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ABSTRACT 

Eiles, Matthew T. PhD, Purdue University, May 2018. Highly Excited States of 
Small Molecules and Negative Atomic Ions. Major Professor: Chris H. Greene. 

Excited states of atoms and molecules exhibit a rich array of diverse phenomena. 

This dissertation examines two exotic states of atoms at such excited levels: Rydberg 

molecules and atomic negative ions. Rydberg molecules are formed by a Rydberg 

atom and one or more ground state atoms, and can be highly polar due to their 

unusual electronic wave functions and enormous bond lengths. This dissertation 

expands the theory of these molecules by studying the formation and structure of 

polyatomic molecules, multichannel Rydberg molecules formed from divalent atoms, 

and spin effects and relativistic interactions. It also details intermolecular forces 

between Rydberg molecules, their manipulation via external fields, and their depen-

dence on the intricacies of electron-atom scattering. This electron-atom interaction 

is also the main component of the latter portion of this thesis, which studies doubly 

excited states of alkali negative ions in very polarizable and nearly degenerate atomic 

states. Photodetachment of these states reveals electron correlation and long-range 

forces stemming from their high excitation. 
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1. INTRODUCTION 

Undoubtedly, the most useful window through which the properties of ions, atoms, 

and molecules can be studied is the spectrum of their excited states. The light ab-

sorbed and emitted by transitions between excited states of different atoms first led 

Balmer, Rydberg, Ritz, and Bohr to develop empirical formulae and the “old quan-

tum theory” to describe these observations [6–8]. Their efforts led directly to the 

revolutionary development of quantum mechanics in the 1920s. Rydberg’s key con-

tribution was his famous empirical formula relating atomic energy levels, which has 

since grown into a vibrant field of its own: the study of Rydberg atoms. Although 

early spectroscopic studies began with excited electronic states in atoms, where the 

highly attractive Coulomb force supports an infinite number of excited bound states, 

the utility of exploring microscopic systems via spectroscopy is not limited to these 

levels below the dissociation threshold. Resonances, transitory quasi-bound states 

lying at continuum energies, provide another remarkably clear and precise signature 

of the properties of a given complex [9, 10]. Resonances dominate the excitation 

spectrum in such diverse scenarios as autoionization in multi-electron atoms, pho-

toionization of molecular Rydberg states, or negative ion photodetachment. In this 

latter process, these resonances are particularly critical as nearly all atomic negative 

ions lack any excited bound states. Resonance features are therefore the only way 

to probe and understand the fascinating behavior of these systems [11]. 

Various physical processes, for example electron impact, light absorption, or colli-

sions with other atoms, molecules, or ions, can spark a transition to a highly excited 
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state. Of these methods, light absorption has become the premier probe of funda-

mental properties of matter since the advent of high resolution lasers, which made it 

possible to excite atoms or molecules in a highly controlled and precise fashion. The 

ability of experiment to study excited systems incredibly accurately sparked rapid 

advancements in the ability of theory to interpret these measurements and predict 

new phenomena, and the interplay between these two approaches has unraveled many 

of the fascinating properties of Rydberg atoms and atomic negative ions. 

Rydberg atoms possess many exaggerated features – enormous size, long life-

times, and huge long-range interactions, to name a few – and as a result have ex-

ploded in popularity over the last thirty years [12,13]. They can possess very regular 

and simple spectra, as in the alkali atoms, or complex and rich – but still theo-

retically tractable – spectra like those observed in alkaline and open shell atoms. 

These spectra have been successfully interpreted using advanced theoretical tools 

such as multichannel quantum defect theory (MQDT) and eigenchannel R-matrix 

theory [10, 14–17]. Furthermore, Rydberg atoms provide a pristine environment for 

highly accurate quantum metrology and manipulation [18]. They reveal a wealth 

of information about the myriad effects of external fields on quantum systems, the 

transition between quantum and classical physics, and the universal properties of 

many different atomic species [10, 19–23]. Recent applications of Rydberg atoms 

have shown that the Rydberg blockade stemming from their enormous long-range 

forces can lead to bizarre nonlinear phenomena such as polariton formation and 

bound states of photons [24–26]. Laser cooling and trapping have introduced many 

applications in quantum information and communication [27–30]. 

Rydberg atoms have also been studied in ultracold gases following the success-

ful Bose-Einstein condensation of multiple atomic species [31–36]. Excited Rydberg 

states of many molecules, such as H2, were studied prior to the advent of ultracold 
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physics [37, 38], but these new nano and microkelvin environments have made it 

possible to study molecules composed of one or more Rydberg atoms. These exotic 

molecules were predicted to have huge bond lengths and very weak binding energies; 

these properties have since been verified experimentally [39–42]. One of these mol-

ecules – the “trilobite” molecule – is a major focus of this thesis. They share many of 

the properties of the constituent Rydberg atom, and therefore a detailed understand-

ing of the electron-ion interaction and the quantum defect theory of the Coulomb 

potential is required. However, they are also highly sensitive to the electron-neutral 

interaction which determines the scattering phase shifts used in the Fermi pseudopo-

tential; this describes the interaction between a Rydberg atom and a neutral atom 

or atoms located inside the electronic wave function in an accurate yet conceptu-

ally simple manner. Rydberg molecules therefore probe both Rydberg physics and 

ultracold scattering physics, providing myriad opportunities for rich studies. 

Although at first glance they seem quite unrelated, excited atomic negative ions 

share many underlying commonalities with Rydberg atoms and molecules, and can 

be treated with many of the same theoretical techniques. One encounters in both 

systems two-electron correlation and exchange as well as the effects of level degen-

eracy ubiquitous in highly excited states. Some important distinctions are of course 

also present. Electronic correlation effects are typically far more important in nega-

tive ions, since the overpowering Coulomb force dominating Rydberg physics is not 

present. Furthermore, the electron-neutral interaction crucial in the formation of 

Rydberg molecules is only between the Rydberg electron and a ground state atom, 

whereas in doubly excited states of negative ions one can imagine the negative ion as 

an electron attached to a Rydberg atom, albeit one of relatively low n. In either case 

the absence of strong Coulomb forces allows electron correlation, enhanced when the 

system is excited, to play a major role. Furthermore, since all doubly excited nega-
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tive ion states in alkali atoms lie above the ionization threshold, autoionization plays 

a dominant role. Some of the most famous studies of autodetaching states were the 

joint theoretical and experimental efforts to understand the simplest atomic anion, 

H− [43–46]. At photon energies very close to threshold the very slow ejected electron 

remains highly entangled and correlated with the core; these effects are manifested in 

remarkable near-threshold effects and rich resonance physics [47–49]. Some atomic 

negative ions, notably La− and Os− , have at least one bound excited states and are 

promising candidates for laser cooling [50,51], but only the ground state of an alkali 

anion is stable [11]. 

This thesis is devoted to studying both of these excited systems through the per-

spective of few-body atomic physics. Chapter 2 outlines the key theoretical concepts 

and techniques utilized throughout this thesis to describe Rydberg atoms, Rydberg 

molecules, and atomic negative ions. These tools range from remarkably simple, yet 

accurate, models such as the Fermi pseudopotential to other far more general compu-

tational tools such as the eigenchannel R-matrix method. A pedagogical viewpoint 

is adopted here to underscore the wide generality of these techniques to the diverse 

topics covered here. 

Following this, Chapter 3 reviews long-range Rydberg molecules. It emphasizes 

the key properties of the simplest class of Rydberg molecules in order to give a 

general picture of these unique few-body systems. This picture is then expanded in 

following chapters. The current state of experimental and theoretical efforts in this 

field is reviewed both in this chapter and in the more specific introductions to later 

chapters. 

The properties of polyatomic Rydberg molecules are elucidated in chapter 4. A 

theoretical framework is developed which robustly generalizes to any number of con-

stituent atoms in an arbitrary molecular shape, taking advantage of the mathematics 
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of point-group symmetries where applicable, and identifying the effects of disorder-

induced asymmetries in the molecular structure. We find that the level spacings, 

degeneracies, and adiabatic/diabatic level crossing properties of these systems are 

determined by hybridized trilobite or butterfly orbitals reflecting the molecular ge-

ometry [52, 53]. Following this, we develop a few-body approach which relies on 

static line broadening theory and uses this same compact treatment of polyatomic 

Rydberg molecules to treat the spectroscopy of a single hydrogen Rydberg excitation 

immersed in a high density background of other hydrogen atoms. This system ex-

hibits two unique spectral signatures: its lineshape depends on the Rydberg quantum 

number and is independent of the density, and it is dominated by sharply peaked 

features reflecting the oscillatory structure of the potential energy landscape. Fi-

nally, the theoretical description of polyatomic molecules is extended beyond the 

hybridized trilobite and butterfly orbitals to include more realistic details like the 

non-degenerate states with low angular momentum and couplings to other principal 

quantum numbers. This generalization of the theory is appropriate for describing 

more realistic molecular states and is easily adopted to studying external field effects 

and to include electronic and nuclear spin. 

In chapter 5, a generalized class of Rydberg molecules is predicted which consist of 

multichannel Rydberg atoms. Such molecules exhibit favorable properties for laser 

excitation because states exist where the quantum defect varies strongly with the 

principal quantum number. The resulting occurrence of near degeneracies with states 

of high orbital angular momentum promotes the admixture of low l into the high l 

deeply bound ‘trilobite’ molecule states, thereby circumventing the usual difficulty 

posed by electric dipole selection rules. A specific example in calcium is given to 

demonstrate these possibilities. These multichannel states also exhibit multi-scale 

binding possibilities that could present novel options for quantum manipulation. The 
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spin-orbit splitting of silicon is shown to give rise to perturbed Rydberg series that, 

for highly excited states, exhibit these unusual behaviors. 

Chapter 6 presents a full picture of these molecules including all relevant spin de-

grees of freedom in the heavy alkali atoms Rb and Cs. This includes the Rydberg fine 

structure, the hyperfine structure of the ground state atom, and the relativistic spin-

orbit splitting of the electron-atom scattering, which we find influences the potential 

energy curves and dipole moments of Rydberg molecules quite strongly. This chap-

ter provides a foundation for future theoretical studies interested in studying these 

molecules at spectroscopic accuracy, corrects some invalid assumptions common in 

the literature, and identifies topics for future effort, particularly the sensitivity of 

this model to convergence issues and uncertainty in the low-energy phase shifts. 

In Chapter 7 we propose an experiment to demonstrate a novel blockade mecha-

nism caused by long-range anisotropic interactions in an ultracold dipolar gas com-

posed of “butterfly” Rydberg molecules. We study the intermolecular interaction 

between Rydberg molecules and find that, like the interaction between bare Rydberg 

atoms, it leads to a Rydberg blockade phenomenon when the interaction exceeds the 

bandwidth of the photoassociation laser. Due to the polar nature of these butter-

fly molecules this interaction is highly anisotropic, leading to a geometry-dependent 

blockade radius. When the molecules are prepared in a quasi-one-dimensional (Q1D) 

trap, the interaction’s strength can be tuned via a weak external field. The molecular 

density thus depends strongly on the angle between the trap axis and the field. 

Chapter 8 moves away from Rydberg molecules and presents the results of our 

study of negative ion photodetachment in highly excited states of the potassium 

negative ion, K− . In particular, we explore partial cross sections corresponding to a 

residual neutral state with a high level of angular excitation. Recent experimental 

investigations of these partial cross sections showed interesting behavior which was 
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interpreted as stemming from the enormous polarizabilities of the residual atom. 

These polarizabilities are greatly enlarged by the mixing of nearly degenerate high 

angular momentum states, and can even be negative, causing the neutral atom to 

strongly repulse the detached electron. However, we find evidence that a better 

interpretation of these effects is to treat the nearly-degenerate channels as exactly 

degenerate. In this case, as in the hydrogen anion, the degenerate states hybridize 

and exhibit a linear Stark shift. This leads to a dipole potential. We show that 

this assumption qualitatively explains the observed partial cross sections and agrees 

with a full R-matrix eigenchannel calculation. We make predictions for partial cross 

sections at higher energies, where qualitative differences between these alternative 

models should become apparent. Results for Na− photodetachment in a similar 

energy regime are included to reinforce these findings. 

Chapter 9 describes two ongoing extensions of the topics detailed in previous 

chapters, focusing on modifications to the concept of Rydberg molecules by replac-

ing one or both of the constituent atoms. In the first case, the perturber atom is 

replaced by a “ghost” atom: the effect of a real atom on the Rydberg wave func-

tion is mimicked by a sequence of electric and magnetic field pulses, causing the 

Rydberg wave function to form precisely the same trilobite chemical bond as we 

study elsewhere, but here it extends out into empty space. In the second case, both 

constituent atoms are replaced by different alkali species to search for more diverse 

physics present in these species, particularly in heteronuclear combinations thereof. 

Chapter 10 concludes and describes directions for future study. 
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2. THEORETICAL TECHNIQUES 

At first glance, the AMO theorist’s task is almost trivial: solve the Schrödinger 

equation for the wave function, and then use this wave function to calculate relevant 

observables following standard formulae. The theorist simply needs to insert the 

appropriate Hamiltonian into a partial differential equation solver, then go home for 

the night while the computer churns, eager to return the next morning to write up 

some results. This naive view is quickly betrayed by the reality of the complexity 

of physical phenomena. The primary, sometimes insurmountable, problem is di-

mension: an N -particle wave function must describe 3N spatial degrees of freedom. 

Particle spins expand this Hilbert space even further. The theorist must then solve 

partial differential equations, often involving boundary conditions at infinity, in a 

many-dimensional space impenetrable to calculation, let alone visualization or even 

tabulation due to this exponential growth in complexity. 

The driving insight behind all the theoretical tools used throughout this thesis 

is that this vast configuration space can be separated, on firm physical grounds, 

into various distinct regions where certain interactions dominate and others can be 

ignored. This concept is the common thread uniting such disparate concepts as 

multichannel quantum defect theory (MQDT), the R-matrix eigenchannel method, 

frame transformations, and the Fermi pseudopotential. Every project undertaken in 

this thesis relies on one or more of these concepts to make the problem tractable. 

Separation of configuration space into regions has several important implica-

tions. From a phenomenological perspective, after identifying small regions where the 
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physics may be extremely difficult to solve, one can often parameterize the physics 

throughout the rest of space using only a few quantities determined by the physics in 

this complex region. Thus, in the standard formulation of MQDT, the small region 

of space in which an electron interacts with an atomic or ionic complex determines a 

few parameters that are very insensitive to the energy of the electron, and which then 

effortlessly describe the highly energy-dependent physics of the electron at large dis-

tances. For example, the quantum defects of each Rydberg channel depend only on 

the interactions happening in the region around the atomic core, typically spanning 

a few tens of atomic units at most. Once calculated, they give the electronic energies 

and give the wave function everywhere outside of the small atomic core region for 

the infinite number of Rydberg states, thousands of atomic units in size. 

Another difficulty regarding the spatial dimensions of problems in atomic and 

molecular physics is that calculations often involve infinitely large regions of space. 

When a particle is at positive energy its wave function extends over all space and must 

be calculated and then later integrated over this entire region to describe scattering 

properties. Bound state problems can often be treated with relatively brute-force 

methods due to the L2 integrability of basis functions with closed boundary con-

ditions at infinity, since typically this outer limit can be approximated as a finite 

distance very accurately. A large enough basis in this regard can come close to 

approximating a complete set of states, and finite integrals can be done routinely. 

Scattering problems, however, must by necessity deal with wave functions that are 

non-zero at infinity. These must be handled with a broader range of approaches. One 

interesting solution is the complex rotation method, which is a fascinating mathe-

matical approach [54]. In this method, a scaling of the coordinates r → reiθ shifts 

positive energies into negative energies, thus turning resonance states into bound 

states. This means that L2 trial functions can be used for the calculation. Stabi-
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lization techniques are also possible, where the use of basis functions not satisfying 

correct boundary conditions (in this case they are typically box-quantized in a region 

of size L) can nevertheless be used to calculate resonance properties by varying the 

size of the box and searching for stabilization points; these can be proved to occur 

at resonances of the exact system [55, 56]. 

For investigations seeking to identify not only resonance positions but also dy-

namical properties such as partial and total cross sections, energy-dependent phase 

shifts, or angular distribution parameters, the theoretical techniques detailed in this 

chapter are essential tools. They emphasize the concept of spatial separability dis-

cussed earlier, and the physical concepts deployed in deriving these methods form 

the essential basis for every other topic described here. The eigenchannel R-matrix 

approach, coupled with multichannel quantum defect theory, is the foundational the-

ory for describing Rydberg states or doubly excited electron interactions in negative 

ion systems. It is built on the concept, discussed above, that an excited electron 

only interacts with other core electrons over a range of just a few atomic units; out-

side of this “R-matrix volume” the electron wave function can be found analytically 

by solving the appropriate radial Schrödinger equation with the long-range poten-

tial r−b relevant to the system, or just by matching to numerical solutions of the 

single-electron case at large enough distances. For Rydberg atoms, b = 1 and the  

asymptotic solutions are Couloumb wave functions; for the hydrogen anion or for 

purely centrifugal potentials b = 2 and the solutions are spherical Bessel functions 

(although for the former case, for a sufficiently attractive dipole potential these func-

tions are of complex order and argument, and possess interesting qualities); for other, 

non-degenerate, atomic anions b = 4 and the solutions are Mathieu functions. By 

separating configuration space in this manner, the challenging two electron calcula-

tion can be performed over just a small region of configuration space. This provides 
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the scattering parameters needed to tether the long-range wave functions, either 

those of MQDT or a numerical calculation, which describe the system throughout 

the rest of space. These methods have found incredible success over the years, and 

a very useful review which forms the foundation of much of this chapter is found 

in [10]. 

Similarly, the Fermi pseudopotential was first derived by Fermi to describe the 

interaction between a Rydberg electron and a neutral atom enveloped within the 

Rydberg wave function [57]. Again, due to the enormous size of the Rydberg electron 

relative to the interaction region, this would be an enormously difficult problem for 

standard techniques. Turning the problem around, the small scale of the interaction 

region allows its effects to be simply parameterized, and Fermi’s resulting model 

potential was able to explain a series of experimental results. The key insight of 

Fermi’s derivation is that the electron, moving with very little kinetic energy in its 

Rydberg orbit, is essentially a very low-energy scatterer off of the neutral perturber. 

Their interaction is therefore determined by a scattering length (or volume, for higher 

partial waves), derived by effective range theory. Furthermore, the exact interaction 

can be replaced by a delta function potential proportional to the energy dependent 

scattering length in such a way that guarantees that the long-range physics will be 

correct, even though the potential seems to be a shockingly simplistic picture of 

a real atom-electron interaction. This same idea has since been utilized often in 

the ultracold regime to describe atom-atom scattering, where the long de Broglie 

wavelength of very cold scatterers reduces the complicated physics of the atom-atom 

interaction to a contact interaction providing the correct scattering length is used. 

In the remainder of this chapter, we derive these concepts in considerable detail, 

as they are the essential background for the theory used in the specific projects 

undertaken in this thesis. Other, related techniques such as the frame transformation 
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and details of our applications of MQDT, will be described in later chapters when 

they become relevant. 

2.1 Two-electron systems: the eigenchannel R-matrix method 

This section endeavours to describe the eigenchannel R-matrix theory used to 

treat two-electron systems throughout this thesis. This analysis will demonstrate 

some details of the R-matrix calculation and discuss analytical and numerical aspects 

of the long-range solutions which, along with the short-range R-matrix solutions, 

fully characterize the wave function. 

2.1.1 The Hamiltonian, its eigenspectrum, and emergent long-range po-

tentials 

We begin by defining the Hamiltonian and describing how long-range potentials 

emerge. Although the R-matrix concept is general to many applications, we special-

ize to the “two-electron” systems such as alkaline-earth atoms and alkali negative 

ions. The deeply bound core electrons are treated using independent-electron model 

potentials, and otherwise play no role. These potentials describe polarization and 

screening effects, and are characterized by parameters which are fit by comparing 

the calculated energies to experimental energies. 

The two-electron Hamiltonian is straightforward to describe. Upon removing the 

trivial center of mass motion and assuming an infinitely massive nucleus, we have 

1 1 1 
H = −  2

1 −  2
2 + Vl1 (r1) +  Vl2 (r2) +  . (2.1)

2 2 r12 

Here, 1,2 label the two electrons, ri is the position of electron i, Vl(r) is the model 

potential for each partial wave l, and  r12 = r1
2 + r2

2 − 2r1r2 cos θ12 is the distance 
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between the two electrons. Atomic units are used here and throughout the following, 

unless otherwise specified. Spin-orbit physics can be included at this stage by adding 

the potential suggested by the Dirac equation [58], 

V slj 
(g − 1)α2 1 dV (g − 1)α2 −2 

(r) =  1 − V (r) s · l, (2.2)so 2 r dr 2 

where α is the fine-structure constant and g is the electron g-factor. For simplicity, 

we ignore spin-orbit coupling in this chapter. However, in chapter 5 the frame trans-

formation and MQDT for the Coulomb field are used to treat spin-orbit effects, and 

in chapter 6 we include spin-orbit effects parameterically through spin-dependent 

quantum defects and phase shifts. 

The specific form of Vl(r) depends on the system. For negative ions, Vl(r) is fit  

so that the eigenspectrum matches experimental values for the atomic energy levels; 

for Rydberg states it is fit to match the energy levels of the positive ion. For the 

hydrogen negative ion or Rydberg states of the helium atom Vl(r) is simply 

Z l(l + 1)  
Vl(r) =  − + 

2 
, (2.3) 

r 2r 

where Z = 1  for  H− and Z = 2 for He. The model potentials for more complex 

atoms can be found in Refs. [10, 48, 59]. For typically have a form similar to [48] 

1 αc−a1r −a3r −(r/rc)3 2 
Vl(r) =  − ZC + (Z − ZC )e + a2re − 

4 
1 − e , (2.4) 

r 2r 

where rc, a1, a2, a3 are fit parameters for each l, ZC = 1,  and  αc and Z are the 

polarizability of the core and charge of the nucleus, respectively. The potentials for 

hydrogen and potassium [48, 59] are compared in Fig. 2.1. 

As discussed above, the R-matrix approach is based on the concept that both 

electrons only interact within a finite volume. As one electron escapes beyond the 

radius of the R-matrix volume, r0, its wave function is given numerically by solving 
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 Figure 2.1. Potential energy curves. The black curve is valid for hy-
drogen, while the red and blue curves represent the model potentials for 
potassium from [48] and  [59], respectively. At large distances, and for 
large l, these potentials are identical. The two different model potentials 
give essentially identical one-electron energies. 

the coupled channel equations or by analytical methods such as MQDT. The radius r0 

is defined by the boundary condition Ψ(r1, r2) = 0  if  both  r1 and r2 are greater than 

r0. Typically, r0 must be large enough that the excited states of the residual atom or 

ionic core which are relevant at the energies under consideration are contained within 

this volume. Within the R-matrix volume, the full two-electron problem must be 

solved. Years of R-matrix studies have shown that its success relies on the accuracy 
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of the one-electron wave functions unl(r) satisfying the radial Schrödinger equation 

for a single electron, 

1 d2 l(l + 1)  − + + Vl(r) − nl unl(r) = 0, (2.5)
2 dr2 2r2 

subject to box boundary conditions, unl(0) = 0 and unl(r0) = 0. This is true inde-

pendently of the choice of model potential Vl(r). This stems from the fact that the 

electronic wave function phases are guaranteed to be correct if the energies are, and 

thus the electron-electron interaction 1/r12, which depends sensitively on the rela-

tive electron phases, will be accurate. One can choose from a variety of numerical 

methods to solve Eq. 2.5: a simple three-point stencil on a square root mesh [60] 

or more complicated and sophisticated Numerov or predictor-corrector methods are 

common choices. These methods may struggle to accurately describe the highly 

oscillatory excited orbitals. These inaccuracies are reflected in the overlap matrix 

elements, which should vanish for exact wave functions but can substantially differ 

from zero in these numerical implementations. We have therefore implemented a 

B-spline method, which can give results to nearly arbitrary precision simply by in-

creasing the number of splines and their order. Details are given in Appendix D, and 

the typical results of this calculation are exemplified in Fig. 8.2, which compares 

calculated eigenenergies of the potassium atom with the quantum defect formula. 

With these one-electron orbitals we construct a properly symmetrized and normal-

ized two-electron basis set [10]: 

1 un1l1 (r1) un2l2 (r2) yi={n1,l1,l2}n2 (r1, �r2) =  Yl1l2LM ( 1 2) (2.6)
2(1 + δn1,n2 δl1,l2 ) r1 r2 

(r1) un1l1 (r2)+ (−1)l1+l2−L+S un2l2 Yl1l2LM ( 2,  1) . 
r1 r2 

Typically we obtain ∼ 100 closed-type functions, vanishing when either r1 or r2 

equal r0, for each of 10-15 partial waves, and since these obey closed boundary 
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conditions these form a complete and orthonormal set within the R-matrix volume. 

The fact that Eq. 2.6 provides a very accurate and efficient basis for the two-

electron Hamiltonian is a major advantage of the R-matrix method, and of course 

hinges on the fact that the region of two-electron interactions can be restricted to a 

finite volume. For this reason, processes like double ionization are significantly more 

challenging, although these methods can be modified to study them (see e.g. [61]). 

In addition to the closed-type functions we also include two open-type functions for 

each partial wave to provide the flexibility to describe the continuum wave function 

of the escaping electron, which must have non-zero amplitude at the R-matrix radius. 

These one-electron functions are neither mutually orthogonal nor orthogonal to the 

closed-type. 

Most integrals required to form matrix elements of H require integrating over the 

coordinates of a single electron and are trivial to calculate using the numerical wave 

functions provided by the B-spline routines. The greatest computational hurdle is in 

calculating the matrix elements of 1/r12. This is facilitated using the expansion into 

Legendre polynomials Pk 

1 1 r<
k 

= = 
k+1 Pk(cos θ12). (2.7) 

r12 r2 2 − 2r1r2 cos θ12 r1 + r2 k=0 > 

Matrix elements in the two-electron basis thus involve integrals of the form 

1 
n1l1n2l2LM | |n1l1n2l2LM (2.8) 

r12 
kr 

= dr1dr2un1l1 (r1)un2l2 (r2) 
< un1 

(r1)un2 
(r2) l1l2LM |Pk(cos θ12)|l1l2LM ,

k+1 l1 l2 r>k 

a two-dimensional radial integral multiplying a four-dimensional angular integral. 

This latter factor is obtained analytically and defines important selection rules that 
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eliminate many terms in the radial integral. The evaluation of the angular integral 

begins with the identity relating Legendre polynomials to Spherical Harmonics: 

A = l1l2LM |Pk(cos θ12)|l1l2LM 

−q= l1l2LM 
4π 

(−1)qYkq( 1)Yk ( 2) l1l2LM . (2.9)
2k + 1  

q 

The coupled angular momentum states are then decoupled, each contributing a 

Wigner 3J symbol: 

4π 
CLM CL MA = (−1)q l1m1|kq|l1m1 l2m2|k − q|l2m2 . (2.10)l1m1,l2m2 l1m1,l2m22k + 1  m1m2 

m1m2q 

These one-electron matrix elements are evaluated using the standard integral over 

three spherical harmonics: 

lm|kq|l m = Y ∗ ( )Ykq( )Yl m ( )d lm ⎛ ⎞⎛ ⎞ 
l k l  l k l 

= (2l + 1)(2l + 1)(−1)m ⎝ ⎠⎝ ⎠ (2.11) 
0 0 0  −m q m  

Inserting Eq. 2.11 into Eq. 2.10, converting the Wigner 3J symbols into Clebsch-

Gordan coefficients, and manipulating these coefficients gives ⎛ ⎞⎛ ⎞ 
l1 k l1 l2 k l2

A = (2l1 + 1)(2l2 + 1)  ⎝ ⎠⎝ ⎠ (−1)l1+l2 

m1m2 0 0 0  0 0 0  
m1m2q 

× CLM CL M C l1m1 l2m2 
l1m1,l2m2 l1m1,l2m2 l ,kqCkq,l2m2 

(−1)k+l2−l2 . (2.12) 
1m1 

This summation is given in Eq. 9.8 of [62]: 

Cjm Cj12m12 Cj m Cj23m23 
j12m12j3m3 j1m1j2m2 j1m1j23m23 j2m2j3m3 ⎧ ⎫ ⎨ ⎬j1 j2 j12 
= δjj δmm (−1)j1+j2+j3+j (2j12 + 1)(2j23 + 1)  . (2.13)⎩ ⎭j3 j j23 
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This yields 

l1l2LM |Pk(cos θ12)|l1l2LM = (2l1 + 1)(2l1 + 1)(2l2 + 1)(2l2 + 1)  ⎛ ⎞⎛ ⎞ 
l1 k l1 l2 k l2 ×⎝ ⎠⎝ ⎠ (−1)l1+l1+LδL,L δM,M 
0 0 0  0 0 0  ⎧ ⎫ ⎨ ⎬l1 L l2 × . (2.14)⎩ ⎭l2 k l1 

This equation is the mathematical expression of angular momentum conservation. 

Moreover, these Wigner 3J symbols constrain k to be within min(l1 + l1, l2 + l2) and  

max(|l1 − l1|, |l2 − l2|), also a reflection of angular momentum conservation. This 

greatly reduces the computational effort expended on these integrals. Finally, since 

these 3J symbol have zeros on the bottom row, l1 + l1 + k and l2 + k + l2 must be 

even integers. 

Unlike the angular integrals, the radial integral must be evaluated numerically: 
∞ ∞ kr 

u n1 
(r1) 

< u (r2)u l2 
(r2)dr1dr2, (2.15)n1l1 (r1)u l1 k+1 n2l2 n2 r 

where r> = max(r1, r2) and  r< = min(r1, r2). By separating the integration over 

the coordinate r2 into two regions, 0 ≤ r2 ≤ r1 and r1 ≤ r2 ≤ ∞, this cusp can be 

integrated over as follows: 

0 0 >

2∞ x 

u (x1)u (x1)
1 1 

u (x2)u (x2)x 2k2x2dx2 (2.16)n1l1 n1l1 2k+2 n2l2 n2l2 2 
0 0x2 

∞ 
2k −2k−2+ x u (x2)u (x2)x 2x2dx2 2x1dx1,1 n2l2 n2l 22 

2x1 

where a square root mesh defined by ri = xi 
2 has been used. 

At this point, Eq. 2.1 may be diagonalized within the basis defined in Eq. 2.6, 

excluding all open-type functions. For processes such as photoabsorption or pho-

toionization of an atom or negative ion photodetachment it must be diagonalized 
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in both the initial and final states, denoted in the usual fashion with term notation 

2S+1Lπ . The initial and final state eigenvectors are used to calculate transition dipole 

matrix elements. For negative ions the lowest eigenenergy in the initial state provides 

the electron affinity; for neutral atoms it should give the atomic ground state. In 

the final state the eigenenergies should all exceed the first atomic bound state for 

negative ions, reflecting the absence of excited states in alkali negative ions, while 

for neutral atoms these states should match excited atomic states. 

So far our attention has been focused on the interaction between both electrons in 

the field of the atomic core, and how to calculate the box eigenstates and energies of 

the Hamiltonian. To be able to describe the behavior of one of these electrons when 

it leaves the R-matrix region – whether an electron in a far-flung Rydberg orbit, an 

electron ejected from an ionic complex through photodetachment, or the scattering 

electron approaching a neutral atom from infinity – the long-range potentials that 

extend outside of the R-matrix box and nature of the wave function in this region 

must be described. Outside of the R-matrix box the wave function can be expanded 

into channel functions: 

f (r2) u (r1)n2l2 n1l1 LMΨ(r1,�r2) =  Yl1l2 
( 1, 2), r2 ≥ r0, (2.17) 

r r2 1
l1,l2 

where r2 is the radial coordinate of the outgoing electron, and it must be remembered 

that Ψ(r1,�r2) = 0  if  r1 and r2 ≥ 0. Antisymmetrization of this wave function, and 

those in related formulae, is implied. This wave function represents an expansion 

into the complete set of target states, or channels, described by the good angular 

momentum quantum numbers l1, l2, and  L, and the radial target eigenfunctions 
(r1)un1l1 . These are the bound state wave functions of the electron which does not 

r1 



�
�

���
�

 � �

�

� �

21 

leave the R-matrix volume. To make this dependence on channel functions more 

explicit, Eq. 2.17 is often written instead as 

N 
1 

ψμ(r1,�r2) =  Φi(ω)Giμ(r2), r2 ≥ r0, (2.18) 
r2i 

where ω is the set of all coordinates except the fragmentation coordinate r2, Φi is 

the ith channel function, and Giμ(r2) is the radial equation of the outgoing electron 
un1l1 LMin the ith channel. By comparison with Eq. 2.17, Φi(ω) =  

(r1) Y ( 1, 2) if all  
r1 l1l2 

the channel quantum numbers are collapsed into a single index i. Quite generally, 

after imposing boundary conditions at the origin but prior to imposing boundary 

conditions at infinity, an N -channel Schrödinger equation must have N independent 

solutions; μ labels these linearly independent solutions, and hence we must write the 

radial wave function as a matrix to include its dependence on channel and its linear 

independence. 

These unknown radial functions are found by setting up the coupled-channel 

equations. These are constructed by acting on Eq. 2.17 with the Hamiltonian of Eq. 

2.1, and then projecting onto the channel wave functions and neglecting exchange 

terms. Outside of the R-matrix box the μth linearly independent radial wave function 

satisfies the full set of coupled channel equations without exchange, 

2 λN 
1 d l2i(l2i + 1)  

∞ dij− + − (E − i) δij + Gjμ(r2) = 0, r2 ≥ r0.2 2 λ+12 dr 2r r2 2 2j=1 λ=1 

(2.19) 

E is the total energy, i is the energy of the inner electron in the ith channel, and dλij 

are multipole moments: 

dλ = Φi(ω)|r λPλ[cos(r̂ · r̂2)]|Φj (ω) . (2.20)ij 1 1 
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Restricting λ ≤ 3 is typically sufficient. We will later use these equations to obtain 

the wave functions Gjμ(r2), but for now we show how this set of coupled equations 

leads to the characteristic long-range potentials expected for Rydberg or negative 

ion systems. At long range Vl(r) → −Z−N
r 
+1 , where  Z is the nuclear charge and N is 

the total number of electrons. For the systems considered here, Vl(r) → −Z
r 
C where 

ZC = 1 for atomic negative ions and ZC = 2 for Rydberg states. We can expand the 

1/r12 potential using the first two terms of the Legendre polynomial expansion: 

1 1 r1 cos θ12≈ + 
2 + O (r1/r2)

2 . (2.21) 
r12 r2 r2 

For simplicity, let us take for example a two-channel system. These channels are 

described by l0, l1, the angular momenta of the outer electron in each channel, and 

0,� 1, the channel thresholds. Eq. 2.19 in this limit becomes: ⎛ ⎞ 

0 =  
d2 −1 

2 dr2⎝ 2 
− (ZC −1) 

r2 

l0(l0+1)+ 2r2 
− (E − 0) 

q 
2r2 ⎠ 

⎛ ⎞ 

q 
2r2 

d2 −1 
2 dr2 

2 
− (ZC −1) 

r2 

l1(l1+1)+ 2r2 
− (E − 1) 

· G1μ(r2)⎝ ⎠ , (2.22) 
G2μ(r2) 

where q is a dipole matrix element implied by Eq. 2.20. Since the Coulomb potential 

in the diagonal terms dominates the centrifugal term and the off-diagonal elements, 

we can separate these weaker terms as follows: ⎛ ⎞⎛ ⎞ 
d2 − (ZC −1)−1 0 G1μ(r2)2 dr2 r2⎝ 2 ⎠⎝ ⎠0 =  (2.23)

d2 − (ZC −1)0 −1 G2μ(r2)2 dr2 r2⎛ 2 ⎞⎛ ⎞ 
l0(l0+1) q 

r − (E − 0) r G1μ(r2) 
+ ⎝ 2

2 
2
2 ⎠⎝ ⎠ . 

q l1(l1+1) 
2 2r r − (E − 1) G2μ(r2) 
2 2 
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We can decouple this equation adiabatically by diagonalizing this second matrix, 

composed of coupling potential terms ∝ r−2 [63]. Doing so and expanding the 

eigenvalues to lowest non-trivial order, we find: ⎛ ⎞ 
l0(l0+1) q− (E − 0)⎝ r2

2 r2
2 ⎠ (2.24) 

q l1(l1+1) 
2 2 ⎛ 
r2 r2 

− (E − 1) ⎞ 
2l0(l0+1) q 

r − (E − 0) +  02 4⎝ 2 ( 1− 0)r2 ⎠≈ . 
2l1(l1+1) q0 − (E − 1) −2 4r ( 1− 0)r22 

From this, we obtain two decoupled differential equations for the radial functions in 

each channel, and see that the off-diagonal elements were converted into polarization 

potentials, V ∼ −
2 
α
r4 . If  ZC = 1, as in electron-atom scattering and negative ion 

photodetachment, this polarization potential is the only long-range force. For ZC = 

2, the polarization potential can be treated perturbatively and leads to the quantum 

defects of non-penetrating Rydberg states, as in Eq. 2.76. 

This simplistic two-channel derivation showed how polarization potentials arise 

in atom-electron scattering, negative ion photodetachment, and contribute to the 

quantum defects of Rydberg states. As a side note, if the energies 0 and 1 are 

degenerate, then the arbitrary energy scale in Eq. 2.23 can be ignored and the 

r−2 factors out. We thus obtain two decoupled dipole potential radial Schrödinger 

equations, which have some fascinating properties that will be discussed alongside the 

polarization potential in chapter 8. As a final note, the generalization of the preceding 

discussion to an arbitrary number of channels leads to the channel polarizability α. 

In second-order perturbation theory this is defined 

|�n1l1l2LM |r1 cos θ12|n1l1l2LM �|2 

αn1,l1,l2 = 2  (2.25) 
n1l1 
− n1l1 n1,l1,l2 
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Using this expression, the adiabatic long-range solutions to the coupled channel 

equations become uncoupled radial Schrödinger equations 

1 d2 l(l + 1)  α k2 

− + − − ul(r) = 0. (2.26)
2 dr2 2r2 2r4 2 

These channel polarizabilities are very important in negative ions and in the electron-

atom interaction, especially at very low energies where this potential has a strong 

effect over very large distances. Tables 2.1 and 2.2 show the calculated and exper-

imental ground state polarizabilities for the alkali atoms of relevance to this thesis, 

and table 8.1 presents some excited state polarizabilities in potassium, showing in 

particular how they grow extremely large for excited states. 

Having uncovered how these long-range potentials emerge, we can return to the 

Hamiltonian of Eq. 2.1. We have already seen how to obtain its eigenspectrum within 

a confined volume, which might give physically relevant energies for a few deeply 

bound states but so far does not have any clear relevance to higher excited states, 

let alone scattering or detachment/ionization physics, since the basis used restricted 

both electrons to lie within the R-matrix volume. As the next section shows, this is 

actually exactly what is needed to efficiently calculate these states, since the electrons 

only interact within the R-matrix volume. Outside of this volume the outer electron is 

only affected by the potentials developed above. In the most complicated case, where 

the multipole moments are strong enough that these potentials extend far outside 

the R-matrix volume, the coupled channel equations of Eq. 2.19 must be solved 

numerically. In simpler cases where these potentials drop off rapidly, as is typically 

the case for Rydberg atoms, quantum defect theory can be used to analytically 

construct the wave functions outside of the R-matrix volume. To connect these two 

regions all that is needed is the logarithmic derivative, defined 

∂ ln(Ψ)− b = . (2.27)
∂r 
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Having developed a complete, orthogonal, and physically motivated basis set above 

within this R-matrix volume, our next goal is to show that this logarithmic derivative 

can be calculated variationally using this basis. 

2.1.2 Streamlined R-matrix calculation 

Rather than immediately trying to compute b, we start instead with an identity 

for the energy, obeyed by the exact wave function Ψ: 

Ψ∗ −1  2Ψ+  UΨ dV 
E = V 2 , (2.28) 

V Ψ
∗ΨdV 

where V is a finite volume, taken to be the R-matrix volume. Using Green’s theorem, 

Ψ ∗ 2ΨdV =  (Ψ ∗ Ψ) − Ψ ∗ ΨdV, (2.29) 

we obtain 

E = V 
1  Ψ∗ ·  Ψ+Ψ∗UΨ dV − 1 
2 2 

|Ψ|2dV
V 

Ψ∗  Ψ da
S  n . (2.30) 

Making b constant on the surface of the R-matrix sphere will eventually lead to the 

property that it is an eigenvalue of the R-matrix. Using −b|Ψ|2 = Ψ∗  Ψ , we find
 n 

1  Ψ∗ ·  Ψ+Ψ∗UΨ dV + b Ψ∗Ψda
V 2 2 SE = . (2.31)|Ψ|2dV

V 

Rearrangement of the above gives an equation for b: 

V EΨ∗Ψ −
2
1  Ψ∗ ·  Ψ −Ψ∗UΨ dV 

b = 2  . (2.32) 
V Ψ

∗δ(r − r0)Ψ 

Notice that the denominator is just another way of writing the surface integral, and 

the numerator can be turned into Ψ∗(E − Ĥ )Ψ since 

1 1 1 −  Ψ ∗ ·  Ψ −Ψ ∗ UΨ =  −  (Ψ ∗ Ψ) + Ψ ∗ 2Ψ −Ψ ∗ UΨ  (2.33)  
2 2 2 

= − 
1  (Ψ ∗ Ψ) −Ψ ∗ HΨ. 
2 
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Upon insertion into the volume integral, this first term can be represented using the 

Bloch operator, L = 1 δ(r − r0)   r. We therefore define Ĥ = H + L, and obtain
2r  r 

V Ψ
∗(E − Ĥ )ΨdV 

b = 2  , (2.34) 
V Ψ

∗δ(r − r0)ΨdV 

To show that this implies a variational principle for b, we compute δb by setting 

Ψ → Ψ +  δΨ, where δΨ is the first-order difference from the exact wave function. 

We start by writing Eq. 2.32 as b = N/D, and then using the product rule to 

evaluate δb: 
1 

δb = (δN − bδD) . (2.35)
D 

These terms are: 

δD = 2  Ψ ∗ δ(r − r0)δΨdV (2.36) 
V 

δN = 2 2 Ψ ∗ EδΨ −  Ψ ∗ ·  δΨdV − 2Ψ ∗ UδΨdV . (2.37) 
V V V 

Applying Green’s theorem again to the middle term of δN yields 

δb =
2

2 Ψ ∗ (E −H)δΨ+  δΨ 
∂Ψ∗ 

da − b Ψ ∗ δ(r − r0)δΨdV . (2.38)
D ∂nV S V 

By the definition of b, the last two terms are equal and opposite, and the first term 

vanishes since Ψ is the exact wave function which satisfies the Schrödinger equation, 

HΨ =  EΨ. We therefore find that the first-order variation in b vanishes, thus proving 

the variational nature of this solution. 

To explicitly solve for this variational solution we expand the wave function into 

a convenient basis of complete orthonormal states yk: Ψ =  k
n 
=1 ykCk. The  two-
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electron basis states of Eq. 2.6 are an obvious choice. Inserting this expansion into 

Eq. 2.34 and projecting onto state yk gives the matrix equation: 

ΓC = bΛC; (2.39) 

Γkk = 2  yk(E − Ĥ)yk dV, Λkk = ykyk da. (2.40) 
V S 

Upon solving this generalized eigenvalue problem, we get a set of N eigenvalues bβ 

and eigenvectors Cβ, where  N is the number of open or weakly closed channels that 

were included in the basis and are non-zero at the R-matrix boundary. The open 

channels are evidently those in which the electron is energetically free to escape to 

infinity. Weakly closed channels, in contrast, are still closed as r →∞ but have non-

zero amplitude at r0. There are also in principal an infinite number of strongly closed 

channels which, although they contribute heavily to the two-electron dynamics within 

the R-matrix box, have no amplitude at the box radius and thus do not contribute to 

additional logarithmic derivatives. A large number of these strongly closed channels 

must be included in the calculation since this forms the complete basis within the 

R-matrix volume. 

The fact that this n × n matrix equation has only N eigenvalues must be true 

on physical grounds since the logarithmic derivatives must vanish for every strongly 

closed channel where there is no wave function at the reaction surface. The rank of Λ, 

clearly a highly singular matrix, is what guarantees the reduction from the expected 

n eigenvalues based on the dimension of our matrices, if they were non-singular, to 

just N eigenvalues. This can be formally proved [64], but setting up the problem 

in the streamlined version, as we will do shortly, shows clearly that the number of 

non-zero eigenvalues must correspond directly to the number of open (no) and weakly 

closed (nc) channels, so that N = no +nc. In the equations immediately following we 

refer to both weakly closed and open channels as open since we are only discussing 
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their behavior at r = r0, although this will change in section 2.1.3 and chapter 5 

since there the only relevant states are those with non-zero amplitude at r = r0, but 

the different boundary conditions obeyed by weakly closed and open channels must 

still be treated. In these later cases, closed channels will refer to the nc weakly closed 

channels, which still add to the no open channels so that N = no + nc. 

Since it seems remarkably wasteful to solve the n×n matrix equation 2.39 at each 

energy only to obtain N eigenvalues, it is preferable to seek out a solution which is 

better suited to these singular matrices. This is known as the streamlined R-matrix 

method [65]. We first express the matrix elements of Γ as the sum of an overlap 

matrix, the Hamiltonian matrix, and the Bloch operator matrix: 

Γkk = 2(EOkk − Hkk − Lkk ). (2.41) 

Next, we partition both Γ and Λ into closed/closed, open/closed, closed/open, and 

open/open partitions, of which only the open-open partition of Λ is nonzero since 

most surface terms vanish due to the large number of closed channels. This gives 

two coupled matrix equations: 

ΓccCc + ΓcoCo = 0 (2.42) 

=⇒ Cc = −Γ− 
cc 
1ΓcoCo (2.43) 

ΓocCc + ΓooCo = ΛooCob. (2.44) 

Γ−1 =⇒ (−Γoc cc Γco + Γoo)Co = ΛooCob. (2.45) 

This final matrix equation has dimension equal to that of the open/weakly closed 

Γ−1channels, N ×N . We write   = Γoo−Γoc cc Γco. Because the Bloch matrix Lcc is zero, 
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and the closed-closed portion of the overlap matrix is I, we can analytically invert 

Γcc as a function of E once we move to the representation where Hcc is diagonal: 

Hkk X† 
cc = kλEλλ Xλ k (2.46) 

λ,λ 

X† = kλEλXλk , (2.47) 
λ 

since Eλλ is the diagonal eigenvalue matrix. Since Γcc = 2(Hcc + EIcc) in the closed-

closed partition, we then conveniently have: 

− Hkk − Lkk= 2(EOkk ) − (X−1(2[EI − Eλλ])Xλk )
−1Γco kk oo oo oo Γoc kλ 

λ 

− Hkk − Lkk= 2(EOkk 
oo ) − Xλk[2(EI − Eλλ)]

−1X−1 Γcooo oo Γoc k λ 
λ 

(EOkλ − Hkλ − Lkλ )(EOλk − Hλk − Lλk )− Hkk − Lkk oc oc oc c o c o c o= 2(EOoo
kk 

oo oo ) − 2 
E − Eλ 

, 
λ 

where the additional indices indicate that the matrices used above have been trans-

formed into the representation where Hcc is diagonal. After solving Eq. 2.45, a 

generalized eigenvalue equation, we obtain N eigenvalues bλ and their associated 

eigenvectors. The closed-channel eigenvectors are calculated using the above equa-

tions: 

Cc = −Γcc 
−1ΓcoCo (2.48) 

− Hλk − Lλk(EOλk )co co co = − Co. (2.49)
E − Eλ

λ 

These gives the eigenvectors Zλβ, and eigenvalues bβ of the R-matrix, which can then 

be written [10] 

Rij = − Ziβ b
− 
β 
1Zjβ . (2.50) 

β 
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The βth linearly independent solution in the ith channel, Fiβ (r0), is equal to Ziβ. The  

channel wave functions and logarithmic derivative have now been obtained through 

this variational calculation. Together they provide the wave function at the reaction 

surface, and upon matching to the solutions outside of the R-matrix, the wave func-

tion is fully determined and reaction (K) or scattering (S) matrices can be computed. 

Recall that the set of channels contains both no open and nc weakly closed channels, 

so that N = nc + no. These both have non-zero amplitude at r0, but the weakly 

closed channel functions must vanish asymptotically in the classically forbidden re-

gion, while open channel wave functions of course continue to infinity. The MQDT 

approach postpones setting these boundary conditions until after the K or S-matrix 

has been calculated. As a result these matrices, and thus properties like the quantum 

defects, are very nearly independent of energy. Imposition of boundary conditions 

as r →∞ is called closed-channel elimination, and it analytically introduces strong 

energy dependence reflecting channel interactions via Fano-Feshbach resonances and 

level perturbations. Although this will be done for the Coulomb field in chapter 5, 

in the following derivation we show how to calculate these properties numerically. 

This is done because in the investigation of negative ion photodetachment in chapter 

8 the very large polarizabilities make the MQDT formulation for the polarization 

potential [63,66] impractical since the channel couplings extend out very far, requir-

ing enormous R-matrix box sizes. On the other hand, by implementing boundary 

conditions explicitly from the onset and numerically propagating the solutions from 

very far away, where they are decoupled, inwards to r0 the matching can be done 

accurately. We also used this method to determine electron-atom scattering phases 

in section 2.3.1, although the polarization MQDT should be equally valid. 
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2.1.3 Calculation of asymptotic solutions and dipole matrix elements 

The steps below closely follow derivations in [10, 67]. Outside of the R-matrix 

volume, since there are no boundary conditions yet in place for the wave function 

as r → ∞, there  are  2N linearly independent solutions. As r → ∞, only the 

longest-range potentials in the Schrödinger equation remain. For the negative ion 

and electron-atom scattering problems focused only the centrifugal potential remains. 

To set up the typical notation and concepts of the multichannel scattering for-

mulation, let us first treat the region outside the R-matrix boundary as being free 

of any potentials (Chapter 5 will repeat much of this discussion for the Coulomb 

potential). The two linearly independent solutions in each channel are thus 

2 2 
fi(r) =  kirjli (kir), gi(r) =  − kiryli (kir). (2.51)

πki πki 
√ 

In these energy-normalized radial functions the wavenumber is ki = −2Ei and 

jn(x) and  yn(x) are the spherical Bessel and Neumann functions, respectively. Gen-

erally, any valid solution in this region is a linear combination of these two linearly 

independent functions, 

Fiβ(r) =  fi(r)Iiβ − gi(r)Jiβ. (2.52) 

The matrices I and J are independent of r and equal W (gi, Fiβ )/W (gi, fi) and  

W (fi, Fiβ )/W (gi, fi), respectively, where W is the Wronskian. Since the Fiβ are 

still linearly independent, a new solution 

Mii (r) =  Fiβ Iβi 
−1 = fi(r)δii − gi(r)Kii (2.53) 

β 

JI−1 can be formed, where the K-matrix is K = . This solution obeys standing 

wave boundary conditions, and we use this formulation so that the majority of the 

calculation can be performed using real arithmetic. 
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However, the appropriate boundary conditions to calculate the photodetachment 

cross section correspond to incoming and outgoing solutions f− and f+ , rather than 

the standing waves f and g of the K-matrix formulation. These solutions are related 

by 

f = − √ 
1
(−f+ + f−), g  = √ 

1
(−f+ − f−). (2.54)

i 2 2 

Insertion of these into Eq. 2.53 gives 

1 1 
Mii = √ fi 

+(r)(1 + Kii ) − √ fi 
−(r) (1  − iKii ) . (2.55)

i 2 i 2 

These solutions are once again transformed to obtain a solution obeying incom-

ing/outgoing wave boundary conditions, giving the form of the S-matrix: 

Mii (1 + iKi γ )
−1 = √ 

1 
fi 
+(r)δiγ − √ 

1 
fi 
−(r) (1  − iKii ) (1  +  iKi γ )

−1 

i 2 i 2 
i 

= √ 
1 

fi 
+(r)δiγ − √ 

1 
fi 
−(r)Siγ 

† , (2.56)
i 2 i 2 

where the scattering matrix is 
1 + iK 

S = . (2.57)
1 − iK 

With these definitions in mind, let us now reconsider this process in the scenario 

where the potential is not zero outside of the R-matrix box. The wave function for 

r > r0 was previously defined in Eq. 2.18: 

1 
ψμ = ΦiGiμ(r). 

r 
i 

These solutions Giμ(r) are given by solving the coupled-channel equations of Eq. 

2.19. Unlike the solutions determined by the R-matrix calculation, Fiβ, which have 

N = no + nc linearly independent solutions due to the boundary condition at r = 0,  

no boundary conditions can be applied to Giμ except that the weakly closed channels 
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vanish at infinity. There must then be 2no + nc linearly independent solutions μ, just  

as there was an fi and a gi for each channel in the potential-free case above. To start 

the numerical calculation of Giμ(r) a radius r0 > r0 is chosen where the coupling 

potentials in Eq. 2.19 can be neglected. We can then use the asymptotic solutions 

of Eq. 2.51 at r0: for the first no solutions, 1 ≤ μ ≤ no, Giμ(r0) =  fi(r0)δiμ; for  

the second no solutions, no + 1  ≤ μ ≤ 2no, Giμ(r0) =  gi(r0)δiμ−n0 . Finally in the 

−kir0 δclosed channels we need just one set of exponentially decaying solutions, e iμ, for  

2no +1  ≤ μ ≤ 2no +nc. In  practice  r0 is some large finite value, typically ∼ 2000, and 

the solutions are propagated inwards to r0 using a matrix Numerov algorithm [68]. 

With these solutions in hand we can reconstruct the solution outside of the box, 

analogous to Eq. 2.53, with the asymptotic form corresponding to K-matrix solu-

tions. The only difference here is that we must also include the weakly closed channel 

solutions with their own set of coefficients. 

no no no+nc 

Ψi = ψμδμi − ψμ+no Kμi − ψμ+no aμi . (2.58) 
μ μ=1 μ=no 

This expression is simpler after collapsing the latter two terms together, so that aμi 

becomes a matrix of dimension (no + nc) × no. Clearly, its uppermost no × no block 

is the K-matrix. Eq. 2.58 becomes 

no no+nc 

Ψout 
i = ψμδμi − ψμ+no aμi . (2.59) 

μ μ=1 

This wave function must now be matched to the solution inside the box. The wave 

functions found by solving the streamlined R-matrix equations discussed earlier are 

1 
ψβ(r0) =  ΦiFiβ (r0). (2.60) 

r0i 
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no+ncThe most general wave function is a linear combination of these, Ψi = β ψβ bβi , 

where bβi is an unknown coefficient. Thus: 

no+nc 

Ψin 
i = ΦiFiβ (r0)bβi . (2.61) 

β i 

= ΨoutFinally, we equate Ψin 
i i : 

no+nc no no+nc 

ΦiFiβ(r0)bβi = ΦiGiμ(r0)δμi − ΦiGiμ+no (r0)aμi . (2.62) 
β=1 i μ=1 i μ=1 i 

This equality clearly holds for every i in the sum, and so we can write this set of 

equations, along with the set of first-derivatives at the boundary, as: 

no+nc no+nc 

Fiβ (r0)bβi + Giμ+no (r0)aμi = Gii (r0), (2.63) 
β=1 μ=1 

no+nc no+nc 

−bβFiβ (r0)bβi + Giμ+no 
(r0)aμi = Gii (r0). (2.64) 

β=1 μ=1 

Solution of these 2(no + nc) equations for the no + nc linearly independent solutions 

denoted i gives the (no + nc) × (no + nc) unknown coefficients in both aμi and bβi . 

The system is therefore fully characterized. For the calculation of electron-atom 

scattering phase shifts in section 2.3.1 aμi is a single number since there is only one 

channel, and so aμi = tan  δ. 

For negative ion photodetachment, the relevant observables are the partial cross 

sections. These are given in terms of dipole matrix elements, which connect the 

initial state to the states ψβ determined by the R-matrix above, 

dβ = ψβ ||r(1)||ψ0 . (2.65) 

These can be calculated efficiently by first computing the transition dipole elements 

between all single-electron orbitals, then appropriately summing these over the initial 
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and final state eigenvectors. Since a linear combination of the ψβ solutions was used 

above, these dipole matrix elements must also be transformed following Eq. 2.61: 

b†dγ = γβdβ. (2.66) 

Finally, these must be transformed according to the linear transformation connecting 

K- and  S-matrix defined in Eq. 2.56: 

ds = (1 + iK)−1†b† dβ. (2.67)i i γ γβ 
β,γ 

In both of these equations the matrix transpose is denoted with a dagger symbol; this 

tranpose is needed since it is the bra part of Eq. 2.65 that is transformed at each 

step. With these dipole amplitudes and the K-matrix thus obtained, observables 

such as partial and total cross sections, alignment and orientation parameters, and 

scattering phase shifts can be computed. To complete this discussion, we present the 

formula for the partial cross section for channel i, 

4πωα 
σi = |dsi |2 , (2.68)

3(2J0 + 1)  

where ω is the photon energy and J0 the angular momentum of the initial state. 

This formula is summed over all open channels to obtain the total cross section. 

This formula concludes our solution of two-electron systems; we now turn to the 

properties of effectively one-electron Rydberg atoms. 

2.2 Rydberg atoms 

One key advantage taught by quantum defect theory is that Rydberg atoms are 

straightforward to treat theoretically: since the interaction of the Rydberg elec-

tron with the ionic core extends over only a few atomic units, the key differences 
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between them and the hydrogen atom are encapsulated by a few essentially energy-

independent quantum defects. These can be determined experimentally or numeri-

cally. Rydberg wave functions and energy levels are thus excellently described using 

analytical formulae above n ≈ 10. 

The relevant quantum numbers describing a Rydberg state are the principal quan-

tum number n, the total angular momentum j2 = (s1 + l)2 , and its projection onto 

the internuclear axis mj . In case spin effects are ignored, the quantum numbers n, 

l, and  m suffice. These quantum numbers characterize the solutions of the Rydberg 

Hamiltonian 

H0 = − 
1  2 + V (r). (2.69)
2 r 

Here V (r) is, outside of a small core region where the atomic electrons can ex-

change energy, spin, and orbital angular momentum with the Rydberg electron, just 

a Coulomb potential. We focus here on the bound states, and the interested reader 

can consult Ref. [10] and the references therein for a complete discussion of the quan-

tum defect theory of bound and scattering Rydberg states. The spin-independent 

bound states of Eq. 2.69 are infinite in number due to the Coulomb potential and 

have the eigenenergies and eigenfunctions: 

1 
H0|n, l, m = − |n, l, m ;

2(n − μnl)2 
(2.70) 

r|n, l, m 
fnl(r) 

= φnlm(r) =  Ylm(r̂) 
r 

(2.71) 

unl(r) 
= Ylm(r̂), μnl = 0. (2.72) 

r 

In these expressions unl is the usual hydrogenic radial wave function, Ylm are the 

spherical harmonics, and μnl is a quantum defect that is typically nearly independent 
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of n and vanishes for high l. When  μnl = 0 the wave functions are related to the 

Whittaker function [10, 69] through 

2rWν,l+1/2 
fnl(r) =  ν , ν  = n − μnl. (2.73) 

ν2(Γ(ν + l + 1)Γ(ν − l) 

The Whittaker function used here is irregular at the origin, but since the potential 

differs markedly from a pure Coulomb field at close range this issue is neglected by 

simply restricting the use of this wave function to distances greater than ∼ 20 atomic 

units. Eq. 2.70 showed that the eigenenergies are given by the Rydberg formula, 

which generalizes to include the spin-orbit splitting by giving a different value for 

each j: 
1 

En(s1l1)jm = − . (2.74)
2(n − μ(s1l1)j (n))

2 

The quantum defects are parametrized to incorporate some small n dependence to 

better match experiment: 

μ(s1l1)j (n) =  μ(s1l1)j (0) + 
μ (0)(s1l1)j 

n − μ(s1l1)j (0) 
2 . (2.75) 

Table 2.1 displays these parameters for ns, np, nd, and  nf states of both Rb [70, 

71] and  Cs  [72, 73], while Table 2.2 gives the same for Li, Na, and K. For higher 

angular momenta, the quantum defects account for core polarization through the 

approximate formula 

α(X+)[3n2 − l(l + 1)]/4 
μl(n) =  , (2.76) 

n2(l − 1/2)l(l + 1/2)(l + 1)(l + 3/2) 

where α(X+) is the polarizability of the Rydberg core of atom X. Tables 2.1 and 

2.2 also give the polarizabilities of these atoms and their positive ions [74]. The 

hydrogenic fine structure splitting is assumed for these nonpenetrating high-l (l >  3) 

states: 
α2 1 3 

ΔEn(s1l1)jm = − − , (2.77)
2n3 j + 1/2 4n 
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where α is the fine structure constant. Since this splitting and the core polarization-

induced quantum defects decrease rapidly with l, the  l > 2 states are nearly degener-

ate and only slightly modify the potential curves. Finally, we give the generalization 

of Eq. 2.70 to include j-dependence: 

jmj fnlj(r)
ψn(ls1)jmj (r) =  C Ylm(r̂)χ

s1 , (2.78)lm,s1m1 m1r 
m,m1 

where χm
s1

1 
is the Rydberg electron’s spin wave function. fnlj(r) is given by Eq. 2.73 

with the quantum defects by Eq. 2.75. 

2.3 The Fermi pseudopotential 

Since the interaction between a scattering electron and a ground state atom is 

quite localized in space it is amenable to techniques such as the R-matrix approach. 

Such calculations can obviously become very involved. If a second scattering center is 

introduced into the problem – for example to model a system consisting of a Rydberg 

ion, a neutral atom, and a Rydberg electron – the calculational effort would increase 

rapidly. Fortunately, most of this work is unnecessary, as Fermi showed in 1934 [57], 

when he introduced the now ubiquitous concepts of the scattering length and delta-

function pseudopotential. 

The effect of a dense background gas of neutral atoms on a Rydberg atom was 

first considered by Fermi in an attempt to explain the unexpected measurements of 

Amaldi and Segrè [82]. These two researchers studied the spectroscopy of sodium 

Rydberg atoms in a helium background gas and reported a change in the lineshape 

and line broadening. These measurements were density-dependent and, as experi-

ments with other background gases revealed, resulted in either blue or red shifted 
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Rb μ(0) μ (0) Cs μ(0) μ (0) 

s1/2 

p1/2 

p3/2 

d3/2 

d5/2 

f5/2 

f7/2 

3.1311804 

2.6548849 

2.6416737 

1.34809171 

1.34646572 

0.0165192 

0.0165437 

0.1784 

0.2900 

0.2950 

-0.60286 

-0.59600 

-0.085 

-0.086 

s1/2 

p1/2 

p3/2 

d3/2 

d5/2 

f5/2 

f7/2 

4.049325 

3.591556 

3.559058 

2.475365 

2.466210 

0.033392 

0.033537 

0.2462 

0.3714 

0.374 

0.5554 

0.067 

-0.191 

-0.191 

Rb Rb+ Cs Cs+ 

α (a.u.) 319.2 9.11 α 402.2 15.8 

Rb(ns) Rb(5s) Cs(ns) Cs(6s) 

A (GHz)  ∗)318.55/(n 3.417 A ∗)33.383/(n 2.298 

Table 2.1. 
Quantum defects, polarizabilities α, and hyperfine constants A for 87Rb 
and 133Cs from [70–77] 

. 

lines depending on the nature of the background gas. A red-shifted line could be 

understood qualitatively at least by considering the energy shift from the polariz-

able electron clouds of the neutral atoms. As derived previously, this polarization 

potential is 

summed over 

α 
V (r, Ri) =  − ,

2|r − Ri|4 

all the positions of ground state atoms, Ri. 

(2.79) 

This mean-field effect 

lowers the overall energy consistent with the energy shift to the red, but the blue-
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Li μ(0) μ (0) Na μ(0) μ (0) K μ(0) μ (0) 

s1/2 

p1/2 

p3/2 

d3/2 

d5/2 

f5/2 

f7/2 

0.3995101 

0.0471835(0.0471780) 

0.0471720(0.0471665) 

0.002129 

0.002129 

-0.000077 

-0.000077 

0.0290 

-0.024 

-0.024 

-0.01491 

-0.01491 

0.021856 

0.021856 

s1/2 

p1/2 

p3/2 

d3/2 

d5/2 

f5/2 

f7/2 

1.347964 

0.855380 

0.854565 

0.015543 

0.015543 

0.0001453 

0.0001453 

0.060673 

0.11363 

0.114195 

-0.08535 

-0.08535 

0.017312 

0.017312 

s1/2 

p1/2 

p3/2 

d3/2 

d5/2 

f5/2 

f7/2 

2.1801985 

1.713892 

1.710848 

0.2769700 

0.2771580 

0.010098 

0.010098 

0.13558 

0.233294 

0.235437 

-1.024911 

-1.025635 

-0.100224 

-0.100224 

α (a.u.) α (a.u.) [ion] α (a.u.) α (a.u.) [ion] α (a.u.) α (a.u.) [ion] 

Li 164.9a,b 0.1923 Na 165.9a,162.7b 0.9448 K 307.5a,290.6b 5.3310 

6Li (i = 1)  7Li 23Na 23Na 39K 41K 

A (MHz) 228.2052590 803.5040866 A (MHz) 1771.6261288 1771.6261288 A (MHz) 461.719720 254.013872 

Table 2.2. 
Quantum defects, polarizabilities α, electron affinities, and hyperfine con-
stants A for 6,7Li, 23Na, and 39,41K. Hyperfine constants are from [78]. Li 
quantum defects are from [79] and  [80].Na and K quantum defects are 
from [80]. The value for pJ in parentheses is for 7Li. a The polarizabilities 
calculated in our model potential; b polarizabilities measured in [81]. 

. 

shifted line defied interpretation. Fermi explained this phenomenon by considering 

the low-energy collisions between the Rydberg electron and many neutral atoms, 

dubbed perturbers. At low energy the elastic scattering parameters and electron 

wave function near the perturber may all be characterized by a single quantity, the 

s-wave scattering length as. This crucial simplification of the scattering process led 

Fermi to develop the Fermi pseudopotential (in atomic units) 

V (r, R) = 2πasδ(r − R). (2.80) 

The literature holds many derivations of this pseudopotential, extending it to ar-

bitrary partial waves and including regularization terms important for its inclusion 

in direct, rather than perturbative, calculations [83–86]. Here we present instead a 
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more intuitive derivation of just the s-wave term, and pick up the solution derived 

by Omont [87] for  p-wave scattering. It is not thought that any higher partial waves 

are relevant for Rydberg molecules. 

We start with the Schrödinger equation for the Rydberg electron, which is bound 

to the Rydberg core by the Coulomb potential U and interacts with N perturbers 

through Vi = V (r, Ri): 

 2Ψ(r) + 2  E − U(r) − Vi Ψ(r) = 0. (2.81) 
i 

A Rydberg electron has velocity v ∝ n−1 and fills a volume ∝ n6 . It therefore has 

a huge de Broglie wavelength relative to the size of the perturbers. We can consider 

an averaged Schrödinger equation in order to identify the average effect of these 

perturbers on the wave function: 

 2Ψ+ 2(E − U)Ψ − 2 ViΨ = 0. (2.82) 
i 

The Wigner threshold law [88] states that the low-energy phase shifts scale as δl ∝ 

k2l+1 , justifying our assumption of s-wave scattering. The electronic wave function 

defined in a coordinate system X = r − Ri relative to a given perturber then is: 

u(X)
Ψ(X) =  Y00(X̂). (2.83)

X 

Using this form of the wave function in Eq. 2.81 we obtain a radial equation: 

u (X) = 2 (V (X)u(X) − Eu(X)) , (2.84) 

but we can approximately set the latter term to zero since the Rydberg energy is so 

low. The average value of the potential’s influence on the wave function is 
X0 u(X)

2 V Ψd3X = 8πY00(X̂) V (X) X2dX 
X0 

X0 

= 4πY00 u (X)XdX, (2.85) 
0 
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where we have written √1 = Y00(X̂) and for  X > X0 we have assumed that the 
4π 

polarization potential is completely negligible. This assumption leads to the key 

result that at very low energy the radial wave function outside of the potential well 

is a linear function: u(X) =  C(X − as). Integrating Eq. 2.85 by parts leads to 

2 V Ψd3X = 4πY00(X̂) (−u(X0) +  X0u (X0)) 

= 4πY00Cas. (2.86) 

We next define an average wave function near the perturber as 

1 C(X − as)
Ψ = Y00(X̂) d3X. (2.87)

V X 

Implicit in this expression is the approximation that the wave function’s actual value 

very near the perturber, which certainly deviates from this linear form, is irrelevant 

when averaged over a large enough volume. Still in this large volume limit, Eq. 2.87 

evaluates to Ψ = Y00(x̂)C. Thus, the average potential is related to the average wave 

function via 

2 V Ψd3 x = 4π(Ψ)as. (2.88) 

Still within this low-density, low-energy limit, Eq. 2.88 can be recast as an effective 

potential. If V is replaced with 

Vferm = 2πasδ(r − R0), (2.89) 

Eq. 2.88 still holds. Thus this rather heuristic derivation shows that the true in-

teraction between the electron and the perturber can be reduced to a contact delta 

function proportional to the scattering length, and more rigorous proofs of this re-

lationship have the same result [85]. In spite of its simplicity, this expression ac-

curately characterizes the true interaction and has been verified in a multitude of 
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experimental contexts and in comparison with other theoretical tools of increasing 

complexity [14, 89–96]. 

This effective potential generalizes to all partial waves by Fourier expansion of 

plane wave scattering solutions [87], giving 

1 
V (r, R) = 2π (2l + 1)δ(r −R)Al Pl  ·   , (2.90)

k2 
l 

where Al = −(tan δl)/k2l+1 . Keeping just l = 0  and  l = 1 in this expression yields 

Vfermi(r, R) = 2πas[k(R)]δ
3(r −R) + 6πap 

3[k(R)]δ3(r −R) r ·  r. (2.91) 

This reproduces the s-wave Fermi pseudopotential and introduces the p-wave interac-

tion involving the gradient operator, typically attributed to Omont’s formulation [87]. 

The backwards vector implies that this gradient operator acts backwards on the bra 

in a matrix element; this preserves the Hermiticity of this operator. For many alkali 

atoms it is essential to include l = 1 partial waves due to the presence of a shape res-

onance in this channel which in turn leads to a divergence in the scattering volume; 

as a result the p-wave interaction includes a far larger contribution than would be as-

sumed due to the Wigner threshold law [97,98]. The s-wave scattering length as and 

p-wave scattering volume ap 
3 depend on R through the semiclassical kinetic energy, 

2 − 1k(R) =  
R n . Typically we take nH to be the principal quantum number of2 

H 

the nearest hydrogenic manifold. These parameters depend on the energy-dependent 

scattering phase shifts δ0 and δ1 through the relationships 

tan (δ0[k(R)]) 3 tan (δ1[k(R)]) 
as[k(R)] = − , ap[k(R)] = − . (2.92)

[k(R)] [k(R)]3 

Of course, in the LS coupling scheme these phase shifts must also include spin-

dependence. There are two s-wave scattering lengths corresponding to symmetries 
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1S0, 3S1 and four p-wave scattering volumes corresponding to 1P1, 3P0,1,2 symme-

tries. In many early studies the singlet scattering length, which is often an order of 

magnitude smaller than the triplet scattering length, as well as the J-dependence of 

the 3P scattering phases, was ignored. However, abundant research in recent years, 

including that presented in chapter 6, shows that a full theoretical model includ-

ing these symmetries and splittings is necessary to obtain a correct description of 

experimental observations. 

2.3.1 Determination of electron-atom scattering phase shifts 

Clearly these low-energy atom-electron scattering phase shifts play an essential 

role in describing the interaction between a Rydberg atom and a neutral atom. It 

is therefore paramount that they be computed accurately. In our studies of Rb and 

Cs, phase shifts were obtained from Refs. [95,97]. Ref. [97] did not include the spin-

orbit splitting of the p-wave phase shifts, so these phases were used in chapters 

3 and 4 which focus on non-relativistic effects. This phase shift is equivalently 

obtained by an appropriately J-weighted average of the relativistic phase shifts. 

The phase shifts calculated by Ref. [95] do include the spin-orbit splitting of the 

3P phases, and are plotted in Fig. 2.2. The 3PJ phase shifts for Cs were slightly 

shifted (by ∼ 1 meV) to align their resonance positions with experimental values 

[99, 100]. No direct experimental measurements of the Rb resonance positions yet 

exist, although an average value consistent with these phase shifts was extracted from 

observations of Rb2 Rydberg molecules [101]. At very low energies the s-wave phase 

shifts for both species were smoothly connected to experimentally determined zero-

energy scattering lengths [101, 102], which are approximately −16 for Rb and −22 

for Cs. These experimental values are extracted from measurements of the bound 
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states, and typically differ from theory calculations by 10%. Ref. [103] calculated 

phase shifts for some of the alkaline-earth atoms: Ca, Sr, and Mg. The phase shifts 

for calcium, which is studied in chapter 5, are shown in Fig. 2.3. 

Through these phase shifts we can forge a connection between negative ion 

physics, studied in Chapter 8 and calculated via the R-matrix theory described 

previously, and the physics of Rydberg molecules. We calculate these phase shifts, 

fundamental quantities in both of these processes, for the light alkali atoms, Li, 

Na, and K, using the non-relativistic R-matrix method. These have smaller spin-

orbit splittings than Rb and Cs and are still adequately treated without including 

J-dependence. As an additional test of our calculations, we also calculated non-

relativistic Rb phase shifts. 

Scattering phase shifts for all of these atoms have been previously calculated, 

although at varying levels of accuracy and typically not at the ultra-low energies 

needed for accurate Rydberg molecule potential energy curves. Table 2.3 summarizes 

our results and these literature values, which are in generally good agreement. We 

have identified the source of some discrepancies as coming from three main areas: (a) 

the number of basis states or electronic configurations included in the calculation, (b) 

the choice of empirical parameters used to set up the calculations, and (c) the range 

of energies treated. As the calculations for k approaching zero are very sensitive due 

to the increasingly large de Broglie wavelength, it is important to address these issues 

properly. With regards to (a), we used 48 one-electron wave functions vanishing at 

r = 0  and  r = r0 along with two open wave functions which are non-zero at r = r0. 

We included 10 partial waves and varied r0 from 35 to 55. The lowest value was 

still large enough to contain the wave functions for the first several atomic bound 

states. We treated the long-range polarization potential by matching the scattering 

wave function at r0 to numerical solutions propagated inwards from r0 = 2000. Our 
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Ta (0)(a0)s 
Sa (0)(a0)s ET (meV )p ΓT (meV )p EA(meV ) 

Li -6.7 3.2 63.1 61.0 617.872i , 621.769j 

Na −5.7 4.2 87.9 124.8 547.539i,563.251j 

K −14.6 1.3i , 0.26j 24.15i , 11.9j 19.3i , 6.3j 501.231i , 544.872j 

Ta (a0)s 
Sa (a0)s ET (meV )p ΓT (meV )p rc(a0) 

Li −7.12b , −7.43h 3.04b , 2.99h 60d , 60.9h 57d , 67.9h 2.6 

Na −5.9a , −6.19b 4.2a , 4.03b 80f ,83g 188g 1.84 

K −15a , −15.4c 0.55a , 0.57c 19c , 2.4d , 20e 16c , .6d 2.92 

Table 2.3. 
Scattering parameters for Li, Na, and K. The final column gives the 
electron affinities calculated with (i) and without (j) the dielectronic po-
larizability term. Experimental values for these EAs are: Li: 618.049 
meV [104]; Na: 547.930 meV [105]; K: 501.459 meV [106]. 
For the other columns: the top three rows give the present results, while 
the bottom three columns are from: a) [107], b) [108], c) [109], d) [110], 
e) [111], f) [112], g) [113], h) [114]. The zero energy scattering lengths 
depend strongly on the polarizability. For Na, −5.84 → −5.7 (triplet s), 
and for K ,−15.4 → −14.6 (triplet s) and 0.95 → 1.3 (singlet s) when 
the polarizability of the long-range potential was changed to match the 
experimental value (see Table 2.2). 

this term proved to be the reason why some calculations of the 3P Cs shape reso-

nances showed that they were in fact bound excited states [100,115]. Inclusion of this 

term in our calculations likewise proved to be quite important for calculating the 1S 

and 3P phase shifts. We found that some of the differences between our results and 

previous experimental results seem to be linked to this potential, especially in the 1S 

scattering lengths and 3P resonance parameters. One final input parameter is the 

atomic polarizability, which is also modified by additional core polarizability effects 
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with Karule [117], whose potassium phase shifts are, to the best of our knowledge, 

still the most detailed calculation. We have compared our extracted shape resonance 

positions and zero-energy scattering lengths with calculations by Fabrikant [109] and  

Moores [111]. Very recently, Li phase shifts were used in a proposal for Li2 Rydberg 

molecules [114]. Our results and extracted parameters compare favorably. Finally, 

Fabrikant and coworkers [113] computed full energy-dependent scattering phases for 

Na. 
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3. LONG-RANGE RYDBERG MOLECULES 

This chapter introduces long-range Rydberg molecules, known colloquially as “trilo-

bites” and “butterflies” due to the stunning visual similarity between these creatures 

and the wave functions of two classes of these Rydberg molecules. In this chapter 

we will review the basic properties and terminology of these molecules and situate 

this thesis within the existing literature. We will consider the simplest description of 

these molecules, focusing on alkali atoms and neglecting electronic and nuclear spin. 

The concepts developed at this basic level – the types of potential energy curves one 

expects to find, the properties of their bound states such as typical binding ener-

gies, bond lengths, rotational constants, and permanent electric multipole moments, 

and the nature of their wave functions – form a critical foundation for many of the 

following chapters. 

3.1 A novel chemical bond 

Although Fermi’s pseudopotential had been utilized widely throughout the 1970s 

and 1980s to explain Rydberg line broadening, energy shifts, and charge transfer 

processes [109, 118–120], in 2000 Greene and coworkers [40, 89, 121] were the first to 

take a key conceptual leap and treat this pseudopotential seriously as the foundation 

for a novel chemical bond. This was in turn motivated by the remarkable break-

throughs in ultracold atomic physics culminating in the creation of Bose-Einstein 

condensates [31, 32]. These made it possible to study atomic clouds at ultracold 
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temperatures where the weak trilobite bonds would not be ripped apart, but which 

also had the high densities necessary to observe a non-negligible number of Ryd-

berg molecules. Greene et al calculated molecular spectra and found that not only 

would these molecules be bound, even at such high excitations and huge internuclear 

distances, but they had non-trivial properties since the pseudopotential could act 

in a surprisingly non-perturbative way due to the high level degeneracy of Rydberg 

states [40]. Key among these surprising features is that the electronic wave func-

tion changes dramatically from that of an independent Rydberg electron, and the 

resulting eigenfunction maximizes the electronic density (for s-wave scattering) or 

its gradient (for p-wave scattering) at the perturber. This creates a much stronger 

bond as the electron is extremely localized near the perturber, and additionally the 

resulting charge separation creates enormous permanent dipole moments. We now 

derive these eigenfunctions and their associated eigenenergies. 

Using the Born-Oppenheimer approximation, in which the nuclei are fixed in 

space and the electronic wave function and energy eigenvalues are solved at each 

value of the internuclear distance parametrically, we obtain separate equations for the 

electronic and nuclear degrees of freedom. We first solve the electronic Schrödinger 

equation for the energy eigenvalues Ee(R) and electronic wave functions Ψe(R, r): 

− 
1  2 + V (r) +  Vfermi(R, r) − Ee(R) Ψe(R, r) = 0. (3.1)
2 r 

V (r) is the predominantly Coulomb interaction with the atomic core. The entire 

neutral-electron interaction is contained within the Fermi pseudopotential and is 

readily handled perturbatively. The energy eigenvalues, Ee(R), define a set of adi-

abatic potential energy curves (PECs) which the nuclei then traverse. The nuclear 

wave functions ΨNν(R) for a molecule with reduced mass M are solutions to 

1 ∂2 N(N + 1)  − + Ee(R) +  − ENν  ΨNν(R) = 0, (3.2)
2M ∂R2 2MR2 
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where N is the rotational quantum number and ν is the vibrational state. To solve 

Eq. 3.1 explicitly, we first write the pseudopotential of Eq. 2.91 in spherical coordi-

nates, 

Vfermi(R, r) = 2π as[k(R)]δ(r − R) (3.3) 

∂ϕδ(r − R)∂ϕ3 ∂θδ(r − R)∂θ
+ 3ap[k(R)] ∂rδ(r − R)∂r + + ,

R2 R2 sin2 θ 

or more compactly: 

4 

Vfermi(R, r) = 2π aξ[k(R)]Vξ(R, r). (3.4) 
ξ=1 

Here ξ = 1 labels Fermi’s s-wave pseudopotential, V1(R, r) =  δ(r−R), and ξ = 2, 3, 4 

label the three gradient terms in the Omont generalization to p-wave, i.e. V2(R, r) =  

∂rδ(r − R)∂r, etc.  aξ[k(R)] denotes as[k(R)] when ξ = 1,  and  3ap 
3[k(R)] when ξ = 1.  

Additionally, the notation ∂ξ = 1, ∂r, 1 ∂θ, 1 ∂φ for ξ = 1, 2, 3, 4, respectively, willR R sin θ 

be useful later. Since every Vξ(R, r) is weak compared to  H0, the Rydberg wave 

functions, eigenstates of Eq. (2.70), are a very sensible orthonormal and complete 

basis set to expand the exact wave function into. Since we are neglecting spin in this 

chapter the wave function has the expansion 

n−1 m=l 

|Ψe = cnlm|n, l,m . (3.5) 
n l=0 m=−l 

This approach – since many of the states |n, l, m are degenerate for a given n – 

is called “quasi-degenerate perturbation theory.” Typically this series is truncated 

to values of n near the Rydberg state of interest. The p-wave shape resonance can 

be challenging to include accurately, since it creates an unphysical divergence in the 

PECs. This is remedied by ensuring that the basis set includes additional hydrogenic 
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manifolds adjacent to the manifold of interest, which gives sensible results due to 

level repulsion between states of opposite symmetry [122]. The accuracy of this 

approach is a matter of some controversy [123], and issues related to the convergence 

of these delta function potentials and of this method for constraining the p-wave 

shape resonance are discussed in much more detail in chapter 6. 

After computing the matrix elements of the Hamiltonian implied by Eq. 3.1 and 

diagonalizing to obtain the eigenspectrum, two distinct classes of molecular states 

appear which are characterized by the electron’s angular momentum. As R → ∞  

the potential energy curves of these states are uniquely associated with asymptotic 

energy levels corresponding to the quantum defect-shifted energy levels of an isolated 

Rydberg atom. Indeed, these two classes stem from the non-zero quantum defects of 

l < lmin states that separate them energetically from the hydrogenic manifold of high 

angular momentum l ≥ lmin states. The differences between these two classes are 

elucidated by considering just the limit of first order degenerate perturbation theory 

in the next section. This neglects couplings between states and all basis states with 

n = n. For energies near the n manifold and away from the p-wave shape resonance 

this approach is quite accurate. Moreover, the form of these orbitals will be used 

in later theoretical approaches which retain much of this conceptual simplicity while 

regaining the level of accuracy given by diagonalizing into a full basis as Eq. 3.5 

implies. 

3.2 Molecular potential energy curves 

We begin with the nondegenerate l < lmin states. Due to their non-degeneracy, 

the potential energy curves for each Vξ(R, r) are given by the expectation value of 

the Vξ. These PECs for ξ = 1 and 2 correspond to Σ states since the spherical 
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harmonics with m = 0 vanish on the internuclear axis. The PECs for ξ = 3  and  4  

involve derivatives of these spherical harmonics and are nonzero only for m = ±1. 
They are therefore Π states. 

fnl(R) 
2 

|Yl0(0, 0)|2 . (trilobite s-wave only) (3.6)El<lmin,m=0(R) =  a1[k(R)] 
R 

d fnl(R) 
2 

El<lmin,m=0(R) =  E1 |Yl0(0, 0)|2 (3.7)l<lmin,0
(R) +  a2[k(R)] 

dR R 

fnl(R) 
2 

d 2 

El<lmin,m=±1(R) =  a3[k(R)] Ylm(θ, 0) (3.8)
R2 dθ θ=0 

fnl(R) 
2 
mYlm(θ, 0) 

2 

+ a4[k(R)] . 
R2 sin θ θ=0 

These PECs exhibit wells at the maxima of the radial wave function that are typically 

10-100 MHz in depth for n >  30 and support only a few weakly bound molecular 

states. These molecules are best characterized by Hund’s case (c) since their depths 

are smaller than the fine-structure coupling, but for smaller n Hund’s case (a) may 

become the more relevant case [124]. 

Due to the relative ease of exciting low-l Rydberg atoms via one or two-photon 

excitation from the ground state, these molecules have been explored extensively 

in experiments. Fig. 3.1 displays a Sr30S+Sr5S potential energy curve and a few 

bound states like those observed in [125]. This potential curve is the simplest realistic 

example, as Sr lacks a p-wave shape resonance, hyperfine structure, and separate 

singlet/triplet scattering channels, and in its S state possesses no fine structure. 

This potential therefore comes closest to the potential curve obtained in first order 

perturbation theory, Eq. 3.6, although the calculation in Fig. 3.1 also includes the 

polarization potential, −
2R
α 
4 , between the ionic core and the neutral atom. Bound 

states can be calculated in these potentials quite easily using, for example, a three-

point finite difference method. 
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states and eigenenergies are obtained in degenerate perturbation theory by diagonal-

izing the potential matrix in the degenerate manifold, which has matrix elements 

4 

Vfermi,ll (R) =  l| aξ[k(R)]Vξ(R, r)|l . (3.9) 
ξ=1 

First, we consider the ξ = 1 case alone. We set R parallel to ẑ  and integrate over 

the delta function δ(r −R) to get the matrix: ⎞⎛ 

V ξ=1 
fermi,ll 

2πas[k(R)] 
= 

⎜⎜⎜⎜⎜⎜⎝ 

φ∗ 
n00(R)φn00(R) φ∗ 

n00(R)φn10(R) · · ·  φ∗ 
n00(R)φnn−10(R) 

φ∗ φ∗ · · ·  φ∗ 
n10(R)φn00(R) n10(R)φn10(R) n10(R)φnn−10(R) 

⎟⎟⎟⎟⎟⎟⎠ 

. . . ... . . . . .. . 

φ∗ φ∗ · · ·  φ∗ 
nn−10(R)φn00(R) nn−10(R)φn10(R) nn−10(R)φnn−10(R) 

This is a rank 1 separable matrix, which has a single non-zero eigenvalue given by 
† 

E = φnl0(R) φnl0(R) and a corresponding eigenvector vE = φnl0(R). When R 

is used in the argument of a wave function that should be evaluated at a vector 

position, it is to be assumed that the angular components of the wave function are 

to be evaluated on the z axis. For convenience, we define the following Q-functions 

L 
Qnl 

LML 
(R) =  δm,ML  L (φnlm(R)) 

ML 

, (3.10) 

where 

Qnl (R) =00

fnl(R) 
R 

2l + 1  
,

4π 
(3.11) 

Qnl (R) =10

2l + 1  
∂R

4π 
fnl(R) 
R 

, (3.12) 

Qnl (R) =1±1
fnl(R) 
R2 

(2l + 1)(l + 1)l 
, l  >  0. 

8π 
(3.13) 
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Using these, we obtain the s-wave trilobite PEC and wave function analytically: 

2 
QnlEtrilobite(R) = 2πas[k(R)] 00(R) ; (3.14) 

l 

1 
QnlΨtrilobite(R, r) =  00(R)φnl0(r). (3.15)N 

l 

The summations here are assumed to range over all degenerate l values. The other 

interaction terms may be addressed similarly, assuming for now that the energy 

gaps between individual Vξ terms is large enough that it is valid to treat each term 

separately. Although this is not the case near the PEC avoided crossings, we will 

eventually incorporate this following a re-diagonalization using these eigenstates. 

The R-butterfly potential curve can be calculated in exactly the same fashion, and 

is 

QnlER-butterfly(R) = 6πa
3 
p[k(R)] 10(R) 

2 
. (3.16) 

l 

This has the same form as the s-wave PEC, except with radial derivatives of the hy-

drogenic wave functions replacing the wave functions themselves. For the remaining 

potential curves, which possess Π symmetry and |m| =  1,  it can be  shown that the  

two angular-butterfly potential operators commute and therefore their sum yields a 

rank 2 separable matrix with two degenerate eigenvalues [126]. The angle dependence 

of these PECs can be separated as eimφHlm(θ) for the  θ-butterfly and eimφFlm(θ) for  

the ϕ-butterfly. These functions obey: 

Hl,−m(θ) = (−1)m+1Hlm(θ), Fl,−m = (−1)mFlm(θ). 

As a result, we specialize to just m = 1 without loss of generality: 

(2l + 1)(l + 1)l (2l + 1)(l + 1)l 
Fl1(0)

2 = ; Hl1(0)
2 = . 

16π 16π 
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We have obtained four PECs for the high-l states: a Σ state from the s-wave 

interaction, a Σ state from the radial p-wave interaction, and two degenerate Π 

states from the angular gradient terms of the p-wave potential. Two-dimensional 

cuts of the electronic wave functions corresponding to these four states are shown in 

Figure (2.8). The trilobite orbital was already given in Eq. 3.14, but all four can be 

written generally as 

Qnl 
l LML 

(R)YlML (r̂)r
−1fnl(r)

ΨLML (R, r) =  . (3.19) 
|Qnl (R)|2 

l LML 

In this notation we identify the Σ trilobite (Ψ00(R, r)) and Σ, Π butterflies (Ψ10(R, r), 

Ψ1±1(R, r), respectively). Equation 3.19 is most useful in chapter 6 since it clarifies 

how these different eigenstates arise from the Lth partial wave explicitly, and it is 

specialized to the diatomic case where ML is a good quantum number. However, 

in chapter 4 we will study polyatomics where no symmetry constraints impose re-

strictions on ML, and furthermore it proves convenient to focus on which ξ term of 

the pseudopotential gives rise to each eigenstate. Eq. 3.19 can be written in this 

notation as: 

1 
φ ∗ Ψξ(R, r) =  ∂ξ nlm(R) φnlm(r), (3.20)N 

l,m 

where N is a normalization constant. This notation will be used extensively in 

chapter 4, but the reader should recall that these two definitions are equivalent. 

Finally, we note that the Borodin-Kazansky model [127] is an alternative, al-

beit less accurate, approximation for Rydberg-neutral interactions. It yields PECs 

that give the correct shape and magnitude of the Fermi-model PECs without the 

oscillatory nature due to the radial wave function modulation: 

1 1 δl[k(R)] 
−2 

EBK 
l (R) =  − + n − . (3.21)

2n2 2 π 
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Figure 3.4. The Rb-Rb potential energy curves predicted by [40] (trilobite 
case only) and [122] (including the butterfly case). The wave functions 
giving rise to these popular names are plotted in cylindrical coordinates 
on the right. 

We will utilize this approximation in chapter 6 to understand the challenges with 

convergence of the results, since these potential curves are independent of basis size 

and lack the divergent p-wave behavior since the resonant p-wave phase shift enters 

the formula as a phase shift without any divergences present in the scattering volume. 

Now that the trilobite and butterfly type PECs have been obtained in approximate 

form, let us consider the topology of the potential energy landscape including the 

full set of Rydberg states and couplings between all these different components. 
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Figure 3.4 shows the potential energy landscape for a Rydberg atom in the n = 30  

state in the presence of a rubidium perturber. This figure shows many of the key 

features of this unusual class of molecules that we will revisit and expand upon 

throughout this thesis. Potential energy curves between n = 30  and  n = 29  are  

plotted; the regularity of the Rydberg spectrum implies that this same picture will 

repeat, essentially unchanged, between every two Rydberg levels. Several mostly 

flat potential energy curves are seen – these correspond to the low-l quantum defect 

states. We are typically more interested in the trilobite and butterfly potential 

energy curves, marked with arrows, since these are the highly polar states with 

heavily modified electronic wave functions. This figure supports to some degree the 

assumptions of the previous discussion by showing that these potential curves are 

largely decoupled from one another and from the low-l states, although a series of 

avoided crossings between the diving p-wave potential curve and both the trilobite 

and the low-l states are visible, and its interaction with the n = 29 states is clearly 

critical to constrain the divergent scattering volume. The red potential energy curve 

shows the degenerate Π symmetry states from Eq. 3.17. Notably, it does not oscillate 

as a function of R: this is due to destructive interference between terms in the 

numerator of Eq. 4.18. An additional explanation for this from the summation 

formula is that high l states, with fewer radial oscillations, are weighted by a factor 

of order l3 , while in the trilobite curve these are weighted by just a factor of order 

l. Future chapters will return frequently to similar figures as Figs. 3.1-3.4, as we 

generalize to polyatomic potential energy surfaces (chapter 4), to multichannel atoms 

with more complicated Rydberg series (chapter 5), and to a far more accurate and 

complete picture involving all the spin degrees of freedom of the Rydberg atoms 

(chapter 6). The analytic expressions for the PECs and wave functions derived 

above will be fundamental in these studies. 
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3.3 Vibrational bound states and rotational spectra 

With the adiabatic potential energy curves now in hand, we can solve the nuclear 

Schrödinger equation (Eq. 3.2) for the nuclear wave functions to obtain a complete 

description of the Rydberg molecule. Typically the rotational energy is neglected 

since the rotational constant of these molecules, inversely proportional to their bond 

length, is extremely small (<kHz typically). Rotational states have not been resolved 

in current experiments except for a few isolated cases. In the butterfly molecules, 

the internuclear distances are only a few hundred atomic units leading to a ∼MHz 
rotational constant and observable energy splittings [128]. This will be discussed in 

more detail in Chapter 7. 

For Rydberg molecules dominated by the s-wave pseudopotential, or for deeply 

bound trilobite or butterfly-like states, at least the first few excited vibrational states 

are clearly bound in potential wells. Their wave functions decay exponentially in 

classically forbidden regions, even if there is significant tunneling between different 

wells (see Fig. 3.1). However, the sharp series of avoided crossings caused by the 

p-wave shape resonance and resulting butterfly potential curve add significant com-

plications. Fig. 3.5 shows such a case for Cs, now including p-wave effects and 

spin degrees of freedom. In many such cases the accuracy of the adiabatic Born-

Oppenheimer approximation may be in question since its applicability depends not 

only on the difference between nuclear and electronic masses but also on the energy 

separation between potential energy curves. Some works [129] have studied how 

these sharp avoided crossings actually lead to fascinating cold-chemistry pathways 

and dynamic processes like l-changing collisions due to non-adiabatic phenomena. 

We have not studied any of these effects here. 





70 

� 

Figure 3.6. A stabilization diagram for the bound states at smaller R 
(purple) in Fig. 3.8. On the left are the calculated bound states as a 
function of box size, indexed arbitrarily, and on the right the data are 
binned and fit with Gaussian profiles. 

that the p-wave shape resonances do not completely destabilize the molecule, and 

that quantized vibrational states still exist. At large internuclear distances the wave 

function exponentially decays into the classically forbidden region, but at smaller 

internuclear distances it remains classically allowed all the way to R = 0,  well  past  

the range of applicability of the Fermi pseudopotential. Nevertheless, by fixing an 

infinite barrier at some R = R0 (typically in the range of 100-200 atomic units) the 

vibrational states are quantized, and we calculate them using a three-point finite 
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 Figure 3.7. A stabilization diagram for the bound states at larger R 
(orange) in Fig. 3.8. On the left are the calculated bound states as a 
function of box size, indexed arbitrarily, and on the right the data are 
binned and fit with Gaussian profiles. 

difference method. After repeating for many R0 values, patterns emerge in the 

eigenstates as demonstrated in Figs. 3.6 and 3.7. Although the spectrum varies with 

R0, on average these values cluster around specific resonance values. After binning 

this data and fitting to Gaussian profiles, the resonance positions can be accurately 

determined, and the widths of these Gaussian fits are related to the decay widths [56]. 

Fig. 3.8 shows some of these calculated bound states. Their localization, despite 
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recently in a preprint which also includes rotational states [131]. Typically it seems 

that accurate predictions of the observed line shapes are still lacking, either due to an 

improper characterization of experimental conditions or to other subtle theoretical 

complications, but a couple of studies focusing more on the many-body case have 

calculated lineshapes which agree spectacularly with experiment [132, 133]. 

3.4 Multipole moments 

The state mixing induced by the perturber creates large permanent electric dipole 

moments (PEDM) in these molecules. This even occurs in the weakly perturbed low-

l states due to small admixtures of trilobite or butterfly states [134]. These PEDMs 

have sparked interest in the application of these molecules in dipolar gases and ultra-

cold chemistry. The higher multipole moments are of interest for detailed calculations 

of inter-molecular interactions, and will be utilized in Chapter 7. The multipole mo-

ments of the ith electronic configuration are dk,q = i|Tqk|i , where the multipole ν,i 

moments from classical electrostatics [135] are promoted to quantum-mechanical op-

erators: 
4π 

T k k 
q = −r Yk,q(r̂). (3.22)

2k + 1  

Here k and q label tensor operator components; T0
1 is the usual dipole operator. The 

multipole moments for the trilobite and butterfly eigenstates ΨLM (R, r) of Eq. 3.19 

are 

Qnl (R)Qnl (R)LM LMTq
k = ΨLM |Tqk|ΨLM = |Qnl nlM |Tqk|nl M . (3.23)

(R)|2 
l LMl,l 

As a reminder, l and l are angular momenta of the Rydberg electron relative to 

the Rydberg core. The matrix element separates into a radial integral, Rnl (k) =nl 
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Figure 3.9. Analytic dipole, quadrupole, and octupole moments for 
n = 23 (Eq. 3.24). The trilobite (blue,dashed) and Σ butterfly state 
(red,solid) oscillate as a function of R, while the Π butterfly state 
(black,dot-dashed) is non-oscillatory; this behavior matches the poten-
tial energy curves. This figure is taken from Ref. [2]. 

drfnl(r)r
kfnl (r), and an angular integral. Evaluating this integral leads to the 

result ⎛ ⎞ 
Qnl (R)Qnl (R) l l  k

LM LM Rnl (k)C lMTq
k = |Qnl nl l M,kq(−1)k−l (2l + 1)  ⎝ ⎠ . (3.24)

(R)|2 
l LM 0 0 0l,l 
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The Clebsch-Gordan coefficient causes any term with M = 0 to vanish, reflecting the 

cylindrical symmetry. For the degenerate hydrogenic states considered here, Rnl
nl (k) 

can be analytically evaluated (Eq. E.3). The dipole (k = 1) moments agree exactly 

with previous calculations [95]. These multipole moments scale in size as n2k, and  

are displayed in Fig. 3.9 up to the octupole moments. 

3.5 Overview 

As this introductory chapter has demonstrated, these molecules possess many 

fascinating and unique properties: oscillatory potential energy curves, extremely 

large bond lengths and, in the trilobite and butterfly cases, highly localized wave 

functions with exotic nodal structure and huge permanent electric dipole moments 

[95, 96, 121, 134]. We have seen how these molecules are formed by the appropri-

ate mixing of nearly degenerate high angular momentum states that maximizes the 

electron probability at the location of the perturber [136]. Figures 3.3 and 3.4 encap-

sulate the results of the first studies of these molecules. These original predictions 

focused on the simplest cases of 3S [40] and  3P [96, 122] scattering of electrons by a 

Rb atom. Essentially simultaneously, more sophisticated Green’s function techniques 

were developed [96, 121, 137]; one in particular also included important spin effects 

such as the Rydberg fine structure, singlet and triplet scattering, and the relativistic 

3PJ splitting of the electron-atom phase shifts [95]. The behavior of Rydberg mol-

ecules when subjected to external electric [14, 121, 138, 139] and magnetic [139–141] 

fields has also been investigated theoretically. 

Experimental investigations of these molecules have, with the exception of an 

early observation of satellite peaks related to minima of low-n Rydberg potential 

curves [137], entirely occurred in the last decade, following the first observation of 
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non-polar Rydberg molecules in 2009 by Tilman Pfau’s group [142]. These first ex-

periments focused primarily on penetrating Rydberg states of low orbital angular 

momentum, and characterized the dipole moments [134], vibrational energies and 

lifetimes [143], controllable orbital hybridization in the presence of weak external 

fields [144], and even some signatures of trimer formation [101]. Many other groups 

have since added other atomic species such as Cs [145] and Sr [125, 146, 147] to  

the mix. This experimental work led researchers to realize that a more sophisticated 

theoretical description was necessary to match the highly accurate spectroscopic mea-

surements, and so additional experimental [102, 148–150] and theoretical [124, 130] 

studies of singlet and triplet scattering states mixing between these states caused 

by the hyperfine splitting of the neutral atom were performed. Chapter 6 expands 

upon this wide body of literature, particularly the theoretical papers [95, 124, 130], 

in order to describe a fully spin-dependent approach. Very different regimes of prin-

cipal quantum number were also explored, from very low-n states which could be 

photoassociated directly from bound Rb-Rb molecules [151, 152] to very high Ryd-

berg states which showed resonances associated with the formation of polyatomic 

molecules [153]. These molecules, where multiple ground state atoms lie within the 

Rydberg orbit, are studied in chapter 4. 

The first theoretical predictions were finally fully confirmed in 2015 and 2016, 

when trilobite molecules with kilo-Debye dipole moments were observed in Cs [154] 

and butterfly molecules were observed in Rb [128]. The trilobite molecules could be 

formed due to the nearly integer quantum defect of the Cs ns state, which admixed 

the l = 0  and  high-l trilobite state together sufficiently to make it accessible via two-

photon excitation. Chapter 5 explores similar physics in multichannel atoms, where 

not only are favorable degeneracies like this one in Cs accessible, but in some cases due 

to the heavily perturbed Rydberg spectra of these complex atoms these degeneracies 
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are also tunable by varying n. The butterfly molecules were observed since their 

wells are energetically close to the nP state, so they could be photoassociated by 

absorption of a single photon. Their rotational spectra changed drastically when 

they were exposed to a weak electric field due to their large dipole moments [128]. 

The observation of these pendular states, which librate around the field axis and have 

an evenly spaced oscillatory level structure [155], are studied further in chapter 7. 

This broad range of studies of Rydberg molecules reflects their surprising ver-

satility. Beyond studying fundamental aspects of their structure, researchers have 

pursued many exciting research topics in past years that utilize these molecules to 

study or manipulate other processes in ultracold gases. In Ref. [156] Rydberg mol-

ecules were formed in an optical lattice and used as a non-destructive probe of the 

Mott transition, and recently a theoretical proposal to dress an ultracold gas with 

a Rydberg molecular state to enact an optical Feshbach resonance has been imple-

mented [157,158]. Rydberg molecules have been proposed as miniature “colliders” to 

study atom-ion scattering [114] and the electron-atom scattering phase shifts more 

accurately [159]. They also reveal the properties of the polarization potential between 

the Rydberg core and surrounding neutral atoms if the Rydberg orbit is much greater 

than the average interatomic spacing [160]. They were observed to induce spin-flips 

at extremely long range [161]. Coherent control of the photoassociation process was 

demonstrated in [162], and it was found that signatures of vibrational bound states 

showed up in electromagnetically-induced transparency experiments [163]. Similarly 

to how the remarkable diversity of prehistoric trilobite species led to their survival 

over millions of years, the diversity of aspects of Rydberg molecules has led to an 

explosion of interest in these quantum “creatures.” 

To our knowledge there are three review articles discussing Rydberg molecules 

[159,164,165]. These articles also are good sources of information on another class of 
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huge, highly excited molecules called Rydberg macrodimers [41, 42, 166, 167]. These 

are formed by two Rydberg atoms bound weakly together with bond lengths on the 

order of a micron by the long-range van der Waals interaction between these highly 

excited atoms. 
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4. POLYATOMIC RYDBERG MOLECULES 

As the principal quantum number n and atomic density   increase, the average 

number of perturbers N within a Rydberg volume grows proportionally to  n6. As  

the number of perturbers increases so does the probability that larger molecules – 

trimers, tetramers, and so on – can form due to electron-atom scattering as prescribed 

by the Fermi pseudopotential formulated in the previous chapter. Of course, in the 

limit of large N Fermi’s original conception of this system should be recovered and the 

effect of all these perturbers will again be an overall mean field energy shift. Between 

these two extremes of N = 1  and  N 1 resides a range of fascinating phenomena. 

What kinds of polyatomic molecules will form, if they even can? Will they have any 

structure or symmetries? Are they less stable than dimers due to disruptions from 

additional perturbers, or will they instead serve to better localize the electron and 

thus stabilize the molecules further? What happens in this crossover regime from 

the few body physics of small polyatomic molecules to the mean-field many-body 

regime, and does the latter regime exhibit any interesting behavior beyond Fermi’s 

original prediction? In this chapter we will explore some of these questions. 

The past few years have witnessed an exciting amount of growth in this area. 

Experimentally, these large densities and high Rydberg states have been studied 

in Rb [168, 169], Cs [170], and Sr gases [133]. The Rb and Sr experiments have 

found evidence for both the formation of polyatomic molecules as well as rich physics 

associated with the affect of dozens or even hundreds of perturbers on the Rydberg 

atom [171]. Some of these effects could be attributed to the p-wave shape resonance 
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in Rb [169], while other results were interpreted in terms of the creation of Rydberg 

polarons and impurity physics [172,173]. At even higher densities even the coupling 

between the Rydberg electron and the entire condensate [168, 174] can be studied. 

In Cs the focus so far has been only on trimers, but now in a configuration with non-

zero Rydberg angular momentum in contrast to the other experiments of polyatomic 

systems, performed exclusively with isotropic ns states. 

Theoretical work has focused on either the structural few-body properties of mol-

ecules, such as symmetric cuts in their potential energy surfaces [175], stretching and 

binding dynamics [176], three-body type forces which can lead to Borromean bind-

ing [177], survival and even enhancement in disordered environments [178] or on more  

general many-body physics [172, 173]. Some field effects, such as a Rydberg trimer 

in an electric field, have been investigated [179]. Additional theoretical work has 

studied a different type of polyatomic molecule formed by replacing the perturbing 

neutral atom with a polar dimer such as KRb [180–184]. 

This chapter presents our investigations of the effects of multiple perturbers on the 

Rydberg energy levels and the properties of polyatomic Rydberg molecular states. 

Sections 4.1 - 4.3 are adapted from Ref. [4] and focus primarily on trilobite and 

butterfly states in polyatomic molecules. The goal of these sections is to develop a 

generic description of polyatomic Rydberg molecules from a few-body perspective 

which can then be widely applied to a variety of specific cases. Special attention is 

paid to molecular states with high geometric symmetry in order to build intuition 

for the properties of polyatomic molecules. The results derived are still completely 

general to arbitrary configurations and environments, and thus can be employed to 

study everything from disordered gases to structured aggregates. Section 4.4 uses this 

general formulation to study the lineshape of a Rydberg hydrogen atom immersed in 

a dense background gas, and is based on Ref. [3]. Section 4.5 culminates this study 
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by generalizing some of the results of sections 4.1-4.3 to include additional effects 

from other Rydberg manifolds and quantum defect-shifted states, which are ignored 

in these prior sections. This extends the previous results, which were valid to first 

order in perturbation theory, to the same accuracy as the results obtained within a 

full basis diagonalization of the Hamiltonian. This formulation can also lead to a 

computationally efficient and conceptually intuitive way of including spin degrees of 

freedom or external field effects. 

4.1 Fundamentals of polyatomic Rydberg molecules 

We consider an N > 1 polyatomic system with N ground state atoms, located at 

Ri = (Ri, θi, ϕi), surrounding a central Rydberg atom. For tractability, the molecular 

breathing modes – where the ground state atoms share a common distance Ri = R 

to the Rydberg core – are the primary focus of this chapter, although most formulas 

readily generalize and the calculations in section 4.4 will not share this restriction. 

We also primarily focus on the n = 30 states of rubidium to facilitate comparison 

with diatomic trilobite states, and continue to neglect spin degrees of freedom as well 

as singlet scattering. The p-wave scattering states are, however, included, and this 

physics dramatically increases the complexity of the molecular structure due to the 

vectorial character of the p-wave pseudopotential operator. 

The first goal of this section is to generalize the diatomic results described in 

chapter 3 to this system with N + 1 constituent atoms, and thus develop a general 

theory capable of describing polyatomic states. The Hamiltonian generalizes readily: 
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we add to the dimer Hamiltonian a new pseudopotential term for each additional 

perturber. Thus: 

N 

HN (r) =  Ĥ 
0 + Vfermi(r, Ri) (4.1) 

i=1 

N 4 

ˆ= H0 + 2π aξ[k(Ri)]Vξ(Ri,�r). 
i=1 ξ=1 

For brevity we will suppress the radial dependence of aξ in the following expressions, 

writing aξ[k(Ri)] = aξ(k). 

We now incorporate arbitrary perturber locations into the analytic results from 

section 3.1 for the PECs and molecular orbitals. We saw in the previous chapter that 

the diatomic eigenstates and eigenenergies are superpositions of hydrogenic wave 

functions. Indeed, the wave functions, eigenenergies, and even the overlaps between 

different orbitals can be written [177] as elements of a (4 × 4) ⊗ (N × N) “trilobite 

αββ Υααββ Υββααoverlap matrix”, Υα , where  
∗ 
= . The lower indices p and q label thepq pq qp 

position vectors Rp and Rq of two neutral atoms; a lower index r indicates Rr = r. 

Upper indices α and β label the eigenstates: the normalized ξth eigenstate for a 

molecule with an internuclear axis R is therefore Υξ1 / Υξξξξ This is equivalentRr RR. 

to Eq. 3.20. The trilobite (ξ = 1) and three (R, θ, ϕ)-butterfly PECs (ξ = 2, 3, 4), 

as well as their unnormalized eigenstates, are written very concisely in terms of the 

trilobite overlap matrix: 

Eξ (R) = 2πaξ(k)Υ
ξξξξ ; Ψξ(r, R) =  Υξ1 (4.2)l>3 RR Rr. 

The trilobite overlap matrix therefore must be 

n−1 m=l ∗ 
Υααββ Φα Φβ = (Rp) (Rq), (4.3)pq nlm nlm 

l=lmin m=−l 



�

�

�

�

�

� �

�

�

� �
� �

� �
� �

�  
� �

⎪
αβ

ξα βξ

85 

where the summation extends over energetically degenerate states, starting at lmin = 

3 in the atoms (except H) considered here. Φα is a shorthand for the wave functionnlm 

and components of the gradient in spherical coordinates: 

Φα 
nlm(r) =  

⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎩ 

φnlm(r) α = 1  

 φnlm(r) α = 2
 r 

1  φnlm(r) α = 3
R  θ 

1  φnlm(r) α = 4.
R sin θ  ϕ 

(4.4) 

Two additional properties of the overlap matrix are important. Υααββ is the overlappq 

between different diatomic orbitals α and β associated with different ground state 

atoms located at Rp and Rq, respectively, and the matrix element of the ξth interac-

tion term of the Hamiltonian between an orbital α located at Rp and an orbital β 
ξξαα ββξξlocated at Rq is Υ Υip qi . 

Somewhat surprisingly, these sums over hydrogenic states can be analytically 

performed, assuming vanishing quantum defects. This was first accomplished in 

several papers by Chibisov and coworkers shortly following the first trilobite paper 

[185], but their results were not condensed into a very clear form and seem to not 

have been well appreciated in the literature since. Our goal is to sum 
n−1 m=l 

[Φα (R)] ∗ Φβ (r). (4.5)nlm nlm 
l=0 m=−l 

In fact, only Eq. 4.5 with α and β set to unity need be summed; the rest can be 

obtained by taking appropriate derivatives. We begin with the Coulomb Green’s 

function, which is known in closed form [185]: 

Γ(1 − ν) ∂ ∂ 
G(r, R, E) =  − Wν,1/2(x/ν)Mν,1/2(y/ν) (4.6) 

2π|r −R| ∂(x/ν) ∂(y/ν) 

(x, y) =  r + R ± |r −R| 
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The Whittaker functions Mν,1/2(τ) and  Wν,1/2(τ) are related by 

Γ(1 − ν)
Γ(1 − ν)Mν,1/2(τ) = (−1)1+ν Wν,1/2(τ) + (−1)ν W−ν,1/2(−τ). (4.7)

Γ(1 + ν) 

For an energy E very near to a bound Rydberg state Eν , ν approaches an integer, 

the principal quantum number n, and Γ(1 − ν) diverges. The first term in Eq. 4.7 

clearly dominates, and in this limit 

(−1)n 1 
Γ(1 − ν)|ν→n = , (4.8) 

n3Γ(n) E − En 

2)−1where E = −(2ν2)−1 and En = −(2n . To equate this description of the Green’s 

function with Eq. 4.5, and thus evaluate the sum in Eq. 4.5, we turn to the al-

ternative derivation of the Green function using an expansion into a complete set 

of orthogonal functions. In this case an appropriate choice are the hydrogenic wave 

functions: 
φ∗ 
nlm(r)φnlm(R)G(r, R, E) =  , (4.9)

E − En
nlm 

where the sum is understood to extend into the continuum as well, with n becom-

ing a continuous variable. Near a bound state with principal quantum number n 

the dominant term in this sum is 1 φ∗ (r)φnlm(R). Therefore we simplyE−En lm nlm 

need to match this expression with the closed-form Green function asymptotically 

approaching a bound state energy, i.e.: 

1 (−1)n 1 1 ∂ ∂ 
φ ∗ −nlm(r)φnlm(R) =E − En n3Γ(n) E − En 2π|r − R| ∂(x/ν) ∂(y/ν)

lm 

(−1)1+ν 

×Wν,1/2(x/ν) Wν,1/2(y/ν) . 
Γ(1 + ν) ν=n 

The final step is to connect the Whittaker function at an integer value of ν to the 

hydrogenic radial wave functions unl(r): 

2r 
= (−1)n+1 √ 

Wn,1/2 n! nun0(r). (4.10) 
n 
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Thus, 

(−1)n 1 ∂ ∂ 
Υ11 

Rr = φnlm 
∗ (r)φnlm(R) =  − 

n3(n − 1)! 2π|r − R| ∂(x/n) ∂(y/n)
lm 

(−1)1+n 

· (−1)2n+2 n!n!nun0(x/ν)un0(y/n) 
n! 

(−1) 1 ∂ ∂ 
= − 
2πn3 |r − R| ∂(x/n) ∂(y/n) 

· n 2 un0(x/2)un0(y/2) 

1 ∂ ∂ 
= − n 3 − un0(x/2)un0(y/2) 

2πn3|r − R| ∂x ∂y 

1 
= (un0(x)un0(y) − un0(x)un0(y)) 
4π|r − R| 

This is the outcome we were hoping for – after a few additional definitions we obtain 

u (t−)un0(t+) − un0(t−)u (t+)
Υ11 n0 n0 

Rr = , (4.11)
4πΔt 
1 

Δt = t+ − t−, t± = R + r ± R2 + r2 − 2Rr cos γ ,
2 

where γ is the angle between R and r. This expression is exact for non-relativistic 

hydrogen, with its vanishing quantum defects, and is an excellent approximation for 

the summation in equation (4.3) for energies between the high-l manifold and the 

low-l states with nonzero quantum defects. The three butterfly eigenstates can be 

found by differentiating equation (4.11) with respect to R, θR, and  ϕR: 

Υ21 (r cos γ − R)F(t+, t−) un0(t+)un0(t−) − un0(t−)un0(t+) = + (4.12)Rr 8πΔt3 8πΔt 

Υ31 
Rr = cos  θR cos ϕRΥx + cos  θR sin ϕRΥy − sin θRΥz (4.13) 

Υ41 
Rr = − sin ϕRΥx + cos  ϕRΥy, (4.14) 
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where 

F(t+, t−)
Υx,y,z = (sin θr cos ϕr, sin θr sin ϕr, cos θr), (4.15)

8π(Δt)3 

F(t+, t−) =  −2(Δt)u (t+)u (t−) − un0(t−)[2u (t+) − (Δt)u (t+)]n0 n0 n0 n0 

+ un0(t+)[2un0(t−) + (Δt)un0(t−)]. 

The θ, ϕ butterfly orbitals can be identified as vectors of magnitude F(t+,t−) parallel
8π(Δt)3 

to the θ, ϕ unit vectors; the trilobite and R-butterfly orbitals are fully symmetric 

about the internuclear axis – the trilobite orbital acts as a scalar under a symmetry 

operation, and the R-butterfly behaves as a vector parallel to the internuclear axis. 

The diagonal elements Υξξ are obtained by carefully evaluating equations (4.11 -pp 

4.14) in the limit Rp → Rq using L’Hopital’s rule, and by using the radial Schrödinger 

equation to eliminate second or higher derivatives: 

Υ11 (2n2 − R) (un0(R)/n)
2 + Run0(R)

2 

RR = (4.16)
4πR 

un0(R)
Υ22 = Υ33 − [3Ru (R) + 2un0(R)] (4.17)RR RR n012πR3 

2 − R)Υ11 24πR(2n − n u (R)un0(R)
Υ33 = Υ44 RR n0 = . (4.18)RR RR 12πn2R2 

Recall from chapter 3 that the diatomic θ and ϕ butterfly – referred to together 

as angular butterfly – RR and Υ44states, corresponding to potential curves Υ33 
RR, are  

degenerate 3Π molecular states and, in contrast to the 3Σ trilobite or R-butterfly 

PECs, do not oscillate as a function of R. These solutions provide useful insight 

into the behavior of trilobite-like wave functions and their potential energy curves. 

For example, section 4.4 uses Eq. 4.16 frequently to evaluate polyatomic potential 

energy surfaces for a many-perturber environment and to obtain convenient analytic 

expressions for the line shape. Additionally, these expressions provide requisite in-

formation for understanding the vectorial behavior of the p-wave terms: Eq. 4.15 
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reveals the geometric symmetry properties regarding rotation and reflection of the 

molecular orbitals. 

The general idea behind the following derivations is that the trilobite overlap 

matrix elements correspond to the matrix elements of the Rydberg Hamiltonian, H0, 

and the Fermi/Omont pseudopotential in the basis of molecular orbitals. Therefore, 

the assumption that the electronic wave function is given by a linear combination of 

these eigenstates [126] leads to a generalized eigenvalue equation for the molecular 

potential energy curves, E(R), since these molecular eigenstates are non-orthogonal. 

As a test, for the diatomic case with N = 1 one finds 

4 4 
Eξξαα ββξξ ααββ  β aξ(k)Υ Υ − Υ = 0. (4.19)RR RR RR R2π 

β=1 ξ=1 

What we have done here is to approximate the problem as a four-level system in-

volving only these molecular orbitals; in another perspective, we have constructed a 

highly reduced basis that nearly diagonalizes the Hamiltonian, and then used that 

to solve a much simpler system. Section 4.5 and Appendix B provide further details 

in support of this approach, which for now is taken as an ansatz. We now investigate 

the properties of polyatomic molecules using the intuition developed throughout the 

first part of this chapter. 

First, we consider the low-l states, treating them independently from the trilobite 

and butterfly states for now, as in the last chapter. In a general environment, all 

ml values for a given l are in principle nonzero unless there are additional imposed 

symmetries (for example if the molecule is restricted to a plane). Therefore Nd = 

2l + 1 degenerate ml states mix together. This causes Np = max(4N,Nd) PECs to 
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split away from the unperturbed electronic states. For Fermi’s s-wave interaction 

alone the PECs are the eigenvalues E(R) given by the matrix equation 

2 l N 
unl(R) E 

as(k) Ylm 
∗ (θi, ϕi)Ylm(θi, ϕi) 

1 =  1 . (4.20)
R m 2π m 

m=−l i=1 

The trilobite overlap matrix formalism allows us to rapidly establish the same type 

of equation for the high-l states, generalizing Eq. 4.19 to the polyatomic system. 

The trial solution used to obtain equation (4.19) is expanded to include linear com-

binations of trilobite and butterfly eigenstates for each diatomic Rydberg-neutral 

pair: 
N 4 

Ψ(r) =   α
p Υpr 

α1 , (4.21) 
p=1 α=1 

with  α
p a set of unknown coefficients. This formulation provides key physical insight 

and also greatly reduces the calculational effort to the diagonalization of at most a 

4N×4N matrix, rather than the full n2 ×n2 basis size needed to diagonalize equation 

(4.1). The trilobite PECs may be found by operating on equation (4.21) with the 

Hamiltonian, after setting α = 1, and then projecting onto the state Υ11 . This yieldsqr 

the eigenvalue equation 

N N N 

(ki)Υ
11Υ11 Υ112π a ip  p = Eq(R)  p. (4.22)s qi qp 

p i p 

In the special case of equal Ri emphasized here, this equation may be dramatically 

simplified to a regular eigenvalue equation, since as(k) may be factored out of the 
N Υ11sum. Defining a new vector, vq = p qp p, this expression becomes 

N 

Υ112πas(k) = Eq(R)vq.iq vi 
i 
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Applying the symmetric property of Υ11 
iq , changing the dummy indices around, and 

returning to the  q notation for the eigenvectors, we obtain 

N 

(k)Υ11 E 
as pq − δpq  q 

1 = 0. (4.23)
2π 

q=1 

The p-wave interaction is included analogously to the diatomic case, yielding a gen-

eralized eigenvalue problem with a 4N × 4N matrix: 

4 N 4 N 
Eααξξ ξξββ αββΥα  β aξ(k)Υ Υ − = 0. (4.24)pi iq pq q2π 

β=1 p,q=1 ξ=1 i=1 

Equations (4.20-4.24) accurately reproduce the full diagonalization results for arbi-

trary molecular configurations and numbers of atoms, particularly for the trilobite 

states. Since these results are only valid within first order degenerate perturbation 

theory, they are not expected to be very accurate when couplings to other hydrogenic 

manifolds or other angular momentum states are important. Indeed, the equations 

given above for low-l states should only be used qualitatively; for n = 30  the  l = 0  

states with three total manifolds are about 20% deeper than the first-order equa-

tions predict. In contrast, the high-l trilobite PECs of Eq. 4.24 are quite accurate. 

Since only one manifold is included, the deep butterfly wells caused by the p-wave 

shape resonance are qualitatively incorrect. For investigations in regimes, such as at 

energies relevant to exciting the trilobite state, where these inaccuracies are irrele-

vant, equation (4.24) is a valuable computational advance. This is particularly true 

for experiments probing high Rydberg states up to n ∼ 110 [169, 174] due to the 

greatly reduced basis size. These restrictions and inaccuracies are greatly eliminated 

following the new extensions presented in Section 4.5. 

The off-diagonal elements of Υααββ , corresponding to the overlap between orbitalspq 

associated with different Rydberg-neutral pairs, determine the size of the differences 

https://4.20-4.24
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between the polyatomic states and the N = 1 diatomic state. In the absence of these 

overlaps equation (4.24) is diagonal in the lower indices and all N polyatomic PECs 

converge to the diatomic PEC. At large R the overlap between orbitals vanishes, 

and the PECs are seen to converge to the diatomic limit. Co-planar molecules 

typically exhibit larger splittings than three-dimensional molecules for this same 

reason. Additionally, as N grows the system will deviate more strongly from the N = 

1 case; this causes the global minimum of the PECs to deepen with N . The angular 

dependence of the trilobite wave functions contributes considerably to the energy 

landscape of the system at hand, especially when two ground state atoms are close 

in proximity and therefore have a large overlap. More stable Rydberg molecules can 

thus be engineered by exploiting these features. Recent theoretical work has studied 

an extreme case with very large N and also much higher n values than considered 

here, such that hundreds of perturbers lie, configured randomly, within the Rydberg 

orbit. A counterintuitive scenario somewhat similar to the “birthday paradox” is 

seen to occur where one finds as N and n increase that two or more perturbers are 

highly likely to be found in a cluster. This gives rise to an increasingly localized 

trilobite state of much deeper energy and with an even larger dipole moment, since 

the electronic wave function can easily encompass these perturbers [178]. 

4.2 Symmetry adapted orbitals 

To fully understand the structure of these PECs, in particular the appearance of 

degeneracies and level crossings in highly symmetric molecular geometries and the 

effects of the molecular symmetry on the coupling between trilobite and butterfly 

states, it is mandatory to characterize the symmetry group of the molecule. The 

molecular symmetry group is a subgroup of the complete nuclear permutation inver-
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sion group of the molecule [52,53], which commutes with the molecular Hamiltonian 

in free space. Therefore, the eigenstates of such a Hamiltonian can be classified 

in terms of the irreducible representations (irreps) of the given molecular symme-

try group, called symmetry-adapted orbitals (SAOs). Given a molecular symmetry 

group, it is possible to calculate the SAOs associated with each irrep of the group 

using the projection operator method, where the projection operator is [52] 

ljP̂j = 
h 

h 

χjiRi. (4.25) 
i=1 

The index j labels the different irreps and i denotes the group elements. These are 

the familiar symmetry operations: rotations, reflections, and inversions. Ri repre-

sents the operator associated with the ith symmetry operation; lj and χji represent 

the dimension and character for the ith operation, respectively. Finally, h stands for 

the order of the group. The traces of the projection operators, TrP̂j = lj , determine 

the decomposition of the point group into irreps. All irreps with lj = 0 are contained. 

SAOs associated with different irreps have different parity under the molecular sym-

metry group, and hence will exhibit real crossings. lj determines the degeneracy of 
(α,j)

each irrep. The projection operator also gives the coefficients Ap for the SAO 

G(α,j)(r) corresponding to the αth orbital and jth irrep: 

N 

G(α,j)(r) =  Υ1αA(α,j) 
rp p . (4.26) 

p=1 

The prescription for calculating the projection operator depends on the orbital in 

question. The 3Σ trilobite and R-butterfly states can be symmetry-adapted inde-

pendently since they are non-degenerate. Since these orbitals are symmetric about 

the Rydberg-neutral internuclear axis the symmetry operations leave the orbitals 

unchanged except for an overall transformation of the atomic positions within the 
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molecule, i.e. a permutation of the basis of Rydberg-neutral pairs at different posi-

tions ψp: Ψ = (ψA, ψB , ..., ψN )
T . The  N ×N matrix representations of the symmetry 

operations can then be identified with a modicum of effort and the sum in equation 
(α,j)

(4.25) performed. The orthogonalized rows of P̂j provide the coefficients Ap of 

the diatomic orbitals. 

Since the θ and ϕ butterfly 3Π states are degenerate, these orbitals can be mixed 

by symmetry operations, so these orbitals must be symmetry-adapted simultane-

ously. The basis size is doubled to allow mixing: 

ϕ ϕ ϕ )TΨ = (ψA
θ , ψB

θ , ..., ψN
θ , ψA, ψB , ..., ψN . (4.27) 

The effect of a symmetry operation on the entire molecule transforms orbitals located 

at one Rydberg-neutral pair to another as in the trilobite/R-butterfly case: ψi
θ → 

ψθ ϕ ϕ 
i and ψi → ψi . However, the symmetry operation now modifies the orbitals 

themselves. The angular butterfly orbitals are vectors in Cartesian coordinates (see 

equations (4.13-4.14)) and the symmetry operators in the xyz coordinate basis affect 

them. This transforms ψi
θ → αψi

θ + βψi
ϕ and ψi

ϕ → γψi
θ + δψi

ϕ; the coefficients 

α, β, γ, δ must then be solved to identify the matrix representation of that symmetry 

operation. An explicit example of this process is shown in appendix A; the final 

result is the full tabulation of the irreps corresponding to each orbital and the sets 
(α,j)

of coefficients Ap providing the correct SAOs. These coefficients are listed in 

appendix A for the molecular symmetries exemplified in figure (4.2). 

The trilobite and R-butterfly orbitals always belong to the same irreps as they 

have identical decompositions, while the angular butterflies have different decompo-

sitions that may still share some irreps with the trilobite. As a result each of these 

possible cases requires a slightly different calculation: the PECs are solutions to a 

generalized eigenvalue problem for a matrix of 1×1 to 3×3 dimension. These expres-

https://4.13-4.14
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sions are listed below, starting first with the trilobite PECs to allow for comparison 

with previous work. 

Trilobite: The trilobite PEC for the jth irrep satisfies the particularly elegant expres-

sion 
N 

A(1,j)Υ11 A(1,j)E(j) = 2πas(k) . (4.28)p pq q 
p,q=1 

This equation exactly reproduces the results calculated more laboriously in [175]. In 

the following equations the explicit dependence j is dropped for brevity. 

Trilobite and R-butterfly: These PECs are given by the generalized eigenvalues of 

the 2 × 2 matrix equation 

b N N b 
ααξξ ξξββ ΥαβAαAβ aξ(k)Υ Υ − 

E 
 (β) = 0;  a = 1, b  = 2. (4.29)p q pi iq pq2π 

β=a p,q=1 i=1 ξ=a 

Angular butterflies: The angular butterfly PEC is the solution E to equation (4.29) 

after setting a = 3,  b = 4 and summing over α from a to b. This is needed since 

the θ and ϕ butterflies cannot (in three-dimensional geometries in particular) be 

considered separate orbitals, but instead form a combined 2N dimensional basis. In 

two dimensions where these orbitals are decoupled this formula still applies, since now 

each 2N length set of coefficients will have 8 vanishing coefficients for the decoupled 

states. 

All orbitals: When all orbitals correspond to the same irrep, the PECs are eigenvalues 

of a 3 × 3 generalized eigenvalue problem 

3 N N 4 
ααξξ ξξββ αββ aξ(k)Υpi Υiq − 

2 
E

π 
Ψα 

pq  (β) = 0, (4.30) 
β=1 p,q=1 i=1 ξ=1 
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where the following terms have been defined to incorporate the need for simultaneous 

symmetry adaptation of the θ and ϕ butterflies by adding the symmetry-adapted ϕ-

butterfly (α, β = 4) orbital to the symmetry-adapted θ-butterfly (α, β = 3) orbital. 

αββ αββA(j,α) A(j,4)Υα = Υα + δβ3Υ
4α ; (4.31)qp qp q qp q 

ααββ αββA(j,α) A(j,4)Υqp = Υα + δα3Υ
4β (4.32)qp q qp q 

Ψααββ = A(j,α)Υααββ A(j,β) + δβ3A(j,α)Υα4 A(j,4) (4.33)pq p pq q p pq q 

+ δα3A(j,4)Υ4β A(j,β) + δα3δβ3A(j,4)Υ44 A(j,4),p pq q p pq q 

where δmn is the Kronecker delta. This expression, although somewhat complicated, 

seems to be the most compact way to account for the enlarged angular butterfly 

basis compared to the trilobite/R-butterfly sets of coefficients. 

The PECs of a co-planar octagonal molecule and a body-centered cubic molecule 

are presented to demonstrate the accuracy of this general formulation. We begin 

with the octagonal configuration, which belongs to the molecular symmetry point 

group C8v, depicted in figure (4.1(a)). The reducible representation ΓC8v 
decomposes 

into seven total irreps: five for the trilobite, R-butterfly, and θ-butterfly orbitals, 

ΓC8v 
= A1 ⊕ B1 ⊕ E1 ⊕ E2 ⊕ E3, (4.34) 

and five, with two new irreps, for the for the ϕ-butterfly orbital, 

ΓC
ϕ 

8v 
= A2 ⊕ B2 ⊕ E1 ⊕ E2 ⊕ E3. (4.35) 

The θ-butterfly orbital is completely decoupled from the rest due to its node in the 

molecular plane; this is a general feature of coplanar molecules. The ϕ-butterfly 

has a different decomposition than the others because of its particular symmetry 

properties, as discussed in previously. In another way of looking at it, the ϕ-butterfly 
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Symmetry adapted orbitals for the trilobite PECs are displayed in figures (4.1(b)) 

and (4.1(c)). The internuclear distance is R = 840 a0, the location of the deepest 

potential well in figure (4.2(a)). These “hoodoo” states, nicknamed for their resem-

blance to the geological formations commonly found in the American Southwest, ex-

plicitly exhibit the allowed symmetries. The beautiful nodal patterns in these curves 

are the result of interference between trilobite orbitals, which is a clear signature of 

deviations from the N = 1 PEC. 

The exemplary three-dimensional molecule here is a body-centered cubic, which 

has the highly symmetric point group Oh which decomposes into eight total irreps: 

Γtrilobite = A1g ⊕ A2u ⊕ F2u ⊕ F1g (4.36)Oh 

for the trilobite and R-butterfly, and 

Γbutterflies = E1 ⊕ E2 ⊕ F1g ⊕ F1u ⊕ F2g ⊕ F2u (4.37)Oh 

for the angular butterflies. The symmetric cubic wave function is shown at the start 

of the chapter in figure (3.10). The full breathing mode adiabatic potential energy 

curves, plotted as a function of the common ion-neutral spacing R, for both of these 

geometries are shown in figure (4.2). In panel (a) the neutral atoms (red spheres in 

the inset) are restricted to a plane and placed in an octagon; in (b) they are placed 

in a cube. The exact full diagonalization (black lines) and symmetry-adapted orbital 

calculation from equations (4.29-4.30) (colored points) are compared. The dispersion 

between different irreps is clearly observed, as has been previously predicted for 

smaller systems. [175]. Disagreements between the analytic and full diagonalization 

methods are apparent for energies between the f state, with its small but non-zero 

quantum defect, and the hydrogenic manifold; however, for larger detunings the 

agreement is excellent. 

https://4.29-4.30
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When the neutral atoms are displaced slightly the degeneracy imposed by the 

Oh group is broken, as shown in figure (4.2(c)) and similarly in figure (4.2(d)) for 

randomly placed atoms on a sphere. Only the trilobite state is shown for clarity. 

In addition to the destruction of the degeneracy and the appearance of avoided 

crossings, the huge splitting between orbitals of different symmetry seen at 500 ≤ 

R ≤ 1000 is reduced. 

4.3 Results and Discussion 

These molecules that are not configured symmetrically can still be studied via 

equation (4.24), and the contrasts between these results and those of highly symmet-

ric configurations are of substantial interest. As an example, the hybridized trilobite 

orbitals for a co-planar, randomly structured geometry at two Rydberg-neutral in-

ternuclear distances are displayed in figure (4.3). The orbitals at the smaller inter-

nuclear distance show substantial interference patterns. Interestingly, for each PEC 

the electron probability tends to be localized on a subset of the neutral atoms. This 

subset varies between PECs and is especially clear at the larger internuclear distance 

displayed in (4.3b). A possible explanation stems from semi-classical periodic orbit 

theory, since the trilobite state Υ11 forms due to interference between the four semi-Rr 

classical elliptical trajectories focused on the Rydberg core and intersecting at both 

the neutral atom and at the observation point r [136]. Since an ellipse focused on the 

Rydberg core can lie on at most two neutral atoms, this mechanism is a plausible ex-

planation for why these hybridized orbitals tend to be most localized on two neutral 

atoms. This phenomenon is not seen in highly symmetric molecules, like the octagon 

of figure (4.2), since the atoms bound by the Rydberg orbit are here determined by 

the irrep. This could also be a signature of quantum scarring [178]. An additional 
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(a) (b) (c) 

Figure 4.4. (a) l = 0,  (b)  l = 1,  and  (c)  l = 2 low angular momentum 
potential energy curves for N = 1 (blue curve) and N = 8, arranged in 
both a coplanar octagonal geometry (black curves) and a cubic geometry 
(red curves). This figure is taken from Ref. [4]. 

here may be relevant in explaining the non-Lorentzian line-shapes of these spectra. 

Although a full application of these methods to the line-shape would require inves-

tigation of the full potential energy surfaces beyond the breathing mode cuts, some 

conclusions can be made. The l = 0 results shown in figure (4.4a) are nearly inde-

pendent of geometry due to the isotropy of the unperturbed state, and their depths 

scale linearly with N . According to the first order theory in equation (4.20) the well 

depth for an N -atomic molecule is exactly N times the diatomic depth, but due to 

the couplings with higher-l states the depth of the largest well scales as 0.65N 

times the diatomic well depth for the n = 30 cases studied here. This scaling holds 

for arbitrary number of atoms and geometries. As such, the appearance of spectral 

lines at integer multiples of fundamental diatomic lines signifies the production of 

polyatomic molecules only for isotropic nS states [153]. In contrast, the l = 1  and  
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l = 2 states are more complicated as they depend strongly on N and the molecule’s 

geometry. The spectral signatures of these polyatomic molecules will not be present 

as individual states, but will instead contribute to line broadening of the diatomic 

spectrum, and experiments with these states at high densities will need to carefully 

consider these effects to accurately identify spectral features. Very recent work has 

shown evidence for this [170]. The crossover into a density shift [153, 173] will be 

particularly relevant for these states. 

General trends with increasing N can be identified even when the neutral ground 

state atoms are configured randomly. Ignoring p-wave contributions, the lowest PEC 

for polyatomic molecules with N = 3, 8, and 12 atoms placed on the surface of a 

sphere of radius R are studied via a Monte Carlo simulation of five hundred random 

geometries. The average and standard deviation of these results are presented in 

figure (4.5). The ground state potential curve, averaged over many configurations, 

deepens linearly with N , and therefore with density, and maintains nearly the same 

average shape as the diatomic potential curve. As described in the last section, nS 

Rydberg molecules deepen linearly with N as well in accordance with the typical 

energy shift predicted by Fermi using the pseudopotential. However, this effect is 

independent of the given configuration of perturbers, whereas in the high-l trilobite 

case only the results averaged over many configurations exhibits a consistent scaling 

law; the potential energy curve for a given configuration alone varies considerably 

with the geometry. As explained in Ref. [178], extremely deep potential curves 

can be found when two or more perturbers are spatially very close. An additional 

observation of this approach is that the averaged potential curve given by averaging 

all perturbed eigenstates is essentially identical to the diatomic trilobite curve; in 

other words, the trilobite interaction is profoundly non-additive and the presence of 
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Figure 4.5. Ground state potential energy curves, averaged over five-
hundred random configurations, for the diatomic N = 1 molecule (red) 
and polyatomic N = 3, 8, 12 molecules (thick black lines; N increases 
with decreasing detuning). The standard deviations are represented by 
overlapping color shades to indicate the range of accessible energies. The 
configuration-averaged shape scales linearly with N from the diatomic 
case. This figure is taken from Ref. [4]. 

additional perturbers introduces extra potential curves oscillating about the single-

perturber limit. 

In this section calculations elucidating the role of symmetry and geometry in the 

formation of polyatomic Rydberg molecules at high densities have been presented. 

The methodology developed in the present section applies to any geometrical config-

uration and to high Rydberg states. These represent a significant advance towards 
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understanding spectroscopic results in current experiments, and show that the spec-

troscopic signatures of polyatomic formation in non-isotropic Rydberg states will 

be challenging to interpret as the results are strongly determined by the molecular 

geometry and the presence of any symmetries in the atomic orientation. 

These exotic molecular states could be realized by merging the current technology 

in optical lattices with Rydberg spectroscopy techniques. In particular, tilted optical 

lattices [186] can be used to generate triply occupied Mott-Insulator states; the 

usual techniques developed in Rydberg spectroscopy will then lead to the controlled 

formation of Rydberg trimers, although the position of the atoms in each lattice site 

will still be random. This randomness can be overcome by employing a rotational 

optical lattice [187], where the centrifugal force can be used to tailor a more controlled 

geometry. Indeed, by comparing these results with those from trimers formed in a 

non-rotating lattice, this method can be applied to further study the influence of 

the geometry. Another possibility is to use current hexagonal and triangular optical 

lattice technology [188] with lattice spacing on the order of 400 nm in order to have 

superior control over the geometry of the Rydberg molecules. To form molecules 

with this internuclear spacing would require higher Rydberg states on the order of 

n = 70, and thus might compromise the spectroscopy of the molecular state; optical 

lattices with smaller lattice spacings are therefore desirable. Finally, the possibility 

of optical micro traps [189, 190] has to be taken into account, since these provide 

opportunities to design very specific arrays of single-atom traps. These traps could 

be designed to avoid some of the problems caused by the line broadening, and also 

to emulate the same molecule under very different geometrical considerations. 
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4.4 Lineshape of a hydrogen Rydberg excitation 

To further investigate the effects of multiple perturbers in even denser and com-

pletely disordered environments more realistic to experiments, this section explores 

the spectroscopic line shapes that should be observable for a hydrogen Rydberg atom 

immersed in a high-density hydrogen background gas. It is based on Ref. [3]. We 

propose a two-photon excitation scheme from the spin-polarized 1S ground state to 

either of the nS or nD Rydberg states, both of which are allowed by selection rules 

and energetically degenerate. Two counter-propagating, linearly-polarized beams 

with λ ≈ 181 nm should be used to ensure that the momentum kick of the photons to 

the atom will be negligible. Once again we concentrate on triplet spin states because 

they can be readily explored in a spin-polarized BEC. The s-wave triplet scattering 

length has the low energy expansion coming from effective range theory [92, 116]: 

παdk 4αd 
√ 
αdk(R) 

−1 

as[k(R)] = as(0) 1 − − [k(R)]2 ln . (4.38)
3as(0) 3 4 

The semiclassical momentum is k(R) is defined as earlier, and the static polarizabil-

ity of hydrogen is αd = 9/2. The triplet scattering length at zero energy is as(0) = 

1.7686 a0 [191]. As the scattering length is positive this is a different regime than 

studied previously: the potential energy curves are repulsive in nature. An interest-

ing study showed that Borromean trimers can form in a triatomic configuration even 

with a positive scattering length [177]. This occurs because of the increased depth 

of the oscillations oscillations in the potential energy curves seen in previous sec-

tions. This type of level repulsion leads to repulsive gerade/ungerade-type potential 

surfaces which nevertheless produce wells, blue-detuned from the atomic line, which 

could support metastable states prevented from escape into the continuum by a large 

enough potential barrier. In principle these types of states could occur also in hy-
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As seen earlier, the energy shift can be obtained in standard degenerate perturba-

tion theory, although this becomes calculationally cumbersome since the number of 

states scales as n2 . We therefore switch to the trilobite orbital basis again, reducing 

the dimensionality to at most N , and solve the generalized eigenvalue equation of Eq. 

4.22. Each of the N nonzero eigenvalues of this expression defines a 3N -dimensional 

potential energy surface; the kth- eigenenergy corresponds to the eigenstate 

1 111Ψk({Ri},�r) =  aikΥ
1 
ir ; (4.39)N 

i 

N 2 111 = aikajkΥ
1 
ij . 

i,j 

For the single-perturber case the sole non-zero eigenenergy is given in closed form by 

E(R) = 2πas[k(R)][un0(R)Y00(R̂)]
2 [k(R)]2 + [Q(R)]2 , (4.40) 

where Q(R) =  un0(R)/un0(R). This is just Eq. 4.16 in a more convenient notation 

for the current problem. The potential energy curves for a single perturber within 

the Rydberg orbit are shown in Fig. 4.6a, which shows the oscillatory structure of 

the potentials. Some of the oscillations exhibit very shallow local minima in E(R) 

due to the energy dependent nature of the phase-shift, although these are far too 

weak to support any metastable states. 

Potential energy surfaces in hand, we can calculate the excitation lineshape pro-

vided the transition amplitude from the ground state is known. As mentioned above, 

since we have a two-photon excitation scheme in mind the different final states corre-

spond to different routes to the trilobite configuration. These two different transition 

amplitudes, denoted as PS
n and PD

n , respectively, have been calculated using a Stur-

mian basis set leading to accurate results (within ∼ 10%) in comparison with other 

approaches [192, 193]. We have calculated PS 
20 = −0.11, PD 

20 = 0.48; the ratio of 
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these values changes by less than 10% for n = ∞. We have therefore assumed these 

values for all n [194]. The trilobite state can be excited via its nS or nD character, 

depending on the nature of the Rydberg state. When a single perturber is present the 

probability of excitation, allowing for both pathways and averaged over the relative 

angle between the internuclear axis and the quantization axis, is: 

P n P nP(R) = (4π)−1 d  |� nD|ΨT nS|ΨT |2 
D + S 

2 
un2(R)(P n)2 + P n 

S un0(R) D 
= . (4.41)
[R2([k(R)]2 + [Q(R)]2)] 

The apparent interference term between nD and nS states, implied by the first line 

of Eq. 4.41, vanishes when averaged over all space. The probability of excitation as 

a function of the distance for different Rydberg states are shown in Fig. 4.6b. These 

show an oscillatory behavior related to the nD and nS hydrogenic wave functions, 

but tend towards a constant for large perturber-Rydberg distance. For multiple 

perturbers, the probability to excite the kth eigenstate is given by 

2 
P n + P nPk({Ri}) =  aik nS|Ψ(Ri, �r) nD|Ψ(Ri, �r)S D 

i 
2 

aik P n ψn20(Ri)) + P nψn00(ri)i D S 
= . (4.42) 

i,j aikajkΨ(Ri, Rj ) 

The spectroscopy of a single Rydberg hydrogen atom in an ultracold background gas 

of hydrogen is modeled assuming the quasistatic theory of line broadening [195–198]. 

In this theory, the absorber (the ground state atom which will become the Rydberg 

atom) is assumed to be at rest and absorbs photons at ω0 + Δω, where  ω0 is the 

frequency between the two states of the Rydberg atom and Δω accounts for the 

shift of the involved levels by the perturbing potential of the neighboring atoms. 

An additional assumption is that only the perturbers located in a given interacting 
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The quasistatic picture for the line broadening breaks down when the collision 

time is close to or less than the inverse detuning, τc ∼ 1/Δω [198,199]. In this regime 

the Rydberg-perturber collisions give the major contribution to the line broadening. 

The collision time can be estimated as τc = b/ v , where the impact parameter b 

is assumed to be of the same order of magnitude as the Rydberg orbit size, i.e., 

b ∼ 2n2 . Considering a thermal cloud of hydrogen, in Rydberg levels 20 � n � 50 

and at T ∼ 50 μK, τc ∼ 20 - 200 ns. Thus, for a thermal cloud of hydrogen the 

line shapes in the range Δω � 25 MHz can be approximated by by the quasistatic 

approach. 

The simulations of the line profile are performed following the method of Ref. 

[169]. In a homogeneous gas of density  , the probability of finding a certain number 

of atoms in the volume of the Rydberg atom defines a Poisson distribution with a 

mean number N =  VRyd, where  N denotes the average number of perturbers in 

the Rydberg volume. This Poissonian distribution is employed to sample uniformly 

the N atoms within the Rydberg volume. For the ith sample of the number of 

perturbers in the Rydberg orbit, the target Rydberg state experiences an energy shift 

Ej ; each of these energies are then weighted by the probability of the excitation of the 

given configuration. Finally the line shape is given by the P-weighted distribution 

of calculated energies in each of the samples, S(E). In the present work the reported 

spectra are presented in terms of the ion signal since an ionization detection technique 

is assumed, as is commonly utilized in the field. The spectra are normalized to unity 

with respect to the highest signal at small detunings. 

The spectrum of a single hydrogen Rydberg atom with n = 20 in a dense and 

ultracold gas is shown in Fig.4.7, which prominently displays the existence of certain 

sharp spectral features following a quasi-periodic pattern in terms of the detuning of 

the excitation field. This pattern is intimately related with the underlying PEC; in 
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particular, each of the peaks reflects the existence of a plateau in the potential energy 

landscape (see Fig.4.6). In each of these regions the Rydberg electron is repeatedly 

elastically scattered by, primarily, just one of the perturbing atoms, leading to a 

trilobite-like wave function for the Rydberg-perturber system [40]. At each plateau, 

as the detuning increases, an angular node is exchanged for an additional radial node 

such that the total number of nodes remains n − 1. This reflects the fact that the 

electronic wave function at each of these plateaus is predominantly characterized by 

a single elliptical eigenstate [136]. Therefore, the line shape of the Rydberg spectrum 

directly maps the Rydberg-perturber PEC, leading to a very robust spectroscopic 

method for observation of this system. 

A simple model for the lineshape, assuming that only a single perturber lies in the 

Rydberg orbit, conveys significant physical intuition about the system’s lineshapes 

and spectral features. This has been shown in the case of long-range forces by 

Kuhn [196, 197]. This assumption is clearly more accurate for dilute gases or low 

Rydberg excitations, but is also a valuable limiting case for the many-perturber 

scenario and qualitatively displays some of the same features. For a given density   

the probability to find a single perturber between distances R, R + dR from the ion 

is given by the nearest neighbor distribution, 

3 R 2 
−(R/Δ)3 

P (R) =  e , Δ = (4π /3)−1/3 . (4.43)
Δ Δ 

This distribution must be additionally modified to include the radial dependence of 

the radial probability of exciting the trilobite state. Thus the probability distribution 

is that of Eq. 4.43 multipled by Eq. 4.41: 
� � � 

un2(R) 
�2 −(R/Δ)3 (PS

n)2+ P n 
D un0(R)3e 

P (R) =  . (4.44)
Δ3([k(R)]2 + [Q(R)]2) 
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The line shape is then given by converting this into a probability distribution with 

respect to the energy via the relationship |P [R(E)]dR| = |P (E)dE|. This introduces 
the derivative of the potential energy, which can be calculated analytically: 

dE dV (R) 
= 

dR dR 
2 das[k(R)]

un0(R) dR [un0(R)]
2 2αd 

= −as[k(R)] + [k(R)]2 + [Q(R)]2 + . (4.45)
R 2 R5 

Upon inverting the PEC to obtain R as a function of the detuning, denoted RE = 

R(E), the line shape for the situation of a single perturbing atom within the Rydberg 

orbit is given by 
� � � 

un2(RE ) 
�2 −(RE /Δ)3 (PS

n)2+ P n 
D un0(RE ) −1

3e dE 
P (E) =  . (4.46)

Δ3([k(RE )]2 + [Q(RE )]2) dRE 

This expression compactly separates into two factors. The first, a broad background, 

is given by the first factor of Eq. 4.47. The second contains the peak structure and 

is unity for nearly all detunings except at the detunings of the series of sharp doublet 

peaks, and is given by the second factor of Eq. (4.47): 

R2 −(RE /Δ)3 
3 E e 

P (E) =  (4.47)
2 Δ3E ⎞⎛ 

× 
⎜⎜⎝ 

2 
un2(RE )(PS

n)2 + PD
n 
un0(RE ) 

1 as[k(RE )] 2αd1 − R2 E + 
as[k(RE )][un0(RE )]2 as[k(RE )] E RE 

3 

⎟⎟⎠ . 

The smooth background given by the first factor can also be obtained by considering 

the approximate PEC derived by Borodin and Kazansky [127]. The asymptotic limits 

for small and large detunings of the functional form in Eq. (4.47) establishes the 

power-law scaling of the lineshapes, previously introduced by Kuhn for the case of 

van der Waals forces [196, 197]. For small detunings, corresponding to large R, the  
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potential is very insensitive to R and so the inverse function RE is nearly constant. 

The first factor in Eq. 4.47 is therefore proportional to E−1 , and the second is unity 

in this limit. A power law fit to the simulated lineshapes over an energy range from 

zero to the location of the first peaks gives E−0.86±0.01 , quite independently of density 

and the Rydberg state. This change in the power law, along with the small constant 

shift in the location of the doublet peak structure in Fig. 4.7, indicate the expected 

deviation beyond the single-perturber model. 

At large E, corresponding to fairly low R, the radial wave function [un0(R)]2 

increases roughly proportional to R1/2; the modulating factor k2 + Q2 introduces 

a factor  R−1 making the leading order dependence of the potential curve for small 

R (but not so small as for the polarization potential to dominate yet) E ∼ R−1/2 . 

Inverting then gives R ∼ E−2, so that  P (E) ∼ E−5 . This is a good estimate for the 

power law behavior in this regime, which numerical fits typically match well with 

P (E) ∼ E−4 − E−5 , for detunings greater than ∼ 10 GHz for n = 30. This power 

law behavior is of course only satisfied when the second factor is unity; near the peak 

regions this term dominates. 

An analysis of the components of equation (4.46) explains the locations and shape 

of these sharp peaks in the spectra. For clarity throughout this discussion, we ignore 

the energy dependence of the scattering length and the polarization potential, so 

that |dE/dRE|−1 = |as(0)(un0(R)/R)2|−1 . This clearly demonstrates that the peaks 

in the spectrum stem from the plateaus of the potential energy curve. These are 

located at the nodes of the s-wave radial wave function. The first factor of Eq. 

(4.46) also depends on RE in a complicated fashion, but near the nodes of un0(RE ) 

it behaves as [PS
nun0(RE )]

2 + [PD
n un2(RE )]

2 . If only the S component was excited, 

the un0(RE ) factors would cancel and the spectrum would no longer exhibit peaks. 

However, the nD component is proportional to the ratio un2(RE )/un0(RE ) and thus 

https://E�0.86�0.01
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vanishes at  the node of the  d-wave radial wave function very near the peak due to 

the node of the  s-wave radial wave function, leading to the asymmetric profile seen 

in Figs. (4.7) and (4.8) where a sharp peak is immediately followed by a step-like 

drop in the line shape. Inclusion of the energy dependence of the scattering length 

in fact allows the nS character to exhibit peaks since it slightly offsets the location 

of the inflection points of the potential curve from the location of the s-wave radial 

nodes, but this effect is mostly overwhelmed by the dominant nD character. 

The dependence of the lineshape on density is another fascinating feature of this 

system. The spectrum of a single Rydberg hydrogen atom with n = 30 immersed in 

a perturbing gas as a function of its density is displayed in Fig.4.8a. 106 − 5 × 105 

Monte Carlo events were simulated, with the number of events decreasing as the 

density increases. The horizontal axis has been scaled by n4 as in Fig. 4.7 to 

emphasize the regular spacing of the peaks and the increased number of peaks per 

unit detuning as n increases. 5×106 events were simulated for n = 20  and  8×105 for 

n = 25, 30. The line shape is found to be independent of the density of the perturbing 

gas. These results seem to contradict the established line broadening theory which 

predicts a linear dependence of the line broadening with respect to the density of 

the perturbing gas [198], since higher numbers of perturbers lead to larger shifts of 

the excited levels involved in the absorption process. However, the special nature 

of this system shows that the effect of different perturbers is clearly non-additive, 

as the last sections demonstrated. In particular, for N perturbers, N eigenenergies 

split about the single-perturber eigenenergy, and so on average the contributions 

from higher-energy potential energy curves will be counteracted by contributions 

from lower-lying curves; as a result the line shape should be independent of the 

number of perturbing atoms and only depend on the Rydberg state. Indeed, this 

is numerically corroborated in Fig.4.8b, where the spectrum for a given density and 

https://Fig.4.8b
https://Fig.4.8a
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different Rydberg states is shown. These results will no longer apply when the 

probability of finding at least one perturber within the Rydberg orbit is substantially 

smaller than one, or else so high that the number of perturbing atoms exceeds the 

number of states available to construct the trilobite state, n2 . These two limits set 

32πn6 2the range of applicable densities at N �∼ 0.1 ≤ 
3   ≤ n . Within these limits, 

this system would be the first, to our knowledge, to exhibit a lineshape independent 

of the density. 

The dependence on n has also been explored: the Rydberg spectrum of a single 

Rydberg excitation in a dense background gas as a function of the Rydberg state 

has been calculated within the quasistatic approach of the line broadening and the 

results are shown in Fig. 4.8b for three Rydberg states at the same density. These 

lineshapes possess the expected regular series of peaks, and show the same overall 

behavior as expected based on the potential energy curves, especially in that they 

exhibit the same regular scaling, n4 , as the potential energy curves. 

In this section a generalization of the quasistatic line broadening theory has been 

applied for the Rydberg excitation spectra of a single Rydberg hydrogen atom im-

mersed in a high-density background hydrogen gas. The simulations not only account 

for the position and energy shift due to the perturbers, but also the probability of 

excitation of different atomic configurations by means of the S and D character of 

the target state. As a result, Rydberg hydrogen atoms immersed in a dense back-

ground gas of hydrogen will show a quasi-periodic series of peaks in the line shape 

correlating with the fundamental nature of the underlying Rydberg-neutral interac-

tion. In particular, the positions of these peaks relate closely to the locations of the 

plateaus in the potential curves, which depend sensitively on the calculated energy 

dependent electron-hydrogen scattering lengths. Thus, our findings clearly indicate 
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the possibility to use direct line shape data to explore the Rydberg-perturber energy 

landscape. 

The calculated spectra clearly show a positive detuning in relation with the repul-

sive nature of the Rydberg-perturber interaction, as well as a density independent 

line shape, in stark contrast with the conventional line broadening theory, which 

predicts a linear density dependence of the line shift and line broadening. These 

findings have been explained by appealing to the unusual and intriguing proper-

ties of the polyatomic trilobite-like states, suggesting a consistent and convincing 

explanation of the spectra. 

Rydberg states are also present in astrophysical spectra, where even n = 1000 

and higher have been observed [13, 200]. Although these Rydberg states form in 

very dilute interstellar clouds where the interatomic spacings are very large, trilobite 

states could form for very high n. The theory developed here could be applied to 

explain some aspects of the recombination lineshape due to the effect of a nearby 

neutral atom. 

4.5 Generalized trilobite molecular orbital theory 

To conclude this chapter we show some recent results demonstrating how the the-

ory described above can be developed further. A major limitation of our approach, in 

which the trilobite and butterfly-type orbitals hybridize together to form polyatomic 

molecular orbitals, is that it completely neglected couplings to low-l states as well as 

to other hydrogenic manifolds. As a result it was most applicable to trilobite states 

and could only describe the butterfly curves near the trilobite states, and not the 

much deeper potential wells where butterfly molecules are actually bound. Addition-

ally it could not predict any of the non-perturbative effects on the low-l states caused 
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by interactions with trilobite-like states. Both of these problems hinder the broad 

applicability of this approach, although of course the full diagonalization could still 

be performed. This is computationally expensive even in this simplest possible case 

as the number of Rydberg states in an arbitrary geometry scales as n2; if spin degrees 

of freedom are included in the future this problem becomes even more pronounced. 

To remedy these issues, this section shows that in fact this molecular orbital con-

cept generalizes to include these inter-manifold couplings and the effects of quantum 

defect-shifted states. We show that, by using only this reduced basis set consisting of 

trilobite and butterfly orbitals associated with each Rydberg-atom pair and as many 

low-l states as is desired, the calculation remains exact unless additional operators 

which substantially break the degeneracy of high-l states are added also. Even in 

these cases, such as when electric or magnetic fields are applied to the system, this 

approach works surprisingly well. 

Our Hamiltonian is still given by Eq. 4.1. Instead of choosing the full basis of 

Rydberg states, {|nlm|�}, we select just the trilobite orbitals from several different 

n manifolds along with the low-l states (up to an arbitrary cutoff lmin determined 

Υα1by the quantum defects): pr,n, φn(l<lminm(r) . 

Using this basis to diagonalize and solve the generalized eigenvalue equation 

HΓ =  EOΓ is just a matter of setting up the overlap elements between different 

basis states, the matrix elements of the potential VN , and the matrix elements of H0. 

These are readily obtained using the properties of the trilobite overlap matrix. 

1 
Υα1 |H0|Υβ1 = φα ) φ1 (r) ∗ − φ1 (r)φβ ) ∗ d3 rpr,n qr,n nlm(Rp nlm 2n n l m n l m (Rq2 

l,l 

1 
φβ ) ∗ φα = − δnn δll δmm (Rq (Rp)n l m nlm 2n2 

l,l 

1 
Υαβ = − 

2n pq,nδnn , (4.48)
2 
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and 

Υα1 φα φ1|VN |Υβ1 = )pr,n qr,n nlm(Rp nlm(r) 
∗ 

l,l 

× 2π aξ ξδ3(r − Ri) ξ φ1 (r)φβ (Rq) 
∗ d3 rn l m n l m 

i,ξ 

= 2π aξ φα (Rp)φ
ξ (Ri) 

∗ φξ (Ri)φ
β (Rq) 

∗ 
nlm nlm n l m n l m 

i,ξ l,l 

αξ ξβ= 2π aξΥ Υ (4.49)pi,n iq,n . 
i,ξ 

The overlap matrix between trilobite states is given by Υαβ The matrix ele-pq,nδnn . 

ments of the low-l subspace are just those calculated for the full diagonalization: 

1 
φnlm(r)|H0 + V |φn l m (r) = − δnn δll + 2π aξφ

ξ (Ri) 
∗ φξ (Ri).nlm n l m2(n − μl)2 

ξ,N 

Since these states are orthogonal their overlap is δnn δll . 

The last matrix elements to compute are those describing coupling between the 

trilobite/butterfly states and the low-l states: 

Υα1 |H0 + VN |φ1 (r)pr,n n l m 

= φα (Rp)nlm φ1 (r) ∗ 
nlm

1 − + 2π 
22n 

aξ ξδ3(r − Ri) ξ φ1 (r)d3 rn l m 

l i,ξ 

= 2π Υαξ (Ri).pi,nφn l m (4.50) 
i,ξ 

These states are orthogonal since the trilobite states by definition have no low-l 

components. 

Numerical diagonalization of this matrix yields potential curves that are identical 

to those calculated via a full expansion into the entire hydrogenic basis. Figs. 4.9 

and 4.10 demonstrate this for the cubic molecule example studied earlier, where the 
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lmin = 5 to include even the f and g states which have very small quantum defects; 

typically lmin = 3 is more than sufficient. The total size of the reduced basis was 

M × (4N + (lmin + 1)
2) = 204, where M is the number of manifolds. This is over an 

order of magnitude smaller than the full basis size, 2702. This approach is clearly less 

useful for polyatomic molecules with very large N but small n, but in the opposite 

limit becomes even more useful; for example, for n = 70 the basis size for full 

diagonalization is greater than 104 , while the reduced matrix size remains unchanged. 

The utility of using this basis state also increases if spin degrees of freedom are also 

included, as the dimension increases much more slowly than if every single l state 

is multiplied by additional spin states. The reasoning behind why this approach 

works approximately relies heavily on the degenerate, effectively rank-4 subspace of 

the trilobite and butterfly orbitals in each Rydberg manifold, but the reason it is 

truly an exact calculation is still rather nebulous. Appendix B outlines a derivation 

of the structure of the matrix elements defined here to prove this. 

This same logic can also be extended to the influence of electric and magnetic 

fields on these Rydberg molecule states, which even in the diatomic case requires 

n2 matrix elements if the field and internuclear axes are not aligned. Unlike for the 

field-free case this approach will clearly break down for high field strengths since the 

high-l eigenstates no longer remain degenerate. We begin with the magnetic field 

for the trilobite state, choosing the z axis to point in the direction of the magnetic 

field and neglecting the diamagnetic term, which is proportional to B2 and has only 
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The approach is very similar for an external electric field F . We put the electric 

field in the ẑ  direction, and then calculate the matrix elements: 

Υα1 φβ 
∗ 
φα|Fr  cos θ|Υβ1 = F (Rq) (Rp) (4.51)pr,n qr,n n l m nlm 

lm l m 

× d3 rr cos θ φ1 ∗ 
φ1 (r).nlm(r) n l m 

The integral can be evaluated: 

αp, n|Fr  cos θ|βq, n = F φ n
β 
l m (Rq) 

∗ 
φnlm 
α (Rp)δmm δll ±1 (4.52) 

lm n l m 

(l< − m + 1)(l< + m + 1)
Rn l× nl (k = 1),

(2l< + 1)(2l< + 3)  

where l< = min(l, l ) and  Rnl
n l (k = 1) =  runl(r)un l (r)dr (Eq. E.3). The selection 

rules implied by the delta functions reduces the number of terms in this sum from 

n4 to a number of order 3n2 , so that these sums evaluate quickly using the analytic 

result for Rnl
n l (k). As expected for these polar states, this term is proportional to 

nF and gives a linear Stark shift. Finally, 

Υα1 |Fr  cos θ|φn l m (r) = F d3 r φα ) φ1 ∗ 
φ1 (r)z (4.53)pr,n nlm(Rp nlm(r) n l m 

lm 

φβ 
∗ 
φα = F (Rq) )nl m lm(Rp 

lm l m 

(l< − m + 1)(l< + m + 1)
Rn l× (k = 1). 

(2l< + 1)(2l< + 3)  nl 

The accuracy of this approach is demonstrated here only for the B-field diatomic 

case, for the specific configuration where the molecule points in the direction θ = 

2.55, φ  = 0.4 relative to the  B-field, parallel to the z axis. Fig. 4.11 shows both the 

trilobite and butterfly regions. In both cases the agreement is excellent, particularly 

for the butterfly state. The Zeeman splitting of the many high-l states disrupt the 
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trilobite PECs somewhat, but the agreement is still excellent, particularly since a 

high lmin = 5 was chosen. The high magnetic field used for this comparison is also 

an extreme case, and for weaker fields the agreement improves as well. Numerical 

calculations for the electric field case have been performed as well in order to compare 

with the results of Refs. [138,179], and agree similarly. Future work should consider 

the effects of combined fields and the impact on polyatomic states as well. 
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Figure 4.12. Chapter 5 describes Rydberg molecules in non-alkali atoms, 
such as these calcium trilobites shown as density plots 
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5. RYDBERG MOLECULES FORMED FROM 

MULTICHANNEL ATOMS 

Thus far this thesis, along with the overwhelming majority of other experimental and 

theoretical efforts, has focused on alkali atoms. With their regular Rydberg spectra 

and nearly energy-independent quantum defects, alkali atoms provide a simple and 

easily-controlled system for the excitation of novel molecular states. However, Ryd-

berg atoms throughout the rest of the periodic table are far richer and more complex, 

as they consist primarily of perturbed, multichannel Rydberg spectra [10,12,15,16]. 

This chapter demonstrates some of the opportunities provided by this richer class of 

multichannel Rydberg atoms. The existence of doubly-excited perturbers, which are 

states with two excited electrons that couple to and shift the usual Rydberg series of 

a single excited electron, could be used in the alkaline earth atoms to directly excite 

long-range trilobite molecules. Another possibility raised by the existence of doubly-

excited perturbers is that energy eigenfunctions exist whose multichannel character 

exhibits two very different length scales. The content of this chapter is primarily 

based on Ref. [5]. 

5.1 Calcium: level perturbations due to doubly excited interlopers 

The first multichannel states to be considered are the 4snd 1D2 levels in calcium, 

where perturbations from the doubly excited states 3d4d and 3d5s 1D2 cause the 

4snd singlet quantum defect to vary rapidly in the vicinity of these perturbing levels 
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[17]. Fig. (5.1) depicts the strong n-dependence of the nd quantum defects. We 

have chosen to study calcium because the d-wave quantum defects fortuitously pass 

through unity as the principal quantum number n increases between n ∼ 20 ± 2; the 

nd state is therefore highly degenerate with high angular momentum states in the 

n − 1 manifold. This accidental degeneracy strongly couples these states together, 

allowing for direct two-photon excitation of trilobite molecules, circumventing the 

usual challenges of exciting high angular momentum states [40]. This is similar to 

the coincidental degeneracy allowing for coupling to the trilobite state in Cs through 

its ns character [154] 

Two characteristics of the phase shifts differentiate this interaction in calcium 

from those previously studied in the alkalis. Since calcium does not possess a p-wave 

shape resonance [97, 103], the potential wells due to the interaction given by Eq. 

(2.91) at all but very small internuclear distances are determined almost entirely by 

s-wave electron-atom scattering properties. The second contrast is that the p-wave 

phase shift is negative except at very low energies, so the scattering volume is positive 

over nearly the entire range of internuclear distances. These two differences eliminate 

the strongly attractive p-wave interactions leading to “butterfly” type bound states 

in Rb and Cs [122], and instead the p-wave interaction produces a weakly repulsive 

potential. A similar effect has recently been studied in Sr Rydberg molecules [125], 

and it has been seen that this results in more stable long-range molecules [146]. 

Adiabatic potential energy curves for 18 ≤ n ≤ 21 are presented in Fig. (5.2a). As 

n increases the (n + 1)d state sweeps downwards through the n manifold, and for 

n = 19, 20 in particular it is strongly mixed into the trilobite state. This systematic 

change of quantum defects with energy, caused by familiar level perturbations in 

multichannel spectroscopy [10], is ubiquitous in the heavier alkaline earth metal 

atoms and in most other atoms in the periodic table. The states shown here in Ca 
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The molecular vibrational levels seen in the potential well inset are approximately 

spaced at 1 GHz. Many vibrational bound states are supported in these wells, which 

range from 30 to 60 GHz deep. These molecules should therefore be somewhat more 

tightly bound than those predicted for rubidium [40, 95]. The permanent electric 

dipole moments associated with these molecules are many hundreds of Debye, al-

lowing for the possibility of delicate manipulation of these molecules with electric 

and magnetic fields [138, 140]. The stability of these states is limited by black body 

radiation [12], with an estimated lifetime of a few μs. [203] 

Other atomic species could exhibit related behavior to that predicted here in 

calcium. The nS Rydberg molecules studied in Sr have corroborated the behav-

ior of the p-wave phase shifts seen in Ca, but the nS quantum defects in Sr are 

very regular; so far the multichannel character of strontium has not been studied 

in these experiments. As in calcium, the Sr nD levels exhibit significant level per-

turbations. Despite this promising similarity, Sr does not also exhibit the fortuitous 

energy degeneracies of Ca, limiting the utility of these states for the type of beneficial 

degeneracy described here. In the past two decades, rare earth metals such as dys-

prosium, erbium, and ytterbium have become vogue in ultracold atom experiments 

g [204–206]. Their popularity stems from their often enormous magnetic moments 

which lead to rich dipolar interactions. They are also marked by immensely com-

plicated internal structure, typically having anisotropic ground state configurations 

with non-zero angular momentum and myriad hyperfine thresholds. Robicheaux et 

al have recently described the theory of Rydberg states of these atoms through an 

MQDT approach [207]. One promising state of holmium observed experimentally 

showed that the Rydberg states near n = 50  with  S character clearly reveal the 

influence of a doubly excited perturber, which also causes the quantum defect to 

pass through zero [208]. Provided the electron-atom scattering length is negative, 
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this could be a new opportunity to study highly polar Rydberg molecules in a new 

atomic species. The electron-atom scattering phase shifts for all the atomic species 

discussed in the present paragraph have yet to be calculated. 

5.2 Silicon: a multichannel system with two thresholds 

A second example of the rich physics provided by two-electron systems is given 

by exploiting the complex channel interactions due to the fine-structure splitting to 

create long-range molecules that display two distinct length scales. In silicon the 

3p 2P o and 3p 2P o ionization thresholds are separated by ΔE = 287.84 cm−1 .1/2 3/2 

Nonperturbative interactions between Rydberg series in different channels converg-

ing to these two thresholds require the framework of multichannel quantum defect 

theory (MQDT) to describe the bound states of the atom [9, 10, 209, 210]. Silicon 

has been studied in this framework both from a semi-empirical standpoint [211–213] 

and through nearly ab initio R-matrix calculations [10, 214, 215]. 

Although the full R-matrix methods outlined in Chapter 2 could be directly 

applied to silicon, in this chapter we elect to use the semi-empirical standpoint, 

closely following [10]. We treat the elements of a diagonal short-range reaction 

matrix in LS coupling, Kii 
(LS) 

= δii tan πμi as fit parameters. We will fit these by 

matching experimental quantum defects μi with MQDT predictions. The advantage 

of this MQDT formulation is that these elements have slow energy dependence in 

the short-range region near the core since asymptotic boundary conditions have not 

yet been enforced. Thus, we know that a few quantum defect parameters determined 

from empirical data, perhaps with small linear energy dependence added in, should 

suffice to describe the whole high-energy spectrum of Si. This same idea has been 

employed recently in a MQDT study of Sr [216]. 
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The following discussion overlaps significantly with chapter 2, but whereas there 

the electron-neutral interaction motivated many of the specific details here the em-

phasis is on Rydberg states bound in the long-range Coulomb potential. The reaction 

matrix K is related to the scattering matrix, 

LS|Ŝ|L S = S = e 2iδ , (5.1) 

where δ is a diagonal phase-shift matrix, through the relationships 

i(I − S) (I + iK)
K = ; S = . (5.2)

I + S I − iK 

Some simple algebra reveals that in LS coupling S = e2iδ and K = tan  πμ. Although 

both matrices can be used, we choose the K matrix formalism for simplicity since it 

is explicitly real. An analogous derivation for S is found in appendix C. K defines 

the linearly-independent solutions at each E in this LS-coupled representation, also 

known as the “eigenchannel” representation, where the i th linearly independent wave 

function outside of the short-range scattering region is 

Ψi = A Φi(ω) fi(r)δii − gi(r)Kii 
(LS) 

, (5.3) 
i 

where i labels different channels, Φi(ω) contains the wave functions of the atomic core 

and all spin and orbital angular momentum degrees of freedom of the Rydberg elec-

tron, and (f, g) are the regular/irregular solutions to the Schrödinger equation with 

a Coulomb potential outside of the atomic core [9]. An antisymmetrization operator 

is denoted here as A, although since the Rydberg electron overlaps the core electrons 

to such a vanishing degree exchange terms can be neglected and this antisymmetriza-

tion is irrelevant. The atomic core and Rydberg electron orbital angular momenta 

are referred to, respectively, as lc and le. LS coupling, which couples the orbital and 

spin angular momenta separately and is described by the ket, |[(lcle)L(1 1 )S]JMJ is2 2 
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accurate for low-lying states where the electron is near the core and exchange effects 

dominate [9]. 

Once again, as emphasized in Chapter 2, we encounter another example of the 

idea underlying so many of our theoretical methods: different physics is important 

in different regions of space, and an appropriate partitioning of this configuration 

space can lead to very straightforward approximations that are extremely accurate. 

When the Rydberg electron is near the core, this tiny fine structure splitting of a 

few hundred wave numbers is absolutely overwhelmed by the energy scales of the 

electrostatic interactions, and therefore it can be ignored and LS coupling holds. 

This coupling scheme breaks down as the electron moves out far away from the core 

and accumulates radial phase at rates strongly depending on its energy. By energy 

conservation, this of course depends on the energy of the inner electron, so at these 

large distances the small energy splitting between the two fine structure thresholds 

begins to have crucial, non-perturbative effects. Here a “geometric” orthogonal frame 

transformation matrix Uij , given by standard angular momentum algebra, is used 

to transform into the more appropriate jj-coupling scheme represented by the ket 

1 1 (jj) (LS)|[(lc 2 )Jc(le 2 )Je]JMJ [217]. The jj-coupled K matrix is Kii = jj Uij Kjj Uj
T
i . 

The matrix Uij is: ⎧ ⎪⎪⎨ le se je 

⎫ ⎪⎪⎬ 
Uij = (2jc + 1)(2je + 1)(2L + 1)(2S + 1)⎪⎪⎩ 

lc sc jc 

L S  J  

. ⎪⎪⎭ 

We seek a determinantal equation providing the quantum defects and the chan-

nel mixing coefficients. We start with the set of linearly independent wave func-

tions corresponding to each channel i: these solutions, written Fii , exactly solve the 

Schrödinger equation near the core. At some distance r > r0 away where only the 
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Coulomb potential remains, we write these solutions as linear combinations of the f 

and g solutions to the Coulomb Schrödinger equation: 

Fii (r) =  fi(r)Iii − gi(r)Jii . (5.4) 

A more useful set of linear combinations is given by the matrix M(r) =  F (r)(I)−1: 

Mii (r) =  fi(r)Iiβ Iβi 
−1 − gi(r)Jiβ Iβi 

−1 

= fi(r)δii − gi(r)Kii (r), 

where K = J(I)−1 . This is our fundamental starting point for working with the 

reaction matrix, and so far has mirrored the discussion in Chapter 2. Now, how-

ever, MQDT is used to match the wave functions and close off divergent behavior in 

the closed channels rather than the numerical approach employed there. We parti-

tion these matrices into open/closed submatrices depending on the channel energies 

relative to a given threshold: ⎡ ⎤ ⎡ ⎤ ⎣ 
Moo Moc ⎦ = f − g ⎣ 

Koo Koc ⎦ , 
Mco Mcc Kco Kcc 

where f and g are now diagonal matrices of these regular/irregular functions. This⎡ ⎤ 
Bo 

is further simplified by writing M− = M ⎣ ⎦, so that:  
Bc ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 

Moo Bo KooBo KocBc⎣ ⎦ = f ⎣ ⎦ − g ⎣ ⎦ 
Mco Bc KcoBo KccBc 

=⇒ Mco = fcBc − gc(KcoBo + KccBc) 

= −gcKcoBo + (fc − gcKcc)Bc. 

To match boundary conditions at long range, we need the long-range asymptotic 

behavior of f and g. In energetically open channels they oscillate sinusoidally with a 



�

138 

π/2 phase difference; in closed channels they may be analytically continued, giving 

linear combinations of exponentially increasing/decreasing terms. The exponentially 

increasing terms in closed channels survive at infinity and give gc → − cos πβ and 

fc → sin πβ, with additional (equal) coefficients that are neglected here. The set of 

open matrix elements within closed channels then correspond to: 

Mco → cos πβKcoBo + (sin  πβ + cos  πβKcc)Bc. (5.5) 

This linear combination must vanish in order to satisfy correct boundary conditions 

and remove the exponential behavior at infinity: 

)−1Bc = −(sin πβ + cos  πβKcc cos πβKcoBo. (5.6) 

This is the transcendental equation that must be solved in order to obtain the closed-

channel energies. However, in energy regimes where all channels are closed Bo = 0  

and the determinantal equation simplifes to 

(sin πβ + cos  πβKcc)Bc = 0  =⇒ det(tan πβ + Kcc) = 0. (5.7) 

This is the bound state condition that is solved numerically for β = π(ν − l). The 

same expression sets Kcc = − tan πβ and therefore 

(−Bc)
Mco = (fc − gc(− tan πβ))Bc = (− cos πβf − sin πβg) . (5.8) 

cos πβ 

We now connect this with the final asymptotic wave functions, given by solving 

the single-channel radial equation for the Coulomb problem where each channel is 

weighted by a coefficient Zi: 

1 
Ψ =  Φi(ω)Wi(r, νi, li)Zi. (5.9) 

r 
i 
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Wi is an energy normalized rescaled Whittaker function solution ( [10] Eq. 2.53): : 

W (r, ν, l) =  ν3/2[ν2Γ(ν + l + 1)Γ(ν − 1)]−1/2 × Wν,l+1/2 
2r 

(5.10)
ν 

This rescaled Whittaker function is explicitly connected to out/ingoing wave solu-

tions by 
i i−iβi f+ − iβi f−W (r, νi, li) =  √ e √ e ; (5.11)
2 2 

these out/ingoing waves are related to the regular/irregular functions (f, g) through 

−if = √ 
1
(−f+ + f−), g  = √ 

1
(−f+ − f−). 

2 2 

These are then inverted: 

2 1 
g − if = √ (−f+) =⇒ f+ = √ (if − g)

2 2 

g + if = −√ 
2 
f− =⇒ f− = −√ 

1
(g + if). 

2 2 

The Whittaker functions can now be connected: 

−iβ iβi e e i iβ iβ − e −iβ )W = √ √ (if − g) +  √ (g + if) = if(e + e −iβ ) +  g(e 
2 2 2 2 

= −f cos β − g sin β, 

which matches the form of Mco given in equation (5.8). Thus: 

1 −Bi
Ψ =  Φi(ω)Wi(r, νi, li) (5.12) 

r cos πβ 
i 

To summarize: imposition of boundary conditions at long-range requires that 

δii sin βi + cos  βiKii 
(jj) 

Bi = 0;  βi = π(νi − li). (5.13) 

Ensuring a vanishing determinant constrains the allowed values of n − μi = νi to 

take on discrete values, and the eigenvector Bi can be matched at long-range to an 
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expansion in re-normalized Whittaker functions W (r, νi, li) that exponentially decay 

at long-range: this is the contents of equation (5.12). The critical parameters in this 

expression are the mixing coefficients Bi/ cos(πβi), which determine the weighting of 

each channel eigenfunction in the energy eigenstate; these coefficients as well as the 

bound state energies are given by solutions to equation (5.13). The quantum defects 

in LS coupling, μi, were taken as fit parameters. To obtain additional accuracy, 

the reaction matrix can further be modified by multiplying by a set of orthogonal 

rotation matrices [217], i.e. K → R1 
† . . .RM 

†KR1 . . .RM , where the M is the 

number of rotation matrices of of dimension N for an N -channel K matrix. For 2 

and 3 channels, ⎞⎛ ⎞⎛ 1 0 0 

Rx = 
⎜⎜⎜⎝ x 

⎟⎟⎟⎠ 

cos θ sin θ ⎠⎝R 0  cos  θ sin θx = 
− sin θ cos θ 

0 − sin θx cos θx ⎞⎛⎞⎛ ⎜⎜⎜⎝ 

cos θy 0 − sin θy 

0 1 0 
⎟⎟⎟⎠ 
Rz = 

⎜⎜⎜⎝ 

cos θ − sin θ 0z z ⎟⎟⎟⎠ 
R sin θ cos θ 0= ,y z z 

sin θy 0  cos  θy 0 0 1 

and analogous generalizations exist for 4 channels (with 6 rotation angles) etc. This 

approach introduces additional channel coupling through these rotation angles, which 

are also fit by matching to experimental levels. 

Spectroscopic data for le = 0, 2 odd parity and le = 1 even parity states with 

J = 0  − 3 were fitted this way, with results (Fig. 5.3) that compare favorably with 

Lu-Fano plots derived via R-matrix methods [214,215]. Most high-lying experimental 

energies were fitted to within 0.5cm−1 , but the results for le = 1 are very uncertain 

due to a dearth of experimental values available for fitting. The model’s accuracy 







143 

After the spectrum of a Rydberg Si atom is calculated, its interaction via the 

Fermi pseudopotential with a Ca ground state atom is studied. This heteronuclear 

dimer was chosen in contrast to the homonuclear Si∗-Si dimer because silicon’s scat-

tering information is poorly known. A very dilute Si gas within a much denser Ca 

gas is envisioned. Fig. (5.4) displays potential curves and vibrational spectra for low 

angular momentum states, similar to class (a) from [40]. The binding energies (in 

MHz) labeling each bound state are listed relative to the asymptotic atomic energy, 

which can be obtained from E = E1 − 1/2ν2 = E2 − 1/2ν2 We estimate an1/2 3/2. 

uncertainty of 0.5 MHz in these values. 

Those states exhibiting the multi-scale binding behavior predicted here must lie 

on rapidly varying portions of the Lu-Fano plot; hence, the J = 3,  le ≈ 2 states most 

consistently display deep separated wells. Panels b) and d) of Fig. (5.4) show two 

typical potential curves for this symmetry, while a) shows one of the few J = 1,  le ≈ 0 

states to display two well separated deep wells. Panel c) demonstrates that a locally 

non-linear Lu-Fano plot is a necessary but not sufficient condition for multi-scale 

binding, as the angular momentum components Φi( ) in Eq. (5.12) also contribute 

to the amount of mixing between channels. Specifically, the angular momentum 

state must have a substantial mle = 0 component, since this is the only non-zero 

contribution for MJ = 0. The increasing well separation is due to the spatial scaling 

of each single-channel wave functions with νi 
2 . The potential curves are typically 

separated from neighboring curves by several hundred MHz or more. The ability of 

these potentials to support bound states is enhanced by the relatively high molecular 

reduced mass and the absence of a p-wave resonance in Ca. 
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5.3 Conclusion 

To summarize, we have presented two scenarios to illustrate the rich effects of 

the physics of long-range multichannel molecules formed by divalent atoms. In-

teractions with doubly excited states in Ca allow for direct excitation of trilobite 

molecules through low-l channels, providing a new method for experimental realiza-

tion of these molecules through direct excitation. We expect that the alkaline atoms 

will be fertile fields of progress in ultralong-range molecular studies. In the Si∗-Ca 

molecules predicted here, the multichannel description of the Rydberg structure pre-

dicts far richer low angular momentum potential energy curves than those studied 

in the alkalis. Although calcium, and certainly silicon, are unlikely candidates for 

imminent experiments, we hope that these proposals will influence near-term exper-

iments in more available atomic species. As we have seen, rare-earth atoms are a 

budding area in ultracold physics, although their spectroscopy is relatively unex-

plored, and could potentially possess states similar to both of those described here. 

Likewise, multichannel atoms with hyperfine splittings have many different ioniza-

tion thresholds relatively close in spacing like the fine-structure split threshold of Si. 

One example is fermionic Sr, which can be tackled very similarly to our approach for 

Si here [207,218–220], and which is of recent interest in Tom Killian’s group at Rice 

Univeristy. Its spectrum will also have mixed Rydberg states, except at higher n 

because the hyperfine splitting is much smaller even than the fine structure splitting 

of silicon. 
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Figure 5.5. Spin degrees of freedom play an important role in Rydberg 
molecules, like this cesium trilobite discussed in Chapter 6. 
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6. SPIN EFFECTS IN LONG-RANGE RYDBERG 

MOLECULES 

In this chapter, adapted from Ref. [2], we study the properties of long-range Rydberg 

molecules of the heavy alkali atoms, Rb and Cs, in much greater detail than chapter 

3. Here we include all relevant internal interactions of the two individual atoms: the 

fine structure of the Rydberg atom and the hyperfine level of the perturber. We 

also include the spin-dependence of the electron-atom scattering interaction by us-

ing phase shifts which depend on the singlet / triplet state of the electron-perturber 

complex. This unifies past theoretical approaches into a complete model for the first 

time. A major new component of this theory is the inclusion of 3PJ splittings within 

the pseudopotential model, which is important for quantitative calculations. We ob-

tain highly accurate potential energy curves and relevant observables such as dipole 

moments. These are modified surprisingly strongly by the 3PJ splitting, as shown 

by the much better agreement between the predicted dipole moments obtained using 

our full theory and those observed in butterfly molecules. This study is important 

to reach an improved understanding of scattering properties and control possibilities 

of these molecules, and provides a strong foundation for studies of many-body and 

mean-field effects in polyatomic systems, an area of current interest that demands 

accurate two-body information [4, 153, 169,171,173,176]. Additionally, the modified 

3PJ -wave pseudopotential could find applications in other ultracold systems or in 

parallel systems in nuclear physics [86,87,221,222]. Note that the present treatment, 

which aims to replace the Green’s function technique by a phase shift-dependent op-



� � � � �

�

� �

�

�
�

148 

erator that can be numerically diagonalized, connects with the spirit and motivations 

of effective field theory [223]. 

6.1 Construction of the Hamiltonian matrix 

The Hamiltonian we consider includes all relevant relativistic effects: 

Ĥ(r; R) =  Ĥ 
Ryd(r) +  V̂ 

fermi(R, r) +  Ĥ 
HF  − 

α
. (6.1)

2R4 

As discussed in section 2.2, the Hamiltonian of the Rydberg atom, Ĥ 
Ryd(r), includes 

the effects of core electrons and the Rydberg spin-orbit splitting, parameterized by 

ˆmeasured quantum defects from atomic spectroscopy. Vfermi(R, r) is the electron-

perturber pseudopotential generalized to include all electron-scattering channels up 

to P -wave: 1S0, 3S1, 1P1, and  3P0,1,2. Ĥ 
HF  is the hyperfine interaction between the 

perturber’s nuclear and electronic spins, and −
2R
α 
4 is the polarization potential be-

tween the Rydberg core ion and the perturber. These terms will be described in 

more detail below as their matrix elements are constructed. 

Fig. 6.1 schematizes these different interactions and illustrates the two centers 

inherent to this system, which are crucial when dealing with the 3PJ scattering states. 

The first center, the Rydberg ion, determines the good quantum numbers of the 

Rydberg electron’s wave function in the absence of a perturbing atom, |n(ls1)jmj . 

These quantum numbers are the same as defined in section 2.2, and a sensible choice 

of basis to represent the Hamiltonian includes these unperturbed eigenfunctions along 

with the uncoupled nuclear and electronic spin states of the perturber, |s2m2; imi . 

Diagonalization of Ĥ 
Ryd(r), which would otherwise involve the numerical solution of 

the electron’s dynamics in some model potential describing the alkali atom, is trivial 
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Figure 6.1. The molecular system and relevant angular momenta. The 
internuclear axis lies parallel to the body-frame z axis passing through 
the ionic core (left) and the ground state atom (right). The red (blue) 
dashed oval represents the Rydberg (ground state) electron’s orbit. a) 
The Rydberg electron is located at r relative to the core and at X = 
r − R relative to the perturber. b) The spin of the Rydberg electron, 
s1 (red), couples to its orbital angular momentum relative to the core, l 
(yellow), to give a total angular momentum j (orange) with projection 
mj = ml + m1. c) The interaction between the Rydberg electron and 
neutral atom depends on the total electronic spin, S = s1 (red) +s2 

(cyan), coupled to the orbital angular momentum L (green) relative to the 
perturber to form total angular momentum J (purple), with projection 
MJ = ml + m1 + m2. d) The spin of the perturber’s outer electron, 
s2 (cyan) interacts with the perturber’s nuclear spin, i (gray) to form 
F (pink) and its projection MF = m2 + mi. The only good quantum 
number of the combined system is   = mj + m2 + mi. This figure is 
taken from Ref. [2]. 
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in this basis. Eq. 2.74 and Eq. 2.78 provide the relevant eigenenergies and spin-orbit 

coupled wave functions. 

ˆThe hyperfine Hamiltonian is HHF  = AI · S2. Table 2.1 gives the constant A; 

for the Rydberg atom this decreases as n−3 and is irrelevant at the level of accuracy 

ˆconsidered here [75–77]. The matrix elements of HHF  in the uncoupled basis are 

A 
CFMF CFMFαimi, s2m2|AI · S2|α i mi, s2m2 = δαα ,imi
s2m2,imi s2m22 

FMF 

× [(F (F + 1)  − i(i+ 1)  − s2(s2 + 1)]  , (6.2) 

where α = {n, l, s1, j,mj } and the nuclear spin i = 3/2(7/2) for 87Rb(133Cs). 

Cj3m3 is a Clebsch-Gordan coefficient. j1m1,j2m2 

As described in section 3.5, Khuskivadze et al. [95] were the first to include spin-

orbit effects in the P -wave scattering potential via a Green’s function treatment and 

a finite range potential for the electron-atom interaction. Here we develop an alter-

native procedure that is much more convenient for the diagonalization treatments 

with zero-range interactions that are typically implemented. The small coupling be-

tween 1P1 and 3P1 symmetries is neglected so that the Fermi pseudopotential remains 

diagonal in spin. We consider two complementary approaches to emphasize different 

aspects of this derivation and provide alternative physical pictures. The first in-

volves a recoupling of the tensorial operators involved in the Fermi pseudopotential 

so that J-dependent phase shifts can be incorporated, while the second reformulates 

the pseudopotential so that it is diagonal in the |(LS)J  basis with matrix ele-

ments proportional to the J-dependent scattering volumes, and then considers an 

expansion of the electronic wave function near the perturber. The first approach 

begins with a single term of the Fermi pseudopotential (see Eq. 2.91) generalized to 
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include singlet/triplet states using a projection operator (χS )† for the total spin ofMS 

the electron-perturber system: 

V̂fermi,LS = A(SL, k) χM
S 

S 
(χM

S 
S 
)† Lδ(X) ·  L . (6.3) 

MS 

Here X = r − R, and  A(SL, k) = (2L + 1)2πa(SL, k), where a(SL, k) is the energy 

dependent scattering length(volume) for L = 0(1)  and  for  S = 0 or 1.   and χS 
MS 

represent conjugate operators acting to the left. Eq. 6.3 is expressed using zero-rank 
(S) (L)

tensor operators composed of the tensorial sets χ and   via standard angularMS ML 

momentum theory: 

V̂ 
fermi,LS = A(SL, k)δ(X) (2L + 1)(2S + 1)(−1)−L−S (6.4) 

(0)(0) 
χ(S) × (χ(S))† 

(0)×  (L) × (L) × . 
0 

The J-dependence is included by recoupling these operators in the usual spirit of 

Wigner-Racah algebra [224–226]. The recoupling coefficient is calculated using prop-

erties of Wigner 9J symbols, and A(SLJ, k) may now be brought inside the final 

scalar product and allowed to become J-dependent: 

√ 
V̂ 
fermi,LS = δ(X) A(SLJ, k) 2J + 1(−1)−L−S (6.5) 

J 

(0)(J) (J) 
 (L) × χ(S)  (L) × (χ(S))†× × . 

0 

After decoupling and also summing over the different S and L states, this scalar 

operator is 

ˆ = ˆ = δ(X) A(SLJ, k)CJΩ (6.6) 
L,S (L,S),J Ω ML,ML 

Vfermi,J Vfermi,LS LML,SΩ−ML 

(L) (S) (L) (S)× CJΩ 
LML,SΩ−ML 

 ML 
(χ )†  χΩ−ML 

.Ω−ML ML 
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To further manipulate this expression into a useful form for the basis we have cho-

sen, the angular momenta must be recoupled a second time: the Rydberg electron’s 

spin and orbital angular momenta must be uncoupled so that the electronic spins s1 

and s2 can be coupled together. These steps will be shown more explicitly below in 

the second derivation. This allows us to construct matrix elements of V̂ using the 

Qnl 
LML 

terms defined in Eq. 3.10 by promoting them to include the j-dependence 

Qnl → Qnlj of the radial term, i.e. and fnl(r) → fnlj (r). The resulting pseu-LML LML 

dopotential matrix V is given in Eq. (6.21), which we now derive directly following 

the alternative second approach. This starts from a reformulation of the Fermi 

pseudopotential in which all the angular dependence has been projected out, thus 

explicitly incorporating J-dependent scattering phase shifts by projecting into states 

with good quantum numbers β = {(LS)J } describing the electron-atom inter-

action. To reformulate in this fashion, we start with Eq. 6.3, which we want to 

manipulate so that it immediately shows how to project onto wave functions of total 

J , Vfermi ∝ J |(LS)J  ALSJ (LS)J |. This is accomplished by taking Eq. 6.3, 

switching L → L , and then summing over L and S to obtain the full operator: 

Vferm = A(SL , k) χS (χS )† L δ(X) ·  L (6.7)MS MS 

L ,S MS 

We next apply the projection operator |LML LML| to the left and to theLM L 

right of the Fermi pseudopotential operator: 

Vfermi = |LML LML|
LML 

× A(SL , k) χS (χS )† L δ(X) ·  L |LML LML|MS MS 

L ,S MS L ML 

Performing the integrations implied by the Dirac braket notation shows that we must 

integrate over all the angular parts. Down the road, when we form matrix elements 



�
� �

��
��

�� �� �

�
� �� � � ��

� � � � �

�

�
�

�
�

�
� � � � � � �

�
�

�
� � � ��

� � �

 
�

�

153 

of this operator in the basis we use for diagonalization, only an integration over the 

radial part will remain. 

Vfermi = 2π (2L + 1)a(SL , k)|LML, SMS 

LML S,MS L 
L ML 

Y ∗ L L× LML 
(X̂) · δ3(X)  YL ML 

(X̂)dX̂ LML, SMS |. 

This expression is diagonal in S. Eventually, as made explicit in Eq. 6.17, we will 

want to write our basis states as a power series in XL, L  ≤ 1. This implies that 

this operator is diagonal in L,L : if the exponent on the gradient operator does not 

match the exponent of X, these terms vanish. We have also switched notation for 

the spin state, substituting χS →� SMS |. This leaves: MS 

Vfermi = 2π (2L + 1)a(SL, k)|LML, SMS (6.8) 
LML,ML 

S,MS 

Y ∗ L× (X̂) · δ3(X) LYL ML 
(X̂)dX̂ LML, SMS |.LML 

ˆThe integration over X can now be performed. Explicitly, for L = 0:  

δ(X)
Y00 
∗ (X̂)δ3(X)Y00(X̂)dX̂ = 

X2 
Y00(0, 0)Y00(0, 0). (6.9) 

And, for L = 1:  

Y ∗ (X̂) · δ3(X) Y1ML 
(X̂)dX̂ (6.10)1ML 

δ(X) 
= 

X2 

1 (2L + 1)(L + 1)L 
∂X ∂X Y1ML (0, 0)Y1ML 

(0, 0) + δML,ML 
δ|ML|,1X2 8π 

. 

Here ∂X ∂X is the radially-dependent term of the dot product of the two gradient 

operators, where ∂X acts to the left. Since our current analysis only considers func-
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tions linear in X for L = 1, the derivative term can be effectively replaced by a X−2 

factor to give the following compact form for the full pseudopotential: 

(2L + 1)2 δ(X)
Vfermi = 2π |LML, SMS a(SL, k) δML,ML 

LML, SMS |. 
X2(L+1)4π 

LML,ML 
SMS 

(6.11) 

The angular momenta may now be coupled and summed over ML: 

Vfermi = 2π (6.12) 
LML SMS JΩ,J Ω 

(2L + 1)2 δ(X) 
CJ Ω|(LS)J  CJΩ a(SLJ, k) (LS)J   |LML,SMS X2(L+1) LML,SMS4π 

Summation over ML and MS replaces the product of Clebsch-Gordan coefficients 

with δJJ  δΩΩ , along with the triangularity condition relating the possible values of 

L and S to the allowed values of J . Finally, 

(2L + 1)2 δ(X)
Vfermi = 2π |(LS)J  a(SLJ, k) (LS)J |, L  ≤ 1 (6.13) 

X2(L+1)4π 
(L,S)JΩ 

This pseudopotential form, with the angular dependence situated in the projectors, 

is the desired form to incorporate the J-dependent scattering parameters correctly. 

ˆ (2L + 1)2 δ(X)
Vfermi = |β a(SLJ, k) β|. (6.14)

X2(L+1)2 
β 

Here, 

ˆ CJMJX|β = YLML (X̂)χ
S . (6.15)LML,SMS MS 

ML,MS 

Notice that the result of the preceding derivation shows that moving into this pro-

jection operator form introduces a factor of (2L+1)/4π; the  1/4π might be expected 

since effectively the three-dimensional delta function has been modified into just a 
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radial delta function, but the nontrivial (2L + 1) factor reveals the vectorial form of 

the p-wave operator. 

Since the good quantum numbers β are incompatible with those characterizing 

the eigenstates of the Rydberg electron, the Rydberg wave function of Eq. (2.78) is 

expanded to first order about the position of the perturber: 

jmjψn(ls1)jmj (r) =  Clm,s1m1 
χs1 φnljm(R) +    φnljm(R) · X , (6.16)m1 

m,m1 

fnlj (R)
where φnljm(R) =  

R Ylm(R̂). After using the spherical tensor representation of 

 φnljm(R) given by the  Q functions and expressing X in terms of spherical harmonics 

YLM (X̂) centered at the perturber, it becomes clear that this expansion mediates the 

transformation from spherical harmonics relative to the Rydberg atom, Ylm(r̂), to S 

and P partial waves relative to the perturber, YLM (X̂): 

m1=s1 1 ML=L 
jmj Qnlj ψn(ls1)jmj (r) =  XLfLC (R)YLML (X̂)χ

s1 , (6.17)lML,s1m1 LML m1 

m1=−s1 L=0 ML=−L 

where fL = 4π . Coupling ψn(ls1)jmj (r) from Eq. (6.17) to the perturber’s spin
(2L+1) 

introduces S = 0, 1 states: 

L=1,S=1 
m1=s1 ML,MS 

jmj CSMS Qnlj (r)χS2 XLχS ( ˆψn(ls1)jmj m2 
= MS 

ClML,s1m1 s1m1,s2m2 LML 
(R)fLYLML X). 

m1=−s1 L=0,S=0 
ML,MS 

(6.18) 

The matrix elements of this operator are obtained from Eq. 6.18 after a trivial 

integration over X and introducing the Clebsch-Gordan coefficients CJΩ = LML,SMS 

(LS)J |LML, SMS . These matrix elements are compactly expressed by first con-
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structing the matrix representation of Eq. (6.14) in the basis of quantum numbers 

centered at the perturber, |β = |(LS)J : 

(2L + 1)2 

Uβ,β = δβ,β a(SLJ, k). (6.19)
2 

The transformation of this diagonal matrix into one in the |αs2m2 basis, where 

α = {n, l, s1, j,mj }, is mediated by a “frame-transformation” matrix A. In this 

context this is physically equivalent to a change of coordinates and good quantum 

numbers between the two geometrical centers of this system, analogous to what is 

done in multiple scattering theory [227]. This matrix is readily deduced from the 

prior steps of the derivation: 

ML=L 
jmj Qnlj Smj −ML+m2 Jmj +m2Aαs2m2,β = fLC (R)C C . (6.20)lML,s1mj −ML LML s1mj −ML,s2m2 LML,Smj −ML+m2 

ML=−L 

The final scattering matrix is diagonal in mi and for every n and l consists of a block 

matrix: 

V = A× U ×A† . (6.21) 

These matrix elements can be equivalently obtained from Eq. 6.6 after the same 

recoupling of the basis states, but without the need for an expansion of the wave 

function. The mixing of ML,ML implied by Eqs. 6.6 and 6.21 is critical for an 

accurate physical description of this splitting, since the total spin vector S and total 

orbital L precess during each P -wave electron-perturber collision. This was first 

recognized and incorporated in the Green’s function calculation of Ref. [95]. However, 

all subsequent work has neglected this detail. We expect that the much simpler 

description developed here using zero-range potentials will correct this oversight. 

This mixing of ML projections invalidates the use of Σ and Π symmetry labels to 

categorize the 3PJ potential curves. Incidentally, the Clebsch-Gordan coefficients 
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vanish for ML = 0  for  the  3P1 state, so that it remains a Π state in the absence of 

the hyperfine interaction. 

To highlight the impact of the 3PJ splitting effect, it is isolated by ignoring the 

fine structure of the Rydberg atom and the hyperfine structure of the ground state 

atom. In this case the matrix elements of the Fermi/Omont pseudopotential are 

given in the total spin basis, |nlmSMS , where  |nlm is the wave function of the 

Rydberg electron. For definiteness, only the L = 1, S  = 1,   = 0 matrix elements 

are considered: 

nlmSMS |V̂ |n l m S MS (6.22) 

CJ0 CJ0 Qnl (R)Qn l = 6πa(11J, k)δm,−MS 1m ,1−m 1m (R)δS,S .δm ,−MS 1m,1−m 1m 
J 

To check the basic validity of this expression, we can neglect the scattering volume’s 

J-dependence. Summation over J eliminates the two remaining Clebsch-Gordan 

coefficients, yielding a diagonal matrix in m, m , as expected. Eq. (11) of [130] is the  

same as 6.22 but multipled by δmm δMS MS 
. Fig. 6.2a displays the matrix elements 

of the 3PJ scattering potential within a restricted Hilbert space, with fixed n, n , l, l  . 

Since   = 0, only states with opposite m, MS are nonzero. The size of the non-

diagonal elements reflects the mixing of m values. As Fig. 6.2b illustrates, these off-

diagonal elements are truly essential in capturing the physics of this process, as they 

are needed to obtain three distinct eigenvalues out of different linear combinations 

of states of different m. If only the diagonal elements are included, the eigenvalues 

labeled 2 and 3 are degenerate, and only two butterfly potential wells develop. 
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Figure 6.2. a) Absolute (normalized so that the largest is 100) values of 
the elements of the scattering matrix Vij = nlS, mMS |V̂ |nlS,m MS at 
R = 700 and with n = 30,l = 10, and S = 1, for Cs. The basis states are 
labeled by |mMS ; labels  a, b, ...i correspond to |11 , |01 , |−11 , |10 , 
|00 , |−10 , |1 − 1 , |0 − 1 , |−1 − 1 , respectively. Ref. [130] gives only 
the diagonal elements. b) Absolute squares of the normalized eigenvector 
components, |ci|2 , for the three non-zero eigenvalues. m, m are mixed 
for 3P0 and 3P2, while the 3P1 scattering state has no m = 0 component. 
This figure is taken from Ref. [2]. 

6.2 Details of the calculation 

The energy-dependent scattering lengths and volumes are calculated identically 

as in earlier chapters, and the Hamiltonian matrix H is diagonalized at every value 

of the internuclear distance, R. The dimension of this matrix is finite in the spin 

quantum numbers, while the infinite number of states of different n must be trun-

cated. Typically four total manifolds {nH − 2, nH − 1, nH , nH + 1} are employed in 
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the results presented here, which are set so that zero energy is fixed at the nH = 30  

level. The only good quantum number of this system is the total spin projection, 

 =  mj + m2 + mi. At long-range, where the perturber-electron interaction vanishes, 

the potential curves can be identified asymptotically via the electronic angular mo-

menta l and j, and the perturber’s total nuclear spin F . Since only L ≤ 1 partial 

waves are included in the electron-perturber scattering, only states with |mj | ≤ 3/2 
will be shifted, and so H is block diagonal in  , | | < 7 11 for Rb(Cs). For states

2 2 

around nH = 30 the basis size ranges from approximately 2200(2000) for Cs(Rb) with 

| | = 1/2, down to 275 for the maximal  . The accuracy and convergence of these 

PECs is a controversial issue. A number of adjacent manifolds must be included in 

the basis so that level repulsion constrains the divergences in the scattering volumes 

caused by the 3PJ shape resonances [122]. However, a study of the ns potential wells 

has shown that the inclusion of additional manifolds deepens these long-range wells 

uncontrollably due to the highly singular delta function potential [123]; numerical 

tests also show that the deepest butterfly potential wells are sensitive to the basis 

size (see the discussion of Fig. 6.7). Two independent benchmarks are employed 

here to find the most satisfactory values for the potential curves, given their formal 

non-convergence. The Borodin and Kazansky model [127] (BK hereafter) was given 

in Eq. 3.21. It determines the smooth structure of the trilobite and butterfly PECs 

through the phase shifts. This serves as a crude convergence benchmark, since the 

true PECs should not differ dramatically from these results. The second convergence 

check is the comparison between the potential curves from the present model with 

those calculated in Ref. [95]. Good agreement with these two benchmarks was found 

after including one more manifold below the level of interest than above; specifically, 

the set {nH −2...nH +1} is used. The n−3 scaling of the Rydberg level spacing lends 

some physical justification to this heuristic approach, since the manifolds above the 
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Figure 6.3. Potential energy curves of Rb2,   = 0 (black) without the 
hyperfine splitting. The results of Ref. [95] (red crosses) is also plotted. 
The abscissa is the square root of R, which more uniformly spaces the 
potential wells. This figure is taken from Ref. [2]. 
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Figure 6.4. Potential energy curves of Rb2,  = 1/2, with the hyperfine 
splitting of the ground state atom (black). The results of Ref. [95] (red  
crosses) is plotted, although these ignore hyperfine and fine structure 
splittings. The inclusion of the additional fine and hyperfine structure 
creates a multitude of additional 3PJ -scattered states and splits the trilo-
bite potential energy curves into separate hyperfine states. The labelling 
is the same as Fig. 6.3. This figure is taken from Ref. [2]. 

level of interest contribute more weight to the level repulsion due to their relative 

closeness in energy; the additional manifolds below “balance” this repulsion. For 
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clarity, only comparisons with Ref. [95] and not the BK comparisons are included in 

the figures. Some further nuances and convergence tests will be discussed in later 

sections. 

6.3 Adiabatic potential energy curves 

As a straightforward confirmation of the validity of this full theory, the PECs for 

Rydberg energies around nH = 30 are compared with the calculations of Ref. [95]. 

Figs. 6.3-6.6 show these comparisons and reveal a wealth of information. In Fig. 6.3, 

the hyperfine structure is neglected for clarity. The main features of Ref. [95] are  

reproduced excellently, validating this basis set truncation and the accuracy of our 

3PJ pseudopotentials. Low-l molecules can be adequately described without the 3PJ 

splitting, since the butterfly potentials cross the low-l states with comparable slopes 

and distances, although quantitative results still require this level of accuracy. The 

J-dependence become qualitatively crucial in the depths of the butterfly states and 

in their PEDMs (see Figs. 6.8,6.11). 

Inclusion of the hyperfine structure adds significant complexity: it increases the 

multiplicity of butterfly states, further mixes these states, introduces many avoided 

crossings, and splits the low-l states by several GHz. Fig. 6.4 shows results for Rb2 

with nH ∼ 30 and   = 1/2, highlighting the importance of these additional splittings 

in shifting the long-range asymptotes and creating a tangle of avoided crossings in 

the butterfly potential wells. Fig. 6.5 shows the PECs for larger values of  . As 

  increases the allowed J values also increase, eliminating some PECs until for the 

highest nontrivial   value only a 3P2 potential curve of Π symmetry remains. 

Fig. 6.6 is the same as Fig. 6.4, but for Cs2. Again, the major features of the 

potential curves from Ref. [95] are reproduced excellently, but several discrepancies 

https://6.8,6.11
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Figure 6.5. Potential energy curves of Rb2, for a)  = 1/2; b)  = 3/2; 
c)  = 5/2; d)  = 7/2. This figure is taken from Ref. [2]. 

necessitate discussion. The larger hyperfine and fine-structure splittings of Cs create 

significant differences in the low-l asymptotes and crossings with the 3PJ butterfly 

states. The main differences in the 3PJ states are due to the modified phase shifts, 

since those employed here were modified to reflect direct experimental input. Dif-

ferences remain, particularly in the ultra-long-range 3P0 state, even when identical 
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Figure 6.6. Potential energy curves of Cs2, including the hyperfine split-
ting of the ground state atom, for the projection   = 1/2 are plotted in 
black. The results of Ref. [95] are shown as red crosses. This figure is 
taken from Ref. [2]. 

phase shifts are used. These discrepancies, appearing particularly at long-range and 

low scattering energy, are also visible in in the long-range “trilobite” region at the 

order of a few GHz. The alternative Green’s function approach utilizing zero-range 

potentials of [122] agrees closely with the diagonalization results presented here, 

suggesting that these differences stem from the finite range potential formalism of 

Ref. [95]. 

As a numerical test of the convergence of these results, three different basis sets 

({nH − q, ..., nH , nH +1}, with  q = 3, 2, 1) were used to calculate the PECs of Cs2 in 
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Figure 6.7. Potential energy curves of Cs2,  = 1/2. The results 
using the {29, 30, 31} basis (dot-dashed, blue), the {28, 29, 30, 31} basis 
(solid, black) and the {27, 28, 29, 30, 31} basis (dashed,red) are plotted. 
Each panel displays a different regime, showing that at long-range the 
calculation is quite well converged with either basis, but the short-range 
butterfly curves in particular vary severely with the basis size. This figure 
is taken from Ref. [2]. 
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three of the most interesting regimes. These comparisons are shown in Fig. 6.7. At 

long range the inclusion of additional manifolds below the level of interest does not 

contribute to the non-convergent increase in well depth seen by [123], but at short 

range these additional manifolds have a strong effect on the potential wells, repulsing 

them upwards. Setting q = 2 agrees well with Ref. [95] and BK. An expanded  

convergence test was additionally performed for basis sets {nH − q, ..., nH + p}. with  

q = 1, 2, ...6 and  p = 1, 2, giving an estimated uncertainty of 3GHz for the butterfly 

states and 5MHz for the long-range states. This uncertainty in the butterfly states 

applies to their absolute depths since issues with the basis size is manifested primarily 

as a global shift. The shape and relative depth of the individual wells is less sensitive, 

and the uncertainty on the relative energies of observed states is estimated to be 

about 0.5 GHz, comparable to the vibrational spacing of these states. 

As a final comparison, the observed butterfly states of Rb are considered in Fig. 

6.8. Overlayed onto the PECs are the observed bound states (red points), whose bond 

lengths, extracted from rotational spectra, fix them as points in the two-dimensional 

energy/position plane. Additionally, the full spectrum is overlayed as horizontal 

lines, showing the range of energies and change in density of states as higher excited 

states are observed. Qualitative agreement is observed for both these comparisons, 

although at shorter internuclear distances the observed states are further detuned 

than our PECs allow. This could be due several factors: the potential wells here are 

very sensitive to the 3PJ phase shifts; this could reflect further problems with the 

convergence of these PECs; or, this might signify the presence of D-wave scattering. 

Future work is required to determine if the simple delta function potentials truly 

cannot be accurately converged, and if either a Green’s function method or a more 

suitable set of basis configurations are necessary [123]. Some likely improvements 

include: a varying number of basis states as a function of R, an  R-matrix treatment 
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along the lines of the recent study by [92], or the renormalization method of [90]. 

Additionally, some of these problems might stem from the use of the semiclassical 

electron momentum; k(R) could be modified self-consistently until a converged result 

is attained. 

6.4 Discussion 

The elements investigated in a photoassociation process determine many key 

properties of the Rydberg molecules. The prominent differences between the two 

alkali atoms considered here are their quantum defects and 3PJ scattering properties. 

The top panel of Fig. 6.7 shows the PECs in the Cs2 “trilobite” region near the 

nH = 30 manifold. The near-degeneracy between the (n+4)s states and this manifold 

allows two-photon excitation of the trilobite molecule [145,154]; this is not reasonable 

in Rb since the trilobite state admixes almost exclusively high-l states. Figure 6.9 

shows two examples of such trilobite states. The trilobite, with one set of nodes (a) 

and three sets of nodes (b) is superimposed over a faint nS state admixture by which 

the trilobite-state can be accessed. 

Likewise, the positions of the 3PJ shape resonances and their energy dependences 

strongly change the butterfly potential wells. The 3P0 resonance in cesium occurs 

at such a low electronic energy that the associated PECs cross the low-l states at 

very large internuclear distances, destabilizing the longest-range states to a greater 

degree than in Rb (Fig. (6.8) displays rubidium’s np and butterfly PECs). The 

butterfly states of Rb possess significant p-character, making a single-photon exci-

tation through this admixture possible; the butterfly states of Cs are much further 

detuned from the np asymptotes (e.g. see Fig. 6.6), and possess less p character. 

Additionally, the much larger 3PJ splittings in Cs greatly spread the butterfly wells, 
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Figure 6.8.   = 1/2 Rb2 potential energy curves (black/solid) near the 
25p Rydberg states. Zero energy is set to the 25p1/2, F  = 1 asymp-
tote. The bound states whose permanent electric dipole moments were 
measured in Ref. [128] are plotted as red squares, while the observed spec-
trum of that experiment is overlayed. The color scheme matches that of 
Ref. [128], and has no meaning but to guide the eye. The 25p3/2, F  = 1  
and 25p1/2, F  = 2 potential wells are highlighted in the inset, since for 
this Rydberg level the interplay between the fine and hyperfine states 
makes these states nearly degenerate. This figure is taken from Ref. [2]. 

limiting the number of avoided crossings. Some of these butterfly states are shown 

in figure 6.10. In a) an unusual butterfly is plotted which is situated in the deepest 
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Figure 6.9. Trilobite-like wave functions for Cs. 

3P0 well with a trilobite-like internuclear distance of over 1250 bohr. In size and 

overall shape this state resembles a trilobite molecule due to the similar bond length, 

but the specifics of its nodal character reveal that it is in fact a butterfly type state. 

Panels b-c show three butterflies with varying admixtures of Π and Σ symmetry. 

Fig. 6.10b shows a primarily Π-state butterfly, while c shows one that is primarily Σ 

and most resembles the first butterfly prediction in Rb [122]. Most butterfly states, 

due to the Π/Σ mixing caused by the J-dependent phase shifts, are some admixture 

of these two cases, as Fig. 6.10d shows. 

The interplay between different fine and hyperfine splittings can also be used to 

engineer Rydberg molecules with specific spin characters, and notably can be tuned 

via the principal quantum number to induce spin flips in the perturbing atom or to 

strongly entangle the nuclear spin of the perturber with the electronic spin of the 
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Rydberg atom [161]. The PECs for these states are highlighted in Fig. (6.8). In par-

ticular, the near-degeneracy of 25p3/2, F  = 1  and  25p1/2, F  = 2 states strongly mixes 

their spin character; this degeneracy can be varied over a range of quantum numbers 

from 24-29. Similar degeneracies are found in the np states of Cs, for n = 31−35 [130], 

or also in the Cs nd states for n = 21−25. The myriad differences between these two 

alkali species provide a wide range of parameters influencing the properties of the 

Rydberg molecules, and future work could investigate how the impact of different 

properties of other alkali atoms such as Li, Na [108], K, or Fr [228] in their respec-

tive long-range Rydberg molecules. Other interesting opportunities involve studies 

of heteronuclear Rydberg molecules: for example, an excited Cs atom bound to a 

ground state Rb atom would take advantage of the favorable near-degeneracy be-

tween the (n +4)s and n, l > 3 energies without the added complications of the large 

3PJ splitting of the e-Cs scattering resonances. Chapter 9 presents some exploratory 

results along these lines, while chapter 5 showed how non-alkali atoms possess many 

attractive features. These results together reveal a surprising depth to these Rydberg 

molecules due to the wide range of interchangeable ingredients of this system. 

6.5 Multipole moments 

For a final test of the spin-dependent nature of these molecules, we generalize 

the results of subsection 3.4 to include spin dependence within the full model de-

rived above. We replace the hydrogenic eigenstates with the numerically calculated 

eigenstates, |s = ask|k , where  |s is an electronic eigenstate, k is a composite k 
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quantum number k = {n(ls1)jmj m2mi}, and  ask is the eigenvector corresponding to 

the sth eigenstate. The multipole moments are then 

Rn l js|Tqk|s = askask δm2,m2 
δmi,mi 

δmj ,mj nlj (k)(−1)s1+j +l−l (6.23) 
k,k ⎛ ⎞⎧ ⎫ ⎨ ⎬l l k l s1 jjmj ⎝ ⎠× (2j + 1)(2l + 1)(2l + 1)C .j mj ,kq ⎩ ⎭0 0 0  j k  l  

��� 

Figure 6.10. Butterfly-like wave functions for Cs. 
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The observable PEDMs are obtained from the theoretical curves by averaging over 

the vibrational wave functions of the relevant states. The 3P0 PEDM is noticeably 

smaller and oscillates more dramatically than the Σ and 3P curves. The maxima in 

this curve are correlated with the positions of bound states in the relevant potential 

wells. At large R >  400 these PECs connect adiabatically with the np states, which 

explains the rapid decrease in the PEDMs as R increases. 

The reduced strength of the 3P0 PEDM relative to the results neglecting J-

dependence (the 3P curve) stems from the ML-mixing caused by the SO splitting 

of the electron-perturber interaction. The PEDMs extracted from pendular state 

measurements are systematically smaller (by ∼25%) than predicted by the 3P curve 

(solid black), which follows the approximate Σ curve quite closely [128]. The full 

theory explains this systematic difference: the ML = 0 states focus the electronic 

wave function near the perturber, while |ML| = 1 states maximize the wave function 

closer to the Rydberg core ion; their mixing places the mean value of the electron’s 

position closer to the positively-charged core and reduces the PEDM. Fig. 6.10 shows 

some exemplary butterfly molecules revealing this mixing. Examination of Fig. 3.9a 

reveals that any mixture of ML in this region of internuclear distances mixes negative 

and positive PEDMs, reducing the total strength. Quantitative agreement is seen 

between the experimental PEDMs and the theoretical curves they lie directly on at 

the bond lengths extracted from the experiment, which also agree with the potential 

minima predicted by the theory. The 3P prediction does not even overlap most 

experimental points. This is evidence that even though the relatively small e-Rb 

3PJ scattering splittings do not dramatically shift the PECs, these splittings do have 

significant impact on observables such as the PEDMs. For Cs, this effect will be even 

greater. Further insight into this spin mixing is given by considering the 3P1 curve, 

which is predominantly a Π symmetry state except for hyperfine-induced mixing, 
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which occurs near avoided crossings of the potential curves. Fig. 6.11 shows that 

this PEDM lies on the straight line predicted by the approximate Π curve, except 

for deviations located at avoided crossings in the relevant potential curves. 

This chapter has presented a full theoretical model which accurately includes all 

relevant relativistic effects. This serves as a foundation for future experimental ef-

forts requiring the most complete theoretical picture, and provides a basis for future 

theoretical work studying new systems or novel applications of these exotic mol-

ecules. The results presented here help to better understand the character of these 

molecules, as well as their binding energies and PEDMs. The prospects of forming 

these butterfly molecules in Cs will perhaps be more challenging since the p character 

of the butterfly state is much smaller, but the huge separation between 3PJ potential 

curves greatly enlarges the range of internuclear distances and PEDMs accessible in 

these molecules. The improved description of the nearly-degenerate high-l manifold 

with the very close (n + 4)s state given here lends a more complete theoretical de-

scription of this state that should encourage further exploration of the trilobite state 

in Cs. 
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Figure 6.12. Butterfly molecules, like this n = 70 molecule displayed 
using several isosurfaces of probability density, are the subject of Chapter 
7. This figure is adapted from Chapter 9. 
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7. MOLECULAR CONTROL: PENDULAR BUTTERFLY 

STATES AND RYDBERG BLOCKADE 

As previous chapters have shown, one particularly interesting aspect of trilobite and 

butterfly Rydberg molecules is their enormous permanent electric dipole moments. 

This chapter, based on Ref. [1], explores the dipolar physics of and interactions be-

tween butterfly molecules. The general field of ultracold dipolar gases is of great 

recent interest because dipolar systems provide an ideal environment for the study 

of novel ultracold chemical reactions or quantum chaos in non-linear dynamical sys-

tems [132,229–232], the design of robust quantum information protocols [27,233,234], 

and investigations of universality in few- and many-body physics [235–246]. These 

promising applications hinge on the premise that regimes exist where the dipole-

dipole interaction (DDI) is the dominant force in the system. Prior to the study 

presented here, three main experimental implementations of DDI have been studied: 

ultracold polar molecules [247–250], ultracold lanthanide atoms with large magnetic 

moments [132, 232, 251–254], and Rydberg atoms in external fields [23, 255, 256]. 

These are challenging experiments: large external fields (∼ 104V/cm) are required 

to align polar dimers [257], and their production in their rovibrational and hyperfine 

ground state is a titanic experimental effort [247]. On the other hand, the small 

atomic magnetic moments require the reduction of the atom-atom interaction using 

Feshbach resonances [258, 259]. The properties of polar dimers and magnetic atoms 

are rarely tunable. Rydberg atoms suffer from comparatively short lifetimes, and 

only interact through the purely isotropic van der Waals interaction unless dipole 
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moments are induced via an external field [260] or a Förster resonance [28]. These 

techniques require detailed knowledge of the Stark-induced avoided crossings and 

delicate control of applied electric fields. 

As this chapter shows, Rydberg molecules such as the butterfly provide a compet-

itive hybrid system combining the promising properties of these alternative systems: 

they have the exaggerated characteristics of Rydberg atoms and the internal struc-

ture and polar attributes of molecules, and while lacking the simplicity and stability 

of magnetic atoms, their interactions are strongly dominated by dipole-dipole forces. 

We explore the dipolar physics of butterfly molecules in a one-dimensional array of 

molecules aligned by a weak (< 1V/cm) external electric field applied at an angle 

θ relative to the longitudinal trap axis (Fig. 7.1c shows the basic setup). Although 

these calculations are specific to the physical parameters of butterfly molecules, the 

general concept applies to all Rydberg molecules, which are discussed briefly later in 

the chapter. 

A generalized Rydberg blockade, wherein intermolecular forces prevent the reso-

nant excitation of two molecules within the butterfly blockade radius Rb(θ), occurs 

in this system. The blockade radius is the limit where the anisotropic intermolecular 

potential, V (Rb, θ), exceeds the laser bandwidth, Γ ( ∼ 0.5 MHz), and Rb(θ) can  

be tuned by the applied field. At the “magic angle” satisfying P2(cos θM ) = 0 (PL 

is the Legendre polynomial of order L) the DDI vanishes and higher-order terms in 

the molecular interaction, namely the quadrupole-quadrupole/dipole-octupole and 

van der Waals, dominate. Thus, the molecular density reveals these interactions via 

its dependence on θ. The high tunability and exaggerated scales of this proposal 

has implications in studies of the polaron problem, angulon interactions, tunable 

interactions, and crystalline phases. 
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the pendular states within the harmonic oscillator approximation, and details the 

perturbative calculation of the intermolecular interactions; their maximum strength 

for our considerations is restricted by Γ (∼ 500kHz). Once this interaction is calcu-

lated the density of molecules is readily obtained as a function of θ, and these results 

are given in section 7.3 along with a discussion of possible future directions. 

7.1 Pendular states of long-range butterfly molecules 

A typical butterfly molecule potential curve and vibrational states are plotted in 

Fig. 7.1a, and the electronic state associated with this potential is shown in Fig. 7.1b. 

Fig. 7.2 displays various molecular parameters of the ground state as a function of n. 

The reduced multipole moment, calculated in chapter 6, of molecule X averaged over 

the vibrational molecular wave function is q(LX ) =  QL 
0 
X /n2LX . Greater tunability 

is possible if different molecular states are excited; the dipole moment varies over a 

factor of ∼ 3 for different vibrational states. 

In the absence of external fields, polar molecules rotate freely with random ori-

entations. Application of a field shifts the molecular energy through the dipole-field 

coupling −d · F , where  F is the electric field and d is the molecular PEDM. Set-

ting the quantization axis parallel to the electric field, the molecular Hamiltonian is 

Hmol = BeN̂
2 −dF cos θ, with rotational constant Be and rotational angular momen-

tum operator N̂ 1 . When the dimensionless parameter ω = dF is large (ω ∼ 102 −103 
Be 

for field strengths ∼ 1 V/cm, four orders of magnitude lower than needed for typ-

ical heteronuclear molecules [128, 247]), the rotational states become trapped in a 

nearly harmonic potential and are called pendular states in analogy with the har-

monic oscillator [155,261]. These states are found by diagonalizing Hmol in the basis 

of spherical harmonics YNMN (θ, φ); in the large ω limit two-dimensional harmonic 
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state. Fig. 7.3a shows the resulting Stark spectrum for the n = 24 case. Fig. 7.3b 

shows cos θ and cos2 θ . 

7.2 Calculation of the intermolecular interaction 

Fig. 7.1c depicts a sketch of the geometry of our proposal. The electric field points 

in the lab frame’s z axis; a strongly confining potential in the x and y dimension 

creates a Q1D chain of Rb atoms in the z direction [262], where cos θ = ẑ · ẑ  . The  

laser is tuned to excite the |00 pendular butterfly state, although greater parameter 

ranges can be explored via the internal structure associated with other rotational 

states. Two molecules are separated by a distance R that depends on the atomic 

density and the long-range intermolecular interaction. 

To calculate the potential surface V (R, θ), the pendular states of a single molecule 

in the presence of an electric field are calculated, and then these states are used to 

calculate the interaction potential perturbatively. An accurate method for calculat-

ing pendular state eigenfunctions expands the rigid rotor Hamiltonian, Hmol, into  the  

rotational basis of spherical harmonics YNMN (θ, φ), where MN is a good quantum 

number since the quantization axis is set parallel to the electric field. The pendu-

CMNlar states, ΨNM˜ 
N 
(θ, φ) =  N ˜ YNMN (θ, φ), are characterized by their librational 

N,N  

˜state, N . It proves convenient to define W = E/Be and ω = dF/Be, ω  1. Diago-

nalization of this matrix using values up to N = 25  − 30 gives a converged spectrum 

for the first ∼ 10 excited states. The energy spacings in this spectrum are typically 

an order of magnitude smaller than the vibrational or electronic spacings. 
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The intermolecular interaction, given by the two-center multipolar expansion of 

the Coulomb force [263–268], is valid for R >  2( rA 
2 + rB 

2 ) [269], which is 

satisfied for all distances studied here. ⎛ ⎞ 
fn LA LB LLA,LBˆ ⎝ ⎠V = q(LA)q(LB ) 
RL+1 

LA,LB mA,mB ,m mA mB m 

× Dm
LA

A0(θA, φA) 
∗ Dm

LB

B 0
(θB, φB) 

∗ DL (θ, 0) ∗ , (7.1)m0 

where L = LA + LB and Dm
LX

X 0
(θX , φX )

∗ is a Wigner D-Matrix rotating the multipole 

operator between the lab and molecule frame. n is the principal quantum number 

and q(L) is the  Lth reduced multipole moment. Dm
L 
0(θ, 0) describes the geometry of 

the trap axis relative to the electric field axis, and 

1/2
(2L + 1)!  

fn 2L= (−1)LA n . (7.2)LA,LB (2LA)!(2LB)! 

Using Eq. 7.1 is the standard approach for calculating the interaction potentials 

between Rydberg atoms. The additional molecular rovibrational stucture in the cur-

rent problem adds a separate level of complication. Typically Eq. 7.1 is expanded 

into a large basis of Rydberg atomic states and diagonalized to obtain the most ac-

curate potential energy curves [41, 42, 159, 166, 167]. Our expanded basis, including 

molecular states, is prohibitively large to perform a full diagonalization, so we use 

perturbation theory instead. To first order we include terms in Eq. 7.1 up to L = 4,  

which includes quadrupole-quadrupole and dipole-octupole terms. We also neglect 

retardation effects, falling off as 1/R7 . It is calculated to order R−6 , requiring sec-

ond order perturbation theory. We thus neglect contributions from other electronic 

or vibrational levels in the second-order sum over intermediate states, which should 

introduce errors in the 1/R6 potentials of 10% or less due to the larger energy separa-

tions. The overall n-scaling of the dipole moments in the second-order terms factors 
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out, along with an additional n3 for the second-order terms from their energy denom-

inators: the van der Waals term is thus proportional to D = n11d4/R6 . Additionally, 

it splits naturally into induction (C6i) and dispersion (C6d) terms  [268]. These are 

calculated independently, since the summation in the induction term is just over the 

˜quantum numbers NB and MB of one molecule, while the dispersion term is summed 

over the virtual states of both molecules. 

|� Ñ 
AMAÑ 

BMB|V̂ |Ñ 
AMAÑ 

BMB �|2 

Vind(R, θ) =  D (7.3)
E0 − ENB ,MB 

|� Ñ 
AMAÑ 

BMB|V̂ |Ñ 
AMAÑ

 
BMB �|2 

Vdis(R, θ) =  D . (7.4)
2E0 − ENB ,MB 

− ENA,MA 

E0 is the unperturbed energy of a single molecular state. 

Performing this full calculation gives an intermolecular potential of the form 

2C3d
2n4 8n8

2V (R, θ) =  − P2(x) − P4(x) C5ado − C5bq (7.5)
R3 R5 

4d4n11 (xy)2 

− 2 
R6 

C6 
a
i[P2(x)]

2 + C6 
b
i 4 

4d4n11 C6 
c
d 4 (xy)2 

− Ca [P2(x)]
2 + y + Cb ,

R6 6d 4 6d 4 

where x = cos  θ, y = sin  θ, and where all coefficients C are positive. We obtain 

C3 ∼ 0.95, C5a ∼ 0.83, and C5b ∼ 0.63 for the first-order coefficients, independent of 

n within 2% over the range n = 20  − 40. Eq. 7.5 presents the first calculation of the 

interaction between two Rydberg molecules, and reveals the wide range of adjustable 

parameters and anisotropy present here, in marked contrast to Rydberg atoms. This 

stems from the molecular nature, since all of the coefficients and multipole moments 

depend on the internal structure and are not fixed properties of the atomic species. 

The van der Waals coefficients depend also on the field strength, and vary slowly with 

n as seen in Fig. 7.2d. Insight into the relative strengths and angular dependencies 
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Figure 7.4. Anisotropy of the different terms of the potential, Eq. 7.5, 
labeled by their coefficients: C3 is the dipole-dipole term, C5 is the sum 
of the dipole-octupole and quadrupole-quadrupole term, and the two C6 

terms are split into induction and dispersion terms. The different com-
ponents are plotted with weight factors to compensate for their different 
scales. R is fixed at 1μm. As  R increases the C3 and total curves become 
totally indistinguishable since the other terms all fall off much faster than 
R−3 . 

are seen in the polar plot of Fig. 7.4, where V (R, θ) is plotted at R = 1μm. Several 

unexpected properties of the coefficients of these different terms emerged numerically: 

6ithe independence of the first-order coefficients on n, the numerical relationship C 
2 

a 

= 

6dC 
9 

c 

= C6 
a
d, and the large relative size of C6 

b
i (∼ 1000 times larger than the others). 
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Greater insight into the character of these pendular states and the origin of these 

unusual coefficient relationships is given by considering the limit ω → ∞, since to 

lowest order in 1/ω the Schrödinger equation can be written as a two-dimensional 

N̂ 2harmonic oscillator. Using the explicit form for in spherical coordinates, the 

Schrödinger equation is 

∂2 ∂ 1 ∂2 

+ cot  θ + + ω cos θ + W Ψ(θ, φ) = 0. (7.6)
∂θ2 ∂θ sin2 θ ∂φ2 

This equation maps onto the 2D harmonic oscillator by setting ξ = 2α tan(θ/2), 

where α = ω/2. A separable solution in ξ and φ is then obtained, where Ψ(ξ, φ) =  

√1 imφU(ξ) e , m = |M |. U(ξ) is then given by: 
2π 

ξ2
2 

d2 21 d m WU(ξ) ω 4 − ξ2/α
0 = 1 +  + − U(ξ) +  + U(ξ). (7.7)

4α dξ2 ξ dξ ξ2 α α 4 +  ξ2/α 

Since in the pendular regime α 1, we discard all terms of order 1/α to obtain the 

standard harmonic oscillator Schrödinger equation 

d2 1 d m2 

+ − + β − ξ2 U(ξ) = 0, (7.8)
dξ2 ξ dξ ξ2 

where α · β = W + ω. The energies of the pendular states are then given by 

√ 
E = Be( 2ω(2Ñ + |M |+ 1)  − ω), (7.9) 

and the pendular states are 

2Ñ ! − ξ
2 

2Ψ ̃  (ξ) = (−1)M e ξM LM (ξ2), (7.10)N,M  Ñ 
Γ(Ñ + M + 1)  
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where LM
N (x) is a Laguerre polynomial. The accuracy of the large ω approximation 

is demonstrated in Fig. 7.3. Using Eq. 7.1, the matrix element connecting different 

two-molecule states is 

Ñ 
AMAÑ 

B MB |V̂ |Ñ 
AMAÑ 

B MB (7.11) 

q(LA)q(LB )(4π)
3/2fn 

LA,LB = 
RL+1 (2L + 1)(2LA + 1)(2LB + 1)  

LA,LB ⎛ ⎞ 
LA LB L ˜ ˜NAMA NB MB× ⎝ ⎠ YL,m(θ, 0)K ̃  K ̃  ,

NAMA,LAMA NB MB ,LB MB 
mA,mB ,m mA mB m 

˜using K
Ñ 

AMA = NAMA|YLA,mA (ξ, φ)|Ñ 
AMA . The first-order shift for theÑAMA,LAMA 

ground state simplifies to 

d2n4 4π 2 
00, 00|V̂ |00, 00 = −2 P2(x) K00 (7.12)00,10R3 3 

8n8 4π 3π 2 
K00 K00 K00− P4(x) √ do − .00,10 00,30 00,20R5 21 5 

These three matrix elements can be found analytically in the harmonic oscillator 

approximation, and have relatively simple asymptotic forms for ω 1: 

4π 2 3 2 
K00 → 1 +  − (7.13)00,103 2ω ω 

√3π 2 3 
K00 → (21 − 6 2ω + 2ω) (7.14)00,205 8ω 

4π 14 7 
K00√ 00,10K

00 → 1 +  − √ . (7.15)00,30
21 ω 2ω 
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These saturate for large ω, which is why the coefficients C3, C5a, and  C5b can be taken 

as constant over the range of values studied here. For the second order dispersion 

terms, at the level of truncation discussed above, are ⎡⎛ ⎞ ⎤2 

1 1 2 
NAMA NB MB⎣⎝ ⎠ K 
˜ 

K 
˜ ⎦ 

00,1−MA 00,1−MB 
8 −MA −MB M128π3d4n 

Vd(R, θ) =  , (7.16)
3R6 2E0 − E ̃  − E ̃NA,MA NB ,MB˜ ˜NA,NB 

|MA| 1 
|MB | 1 

˜ ˜where NA = MA = 0  and  NB = MB = 0 terms are excluded from the sum, and 

˜ ˜M = MA + MB . Before evaluating this expression to arbitrarily large NA, NB, we  

present the asymptotic forms of the relevant matrix elements (a = 
8
3 
π ): 

√ 1 
K00 → a 2 − √ (7.17)00,10 ω √ 

2 1 
K10 → a − + √ (7.18)00,10 ω ω 

1/4
1 2 

K01 → a − (7.19)00,1−1 (2ω3)1/4 ω 

1 3 
K11 → a − (7.20)00,1−1 (2ω)3/4 (2ω)5/4 

1 9 
K20 → a √ − (7.21)00,10 4ω3/22ω√ 

3 1 3 
K21 → a − . (7.22)00,1−1 23/4ω5/4 21/4ω7/42 

These asymptotic forms suggest that the sum should converge rapidly, as all terms 

˜with final state in the N = 2 level are suppressed by additional factors of order 
√ 

1/ ω. This is confirmed numerically; to better than 1% accuracy the sum can be 

˜ ˜truncated to include only NA = NB = 1. After collecting into terms with the same 
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9 

angular dependence, this gives the first-order potential of Eq. 7.5, and gives explicit 

formulas for the coefficients: 

4 4 2 2 4 
K01 K10 K01 K11 K118π2 2 200,1−1 00,10 00,1−1 00,1−1 00,1−1

Ca = + + +6d 2E0 − 2E0,1 2E0 − 2E1,0 2E0 − E0,1 − E1,1 2E0 − 2E1,1 

(7.23) 
2 2 2 2 

K10 K01 K10 K11 
00,10 00,1−1 00,10 00,1−1

C6 
b
d = 32π

2 + (7.24)
2E0 − E0,1 − E1,0 2E0 − E1,0 − E1,1 

4 2 2 4 
K01 K01 K11 K11200,1−1 00,1−1 00,1−1 00,1−1

C6 
c
d = 8π

2 + + . (7.25)
2E0 − 2E0,1 2E0 − E0,1 − E1,1 2E0 − 2E1,1 

In this large ω regime, the only term making Cc = 9Ca not an exact relation-6d 6d 

K10 4 
ship is 2 /(2E0 − 2E1,0) in  Ca This term declines rapidly with increasing00,10 6d. 

ω: rigorously computing the ratio C6 
c
d/C6 

a
d for ω 1 limit shows the explicit ω 

dependence: 

C6 
c
d/C6 

a
d → 9 + 9  2/ω3 − 9/(2ω) (7.26) 

We now calculate the induction term, ⎡⎛ ⎞ ⎤2 

1 1 2 ⎣⎝ ⎠ K00 KÑB MB ⎦ 
00,10 00,1−MB 

8 0 −MB MB128π3d4n 
Vi(R, θ) =  , (7.27)

3R6 E0 − E ̃NB ,MB˜ MB | 1NB 

˜including only terms with NB ≤ 1 for the same reasons given above. Once again, 

after collecting terms with the same angle-dependence Eq. 7.5 is found and the 

coefficients are defined 

K00 2 
K10 2 

Ca 16π2 
00,10 00,10 

6i = (7.28)
9 E0 − E1,0 

K01 2 
K11 2 

K00 2 00,1−1 00,1−1
Cb = 16π2 + . (7.29)6i 00,10 E0 − E0,1 E0 − E1,1 
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Comparing Ca with C6 
a
d,  the ratio 16/8 = 2 is indicative of the relationship  Ca = 6i 6i 

2C6 
a
d, although it is not transparent how the different terms within the parentheses 

are equivalent. Once again, evaluating this ratio in the large ω limit reveals: 

C6 
a
i/C6 

a
d = 2  − 2 2/ω. (7.30) 

Finally, computing the ratios C6 
b
i/C, where  C is any of the other coefficients, in the 

√ 
large ω limit shows that all of these ratios increase, at worst, as ω, explaining 

the large size of this coefficient compared to the rest. We have now gained a more 

satisfactory understanding of the behavior of these coefficients, otherwise determined 

purely numerically in the perturbation theory calculation in the exact pendular state 

basis set. We can now study the potential surface itself, displayed for n = 24  in  Fig.  

7.5. Two different plots are given: in panel a three cuts of the potential surface 

at θ = 0o, θM,24, and  90o are plotted, while panel b displays a density plot of the 

potential. Lines of force are superimposed, and the inner(outer) white contours 

represent the blockade radius for 0.5(0.1)MHz. At this scale this potential is largely 

determined by the dipole-dipole interaction, as hinted at by Fig. 7.4, with higher 

order effects playing a dominant role near θM,n. This is seen in panel a, where the red 

dashed curves only include the DDI term, revealing that near the magic angle the 

higher order terms cause a repulsive barrier to form rather than the purely repulsive 

potential expected from the DDI alone. 

7.3 Results and discussion 

Fig. 7.6 displays the key result of this article: the predicted density of butterfly 

molecules for a laser bandwidth Γ = 0.5MHz for several n values. The n-dependent 

magic angle θM,n ranges from 56.7o − 57.3o (0.99-1.0 radians) 2 and differs slightly 
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Figure 7.7. Simulated measurements of the molecular yield in a one-
dimensional arrangement. Near the magic angle the density increases 
dramatically, yielding an obvious experimental signature. 

greater and the formation probability is enhanced due to the larger internuclear 

distance. A narrower bandwidth laser extends the effective range of the intermolec-

ular interactions. Finally, an alternative setup could use a Q1D optical lattice in a 

doubly-occupied Mott insulator state [156]. Other experimental schemes involving 

different classes of Rydberg molecules could also be studied: for example, trilobite 

molecules, through two-photon excitation of either Cs2 [145,154] or Ca2 as presented 

in Chapter 5. The larger bond lengths and dipole moments of these molecules allow 

for more favorable density conditions. However, their lifetimes are shorter and the 

two-photon excitation is more difficult. Even low-l molecules exhibit weakly polar 

behavior from their small admixture of trilobite-sized dipole moments [134, 270]. 

The dipolar length, which characterizes the length scale of the DDI, is add = 

d2m (in SI units), where m is the mass of the particles. For the butterfly molecules, 
12π� 0�2 

add ∼ 107−108a0 (0.05 - 0.5 cm), whereas for the typical heteronuclear molecule KRb, 

add ∼ 1μm. This overwhelming difference translates into huge dipolar interactions 
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relative to ultracold collision interactions, characterized by the scattering length a. 

We assume that the butterfly-butterfly scattering length is the geometric size of the 

molecule, i.e., a = 4n2 a0. The key ratio εdd = add/a, which is ∼ 104 − 105 for 

butterfly molecules and 20 for KRb, characterizes the importance of dipolar physics. 

For magnetic atoms such as Cr or Dy add ranges from 16 to 130 a0, giving εdd ∼ 1 

depending on the value of a. Following the work of Kalia and Vashishta [271], the 

present proposal leads to a crystal phase for butterfly molecules for the assumed 

∼ μK temperature. Indeed, the predicted one-dimensional array of molecules should 

resemble a linear crystal structure due to the fact that butterfly molecules are in 

the strongly interacting regime at ultracold temperatures. Moreover, the Tomonaga 

Luttinger liquid parameter [237], given by K =  add in the strongly interacting 

regime [272,273], is ∼ 103 which clearly indicates the absence of density fluctuations 

and the prevalence of phase fluctuations. 

An obvious generalization of this study is the extension to two or three dimen-

sional systems. These should exhibit some form of large-scale structure or long-range 

correlations. As a proof of principle, we simulated the excitation of Rydberg mol-

ecules in a 2D gas. For simplify, only the dipole-dipole term of the was included: 

2C3d
2n4 

V (R, θ) ≈ −  P2(cos θ). (7.31)
R3 

A stochastic treatment of the molecular association process was employed to de-

termine realistic experimental behavior through the following process. First, atoms 

were randomly seeded throughout a large 2D region. Of these, a list of molecular 

“candidates” were found which had the right orientation with respect to the electric 

field and the correct bond length. Once the excitation laser is turned on these candi-

dates can be excited to a butterfly molecule upon absorbing a photon. However, this 

cannot occur if the total intermolecular interaction, | Vi|, between this candidatei 
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Figure 7.8. Nearest neighbor distribution of simulated butterfly mol-
0.9 −0.1234recules. The blue line is the fit function (1.243 × 10−5)r e 

1.9 
; the  

nearest-neighbor distribution in two dimensions has the form re−br
2 
. 

molecule and all pre-formed molecules exceeds the laser bandwidth. We therefore 

check if this criterion is matched before adding each candidate molecule, and discard 

it otherwise. In this way the position and number of molecules created in the system 

grows stochastically. 

For this proof of concept calculation, an 2D area of size πR2, where  R = 3  × 107 

a0, was chosen to host a large number, 2.8 × 105 , of candidate molecules at a density 

of 1 × 10−10 −2 a0 . The nearest-neighbor distribution of these candidate molecules fits 

the expected distribution, are−br
2 
, very well, and shows a mean nearest-neighbor 

distribution of about 2 μm (see Fig, 7.8). Of these candidate particles, 105 were 
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candidates is due to the large interparticle separation In a less dilute gas the blockade 

effect should have a much stronger impact, but might be obscured by many-body 

effects. 

Of these molecules, the relative separations and angles with respect to the aligning 

field were found, and from by histogramming these distances and angles a two-body 

correlation function can be found. This is shown in Fig. 7.9, the main result of this 

exploration. As expected, this correlation function exhibits the angular distribution 

signifying the dipole-dipole interaction at close interparticle separations, showing 

essentially no counts for molecules within a blockade radius except near the magic 

angle and even tracing out the general angular shape (lower panel). At large R the 

correlation function becomes isotropic as the interactions drop off rapidly. This sort 

of calculation would be an interesting, and more easily experimentally attainable, 

approach to explore dipolar physics in Rydberg molecules. The extension to three-

dimensions would likewise be trivial here. Finally, along the lines of a much more 

involved recent study of dipole-dipole interactions between Rydberg atoms [274], 

these classical calculations could be incorporated into a more sophisticated quantum-

mechanical calculation. 

7.4 Conclusions 

This chapter presented an effective method to control the density of pendular 

butterfly molecules in a one-dimensional trap as a means of exploring the dipole-

dipole interactions present in this system, and to explore the unique and exag-

gerated properties of this scheme contrasted with Rydberg atomic systems, polar 

molecules, or magnetic atoms. Future effort could explore the consequences of the 

inherently mixed nature of this system, consisting of dipolar impurities immersed 
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in a sea of bosons, and thus could study polaron-polaron interactions in ultracold 

gases. The tunability of the polaron interaction provides information about the role 

of the internal structure of the impurities in the dynamics of the quasiparticles, which 

would elucidate the validity of the Fröhlich Hamiltonian [275] in the weak interaction 

regime and the study of the role of many-body correlations in the strong interaction 

regime, going beyond the single polaron physics very recently observed in ultracold 

gases [276,277]. The newly developed theory of angulon and pendulon quasiparticles 

could be generalized to include impurity interactions, and could be realized in the 

present system [278, 279]. In two or three dimensions it could become possible to 

study the quantum phase transition between the superfluid and supersolid phases, or 

between supersolid and crystal phases [237]. Decay mechanisms are also interesting 

and largely unstudied. These decay mechanisms, such as Penning ionization, can be 

investigated using the anistropic interactions, since these can either be attractive, 

leading to collapse, or repulsive due to a potential barrier, stabilizing the conden-

sate. It is possible that this long-range interaction could lead to the formation of 

tetramers, consisting of two Rydberg molecules bound together; this would be a fasci-

nating combination of long-range Rydberg-neutral molecules and Rydberg-Rydberg 

macrodimers. 
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Figure 7.10. Chapter 8 describes negative ion photodetachment for highly 
excited states with large angular momenta, depicted here. The ejected 
electron escapes to infinity while feeling the effects of very strong long-
range potentials, which can be either repulsive or attractive, as depicted 
here. 
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8. PHOTODETACHMENT OF EXCITED NEGATIVE 

IONS 

This chapter presents our study of photodetachment of alkali negative ions. We 

are primarily interested in photodetachment into the excited 5f and 5g states of 

potassium, but we also make some predictions about the 6f, 6g, and 6h partial cross 

sections in order to help elucidate the behavior of the 5f and 5g states. A similar 

regime in sodium is studied as well to help unravel the fundamental physics. We find 

that near-degeneracies in the energy spectrum, due to the high angular excitation of 

the neutral atom and the photodetached electron, play a critical role in determining 

threshold properties and the behavior of partial and total photodetachment cross 

sections. This study examines recent cross section measurements and interprets 

them in terms of the relevant dipole-field parameters, assuming exact degeneracy of 

the residual high-l atomic states, rather than in terms of the atomic polarizabilities 

more commonly used. 

8.1 Background 

Negative ions of light alkali atoms such as lithium, sodium, and potassium are 

fertile sources of information, both theoretical and experimental, about the behavior 

of correlated electrons, shape and Fano-Feshbach resonances, and Wigner threshold 

laws for dissociation processes. These anions support only one bound state of 1Se 

symmetry, typically with an electron affinity on the order of half of an eV. Absorption 
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of an energetic photon ejects an electron and excites the residual atom, creating 

many fascinating resonance and threshold structures in the total and partial cross 

sections [11]. 

This process is very similar to photoionization in neutral atoms with two active 

electrons. Photoionization is typified by an infinite series of Fano-Feshbach reso-

nances in the autoionization continuum [280]. Here the interactions are dominated 

by the strong Coulomb attraction between the ionized electron and the positively-

charged core, and subtle electron-electron correlation is often masked. In negative 

ion photodetachment the residual core is neutral, so correlation is revealed by the 

much weaker forces between the electron and the atom. For example, in hydrogen, 

the high degeneracy of excited states and the correlation between electrons leads to 
−α2 

d−1/4 
a linear Stark shift and a dipole 

2r potential [281]. This potential has the2 

remarkable property that for real αd it supports an infinite number of resonances 

states (within the non-relativistic limit; relativistic effects that break the degeneracy 

truncate this infinite series) [282]. This has been extensively studied theoretically, 

and verified in an impressive series of experiments at Los Alamos [43–46, 67]. 

In the alkali negative ions, the breaking of degeneracy by the complex core yields 

instead a polarization potential, −
2 
α
r4 , which only supports a finite number of bound 

states. Various theoretical efforts dedicated to accounting for this polarizability have 

been developed [63, 66, 283]. In scenarios where the residual atom remains in a high 

angular momentum state of a highly excited state, lmax = n−1, these polarizabilities 
rapidly reach values on the order of 104 − 106 atomic units, since α ∼ n7 . At suffi-

ciently high lmax a nonintuitive quantum phenonemon arises: the polarizability can 

become negative, leading to an entirely repulsive potential. Table 8.1 shows our cal-

culated channel polarizabilities for these states. Experimental investigations of nega-

tive ion photodetachment in channels possessing these huge polarizabilities were pub-
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l n α(nl, εl−) α(nl, εl+) l n α(nl, εl−) α(nl, εl+) 

s 4 - 307.5 p 4 619.5 720.8 

5 - 4996.1 5 7204 8237 

6 - 32867 6 44170 49583 

7 - 139013 7 180730 199873 

8 - 449308 8 571507 624121 

d 3 1865 1931 f 4 -24045 -24564 

4 43268 44354 5 5.008(6) 5.053(6) 

5 230154 235456 6 2.652(7) 2.676(7) 

6 837825 855971 7 9.205(7) 9.288(7) 

7 2.450(6) 2.500(6) 8 2.565 (8) 2.588(8) 

g 5 -5.151(6) -5.178(6) h 6 -7.165(7) -7.191(7) 

6 4.461(7) 4.474(7) 7 2.615(8) 2.618(8) 

7 2.305(8) 2.313(8) 8 1.366(9) 1.368(9) 

Table 8.1. 
Channel-dependent dipole polarizabilities, in atomic units, for potassium. 
l− = l − 1, l+ = l + 1, and (A) represents ×10A . 

lished recently for potassium, sodium, and cesium [47,49,284,285]. Partial and total 

photodetachment cross sections of the 1P o symmetry were recorded, and fascinating 
l+1/2

deviations from the standard Wigner threshold law, σ = (Ehν − Eth)
l+1/2 = Ee , 

in sodium and potassium were interpreted as resulting from these huge, negative 

polarizabilities [88, 286, 287]. 
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We calculated partial and total cross sections for both Na and K over a range 

of photon energies 4.5 - 5.5 eV. Even though the final state symmetry following 

single-photon detachment is 1P o , the two electrons may be both excited into states 

of very high angular momentum. The most interesting regions for us are just above 

the nearly degenerate 5f and 5g thresholds of both atoms. In potassium, Ref. [47] 

reported that the partial cross sections observed in these two channels differed wildly: 

a steplike onset just above the channel opening is seen in the 5f channel, while the 

cross section rises very slowly in the 5g channel, modulated by a broad resonance. 

The authors reported that these two effects were differentiated by the effect of the 

polarization potential, which is either strongly repulsive or attractive depending on 

the channel. A similar measurement in Na− photodetachment, which exhibits the 

same behavior without the observed resonance, was performed to test this explana-

tion [49]. These measurements are displayed in Fig. 8.1. 

8.2 Two competing models 

In this section we present two competing models to explain the behavior of these 

partial cross sections. The first, a semiclassical model emphasizing the role of the 

huge polarizabilities, comes from Ref. [47]. The second, which instead emphasizes 

the role of the quasi-degeneracy of these states in creating a dipole-type potential, 

stems from our analysis of the adiabatic potential energy curves determined by our 

full eigenchannel R-matrix calculation. The details of this full calculation are given 

in the next section. 

Semiclassical model: The step-like onset in the 5f channel is caused by the hugely 

attractive polarization potential, which greatly reduces the centrifugal barrier. As-

suming that the dominant ejection channel is 5f�d, a check of the total potential, 
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l(l+1)−
2 
α
r + 

2r , gives a barrier height around 30 μeV. The partial cross section in this4 2 

channel should therefore saturate rapidly just above threshold. 

To explain photodetachment into the 5g channel, the semiclassical model of Ref. 

[47] begins with the radial Schrödinger equation including the polarization potential: 

d2unl(r) α l(l + 1)  
= − + − 2E unl(r) = [p(r)]

2 unl(r). 
dr2 r4 r2 

Making the approximation that these potentials hold even to small r, this totally 

repulsive potential (for the negative α of interest) defines a classically forbidden re-
|α| 1/4 

gion where r < r0, where  r0 = 
2E is the classical turning point. The centrifugal 

repulsion is neglected in defining r0 since α is so large. In this region the final state 

wave function for the free electron is given by the Wentzel-Kramers-Brillioun (WKB) 

expression 
C(Ee) 

r0 

ψk(r) =  exp − p(x)dx , r < r0. (8.1) 
r p(r) r 

Here the wavenumber is k = 
√ 
2Ee, the momentum is p(r), and C(Ee) ≈ Ee 

−1/4 

is a normalization constant ensuring continuum normalization in momentum space. 

Upon evaluating the integral in the exponential, keeping only first-order terms in 

r/r0, and then using that approximate wave function to compute the scattering 

amplitude between initial and final states, Ref. [47] claims that the cross section 

above threshold follows an exponential threshold law: 

σth ∝ exp[DEe 
1/4]. (8.2) 

They applied this to the 5g partial cross sections of both potassium and sodium, and 

found that it fit the partial cross sections reasonably well. A possible resonance fea-

ture in the potassium measurements complicated the analysis somewhat [47]. Within 

their model, the fit parameter D is related to the polarizability by D = 2850|α|1/4, so  
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they could extract polarizabilities that were indeed large but still nearly two orders 

of magnitude smaller than obtained theoretically, casting doubt on the reliability of 

this model, but not denying its qualitative agreement. 

Our alternative approach is based on the assumption that, over the energy range 

measured, the two thresholds are essentially exactly degenerate, and therefore an 

improved analysis of the relevant physics involves the dipole potentials. To model 

this, we included only the two most relevant photodetachment channels: K(5f) +  

e−( �d) and K(5g) +  e−( �f). The development of this model closely follows [10, 63]. 

The coupled channel equations for the radial wave functions Mj (r), discussed in 

section 2.1, are in this case 

1 d2 1 lj (lj + 1)  − + − (E − j ) Mj (r) +  Vij (r)Mi(r) = 0, (8.3)
2 dr2 2 r2 

i 

where Vij = i| 1 
2 rc cos θc|j and j is the threshold energy of channel j. Using 
r 

hydrogenic wave functions to approximate the exact wave functions of these highly 

excited states we obtain a radial matrix element of −45/2 and an angular matrix 
√ 

element equal to −2 3/7. Including the splitting between these two channels, Δ 

−317 GHz, the coupled channel equations of equation (8.3) simplify to: ⎛ ⎞√ 
6 90 3

1 d2 − (E − 5f ) 22r 14r− 1M(r) +  ⎝ 2 

√ ⎠ M(r) = 0, (8.4)
2 dr2 90 3 12 

2 2 − (E − 5g)14r 2r 

where 1 is the identity matrix. We proceed, closely following Watanabe and Greene 

[63], by solving this equation adiabatically. The adiabatic transformation of Eq. 8.4 

gives 
2

1 d − 1 + P (r) − [(E1 − ) − u(r)] F (r) = 0, (8.5)
2 dr 

where F (r) =  W (r)M(r), u(r) is a diagonal matrix of the eigenvalues of the coupling 

matrix in equation (8.4), W (r) is the orthogonal matrix of their eigenvectors, and the 
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8.3 Eigenchannel R-matrix calculation 

We have supplemented this approximate two-channel model with a full R-matrix 

calculation along the lines of section 2.1. We used 15 partial waves with 98 closed 

and 2 open functions for each. A large R-matrix box size of 350 atomic units is 

used to ensure that only one electron leaves the box for all excited states under 

consideration. This requires a maximum box size ∼ 2n2 < 150. Having such amax 

large R-matrix box also helps to include more of the long-range physics stemming 

from these highly polarizable atomic states in the full two-electron calculation. Even 

so, the polarization potentials still strongly couple different channels outside of the R-

matrix box, and so it is critical to match to numerical wave functions at the R-matrix 

radius. These were matched to spherical Bessel solutions at a distance of 2000 atomic 

units. For our potassium calculation we have used the model potential of Liu [48] 

to facilitate comparison with his results, whereas for sodium we used the potential 

found in [59]. In either case these model potentials give highly accurate energies for 

the excited states of the neutral atom, and are identical to at least four significant 

digits with appropriately fine-structure-averaged experimental energies. Figure 8.2 

shows the calculated quantum defects of the target atomic states using this approach. 

Discrepancies at the lowest n occur because the fitted quantum defects of Table 2.1 

are not accurate for the ground state; the solid points agree exactly with experimental 

spin-weighted energies. At high n the deviations signal the onset of one-electron 

states that no longer fit within the R-matrix box and are thus used to describe 

continuum states rather than realistic atomic states. In the final state calculation 

18352 basis states were included based on these parameters; these improvements 

allowed us to push the limits of this calculation past what was reported in Refs. 
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counted [284]. For the 5g partial cross section the upper Rydberg state is 23f , so  

all states with maximal |ML| = 4 are lost due to angular momentum selection rules 

during this process. This argument only holds if the polarizers of both laser photons 

are linear and parallel. This would imply that, if very high ML values are heavily 

populated in the residual atomic state at certain energies, the measured cross section 

would be reduced since these cannot be detected. To model this, the cross section 

can be multiplied by the intensity for the excitation process from a state with total 

angular momentum Ji to one with Ji − 1, as is done in the experiment [226] 

I0 (2) (2) Ji + 1  
I = 1 +  h A0(J , h  = − . (8.7)Ji,Jf i) Ji,Ji−13 2Ji − 1 

In Fig. 8.7 the alignment parameter for the 5g state is shown over this same range of 

energies. Intriguingly, we see that in these regions where the full theory calculation 

disagrees most severely with the experimental points the alignment is most positive. 

This suggests that it is possible that these high ML states are not being fully detected. 

Fig. 8.8 shows the partial cross section, multiplied by the energy-dependent intensity 

factor from Eq. 8.7, which a modest improvement over the calculation ignoring this 

possible alignment. Further work is necessary to fully justify this argument, but it 

looks promising that the anisotropy of these highly excited angular momentum states 

could be an interesting observable, and possibly has already been detected. 

These results have shown that we can calculate and make predictions about this 

photodetachment process, but thus far they have not helped to explain the role of 

near-degeneracy in the photodetachment process. In particular, since the dipole 

approximation (where we assume that the 5f and 5g thresholds are degenerate) and 

the semiclassical model based on the large negative polarizability of the 5g state are 

both consistent with the observed partial cross sections and with the results of the 

full R-matrix theory, little can be claimed about the importance of this degeneracy 
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8.4 Analysis and conclusions 

We first plot the adiabatic potential energy curves, i.e. the eigenvalues of the 
dλl2i(l2i+1) 3 ijmatrix δij 1i + 

2r2 + λ=1 rλ+1 at fixed values of r. Examination of these 

curves, shown in Figs. 8.9, 8.11, and 8.12, is a straightforward way to gain more 

intuition about this system and better understand the form of the long-range physics. 

These figures show potential energy curves in the energy ranges near potassium 

(5f, 5g), sodium (5d, 5f, 5g), and potassium (6f, 6g, 6h), respectively. By comparing 

these adiabatic potential curves with the polarization potentials, shown in magenta, 

one can see that that it is only at very large distances that the polarization potentials 

begin to accurately describe the long-range potentials. Indeed, as demonstrated by 

the red curves, over much of the energy range of interest the potentials are much 

better described by r−2 potentials than the polarization potentials. These potentials 

even can be traced diabatically upwards through the avoided crossings between the 

adiabatic potentials. The simple two-channel model, extended to include the four 

and six channel degenerate subspaces, respectively, for the 5f,5g and 6f,6g,6h cases, 

gives the dipole parameters needed to compute these potentials. In the four-channel 

case we diagonalize the 4 × 4 matrix: ⎛ ⎜⎜⎜⎜⎜⎜⎝ 

√ 

6 0 90 3 
7 0 

√ 
0  20  −5 

7 10 5 
√ 

90 3 −5 20 0
7 7 √ 
0  10  5  0  30  

⎞ ⎟⎟⎟⎟⎟⎟⎠ 

, (8.8) 

which has eigenvalues 47.9, 31.5, −13.5, and 2.1. In the six channel case for 6f , 6g, 

and 6h the eigenvalues of the coupling matrix are 80, 61.6, 34, 15, -21.9, and -38.6. 

In sodium, the 5d, 5f , and  5g thresholds are all nearly degenerate, and the coupling 

matrix has the eigenvalues 57.6, 43, 23.3, 8.3, -18.8, and -31.4. 
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Figure 8.9. Long-range potential energy curves (black) for potassium, 
relative to the 5f level. In a), the region surveyed in the experiment 
is shown in blue. The red curves are the a/2r2 potentials derived in 
the Gailitis-Damburg model, while the magenta curves are the α/2r4 

potentials appropriate for the polarization potential. b) and c) show 
zooms of the  5f and 5g potentials. 
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Figure 8.10. Observed (dots) and calculated (solid lines, length and 
velocity) partial cross sections. The blue curve is the 5d partial cross 
section, the brown curve is the 5f partial cross section, and the black 
curve is the 5g partial cross section, which was the only reported cross 
section measured over this energy range citeHanstorpNa. 

As Fig. 8.9 shows, the potential energy curves are qualitatively similar for the 5f 

and 5g channels for both the polarizability and dipole approximations, even though 

the dipole approximation is a much better on a quantitative level. We thus turn to 

sodium to try to find a clear observable distinction between the properties of these 

long-range potentials. Fig. 8.10 shows our calculated 5d, 5f , and  5g partial cross 

sections along with the measured 5g cross section [49]. Again, the agreement is excel-

lent. The 5g and 5d partial cross sections behave as the semiclassical polarizability 

model predicts, rising slowly above threshold due to a strongly repulsive potential, 

or sharply saturating then slowly oscillating well above threshold due to a very short 
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Figure 8.11. Long-range potential energy curves (black) for sodium, 
relative to the 5d state. The red curves are the a/2r2 potentials derived 
in the Gailitis-Damburg model, while the magenta curves are the α/2r4 

potentials appropriate for the polarization potential. b) and c) show 
zooms of the  5f, 5g and 5d potentials, respectively. 

potential energy barrier. The dipole potentials also predict this same behavior, as 

can be seen by the qualitative agreement in Fig. 8.11. The 5f partial cross section is 

not explained particularly clearly by either of these interpretations, however, and it 

is clear from Fig. 8.11 that the actual potential curves are modified by level repulsion 



221 

from other potential curves and are not particularly well described by either simple 

long-range model. The polarization potential for this state is attractive, whereas the 

dipole potential is actually repulsive; the actual potential curve exhibits a potential 

well at about 400 atomic units before rising into a small potential barrier well within 

the R-matrix box. The comparison of dipole and polarizability potentials in this case 

is unfortunately again somewhat ambiguous. 

Thus, we finally turn to a particularly interesting range of energy in potassium, 

lying 0.07 atomic units above the 5f, 5g states. Here, at the n = 6 threshold, there 

are now six approximately degenerate channels, and the Gailitis-Damburg model is 

expected to be even more accurate due to the closer degeneracy of these channels. 

More importantly, as inspection of Fig. 8.12 reveals, here the polarization poten-

tials and dipole potentials behave qualitatively differently: there are a total of four 

out of six attractive polarization potentials since only one polarizability is nega-

tive, but there are a total of four repulsive dipole potentials and only two attractive 

ones. Unlike in sodium, where the degeneracy was much more approximate, the 

dipole potentials here are in excellent agreement with the adiabatic potential curves, 

suggesting that in this energy range we can unambiguously associate the observed 

behavior of the partial cross sections with the dipole, not polarization, physics. Fig-

ure 8.13 presents our prediction for the partial cross sections above this threshold. Of 

these, two partial cross sections behave similarly to the 5g partial cross section: they 

slowly rise above threshold, undergoing some modulations that could in actuality 

be resonances, until rising with an almost exponential increase far above threshold. 

Only one partial cross section behaves like the 5f partial cross section, rising suddenly 

just above threshold. We emphasize that this behavior is in agreement with what 

was observed in the experiment and associated with repulsive or attractive poten-

tials, and only the dipole potentials have the correct behavior in this case. These 
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Figure 8.12. Long-range potential energy curves (black) for potassium, 
relative to the 6f state. The red curves are the −a/2r2 potentials derived 
in the Gailitis-Damburg model, while the magenta curves are the −α/2r4 

potentials appropriate for the polarization potential. The blue and green 
regions, showing the potential curves extending to the 6g, 6h and 6f 
states, respectively, are enlarged in the insets. 

predicted partial cross sections are thus in disagreement with the interpretation in 

terms of polarization potentials, and unambiguously demonstrate the importance of 

the near-degeneracy of these high l atomic states on the long-range physics. 

In summary, the results presented here show that our eigenchannel R-matrix 

method can very accurately reproduce tiny partial cross sections for negative ion 
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Further theoretical work is also needed in order to fully understand these par-

tial cross sections, in particular their resonant features. One initial step will be to 

calculate time delay matrices and eigenphases for both of these photodetachment pro-

cesses, and compare them. A preliminary eigenphase analysis in potassium does not 

show clear evidence for the resonance-like feature observed above the 5g threshold in 

potassium, although Ref. [48] did predict a broad resonance within the experimental 

error bar. Since this feature is missing in sodium a comparison of these quantities 

between atoms, which otherwise behave quite similarly in this region, will be helpful. 

Further work studying the oscillations above the 6g threshold, which are qualitatively 

similar to the modulation identified as the resonance above the 5g threshold, is still 

necessary also. One intriguing possibility is that these oscillations are representative 

of Stueckelberg oscillations revealing the passage of outgoing flux passes between 

adiabatic channel potentials. 
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Figure 8.14. A “ghost” trilobite, studied in Chapter 9. 
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9. FUTURE EXPLORATIONS 

This chapter describes some generalizations of the concepts discussed in this thesis, 

some of which we have already explored in great detail, and others which are still 

germinating. As previous chapters have shown, the Rydberg molecule concept is 

quite versatile and encompasses a wide variety of new phenomena introduced by 

including more interactions or using different atomic species. This chapter explores 

two such ideas. First, we replace the perturber atom with a “ghost” atom. What we 

mean by this is that we can create a trilobite or butterfly orbital which extends from 

the Rydberg atom to an empty point in space by applying electric and magnetic 

field pulses, which cause the wave function to evolve into the same superposition 

of atomic states that would be created by a real perturber. Following this, we 

replace either the Rydberg atom or the perturber with lighter alkali atoms. Although 

the basic principles followed by Rb-Rb or Cs-Cs Rydberg molecules are the same 

here, the wide range of quantum defects, fine and hyperfine splittings, and phase 

shift behavior create a surprising number of new features, particularly in the greatly 

enlarged parameter space allowed by considering heteronuclear Rydberg molecules. 

9.1 Ghost trilobites 

We have seen how trilobite and butterfly molecules are formed when degen-

erate high angular momentum orbitals hybridize to maximize either the electron 

probability (trilobite) or the probability gradient (butterfly) near a ground state 
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atom [128,150,154]. The unique properties of these chemical bonds rely on the high 

level degeneracy of non-penetrating high-l Rydberg states. For a bond length Rb 

this superposition of degenerate l states (in hydrogen) leads to a wave function (see 

section 4.8) 
n−1 

Ψ(Rb, �r) =  N c b (9.1)nl,xφnl(r), 
l=l0 

where N is a normalization constant, l0 restricts the summation to degenerate states 

(l0 ≈ 3 in alkali atoms) and φnl(r) =  unl 

r 
(r) Yl0(θ, φ) are standard hydrogenic Rydberg 

wave functions. The label x can refer to either a trilobite or a butterfly. Due to 

cylindrical symmetry and the functional form of the pseudopotential ml = 0.  The  

coefficients cnl,x 
b are determined by diagonalizing the Fermi pseudopotential in the 

basis of degenerate hydrogenic states. For example, cb = For anl,trilobite φnl(Rb). 

general target state these coefficients can be compactly expressed as a vector, cT . 

The degeneracy needed to form these exotic states is exact for all l in nonrelativis-

tic hydrogen. Since the hydrogen-electron scattering length is positive, the repulsive 

trilobite potential curves cannot support vibrational bound states. Nevertheless, the-

oretical evidence suggests that the Rydberg electron-atom interaction still evinces 

resonant behavior related to the stationary points of the potential curves [3, 92]. 

These are located at Rb satisfying un0(Rb) = 0  [289]. The index b thus labels a series 

of trilobite states with specific bond lengths and nodal structure; at these Rb also the 

wave function is dominated by just a few eigenfunctions of the Schrödinger equation 

in elliptical coordinates [136]. 

Here we show that it is possible to create these chemical bonding orbitals with the 

ground state atom absent, and for this reason we refer to the electronic wave function 

(Eq. 9.1) as a ghost chemical bond. By employing a carefully engineered sequence of 

alternating magnetic and electric fields, we evolve the wave function from an isotropic 
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Figure 9.1. A gallery of n = 70 ghost molecular bonds, depicted as isosur-
faces, defined where |Ψ(x, y, z)|2 is C% of Max  (|Ψtrilobite(Rb=1; x, y, z)|2). 
They are cut away to reveal the inner structure. The Rydberg ion, not 
to scale, is the green sphere and the green line (1.1×104a0 long) provides 
a scale. (a) A b = 3 trilobite; (c) an even-parity collinear b = 1 trilo-
bite trimer. The color scheme is bright blue when C = 15.4, darker blue 
when C = 1.54, and transparent blue when C = 0.308. (b) a butterfly 
with R0 = 653; (d) the deepest Stark state. The color scheme is bright 
blue when C = 1.54, red when C = 0.154, and translucent pink when 
C = 1.54 × 10−2 . 
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ns state into precisely the same orbital that would form a chemical bond if a ground 

state atom were located at Rb. The time evolution is described via unitary operators 

in degenerate perturbation theory. A gradient ascent algorithm derived from optimal 

control theory optimizes the field sequence to ensure excellent overlap with the target 

trilobite state. Several possible detection mechanisms are proposed as ways to image 

and study this chemical bond. Fig. 9.1 displays several ghost chemical bonds for 

n = 70, revealing their key properties. Perhaps the most distinctive characteristic of 

trilobite bonds is their nodal structure: as b increments by one, a new lobe in the 

direction perpendicular to the intermolecular axis appears (a b = 3 trilobite is shown 

in Fig. 9.1a). Moreover, they are remarkably localized, maximally so in the b = 1  

trilobite shown in Fig. 9.2f, where 20% of the electron density occupies a region 

around the ghost atom smaller than 0.1% of the total classically allowed volume. 

The butterfly molecule chemical bond (Fig. 9.1b) has a bond length an order of 

magnitude smaller than the trilobite, and the wave function, fanning out into a 

winglike structure, fills much more of the classically allowed volume. In addition to 

these ghost orbitals, we can also form polyatomic Rydberg molecules such as those 

discussed in chapter 4 (Fig. 9.1c). Equation 9.6 gives cnl,x 
b for these Rydberg chemical 

bonds [4,95,289]. The Stark state (Fig. 9.1d) as well as the Zeeman state (Fig. 9.2b) 

highlight the fact that even highly localized electron wave functions in static fields 

are entirely different from Rydberg molecule wave functions. 

Fig 9.2 depicts the experimental implementation of this concept. First, a hydro-

gen atom is excited to an ns Rydberg state. Next, a magnetic field ramps on to 

a final amplitude B. Immediately following the end of the ramp, a sequence of N 

electric field pulses of amplitude F are applied. After the N th pulse the magnetic 

field ramps off. For the n = 70 Rydberg state considered here, the ramp times 

are typically tens of μs, while the electric field durations and separations are sev-
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Figure 9.2. The proposed scheme, illustrated with the n = 70, b  = 1  
trilobite and the same color scheme as in Fig. 1. a) An nS Rydberg 
state is created. b) The magnetic field ramps on, creating a quadratic 
Zeeman state. c,d) Many short electric field pulses are applied over the 
constant magnetic field background, creating complicated superpositions 
of the degenerate states. At different points in the sequence, marked blue 
in the field sequence sketch, the wave function is strongly mixed. e) At 
the end of the sequence of electric field pulses, a proto-trilobite is created. 
The magnetic field ramps off and this state evolves into the trilobite state, 
f), which is detected. 
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eral nanoseconds each, lasting in total several tens of μs as well. This whole process 

thus occurs within the natural radiative and blackbody lifetime of the Rydberg state. 

The trilobite molecule is particularly long-lived, more so than the butterfly molecule, 

since it is an admixture of predominantly high−l states and is therefore mostly af-

fected by blackbody radiation. We set a conservative lower lifetime bound at 200μs; 

this time increases approximately linearly with decreasing ambient temperature, ex-

tending to several milliseconds at 10K [12,290–293]. As lower l states “bleed” away, 

the dominant components of the trilobite molecule persist, leading to the remark-

able scenario where the Rydberg electron remains localized in a small point several 

hundreds of nanometers away from the proton for many dozens of microseconds. 

Interesting effects arise if a small electric field is pulsed on in this final state. The 

2πghost chemical bond will revive every τ = 
3Fn

, which is about 37 ns for a 0.1V/cm 

electric field. Furthermore, the decay mode of the ghost molecule will change as the 

Stark-shifted trilobite state is no longer degenerate. It will decay as one quantum 

state, as expected from Fermi’s golden rule, following a rate dominated by its high−l 
components. 

Since molecular spectroscopy, the usual technique used to detect Rydberg mol-

ecules, is not applicable in the present scenario, a different detection scheme is de-

sired. A method which can directly observe the wave function, rather than a more 

indirect observable, is additionally advantageous. Two possible detection techniques 

along these lines involve field ionization. In Stark photoionization spectroscopy, the 

electron is photoionized and detected on a distant screen. This maps the real-space 

electron wave function into Stark states, but unfortunately the theoretical descrip-

tion and extraction of the wave function’s properties is too imposing for this to be 

a robust and clear method in the present context [294–296]. A related, but more 

straightforward, technique is ionization by half-cycle pulses [297, 298]. A half-cycle 
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Figure 9.3. Momentum-space probability distributions for the n = 70  
b = 3 trilobite dimer (a) and trimer (b). Both are symmetric about 
θk = π 

2 and, when multiplied by k4 , are logarithmically symmetric about 
k = 1/n. The scaling factor Sk = (θk + 0.1) was included to enhance the 
visibility of the distinctive features at large θk. 

pulse along the z axis imparts a momentum kick to the Rydberg electron, and if 

the electron’s increased energy is sufficient to overcome the ionization potential it 
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will be detected. A measurement of the electron current is therefore proportional to 
∞ |Ψ(k)|2d3k, where  k is the momentum of the electron. A very similar ob-
kz kx,ky 

servable is obtained in Compton scattering [299]. kz is determined by the momentum 

kick, so by varying this the probability density that the electron had momentum kz 

Figure 9.4. The quantity k2FT Rb; k for the n = 30  b = 1  and  b = 3  

trilobites. The scaling factor k2 is added to improve visibility of small 
features. This function is also symmetric about θk = π 

2 . n = 30  was  
chosen to connect back to the very first trilobite molecule prediction [40]. 
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and any value of kx and ky can be obtained. Although the simplicity of this approach 

is attractive, much of the detailed structure of the wave function is averaged over 

and obscured. 

Two methods measure the Rydberg wave function much more directly: electron 

momentum (e, 2e) spectroscopy and x-ray diffraction. In (e, 2e) spectroscopy an 

electron with momentum k0 collides with the Rydberg electron, which has momentum 

k. Both elastically scatter into plane waves with momenta ka and kb, and are detected 

in coincidence. The triply-differential cross section for this process is [300–302] 
2d3σ(e,2e) 4kakb ˜= Ψ(Rb; k) , (9.2)

d a bdEb k0|k0 − ka|4 

where  i is the solid angle in which electron i is detected, and Eb is the energy 

of electron b. This expression is valid provided that the electron-electron collision 

is fully elastic, requiring large momentum transfer k0 − ka, large momenta values 

throughout, and energies significantly higher than the ionization potential of the 

Rydberg electron [300, 302]. The experimental geometry determines the specific 

form of the kinematic factor |k0 − ka|−4 and the relationship between k, ka, and  
2 

˜kb. The direct proportionality to the electron’s momentum density Ψ(Rb; k) is a 

highly attractive feature for the desired detection scheme. We thus focus not on 

the specific experimental design but instead on the key features of the momentum 

density. Typically only spherically averaged cross sections are measured [302] since 

most samples are isotropic, but trilobite-like orbitals are particularly advantageous 

since they are aligned in the direction of the control fields, even after these fields are 

turned off. 

A complementary technique is x-ray diffraction, characterized by the differential 

scattering probability [303] 

dσ dσth 
2 

ik·rd3 = |Ψ(Rb, �r)|2 e r , (9.3)
d  d  
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dσthwhere is the Thomson cross section. The differential cross section is no
dΩ 

longer proportional to the momentum density, but to the Fourier transform of the 

electron density itself, creating another window into the electronic structure of these 

ghost orbitals. These two fundamental observables, | ̃  and FT (Rb; k) =Ψ(Rb; k)|2 

ik·rd3|Ψ(Rb; r)|2 e r, are plotted for some illustrative cases in Figs. 9.3 and 9.4. As 

expected from Fourier analysis, the momentum-space wave functions in Fig. 9.3 

mirror the symmetries and nodal structure present in the real-space wave functions, 

and therefore unambiguously determine the electronic character. Three clear ridges 

mirror the three nodes in the b = 3 trilobite, and the even-parity trimer possesses 

additional nodes overlapping these ridges showing the absence of odd-parity compo-

nents. The symmetries in θk and k also relate to the symmetry of the real-space wave 

function. The Fourier-transformed electron density has many of these same features, 

although it is no longer symmetric about k = 1/n, and instead has a prominent 

feature near k = 2/n. It is also significantly smaller in magnitude and less clear 

to interpret, although the major nodal features corresponding to the trilobite lobes 

are still apparent. More details and examples of real and momentum space wave 

functions are shown in Appendix E. 

Let us now delve into the time evolution of the system and control-theory algo-

rithm in more detail. Our ability to prepare these exotic chemical bonds hinges on 

the fact that Rydberg electrons are strongly affected by external fields. These can be 

employed to manipulate the electronic wave function into classical wave-packets [22], 

circular states [304], or exotic giant-dipole configurations [305]. The enormous extent 

of Rydberg wave functions creates large transition dipole matrix elements, facilitat-

ing easy control even with weak field strengths. The Stark and quadratic Zeeman 

matrix elements scale as Fn2 and B2n4 , respectively, where F and B are electric and 

magnetic field amplitudes [12]. 
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We describe the time evolution caused by these time-dependent field pulses using 

degenerate first-order perturbation theory. The electronic wave function is expanded 

into the degenerate stationary Rydberg states of a given n with time-dependent 

coefficients: Ψ(r, t) =  l cl(t)φnl(r). In a parallel field configuration ml is still a 

good quantum number, so we consider only the ml = 0 subspace. In a time period 

Δtbi when the electric field is zero, the Hamiltonian is HB = H0+
B 
8 

2 
r2 sin2 θ. Likewise, 

when the electric field is nonzero for a time period Δti
f , HF = HB + Fr  cos θ. In  the  

degenerate subspace of a single n manifold, the action of H0 is irrelevant and can be 

set to zero; the operators HB and HF are then diagonalized to obtain the diagonal 

eigenvalue matrices b, f and eigenvector matrices Ub, Uf , respectively. 

During each Δt the Hamiltonian is time-independent, so the evolution of the 

initial state is computed by iteratively acting on it with the unitary time evolution 

operator for each pulse until the final time is reached: 

N 

cf = XB 
† Ube −iΔtbi bUb 

−1Uf e −iΔt fi f Uf 
−1 XB c0. (9.4) 

i=1 

−iΔtrampbUbXb = Ube −1 is the field ramp operator. We have represented the time-

dependent coefficients in vector form; the goal is to match the engineered state cf with 

the target state, cT . Their similarity is characterized by the fidelity Φ = |� cT |cf �|2 . 

After choosing the field amplitudes and initial ramp times, determining XB, the only 

input needed to determine the final state are the 2N time periods, Δti
f and Δtbi . 

The set of all possible pulse sequences {Δtbi , Δti
f } form a highly multi-dimensional 

control landscape in which the fidelity Φ({Δtbi , Δtf }) must be optimized. Numerical i 

tests have shown that N scales as O(n). This nonlinear optimization problem is 

impervious to analytical solution or blind Monte Carlo simulation, but a gradient 

ascent algorithm starting with a random set of pulse durations finds optimal Δtb,fi 

parameters giving local maxima in Φ remarkably efficiently. Unlike many problems 
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Figure 9.5. Details of the proposed scheme for the four orbitals shown in 
Fig 9.1. a) l-distributions as a function of time, spanning from l = 0  on  
the left to l = 69 on the right. The orange overlay in the final state shows 
the exact distribution. The orange overlay shows the exact distribution. 
The b = 3 trilobite is focused on in panels b and c: b) The field pulses 
responsible for this process. The electric fields are turned on in black 
regions and off in white regions. c) The fidelity, on a logarithmic scale, 
as a function of time. 

where major effort is needed to numerically calculate the gradient [306], in the present 
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case the gradient is given analytically (without loss of generality here is the partial 

derivative with respect to Δtf ):j 

∂Φ ∂ �cf 
= cT cT |cf + c.c. (9.5)

f f∂Δt ∂Δtj j 

N
∂ �cf f

i 
b
i 

δij† −iΔt bUb 
−1Uf 

−iΔt f Uf 
−1−if= XB Ube XB c0.e

f∂Δtj i=1 

O
i 

After finding this gradient, the full set of parameters {ΔtO} is shifted in the direction i 

 Φof the steepest change in the fidelity, Δti
O → Δti

O + ε , where  ε is a variable 
 Δt 

stepsize and O represents either f or b. 

Numerical experiments reveal several generic features of the behavior of this gra-

dient ascent approach and the optimal parameters it produces. First, every optimal 

pulse sequence is primarily determined by the distribution of values in the initial 

guess, typically drawn from a uniform distribution of experimentally realistic values. 

This implies that there are effectively infinitely many good pulse configurations. One 

of these pulse sequences is shown in Fig. 9.5b, and a full data table of this sequence 

along with others which create the other chemical bonds in Fig. 9.1 is given in the 

supplementary information. The non-uniqueness of the solutions implies that Φ is 

not convex, so there is no guarantee that a gradient ascent algorithm will discover 

global maxima. Surprisingly, our simulations found that, provided enough pulses 

(typically N ≈ 2n) of adequate duration (∼ 10s of ns) are used, almost all sequences 

thus obtained were optimal, satisfying Φ > 0.999. Finally, methods that attempt 

to increase the fidelity monotonically with each pulse appear impossible. Fig. 9.5 c 

shows log10 Φ: at no time prior to the final step of evolution does the fidelity seem 

to increase above 0.01, nor does it increase monotonically in time. 

These findings are corroborated by various results of optimal control theory [307]. 

The existence of multiple solutions has been well-known since early studies of quan-
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tum control [308, 309], and quite general quantum proofs exist demonstrating that 

the topology of quantum control landscapes are very favorable to simple extrema 

search algorithms. Only globally maximal seams exist in a sufficiently large param-

eter space; local maxima do not exist [310–312]. Due to these general principles, 

it is justifiable to restrict the initial guess to realistic experimental values for the 

field strengths and durations, rather than directly implementing these constraints 

into the search algorithm. This works excellently given the incredible flexibility of 

possible solutions [308, 313]. The lack of local maxima, given the landscape is not 

overly constrained [310], guarantees that optimal solutions are found rapidly without 

needing more complicated genetic algorithms or stochastic optimizers. 

The complex quantum pathways the wave function evolves along necessitate very 

stringent control over the field amplitudes and pulse timing. The experiment must 

be very well shielded from stray fields so that the control field amplitudes can be 

specified to better than 10 μV/cm and 1 mG. Rydberg atoms themselves can be used 

as highly sensitive field sensors [18, 314]. The pulse timing should be controlled to 

femtosecond precision to match the reported data in the supplementary information. 

These error bounds correspond to a 10% reduction in the fidelity from a theoretically 

optimal value. This sensitivity seems to stem from the cancellations that have to 

occur in the exponential factors of Eq. 9.4 and the large variation in field operator 

eigenvalues. It is therefore likely an intrinsic aspect of such high Rydberg states 

rather than a poorly informed optimal control theory approach, although it could 

be possible to construct an optimization cost function to penalize highly sensitive 

solutions. Additionally, these high sensitivities may require more precise theoretical 

methods to compute the time evolution as effects beyond first-order perturbation 

theory are near to this level of accuracy; the proof of principle demonstrated here 

will still persist in more sophisticated approaches. 
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The parameter ranges of this scheme were designed based on the following phys-

ical considerations. 

Relativistic effects. The fine structure breaks the exact degeneracy of nl states with 

low l. The  70p1/2,3/2 (70d3/2,5/2) levels are split by ≈ 0.25(0.085) MHz. Precession 

between different ml states caused by the np splitting over the time scale of the ex-

periment introduces undesirable decoherence. To avoid this problem a magnetic field 

of 100G is applied to access the Paschen-Back regime and eliminate this precession 

by energetically separating ml = 0 levels. 

Magnetic fields. These relatively large magnetic fields are also necessary since the 

quadratic Zeeman term is very small compared to the linear Stark shift. It is chal-

lenging to change fields of this strength quickly due to the self-inductance of the 

electronics. We have adopted the slew rate 10G/5μs of state of the art magnetic 

field coils developed to quench ultracold atomic species [315]. 

Pulse sequence and field strength parameters. There is considerable flexibility in the 

initially guessed pulse distribution. The simplest theoretical choice is simply to draw 

the initial distribution randomly from a region of experimentally realistic values. The 

range of these values should be limited to reduce the overall time. The optimized 

field pulses then closely mirror this initial distribution due to the incredible mul-

tiplicity of optimal configurations and their sensitivity. Sequences leading to very 

good fidelity can also be found with an initial configuration of equal-duration pulses, 

although with somewhat more difficulty since the parameter space is less robust. Set-

ting N = 130 essentially guaranteed Φ > 0.999 regardless of the initial distribution, 

while for N = 120 high fidelities Φ ≈ 0.99 were always achieved but Φ > 0.999 was 

not. For N even as low as 70 Φ ≈ 0.9 reliably. Likewise the field amplitudes can be 

adjusted to better conform to a specific experiment. The magnetic field amplitude 

should be fairly large, as described above, while the electric field amplitude should 
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not be large enough that different Rydberg levels together can mix together. For 

n = 70 this restricts it to not far exceed the 0.1V/cm employed here. 

Rydberg levels High principal quantum numbers are needed to ensure that the above 

constraints are sufficient, but also increase the theoretical complication and exper-

imental limits on sensitivity. The benefits are contingent on various Rydberg scal-

ing laws: the fine structure splitting decreases as O(n−3), magnetic field effects 

increase as O(n4), and the natural and blackbody radiative decay rates decrease 

as O(n−3) − O(n−5) (depending on l) and  O(n−2), respectively. The number of 
pulses and electric field influence increase as O(n) and  O(n2), respectively, and the 

electron’s momentum decreases as O(n−1); the sensitivity to error and difficulty of 

detection are thus increased at high n. Additionally, first-order perturbation theory 

starts to become less accurate at higher n due to the decreasing (as O(n−3)) sepa-
ration between Rydberg manifolds. n = 70 functions in our exemplary calculations 

as a convenient middle ground, but the wide range of theoretical and experimental 

constraints mean that this choice is quite flexible depending on the circumstances. 

Calculation details The specific field configurations for Fig. 9.5 are included 

in table 1 of the supplementary information. We chose n = 70, Bmax = 100G, 

Fmax = 0.1V/cm, and N = 130. Δti
b and Δti

f were chosen randomly from the 

ranges {200, 400} and {20, 60}ns, respectively. The ability to of the gradient as-

cent algorithm within this scheme to find optimal solutions is surprisingly robust to 

variations of all these parameters. Scaling laws can also be used to vary the param-

eters. The system is invariant under the transformations F → F , B → B F/F , 
ΔtOi → ΔtOi (F/F), and Tramp → Tramp(F/F)3/2 . 
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Orbital details The (unnormalized) final state coefficients are given by: 

c b = φnl0(Rb) (9.6)nl,trilobite 

b ∂φnl0 
c = (9.7)nl,butterfly ∂Rb 

b (1 ± (−1)l) b c = √ c (9.8)nl,even/oddparitytrimer nl,x 
2 

evaluated at the bond positions Rb which are determined for each state by finding 

the minima of |cb |2 
l nl,x . 

The momentum-space wave function for a trilobite-like orbital characterized by 

bcoefficients c isnl,x 

l=n−1 bc
˜ l=l0 nl,xFnl(k)Yl0(θk, φk)
Ψ(Rb; k) =  n−1 ; (9.9)|cb |2 

l=l0 nl,x 

2(n − l − 1)! 222(l+1)l!n lklFnl(k) =  −(−i)l n (9.10)
π(n + l)! 

n2k2 − 1 × (n 2k2 + 1)−l−2C l+1 , (9.11)n−l−1 n2k2 + 1  

where Ci
j is the Gegenbauer polynomial of degree i and order j; these “radial” mo-

mentum space wave functions were calculated shortly after the solution of the quan-

tum mechanical hydrogen atom [316]. The Fourier-transformed real-space electronic 

density is described in the supplementary information. 

In this section we have presented a method to form and detect exotic ultra-long-

range ghost chemical bonds consisting of just one atom. The electron, depending 

on the type of bond desired, can be either forced to localize very tightly on one or 

more positions in space, as in the trilobite molecules, or to spread out into an ex-

otic fan-like structure, as in the butterfly molecule. A carefully controlled sequence 

of applied electric and magnetic fields is capable of emulating the Fermi pseudopo-

tential responsible for the formation of Rydberg molecules by neutral perturbers. 
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These pulse sequences are designed efficiently using a gradient ascent algorithm, and 

excellent fidelity ( 99.9%) can be reached with typical laboratory fields and time 

scales. The stringent control requirements on the field amplitudes and pulse timings 

are certainly major experimental hindrances, requiring excellent shielding towards 

stray fields over the course of the experiment and accurate control of applied field 

strengths. The energy scales and system complexity studied here are a novel regime 

for optimal control theory, which is typically applied to smaller systems with only a 

few energetically accessible quantum states. One can envision even more exotic ghost 

states to investigate in the future, such as extended configurations like the trimer 

molecules shown here with several more “ghost” atoms spaced along a line, or even 

(if the ml = 0 restriction is abandoned and the full degenerate Hilbert space of size 

n2 is explored) polyatomic orbitals without cylindrical symmetry. The theory could 

be likewise extended to atoms with quantum defects, or as mentioned previously, to 

include nonperturbative field effects. The proposed detection methods are equally 

applicable to typical Rydberg molecules, and direct observations of their electronic 

densities, even time-resolved studies, could be implemented independently of the 

“ghost” molecule proposed here [317, 318]. 

9.2 Other alkali atoms 

In recent years, alongside the growth of Rydberg molecules, the ultracold com-

munity has become very intrigued by mixtures of fermions and bosons in the quan-

tum degenerate regime, which are now possible for a wide range of atomic species 

[319, 320]. Many fascinating experiments can now be performed. For example, the 

presence of one species can enhance the stability of the condensed phase of the other. 

Few-body physics is also enriched: recombination between species leading to unusual 
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few-body bound states such as Efimov trimers with favorable mass ratios [321–323]. 

The creation of ultracold polar molecules in their rovibrational ground state has be-

come a very popular topic, and has resulted in the creation of nearly every bi-alkali 

combination. Since direct cooling of molecules is far harder than cooling atoms, a 

highly attractive alternative is then to begin with ultracold atoms, and photoassoci-

ate them into polar molecules. [229, 324–328]. 

This section presents two long-term aims motivated by these recent experimen-

tal developments. First, to calculate molecular properties of homonuclear Rydberg 

molecules in the light alkali atoms Li, Na, and K. These light alkali atoms have been 

almost completely ignored thus far in the Rydberg molecule community, but are the 

subject of recent interest [114]). Some preliminary calculations of the n = 30  poten-

tial energy curves are presented here using the phase shifts calculated in section 2.3.1. 

Secondly, we want to calculate properties of heteronuclear Rydberg molecules. The 

emphasis here is to find scenarios where the different atomic properties – their quan-

tum defects, electron-atom scattering phase shifts, hyperfine splittings, and masses 

– conspire to bestow attractive properties onto these Rydberg molecules. Fortuitous 

degeneracies, either in the quantum defects [5,154] or in the hyperfine/fine structure 

splittings [150,161], have been explored already in homonuclear molecules; heteronu-

clear systems offer a greatly expanded parameter range to explore. These systems 

can also provide environments to study fundamental atomic properties, i.e. scatter-

ing lengths, shape resonance positions, ion-neutral scattering interactions, that are 

quite difficult to study otherwise. It is our goal that this broad survey of molecular 

and atomic properties will guide more involved future efforts to expand this field 

to a much wider parameter regime, and could provide means of studying chemical 

reactivity at much larger scales than experienced among ground state atoms and 

molecules. 
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39K∗Figure 9.12. Potential energy curves for 87Rb (red) and 87Rb2 

(black), in both cases relative to the n = 30 state. Vertical spikes are a 
numerical artifact of the p-wave potential. 
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Figure 9.13. Trilobite potential energy curves for 39K∗ 87Rb (red) and 
87Rb2 (black), in both cases relative to the n = 30 state. Vertical spikes 
are a numerical artifact of the p-wave potential. 
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Figure 9.14. One possible system for future study discussed in Chapter 
10: a long-range anionic molecule, formed from a ground state atom (red 
sphere) and a doubly excited H− resonance state whose angular states 
hybridize to form a permanent dipole and whose electronic wave function 
is a Bessel function of imaginary order. 
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10. CONCLUSIONS AND OUTLOOK 

The study of ultra-long-range Rydberg molecules has matured into a vibrant and 

dynamic field since its origin almost two decades ago. Substantial effort on the the-

oretical side has extended the scope of this field to include more interesting physics, 

but most exciting has been the tremendous experimental accomplishments within the 

last decade. We have focused on several aspects of these molecules in this present 

work. In the polyatomic direction, we developed a theory of polyatomic Rydberg 

molecules with arbitrary numbers of constituent atoms in a variety of configurations. 

We emphasized the construction of symmetric orbitals due to their ability to dis-

entangle the complicated structure of the potential energy curves and to reveal the 

mathematical elegance of point group symmetries. Our inclusion of the p-wave inter-

action, of substantial importance in the heavy alkali atoms, is an important addition 

to the theory. Our further studies into the effects on states of low angular momentum 

and into the effects of disordered perturber placement have been substantial steps 

forward. Although the focus in this study has been on the breathing modes due to 

their relative simplicity, many of these extensions are readily applicable to polyatomic 

systems without this restriction. The hydrogen line broadening study presented is 

the first step in this direction, and similar ideas may be useful in interpreting Rb line 

shapes taken from very dense clouds. In the future, several exciting opportunities 

come to mind. First, the work presented here can be readily used to study the effects 

of symmetry breaking in these molecules. One could begin with a structural study 

of Rydberg trimers or tetramers, which would exhibit respectively Renner-Teller 
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and Jahn-Teller effects as they distort away from symmetric geometries. This could 

be applied more generally to non-adiabatic effects and conical interesections in the 

structure and dynamics of ultra-long-range Rydberg molecules. Finally, the ability 

to form Rydberg molecules in an optical lattice has been established [156], and this 

could lead to a wide range of fascinating work using highly symmetric polyatomic 

Rydberg molecules which span multiple lattice sites. 

Secondly, we explored some of the novel possibilities stemming from the creation 

of these molecules in non-alkali atoms. Specifically, we predicted that Ca*-Ca polar 

trilobite molecules can be readily formed via two-photon excitation. We also exam-

ined the effects of Rydberg states that have significant character in Rydberg series 

converging to two spin-orbit split thresholds, and predicted that interesting potential 

energy curves exhibiting two dramatically different length scales can be obtained by 

exploiting this channel mixing. These molecules could therefore be photoassociated 

into states having radically different bond lengths at very similar energies. The dra-

matic recent successes at Rice University using Sr have shown that these experiments 

are promising, and we expect that the examples discussed in chapter 5 will spark 

further interest in complex, multichannel atomic species in the near future. 

Third, we developed a complete theoretical picture for these Rydberg molecules 

including all their spin degrees of freedom, which has already been utilized in sev-

eral theoretical and experimental studies. Future work here should focus on finding 

methods to improve the convergence of the diagonalization approach, or else to ex-

tend the Green’s function or related methods to include these spin properties. The 

calculations for Rydberg molecules involving lighter alkali atoms and heteronuclear 

configurations presented in the previous chapter are also founded on this full theory. 

Eventually its extension to polyatomic homonuclear and heteronuclear molecules 
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would be desirable to uncover the rich and detailed physics in these complicated 

systems. 

Fourth, we studied the interactions between polar Rydberg molecules, focusing on 

butterfly states due to their recent experimental observation. These results showed 

that the dipole-dipole interaction is enormous in these molecules, making them lead-

ing candidates for such studies. These sorts of calculations could easy be extended to 

other fascinating scenarios, such as the possible formation of bound tetramer states 

between two Rydberg molecules, or interactions between trilobite-like molecules and 

other bare Rydberg atoms. These same ideas, coupled with the polyatomic studies 

of chapter 4, could be relevant to Rydberg-Rydberg macrodimers and trimers. 

The interplay of these molecular systems with external electric and magnetic fields 

is another interesting field of research with strong applications towards quantum 

control and manipulation. A particularly delicate example of this was shown in 

chapter 9, where electric and magnetic fields can be used to emulate the effect of a 

ground state atom on a solitary Rydberg atom. 

We have also studied negative ion photodetachment in highly excited regimes. 

Our calculations are in excellent agreement with recent experimental work, and novel 

predictions for even higher excited states were made in addition to an improved 

interpretation of these previous observations. Further work is still required to fully 

understand the resonance structure of these partial cross sections and identify the 

physical causes of any resonant behavior, particularly to understand if it can be linked 

with the long-range physics of these systems. In the opposite regime, electron-atom 

interactions at very low energy was also studied in order to obtain very accurate 

scattering phase shifts of relevance to Rydberg molecules. To further combine these 

two systems, an interesting system to explore in greater detail is that of a doubly 

excited hydrogen anion near a perturber ion. Since, in the non-relativistic limit, the 



258 

degeneracy of hydrogenic states leads to a linear Stark effect, these doubly excited 

states are truly bound in a dipole potential which gives rise to Rydberg-like states 

whose sizes and lifetimes grow exponentially. The primary challenge to observing a 

type of “long-range anionic molecule” lies in the very short lifetimes of these doubly 

excited states. If sufficiently long-lived states can be found, this concept should give 

rise to novel bound states where two neutral objects, the excited hydrogen atom and 

a ground state pertuber, are bound together by a single electron. 



APPENDIX 
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A. SYMMETRY-ADAPTED ORBITALS 

We first present an example of how to calculate one matrix representation of a 

symmetry operation. The example molecule will have four atoms arranged in a 

tetrahedron, belonging to the point group Td. The atoms are placed equidistant 

from the Rydberg core at the origin and, in order from A to D, at  (θ, ϕ) values 

(0, 0), (b, 0), (b, 2π/3), (b, 4π/3), where b = arccos(−1/3). According to equations 

(4.13-4.14) the θ, ϕ butterfly orbitals are thus parallel to the unit vectors sin θẑ  − 

cos θ cos ϕx̂ − cos θ sin ϕŷ  and sin ϕx̂ − cos ϕŷ, respectively. Plugging in the actual 

values for these angles gives the four unit vectors for both orbitals: 
√ √ √ 

x̂ 2 2 x̂ ŷ  2 2 x̂ ŷ  2 2 
θ : −x,ˆ + z,̂ − + √ + z,̂ − − √ + z.̂ 

3 3 6 2 3 3 6 2 3 3 √ √ 
3 ŷ 3 ŷ  

ϕ : −y,̂ −y,̂ x̂+ , − x̂+ . 
2 2 2 2 

As the example symmetry operation we choose one of the C3 operations correspond-

ing to a rotation about the z axis by 2
3 
π radians. This cyclically rotates the three 

atomic labels not along the z axis, so that the symmetry operation for the trilobite 

orbital is ⎞⎛⎞⎛⎞⎛ 
ψA ⎜⎜⎜⎜⎜⎜⎝ 

1 0 0 0  

0 0 1 0  

0 0 0 1  

ψA⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎠ 
ψB 0 1 0 0  ψD 

⎟⎟⎟⎟⎟⎟⎠ 

⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎠ 

. 
ψC ψB 

= 
ψD ψC 

https://4.13-4.14
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The rotation matrix in coordinate space corresponding to this symmetry operation 

is ⎛ ⎞√ 

−1 3− 0
2 2 √ 
3 −1 

2 

⎜⎜⎜⎝ 

⎟⎟⎟⎠ (A.1)0
2 

0 0 1 

which then must act on the orbitals. For example the θ orbital originally at A, −x̂, 
is rotated to become: ⎛⎞⎛ ⎞⎛⎞√ 

1 −1 3−
2 −10

2 √ 
3 
2 

2⎜⎜⎜⎝ 

⎟⎟⎟⎠ 
= 
⎜⎜⎜⎝ 

⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

⎟⎟⎟⎠ 

√ 
3 
2 −1 

2 
. (A.2)0 0 

0 0 0 1 0 

The linear combination of θ and ϕ butterfly orbitals at A that equals (1
2 , − 

√ 

2
3 , 0)T 

are then solved, giving √ 

(ψθ
A) = − 

1 
2 
ψθ
A + 

3 ϕ
B.ψ (A.3)

2 
θ
BLikewise, the rotation matrix acting on the orbital ψ rotates it to: ⎛⎞⎛ ⎞⎛⎞√ 

−1 
6 −1 3−

2 
10

2 3 

0 
√ 

⎜⎜⎜⎝ 

⎟⎟⎟⎠ 
= 
⎜⎜⎜⎝ 

⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

⎟⎟⎟⎠ 

√ 
1√ 

2 3 √ 

3 
2 −1 

2 
(A.4)0 . 

2 2 2 20 0 1
3 3 
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The resultant vector is identified as the θ orbital at C, so the permutation of labels 

was sufficient here and there is no mixing of angular butterfly orbitals. In the end, 

the enlarged symmetry operation matrix is ⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

√ 

−1 30 0 0  0 0 0
2 2 

0  0 1 0  0  0 0 0  

0  0 0 1  0  0 0 0  

0  1 0 0  0  0 0 0  
√ 
3 −1− 0 0 0  0 0 0
2 2 

0  0 0 0  0  0 1 0  

0  0 0 0  0  0 0 1  

0  0 0 0  0  1 0 0  

⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.5) 

The presence of negative or fractional values on the diagonals is what contributes to 

the trace of P̂ j , giving different decompositions. 
(j,α)

The coefficients Ap are given here for the example symmetries. The rows of 

each matrix correspond to a given irrep j labeled in the first column; each column 

thereafter corresponds to a diatomic orbital at Rp. For the octagon the labeling sim-

ply proceeds around the octagon; the first four columns of the cube correspond to the 

upper layer ordered counter-clockwise viewed from above; the final four correspond 

to the bottom layer ordered identically. 
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These coefficients are, for the octagonal molecule, ⎞⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

A1 1 1 1 1 1 1 1 1 

B2 1 −1 1 −1 1 −1 1 −1 
E1 1 a 1 0 −1 −a −1 0 

E1 −1 0 1 a 1 0 −1 −a 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

A1,2,3 = C8v 
E2 1 0 −1 0 1 0 −1 0 

E2 0 1 0 −1 0 1 0 −1 
E3 −1 a −1 0 1 −a 1 0 

E3 −1 0 1 −a 1 0 −1 a 

A2 1 1 1 1 1 1 1 1 

B1 1 −1 1 −1 1 −1 1 −1 
E1 −1 0 1 a 1 0 −1 −a 

E1 1 a 1 0 −1 −a −1 0 

⎞⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

A4 = C8v 
, 

E2 0 1 0 −1 0 1 0 −1 
E2 1 0 −1 0 1 0 −1 0 

E3 −1 0 1 −a 1 0 −1 a 

E3 −1 a −1 0 1 −a 1 0 
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√ 
a = 2. As described in section 4.2 the θ-butterfly is decoupled for all co-planar 

molecules. For the cubic molecule, ⎞⎛ 

1,2A = Oh 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

A1g 1 1 1 1 1 1 1 1 

A2u 1 −1 1 −1 −1 1 −1 1 

F1u 1 −1 1 −1 1 −1 1 −1 
F1u −1 0 1 0 1 0 −1 0 

F1u 0 1 0 −1 0 −1 0 1 

F2g 1 1 1 1 −1 −1 −1 −1 
F2g 0 −1 0 1 0 −1 0 1 

F2g 1 0 −1 0 1 0 −1 0 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 
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⎞⎛ 

A3 = Oh 

E1 1 1 1 1 −1 −1 −1 −1 
E1 0 0 0 0 0 0 0 0 

E2 1 −1 1 −1 1 −1 1 −1 
E2 0 0 0 0 0 0 0 0 

F1g b 0 −b 0 b 0 −b 0 

F1g 0 b 0 −b 0 b −b 0 

F1g 0 0 0 0 0 0 0 0 

F1u 1 1 1 1 1 1 1 1 

F1u 0 −1 0 1 0 1 0 −1 
F1u 1 0 −1 0 −1 0 1 0 

F2g 1 −1 1 −1 −1 1 −1 1 

F2g −1 0 1 0 −1 0 1 0 

F2g 0 1 0 −1 0 1 0 −1 
F2u b 0 −b 0 −b 0 b 0 

F2u 0 b 0 −b 0 −b 0 b 

F2u 0 0 0 0 0 0 0 0 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 
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⎞⎛ 

A4 = Oh 

E1 0 0 0 0 0 0 0 0 

E1 1 1 1 1 −1 −1 −1 −1 
E2 0 0 0 0 0 0 0 0 

E2 1 −1 1 −1 1 −1 1 −1 
F1g 0 1 0 −1 0 −1 0 1 

F1g 1 0 −1 0 1 0 −1 0 

F1g 1 0 −1 0 1 0 −1 0 

F1u 0 0 0 0 0 0 0 0 

F1u b 0 −b 0 b 0 −b 0 

F1u 0 b 0 −b 0 b 0 −b 
F2g 0 0 0 0 0 0 0 0 

F2g 0 b 0 −b 0 −b 0 b 

F2g b 0 −b 0 −b 0 b 0 

F2u 0 −1 0 1 0 −1 0 1 

F2u 1 0 −1 −0 1 0 −1 0 

F2u 1 −1 1 −1 −1 1 −1 1 

, 

√ 
b = 3. 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 
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B. FURTHER DETAILS: POLYATOMIC RYDBERG 

MOLECULES 

This appendix justifies the method discussed in Section 4.5, using a more formal 

derivation and a Hamiltonian of the form H = H0 + T + B + J . H0 is the Rydberg 

Hamiltonian, while T and B are general operators that can either represent two dif-

ferent perturbers or, as labeled here, trilobite and butterfly s-wave pseudopotentials. 

We can, without loss of generality, choose only two of these operators since the for-

malism developed in section 4.1 using the trilobite overlap matrix shows that these 

terms are essentially equivalent, so the generalization to include an arbitrary number 

of perturbers and all four partial wave terms is obvious from the set up here. J is any 

sort of additional operator, such as an external field. We diagonalize H in a basis 

of a single hydrogenic manifold for notational simplicity, although in a real calcula-

tion additional manifolds are included and the structure of the following equations 

scales appropriately. We reorder the basis in such a way as to clump eigenstates with 

vanishing quantum defects, the “high-l” states, in a block, and the “low-l” states in 

another block. This gives the matrix equation 

Here = − is the hydrogenic energy level and Qll = − Ill are the quantum 

⎡⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎤ ⎛ ⎞ ⎛ ⎞ 
Thh⎣⎝ 

Thl Bhh⎠ + ⎝ 
Bhl⎠ + ⎝ 

�Ihh 0hl Jhh⎠ + ⎝ 
Jhl ch ch⎠ = E .⎠⎦ ⎝ ⎝ ⎠ 

Tlh Tll Blh Bll 0lh Qll Jlh Jll cl cl 

1 1 
22n 2(n−μl)2 

defect-shifted energy eigenvalues of the low-l states. 

We next change the basis of the high-l coefficients to one defined: 

ch = (th, bh, V hh−2) · ah, 
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where the h × h matrix defined there consists of the known trilobite and butterfly 

eigenvectors (or trilobite eigenvectors corresponding to different perturber locations, 

etc...), and the remaining columns are orthogonal to these vectors. Inputting this 

into our matrix equation, further partitioning the vector ah = (t1, b1,�ah−2)†, and  

expressing the Fermi pseudopotential matrix elements using their separable form, we 

obtain: 

⎞⎛⎞⎛ 

⎡ ⎢⎢⎢⎢⎢⎣ 

† † † † † † † †bh Vhh−2 thφ bhb bhb bh bhb Vhh−2 bhψtht th tht tht thh h h l ⎠ +⎝ h h h l⎝ ⎠ 
† † †φlt th φlt bh φlt φlφ

† ψlb
† th ψlb

† bh ψlb
† ψlψ

† 
h h hVhh−2 l h h hVhh−2 l 

⎞⎛⎤ ⎥⎥⎥⎥⎥⎦ 

⎜⎜⎜⎜⎜⎜⎝ 

t1 

b1 

ah−2 

cl 

⎟⎟⎟⎟⎟⎟⎠ 

⎞⎛⎞⎛ 
�th �bh �Vhh−2 0hl ⎠ + 

J thh h⎝ 
Jhhbh JhhVhh−2 Jhl⎝ ⎠+ 

0l1 0l1 0lh−2 Qll Jlhth Jlhbh JlhVhh−2 Jll 

⎞⎛ ⎜⎜⎜⎜⎜⎜⎝ 

t1 

b1 

ah−2 

cl 

⎟⎟⎟⎟⎟⎟⎠ 

⎞⎛ 
Eth Ebh EVhh−2 0hl⎝ ⎠= . 
0l1 0l1 0lh−2 Ill 

This equation cleans up substantially once we replace γ11 = th 
† th, γ12 = th 

† bh, etc  in  

preparation for the final answer. These are the eigenvalues and overlaps of the Fermi 
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pseudopotential matrices. We also eliminate terms which vanish due to orthogonality. 

This reveals: 

⎞⎛⎞⎛ 

⎡ ⎢⎢⎢⎢⎢⎣ 

thγ11 thγ12 0hh−2 thφ
† 
l bhγ21 bhγ22 0hh−2 bhψl 

† ⎝ ⎠ +⎝ ⎠ 
φlγ11 φlγ12 0lh−2 φlφl 

† ψlγ21 ψlγ22 0lh−2 ψlψl 
† 

⎞⎛⎤ ⎥⎥⎥⎥⎥⎦ 

⎜⎜⎜⎜⎜⎜⎝ 

t1 

b1 

ah−2 

cl 

⎟⎟⎟⎟⎟⎟⎠ 

⎞⎛⎞⎛ 
�th �bh �Vhh−2 0hl Jhhth Jhhbh JhhVhh−2 Jhl⎝ ⎠ +⎝ ⎠+ 
0l1 0l1 0lh−2 Qll Jlhth Jlhbh JlhVhh−2 Jll 

⎞⎛ ⎜⎜⎜⎜⎜⎜⎝ 

t1 

b1 

ah−2 

cl 

⎟⎟⎟⎟⎟⎟⎠ 

⎞⎛ 
Eth Ebh EVhh−2 0hl⎝ ⎠= . 
0l1 0l1 0lh−2 Ill 

The final step is to multiply the above by the matrix ⎞⎛ ⎜⎜⎜⎜⎜⎜⎝ 

†th 0 
†bh 0 

V † h−2h 0 

0 Ill 

⎟⎟⎟⎟⎟⎟⎠ 

. 
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from the left. This then gives a matrix equation of the form: ⎞⎛⎞⎛⎡ 
γ11φ

† 
l γ12ψl 

†γ11γ11 γ11γ12 0hh−2 γ12γ21 γ12γ22 0hh−2⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎠ 

+ 

⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎠ 

⎢⎢⎢⎢⎢⎣ 

γ21φ
† 
l γ22ψl 

†γ21γ11 γ21γ12 0lh−2 γ22γ21 γ22γ22 0hh−2 

0 0 0 0 0 0 0 0 

φlγ11 φlγ12 0hh−2 φlφl 
† ψlγ21 ψlγ22 0lh−2 ψlψl 

† ⎞⎛ ⎜⎜⎜⎜⎜⎜⎝ 

�γ11 �γ12 0hh−2 0hl 

�γ21 �γ22 0hh−2 0hl 

0 0 �Ihh−2 0 

0l1 0l1 0hh−2 Qll 

⎟⎟⎟⎟⎟⎟⎠ 

+ 

⎞⎛⎤⎞⎛ ⎜⎜⎜⎜⎜⎜⎝ 

†thJhhth 
†t Jhhbhh

†t JhhVhh−2h
†thJhl 

†bhJhhth 
†b Jhhbhh

†b JhhVhh−2h
†bhJhl 

V † h−2hJhhth V † Jhhbhh−2h V † JhhVhh−2h−2h V † h−2hJhl 

⎜⎜⎜⎜⎜⎜⎝ 

⎥⎥⎥⎥⎥⎦ 

⎟⎟⎟⎟⎟⎟⎠ 

t1 

b1 

ah−2 

⎟⎟⎟⎟⎟⎟⎠ 

+ 

Jlhth Jlhbh JlhVhh−2 Jll cl ⎞⎛⎞⎛ ⎜⎜⎜⎜⎜⎜⎝ 

Eγ11 Eγ12 0hh−2 0hl 

Eγ21 Eγ22 0hh−2 0hl 

0 0 EIhh−2 0 

⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎠ 

t1 

b1 

ah−2 

⎟⎟⎟⎟⎟⎟⎠ 

.= 

0l1 0l1 0hh−2 Ill cl 

From this it is clear that, apart from the matrix operator for the external interac-

tion which breaks the high−l degeneracy, all the matrices are block diagonal and, 

removing the trivially zero components, are of the form ⎞⎛ ⎜⎜⎜⎝ 

γ1iγi1 + �γ11 γ1iγi2 + �γ12 γ11φ
† 

i i l 

† 
i γ2iγi1 ++  �γ21 i γ2iγ21 + �γ22 γ21φl 

φlγ11 φlγ12 φlφl 
† + Qll. 

⎟⎟⎟⎠ 

If all the low-l terms of this matrix are removed, can be set to zero since it is just an 

overall energy scale and, replacing these γ terms with the relevant trilobite overlap 
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matrices one obtains again the formalism of chapter 4. Keeping these couplings gives 

the same matrix elements as those developed in section 4.5. 

Finally, we note that to include N > 1 n manifolds we would simply lump all 

low-l states together into a larger sub-block, and include additional coupling terms 

for each manifold. Thus rather than having 2×2 matrices as in the above derivation, 

one would have matrices with dimension 2N + 1. For example, for two rather than 

one manifold the matrix terms would be replaced as follows: ⎞⎛ ⎞⎛ ⎜⎜⎜⎝ 

T11 T12 T1l 

T21 T22 T2l 

⎟⎟⎟⎠ , 
Thh Thl⎠ →⎝ 
Tlh Tll 

Tl1 Tl2 Tll 

where T11, T22 are Thh within manifolds 1 and 2 separately, T12 is a high-high cou-

pling matrix between the two manifolds, and T1l, T2l couple the high-l states of each 

manifold to the total set of low-l states. 
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C. MQDT CLOSED-CHANNEL ELMINATION IN THE 

S-MATRIX FORMALISM 

Alternatively, the MQDT calculation presented in chapter 5 can be accomplished 

with the S matrix formalism, starting with 

Mii (r) =  fi(r)δii − gi(r)Kii (r). (C.1) 

S is writted in terms of the in/outgoing wave functions: 

Mii (r) =  √ 
i 
(−f+ + f−)δii − √ 

1
(−f+ − f−)Kii 

2 2 

= √ 
1
(fi 

+(r)δii + ifi 
+Jiβ Iβi 

−1) − √ 
1
(fi 
−δii − fi 

−iJiβIβi 
−1)

i 2 i 2 
1 1 

=⇒ Mii Ii β = Fiβ = √ fi 
+(r)(Iiβ + iJiβ ) − √ fi 

−(r)(Iiβ − iJiβ). 
i 2 i 2 

This is how we can rewrite our original solution, Fiβ(r), in terms of (f+, f−), and 

then manipulate this solution to obtain the scattering boundary conditions: 

Mii (r) =  Fiβ (Iiβ + iJiβ)
−1 

= √ 
1 

fi 
+(r) − √ 

1 
fi 
−(r)Sii 

† . 
i 2 i 2 

Notice that this then connects with the original relationship between S and K: 

I−1I − iJ 1 − iK 
S† = (I − iJ)(I + iJ)−1 = · = ii I−1I + iJ 1 + iK 

1 + iK 
=⇒ S = . 

1 − iK 
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Once again we partition the matrices into open/closed channel pieces to obtain: ⎡ ⎤ ⎡ ⎤ 
S† S†Moo Moc 1 1 oo oc⎣ ⎦ = √ f+(r) − √ f−(r) ⎣ ⎦ 

i 2 i 2 S† S†Mco Mcc co cc ⎡ ⎤ 
Bo 1 

M (−)(r) =  M ⎣ ⎦ =⇒ M− = √ (−f−S† Bo + (f
+(r) − f−S† )Bc).co c co c c cc

i 2Bc 

The asymptotic expressions for f± are 

±iβ −ν κrf± →∝ e r e . (C.2) 

Thus, at long range 

−iβ S† iβ − e −iβ S†M− = √ 
1
(−e Bo + (e )Bc)co co cc

i 2 
1 −iβ (−S† − (S† 2iβ )Bc = √ e coBo cc − e ). 

i 2 

Once again this constrains the elements Bc to eliminate the divergent terms: 

2iβ )−1S†Bc = −(Scc 
† − e coBo. (C.3) 

If there are no open channels then Bo vanishes and instead 

2iβ)Bc(Scc 
† − e = 0;  (C.4)  

The bound state energies occur when det(Scc 
† −e2iβ) = 0 We can substitute this value 

back in to Mco 
− to obtain the closed-channel coefficient 

Mco 
− = √ 

1 
((fc 

+(r) − fc 
−Scc 

† )Bc)
i 2 
1 2iβ )Bc = √ (fc 

+(r) − fc 
−(r)e 

i 2 
i −iβi f+ i

f− iβi iβi Bc = −√ e + √ e (−e )
2 2 

iβi Bc = W (r, νi, li)(−e ). 
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D. B-SPLINES 

B-splines were utilized to calculate the one-electron basis set for electron-atom scat-

tering and negative ion photodetachment. This appendix gives some important de-

tails about how they work. First, one defines a set of knots, which define the regions 

where the B-splines are nonzero. A convenient choice for Coulombic potentials places 

these knots on a square root mesh. Extra knots must be placed at the boundaries 

to create the appropriate boundary conditions. Their Mathematica implementation 

uses the following logic: 

• O + 1 knot points are placed at the boundaries, where O is the order of the 

splines. This ensures that the degree zero spline, which covers O knots, is 

completely zero, while the degree one(two) splines go to the first(second) non-

boundary knots such that they are one(zero) at the boundary. In this way 

one can set either the wave function or its derivative to zero on the boundary, 

depending on the desired boundary conditions. 

• All splines of degree 2 and higher are zero at the boundary (and analogously 

at the right boundary). Therefore, box boundary conditions require that only 

splines with 2 ≤ degree ≤ N − 1 are included. 

• N is the total number of splines, and is equal to K − O − 3, where K is the 

number of knot points. Alternatively, if the initial knot points are distributed 

over X points (not counting the additional knots required at the boundaries), 

then N = X + O. 
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• Since the splines are non-orthogonal, a generalized eigenvalue problem Ax = 

bOx must be solved, where O is the overlap matrix. All matrices involving B-

splines are conveniently sparse due to the compact support of the B-splines: the 

product of two splines of degree i and j times any other function is manifestly 

zero unless |i − j| ≤ O. 

To utilize these B-splines, we expand the one-electron wave-function into the spline 
i=N −1basis set, unl(r) =  ciB

d(x), where Bi(x) are the B-splines of degree i andi=2 i 

order d, and the summation limits assume closed boundary conditions. Then, the 

Schrödinger equation becomes: 

Hij cj = EnlOij cj (D.1) 
x0 

Oij = Bd(x)Bd(x)dxi j (D.2) 
x0 

Hij = 
x0 1 d d 

Bd Bd(x) (x) +  V (x)Bd(x)Bd(x)dx,i j i j2 dx dxx0 

(D.3) 

where V (x) is the potential energy, and the use of a Bloch operator to make the 

kinetic energy operator Hermitian is avoided by using Green’s theorem. The limits 

of integration, x0 and x0, are determined just by finding the knot points determining 

where both B-splines are non-zero. Solution of Eq. D.1 gives the box states. For 

wave functions which fit inside the box, these solutions have negative eigenvalues 

and correspond to real electronic states, while positive energy solutions provide a 

pseudocontinuum basis. 
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E. GHOST TRILOBITES: ADDITIONAL INFORMATION 

The matrix elements necessary to calculate the time-evolution of the Rydberg state 

are: 

(l< + 1)2 

l| cos θ|l = δl,l ±1 (E.1)
(2l< + 1)(2l< + 3)  

2(l2 + l − 1) (l< + 2)2(l< + 1)2 

l| sin2 θ|l = δll − δl,l ±2 (E.2)
(2l + 3)(2l − 1) (2l< + 5)(2l< + 3)2(2l< + 1)  

2l+l +2 (n − l − 1)!(n − l − 1)!
Rk = (E.3)nl,n l nl+2n l +2 (n + l)!(n + l )! ⎛ ⎞⎛ ⎞ 

m=n−l−1 n + l n + l ⎝ ⎠⎝ ⎠× 
n − l − 1 − m n − l − 1 − m 

(k + m + m + l + l + 2)!  

m,m =0 

× ,
k+3+l+l +m+mn+n 

nn 

where () are binomial coefficients. The “radial” momentum-space wave functions, 

2(n − l − 1)! n2k2 − 1222(l+1)l!nFnl(k) =  −(−i)l n lkl(n 2k2 + 1)−l−2C l+1 ,n−l−1π(n + l)! n2k2 + 1  

(E.4) 

possess a symmetry under the change of variables nk = ax, where  a is some constant. 

For simplicity, if a is e, 

2(n − l − 1)! 222(l+1)l!n lklFnl(x) =  −(−i)l n e −2x(sinh(x))−l−2C l+1 (tanh(x)) ,n−l−1π(n + l)! 

(E.5) 
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From inspection this function possesses a mirror symmetry (odd or even depending 

on the parity of n) about  x = 0 when multiplied by e2x . This is the reason for the 

symmetry about k = 1/n of the function |k2Ψ(k)|2 . 

The Fourier transform of the electronic density is more involved than the calcula-

tion of the momentum wave functions. We proceed in the usual fashion, expanding 

the plane wave into spherical harmonics: 

d3 d3 re ik·r|Ψ(Rk, �r)|2 = rclck4πi
pjp(kr)unl(r)unk(r)Yl0(r̂)Yk 

∗ 
0(r̂)Yp 

∗ 
0(r̂)Yp0(k̂) 

l,k,p ⎛ ⎞ 

= 4π 
l,k 

p=l+k 

ipclck 

p=|l−k| 

(2l + 1)(2p + 1)(2k + 1)  l p⎝
4π 0 0  

k ⎠ 
0 

2× drjp(kr)unl(r)unk(r)Yp0(k̂). 

Here cl, ck are the coefficients determining the orbital state. This radial integral can 

be evaluated in terms of hypergeometric functions following Eq. 40 of Ref. [317]. 

The following table shows the 130-pulse sequences used to make 99.9% molecular 

bonds corresponding to the first figure. Top row: the type of bond (trilobite, k = 

1, k  = 3; triatomic trilobite with k = 1; butterfly). Total time, including field ramps, 

in ns. The left column of each is the duration of the electric field pulse, while the 

right column is the interval in between electric field pulses. 130 pulses are used each 

time. Times are reported in ns. 
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Figure E.1. Four real-space wave functions, plotted in cylindrical coordi-
nates. a) b = 1 trilobite; b) b = 3 trilobite; c) b = 1 trilobite trimer; d) 
b = 3 trilobite trimer. 
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Figure E.2. Four momentum space wave functions, plotted in spherical 
coordinates. a) b = 1 trilobite; b) b = 3 trilobite; c) b = 1 trilobite trimer; 
d) b = 3 trilobite trimer. 
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Figure E.3. Four real-space wave functions, plotted in cylindrical coor-
dinates. e) b = 48 trilobite; f) butterfly; g) stark state; h) b = 1 trilobite, 
84% match. . 
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Figure E.4. Four momentum space wave functions, plotted in spherical 
coordinates. e) b = 48 trilobite; f) butterfly; g) stark state; h) b = 1  
trilobite, 84% match. 
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k = 1 (1-65) (66-130) 143649 k = 3 (1-65) (66-130) 144631 trimer (1-65) (66-130) 144583 btfly (1-65) (66-130) 144578 

36.0129 239.973 32.2792 224.897 30.6755 285.278 28.2444 295.56 35.4941 317.394 34.9943 371.849 60.3706 367.018 60.7922 228.261 

47.4666 296.119 34.6906 224.662 59.6629 244.097 58.1024 266.409 41.2067 227.01 61.6375 330.277 39.8348 200.876 58.1241 242.571 

30.0045 371.947 52.899 399.063 22.901 227.233 32.7547 254.69 37.1052 359.677 24.865 352.076 26.4902 305.972 38.5931 399.63 

26.9364 305.557 32.3173 369.321 43.4052 329.984 57.4415 252.275 22.7512 274.308 53.14 250.2 59.5579 220.389 45.8705 378.874 

48.2474 390.364 21.6446 326.888 46.8757 205.56 57.1991 327.417 43.174 316.964 45.5835 343.93 35.2915 219.911 42.8275 286.915 

35.3907 286.297 49.5366 256.09 52.8709 362.685 30.79 381.279 52.2115 320.772 31.6169 316.027 28.1597 206.653 36.5052 366.661 

30.4024 323.885 39.0652 315.117 36.9635 298.669 26.7545 357.504 44.5726 303.069 30.7177 327.868 54.4036 259.798 36.5816 335.232 

56.3999 209.329 44.7074 381.198 20.7992 395.597 23.3285 395.421 30.6065 352.557 50.4794 213.035 24.8793 296.894 25.1104 357.093 

45.9804 236.636 21.7709 326.225 39.8652 274.949 46.741 383.931 30.5509 315.958 52.9686 292.449 43.5578 313.587 40.7838 328.844 

21.4295 335.036 57.9015 352.016 29.2127 373.025 56.8444 210.272 54.4517 295.954 30.9039 355.396 56.7162 245.521 35.0073 236.966 

22.8669 367.902 54.4536 290.009 48.6238 397.661 32.1329 370.697 58.3629 329.656 38.9009 376.617 37.5066 220.36 19.574 365.431 

32.0231 383.247 31.783 255.278 58.3326 345.844 21.8744 356.343 50.6946 376.125 55.3135 335.137 20.4112 393.853 35.8386 321.852 

60.2675 265.296 48.1839 315.093 45.4129 202.377 47.0193 276.46 38.8064 228.696 49.6757 363.387 40.9484 363.069 45.881 268.174 

38.8887 223.329 60.4721 250.07 51.7152 395.18 46.6587 288.208 32.8958 319.173 32.5454 251.306 51.8996 363.292 33.9069 373.105 

58.0465 334.239 48.1055 212.31 22.0069 341.64 41.3305 210.498 50.8416 340.081 47.9297 280.926 39.7599 249.473 33.4779 207.189 

57.5267 389.306 35.8335 217.65 26.2229 242.293 41.0315 299.244 49.1342 238.827 34.8307 273.306 57.2002 399.043 34.7687 222.04 

23.5209 394.01 38.2097 201.5 50.2489 299.515 23.5623 219.671 30.9119 200.408 44.5811 278.972 32.0786 282.291 29.7687 305.958 

54.5002 295.453 29.6287 285.938 54.3202 286.47 43.2787 296.826 22.971 226.089 35.117 337.097 32.5831 322.687 37.8944 305.699 

39.4703 206.331 32.3441 258.172 56.3983 307.395 24.8648 379.713 24.3993 219.168 43.812 236.388 20.0271 361.559 47.3182 360.582 

56.7084 256.443 30.9668 263.233 55.9024 259.512 29.4882 202.415 52.3659 334.999 28.1357 246.272 27.731 272.172 34.3291 340.796 

28.0783 230.737 46.2487 379.572 31.1048 200.4 53.7477 385.433 22.6289 341.545 58.1248 365.036 35.2022 338.487 34.9558 330.768 

27.4159 360.588 54.245 337.983 39.6045 336.299 58.7858 351.59 36.6224 348.738 55.4131 282.814 40.0481 338.553 36.2144 356.28 

28.0018 209.663 51.2241 254.757 26.7141 204.882 56.6222 247.432 50.4774 308.945 48.6759 227.929 30.2489 326.799 36.7335 264.212 

41.1562 375.336 54.7605 249.41 41.1233 273.923 46.0954 381.257 28.8492 242.746 29.9056 268.698 24.4098 216.463 37.3114 275.256 

23.6961 269.633 45.594 358.763 32.4852 281.958 35.3781 388.049 40.7027 235.288 42.5593 229.814 37.4246 291.68 55.8091 232.417 

44.193 239.039 21.8992 259.108 38.1478 384.26 48.7241 396.525 26.8742 378.235 35.1144 352.779 33.0148 326.247 44.7961 248.977 

46.8809 266.353 26.2047 314.306 32.0011 217.978 31.4193 296.609 47.0053 242.595 55.8567 205.326 21.356 256.536 22.7177 360.936 

27.4893 233.389 60.5374 213.329 55.9752 288.14 51.5617 357.951 56.9714 333.463 55.9697 277.301 58.0937 307.07 36.4336 375.12 

59.4849 241.986 22.2376 380.693 59.7606 348.423 26.5195 371.158 37.708 392.821 28.0426 252.5 35.9571 239.647 45.9658 304.406 

22.6778 288.645 23.7563 237.295 51.8483 352.026 34.3525 300.214 53.9524 229.21 39.4129 295.992 49.3244 278.39 30.0952 379.697 

31.5342 215.259 38.1811 364.905 24.84 351.879 54.7173 234.761 37.2985 219.555 37.558 383.275 34.4936 291.086 41.2862 314.257 

47.0625 292.209 20.9276 246.949 58.3077 268.378 31.1896 369.958 53.0096 238.627 36.2796 220.377 50.1296 297.785 40.6829 232.539 

36.8888 382.182 29.8878 378.93 44.0284 278.645 44.8019 269.558 26.9275 247.854 58.1631 326.799 23.9885 365.504 38.6288 225.26 

21.9193 280.661 24.6508 282.762 41.7882 298.654 31.932 220.334 54.7396 250.558 33.0521 318.584 51.5307 296.675 22.5173 342.054 

20.2117 368.671 34.157 345.272 32.4352 262.323 23.4262 334.959 31.6746 364.349 42.9386 392.974 53.9926 233.198 40.3963 241.13 

34.0221 384.654 27.9355 250.431 45.3283 316.765 22.251 235.589 46.3985 339.204 45.9787 238.165 39.6537 279.727 25.4145 289.824 

43.1697 352.925 39.9112 305.71 58.4723 232.633 25.6947 327.89 26.5834 342.254 46.7611 259.763 50.0239 353.974 47.5152 216.052 

32.9205 270.138 53.0118 375.556 57.6169 314.096 26.5022 277.831 48.5323 282.514 26.0348 330.627 27.7551 222.77 42.6354 267.576 

37.0737 212.815 39.453 368.708 46.1446 285.484 52.1491 257.077 52.9682 337.359 25.494 303.908 37.3639 374.937 49.3535 312.226 

43.3936 367.695 37.5166 364.99 26.4938 306.158 54.108 305.788 48.049 398.049 45.5871 228.933 39.1577 220.815 25.2979 246.669 

55.2011 366.178 26.5726 309.188 45.6729 399.616 58.3289 297.998 25.9886 242.361 36.7109 227.367 55.7195 354.727 33.6709 268.085 

27.6309 260.188 45.2975 263.423 42.7266 348.977 32.0211 208.119 48.9908 325.304 47.0478 287.425 39.606 278.581 42.3664 274.643 

42.9364 333.198 36.1652 214.373 35.4476 213.432 36.2285 260.191 30.7462 286.924 54.5021 350.246 40.0968 216.426 39.8083 295.178 

40.0133 259.606 28.0009 273.357 30.2824 274.801 43.815 346.334 37.7796 360.876 30.659 258.053 46.6367 301.11 39.2659 273.952 

33.0666 218.466 22.2618 341.86 40.8836 346.152 50.3911 387.497 59.8862 332.371 47.8343 344.693 46.8011 239.983 22.707 337.213 

54.7871 373.83 33.7303 399.873 41.4858 328.858 34.361 327.299 25.0457 351.478 24.1661 205.396 23.2958 298.147 23.9924 398.095 

54.3451 397.18 22.9229 224.574 53.4793 384.304 27.7848 291.853 24.7318 292.757 49.4903 319.222 49.2207 319.552 29.7442 319.683 

57.8814 328.957 46.1466 327.839 56.6214 216.886 36.1084 210.678 37.0623 271.255 26.2631 213.913 31.7887 300.338 53.9314 372.497 

31.5916 346.092 53.2207 213.49 40.233 264.668 38.8696 301.498 51.1656 246.016 39.0814 269.016 56.8078 283.341 45.7196 326.861 

24.6633 231.851 46.8305 234.938 47.705 242.544 34.5773 389.282 50.2561 352.668 45.4389 345.164 43.4683 365.088 40.0147 381.293 

54.3504 261.233 50.3357 344.638 29.0366 231.35 46.7124 363.397 36.3142 265.519 39.3281 396.8 40.7234 362.227 52.517 348.404 

32.1983 389.8 36.9001 331.687 21.2776 223.807 32.3433 329.799 41.0068 275.675 26.0152 377.603 49.116 310.698 55.5193 380.661 

22.6872 274.048 29.8008 215.523 28.3009 381.216 45.6109 352.837 55.9664 386.452 52.1098 221.565 33.4176 330.421 51.5434 322.372 

43.4619 358.925 50.3533 207.864 19.7572 305.762 46.3676 378.444 29.6656 316.855 43.691 309.508 35.0741 336.073 25.6841 326.033 

28.8527 252.449 52.4104 221.434 56.604 202.659 28.8499 233.439 34.2256 390.769 49.2657 312.438 27.3429 212.455 24.8583 251.831 

39.4534 305.38 52.7095 205.81 21.9487 236.969 59.5223 366.226 38.1006 283.029 25.9424 387.424 44.9696 387.841 25.2758 266.513 

30.43 241.009 21.9003 237.052 55.7136 306.774 22.2856 350.021 51.914 309.416 19.6119 290.035 37.1665 381.029 56.1465 274.791 

27.3553 332.955 34.6828 332.034 31.3573 365.94 36.114 285.159 34.6322 371.574 53.2117 380.421 25.9724 392.491 29.341 206.092 

54.0787 245.303 32.9304 269.907 35.8464 263.302 52.1255 285.945 32.4816 212.59 51.8562 359.448 27.8902 311.855 43.1052 279.411 

37.2938 295.502 40.6183 344.606 23.9831 216.722 23.9845 353.351 35.1543 382.07 43.5743 204.431 22.9743 391.437 58.5682 369.634 

56.3689 237.913 26.4251 212.98 52.1499 310.168 46.6141 238.038 43.5145 258.071 38.2452 374.988 40.0114 250.353 21.3546 301.212 

40.6591 359.133 57.6148 379.082 59.4687 292.52 41.9842 396.399 33.234 209.186 39.4088 262.242 59.7528 316.438 42.0565 381.647 

34.8486 322.082 25.6399 396.547 43.7048 375.261 26.1372 330.203 43.1673 337.063 22.405 350.151 20.0563 394.524 22.1436 311.549 

52.8148 250.462 31.7913 205.877 35.9426 363.576 39.6143 308.127 29.5018 340.9 49.5556 332.431 22.7972 352.624 41.8479 250.578 

55.5378 314.747 49.2313 381.603 59.3795 210.514 22.9112 270.785 29.643 373.777 57.0129 283.93 25.3702 383.803 59.5442 203.046 

Table E.1. 



REFERENCES 



284 

REFERENCES 
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[24] D. E. Chang, V. Vuletić, and M.D. Lukin. Quantum nonlinear optics photon 
by photon. Nature Photonics, 8:685, 2014. 

[25] M. Fleischhauer and M. D. Lukin. Dark-state polaritons in electromagnetically 
induced transparency. Phys. Rev. Lett., 84:5094–5097, 2000. 

[26] T. Peyronel, O. Firstenberg, Q-Y Liang, S. Hofferberth, A. V. Gorshkov, 
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[258] H. P. Büchler, E. Demler, M. Lukin, A. Micheli, N. Prokof’ev, G. Pupillo, and 
P Zoller. Strongly correlated 2D quantum phases with cold polar molecules: 
controlling the shape of the interaction potential. Phys. Rev. Lett., 98:060404, 
2007. 

[259] S. Giovanazzi, A. Görlitz, and T. Pfau. Tuning the dipolar interaction in 
quantum gases. Phys. Rev. Lett., 89:130401, 2002. 
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