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GLOSSARY 

Botnet – A botnet is a network of compromised devices used by a botnet owner to perform 

various malicious tasks. The devices – often personal computers – called “Bots” 

are under the control of a human “Botmaster.” 

Ensemble method - An ensemble method is an approach that makes a set of classifers into 

an ensemble by combining the prediction from each classifer possibly with 

weights. It is regarded as one of the methods for improving the accuracy. 

Machine learning algorithm - A machine learning algorithm refers to an algorithm that is 

used to generate a statistical model from input data for various purposes from new 

incoming data. In practice, the former phase is called training, and the latter is 

called testing. 
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ABSTRACT 

Author: Ryu, Songhui. M.S. 
Institution: Purdue University 
Degree Received: May 2018 
Title: Comparison of Machine Learning Algorithms and Their Ensembles for Botnet 

Detection 
Major Professor: John Springer 

A Botnet is a network of compromised devices controlled by a botmaster often for 

nefarious purposes. Analyzing network traffc to detect Botnet traffc has historically been 

an effective approach for systems monitoring for network intrusion. Although such 

system have been applying various machine learning techniques, little investigation into a 

comparison of machine algorithms and their ensembles has been undertaken. In this study, 

three popular classifcation machine learning algorithms – Naive Bayes, Decision tree, 

and Neural network – as well as the ensemble methods known to strengthen said 

classifers are evaluated for enhanced results related to Botnet detection. This evaluation is 

conducted with the CTU-13 public dataset, measuring the training time and accuracy 

scores of each classifer. 
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CHAPTER 1. INTRODUCTION 

This chapter provides an overview of the research study. It introduces the research 

questions and covers the research signifcance, assumptions, limitations, and delimitations 

which defne the extent of the study. 

1.1 Research Question 

For botnet detection, which machine learning algorithm and related ensemble 

method for classifcation are the most accurate? 

A botnet, which is a network of compromised devices, is an ongoing threat to 

cybersecurity. Controlled by a hacker referred to as a botmaster, the botnet is used to 

execute Denial of Service attacks, send spam emails, steal personal information, etc. 

Because the botmaster communicates with his botnet via a Command & Control (C&C) 

server, the network traffc that the botnet generates can be traced. 

Machine learning algorithms have been used to detect botnet traffc from the 

ongoing fow of network. Even though there are some previous studies about botnet 

detection using machine learning, the accuracy of ensemble methods for botnet detection 

is still in question. While ensemble methods were designed to strengthen machine 

learning algorithms, are they indeed effective and effcient on botnet detection as well? 

This can be evaluated by comparing the accuracy of each algorithm and its ensembles on 

botnet traffc dataset. 

1.2 Scope 

In terms of cybersecurity, network traffc is one of the main types of data that 

researchers want to investigate as most of the cybersecurity threats – including Denial of 
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Service, spam emails, malware, or worms – are executed remotely through the internet 

(Salem, Hershkop, & Stolfo, 2008). 

One of the challenges in network traffc analysis is that the amount of the data to 

be processed is enormous. This big data, however, can be a beneft for machine learning, 

which requires signifcant amounts of data input for its training. The author explored 

which machine learning algorithms would provide the most accurate botnet detection 

results out of network traffc. The traffc for the evaluation should resemble real-world 

traffc and be labeled for the classifcation while the machine learning algorithms for 

classifcation were selected based on their popularity for anomaly detection (Salem et al., 

2008). Furthermore, to measure the accuracy of the trained model, The F1 score and the 

Matthews correlation coeffcient (MCC) score were used. The F1 score is well known to 

compare the difference between two different data and to fnd their similarity. The MCC 

does the same work; however, it is well known to be more accurate for skewed data. 

For the study, the CTU-13 dataset – a public botnet traffc dataset generated by 

Garcia et al. (2014) – was used. This dataset provides a set of refned real botnet traffc 

with each network fow labeled. 

1.3 Signifcance 

Silva, Silva, Pinto, and Salles (2013) indicated botnet has been growing as a 

signifcant threat since the frst botnet, EggDrop, was reported in 1993. For example, 

Chandrasekar et al. (2017) reported that the Necurs botnet was one of the most active 

distributors of malware in 2016. Observing just one day on November 24, 2016, Necurs 

sent fve spam runs that generated more than 2.3 million spam emails including JavaScript 

downloaders, VBS, and .wsf attachments. Also, according to the same report 

(Chandrasekar et al., 2017) the Mirai botnet drove the largest DDoS attack ever recorded 

in 2016 on the French hosting company OVH peaking at 1Tbps. The Mirai botnet mostly 
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targeted IoT devices, such as home routers, DVRs, and internet-connected cameras. As 

Gartner predicted that there will be more than 20 billion IoT devices in the world by 2020 

(van der Meulen, 2017), it is important that botnets such as Mirai are addressed. 

The speed of its growth is also rapid. In the most recent report from Spamhaus 

(Spamhaus Botnet Threat Report 2017, 2018), the number of Control and Command 

server (C&C), which botmasters use to communicate with bots, hosted by Amazon in 

2017 increased 6 times against that of 2016. All the other botent-hosting Internet Service 

Providers within top 10 rank in the report also increased in the number of C&Cs by at 

least 3 times against the previous year. 

Obviously, because there is no solution to stop hackers from attacking a network 

or a host, prevention methods that prohibit the attack before the attacker starts the task 

have been discussed. Even though there are previous studies where the researchers make 

use of different machine learning algorithms to detect botnet detection (Livadas, Walsh, 

Lapsley, & Strayer, 2006; Lu, Rammidi, & Ghorbani, 2011; Sangkatsanee, 

Wattanapongsakorn, & Charnsripinyo, 2011; Strayer, Lapsely, Walsh, & Livadas, 2008), 

still the accuracy and performance of ensemble methods for botnet detection have not 

been discussed yet. In this regard, this study evaluated the several popular machine 

learning algorithms for classifcation along with their ensembles. This would be a help 

future researcher to decide which algorithms they want to choose during their preparation 

of Intrusion Detection System. 

1.4 Assumptions 

The study required a collection of data that includes botnet traffc and a library that 

provides reliable machine learning algorithms. Regarding with those, the following 

assumptions had been made. 
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1. The CTU-13 dataset shows similar patterns, characteristics, and the types of traffcs 

with the real-world network traffc. 

2. The normal and background traffc in the CTU-13 dataset do not carry malicious 

traffc such as traffc of another botnet. 

3. The Scikit-learn library provides algorithms that work in the same way or similarly 

with other machine learning libraries, such as Tensorfow, Caffe, etc. Therefore, the 

evaluation results from the same algorithm with the same dataset will be similar 

regardless of libraries. 

1.5 Limitations 

The limitations associated with the study are: 

1. As the packet traces as pcap fles are enormous and need to be aggregated into 

fows, such as NetFlow. 

2. While Scikit-learn library only handles numeric data type such as integer and foat, 

the data includes string types as well. For example, TCP, UDP, ICMP, etc. are 

values of the Protocol feature, and SR A, INT, FA R, etc. are values of the Flags 

feature. Therefore, a proper preprocessing of the data is essential. 

1.6 Delimitation 

The delimitations of this research include: 

1. For the evaluation, this study used the NetFlow data that was aggregated out of pcap 

fles by Garcia et al. (2014) 
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2. Therefore, this study did not cover feature extraction by using already refned data 

from the previous study. 

3. This study took into account 3 datasets among 13 total datasets that were chosen 

because of their relatively higher ratio of botnet traffc. 

4. This study focused on evaluating which ML algorithm and ensemble methods 

would be effective for botnet detection and did not consider deploying the 

evaluation process into an actual intrusion detection system. 

1.7 Summary 

This chapter provided the scope, signifcance, research question, assumptions, 

limitations, delimitations, defnitions, and other background information for the research 

project. 
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CHAPTER 2. REVIEW OF LITERATURE 

This chapter provides a review of the literature relevant to botnet detection and 

machine learning technologies for classifcation. 

2.1 Botnet 

Botnet history dates back at least 1993 when EggDrop had emerged with the new 

concept that the victim device is connected to an IRC channel to listen for malicious 

commands from a Botmaster (Silva et al., 2013). Traditionally, botnets have been 

featuring centralized architectures where a botmaster uses a Control and Command 

(C&C) server to communicate with the bots as shown in Figure 2.1. The advantage of 

using a C&C server is that it enables quick communication and easy monitoring. 

However, a centralized architecture also means that the C&C server itself can be a single 

point of failure (Micro, 2006; Wang, Sparks, & Zou, 2010). For the protocol, Internet 

Relay Chat (IRC) has been used popularly because of its fexibility. The IRC protocol 

supports not only group multicast but also unicast between two members, which enables a 

botmaster to carry out an attack to a specifc group in the botnet (Grizzard, Sharma, 

Nunnery, Kang, & Dagon, 2007). However, despite those benefts of the IRC, IRC is 

vulnerable to interruption and easy to detect because it is not popular in corporate 

networks. For this reason, HyperText Transfer Protocol (HTTP), which is one of the most 

common traffc in networks, has become popular for the C&C communication (Micro, 

2010). Botnet also has a decentralized architecture based on peer-to-peer (P2P) protocol 

as shown in Figure 2.1. Because there is no central server for a botnet, it is more diffcult 

to destroy a P2P botnet because detecting a number of bots does not guarantee they make 

up the entire botnet (Grizzard et al., 2007). 
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Figure 2.1. A centralized botnet architecture. 

Figure 2.2. A decentralized P2P botnet architecture. 

2.2 Machine Learning for Classifcation 

“An Intrusion detection system (IDS) aids the network to resist external attacks by 

providing a wall of defense to confront the attacks of computer systems on Internet (Tsai, 
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Hsu, Lin, & Lin, 2009).” Moreover, “studies make use of either a single machine learning 

techniques or a combination of multiple machine learning techniques, in the form of 

classifers that are used to determine whether the incoming traffc is benign or malicious” 

(Tsai et al., 2009). In the previous research – including Livadas et al. (2006); Lu et al. 

(2011); Sangkatsanee et al. (2011); Strayer et al. (2008) – where they used supervised 

machine learning algorithms, three algorithms (naive Bayes, decision tree, and (artifcial) 

neural networks) were most frequently adopted. 

2.2.1 Naive Bayes 

Naive Bayes method is a simple and intuitive classifcation technique based on the 

Bayes’ theorem that describes the probability of an event from prior knowledge of the 

condition that potentially related to the event (McCallum, Nigam, et al., 1998). Naive 

Bayes algorithm assumes that each feature contributes independently to the probability of 

an event. Specifcally in machine learning, the naive Bayes classifer calculates all the 

probabilities of all classes (values) for a target feature and selects the one with the highest 

probability. Furthermore, Gaussian naive Bayes (GNB) assumes that the values associated 

with each class of each feature follow a Gaussian distribution. Even though these two 

assumptions in naive Bayes and Gaussian naive Bayes are unlikely to happen in real 

network traffc environment, it shows relatively better results than other models like 

logistic regression. Additionally, this algorithm is less computationally intense and 

generates the mining model quickly. Due to its simplicity and fastness, it is popularly used 

for SPAM fltering and other real-time detections. For example, Metsis, Androutsopoulos, 

and Paliouras (2006) evaluated accuracies of different types of naive Bayes for SPAM 

fltering. 
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2.2.2 Artifcial Neural Networks (Multi-layer Perceptron) 

Neural networks (NN), analogous to the human brain, refer to large connections of 

simple units called neurons. Consisting of three layers (the input layer, hidden layer(s) 

and the output layer0, neural networks take each record and passes its features into input 

layer, and then the model makes decisions calculating weights of hidden neurons to get 

the single highest value at the output layer. A feed-forward neural network where the 

output of one layer is used as input to the next layer does iterate for the same data to 

compare the output to true value so that it adjusts the weights in the hidden neurons with 

its error term. Recurrent neural networks, however, adopt feedback loops between 

neurons, which more resembles human brains (Nielsen, 2015). According to Tsai et al. 

(2009), a back-propagation neural network works by feeding back errors of misclassifed 

terms to the network so that they are not repeated in the further iterations. 

2.2.3 Decision Tree 

As another popular classifcation method, a decision tree (DT) generates a tree-like 

model of decisions based on decision rules inferred from the data. Unlikely other machine 

learning algorithms, a decision tree is easy to interpret with a tree visualization. Also, it 

works for both categorical and numerical variables as well since it doesn’t require an 

assumption about the data distribution and classifer structure. Over ftting and data loss 

when categorizing numeric variables, however, are the most practical diffculties in a 

decision tree classifer (Quinlan, 1987). According to Rokach and Maimon (2014), a 

decision tree is built by splitting the training data into sub-data samples based on the most 

signifcantly differentiating feature. When a new incoming data arrives, the attribute of the 

data is checked all the way down from the root of the tree, eventually ending up to a leaf 

node that represents the classifcation of the data. 
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2.3 Ensemble Methods 

For a system that utilize machine learning technology for either classifcation, 

regression and clustering, using multiple training models is not so uncommon 

(Mendes-Moreira, Soares, Jorge, & Sousa, 2012). By using ensemble methods, one can 

make classifers more powerful by combining different classifer into one or iteratively 

training a classifer. The typical ways of combining two or more classifer are majority 

voting and weighted voting (Dietterich et al., 2000). Also, sub-sampling approaches 

called boosting and bagging have been studied in previous researches(Breiman, 1996; 

Freund & Schapire, 1995). In this section, those three types of ensemble methods are 

explained. 

2.3.1 Voting 

Voting is the simplest way to form an ensemble. Voting classifers consist of 

multiple models of different types. In the training step, all the models are trained 

separately with whole training data and it averages the posterior probabilities that are 

calculated by each model in the recognition step. Panda and Patra (2009) explains that by 

combining outputs of several classifers, the risk of selecting a poorly performing 

classifer can be reduced. The voting method can be weighted where weighted voting lets 

each classifer hold different voting power. According to previous research (Ekbal & Saha, 

2011), where the researchers constructed a weighted vote-based classifer ensemble for 

Named Entity Recognition, the Genetic Algorithm ensemble for classifying 4 deferent 

language group in India outperforms all the other individual classifers (Maximum 

Entropy, Conditional Random Field, and Support Vector Machine) when it comes to F1 

measure. Another fnding of this research is that an increase in the number of classifers 

may not always increase the overall performance of their system. For example, when they 

evaluated the 80 best performing ME-based classifers, the accuracy is the same with the 



11 

140 best-performing ME classifers and with all 152 ME classifers. This is the same case 

when they increased the training size from 100K to 312K. The accuracy measure 

increases as the training size becomes larger, but the rate of improvement decreases 

gradually (Ekbal & Saha, 2011). 

2.3.2 Bagging 

The bagging method (Breiman, 1996), also called bootstrap aggregation because 

it uses bootstrap sampling (Efron & Tibshirani, 1994), randomly breaks down the original 

training data to make several sub-training datasets and trains a classifer from each of 

those training subsamples. The predictions are then combined via averaging for regression 

or majority voting for classifcation. In the paper, Quinlan et al. (1996) evaluated boosting 

and bagging on C4.5 decision tree with a collection of datasets from the UCI Machine 

Learning Repository. In the experiment, Bagged C4.5 and Boosted C4.5 generally showed 

the markedly lower error rates than those of C4.5. Interestingly, even though boosting 

shows a reduced error rate by 15% over C4.5 and 10% over bagging and additionally 

outperforms bagging in 20 of the 27 data sets, boosting shows more erratic outcomes. For 

example, it led to a 36% increase in error on the iris dataset and 26% on colic. According 

to Freund and Schapire (1995), that could be because of overftting explaining a large 

number of trials leads to the classifer to become very complex. The solution that Quinlan 

et al. (1996) tried was stopping the ensemble learner when any classifer shows zero error. 

With this approach, C4.5 appeared that it only needs three boosted trials to achieve the 

objective. 

2.3.3 Boosting 

Boosting methods, which were suggested by Kearns and Valiant (1994) to create a 

single strong learner from several weak learners, were strengthened by Schapire (1990). 
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Boosting also manipulates the training data like bagging, but it maintains a set of weights 

on training data. Especially with methods such as AdaBoost, weighted errors of each 

model update weights on the training data, giving more weight on the data with the lower 

accuracy and less on the data with the higher (Vezhnevets & Vezhnevets, 2005). Zhou, 

Wu, and Tang (2002) explained that a boosting learner combines the predictions from 

multiple classifers of homogeneous type, and the results are averaged out for regression 

or voted for classifcation. 

2.3.4 Random forest 

Along with the machine learning algorithms and ensemble methods, the author 

also considered random forests algorithm to test. According to Breiman (2001), the 

random forests classifer is a type of ensemble methods that built with multiple decision 

trees that are independently bootstrap-sampled. As a bagging of decision tree, random 

forest is explained as “These averaging techniques improve the performance of single tree 

models by creating multiple trees and, randomly selecting a subset of variables at each 

node. This reduces variance more than in single trees” (Elith, Leathwick, & Hastie, 

2008). Yeh, Chi, and Lin (2014) describe the advantages of random forests indicating that 

the variables can be both continuous and categorical. Also, a random forests classifer is 

recommended by Yeh et al. (2014) because it is robust against overftting by averaging 

trees during the run which also results in “low-bias and low-variation but highly accurate 

classifcation and predictions.” The same author also suggested that random forests are 

preferred over Support Vector Machine or Neural network because of the strengths 

explained above. 
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2.4 Related Works 

In the paper by Livadas et al. (2006), machine learning algorithms for 

classifcation, i.e. J48 decision tree, naive Bayes, and Bayesian network were employed to 

identify C&C traffc of IRC-based botnets. By capturing real-life network traffcs from 

Dartmouth’s wireless campus network, and also generating botnet testbed traffc from the 

Kaiten bot, they demonstrated that only the naive Bayes classifers achieved low false 

negative rate (FNR) identifying 35 out of the 38 botnet fows with an FNR of 7.89%. On 

the other hand, the J48 and the Bayesian networks classifers performed poorly possibly 

because of overftting. 

Garcı́a, Zunino, and Campo (2014) conducted a survey on network-based botnet 

detection methods. There several suggested botnet detection methods were compared. In 

the following sections, the tree systems are introduced along with the analysis by Garcı́a et 

al. 

2.4.1 BotSniffer 

The BotSniffer (Gu, Zhang, & Lee, 2008) processed the sniffed network packets 

by grouping hosts that connect to the same destination considering port numbers as well 

and then separating the groups into time windows. The frst approach is to examine if 

there are hosts that had triggered attacks including SPAM sending and port scanning. One 

group is marked as a possible botnet if more than a half of the hosts in the group shows the 

attack’s fngerprints. The second approach focuses more on IRC protocol responses, by 

looking for hosts that answered similar IRF responses using the F1 score as a similarity 

function. IRC responses are clustered on the basis of this similarity measure. In the case 

where the biggest cluster is more than half the size of a group, this group is marked as a 

possible botnet. 
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Garcı́a et al. (2014) stated that: 

This paper is one of the most cited papers in the botnet detection feld. It 

presents several behavioral techniques to detect botnets that accomplish good 

results. However, much new data and botnets have been found since its 

publication. The dataset used for validation may be too scarce for generalizing 

the technique. Only one real IRC botnet was captured. The rest of the dataset 

is composed of one IRC text log and fve custom-compiled LAN botnets. 

Garcı́a et al. (2014) also pointed out that the possible bias by whitelist fltering done to the 

dataset during preprocessing stage was not analyzed. 

2.4.2 BotMiner 

The BotMiner detection framework (Gu, Perdisci, Zhang, Lee, et al., 2008) has 

three phase of analysis. At the frst phase, it groups hosts with similar activity patterns 

derived from fow information. The IP addresses, ports, and the network profle as well as 

statistical measures including number of fows per hour and average bytes per packets 

were used to make similar host groups along with X-means clustering method. The 

second phase groups hosts regarding with similar attacking patterns. The Snort IDS was 

used to identify attacks. At the third phase, the similarities from the previous 2 phases are 

utilized to score similarities between hosts. But Garcı́a et al. (2014) pointed out the fact 

that the dataset is not published and no explanation provided how the dataset was verifed. 

Also, the design – where a list of well-known hosts should be maintained – could be 

error-prone and time-consuming. 

But for encouraging results, Garcı́a et al. (2014) stated that: 

Unlike other proposals, this work uses one novel idea to differentiate between 

botnets and manual attacks: botnets act maliciously and always communicate 

in a similar way, but the manual attacks only act maliciously. 
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2.4.3 BotHunter 

The BotHunter framework (Gu, Porras, Yegneswaran, Fong, & Lee, 2007) utilized 

a state-based infection sequence model. By using the modifed Snort IDS added with two 

proprietary detection plug-ins, “it looks for evidence of botnet life cycle phases to drive a 

bot dialogue correlation analysis” (Garcı́a et al., 2014). Each host gets the infection score 

derived from IDS warning and a host is labeled as bot when the score meets certain 

thresholds. In addition to this local host infection, when there is attack propagation or 

evidence of outward bot, an infection is reported. Because the Snort IDS is statical, 

detections by the BotHunter is also static. For this reason, some known botnet servers can 

be embedded into the Snort confguration, and the sequence of bytes in the binary 

download and the Snort fngerprints could be used. 

Gu et al. (2007) pointed out that the accuracy metrics is not complete as the 

proposal reports either TPR or FP and TN for each experiment they conducted. Also, the 

BotHunter neither uses the traffc from a host nor differentiates between botnets and 

manual (or automatic) attacks. 

Garcı́a et al. (2014) also indicated that: 

However, as the model is based on the life cycle of botnets, it is very probable 

that it could work fne for this situation. The method has two major advances. 

First, it seems capable of analyzing, detecting and reporting botnets in real 

time. Second, it is the only proposal that was published as a product. 

2.5 Summary 

This chapter provided a review of the literature relevant to botnet detection and 

machine learning algorithms for classifcation. The next chapter provides the 

methodology to be used in the research project. 
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CHAPTER 3. METHODOLOGY 

3.1 Research Overview 

In this thesis, the author evaluated the three most popular machine learning 

algorithms for botnet classifcation – Gaussian naive Bayes (GNB), neural networks (NN) 

and decision tree (DT) – based on the previous research by Salem et al. (2008). the 

well-known ensemble methods (voting, bagging, and boosting) were also measured to 

help address the research question: For botnet detection, which machine learning 

algorithm and related ensemble method for classifcation are the most accurate? To 

compare these classifcation models, the training time and two different measures (F1 

score and MCC score) were calculated. Furthermore, the random forest (RF) classifer, 

which is one of the popular algorithm based one the bagging method, was also evaluated. 

With the already aggregated NetFlow data, CTU-13, the experiment was 

conducted on the Rice cluster, which is a part of Purdue Community Clusters. “Rice is 

optimized for Purdue’s communities running traditional, tightly-coupled science and 

engineering applications” (ITaP Research Computing, 2017). On the cluster, the 

evaluation system was constructed with all ML classifers, their ensembles, and accuracy 

measurement methods. 

Once the evaluation program was set, the training data was input to the system to 

generate classifcation models and ensembles. The test data, then, was input to generate 

the prediction outcome. The running time was measured during those training and test 

processes. Figure 3.1 describe the overview of the experiment. 
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Figure 3.1. Overview of the experiment. 

3.2 Dataset 

Finding an appropriate network traffc dataset for machine learning is challenging 

since, because supervised machine learning classifers require the data to be labeled unless 

the target feature is already in the dataset, labeling each network traffc can be very 

onerous. Even further, the data is preferred to resemble a real-world network traffc to be 

cleanly captured at a well-administered lab. Specifcally, Sommer and Paxson (2010) 

discussed the importance of getting a perfect data which is not defcient in certain 

statistical characteristics. For this reason, even though Honeynet project, CAIDA and 
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other similar types of projects have presented an enormous number of network traffc 

dataset, researchers have generated their own datasets like those of Livadas et al. (2006); 

Saad et al. (2011); Shiravi, Shiravi, Tavallaee, and Ghorbani (2012). For example, Shiravi 

et al. (2012) set up a distributed DoS attack using an IRC botnet to generate the dataset 

which is suitable for intrusion detection. 

The CTU-13 dataset is also one of these cases. Garcia et al. (2014) created the 

CTU-13 dataset where the data is labeled as botnet, normal, or background. Garcia et al. 

(2014) mentioned that even though there had been several botnet datasets downloadable, 

such as Dainotti, King, Papale, Pescape, et al. (2012); Saad et al. (2011); Shiravi et al. 

(2012); Sony and Cho (2000), they are either a) not representative of the real-world 

traffc, b) not labeled, or c) not suitable for every detection algorithms that the authors 

wanted to compare. For these reasons, the CTU-13 dataset was generated with several 

fundamental design goals as follow. 

Garcia et al. (2014) set the design goals (Garcia et al., 2014): 

• “Must have real botnets attacks and not simulations. 

• Must have unknown traffc from a large network. 

• Must have ground-truth labels for training and evaluating the methods. 

• Must include different types of botnets. 

• Must have several bots infected at the same time to capture 

synchronization patterns. 

• Must have NetFlow fles to protect the privacy of the users.” 

The CUT-13 dataset was captured in the CTU University, the Czech Republic in 

2011. On top of a Linux Debian host, they constructed a set of virtual machines with the 

Microsoft Windows XP SP2 operating system and bridged each virtual machine into the 

University network. After infecting the virtual machines with a particular botnet, they 
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captured the traffc both on the Linux host and on one of the University router using 

tcpdump. Once they gathered all pcap fles for the 13 different infection scenarios, the 

captures were aggregated into the NetFlow fle standards in the form of CSV fle. Each 

fow was labeled with Botnet, Normal, or Background where two former labels meant the 

network traffcs were generated from their testbed and the last label meant the traffc came 

from the University networks. 

For the evaluation, the author chose three datasets out of 13 datasets in the 

CTU-13: Scenarios 4, 10 and 11. The reason for selecting these datasets is that they 

feature the same bot, Rbot, but with different ratios of botnet traffc: 0.15%, 8.11%, and 

7.6%, respectively. 

3.3 Accuracy Metrics 

To measure the accuracy of a classifer, taking into account the confusion matrix is 

the most common way; in particular, precision and recall are often used. Precision pertains 

the percentage of correctly predicted event from the pool of total predicted events while 

recall concerns the percentage of correctly predicted event from the pool of actual events. 

T P T P 
Precision = ,Recall = (3.1)

T P+ FP T P + FN 

3.3.1 F1 score 

Taking both precision and recall into account, the F1 score gives a more balanced 

view compared to using only precision or recall. The F1 score can be between 0 and 1. A 
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F1 score of 0 means there are no true positives, 1 means there are neither false negatives 

or false positives, and undefned when there are only true negatives in the prediction. 

P∗ R
F1 = 2 ∗ , where P is Precision, R is Recall (3.2)

P + R 

which can also be represented as: 

2T P 
F1 = (3.3)

2T P + FN + FP 

3.3.2 Matthews Correlation Coeffcient(MCC) 

The Matthews correlation coeffcient, also known as the phi coeffcient, was 

introduced by Matthews (1975). As another measure of the quality of binary 

classifcation, the MCC incorporates True Negative as well, unlike the F1 score. The range 

of the MCC lie between -1 to +1 where +1 means a perfect prediction, 0 no better than a 

random prediction, and -1 perfect disagreement between true values and predictions. 

T P ∗ T N − FP ∗ FN 
MCC = p (3.4)

(T P + FP)(T P + FN)(T N + FP)(T N + FN) 

According to Boughorbel, Jarray, and El-Anbari (2017): 

Most standard machine learning algorithms work well with balanced training 

data but they face challenges when the dataset classes are imbalanced. In such 

situation, classifcation methods tend to be biased towards the majority class. 

These algorithms are ineffcient in this case mainly because they seek to 

maximize a measure of performance such as accuracy which is no longer a 

proper measure for imbalanced data. 
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Taking True Negatives into consideration, the MCC is regarded more robust to the 

data imbalance. In the same study, Boughorbel et al. (2017) showed that MCC and Area 

Under ROC Curve (AUC) are more robust to data imbalance than the F1 score and 

accuracy. In the recent studies by Chicco (2017); Powers (2011), MCC was claimed to be 

the most informative score in a context of confusion matrix and to be the best 

measurement for a binary classifcation. 

3.4 Machine Learning Library 

There are multiple machine learning libraries available, such as Theano, 

TensorFlow, Scikit-learn, Caffe, etc. In this thesis, Scikit-learn was used because it comes 

as a service consisting of all algorithms to be used. 

The reason why Scikit-learn was chosen rather than the other popular machine 

learning libraries like SparkML and Torch, which can also parallelize the classifer to take 

advantage of using big data, was a lack of stable implementation of ensemble methods at 

the time of this thesis. 

Scikit-learn is well known for its high-level functions that allow users to take care 

of the parameters of functions, or confguration rather than their implementation itself 

(Pedregosa et al., 2011). For example, to build a Linear Support Vector Machine with 

Scikit-learn, one can call LinearSVC() training with the researcher’s dataset and then test 

iteratively changing its parameters such as class weights, the maximum number of 

iterations to be run, etc. For the classifcation, the following methods were used. 

• naive bayes.GaussianNB(): GaussianNB() works by assuming a Gaussian 

distribution of data. In this reason, the data should be normalized beforehand. 

• neural network.MLPClassifer(): This multi-layer perceptron classifer has 

parameters including hidden layer sizes defning number of hidden layers and 

neurons and solver for weight optimization. 
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• tree.DecisionTreeClassifer(): This builds a decision tree having max depth, 

min samples split, etc. as parameters. 

For the ensembles, ensemble.AdaboostClassifer(), ensemble.BaggingClassifer(), 

ensemble.VotingClassifer() were used. The frst two methods take a single type of base 

estimator to make an ensemble, and number of estimators can be set to defne the 

maximum number of estimators at which the ensemble method is terminated. In case of a 

perfect ft, the learning procedure stops early. VotingClassifer() takes a list of estimators 

to make a voting ensemble. 

Scikit-learn also provides various accuracy metrics for classifcation, regression, 

clustering, etc. In this study, metrics.f1 score() and metrics.matthews corrcoef() were 

used. 

3.5 Data preparation and evaluation 

Table 3.1 provides the list of features in the CTU-13 dataset. After capturing 

PCAP fles, Garcia et al. carefully selected features while aggregating the traffc to 

NetFlow standards. While the previous work used WEKA tool for the classifcation which 

can handle categorical data, a proper data preprocessing was needed for this thesis. 

Because Scikit-learn only expects continuous input, all categorical features should be 

encoded with sklearn.preprocessing.LabelEncoder. 

After encoding, data standardization was conducted. While Scikit-learn provides 

functionality to convert the data into standard normally distributed data which is Gaussian 

with zero mean and unit variance, scaling the data to a certain range is an alternative 

preprocessing. 

https://metrics.f1
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Table 3.1. Data features in the CTU-13 dataset (Garcia et al., 2014) 

Feature Type 
Start time 
End time 
Duration 
Protocol 
Src IP address 
Src port number 
Direction 
Dst IP address 
Dst port number 
Flags 
Type of services 
Number of packets 
Number of bytes 
Number of fows 
Label 

Numerical 
Numerical 
Numerical 
Categorical 
Categorical 
Categorical 
Categorical 
Categorical 
Categorical 
Categorical 
Categorical 
Numerical 
Numerical 
Numerical 
Categorical 

To do so, sklearn.preprocessing.MinMaxScaler offers “scaling features to lie 

between a given minimum and maximum,” which is considered to provide “robustness to 

very small standard deviations of features and preserving zero entries in sparse data” 

(Pedregosa et al., 2011). For more details about data preprocessing, please refer to 

Appendix A. 

Once preprocessing was done, the data was randomly split into the training data 

and the test data with the ratio of 8 to 2. For each classifer, the input parameters were 

selected to the optimum after a few empirical tests. For each scenario, the average time 

and accuracy of 5 times of the each classifer were recorded as the fnal results. 

3.6 Deliverables 

From this research, the following were delivered to future researchers. 
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• A comparative study of ML algorithms and ensembles used to detect botnet traffc 

based on a literature survey. 

• A report on the authors approach towards the research questions and the way to 

implement the evaluable to be scalable. 

3.7 Summary 

This chapter described methodology for the research including a description of 

dataset, accuracy metrics, machine learning library, data preprocessing, and deliverables. 
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CHAPTER 4. RESULTS 

This chapter provides the result of the experiment. It includes the comparison of 

accuracies and training time. 

4.1 Results 

To evaluate the classifcation algorithms along with ensemble methods for the 

CTU-13 dataset, Scikit-learn on a single core of Intel Xeon-E5 with 64GB of memory was 

used. The results are described in Table 4.1, Table 4.2, and Figure 4.1. 

For every data and algorithms, F1 scores were higher than MCC scores. This is 

because the F1 score does not consider the true negatives. For this reason, MCC is 

preferred for a binary classifcation. In the following discussion, accuracy refers to MCC 

score and S denotes scenario of the dataset. 

Among individual algorithms, all showed decent accuracies over 0.91 on S10 and 

S11. But for S4, GNB and NN showed poor results of 0.13 and 0.00 respectively. In terms 

of the training time, GNB run much faster than other algorithms on S4 and S10. For S11, 

Table 4.1. Time consumed for model training (sec) 

Method Scenario 4 Scenario 10 Scenario 11 
GNB 2.68 1.59 1.57 
NN 76.24 163.86 21.44 
DT 25.48 35.39 0.62 
Voting 103.05 139.56 18.06 
Boosting-GNB 554.14 222.48 15.20 
Boosting DT 56.77 83.23 0.77 
Bagging-GNB 62.90 22.13 1.47 
Bagging-NN 437.37 654.84 41.61 
Bagging-DT 175.11 186.07 2.65 
RF 43.17 63.74 1.44 
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Table 4.2. Evaluation result 

Method Scenario 4 Scenario 10 Scenario 11 
F1 MCC F1 MCC F1 MCC 

GNB 0.986159 0.135260 0.988762 0.910358 0.992302 0.982357 
NN 0.998489 0.000000 0.992646 0.939776 0.993299 0.984639 
DT 0.999990 0.996779 0.999982 0.999849 0.999971 0.999935 
Voting 0.999117 0.644421 0.994763 0.956586 0.993841 0.985878 
Boosing-GNB 0.967339 0.043543 0.867776 0.162963 0.378982 0.168781 
Boosing-DT 0.999989 0.996285 0.999983 0.999857 0.999963 0.999916 
Bagging-GNB 0.986170 0.135319 0.988758 0.910333 0.992253 0.982245 
Bagging-NN 0.998489 0.000000 0.993613 0.946912 0.993670 0.985486 
Bagging-DT 0.999991 0.996955 0.999981 0.999836 0.999955 0.999897 
RF 0.999997 0.998930 0.999988 0.999896 0.999972 0.999935 

DT run faster taking 0.62 seconds. Regarding S10, even though NN showed high accuracy 

as DT, it took 3-4 times longer than DT did. 

The only structure difference among the three datasets is the ratio of botnet traffc. 

Even though S4 is the largest dataset, it only brings one Rbot having 0.15% of botnet 

traffc ratio, which means the dataset is highly scarce. In contrast, S10 has 8.11% of 

botnet traffc and S11 has 7.6% which can be considered fairly large enough. 

Overall, NN and DT showed relatively higher accuracy than GNB, and NN was 

the slowest classifer among all. This pattern appeared the same on the result of voting. 

For the voting, it showed relatively higher accuracies on S10 and S11, recording 0.96 and 

0.99, respectively while it recorded only 0.64 on S4. 

Boosting method did not signifcantly help either GNB or DT. Especially for 

GNB, the accuracy signifcantly dropped down on all datasets showing less than 0.17. 

Especially it recorded a MCC score of 0.04 on S4 where 0 means no better than random 

prediction. The training time was also huge compared to the GNB classifer recording 

554.14 seconds on S4 for example. When it comes to boosting DT, The accuracy results 

were not largely different from those of DT classifer. But, of course, it took longer time 

than DT taking 2-3 times longer than DT did. 
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Each bagging algorithm seemed very similar to using a single classifer only for 

each dataset. The results of using s bagging classifer showed the same pattern where DT 

and NN were relatively more accurate than GNB while GNB run the fastest. But the 

training time of bagging was much larger than that of using a classifer without ensemble 

methods except when bagging was applied to GNB against S4. 

While the ensemble methods offered by Scikit-learn were not signifcantly 

benefcial on each algorithm, random forest appeared highly effective in terms of both 

accuracy and training time. It showed very decent accuracies in MCC scoring more than 

0.998 for every dataset, recording moderate training time compared to other ensembles. 

Especially noteworthy is that it took less time than using NN alone. 

Figure 4.2, 4.3, and 4.4 provide graphical views to compare the classifers against 

each scenario based on their time consumption and MCC score. 

Figure 4.2. Time and MCC evaluation against S4 
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Figure 4.3. Time and MCC evaluation against S10 

Figure 4.4. Time and MCC evaluation against S11 
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For the S4 data, DT, RF, Boosting DT, and Bagging DT give the predictions of 

high quality as shown in Figure 4.2. On the other hand, Bagging DT and Boosting DT 

took a longer time than decision tree alone or random forest. Compared to those 

classifers, bagging NN or boosting GNB turned out to be the worst with poor predictions 

and enormous time consumption. Also, differently from S10 and S11, the neural networks 

classifers worked poorly giving a low MCC score. 

Figure 4.3 shows slightly different results from those of S4. For S10, most 

classifers worked well showing high MCC scores with the exception of Boosting GNB. 

Considering time consumption together, GNB, Bagging GNB, DT, RF and Boosing DT 

seem reasonable. Similarly with the case of S4, the decision tree classifer and the random 

forest classifer gave better MCC that the Gaussian naive Bayes classifer. Unlike S4, 

Bagging NN provide accurate prediction, but it took too long which makes considering 

bagging neural networks undesirable. 

Because the size of S11 is very small compared to the previous 2 datasets, all 

classifers ended in 45 seconds for Scenario 11 (Figure 4.4). Similarly with the case of 

S10, Boosting GNB gave the poor prediction and the time bagging neural networks took 

was longer than any other classifers. This time, the Gaussian naive Bayes and decision 

tree, and random forest classifers provided fair accuracies in a very short time. 

4.2 Summary 

This chapter described the result of the experiment in terms of training time and 

accuracy. 
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CHAPTER 5. CONCLUSION 

In this chapter, more detailed discussion on the evaluation results and future work 

are described. 

5.1 Discussion 

After the experiment, to detect botnet traffc out of all network traffc, decision tree 

without any ensemble method or random forest would be the most reliable approaches. 

They run much faster than NN alone and with better accuracy. Even though GNB ran the 

fastest, the accuracy varied on the dataset. Unlike the common expectation, adopting 

ensemble methods on machine learning algorithms for botnet detection in a hope of 

enhancing the accuracy is not preferable because it does not give remarkably more 

accurate result while consuming much more time. 

Voting showed the same pattern with using other classifers without ensemble 

methods. This is on the ground that voting works by averaging out each outcome from the 

models. 

When it comes to boosting, it showed minimally better accuracy compared to 

using a sole algorithm primarily because of the nature of boosting. In boosting, it turns 

weak models with slightly better prediction than random into a strong one. In this regard, 

it obviously did not make DT strong as it already had a good accuracy. On the other hand, 

boosting GNB showed the results that deviated with those of other algorithms. For S4, the 

MCC score was near zero which means the prediction is not better than random. As for 

S10 and S11, it only showed around 0.16 of MCC which is the opposite result of using a 

sole GNB. According to Ting and Zheng (2003), the similar drop-down appeared in a 

specifc dataset, Tic-tac-toe. Because Naive Bayes is very stable classifer carrying a 
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strong bias, in the boosting process the sub-classifers may not be diverse enough (Ting & 

Zheng, 2003). This does warrant additional inquiry. 

While training a bagging model, multiple sub-datasets sampled out from the 

original dataset make their own classifer. Then predictions from those classifers are 

voted. This dataset, however, might not take the beneft from sampling because the data is 

too sparse or skewed. 

Random forest, as a combination of decision tree, performs implicit feature 

selection taking feature importance into consideration. Also making multiple sub-decision 

trees with part of features and data rows, it can run extremely faster than other methods 

and even can be easily parallelized. Considering parallelization is tough to be 

implemented in ensemble methods, Random forest seems like an excellent choice. 

5.2 Comparison with the benchmarks 

The results of the evaluation were also compared to those of the previous research 

by Garcia et al. (2014). In the previous research, the authors separated the entire CTU-13 

dataset into two groups considering the following criteria (Garcia et al., 2014): 

• The “training and cross-validation datasets should be approximately 80% of the 

dataset. 

• The testing dataset should be approximately 20% of the dataset. 

• None of the botnet families used in the training and cross-validation dataset should 

be used in the testing dataset.” 

Meeting those criteria, they separated the dataset into training, testing, and 

cross-validation carefully considering features, such as the duration in minutes, the 

number of clusters, the number of NetFlow and the number of aggregated NetFlows of the 

scenarios. Scenarios 1, 2, 6, 8, and 9 were selected for training and cross-validation and 
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the others were for testing. Among 20 different botnet detection methods analyzed in the 

research, the BClus (Garcıa, 2014) and the BotHunter (Gu et al., 2007) methods were 

considered for further comparison with this thesis as they have utilized machine learning 

approaches as well as rule-based approaches. 

Even though the authors of the research did not adopt MCC score, they measured 

F1 scores. The score of Scenario 8 could not be computed because the BotHunter 

algorithm could not detect a single TP against the dataset (Garcia et al., 2014). Compared 

to the result of this thesis, the F1 scores are far below for all of the Scenarios except 

Scenario 11. According to Garcia et al. (2014), the data separation was meant to ensure 

that the methods can generalize and detect new behaviors and to avoid the bias toward the 

majority class of Background. Thus, the evaluation utilizing three machine learning 

algorithms and their ensembles offer better detection accuracy compared to the previous 

research. 

5.3 Future work 

The error metrics from the thesis looks more prominent than those of the 

benchmarks from Garcia et al. (2014), but still the gap between those two research can be 

narrowed. Firstly, the different use of the dataset can be resolved. while the previous 

research used the entire CTU-13 dataset to split the training data and the test data, the 

author utilized 3 out of 13 datasets. Secondly, the metric can also be expanded in scope. In 

the Garcia et al. (2014), they suggested the new error metric to resolve the semantic gap 

between the traditional error metrics and the practical application. 

Specifcally Garcia et al. (2014) stated: 

The error metrics usually used by researchers to analyze their results (e.g. 

FPR, FMeasure) were historically designed from a statistical point of view, 

and they are really good to measure differences and to compare most 
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methods. But the needs of a network administrator that is going to use a 

detection method are slightly different. These error metrics should have a 

meaning that can be translated to the network. 

To resolve the problem, they established the following principles for a proper error 

metric (Garcia et al., 2014): 

• “Errors should account for IP addresses instead of NetFlows. 

• To detect a botnet IP address (TP) early is better than later. 

• To miss a botnet IP address (FN) early is worst than later. 

• The value of detecting a normal IP address (TN) is not affected by time. 

• The value of missing a normal IP address (FP) is not affected by time.” 

Considering the principles together would give a more reliable comparison of the 

thesis to the benchmark study. 

Also, even though the CTU-13 dataset were generated for the use of machine 

learning technologies for botnet detection, it is still the best to use the actual datasets to 

which the detection system would be applied. In this reason, capturing network packets of 

the targeted network and evaluating the algorithms against the network data would 

provide the more practical results. 

5.4 Summary 

In this study, three popular machine learning algorithms – Gaussian naive Bayes, 

neural networks, decision tree – were tested against part of the CTU-13 dataset featuring 

one or more Rbots. Furthermore, the ensemble methods – voting, boosting, and bagging – 

were also compared to measure how signifcantly benefcial the ensemble methods would 

be for botnet detection. Along with these, Random forest. Based on this study, decision 
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tree without any ensemble methods or random forest would be the most reliable 

approaches to detect botnet traffc out of all network traffc. 
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APPENDIX A. DATA PREPARATION 

In this appendix, the methods taken to pre-process the CTU-13 data is introduced. 

Because the CTU-13 dataset contains categorical values for the most of the 

feature, it needed to be transformed into numeric data that Scikit-learn can process. In this 

regard, sklearn.preprocessing offers LabelEncoder that encodes labels with value 

between 0 and n classes-1. In addition, sklearn.preprocessing.MinMaxScaler 

transforms features by scaling each feature to a given range. To split the dataset into 

training and test set, both masking and using model selection.train test split 

could be applied. After practice, masking approach was mainly used. 

def data_prep(df): 

from sklearn import preprocessing, decomposition, model_selection 

categorical = [’Prot’, ’Src_IP’, ’Src_Port’, \ 

’Dst_IP’, ’Dst_Port’, ’Flags’, ’Tos’] 

#Categorical 

le = preprocessing.LabelEncoder() 

for col in categorical: 

df[col] = le.fit_transform(df[col]) 

#Normalize 

scaler = preprocessing.MinMaxScaler() 

toNormalize = [’Durat’, ’Packets’, ’Bytes’, ’Flows’] 

for col in toNormalize: 

df[col] = scaler.fit_transform( df[col] ) 

df[’Target’] = 1 
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df.loc [ df[’Label’] == ’Botnet’, ’Target’ ] = 2 

msk = np.random.rand( len(df) ) < 0.8 

trainDF = df[msk] 

testDF = df[~msk] 

#X = df[ cols[:-1] ] 

#y = df[ ’Target’ ] 

#return model_selection.train_test_split(X, y, train_size=0.6, random_state=42) 

return trainDF[cols[:-1]], trainDF[’Target’], testDF[cols[:-1]], testDF[’Target’] 
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