Re, a correction is included in the drag force term 

and the equation is thus represented as (Ref. [1]) 

� � 
Du mf Du dvp

Fp = 3πµd(u − vp)φ(Re) + mf + − 
Dt 2 Dt dtZ (2.14)

3 t d(u − vp)
d2
√ 

+ πρf µ K(t, τ) dτ + (mp − mf)g, 
2 dt−∞ 

where mp and mf denote the mass of the particle and the mass of the displaced fluid, 

u and vp represent the fluid and particle velocity, K(t, τ) is a kernel that weighs the 

past history of relative acceleration and g is the acceleration due to gravity. The terms 

on the right hand side are as follows: the unsteady drag, the pressure gradient, the 

virtual mass, the Basset force and gravity. The function φ(Re) represents a correction 

for the drag law at high Re and is given by Schiller and Nauman (See Ref. [72]) as: 

φ(Re) = 1 + 0.15Re0.687 . (2.15) 
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When the particle to fluid density ratio is high (ρp/ρf ∼ 103), the virtual mass force 

and the Basset force become negligible. This force is used to update the velocity of 

the particle as: 
dvp

Fp = mf . (2.16)
dt 

Based on this velocity, the trajectory of the particle is computed as follows: 

dxp
vp = mf . (2.17)

dt 

Solving the RANS equations gives the mean velocity. To account for the dispersion 

of the particles due to the turbulent eddies, a model is required. The model should be 

able to capture effects such as preferential concentration and ”crossing trajectories”. 

Several models have been proposed to account for the effect of turbulent fluctua-

tions on the particle motion. Yuu et al. [73] assumed that the particle would remain 

in an eddy until the eddy lifetime after which it would encounter another eddy. The 

fluid velocity used in the particle’s equation of motion was taken to be the sum of the 

mean velocity (from RANS) and a fluctuating component chosen from a Gaussian 

distribution with zero mean and standard deviation σ given by: 

2/3σ = (2k/�) , (2.18) 

where k and � are the turbulent kinetic energy and dissipation rate, respectively. 

This method assumes that the turbulence is locally isotropic. Dukowicz [74], in his 

method, displaces the particle by a random distance in each time step. The distance 

is selected from a Gaussian pdf that corresponds to a particle dispersion coefficient. 

These effects however are not capable of predicting the ”crossing trajectories” effect. 

Gosman and Ioannides [75] proposed a stochastic model similar to that of Yuu et 

al. [73]. However, the particle can move outside an eddy before the eddy decays. This 

is done by by using the fluctuating velocity from the Gaussian pdf until the particle 

crosses the eddy (size of the integral length scale) or until the turnover time of the 
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eddy after which a new component is chosen. This model captures the ”crossing 

trajectories” effect. Owing to its simplicity and robustness, this is commonly used in 

many commercial codes [64]. 

Turbulence Modulation: Another effect that needs to be modeled is turbulence 

modulation. In order to include turbulence modulation in the computations, an extra 

source term needs to be included in the k and � equations. The source term in the 

k equation can be related to the drag force on the particle, Fp, and the fluctuating 

component of the gas phase velocity u0 . The source term for inclusion of turbulence 

modulation in the k equation is given by the following expression [76]: 

X 
Sk = Fp · u 0 . (2.19) 

The summation is done over all the particles in the computational cell. The source 

term in the � equation is given by [76] 

� 
S�4 = C�4Sk , (2.20)

k 

where C�4 is an empirical constant. Inclusion of turbulence modulation introduces an 

empirical constant C�4 that needs to be determined. The dependence of the solution 

as well as the effects of this model are important considerations. The accuracy of the 

models employed has an impact on the results. 

2.9 Large Eddy Simulation of Particle-Laden Flows 

Large Eddy Simulation (LES) refers to a computational technique where all the 

large energy containing eddies are resolved. The effect of the small eddies is accounted 

for by a Subgrid Scale (SGS) model. The governing equations are obtained by filtering 

the Navier-Stokes equations. The filtered equations have subgrid stresses which de-

note the effect of the smaller length scales. This is analogous to the Reynolds stresses 

encountered in Reynolds Averaged Navier Stokes equations. The subgrid stresses are 
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related to the strain rate tensor through the eddy viscosity (Boussinesq approxima-

tion). The eddy viscosity itself should be modeled and is important in the context of 

an LES computation. The eddy viscosity is usually calculated by the Smagorinsky 

model as, p
νSGS = (CsΔ)

2| 2Sij Sij |, (2.21) 

where Δ is the filter width (a measure of the grid size), Sij is the strain rate tensor 

and Cs is the Smagorinsky constant with value between 0.1 and 0.2. In LES of 

particle-laden flows, if the particle is smaller than the grid size, then the point particle 

approach can be adopted. The particles are solved in a Lagrangian framework. The 

force acting on the particle is found from the Basset-Boussinesq-Oseen equation and 

is used to update the velocity and position of the particle. The momentum change 

of the particle appears as a sink term in the momentum equation for the fluid, thus 

accounting for the interphase coupling. 

Wang and Squires [77] have carried out LES studies of particle-laden turbulent 

channel flow. They report that the LES is able to capture effects such as preferential 

concentration and increased particle fluctuations in the streamwise direction reason-

ably well. Yamamoto et al. [78] have done LES simulations of turbulent gas-particle 

flow in a vertical channel flow. They have considered the effect of interparticle col-

lisions in their work. The shape and scale of particle concentrations are in good 

agreement with the measurements. The computed turbulence attenuation by parti-

cles agrees well with the experimental data for low St but begins to deviate for high 

St. 

Apte et al. [79] have performed LES of particle-laden swirling flow in a coaxial-

jet combustor and have compared their results to measurements of Sommerfeld and 

Qiu [80]. They report that the LES results are significantly more accurate than the 

RANS predictions of the same problem [81]. Moin and Apte [82] have extended this 

work to do a multiscale, multiphysics turbulent reacting flow simulation in a real 

gas-turbine combustor to assess the predictive capabilities of the solver. 

In the above works, there are two important issues that are not considered: 
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1. Modification of unresolved (subgrid) turbulence by the particle motion 

2. Effect of the unresolved turbulent scales on the particle dynamics 

Kuerten and Vreman [83] use an inverse filtering model to account for the sub-

grid effects in the particle motion. This method is referred to as the Approximate 

Deconvolution Method (ADM). They show that with this model, the turbophoresis 

effect is better resolved in LES computations and results agree well with DNS data. 

Shotorban and Mashayek [84] have proposed a stochastic model for the particle mo-

tion in the LES of a turbulent flow. They have carried out cases of particle-laden 

isotropic turbulence. They conclude that for particles with small time constants, they 

achieved good agreements with the DNS results. They report that for particles with 

large time constants, the model needs to be adjusted. Bini and Jones [85] have in-

troduced the concept of LES filtered probability density function (PDF) approach to 

provide a probabilistic description of two-phase flows in the context of LES. Models 

for closing the unknown terms in the transport equation for the joint filtered PDF for 

the dispersed phase have been proposed in their work. A subgrid dispersion model 

that accounts for the effects of the unresolved turbulent eddies on the particle is 

used. They have used this method to study a particle-laden mixing layer and have 

compared their results with the measurements of Lazaro and Lasheras [86–88]. They 

report that a good agreement is achieved between the LES and experimental results 

if the subgrid dispersion model is chosen such that is has a functional dependence on 

the particle response time. 

Cernick et al. [89] have compared the SGS models of Fukagata et al. [90] (ADM), 

Shotorban and Mashayek [84] and Berrouk et al. [91] for a particle-laden decaying 

homogeneous turbulence. They report that the ADM models improve results but 

is capable of recovering only a portion of the SGS turbulent kinetic energy. The 

stochastic methods recover sufficient SGS energy, but show a large range of results 

depending on the St and the filter size. In general, the stochastic models perform 

well at low St, but are not able to predict preferential concentration. 
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Fox [92] presents a comprehensive review of various LES models that exists for 

multiphase flows. From the above discussions, it is quite clear that there are still 

modifications to be made in the SGS models. This requires information from fully 

resolved DNS computations to see what the SGS models are missing in their current 

closure approximations and determine how best to improve them. 

2.10 Summary and Contribution of this Work 

Wall-bounded particle-laden flows have several interesting features. While consid-

erable data is available from prior studies, there are several unanswered questions such 

as the mechanisms driving particle-wall interaction and particle-turbulence interac-

tion. As discussed earlier, the observation of Lau and Nathan [11] raises a question: 

What causes the migration of particles toward the wall in the case of lower St (<< 1) 

and toward the axis for higher St (>> 1) and uniform distribution at intermediate St 

(∼ 1)? This work aims to answer this by carrying out Direct Numerical Simulations 

(DNS). From the literature review, it can be seen that most DNS studies have adopted 

the point particle approach. While this enables the simulation of a large number of 

particles, it is dependent on the semi-empirical drag force relations that are used. 

Furthermore, the particles are implicitly assumed to be smaller than the Kolmogorov 

length scale. In this study, the particles will be fully resolved and the hydrodynamic 

force acting on the particle will be computed directly without any models. In order 

to carry out the DNS studies, the lattice Boltzmann method (LBM) is adopted. 
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3. FORMULATION OF THE LATTICE-BOLTZMANN 

METHOD 

3.1 Introduction 

In order to carry out the particle-resolved Direct Numerical Simulations (DNS), 

the Lattice-Boltzmann Method (LBM) will be used. The LBM solves the Lattice 

Boltzmann Equation (LBE) which can be considered similar to a finite difference 

discretization of the Boltzmann equation. Historically, the method developed from 

Lattice Gas Automata (LGA) where fluid particles move along lattices and collide 

with each other. There are specified collision rules according to which the particle 

velocity changes after collision. These rules are chosen so that the macroscopic physics 

is reproduced correctly. In this chapter, a basic introduction to the LBM is presented 

and its connection to the Boltzmann equation as well as to the Navier-Stokes equation 

is shown. 

The basic concept of the LBM is introduced in Section 3.2. A rigorous derivation 

of the LBM from the continuous Boltzmann equation is presented in Section 3.3. The 

LBM reproduces the Navier-Stokes equation in the continuum limit. The derivation 

of the Navier-Stokes equation from the LBM is given in Section 3.4. In Section 3.5, 

the numerical aspects of the LBM are discussed. The common techniques to handle 

boundary conditions are presented in Section 3.6. The implementation of a moving 

particle in the LBM framework is described in Section 3.7. In Section 3.8, relevant 

works that have used the LBM to study particle-laden flow are reviewed and the 

contribution of this work is presented. 
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3.2 The Lattice-Boltzmann Method 

The Lattice-Boltzmann Method (LBM) is a relatively new computational tech-

nique for simulating fluid flow. It is based on the following idea: The dynamics of 

physical processes at larger length and time scales are a result of the collective be-

havior of molecular interactions (free flight of molecules and collision); however, the 

macroscopic details are insensitive to the underlying microscopic details [93]. The 

LBM was developed as an alternative method to LGA to overcome certain drawbacks 

associated with it. The LGA was introduced by Frisch et al. [94] and Wolfram [95] 

to simulate fluid behavior as described by the Navier-Stokes equations (NSE). 

In LGA, individual particles move on a lattice from one node to another. When 

two or more particles arrive at the same lattice node, they collide with each other. The 

outcome of the collision is determined by a set of rules. The lattices are identified by 

the following naming convention: DdQq where ’d’ specifies the dimension of the lattice 

and ’q’ specifies the number of discrete velocities. For instance, a D2Q9 lattice has two 

spatial dimensions and 9 discrete velocity directions. Lattices must be built in such 

a way that the Navier-Stokes equations can be recovered by a multi-scale expansion. 

This places two constraints on the lattice: i) The lattice should be symmetric ii) It 

should have more than four velocity directions in addition to a possible zero velocity 

vector [94]. Figure 3.1 shows a D3Q19 lattice that is commonly employed in the 

LBM. 

At a lattice node, a particle can either be present or absent and hence they can be 

represented by Boolean numbers (0s and 1s). This eliminates the issue of rounding 

error that is a big issue especially in turbulence simulations. However, the results from 

LGA simulations show large variations and complicated averaging schemes should 

be used to interpret the results. Another problem is that the maximum number of 

particles that can be simulated is less than the total number of lattice nodes available. 

This leads to a large computational time and necessitates the use of a large grid. 

Moreover, the LGA lacks Galilean invariance. 
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Figure 3.1: Lattices for LBM and LGA. 
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The LBM was introduced by McNamara and Zanetti [96] to overcome these draw-

backs of the LGA. The LBM, instead of using particles, uses single particle distribu-

tion function that stream from one lattice node to another. The distribution functions 

are based on the Maxwell-Botlzmann statistics. A number of modifications have been 

proposed for the collision operator. Higuera and Jiménez [97] linearized the collision 

operator by assuming that the actual distribution is close to the Maxwellian equilib-

rium distribution. Higuera et al. [98] proposed a collision operator that is linearly 

stable. A single relaxation time model, also known as the Bhatnagar-Gross-Krook 

(BGK) model [99], was proposed by Chen et al. [100] and Qian et al. [101]. The 

LBM can thus be viewed as an extension of the LGA where the particle distribution 

functions stream and collide according to a collision operator. 

Alternatively, the LBM can be connected to the Boltzmann equation. He and 

Luo [102,103] showed that the LBE can be derived from the Boltzmann equation when 

the continuous velocity space is simplified into a discrete velocity space. This enabled 

the application of many ideas pertinent to the Boltzmann equation to the LBE. 

There has been significant development in the LBM and it has found applications in 

a wide range of flows. Refs [104–109] can be consulted for a detailed review of the 

development and applications of the LBM. 

3.3 From the Boltzmann Equation to the LBE 

The Boltzmann equation describes the evolution of a single particle distribution 

function which is defined as the probability of finding a molecule/atom (referred to 

as particles hereafter in this section) between x and x + dx with velocity between c 

and c + dc per unit volume per unit velocity cubed. In other words, the number of 

particles, dN , that are between x and x + dx with velocity between c and c + dc 

can be expressed in terms of the distribution function as follows: 

dN = nf(x, c)dxdc, (3.1) 
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where n is the number of particles per unit volume (the number density) at x. The 6 

dimensional volume element dxdc is known as phase space. The distribution function 

is a function of time and its evolution as given by the Boltzmann equation is 

Df ∂f 
= + c · rxf + F · rcf = C12, (3.2)

Dt ∂t 

where F represents external forces, rx and rc represent the gradient in the physical 

and velocity space, respectively, and C12 represents the effect of two particle collisions. 

It is assumed that the gas is dilute and hence only two particle collisions are important. 

In the absence of external forces, the Boltzmann equation reduces to 

∂f 
+ c · rxf = C12. (3.3)

∂t 

The collision operator that Boltzmann proposed is a integral operator making the 

equation a complex integro-differential equation which is difficult to solve for practical 

cases. If the actual distribution is close to the Maxwellian equilibrium distribution f eq, 

then the collision operator can be expressed by the Bhatnagar-Gross-Krook (BGK) 

operator which is given as 
1 
(f − f eq),C12 = − (3.4)

λ 

where λ is a characteristic time over which the distribution function relaxes to its 

equilibrium state. Thus Eq. (3.3) becomes 

∂f 1 
(f − f eq).+ c · rxf = − (3.5)

∂t λ 

The Maxwellian equilibrium distribution function is given by 

� � 
ρ −(c − u)2 

f eq = exp , (3.6)
(2πRT )D/2 2RT 

where R is the ideal gas constant, D is the number of spatial dimensions and ρ, u 

and T are the density, bulk velocity and temperature, respectively. For an isothermal 
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fluid, the density and the velocity can be obtained as zeorth-order and first-order 

moments of the distribution functions, respectively, i.e. 

Z Z 
f eqdc,ρ = m fdc = m (3.7) 

Z Z 
ρu = m fcdc = m f eqcdc, (3.8) 

where m is the mass of the particle (a molecule/atom). Since m is just a constant in 

cases with a single fluid, it is dropped so that a form of a non-dimensional ρ and u 

can be obtained as Z Z 
f eqdc,ρ = fdc = (3.9) Z Z 

ρu = fcdc = f eqcdc. (3.10) 

3.3.1 Time discretization 

Equation (3.5) can be integrated over a time step δt to obtain 

Z δt 
−δt/λ t0/λf eq(x + ct0f(x + cδt, c, t + δt) = 

1 
e e , c, t + t0)dt0 + e −δt/λf(x, c, t). (3.11)

λ 0 

Assuming δt is small and f eq is smooth locally, a linear approximation can be made 

as 

� � 
t0 t0 

f eq(x + ct0 , c, t + t0) = 1 − 
δt 

f eq(x, c, t)+ 
δt 
f eq(x + cδt, c, t + δt)+ O(δt 

2), (3.12) 
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where 0 ≤ t0 ≤ δt. Now consider the first term on the right hand side of Eq. (3.11). 

f eq(x + ct0 , c, t + t0) can be replaced by the expression in Eq. (3.12) after neglecting 

terms of order O(δt 
2) and higher. Thus the integral in Eq. (3.11) simplifies as follows: 

Z δt 
Z δt 

� � 

e t
0/λf eq(x + ct0 , c, t + t0)dt0 = e t

0/λ 1 − 
t0 

f eq(x, c, t)dt0+ 
0 0 δt 

(3.13)Z δt t0 
e t

0/λ f eq(x + cδt, c, t + δt)dt
0 . 

0 δt 

Since f eq(x, c, t) and f eq(x + cδt, c, t + δt) have no functional dependence on t0 they 

can be moved outside the integral. Thus Eq. (3.13) reduces to 

Z δt 
Z δt 

� � 

e t
0/λf eq(x + ct0 , c, t + t0)dt0 = f eq(x, c, t) e t

0/λ − e t
0/λ t

0 
dt0+ 

0 0 δt 
(3.14)Z δt 

t0/λ t
0 

f eq(x + cδt, c, t + δt) e dt0 , 
0 δt 

which can be further simplified as: 

Z δt 
Z δt 

t0/λf eq(x + ct0 e , c, t + t0)dt0 = f eq(x, c, t) e t
0/λdt0+ 

0 Z0 
δt 

(3.15)
1 t0/λdt0[f eq(x + cδt, c, t + δt) − f eq(x, c, t)] t0 e . 
δt 0 

Now Z δt 
−δt/λe t

0/λdt0 = λeδt/λ 
� 
1 − e 

� 
, (3.16) 

0 

and Z δt 
� � 

λ0 −δt/λt e t
0/λdt0 = λeδt/λδt 1 + 

� 
1 − e 

� 
. (3.17) 

0 δt 

A Taylor expansion of e−δt/λ gives 

δt−δt/λe = 1 − + O(δt 
2). (3.18)

λ 
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Neglecting order O(δt 
2) and higher and substituting into Eq. (3.16), we get 

Z δt 
� � �� 

e t
0/λdt0 = λeδt/λ 1 − 1 − 

δt 
, (3.19)

λ0 Z δt 

e t
0/λdt0 = δte 

δt/λ. (3.20) 
0 

On similar substitution of e−δt /λ into Eq. (3.17), we get 

Z δt 
� � � ��� 

λ0 δt 
t e t

0/λdt0 = λeδt/λδt 1 + 1 − 1 − . (3.21)
λ0 δt 

All the terms in the right hand side cancel out yielding 

Z δt 

t0 e t
0/λdt0 = 0. (3.22) 

0 

Substituting Eqs. (3.20) and (3.22) into Eq. (3.15), we get 

Z δt 
t0/λf eq(x + ct0 δt/λe , c, t + t0)dt0 = f eq(x, c, t)δte . (3.23) 

0 

Substituting Eq. (3.23) into Eq. (3.11) 

δt
f(x + cδt, c, t + δt) = f eq(x, c, t) + e −δt/λf(x, c, t). (3.24)

λ 

Substitute the Taylor expansion of e−δt/λ (Eq. (3.18) to get 

� � 
δt δt

f(x + cδt, c, t + δt) = f eq(x, c, t) + 1 − f(x, c, t), (3.25)
λ λ 

which can be simplified as 

δt
f(x + cδt, c, t + δt) − f(x, c, t) = − [f(x, c, t) − f eq(x, c, t)] , (3.26)

λ 
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or 
1 

f(x + cδt, c, t + δt) − f(x, c, t) = − [f(x, c, t) − f eq(x, c, t)] , (3.27)
τ 

λ 
where τ = is the non-dimensional relaxation time. Equation (3.27) is the time dis-

δt 
crete version of the Boltzmann equation and is first order accurate in time. f eq(x, c, t) 

is shown as an explicit function of time, but this dependence comes from its depen-

dence on the hydrodynamic variables ρ and u. Moreover, Eq. (3.27) has an infinite 

number of velocity directions. In order to simplify the problem, it should be dis-

cretized over a finite set of velocity directions. 

3.3.2 Velocity Space Discretization 

The velocity space should now be discretized to enable us to evaluate moments of 

the distribution function. For a discrete velocity space, the moments can be evaluated 

by quadratures, i.e. 

Z X 
ψ(c)f(x, c, t)dc = Wαψ(c)f(x, cα, t), (3.28) 

α 

where ψ(c) is a polynomial of c, Wα is the weighting factor for the discrete velocity 

cα. Thus the hydrodynamic moments can be calculated as 

X X 
ρ = fα = f eq 

α , (3.29) 
α α X X 

ρu = cαfα = cαf
eq 
α , (3.30) 

α α 

where 

fα ≡ fα(x, t) ≡ Wαf(x, cα, t), (3.31) 

f eq ≡ f eq 
α α (x, t) ≡ Wαf

eq(x, cα, t). (3.32) 
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There are two factors that should be taken into consideration in the discretization of 

the velocity space: 

• Discretization of the velocity space should be coupled to the physical space so 

that a lattice structure is obtained. 

• The quadrature of the velocity space should retain the symmetry of the stress 

tensor as required by the Navier-Stokes equations. 

In order to arrive at a discrete velocity space, the Maxwellian equilibrium distri-

bution function, Eq. (3.6), is expanded by a Taylor series in u. 

� � 
ρ −(c − u)2 

f eq = exp , (3.33)
(2πRT )D/2 2RT 

� � 
ρ −c2 + 2(c · u) − u2 

f eq = exp , (3.34)
(2πRT )D/2 2RT � 

2 � � 
2 � 

ρ −c (c · u) u 
f eq = exp exp − . (3.35)

(2πRT )D/2 2RT RT 2RT 

Recalling that the Taylor expansion of ex is given by 

x1 x2 3),e x = 1 + + + O(x (3.36)
1! 2! 

Eq. (3.35) reduces to 

� �� � �h �
2 2 i3ρ −c (c · u) u (c · u)2 c · u 

f eq = exp 1 + − + + O . 
(2πRT )D/2 2RT RT 2RT 2(RT )2 RT 

(3.37)h i c · u 
In order for this expansion to be valid, the term should be small. The particle 

RT 
speed c is of the order of the speed of sound cs which is given as 

√ 
cs = C RT, (3.38) 



44 

where C is a constant and is equal to the square root of the specific heat ratio γ. The 

value of C is close to 1 and is taken to be 1 in the LBM framework. Thus 

√ 
cs = RT . (3.39) 

Thus the magnitude of u should be small compared to the speed of sound, i.e. the 

Mach number should be low. This is referred to as the low-Mach number approxima-

tion. The next step is to derive an expression for the discretized equilibrium function 

f eq 
α with known weights that would yield the hydrodynamic variables. Recall that 

the evaluation of moments using f eq involve an integral of the form 

Z 
I = ψ(c)f eq(x, c, t)dc. (3.40) 

Neglecting higher order terms in Eq. (3.37) and substituting it in Eq. (3.40), we get 

Z � �� �
2 2 (c · u)2ρ −c (c · u) u 

I = ψ(c)exp 1 + − + dc. (3.41)
(2πRT )D/2 2RT RT 2RT 2(RT )2 

The integral on the right hand side is over a vector element dc. For a two-dimensional 

case, this requires a double integration. Let us employ a Cartesian coordinate system 

where ψ(c) can be represented as 

(c) = c m c n , (3.42)ψm,n x y 

where cx and cy are the Cartesian components of the particle velocity c. If ux and uy 

are the components of the macroscopic velocity u, then f eq can be expressed as 

� 2 2 � −(c y)
f eq ρ x + c 

= exp × 
(2πRT )D/2 2RT � � (3.43)

(cxux + cyuy) (u2 
x + u2 

y) (cxux + cyuy)2 

1 + − + . 
RT 2RT 2(RT )2 
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Thus � 
ρ 

(c)f eqψm,n = exp
(2πRT )D/2 

� −(cx 
2 + cy 

2) × 
2RT ⎤⎡ ⎢⎢⎢⎢⎢⎢⎢⎣ 

m+1 n m n+1(c c ux + c c uy)x y x y
c mx c 

n
y + − 

RT 
2 2 m n(u + u )c cx y x y 

+ 
2RT 

m+2 n 2 m+1 n+1 m n+2 2(c c u + 2c c uxuy + c c u )x y x x y x y y 

2(RT )2 

⎥⎥⎥⎥⎥⎥⎥⎦ 

(3.44) 

With dc = dcxdcy, Eq. (3.41) can be written as 

� �Z ∞ Z ∞ −(cx 
2 + cy 

2)ρ 
I ×= exp

(2πRT )�−∞� 
2RT −∞⎡ ⎤ 

m+1 n m n+1c + c c2 (c ux uy)x y x yu m n c cx y (3.45)1 − +⎢⎢⎢⎣ 

⎥⎥⎥⎦ 

+ 
2RT RT 

dcxdcy. m+2 n 2 m+1 n+1 m n+2 2(c c u + 2c c uxuy + c c u )x y x x y x y y 

2(RT )2 

Let 
c 

α = √ , (3.46) 
2RT 

dc 
dα = √ , (3.47)

2RT Z ∞ 

Is = e −α
2 
αsdα. (3.48) 

−∞ 

Thus Eq. (3.45) can be expressed as 

� �⎡ ⎤2 2(Im+1Inux + ImIn+1uy)√ 
u 

ρ �√ � ImIn 1 − + +⎢⎢⎣ 
⎥⎥⎦ 

m+n 2RT 2RT I = 2RT (3.49)× 
2 2π (Im+2Inux + 2Im+1In+1uxuy + ImIn+2uy) 

RT 
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The evaluation of this integral requires the evaluation of the integral Is. To do this 

so that the hydrodynamic variables are recovered exactly, He and Luo [102,103] have 

suggested to use the 3rd order Gauss-Hermite quadrature formula. Thus, 

3X 
Is = wkαk

s . (3.50) 
k=1 

The Gauss-Hermite quadrature weighting coefficients wk corresponding to the abscissa 

αk needs to be determined. This is given by the roots of the third order Hermite 

polynomial. The Hermite polynomial of order ’s’, Hs(x), is given as 

2 ds 
2 

Hs(x) = (−1)s e x e −x , s = 0, 1, 2, .. (3.51)
dxs 

Thus the third order Hermite Polynomial is 

2 d3 
2 

H3(x) = −e x e −x . (3.52)
dx3 

The quadrature abscissas are given as the roots of the equation H3(α) = 0, i.e., 

α(2α2 − 3) = 0, (3.53) 

which gives, r r 
3 3 

α1 = − , α2 = 0, α3 = + . (3.54)
2 2 

The corresponding weights are given as [110], 

√ 
2s+1s! π 

wk = , (3.55)
[Hs+1(αk)]2 

which gives 
1√ 2√ 1√ 

w1 = π, w2 = π, w3 = π. (3.56)
6 3 6 
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Now " #" #X3 3 3X X 
ImIn = wiα

m wj α
n = wiwj αi

mαn (3.57)i j j . 
i=1 j=1 i,j=1 

We know 
m nc c 

αm
i α

n
j = √ i j 

. (3.58)
( 2RT )m+n 

Define ψm,n(αij ) as follows 

ψm,n(αij ) = αmαj
n . (3.59)i 

Then, 
ψm,n(cij )

ψm,n(αij ) = √ , (3.60)
( 2RT )m+n 

where ψm,n(cij ) = cmcn Thus ImIn can be expressed asi j . 

3X ψm,n(cij )
ImIn = wiwj √ . (3.61)

( 2RT )m+n 
i,j=1 

The integral I in Eq. (3.49) simplifies to 

3X 
I = ψm,n(cij )× 

i,j=1 (3.62)� � ��
2 )2wiwj u (ciux + cj uy) (ciux)

2 + 2ciuxcj uy + (cj uy
ρ 1 − + + ,

π 2RT RT 2(RT )2 

which can be simplified as 

3X 
I = ψm,n(cij )× 

i,j=1 (3.63)� � ��
2 )2wiwj u (ciux + cj uy) (ciux + cj uy

ρ 1 − + + ,
π 2RT RT 2(RT )2 

finally yielding 

3 � � ��X · u)2 2wiwj cij · u (cij u 
I = ψm,n(cij ) ρ 1 + + − , (3.64)

π RT 2(RT )2 2RT 
i,j=1 
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where ci and cj (or alternatively cx and cy) are the Cartesian components of cij . 

Comparing Eq. (3.41) with Eq. (3.64) and recognizing that the integral in the former 

equation is replaced by the Gauss-Hermite quadrature in the latter, we can arrive at 

an expression for the discretized equilibrium distribution function, fij
eq as, 

� � 

f eq wiwj cij · u (cij · u)2 u2 

= ρ 1 + + − . (3.65)ij π RT 2(RT )2 2RT 

A D2Q9 lattice that is commonly employed in two-dimensional LBM computations 

is shown in Fig. 3.2. This includes one velocity that corresponds to particles at rest. 

This is actually obtained from cij whose Cartesian components are abscissas of the 

Gauss-Hermite quadrature employed in the evaluation of moments of the distribution 

function (α2 = 0). Set c2 = 3RT , so that the lattice can be represented as follows: ⎧ 
(0, 0) β = 0⎪⎨ 

cβ = cij = c(cosθβ , sinθβ) β = 1, 2, 3, 4 (3.66) 
√⎪⎩ 2c(cosθβ, sinθβ) β = 5, 6, 7, 8. 

The discrete form of the equilibrium distribution function can now be written as 

� � 

f eq = f eq 3 9 3 2 
β ij = wβ ρ 1 + cij · u + (cij · u)2 − u , (3.67)

2 4 2c 2c 2c 

where wβ is given as 
wiwj

wβ = , (3.68)
π ⎧ 

4/9 β = 0⎪⎨ 
wβ = 1/9 β = 1, 2, 3, 4 (3.69) ⎪⎩ 1/36 β = 5, 6, 7, 8. 

Thus, the time discrete version of the Boltzmann equation given by Eq. (3.27) 
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6 2 5 

0 
3 • 1 

7 4 8 

Figure 3.2: A D2Q9 lattice. 

simplifies to 

1 � � 
fβ(x + cβδt, t + δt) − fβ (x, t) = − fβ (x, t) − fβ

eq(x, t) . (3.70)
τ 

This equation is referred to as the Lattice Boltzmann Equation (LBE). 

3.4 From the LBE to the Navier-Stokes Equations 

The macroscopic behavior of the fluid as represented by the Navier-Stokes equa-

tions is obtained from the LBE by the Chapman-Enskog multi-scale expansion tech-

nique. This is an asymptotic expansion method to derive macroscopic equations 

from Boltzmann-type kinetic equations also yielding transport coefficients in terms of 

macroscopic parameters. In this section, a two-dimensional D2Q9 lattice is considered 

and the Chapman-Enskog expansion is done to recover the Navier-Stokes equations. 
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The Cartesian components of the particle velocities for a two-dimensional lattice 

with 8 velocity vectors and a null vector (D2Q9) are given by 

e0,1 = [0, 0],� � � � �� 
i − 1 i − 1 

e1,i = c cos π , sin π , i = 1, 2, 3, 4, (3.71)2 2� � � � �� 
i − 1 π i − 1 π 

e2,i = c cos π + , sin π + , i = 1, 2, 3, 4,
2 4 2 4 

where c = δx/δt. Here, δx is the lattice spacing and δt is the time taken for the 

particles to move from one lattice node to an adjacent node. In this derivation, we 

need the properties of the following tensor: 

X 
(eσiαeσiβ ). (3.72) 

i 

Here σ corresponds to the type of the particle based on its speed and hence we have 

σ ∈ {0, 1, 2}. i represents the direction of the particle velocity for a given speed and 

hence i ∈ {1, 2, 3, 4}. The Greek symbols α, β, .. represent the components pf the 

Cartesian coordinate. On account of the symmetry of the lattice, the tensors of odd 

orders are zero. X 
eσiα = 0, (3.73) 

i X 
eσiαeσiβ eσiγ = 0, (3.74) 

i X 
eσiαeσiβeσiγ eσiθeσiη = 0. (3.75) 

i 

Tensors of second and fourth order are given below following Wolf-Gladrow [111]: 

X 
2 2 eσiαeσiβ = 2c eσδαβ , (3.76) 

i 
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where 

eσ = 

⎧⎨ ⎩ 

1 σ = 1, 
√ 
2 σ = 2, 

(3.77) 

and δαβ is the Kronecker delta function defined as 

⎧⎨ ⎩ 

1 α = β, 

0 α =6 β. 
δαβ = (3.78) 

Similarly ⎧⎨X 2c 4δαβγθ σ = 1, 
(3.79)eσiαeσiβeσiγ eσiθ = ⎩ 4c 4Δαβγθ − 8c 4δαβγθ σ = 2,i 

where ⎧⎨ ⎩ 

1 α = β = γ = θ, 

0 otherwise, 
δαβγθ = (3.80) 

and 

Δαβγθ = δαβ δγθ + δαγ δβθ + δαθδβγ . (3.81) 

It should be noted that δαβ and Δαβγθ are isotropic while δαβγθ is anisotropic. 

Let us now consider the LBE 

��1 
fβ (x, t) − fβ

eq(x, t) . (3.82)fβ(x + cβδt, t + δt) − fβ (x, t) = − 
τ 

The fluid density and velocity is then defined as the zeroth and first moment of the 

distribution function, respectively, 

XX 
ρ = fσi(x, t), (3.83) 

σ i XX 
ρu = fσi(x, t)eσi. (3.84) 

σ i 
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Let us represent the discretized equilibrium distribution function, fσi 
eq as follows 

f eq(x, t) = f 0 (x, t). (3.85)σi σi 

Now lets expand the unknown equilibrium distribution function until the quadratic 

terms in the macroscopic velocity, 

fσi 
0 (x, t) = Aσ + Bσ(eσi · u) + Cσ(eσi · u)2 + Dσu 2 . (3.86) 

Since we neglect the higher order terms, the validity of the results are applicable to 

only weakly incompressible flows. The constants Aσ, Bσ, Cσ and Dσ are assumed to 

depend only on the density and are independent of the macroscopic velocity u. Since 

u0i = u01 = 0, we have B0 = 0 and C0 = 0. Hence, 

f 0 2 
0i(x, t) = A0 + D0u , (3.87) 

f1
0 
i(x, t) = A1 + B1(e1i · u) + C1(e1i · u)2 + D1u 2 , (3.88) 

f 0 · u)2 2 
2i(x, t) = A2 + B2(e2i · u) + C2(e2i + D2u . (3.89) 

Alternatively, in tensor form, this is expressed as 

f 0 2 
σi = Aσ + Bσeσiαuα + Cσeσiαeσiβ uαuβ + Dσu . (3.90) 

Since collision conserves mass and momentum, and the relaxation to the equilibrium 

distribution takes place by collisions, we can write 

XX XX 
f 0fσi(x, t) = σi(x, t) = ρ(x, t), (3.91) 

σ i σ i XX XX 
f 0fσi(x, t)eσi = σi(x, t)eσi = ρ(x, t)u(x, t). (3.92) 

σ i σ i 
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Substituting for the equilibrium distribution function in Eq. (3.91), we get 

XX XX� � 
2fσi 

0 (x, t) = Aσ + Bσeσiαuα + Cσeσiαeσiβ uαuβ + Dσu , 
σ i σ iX X X X X X X X 
= Aσ 1 + uα Bσ eσiα + uαuβ Cσ eσiαeσiβ + u 2 Dσ 1. 

σ i σ i σ i σ i P 
Second term has a tensor of odd order which vanishes. For σ = 0, i 1 = 1 and for P 
σ = 1 and σ = 2, i 1 = 4. The third term can be simplified using Eq. (3.76). Thus 

XX � � 
fσi 
0 (x, t) = A0 + 4A1 + 4A2+uαuβ 2c 

2C1δαβ + 4c 
2C2δαβ + 

σ i (3.93) 

u 2 (D0 + 4D1 + 4D2) . 

Since uβδαβ = uα, we have 

XX � � 
fσi 
0 (x, t) = A0 + 4A1 + 4A2 + uαuα 2c 

2C1 + 4c 
2C2 + u 2 (D0 + 4D1 + 4D2) , 

σ i 

(3.94)XX � � 
fσi 
0 (x, t) = A0 + 4A1 + 4A2 + u 2 2c 2C1 + 4c 

2C2 + D0 + 4D1 + 4D2 . (3.95) 
σ i 

From Eq. (3.91), we have 

� � 
A0 + 4A1 + 4A2 + u 2 2c 2C1 + 4c 

2C2 + D0 + 4D1 + 4D2 = ρ. (3.96) 

Since both the density and the coefficients Cσ and Dσ do not depend on the velocity, 

the coefficient of u2 should be zero. Thus we have the following equations: 

A0 + 4A1 + 4A2 = ρ, (3.97) 

2c 2C1 + 4c 
2C2 + D0 + 4D1 + 4D2 = 0. (3.98) 
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Substituting for the equilibrium distribution function in Eq. (3.91) and with 

additional simplification, the equation becomes, 

XX XX� � 
f 0 2 
σieσiα = Aσeσiα + Bσeσiαeσiβ uβ + Cσeσiαeσiβ eσiγ uβ uγ + Dσu eσiα , 

σ i σ iX X X X 
ρuα = Aσ eσiα + uβ Bσ eσiαeσiβ + 

σ i σ iX X X X 
uβ uγ Cσ eσiαeσiβ eσiγ + u 2 Dσ eσiα. 

σ i σ i 

Since all odd tensors vanish under summation, we have only Bσ terms which can be 

simplified using Eq. (3.76) to obtain 

� � 
ρuα = uβ 2c 

2B1δαβ + 4c 
2B2δαβ . 

This finally simplifies to 

2c 2B1 + 4c 
2B2 = ρ. (3.99) 

Now we will show through a Chapman-Enskog expansion that in the continuum 

limit, the Navier-Stokes equations can be recovered from the LBE. Let us introduce 

a small parameter, �, that compares orders of quantities upon the application of the 

asymptotic expansion. This would be similar to a Knudsen number, Kn, which is 

defined as the ratio of molecular mean free path to a macroscopic length scale. In the 

context of the LBE, the advection time can be taken as the small parameter: 

� = δt. (3.100) 

According to the observation by Maxwell, which was further refined by Chapman and 

Enskog, a macroscopic definition of a fluid comes by piecing together local equilibria 

defined by values of local hydrodynamic variables which are varying slowly in space 
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and time, thus implying continuum equations as consistency conditions. Thus the 

distribution function can be expanded in terms of the small parameter, �, as 

∞X 
fσi = �nfσi 

(n) 
= fσi 

0 + �1fσi 
1 + �2fσi 

2 + .... (3.101) 
n=1 

The unknown higher order quantities such as fσi 
1 will be determined from the analysis. 

The hydrodynamic variables are then defined as consistency conditions, ⎛ ⎞ ⎛ ⎞ XX ⎝ 
1 ⎝ 

ρ 
fσi 
0 ⎠ = ⎠ , (3.102) 

σ i eσi ρu ⎛ ⎞ ⎛ ⎞ XX ⎝ 
1 ⎝0 fσi 

n ⎠ = ⎠ , n > 0. (3.103) 
σ i eσi 0 

Only the zeroth order distribution function, i.e., the equilibrium distribution function 

contributes to the conserved quantities. These quantities are collision invariant. The 

distribution function relaxes to the equilibrium through collisions. Hence the zeroth 

and first moment of the higher order distribution functions are zero. 

Now fσi(x+eσi�, t+�) can be expanded using a Taylor series expansion as follows, 

�1 �2 

fσi(x + eσi�, t + �) = fσi(x, t) + D1fσi(x, t) + D2fσi(x, t) + O(�3), (3.104)
1! t 2! t 

where Dt ≡ ∂t + eσi · r is the total derivative. Equation (3.104) can be written as 

�2 

fσi(x + eσi�, t + �) − fσi(x, t) = �Dtfσi(x, t) + D2fσi(x, t) + O(�3). (3.105)
2 t 

Neglecting higher order terms and substituting this into the LBE (Eq. (3.70)), we 

get 

�Dtfσi(x, t) + 
�2 

Dt 
2fσi(x, t) = − 

1
[fσi(x, t) − fσi 

0 (x, t)]. (3.106)
2 τ 
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To compute variations of fσi at different time scales, following the multiscale pro-

cedure of Frisch et al. [112, 113], two time scales t0 

analysis 

t0 = t, 

and t1 are introduced in this 

(3.107) 

t1 = �t. (3.108) 

Here, the variable t0 is a slower time scale representing a process on the macroscopic 

level such as diffusion; t1 is a faster time scale representing perturbations in mass 

density or sound waves and bulk motion or convection. Thus 

t = t(t0, t1). (3.109) 

∂ 
Hence the partial derivative operator can be written as 

∂t 

∂ ∂t0 ∂ ∂t1 ∂ 
= + , (3.110)

∂t ∂t ∂t0 ∂t ∂t1 

which can be further simplified as 

∂t = ∂t0 + �∂t1 . (3.111) 

Thus the total derivative can be expressed as 

Dt = ∂t0 + �∂t1 + eσi · r. (3.112) 

Substituting Eq. (3.101) in Eq. (3.106) and neglecting terms of order O(�3) and 

higher, we get 

�2 1 � � 
�Dt(fσi 

0 + �fσi 
1 ) + 

2 
Dt 

2(fσi 
0 ) = − 

τ
fσi 
0 + �fσi 

1 + �2fσi 
2 − fσi 

0 . (3.113) 
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Expanding this with Eq. (3.112), we get 

�2 

�(∂t0 + �∂t1 + eσi · r)(fσi 0 + �fσi 
1 ) + (∂t0 + �∂t1 + eσi · r)2(fσi 0 ) = 

2 (3.114)
1 � � 
f0 − f 0− 

τ σi + �fσi 
1 + �2fσi 

2 
σi . 

Expanding and neglecting terms of order O(�3) and higher, 

� � 
�(∂t0 + eσi · r)fσi 0 + �2 (∂t0 + eσi · r)fσi 1 + ∂t1 f

0 +σi 
(3.115)

�2 1 � � 
(∂t0 + eσi · r)2(fσi 0 ) = − �fσi 

1 + �2fσi 
2 . 

2 τ 

Let us now consider the behavior of the distribution function at scales t0 and t1. 

Comparing different order of � in Eq. (3.115) we get equations for successive approx-

imations to the distribution functions. Equating order O(�) terms, we get 

O(�) : (∂t0 · r)f 0 = − 
1 
f 1 (3.116)+ eσi σi σi. τ 

The equation to order O(�2) is 

O(�2) : (∂t0 + eσi · r)fσi 1 + ∂t1 fσi 
0 + 

1
(∂t0 + eσi · r)2(fσi 0 ) = − 

1 
fσi 
2 . (3.117)

2 τ 

1 
Multiplying Eq. (3.116) by the operator (∂t0 + eσi · r), we get

2 

1
(∂t0 + eσi · r)2f 0 = − 

1
(∂t0 + eσi · r)f 1 (3.118)σi σi. 2 2τ 

Substituting Eq. (3.118) in Eq. (3.117), we get 

(∂t0 + eσi · r)fσi 1 + ∂t1 fσi 
0 − 

1
(∂t0 + eσi · r)fσi 1 = − 

1 
fσi 
2 , (3.119)

2τ τ � � 

∂t1 fσi 
0 + 1 − 

1
(∂t0 + eσi · r)fσi 1 = − 

1 
fσi 
2 . (3.120)

2τ τ 
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To derive continuity equations for mass and momentum to first order in �, zeroth and 

first order moments of Eq. (3.116) is taken. The zeroth-order moment gives 

XX XX 
(∂t0 + eσi · r)f 0 = − 

1 
f 1 (3.121)σi σi. τ 

σ i σ i 

Recalling that the zeroth-moment of any higher order term of the distribution function 

is zero, we get XX XX 
f 0 · rf 0∂t0 σi + eσi σi = 0. (3.122) 

σ i σ i 

Since the summation operator is linear, we have 

XX XX 
∂t0 fσi 

0 + eσi · rfσi 0 = 0, (3.123) 
σ i σ i 

which yields XX 
∂t0 ρ + eσi · rfσi 0 = 0. (3.124) 

σ i 

Now eσi · rfσi 0 can be expressed as 

eσi · rf 0 = r · eσif
0 (3.125)σi σi. 

Thus Eq. (3.124) becomes 

XX 
∂t0 ρ + r · eσifσi 

0 = 0, (3.126) 
σ i XX 

∂t0 ρ + r · eσifσi 
0 = 0, (3.127) 

σ i 

∂t0 ρ + r · (ρu) = 0, (3.128) 
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which is the first-order continuity equation. Now taking the first-order moment of 

Eq. (3.116), we get 

XX XX 
eσi(∂t0 + eσi · r)fσi 0 = − 

1 
eσifσi 

1 . (3.129)
τ 

σ i σ i 

Since the first moment of any higher-order distribution function is zero, we get 

XX XX 
eσi∂t0 fσi 

0 + eσieσi · rfσi 0 = 0. (3.130) 
σ i σ i 

As in the previous derivation, 

XX XX 
∂t0 eσifσi 

0 + r · eσieσifσi 
0 = 0, (3.131) 

σ i σ i 

which yields 

∂t0 (ρu) + r · Π0 = 0, (3.132) 

where XX 
Π0 = eσieσifσi 

0 , (3.133) 
σ i 

is the first-order momentum flux tensor. Similarly taking the zeroth-order moment 

of Eq. (3.120) gives the second order equation for ρ as 

∂t1 ρ = 0. (3.134) 

The first moment of Eq. (3.120) gives the second order equation for ρu as 

� � 
∂t1 (ρu) + r · ϕΠ1 = 0, (3.135) 

where XX 
Π1 = eσieσifσi 

1 , (3.136) 
σ i 
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is the second moment of the first order distribution function fσi 
1 and represents the 

second-order momentum flux tensor. Moreover, the term ϕ is given by 

� � 
1 

ϕ = 1 − . (3.137)
2τ 

The next step is to simplify the momentum flux tensors. Firstly, consider Φ0 . Ex-

pressing in tensor form with free indices α and β as the coordinates, we have 

XX 
Π0 

αβ = eσiαeσiβfσi 
0 . (3.138) 

σ i 

Substituting for the equilibrium distribution function from Eq. (3.86) in the tensor 

form, we have 

XX � � 
Π0 2 

αβ = eσiαeσiβ Aσ + Bσ(eσiγ uγ ) + Cσ(eσiγ eσiθuγ uθ) + Dσu . (3.139) 
σ i 

Now, Eq. (3.139) can be expressed as 

XX XX 
Π0 

αβ = Aσeσiαeσiβ + Bσeσiαeσiβeσiγ uγ + 
σ i σ i 

(3.140)XX XX 
Cσeσiαeσiβeσiγ eσiθuγ uθ + Dσeσiαeσiβ u 2 . 

σ i σ i 

Using the tensor properties in Eqs. (3.76-3.81) and Eqs. (3.73-3.75), we can simplify 

further as 

� � 
Π0 = 2c 2δαβ (A1 + D1u 2) + 2(A2 + D2u 2) +αβ 

(3.141) 
42c uγ uθ [C1δαβγθ + C2 (2Δαβγθ − 4δαβγθ)] . 

Performing the following tensor manipulation, 

uγ uθΔαβγθ = uγ uθ(δαβ δγθ + δαγ δβθ + δαθδβγ ), 
(3.142) 

= u 2δαβ + 2uαuβ , 

https://3.73-3.75
https://3.76-3.81
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we get, 

� � 
Π0 =2c 2) + 2(A2 + D2u 2) +αβ 

2δαβ (A1 + D1u 
(3.143) 

4 
� � � � 

2c C1uγ uθδαβγθ + 2C2 u 2δαβ + 2uαuβ − 4C1uγ uθδαβγθ . 

Separating terms of δαβ and δαβγθ, we have 

� � 
Π0 = 2c 2(A1 + 2A2) + 2u 2 c 2(D1 + 2D2 + 2c 

2C2)αβ δαβ + 
(3.144) 

8C2c 
4 uαuβ + 2 (C1 − 4C2) c 

4 uγ uθδαβγθ. 

By comparing this equation with the momentum equation (continuum case), we can 

say that the coefficient of δαβ represents pressure. However, there is a velocity depen-

dence in this term. To remove this, set the coefficient of u2 to zero, 

D1 + 2D2 + 2c 
2C2 = 0. (3.145) 

The value of the momentum flux tensor thus obtained depends on the frame of ref-

erence due to the anisotropic term δαβγθ. Galilean invariance can be achieved set its 

coefficient to zero, i.e. 

C1 − 4C2 = 0. (3.146) 

Thus the momentum flux tensor can be simplified as 

Π0 = 2c 2δαβ (A1 + 2A2) + 8C2c 
4 uαuβ . (3.147)αβ 

Assuming 

8C2c 
4 = ρ, (3.148) 

and 

2c 2 (A1 + 2A2) = c 2 
sρ, (3.149) 
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where cs which will be determined in terms of unknown parameters later, we have 

Π0 2 
αβ = csρδαβ + ρuαuβ . (3.150) 

Substituting Eq. (3.150) in Eq. (3.132), we get 

∂t0 (ρu) + r · (ρuu) = −r(cs 
2ρ). (3.151) 

Equation (3.128) along with Eq. (3.151) constitute the Euler equations which are 

derived from the first-order expansion of the LBE. 

Now let us simplify Π1 . In order to do this, we need to express fσi 
1 in terms of the 

equilibrium distribution function f 0 From Eq. (3.116), we getσi. 

� � 
fσi 
1 = τ ∂t0 fσi 

0 + eσi · rfσi 0 . (3.152) 

Substituting this expression for fσi 
1 in Eq. (3.136), we get 

XX � � 
Π1 = eσieσiτ ∂t0 fσi 

0 + eσi · rfσi 0 . (3.153) 
σ i 

This can be represented in tensor form as 

XX � � 
Π1 = f 0 , (3.154)αβ eσiαeσiβ τ ∂t0 σi + eσiλ∂λfσi 

0 

σ i XX XX 
Π1 = τ∂t0 eσiαeσiβ fσi 

0 + τ∂λ eσiαeσiβeσiλf
0 (3.155)αβ σi. 

σ i σ i 

Substituting Eq. (3.86) in the tensor form in Eq. (3.155), we have 

Π1 Π0 =τ∂t0αβ αβ+ XX � � 
2τ∂λ eσiαeσiβeσiλ Aσ + Bσ(eσiγ uγ ) + Cσ(eσiγ eσiθuγ uθ) + Dσu . 

σ i 

(3.156) 
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Substituting Eq. (3.150) in Eq. (3.156) and using the tensor properties in Eqs. 

(3.76-3.81) and Eqs. (3.73-3.75), we get 

� � XX 
Π1 2 

αβ = τ∂t0 csρδαβ + ρuαuβ + τ∂λ Bσeσiαeσiβeσiλeσiγ uγ , (3.157) 
σ i � � � � 

Π1 2 
αβ = τ∂t0 csρδαβ + ρuαuβ + τ∂λ B1uγ (2c 

4δαβλγ ) + B2uγ (4c 
4Δαβλγ − 8c 4δαβλγ ) . 

(3.158) 

Using tensor properties, we have 

∂λ [B2uγ Δαβλγ ] = ∂λ [B2uγ (δαβδλγ + δαλδβγ + δαγ δβλ)] , 
(3.159) 

= ∂λ(B2uλδαβ ) + ∂α(B2uβ) + ∂β (B2uα). 

From the first order continuity equation (Eq. (3.128), we have 

∂t0 ρ = −r · (ρu). (3.160) 

Thus we have 

2 2 2(c ρ) = c ρ = −c r · (ρu). (3.161)∂t0 s s∂t0 s 

Equation (3.158) thus becomes ⎧ ⎫ 
− c 2 

s∂γ (ρuγ )δαβ + ∂t0 (ρuαuβ )+⎪ ⎪⎨ ⎬ 
Π1 

αβ = τ 2c 4∂λ [(B1 − 4B2)uγ ] δαβλγ + (3.162) ⎪ ⎪⎩ ⎭4c 4 [∂λ(B2uλ)δαβ + ∂α(B2uβ ) + ∂β(B2uα)] . 

To avoid anisotropy, set the coefficient of δαβλγ to zero, 

B1 − 4B2 = 0. (3.163) 

https://3.73-3.75
https://3.76-3.81
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Using Eq. (3.99) and Eq. (3.162), B1 and B2 can be determined, 

ρ 
B1 = ,

23c
(3.164) 

ρ 
B2 = . 

212c
(3.165) 

Thus Π1 
αβ becomes ⎧ ⎫ ⎪ 2 ⎪⎨ − c (ρuαuβ)+ ⎬ 

s∂γ (ρuγ )δαβ + ∂t0 

Π1 = ταβ ⎪ 1 ⎪⎩ ⎭c 2 [∂λ(ρuλ)δαβ + ∂α(ρuβ) + ∂β (ρuα)] . 
3 

(3.166) 

The Euler equations (Eqs. (3.128) and (3.151)) can be written in tensor form as 

∂t0 ρ + ∂λ(ρuλ) = 0. (3.167) 

∂t0 (ρuλ) + ∂γ (ρuγ uλ) = −∂λ(c 2 
sρ). (3.168) 

Now the time derivative term ∂t0 (ρuαuβ) can be simplified using Eqs. (3.167) and 

(3.168) as follows: 

∂t0 (ρuαuβ ) 

= ∂t0 [(ρuα)uβ] , 

= uβ ∂t0 (ρuα) + ρuα∂t0 uβ , � � 
= uβ −∂γ (ρuγ uα) − ∂α(cs 

2ρ) + uα [∂t0 (ρuβ ) − uβ∂t0 ρ] , 

2 
� 

2 
� 

= −uβ∂γ (ρuγ uα) − uβ ∂α(csρ) + uα −∂γ (ρuγ uβ ) − ∂β(csρ) + uαuβ∂λ(ρuλ), 

= −uβ∂γ (ρuγ uα) − uβ ∂α(c 
2 
sρ) − uαuβ ∂γ (ρuγ ) − ρuαuγ ∂γ uβ − uα∂β (c 

2 
sρ)+ 

uαuβ ∂λ(ρuλ). 
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Since the third and sixth term are same (repeated indices being dummy indices), they 

cancel out to yield 

∂t0 (ρuαuβ) = −uβ ∂γ (ρuγ uα) − uβ ∂α(c 
2 
sρ) − ρuαuγ ∂γ uβ − uα∂β (c 

2 
sρ). (3.169) 

Substituting Eq. (3.169) into Eq. (3.166), we get ⎧ ⎫ ⎪ 2 2 ⎪⎨ − cs∂γ (ρuγ )δαβ − uβ ∂γ (ρuγ uα) − uβ∂α(csρ) − ρuαuγ ∂γ uβ −⎬ 
Π1 

αβ = τ (3.170)1⎪ 2 ⎪⎩ uα∂β(c ρ)) + c 2 [∂λ(ρuλ)δαβ + ∂α(ρuβ) + ∂β (ρuα)] . ⎭ 
s 3 

The second and fourth terms are of the order O(u3). Neglecting these terms and 

simplifying, we obtain 

�� 
2 � 

2 � 
c c 

Π1 2 2 2 = τ − c ∂γ (ρuγ )δαβ − uβ ∂α(c ρ) − uα∂β (c ρ) + [∂α(ρuβ) + ∂β (ρuα)] .αβ s s s3 3 
(3.171) 

Until now, we have not defined the speed of sound cs in terms of other parameters. 

If we set 
2c − cs 

2 = 0, (3.172)
3 

Eq. (3.171) is considerably simplified. This yields 

1 
cs = √ c, (3.173)

3 

which provides an expression for the speed of sound within the LBE framework. Thus 

Π1 becomes αβ 

Π1 = τc2 {−uβ ∂αρ − uα∂βρ + ∂α(ρuβ ) + ∂β(ρuα)} , (3.174)αβ s 

Π1 = τc2 {−uβ ∂αρ − uα∂βρ + uβ ∂αρ + ρ∂uβ + uα∂β ρ + ρ∂βuα} , (3.175)αβ s 

Π1 
αβ = τcs 

2ρ (∂αuβ + ∂βuα) . (3.176) 
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Let us combine the equations of first and second order to get the macroscopic equa-

tions. Consider Eq. (3.128) + �× Eq. (3.134) gives 

∂t0 ρ + �∂t1 ρ + r · (ρu) = 0. (3.177) 

Using Eq. (3.111), we can write 

∂tρ + r · (ρu) = 0. (3.178) 

This is the continuity equation. Next consider Eq. (3.132) + �× Eq. (3.135) 

� � 
∂t0 (ρu) + �∂t1 (ρu) + r · Π0 + ϕ�Π1 = 0, (3.179) 

which becomes � � 
Π0∂t(ρu) + r · + ϕ�Π1 = 0. (3.180) 

In tensor form � � 
∂t(ρuα) + ∂β Παβ 

0 + ϕ�Π1 = 0. (3.181)αβ 

Substituting Eq. (3.150) and 3.176 into Eq. (3.181), we get 

� � � � 
∂t(ρuα) + ∂β c 

2 
sρδαβ + ρuαuβ + ∂β ϕ�τc

2 
sρ (∂αuβ + ∂β uα) = 0. (3.182) 

Substituting Eq. (3.137) into Eq. (3.182), we get 

� � � � 
1 

∂t(ρuα) + ∂β (ρuαuβ) = −∂α(cs 
2ρ) + ∂β τ 1 − cs 

2� [∂αuβ + ∂β uα] . (3.183)
2τ 

Replacing � by δt �� � � 
1 

∂t(ρuα) + ∂β (ρuαuβ) = −∂α(c 2 
sρ) + ∂β τ − c 2 

sδt [∂αuβ + ∂βuα] . (3.184)
2 
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Define the strain rate tensor Sαβ as 

1 
Sαβ = (∂αuβ + ∂βuα) . (3.185)

2 

Substituting Eq. (3.185) into Eq. (3.184) to get 

� � � � 
1 

∂t(ρuα) + ∂β (ρuαuβ) = −∂α(c 2 
sρ) + ∂β 2 τ − c 2 

sδtSαβ . (3.186)
2 

The coefficient appearing before the strain rate term is analogous to viscosity. Thus 

the viscosity in the LBE framework is represented as 

� � 
1 

ν = τ − c 2 
sδt. (3.187)

2 

1 
The term − c2 is an artifact arising from the discreteness of the lattice. If thesδt2 
velocity space were continuous as in the Boltzmann equation, this term would vanish 

and we would get the viscosity (momentum transport coefficient) in terms of a molec-

ular velocity scale (average molecular speed) and a length scale (mean free path) or 

time scale (time between molecular collisions). Further, in Eq. (3.186), the pressure 

is given as 

p = cs 
2ρ. (3.188) 

We can see that the pressure is related to the density through an equation that is 

similar to the ideal gas equation. The second order momentum flux tensor can thus 

be represented as 

Π1 
αβ = 2τc2 

sρSαβ. (3.189) 

From Eq. (3.136), we can write 

X X 
eσiαeσiβ f

1 
σi = 2τc2 

sρSαβ . (3.190) 
σ i 
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For a first order expansion, 
1 � � 

f 1 = fσi − f 0 . (3.191)σi σi δt 

Thus Eq. (3.190) becomes 

XX �1 � 
eσiαeσiβ fσi − f 0 = 2τc2ρSαβ. (3.192)

δt 
σi s 

σ i 

Thus the strain rate tensor can be evaluated directly from the distribution function 

as XX � � 
Sαβ =

1 
eσiαeσiβ fσi − fσi 

0 . (3.193)
2τc2ρδts σ i 

Finally, the momentum equation becomes 

∂t(ρuα) + ∂β (ρuαuβ) = −∂α(p) + ∂β (2νSαβ ) . (3.194) 

Thus the long term behavior of the LBE corresponds to that described by equations 

which are similar to the Navier-Stokes equations. 

Now, we determine the rest of the coefficients to complete the expression for the 

equilibrium distribution function. From Eq. (3.148) we have 

ρ 
C2 = . (3.195)

48c 

From Eq. (3.146), 
ρ 

C1 = 
4 
. (3.196)

2c 

For Aσ, we have two equations (Eq. (3.97) and Eq. (3.149)) but three unknowns. 

Fixing one free variable to be that used in common LBE models [114] 

4 
A0 = ρ. (3.197)

9 
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Thus the other two coefficients are found as 

1 
A0 = ρ, (3.198)

9 

1 
A0 = ρ. (3.199)

36 

Similarly for Dσ, there are two equations (Eq. (3.98) and Eq. (3.145)) while three 

unknowns. Since all coefficients determined so far for σ = 2 are one fourth of that 

for σ = 1 impose 

D1 = 4D2. (3.200) 

This yields 
2 

D0 = − ρ, (3.201)
23c 

1 
D0 = − 

2 
ρ, (3.202)

6c 

1 
= − ρ. (3.203)D0 

24c2 

Thus the primary consideration in determining these coefficients is that the resulting 

equilibrium distribution function obeys conservation laws and symmetry constraints. 

These considerations however do not yield a unique set of coefficients allowing some 

coefficients to be chosen freely. 

Thus the equilibrium distribution function can be written as 

� � 
4 3 

f01
0 = ρ 1 − 

2 
u 2 , (3.204)

9 2c� � 
1 3 9 3 

f 0 2 
1i = ρ 1 + (e1i · u) + (e1i · u)2 − u , (3.205)

2 4 29 c 2c 2c� � 
1 3 9 3 

f 0 2 
2i = ρ 1 + (e2i · u) + (e2i · u)2 − u . (3.206)

2 4 236 c 2c 2c 

This equation is identical to Eq. (3.67) which is the equilibrium distribution derived 

from a Taylor series expansion of the Maxwellian distribution function for a discrete 

velocity space. 
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3.5 Numerical Aspects 

As we have discussed, the LBE is a discretized version of the Boltzmann equation 

with finite velocities. The solution of the LBE involves two operations, viz. stream-

ing and collision. Streaming represents the free flight of molecules from one lattice 

node to the other during which they do not collide with other molecules. Collision 

represents the interaction of molecules with each other once they arrive at a lattice 

node. Collisions in the LBM are commonly represented by the BGK model in which 

the distribution function relaxes to its equilibrium value through collisions over a 

characteristic time. The equilibrium distribution is selected so that it recovers the 

Navier-Stokes equations in the continuum and low-Mach number limit. The lattice 

is selected so that it preserves the symmetry of the stress tensor in the Navier-Stokes 

equations. The LBE is given as 

1 
fα(x + cαδt, t + δt) − fα(x, t) = − [fα(x, t) − fα

eq(x, t)] , (3.207)
τ 

which is solved in two steps: 

1
f̄α(x, t) = fα(x, t) − [fα(x, t) − fα

eq(x, t)] , (3.208)
τ 

¯fα(x + cαδt, t + δt) = fα(x, t). (3.209) 

The first step represents collision where the distribution function relaxes to its 

equilibrium value in time τδt where τ is referred to as the relaxation parameter. In 

the second step, the distribution function streams to a neighboring node with velocity 

eα in time δt. Now, the density and velocity can be found as 

X 
ρ(x, t) = fα(x, t), (3.210) 

α X 
ρ(x, t)u(x, t) = cαfα(x, t). (3.211) 

α 
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The pressure is found by an equation of state 

p = cs 
2ρ, (3.212) 

where cs represents the speed of sound in the LBM framework. The kinematic vis-

cosity of the fluid is related to the relaxation time and lattice parameters as 

� � 
1 

ν = c 2 
s τ − 

2 
δt. (3.213) 

An important consideration in the selection of the lattice parameters is the Mach 

number, Ma which is given as 

u uδt
Ma = = √ . (3.214) 

cs 
2 3δx 

Since the Taylor expansion of the Mach number that is used in the LBM is valid only 

for low Ma, the Ma should be less than 0.3 (weakly compressible flow). The relax-

ation parameter τ should be greater than 0.5 to avoid negative viscosities. Moreover, 

values of τ that are too close to 0.5 can cause instabilities. The multiple relaxation 

time (MRT) implementation [115, 116] of the LBM can, be employed to address this 

challenge. This becomes important in turbulent flow simulations. It is a common 

practice to set δx and δt to unity since only non-dimensional results are reported. 

3.6 Boundary Conditions 

One of the main differences between conventional CFD techniques (i.e. solving 

the Navier-Stokes equations) and the LBM is the implementation of the boundary 

condition. In the LBM, the boundary conditions for the distribution function are 

generally unknown. While periodic boundary conditions are trivial to implement, 

others such as a no-slip wall and stress free boundaries are more involved. Some basic 

boundary conditions that are used in this work are reviewed in this section. 
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3.6.1 Bounce-Back Boundary Condition 

This was proposed by Wolfram [95] and Lavallée [117] in the context of the LGA. 

This has been used in the LBM as well. Consider the D2Q9 lattice shown in Fig. 3.2. 

If the wall is at the bottom surface (along the line containing the points at the end 

of direction 4, 7 and 8). While streaming from the center (node marked as 0), the 

distribution functions that move in the direction 4, 7 and 8 strike the wall. However, 

the distribution functions in the direction 2, 5 and 6 are unknown since there is no 

fluid node from which they can be streamed. In order to obtain these distribution 

functions, those that strike the wall are assumed to bounce back so that it reaches 

the node from which it originated with the same speed but pointing in the opposite 

direction. Thus for this case, we have 

f2(x, y) = f4(x, y), (3.215) 

f5(x, y) = f7(x, y), (3.216) 

f6(x, y) = f8(x, y). (3.217) 

While this boundary condition is easy to implement, several works [118–120] have 

shown that this boundary condition is first order accurate while the accuracy of the 

LBM is second order. Thus bounce-back boundary condition reduces the accuracy of 

the LBM. 

3.6.2 Half-Way Bounce-Back Boundary Condition 

Ziegler [119] noticed that if the wall was assumed to be placed half way between 

the last fluid node and the first solid node, then the boundary condition so achieved 

was second order accurate. He et al. [121] have confirmed through an analytical study 

that this method does give second order accuracy. This is referred to as the half way 

bounce back boundary condition and is used in this study to represent stationary no 

slip walls. 
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3.6.3 Extrapolation Method 

This method was proposed by Chen et al. [122] and is based on simple extrapola-

tion. This method can be used to simulate a variety of boundary conditions such as: 

specified velocity, density and open/stress free boundary conditions. In this method, 

the value of the unknown distribution function is calculated from those at the bound-

ary and the first interior node through extrapolation. For instance, in Fig. 3.2, if the 

surface on the left (along the line containing the points at the end of direction 3, 6 

and 7) is a boundary and the center (node marked as 0) is referred to as (i, j), then 

the unknown distribution function before streaming is obtained as 

f1(i − 1, j) = 2f1(i, j) − f1(i + 1, j). (3.218) 

The values of density or velocity are set prior to calculating the equilibrium dis-

tribution function. This method is simple to implement and is used to represent 

inlet/outlet boundary conditions in this current work. 

3.6.4 Momentum Augmented Half-Way Bounce-Back Method 

While the half way bounce-back method can be used to represent stationary no-

slip walls, it cannot be used as such for moving walls. Ladd [51, 52] proposed a 

correction to account for the motion of the wall. An additional term is added to the 

distribution function as follows: 

2wα
fα(x, t) = fα0 (x, t) + 

2 
ρ(x, t)(eα · u(x, t)), (3.219) 

cs 

where α0 is the direction that streams into the wall and α is the direction that streams 

from the wall. It should be noted that the extra term does not conserve mass when 

the motion of the wall is not strictly tangential to the flow direction. 
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Figure 3.3: A particle in a D2Q9 lattice. 

3.6.5 Bounce-Back for Curved Boundaries 

The simulation of particles is done by representing them as a solid boundary that 

moves in the fluid. However, the boundaries are not straight and hence the wall would 

not be located at a distance that is half way between two lattice nodes. Figure 8.2 

shows a circular (2D) particle in a D2Q9 lattice. It is seen that the particle boundary 

cuts the lattice links at random position which is not necessarily the midpoint. 

Bouzidi et al. [123] as well as Lallemand and Luo [124] have proposed a technique 

to account for curved boundaries. Consider the one-dimensional situation in Fig. 8.3. 

Fluid node at rj is the last node near the wall while rs is the first node in the solid 

region. The intersection of the wall and the boundary link is represented as rw. The 

distance of the wall from the last fluid node is given as qδx = |rj − rw|. If q = 1/2, 
the wall is located midway between the last fluid node and the first solid node and a 
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half way bounce-back can be applied (Fig. 8.3a). However, if q < 1/2, the particle 

would reach position ri between rj and rj0 (Fig. 8.3b). Similarly, if q > 1/2, the 

particle would reach position ri between rj and rj0 (Fig. 8.3c). 

The following procedure is adopted to preserve the boundary representation of 

the particle: 

1. For q < 1/2 (Fig. 8.3b), the distribution function at ri is computed from 

the post collision distribution functions at rj00 ,rj0 and rj through interpolation. 

This distribution function is then streamed so that it arrives at rj . 

2. For q > 1/2 (Fig. 8.3c), the distribution function at rj is streamed to ri. Then 

the post streaming distribution functions at rj00 ,rj0 and ri is used to evaluate 

the distribution function at rj . 

One can use either a linear or a quadratic interpolation. Let f c denote the post 

collision distribution function (i.e. after collision but before streaming). Direction ’1’ 

represents streaming into the wall and ’3’ represents streaming from the wall in this 

case. Using a linear interpolation, for q < 1/2, we get 

f1 
c(ri, t) = 2qf1 

c(rj , t) + (1 − 2q)f1 
c(rj0 , t), (3.220) 

f3(rj , t + δt) = f1 
c(ri, t). (3.221) 

For q > 1/2, we have, 

1 (2q − 1)
f3(rj , t + δt) = f3(ri, t + δt) + f3(rj0 , t + δt). (3.222)

2q 2q 

In the case of quadratic interpolation, for q < 1/2, we have 

f c(ri, t) = q(2q + 1)f c(rj , t) + (1 + 2q)(1 − 2q)f c(rj0 , t) − q(1 − 2q)f c(rj00 , t), (3.223)1 1 1 1 

f3(rj , t + δt) = f1 
c(ri, t). (3.224) 
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For q > 1/2, we have 

1 (2q − 1) (1 − 2q)
f3(rj , t + δt) = f3(ri, t + δt)+ f3(rj0 , t + δt)+ f3(rj00 , t + δt). 

q(2q + 1) 2q (1 + 2q) 
(3.225) 

In the case of a moving boundary, an extra term needs to be added to account for 

the motion of the walls. For a linear interpolation, this is given as 

2w1
δf3(rj , t + δt) = ρ(rj , t)(e1 · u(rj , t), q < 1/2, (3.226) 

c2 
s 
w1

δf3(rj , t + δt) = ρ(rj , t)(e1 · u(rj , t), q > 1/2. (3.227) 
qc2 

s 

When quadratic interpolation is used, we have 

2w1
δf3(rj , t + δt) = 

2 
ρ(rj , t)(e1 · u(rj , t), q < 1/2, (3.228) 

cs 

2w1
δf3(rj , t + δt) = ρ(rj , t)(e1 · u(rj , t), q > 1/2. (3.229) 

q(2q + 1)c2 
s 

Both these expressions simplify to yield the same value when q = 1/2 which corre-

sponds to the standard half way bounce-back scheme. Since the scheme uses only 

interpolations, it has good stability properties. 

3.7 Particle Motion Implementation 

Ladd [51, 52] pioneered simulations of particulate flows using the LBM. In his 

work, he considers the particle to be a solid wall that moves with some velocity. 

The boundary conditions for the moving particle is implemented by the momentum 

augmented half way bounce-back scheme that has been explained in Section 4.6.4. As 

noted earlier, this boundary condition does not conserve mass and hence he allowed 

for some mass influx to the particle. This constrains the density of the particle to be 

higher than that of the fluid. 
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Figure 3.4: Boundary condition for a curved wall (Adapted from Ref. [124]). 
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Aidun et al. [53] proposed an improvement to this method that enables the simu-

lation of particles with solid to fluid density ratio less than 1. His method treats the 

particle as a solid boundary and does not allow the fluid to enter the particle. This 

method is used in this current work and is described below: 

As the particle moves in the computational domain, some of the fluid nodes would 

be uncovered while some may be covered. In such cases, the density of the newly 

appeared fluid node is obtained as the average density of all the neighboring fluid 

nodes. The velocity of the uncovered node is equal to the sum of the velocity of the 

particle and the angular velocity times the position vector joining the lattice node 

and the particle center. From this velocity and density, the equilibrium distribution 

functions are calculated and are assigned as the distribution functions of this node. 

This newly created fluid node gains some momentum. The particle momentum should 

therefore decrease by the same amount to ensure momentum conservation. Similarly, 

when a particle covers a fluid node, it gains the momentum of the fluid node at 

that instant. The local fluid mass is not conserved due to the nodes that appear and 

disappear. However, it has been reported in the work of Aidun et al. [53] that the effect 

of this numerical inconsistency is insignificant and is less than the numerical noise in 

the computations. The total average mass in the macroscopic level is conserved. 

The next step is to compute the drag force acting on the particle. This is done 

by the momentum exchange method as was done in the work of Mei et al. [125]. In 

this method, the momentum transferred by the fluid molecules to the solid particle 

as it bounces back from the surface of the particle is summed up to get the total 

momentum transferred to the particle in a time step. This method eliminates the 

need to calculate the drag force from derivatives as is done in conventional CFD 

methods. The forces due to a particle covering and uncovering a fluid node are added 

to the force found by the momentum exchange method and is used to update the 

velocity and position of the particle. 

This technique gives rise to fluctuations in the force acting on the particle as 

it moves across the lattice nodes. Figures 3.5 and 3.6 show the instantaneous and 
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averaged force acting on the particle in both the direction parallel to the wall and 

normal to it during one of the computations in this work. It is seen that there is a 

high frequency fluctuation (black line) that arises due to the particle covering and 

uncovering fluid nodes. The red line shows the time average of this force over a time 

span tp, where tp represents the time taken by the fluid to traverse a distance equal 

to the radius of the particle (rp/U). The particle motion however, depends on the 

averaged force and is not influenced significantly by these high frequency fluctuations. 

The torque acting on the particle is found out similarly and is used to update the 

angular velocity of the particle. It should be noted that the particle rotation would 

not change its orientation but would change the fluid velocity at its boundary. 

3.8 Prior Works on Particle-Laden Flows using the LBM 

In this section, prior computational works that have used the LBM to study 

particle-laden flows are presented. Areas that have not been addressed in the current 

literature are discussed. 

Ladd [51, 52] was the first to carry out a particle-laden flow simulation using the 

LBM. Ladd performed simulations in the creeping flow regime as well as for low 

Reynolds number (Re) flows. Aidun et al. [53] have done simulations on particles, 

whose density is close to that of the fluid. Qi et al. [54,126–128] have also carried out 

LBM simulations of various flows with circular, elliptical and rectangular particles 

as well as three-dimensional cylindrical particles. A detailed study has been done 

in these works comparing their results with several finite-element solutions of the 

Navier-Stokes equations. It is shown in these works that the LBM is able to capture 

important effects such as the Segré-Silberberg effect as well as the Drafting, Kissing 

and Tumbling phenomena. 

While earlier studies have focused more on laminar flows, recent works have re-

ported particulate flows in turbulent conditions. Gao et al. [55] have studied the 

effect of particles on decaying isotropic turbulence. They found that at a given vol-
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Figure 3.5: Hydrodynamic forces acting on the particle in the direction parallel to 
the wall. 
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ume fraction, the dynamics of the particle-laden flow depends on the effective particle 

surface area and the Stokes number, St. The presence of particles enhances dissipa-

tion at small scales while reducing kinetic energy at large scales. Wang et al. [56] 

have used the LBM to study particulate flow in forced turbulence. They find that the 

particle-laden turbulence is much more dissipative due to the boundary layer near the 

particle surface. Wang et al. [129] have reported LBM simulations of particles in a 

turbulent channel flow. They have studied the turbulence modulation effect as well as 

the concentration of particles across the channel. They found that particles enhance 

the turbulence intensity in the near wall region while suppressing it near the center. 

While the particle concentration is complicated, they report a dynamic equilibrium 

resembling the Segré-Siblerberg effect. 

The number of works that report particle-laden turbulent flow using the LBM is 

few. Moreover, these studies do not report particle-wall interactions and particle-

turbulence interactions. Particle behavior depends on several parameters such as the 

Reynolds number, the Stokes number, the size of the particle relative to the channel 

and the density ratio. The migration of particles as well as the mechanism behind 

this migration has not been analyzed in sufficient detail. Effects such as Saffman lift 

and turbophoresis have not been studied in detail in the context of particulate flows 

in channels and jets. This current work aims to address these issues. A fundamental 

understanding of the physics behind particle-wall and particle-turbulence interactions 

is essential to develop models that can represent particle-laden flows. 

3.9 Scalability 

One of the main requirements of any DNS solver is parallel scalability. DNS 

computations are extremely costly due to the large number of grid points and time 

steps. Ideally, a DNS solver should scale linearly with the number of processors. 

Figure 3.7 shows the scaling results of Clausen et al. [130] for a single phase LBM 

code on upto 65,536 cores. It can be seen that even for this extremely large number 
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4. EVALUATION OF THE LBM CODE 

4.1 Introduction 

The Lattice Boltzmann Method (LBM) simulates fluid flow as described by the 

Navier-Stokes equations. The LBM has been evaluated for several standard test cases 

by many researchers [131, 132]. Since the code to simulate particle-laden flows has 

been developed independently as a part of this work, it is assessed for its accuracy by 

comparing simulated results for a series of flows ranging from simple laminar cases to 

three dimensional turbulent flow conditions. 

This chapter is organized as follows: In Section 4.2, the LBM is employed to study 

a decaying Taylor Vortex. Sections 4.3 and 4.4 present results for the case of a plane 

channel flow and a transient Couette flow. The results for these flows are compared 

with analytical solutions. In Section 4.5, the computed results of a lid-driven cavity 

are compared with the numerical results based on Navier-Stokes equations. In Section 

4.6, the motion of a circular particle (2D) under various conditions is computed and 

compared with results available from the literature. In Section 4.7, a three dimen-

sional channel flow problem is solved using the LBM and its results are compared 

with analytical solutions. In Section 4.8, the sedimentation of a sphere in a duct 

is compared with experimental data available. In Section 4.9, a turbulent channel 

flow problem is computed. All length and time scales are resolved in this study. The 

statistics are compared with the DNS results of Lee and Moser [133] that was obtained 

using a pseudo-spectral code solving the Navier-Stokes equations. The summary of 

the chapter is presented in Section 4.10. In the remainder of this chapter, unless 

otherwise specified, the results are presented in lattice units, i.e., the velocities are 

scaled by the particle speed c, and the distance by the lattice spacing δx. 
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4.2 Decaying Taylor Vortex 

Here, we consider a decaying Taylor Vortex in a square domain of side 2π that is 

periodic in both directions. This problem has no inflow/outflow or wall boundaries 

making it an ideal starting point to solve using the LBM. The initial conditions are 

given as 

u(x, y, 0) = −u0cos(k1x)sin(k2y) (4.1) 

v(x, y, 0) = u0(k1/k2)sin(k1x)cos(k2y) (4.2) 

where u0 is a characteristic velocity scale and k1 and k2 are integers. Figures 4.1 and 

4.2 show the velocity contour plots of the initial field. This velocity field will decay 

due to viscous dissipation if no external energy is supplied. The transient solution 

for this problem is given by Taylor [134] as 

u(x, y, t) = −u0exp[−νt(k12 + k2
2)]cos(k1x)sin(k2y) (4.3) 

v(x, y, t) = u0(k1/k2)exp[−νt(k12 + k2
2)]sin(k1x)cos(k2y) (4.4) 

ν being the viscosity of the fluid. An initial Reynolds number, Re can be defined 

based on the characteristic velocity u0 and length of the domain 2π. The Re in this 

particular case is 20. The domain is represented by having 61x61 lattice nodes across 

the domain. 

In order to assess the accuracy of the computed solution, we compare the velocity 

at the midsection of the domain with the analytical solution. Figure 4.3 shows the u 

velocity normalized by u0 along x = π as a function of y. The curve represents the 

solution computed by the LBM and the points denote the analytical solution. It can 

be seen that the LBM results agree well with the analytical solution. Similarly, Fig. 

4.4 shows the v velocity normalized by u0 along y = π as a function of x. Again, it 

can be seen that the LBM results are in good agreement with the analytical results. 
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Figure 4.1: Contour plot showing the initial u velocity. 
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Figure 4.2: Contour plot showing the initial v velocity. 
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Figure 4.3: u velocity at the midsection (x = π) as a function of y. 
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4.3 Plane Channel Flow 

Now, we consider a problem with wall boundary conditions. The plane channel 

flow refers to a flow that is bounded by walls on the top and bottom. The flow is 

driven by maintaining a constant pressure gradient between the inlet and the outlet. 

As discussed in Chapter 4, in the LBM, the pressure is related to the density by an 

equation of state. So varying the pressure implies varying density. However, the LBM 

allows only weak variations of density. In order to overcome this, we use a body force 

acting on the flow that overcomes the viscous drag at the walls and drives the flow. 

The body force per unit volume, Fx, that should be applied to bring about the same 

effect as the pressure gradient is given as 

∂p 
Fx = . (4.5)

∂x 

The inlet and outlet surfaces are specified as periodic boundaries since there is no 

gradient in the X-direction except the pressure gradient that is now represented by 

a body force. Initially, the flow accelerates until the drag at the walls is balanced by 

the body force. The steady flow has only u velocity component which is a function 

of the distance from the wall y. The analytical velocity profile can be obtained by 

solving the Navier-Stokes equations and is given as 

� ��� � �� 
H2 ∂p y �2 y 

u(y) = − , (4.6)
2µ ∂x H H 

where H is the height of the channel and µ is the dynamic viscosity of the fluid. 

The Reynolds number Re considered in this study is 72. The flow domain is 

resolved by having 40 points across the channel height. We have only 3 points in 

the X-direction because the boundaries are periodic. In this case, the lattice spacing 

δx and time step δt are taken to be 1, yielding the particle speed as 1. Thus all the 

parameters viz., the distance, time etc., are reported in terms of the lattice spacing and 

time step as mentioned earlier. In this case, H = 40 and the relaxation parameter 
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Figure 4.5: u velocity as a function of y. 

is 0.6. For these parameters, the maximum velocity is 0.06. Figure 4.5 shows the 

temporal development of the velocity profile. The dots are the analytical solution. We 

can see that there is a good agreement between the LBM solution and the analytical 

result. 

In order to assess the order of accuracy of the LBM, we repeat this computation 

for different grid sizes and compare the root mean square value (RMS) of the error 

once the solution becomes steady. Figure 4.6 shows the RMS of the error plotted 

against 1/N2 , where N is the number of points that is used to resolve the length of 

the channel. In the LBM framework, the viscosity is dependent on the lattice spacing 

and hence the viscosity of the fluid is different in each case. However, the Reynolds 

number is kept constant and hence a comparison can be made between the error and 

the lattice spacing. It can be seen that the error varies linearly when plotted against 

1/N2 . This suggests that the LBM produces results that are second order accurate 

in space. 
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4.4 Transient Couette Flow 

Next, we consider the transient evolution of velocity profile in a Couette flow. This 

problem involves flow between two walls. The upper wall is fixed while the lower wall 

moves with a constant velocity Uw. A Reynolds number (Re) can be defined on the 

basis of the distance between the walls, H and Uw as 

UwH 
Re = (4.7)

ν 

where ν is the viscosity of the fluid. The Re considered in this study is 120. The flow 

filed is resolved by having 40 points across between the two walls. Since the edges 

perpendicular to the wall are periodic, only 3 lattice nodes is used in that direc-

tion. The boundary condition for the moving wall is implemented by the momentum 

augmented half way bounce-back method that was explained in Section 4.6.4. 

The analytical solution for this problem is given as 

k2π2� �� � ∞ 
y 2Uw 

X 1 kπ − νt 
H2 u(y, t) = Uw 1 − − sin y e (4.8)

H π k H 
k=1 

Figure 4.7 shows the computed (lines) and analytical (dots) velocity profiles at dif-

ferent time instants. The non-dimensional time, T is obtained as 

tUw
T = (4.9)

H 

where t is the actual time. It can be seen from the figure that the LBM solution 

agrees very well with the analytical results. 

4.5 Lid-Driven Cavity Flow 

Until now, the bounded flow problems that we considered had features that were 

one-dimensional. Let us now consider a flow that has two-dimensional features. The 
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flow considered here is a lid-driven cavity. This consists of a square cavity of length 

L, which is bounded by stationary walls on the sides and the bottom. The fluid is set 

in motion by a lid on the top that moves with velocity Ul. This problem is a standard 

test case that is used to benchmark CFD codes. Ghia et al. [135] have studied this 

problem in detail using a vorticity-stream formulation of the Navier-Stokes equation. 

The data from their work will be used to compare the accuracy of the LBM results. 

A Reynolds number (Re) can be defined based on Ul and L as 

UlL 
Re = (4.10)

ν 

where ν is the viscosity of the fluid. Three different Re are considered in this study: 

100, 400 and 1000. A grid of 201 x 201 lattice points is used to resolve the flow field 

in all the cases. Half way bounce-back is used for the stationary walls and momentum 

augmented half way bounce-back is used for the moving wall. The computations are 

carried out until steady conditions are reached. Figure 4.8 shows the u velocity at the 

center of the cavity (x = L/2) as a function of y. The velocity is non-dimensionalized 

by Ul and the position by L. Similarly, Fig. 4.9 shows the v velocity at the center of 

the cavity (y = L/2) as a function of x. The velocity profiles have a strong dependence 

on Re. The lines represent the LBM results and the dots represent the results of Ghia 

et al. The results obtained are in good agreement with those of Ghia et al.. Figures 

4.10 and 4.11 show the u and v contour plots of the case for Re = 400. Important 

features such as the primary vortex is captured properly with the LBM. 

4.6 2D Particle-Laden Flow 

Now, we look at the case of a single two-dimensional circular particle that can move 

in the flow field. In all our cases, the particle is resolved completely and no model 

is used to represent the particle-fluid coupling. Rather this is done at a fundamental 

level by computing the momentum change of the molecules as they bounce from 

the surface of the particle. The implementation of the particle motion has been 



. . . .. .. .. .. .. .. . ... .. .. .. .. .. . . .. . . , . .. .. .. . ... . .. .. , . .. .. . . 

93 

0.0 0.2 0.4 0.6 0.8 1.0

y/L

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
/U

l

Re = 100

Re = 400

Re = 1000

Figure 4.8: U velocity as a function of y at the midsection of the cavity (x = L/2). 
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Figure 4.9: V velocity as a function of x at the midsection of the cavity (y = L/2). 
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Figure 4.10: Contour plot showing the initial u velocity. 
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Figure 4.11: Contour plot showing the initial v velocity. 
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Figure 4.12: Schematic of setup for study of sedimentation of a particle. 

explained in Section 4.7. We now compare our simulation results with those of Feng 

et al. [37, 38] for the case of a particle settling in a channel under the action of an 

imposed force (gravity), i.e. sedimentation, and a particle in a channel flow. The 

simulations of Feng et al. are two-dimensional with the fluid motion computed by 

solving the Navier-Stokes equation with a finite element solver. 

4.6.1 Sedimentation 

In this simulation, a particle is allowed to sediment between two walls under the 

action of an imposed force. The force acts in a direction parallel to the wall. As the 

particle settles, it will accelerate until it acquires a terminal velocity. A Reynolds 

(Re) number is defined based on the particle diameter dp and its terminal velocity vp 

as 
ρvpdp

Re = (4.11) 
µ 

where ρ is the density of the fluid and µ is the viscosity of the fluid. A schematic of 

this setup is shown in Fig. 4.12. The particle is released from different y locations 

during different simulations. 

Based on the value of the Re, Feng et al. [37] observed five distinct regimes of 

particle migration trajectories as listed in Table 4.1. At low Re, the centerline of the 
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Table 4.1: Particle migration regimes for a particle settling in a channel under gravity 
[37]. 

Regime Description Approx. Re 
number range 

A Steady equilibrium with monotonic approach 0.1∼2 
B Steady equilibrium with transient overshoot 3∼20 
C Weak oscillatory motion 20∼60 
D Strong oscillatory motion 60∼300 
E Irregular oscillatory motion >300 

channel would be the equilibrium position for the particle. When the Re increases, the 

top down symmetry of the flow around the particle begins to vanish due to periodic 

vortex shedding. This causes the particle to oscillate. A detailed explanation of this 

particle migration is given in Ref. [37]. 

The first set of simulations we carried out with the LBM was to assess the method 

for the sedimentation problem. The particle is allowed to settle under the influence 

of a force which acts in a direction parallel to the walls. The H/d (channel width to 

particle diameter) ratio is the same as that used by Feng et al. [37]. The inlet and 

the outlet are specified as periodic boundary conditions. A qualitative comparison 

of results obtained from the LBM with that of Feng et al. [37] is presented in Fig. 

4.13. The Re is based on the particle terminal velocity as mentioned earlier. Hence, 

it is not known a priori. This makes it difficult to perform a simulation where our Re 

matches exactly with that of Feng et al. [37]. In our computations, we have performed 

simulations where the Re lies in a range where the particle behavior is similar to that 

observed by Feng et al. [37] and compared with their results. Hence, only a qualitative 

comparison can be made between the two figures. For this reason, the results are not 

plotted on the same graph. 

It can be seen that for the regimes shown above, the LBM trends are in good 

agreement with that of Feng et al. Consider Figs. 4.13a and 4.13b. These figures show 
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Figure 4.13: Particle migration trajectories for sedimentation: (a) Regime A LBM 
(Re = 1.224); (b) Regime A Feng et al. [37] (Re = 0.522); (c) Regime B LBM (Re = 
10.8); (d) Regime B Feng et al. [37] (Re = 3.23); (e) Regime C LBM (Re = 48.15); 
(f) Regime C Feng et al. [37] (Re = 27.6). 
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Figure 4.14: Quantitative comparison of particle migration trajectories at Regime B. 

results for low Re when the particle migrates to the centerline of the channel as its 

equilibrium location. The LBM predicts this migration. There are some quantitative 

differences. For example, when the initial location is about y/H of 0.2, the particle 

reaches the axis at x/H of 7 in the LBM whereas the results of Feng et al. [37] 

show the equilibrium being reached at about 9. The difference is likely on account 

of the difference in Re between our simulations and that of Feng et al. [37]. We 

have computed one case where the Re is reasonably close to that of Feng et al. [37]. 

Figure 4.14 shows a quantitative comparison for this particular case. It can be seen 

that there is good agreement between the current work and that of Feng et al. [37]. 

Regimes D and E are difficult to simulate using the Single Relaxation Time (SRT) 

collision operator of the LBM. To achieve the high Re required to simulated these 

regimes, the relaxation parameter (τ) in the BGK collision operator has to be close 

to 0.5 which would make the computations unstable. The multiple relaxation time 

(MRT) implementation [115, 116] of the LBM can, however, be employed to address 

this challenge and will be used later in this work. 
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4.6.2 Neutrally Buoyant Particle in a Channel Flow 

In the next set of simulations, we consider the motion of a neutrally buoyant 

particle in a channel flow. A Reynolds number Rep based on the particle radius r 

and height of the channel H is defined as follows 

Umaxr
2 

Rep = (4.12)
νH 

where Umax is the maximum velocity of the fluid, and ν is the viscosity of the fluid. 

For this set of simulations, Feng et al. [38] observed the Segré-Silberberg effect 

where the particle migrates to a position between the centerline and the wall irrespec-

tive of the position from which it is released. Figure 4.15 shows a comparison between 

the particle trajectory obtained in this work and that of Feng et al. [38] at a Rep of 

0.875. For this Rep, Feng et al. [38] have reported only the trajectory for the particle 

released from the centerline. There is a good agreement between the result of Feng et 

al. [38] and our results. From the LBM computations, it can be seen that when the 

particle is released from the center, it takes a longer time to come to its equilibrium 

position than when it is released at other locations. The equilibrium position also 

seems to be at some distance midway between the wall and the centerline. These 

trends are in agreement with the results of Feng et al. [38] for a Rep of 0.625 (not 

shown here). 

4.7 Three Dimensional Channel Flow 

Next, we look at a three dimensional problem. The flow scenario considered here 

is that of a channel flow. The flow is driven by a constant pressure gradient. As done 

in the case of a two-dimensional channel flow, the pressure gradient is represented 

by means of a body force. The top and bottom surfaces are walls while the other 

surfaces are periodic. The fully-developed profile corresponds to a parabolic profile 

that varies depending on the position of the point under consideration with respect to 
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Figure 4.16: Steady state velocity profile in a channel flow. 

the walls. The analytical velocity profile is given in Eqn. 4.6. A D3Q19 lattice is used 

in this simulation. The 3D code is parallelized using the Message Passing Interface 

(MPI). A 1D domain decomposition is used for this particular work. The simulation 

is carried out at a Reynolds number of 72. 40 lattice nodes are used to resolve the 

flow in the wall normal direction. Since the other directions are periodic, we have 

16 and 3 lattice nodes in those directions. Figure 4.16 shows the non-dimensional 

velocity profile as a function of the non-dimensional distance from the wall. The lines 

represent the LBM results and the dots the analytical solution. It can be seen that 

there is good agreement between the LBM and the analytical results. 

4.8 Sedimentation of a Sphere in a Duct 

In order to check the particle motion implementation in the 3D code, we simulate 

a case of a sphere sedimenting in a duct. Experimental results are available for this 

problem from the work of Miyamura et al. [136] and computational results (from 

LBM) are available from the work of Aidun et al. [53]. In this problem, a sphere of 

diameter d is released from the center of a square duct of size L. In the creeping 
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Figure 4.17: Terminal velocity of the particle for different d/L ratios. 

regime, when the particle is not bounded by any flow, its terminal velocity u0 can be 

obtained from Stokes drag as 

(ρp − ρf ) 
u0 =

1 
gd2 (4.13)

18 µ 

where ρp and ρf are the density of the particle and fluid respectively, µ is the dynamic 

viscosity of the fluid and g is the acceleration due to gravity. The presence of the 

walls however reduce the terminal velocity of the particle. The reduction factor, 

ut/u0 is plotted against d/L in Fig. 4.17. Two different cases are tried out: one with 

the half way bounce-back boundary condition for the particle and another with a 

second order accurate bounce-back boundary condition for the particle. The flow is 

resolved by having 512 nodes across the length of the duct and 32 x 32 nodes across 

its cross section. The terminal velocities predicted by our LBM code are in reasonably 

good agreement with the experimental results as well as the LBM results of Aidun et 

al. [53]. 
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4.9 Turbulent Channel Flow 

Until now, all the cases that we have examined are laminar flows. Now, we will 

consider a turbulent flow problem. Numerous studies have reported the statistics of a 

fully-developed turbulent channel flow. Kim et al. [137] in a seminal work employed 

the Direct Numerical Simulations (DNS) to study the turbulent channel flow. Sub-

sequently, this work has been used as a benchmark to test DNS codes. In a recent 

work, Lee and Moser [133] have reported DNS simulations of a turbulent channel flow 

for up to a Reτ of 5200. The detailed statistics of these simulations is available at the 

website: http://turbulence.ices.utexas.edu/ and will be used to test our DNS code. 

We consider a turbulent channel flow with friction Reynolds number Reτ ≈ 180. 

Reτ is defined as 
uτ δ 

Reτ = , (4.14)
ν 

where uτ is the friction velocity, δ is half the channel height and ν is the viscosity of 

the fluid. The friction velocity, uτ is obtained as 

r 
τw 

uτ = , (4.15)
ρ 

where τw is the wall shear stress and ρ is the density of the fluid. The setup is similar 

to that of a laminar channel flow. The upper and lower surfaces are walls while the 

other surfaces are periodic. In order to achieve the low viscosities needed for these 

relatively high Re simulations, the relaxation parameter has to be close to 0.5. The 

creates instabilities when the SRT collision operator is used. In order to circumvent 

this issue, the Multiple Relaxation Time (MRT) collision operator is used. Details 

about the lattice weights as well as the transformation matrix for the D3Q19 lattice 

can be found in the Appendix. The LBM has been used in past works to do a DNS 

of a turbulent channel flow [138, 139]. Our work will follow a similar path. Similar 

to the convention adopted in the laminar channel flow, the flow is along the X-axis, 

http://turbulence.ices.utexas.edu
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Figure 4.18: Schematic showing the setup for the DNS of a turbulent channel flow. 

walls are normal to the Y-axis and the Z-direction is periodic. A schematic of the 

flow setup is shown in Fig. 4.18. 

4.9.1 Numerical Parameters 

In Direct Numerical Simulations (DNS) of a turbulent flow, all relevant flow scales 

are resolved. The Kolmogorov length scale, ηk refers to the scale where the inertial 

and viscous effects are in balance. At length scales smaller than ηk, viscous effects 

dominate. The grid used in DNS studies should be at least of the order of ηk so 

that most of the energy containing eddies are captured. Further, in the case of wall-

bounded turbulent flows, there is another length scale lv, referred to as the viscous 

length scale where the effect of the wall is felt. The viscous length scale can be 

determined from uτ and ν as 

lv = 
ν 
uτ 
. (4.16) 
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Usually, lv is smaller than ηk. The grid employed in a DNS study should thus be of 

the order of lv to capture the near wall effects correctly. All the length scales reported 

in this section are normalized by lv and are indicated with a superscript 0+0 . Thus, 

y 
y + = . (4.17)

lv 

In our simulation, we first fix the Reτ as 180. The grid used in our simulation 

is such that the first grid point is at a distance of y+ = 1.25. Since the walls are 

represented by the half-way bounce-back scheme, we have grid spacing normalized 

by the viscous length scale as δx 
+ = 2.5. If we take the grid spacing to be δx = 1.0, 

1 
then the viscous length scale is lv = = 0.4. The next step is to find uτ . In our 

δx 
+ 

simulation, we the fix time step δt = 1 which yields the speed of the fluid particle to be 

1. In order to satisfy the low Mach number constraint, the maximum velocity should 

be about 0.15. Fixing maximum velocity as 0.1, and assuming that umax ≈ 20uτ for 

this Reτ , we get uτ = 5 × 10−3 . From Eq. (4.17), we can get the kinematic viscosity 

as ν = 2 × 10−3 . The relaxation parameter is related to the viscosity as 

ν = (τ − 0.5)c 2 (4.18)sδt. 

The relaxation parameter is found from this equation to be 0.506. Now, from Eq. 

(4.14), we find δ to be 72, which yields the channel height to be 144. The length 

and depth of the channel are 6δ and 3δ respectively. This ensures that the two 

point correlation vanishes at half the length of the domain. Thus the grid size is 

432 × 144 × 216 in the x, y and z directions respectively. 

Since we know uτ , we can find the shear stress at the wall from Eq. (4.15). Taking 

the fluid density to be 1.0, we get τw = 2.5 × 10−5 . A momentum balance on the 

entire domain would yield that at statistically steady conditions, the shear stress at 
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the walls is balanced by the pressure gradient times the channel height. In LBM, we 

represent the pressure gradient as a body force. Thus we have 

dp 2τw
Fx = = . (4.19)

dx H 

This yields the body force as 3.4722 × 10−7 . We now have all the parameters that 

are required for this study. 

4.9.2 Initial Conditions 

In order to generate turbulence, a proper choice of initial condition is critical. In 

this work, the initial mean velocity is specified according to the 1/7th power law as 

� y �1/7 
u(y) = 1 − Umax, (4.20)

δ 

where Umax = 0.1 as discussed previously. The coordinate system at the center of the 

channel so that y varies from −δ to +δ. Now, a perturbation is superimposed on this 

mean field to generate turbulence. This perturbation is such that it excites the first 

few Fourier modes of the turbulence field via nonlinear interactions. This ensures 

that the turbulence is sustained. In this work, we have specified initial conditions as 

done in the work of Premnath et al. [139]. The initial perturbations are: 

� �� � � � � � � � � 
2πy 2πx 2πz 1 4πx 2πz 

u 0 = �L1sin cos sin + cos sin0 L2 L1 L3 2 L1 L3� � � �� (4.21)
1 2πx 4πz 

+ cos sin ,
2 L1 L3 � � ��� � � � � � � � � 

0 2πy 2πx 2πz 4πx 2πz 
v0 = −�L2 1 + cos sin sin + sin sin 

L2 L1 L3 L1 L3� � � �� 
2πx 4πz 

+sin sin ,
L1 L3 

(4.22) 
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2πy 1 2πx 2πz 1 4πx 2πz 

w0 
0 = −�L3sin sin cos + sin cos 

L2 2 L1 L3 2 L1 L3� � � �� (4.23)
1 2πx 4πz 

+ sin cos ,
4 L1 L3 

where L1, L2 and L3 are the lengths of the domain in X, Y and Z directions respectively 

and � is the strength of the perturbation. No perturbations are applied to the density 

field. 

4.9.3 Results and Discussion 

Mean Profiles: The computations are carried out until the turbulence is fully-

developed and the statistics are steady. To ensure this, we determine a time scale tf 

which represents the time taken by a fluid element moving with the friction velocity 

to completely move out of the domain. Thus we have, 

L1 
tf = . (4.24) 

uτ 

For the current case, tf ≈ 1 × 105 . After 1tf the mean profiles are obtained. In 

order to get the mean profiles, averaging is done in the streamwise and spanwise 

direction as well as in time. Temporal averaging was done for another 1tf to get 

results independent of the sample size. Figure 4.19 shows the comparison between 

the mean velocity obtained using the LBM in this work with that obtained using a 

pseudo-spectral solver of the Navier-Stokes by Lee and Moser [133]. Both the velocity 

and the distance are scaled by wall units. It can be seen that for y+ < 25 the two 

profiles agree closely with each other. This shows that the resolution employed near 

the wall is adequate to capture the relevant physics. At y+ > 25, the LBM solution 

agrees reasonably well with the difference being less than 5%. 

For wall-bounded turbulent flows, it is a well established fact that there is a viscous 

+ + +region where the u varies linearly with y . This extends to about y ≈ 10. This 

is followed by a region where the u+ varies logarithmically with y+ . This region is 

referred to as the log-law region and extends from y+ ≈ 30. Figure. 4.20 shows the 
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Figure 4.19: Mean velocity profile normalized by the friction velocity in a fully-
developed turbulent channel flow. 
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Figure 4.20: Semi-log plot of the mean velocity profile normalized by the friction 
velocity in a fully-developed turbulent channel flow. 
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mean velocity profile plotted on a semi-log scale. The linear and log curves are also 

shown. We can see that the LBM predicts both the linear and the log-law region. For 

y+ < 8 there exists a linear region and for y+ > 25, there is a logarithmic variation. 

Next we compare the intensities of the fluctuating quantities. 

Root Mean Square of the Fluctuations: In order to ensure that our com-

putational method captures the physics of turbulent flows correctly, it is important 

to compare the statistics of the fluctuating quantities as well. In this section, we 

compare the fluctuating intensities of the three components of velocities and vorticity 

as well as the pressure. In order to obtain these, the averaging time has to be longer 

than that for the mean profiles. In our current work, we average for about ∼ 3.5tf in 

addition to the spatial averaging. 

Figure 4.21 shows the intensity of the streamwise velocity component normalized 

by the friction velocity. It can be seen that this reaches a peak of about 2.75uτ at 

a y+ of about 15. This is because the production of turbulent kinetic energy peaks 

at this region. As we move toward the wall, the intensities vanish because of the 

no-slip condition. This gives rise to a steep gradient in the region close to the wall. 

As we move toward the center, the intensities decrease since production of turbulent 

kinetic energy decreases. The LBM results capture these effects. Moreover, they are 

in reasonable agreement with the results of Lee and Moser [133], agreeing within 5%. 

Figures 4.22 and 4.23 show the intensity of the wall-normal and spanwise velocity 

fluctuations respectively. As was the case with the streamwise velocity fluctuations, 

the peak occurs at a region close to the wall. Comparison with the results of Lee and 

Moser reveals good agreement, agreeing within 5%. 

Next, we compare the Reynolds stress, i.e. < u0v0 >. Figure 4.24 shows the 

negative of Reynolds stress plotted against the distance from the wall. The Reynolds 

stress is zero at the wall, is maximum at about y+ of 30 and then becomes zero at 

the center-line of the channel. The LBM results agree within 2% of the results of Lee 

and Moser [133]. 
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Figure 4.21: Root mean square (RMS) of the streamwise velocity fluctuations nor-
malized by the friction velocity in a fully-developed turbulent channel flow. 
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Figure 4.22: Root mean square (RMS) of the wall-normal velocity fluctuations nor-
malized by the friction velocity in a fully-developed turbulent channel flow. 
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Figure 4.23: Root mean square (RMS) of the spanwise velocity fluctuations normal-
ized by the friction velocity in a fully-developed turbulent channel flow. 
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Figure 4.24: Reynolds shear stress normalized by the friction velocity in a fully-
developed turbulent channel flow. 
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Figure 4.25: Root mean square (RMS) of the pressure fluctuations normalized by the 
friction velocity in a fully-developed turbulent channel flow. 

We also compare the fluctuating RMS of the pressure. Figure 4.25 shows the 

comparison of the pressure normalized by the wall scaling parameter as a function 

of the distance from the wall. The pressure fluctuations start at a non-zero value at 

the wall. It increases initially, is maximum at about y+ of 30 and then decreases. 

The results agree with those of Lee and Moser [133] within 10%. The differences are 

likely because the LBM allows for weak compressibility effects in the flow whereas the 

results of Lee and Moser are obtained using an incompressible Navier-Stokes code. 

Now, we compare the variations in the fluctuations in the vorticity as we move 

from the wall to the center. Figures 4.26, 4.27 and 4.28 show the fluctuating vorticity 

in the streamwise, wall-normal and spanwise directions normalized by the wall scaling 

parameters. Near the wall, the vorticity components are significantly different from 

each other. This is due to the inhomogeneity and anisotropy of turbulence near the 

wall. At distances away from the wall, all the components of vorticity are similar. 

The LBM results are in good agreement with that of Lee and Moser [133], agreeing 

within 5%. 
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Figure 4.26: Root mean square (RMS) of the streamwise vorticity fluctuations nor-
malized by the wall scaling parameters in a fully-developed turbulent channel flow. 
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Figure 4.27: Root mean square (RMS) of the wall-normal vorticity fluctuations nor-
malized by the wall scaling parameters in a fully-developed turbulent channel flow. 
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Figure 4.28: Root mean square (RMS) of the spanwise vorticity fluctuations normal-
ized by the wall scaling parameters in a fully-developed turbulent channel flow. 
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Figures 4.29, 4.30 and 4.31 show the instantaneous streamwise, wall-normal and 

spanwise velocity contours at the mid-section of the channel (z = 0). Several turbulent 

structures are seen to be present throughout the domain. Streaks of fluid that rise 

from the wall at an angle of about 45o are seen. This corresponds to the direction 

of the most extensional strain. There is enhanced mixing of the fluid as seen from 

Fig. 4.29 where, in most regions of the channel, the velocity is of the same order. 

Likewise Figs. 4.32, 4.33 and 4.34 show the instantaneous streamwise, wall-normal 

and spanwise velocity contours at the mid-section of the channel (z = 0). Similar 

trends as in the earlier figures can be observed here as well. 

4.10 Summary 

In this Chapter, we evaluated the LBM code developed in this study. We tested 

our code to study the following laminar flow problems: a decaying Taylor vortex, a 

channel flow (2D and 3D), transient Couette flow and a lid-driven cavity. We achieved 

good agreements (difference < 5%) with analytical solutions (when available) and 

with measurements and other computations in cases where an analytical solution was 

not available. Then we studied the particle motion implementation in the code. The 

code predicted the Segré-Silberberg effect. The equilibrium position as well as the 

particle trajectory obtained with our code are in good agreement with prior data in 

the literature. Sedimentation of a sphere in a duct is simulated using this code to 

assess the accuracy of 3D computations. Good agreements are obtained with existing 

measurements and computations. Since our objective is to perform direct numerical 

simulations (DNS) of particle-laden flows, we assess the code to check if it predicts 

the turbulent features of a single phase flow. The flow under consideration is a fully-

developed turbulent channel flow. Extensive results are available in the literature that 

report various statistical quantities. In particular, we compare the mean velocity, the 

fluctuating velocity, vorticity and pressure. We find that there is good agreement 

between the existing results and that from our code and the difference is less than 
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Figure 4.29: Contour plot of the instantaneous streamwise velocity in a fully-
developed turbulent flow. 
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Figure 4.30: Contour plot of the instantaneous wall-normal velocity in a fully-
developed turbulent flow. 
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Figure 4.31: Contour plot of the instantaneous spanwise velocity in a fully-developed 
turbulent flow. 
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Figure 4.32: Contour plot of the instantaneous streamwise vorticity in a fully-
developed turbulent flow. 
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Figure 4.33: Contour plot of the instantaneous wall-normal vorticity in a fully-
developed turbulent flow. 
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Figure 4.34: Contour plot of the instantaneous spanwise vorticity in a fully-developed 
turbulent flow. 
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5% in all cases except for fluctuating pressure where the difference is less than 10%. 

This is possibly due to the weak compressibility effects that are allowed in the LBM. 

Now we proceed to report some results of particle-laden flows that were carried out 

with this code. 
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5. POINT-PARTICLE SIMULATIONS OF PARTICLE 

TRANSPORT IN A TURBULENT CHANNEL FLOW 

5.1 Introduction 

In this chapter, the lattice-Boltzmann method (LBM) is employed to carry out 

direct numerical simulations of particles approximated as point-particles in the limit 

of dp < ηk. Parts of this work has been submitted for publication in International 

Journal for Numerical Methods in Fluids. 

As discussed in Chapter 2, the Stokes number St is an important parameter in 

particle-laden flows. The St is defined as the ratio of particle response time to the 

flow time scale, i.e. 
τp

St = . (5.1)
τf 

The particle time constant is generally used as a measure of the response time of the 

particle. If the particle density is much higher than the fluid density, the particle 

time constant, τp is given as, [140] 

d2ρp p
τp = . (5.2)

18µ 

The flow response time can be obtained as 

L 
τf = , (5.3)

U 
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where L represents a length scale and U a velocity scale. For instance, in the case of 

a channel flow, L can be taken as the channel height and U as the maximum mean 

velocity. For turbulent flow in a channel of height, H, St can be written as, 

d2Uρp p
St = . (5.4)

18µH 

Confined particle-laden flows have been studied by several researchers in the past. 

Segre and Silberberg [22,23] studied the lateral migration of neutrally buoyant parti-

cles in a laminar pipe flow. They found that particles move to an equilibrium position 

in the pipe that is mid-way between the wall and the axis of the pipe. This effect is 

referred to as Segre-Silberberg effect. Feng et al. [37, 38] did numerical simulations 

of two-dimensional cylindrical particles in a laminar channel flow. They were able to 

recover the Segre-Silberberg effect. They identified that this effect is caused by the 

balance of three forces acting on the particle: Saffman lift [19], Magnus lift [141] and 

wall repulsion [142,143]. 

Lau and Nathan [11] have studied the transport of particles in a turbulent pipe 

flow. They noticed that the radial particle concentration at the exit of the pipe was not 

uniform. The particles migrated toward or away from the axis depending on their St. 

This has been discussed in detail in Chapter 2. Figure 5.1 shows the concentration 

profile of particles, Θ, normalized by the bulk concentration, Θb at the exit of a 

turbulent pipe flow. At a low St of 0.3, the particle concentration near the wall is 

about 2.5 times the bulk concentration. For a St of 11.2, the particle concentration 

is high near the axis of the pipe. Particles with a St of 1.4 are distributed almost 

uniformly. Thus, as the St increases from 0.3 to 11.2, the radial concentration profile 

changes from a ’U-shape’ to a ’∧-shape’. The reason for this preferential migration 

is not well understood. 

Shao et al. [144] numerically studied the effect of particles on turbulent intensities 

in a channel flow. They found that particle sedimentation on the walls can increase 

turbulent intensity from vortex shedding. If sedimentation effect is negligible, parti-
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Figure 5.1: Concentration profile of particles at the exit of a turbulent pipe flow 
(Adapted from Lau and Nathan [11]). 
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cles decrease streamwise fluctuations of large scale vortices. Kidanemariam et al. [145] 

carried out simulations of particles in open channel flow. They found that particles 

lag the fluid velocity and tend to reside in low-speed streaks. 

Li et al. [146] numerically studied the effect of particle motion on the carrier phase. 

They found that particle feedback causes the turbulence to become more anisotropic 

as mass loading is increased. Kulick et al. [28] experimentally investigated turbulence 

modulation by particles in a channel flow. They found that turbulence was attenuated 

by the addition of particles. The degree of attenuation increased with Stokes number, 

mass loading and distance from the wall. Attenuation is stronger in the transverse 

direction than in the streamwise direction. 

While there are several studies focusing on turbulence modulation by particles, 

there are no numerical studies of particle transport in wall-bounded flows that clarify 

the mechanism responsible for the transport toward the wall or away from it. In this 

chapter, the lattice-Boltzmann method (LBM) is employed to carry out direct numer-

ical simulations of particles approximated as point-particles in the limit of dp < ηk. 

The next section discusses the computational method. This is followed by presen-

tation of the results and their discussion from the point-particle direct numerical 

simulations (PP-DNS). The chapter ends with summary and conclusions. 

5.2 The Computational Method 

The lattice-Boltzmann method (LBM) is employed for our computations. Chapter 

3 describes the LBM in detail and Chapter 4 presents results for several standard 

benchmark cases using the LBM. The implementation of point-particles in the LBM 

framework is described below. 

The physical particles are treated in a Lagrangian framework. Since the particle 

size is smaller than the Kolmogorov length scale, i.e., dp < ηk, the point-particle 



123 

approximation is employed in this work. The drag force, Fd, acting on each particle 

is found out through a drag model and is given as 

1 
Fd = ρf |uf − up|(uf − up)CdA, (5.5)

2 

where ρf is the fluid density, up is the particle velocity, uf is the fluid velocity at the 

location of the particle, Cd is the drag coefficient and A is the cross-sectional area. 

Since the particles are spherical, the cross-sectional area, A, is given as, 

π 
A = d2 

p, (5.6)
4 

where dp is the particle diameter. Now, the location of the particle may not always 

coincide with the lattice point where fluid velocities are solved for. In order to obtain 

the velocity, a tri-linear interpolation using the neighboring eight points is employed 

[147]. The drag coefficient, Cd, for a particle in Stokes flow is given by 

24 
Cd = , (5.7)

Re 

where Re is the Reynolds number based on the particle size and the relative velocity 

magnitude. Re is defined as 
|uf − up|dp

Re = . (5.8)
ν 

5 A high-Reynolds number correction is incorporated into this expression to determine 

drag force acting on particles in turbulent flows. This modified drag coefficient is [76] 

24 � � 
Cd = 1 + 0.15Re0.687 . (5.9)

Re 

To account for particle feedback on the fluid, the drag force is applied as an external 

body force to the lattice-Boltzmann equations with a reversed sign. This force is 

added to the source term in the lattice-Boltzmann equation. 
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Particle-particle collisions are modeled as elastic collisions following the approach 

of Li and McLaughlin [146]. If the particle computations are carried out serially, 

computational time for collision detection scales as O(N2), where N is the number 

of particles considered. In order to minimize this, the particle computations have 

been parallelized. The particles in each processor are stored as objects of a doubly 

linked-list in the corresponding processor. In the first step, particles are checked 

for collision with other particles in the same processor. In the next step, particles 

are checked for collision with other particles in the neighboring 26 processors since 

a three-dimensional domain decomposition is employed in this work. If a particle 

moves out of the processor limits, its information is transferred to the neighboring 

processor into which it moves and its information in the old processor is deleted. 

With the current implementation, computational time scales as O(N2/P ), where P 

is the number of processors. This also ensures the load is reasonably balanced among 

all processors. 

A turbulent channel flow with friction Reynolds number Reτ ≈ 180 is simulated. 

Reτ is defined as 
uτ δ 

Reτ = , (5.10)
ν 

where uτ is the friction velocity, δ is half the channel height and ν is the kinematic 

viscosity of the fluid. The friction velocity, uτ , is obtained as 

r 
τw 

uτ = , (5.11)
ρ 

where τw is the wall shear stress and ρ is the density of the fluid. In order to achieve 

the low viscosities needed for these relatively high Re simulations, the relaxation 

parameter has to be close to 0.5. This would generate instabilities if a single relaxation 

time (SRT) collision operator is used. In order to circumvent this issue, the multiple 

relaxation time (MRT) collision operator is employed as discussed earlier. Details 

about the lattice weights as well as the transformation matrix for the D3Q19 lattice 

can be found in Appendix A. The LBM has been used in past works to carry out 
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Figure 5.2: Schematic showing the setup for the DNS of a turbulent channel flow. 

DNS of a turbulent channel flow [138, 139]. The flow is along the X-axis, walls are 

normal to the Y-axis and the Z-direction is periodic. A schematic of the flow setup 

is shown in Fig. 5.2. 

The computations are carried out until the turbulence is fully-developed and the 

statistics are steady. In order to get the mean profiles, averaging is done in the 

streamwise and spanwise direction as well as in time. 

5.3 Results and Discussion 

The results and discussion below will consider the impact of particles on the mean 

flow and turbulent kinetic energy in the channel and also the effect of St on particle 

distribution across the cross section of the channel. The particle concentration profiles 

are obtained by separating the domain into slices in the Y-direction (i.e. normal to 

the walls) and then counting the number of particles in each slice. This is then 

normalized by the number of particles that should be in the slice if the particles are 

uniformly distributed. Thus each symbol represents a non-dimensional concentration 

of particles in that slice. Since the slices are discrete and averaging is done over a 

finite duration, the non-dimensional concentration shows some fluctuations. These 
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Table 5.1: Parameters employed for the PP-DNS simulations. 

Case St ρp/ρf dp/ηk mp/mf 

1 0.001 1 0.2 9.31 × 10−6 

2 0.5 450 0.2 4.12 × 10−3 

3 2 1800 0.2 1.67 × 10−2 

4 10 9000 0.2 8.38 × 10−2 

5 40 36000 0.2 3.35 × 10−1 

6 100 90000 0.2 8.37 × 10−1 

7 0.5 112.5 0.4 8.38 × 10−3 

8 100 22500 0.4 1.676 

fluctuations would decrease if we increase the number of particles or average over a 

long time. A curve is fit through the points to show the trends more clearly. Table 

5.1 lists the conditions studied in this work. Notice from Table 5.1 that the particle 

diameter is smaller than the Kolmogorov length scale, i.e. dp/ηk < 1, for all cases 

considered. Ten thousand particles are employed in the domain for the simulations. 

The Reynolds number based on the friction velocity, Reτ , is 180. This corresponds 

to a bulk Reynolds number of about 6500. 

It is expected that as the St → 0, i.e. the tracer particle limit, the particles 

which are initially distributed uniformly in the domain will remain so. Figures 5.3a-

5.3c show the normalized mean velocity, the turbulent kinetic energy (TKE), and 

particle number per unit volume, respectively, in a cross section of the channel. As 

expected, the results for the mean velocity and TKE show negligible difference from 

the single-phase flow results because the mass loading is only 9.31 × 10−6 . Figure 

5.3c which shows the normalized particle concentration in a transverse cross-section 

of the channel shows a fairly uniform concentration. 
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Figure 5.3: (a) Mean velocity profile; (b) turbulent kinetic energy profile; (c) particle 
concentration profile when St = 0.001, mp/mf = 9.31 × 10−6 , and dp/ηk = 0.2 (Case 
1). The symbols in (c) represent the concentration in each slice and the curve is a fit 
through these symbols. 
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Next, consider the case where St = 0.5 and particle mass loading is 4.12 × 10−3 . 

Figure 5.4a compares the mean velocity in the cross-section of the channel with and 

without particles. There is no significant influence of the particles on the mean veloc-

ity. At this mass loading, the momentum is primarily with the carrier phase. Figure 

5.4b shows the normalized turbulent kinetic energy (TKE). As expected, the effect of 

the particles is negligible. As turbulence statistics are derived from the instantaneous 

and mean velocity profiles, these results also implicitly suggest that there is negligi-

ble effect on the instantaneous velocity flow field from the presence of the particles. 

Figure 5.4c shows the particle concentration profile in a transverse cross-section of 

the channel. While the mean fluid velocity and TKE are not noticeably affected by 

the particles, the particle transport is significantly affected by the turbulence, i.e. 

one-way coupling is important. The particles concentrate near the walls. The nor-

malized concentration at the wall is about a factor of seven greater than the average 

and consequently in the core of the channel, it is about 50% lower. 

The increased concentration of particles near the wall can be explained by the 

phenomenon of turbophoresis. Turbophoresis is the process by which particles are 

transported down gradients of TKE. In a region of high gradient in TKE, particles 

with lower inertia, i.e. particles with lower St, are transported by the high energy 

eddies preferentially from a region of high TKE to low TKE. The greater the inertia 

of the particle, the lesser this tendency. Figure 5.4b shows the highest TKE is at a 

y+ ≈ 18. The TKE decreases sharply to zero at the wall. Hence, particles in the 

region of y+ ≈ 18 are transported to the wall where they concentrate because the low 

energy eddies near the wall do not transport them away from the wall fast enough. 

The gradient toward the center of the channel is noticeably lower than toward the 

wall. Hence particle transport toward the center is less impacted. 

Figures 5.5 and 5.6 show results for St = 2 (Case 3) and St = 10 (Case 4) 

respectively. From Figs. 5.5a and 5.6a, it can be seen that the mean velocity profile is 

not affected significantly at either of these St. This is expected since the mass loading 

in both these cases is small, i.e. mp/mf < 0.1. Figures C.9 and 5.6b show that TKE 
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Figure 5.4: (a) Mean velocity profile; (b) turbulent kinetic energy profile; (c) particle 
concentration profile when St = 0.5, mp/mf = 4.12 × 10−3 , and dp/ηk = 0.2 (Case 
2). The symbols in (c) represent the concentration in each slice and the curve is a fit 
through these symbols. 
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profile is close to the single-phase results, although the differences in Fig. 5.6b are 

noticeable, probably because of the greater mass loading. Figure 5.5c shows that the 

particle concentration near the wall is about 5 times higher than the bulk average 

concentration for St = 2, i.e. it decreases from a factor of 7 when the St was lower in 

Case 2. As the St is increased to 10, i.e. Case 4, the near wall concentration is about 

a factor 2 higher than the bulk average concentration. In the core of the channel, i.e. 

−0.4 < y/H < 0.4, the concentration is nearly uniform in both cases. Turbophoresis 

causes the large concentration of particles near the wall. The concentration near 

the wall decreases as St increases since particle inertia increases with St. Increasing 

particle inertia increases the response time of the particles to the turbophoretic force. 

Figures 5.7 and 5.9 show results for St = 40 (Case 5) and St = 100 (Case 6), 

respectively. For Case 5, the particle mass loading, mp/mf , is 0.335. The effect of 

the increased mass loading on the mean velocity profile is apparent in Fig. 5.7a. 

The mean velocity is now lower than its single-phase counterpart. In the case of a 

single-phase flow, the maximum mean velocity normalized by the friction velocity, 

uτ , is about 19, whereas it is roughly 17 in Case 5. The reduction in mean velocity 

occurs because the momentum is shared between the carrier and dispersed phases. 

The TKE shown in Fig. 5.7b is lower than the single-phase results as well. The peak 

normalized TKE decreases from 4.5 to 3.5. A decrease is observed throughout the 

channel. The decrease in TKE is expected because of the reduction in mean velocity. 

Note that uτ which is employed for the normalization does not change across the 

cases considered. If the normalization is carried out using mean velocities for the 

single-phase flow and the particle-laden flow respectively, the TKE profiles overlap 

more closely as shown in Fig. 5.8 confirming that the reduction in TKE is on account 

of the reduction in mean velocity. Figure 5.7c shows the concentration profile of 

particles in the channel. At this St, the particles are almost uniformly concentrated 

in the channel. So as St → 0, e.g. Case 1, and at higher St, e.g. Case 5, the particle 

distribution is relatively uniform, in one case because the particles have negligible 
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Figure 5.5: (a) Mean velocity profile; (b) turbulent kinetic energy profile; (c) particle 
concentration profile when St = 2, mp/mf = 1.67 × 10−2 , and dp/ηk = 0.2 (Case 3). 
The symbols in (c) represent the concentration in each slice and the curve is a fit 
through these symbols. 
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Figure 5.6: (a) Mean velocity profile; (b) turbulent kinetic energy profile; (c) particle 
concentration profile when St = 10, mp/mf = 8.38 × 10−2 , and dp/ηk = 0.2 (Case 
4). The symbols in (c) represent the concentration in each slice and the curve is a fit 
through these symbols. 
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inertia and respond instantaneously to the turbulence and in the other case because 

the particles have too high an inertia to respond to the turbulence. 

For Case 6 with St = 100, the mas loading is even higher at 0.837 and hence 

the deviation from the single-phase results is even more noticeable. From Fig. 5.9a, 

notice that the normalized maximum mean velocity has now dropped to 15, compared 

to 17 for Case 5 and 19 for the single-phase flow. Notice in Fig. 5.9b, notice that the 

peak TKE has dropped to about 2.5, compared to 3.5 for the case where the mass 

loading was 0.335 (Case 5) and 4.5 for the single-phase flow. Moreover, the location 

of the peak TKE has moved away from the wall, from y+ ≈ 15 for the single-phase 

flow to y+ ≈ 20. It is known that the location of peak TKE moves closer to the 

wall as Reynolds number, Re, increases [133]. Since the mean velocity decreases in 

this case, the Re decreases and this could be the reason why the location of peak 

TKE moves away from the wall. When the TKE profile is normalized by the mean 

kinetic energy as shown in Fig. 5.10, the particle-laden flow and the single phase flow 

profile are similar to each other suggesting that the change in TKE is account of the 

reduction in mean velocity. 

Figure 5.9c shows particle concentration profile when the mass loading is 0.837 and 

St is 100. Interestingly, a distinct peak near the center is now evident. As discussed 

earlier, the center is a region of minimum TKE. The effect of turbophoretic force at 

the center becomes important as the St increases. This is consistent with what was 

observed in the experimental work of Lau and Nathan [11]. It is possible that at 

higher St, the longer response time of the particles restrains the particles from lateral 

movement. In the cases where there was a distinct rise of concentration of particles 

near the wall, which, in turn, resulted in a uniform, but lower, concentration in the 

core of the channel, e.g. Case 2, the tendency of particles to concentrate at the walls 

dominated the distribution of the particles. In the absence of this tendency, local 

gradients in TKE can act to concentrate particles locally, e.g. at the center. 

Next the effect of the mass loading on the mean velocity, TKE and concentration 

profiles when keeping St constant are assessed. Case 7 has the same St as Case 2 and 
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Figure 5.7: (a) Mean velocity profile; (b) turbulent kinetic energy profile; (c) particle 
concentration profile when St = 40, mp/mf = 3.35 × 10−1 , and dp/ηk = 0.2 (Case 
5). The symbols in (c) represent the concentration in each slice and the curve is a fit 
through these symbols. 
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Figure 5.8: Turbulent kinetic energy normalized by the square of the mean velocity 
for Case 5. 
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Figure 5.9: (a) Mean velocity profile; (b) turbulent kinetic energy profile; (c) particle 
concentration profile when St = 100, mp/mf = 8.37 × 10−1 , and dp/ηk = 0.2 (Case 
6). The symbols in (c) represent the concentration in each slice and the curve is a fit 
through these symbols. 
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Figure 5.10: Turbulent kinetic energy normalized by the square of the mean velocity 
for Case 6. 
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Case 8 the same St as Case 6, but the mass loading is doubled. The density of the 

particle is adjusted to get the same St. The mass loading remains relatively small 

at 8.38 × 10−3 for Case 7, but the mass loading when St = 100 in Case 8 is large at 

1.676. 

Figures 5.11a and 5.11b show the mean velocity and TKE profile respectively 

for St = 0.5 and mass loading 0.00838 (Case 7). The effect of the presence of the 

particles is noticeable, but the differences are within 5%. This is on account of the 

higher mass loading of 8.38 × 10−3 in Case 7 relative to Case 2. The effect of the 

flow on the particles is evident in Fig. 5.11c. The concentration profile shows a peak 

near the walls as was seen for Case 2. The mass loading, mp/mf , in this case is 

small (mp/mf = 0.00838) and hence a one-way coupling is predominant. Comparing 

with Case 2, we see that even though the St is same for both the cases, the particle 

concentration near the wall is reduced. The reduction is because the increased mass 

loading for fixed St is achieved by increasing particle diameter. A larger particle would 

have a smaller drag per unit mass since the surface area per unit mass decreases. Thus 

the influence of the turbulent eddies on the particle motion decreases and hence the 

effect of turbophoresis decreases. 

Figure 5.12a shows the mean velocity profiles for St = 100 and mass loading of 

1.676 (Case 8). In this case, the mass loading is relatively large (mp/mf = 1.676). 

In fact, this is the case with the largest mass loading. Hence, a significant decrease 

in the mean velocity is observed. From Fig. 5.12a, we can see that the normalized 

maximum mean velocity is about 12.5, whereas it is roughly 19 in the single-phase 

flow. Figure 5.12b shows the TKE profile. Again, the effect of the particles is clearly 

seen. The peak normalized TKE decreases from 4.5 for the single-phase flow to 1.5 

for the current case. It is seen that the near the wall (y+ < 20), the shape of the 

TKE profile looks similar to that of the single-phase profile. However, as we move 

farther from the wall, the TKE keeps increasing and reaches a peak value of about 

1.5 at y+ ≈ 70. It then decreases and the decrease is similar to the single-phase flow. 

Figure 5.13 shows the TKE profile normalized by the mean velocity square. It is seen 
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Figure 5.11: (a) Mean velocity profile; (b) turbulent kinetic energy profile; (c) particle 
concentration profile when St = 0.5, mp/mf = 8.38 × 10−3 , and dp/ηk = 0.4 (Case 
7). The symbols in (c) represent the concentration in each slice and the curve is a fit 
through these symbols. 
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that this profile differs considerably from the single-phase flow. The Re based on the 

maximum mean velocity and the channel height is 4500 for this case, which lies in 

the laminar-turbulence transition regime. This might explain the difference in shape 

of the TKE profile seen in Fig. 5.12b and Fig. 5.13. Metzger and Klewicki [148] 

suggest that at low Re, the fluctuations in the buffer layer do not grow accordingly 

with the fluctuations outside the buffer layer which might cause a dramatic shift in 

the location of peak TKE away from the wall. The particle concentration profile is 

shown in Fig. 5.12c. A similar high concentration near the center is observed as was 

seen when the mass loading and the particle diameter were a factor of two lower, and 

the St was 100 (Case 6). 

5.4 Summary and Conclusions 

The lattice-Boltzmann method is employed to carry out direct numerical simu-

lations of particle-laden turbulent flows in a channel under the approximation that 

the particle diameter is smaller than the Kolmogorov length scale and it can be ap-

proximated as a point particle. Two-way coupling is implemented through the drag 

coefficient and an external force term in the discretized Boltzmann equation. The 

simulations show that the Stokes number, St, mass loading of particles, i.e. ratio of 

mass of dispersed to carried phase, mp/mf , and particle diameter, dp, are important 

parameters that determine the distribution of the particles and the impact of the 

particles on the fluid velocity flow field. 

At relatively low mass loading, typically less than 0.1, the impact on the mean 

velocity flow field and the turbulent kinetic energy is not significant. But, under these 

conditions, the preferential motion of particles in the lateral direction is impacted by 

the fluid motion. The impact depends on the St. When the St is infinitesimally 

small, the particles are uniformly distributed across the cross-section of the chan-

nel. As St is increased, the particle concentration near the wall initially increases 

and then decreases. At even higher St, the particle concentration near the center 



, 
I 

I 
I 

I 

,, 

, , 

I ' 
I ' 

' ' ' 

-----

----------------

I=-= 

-----. -

141 

0 20 40 60 80 100 120 140 160 180
y +

0

5

10

15

20

<
U
>
/u

τ

Particle-laden flow

Single phase flow

(a) 

0 20 40 60 80 100 120 140 160 180
y +

0

1

2

3

4

5

6

T
K
E
/u

2 τ

Particle-laden flow

Single phase flow

(b) 

0.4 0.2 0.0 0.2 0.4
y/H

0

2

4

6

8

10

n
p
/n

p
,a
vg

(c) 

Figure 5.12: (a) Mean velocity profile; (b) turbulent kinetic energy profile; (c) particle 
concentration profile when St = 100, mp/mf = 1.676, and dp/ηk = 0.4 (Case 8). The 
symbols in (c) represent the concentration in each slice and the curve is a fit through 
these symbols. 
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Figure 5.13: Turbulent kinetic energy normalized by the square of the mean velocity 
for Case 8. 
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of the channel increases slightly. This preferential motion, and resulting concentra-

tion, is attributed to turbophoresis as that is the only mechanism that can result in 

preferential lateral movement of particles within the framework of these simulations 

where point particles are considered. Turbophoresis results in preferential motion 

when the tendency for turbulent eddies to move particles is opposed by their inertia. 

In fact, larger diameter particles with the same St as smaller diameter particles, are 

less impacted by turbophoresis because the larger particle would have a smaller drag 

per unit mass. As particle mass loading increases, the fluid flow field is increasingly 

affected, with the mean velocity decreasing relative to the single phase flow mean 

velocity. The turbulent kinetic energy also decreases as a result of the decrease in 

the mean velocity. In summary, preferential movement and distribution of particles 

is affected by St and particle diameter whereas the impact on the mean velocity is 

primarily affected by the mass loading. 
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6. EFFECT OF STOKES NUMBER ON PARTICLE 

TRAJECTORIES IN A LAMINAR CHANNEL FLOW 

6.1 Introduction 

The last chapter presented point-particle simulations results for particle-laden 

flow in a channel. In this chapter, particle-resolved simulations of laminar channel 

flow are discussed. The effect of Stokes number on the migration of a particle in a 

laminar channel flow is studied. Part of this work was recently published in Computers 

and Fluids (A. S. Jebakumar, K. N. Premnath, and J. Abraham, Lattice Boltzmann 

method simulations of Stokes number effects on particle trajectories in a wall-bounded 

flow, Computers and Fluids, available online, July 31, 2015.) [149]. 

6.2 Stokes Number 

The Stokes number (St) is the ratio of particle response time to the flow response 

time. A particle with a low St adjusts itself to the flow almost instantaneously whereas 

a particle with a high St takes a long time to accommodate to the flow. The St of 

a particle is an important parameter that determines its behavior in several flows 

of interest. The response time τp for a spherical particle at low Reynolds number is 

given by [10] as 
(2ρp + ρf )d

2 
p

τp = , (6.1)
36µ 

where ρp is the density of the particle, ρf is the density of the fluid, dp is the diameter 

of the particle and µ is the viscosity of the fluid. If the particle density is much higher 

than the fluid density, this reduces to 

d2ρp p
τp = . (6.2)

18µ 
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This can be expressed alternatively as 

� � 
d2 
p ρp

τp = , (6.3)
18ν ρf 

where ν is the kinematic viscosity of the fluid. This expression brings in a ratio of the 

particle density to the fluid density. The flow response time can be obtained from a 

characteristic length scale Lc and velocity scale Uc of the bulk flow as 

Lc
τf = . (6.4)

Uc 

For a channel flow, the characteristic velocity Uc can be taken as the maximum 

velocity Umax and the channel height H can be taken as the characteristic length 

scale Lc. This gives an expression for St as 

d2ρp Umax 
St = p 

. (6.5)
18µH 

The aim of this work is to understand the effect of St on the migration trajectories 

of particles in a laminar channel flow by carrying out Direct Numerical Simulations 

(DNS) with the particle itself being numerically resolved. 

6.3 Segré - Silberberg Effect 

Segré-Silberberg effect refers to the phenomenon of neutrally buoyant particles 

settling at a position between the wall and center-line in a pipe flow. In Section 4.6.2, 

computations of a neutrally buoyant particle in a channel flow were presented. The 

migration trajectories are redrawn again in Fig. 6.1. The mechanism of this particle 

migration is explained by Feng et al. [38] in terms of the forces acting on the particle 

viz. the Saffman lift, the Magnus lift and the wall repulsion. A brief description of 

the mechanism will now be provided. 
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Figure 6.1: Comparison of the particle migration trajectories for a neutrally buoyant 
particle in a channel flow at Rep = 0.875. 
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Figure 6.2: Schematic of a particle in a uniform shear flow; (a) linear velocity profile, 
(b) relative velocity of fluid when particle is lagging fluid, (c) relative velocity of fluid 
when particle is leading fluid. 

The Saffman lift force is a lateral force that tends to move a particle that either 

leads or lags the fluid velocity. In a linear velocity profile, the Saffman lift would 

push a particle that leads the fluid toward the region with low velocity and vice 

versa. Figure 6.2a shows a particle in a uniform shear flow. If the particle lags the 

fluid velocity, then the relative velocity (see Fig. 6.2b) on top of the particle would 

be higher than that on its bottom. This develops a high pressure beneath the particle 

pushing it upwards. Similarly, if the particle leads the fluid velocity, then the relative 

velocity (see Fig. 6.2c) will be higher beneath the particle which develops a high 

pressure on top of the particle pushing it downward. 

However, in the case of a particle in a channel flow, the curvature in the velocity 

profile of the undisturbed flow tends to reverse this trend. Figure 6.3 shows the 

relative velocity of the fluid with respect to the particle for two possible cases: one 

with a large slip velocity where the particle lags the fluid in all regions and another 

with a small slip velocity where the particle velocity lags the fluid. It should be noted 
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Figure 6.3: Schematic illustration of the relative velocity of a particle in a parabolic 
velocity profile; a) large slip velocity b) small slip velocity. 

that since the particle is released with zero velocity, the particle would lag behind 

the fluid most of the time. However, it is possible that when a particle is pushed 

from a streamline with a higher velocity to one with lower velocity, it may lead the 

fluid for a short time. When the slip velocity is large, the relative velocity of fluid on 

the free stream side of the particle would be higher than that on its wall side. This 

would cause a high pressure buildup beneath the particle pushing it away from the 

wall. When the slip velocity is small, the behavior is different. Consider the sketch 

in Fig. 6.3b. It is seen that the magnitude of relative velocity is higher on its wall 

side than on its free stream side. This causes a high pressure buildup on top of the 

particle which pushes it toward the wall. Hence, in this case, for most part of the 

particle motion (except the initial transient time interval), the Saffman lift pushes 

the particle toward the wall. The direction of Saffman lift is the same even if the 

particle leads the fluid with a small slip velocity. The center will be an equilibrium 

position where there would be no effect of Saffman lift on the particle. 

Figure 6.4 shows the velocity contour of the fluid during one of the simulations 

in which the particle is moving. The particle position at the time when the velocity 

contour plot is taken is also shown. The undisturbed velocity profile is a parabolic 
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profile. It can be seen that the presence of the particle alters the velocity distribution 

in its vicinity. Figure 6.5 shows the relative velocity magnitude of the flow with 

respect to the particle. It is evident from this figure that the velocity between the 

particle and the bottom wall is higher than the velocity on the other side. This causes 

a high pressure buildup on top of the particle which pushes it toward the wall. 

The movement of the particle toward the wall is opposed by wall repulsion [37,38]. 

This is a force that arises when there is a relative motion between the wall and the 

particle. During this relative motion, a thin layer of fluid is squeezed in the gap 

between the particle and the wall, increasing the pressure which pushes the particle 

away from the wall. This force is similar in nature to lubrication force. If only wall 

repulsion force existed, the equilibrium position would be where wall repulsion from 

the top and bottom wall are equal and opposite each other. This would correspond 

to the centerline of the channel. 

The Magnus lift force arises on account of the rotation of the particle. When a 

particle rotates in a uniform flow, it would push fluid in the direction of motion on 

one side and against the direction of motion in the opposite side. This would cause 

a velocity gradient, which in turn causes a pressure gradient pushing the particle 

toward the low pressure region. At the centerline of the channel, the particle would 

not rotate since the undisturbed velocity profile is symmetric about the center line 

and hence the center would be an equilibrium position. Thus, if a particle is released 

from the centerline, it would not experience the Magnus lift force. Now, if the particle 

is displaced slightly from the center, Saffman lift pushes the particle toward the wall 

and it keeps moving until Saffman lift, Magnus lift and wall repulsion are in balance. 

This would be a stable equilibrium for the particle and it would be at a location 

between the wall and the centerline. The centerline is not a stable equilibrium. It 

will be shown later in this work that the Magnus lift force also acts in the same 

direction as the Saffman lift. 
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Figure 6.4: Velocity contour plot 

Figure 6.5: Relative velocity magnitude of the fluid with respect to the particle 
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Table 6.1: A list of cases examined in this study. 

Case ρp ρf Umax St 
1 0.72 1.0 0.16 0.5 
2 3.36 1.0 0.16 1.6 
3 26.88 1.0 0.16 11.4 
4 33.60 1.0 0.16 14.2 
5 96.00 1.0 0.16 40 
6 120.00 1.0 0.16 50 
7 168.00 1.0 0.16 70 
8 240.00 1.0 0.16 100 

6.4 Results and Discussion 

Table 6.1 shows a list of cases that are examined in this work. The particle time 

constant for cases 1-4 are calculated using Eq. (6.1) while that for the other cases are 

calculated using Eq. (6.2). 

Figure 6.6 shows the trajectory of the particle in the channel for four different St 

(0.5, 1.6, 11.4 and 14.2). The St is varied by changing the density of the particle. 

The particle is released from a location y/H = 0.25. The channel height is 4 times 

the particle diameter. It can be seen that for St = 0.5, the particle behaves as a 

neutrally buoyant particle in a channel flow exhibiting the Segré-Silberberg effect 

(See Fig. 6.1 and related discussion). When St = 1.6, the particle behavior is not 

very different from St = 0.5, but minor oscillations about the equilibrium position is 

evident. When St = 11.4, the particle moves all the way to the center of the channel 

and farther towards the top wall and settles in its equilibrium position close to the 

top wall. The initial motion of the particle toward the top wall is just a transient 

effect. It should be noted that the channel flow has two equilibrium positions, one 

near the top wall and one near the bottom wall on account of its symmetry about the 

center line. For clarity, 1-y/H is plotted against x/H for this case. It is seen that the 
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Figure 6.6: Particle migration trajectories for different St numbers. (For St = 11.4 
and St = 14.2, 1-y/H is plotted against x/H). 

particle oscillation about the equilibrium position has now become noticeable. Similar 

behavior is observed for St = 14.2, but the mean is more close to the centerline. 

For the lower St cases, the behavior of particles settling at a location between 

the wall and the axis is similar to that of a neutrally buoyant particle and has been 

explained by Feng et al. [38] in terms of Saffman lift, Magnus lift, curvature of the 

undisturbed velocity profile and wall repulsion. 

It is of interest to understand why the particle with the larger St oscillates about 

this equilibrium position rather than remain at the position. A particle with a larger 

St has a longer response time which implies that it has a higher inertia than a particle 

with a lower St. The particle is released from y/H = 0.25. During the initial transient 

time, Saffman lift pushes the particle away from the wall owing to the large slip 

velocity. Hence the particle moves toward the center. As it comes closer to the 

center, the particle’s velocity in the axial direction increases and so its slip velocity 

decreases. As a result of inertia, the particle moves beyond the center line and moves 
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closer to the equilibrium position near the top wall. Since the slip velocity is now 

small, Saffman lift acts to push the particle toward the wall and the particle moves 

upwards. As it approaches the equilibrium position, the sum of the Saffman lift, 

Magnus lift and wall repulsion force decreases. But, due to its inertia, it continues to 

move further toward the wall until the wall repulsion overcomes the inertial effects. 

At this position, the wall repulsion is higher than the Saffman and Magnus lift and 

this unbalanced force causes the particle to move back toward its equilibrium position. 

Again, due to inertia it will overshoot a short distance and then move back toward 

the wall and this oscillation continues. Mortazavi and Tryggvason [39] have reported 

similar oscillations of drops in a channel flow at high Re number. Further studies 

should be conducted to see if the oscillations are just transient effects. 

In order to determine how the particle behaves when the St is increased further, 

four more cases are considered with St of 40, 50, 70 and 100. The trajectories for these 

particles are shown in Fig. 6.7. Increasing the St appears to increase the amplitude 

although changes are small for the range considered. Compared to the result for St 

of 11.4 shown in Fig. 6.6, the frequency of the oscillation for St of 50 in Fig. 6.7 

is about a factor of four lower. The larger amplitude and the lower frequency are 

consistent with larger inertia particles adjusting slower to changes in the forces. 

Simulations are carried out to determine if the initial position at which the particle 

is released from has an effect on its equilibrium position. Figure 6.8 shows the migra-

tion trajectories for particles released from varying y/H distance. It can be seen that 

the particle migrates to the same position irrespective of the location from which it is 

released. Also, it should be noted that when the particle is released from the center it 

travels a longer distance before reaching its equilibrium position. This is because, as 

mentioned earlier, the centerline is also an equilibrium position but not a stable one. 

However, depending on the initial location there seems to be a minor difference in 

the amplitude of the oscillations. Particles released closer to the equilibrium position 

have smaller amplitude of oscillations than those released farther away. 
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Figure 6.7: Particle migration trajectories for high St numbers. 
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Figure 6.8: Effect of initial position on the particle migration trajectories (St = 1.6). 
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Next, the effect of particle size relative to the channel width, i.e. H/d, for a given 

St is studied. Figure 6.9 shows the particle migration trajectories for 3 different H/d 

ratios. The velocity of the fluid and density of the particle are changed so that the St 

remains the same in all cases. As the H/d ratio becomes larger, the particle moves 

closer to the wall. This is because as the relative size of the particle decreases, the wall 

repulsion force decreases, allowing the Saffman and Magnus lift to push the particle 

closer to the wall. It is also seen that at higher H/d ratios, the particle begins to 

exhibit oscillations. This can be explained by understanding the role of the Magnus 

lift in more detail. Feng et al. [37] report that the presence of a wall near the particle 

tends to suppress the rotation of the particle and thereby reduce the Magnus lift force 

acting on the particle. Figure 6.10 shows the particle migration trajectories for the 

low St cases with and without the Magnus force. It is evident from this figure that 

the equilibrium position of the particle shifts toward the centerline, from y/H value 

of about 0.28 to about 0.4. Furthermore, the oscillations that are seen for the St = 

11.4 and St = 14.2 cases are not seen when Magnus lift force is absent. Figure 6.11 

shows similar results for the high St cases. For this range of St, it can be seen that 

the oscillation persists but its amplitude is reduced because the wall repulsion has to 

overcome only the Saffman lift and hence the particle is pushed away from the wall 

to a greater distance than in the case with the Magnus lift force The implication is 

that the Magnus force adds to the Saffman force to move the particle toward the wall. 

The absence of the Magnus force does not remove the oscillations. It just changes the 

St for which the oscillation sets in. Increasing the H/d ratio increases the effective 

distance between the wall and the particle. Hence the Magnus lift force acting on the 

particle increases and the St at which the oscillations appear decreases. 

6.5 Conclusions 

The lattice-Boltzmann method (LBM) is employed to carry out simulations of 

particle motion in a channel for various Stokes (St) numbers. It is shown that the St 



I-

156 

0 10 20 30 40 50

x/H

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y
/H

H/d = 3.2

H/d = 5

H/d = 6

Figure 6.9: Particle migration trajectories for different H/d ratios (St = 0.5). 
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Figure 6.10: Particle migration trajectories for particles a) with rotation and b) 
without rotation, i.e. no Magnus force. 
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Figure 6.11: Particle migration trajectories for higher St cases a) with rotation b) 
without rotation. 
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influences the motion. Particles with low St behave similar to a neutrally buoyant 

particle in a channel flow exhibiting the Segré-Silberberg effect. They move to an 

equilibrium position that is between the wall and the axis. This lateral migration of 

the particle arises as a result of three different forces acting on the particle namely: the 

Saffman lift, the Magnus lift and wall repulsion. Except for an initial transient time, 

the Saffman and Magnus lift forces act in the same direction and push the particle 

toward the wall while the wall repulsion acts to push the particle away from the wall. 

The particle settles at an equilibrium location where these three forces balance. As 

the St is increased, the particle exhibits an oscillatory behavior about its equilibrium 

position. The oscillation amplitude and time period increases with increasing St. 

The oscillations arise from the increasing importance of inertial effects. Increasing 

the ratio of the channel width to the particle diameter for a given St reduces the 

effect of wall repulsion due to which the particle moves closer to the wall. Increasing 

the H/d ratio decreases the St at which the oscillations begin to occur. 
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7. SIMULATIONS OF FLOW MODULATION IN A 

CHANNEL WITH STATIONARY PARTICLES 

7.1 Introduction 

In the last chapter, particle-resolved direct numerical simulations of a laminar 

channel flow was presented. In this chapter, particle-resolved direct numerical simu-

lations of a turbulent channel flow is considered. As a first step, the effect of stationary 

particles in a turbulent channel flow on the flow field is examined. Part of this work 

has been submitted for publication in International Journal of Computational Fluid 

Dynamics. 

Bagchi and Balachander [150] have numerically studied the flow in the wake of a 

stationary particle in an isotropic turbulent flow. They report that the length of the 

wake is shorter than that in a laminar flow. They also report that vortex shedding in 

the wake of the particle is different from that in a laminar flow. As turbulence intensity 

is increased, vortex shedding is suppressed and the oscillation frequency of the wake 

increases. Streamwise fluctuation is always enhanced; cross-stream fluctuations are 

enhanced at lower intensities and damped at higher intensities. 

Merle et al. [151] have performed PR-DNS of a stationary, non-deforming spherical 

bubble situated at the axis of a turbulent pipe flow and have compared the computed 

lift and drag forces to predictions from correlations available in the literature. They 

found that the lift force experiences much larger fluctuations than the drag force. Zeng 

et al. [152] have studied the interaction of a stationary particle with wall turbulence. 

They have examined the flow field around the particle and its effect on the drag on 

the particle. They found that high and low speed streaks near the wall cause a low 

frequency fluctuation of the drag force while the vortex shedding from the particle 

causes a high frequency component. 
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Wang et al. [153] carried out PR-DNS of a turbulent channel flow with neutrally 

buoyant particles. They found that the mean flow velocity decreases with addition 

of the particles indicating the flow becomes effectively more viscous. Luo et al. [154] 

have carried out PR-DNS of fluidized beds and have studied the relationship of the 

pressure drop across the fluidized bed to the local porosity and mobility of particles. 

They noted that PR-DNS has a better predictive capability than conventional discrete 

element models. 

Burton and Eaton [42] have numerically studied the interaction of a stationary 

particle with decaying homogeneous isotropic turbulence. They found that the par-

ticle modifies the turbulent kinetic energy and its dissipation locally. Attenuation of 

turbulence and enhancement of dissipation rate is significant within 1.5 diameters of 

the particle surface. Beyond 5 diameters, turbulence modification is negligible. 

Of specific interest to this work is the distance to which the modification of the 

flow field by a fixed particle extends in a turbulent flow. This information is useful 

when modeling particle-laden flows and determining if the flows are dilute or dense. 

Regime maps for various levels of interaction have been developed and presented in 

the literature [12], but they have not been assessed at a fundamental level. PR-DNS 

are carried out for flow past single particles and multiple particles. The Reynolds 

number, Re, based on the mean velocity and the height of the channel is fixed. This 

implies that the pressure gradient is increased when particles are present to overcome 

the pressure loss due to the presence of the particles. The multiple particle simulations 

provide insight into the effect of particle-particle interactions on the distance to which 

the flow field is affected. Detailed analysis of the flow field downstream of the particle 

is carried out to understand how the flow field is modified. It is expected that the 

flow field will recover to the single-phase flow field some distance from the particle. 

An interesting questions relates to potential differences in recovery distances for the 

mean turbulence parameters and mean velocity. 

The next section of the chapter presents the lattice-Boltzmann computational 

method adopted in this work for the PR-DNS. The computational conditions are 
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then discussed. Results and discussion follow, first for the single-particle simulations 

and then for the multiple particle simulations. The chapter ends with summary and 

conclusions. 

7.2 Computational Model 

The lattice-Boltzmann method (LBM) is employed to carry out the particle-

resolved direct numerical simulations. The Boltzmann equation describes the evo-

lution of the distribution function of single molecule velocity within the framework of 

kinetic theory. The lattice-Boltzmann equation (LBE) can be derived from the Boltz-

mann Equation by discretizing the velocity space with finite velocities. It is shown 

in Chapter 3 that by performing a Taylor-series expansion in time and space and by 

using the Chapman-Enskog expansion, the Navier-Stokes equations can be recovered 

from the LBE. In the computations presented in this work, the multiple relaxation 

time (MRT) collision operator [115,116,155] is used to model the effect of intermolec-

ular collisions. The MRT collision operator is stable and allows for simulations with 

lower viscosities than the Bhatnagar-Gross-Krook (BGK) collision operator. Simu-

lations of high Reynolds number (Re) flows require lower viscosities and hence the 

MRT collision operator is employed. An interpolation supplemented half-way bounce 

back scheme is used to represent the particle boundary [124]. 

7.3 Computational Conditions 

Figures 7.1-7.2 show the computational setup for the single particle and multiple 

particle simulations. The flow is in the X-direction, the walls are normal to the Y-axis 

and the Z-direction is periodic. Table 7.1 shows the parameters of the 9 PR-DNS cases 

that are studied in this work. In Table 7.1, the Reynolds number based on friction 

velocity, Reτ , is defined as 
uτ δ 

Reτ = , (7.1)
ν 
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where uτ is the friction velocity, δ is the channel half-width and ν is the kinematic 

viscosity. The particle diameter, dp, and the distance between the particle and the 

wall, δh, are normalized by the viscous length scale as follows: 

dp
d+ 
p = , (7.2)

lv 

δ+ 
h = 

δh 
,

lv 
(7.3) 

where the viscous length scale, lv, is obtained from uτ and ν as 

ν 
lv = . (7.4) 

uτ 

Cases 1-6 have a single particle in the channel. The distance from the center of 

the channel to the wall in viscous units is 180. In Case 1, the distance between the 

particle surface and the wall, δh 
+ , is 10.8, i.e. the particle is positioned close to the 

wall. The particle is at the center of the channel for Case 2. Cases 1 and 3 and 2 

and 4, respectively, provide insight into the effect of particle size and Cases 1 and 5 

and 2 and 6, respectively, examine the effect of the Reynolds number, Reτ . Cases 

7 to 9 are multiple particle simulations. The particles are arranged in one plane. 

The arrangements are shown in Fig. 7.2. Case 7 has 6 particles of the same size 

as the particles of Case 1. Case 8 has the same area reduction ratio as Case 7, but 

the particle diameters are halved and hence there are 24 particles. Cases 9 has six 

particles and a similar arrangement to Case 7, but the particle diameter is halved. 

7.4 Results and Discussion 

7.4.1 Single Particle Simulations 

To begin with, the mean flow and turbulent kinetic energy (TKE) profiles in the 

channel for Reτ = 180, when particles are not present will be discussed. This would 
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Figure 7.1: Schematic of the computational domain showing a single particle near 
the wall. 
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Figure 7.2: Particle arrangement for the multi-particle simulations: (a) Case 7; (b) 
Case 8; (c) Case 9. 
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Table 7.1: Parameters employed for simulations. 

Reynolds Particle Particle Number Area 

Case num- diame- posi- of fraction of 
ber ter tion particles particles 
(Reτ ) (d+)p (δh+) (np) (Ap/Atot(%)) 

1 180 36 10.8 1 0.3926 

2 180 36 Center 1 0.3926 

3 180 18 10.8 1 0.0981 

4 180 18 Center 1 0.0981 

5 270 36 10.8 1 0.2873 

6 270 36 Center 1 0.2873 

7 180 36 - 6 3.14 

8 180 18 - 24 3.14 

9 180 18 - 6 0.786 

correspond to a Reynolds number of about 6000 based on the channel height and the 

maximum mean velocity. 

Figure 7.3 shows the mean velocity profile in the channel when no particles are 

present. In this case, when the flow is fully developed, the mean velocity profile is 

dependent on only the Y-coordinate (i.e. distance from the wall). The velocity is 

normalized by the friction velocity (u+ =< U > /uτ ) and the distance by the viscous 

length scale (y+ = y/lv). The mean velocity profile in a turbulent channel flow is well 

known [133, 137]. Figure 7.3 also shows that profile [133]. The agreement between 

the results from this work and those in the literature are within 5%. Note that from 

y+ = 40 to y+ = 180, the fluid velocity increases from u+ ≈ 15 to u+ ≈ 19.Turbulent 

mixing ensures the fluid velocity is nearly uniform throughout the interior core. For 

y+ < 20, there is a sharp decrease in the velocity in the turbulent boundary layer. In 

the first set of simulations with a single particle, the effect of a particle on the flow 

field near the wall where the velocity gradient is large and another particle in the 

center of the channel, where the velocity gradient is small, will be assessed. 
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Figure 7.3: Mean velocity profile in a single phase flow. 
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Figure 7.4: Instantaneous vorticity magnitude in a single phase flow. Color scale is 
in lattice units. 

Figure 7.4 shows the magnitude of instantaneous vorticity in the middle Z-plane 

when there are no particles. Near the wall, maximum vorticity is observed since the 

velocity gradient is high in that region. Moreover, although this is not evident in 

the figure, the vortices in this wall have a smaller length scale. Away from the wall, 

the magnitude of vorticity is smaller and the length scales are larger. Figure 7.5 

shows the TKE profile in the channel. TKE is maximum in regions of high shear 

where the production of TKE is high. Consequently, at a relatively short distance 

from the wall (y+ ≈ 15), the TKE reaches a maximum. Toward the center, the TKE 

decreases since the production of TKE due to shear decreases. From y+ = 15 to the 

wall, there is a sharp decrease in TKE. The TKE profiles is also well documented in 

the literature [133] and that profile is also shown in Fig. 7.5 for comparison. The 

agreement between the results from this work and those in the literature are within 

5% in terms of the peak value of TKE and its location from the wall. 

Results will now be presented when a single particle is located near the wall at 

δh 
+ = 10.8, i.e. Case 1 in Table 7.1. Figure 7.6a shows the normalized mean U-velocity 

in the Y-direction, i.e. normal to the flow direction at various downstream distances 

from the particle. x/d = 0 corresponds to a plane passing through the center of the 

particle. x/d = 1, corresponds to a plane which is located one radius from the surface 

of the particle. The presence of the particle eliminates homogeneity in the X and Z 

direction and hence statistics are obtained by averaging in time only. By examining 
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Figure 7.5: Turbulent kinetic energy (TKE) profile in a single phase flow. 
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the velocity profile in Fig. 7.6a and the velocity vectors in Fig. 7.6b, a high speed 

streak of fluid in the gap between the particle and the wall is evident in the plane 

passing through the center of the particle. Figure 7.6a shows a u+ value of 14 at y+ 

of about 5 between the particle surface and the wall. This is about a factor three 

greater than the velocity of the single-phase at the same location. Similar high speed 

streaks have been observed in the case of turbulent flow over a particle located at 

a distance from a flat plate [156, 157]. Interestingly, such high speed streaks have 

not been observed in laminar flow around a particle in a channel [158]. A possible 

reason for this is that in the case of a turbulent flow, the inertia of the flow is higher 

such that the fluid is forced into the gap whereas in a laminar flow, viscous effects 

dominate and viscous forces oppose the flow in the gap between the particle and the 

wall. The consequence of the high fluid velocity between the particle and wall is that 

it induces a vortex in the wake, rotating counter-clockwise downstream of the particle 

as evident in Fig. 7.6b. The wake shifts away from the wall. The wake region extends 

to an x/d of about 2. At x/d = 1, there is a negative velocity which arises due to the 

recirculation region in the wake of the particle. 

Figure 7.6c shows the TKE profiles as a function of the distance from the wall, 

y+ , at various x locations from the particle center. At x/d = 2, there is a spike in 

the TKE downstream of the particle on the side of the wake away from the wall. 

This is due to the interaction of the vortices that are shed in the wake of the particle 

with the free stream turbulence. On the wall side however, there is no observable 

spike since the high speed fluid in the gap pushes the vortices shed from the particle 

away from the wall. The peak TKE occurs at an x/d ≈ 2 the maximum X-distance 

where the influence of the recirculation bubble is evident on Fig. 7.6b. The high 

turbulence observed is the effect of continuing generation of turbulence and convection 

of turbulent vortices from upstream. The modulation in the TKE decreases in its 

effect with increasing distance from the particle. At x/d = 20, the mean velocity 

profile shown in Fig. 7.6a and the TKE profile shown in Fig. 7.6c show negligible 

differences compared to the profiles in a channel where the Reτ is the same, but 
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without any particle i.e., the distance of influence is less than 20 particle diameters. 

That the mean velocity profile and the TKE profile recover to these values is not 

surprising since those profiles are dependent only on the Reτ . 

When the particle is at the center, i.e. Case 2, Fig. 7.7a shows a small spike in 

the velocity of the fluid close to the particle surface. This increase is, however, less 

than 20% of the fluid velocity at that location without a particle. At x/d = 1, there 

is a negative velocity which arises due to the recirculation region in the wake of the 

particle. The recirculation region is evident in Fig. 7.7b which shows the mean flow 

velocity vectors and color contours. This is similar to what is seen in Fig. 7.6a. The 

mean flow is symmetric about the centerline and two vortices induced in the wake 

are consistent with well documented findings [159]. Figure 7.7c shows the TKE along 

the Y-direction in a X-plane passing through the center of the particle and several 

planes downstream of the particle. There is no noticeable effect on the TKE in the 

fluid region in the plane passing through the center of the particle. However, a large 

increase in TKE is observed at x/d = 1, i.e. in the shear region at the interface 

between the recirculation bubble and the free stream, which increases further and is 

noticeable throughout the bubble by x/d = 2. The peak value in TKE is greater 

than the value at the same location when there is no particle by a factor of about 

16. This TKE subsequently decays. At x/d = 6, the highest value of TKE is only 

a factor of about 4 greater than the value at the same location when there is no 

particle. Comparing the results with the earlier case where the particle is close to 

the wall, the peak TKE in this case, like the earlier case, is at x/d ≈ 2 which is the 

axial dimension of the recirculation bubble. One difference is that the peak TKE 

is about 16 times higher than the undisturbed TKE at the particle center whereas 

it was about 4 times higher when the particle was close to the wall. This is likely 

because of a viscous damping effect near the wall. An important conclusion is that 

by x/d ≈ 20, the single-phase results are recovered in mean velocity and TKE. 

Figures 7.8 and 7.9 show the results when the particle diameter is halved and 

the particle is located close to the wall (Case 3) and at the centerline (Case 4), 
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Figure 7.6: Flow field results when particle is close to wall and Reτ = 180, d+ 
p = 36 

(Case 1): (a) Mean velocity in the X-direction as a function of y+ at various x/d; (b) 
Mean velocity vectors. Color contours, with scale in lattice units, are indicative of 
the velocity magnitude; and (c) Turbulent kinetic energy (TKE) profile as a function 
of y+ at various x/d. 
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Figure 7.7: Flow field results when particle is at the center and Reτ = 180, d+ 
p = 36 

(Case 2): (a) Mean velocity in the X-direction as a function of y+ at various x/d; (b) 
Mean velocity vectors. Color contours, with scale in lattice units, are indicative of 
the velocity magnitude; and (c) Turbulent kinetic energy (TKE) profile as a function 
of y+ at various x/d. 
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respectively. Note that results for Case 3 should be compared with those for Case 1 

and Case 4 with Case 2. Figures 7.8a and 7.9a show the mean velocity in various X-

planes, 7.8b and 7.9b show the velocity vectors and color contours, and 7.8c and 7.9c 

the TKE profiles in various X-planes. From Fig. 7.8a, we observe that the increase 

in velocity between the particle surface and wall is now smaller compared to Case 1. 

In both cases, the spacing between the particle and the wall is held constant, but in 

Case 3, the obstacle is smaller, and hence less fluid is forced into the gap. Comparing 

Figs. 7.8b and 7.6b, we see that the length of the recirculation bubble is shorter. In 

the earlier case, it was about 1.5 to 2 diameters whereas in Case 3 it is about 1 to 1.5 

diameters. 

Comparing the TKE profiles shown in Figs. 7.6c and 7.8c, there is increase in 

TKE on either side of the particle in both cases. However, for Case 3, there is a 

higher peak value of TKE in the gap between the particle and the wall. It is possible 

that this may reflect lower rate of decay of the TKE near the wall from its value 

upstream where the particle effect was not felt, i.e. the TKE profile corresponds to 

that shown in Fig. 7.5. The increase in TKE on the side away from the wall is, 

however, lower than in Fig. 7.6c. The single-phase flow results are recovered within 

5% by x/d = 20 although the physical distance corresponding to x/d = 20 is shorter 

for the smaller diameter particle. 

Comparing the results in Fig. 7.9 with those in Fig. 7.7, i.e. when the particle 

is at the center of the channel, the results are similar. Since the results presented 

are non-dimensional, the expectation is that the they would be close if not identical. 

The mean velocity profiles of Figs. 7.9a and 7.7a are, in fact, very close. Visually, 

the results of Figs. 7.9b and 7.7b are very close. However, there are noticeable 

differences between the results of Figs. 7.9c and 7.7c. One obvious difference is that 

the increase in TKE appears to be primarily concentrated in the shear layer between 

the recirculation bubble and the free stream in all x/d planes. This TKE generated 

in the shear layer is not convected into the center of the bubble. This may arise from 

the fact that the actual physical distance corresponding to a certain x/d is shorter in 
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Fig. 7.9c compared to Fig. 7.7c. Correspondingly the residence time of the fluid is 

also shorter. In both cases, the TKE decays approximately to the values that exist 

when there is no particle by x/d = 20. 

Figures 7.10 (Case 5) and 7.11 (Case 6) show the results when the Reynolds 

number, Reτ is increased by 50%, i.e. Reτ = 270. The results of Figs. 7.10 and 

7.11 should be compared with those of Figs. 7.6 and 7.7, respectively. Figure 7.10a 

shows that when the particle is close to the wall, there is an increase in velocity in 

the gap. This increase is about a factor 3 greater than the single-phase results, and is 

similar to what was observed in Case 1. Comparing Figs. 7.10b with 7.6b and 7.10c 

with 7.6c, it can be seen that the velocity flow field and the TKE behavior are very 

similar. In both cases, the flow field is not affected for more than about 20 diameters 

downstream. When the particle is at the center, Fig. 7.11a shows that the velocity 

increase is less than 20%. Again, this is similar to what was observed in Fig. 7.7a for 

Case 2. The mean velocity vectors and TKE profiles are also similar. Figure 7.11c 

shows the TKE profile as a function of y/d at various downstream distance from the 

particle for Case 6 where Reτ = 270. Comparing with Case 2, where Reτ = 180, it 

can be seen that the peak TKE is similar in magnitude and occurs at x/d = 2. At 

x/d > 6, increasing the Reynolds number by 50% does not appear to have a significant 

effect. As pointed when comparing Cases 2 and 4 where Case 4 has a smaller diameter 

particle, when comparing Cases 2 and 6, the TKE in Case 6 is concentrated in the 

shear layer between the wake and the free stream and does not increase in the center 

of the recirculation bubble. As pointed out earlier, this maybe related to the shorter 

residence time of the fluid at higher Reτ . 

7.4.2 Multiple Particle Simulations 

The effect of multiple particles in a plane normal to the flow direction on the flow 

downstream will now be considered (Cases 7-9). In Cases 7, the particle size is the 

same as was in Cases 1 and 2 of the single particle study. In Case 7, there are 6 



..... -lr--lJ 

......... 

........ 

..... -Cl-{] 

......... 

........ 

175 

0 20 40 60 80 100 120 140 160 180
y +

0

5

10

15

20

<
U
>
/u

τ

x/d = 0

x/d = 1

x/d = 2

x/d = 6

x/d = 12

x/d = 20

Single Phase

(a) 

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
x/d

10.0

9.5

9.0

8.5

8.0

y/
d

0.03

0.00

0.03

0.06

0.09

0.12

0.15

(b) 

0 20 40 60 80 100 120 140 160 180
y +

0

2

4

6

8

10

12

14

16

18

T
K
E
/u

2 τ

x/d = 0

x/d = 1

x/d = 2

x/d = 6

x/d = 12

x/d = 20

Single Phase

(c) 

Figure 7.8: Flow field results when particle is close to wall and Reτ = 180, d+ 
p = 18 

(Case 3): (a) Mean velocity in the X-direction as a function of y+ at various x/d; (b) 
Mean velocity vectors. Color contours, with scale in lattice units, are indicative of 
the velocity magnitude; and (c) Turbulent kinetic energy (TKE) profile as a function 
of y+ at various x/d. 
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Figure 7.9: Flow field results when particle is at the center and Reτ = 180, d+ 
p = 18 

(Case 4): (a) Mean velocity in the X-direction as a function of y+ at various x/d; (b) 
Mean velocity vectors. Color contours, with scale in lattice units, are indicative of 
the velocity magnitude; and (c) Turbulent kinetic energy (TKE) profile as a function 
of y+ at various x/d. 
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Figure 7.10: Flow field results when particle is close to wall and Reτ = 270, d+ 
p = 36 

(Case 5): (a) Mean velocity in the X-direction as a function of y+ at various x/d; (b) 
Mean velocity vectors. Color contours, with scale in lattice units, are indicative of 
the velocity magnitude; and (c) Turbulent kinetic energy (TKE) profile as a function 
of y+ at various x/d. 
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Figure 7.11: Flow field results when particle is at the center and Reτ = 270, d+ 
p = 36 

(Case 6): (a) Mean velocity in the X-direction as a function of y+ at various x/d; (b) 
Mean velocity vectors. Color contours, with scale in lattice units, are indicative of 
the velocity magnitude; and (c) Turbulent kinetic energy (TKE) profile as a function 
of y+ at various x/d. 
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particles. Cases 8 and 9 have the same particle size as that of Cases 3 and 4 in the 

single particle study. Case 8 has 24 particles and the same area fraction of particles 

as Case 7, while Case 9 has 6 particles. Figure 7.2 shows the arrangement of particles 

for all the three cases. In the case of multiple particles, averaging is done in both the 

Z direction and time unlike the single-particle cases where averaging was done only 

in time. This was done to account for the effect of all the particles on the flow field 

as opposed to just one. 

Figure 7.12 shows results for Case 7 where there are 6 particles in a single plane 

normal to the flow direction, with three particle on either side of the mid-plane of 

the channel. Other conditions, listed in Table 7.1, include non-dimensional particle 

diameter of 36. This may be compared to a non-dimensional channel width of 360. 

The cross-sectional area of the plane in which the particles are centered is reduced by 

3.14% relative to the rest of the channel. Figure 7.12a shows the mean velocity profile 

in several x/d planes downstream from the plane that passes through the center of 

the particles. Results are shown only in the lower half of the channel. The averaging 

in the Z-plane reduces the observed impact of the particles on the flow field. It is 

known from the single particle simulations earlier that this impact is more significant 

than revealed in Fig. 7.12a. This impact is also clearly evident in Fig. 7.12b which 

shows the instantaneous vorticity contours in a Z-plane passing through two particles. 

Comparing the results of Fig. 7.12b with those of Fig. 7.4 without any particles, it 

is evident that the effect of the particles extends to an x/d of about 30. Recall that 

since d = 36, x corresponds to 1080 for x/d of 30. Although Fig. 7.4 shows results 

only until x of about 400, the high concentration of vorticity that is evident in Fig. 

7.12b at x/d of 30 is not evident at x = 400 in Fig. 7.4. The mean velocity in 

Fig. 7.12a suggests, however, that the mean velocity profile upstream of the particles 

is recovered downstream by x/d of about 6, although it is known from the single 

particle simulations earlier that it took until an x/d of about 20 for the mean velocity 

downstream of individual particles to recover. This apparent discrepancy is just on 

account of the averaging in the Z plane for the multi-particle simulations. While 
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the mean velocity recovers by x/d of about 6, Fig. 7.12c shows that the turbulent 

kinetic energy (TKE) recovers to the single-phase values within 10% by an x/d of 20 

and within 5% by an x/d of 40. In other words, the TKE takes a longer distance 

to recover even when averaged in the Z-plane. This conclusion is consistent with the 

instantaneous vorticity contours shown in Fig. 7.12b where the effect of the particles 

on the vorticity is evident until x/d of about 30 and beyond. The interaction between 

wakes of multiple particles is likely responsible for this longer distance compared to 

the distance when only one particle is present, see Case 1. 

The impact of this interaction between particles is further examined by increasing 

the number of particles in Case 8 while keeping the reduction of the cross-sectional 

area to 3.14%. The diameter of an individual particle is reduced by 50% thereby 

making it possible to increase the number of particles in the cross-sectional plane 

to 24, i.e. with 12 particles arranged in two rows of 6 each, on either side of the 

mid-plane of the channel as shown in Fig. 7.2b. The mean velocity is shown in Fig. 

7.13a. Although the area reduction in Cases 7 and 8 is the same, it can be seen from 

Fig. 7.13a that it takes a longer x/d, of about 20, for the mean velocity to recover to 

the single-phase value. It is, however, important to note that the x/d of 20 in Fig. 

7.13a corresponds to an x/d of 10 in Fig. 7.12a because the particle diameter in Case 

8 is 50% of that in Case 7. In other words, the actual physical distances are not that 

different. Nevertheless, the 50% increase in distance suggest that interaction between 

the wakes of larger number of particles can have greater impact on the mean velocity. 

Figure 7.13b shows the vorticity contours. Compared to Fig. 7.4 which shows the 

vorticity contours for a simulation without particles, the impact of the particles can 

be seen in Fig. 7.13b until an x/d of about 80 well beyond the maximum value of 

x for which results are shown in Fig. 7.4. Fig. 7.13c shows the TKE. The TKE 

recovers to its single phase value within 10% by an x/d of 20 and within 5% by x/d 

of 40. It is possible that higher order turbulent statistics may take longer to recover. 

The effect of increasing number of particles appears to be to increase the interactions 

between particle wakes and lengthen the distance of such interactions in the mean 
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Figure 7.12: Flow field results when d+ 
p = 36 and np = 6 (Case 7): (a) Mean velocity 

in the X-direction as a function of y+ at various x/d; (b) Instantaneous vorticity mag-
nitude in the wake of the particles. Color scale is in lattice units; and (c) Turbulent 
kinetic energy (TKE) profile as a function of y+ at various x/d. 
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flow direction. Since both diameter of particle and number of particles are changed in 

Case 8 relative to Case 7, it is interesting to consider a simulation where only particle 

diameter is changed. 

Figure 7.14 shows results from a simulation (Case 9) where there are 6 particles 

with the identical arrangement to Case 7 earlier, but with each particle diameter 

reduced by 50%. It is interesting to first examine the vorticity contours shown in 

Fig. 7.14b. The impact of the particles on the vorticity is evident until an x/d of 

about 60 which for the simulation with the larger particle diameter corresponds to 

an x/d of about 30. Recall that in that simulation the impact was evident until an 

x/d of about 30. In other words, the physical distance of influence is about the same. 

This can suggest that the turbulent eddy turnover time scales, which relate to the 

dissipation of the vorticity, are not very different between the two simulations. The 

results of mean velocity in Fig. 7.14a and TKE in Fig. 7.14c show less impact of the 

particle relative to Fig. 7.12a and 7.12c, respectively, because of the averaging in the 

Z-plane. 

An interesting observation in the vorticity contours of all three simulations is that 

there appears to be relatively strong interaction of the vorticity field of the particle 

closest to the wall with the vorticity field generated by the wall. 

7.5 Summary and Conclusions 

The lattice-Boltzmann method is employed to carry out direct numerical simu-

lations (DNS) of flow past a spherical particle, fixed either at the center or close 

to the wall of a channel, and multiple spherical particles fixed in a plane normal 

to the flow direction in a channel. The particle boundary layer is fully resolved by 

adopting a method that accounts for the curved boundary. The focus of the study 

is on the distance of influence of the particle on the flow field in the direction of 

the flow. It is shown that for the single particle simulations, this distance extends 

to a non-dimensional distance x/d of about 20. In the case of the multiple parti-
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Figure 7.13: Flow field results when d+ 
p = 18 and np = 24 (Case 8): (a) Mean 

velocity in the X-direction as a function of y+ at various x/d; (b) Instantaneous 
vorticity magnitude in the wake of the particles. Color scale is in lattice units; and 
(c) Turbulent kinetic energy (TKE) profile as a function of y+ at various x/d. 
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Figure 7.14: Flow field results when d+ 
p = 18 and np = 6 (Case 9): (a) Mean velocity 

in the X-direction as a function of y+ at various x/d; (b) Instantaneous vorticity mag-
nitude in the wake of the particles. Color scale is in lattice units; and (c) Turbulent 
kinetic energy (TKE) profile as a function of y+ at various x/d. 
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cles, the distance extends to an x/d distance of about 40. Increasing the number of 

particles increases the distance of influence. This suggests that in a particle-laden 

flow, if particles are separated by a distance greater than x/d of about 40 on average, 

inter-particle interactions can be neglected. At shorter distances, such interactions 

are important, possibly becoming increasingly important as distances are reduced. 

There is also evidence that the presence of particles close to the wall results in strong 

interactions of the vorticity flow fields generated by the particle and the wall. This 

needs further study. In this work, only mean velocity and turbulent kinetic energy 

have been used as measurable variables to assess the influence of the particles. It will 

be interesting to consider higher-order turbulent statistics in future work. 
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8. FULLY-RESOLVED DIRECT NUMERICAL 

SIMULATIONS OF PARTICLE MOTION IN A 

TURBULENT CHANNEL FLOW 

8.1 Introduction 

In the last chapter, particle-resolved direct numerical simulations of stationary 

particles in a turbulent channel flow was considered. The effect of moving particles 

in a turbulent channel flow is presented in this chapter. The effect of Stokes number, 

St, and the particle size, dp on the concentration of particles in a turbulent channel 

flow is examined to see if particles exhibit preferential motion. The work employs the 

same code that was used to carry out the particle-laden flow study in Section 4.8 and 

the turbulent flow studies in Section 4.9. Part of this work has been submitted for 

publication in Computers and Fluids. 

8.2 Preferential Particle Movement 

Preferential particle movement has been studied by several researchers in the 

past [3–5, 5–10, 36]. At first instance, one would expect particles in a turbulent flow 

to be distributed uniformly on account of enhanced mixing. This, however, is not 

the case in most flows. Even in an homogeneous isotropic turbulent flow, the particle 

concentration can be highly non-uniform [3]. 

Consider the experimental study by Lau and Nathan [11] of particle-laden turbu-

lent pipe flow described in Chapter 2. In this work, particles were introduced into 

a turbulent pipe flow and were transported by the flow. The length of the pipe was 

sufficiently long to achieve a fully developed flow. In their experiment, the particles 

were larger than the Kolmogorov length scale or about the same. They noticed that 
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Figure 8.1: Concentration profile of particles at the exit of a turbulent pipe flow 
(Adapted from Lau and Nathan [11]). 

the particle concentration at the exit of the pipe was not uniform. The particles 

preferentially concentrated near the axis or the wall depending on their St. Figure 

2.2 shows the concentration profile of particles across the cross section of the pipe 

normalized by the bulk concentration at the exit. At a relatively low St of 0.3, the 

particle concentration near the wall is about 2.5 times the bulk concentration. For a 

higher St of 11.2, the particle concentration is high near the axis of the pipe. Parti-

cles with a St of 1.4 are distributed almost uniformly. Thus, as the St increases from 

0.3 to 11.2, the radial concentration profile changes from a ’U-shape’ to a ’∧-shape’. 
Turbophoresis has been suggested as the cause of this behavior. 

Prior DNS numerical studies have generally considered the limit where particles 

are small with respect to the Kolmogorov length scale, i.e. dp << ηk, and hence 

the point-particle approach can be employed. If dp is of the order of Kolmogorov 

length scale or larger, the point particle assumption cannot be made and the particle 
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boundary has to be numerically resolved to compute the interaction of the turbulent 

eddies with the particle [160]. In other words, particle-resolved direct numerical 

simulations (PR-DNS) are necessary. These simulations are computationally very 

expensive. They often involve a limited number of particles, far less than what one 

would encounter practically. The advantage of the particle-resolved method, however, 

is that the force acting on the particle is computed directly from the viscous stresses 

acting on the particle and no model is used. Moreover, as the flow field around 

every particle is resolved, the dissipation of turbulent kinetic energy at the surface is 

resolved and need not be modeled [45]. 

There are several particle-resolved studies in laminar flows. One of the earli-

est works is that of Feng et al. [37, 38] who performed two-dimensional numerical 

simulations of cylindrical ”particles” settling in a channel with no mean flow, and 

transported in a channel by fluid moving in the laminar flow regime. They were able 

to observe the Segré-Silberberg effect [22, 23]. They also identified Saffman lift [19], 

Magnus lift [141], and wall repulsion [142, 143] to be the dominant forces that cause 

the particle movement in the cross-flow direction. They reported the dependence of 

the particle trajectories on parameters such as the particle based Reynolds number, 

Rep , the ratio of channel height to the particle diameter, H/dp, and the ratio of the 

particle to the fluid density, ρp/ρf . Mortazavi and Tryggvason [39] performed similar 

simulations with deformable drops in a channel flow. They observed that at high 

Rep, the drops began to oscillate about the center of the channel. 

Nourbakhsh et al. [41] have carried out three-dimensional simulations of drops in a 

Poiseuille flow and studied the effect of capillary number, Ca, the Re and the volume 

fraction of the drop phase on the drop movement. They found that drops with small 

deformation migrate to an equilibrium position half-way between the wall and the 

center i.e., Segre-Silberberg effect [22, 23], while highly deformable drops migrate to 

the center of the channel. 

Chapter 6 presented studies involving the inertial migration of resolved particles 

in a laminar flow. It was found that at low St, the particles exhibited the Segre-
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Silberberg effect [22, 23] while at high St, the particles oscillate about the channel 

center. As an extension of this work, Zhang et al. [161] studied the regime of tran-

sition St where particles move from near the wall and start oscillating about the 

center. They found that oscillations arise when the Saffman lift and inertial forces 

are comparable. 

The studies listed so far have been for laminar flow. There are few studies available 

for PR-DNS of turbulent flows. Zeng et al. [152] have studied the interaction of a 

stationary particle with wall turbulence through PR-DNS. They examined the flow 

field around the particle and how it affects the drag on the particle. They found 

that high and low speed streaks near the wall cause a low frequency fluctuation of 

the drag force on the particle while the vortex shedding from the particle causes 

a high frequency component. Wang et al. [153] carried out PR-DNS of a turbulent 

channel flow with neutrally buoyant particles. They found that the mean flow velocity 

decreases with addition of the particles indicating the flow becomes effectively more 

viscous. 

Shao et al. [162] carried out PR-DNS of particle-laden turbulent channel flow. 

They studied the effect of particles on turbulent intensities. They found that particle 

sedimentation on the walls can increase turbulent intensity from vortex shedding. If 

sedimentation effect is negligible, particles decrease streamwise fluctuations. Kidane-

mariam et al. [163] carried out resolved simulations of particles in an open turbulent 

channel flow. They found that particles lag the fluid velocity and tend to reside in 

low-speed streaks. 

While there have been a few PR-DNS studies on turbulence modulation by par-

ticles in a turbulent channel, there have been none on preferential movement of par-

ticles. In this chapter, particle-resolved DNS are carried out to provide insight into 

the preferential cross-flow movement of particles in a turbulent channel flow. A wide 

range of St, 0.5-100, is considered. The results are analyzed to understand the relative 

importance of various forces at different St. The lattice-Boltzmann method (LBM) 

is employed for the simulations. The method has been employed for particle-laden 
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flows in the past [51–54]. The next section discusses the LBM adopted in this study. 

Results and discussion follow. The chapter ends with summary and conclusions. 

8.3 The Computational Method 

In this work, the lattice-Boltzmann Method (LBM) is employed to carry out the 

PR-DNS. The LBM solves the Boltzmann equation with discrete velocity directions. 

The local and explicit nature of the method makes the resulting numerical code highly 

parallelizable. The LBM is a kinetic solver derived from the Boltzmann Equation by 

discretizing the velocity space with finite velocities. It is shown in Chapter 3 that by 

performing a Taylor-series expansion in time and space and by using the Chapman-

Enskog expansion, the Navier-Stokes equations can be recovered from the lattice-

Boltzmann equations. In this work, the multiple relaxation time (MRT) collision 

operator [115,116,155] is used to represent the effect of collisions. The MRT collision 

operator has been used because it has been shown to have superior numerical stability 

and is thus suited to simulate high Reynolds number (Re) flows [155]. 

The particles are treated as moving walls within the fluid domain. In the LBM, 

a no-slip boundary condition can be achieved by placing a wall halfway between the 

last fluid node and an imaginary boundary node and allowing the fluid particles to 

bounce on the wall and return to its initial node with a velocity in the opposite 

direction. He et al. [121] have shown that a bounce-back scheme with the wall placed 

halfway between the last fluid node and an imaginary boundary node gives second-

order accurate results. However, the curved surface of the particle cuts the lattices at 

varying distances and not halfway as can be seen from Fig. 8.2. Hence, the halfway 

bounce-back scheme cannot be used as originally proposed. Bouzidi et al. [123] as 

well as Lallemand and Luo [124] have proposed a technique to account for curved 

boundaries. Consider the one-dimensional situation in Fig. 8.3. Fluid node at rj 

is the last node near the wall while rs is the first node in the solid region. The 

intersection of the wall and the boundary link is represented as rw. The distance of 
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Figure 8.2: Schematic of a particle on a lattice. 

the wall from the last fluid node is given as qδx = |rj − rw|. If q = 1/2, the wall is 
located midway between the last fluid node and the first solid node and a half way 

bounce-back can be applied (Fig. 8.3a). However, if q < 1/2, the particle would reach 

position ri between rj and rj0 (Fig. 8.3b). Similarly, if q > 1/2, the particle would 

reach position ri between rj and rj0 (Fig. 8.3c). 

The following procedure is adopted to preserve the boundary representation of 

the particle: when q < 1/2 (Fig. 8.3b), the distribution function at ri is computed 

from the post collision distribution functions at rj00 ,rj0 and rj through interpolation. 

This distribution function is then streamed so that it arrives at rj . When q > 1/2 

(Fig. 8.3c), the distribution function at rj is streamed to ri. Then the post streaming 

distribution functions at rj00 ,rj0 and ri is used to evaluate the distribution function at 

rj . One can use either a linear or a quadratic interpolation. A quadratic interpolation 

is employed in this work. 

In order to determine the force acting on the particle due to fluid drag, a momen-

tum exchange technique, similar to that employed by Mei et al. [125], is used. In this 

method, the momentum transferred by the ”LBM-particles” to the solid particle as 
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Figure 8.3: Schematic to illustrate boundary condition for a curved wall (Adapted 
from Ref. [124]). 
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it bounces from the surface of the particle is summed up to get the total momentum 

transferred to the particle in a time step. When the particle moves in the compu-

tational domain, some of the fluid nodes are uncovered and some covered. In such 

cases, the density at the newly appeared fluid node is obtained as the average density 

of all the neighboring fluid nodes. The velocity of the uncovered node is equal to the 

sum of the velocity of the particle and the angular velocity times the position vector 

joining the lattice node and the particle center. From this velocity and density, the 

equilibrium distribution functions are calculated and are assigned as the distribution 

functions of this node. This newly created fluid node gains some momentum. The 

particle momentum should therefore decrease by the same amount to ensure mo-

mentum conservation. Similarly, when a particle covers a fluid node, it gains the 

momentum of the fluid node at that instant. These forces due to particle covering 

and uncovering a fluid node are added to the force found by the momentum exchange 

method and used to update the velocity and position of the particle. Ref. [53] may 

be consulted for a detailed explanation of the implementation. The code has been 

tested for its accuracy in simulating particle-laden flows in Chapter 4. 

8.4 Results and Discussion 

Table 8.1 lists the computational conditions of seven PR-DNS cases considered in 

this work. The Reynolds number based on the friction velocity, Reτ , is 180. There 

are 400 lattice points in the wall-normal direction, 600 in the span-wise direction and 

1200 in the stream-wise direction. The grid size, Δ, is about 0.5 times the Kolmogorov 

length scale, ηk. The DNS of single-phase turbulent channel flow at this Reτ does not 

require this many grid points, but the relatively large number of points was required 

because the inclusion of particles necessitated that the Mach number be less than 0.1 

for stability considerations. There are 120 particles considered in this simulation. 

In the first five cases, the effect of Stokes number, St, on particle movement is 

studied. The particle size dp/ηk is held constant for these cases. For Cases 6 and 7, 
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Table 8.1: Parameters for the PR-DNS cases studied in this work. 

Case St ρp/ρf dp/ηk 

1 0.5625 1.2 11.1 

2 2.3438 5 11.1 

3 9.3752 20 11.1 

4 37.5 80 11.1 

5 93.75 200 11.1 

6 0.432 3 5.92 

7 10.368 72 5.92 

the particle diameter is reduced by about a factor 2 while keeping the St comparable 

to Cases 1 and 3, respectively, to assess the effect of particle size on the motion. 

It has been suggested in the literature that Saffman lift and turbophoresis affect 

the particle motion in the cross-flow direction [11]. Saffman lift is a force that acts 

on a particle in a shear flow when it either leads or lags the fluid velocity [19]. It 

was first identified by Saffman for a spherical particle in an unbounded uniform shear 

flow. Saffman showed that this lateral force acts to force the particle toward the 

faster moving fluid when it lags the fluid velocity and toward the slower moving fluid 

when it leads the fluid velocity. The magnitude of this force depends on the velocity 

gradient across the particle, and the slip velocity, i.e. relative velocity magnitude 

between the particle and the fluid. 

Consider the non-dimensional mean velocity profile, u+ , as a function of non-

dimensional normal distance from the wall, y+ , shown in Fig. 4.19. u+ is obtained 

as 

+ < U > 
u = , (8.1) 

uτ 
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where < U > is the mean velocity and uτ is the friction velocity. uτ is obtained from 

the wall shear stress, τw and fluid density, ρ, as 

r 
τw 

uτ = . (8.2)
ρ 

y+ is obtained as, 
y 

y + = , (8.3)
lv 

where y is the normal distance from the wall and lv is the viscous length scale. This 

mean velocity was obtained in a separate single-phase flow simulation of a turbulent 

channel flow. The averaging was done in both time and X and Z directions. Figure 

8.4a shows the mean velocity as a function of normal distance from the wall whereas 

Fig. 8.4b shows the same profile plotted on a semi-log scale. The profiles are in 

agreement with well-known profiles in turbulent channel flows [137, 164]. It can be 

seen that near the wall there is a large gradient in the velocity whereas near the center 

the velocity change is small. The velocity increases from 0 at the wall (y+ = 0) to 

+ + +about 13 at y = 25, whereas from y = 100 to y = 150, it increases from 17.5 

to 18. Enhanced mixing in the core of the channel by turbulent eddies reduces the 

gradients. Figure 8.5 shows the gradient of the mean velocity. Notice that it starts 

+ + +from 1 at y = 0, since near the wall the velocity profile varies as u = y . The 

gradient is large near the wall (y+ < 50) and smaller away from the wall (y+ > 50). 

When a particle moves from the core of the channel toward the wall, it has a 

higher streamwise velocity than the fluid velocity because the fluid velocity decreases 

abruptly near the wall. The particle requires a longer time to adjust to the change in 

velocity because of inertia. While this is not applicable for tracer particles, it is indeed 

the case for finite-sized particles with inertia. Consider the schematic in Fig. 8.6a. 

The particle along with the mean flow velocity profile and the relative velocity vectors 

near the particle are shown. In the sketch, the relative velocity of the fluid on the wall 

side of the particle is higher than on the other side. This results in a lower pressure 

on the wall side which forces the particle to move toward the wall. This is Saffman 
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Figure 8.4: (a) Mean velocity profile in the cross-flow direction in a turbulent channel 
flow; (b) Mean velocity profile on a semi-log axis. 
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Figure 8.5: Gradient of the mean velocity profile in a fully developed turbulent channel 
flow. 



198 

lift. Additionally, the gradient in velocity across the particle is large near the wall 

and hence Saffman lift is large. Now, consider a case when the particle moves toward 

the center. In this case, the particle velocity would lag the fluid velocity. Figure 8.6b 

schematically shows a particle near the center and the relative velocity vectors. The 

relative velocity on the side close to the center is higher than the other side. This 

causes a lower pressure on the center side thereby forcing the particle towards the 

center. Since the gradient in the core of the channel is small, the magnitude of this 

force is small. Thus, Saffman lift forces the particle toward the wall with a larger 

force when it is close to the wall and toward the center with a smaller force when it 

is in the core of the channel. 

Turbophoresis refers to the force acting on the particles when there is a gradient in 

turbulent kinetic energy (TKE) [165]. There are two mechanisms for turbophoresis: 

”global” turbophoresis and ”local” turbophoresis. When the particle diameter, dp, is 

larger than the Kolmogorov length scale, ηk, such that it encounters a gradient in TKE 

across it, it experiences a net force in the direction of lower TKE. This is analogous 

to thermophoresis. The turbulent fluctuations on one side transfer momentum to 

the particle at a higher rate than the other side which results in a net force on the 

particle in the direction of decreasing TKE. In this work, this effect is referred to as 

”local” turbophoresis. The magnitude of this force depends on the gradient of the 

TKE across the particle and on the size of the particle. Consider the variation of TKE 

with normal distance from the wall in a single phase turbulent channel flow shown in 

Fig. 8.7. These results are obtained from the single-phase flow simulation and they 

agree well with results from a spectral element code reported in the literature and 

shown in the figure [164]. It can be seen that the peak TKE occurs at about y+ ≈ 15 

where the production of TKE is maximum. As the wall is approached, the TKE 

decreases sharply to zero as expected. There is a slower decrease in TKE toward the 

center of the channel. Figure 8.8 shows the gradient of the TKE as a function of y+ . 

Notice that near the wall (y+ < 20), the magnitude of this gradient is large. As we 

move away from the wall (y+ > 20), the gradient is smaller and approaches zero as 
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Figure 8.6: Schematic to illustrate Saffman lift force: (a) particle near the wall; (b) 
particle near center of channel. Velocity profile shown is in a cross-section. 
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Figure 8.8: Gradient of turbulent kinetic energy in the channel. 

we move toward the center. Thus, near the wall, turbophoresis is strong and forces 

the particle toward the wall. Away from the wall, turbophoresis is weak and forces 

the particle toward the center. 
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There is another way in which turbophoresis can act even when particles are 

not resolved. This will be referred to as ”global” turbophoresis in this work. In a 

turbulent flow, particles are randomly dispersed by the turbulent eddies. If a particle 

has no inertia, i.e. St = 0 (tracer particles), then turbulence will ensure homogeneous 

particle concentration. However, if the particles have finite inertia, then the turbulent 

eddies have to overcome inertia to move the particle. Regions where TKE is higher 

would more easily disperse particles while regions with low TKE would have slower 

dispersion. This can concentrate particles in regions of low turbulence. This causes 

particles to concentrate near the wall and near the center. The random motion of 

turbulence will continually transport particles to the wall region or the center where 

they will concentrate. ”Global” turbophoresis is much more dominant for particles 

with moderate St (∼ O(1)) since they respond more readily to turbulent fluctuations. 

As St → 0 or St →∞, the effect of ”global” turbophoresis vanishes. If the particles 
are larger than the integral length scale, le, i.e. dp > le, only ”local” turbophoresis 

would be relevant. 

Figures 8.9-8.13 show the particle concentration profiles for Cases 1-5, respectively. 

The concentration profiles are obtained by separating the domain into slices in the 

Y-direction (i.e. normal to the walls) and then counting the number of particles in 

each slice. This is then normalized by the number of particles that should be in the 

slice if the particles are uniformly distributed. Thus each symbol represents a non-

dimensional concentration of particles in that slice. Since the slices are discrete, the 

non-dimensional concentration shows some fluctuations. These fluctuations would 

decrease if we increase the number of particles or average over a long time. 

Figure 8.9 shows the non-dimensional concentration profile for Case 1 where the St 

is 0.5625. The most significant trend is the high concentration near the wall, where the 

concentration is about 6 times higher than the bulk average concentration, while it is 

nearly uniform in the core of the channel (−0.4 < y/H < 0.4). This can be explained 

in terms of Saffman lift and turbophoresis. As discussed above, turbophoresis causes 

particles to concentrate near the wall or center. Saffman lift also forces the particle 

https://8.9-8.13
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Figure 8.9: Non-dimensional particle concentration along the cross-section of the 
channel for Case 1. The symbols represent the concentration in each slice and the 
curve is a fit through these symbols. 

toward the wall. As the particle moves toward the wall, lubrication forces act against 

that movement. The lubrication forces are not strong to cause the particle to escape 

from the wall region completely and so it accumulates. It should be noted that if the 

particle has no inertia (i.e. tracer particles), then global turbophoresis would have no 

effect. Saffman lift would also be absent since the particle would adjust to the fluid 

instantly and thus would not lag/lead the fluid velocity. ”Local” turbophoresis can, 

however, still impact the particle motion. In fact, it is this ”local” turbophoresis that 

may be more important for the low inertia, i.e. low St particles. 

As the St is increased to 2.3438 (Case 2), we notice from Fig. 8.10 that the 

particle concentration near the wall is now about 7 times larger than the bulk average 

concentration. This is higher than what was seen for Case 1. One reason for this may 

be that since the inertia is higher, ”global” turbophoresis also becomes important. 

Furthermore, once the particle comes close to the wall, the Saffman lift is larger than 
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Figure 8.10: Non-dimensional particle concentration along the cross-section of the 
channel for Case 2. The symbols represent the concentration in each slice and the 
curve is a fit through these symbols. 

what particles in Case 1 experienced because of the higher slip velocity magnitude. 

Since the particle size is same, the ”local” turbophoretic force is same, though higher 

particle inertia reduces its effect on the particle motion. The increase in ”global” 

turbophoresis and the Saffman lift is higher than the decrease in ”local” turbophoresis 

so that the net effect of these forces result in a higher concentration near the wall 

than Case 1. 

When the St is increased further to 9.3752, we observe that the particle concen-

tration near the wall is about 5 times the bulk average concentration (See Fig. 8.11). 

As the particle inertia increases, the effect of both ”local” and ”global” turbophoresis 

decreases since the larger energy containing eddies have lesser impact on the particle. 

Thus the likelihood of particles approaching the wall decreases. Once a particle does 

come close to the wall, the slip velocity is much larger compared to the previous two 

cases and there is a strong Saffman lift toward the wall. 
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Figure 8.11: Non-dimensional particle concentration along the cross-section of the 
channel for Case 3. The symbols represent the concentration in each slice and the 
curve is a fit through these symbols. 
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Figure 8.12: Non-dimensional particle concentration along the cross-section of the 
channel for Case 4. The symbols represent the concentration in each slice and the 
curve is a fit through these symbols. 

For Case 4, when the St is 37.5, the non-dimensional near wall concentration 

decreases further to about 2. This decrease is again due to the decreasing influence 

of turbophoresis while the Saffman lift increases only slightly. As the St is increased 

to 93.75, the concentration profiles become almost uniform. Since the inertia is large, 

turbophoresis has negligible effect on particle movement. It is interesting to note that 

for particles with infinitesimally small and infinitely large inertia, turbophoresis has 

no effect, but becomes relevant only when the particle inertia is finite. 

Consider now the effect of particle size on the preferential concentration profiles. 

Figure 8.14 shows particle concentration profiles for a study where the particle di-

ameter is approximately halved compared to the earlier cases, but the St is 0.432, 

i.e., comparable to Case 1. Notice that the particle concentration near the wall is 

about 5 times larger than the bulk average concentration. Since the particle St is 

the same as Case 1, the global turbophoretic effect would be similar and transports 
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Figure 8.13: Non-dimensional particle concentration along the cross-section of the 
channel for Case 5. The symbols represent the concentration in each slice and the 
curve is a fit through these symbols. 
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Figure 8.14: Non-dimensional particle concentration along the cross-section of the 
channel for Case 6. The symbols represent the concentration in each slice and the 
curve is a fit through these symbols. 

the particle toward regions of low TKE. However, since the particle is smaller, the 

gradient across the particle would be smaller and hence both Saffman lift and ”local” 

turbophoresis are weaker. This can explain the decrease in near wall concentration 

compared to Case 1. Interestingly, a local maxima in the concentration profile near 

the center is observed. This is because the center is a region of local TKE minima and 

hence global turbophoresis would transport particles to the center as well. Since the 

Saffman lift and local turbophoresis near the wall were much stronger in Case 1, the 

particles were immediately transported toward the wall and hence a high center-line 

concentration was not observed. 

For Case 7, the St is 10.368, which is comparable to that of Case 3, but the 

diameter is reduced by a factor of about 2. The particle concentration shows a small 

peak near the walls where the concentration is roughly 2.5 times the bulk average 

concentration, but it is nearly uniform in the core of the channel. At this St, the 



• •••••• • •••••••••••• • ••• ! • •• •• • ••••••••• • • •••••••• • ••• • •••• • • •• •• • •••••••• •• • • ••••••• 

' . ' . ' 

. . .. . . .... .. . .. . . . .. . .. . ! • •• • •• •• • • • •• • • • • •• •• • • • ••• •• • •• • • • . .. . .. .. . . . . .. . . ... .. ... . 

' . ' . ' 

. . .. . . .... .. . .. . . . .. . .. ... .. . .. .. . . . .. . . . , .. .. . . . ... .. . .. . .. . .. . .. .. . . . . .. . . ... .. ... . 
' ' ' . ' 

• • 
• 

• ·-·-·-·--· • • 

208 

0.4 0.2 0.0 0.2 0.4
y/H

0

1

2

3

4

5

6

7

8

n
p
/n

p
,a
vg

Figure 8.15: Non-dimensional particle concentration along the cross-section of the 
channel for Case 7. The symbols represent the concentration in each slice and the 
curve is a fit through these symbols. 

Saffman lift and ”global” turbophoresis seem to be almost negligible. It is interesting 

that when dp/ηk = 11.1, the concentration becomes uniform at St = 93.75 while 

when dp/ηk = 5.92, the concentration becomes uniform at St = 10.368. Thus, we 

see that decreasing the size of the particle decreases the St at which the uniform 

concentration is achieved. This is possibly because decreasing the particle size reduces 

the effect of both Saffman lift and ”local” turbophoresis both of which cause particles 

to concentrate preferentially. 

8.5 Summary and Conclusions 

The lattice-Boltzmann method is employed to carry out direct numerical simu-

lations of particle-laden turbulent flows in a channel. The method adopted resolves 

the boundary of individual particles by employing a technique developed to represent 
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curved boundaries. The momentum exchange between the solid and fluid phases is 

computed through a discrete method that tracks the state of the lattice nodes. Prior 

studies with particles in a laminar flow have shown that the method is numerically 

accurate. Stokes number and particle diameter are varied to study the effect of par-

ticle inertia and diameter on particle distribution across the channel cross-section. 

The studies are carried out under the condition where the particle diameter is an 

order of magnitude larger than the Kolmogorov length scale. In these conditions, the 

dominant forces that impact particle motion are Saffman lift and turbophoresis. Tur-

bophoresis can act in a local sense whereby the more intense exchange of momentum 

of eddies on the side of the particle with higher turbulent kinetic energy relative to 

the opposite side move the particle toward the lower turbulent kinetic region or in a 

global sense whereby even when the particles do not directly feel the effect of eddies, 

particles tend to diffuse down gradients. If the particles were larger than the integral 

length scale, only local turbophoresis effect will be relevant. 

It is seen that at lower Stokes number, the particles tend to accumulate near the 

walls because of Saffman lift and turbophoresis forces. The distribution of particles 

in the core of the channel is relatively uniform. As Stokes number is increased, the 

tendency of the particles to concentrate near the wall decreases and distribution of the 

particles approaches uniform throughout the channel cross-section. As particle size is 

increased, the Stokes number at which the uniform distribution is reached increases. 

The likely reason is that the effect of local turbophoresis and Saffman lift increase for 

larger particles and these forces tend to concentrate particles near the wall. Higher 

Stokes number, i.e. higher inertia, is needed to resist this tendency. 
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9. CONCLUSIONS AND FUTURE WORK 

9.1 Introduction 

Particle-laden flows are of interest in many engineering devices. The ability to 

simulate such flows accurately can accelerate the development of these devices. The 

work in this thesis has been motivated by the need to accurately simulate particle-

laden flows in confined walls. In particular, the mechanisms that cause preferential 

particle motion in a channel flow are examined. In the next Section, the work carried 

out will be summarized and some conclusions drawn. Section 9.3 will discuss proposed 

future work. 

9.2 Summary and Conclusions 

The contributions of this work are now now summarized and conclusions are 

drawn. In Chapter 1, several examples of particle-laden flows are presented, where 

the understanding of particle-turbulence interactions are critical to the performance 

of the devices. Understanding of particle-wall and particle-turbulence interactions are 

important to aid in the development of these engineering devices. Accurate models 

will significantly accelerate the design and optimization of these devices. 

In Chapter 2, the work that has been done to improve understanding of various 

interactions in particle-laden flows and model such flows are summarized. Relevant 

non-dimensional parameters that characterize these interactions are examined. Of 

particular importance are the Stokes number (St), the volume loading ratio (Φv) and 

the mass loading ratio (Φm). While the St determines how fast particles respond to 

the flow, Φv and Φm determine the coupling between the dispersed and carrier phases. 

Based on these paramters, three regimes are reported in the literature: 
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1. One way coupling: The particles are influenced by the turbulence but the turbu-

lence itself is similar to its single phase counterpart. This regime is characterized 

by low Φv and Φm. 

2. Two way coupling: The particles are affected by the turbulence vice versa. 

The turbulence can be either augmented or attenuated depending on other 

parameters such as the St. This is referred to as turbulence modulation. This 

happens when Φv << 1 and Φm ∼ 1. 

3. Four way coupling: In addition to the coupling between turbulence and parti-

cles, the particles themselves interact with each other. This regime is charac-

terized by Φv and Φm of the order unity. In this study, attention will be focused 

on the first two regimes. 

The literature review then presents some analytical studies of particle-laden flows. 

Despite their limited range of application, they provide useful insight into the behav-

ior of particle-fluid interaction. Then we report experimental works on particle-laden 

flows. This section shows several interesting features that occur in turbulent particle-

laden flows such as dispersion, clustering and deposition among others. This is fol-

lowed by a review of computational studies that seek to elucidate the physics behind 

many such phenomena. Then, models that are used to simulate particle-laden flows 

of practical interest are presented. Several interesting features of the flow that are 

not clearly understood are summarized in this Chapter and this sets the motivation 

for our work. These features are: 

1. Preferential concentration of particles in a pipe-flow. 

2. Turbulence modulation by the particles. 

Fundamental insight into these features are provided by employing direct numer-

ical simulations. The lattice-Boltzmann method (LBM) is used to carry out the 

simulations. The explicit and local nature of the LBM makes it amenable to large 

scale parallelization.Furthermore, the implementation of a moving particle is easier 
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in the LBM framework than in a conventional Navier-Stokes solver. In Chapter 3, 

the LBM is formally introduced and it is shown that in the continuum limit, the 

Navier-Stokes equations are recovered from the lattice-Boltzmann equations. Vari-

ous boundary conditions that are relevant to simulations of particle-laden flows are 

discussed in detail. The particle surface and the boundary layer are resolved in this 

study. The particles are treated as moving walls in the domain with the momentum 

augmented half-way bounce back condition with interpolation. For the point-particle 

simulations, the particle tracking algorithm is parallelized by storing the particles as 

a doubly linked list in each processor. 

In Chapter 4, the LBM code that is developed to perform the particle-resolved 

simulations is assessed for accuracy by simulating increasing complex problems and 

comparing the solutions with analytical solutions and prior computational results. 

These problems start from the decaying Taylor vortex with periodic boundary con-

ditions to a turbulent flow case. Across the range of configurations simulated, it is 

shown that the LBM code is able to reproduce existing results. A turbulent channel 

flow is simulated and the mean flow and the turbulent intensities are compared with 

results of Lee and Moser [133]. The results agree well with differences less than 5%. 

Having developed the LBM code and assessed its accuracy, it is employed to carry 

out direct numerical simulations of particle-laden flows. Particle motion in a channel 

flow where the particles are smaller than the Kolmogorov length scale is examined. 

Under this condition, the point-particle approach can be used. Two-way coupling is 

implemented through the drag coefficient and an external force term in the discretized 

Boltzmann equation. Results are presented in Chapter 5. The simulations show that 

the Stokes number, St, mass loading of particles, i.e. ratio of mass of dispersed 

to carried phase, mp/mf , and particle diameter, dp, are important parameters that 

determine the distribution of the particles and the impact of the particles on the fluid 

velocity flow field. At relatively low mass loading, typically less than 0.1, the impact 

on the mean velocity flow field and the turbulent kinetic energy is not significant. But, 
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under these conditions, the preferential motion of particles in the lateral direction is 

impacted by the fluid motion. The impact depends on the St. 

When the St is infinitesimally small, the particles are uniformly distributed across 

the cross-section of the channel. As St is increased, the particle concentration near 

the wall increases. At even higher St, the particle concentration near the wall de-

creases, but it increases at the center of the channel. This preferential motion, and 

resulting concentration, is attributed to turbophoresis as that is the only mechanism 

that can result in preferential lateral movement of particles within the framework of 

these simulations where point particles are considered. Turbophoresis results in pref-

erential motion when the tendency for turbulent eddies to move particles is opposed 

by their inertia. In fact, larger diameter particles with the same St as smaller diam-

eter particles, are less impacted by turbophoresis because the larger particle would 

have a smaller drag per unit mass. As particle mass loading increases, the fluid flow 

field is increasingly affected, with the mean velocity decreasing relative to the single 

phase flow mean velocity. The turbulent kinetic energy also decreases as a result of 

the decrease in the mean velocity. In summary, preferential movement and distribu-

tion of particles is affected by St and particle diameter whereas the impact on the 

mean velocity is primarily affected by the mass loading. 

Next particle-resolved simulations are carried out. As a first step, simulations 

are carried out for laminar flow in a channel. The results of these computations are 

presented in Chapter 6. The influence of St on the behavior of particle motion is 

examined. The particle migration is explained in terms of the forces acting on the 

particle in the lateral direction. Saffman lift, Magnus lift and wall repulsion were 

found to affect the particle migration trajectories. The Saffman lift and Magnus lift 

act toward the wall while wall repulsion is directed away from the wall. At low St, the 

particles come to an equilibrium position that is between the wall and the centerline 

where the forces balance. At high St, the particles oscillate about the centerline due 

to its inertia. 



214 

Particle-resolved simulations of moving particles in turbulent flows are challenging. 

So, the effect of stationary particles on the turbulent flow field is presented in Chapter 

7. Direct numerical simulations (DNS) of turbulent flow past stationary particles in 

a channel are carried out. The simulations provide information about particle-flow 

interactions when the particle is near the wall and at the center. Multiple particles 

fixed in a cross-sectional plane are also considered. The position of the particles in 

the channel, the particle size, the Reynolds number and the number of particles are 

varied. The details of the flow field are analyzed to provide insight into the factors 

that control the distance of influence of the fixed particles on the flow field. With a 

single particle, the effect of the particle is felt for about 20 diameters downstream. 

With multiple particles, the interaction of vortices shed by the particles increases 

this distance to about 40 diameters. These results suggest that if the particles are 

separated by an average distance greater than 40 diameters, then the effect of particle-

fluid-particle interactions can be ignored. 

Particle-resolved simulations are then carried out for particle-laden turbulent flow, 

the results of which are described in Chapter 8. One of the challenges in these 

simulations was that the Mach number was required to be less than 0.1 for stability 

considerations which required a large number of grid points. In a turbulent flow, 

the turbophoretic force plays an important role in lateral particle motion in addition 

to the other forces described. Turbophoresis forces the particle in the direction of 

decreasing turbulent kinetic energy. Turbophoresis can act in a local sense whereby 

the more intense exchange of momentum of eddies on the side of the particle with 

higher turbulent kinetic energy relative to the opposite side move the particle toward 

the lower turbulent kinetic region or in a global sense whereby even when the particles 

do not directly feel the effect of eddies, particles tend to diffuse down gradients. If 

the particles were larger than the integral length scale, only local turbophoresis effect 

will be relevant. It is seen that at lower St, the particles tend to accumulate near the 

walls because of Saffman lift and turbophoresis forces. The distribution of particles 

in the core of the channel is relatively uniform. As St is increased, the tendency of 
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the particles to concentrate near the wall decreases and distribution of the particles 

approaches uniform throughout the channel cross-section. The effect of particle size 

on its lateral motion is also studied. As particle size is increased, the St at which 

the uniform distribution is reached increases. The likely reason is that the effect of 

local turbophoresis and Saffman lift increase for larger particles and these forces tend 

to concentrate particles near the wall. Higher Stokes number, i.e. higher inertia, is 

needed to resist this tendency. 

9.3 Future Work 

In this work, particle-laden flows were simulated using the lattice-Boltzmann 

method (LBM) in channel flows to study preferential particle motion. The work in-

volved both particle-resolved and point-particle direct numerical simulations (DNS). 

While most of the direct numerical simulations reported in this work are at a 

Reynolds number of about 6500, the Reynolds number in devices of engineering in-

terest are much higher. Direct numerical simulations with higher Reynolds number 

can be performed to assess particle motion under these conditions. One interesting as-

pect is that at higher Reynolds number, the location of peak turbulent kinetic energy 

shifts closer to the wall [133]. DNS studies can be carried out to see how this affects 

turbophoretic effects and the particle concentration profiles. At higher Reynolds 

number, DNS computations have certain challenges that need to be addressed: 

• In the LBM framework, higher Reynolds number simulations require lower vis-

cosities and hence lower values of the relaxation parameter, τ . It is known that 

as τ approaches 0.5, the lattice-Boltzmann method becomes unstable. The 

multiple relaxation time (MRT) collision operator has been employed in this 

work to overcome this. However, lower values of τ require formulation of more 

sophisticated collision operators. 

• For particle-resolved DNS studies, it was found in this work that the Mach 

number, Ma, be less than 0.1 for stability considerations. The likely reason for 
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this instability is the particle motion in the domain which requires filling new 

fluid nodes that appear and removal of old fluid nodes that have been occupied 

by the particle when the particle moves. Improved particle motion techniques 

are required to ease this Ma constraint. 

• In addition to stability, DNS studies require resolution of the Kolmogorov length 

scale, which can be computationally extremely expensive. The computational 

time scales with Reynolds number as Re3 . While the number of processors 

available in modern supercomputers is on the rise, code optimization is es-

sential to make sure that the computational time scales with the number of 

processors. Minimizing communication time between processors and ensuring a 

balanced load among all processors is critical to achieve reasonable run times. 

Load-balancing issues pose a major challenge, especially with particle-laden 

flows. While the fluid domain can be easily distributed evenly among proces-

sors, particles may not be evenly distributed in the fluid domain, giving rise to 

load-balancing issues that need to be dealt with. One possible approach might 

be to consider dynamic load balancing with a partitioned global address space 

(PGAS) programming model. 

Another aspect of the lattice-Boltzmann method that makes it challenging for 

higher Re DNS computations is the coupling of lattice spacing and time step, which 

prevents the use of stretched grids commonly employed in Navier-Stokes solvers. 

While interpolation-supplemented LBM has shown to help with decoupling the lat-

tice spacing and time step, it is known to affect the accuracy of computations [166]. 

One way to overcome this restriction is to use multi-block grids in regions where finer 

grids are required. This is especially important for confined flows where fine grids are 

required near the wall to resolve the boundary layer. Some initial studies using local 

grid refinement is presented in Appendix C and it is shown to save computational 

time significantly. This work could be extended to include adaptive mesh refinement 

(AMR) which would bring additional savings in computational time, especially for 
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Figure 9.1: Adaptive mesh refinement around a particle. Figure adapted from [167]. 

particle-resolved simulations where the particle size is of the order of Kolmogorov 

length scale. 

Figure 9.1 shows adaptive mesh refinement around a particle [167]. Typically 

these are developed using tree data structures instead of arrays. In a tree, each node 

has some data (in this case, it would be the distribution functions and hydrodynamic 

variables) and pointers to its child nodes, as well as information about its neighbors. 

For example, in a typical 3 dimension simulation, each node would have eight children 

(oct-tree) for each refinement level. Employing a tree data structure offers flexibility 

when it comes to collapsing a set of fine grids into a coarse grid or splitting a coarse 

grid into finer ones. However, neighboring data is no longer stored contiguously and 

hence cache hit ratio might decrease potentially increasing computational time. This 

is a challenge that should be addressed. 

The computations carried out in this work are for mono-disperse spherical parti-

cles. This could be extended to include polydisperse particles. Moreover, objects with 

non-spherical shapes can also be considered. Implementation of AMR as discussed 



218 

earlier might make this easier and computationally feasible. Such particle shapes are 

of special interest in pharmaceutical applications where cylindrical particles are com-

mon. These introduce additional parameters to consider such as aspect ratio, and size 

distribution of particles. It would be interesting to see the effect of these parameters 

on particle concentration profiles. The major challenge in this study would be the 

implementation of efficient algorithms for contact and collision detection. Accounting 

for rotation of non-spherical particles is another area where additional effort would 

be required. Motion of deformable particles can also be considered. Potential appli-

cations for these include study of deposition of blood cells on arteries and bacterial 

migration in the atmosphere. In this case, the challenge would be a technique to store 

the boundary information of each particle. 

The information gained from the direct numerical simulation (DNS) studies pre-

sented in this thesis can be used to develop models for particle-laden flows. Large 

eddy simulations (LES) is an area where efforts can be focused. In LES, most of the 

energy containing eddies are resolved while smaller eddies are modeled. Appendix D 

presents some initial results of particle-laden flows in a turbulent channel using large 

eddy simulations (LES). These results showed that a model to account for the effect 

of sub-grid scale eddies on the particle motion is required to accurately predict par-

ticle concentration profiles. Other aspects to consider include modeling of sub-grid 

stress, accounting for turbulence modulation by the particles, and implementation of 

Saffman lift. 

Similar model development work can also be carried out for Reynolds averaged 

Navier-Stokes (RANS) techniques. With RANS, a greater modeling effort is required. 

Since only the mean flow velocity is being solved, models are required to account 

for dispersion of particles by turbulent eddies. It is shown in Chapter 5 that even 

with point-particles, turbulence can cause preferential motion of particles through 

turbophoresis. Moreover, when the particles are larger, there is an additional Saffman 

lift force and ”local” turbophoresis effect as discussed in Chapter 8. These effects can 
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be modeled within a RANS framework to get accurate particle concentration profiles. 

The effect of particles on the turbulence can also be modeled in RANS framework. 

With both the RANS and the LES framework, modeling of turbulence modu-

lation is required to get accurate results. Point-particle simulations in Chapter 5 

showed that the effect of particles on the flow field becomes important as the mass-

loading of the particles increases. Additionally, it was shown in Chapter 7 that when 

inter-particle distances are less than 40 diameters, particle-fluid-particle interactions 

become important indicating that the effect of particles on the fluid cannot be ne-

glected. In such cases, depending on the particle size, particles can either augment 

or attenuate turbulent kinetic energy. These effects can be modeled in a Reynolds 

averaged Navier-Stokes (RANS) or large eddy simulation (LES) framework. 

In many engineering applications, particles in a pipe flow are often injected as 

a jet. Initial computations of particle-laden jets using RANS and a discussion of 

various models currently employed and its effect on the predictions of jet spreading are 

presented in the Appendix E. Some areas requiring work are turbulence modulation 

modeling and particle dispersion modeling. 
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A. MULTIPLE RELAXATION TIME IMPLEMENTATION 

The components of various elements in the moments are given following Ref. [155]: 

bf0 = ρ (A.1) bf1 = e (A.2) b 2f2 = e (A.3) bf3 = jx (A.4) bf4 = qx (A.5) bf5 = jy (A.6) bf6 = qy (A.7) bf7 = jz (A.8) bf8 = qz (A.9) bf9 = 3pxx (A.10) bf10 = 3πxx (A.11) bf11 = pww (A.12) bf12 = πww (A.13) bf13 = pxy (A.14) bf14 = pyz (A.15) bf15 = pxz (A.16) bf16 = mx (A.17) bf17 = my (A.18) bf18 = mz (A.19) 
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Here, ρ is the density, e and e2 represent kinetic energy of the molecules and 

the square of the kinetic energy respectively; jx, jy and jz are the components of 

momentum, i.e. jx = ρux, jy = ρuy and jz = ρuz; qx, qy and qz are the components of 

the energy flux; pxx, pxy, pyz and pxz are the components of the symmetric traceless 

viscous stress tensor. The other normal components pyy and pzz can be found from 

pww and pxx where pww = pyy − pzz. Other moments include πxx, πww, mx, my and 

mz. The first two of these moments have the same symmetry as the diagonal part of 

the traceless viscous tensor pij , while the last three vectors are parts of a third rank 

tensor, with the symmetry of jkpmn. 
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The transformation matrix for the D3Q19 lattice is given as (Ref. [155]): T = 

⎤⎡ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8 

12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1 

0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0 

0 −4 4 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0 

0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1 

0 0 0 −4 4 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1 

0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1 

0 0 0 0 0 −4 4 0 0 0 0 1 1 −1 −1 1 1 −1 −1 

0 2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2 

0 −4 −4 2 2 2 2 1 1 1 1 1 1 1 1 −2 −2 −2 −2 

0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 0 0 0 0 

0 0 0 −2 −2 2 2 1 1 1 1 −1 −1 −1 −1 0 0 0 0 

0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 

0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 

0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1 0 0 0 0 

0 0 0 0 0 0 0 −1 −1 1 1 0 0 0 0 1 −1 1 −1 

0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1 
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Components of equilibrium moments for the D3Q19 lattice are as follows [155]: 
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Source terms in moment space are given as follows [139]: 

bS0 = 0 (A.39) bS1 = 38 (Fxux + Fyuy + Fzuz) (A.40) bS2 = −11 (Fxux + Fyuy + Fzuz) (A.41) bS3 = Fx (A.42) 

2bS4 = − Fx (A.43)
3 bS5 = Fy (A.44) 

2bS6 = − Fy (A.45)
3 bS7 = Fz (A.46) 

2bS8 = − Fz (A.47)
3 bS9 = 2 (2Fxux − Fyuy − Fzuz) (A.48) bS10 = − (2Fxux − Fyuy − Fzuz) (A.49) bS11 = 2 (Fyuy − Fzuz) (A.50) bS12 = − (Fyuy − Fzuz) (A.51) bS13 = (Fxuy + Fyux) (A.52) bS14 = (Fyuz + Fzuy) (A.53) bS15 = (Fxuz + Fzux) (A.54) bS16 = 0 (A.55) bS17 = 0 (A.56) bS18 = 0 (A.57) 

(A.58) 
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B. GPU COMPUTING 

It is a well known fact that Direct Numerical Simulations (DNS) in general incur a 

huge computational cost. Particle Resolved - DNS (PR-DNS) computations are even 

more expensive than DNS of single-phase flows. Especially, if the particle size is of 

the order of Kolmogorov length scale, then a sub-Kolmogorov resolution is required 

to resolve the particle surface correctly. Thus the codes developed need to be highly 

optimized and fully parallelized to ensure that accurate results are obtained in a 

reasonable amount of time. During the initial code development, some studies on 

parallelizing the LBM code using Graphics Processing Units (GPUs) were carried 

out. 

Modern GPUs can be employed to perform high performance computations in 

addition to their intended specialized graphics operations. Due to the highly parallel 

nature of graphics processing, the GPU has evolved into a coprocessor that can be 

used in applications involving high data parallelism. As explained in Chapter 3, the 

operations in LBM are local and explicit unlike the conventional Navier-Stokes solvers 

which have to solve a Poisson type equation for pressure. This makes the LBM suited 

to be run on a GPU. 

There are relatively fewer works that have reported LBM computations on a GPU. 

They are listed in Ref. [168–170]. The main idea is that the GPU has several threads 

each of which can perform arithmetic or logical operations simultaneously. A typical 

GPU has thousands of threads operating on separate pieces of data. Each thread can 

be assigned to perform computations on one grid point. Individual operations on a 

GPU are slower than those on CPU. However, the large number of threads render a 

large throughput (total number of operations per unit time) than the CPU. 

The code development in a GPU environment differs considerably from usual 

distributed memory systems (i.e. MPI codes). In a GPU, there are various levels of 
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memory hierarchies. The register is obviously the fastest. Then there is also a shared 

memory which has speeds comparable to a cache. This memory is shared by a group 

of threads referred to as a block. Finally, there is the global memory which is common 

to all threads and blocks. The data access is fastest in the following order: registers 

> shared memory >> global memory. Any data transfer between the GPU and the 

CPU is slower than all these data access and should therefore be kept to a minimum. 

Much of the effort is thus spent on ensuring efficient memory access patterns. This 

is critical in the stream operation of the LBM. 

As a part of this work, a two-dimensional LBM code was developed to solve flow 

in a plane channel with the SRT collision operator. We ran our codes on an NVIDIA 

Tesla M2090 GPU. With just one GPU, speedup of over 100 times than a single CPU 

(Intel Xeon L5640) was achieved. The cost of the GPU that was used is less than a 

$1000. Thus the computation/cost ratio is very high for a GPU. 

However, there were some limitations. Firstly, the code development time to 

obtain an efficient code is very high. Secondly, even the latest GPUs have a RAM of 

about 6GB. This necessitates the use of multiple GPUs for PR-DNS computations 

which requires some sort of CPU-CPU communication routines (MPI for instance). 

This adds further complexity to the code. Finally, current GPU resources were not 

as much as the conventional CPU cores available. Hence the work in this thesis was 

carried out on distributed memory systems using the MPI. 
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C. LOCAL GRID REFINEMENT 

As originally proposed, the lattice-Boltzmann method employs uniform grids since 

space and time are coupled for a lattice with a discrete velocity set. For example, in a 

D3Q19 lattice, where D3 refers to three dimensions and Q19 to 18 velocity directions 

and a null velocity, a ”fluid particle” moving in any of the 18 directions has to land 

exactly at another grid point. This requires that the grid employed be uniform. Figure 

C.1 illustrates a D3Q19 lattice commonly employed in the LBM computations. It is 

clearly evident that having a lattice points at each locations marked 1-18 would give 

rise to a uniform grid. 

However, in the computation of turbulent wall-bounded flows such as a channel 

flow, the length scale of eddies near the wall are much smaller compared to those in 

the core of the channel. Figure C.2a shows the Kolmogorov length scale normalized 

by the viscous length scale as a function of the distance from the wall (results are from 

Ref. [133]). This is at a friction Reynolds number, Reτ , of 180, which corresponds 

to a bulk Reynolds number of about 6500. It can be seen from Fig. C.2a that near 
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Figure C.1: A D3Q19 lattice showing the requirement for a uniform arrangement of 
lattice points. 
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Figure C.2: Variation of Kolmogorov length scale normalized by the viscous length 
scale as a function of distance from the wall for (a) Reτ = 180 and (b) Reτ = 5200. 

the wall, the normalized Kolmogorov length scale is about 1.5 while it is about 3.7 

near the wall, i.e. length scale of eddies near the wall are about 2.5 times smaller 

than that at the core of the channel. At higher Re, this factor increases. From Fig. 

C.2b, it is seen that at Reτ = 5200 which corresponds to a bulk Reynolds number 

of 125000, this factor is roughly 6. Having uniform grids throughout the channel for 

such a case would increase the computational time enormously. This can be avoided 

if grids of variable sizes are employed in the domain. 

One approach is to employ continuously varying grid resolution using an interpola-

tion supplemented LBM that decouples particle velocity space and the computational 

grid [171]. However, interpolation is known to introduce numerical dissipation [166], 

which affects the accuracy of computations, especially for turbulent flows. A pre-

ferred alternate approach would be to employ local grid refinement techniques. Such 

techniques are commonly employed in Navier-Stokes solvers where variable grid size 

is required [172]. Chen et al. [173] and Rhode et al. [174] have proposed a method 

for local grid refinement in the LBM framework with a conservative approach that 

ensures mass and momentum is conserved across the transition from coarse to fine 

grids. A brief explanation of the method is provided here. 
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Figure C.3: A schematic of a coarse-fine transition layer. 

Consider an interface where there is a transition from fine to coarse grid. The 

transition is such that each coarse grid will have some integer ”n” number of fine 

grids. This refinement factor is 2 in the present work. Thus at the interface, for 

each coarse grid, there are two neighboring fine grids. The lattice points themselves 

are staggered to ensure conservation of mass and momentum. Figure C.3 shows a 

schematic of a transition layer. The dot indicates a lattice point in the coarse layer 

and the solid squares lattice points in the fine layer. The squares represent a voxel, 

analogous to a cell in the finite-volume formulation. The arrangement is such that 

coarse and fine voxels are aligned with each other as shown in Fig. C.3. 

In the fine layer, two iterations are carried out for every iteration in the coarse 

cell. During each streaming operation, information has to be transmitted between 

the coarse and fine cells. To transfer information from the coarse layer to the fine 

layer, the distributions functions have to be distributed to the fine voxels. In the 

current work, this is distributed equally. This process is referred to as the ”explode” 

step. To transfer information from the fine layer to the coarse layer, the distribution 
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functions are to be gathered together by summing them up. This is referred to as the 

”coalesce” step. The complete algorithm is specified below: 

1. Explode from coarse voxels into fine voxels. 

2. Stream fine voxels. 

3. Collide fine voxels. 

4. Stream fine voxels. 

5. Collide fine voxels. 

6. Stream coarse voxels. 

7. Coalesce from fine voxels to coarse voxels. 

8. Collide coarse voxels. 

9. Continue again from Step 1. 

The implementation of this algorithm is done in C++ using an object oriented 

programming methodology with MPI for parallelization. First the code is assessed 

for its accuracy in simulating a laminar channel flow. The grid employed for this 

simulation is shown in Fig. C.4. The grid refinement is in the Y-direction, i.e. 

normal to the walls. The flow is in the X-direction. Z-direction is periodic. There are 

three layers of refinement. Near the wall, four cells are employed. In the next layer, 

four cells with a refinement factor 2 is used. The third layer has 7 cells with size four 

times larger than the cells near the wall. The idea behind this refinement is that near 

the walls, the velocity gradient is large and hence more cells are required while near 

the center, the gradient is small and fewer cells are sufficient. The flow is driven by a 

body force and is similar to the laminar channel arrangement presented in Chapter 

4. 

Figure C.5 shows the velocity profile obtained from the simulations. The results 

agree well with the analytical profile. Figure C.6 shows the contour plot of streamwise 

velocity along with the computational grid with refinement. 

Next, the accuracy of this technique for a turbulent channel flow will be demon-

strated. The Reτ considered here is 180. The simulation parameters are identical to 
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Figure C.4: Grid employed for the laminar channel flow simulation. 
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Figure C.5: Velocity profile as a function of distance from the wall. 
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Figure C.6: Contour plot of streamwise velocity. Computational grid is also shown. 
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Figure C.7: Grid employed for the turbulent channel flow simulation. 

the turbulent channel flow simulations described in Chapter 4. Figure C.7 shows the 

grid employed for this computation. There are two levels of refinement. Near the 

wall, at y+ < 40, the grid size is about 1lv, where lv is the viscous length scale. At 

y+ > 40, the grid size is about 2lv. The ratio of grid size to Kolmogorov length scale 

is about 1 throughout the channel. 

The mean velocity profile is shown in Fig. C.8. It is seen that the profile almost 

lies on top of the profile obtained by Lee & Moser [133] using a spectral element solver. 

Figure C.9 shows the turbulent kinetic energy profile. The agreement is reasonable 

with the differences being less than 5% at all locations. The number of grid points 

employed in this simulation is 50.688 million whereas if the fine cell was uniformly 

used, 147.45 million cells would be required. Thus savings in computational time 

achieved is about a factor 3. 
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Figure C.8: Mean velocity profile as a function of distance from the wall. 
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Figure C.9: Turbulent kinetic energy (TKE) profile as a function of distance from 
the wall. 
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D. LARGE EDDY SIMULATIONS USING THE LBM 

Large eddy simulation (LES) refers to a simulation technique for turbulent flows where 

the larger energy containing eddies are resolved numerically, while the smaller eddies 

are modeled. The effects of the smaller eddies are taken into account with an eddy 

viscosity approximation. While this technique is computationally more expensive 

than Reynolds averaged Navier-Stokes (RANS) solvers, it is more accurate in its 

representation of turbulence. With increasing computational power, LES is becoming 

frequently employed, even for simulations of practical interest. In this section, some 

preliminary results for LES of particle-laden flows using the lattice-Boltzmann method 

(LBM) are presented. 

While LES has been used extensively to simulate single-phase flows [175–179], 

it has recently been used for particle-laden flows [180]. If the particle size is small 

compared to the Kolmogorov length scale, a point-particle approximation can be 

used [181, 182]. While some works employ the filtered LES velocity directly in the 

particle equation of motion [77,183], this can lead to inaccurate prediction of particle-

dispersion [83, 184]. Initial studies of LES using the lattice-Boltzmann method of 

particle-laden flows are presented in this section to assess the accuracy of sub grid 

models and its effect on the particle motion. This is the first work to report LES of 

particle-laden flows using the LBM. 

LES for single-phase flows using the LBM was initially proposed by Hou et al. [185] 

and Eggels et al. [186]. In later works, it has been employed to study flows with 

different configurations [187–190]. While these studies used the single relaxation time 

(SRT) collision operator, Yu et al. [191] extended this work to carry out LES using 

the multiple relaxation time (MRT) collision operator. Premnath et al. [139] have 

performed LES of channel flow using MRT schemes with a body force to drive the 
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flow. A similar approach has been employed in this work to carry out simulations of 

particle-laden turbulent channel flow. 

To model the effect of sub-grid scale (SGS) eddies, a Smagorinsky model is em-

ployed. The eddy viscosity, νt, can be computed from the strain rate as 

νt = (CsΔ)
2S,¯ (D.1) 

¯where Cs is a constant, Δ is the cutoff length and S is the magnitude of strain rate 

tensor. The magnitude of strain rate tensor is given as 

p
S̄ = 2Sij Sij , (D.2) 

where Sij is the strain rate tensor. In the LBM framework, the magnitude of strain 

rate tensor can be calculated directly from the non-equilibrium moments [191] elimi-

nating the need for calculation of velocity derivatives. In order to account for viscous 

damping near the wall, the cutoff length, Δ, includes the van Driest damping func-

tion [192], � � �� −y+ 

Δ = δx 1 − exp , (D.3)
25 

where δx is the grid size, and y+ is the normalized distance from the wall. The results 

for a single-phase flow using the LES code is now presented. 

For the LES computation, the local grid refinement technique described in Ap-

pendix C is employed. Two layers of refinement are used with 15 cells in each layer 

in the wall-normal direction. The mesh employed is shown in Fig. D.1. The grid 

size is roughly 2.5 times the Kolmogorov length scale. Figure D.2 shows the mean 

velocity profile as a function of y+ . It is seen that the profile agrees with the DNS 

results from literature [133] with differences being less than 5%. The TKE profile is 

shown in Fig. D.3. The profile agrees reasonably well with the DNS results. Figure 

D.4 shows the contour plot of instantaneous streamwise velocity. 
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Figure D.1: Grid employed for the LES of turbulent channel flow. 
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Figure D.2: Mean velocity profile as a function of distance from the wall. 
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Figure D.3: Turbulent kinetic energy (TKE) profile as a function of distance from 
the wall. 
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Figure D.4: Contour plot of instantaneous streamwise velocity. Computational grid 
is also shown. 
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Table D.1: Parameters employed for the LES study. 

Case St ρp/ρf dp/H 

1 0.5 450 2 × 10−3 

2 2 1800 2 × 10−3 

3 10 9000 2 × 10−3 

4 40 36000 2 × 10−3 

5 100 90000 2 × 10−3 

The parameters employed for simulation is shown in Table D.1. 1000 particles 

are employed in the simulation. The St is varied from 0.5 to 100 by changing the 

particle density. The particle size is kept constant throughout and is smaller than 

the Kolmogorov length scale. The mass loading is small in all cases and hence only 

one-way coupling is considered. Results for particle concentration are shown in Figs. 

D.5-D.9. 

Figure D.5 shows particle concentration profile for Case 1 (St = 0.5). While the 

peak concentration near the wall is about 8 times the average value in the DNS, it 

is about 9 times the average value in the LES. As the St is increased to 2 (Case 2), 

Fig. D.6 shows significant differences between the DNS and the LES. The magnitude 

of near wall concentration is 3 times the average value for the DNS while it is about 

9 times the average value. This increase might be due to the absence of smaller 

isotropic eddies near the wall. These eddies increase particle dispersion. For Case 3 

(St = 10), Fig. D.7 shows that the LES prediction of particle concentration near the 

wall is still higher than the DNS value. However, for Case 4 (St = 40) and Case 5 

(St = 100), the LES and DNS predictions are reasonably close. This is likely because 

the St in these cases are high that the smaller eddies have negligible impact on the 
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Figure D.5: Particle concentration profile normalized by the average concentration 
for Case 1: (a) DNS and (b) LES. 

particle motion. Thus initial results seem to indicate that a model for the effect of 

smaller eddies on the particle is required, especially for the low St cases. 
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Figure D.6: Particle concentration profile normalized by the average concentration 
for Case 2: (a) DNS and (b) LES. 
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Figure D.7: Particle concentration profile normalized by the average concentration 
for Case 3: (a) DNS and (b) LES. 
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Figure D.8: Particle concentration profile normalized by the average concentration 
for Case 4: (a) DNS and (b) LES. 
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Figure D.9: Particle concentration profile normalized by the average concentration 
for Case 5: (a) DNS and (b) LES. 
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E. RANS COMPUTATIONS OF PARTICLE-LADEN JETS 

E.1 Introduction 

An in-house Reynolds Averaged Navier Stokes (RANS) code is employed to sim-

ulate particle-laden jets for which experimental measurements are available. The 

objective of the study is to understand the limitations of current RANS models in 

simulating particle-laden flows. 

E.2 Background 

Turbulent jets are common in several devices like engines, combustors and gasi-

fiers. These jets have been studied in detail by several researchers in the past 

[193–197]. As a result, the behavior of turbulent jets is well understood. However, in 

most of these devices, the flow often includes a dispersed phase as well. For instance, 

internal combustion engines and gas turbines have turbulent drop-laden jets, while a 

gasifier often has a solid particle-laden turbulent jet. Addition of a dispersed phase 

significantly increases the complexity of the flow. 

In a particle-laden turbulent flow, there can be different regimes of particle-

turbulence interaction [12] (See Section 2.3.2 and related discussion): 

• One-way coupling regime: The particles are affected by the turbulence but not 

vice-versa. 

• Two-way coupling regime: Both the particles and the turbulence influenced each 

other. 

• Four-way coupling regime: Particle-particle interactions become important in 

addition to the particle-turbulence interaction. 
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In this work, particle-laden jets that are in the two-way coupling regime will be 

studied. 

For particle-laden turbulent flow, the particle Stokes number (St) at the jet exit 

is an important parameter. The St is defined as the ratio the particle response time, 

τp to the flow response time τf , i.e. 

τp
St = . (E.1)

τf 

For a spherical particle, the particle response time can be taken as the time constant 

of the particle in Stokes flow, i.e. 

d2ρp p
τp = , (E.2)

18µ 

where ρp is the particle density, dp is the particle diameter and µ is the viscosity of 

the carrier fluid. The flow response time can be obtained from a characteristic length 

scale and a velocity scale of the flow. For example, in the case of a pipe flow, the 

pipe diameter D provides a characteristic length scale and the bulk velocity provides 

a characteristic velocity scale. The flow response time can then be expressed as 

D 
τf = . (E.3)

Ub 

Thus the St at the jet exit is given by 

d2ρp pUb 
St = . (E.4)

18µD 

If the St is small, the particles would adjust quickly to any changes in the flow. If the 

St is large, the particles would take a longer time to adjust to the flow. In a two-way 

coupling regime, the particle St at the jet exit would influence the structure of the 

jet. 
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Several researchers have studied turbulent particle-laden jets through both experi-

mental and computational techniques. Shuen et al. [198] have reported measurements 

and computations of particle laden jets. They have measured the mean velocities of 

the carrier and the dispersed phase using Laser Doppler Anemometry (LDA). In their 

work, they compare the effect of particle diameter dp, the mass loading ratio Φm and 

the Reynolds number Re. However, no explicit discussions are made about the de-

velopment of the jet at different St. From their experimental conditions, the St is 

calculated to be between 100 ∼ 500. 

Particle-laden jet measurements of Modarress et al. [199] indicate that the fluc-

tuations of the carrier phase decreases with increase in Φm. These measurements 

however are for St > 10. It is known that particles can either augment or attenuate 

turbulence depending on the St [12]. Fleckhaus et al. [200] report similar findings, 

but their St is about 70. Moreover, the standard deviation in the particle size is 

not mentioned in the work of Modarress et al. [199]. In the study of Fleckhaus et 

al. [200], the standard deviation is about 25%. Owing to the squared dependence 

of the St on the dp, the effect of St might be masked in these measurements due to 

the polydispersity of the dispersed phase. Mostafa et al. [201] report measurements 

of particle-laden jets with the standard deviation of the particles being about 5%. 

This can be considered monodisperse. However, the St investigated in this study 

is of the order 10. Ref. [26, 202–205] are other measurements on particle-laden jets. 

However, none of them report the behavior of the jet when St is of the order unity 

and lower. Moreover, the measurements are not for truly monodisperse particles 

(standard deviation < 5%). 

Eaton and Fessler [10] report that particle behavior can be significantly different 

depending on the St. They report that St of the order unity, in particular, shows a 

strong tendency to concentrate preferentially, while no such effects are observed for 

higher St. This necessitates the need to study the accuracy of particle-turbulence 

models under a large range of St to determine the validity of the model. There might 

be applications where the St is of the order unity. The predictive capabilities of the 
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particle-turbulence model should be studied before they are used in the design of such 

devices. For instance, in typical industrial furnaces, the St is of the order 1 [206]. 

Recently, Lau and Nathan [11] have reported detailed measurements of the velocity 

and concentration of the dispersed phase in particle-laden jets for St of the order 

unity and lower. This gives us an experimental benchmark to test existing models 

and identify their shortcomings if any. 

In this work, the structure of a turbulent particle-laden jet is studied for a wide 

range of St numbers ranging from 0.3 to ∼ 500 through computations and the com-

puted results are compared with the measurements available. The sensitivity of the 

structure of the jet to parameters such as the turbulence intensity of the gas phase 

at the jet exit and the particle velocity fluctuations at the jet exit is examined. The 

effect of Pope’s correction [195], turbulence modulation and the dispersion model 

employed is also studied. 

E.3 Computational Method and Conditions of Study 

The computations are done with an in-house numerical code [207] that solves 

the Reynolds Averaged Navier Stokes (RANS) equations with a k − � model for 

turbulence. This code has been widely employed in our earlier works for spray and 

jet computations [196, 197, 208–212]. Axi-symmetry of the jet is assumed in the 

current study. The particles are solved in a Lagrangian framework employing the 

Lagrangian-Drop Eulerian-Fluid (LDEF) approach of Dukowicz [74]. The coupling 

between the carrier and dispersed phase is modeled using a drag coefficient with a 

high-Reynolds number correction [76]. Particle-turbulence interactions are modeled 

using a random-walk dispersion model as proposed by Gosman and Ioannides [75]. 

The void fraction in all cases is less than 1%. The correction proposed by Pope [195] 

to account for vortex stretching in a round jet is included. 

The axisymmetric domain has dimensions 100 (axial) x 30 (radial) cm and the 

domain is resolved by a 196 x 98 stretched grid. The orifice has 6 cells radially. The 
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Figure E.1: The axisymmetric computational grid. 

grid employed for our computations is shown in Fig. E.1 Increasing the resolution 

was found to have no significant effect on the results. Figures E.2 and E.3 show 

the non-dimensional centerline velocity decay of the particles for two different grid 

resolutions. It can be seen that both the centerline velocity curves are close to each 

other. We have used the 196 x 98 grid for all our computations. Further the high 

and the low St cases show certain differences in their decay. This will be discussed 

in detail in the next section. Table E.1 shows the conditions at the jet exit. The 

range of St studied varies from 0.3 to 533.8. The St is varied by changing the particle 

diameter, dp, particle density, ρp and/or the bulk jet exit velocity Ub. The first three 

cases are compared with the measurements of Lau and Nathan [11], while the other 

cases are compared with the measurements and computations of Shuen et al. [198]. 

E.4 Results and Discussion 

Figures E.4-E.10 show the centerline velocity of the particles u, non-dimensionalized 

by the mean centerline velocity at the exit Uc,e, as a function of the non-dimensional 

axial distance x/D for various St. The computations are compared with the measure-

ments of Lau and Nathan [11] for St = 0.3, 1.4 and 11.2 and with the measurements 

and computations of Shuen et al. [198] for St = 101.3, 208.8, 230.8 and 533.8. 

https://E.4-E.10
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Figure E.2: Centerline velocity decay for St = 0.3. 
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Figure E.3: Centerline velocity decay for St = 533.8. 
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Table E.1: Boundary conditions at the jet exit. 

St dp(µm) Φm Ub(m/s) ρp(kg/m
3) 

0.3 10 0.4 12 1200 
1.4 20 0.4 12 1200 
11.2 40 0.4 24 1200 
101.3 79 0.2 24.1 2620 
208.8 119 0.66 21.9 2620 
230.8 119 0.2 24.2 2620 
533.8 207 0.66 18.5 2620 

It is seen from Figs. E.4 and E.5 that for lower St (St = 0.3 and 1.4), the computed 

results match closely with that of the experimental results. For these St, the coupling 

is one-way in that the particles do not influence the gas-phase turbulence and act as 

”tracer particles”. This is not to suggest that the particles have no influence on the 

jet structure because the particle loading ratio is about 0.4 and the net momentum 

of the jet is the sum of that of the carrier and dispersed phases, but the jet behaves 

like one that has higher density. 

Looking at the measurements, the centerline decay for St = 0.3 and St = 1.4 are 

similar. For instance, in Fig. E.4, at x/D = 30, the u/Uc,e is about 0.25. Looking 

at Fig. E.5, u/Uc,e is about the same value at this location. However, for St = 11.2, 

u/Uc,e = 0.3 at the same location (Fig E.6). Thus at this St, the centerline velocity 

decays slower. We can see from Fig. E.6 that the computations capture this trend. 

However, the predicted centerline velocity decays faster than the measured decay. One 

reason for this could be that the computations overestimate the turbulence levels of 

the gas phase and increased turbulence causes increased spreading. 

Figure E.7 shows the centerline decay for St = 101.3. Again we can see that the 

measured centerline velocity decay is smaller than for St = 11.2. But in this case, 

the computed centerline velocity decays slower than the measured value. The reason 

for this discrepancy is unknown, but could likely be with the way particles interact 
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with turbulence. Since the mass loading for this case is lower than the earlier cases, 

the turbulence level predictions might be underestimated giving a lower spread. At 

St = 208.8 (Fig. E.8), the computations seem to overpredict the spread. For St 

= 230.8 (Fig. E.9), the agreement is better than the earlier cases. At St = 533.8 

(Fig. E.10), the computations underpredict the spread. These results indicate that 

existing models might not work well over a wide range of St. This might be because 

the model lacks some information that represents the physics of particle-turbulence 

interaction at different St. 

Next, the sensitivity of the spreading rate of the jet on various parameters such as 

the turbulence intensity of the gas phase at the jet exit, velocity fluctuations of the 

particles at the jet exit is examined. The effects of Pope’s correction [195], turbulence 

modulation and the dispersion model employed are also studied. 

E.4.1 Effect of Gas Phase Turbulence Intensity at the Jet Exit 

In a fully developed turbulent pipe flow, it has been shown through both mea-

surements and Direct Numerical Simulation (DNS) studies that the fluctuating com-

ponent of velocity in the axial direction is significantly higher than the other two 

components [213]. This is because of two reasons: the mean flow in the axial di-

rection tends to increase fluctuations in that direction; the presence of walls in the 

wall-normal direction dampens the fluctuations in that direction. With the addi-

tion of particles however, it is not known whether this anisotropy would decrease 

or increase. It is possible that this anisotropy may depend on the St. Squires and 

Eaton [5,35] report that particles exhibit preferential concentration even in isotropic 

turbulence depending on their St. This might introduce anisotropy in the flow if the 

preferential concentration is large. On the other hand, particles with high St might 

actually tend to decrease this anisotropy since they are more uniformly distributed. 

This is currently not known and further DNS or highly resolved measurements are 

required to address this issue. Lau and Nathan [11] report the fluctuating component 
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Figure E.4: Particle centerline velocity decay for St = 0.3. 
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Figure E.5: Particle centerline velocity decay for St = 1.4. 
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Figure E.6: Particle centerline velocity decay for St = 11.2. 
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Figure E.7: Particle centerline velocity decay for St = 101.3. 
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Figure E.8: Particle centerline velocity decay for St = 208.8. 

1 5 10 15 20 25 30
x/D

0.5

0.6

0.7

0.8

0.9

1.0

u
/
U
c
,e

Current Work
Comp - Shuen et al. (1985)
Exp - Shuen et al. (1985)

Figure E.9: Particle centerline velocity decay for St = 230.8. 
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Figure E.10: Particle centerline velocity decay for St = 533.8. 
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of the axial velocity. No data however is provided for the other two velocity compo-

nents. In the work of Shuen et al. [214], the axial and the lateral velocity components 

are reported. From their data, no conclusive trends in relationship can be established 

between the axial and lateral fluctuating velocity component based on the St. Since 

the turbulent kinetic energy k and the dissipation rate � of the gas phase are to be 

specified as a boundary condition in the computations, there exists an element of 

uncertainty. In order to study the effect of k and � at the jet exit on the structure of 

the jet, computations with different k and � for the lowest and highest St (0.3 and 

533.8) have been carried out. 

Figure E.11 shows the non-dimensional centerline velocity decay of the particles 

as a function of the non-dimensional axial distance for St = 0.3. The turbulence 

intensity of the gas phase at the jet exit is decreased by a factor of two. From Fig. 

E.11, it is evident that for St = 0.3, the jet spreads slower as a result of which the 

centerline velocity decays slower. This is not surprising since the spreading of the jet 

is caused by turbulence. The ”potential core” (region where the axial velocity does 

not decrease with axial distance) in the baseline case is about 4D whereas in the case 

with lower turbulent intensity, it is about 6D. The axial velocity u/Uc,e at x/D = 10 

is about 0.65 for the baseline case while it is 0.72 for the case with reduced turbulent 

intensity, which corresponds to a difference of more than 10%. 

Figure E.12 shows the results when the turbulence is increased and decreased by 

a factor of two for a particle for St = 533.8. The structure of the jet does not change 

significantly with change in the gas phase turbulence intensity at the jet exit as seen 

from Fig. E.12. For instance, consider an axial distance of x/D = 20. The axial 

velocity u/Uc,e of the baseline case is about 0.93, while that of the case with higher 

turbulence intensity is 0.9 and that of the case with lower turbulence intensity is 0.95. 

In both cases, the difference is less than 3.5%. This is due to the fact that at high 

St, the particles take a longer time to respond to the changes in the gas phase and 

hence, the spreading of the dispersed phase is not affected much. 
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Figure E.11: Particle centerline velocity decay for St = 0.3 for different values of gas 
phase turbulence intensity at the jet exit. 
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Figure E.12: Particle centerline velocity decay for St = 533.8 for different values of 
gas phase turbulence intensity at the jet exit. 
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E.4.2 Effect of Velocity Fluctuations of the Particle at the Jet Exit 

In a turbulent flow, the fluid has a mean and fluctuating velocity component. The 

fluctuating component induces a fluctuating motion on the particle. Such motion 

would not exist in a laminar flow. This fluctuating velocity of the dispersed phase 

implies that it has a turbulent kinetic energy of its own in addition to that of the 

carrier phase. In order to see if the fluctuating velocity component of the particles is 

important when boundary conditions are specified, computations are done in which 

the particles are injected with a fluctuating velocity (varying in time) component in 

addition to its mean velocity. These are chosen from a Gaussian distribution with 

zero mean and variance related to the turbulent kinetic energy of the carrier phase. 

This study is done on cases with the highest and lowest St. 

Figures E.13 shows the non-dimensional centerline velocity decay for St = 0.3 with 

and without particle velocity fluctuations at the boundary. For this case, the addition 

of fluctuations does not seem to make any noticeable difference. Since the St is low, 

the particle quickly adapts to the flow and memories of its initial fluctuating velocity 

(at the boundary) are lost. Figure E.14 shows the particle centerline velocity decay 

for St = 533.8. For this case, the particle center line velocity shows fluctuations when 

the fluctuating velocity component is added to the particles at the jet exit. Moreover, 

it seems that near the jet exit (x/D < 20), the centerline velocity decays somewhat 

faster (indicating greater spread). One possible explanation for this is that at high 

St, the particles take a longer time to respond to the flow. Thus they retain their 

fluctuating component for a longer time and hence spread more. As they move further 

downstream, the decay rate comes closer to the case without fluctuations. 

From the discussion in the previous section and the current one, it seems that 

at low St the particles are sensitive to the turbulence in the carrier phase while the 

turbulence (or fluctuations) in the dispersed phase makes little difference. For high 

St, the particles show little effect to changes in the carrier phase turbulence but are 

sensitive to the fluctuations in the dispersed phase. This needs further examination. 
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Figure E.13: Particle centerline velocity decay for St = 0.3 with and without particle 
velocity fluctuations at the jet exit. 
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Figure E.14: Particle centerline velocity decay for St = 533.8 with and without 
particle velocity fluctuations at the jet exit. 
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E.4.3 Effect of Pope’s Correction 

It has been reported that when the k−� model is used for turbulence, the spreading 

of a round jet is over predicted by about 30% [195, 208, 215]. Pope [195] suggested 

that this could be due to the fact that in a round jet, as the jet spreads, the vortex 

rings expand due to which the vortex will increase in frequency to conserve angular 

momentum. This enhances dissipation of turbulent kinetic energy as a result of which 

the turbulent kinetic energy decreases. This in turn decreases the spreading of the 

jet. This effect however is not accounted for in the standard k − � model. The 

non-dimensional measure of vortex stretching χ is given by 

χ = ωij ωjkSki, (E.5) 

where � � 

Sij = 
1 k ∂Ui 

2 � ∂xj 
+ 
∂Uj 

∂xi 
(E.6) 

and � � 
1 k ∂Ui ∂Uj

ωij = − (E.7)
2 � ∂xj ∂xi 

Ui being the velocity along the direction xi. From the arguments above, the dissipa-

tion should increase with the vortex stretching. Pope [195] has considered the rate 

k 

of change of dissipation to be a linear function of the vortex stretching χ. The � 

equation thus has a source term S�3 given by 

S�3 
�2 

= C�3 χ, (E.8) 

where C�3 is an empirical constant that needs to be determined. Based on the mea-

sured spreading rate of a single phase gas jet, this constant is chosen to be 0.79 [195]. 

With the addition of particles however, it is not known how the vortex stretching 

of the jet will change. In order to see the effect of this empirical constant on the 
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spreading rate of the jet, computations are carried out with different values of this 

constant for the smallest and largest St cases that are examined in this study. 

Figures E.15 and E.16 show the non-dimensional centerline velocity decay of the 

particles for St = 0.3 and St = 533.8 for three different C�3. It is seen that the effect 

of this empirical constant is minimal on the structure of the jet for both the St for 

the range of the constants considered. This seems surprising and contrary to what 

one would expect. It could be that the range of constants selected for this study did 

not make a significant difference to the decay of the centerline velocity. This needs 

further investigation. 

E.4.4 Effect of Turbulence Modulation 

In a two-way coupling regime, the particles are influenced by the turbulence and 

the particles influence the turbulence. As a result, the turbulent kinetic energy (TKE) 

of the jet can either decrease or increase. Turbulent dispersion of the particles de-

creases the TKE. This can be understood by considering the fact that if a particle is 

injected in a quiescent fluid without the jet, it would not move in the lateral direc-

tion. The lateral motion (i.e. dispersion) of the particle is caused by the spreading 

of the gas phase component of the jet. As the turbulent eddies move the particles 

laterally, the turbulence energy would decrease. There are other mechanisms that 

might augment the TKE. For instance, vortex shedding effects in the particle wake 

can increase the TKE. This change in the TKE due to the dispersed phase is referred 

to as turbulence modulation. A change in the TKE might bring about a change in 

the dissipation of TKE as well. 

There are different methods to incorporate the effect of turbulence modulation. 

Yuan and Michaelides [216] proposed a model in which the velocity defect in the wake 

of the particle is responsible for the augmentation of turbulence and the work asso-

ciated with the motion of particulate phase is responsible for its attenuation. Yarin 

and Hetsroni [217] proposed a similar idea but they use a more detailed description of 
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Figure E.15: Particle centerline velocity decay for St = 0.3 for different values of 
constant C�3. 
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Figure E.16: Particle centerline velocity decay for St = 533.8 for different values of 
constant C�3. 
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the wake. In general, in order to include turbulence modulation in the computations, 

an extra source term needs to be included in the k and � equation. The source term 

in the k equation can be related to the drag force on the particle and the fluctuating 

component of the gas phase velocity [76]. The drag co-efficient for a particle in Stokes 

flow is given by 
24 

Cd = . (E.9)
Re 

A high Reynolds number correction is incorporated into this expression to determine 

drag force acting on particles in turbulent flows. This modified drag co-efficient is [76] 

� � 
24 Re2/3 

Cd = 1 + . (E.10)
Re 6 

Now, the source term for inclusion of turbulence modulation in the k equation is given 

by the following expression [76] 

X 
Sk = Fd · u 0 , (E.11) 

where Fd is the drag force per unit volume and u0 is the fluctuating component of 

the gas phase velocity which is chosen from a Gaussian distribution based on the k 

and � values. The summation is done over all the particles in the computational cell. 

The source term in the � equation is given by [76] 

� 
S�4 = C�4Sk , (E.12)

k 

where C�4 is an empirical constant. 

Inclusion of turbulence modulation introduces an empirical constant C�4 that 

needs to be determined. Shuen et al. [198] report that the turbulence modulation 

does not influence the centerline velocity decay significantly, even when the empirical 

constant is varied by a large extent. We test the effect of this constant for the lowest 

and highest St. Figure E.17 shows the particle centerline velocity decay for St = 

0.3 for two different C�4. It can be seen that the constant has a significant effect on 
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the velocity decay. Figure E.18 shows the particle centerline decay for St = 533.8 at 

different C�4. Changing the constant does not seem to make any significant difference 

to the centerline velocity decay for this high St. 

Possible reasons why the modulation has a significant effect for the low St while 

there is no observable effect on the high St is examined. In the model, the source 

term due to turbulence modulation in the k equation is specified as the dot product 

of the drag force times the fluctuating velocity summed over all the particles in 

the computational cell. Now, for the same mass loading ratio, the smaller particles 

will have higher drag than the larger particles due to the larger total surface area 

for smaller particles. Smaller particles will thus have a larger source term in the k 

equation than larger particles. The case for St = 533.8 has larger particles and hence 

the model does not give rise to any noticeable difference. 

In the case of the lower St, the turbulence modulation can either increase or 

decrease the TKE. The additional terms in the k and � equations to account for the 

turbulence modulation actually acts as a sink terms [76]. The constant C�4 decides 

the decrease of � over the decrease of k. If C�4 = 1.5, the decrease in TKE dominates 

the decrease in the dissipation of TKE and hence there is a net decrease in TKE. 

This causes the jet to spread less than the case with no turbulence modulation. Now 

for C�4 = 2.0, the decrease in dissipation of TKE dominates the decrease in TKE 

and hence there is an increase in the TKE. This causes the jet to spread more. This 

however is not what happens physically. Better models should be developed that 

addresses this issue. 

E.4.5 Effect of the Dispersion Model Employed 

The particles that are injected along with the jet are dispersed due to the turbulent 

motion of the eddies. In a RANS solver, since only the mean quantities are solved for, 

a dispersion model has to be used to account for the dispersion of the particles by the 

turbulent flow field. Gosman and Ioannides [75] proposed a stochastic formulation to 
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Figure E.17: Particle centerline velocity decay for St = 0.3 for different values of 
constant C�4 in the � equation for turbulence modulation. 
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account for the dispersion of particles in a turbulent flow. A brief overview of their 

method is presented below for completeness. 

The particle dispersion model involves calculating the drag force acting on the 

particle from the relative velocity of the particle with respect to the instantaneous 

velocity of the gas. In order to determine the instantaneous gas phase velocity, a 

fluctuating velocity component is required. This fluctuating component is found from 

a Gaussian distribution with mean zero and standard deviation σ given by 

2/3σ = (2k/�) , (E.13) 

where k is the turbulent kinetic energy. Now the instantaneous velocity can be ob-

tained and the drag force is computed. This drag force is used to update the position 

and velocity of the particle. Now a suitable time scale should be selected for which 

the particle will interact with the randomly selected velocity field. A length scale and 

velocity scale of the eddy are determined from the k and � from which a time scale is 

calculated. Once a particle moves a distance greater than the length scale of the eddy 

or interacts with a random velocity field for a time greater than the time scale of the 

eddy, a new random velocity component is chosen. The reasoning behind this is that 

a particle would experience a fluctuating velocity component as long as it remains 

inside the eddy or for one eddy turnover time whichever is shorter. 

In order to see the effect of this method, computations where the eddy turnover 

time is modified by a factor of two are carried out. Figures E.19 shows the non-

dimensional centerline-velocity decay of the particle for St = 0.3. The centerline 

velocity has no noticeable difference from the original case. Figure E.20 shows the 

particle centerline velocity decay for St = 533.8. Again, no significant differences are 

observed when this time scale is changed. One possible reason could be that for high 

St, the time the particle remains inside the eddy depends more on the time taken by 

the particle to traverse distances comparable to the length scale of the eddy since the 
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Figure E.19: Particle centerline velocity decay for St = 0.3 as the particle residence 
time in an eddy is changed. 
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Figure E.20: Particle centerline velocity decay for St = 533.8 as the particle residence 
time in an eddy is changed. 

particle responds slowly to the eddy. However, the reason for the low St exhibiting 

similar is not known and needs further investigation. 
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E.5 Conclusions 

A comparison of the structure of computed and measured particle-laden jets is 

presented for a wide range of Stokes (St) numbers. For St of the order unity and lower, 

the computations agree very well with the measurements. For higher St considered, 

the agreement is within 20%. Several studies are also presented to study the sensitivity 

of the structure of the jet on parameters such as the inlet gas phase turbulence 

intensity and the velocity fluctuations of the particle at the jet exit. Further, the effect 

of Pope’s correction, turbulence modulation and the dispersion model are studied. It 

is found that the gas phase turbulence intensity at the jet exit has a significant effect 

on the centerline velocity decay especially for lower St. It seems that this sensitivity 

decreases as the St increases. The particle velocity fluctuation at the jet exit does not 

affect the centerline velocity decay significantly for lower St. However, at higher St, 

the centerline velocity decay shows considerable difference when the particle velocity 

fluctuations at the jet exit are included. The effect of employing Pope’s correction 

for a particle-laden jet is discussed. It appears that the results are not too sensitive 

with the empirical constant in the Pope’s correction expression. The influence of 

turbulence modulation terms on the structure of the jet is also examined. It is found 

that for high St, the turbulence modulation does not influence the centerline velocity 

significantly, while for low St, the effect is significant and is extremely sensitive on 

the model constant employed. This behavior needs further study. Changing the eddy 

turnover time (for the dispersion model) by a factor of two does not seem to affect 

the structure of the jet significantly. 
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