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This work describes approaches for automatically detecting, diagnosis, and evaluating the 

impacts of common faults in unitary rooftop air conditioning equipment. A semi-empirical 

component-based modeling approach using virtual sensors has been implemented using low-cost 

microcontrollers and tested on fixed-speed and variable-speed equipment using laboratory 

psychrometric test chambers. A previously developed virtual refrigerant charge sensor was 

applied to a fixed-speed rooftop unit with combinations of condenser types and expansion valve 

types and resulted in average prediction errors less than 10%. In addition, a methodology was 

developed that can be used to tune the empirical parameters of the model using data collected 

without psychrometric chambers, greatly reducing the experimental effort and costs required for 

the model.  Virtual sensors previously developed for fixed-speed systems were also implemented 

for a variable-speed rooftop unit without significant loss of accuracy. 

Much of this work has been devoted to estimating the performance impacts of faults that 

grow over time, like heat exchanger fouling or refrigerant charge leakage. To estimate these 

impacts, semi-empirical models for predicting the normal performance of fixed-speed and 

variable-speed systems have been developed and evaluated using experimentally collected data. 

In addition, the virtual sensor approaches for estimating the actual performance of systems using 

low-cost sensor measurements were evaluated. Together, normal performance models and 

virtual sensor estimations were used to estimate the overall impacts of several faults on system 
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performance. A methodology for quantifying the performance impacts of simultaneously 

occurring faults has been developed and tested using a detailed system model and experimental 

results. While relatively simple, simulated and experimentally collected results showed the fault 

impact models were accurate within 10% of the actual fault impacts. The fault impact evaluation 

models could be embedded in an AFDD system and used to determine when performance 

degradation faults should be serviced from an operating cost perspective. 

In addition, different service and maintenance strategies are compared in this work using a 

simulation environment that was developed. A data-driven artificial neural network model of a 

rooftop unit with faults has been derived for this purpose using a detailed fault impact model for 

direct expansion cooling equipment. This model was coupled with a building model to simulate 

operating cost impacts of performance degradations and service over the life of cooling 

equipment. An optimization problem was formulated with the goal to minimize lifetime energy 

and service costs and was solved using dynamic programming. Using the optimal solution as a 

baseline, suboptimal service decision-making strategies were implemented and simulated using 

the building model. It was found that condition-based maintenance strategies using the outputs 

of automated fault detection and diagnostics tools can significantly reduce lifetime operating 

costs over periodic service policies. 
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1. INTRODUCTION 

1.1 Background and Motivation 

With advancements in low-cost hardware and cloud-based computing and communications 

infrastructure, machines that are used every day to operate our world and complete daily tasks 

are becoming more and more sophisticated and efficient. Machines in today’s world are 

becoming increasingly connected with their surroundings. For example, new thermostats can 

“learn” the behavior of homeowners so that energy can be saved when they are away. Self-

driving cars can prevent traffic accidents and other problems by optimizing their control. Large 

online retailers can deliver almost any item to customers within a day – no matter where the 

customer lives. The world and its machines are becoming increasingly optimized to meet the 

needs of its people. 

Research and engineering for the optimization of machines and systems for critical 

applications has existed for many years. Controls and operations research related to complex 

chemical manufacturing, space exploration, military and defense applications, and power 

generation facilities has advanced considerably. In these applications, the complexity of the 

systems and decisions involved is often too great for the typical human to understand. 

Additionally, for some applications the speed at which decisions must be made is only suitable 

for computers. When this is the case, supervisory control systems must be designed to ensure 

safe and reliable operations. 

Supervisory control systems have also been developed for several non-critical applications.  

Some of these applications are related to building systems and their heating, ventilation, and air 

conditioning (HVAC) systems. The benefits of improving the control of HVAC systems in 
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buildings come from improvements in reliability and comfort. Additionally, improvements in 

system control can lead to increases in efficiency and reductions in operating costs. 

One supervisory-level process monitoring system intended to reduce operating costs in 

HVAC applications is automated fault detection and diagnostics (AFDD). AFDD systems are 

used to identify deviations in normal or expected performance that are due to faults or other 

unexpected failures that arise throughout the life of the system. The advantage of using AFDD 

systems for this purpose is that faults causing less efficient operation or reductions in capacity 

can be found more quickly than with a HVAC technician. Much like automotive diagnostics in 

today’s cars, AFDD for HVAC systems can make it easier to identify problems and prevent more 

costly problems through preventative or proactive maintenance practices. 

The general approach for HVAC system AFDD described by Rossi and Braun has been 

summarized in Figure 1.1 [1]. In the first stage of a fault detection and diagnostics tool, 

measurements recorded from the system of interest are made by a data acquisition system.  These 

measurements will be used to determine whether the system is operating normally and to inform 

service decisions if a fault exists. Traditionally, the data collected from HVAC systems are 

temperature, pressure, and relative humidity measurements that can be used to fix the 

thermodynamic state points around the system. Once these state points are known, additional 

properties such as enthalpy or density can be determined and used to assess the condition of the 

system. 
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Figure 1.1. General approach for automated fault detection and diagnostics described by Rossi 

and Braun [1]. 

Sensor and hardware requirements for data acquisition have consistently been a significant 

upfront cost that has slowed widespread introduction of AFDD systems on lower cost 

commercial and residential direct-expansion (DX) HVAC equipment. Traditionally, these 

systems have been manufactured and sold with none or very few sensors installed for control 

purposes. The chief exceptions to this are the air-side temperature and relative humidity sensors 

installed with outdoor-air economizers for commercial applications. Because of the limited 

number of sensors available on existing systems, sensors that are required for AFDD systems 

should not lead to significant cost increases. 

To reduce upfront instrumentation costs, past research has focused on designing low-cost 

AFDD systems and on the development of alternative methods for estimating physical quantities 

of interest. These methods, called virtual sensors, use a combination of low-cost sensors with 

physical or mathematical models of the system to estimate quantities that are impossible or 

expensive to measure directly [2-6]. In the current work, virtual sensors that have been 

developed in the past have been implemented using low-cost hardware and software and applied 
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to a two-stage fixed-speed commercial rooftop air conditioner (RTU) to demonstrate and assess 

the virtual sensor and AFDD algorithms. Additionally, these same virtual sensors have been 

applied to a variable-speed RTU with small modifications. 

Using measured quantities and virtual sensors, automated fault detection for RTUs can be 

performed.  In this step, a determination is made whether the system is operating normally or if a 

fault has developed. Many methods have been developed for this task including system-level 

model-based statistical classifiers, component-level virtual sensor methods. A thorough review 

of these methods and others have been discussed in the literature review of Chapter 2. What is 

common to all these methods is that a comparison between the performance that is expected and 

the observation performance at the current operating condition is made. When a sufficient 

deviation exists, a fault is identified. 

In some systems and approaches, fault detection is the last step – i.e. the system only 

classifies if the machine is normal or not.  In other, more developed systems, the step that occurs 

after fault detection is fault diagnosis. Unlike fault detection, the goal of fault diagnosis is to 

narrow down or isolate the cause of the fault. This can be done using the information available, 

including virtual sensors. Common examples of fault diagnosis in DX equipment is 

distinguishing between systems that are low on refrigerant from those that have dirty condenser 

coils.  Fault diagnosis is in many ways an extension of fault detection – rather than classify if the 

system is not normal, diagnosis intends to classify if a system has a specific fault. In this work, 

the effectiveness of the AFDD system implemented will be analyzed using experimental data 

collected from systems with faults introduced artificially. 

The focus of this research is related to the steps that come after a fault detection and 

diagnosis have been performed: fault impact evaluation. Because of the sensitivity of some 
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FDD methodologies, faults with relatively minor impacts on system performance can be detected 

and diagnosed. While it is not wrong that FDD tools can detect faults with minor impacts, a 

determination about the extent of the fault impact must be made before a decision can be made 

about whether to fix a fault. To this end, fault impact evaluation approaches are applied to the 

outputs of the FDD system to estimate how much a fault has impacted system performance. 

Impacts that are considered in this work include total cooling capacity, efficiency, sensible heat 

ratio, and energy consumption. While much attention and research focus has been applied to 

developing novel low-cost FDD approaches, less focus has been devoted to developing 

generalizable methods for estimating impacts of faults. In this work, a methodology that can be 

used to estimate the impacts of multiple faults occurring simultaneously has been developed and 

tested using detailed equipment simulation models and experimental data. 

After faults have been detected, diagnosed, and evaluated, the information generated by each 

process can be used to improve service decisions.  Not all faults may warrant service; faults may 

have limited performance impacts or may be very costly to fix.  The economic tradeoffs between 

letting a fault persist and servicing it must be weighed before action is undertaken. Other 

considerations must also be made: will the system be able to maintain comfortable conditions if 

the fault persists, will the expected life of the system be shortened, or will additional faults 

exacerbate the impacts are all questions that could be considered before recommending service.  

Developing more optimal decision-making methodologies by coalescing data and other 

information collected during system operation is the last goal of this research. 

AFDD systems are believed to have significant energy and operational cost benefits when 

they are applied to HVAC systems [7-9]. While many of these technologies have been 

researched and developed for small-to-midsize commercial buildings and residential applications, 
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few products are available from equipment manufacturers. While federal regulations have been 

used in the past to encourage or require these products, uncertainty about the actual benefit of 

AFDD to customers and building owners still exist [9-11]. To address some of these 

uncertainties, a computerized simulation framework has been developed in this work with the 

goal of assessing the cost effectiveness of different maintenance strategies. Simple strategies 

like performing annual maintenance are compared with more advanced conditioned-based 

maintenance strategies using the simulation framework. The comparisons made with this tool 

are used to develop deeper understanding of the benefits for HVAC AFDD systems and 

proactive maintenance. 

1.2 Research Objectives 

The goal of this thesis is to develop improved fault detection, diagnosis, evaluation, and 

service decision-making strategies for DX air conditioning equipment. The research objectives 

can be summarized into three main objectives, each covered in this thesis. 

1. The first research objective is to evaluate implementation of a previously developed 

fault detection and diagnostics algorithm based on virtual sensors using low-cost sensor 

and data acquisition hardware. The system was tested on a two-stage fixed-speed RTU 

commonly used in small-to-midsize commercial buildings. The system was also tested 

using a similar RTU with a variable-speed compressor and control system. Variable-

speed systems offer significant performance improvements, especially under part-load 

conditions. Evaluation of FDD systems applied to variable-speed systems has been 

limited. 

2. The second objective of this research is to develop improved models for estimating the 

performance and economic impacts of different faults that could implemented within an 
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AFDD system. For this purpose, data collected from psychrometric chamber testing has 

been used to tune models for normal performance and measure degradation in cooling 

capacity, efficiency and sensible heat ratio with different combinations of faults imposed. 

A major thrust of this work is to identify methodologies and models that can be used to 

estimate the relative impacts of multiple faults that occur simultaneously. Isolating the 

impacts of different faults is important when making decisions about which faults to fix 

when multiple faults are present. 

3. A simulation environment to evaluate different maintenance and service strategies has 

been implemented. Using simple building load models and fast steady-state equipment 

performance models, the energy consumption of systems with and without faults has be 

studied. An optimal maintenance decision-making strategy has been developed and 

implemented within the environment. Additional comparison between the optimal 

maintenance strategy and other sub-optimal strategies are presented. 

1.3 Thesis Organization 

This chapter has given a broad overview of automated fault detection and diagnostics (AFDD) 

systems as well as an outline of the research objectives of the completed work. 

Chapter 2 describes the virtual sensors and AFDD methodologies developed for RTUs, 

including a literature review of past work by other authors. After describing the virtual sensors 

and AFDD methodology, the design and implementation of an example low-cost system for 

RTU AFDD is discussed. Additionally, the performance of the AFDD methodologies is 

evaluated using a two-stage fixed-speed RTU tested in psychrometric chambers with different 

faults imposed. The virtual sensors are also applied to a variable-speed RTU and the 



 

 

          

  

              

               

           

        

          

            

          

        

          

               

            

           

      

           

            

          

          

        

          

         

       

8 

performance of the methodology is evaluated using data collected from a system tested in 

psychrometric chambers. 

Chapter 3 presents a literature review of previous work on fault impact estimation and 

presents a new approach for estimating the impacts of multiple simultaneous faults. The 

methodology developed requires estimations of the normal performance of a system without 

faults. To do this, a semi-empirical model is discussed and tested using experimental data 

collected using the variable-speed RTU. Using virtual sensors, processes that can be used to 

estimate the observed performance of an RTU are also described.  Following this description, a 

fault impact equipment simulation model is used to develop simplified models for isolating the 

impacts of different faults when multiple faults are present. 

Chapter 4 describes a methodology for approximating detailed equipment simulation models 

using artificial neural network models. These models are an integral part of simulation platform 

presented in Chapter 5. The process used to train the neural network meta-models are described 

and example results are presented. Additionally, the simulated impacts of different faults for a 

RTU are described and analyzed over different operating conditions. 

Chapter 5 describes a computer model and framework for simulating the long-term 

performance impacts of DX equipment faults. The computer model implements the interaction 

between the air conditioning system with a simple single-node building load model. The 

weather data and operating cost calculations are described. Additionally, models that simulate 

how faults change with time and equipment run-time are described and implemented. 

Chapter 6 introduces the optimal maintenance scheduling problem and uses the simulation 

framework to determine optimal maintenance strategies in different applications. Additionally, 

other suboptimal maintenance strategies are described and implemented within the simulation 
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framework for comparison.  These strategies include periodic maintenance policies, conditioned-

based maintenance policies, and policies based on comfort violations. 

Finally, the work presented in this thesis is summarized in Chapter 7 and recommendations 

for further study are discussed. 
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2. AUTOMATED FAULT DETECTION AND DIAGNOSTICS FOR 

UNITARY AIR CONDITIONING EQUIPMENT 

2.1 Background and Motivation 

Studies have shown that packaged commercial rooftop air conditioning equipment 

(commonly called rooftop units, RTUs) tend to be poorly maintained and significant energy may 

be wasted due to unnoticed or unrepaired equipment faults. One often cited review of FDD 

technologies for building systems estimates between 10–30% additional annual energy in US 

commercial buildings may be caused by repairable faults [7, 8]. While uncertainty about the 

prevalence of different faults still exists, previous field studies have shown that RTUs often have 

undiagnosed faults and may benefit from automated FDD more than other building systems [12, 

13]. Moreover, economic and statistical analyses by Li and Braun and Yuill and Braun estimate 

that FDD can provide positive economic value by reducing operating costs and improving in-

field equipment repair [9, 11, 14]. The potential energy savings and efficiency gains that FDD 

may provide has garnered continued academic and private-sector research interest in equipment 

and building system automated FDD. 

Manufacturers of RTUs have been slow to translate FDD research and technologies into new 

products and offerings. This may be attributed to a few issues that remain, to some extent, 

unsolved: 

 FDD systems must be low-cost, easy to manufacture, and install, 

 uncertainty with respect to economic benefits and potential savings still exists, especially 

regarding prevalence of different faults, 

 and there has been a lack of integration and interoperability with other building 

technologies. 
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To address these issues, a complete automated FDD system has been designed that implements a 

previously developed automated FDD approach using virtual sensors [2-4, 6, 15, 16]. The 

system can continuously monitor the performance of an RTU and diagnose common faults 

during quasi-steady-state operation. An advantage of the selected methodology where many 

other FDD approaches may fail or have inconsistent results is the ability to diagnose multiple 

simultaneously occurring faults. Due to the sometimes-long service intervals for RTUs, multiple 

faults may develop over time and a well performing FDD system must be designed to handle 

these situations. In addition to multiple simultaneous fault diagnosis, an approach to estimate the 

total impact different faults have on equipment performance has been implemented. This 

approach uses a combination of virtual sensors to monitor actual performance and reference 

model outputs to estimate normal performance at similar operating conditions to estimate the 

severity of faults. By estimating the severity of faults on equipment performance, faults with 

inconsequential impacts with little benefits from servicing may be ignored. 

2.2 Literature Review of Previous Work on AFDD for DX Systems 

Rossi and Braun developed a statistical ruled-based FDD approach using a steady-state vapor 

compression cycle model for an RTU with fixed-speed compressor and fixed orifice expansion 

device [1]. The methodology compared the outputs generated by the cycle model to nine 

temperatures and one relative humidity measurement installed on the RTU to classify the 

performance as normal or faulty. For faulty classifications, the differences between the model 

outputs and measurements, termed residuals, were used to classify the specific type of fault.  The 

method assumed that each fault type considered (improper refrigerant levels, condenser fouling, 

evaporator fouling, compressor valve leakage, and liquid line restrictions) results in a unique 

residual response. For single fault cases, this methodology was later demonstrated to 
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successfully diagnose different faults at several operating conditions using laboratory data by 

Breuker and Braun [17]. A sensitivity analysis of the statistical threshold for steady-state 

detection, fault detection, and fault diagnosis was also discussed. 

Chen and Braun adapted the statistical rule-based FDD methodology originally proposed by 

Rossi and Braun to RTUs having thermostatic expansion valves [1, 18]. The researchers used 

steady-state laboratory test data to tune the thresholds of the methodology and assess the 

resulting performance of the system at diagnosing several common faults. The approach 

developed in this work reduced the number of sensors used to six temperature sensors and one 

relative humidity sensor. Rather than computing residuals, a methodology to calculate 

“sensitivity ratios” that were sensitive to individual faults was described. The advantage of this 

methodology was the improved FDD performance over a larger range of equipment operating 

conditions. 

Siegal and Wray developed a methodology to detect refrigerant charging faults based on 

measured compressor superheat and outdoor air temperature for split-type air conditioning 

systems with fixed orifice expansion devices [19]. The methodology was tested using four 

different split-type air conditioning systems and compared with other commercially available 

refrigerant charge diagnostics methods. The methodology proposed in this work loses accuracy 

for different evaporator air inlet conditions and air flow rates. 

Armstrong et al. developed a “non-intrusive load monitoring” method to diagnose common 

RTU faults based on transient electrical power signatures of the system [20]. The methodology 

requires three voltage measurements to be installed on the RTU. During start-up operation, the 

transient response of the voltage measurements was used to diagnose refrigerant slugging in the 

compressor, compressor valve leakage, and undercharged faults. 
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Kim and Payne developed a rule-based FDD methodology for a split-type air conditioner 

with fixed-speed compressor and thermostatic expansion valve [21].  The methodology identified 

several performance features that are sensitive to different faults. The directional changes 

between the expected features and the features observed when faults are present were used to 

develop a residual based fault classifier. 

Li and Braun present a significant improvement to previously developed FDD methodologies 

for RTUs based on “virtual sensors” [4-6, 16, 22]. Virtual sensors are mathematical or physical 

models that use low-cost measurement to estimate quantities that are expensive or impossible to 

measure directly. The virtual sensors developed in the work are sensitive to specific faults, 

enabling the detection and diagnosis of multiple faults that occur simultaneously. The 

methodology used virtual sensors for detecting improper refrigerant charge levels, condenser 

fouling, evaporator fouling, compressor valve leakage, and liquid line restrictions. 

Kim and Braun evaluated the performance of the virtual sensor methodology applied to 

several different units in laboratory settings and in the field [2, 3, 15, 23]. Additionally, the 

methodology was extended for a mini-split heat pump system with variable-speed compressor 

and electronic expansion valve. While many of the virtual sensors were improved, additional 

improvements to the virtual refrigerant charge sensor were suggested, especially for variable-

speed heat pump systems with an accumulator. Additionally, the authors note that while the 

virtual sensors are decoupled, enabling simultaneous fault diagnosis, some of the virtual sensors 

lose accuracy for low and high levels of refrigerant charge.  In these cases, suction superheat and 

liquid line subcooling tend to zero and make refrigerant property estimation error prone. 

In addition to the previous works summarized, Katipamula & Brambley and Kim & 

Katipamula provide a literature review of several data-driven approaches for RTU and split-type 
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air conditioner AFDD that have been developed [7, 8, 24]. While the details of these methods 

differ, they all use essentially a black box model that is tuned using experimental data collected 

from systems subjected to different faults. Model types that have been studied include principle 

component analysis (PCA), artificial neural networks, and binary decision trees. These 

methodologies have the potential to enable very accurate fault detection and diagnosis 

capabilities, however they tend to yield unreliable results for conditions not contained in the 

original training data set. Additionally, these data driven methods can suffer from being overfit 

to the training data set which can result in poor performance and false alarms. 

2.3 Description of AFDD System for Multi-stage and Variable-Speed RTUs 

Previous work on automated fault detection and diagnostics (AFDD) for commercial and 

residential direct expansion (DX) air conditioners and heat pumps has predominantly been 

applied to fixed-speed or multistage equipment [1, 4, 6, 10, 15, 17-20, 25, 26]. Historically, 

fixed-speed and multistage air conditioning systems have covered many manufacturers’ sales. 

Because of this, research and development has focused on AFDD for these systems since there is 

the largest potential impact at reducing energy in commercial and residential buildings. To a 

lesser extent, regulatory measures have also driven investments in AFDD for fixed and 

multistage equipment. The most notable of these regulations being the outdoor air economizer 

FDD requirement on commercial air conditioning equipment in California [27]. 

Even with these developments and advances towards autonomous FDD systems for air 

conditioning equipment, manufacturers’ have been slow to introduce these technologies into new 

products.  Manufacturers that have introduced FDD technologies have most often limited them to 

a single model as an optional add-on feature. To address these problems, a low-cost AFDD 

system for a multi-stage RTUs has been developed. One goal of this work was to demonstrate 
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development of an AFDD system for RTUs to make the engineering of such a system easier for 

equipment manufacturers. The ultimate goal of this work is to encourage equipment 

manufacturers to incorporate fault diagnostics technologies into new products by reducing the 

engineering effort. 

2.3.1 Overview of AFDD System Architecture 

Two hurdles that limit the adoption of FDD as a retrofit for existing RTUs and for integration 

in new RTUs are the lack of sensors and peripheral communications installed in equipment.  It is 

difficult to detect problems with the data that is typically available.  Additionally, it is difficult to 

alert building owners and facility managers about problems in a timely and effective manner. A 

dedicated FDD module has been developed that can be integrated within or in paral lel with 

existing RTU controllers. The system addresses the need for sensors by adding low-cost 

measurement electronics and enables external communications by adding standard internet 

connectivity hardware. A schematic outline of the system architecture in relation to a typical 

RTU controller is shown in Figure 2.1. 
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Figure 2.1. Overall architecture of VOLTTRONTM enabled RTU AFDD system as an additional 
module of current RTU control units. 

It should be noted that integrating a dedicated FDD module into existing RTU controllers is 

not the only possible solution for detecting and diagnosing equipment faults. An alternative 

solution, commonly called in-field FDD, uses devices that can be temporarily installed on 

equipment to aid field technicians in determining problems. A significant advantage of these 

diagnostics tools is that the cost can be distributed across many different RTUs since they can be 

generally applied. However, designing a tool that can be generally applied to many different 

RTUs while still having sufficient fault detection sensitivity and false alarm rejection is 

challenging [10]. In addition, in-field FDD requires inspection of actual RTUs to detect and 

diagnose faults but previous studies have concluded that RTU inspection may be infrequent [12, 

13]. Finally, the cost of sending service technicians into the field is significant in comparison 

with monitoring the health of equipment using electronics. 
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From its conception, the automated FDD (AFDD) system has been developed with the 

potential for existing as a passive, standalone system within the RTU controller. This means it 

was essential to incorporate all basic components of an AFDD product: a sensor measurement 

and data acquisition (DAQ) module, a fault detection module, and a fault diagnosis module. 

This involved both hardware design and extensive software development to implement the 

AFDD methods and algorithms. Rather than using propriety tools and code, the RTU AFDD 

system leverages open-source software exclusively, most importantly the VOLTTRON
TM 

monitoring and control platform [28, 29]. The VOLTTRONTM platform, developed by the US 

Department of Energy, facilitates communication between software agents and other physical 

devices and resources with a primary focus on building systems and technologies. The role 

VOLTTRONTM plays in the RTU AFDD system is to act as a message broker between AFDD 

services so that development, operation, and management may be organized hierarchically. This 

modularity offers the flexibility to modify, add, or completely swap out individual 

subcomponents depending on system requirements and RTU configuration. 

2.3.2 Description of Virtual Sensors used in AFDD Approach 

Many automated FDD approaches have been previously proposed for RTUs [1, 3, 4, 6, 15, 

18, 20, 30-33]. The system described in this work implements a virtual sensor-based 

methodology originally described by Li and Braun [4, 6, 16]. A virtual sensor uses low-cost 

sensor measurements with a mathematical model to estimate quantities that are difficult or 

expensive to measure directly. Several virtual sensors developed previously were implemented 

that can be used to detect and diagnose common faults, including: 

 improper refrigerant charge levels, 

 reduction in evaporator air flow caused by fouled filters or evaporator coils, 
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 reduction in condenser air flow cause by fouled condenser coils, 

 loss of compressor volumetric efficiency caused by compressor valve or other 

internal leakage, 

 and liquid-line restrictions. 

One major advantage of the virtual sensor approach is the ability to diagnose faults in the 

presence of multiple simultaneous faults. This is important since many faults may cause system 

performance to degrade over time if regular maintenance is not performed. In addition to 

detecting and diagnosing common faults, the cooling capacity, electrical power input, and COP 

of the system can be estimated using virtual sensors when the system operates. 

One differentiating quality of the method implemented in this work is that faults are 

diagnosed using virtual sensors that are sensitive only to certain faults. This approach is what 

enables the diagnosis of multiple faults that occur simultaneously, which other methodologies 

were unable to do [1]. 

A virtual refrigerant charge (VRC) sensor originally proposed by Li and Braun and improved 

by Kim and Braun was implemented in the AFDD system [2, 16].  The VRC sensor is based on a 

semi-empirical relationship between refrigerant charge level and the suction-line superheat shT , 

the liquid-line subcooling scT , and the quality of the refrigerant entering the evaporator erix . 

There are three empirical parameters shk , sck , and xk of the VRC sensor that are must be tuned 

using regression using data collected from a specific system, 
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where 
,sh ratedT , 

,sc ratedT , and 
,eri ratedx are the superheat, subcooling, and inlet quality of the 

system at a rating point. The VRC sensor builds a correlation between the amount of refrigerant 

in an air conditioner and the change in superheat, subcooling, and evaporator inlet refrigerant 

quality. These quantities are related to the amount of subcooled liquid refrigerant in the 

condenser and superheated vapor refrigerant in the evaporator coil. 

The refrigerant mass flow rate can be estimated using compressor inlet and outlet 

measurements in two ways: using standardized manufacturer maps for positive displacement 

compressors and energy balances.  In the first methodology, standardized empirical relationships 

for the compressor can often be obtained from manufacturers which take the form 
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(2.2) 

where X can represent the power input to the compressor, the mass flow rate, the current input 

to the compressor, or compressor efficiency, S is the suction dew point temperature of the 

refrigerant, D is the discharge dew point of the refrigerant, and 
0, ,9c 

are empirical parameters 

determined using compressor calorimeter data [34]. Using Equation (2.2), the refrigerant mass 

flow rate can be estimated based on inlet and outlet dewpoint temperatures (which can be 

estimated using suction and discharge pressure measurements), 
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(2.3) 

When compressor performance maps are generated using calorimeters, the suction superheat is 

typically held constant for all test conditions. This leads to systematic biases in mass flow rate 

predictions when the actual suction-line superheat is different the test superheat. To reduce this 
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bias, a correction correlation developed by Dabiri and Rice can be used to account for 

differences in suction density 

, ,1 ,

, ,

1 1
ref virtual suc actual

ref map suc map

F
m

m





 
   


 



(2.4) 

where 
,suc map is the suction-line refrigerant density corresponding the superheat maintained 

during the mapping process, 
,suc actual is the actual suction-line superheat, and F is an empirical 

parameter to account for mass flow increase with increasing suction-line density [35]. 

An alternative methodology to estimate the mass flow rate of refrigerant produced by the 

compressor can be derived from a compressor energy balance, 
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where such is the suction-line refrigerant enthalpy, dish is the discharge-line refrigerant enthalpy, 

loss is a parameter to account for heat loss to the environment, and ,comp virtualW is an estimate of 

the compressor power input. Using Equation (2.2), a virtual compressor power sensor can be 

derived based on suction-line and discharge-line refrigerant dew point temperatures, 
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(2.6) 

Unlike the mass flow rate, the compressor power consumption is less sensitive to differences in 

superheat. Previous research has shown that superheat correction factors do not add significant 

increases in model prediction accuracy [3, 6]. 
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Refrigerant mass flow rate can also be estimated using measurements at the inlet and outlet 

of the throttling device used in the air conditioner. Mass flow rate of liquid refrigerant entering 

short tube orifices can be modeled using the single-phase orifice equation 

 ,ref FXO in outm K A P P    (2.7) 

where A is the cross-section area of the orifice opening,  is the density of the entering 

refrigerant, 
inP is the pressure of the entering refrigerant, 

outP is the leaving refrigerant pressure, 

and K is an empirical valve parameter. For refrigerants entering as two-phase mixtures, Payne 

and O’Neil propose an empirical correlation for mass flow rate using non-dimensional 

analysis [36].  Kim and Braun have developed mass flow rate models for thermostatic expansion 

valves (TXV) and electronic expansion valves (EEV) [3]. The TXV mass flow rate model is 

derived from mass and force balances, and is expressed as 

     1

2

0 ,2,ref TXV suc suc suc suc max TXVa a T P a T Pm m      
 sat satP P (2.8) 

where sucT is the suction-line temperature, sucP is the suction-line pressure, satP is a function used 

to calculate the saturated pressure of a refrigeration using temperature, and 
,max TXVm is the 

limiting flow rate through the valve when it is fully open which can be estimated using a 

correlation developed by Lenger et al., 
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(2.10) 

where criticalT and criticalP are the critical temperature and pressure of the refrigerant [37]. 
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A methodology for estimating the condenser air flow rate based on a condenser coil energy 

balance was proposed by Li and Braun [6].  Using this methodology, the condenser air mass flow 

rate virtual sensor is defined by 
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where 
dish is the enthalpy of refrigerant entering the condenser coil (usually the compressor 

discharge), 
croh is the enthalpy of refrigerant leaving the condenser coil, 

,p cac is the specific heat 

of condenser air, 
,ca outT is the temperature of air leaving the condenser coil, and 

,ca inT is the 

temperature of air entering the condenser coil. The mass air flow rate of condenser air can be 

used to detect and diagnose faults impacting the condenser heat rejection effectiveness or fan 

efficiency. 

Li and Braun also propose a similar methodology for estimating the evaporator air flow 

rate [6].  The virtual evaporator air mass flow rate sensor is given by 
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(2.12) 

where such is the enthalpy of refrigerant leaving the evaporator coil (usually the compressor 

suction), erih is the enthalpy of refrigerant entering the evaporator coil, 
,ea inh is the enthalpy of air 

entering the evaporator coil, and 
,ea outh is the enthalpy of air leaving the evaporator coil. The 

enthalpy of entering and leaving the evaporator coil can be estimated when air temperature and 

relative humidity measurements are available. The mass air flow rate of evaporator air can be 

used to detect and diagnose faults impacting the evaporator heat transfer effectiveness or fan 

efficiency. 
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The empirical and mathematical models for the different virtual sensors were implemented 

using several open-source numerical computing libraries in the Python programming 

language [38].  These models were incorporated into VOLTTRON
TM compatible agents within a 

low-cost computing device. This software also included data acquisition functionality to 

interface with sensors required to monitor system operation. 

2.4 Experimental Evaluation of AFDD System Applied to Multistage RTU 

2.4.1 Description of Multistage RTU and Experimental Setup 

To test the performance of the fault detection and diagnostics system, an RTU with 5-ton 

rated capacity was installed in psychrometric chambers at Ray W. Herrick Laboratories (shown 

in Figure 2.2). The system was installed with a two-stage scroll compressor, a finned-tube 

evaporator, a finned-tube condenser, and R410A as the working fluid. Detailed descriptions of 

the RTU components are presented in Table 2.1. The system that was tested had moderately 

high rated efficiencies when compared to other fixed-speed and multistage equipment currently 

available by manufacturers. The actual nameplate rated efficiencies of the system tested are 

described in Table 2.2. 
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Figure 2.2. 5-ton RTU used to test automated fault detection and diagnostics system installed in 

psychrometric chambers. 

Table 2.1. Component descriptions of multi-stage RTU used for development and evaluation of 

AFDD implementation. 

Component Description 

Compressor Multi-Stage Scroll Compressor 

Indoor Blower Direct-Drive, Multi-Stage Centrifugal Blower 

Outdoor Fan Direct-Drive, Variable-speed Propeller Fan 

Expansion Valve Balance Port TXV, Suction Superheat Control 

Evaporator Coil Round Tube, Plate Fin Heat Exchanger 

Condenser Coil Round Tube, Plate Fin Heat Exchanger 

Refrigerant R-410A, 7.57 kg (16 lbs 11 oz) 
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Table 2.2. Rated cooling performance of multi-stage RTU used for development and evaluation 

of AFDD implementation. 

Rated Cooling Performance1 

Gross Cooling Capacity 18.05 kW (61.6 kBtu/h) 

Net Cooling Capacity2 17.58 kW (60.0 kBtu/h) 

AHRI Rated Air flow 0.8259 m3/s (1750 CFM) 

Total Unit Power 4.7 kW 

EER 12.7 Btu/h / W 

SEER 17.1 Btu/h / W 
1 AHRI Certified to AHRI Standard 210/240: 95 °F outdoor air temperature and 80 °F dry bulb 

/ 67 °F wet bulb entering evaporator air, minimum external duct pressure. 
2 Net capacity includes evaporator blower motor heat deduction. 

To test the performance of the AFDD system, the RTU was operated under a range of 

operating conditions, described in Table 2.3.  This included both wet coil and dry coil tests under 

outdoor ambient conditions ranging from 20.6 °C (69.0 °F) to 42.2 °C (108.0 °F). To test the 

performance of the AFDD system at diagnosing refrigerant charge faults, the system charge level 

was adjusted to values ranging from 60% (40% undercharge) to 120% (20% overcharge). The 

ability to diagnose reductions in evaporator and condenser air flow (simulating fouling) was 

tested by adjusting the indoor blower and outdoor fan control inputs to prescribed levels. Two 

levels of air flow were tested for each fan: normal and reduced. Finally, combinations of all 

three faults were tested simultaneously at the different ambient conditions. 
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Table 2.3. Test conditions for RTU with finned-tube condenser and fixed orifice expansion 

device for low stage cooling operation in psychrometric test chambers. 

Test Variable Test Values 

Compressor Stage, - LOW HIGH 

Indoor Dry Bulb, °C 26.7 26.7 

Indoor Wet Bulb, °C 13.9, 20.6 13.9, 20.6 

Outdoor Dry Bulb, °C 20.6, 27.8, 35.0, 41.2 20.6, 27.8, 35.0, 41.2 
1Charge Level , % 60, 70, 80, 90, 100, 110, 120 60, 70, 80, 90, 100, 110, 120 

2Indoor Fan Torque , % 30, 60 50, 90 
3Outdoor Fan Speed , % 40, 70 70, 100 

1 Charge is measured relative to the recommended charge according to the manufacturer’s 
nameplate data. 
2 Indoor fan torque is set according to a nominal flow rate of 0.637 m3/s (1350 CFM) for low 

stage operation; 0.944 m3/s (2000 CFM) for high stage operation. 
3 Outdoor fan speeds are set using the manufacturer’s default value for low and high stage 
operation. 

2.4.2 Measured Detection and Diagnosis Performance of AFDD System 

The accuracy of the VRC model for each stage of operation is shown in Figure 2.3 over the 

range of ambient conditions and fault scenarios tested. The virtual refrigerant charge sensor 

required empirical data to tune the model parameters. These parameters were tuned using an 

automated training algorithm without the use of psychrometric chambers [34].   In both stages of 

operation, the prediction accuracy was mostly within 10% of the measured char ge levels. 

Moreover, the root-mean-square error (RMSE) was approximately 6.20% for both stages 

operation. It should also be noted that the relative accuracy remains approximately unchanged 

over the range of refrigerant charge levels tested and minimal bias exists as a function of outdoor 

ambient temperature. 
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Figure 2.3. VRC sensor prediction accuracy for RTU with finned tube condenser and fixed 
orifice expansion device applied to both stages of operation under different ambient conditions. 

Figure 2.4 shows the accuracy of the virtual charge sensor as well as the calculated fault 

probability for tests cases with normal air flow rate levels. Good agreement between the 

predicted charge level and the measured charge level was observed for these test cases. The 

charge fault probability was calculated using a statistical methodology originally described by 

Rossi and Braun [1]. Essentially, this assumes that two Gaussian distributions can be used to 

represent the expected and observed refrigerant charge levels. The degree that these two 

distributions overlap is analogous to the probability that the observed charge level is equal to the 

expected charge level. This probability is then calculated by integrating the area contained by 

both distributions. The results shown in Figure 2.4 show that the FDD system can identify 

refrigerant charge faults with probabilities greater than 95% when the actual charge level 

deviates ±15% from normal. 
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Figure 2.4. Prediction accuracy of VRC sensor applied to charge level vaults showing charge 
fault probability for each test case. The data show that the FDD system can identify faults with 

high confidence when actual charge is ±20% of the normal charge level. 

It is important that the FDD system can accurately identify faults when there are multiple 

simultaneous faults affecting the system. Figure 2.5 shows the performance of the charge fault 

diagnostics for several combinations of improper refrigerant levels, indoor air flow levels, and 

outdoor air flow levels. In these results, tested under 27.78 °C (82.0 °F) outdoor temperature, 

refrigerant charge faults were correctly identified with probabilities greater than 95% in all cases 

where the charge level deviated by at least ±20%. It is also noteworthy that the VRC sensor 

tends to predict refrigerant charge faults with greater probability when the impact on system 

capacity of the faults increases. This indicates that when significant refrigerant charge faults 

affect the system, the FDD system can identify them. 
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1 

Figure 2.5. Total capacity impact of refrigerant charge faults at 27.78 °C (82 °F) outdoor ambient 

temperature. The points are colored based on the fault probability determined for each test case, 

indicating faults that have larger impacts are identified with greater probability. IDF indicates the 

indoor fan torque setting; ODF indicates the outdoor fan speed setting. 

Similar results for test conditions at 35.00 °C (95.0 °F) and 41.22 °C (108.0 °F) outdoor 

temperature are shown in Figure 2.6 and Figure 2.7 respectively. In these results, refrigerant 

charge faults were correctly identified with high probabilities in test cases where the refrigerant 

charge deviated by ±10%. It should also be noted that refrigerant charge faults tended to have 

large impacts on the total capacity of the system at the higher outdoor temperatures. 
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Figure 2.6. Total capacity impact of refrigerant charge faults at 35.00 °C (95 °F) outdoor ambient 

temperature. The points are colored based on the fault probability determined for each test case, 

indicating faults that have larger impacts are identified with greater probability. IDF indicates the 

indoor fan torque setting; ODF indicates the outdoor fan speed setting. 

Figure 2.7. Total capacity impact of refrigerant charge faults at 41.22 °C (108 °F) outdoor 

ambient temperature. The points are colored based on the fault probability determined for each 

test case, indicating faults that have larger impacts are identified with greater probability. IDF 

indicates the indoor fan torque setting; ODF indicates the outdoor fan speed setting. 
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1 

The probability of an evaporator air flow fault has been calculated for each test case to test 

the effectiveness of the FDD system at identifying evaporator fouling faults. This probability 

was calculated using the previously described method using the virtual evaporator air flow rate 

sensor. The results in Figure 2.8 compare test cases at 27.78 °C (82.0 °F) ambient conditions 

where evaporator air flow was normal and reduced to simulate a fouling fault. Fault cases that 

had reductions in evaporator air flow resulted in high fault probabilities, which can be used to 

identify faults. The results illustrate that evaporator fouling can be identified even in the 

presence of other faults, like low refrigerant charge. 

Figure 2.8. The FDD system can identify test cases with low evaporator air flow using the 

statistical fault detection and diagnostics method.  Test cases without reductions in evaporator air 

flow were not identified with high fault probabilities. IDF indicates the indoor fan torque setting; 

ODF indicates the outdoor fan speed setting. 

The probability of a condenser air flow fault has been calculated for each test case to test the 

effectiveness of the FDD system at identifying condenser fouling faults. This probability was 

calculated using the previously described method using the virtual condenser air flow rate sensor.  

The results in Figure 2.9 compare test cases at 27.78 °C (82.0 °F) ambient conditions where 
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condenser air flow was normal and reduced to simulate a fouling fault. Fault cases that had 

reductions in condenser air flow resulted in high fault probabilities, which can be used to identify 

faults. The results illustrate that condenser fouling can be identified even in the presence of 

other faults, like low refrigerant charge. 

Figure 2.9. The FDD system can identify test cases with low condenser air flow using the 

statistical fault detection and diagnostics method for test cases under 27.78 °C (82 °F) outdoor 

ambient temperature. Test cases without reductions in condenser air flow were not identified 

with high fault probabilities. IDF indicates the indoor fan torque setting; ODF indicates the 

outdoor fan speed setting. 

2.5 Experimental Evaluation of AFDD System Applied to Variable-Speed RTU 

While there have been developments in AFDD systems for variable-speed direct-expansion 

equipment, this has been to a much lesser extent when compared to fixed-speed systems. 

Moreover, much of this work has focused on ductless heat pumps (sometimes called mini-split 

systems) and use mostly data-driven methods which have been shown to be susceptible to errors 

when models are overfit or when extrapolation is required. The performance advantages of 

systems with variable-speed compressors are significant. By using a variable-speed compressor, 

air conditioners and heat pumps can be controlled to match the time-varying, dynamic heating 
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and cooling loads of a building. This has the potential to increase heating and cooling 

efficiencies of equipment, especially at part-load conditions by reducing the cycling 

inefficiencies associated with ON/OFF or staged equipment. 

These efficiency improvements, along with increasing energy efficiency regulatory measures, 

have driven manufacturers to design and sell more systems with variable-speed compressors 

having advanced controls. Thus, more and more variable-speed systems have been introduced 

into US commercial and residential buildings. Like fixed-speed systems, systems with variable-

speed components still have the potential to develop faults that degrade performance over time. 

Though with the relative lack of AFDD system developments and demonstrations for variable-

speed equipment as compared with fixed-speed system, investigation of low-cost approaches is 

needed. In this section, the virtual sensor AFDD approach has been extended so that it can be 

applied to a variable-speed RTU. Using experimental testing, the methodology is evaluated 

using data collected from a system at different operating conditions and fault levels. 

2.5.1 Description of Variable-Speed RTU and Experimental Setup 

A new 5-ton variable-speed RTU was installed in a pair of psychrometric chambers at Ray W. 

Herrick Laboratories for the purposes of testing a novel supervisory level controller designed to 

minimize energy consumption of variable-speed RTUs. This system, pictured in Figure 2.10, 

was used to perform a series of tests to evaluate the performance of this controller in comparison 

to several baseline control methodologies. In addition to testing control algorithms, the impacts 

of common faults that affect RTUs were measured using the psychrometric chambers. These 

faults included improper refrigerant charge level, condenser fouling, and evaporator fouling. 
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Figure 2.10. 5-ton variable-speed RTU that will be used to develop and evaluate AFDD 

implementation. 

The major components of the variable-speed RTU are described in Table 2.4. The 

compressor used in the system is an inverter driven variable capacity scroll compressor . The 

compressor input frequency was controlled to maintain a constant supply air temperature set 

point by the main RTU controller.  The evaporator blower was controlled to produce different air 

flow rates in response to the zone temperature using a constant torque fan motor. It is also 

important to note that the system utilized a thermostatic expansion valve (TXV) to control 

suction superheat entering the compressor.  In comparison to the previous multistage RTU tested, 

the only significant difference between the systems was the compressor used in the system. 

Additionally, the control of the compressor and fan speeds by the RTU controller was also 

significantly different. 
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Table 2.4. Component descriptions of variable-speed RTU used for development and evaluation 

of AFDD implementation. 

Component Description 

Compressor Inverter Driven, Variable Capacity Scroll Compressor 

Indoor Blower Direct-Drive, Multi-Stage Centrifugal Blower 

Outdoor Fan Direct-Drive, Variable-speed Propeller Fan 

Expansion Valve Balance Port TXV, Suction Superheat Control 

Evaporator Coil Round Tube, Plate Fin Heat Exchanger 

Condenser Coil Round Tube, Plate Fin Heat Exchanger 

Refrigerant R-410A, 7.57 kg (16 lbs 11 oz) 

The rated performance of the variable-speed RTU that was be used to evaluate the variable-

speed RTU AFDD implementation is shown in Table 2.5.  In comparison to the multi-stage RTU 

tested previously, a significant improvement in the seasonal energy efficiency ratio (SEER) can 

be observed, which is due to improved performance at part-load conditions. This illustrates the 

energy saving potential provided by the variable-speed compressor that avoids degradation in 

performance due to cycling at part loads. 

Table 2.5. Rated cooling performance of variable-speed RTU used for development and 

evaluation of AFDD implementation. 

Rated Cooling Performance1 

Gross Cooling Capacity 17.44 kW (59.5 kBtu/h) 

Net Cooling Capacity2 17.00 kW (58.0 kBtu/h) 

AHRI Rated Air flow 0.8595 m3/s (1800 CFM) 

Total Unit Power 4.5 kW 

EER 12.0 Btu/h / W 

SEER 20.0 Btu/h / W 
1 AHRI Certified to AHRI Standard 210/240: 95 °F outdoor air temperature and 80 °F dry bulb 

/ 67 °F wet bulb entering evaporator air, minimum external duct pressure. 
2 Net capacity includes evaporator blower motor heat deduction. 

To test the performance of the AFDD implementation applied to the variable-speed RTU, the 

psychrometric chamber test facilities at Ray W. Herrick Laboratories was used to maintain test 

conditions simulating typical equipment operating conditions. One interesting aspect of the 

control system of the variable-speed RTU is that the system can be operated in full variable-

speed mode (as is intended by the manufacturer) but also using a fixed-speed and multistage 
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control approach.  Not only did this allow for a direct comparison of different control approaches, 

but it will also be possible to compare the performance of the AFDD system when applied to 

different control approaches.  Based on a literature review, no previous study on the performance 

of AFDD systems with respect to the capacity control mechanism of RTUs has been studied. 

A combination of steady-state testing and dynamic load-based testing scenarios were used for 

validation of the AFDD system within psychrometric chamber test facilities. A description of 

the load-based testing approach has been included in Appendix A. The steady-state test 

scenarios served two purposes: for development and tuning of empirical models used in some of 

the virtual sensors and for evaluation of the FDD systems when systems are under different 

constant loads. The steady-state tests that were performed are based on the equipment 

performance rating standard relevant for the equipment (AHRI Standard 210/240) and are 

described in Table 2.6 [39]. Scenarios with both wet coil and dry coil conditions were included 

in the steady-state testing program to evaluate whether FDD performance degrades with different 

evaporator inlet conditions. Besides analyzing the performance of the AFDD system, reference 

models for the normal performance of the system were developed using the data generated from 

these tests. These results are presented in Chapter 3. 
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Table 2.6. Steady-state test scenarios for variable-speed RTU AFDD performance assessment. 

Test Variable Test Values 

Part-Load Ratio, - 0.60, 0.75, 0.90, 1.00 

Indoor Dry Bulb, °C 26.7 (80.0 °F) 

Indoor Relative Humidity, 25, 45, 55 

% 

Outdoor Dry Bulb, °C 25.0, 30.0, 35.0 (77.0, 86.0, 95.0 °F) 

Charge Level1, % 60, 70, 80, 100, 120, 130 

Indoor Fouling, - None, Light, Heavy 

Outdoor Fouling3, % None, Light, Heavy 
1 Charge is measured relative to the recommended charge according to the manufacturer’s 
nameplate data. 
2 Indoor fouling was imposed by restricting air flow through an orifice damper to increase 

pressure head on indoor fan. 
3 Outdoor fouling was imposed by uniformly adding flow restriction through condenser coil 

using different layers of porous sheets. 

To evaluate the performance of the AFDD system experimentally, the performance of the 

RTU while subject to different faults was observed.  For the purposes of this testing, faults were 

injected into the system to measure their impacts on the system and to assess how well the 

AFDD system is able to identify and classify them. Three fault types were considered for this 

study: improper refrigerant charge levels, condenser fouling (simulated by uniformly adding 

flow restriction through the condenser coil using different layers of porous sheets), and 

evaporator fouling (simulated by restricting air flow through an orifice damper to increase 

pressure head on the indoor fan). It should be noted that combinations of different faults will 

also be studied (but not exhaustively). 

The amount of refrigerant contained in the RTU was measured prior to each test scenario and 

was held constant throughout the duration of the test scenario. The normal charge level was 

determined using the manufacturer’s nameplate data, while adjusting for additional refrigerant 

piping due to the mass flow meter. To reduce uncertainty about the amount of refrigerant 

contained in the system and to reduce the time required to adjust the refrigerant charge level, a 
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previously developed automated refrigerant charging apparatus was used to add and remove 

different amounts of charge between tests [40]. 

Condenser fouling was simulated using porous sheets that were placed uniformly across the 

condenser coil face area. Different number of layers were added to the condenser inlet to 

simulate different levels of condenser fouling. During each test, the number of layers was not 

changed. 

The supply air static pressure head was controlled using a variable area orifice damper to 

simulate evaporator coil fouling. For normal fault conditions, the orifice damper was opened to 

its largest cross-sectional flow area. For subsequent tests, the cross-sectional area was reduced, 

producing greater static pressure at the outlet of the RTU. This resulted in lower air flow rates 

and higher fan power requirements. 

Instrumentation was added to the variable-speed RTU to evaluate the performance of the 

AFDD system and to collect data for model tuning. The refrigerant-side sensors and their 

locations relative to the major components of the RTU are shown in Figure 2.11 and the 

associated sensor accuracies are shown in Table 2.7.  The sensors installed on the refrigerant-side 

of the system enabled the calculation of refrigerant-side cooling capacity, COP, and system 

superheat and subcooling. This was important for both the AFDD implementation evaluation 

and for assessing performance impacts of the faults. 
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Figure 2.11. Refrigerant-side temperature, pressure, and mass flow sensor layout for variable-

speed RTU. 

Table 2.7. Refrigerant-side sensor measurement uncertainty for sensors installed on variable-

speed RTU. 

Temperature Pressure Mass Flow 

Location °C (°F) kPa (PSI) g/s (lbm/min) 

Compressor Suction 0.5 (0.9) 5.2 (0.75) N/A 

Compressor Discharge 0.5 (0.9) 8.6 (1.25) N/A 

Condenser Outlet 0.5 (0.9) 8.6 (1.25) 0.76 (0.10) 

Liquid-Line 0.5 (0.9) 8.6 (1.25) N/A 

Evaporator Inlet 0.5 (0.9) N/A N/A 

Evaporator Outlet 0.5 (0.9) N/A N/A 

In addition to the refrigerant-side sensors installed, air-side temperature, pressure, and 

humidity sensors were installed in the ductwork used to transfer air to and from the RTU.  These 

sensors were installed in accordance with ASHRAE Standard 41 to ensure reliability and 

reproducibility of the experimental data [41-43].  In addition to the sensors previously mentioned, 

it was intended to use a calibrated air flow nozzle to measure the supply air flow rate delivered 

by the unit to calculate air-side total and sensible capacity. However, significant errors existed 

with the air flow rates measured for reasons that could not be explained during testing. As a 

replacement, a virtual air flow rate sensor output developed by the manufacturer was used to 
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estimate the supply air flow rate. To verify the virtual sensor accuracy, refrigerant-side to air-

side energy balances were used. Air-side measurements were required to evaluate the impacts 

faults have on sensible heat ratio (SHR) since it is not possible to directly measure this using 

only refrigerant-side measurements. 

Figure 2.12. Air-side temperature, pressure, and humidity sensor layout for variable-speed RTU. 

2.5.2 Extending AFDD System for Variable-Speed RTU 

The virtual sensors developed for the multistage RTU described previously in this chapter 

could largely be applied to the variable-speed RTU without modifications. For a refrigerant 

mass flow rate sensor based on the compressor map, a modification was required to account for 

the performance of the compressor at different operating frequencies. To account for this, 

different sets of empirical coefficients were generated for the compressor for different operating 

frequencies.  Thus, for 22, 30, 40, 50, 60 Hz operating frequencies, the refrigerant mass flow rate 

and compressor input power could be calculated using Equations (2.3) and (2.6) respectively.  
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Linear interpolation was used to predict the mass flow rate and input power when the compressor 

operated at intermediate frequencies. 

Using interpolation of the compressor mass flow rate maps, the predicted and measured 

refrigerant mass flow rates are compared at different operating conditions in Figure 2.13. Over 

the range of operating conditions tested, the refrigerant mass flow rate predictions had errors 

within approximately 5% of the measured values. It should be noted that the range of operating 

frequencies tested ranged from approximately 35% to 100%. Over this range, the flow rates 

were reduced approximately 50% compared to full-load operation. It should also be noted that 

the density correction in Equation (2.4) was applied to account for variations in suction-line 

superheat. Without adjusting for the suction-line superheat, the refrigerant mass flow rate 

predictions tended to underestimate the measured flow rates by approximately 5%.  This was due 

to the compressor maps being generated using a constant 11.1 °C (20.0 °F), while during testing 

the superheat was maintained around 5.5 °C (10.0 °F). 

Figure 2.13. Variable-speed RTU virtual refrigerant mass flow rate sensor accuracy over range 

of operating conditions. 
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A comparison between the predicted and measured compressor power consumption for the 

experimental test cases is shown in Figure 2.14. Using interpolation of the compressor input 

power maps, the predictions agreed to within 5% of the measured power consumption for all but 

one test case. For the data collected, the range of compressor powers tested ranged from 40% to 

100% of the full-load power consumption. This indicates that interpolation between compressor 

maps for different input frequencies can be performed without significant loss of accuracy in the 

virtual sensor.  This provides a straightforward methodology to adapt the virtual refrigerant mass 

flow rate and input power sensors previously developed for fixed-speed and multistage systems 

to variable-speed systems. 

Figure 2.14. Variable-speed RTU virtual compressor power sensor accuracy over range of 

operating conditions. 

Using the virtual mass flow rate sensor and measurements of the refrigerant and air entering 

and leaving the condenser coil, the virtual condenser airflow sensor was applied to the variable-

speed RTU. The predicted and measured condenser airflow rates are compared in Figure 2.15. 
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Over the range of operating conditions and compressor speeds tested, the virtual condenser air 

flow sensor outputs agreed within 5% of the condenser airflow calculated using direct refrigerant 

mass flow rate and an energy balance on the condenser coil. In this system, the condenser fan 

speed was controlled based on compressor speed.  Thus, it is important to evaluate the condenser 

airflow accuracy over different ambient conditions and compressor input frequencies. From the 

results shown in Figure 2.15, no bias is observed over the range of compressor input frequencies 

tested. 

Figure 2.15. Variable-speed RTU virtual condenser air flow rate sensor accuracy over range of 

operating conditions. 

The accuracy of the virtual evaporator airflow rate sensor applied to the variable-speed RTU 

in comparison to the directly measured airflow rate is shown in Figure 2.16.  For all the test cases 

analyzed, the predicted and measured evaporator airflow rate errors were within 10%. In this 

system, the indoor fan is controlled to maintain zone air temperature setpoint. It can be inferred 

from these results that the virtual evaporator air flow rate outputs were relatively accurate for the 
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range of part-load fractions tested. No discernable correlation between the prediction error and 

the compressor operating percentage is observed. 

Figure 2.16. Variable-speed RTU virtual evaporator air flow rate sensor accuracy over range of 

operating conditions. 

2.6 Description of AFDD System Hardware Design and Prototype 

Due to the limited availability of sensors installed on existing RTUs in production and the 

relatively modest computing resources available, additional electronics hardware has been 

designed for implementing the AFDD algorithms. The system designed can be considered 

standalone – these electronics can be installed on a typical RTU and with the proper initial 

configuration, an effective AFDD system can be utilized by building operators without any other 

sensor requirements or hardware. While this system could seemingly be applied as a retrofit, it 

was primarily designed from the standpoint of being embedded by equipment manufacturers 

during the production process. 
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To implement the virtual-sensor-based AFDD algorithms, several refrigerant-side and air-

side temperature measurements (shown in Table 2.8) are required. To measure these 

temperatures, a low-cost buffered analog-to-digital thermistor circuit was designed. The 

thermistors selected for the application can be easily surface-mounted to the RTU refrigerant 

circuit in the locations required. In comparison to other types of temperature sensors 

(thermocouples, RTDs, etc.) thermistors offer a good combination of accuracy, reliability, and 

cost. When using thermistors, the highly nonlinear relationship between temperature and 

internal resistance must be considered during the design process. While there are different ways 

to address this problem, each with their own tradeoffs, a more expensive (yet still relatively 

inexpensive) analog-to-digital converter (ADC) with a higher resolution was selected for this 

application. 
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Table 2.8. Description of required refrigerant-side temperature sensors used for RTU AFDD 

methods. 

Symbol Type 
110K Thermistor

10K Thermistor 

10K Thermistor 

210K Thermistor

10K Thermistor 

Description 

Evaporator Refrigerant Inlet Temperature 

Compressor Refrigerant Suction Temperature 

Compressor Refrigerant Discharge Temperature 

Condenser Refrigerant Saturation Temperature 

Condenser Refrigerant Outlet Temperature 

cai
T 10K Thermistor Condenser Air Inlet Temperature 

cao
T

eai
T

eai

eao
T

eao

10K Thermistor 

Temp/RH Chip 

Temp/RH Chip 

Temp/RH Chip 

Temp/RH Chip 

Condenser Air Outlet Temperature 

Evaporator Air Inlet Temperature 

Evaporator Air Inlet Relative Humidity 

Evaporator Air Outlet Temperature 

Evaporator Air Outlet Relative Humidity 

1 In some applications, a compressor suction pressure measurement is available. When this is 

the case, the 
eri

T sensor is not required since the evaporating temperature can be calculated 

using two-phase property relations. 
2 In some applications, a compressor discharge pressure measurement is available. When this 

is the case, the 
crs

T sensor is not required since the condensing temperature can be calculated 

using two-phase property relations. 

It should also be noted that pressure measurements can be used to calculate the evaporator 

refrigerant inlet temperature and condenser refrigerant saturation temperature since the 

refrigerant at these points is a two-phase fluid. Systems that already have these pressure sensors 

installed for control purposes do not need to install additional temperature sensors which reduces 

the additional instrumentation costs for AFDD.  It is also worth noting that pressure sensors may 

be required for systems with micro-channel condensers. On these systems, locating a consistent 

and reliable saturation temperature point over the expected equipment operating range is not a 

trivial task [40]. 

The RTU AFDD methodology requires a calculation of the enthalpy of the entering and 

leaving evaporator air to determine if the evaporator coil is fouled or air flow has been reduced. 

Measuring enthalpy directly is not possible, so the temperature and relative humidity at these 
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points is measured instead (described in Table 2.8). In the initial design, two solid-state sensors 

that measured both the dry-bulb temperature and relative humidity were used. Unlike the analog 

thermistor circuits described previously, these sensors provide a digital output using the I2C 

communications protocol. Besides using these sensors for the virtual evaporator air flow sensor, 

the entering evaporator air dry bulb temperature and wet bulb temperature are used as inputs in 

reference models of normal performance also used by the AFDD algorithms. 

An overall schematic view of the temperature, pressure, and relative humidity sensors used 

by the RTU AFDD system is shown in Figure 2.17. In comparison with the sensors typically 

found on RTUs, significantly more sensors are required. The additional sensor sensors enable 

the ability to diagnosis simultaneous faults and estimate impacts of faults on cooling capacity 

and COP. 

Figure 2.17. Locations of temperature (T) and relative humidity (ϕ) sensors used by RTU AFDD 

system. 
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Besides sensors and signal conditioning circuitry, the RTU AFDD data acquisition system 

requires a computational engine that can monitor the sensor outputs and perform the required 

mathematical transformations to the data and communicate the results with the VOLTTRON
TM 

message bus. Typically, in HVAC applications, a low-cost microcontroller is used for data 

acquisition purposes. Most microcontrollers by themselves do not have the type of 

communications abilities that are required by the VOLTTRONTM communication protocol.  

While with enough time and effort, this could be implemented in some microcontrollers, an 

alternative type of device was selected to perform the required data analysis and communications. 

The BeagleBone Black is a low-cost, open-source, community supported development 

platform with a TI SitaraTM ARM® Cortex A8 microprocessor that can run the Linux operating 

system. In other words, the BeagleBone Black is a computer with all essential components 

(microprocessor, RAM, hard drive, etc.) on a single circuit board. The first role of the 

BeagleBone Black in this application is to provide analog and digital interfaces between the data 

acquisition software and the required sensors installed on the RTU. Compared to other 

microcontrollers and microprocessors, application development using the BeagleBone Black is 

easier since many of these low-level hardware and software interfaces are provided out of the 

box. The second role of the BeagleBone Black is to support a run-time environment for the 

central VOLTTRONTM application as well as the embedded RTU AFDD software agents. The 

BeagleBone Black is not the only system capable of this; other development platforms are 

available with similar functionality. Development using the BeagleBone Black was selected 

since the TI SitaraTM microprocessor is widely available. Because of this, any work done with 

the prototype platform is almost directly translatable to any future (potentially lower cost) 

platform using a similar chipset. 



 

 

         

             

         

            

         

           

       

 

        

  

     

          

          

         

         

            

   

         

         

49 

The RTU AFDD electronics system designed was implemented using actual components, 

shown in Figure 2.18. The hardware selected for the prototype is typical and widely available. 

The system implemented is relatively low-cost when compared to similar data acquisition 

applications within the HVAC market – the final system could be built for approximately $120 

USD. With consideration for economies of scale and optimized manufacturing process, 

significant cost reduction should be possible. While the through-hole prototyping system shown 

in Figure 2.18 can be readily manufactured, a printed circuit board design was also developed. 

Figure 2.18. RTU AFDD system through-hole prototype implementation using pre-fabricated 

prototyping electronics boards. 

2.7 Summary of AFDD System and Important Results 

Previous research on automated fault detection and diagnosis (AFDD) for building systems 

has shown that identifying problems that cause degradation in system and equipment 

performance is technically feasible and has the potential to significantly reduce energy 

consumption. However, manufacturers have faced hurdles such as high instrumentation costs, 

lack of integration with other building system equipment, and uncertainty about savings that has 

prevented technologies from seeing market adoption.  An AFDD system for packaged rooftop air 

conditioning equipment has been developed and implemented using a prototyping platform. 

AFDD algorithms developed by previous researchers have been implemented into the system 
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using open-source software. The low-cost electronics hardware that has been designed to 

implement the data acquisition, communications, and computational requirements of the system 

has also been implemented and tested. It is envisioned that this work can be adapted by future 

researchers as well as equipment manufacturers to reduce initial engineering and development 

effort. 

Extensive psychrometric chamber testing has been conducted to assess the performance of 

the FDD system designed for rooftop units.  Testing was performed over a wide range of outdoor 

and indoor ambient conditions while also injecting combinations of improper refrigerant charge, 

evaporator air flow reduction, and condenser air flow reduction faults.  The virtual sensor outputs 

have been evaluated for a multistage RTU and variable-speed RTU. A statistical method for 

determining the probability of a fault being present in the system was able to identify improper 

charge levels, evaporator air flow reduction and condenser air flow reduction.  Additionally, tests 

with multiple faults also showed good fault isolation, especially when impacts on total capacity 

and COP were significant. This indicates that the FDD system can identify problems that may 

cause significant additional energy consumption. 
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3. SIMPLIFIED FAULT IMPACT MODELS FOR UNITARY 

AIR CONDITIONING EQUIPMENT 

3.1 Background and Motivation 

Automated fault detection and diagnosis (AFDD) can be used to identify and isolate faults 

before significant impacts on comfort are noticed by building occupants or before degradations 

in performance cause equipment failure. AFDD systems can thus be used to monitor HVAC 

system operation and proactively schedule maintenance and service tasks when they are most 

economical. To make these decisions, the impacts of different types of faults must be 

characterized and modeled. This requires an understanding of how different faults impact the 

ability of air conditioning systems to maintain comfort, the potential to cause premature 

component failures and reduce equipment life, and the operating costs of the system. 

The purpose of the following chapter is to develop models for characterizing the fault 

impacts of different DX equipment faults that could be implemented within an AFDD system so 

that more economical service decisions can be made. Before getting into the details of these 

models, a survey of previous work related to understanding and modeling of equipment fault 

impacts is presented. This review highlights major works related to experimental testing of 

equipment subjected to artificially imposed faults. In addition, it identifies the work of previous 

researchers that has developed models and other methodologies for estimating the impacts faults 

have on equipment performance and operating costs. 

Following this literature review, models that can be used to predict the normal performance 

of DX systems are described. For fixed-speed equipment, a widely-used model based on the 

apparatus dew point / bypass factor method is described that is suitable for predicting total 

cooling capacity, system efficiency, SHR at off-design ambient conditions and air flow rates. A 
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previously developed modification of this model for variable-speed equipment is also presented 

along with a comparison to measured performance obtained using psychrometric chamber testing. 

After results of the normal performance models are evaluated, the underlying methodology 

used to characterize the total impacts different faults have on equipment performance is 

described. The methodology that is described uses measurements of actual equipment 

performance (based on virtual sensors) and models of normal equipment performance to assess 

the impacts faults have on total cooling capacity, system COP, sensible heat ratio (SHR), 

required run-time, and total energy consumption. The methodology illustrates the importance of 

virtual sensors used in the AFDD system. Virtual sensors are not only used for detection and 

diagnosis, but also for determining the significance faults have on the operation of a DX system. 

To this point, work on fault impact estimation has focused on the total, combined impact of 

faults on equipment performance – even when multiple faults affect a system simultaneously. At 

the close of this chapter, the development of fault impact models that can be used to predict the 

relative impacts of different faults that occur simultaneously is presented. In this work, these 

models will be referred to as fault impact isolation models and will have the implicit goal to 

estimate the benefit of servicing different faults. Since multiple faults may affect equipment 

simultaneously over time, evaluating which faults affect performance most significantly is 

important. For example, a RTU may be slightly undercharged and have a significantly fouled 

condenser. An automated FDD tool should have sufficient intelligence to ignore faults that do 

not result in significant impacts while recommending service for faults that do. 

To develop these models, a more detailed physics-based fault impact model for DX 

equipment has been used.  This model is then used to develop simplified models that can be used 

to estimate the relative impacts of individual faults. These simplified models can be used to 



 

 

             

  

       

    

               

             

          

  

            

           

        

 

          

            

          

  

            

               

        

         

            

          

             

53 

predict the total capacity and efficiency impacts of different faults relative to the performance of 

a fault-free system. 

3.2 RTU Fault Impact Estimation Literature Review 

The impacts of faults on the operation of direct expansion (DX) equipment have been studied 

in laboratory settings for at least two decades. One of the earliest experimental studies of these 

impacts on DX air conditioning equipment can be attributed to Breuker and Braun [44]. In that 

work the impacts of several faults, including refrigerant charge leakage (undercharged system), 

condenser fouling, evaporator fouling, compressor valve leakage, and liquid line restriction, were 

studied with respect to how different temperatures of the refrigeration cycle were affected. 

Breuker and Braun also studied the impacts of faults on equipment cooling capacity and COP

[44]. The temperatures that were studied: evaporation temperature, compressor suction 

temperature, compressor discharge temperature, condensing temperature, liquid line temperature, 

and the temperatures of air entering and leaving the evaporator and condenser coils showed 

different behaviors for different types of faults. These responses were then used to assess the 

performance of an FDD tool applied to a 3-ton R22 RTU with a fixed orifice expansion 

valve [17]. 

Breuker and Braun also published findings from a survey of the most common faults that 

affect packaged RTUs in the field [44]. Of the faults that affect the refrigeration cycle 

performance, the most common faults were refrigerant leaks, condenser fouling, evaporator 

fouling, compressor problems, and liquid line restrictions. The most common problems overall 

were controls errors and electrical problems – which were also found to cause the most total 

service costs. Of the refrigerant cycle faults, problems with compressors tended to have the 

highest total costs. The transient impacts of different faults were also studied during this work, 
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however no difference between the normal start up transient and fault start up transients were 

found [17]. 

Harms et al. tested a 5-ton R22 RTU with a thermostatic expansion valve at different levels 

of charge to compare the accuracy of different void fraction models with respect to charge 

inventory modeling of the vapor compression cycle [45]. The result of the testing showed that 

the choice of void fraction model had negligible impact on the accuracy of the estimation of 

system performance when proper charge tuning was used. 

Grace et al. studied the impacts of refrigerant charge level on the performance of a built-up 

refrigeration system using R404A as the working fluid and thermostatic expansion valve [30].  

The performance of the system was found to be strongly dependent on the amount of refrigerant 

contained in the system. The experimental data were used to develop an on-line fault detection 

system. 

Shen et al. studied several DX air conditioning systems, including a 5-ton R407C RTU with 

fixed orifice, a 3-ton R410A RTU with fixed orifice, a 3-ton R410A split-type air conditioner 

with fixed orifice, and a 3-ton R410A split-type air conditioner with thermostatic expansion 

valve [46]. Evaporator fouling, condenser fouling, and several levels of refrigerant charge were 

tested with the impacts on system performance measured. The experimental results were 

primarily used to develop an improved charge tuning method for vapor compression cycle 

models as well as improve the accuracy of an existing vapor compression model at off-design 

conditions. 

Armstrong et al. studied the impacts of different faults on electrical measurements of a 

RTU [20]. The study found that different faults lead to unique fault signatures that present 
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themselves in the transient electrical characteristics of the system. The data were used to 

develop a non-intrusive fault FDD methodology based solely on electrical measurements. 

Kim et al. studied the impacts of improper charge levels, condenser fouling, evaporator 

fouling, compressor valve leakage, liquid line restriction, and the presence of non-condensable 

gases in the refrigerant circuit on a 2.5-ton R410A split-type air conditioner with thermostat 

expansion valve [25]. The study was performed to determine temperatures that were 

significantly affected by different faults for the development of an FDD methodology. 

Palmiter et al. measured the seasonal performance impacts of indoor air flow rate and 

refrigerant charge on the 3-ton R410A split-type heat pump with thermostatic expansion 

valve [47]. Some cycling tests were also performed during this testing and it was found that 

COP decreases with reductions in indoor air flow rate and increasing refrigerant charge level. 

Li and Braun developed a methodology to assess the economic impact of operating DX 

systems with faults based on the combined effects of total cooling capacity, COP, and sensible 

heat ratio (SHR) impacts [14]. The model is based on actual measured performance of the 

system and typical performance of systems without faults.  In the work, a case study is presented 

which evaluated the economic impacts of different faults that were artificially applied to an 

existing air conditioner under different operating conditions. 

Kim and Braun studied the impacts of refrigerant charge on the performance of several split-

type heat pumps and air conditioners [23]. Laboratory measurements were used to estimate the 

seasonal performance impacts of improper refrigerant charge levels and associated operating cost 

impacts. 

Cheung and Braun used experimental data collected from several previous studies to develop 

a component-level fault impact inverse model for vapor compression air conditioning 
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equipment [48, 49]. The model can simulate the performance impacts of combinations of 

improper refrigerant charge level, condenser fouling, evaporator fouling, compressor valve 

leakage, liquid line restriction, and presence of non-condensable gas in the refrigerant circuit at 

different operating conditions. The resulting model was validated using experimental data 

collected from several RTUs and split-type air conditioners. 

Yuill and Braun developed a methodology to evaluate the performance of FDD tools for 

HVAC equipment [10]. In this study, different criteria measuring the performance of FDD 

systems, e.g. fault detection rate, false alarm rate, misdiagnosis rate, etc. were used to evaluate 

several generic FDD tools that can be applied to systems in the field. Yuill and Braun used data 

collected from several RTUs and split-type air conditioners collected in laboratory psychrometric 

chambers under different fault conditions. Rather than assess the performance of FDD systems 

based on the severity of a different fault, e.g. the percent deviation in c harge level, Yuill and 

Braun evaluated FDD performance based on how much an impact a fault has on cooling capacity 

or COP. The authors reason that this leads to a fairer assessment of different FDD tools since 

faults that have negligible or small impacts can be ignored by some FDD tools. 

3.3 Simplified Models for Normal Equipment Performance 

Prior to estimating the impacts that certain faults may have on system performance, the 

baseline performance of the system must be determined. To estimate the base-line performance, 

semi-empirical models of fixed-speed and variable-speed RTUs are implemented and tested. 

The models are based on measurements of the outdoor temperature and condition of the air 

entering the evaporator coil. For variable-speed equipment, an additional correlation accounting 

for changes in the compressor frequency is used to capture changes in equipment performance. 
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3.3.1 Semi-Empirical Models for Fixed-Speed RTU Performance 

One commonly used semi-empirical model for direct expansion air conditioning equipment 

approximates the total cooling capacity, the total power consumption, and the sensible heat ratio 

by adjusting rated system performance to account for differences in ambient conditions and air 

flow rate.  In this model, the total cooling capacity of a system is determined using 

, ,cool normal T cool ratedV
Q f f Q   (3.1) 

where 
,cool ratedQ is the total cooling capacity at some rating condition, 

Tf is a correction factor 

accounting for differences in return air and outdoor air temperatures, and 
V

f is a correction 

factor accounting for differences in the volumetric air flow rate through the evaporator coil.  The 

ambient correction factor, Tf , is often given a biquadratic polynomial 

2

0 1 2 3 4 5T OD ID OD OD ID IDf a T a B T a T Ba a a B          (3.2) 

where ODT is the outdoor dry bulb temperature (entering the condenser coil), IDB is the return air 

wet bulb temperature (entering the evaporator coil), and 0 5a  are empirical parameters 

determined using regression. The evaporator volumetric air flow rate correction factor, 
V

f , is 

often a linear function given by 

0 1
actual

V

rated

f
V

bb
V

 
  





 (3.3) 

where actualV is the actual volumetric air flow rate, ratedV is the evaporator air flow rate of the 

system at the rating condition, and 
0,1b are empirical parameters determined using regression for 

a particular system. 

To accurately predict the moisture content of the air leaving the evaporator coil, the model 

must properly predict the fraction of total cooling rate that results in sensible heat transfer and 
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latent heat transfer over the typical range of equipment operating conditions. It is widely held 

that the total cooling capacity delivered by a DX coil operating with moisture removal is a 

function of the ambient dry-bulb temperature and wet-bulb of the air entering the evaporator.  

For these cases, often termed wet coil conditions, Equation (3.1) estimates the total cooling 

capacity of the system with sufficient accuracy to estimate the leaving air enthalpy, but does 

provide separate estimates of leaving air temperature and humidity. In addition, estimates using 

Equation (3.1) need to be adjusted when no moisture is removed though the cooling coil process. 

One commonly used approach for addressing these aspects of cooling coil performance is 

described by the apparatus dew-point/bypass factor (ADP/DP) methodology that has been 

implemented in several equipment performance and energy calculation programs [50, 51]. This 

approach is like the NTU-effectiveness calculation procedure used for sensible heat transfer 

calculations in air-to-refrigerant heat exchanger analysis where 0min maxC C  [52]. In this 

analysis, the bypass factor is defined as 

 exp1 NTUBF    (3.4) 

and 

n

actual

rated rated

VNTU

NTU V

 
  
 

(3.5) 

where n is an empirical parameter related to the design of the heat exchanger. 

Using the predicted total cooling capacity from Equation (3.1) and the evaporator air mass 

flow rate, the enthalpy of air leaving the cooling coil can be determined 

cool
SA ID

a

h
Q

m
h  (3.6) 
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where 
IDh is the enthalpy of air entering the evaporator and 

am can be determined using the 

volumetric air flow rate and density calculated using the known dry-bulb and wet-bulb 

temperature of the entering air. The apparatus dew point condition can now be determined using 

the bypass factor, 

.
1

ID SA
ADP IDh

h h
h

BF


 


(3.7) 

The enthalpy of the air at the apparatus dew point condition can be used to calculate the humidity 

ratio (the corresponding saturation conditions). With these known, the sensible heat ratio of the 

cooling process can be determined 

 ,ID ADP ADP

ID ADP

T h
S

h h
HR

 




h
(3.8) 

where h is a function that returns humid air enthalpy using psychrometric property calculations. 

The approach that has been presented to this point can be used to calculate the total cooling 

capacity delivered by DX cooling equipment, as well as the sensible/latent performance of the 

coil at off-design conditions. For wet coil conditions, this procedure is sufficient by itself in 

predicting the SHR maintained by the cooing coil. For dry coil conditions where there is no 

moisture removal, a widely used iterative procedure can be used that adjusts a “virtual entering 

wet-bulb” used in Equation (3.1) to modify the predicted outputs so that 1SHR  . 

In a similar manner to modeling the total cooling capacity of the system, the total power 

consumption of the system can be estimated using 

, ,total normal T total ratedV
W g g W   (3.9) 

where ,total ratedW is the total power consumption of the system at the rating condition, Tg is a 

correction factor accounting for differences in ambient operating conditions, and 
V

g is a 
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correction factor accounting for the effect of evaporator volumetric air flow rate. The ambient 

correction factor is given by 

2 2

0 1 2 3 4 5T OD ID OD OD ID IDT c B Tg T Bc c c c c B         (3.10) 

where 
ODT is the outdoor dry bulb temperature, 

IDB is the return air wet bulb temperature, and 

0 5c 
are empirical parameters determined using regression.  The air flow rate correction factor is 

given by 

0 1
actual

V

rated

g
V

d
V

d
 
 





 (3.11) 

where 
actualV is the actual volumetric air flow rate, 

ratedV is the evaporator air flow rate of the 

system at the rating condition, and 
0,1d are empirical parameters determined using regression for 

a particular system. The coefficient of performance of the system at different operating 

conditions can be calculated using Equations (3.1) and (3.9), 

,

,

.
cool normal

normal

total normal

Q

W
COP  (3.12) 

Using the methodology to determine normal equipment performance at different operating 

conditions outlined in Equations (3.1) through (3.12), the empirical parameters used in the 

different models were tuned using experimental data collected from a fixed-speed RTU with 

different types of condenser coils and expansion devices. 

3.3.2 Semi-Empirical Models for Variable-Speed RTU Performance 

Equations (3.1) through (3.12) will not estimate the performance of variable-speed DX 

systems accurately when operating at reduced load with reduced compressor speeds, since the 

model assumes compressor speed is fixed. Nyika et al. developed a methodology for modeling 
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the performance of variable-speed heat pumps in both cooling and heating modes of operation at 

different operating conditions [53]. Additionally, Cheung and Braun developed a methodology 

for mapping the performance of variable-speed heat pumps in heating operation with defrost [54]. 

A more detailed, component-based gray-box model of a ductless multi-split heat pump system 

was developed by Cheung and Braun [55]. 

One adaptation to the model described in Section 3.3.1 has been proposed by Cai and Braun 

to account for different compressor speeds in the total cooling capacity prediction using the part-

load ratio of the system [56]. Part-load ratio is not straightforward to measure in an online 

application – it requires a model for the full load total capacity as well as a measurement of the 

actual capacity of the system. This requirement can be circumvented by adapting the model 

developed by Cai and Braun to use the compressor speed, 

, ,cool normal T cool ratedV
Q j j j Q    (3.13) 

where ,cool ratedQ is the total cooling capacity at some rating condition, Tj is a correction factor 

accounting for differences in return air and outdoor air temperatures, 
V
j is a correction factor 

accounting for differences in the volumetric air flow rate through the evaporator coil, and j is a 

correction factor for differences in compressor speed . The ambient correction factor, Tj , is 

given a biquadratic polynomial 

2

0 1 2 3 4 5T OD ID OD OD ID IDj e T e B T e T Be e e B          (3.14) 

where ODT is the outdoor dry bulb temperature (entering the condenser coil), IDB is the return air 

wet bulb temperature (entering the evaporator coil), and 0 5e  are empirical parameters 

determined using regression. The evaporator volumetric air flow rate correction factor, 
V
j , is 

given by 
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2

2

0 1
actual actual

V

rated rated

f
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V V
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(3.15) 

where 
actualV is the actual volumetric air flow rate, 

ratedV is the evaporator air flow rate of the 

system at the rating condition, and 
0 2m 

are empirical parameters determined using regression 

for a particular system.  The compressor speed correction factor is given by 

2 3

0 1 2 3nj n n n      (3.16) 

where  is the compressor speed and 
0 3n 

are empirical parameters determined using 

regression. 

In a similar manner to modeling the total cooling capacity of the system, the total power 

consumption of the system can be estimated using 

, ,total normal T total ratedV
W k k k W    (3.17) 

where ,total ratedW is the total power consumption of the system at the rating condition, Tk is a 

correction factor accounting for differences in ambient operating conditions, 
V

k

k

is a correction 

factor accounting for the effect of evaporator volumetric air flow rate, and is a correction 

factor for differences in compressor speed.  The ambient correction factor is given by 

2 2

0 1 2 3 4 5T OD ID OD OD ID IDT l B Tk T Bl l l l l B        
(3.18) 

where ODT is the outdoor dry bulb temperature, IDB is the return air wet bulb temperature, and 

0 5l  are empirical parameters determined using regression. The air flow rate correction factor is 

given by 

2

2

0 1
actual actual
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rated rated
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V V
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(3.19) 
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where 
actualV is the actual volumetric air flow rate, 

ratedV is the evaporator air flow rate of the 

system at the rating condition, and 
0,1q are empirical parameters determined using regression for 

a particular system. The compressor speed correction factor is given by 

2 3

0 1 2 3rk r r r      (3.20) 

where  is the compressor speed and 
0 3r 

are empirical parameters determined using 

regression. To estimate the sensible heat ratio of the air conditioner, the bypass factor method 

described previously in Equations (3.2) through (3.8) can be used. 

The methodology outlined in Equations (3.13) through (3.20) to determine normal equipment 

performance at different operating conditions, was implemented using empirical parameters 

tuned using experimental data collected from a variable-speed RTU. A variable-speed RTU with 

5-ton rated capacity was installed in a pair of psychrometric chambers and instrumented with 

laboratory grade sensors using recommended standards for unitary equipment testing [41-43, 57-

60]. 

Steady-state testing at constant indoor and outdoor temperatures and humidity was conducted 

over a range of conditions representative of typical equipment operation. These conditions, 

including indoor room temperature, indoor room relative humidity, and outdoor room 

temperature are shown in Table 3.1. The indoor fan speed and discharge air temperature 

setpoints were also maintained during each test.  The operating points of the RTU are also shown 

in Table 3.1. The psychrometric chambers and RTU were operated until steady-state was 

reached before transitioning to subsequent tests. Steady-state was determined using a steady-

state filter which measured temporal changes in total cooling capacity, sensible cooling capacity, 

and power consumption of the RTU. When negligible changes in any of the variables occurred 
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for a period of two minutes, the current test was concluded and the subsequent tests at the next 

operating conditions was started. 

Table 3.1. Experimental test conditions for variable-speed RTU normal performance model 

development and evaluation. Experimental variables were indoor dry bulb temperature, indoor 

relative humidity, outdoor dry bulb temperature, indoor fan speed, and discharge air setpoint. 

ID
T [°F] 

ID
 [%] 

OD
T [°F] 

IDF
 [%] 

,SA SP
T [°F] Dry/Wet 

Coil 

80 25 95 100 55 Dry 

80 25 95 80 55 Dry 

80 25 95 50 55 Dry 

80 25 95 30 55 Dry 

80 45 95 100 55 Wet 

80 45 95 80 55 Wet 

80 45 95 50 55 Wet 

80 45 95 30 55 Wet 

80 55 95 100 55 Wet 

80 55 95 80 55 Wet 

80 55 95 50 55 Wet 

80 55 95 30 55 Wet 

80 25 86 100 55 Dry 

80 25 86 80 55 Dry 

80 25 86 50 55 Dry 

80 25 86 30 55 Dry 

80 45 86 100 55 Wet 

80 45 86 80 55 Wet 

80 45 86 50 55 Wet 

80 45 86 30 55 Wet 

80 55 86 100 55 Wet 

80 55 86 80 55 Wet 

80 55 86 50 55 Wet 

80 55 86 30 55 Wet 

The empirical parameters of Equations (3.13) and (3.17) were fit using ordinary least squares 

regression with the experimental data collected. Because the semi-empirical models defined by 

Equations (3.13) and (3.17) use an iterative algorithm to adjust the evaporator air entering wet 

bulb to constrain the model output to 1SHR  , only wet-coil data was used to determine the 

empirical coefficients. Additionally, it was not possible to directly measure the variable-speed 

compressor speed using available instrumentation. During testing, it was noticed that the 
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compressor speed and outdoor fan speed was coincidently controlled – i.e. if the compressor 

speed was 50%, the condenser fan was 50%. Since it was possible to measure the outdoor fan 

power, the compressor speed was estimated based on fan affinity relationships 

3

,

,

odf

comp odf odf rated

odf rated

W

W


 
     

 

(3.21) 

where 
comp is the compressor loading percent, 

odf is the outdoor fan speed, 
,odf rated is the 

outdoor fan speed at the rating condition, 
odfW is the outdoor fan power consumption, and 

,odf ratedW is the power consumption of the outdoor fan at the rating condition. To determine the 

rated values, the system was operated at a condition resulting in full load – which resulted in the 

fan operating at 100% speed with the maximum power. 

The predicted total cooling capacity of the variable-speed RTU using Equation (3.13) is 

shown with the measured total cooling capacity in Figure 3.1. The semi-empirical model for 

total cooling capacity agreed to within 5% of the measured total cooling capacity for all test 

conditions. Additionally, no clear correlation between the prediction error and the sensible heat 

ratio was observed. This provides some evidence that using only wet coil data to tune the 

empirical parameters of the model did not result in poor performance when used to predict dry-

coil operation. It should also be noted that the part load ratio of the equipment ranged from 

100% down to approximately 50%. This indicates the model can predict total cooling capacity 

without significant errors over the range of continuous system operation. 
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Figure 3.1. Prediction accuracy of semi-empirical model for total cooling capacity of a variable-
speed RTU operating without faults over a range of ambient conditions and loads. 

The total system power consumption prediction of the semi-empirical model given by 

Equation (3.17) is compared with experimentally measured power consumption in Figure 3.2. 

The results show that the semi-empirical model can be used to predict power consumption of the 

variable-speed RTU with small deviations over the range of operating conditions tested. No 

dependence between the prediction error and the sensible heat ratio was observed for the 

experimental test data collected.  This includes test cases that had no moisture removal – dry coil 

cases.  For dry coil cases, the iterative algorithm based on bypass factor analysis is used to adjust 

the entering evaporator wet bulb that restricts 1SHR  . This is noteworthy since dry coil cases 

were not included in the data set used to fit the empirical parameters using least squares 

regression. 



 

 

 

            
          

             

        

           

                  

   

     

      

; 1.0 
±5% ; 

; 

; 
; 

; 

5.0 ; 
; 

/ ; ; 

; 
; 

; 
.; 

; ; 

s ; 
; /; 

0.9 ; 
; ; 

4.5 ; 
/ 

; 

=- ; 
; -; ; 

; .....!..... ,.._ ; 
; 

; 
; 

Q) ; 
; / 0 

3 ; 
; / :;::::: 

4.0 ; 
; 

; 
; co 

0 ; 
; 

; 
, 0.8 ~ a.. ; 

; ; 
, 

, , , -co ; , co 
; 

; 
; 
, 

Q) - 3.5 ; 
; / I 0 

; 
; 

; 
, 

I- ; 
; 

; 
; 

Q) 
"O ; 

, , , 0.7 ::ci 
Q) ; 

; , , 
; ; 'cii ,.._ 

3.0 ; ,. ; 
::::, ; 

; 
; 

; C 
(/) ; 

; , ; Q) co , ; , , Cf) ; , 
Q) 

; 
; 

; 
; 

~ 2.5 / 0.6 
.;; 

, , 
, , 

, , , 
2.0 ; / 

; 
/ 0.5 
2.0 2.5 3.0 3.5 4.0 4.5 5.0 

Predicted Total Power [kW] 

67 

Figure 3.2. Prediction accuracy of semi-empirical model for total power consumption of a 
variable-speed RTU operating without faults over a range of ambient conditions and loads. 

The coefficient of performance of each experimental test case was predicted using predicted 

capacity and power. These predictions, along with the COP derived from measured total 

cooling capacity and total power consumption, are compared in Figure 3.3. It is observed from 

the results that the prediction errors for all the test cases fall within 5% of the measured COP . 

From an FDD perspective, smaller modeling errors lead to more sensitive detection rates.  These 

results show that deviations in COP greater than 5% could be detected with reasonable expected 

probability provided the actual COP can be accurately measured or estimated. 
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Figure 3.3. Prediction accuracy of semi-empirical model for coefficient of performance of a 

variable-speed RTU operating without faults over a range of ambient conditions and loads. 

Using the total capacity prediction, the sensible capacity was determined using 

Equations (3.6) and (3.8). This predicted sensible capacity is compared with the measured 

sensible capacity in Figure 3.4. These results show that the predicted sensible capacity of the 

variable-speed RTU falls within 5% of the measured sensible capacity for all test cases. 
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Figure 3.4. Prediction accuracy of semi-empirical model for sensible cooling capacity of a 
variable-speed RTU operating without faults over a range of ambient conditions and loads. 

The predicted sensible heat ratio is compared with the measured equipment sensible heat 

ratio in Figure 3.5 for all test cases. The prediction errors for all experimental tests cases are 

within 5%.  It should be noted that a relatively large range of equipment sensible heat ratios were 

tested – from approximately 60% to 100%. The results show that the iterative algorithm based 

on bypass factor can be applied to the variable-speed RTU with good results. 
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Figure 3.5. Prediction accuracy of semi-empirical model for sensible heat ratio of a variable-
speed RTU operating without faults over a range of ambient conditions and loads. 

Semi-empirical models tuned using linear regression can suffer from overfitting problems 

when careful model evaluation is not performed. To evaluate the total capacity and total power 

consumption predictions, the model was applied to a generated data set designed to test the 

interpolation and extrapolation performance. Holding the entering evaporator air wet bulb and 

compressor speed constant at 64 °F and 100% respectively, the predicted total capacity and 

predicted total power consumption were calculated over range of outdoor air temperatures and 

evaporator air flow rates, shown in Figure 3.6. The results generated by the model are smooth 

without any unrealistic inflection points or oscillatory behavior.  From a physical perspective, the 

total cooling capacity predictions show expected trends. As outdoor air temperature and 

evaporator air flow rate increase, cooling capacity decreases and power consumption increases. 
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19 

Figure 3.6. With return air wet bulb (63 °F) and compressor speed (100%) fixed, the predicted 
total capacity and predicted total power consumption are shown for varying evaporator air flow 

rates and outdoor air dry bulb temperatures. 

For the same conditions, the predicted COP and SHR were generated by the semi-empirical 

normal performance model, shown in Figure 3.7.  These results show that COP can be optimized 

by adjusted indoor air flow rate which also depends on the ambient condition. The SHR 

response is relatively linear with both evaporator air flow rate and outdoor air temperature. As 

air flow rate increases, SHR is shown to increase.  This is an expected result since the evaporator 

saturation temperature tends to increase at higher air flow rates. 
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Figure 3.7. With return air wet bulb (63 °F) and compressor speed (100%) fixed, the predicted 
COP and predicted SHR are shown for varying evaporator air flow rates and outdoor air dry bulb 

temperatures. 

In a similar manner, the semi-empirical model was used to predict the total cooling capacity 

and total power consumption over a range of compressor speeds and evaporator air entering wet 

bulbs for constant outdoor air temperature (95 °F) and air flow rate (100% of rated air flow).  

The responses shown in Figure 3.11 show reasonable results – capacity and power consumption 

increase with compressor speed and entering wet bulb. It should be noted that total power 

consumption has relatively weak dependence on entering wet bulb over the range of test cases. 
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Figure 3.8. With outdoor air temperature (95 °F) and evaporator air flow rate (100%) fixed, the 
predicted total capacity and predicted total power consumption are shown for varying entering 

evaporator air wet bulbs and compressor speeds. 

The semi-empirical model outputs for the COP and SHR of the system have been plotted in 

Figure 3.9 for varying compressor speeds and evaporator entering air wet bulbs. The results 

show that COP decreases with increasing compressor speed. The SHR responses show the 

model limits the maximum SHR to 1. The SHR output does show some unexpected behavior 

for increasing compressor speeds: the SHR is not monotonically decreasing. As compressor 

speed decreases, the discharge air temperature should increase and generally result in higher SHR. 

This intuition is not perfectly captured by the model. 
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Figure 3.9. With outdoor air temperature (95 °F) and evaporator air flow rate (100%) fixed, the 
predicted COP and predicted SHR are shown for varying entering evaporator air wet bulbs and 

compressor speeds. 

A semi-empirical model has been applied to a variable-speed RTU and evaluated using 

experimental data over a range of typical equipment operating conditions. The model requires 

measurements of the entering evaporator air wet bulb, outdoor air dry bulb temperature, 

evaporator air flow rate, and compressor speed. The model was able to predict the total cooling 

capacity, the total power consumption, the COP , the sensible cooling capacity, and the SHR

with 5% of the experimentally measured values for all test cases.  Because the compressor speed 

could not be measured directly, it was approximated using measurements of the condenser fan 

speed based on the fan affinity laws. This was possible since the condenser fan speed and the 

compressor speed were controlled at the same percentage by the system controller. It can be 

concluded from the results that the semi-empirical model used can be used to estimate normal 

equipment performance by a fault detection and diagnostics algorithm. Additionally, the model 

is useful for estimating the impact of faults on different equipment performance. 
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3.4 Estimating Actual Equipment Performance Using Virtual Sensors 

The actual cooling capacity can be estimated using virtual cooling capacity sensors that have 

been previously developed by Li and Braun [6]. The virtual cooling capacity sensor is based on 

a refrigerant-side energy balance of the evaporator coil where the mass flow rate of refrigerant 

and the inlet and outlet refrigerant enthalpy are known. Equation (3.22) expresses the virtual 

cooling capacity sensor, 
,cool actualQ , in terms of a virtual refrigerant mass flow rate estimate, 

,r virtualm , 

 , ,cool actual r virtual ero eriQ m h h   (3.22) 

where eroh is the enthalpy of the refrigerant leaving the evaporator and 
erih is the enthalpy of 

refrigerant entering the evaporator. The enthalpy of the entering and leaving refrigerant can be 

inferred using thermodynamic property relations and refrigerant-side temperature or pressure 

measurements that are present in the AFDD system instrumentation. Typically, the expansion 

process is assumed to be isenthalpic and refrigerant enthalpy entering the evaporator is equal to 

the enthalpy of refrigerant in the liquid line. 

The coefficient of performance (COP) of a system can also be estimated using virtual sensor 

outputs. Using the virtual cooling capacity sensor given by Equation (3.22), the virtual 

coefficient of performance, actualCOP , can be estimated using 

,

,

cool actual

actual

elec virtualW
C

Q
OP  (3.23) 

where ,elec virtualW is the output of a virtual power sensor tuned for the system based on compressor 

and fan performance data. 
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Another important performance criteria that can be affected by faults is the sensible heat ratio, 

SHR. When the evaporator entering and leaving air temperature and humidity are measured, the 

actual sensible heat ratio can be estimated using 

 ,p a ra sa

actual

ra sa

c
S R

T T

h h
H 

 


(3.24) 

where 
raT and 

rah is the return air temperature and enthalpy, 
saT and 

sah is the supply air 

temperature and enthalpy, and 
,p ac is the isobaric specific heat of air.  The enthalpy of humid air 

can be estimated using moist air property relations [61].  In applications that do not have relative 

humidity measurements, it is also possible to estimate the actual SHR using 

 , , ,

,

a p a a virtual ra sa idf virtual

actual

cool actual

S
c V T T W

H
Q

R
     

 (3.25) 

where a is the density of air, 
,a virtualV is evaporator air flow rate determined using a virtual 

sensor, and ,idf virtualW is an estimate of the indoor fan power. In either Equation (3.24) or (3.25), 

the result should be equivalent provided the sensor readings are not significantly biased. The 

importance of the indoor fan power in the numerator of Equation (3.25) must be stressed when 

the supply air sensors are located after the indoor fan since refrigerant-side capacity 

measurements are unable to account for the net capacity delivered by the system. It could also 

be argued that Equation (3.24) is preferred since measurements of flow are not needed. With 

that said, relative humidity sensors have been shown to lose calibration over time and fail to 

meet stated accuracy [62]. 
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3.5 Estimating Overall Performance Impacts of Faults 

In order estimate the impact of a fault on system performance it is convenient to compare the 

actual performance of a system with the performance of a normal system at the same operating 

conditions. One method that can be used for this comparison is to simply form the ratio between 

actual equipment performance to normal equipment performance at the same operating condition. 

These ratios, which may be called fault impact ratios ( FIR ), take the form 

Actual Performance

Normal Performance
FIR  (3.26) 

where the numerator is some direct or indirect measurement of equipment operation and the 

denominator is the output of a model used to estimate normal system behavior.  In other words, a 

FIR is an indicator of how much performance has changed relative to the performance that 

would be expected if the system were in perfect working condition. Several indicators of 

performance can be directly represented by these fault impact ratios, including cooling capacity, 

cycle efficiency, sensible capacity. 

3.5.1 Estimating Total Cooling Capacity Impact of Faults 

The impact different faults have on total cooling capacity of a system is important since it 

ultimately affects the rate of cooling that is delivered to a conditioned space. The magnitude or 

significance of the cooling capacity impact of faults may be characterized using a fault impact 

ratio, coolFIR , 

,

,

cool actual

cool

cool normalQ
F

Q
IR  (3.27) 

where ,cool actualQ is the actual cooling capacity delivered by the system and ,cool normalQ is the 

normal cooling capacity of the system without faults at the same operating condition. When 



 

 

             

                

              

                 

     

     

           

         

        

               

            

 

  

             

             

          

            

 

             

             

          

 

78 

faults are present that degrade cooling capacity, such as low refrigerant charge or a fouled 

evaporator coil, 
coolFIR becomes less than 1. In some cases, a fault may have a positive effect 

on system cooling capacity, e.g. an overcharged system with a fixed orifice. When this occurs, 

coolFIR becomes greater than 1. In the trivial case when the system is normal or has faults that 

are inconsequential with respect to cooling capacity, 1coolFIR  . 

To illustrate how different types of faults affect the cooling performance of DX equipment, a 

component-based model of DX units that predicts fault impacts was used to simulate fault 

impacts under different ambient conditions [48, 49]. Two fixed-speed RTUs were simulated, 

each having identical compressors, evaporator coils, and condenser coils. The only difference 

between systems was the type of expansion valve used: one system was modeled with a fixed 

orifice (FXO), the other was modeled with a thermostatic expansion valve (TXV). Three faults 

were considered to illustrate the impacts on performance: improper refrigerant charge, condenser 

fouling, and evaporator fouling. 

The impacts on total cooling capacity caused by improper refrigerant charge level faults are 

shown in Figure 3.10. From these plots, operating DX equipment at improper refrigerant charge 

levels can lead to significant reductions in total cooling capacity, even with relatively moderate 

losses in charge. The simulated results also show that some performance benefits are gained at 

high charge levels.  While systems operating at higher refrigerant charge levels may operate with 

greater total cooling capacity – degradations in expected equipment life may occur due to liquid 

slugging at the suction-side of the compressor due to lower evaporator outlet quality. 

Additionally, increases in system power consumption can lead to decreases in COP for 

overcharged cases. 
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Figure 3.10. Comparison of simulated improper refrigerant charge level fault impacts for total 

cooling capacity on systems with different expansion devices. 

A comparison of the impacts of total cooling capacity on the two systems caused by 

condenser fouling of different magnitudes is shown in Figure 3.11. The fault impact simulation 

shows that the system using a TXV is impacted significantly less than the system with the FXO. 

In both cases, relatively large reductions are required before degradations in cooling capacity 

exceed 10%. This is much different than the results that were shown for improper refrigerant 

charge level faults. 
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Figure 3.11. Comparison of simulated condenser fouling fault impacts on total cooling capacity 

for systems with different expansion devices. 

The impacts of evaporator fouling on total cooling capacity at different ambient temperatures 

are shown in Figure 3.12. These comparisons show that evaporator fouling faults affect systems 

with FXOs more than systems with TXVs. However, in comparison to condenser fouling faults, 

reductions in evaporator air flow lead to capacity impacts that are much less dependent on 

ambient temperature. 
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Figure 3.12. Comparison of simulated evaporator fouling fault impacts on total cooling capacity 

for systems with different expansion devices. 

3.5.2 Estimating Cycle Efficiency Impacts of Faults 

While the cooling capacity of a system determines the extent to which it can cool a building, 

the efficiency of the system determines the energy cost to provide this cooling. Faults often 

impact the cooling efficiency of a DX system since they may lead to relative decreases in cooling 

capacity and relative increases in electrical input power. The relative magnitude of this impact 

on the cooling cycle efficiency may be characterized using the efficiency impact ratio, COPFIR , 

actual
COP

normal

F
COP

COP
IR  (3.28) 

where actualCOP is the actual coefficient of performance of the system and normalCOP is the 

normal coefficient of performance without faults. The COP of a DX system is defined as the 

ratio of cooling capacity delivered the total electrical input requirement to operate the cycle, 
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cool

total

Q
C

W
OP  (3.29) 

Thus, to evaluate the COP of the system, estimates of the cooling capacity and power 

consumption of the system are required. 

Using Equation (3.28), the COP impacts of refrigerant charge faults were compared between 

systems with FXOs and TXVs. The results shown in Figure 3.13 illustrate the importance of 

maintaining proper refrigerant charge levels – small changes in charge can lead to large 

decreases in COP . From the results, systems with FXOs that are overcharged may operate at 

higher COP than normal.  This is due in part to the increase in evaporator temperature as well as 

the refrigerant entering the compressor at lower quality and specific volume which results in less 

compression power. However, liquid slugging may cause premature failure for some types of 

positive displacement compressors – a costly problem and should generally be avoided. 
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Figure 3.13. Comparison of simulated improper refrigerant charge level fault impacts on 

for systems with different expansion devices. 

COP

The impacts on system efficiency caused by condenser fouling have been simulated to 

compare systems with FXOs and TXVs. From the results shown in Figure 3.14, it is observed 

that systems with FXOs tend to be impacted more severely by condenser fouling tha n similar 

systems with TXVs. It should also be noted that compared with the impacts on total capacity, 

condenser fouling impacts system COP much more significantly. This is primarily due to the 

increases in high-side operating pressure which causes significant increases in compressor power 

consumption. It can also be observed that ambient temperature only moderately impacts the 

relative impact on system COP caused by condenser fouling. 
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Figure 3.14. Comparison of simulated condenser fouling fault impacts on COP for systems with 

different expansion devices. 

When evaporator fouling is present in DX equipment, the air flow rate across the cooling coil 

is reduced. These faults impact the efficiency of the cooling cycle since reductions in cooling 

capacity and slight increases in compressor power result. A comparison of simulated evaporator 

fouling impacts is shown in Figure 3.15. The relative impacts on COP for systems with FXOs 

and TXVs are approximately the same, however systems with TXVs are more sensitive to the 

ambient temperature.  The reason for this is due to reduced refrigerant mass flow rates controlled 

by the TXV to maintain suction superheat. 
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Figure 3.15.  Comparison of simulated evaporator fouling fault impacts on COP for systems with 

different expansion devices. 

3.5.3 Estimating Sensible Heat Ratio Impacts of Faults 

Some common faults not only impact the total cooling capacity of a system, but also impact 

the ratio of sensible to latent cooling capacity. Examples of these faults include undercharged 

faults and evaporator fouling which tend to decrease the evaporator saturation temperature. 

When this occurs, more moisture is removed by the evaporator coil – increasing latent capacity. 

In most fixed-speed or multistage RTU applications, the system is controlled solely based on 

the sensible condition of the zone. Thus, increases in latent capacity due to faults at the expense 

of sensible capacity results in increased run-time. To quantify this impact, the sensible capacity 

impact ratio can be used, SHRFIR , 

actual
SHR

normal

F
SHR

FIR
IR  (3.30) 
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where 
actualSHR is the actual sensible heat ratio of the system and 

normalSHR is the normal 

sensible heat ratio of the system operating without faults. 

To estimate actual sensible heat ratio, the sensible capacity, 
,cool sQ , and total capacity, 

,cool tQ , 

of the air conditioner must be measured 

,

,

.
cool s

cool t

S
Q

HR
Q

 (3.31) 

When a system operates with faults, it is impossible to measure the normal SHR directly and 

instead a reference model is required. The methodologies developed previously in Section 3.3 

can be used to estimate the normal SHR . The combination of using virtual sensors with a 

commonly used model to reference normal operation enables the estimation of a fault’s impacts 

on SHR . 

To illustrate the range of impact on SHR caused by different types of faults, the component-

based physical model was used to simulate improper refrigerant charge levels, condenser fouling, 

and evaporator fouling for RTUs with FXOs and TXVs.  The impacts on SHR caused by low and 

high charge levels for the two types of systems are shown in Figure 3.16 at different ambient 

temperatures. When systems are undercharged with refrigerant, the low-side operating pressure 

tends to decrease significantly but the exit superheat can increase.  When this occurs, the cooling 

coil temperature in the section of the coil with two-phase refrigerant decreases due to lower 

evaporation temperatures. Lower coil temperatures result in more moisture removal. However, 

sensible heat transfer is also reduced because less of the coil operates with two-phase refrigerant 

for lower refrigerant charge levels. These effects can be seen in the results generated in Figure 

3.16. Interesting behavior occurs for moderately undercharged TXV systems: SHR tends to 

increase. This may be due to the increases in evaporator inlet quality that occurs with reduced 
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charge for TXV systems having constant superheat. In this range, the TXV is controlling the 

refrigerant flow to maintain evaporator superheat and it is likely that there is a reduction in the 

two-phase heat transfer coefficient that leads to a higher surface temperature and less moisture 

removal. At sufficiently low refrigerant charge, the TXV becomes fully open and the 

evaporating pressure and temperature drop leading to greater moisture removal in the two-phase 

section. 

When systems are overcharged, the evaporator pressure and temperature tend to increase.  

For the FXO system, this leads to increases in SHR. For the TXV, the refrigerant flow rate is 

likely increasing with refrigerant charge in this range leading to a lower coil surface temperature 

and lower SHR. 

Figure 3.16. Comparison of simulated improper refrigerant charge level fault impacts on 

for systems with different expansion devices. 
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When condenser coils become fouled, significant increases in high-side pressure result in 

moderate increases in evaporator pressures. In addition, increases in high-side pressure tend to 

increase the quality of refrigerant entering the evaporator coil. These two effects combine to 

increase the coil temperature in the two-phase section and increase the suction line superheat in 

FXO systems. Simulating these faults, condenser fouling tends to increase the SHR in DX 

systems, shown in Figure 3.17. Smaller impacts on SHR are observed in TXV systems – this is 

due the expansion valve maintaining suction superheat. 

Figure 3.17. Comparison of simulated condenser fouling fault impacts on SHR for systems with 

different expansion devices. 

The impacts of evaporator fouling on the SHR performance of the RTUs studied are shown 

in Figure 3.18. With increasing evaporator coil fouling, air flow through the evaporator coil is 
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decreased. This causes the evaporator pressure and temperature to decrease. Lower coil 

temperatures tend to increase moisture removal. 

Figure 3.18.  Comparison of simulated evaporator fouling fault impacts on SHR for systems with 
different expansion devices. 

3.5.4 Estimating Run-time Impacts of Faults 

With reduced cooling capacity, an air-conditioning system is required to operate longer to 

satisfy a given load. This increase in run-time has at least two effects: 1.) increased energy 

consumption and 2.) decreased equipment life (under the assumption that a typical air 

conditioner has a finite life). Many fixed-speed and multistage air conditioners are typically 

operated by a thermostat controlling the dry-bulb temperature of the zone to some set point. Thus, 

for a given sensible cooling load and sensible capacity, the run-time of the air conditioning 

equipment, runt can be estimated using 
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(3.32) 

where 
,load sQ is the sensible cooling load in the conditioned space. Li and Braun have derived a 

run-time fault impact ratio, 
runFIR , 
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(3.33) 

where 
loadFIR is the impact a fault has on the load in the zone [14]. Equation (3.33) shows that faults 

cause an increase in equipment run-time when the cooling load increases or when the sensible 

heat ratio and cooling capacity decrease. 

The cooling load impact ratio, loadFIR , presents a possible problem for estimating the run-

time impact of different faults since it is not feasible to measure the zone load using only 

equipment measurements. Li and Braun suggest a solution to this problem by considering only 

cases when 1loadFIR  [14]. In other words, faults that affect equipment performance, such as 

cooling capacity, efficiency, and sensible heat ratio, should not significantly affect the load on 

the space.  When this is the case, Equation (3.33) can be simplified to 

1
run

SHR cool

F
FIR FIR

IR 


(3.34) 

While there are some faults that will affect the load faced by the equipment, e.g. stuck outdoor-

air dampers, these types of faults are not considered in this work but can be handled with some 

modifications [31]. 

Equation (3.34) presents a method to estimate the additional run-time required for a system 

due to faults. However, it should be noted this model has been derived considering fixed-speed 

and multispeed DX systems which cycle on and off in response to loads. Variable-speed 
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equipment, on the other hand, do not cycle at most loads but modulate system capacity to closely 

match the cooling load. Application of Equation (3.34) to variable-speed systems may not yield 

informative results since rather than cycling between on and off, the system may increase 

compressor speed to maintain load.  When this occurs, the run-time of the system will not change. 

Run-time impacts caused by improper refrigerant charge levels have been simulated for 

RTUs with FXOs and TXVs and results are shown in Figure 3.19. From the simulation, it is 

observed that significant increases in required run-times may be caused by RTUs with low 

charge levels. This is due to the significant reductions in sensible cooling capacity. For 

overcharged systems, much less impact on run-time is observed. 

Figure 3.19. Comparison of simulated improper refrigerant charge level fault impacts on run-

time requirement to meet equivalent loads for systems with different expansion devices. 
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In comparison to refrigerant charge run-time impacts, condenser fouling affects system run-

time to a much lesser extent.  Simulated results of condenser fouling, and the calculated run-time 

impacts are shown in Figure 3.20. Decreases in system run-time can be observed for systems 

with FXOs due to the small reductions in total capacity and moderate increases in SHR. 

Figure 3.20. Comparison of simulated condenser fouling fault impacts on run-time requirement 

to meet equivalent loads for systems with different expansion devices. 

The net run-time impact of simulated evaporator fouling faults on DX systems are shown in 

Figure 3.21. Run-time tends to increase moderately in systems that have evaporator fouling due 

to decreases in sensible cooling capacity. This results in systems having to run longer to 

maintain equivalent cooling loads. It is possible that after enough evaporator fouling, systems 

may no longer have sufficient sensible cooling capacity to maintain comfortable conditions. 
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Figure 3.21. Comparison of simulated evaporator fouling fault impacts on run-time requirement 
to meet equivalent loads for systems with different expansion devices. 

3.5.5 Estimating Energy Consumption Impacts of Faults 

Ultimately, the most important consideration when it comes to assessing the total impact of a 

fault on the performance of an air conditioning system may be the impact on energy 

consumption. This is because increases in energy consumption translate directly to increases in 

utility costs for a building owner or facility manager which must be paid to keep operations 

running. And while costs associated with additional run-time are more than likely significant 

since equipment replacement costs are not trivial, increases in utility costs are easy to understand 

and are effective supporting material for service decisions. 

The energy consumption required by an air conditioning system can be calculated as a 

function of the cooling capacity of the system, the COP , and the run-time required to satisfy a 

load, 
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,
.

cool t

elec runW
Q

t
COP

  (3.35) 

This shows the energy consumption fault impact, 
elecFIR , is a function of the fault impacts on 

cooling capacity, COP , and run-time, 
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 (3.36) 

The definition of 
elecFIR in Equation (3.36) shows that it is possible to estimate the total impacts 

of faults on energy consumption using the combination of virtual sensors and reference models 

for normal performance. Moreover, the additional energy consumption that was used by a 

system due to faults, elecW , can be tracked over time by integrating 
elecFIR with estimates of the 

actual energy consumed, 

  ,1elec elec elec actualW FIR W    (3.37) 

where ,elec actualW is the actual electrical energy consumption that can be determined using direct 

measurements or virtual sensors. 

The total energy impact of improper refrigerant charge level faults has been simulated and 

results are shown in Figure 3.22 for DX equipment with FXOs and TXVs.  The results show that 

significantly more energy is consumed by equipment that are undercharged or overcharged. For 

systems that are significantly undercharged, energy consumption is nearly doubled. This is 

caused by significant reductions in sensible cooling capacity and COP . 
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Figure 3.22. Comparison of simulated improper refrigerant charge level fault impacts on energy 

consumption to meet equivalent loads for systems with different expansion devices. 

Similarly, comparisons of the energy impact of different condenser fouling faults are shown in 

Figure 3.23. These results show that condenser fouling results in large increases in energy 

consumption over time. Energy consumption tends to increase in systems with condenser 

fouling primarily due to larger compressor power consumption caused by elevated high-side 

pressures. 
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Figure 3.23. Comparison of simulated condenser fouling fault impacts on energy consumption 

to meet equivalent loads for systems with different expansion devices. 

Similar impacts on energy consumption are also caused by evaporator fouling, shown in 

Figure 3.24. This is caused by reduced sensible cooling capacity which results in longer run-

times to maintain equivalent cooling loads. From the simulation outputs, the type of expansion 

valve used in the equipment did not seem to affect energy impacts significantly. 
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Figure 3.24. Comparison of simulated evaporator fouling fault impacts on energy consumption 
to meet equivalent loads for systems with different expansion devices. 

3.6 Estimating Impacts of Multiple Faults using Semi-Empirical Models 

To address constraints associated with the cost of performing experimental testing in 

psychrometric chambers that would be required to develop detailed models like was proposed by 

Cheung and Braun or even neural network models, simplified semi-empirical models are an 

alternative for predicting the impacts of faults on system performance. These models should be 

able to predict the total cooling capacity, efficiency, and sensible heat ratio of operating systems 

that are subject to faults. They should also be able to relate these impacts to operating a system 

without faults so that economical service decisions can be made. 

A semi-empirical equipment model that can be used to predict the performance of systems at 

off-design conditions has been described in Equation (3.1) for fixed-speed systems and 

Equation (3.13) for variable-speed systems.  Recently there has been work published by Du et al. 
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and Cheung and Braun with the intent to develop models for estimating fault impacts in energy 

simulation programs [63, 64]. The models developed in these works have aimed to estimate 

single fault impacts using least squares regression models. In the present work, the goal is to 

estimate total fault impacts when multiple faults are present. One possible extension of the 

model described in Equations (3.1) or (3.13) based on the work by Du et al. and Cheung and 

Braun can be expressed as, 

,

, ,

,

cool fault

chrg c foul e foul

cool normal

Q
ff f

Q
   (3.38) 

where 
,cool faultQ is the cooling capacity delivered by a system with faults, 

,cool normalQ is the normal 

system cooling capacity, and the additional if terms are correction factors adjusting the total 

capacity for the effects of different faults. These correction factors can be tuned for different 

faults including improper refrigerant charge levels ( 
chrgf ), condenser fouling ( 

,c foulf ), and 

evaporator fouling ( 
,e foulf ). 

The impacts of different faults on equipment performance can be estimated using simple 

polynomial regression models. For example, the impact of different refrigerant charge levels on 

the cooling capacity can be represented by 

2

0 1 2chrg chrg chrgaf a x a x     (3.39) 

where 
chrgx is the relative amount of refrigerant charge in the system and 

0,1,2a are empirically 

determined parameters relating the charge level to the capacity impacts. The relative amount of 

refrigerant in the system can be expressed as 

, ,

,

chrg actual chrg normal

chrg

chrg normalm

mm
x


 (3.40) 
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where 
,chrg actualm is the actual mass of charge in the system and 

,chrg normalm is the mass of charge 

recommended by the equipment manufacturer. In practice, the actual amount of refrigerant in a 

system could be estimated using the virtual refrigerant charge sensor. A value for the normal 

amount of refrigerant could be programmed by a manufacturer into an equipment controller of 

the AFDD device. 

The impact of condenser fouling can be modeled in a similar manner as given by 

2

, 0 1 , 2 ,c foul ca flow ca flowb b xf b x     (3.41) 

where 
,ca flowx is the relative amount of airflow through the condenser and 

0,1,2b are empirical 

parameters determined using test data.  Condenser fouling can be represented as a function of the 

relative reduction in condenser airflow 

, ,

,

,

ca actual ca normal

ca flow

ca normal

x
V V

V


 (3.42) 

where ,ca actualV is the actual airflow rate through the condenser coil and ,ca normalV is the normal 

airflow rate through the condenser coil. Using a virtual sensor, the condenser airflow rate of a 

system can be measured. For fixed-speed systems, the normal condenser airflow rate can be 

programmed into an equipment controller. For variable-speed systems, a model for the normal 

airflow could be implemented by the manufacturer that depends on the control input. 

The impact of evaporator fouling can be modeled in a similar manner with 

2

, 0 1 , 2 ,e foul ea flow ea flowc c xf xc   (3.43) 

where 
,ea flowx is the relative amount of airflow through the evaporator coil and 

0,1,2c are empirical 

parameters determined using test data. Evaporator fouling can be represented as a function of 

the relative reduction in evaporator airflow 
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, ,

,

,

ea actual ea normal

ea flow

ea normal

x
V V

V




(3.44) 

where 
,ea actualV is the actual airflow rate through the evaporator coil and 

,ea normalV is the normal 

airflow rate through the evaporator coil. Using a virtual sensor, the evaporator airflow rate of a 

system can be measured. For systems that have fixed-speed indoor fans, the normal evaporator 

airflow rate can be programmed into an equipment controller. For variable-speed systems, a 

model for the normal airflow could be implemented by the manufacturer that depends on the 

control input and the supply duct static pressure. 

Like total cooling capacity, the electrical input power impacts of different faults can be 

estimated using a semi-empirical model 

,

, ,

,

total fault

chrg c foul e foul

total normal

W
gg g

W
  (3.45) 

where ,cool faultW is the total power consumed by a system with faults, ,total normalW is the normal 

system power consumption, and the additional ig terms are correction factors adjusting the 

normal power consumption for the effects of different faults. These correction factors can be 

tuned for different faults including improper refrigerant charge levels ( 
chrgg ), condenser fouling 

( 
,c foulg ), and evaporator fouling ( 

,e foulg ). Simple quadratic polynomial models can be used to 

capture the impact of each fault, 

2

0 1 2chrg chrg chrgdg d x d x    

2

, 0 1 , 2 ,c foul ca flow ca flowe e xg e x    

2

, 0 1 , 2 ,e foul ea flow ea flowk k xg xk  

(3.46) 

(3.47) 

(3.48) 

where 
0,1,2d , 

0,1,2e , and 
0,1,2k are empirical parameters tuned using test data. 
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One potential pitfall of the methodology proposed in Equations (3.38) and (3.45) is the 

assumption that the impacts of different faults on system performance are conditionally 

independent that is predicated by the model form. Using the model proposed, the interactions 

between different faults cannot be captured since the correction models 
if and 

ig are all 

univariate functions of a specific fault indicator. To assess the potential errors associated with 

this independence assumption, the detailed fault impact model previously developed by Cheung 

and Braun has been used to generate training and validation datasets for model evaluation. 

3.6.1 Simulated Results using Fault Impact Meta-Model 

Before fitting the fault impact models, normal (fault-free) models for the total cooling 

capacity and power consumption were fit using data from the training set containing no faults. 

The model form used to fit normal performance is given by Equation (3.1) for total cooling 

capacity and Equation (3.9) for power consumption. The resulting normal system model fits are 

plotted against the detailed fault impact model outputs containing no faults in Figure 3.25. 

Based on the comparison of the outputs from the two models, it was determined that the 

simplified model accuracy was sufficient to predict normal performance. 
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Figure 3.25. Accuracy of models used to predict normal total cooling capacity and COP against 
neural network meta-model generated outputs. 

After fitting the normal performance models, models to predict the impacts of refrigerant 

charge faults were fit using data from the training dataset containing only normal data and data 

containing refrigerant charge faults. The model forms used to predict these impacts are given in 

Equations (3.38) and (3.45) for total capacity and power consumption. After analysis of the 

prediction errors, it was determined the impacts of refrigerant charge on system performance had 

a significant correlation with the ambient temperature and entering air wet-bulb temperature. To 

account for this dependence, the original models for the charge impacts were modified using 

2

0 1 2chrg ID chrg OD chrga a B x a T xf        (3.49) 

and 

2

0 1 2chrg chrg OD cID hrgdg d B x d T x       (3.50) 

where IDB evaporator entering air wet bulb temperature and ODT is the outdoor-air dry bulb 

temperature. Validation results for the resulting model fits for the total cooling capacity and 

calculated COP are shown in Figure 3.26. 



 

 

 

         
       

          

            

                

          

          

 

                 

  

Charge Faults Only 

I- - ±10.0% 1 

8 
Charge Faults Only 

14 I- - ± 10.0% 1 

120 

7 112 i:L 
0 

~ 12 
6 6 

~ 

Q.) 

c ...!.... 
104 .... 

10 

::J 

'iJ 0.. 
..... 

ctl 0 5 
cu 

a. 
96 .... 

ctl 
u 

Q.) 

u 8 (\1 

a. 

(\1 
:::i 

4 88 E 

t3 
Q.) 

:::i 

I-

t3 6 
<( 

3 
80 ..... 

<( 

C 

RMSE: 1.95 % 
RMSE: 0.76 % 

Q.) 

4 MAE: 1.37 % 2 
MAE: 0.57 % 72 Ei 

E 
ME: 0.00% 

ME: 0.00 % <( 

2 
R2

: 0.99 1 
R~: 1.00 64 

2 4 6 8 10 12 14 16 
1 2 3 4 5 6 7 8 

Predicted Capacity [kW] 
Predicted COP[-] 

103 

Figure 3.26. Accuracy of simplified charge fault impact models for predicting total cooling 
capacity and COP of systems with charge faults. 

To predict the impacts of condenser fouling on total cooling capacity and COP, condenser 

fouling fault impact models given by Equations (3.41) and (3.47) were tuned using data 

generated with the detailed fault impact model. In this training data set, only data at different 

ambient conditions and condenser fouling levels were used. The predicted capacity and 

predicted COP are compared with the values calculated by the detailed model in Figure 3.27.  

The prediction errors of the total cooling capacity were within 10% of the detailed model outputs 

for all the test cases generated. The prediction errors of the COP were within 5% of the detailed 

model outputs. 
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Figure 3.27. Accuracy of simplified condenser fouling fault impact models for predicting total 
cooling capacity and COP of systems with condenser fouling faults. 

The evaporator fouling fault impact models given by Equations (3.43) and (3.48) were tuned 

using data generated by the detailed fault impact inverse model. To capture the impacts of only 

evaporator fouling, data containing different ambient conditions and evaporator airflow rates 

were used to tune the empirical coefficients. The prediction accuracy of the total cooling 

capacity and calculated COP is compared with the detailed model outputs in Figure 3.28.  For the 

test cases used in the evaluation, the evaporator fault impact predictions were within 10% of 

detailed model outputs. The COP predictions using the simplified semi-empirical model had 

errors less than 10% as well. 
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Figure 3.28. Accuracy of simplified evaporator fouling (reductions in evaporator air flow) fault 
impact models for predicting total cooling capacity and COP of systems with evaporator fouling 

faults. 

Since the goal of these simplified fault impact models is to be used within a method to isolate 

the relative impacts of multiple faults that occur simultaneously, it is important to test the model 

accuracy while multiple faults are imposed on the system. Using the semi-empirical models 

trained for using single fault data sets, the total cooling capacity and COP were predicted for 

operating conditions with multiple faults present. The first combination of faults studied were 

condenser fouling and refrigerant charge faults. A comparison of the predicted total cooling 

capacity and COP with the detailed model outputs is shown in Figure 3.29. The predicted 

cooling capacity errors were within 10% of the detailed model outputs for 99% of the test cases.  

The predicted COP errors were within 10% of the detailed model outputs for greater than 99% of 

the test cases. It should be noted that significant bias between the semi-empirical fault impact 

models and the detailed model outputs were observed. In consideration of the total cooling 

capacity, the mean error of all the test cases was approximately -1.99%. This indicates that the 

semi-empirical models under predict the detailed model outputs by about 2%. This bias may be 
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the result of the inherent independence assumption between fault impact factors. The detailed 

model captures the interaction between multiple faults.  Similar behavior can be observed for the 

COP prediction errors – the semi-empirical model tended to under predict the detailed model 

outputs by approximately 0.83%. 

Figure 3.29. Accuracy of simplified fault impact models for predicting total cooling capacity and 

COP of systems with combinations of refrigerant charge and condenser fouling faults. 

Combinations of condenser fouling and evaporator fouling were generated using the detailed 

fault impact inverse model.  Using the semi-empirical model, the total cooling capacity and COP 

were predicted at the same conditions and were compared with the detailed model outputs in 

Figure 3.30. The predicted cooling capacity errors were within 10% of the detailed model 

outputs for 99% of the test cases. The predicted COP errors were within 10% of the detailed 

model outputs for greater than 99% of the test cases. It should be noted that significant bias 

between the semi-empirical fault impact models and the detailed model outputs were observed. 

In consideration of the total cooling capacity, the mean error of all the test cases was 

approximately -0.98%. This indicates that the semi-empirical models under predict the detailed 
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model outputs by about 1%. This bias may be the result of the inherent independence 

assumption between fault impact factors. The detailed model captures the interaction between 

multiple faults. Similar behavior can be observed for the COP prediction errors – the semi-

empirical model tended to under predict the detailed model outputs by approximately 0.50%. 

Figure 3.30. Accuracy of simplified fault impact models for predicting total cooling capacity and 

COP of systems with combinations of refrigerant charge and evaporator fouling faults. 

Finally, combinations of the three faults were used to assess the performance of the semi-

empirical fault impact models. These results are shown in Figure 3.31. With respect to the total 

cooling capacity, the model predictions fell within 10% for greater than 95% of the test cases.  

With regards for the COP, the model predictions fell within 10% for great than 90% of the test 

cases. Additionally, it should be noted that the model errors are biased by approximately 1.0% 

in both the total cooling capacity and the COP. This may indicate that the semi-empirical 

models do not capture impacts that are dependent on the correlation between different faults 

while the detailed fault impact model does. It appears from the results that the total impact of 

combinations of faults may become slightly more severe when several faults are present. 
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Figure 3.31. Accuracy of simplified fault impact models for predicting total cooling capacity and 
COP of systems with combinations of refrigerant charge, condenser fouling, and evaporator 

fouling faults. 

3.7 Summary of Fault Impact Estimation Results 

Semi-empirical models that can be implemented within microprocessors using relatively 

modest computing resources have been developed and implemented for the purposes of 

estimating the performance impacts of different faults. To accomplish this task, the normal 

cooling capacity, power consumption, and sensible heat ratio of fixed-speed and variable-speed 

DX systems were modeled.  Next, a discussion of how virtual sensors can be used to estimate the 

actual cooling capacity, power consumption and sensible heat ratio was provided.  Following this, 

a methodology for determining the overall impacts of faults on equipment performance was 

discussed and example fault impacts at different operating conditions were presented. The fault 

impact ratios discussed in this section can be used by an automated fault detection and diagnosis 

tool to recommend service. 

In the closing section of this chapter, semi-empirical models intended to estimate the 

individual impacts of simultaneous faults are developed and implemented. First, the 
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methodology was evaluated using the outputs of a previously developed fault impact model that 

incorporates relatively complex component models. Using the simulated data sets, the fault 

impact models proposed predicted cooling capacity and COP within 10% of the detailed model 

outputs. 
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4. MODELING DX EQUIPMENT FAULT IMPACTS USING 

ARTIFICIAL NEURAL NETWORKS 

4.1 Background and Motivation 

This chapter develops comprehensive fault impact models for inclusion within the simulation 

platform described in Chapter 5 so that alternative service maintenance strategies, including 

optimal service scheduling, could be studied in Chapter 6. A commonly held belief among 

engineers is that to truly understand the underlying phenomena of a physical system, an engineer 

needs to formulate a model of such a system based on the known principles of nature governing 

the processes involved. As the complexity of a system grows, it’s generally accepted that the 

model required for estimating the physics of the must also be extended to account for additional 

variables that affect its performance. Of course, adding complexity to models can often require 

ever more increasing engineering and computational effort (with someti mes diminishing returns). 

Because of this tradeoff, every engineer must determine the balance between complexity and 

effort that is suited for each project at hand. 

One example of a relatively complex approach to model the performance impacts of common 

faults affecting unitary air conditioning equipment has been described by Cheung and Braun [48, 

49]. In this work, Cheung and Braun formulated detailed models of common air conditioning 

equipment components using engineering principles. Components modeled in this work 

included compressors, air cooled condensers, expansion devices, cooling coils, as well as 

refrigerant piping. To tune difficult or unmeasurable parameters used in component models, 

Cheung and Braun used inverse modeling methods to estimate these parameters using 

experimental data collected from actual systems. Finally, component models were integrated 
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into system models which imposed additional constraints to maintain conservation of mass and 

energy throughout the closed system. 

In comparison with other methodologies developed for estimating fault impacts of DX air 

conditioning equipment, the methodology presented by Cheung and Braun implements one of 

the most detailed and representative approaches for predicting the impacts of simultaneous faults. 

When using the model, the user can be assured that energy balances across the heat exchangers 

are maintained over the range of inputs. Additionally, differences between mass flow rates 

through the compressor and the expansion valves predicted by the model are driven to zero by 

the cycle solver. Also, important in consideration of refrigerant charge faults, detailed charge 

inventory modeling based in part on empirical relationships tuned using experimental data is 

performed by the cycle solver. 

The detailed fault impact model developed by Cheung and Braun is not without one 

significant cost: the computational effort required for some combinations of faults and operating 

conditions can be significant. Even with the extreme speed of modern computer processors, 

simulating equipment performance using the detailed model can be time-consuming.  In practice, 

the model often requires more than 30 seconds and multiple computer processor cores to 

simulate a single combination of inputs. When infrequent or one-off model evaluations are 

required, e.g. estimating steady-state fault impacts at a specific operating condition, the amount 

of computer time required is still insignificant to warrant optimization. If frequent or routine 

model function calls are required for an application, this time delay can be problematic. For 

example, if the average time requirement to predict equipment fault impacts is only 5 seconds, an 

8760-hourly building simulation would require approximately 12 hours of computer time. As a 

result, this detailed model is not practical for inclusion within the simulation platform described 
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in Chapter 5 that is used for assessing optimal and alternative service strategies presented in 

Chapter 6.  

The remainder of this chapter describes a meta-modeling approach used to reduce the 

computational effort required to simulate DX equipment fault impacts without significantly 

sacrificing model accuracy. A general discussion of meta-modeling with an emphasis placed on 

using neural networks is provided in Section 4.2. Following this, a more detailed description of 

the artificial neural network models used to simulate equipment fault impacts is included. The 

model training and evaluation methodology is described in Section 4.3 for a RTU with a fixed 

orifice expansion device.  Finally, a review of the important results is provided in the Section 4.4. 

4.2 Fault Impact Meta-Modeling Approach 

The detailed fault impact model developed by Cheung and Braun was used to generate 

outputs for training of a meta-model so that fault impact predictions could be provided at a much 

faster rate.  This process, shown in Figure 4.1, is not unlike the process used to develop the semi-

empirical models in Chapter 3. First, an extensive list of ambient conditions and fault levels 

were generated that spanned the range of operating conditions that were desired to be modeled. 

Next, these model inputs were fed to the detailed fault impact inverse model and one-by-one the 

outputs were collected.  These input and output combinations were collated and consolidated into 

a training and validation data set. 

Next, the internal structure of an artificial neural network model was generated, and the 

internal weights were tuned using a supervisory learning setting. This means that a portion of 

the generated dataset was used to optimize the parameters of the neural network by minimizing 

the mean absolute error of the predicted outputs in comparison to the detailed model outputs. In 

order to do this in an efficient manner, highly optimized backpropagation algorithms and 
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software packages were used [65, 66]. In an iterative manner, the resulting model was tested 

using a reserved portion of the generated data set to evaluate how well the model predicts data 

points not contained in the training data set. If undesirable or significant errors exist in the 

resulting model, the model structure was modified, and the process was repeated. 

Figure 4.1. Overview of supervisory learning process used to develop fault impact meta-model 

using detailed fault impact model inputs and outputs. 

A simplified schematic representation of the underlying neural network inputs, outputs, and 

inner layer nodes is shown in Figure 4.2. The inputs to the model are the ambient driving 
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conditions of the DX system, including the outdoor air dry-bulb, return air dry-bulb, and return-

air wet-bulb. In addition, the fault levels of the system are given as inputs to the model. The 

outputs of the neural network meta-model are the refrigerant- and air-side state points that are 

determined by the original detailed fault impact model. These include suction pressure and 

enthalpy, liquid-line pressure and enthalpy, supply air temperature and humidity, etc. 

Connecting the inputs to the outputs are three layers containing so-called hidden nodes. These 

nodes are non-linear activation functions that are sequentially connected. The activation 

functions are typically sigmoidal or functions with an asymptote that are expressed in terms of a 

weighted combinations of inputs that are connected to it. These functions provide a highly non-

linear behavior that can approximate complex interactions between inputs. The function weights 

used in each of these nodes are tuned during the model training process with backpropagation via 

stochastic gradient descent. 

Figure 4.2.  Simplified representation of the neural network meta-model used to approximate the 

detailed fault impact model developed by Cheung and Braun [48, 49]. 
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To train the model while avoiding overfitting, the number of layers and hidden nodes were 

pruned using the combination of a training data set and a test data set. The activation functions 

selected for the model included sigmoidal functions in the first two layers and a linear activation 

layer in the final layer. The training data set consists of 80% of the total cases output from the 

original detailed model and the test data set was made up of the remaining 20% of the outputs. 

The parameter tuning process of the model required approximately 90 minutes of computer time. 

Evaluating the resulting model required on the order of 10 μs for a combination of inputs – 

significantly faster than the original detailed model. 

4.3 Fault Impact Meta-model Training and Results 

4.3.1 Overall Prediction Accuracy of Meta-model 

Using the RTU with FXO meta-model, refrigerant state points were predicted over the range 

of operating conditions and fault levels that were simulated using the detailed model 

implemented by Cheung and Braun [48, 49].  These meta-model predictions were then compared 

with the detailed model outputs to evaluate the accuracy and reliability of using the meta-model. 

The suction pressure and enthalpy predicted by both models are compared for the entire dataset 

in Figure 4.3. In both cases, the agreement between the suction pressure and suction enthalpy 

were within 10% error for greater than 99.99% of the data set.  Furthermore, the suction pressure 

predictions were within 5% error for greater than 90% of the data set; the suction enthalpy 

predictions were within 5% error for greater than 95% of the data set. It should also be noted 

that the range of suction pressures included in the data set was relatively large. The suction 

pressure ranged from 350 kPa (51 psia) to 1300 kPa (189 psia). At these pressures, the 

evaporator saturation temperature ranged from -23.1 °C (-9.5 °F) to 16.3 °C (61.4 °F) 

respectively. At these low suction pressures, an actual RTU would more than likely be 
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deactivate by low pressure cut-out safety or form a giant block of ice on the evaporator coil. 

These physics are not captured by the detailed model and the outputs under these conditions 

should be taken cautiously. While unrealistic, these low pressures were the result of significant 

evaporator air flow reduction and charge leakage. 

Figure 4.3. Overall comparison of suction pressure and enthalpy predictions from fault impact 

meta-model and detailed model for system with fixed orifice expansion valve. 

The discharge pressure and enthalpy were simulated using both models and compared in 

Figure 4.4. These results also showed agreement between the discharge pressures and enthalpy 

within 10% for greater than 99.99% of the complete data set. Like the suction pressure results, 

the data set showed a relatively large range in discharge pressures: 1700 kPa (247 psia) to 

4700 kPa (682 psia). Since the critical pressure of R410A is approximately 4578 kPa (664 psia), 

these data points should have been discarded from the data set. Moreover, these high pressures 

are surely outside the operating envelope of the compressor and the system would be disabled on 

high pressure cut-out safeties. 
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Figure 4.4. Overall comparison of discharge pressure and enthalpy predictions from fault impact 

meta-model and detailed model for system with fixed orifice expansion valve. 

The liquid-line (condenser outlet) refrigerant pressure and enthalpy predicted by both models 

for the entire data set are compared in Figure 4.5. The predictions generated by each model for 

the liquid line pressure and enthalpy were within 5% for greater than 99.99% of the entire data 

set. As with the discharge pressure predictions, some of the pressures resulted in operating 

pressures much greater than typical equipment operating limits. These outputs should be 

discarded from the dataset for model evaluation since they would result in unreasonable 

equipment performance. 
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Figure 4.5. Overall comparison of liquid line (condenser outlet) pressure and enthalpy 
predictions from fault impact meta-model and detailed model for system with fixed orifice 

expansion valve. 

The evaporator inlet refrigerant pressure and enthalpy predicted by both models for the entire 

data set are compared in Figure 4.6.  The predictions generated by each model for the evaporator 

inlet pressure were within 10% for greater than 99.99% of the entire data set. The predictions 

generated by each model for the evaporator inlet enthalpy were within 5% for greater than 99.99% 

of the entire data set. As with the suction pressure predictions, some of the pressures resulted in 

operating pressures that are much lower than typical operating limits and would result in 

significant ice formation. Moreover, these data points would result in operation outside of 

compressor manufacturers recommended operating envelope and premature compressor failure 

would be likely. For these reasons, data points outside of typical operating limits should be 

discarded when model evaluation is performed. 
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Figure 4.6. Overall comparison of evaporator inlet pressure and enthalpy predictions from fault 

impact meta-model and detailed model for system with fixed orifice expansion valve. 

4.3.2 Refrigerant Charge Fault Impact Prediction Accuracy 

Using the tuned neural network meta-model, the performance of the RTU was simulated at 

different ambient operating conditions and fault levels. The predicted total cooling capacity, 

COP, and SHR of the system at different ambient temperatures and fault levels has been plotted 

in comparison with the outputs of the original detailed model in Figure 4.7. Close agreement 

between the outputs of the meta-model and the detailed model were observed.  More importantly, 

the meta-model outputs do not display signs of overfitting since the resulting outputs were 

mostly smooth, even where interpolation and extrapolation were required. 
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Figure 4.7. Modeled total cooling capacity, cycle COP, and SHR for RTU with fixed orifice 

expansion valve at different levels of refrigerant charge. 

4.3.3 Condenser Fouling Fault Impact Prediction Accuracy 

The meta-model was used to predict the performance of the RTU when the system is 

subjected to different levels of condenser fouling in Figure 4.8. Like the results shown for 

varying levels of refrigerant charge, good agreement was seen between the meta-model outputs 

and the original detailed model for condenser fouling faults at different ambient temperature 
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conditions. The model also predicted more significant impacts on RTU efficiency than total 

cooling capacity as would be expected by condenser fouling faults. 

Figure 4.8. Comparison of modeled total cooling capacity, cycle COP, and SHR for RTU with 

fixed orifice expansion valve over a range of condenser fouling levels. 

4.3.4 Evaporator Fouling Fault Impact Prediction Accuracy 

A comparison of the predicted RTU performance with different combinations of ambient 

temperatures and evaporator fouling levels is shown in Figure 4.9. Again, good agreement 
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between the two models is observed suggesting the neural network model approximates the 

physics of the detailed model well.  Furthermore, it is important to note that both models predict 

relatively small impacts on cycle efficiency but large impacts on total cooling capacity and 

sensible heat ratio. This indicates both models produce outputs that are representative of actual 

evaporator fault impacts. 

Figure 4.9. Comparison of modeled total cooling capacity, cycle COP, and SHR for RTU with 

fixed orifice expansion valve over a range of evaporator fouling levels. 
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4.3.5 Compressor Valve Leakage Fault Impact Prediction Accuracy 

The performance impacts of compressor valve leakage faults are compared for both models 

in Figure 4.10. Good agreement between the neural network meta-model and the detailed fault 

impact inverse model is observed. The behavior of the 𝑆𝐻𝑅 of the meta-model is of interest for 

high levels of compressor valve leakage.  In these cases, the elevated evaporator temperature and 

additional suction superheat tends to promote dry-coil operation.  While the change between wet-

coil and dry-coil is difficult to capture for linear models, the neural network can accurately 

capture this phenomenon. 
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Figure 4.10. Comparison of modeled total cooling capacity, cycle COP, and SHR for RTU with 

fixed orifice expansion valve over a range of compressor valve leakage levels. 

4.4 Review of Important Results 

The neural network meta-model has been shown to generate accurate results that 

approximate the outputs of the grey box fault impact inverse model developed by Cheung and 

Braun [48, 49]. The outputs of this meta-model overcome one of the major limitations of the 

original model – the solution time required.  One issue remains with both models – the amount of 

experimental data required to accurately tune the model is relatively high and the resulting model 
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is not generalizable to all systems. Because of this, it is unlikely that a manufacturer could 

devote enough testing resources to develop these models. 

While it is unlikely that manufacturers would be able to develop sufficient testing resources 

for developing neural network models of equipment performance to predict the impacts caused 

by different faults, it should be reiterated that these models are useful for the present work.  In an 

ideal setting, it would be possible to use detailed physical models for analyzing the performance 

of fault impact models and performing parametric studies of different optimal service scheduling 

strategies. However, with the current performance limits of computing systems, it would not be 

possible to adequately analyze all the possible combinations of faults in a reasonable amount of 

time. These limitations could be overcome using the neural network models described in this 

work.  Using the extensive datasets collected from previous researchers, the detai led fault impact 

models developed by Cheung and Braun were possible [48, 49].  Rather than applying this model 

directly, the neural network models were designed to approximate the relationship between the 

inputs and outputs of the detailed inverse models with much greater speed. The methodology 

could be applied to any detailed physical model to approximate outputs using much less 

computing resources. These models can then be used to develop less complex models that 

manufacturers are able to implement. 

In conclusion, the neural network models developed are not intended to be viewed as a 

solution to be used to estimate fault impacts in practice. Rather, they will be used to assess 

simplified models and strategies for implementing condition-based maintenance. From the 

validation presented, the neural network models approximate the detailed fault impact model 

well, and thus its outputs can be trusted. Furthermore, conclusions derived from the outputs of 
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the neural network models can be validated in comparison to conclusions derived from the 

original detailed model. 
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5. SIMULATING AIR CONDITIONING EQUIPMENT FAULTS 

IN SMALL COMMERCIAL BUILDINGS 

5.1 Background and Motivation 

In the previous Chapter, an artificial neural network DX equipment fault impact meta-model 

was described and evaluated using a generated data set.  The goal of this model was to accelerate 

the predictions of fault impacts so that they could be used in a building simulation program to 

characterize the long-term impacts of different faults and evaluate different maintenance 

strategies. In this chapter, the building simulation framework that was implemented for this 

work is described. 

Components that are described in detail include the building sensible and latent load models.  

These models have been developed based on single-node dynamic sensible and latent energy 

balances of a building served by an air conditioning system. Descriptions of the weather data 

used for the simulation and the locations selected for comparison are also included. The 

operating cost model has also been described, including electrical utility costs, equipment costs, 

and service costs. Central to the model are fault evolution models that are used to estimate how 

faults may grow over time. These models are simplistic in nature but provide reasonable 

estimations of real systems. Finally, demonstration results are included to show how the 

simulation models interact. 

5.2 Building Load Model Description 

The sensible and latent dynamics of a building served by a single RTU were simulated using 

single-node models.  The dynamics of the indoor dry bulb temperature were simulated using 

, ,
ID

s load s cool sC Q
d

t
Q

T

d
  (5.1) 
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where 
IDT is the indoor temperature, 

,load sQ is the sensible heat gain in the building, 
,cool sQ is the 

sensible cooling rate of the RTU, and 
sC is the effective thermal capacitance of the building. 

The sensible heat gain of the building was based on an internally driven component 
,int sQ and an 

externally driven component 
,ext sQ , 

 

, , ,

,

load s int s ext s

int s s OD ID

Q Q Q

Q UA T T   

 
(5.2) 

where 
sUA is the overall heat transfer conductance of the building and 

ODT is the outdoor air dry 

bulb temperature. The sensible cooling rate of the system was simulated using the neural 

network meta-model discussed in Chapter 4. The required inputs of the meta-model were the 

outdoor dry bulb temperature, indoor dry bulb and wet bulb temperatures, and the fault levels of 

the equipment. 

The internal gain and overall heat transfer conductance used in Equation (5.2) were 

determined for different climates using the commonly used balance point methodology based on 

equipment sensible capacity at the warmest condition [61]. The overall conductance was 

determined using 

, ,

, ,

1

1

cool s design

s

os OD design OD balance

U
Q

f T T
A  

 
(5.3) 

where , ,cool s designQ is the design point sensible cooling capacity of the equipment without faults, 

osf is an equipment oversizing factor, 
,OD designT is the design point outdoor air dry bulb 

temperature, 
,ID designT is the design point indoor dry bulb temperature, and 

,OD balanceT is the balance 

point outdoor dry bulb temperature when the building has no load. For all climates used for 

simulations, the design point temperature was chosen by finding the maximum outdoor air 
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temperature using the weather data. The design point indoor dry bulb temperature setpoint was 

set to 75 °F. The balance point outdoor temperature was set to 65 °F for all climates. The 

internal sensible gain is given by 

, , , ,

,

, ,

.
1

cool s design ID design OD balance

int s

os OD design OD balance

Q T T

f T
Q

T


 


 (5.4) 

An approximation of Equation (5.1) was implemented using a finite difference formula for 

the derivative term 

          , ,1 sim
ID ID int s s OD ID cool s

s

T k T k U k
t

Q T T QA k k
C

      


  (5.5) 

where 
simt is the simulation time step size,  IDT k is the indoor temperature at the 

thk

simulation step, and  1IDT k  is the indoor temperature at the  
th

1k  step. The simulation 

step size used for the model was 60 minutes. 

The latent dynamics of the building were modeled using a single node dynamic energy 

balance, 

, ,

,

1ID
l load l cool l

fg w

C
d

Q Q
dt h


    (5.6) 

where ID is the indoor air humidity ratio, ,load lQ is the latent heat gain in the building, ,cool lQ is 

the sensible cooling rate of the RTU, 
,fg wh is the heat of vaporization of water, and lC is the 

effective thermal capacitance of the building. The latent heat gain of the building was based on 

an internally driven component ,int lQ and an externally driven component ,ext lQ , 
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where 
lU is the overall latent conductance of the building and 

OD is the outdoor air humidity 

ratio. The conductance was determined using the equipment latent heat transfer rate at the 

design point condition, 

  , ,

, ,1

1 1design cool t design

l

os OD design ID balance

U
S

f

HR Q

 

 



 (5.8) 

where 
, ,cool t designQ is the design point total cooling capacity of the equipment without faults, 

designSHR is the design sensible heat ratio of the building, 
osf is an equipment oversizing factor, 

,OD design is the design point outdoor air humidity ratio, 
,ID design is the design point indoor air 

humidity ratio, and 
,OD balance is the balance point outdoor air humidity ratio when the building 

has no latent load. The design point indoor air humidity ratio was calculated using an indoor dry 

bulb temperature of 75 °F and relative humidity equal to 50%. For all climates used for 

simulations, the design point humidity ratio was chosen by finding the mean coincident wet bulb 

of the design outdoor air dry bulb temperature. The balance point outdoor temperature was 

determined by finding the mean humidity ratio throughout the year using climate data. The 

internal latent gain is given by 

  , , , ,

,

, ,

1
.

1

design cool t design ID design OD balance

int l

os OD design OD balance

SHR Q
Q

f

 

 

 



(5.9) 

An approximation of Equation (5.6) was implemented using a finite difference formula for 

the derivative term 
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where  ID k is the indoor air humidity ratio at the 
thk simulation step, and  1ID k  is the 

indoor air humidity ratio at the  
th

1k  step. 

5.2.1 Climate and Weather Model Description 

In order to simulate equipment performance under realistic outdoor ambient conditions, 

Typical Meteorological Year (TMY) data was used [67].  TMY data sets provide hourly ambient 

temperature, humidity, barometric pressure, irradiance, wind speed, and other weather data that 

represent a year of typical climatic conditions for a location [67]. TMY data is commonly used 

by designers to model HVAC and energy conversion systems since the data provides reasonable 

driving conditions for assessing and comparing technologies. Three locations were selected for 

fault impact simulations: Atlanta, GA; Chicago, IL; and Miami, FL. These locations were 

selected because they have different amounts of cooling and heating requirements.  Additionally, 

the average humidity through the year varies considerably from location to location. For each 

location, design conditions are summarized in Table 5.1 [61]. 

Table 5.1. Building HVAC design conditions for selected locations used in fault impact 

simulation program [61]. 

Location HDB 

(99%) 

CDB 

(1%) 

MCWB (1%) HDD CDD 

Atlanta, GA -3.1 °C 

(26.4 °F) 

33.1 °C 

(91.6 °F) 

23.3 °C 

(73.9 °F) 

1484 °C-day 

(2672 °F-day) 

1052 °C-day 

(1894 °F-day) 

Chicago, IL -15.7 °C 

( 3.7 °F) 

31.5 °C 

(88.7 °F) 

22.9 °C 

(73.2 °F) 

3449 °C-day 

(6208 °F-day) 

480 °C-day 

(864 °F-day) 

Miami, FL 11.1 °C 

(52.0 °F) 

32.7 °C 

(90.9 °F) 

25.3 °C 

(77.5 °F) 

70 °C-day 

(126 °F-day) 

2521 °C-day 

(4538 °F-day) 

HDB (99%) – 99th percentile design heating dry bulb temperature. 

CDB (1%) – 1st percentile design cooling dry bulb temperature. 

MCWB (1%) – 1st percentile design mean coincident wet bulb temperature. 

HDD – Heating degree days calculated using 18.3 °C (65.0 °F) balance temperature. 

CDD – Cooling degree days calculated using 18.3 °C (65.0 °F) balance temperature. 
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In order to size the building sensible cooling and heating load line in Equation (5.2), the 

maximum dry-bulb temperature for each location was determined. For Atlanta, GA the 

maximum dry-bulb temperature occurred on July 8th, shown in Figure 5.1. To determine the 

latent load line parameters in Equation (5.7), the coincident maximum humidity ratio during the 

hottest day of the year was determined.  For Atlanta, GA the humidity ratio and relative humidity 

during the warmest day of the year are shown in Figure 5.1. Compared with the other selected 

locations, Atlanta, GA has relatively warm summer days with mild spring and summers. 

Atlanta, GA has moderate winter heating requirements compared with the other locations in the 

study. 

Figure 5.1. Hourly ambient temperatures and humidity for Atlanta, GA TMY3 data set for 

72 hours before and 72 hours after peak dry bulb temperature. 
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The maximum dry-bulb temperature occurred on July 19th in Chicago, IL, shown in Figure 

5.2. Compared with the other selected locations, Chicago, IL has a relatively short cooling 

season compare with the other locations in the study.  Chicago, IL has the coldest winter outdoor 

temperatures and the highest heating requirements throughout the year. 

Figure 5.2. Hourly ambient temperatures and humidity for Chicago, IL TMY3 data set for 72 

hours before and 72 hours after peak dry bulb temperature. 

The maximum dry-bulb temperature occurred on July 29th in Miami, FL, shown in Figure 

5.3. Compared with the other selected locations, Miami, IL has a long cooling season compared 

with the other locations in the study. It is also the one of the most humid climates through the 

year, compared with the other selections. Miami, FL has the shortest heating season of the 

locations selected in this study. 
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Figure 5.3. Hourly ambient temperatures and humidity for Miami, FL TMY3 data set for 72 

hours before and 72 hours after peak dry bulb temperature. 

The building sensible and latent building load parameters used in the equations implemented 

for each building location are summarized in Table 5.2. These values were held constant 

throughout the maintenance simulation study discussed in Chapter 6. 
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Table 5.2. Building sensible and latent load parameters used in simulation framework for 

different locations. 

Parameter Miami, FL Atlanta, GA Chicago, IL 

,OD designT ,OD designB/ [°C] 32.7 / 25.3 33.1 / 23.3 31.5 / 22.9 

/ 
,ID designB

,OD balanceB

[°C] 23.9 / 19.2 23.9 / 19.2 23.9 / 19.2 

/ [°C] 18.3 / 13.3 18.3 / 12.8 18.3 / 10.3 

[-] 0.20 0.20 0.20 

[W] 6330 6390 6480 

[W/°C] 366 360 409 

[W] 2051 2014 2290 

[kJ/°C] 1000 1000 1000 

[-] 0.70 0.70 0.70 

[kW/(g.w/g.da)] 198 190 203 

[W] 247 249 253 

[g.w/g.da/s] 5.0 5.0 5.0 

,cool designQ

designSHR

,ID designT

,OD balanceT

osf

sUA

,s intQ

sC

lU

,l intQ

lC

5.2.2 Utility, Equipment, and Service Cost Models 

A simple consumption utility cost model was used to calculate the electricity cost of 

operating the air conditioning system. In this model, the utility cost at simulate step k was 

calculated using 

 ( ) elec elec simUC k kC W t   (5.11) 

where elecC is the cost of one unit of electricity, elecW is the average power consumption of the 

air conditioner during the time step, and simt is the simulation interval.  The power consumption 

of the air conditioner was based on the operating conditions, the fault levels, and the efficiency 

of the system calculated using the equipment model. 

To simulate the economic implications of extended equipment operating times due to 

reduced system capacity, an equipment cost model developed by Li and Braun was 

https://kW/(g.w/g.da
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implemented [14]. The equipment costs at each simulation time set were modeled as a function 

of equipment runtime, 

( ) equip runEC k C t  (5.12) 

where 
equipC is the reduction in equipment value per unit time and 

runt is the required runtime 

of the system during the simulation interval. To determine a reasonable value for 
equipC , it was 

assumed that the devaluation of the equipment remains constant over the life of the system 

replace

equip

life

C
C

t
 (5.13) 

where 
replaceC is the equipment replacement cost and 

lifet is the expect number of run-time hours 

the system will operate over its life. Equation (5.12) adds an economic penalty for operating 

equipment with faults beyond the impact on utility costs. This is a reasonable assumption since 

equipment life is finite and operating with faults may reduce times to failure. 

Besides the utility cost and equipment costs, which accumulate over time whenever cooling 

is required, an additional service cost is also considered in the simulation. The service cost is an 

interval fixed cost that is applied whenever service is performed, 

   if service is needed
( )

0 otherwise

i

trip ta

a

sk i

A

C C a
SC t 

 


 



(5.14) 

where 
tripC is a fixed trip cost that is required whenever the service technician must go to a site, 

taskC is the cost to perform a specific task to restore the state of the equipment, and ia is a 

Boolean variable representing required service tasks for the set of all service tasks a technician 

may perform, A . 
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5.3 Fault Evolution Model Descriptions 

The mass of refrigerant charge within the air conditioning system, 
actualm , was modeled as a 

linear function of the time since service was last performed, 
servicet , 
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(5.15) 

where 
ratedm is the rated amount of refrigerant in the system and 

chrgt is the simulation time 

required for the system to leak 50% of the rated charge. In other words, 
chrgt determines the 

refrigerant leakage rate from the system. Because the meta-model used to predict performance 

impacts of refrigerant charge faults cannot be trusted below 50% charge levels, the minimum 

refrigerant charge level in the simulation was constrained to 50%. After the time since last 

service becomes greater than the leakage time parameter, the refrigerant charge level is fixed at 

50%. After refrigerant service is performed, the refrigerant charge in the system is returned to 

the rated level of charge. 

Evaporator fouling was modeled by assuming fouling reduces evaporator air flow rate in the 

air conditioning system. As a function of the indoor fan run-time, IDFt , the evaporator air flow 

rate, ,ea actualV , was assumed to decrease linearly, 
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(5.16) 

where 
,ea foult is the indoor fan runtime required to cause a 60% reduction in air flow rate.  

When evaporator fouling service is performed in the simulation, the evaporator air flow rate is 
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returned to the normal level. To prevent equipment model inaccuracies, the minimum air flow 

rate was restricted to 40% of the normal air flow rate.  In the model, the indoor fan is assumed to 

run 100% of the time during occupied periods and when cooling is required during unoccupied 

periods. 

In a similar manner, condenser fouling was modeled as a function of outdoor fan run-time, 

ODFt , since the last service was performed. When condenser fouling occurs, the air flow 

through the condenser, 
,ca actualV was reduced linearly according to, 
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(5.17) 

where 
,ca foult is the time required for the air flow through the condenser to reduce to 40% of the 

normal condenser air flow, 
,ca normalV . To prevent equipment model inaccuracies, the minimum 

condenser air flow rate was restricted to 40% of the normal air flow rate. Additionally, it was 

assumed that the outdoor fan operates only when the compressor operates, thus, the condenser 

fan run-time is equal to the run-time required for cooling. 

In order to simulate comfort disturbances caused by high head pressure cut-out and low 

suction pressure cut-out safeties, the air conditioning system in the system was required to 

operate within an acceptable envelope. When the simulated discharge pressure was greater than 

3890 kPa (550 psig), the cooling output of the system was assumed to be zero due to high-

pressure limit cut-out. High pressure cut-outs most frequently were the result of system 

operating during warm ambient conditions with significant condenser fouling levels. When the 

suction pressure of the simulated system fell below 860 kPa (110 psig), no cooling was provided 

by the system since the low-pressure limit cut-out was assumed to be activated. The safeties 
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were automatically reset during the next simulation time step, provided the system pressures fell 

within the operating envelope. 
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6. COMPARING MAINTENANCE STRATEGIES FOR SMALL 

COMMERCIAL BUILDING AIR CONDITIONING EQUIPMENT 

6.1 Background and Motivation 

Like almost any other mechanical system, direct-expansion air conditioners require routine or 

unscheduled measures to maintain reliable and efficient operation. If an air conditioner is 

ignored or regular maintenance goes unscheduled, performance of the system will deteriorate 

over time. Determining the frequency of when to inspect or perform maintenance can be 

difficult since impacts of faults are relatively difficult to estimate. It is also difficult to quantify 

the benefits of preforming different maintenance and service tasks. Furthermore, systems can 

develop multiple different faults at the same time which makes service decisions even more 

complex. 

In some cases, the operation of an air conditioning system may become completely 

suspended by a fault. For example, an air conditioner may fail to start when a motor capacitor 

fails or becomes weak over years of operation. When this happens, no cooling will be available 

until the capacitor is replaced. It is relatively easy to detect faults that totally halt system 

operation – when cooling is not available, comfort in the condition space cannot be controlled.  

Additionally, for many applications in commercial buildings the decision about how to handle 

these faults is easy: the fault must be fixed or the system must be replaced as soon as possible.  

This is because preserving occupant comfort is usually a high priority in most commercial 

buildings. 

Some other faults do not totally suspend the operation of a system, but rather degrade overall 

system performance. In other words, faults may decrease the amount of cooling capacity 

available or the efficiency of the system, but the system can still maintain comfort in the space. 
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An example of a fault that does not completely disable operation of an air conditioner is 

condenser fouling. When a condenser becomes fouled, an air conditioner is still able to deliver 

cooling to a conditioned space; however, it does so less efficiently. These faults are more 

difficult to detect than faults that halt operation – from an occupants’ perspective it may not be 

noticeable at all. It may also be difficult to determine if faults are present by comparing utility 

bills as well. 

For these types of faults which may degrade or deteriorate performance over time, 

maintenance decisions are less straightforward. This is because costs required to fix or repair a 

system may be comparable to the impact that the fault has on utility costs. For some faults, the 

cost to repair may be more than the benefit incurred. For others, economic benefits for repair 

may outweigh these service costs, though it still may be difficult to quantify this benefit leading 

to uncertainty. 

6.2 Literature Review of DX Equipment Service Decision Support 

Limited work on service decision support systems for DX equipment has been published in 

the available literature. While there has been extensive work done related to the fields of 

industrial engineering, much of this work has been focused on infrastructure, manufacturing 

processes, and large engineered systems and fleets [68-72]. Low-cost systems, like DX 

equipment have not been as widely studied. 

Rossi and Braun developed a near optimal methodology to recommend service for RTUs 

using historical measurements of utility costs and a model for normal equipment operation [73]. 

The approach was implemented with a building energy simulation program and a parametric 

study of the impacts of different individual faults was conducted. The proposed approach was 

compared with optimal service schedules determined using dynamic programming, the results 
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showing the simplified approach reduced operating costs to within 2% of the optimal solution. 

Additionally, costs of performing periodic service and emergency service policies were 

compared with the near optimal policies. Significant potential operating costs savings were 

estimated for the use of AFDD and the service decision approach proposed. 

Li and Braun developed a methodology to determine the economic impact of different faults 

affecting DX cooling equipment [14]. The overall economic performance degradation index 

(EPDI) developed in this work accounted for impacts of utility costs and equipment costs. 

Utility costs impacts were defined as additional costs for electricity incurred through the loss of 

equipment efficiency. Equipment costs impacts were defined as additional costs associated with 

replacement of systems due to increased equipment run-time that would be required to operate 

systems with faults. In the work, it was proposed that the EPDI could be used to recommend 

when it becomes economical to fix different faults. 

In the literature, no previous work has been found that describes making service decisions 

when multiple faults affect a system simultaneously. In these cases, decisions become more 

complex since it requires estimations about how much each fault affects system performance and 

whether it is more economical to fix none, one, or multiple faults at once. 

6.3 Optimal Service Policies 

6.3.1 Optimal Service Decision Problem Formulation 

The goal of service and maintenance optimization is to determine an optimal sequence of 

service decisions that minimizes life-cycle operating costs for a system or group of systems 

while maintaining constraints on occupant comfort, safety, or environmental impact. For direct-

expansion cooling equipment, significant life-cycle costs include utility costs (cost to consume 
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energy, usually electricity), equipment replacement costs (due to premature failures or scheduled 

upgrades), and maintenance costs. 

More explicitly, the goal of maintenance and service optimization is to determine an optimal 

sequence of service tasks ( a ) from the set of permissible service tasks ( A ) that minimizes the 

total operating costs ( OC ) of a system over a life-cycle 
0life lifet t   , 

  
0

0 min d
lt

ta A
J OC t t


  (6.1) 

such that the temperature in the conditioned space ( 
zT ) remains comfortable, 

 , 0( ) ( ) ,l z z sp u lT t T t t t t      (6.2) 

where 
,z spT is the space air temperature setpoint, and l , 

u are the minimum and maximum 

allowable deviations in space air temperature that maintain comfort. As previously stated, 

operating costs ( OC ) at some time t can be estimated as the sum of utility costs ( UC ), 

equipment costs ( EC ), and service costs ( SC ), 

( ) ( ) ( ) ( )OC t UC t EC t SC t   (6.3) 

The components of total operating costs ( UC , EC , and SC ) have been discussed previously 

in Chapter 5. 

A description of the underlying methodology for determining optimal solutions for sequential 

decision problems will be presented in this section. Classic texts of Denardo and Kirk present 

the underpinnings of the description presented here [74, 75]. The optimal solution is one way to 

measure the performance of any maintenance plan or policy. In other words, it is a useful 

benchmark that can be determined initially that provides some measure of how good or bad sub-

optimal maintenance policies are. One simple benchmark that can be used to designate one 

extreme outcome is to determine the worst possible solution, i.e. the solution that results in the 
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most energy usage, requires the most resources, or has the largest total cost. Alternatively, the 

solution that results in the least energy usage, requires the least resources, or has the lowest total 

costs could be determined. This optimal solution, and the methodology used for its determination, 

is presented in this section. 

Maintenance decision problems can be described as deterministic or as probabilistic. This 

classification stems predominantly from the type of model used to describe the timing and 

outcome of maintenance. In a deterministic model, the timing of maintenance and the results are 

known with certainty. A system that is subject to increasing operating costs as a function of the 

amount of equipment operation is a typical candidate for a deterministic model. When a 

probabilistic (or stochastic) model is used, the timing and result of maintenance depends on 

chance. A light bulb is a simple example of a stochastically failing system since its failure time is 

usually described using a probability distribution. Another complicating factor of probabilistic 

models is that the actual state of the system or equipment is not known with certainty. While 

probabilistic models offer interesting insights into maintenance decisions of different systems, 

the models used in this work will be deterministic in nature. 

The goal of the maintenance decision problem is to determine when the best times to perform 

maintenance occur. This sequence of decisions is the target. Moreover, in the solution 

procedure, a set of possible solutions are generated that can be used to decide what decision 

should be made, regardless of the time or equipment condition. This is the maintenance policy 

that guarantees, under the assumptions of the underlying model, optimal operating costs.  

Let the state at time t be tx . For a decision that begins at 0t  , we take as given the initial 

state 0x . At any time, the set of possible actions depends on the current state; we can write this 

as  t ta A x , where ta represents one or more control variables. In the case of maintenance 
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decision-making, 
ta represents any of the different service tasks we can perform on the air 

conditioner. We also assume the state changes from x to a new state ( , )T x a when action a is 

taken, and the current payoff (or cost) from taking action a in state x is ( , )F x a . Finally, we 

may assume the value of money now is greater than in the future using a discount factor 

0 1  . 

Under these assumptions, an infinite-horizon decision problem takes the following form: 

 
  

0

0 0
) mi ,( n

t t

t

t tt
a

V x F x a







  (6.4) 

subject to the constraints 

 

 1 ,

0,1,2,

t t

t t t

a

xT a

t

A x

x  







Notice that we have defined notation  0V x to denote the optimal value that can be obtained by 

minimizing (or maximizing) the objective function subject to the assumed constraints. This is the 

value function. It is a function of the initial state variable 0x , since the best value obtainable 

depends on the initial situation. 

The dynamic programming method breaks a decision problem into smaller sub-problems. 

Bellman's Principle of Optimality describes how to do this: 

Principle of Optimality: An optimal policy has the property that whatever the 

initial state and initial decision are, the remaining decisions must constitute an 

optimal policy with regard to the state resulting from the first decision [76]. 

As suggested by the Principle of Optimality, we will consider the first decision separately, 

setting aside all future decisions. Collecting the future decisions in brackets on the right, the 

previous problem is equivalent to 
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 (6.5) 

subject to the initial constraints 
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Here we are making one decision: choosing 
0a , knowing that our choice will cause the state at 

1t  to be  1 0 0,x T x a . That new state will then affect the decision problem from time 1t 

on. So far it seems we have only made the problem more difficult by separately the initial 

decision from the future decisions. However, we can simplify the above equation by noticing 

that what is inside the square brackets on the right is the value of the decision problem starting 

from state  1 0 0,x T x a . Therefore, we can rewrite the problem as a recursive definition of the 

value function 

      
0

0 0 0 1min ,
a

V x F x a V x   (6.6) 

subject to the initial constraints 
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1 0 0 .,

a

x T
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This is known as the Bellman Equation [74, 75].  It can be simplified further if we drop the time 

subscripts and substitute in the value of the next state, 

 
 

    min , , .
a xA

V x F x a T x aV


     (6.7) 

The Bellman Equation is classified as a functional equation because it involves solving for an 

unknown function V , which is the value function. Recall that the value function describes the 

best possible value of the objective, as a function of the state x . By calculating the value 
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function, we will also find the function  a x that describes the optimal action as a function of 

the state – this is called the policy function. 

Equation (6.7) describes how to calculate the value of following an optimal policy, however 

the sequence of actions must still be determined. One way to do this for deterministic problems 

is by a method call backwards-induction. In this methodology, the product of the set of possible 

states and set of possible actions at each state are determined for the next-to-last decision. Each 

of these combinations is analyzed and the action at each state that maximizes (or minimizes) the 

next-to-last value is assigned the optimal policy for each state. Following this, the procedure is 

repeated for the preceding decision stage. More explicitly, the product of the possible states and 

possible actions is determined and the action leading to the optimal ending value is recorded. 

The usefulness of this methodology is that since an optimal decision at the next-to-last decision 

stage has already been determined, no further optimization needs to be performed. In this way, 

the optimal policy function can be built piece-by-piece, i.e. for each decision stage back through 

time. Additionally, this procedure requires the least amount of computations since only feasible 

states and actions are analyzed at each step. 

6.3.2 Demonstration Results for Optimal Maintenance Schedules 

For different locations and fault rates, dynamic programming was used to determine the 

optimal maintenance policy function for the scenario tested.  The policy functions determined for 

different locations and fault rates are compared for refrigerant charge faults, condenser fouling 

faults, and evaporator fouling faults. In these simulations (and all remaining throughout this 

chapter), the costs to perform different service tasks are listed in Table 6.1. When multiple 

service tasks are performed, a 20% discount on the total cost is applied. The electric utility rate 
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used throughout the simulations was $0.15/kWh.  This rate was used at all the building locations 

considered and no peak demand charges were used in the electrical cost calculation. 

Table 6.1. Summary of service task costs used in equipment fault and maintenance simulations. 

When multiple tasks are performed, a 20% discount to the total cost is applied. 

Task Cost 

Add Refrigerant Charge $100 + $50/lb refrigerant 

Clean Condenser Coil $300 

Clean Evaporator / Filter $80 

Service decisions were considered on weekly intervals for all simulation scenarios 

considered and presented in this chapter. The expected equipment life was also assumed to be 

fixed at 15 years for all locations and scenarios. Thus, for each simulation, there were 

52 15 780  decision stages where service tasks could be performed or not. The fault levels 

considered at each decision stage were discretized to 1% intervals and linear approximation was 

used to determine the dynamic programming decision at each stage.  No discounting was used in 

the model, 1  . 

6.3.2.1 Refrigerant Charge Faults 

For a building in Miami using an air conditioner that leaks charge at a rate of 5% per year 

and has a maximum capacity that is 20% greater than the maximum load during the year, the 

optimal policy function is shown over the life of the equipment in Figure 6.1. The policy 

function can be used to determine the optimal service decision for any equipment state and time 

during the life of the system.  As a demonstrative example, the chart in Figure 6.1 can be used as 

follows. First locate the vertex corresponding to the age of the system (on the horizontal axis) 

and the amount of refrigerant charge (on the vertical axis). If the vertex selected is within the 

blue shaded region, refrigerant should be added to the system since the cost of service can be 
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repaid by future operational cost savings. On the other hand, if the vertex is located outside the 

shaded region, service should not be performed. 

Figure 6.1. Optimal service decision policy for refrigerant charge faults in Miami, FL for system 

that is 20% oversized to maximum annual load ( 0.2osf  ) and refrigerant leakage rate equal to 

5% per year. 

Also plotted on Figure 6.1 are the trended refrigerant charge levels for two systems with the 

same charge fault (5% leakage per year) but different initial charge levels (100% and 90%). The 

amount of refrigerant in the system decreases linearly with time, as described by the governing 

refrigerant charge leakage model previously in Chapter 5. When the amount of refrigerant in 

either system crosses the optimal service decision boundary, the optimal service policy would 

recommend adding refrigerant to the system.  Applying this decision rule at any instance in time, 

the optimal lifetime operating costs under the assumptions of the simulation will be obtained. 

It is interesting to compare the time-varying trends in refrigerant charge for each system 

shown in Figure 6.1. Because it started with lower refrigerant charge, the system with 90% 
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initial charge requires service before the system that starts with 100% charge. It is also 

noteworthy that each system is serviced exactly five time throughout the life of the simulation, 

regardless of the initial charge level. Furthermore, it can be shown that for any refrigerant 

charge level between 0% to 100%, a system will be service exactly five times throughout its life 

following the optimal service policy with 5% annually leakage. This result is an effect of the 

shape of the optimal decision boundary. 

Early in the simulation lifetime, the optimal boundary between adding refrigerant to the 

system and not performing service is largely a tradeoff between integrated energy and equipment 

cost impact and the cost to perform additional service tasks.  Performing service tasks more often 

would save on energy and equipment costs, at the expense of much higher lifetime service costs.  

On the other hand, performing service less frequently would saving on service costs by possibly 

performing less service tasks throughout the life, at the expense of much higher energy costs. 

The decision boundary changes over time for two reasons. First, there is a small seasonality 

component to the decision which causes the small ripple in the decision boundary with a period 

of 12 months. Because refrigerant leaks throughout the year and there is less cooling load in 

Miami in the winter months, it is slightly better to wait until the warmer months to do service. 

The decision boundary for Miami reaches a peak around the 7
th year. This is an effect on 

optimizing the lifetime operating costs over a finite interval. After the 7th year, the costs for 

performing service must be balanced by diminishing utility costs savings since there is no reward 

for finishing the simulation with an air conditioner with more charge (no salvage value).  In other 

words, the optimal service policy tolerates more leakage since the possible future utility costs 

savings are less than earlier in the simulation. 
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Finally, it should be noted that each system shown in Figure 6.1 has charge added around the 

th th11 and 12 years much before the systems’ charge levels intersect with the decision boundary. 

These service decisions are the result of comfort violations – the significant reduction in 

refrigerant charge resulted in insufficient cooling capacity to maintain the space temperature of 

the building.  Because there is a constraint to maintain comfort with the building, service must be 

performed. 

The optimal decision boundary depends on the rate of refrigerant leakage during the 

simulation. Two optimal decision boundaries are shown for two systems located in Miami 

leaking refrigerant at different rates in Figure 6.2. It is observed that when the leakage rate is 

greater, more service is required over the life of the system. However, the decision boundaries 

between the 5% per year and 15% per year leakage rates are different.  This is because the added 

costs required for additional service calls are expensive relative to the improvement in 

performance that can be gained by adding refrigerant.  It is also observed from the results shown 

in Figure 6.2 that service is performed for a greater percentage of the equipment life for the 

larger leakage rate. This is because the higher refrigerant leakage rates lead to increases in utility 

costs per unit time and makes performing service later in the simulation more economical. 
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Figure 6.2 Comparison of optimal decision boundaries for refrigerant charge faults in Miami, FL 

for system that is 20% oversized to maximum annual load ( 0.2
os

f  ) and fault leakage rate equal 

to 5% and 15% per year. 

The same refrigerant charge fault (5% leakage per year) has been simulated for a building 

located in Atlanta, GA that has a similarly sized system installed (scaled for the maximum 

cooling load during the year).  The optimal decision policy for this system is shown in Figure 6.3. 

In comparison to the Miami, FL optimal policy, a somewhat unexpected result can be observed.  

In this scenario, the decision boundary has peaks during the summer and valleys during the 

winter. This is due to the winter season, when the Atlanta building has a heating load, rather 

than a cooling load. In the Miami building, cooling was required all year round to some extent. 

This is because refrigerant leakage is a function of simulation time. If charge is added at the end 

of the fall season, the refrigerant would leak during the winter while never being used for cooling. 
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Figure 6.3. The optimal service schedule for Atlanta, GA when the system is assumed be initially 

fully charged. When service is performed, the charge level is returned to 100% (20% oversized 

to maximum annual load; fault leakage rate equal to 5% per year). 

Assuming the system starts from a fully charged initial condition, the optimal refrigerant 

charging schedule is shown in Figure 6.3. From the trends shown, refrigerant is typically added 

during the early spring months, when it is most economical to do so. In comparison with the 

Miami, FL location, refrigerant charging service is required less often. This is because the 

cooling season and total cooling requirement in Atlanta is less than in Miami. Thus, refrigerant 

charging service is costlier in comparison to the utility costs savings possible. Another common 

trend can be observed between the Miami and Atlanta simulations: near the end of the simulation, 

service is not performed. Because there is no salvage value assumed in the underlying 

optimization model, there is no economic benefit in performing service near the end of the 

equipment life. If there was some monetary return depending on the condition of the equipment 

at the end of the simulation, there dynamic programming methodology would extend the 

decision boundary. 
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The same fault (5% leakage per year) has been simulated for a building located in Chicago, 

IL with a similarly sized air conditioning system (scaled for the maximum cooling load during 

the year). The optimal decision policy for this system is shown in Figure 6.4. In this scenario, 

the decision boundary has peaks during the summer and valleys during the winter.  This is due to 

the winter season, when the Chicago building has a heating load, rather than a cooling load. In 

comparison to the Atlanta building, the Chicago building has wider valleys and narrow peaks 

due to the longer heating season and shorter cooling season. 

Figure 6.4. An example optimal service schedule for Chicago, GA when the system is assumed is 

initially fully charged. When service is performed, the charge level is returned to 100% (20% 

oversized to maximum annual load; fault leakage rate equal to 5% per year). 

Assuming the system starts from a fully charged initial condition, the optimal refrigerant 

charging schedule is shown in Figure 6.4. From the trends shown, refrigerant is added to the 

system twice during its expected life. In comparison with the Miami, FL and Atlanta, GA 

locations, refrigerant charging service is required less often. This is because the cooling season 
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in Chicago is relatively short and a significant amount of leakage occurs during the winter 

months. Thus, refrigerant charging service is costlier in comparison to the utility costs savings 

that are possible and less effective since more charge leaks during the winter months when no 

cooling is required. 

6.3.2.2 Condenser Fouling Faults 

For a building in Miami using an air conditioner that has a reduction in condenser airflow at 

a rate of 5% per 5000 hours of run-time due to condenser fouling and has a maximum capacity 

that is 20% greater than the maximum load during the year, the optimal service scheduling policy 

function is shown over the life of the equipment in Figure 6.5. The policy function can be used 

to determine the optimal service decision for any equipment state and time during the life of the 

system. 

Figure 6.5. An optimal service schedule for Miami, FL when the system starts with a clean coil 

(no reduction in condenser airflow). When service is performed, the condenser airflow level is 

returned to 100%, however a service cost is incurred (20% oversized to maximum annual load; 

condenser fouling rate equal to 5% per 5000 hours of run-time). 
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Assuming the system starts with an initially clean condenser coil, the optimal condenser 

cleaning schedule is shown in Figure 6.5. From the trends shown, the condenser is cleaned 

multiple times throughout its life – however the interval becomes larger with each cleaning.  This 

is because of end of life effects due to the finite interval the simulation is performed.  Since at the 

end of the simulation there is no salvage value for the equipment based on its condition, 

performing service towards the end of the simulation doesn’t not yield large benefits. This is 

also true because utility cost savings due to condenser coil cleaning see diminishing returns as 

the simulation approaches the end. It should be noted the last service decision shown in Figure 

6.5 was not effect of the optimal policy, but rather a comfort violation. The event service 

th thperformed between the 12 and 14 year was caused by high discharge pressure limits. When 

the compressor head pressure exceeds 550 psig, the cooling system is disabled causing a comfort 

violation until the condenser is cleaned. 

The same condenser fouling fault has been simulated for a building located in Chicago, IL 

that has been similarly over-sized by 20% (scaled for the maximum cooling load during the year).  

The optimal service decision policy for the system is shown in Figure 6.6.  Unlike the refrigerant 

charge leakage faults, there is less seasonal dependence on the condenser fouling service 

decision policy. This is because condenser fouling has been modeled as a linear function of 

equipment run-time. During the winter heating season since the equipment is not a heat pump, 

no equipment run-time is required, and condenser fouling does not increase. Additionally, more 

significant reductions in condenser airflow are required for service in comparison with the 

Miami, FL policy function. This is because Chicago has significantly less annual cooling load 

and condenser fouling service and requires more equipment utility cost savings to break even. 
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Figure 6.6. An optimal service schedule for Atlanta, GA when the system starts with a clean 

condenser coil (no reduction in condenser airflow). When service is performed, the condenser 

airflow level is returned to 100%, however a service cost is incurred (20% oversized to 

maximum annual load; condenser fouling rate equal to 5% per 5000 hours of run-time). 

Assuming the system starts with an initially clean condenser coil, the optimal condenser 

cleaning schedule for the system installed in Chicago IL is shown in Figure 6.6.  From the trends 

shown, the condenser is cleaned two times throughout its life. In comparison to the optimal 

schedule for the system installed in Miami that had the same condenser fouling rate, the optimal 

schedule for Chicago requires service less often. This is true for two reasons. First the annual 

cooling load in Chicago is much less than the annual cooling load in Miami. This makes 

performing condenser coil cleaning less economically effective since operating cost savings are 

smaller during the shorter cooling seasons. The second reason is also due to the shorter cooling 

season which reduces the annual equipment runtime requirement. Since there are less hours of 

equipment run-time in Chicago, it takes longer for the condenser coil to foul – decreasing the 

performance impacts. 
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6.3.2.3 Evaporator Fouling Faults 

For a building in Miami using an air conditioner that has a reduction in evaporator airflow at 

a rate of 5% per 5000 hours of run-time due to evaporator fouling and has a maximum capacity 

that is 20% greater than the maximum load during the year, the optimal service scheduling policy 

function is shown over the life of the equipment in Figure 6.7. The policy function can be used 

to determine the optimal service decision for any equipment state and time during the life of the 

system. For evaporator fouling service, only small levels of evaporator fouling are tolerated by 

the optimal service schedule. This is largely due to the relatively small costs for evaporator 

fouling service in comparison to annual cooling costs for the building in Miami, FL. 

Figure 6.7. An optimal evaporator cleaning service schedule for Miami, FL when the system 

starts with a clean evaporator coil (no reduction in evaporator airflow). When service is 

performed, the evaporator airflow level is returned to 100%, however a service cost is incurred 

(20% oversized to maximum annual load; evaporator fouling rate equal to 5% per 5000 hours of 

run-time). 
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Assuming the system starts with an initially clean evaporator coil, the optimal evaporator 

cleaning schedule is shown in Figure 6.7. From the trends shown, the evaporator coil is cleaned 

approximately once per year throughout its life – however the interval between service times 

becomes larger with each cleaning.  This is because of end of life effects due to the finite interval 

the simulation is performed. Since at the end of the simulation there is no salvage value for the 

equipment based on its condition, performing service towards the end of the simulation doesn’t 

yield large benefits.  This is also true because utility cost savings for evaporator coil cleaning see 

diminishing returns as the simulation approaches the final time step. In comparison to 

refrigerant charge service and condenser cleaning, these end of life impacts on the schedule are 

less important since the cost of evaporator filter replacement is significantly less than the other 

service tasks. 

For comparison, the same evaporator fouling fault has been simulated for a building located 

in Chicago, IL that has been similarly over-sized by 20% (scaled for the maximum cooling load 

during the year). The optimal service decision policy for the system is shown in Figure 6.8. 

Like the refrigerant charge leakage faults, there is an obvious seasonal dependence on the 

evaporator fouling service decision policy.  This is because evaporator fouling has been modeled 

as a linear function of indoor fan run-time. Due to ventilation requirements of the commercial 

building, this required the fan to operate whenever the building was occupied. During the winter 

heating season, the indoor fan must also run since it is traditionally used to blow air through the 

furnace for space heating. However, the utility cost penalty of this fault on operation of the vapor 

compression cooling equipment is only felt in the cooling season. In comparison to the system in 

Miami, the optimal service schedule permits slightly more evaporator fouling before service is 

required. This is because the operating costs calculated in the optimization problem only 
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consider performance impacts on cooling energy consumption. Since the annual cooling season 

is much shorter in Chicago than Miami, service can be performed less frequently. 

Figure 6.8. An optimal evaporator cleaning service schedule for Chicago, IL when the system 

starts with a clean evaporator coil (no reduction in evaporator airflow). When service is 

performed, the evaporator airflow level is returned to 100%, however a service cost is incurred. 

Assuming the system starts with an initially clean evaporator coil, the optimal evaporator 

cleaning schedule for the system in Chicago is shown in Figure 6.8. From the trends shown, the 

evaporator foil is cleaned approximately once every two years throughout its life – however the 

interval between service times becomes larger with each cleaning. This is because of end of life 

effects due to the finite interval the simulation is performed. Since at the end of the simulation 

there is no salvage value for the equipment based on its condition, performing service towards 

the end of the simulation doesn’t not yield large benefits. This is also true because utility cost 

savings because of evaporator coil cleaning see diminishing returns as the simulation approaches 

the final time step. In comparison to refrigerant charge service and condenser cleaning, these 
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end of life impacts on the schedule are less important since the cost of evaporator filter 

replacement is significantly less than the other service tasks. 

6.3.2.4 Combinations of Faults 

The optimal service schedule for a building located in Miami, FL that has multiple faults 

evolving over time was determined using dynamic programming. The fault rates for each fault 

are summarized in Table 6.2. The refrigerant charge in the system leaked 5% per year of 

simulation time.  The condenser airflow rate was reduced by condenser coil fouling at a rate of 5% 

per 5000 hours of condenser fan runtime.  The evaporator airflow rate was reduced by evaporator 

coil fouling at a rate of 5% per 5000 hours of evaporator fan runtime. 

Table 6.2. Summary of fault evolution rate parameters used in first multiple fault simulation and 

service scheduling optimization. 

Task Cost 

Refrigerant Charge Leakage Rate 5% per year 

Condenser Fouling Rate 5% per 5000 hours condenser fan runtime 

Evaporator Fouling Rate 5% per 5000 hours evaporator fan runtime 

The optimal service schedule for the system in Miami, FL with the faults described in Table 

6.2 is shown in Figure 6.9. Because the optimal decision boundaries for each service task also 

depend on the other fault levels, it is not possible to show the optimal policy decision threshold 

as was done previously. Instead, the trended fault levels are plotted in Figure 6.9. It can be 

observed that the optimal service schedule tends to group multiple service tasks into each service 

interval. This occurs because of the 20% discount applied to the service costs when multiple 

faults are serviced at the same time. 
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Figure 6.9. Optimal service schedule for system located in Miami, FL with multiple faults 

(described in Table 6.2). The optimal schedule tends to group multiple service tasks at each 

service interval. 

For comparison, the same building located in Miami, FL was simulated with different fault 

rates. The fault rates for each fault used in the second scenario are summarized in Table 6.3. 

The refrigerant charge in the system leaked 5% per year of simulation time (the same rate as the 

previous scenario). The condenser airflow rate was reduced by condenser coil fouling at a rate 

of 2% per 5000 hours of condenser fan runtime. The evaporator airflow rate was reduced by 

evaporator coil fouling at a rate of 10% per 5000 hours of evaporator fan runtime. 

Table 6.3. Summary of fault evolution rate parameters used in second multiple fault simulation 

and service scheduling optimization. 

Task Cost 

Refrigerant Charge Leakage Rate 5% per year 

Condenser Fouling Rate 2% per 5000 hours condenser fan runtime 

Evaporator Fouling Rate 10% per 5000 hours evaporator fan runtime 
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The optimal service schedule for the second scenario in Miami, FL with the faults described 

in Table 6.3 is shown in Figure 6.10. Like in the previous scenario, the optimal service schedule 

tends to group multiple service tasks into each service interval. Moreover, evaporator fouling 

faults are serviced at each service interval. Because the evaporator fouling service task is the 

least expensive and the cost is relatively small compared to annual cooling e nergy costs, 

performance benefits from evaporator cleaning can overcome any service cost relatively quickly. 

At the end of the simulation, the refrigerant charge and condenser fouling decreased significantly 

since service was not performed. 

Figure 6.10. Optimal service schedule for system located in Miami, FL with multiple faults 

(described in Table 6.3). The optimal schedule tends to group multiple service tasks at each 

service interval. 
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6.4 Periodic Service Policies 

6.4.1 Description and Implementation of Periodic Service Policies 

Implementing periodic service policies is relatively straightforward and can easily be 

compared with optimal service policies using the simulation framework. In these policies, a 

service technician is assumed to visit the air conditioning system at regular intervals and perform 

any preventative maintenance that is needed. In many commercial buildings, service contracts 

between the building owner and HVAC service providers are often implemented which 

approximate periodic service policies.  In these contracts, the service provider generally agrees to 

visit the site a fixed number of times per year and perform a variety of preventative maintenance 

tasks in return for some fixed costs paid by the building owner. While service may not be 

performed at exact intervals (i.e. every six months), service time between service visits is 

approximately constant (i.e. annually, biannually, or quarterly). 

In this work, an additional assumption about how periodic service is performed may not be 

exactly true in a real application. The periodic service contract that is implemented within the 

simulation requires each service task to be completed at every visit. In other words, evaporator 

cleaning, condenser cleaning, and refrigerant charge adjustment is performed whenever the 

service technician visits the site if the fault levels are not normal (i.e. service to repair a fault is 

not performed if it is not considered in the simulation). In a real scenario, the service technician 

may not perform all tasks during every visit.  Rather, the technician may only inspect the system 

to determine if maintenance is needed based on experience. If these inspections are permitted 

within the service contract, rather than requiring that each task is performed per visit, it may 

decrease the service costs. 

Inspection policies were not investigated or implemented in this work since it requires some 

assumptions about how the service technician perceives the equipment state and when service is 
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needed. In real scenarios, performing on-site inspections is generally a good idea since it may 

provide valuable insights into how a system is performing. For instance, a service technician 

may clean the condenser coil if they notice it is covered in debris. On the other hand, minor 

condenser fouling would be ignored if the condenser looks mostly clean.  In the simulation, these 

considerations are not modeled. Rather, the service technician will perform different service 

tasks regardless of the severity of the faults. 

6.4.2 Demonstration Results of Periodic Service Policies 

Using the periodic service policy implementation, the simulation framework was used to 

compare the operating costs of periodic service schedules with optimal service schedules.  These 

comparisons were performed for the different buildings considered in this work with equipment 

that was oversized by 20% for the maximum cooling load over the year in each location. 

Different fault rates were also considered to determine the sensitivity of fault rates on annual 

operating costs using periodic service schedules. 

A comparison between the trended refrigerant charge levels for a system that is serviced 

annually and biennially leaks 5% of its refrigerant charge annually for a system installed in 

Miami, FL is shown in Figure 6.11. In comparison to the optimal decision boundary, Figure 

6.11 shows that the annual and biennial service schedules perform service too often for a 5% 

leakage fault. Using these schedules, annual utility costs are less than the utility costs obtained 

using the optimal schedule. However, service costs are much greater since service is performed 

more often over the life of the equipment.  Figure 6.11 also shows that periodic service schedules 

do not consider the payback time required to breakeven towards the end of equipment life. This 

accounts for much higher lifetime service costs. 
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Figure 6.11. Comparison of lifetime refrigerant charge levels for system located in Miami, FL 

with a leakage rate of 5% percent per year using biennial and annual periodic service schedules. 

Integrating the operating costs over the simulation time, the average annual operating costs of 

the two different periodic service schedules for a system installed in Miami, FL are shown in 

Figure 6.12 for different refrigerant leakage rates. Compared to the optimal service schedules, 

the periodic service schedules are often at least 10% greater than the optimal average annual 

costs.  The annual and biennial intersect when the annual refrigerant leakage rate is equal to 23%. 

When this occurs, the additional cost of performing service annually is equal to the additional 

utility costs when the performing service biennially. 
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Figure 6.12. Comparison of average annual operating costs for system located in Miami, FL with 

different refrigerant charge leakage rates using biennial and annual periodic service schedules. 

The additional annual operating costs relative to the optimal schedules for the two periodic 

service policies at a building located in Miami, FL are shown for different leakage rates in Figure 

6.13. As the leakage rates become greater, the periodic service intervals tend to approach the 

optimal service schedules. This is because the service interval approaches the service optimal 

service interval. This is also partly due to the end-of-life effects becoming less significant since 

the payback time required to breakeven on service costs becomes shorter. 
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Figure 6.13. Additional lifetime operating costs comparison between annual and biannual service 

schedules for building located in Miami, FL with different refrigerant leakage rates. 

A comparison between the trended refrigerant charge levels for a system that is serviced 

annually and biennially and that leaks 5% of its refrigerant charge annually for a system installed 

in Chicago, IL is shown in Figure 6.14. In comparison to the optimal decision boundary, Figure 

6.14 shows that the annual and biennial service schedules perform service too often for a 5% 

leakage fault. In comparison to much greater annual cooling loads in Miami, FL, the periodic 

service intervals occur significantly more frequently than would be optimal. Using these 

schedules, annual utility costs are less than the utility costs obtained using the optimal schedule. 

However, service costs are much greater since service is performed more often over the life of 

the equipment. Figure 6.14 also shows that periodic service schedules do not consider the 

payback time required to breakeven towards the end of equipment life. This accounts for much 

higher lifetime service costs. 
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Figure 6.14. Comparison of lifetime refrigerant charge levels for system located in Chicago, IL 

with a leakage rate of 5% per year using biennial and annual periodic service schedules. 

The operating costs were integrated over the simulation time to determine the average annual 

operating costs of the two different periodic service schedules.  These average costs over a range 

of refrigerant leakage rates are shown for the building system located in Chicago, IL in Figure 

6.15. Because annual energy costs in Chicago are much lower than in Miami, the impact of 

annual and biennial service schedules is relatively greater.  
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Figure 6.15. Lifetime average annual operating cost comparison between annual and biannual 

service schedules for building located in Chicago, IL with different refrigerant charge leakage 

rates. 

The additional annual operating costs relative to the optimal schedules for the two periodic 

service policies at a building located in Chicago, IL are shown for different leakage rates in 

Figure 6.16.  As the leakage rates become greater, the periodic service intervals tend to approach 

the optimal service schedules. This is because the service interval approaches the service 

optimal service interval. This is also partly due to the end-of-life effects becoming less 

significant since the payback time required to breakeven on service costs becomes shorter. In 

comparison to the Miami, FL results, annual and biennial periodic service schedules are costlier 

relative to the optimal service schedule for the Chicago application. This is because the annual 

cooling loads are much less (25% of the cooling loads in Miami). For constant service costs 

between the two locations, this makes service costs more expensive relative to the utility costs in 

each location. 
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Figure 6.16. Additional lifetime operating costs comparison between annual and biannual service 

schedules for building located in Chicago, IL with different refrigerant leakage rates. 

A comparison between the trended condenser airflow levels for a system installed in Miami, 

FL that is serviced annually and biennially is shown in Figure 6.17. To generate this 

comparison, a condenser fouling rate of 5% per 5000 hours of condenser fan runtime was 

simulated. In comparison to the optimal decision boundary, Figure 6.11 shows that the annual 

and biennial service schedules perform service too often. Using these schedules, annual utility 

costs are less than the utility costs obtained using the optimal schedule. However, service costs 

are much greater since service is performed more often over the life of the equipment. Figure 

6.17 also shows that periodic service schedules do not consider the payback time required to 

breakeven towards the end of equipment life. This accounts for much higher lifetime service 

costs. 
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Figure 6.17. Comparison of lifetime condenser fouling levels for system located in Miami, FL 

with a condenser fouling rate of rate of 5% percent per 5000 hours of condenser fan runtime 

using biennial and annual periodic service schedules. 

Integrating the operating costs over the simulation time, the average annual operating costs of 

the two different periodic service schedules for the system installed in Miami, FL are shown in 

Figure 6.18 over a range of condenser fouling rates (per 8760 hours of condenser fan runtime). 

Compared to the optimal service schedules, the periodic service schedules are always greater 

than the optimal average annual costs. The annual and biennial schedules intersect when the 

annual condenser fouling rate is equal to 22% per year of condenser run-time.  When this occurs, 

the additional cost of performing service annually is equal to the additional utility costs when 

performing service biennially. 
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Figure 6.18. Comparison of average annual operating costs for system located in Miami, FL with 

different condenser fouling rates using biennial and annual periodic service schedules. 

The additional annual operating costs relative to the optimal schedules for the two periodic 

service policies at a building located in Miami, FL are shown for different condenser fouling 

rates in Figure 6.19. As the condenser fouling rates become greater, the periodic service 

intervals tend to approach the optimal service schedules. This is because the service interval 

approaches the service optimal service interval - for faster condenser fouling, the additional 

energy consumed makes more frequent condenser cleaning economical. This is also partly due 

to the end-of-life effects becoming less significant since the payback time required to breakeven 

on service costs becomes shorter. 
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Figure 6.19. Additional lifetime operating costs comparison between annual and biannual service 

schedules for building located in Miami, FL with different condenser fouling rates. 

To understand the sensitivity to periodic service costs for different annual cooling loads, the 

same condenser fouling faults were simulated for a building in Chicago, IL. The trended 

condenser airflow levels for the system that is serviced annually and biennially are shown in 

Figure 6.20. In comparison to the optimal decision boundary, Figure 6.20 shows that the annual 

and biennial service schedules perform service too often. In comparison to much greater annual 

cooling loads in Miami, FL, the periodic service intervals occur significantly more frequently 

than would be optimal. Using these schedules, annual utility costs are less than the utility costs 

obtained using the optimal schedule. However, service costs are much greater since service is 

performed more often over the life of the equipment. Figure 6.20 also shows that periodic 

service schedules do not consider the payback time required to breakeven towards the end of 

equipment life.  This accounts for much higher lifetime service costs. 
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Figure 6.20. Comparison of lifetime condenser airflow levels for system located in Chicago, IL 

with a condenser fouling rate of 5% 5000 hours of condenser fan runtime using biennial and 

annual periodic service schedules. 

The operating costs were integrated over the simulation time to determine the average annual 

operating costs of the two different periodic service schedules.  These average costs over a range 

of condenser fouling rates are shown for the building system located in Chicago, IL in Figure 

6.21. Because annual energy costs in Chicago are much lower than in Miami, the impact of 

annual and biennial service schedules is relatively greater.  
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Figure 6.21. Lifetime average annual operating cost comparison between annual and biannual 

service schedules for building located in Chicago, IL with different condenser fouling rates. 

The additional annual operating costs relative to the optimal schedules for the two periodic 

service policies at a building located in Chicago, IL are shown for different condenser fouling 

rates in Figure 6.22. In comparison to the Miami, FL results, annual and biennial periodic 

service schedules are costlier relative to the optimal service schedule for the Chicago application. 

This is because the annual cooling loads are much less (25% of the cooling loads in Miami). For 

constant service costs between the two locations, this makes service costs more expensive 

relative to the utility costs in each location. For condenser fouling service, it is also observed 

that the annual and biennial additional operating costs do not intersect. This indicates the 

additional energy savings that might be obtained by cleaning the condenser coil twice per year 

does not make up for the additional service cost. 
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Figure 6.22. Additional lifetime operating costs comparison between annual and biannual service 

schedules for building located in Chicago, IL with different condenser fouling rates. 

6.5 Emergency Service Policies 

6.5.1 Description and Implementation of Emergency Service Policies 

Whereas periodic service policies can be viewed as proactive, emergency service policies can 

be considered reactive.  In this policy, service is performed only when a comfort violation occurs 

due to insufficient cooling capacity provided by the air conditioning equipment. In this work, 

comfort is violated when the temperature in the space exceeds the setpoint by 1.1 °C (2.0 °F) for 

a continuous interval of 4 hours or longer. When comfort is violated, service is performed 

immediately – evaporators are cleaned, condensers are cleaned, and refrigerant charge is adjusted. 

In real situations, a time lag between when comfort is violated and when service is performed 

may be significant. This is especially true depending on the time of year service is needed: 

service technicians may be very busy during peak cooling months, while they may be more 
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available during the shoulder seasons. The seasonal availability and costs are not considered in 

this work. 

Emergency service policies may contribute to large operating costs for oversized systems 

since capacity violations may not occur until faults have degraded performance significantly. 

Additionally, emergency policies may incur higher operating costs than periodic service policies 

for faults that have limited impacts on cooling capacity, e.g. condenser fouling. When condenser 

fouling occurs, the significant impacts are increased head pressure and energy consumption. 

Comfort violations caused by condenser fouling may never occur and can lead to significant time 

between service intervals. One measure that has been implemented within the simulation that 

triggers comfort violations because of condenser fouling is a high-pressure limit. In normal 

systems, high pressure limit switches are typically installed to protect the compressor from 

operating outside the manufacturer’s suggested operating envelope. When the head pressure 

exceeds the high-pressure limit, the air conditioner is disabled until service is performed. 

6.5.2 Demonstration Results of Emergency Service Policies 

The trended refrigerant charge level for a system located in Miami, FL that is serviced when 

comfort is violated is shown in Figure 6.23.  In comparison to the optimal decision boundary, the 

emergency service policy allows the refrigerant in the system to go well below the optimal 

decision boundary. This results in higher rates of utility consumption due to degraded cooling 

capacity and system efficiency. Service is required when the cooling capacity is degraded 

enough to cause comfort violations.  For this scenario, this occurs when the capacity degrades by 

approximately 20% (though can be more during the off-peak seasons). Because service is 

performed only when needed, lifetime service costs are generally considerable lower than 

policies that require service annually or biennially. 
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Figure 6.23. Trended refrigerant charge for an air conditioner with refrigerant leaking at a rate of 

5% per year located in Miami, FL over life of equipment when an emergency service policy is 

used.  Service is performed with insufficient capacity causes comfort violations. 

The operating costs were integrated over the simulation time to determine the average annual 

operating costs for the emergency service policy. This was repeated for different refrigerant 

leakage rates and the results are shown in Figure 6.24. The results show that emergency service 

policies for refrigerant charge leakage tend to have higher operating costs.  Additionally, there is 

much more variability in the trend when compared with the periodic maintenance policies. This 

is because of the somewhat random timings of comfort violations. Additionally, it should be 

noted that emergency policies approach the optimal service costs when refrigerant leakage rates 

become small.  This is expected since a system without faults would never require service. 
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Figure 6.24. Comparison of average annual service costs for system in Miami, FL with different 

refrigerant charge leakage rates using optimal and emergency service policies. 

For comparison, the same fault was simulated for a system located in Chicago, IL. The 

trended refrigerant charge level of the system that is serviced when comfort is violated is shown 

in Figure 6.25. In comparison to the optimal decision boundary, the emergency service policy 

allows the refrigerant in the system to go below optimal decision boundary, but not as much 

compared to the decision boundary for the Miami location. This will result in slightly higher 

rates of electric energy consumption due to degraded cooling capacity and system efficiency. 

Service is performed when the cooling capacity is degraded enough to cause comfort violations. 

Since the cooling loads are much less than the loads in Miami, the service costs required for the 

Chicago location are less. 
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Figure 6.25. Trended refrigerant charge for an air conditioner with refrigerant leaking at a rate of 

5% per year located in Chicago, IL over life of equipment when an emergency service policy is 

used.  Service is performed with insufficient capacity causes comfort violations. 

The operating costs were integrated over the simulation time to determine the average annual 

operating costs for the emergency service policy. This was repeated for different refrigerant 

leakage rates and the results are shown in Figure 6.26. The results show that emergency service 

policies for refrigerant charge leakage tend to have higher operating costs. Compared to the 

results obtained for the system in Miami, there is less variation in the average annual operating 

costs for the system in Chicago. This is because the annual cooling costs in Chicago are 

relatively small in comparison to the service costs.  Thus, the increases in annual operating costs 

is largely dependent on the number of time the equipment is serviced throughout it life, which is 

strongly dependent on the leakage rate. 
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Figure 6.26. Comparison of average annual service costs for system in Chicago, IL with different 

refrigerant charge leakage rates using optimal and emergency service policies. 

6.6 Condition-based Service Policies 

Rather than performing service at fixed intervals or solely when comfort violations occur, an 

alternative policy based on the actual condition of the air-conditioner could be used instead. For 

example, service could be performed only when a significant fault is present if the air conditioner 

has an automated fault detection and diagnostics system installed. Furthermore, instead of 

calling for service when a fault is detected or diagnosed, virtual sensors could be used to call for 

service when performance has degraded past a certain point. For example, the virtual cooling 

capacity sensor could be used to monitor capacity degradation and call for service when system 

capacity decreases below 10% of the normal capacity. 

Using real-time data to prioritize maintenance by observing the state of the system is known 

as condition-based maintenance. In comparison to emergency service policies, condition-based 

maintenance may reduce comfort violations since maintenance could be performed before 
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capacity is degraded significantly. In comparison to periodic maintenance policies, condition-

based maintenance may reduce operating costs by requiring service time only when significant 

faults exist. A problem with periodic service policies is that the underlying assumptions about 

the building loads and rate of performance degradation must be estimated a-priori or re-evaluated 

annually (or at some other interval).  If building loads change or the rates of degradation change, 

the condition-based maintenance policy would be able to adapt.  

Three condition-based service policies were implemented using the simulation framework to 

determine how operating costs are affected. The first policy performed service when the total 

cooling capacity degradation exceeded a threshold, cool , 

1

0

cool coolFIR




 (6.8) 

where coolFIR is the ratio of actual cooling capacity to normal cooling capacity at the current 

operating condition (described in Chapter 3), 1 is the decision rule to perform service, and 

is the decision rule to not perform service. The second policy performed service when the COP 

0

was degraded more than a threshold, COP , 

1

0

COP COPFIR




 (6.9) 

where COPFIR is the ratio of actual COP to normal COP at the current operating conditions 

(described in Chapter 3). The last policy considered the impact on energy consumption and 

performed service when the electrical energy consumed by the system exceeded a threshold, 

elec , 

1

0

elec elecFIR




 (6.10) 
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where 
elecFIR is the ratio of actual energy consumed by the system to the normal energy 

consumption of the system at the same operating condition. Demonstrative results for these 

strategies will be discussed in Section 6.7 for multiple simultaneous faults. 

6.7 Operating Cost-based Service Policies 

To this point, several types of maintenance strategies have been implemented and examined 

using the simulation framework developed in the work. Reactive strategies (emergency service 

policies) were studied and were shown to be problematic when equipment is significantly 

oversized relative to the building load and require comfort violations before service is requested.  

Proactive maintenance strategies, like periodic service, may reduce comfort violations and 

decrease utility cost impacts. However, if periodic service is scheduled too often, additional 

service costs may outweigh any utility cost savings accrued by keeping equipment in tip-top 

shape. Periodic service intervals should be adjusted if building loads change or equipment starts 

to degrade at different rates overtime. To account for these changes, condition-based service 

strategies may be applied to equipment with automated fault detection and diagnostics systems. 

Comparing the actual performance of the equipment with a model of normal performance, 

service decisions can be requested when performance has been degraded significantly. 

Identifying the optimal degradation threshold is not trivial and depends on the equipment sizing 

and rate of degradation over time. 

To overcome these limitations, automated fault detection and diagnostics systems can be 

extended even further to account for operating cost impacts of running equipment with faults and 

performing service over time. In other words, heuristics or simplifications to the underlying 

maintenance decision problem formulation can be applied to approximate the optimal solution in 

real-time. Rossi and Braun have developed an operating cost based service policy previously 
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(described in Section 6.7.1) [73]. One limitation of the Rossi and Braun’s simplified approach is 

that it cannot directly handle multiple simultaneous faults. An extension of this policy has been 

developed and implemented that can be used to determine when to perform service of multiple 

faults in Section 0. 

6.7.1 Rossi and Braun’s Near Optimal Service Policy 

Rossi and Braun previously developed a service decision rule based on the cost of service 

( 
sC ) and electricity cost ( 

uC ) given by 

 
0

0

1

, s

t

u
t

t t tC h x f d Ct



 (6.11) 

where 0t is the time since service was last performed, and the net accumulated energy 

consumption benefit to perform service task ia is given by 

       11 1 1 11, , , ,run
t t t t t t t t t tt t

h

h x
t

f h f fx h x xh f


    
    


(6.12) 

where tx represents the external driving conditions that affect system performance, tf is a vector 

containing each fault level, and h is the time constant of a low pass filter used to reduce the 

diurnal fluctuations on system performance and ensure h is an increasing function. 

The estimated power consumption savings for performing service at any time are calculated 

using 

     0,, ,t t t t th x P x f P x ff   (6.13) 

where ,( )tP x  is a function that estimates the power consumption of the system at given driving 

conditions and fault levels, and 
0f is the equipment state immediately after service (when all the 
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fault levels have returned to normal). The rule states that a service task should be performed 

when the accumulated energy impact (the left-hand-side) since the last service is greater than the 

service cost (right-hand-side). 

The step-by-step procedure adapted from Rossi and Braun for the simplified service 

scheduler has been summarized below [73]. 

1. Set the cost of energy ( 
uC ) and the cost of performing the service task to repair the 

fault ( 
sC ) that is degrading system performance. 

2. Initialize a model that estimates the expected power consumption with no 

performance degradation as a function of the measured driving conditions  0,tP x f . 

3. Initialize accumulator variables to zero: 
th and tH . 

4. At each decision interval (e.g. every hour), measure the power consumption, driving 

conditions (e.g. ambient temperature), and run-time. 

5. Update the accumulator variables using the following equations: 
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6. Compare  with 0. If 0  , then perform the service task and reset the 

accumulator variables.  Additionally, if comfort violations have occurred, perform the 

service task. 

7. Wait until the next service decision interval and then return to Step 4. 
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The simplified service decision policy developed by Rossi and Braun was implemented 

within the simulation framework and example results were generated for systems with different 

faults imposed. 

6.7.2 Modification for Multiple Simultaneous Faults 

A significant limitation to the methodology developed by Rossi and Braun is that decisions 

between different maintenance tasks cannot be directly handled [73]. This is because only the 

total utility cost impact is considered, and the relative importance of multiple faults is not 

estimated.  Thus, it is impossible to calculate the net benefit of performing different service tasks 

and selecting the option that provides the maximum benefit at each decision stage.  For example, 

when an air conditioner has relatively minor condenser fouling, yet significant evaporator 

fouling – the optimal service task is often to change the evaporator air filter only since it is 

relatively inexpensive and the evaporator fouling likely impacts the system more significantly 

than the condenser fouling. Using Rossi’s method, this service task would be delayed until the 

utility cost impact became greater than the cost of evaporator fouling service and condenser 

fouling service.  As a result, the system operates at a lower average net efficiency. 

In order to improve the original simplified method developed by Rossi and Braun, previously 

described virtual sensor approaches for automated fault detection and diagnostics (Chapter 2) 

and fault impact evaluation models (Chapter 3) are used within a modified method to the 

estimate benefits of performing different service tasks.  The inclusion of these measures provides 

two sources of information that can make deciding between service tasks possible: measured 

fault levels and isolated fault impacts. The remainder of this Chapter will describe an algorithm 

for deciding between service tasks step-by-step and will present simulated comparisons between 

the different maintenance methods for multiple fault scenarios. In addition to handling multiple 
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fault service decisions, the operating cost function was modified to include equipment cost 

impacts that account for the effects of increased equipment run-time on replacement costs. 

The classification rule of Rossi and Braun has been modified to inform the service action 

taken at any point in time, t , 

     
0,

0

, , , ,
i

i
t t t i i

t

t
e t s i iu t tC h x f a C g x f a dt a AC a





       (6.14) 

where 
0,it is the time since the 

thi component was previously serviced, 
uC is the cost per unit 

time of electricity consumption, 
eC is the time averaged equipment replacement costs assuming 

the system has a finite number of run-time hours,  s iC a is the service cost required to perform 

service task ia to repair the 
thi component, the net accumulated energy consumption benefit to 

perform service task ia is given by 

        1 11 1 1 1
,, , , , , , ,run

t t t i t t i t t t i t t i

h

t t

t
h hx x hhf a f a f a f ax x


    




  (6.15) 

and the net accumulated equipment runtime saving to perform service task ia is given by 

        1 1 1 1
, , , , , , , ,run

t t t i t t t i t t t i t t t i

g

t
g f a g f a g f a g fx x x x a


   


   (6.16) 

where tx represents the external driving conditions that affect system performance, tf is a vector 

containing each fault level, and h , 
g are the time constants of low pass filters used to reduce 

the diurnal fluctuations on system performance and ensure h and g are increasing functions. 

The estimated power consumption savings for performing service task ia at any time are 

calculated using 

       0, ,, ,t t i t t t i th x P x xf f Pa faa  (6.17) 
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where ,( )tP x  is a function that estimates the power consumption of the system at given driving 

conditions and fault levels, 
0a is the “do nothing” service task which has a functional form given 

by 

 0 t ta f f (6.18) 

which states the “do nothing” service task has no impact on the fault levels of the system and the 

thi service task repairs selected faults 

  .i

i

t ta f f (6.19) 

Conceptually, this means when action 
ia is applied to the system, the fault levels affected by the 

service task are returned to their normal values (as if the faults did not exist). The result of 

Equation (6.17) is the difference between power consumption for the current fault levels and the 

power consumption for the system if the service task was performed on the system. 

In a similar manner, the runtime savings for performing service task ia is given by 

       0, ,, ,t t i t t t i th f a t tx x f x faa   (6.20) 

where , )( tt x  is a function that estimates the run-time requirement of the system at given 

driving conditions and fault levels. Equations (6.17) and (6.20) can be evaluated using the 

models described in Chapter 3. 

Despite the rather complex mathematical formulation, the decision rule described by 

Equation (6.14) has a relatively straightforward explanation. The rule states that for all service 

tasks that can be applied to the system at each decision interval, a service task should be 

performed when the accumulated energy and equipment cost impacts (the left-hand-side) is 

greater than the service cost required to perform the task (right-hand-side). In order to account 
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for discounted service costs when performing multiple service tasks at the same time, unions 

between multiple service actions should be included in the set of available service actions, A . 

The step-by-step procedure for implementing a simplified service scheduler that considers 

multiple simultaneous faults has been summarized below. 

1. Set the cost of energy ( 
uC ), the equipment cost ( 

eC ), and define a function for 

 s iC a )determining costs of performing different service tasks to repair the faults ( 

that is degrading system performance. 

2. Initialize a model that estimates the expected power consumption with performance 

degradation as a function of the measured driving conditions,  , ,t t iP x f a , and the 

 , ,t t ift x a .expected run-time for the given driving conditions, 

3. Initialize accumulator variables to zero: ( )iH t and ( )ih t . 

4. At each decision interval (e.g. every hour), measure the power consumption, driving 

conditions (e.g. ambient temperature), fault levels, and run-time. 

5. For all service actions, update the accumulator variables using the following 

equations: 
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6. Compare 
i with 0. If 0i  , then perform the service task and reset the 

accumulator variables. Additionally, if a service task is performed, reset other 

accumulator variables that include the service task. If comfort violations have 

occurred, perform the service task. 

7. Wait until the next service decision interval and then return to Step 4. 

The modified service decision rule that considers multiple service actions was implemented 

in the simulation framework and evaluated for different combinations of faults. Because 

choosing combinations of fault rates is somewhat arbitrary due to the lack of reliable fault 

prevalence data, rates for refrigerant charge leakage, condenser fouling, and evaporator fouling 

were sampled from random distributions [9]. To consider a relatively wide range of 

combinations of fault rates, uniformly distributed random samples were chosen. For refrigerant 

leakage fault rates, a uniformly distributed random sample between 0% to 20% leakage per year 

was selected for each trial. For condenser fouling fault rates, a uniformly distributed random 

sample between 0% to 20% per 5000 hours of condenser fan runtime was selected for each trial. 

For evaporator fouling fault rates, a uniformly distributed random sample between 0% to 20% 

per 5000 hours of evaporator fan runtime was selected for each trial. A distribution of 200 

samples was randomly selected from the distributions described and is shown in Figure 6.27. 
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Figure 6.27. Distribution of randomly sampled fault rates used to evaluate the performance of 

different service decision strategies for multiple fault scenarios. 

After sampling the fault rates randomly, the optimal service decision policy and optimal 

lifetime operating costs for locations in Miami, Atlanta, and Chicago were determined for 

scenarios with each combination of faults. Next, the simulations at each location and fault 

combination were repeated using the different service policies previously described. The result 

of this process was a distribution of lifetime operating costs for each location and service policy 

studied. Finally, the lifetime operating cost of each policy was compared with the corresponding 

optimal operating cost. 

The resulting distributions of additional lifetime operating costs relative to optimal costs 

using the original (unmodified) service scheduler developed by Rossi and Braun for the random 

sample of fault combinations are shown in Figure 6.28. In this policy, the total accumulated 

energy impact is estimated and used to calculate the additional utility cost due to faults. At each 

decision interval, the net utility costs are compared to the costs of performing the three service 
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tasks: adding refrigerant, cleaning the condenser coil, and changing the evaporator coil filter.  

Because all three service tasks are considered, this requires greater accumulated utility cost 

impact before service is performed. The additional lifetime operating costs relative to the 

optimal costs in Miami, Atlanta, and Chicago were 6.9%, 7.4%, and 8.7% respectively.  Because 

Miami has the longest cooling season, this location has higher normal electrical energy 

consumption for cooling than the other locations. This makes preventative maintenance more 

cost effective since larger energy consumption savings are possible. The additional costs in 

Atlanta and Chicago are greater than Miami due to lower cooling load requirements. These 

locations also have a winter season, where no cooling is required which makes the service policy 

less effective. This is because the policy is not able to quantify the impact of charge leakage 

during the winter months – which makes doing service late in cooling season possible and 

creates a lag in the spring before accumulated impacts become greater than the cost of service.  

These are two behaviors the optimal policy can avoid since the optimization horizon is over the 

entire equipment life. 
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Figure 6.28. Additional lifetime operating costs relative to optimal lifetime costs when the 

simplified service decision methodology developed by Rossi and Braun is used to service 

multiple faults in three different locations. 

The distributions of additional lifetime operating costs using the modified service scheduler 

that considers multiple service tasks for the random sample of fault combinations is shown in 

Figure 6.29. In this policy, the total accumulated energy impacts for different faults are 

estimated and used to calculate the additional utility cost consumed. At each decision interval, 

the net utility costs are compared to the costs of performing different combinations of service 

tasks. When the cost of one of the combinations of service tasks becomes less than the 

accumulated utility costs for the corresponding faults, service is performed. The additional 

lifetime operating costs relative to the optimal costs in Miami, Atlanta, and Chicago were 3.7%, 

5.5%, and 5.7% respectively. Compared to the simplified service scheduler developed by Rossi 
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and Braun, additional operating costs savings are possible using the methodology that isolates 

the impacts of different faults.  The remaining costs above the optimal operating costs are caused 

by suboptimal scheduling around the winter season and not considering end of life payback 

intervals. 

Figure 6.29. Additional lifetime operating costs relative to optimal lifetime costs when the 

modified service decision methodology that considers multiple service tasks is used to service 

multiple faults in three different locations. 

The results collected from the annual and biennial service policies for each location are 

shown in Figure 6.30 and Figure 6.33. These results show that annual service policies generally 

increase operating costs for the faults considered. This is because the cost for service is 

significantly greater than typical utility cost savings that are possible on a year over year basis.  
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For systems in locations with higher cooling loads, annual service has lower lifetime operating 

costs. Biennial service policies reduce operating costs compared to annual service policies. 

However, they still have relatively high costs when compared with the policies that consider 

accumulated operating costs estimates. It should also be noted that for systems that have low 

fault rates, annual and biennial service costs add significant operating costs. 

Figure 6.30. Additional lifetime operating costs relative to optimal lifetime costs when annual 

service schedules are used to service multiple faults in three different locations. 
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Figure 6.31. Additional lifetime operating costs relative to optimal lifetime costs when biennial 
service schedules are used to service multiple faults in three different locations. 

The additional costs of performing emergency service policies for the random sample of fault 

rates are shown in Figure 6.33. For systems with higher cooling loads, these policies tend to 

result in higher lifetime energy consumption. This occurs because some faults, like condenser 

fouling have small effects on cooling capacity yet significant impacts on efficiency. It should 

also be noted that the emergency service policies generally have the largest inner-quartile ranges 

of all the policies considered. These results occur since some fault cases have low fault rates.  If 

faults evolve slowly over time (or if a system never gets a fault) emergency service policies are 

optimal. 
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Figure 6.32. Additional lifetime operating costs relative to optimal lifetime costs when 

emergency service schedules are used to service multiple faults in three different locations. 

The additional costs of performing service policies based on cooling capacity degradation 

thresholds for the random sample of fault rates are shown in Figure 6.33. For systems with 

smaller cooling loads, these policies tend to result in higher lifetime energy consumption since 

service is performed more often than the optimal schedules. On the other hand, faults that have 

insignificant impacts on cooling capacity are ignored for longer periods of time. These two 

factors contribute to larger inner quartile ranges than some of the other strategies . In general, 

service decision policies that consider only cooling capacity degradation are not good choices 

due to these variations in results. 



 

 

 

            

           

 

           

                

            

          

           

              

         

    

20 40 60 80 

Additional Operating Costs Relative to Optimal Schedule[%] 

Miami, FL 

Mean: 16.8 
IQR: 11.5 - 21.8 

Atlanta, GA 

Mean: 20.8 
IQR: 17.2 - 24.2 

Chicago, IL 

Mean: 31.5 
IQR: 26.5 - 37.7 

100 

199 

0 

Figure 6.33. Additional lifetime operating costs relative to optimal lifetime costs when service is 

performed when capacity is degraded by 10% considering multiple faults in three different 

locations. 

The additional costs of performing service policies based on COP degradation and increases 

in power consumption for the random sample of fault rates are shown in Figure 6.34 and Figure 

6.35. These policies tend to decrease operating costs more than capacity-based policies. This is 

because COP and power consumption capture the relationship between operating costs and 

efficiency or power consumption more effectively. It should also be noted that the policy based 

on energy consumption has lower average operating costs than the COP based policy. This is 

because the energy consumption-based policy characterizes run-time impacts based the faults 

impact on sensible heat ratio. 
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Figure 6.34. Additional lifetime operating costs relative to optimal lifetime costs when service is 

performed when COP is degraded by 10% considering multiple faults in three different locations. 
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Figure 6.35. Additional lifetime operating costs relative to optimal lifetime costs when service is 

performed when energy consumption is increased by 10% considering multiple faults in three 

different locations. 

A summary comparing the inner-quartile range and mean additional lifetime operating costs 

for all the results is included in Table 6.4. In general, policies that do not consider the condition 

of the system while determining when to do service (periodic service schedules) have the highest 

lifetime operating costs. Policies that consider the state of the equipment tend to have lower 

lifetime operating costs, though the metric used to determine when to do service has a significant 

impact on actual costs. Even in the extreme case, emergency service policies may have lower 

operating costs than periodic service policies since service costs are saved for systems have 

minimal faults. Utilizing more information when determining when to do service generally 

reduces operating costs. These results were observed using the simplified service scheduler 
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proposed by Rossi and Braun and with the modified service scheduler that considers different 

service tasks.  These strategies tended to have the lowest lifetime operating costs. 

Table 6.4. Summary of additional lifetime operating costs relative to optimal lifetime costs 

determined using dynamic programming for similar buildings in different locations. Inner-

quartile ranges and means of 200 randomly sampled fault scenarios are compared. 

Service Policy 

Annual 

Miami, FL 

25% Mean 75% 

30.0 31.5 33.0 

Atlanta, GA 

25% Mean 75% 

41.7 44.6 47.2 

Chicago, IL 

25% Mean 75% 

61.6 65.2 68.6 

Biennial 17.1 18.3 19.7 29.0 30.6 32.6 36.2 38.8 40.9 

Emergency 28.8 34.2 41.2 20.0 23.4 28.2 18.4 22.4 27.1 

CBM – Capacity 

10% Threshold 

CBM – COP 

10% Threshold 

CBM – Energy 

10% Threshold 

Simplified Suboptimal 

(Rossi and Braun [73]) 

Modified, Multi-task 

11.5 

6.2 

5.0 

4.1 

1.4 

16.8 

10.4 

8.0 

6.9 

3.7 

21.8 

13.8 

10.7 

9.4 

4.9 

17.2 

12.8 

8.6 

4.6 

3.1 

20.8 

15.3 

11.7 

7.4 

5.5 

24.2 

18.1 

14.5 

9.8 

7.3 

17.7 

15.7 

12.4 

6.0 

3.5 

21.0 

20.2 

15.5 

8.7 

5.7 

25.1 

25.8 

18.7 

10.6 

7.4 

Even using the service decision strategies that consider accumulated impacts, the lifetime 

operating costs were still appreciably higher than the optimal service schedule costs.  This occurs 

for two reasons: 1) the policies do not handle scheduling service around winter seasons and 2) 

the policies do not optimize service well towards the end of equipment life. It is believed that 

these deficiencies could be corrected in future work. One possible solution to these problems 

would be to adapt the service schedulers to use a future optimization horizon. This would 

require a model for expected utility cost savings during the prediction horizon, as well as model 

for how the faults would evolve. Since the loads and operation throughout the year and life of 

HVAC equipment is largely cyclical, it may be possible to learn this model using trended data 

from past performance. 
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A second improvement to the models that may help to avoid thermal comfort violations 

would be to pre-schedule service using a model for the peak cooling loads and the capacity 

degradation measurements.  Rather than allowing the system to cause thermal comfort violations 

due to insufficient capacity, an algorithm that estimates the peak cooling load over a prediction 

horizon could be used to calculate the minimum capacity needed. Using virtual sensor 

measurements, a service schedule could determine if the system will be able to meet all future 

loads and schedule service if it cannot. 

6.8 Summary and Conclusions 

Several different types of maintenance strategies have been implemented and compared 

using a simulation framework that models the interaction between building cooling loads and 

equipment performance while faults evolve over time. As a common benchmark, dynamic 

programming was used to find solutions to an optimal service scheduling problem that was 

formulated to minimize lifetime operating costs by performing service tasks when they are most 

cost effective during the equipment life. For each simulation scenario considered, the optimal 

service scheduling problem was solved, and an optimal service policy function was used to 

calculated optimal operating costs.  

Simple, fixed interval service policies were compared with the optimal policies for different 

fault rates. These comparisons showed that periodic maintenance policies can often lead to 

significant increases in operating costs, especially if faults grow slowly over time. Reactive 

maintenance strategies that perform maintenance only when comfort is violated were also 

implemented and simulated using the framework. Policies that base their decisions on the 

condition of equipment tended to have less lifetime operating costs. 
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7. CONCLUSION AND RECOMMENDATIONS 

Three processes involved in HVAC system monitoring have been studied using simulated 

and experimental data: automated fault detection and diagnostics, fault impact evaluation, and 

service decision-making. Automated fault detection and diagnostics aims to reduce system 

operating costs by identify performance problems sooner. Automated diagnostics also attempts 

to provide additional information to service technicians which may reduce time required for 

troubleshooting and reduce misdiagnoses. Fault impact evaluation can be used to estimate the 

performance impacts of faults on system performance.  This information can be used by building 

owners or service technician to determine which repairs, if any, have economic incentives. 

These considerations lead directly into service decision-making where long-term utility costs and 

comfort impacts of faults can be balanced with preventative maintenance costs. This thesis 

described work on automated fault detection, diagnostics, impact evaluation, and comparisons 

between service decision-making policies for packaged air conditioning system for commercial 

buildings. 

Three main research objectives were considered in this work related to detecting and 

management of air conditioner performance degradation. First, a low-cost approach for 

automatically detecting and diagnosing degradation faults was implemented and evaluated for 

multiple direct-expansion (DX) air-conditioning units in a laboratory setting. This included 

systems with both fixed-speed compressors and variable-speed compressors, as well as systems 

with fixed orifice expansion valve (FXO) and thermostatic expansion valves (TXV). 

Furthermore, systems with traditional round-tube plate-fin condenser coils and systems with 

microchannel condenser coils were evaluated experimentally in this work. The automated fault 

detection and diagnostics (FDD) approach used virtual sensors to identify and isolate different 
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faults that cause performance degradation. Faults were considered that reduce capacity, 

efficiency, and/or sensible cooling fractions over time without causing abrupt failures that 

completely disable equipment operation. Left unnoticed, these faults can lead to significant 

increases in equipment energy consumption while still maintain thermal comfort in the spaces 

they serve. 

Adoption of automated FDD systems in the HVAC market has been limited due to the high 

perceived costs of these systems relative to typical DX equipment costs. As a demonstration of 

what is possible, a working prototype of the virtual sensor based automated FDD system was 

implemented using a widely available microprocessor and low-cost sensors. The hardware and 

software design were implemented for less than $120 using off-the-shelf components. Taking 

advantage of economies of scale, it is believed these costs could be further reduced using mass 

production. The system was able to estimate different physical quantities of interest, like 

refrigerant charge level, refrigerant and air mass flow rates, cooling capacity, and power 

consumption within 10% of the directly measured values over a range of operating conditions. 

Additionally, the automated FDD system was able to detect 10% deviations in refrigerant charge 

and airflow rates with a statistical confidence of 90% in experimental lab tests. 

The second main objective of this work was to develop and evaluate improved models for 

estimating the performance impacts of faults on system performance. There was special 

consideration of systems with multiple faults and the development of simplified models that 

could be used as part of an AFDD system for assessing the relative performance impacts of each 

fault.  To do this, a previously developed detailed component-based fault impact model was used 

to generate extensive data sets for implementing and testing simplified models. Additional 

experimental data was collected and used to test these models when applied to fixed-speed and 
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variable-speed rooftop units. The methodology developed uses semi-empirical models for 

estimating the normal performance of an air conditioner without faults and compares these 

estimates with the outputs of virtual sensors. Using experimental data, it was shown that the 

semi-empirical models were able to predict the normal cooling capacity, power consumption, 

and sensible heat ratio of fixed-speed and variable-speed rooftop units within 10% of the 

measured data. 

To isolate the impacts of multiple simultaneous faults, the semi-empirical normal models 

were extended to include conditionally independent correction factors that considered the 

sensitivity of faults on system performance. The correction factors were generally simple, low-

order polynomial models which had limited empirical parameters that could be determined using 

linear regression. Using the detailed performance model, the fault impact of different faults 

could be isolated to within 10% for 99% of the data points considered. This included 

combinations refrigerant charge faults, condenser fouling faults, and evaporator fouling faults 

over the typical operating ranges of air-conditioning equipment. 

The third and final research objective of this work was related to comparing maintenance and 

service strategies used for commercial building air conditioners. Depending on how equipment 

is serviced throughout its life, the money spent for energy consumption and equipment 

maintenance can be significantly impacted. To understand these relationships, a simulation 

framework was developed that modeled the relationship between building cooling loads and 

equipment performance as faults evolve over time. The simulation framework embedded a 

neural network approximation of the detailed fault impact model used to investigate performance 

impacts of faults. This model made it possible to predict cooling capacity and energy 
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consumption in a computationally efficient manner so that optimal maintenance schedules over 

the life of the equipment could be studied and compare with alternative service strategies. 

Several different types of maintenance strategies were implemented and compared using the 

simulation. As a common benchmark, dynamic programming was used to find solutions to an 

optimal service scheduling problem that was formulated for this work. For each simulation 

scenario considered, an optimal service policy function was determined that minimized lifetime 

operating costs by performing service tasks when they are most cost effective during the 

equipment life. Simple, fixed interval service policies were compared with the optimal policies 

for different fault rates.  These comparisons showed that periodic maintenance policies can often 

lead to significant increases in operating costs, especially if faults grow slowly over time. 

Reactive maintenance strategies that perform maintenance only when comfort is violated were 

also implemented and simulated using the framework. 

Service policies that use the outputs of virtual sensors to make decisions were also 

considered in this work. Condition-based policies that required service whenever a performance 

metric decreases beyond a threshold were implemented. Thresholds that were studied 

considered reductions in cooling capacity, COP, and increases in estimated energy consumption 

were considered. These policies tended to perform well for faults that evolve slowly over time, 

though begin to struggle when faults change performance more rapidly. The final group of 

policies considered in this work were based on estimations of the accumulated energy cost 

impacts of faults. Simple heuristic rules that compared the accumulated energy cost impacts 

with the costs to perform service tasks were implemented and performed better than other 

methodologies when single faults were considered. When multiple faults affect system 

performance, the policies must isolate the impacts of different faults and compare these impacts 
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to different service costs. A modified methodology was developed and implemented in this 

work that handles multiple simultaneous faults and considers the impact of faults on equipment 

life in an approximate manner. This approach had the best performance of simple strategies 

when compared to the optimal scheduling benchmark. 

This work considered optimal maintenance scheduling of fixed-speed rooftop air 

conditioners during cooling seasons. Additional work developing methodologies to estimate the 

impacts and schedule service for variable-speed systems will be required as technology 

improves. This will require fair and reproducible laboratory equipment testing of variable-speed 

systems which does not currently have an industry accepted standard methodology. Initial work 

on the development of a test methodology for fixed-speed and variable-speed equipment that 

does not require disabling native controls has been included in Appendix A. This methodology 

could be used to further test automated FDD systems in a representative and controlled 

environment that more closely simulates actual building applications. 

Developmental work for supermarket refrigeration applications should be considered since 

energy costs per unit cooling capacity are greater than those for air conditioning and systems 

already have many sensors that are required for automated FDD. These systems must provide 

cooling every hour of the day throughout the year and maintain increasingly tight tolerances on 

food temperatures. As energy becomes more expensive to consume, optimization of equipment 

control, performance, and preventative maintenance will become increasingly important. Much 

of the ideas and approaches developed in this work may be suitable for these applications, but 

further research is needed. 

Finally, as variable-speed systems with electronic valves and controls become more and 

more common, additional research into fault tolerant controls and fault impact mitigation should 
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be investigated. For each electronic control device added to a system, the number of control 

freedoms increases and may make it possible to reduce the impacts of faults on systems 

performance. If it is possible to reduce the energy impacts of faults by adapting equipment 

control, it may be possible to delay when service is needed to reduce average operating costs. 
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APPENDIX A. LOAD-BASED TESTING METHOD FOR AIR 

CONDITIONING EQUIPMENT 

A.1 Background and Motivation 

Evaluating the performance of direct expansion (DX) air conditioning equipment is an 

important step in the development of novel technologies for improving efficiency and reducing 

energy consumption in today’s and tomorrow’s buildings. Qualifying and quantifying the 

performance benefits of new technologies requires identifying a market need or inefficiency, 

developing a solution that meets design criteria, and verifying the solution meets expected 

performance. During the solution development and verification process, an engineer has many 

tools at his or her disposal – from detailed computation models and energy simulation programs 

to component level test apparatuses to full-scale system level equipment testing environments. 

However, as air conditioning equipment becomes more advanced, these tools must also advance 

so that they may accurately and fairly measure or predict the performance of these new systems. 

Two energy-saving technologies that have been introduced in many new DX air conditioning 

systems relatively recently are electronically commutated motors (ECM) for fans and inverter -

driven compressors. These technologies can significantly reduce seasonal energy consumption 

of residential and commercial air conditioning systems by continuously modulating system 

cooling or heating capacity to balance building loads.  This reduces equipment cycling and helps 

improve part-load efficiencies of equipment. To obtain maximum performance benefits, these 

systems are coupled with more advanced controls in comparison to those traditionally found in 

fixed-speed systems. This coupling between variable-speed motors and compressors with more 

advanced controls is integral to achieving performance improvements of the system. 
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For this reason, it is interesting to note that existing commercial and residential DX 

equipment testing standards and methodologies require the embedded control installed on 

variable-speed equipment to be disabled during testing [39, 77, 78]. Instead, the fan and 

compressor speeds of variable-speed systems are usually fixed to prescribed levels and steady-

state performance of the system is measured. Rather than letting the embedded controls of the 

variable-speed systems modulate their delivered capacity to maintain space conditions, the 

performance of these systems is measured in the same manner as their fixed-speed counterparts. 

Because of this, performance of these systems is measured and rated based on operation that is 

very different than what would be observed in the field. 

This paper presents a new load-based approach for testing DX air conditioning equipment 

that allows embedded controls to respond normally to an environment that simulates a typical 

building. The method is valid for different types of systems, including fixed-speed, variable-

speed, and ductless, providing a consistent approach for comparing their performance in a 

realistic manner. The methodology was applied to the testing of packaged rooftop unit (RTU) air 

conditioners for three different case studies: fixed-speed on/off control, two-speed control, and 

variable-speed control. In order illustrate the benefits of load-based testing, the same RTU 

control modes were also tested using existing equipment ratings procedures and existing seasonal 

performance ratings were determined based on data obtained from the two different testing 

methodologies applied to the three control modes. 

A.2Review of Existing Methods for Characterizing Performance of RTUs 

ASHRAE has worked to develop and update psychrometric chamber testing methodolo gy 

standards for DX equipment for determining the cooling and heating capacities and efficiencies 

in a systematic and reproducible manner [57, 79].  Together with ASHRAE Standard 41 series, a 
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standardized way to install, measure, and operate different types of DX equipment in 

psychrometric chambers has been created [41-43, 58-60, 80-83]. 

To measure and rate the performance of direct expansion air conditioning equipment, a 

consistent set of tests are applied to equipment so that performance of different systems can be 

compared at common rating points. Predominately for small- to mid-size DX unitary air 

conditioning equipment (often called rooftop units, RTUs), a well-known and accepted testing 

and ratings standard (AHRI 210/240) is used to measure the expected total cooling capacity, 

sensible cooling capacity, and total power consumption of a system at several operating 

conditions [39]. Depending on the functionality of the system (e.g. whether the system has 

multiple cooling stages, the type of fan motor installed, etc.), a different set of required and 

optional tests are applied. 

Predominately, three figures of merit have been used to rate equipment performance: EER, 

SEER, and IEER [39, 77, 78]. The EER, or energy efficiency ratio, is the ratio between the 

cooling capacity delivered by a system in kBtu/hr to total power consumed by the system in kW 

at a specific operating condition. The seasonal energy efficiency ratio, SEER, is a binned based 

calculation relating the cooling capacity delivered and power consumed at different ambient 

conditions with an adjustment for part-load degradation that occurs due to cycling at low loads.  

The part-load degradation factor can be determined from a specific cycling test or a default value 

can be employed.  The integrated energy efficiency ratio, IEER, is essentially a weighted average 

EER at different operating conditions. 

Cremaschi and Paez performed an experimental study on the development and feasibility of a 

load-based methodology for testing light commercial air conditioning systems [84, 85]. In this 

work, field and simulation data were collected to determine typical sensible and latent building 
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loads for rooftop units with economizers. Using a simple balance point representation of these 

loads as function of outdoor temperature and occupancy, an RTU with economizer was tested in 

psychrometric chambers under different typical loads. This was accomplished by disabling the 

traditional psychrometric chamber control system in the indoor space and instead fixing the 

amount of sensible and latent heat added to the space. By doing this, the temperature and 

humidity within the space responded dynamically to the difference between the load in the 

indoor room and the capacity delivered by the RTU. Additionally, the methodology made it 

possible to measure the performance impacts of outdoor air economizers under different ambient 

conditions and ventilation requirements.  Despite implementing a load-based control algorithm in 

the psychrometric chambers, Cremaschi and Paez found issues with repeatability and 

reproducibility of the testing results noting variations in actual measured loads. Additionally, 

they posited that it is unlikely that testing results would be reproducible at different laboratories 

using their proposed methodology [84]. Finally, an additional short-coming of this work was 

that native control of the RTU was not used during the testing methodology – but rather lab 

equipment was used to “mimic” the normal controller performance of the RTU [85]. 

The methodology developed in the current paper differs from the approach of Cremaschi et al. 

in that it utilizes the existing psychrometric chamber controls and adjusts the temperature and 

humidity to emulate the response of a building [84, 85]. Some of this development effort has 

occurred in collaboration with the development of an update to a Canadian Standards 

Association (CSA) standard for measuring the performance of heat pumps and air conditioners 

[86]. 



 

 

         

             

            

          

         

              

          

              

         

     

            

    

    

              

        

             

          

 

    

               

           

         

222 

A.3 Methodology and Implementation in Psychrometric Test Chamber Controller 

The test methodology involves using a virtual building model to adjust the indoor room 

temperature and humidity setpoints for the psychrometric conditioning system in a manner that 

mimics the response of a real building to the RTU operation. The temperature and humidity 

responses of the virtual building are calculated based on simple load models along with 

measurements of the test unit sensible and latent cooling rates. With this approach, the test unit 

thermostat naturally responds to the dynamic temperature variation to control the equipment 

capacity in response to a deviation from its setpoint. The following sections provide details of 

the load models and setpoint updating schemes along with a description of test setup. 

A.3.1 Sensible Load Control Derivation 

The virtual building sensible cooling load, ,load sQ , is the sum of an internal load component, 

,int sQ , and an external load component, ,ext sQ , 

, , ,load s int s ext sQ Q Q  (A.1) 

In this representation, the internal gain component can be thought of as the heat gain within the 

building due to the building occupants, electrical plug-loads, and other internal heat sources.  

The external gains are modeled as heat transfer driven by temperature differences between the 

conditioned space and the surrounding environment using an overall heat conductance of the 

building, sUA , 

 , ,load s int s s oa zaQ Q UA T T    (A.2) 

where oaT is the dry-bulb temperature of the ambient air surrounding the building and zaT is the 

dry-bulb temperature of the conditioned space. The conductance can be chosen to consider both 

conductance through the envelope and the effects of ventilation and infiltration. 
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The transient response of the temperature within the space is simulated using a simple energy 

balance with a lumped capacitance, 

, ,
za

s load s cool s

dT
C Q Q

dt
  (A.3) 

where 
sC is an effective thermal capacitance of the conditioned space and 

,cool sQ is the sensible 

cooling capacity delivered by the air conditioning equipment. Equation (A.3) shows that for 

larger sensible load imbalances, the rate of change in indoor room temperature is increased. To 

simulate the response of a typical building using psychrometric chambers, the temperature of the 

indoor room where the equipment thermostat is located is controlled to match this response. 

In order to obtain a simple updating scheme for the indoor room temperature setpoint, a first-

order forward difference formula is applied to estimate the derivative term in Equation (A.3), 

   
   , ,

za za

s load s cool s

t
Q tC Q

T

t

T t t
t

 


  (A.4) 

where  zaT t is the current indoor temperature setpoint at time t and  zaT t t is the indoor 

temperature setpoint at time t t . A recursive updating equation for the indoor temperature 

setpoint is obtained by rearranging Equation (A.4) and substituting Equation (A.2) for the 

sensible load on the space, 

            , , .za za int s s oa za cool s

s

T U
t

t Q Qt T t t A T t T t t
C

      


 (A.5) 

When implementing this setpoint updating scheme, real-time measurements of the air 

conditioning equipment sensible cooling capacity,  ,cool s tQ , are employed. If the psychrometric 

chamber conditioning system can respond quickly to these setpoint changes, then the indoor 

room temperature variation provides a realistic dynamic response to the interaction of the test 

equipment and a typical building load that would be served by that equipment. 
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It is necessary to determine reasonable values for the sensible internal gain 
,int sQ , the 

sensible overall heat transfer coefficient, 
sUA , and the thermal capacitance, 

sC , used in the 

virtual building model that are scaled according to the equipment capacity. A reasonable method 

for specifying 
,int sQ and 

sUA for a given test unit involves the use of the balance point load 

calculation methodology [61] and a rated sensible cooling capacity of the test unit. In this 

methodology, the sensible equipment loads at any given outdoor temperature, 
oaT , can be 

expressed as, 

,

,

oa bal
load s D

OD bal D

T T
Q

T T
SL 





(A.6) 

where DSL is the sensible building load at the design point operating condition, ODT is the design 

point outdoor temperature, 
,bal DT is the design balance point outdoor temperature 

(where , 0load sQ  ), and balT is given by 

 ,bal bal D za IDT T TT   
(A.7) 

where IDT is the design point indoor temperature and zaT is the actual indoor temperature of the 

space. The sensible design load is then related to the sensible cooling capacity of the test 

equipment according to 

1

D
D

os

SC
SL

f



(A.8) 

where DSC is the equipment sensible cooling capacity at the design point operating condition 

and osf is a constant used to oversize the system. It can be shown that Equations (A.2) and (A.6) 

are equivalent when 
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,

,

,1

ID bal DD
int s

os OD bal D

T TSC
Q

f T T




 
 (A.9) 

and 

,

1
.

1

D
s

os OD bal D

U
SC

f T
A

T
 

 
(A.10) 

Equations (A.9) and (A.10) provide a straightforward approach for determining values of 
,int sQ

and 
sUA from the test unit sensible capacity determined from a ratings test and other parameters 

that are easy to specify and are independent of equipment size.  Typical design values for indoor, 

outdoor, and balance point temperatures are 23.9 °C (75 °F), 35.0 °C (95 °F), and 18.3 °C 

(65 °F), respectively, whereas a typical oversizing factor is 0.2. 

Determining a thermal capacitance for the load model, sC , is less straightforward due to the 

dependence on building construction materials and geometry.  Heavy buildings, or buildings with 

large thermal mass, will respond very differently than light construction, especially with respect 

to the cycling dynamics of the equipment at low cooling loads. It is difficult to define a typical 

building capacitance because building materials and geometry depend on several factors such as 

climatic region, building age, application type, etc.  In addition, the use of a single capacitance to 

represent building dynamics is a major simplification and an effective capacitance that provides 

reasonable dynamic behavior cannot be calculated from a physical description. As a result, it is 

necessary to rely on empirical results in defining an approach for specifying a scalable effective 

building capacity. In this study, a method for specifying sC was derived from field data and a 

model describing typical cycling frequencies developed by Henderson and Rengarajan [87]. In 

their model, the number of on-off cycles of a fixed-speed system is expressed as a function of the 

part-load ratio, PLR , and the thermostat dead band, DBT , 
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 ,

2
1

cool s

DB s

N R
Q

PL
T

P
C

LR  


(A.11) 

where 
,cool sQ is the sensible cooling capacity of the equipment neglecting cyclic degradation 

losses, and 
sC is the effective thermal capacitance of the space. Based on this model, the 

maximum number of cycles per hour will occur when the part-load ratio is 50%, 

, ,1 1
1 .

2 2 2 8

cool s cool s

max

DB s DB s

N
Q Q

T C T C

 
     

  
(A.12) 

Henderson and Rengarajan used field data and determined that the maximum number of cycles 

per hour was approximately 3 ( 3maxN  ) [87]. Assuming a thermostat dead band 1DBT  °F, 

then the effective thermal capacitance can be estimated as 

24

D
sC

SC
 (A.13) 

where the sensible cooling capacity has been replaced by the test unit design cooling capacity, 

DSC , employed in Equations (A.9) and (A.10). This provides a scalable approach for 

specifying sC in the virtual building load model. 

It should be noted that more detailed dynamic sensible load models could be employed to 

better represent the transient response of a typical building. However, these models come at the 

cost of increased complexity and require more input parameters that would be difficult to specify 

in a general and scalable manner. The approach specified in this section is easy to apply and 

provides reasonable dynamic response for testing equipment with their integrated controls. In 

addition, the three parameters of the model ( ) are determined in a systematic ,int sQ , sUA , sC

manner so that the approach can be readily implemented in different psychrometric chambers 

with the potential for obtaining reproducible results in different testing laboratories. 
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A.3.2 Latent Load Control Derivation 

It is also important to model the dynamic response of humidity within the conditioned space 

to properly capture the interaction with equipment controls. An analogous form of the dynamic 

sensible load model for the dynamic response of the indoor humidity ratio, 
za , is given by 

 , ,

1za
l load l cool l

fg

C
d

Q Q
dt h


  (A.14) 

where 
,load lQ is the latent load in the conditioned space, 

,cool lQ is latent cooling capacity 

delivered by the air conditioning equipment, 
lC is an effective moisture capacitance of the space, 

and 
fgh is the enthalpy of vaporization of water. The moisture capacitance has the units of mass 

(kg) and is somewhat greater than the mass of air in the building due to interactions with 

moisture absorber materials (e.g., carpet, soft furnishings, paper, etc.) The continuous time 

derivative of Equation (A.14) is approximated using a first-order forward difference formula and 

rearranged to give a recursive relation for updating an indoor room humidity ratio setpoint, 

       , ,za za load l cool l

l fg

t
t Q t Q

C h
t tt   


   

(A.15) 

This latent load model can be expressed in a form that is analogous to the sensible dynamic 

model by representing the latent load as the sum of an internal gain component, ,int lQ , and an 

infiltration gain component, 

      , ,load l int l l oa zaQ Q UA t tt     (A.16) 

where lUA is an overall “latent” transfer conductance accounting for latent gains driven by 

differences between indoor and outdoor humidity ratios, oa . These gains may be due to 

ventilation and infiltration. 
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To complete the latent load analogy, a balance point methodology for latent gains is used to 

estimate the internal latent gain and the overall latent transfer conductance of the simulated 

building using design point data. In this representation, the latent load is calculated for a given 

outdoor humidity ratio, 
oa , using 

,

,

oa bal
load l D

oa bal D

Q LL
 

 


 


(A.17) 

and 

 ,bal bal D za ID      (A.18) 

where 
ID is the design point indoor room humidity ratio, 

za is the indoor room humidity ratio, 

and 
,bal D is the design balance point humidity ratio given by 

 ,bal D ID int OD IDr      (A.19) 

where intr is the fraction of the design point latent load due to internal latent gains. For many 

commercial buildings, this fraction may be small (e.g. 0.1 to 0.2), though it may be significant 

for some building applications (e.g. gymnasiums, auditoriums). 

The design latent load is expressed in terms of the design sensible load and a design point 

sensible heat ratio ( DSHR ), 
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Finally, the internal moisture generation and overall latent heat transfer coefficient may be 

determined from design information by equating Equations (A.16) and (A.17), 
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(A.22) 

As with the thermal capacitance, it is difficult to determine an analytical and general 

approach for estimating a moisture capacitance of a typical building due to the distributed nature 

of the building materials and a dependence on many building details that would be difficult to 

specify. As a result, a simple empirical approach is used to specify an effective moisture 

capacitance by scaling the mass of air, 
airm , with a multiplier, 

ln , that accounts for additional 

moisture absorbing materials, 

l l airC mn  (A.23) 

Furthermore, the mass of air in the virtual building is scaled with the rated cooling capacity of 

the unit, 
ratedQ , such that 

l l scale ratednC k Q   (A.24) 

In this study, the scaling factor, scalek , was determined assuming a typical rule of thumb for 

commercial buildings of 1 ton of cooling capacity per 400 ft2 of floor space (0.095 kW/m2), a 

ceiling height of 10 feet (3.04 m), and density of air at standard conditions resulting in a scaling 

factor of 300 lbm/ton (38.7 kg/kW). In addition, the moisture multiplier, ln , was assumed to 

be 5. 

A.3.3 Description of Psychrometric Test Facility 

The dynamic sensible and latent load control algorithms were implemented in the control 

systems of a psychrometric chamber test facility. The controller used to control the outdoor 

room was not modified since tests were conducted at constant ambient conditions. The physical 
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layout of the rooms, along with how the variable-speed RTU was installed in the chambers is 

shown in Figure A.0.1. 

Figure A.0.1. Psychrometric chamber setup for load-based RTU performance testing. 

Each room of the psychrometric test facility is conditioned using a variable capacity chiller 

and electrical reheat that maintain the indoor and outdoor space temperatures at specified 

setpoints and remove moisture. Additionally, each room uses steam humidifiers to maintain 

humidity setpoints in each room. Before entering the room re-conditioning air handler, the 

supply air flow from the RTU passes through a nozzle box air flow measurement station and a 

booster fan that can control the static pressure at the outlet of the RTU. 

Laboratory-grade sensor measurements were used to determine the total and sensible cooling 

capacity of the system [41-43, 58, 60, 82]. On the airside, thermocouple grids were used at the 

inlet and outlet of the RTU in accordance with standard measurement recommendations. 

Humidity was measured using chilled mirror dew point hygrometers and relative humidity sensor 

probes at the inlet and outlet of the RTU. For verification, total capacity of the system was 

determined using refrigerant-side measurements as well. The mass flow rate of refrigerant 

through the system was determined using a Coriolis mass flow meter. To determine system 
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efficiency, individual power measurements of the compressor, indoor fan, and outdoor fan were 

used. Additionally, a precision power analyzer was used to measure the total power, voltage, 

and current delivered to the system during testing. 

A.4Application of Test Methodology to Fixed-Speed and Variable-Speed RTUs 

The load-based testing methodology was used to test the performance of two RTUs to 

compare and characterize the part-load performance of fixed-speed and variable-speed systems. 

For this comparison, the two 5-ton RTUs tested were virtually identical apart from the type of 

compressor and control strategy used. The first system was installed with a two-stage, fixed-

speed scroll compressor that was controlled using a bang-bang thermostat control strategy. 

Testing was carried out for this system with both single-stage and two-stage thermostat logic to 

generate results representative of both single and two-stage equipment. The second RTU has a 

VFD driven, variable-speed scroll compressor which was controlled to maintain a constant 

discharge air temperature setpoint. Both systems used the same supply air blower assembly but 

with different control logic. When the fixed-speed system operated in low-stage, the supply air 

blower supplied approximately 1200 CFM of air flow. In second-stage mode, the blower 

supplied approximately 1800 CFM. When the compressor cycled off (for either single-stage or 

two-stage operation), the air flow was approximately 900 CFM.  For the variable-speed RTU, the 

supply air blower is continuously modulated between a minimum and maximum speed to control 

a space air temperature in response to a setpoint. In addition, the speed of the compressor is 

continuously modulated between a minimum and maximum speed to maintain a supply air 

temperature setpoint. The control strategy of the variable-speed RTU enables nearly continuous 

capacity modulation of the system under moderate to high cooling loads, though the system 
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cycles on and off during low cooling load conditions when the compressor and fan operate at 

their lowest control limits. 

The load-based testing parameters used to fix the loads and ambient conditions are listed in 

Table A.. Ambient conditions were varied between 18.89 °C (66 °F) to 42.22 °C (108 °F) and 

the design indoor setpoint was fixed at 23.89 °C (75 °F) for all tests.  The sensible heat ratio and 

oversizing factor were set to 0.90 and 0.10 respectively for all tests conducted. Using the 

sensible heat ratio and oversizing factor, the loads applied to the unit at each ambient condition 

were determined based on the full-load capacity at the AHRI A2 test condition [39]. Using an 

oversizing factor of 0.10 to determine the virtual building load line, the systems lacked sufficient 

capacity to maintain the load at the highest ambient condition tested. As a result, the indoor 

temperature for these tests increased significantly until the load in the space matched the cooling 

capacity delivered by the systems. To maintain consistency between systems at these test 

conditions, the tests were performed a second time with the indoor and outdoor temperature and 

humidity held constant at the design conditions while the systems operated at full load. 

Table A.1. Load-based testing conditions used for fixed-speed and variable-speed RTU 

psychrometric chamber testing. 

, °C (°F) , °C (°F) D
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, - , - , kW (kBTU/hr) 

18.89 (66.0) 23.89 (75.0) 0.90 0.10 0.5 (1.7) 

23.89 (75.0) 23.89 (75.0) 0.90 0.10 5.0 (17.1) 

27.78 (82.0) 23.89 (75.0) 0.90 0.10 8.5 (29.0) 

35.00 (95.0) 23.89 (75.0) 0.90 0.10 15.0 (51.2) 

42.22 (108.0) 23.89 (75.0) 0.90 0.10 21.5 (73.4) 

The parameters used in the virtual building model throughout experimental testing are shown 

in Table A. Sensible and latent design performance was determined based on rated system 

capacity tested at the AHRI design conditions.  For this testing, the design load SHR was fixed at 

0.90. Because of this, measurements of the outdoor room (or virtual building outdoor humidity 
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ratio) was not required for the tests. The assumption surrounding a constant SHR may not be 

accurate for some climatic regions where outdoor air humidity may be correlated with time or 

year. However, this simplification was made for this work and more complex load models and 

application types have been left for future work. 

Table A.2. Parameters used for sensible and moisture load in virtual building load model during 

experimental testing. 

Sensible Load Model Moisture Load Model 

Parameter Value Parameter Value 

sUA 1.23 kW/°C 
lUA 0.14 kW 

,int sQ 6.69 kW 
,int lQ 0.74 kW 

sC 0.63 kJ/°C 
lC 3300 kg 

scalek 38.7 kg/kW 

ln 5.0 

It should also be noted that the indoor chamber test conditions used for steady-state testing 

and load-based testing were significantly different than setpoints used in existing equipment 

rating standards [39]. In the standard, the indoor chamber target drybulb and wetbulb 

temperatures are 26.7 °C (80 °F) and 19.4 °C (67 °F) respectively. For the testing performed in 

this work, the target indoor chamber setpoints were 23.9 °C (75 °F) drybulb and 16.1 °C (61 °F). 

These target setpoints resulted in a cooler more dry indoor condition than those traditionally 

controlled in equipment standards and lead to lower measured system efficiencies and cooling 

capacities due to significantly less latent removal. 

A.4.1 Fixed-Speed Control Description and Example Results 

Single-stage thermostat control logic, shown in Figure A.0.2, was used to test the fixed-speed 

RTU under ON/OFF control. When the temperature in the indoor room increased to 𝐻𝐵 = 

0.55 °C (1.0 °F) above the room setpoint 𝑆𝑃 = 23.9 °C (75 °F), the compressor was operated 
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under full load and the indoor fan speed was operated at 100%. When the RTU cooling capacity 

was greater than the sensible space load and the temperature decreased to 𝐻𝐵 = 0.55 °C (1.0 °F) 

less than the setpoint, the compressor was cycled off and the indoor fan speed was set to low 

(50%). 

Figure A.0.2. ON/OFF thermostat control logic used during load-based fixed-speed RTU testing. 

Single-stage thermostat control logic has been traditionally used to control air conditioning 

equipment and remains the predominant control used in small commercial building cooling and 

heating equipment in the US. This logic and the performance of fixed-speed DX equipment 

becomes very inefficient at small part-loads. Using the load-based psychrometric chamber 

control methodology, different loads and ambient conditions were controlled while the RTU 

maintained the indoor setpoint. Example results collected from the fixed-speed RTU operated 

using ON/OFF control with an applied sensible load equal to approximately 33% of its full -load 

sensible capacity are shown in Figure A.0.3. 
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Figure A.0.3. Example load-based test results collected from fixed-speed RTU using single-stage 

thermostat control with an applied sensible load equal to approximately 33% of full-load sensible 

capacity. 

The indoor temperature plot in Figure A.0.3 demonstrates that the psychrometric chamber 

control system can closely match the dynamic virtual building load model. Despite a small lag 

between the actual indoor temperature and the building load model, differences are within 

0.06 °C (0.2 °F) throughout the example. The temperature plot also shows the typical response 

of the indoor space when controlled using a single-stage thermostat. Due to minimum on-times 

and off-times, the room is often overcooled, and cooling is often delayed. The cooling capacity 
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and power consumption plots show the natural performance of the system under the applied load 

without the need for prescribing on-off cycle times. It is important to note that the indoor 

temperatures shown in Figure A.0.3 were measured using thermocouples, which respond more 

quickly than a thermostat sensor. It is likely that a thermostat display temperature would not 

show quite the same range of temperature variation as exists in the space. 

The modeled and actual latent responses of the room are also shown in Figure A.0.3 in terms 

of the indoor room wet bulb. While the RTU cycles on and off, the expected behavior is 

observed: the indoor room wet bulb decreases while the system provides mechanical cooling and 

increases while the system is off.  Close agreement between the target wet bulb temperature from 

the virtual building model and the measured wet bulb temperature in the psychrometric chamber 

can be observed.  This indicates that the dynamics of the psychrometric chamber control systems 

were able to simulate the virtual building model as desired. 

It is also interesting to point out that the system delivered significant cooling capacity after 

the compressor was turned off during each cycle. For the most part this can be attributed to an 

evaporative cooling effect where water condensed on the surface of the cooling coil re-

evaporates. Henderson et al. have researched this phenomenon extensively for fixed-speed air 

conditioners [87]. To a lesser extent, additional sensible cooling capacity may be attributed to 

the thermal mass of the cooling coil and refrigerant in the path of the air stream after the 

compressor is cycled off. 

After testing the fixed-speed system using single-stage thermostat control, the system was 

modified to use two-stage thermostat logic, shown in Figure A.0.4. In this controller, initially 

the low cooling stage is initiated when temperature increases 𝐻𝐵1 = 0.55 °C (1.0 °F) above the 

setpoint. If further cooling capacity is required, the RTU is operated under full load when the 
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temperature rises 𝐻𝐵2 = 0.83 °C (1.5 °F) above the setpoint.  The system uses two fan speeds as 

well depending on which control mode the system is operated in. 

Figure A.0.4 Two-stage thermostat control logic used during load-based fixed-speed RTU testing. 

Identical ambient conditions and loads were applied to the two-stage RTU using the load-

based psychrometric chamber control methodology. Example results collected from the fixed-

speed RTU operated using the two-stage thermostat with an applied sensible load equal to 

approximately 33% of its full-load sensible capacity are shown in Figure A.0.5. For this load 

level, the compressor was cycling between off and low stage. In comparison with the single-

stage control results, indoor temperature control is improved slightly due to the closer match 

between equipment sensible cooling capacity and the load when operated using low-stage. 
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Figure A.0.5. Example load-based test results collected from fixed-speed RTU using two-stage 

thermostat control with an applied sensible load equal to approximately 33% of full-load sensible 

capacity. 

For these tests, the psychrometric chamber facility was able to follow the indoor room 

setpoints provided by the virtual building model within approximately 0.17 °C (0.3 °F) after 

initial transients and room dynamics were controlled. Relatively speaking, these errors were on 

par with the single-stage test results and affirmed that the psychrometric chamber cooling and 

heating system was more than capable of simulating the virtual building load dynamics. From a 

test reproducibility and repeatability standpoint, this is important. It is also interesting to point 
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out that the performance of the fixed-speed equipment was similar from one ON/OFF cycle to 

the next. This suggests that within a few cycles, average behavior and performance may be 

estimated for a given unit and significant test time may not be necessary. It should be noted that 

this may not be true of all systems, especially those that may implement adaptive control 

technologies that learn and evolve over time and so repeatability should be studied further. 

A.4.2 Variable-Speed Control Description and Example Results 

The same load-based testing methodology was used to test the variable-speed RTU. The 

discharge air temperature in this system is controlled by modulating the compressor speed using 

a PI controller. While the discharge air setpoint can be adjusted for this unit, all testing 

performed was done at the default setpoint defined by the manufacturer: 12.8 °C (55 °F). 

Concurrently, a PI controller was used to control the indoor temperature of the space by 

adjusting the indoor blower speed.  

Example load-based testing results collected from the variable-speed RTU are shown in 

Figure A.0.6 for the same conditions and loads used for the previous fixed-speed results. In 

comparison to the fixed-speed results, the improvement in indoor temperature control is 

noticeable. Fluctuations in indoor humidity also do not occur after the RTU reaches steady-state. 

Additionally, both compressor and indoor blower power consumption are significantly lower 

than the fixed-speed systems when they were providing mechanical cooling. Also, the 

psychrometric chamber control system was able to follow both the dry bulb and wet bulb 

setpoints determined by the virtual building load model very well.  This is unsurprising since the 

variable-speed controller essentially matches the load, and thus temperature swings in the indoor 

chamber are much less than for the fixed-speed systems. 
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Figure A.0.6. Example load-based test results collected from variable-speed RTU using 

manufacturer supplied thermostat with an applied sensible load equal to approximately 33% of 

full-load sensible capacity. 

A.4.3 Part-load Comparison of Fixed-Speed and Variable-Speed RTUs 

Using the one-stage, fixed-speed RTU control mode, the efficiencies at different ambient 

conditions were determined from measurements obtained during the load-based testing. Since 

the unit was cycling on and off for these tests, the efficiencies are based on integrating the 

cooling provided and electrical consumption over a complete on/off cycle. For comparison 

purposes, the full-load performance of the RTU was measured using steady-state testing to 
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calculate system efficiencies as per the methodology described by AHRI 210/240 [39]. The 

optional dry-coil cyclic and steady-state tests were performed using the fixed-speed RTU to 

calculate the coefficient of degradation parameter. The combination of steady-state performance 

results, cycle degradation coefficients, and the load-based model were then used to estimate 

integrated equipment efficiency as a function of outdoor temperature to enable direct 

comparisons with load-based test results.  A comparison of the load-based results (both measured 

and estimated from steady-state results) are shown in Figure A.0.7 along with the full-load 

steady-state efficiencies. Results based on both the cyclic degradation coefficient determined 

from the measurements and the default value provided by the AHRI 210/240 standard are 

included. 

Figure A.0.7. Comparison of integrated efficiency of one-stage, fixed-speed RTU control 

measured using load-based testing and calculated using methodology described in AHRI 

Standard 210/240.  The two values for the coefficient of degradation used: the default value CD = 

0.25 and the value measured using dry-coil cyclic testing CD = 0.45. 

It is clear from Figure A.0.7 that differences exist between the efficiencies determined from 

load-based testing and the results calculated based on the AHRI 210/240 methodology. These 

differences become larger at lower ambient temperatures, or equivalently at lower sensible loads. 
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The efficiency of the RTU from the load-based testing methodology significantly decreases at 

lower temperatures due to the more frequent ON/OFF cycles required to maintain the indoor air 

temperature. Similar behavior is seen for the results determined for the AHRI 210/240 

methodology if the measured coefficient of degradation is utilized although the errors become 

significant at low loads. It is important to note the default value for the coefficient of degradation 

is too small for this RTU and does not adequately adjust the efficiency for cycling losses.  

Finally, the differences in efficiencies between the full-load and load-based testing results are 

dramatic at lower ambient temperatures. 

Similar results were obtained for a two-stage RTU over the range of ambient conditions and 

equivalent building loads and are shown in Figure A.0.8. In this case, the differences between 

the efficiencies determined from load-based testing and calculated using the methodology 

described in AHRI Standard 210/240 for two-stage equipment are smaller than for the single-

stage control especially when employing the coefficient of degradation determined from tests. 

Using the default value for the coefficient of degradation does not produce results that follow the 

same trends as the load-based testing methodology. The steady-state low-stage and high-stage 

efficiencies monotonically increase with decreasing ambient temperatures in sharp contrast to the 

load-based testing results where efficiency degrades at lower ambient temperatures and loads due 

to increase cycling losses. 
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Figure A.0.8. Comparison of integrated efficiency of two-stage, fixed-speed RTU control 

measured using load-based testing and calculated using methodology described in AHRI 

Standard 210/240. The two values for the coefficient of degradation used: the default value 

𝐶𝐷 = 0.25 and the value measured using dry-coil cyclic testing 𝐶𝐷 = 0.37. 

Comparisons of integrated system efficiencies determined from load-based testing at 

different ambient conditions for the three different RTU control modes considered in this study 

are shown in Figure A.0.9. The results show that significant gains in system efficiencies at part-

load are achievable with variable-speed compressors and fans. These results also illustrate the 

benefit of load-based testing: for nearly identical systems differing only by control modes, the 

efficiencies can be compared at identical loads and ambient conditions experimentally using 

psychrometric testing that simulates real-world response. In comparison to the results obtained 

using steady-state testing, the load-based test results inherently capture inefficiencies due to 

ON/OFF cycling, or any other losses due to suboptimal control or equipment operation. 
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Figure A.0.9. Comparison of fixed-speed and variable-speed RTU efficiencies measured using 

load-based testing under equivalent virtual building loads. Transparent bands have been added 

corresponding to 95% uncertainty bounds based on statistical analysis of the experimental data. 

Using the data collected from the psychrometric chamber tests, seasonal efficiencies were 

calculated using the methodology described in AHRI Standard 210/240 and are 

Table A fraction bin hours used for these calculations were copied from the example 

calculations in AHRI Standard 210/240 and are shown in the Appendix. For load-based testing 

results, the cyclic degradation coefficient used in the calculation was replaced by measured 

integrated efficiencies from the psychrometric chamber tests at different operating conditions. 

For conditions not tested, linear interpolation was used. The results show that significant 

differences exist between the load-based testing results and the results calculated with cyclic 

degradation coefficients when default values are employed. The errors are particularly large for 

the one-stage control but are also significant for two-stage operation. In both cases, the use of 

the default value leads to overestimated seasonal efficiency for this unit. Determining the 

degradation coefficient from measurements gives much better results, but differences with the 

load-based testing results are still significant for the one-stage control. The seasonal efficiencies 
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for the variable-speed unit determined from load-based testing are significantly better than for 

the other two control modes. The load-based testing allows a direct comparison of efficiencies 

that are based on a consistent test method that includes interaction of the controls with the 

equipment. 

Table A.3. Comparison of calculated seasonal efficiencies based on load-based testing and AHRI 

Standard 210/240 calculation methodology for different RTU control modes. 

Seasonal EER [Btu-hr/W] Seasonal COP Percent Difference 

[-] [%] 

One-stage, Default CD 11.7 3.43 + 24.2 

One-stage, Measured CD 9.8 2.86 + 3.6 

One-stage, Load-based 9.4 2.76 -

Two-stage, Default CD 12.9 3.77 + 7.7 

Two-stage, Measured CD 11.8 3.45 – 1.4 

Two-stage, Load-based 11.9 3.50 -

Variable-speed, Default CD 14.0 4.10 – 9.7 

Variable-speed, Measured CD 14.5 4.24 – 6.5 

Variable-speed, Load-based 15.5 4.54 -

It is important to note that the results Table A seem to imply that the differences in 

seasonable efficiency between variable-speed, two-stage, and single-stage capacity control are 

larger when determined using data from load-based testing (15.5 compared to 11.9 and 9.4) than 

when determined using steady-state testing and a coefficient of degradation for cycling (14.5 

compared to 11.8 and 9.8 with measured 𝐶𝐷 and 14.0 compared to 12.9 and 11.7 with 

default 𝐶𝐷 = 0.25). Current methodologies for calculating seasonal efficiencies may underpredict 

cyclic degradation inefficiencies of fixed-speed systems and overestimate cyclic losses of 

variable-speed systems. It is believed that load-based testing provides a more representative 

evaluation of the benefits of variable-speed equipment. 



 

 

      

  

           

         

         

   

          

        

             

       

           

           

   

       

         

          

         

           

                

           

          

            

            

246 

A.5Discussion and Recommendations for Future Work 

A psychrometric chamber control methodology derived from the dynamic sensible and latent 

energy balances of a virtual building was developed and used to perform load-based testing of 

the performance of RTUs with single-stage, two-stage, and variable-speed control technologies. 

It was demonstrated that this new methodology could be applied to an existing psychrometric 

chamber control system.  The psychrometric room system was able to adjust indoor test chamber 

conditions to closely track the virtual building model output and provided representative 

dynamic responses for both the fixed-speed and variable-speed equipment. This enabled 

performance comparisons of the systems tested in a direct manner under equivalent loads and 

ambient conditions, including natural cyclic degradation inefficiencies and control 

methodologies. The embedded control of the equipment was not altered in anyway – reducing 

potential discrepancies between the measured performance of systems tested in a laboratory and 

in the field. 

Seasonal efficiencies were estimated based on current standards and compared with results 

determined from load-based test data for the fixed-speed equipment. The current approaches 

agreed reasonably well with load-based test results if cyclic degradation coefficients were 

determined from testing, but the standard results were poor using default parameters. In general, 

it is believed that the load-based testing methodology more accurately and naturally captures the 

effects of cycling behavior in a systematic manner since the equipment can cycle at its natural 

frequency rather than a purely time-based test methodology. The load-based methodology also 

provides a consistent approach for testing units with fixed and variable-speed controls and 

generally provides a more accurate comparison of the performance of different control 

technologies since testing is performed with the units integrated controls. In this study, there 
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was about a 50% improvement in seasonable efficiency when comparing variable-speed with 

single-stage on/off control of an RTU based on load-based testing. 

The approaches presented in this paper represent a first step in the development of improved 

equipment testing and rating procedures that are needed to properly characterize performance 

benefits associated with advanced controls. However, there is much additional work that is 

needed before standards are ready. For example, the virtual building models for sensible and 

latent loads are rather simplistic and the effect of utilizing more detailed building load models on 

performance ratings should be considered. It is also critical to demonstrate that load-based 

testing can provide reproducibility and repeatability of measured equipment performance of the 

same equipment in different labs. This is certainly important for equipment ratings and should 

be considered for testing standards.  Additionally, the systems installed in this study did not have 

outdoor air economizers installed. However, most RTU have these installed in the field and 

performance may be impacted by significant outdoor air fractions entering the systems.  It is also 

important to consider application to residential air conditioners and heat pumps, which have 

different control requirements that may significantly impact performance, such as defrost cycles. 

Often, variable-speed equipment requires special thermostats for enabling the full control 

capability intended by the manufacturer. The dynamic response of the thermostat sensor 

measurement and how it differs from the true bulk air temperature measurement in 

psychrometric chambers should be considered. 
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APPENDIX B. COMPARISONS OF FAULT IMPACT NEURAL 

NETWORK META-MODEL AND DETAILED MODEL OUTPUTS 

This appendix provides further comparisons between the detailed model output and the 

artificial neural network fault impact meta-model. The trends and accuracy of the meta-model 

show that the approximation is well-behaved and captures the trends of the detailed model well. 

B.1 Comparison of Refrigerant Charge Fault Impact Predictions 

Figure B.1. Comparison of suction pressure trends over a range of refrigerant charge levels 

predicted by meta-model and detailed model at different ambient conditions for system with 

fixed orifice expansion valve. 
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Figure B.2. Comparison of suction enthalpy over a range of refrigerant charge levels predicted 

by meta-model and detailed model at different ambient conditions for system with fixed orifice 

expansion valve. 
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Figure B.3. Comparison of discharge pressure trends over a range of refrigerant charge levels 

predicted by meta-model and detailed model at different ambient conditions for system with 

fixed orifice expansion valve. 
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Figure B.4. Comparison of discharge enthalpy trends over a range of refrigerant charge levels 

predicted by meta-model and detailed model at different ambient conditions for system with 

fixed orifice expansion valve. 



 

 

 

 

 

 

 

             

         

   

  

3200 
cu 
0.. 
.::.t. 

3000 
OJ 
I... 
::J 
Vl 
Vl 2800 OJ 
I... 
0.. 

OJ 
C 2600 

:::i 
"O 
::J 
a- 2400 

:::i 

2200 

2000 

60 70 80 

Meta-Model (OAT= 25.3 °C) 

Meta-Model (OAT= 36.4 °C) 

Meta-Model (OAT= 41.9 °C) 

90 100 110 
Charge Level [%] 

0 Detailed Model 
Detailed Model 

0 Detailed Model 

120 130 

252 

Figure B.5. Comparison of liquid line pressure trends over a range of refrigerant charge levels 

predicted by meta-model and detailed model at different ambient conditions for system with 

fixed orifice expansion valve. 
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Figure B.6. Comparison of liquid line enthalpy trends over a range of refrigerant charge levels 

predicted by meta-model and detailed model at different ambient conditions for system with 

fixed orifice expansion valve. 
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Figure B.7. Comparison of evaporator inlet pressure trends over a range of refrigerant charge 

levels predicted by meta-model and detailed model at different ambient conditions for system 

with fixed orifice expansion valve. 
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Figure B.8. Comparison of evaporator inlet enthalpy trends over a range of refrigerant charge 

levels predicted by meta-model and detailed model at different ambient conditions for system 

with fixed orifice expansion valve. 
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B.2Comparison of Condenser Fouling Fault Impact Predictions 

Figure B.9. Comparison of suction pressure trends over a range of condenser air flow reductions 

predicted by meta-model and detailed model at different ambient conditions for system with 

fixed orifice expansion valve. 
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Figure B.10. Comparison of suction enthalpy over a range of condenser air flow reductions 

predicted by meta-model and detailed model at different ambient conditions for system with 

fixed orifice expansion valve. 
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Figure B.11. Comparison of discharge pressure trends over a range of condenser air flow 

reductions predicted by meta-model and detailed model at different ambient conditions for 

system with fixed orifice expansion valve. 
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Figure B.12. Comparison of discharge enthalpy trends over a range of condenser air flow 

reductions predicted by meta-model and detailed model at different ambient conditions for 

system with fixed orifice expansion valve. 
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Figure B.13. Comparison of liquid line pressure trends over a range of condenser air flow 

reductions predicted by meta-model and detailed model at different ambient conditions for 

system with fixed orifice expansion valve. 
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Figure B.14. Comparison of liquid line enthalpy trends over a range of condenser air flow 

reductions predicted by meta-model and detailed model at different ambient conditions for 

system with fixed orifice expansion valve. 
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Figure B.15. Comparison of evaporator inlet pressure trends over a range of condenser air flow 

reductions predicted by meta-model and detailed model at different ambient conditions for 

system with fixed orifice expansion valve. 
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Figure B.16. Comparison of evaporator inlet enthalpy trends over a range of condenser air flow 

reductions predicted by meta-model and detailed model at different ambient conditions for 

system with fixed orifice expansion valve. 
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B.3Comparison of Evaporator Fouling Fault Impact Predictions 

Figure B.17. Comparison of suction pressure trends over a range of evaporator air flow 

reductions predicted by meta-model and detailed model at different ambient conditions for 

system with fixed orifice expansion valve. 
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Figure B.18. Comparison of suction enthalpy over a range of evaporator air flow reductions 

predicted by meta-model and detailed model at different ambient conditions for system with 

fixed orifice expansion valve. 
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Figure B.19. Comparison of discharge pressure trends over a range of evaporator air flow 

reductions predicted by meta-model and detailed model at different ambient conditions for 

system with fixed orifice expansion valve. 
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Figure B.20. Comparison of discharge enthalpy trends over a range of evaporator air flow 

reductions predicted by meta-model and detailed model at different ambient conditions for 

system with fixed orifice expansion valve. 
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Figure B.21. Comparison of liquid line pressure trends over a range of evaporator air flow 

reductions predicted by meta-model and detailed model at different ambient conditions for 

system with fixed orifice expansion valve. 
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Figure B.22. Comparison of liquid line enthalpy trends over a range of evaporator air flow 

reductions predicted by meta-model and detailed model at different ambient conditions for 

system with fixed orifice expansion valve. 
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Figure B.23. Comparison of evaporator inlet pressure trends over a range of evaporator air flow 

reductions predicted by meta-model and detailed model at different ambient conditions for 

system with fixed orifice expansion valve. 
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Figure B.24. Comparison of evaporator inlet enthalpy trends over a range of evaporator air flow 

reductions predicted by meta-model and detailed model at different ambient conditions for 

system with fixed orifice expansion valve. 
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