
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Open Access Theses Theses and Dissertations 

5-2018 

Mathematical Model of Interstitial Fluid Flow and Characterization Mathematical Model of Interstitial Fluid Flow and Characterization 

of the Lacunar Canalicular System in Cortical Bone of the Lacunar Canalicular System in Cortical Bone 

Melanie B. Venderley 
Purdue University 

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses 

Recommended Citation Recommended Citation 
Venderley, Melanie B., "Mathematical Model of Interstitial Fluid Flow and Characterization of the Lacunar 
Canalicular System in Cortical Bone" (2018). Open Access Theses. 1469. 
https://docs.lib.purdue.edu/open_access_theses/1469 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/open_access_theses
https://docs.lib.purdue.edu/etd
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F1469&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/1469?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F1469&utm_medium=PDF&utm_campaign=PDFCoverPages


MATHEMATICAL MODEL OF INTERSTITIAL FLUID FLOW AND 

CHARACTERIZATION OF THE LACUNAR CANALICULAR SYSTEM IN 

CORTICAL BONE 

A Thesis 

Submitted to the Faculty 

of 

Purdue University 

by 

Melanie B. Venderley 

In Partial Fulfillment of the 

Requirements for the Degree 

of 

Master of Science in Biomedical Engineering 

May 2018 

Purdue University 

West Lafayette, Indiana 



ii 

THE PURDUE UNIVERSITY GRADUATE SCHOOL 

STATEMENT OF THESIS APPROVAL 

Dr. Eric A. Nauman, Co-Chair 

School of Mechanical Engineering 

Dr. Russell P. Main, Co-Chair 

Department of Basic Medical Sciences 

Dr. Sarah Calve 

School of Biomedical Engineering 

Approved by: 

Dr. George R. Wodicka 

Head of the School Graduate Program 



iii 

To my parents Joe and Sherry, my brother Tim, and my sisters Anne and Samantha 

for their unwavering support and encouragement. 



iv 

ACKNOWLEDGMENTS 

I would like to thank all those who had an impact in the development of this thesis 

and aided me in its completion. In particular, I would like to express my gratitude 

to Dr. Nauman for his mentorship, guidance, and support during my undergraduate 

and graduate years and for always recounting the best stories. I would also like to 

thank Dr. Main for his instruction and aid and Dr. Calve for always inspiring me to 

be a better researcher. 

Additionally, I would like to acknowledge the graduate and undergraduate stu-

dents in the HIRRT and PMBAM Labs. Specifically, I would not have been able to 

complete this work without the guidance and expertise from Roy Lycke, Xiaoyu Xu, 

and Taylor Lee. 

Finally, I would like to express the utmost gratitude to the Weldon School of 

Biomedical Engineering for providing me the opportunity to work as a Graduate 

Teaching Assistant and to the Graduate School for awarding me the Charles C. Chap-

pelle Fellowship, both of which provided tuition and funding. Without either of them, 

I would have not have had the opportunity to accomplish this work. 



v 

TABLE OF CONTENTS 

Page 

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 

SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv 

ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii 

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix 

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

2.1 Hierarchical Structure of Bone . . . . . . . . . . . . . . . . . . . . . . . 3 

2.2 Lacunar Canalicular System . . . . . . . . . . . . . . . . . . . . . . . . 4 

2.3 Mechanosensing and Predictive Models . . . . . . . . . . . . . . . . . . 12 

3 MATHEMATICAL MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

3.2.1 Balance of Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

3.2.2 Balance of Linear Momentum . . . . . . . . . . . . . . . . . . . 23 

3.2.3 Balance of Angular Momentum . . . . . . . . . . . . . . . . . . 24 

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

3.3.1 Model Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

3.3.2 Pressure-Driven Flow . . . . . . . . . . . . . . . . . . . . . . . . 26 

3.3.3 Pressure-Driven Flow: Sensitivity Analyses . . . . . . . . . . . . 37 

3.3.4 Compression-Driven Flow: Preliminary Work . . . . . . . . . . 42 

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 



vi 

Page 

3.4.1 Pressure-Driven Flow: Sensitivity Analyses . . . . . . . . . . . . 46 

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 

4 CHARACTERIZATION OF THE LCS . . . . . . . . . . . . . . . . . . . . . 60 

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 

4.2.1 Sample Preparation . . . . . . . . . . . . . . . . . . . . . . . . . 60 

4.2.2 Confocal Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 62 

4.2.3 LCS 3D Reconstruction . . . . . . . . . . . . . . . . . . . . . . 63 

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 

4.3.1 Confocal Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 68 

4.3.2 LCS 3D Reconstruction . . . . . . . . . . . . . . . . . . . . . . 71 

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 

5 CONCLUSIONS & FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . 90 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 

A MATHEMATICAL MODEL SOURCE CODE . . . . . . . . . . . . . . . . 101 

A.1 γ Function Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . 101 

A.2 φs Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 105 

A.3 Brinkman Velocity and Shear Stress Sensitivity Analysis . . . . . . . 108 

A.4 Brinkman Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 

A.5 Darcy Velocity Sensitivity Analysis . . . . . . . . . . . . . . . . . . . 122 

A.6 Poiseuille Velocity and Shear Stress Sensitivity Analysis . . . . . . . . 126 

A.7 Poiseuille Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 

B 3D RECONSTRUCTION SOURCE CODE . . . . . . . . . . . . . . . . . 135 

B.1 LCS 3D Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 135 



vii 

LIST OF TABLES 

Table Page 

3.1 Variables, for each fundamental term, utilized to nondimensionalize the 
fluid and solid balances of linear momentum. . . . . . . . . . . . . . . . . . 29 

3.2 Balance of linear momentum terms and corresponding nondimensionalized 
forms using the fundamental variables. . . . . . . . . . . . . . . . . . . . . 30 

3.3 Variables, for each fundamental term, utilized to nondimensionalize the 
Hagen-Poiseuille type flow within the RVE when a glycocalyx is not assumed.35 

3.4 Hagen-Poiseuille flow terms and their corresponding nondimensionalized 
forms using the fundamental quantity variables. . . . . . . . . . . . . . . . 36 

3.5 High and low values for each input term in Equation 3.69 for implementing 
Cotter’s Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 

3.6 Modified high and low values for each input term in Equation 3.69 (Brinkman-
type flow) for implementing Cotter’s Method. Red numbers indicate mod-
ified values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 

3.7 Modified high and low values for each input term in Equation 3.77 (Darcy-
type flow) for implementing Cotter’s Method. Red values indicate mod-
ified values to satisfy the γ sensitivity analysis, and blue values indicate 
those modified due to the φs sensitivity analysis. . . . . . . . . . . . . . . . 58 

3.8 High and low values for each input term in Equation 3.75 (Poiseuille-type 
flow) for implementing Cotter’s Method, using the assumption that the 
glycocalyx is not present. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 

4.1 Measured parameters of the LCS using the custom Matlab reconstruction 
code (n=3 for 20-week-old mice, n=5 for 52-week-old mice) compared to 
ranges previously reported within literature. . . . . . . . . . . . . . . . . . 88 

4.2 Measured parameters of the fitted ellipsoid to the a lacuna of interest 
using the custom Matlab reconstruction code (n=3 for 20-week-old mice, 
n=5 for 52-week-old mice) compared to ranges previously reported within 
literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 

https://assumed.35


viii 

LIST OF FIGURES 

Figure Page 

2.1 Hierarchical structure of bone. The molecular structure consists of the col-
lagen molecules, which form in groups of 5 to create fibrils (sub-nanostructure). 
Hydroxyapatite, or the bone mineral, nucleates in the gap regions between 
the ends of collagen molecules within the fibril. Aggregation of fibrils leads 
to collagen fibers, which make up the nanostructure. Parallel sheets of the 
collagen fibers form lamellae which create circumferential bands of bone, 
known as osteons (sub-microstructure and microstructure). A Haversian 
canal runs down the center of the osteon to provide an opening for vascu-
lature and innervation. The osteons are then arranged to macroscopically 
form dense cortical bone or porous (spongy) trabeculae [4]. Image modi-
fied from Liu et al. [21]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

2.2 (a) A longitudinally-sectioned osteon illustrating the networking of the 
lacunar-canalicular system [27]. (b) Cancellous rat tibia metaphysis stained 
using fluorescein isothiocyanate (FITC). Bone marrow (B.Ma), osteocyte 
lacunae (Ot.Lc), and trabecula (Tb) are indicated. The white arrows point 
to the canalicular porosity; scale bar = 130µm [28]. . . . . . . . . . . . . . 6 

2.3 (a) Using SkyScan CT software, SR-µCT images from a human male an-
terior cortical bone sample were reconstructed. Lacunae are shown in gold 
within the region of interest (ROI) with the vascular canals in blue; scale 
bar=300µm [30]. (b) Reconstruction of the anterior proximal tibia of a 
skeletally-mature rat, using a 1-µm-resolution CT scan and Skyscan soft-
ware. Vasculature is shown in red while the lacunae are in gold; scale 
bar=100µm [41]. (c) Three-dimensional reconstruction of a human fe-
male cortical osteon from the femoral mid-diphysis, using SR-µCT and a 
custom, automated method to segment and extract lacunar morphology. 
Haversian canal is shown in white with the surrounding lacunae in gold [42]. 8 

2.4 Three-dimensional reconstructions of cortical bone samples from (a) 6-
month-old and (b) 24-month-old male mice [43]. . . . . . . . . . . . . . . . 9 



ix 

Figure Page 

2.5 (a) Using IMARIS software, reconstructed osteocytes from a 16-day-old 
chick calvariae, imaged using CLSM; scale bar=10µm [38]. (b) Three-
dimensional reconstruction of FIB-SEM images from the mid-diaphysis of 
a 12-week-old murine femur. Both ImageJ and IPL software were utilized 
for reconstruction and to obtain LCS morphological parameters. The la-
cuna is shown in yellow, and its canaliculi are in green [35]. (c) Volocity 
software was utilized to reconstruct lacunae and canaliculi from the tibial 
cortex of 26-week-old female rat; scale bar=5µm [37].(d) Using Matlab, 
human mandible sections were reconstructed from images obtained with 
SR-PNT. Lacuna is shown in orange, and its connecting canaliculi are 
in green; scale bar=10µm [44].(e) Human femoral cortical bone samples 
reconstructed using a custom-developed connectivity enhancement algo-
rithm. Lacuna is shown in yellow, and the canaliculi are in red [5]. . . . . . 11 

2.6 Recent reviews on osteocyte cell mechanobiology and bone mechanotrans-
duction. Each publication states that the exact mechanisms behind bone’s 
remodeling capabilites have yet to be fully understood [1] [2] [3]. . . . . . . 14 

2.7 Connection of macroscopic loading to the theories of bone mechanotrans-
duction. Compression, bending, and torsion of the whole bone at the 
macroscopic level leads to bone matrix deformation in localized areas. Due 
to this deformation, collagen and apatite molecular rearrangement can lead 
to charged surfaces known as the direct piezoelectric effect [2] [49] [50] [51] 
in addition to direct strain placed on the osteocytes themselves [8] [9]. In 
addition, hydrostatic pressure develops within the LCS due to the imper-
meable bone matrix, resulting in interstitial fluid flow [2] [8] [9]. Such fluid 
flow can induce shear stress on the osteocyte cell process [2] [3] [8] [9] [10], 
amplified hoop strains and drag forces due to transmembrane integrin con-
nections with the internal cytoskeleton and the external glycocalyx [9] [11] 
[12] [13] [14], and streaming potentials [3] [8] [52] and chemotransport due 
to the movement of charged nutrients [2]. . . . . . . . . . . . . . . . . . . . 15 

2.8 Computational models of fluid flow within the LCS. (a) Utilizing three-
dimensional canalicular UHVEM reconstructions, Kamioka et al. created 
CFD models to determine fluid velocities within human canaliculi [6]. (b) 
Verbruggen et al. used reconstructed CLSM models and CFD to quantify 
fluid velocity within lacunae and their surrounding canaliculi [19]. . . . . . 18 

3.1 Deformation of body B from the reference configuration to the current 
configuration. A point within the reference configuration can be directly 
mapped to the current configuration using χα . . . . . . . . . . . . . . . . . 21 



x 

Figure Page 

3.2 The length scales defined for mathematical modeling. The nanoscale con-
sists of a single, idealized canaliculus with (left) and without (right) a gly-
cocalyx within the interstitial space between the cell process and canalic-
ular wall. At the mesoscale, a single lacuna is present with its branching 
canaliculi. The macroscale consists of a single Haversian canal with its 
surrounding LCS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

3.3 Example of the representative body B containing the mixture: Idealized 
3D-representation (top) of a canaliculus, which houses the osteocyte pro-
cess, surrounded by cortical bone. A cross-section of the volume (bottom) 
is shown. The numbers indicate the following: (1) interstitial space, (2) 
osteocyte process, and (3) canalicular wall. The letters indicate: (a) os-
teocyte cell process radius and (b) canaliculus radius. . . . . . . . . . . . . 27 

3.4 (a) Assumed glycocalyx structure. (b) Dimensions of a single unit cell 
within the structure [68]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

3.5 Sensitivity analysis of the γ term, which is a function of the canaliculus 
radius, the volume fraction of the fluid constituent, and the permeability 
of the glycocalyx. The horizontal line indicates the threshold (1/nc) that 
a term must be greater than in order to be considered sensitive to the 
output. The inputs, that the γ term is sensitive to, are Dh and Lh. (b: 
canaliculus radius, Dv: diameter of glycocalyx vertical fibers, Lv: length 
of glycocalyx vertical fibers, Dh: diameter of glycocalyx horizontal fibers, 
Lh: length of glycocalyx horizontal fibers). . . . . . . . . . . . . . . . . . . 39 

3.6 Sensitivity analysis of the φs term, which is a function of the four ge-
ometric parameters of the glycocalyx. The horizontal line indicates the 
threshold (1/nc) that a term must be greater than in order to be consid-
ered sensitive to the output. The inputs, that φs is sensitive to, are Lv and 
Dh. (Dv: diameter of glycocalyx vertical fibers, Lv: length of glycocalyx 
vertical fibers, Dh: diameter of glycocalyx horizontal fibers, Lh: length of 
glycocalyx horizontal fibers) . . . . . . . . . . . . . . . . . . . . . . . . . . 41 

3.7 (a) Mouse tibia model in Abaqus, mapping the displacement due to a 
compressive 12N load at the proximal end [74]. The dashed, red line 
indicates the location where the bone was computationally sectioned. (b) 
Cross-section of the cut made in the model. Nodes used to calculate the 
deformation gradient are indicated by red dots. (c) A close-up image of 
the red box in (b), showing the locations of the nodes. Node 1 is the 
reference node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 

3.8 Block of mineralized bone. Tissue is assumed to undergo compression in 
the E3 direction as indicated by force F . . . . . . . . . . . . . . . . . . . . 45 



xi 

Figure Page 

3.9 Cotter’s Method sensitivity analysis of Equation 3.69, using modified max-
imum and minimum values from Table 3.6. The horizontal line indicates 
the threshold (1/nc) that a term must be greater than in order to be con-
sidered sensitive to the output. The Brinkman-type velocity profile is most 
sensitive to terms Dv and Dh. (a/b: ratio of osteocyte cell process radius 
to canaliculus radius, b: radius of canaliculus, Dv: diameter of glycocalyx 
vertical fibers, Lv: length of glycocalyx vertical fibers, Dh: diameter of 
glycocalyx horizontal fibers, Lh: length of glycocalyx horizontal fibers, 
dP/dz: pressure gradient, vo: initial velocity). . . . . . . . . . . . . . . . . 47 

3.10 (a) Nondimensionalized maximum velocity of the Brinkman-type flow pro-
file, when the glycocalyx in present, as a function of increasing cell process 
radius and γ. Averages of ∂p , b, and vo were used. (b) Re-dimensionalizion 

∂z 
of the maximum velocities shown in (a). . . . . . . . . . . . . . . . . . . . 48 

3.11 Cotter’s Method sensitivity analysis of the computationally derived shear 
stress on the osteocyte cell process (a) within the RVE, using modified 
maximum and minimum values from Table 3.6. The horizontal line in-
dicates the threshold (1/nc) that a term must be greater than in order 
to be considered sensitive to the output. The shear stress due to this 
Brinkman-type velocity profile is most sensitive to terms Dv, Dh, and vo. 
(a/b: ratio of osteocyte cell process radius to canaliculus radius, b: radius 
of canaliculus, Dv: diameter of glycocalyx vertical fibers, Lv: length of 
glycocalyx vertical fibers, Dh: diameter of glycocalyx horizontal fibers, 
Lh: length of glycocalyx horizontal fibers, dP/dz: pressure gradient, vo: 
initial velocity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 

3.12 Cotter’s Method sensitivity analysis of Equation 3.77, using modified max-
imum and minimum values from Table 3.7. The horizontal line indicates 
the threshold (1/nc) that a term must be greater than in order to be con-
sidered sensitive to the output. The Darcy-type velocity profile is most 
sensitive to terms Dv and Lh. (Dv: diameter of glycocalyx vertical fibers, 
Lv: length of glycocalyx vertical fibers, Dh: diameter of glycocalyx hori-
zontal fibers, Lh: length of glycocalyx horizontal fibers, dP/dz: pressure 
gradient, vo: initial velocity). . . . . . . . . . . . . . . . . . . . . . . . . . 50 

3.13 Cotter’s Method sensitivity analysis of Equation 3.75, using modified max-
imum and minimum values from Table 3.8. The horizontal line indicates 
the threshold (1/nc) that a term must be greater than in order to be 
considered sensitive to the output. The Poiseuille-type velocity profile 
(assuming no glycocalyx) is most sensitive to vo and b. (a/b: ratio of os-
teocyte cell process radius to canaliculus radius, b: radius of canaliculus, 
dP/dz: pressure gradient, vo: initial velocity). . . . . . . . . . . . . . . . . 51 



xii 

Figure Page 

3.14 (a) Nondimensionalized maximum velocity of the Poiseuille-type flow pro-
file as a function of increasing cell process radius and γ. Averages of ∂p ,

∂z 
b, and vo were used. (b) Re-dimensionalization of the maximum velocities 
shown in (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 

3.15 Cotter’s Method sensitivity analysis of the shear stress acting on the os-
teocyte cell process (a) within the RVE (Equation 3.76), using modified 
maximum and minimum values from Table 3.8. The horizontal line in-
dicates the threshold (1/nc) that a term must be greater than in order 
to be considered sensitive to the output. The shear stress due to this 
Poiseuille-type velocity profile (assuming no glycocalyx) is most sensitive 
to vo. (a/b: ratio of osteocyte cell process radius to canaliculus radius, b: 
radius of canaliculus, dP/dz: pressure gradient, vo: initial velocity). . . . . 53 

4.1 Reconstruction in Mimics of a z-stack collected to determine volumetric 
lacunar density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 

4.2 (a) Slice 10 of the validation data z-stack. (b) Slice after being thresh-
olded in Mimics software. (c) Manual reconstruction of the confocal image 
within Mimics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 

4.3 Reconstruction in Mimics of the validation data set from the confocal z-stack.66 

4.4 Confocal z-stack slices to characterize the LCS in: (a) and (c) 20-week-old 
mice, and (b) and (d) 52-week-old mice; scale bar = 5 µm. . . . . . . . . . 69 

4.5 Confocal z-stack slices to determine volumetric lacunar density: (a) 20-
week-old mouse (b) 52-week-old mouse; scale bar = 10 µm. . . . . . . . . . 70 

4.6 Volumetric lacunar density for 20-week-old and 52-week-old mice (n=3). 
Statistical significance was found between the two groups of mice (p=0.0463); 
mean ± stdev. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 

4.7 Slice 10 of the validation dataset after processing in Matlab. (a) Processed 
lacunae in Matlab (b) Overlay of lacunae from the validation dataset 
(Mimics) and processed segmentation (Matlab). (c) Processed canaliculi 
in Matlab. (d) Overlay of canaliculi from the validation dataset (Mimics) 
and processed segmentation (Matlab). (e) Overlay of (b) and (d). Vali-
dation dataset (Mimics) = pink, processed dataset (Matlab) = light blue, 
overlapping region = white. . . . . . . . . . . . . . . . . . . . . . . . . . . 72 

https://z-stack.66


xiii 

Figure Page 

4.8 Reconstruction of a branching ellipsoid. (a) Reconstruction of the con-
focal z-stack for a sample that contains a lacuna that splits in the z-
direction. The yellow volume is the reconstructed lacuna volume and the 
green branches are the reconstructed canaliculi that directly connect to 
the lacuna. (b) Approximated ellipsoidal fit of the lacuna in (a). The 
green shape is the fitted ellipsoid and the blue data points indicate the 
portion of the segmented lacunae that lie outside the fitted shape. . . . . . 74 

4.9 Reconstruction of an ideal ellipsoid. (a) Reconstruction of a confocal z-
stack that captures a full lacuna. The yellow volume is the reconstructed 
lacuna volume and the green branches are the reconstructed canaliculi 
that directly connect to the lacuna. (b) Ellipsoidal fit of the lacuna in (a). 
The green shape is the fitted ellipsoid and the blue data points indicate 
the portion of the segmented lacunae that lie outside the fitted shape. . . . 75 

4.10 Reconstructions of the 3 ideal lacunae (yellow) and connecting canaliculi 
(green) for the 20-week-old mice. . . . . . . . . . . . . . . . . . . . . . . . 76 

4.11 Reconstructions of the 5 ideal lacunae (yellow) and connecting canaliculi 
(green) for the 52-week-old mice. . . . . . . . . . . . . . . . . . . . . . . . 77 

4.12 Full reconstruction of a lacuna of interest (green) and the surrounding 
reconstructed canaliculi (yellow) from 20-week-old mice. . . . . . . . . . . 78 

4.13 Full reconstruction of a lacuna of interest (green) and the surrounding 
reconstructed canaliculi (yellow) from 52-week-old mice. . . . . . . . . . . 79 

4.14 Characterization of canalicular (a) diameter, (b) length, and (c) porosity 
in 20-week-old and 52-week-old female mouse femora (n=3 for 20-week-
old, n=5 for 52-week-old). Using Bonferroni-corrected Kruskal-Wallis H 
Tests, no statistical differences were determined between age group and 
the measured parameters (p-value>0.01); mean ± stdev. . . . . . . . . . . 81 

4.15 Characterization of true and approximate lacunar volumes and the con-
necting canalicular density. (a) Volume of segmented lacunae and (b) 
volume of fitted ellipsoid in 20-week-old and 52-week-old female mouse 
femora. (c) Density of connecting canaliculi to the lacunar volume. Using 
Bonferroni corrected Kruskal-Wallis H Tests, no statistical differences were 
found for either the lacunar volume and its connecting canalicular density 
(p> 0.01) or the ellipsoid volume (p>0.00625) (n=3 for 20-week-old, n=5 
for 52-week-old); mean ± stdev. . . . . . . . . . . . . . . . . . . . . . . . . 82 

https://p-value>0.01


xiv 

Figure Page 

4.16 (a) Surface area of fitted lacunar ellipsoids. (b) Lacunar ellipsoid diame-
ters in 20-week-old and 52-week-old female mouse femora, where ’LacDia1’ 
is the major diameter and ’LacDia2’ and ’LacDia3’ are the two minor di-
ameters (n=3 for 20-week-old, n=5 for 52-week-old). Using Bonferroni-
corrected Kruskal-Wallis H Tests, no statistical differences were deter-
mined between age and any of the lacunar diameters (p > 0.0056); mean 
± stdev. Using Bonferroni-corrected Kruskal-Wallis H Tests, no statistical 
differences were determined (p > 0.00625); mean ± stdev. . . . . . . . . . 83 

4.17 Characterization of lacunar ellipsoid (a) sphericity, (b) oblateness, and 
(c) orientation in 20-week-old and 52-week-old female mouse femora (n=3 
for 20-week-old, n=5 for 52-week-old). A sphericity measure of 1 indi-
cates that the ellipsoid is perfectly spherical while an oblateness mea-
sures of -1 and +1 indicates that the ellipsoid is either perfectly prolate 
(rod-shaped) or perfectly oblate (plate-shaped), respectively [43]. Using 
Bonferroni-corrected Kruskal-Wallis H Tests, no statistical differences were 
determined between age and any of these measured characteristics (p > 
0.00625); mean ± stdev. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 



xv 

SYMBOLS 

A constant of integration 

a radius of osteocyte process 

B body containing all points within mixture 

Bs Left Cauchy-Green deformation tensor for the solid constituent 

b radius of canaliculus 

bα body force(s) acting on constituent α 

C constant of integration 

C Right Cauchy-Green deformation tensor 

αc interconversion of mass of constituent α 

Dh diameter of horizontal fibers in the glycocalyx structure 

Dv diameter of vertical fibers in the glycocalyx structure 

Df time rate of change of the deformation tensor for the fluid con-

stituent 

E elastic modulus 

I1 first invariant of the Right Cauchy-Green tensor, C 

I2 second invariant of the Right Cauchy-Green tensor, C 

I identity tensor 

Jα determinant of deformation gradient for constituent α 

Ko reference configuration 

Kt current configuration 

ko magnitude of the permeability tensor k 

k permeability tensor 

Lh length of horizontal fibers in the glycocalyx structure 

Lv length of vertical fibers in the glycocalyx structure 



xvi 

Mα total mass of constituent α 

N Nauman number 

n total number of constituents within mixture 

nc total number of input terms in Cotter’s Method 

n normal vector 

Po reference configuration region that contains B 

Pt current configuration region that contains B 

P First Piola-Kirchhoff stress tensor 

p pressure 

Ro region within reference configuration, containing S 

Rt region within current configuration, containing S 

S subset of points of B 

S Second Piola-Kirchhoff stress tensor 

T α stress tensor for constituent α 

tα traction vector acting on constituent α 

vo magnitude of initial velocity 

vα velocity of constituent α 

W Mooney-Rivlin strain energy function 

X location within reference configuration 

x location within current configuration 

α constituent within mixture 

βo coefficient in the constitutive equation for T s 

β1 coefficient in the constitutive equation for T s 

β2 coefficient in the constitutive equation for T s 

� strain 

η Poisson’s ratio 

µ viscosity 

ρα apparent density of constituent α 



xvii 

πα internal (within RVE) force acting on constituent α due to inter-

action with other constituents 

ρα 
T true density of constituent α 

φα volume fraction of constituent α 

χα mapping of constituent α from one configuration to another 

∂Po surface of region Po 

∂Pt surface of region Pt 

∂Ro surface of region Ro 

∂Rt surface of region Rt 



xviii 

ABBREVIATIONS 

AFM atomic force microscopy 

CFD computational fluid dynamics 

CLSM confocal laser scanning microscopy 

CT computed tomography 

EtOH ethanol 

FIB-SEM focused ion beam scanning electron microscopy 

FITC fluorescein isothiocyanate 

LCS lacunar canalicular system 

NBF neutral buffered formalin 

NO nitric oxide 

PG prostaglandin 

ROI region of interest 

RVE representative volume element 

SR-PNT synchrotron X-ray phase nano-tomography 

SR-µCT synchrotron radiation micro-computed tomography 

UHVEM ultra high voltage electron microscopy 



xix 

ABSTRACT 

Venderley, Melanie B. M.S.B.M.E., Purdue University, May 2018. Mathematical 
Model of Interstitial Fluid Flow and Characterization of the Lacunar Canalicular 
System in Cortical Bone. Major Professors: Eric A. Nauman, Russell P. Main. 

While the mechanotransductive capability of skeletal tissue has been acknowl-

edged for decades, the exact mechanisms that enable bone to sense and respond 

to external stimuli have remained elusive. Numerous theories have evolved to ex-

plain this behavior, most notably those involving fluid movement through the tis-

sue’s hierarchical structure. Within mineralized bone, osteocytes reside in micro and 

nanoporosities, known as lacunae and canaliculi, which house the cell body and their 

long cellular processes, respectively. Through this lacunar-canalicular system (LCS), 

osteocytes form an interconnected network, which allow signaling and communica-

tion with surrounding osteocytes via gap junctions and secreted factors. It has been 

theorized that external loading-induced interstitial fluid movement along the cell pro-

cesses results in shear stresses and/or drag forces that elicit stimulatory responses 

from osteocytes. While length and mineralized tissue render direct measurements 

inaccessible, mathematical and computational modeling have been utilized to predict 

these potential stimulatory mechanisms. However, assumptions regarding the pres-

ence of a glycocalyx, which is a pericellular matrix within the interstitial fluid space, 

are typically made despite the inability to fully characterize its structure. Thus, to 

investigate the importance of the possible compositions of this glycocalyx, a mathe-

matical model of interstitial fluid flow within a canaliculus was developed, utilizing 

mixture theory. Resulting sensitivity analyses show that assumptions regarding the 

glycocalyx greatly influence the profile within the LCS, therefore affecting poten-

tial mechanotransductive signals. Additionally, confocal microscopy and a custom, 
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automated reconstruction algorithm, were used to generate three-dimensional render-

ings of confocal images to further characterize the LCS and improve computational 

models. Both the mathematical model and reconstruction of the LCS will enhance 

the development of accurate predictive models and increase understanding of bone’s 

mechanotransductive abilities. 



1 

1. INTRODUCTION 

1.1 Motivation 

In the 1860s, the concept that bone responds to mechanical stimuli was introduced 

by Dr. Julius Wolff, and since then, the theory has become widely accepted. How-

ever, the exact mechanisms by which cells within the tissue sense and transmit these 

signals have yet to be fully understood [1] [2] [3]. Osteocytes, mature bone cells, are 

hypothesized to be the main mechanosensors of bone due to their interconnected net-

work within the lacunar-canalicular porosity throughout bone. This irregular nano-

porosity contains interstitial fluid that may be the medium by which the processes 

on the osteocytes are able to sense external loads [4] [5] [6] [7]. The most popular 

theories of mechanotransduction in bone are the following: 1) fluid shear stress that 

the osteocyte cell process experiences due to loading-induced flow [2] [3] [8] [9] [10] 

and/or 2) fluid drag that acts on the cytoskeleton of the ostecyte cell process, where 

the fluid drag is a resultant of the transmembrane connections to an interstitial gly-

coaylx [9] [11] [12] [13] [14]. 

Directly measuring fluid shear stress and drag, both in vitro and in vivo, is cur-

rently not an option due to the micro- and nanoscopic scales of the lacunar-canalicular 

system (LCS). Thus, computational and mathematical models have been developed in 

order to predict these variables on the surface of the osteocyte cell process. In particu-

lar, numerous theoretical, poroelastic models have been used to study the interaction 

between the solid matrix of mineralized bone and the interstitial fluid flow. However, 

the structure of the glycocalyx has typically been assumed to exist for these models, 

even though it has yet to be fully characterized [5] [8] [9] [10] [11] [15] [16] [17] [18]. 

In addition, idealized structures for the lacunar-canalicular system are commonly 

used [11] [15]; while a few models have been developed to show the role of the LCS’s 
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complex geometry on strain and stress amplification, they utilize a minimal sample 

size due to the manual labor needed to create numerous anatomically-correct LCS 

models [6] [19]. 

Thus, it is important to understand the impact of the glycocalyx and its effects 

on interstitial fluid flow. Furthermore, a need exists to develop a three-dimensional 

reconstruction method for the LCS that is not subject to user bias through manual 

segmentation processes. Characterizing the LCS will enable more accurate theoretical 

and computational models to understand and predict bone mechanotransduction. 

Determining the mechanisms by which bone remodels would ultimately be beneficial 

for the development of clinical interventions to prevent age-related bone loss. 

1.2 Objective 

The first objective of this thesis was to mathematically model interstitial fluid 

flow within the lacunar-canalicular system of cortical bone using mixture theory. 

The goal of the mathematical model was to determine the impact of the glycocalyx 

on the flow profile within the interstitial space when an idealized canaliculus is as-

sumed. Additionally, the second objective was to characterize the three-dimensional 

lacunar-canalicular structure by generating an autonomous method to reconstruct 

two-dimensional images obtained from confocal laser scanning microscopy. 
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2. BACKGROUND 

2.1 Hierarchical Structure of Bone 

Bone has a hierarchical structure that is optimized to support external loads and 

protect internal structures while also remaining as light as possible. Its organization 

can be compartmentalized into five different levels: (1) the molecular structure, (2) 

the sub-nanostructure, (3) the nanostructure, (4) the sub-microstructure and the 

microstructure, and (5) the macrostructure [20], as shown in Figure 2.1 [21]. As 

a whole, bone is composed of approximately 65% mineral, 25% organic matrix (of 

which 90% is Type I collagen and the remainder is noncollagenous proteins), and 

10% water [4]. Part of the organic matrix, the collagen molecules form triple helices, 

which assemble in groups of five to create fibrils. Within the gaps between the collagen 

molecules in these individual fibrils, nucleation of hydroxyapatite crystals occurs, 

which is the mineral constituent of bone. Aggregation of the fibrils leads to the 

formation of a single collagen fiber [21] [4]. 

At the sub-microscopic level, parallel sheets of Type I collagen are organized, 

known as lamellae, which are each 3 − 7µm wide [20]. As shown in Figure 2.1, 

they concentrically wrap around a central canal, referred to as a Haversian canal. 

Each canal is approximately 40 − 80µm in diameter and houses vasculature and 

innervation [22] [23] [24] [25]. The layering of the lamellae around the Haversian 

canal forms the basic structural unit of bone, the osteon. The diameter of osteons 

has been reported to range from 100µm to 500µm [20] [22] [23] [24] [26]. 

At the macroscopic level, the osteons comprise two types of bone, cortical (or 

compact) or cancellous (or trabecular/spongy). In long bones, cortical bone forms a 

dense, cortical shell that encompasses an interior, marrow canal [20]. Porous cancel-

lous bone is internally found at the ends to aid in transmitting mechanical loads to 
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Fig. 2.1. Hierarchical structure of bone. The molecular structure con-
sists of the collagen molecules, which form in groups of 5 to create fibrils 
(sub-nanostructure). Hydroxyapatite, or the bone mineral, nucleates in 
the gap regions between the ends of collagen molecules within the fibril. 
Aggregation of fibrils leads to collagen fibers, which make up the nanos-
tructure. Parallel sheets of the collagen fibers form lamellae which create 
circumferential bands of bone, known as osteons (sub-microstructure and 
microstructure). A Haversian canal runs down the center of the osteon to 
provide an opening for vasculature and innervation. The osteons are then 
arranged to macroscopically form dense cortical bone or porous (spongy) 
trabeculae [4]. Image modified from Liu et al. [21]. 

the cortical bone. It is characterized by a rod and plate structure [4]. On the other 

hand, flat bones consist of two outer cortical layers with a thin, internal cancellous 

structure for support [20]. 

2.2 Lacunar Canalicular System 

Bone is a dynamic tissue that can respond to external and internal signals to 

model and remodel in order to maintain its structural integrity. Three types of 

cells are responsible for bone maintenance: osteoclasts, osteoblasts, and osteocytes. 

Osteoclasts are multinuclear cells that manage bone resorption. They are essential 
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for removing bone for bone modeling during growth and also for bone remodeling due 

to microdamage. Once osteoclasts are no longer needed, they undergo apoptosis [4]. 

Osteoblasts, found on the surface of bone, synthesize and secrete unmineralized bone 

matrix, or osteoid, which they then mineralize. While 60% to 80% of osteoblasts 

undergo apoptosis following mineralization, the remainder either flatten and become 

lining cells or are entrapped within the matrix that they are actively producing [4]. A 

balance between the osteoclastic and osteoblastic activity is needed to ensure bone’s 

overall structure. 

The entrapped osteoblasts differentiate into the third cell type, osteocytes. Their 

cell bodies are contained within cavities known as lacunae while their long, den-

dritic processes are encompassed in thin cylindrical porosities known as canaliculi. 

With these processes, the osteocytes form an interconnected network, or the lacunar-

canalicular system (LCS), as a means to communicate with surrounding cells. Figure 

2.2(a) shows a longitudinally-sectioned osteon, illustrating the complex network that 

the osteocytes form within the mineralized bone [27]. Figure 2.2(b) is a trabecular 

section at the metaphysis in a rat tibia. Fluorescein isothiocyanate (FITC) is used 

to fill and visualize the LCS. 

The porosity due to the LCS ranges over multiple length scales. Atomic force 

microscopy (AFM), confocal laser scanning microscopy (CLSM), synchrotron radi-

ation micro-computed tomography (SR-µCT), focused ion beam scanning electron 

microscopy (FIB-SEM), and studies utilizing tracers, such as ferritin and horseradish 

peroxidase, have all been employed in order to characterize this network [29] [1] [2]. 

However, specimens utilized, sample location, sample preparation, and imaging tech-

nique are just a few of the differences across studies that have resulted in wide 

range of measured variables. The length of lacunae has been reported to range 

from 8 − 70µm [5] [30] [27] [31] [32], while its width ranges from 2 − 8µm [27] [32] 

[33]. Canaliculi are much smaller than the lacunae, with a diameter ranging from 

150 − 844nm [27] [34] [33] [35] [36] [37] and between 41 and 115 canaliculi per la-

cuna [33] [37] [35] [38] [39]. 
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(a) (b) 

Fig. 2.2. (a) A longitudinally-sectioned osteon illustrating the networking 
of the lacunar-canalicular system [27]. (b) Cancellous rat tibia metaphysis 
stained using fluorescein isothiocyanate (FITC). Bone marrow (B.Ma), 
osteocyte lacunae (Ot.Lc), and trabecula (Tb) are indicated. The white 
arrows point to the canalicular porosity; scale bar = 130µm [28]. 
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While many of these measurements are made from two-dimensional images, an 

increasing number of methods have been developed to acquire three-dimensional rep-

resentations of the network. In 2004, McCreadie et al. reconstructed confocal stacks 

of trabecular bone from the iliac crest of women with and without osteoporotic frac-

ture. Assuming an ellipsoidal shape for the lacunae, the volume and shape of the 

lacunae were determined using the principle moments of intertia and the eigenvalues 

of the intertia matrix [40]. Similarly, Carter et al., Palacio-Mancheno et al., and Dong 

et al. performed analyses using either SR-µCT or high resolution computed tomog-

raphy (CT) to characterize lacunar morphology, as shown in Figure 2.3 [30] [41] [42]. 

More recently, Heveran et al. published a novel open-source tool to reconstruct three-

dimensional lacunar morphology from CLSM images, using similar mathematical con-

structs as McCreadie et al. Their tool eliminates user bias and error when manually 

segmenting, in addition to greatly reducing the amount of time to reconstruct the 

confocal z-stacks. Utilizing this automatic segmentation tool, confocal images were 

reconstructed from cortical bone samples of adult (6-mo) and aged (24-mo) male 

mice, which had been stained with 1% basic fuchsin. Figure 2.4 shows the com-

parison between the reconstructed lacunae from the adult (a) and aged (b) mice. 

They ultimately were able to conclude significant age-related changes to the three-

dimensional morphology, with the lacunae from the aged mice being smaller, more 

spherical, more oblate, and less densely populated within the mineralized bone [43]. 

Many additional articles have been published, which not only reconstruct the 

lacunar geometry, but also the much more complex canalicular structure. In 2004, 

Sugawara et al. stained sixteen-day-old chick calvariae with phalloidin and imaged the 

osteocytes using CLSM. Multiple softwares were employed in order to reconstruct and 

characterize the LCS. IMPARIS software was utilized to reconstruct the network for 

osteocyte cell body measurements (Figure 2.5(a)), NEURON TRACER software was 

used to trace and determine the length of the osteocyte cell processes, and SURPASS 

software was needed to determine surface area and volume of the osteocyte cell body 

and processes, combined [38]. In 2011, Schneider et al. used FIB-SEM on sections 
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(a) (b) 

(c) 

Fig. 2.3. (a) Using SkyScan CT software, SR-µCT images from a human 
male anterior cortical bone sample were reconstructed. Lacunae are shown 
in gold within the region of interest (ROI) with the vascular canals in 
blue; scale bar=300µm [30]. (b) Reconstruction of the anterior proximal 
tibia of a skeletally-mature rat, using a 1-µm-resolution CT scan and 
Skyscan software. Vasculature is shown in red while the lacunae are in 
gold; scale bar=100µm [41]. (c) Three-dimensional reconstruction of a 
human female cortical osteon from the femoral mid-diphysis, using SR-
µCT and a custom, automated method to segment and extract lacunar 
morphology. Haversian canal is shown in white with the surrounding 
lacunae in gold [42]. 
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(a) (b) 

Fig. 2.4. Three-dimensional reconstructions of cortical bone samples from 
(a) 6-month-old and (b) 24-month-old male mice [43]. 
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from the mid-diaphysis of a murine femur. Post-processing and reconstruction were 

performed using both ImageJ and IPL software (Figure 2.5(b)). However, as this was 

just a proof of concept study, only one sample and a limited ROI were analyzed [35]. 

Sharma et al. provided detailed reconstruction of single lacunae and their connecting 

canaliculi. Tibial, transverse cortical sections were obtained from 26-week-old female 

rats, stained with FITC, and imaged using CLSM. For three-dimensional analysis, 

ImageJ was used to quantify osteocyte lacunar density, Volocity was implemented to 

determine the number of canaliculi per lacuna (Figure 2.5(c)), and Mimics 3D recon-

struction software’s segmentation tools were used to isolate lacunar and canalicular 

volumes [37]. Most recently, in 2015, both Hesse et al. and Varga et al. both utilized 

synchrotron X-ray phase nano-tomography (SR-PNT) to characterize the LCS. Hesse 

et al. obtained images from human mandible sections, manually selected ROI without 

any microdamage, and reconstructed them using Matlab (Figure 2.5(d)) [44]. Human 

femur cortical bone samples were used by Varga et al. and reconstructed in Matlab 

using a custom-developed connectivity enhancement algorithm (Figure 2.5(e)) [5]. 

Unfortunately, many of the current reconstruction techniques characterizing both 

the lacunar and canalicular morphology involve manual work through segmentation 

[35] [37] [38], multiple softwares [35] [37] [38], or techniques, such as FIB-SEM and 

SR-PNT, that are not as accessible as CLSM [5] [35] [44]. Hesse et al. and Varga 

et al. produce promising results with their custom-implemented Matlab codes [5] 

[44]; however, creation of a similar code may prove difficult and time-consuming for 

researchers that could benefit from it. Thus, an open-source code reconstructing the 

LCS, as Heveran et al. provided for the lacunae, would be beneficial for further 

research, removing the variable of post-processing from the differences that are seen 

in characterization of the LCS. 
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2.3 Mechanosensing and Predictive Models 

Bone has been shown to sense and respond to mechanical loading through mod-

eling and remodeling of both the trabecular and cortical surfaces. Therefore, it has 

the ability to alter its external shape and internal structure in order to sustain the 

macroscopic loading placed upon it. This concept that bone can adapt in response 

to mechanical stress was first suggested by Dr. Julius Wolff in the 1860s. Termed 

”Wolff’s Law,” it states that the process of bone remodeling follows mathematical laws 

in response to changes in shape or stress on bone [4] [45]. Since then, the processes 

by which bones can sense and adapt to external stimuli have been investigated. 

In 1977, Piekarski and Munro proposed that fluid flow within the LCS of bone 

is critical for nutrient delivery, waste removal, and mechanotransduction, which has 

since become widely accepted [46] [47]. It has been shown that not only does mechan-

ical loading induce fluid convection in bone [46], but also that oscillatory fluid flow 

due to intramedullary pressure in the absence of mechanical deformation is strongly 

correlated with bone formation [48]. Because of this, osteocytes are considered to 

be the mechanosensors in bone as they form an interconnected network throughout 

the tissue, able to sense and signal to other areas [4]. In addition, osteocytes are 

surrounded by interstitial fluid flow within the LCS; the irregular nano-porosity of 

the LCS allows for fluid stress concentrations around the cell processes, which could 

potentially be a means of mechanotransduction [5] [6] [7]. 

However, the exact mechanism(s) by which osteocytes sense the mechanical stimuli 

is still under debate. As shown in Figure 2.6, recent reviews in the field of bone 

mechanotransduction point out that a definite method has yet to be proven, given 

the difficulty of performing and measuring in vivo experimental studies within the 

mineralized bone matrix [1] [2] [3]. A number of theories have arisen over the years to 

explain the modeling and remodeling behavior of bone in response to external loading. 

Direct cell strain due to deformation of the bone matrix [8] [9], piezoelectricity due to 

the direct piezoelectric effect [2] [49] [50] [51], hydrostatic pressure [2] [8] [9], streaming 
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potentials [3] [8] [52], fluid shear stress [2] [3] [8] [9] [10], drag forces and hoop strains 

due to an interstitial glycocalyx [9] [11] [12] [13] [14], and chemotransport [2] have all 

been theorized to transmit external mechanical loadings, therefore regulating bone 

modeling and remodeling. The interconnectedness of the macroscale loading to each of 

these mechanisms is outlined in Figure 2.7. Macroscopic loading on the bone causes 

torsion, bending, and/or compression, resulting in localized areas of bone matrix 

deformation. Known as the direct piezoelectric effect, collagen and apatite molecules 

rearrange due to this deformation, which can lead to charged surfaces within the 

LCS and potentially influence cellular activity [2] [49] [50] [51]. In addition, the 

localized deformation can cause direct strain on the osteocytes themselves [8] [9]. 

Hydrostatic pressure can also develop within the LCS due to the impermeability 

of the bone matrix [2] [8] [9], which can result in interstitial fluid flow. Streaming 

potentials [3] [8] [52] and chemotransport [2] can occur due to the movement of charged 

particles within the flow. Fluid shear stress can develop on the osteocyte cell process 

as a result of this fluid flow [2] [3] [8] [9] [10]. Last, amplified hoop strains and drag 

forces on the osteocyte’s internal cytockeleton have been theorized due to the presence 

of a glycocalyx (composed of proteoglycans, glycoproteins, and hyaluronic acid) and 

transmembrane integrin connections [9] [11] [12] [13] [14]. 

The piezoelectricity of bone as a possible mechanotransducive means has dimin-

ished over the years in favor of direct strain and fluid-related mechanisms, such as 

shear stress and streaming potentials [51]. By recording whole-bone strain histories 

from a variety of species, it has been shown that peak bone strains due to activities 

of daily living result in strains around 2000 µ� [53] [54] [55]. However, Smalt et al. 

measured the release of nitric oxide (NO) and prostaglandin (PG) of mechanically 

stimulated in vitro cells, which are early in vivo responses to mechanical stimulation. 

A stimulus of 5000 µ�, though, did not elicit an increased response of either NO or 

PGE(2), even though Fritton et al. reported much lower in vivo strains. Thus, this 

led to a paradox that the tissue and cellular levels of deformation are not equivalent. 

Recently, a poromicromechanic model was developed, revealing that tissue level phys-
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Fig. 2.6. Recent reviews on osteocyte cell mechanobiology and bone 
mechanotransduction. Each publication states that the exact mecha-
nisms behind bone’s remodeling capabilites have yet to be fully under-
stood [1] [2] [3]. 
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Fig. 2.7. Connection of macroscopic loading to the theories of bone 
mechanotransduction. Compression, bending, and torsion of the whole 
bone at the macroscopic level leads to bone matrix deformation in lo-
calized areas. Due to this deformation, collagen and apatite molecular 
rearrangement can lead to charged surfaces known as the direct piezo-
electric effect [2] [49] [50] [51] in addition to direct strain placed on the 
osteocytes themselves [8] [9]. In addition, hydrostatic pressure develops 
within the LCS due to the impermeable bone matrix, resulting in inter-
stitial fluid flow [2] [8] [9]. Such fluid flow can induce shear stress on 
the osteocyte cell process [2] [3] [8] [9] [10], amplified hoop strains and 
drag forces due to transmembrane integrin connections with the inter-
nal cytoskeleton and the external glycocalyx [9] [11] [12] [13] [14], and 
streaming potentials [3] [8] [52] and chemotransport due to the movement 
of charged nutrients [2]. 
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iological bone strains can induce osteocyte-stimulating lacunar pressure [56]. Thus, 

the interstitial fluid flow due to this hydrostatic pressure and its potential effects have 

been more thoroughly studied, with the main focus on fluid-induced shear stress and 

fluid drag and hoop strain amplification due to integrin-mediated cytoskeletal and 

glycocalyx interactions. 

As direct in vivo measurements of shear stress and drag forces on the osteocyte 

cell processes are currently not possible, numerous mathematical and computational 

models have been developed to predict these measures. In order to model bone at the 

microscopic and nanoscopic scales, the theory of poroelasticity is commonly imple-

mented, where the interaction of fluid-flow within a fluid-saturated porous medium 

due to deformation of the solid is studied [25]. Three main approaches have been 

developed in order to implement poroelastic models: 1) effective medium approach, 

2) mixture theory approach, and 3) homogenization. While at the continuum point 

all of the approaches result in the same set of equations, the three approaches differ 

in the way that they average the system, taking into consideration all of the different 

constituents. In general, the effective medium approach is useful in determining solid 

component parameters, mixture theory allows for the averaging over different fluid 

phases, and homogenization provides wave propagation parameters. While effective 

medium approach has been more commonly utilized, mixture theory is beginning to 

be implemented as it can effectively model multiphase tissues [57] [58]. 

To implement the fundamental equations for poroelastic theory, a representative 

volume element (RVE) is developed, which is a continuum element containing all 

of the constituents in the model (i.e. fluid(s) and solid). A variety of RVEs for 

bone are used within the literature - either a full osteon, multiple lacunae and their 

canaliculi, a single lacunae and its canaliculi, or just a single canaliculus - which are 

then analytically or computationally modeled. In addition, the geometry is either 

idealized with the lacunae being approximated as an ellipsoid and the canaliculi as 

long tubes or three-dimensional reconstructions of the actual geometry are utilized 

with computational software. Last, depending on the assumptions made, the outputs 
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from each model differ, being either fluid shear stress, fluid strain, fluid velocity, pore 

pressure, or a combination of these measures. 

In regards to mathematical models, You et al. proposed a poroelastic model to 

model strain within an idealized canaliculus with the assumption of tethering units 

in the interstitial space, which was updated in 2008 by Wang et al. [11] [15]. While 

popular, other poroelastic models have also been developed of idealized osteons and 

lacunae to model fluid shear stress, fluid velocity, and pore pressure [16] [59]. In addi-

tion, computational models have become widely popular. While idealized models have 

been utilized using these softwares [7] [17] [60], the ability to import anatomically-

correct RVEs of the LCS has become extremely useful. In 2012, Kamioka et al. 

utilized ultra high voltage electron microscopy (UHVEM) and computational fluid 

dynamics (CFD) to model fluid velocities within human canaliculi [6]. Verbruggen et 

al. also implemented CFD to determine fluid velocity, shear stress, and strain within 

reconstructed CLSM lacunae and canaliculi [19]. Figure 2.8 shows results from both 

of these CFD simulations. 

While these predictive models provide promising results, the majority of them are 

only valid under the assumption that a glycocalyx, and potentially tethering elements, 

within the interstitial space are present [5] [8] [9] [10] [11] [15] [16] [17] [18]. Studies 

utilizing tracers, such as microperoxidase, horseradish peroxidase, reactive red, and 

ferritin, have been used to indirectly determine the pore size or porosity of the gly-

cocalyx [61]. In addition, protrusions from the canalicular wall have been observed, 

suggesting that the osteocyte cell process may connect to those points; however, di-

rect attachments to these ”hillocks” have yet to be shown [6] [15] [62]. Transmission 

electron microscopy (TEM) has also been used in order to identify tethering ele-

ments between the osteocyte process and the canalicular wall [36] [63]. However, the 

three-dimensional reconstruction of canalicular UHVEM images led Kamioka et al. 

to conclude that TEM produces images that provide a false connection between the 

canaliculus and the osteocyte cell process [6]. Using immunohistochemistry, McNa-

mara et al. identified the presence of β3 integrins along the length of the osteocyte cell 
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(a) 

(b) 

Fig. 2.8. Computational models of fluid flow within the LCS. (a) Utilizing 
three-dimensional canalicular UHVEM reconstructions, Kamioka et al. 
created CFD models to determine fluid velocities within human canaliculi 
[6]. (b) Verbruggen et al. used reconstructed CLSM models and CFD to 
quantify fluid velocity within lacunae and their surrounding canaliculi [19]. 
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processes, possible attachment sites to a glycocalyx [62]. These integrins have shown 

to aid in mechanotransduction in in vitro osteocytes [64], but have yet to show any 

significant contribution to transmitting mechanical signals in vivo [9]. In addition, 

CD44, a transmembrane protein whose extracellular component has been shown to 

connect to hyaluronic acid (HA), has been identified on osteocyte cell processes [65]. 

While the presence of a glycocalyx provides a rationale for the strain paradox 

[36] [11] [13] [63], the actual structure of it has yet to be fully and directly identified 

or characterized. The parameters used for the glycocalyx and tethering elements 

within each of these models could greatly affect the predicted fluid shear stresses and 

drag forces, and thus confound which, if either, is the main mechanism of osteocyte 

mechanotransduction. 
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3. MATHEMATICAL MODEL 

3.1 Motivation 

The majority of poroelastic mathematical and computational models use the as-

sumption that a glycocalyx exists within the interstitial space between osteocytes 

and the LCS [5] [8] [9] [10] [11] [15] [16] [17] [18]. However, the glycocalyx has yet to 

be fully identified or characterized due to limitations in imaging and the embedded 

nature of the LCS. Thus, the purpose of this chapter was to generate a poroelastic 

model of the LCS using mixture theory, as it is allows for expansion into multiphase 

fluids, and determine the relative importance of the glycocalyx and its structural 

parameters on velocity and shear stress outputs. 

3.2 Theory 

In order to model the behavior of interstitial fluid within cortical bone, a con-

tinuum mixture theory model was developed. Figure 3.1 illustrates the deformation 

that a mixture, represented as B, undergoes from the reference configuration to the 

current configuration. The location of a constituent in one configuration can be di-

rectly mapped to the other configuration, shown as χα(xα, t), where α represents any 

constituent found within the mixture. 

Each constituent is considered an individual continuum. The volume fraction for 

a mixture of n constituents is defined as follows, 

nX 
Φα = 1 (3.1) 

α=1 
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Fig. 3.1. Deformation of body B from the reference configuration to the 
current configuration. A point within the reference configuration can be 
directly mapped to the current configuration using χα . 
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3.2.1 Balance of Mass 

In the current configuration and within body B that defines the whole mixture, 

region Pt is defined such that this mixture. The total mass within Pt for constituent 

α is Z Z 
Mα = ραdv + c αdv (3.2) 

Pt Pt 

where ρα is the apparent density and cα is the interconversion of mass of con-

stituent α. The apparent density of constituent α is defined as 

ρα = ραT φ
α (3.3) 

where ραT is the true density of constituent α and φα is its respective volume 

fraction. The interconversion of mass within region Pt must follow 

nX 
c α = 0 (3.4) 

α=1 

While the location of Pt can change with time, the mass of the region remains 

constant, Z Z 
DαMα Dα Dα 

= ραdv + c αdv = 0 (3.5)
Dt Dt Dt Pt Pt Z Z 

Dα 

ραdv = c αdv (3.6)
Dt Pt Pt 

To map the left side of Equation (3.6) back to the reference configuration, the 

relationship dv = JdV is needed, where J is the determinant of the deformation 

matrix. Thus, mapping back to the reference configuration results in, Z Z 
Dα 

ραJαdV = c αdv (3.7)
Dt Po Pt 

Taking the derivative of the left side of Equation (3.7), Z Z� �Dαρα DαJα 

Jα + ρα dV = c αdv (3.8)
Dt Dt Po Pt 

Z Z� �Dαρα 

+ ραdiv(v α) JαdV = c αdv (3.9)
Dt Po Pt 
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Mapping region Po to the current configuration leads to, Z � �Dαρα 

+ ραdiv(v α) − c α dv = 0 (3.10)
Dt Pt 

Since the integral in Equation (3.10) is equal to zero, this implies that the inte-

grand is also zero. This results in the final form of the balance of mass for constituent 

α: 
Dαρα 

+ ραdiv(v α) = c α (3.11)
Dt 

3.2.2 Balance of Linear Momentum 

As in the balance of mass in Section 3.2.1, region Pt is defined such that it contains 

all constituents of the mixture in the current configuration. The balance of linear 

momentum can be expressed as Z Z Z 
Dα 

ρα v αdv = tαda + (ραbα + c α v α + πα)dv (3.12)
Dt Pt ∂Pt Pt 

where vα is the velocity of constituent α, tα is the traction vector acting on the 

surface ∂Pt of region Pt, ραb
α represents the body force(s) acting on Pt, and πα is the 

interaction force of constituent α with surrounding constituents. 

Mapping region Pt back to the reference configuration on the left side of Equation 

(3.12) produces the following: Z Z 
Dα Dα 

ρα ρα v αdv = v αJαdV (3.13)
Dt Dt Pt PoZ � � 

αJα αJα = ρ̇α v + ρα v̇ + ρα v αJαdiv(v α) dV (3.14) ZPo � � �� 

= ρα v̇α + v α ρ̇α + ραdiv(v α) dv (3.15) ZPt 

= ρα v̇αdv (3.16) 
Pt 

where ρ̇α + ραdiv(vα) = 0 due to the balance of mass. 
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Using the divergence theorem, the traction vector in Equation (3.12) can be ex-

pressed as the stress tensor of constituent α, Z Z 
tαda = (T α · n)da (3.17) 

∂Pt ∂PtZ 
= div(T α)dv (3.18) 

Pt 

The balance equation can then be written as Z Z � � 
ρα ˙ α α + πα v αdv = div(T α) + ραbα + c v dv (3.19) 

Pt Pt 

As with the balance of mass, the balance of linear momentum must also equate to 

zero. This, again, implies that the integrands within the integrals must also be equal 

to zero. Also, the assumption will be made that the interconversion term is also zero, 

as none of the constituents are being converted to one another. Thus, the final form 

of the balance of linear momentum is as follows, 

Dαvα 

ρα = div(T α) + ραbα + πα (3.20)
Dt 

3.2.3 Balance of Angular Momentum 

The initial form of the balance of angular momentum for constituent α can be 

expressed as Z Z Z � �Dα 

(x×ρα v α)dv = (x×tα)da+ (x×ραbα)+(x×πα)+(x×c α v α)+Mα dv 
Dt Pt ∂Pt Pt 

(3.21) 

Mapping the left side of Equation (3.21) back to the reference configuration results 

in Z Z 
Dα Dα 

(x × ρα v α)dv = (x × ρα v α)JαdV 
Dt Dt Pt PoZ � 

α 
α Dαρα Dαv 

= (v × ρα v αJα) + (x × v αJα) + (x × ρα Jα)
Dt Dt �Po �� 

+ x × ρα v αJαdiv(v α) dV (3.22) 
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The term vα × ραvαJα is equal to zero as it is the velocity vector, vα , crossed with 

itself. Without this term and rearranging Equation (3.22), the left side of Equation 

(3.21) becomes Z Z �� � ��
α � � �Dα Dαv Dαρα 

αJα(x × ρα v α)dv = x × ρα Jα + x × + ραdiv(v α) v dV 
Dt Dt Dt Pt Po 

(3.23) 

Because the term D
αρα 

+ ραdiv(vα) is the balance of mass and thus equal to zero,
Dt 

the result can be further simplified to Z Z � αDα Dαv � 
(x × ρα v α)dv = x × ρα Jα dV (3.24)

Dt Dt Pt PoZ � Dα α � v 
= x × ρα dv (3.25)

Dt Pt 

Next, the traction vector on the surface ∂Pt in Equation (3.21) can be rewritten 

in component form as follows, Z Z 
(x × tα)da = (x × T α n)da (3.26) 

∂Pt ∂PtZ 
= εijkxi(Tjb 

α )Ek (3.27) 
∂Pt 

where εijk is the alternating tensor. 

The divergence theorem is now used to express the traction vector on the surface 

∂Pt as the stress tensor of constituent α within region Pt Z Z � � 
(x × tα)da = 

∂
εijkxiTjb 

α Ek dv (3.28)
∂xb∂Pt Pt � �Z 

∂xi ∂Tjb 
α 

= εijk T α Ekdv (3.29)jb + xi 
Pt 

∂xb ∂xbZ � � 
= εijk Tji 

α + xi 
∂Tjb 

α 

Ekdv (3.30) 
Pt 

∂xbZ � �∂T α 
jb 

= εijkTji 
αEk + εijkxi Ek dv (3.31) 

Pt 
∂xb 

Equation (3.21) can now be rewritten as Z � Dαvα � Z �� � � � 
x × ρα dv = (T α)T − T α + x × div(T α)

Dt Pt Pt � 
+ (x × ραbα) + (x × πα) + (x × c α v α) + Mα dv (3.32) 
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Rearranging Equation (3.32) produces Z � � Dαvα �� 

Pt 

x × ρα 

Dt 
α− div(T α) − ραbα − πα − c α v Z 

dv = � � 
(T α)T − T α + Mα dv (3.33) 

Pt 

From the balance of linear momentum in Section 3.2.2, it has been shown that 

αDαv α αρα − div(T α) − ραbα − πα − c v = 0 (3.34)
Dt 

Therefore, Equation (3.33) can be reduced to Z � � 
0 = (T α)T − T α + Mα dv (3.35) 

Pt 

Since the integrand in Equation (3.35) is equal to zero, the final form of the balance 

of angular momentum is, thus, 

T α − (T α)T = Mα (3.36) 

3.3 Methods 

3.3.1 Model Scales 

In order to employ the balance laws presented in Section 3.2, different length 

scales were defined, as shown in Figure 3.2. These scales - nanoscale, mesoscale, 

and macroscale - were used to create representative volume elements (RVE) in which 

interstitial fluid flow could be analyzed. 

3.3.2 Pressure-Driven Flow 

Representative Volume Element 

In which to model interstitial fluid flow due solely to pressure, Figure 3.3 shows 

the representative volume, defined as B, of the system. This RVE consists of a single, 

idealized canaliculus. The balance laws derived in Section 3.2 were then applied to 

this RVE. 
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Fig. 3.2. The length scales defined for mathematical modeling. The 
nanoscale consists of a single, idealized canaliculus with (left) and without 
(right) a glycocalyx within the interstitial space between the cell process 
and canalicular wall. At the mesoscale, a single lacuna is present with its 
branching canaliculi. The macroscale consists of a single Haversian canal 
with its surrounding LCS. 

Fig. 3.3. Example of the representative body B containing the mixture: 
Idealized 3D-representation (top) of a canaliculus, which houses the osteo-
cyte process, surrounded by cortical bone. A cross-section of the volume 
(bottom) is shown. The numbers indicate the following: (1) interstitial 
space, (2) osteocyte process, and (3) canalicular wall. The letters indicate: 
(a) osteocyte cell process radius and (b) canaliculus radius. 
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Nondimensionalization of Balance of Linear Momentum 

The balance of linear momentum, Equation (3.20), was nondimensionalized for 

each constituent within the mixture in order to make it independent of the physical 

system and allow for influential terms to be identified. 

To apply Equation (3.20) to each constituent, a constitutive equation is utilized 

to describe the interaction term πα . Since this term describes internal forces, then 

the following condition must be met, 

nX 
πα = 0 (3.37) 

α=1 

The balance of linear momentum can then be rewritten for each constituent as, 

v 
ρs D

s s 

= div(T s) + ρsbs + µk−1(v f − v s) (3.38)
Dt 

Df vf 

ρf = div(T f ) + ρf bf + µk−1(v s − v f ) (3.39)
Dt 

where s and f indicate the solid and fluid constituents, respectively, µ is the 

viscosity of the fluid, and k is the permeability tensor of the RVE. T s and T f are 

represented by constitutive equations to describe the stress field for each constituent, 

T s = −φspI + φs[βoI + β1B
s + β2(B

s)2] (3.40) 

T f = −φf pI + 2φf µDf (3.41) 

where p is the pressure shared by both constituents, I is the identity tensor, βo is 

a coefficient representing the compressibility of the solid, Bs is the left Cauchy-Green 

deformation tensor, β1B
s + β2(B

s)2 represents the nonlinearity of the stress-strain 

relationship of the solid, and Df is the time rate of change of the fluid deformation 

tensor. Equation 3.40 assumes the solid is a hyperelastic material while equation 3.41 

assumes that the interstitial fluid is a Newtonian incompressible fluid. 

Thus, Equations 3.38 and 3.39 can be rewritten as follows, 

s � � v 
ρs D

s 

= div − φspI + φs[βoI + β1B
s + β2(B

s)2] + ρsbs + µk−1(v f − v s) (3.42) 
Dt 
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fDf v 
ρf = div(−φf pI + 2φf µDf ) + ρf bf + µk−1(v s − v f ) (3.43) 

Dt 

In order to nondimensionalize Equations 3.42 and 3.43, three fundamental terms 

were chosen: mass, length, and time. Table 3.1 shows the RVE variables chosen 

to represent each fundamental term, where ρfT is the true density of the fluid, vo is 
√ 

the magnitude of the initial velocity of the fluid, and ko is the square root of the 

magnitude of the permeability tensor k. 

Table 3.1. 
Variables, for each fundamental term, utilized to nondimensionalize the 
fluid and solid balances of linear momentum. 

Fundamental Term Variable 

Mass 

Length 

Time 

3 
f 2ρ kT o 

√ 
ko 

√ 
ko 
vo 

Each variable in Equations 3.42 and 3.43 can be expressed as a function of its 

dimensionless form (presented as the respective variable with an overbar) and the 

variables needed to nondimensionalize it. Table 3.2 shows the results of this nondi-

mensionalization. 

The solid equation (Equation 3.42) can be nondimensionalized using the forms in 

Table 3.2, � �
2ρf Dsvs 2ρf � � � � 
o T o Tρs√ 
v 

= −√ 
v r(φs p) +√ 

1 
div φs[βoI + β1B

s + β2(B
s)2]

ko Dt ko ko 
−12ρf � � � � v s µvoko T s+√ ρsb + v f − v (3.44)

ko ko 

where div(−φspI) = −r(φsp). 
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Table 3.2. 
Balance of linear momentum terms and corresponding nondimensionalized 
forms using the fundamental variables. 

Balance of Linear Momentum Term Nondimensionalized Form 

ρα 

αv

p 

Df 

∂ 
∂x 

Dα αv
Dt 

k 

ρf ρα 
T 

αvov

ρf 2 
T v po 

f 
√vo D 
ko� � 
√1 ∂ 
ko ∂x� � 

2v Dα αv√ o 

ko Dt 

kok 

Multiplying Equation 3.44 through by 
µv
ko

o 
results in, 

√ � � √f f � �Dsvsρ ρvo T ko 
ρs vo T ko 

= − r(φs p) + 
µ Dt µ

√ √ √ √� h i� � � �ρfβo ko β1 ko β2 ko vo T ko s −1 sdiv φs I + Bs + (Bs)2 + ρsb + k (v f − v 
µvo µvo µvo µ 

(3.45) 

voρ
f√ 

koSubstituting in N = T 
µ results in the following nondimensionalized balance 

of linear momentum for the solid constituent, � � √ √ √� � � h i�βo ko β1 ko β2 ko
N ρs D

svs 

= −N r(φs p) + div φs I + Bs + (Bs)2 

Dt µvo µvo µvo� � � 
s −1 s+ N ρsb + k (v f − v (3.46) 

Likewise, the fluid equation (Equation 3.43) can be nondimensionalized using the 

nondimensionalized form of the terms in Table 3.2, 

2ρf � 
Df f 

� 
2ρf � � � � v v v 2µvo fo T o T√ ρf = −√ r(φf p) + div φf D 

ko Dt ko ko 
−12 f � � � � v ρ f µvoko T f+ √ ρf b + v s − v (3.47)

ko ko 
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where, again, div(−φf pI) = −r(φf p). 

Multiplying Equation 3.47 through by 
µv
ko

o 
results in, 

√ � � √ 
f � � � � voρ

f ko Df v voρ
f ko fT ρf T = − r(φf p) + 2div φf D 

µ Dt µ 
√ 

ρf � � � � vo ko f −1 f+ T ρf b + k v s − v (3.48) 
µ 

√ 
voρ

f koSubstituting in N = T 
µ results in the following nondimensionalized balance 

of linear momentum for the fluid constituent, � � � � � � � � � �Df vf 
f f −1 

ρf r(φf ρf b fN = −N p) + 2div φf D + N + k v s − v (3.49)
Dt 

Velocity Profile within the RVE: Glycocaylx Assumed 

Pressure-driven interstitial fluid flow with no mechanical stimulus, such as in a 

bioreactor, flows down the length of the canaliculus in the RVE. The solid constituent, 

which consists of the osteocyte cell process, is not physically moving. The term 

vs and its derivatives in Equation 3.46 are therefore equal to zero. In addition, 

physical deformation of the solid is not occurring; thus, the portion of the stress 

tensor that represents solid deformation, φs[βoI + β1B
s + β2(B

s)2], is also zero. The 

body force terms in Equations 3.46 and 3.49, ρsb 
f 
and ρf b 

f 
, respectively, were assumed 

to be negligible. An assumption was also made that the flow is steady, i.e. no fluid 

acceleration. Thus, Df vf 
in Equation 3.49 is neglected. The nondimensionalized

Dt 

forms of the fluid and solid constituents are then, � � 
0 = −N r(φs p) + k 

−1 
v f (3.50) � � � � 

f0 = −N r(φf p) + 2div φf D 
f − k 

−1 
v (3.51) 

To obtain the velocity profile within the RVE, the fluid balance of linear momen-

tum (Equation 3.51) was utilized. Using the definition of the rate of deformation 
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� � 
f ∂vi ∂vjtensor D = 1 + , the balance of linear momentum was rewritten in index

2 ∂xj ∂xi 

notation as follows, 

� f f �∂φf ∂p ∂φf
f ∂ ∂vi ∂vj −1 f0 = −N p − Nφf + 2 Dij + φf + − kij vi (3.52)

∂xi ∂xi ∂xj ∂xj ∂xj ∂xi 

The RVE is considered homogeneous; thus, ∂φ
f 
and ∂φ

f 
are equal to zero, resulting 

∂xi ∂xj 

in 
∂p 

+ φf ∂ �∂vif ∂vj
f � 

−1 f0 = −Nφf + − kij vi (3.53)
∂xi ∂xj ∂xj ∂xi 

The balance of mass in Section 3.2.1 resulted in Equation 3.11, which can be 

used to further simplify Equation 3.53. For this system of pressure-driven flow, no 

interconversion of mass is occurring, and the fluid is assumed to be incompressible. 

The balance of mass (Equation 3.11) is then reduced to, 

ραdiv(v α) = 0 (3.54) 

iThus, ∂v
f 

is equal to zero. Using this, Equation 3.53 is further simplified,
∂xi � f �∂p ∂2v −1 

+ φf i f0 = −Nφf 
2 − kij vi (3.55)

∂xi ∂xj 

Equation 3.55, written in tensor notation, 

fφf r 
2 
v f − k 

−1 
v = Nφf rp (3.56) 

is similar in form to the result that Weinbaum et al. developed [10] 

This simplified balance of linear momentum was converted to a cylindrical coor-

dinate system to correspond to the geometry of the RVE. In this case, the z-axis is 

along the longitudinal axis of the canaliculus. Using the result in Equation 3.55, the 

second term can be expanded out in cylindrical coordinates as follows, 

� f � h � f � � f � f i∂2vi 1 ∂ ∂vz 1 ∂2vz ∂2vz
φf = φf r + 2 + (3.57)

∂x2 r ∂r ∂r r ∂θ2 ∂z2 
j 

φf ∂vz
f ∂2vz

f 

= + φf (3.58) 
r ∂r ∂r2 
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when assuming that the flow is steady and uniform. 

Equation 3.56 can then be rewritten, 

φf ∂
2vz

f φf ∂vz
f 

−1 f ∂p 
+ − kzr vz = Nφf (3.59)

∂r2 r ∂r ∂z 

The differential equation in Equation 3.59 has the form of a modified Bessel equa-

tion. In order to solve for the velocity profile, a few manipulations were first made to 

obtain a solvable form. Equation 3.59 was multiplied by 
φ
r2 

f , 

2 ∂
2vz

f ∂vz
f 

−1 f 2 ∂p 
r + r − r 2kv vz = Nr (3.60)

∂r2 ∂r ∂z 

where kv = φf kzr. 

In addition, Equation 3.60 was put in terms of r̂, which is set equal to γr . γ is 
b 

√b , where b is the radius of the canaliculus. 
kv 

Rewriting Equation 3.60 with this substitution leads to, 

2 2 2 −1 2 2 2� f � � � � �b r̂ ∂2vz γ2 br̂ ∂vz
f γ b kv r̂ f Nb r̂ ∂p 

+ − v = (3.61)
γ2 ∂r̂  2 γ ∂r̂  b γ2 z γ2 ∂z b 

Simplifying Equation 3.61 results in the needed form of a modified Bessel function, 

f f � � 
2 ∂2vz ∂ vz 2 f Nb 

2
r̂ 
2 

∂p 
r̂ + r̂ − ̂r v = (3.62)

2 z γ2∂r̂  ∂r̂  ∂z 

The homogeneous solution to the differential equation in Equation 3.62 has the 

following form, 

v fz = AIo(r̂) + CKo(r̂) (3.63) � � � �γr γr 
= AIo + CKo (3.64)

b b 

where A and C are constants of integration and Io and Ko are modified Bessel 

functions of the zeroth order. 

To find the solution to the nonhomogeneous equation, the particular solution was 

inserted into Equation 3.62. This particular solution is the following, 

f = Dˆvp r 
2 
+ Er̂ + F (3.65) 
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where D, E, and F are constants. 

Differentiating and plugging in Equation 3.62 results in, 

� � 
2 2 2 Nb 

2
r̂ 
2 

∂p 
(2D)r̂ + (2Dr̂ + E)r̂ − (Dr̂ + Er̂ + F )r̂ = (3.66)

γ2 ∂z 

From Equation 3.66, constants D and E are equal to 0, and constant F is −Nkv 
∂p .
∂z 

Thus, the particular solution to Equation 3.62 is, 

f ∂p 
vp = −Nkv (3.67)

∂z 

The generalized solution to Equation 3.62 is the linear combination of the homo-

geneous and nonhomogeneous solutions, � � � �γr γr ∂p 
v f = AIo + CKo − Nkv (3.68)z 

b b ∂z 

To solve for constants A and B, the boundary conditions must be applied. A 

no-slip boundary condition is assumed at both the osteocyte cell process (radius = 

a) and the wall of the canaliculus (radius = b). Thus, vfz = 0 at r = a and r = b. 

The finalized form for the velocity profile of pressure-driven interstitial fluid within a 

canaliculus is, h � � � � i∂p γr γr 
v f = Nkv A1Io + C1Ko − 1 (3.69)z ∂z b b 

where � � � � 
Ko γ − Ko 

γa 

A1 = � � � � � b� � � (3.70)
γa γaγ − Io γIo b 

Ko Ko b � � � � 
γa − IoIo b 

γ 
C1 = � � � � � � � (3.71)

γa γaIo )Ko γ − Io γ Kob b 

Velocity Profile within the RVE: No Glycocaylx Assumed 

When a glycocaylx is not assumed to exist, the flow through an annulus (with 

an internal cylinder) can be modeled using the Hagen-Poiseuille equation, assuming 
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incompressible, steady-state flow. The differential equation representing this flow is 

as follows, 

� �1 ∂p 1 ∂ ∂vz
f 

− = r (3.72) 
µ ∂z r ∂r ∂r 

As done previously for the balance of linear momentum, the three fundamental 

terms of mass, length, and time were used to nondimensionalize Equation 3.72. Table 

3.3 shows the RVE variables chosen to represent each fundamental term, where ρfT is 

the true density of the fluid, vo is the magnitude of the initial velocity of the fluid, and 

a is the radius of the osteocyte cell process. Each variable in Equation 3.72 can be 

expressed as a function of its dimensionless form (presented as the respective variable 

with an overbar) and the variables used to nondimensionalize it. Table 3.4 shows the 

results of this nondimensionalization. 

Table 3.3. 
Variables, for each fundamental term, utilized to nondimensionalize the 
Hagen-Poiseuille type flow within the RVE when a glycocalyx is not as-
sumed. 

Fundamental Term Variable 

Mass 

Length 

Time 

ρf 3 
T a

a 

a 
vo 
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Table 3.4. 
Hagen-Poiseuille flow terms and their corresponding nondimensionalized 
forms using the fundamental quantity variables. 

Hagen-Poiseuille Flow Term Nondimensionalized Form � � 
∂p 
∂z 

∂ 
∂r 

r 

∂v
∂r 

f 
z 

2ρ vo ∂p 
a ∂z � � 
1 ∂ 
a ∂r 

f 
T

ar� � 
vo ∂vz 
a ∂r 

The nondimensionalized form of Equation 3.72 is thus the following, 

f 2 � � � f �ρ ∂p 1 ∂ ∂vzT vo− = vor (3.73) 
aµ ∂z a2r ∂r ∂r 

Integrating Equation 3.73 results in the following velocity profile, 

aρfT vor
2 ∂p 

vz
f = − + A ln(r) + B (3.74)

4µ ∂z 

where A and B are constants of integration. 

Using the boundary conditions that vzf = 0 when r = a and r = b, the solution 

of the velocity profile within the RVE in the absence of a glycocalyx is ��� � � � 
b2 � �2 (a )2 − 1 � � 

f aρT
f vo ∂p r r 

vz = − − b ln − 1 (3.75)
4µ ∂z b ln(a ) b

b 

Table 3.8 shows the values used to determine the sensitivity of these terms on the 

velocity profile of a Hagen-Poiseuille-type flow. Using the relationship for a Newtonian 

fluid τz
f = µ ∂v fz , the shear stress on the osteocyte cell process (r = a) was determined

∂r 

using Equation 3.75, 

� �� ��� � (a )2 − 1 � �� 
b2 ∂p 2r 1 

τz
f = − 2 − b (3.76)

4 ∂z ln(a ) rb b 

ρfwhere τ f = v2 τz
f .z o T 
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(a) (b) 

Fig. 3.4. (a) Assumed glycocalyx structure. (b) Dimensions of a single 
unit cell within the structure [68]. 

3.3.3 Pressure-Driven Flow: Sensitivity Analyses 

Using a custom Matlab (MathWorks, Natick, MA) code, a sensitivity analysis was 

performed using Cotter’s Method to rank the input terms based on their influence on 

the output (velocity) in Equation 3.69 [66] [67]. Cotter’s Method involves assigning a 

minimum and maximum value to each input term using their respective experimental 

ranges. Simulations are then performed by systematically assigning one term to one 

of its extreme values, with all the other terms set to the opposite extreme. An 

additional two simulations are performed with all terms set to their minimum and 

all terms assigned to their maximum value, respectively. Inputs that the output is 

sensitive to are identified as 1/nc, where nc is the total number of input terms. 

As the glycocalyx within the LCS has yet to be fully characterized, approximations 

regarding its structure were made, in order for the permeability to be determined. 

An idealized open-cell model, constructed (Figure 3.4(a)) using rectangular unit cells 

(Figure 3.4(b)), was assumed to be within the interstitial space of the RVE. Values for 

Dh, Lh, Dv, and Lv were obtained from approximated dimensions used in previous 
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literature [17] [69] [70] [61]. These structural dimensions were used to determine 

the minimum and maximum permeability of the glycocalyx, using equations derived 

by Sander et al. [68]. In addition, the ratio of the osteocyte process radius to the 

canaliculus radius was used as limited osteoctye process measurements are reported. 

The pressure gradient was determined using the difference between the nutrient artery 

and nutrient vein pressures within the human tibia and an average tibial, diaphyseal 

cortex thickness of 6mm. Last, approximating the interstitial fluid to be saline, the 

fluid viscosity at body temperature (37°C) was determined to be 0.0007Pa ·s, and the 

true density used was 1000kg/m3 . Minimum and maximum values for these terms 

are shown in Table 3.5. 

From preliminary calculations, the modified Bessel function constants A and B 

(Equations 3.70 and 3.71), used to describe the velocity profile within the RVE (Equa-

tion 3.69), were unsolvable as the permeability of the glycocalyx decreased due to 

values set as the minimum and maximum glycocalyx structure terms. When solving 

the differential equation in Equation 3.60, the modified Bessel function form assumes 

the velocity is changing as a function of the radius. Thus, the solution containing 

constants A and B describes a Brinkman-type fluid flow. However, as the perme-

ability of the glycocalyx decreases, the fluid flow within the RVE transitions from 

a Brinkman-type flow to a Darcy-type flow, where the velocity profile is not depen-

dent upon the radius (except at the no-slip boundaries). This, then, explains the 

unsolvable behavior of these modified Bessel function constants. 

To determine when the transition from Brinkman-type to Darcy-type flow occurs, 

a sensitivity analysis was performed on the γ term that the velocity profile and mod-

ified Bessel constants are functions of (Equations 3.69, 3.70, and 3.71). The γ term 

is a function of the canaliculus radius, the volume fraction of the fluid constituent, 

and the permeability of the glycocalyx. Thus, due to the changing permeability, the 

velocity profile and modified Bessel constants are solvable for only certain ranges of 

the γ term. From Figure 3.5, the γ term is sensitive to both Dh and Lh, dimensions 

of the glycocalyx structure. 
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Fig. 3.5. Sensitivity analysis of the γ term, which is a function of the 
canaliculus radius, the volume fraction of the fluid constituent, and the 
permeability of the glycocalyx. The horizontal line indicates the threshold 
(1/nc) that a term must be greater than in order to be considered sensitive 
to the output. The inputs, that the γ term is sensitive to, are Dh and 
Lh. (b: canaliculus radius, Dv: diameter of glycocalyx vertical fibers, Lv: 
length of glycocalyx vertical fibers, Dh: diameter of glycocalyx horizontal 
fibers, Lh: length of glycocalyx horizontal fibers). 
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From the previous, preliminary calculations, the velocity profile and modified 

Bessel constants were unsolvable when γ was greater than 700. Thus, the parameters 

of the glycocalyx structure which are most sensitive to the γ term (Dh and Lh) were 

systematically modified. The maximum value for Dh and the minimum value for 

Lh were decreased and increased, respectively, until it resulted in the γ term less 

than 700. The maximum value for Dh was decreased from 6nm to 4.75nm, and the 

minimum value for Lh was increased from 6nm to 7.25nm. The modified values for 

each term, Table 3.6, were then used to determine their sensitivity on the velocity 

profile of a Brinkman-type flow. In addition, the shear stress on the osteocyte cell 

process (r = a) was computationally computed within Matlab, using the relationship 

for a Newtonian fluid τz
f = µ ∂v 

∂r 
z
f 

; Cotter’s Method was again performed to determine 

each term’s sensitivity of this shear stress. 

When the flow within the RVE is not a Brinkman-type flow due to such a small 

glycocalyx permeability, Darcy-type flow dominates. The first two terms on the left-

hand side in Equation 3.60 are zero. Thus, the resulting Darcy-type flow profile 

within the RVE is as follows, 

f ∂p 
vz = −Nkv (3.77)

∂z 

Before Cotter’s Method could be performed to determine the sensitivity of the 

Darcy-type flow to its inputs, the ranges of the inputs needed to be adjusted. Overlap 

of the estimated values from literature exists for the glycocalyx parameters (such as 

Lh and Dv being equivalent), which would result in an impermeable interstitial space 

as the volume fraction of the solid constituent could be either greater than or equal 

to one. Thus, a sensitivity analysis was performed on the volume fraction (φs) of the 

glycocalyx within the RVE using Cotter’s Method, as shown in Figure 3.6. From this 

sensitivity analysis, the volume fraction of the solid constituent is sensitive to both 

Lv and Dh. Thus, the minimum value of Lv was increased from 6nm to 6.75nm, 

and the maximum value of Dh was decreased from 6mm to 5.25nm. The value of 

Dv was also slightly decreased from 6nm to 5.9nm; even though it was not identified 

as a sensitive parameter, it needed to be reduced in order to not overlap with the 
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Fig. 3.6. Sensitivity analysis of the φs term, which is a function of the four 
geometric parameters of the glycocalyx. The horizontal line indicates the 
threshold (1/nc) that a term must be greater than in order to be considered 
sensitive to the output. The inputs, that φs is sensitive to, are Lv and 
Dh. (Dv: diameter of glycocalyx vertical fibers, Lv: length of glycocalyx 
vertical fibers, Dh: diameter of glycocalyx horizontal fibers, Lh: length 
of glycocalyx horizontal fibers) 

minimum value of Lh, which is set at 6nm. With these changes, φs was below 1 for 

all simulations. Table 3.7 shows the modified minimum and maximum values, with 

the blue values indicating those adjusted due to the φs sensitivity analysis and the 

red values indicating those previously modified due to the sensitivity analysis on the 

γ term. Cotter’s Method was then performed on Equation 3.77, the Darcy-type flow 

velocity profile. 

Last, Cotter’s Method was performed under the assumption that the glycocalyx 

within the interstitial space of the RVE is not present. Sensitivity analyses were 
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performed for both the velocity profile and the shear stress acting on the osteocyte 

cell process, Equations 3.75 and 3.76, respectively. 

3.3.4 Compression-Driven Flow: Preliminary Work 

Representative Volume Element 

In which to model interstitial fluid flow due to compression-driven flow, the RVE 

consists of multiple, idealized canaliculi in parallel within a block of mineralized bone. 

This RVE is at length scale of a single osteocyte, or the mesoscale, as shown in Figure 

3.2. 

Velocity Profile within the RVE 

Deformation-induced flow due to external compressive loading is next investigated 

as this is a common, anatomic loading that bone continually experiences, e.g. am-

bulation. To obtain the deformation of the solid constituent, a previously generated 

finite element analysis (FEA) of a mouse tibia, which underwent 12N of compressive 

loading in Abaqus (Johnston, RI), was utilized [74]. The model was sectioned as 

indicated by the dashed, red line in Figure 3.7(a). From this section, a reference node 

was selected, which is indicated as Node 1 in Figure 3.7(b), (c). Twelve surround-

ing nodes (Nodes 2-13) were next selected. The original coordinates of each node as 

well as the displacement coordinates were output from Abaqus. The Left Cauchy-

Green deformation tensor, Bs , can be determined from the original and displaced 

coordinates as, 

� �� �T∂x ∂x 
Bs = FF T = (3.78)

∂X ∂X 

Four left Cauchy-Green deformation tensors were calculated for Node 1 using the 

reference node with Nodes 2-4, Nodes 5-7, Nodes 8-10, and Nodes 11-13, respectively. 
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[H] 

Fig. 3.7. (a) Mouse tibia model in Abaqus, mapping the displacement 
due to a compressive 12N load at the proximal end [74]. The dashed, red 
line indicates the location where the bone was computationally sectioned. 
(b) Cross-section of the cut made in the model. Nodes used to calculate 
the deformation gradient are indicated by red dots. (c) A close-up image 
of the red box in (b), showing the locations of the nodes. Node 1 is the 
reference node. 

They were then averaged to obtain an overall, average deformation tensor for reference 

Node 1, 

⎤⎡ 

Bs = 
⎢⎢⎢⎣ 

1.0032 1.8818e − 4 −0.0014 

1.8818e − 4 1.0026 0.0028 
⎥⎥⎥⎦ (3.79) 

−0.0014 0.0028 0.9885 

In order to solve for the stress tensor of the solid constituent T s , the material 

constants in Equation 3.40, βo, β1, and β2, need to be determined. The Mooney-

Rivlin strain energy function for a porous material needs to be utilized, 
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W = c1(I1 − 3) + c2(I2 − 3) (3.80) 

where c1 and c2 are constants and I1 and I2 are the first and second invariants of 

the Right Cauchy-Green deformation tensor C, respectively [75]. 

defined as follows, 

C, I1, and I2 are 

C = F T F (3.81) 

I1 = trC (3.82) 

� � 
I2 =

1 
(trC)2 − trC2 (3.83)

2 

The Mooney-Rivlin strain energy function is related to the the Second Piola-

Kirchhoff stress, S, by the following 

∂W ∂W ∂I 
S = 2 

∂C 
= 2 

∂I ∂C 
(3.84) 

where ∂I1 and ∂I2 are the following, 
∂C ∂C 

∂I1 
= I (3.85)

∂C 

∂I2 
= I1I − C (3.86)

∂C 

Thus, the Second Piola-Kirchhoff stress tensor is, 

S = 2c1I + 2c2tr(C)I − 2c2C (3.87) 

S can then be related to the First Piola-Kirchhoff stress tensor, 

P = FS (3.88) 
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Fig. 3.8. Block of mineralized bone. Tissue is assumed to undergo com-
pression in the E3 direction as indicated by force F . 

As the First Piola-Kirchhoff stress quantifies engineering stress, the following re-

lationship can be made, 

E� = FS (3.89) 

where E is the elastic modulus of bone and � is strain. 

In order to solve for constants c1 and c2 in Equation 3.80, the compression of a 

block of mineralized bone is assumed, as shown in Figure 3.8. The kinematics of this 

motion can be derived as follows, 

x1 = X1 − η�X1 (3.90) 

x2 = X2 − η�X2 (3.91) 

x3 = X3 + �X3 (3.92) 

where Xi refers to the reference configuration, xi refers to the current configura-

tion, and η is Poisson’s ratio of cortical bone. 

Once the material constants are determined, the balance of linear momentum for 

each constituent, as shown in Section 3.3.2, can be utilized to determine the flow 

profile within the interstitial space and predict the shear stresses and/or drag forces 

that the osteocyte may be experiencing. 
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3.4 Results 

3.4.1 Pressure-Driven Flow: Sensitivity Analyses 

When utilizing Cotter’s Method, a term is deemed sensitive if its sensitivity is 

greater than 1/nc, where nc is the total number of input terms. The Brinkman-

type velocity profile within the RVE (glycocalyx present) is most sensitive to Dv 

and Dh, as shown in Figure 3.9. The nondimensionalized maximum velocity of the 

Brinkman-type flow (the midpoint between the canalicular wall and the osteocyte cell 

process) within the RVE containing a glycocalyx is shown in Figure 3.10(a), using 

the averages of ∂p , b, and vo. It is plotted as a function of increasing osteocyte cell
∂z 

process radius and γ. These same results are plotted in Figure 3.10(b) but have 

been re-dimensionalized. The shear stress on the osteocyte cell process due to this 

Brinkman-type velocity profile is most sensitive to terms Dv, Dh, and vo (Figure 

3.11). Considering all of the simulations performed, the shear stress on the osteocytic 

cell process ranges from 0.3306µP a to 0.01186Pa. When the permeability is small 

enough that the γ term is larger than 700, the Darcy-type velocity profile occurs 

within the RVE, which is most sensitive to Dv and Lh, as shown in Figure 3.12. 

The re-dimensionalized velocity ranges from is 0.0119nm/s to 0.0078µm/s across all 

simulations performed. 

When the glycocalyx is assumed to not exist, the velocity profile can be modeled 

as a Hagen-Poiseuille equation. This velocity within the RVE is most sensitive to 

vo and b, as shown in Figure 3.13. The nondimensionalized maximum velocity of 

the Poiseuille-type flow (the midpoint between the canalicular wall and the osteocyte 

cell process) within the RVE is shown in Figure 3.14(b), using the averages of ∂p , b,
∂z 

and vo. It is plotted as a function of increasing osteocyte cell process radius and γ. 

These results re-dimensionalized are plotted in Figure 3.14(a).The shear stress on the 

osteocyte cell process due to this Poiseuille-type velocity profile is also most sensitive 

to vo (Figure 3.15). Out of the simulations performed, the shear stress experienced 

on the osteocyte cell process ranges from 0.0182Pa to 0.4571Pa. 
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Fig. 3.9. Cotter’s Method sensitivity analysis of Equation 3.69, using 
modified maximum and minimum values from Table 3.6. The horizontal 
line indicates the threshold (1/nc) that a term must be greater than in or-
der to be considered sensitive to the output. The Brinkman-type velocity 
profile is most sensitive to terms Dv and Dh. (a/b: ratio of osteocyte cell 
process radius to canaliculus radius, b: radius of canaliculus, Dv: diam-
eter of glycocalyx vertical fibers, Lv: length of glycocalyx vertical fibers, 
Dh: diameter of glycocalyx horizontal fibers, Lh: length of glycocalyx 
horizontal fibers, dP/dz: pressure gradient, vo: initial velocity). 
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(a) 

(b) 

Fig. 3.10. (a) Nondimensionalized maximum velocity of the Brinkman-
type flow profile, when the glycocalyx in present, as a function of increas-
ing cell process radius and γ. Averages of ∂p , b, and vo were used. (b)∂z 
Re-dimensionalizion of the maximum velocities shown in (a). 
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Fig. 3.11. Cotter’s Method sensitivity analysis of the computationally 
derived shear stress on the osteocyte cell process (a) within the RVE, using 
modified maximum and minimum values from Table 3.6. The horizontal 
line indicates the threshold (1/nc) that a term must be greater than in 
order to be considered sensitive to the output. The shear stress due to this 
Brinkman-type velocity profile is most sensitive to terms Dv, Dh, and vo. 
(a/b: ratio of osteocyte cell process radius to canaliculus radius, b: radius 
of canaliculus, Dv: diameter of glycocalyx vertical fibers, Lv: length of 
glycocalyx vertical fibers, Dh: diameter of glycocalyx horizontal fibers, 
Lh: length of glycocalyx horizontal fibers, dP/dz: pressure gradient, vo: 
initial velocity) 
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Fig. 3.12. Cotter’s Method sensitivity analysis of Equation 3.77, using 
modified maximum and minimum values from Table 3.7. The horizontal 
line indicates the threshold (1/nc) that a term must be greater than in 
order to be considered sensitive to the output. The Darcy-type velocity 
profile is most sensitive to terms Dv and Lh. (Dv: diameter of glycocalyx 
vertical fibers, Lv: length of glycocalyx vertical fibers, Dh: diameter of 
glycocalyx horizontal fibers, Lh: length of glycocalyx horizontal fibers, 
dP/dz: pressure gradient, vo: initial velocity). 
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Fig. 3.13. Cotter’s Method sensitivity analysis of Equation 3.75, using 
modified maximum and minimum values from Table 3.8. The horizontal 
line indicates the threshold (1/nc) that a term must be greater than in 
order to be considered sensitive to the output. The Poiseuille-type velocity 
profile (assuming no glycocalyx) is most sensitive to vo and b. (a/b: ratio of 
osteocyte cell process radius to canaliculus radius, b: radius of canaliculus, 
dP/dz: pressure gradient, vo: initial velocity). 
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(a) 

(b) 

Fig. 3.14. (a) Nondimensionalized maximum velocity of the Poiseuille-
type flow profile as a function of increasing cell process radius and γ. 

∂p Averages of 
∂z , b, and vo were used. (b) Re-dimensionalization of the 

maximum velocities shown in (a). 
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Fig. 3.15. Cotter’s Method sensitivity analysis of the shear stress acting 
on the osteocyte cell process (a) within the RVE (Equation 3.76), using 
modified maximum and minimum values from Table 3.8. The horizontal 
line indicates the threshold (1/nc) that a term must be greater than in 
order to be considered sensitive to the output. The shear stress due to this 
Poiseuille-type velocity profile (assuming no glycocalyx) is most sensitive 
to vo. (a/b: ratio of osteocyte cell process radius to canaliculus radius, b: 
radius of canaliculus, dP/dz: pressure gradient, vo: initial velocity). 
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3.5 Discussion 

By utilizing the theory of poroelasticity and the mixture theory approach, velocity 

and shear stresses within an idealized canaliculus were able to be determined, along 

with the impact of the glycocalyx on these results. Based upon the presence and 

structure of the glycocalyx, three different types of flow were determined to exist 

within the interstitial space: 1) Brinkman flow, 2) Darcy flow, and 3) Poiseuille flow. 

Brinkman flow occurs when a glycocalyx was assumed to exist and its permeability 

results in a γ term greater than 700. As the permeability decreases, causing an 

increase in the γ term above 700, the flow is modeled as a Darcy-type flow. Last, 

when no glycocalyx is assumed to exist, Poiseuille flow exists between the canalicular 

wall and the osteocyte cell process. 

Due to arterial pressure-driven flow, the Brinkman-type maximum velocity is ap-

proximately 0.15 µm/s when γ is equal to 37. As the γ term increases to just 87, 

the maximum velocity within the interstitial space is greatly reduced to just 0.025 

µm/s. The shear stress on the ostocytic process due to the Brinkman flow ranges 

from 0.3306 µP a to 0.01186 Pa. Both the velocity and shear stress are sensitive to the 

glycocalyx diametric parameters Dv and Dh with the shear stress also being sensitive 

to the initial velocity vo. When the γ term is greater than 700, the maximum Darcy 

velocity that occurs ranges from 0.0119 nm/s to 0.0078 µm/s; this velocity is also 

sensitive to structural parameters of the glycocalyx, Dv and Lh. When a glycocalyx 

is not assumed to be within the interstitial space, Poisueille flow results in a maxi-

mum velocity of 17 µm/s when the ratio of the osteocyte process to the canalicular 

wall is 0.35 and decreases parabolically to approximately 9 µm/s when the the ratio 

is increased to 0.80. The shear stress on the cell process ranges from 0.0182 Pa to 

0.4571 kP a. The Poiseuille velocity and shear stress are both sensitive to the initial 

velocity vo, with the velocity also being sensitive to the canalicular radius b. 

From these results, it is shown that the presence of glycocalyx greatly impacts not 

just the values of the velocity and shear stress but also the type of flow that dominates 
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within the interstitial space. While this model does assume a rectangular unit cell of 

the glycocalyx, it still clearly shows the impact of the ranges of values that have been 

assumed of the glycocalyx [17] [69] [70]. For example, Kamioka et al. did not assume a 

glycocalyx in their UHVEM canalicular reconstruction (Figure 2.8(a)), which lead to 

maximum velocity values of 800 µm/s. In comparison to the idealized model Poiseuille 

velocities modeled within this thesis, the irregularities from the reconstructed images 

as well as a much larger pressure gradient of 1 P a/nm [10] in Kamioka et al.’s model 

explain the large discrepancies observed between the two models [6]. On the other 

hand, Verbruggen et al. assumed a glycocalyx within their computational models 

of CLSM lacunar canalicular structures, resulting in maximum velocities of only 200 

µm/s (Figure 2.8(b)). They reported an average velocity of approximately 60.5 µm/s 

and an average shear stress of approximately 11 Pa. Again, differences in this model 

and the one discussed here are due to the non-idealized structure of the LCS and the 

modeling of vigorous activity by Vergruggen et al. (Input pressure: 300 Pa) [19]. 

Thus, mathematical and computational models need to take these uncertainties of 

the glycocalyx into account, especially since the type of dominating flow will enable 

determination of the type of stimulus the cell process is experiencing, i.e. shear stress 

or drag forces/amplified hoop strains. 

Finally, expanding this mixture theory analysis to model compression-driven flow, 

as in Section 3.3.2, will enable more relevant, physiologic constituent relationships to 

be determined. It will be able to take into account the deformation of the solid and 

determine its impact on the fluid profile within the interstitial space with or without 

the presence of a glycocalyx. Overall, these results will be a more accurate prediction 

to the forces that the osteocyte may be experiencing during mechanical loading. 
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4. CHARACTERIZATION OF THE LCS 

4.1 Motivation 

Advancements in nanoscale imaging and reconstruction softwares have enabled 

three-dimensional characterization of the LCS. However, the current techniques uti-

lized to reconstruct both the lacunar and canalicular morphology require either man-

ual segmentation which is subject to a user bias [35] [37] [38], multiple softwares [35] 

[37] [38], or techniques, such as FIB-SEM and SR-PNT, that are not as accessible as 

CLSM [5] [35] [44]. Hesse et al. and Varga et al. have shown promising results with 

their custom-implemented Matlab codes [5] [44]; however, creation of a similar code 

may prove difficult and time-consuming for researchers without the computational 

background. Thus, an open-source code reconstructing the LCS from CLSM images, 

as Heveran et al. provided for the lacunae, would enable further advancements in the 

field, removing the variable of post-processing from the differences that are seen in 

characterization of the LCS. 

4.2 Methods 

4.2.1 Sample Preparation 

For this study, the femora of 20-week-old and 52-week-old female wild type C57BL/6 

mice were utilized to visualize the lacunar-canalicular structure within cortical bone. 

These mice, as genetic controls for previous experiments, had been previously sacri-

ficed. The left femora from the 20-week-old mice and right femora from the 52-week-

old mice had been harvested, cleaned of soft tissue, fixed in 10% neutral buffered 

formalin (NBF), and stored in 70% ethanol (EtOH) (Fisher Scientific, Hampton, 

NH) following euthanasia. 
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Three femora from each age group were obtained for sectioning. In order to handle 

and support the bones, Eppendorf PCR tubes were filled approximately three-fourths 

full with Quickset Epoxy (Loctite, Düsseldorf, GER). Once the epoxy was set, each 

femur was inserted into a PCR tube so that the distal end of the bone was in contact 

with the epoxy. Holding the femora upright, the remainder of the PCR tubes were 

filled with epoxy. A thin coat of epoxy was then applied around the portions of 

the bones not embedded within the PCR tube; this was done in order to prevent 

splintering of the bone during sectioning. 

The PCR tubes were horizontally inserted into a single saddle chuck (Buehler, 

Lake Bluff, IL) which was attached to the swivel arm of an Isomet 1000 Precision 

Cutter (Buehler, Lake Bluff, IL). A diamond blade was used to cut multiple cross 

sections from the metaphysis and diaphysis of each bone. Samples were then stored 

in individual PCR tubes filled with 70% EtOH for at least 24 hours. 

After soaking in EtOH, the epoxy coating the outside of each section was peeled 

off using forceps. Using deionized water and 600 grit waterproof sandpaper (Norton, 

Worchester, MA), one metaphyseal cross-section from each mouse bone was ground 

down to a final thickness of 150 µm. Each section was washed in ascending concen-

trations of 70%, 85%, and 100% EtOH for 5 minutes each. Samples were placed in a 

24-well plate (one sample per well) and stained with 0.1 mg/mL Alexa Fluor 488 car-

boxylic acid, succinimidyl ester (Invitrogen, Carlsbad, CA) for 24 hours. During this 

incubation time, the covered 24 well-plate was placed on a standard analog shaker 

(Setting 1; VWR, Radnor, PA) to ensure penetration into the LCS. 

After the Alexa 488 was removed from the wells, each sample was submerged in 

10% NBF and again placed on the shaker for at least 48 hours. Once the samples were 

fixed, ascending concentrations EtOH were again used to wash the samples. Last, 

samples were placed on microscope slides; no. 1.5 cover glass (VWR, Radnor, PA) 

and ProLong Diamond Antifade Mountant (Invitrogen, Carlsbad, CA) were used to 

secure the samples on the slides. Slides were covered and left to dry for at least 36 

hours before imaging. 
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4.2.2 Confocal Imaging 

All slides were imaged on a Zeiss LSM 880 Upright Confocal (ZEISS, Oberkochen, 

GER), using the Plan-Apochromat 63x/1.40 Oil DIC objective. In order to keep 

image settings consistent between samples, all slides were first briefly imaged to de-

termine overall optimal imaging parameters. Three z-stacks were then obtained from 

the posterior surface of each sample. The goal of each z-stack was to focus and obtain 

images on a single full lacunae and its connecting canaliculi. The x-y resolution of 

the images (1024 x 1024) approximately ranged from 0.030 µm - 0.040 µm, while 

the z-resolution was 0.394 µm. The depth, or number of slices for each z-stack, was 

variable as it depended on the size and orientation of the lacunae. The settings used 

for each z-stack for all samples were as follows: master gain: 586, pixel dwell: 0.38 

µs, pinhole: 1 AU, averaging: line 8, and pixel depth: 16-bit. As laser penetration di-

minishes greatly with depth due to the mineralized structure of the samples, the laser 

power was increased from 5% to 7.5% at 50% thickness of the scan and also from 7.5% 

to 10% once 75% of the sample had been scanned. All z-stacks were saved with and 

without a scale-bar as the scale-bar interferes with automated volume reconstruction. 

In addition, a z-stack was performed on the medial surface of each sample in 

order to make quantitative measurements regarding volumetric lacunar density. Using 

the Plan-Apochromat 20x/.8 M27 objective, each image (1024 x 1024) had an x-y 

resolution of 0.142 µm and a z-resolution of 0.832 µm, resulting in an overall image 

size of approximately 146 µm by 146 µm and an average depth of 33 µm. The settings 

for these scans were the following: laser power: 10%, master gain: 586, pixel dwell: 

0.38 µs, pinhole: 1 AU, averaging: line 8, and pixel depth: 16-bit. The z-stacks 

were then imported into Mimics (Materialise, Leuven, BEL) where the lacunae were 

masked, with a lower threshold of -994 and an upper threshold of -842. From this 

segmentation, a three-dimensional reconstruction of the lacunae was generated, as 

shown in Figure 4.1. Using the annotation tool, all internal, full lacunae were counted. 

In addition, partial lacunae were counted if they were on the proximal (top), lateral, 

https://63x/1.40
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or anterior surface of the reconstructed volume. In order to determine if the two 

ages had significantly different volumetric lacunar densities, a Kruskal-Wallis H test 

was performed in Stata (StatCorp, College Station, TX), with significance defined as 

p < 0.05. 

Fig. 4.1. Reconstruction in Mimics of a z-stack collected to determine 
volumetric lacunar density. 

4.2.3 LCS 3D Reconstruction 

Current reconstruction softwares, such as Mimics, were created for clinical, larger-

scale applications, mainly to reconstruct and model computed tomography (CT) 

scans. As the laser power needed to be increased during confocal scanning (due 

to depth into the mineralized bone sample), the obtained confocal z-stacks were too 

noisy for the software to accurately segment, mask, and reconstruct. Using Mimics, 

the thresholding of the Alexa 488 stained LCS was unreliable and would have in-

volved manual editing on every slice for each z-stack. Thus, a custom Matlab code 

was developed in order to reconstruct the Zeiss confocal z-stacks for each sample. 
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Before running the code, the x-y and z resolutions were entered into the code for 

’xyRes’ and ’zRes’ variables, respectively. These are the only parameters that need 

to be modified. Additionally, the following parameters can be either set to ’0’ for 

false or ’1’ for true: ’display3D’, ’displayRaw’, and ’display3DCan’, ’runValidation’. 

’display3D’ allows for an output three-dimensional representation of the lacuna of 

interest and its connecting cananliculi. ’displayRaw’ displays the raw data slices and 

’display3DCan’ displays the final reconstruction of the z-stack containing just the 

main lacuna of interest and all the canaliculi. ’runValidation’ allows for validation of 

the segmentation processes (given a manually thresholded z-stack in addition to the 

raw dataset). 

By running the custom code, the two-dimensional image (TIF) files of a z-stack 

(without the scale bars) were imported into Matlab (when prompted), where they 

were first converted into greyscale. A simple image adjustment was next automatically 

performed on each slice to maximize its contrast. Another image adjustment was 

automatically executed to conform all slices to the same intensity scale. Next, a non-

localized means filter was utilized for noise filtering on each slice [76] [77] [78]. In 

order to segment the lacunae and canaliculi, a 2D Frangi filter, which is a Hessian-

based multi-scale filter, was used [79] [80] [81], followed by smoothing of the canalculi 

[82] [83] [84]. Finally, both the lacunae and canaliculi were masked. 

In order to determine the accuracy of this segmentation process, a validation 

dataset was created using Mimics. A previously prepared mouse femoral transverse 

cross-section, stained with 0.1 mg/mL Alexa 488, was scanned using a Zeiss LSM 

Confocal. A 51.58 µm x 51.58 µm x 14.31 µm z-stack was obtained (16-bit, 1024 

x 1024 x 30). The following settings were utilized: laser power: 5.0%, master gain: 

759-784, pixel dwell: 0.34 µs, averaging: line 8, and pinhole: 1.29 AU. Importing the 

30 slices into Mimics, a mask was created, and the images were thresholded. On each 

z-stack slice, the mask was edited by manually drawing in regions of the LCS that had 

not been captured by the thresholding. Figure 4.2 shows an example of this process on 

slice 10 of the z-stack where (a) is the original confocal image, (b) is the thresholded 
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slice in Mimics, and (c) is the manually reconstructed image in Mimics. Following 

contouring, the corrected dataset was reconstructed (for visualization purposes) in 

Mimics, as shown in Figure 4.3. 

(a) (b) 

(c) 

Fig. 4.2. (a) Slice 10 of the validation data z-stack. (b) Slice after being 
thresholded in Mimics software. (c) Manual reconstruction of the confocal 
image within Mimics. 
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Fig. 4.3. Reconstruction in Mimics of the validation data set from the 
confocal z-stack. 

In order to assess the code’s accuracy, the variable ’runValidation’ was set from 

’0’ (false) to ’1’ (true) in order for the validation dataset to be analyzed. The raw 2D 

slices of the validation dataset were read into Matlab, segmented, masked, and then 

compared to the 2D slices of the Mimics-corrected dataset. The accuracy of both the 

lacunae and canaliculi were determined using the following equation, 

RegionOverlap 
accuracy = (4.1)

RegionOverlap + ReconstructedData + RawData 

where RegionOverlap is the area of overlap of the raw dataset and the recon-

structed dataset, ReconstructedData is the area that the reconstructed dataset de-

marcates as part of the LCS whereas the raw dataset does not, and RawData is the 

area that the raw dataset delineates as the part of the LCS whereas the reconstructed 

dataset does not. 



67 

Once the accuracy was determined, the 2D canaliculi were skeletonized on each 

slice [85], and an approximated average canalicular diameter was determined using 

the total 2D area of the canaliculi divided by the total length of the canaliculi. This 

diameter calculation assumes a circular cross-section for each canaliculi. 

The data was next adjusted so that it was isometric. This was done by stacking 

each slice in multiples to equalize x-y and z resolutions. The 3D canaliculi and lacunae 

were then smoothed [82] [83] [84] before being segmented [86]. As it is the typical ide-

alized structure of a lacuna, an ellipsoid was then automatically fitted to the largest 

volumetric imaged lacuna (lacuna of interest) by minimizing the error between the 

actual lacuna and the fitted ellipsoid [43] [87] [88]. In order to identify connecting, 

primary canaliculi, a shell of the lacuna was created by expanding its lacunar surface 

by a distance of twice the smallest ellipsoid axis length. The canaliculi were then 

skeletonized in 3D [89] [90], and the endpoints were used to identify which canali-

culi directly connect to the lacuna (if an endpoint falls within the generated shell). 

Finally, the skeletonized canaliculi were dilated to the average canalicular diameter. 

The following outputs were generated for each z-stack, based upon the reconstructed 

z-stack: average canalicular diameter, average canalicular length, average canalicular 

porosity (volume fraction of the canaliculi within the volume of the z-stack), lacu-

nar volume, canalicular density (with respect to lacunar volume). In addition, the 

following parameters were output to describe the fitted ellipsoid: ellipsoid diameters 

(1 major and 2 minors), ellipsoid orientation (major axis with respect to the z-axis), 

ellipsoid sphericity and oblateness, and ellipsoid surface area and volume [43]. 

Using Stata, Kruskal-Wallis H Tests were performed between the 20-week-old and 

the 52-week-old age groups for the measurements based upon the reconstructed z-

stack (canalicular diameter, canalicular length, canalicular porosity, lacunar volume, 

and canalicular density). In order to account for the multiple comparisons, the Bon-

ferroni correction was utilized so that the family-wise error rate remained at 5%; 

thus, for these 5 comparisons, a p-value less than 0.01 indicates significance. For the 

measurements based upon the fitting of the ellipsoid [ellipsoid diameters (1 major 
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and 2 minors), ellipsoid orientation (major axis with respect to the z-axis), ellipsoid 

sphericity and oblateness, and ellipsoid surface area and volume], Kruskal-Wallis H 

Tests, using Bonferroni’s correction, were again performed between age groups. A 

p-value less than 0.00625 indicates significance due to a total of 8 comparisons made. 

4.3 Results 

4.3.1 Confocal Imaging 

Using CLSM, three z-stacks were obtained on the posterior surface of a proximal, 

femoral diaphyseal cross-section. A total of three mice were imaged for each age 

group: 20-week-old and 52-week-old. Figure 4.4 shows example z-stack slices from 

20-week-old mice ((a) and (c)) and from 52-week-old mice ((b) and (d)). 

Figure 4.5 illustrates slices from (a) a 20-week-old mouse z-stack and (b) a 52-

week-old mouse z-stack on the medial surface of a proximal, femoral metaphyseal 

cross-section. These z-stacks were utilized to obtain volumetric lacunar density for 

each mouse age. 
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(a) (b) 

(c) (d) 

Fig. 4.4. Confocal z-stack slices to characterize the LCS in: (a) and (c) 
20-week-old mice, and (b) and (d) 52-week-old mice; scale bar = 5 µm. 
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(a) (b) 

Fig. 4.5. Confocal z-stack slices to determine volumetric lacunar density: 
(a) 20-week-old mouse (b) 52-week-old mouse; scale bar = 10 µm. 

From reconstruction of the lacunae in Mimics, the average volumetric lacunar den-

sities for the 20-week-old and 52-week-old mice are shown in Figure 4.6. Performing 

a Kruskal-Wallis H test, a statistical difference in volumetric density was determined 

between the two ages of mice (p=0.0463). 
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Fig. 4.6. Volumetric lacunar density for 20-week-old and 52-week-old mice 
(n=3). Statistical significance was found between the two groups of mice 
(p=0.0463); mean ± stdev. 

4.3.2 LCS 3D Reconstruction 

Using the validation dataset, the overall accuracy of the code in segmenting out 

the LCS is 57.6%. Specifically, for segmentation of the lacunae, its accuracy is 81.7% 

while for the canaliculi, it is 47.6%. Slice 10 of this validation dataset, as shown in 

Figure 4.2, is again displayed in Figure 4.7, following implementation of the validation 

procedure in Matlab. The Matlab segmented lacunae and canaliculi are shown in (a) 

and (c), respectively. Images (b) and (d) show the overlap of the lacunae and canali-

culi, respectively, from the validation dataset (pink) and the Matlab segmentation 

(light blue). Image (e) shows the overlay of the lacunae and canaliculi (images (b) 

and (d)) Overlapping regions between the Mimics and Matlab datasets are shown in 

white. 
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(a) (b) 

(c) (d) 

(e) 

Fig. 4.7. Slice 10 of the validation dataset after processing in Matlab. (a) 
Processed lacunae in Matlab (b) Overlay of lacunae from the validation 
dataset (Mimics) and processed segmentation (Matlab). (c) Processed 
canaliculi in Matlab. (d) Overlay of canaliculi from the validation dataset 
(Mimics) and processed segmentation (Matlab). (e) Overlay of (b) and 
(d). Validation dataset (Mimics) = pink, processed dataset (Matlab) = 
light blue, overlapping region = white. 
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A total of 18 z-stacks were reconstructed using the custom Matlab code: 3 mice 

per age group (20-week-old and 52-week-old) and 3 lacunae per mouse imaged. Dur-

ing 3D reconstruction of individual lacuna, numerous lacunae were observed to not 

be ellipsoidal in shape but actually appeared to be separating or branching in the 

longitudinal direction, as shown in Figure 4.8(a). The yellow volume is the recon-

struction of the single lacuna that appears to be splitting in the z-direction, where 

the top of the sample is the most proximal. The green surrounding tendrils are the 

reconstructed canaliculi that directly connect to the lacunae. Figure 4.8(b) shows 

the ellipsoid (green) that attempted to be fit to the shape of the lacuna, where the 

blue data points indicate the portion of the segmented lacuna that lies outside the 

fitted ellipsoid. From this, it becomes apparent that an ellipsoid is not an appro-

priate approximation when this morphology is observed. On the other hand, Figure 

4.9(a) shows the reconstruction of a lacuna that is more accurately approximated as 

an ellipsoid (Figure 4.9(b)). 

The lacunar splitting was observed in 6 out of the 9 z-stacks for the 20-week-

old mice and 4 out of the 9 z-stacks for the 52-week-old mice. This splitting, or 

”butterfly-effect” could potentially be a distortion of the true lacuna during imaging 

due to the objective coming into contact with the coverslip. Thus, all of the split 

lacunae were removed from subsequent analyses. Figure 4.10 shows the reconstruction 

of the 3 ideal LCS z-stacks for the 20-week-old mice while Figure 4.11 shows the 

reconstruction of the 5 ideal LCS z-stacks for the 52-week-old mice. Additionally, the 

custom Matlab code produced full reconstructions of the lacuna of interest and all 

surrounding canaliculi, as shown in Figure 4.12 for the 20-week-old mice and Figure 

4.13 for the 52-week-old mice. 
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(a) (b) 

Fig. 4.8. Reconstruction of a branching ellipsoid. (a) Reconstruction of 
the confocal z-stack for a sample that contains a lacuna that splits in the 
z-direction. The yellow volume is the reconstructed lacuna volume and 
the green branches are the reconstructed canaliculi that directly connect 
to the lacuna. (b) Approximated ellipsoidal fit of the lacuna in (a). The 
green shape is the fitted ellipsoid and the blue data points indicate the 
portion of the segmented lacunae that lie outside the fitted shape. 

Because of the splitting lacunae, sample sizes were decreased, 3 z-stacks for the 

20-week-old mice and 5 z-stacks for the 52-week-old mice. If the z-stacks are treated 

as independent of the mouse, higher sample sizes can be utilized. Genetically, all 

of the mice are identical. In addition, each lacuna in the mice undergo their own 

individual modeling and remodeling processes to grow and adapt; thus, each lacuna 

(or z-stack sample) can be considered independent of the mouse. In order to quanti-

tatively support this - whether all of the samples in each age group could be treated 

independently - Kruskal-Wallis H Tests (for the raw measurements and for the fitted 

ellipsoid measurements) were performed for each age group to determine if any depen-
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(a) (b) 

Fig. 4.9. Reconstruction of an ideal ellipsoid. (a) Reconstruction of a 
confocal z-stack that captures a full lacuna. The yellow volume is the 
reconstructed lacuna volume and the green branches are the reconstructed 
canaliculi that directly connect to the lacuna. (b) Ellipsoidal fit of the 
lacuna in (a). The green shape is the fitted ellipsoid and the blue data 
points indicate the portion of the segmented lacunae that lie outside the 
fitted shape. 
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(a) (b) 

(c) 

Fig. 4.10. Reconstructions of the 3 ideal lacunae (yellow) and connecting 
canaliculi (green) for the 20-week-old mice. 
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dence exists between the mouse and its measurements, using Bonferroni’s correction 

to account for multiple comparisons. For both age groups, each raw measurement 

did not depend upon the mouse from which the sample came (p>0.01). Similarly, 

each ellipsoid fitted measurement also did not depend upon the mouse (p>0.00625). 

Thus, the samples in each age group were considered to be independent of mouse 

when performing the following analyses. 

In regard to characterization of the raw reconstructed z-stacks, the average canalic-

ular (a) diameter, (b) length, and (c) porosity were determined for each age group 

(n=3 for 20-week-old, n=5 for 52-week-old), as shown in Figure 4.14. Using Bonferroni-

corrected Kruskal-Wallis H Tests, no statistical differences were detected between age 

group and any of the measures. Figure 4.15 shows the volumes for both the lacunae 

and for the fitted ellipsoids and also the connecting canalicular density (with respect 

to lacunar volume). No statistical differences were found for either the lacunar vol-

ume or the canalicular density (p> 0.01) or the ellipsoid volume (p>0.00625) with 

respect to age group (n=3 for 20-week-old, n=5 for 52-week-old). 

The surface area of the ellipsoid and its three diameters of are shown in Figure 

4.16 for each age group, where ’LacDia1’ is the major axis diameter and ’LacDia2’ 

and ’LacDia3’ are the two minor axis diameters. Additionally, Figure 4.17 shows 

the lacunar ellipsoid (a) sphericity, (b) oblateness, and (c) orientation of the major 

diameter with respect to the z-axis. A sphericity measure of 1 indicates that the 

ellipsoid is perfectly spherical while an oblateness measures of -1 and +1 indicates 

that the ellipsoid is either perfectly prolate (rod-shaped) or perfectly oblate (plate-

shaped), respectively [43]. Using Bonferroni-corrected Kruskal-Wallis H Tests Tests, 

no statistical differences were detected between age group and ellipsoid parameters 

(p > 0.00625). 
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4.4 Discussion 

In order to remain consistent for each z-stack, the same CLSM settings were uti-

lized for each z-stack for LCS characterization and also for volumetric lacunar density 

imaging, respectively. While optimal when comparing across the samples, the quality 

of staining, thus, greatly influenced the CLSM and reconstruction results. From the 

results shown in Figure 4.4, the staining and imaging quality appears to be subopti-

mal for the 52-week-old samples as compared to the 20-week-old mice. Presumably, 

this difference in staining and imaging resulted from the sample preparation. While 

all samples were ground down to an approximate thickness of 150µm, there was no 

way to verify the overall levelness and flatness of the cross-sections. The levelness 

would influence the orientation at which the LCS is being viewed, impacting whether 

it is a true transverse cross-section. Sectioning of the samples would need to better 

take this into account. In addition, flatness of the sample greatly affects the surface 

staining of the sample. An uneven surface, or scratches produced by the grinding 

the sample, led to areas of fluorescent streaking, impeding the quality of the z-stacks. 

Utilization of a finer grit, such as 1200 or 1500 grit paper, would aid in a smoother 

surface and eliminate the ”butterfly effect” that was observed. 

While the quality of the z-stacks for LCS characterization varied due to staining, 

the intensity of staining for the z-stacks obtained for volumetric lacunar density anal-

ysis were more uniform. As the lacunae are several orders of magnitude larger than 

the canaliculi, the penetration of the Alexa 488 was much less of an issue or concern. 

Using Mimics, the average volumetric lacunar densities for the 20-week-old and 52-

week-old mice were determined to be approximately 72,600 lacunae/mm3 and 85,400 

lacunae/mm3 , respectively. These averages fall within the typical range reported in 

the literature (40,0000 lacunae/mm3 - 90,000 lacunae/mm3) [31] [37] [41] [91] and 

were found to be statistically significant using a Kruskal-Wallis H test. However, 

previous studies have shown that areal lacunar density decreases as a function of age 

in humans [92] [93]. Additionally, a decrease in volumetric lacunar density in mice 
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with respect to age has been reported, when comparing 20-week-old and 88-week-old 

mice [94], as well as a decrease in areal lacunar density between 15-week-old and 32-

week-old mice [95]. While these other studies include either young mice (15-week-old) 

or old mice (88-week-old), the comparison made here was with young adult (20-week-

old mice) and adult (52-week-old) mice; moreover, the limited sample size of 3 for 

each age group needs to be increased in order to determine if this significant change 

is robust and anatomically correct. 

With regards to the LCS 3D reconstruction, the initial validation on the automatic 

2D segmentation resulted in a 81.7%, 47.6%, and 57.6% accuracies in segmenting out 

lacunae, canaliculi, and the LCS as a whole, respectively. While the canaliculi ac-

curacy is lower than desired, the code currently is able to quickly segment the LCS 

in approximately 1 - 2 hours. More rigorous methods could be employed to reach 

a higher accuracy, but the computation time would dramatically increase as well as 

the need for more advanced computing resources to manage the data. Additionally, 

only one validation dataset was created and tested due to the time demands of man-

ual reconstruction. In order to more accurately validate the code, more than one 

validation dataset needs to be created, by different users to avoid bias. Moreover, 

these additional datasets would include higher magnifications to more closely model 

those which were processed to characterize the LCS. Thus, given the single valida-

tion dataset and time and computing constraints, the custom reconstruction code’s 

accuracies were deemed to be acceptable. 

While the lacunae and canaliculi have been manually segmented and reconstructed 

[5] [38] [35] [37] [44], this is the first time, to the author’s knowledge, that a custom, 

automated method has been utilized to reconstruct both the lacunae and the canali-

culi. From these reconstructions, the dense network of the LCS can be visualized 

and utilized for predictive modeling, such as finite element analyses. In addition to 

the three-dimensional reconstruction, key characteristics of the structure of LCS were 

obtained. To illustrate the capabilities of the reconstruction code, 20-week-old and 

52-week-old femora metaphyseal sections were obtained from female mice. Table 4.1 
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displays the measured values that were obtained during this study for the 20-week-old 

and 52-week-old mice as well as the range for each variable that has been previously 

reported. While the diameter of canaliculi have been reported to range from 0.095 -

0.55 µm [35] [37], the average canalicular diameter for the age groups in this study 

ranged from 0.78 - 0.79 µm. This apparent overestimation of the canalicular diam-

eter could explain the 47.6% accuracy of the code in segmenting out the canaliculi. 

Using the previously mentioned techniques to improve sample preparation and stain-

ing would allow for an enhanced signal-to-noise ratio when imaging. The canalicular 

length and porosity and the lacunar volume for both age groups fall within the ranges 

found. For the canalicular density, the 52-week-old mice appear to have a lower num-

ber of connecting canaliculi than previously published values. This may tie back into 

the fact that these older sections did not stain as well as the younger bone. 

Finally, an ellipsoid was fit to the reconstructed lacunae to approximate charac-

teristics regarding its shape. Table 4.2 summarizes the data obtained here for the 

fitted ellipsoid as well as the ranges for these values that have been reported in the 

literature. The ellipsoids produced in this study were more prolate and less spherical, 

for both age groups, than those previously reported [43] [96] and more aligned with 

the z-axis [96]. The diameters of the major and minor axes of the ellipsoid are within 

or fall just outside the ranges for typical ellipsoid fits [31] [32] [33] [42] [96]. While the 

volume of the ellipsoid agrees with previous findings [43], it appears to overestimate 

the actual volume of the lacunae. For both age groups, the average ellipsoid volume 

overestimated the actual average volume of the lacunae by approximately 150 µm. 

Thus, while an ellipsoid may be a decent approximation of the lacunar morphology, 

these results indicate that it may not always be the most accurate. 
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5. CONCLUSIONS & FUTURE WORK 

Mathematical and computational modeling are powerful tools to illustrate the flow 

profiles within the LCS and to also extrapolate conclusions regarding the mechanosen-

sory capabilities of skeletal tissue. In order to implement such models, assumptions 

concerning the properties and characteristics are typically made to simplify the anal-

ysis. In particular, within the interstitial space of the LCS, a glycoclyx has been 

assumed to exist in various models. However, from this work, the flow profile within 

this interstitial space is extremely sensitive to the presence of such a glycocalyx. Its 

physical structure greatly impacts the permeability of fluid within this space, which 

can alter the flow. In fact, from the sensitivity analyses presented here, the flow 

profile can mimic Brinkman, Darcy, or Poiseuille flow depending on the structure 

of the glycocalyx. Elucidating the dominating flow profile will provide insight into 

the main mechanotransductive mechanisms that may be playing a role in bone mod-

eling and remodeling. Thus, the nanostructure of the glycocalyx needs to be fully 

characterized. Predictive models need to modify the assumptions typically made re-

garding the presence and structure of the glycocalyx and enable it to be a variable. 

Moreover, this mixture theory model should be expanded to additional cases, such as 

compression-driven and bending-driven flow, which are more physiologically relevant 

scenarios when osteocytes are stimulated. 

From this work, an automated segmentation and reconstruction code was devel-

oped to reconstruct the LCS of cortical bone. This enables quicker and less biased 

segmentation of the lacunae and canaliculi for more accurate characterization of the 

LCS, which can then be utilized with computational modeling for fluid analyses. 

While the code presents promising results, additional validation datasets need to be 

produced and run in order to improve its segmentation accuracy. Furthermore, im-

proved sample preparation techniques and a smaller z-step, perhaps even imaging on 
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longitudinal sections, will produce more rigorous results due to noise reduction from 

staining and less uncertainty between slices. Enhanced staining techniques may also 

allow for an increased probability in obtaining full lacunae z-stacks. These refinements 

would further more accurate modeling in determining the main mechanotransductive 

signal(s) involved in bone modeling and remodeling. 
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A. MATHEMATICAL MODEL SOURCE CODE 

A.1 γ Function Sensitivity Analysis 

1 %Var iab le input : Low , high inputs f o r each n number v a r i a b l e s 

. Input such 

2 %that f i r s t and second inputs are low and then high value o f 

1 s t va r i ab l e ( r e s p e c t i v e l y ) , 

3 %th i rd and f our th inputs are the low and high o f the 2nd 

var i ab l e , e t c . 

4 

5 vararg in = [ 75 e−9 422e−9 0 .5 e−9 4 .9 e−9 6e−9 10e−9 0 .5 e−9 4 .9 e 

−9 6e−9 10e −9] ; 

6 va r i a b l e s = l ength ( vara rg in ) /2 ; %number o f va r i a b l e s i s equal 

to the number o f inputs /2 

7 n = 2* va r i a b l e s + 2 ; %number o f t r i a l s or s imu la t i on s that 

need to be performed 

8 

9 %Creates a matrix to be used to ex t r a c t the low va r i a b l e s 

10 a l l l ow = z e r o s (1 , va r i a b l e s ) ; %cr e a t e s row vec to r o f j u s t 

z e r o s 

11 l ow i d e n t i t y = eye ( ( n/2) −1, va r i a b l e s ) ; %cr e a t e s i d e n t i t y 

matrix 

12 low matrix = ve r t c a t ( a l l l ow , l ow i d e n t i t y ) ; %combines zero 

and i d e n t i t y matr i ce s 

13 

14 %Creates a matrix to be used to ex t r a c t the high va r i a b l e s 
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15 a l l h i g h = z e r o s (1 , va r i a b l e s ) ; %cr e a t e s row vec to r o f j u s t 

z e r o s 

16 h i g h i d e n t i t y = −1*eye ( ( n/2) −1, va r i a b l e s ) ; %cr e a t e s i d e n t i t y 

matrix 

17 high matr ix = ve r t c a t ( h i gh i d en t i t y , a l l h i g h ) ; %combines 

zero and i d e n t i t y matr i ce s 

18 

19 %Creates the matrix c o n s i s t i n g o f the high and low input 

values , in the 

20 %nece s sa ry format f o r Cotter ’ s Method 

21 f o r i = 1 : 1 : n/2 

22 f o r m = 1 : 1 : v a r i a b l e s 

23 va lues ( i , m) = vararg in (m + (m−1) + low matr ix ( i , m) ) 

; 

24 va lues ( i + n/2 , m) = vararg in (2*m + high matr ix ( i , m) 

) ; 

25 end 

26 end 

27 

28 %Looping through a l l o f the t r i a l s 

29 f o r i = 1 : 1 : n 

30 m = 1 ; 

31 %Depends upon order the va r i a b l e s were input i n t o the 

f unc t i on 

32 b( i , 1 ) = va lue s ( i , 1 ) ; %rad ius o f the o s t eo cy t e c e l l 

proce s s 

33 Dv( i , 1 ) = va lue s ( i , 2 ) ; %diameter o f v e r t i c a l f i b e r s 

34 Lv( i , 1 ) = va lue s ( i , 3 ) ; %length o f v e r t i c a l f i b e r s 

35 Dh( i , 1 ) = va lue s ( i , 4 ) ; %diameter o f ho r i z on t a l f i b e r s 
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36 r ( i , 1 ) = va lue s ( i , 5 ) ; %length o f ho r i z on t a l f i b e r s 

37 

38 %Equations from Sander et a l . 2003 

39 %Determine volume f r a c t i o n s based on g lycoca lyx 

nanost ructure ( r e c t angu l a r 

40 %unit c e l l ) 

41 ph i s ( i , 1 ) = pi /4 * ( (Dv( i , 1 ) ˆ2*Lv( i , 1 ) + (2*Dh( i , 1 ) ˆ2*( r ( i 

, 1 ) − Dv( i , 1 ) ) ) ) /( r ( i , 1 ) ˆ2*Lv( i , 1 ) ) ) ; %volume f r a c t i o n 

o f the s o l i d g lycoca lyx 

42 ph i f ( i , 1 ) = 1 − ph i s ( i , 1 ) ; %volume o f the i n t e r s t i t i a l 

f l u i d f low 

43 

44 %Calcu la te v e r t i c a l pe rmeab i l i t y o f g lycoca lyx given 

de f ined nanost ructure 

45 Aw( i , 1 ) = pi *(Dv( i , 1 ) *(Lv( i , 1 )−Dh( i , 1 ) ) + 2*Dh( i , 1 ) *( r ( i 

, 1 )−Dv( i , 1 ) ) ) ; %Wetted s u r f a c e o f the uni t c e l l 

46 Cl ( i , 1 ) = (4* pi *(Lv( i , 1 )−Dh( i , 1 ) ) ) /( l og ( r ( i , 1 ) ˆ2/( pi *(Dv( 

i , 1 ) /2) ) ) − 1 .476 + (2* pi *(Dv( i , 1 ) /2) ˆ2/ r ( i , 1 ) ˆ2) − ( 

pi ˆ2*(Dv( i , 1 ) /2) ˆ4/(2* r ( i , 1 ) ˆ4) ) − 0 . 0150 * ( ( pi *(Dv( i 

, 1 ) /2) ˆ2/ r ( i , 1 ) ˆ2) ˆ4/(1 + ( 1 . 5 20 * ( pi *(Dv( i , 1 ) /2) ˆ2/ r ( i 

, 1 ) ˆ2) ˆ4) ) ) ) ; 

47 Ct( i , 1 ) = (4* pi *( r ( i , 1 )−Dv( i , 1 ) ) ) /( l og ( r ( i , 1 ) /(Dh( i , 1 ) /2) 

) −1.311 + ( p i *(Dh( i , 1 ) /2) ˆ2/ r ( i , 1 ) ˆ2) − ( pi ˆ2*(Dh( i 

, 1 ) /2) ˆ4/(2* r ( i , 1 ) ˆ4) ) − 8 . 756 * ( (Dh( i , 1 ) /2) / r ( i , 1 ) ) ˆ4 

+ 63 . 212 * ( (Dh( i , 1 ) /2) / r ( i , 1 ) ) ˆ6) ; 

48 Cd( i , 1 ) = (128* r ( i , 1 ) ˆ2*Aw( i , 1 ) *Lv( i , 1 ) ) /( pi *( r ( i , 1 )−Dv( i 

, 1 ) ) ˆ2) ; 



104 

49 K( i , 1 ) = r ( i , 1 ) ˆ2*Lv( i , 1 ) /(Cl ( i , 1 ) + 2*Ct( i , 1 ) + Cd( i , 1 ) ) 

; %permeab i l i t y o f the g lycoca lyx in the v e r t i c a l 

d i r e c t i o n 

50 

51 gamma( i , 1 ) = (b( i , 1 ) ) /( s q r t ( p h i f ( i , 1 ) *K( i , 1 ) ) ) ; 

52 end 

53 

54 sum measures = 0 ; 

55 f o r j = 1 : 1 : va r i a b l e s 

56 cont ra s t odd (1 , j ) = 1/4* ( (gamma(2* va r i a b l e s +2 ,1) − gamma( 

j+va r i a b l e s +1 ,1) ) + (gamma( j +1 ,1)− gamma(1 , 1 ) ) ) ; 

57 con t ra s t even (1 , j ) = 1/4* ( (gamma(2* va r i a b l e s +2 ,1) − gamma 

( j+va r i a b l e s +1 ,1) ) − (gamma( j +1 ,1)− gamma(1 , 1 ) ) ) ; 

58 measure (1 , j ) = abs ( cont ra s t odd (1 , j ) ) + abs ( con t ra s t even 

(1 , j ) ) ; 

59 sum measures = sum measures + measure (1 , j ) ; 

60 end 

61 

62 f o r j = 1 : 1 : va r i a b l e s 

63 sens (1 , j ) = measure (1 , j ) / sum measures ; 

64 end 

65 

66 %Sen s i t i v i t y ana l y s i s f o r the gamma f unc t i on 

67 names = { ’ b ’ , ’Dv ’ , ’Lv ’ , ’Dh ’ , ’Lh ’ } ; 

68 bar ( sens ( 1 , : ) , 0 . 4 ) 

69 x l ab e l ( ’ Parameter ’ ) 

70 y l ab e l ( ’ S e n s i t i v i t y ’ ) 

71 t i t l e ( ’ \gamma Term S e n s i t i v i t y Analys i s ’ ) 

72 hold on 
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73 p lo t ( xlim , [ . 2 0 , . 2 0 ] , ’ : ’ ) 

74 s e t ( gca , ’ x t i c k l a b e l ’ , names ) 

A.2 φs Sensitivity Analysis 

1 %Var iab le input : Low , high inputs f o r each n number v a r i a b l e s 

. Input such 

2 %that f i r s t and second inputs are low and then high value o f 

1 s t va r i ab l e ( r e s p e c t i v e l y ) , 

3 %th i rd and f our th inputs are the low and high o f the 2nd 

var i ab l e , e t c . 

4 

5 %Var iab l e s f o r Cotter ’ s Method S e n s i t i v i t y ana l y s i s 

6 vararg in = [ 0 . 5 e−9 5 .9 e−9 6e−9 10e−9 4 .75 e−9 5 .9 e−9 6e−9 7 .25 

e −9] ; 

7 va r i a b l e s = l ength ( vara rg in ) /2 ; %number o f va r i a b l e s i s equal 

to the number o f inputs /2 

8 n = 2* va r i a b l e s + 2 ; %number o f t r i a l s or s imu la t i on s that 

need to be performed 

9 

10 %Creates a matrix to be used to ex t r a c t the low va r i a b l e s 

11 a l l l ow = z e r o s (1 , va r i a b l e s ) ; %cr e a t e s row vec to r o f j u s t 

z e r o s 

12 l ow i d e n t i t y = eye ( ( n/2) −1, va r i a b l e s ) ; %cr e a t e s i d e n t i t y 

matrix 

13 low matrix = ve r t c a t ( a l l l ow , l ow i d e n t i t y ) ; %combines zero 

and i d e n t i t y matr i ce s 

14 

15 %Creates a matrix to be used to ex t r a c t the high va r i a b l e s 
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16 a l l h i g h = z e r o s (1 , va r i a b l e s ) ; %cr e a t e s row vec to r o f j u s t 

z e r o s 

17 h i g h i d e n t i t y = −1*eye ( ( n/2) −1, va r i a b l e s ) ; %cr e a t e s i d e n t i t y 

matrix 

18 high matr ix = ve r t c a t ( h i gh i d en t i t y , a l l h i g h ) ; %combines 

zero and i d e n t i t y matr i ce s 

19 

20 %Creates the matrix c o n s i s t i n g o f the high and low input 

values , in the 

21 %nece s sa ry format f o r Cotter ’ s Method 

22 f o r i = 1 : 1 : n/2 

23 f o r m = 1 : 1 : v a r i a b l e s 

24 va lues ( i , m) = vararg in (m + (m−1) + low matr ix ( i , m) ) 

; 

25 va lues ( i + n/2 , m) = vararg in (2*m + high matr ix ( i , m) 

) ; 

26 end 

27 end 

28 

29 %Def ine cons tant s with in the system ( f l u i d = PBS) 

30 mu = 0 . 0 007 ; %v i s c o s i t y o f the f l u i d 

31 r h o f t r u e = 1000 ; %true dens i ty o f the f l u i d 

32 

33 %Looping through a l l o f the t r i a l s 

34 f o r i = 1 : 1 : n 

35 m = 1 ; 

36 %Depends upon order the va r i a b l e s were input i n t o the 

f unc t i on 

37 Dv( i , 1 ) = va lue s ( i , 1 ) ; %diameter o f v e r t i c a l f i b e r s 
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38 Lv( i , 1 ) = va lue s ( i , 2 ) ; %length o f v e r t i c a l f i b e r s 

39 Dh( i , 1 ) = va lue s ( i , 3 ) ; %diameter o f ho r i z on t a l f i b e r s 

40 Lh( i , 1 ) = va lue s ( i , 4 ) ; %length o f ho r i z on t a l f i b e r s 

41 

42 %Equations from Sander et a l . 2003 

43 %Determine volume f r a c t i o n s based on g lycoca lyx 

nanost ructure ( r e c t angu l a r 

44 %unit c e l l ) 

45 ph i s ( i , 1 ) = pi /4 * ( (Dv( i , 1 ) ˆ2*Lv( i , 1 ) + (2*Dh( i , 1 ) ˆ2*(Lh( 

i , 1 ) − Dv( i , 1 ) ) ) ) /(Lh( i , 1 ) ˆ2*Lv( i , 1 ) ) ) ; %volume 

f r a c t i o n o f the s o l i d g lycoca lyx 

46 end 

47 

48 sum measures = 0 ; 

49 f o r j = 1 : 1 : va r i a b l e s 

50 cont ra s t odd (1 , j ) = 1/4* ( ( ph i s (2* va r i a b l e s +2 ,1) − ph i s ( 

j+va r i a b l e s +1 ,1) ) + ( ph i s ( j +1 ,1)− ph i s ( 1 , 1 ) ) ) ; 

51 con t ra s t even (1 , j ) = 1/4* ( ( ph i s (2* va r i a b l e s +2 ,1) − ph i s 

( j+va r i a b l e s +1 ,1) ) − ( ph i s ( j +1 ,1)− ph i s ( 1 , 1 ) ) ) ; 

52 measure (1 , j ) = abs ( cont ra s t odd (1 , j ) ) + abs ( con t ra s t even 

(1 , j ) ) ; 

53 sum measures = sum measures + measure (1 , j ) ; 

54 end 

55 

56 f o r j = 1 : 1 : va r i a b l e s 

57 sens (1 , j ) = measure (1 , j ) / sum measures ; 

58 end 

59 

60 %Plot s s e n s i t i v i t y ana l y s i s o f the s o l i d volume f r a c t i o n 
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61 f i g u r e (1 ) 

62 bar ( sens ( 1 , : ) , 0 . 4 ) 

63 x l ab e l ( ’ Parameter ’ ) 

64 y l ab e l ( ’ S e n s i t i v i t y ’ ) 

65 t i t l e ( ’ \ phi ˆ s S e n s i t i v i t y Analys i s ( Glycocaylx ) ’ ) 

66 hold on 

67 p lo t ( xlim , [ . 2 5 , . 2 5 ] , ’ : ’ ) 

68 names = { ’Dv ’ , ’Lv ’ , ’Dh ’ , ’Lh ’ , ’dP/dz ’ , ’ v {o} ’ } ; 

69 s e t ( gca , ’ x t i c k l a b e l ’ , names ) 

A.3 Brinkman Velocity and Shear Stress Sensitivity Analysis 

1 %Var iab le input : Low , high inputs f o r each n number v a r i a b l e s 

. Input such 

2 %that f i r s t and second inputs are low and then high value o f 

1 s t va r i ab l e ( r e s p e c t i v e l y ) , 

3 %th i rd and f our th inputs are the low and high o f the 2nd 

var i ab l e , e t c . 

4 

5 vararg in = [ 0 . 2 4 5 0 .819 75e−9 422e−9 0 .5 e−9 6e−9 6e−9 10e−9 

0 .5 e−9 4 .75 e−9 7 .25 e−9 10e−9 −11.87 e3 /6e−3 −15.87 e3 /6e−3 

21 .6 e−6 84e −6] ; 

6 va r i a b l e s = l ength ( vara rg in ) /2 ; %number o f va r i a b l e s i s equal 

to the number o f inputs /2 

7 n = 2* va r i a b l e s + 2 ; %number o f t r i a l s or s imu la t i on s that 

need to be performed 

8 

9 %Creates a matrix to be used to ex t r a c t the low va r i a b l e s 

10 a l l l ow = z e r o s (1 , va r i a b l e s ) ; %cr e a t e s row vec to r o f j u s t 

z e r o s 
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11 l ow i d e n t i t y = eye ( ( n/2) −1, va r i a b l e s ) ; %cr e a t e s i d e n t i t y 

matrix 

12 low matrix = ve r t c a t ( a l l l ow , l ow i d e n t i t y ) ; %combines zero 

and i d e n t i t y matr i ce s 

13 

14 %Creates a matrix to be used to ex t r a c t the high va r i a b l e s 

15 a l l h i g h = z e r o s (1 , va r i a b l e s ) ; %cr e a t e s row vec to r o f j u s t 

z e r o s 

16 h i g h i d e n t i t y = −1*eye ( ( n/2) −1, va r i a b l e s ) ; %cr e a t e s i d e n t i t y 

matrix 

17 high matr ix = ve r t c a t ( h i gh i d en t i t y , a l l h i g h ) ; %combines 

zero and i d e n t i t y matr i ce s 

18 

19 %Creates the matrix c o n s i s t i n g o f the high and low input 

values , in the 

20 %nece s sa ry format f o r Cotter ’ s Method 

21 f o r i = 1 : 1 : n/2 

22 f o r m = 1 : 1 : v a r i a b l e s 

23 va lues ( i , m) = vararg in (m + (m−1) + low matr ix ( i , m) ) 

; 

24 va lues ( i + n/2 , m) = vararg in (2*m + high matr ix ( i , m) 

) ; 

25 end 

26 end 

27 

28 %Def ine cons tant s with in the system ( f l u i d = PBS) 

29 mu = 0 . 0 007 ; %v i s c o s i t y o f the f l u i d 

30 r h o f t r u e = 1000 ; %true dens i ty o f the f l u i d 

31 
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32 %Looping through a l l o f the t r i a l s 

33 f o r i = 1 : 1 : n 

34 m = 1 ; 

35 %Depends upon order the va r i a b l e s were input i n t o the 

f unc t i on 

36 ab ( i , 1 ) = va lue s ( i , 1 ) ; %rad iu s o f the o s t eo cy t e c e l l 

proce s s 

37 b( i , 1 ) = va lue s ( i , 2 ) ; %rad ius o f the c ana l i c u l u s 

38 Dv( i , 1 ) = va lue s ( i , 3 ) ; %diameter o f v e r t i c a l f i b e r s 

39 Lv( i , 1 ) = va lue s ( i , 4 ) ; %length o f v e r t i c a l f i b e r s 

40 Dh( i , 1 ) = va lue s ( i , 5 ) ; %diameter o f ho r i z on t a l f i b e r s 

41 Lh( i , 1 ) = va lue s ( i , 6 ) ; %length o f ho r i z on t a l f i b e r s 

42 dp dz ( i , 1 ) = va lue s ( i , 7 ) ; %pre s su r e grad i en t down the 

l ength o f the c an a l i c u l u s 

43 v o ( i , 1 ) = va lue s ( i , 8 ) ; %i n i t i a l v e l o c i t y o f the f l u i d 

44 

45 %Equations from Sander et a l . 2003 

46 %Determine volume f r a c t i o n s based on g lycoca lyx 

nanost ructure ( r e c t angu l a r 

47 %unit c e l l ) 

48 ph i s ( i , 1 ) = pi /4 * ( (Dv( i , 1 ) ˆ2*Lv( i , 1 ) + (2*Dh( i , 1 ) ˆ2*(Lh( 

i , 1 ) − Dv( i , 1 ) ) ) ) /(Lh( i , 1 ) ˆ2*Lv( i , 1 ) ) ) ; %volume 

f r a c t i o n o f the s o l i d g lycoca lyx 

49 ph i f ( i , 1 ) = 1 − ph i s ( i , 1 ) ; %volume o f the i n t e r s t i t i a l 

f l u i d f low 

50 

51 %Calcu la te v e r t i c a l pe rmeab i l i t y o f g lycoca lyx given 

de f ined nanost ructure 
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52 Aw( i , 1 ) = pi *(Dv( i , 1 ) *(Lv( i , 1 )−Dh( i , 1 ) ) + 2*Dh( i , 1 ) *(Lh( i 

, 1 )−Dv( i , 1 ) ) ) ; %Wetted s u r f a c e o f the uni t c e l l 

53 Cl ( i , 1 ) = (4* pi *(Lv( i , 1 )−Dh( i , 1 ) ) ) /( l og (Lh( i , 1 ) ˆ2/( pi *(Dv 

( i , 1 ) /2) ) ) − 1 .476 + (2* pi *(Dv( i , 1 ) /2) ˆ2/Lh( i , 1 ) ˆ2) − 

( pi ˆ2*(Dv( i , 1 ) /2) ˆ4/(2*Lh( i , 1 ) ˆ4) ) − 0 . 0150 * ( ( pi *(Dv( i 

, 1 ) /2) ˆ2/Lh( i , 1 ) ˆ2) ˆ4/(1 + ( 1 . 520 * ( pi *(Dv( i , 1 ) /2) ˆ2/Lh 

( i , 1 ) ˆ2) ˆ4) ) ) ) ; 

54 Ct( i , 1 ) = (4* pi *(Lh( i , 1 )−Dv( i , 1 ) ) ) /( l og (Lh( i , 1 ) /(Dh( i , 1 ) 

/2) ) −1.311 + ( p i *(Dh( i , 1 ) /2) ˆ2/Lh( i , 1 ) ˆ2) − ( pi ˆ2*(Dh 

( i , 1 ) /2) ˆ4/(2*Lh( i , 1 ) ˆ4) ) − 8 . 756 * ( (Dh( i , 1 ) /2) /Lh( i , 1 ) 

) ˆ4 + 63 . 212 * ( (Dh( i , 1 ) /2) /Lh( i , 1 ) ) ˆ6) ; 

55 Cd( i , 1 ) = (128*Lh( i , 1 ) ˆ2*Aw( i , 1 ) *Lv( i , 1 ) ) /( pi *(Lh( i , 1 )−Dv 

( i , 1 ) ) ˆ2) ; 

56 K( i , 1 ) = Lh( i , 1 ) ˆ2*Lv( i , 1 ) /(Cl ( i , 1 ) + 2*Ct( i , 1 ) + Cd( i , 1 ) 

) ; %permeab i l i t y o f the g lycoca lyx in the v e r t i c a l 

d i r e c t i o n 

57 

58 N( i , 1 ) = v o ( i , 1 ) * r h o f t r u e * s q r t (K( i , 1 ) ) /mu; %Nauman 

number 

59 gamma( i , 1 ) = (b( i , 1 ) ) /( s q r t ( p h i f ( i , 1 ) *K( i , 1 ) ) ) ; 

60 

61 %Equation f o r A and B, modi f i ed Bes s e l f unc t i on cons tant s 

in the equat ion f o r the 

62 %ve l o c i t y p r o f i l e with in a c ana l i c u l u s 

63 A( i , 1 ) = ( b e s s e l k (0 , gamma( i , 1 ) ) − be s s e l k (0 , gamma( i , 1 ) 

*( ab ( i , 1 ) ) ) ) /( b e s s e l i (0 , gamma( i , 1 ) *( ab ( i , 1 ) ) ) * be s s e l k 

(0 , gamma( i , 1 ) ) − b e s s e l i (0 , gamma( i , 1 ) ) * be s s e l k (0 , 

gamma( i , 1 ) *( ab ( i , 1 ) ) ) ) ; 
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64 B( i , 1 ) = ( b e s s e l i (0 , gamma( i , 1 ) *( ab ( i , 1 ) ) ) − b e s s e l i (0 , 

gamma( i , 1 ) ) ) /( b e s s e l i (0 , gamma( i , 1 ) *( ab ( i , 1 ) ) ) * be s s e l k 

(0 , gamma( i , 1 ) ) − b e s s e l i (0 , gamma( i , 1 ) ) * be s s e l k (0 , 

gamma( i , 1 ) *( ab ( i , 1 ) ) ) ) ; 

65 

66 nondim K( i , 1 ) = K( i , 1 ) /K( i , 1 ) ; 

67 nondim dp dz ( i , 1 ) = ( dp dz ( i , 1 ) * s q r t (K( i , 1 ) ) ) / ( ( v o ( i , 1 ) ) 

ˆ2* r h o f t r u e ) ; 

68 nondim b ( i , 1 ) = b( i , 1 ) / s q r t (K( i , 1 ) ) ; 

69 

70 %Determines f l u i d v e l o c i t y and shear s t r e s s as a f unc t i on 

o f symbol ic 

71 %ra d i us 

72 syms rad iu s ; 

73 nondim sym ve loc i ty f ( i , 1 ) = N( i , 1 ) * ph i f ( i , 1 ) *nondim K( i 

, 1 ) * nondim dp dz ( i , 1 ) *(A( i , 1 ) * b e s s e l i (0 , gamma( i , 1 ) * 

rad iu s /nondim b ( i , 1 ) ) + B( i , 1 ) * be s s e l k (0 , gamma( i , 1 ) * 

rad iu s /nondim b ( i , 1 ) ) − 1) ; %cr e a t e s f l u i d v e l o c i t y 

equat ion as a f unc t i on o f rad iu s 

74 nondim sym shear ( i , 1 ) = (1/ r h o f t r u e ) *(1/ v o ( i , 1 ) ) *(1/ 

s q r t (K( i , 1 ) ) ) *mu* d i f f ( nondim sym ve loc i ty f ( i , 1 ) , 

rad iu s ) ; %d i f f e r e n t i a t e s ( with r e sp e c t to rad iu s ) 

f l u i d v e l o c i t y equat ion to c r e a t e shear s t r e s s 

equat ion as a f unc t i on o f rad iu s 

75 radiusV = ( ( b( i , 1 ) + ab ( i , 1 ) *b( i , 1 ) ) /2) / s q r t (K( i , 1 ) ) ; 

76 rad iusS = b( i , 1 ) *ab ( i , 1 ) / s q r t (K( i , 1 ) ) ; % 

nondimens iona l i zed 

77 nd v e l o c i t y f ( i , 1 ) = subs ( nondim sym ve loc i ty f ( i , 1 ) , 

radiusV ) ; 
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78 nd s hear ( i , 1 ) = subs ( nondim sym shear ( i , 1 ) , r a d i u s S ) ; % 

s u b s t i t u t e s in c e l l p r o c e s s r a d i u s to n u m e r i c a l l y 

determine v a lu e o f s h e ar s t r e s s 

79 s h e ar ( i , 1 ) = nd s he ar ( i , 1 ) * r h o f t r u e * v o ( i , 1 ) ˆ 2 ; 

80 end 

81 

82 n d d v e l o c i t y f ( : , 1 ) = double ( n d v e l o c i t y f ( : , 1 ) ) ; 

83 ndd shear ( : , 1 ) = double ( n d she a r ( : , 1 ) ) ; 

84 a c t u a l s h e a r ( : , 1 ) = double ( sh e a r ( : , 1 ) ) ; 

85 

86 sum measures v = 0 ; 

87 f o r j = 1 : 1 : v a r i a b l e s 

88 c o n t r a s t o d d v ( 1 , j ) = 1 / 4* ( ( n d d v e l o c i t y f (2* v a r i a b l e s 

+2 ,1) − n d d v e l o c i t y f ( j+v a r i a b l e s +1 ,1) ) + ( 

n d d v e l o c i t y f ( j +1 ,1)− n d d v e l o c i t y f ( 1 , 1 ) ) ) ; 

89 c o n t r a s t e v e n v ( 1 , j ) = 1/4* ( ( n d d v e l o c i t y f (2* v a r i a b l e s 

+2 ,1) − n d d v e l o c i t y f ( j+v a r i a b l e s +1 ,1) ) − ( 

n d d v e l o c i t y f ( j +1 ,1)− n d d v e l o c i t y f ( 1 , 1 ) ) ) ; 

90 measure v ( 1 , j ) = abs ( c o n t r a s t o d d v ( 1 , j ) ) + abs ( 

c o n t r a s t e v e n v ( 1 , j ) ) ; 

91 sum measures v = sum measures v + measure v ( 1 , j ) ; 

92 end 

93 

94 f o r j = 1 : 1 : v a r i a b l e s 

95 s e n s v ( 1 , j ) = measure v ( 1 , j ) / sum measures v ; 

96 end 

97 

98 sum measures = 0 ; 

99 f o r j = 1 : 1 : v a r i a b l e s 
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100 cont ra s t odd (1 , j ) = 1/4* ( ( ndd shear (2* va r i a b l e s +2 ,1) − 

ndd shear ( j+va r i a b l e s +1 ,1) ) + ( ndd shear ( j +1 ,1)− 

ndd shear ( 1 , 1 ) ) ) ; 

101 con t ra s t even (1 , j ) = 1/4* ( ( ndd shear (2* va r i a b l e s +2 ,1) − 

ndd shear ( j+va r i a b l e s +1 ,1) ) − ( ndd shear ( j +1 ,1)− 

ndd shear ( 1 , 1 ) ) ) ; 

102 measure (1 , j ) = abs ( cont ra s t odd (1 , j ) ) + abs ( con t ra s t even 

(1 , j ) ) ; 

103 sum measures = sum measures + measure (1 , j ) ; 

104 end 

105 

106 f o r j = 1 : 1 : va r i a b l e s 

107 sens (1 , j ) = measure (1 , j ) / sum measures ; 

108 end 

109 

110 %Sen s i t i v i t y ana l y s i s on the brinkman v e l o c i t y p r o f i l e 

111 f i g u r e (1 ) 

112 bar ( sens ( 1 , : ) , 0 . 4 ) 

113 x l ab e l ( ’ Parameter ’ ) 

114 y l ab e l ( ’ S e n s i t i v i t y ’ ) 

115 t i t l e ( ’ Brinkman Shear S t r e s s S e n s i t i v i t y Analys i s ( Glycocaylx 

) ’ ) 

116 hold on 

117 p lo t ( xlim , [ . 1 2 5 , . 1 2 5 ] , ’ : ’ ) 

118 names = { ’ a/b ’ , ’ b ’ , ’Dv ’ , ’Lv ’ , ’Dh ’ , ’Lh ’ , ’dP/dz ’ , ’ v {o} ’ 

} ; 

119 s e t ( gca , ’ x t i c k l a b e l ’ , names ) 

120 

121 %Sen s i t i v i t y ana l y s i s on the brinkman shear s t r e s s 
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122 f i g u r e (2 ) 

123 bar ( s ens v ( 1 , : ) , 0 . 4 ) 

124 x l ab e l ( ’ Parameter ’ ) 

125 y l ab e l ( ’ S e n s i t i v i t y ’ ) 

126 t i t l e ( ’ Brinkman Ve loc i ty S e n s i t i v i t y Analys i s ( Glycocaylx ) ’ ) 

127 hold on 

128 p lo t ( xlim , [ . 1 2 5 , . 1 2 5 ] , ’ : ’ ) 

129 names = { ’ a/b ’ , ’ b ’ , ’Dv ’ , ’Lv ’ , ’Dh ’ , ’Lh ’ , ’dP/dz ’ , ’ v {o} ’ 

} ; 

130 s e t ( gca , ’ x t i c k l a b e l ’ , names ) 

A.4 Brinkman Velocity 

1 %Inputs i n t o Cotter ’ s Method s e n s i t i v i t y ana l y s i s 

2 vararg in = [ 0 . 5 e−9 5 .9 e−9 6 .75 e−9 10e−9 4 .75 e−9 5 .25 e−9 6e−9 

7 .25 e−9 −11.87 e3 /6e−3 −15.87 e3 /6e−3 21 .6 e−6 84e −6] ; 

3 va r i a b l e s = l ength ( vara rg in ) /2 ; %number o f va r i a b l e s i s equal 

to the number o f inputs /2 

4 n = 2* va r i a b l e s + 2 ; %number o f t r i a l s or s imu la t i on s that 

need to be performed 

5 

6 %Creates a matrix to be used to ex t r a c t the low va r i a b l e s 

7 a l l l ow = z e r o s (1 , va r i a b l e s ) ; %cr e a t e s row vec to r o f j u s t 

z e r o s 

8 l ow i d e n t i t y = eye ( ( n/2) −1, va r i a b l e s ) ; %cr e a t e s i d e n t i t y 

matrix 

9 low matrix = ve r t c a t ( a l l l ow , l ow i d e n t i t y ) ; %combines zero 

and i d e n t i t y matr i ce s 

10 

11 %Creates a matrix to be used to ex t r a c t the high va r i a b l e s 
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12 a l l h i g h = z e r o s (1 , va r i a b l e s ) ; %cr e a t e s row vec to r o f j u s t 

z e r o s 

13 h i g h i d e n t i t y = −1*eye ( ( n/2) −1, va r i a b l e s ) ; %cr e a t e s i d e n t i t y 

matrix 

14 high matr ix = ve r t c a t ( h i gh i d en t i t y , a l l h i g h ) ; %combines 

zero and i d e n t i t y matr i ce s 

15 

16 %Creates the matrix c o n s i s t i n g o f the high and low input 

values , in the 

17 %nece s sa ry format f o r Cotter ’ s Method 

18 f o r i = 1 : 1 : n/2 

19 f o r m = 1 : 1 : v a r i a b l e s 

20 va lues ( i , m) = vararg in (m + (m−1) + low matr ix ( i , m) ) 

; 

21 va lues ( i + n/2 , m) = vararg in (2*m + high matr ix ( i , m) 

) ; 

22 end 

23 end 

24 

25 %Determine volume f r a c t i o n and permeab i l i t y f o r each 

s imu la t i on 

26 f o r i = 1 : 1 : n 

27 m = 1 ; 

28 %Depends upon order the va r i a b l e s were input i n t o the 

f unc t i on 

29 Dv( i , 1 ) = va lue s ( i , 1 ) ; %diameter o f v e r t i c a l f i b e r s 

30 Lv( i , 1 ) = va lue s ( i , 2 ) ; %length o f v e r t i c a l f i b e r s 

31 Dh( i , 1 ) = va lue s ( i , 3 ) ; %diameter o f ho r i z on t a l f i b e r s 

32 Lh( i , 1 ) = va lue s ( i , 4 ) ; %length o f ho r i z on t a l f i b e r s 
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33 dp dz ( i , 1 ) = va lue s ( i , 5 ) ; %pre s su r e grad i en t down the 

l ength o f the c an a l i c u l u s 

34 v o ( i , 1 ) = va lue s ( i , 6 ) ; %i n i t i a l v e l o c i t y o f the f l u i d 

35 

36 %Equations from Sander et a l . 2003 

37 %Determine volume f r a c t i o n s based on g lycoca lyx 

nanost ructure ( r e c t angu l a r uni t c e l l ) 

38 ph i s ( i , 1 ) = pi /4 * ( (Dv( i , 1 ) ˆ2*Lv( i , 1 ) + (2*Dh( i , 1 ) ˆ2*(Lh( 

i , 1 ) − Dv( i , 1 ) ) ) ) /(Lh( i , 1 ) ˆ2*Lv( i , 1 ) ) ) ; %volume 

f r a c t i o n o f the s o l i d g lycoca lyx 

39 ph i f ( i , 1 ) = 1 − ph i s ( i , 1 ) ; %volume o f the i n t e r s t i t i a l 

f l u i d f low 

40 

41 %Calcu la te v e r t i c a l pe rmeab i l i t y o f g lycoca lyx given 

de f ined nanost ructure 

42 Aw( i , 1 ) = pi *(Dv( i , 1 ) *(Lv( i , 1 )−Dh( i , 1 ) ) + 2*Dh( i , 1 ) *(Lh( i 

, 1 )−Dv( i , 1 ) ) ) ; %Wetted s u r f a c e o f the uni t c e l l 

43 Cl ( i , 1 ) = (4* pi *(Lv( i , 1 )−Dh( i , 1 ) ) ) /( l og (Lh( i , 1 ) ˆ2/( pi *(Dv 

( i , 1 ) /2) ) ) − 1 .476 + (2* pi *(Dv( i , 1 ) /2) ˆ2/Lh( i , 1 ) ˆ2) − 

( pi ˆ2*(Dv( i , 1 ) /2) ˆ4/(2*Lh( i , 1 ) ˆ4) ) − 0 . 0150 * ( ( pi *(Dv( i 

, 1 ) /2) ˆ2/Lh( i , 1 ) ˆ2) ˆ4/(1 + ( 1 . 520 * ( pi *(Dv( i , 1 ) /2) ˆ2/Lh 

( i , 1 ) ˆ2) ˆ4) ) ) ) ; 

44 Ct( i , 1 ) = (4* pi *(Lh( i , 1 )−Dv( i , 1 ) ) ) /( l og (Lh( i , 1 ) /(Dh( i , 1 ) 

/2) ) −1.311 + ( p i *(Dh( i , 1 ) /2) ˆ2/Lh( i , 1 ) ˆ2) − ( pi ˆ2*(Dh 

( i , 1 ) /2) ˆ4/(2*Lh( i , 1 ) ˆ4) ) − 8 . 756 * ( (Dh( i , 1 ) /2) /Lh( i , 1 ) 

) ˆ4 + 63 . 212 * ( (Dh( i , 1 ) /2) /Lh( i , 1 ) ) ˆ6) ; 

45 Cd( i , 1 ) = (128*Lh( i , 1 ) ˆ2*Aw( i , 1 ) *Lv( i , 1 ) ) /( pi *(Lh( i , 1 )−Dv 

( i , 1 ) ) ˆ2) ; 
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46 K( i , 1 ) = Lh( i , 1 ) ˆ2*Lv( i , 1 ) /(Cl ( i , 1 ) + 2*Ct( i , 1 ) + Cd( i , 1 ) 

) ; %permeab i l i t y o f the g lycoca lyx in the v e r t i c a l 

d i r e c t i o n 

47 end 

48 

49 %Def in ing va r i a b l e s needed to p lo t v e l o c i t y p r o f i l e 

50 index = 6e −8; 

51 %Cana l i cu lus rad iu s (b) (m) 

52 b low = 75e −9; 

53 b high = 422e −9; 

54 %Ratio o f o s t eo cy t e c e l l proce s s ( a ) to c ana l i c u l u s rad iu s (b 

) 

55 r a t i o ab l ow = 0 . 2 4 5 ; 

56 r a t i o ab h i gh = 0 . 8 1 9 ; 

57 %Diemnsions ( l ength and diameter ) o f the g lycocay lx in two 

d i r e c t i o n s 

58 %( v e r t i c a l and ho r i z on t a l ) (m) 

59 Lv low = 6e −9; 

60 Lv high = 10e −9; 

61 Lh low = 6e −9; 

62 Lh high = 10e −9; 

63 Dv low = 0 .5 e −9; 

64 Dv high = 6e −9; 

65 Dh low = 0 .5 e −9; 

66 Dh high = 6e −9; 

67 %I n i t i a l v e l o c i t y (m/ s ) 

68 v o l ow = 21 .6 e −6; 

69 v o h igh = 84e −6; 

70 %Pressure grad i en t down the l ength o f the c ana l i c u l u s (Pa/m) 
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71 dp dz low = −11.87 e3 /6e −3; 

72 dp dz high = −15.87 e3 /6e −3; 

73 %Vi s c o s i t y o f the f l u i d (Pa s ) 

74 mu = 0 . 0 007 ; 

75 %True dens i ty o f the f l u i d ( kg/mˆ3) 

76 r h o f t r u e = 1000 ; 

77 %Fluid c on s t i t u en t volume f r a c t i o n s 

78 ph i f h i g h = max( ph i f ) ; 

79 ph i f l ow = min ( p h i f ) ; 

80 %Glycocaylx permeab i l i t y va lue s (mˆ2) 

81 K low = min (K) ; 

82 K high = max(K) ; 

83 %Gamma term 

84 gamma high = b high / s q r t ( ph i f l ow *K low ) ; 

85 gamma low = b low/ s q r t ( p h i f h i g h * K high ) ; 

86 r gamma low = round ( gamma low ) ; 

87 

88 gamma index = 50 ; 

89 i =1; 

90 f o r gamma = r gamma low : gamma index :700 

91 j = 1 ; 

92 f o r ab = r a t i o ab l ow : 0 . 1 : r a t i o ab h i gh 

93 i f gamma < 700 %Brinkman f low 

94 %Use averages to nond imens iona l i ze parameters and 

c a l c u l a t e v e l o c i t y 

95 Kv( i , j ) = ( ( b high + b low ) /2) ˆ2/(gammaˆ2) ; 

96 K( i , j ) = (Kv( i , j ) / ( ( ph i f h i g h + ph i f l ow ) /2) ) ; 

97 N( i , j ) = ( ( v o h igh + v o l ow ) /2) * r h o f t r u e * s q r t ( 

K( i , j ) ) /mu; 
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98 rad iu s = ( ( b high + b low ) /2 + ab *( b high + b low ) 

/2) /2 ; 

99 

100 %Nondimens iona l i zat ion o f va r i a b l e s 

101 nondim radius = rad iu s / s q r t (K( i , j ) ) ; 

102 nondim b = ( ( b high + b low ) /2) / s q r t (K( i , j ) ) ; 

103 nondim Kv = (Kv( i , j ) /K( i , j ) ) ; 

104 nondim dp = ( ( dp dz high + dp dz low ) /2) * s q r t (K( i , 

j ) ) / ( ( ( v o h igh + v o l ow ) /2) ˆ2* r h o f t r u e ) ; 

105 

106 %Calcu l a t i on o f b e s s e l constants , 

nondimens iona l i zed maximum 

107 %ve l o c i t y p r o f i l e ( middle o f annulus gap ) , and 

108 %re−d imens i ona l i z ed maximum v e l o c i t y p r o f i l e 

109 A( i , j ) = ( b e s s e l k (0 , gamma) − be s s e l k (0 , gamma*ab ) 

) /( b e s s e l i (0 , gamma*ab ) * be s s e l k (0 , gamma) − 

b e s s e l i (0 , gamma) * be s s e l k (0 , gamma*ab ) ) ; 

110 B( i , j ) = ( b e s s e l i (0 , gamma*ab ) − b e s s e l i (0 , gamma) 

) /( b e s s e l i (0 , gamma*ab ) * be s s e l k (0 , gamma) − 

b e s s e l i (0 , gamma) * be s s e l k (0 , gamma*ab ) ) ; 

111 nondim vf ( i , j ) = N( i , j ) *nondim Kv*nondim dp *(A( i , j 

) * b e s s e l i (0 , gamma* nondim radius /nondim b ) + B( 

i , j ) * be s s e l k (0 , gamma* nondim radius /nondim b ) − 

1) ; %cr e a t e s f l u i d v e l o c i t y equat ion as a 

f unc t i on o f rad iu s 

112 vf ( i , j ) = nondim vf ( i , j ) * ( ( v o h igh + v o l ow ) /2) 

*1 e6 ; 

113 j = j +1; 

114 end 
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115 end 

116 i = i +1; 

117 end 

118 

119 ab = r a t i o a b l o w : 0 . 1 : r a t i o a b h i g h ; 

120 gamma = r gamma low : gamma index : 7 0 0 ; 

121 

122 %P l o t s no n d i m e n s i o n a l i z ed maximum v e l o c i t y 

123 f i g u r e ( 1 ) 

124 hold on 

125 f o r m = 1 : 1 : ( i −1) 

126 p l o t ( ab ( : ) , nondim vf (m, : ) , ’ DisplayName ’ , [ ’gamma = ’ 

num2str (gamma(m) ) ] ) ; 

127 end 

128 x l ab e l ( ’ Ratio o f Osteocyte 

129 y l ab e l ( ’ Nondimensional ized 

130 t i t l e ( ’ Nondimensional ized 

Glycocaylx ) ’ ) 

131 l egend ( gca , ’ show ’ ) 

132 

Process to Cana l i cu lus ( a/b) ’ ) 

Maximum Ve loc i ty ’ ) 

Brinkman Ve loc i ty P r o f i l e ( 

133 %Plot s re−d imens i ona l i z ed maximum v e l o c i t y 

134 f i g u r e (2 ) 

135 hold on 

136 f o r m = 1 : 1 : ( i −1) 

137 p lo t ( ab ( : ) , vf (m, : ) , ’ DisplayName ’ , [ ’gamma = ’ num2str ( 

gamma(m) ) ] ) ; 

138 end 

139 x l ab e l ( ’ Ratio o f Osteocyte Process to Cana l i cu lus ( a/b) ’ ) 

140 y l ab e l ( ’Maximum Ve loc i ty (\mum/s ) ’ ) 
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141 t i t l e ( ’ Brinkman Ve loc i ty P r o f i l e ( Glycocaylx ) ’ ) 

142 l egend ( gca , ’ show ’ ) 

A.5 Darcy Velocity Sensitivity Analysis 

1 %Var iab le input : Low , high inputs f o r each n number v a r i a b l e s 

. Input such 

2 %that f i r s t and second inputs are low and then high value o f 

1 s t va r i ab l e ( r e s p e c t i v e l y ) , 

3 %th i rd and f our th inputs are the low and high o f the 2nd 

var i ab l e , e t c . 

4 

5 vararg in = [ 0 . 5 e−9 5 .9 e−9 6 .75 e−9 10e−9 4 .75 e−9 5 .25 e−9 6e−9 

7 .25 e−9 −11.87 e3 /6e−3 −15.87 e3 /6e−3 21 .6 e−6 84e −6] ; 

6 va r i a b l e s = l ength ( vara rg in ) /2 ; %number o f va r i a b l e s i s equal 

to the number o f inputs /2 

7 n = 2* va r i a b l e s + 2 ; %number o f t r i a l s or s imu la t i on s that 

need to be performed 

8 

9 %Creates a matrix to be used to ex t r a c t the low va r i a b l e s 

10 a l l l ow = z e r o s (1 , va r i a b l e s ) ; %cr e a t e s row vec to r o f j u s t 

z e r o s 

11 l ow i d e n t i t y = eye ( ( n/2) −1, va r i a b l e s ) ; %cr e a t e s i d e n t i t y 

matrix 

12 low matrix = ve r t c a t ( a l l l ow , l ow i d e n t i t y ) ; %combines zero 

and i d e n t i t y matr i ce s 

13 

14 %Creates a matrix to be used to ex t r a c t the high va r i a b l e s 

15 a l l h i g h = z e r o s (1 , va r i a b l e s ) ; %cr e a t e s row vec to r o f j u s t 

z e r o s 
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16 h i g h i d e n t i t y = −1*eye ( ( n /2) −1, v a r i a b l e s ) ; %c r e a t e s i d e n t i t y 

matrix 

17 h i g h ma t r i x = v e r t c a t ( h i g h i d e n t i t y , a l l h i g h ) ; %combines 

z e r o and i d e n t i t y m a t r i c e s 

18 

19 %Create s the matrix c o n s i s t i n g 

values , i n the 

20 %n e c e s s a r y format f o r Cotter ’ s 

21 f o r i = 1 : 1 : n/2 

22 f o r m = 1 : 1 : v a r i a b l e s 

o f the high and low input 

Method 

23 v a l u e s ( i , m) = v a r a r g i n (m + (m−1) + low matr ix ( i , m) ) 

; 

24 v a l u e s ( i + n /2 , m) = v a r a r g i n (2*m + h i g h m a t r i x ( i , m) 

) ; 

25 end 

26 end 

27 

28 %D e f i ne c o n s t a n t s w i t hin the system ( f l u i d = PBS) 

29 mu = 0 . 0 0 0 7 ; %v i s c o s i t y o f the f l u i d 

30 r h o f t r u e = 10 00 ; %t r u e d e n s i t y o f the f l u i d 

31 

32 %Looping through a l l o f the t r i a l s 

33 f o r i = 1 : 1 : n 

34 m = 1 ; 

35 %Depends upon o r d e r the v a r i a b l e s were input i n t o the 

f u n c t i o n 

36 Dv( i , 1 ) = v a l u e s ( i , 1 ) ; %diameter o f v e r t i c a l f i b e r s 

37 Lv( i , 1 ) = v a l u e s ( i , 2 ) ; %l e n g t h o f v e r t i c a l f i b e r s 

38 Dh( i , 1 ) = v a l u e s ( i , 3 ) ; %diameter o f h o r i z o n t a l f i b e r s 
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39 Lh( i , 1 ) = va lue s ( i , 4 ) ; %length o f ho r i z on t a l f i b e r s 

40 dp dz ( i , 1 ) = va lue s ( i , 5 ) ; %pre s su r e grad i en t down the 

l ength o f the c an a l i c u l u s 

41 v o ( i , 1 ) = va lue s ( i , 6 ) ; %i n i t i a l v e l o c i t y o f the f l u i d 

42 

43 %Equations from Sander et a l . 2003 

44 %Determine volume f r a c t i o n s based on g lycoca lyx 

nanost ructure ( r e c t angu l a r 

45 %unit c e l l ) 

46 ph i s ( i , 1 ) = pi /4 * ( (Dv( i , 1 ) ˆ2*Lv( i , 1 ) + (2*Dh( i , 1 ) ˆ2*(Lh( 

i , 1 ) − Dv( i , 1 ) ) ) ) /(Lh( i , 1 ) ˆ2*Lv( i , 1 ) ) ) ; %volume 

f r a c t i o n o f the s o l i d g lycoca lyx 

47 ph i f ( i , 1 ) = 1 − ph i s ( i , 1 ) ; %volume o f the i n t e r s t i t i a l 

f l u i d f low 

48 

49 %Calcu la te v e r t i c a l pe rmeab i l i t y o f g lycoca lyx given 

de f ined nanost ructure 

50 Aw( i , 1 ) = pi *(Dv( i , 1 ) *(Lv( i , 1 )−Dh( i , 1 ) ) + 2*Dh( i , 1 ) *(Lh( i 

, 1 )−Dv( i , 1 ) ) ) ; %Wetted s u r f a c e o f the uni t c e l l 

51 Cl ( i , 1 ) = (4* pi *(Lv( i , 1 )−Dh( i , 1 ) ) ) /( l og (Lh( i , 1 ) ˆ2/( pi *(Dv 

( i , 1 ) /2) ) ) − 1 .476 + (2* pi *(Dv( i , 1 ) /2) ˆ2/Lh( i , 1 ) ˆ2) − 

( pi ˆ2*(Dv( i , 1 ) /2) ˆ4/(2*Lh( i , 1 ) ˆ4) ) − 0 . 0150 * ( ( pi *(Dv( i 

, 1 ) /2) ˆ2/Lh( i , 1 ) ˆ2) ˆ4/(1 + ( 1 . 520 * ( pi *(Dv( i , 1 ) /2) ˆ2/Lh 

( i , 1 ) ˆ2) ˆ4) ) ) ) ; 

52 Ct( i , 1 ) = (4* pi *(Lh( i , 1 )−Dv( i , 1 ) ) ) /( l og (Lh( i , 1 ) /(Dh( i , 1 ) 

/2) ) −1.311 + ( p i *(Dh( i , 1 ) /2) ˆ2/Lh( i , 1 ) ˆ2) − ( pi ˆ2*(Dh 

( i , 1 ) /2) ˆ4/(2*Lh( i , 1 ) ˆ4) ) − 8 . 756 * ( (Dh( i , 1 ) /2) /Lh( i , 1 ) 

) ˆ4 + 63 . 212 * ( (Dh( i , 1 ) /2) /Lh( i , 1 ) ) ˆ6) ; 



125 

53 Cd( i , 1 ) = (128*Lh( i , 1 ) ˆ2*Aw( i , 1 ) *Lv ( i , 1 ) ) /( p i *(Lh( i , 1 )−Dv 

( i , 1 ) ) ̂ 2) ; 

54 K( i , 1 ) = Lh( i , 1 ) ˆ2*Lv ( i , 1 ) /( Cl ( i , 1 ) + 2*Ct ( i , 1 ) + Cd( i , 1 ) 

) ; %p e r m e a b i l i t y o f the g l y c o c a l y x i n the v e r t i c a l 

d i r e c t i o n 

55 

56 N( i , 1 ) = v o ( i , 1 ) * r h o f t r u e * s q r t (K( i , 1 ) ) /mu; %Nauman 

number 

57 nondim dp ( i , 1 ) = dp dz ( i , 1 ) * s q r t (K( i , 1 ) ) / ( ( v o ( i , 1 ) ) ̂ 2* 

r h o f t r u e ) ; 

58 v e l o c i t y f d a r c y n d ( i , 1 ) = −N( i , 1 ) * p h i f ( i , 1 ) *nondim dp ( i 

, 1 ) ; 

59 v e l o c i t y f d a r c y ( i , 1 ) = v e l o c i t y f d a r c y n d ( i , 1 ) * v a l u e s ( i , 

6) *1 e6 ; 

60 end 

61 

62 sum measures = 0 ; 

63 f o r j = 1 : 1 : v a r i a b l e s 

64 c o n t r a s t o d d ( 1 , j ) = 1 / 4* ( ( v e l o c i t y f d a r c y n d (2* v a r i a b l e s 

+2 ,1) − v e l o c i t y f d a r c y n d ( j+v a r i a b l e s +1 ,1) ) + ( 

v e l o c i t y f d a r c y n d ( j +1 ,1)− v e l o c i t y f d a r c y n d ( 1 , 1 ) ) ) ; 

65 c o n t r a s t e v e n ( 1 , j ) = 1/4* ( ( v e l o c i t y f d a r c y n d (2* v a r i a b l e s 

+2 ,1) − v e l o c i t y f d a r c y n d ( j+v a r i a b l e s +1 ,1) ) − ( 

v e l o c i t y f d a r c y n d ( j +1 ,1)− v e l o c i t y f d a r c y n d ( 1 , 1 ) ) ) ; 

66 measure ( 1 , j ) = abs ( c o n t r a s t o d d ( 1 , j ) ) + abs ( c o n t r a s t e v e n 

( 1 , j ) ) ; 

67 sum measures = sum measures + measure ( 1 , j ) ; 

68 end 

69 
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70 f o r j = 1 : 1 : va r i a b l e s 

71 sens (1 , j ) = measure (1 , j ) / sum measures ; 

72 end 

73 

74 %Sen s i t i v i t y ana l y s i s f o r the darcy v e l o c i t y when the 

g lycocay lx i s very 

75 %smal l 

76 f i g u r e (1 ) 

77 bar ( sens ( 1 , : ) , 0 . 4 ) 

78 x l ab e l ( ’ Parameter ’ ) 

79 y l ab e l ( ’ S e n s i t i v i t y ’ ) 

80 t i t l e ( ’ Darcy Ve loc i ty S e n s i t i v i t y Analys i s ( Glycocaylx ) ’ ) 

81 hold on 

82 p lo t ( xlim , [ . 1 6 6 7 , . 1 6 6 7 ] , ’ : ’ ) 

83 names = { ’Dv ’ , ’Lv ’ , ’Dh ’ , ’Lh ’ , ’dP/dz ’ , ’ v {o} ’ } ; 

84 s e t ( gca , ’ x t i c k l a b e l ’ , names ) 

A.6 Poiseuille Velocity and Shear Stress Sensitivity Analysis 

1 %Var iab le input : Low , high inputs f o r each n number v a r i a b l e s 

. Input such 

2 %that f i r s t and second inputs are low and then high value o f 

1 s t va r i ab l e ( r e s p e c t i v e l y ) , 

3 %th i rd and f our th inputs are the low and high o f the 2nd 

var i ab l e , e t c . 

4 

5 vararg in = [ 0 . 2 4 5 0 .819 75e−9 422e−9 −11.87 e3 /6e−3 −15.87 e3 /6 

e−3 21 .6 e−6 84e −6] ; 

6 va r i a b l e s = l ength ( vara rg in ) /2 ; %number o f va r i a b l e s i s equal 

to the number o f inputs /2 
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7 n = 2* va r i a b l e s + 2 ; %number o f t r i a l s or s imu la t i on s that 

need to be performed 

8 

9 %Creates a matrix to be used to ex t r a c t the low va r i a b l e s 

10 a l l l ow = z e r o s (1 , va r i a b l e s ) ; %cr e a t e s row vec to r o f j u s t 

z e r o s 

11 l ow i d e n t i t y = eye ( ( n/2) −1, va r i a b l e s ) ; %cr e a t e s i d e n t i t y 

matrix 

12 low matrix = ve r t c a t ( a l l l ow , l ow i d e n t i t y ) ; %combines zero 

and i d e n t i t y matr i ce s 

13 

14 %Creates a matrix to be used to ex t r a c t the high va r i a b l e s 

15 a l l h i g h = z e r o s (1 , va r i a b l e s ) ; %cr e a t e s row vec to r o f j u s t 

z e r o s 

16 h i g h i d e n t i t y = −1*eye ( ( n/2) −1, va r i a b l e s ) ; %cr e a t e s i d e n t i t y 

matrix 

17 high matr ix = ve r t c a t ( h i gh i d en t i t y , a l l h i g h ) ; %combines 

zero and i d e n t i t y matr i ce s 

18 

19 %Creates the matrix c o n s i s t i n g 

values , in the 

20 %nece s sa ry format f o r Cotter ’ s 

21 f o r i = 1 : 1 : n/2 

22 f o r m = 1 : 1 : v a r i a b l e s 

o f the high and low input 

Method 

23 v a l u e s ( i , m) = v a r a r g i n (m + (m−1) + low matr ix ( i , m) ) 

; 

24 v a l u e s ( i + n /2 , m) = v a r a r g i n (2*m + h i g h m a t r i x ( i , m) 

) ; 

25 end 
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26 end 

27 

28 %Def ine cons tant s with in the system ( f l u i d = PBS) 

29 mu = 0 . 0 007 ; %v i s c o s i t y o f the f l u i d 

30 r h o f t r u e = 1000 ; %true dens i ty o f the f l u i d 

31 

32 %Looping through a l l o f the t r i a l s 

33 f o r i = 1 : 1 : n 

34 %Depends upon order the va r i a b l e s were input i n t o the 

f unc t i on 

35 ab ( i , 1 ) = va lue s ( i , 1 ) ; %rad iu s o f the o s t eo cy t e c e l l 

proce s s 

36 b( i , 1 ) = va lue s ( i , 2 ) ; %rad ius o f the c ana l i c u l u s 

37 dp dz ( i , 1 ) = va lue s ( i , 3 ) ; %pre s su r e grad i en t down the 

l ength o f the c an a l i c u l u s 

38 v o ( i , 1 ) = va lue s ( i , 4 ) ; %i n i t i a l v e l o c i t y o f the f l u i d 

39 

40 a ( i , 1 ) = ab ( i , 1 ) *b( i , 1 ) ; 

41 nondim dp dz ( i , 1 ) = ( dp dz ( i , 1 ) *a ( i , 1 ) ) /( r h o f t r u e * v o ( i 

, 1 ) ˆ2) ; 

42 nondim b ( i , 1 ) = b( i , 1 ) /a ( i , 1 ) ; 

43 nondim a ( i , 1 ) = a ( i , 1 ) /a ( i , 1 ) ; 

44 

45 %Determines f l u i d v e l o c i t y and shear s t r e s s as a f unc t i on 

o f symbol ic rad iu s 

46 %syms rad iu s ; 

47 syms nondim radius ; 

48 h1 ( i , 1 ) = −a ( i , 1 ) *( nondim b ( i , 1 ) ) ˆ2* r h o f t r u e * v o ( i , 1 ) * 

nondim dp dz ( i , 1 ) /4/mu; 
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49 h2 ( i , 1 ) = ( nondim radius /nondim b ( i , 1 ) ) ˆ2 ; 

50 h3 ( i , 1 ) = ( ( nondim a ( i , 1 ) /nondim b ( i , 1 ) ) ˆ2 − 1) /( l og ( 

nondim radius /nondim b ( i , 1 ) ) ) ; 

51 h4 ( i , 1 ) = l og ( nondim radius /nondim b ( i , 1 ) ) ; 

52 

53 nondim sym ve loc i ty f ( i , 1 ) = h1 ( i , 1 ) *( h2 ( i , 1 ) −(h3 ( i , 1 ) *h4 ( 

i , 1 ) ) −1) ; 

54 nondim sym shear ( i , 1 ) = (1/ r h o f t r u e ) *(1/ v o ( i , 1 ) ) *(1/ a ( 

i , 1 ) ) *mu* d i f f ( nondim sym ve loc i ty f ( i , 1 ) , nondim radius 

) ; %d i f f e r e n t i a t e s ( with r e sp e c t to rad iu s ) f l u i d 

v e l o c i t y equat ion to c r e a t e shear s t r e s s equat ion as a 

f unc t i on o f rad iu s 

55 

56 nondim radiusV ( i , 1 ) = ( nondim b ( i , 1 ) + nondim a ( i , 1 ) /2) ; 

57 nondim radiusS ( i , 1 ) = a ( i , 1 ) /a ( i , 1 ) ; 

58 

59 nd v e l o c i t y f ( i , 1 ) = subs ( nondim sym ve loc i ty f ( i , 1 ) , 

nondim radiusV ( i , 1 ) ) ; 

60 v e l o c i t y f ( i , 1 ) = nd v e l o c i t y f ( i , 1 ) * v o ( i , 1 ) ; 

61 nd shear ( i , 1 ) = subs ( nondim sym shear ( i , 1 ) , 

nondim radiusS ( i , 1 ) ) ; %sub s t i t u t e s in c e l l proce s s 

rad iu s to numer i ca l ly determine value o f shear s t r e s s 

62 shear ( i , 1 ) = nd shear ( i , 1 ) * r h o f t r u e * v o ( i , 1 ) ˆ2 ; 

63 end 

64 a c t u a l v e l o c i t y f ( : , 1 ) = double ( v e l o c i t y f ( : , 1 ) ) *1 e6 ; 

65 ndd v e l o c i t y f ( : , 1 ) = double ( n d v e l o c i t y f ( : , 1 ) ) ; 

66 a c tua l s h e a r ( : , 1 ) = double ( shear ( : , 1 ) ) ; 

67 ndd shear ( : , 1 ) = double ( nd shear ( : , 1 ) ) ; 

68 
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69 sum measures v = 0 ; 

70 

71 

72 

73 

74 

75 

f o r 

end 

j = 1 : 1 : v a r i a b l e s 

c o n t r a s t o d d v ( 1 , j ) = 1 / 4* ( ( n d d v e l o c i t y f (2* v a r i a b l e s 

+2 ,1) − n d d v e l o c i t y f ( j+v a r i a b l e s +1 ,1) ) + ( 

n d d v e l o c i t y f ( j +1 ,1)− n d d v e l o c i t y f ( 1 , 1 ) ) ) ; 

c o n t r a s t e v e n v ( 1 , j ) = 1/4* ( ( n d d v e l o c i t y f (2* v a r i a b l e s 

+2 ,1) − n d d v e l o c i t y f ( j+v a r i a b l e s +1 ,1) ) − ( 

n d d v e l o c i t y f ( j +1 ,1)− n d d v e l o c i t y f ( 1 , 1 ) ) ) ; 

measure v ( 1 , j ) = abs ( c o n t r a s t o d d v ( 1 , j ) ) + abs ( 

c o n t r a s t e v e n v ( 1 , j ) ) ; 

sum measures v = sum measures v + measure v ( 1 , j ) ; 

76 

77 

78 

79 

f o r 

end 

j = 1 : 1 : v a r i a b l e s 

s e n s v ( 1 , j ) = measure v ( 1 , j ) / sum measures v ; 

80 

81 sum measures = 0 ; 

82 

83 

84 

85 

86 

87 

f o r 

end 

j = 1 : 1 : v a r i a b l e s 

c o n t r a s t o d d ( 1 , j ) = 1 / 4* ( ( ndd shear (2* v a r i a b l e s +2 ,1) − 

ndd shear ( j+v a r i a b l e s +1 ,1) ) + ( ndd shear ( j +1 ,1)− 

ndd shear ( 1 , 1 ) ) ) ; 

c o n t r a s t e v e n ( 1 , j ) = 1/4* ( ( ndd shear (2* v a r i a b l e s +2 ,1) − 

ndd shear ( j+v a r i a b l e s +1 ,1) ) − ( ndd shear ( j +1 ,1)− 

ndd shear ( 1 , 1 ) ) ) ; 

measure ( 1 , j ) = abs ( c o n t r a s t o d d ( 1 , j ) ) + abs ( c o n t r a s t e v e n 

( 1 , j ) ) ; 

sum measures = sum measures + measure ( 1 , j ) ; 
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88 

89 f o r j = 1 : 1 : va r i a b l e s 

90 sens (1 , j ) = measure (1 , j ) / sum measures ; 

91 end 

92 

93 %Sen s i t i v i t y ana l y s i s f o r the shear s t r e s s due to p o i s e u i l l e 

f l ow 

94 f i g u r e (1 ) 

95 bar ( sens ( 1 , : ) , 0 . 4 ) 

96 x l ab e l ( ’ Parameter ’ ) 

97 y l ab e l ( ’ S e n s i t i v i t y ’ ) 

98 t i t l e ( ’ P o i s e u i l l e Shear S t r e s s S e n s i t i v i t y Analys i s (No 

Glycocaylx ) ’ ) 

99 hold on 

100 p lo t ( xlim , [ . 2 5 , . 2 5 ] , ’ : ’ ) 

101 names = { ’ a/b ’ , ’ b ’ , ’dP/dz ’ , ’ v {o} ’ } ; 

102 s e t ( gca , ’ x t i c k l a b e l ’ , names ) 

103 

104 %Sen s i t i v i t y ana l y s i s f o r the p o i s e u i l l e v e l o c i t y 

105 f i g u r e (2 ) 

106 bar ( s ens v ( 1 , : ) , 0 . 4 ) 

107 x l ab e l ( ’ Parameter ’ ) 

108 y l ab e l ( ’ S e n s i t i v i t y ’ ) 

109 t i t l e ( ’ P o i s e u i l l e Ve loc i ty S e n s i t i v i t y Analys i s (No 

Glycocaylx ) ’ ) 

110 hold on 

111 p lo t ( xlim , [ . 2 5 , . 2 5 ] , ’ : ’ ) 

112 names = { ’ a/b ’ , ’ b ’ , ’dP/dz ’ , ’ v {o} ’ } ; 

113 s e t ( gca , ’ x t i c k l a b e l ’ , names ) 
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A.7 Poiseuille Velocity 

1 %Def in ing va r i a b l e s needed f o r p o i s e u i l l e v e l o c i t y p r o f i l e 

2 %Cana l i cu lus rad iu s (b) (m) 

3 b low = 75e −9; 

4 b high = 422e −9; 

5 b avg = ( b low + b high ) /2 ; 

6 

7 %Ratio o f o s t eo cy t e c e l l proce s s ( a ) to c ana l i c u l u s rad iu s (b 

) 

8 r a t i o ab l ow = 0 . 2 4 5 ; 

9 r a t i o ab h i gh = 0 . 8 1 9 ; 

10 

11 %I n i t i a l v e l o c i t y (m/ s ) 

12 v o l ow = 21 .6 e −6; 

13 v o h igh = 84e −6; 

14 v o avg = ( v o low + v o h igh ) /2 ; 

15 

16 %Pressure grad i en t down the c an a l i c u l u s (Pa/m) 

17 dp dz low = −11.87 e3 /6e −3; 

18 dp dz high = −15.87 e3 /6e −3; 

19 dp dz avg = ( dp dz low + dp dz high ) /2 ; 

20 

21 %Vi s c o s i t y o f the f l u i d (Pa s ) 

22 mu = 0 . 0 007 ; 

23 %True dens i ty o f the f l u i d ( kg/mˆ3) 

24 r h o f t r u e = 1000 ; 

25 

26 i =1; 



133 

27 f o r ab = r a t i o ab l ow : 0 . 0 5 : r a t i o ab h i gh 

28 r a t i o ( i , 1 ) = ab ; 

29 %Nondimens iona l i zat ion o f input va r i a b l e s 

30 nondim dp dz ( i , 1 ) = ( dp dz avg * r a t i o ( i , 1 ) * b avg ) /( 

r h o f t r u e * v o avg ˆ2) ; 

31 nondim b ( i , 1 ) = b avg /( r a t i o ( i , 1 ) * b avg ) ; 

32 nondim a ( i , 1 ) = ( r a t i o ( i , 1 ) * b avg ) /( r a t i o ( i , 1 ) * b avg ) ; 

33 

34 %Cal cu l a t e s nondimens iona l i zed and d imens iona l i z ed 

maximum v e l o c i t y in 

35 %the middle o f the annulus gap as a f unc t i on o f a 

dec r ea s ing gap 

36 nondim radius ( i , 1 ) = ( ( b avg + r a t i o ( i , 1 ) *( b avg ) ) /2) /( 

r a t i o ( i , 1 ) * b avg ) ; 

37 h1 ( i , 1 ) = −( r a t i o ( i , 1 ) * b avg ) *( nondim b ( i , 1 ) ) ˆ2* 

r h o f t r u e * v o avg * nondim dp dz ( i , 1 ) /4/mu; 

38 h2 ( i , 1 ) = ( nondim radius ( i , 1 ) /nondim b ( i , 1 ) ) ˆ2 ; 

39 h3 ( i , 1 ) = ( ( nondim a ( i , 1 ) /nondim b ( i , 1 ) ) ˆ2 − 1) /( l og ( 

nondim radius ( i , 1 ) /nondim b ( i , 1 ) ) ) ; 

40 h4 ( i , 1 ) = l og ( nondim radius ( i , 1 ) /nondim b ( i , 1 ) ) ; 

41 nond im ve l oc i ty f ( i , 1 ) = h1 ( i , 1 ) *( h2 ( i , 1 ) −(h3 ( i , 1 ) *h4 ( i , 1 ) 

) −1) ; 

42 v e l o c i t y f ( i , 1 ) = nond im ve l oc i ty f ( i , 1 ) * v o avg *1 e6 ; 

43 i=i +1; 

44 end 

45 

46 ab = r a t i o ab l ow : 0 . 0 5 : r a t i o ab h i gh ; 

47 

48 %Nondimensional ized maximum p o i s e u i l l e v e l o c i t y 
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49 f i g u r e (1 ) 

50 p lo t ( ab , nond im ve l oc i ty f ) ; 

51 x l ab e l ( ’ Ratio o f Osteocyte Process to Cana l i cu lus ( a/b) ’ ) 

52 y l ab e l ( ’ Nondimensional ized Maximum Ve loc i ty ’ ) 

53 t i t l e ( ’ Nondimensional ized Po i s e u i l l e Ve loc i ty P r o f i l e (No 

Glycocaylx ) ’ ) 

54 

55 %Re−d imens i ona l i z ed maximum p o i s e u i l l e v e l o c i t y 

56 f i g u r e (2 ) 

57 p lo t ( ab , v e l o c i t y f ) ; 

58 x l ab e l ( ’ Ratio o f Osteocyte Process to Cana l i cu lus ( a/b) ’ ) 

59 y l ab e l ( ’Maximum Ve loc i ty (\mum/s ) ’ ) 

60 t i t l e ( ’ P o i s e u i l l e Ve loc i ty P r o f i l e (No Glycocaylx ) ’ ) 
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B. 3D RECONSTRUCTION SOURCE CODE 

B.1 LCS 3D Reconstruction 

1 f unc t i on [ ImgBlock , blobBlock , f i b e rB ina ry ] = Ti f f S t a ck e r ( ) 

2 %Reconstructs CLSM imaging z−s t a ck s i n t o 3D volume 

3 % Using TIF images from CLSM imaging o f the lacunar − 

c a n a l i c u l a r system (LCS) o f c o r t i c a l 

4 % bone , the 2D data i s no i s e and i n t e n s i t y f i l t e r e d be f o r e 

segmentat ion i n t o lacunae and 

5 % c a n a l i c u l i . Val idat i on o f t h i s segmentat ion proce s s can 

be va l i da t ed us ing a raw 

6 % datase t and i t s manual r e c on s t r u c t i on . The LCS i s then 

r e con s t ruc t ed in 3D and 

7 % important morpho log ica l c h a r a c t e r i s t i c s are output to a . 

txt f i l e . In 

8 % t h i s code , lacunae are t y p i c a l l y r e f e r r e d to as blobs and 

c a n a l i c u l i 

9 % are r e f e r r e d to as f i b e r s . 

10 

11 %% Parameters f o r datase t under ana l y s i s ( can be moved to 

f unc t i on inputs i f de s i r ed ) 

12 xyRes = 0 . 0 4 ; % um ( assumes x & y ax i s have the same 

r e s o l u t i o n ) 

13 zRes = 0 . 3 9 4 ; % um 

14 channel2use = 2 ; % Channel o f t i f f image ( s ) where data i s 

l o ca t ed 
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15 c a n F i l t D i a = 0 . 8 ; % um Max diameter o f c a n a l i c u l a i i n 

the d a t a s e t under 

16 % a n a l y s i s T h i s value i s used to 

segment l a cu nae 

17 % from c a n a l i c u l a i 

18 blobMinArea = 5 0 0 0 ; % Minimum are a that a lacu nae must 

have to not be n o i s e 

19 

20 display3D = 0 ; % Display 3D r e p r e s e n t a t i o n o f the 

t a r g e t l a cu nae and n e i g h b o r i n g f i b e r s 

21 displayRaw = 0 ; % D i sp lay s t a c k o f raw data s l i c e s ( 

t a k e s a l o t o f memory , never save i f you can avoid i t ) 

22 display3DCan =1; % Display 3D r e p r e s n t a t i o n o f f i n a l 

c a n a l i c u l i and lacuna ( t a k e s hours ) 

23 r u n V a l i d a t i o n = 0 ; % Perform v a l i d a t i o n on c u r r e n t 

d a t a s e t with a second ’ true ’ d a t a s e t 

24 smooth3D = 1 ; % Performs 3D smoothing on the 

d a t a s e t b e f o r e 3D s k e l e t o n i z a t i o n 

25 

26 %% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

27 % Load a l l images i n the f o l d e r and c a l c u l a t e t h r e s h o l d s 

28 % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

29 

30 %Load l o c a l s u p p o r t ing f i l e s to path 

31 addpath ( genpath ( ’ . ’ ) ) ; 
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32 

33 % Get data s e t from user s e l e c t i o n 

34 [ ˜ , PathName ] = u i g e t f i l e ({ ’ * . t i f f ; * . t i f ’ } , ’ Se l e c t the 

f i r s t image f i l e in sequence to load ’ ) ; 

35 dirData = d i r (PathName) ; % Get the data 

f o r the cur rent d i r e c t o r y 

36 d i r Index = [ dirData . i s d i r ] ; % Find the index 

f o r d i r e c t o r i e s 

37 f i l e L i s t = { dirData (˜ d i r Index ) . name } ’ ; % Get a l i s t o f 

the f i l e s 

38 numSlices = numel ( f i l e L i s t ) ; 

39 t i c 

40 

41 ImgStack = c e l l ( numSlices , 1 ) ; 

42 ImgStackOrig = c e l l ( numSlices , 1 ) ; 

43 

44 f o r i = 1 : numSlices 

45 % Read in s l i c e image f i l e 

46 curImgName = s t r c a t (PathName , f i l e L i s t { i }) ; 

47 

48 ImgOrig = imread ( curImgName) ; 

49 ImgOrig = im2double ( ImgOrig ) ; 

50 

51 % Flatten T i f f images to g r e y s c a l e va lue s 

52 curImgSize = s i z e ( ImgOrig ) ; 

53 s izeCheck = s i z e ( curImgSize ) ; 

54 i f ( s izeCheck (2 ) >2) 

55 i f ( channel2use==0) 

56 ImgNew = ImgOrig ( : , : , 1 ) ; 
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57 ImgNew = ImgNew + ImgOrig ( : , : , 2 ) ; 

58 ImgNew = ImgNew + ImgOrig ( : , : , 3 ) ; 

59 ImgOrig = ImgNew ; 

60 e l s e 

61 ImgOrig = ImgOrig ( : , : , channel2use ) ; 

62 end 

63 end 

64 

65 % Save s l i c e to s tack 

66 ImgStack { i } = ImgOrig ; 

67 ImgStackOrig { i } = ImgOrig ; 

68 end 

69 

70 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

71 % Perform s imple i n t e n s i t y c o r r e c t i o n 

72 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

73 ImgBlock = z e r o s ( s i z e ( ImgStack {1} ,1) , s i z e ( ImgStack {1} ,2) , 

numSlices ) ; 

74 f o r i = 1 : numel ( ImgStack ) 

75 ImgBlock ( : , : , i ) = ImgStack{ i } ; 

76 end 

77 c l e a r ImgStack 

78 

79 

80 f o r i = 1 : s i z e ( ImgBlock , 3 ) 

81 ImgBlock ( : , : , i ) = imadjust ( ImgBlock ( : , : , i ) ) ; 

82 end 

83 

84 
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85 s l i c eAve = mean(mean( ImgBlock , 1 ) , 2 ) ; 

86 s l i c eAve = reshape ( s l i c eAve , s i z e ( ImgBlock , 3 ) , 1 ) ; 

87 stackAve = mean(mean(mean ( ImgBlock ) ) ) ; 

88 s l i c eAd j = stackAve . / s l i c eAve ; 

89 f o r i = 1 : s i z e ( ImgBlock , 3 ) 

90 ImgBlock ( : , : , i ) = ImgBlock ( : , : , i ) . * s l i c eAd j ( i ) ; 

91 end 

92 

93 mVal = max(max(max( ImgBlock ) ) ) ; 

94 ImgBlock = ImgBlock . /mVal ; 

95 

96 

97 opt . k e r n e l r a t i o =4; 

98 opt . windowratio =4; 

99 opt . verbose=f a l s e ; 

100 f o r i = 1 : s i z e ( ImgBlock , 3 ) 

101 ImgBlock ( : , : , i ) =NLMF( ImgBlock ( : , : , i ) , opt ) ; 

102 end 

103 

104 i f ( displayRaw ) 

105 f i g u r e ( ’Name ’ , ’Raw Image Stack ’ , ’ NumberTitle ’ , ’ o f f ’ ) 

% Display proce s sed f i b e r s 

106 imshow3D ( ImgBlock ) 

107 drawnow 

108 end 

109 

110 %% Segment blobs ( lacunae ) and f i b e r s ( c a n a l i c u l i ) 

111 % Analyze f i b e r s s e c t i o n s o f image u t i l i z i n g a Hessian− 

based mu l t i s c a l e f i l t e r 
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112 f i b r eB l o ck = ImgBlock ; 

113 f i b r eB l o ck = f i b r eB l o ck * 255 ; % Adjust f i b e r block va lue s 

114 f ibBlock2D = ones ( s i z e ( f i b r eB l o ck ) ) ; 

115 f ibBlock2DInverse = ones ( s i z e ( f i b r eB l o ck ) ) ; 

116 

117 

118 % Set up parameters f o r mu l t i s c a l e f i l t e r 

119 opt ions . FrangiScaleRange = [ 1 8 ] ; 

120 opt ions . Frang iSca l eRat io= 0 . 5 ; 

121 opt ions . FrangiBetaOne= 2 ; 

122 opt ions . FrangiBetaTwo= 15 ; 

123 opt ions . BlackWhite= t rue ; 

124 opt ions . verbose= f a l s e ; 

125 f o r i = 1 : s i z e ( f i b r eB lock , 3 ) 

126 s l i c e = Frang iF i l t e r2D ( f i b r eB l o ck ( : , : , i ) , opt i ons ) ; 

127 f ibBlock2D ( : , : , i ) = s l i c e ; 

128 end 

129 opt ions . BlackWhite= f a l s e ; 

130 f o r i = 1 : s i z e ( f i b r eB lock , 3 ) 

131 s l i c e = Frang iF i l t e r2D ( f i b r eB l o ck ( : , : , i ) , opt i ons ) ; 

132 f ibBlock2DInverse ( : , : , i ) = s l i c e ; 

133 end 

134 

135 

136 f i b e rB ina ry = f a l s e ( s i z e ( f i b r eB l o ck ) ) ; % Convert to 

binary block 

137 f i b e rB ina ry ( f ibBlock2D==0)=1; 

138 f i bF i x = s t r e l ( ’ d i sk ’ , 4 ) ; 

139 f i b e rB ina ry = imc lo se ( f ibe rB inary , f i bF i x ) ; 
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140 

141 

142 maskingBinary = f a l s e ( s i z e ( f i b e rB ina ry ) ) ; 

143 maskingBinary ( f ibBlock2DInverse >0.005) =1; 

144 f i b e rB ina ry ( maskingBinary==0)=0; 

145 c l e a r maskingBinary 

146 

147 

148 params . b z th re sh = −0; % Perform smoothing on f i b e r 

r e g i on s 

149 params . a s s c a l e = 1/4 ; 

150 params . debug = 0 ; 

151 f o r i = 1 : s i z e ( f i b r eB lock , 3 ) 

152 f i b e rB ina ry ( : , : , i ) = bwsmooth ( f i b e rB ina ry ( : , : , i ) , 

params ) ; 

153 end 

154 

155 % Save f u l l combined mask 

156 BinaryStack = f i b e rB ina ry ; 

157 

158 % Separate blob and f i b e r r e g i on s 

159 voxFi l tDia = round ( canFi l tDia /xyRes ) ; 

160 blobSe1 = s t r e l ( ’ d i sk ’ , voxFi l tDia ) ; 

161 blobBlockStack = f i b e rB ina ry ; 

162 blobMask = imopen ( f ibe rB inary , blobSe1 ) ; 

163 blobSe12 = s t r e l ( ’ d i sk ’ , round ( voxFi l tDia /2) ) ; 

164 blobMask = imd i l a t e ( blobMask , blobSe12 ) ; 

165 blobBlockStack ( blobMask==0)=0; 

166 blobBlockStack = bwareaopen ( blobBlockStack , blobMinArea ) ; 
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167 c l e a r f i b r eB l o ck 

168 c l e a r f ibBlock2DInverse 

169 c l e a r f ibBlock2D 

170 

171 f i b e rB ina ry ( blobBlockStack==1)=0; % Remove blob r e g i on s 

and c l ean up f i b e r s 

172 

173 f i g u r e ( ’Name ’ , ’ Processed 

% Display proce s sed 

174 imshow3D( f i b e rB ina ry ) 

175 drawnow 

176 

177 f i g u r e ( ’Name ’ , ’ Processed 

c a n a l i c u l i ’ , ’ NumberTitle ’ , ’ o f f ’ ) 

f i b e r s 

lacunae ’ , ’ NumberTitle ’ , ’ o f f ’ ) % 

Display proce s sed f i b e r s 

178 imshow3D( blobBlockStack ) 

179 drawnow 

180 

181 %% Run va l i d a t i o n comparison 

182 

183 i f ( runVal idat ion ) % Display match with va l i d a t i o n datase t 

184 expBlock = f i b e rB ina ry ; % merge analyzed blobs and 

f i b e r s 

185 expBlock ( blobBlockStack ) =1; 

186 canDi l = s t r e l ( ’ d i sk ’ , 5 ) ; 

187 

188 

189 % Load and prepare v a l i d t a t i o n datase t 

190 [ ˜ , PathName ] = u i g e t f i l e ({ ’ * . t i f f ; * . t i f ; * . jpg ’ } , ’ 

Se l e c t the f i r s t image f i l e in sequence to load ’ ) ; 
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191 dirData = d i r (PathName) ; % Get the 

data f o r the cur rent d i r e c t o r y 

192 d i r Index = [ dirData . i s d i r ] ; % Find the 

index f o r d i r e c t o r i e s 

193 f i l e L i s t = { dirData (˜ d i r Index ) . name } ’ ; % Get a l i s t 

o f the f i l e s 

194 numSlices = numel ( f i l e L i s t ) ; 

195 

196 %Load images in va l i d a t i o n datase t f o l d e r 

197 ImgStackV = c e l l ( numSlices , 1 ) ; 

198 

199 ImgStackOrig = c e l l ( numSlices , 1 ) ; 

200 f o r i = 1 : numSlices 

201 % Read in s l i c e image f i l e 

202 curImgName = s t r c a t (PathName , f i l e L i s t { i }) ; 

203 

204 ImgOrig = imread ( curImgName) ; 

205 ImgOrig = im2double ( ImgOrig ) ; 

206 

207 % Flatten T i f f images to g r e y s c a l e va lue s 

208 curImgSize = s i z e ( ImgOrig ) ; 

209 s izeCheck = s i z e ( curImgSize ) ; 

210 i f ( s izeCheck (2 ) >2) 

211 ImgOrig = ImgOrig ( : , : , 1 ) ; 

212 end 

213 

214 % Save s l i c e to s tack 

215 ImgStackV{ i } = ImgOrig ; 

216 ImgStackOrig { i } = ImgOrig ; 
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217 end 

218 

219 ImgBlockV = f a l s e ( s i z e ( ImgStackV {1} ,1) , s i z e ( ImgStackV 

{1} ,2) , numSlices ) ; 

220 f o r i = 1 : numSlices 

221 ImgBlockV ( : , : , i ) = ImgStackV{ i } ; 

222 end 

223 

224 a l lVa l s= reshape ( ImgBlockV , 1 , [ ] ) ; 

225 a l lVa l s ( i snan ( a l lVa l s ) ) =[ ] ; 

226 stackMean = mean( a l lVa l s ) ; 

227 

228 % Perform th r e sho ld ing on the image block 

229 f i b e rVa l i d = f a l s e ( s i z e ( ImgBlockV ) ) ; 

230 f i b e rVa l i d ( ImgBlockV>=stackMean ) =1; 

231 f i b e rVa l i d = imopen ( f i b e rVa l i d , s t r e l ( ’ d i sk ’ , 3 ) ) ; 

232 

233 

234 % Segment c e l l bodies , ’ aka ’ blobs 

235 blobVal id = imopen ( f i b e rVa l i d , blobSe1 ) ; 

236 blobVal id = imd i l a t e ( blobVal id , canDi l ) ; 

237 f i b e rVa l i d ( b lobVal id ) =0; 

238 

239 

240 % Compare proce s sed blobs and f i b e r s to va l i d a t i o n 

datase t 

241 va l i da t i onB lock = f i b e rVa l i d ; % merge analyzed blobs 

and f i b e r s 

va l i da t i onB lock ( blobVal id ) =1; 242 
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243 

244 

245 % Check accuracy o f e n t i r e segmentat ion to raw data 

246 over lapBlock = expBlock ; 

247 over lapBlock ( va l i da t i onB lock ==0)=0; % 

data s e t s 

248 evBlock = expBlock ; 

249 evBlock ( over lapBlock==1)=0; 

250 veBlock = va l i da t i onB lock ; 

251 veBlock ( over lapBlock==1)=0; 

252 over lap = sum(sum(sum( over lapBlock ) ) ) ; 

253 expAlone = sum(sum(sum( evBlock ) ) ) ; 

254 va l idAlone = sum(sum(sum( veBlock ) ) ) ; 

over lap o f two 

255 overa lAccuracy = over lap /( over lap+expAlone+val idAlone 

) ; 

256 textO = [ ’ Overa l l Accuracy : ’ , num2str ( overa lAccuracy ) 

] ; 

257 di sp ( textO ) ; 

258 

259 % Display o v e r a l l over lap 

260 f i g u r e ( ’Name ’ , ’ Dataset Overlap [ Red−Val idat ion , Blue− 

Processed ] ’ , ’ NumberTitle ’ , ’ o f f ’ ) 

261 DataBlock = ones ( [ s i z e ( ImgBlock ) , 3 ] ) ; 

262 DataBlock ( : , : , : , 1 ) = va l i da t i onB lock ; 

263 DataBlock ( : , : , : , 2 ) = expBlock ; 

264 imshow3D ( DataBlock ) 

265 c l e a r DataBlock 

266 

267 
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268 % Check accuracy o f f i b e r s 

269 overlapBlockF = f i b e rB ina ry ; 

270 overlapBlockF ( f i b e rVa l i d ==0)=0; % 

f i b e r da ta s e t s 

271 evBlockF = f i b e rB ina ry ; 

272 evBlockF ( overlapBlockF==1)=0; 

273 veBlockF = f i b e rVa l i d ; 

274 veBlockF ( overlapBlockF==1)=0; 

over lap o f two 

275 overlapF = sum(sum(sum( over lapBlockF ) ) ) ; 

276 expAloneF = sum(sum(sum( evBlockF ) ) ) ; 

277 val idAloneF = sum(sum(sum( veBlockF ) ) ) ; 

278 f ibe rAccuracy = overlapF /( overlapF+expAloneF+ 

val idAloneF ) ; 

279 textO = [ ’ F iber Accuracy : ’ , num2str ( f ibe rAccuracy ) ] ; 

280 di sp ( textO ) ; 

281 

282 % Display f i b e r over lap 

283 f i g u r e ( ’Name ’ , ’ F iber Overlap [ Red−Val idat ion , Blue− 

Processed ] ’ ) ;% , ’ NumberTitle ’ , ’ o f f ’ ) 

284 DataBlock = ones ( [ s i z e ( ImgBlock ) , 3 ] ) ; 

285 DataBlock ( : , : , : , 1 ) = f i b e rVa l i d ; 

286 DataBlock ( : , : , : , 2 ) = f i b e rB ina ry ; 

287 imshow3D ( DataBlock ) 

288 c l e a r DataBlock 

289 

290 

291 % Check accuracy o f blobs 

292 overlapBlockB = blobBlockStack ; 
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293 overlapBlockB ( blobVal id==0)=0; % over lap o f two blob 

data s e t s 

294 evBlockB = blobBlockStack ; 

295 evBlockB ( overlapBlockB==1)=0; 

296 veBlockB = blobVal id ; 

297 veBlockB ( overlapBlockB==1)=0; 

298 overlapB = sum(sum(sum( overlapBlockB ) ) ) ; 

299 expAloneB = sum(sum(sum( evBlockB ) ) ) ; 

300 val idAloneB = sum(sum(sum( veBlockB ) ) ) ; 

301 blobAccuracy = overlapB /( overlapB+expAloneB+ 

val idAloneB ) ; 

302 textO = [ ’ Blob Accuracy : ’ , num2str ( blobAccuracy ) ] ; 

303 di sp ( textO ) ; 

304 

305 % Display blob over lap 

306 f i g u r e ( ’Name ’ , ’ Blob Overlap [ Red−Val idat ion , Blue− 

Processed ] ’ , ’ NumberTitle ’ , ’ o f f ’ ) 

307 DataBlock = ones ( [ s i z e ( ImgBlock ) , 3 ] ) ; 

308 DataBlock ( : , : , : , 1 ) = blobVal id ; 

309 DataBlock ( : , : , : , 2 ) = blobBlockStack ; 

310 imshow3D ( DataBlock ) 

311 c l e a r DataBlock 

312 end 

313 c l e a r ImgBlock 

314 c l e a r ImgOrig 

315 

316 % Ske l e t on i z e 2D S i c e s to determine diameter o f f i b e r s 

317 ske lS tack = f a l s e ( s i z e ( f i b e rB ina ry ) ) ; 

318 
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319 f o r i = 1 : s i z e ( f ibe rB inary , 3 ) 

320 ske lS tack ( : , : , i ) = bwmorph( s k e l e t on ( f i b e rB ina ry ( : , : , i 

) ) >35, ’ s k e l ’ , I n f ) ; % Code spends 30 minutes here 

321 end 

322 fullCNT =sum(sum(sum( f i b e rB ina ry ) ) ) ; 

323 skelCNT = sum(sum(sum( ske lS tack ) ) ) ; 

324 

325 % assuming normally c i r c u l a r rad iu s the diameter shoud be 

the t o t a l 

326 % f i b e r volume d iv id e by the l ength o f the s k e l e t on 

327 f i bD ia = round ( fullCNT/skelCNT) ; 

328 

329 

330 %% Calcu la te f i b r e diameter f o r r e g i on s o f source image 

datase t 

331 % Find nodes 

332 SegmentData = c e l l ( s i z e ( ske lStack , 3 ) , 1 ) ; 

333 maskDil = s t r e l ( ’ d i sk ’ , round ( f i bD ia * 1 . 5 ) ) ; 

334 f o r s l i = 1 : s i z e ( ske lStack , 3 ) 

335 branchPoints = bwmorph( ske lS tack ( : , : , s l i ) , ’ 

branchpoints ’ ) ; 

336 

337 % Find s e c t i o n s ( cons t ruc t s e c t i o n a l l i s t ) 

338 al lSegment = ske lS tack ( : , : , s l i ) ; 

339 al lSegment ( branchPoints==1)=0; 

340 segments = bwconncomp( al lSegment ) ; 

341 s l i c eDa ta = z e r o s ( segments . NumObjects , 2 ) ; 

342 

343 f o r i = 1 : segments . NumObjects 
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344 % Mask r eg i on f o r ana l y s i s 

345 curSke l = f a l s e ( s i z e ( a l lSegment ) ) ; 

346 curSke l ( segments . Pix e l I dxL i s t { i }) = 1 ; 

347 curMask = imd i l a t e ( curSkel , maskDil ) ; 

348 

349 curSegment = f i b e rB ina ry ( : , : , s l i ) ; 

350 curSegment ( curMask==0)=0; 

351 

352 % Make sure ana l y s i s i s captur ing only one r eg i on 

( no ne ighbors ) 

353 s t a t s = r eg ionprops ( curSegment , ’ P i x e l L i s t ’ , ’ Area ’ 

) ; 

354 i f ( numel ( s t a t s ) >2) 

355 curSegment = f a l s e ( s i z e ( curSegment ) ) ; 

356 l a r g e s t = 1 ; 

357 curSta t s = s t a t s (1 ) ; 

358 area1 = curSta t s . Area ; 

359 f o r k = 2 : s i z e ( s t a t s , 1 ) 

360 curSta t s = s t a t s ( k ) ; 

361 i f ( curSta t s . Area>area1 ) 

362 l a r g e s t = k ; 

363 area1 = curSta t s . Area ; 

364 end 

365 end 

366 cu rP ix e l s = s t a t s ( l a r g e s t ) . P ix e l L i s t ; 

367 f o r m = 1 : s i z e ( curP ixe l s , 1 ) 

368 curSegment ( cu rP ix e l s (m, 2 ) , c u rP ix e l s (m, 1 ) ) 

=1; 

end 369 



150 

370 end 

371 segDiam = sum(sum( curSegment ) ) /sum(sum( curSke l ) ) ; 

372 

373 s l i c eDa ta ( i , 1 ) 

374 s l i c eDa ta ( i , 2 ) 

375 end 

376 =SegmentData{ s l i } 

= sum(sum( curSke l ) ) ; 

= segDiam ; 

s l i c eDa ta ; 

377 end 

378 % Convert data s t r u c t u r e to a rray 

379 f i b e r L e n D i a = c e l l 2 m a t ( SegmentData ) ; 

380 

381 % Remove s h o r t f i b e r l e n g t h s , i n v a l i d r e a d i n g s / n o i s e 

382 lenThresh = 10 ; 

383 f iberLenDia ( f iberLenDia ( : , 1 )<lenThresh , : ) = [ ] ; 

384 

385 % Convert va lue s from p i x e l s to um 

386 fiberLenDiaUM = f iberLenDia . * xyRes ; 

387 di sp ( [ ’ Average c a n a l i c u l i diameter : ’ , num2str (mean( 

fiberLenDiaUM ( : , 2 ) ) ) , ’ um ’ ] ) 

388 OuputData . fiberLenDiaUM = fiberLenDiaUM ; % Save f i b e r 

diameter data 

389 

390 c l e a r f i b e rB ina ry 

391 c l e a r ske lS tack 

392 

393 %% Adjust data to be i s ome t r i c 

394 % Thicken binary image b locks to make voxe l s i s o t r o p i c 

395 sFactor = round ( zRes/xyRes ) ; 
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396 newBlock = f a l s e ( s i z e ( BinaryStack , 1 ) , s i z e ( BinaryStack , 2 ) , 

s i z e ( BinaryStack , 3 ) * sFactor ) ; 

397 f o r i = 1 : numSlices 

398 s t a r t I nd = ( ( i −1)* sFactor )+1; 

399 endInd = ( i * sFactor )+1; 

400 f o r k = s t a r t I nd : endInd 

401 newBlock ( : , : , k ) = BinaryStack ( : , : , i ) ; 

402 end 

403 end 

404 BinaryStack = newBlock ; 

405 c l e a r newBlock 

406 

407 

408 

409 %% Smooth the 3D f i b r e s & Blobs in the datablock 

410 i f ( smooth3D ) 

411 BinaryStack = imc lo se ( BinaryStack , s t r e l 3 d ( round ( 

sFactor /2) ) ) ; % smooth 3D geometry 

412 end 

413 f o r i = 1 : s i z e ( BinaryStack , 1 ) 

414 temp = BinaryStack ( i , : , : ) ; 

415 temp = reshape ( temp , s i z e ( temp , 2 ) , s i z e ( temp , 3 ) ) ; 

416 BinaryStack ( i , : , : ) = bwsmooth ( temp , params ) ; 

417 end 

418 f o r i = 1 : s i z e ( BinaryStack , 2 ) 

419 temp = BinaryStack ( : , i , : ) ; 

420 temp = reshape ( temp , s i z e ( temp , 1 ) , s i z e ( temp , 3 ) ) ; 

421 BinaryStack ( : , i , : ) = bwsmooth ( temp , params ) ; 

422 end 
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423 

424 %% Re−segment blobs from f i b e r s in 3D post smoothing 

425 % Have to do t h i s post 3D th i cken ing and smoothing so 

that the f i b e r s 

426 % don ’ t end up mass ive ly d i sconnected from the blob 

r e g i on s 

427 blobMask = imopen ( BinaryStack , s t r e l 3 d ( voxFi l tDia ) ) ; % 

Segment blobs 

428 blobMask = f a s tD i l a t e ( blobMask , sFactor ) ; 

429 blobBlock = BinaryStack ; 

430 blobBlock ( blobMask==0)=0; 

431 blobBlock = bwareaopen ( blobBlock , blobMinArea* sFactor ) ; 

432 f i b e rB i na r y I s o = BinaryStack ; % Assign f i b e r s 

433 f i b e rB i na r y I s o ( blobBlock ) =0; 

434 c l e a r blobMask 

435 c l e a r BinaryStack 

436 

437 %% Blob E l l i p s o i d ana l y s i s 

438 

439 blobBlock = bwareaopen ( blobBlock , 5 000 ) ; 

440 blobBlock = imopen ( blobBlock , s t r e l 3 d ( sFactor ) ) ; 

441 blobBlock ( 1 : 2 * sFactor , : , : ) =0; 

442 blobBlock ( s i z e ( blobBlock , 1 ) −2*sFactor : end , : , : ) =0; 

443 blobBlock ( : , 1 : 2 * sFactor , : ) =0; 

444 blobBlock ( : , s i z e ( blobBlock , 2 ) −2*sFactor : end , : ) =0; 

445 

446 % Se l e c t l a r g e s t blob f o r ana l y s i s 

447 s t a t s = r eg ionprops ( blobBlock , ’ P i x e l L i s t ’ , ’ Area ’ ) ; 

448 i f ( numel ( s t a t s ) >2) 



153 

449 blobBlock = f a l s e ( s i z e ( blobBlock ) ) ; 

450 l a r g e s t = 1 ; 

451 curSta t s = s t a t s (1 ) ; 

452 area1 = curSta t s . Area ; 

453 f o r k = 2 : s i z e ( s t a t s , 1 ) 

454 curSta t s = s t a t s ( k ) ; 

455 i f ( curSta t s . Area>area1 ) 

456 l a r g e s t = k ; 

457 area1 = curSta t s . Area ; 

458 end 

459 end 

460 cu rP ix e l s = s t a t s ( l a r g e s t ) . P ix e l L i s t ; 

461 f o r m = 1 : s i z e ( curP ixe l s , 1 ) 

462 blobBlock ( cu rP ix e l s (m, 2 ) , c u rP ix e l s (m, 1 ) , c u rP ix e l s 

(m, 3 ) ) =1; 

463 end 

464 end 

465 

466 

467 % Find edge voxe l s 

468 curEdge = imerode ( blobBlock , s t r e l 3 d (3 ) ) ; 

469 b lobBlockShe l l=blobBlock ; 

470 b lobBlockShe l l ( curEdge==1)=0; %change MV 

471 c l e a r curEdge 

472 ind = f i nd ( b lobBlockShe l l ) ; %change MV 

473 [ yInd , xInd , zInd ] = ind2sub ( s i z e ( b lobBlockShe l l ) , ind ) ; 

%change MV 

474 
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475 [ ˜ , r ad i i , evecs , v , ˜ ] = e l l i p s o i d f i t ( [ xInd yInd 

zInd ] , ’ ’ ) ; 

476 

477 mind = [ 0 0 0 ] ; 

478 maxd = s i z e ( b lobBlockShe l l ) ; %change MV 

479 c l e a r b lobBlockShe l l 

480 nsteps = 100 ; 

481 s tep = ( maxd − mind ) / nsteps ; 

482 [ x , y , z ] = meshgrid ( l i n s p a c e ( mind (1) − s tep (1 ) , maxd 

(1 ) + s tep (1 ) , nsteps ) , l i n s p a c e ( mind (2) − s tep (2 ) , 

maxd(2) + s tep (2 ) , nsteps ) , l i n s p a c e ( mind (3) − s tep 

(3 ) , maxd(3) + s tep (3 ) , nsteps ) ) ; 

483 

484 E l l i p s o i d = v (1 ) *x . * x + v (2) * y . * y + v (3) * z . * z + 

. . . 

485 2*v (4 ) *x . * y + 2*v (5 ) *x . * z + 2*v (6 ) * y . * z + . . . 

486 2*v (7 ) *x + 2*v (8 ) *y + 2*v (9 ) * z ; 

487 e l l i p S u r f = i s o s u r f a c e ( x , y , z , E l l i p s o i d , −v (10) ) ; 

488 

489 % Display e l l i p s o i d and sample o f source datapo int s 

490 f i g u r e ( ) 

491 hold on 

492 temp = [ xInd , yInd , zInd ] ; 

493 i f ( numel ( xInd ) >2000) 

494 temp = datasample ( temp ,2000 ) ; 

495 end 

496 s c a t t e r 3 ( temp ( : , 1 ) , temp ( : , 2 ) , temp ( : , 3 ) ) ; 

497 p = patch ( e l l i p S u r f ) ; 

498 s e t ( p , ’ FaceColor ’ , ’ g ’ , ’ EdgeColor ’ , ’ none ’ ) ; 
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499 caml ight ; 

500 l i g h t i n g phong ; 

501 daspect ( [ 1 , 1 , 1 ] ) 

502 ax i s equal 

503 hold o f f 

504 drawnow 

505 

506 rad i iO = r a d i i ; 

507 r a d i i = abs ( r a d i i ) ; 

508 i f ( r a d i i (1 )>r a d i i (2 ) && r a d i i (1 )>r a d i i ( 3 ) ) % 1 i s long 

ax i s 

509 longAxis = r a d i i (1 ) ; 

510 i f ( r a d i i (2 )>r a d i i (3 ) ) 

511 sAxis1 = r a d i i (2 ) ; 

512 sAxis2 = r a d i i (3 ) ; 

513 e l s e 

514 sAxis1 = r a d i i (3 ) ; 

515 sAxis2 = r a d i i (2 ) ; 

516 end 

517 l ongOr ient = evecs ( : , 1 ) ; 

518 e l s e i f ( r a d i i (2 )>r a d i i (1 ) && r a d i i (2 )>r a d i i ( 3 ) ) % 2 i s 

long ax i s 

519 longAxis = r a d i i (2 ) ; 

520 i f ( r a d i i (1 )>r a d i i (3 ) ) 

521 sAxis1 = r a d i i (1 ) ; 

522 sAxis2 = r a d i i (3 ) ; 

523 e l s e 

524 sAxis1 = r a d i i (3 ) ; 

525 sAxis2 = r a d i i (1 ) ; 
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526 end 

527 l ongOr ient = evecs ( : , 1 ) ; 

528 e l s e % 3 i s long ax i s 

529 longAxis = r a d i i (3 ) ; 

530 i f ( r a d i i (1 )>r a d i i (2 ) ) 

531 sAxis1 = r a d i i (1 ) ; 

532 sAxis2 = r a d i i (2 ) ; 

533 e l s e 

534 sAxis1 = r a d i i (2 ) ; 

535 sAxis2 = r a d i i (1 ) ; 

536 end 

537 l ongOr ient = evecs ( : , 1 ) ; 

538 end 

539 

540 longAxisUM = longAxis *xyRes ; 

541 sAxis1UM = sAxis1 *xyRes ; 

542 sAxis2UM = sAxis2 *xyRes ; 

543 

544 % Orientat i on o f long ax i s with r e sp e c t to z−ax i s ( in 

degree s ) 

545 theta = atan ( ( s q r t ( longOr ient ( 1 , 1 ) ˆ2 + l ongOr ient ( 2 , 1 ) ˆ2) 

) / longOr ient ( 3 , 1 ) ) * 57 . 2 958 ; 

546 

547 % Calcu la te s p h e r i c i t y 

548 l a c Sph e r i c i t y = sAxis2 / longAxis ; 

549 l acSur fArea = 4* pi * ( ( ( ( longAxisUM*sAxis1UM) ̂ 1.6+( 

longAxisUM*sAxis2UM) ̂ 1.6+(sAxis1UM*sAxis2UM) ˆ1 . 6 ) /3) 

ˆ (1/1 . 6 ) ) ; 

550 lacVolume = (4/3) * pi * longAxisUM*sAxis1UM*sAxis2UM ; 
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551 lacVolumeTrue = sum(sum(sum( blobBlock ) ) ) *xyRes*xyRes* 

xyRes ; 

552 l acOblat = 2 * ( ( sAxis1−longAxis ) /( sAxis2−longAxis ) ) −1; 

553 di sp ( [ ’ Lacunae Sphe r i c i t y : ’ , num2str ( l a c Sph e r i c i t y ) ] ) 

554 di sp ( [ ’ Lacunae Sur face Area : ’ , num2str ( lacSur fArea ) , ’ um 

ˆ2 ’ ] ) 

555 di sp ( [ ’ Lacunae E l l i p Volume : ’ , num2str ( lacVolume ) , ’ umˆ3 ’ 

] ) 

556 di sp ( [ ’ Lacunae True Volume : ’ , num2str ( lacVolumeTrue ) , ’ um 

ˆ3 ’ ] ) 

557 di sp ( [ ’ Lacunae Oblateness : ’ , num2str ( lacOblat ) ] ) 

558 

559 % Construct volume block o f e l l i p s o i d 

560 e l l i p s e S o l i d = polygon2voxe l ( e l l i p S u r f , s i z e ( blobBlock ) , ’ 

none ’ ) ; 

561 f o r i = 1 : s i z e ( e l l i p s e S o l i d , 3 ) 

562 e l l i p s e S o l i d ( : , : , i ) = i m f i l l ( e l l i p s e S o l i d ( : , : , i ) , ’ 

ho l e s ’ ) ; 

563 end 

564 c l e a r e l l i p S u r f 

565 

566 % Create s h e l l r eg i on around e l l i p s o i d to search f o r 

connect ing 

567 % c a n a l i c u l i 

568 sh e l lTh i ck = 2* round ( sAxis2 ) ; 

569 % l a cunaShe l l = imd i l a t e ( blobBlock , s t r e l 3 d ( sh e l lTh i ck ) ) ; 

570 l a cunaShe l l = f a s tD i l a t e ( blobBlock , s h e l lTh i ck ) ; 

571 

572 
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573 % Ske l e t on i z e the f i b r e s 

574 f S k e l = Skeleton3D ( f i b e rB i na r y I s o ) ; % Code spends 26 

minutes here 

575 

576 w = s i z e ( fSke l , 1 ) ; 

577 l = s i z e ( fSke l , 2 ) ; 

578 h = s i z e ( fSke l , 3 ) ; 

579 

580 % I n i t i a l s tep : condense , convert to voxe l s and back 

581 minBranchLen = 4* sFactor ; 

582 [ ˜ , node , l i n k ] = Skel2Graph3D ( fSke l , minBranchLen ) ; 

583 

584 % Total l ength o f network 

585 wl = sum( c e l l f u n ( ’ l ength ’ ,{ node . l i n k s }) ) ; 

586 

587 s k e l 2 = Graph2Skel3D ( node , l i nk ,w, l , h ) ; 

588 [ ˜ , canNode , canLink ] = Skel2Graph3D ( ske l2 , 0 ) ; 

589 

590 % Calcu la te new t o t a l l ength o f network 

591 wl new = sum( c e l l f u n ( ’ l ength ’ ,{ canNode . l i n k s }) ) ; 

592 

593 % I t e r a t e the same s t ep s un t i l network l ength changed by 

l e s s than 0.5% 

594 whi le ( wl new˜=wl ) 

595 wl = wl new ; 

596 

597 s k e l 2 = Graph2Skel3D ( canNode , canLink ,w, l , h ) ; 

598 [ ˜ , canNode , canLink ] = Skel2Graph3D ( ske l2 , 

minBranchLen ) ; 
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599 

600 wl new = sum( c e l l f u n ( ’ l ength ’ ,{ canNode . l i n k s }) ) ; 

601 end 

602 s k e l 3 = Graph2Skel3D ( canNode , canLink ,w, l , h ) ; 

603 OuputData . canNodes = canNode ; 

604 OuputData . canLinks = canLink ; 

605 

606 % Display r e s u l t 

607 debug = 0 ; 

608 i f ( debug==1) 

609 f i g u r e ( ) ; 

610 hold on ; 

611 f o r i =1: l ength ( canNode ) 

612 

613 x1 = canNode ( i ) . comx ; 

614 y1 = canNode ( i ) . comy ; 

615 z1 = canNode ( i ) . comz ; 

616 

617 i f ( canNode ( i ) . ep==1) 

618 nco l = ’ c ’ ; 

619 e l s e 

620 nco l = ’ y ’ ; 

621 end 

622 

623 f o r j =1: l ength ( canNode ( i ) . l i n k s ) % draw a l l 

connect ions o f each node 

624 i f ( canNode ( canNode ( i ) . conn ( j ) ) . ep==1) 

625 c o l= ’ k ’ ; % branches are black 

626 e l s e 
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627 c o l= ’ r ’ ; % l i n k s are red 

628 end 

629 i f ( canNode ( i ) . ep==1) 

630 c o l= ’ k ’ ; 

631 end 

632 

633 

634 % Draw edges as l i n e s us ing voxe l po s i t i o n s 

635 f o r k=1: l ength ( canLink ( canNode ( i ) . l i n k s ( j ) ) . 

point )−1 

636 [ x3 , y3 , z3 ]= ind2sub ( [w, l , h ] , canLink ( 

canNode ( i ) . l i n k s ( j ) ) . point ( k ) ) ; 

637 [ x2 , y2 , z2 ]= ind2sub ( [w, l , h ] , canLink ( 

canNode ( i ) . l i n k s ( j ) ) . point ( k+1) ) ; 

638 l i n e ( [ y3 y2 ] , [ x3 x2 ] , [ z3 z2 ] , ’ Color ’ , co l , 

’ LineWidth ’ , 2 ) ; 

639 end 

640 end 

641 

642 % Draw a l l nodes as ye l low c i r c l e s 

643 p lo t3 ( y1 , x1 , z1 , ’ o ’ , ’ Markers ize ’ , 9 , . . . 

644 ’ MarkerFaceColor ’ , ncol , . . . 

645 ’ Color ’ , ’ k ’ ) ; 

646 

647 end 

648 ax i s image ; a x i s o f f ; 

649 s e t ( gcf , ’ Color ’ , ’ white ’ ) ; 

650 drawnow ; 

651 end 
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652 

653 

654 

655 % Find endpoints on c a n a l i c u l i s k e l e t on 

656 endPts =f a l s e ( s i z e ( f i b e rB i na r y I s o ) ) ; 

657 f o r i =1: l ength ( canNode ) 

658 x1 = round ( canNode ( i ) . comx) ; 

659 y1 = round ( canNode ( i ) . comy) ; 

660 z1 = round ( canNode ( i ) . comz ) ; 

661 

662 i f ( canNode ( i ) . ep==1) 

663 endPts ( x1 , y1 , z1 ) =1; 

664 end 

665 end 

666 

667 

668 

669 % Ouput t o t a l l eng th s o f a l l c a n a l i c u l a i 

670 l inkLengths = z e r o s ( numel ( canLink ) , 1 ) ; 

671 f o r i = 1 : numel ( canLink ) 

672 l inkLengths ( i ) = numel ( canLink ( i ) . po int ) ; 

673 end 

674 di sp ( [ ’ Average c a n a l i c u l i l ength : ’ , num2str (mean( 

l inkLengths ) ) ] ) 

675 

676 

677 %% Display c a nu l i c u l a i near the lacunae ( i . e . with in 

s h e l l r eg i on ) 

678 i f ( display3D ) 
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679 f ib re2show = s k e l 3 ; 

680 e l l i p s e S h e l l L o c a l = f a l s e ( s i z e ( l a cunaShe l l ) ) ; 

681 index = f i nd (sum(sum( lacunaShe l l , 2 ) , 3 ) ) ; 

682 xF = index (1 ) −100; 

683 i f (xF<1) 

684 xF = 1 ; 

685 end 

686 xB = index ( end ) +100; 

687 i f (xB>s i z e ( l acunaShe l l , 1 ) ) 

688 xB = s i z e ( l acunaShe l l , 1 ) ; 

689 end 

690 index = f i nd (sum(sum( lacunaShe l l , 1 ) , 3 ) ) ; 

691 yF = index (1 ) −100; 

692 i f (yF<1) 

693 yF = 1 ; 

694 end 

695 yB = index ( end ) +100; 

696 i f (yB>s i z e ( l acunaShe l l , 2 ) ) 

697 yB = s i z e ( l acunaShe l l , 2 ) ; 

698 end 

699 

700 e l l i p s e S h e l l L o c a l (xF : xB , yF : yB , : ) = 1 ; 

701 f ib re2show ( l a cunaShe l l ==0)=0; 

702 

703 f i g u r e ( ) 

704 sSu r f a c e s = i s o s u r f a c e ( f ibre2show , 0 . 5 ) ; % 

s k e l e t on i z e d f i b e r s 

705 xyz = sSu r f a c e s . v e r t i c e s ; 

706 t r i = sSu r f a c e s . f a c e s ; 
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707 t r i s u r f ( t r i , xyz ( : , 1 ) , xyz ( : , 2 ) , xyz ( : , 3 ) , ’ FaceColor ’ , ’ 

red ’ , ’ EdgeColor ’ , ’ none ’ , ’ FaceAlpha ’ , 1 ) 

708 daspect ( [ 1 , 1 , 1 ] ) ; view (3 ) ; ax i s t i g h t ; caml ight ; 

l i g h t i n g gouraud % Format view 

709 hold on 

710 

711 sSu r f a c e s = i s o s u r f a c e ( blobBlock , 0 . 5 ) ; % s imp l i f i e d 

lacunae 

712 xyz = sSu r f a c e s . v e r t i c e s ; 

713 t r i = sSu r f a c e s . f a c e s ; 

714 t r i s u r f ( t r i , xyz ( : , 1 ) , xyz ( : , 2 ) , xyz ( : , 3 ) , ’ FaceColor ’ , ’ 

ye l low ’ , ’ EdgeColor ’ , ’ none ’ , ’ FaceAlpha ’ , 0 . 3 ) 

715 

716 f i b e rB ina ryLoca l = f i b e rB i n a r y I s o ; 

717 f i b e rB ina ryLoca l ( l a cunaShe l l ==0)=0; 

718 sSu r f a c e s = i s o s u r f a c e ( f ibe rB inaryLoca l , 0 . 5 ) ; % 

s imp l i f i e d c a n a l i c u l i 

719 xyz = sSu r f a c e s . v e r t i c e s ; 

720 t r i = sSu r f a c e s . f a c e s ; 

721 t r i s u r f ( t r i , xyz ( : , 1 ) , xyz ( : , 2 ) , xyz ( : , 3 ) , ’ FaceColor ’ , ’ 

green ’ , ’ EdgeColor ’ , ’ none ’ , ’ FaceAlpha ’ , 0 . 5 ) 

722 

723 

724 % f o r i =1: l ength ( canNode ) % end po in t s 

725 % x1 = round ( canNode ( i ) . comx) ; 

726 % y1 = round ( canNode ( i ) . comy) ; 

727 % z1 = round ( canNode ( i ) . comz ) ; 

728 % 

729 % i f ( canNode ( i ) . ep==1) 
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730 % e l l i p s e S h e l l T = l a cunaShe l l ; 

731 % e l l i p s e S h e l l T ( x1 , y1 , z1 ) =0; 

732 % i f (sum(sum(sum( e l l i p s e S h e l l T ) ) )<sum(sum(sum 

( l a cunaShe l l ) ) ) ) 

733 % p lo t3 ( y1 , x1 , z1 , ’ o ’ , ’ Markers ize ’ , 5 , . . . 

734 % ’ MarkerFaceColor ’ , ’ c ’ , . . . 

735 % ’ Color ’ , ’ k ’ ) ; 

736 % end 

737 % end 

738 % end 

739 % 

740 % % c o l o r a l l non−connected endpoints that are nearby 

741 % lacunaLocalCK = e l l i p s e S h e l l L o c a l ; 

742 % lacunaLocalCK ( l a cunaShe l l ) =0; 

743 % f o r i =1: l ength ( canNode ) % end po in t s 

744 % x1 = round ( canNode ( i ) . comx) ; 

745 % y1 = round ( canNode ( i ) . comy) ; 

746 % z1 = round ( canNode ( i ) . comz ) ; 

747 % 

748 % i f ( canNode ( i ) . ep==1) 

749 % e l l i p s e S h e l l T = lacunaLocalCK ; 

750 % e l l i p s e S h e l l T ( x1 , y1 , z1 ) =0; 

751 % i f (sum(sum(sum( e l l i p s e S h e l l T ) ) )<sum(sum(sum 

( lacunaLocalCK ) ) ) ) 

752 % p lo t3 ( y1 , x1 , z1 , ’ o ’ , ’ Markers ize ’ , 5 , . . . 

753 % ’ MarkerFaceColor ’ , ’ y ’ , . . . 

754 % ’ Color ’ , ’ k ’ ) ; 

755 % end 

756 % end 
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757 % end 

758 hold o f f 

759 drawnow 

760 end 

761 

762 % Count number o f enpo int s with in the lacunae s h e l l , 

assume those 

763 % segments o f f i b r e s are connect ing the the lacunae 

764 endPts ( l a cunaShe l l ==0)=0; 

765 connectedEndPnts = sum(sum(sum( endPts ) ) ) ; 

766 di sp ( [ ’ c a n a l i c u l i connect ing to lacunae : ’ , num2str ( 

connectedEndPnts ) ] ) 

767 

768 % c a l c u l a t ed connect ing l acunar dens i ty 

769 lacCanDensity = connectedEndPnts/ lacVolumeTrue ; 

770 di sp ( [ ’ c a n a l i c u l i connect ion dens i ty : ’ , num2str ( 

lacCanDensity ) , ’ per umˆ3 ’ ] ) 

771 

772 c l e a r lacunaLocalCK 

773 c l e a r e l l i p s e S h e l l L o c a l 

774 c l e a r l a cunaShe l l 

775 c l e a r endPts 

776 c l e a r f i b e rB i n a r y I s o 

777 

778 %% Thicken f i b e r network 

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 

779 % Create f i b r e diameter , e i t h e r s imple d i l a t e or a r i ng 

around 
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780 f i b e rB ina ryD i l = f a s tD i l a t e ( ske l3 , round (mean ( f iberLenDia 

( : , 2 ) ) ) ) ; 

781 

782 f i b e rB ina ryD i l ( blobBlock==1)=0; % Keep o r i g i n a l blob 

geometr i e s f o r t h i s masking 

783 

784 f i g u r e ( ’Name ’ , ’ F ina l Cana l i c u l i ’ , ’ NumberTitle ’ , ’ o f f ’ ) % 

Display proce s sed f i b e r s 

785 imshow3D( f i b e rB ina ryD i l ) 

786 drawnow 

787 

788 

789 %% Create f i n a l b locks and save data 

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 

790 

791 combineFileName = s t r c a t (PathName , ’ FiberMask . mat ’ ) ; 

792 save ( combineFileName , ’ f i b e rB ina ryD i l ’ ) ; 

793 

794 combineFileName = s t r c a t (PathName , ’ BlobMask . mat ’ ) ; 

795 save ( combineFileName , ’ b lobBlock ’ ) ; 

796 

797 combineFileName = s t r c a t (PathName , ’ El l ipseMask . mat ’ ) ; 

798 save ( combineFileName , ’ e l l i p s e S o l i d ’ ) ; 

799 

800 combineFileName = s t r c a t (PathName , ’ LacunaeMask . mat ’ ) ; 

801 save ( combineFileName , ’ b lobBlock ’ ) ; 

802 

803 combineFileName = s t r c a t (PathName , ’ F ibe rSke l e ton . mat ’ ) ; 

804 save ( combineFileName , ’ s k e l 3 ’ ) ; 
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805 

806 combineFileName = s t r c a t (PathName , ’ OutputResults . mat ’ ) ; 

807 save ( combineFileName , ’OuputData ’ ) ; 

808 

809 

810 

811 % Save mreasured metr i c s to output f i l e 

812 resu l tFi l eName = s t r c a t (PathName , ’ Resu l t s . tx t ’ ) ; 

813 f i d = fopen ( resultFi leName , ’wt ’ ) ; % Check in double 

diameter r epo r t i ng 

814 f p r i n t f ( f i d , ’ Average Cana l i c u l i Diameter : %f um \n ’ ,mean 

( fiberLenDiaUM ( : , 2 ) ) ) ; 

815 f p r i n t f ( f i d , ’ Average Cana l i c u l i Segment Length (3D) : %f 

um \n ’ ,mean( l inkLengths ) ) ; 

816 f p r i n t f ( f i d , ’ Poros i ty volume f r a c t i o n : %f \n ’ , sum(sum( 

sum( f i b e rB ina ryD i l ) ) ) /( s i z e ( f i b e rB ina ryDi l , 1 ) * s i z e ( 

f i b e rB ina ryDi l , 2 ) * s i z e ( f i b e rB ina ryDi l , 3 ) ) ) ; 

817 f p r i n t f ( f i d , ’ Lacunar e l l i p s o i d ax i s l eng th s ( long to 

shor t ) : %f , %f , %f \n ’ , longAxisUM , sAxis1UM , sAxis2UM ) ; 

818 f p r i n t f ( f i d , ’ Lacunar e l l i p s o i d o r i e n t a t i o n : %f Degrees \ 

n ’ , theta ) ; 

819 f p r i n t f ( f i d , ’ Lacuna Sphe r i c i t y : %f \n ’ , l a c Sph e r i c i t y ) ; 

820 f p r i n t f ( f i d , ’ Lacuna Oblateness : %f \n ’ , l acOblat ) ; 

821 f p r i n t f ( f i d , ’ Lacuna Sur face Area : %f umˆ2 \n ’ , l acSur fArea 

) ; 

822 f p r i n t f ( f i d , ’ Lacuna Volume : %f umˆ3 \n ’ , lacVolume ) ; 

823 f p r i n t f ( f i d , ’ Lacuna True Volume : %f umˆ3 ’ , lacVolumeTrue ) 

; 

824 
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825 f p r i n t f ( f i d , ’ Cana l i c u l i connect ing to Lacunae : %d \n ’ , 

connectedEndPnts ) ; 

826 f p r i n t f ( f i d , ’ Cana l i c u l i connect ion dens i ty : %f per umˆ3 

827 \n ’ , lacCanDensity ) ; 

828 f c l o s e ( f i d ) ; 

829 

830 

831 %% Construct 3D r ep r e sn t a t i on o f c a n a l i c u l i and lacunae 

network 

832 i f ( display3DCan ) 

833 f i g u r e ( ) 

834 f i be rB inaryDi sp = padarray ( f i b e rB ina ryDi l , [ 1 1 1 ] , 0 ) ; 

835 sSu r f a c e s = i s o s u r f a c e ( f iberBinaryDisp , 0 . 5 ) ; 

836 xyz = sSu r f a c e s . v e r t i c e s ; 

837 t r i = sSu r f a c e s . f a c e s ; 

838 t r i s u r f ( t r i , xyz ( : , 1 ) , xyz ( : , 2 ) , xyz ( : , 3 ) , ’ FaceColor ’ , ’ 

ye l low ’ , ’ EdgeColor ’ , ’ none ’ , ’ FaceAlpha ’ , 1 ) 

839 daspect ( [ 1 , 1 , 1 ] ) ; view (3 ) ; ax i s t i g h t ; caml ight ; 

l i g h t i n g gouraud % Format view 

840 c l e a r f i be rB inaryDi sp 

841 

842 hold on 

843 blobBlockDisp = padarray ( blobBlock , [ 1 1 1 ] , 0 ) ; 

844 sSu r f a c e s = i s o s u r f a c e ( blobBlockDisp , 0 . 5 ) ; 

845 xyz = sSu r f a c e s . v e r t i c e s ; 

846 t r i = sSu r f a c e s . f a c e s ; 

847 t r i s u r f ( t r i , xyz ( : , 1 ) , xyz ( : , 2 ) , xyz ( : , 3 ) , ’ FaceColor ’ , ’ 

green ’ , ’ EdgeColor ’ , ’ none ’ , ’ FaceAlpha ’ , 1 ) 
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848 daspect ( [ 1 , 1 , 1 ] ) ; view (3 ) ; ax i s t i g h t ; caml ight ; 

l i g h t i n g gouraud % Format view 

849 c l e a r blobBlockDisp 

850 hold o f f 

851 end 

852 

853 toc % r epo r t to user how long ana l y s i s took 

854 end 
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