
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

5-2018

Memory Subsystems for Security, Consistency, and Scalability Memory Subsystems for Security, Consistency, and Scalability

Terry Ching-Hsiang Hsu
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Recommended Citation Recommended Citation
Hsu, Terry Ching-Hsiang, "Memory Subsystems for Security, Consistency, and Scalability" (2018). Open
Access Dissertations. 1734.
https://docs.lib.purdue.edu/open_access_dissertations/1734

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/open_access_dissertations
https://docs.lib.purdue.edu/etd
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1734&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/1734?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1734&utm_medium=PDF&utm_campaign=PDFCoverPages

MEMORY SUBSYSTEMS FOR SECURITY, CONSISTENCY, AND

SCALABILITY

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Terry Ching-Hsiang Hsu

In Partial Fulfllment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2018

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Patrick Eugster, Co-chair

Department of Computer Science

Dr. Mathias Payer, Co-chair

Department of Computer Science

Dr. Xiangyu Zhang

Department of Computer Science

Dr. Byoungyoung Lee

Department of Computer Science

Approved by:

Dr. Voicu Popescu by Dr. William J. Gorman

Head of the Graduate Program

iii

This dissertation is dedicated to my uncle and aunt, C.K. and Susan Hsu, whose

family has always supported me emotionally and fnancially along the way.

iv

ACKNOWLEDGMENTS

I must express my greatest appreciation to my advisor Prof. Patrick Eugster for his

patient guidance, enthusiastic encouragement, and insightful critiques of my research

work. He taught me how to think critically, work eÿciently, explain beautifully, and

aim for high quality with his ruthless standards. His continuous support over the years

of my doctorate drove me to complete the goals that I could never have imagined.

I must also express my sincere gratitude to my co-advisor Prof. Mathias Payer,

who guided me to overcome numerous obstacles during my study, who motivated me

to explore research interests in systems security, and whose attention to technical

details encouraged me to challenge myself when making design decisions. I thank the

rest of my thesis committee: Prof. Xiangyu Zhang and Prof. Byoungyoung Lee for

the fruitful and constructive discussions. In particular, I extend my thanks to Prof.

Byoungyoung Lee and his student Kyungtae Kim for their help in o˙ering me the

computing resources for my experiments. I acknowledge all of my co-authors and

collaborators who contributed to this dissertation. Thank you to Kevin Ho˙man,

Helge Brügner, Indrajit Roy, Kimberly Keeton for all the invaluable feedback.

would further like to thank my friends and peers for giving me advice on my research

papers and presentations, including Julian Stephen, William Culhane, James Lembke,

Danushka Menikkumbura, Bo Sang, Savvas Savvides, Srivatsan Ravi, Masoud Saeida

Ardekani, Scott Carr, Nathan Burow, Yuseok Jeon, Dr. William J. Gorman, Markus

Kusano, Haris Volos, Dhruva Chakrabarti, Hideaki Kimura, Tim Marsland, Jeremy

Andrus, Wei-Yen Day, Fang-Yu Rao, Meng-Lin Wu, and Hou-Jen Ko. And fnally, I

express my deepest gratitude to my wife, Chao-Jung, who have always believed in me

and supported all my dreams, and my son, Max, whose arrival made this incredible

journey even more joyful. I also thank my mom and sisters for their love and support.

I am also grateful for the NSF grant TC-1117065 that funded my research.

I

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xi

1 INTRODUCTION . 1
1.1 Background . 1

1.1.1 Security . 1
1.1.2 Consistency . 2
1.1.3 Scalability . 3

1.2 Problem Statement . 3
1.3 Thesis Statement . 4
1.4 Contributions . 4
1.5 Organization . 5

2 MEMORY SUBSYSTEM FOR SECURITY 6
2.1 Overview . 6
2.2 Related Work . 11
2.3 Threat Model . 15
2.4 Objectives . 15
2.5 SMV Model Design . 16

2.5.1 Memory Protection Domains . 16
2.5.2 Secure Memory Views . 17
2.5.3 SMVthread . 18
2.5.4 SMV API: User Space Library 18
2.5.5 SMV Architecture . 20
2.5.6 Application Examples . 21

2.6 Implementation . 24
2.6.1 SMV Communication Channel 25
2.6.2 Metadata Management . 25
2.6.3 Partially Shared Memory Space 26
2.6.4 Forking SMVthreads . 28
2.6.5 Page Fault Handler . 28

2.7 Evaluation . 30
2.7.1 Experiment Setup . 30
2.7.2 Example Policy . 30

vi

Page
2.7.3 Robustness Test . 30
2.7.4 Inspecting Isolation . 31
2.7.5 Security Evaluation . 31
2.7.6 PARSEC 3.0 Benchmarks . 34
2.7.7 Cherokee Web Server . 35
2.7.8 Mozilla Firefox Web Browser 37
2.7.9 Limitations . 38

2.8 Conclusion . 39

3 MEMORY SUBSYSTEM FOR CONSISTENCY 41
3.1 Overview . 41
3.2 Challenges in Using Non-volatile Memory 44

3.2.1 Non-volatile Memory . 44
3.2.2 Design Issues . 45

3.3 Related Work . 46
3.4 Programming Model . 49

3.4.1 Persistent Regions . 50
3.4.2 Inferring Consistent Program Points 50
3.4.3 Recovery Code . 53
3.4.4 Garbage Collection . 53
3.4.5 Example: K-means Clustering 55

3.5 Design and Implementation . 56
3.5.1 From Threads to Processes . 56
3.5.2 Logging . 59
3.5.3 Recovery . 62

3.6 Evaluation . 63
3.6.1 Setup . 63
3.6.2 Performance . 64
3.6.3 Benefts of Using NVM Versus SSDs 68
3.6.4 Benefts of Recovery . 70
3.6.5 Mnemosyne and Atlas . 70
3.6.6 Key-value Store . 72

3.7 Conclusion . 74

4 MEMORY SUBSYSTEM FOR SCALABILITY 75
4.1 Overview . 75
4.2 Background and Challenges . 78

4.2.1 Virtual Memory Size Limitation 78
4.2.2 Traditional Techniques and Issues 79
4.2.3 Non-volatile Memory . 80
4.2.4 Related Work . 80

4.3 PetaMem Design . 83
4.3.1 Autonomous Memory Spaces . 84

vii

Page
4.3.2 Inter-process Isolation . 84
4.3.3 Intra-process Isolation . 85
4.3.4 PetaMem API . 86

4.4 Recovery Engine . 88
4.4.1 Persistent Memory Views . 89
4.4.2 Fault Model . 90
4.4.3 Recovery Code . 91

4.5 Implementation . 92
4.5.1 PetaMem Channel . 94
4.5.2 PetaMem Metadata Management 94
4.5.3 Enabling Multiple AMSes . 95
4.5.4 PM Process and PMthreads Memory Management 97
4.5.5 Private Memory Allocation . 97
4.5.6 Enforcing Memory Isolation . 98
4.5.7 Recovering from Failures . 99

4.6 Evaluation . 99
4.6.1 Synopsis and Setup . 99
4.6.2 Performance: Sequential Access 100
4.6.3 Performance: Random Access 101
4.6.4 Application Recovery Speedup 104
4.6.5 Enforcement of Isolation . 106

4.7 Conclusion . 107

5 CONCLUSION . 108

REFERENCES . 110

VITA . 121

viii

LIST OF TABLES

Table Page

2.1 Issues and solutions for intra-process privilege separation techniques. . . . 10

2.2 List of primary SMV API. 19

2.3 Summary of component sizes in SMV. 25

3.1 NVthreads design decisions. 47

3.2 Application characteristics of PARSEC and Phoenix. 66

4.1 PetaMem component sizes. 93

ix

LIST OF FIGURES

Figure Page

2.1 SMV architecture. 20

2.2 Security-enhanced producer/consumer model with fne-grained memory
protection domains. 22

2.3 Security-enhanced Cherokee web server. 23

2.4 Security-enhanced Firefox. 24

2.5 Page fault handler fow chart. The SMV kernel performs additional priv-
ilege checks (marked in the gray box). 29

2.6 Runtime overhead of the SMV model for the multithreaded applications
in the PARSEC benchmark suite. 35

2.7 Throughput overhead of Cherokee server. 37

2.8 Runtime overhead of security-enhanced Mozilla Firefox web browser. . . . 38

3.1 Pseudo-code that appends to a persistent list. 46

3.2 Di˙erent types of nested critical sections. 52

3.3 Dependence between nested critical sections. 52

3.4 Pseudo-code for multithreaded K-means. 54

3.5 Overview of thread execution in NVthreads. 58

3.6 Tracking dependence between durable regions. 59

3.7 Overview of logging. 60

3.8 Fine-grained [61] vs coarse-grained tracking. 61

3.9 Phoenix applications . 64

3.10 PARSEC applications . 64

3.11 Average percentage of each 4KB page modifed by an application. Appli-
cations are ordered by total number of modifed pages, which is shown in
brackets. 67

3.12 Speedup compared to single core. Higher is better. 68

x

Figure Page

3.13 E˙ect of NVM page write delay on application performance. Speedups
are over SSD. Higher is better. 69

3.14 K-means recovery. Higher is better. 71

3.15 Benefts of NVthreads. Lower is better. 72

3.16 Throughput of Tokyo Cabinet. Higher is better. 73

4.1 The timeline of a PetaMem process. The PetaMem process memory ab-
straction allows a process to switch between di˙erent autonomous memory
spaces (AMSes) that can exist in the system beyond the process lifetime.
Note that AMS 2 contains two private domains with special privileges. . . 83

4.2 PetaMem AMS management API. 86

4.3 Example of PetaMem API usage. The PetaMem API associates a vari-
able name and a AMS upon allocation in a system-wide allocation log to
distinguish memory pages. 87

4.4 Example of PMthreads isolation in an AMS. 88

4.5 PetaMem isolation API. 89

4.6 Pseudo-code for crash recovery using PetaMem. 91

4.7 PetaMem recovery API. 92

4.8 PetaMem Architecture. 93

4.9 AMS memory management. 96

4.10 PetaMem pager privilege checks for intra-process isolation. The additional
privilege checks are marked in the shaded area. 98

4.11 STREAM performance. Lower is better. 100

4.12 Memory switch delays. Lower is better. 100

4.13 GUPS throughput. Higher is better. 102

4.14 GUPS TLB misses. Lower is better. 102

4.15 GUPS recovery speedup. Results are averaged over 10 runs. Higher is
better. 104

xi

ABSTRACT

Hsu, Terry C.-H. PhD, Purdue University, May 2018. Memory Subsystems for Secu-
rity, Consistency, and Scalability. Major Professors: Patrick Eugster and Mathias
Payer.

In response to the continuous demand for the ability to process ever larger datasets,

as well as discoveries in next-generation memory technologies, researchers have been

vigorously studying memory-driven computing architectures that shall allow data-

intensive applications to access enormous amounts of pooled non-volatile memory.

As applications continue to interact with increasing amounts of components and

datasets, existing systems struggle to eÿciently enforce the principle of least priv-

ilege for security. While non-volatile memory can retain data even after a power loss

and allow for large main memory capacity, programmers have to bear the burdens of

maintaining the consistency of program memory for fault tolerance as well as han-

dling huge datasets with traditional yet expensive memory management interfaces

for scalability. Today’s computer systems have become too sophisticated for existing

memory subsystems to handle many design requirements.

In this dissertation, we introduce three memory subsystems to address challenges

in terms of security, consistency, and scalability. Specifcally, we propose SMVs to

provide threads with fne-grained control over access privileges for a partially shared

address space for security, NVthreads to allow programmers to easily leverage non-

volatile memory with automatic persistence for consistency, and PetaMem to enable

memory-centric applications to freely access memory beyond the traditional process

boundary with support for memory isolation and crash recovery for security, consis-

tency, and scalability.

1

1 INTRODUCTION

This dissertation advances the design and implementation of traditional memory sub-

systems. Specifcally, the proposed memory subsystems address three important is-

sues in modern software: security, consistency, and scalability.

1.1 Background

This dissertation is mainly about achieving three things using memory subsystems:

security, the techniques for eÿcient memory compartmentalization; consistency, the

techniques for automatic persistence of consistent program states; and scalability, the

techniques for fast access to large amount of memory beyond the traditional process

boundary with support for memory isolation and crash recovery.

1.1.1 Security

Coordinating software components with di˙erent privilege levels is a key require-

ment for the stability and security of today’s computer systems. However, failing

to properly isolate components in the same address space has resulted in a substan-

tial amount of vulnerabilities. Enforcing the least privilege principle for memory

accesses can selectively isolate software components to restrict attack surface and

prevent unintended cross-component memory corruption. However, the boundaries

and interactions between software components are hard to reason about and exist-

ing approaches have failed to stop attackers from exploiting vulnerabilities caused by

poor isolation.

To address the challenges in selective memory isolation, we present the secure

memory views (SMV): a practical and eÿcient and memory system for secure and

2

selective memory isolation in monolithic multithreaded applications in Chapter 2.

SMV o˙ers explicit access control of memory and allows concurrent threads within the

same process to partially share or fully isolate their memory space in a controlled and

parallel manner following application requirements. An evaluation of our prototype in

the Linux kernel (TCB < 1,800 LOC) shows negligible runtime performance overhead

in real-world applications including Cherokee web server (< 0.69%), Apache httpd web

server (< 0.93%), and Mozilla Firefox web browser (< 1.89%) with at most 12 LOC

changes.

1.1.2 Consistency

Non-volatile memory technologies, such as memristor [1] and phase-change mem-

ory [2], will allow programs to persist data with regular memory instructions. Liber-

ated from the overhead to serialize and deserialize data to storage devices, programs

can aim for high performance and still be crash fault-tolerant. Unfortunately, to

leverage non-volatile memory, existing systems require hardware changes or extensive

program modifcations.

To help programmers to easily leverage non-volatile memory, we introduce

NVthreads, a memory subsystem and runtime that adds persistence to existing mul-

tithreaded C/C++ programs in Chapter 3. NVthreads is a drop-in replacement for

the pthread library and requires only tens of lines of program changes to leverage

non-volatile memory. NVthreads infers consistent states via synchronization points,

uses the process memory to bu˙er uncommitted changes, and logs writes to ensure a

program’s data is recoverable even after a crash. NVthreads’ page level mechanisms

result in good performance: applications that use NVthreads can be more than 2×

faster than state-of-the-art systems that favor fne-grained tracking of writes. Af-

ter a failure, iterative applications that use NVthreads gain speedups by resuming

execution.

3

1.1.3 Scalability

Data intensive applications — enabled by emerging non-volatile memory tech-

nologies and motivated by modern memory-driven computations — demands scalable

memory management for accessing vast amounts of main memory. A large memory

pool is only useful if applications can eÿciently access and protect data without

expensive context switches. No existing framework currently allows applications to

decouple memory from the process abstraction with privilege separation, thereby lim-

iting the scalability of memory-driven applications in the big data era.

In Chapter 4, we present the design and implementation of PetaMem: a mem-

ory subsystem that enables memory-centric applications to freely access memory be-

yond the traditional process boundary with support for isolation and crash recovery.

PetaMem completely decouples the traditionally fused abstractions of processes and

memory from space and time. The novel kernel-level pager and reference monitor in

PetaMem organize virtual memory in di˙erent address spaces eÿciently and securely.

PetaMem provides a crash recovery engine to make applications running on non-

volatile memory systems fault tolerant. Our evaluation shows that applications using

PetaMem can outperform the traditional process-centric design by two orders of mag-

nitude when accessing memory in multiple address spaces, and the recovery engine

provides three orders of magnitude speedup when recovering from crash failures.

1.2 Problem Statement

No practical memory subsystems currently allow applications to (1) achieve selec-

tive intra-process isolation with negligible overheads, (2) guarantee program consis-

tent states automatically with low overheads, or (3) access large amount of memory

beyond the traditional process boundary with memory isolation and crash recovery

support. Current solutions impose signifcant programming burdens and performance

overheads on applications when isolating, persisting, and accessing large amount of

memory.

4

1.3 Thesis Statement

The thesis of this dissertation is that we can advance the design and implementa-

tion of existing memory subsystems to enhance the security, consistency, and scala-

bility of applications through a software approach. This thesis will introduce memory

subsystems to achieve strong intra-process isolation for security, automatic data per-

sistence for consistency, and fast access to large amount of memory for scalability.

1.4 Contributions

This dissertation makes the following contributions.

First, the design and implementation of our memory subsystem which provides

threads with fne-grained control over privileges for a partially shared address space.

Second, the specifcation of an application programming interface for programmers

that facilitates porting existing legacy software for intra-process isolation.

Third, an evaluation of our memory subsystem prototype showing a practical

and eÿcient memory subsystem to achieve intra-process isolation for multithreaded

applications.

Fourth, the design and implementation of our memory subsystem and runtime

that infers when data structures are consistent and adds durability semantics with

very few program modifcations.

Fifth, an extensive evaluation of our memory subsystem demonstrating the ease

of use for programmers to leverage non-volatile memory in practice.

Sixth, the design and implementation of our memory subsystem that enables appli-

cations to eÿciently access large amount of memory without requiring any hardware

modifcations.

Seventh, the specifcation of an application programming interface for program-

mers to access large amount of memory in memory-centric computing.

5

Eighth, an evaluation of our memory subsystem showing the performance improve-

ment over the traditional process-centric architecture when accessing large amount of

memory.

Finally, this dissertation provides details and experience for designing practical

memory subsystems from high-level concepts, design logic, to low-level implementa-

tion techniques.

1.5 Organization

This dissertation has fve chapters. Chapter 2 presents our memory subsystem

that enforces strict intra-process isolation for security. Chapter 3 describes our mem-

ory subsystem that persists consistent program states in non-volatile memory for

consistency. Chapter 4 illustrates our memory subsystem that eÿciently addresses

large amount of memory for scalability. Finally, Chapter 5 concludes the dissertation.

6

2 MEMORY SUBSYSTEM FOR SECURITY

In this chapter we present a memory subsystem [3] for selective intra-process isolation

along with an extensive evaluation of the system prototype. We propose a correspond-

ing application programming interface with concrete application examples.

2.1 Overview

Ideally, software components are separated logically into small fault compart-

ments, so that a defect in one component cannot compromise the others. This con-

cept of privilege separation [4, 5] protects confdentiality and integrity of data (and

code) that should only be accessible from small trusted components. However, most

applications use a single address space, shared among all components and threads.

Redesigning all legacy multithreaded applications to use processes for isolation is

impractical. Today’s software, such as web servers and browsers, enhances its func-

tionality through libraries, modules, and plugins that are developed independently

by various third-parties. Failing to properly separate privileges in applications and

confne software components in terms of their memory spaces leaves a system vul-

nerable to attacks such as privilege escalation, denial-of-service, bu˙er overfows, and

control-fow hijacking, jeopardizing both the stability and the security of the system.

This chapter develops and evaluates a new memory subsystem known as secure

memory views (SMVs) to enable strict thread isolation for C/C++ multithreaded

applications. SMV is a programming abstraction to support selective memory isola-

tion with kernel-level implementation. The extensive evaluation suggests that SMV

is robust and practical for large-scale production software.

Many proposals exist for privilege separation in a monolithic application. The frst

generation privilege separation techniques focus on splitting a process into di˙erent

7

single-process compartments. Provos et al. [6] presented an intra-process privilege

separation case study by manually partitioning OpenSSH components into privileged

master processes and unprivileged slave processes. Privtrans [7] automated the par-

titioning procedure. Wedge [8] then introduced capabilities to privilege separation

and Salus [9] enabled a dynamic security policy. Unfortunately, all these techniques

cannot support multithreaded compartments.

Second generation privilege separation techniques like Arbiter [10] aimed to sup-

port multithreaded applications by allowing concurrent thread execution. However,

Arbiter’s implementation for separating memory space and its serialized user-level

memory management impose prohibitive runtime overhead (200% – 400% for mem-

ory operations). As a result, the thread execution is not fully concurrent since all

threads must wait on a global barrier to tag memory pages for capabilities. In addi-

tion, the required retroftting e˙orts for legacy software are non-trivial, as the case

studies showed that at least hundreds of lines of code (LOC) changes are required to

separate software components even for applications that have small code base sizes

(8K LOC).

We postulate that a third generation privilege separation technique for achieving

intra-process isolation in monolithic multithreaded applications such as the Cherokee

web server, Apache httpd, and the Mozilla Firefox web browser, needs to fulfll the

following requirements (which are only partially addressed by existing solutions) for

wide adoption:

- Genericity and fexibility (GF): Implementing privilege separation in di˙erent types

of applications requires programmers to employ completely di˙erent abstractions

and concepts. A general model with a universal interface and isolation concept

that supports both client- and server-side multithreaded applications is needed (e.g.,

compartments in the Firefox browser, worker bu˙ers in Cherokee web server, worker

pools in Apache httpd web server).

- Ease of use (EU): Programmers prefer to realize their desired security policy in

a model with a high-level API rather than through low-level error-prone memory

8

management tools without intra-process capabilities (e.g., mmap, shmem.). In

particular, porting legacy software to a new model has to be easy despite the

complexity of component interweaving and the underlying assumption of shared

memory (e.g., Firefox, which contains 13M LOC), and should be possible with

minimal code refactoring e˙orts.

- No hardware modifcations (NH): Over-privileged multithreaded applications are

pervasive. A model that is ready to run on today’s commodity hardware (even

regardless of the CPU brands/models) is necessary for wide deployment.

- Low runtime overhead (LO): Monitoring application memory accesses at high fre-

quency is unrealistic for practical systems. A practical model must be implemented

in a way that incurs only negligible runtime overheads. In particular, enhanced secu-

rity should not sacrifce the parallelism in multithreaded applications. A model has

to support selective memory isolation for multiple computing entities (i.e., multiple

threads can exercise the same privilege to parallelize a given workload and perform

highly parallel memory operations).

To address the above challenges, we propose a third generation privilege separation

solution for monolithic applications: secure memory views – a model and architecture

that eÿciently enforces di˙erential security and fault isolation policies in monolithic

multithreaded applications at negligible overheads. SMV protects applications from

negligent or malicious memory accesses between software components. In short, the

intrinsically shared process address space is divided into a dynamic set of memory

protection domains. A thread container SMV maintains a collection of memory pro-

tection domains that defne the memory view for its associated threads. Access priv-

ileges to the memory protection domains are explicitly defned in the SMVs and the

associated SMVthreads must strictly follow the defned security policies. The SMV

model provides a well-defned interface for programmers to exercise the least privilege

principle for arbitrary software objects “inside” a multithreaded process. For example,

a server’s worker thread can be confgured to allow access to its thread stack and part

9

of the global server confguration but not to the private key that resides within the

same process address space.

With the SMV model, the programmer can enforce di˙erent access permissions for

di˙erent components in a single address space (GF). New software can leverage the

full API and can be designed to only share data along a well-defned API, and existing

software can be retroftted (with minimal code changes) by instrumenting calls across

component boundaries to change the underlying memory view (EU). Moreover, the

privilege enforcement relies on OS kernel level page table manipulation and standard

hardware virtual memory protection mechanisms (NH). Therefore, the SMV model

does not su˙er from the performance overheads (LO) imposed by IPC (vs in-memory

communication), user level memory management (vs kernel level), or per-instruction

reference monitors (vs hardware trap). The SMV model’s programmability and eÿ-

cient privilege enforcement mechanism allow it to protect both client- and server-side

multithreaded applications with low overhead.

We implemented a prototype of the SMV model in the Linux kernel. Our evalua-

tion demonstrates (a) its negligible runtime overhead in the presence of high concur-

rency using multithreaded benchmarks that employ the general producer-consumer

pattern, and (b) the immediate beneft of eÿcient software component isolation by

compartmentalizing client connections for the popular Cherokee and Apache httpd

web servers and the compartments in the Firefox web browser. SMVs incur only

around 2% runtime overhead overall with 2 LOC changes for the multithreaded bench-

mark PARSEC, 0.69% throughput overhead with 2 LOC changes for Cherokee, 0.93%

throughput overhead with 2 LOC changes for Apache httpd, and 1.89% runtime over-

head with only 12 LOC changes for the Firefox web browser. Note that SMV focuses

on restricting memory views for individual threads, access permissions for kernel APIs

is an orthogonal problem that is well covered by, e.g., AppArmor [11], SELinux [12],

or the seccomp framework [13].

In summary, this chapter makes the following contributions:

10

Table 2.1.: Issues and solutions for intra-process privilege separation techniques.

1st gen technique 2nd gen technique 3rd gen technique

Problem

tackled
Non-parallel privilege separation

Concurrent execution

and dynamic

security policy

Concurrent memory

operations and

high performance

Issue

vs

solution

OpenSSH [6] Privtrans [7] Wedge [8] Salus [9] Arbiter [10] SMV (This work)

Security

principal
Process Process Single thread Single thread Multiple threads Multiple threads

Parallel

execution
Not handled Not handled Not handled Not handled Partially handled Yes

Parallel

tagging
Not handled Not handled Not handled Not handled Not handled Yes

Security

policy
Static Static Static Dynamic Dynamic Dynamic

TCB OS Compiler, OS OS Library, OS Library, OS OS (< 1800 LOC)

Refactoring

e˙orts
Fully manual Annotations Tool assisted Tool assisted

Fully manual

(> 100 Δ LOC)

Library assisted

(< 20 Δ LOC)

Use

cases
OpenSSH OpenSSH etc. OpenSSH etc. PolarSSL FUSE (8K LOC) etc. Firefox (13M LOC) etc.

Design of the SMV model which provides threads with fne-grained control over priv-

ileges for a shared address space.

Specifcation of an SMV API for programmers that facilitates porting legacy pthread

applications.

Implementation of the SMV model that consists of a trusted Linux kernel component

(implementing enforcement) and the corresponding untrusted user-space library

that implement the SMV API, which is publicly available along with our bench-

marks and test suite1 .
1https://github.com/terry-hsu/smv

https://github.com/terry-hsu/smv

11

Evaluation of our prototype implementation showing that SMVs achieve all four de-

sired requirements as a practical and eÿcient model for enforcing least privilege

memory views for multithreaded applications in practice.

2.2 Related Work

Techniques for achieving intra-process isolation have been studied for decades. In

this section, we summarize and compare the related work following a more detailed

breakdown.

Memory safety is the goal of many proposals, as memory corruption is the

root cause of various well-known software vulnerabilities. We refer the reader to

Nagarakatte et al. [14] and Szekeres et al. [15] for two surveys on memory safety.

In short, solutions for complete memory safety do not handle intra-process privilege

separation problem and impose signifcant cost for practical systems (cf. LO).

The frst generation privilege separation techniques focus on partitioning

a process into single-process components. Provos et al. [6] were the frst to manu-

ally partition OpenSSH by running components in di˙erent processes and coordinat-

ing them through inter-process communication (IPC). Privtrans [7] automated the

retroftting procedure for legacy software by partitioning one program into a privileged

monitor process and an unprivileged slave process with just few programmer-added

annotations. Wedge [8] extended the idea of privilege separation to provide fne-

grained privilege separation with static capabilities, which was improved by Dune [16]

through the Intel VT-x technology (cf. NH) for better performance and by Salus [9]

for dynamic security policy. The disadvantage of these frst generation techniques is

that they lack support for multiple computing entities within the same compartment

(cf. LO). This limitation hurts performance of multithreaded programs and restricts

the usability of these solutions in practice.

The second generation privilege separation technique Arbiter [10] allowed

multiple threads to run in the same compartment. However, Arbiter still faces similar

12

limitations on parallel memory operations and their evaluation does not use multi-

threaded benchmarks that have intensive memory operations to demonstrate the sys-

tem’s parallelism, even though the design aims at concurrent execution for threads

(cf. LO). We identify two major causes of the limitation on Arbiter’s parallelism.

First, the highly serialized memory management in their user-space library incurs

inevitable runtime overhead of up to 400%. Second, the design choice of separating

mm_structs forces their kernel to aggressively synchronize the global process address

space for every thread’s memory descriptors. The synchronization costs increase when

an application performs intensive memory operations or generates a huge amount of

page faults. These limitations on parallelism manifest themselves when running real-

world applications (e.g., Firefox) with large inputs (e.g., web server hosting a 100MB

fle). However, the largest input in the authors’ evaluation is only 1MB. In addition,

programmers are on their own to partition applications as the solution does not pro-

vide assistance in retroftting applications (cf. EU). As we will show in this chapter,

the SMV model addresses the limitations of the frst and second generation privilege

separation techniques without sacrifcing security or parallelism.

OS-level abstraction mandatory access control (MAC) solutions such as

SELinux [12], AppArmor [11], and Capsicum [17] protect sensitive data at pro-

cess/thread granularity. However, fne-grained privilege separation for software ob-

jects (e.g., arrays) within a process is not supported in these techniques. On the

other hand, SMVs tackle issues for intra-process data protection with capabilities.

PerspicuOS [18] separates privileges between trusted and untrusted kernel compo-

nents defned by kernel developers using an additional layer of MMU. Such an intra-

kernel design does not facilitate intra-process privilege separation as SMV does for

user-space applications (cf. GF and EU). These security policies are orthogonal to the

SMV memory policies and SMVs can be used in conjunction with these techniques

to gain additional inter-process protection.

Decentralized information fow control (DIFC) systems allow programmers

to associate secrecy labels with data and enforce information fow to follow security

13

policies. HiStar [19] is an OS that fundamentally enforces DIFC that could likely

address intra-process isolation. However, HiStar is not based on a general OS kernel

such as Linux and thus cannot be incrementally deployed to commodity systems.

Moreover, the applications have to be completely rewritten in order to use HiStar

(cf. GF and LO). Thus, the solution is infeasible for legacy software (e.g., Firefox)

in practice. Flume [20] focuses on process-level DIFC for OS-level abstractions (e.g.,

fles, processes) in UNIX but it does not handle intra-process privilege separation

within a multithreaded application. Laminar [21] supports multithreaded applica-

tion running in its specialized Java virtual machine (cf. GF). However, the additional

layer in the software stack and its dynamic checker incur signifcant runtime overhead

(cf. LO). As noted in Section 2.7.9, byte-granularity checkers in DIFC systems in-

cur high performance overhead in practical applications that have intensive memory

operations (cf. LO).

Software-based fault isolation [22,23] isolates software components within the

same address space by constructing distinct fault domains for code and data. SFI

prevents code from modifying data or jumping to code outside of a fault domain.

Native client [24, 25] utilizes SFI with x86 hardware segmentation for eÿcient reads,

writes, control-fow integrity [26], and component isolation. However, the untrusted

code is statically associated with a specifc fault domain as the approach does not

provide simple means of implementing a dynamic and fexible security policy for

practical multithreaded applications (cf. EU and LO). In contrast, SMVs o˙ers solu-

tions for programmers to structure the protected memory regions in a dynamic and

non-hierarchical manner.

Language-based techniques utilize safe language semantics to provide isolation

for applications written in type-safe languages (e.g. [27,28]) and implement informa-

tion fow control for objects within a process (e.g. [29–31]). However, the vast majority

of legacy software are still written in an unsafe language for eÿciency. As a result,

programmers need to completely rewrite their legacy software using safe languages

(cf. GF). Ribbons [32] is a programming model developed entirely for user space that

14

provides fne-grained heap isolation for multithreaded applications. While the ac-

cess privileges of threads are tracked pair-wise between domains hierarchically in user

space in Ribbons, the SMV model leverages the OS memory management subsystem

to organize the access privileges of threads systematically in kernel space at negligible

overhead (cf. EU and LO).

Special hardware support and virtualization technologies is another line of

research that seeks for strong isolation of program secrets. Flicker’s [33] signifcant

overhead due to its intensive use of the TPM chip (cf. NH) makes it impractical

for performance-critical applications (cf. LO). Although TrustVisor [34] mitigates the

overhead by a hypervisor and a software-based TPM chip, the system is impracti-

cal for applications that require multiple compartments with di˙erent capabilities

(cf. GF). Fides [35] points out the limitations in TrustVisor and improves it by sup-

porting more fexible secure modules with a dual VM architecture on top of its special

hypervisor. Hypervisors can be used for guest OSs (e.g. SMV OS kernel) on a shared

host while SMVs (providing a richer API) directly run on bare metal at full speed

(cf. GF and LO). The additional software level in the hypervisor introduces overheads

as the VMM intervenes for the guest OSs page tables, causing TLB cache misses.

Recent studies [36–38] by Intel indicate that hardware support for secure computing

will become available on mainstream X86 environments in the near future. Intel Soft-

ware Guard Extensions (SGX) is a mechanism to ensure confdentiality and integrity

(but not availability) of a trusted unprivileged software module under an untrusted

OS with limited trusted hardware. SGX protects one component from possible inter-

action using an “enclave” enforced by hardware. Although the goal of Intel SGX is

similar to SMVs, our pure-software solution allows SMVs to be adopted by any OSs

that have MMU subsystems with commodity hardware (cf. NH). Loki’s [39] tagged

memory architecture, CODOMs’ [40] tagged pages, and CHERI’s [41] capability reg-

isters can isolate modules into separate domains with eÿcient access protection check

logic. But these approaches require hypothetical hardware support which make them

incompatible with commodity systems (cf. NH).

15

2.3 Threat Model

We assume that the attacker, an unprivileged user without root permissions, can

control a thread in a vulnerable multithreaded program, allocate memory, and fork

more threads up to resource limits on a trusted kernel with sound hardware. The

adversary will try to escalate privileges through the attacker-controlled threads or

gain control of another thread, e.g., by reading or writing data of another module or

executing code of another module. In this model, the adversary may read or write

any data that the controlled thread has access to. The adversary may also attempt

to bypass protection domains by exploiting race conditions between threads or by

leveraging confused deputy attacks, e.g., through the API exported by other threads.

We assume that the OS kernel is not compromised (OS kernel security is an orthogonal

topic [42]) and user-space libraries installed by root users are trusted. We assume

that the access permissions both of the memory views (enforced through SMV) and

for the kernel (enforced through AppArmor, SELinux, or seccomp) are set correctly.

2.4 Objectives

The key objective of the SMV model is to eÿciently protect memory references

of threads to prevent unintentional or malicious accesses to privileged memory areas

during the lifetime of a program. Threads may communicate with other threads

through mutually shared memory areas set up by the programmer through SMVs.

The SMV model restricts the memory boundaries and memory access permissions

for each thread. Without SMVs, an untrusted thread (e.g., a compromised worker

thread) may access arbitrary software objects (e.g., the private key) within its process

(e.g., a web server). Existing programs assume a shared memory space for threads

and SMVs must therefore validate that all threads follow the memory rules defned

by the programmer (cf. Section 2.5.2). Threads that deviate from these memory

reference rules are killed by the system.

16

The SMV model aims to strictly confne the memory access boundaries for mul-

tithreaded programs while preserving all four desired requirements for intra-process

isolation. We argue in Section 2.5 that the SMV model along with the memory

access enforcement can constrain threads within the programmer-defned memory

boundaries.

2.5 SMV Model Design

The SMV model consists of three abstractions: memory protection domains, secure

memory views, and SMVthreads. The SMV model uses user-defned security policies

to enforce the threads’ privileges in accessing the shared memory space. The fexibility

and programmability of the model allows a programmer to specify the protection

domains using high-level abstractions while enforcing the security policy at the lowest

level of the software stack (page tables) with acceptable runtime overhead.

2.5.1 Memory Protection Domains

We defne a memory protection domain as a contiguous range of virtual memory.

Any memory address can only belong to one memory protection domain. In this way,

a large shared memory space such as the heap can be divided into several distinct sets

of memory protection domains. For example, a process can create a private memory

protection domain that is only accessible by one thread, or a partially shared memory

protection domain such that only threads with explicit privileges can access it. In

addition, an in-memory communication domain can be allocated with global access

privileges so that all threads can exchange data without relying on expensive IPC.

In general, an unprivileged thread cannot tamper with a memory protection domain

even if there exists a defect in the code of the thread. We use the term memory

domain to refer to the memory protection domain in the rest of this chapter.

17

2.5.2 Secure Memory Views

We defne a secure memory view (SMV) to be a thread container with a collection

of memory domains. The memory blocks covered by a memory view can only be

accessed by threads explicitly given permission to run in the corresponding privileged

SMV. Therefore, we consider a memory view to be secure.

We defne three abstract operations for defning the composition of an SMV:

• Register(SMV,MD): registers memory domain MD as part of SMV ’s memory view.

• Grant(SMV,MD,P): grants SMV the capability to access memory domain MD with

access privilege P.

• Revoke(SMV,MD): revokes SMV ’s capabilities to access memory domain MD.

We categorize the privileges P of an SMV to access a memory domain into four

operations:

• Read : An SMV can read from the memory domain.

• Write: An SMV can write to the memory domain.

• Execute: An SMV can execute in the memory domain.

• Allocate: An SMV can allocate/deallocate memory space in the memory domain.

The access privileges to each of the memory domains for an SMV can be di˙erent.

Two SMVs can reference the same memory domain but the access privileges can di˙er.

The programmer can set up the SMV’s privileges to access memory domains in the

way needed for the application at hand. For example, multiple threads sharing the

same security context can be assigned to the same SMV to parallelize the workload

(LO). To minimize an application’s attack surface, the programmer can assume the

main parent thread to be the master thread of a program. All the permission mod-

ifcations must be done by the master thread and are immutable by child threads.

The SMV model considers any access to a memory domain without proper privileges

to be an SMV invalid memory access. We implemented the privilege enforcement at

the OS kernel level and detail the design in Section 2.6.5.

18

2.5.3 SMVthread

An SMVthread is a thread that strictly follows the privileges defned by an SMV to

access memory domains. SMVthreads run in the memory view defned by an SMV and

cannot change to other SMVs. While the popular pthreads have to trust all pthreads

running in the same memory space, SMVthreads distrust other SMVthreads by default.

SMVthreads – unlike pthreads – must explicitly share access to the intrinsically shared

memory space with other SMVthreads. We designed SMVthreads to partially share

the memory space with other SMVthreads according to the policy specifed by the

programmer through the API. Section 2.6.3 explains the implementation of the par-

tially shared page tables for SMVthreads. SMVthreads are glibc-compatible, meaning

that our SMVthreads can directly invoke the library functions in glibc. SMVthreads

can cooperate with pthreads through all the synchronization primitives defned by the

pthreads API. For SMV management, privileged SMVthreads have to invoke the SMV

API to set up the memory boundaries for least privilege enforcement. pthreads can

access the whole process address space. Changing such accesses would hamper the

correctness of legacy programs that do not require any memory segregation (backward

compatibility). While possible, programmers are advised against mixing SMVthreads

and pthreads in one process when an application requires isolation as pthreads will

have unrestricted access to all memory of the process.

2.5.4 SMV API: User Space Library

We implemented our SMV model as a user-space library that o˙ers an API to sup-

port partially shared memory multithreading programming in C and C++. Table 2.2

summarizes the primary SMV API with descriptions of the main functions. For

instance, a programmer can use memdom_create to create a memory domain and

memdom_alloc to allocate memory blocks that are only accessible by SMVthreads

running in the privileged SMVs. Each memory domain and SMV has a unique ID

assigned by the SMV model in the system. SMVthreads are integrated with pthreads

19

Table 2.2.: List of primary SMV API.

SMV API Description

int smv_main_init (bool allow_global) Initialize the main process to use the SMV model. If

allow_global is true, allow child threads to access global

memory domains. Otherwise distrust all threads by de-

fault.

int memdom_create (void) Creates a new memory domain, initializes the memory

region, and returns the kernel-assigned memory domain

ID.

int smv_create (void) Creates a new SMV and returns the kernel-assigned

smv_id.

pthread_t smvthread_create (int smv_id, (void*)func_ptr,

struct smv_data* args)

Creates an SMVthread to run in the SMV specifed by

smv_id and returns a glibc-compatible pthread_t identi-

fer.

void* memdom_alloc (int memdom_id, unsigned long size) Allocates a memory block of size bytes in memory do-

main memdom_id.

void memdom_free (void* data) Deallocates a memory block previously allocated by

memdom_alloc.

int memdom_priv_grant (int memdom_id, int smv_id, int

privs)

Grants the privileges privs to access memory domain

memdom_id for SMV svm_id and returns new privileges.

int memdom_priv_revoke (int memdom_id, int smv_id, int

privs)

Revokes the privileges privs to access memory domain

memdom_id from SMV svm_id and returns new privi-

leges.

int memdom_kill (int memdom_id) Deletes the memory domain with memdom_id from the

process.

int smv_kill (int smv_id) Deletes the SMV with smv_id from the process.

for easier synchronization and every SMVthread thus also has an associated pthread_t

identifer. Note that casting an SMVthread to a pthread does not bypass the privilege

checks. The SMV interface allows programmers to structure the process memory

space into distinct memory domains with di˙erent privileges for SMVthreads and to

manage the desired security policy. Furthermore, our library provides options for

programmers to automatically override related function calls to signifcantly reduce

the porting e˙orts. For example, pthread_create can be automatically replaced by

smvthread_create, which internally allocates a private memory domain for the newly

20

 Virtual Memory

 Kernel Space

 OS Memory Management Subsystem

 User Space

SMV Netlink Kernel Module

System Library (glibc)

Page Fault Handler

Original object

SMV object

SMVthread

Interaction

Memory domain

Key

 Multithreaded Application Protected by SMV Model

SMV Userspace API

SMV thread #NSMV thread #1 SMV thread #2

SMV Privilege Checks
SMV Metadata
Management

Partially Shared
Page Table

Management

The yellow rounded
boxes represent
the new objects
introduced by the
SMV model.

...

Private
Memory
Domain

Private
Memory
Domain

Shared
Memory DomainShared

Memory Domain

In-Memory
Communication

Domain

In-Memory
Communication

Domain

Figure 2.1.: SMV architecture.

created SMVthread. Similarly, when an SMVthread calls malloc, the library allocates

memory in the calling thread’s private memory domain.

2.5.5 SMV Architecture

The SMV architecture consists of two parts: a user space programming interface

and a kernel space privilege enforcement mechanism. Figure 2.1 gives an overview. In

short, a user space application can call the SMV API to use the SMV model. In the

OS kernel, the SMV kernel module is responsible for exchanging the messages between

the user space component and the kernel memory management subsystem. We added

SMV metadata management to the OS memory management subsystem to record the

21

memory access privileges for the SMVs. We modifed the page table management logic

to support partially shared page tables and added the SMV privilege checks to the

page fault handler that enforces the memory access control.

With the user space interface and the support from the OS kernel, applications

can explicitly structure the intrinsically shared process memory space into distinct

memory domains with di˙erent access privileges without any hardware modifcations.

Therefore, our approach can be run directly on today’s commodity hardware (NH).

2.5.6 Application Examples

The SMV model allows privilege separation of individual components and data

regions in an application. We present one example of the popular design model in

general multithreaded applications and two concrete application examples of how the

SMV model can protect applications by organizing the process address space with

di˙erent privileges for threads (GF and EU).

Producer-Consumer Model

First, the SMV model can support the common producer-consumer model with

strict memory isolation while maintaining eÿcient data sharing. Figure 2.2 illus-

trates how the SMV model can secure interacting components according to a generic

producer-consumer model that is employed by all the applications in PARSEC we

evaluated. In this example, the SMVthreads run in the process address space that

contains four SMVs and six memory domains. The SMVs confne the memory access

privileges of SMVthreads according to the security policy. In this case, the queue

domain is the shared memory domain for all SMVthreads to cooperate with each

other, but any write or allocate request from the producer SMV to the consumer

domains is prohibited; only reads are permitted. The secure communication domain

works as a one-way communication channel for the master SMVthread to transmit

data to the consumer SMVthreads and is inaccessible to the producer SMVthread due

22

Process

SMV

SMVthread

Memory Domain

Read Privilege

Write Privilege

Allocate Privilege

Key

Queue Domain

Secure
Communication

Domain

Master
SMV

Master
Domain

Producer
SMV

Producer
Domain

Consumer
SMV 1

Consumer
Domain

Consumer
SMV 2

Consumer
Domain

Arrow points from
source SMV to

destination domain

Figure 2.2.: Security-enhanced producer/consumer model with fne-grained memory

protection domains.

to the restricted privileges of the producer SMV. In this case, the SMV model strictly

enforces memory access boundaries, constraining memory safety bugs to the current

component’s memory view.

Case Study: Cherokee Web Server

Cherokee [43] is a high-performance and light-weight multithreaded web server.

To isolate connections, Cherokee uses worker threads to handle incoming requests

stored in per-thread connection queues. One worker thread handles all the requests

coming from the same connection. However, only one worker thread on the server

needs to be compromised to leak sensitive information. To provide an alternative

for isolating server workers in di˙erent processes, we show how the SMV model can

compartmentalize the process memory into memory domains and provide reasonable

isolation for the multithreaded Cherokee web server. As shown in Figure 2.3, the

SMV model defnes the memory boundaries for worker SMVthreads and enforces the

23

Multithreaded Cherokee Web Server Main Process

Shared Domain
(accept mutex, configuration etc.)

Worker
SMV 1

Worker
Domain

1

Worker
SMV 3

Worker
Domain

3

Worker
SMV 2

Worker
Domain

2

Secure Communication Domain

Process

SMV

SMVthread

Memory domain

Read privilege

Write privilege

Allocate privilege

Server’s private key

Key

Arrow points from
source SMV to

destination domain

https://http://

Worker
Main

Thread

http://

Figure 2.3.: Security-enhanced Cherokee web server.

memory access privileges to protect the server. The SSL connections are handled

only by the SMVthreads running in SMV 3 that have the privilege to access worker

domain 3, which contains the server’s private key. If SMVthreads in SMV 2 (handling

only HTTP requests) make any attempt to access the private key, the SMV model

will reject such invalid memory accesses because of insuÿcient privileges. In this way,

when an exploited worker thread attempts to access memory in an invalid domain,

the SMV model detects such invalid accesses and stops further attacks triggered by

the memory bugs (e.g., CVE-2004-1097). The original pthread Cherokee server does

not have this security guarantee since all the threads can access the complete process

address space (with unanimously shared permission). We show how accessing invalid

memory domains is prevented by the SMV model in Section 2.7.5.

Case Study: Mozilla Firefox Web Browser

SMVs allow multithreaded web browsers such as Firefox and its JavaScript engine

SpiderMonkey to achieve strict compartment isolation enforced by hardware pro-

24

Mozilla Firefox Web Browser Main Process

Shared Domain
(GC, GUI, timer, etc.)

Process

SMV

SMVthread

Memory domain

Read privilege

Write privilege

Allocate privilege

Banking credentials

Login credentials

Malicious payloads

Denied access

Key

eBay
SMV

eBay
Domain

PayPal
SMV

PayPal
Domain

TrojanWorld
SMV

TrojanWorld
Domain

 TrojanWorld

Figure 2.4.: Security-enhanced Firefox.

tection, preventing one malicious origin from accessing sensitive data such as bank

accounts hosted by another origin. Figure 2.4 presents an example of how the SMV

model can isolate browser tabs in SMVs based on the same-origin policy [44]. With

SMVs, the malicious origin TrojanWorld cannot escape from its compartment to ac-

cess the PayPal banking account (add recipient account by allocating memory or

transfer money to attacker’s account by writing to memory) or read the user cre-

dentials hosted by eBay. Such strong isolation guarantees inspired Google to design

Chrome to use process isolation for its rendering process.

2.6 Implementation

This section details the OS kernel level implementation of the SMV model and

discusses its security guarantees. We modifed the Linux kernel version 4.4.5 for the

x64 architectures to support the SMV model. Table 2.3 summarizes the component

sizes in our prototype.

25

2.6.1 SMV Communication Channel

We developed an SMV loadable kernel module (LKM) that allows the user-space

SMV API to communicate with our kernel using the Netlink socket family. Once

loaded, the SMV LKM is e˙ectively part of the kernel. The SMV LKM works as a

dispatcher in the SMV model that sanitizes the messages from the user space SMV

API and invokes SMV-related kernel functions.

Security guarantee. The attacker cannot replace our SMV LKM with a mali-

cious SMV LKM to perform a man-in-the-middle attack and escalate permissions for

a given SMVthread. Such a system-wide change requires the attacker to have root

privilege on the system.

2.6.2 Metadata Management

To eÿciently maintain the state of the processes that have SMVthreads, we added

two major objects to the OS kernel. (1) memdom_struct: memory domain meta-

data for tracing the virtual memory area and the memory domains mappings. (2)

SMV_struct: the SMV privilege metadata for accessing memory domains. These

Table 2.3.: Summary of component sizes in SMV.

LOC† Source fles Protection level

SMV API

SMV LKM

SMV MM‡

781

443

1, 717

6

2

24

user space

kernel

kernel

† Lines of code computed by cloc.
‡ SMV MM stands for SMV memory management, which

is integrated into the OS memory management subsys-

tem as we show in Figure 2.1.

26

kernel objects cooperate with each other to maintain the fne-grained privilege infor-

mation of each SMV in a process.

Security guarantee. The metadata is allocated in kernel memory space and is

not mutable by any user space programs without proper privileges through our API.

Memory bugs in user space programs cannot a˙ect the integrity of the metadata

stored in kernel memory. One of the main sources of kernel 0-day attacks is the use

of uninitialized bytes in kernel memory (e.g., CVE-2010-4158) that allows local users

to read sensitive information. The SMV model sanitizes the metadata by initializing

objects to avoid any potential information leakage from this added attack surface. Our

kernel inherits the original kernel’s garbage collection system using reference counting

to ensure that the additional metadata does not create any dangling pointers.

2.6.3 Partially Shared Memory Space

In the SMV model, SMVthreads can be perceived as untrusted tasks by default.

Therefore, our kernel has to partially separate the kernel objects; it also maintains the

consistent process address space for the SMV model. Overall, our kernel: (1) separates

the memory space of SMVs by using a page global directory (pgd_t) for each SMV;

(2) frees memory for all SMVs when one SMVthread frees the process memory; (3)

loads thread-private pgd_t into the CR3 register during a context switch.

All SMVthreads in a process share the same mm_struct that describes the process

address space. Our kernel allocates one pgd_t for each SMV in a process and stores all

pgd_ts in a process’s mm_struct. SMVthreads use their private page tables to locate

memory pages, yet their permissions to the same page might di˙er. Note that we

designed SMVs to protect thread stacks as well. To ensure the integrity of the process

memory space, the page tables of all SMVs need to be updated when the kernel frees

the process page tables or when kswapd reclaims page frames. The original kernel

avoids reloading page tables during a context switch if two tasks belong to the same

process (thus using the same mm_struct). We modifed our kernel to reload page tables

27

and fush all TLB entries if one of the switching threads is an SMVthread. Note that

processors equipped with tagged TLBs could mitigate the fushing overhead. However,

SMVs do not rely on this hardware optimization feature in order to function correctly

(NH).

Based on our extensive experiments, we found that using di˙erent mm_structs to

separate the address space for threads is overkill and could signifcantly impact the

performance for practical applications (LO). This is because all the memory opera-

tions related to mm_struct need to be synchronized in an aggressive manner in order

to maintain the consistent process address space for all threads (e.g., rotating the

vm_area_struct red-black tree). Using the clone syscall without CLONE_VM fag to

isolate a thread’s address space from its parent is another approach. However, this

approach has two main drawbacks. First, the kernel creates a new mm_struct for

the new thread if CLONE_VM is not set. This leads to frequent synchronization and

imposes overhead. Second, debugging (e.g., GDB [45]) and tracing memory activity

(e.g., Valgrind [46]) become extremely diÿcult: GDB has to be constantly detached

from one process and then attached to another in order to debug a parallel program;

Valgrind does not support programs with clone calls. In contrast, using the same

mm_struct preserves the system-wide process address space assumption and allows

the kernel to separate process address space for threads eÿciently.

Security guarantee. The security features of the partially shared memory space

rely on the protection guaranteed by the original kernel. The memory management

subsystem in the kernel space is completely unknown to user space programs. The

attacker has to exploit the permission bits of the page table entries (PTEs) for a

thread to break the security features provided by our kernel. We argue that this kind

of exploit is highly unlikely without serious DRAM bugs such as rowhammer [47].

28

2.6.4 Forking SMVthreads

The SMV API uses pthread_create to create a regular pthread and signals the

kernel to convert the pthread to an SMVthread before the SMVthread starts execution.

The kernel instructs the SMVthread to use the private page tables defned by the SMV

that the SMVthread runs in. Once an SMVthread is created, the kernel turns on the

using_smv fag stored in the process’s mm_struct so that future memory operations

must go through additional privilege checks.

To simplify porting e˙orts, the SMV API provides an option to override all

pthread_create calls and automatically allocate private memory domains for each

SMVthread.

Security guarantee. The mm_struct of a thread is allocated in kernel space and

used solely by the kernel. There are no interfaces that allow user space programs to

directly or indirectly modify the memory descriptor. This strong isolation between

user and kernel space is guaranteed by the trusted OS kernel. In addition, the atomic

fork procedure ensures that the attacker cannot intercept the fork procedure and steal

the memory descriptor for the malicious thread.

2.6.5 Page Fault Handler

Figure 2.5 shows the fow chart of the page fault handler in our kernel. The

additional checks are surrounded by the gray box with a dotted line. Our kernel kills

the SMVthread that triggers an SMV invalid (cf. Section 2.5.2) page fault by sending

a segmentation fault signal. For the privileged SMVthreads, our kernel performs SMV

demand paging to eÿciently handle the page faults.

Indeed, since the SMVs use private page tables to separate SMVs’ memory views,

using the original demand paging routine for SMVthreads is insuÿcient as the page

fault handler only updates the page tables for the current SMV, which causes incon-

sistent process address space. To solve this problem, our kernel tracks all the faulted

pages of a process in the SMV shadow page tables. The page fault handler deals with

29

Read Address of
Page Fault

Find Virtual
Memory Area

Original Linux
Page Fault
Handling

Procedure

Bad Area

Valid Area?
Expand

Nearby Area
Successfully?

SMV Has the
Valid Privilege to

Access the
Memory Domain?

Fault Address in
a Valid Memory

Domain?

SMV Demand
Paging

Send
SIGSEGV

Current Thread is
an SMVthread?

Yes

No No

Yes

Yes
No

Yes

Yes

Yes No

No

No

Kernel
Mode?

Original Linux
Exception
Handling

Procedure

No

Yes

Valid Access
Permission?

Figure 2.5.: Page fault handler fow chart. The SMV kernel performs additional

privilege checks (marked in the gray box).

faults by using the SMV shadow page tables and then copies the page table entry of

the fault from the shadow page tables to the running SMVthread’s page tables. Note

that one process has only one set of shadow page tables, which only serve as quick

reference with no permission implications when SMVthreads locate a memory page.

Security guarantee. The page fault handler cannot be accessed, changed, or

abused by the attacker as it resides in the lowest level of the software stack. The

PTE bits force invalid memory accesses to be trapped to the kernel for the additional

privilege checks. To access a privileged memory region, the attacker must frst get

around the page fault handler. However, such a scenario is infeasible because the

kernel memory management subsystem must intervene and prepare the data page

before the attacker can access the privileged memory region.

30

2.7 Evaluation

The goal of our evaluation is to demonstrate that the SMV model has all four

desired requirements when enforcing least privilege memory views for multithreaded

applications in practice. We show that the SMV model supports di˙erent types of

multithreaded programs with fexible policies (GF), requires minimal code changes

for legacy software (EU), requires no hardware modifcations (NH), and incurs negli-

gible runtime overheads while supporting complex thread interactions and extremely

intensive memory allocation/free calls in parallel (LO).

2.7.1 Experiment Setup

We measured the performance of our SMV model on a system with Intel i7-4790

CPU with 4 cores clocked at 2.8GHz and 16GB of RAM for our modifed x86 64-bit

Linux kernel 4.4.5 Ubuntu 14.04.2 SMP (NH). The benchmarks are compiled into two

versions: pthread and SMVthread.

2.7.2 Example Policy

SMVthreads cannot access privileged memory domains without being explicitly

granted the proper privilege. To test this security guarantee in all of our experiments,

the number of domains was set to N +1, where N is the number of worker threads and

the additional domain serves as a global pool for threads to securely share data. Each

worker has its own private memory domain that can only be accessed by itself. We

do not claim that the proposed policy is optimal but instead focus on the mechanics

to enforce the policy. Setting up alternative policies is possible (GF).

2.7.3 Robustness Test

To examine the robustness, we tested our modifed Linux kernel with the Linux

Test Project (LTP) [48] developed and maintained by IBM, Cisco, Fujitsu, SUSE Red

31

Hat, Oracle and others. Specifcally, we used the runltp script in the LTP package

to test the memory management, flesystem, disk I/O, scheduler, and IPC. All stress

tests completed without error. We did not observe any system crashes.

2.7.4 Inspecting Isolation

The SMV model treats invalid memory accesses as segmentation faults. Suppose

an attacker’s thread triggers a segmentation fault by accessing an invalid memory

domain on purpose. The main process will crash to prevent further information leak-

age. Our SMV library provides detailed memory logs to the programmer. Listing 2.1

shows an example of the memory activity log. For crashes due to wrong isolation

setup, the logs can help the programmer immediately identify the SMVthread that

accessed the invalid protection domain and subsequently rectify the object compart-

mentalization. In addition, our library provides detailed stack traces for debugging.

The logs and stack traces are unreadable by the attacker when debugging mode is

disabled. A binary compiled without debugging option makes it impossible for an

attacker to learn about memory activity.

2.7.5 Security Evaluation

To further understand how the SMV model o˙ers strong intra-process isolation,

we systematically discuss the security guarantees described in Section 2.6.

Trusted computing base. The TCB of the SMV model contains the SMV

LKM and SMV MM with kernel level protection (cf. Table 2.3). The SMV API

is untrusted and resides in user space as system library. The attacker may try to

perform an SMV API call with a malicious intent to escalate permissions for an

SMVthread. The SMV LKM sanitizes all user space messages sent into the kernel and

verifes that the SMVthread executing the API call has the correct permissions for the

requested change. The attacker may attempt to leverage the misuse of the SMV API

to invalidate the memory isolation guarantee provided by the SMV model. Therefore,

32

the security of the application relies on the correctness of the memory isolation setup.

Once the memory boundaries are defned, all SMVthreads must follow the memory

access rules defned by the programmer. Note that unprivileged users without root

permission cannot compromise the SMV LKM (cf. Section 2.6.1 security guarantee).

The SMV model also relies on the privilege level enforcement imposed by the

original Linux kernel to make sure that the attacker cannot tamper with the SMV

model operating in the kernel space. To bypass the kernel protection, the attacker

must hijack the page tables of a privileged thread or modify the metadata stored in

the kernel space. The original Linux kernel ensures the integrity of the metadata

and memory descriptors for all threads in the system. Using wrong page tables or

metadata will cause a thread to be killed once the kernel detects the tainted kernel

data structures. Thus, it is impossible for the attacker to exploit the metadata of any

thread without kernel 0-day vulnerabilities (cf. Section 2.6.2 security guarantee).

In addition to the software TCB, the SMV model also relies on the hardware’s

correctness. The hardware vendors perform signifcant correctness validation. We be-

lieve that the security features o˙ered by sound hardware are unlikely for the attacker

to subvert (cf. Section 2.6.3 security guarantee). Given the extremely small source

code base (less than 2000 LOC), we believe that the SMV’s TCB could be formally

verifed.

TOCTTOU attack: stealing page tables. The attacker may attempt to

steal the page tables of a privileged thread by hijacking its memory descriptor. We

consider an oracle attacker who knows precisely when and how to launch a time of

check to time of use (TOCTTOU) attack to steal the page tables of a privileged

thread. If the attack succeeds, the attacker’s malicious thread will use the hijacked

page tables and read sensitive data in the privileged memory domain before the

thread crashes. Assume the attacker can fork threads up to the system limit with

the objective to hijack the page tables of an about-to-run privileged thread in the

fork procedure, which is the only point for the attacker to exploit the pgd_t pointer.

However, the malicious thread has to wait until the privileged SMVthread fnishes

33

Listing 2.1: Kernel log obtained by dmesg command.

1 [smv]Created memdom 2, start addr: 0x00f0f000, end addr: 0x00f10000

2 [smv]SMVthread pid 11157 attempt to access addr 0x00f0f0e0 in memdom 2

3 [smv]Addr 0x00f0f0e0 is protected by memdom 2

4 [smv]Read permission granted to SMVthread pid 11157 in SMV 2

5 [smv]SMVthread pid 11155 attempt to access addr 0x00f0f260 in memdom 2

6 [smv]SMV 1 is not in memdom 2

7 [smv]Detected INVALID memory reference to: 0x00f0f260

8 [smv]INVALID memory request issued by SMVthread pid 11155 in SMV 1

9 [smv]<6>chorekee[11155]: segfault at f0f260 ip 00007f09ba7d6656 error 4

the page tables setup in order to request the kernel to prepare its unprivileged page

tables. Therefore, the attacker cannot intercept the fork procedure and steal the

page tables. We conducted an experiment where 1,023 malicious SMVthreads tried

to hijack the page tables of a privilege SMVthread. During the one million runs of

the security test, every SMVthread used the correct page tables for its memory view

(cf. Section 2.6.4 security guarantee).

E˙ectiveness of the SMV model. Listing 2.1 shows the kernel log when an

invalid memory access is detected by the SMV model. In this example, the unprivi-

leged SMVthread pid 11155 in SMV 1 tries to access memory in the privilege memory

domain that stores the server’s private key, which is only accessible by SMVthread pid

11157 in SMV 2. At line 5, the attempt to read the invalid memory domain triggers

the page fault. The kernel rejects the invalid memory request by sending a segmen-

tation fault signal to the unprivileged SMVthread pid 11155 at line 9, stopping the

unprivileged SMVthread from accessing the server’s private key. The privilege checks

cannot be bypassed because the reference monitor is implemented entirely in the page

fault handler, and arbitrary page table manipulation is beyond the attacker’s scope

(cf. Section 2.6.5 security guarantee).

34

2.7.6 PARSEC 3.0 Benchmarks

Overview. The multithreaded PARSEC benchmarks include several emerging

workloads with non-trivial thread interaction. Both data-parallel and pipeline paral-

lelization models are covered in the benchmarks with coarse to fne granularity. We

used all benchmarks in [49], covering all application domains that were originally mul-

tithreaded using the standard pthreads. The evaluated benchmarks all employ the

producer-consumer pattern (cf. Section 2.5.6) that is pervasive in systems programs

and parallelization models. We used the parsecmgnt tool in the PARSEC package to

run the benchmarks with minimum number of threads set to four for the large inputs

as defned by the benchmarks.

Assessment of porting e˙ort. We ported the PARSEC benchmarks by replac-

ing each pthread with an SMVthread running in its own SMV with a private memory

domain. In each program, the main program allocates a shared memory domain to

store the working set for SMVthreads. The porting procedure consisted of three parts:

(1) including the header fles to use the SMV API, (2) setting up memory domains

and SMVs in the main program, and (3) replacing the pthreads with SMVthreads. All

these changes required only 2 LOC changes as the SMV API eliminates the refactor-

ing burden (EU). We needed to add only 1 line to include the header fle and another

to initialize the main process to use the SMV model. The SMV API automatically

intercepts pthread_create and malloc and replaces them with smvthread_create and

memdom_alloc calls. Therefore, each SMVthread could automatically allocate mem-

ory in its private memory domain (cf. Section 2.5.4).

The security-enhanced PARSEC benchmarks demonstrate a general case that

could be applied to any multithreaded programs written in C/C++ (GF), even with

the presence of extremely intensive memory allocation/free calls in parallel. In addi-

tion, the intra-process isolation can help prevent attacks that arbitrarily modify data

on the stack using malicious threads, e.g., ROP-based attacks. One study has shown

that an attacker can perform ROP and use gadgets (16 payloads is enough for > 80%

35

0.39%
0.79%

3.01%

8.24%

0.98%

4.14%

6.77%

0.47%

1.88% 2.02%

4.22% 3.92%

2.07%

0.0%
1.0%
2.0%
3.0%
4.0%
5.0%
6.0%
7.0%
8.0%
9.0%

R
un

tim
e

O
ve

rh
ea

d
(%

)

Figure 2.6.: Runtime overhead of the SMV model for the multithreaded applications

in the PARSEC benchmark suite.

of GNU coreutils [50]) to achieve Turing completeness. Note that ASLR/stack ca-

naries have been proven ine˙ective to protect against information leakage [51]. With

SMV, programmers can secure the system with few changed lines of source code while

also handling nontrivial thread interaction, if needed.

Performance. Figure 2.6 shows the runtime overhead of the ported PARSEC

benchmarks with 10 runs for each program. The results show that the SMV model

incurs negligible runtime overhead. The overall geometric mean of the runtime over-

head is only 2.07% (LO) and the maximum of the runtime overhead occurs for dedup

due to the huge amount of page faults and the highly intensive parallel memory

operations.

2.7.7 Cherokee Web Server

Overview. The original Cherokee server uses a per-thread memory bu˙er system

for resource management to isolate threads from remote connections. We leveraged

36

the SMV model to provide Cherokee with the OS level privilege enforcement for

di˙erent server components. Then we compared the throughput of our security-

enhanced Cherokee with the original Cherokee.

Assessment of porting e˙ort. We enhanced the security of the Cherokee

version 1.2.104 server as illustrated in Section 2.5.6. The user-space SMV library

automatically replaced pthread_create with smvthread_create to create SMVthreads

for the workers to handle client requests. Each SMVthread worker ran in its own

SMV with a private memory domain which is inaccessible by other workers. All

other shared objects such as the mutex are allocated in a shared memory domain and

accessible by all workers. We modifed only 2 LOC of Cherokee to enforce the least

privilege memory access with the SMV model (EU). We believe that the negligible

porting e˙ort demonstrates the practicability of the SMV model to protect real-world

applications.

Performance. We used ApacheBench to measure the server throughput for the

original and security-enhanced Cherokee. Both versions of Cherokee hosted two kinds

of web content: (a) social networking web pages, and (b) large streaming fles. Based

on the total transfer size per page reported in Alexa top one million websites [52], we

tested web page sizes from moderate amount of content to abundant media objects

(100KB to 8MB). We also evaluated the performance of both servers hosting large

streaming fles (50MB and 100MB) to show the practicability of our security-enhanced

Cherokee. The Cherokee server process created 40 worker threads by default to

handle client requests. The client initiated the ApacheBench for 100,000 requests

with concurrency level set to four (matches the number of cores). We conducted the

experiment 20 times for each object size and present the results in Figure 2.7. Overall,

the SMV model reduced throughput by only 0.69% in exchange for strictly enforcing

a least privilege security policy (LO).

We also ported the popular Apache httpd-2.4.18 with only 2 LOC (EU). Using

Apache as a fle sharing server (GF) to host large objects with size of 10MB, 50MB,

100MB, and 1GB we conducted the same experiment. Overall, SMVs reduced the

https://httpd-2.4.18

37

0.61%
0.75%

0.38%

0.55%
0.39%

0.48%
0.57%

0.69%

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

Th
ro

ug
hp

ut
 O

ve
rh

ea
d

(%
)

Figure 2.7.: Throughput overhead of Cherokee server.

throughput of the httpd server by only 0.93% (LO). As Cherokee already presents the

case for web servers, we exclude the details for Apache httpd due to space limitation.

2.7.8 Mozilla Firefox Web Browser

Overview. The developers of modern web browsers have made tremendous ef-

forts to ensure resource isolation. In 2011, Firefox introduced an abstraction called

“compartments” for its JavaScript engine SpiderMonkey to manage JavaScript heaps

with security in mind [53]. However, the isolation is not enforced by any mechanism

stronger than the compartments’ logical boundaries. As a result, any memory corrup-

tion can still lead to serious attacks. Here we demonstrate that the SMV model can

be easily deployed to protect Firefox’s JavaScript engine from memory corruption by

confning each compartment to access only its private and the system compartments.

Assessment of porting e˙ort. Firefox uses threads for UI rendering, process-

ing network packets, monitoring browser status, handling JavaScript jobs, etc. In

our evaluation, we replaced Firefox 45.0 SpiderMonkey’s NSPR (Netscape Portable

Runtime) threads with SMVthreads running in a private memory domain by adding

a new thread type named PR_SMV_THREAD to the NSPR library. SpiderMonkey

38

0.60%

4.14%

2.17% 2.32%
1.89%

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

JetStream Kraken Octane SunSpider Geomean

R
un

tim
e

O
ve

rh
ea

d
(%

)

Figure 2.8.: Runtime overhead of security-enhanced Mozilla Firefox web browser.

creates 8 threads (1 thread per core + 4 excess threads) in total. We modifed only

12 LOC of the entire Firefox source to use the SMV model. Although we designed a

per-tab isolation policy, the workloads of individual JavaScript benchmark suites are

run in the same tab. For example, JetStream executes 40 benchmark programs in

the same tab. The performance numbers faithfully report the overhead for privilege

checks as each memory page reference is monitored by our page fault handler.

Performance. We evaluated our security-enhanced Firefox with four popular

JavaScript benchmarks and report the numbers in Figure 2.8. The overall geometric

mean for all benchmarks is only 1.89%. The performance numbers report the overhead

when Firefox performs additional privilege checks for SpiderMonkey’s helper threads.

We believe that such negligible overhead numbers allow eÿcient and strong isolation

for multithreaded browsers to be used in practice and provide the Mozilla team an

alternative to the ongoing multi-process Firefox e10s project [54].

2.7.9 Limitations

The low performance overhead for checking privileges in the SMV model builds

on the virtual memory protection at page granularity. At this point, the SMV model

does not guard against unprivileged memory references within the same page as the

39

kernel relies on page table entry (PTE) permission bits. However, poorly organized

data structures mixing privileged and non-privileged data within a region are intrinsi-

cally insecure and avoided by real-world software (e.g., Hoard [55] memory allocator,

connection bu˙ers in Cherokee, worker pools in Apache httpd, compartments in Fire-

fox). Therefore, SMVs can be seamlessly integrated into modern software, eliminating

the chances for threads to unintentionally access the same page while enforcing mem-

ory boundaries at kernel level. Software monitors for byte-granularity protection has

inevitably high overhead (e.g., decentralized information fow control systems) since

the memory boundary is neither supported by hardware nor the kernel subsystem,

making every memory load/store instruction a candidate for a privilege check. In

contrast, page-granularity o˙ers strong memory isolation and superior performance

with hardware/kernel support.

Although SMVs cannot protect against malicious library threads once they are

installed on the system (requires root privilege, which is out of scope), a user can

compile any third-party threading libraries to use SMVs, as we demonstrated in the

PARSEC benchmark with GThread in vips and RTThread in raytrace.

2.8 Conclusion

In this chapter we have presented the design, implementation, and evaluation

of SMVs, a memory subsystem that allows eÿcient memory compartmentalization

across concurrent threads. SMVs yield a comprehensive architecture with all four de-

sired requirements – genericity and fexibility, ease of use, no hardware modifcations,

and low runtime overhead – for eÿcient fne-grained intra-process memory separa-

tion in multithreaded applications. Our performance evaluation demonstrates that

the SMV model imposes negligible overhead in exchange for greatly improved secu-

rity guarantees, enforcing intra-process isolation for concurrent threads. The runtime

overhead of the multithreaded benchmark PARSEC for using the SMV model is only

2.07% overall with only 2 LOC changes. For popular web servers, the reduction in

40

throughput is only 0.69% overall for Cherokee and 0.93% overall for Apache httpd.

Both applications required only 2 LOC changes. We also showed that the real-world

web browser Firefox can be easily ported to the SMV model with only 1.89% run-

time overhead overall, requiring only 12 LOC modifcations to the large code base

(13M LOC). The simplicity of the porting e˙ort allows legacy software to be quickly

adapted to the SMV model. In summary, we believe that the SMV model can greatly

reduce the vulnerabilities caused by improper software component isolation and en-

courages more research on the eÿcient and practical intra-process isolation for general

multithreaded applications.

41

3 MEMORY SUBSYSTEM FOR CONSISTENCY

This chapter presents a memory subsystem [56] for persisting program memory for

existing multithreaded C/C++ programs. Our extensive evaluation shows that our

memory system yields good performance with strong consistency guarantees.

3.1 Overview

Memristor [1], phase-change memory [2], and other emerging non-volatile memory

(NVM) technologies will provide disk-like persistence but at latency as low as main-

memory (DRAM) devices [57]. These NVM devices will be accessible by memory

instructions, and will result in high performance, fault tolerant programs that avoid

the overheads of traditional persistent media, such as deep software layers and the cost

of serializing and storing data. Programs may even eliminate the distinction between

in-memory versus on-disk representations of data. Recent partnership announcements

from Intel-Micron [57] and HPE-SanDisk [58] aim to bring this memory-centric com-

puting to consumers. Unfortunately, to fully beneft from low latency persistence,

developers need to re-architect both system and application software [59].

When manipulating persistent data directly, applications need to ensure that fail-

ures during updates do not end up corrupting data. As an example, a failure during

insertion of an element to a persistent linked list should not result in dangling point-

ers or other corruptions. A safe way to manipulate persistent data is to ensure that

data structure updates are failure atomic, i.e., even in the presence of failures, either

all or none of the updates are refected in the NVM. The challenge in implementing

failure atomicity is to correctly handle partial updates even in the presence of multi-

threading, volatile caches, and reordering of NVM writes by the processor. Managing

persistent data structures is costly due to these challenges (e.g., frequently fushing

42

cache lines to NVM is very costly [60]). For any persistent programming system to

be practical, its overheads should be low enough that applications actually beneft

from using NVM.

Recently proposed frameworks provide multiple ways to directly manipulate NVM

data structures [61–63]. Application developers can either rewrite their program to

use durable transactions (NV-Heaps [62], Mnemosyne [63]) or rely on the compiler

and runtime to infer failure atomic regions from locks (Atlas [61]). These systems

track persistent data at a very fne-granularity, such as at the level of individual

stores, and use cache fushes and write-ahead logging to correctly recover from fail-

ures. Unfortunately, the high overheads of tracking, logging, and managing volatile

caches in these systems results in a huge performance gap, sometimes an order of

magnitude slowdown, between unmodifed DRAM based applications and their crash

tolerant versions (Section 3.6.5). Certain systems propose processor modifcations to

ameliorate the cost of cache fushes and ordering of NVM writes but these systems

do not work on today’s processors [62,64].

Our goal is to provide a simple transition path for existing C/C++ programs to

leverage non-volatile memory. We want applications to use NVM with few or no

program modifcations, and yet have good performance on today’s processors. Our

key observation is that, for many applications, the high overheads of maintaining logs

can be reduced substantially by using redo logs in combination with coarse-grained

tracking, such as at the level of memory pages.

We propose NVthreads, a memory subsystem we implemented as a threading li-

brary that adds durability guarantees to existing multithreaded C/C++ programs.

NVthreads uses two techniques to provide failure atomicity. First, NVthreads ex-

ecutes a multithreaded program as a multi-process program, using virtual memory

to bu˙er intermediate changes when data structures may be inconsistent. When

program data is in a consistent state, NVthreads commits modifed memory pages

to a durable log for recovery. By using the operating system’s copy-on-write mecha-

nism, NVthreads can eÿciently bu˙er uncommitted writes (unlike the costly software

43

transactional memory approach in Mnemosyne [63] or eager cache fushes in Atlas’

undo logs [61]), and requires only a redo log to recover. Second, it builds on the

observation that synchronization operations, such as lock acquire and release, pro-

vide enough information to determine the boundaries of failure atomic regions [61].

Instead of requiring programs to be re-written with durable transactions, NVthreads

adds durability semantics by automatically inferring when data is safe to write to

persistent memory. While NVthreads’ design can also be used to implement durable

transactions, our current approach of using locks to infer consistency boundaries

means that programs require very few modifcations to start using NVM.

NVthreads uses multiple techniques to ensure good performance. Its approach of

using virtual memory to track data structure modifcations is in stark contrast to re-

cent systems that track durable data at the level of individual words [63] or stores [61].

NVthreads reduces the overheads of ordering writes to NVM by eliminating the need

to fush data after each program write, and requiring that only log entries be ordered.

Even though NVM will be byte-addressable, our evaluation shows the importance of

coarse-grained tracking of program writes, i.e., at the level of 4KB memory pages, for

good performance. In fact, NVthreads is 2×–10× faster than Mnemosyne [63] and

more than 2× faster than Atlas [61], both of which use fne-grained memory manage-

ment. Additionally, NVthreads uses less space to store metadata and logs compared

to these systems.

For many workloads in the PARSEC [49] and Phoenix [65] benchmarks NVthreads

incurs modest overheads while making data structures durable. We use an emulator to

show that NVthreads’ performance results are robust even if NVM devices are much

slower than DRAM. By using NVthreads and NVM, the persistent versions of pro-

grams are 15% to 22× faster than using solid disk drives to store logs. Our evaluation

on a K-means clustering program shows that NVthreads helps programs converge up

to 1.9× faster after a failure versus their non-durable counterparts. Finally, we inte-

grate NVthreads with Tokyo Cabinet, a high performance key-value store, and show

44

that for a modest increase in overheads it provides the same durability guarantees

and without the need for custom transactional code.

The contributions of this chapter are:

- A memory subsystem that infers when data structures are consistent and adds

durability semantics with very few program modifcations.

- Novel mechanisms that use process memory to bu˙er uncommitted writes and

track the data at memory page level, thus avoiding undo logs and the need to

instrument each program write.

- Extensive evaluation that shows that the NVthreads’ approach has low over-

heads, and outperforms Mnemosyne and Atlas. Iterative applications require

only tens of lines of recovery code and converge faster by resuming after failures.

3.2 Challenges in Using Non-volatile Memory

Non-volatile memory (NVM) devices retain data even after a power loss, yet have

access characteristics similar to DRAM and higher density than DRAM. In this sub-

section we review basic characteristics of NVM technologies and the challenges faced

by application developers.

3.2.1 Non-volatile Memory

New NVM technologies such as PCM [2], memristor [1], and STT-MRAM [66],

will have access latencies similar to DRAM, which is three orders of magnitude faster

than fash. Unlike fash and disks, these NVM devices will also be byte addressable,

meaning they can be accessed through memory instructions, rather than requiring

block-granularity read and write operations. Given these advantages, it is conceivable

that NVM devices will not only be deployed as PCIe-attached devices (replacement of

SSDs) but also be directly attached to the memory bus (similar to DRAM). However,

even in such architectures we expect CPU caches to be volatile, and DRAM and NVM

45

to coexist. While current applications will continue to work on NVM devices, they

will not automatically take advantage of the low latency durability.

3.2.2 Design Issues

There are multiple challenges that need to be solved before programs can use

NVM for fault tolerance.

Data structure consistency. NVM-aware solutions need to ensure data consistency

even in the presence of failures. Consider Figure 3.1 where a multithreaded program

adds an element to a doubly linked list. If a crash occurs during insertion, it is

possible that the new element’s back pointer is not set correctly, thus leaving the list

inconsistent. As memory is persistent, after the crash, the program will not be able

to proceed correctly.

Volatile caches. Even though programs will be able to directly access NVM, the

underlying hardware may cache data in the volatile CPU caches, and reorder stores

to NVM. Unfortunately, there is no easy and eÿcient way to determine what data has

been persisted. In Figure 3.1, even if a crash occurred after the program executed line

10, the updates may not have reached the NVM, and the list could be inconsistent.

Therefore, NVM-aware systems need to manage the movement of data from volatile

caches to NVM.

Performance and programmability. Since objects in the heap will reside in the

NVM, programs no longer need to bear the overheads of serializing and storing per-

sistent data in flesystems. Still, there are performance and programmability costs

associated with keeping heap objects consistent. For example, a possible solution to

correctly handle state in volatile caches is to fush cache lines after each write, but

such heavy-handed approaches result in high overheads. Some prior solutions miti-

gate these high overheads by assuming the presence of modifed processors [62, 64],

while others require extensive program modifcations.

46

1 / / L i s a p e r s i s t e n t l i s t

2 readFromNVM(&L) ;

3 . . .

4 / / Add element to the t a i l o f l i s t

5 pthread_lock (&m) ;

6 e = nvmalloc (s i z e o f (elem) , ’ e ’) ;

7 e−>va l = l o c a l V a l ;

8 t a i l −>next = e ;

9 e−>prev = t a i l ;

10 t a i l = e ;

11 pthread_unlock (&m)

Figure 3.1.: Pseudo-code that appends to a persistent list.

3.3 Related Work

Persistent programming models. BPFS [64] and PMFS [67] are example flesys-

tems that leverage the low latency of NVM to accelerate flesystem operations. BPFS

uses optimized shadow copying to maintain consistency, but requires new hardware

primitives in the form of epoch barriers. These systems do not require any application

changes, but restrict applications to the block based fle system interface.

Mnemosyne [63] and NV-Heaps [62] expose direct NVM access but require appli-

cations to be rewritten with transactions. NV-Heaps relies on processor changes and

maintains undo logs. NVthreads has similar goals as these systems, but uses multi-

process execution, and does not require applications to use transactions. Mnemosyne

extends software transactional memory with durability semantics and, similar to

NVthreads, uses redo logs. However, our evaluation shows that NVthreads outper-

forms Mnemosyne by 2-10× because of its design choices and use of operating system

techniques.

Prior work on Java concurrency control has shown how transactional boundaries

can be inferred from locks [68]. Atlas extends this idea to add durability semantics

47

Issue Commonly used solu-

tions

NVthreads approach NVthreads advantage

Determine consistency

points

Use durable transac-

tions [62, 63]

Infer from synchroniza-

tion points

Ease of programming

Handle transaction aborts Use undo logs [61, 71],

word level STM [63]

Use process memory, no

undo logs

Lower overheads, simpler

recovery

Handle in-fight updates Use redo logs Use redo logs None

Track updates Intercept each store [61]

or word [63]

Intercept page writes Amortized costs, good

performance

Volatile caches Flush writes, some require

new hardware [62, 64, 69]

Flush log entries (memory

pages)

Amortized costs, no pro-

cessor changes

Table 3.1.: NVthreads design decisions.

to lock-based programs [61]. Atlas provides a compiler and runtime that instruments

writes to NVM and creates an undo log for each store to aid recovery. JUSTDO log-

ging improves performance and log management in Atlas like systems by storing the

program counter and resuming execution of critical sections from exactly the same

point where a crash occurred [69]. JUSTDO logging assumes caches are persistent,

and has severe programming model restrictions such as volatile data cannot be used

inside critical sections and compiler optimizations like register promotion have to be

disabled. In fact, JUSTDO logging is 2-3× slower than Atlas on systems with volatile

caches, which is the environment that NVthreads targets. Although NVthreads and

Atlas both infer failure atomic regions from critical sections, NVthreads’ approach

is very di˙erent. NVthreads tracks data modifcations at the granularity of virtual

memory pages, isolates thread execution via forking processes, and uses redo logs in-

stead of undo logs. Our evaluation shows that Atlas incurs high overheads of fushing

data, and NVthreads outperforms Atlas by 2× on many applications. SoftWrAP uses

cache-line combine of writes and asynchronous writes to logs to improve application

performance [70]. Unlike SoftWrAP, NVthreads automatically infers failure atomic

sections, uses operating system techniques to track updates, and is easy to integrate

with pthreads based applications.

48

Table 3.1 summarizes the benefts of NVthreads’ design decisions over existing

persistent programming systems.

Operating system mechanisms. NVthreads’ use of page-level tracking to provide

crash tolerance is similar to RVM [72] and Rio-Vista [73]. Unlike RVM, NVthreads

does not have the limitation that data needs to ft in memory, nor does it require

DRAM to be battery backed as in Rio-Vista. Additionally, RVM and Rio-Vista

don’t infer consistency semantics from synchronization operations. QuickStore [74]

and Texas [75] use virtual memory techniques to provide persistent object stores on

disks, but are more appropriate for object oriented programs. DThreads [76] and

Determinator [77] are systems that use multi-process execution to isolate threads

for deterministic execution. NVthreads uses the DThreads library to manage data

modifcations in critical sections, but removes the approach of a global token that

DThreads uses for deterministic execution, which can result in up to 9× application

slowdown. NVthreads uses a per-mutex token mechanism that improves concurrency

in some applications. Unlike DThreads, NVthreads also includes mechanisms to track

dependence between critical sections, manage redo logs, and recover from crashes.

Whole system persistence advocates the use of residual power supply energy to

fush data during a failure [78]. It relies on new hardware to provide the fush on

failure feature, and its software for saving data during failure is susceptible to op-

erating system crashes. Other transparent checkpoint-restore mechanisms rely on

virtualization, which increases overheads for all applications or doesn’t determine

when checkpointing should occur so that data structures are consistent even in the

presence of multi-threading [79–81].

Databases and transactions. Most databases use ARIES [71] write-ahead logging

which was created to handle the performance di˙erence between sequential and ran-

dom disk accesses. MARS uses editable atomic writes to make NVM-specifc choices

such as eliminating undo logs [82]. Stasis also uses write-ahead logging and LSN-free

pages to build durable data structures [83]. Similar to MARS, NVthreads does not

need an undo log but it is because NVthreads bu˙ers updates in process memory.

49

3.4 Programming Model

NVthreads adds durability semantics to existing multithreaded programs. We

assume that both DRAM and NVM devices exist. NVM devices can be accessed by

memory instructions as well as traditional flesystem interfaces. We consider processor

caches to be volatile. Programs may control ordering of writes to NVM by using a

combination of cache fush instructions, such as clfush or the upcoming optimized

clfushopt, fences, and the pcommit instruction. We defne crashes to be failures that

result in the loss of all processor and DRAM state, but do not corrupt NVM state.

Crashes can be caused by power failures or fail-stop software faults.

Original applications use locking primitives and multi-thread functionality pro-

vided by the pthreads programming model and library. Applications that link to the

new NVthreads library become crash tolerant, and may need to incorporate recovery

code to resume execution. We assume that programs modify shared persistent data

within critical sections that demarcate failure atomic regions. Program data struc-

tures may be inconsistent within a critical section, but data structures are always

consistent outside critical sections (when no locks are held).

NVthreads works as follows: it (1) uses critical sections to determine failure atomic

regions, (2) tracks dependence between failure atomic regions to decide when to make

logs permanent, (3) uses redo logs to ensure NVM data is consistent after a crash, and

(4) runs the optional application specifc recovery code before resuming execution.

Guarantee. NVthreads guarantees that in the event of a crash failure, and after the

completion of NVthreads’ recovery process, application data structures will be in a

consistent state in NVM, i.e., the program state after recovery is as if the program

stopped when no locks were held, and the implementation guarantees it by providing

the appearance of stopping at the exit of a critical section.

50

3.4.1 Persistent Regions

A persistent region is a segment of memory, such as a memory mapped fle, which

is backed by non-volatile memory. NVthreads uses persistent regions to store appli-

cation data durably. Data structures stored in persistent regions survive application

crashes due to faults or power loss. Applications can allocate memory from persistent

regions via nvmalloc, a persistent memory allocator. When allocating persistent ob-

jects, applications can install a handle, such as a variable name, that acts as an entry

point to the object. After a crash, the recovery program may use the handle to de-

termine the location of the persistent object and to traverse other reachable objects.

For example, the recovery program may start from the head of a list, and traverse it

to fnd elements in the linked list. Data not in persistent regions, such as application

data in DRAM, are lost when a program terminates correctly or incorrectly, or if the

system crashes. Applications can continue to allocate and access volatile memory

using existing interfaces such as malloc.

3.4.2 Inferring Consistent Program Points

A key challenge in adding durability semantics to programs is to determine when

data structures are consistent. Instead of using durable transactions and rewriting

applications, NVthreads infers failure atomic regions from synchronization primitives.

NVthreads’ API also supports programmers who explicitly specify commit points,

similar to manual checkpointing. However, this work focuses on how NVthreads can

automatically infer failure atomic regions, thus making it easier for programmers to

add durability semantics to their programs.

Multithreaded applications use synchronization primitives, such as locks, to safely

modify shared data structures. NVthreads uses these synchronization points as the

boundary for failure atomic regions. We assume that programs are data race-free

and data structures are consistent at synchronization points. However, updates in-

side critical sections can leave data structures inconsistent due to an untimely crash.

51

NVthreads uses two rules to guarantee that data structures in persistent memory are

always consistent: (1) if an application crashes while a thread is in a critical section,

NVthreads ensures that updates to persistent data in the critical section are not vis-

ible in NVM, and (2) if an application crashes when a thread is outside of a critical

section, NVthreads guarantees that only modifcations till the last successfully exe-

cuted critical section are made visible to NVM. The challenge for NVthreads is to

ensure that these rules hold true even in the presence of multi-threading and volatile

caches.

Returning to the example in Figure 3.1, if the program crashes at line 9, then the

last element in the list will not have a back-pointer and the variable tail will no longer

point to the last element. NVthreads avoids leaving the list in such an inconsistent

state by making the critical section failure atomic. Let’s assume that there are two

threads T1 and T2 executing the critical section to append elements to the list. If

T1 has successfully completed the critical section and T2 crashes in the middle of

executing the critical section, then NVthreads will ensure that the persistent list,

after program recovery, has only one new element.

Dependent critical sections. Locks lead to multiple kinds of critical sections.

There may be cases with (1) an inner critical section completely surrounded by the

outer critical section (perfect nesting), (2) two critical sections that overlap, such as

lock chaining [84], or (3) critical sections that use condition variables. In all these

cases, additional care is taken by NVthreads to ensure data structure consistency.

Figure 3.2 shows two examples of nested critical sections, one with perfect nesting

and another with overlapping critical sections. Note that the case where critical

sections don’t nest perfectly does not arise in programs with transactions because

transactions are scoped regions without partial overlap [62, 63]. NVthreads treats

nested critical sections as a single failure atomic region. Logically, the system provides

atomic durability to the smallest program region that encompasses all lock acquires

and releases in a particular nested critical section. In Figure 3.2, NVthreads will

guarantee that lines 2-7 (and 9-14) are atomically durable. For example, if a crash

52

1 / / Well nested sec t ion 8 / / Lock cha in ing

2 pthread_lock (&m1) ; 9 pthread_lock (&m1) ;

3 pthread_lock (&m2) ; 10 pthread_lock (&m2) ;

4 . . . 11 . . .

5 pthread_unlock (&m2) ; 12 pthread_unlock (&m1) ;

6 . . . 13 . . .

7 pthread_unlock (&m1) ; 14 pthread_unlock (&m2) ;

Figure 3.2.: Di˙erent types of nested critical sections.

1 / / Thread T1 1 / / Thread T2

2 a = 0 ; 2

3 pthread_lock (&m1) ; 3

4 pthread_lock (&m2) ; 4 . . .

5 a = 42; 5 b = 0 ;

6 pthread_wait (&cv , &m2) ; 6 pthread_lock (&m2) ;

7 . . . 7 b = a ;

8 pthread_unlock (&m2) ; 8 pthread_signal (&cv) ;

9 / / crash 9 pthread_unlock (&m2) ;

10 pthread_unlock (&m1) ; 10 . . .

Figure 3.3.: Dependence between nested critical sections.

occurs in line 6 then changes made even in the internal critical section (lines 3-

-5) are undone. NVthreads tracks dependence between nested critical sections to

correctly refect updates in NVM. For example, the inner critical section in lines 3-5

is dependent on the outer critical section, and should become durable only after line

7 successfully completes.

Figure 3.3 shows another example of why NVthreads tracks dependence between

nested critical sections. Line 3-10 in T1 has nested locks and a condition variable,

but it is a single failure atomic region, i.e., even if a crash occurs at line 9 the value

53

of a should be 0 after recovery. However, in this example T2 will set b to 42 (line 7

under T2) before the crash occurs. After recovery, this will lead to an inconsistent

state where a is 0 but b is 42. NVthreads ensures that such cases do not arise by

tracking dependence between critical sections. In this example, the critical section

in T2 is dependent on T1, and the changes in T2 will not be visible in NVM unless

T1 completes the nested critical section. Section 3.5.1 describes how NVthreads

implements dependence tracking.

3.4.3 Recovery Code

In the event of a crash, NVthreads guarantees that program data structures are

durable in NVM up to the point of the last successfully completed critical section.

The recovery component consists of two parts. First, applications invoke NVthreads’

recovery function, nvrecover, to apply log entries to NVM-resident data. This compo-

nent is application agnostic. Second, similar to other systems, programmers may need

to write application specifc recovery code to resume execution after a crash [61, 63].

The user-provided recovery code is primarily used to assign NVM data to program

variables, such as reading back two separately allocated arrays that are felds of a

single variable, and assigning them to the appropriate felds.

While the amount of user-provided recovery code depends upon the complexity of

an application, most programs simply need to call the application agnostic nvrecover

for each allocated data and assign the output to program variables. In our experience,

the recovery code for many machine learning and graph algorithms is only a few

lines that read core data structures from NVM and restart iterations to run until

convergence (Figure 3.4).

3.4.4 Garbage Collection

Due to crashes, applications using non-volatile memory have to handle cases of

persistent memory leaks and dangling pointers. As an example, if a persistent object

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

54

/ * po in t s : i npu t 2D po in t s

l a b e l s [i] : i d o f center c l oses t to po i n t i

Only ‘ l a b e l s ’ i s p e r s i s t e n t * /

/ / Main i t e r a t i o n s

f l o a t * kmeans (f l o a t * po in ts , f l o a t * l a b e l s) {

centers = ca lcu la teCente rs (l a b e l s) ;

while (! converged) {

pthread_create (. . , f i ndDis tance , . .) ;

pthread_join (. .) ;

centers = updateCenters (l a b e l s) ;

}

r e t u r n centers ; }

/ / Ca lcu la te d is tance f o r subset o f po in t s

void f i ndD is tance (po in ts , l abe ls , centers) {

/ / f i n d c l oses t center f o r po in t s w i th i d i n [X ,Y]

pthread_lock (&m_xy) ;

l a b e l s [X :Y] = c loses tCenters [. .] ;

pthread_unlock (&m_xy) ;

. . .

}

/ / Recovery code

void main () {

i f (crashed ())

nvrecover (l abe ls , N*2* s i z e o f (f l o a t) , ’ l a b e l s ’) ;

else

l a b e l s =(f l o a t *) nvmalloc (N* s i z e o f (f l o a t) , ’ l a b e l s ’) ;

. . .

ans = kmeans (po in ts , l a b e l s) ;

}

Figure 3.4.: Pseudo-code for multithreaded K-means.

55

stores a pointer to volatile memory then after a crash it will point to garbage since

volatile contents are lost. Such programs are discouraged, but NVthreads currently

does not enforce these pointer restrictions. Similarly, after recovery if programs do not

reuse persistent data that they store, the memory space will be wastage. NVthreads

assumes that a garbage collector exists for the persistent regions (similar to fle system

checkers). This garbage collector should run after a crash, collecting unreachable

memory, and fagging dangling pointers.

3.4.5 Example: K-means Clustering

Iterative machine learning algorithms, such as clustering on large datasets, can

take hours to converge even with multiple CPU cores (Section 3.6.4). Therefore, after

a crash it is benefcial to restart the program from the last completed iteration instead

of the beginning. Figure 3.4 is an implementation of K-means algorithm that becomes

crash tolerant when linked with NVthreads. K-means is a clustering technique that

divides the input dataset (stored in the array points) into K groups. The algorithm

proceeds in rounds, refning the centers until convergence. In an iteration, each point

is frst assigned to the closest center (stored in the array labels), and then centers are

updated by taking the average of points assigned to them.

In lines 5-12 the centers are frst initialized using the current labels. In each

iteration threads calculate the closest center to a subset of points, and update the

corresponding labels in a critical section (lines 16-18). When a thread exits the

critical section NVthreads guarantees that the labels of all the points it was working

on have been updated. Lines 23-24 depict the recovery code. After a crash, the

program re-reads labels from NVM. Otherwise, it allocates memory in NVM to store

the labels. The real recovery work is performed by the nvrecover function which is

application agnostic and implemented in the NVthreads runtime. After a crash, the

K-means algorithm will simply restart its execution by calculating the latest centers

from labels.

56

Algorithm 1 Execution fow for each thread T
1: while T has not terminated do

2: wT ← ∅ . Initialize write set

3: while instruction i is not a synchronization event do

4: if i is a memory store then

5: wT ← wT ∪ {page with memory address}

6: end if

7: Run i on priv. copy of global state . Avoids fne-grained logs

8: end while

9: log(wT) . Log di˙ of modifed pages

10: Merge di˙ of pages from private copy to global state

11: Execute synchronization event

12: end while

3.5 Design and Implementation

Algorithm 1 shows how NVthreads implements its persistent programming model.

As each thread executes, the write set tracks updates, which are initially performed

on a process private copy of data. At synchronization points, modifed data is frst

logged and then merged with the global state. For simplicity we have not shown the

dependence tracking for nested critical sections.

An important challenge is to implement Algorithm 1 while ensuring good applica-

tion performance. Unlike prior solutions, NVthreads uses operating system techniques

to reduce application overheads. It leverages DThreads’ approach [76] to execute a

multithreaded program as a multi-process program, though reducing the overheads

imposed by deterministic execution. NVthreads also tracks dependence between crit-

ical sections, creates redo logs, and fushes log entries to NVM for recovery.

3.5.1 From Threads to Processes

NVthreads converts threads into child processes that execute in isolation until a

synchronization point is reached. Typical synchronization points are lock acquires

57

and releases, as well as thread creation and exit. At a synchronization point, changes

made by child processes are applied to the original shared pages and made visible

to all. This merge phase ensures that the behavior of the multi-process execution

corresponds to a valid multithreaded execution: threads can access and modify shared

data.

Tokens. Since multithreaded programs running under NVthreads become multi-

process, we use the term token to denote mutexes visible across processes. Figure 3.5

shows an example of how execution proceeds in NVthreads. We assume that the

application has two threads (T1 and T2) that become processes when executing under

NVthreads. This process-based isolation is used to bu˙er uncommitted writes. Out-

side the critical sections, processes execute in parallel. Inside a critical section, such

as a locked region, processes execute sequentially, i.e., one after the other. Sequential

execution is enforced by making each process wait for a per-lock token. This per-lock

token is logically similar to a mutex in a multithreaded program, except that it is vis-

ible across processes using shared memory. Only the process that acquires the token

can enter the corresponding critical section. Others wait till the token is released.

Once a process exits the critical section it writes its dirty pages to the log and fushes

the log to NVM for durability. It then merges its modifcations to the shared state,

which makes the local updates visible to everyone, and fnally passes the token to the

next waiting process. It is worthwhile to point out that DThreads uses a single per-

program global token to ensure there is a deterministic order of thread interleaving.

This global token reduces concurrency: it serializes even those threads that access

completely di˙erent mutexes. For deterministic ordering among threads, DThreads

also forces all threads to wait at a barrier each time a mutex is released. This barrier

can result in poor performance if there is load imbalance among threads. NVthreads

reduces the overheads in some applications by admitting more thread interleavings

(Section 3.6.2).

Copy-on-write. Child processes in NVthreads are created using the clone system

call and each process gets a copy-on-write version of the program data. Shared mem-

58

Pass
token

Wait

Wait

P1

P2

Critical section
Parallel
phase

Parallel
phase

Execute
St
ar
t

NVM
log
write

Merge
shared
state

Track
dirty
pages St

op

St
ar
t

NVM
log
write

Merge
shared
state

Track
dirty
pages St

op

Wait

Figure 3.5.: Overview of thread execution in NVthreads.

ory regions are backed by a fle, which is mapped into each process’ address space and

updated at synchronization points. Specifcally, each process has two references of

program memory: shared and process-local, which are created through two di˙erent

mmap calls to the same fle. Pages are initially read-only outside the critical sec-

tion. Once processes write to pages, NVthreads’ page fault handler uses mprotect on

process-local pages with PROT_READ or PROT_WRITE and MAP_PRIVATE

fags, e˙ectively creating a copy-on-write page for local modifcations. During the

merge phase, the runtime compares dirty pages from a child process with the original

versions of the shared pages, and applies the bytes modifed by the child to the shared

state. Only the dirty private bytes (i.e., di˙s) are applied to the shared pages at syn-

chronization points. At the end of a critical section, NVthreads releases the private

copies and redirects references of these addresses to the shared pages with read-only

permission set.

Dependent critical sections. The NVthreads runtime tracks dependence between

durable regions to correctly handle nested critical sections and condition variables.

NVthreads bu˙ers the generated logs till all threads that are dependent on each other

exit their critical section. Figure 3.6 shows how NVthreads tracks this dependence.

If a thread T1 is inside a nested critical section, and passes a token to thread T2 for

execution, then T2 is dependent on T1 if T2 touches a page that T1 modifed in the

59

lock(m1)

lock(m2)
wait()

unlock(m2)

unlock(m1)

T1

lock(m2)

signal()
unlock(m2)

T2

Ti
m
e

dependence
Log 1

Log 2
Log 3

Figure 3.6.: Tracking dependence between durable regions.

current nested section. Only when T1 completely exits its nested critical region are

the logs of T1 and T2 together committed to NVM. In Figure 3.6, logs 1, 2, and 3 are

written to NVM only when T1 unlocks m1.

3.5.2 Logging

Figure 3.7 illustrates how logging works in NVthreads. Since NVthreads uses

multi-process execution, data structure modifcations are initially available only in

the private copy used by each process. Only at synchronization points, and after dirty

pages have been merged with the shared program state, will the changes be potentially

refected in NVM (depending upon when cache lines are evicted). NVthreads requires

only logs to be durably fushed from caches to non-volatile memory. Except for the

log truncation operation, which we describe later, NVthreads’ correctness guarantees

do not depend upon when application data is fushed from caches, which reduces the

overhead of eagerly fushing cache lines.

Ordered writes to NVM. Since NVM devices appear as memory, the processor

may cache data and reorder updates. NVthreads has to ensure that applications

can correctly recover even in the presence of volatile caches and re-ordered writes.

NVthreads requires two mechanisms from the hardware, which are available in most

60

Shared
state

T1

Redo
log

NVM

sync()

merge updated
bytes

write
back to
NVM

log modified
page

Critical sectionParallel phase
Original
page

Dirty
page

Figure 3.7.: Overview of logging.

processors, and are also expected to be present in NVM systems. First, NVthreads

requires a way to evict cache lines to NVM, such as the clfush or clfushopt instruction.

NVthreads uses these calls to keep its log consistent and durable. Second, NVthreads

assumes that the system provides fences, such as mfence, to ensure that instructions

prior to a fence complete before those after the fence. Applications should also be

able to use operating system functionality, such as msync or fdatasync, to write out

logs to NVM. The fdatasync call, when used as a blocking call, ensures that all writes

have safely reached the device before returning.

Coarse-grained memory management. Figure 3.8 contrasts fne-grained memory

management [61, 63] with NVthreads. In fne-grained memory management, frst

each NVM write has to be intercepted in software, then log entries are made durable

followed by program data. The sync operator ensures writes reach the NVM and are

ordered. It involves draining the volatile cache line using clfush followed by a barrier

for instruction ordering. In contrast, NVthreads uses process local pages to bu˙er

writes, and at the end of the critical section, logs modifed pages. This approach

allows NVthreads to avoid intercepting each NVM write. Additionally, only writes to

61

1 / / Fine−grained 1 / / Coarse−grained : NVthreads

2 pthread_lock (&m1) ; 2 / * Wr i tes are i n i t i a l l y to

3 l = log (&a) 3 a p r i v a t e copy o f data * /

4 sync(& l) ; 4 pthread_lock (&m1) ;

5 a = v1 ; 5 a = v1 ;

6 sync(&a) ; 6 b = v2 ;

7 l = log (&b) ; 7 . . .

8 sync(& l) ; 8 pthread_unlock (&m1) ;

9 b = v2 ; 9 log_pages () ;

10 sync(&b) ; 10 sync () ;

11 pthread_unlock (&m1) ; 11 merge_pages () ;

Figure 3.8.: Fine-grained [61] vs coarse-grained tracking.

the log need to reliably reach the NVM. The log provides the opportunity to batch

pages and use the unordered but faster clfushopt instruction instead of clfush.

Redo log. NVthreads uses a redo log for crash recovery. Data structure modifcations

are frst committed to the log and then made durable in the application’s working

space (Figure 3.7). NVthreads uses the mprotect system call and a custom page fault

handler to track dirty pages. Right before dirty pages of a process are merged with

the shared program state, the dirty portions of the pages (i.e., di˙s) are written out to

the log. For correctness, the log has to be made durable before merging changes with

shared program state. Otherwise, application data may reach the NVM before the log,

and a crash in between will result in a case where the system cannot undo inconsistent

data structures in NVM. NVthreads uses fdatasync to write out log entries to NVM.

After writing out the log entry, NVthreads also writes out a special end-of-log symbol.

This symbol is used during recovery to identify if all of the items in a log append

were written to NVM. The end-of-log symbol is durably written before the current

process continues to merge its dirty pages to the shared program state.

62

Unlike the log, NVthreads does not force application data to be fushed from

volatile caches after each merge phase, thus reducing cache fush overheads. The

reason is because the log has suÿcient information to recover data in the case of a

crash. This approach of not forcing data out to durable media is similar to ARIES

like protocols, i.e. no-force in database parlance [71].

No undo log. NVthreads does not create undo logs. In the ARIES style of database

logging, the modifed data of in-fight transactions may be paged out to the disk to

make space in the bu˙er manager. In Atlas [61] updates are made in-place. Therefore,

these systems need an undo log to remove the e˙ects of uncommitted transactions

or durable sections. In NVthreads each process makes its modifcations on a private

copy-on-write version of data, and the undo log is unnecessary.

Log truncation. Since reapplying the log from the beginning can be slow, NVthreads

supports log truncation to reduce the number of log entries that need to be replayed

during recovery. The redo log can be truncated up to a particular entry if the system

can guarantee that all changes up to that entry are refected in NVM. Since the

application writes its data directly to NVM, the only issue is to ensure that data

in the volatile caches makes it to NVM before the corresponding write entries in

the log are truncated. In NVthreads, log truncation is triggered periodically in the

merge phase of the synchronization points, when NVthreads has control over the

whole program, and the application is quiescent. NVthreads frst fushes all cache

entries, and then truncates the log, using a fence to order the cache fush before log

truncation.

3.5.3 Recovery

Applications initiate the recovery process if they are re-starting after a crash.

NVthreads logs the modifed portion of each page, i.e., the di˙, before they are

applied to the shared state at a synchronization point. During recovery, all the log

entries are applied to recreate application data pages.

63

Applications invoke nvrecover, the NVthreads recovery function, which frst re-

plays the redo log, applying entries in the log to corresponding pages in the NVM

(Figure 3.4). Once the recovery process is complete, it is guaranteed that the appli-

cation’s data structures in the NVM are consistent as of the last completed critical

section. Some applications may have additional user written recovery code to read

data structures from the NVM, assign them to program variables, and resume execu-

tion.

3.6 Evaluation

We evaluate NVthreads to answer the following: (1) What are the overheads of

making programs durable? (2) What are the benefts of NVM over fash storage? (3)

How important is fast recovery? and (4) How does NVthreads compare to Mnemosyne

and Atlas?

3.6.1 Setup

All experiments were run on a Ubuntu 14.04 (Linux 3.16.7) server with two Intel

Xeon X5650 processors (12 cores@2.67 GHz), 198GB RAM, and 600GB SSD.

Applications. We used 14 multithreaded benchmarks from PARSEC [49] and

Phoenix [65], and ran them with the confguration of a large dataset. We also use

PageRank, a graph algorithm, and K-means clustering.

NVM emulator. Since NVM devices are commercially unavailable, we use a sim-

ple emulator to measure the e˙ect of di˙erent NVM latencies on performance. As

NVthreads relies on a NVM flesystem to store its log, the emulator consists of a mod-

ifed Linux tmpfs on DRAM in which software delays are injected to each read and

write flesystem call. These delays are created by reading the processor timestamp via

RDTSCP instruction and spinning in a loop until the counter reaches a certain value.

In all experiments, we add 1,000ns delay to each 4KB page write, which models the

expected overhead for write barriers and cache fushes with clfushopt [67].

mailto:cores@2.67

64

0
2
4
6
8
10
12
14
16

histogram kmeans linear
regression

matrix
multiply

pca reverse
index

string
match

word
count

Ru
nt
im
e	
ov
er
he
ad

Pthreads	 Dthreads NVthreads	(nvmfs	 1000ns) Atlas	

101.96 46.92

Figure 3.9.: Phoenix applications

0
2
4
6
8
10
12
14
16

blackscholes canneal dedup ferret streamcluster swaptions

Ru
nt
im
e	
ov
er
he
ad

Pthreads	 Dthreads NVthreads	(nvmfs	 1000ns) Atlas	

X X

Figure 3.10.: PARSEC applications

3.6.2 Performance

Figure 3.9 and Figure 3.10 shows the overheads of using NVthreads on all 14

applications from the Phoenix and PARSEC benchmarks. Instead of modifying the

applications to call nvmalloc and persist only a selective set of data structures, we

made all heap allocated data persistent by ensuring each call to malloc is a persistent

allocation. This setup ensures that we are measuring the worst case overhead, i.e.,

when all data is durable, without modifying the application at all. We did not add

65

restart code to applications for this experiment since the goal is to observe overheads

during normal execution.

In Figure 3.9 and Figure 3.10 each program uses twelve threads. The baseline

is programs running in DRAM with pthreads. The DThreads performance numbers

give a sense of the overheads of converting multithreaded execution into multi-process

execution. NVthreads numbers are on the modifed tmpfs with a 1,000ns delay to each

page write. We also show the performance of these applications when made durable

using Atlas, which uses fne-grained cache line fush based logging.

Our results show that for 9 out of 14 applications, NVthreads makes the appli-

cation durable with less than 28% overhead. Only reverse index, canneal, ferret,

and dedup have more than 4× overhead compared to unmodifed applications us-

ing pthreads. The DThreads bars in Figure 3.9 and Figure 3.10 show that these

programs incur considerable overhead when using multi-process execution. However,

NVthreads’ can improve concurrency in some applications where DThreads would

have serialized thread execution due to the global token. As an example, even though

canneal with NVthreads is 4× slower than the pthreads version, it is actually 2×

faster than the non-persistent DThreads version. Similarly, reverse index would have

been 7× slower, instead of 5.5×, if the global token approach was used. ferret and

dedup use the global token version of NVthreads, and we expect their overheads to

decrease with the per-mutex token version of NVthreads.

Figure 3.9 and Figure 3.10 shows that NVthreads performs as well, and in most

cases signifcantly better, than Atlas. We were not able to get Atlas to run on the

two challenging workloads of canneal and dedup in the PARSEC benchmark. In 10

out of the 12 workloads on which Atlas ran, NVthreads is from 7% to 100× faster

depending upon the workload. NVthreads is about 7% and 50% slower than Atlas for

streamcluster and reverse index respectively. In reverse index, most of the overheads

in NVthreads are due to the multi-process execution as shown by the DThreads bar.

Section 3.6.5 has more in-depth comparison with Atlas.

66

Table 3.2.: Application characteristics of PARSEC and Phoenix.

Program Critical sections Logging (%tot. time) Logged pages Log size
Slowdown

over pthread

histogram 25 12.56% 44 0.3MB 1.2

kmeans 1845 20.91% 9763 46MB 1.5

linear reg. 25 12.87% 27 0.2MB 0.3

matrix mult. 37 2.32% 3955 16MB 1.1

pca 25 18.11% 11463 45MB 1.1

reverse index 137113 37.88% 2691474 11GB 5.5

string match 37 3.24% 39 0.3MB 1.1

word count 145 1.72% 12476 50MB 1.1

blackscholes 25 6.76% 89 39MB 1.2

canneal 1475 39.34% 7440183 29GB 4.1

dedup 320492 33.72% 2314600 11GB 6.7

ferret 8010 4.93% 149963 618MB 4.8

streamcluster 95581 47.07% 176054 1.1GB 3.7

swaptions 25 4.76% 483 2.0MB 1.2

Application characteristics. Table 3.2 shows the characteristics of all benchmarks

by measuring the number of critical section invocations and logging overheads. The

Phoenix benchmarks primarily include data mining applications. Except for reverse

index, NVthreads has to log only 27 to 12K dirty pages in Phoenix applications,

and results in only 20% slowdown over the pthreads version. In comparison, for

some of the PARSEC applications such as dedup, NVthreads has to manage and log

about 2.3 million dirty pages and spends 34% of the total time in logging. This high

logging overhead, in addition to multi-process execution, is a reason for dedup’s 6.7×

slowdown. The application linear regression has better performance than pthreads

because multi-process execution reduces false sharing.

Our experiments also reveal that NVthreads has low memory footprint and uses

at most 400MB more DRAM space versus the pthreads version.

Page-level tracking. Figure 3.11 shows what percentage of each page is modifed

by the application. It can help us understand whether page-based tracking is a good

option compared to byte level tracking. There are two interesting observations. First,

67

0
10
20
30
40
50
60
70
80
90
100

%
 o
f e
ac
h
pa
ge
 m
od
ifi
ed

Figure 3.11.: Average percentage of each 4KB page modifed by an application. Ap-

plications are ordered by total number of modifed pages, which is shown in brackets.

9 out of the 14 applications modify more than 55% of each page. This means if these

applications modify a page, they generally write more than 2KB of data to the page.

This makes it worthwhile to track data at the granularity of a page. Second, of

the 5 remaining applications that write only a few bytes per page, 4 of them (linear

regression, string match, histogram, and blackscholes) modify fewer than 90 pages

during the execution of the program. These applications have few overall writes and,

as shown in Figure 3.9 and Figure 3.10, they are less than 20% slower on NVM with

NVthreads than running with pthreads on DRAM.

Scalability. We also evaluated whether NVthreads programs scale similar to their

pthreads counterparts as core count increases from 1 to 12. As shown in Figure 3.12,

our results reveal that pthreads provides low to moderate speedup for the 14 ap-

plications, never reaching more than 6.5× speedup over a single core. When using

NVthreads 10 applications show similar scalability as with pthreads. Of the remain-

ing four applications, ferret and dedup with NVthreads scale about 70% less than

68

0

1

2

3

4

5

6

7

2 4 8 12 2 4 8 12 2 4 8 12 2 4 8 12 2 4 8 12 2 4 8 12 2 4 8 12 2 4 8 12 2 4 8 12 2 4 8 12 2 4 8 12 2 4 8 12

histogram linear
regression

matrix
 multiply

pca string
match

word
count

black
scholes

canneal dedup ferret stream
cluster

swaptions

S
p

ee
d

up
 o

ve
r

1
 c

o
re

pthreads DThreads NVthreads (nvm-1000ns)

Figure 3.12.: Speedup compared to single core. Higher is better.

pthreads. In stream cluster, the pthreads version with 12 cores is 3× faster than

one core, but the NVthreads version is only 1.3× faster than single core. Finally, for

canneal, the pthreads version at 12 cores is merely 1.3× faster than one core, while

the NVthreads version does not scale at all. The low scalability of these 4 NVthreads

applications is because of the high synchronization costs and write counts (Table 3.2).

3.6.3 Benefts of Using NVM Versus SSDs

We measure the speedup of programs on NVM over the same programs using ext4

on a solid state drive (SSD) to store the logs. We vary the 4KB page write delay to

NVM from 200ns (DRAM-like) to 50µs (Flash-like).

Latency-sensitive applications. Figure 3.13 shows fve applications whose perfor-

mance improves substantially with NVM: streamcluster, dedup, reverse index, can-

neal, and ferret. There are two interesting observations. First, these applications can

be 2× to 22× faster on NVM compared to using SSDs. For example, streamcluster is

22× faster on low-latency NVM than SSD. Second, performance of these applications

drop only if NVM page write latency is much more than 1µs. These applications

track and write many dirty pages, and will beneft from NVM hardware as long as

NVM devices are reasonably faster than SSDs.

Storage-agnostic applications. The remaining nine applications show little di˙er-

ence as we vary NVM latency. Therefore, in Figure 3.13 we plot the performance of

69

0

5

10

15

20

25

0.2 0.5 0.7 1 5 10 20 30 40 50

Sp
ee
du
p
ov
er
 S
SD

NVM write delay (µs)

streamcluster

0

5

10

15

20

25

0.2 0.5 0.7 1 5 10 20 30 40 50

Sp
ee
du
p
ov
er
 S
SD

NVM write delay (µs)

dedup

0

5

10

15

20

25

0.2 0.5 0.7 1 5 10 20 30 40 50

Sp
ee

du
p

ov
er

 S
SD

NVM write delay (µs)

reverse index

0
2
4
6
8

10
12
14
16

0.2 0.5 0.7 1 5 10 20 30 40 50

Sp
ee

du
p

ov
er

 S
SD

NVM write delay (µs)

canneal

0

1

2

3

4

5

0.2 0.5 0.7 1 5 10 20 30 40 50

Sp
ee
du
p
ov
er
 S
SD

NVM write delay (µs)

ferret

0

1

2

3

4

5

0.2 0.5 0.7 1 5 10 20 30 40 50

Sp
ee

du
p

ov
er

 S
SD

NVM write delay (µs)

kmeans

Figure 3.13.: E˙ect of NVM page write delay on application performance. Speedups

are over SSD. Higher is better.

only kmeans. These applications have around 15% performance beneft when using

NVM as compared to using an SSD. Note that these applications were anyway incur-

ring a mere 28% overhead compared to their original pthreads versions. They depict a

spectrum of applications where NVthreads incurs very little logging overhead to add

durability, and we expect programmers to run them with NVthreads even on today’s

storage systems.

70

3.6.4 Benefts of Recovery

Figure 3.14 shows the benefts of adding durability to programs. We ran K-means

and introduced a crash during its execution. The input data (1M, 20M, and 30M 3-D

points) have to be clustered into 1,000 groups. On our datasets, K-means converges

after approximately 155 iterations. We had to modify only 4 lines in the program,

which nvmalloc and nvrecover the labels array.

In Figure 3.14, the x-axis shows the iteration when the crash occurred. We plot

the speedup compared to K-means with pthreads, i.e., the program has to restart

from the beginning in the event of a crash. Under these circumstances the maximum

possible speedup via recovery on any program is 2×, which happens when the program

crashes just before completion, thereby requiring everything to be redone. Figure 3.14

shows that for large inputs, if the crash occurs after 75 iterations, NVthreads’ version

of K-means converges almost 1.4× to 1.9× faster than starting from the beginning.

As an example, for the 30M dataset, the NVthreads version converges 30 minutes

earlier than the pthreads version. If the crash occurs too early in the computation,

very little work is wasted, and recovery does not provide much beneft. For the small

1M dataset, although the time to converge is only a couple of minutes, NVthreads

recovery is still useful if the crash occurs around iteration 150.

3.6.5 Mnemosyne and Atlas

We compare NVthreads with Mnemosyne [63] and Atlas [61] that use word or

store level data tracking. We limit our evaluation to microbenchmarks and a real-life

graph application because it was challenging to get Mnemosyne to work with other

benchmarks.

Microbenchmark. Mnemosyne crashes when we allocate more than 4MB of durable

data. Therefore, we use a microbenchmark that allocates 1000 memory pages (4MB

of data), and then 4 threads modify a random region of each page. In all cases,

threads modify di˙erent pages so that the STM in Mnemosyne does not incur any

71

0

0.5

1

1.5

2

1M 10M 20M 30M 1M 10M 20M 30M 1M 10M 20M 30M 1M 10M 20M 30M

10 50 75 150

Sp
ee
du

p	
ov
er
	p
th
re
ad

s

Iteration	when	crash	occurred

Pthreads NVthreads	(nvm=1000ns)

Figure 3.14.: K-means recovery. Higher is better.

concurrency control related aborts. Mnemosyne incurs a constant overhead of 2

seconds when forking threads and using pmalloc. We have excluded this overhead for

Mnemosyne. Figure 3.15 shows the slowdown of each system compared to pthreads.

Both Mnemosyne and Atlas are 70× slower than pthreads in most cases and more than

200× slower when threads modify 100% of each page. NVthreads incurs an overhead

of 25× when only 5% of the data is modifed, which decreases to 5× when each

thread modifes 100% of each page. Since NVthreads tracks data at page granularity

its overheads get amortized as a bigger fraction of each page is modifed. As a

result, NVthreads is 3×-30× faster than these systems. The bar Atlas (no-clfush),

shows that half of Atlas’ overheads are due to cache fushes, which point to the

high overheads of micromanaging NVM writes. Finally, without any log truncation,

NVthreads uses 165MB to store metadata and logs, compared to 550MB-3.2GB by

Mnemosyne and 70MB-1.4GB for Atlas.

PageRank. The previous microbenchmark magnifes the overheads of durability

since the threads only perform persistent writes. Therefore, we also compare these

systems on a real application, PageRank, which is an iterative algorithm to determine

the importance of nodes in a Web graph [85]. First, we use the real-world Slashdot

72

0
25
50
75

100
125
150
175
200
225
250

5% 10% 25% 50% 75% 100%

Sl
ow

do
w
n	
ov
er
	p
th
re
ad

s

Percentage	of	page	modified

NVthreads	(nvm-1000ns) Atlas	(no-clflush) Mnemosyne	 Atlas

Figure 3.15.: Benefts of NVthreads. Lower is better.

graph dataset which has 82K vertices and 950K edges [86]. We picked this graph

because it is the largest input on which we could run Mnemosyne. Even on this small

graph, NVthreads is more than 2× faster than Atlas and 10× faster than Mnemosyne

at 12 cores, completing an iteration in 170ms compared to 500ms for Atlas and 5

seconds for Mnemosyne. After 10 iterations, NVthreads needs only 273MB space for

logs compared to 580MB for Mnemosyne and 600MB for Atlas.

Unlike Mnemosyne, we were able to run NVthreads and Atlas on much larger

graphs such as the 1.2 GB Livejournal data [87]. NVthreads completes each PageRank

iteration in 5s with twelve threads and is almost 6× faster than Atlas which takes

29s. The pthreads version takes less than a second per iteration. NVthreads uses

300MB of log space per-iteration versus Atlas’ 650MB.

3.6.6 Key-value Store

Tokyo Cabinet is an high performance, open source library for database manage-

ment [88]. It stores records as key value pairs. We confgured Tokyo Cabinet to

73

0

5000

10000

15000

20000

25000

TC
‐S
SD

TC
‐N
Vt
hr
ea
ds

TC
‐n
vm

fs

TC
‐S
SD

TC
‐N
Vt
hr
ea
ds

TC
‐n
vm

fs

TC
‐S
SD

TC
‐N
Vt
hr
ea
ds

TC
‐n
vm

fs

TC
‐S
SD

TC
‐N
Vt
hr
ea
ds

TC
‐n
vm

fs

TC
‐S
SD

TC
‐N
Vt
hr
ea
ds

TC
‐n
vm

fs

TC
‐S
SD

TC
‐N
Vt
hr
ea
ds

TC
‐n
vm

fs

64B 128B 256B 512B 1024B 4096B

U
pd

at
es
/s
ec

Key size

Figure 3.16.: Throughput of Tokyo Cabinet. Higher is better.

organize its records using a B+ tree. Tokyo Cabinet uses a memory mapped fle to

back data and periodically fushes data using msync to guarantee durability.

Our goal is to make the B+ tree in Tokyo Cabinet durable by linking it with

NVthreads. Since Tokyo Cabinet and NVthreads both use page-based writes, we

expect unmodifed Tokyo Cabinet to have better performance since it uses custom

code to implement transations for key-value stores. This experiment shows that

NVthreads can be integrated without making any changes to the B+ tree. NVthreads

incurs higher overheads but avoids the code complexity of a custom transaction sytem.

In Figure 3.16 we compare Tokyo Cabinet running on (1) an SSD (TC-SSD), (2)

on our NVM emulator with injected delays (TC-nvmfs), and (3) when NVthreads is

used to make the B+ tree durable on the NVM emulator (TC-NVthreads). In our

workload we vary the key and value sizes from 64B to 4096B. We use 8 threads and

perform 100,000 write operations. Figure 3.16 shows that when Tokyo Cabinet is

used with an SSD (TC-SSD), its throughput varies from 1,300 updates/sec with 64B

keys to 1,200 updates/sec with 4096B keys. When we use NVthreads to make the

B+ tree in Tokyo Cabinet durable, its throughput on the NVM emulator ranges from

74

12,000 updates/sec for 64B keys to 5,000 updates/sec for 4096B keys, which is 4×-

-9× better than using unmodifed Tokyo Cabinet on SSDs. Tokyo Cabinet running

on our NVM emulator achieves about 20,000 updates/sec with 64B keys and 7,500

updates/sec with 4096B keys. These numbers are about 30%-50% better than what

one gets when using NVthreads. Even though the performance when using NVthreads

is lower, it provides us an easy way to make the B+ tree durable by merely linking

with NVthreads and without developing a custom key-value transaction system.

3.7 Conclusion

NVthreads uses fast non-volatile memory to make C/C++ programs fault tol-

erant. It leverages synchronization operations to determine consistency semantics,

and coarse-grained page-level tracking to manage durable data. Due to these tech-

niques, NVthreads has good performance. Compared to state-of-the-art persistent

systems, NVthreads signifcantly reduces the performance gap between unmodifed

applications and their crash tolerant versions.

While NVthreads advocates ease of use and the approach of coarse grained track-

ing, it has certain limitations. NVthreads piggybacks on synchronization primitives

to demarcate failure atomic sections. Other explicit or hybrid approaches for de-

tecting failure atomic sections will make the programming model more general. We

expect NVthreads to co-exist with systems that embrace fne-grained tracking and

logging. NVthreads may perform better on workloads with large amounts of writes

in a page, but for certain workloads fne-grained tracking systems may be the appro-

priate implementation. There are multiple ways to improve our current prototype

as well, by adding a memory manager to clean up memory leaks in persistent re-

gions, and by using a combination of regular and huge pages to reduce new overheads

seen in in-memory applications [89]. Overall, given the familiar interface of a multi-

threading library, we believe NVthreads is a design point which makes it simpler for

programmers to transition to the non-volatile memory era.

75

4 MEMORY SUBSYSTEM FOR SCALABILITY

This chapter presents a novel memory subsystem for memory-centric applications

to freely access memory beyond the traditional process boundary with support for

isolation and crash recovery. Our evaluation shows that the memory subsystem can

signifcantly outperform the traditional process-centric memory architecture when

accessing memory in multiple address spaces.

4.1 Overview

In response to the continuous demand for the ability to process ever larger datasets,

as well as based on discoveries in memristor [1] and phase-change memory [90] tech-

nologies, researchers have been vigorously studying memory-driven computing ar-

chitectures [91, 92] that shall allow data-intensive applications to access enormous

amounts of non-volatile main memory. It is expected that by 2020 memory-centric

computing systems will process vast amounts of data generated by billions of intercon-

nected devices worldwide [93]. These enterprise NVM systems will run applications

requiring an unprecedented amount of memory, exceeding what traditional DRAM-

based memory architectures can support.

Memory architectures. However, there does not exist a memory architecture

that allows applications to eÿciently yet safely and securely leverage large (amounts

of) memory. As a result, programming with large memory is prone to remain ex-

tremely challenging for data-intensive applications. To access large datasets on to-

day’s process-centric architectures, programmers have to architect their big data ap-

plications using traditional low-level programming interfaces [94,95] in a tedious and

error-prone manner: this includes memory management system calls (e.g., mmap,

76

munmap) for extending memory space logically, fle system interface calls (e.g., open,

close) for swapping datasets larger than memory capacity, and multi-processing in-

terface calls (e.g., clone, fork) for managing multiple address spaces and achieving

memory isolation. We argue that data-intensive applications require a new memory

architecture without involving these traditional interfaces in order to enable memory-

centric computing. More precisely, we posit that a memory architecture should pro-

vide two forms of decoupling:

Controlled space (de)coupling: In order to scale to large memory, the inherent cou-

pling between a process and its address space has to be abandoned. Doing so

allows processes to be coupled with di˙erent memory spaces. Multi-processing

and parallelism require, inversely, the ability to couple a memory space with

more than one process, but security mandates fne-grained access control over

shared memory.

Robust time (de)coupling: As both processes and data can outlive each other, it is

important that couplings between processes and memory spaces can change over

time. With long-lived data, in particular when using large persistent memory

to replace external storage systems, it becomes of critical for performance to

avoid catastrophic data losses due to host failures.

Enter the AMS. In this chapter we thus propose PetaMem, a scalable fast mem-

ory architecture that enables applications to access memory beyond the traditional

process address space boundaries. PetaMem provides a novel abstraction called au-

tonomous memory space (AMS) which achieves both controlled space (de)coupling

and robust time (de)coupling in an eÿcient manner. More precisely:

Large memory space (LMS) beyond terabytes abstracted conveniently allows for

separating processing units from data while avoiding expensive data movement

between main memory and back-end storage systems.

77

Crash recovery (CR) is a key feature enabled by future NVM technologies that, in

combination with support for retaining consistency by precisely defning commit

points, can be leveraged by applications to safely recover data in the event of a

crash.

Memory isolation (MI) ensures that data stored in large memory that can poten-

tially be accessed by many processes simultaneously or over time is e˙ectively

protected. Compartmentalizing memory with di˙erent privileges without ex-

pensive context switches enables big data applications to sandbox potentially

faulty or insecure software components eÿciently and securely.

Eÿciency (EF) is achieved in that applications can quickly switch between di˙erent

address spaces without involving all-level page table manipulation overheads,

expensive fle swapping operations, or costly process context switches.

Unifed programming interface (UPI) centered around the AMS abstraction al-

lows programmers to handle data movement in large memory using simple and

pure memory instructions, as opposed to mixing fle system interfaces with

memory instructions in complex software.

Platform independence (PI) through a software-based memory architecture re-

alizable on any operating system (OS) using page tables for logical address

translation allows next-generation data-intensive applications to be deployed

on commodity hardware (HW) in a timely manner.

We implemented a prototype of PetaMem on top of the Linux kernel with all

the above features. Our evaluation shows that PetaMem can outperform traditional

approaches by 500× when accessing large memory and provides up to 5,000× speedup

when recovering from failures.

Contributions. This chapter makes four contributions:

78

- Design of PetaMem memory architecture that enables applications to eÿciently switch

between AMSes to access large memory without any HW modifcations.

- Specifcation of the PetaMem API for programmers to utilize the AMSes for fast

memory switching, resource isolation, and crash recovery.

- Implementation of PetaMem memory architecture that consists of a kernel-level mem-

ory management unit and a user space library that implements the PetaMem API.

- Evaluation of our PetaMem prototype showing that it outperforms traditional multi-

processing and low-level system calls when extending logical memory spaces, and

provides e˙ective recovery support after failures.

4.2 Background and Challenges

Memory management is one of the core duties of an OS. In this section we review

the challenges for accessing large memory and summarize related work that inspired

us to rethink memory management in large NVM systems.

4.2.1 Virtual Memory Size Limitation

Current 64-bit x86 systems follow the AMD64 extension to provide a 48-bit virtual,

and up to 52-bit physical, address space. The 48-bit canonical address design divides

the 64-bit virtual address space into higher and lower halves, thereby leaving an

unaddressable giant hole in the virtual address space. Since the design implies that a

process cannot address more than 48 bits of virtual memory, many vendors currently

do not manufacture CPUs that can address more than 48 bits (256TB) of main

memory. To echo the increasing demand for addressing large virtual main memory,

Intel proposed an architecture that employs a 5-level page table technique named

57-bit canonical address design [96] allowing 57-bit virtual, and up to 52-bit physical,

memory address space. Unfortunately, Intel’s proposed solution requires a completely

new page table entry (PTE) format in order to address 57 bits (128PB) of virtual

79

memory, which inevitably breaks the existing AMD64 architecture widely used by

modern systems. On today’s 64-bit AMD64 systems, the PTE format uses 40 bits to

address a physical page, with an addition of 12 bits from the linear address o˙set to

locate data within the page. As a result, even though Intel’s proposed 5-level page

table uses 57 bits to address virtual memory, the ability to address physical memory

is still limited to at most 52 bits (4PB). While today’s virtual memory size may seem

ample, big data applications already process data exceeding the virtual memory size

limitation [97] (LMS), leading data-intensive computing to use traditional techniques

for accessing large memory, discussed next.

4.2.2 Traditional Techniques and Issues

Researchers architect data-intensive applications to side-step the problem of in-

suÿcient virtual memory by using low-level memory management system calls (e.g.,

mmap, munmap), fle system interface calls (e.g., open, close), or multi-processing

interface calls (e.g., clone, fork) [94, 95].

To extend the logical address space of a process, mmap has been a popular choice

because of its simplicity (pure memory instructions) and performance (compared to

back-end storage swapping) [98]. Nevertheless, constantly changing the memory map-

pings of a process can be expensive as the kernel needs to establish and tear down

all level page tables and data pages for the mapped regions, hampering scalability

when the number or the size of memory mappings increases (EF). System V shared

memory region has the same scalability problem although it provides persistence.

Algorithms that randomly access data across mappings will scale poorly as only few

pages are accessed before the mapping is refreshed. File systems are another popular

option for accessing data beyond memory capacity [95]. However, in addition to the

programming burden caused by heterogeneous data formats (UPI), frequent swap-

ping operations can impact the performance of applications, voiding the low latency

advantage provided by large memory (LMS). Finally, multi-processing is used by

80

programmers to access large memory by partitioning large datasets into chunks and

processing the partitioned data into separate address spaces [94, 95, 99], despite the

well-known fact that the traditional process boundary makes sharing between address

spaces less fexible and more expensive than sharing data directly in memory (EF).

Another reason for using multi-processing is the lack of memory boundaries in multi-

threaded applications (MI). Many secure applications have been split into multiple

processes to achieve strong isolation [6,7]. As of today, no fexible sharing mechanism

exists that provides process-like isolation guarantees and thread-based memory shar-

ing performance for applications to eÿciently and securely address multiple address

spaces.

4.2.3 Non-volatile Memory

Emerging non-volatile memory (NVM) technologies that promise very large mem-

ories are changing the existing design assumptions in system architectures [59]. NVM

technologies such as memristor [1] and phase-change memory [90] provide persistent

addressable memory at latency as low as DRAM devices [57], i.e., this type of memory

is byte addressable, mapped to a process’ address space, and persists across process

termination and reboots. With careful programming model support, NVM can al-

low applications to avoid the expensive de/serialization overheads (EF) and recover

program state after failures thus achieving crash fault tolerance (CR).

4.2.4 Related Work

Switching address spaces. Modern OSs widely employ the concept of virtual

memory to utilize RAM for all processes. Mach [100] manages the memory map-

pings for a process through machine-independent vm_objects. The physical pages in

a memory mapping are accessed by the kernel through the corresponding memory

object vm_object. With careful engineering e˙ort, such a design allows fast memory

mapping switching by changing the machine dependent vm_objects of a process with-

81

out modifying the underlying page table entries. SpaceJMP [101] adopts the memory

management logic of Mach and promotes address spaces to frst-class citizens — vir-

tual address spaces (VASs) — allowing threads to switch between virtual address

spaces. However, VASs do not support privilege isolation and crash recovery, both

being the requirements of a practical memory-driven architecture for data-intensive

computing. The design of SpaceJMP can be diÿcult to be realized in other kernels

without the notion of machine-independent memory objects that contains physical

pages or similar [102] (PI). On the contrary, PetaMem does not rely on any kernel

data structure assumptions but page tables, which are widely used by modern kernels,

in order to eÿciently support address spaces. In addition, PetaMem allows applica-

tions to defne fexible memory isolation policies (MI) and to recover from failures

when accessing multiple address spaces (CR).

System-level isolation. Switching between address spaces in the traditional process-

centric architecture is a costly operation. The heavyweight process abstraction has led

researchers to search for lightweight memory isolation techniques. Recent software-

based isolation systems such as Nooks [103], Wedge [8], Dune [16], Arbiter [10],

SMVs [3], LwCs [104], and seL4 [105] have all demonstrated the feasibility of com-

partmentalizing memory using fner granularities than a process address space (MI).

Other HW-based systems such as CODOMS [40] and CHERI [41] introduced byte-

level protection mechanism to isolate memory using specialized HW with capabil-

ity support (PI). Inspired by the above secure systems, PetaMem’s isolation engine

makes PetaMem the frst memory architecture that allows fast address space switch-

ing (LMS) and memory isolation (MI) at the same time.

Crash recovery with NVM. Many systems have been proposed to access NVM

as main memory with careful programming model support, allowing applications to

avoid the overheads of marshaling data between fast memory and slow storage devices

and recover program state from crash failures (EF). Atlas [61] infers failure-atomic

code sections to automatically checkpoint execution state with compiler support.

82

Mnemosyne [63] and NV-Heap [62] enable applications to execute durable transactions

but they do not support lock-based programs. NVthreads [56] adopts copy-on-write

and multi-processing to track data in NVM at page level granularity for performance.

Intel’s PMDK [92] provides a set of low-level persistent memory tools for programmers

to interact with NVM. All above systems can record the execution state of an NVM

program and allow for crash recovery (CR), but none were designed to address large

memories (LMS). On the other hand, PetaMem allows a program to access memory

across di˙erent address spaces eÿciently and enables a crashed NVM program to

resume its execution (CR). PetaMem assumes a system with a large main memory

pool without having to involve fle system interfaces when accessing NVM (UPI).

Accessing NVM through fle system APIs is an orthogonal problem that is explored

by others (e.g., PMFS [67], BPFS [64], SCMFS [106]).

Single address space OSs. Single address space OSs (SASOSs) [107] such as

Opal [108], Singularity [109], and unikernels [110] took an extreme approach to elim-

inate expensive full context switches by sharing a global virtual address space among

all processes running on a system. However, the ability to address large virtual mem-

ory in SASOSs is still restricted by the canonical address rule (i.e., limited virtual

address bits) when running on commodity HW (LMS). In addition, the lack of address

space boundary in SASOSs requires the OS kernel and all applications to be written

in a memory-safe language to ensure system security (MI). While researchers have

proposed an OS kernel written in a memory-safe language [111], in the near future, it

is unlikely that existing kernels and all legacy software would be completely rewrit-

ten in memory-safe languages for full memory safety [112]. In contrast, PetaMem

provides an eÿcient way for applications to switch between address spaces (LMS)

and isolate memory (MI) without completely rewriting the entire software stack, or

requiring specialized HW (PI).

83

AMS 1

AMS 3

AMS 2

Main memory pool

Coupled
with AMS 1

Coupled
with AMS 2

Switch inSwitch out

AMS secure switch gate

AMS 1 AMS 2AMS 1

Stack Stack

AMS 1

Stack Stack

AMS 2

Data
Text

Heap

Decoupled
from AMS 1

Initial
state

Process
exits system

Domain 2-1

Domain 2-2

Data
Text

Heap

Data
Text

Heap
Data
Text

Heap

P
ro

ce
ss

 a
dd

re
ss

 s
pa

ce
 fr

ee
d,

bu

t A
M

S
s

re
m

ai
n

ac
ce

ss
ib

le
 in

m

em
or

y
po

ol
.

Figure 4.1.: The timeline of a PetaMem process. The PetaMem process memory

abstraction allows a process to switch between di˙erent autonomous memory spaces

(AMSes) that can exist in the system beyond the process lifetime. Note that AMS 2

contains two private domains with special privileges.

4.3 PetaMem Design

PetaMem is a software-backed memory architecture that enables applications to

access large memory through a novel address space abstraction. The abstraction

allows a process to switch between memory areas in a fast and secure way. This

section describes our architectural-level design and the corresponding programming

interface.

84

4.3.1 Autonomous Memory Spaces

To enable a process to address more memory than what today’s ISAs (instruc-

tion set architectures) can support, we introduce a new memory abstraction called

autonomous memory space (AMS) that completely decouples the traditional process

address space from the process abstraction in the system (LMS), yet in a controlled

fashion (MI). An AMS is a special memory mapping with a contiguous range of mem-

ory addresses. Data stored in an AMS can be persisted in the system beyond the

lifetime of a process and allows for eÿcient data recovery. As shown in Figure 4.1,

PetaMem can dynamically couple an AMS with a process address space and decouple

an AMS from a process address space after use. PetaMem guarantees the consistent

state of other memory sections including the text, data, and stack in the process mem-

ory. PetaMem can keep the data stored in an AMS alive when a process decouples the

AMS from its address space. The AMS abstraction enables applications not only to

address large memory by switching between di˙erent AMSes, but also to checkpoint

or to version their execution states. A program can simply re-couple its address space

with an AMS from a checkpoint in the previous execution without having to redo all

the work from the beginning, thereby improving total execution time in the event of

a crash (CR). A program can also go back in time by coupling an AMS to its address

space, which can be useful for creating snapshots. In addition, the notion of AMS

allows a process to extend its address space without using the expensive fork syscall,

which creates an additional heavyweight process with a completely separate address

space in the traditional process abstraction.

4.3.2 Inter-process Isolation

We defne a PetaMem process (PM process) to be a special process that can couple

an AMS with its process address space. Each PM process owns a persistent unique

identifer in the system. Before a PM process can couple an AMS with its address

space, the AMS secure switch gate checks whether the requesting PM process has

85

the privilege to access data in the AMS. The creator of an AMS can namely grant

other PM processes the privilege to couple the AMS with other address spaces. Each

AMS maintains a list of privileged PM processes that are allowed to be coupled with

the AMS. With the AMS secure switch gate, PetaMem can prevent unprivileged PM

processes from coupling a privileged AMS with their address spaces (MI).

4.3.3 Intra-process Isolation

PetaMem defnes a private domain to be a contiguous range of memory addresses

within an AMS. To access memory in a private domain, threads must be granted

privileges:

{Read | Write | Execute | Allocate → (Domain, AMS)}

The programmer can dynamically manage private domains to selectively isolate an

AMS so that only privileged threads can access private domains.

We defne a PM thread container to be a special sandbox with a collection of

domains in an AMS. Threads running in a PM thread container must be explicitly

granted permission to access data in private domains. A PM thread container en-

ables programmers to construct software component boundaries within an AMS. For

example, two PM thread containers can have di˙erent privileges to access the same

private domain without having to use di˙erent processes to isolate access privileges

(e.g., concurrent readers and exclusive writers). Traditional threads (i.e., share all)

and processes (i.e., share none, unless with expensive synchronization) do not allow

such fexible and secure sharing.

We defne a PetaMem thread (PMthread) to be a special thread that strictly

follows the privileges defned by an assigned PM thread container to access private

domains in an AMS. Before a PMthread can access private domains in an AMS, the

programmer must grant privilege to the PM thread container that the PMthread

is assigned to. PMthreads share process-wide code and data with other PMthreads

and regular threads (e.g., pthreads). PetaMem also allows PMthreads to share data

86

PetaMem API Description

int petamem_main_init(void) Initialize PetaMem environment and enter the main AMS.

int petamem_main_fnalize(void) Finalize PetaMem environment and clean up the main AMS.

int petamem_create(void) Create an AMS and return a system-wide unique ID assigned by

the kernel.

int petamem_kill(AMS_ID) Kill the AMS and clean up related metadata.

int petamem_get_id(void) Return the current AMS_ID that the caller currently couples with.

int petamem_switch_ams(src, dst) Switch from one AMS to another. The caller can use memory in

destination AMS after the function returns.

void* petamem_malloc(name, AMS_ID, size) Allocate a memory chunk in AMS_ID and record the allocation in

log.

int petamem_free(name, *ptr) Free the memory chunk and delete the allocation from log.

Figure 4.2.: PetaMem AMS management API.

in a private domain, which forms a partially shared AMS with a fexible yet secure

sharing mechanism (MI). Each PMthread has its own private stack inaccessible to other

PMthreads. Such stack isolation is especially desirable for security critical applications

that are vulnerable to control-fow hijacking attacks [112].

4.3.4 PetaMem API

We implemented the PetaMem API to allow programmers to interact with AM-

Ses (UPI). Figure 4.2 summarizes the core API. A PM process can create, couple

with, decouple from, and delete AMSes. When a process initializes itself as a PM pro-

cess, PetaMem reserves a contiguous range of virtual memory in the process address

space for AMSes. Only the creator of an AMS can modify the privileges of the AMS

or delete the AMS from the system. Programmers can confgure private domains to

achieve selective memory isolation (i.e., controlled sharing) for PMthreads.

Figure 4.3 gives an example of the PetaMem API usage in a program: The process

initializes the PetaMem environment and creates two additional AMSes. After switch-

ing into AMS 1, the process allocates an integer variable num and assigns it a value 1.

Then the process switches into AMS 2 and writes a value 2 to the “same” variable.

87

1 unsigned long TB_SIZE=1UL<<40; / / 1TB

2 vo id main () {

3 . . .

4 / / I n i t i a l i z e and couple w i th AMS 0

5 ams_id [0] = petamem_main_init () ;

6 / / Create a d d i t i o n a l two AMSs

7 ams_id [1] = petamem_create () ;

8 ams_id [2] = petamem_create () ;

9 / / Switch from AMS 0 to AMS 1

10 petamem_switch_ams (ams_id [0] , ams_id [1]) ;

11 / / A l l oca te memory i n AMS 1

12 num = (i n t *) petamem_malloc (" t ab l e " , TB_SIZE) ;

13 / / Set v a r i a b l e num to 1 i n AMS 1

14 num[0] = 1 ;

15 / / Switch from main AMS 1 to AMS 2

16 petamem_switch_ams (ams_id [1] , ams_id [2]) ;

17 / / A l l oca te memory i n AMS 2

18 num = (i n t *) petamem_malloc (" t ab l e " , TB_SIZE) ;

19 / / Set v a r i a b l e num to 2 i n AMS 2

20 num[0] = 2 ;

21 / / In AMS 2 now , output : num[0] = 2

22 output (num [0]) ;

23 / / Switch back to AMS 1

24 petamem_switch_ams (ams_id [2] , ams_id [1]) ;

25 / / In AMS 1 now , output : num[0] = 1

26 output (num [0]) ;

27 / / Switch back to AMS 0

28 petamem_switch_ams (ams_id [1] , ams_id [0]) ;

29 / / In AMS 0 now , num i s u n i n i t i a l i z e d

30 output (num) ;

31 . . .

32 / / Resource cleanup

33 petamem_main_finalize () ;

34 }

Figure 4.3.: Example of PetaMem API usage. The PetaMem API associates a variable

name and a AMS upon allocation in a system-wide allocation log to distinguish

memory pages.

88

AMS

Domain 1

Domain 2

PM process

PM thread
container #1

PM thread
container #2

PM process

PM thread

PM thread container

AMS

Private domain

Access granted

Access denied

Figure 4.4.: Example of PMthreads isolation in an AMS.

Since the process is coupled with AMS 2, outputting the variable num shows 2. When

the process switches back to AMS 1, the value stored in num becomes 1. Finally the

process cleans up the system resources by calling petamem_main_fnalize. Note that

the runtime and kernel can distinguish between num in AMS 1 and AMS 2. Such

ability to decouple memory from a process provides programmers with a powerful

mechanism to pass workloads stored in an AMS between processes (e.g., incremental

computation, pipelined operation) as well as a fast way to resume execution (e.g.,

crash recovery).

To isolate memory within an AMS, PetaMem does not require programmers to

create a completely separate address space [7]. Figure 4.4 gives an example of how

programmers can structure an AMS with di˙erent privileges for PMthreads by using

the domain_* functions listed in Figure 4.5. Programmers can store program secrets

in a private domain and allow only privileged threads to access memory within the

domain. In addition to enforcing a security boundary, such compartmentalization

also allows programmers to identify faulty threads that issue unintended memory

references across user-defned memory boundaries.

4.4 Recovery Engine

In this section we describe PetaMem’s crash recovery engine by which applications

resume execution after crashes.

89

PetaMem API Description

int petamem_grant

(AMS_ID, *exe_path)
Grant the executable with path *exe_path the permission to cou-

ple AMS_ID with its address space.

int container_create(void) Create a PMthread container and return the container ID assigned

by the kernel.

int container_kill(CONTAINER_ID) Delete a container and release its resources.

int PMthread_create

(CONTAINER_ID, *fn, *args)
Create a PMthread confned to a container and start execution

from function fn with argument *args.

int domain_create(void) Create a private domain in the current AMS and returned the

kernel assigned ID.

int domain_kill(DOMAIN_ID) Kill a private domain from the current AMS.

void* domain_malloc(name, DOMAIN_ID, size) Allocate a private memory chunk in DOMAIN_ID and record the

allocation in log.

int domain_free(name, *ptr) Free the private memory chunk and delete the allocation from

log.

int domain_privs_mod

(DOMAIN_ID, CONTAINER_ID, privs)
Grant a container to access memory in a domain with privileges

specifed by privs.

Figure 4.5.: PetaMem isolation API.

4.4.1 Persistent Memory Views

PetaMem enables applications to perceive memory segments as persistent regions

that can survive between process restarts, and even between machine power cycles

when using NVM as main memory (CR). Data stored in an AMS does not have to be

associated with the life cycle of any processes in the system. Such notion of persis-

tence is equivalent to storing data on fle systems for durability, but with the beneft

of eliminating the expensive swapping operations (EF). It is achieved by recording

a variable as a named data area with an AMS identifer upon an allocation, thus

presenting an AMS as a persistent memory view. With petamem_malloc, PetaMem

allocates persistent memory in a global domain of the current AMS. When isolation is

needed, applications can use domain_malloc to allocate memory in a private domain

of the current AMS.

90

4.4.2 Fault Model

PetaMem allows programmers to commit a persistent memory view by fushing

data in an AMS from volatile caches to NVM explicitly. Flushing caches ensures that

the data stored in volatile caches reaches memory without losing the data that has

not yet arrived at main memory in the event of a crash [56, 61]. Once the data in

caches reaches main memory, PetaMem marks the region as recoverable and NVM is

able to persist the data even without power. The numbers we report in Section 4.6.4

include the overheads of fushing caches.

The crash recovery engine of PetaMem relies on applications to commit persistent

memory views at consistent program points for correct crash recovery. Committing

a persistent memory view at an inconsistent program point, i.e., inside a critical

section, could result in an inconsistent program state as PetaMem does not maintain

a undo or redo log to roll back execution. Programmers should checkpoint persistent

memory views outside of any synchronization code sections and maintain application

specifc metadata (e.g., counters for tracking execution progress) in order to recover

from failures. To enable recovery from failures in the middle of a critical section,

programmers need to create and commit a consistent version of the shared data

before entering a critical section. In the event of a failure, PetaMem guarantees that

data stored in a persistent memory view will be accessible through variable name and

AMS_ID after the completion of the recovery procedure. Programmers can then use

application specifc metadata (e.g., variable names, progress counters, or consistent

state identifers) to restore the data in a persistent memory view back to a consistent

state. Note that restoring execution state automatically for NVM applications is an

orthogonal topic that is covered by techniques that inter failure atomic sections using

locks [56, 61]. Such user-space techniques can be run on top of PetaMem to simplify

code refactoring e˙orts for programmers.

91

1 vo id main () {

2 . . .

3 / / Recovery code

4 i f (petamem_crashed ()) {

5 petamem_recover(& ams_id_array) ;

6 petamem_recover_var (" t a b l e " , ams_id , s ize ,& t ab l e) ;

7 }

8 / / Normal execut ion

9 else {

10 t a b l e = (i n t *) petamem_malloc (" t a b l e " , s i ze) ;

11 }

12 update_loop (tab le , s i ze) ;

13 . . .

14 }

Figure 4.6.: Pseudo-code for crash recovery using PetaMem.

4.4.3 Recovery Code

PetaMem provides a simple interface summarized in Figure 4.7 for applications to

recover from crash failures (UPI). Programmers can use petamem_crashed to examine

the crash status of the calling process. In the event of a crash, programs initiate the

recovery routine that consists of two parts. First, programmers invoke the application

agnostic functions petamem_recover and petamem_recover_var (Figure 4.6) to notify

the PetaMem recovery engine to recover the PetaMem metadata and the requested

variable in a target AMS, which exists in the system despite process failures. The

PetaMem crash recovery engine maintains a system-wide crash record that contains

all allocated variables in all persistent memory views. Programmers need to specify

the variable name and AMS_ID to locate the variable in the specifed AMS_ID for

recovery. After petamem_recover_var returns, programmers can access the recovered

variable in memory. Second, the crashed application may need to execute application

92

PetaMem API Description

bool petamem_crashed(void) Check whether the process has crashed in the previous run.

int petamem_recover(*ams_id_array) Recover all AMSes from previous run and couple with the last

AMS before a crash.

int petamem_recover_var

(name, AMS_ID, size, **ptr)
Recover a variable name allocated in AMS_ID and set *ptr to the

recovered memory. Caller must be coupled with AMS_ID before

the variable can be recovered.

int petamem_persist(void) Flush caches to persist data pages for the current AMS.

Figure 4.7.: PetaMem recovery API.

specifc code to resume operation. The requirement for applications to construct an

application specifc recovery logic for crash tolerance is similar to other systems [61,

63].

Figure 4.6 gives an example of a crash fault-tolerant application with PetaMem.

In normal execution, the application allocates table in an AMS (line 11) and should

execute the update loop (line 13) until reaching the end of the execution. If a crash

happens in the middle of the update loop, restarting the application will trigger the

recovery procedure (line 4 to 8). The crash recovery engine will locate the AMS in the

system and recover table to enable the application to resume execution for a faster

update loop. While the simple example requires only one line to recover an array for

the update loop, the complexity of an application decides the amount of code required

for recovery.

4.5 Implementation

In this section we describe the implementation details of our PetaMem prototype.

We implemented PetaMem for Linux kernel version 4.4 on the x86-64 architecture.

Table 4.1 summarizes the components of our PetaMem prototype.

Figure 4.8 shows the high-level architecture of PetaMem. We implemented the

PetaMem design with two main components: a user space programming interface with

93

Component LoC Files Level

PetaMem API 1281 8 user, untrusted

Recovery engine 480 2 user, untrusted

Communication channel 553 2 kernel

PetaMem Kernel 3035 65 kernel

Table 4.1.: PetaMem component sizes.

OS kernel

Memory management unit

Page fault handler

User space

PetaMem process

PetaMem channel

AMS secure switch gate Intra-process isolation engine

PetaMem memory pagerPetaMem metadata manager

Recovery engine PetaMem API System libraries

PetaMem
thread container #1

PetaMem reference monitor

Memory pool AMS

PetaMem
thread container #2

PetaMem
thread container #N

AMS

PetaMem architecture

X

…

Figure 4.8.: PetaMem Architecture.

a crash recovery engine and a kernel space memory management unit. The user space

programming interface provides programmers with an API to manage the memory

space of an application (UPI). The crash recovery engine tracks the execution status

of PM processes in the system and provides useful information to help a crashed PM

94

process resume execution from its last checkpoint (CR). For exchanging messages

between the PetaMem API in user space and the kernel, we added the PetaMem

channel that sanitizes inputs before handing over messages to the kernel.

The extended kernel implements the core functionalities of PetaMem. The meta-

data manager oversees all PetaMem-related activity. The PetaMem pager switches

in and out memory pages of an AMS (LMS). To manage inter-process isolation, we

added the AMS secure switch gate to manage system-wide privilege information and

ensure that only the PM processes with the correct privilege can access memory in

an AMS. To isolate PMthreads, we added an intra-process isolation engine to manage

the isolation setup for every AMS in the system. We modifed the page fault handler

in the kernel to enforce privilege separation and block any underprivileged memory

references issued by PMthreads (MI). PetaMem can be deployed to OS kernels that

use page tables for virtual address translation without any HW modifcations (PI).

4.5.1 PetaMem Channel

We developed a PetaMem kernel module that allows the user-space PetaMem API

to exchange messages with the kernel through a well-defned Netlink socket interface

in Linux. All the messages from the user-space PetaMem API are sanitized by the

PetaMem channel. The kernel interprets the sanitized messages and calls the related

kernel functions to complete the requests of the PetaMem API.

4.5.2 PetaMem Metadata Management

The PetaMem metadata management unit in the kernel eÿciently manages the

state of all AMSes in the system. For each AMS in the system, we added an

ams_struct to describe its private domains, PM containers, PMthreads, and privilege

information. Within an ams_struct, we added two major kernel objects to manage

the private domains of an AMS. (1) domain_struct: private domain metadata for

tracking private domains in an AMS. (2) container_struct: privilege information for

95

accessing private domains in an AMS. To eÿciently decide whether a virtual address

is protected by a private domain, we added vm_range objects to store the virtual

address range for all private domains. All vm_range objects are maintained by a

red-black tree with a temporal cache, which allows the kernel to retrieve the privilege

information when a page fault happens in O(logN) time, where N is the number of

private domains. We discuss the privilege check logic in Section 4.5.6

4.5.3 Enabling Multiple AMSes

When a process creates an AMS, PetaMem allocates a new memory mapping

vm_area_struct in the kernel to represent the region with a special VM_PETAMEM

fag. This special fag prevents the AMS mapping from being merged with neighbor

mappings or split into separate mappings. Recall that most CPUs follow the 48-bit

canonical address design, which forbids a process to address more than 48 bits of

memory. Therefore, we design PetaMem to commit 64TB (46 bits) memory in a

single user-kernel round trip. PetaMem chooses to use 46 bits for a typical AMS

size to allow for other memory regions such as text, global data, heaps, stacks, and

page guards, to co-exist in a process address space. Using multiple AMSes enables

a process to unlock the potential for accessing more memory than 48 bits (LMS).

PetaMem uses demand paging and pages in data upon page faults. Therefore, the

creation time of an AMS does not increase with the size of the AMS. This design

e˙ectively removes the scalability issue when accessing large memory.

We developed a novel mechanism to switch the address space of a process from

one AMS to another eÿciently. PetaMem manipulates the page tables covering an

AMS mapping. A straightforward approach is to manipulate every level of page

tables when switching address spaces. However, this approach would greatly impact

the performance and scalability of a program due to the expensive and frequent page

walks. To overcome this well-known problem when modifying page tables, PetaMem

swaps only top-level page global directory entries (pgd_t) that cover an AMS mapping.

96

63

Reserved PGD offset PUD offset PMD offset PTE offset Page Offset
63 48 47 39 38 30 29 21 20 12 11 0

x=2

x=0

Page walk Data page A
(in AMS 1)

Data page B
(in AMS 2)

PGD frame

PetaMem PGD entries

.

.

.

Swap in/out
PGD entries

Page walk

Virtual address of variable ‘’x’’

001x001xx001 Flagsx
002 Flagsx

062 Flagsx

… Flagsx

Page table
root (CR3)

001 Flagsx

Figure 4.9.: AMS memory management.

We illustrate the design in Figure 4.9: The process reads a variable x that refers two

di˙erent values in two separate AMSes. When coupled with AMS 1, reading the

variable x returns 0 because PetaMem retrieves data page A associated with AMS 1.

After switching into AMS 2, PetaMem retrieves data page B with 2 stored in the

variable x by performing a page walk from a pgd_t that belongs to AMS 2.

On a 64-bit architecture, a pgd_t points to 1TB of memory. Therefore, switching

62TB of memory only requires PetaMem to load 124 pgd_ts. The cost of this opera-

tion is negligible compared to the naïve approach. PetaMem employs the PetaMem

metadata manager to systematically manage the mapping between a set of pgd_ts

and an AMS so that an application can correctly roam between AMSes. To prevent

unintended access, PetaMem aligns the start and end address of an AMS to page

boundaries and inserts a random amount of guard pages on both ends that random-

izes the start and end address of the AMS.

97

4.5.4 PM Process and PMthreads Memory Management

When a PM process couples an AMS with its address space, our kernel assigns the

AMS’s ams_struct the PM process’s memory descriptor mm_struct so that other MMU

components in the kernel can easily access the ams_struct of an AMS. Our kernel

records the pdg_t entries of an AMS in the AMS’s ams_struct. Unlike a traditional

process, the memory space described by an ams_struct can be completely decoupled

from a PM process’s memory. Therefore, a PM process can couple with di˙erent

AMSes freely, allowing the memory space in an AMS to stay alive in the system

beyond the lifetime of any PM process. To separate privileges for PMthreads, each

container in an AMS uses one page table root (pgd frame) to describe the isolated

memory space. During context switch, our kernel ensures that an isolated PMthread

must use its assigned container’s page table to access memory to prevent privilege

escalation.

4.5.5 Private Memory Allocation

Instead of granting all PMthreads the same permission to access memory in an

AMS, PetaMem allows applications to structure AMS into several di˙erent private

domains. The PetaMem memory allocator internally uses the region-based mem-

ory allocator dlmalloc [113] to manage memory in private domains. By specifying

a base address and region size, a region-based memory allocator can allocate mem-

ory within the specifed range. The PetaMem API registers a memory region within

an AMS mapping in the kernel for each private domain. Each AMS has a num-

ber of new kernel objects vm_range to record the range and permission of private

domains. With vm_range, PetaMem does not need to tag individual memory al-

locations. PetaMem can lookup the access permission to an address by accessing

the corresponding vm_range object. The PetaMem API guarantees that all memory

allocations in private domains must happen in the registered memory region. We

describe how PetaMem detects memory references across domains next.

98

Page fault Unmodified
Linux paging

routine
Retrieve vm_range

metadata

Address protected
by a domain?

PetaMem
demand pagingThread container has

valid capabilities?

Block
paging request

Yes

No

Yes

No

Yes

No

Unmodified
Linux exception

handler

Yes

No

Retrieve current
thread container

capabilities

Fault address
in an AMS?

Find memory
mapping

Memory area
correctly
mapped?

Figure 4.10.: PetaMem pager privilege checks for intra-process isolation. The addi-

tional privilege checks are marked in the shaded area.

4.5.6 Enforcing Memory Isolation

Our prototype supports both inter-process isolation for PM processes and intra-

process isolation for PMthreads. Since it is possible for a PM process to access an AMS

that is created by another PM process in the system by natively switching memory

mappings, the AMS secure switch gate needs to enforce that a PM process without

privileges cannot couple with a privileged AMS. PetaMem maintains system-wide

metadata for each AMSes to describe the privilege mapping between PM processes

and AMSes. Each AMS has a petamem_struct in the kernel that records the creator

and a list of PM processes allowed to couple with it. Before the PetaMem memory

pager swaps in a requested AMS for a PM process, that process must pass the privilege

checks performed by the AMS secure switch gate in the kernel. Once a PM process

couples an AMS with its address space, PetaMem provides another level of privilege

99

separation within the AMS. Figure 4.10 shows how the PetaMem pager intercepts

invalid memory references by performing additional privilege checks for PMthreads in

the page fault handler. The red-black tree for vm_range (cf. Section 4.5.2) allows the

reference monitor of PetaMem to quickly intercept invalid memory references at page

faults.

4.5.7 Recovering from Failures

When a PM process calls petamem_main_init (cf. Figure 4.2) to initialize the

PetaMem environment, the crash recovery engine creates a crash entry in the global

crash table for the PM process using the complete path of the program binary. When

exiting the system, the PM process calls petamem_main_fnalize to request the re-

covery engine to remove the PM process’s entry from the crash table. If the PM

process crashes in between these two API calls, the entry will remain in the crash

table, leading the recovery engine to decide that the process has crashed in the pre-

vious execution. When recovering a crashed PM process, the crash recovery engine

coordinates with the kernel space PetaMem metadata manager to locate all meta-

data for the crashed AMSes. With the metadata, the PetaMem memory pager can

identify the memory pages in the crashed AMSes and switch in the pdg_ts when the

PM process re-couples with those AMSes.

4.6 Evaluation

4.6.1 Synopsis and Setup

We evaluate PetaMem to answer the following questions: (1) How eÿcient (EF)

is PetaMem when accessing di˙erent address spaces (LMS) compared to traditional

multi-processing or memory management syscalls (UPI)? (2) Can PetaMem intercept

unprivileged memory references to ensure memory isolation (MI)? (3) How signifcant

is fast recovery (CR)?

100

0

1000

2000

3000

4000

1 2 4 8 16 32 64 12
8W

al
l c

lo
ck

 ti
m

e
(s

ec
)

Size of arrays in STREAM (GB)
mmap (tmpfs-backed) PetaMem

Figure 4.11.: STREAM performance.

Lower is better.

0.1
1

10
100

1000
10000

100000

3 6 12 24 48 96 19
2

38
4

D
el

ay
s

(m
s)

Size of switched memory (GB)
mmap (tmpfs-backed) PetaMem

Figure 4.12.: Memory switch delays.

Lower is better.

We ran experiments on a machine with an Intel Xeon E5-4655 (64 cores@2.5GHz)

and 512GB RAM to study PetaMem’s ability to access large memory. Our prototype

successfully passed all stress tests in LTP’s [48] runltp script that systematically tests

major kernel subsystems.

4.6.2 Performance: Sequential Access

We use the STREAM benchmark [114] from the HPCC benchmark suite to study

the performance of PetaMem when accessing large datasets with strong locality.

STREAM measures the computation rate of vector style applications that access

datasets much larger than the available cache on a system. STREAM allocates three

data arrays and performs copy, add, and multiply operations in a loop. We evaluated

two versions of STREAM:

STREAMmmap, the single-threaded vanilla version of the benchmark except where

we moved the data arrays from the global region to heap for large memory allocations.

STREAMPetaMem leverages PetaMem to store datasets in AMSes and eÿciently

switches between the AMSes.

To study large memory, we choose an array size from 1GB to 128GB for each array.

We partitioned each array into multiple 1GB sub-arrays. Both versions of STREAM

mailto:cores@2.5GHz

101

load the sub-arrays one after another and perform updates until all sub-arrays are up-

dated. The data access pattern has strong locality that favors mmap as the memory

switching frequency is minimal (i.e., at most 128 times). However, although mmap

notably performs well when few to no changes in memory mappings are involved,

Figure 4.11 shows that STREAMPetaMem is still 1.3× faster than STREAMmmap be-

cause STREAMmmap is three orders of magnitude slower than STREAMPetaMem when

switching memory mappings (Figure 4.12). Such limitation could greatly impact the

performance of applications that have random access patterns, which we discuss next.

4.6.3 Performance: Random Access

We use the GUPS benchmark [99] that is specifcally designed for profling the

memory architecture of a system to demonstrate the performance, scalability, isola-

tion ability, and recoverability of PetaMem. GUPS allocates a large logical table in

memory and randomly updates the elements in the table. The large table is divided

into a number of windows. Within each window, GUPS performs a set of updates at

random locations. Each update is a read-modify-write operation on a long unsigned

integer. After GUPS fnishes a set of updates in one window, it randomly chooses

the next window to mutate the elements and repeat the procedure. Originally GUPS

requires the maximum table size to be no larger than half the system memory. The

memory distribution of the logical table can be implemented in various ways. We

evaluate the performance of GUPS using three di˙erent memory models:

GUPSMPI is the vanilla version of the benchmark that uses multiple processes to

parallelize the update operations using the OpenMPI framework. All processes are

connected in an N -dimensional hypercube. Each process holds a distinct window in

its process address space and performs updates to its local table. Each process com-

municates with its neighbors to coordinate the execution progress before processing

the next update set.

102

0

20

40

60

80

100

1 2 4 8 16 32 64 12
8

25
6

M
U

PS
/p

ro
ce

ss

Number of address spaces

MPI
mmap (tmpfs-backed)
PetaMem

Figure 4.13.: GUPS throughput.

Higher is better.

1.E+03

1.E+05

1.E+07

1.E+09

1.E+11

1.E+13

1 2 4 8 16 32 64 12
8

25
6

TL
B

m
is

se
s

Number of address spaces

MPI
mmap
PetaMem

Figure 4.14.: GUPS TLB misses.

Lower is better.

GUPSmmap uses the traditional mmap/munmap syscalls to logically extend its pro-

cess address space. For each window, GUPSmmap calls mmap to read a portion of

the global table, then performs updates. To mutate elements in the next window,

GUPSmmap needs to call munmap for the current window and calls mmap again to

load another window into its process address space.

GUPSPetaMem leverages PetaMem using a single process to eÿciently switch between

di˙erent windows without modifying the memory mappings and their underlying

PTEs. Each window is represented as an AMS in the system, enabling GUPSPetaMem

to dynamically couple with and decouple from a window for fast updates.

We used GUPSMPI from the HPCC benchmark suite and implemented GUPSmmap

and GUPSPetaMem. Figure 4.13 shows the GUPS performance, averaged over 10 runs,

for the three memory models. The size of the global table ranges from 1GB to 256GB

(half the system memory). We set the window size to 1GB to evaluate the cost of

using multiple address spaces (up to 256) and report millions of updates per process

on the y-axis. Following the oÿcial GUPS benchmark, the runtime measurement for

all three memory models only considers the execution time of the update loop without

initialization and cleanup.

103

When using one address space, GUPSMPI and GUPSPetaMem perform equally well

since no address space switches were needed. However, GUPSMPI becomes extremely

expensive when using more than two processes (EF). The performance bottleneck

denotes the classic scalability limitation of multi-processing caused by heavy resource

usage and expensive synchronization cost. Therefore, such multi-processing is less

favorable for memory-hungry applications that require multiple address spaces. Our

experiment shows that mmap/munmap is ineÿcient for logically extending process

memory. In the update loop, GUPSmmap has to call mmap to create a mapping

for every window. Such frequent memory manipulation in the kernel space makes

GUPSmmap scale poorly (or not at all) compared to GUPSMPI and GUPSPetaMem in

all cases. Increasing the number of address spaces only exacerbates the bottleneck of

GUPSmmap (EF).

Discussion. Since TLB misses can lead to measurable performance degradation,

we study the TLB misses of GUPSMPI, GUPSmmap, and GUPSPetaMem to unveil the

impact caused by translation misses and present the results in Figure 4.14. When

using a single window, GUPSmmap incurs most TLB misses because GUPSmmap needs to

mmap the window to its address space in the update routine, even when there’s only a

single window. GUPSMPI exhibits the second most TLB misses due to the additional

memory access to set up the multi-processing environment. Both GUPSMPI and

GUPSPetaMem initialize the global table before entering the update loop. GUPSPetaMem

has the smallest number of TLB misses because PetaMem does not invoke any MPI

calls to use multi-processing.

As the number of address spaces increases, the number of TLB misses grows for

all three memory models of GUPS. However, once the number of address spaces ex-

ceeds the number of cores, GUPSMPI starts to thrash the memory hierarchy, causing

GUPSMPI to exhibit most TLB misses among all three memory models when using

more than 64 address spaces. For GUPSmmap, the heavy use of mmap and mun-

map causes the kernel to constantly change the process’s mapping between physical

and virtual memory. As a result, the number of TLB misses of GUPSmmap increases

104

1

10

100

1000

10000

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

25% 50% 75% 95%

Sp
ee

du
p

ov
er

 m
m

ap
 (x

)

Progress % when crash occurred
MPI PetaMem

Figure 4.15.: GUPS recovery speedup. Results are averaged over 10 runs. Higher is

better.

with the number of address spaces. When more windows are used, the number of

TLB misses of GUPSPetaMem slightly increases due to higher degree of random mem-

ory access. Since PetaMem fushes only the TLB entries in AMSes when switching

memory spaces, GUPSPetaMem does not pollute the caches like GUPSmmap when ma-

nipulating mappings, nor does it incur global TLB fushing like GUPSMPI. Therefore,

GUPSPetaMem outperforms the other two memory models.

4.6.4 Application Recovery Speedup

To evaluate the benefts of providing recovery support to programs, we repeated

the experiment in Section 4.6.3 and introduced crash points using a machine with

an Intel i7-4790 (8 cores@2.8GHz) and 16GB RAM, showing that PetaMem does not

rely on large memory to run correctly (PI). We crashed each of GUPSMPI, GUPSmmap,

and GUPSPetaMem when they reached 25%, 50%, 75%, and 95% of the total execu-

tion progress by calling abort to simulate the abnormal termination of a process. All

three versions of GUPS then had to restart and complete the execution. We made

GUPSmmap able to recover from crash failures by periodically checkpointing the exe-

cution state using FS calls. Note that GUPSmmap uses tmpfs for memory-like access

speed so the kernel does not incur storage device overheads. GUPSMPI has to restart

from the beginning and redo all the computation again as the OpenMPI framework

mailto:cores@2.8GHz

105

does not yet provide an easy way to completely recover the global execution state

across all processes. The recovery engine of PetaMem tracks the execution state of

GUPSPetaMem and allows the system to locate the metadata and page tables from the

previous run, enabling GUPSPetaMem to couple with the last window from the previous

run and continue execution from the last checkpoint (CR).

We plot the speedup over GUPSmmap for crash recovery in Figure 4.15. The x-

axis shows the percentage of completed progress when a crash happens in major

ticks and the number of address spaces in minor ticks. We normalize the execution

times to GUPSmmap, which is the slowest memory model in all three versions of the

GUPS benchmark. When using a single window, GUPSMPI outperforms GUPSPetaMem

because the recovery engine introduces additional CPU cycles to set up and maintain

the execution state. With two or four windows, GUPSPetaMem is slightly faster than

GUPSMPI because the additional cycles spent by the recovery engine pay o˙ and

help GUPSPetaMem continue execution from the last checkpoint. Once the number

of windows exceeds the number of cores on the system, GUPSMPI slows down to

almost the speed of GUPSmmap, which refects the fnding we showed in Figure 4.13.

GUPSPetaMem outperforms GUPSMPI signifcantly when using more than 8 windows.

With the help from the crash recovery engine in PetaMem, we only need less than

20 lines of code to make GUPSPetaMem tolerate crash failures (UPI). We allocate the

progress counters and the global table in an AMS using petamem_malloc, which au-

tomatically tracks the address, name, and size of the variable in a memory allocation

log. Before a normal execution, GUPSPetaMem checks if the program has crashed in

the previous execution by calling petamem_crashed, and invokes petamem_recover

and petamem_recover_var to retrieve all PetaMem metadata and bindings to persis-

tent variables (cf. Figure 4.6), enabling GUPSPetaMem to correctly couple with the last

window and resume execution.

GUPSPetaMem uses petamem_checkpoint to explicitly checkpoint the execution

progress and notifes the kernel to fush the CPU caches to main memory after fn-

ishing every update set. After the API call returns, the PetaMem metadata and

106

the page tables are persisted in main memory. Since the kernel does not clean up

PetaMem resources until explicitly instructed to, GUPSPetaMem can resume execution

by reusing the metadata and memory pages from the last checkpoint. In the event

of power failure, using NVM as main memory will allow GUPSPetaMem to resume ex-

ecution without restarting from scratch. The experiment shows the potential for fast

failure recovery.

4.6.5 Enforcement of Isolation

In PetaMem, the AMS secure switch gate vets every AMS coupling request issued

by a PM process and every page fault triggers the privilege checks as depicted in Fig-

ure 2.5. Since we ran all the experiments with privilege enforcement, the performance

numbers reported herein already include the overheads of additional privilege checks.

Using the PetaMem API introduced in Figure 4.2, we implemented a security

policy allowing only GUPSPetaMem to couple with the AMSes that store the partitioned

tables of GUPSPetaMem. No other processes should be able to couple with those

AMSes. To test the AMS secure switch gate in PetaMem, we launched a separate

PM process as a cross-process attacker that attempted to couple with those AMSes.

With the GUPSPetaMem not specifying any privileges for other PM processes to access

its AMSes (i.e., distrusting other PM processes by default), the AMS secure switch

gate successfully blocked all unprivileged coupling requests issued by the attacker PM

process (MI).

To verify the enforcement of user-defned memory boundaries for PMthreads with

the intra-process isolation engine in PetaMem, we conducted an experiment similar to

GUPSPetaMem by creating a privileged domain in a special AMS. We randomly chose an

AMS as the special AMS and allocated a privileged domain within the special AMS,

then put a partition of the global table into the privileged domain. In our experiment,

we implemented a security policy that disallows the PMthread of GUPSPetaMem to

access the privileged domain by isolating the PMthread in a PM container. Note

107

that the PMthread can couple with the special AMS without triggering exceptions.

However, when the PMthread of GUPSPetaMem attempted to access the partition of the

table stored in the privileged domain, the reference monitor in PetaMem successfully

blocked the paging request issued by the unprivileged PMthread (MI).

4.7 Conclusion

We have presented the design, implementation, and evaluation of PetaMem, a

fast and scalable memory architecture. PetaMem promotes the simple abstraction

of an autonomous memory space (AMS), which strives for controlled (de)coupling

in space and robust (de)coupling in time of processes and memory spaces. This en-

ables applications to access memory beyond process (LMS) boundaries with strong

isolation (MI) and crash recovery support (CR). Our evaluation shows that PetaMem

allows applications to access multiple address spaces with simple memory instruc-

tions (UPI) eÿciently. Compared to the traditional process-centric architecture, its

crash failure recovery engine in PetaMem enables applications to resume execution

after crash failures with drastic speedup (EF) over traditional memory management

and fle system interface calls. The isolation engine in PetaMem helps applications

isolate software components in large memory pools with user-defned boundaries (PI).

The privilege enforcement is implemented using existing HW protection mechanisms,

providing strong guarantees. In summary, until HW solutions catch up with the

rapid growth in data size and memory capacity, PetaMem constitutes a practical

pure software-based solution for memory-driven computing. In the future we plan to

investigate support for other failure/threat models.

108

5 CONCLUSION

This dissertation has advanced the design and implementation of existing mem-

ory subsystems to enhance the security, consistency, and scalability of applications

through a software approach. We presented three practical memory subsystems;

SMVs, a comprehensive framework for concurrent threads to achieve selective mem-

ory isolation, NVthreads, a user-space library for programmers to easily leverage non-

volatile memory, and PetaMem, a novel architecture for data-intensive applications

to freely access large amount of memory with isolation and crash recovery support.

We showed that SMVs can improve the security of multithreaded applications

by protecting software components from poor memory isolation in today’s process

memory model. With SMVs, programmers can now structure the intrinsically shared

process memory into a dynamic set of memory protection domains using the well-

defned API. The kernel-level privilege enforcement in SMVs provides fast and accu-

rate privilege checks without impacting the performance of software. We evaluated

our solution through multithreaded benchmarks with complex memory interaction

and demonstrated its practicability by porting popular web servers and Firefox web

browser for security.

To ensure the consist states for multithreaded applications running on non-volatile

memory systems, our solution, NVthreads, leverages synchronization operations to

determine consistency semantics and coarse-grained page-level tracking to manage

persistent data. Our extensive evaluation showed that NVthreads signifcantly re-

duces the performance gap between unmodifed applications and their crash tolerant

counterparts. With NVthreads, programmers can now easily transition to the non-

volatile memory era.

For scalability, our memory subsystem PetaMem provides controlled space and

time (de)coupling to enable data-intensive applications to access large amount of

109

memory with simple memory operations. PetaMem exposes an API which enables

programmers to freely access memory in di˙erent address spaces eÿciently. PetaMem

puts together the security benefts of SMVs and the recoverability support from

NVthreads for memory-centric computing, making large memory pool more reliable

and practical. The evaluation showed that PetaMem signifcantly outperforms the

traditional process-centric architecture.

REFERENCES

110

REFERENCES

[1] Dmitri B. Strukov, Gregory S. Snider, Duncan R. Stewart, and R. Stanley
Williams. The Missing Memristor Found. Nature, 453(7191):80–83, May 2008.

[2] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting
Phase Change Memory As a Scalable DRAM Alternative. In Proceedings of the
36th Annual International Symposium on Computer Architecture, ISCA ’09,
pages 2–13, New York, NY, USA, 2009. ACM.

[3] Terry Ching-Hsiang Hsu, Kevin Ho˙man, Patrick Eugster, and Mathias Payer.
Enforcing Least Privilege Memory Views for Multithreaded Applications. In
Proceedings of the 23rd ACM Conference on Computer and Communications
Security, CCS ’16, New York, NY, USA, 2016. ACM.

[4] Jerome H. Saltzer. Protection and the Control of Information Sharing in Mul-
tics. Communications of the ACM, 17(7):388–402, July 1974.

[5] Jerome H. Saltzer and Michael D. Schroeder. The Protection of Information in
Computer Systems. Proceedings of the IEEE, 63(9):1278–1308, Sept 1975.

[6] Niels Provos, Markus Friedl, and Peter Honeyman. Preventing Privilege Esca-
lation. In Proceedings of the 12th Conference on USENIX Security Symposium
– Volume 12, SSYM’03, pages 16–16, Berkeley, CA, USA, 2003. USENIX As-
sociation.

[7] David Brumley and Dawn Song. Privtrans: Automatically Partitioning Pro-
grams for Privilege Separation. In Proceedings of the 13th Conference on
USENIX Security Symposium – Volume 13, SSYM’04, pages 5–5, Berkeley,
CA, USA, 2004. USENIX Association.

[8] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. Wedge: Split-
ting Applications into Reduced-privilege Compartments. In Proceedings of the
5th USENIX Symposium on Networked Systems Design and Implementation,
NSDI’08, pages 309–322, Berkeley, CA, USA, 2008. USENIX Association.

[9] Raoul Strackx, Pieter Agten, Niels Avonds, and Frank Piessens. Salus: Kernel
Support for Secure Process Compartments. EAI Endorsed Transactions on
Security and Safety, 15(3), 1 2015.

[10] Jun Wang, Xi Xiong, and Peng Liu. Between Mutual Trust and Mutual Dis-
trust: Practical Fine-grained Privilege Separation in Multithreaded Applica-
tions. In 2015 USENIX Annual Technical Conference (USENIX ATC 15), pages
361–373, Santa Clara, CA, July 2015. USENIX Association.

[11] AppArmor. https://wiki.ubuntu.com/AppArmor.

https://wiki.ubuntu.com/AppArmor

111

[12] SELinux. https://wiki.centos.org/HowTos/SELinux.

[13] SECure COMPuting with flters. https://www.kernel.org/doc/
Documentation/prctl/seccompf ilter.txt.

[14] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Everything
You Want to Know About Pointer-Based Checking. In Proceedings of the 1st
Summit on Advances in Programming Languages (SNAPL 2015), volume 32
of Leibniz International Proceedings in Informatics (LIPIcs), pages 190–208,
Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[15] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK: Eternal War in
Memory. In Proceedings of the 2013 IEEE Symposium on Security and Privacy,
SP ’13, pages 48–62, Washington, DC, USA, 2013. IEEE Computer Society.

[16] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazières,
and Christos Kozyrakis. Dune: Safe User-level Access to Privileged CPU Fea-
tures. In Proceedings of the 10th USENIX Conference on Operating Systems De-
sign and Implementation, OSDI’12, pages 335–348, Berkeley, CA, USA, 2012.
USENIX Association.

[17] Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway.
Capsicum: Practical Capabilities for UNIX. In Proceedings of the 19th USENIX
Conference on Security, USENIX Security’10, pages 3–3, Berkeley, CA, USA,
2010. USENIX Association.

[18] Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John Criswell, and
Vikram Adve. Nested Kernel: An Operating System Architecture for Intra-
Kernel Privilege Separation. In Proceedings of the 20th International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’15, pages 191–206, New York, NY, USA, 2015. ACM.

[19] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières.
Making Information Flow Explicit in HiStar. In Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation – Volume 7,
OSDI ’06, pages 19–19, Berkeley, CA, USA, 2006. USENIX Association.

[20] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cli˙er, M. Frans
Kaashoek, Eddie Kohler, and Robert Morris. Information Flow Control for
Standard OS Abstractions. In Proceedings of 21st ACM SIGOPS Symposium
on Operating Systems Principles, SOSP ’07, pages 321–334, New York, NY,
USA, 2007. ACM.

[21] Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. McKinley, and
Emmett Witchel. Laminar: Practical Fine-grained Decentralized Information
Flow Control. In Proceedings of the 30th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’09, pages 63–74, New
York, NY, USA, 2009. ACM.

[22] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham.
Eÿcient Software-based Fault Isolation. In Proceedings of the 14th ACM Sym-
posium on Operating Systems Principles, SOSP ’93, pages 203–216, New York,
NY, USA, 1993. ACM.

https://wiki.centos.org/HowTos/SELinux
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt

112

[23] Stephen McCamant and Greg Morrisett. Evaluating SFI for a CISC Architec-
ture. In Proceedings of the 15th Conference on USENIX Security Symposium –
Volume 15, USENIX-SS’06, Berkeley, CA, USA, 2006. USENIX Association.

[24] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth,
Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native
Client: A Sandbox for Portable, Untrusted x86 Native Code. In Proceedings of
the 2009 30th IEEE Symposium on Security and Privacy, SP ’09, pages 79–93,
Washington, DC, USA, 2009. IEEE Computer Society.

[25] Jason Ansel, Petr Marchenko, Úlfar Erlingsson, Elijah Taylor, Brad Chen,
Derek L. Schu˙, David Sehr, Cli˙ L. Bi˜e, and Bennet Yee. Language-
independent Sandboxing of Just-in-time Compilation and Self-modifying Code.
In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’11, pages 355–366, New York, NY,
USA, 2011. ACM.

[26] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-fow
Integrity. In Proceedings of the 12th ACM Conference on Computer and Com-
munications Security, CCS ’05, pages 340–353, New York, NY, USA, 2005.
ACM.

[27] Ciarán Bryce and Chrislain Razafmahefa. An Approach to Safe Object Shar-
ing. In Proceedings of the 15th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, OOPSLA ’00, pages 367–
381, New York, NY, USA, 2000. ACM.

[28] Kiyokuni Kawachiya, Kazunori Ogata, Daniel Silva, Tamiya Onodera, Hideaki
Komatsu, and Toshio Nakatani. Cloneable JVM: A New Approach to Start
Isolated Java Applications Faster. In Proceedings of the 3rd International Con-
ference on Virtual Execution Environments, VEE ’07, pages 1–11, New York,
NY, USA, 2007. ACM.

[29] Andrew C. Myers. JFlow: Practical Mostly-static Information Flow Control.
In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’99, pages 228–241, New York, NY, USA,
1999. ACM.

[30] Adrian Mettler, David Wagner, and Tyler Close. Joe-E: A Security-Oriented
Subset of Java. In Network and Distributed Systems Symposium, NDSS 2010.
Internet Society, 2010.

[31] Winnie Cheng, Dan R. K. Ports, David Schultz, Victoria Popic, Aaron
Blankstein, James Cowling, Dorothy Curtis, Liuba Shrira, and Barbara Liskov.
Abstractions for Usable Information Flow Control in Aeolus. In Proceedings
of the 2012 USENIX Conference on Annual Technical Conference, USENIX
ATC’12, pages 12–12, Berkeley, CA, USA, 2012. USENIX Association.

[32] Kevin J. Ho˙man, Harrison Metzger, and Patrick Eugster. Ribbons: A Par-
tially Shared Memory Programming Model. In Proceedings of the 2011 ACM
International Conference on Object Oriented Programming Systems Languages
and Applications, OOPSLA ’11, pages 289–306, New York, NY, USA, 2011.
ACM.

113

[33] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K. Reiter, and
Hiroshi Isozaki. Flicker: An Execution Infrastructure for TCB Minimization. In
Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on Com-
puter Systems 2008, Eurosys ’08, pages 315–328, New York, NY, USA, 2008.
ACM.

[34] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta,
Virgil Gligor, and Adrian Perrig. TrustVisor: Eÿcient TCB Reduction and At-
testation. In Proceedings of the 2010 IEEE Symposium on Security and Privacy,
SP ’10, pages 143–158, Washington, DC, USA, 2010. IEEE Computer Society.

[35] Raoul Strackx and Frank Piessens. Fides: Selectively Hardening Software Appli-
cation Components Against Kernel-level or Process-level Malware. In Proceed-
ings of the 2012 ACM Conference on Computer and Communications Security,
CCS ’12, pages 2–13, New York, NY, USA, 2012. ACM.

[36] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innovative
Technology for CPU based Attestation and Sealing. In Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for Security
and Privacy, HASP ’13, New York, NY, USA, 2013. ACM.

[37] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan
Del Cuvillo. Using Innovative Instructions to Create Trustworthy Software
Solutions. In Proceedings of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy, HASP ’13, pages 11:1–11:1, New
York, NY, USA, 2013. ACM.

[38] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham
Shaf, Vedvyas Shanbhogue, and Uday R. Savagaonkar. Innovative Instructions
and Software Model for Isolated Execution. In Proceedings of the 2nd Inter-
national Workshop on Hardware and Architectural Support for Security and
Privacy, HASP ’13, pages 10:1–10:1, New York, NY, USA, 2013. ACM.

[39] Nickolai Zeldovich, Hari Kannan, Michael Dalton, and Christos Kozyrakis.
Hardware Enforcement of Application Security Policies Using Tagged Memory.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation, OSDI’08, pages 225–240, Berkeley, CA, USA, 2008. USENIX
Association.

[40] Lluïs Vilanova, Muli Ben-Yehuda, Nacho Navarro, Yoav Etsion, and Mateo
Valero. CODOMs: Protecting Software with Code-centric Memory Domains.
In Proceeding of the 41st Annual International Symposium on Computer Ar-
chitecuture, ISCA ’14, pages 469–480, Piscataway, NJ, USA, 2014. IEEE Press.

[41] Jonathan Woodru˙, Robert N.M. Watson, David Chisnall, Simon W. Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert
Norton, and Michael Roe. The CHERI Capability Model: Revisiting RISC
in an Age of Risk. In Proceeding of the 41st Annual International Symposium
on Computer Architecuture, ISCA ’14, pages 457–468, Piscataway, USA, 2014.
IEEE Press.

[42] Anil Kurmus and Robby Zippel. A Tale of Two Kernels: Towards Ending Kernel
Hardening Wars with Split Kernel. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’14, pages 1366–
1377, New York, NY, USA, 2014. ACM.

114

[43] Cherokee Web Server. http://cherokee-project.com/.

[44] Same-origin Policy. https://developer.mozilla.org/en-US/docs/
Web/Security/Same-originpolicy.

[45] GDB: The GNU Project Debugger. https://www.gnu.org/software/
gdb/.

[46] Valgrind. http://valgrind.org/.

[47] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping Bits in Memory With-
out Accessing Them: An Experimental Study of DRAM Disturbance Errors. In
Proceeding of the 41st Annual International Symposium on Computer Archite-
cuture, ISCA ’14, pages 361–372, Piscataway, NJ, USA, 2014. IEEE Press.

[48] Linux Test Project. http://sourceforge.net/projects/ltp/.

[49] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PAR-
SEC Benchmark Suite: Characterization and Architectural Implications. In
Proceedings of the 17th International Conference on Parallel Architectures and
Compilation Techniques, PACT ’08, pages 72–81, New York, NY, USA, 2008.
ACM.

[50] Cristiano Giu˙rida, Anton Kuijsten, and Andrew S. Tanenbaum. Enhanced
Operating System Security Through Eÿcient and Fine-grained Address Space
Randomization. In Proceedings of the 21st USENIX Conference on Security
Symposium, Security’12, pages 40–40, Berkeley, CA, USA, 2012. USENIX As-
sociation.

[51] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and Zhenkai
Liang. Automatic Generation of Data-Oriented Exploits. In 24th USENIX
Security Symposium (USENIX Security 15), pages 177–192, Washington, D.C.,
August 2015. USENIX Association.

[52] Interesting stats based on Alexa Top 1,000,000 Sites. http://
httparchive.org/interesting.php.

[53] Gregor Wagner, Andreas Gal, Christian Wimmer, Brendan Eich, and Michael
Franz. Compartmental Memory Management in a Modern Web Browser. In
Proceedings of the International Symposium on Memory Management, ISMM
’11, pages 119–128, New York, NY, USA, 2011.

[54] Multiprocess Firefox. https://developer.mozilla.org/en-US/
Firefox/MultiprocessFirefox.

[55] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wil-
son. Hoard: A Scalable Memory Allocator for Multithreaded Applications. In
Proceedings of the 9th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS IX, pages 117–128,
New York, NY, USA, 2000. ACM.

[56] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly Keeton, and
Patrick Eugster. NVthreads: Practical Persistence for Multi-threaded Applica-
tions. In Proceedings of the 12th European Conference on Computer Systems,
EuroSys ’17, pages 468–482, New York, NY, USA, 2017. ACM.

http://cherokee-project.com/
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
http://valgrind.org/
http://sourceforge.net/projects/ltp/
http://httparchive.org/interesting.php
http://httparchive.org/interesting.php
https://developer.mozilla.org/en-US/Firefox/Multiprocess_Firefox
https://developer.mozilla.org/en-US/Firefox/Multiprocess_Firefox

115

[57] Intel and Micron produce breakthrough memory technology. http://
newsroom.intel.com/docs/DOC-6713, 2015.

[58] SanDisk and HP launch partnership to create memory-driven com-
puting solutions. http://www8.hp.com/us/en/hp-news/press-
release.html?id=2099577, 2015.

[59] Katelin Bailey, Luis Ceze, Steven D. Gribble, and Henry M. Levy. Operating
System Implications of Fast, Cheap, Non-volatile Memory. In Proceedings of
the 13th USENIX Conference on Hot Topics in Operating Systems, HotOS’13,
pages 2–2, Berkeley, CA, USA, 2011. USENIX Association.

[60] Yiying Zhang and Steven Swanson. A Study of Application Performance with
Non-volatile Main Memory. In IEEE 31st Symposium on Mass Storage Systems
and Technologies, MSST 2015, Santa Clara, CA, USA, May 30 - June 5, 2015,
pages 1–10, 2015.

[61] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. Atlas: Lever-
aging Locks for Non-volatile Memory Consistency. In Proceedings of the 2014
ACM International Conference on Object Oriented Programming Systems Lan-
guages & Applications, OOPSLA ’14, pages 433–452, New York, NY, USA,
2014. ACM.

[62] Joel Coburn, Adrian M. Caulfeld, Ameen Akel, Laura M. Grupp, Rajesh K.
Gupta, Ranjit Jhala, and Steven Swanson. NV-Heaps: Making Persistent Ob-
jects Fast and Safe with Next-generation, Non-volatile Memories. In Proceedings
of the 16th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XVI, pages 105–118, New York,
NY, USA, 2011. ACM.

[63] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne: Lightweight
Persistent Memory. In Proceedings of the 16th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, ASP-
LOS XVI, pages 91–104, New York, NY, USA, 2011. ACM.

[64] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Ben-
jamin Lee, Doug Burger, and Derrick Coetzee. Better I/O Through Byte-
addressable, Persistent Memory. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, SOSP ’09, pages 133–146, New
York, NY, USA, 2009. ACM.

[65] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and
Christos Kozyrakis. Evaluating MapReduce for Multi-core and Multiprocessor
Systems. In Proceedings of the 2007 IEEE 13th International Symposium on
High Performance Computer Architecture, HPCA ’07, pages 13–24, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[66] B. Dieny, R. Sousa, G. Prenat, and U. Ebels. Spin-dependent Phenomena and
Their Implementation in Spintronic Devices. In 2008 International Symposium
on VLSI Technology, Systems and Applications (VLSI-TSA), pages 70–71, April
2008.

http://newsroom.intel.com/docs/DOC-6713
http://newsroom.intel.com/docs/DOC-6713
http://www8.hp.com/us/en/hp-news/press-release.html?id=2099577
http://www8.hp.com/us/en/hp-news/press-release.html?id=2099577

116

[67] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz,
Dheeraj Reddy, Rajesh Sankaran, and Je˙ Jackson. System Software for Per-
sistent Memory. In Proceedings of the 9th European Conference on Computer
Systems, EuroSys ’14, pages 15:1–15:15, New York, NY, USA, 2014. ACM.

[68] Adam Welc, Antony L. Hosking, and Suresh Jagannathan. Transparently Rec-
onciling Transactions with Locking for Java Synchronization. In Proceedings of
the 20th European Conference on Object-Oriented Programming, ECOOP’06,
pages 148–173, Berlin, Heidelberg, 2006. Springer-Verlag.

[69] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-Atomic Persistent
Memory Updates via JUSTDO Logging. In Proceedings of the 21st International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’16, pages 427–442, New York, NY, USA, 2016. ACM.

[70] Ellis Giles, Kshitij Doshi, and Peter J. Varman. SoftWrAP: A Lightweight
Framework for Transactional Support of Storage Class Memory. In MSST,
pages 1–14. IEEE Computer Society, 2015.

[71] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz.
ARIES: A Transaction Recovery Method Supporting Fine-granularity Lock-
ing and Partial Rollbacks Using Write-ahead Logging. ACM Transactions on
Database Systems, 17(1):94–162, March 1992.

[72] M. Satyanarayanan, Henry H. Mashburn, Puneet Kumar, David C. Steere, and
James J. Kistler. Lightweight Recoverable Virtual Memory. In Proceedings of
the 14th ACM Symposium on Operating Systems Principles, SOSP ’93, pages
146–160, New York, NY, USA, 1993. ACM.

[73] David E. Lowell and Peter M. Chen. Free Transactions with Rio Vista. In Pro-
ceedings of the 16th ACM Symposium on Operating Systems Principles, SOSP
’97, pages 92–101, New York, NY, USA, 1997. ACM.

[74] Seth J. White and David J. DeWitt. QuickStore: A High Performance Mapped
Object Store. The VLDB Journal, 4(4):629–673, October 1995.

[75] Vivek Singhal, Sheetal V. Kakkad, and Paul R. Wilson. Texas: Good, Fast,
Cheap Persistence for C++. In Addendum to the Proceedings on Object-oriented
Programming Systems, Languages, and Applications (Addendum), OOPSLA
’92, pages 145–147, New York, NY, USA, 1992. ACM.

[76] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. Dthreads: Eÿcient
Deterministic Multithreading. In Proceedings of the 23rd ACM Symposium on
Operating Systems Principles, SOSP ’11, pages 327–336, New York, NY, USA,
2011. ACM.

[77] Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. Eÿcient System-
enforced Deterministic Parallelism. In Proceedings of the 9th USENIX Confer-
ence on Operating Systems Design and Implementation, OSDI’10, pages 1–16,
Berkeley, CA, USA, 2010. USENIX Association.

[78] Dushyanth Narayanan and Orion Hodson. Whole-system Persistence. In Pro-
ceedings of the 17th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS XVII, pages 401–410,
New York, NY, USA, 2012. ACM.

117

[79] Oren Laadan and Jason Nieh. Transparent Checkpoint-restart of Multiple Pro-
cesses on Commodity Operating Systems. In 2007 USENIX Annual Techni-
cal Conference on Proceedings of the USENIX Annual Technical Conference,
ATC’07, pages 25:1–25:14, Berkeley, CA, USA, 2007. USENIX Association.

[80] Jason Ansel, Kapil Arya, and Gene Cooperman. DMTCP: Transparent Check-
pointing for Cluster Computations and the Desktop. In 23rd IEEE International
Parallel and Distributed Processing Symposium, Rome, Italy, May 2009.

[81] James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li. Libckpt: Transpar-
ent Checkpointing Under Unix. In Proceedings of the USENIX 1995 Technical
Conference Proceedings [sic], TCON’95, pages 18–18, Berkeley, CA, USA, 1995.
USENIX Association.

[82] Joel Coburn, Trevor Bunker, Meir Schwarz, Rajesh Gupta, and Steven Swanson.
From ARIES to MARS: Transaction Support for Next-generation, Solid-state
Drives. In Proceedings of the 24th ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 197–212, New York, NY, USA, 2013. ACM.

[83] Russell Sears and Eric Brewer. Stasis: Flexible Transactional Storage. In
Proceedings of the 7th Symposium on Operating Systems Design and Implemen-
tation, OSDI ’06, pages 29–44, Berkeley, CA, USA, 2006. USENIX Association.

[84] David R. Butenhof. Programming with POSIX Threads. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1997.

[85] Sergey Brin and Lawrence Page. The Anatomy of a Large-scale Hypertextual
Web Search Engine. In Proceedings of the 7th International Conference on
World Wide Web 7, WWW7, pages 107–117, Amsterdam, The Netherlands,
The Netherlands, 1998. Elsevier Science Publishers B. V.

[86] Stanford network analysis package. http://snap.stanford.edu/snap.

[87] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. Group
Formation in Large Social Networks: Membership, Growth, and Evolution. In
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’06, pages 44–54, New York, NY, USA, 2006.
ACM.

[88] Tokyo Cabinet: a modern implementation of DBM. http://fallabs.com/
tokyocabinet/.

[89] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and Michael M.
Swift. Eÿcient Virtual Memory for Big Memory Servers. In Proceedings of the
40th Annual International Symposium on Computer Architecture, ISCA ’13,
pages 237–248, New York, NY, USA, 2013. ACM.

[90] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting
Phase Change Memory As a Scalable DRAM Alternative. In Proceedings of the
36th Annual International Symposium on Computer Architecture, ISCA ’09,
pages 2–13, New York, NY, USA, 2009. ACM.

[91] Hewlett Packard Labs. Memory Driven Computing. https://
www.labs.hpe.com/next-next/mdc, 2017.

http://snap.stanford.edu/snap
http://fallabs.com/tokyocabinet/
http://fallabs.com/tokyocabinet/
https://www.labs.hpe.com/next-next/mdc
https://www.labs.hpe.com/next-next/mdc

118

[92] Intel Corporation. Persistent Memory Programming. http://pmem.io/
nvml/, 2017.

[93] Kimberly Keeton. Memory-Driven Computing. https://www.usenix.org/
conference/fast17/technical-sessions/presentation/
keeton, 2017.

[94] Je˙rey Dean and Sanjay Ghemawat. MapReduce: Simplifed Data Processing
on Large Clusters. In Proceedings of the 6th Conference on Symposium on
Opearting Systems Design & Implementation – Volume 6, OSDI’04, pages 10–
10, Berkeley, CA, USA, 2004. USENIX Association.

[95] Sanjay Ghemawat, Howard Gobio˙, and Shun-Tak Leung. The Google File
System. In Proceedings of the 19th ACM Symposium on Operating Systems
Principles, SOSP ’03, pages 29–43, New York, NY, USA, 2003. ACM.

[96] Intel Corporation. 5-Level Paging and 5-Level EPT. https:
//software.intel.com/sites/default/files/managed/2b/80/5-
levelpagingwhitepaper.pdf, 2017.

[97] Cloudera Engineering Blog. The Newest Hadoop Framework for CDH Users and
Developers. http://blog.cloudera.com/blog/2013/06/cloudera-
search-the-newest-hadoop-framework-for-cdh-users-and-
developers/, 2013.

[98] Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. RadixVM:
Scalable Address Spaces for Multithreaded Applications. In Proceedings of the
8th ACM European Conference on Computer Systems, EuroSys ’13, pages 211–
224, New York, NY, USA, 2013. ACM.

[99] S. J. Plimpton, R. Brightwell, C. Vaughan, K. Underwood, and M. Davis. A
Simple Synchronous Distributed-Memory Algorithm for the HPCC RandomAc-
cess Benchmark. In 2006 IEEE International Conference on Cluster Computing,
pages 1–7, Sept 2006.

[100] Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert Baron,
David Black, William Bolosky, and Jonathan Chew. Machine-independent Vir-
tual Memory Management for Paged Uniprocessor and Multiprocessor Archi-
tectures. In Proceedings of the 2nd International Conference on Architectual
Support for Programming Languages and Operating Systems, ASPLOS II, pages
31–39, Los Alamitos, CA, USA, 1987. IEEE Computer Society Press.

[101] Izzat El Hajj, Alexander Merritt, Gerd Zellweger, Dejan Milojicic, Reto Acher-
mann, Paolo Faraboschi, Wen-mei Hwu, Timothy Roscoe, and Karsten Schwan.
SpaceJMP: Programming with Multiple Virtual Address Spaces. In Proceedings
of the 21st International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’16, pages 353–368, New York,
NY, USA, 2016. ACM.

[102] LWN.net: News from the source. Introduce frst class virtual address spaces.
https://lwn.net/Articles/717069/, 2017.

http://pmem.io/nvml/
http://pmem.io/nvml/
https://www.usenix.org/conference/fast17/technical-sessions/presentation/keeton
https://www.usenix.org/conference/fast17/technical-sessions/presentation/keeton
https://www.usenix.org/conference/fast17/technical-sessions/presentation/keeton
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
http://blog.cloudera.com/blog/2013/06/cloudera-search-the-newest-hadoop-framework-for-cdh-users-and-developers/
http://blog.cloudera.com/blog/2013/06/cloudera-search-the-newest-hadoop-framework-for-cdh-users-and-developers/
http://blog.cloudera.com/blog/2013/06/cloudera-search-the-newest-hadoop-framework-for-cdh-users-and-developers/
https://lwn.net/Articles/717069/

119

[103] Michael M. Swift, Steven Martin, Henry M. Levy, and Susan J. Eggers. Nooks:
An Architecture for Reliable Device Drivers. In Proceedings of the 10th Work-
shop on ACM SIGOPS European Workshop [sic], EW 10, pages 102–107, New
York, NY, USA, 2002. ACM.

[104] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg,
Bobby Bhattacharjee, and Peter Druschel. Light-Weight Contexts: An OS
Abstraction for Safety and Performance. In 12th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 16), pages 49–64, GA, 2016.
USENIX Association.

[105] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal
Verifcation of an OS Kernel. In Proceedings of the ACM SIGOPS 22nd Sym-
posium on Operating Systems Principles, SOSP ’09, pages 207–220, New York,
NY, USA, 2009. ACM.

[106] Xiaojian Wu and A. L. Narasimha Reddy. SCMFS: A File System for Storage
Class Memory. In Proceedings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC ’11, pages 39:1–39:11,
New York, NY, USA, 2011. ACM.

[107] Eric J. Koldinger, Je˙rey S. Chase, and Susan J. Eggers. Architecture Support
for Single Address Space Operating Systems. In Proceedings of the 5th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS V, pages 175–186, New York, NY, USA, 1992.
ACM.

[108] Je˙ Chase, Miche Baker-Harvey, Hank Levy, and Ed Lazowska. Opal: A Sin-
gle Address Space System for 64-bit Architectures. ACM SIGOPS Operating
Systems Review, 26(2):9–, April 1992.

[109] Galen C. Hunt and James R. Larus. Singularity: Rethinking the Software Stack.
ACM SIGOPS Operating Systems Review, 41(2):37–49, April 2007.

[110] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Bal-
raj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft.
Unikernels: Library Operating Systems for the Cloud. In Proceedings of the 18th
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’13, pages 461–472, New York, NY, USA,
2013. ACM.

[111] Amit Levy, Bradford Campbell, Branden Ghena, Pat Pannuto, Prabal Dutta,
and Philip Levis. The Case for Writing a Kernel in Rust. In Proceedings of the
8th Asia-Pacifc Workshop on Systems, APSys ’17, pages 1:1–1:7, New York,
NY, USA, 2017. ACM.

[112] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK: Eternal War in
Memory. In Proceedings of the 2013 IEEE Symposium on Security and Privacy,
SP ’13, pages 48–62, Washington, DC, USA, 2013. IEEE Computer Society.

[113] Doug Lea. dlmalloc: A Memory Allocator. http://g.oswego.edu/dl/
html/malloc.html, 2000.

http://g.oswego.edu/dl/html/malloc.html
http://g.oswego.edu/dl/html/malloc.html

120

[114] John D. McCalpin. Memory Bandwidth and Machine Balance in Current High
Performance Computers. IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter, pages 19–25, December 1995.

VITA

121

VITA

Terry C.-H. Hsu was born in Taipei, Taiwan. He received his B.S. in computer

science from Yuan-Ze University in 2009. He served in the Military Police unit at

the Presidential Oÿce Building in Taiwan from 2009 to 2010. Thereafter he joined

Academia Sinica as a research assistant to study intrusion detection systems against

Botnets. In fall 2012, he received his master’s degree in computer engineering from

the University of Florida and began his Ph.D. study at Purdue University. During

his time at Purdue, he was a member of the distributed programming group and

the HexHive group. His research interests were concerned with the development of

systems software, particularly memory management, system security, programming

models, runtime systems, and software support for non-volatile memory. As a research

intern, he conducted research in system security at NEC Laboratories America in

summer 2014, software support for non-volatile memory at HP Labs (now Hewlett

Packard Labs) in summer 2015 and 2016, and operating system security in the Core

OS team at Apple Inc. in summer 2017. After graduating, he became a software

R&D engineer researching operating system kernels at Apple Inc.

Reproduced with permission of copyright owner. Further reproduction prohibited without permission.

	Memory Subsystems for Security, Consistency, and Scalability
	Recommended Citation

	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Background
	Security
	Consistency
	Scalability

	Problem Statement
	Thesis Statement
	Contributions
	Organization

	MEMORY SUBSYSTEM FOR SECURITY
	Overview
	Related Work
	Threat Model
	Objectives
	SMV Model Design
	Memory Protection Domains
	Secure Memory Views
	SMVthread
	SMV API: User Space Library
	SMV Architecture
	Application Examples

	Implementation
	SMV Communication Channel
	Metadata Management
	Partially Shared Memory Space
	Forking SMVthreads
	Page Fault Handler

	Evaluation
	Experiment Setup
	Example Policy
	Robustness Test
	Inspecting Isolation
	Security Evaluation
	PARSEC 3.0 Benchmarks
	Cherokee Web Server
	Mozilla Firefox Web Browser
	Limitations

	Conclusion

	MEMORY SUBSYSTEM FOR CONSISTENCY
	Overview
	Challenges in Using Non-volatile Memory
	Non-volatile Memory
	Design Issues

	Related Work
	Programming Model
	Persistent Regions
	Inferring Consistent Program Points
	Recovery Code
	Garbage Collection
	Example: K-means Clustering

	Design and Implementation
	From Threads to Processes
	Logging
	Recovery

	Evaluation
	Setup
	Performance
	Benefits of Using NVM Versus SSDs
	Benefits of Recovery
	Mnemosyne and Atlas
	Key-value Store

	Conclusion

	MEMORY SUBSYSTEM FOR SCALABILITY
	Overview
	Background and Challenges
	Virtual Memory Size Limitation
	Traditional Techniques and Issues
	Non-volatile Memory
	Related Work

	PetaMem Design
	Autonomous Memory Spaces
	Inter-process Isolation
	Intra-process Isolation
	PetaMem API

	Recovery Engine
	Persistent Memory Views
	Fault Model
	Recovery Code

	Implementation
	PetaMem Channel
	PetaMem Metadata Management
	Enabling Multiple AMSes
	PM Process and PMthreads Memory Management
	Private Memory Allocation
	Enforcing Memory Isolation
	Recovering from Failures

	Evaluation
	Synopsis and Setup
	Performance: Sequential Access
	Performance: Random Access
	Application Recovery Speedup
	Enforcement of Isolation

	Conclusion

	CONCLUSION
	REFERENCES
	VITA

