
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Open Access Theses Theses and Dissertations 

5-2018 

Deep Neural Network Regression and Sobol Sensitivity Analysis Deep Neural Network Regression and Sobol Sensitivity Analysis 

for Daily Solar Energy Prediction Given Weather Data for Daily Solar Energy Prediction Given Weather Data 

Yixuan Sun 
Purdue University 

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses 

Recommended Citation Recommended Citation 
Sun, Yixuan, "Deep Neural Network Regression and Sobol Sensitivity Analysis for Daily Solar Energy 
Prediction Given Weather Data" (2018). Open Access Theses. 1460. 
https://docs.lib.purdue.edu/open_access_theses/1460 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/open_access_theses
https://docs.lib.purdue.edu/etd
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F1460&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/1460?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F1460&utm_medium=PDF&utm_campaign=PDFCoverPages


DEEP NEURAL NETWORK REGRESSION AND SOBOL SENSITIVITY 

ANALYSIS FOR DAILY SOLAR ENERGY PREDICTION GIVEN WEATHER 

DATA 

A Thesis 

Submitted to the Faculty 

of 

Purdue University 

by 

Yixuan Sun 

In Partial Fulfillment of the 

Requirements for the Degree 

of 

Master of Science in Mechanical Engineering 

May 2018 

Purdue University 

West Lafayette, Indiana 



ii 

THE PURDUE UNIVERSITY GRADUATE SCHOOL 

STATEMENT OF THESIS APPROVAL 

Dr. Guang Lin, Chair 

School of Mechanical Engineering 

Dr. Ilias Bilionis 

School of Mechanical Engineering 

Dr. Carlo Scalo 

School of Mechanical Engineering 

Approved by: 

Jay P. Gore 

Head of the School Graduate Program 



iii 

This is dedicated to my mentors, my friends and my parents. 



iv 

ACKNOWLEDGMENTS 

I would like to thank Professor Lin for his expert advise and encouragement, as 

well as Professor Bilionis and Professor Scalo for their help and suggestions. I would 

also like to thank my fellow students and friends, Hongshan Li, and Pranev Jain for 

their contribution to this research. I am grateful to all of those whom I have had 

pleasure to work with during my master program. This work would not be possible 

if I had not had their support and inspiration. 

My friends, Dr. Fei Han, Zhiyao Yang, Gonghao Sun and Lifeng Chen have been 

such an important part of the pursuit of this research. I would like to thank them 

for sharing their experiences, and their support and caring. Most importantly, I want 

to thank my supportive and loving parents for the emotional and financial support, 

which allows me to work toward my master degree. 



v 

PREFACE 

This research is the master’s thesis as a conclusion of my master program at 

school of Mechanical Engineering, Purdue University. The basis of this research 

stemmed from my interest in the applications of deep learning techniques in real-

world engineering problems. With the suggestion from my advisor, Dr. Guang Lin, 

and my experience of dealing with solar energy harnessing during undergraduate 

study, the idea that using weather forecasting information to predict solar energy 

came to my mind. 

Solar energy, as one of the most popular sustainable energies, has been utilized 

in many ways. Its dependency on weather condition makes it unstable as an energy 

source. Accurate forecasts for solar energy are increasingly important for manage-

ment of electricity grid and solar energy trade. In this research, combined with deep 

learning regression technique, a predictive model has been developed, only taking 

weather forecasting information as input. 
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ABSTRACT 

Sun, Yixuan M.S.M.E., Purdue University, May 2018. Deep Neural Network Regres-
sion and Sobol Sensitivity Analysis for Daily Solar Energy Prediction Given Weather 
Data. Major Professor: Guang Lin, School of Mechanical Engineering. 

Solar energy forecasting plays an important role in both solar power plants and 

electricity grid. The effective forecasting is essential for efficient usage and manage-

ment of the electricity grid, as well as for the solar energy trading. However, many of 

the existing models or algorithms are based on real physical laws, where tons of cal-

culations, step-by-step modification, and many inputs are required. In this research, 

a novel deep Multi-layer Perceptron (MLP) based regression approach for predicting 

solar energy is proposed, in which the inputs are only ensemble weather forecasting 

data. The results demonstrate that our proposed deep Multi-layer Perceptron based 

regression approach for solar energy forecasting is efficient as well as accurate enough. 

A Sobol sensitivity analysis is performed over the trained model, determining the most 

important variables in the weather forecasting model data. The first-order and the 

total order Sobol sensitivity indices for quantifying feature importance, are calculated 

for each model input parameter. With using the process of feature removal, the result 

of Sobol sensitivity analysis is verified. 
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1. INTRODUCTION 

Deep learning has been widely used in supervised and unsupervised problems, where 

it does not require much of the careful feature engineering and considerable domain 

expertise over the raw data. Instead, deep learning methods are representation-

learning methods with multiple levels of representation, where there are simple but 

non-linear modules that transform the representation from the raw input data into 

a representation at a higher, slightly more abstract level, layer after layer.[6]. Deep 

neural networks have outstanding performance of solving problems in many domains 

of science, business and government[12], and it has been proved to have promising 

results in classification and regression problems. A standard neural network consists 

of neurons, which are connected processors. In each neuron, there will be a sequence 

of real-value activation produced. Normally, the calculation from the previous layer 

to the next layer of deep neural network can be represented as follow: 

y = w T X + b (1.1) 

where X is the input vector, w is the weight matrix for input X, b is the bias vector, 

y is the output vector. In each node, there is a non-linear activation function that can 

approximate arbitrarily complex functions. There are three commonly used activation 

functions: sigmoid, tanh, and ReLU. Among those, sigmoid and tanh will squash 

the input to a range of (0,1) and (-1,1), respectively. ReLU does not activate all the 

neurons at the same time, where only the input with negative values will be activated. 

The fact that limited number of neurons need activating makes the network sparse, 

resulting in higher computational efficiency. ReLU has been applied in solar energy 

forecasting network in the following sections. 

The input data consists of multiple features, where some features affect the output 

more than the others. Thus, another aspect in this research is to find out which 
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parameter or set of parameters has the most significant influence on the output. This 

is usually done by sensitivity analysis. A technique called Sobol sensitivity analysis 

is conducted in this work. 

A feed forward neural network with fully connected layers has been used for daily 

solar energy prediction in this research, followed by a Sobol sensitivity analysis over 

all the input variables. The following sections are the introductions of solar energy 

prediction technique and the mechanism of Sobol sensitivity analysis. 

1.1 Solar energy forecasting techniques 

Renewable energy sources has been proved to have many environmental advan-

tages over traditional fossil fuels for generating electricity. But the energy such as 

solar and wind fluctuate with the changing weather conditions. The accurate fore-

casting of solar energy a location is able to receive is vital for electric utility companies 

to make adjustment in advance to have the right balance of renewable and fossil fu-

els available. Errors in the forecasting could lead to large expenses for the utility 

from excess fuel consumption or emergency purchases of electricity from neighbor-

ing utilities. Power forecasts typically are derived from numerical weather prediction 

models, but statistical and machine learning techniques are increasingly being used 

in conjunction with the numerical models to produce more accurate forecasts. 

The effective prediction of solar energy for certain area is essential for photovoltiac 

power plants and electricity grids. The efficient usage and management of electricity 

grid and the solar energy trading would benefit from accurate solar energy forecast-

ing. PV power forecasting is a great concern for operators and designers of power 

systems because of its variable and volatile features [19]. Some common forecasting 

methods include regressive or stochastic learning models and remote-sensing or local-

sensing based physical models [2]. Hybrid models integrating stochastic learning and 

local sensing techniques have been applied these years for intra-hour forecasting. In 

addition, the application of artificial neural networks (ANN) has made contribution 
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to solar energy forecasting. Mellit et al. proposed an MLP model to forecast the 

solar irradiance on a base of 24-h using the present values of the mean daily solar 

irradiance and air temperature [13]. A recurrent neural network and an MLP net-

work are used in [20] to generate solar radiation synthetic series. However, these 

approaches did not take weather forecasting models into account, especially the daily 

cloud cover of specific locations. Generalized deterministic solar radiation models 

are introduced, where latitudes, longitudes, cloud cover and sky clearness index are 

inputs, resulting that the error in calculated insolation values are within 20% of the 

measured values[11]. 

In this research, a solar energy forecasting method based on deep fully connected 

neural network regression has been developed, using location information (latitudes 

and longitudes) and ensemble weather forecasting models as inputs. A 2-dimensional 

interpolation is employed during the data preporcessing stage to get the solar energy 

for each location that has the corresponding weather data. 

1.2 Sensitivity Analysis 

The weather data used in this research contains 15 different weather variables and 

there are 5 reports for each day. We want to know which individual variable or groups 

of variables would affect the output the most. Sensitivity analysis is able to reveal 

the identification of the model parameter (weather variables in this case) or set of 

parameters that have the greatest influence on the model output. Sensitivity analysis 

gives insights about how much certain input parameter or set of input parameters 

contributes to the variability of the model output. It is widely applied in many fields, 

such as business, economics, and engineering. The application of sensitivity analysis 

can be summarized as: (i) understanding the relationship between inputs and output. 

(ii) determining how much the uncertainty in the model parameters contributes to 

the output variability. (iii) analyzing the significant parameters that take the lead 

in model outputs and magnitudes [16][17][8]. Sensitivity analysis is also useful for 
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determining the uncertainty in input parameters, as well as the model structure, by 

which we can gain additional confidence in the model[22]. 

In the sensitivity analysis process, we can regard the model as a black-box, that 

is, the model output is a function of the inputs y = f(x), where x can be a high di-

mensional vector. In general, sensitivity analysis can be classified into two categories: 

local sensitivity analysis, and global sensitivity analysis. 

1.2.1 Local sensitivity analysis 

Local sensitivity analysis aims to investigate how small variations in a single input 

parameter would affect the model output. The local sensitivity indices are usually de-

scribed mathematically as the first order partial derivatives of model outputs respect 

to the model input parameters. 

∂y 
Ai = (x1, x2, ..., xp) (1.2)

∂xi 

where y is the model output, x1, x2, ..., xp are the model input parameters, and p is the 

dimension of the input space. Local sensitivity analysis only addresses the sensitivity 

relative to point estimates chosen, rather than the entire parameter distribution[7], 

so the interaction between input parameters can not be evaluated by it. Global 

sensitivity analyses are able to characterize the interaction between input parameters 

and quantify the effect it imposes on the model outputs, overcoming the limitation 

brought by local sensitivity analysis. 

1.2.2 Global sensitivity analysis 

In a global sensitivity analysis, the permutation can happen simultaneously over 

all the input parameters, allowing the sensitivity evaluation of each individual pa-

rameter as well as the interactions between parameters at the same time. It offers 

the possibility of investigating how the variance of the model output in influenced 

by the relative impact of a single model parameter and the interactions between 
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parameters[9]. The common global sensitivity analysis are regression analysis, screen-

ing, the Fourier amplitude sensitivity test (FAST), extended Fourier amplitude sen-

sitivity test (EFAST) and variance based methods. 

Global sensitivity analysis has been applied to various fields. For example, [3] 

studies the use of global sensitivity analysis for design optimization of shell and tube 

heat exchangers; in[4], the extended Fourier amplitude sensitivity test is used for the 

selection of input variables of neural networks; in [10], one can evaluate and optimize 

the performance of probabilistic neural network using Sobol, FAST and EFAST global 

sensitivity analysis methods; Sobol sensitivity analysis is used in the evaluation and 

parameter selection for flow simulations of the river Kleine Nete in[14]. 

Among those techniques, both FAST or EFAST and Sobol’s methods are variance-

based, decomposing the variance of the output of the model or system into fractions 

which can be attributed to inputs or sets of inputs. The difference is that in FAST 

method, a sinusoidal function is used for the pattern search for multidimensional 

integration, while a Monte Carlo integration method is employed in Sobol sensitivity 

analysis[22]. 

In this research, a Sobol sensitivity analysis is used to investigate the importance 

of each variable as well as the interactions between variables in weather data, respect 

to the trained neural network’s output. 

1.2.3 Sobol sensitivity analysis 

Sobol sensitivity analysis is based on the decomposition of model output variance 

into summands of variances of the input parameters in increasing dimensionality[18][21]. 

It determines the contribution of each input parameter and their interactions to the 

overall model output variance. 

Sobol sensitivity analysis is applied in quantifying how much variability in the 

model output is depending on each of the input parameter or the interactions be-

tween parameters. It can be achieved by computing the first-order, second-order, 
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higher-order, and the overall sensitivity indices. Below, we show the mathematical 

description of the analysis process. 

Let x = (x1, x2, ..., xN ) be a set of input parameters that are mutually indepen-

dent. Each parameter has a finite interval that can be [0,1] after rescaling. We can 

think of each parameter as a random variable which is uniformly distributed over the 

interval of [0,1]. Consider an integrable function f(x) whose sensitivity to the input 

parameters x1, x2, ..., xN defined in IN , where I denotes [0,1] interval and IN is a 

N-dimensional hypercube. Then, we have: 

N N NX XX 
f(x) = f0 + fi(xi) + fij (xi, xj ) + f1...N (x1, ..., xN ) (1.3) 

i=1 i=1 i=6 j 

where f0 is the mean value of f(x), and the expression of fi(xi) and fij (xi, xj ) are 

listed below. Z 1 

f0 = f(x)dx Z 1
0 Y 

fi(xi) = f(x) dxk − f0 
0 Z 1 

k 6=i Y 
fij (xi, xj ) = f(x) dxk − f0 − fi(xi) − fj (xj ) 

0 k 6=i,j 

The procedure is performed until the last term f1...N (x1, ..., xN ) is determined. f(x) 

in Eq. 1.3 is called the analysis of variance representation when the condition shown 

in Eq. 1.4 is satisfied[21]: Z 1 

fi1,...,iN (xi1 , ..., xiN )dxk = 0 (1.4) 
0 

where k = i1, ..., iN . Because of this property, if we square both sides of Eq. 1.3 and 

integrate it: Z 1 kX X X 
D = f 2(x)dx − f0

2 = Di + Dij + Dijl + ... + D1,2,...,k 
0 i=1 i<j i<j<l 
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R 1
where D is the model output variance, and Di1...iN = f 2 (xi1, ..., xiN )dxi1, ..., xiN0 i1...is 

is called the partial variance corresponding to the subset of parameters xi1, ..., xiN . 

The Sobol sensitivity indices of that subset of parameters is defined as: 

Di1...iNSi1...iN = (1.5)
D 

The integer N is called the order or the dimension of the index. For instance, Si = D
D 
i 

is the first-order contribution of the ith parameter to the model output; Sij = D

D 
ij 

is the second-order contribution of the interaction between ith and jth parameter to 

the model output, and so on. Finally, the total sensitivity indices are defined as the 

sum of all the sensitivity indices. For the ith parameter, the total sensitivity index is 

ST i = Si + Siji=6 j + ... + S1...i...s, quantifying the overall effect of the ith parameter on 

the model output. 

Note that since all the indices are nonnegative, if we sum all the sensitivity indices 

of all the parameters, we have 

Xk X X 
Si + Sij + Sijl + ... + S1,2,...,k = 1 (1.6) 

i=1 i<j i<j<l 

In summary, the first-order sensitivity index measures the contribution of an in-

dividual parameter to the model output variance. The first-order index of parameter 

i can be regarded as the fraction of the model output variance that would disappear 

on average if parameter i is fixed[14]. The overall or total-order sensitivity indices 

evaluate the contribution to the output variance over a full range of parameter space. 

In this research, the first-order and the total-order Sobol sensitivity indices are 

employed over 75 model parameters to evaluate how important each individual pa-

rameter as well as the interactions between certain parameter and the rest parameters 

is to the model output. 
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2. SOLAR ENERGY FORECASTING 

2.1 Problem settings 

The principal idea behind this research is to create a generic model that can pre-

dict solar energy received given location in an efficient way, meanwhile maintaining 

reasonable accuracy. In other words, we want to only take the latitude and the lon-

gitude of a specific location along with the data from weather forecasting model as 

inputs to predict the solar energy that it will receive for the day. The weather may 

affect solar energy in many different ways, such as cloud cover, precipitation, tem-

perature, wind speed, etc; however, it is hard to find the precise correlation between 

each weather feature and the solar energy received. Instead, we aim to create a direct 

mapping from the weather forecasting data to the solar energy. Deep neural networks 

have the ability to find linear as well as non-linear relationship between features and 

targets without much of feature engineering or domain knowledge. We intend to use a 

deep fully connected neural network to find the aforementioned mapping by training 

the network as a regression problem. Now, let’s take a look at the dataset. 

2.1.1 Dataset 

The dataset used in this work is named GEFS in netCDF4 files. There are 15 

netCDF4 files, each representing a particular variable from the ensemble weather 

data. Every netCDF4 file holds the grids for the variable with time step, stored in a 

multidimensional array. The first dimension is the total number of days during which 

the weather data is collected. The second dimension is the ensemble member that the 

forecast comes from, where there are 11 members with perturbed initial conditions. 

The third dimension is the times that the weather model runs in a day, which happens 

once every 3 hours from 12 to 24 hours. The fourth and the fifth dimension are the 
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latitudes and longitudes of locations in a uniform spatial grid. All the variables used 

are listed in the table below. 

Table 2.1. Variables from weather model. 

Number Name 

1 3-Hour accumulated precipitation at the surface 

2 Downward long-wave radiative flux average at the surface 

3 Downward short-wave radiative flux average at the surface 

4 Air pressure at mean sea level 

5 Precipitable Water over the entire depth of the atmosphere 

6 Specific Humidity at 2 m above ground 

7 Total cloud cover over the entire depth of the atmosphere 

8 Total column-integrated condensate over the entire atmosphere. 

9 Maximum Temperature over the past 3 hours at 2 m above the ground 

10 Minimum Temperature over the past 3 hours at 2 m above the ground 

11 Current temperature at 2 m above the ground 

12 Temperature of the surface 

13 Upward long-wave radiation at the surface 

14 Upward long-wave radiation at the top of the atmosphere 

15 Upward short-wave radiation at the surface 

Besides the 15 variables from the ensemble weather model, for each location, there 

is information of latitudes, longitudes and time steps, encoded in a 5-dimensional 

array. 
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2.1.2 Metrics 

Mean absolute error 

Mean absolute error (MAE) is used to evaluate the performance of the regression 

analysis in this research. MAE is chosen as it clearly indicates how much the predicted 

value deviates from the true value. The MAE is defined given below: P n |yi − ŷi|
MAE = i=1 (2.1) 

n 

where n is the number of samples, yi is the true target value of sample i, ŷi is the 

predicted target value of sample i. 

Coefficient of determination 

Besides the mean absolute error, the coefficient of determination is used to evaluate 

both the trained model and the baseline model. It is a measure of how well the model 

replicates or predicts the true values from the data, denoted by r2 . It indicates 

the proportion of variance in the model output that is predictable from the input 

parameters. r2 can be mathematically described as follow: 

2 SSregression 
r = (2.2)

SStotal 

where X 
SSregression = (fi − ȳ)2 

X i 

y)2SStotal = (yi − ¯ 
i 

in which fi is the model output, yi is the true value in the data, and ȳ  is the mean 

value of true outcome in the data. 

2.1.3 Data standardization 

Due to the 15 variables representing different physical values, the scale of different 

variables varies. In order to have a more generalized and accurate deep neural network 
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model, one is required to feed in the data where all features have the similar or the 

same scale, so that certain feature will not be dominant just because of the large 

magnitude. The normalization process is shown as follow: 

stand xi,j − µj
x = , ∀i, j (2.3)i,j σj 

where xi,j represents the value of the jth feature in the ith sample ; µj is the mean 

value of the jth feature in the training set; σj is the standard deviation of the jth 

feature in the training set. Note that when apply normalization to validation and 

testing sets, the mean value µj and the standard deviation σj are both from the 

training set, preventing any information leak from the validation set and testing set 

to the training process. 

2.1.4 Two-dimensional linear interpolation 

The locations with available weather data do not coincide with the locations with 

true solar energy measurement. As it is shown in figure 2.1, the blue points are the 

locations with corresponding weather data, but the red points are the locations that 

have actual measured solar energy data. Thus, a two-dimensional linear interpolation 

is used to find the right matching between the target value measured and the weather 

data. 

We assume that each variable to each GEFS grid point among the 15 afore-

mentioned variables in the weather data is linearly depending on the latitude and 

longitude. In two-dimensional linear interpolation, we perform linear interpolation 

in one direction first, and again in the other direction. The solution to a bilinear 

interpolation problem is stated as follow: 

f(x, y) ≈ a0x + a1y + a2xy (2.4) 
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Figure 2.1. Points with GEFS data and points where the measurement taken. 
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where a0, a1, a2 are weight vectors for matrices x,y, and xy. They can be found by 

solving: ⎤⎡⎤⎡⎤⎡ 
1 ⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎦ 

a0 

a1 

a2 

⎥⎥⎥⎥⎥⎥⎦ 

= 

⎢⎢⎢⎢⎢⎢⎣ 

f(Q11) 

f(Q12) 

f(Q21) 

⎥⎥⎥⎥⎥⎥⎦ 

(2.5) 

x1 y1 x1y1⎢⎢⎢⎢⎢⎢⎣ 

1 x1 y2 x1y2 

1 x2 y1 x2y1 

1 x2 y2 x2y2 a3 f(Q22) 

In this dataset, there are GEFS 96 grid points with corresponding latitudes and 

longitudes values. We run a two-dimensional interpolation using Scipy through the 

96 points for each of the 15 weather data variables, and based on the latitudes and 

longitudes of the 98 Mesonet points, we exterpolated the weather data for each point, 

getting their weather variables to construct the trainable dataset. 

2.2 Deep Neural Network 

This section represents the architecture of deep fully connected neural network for 

solar energy prediction task. The inputs are normalized weather variables calculated 

from the two-dimensional interpolation. The target values are measured daily solar 

energy received at Mesonet points. 

Deep fully connected neural networks have the potential to identify the nonlinear 

relationship between input features and the targets. It takes on learning representa-

tions from data that puts an emphasis on learning successive layers of increasingly 

meaningful representations. The deeper it goes, the higher level representation it is 

able to identify, so that it establishes a proper mapping from input features to their 

target. 

2.2.1 Network structure 

The proposed the network is a deep fully connected neural network consisting of 

1 input layer, 1 output layer, and 4 hidden layers. We introduce some notations used 

in the neural network. An instance fed in the neural network is a two-dimensional 
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Figure 2.2. The structure of the feed forward neural network. 

matrix, where there are N (also known as batch size) data samples and D features. In 

our case, batch size N needs specifying during training, and the number of features 

D is 75 due to the shape of the input, the input layers contains 75 nodes, each 

representing a variable from the weather data. The first hidden layer has the number 

of nodes of 300, which is sufficiently large to capture all the information contained 

in the input layer. For the next 3 hidden layers, the numbers of nodes in each layer 

are 150, 80, 30, respectively. In the output layer, there is only one node since for 

the regression problem, only one output value per sample is needed. The structure is 

shown as in Figure 2.2: 

For each node in hidden layers, an activation function called rectified linear func-

tion (ReLU) has been used. The purpose of using activation functions is to introduce 

non-linearity into the network, so that each layer is able to extract high level repre-

sentations from the input data. 

2.2.2 Feed Forward 

The first step during training process is feed forward, where the information moves 

in only one direction, layer by layer in the network. The basic concept of feed forward 
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neural network is quite simple: the network is supplied with both a set of input data to 

be learned and the desired output response for each data sample[15]. When the input 

information enters a layer, it will be parameterized by weights, which are essentially 

numbers, or vectors or matrices. The path operation between layers is to add up the 

output times weights of each node from the previous layer and pass it to each node 

from the subsequent layer, which can be mathematically described as below: 

nX 
yj = (wij xi + bi) (2.6) 

i=1 

where n is the number of nodes in the previous layer, xi is the output from the previous 

layer (xi is a feature if the previous layer is the input layer), wi is the weight, bi is 

the bias term. The output yj can be considered as the input value for the node in 

the subsequent layer. 

The operation inside of the nodes is called activation process, where an activation 

function is applied to the node’s input. In this research, sigmoid function is used. 

The activation process is shown below: 

0 yj = ReLU(yj ) (2.7) 

where y0 j is the output of a node after activation, and ⎧ ⎪⎨0, if x < 0. 
ReLU(x) = (2.8)⎪⎩x, otherwise. 

With this choice, only partial nodes in each layer will be activated, not being squashed 

into certain range, which is widely used for regression problem. The derivative of the 

ReLU function is in form like this: ⎧ 

d 
⎪⎨0, if x < 0. 

ReLU 
dx 

= ⎪⎩1, otherwise. 
(2.9) 

The derivative of ReLU function is continuous and can be easily computed, being 

suitable for backpropagation process. 
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2.2.3 Loss function, Gradient Descent and Backpropagation 

Loss function: One of the most important objectives of training period in super-

vised learning, for example, in this research, is to minimize the difference between the 

true target value and the output value of the network. As in traditional MLP training 

for regression task, the mean squared error loss (MSE) is used in the training stage. 

The MSE is a measure of the quality of the network, indicating the average squared 

deviations between true value and predicted value. It is always non-negative, and 

values closer to zero are better. The mathematical expression of MSE is as follow: 

NX 
MSE =

1 
(yi − ŷi)

2 (2.10)
2N 

i=1 

where yi is the true target value, and ŷi is the output value of the network. 

Gradient descent: In order to minimize the MSE, after each iteration, we need 

to update the weights in the network to make the predicted value closer to its true 

value. In this research, gradient descent optimization algorithm is used. The weight 

update rule is shown as follow: 

∂MSE(X, θ)
θt+1 = θt − α (2.11)

∂θ 

where θ denotes the parameters (weights and biases) of the neural network at iteration 

t in gradient descent, α is the learning rate, controlling the step size of updating the 

weights. 

Backpropagation: After each iteration from the feed forward stage, we will have 

the error value, with the mean squared error loss function. We need the predicted 

error to propagate back through the network in order to update the weight matrices 

for each layer. The chain rule of computing derivatives is applied here during the 

process of getting the minimum value of MSE. There are some notations can be used 

to describe the backpropagation in the feed forward network: 

Using the notation above, backpropagation aims to minimize the MSE by cal-

∂E k 1culating the value of , for each weight wij , where E = (yi − ŷi)2 . The partial
∂wk 2

ij 
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Table 2.2. Notations in backpropagation. 

Notation Explanation 

wij
k weight for node j in layer lk for incoming node i 

bki bias for node i in layer lk 

ai
k product sum plus bias (activation) for node i in layer lk 

oi
k output for node i in layer lk 

rk number of nodes in layer lk 

derivative of MSE with respect to wij
k can be written as follow according to chain rule 

and Equation (2.9): 

X∂MSE(X, θ) 1 
N 

∂ŷi 
= (yi − ŷi) (2.12)

∂wk N ∂wk 
ij ijd=1 

where, 
k X∂ŷi ∂ReLU(ai ) ∂ai

k
k 

rk−1 
k k−1 = , ai = bki + wij oj (2.13)

∂wk ∂ak ∂wk 
ij i ij j=1 ⎧ ⎪ k⎨0, if a < 0.kdReLU(a ) i 

According to Equation (2.8), 
dak

i = . Thus, the partial 
i ⎪⎩1, otherwise. 

derivative has the final form as: ⎧ ⎪ k⎨0, if a < 0.∂MSE(X, θ) i 
= (2.14)

∂wk ⎪ PNij ⎩ 1 
N d=1(yi − ŷi), otherwise. 

This part is the gradient of the network, which will be applied in weight update in 

Equation (2.10). When it is the input layer, oi becomes the input variable xi. 

2.3 Experiment and Result 

In this section, we have performed an experiment using the previously proposed 

feed forward neural network, where there are an input layer, 4 hidden layers, and an 
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output layer. The network is trained and tested using data given. After interpolation, 

the feature vector of each sample is reshaped into a 75-dimensional vector, because 

with 5 sets of weather data a day, and 15 weather variables in each set, a sample 

essentially has 75 features for a day. Thus, the input layer contains 75 nodes, each 

representing a feature in a sample. The first hidden layers have 300 nodes, 150 nodes, 

80 nodes, and 30 nodes, respectively. The output layer only has 1 node due to the 

regression problem. The ReLU activation functions are applied to each node in the 

hidden layers. The experiment result is compared with the result of a baseline model. 

2.3.1 Baseline: linear regression 

A linear regression model has been implemented as the baseline model for pre-

dicting daily solar energy given weather data in the study. It is a linear approach 

for modeling the relationship between a scalar dependent variable y and one or more 

explanatory variables (or independent variables) denoted X[5]. The linear regression 

model has the form of: 

y = Xβ + � (2.15) 

in which X is the feature vector, 75 variables in this case, y is the target vector, β is 

the weight matrix and � is the bias vector. The implementation of the linear model 

is achieved by a Python machine learning library scikit-learn. The mean absolute 

error over the testing set is 0.2254, which indicates that on average, the predicted 

values using linear regression deviate from the true value by 13.64%. Figure 2.2 

shows the testing result of 100 samples in the baseline model, in which it is obvious 

that the predicted values basically capture the true target value; however, there are 

some distinct differences around turning points , and the trends of some middle points 

are completely toward different directions. Based on the result plot, we can clearly 

see that the baseline model is able to fit well around the mean value but the model 

performs poorly at the points that are away from the mean value. 
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Figure 2.3. Testing result of linear regression baseline model. 
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2.3.2 Deep neural network 

The training procedure can be summarized as follow: 

1. Divide the data into training, validation and testing set. 

2. Select network architecture and training parameters. 

3. Train the model using the training set for each of K-fold (K = 5). 

4. Evaluate the model using the validation set for each of K-fold (K = 5). 

5. Repeat steps 2–4 using different training parameters. 

6. Determine the final training parameters. 

The construction and running of the network happen in Python programming 

language and a deep learning framework called Pytorch. As mentioned before, prior 

to feeding in the data, the data standardization process is required, where each feature 

in the raw data is standardized to have mean value of 0 and standard deviation of 

1. The target values, daily solar energy, attain their original distribution, but being 

rescaled (divided by 106) to have a reasonable magnitude range. During the training 

and parameter tuning process, a 5-fold cross validation has been used. The training 

set in the cross validation is nearly evenly divided into 5 parts, making 4 parts as the 

training set and 1 part as the validation set. We train the network on the training 

set, and test it on the validation set. This process is repeated 5 times until the model 

has been tested on every single part of the 5 split parts. 

2.3.3 Result 

Figure 2.2 shows the training error and the cross-validation error plots against 

epochs. In the training process, 100 epochs and batch size 100 have been used when 

feeding in the training samples. With the learning rate of 0.05, the model converges 

around epoch 50 when validation error starts increasing, resulting in 0.0432 training 

error and 0.0572 validation error. Target value has been rescale linearly during the 
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Figure 2.4. The mean squared error for training and validation processes. 
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Table 2.3. Performance of baseline and trained models. 

Baseline Trained NN 

MAE 0.2254 0.1492 

Testing Accuracy 86.36% 90.97% 

2r 0.8363 0.9156 

training process due to their large magnitude. After rescaling, the mean value of 

the target is 1.6526. The metric used to evaluate this model is mean absolute error, 

as shown in Equation (2.1) and Equation (2.2). The model performance on testing 

set using aforementioned metrics gives the testing error of 0.1492, which means on 

average, the predicted value deviates from the true value by 9.03%. The trained model 

gets a r2 score of 0.9156, while the baseline model has a r2 score of 0.8363, indicating 

that for the trained neural network work, there is 91.56% variability between the true 

value and the predicted outcome can be accounted for. The comparison between the 

predicted value and the true value out of 400 testing samples is shown in figure 2.3, 

where the blue curves represent the predicted value, and the orange curves represent 

the measured value. Overall, the blue and the orange lines overlap for the most of the 

part, whereas at some changing points and peak values, there are some observable 

differences. The trained neural network outperforms the baseline linear regression 

model. The comparison results are shown in the Table 2.3: 

2.4 Conclusion 

A feed forward neural network consisting of 4 fully connected hidden layers has 

been developed as the regressor for daily solar energy prediction given weather in-

formation. The mean squared error loss function and gradient descent algorithm are 

used in training stage. The trained network can achieve a prediction accuracy of 

90.97% using mean absolute error as the metric. The trained model outperforms the 
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Figure 2.5. Comparison between predicted and measured solar energy. 
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linear regression baseline model, proving that the trained neural network is accurate 

and efficient enough to prediction daily solar energy. According to figure 2.4, the 

predicted values can capture most true values except for some peak areas. As a re-

sult, with given well-developed weather forecasting data of a location, consisting of 

the 15 types of variables used in this research, a reasonably accurate prediction of 

the amount of daily solar energy received at that location can be made. This model 

can be useful in solar energy forecasting in order to contribute to the management of 

electric power grid. 
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3. SOBOL SENSITIVITY ANALYSIS 

The trained model in the previous chapter takes all 75 weather variables into account. 

However, we want to know which are the most important ones among 75 variables 

that have more significant contributions to the model output. The Sobol sensitivity 

indices, both the first-order indices and the total-order indices in Eq.1.5 are calculated 

for each of the 75 variables. 

3.1 Steps for Sobol Sensitivity Analysis 

The Sobol sensitivity analysis in this research is conducted using a sensitivity 

library in Python programming language called SALib. The general steps of Sobol 

analysis in SALib are listed below: 

• Decide the parameters in the model that need to vary 

• Determine the parameter range including the lower and the upper bounds. 

• Generate samples based on the problem setting in the previous two steps. 

Note 

In order to perform a reliable Sobol analysis, the generated sample size is usually 

depending on the number of parameters evaluated and how complex the model is[22]. 

There is no, however, a general protocol to follow to determine the sample size. The 

rule is that the more parameters need to be evaluated and the more complex the 

model is, the more samples are required. For the Sobol sensitivity analysis of the 

trained solar energy prediction model, a sample size of 400,000 is used. 

• Feed the generated samples in the trained model and get the model output. 

• The output will be used to calculate the first-order and the total-order sensi-

tivity indices. 
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In this case, the number of parameter in the analysis is 75, because all 75 weather 

variables are considered to be evaluated. Due to the standardization process in Eq.2.2, 

the range of all the parameters is between -1 and 1. The number of parameter sets 

generated is subject to 2n × (p + 1), where n is the initial sample size, p is the 

number of parameters evaluated. Thus, the number of parameter sets generated for 

this particular model is 60,800,000. 

3.2 Sensitivity Analysis Results 

The Sobol sensitivity analysis of the trained model is to identify the key weather 

variables that drive the changes in predicted daily solar energy. The Sobol sensitivity 

analysis results are presented and interpreted in the following section. 

As mentioned in 3.1, the outputs of this Sobol sensitivity analysis are the first-

order and the total-order sensitivity indices for all 75 weather variables, shown in 

figure 3.2. The x-axis in the figure represents 75 parameters evaluated written in 

x1...x75 due to convenience. For every 15 parameters from x1 to x75, they represent 

the aforementioned weather variables, respectively, and there are 5 sets of parameters 

in total. The y-axis is the magnitude of indices for both the first-order and the total-

order. In Sobol sensitivity analysis, the parameters with sensitivity indices greater 

than 0.05 are considered significant. In the result of our analysis, in decreasing order, 

only x65, x71, x73, x30 and x64 are greater than 0.05 threshold. They represent, 

in order, the fifth report of the precipitable water over the entire depth of the at-

mosphere, the fifth report of the current temperature at 2m above the ground, the 

fifth report of the upward long-wave radiation at the surface, the second report of the 

upward short-wave radiation at the surface, and the fifth report of the air pressure 

at mean sea level. Notice that if we look at all the 75 variables together, most of 

the dominant variables are in the last weather data report. The precipitable over 

the entire depth of the atmosphere in the fifth report plays the most dominant part 

among all variables. 
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1 First set of weather data. 2 Second set of weather data. 

3 Third set of weather data. 4 Fourth set of weather data. 

5 Fifth set of weather data. 

Figure 3.1. Sobol first-order and total-order sensitivity indices for 5 
sets of weather data reported. 1. Sensitivity indices of variables in 
the first set of weather data. 2. Sensitivity indices of variables in the 
second set of weather data. 3. Sensitivity indices of variables in the 
third set of weather data. 4. Sensitivity indices of variables in the 
fourth set of weather data. 5. Sensitivity indices of variables in the 
fifth set of weather data. 
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The result of Sobol sensitivity indices of 5 times of weather data reports separately 

is shown in figure 3.1. For the first report of the day, the downward short wave 

radiative flux average at the surface, the precipitable water over the entire depth of 

the atmosphere, and the upward long-wave radiation on top of the atmosphere are 

the most three importance parameters. For the second report, the upward short-wave 

radiation at the surface, the temperature 2m above the ground, and the minimum 

temperature over the past 3 hours at 2m above the ground are the most significant 

ones. The third time report shows the similar situation, where the upward short-

wave radiation at the surface is most dominant one, followed by the temperature at 

the surface, and the maximum temperature over the past 3 hours at 2m above the 

ground. For the fourth report, the upward short-wave radiation at the surface, the 

downward short-wave radiative flux average at the surface, and the air pressure at 

mean sea level take the lead. In the fifth time of weather data report, the precipitable 

water over the entire depth of the atmosphere, the current temperature at 2m above 

the ground, and the upward long-wave radiation at the surface are relatively more 

important. 

3.2.1 Discussion 

Based on the sensitivity analysis results, each of the 5 weather forecasting records 

of the day, the most important variable varies. This might have been caused by 

the fact that 5 times of records are fed into the model altogether with 75 input 

features. This might eliminate the effect of contribution of each individual record to 

the final output. For the first four weather forecasting records, the Sobol sensitivity 

indices are less than 0.05 threshold, indicating the first four records are much less 

important than the fifth one. According to the data description, the first record is 

the weather forecasting for 7 or 8 AM local time, and the following records are the 

weather forecasting of every 3 hours increment. Thus, the fifth record is supposed to 
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Figure 3.2. The first-order and the total-order Sobol sensitivity in-
dices. ”S1” means the first-order indices and ”ST” means the total-
order indice. 

be the weather forecasting for 7 or 8 PM local time, yet having the most importance 

among all. The precise cause and underlying mechanism still need exploring. 

3.2.2 Results with Bootstrap Confidence Interval 

The estimate of sensitivity is useful only with an estimate of its sampling variability[1]. 

The Sobol sensitivity analysis indices are evaluated by bootstrap confidence interval. 

A 95% confidence level is applied in the process, so there will be an error bar for each 

index computed. 
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3.2.3 Bootstrap Confidence Interval 

The bootstrap is based on the law of large numbers, which says that with enough 

data the empirical distribution will be a good approximation of the true distribution. 

In Sobol sensitivity analysis, the Monte Carlo sampled values are resampled with 

replacement many times, at each stage and for each parameter the Sobol sensitivity 

Si is recalculated, leading to a bootstrap estimate of the sampling distribution of the 

sensitivity indices. 

The basic idea of bootstrap is to use the statistics from the resampled data to 

approximate the statistics from the originally sampled data in order to have a well-

approximated value of the variation of parameters of the true underlying distribution. 

For example, x1, ..., xn is a data sample drawn from a distribution P , and u is a 

statistic computed from the sample. A resampling or an empirical distribution of the 

data P ∗ is obtained. The next step is to draw samples from the empirical distribution, 

∗ ∗ ∗ say x1, ..., xn, and the corresponding statistic u can be calculated from the resample. 

In general, if we want to evaluated the variation of a statistics,such as the sample 

mean x̄ computed from a sample, the underlying distribution needs to be known to 

find the distribution of the variation δ = x̄ − µ, where µ is the population mean of 

the underlying distribution. The bootstrap principle offers a practical approach to 

estimating the distribution of δ = x̄−µ when the underlying distribution is unknown. 

It says that we can approximate it by the distribution of 

∗δ ∗ = x̄ − x ̄ (3.1) 

where x ̄∗ is the mean value of an empirical bootstrap sample. After obtaining many 

enough bootstrap samples, the critical value of δ∗ based on the confidence level chosen, 

can be calculated by the corresponding percentiles. 

In this Sobol sensitivity analysis, every sensitivity index computed has a bootstrap 

confidence interval with it. We can decide if we have chosen the appropriate number of 

evaluations based on the magnitude of the bootstrap confidence intervals. In general, 
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Figure 3.3. The first-order and the total-order Sobol sensitivity in-
dices with 95% bootstrap confidence interval. 

if the confidence interval of the dominant parameter is less than 10% of itself, we can 

say the initial sampling number is appropriately enough. 

3.2.4 Results 

The results of all 75 evaluated parameters are shown in figure 3.3. The error bars 

in the figure represent the bootstrap confidence intervals, which are all less than 10% 

of their corresponding Sobol sensitivity indices. Thus, we can say that we have chosen 

the proper number of the initial sample size and the Sobol sensitivity indices have 

well converged. We can also observe that the error bars for the first-order indices are 

generally greater than them of the total-order indices. 
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Table 3.1. Testing results after feature removal. 

Set 1 Set 2 Set 3 Set 4 Set 5 

MAE 0.2164 0.2132 0.2283 0.2374 0.2277 

Testing Accuracy 86.91% 87.10% 86.19% 85.63% 86.22% 

3.3 Sobol sensitivity analysis verification 

The analysis in the previous section indicates that the 5 most dominant or signif-

icant parameters among all the 75 evaluated parameters are x65, x71, x73, x30 and 

x64. In order to verify the reliability of the analysis results, the same trained model 

is evaluated after taking out the most significant parameters, compared with 5 less 

important parameters taken out. This process is repeated 5 times with different sets 

of less important parameters taken out each time. The results are shown in Table 

3.1: 

Meanwhile, the mean absolute error and the testing accuracy of taking out 5 most 

significant variables are 0.4193, and 74.63%, which indicates a much worse predictive 

ability than taking out less important features. The reliability of this Sobol sensitivity 

analysis is verified. 

3.4 Discussion 

According to the results of Sobol sensitivity analysis, the top most important vari-

ables contribute more to the model output variation. Most of the important variables 

coincide with the general knowledge on solar energy harnessing. The precipitable 

water over the entire depth of the atmosphere in this analysis contributes the most 

to the model output variation, possibly due to its strong correlation with the cloud 

distribution and refractive index of the atmosphere. The second significant variable is 

the current temperature at 2m above the ground The possible reason is that because 
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temperature reflects the effect of solar radiation, especially the temperature at some 

distance above the ground which indicates the amount of solar radiation is reflects. 

Among the top 5 most important variables, the effect of air pressure at mean sea level 

on harnessing solar energy needs further study and exploration. Evidently, based on 

the sensitivity analysis, the significant variables mostly come from the fifth run of the 

weather model of the day. The weather forecasting model runs start at 00 UTC, so 

they will always correspond to the same universal time. Thus, the fifth run of the 

weather model could have happened during the peak solar radiation period of time 

at Mesonet area. 
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4. SUMMARY 

In this research, a fully connected feed forward neural network has been constructed 

and trained for daily solar energy prediction given weather forecasting model data. 

Due to the inconsistency of between the GEFS weather data points and the Mesonet 

measured solar energy points, a two-dimensional linear interpolation is employed to 

obtain the corresponding weather data for the Mesonet measurement points. The 

proposed model has a testing accuracy of 90.97% for daily solar energy forecasting, 

outperforming the linear regression baseline model of which the testing accuracy is 

86.36%. 

In order to explore the importance of the input weather variables, the Sobol sensi-

tivity analysis is performed. The Sobol sensitivity indices, both the first-order and the 

total order, indicate that if we look at the 75 variables together, the top 5 important 

features are the fifth report of precipitable water over the entire atmosphere, the fifth 

report of the current temperature at 2m above the ground, the fifth report of upward 

short-wave radiation at the surface, the second report of upward short-wave radiation 

at the surface , and the fifth report of the air pressure at mean sea level. In each 

of the 5 weather data reports of a day, the most significant features are downward 

short-wave radiative flux average at the surface, the upward short-wave radiation at 

the surface, the upward short-wave radiation at the surface, the upward short-wave 

radiation at the surface, and the precipitable water over the entire atmosphere, re-

spectively. The reliability of the Sobol analysis is verified by feature removal testing 

method. This research provides an accurate and efficient enough way to predict the 

daily solar energy only with weather forecasting model data. In addition, the impor-

tance of features have been studied, providing meaningful information for the choice 

of locations for solar power plants and their design. 
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