
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Open Access Theses Theses and Dissertations

5-2018

Comparison of Machine Learning Algorithms and Their Comparison of Machine Learning Algorithms and Their

Ensembles for Botnet Detection Ensembles for Botnet Detection

Songhui Ryu
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses

Recommended Citation Recommended Citation
Ryu, Songhui, "Comparison of Machine Learning Algorithms and Their Ensembles for Botnet Detection"
(2018). Open Access Theses. 1451.
https://docs.lib.purdue.edu/open_access_theses/1451

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/open_access_theses
https://docs.lib.purdue.edu/etd
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F1451&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/1451?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F1451&utm_medium=PDF&utm_campaign=PDFCoverPages

COMPARISON OF MACHINE LEARNING ALGORITHMS AND

THEIR ENSEMBLES FOR BOTNET DETECTION

by

Songhui Ryu

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfllment of the Requirements for the Degree of

Master of Science

Department of Computer and Information Technology

West Lafayette, Indiana

May 2018

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. John Springer, Chair

Department of Computer and Information Technology

Dr. Baijian Yang

Department of Computer and Information Technology

Dr. Eric Matson

Department of Computer and Information Technology

Approved by:

Prof. Eric T. Matson

Head of the Graduate Program

iii

ACKNOWLEDGMENTS

I wish to gratefully acknowledge my thesis advisor, Dr. John Springer for his

insightful comments and guidance. He was always open to help me and willing to solve

my doubts whenever I struggled with my research question or writing. He consistently

allowed this paper to be my own work, but encouraged me to proceed in the right the

direction whenever he thought I needed it. I would also love to acknowledge my thesis

committee members, Dr. Eric Matson and Dr. Baijian Yang. They helped me to constantly

stick to my research providing motivation and opportunities to attend conferences to meet

other researchers in the same area. Also, I would like to thank to my ITaP coworkers, Alex

Younts and Preston Smith who gave me the opportunity to work as a research assistant.

By working with them, I was able to kept myself motivated and learning the computing

environment for big data analysis. Finally, I appreciate all the support and encouragement

that my family and my friends have been giving to me. Their trust in me made my thesis

and achievement possible. Thank you.

iv

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

LIST OF ABBREVIATIONS . viii

GLOSSARY . ix

ABSTRACT . x

CHAPTER 1. INTRODUCTION . 1

1.1 Research Question . 1

1.2 Scope . 1

1.3 Signifcance . 2

1.4 Assumptions . 3

1.5 Limitations . 4

1.6 Delimitation . 4

1.7 Summary . 5

CHAPTER 2. REVIEW OF LITERATURE . 6

2.1 Botnet . 6

2.2 Machine Learning for Classifcation 7

2.2.1 Naive Bayes . 8

2.2.2 Artifcial Neural Networks (Multi-layer Perceptron) 9

2.2.3 Decision Tree . 9

2.3 Ensemble Methods . 10

2.3.1 Voting . 10

2.3.2 Bagging . 11

2.3.3 Boosting . 11

2.3.4 Random forest . 12

2.4 Related Works . 13

2.4.1 BotSniffer . 13

2.4.2 BotMiner . 14

v

2.4.3 BotHunter . 15

2.5 Summary . 15

CHAPTER 3. METHODOLOGY . 16

3.1 Research Overview . 16

3.2 Dataset . 17

3.3 Accuracy Metrics . 19

3.3.1 F1 score . 19

3.3.2 Matthews Correlation Coeffcient(MCC) 20

3.4 Machine Learning Library . 21

3.5 Data preparation and evaluation . 22

3.6 Deliverables . 23

3.7 Summary . 24

CHAPTER 4. RESULTS . 25

4.1 Results . 25

4.2 Summary . 30

CHAPTER 5. CONCLUSION . 31

5.1 Discussion . 31

5.2 Comparison with the benchmarks . 32

5.3 Future work . 33

5.4 Summary . 34

REFERENCES . 36

APPENDIX A. DATA PREPARATION . 42

vi

LIST OF TABLES

3.1 Data features in the CTU-13 dataset (Garcia, Grill, Stiborek, & Zunino, 2014) 23

4.1 Time consumed for model training (sec) 25

4.2 Evaluation result . 27

vii

LIST OF FIGURES

2.1 A centralized botnet architecture. 7

2.2 A decentralized P2P botnet architecture. 7

3.1 Overview of the experiment. 17

4.1 Experiment results . 26

4.2 Time and MCC evaluation against S4 . 28

4.3 Time and MCC evaluation against S10 . 29

4.4 Time and MCC evaluation against S11 . 29

viii

LIST OF ABBREVIATIONS

AdaBoost Adaptive Boosting

DT Decision Tree

FN False Negative

FP False Positive

GNB Gaussian Naive Bayes

IDS Intrusion Detection System

MCC Matthews Correlation Coeffcient

ML Machine Learning

NN Neural Networks

TN True Negative

TP True Positive

ix

GLOSSARY

Botnet – A botnet is a network of compromised devices used by a botnet owner to perform

various malicious tasks. The devices – often personal computers – called “Bots”

are under the control of a human “Botmaster.”

Ensemble method - An ensemble method is an approach that makes a set of classifers into

an ensemble by combining the prediction from each classifer possibly with

weights. It is regarded as one of the methods for improving the accuracy.

Machine learning algorithm - A machine learning algorithm refers to an algorithm that is

used to generate a statistical model from input data for various purposes from new

incoming data. In practice, the former phase is called training, and the latter is

called testing.

x

ABSTRACT

Author: Ryu, Songhui. M.S.
Institution: Purdue University
Degree Received: May 2018
Title: Comparison of Machine Learning Algorithms and Their Ensembles for Botnet

Detection
Major Professor: John Springer

A Botnet is a network of compromised devices controlled by a botmaster often for

nefarious purposes. Analyzing network traffc to detect Botnet traffc has historically been

an effective approach for systems monitoring for network intrusion. Although such

system have been applying various machine learning techniques, little investigation into a

comparison of machine algorithms and their ensembles has been undertaken. In this study,

three popular classifcation machine learning algorithms – Naive Bayes, Decision tree,

and Neural network – as well as the ensemble methods known to strengthen said

classifers are evaluated for enhanced results related to Botnet detection. This evaluation is

conducted with the CTU-13 public dataset, measuring the training time and accuracy

scores of each classifer.

1

CHAPTER 1. INTRODUCTION

This chapter provides an overview of the research study. It introduces the research

questions and covers the research signifcance, assumptions, limitations, and delimitations

which defne the extent of the study.

1.1 Research Question

For botnet detection, which machine learning algorithm and related ensemble

method for classifcation are the most accurate?

A botnet, which is a network of compromised devices, is an ongoing threat to

cybersecurity. Controlled by a hacker referred to as a botmaster, the botnet is used to

execute Denial of Service attacks, send spam emails, steal personal information, etc.

Because the botmaster communicates with his botnet via a Command & Control (C&C)

server, the network traffc that the botnet generates can be traced.

Machine learning algorithms have been used to detect botnet traffc from the

ongoing fow of network. Even though there are some previous studies about botnet

detection using machine learning, the accuracy of ensemble methods for botnet detection

is still in question. While ensemble methods were designed to strengthen machine

learning algorithms, are they indeed effective and effcient on botnet detection as well?

This can be evaluated by comparing the accuracy of each algorithm and its ensembles on

botnet traffc dataset.

1.2 Scope

In terms of cybersecurity, network traffc is one of the main types of data that

researchers want to investigate as most of the cybersecurity threats – including Denial of

2

Service, spam emails, malware, or worms – are executed remotely through the internet

(Salem, Hershkop, & Stolfo, 2008).

One of the challenges in network traffc analysis is that the amount of the data to

be processed is enormous. This big data, however, can be a beneft for machine learning,

which requires signifcant amounts of data input for its training. The author explored

which machine learning algorithms would provide the most accurate botnet detection

results out of network traffc. The traffc for the evaluation should resemble real-world

traffc and be labeled for the classifcation while the machine learning algorithms for

classifcation were selected based on their popularity for anomaly detection (Salem et al.,

2008). Furthermore, to measure the accuracy of the trained model, The F1 score and the

Matthews correlation coeffcient (MCC) score were used. The F1 score is well known to

compare the difference between two different data and to fnd their similarity. The MCC

does the same work; however, it is well known to be more accurate for skewed data.

For the study, the CTU-13 dataset – a public botnet traffc dataset generated by

Garcia et al. (2014) – was used. This dataset provides a set of refned real botnet traffc

with each network fow labeled.

1.3 Signifcance

Silva, Silva, Pinto, and Salles (2013) indicated botnet has been growing as a

signifcant threat since the frst botnet, EggDrop, was reported in 1993. For example,

Chandrasekar et al. (2017) reported that the Necurs botnet was one of the most active

distributors of malware in 2016. Observing just one day on November 24, 2016, Necurs

sent fve spam runs that generated more than 2.3 million spam emails including JavaScript

downloaders, VBS, and .wsf attachments. Also, according to the same report

(Chandrasekar et al., 2017) the Mirai botnet drove the largest DDoS attack ever recorded

in 2016 on the French hosting company OVH peaking at 1Tbps. The Mirai botnet mostly

3

targeted IoT devices, such as home routers, DVRs, and internet-connected cameras. As

Gartner predicted that there will be more than 20 billion IoT devices in the world by 2020

(van der Meulen, 2017), it is important that botnets such as Mirai are addressed.

The speed of its growth is also rapid. In the most recent report from Spamhaus

(Spamhaus Botnet Threat Report 2017, 2018), the number of Control and Command

server (C&C), which botmasters use to communicate with bots, hosted by Amazon in

2017 increased 6 times against that of 2016. All the other botent-hosting Internet Service

Providers within top 10 rank in the report also increased in the number of C&Cs by at

least 3 times against the previous year.

Obviously, because there is no solution to stop hackers from attacking a network

or a host, prevention methods that prohibit the attack before the attacker starts the task

have been discussed. Even though there are previous studies where the researchers make

use of different machine learning algorithms to detect botnet detection (Livadas, Walsh,

Lapsley, & Strayer, 2006; Lu, Rammidi, & Ghorbani, 2011; Sangkatsanee,

Wattanapongsakorn, & Charnsripinyo, 2011; Strayer, Lapsely, Walsh, & Livadas, 2008),

still the accuracy and performance of ensemble methods for botnet detection have not

been discussed yet. In this regard, this study evaluated the several popular machine

learning algorithms for classifcation along with their ensembles. This would be a help

future researcher to decide which algorithms they want to choose during their preparation

of Intrusion Detection System.

1.4 Assumptions

The study required a collection of data that includes botnet traffc and a library that

provides reliable machine learning algorithms. Regarding with those, the following

assumptions had been made.

4

1. The CTU-13 dataset shows similar patterns, characteristics, and the types of traffcs

with the real-world network traffc.

2. The normal and background traffc in the CTU-13 dataset do not carry malicious

traffc such as traffc of another botnet.

3. The Scikit-learn library provides algorithms that work in the same way or similarly

with other machine learning libraries, such as Tensorfow, Caffe, etc. Therefore, the

evaluation results from the same algorithm with the same dataset will be similar

regardless of libraries.

1.5 Limitations

The limitations associated with the study are:

1. As the packet traces as pcap fles are enormous and need to be aggregated into

fows, such as NetFlow.

2. While Scikit-learn library only handles numeric data type such as integer and foat,

the data includes string types as well. For example, TCP, UDP, ICMP, etc. are

values of the Protocol feature, and SR A, INT, FA R, etc. are values of the Flags

feature. Therefore, a proper preprocessing of the data is essential.

1.6 Delimitation

The delimitations of this research include:

1. For the evaluation, this study used the NetFlow data that was aggregated out of pcap

fles by Garcia et al. (2014)

5

2. Therefore, this study did not cover feature extraction by using already refned data

from the previous study.

3. This study took into account 3 datasets among 13 total datasets that were chosen

because of their relatively higher ratio of botnet traffc.

4. This study focused on evaluating which ML algorithm and ensemble methods

would be effective for botnet detection and did not consider deploying the

evaluation process into an actual intrusion detection system.

1.7 Summary

This chapter provided the scope, signifcance, research question, assumptions,

limitations, delimitations, defnitions, and other background information for the research

project.

6

CHAPTER 2. REVIEW OF LITERATURE

This chapter provides a review of the literature relevant to botnet detection and

machine learning technologies for classifcation.

2.1 Botnet

Botnet history dates back at least 1993 when EggDrop had emerged with the new

concept that the victim device is connected to an IRC channel to listen for malicious

commands from a Botmaster (Silva et al., 2013). Traditionally, botnets have been

featuring centralized architectures where a botmaster uses a Control and Command

(C&C) server to communicate with the bots as shown in Figure 2.1. The advantage of

using a C&C server is that it enables quick communication and easy monitoring.

However, a centralized architecture also means that the C&C server itself can be a single

point of failure (Micro, 2006; Wang, Sparks, & Zou, 2010). For the protocol, Internet

Relay Chat (IRC) has been used popularly because of its fexibility. The IRC protocol

supports not only group multicast but also unicast between two members, which enables a

botmaster to carry out an attack to a specifc group in the botnet (Grizzard, Sharma,

Nunnery, Kang, & Dagon, 2007). However, despite those benefts of the IRC, IRC is

vulnerable to interruption and easy to detect because it is not popular in corporate

networks. For this reason, HyperText Transfer Protocol (HTTP), which is one of the most

common traffc in networks, has become popular for the C&C communication (Micro,

2010). Botnet also has a decentralized architecture based on peer-to-peer (P2P) protocol

as shown in Figure 2.1. Because there is no central server for a botnet, it is more diffcult

to destroy a P2P botnet because detecting a number of bots does not guarantee they make

up the entire botnet (Grizzard et al., 2007).

7

Figure 2.1. A centralized botnet architecture.

Figure 2.2. A decentralized P2P botnet architecture.

2.2 Machine Learning for Classifcation

“An Intrusion detection system (IDS) aids the network to resist external attacks by

providing a wall of defense to confront the attacks of computer systems on Internet (Tsai,

8

Hsu, Lin, & Lin, 2009).” Moreover, “studies make use of either a single machine learning

techniques or a combination of multiple machine learning techniques, in the form of

classifers that are used to determine whether the incoming traffc is benign or malicious”

(Tsai et al., 2009). In the previous research – including Livadas et al. (2006); Lu et al.

(2011); Sangkatsanee et al. (2011); Strayer et al. (2008) – where they used supervised

machine learning algorithms, three algorithms (naive Bayes, decision tree, and (artifcial)

neural networks) were most frequently adopted.

2.2.1 Naive Bayes

Naive Bayes method is a simple and intuitive classifcation technique based on the

Bayes’ theorem that describes the probability of an event from prior knowledge of the

condition that potentially related to the event (McCallum, Nigam, et al., 1998). Naive

Bayes algorithm assumes that each feature contributes independently to the probability of

an event. Specifcally in machine learning, the naive Bayes classifer calculates all the

probabilities of all classes (values) for a target feature and selects the one with the highest

probability. Furthermore, Gaussian naive Bayes (GNB) assumes that the values associated

with each class of each feature follow a Gaussian distribution. Even though these two

assumptions in naive Bayes and Gaussian naive Bayes are unlikely to happen in real

network traffc environment, it shows relatively better results than other models like

logistic regression. Additionally, this algorithm is less computationally intense and

generates the mining model quickly. Due to its simplicity and fastness, it is popularly used

for SPAM fltering and other real-time detections. For example, Metsis, Androutsopoulos,

and Paliouras (2006) evaluated accuracies of different types of naive Bayes for SPAM

fltering.

9

2.2.2 Artifcial Neural Networks (Multi-layer Perceptron)

Neural networks (NN), analogous to the human brain, refer to large connections of

simple units called neurons. Consisting of three layers (the input layer, hidden layer(s)

and the output layer0, neural networks take each record and passes its features into input

layer, and then the model makes decisions calculating weights of hidden neurons to get

the single highest value at the output layer. A feed-forward neural network where the

output of one layer is used as input to the next layer does iterate for the same data to

compare the output to true value so that it adjusts the weights in the hidden neurons with

its error term. Recurrent neural networks, however, adopt feedback loops between

neurons, which more resembles human brains (Nielsen, 2015). According to Tsai et al.

(2009), a back-propagation neural network works by feeding back errors of misclassifed

terms to the network so that they are not repeated in the further iterations.

2.2.3 Decision Tree

As another popular classifcation method, a decision tree (DT) generates a tree-like

model of decisions based on decision rules inferred from the data. Unlikely other machine

learning algorithms, a decision tree is easy to interpret with a tree visualization. Also, it

works for both categorical and numerical variables as well since it doesn’t require an

assumption about the data distribution and classifer structure. Over ftting and data loss

when categorizing numeric variables, however, are the most practical diffculties in a

decision tree classifer (Quinlan, 1987). According to Rokach and Maimon (2014), a

decision tree is built by splitting the training data into sub-data samples based on the most

signifcantly differentiating feature. When a new incoming data arrives, the attribute of the

data is checked all the way down from the root of the tree, eventually ending up to a leaf

node that represents the classifcation of the data.

10

2.3 Ensemble Methods

For a system that utilize machine learning technology for either classifcation,

regression and clustering, using multiple training models is not so uncommon

(Mendes-Moreira, Soares, Jorge, & Sousa, 2012). By using ensemble methods, one can

make classifers more powerful by combining different classifer into one or iteratively

training a classifer. The typical ways of combining two or more classifer are majority

voting and weighted voting (Dietterich et al., 2000). Also, sub-sampling approaches

called boosting and bagging have been studied in previous researches(Breiman, 1996;

Freund & Schapire, 1995). In this section, those three types of ensemble methods are

explained.

2.3.1 Voting

Voting is the simplest way to form an ensemble. Voting classifers consist of

multiple models of different types. In the training step, all the models are trained

separately with whole training data and it averages the posterior probabilities that are

calculated by each model in the recognition step. Panda and Patra (2009) explains that by

combining outputs of several classifers, the risk of selecting a poorly performing

classifer can be reduced. The voting method can be weighted where weighted voting lets

each classifer hold different voting power. According to previous research (Ekbal & Saha,

2011), where the researchers constructed a weighted vote-based classifer ensemble for

Named Entity Recognition, the Genetic Algorithm ensemble for classifying 4 deferent

language group in India outperforms all the other individual classifers (Maximum

Entropy, Conditional Random Field, and Support Vector Machine) when it comes to F1

measure. Another fnding of this research is that an increase in the number of classifers

may not always increase the overall performance of their system. For example, when they

evaluated the 80 best performing ME-based classifers, the accuracy is the same with the

11

140 best-performing ME classifers and with all 152 ME classifers. This is the same case

when they increased the training size from 100K to 312K. The accuracy measure

increases as the training size becomes larger, but the rate of improvement decreases

gradually (Ekbal & Saha, 2011).

2.3.2 Bagging

The bagging method (Breiman, 1996), also called bootstrap aggregation because

it uses bootstrap sampling (Efron & Tibshirani, 1994), randomly breaks down the original

training data to make several sub-training datasets and trains a classifer from each of

those training subsamples. The predictions are then combined via averaging for regression

or majority voting for classifcation. In the paper, Quinlan et al. (1996) evaluated boosting

and bagging on C4.5 decision tree with a collection of datasets from the UCI Machine

Learning Repository. In the experiment, Bagged C4.5 and Boosted C4.5 generally showed

the markedly lower error rates than those of C4.5. Interestingly, even though boosting

shows a reduced error rate by 15% over C4.5 and 10% over bagging and additionally

outperforms bagging in 20 of the 27 data sets, boosting shows more erratic outcomes. For

example, it led to a 36% increase in error on the iris dataset and 26% on colic. According

to Freund and Schapire (1995), that could be because of overftting explaining a large

number of trials leads to the classifer to become very complex. The solution that Quinlan

et al. (1996) tried was stopping the ensemble learner when any classifer shows zero error.

With this approach, C4.5 appeared that it only needs three boosted trials to achieve the

objective.

2.3.3 Boosting

Boosting methods, which were suggested by Kearns and Valiant (1994) to create a

single strong learner from several weak learners, were strengthened by Schapire (1990).

12

Boosting also manipulates the training data like bagging, but it maintains a set of weights

on training data. Especially with methods such as AdaBoost, weighted errors of each

model update weights on the training data, giving more weight on the data with the lower

accuracy and less on the data with the higher (Vezhnevets & Vezhnevets, 2005). Zhou,

Wu, and Tang (2002) explained that a boosting learner combines the predictions from

multiple classifers of homogeneous type, and the results are averaged out for regression

or voted for classifcation.

2.3.4 Random forest

Along with the machine learning algorithms and ensemble methods, the author

also considered random forests algorithm to test. According to Breiman (2001), the

random forests classifer is a type of ensemble methods that built with multiple decision

trees that are independently bootstrap-sampled. As a bagging of decision tree, random

forest is explained as “These averaging techniques improve the performance of single tree

models by creating multiple trees and, randomly selecting a subset of variables at each

node. This reduces variance more than in single trees” (Elith, Leathwick, & Hastie,

2008). Yeh, Chi, and Lin (2014) describe the advantages of random forests indicating that

the variables can be both continuous and categorical. Also, a random forests classifer is

recommended by Yeh et al. (2014) because it is robust against overftting by averaging

trees during the run which also results in “low-bias and low-variation but highly accurate

classifcation and predictions.” The same author also suggested that random forests are

preferred over Support Vector Machine or Neural network because of the strengths

explained above.

13

2.4 Related Works

In the paper by Livadas et al. (2006), machine learning algorithms for

classifcation, i.e. J48 decision tree, naive Bayes, and Bayesian network were employed to

identify C&C traffc of IRC-based botnets. By capturing real-life network traffcs from

Dartmouth’s wireless campus network, and also generating botnet testbed traffc from the

Kaiten bot, they demonstrated that only the naive Bayes classifers achieved low false

negative rate (FNR) identifying 35 out of the 38 botnet fows with an FNR of 7.89%. On

the other hand, the J48 and the Bayesian networks classifers performed poorly possibly

because of overftting.

Garcı́a, Zunino, and Campo (2014) conducted a survey on network-based botnet

detection methods. There several suggested botnet detection methods were compared. In

the following sections, the tree systems are introduced along with the analysis by Garcı́a et

al.

2.4.1 BotSniffer

The BotSniffer (Gu, Zhang, & Lee, 2008) processed the sniffed network packets

by grouping hosts that connect to the same destination considering port numbers as well

and then separating the groups into time windows. The frst approach is to examine if

there are hosts that had triggered attacks including SPAM sending and port scanning. One

group is marked as a possible botnet if more than a half of the hosts in the group shows the

attack’s fngerprints. The second approach focuses more on IRC protocol responses, by

looking for hosts that answered similar IRF responses using the F1 score as a similarity

function. IRC responses are clustered on the basis of this similarity measure. In the case

where the biggest cluster is more than half the size of a group, this group is marked as a

possible botnet.

14

Garcı́a et al. (2014) stated that:

This paper is one of the most cited papers in the botnet detection feld. It

presents several behavioral techniques to detect botnets that accomplish good

results. However, much new data and botnets have been found since its

publication. The dataset used for validation may be too scarce for generalizing

the technique. Only one real IRC botnet was captured. The rest of the dataset

is composed of one IRC text log and fve custom-compiled LAN botnets.

Garcı́a et al. (2014) also pointed out that the possible bias by whitelist fltering done to the

dataset during preprocessing stage was not analyzed.

2.4.2 BotMiner

The BotMiner detection framework (Gu, Perdisci, Zhang, Lee, et al., 2008) has

three phase of analysis. At the frst phase, it groups hosts with similar activity patterns

derived from fow information. The IP addresses, ports, and the network profle as well as

statistical measures including number of fows per hour and average bytes per packets

were used to make similar host groups along with X-means clustering method. The

second phase groups hosts regarding with similar attacking patterns. The Snort IDS was

used to identify attacks. At the third phase, the similarities from the previous 2 phases are

utilized to score similarities between hosts. But Garcı́a et al. (2014) pointed out the fact

that the dataset is not published and no explanation provided how the dataset was verifed.

Also, the design – where a list of well-known hosts should be maintained – could be

error-prone and time-consuming.

But for encouraging results, Garcı́a et al. (2014) stated that:

Unlike other proposals, this work uses one novel idea to differentiate between

botnets and manual attacks: botnets act maliciously and always communicate

in a similar way, but the manual attacks only act maliciously.

15

2.4.3 BotHunter

The BotHunter framework (Gu, Porras, Yegneswaran, Fong, & Lee, 2007) utilized

a state-based infection sequence model. By using the modifed Snort IDS added with two

proprietary detection plug-ins, “it looks for evidence of botnet life cycle phases to drive a

bot dialogue correlation analysis” (Garcı́a et al., 2014). Each host gets the infection score

derived from IDS warning and a host is labeled as bot when the score meets certain

thresholds. In addition to this local host infection, when there is attack propagation or

evidence of outward bot, an infection is reported. Because the Snort IDS is statical,

detections by the BotHunter is also static. For this reason, some known botnet servers can

be embedded into the Snort confguration, and the sequence of bytes in the binary

download and the Snort fngerprints could be used.

Gu et al. (2007) pointed out that the accuracy metrics is not complete as the

proposal reports either TPR or FP and TN for each experiment they conducted. Also, the

BotHunter neither uses the traffc from a host nor differentiates between botnets and

manual (or automatic) attacks.

Garcı́a et al. (2014) also indicated that:

However, as the model is based on the life cycle of botnets, it is very probable

that it could work fne for this situation. The method has two major advances.

First, it seems capable of analyzing, detecting and reporting botnets in real

time. Second, it is the only proposal that was published as a product.

2.5 Summary

This chapter provided a review of the literature relevant to botnet detection and

machine learning algorithms for classifcation. The next chapter provides the

methodology to be used in the research project.

16

CHAPTER 3. METHODOLOGY

3.1 Research Overview

In this thesis, the author evaluated the three most popular machine learning

algorithms for botnet classifcation – Gaussian naive Bayes (GNB), neural networks (NN)

and decision tree (DT) – based on the previous research by Salem et al. (2008). the

well-known ensemble methods (voting, bagging, and boosting) were also measured to

help address the research question: For botnet detection, which machine learning

algorithm and related ensemble method for classifcation are the most accurate? To

compare these classifcation models, the training time and two different measures (F1

score and MCC score) were calculated. Furthermore, the random forest (RF) classifer,

which is one of the popular algorithm based one the bagging method, was also evaluated.

With the already aggregated NetFlow data, CTU-13, the experiment was

conducted on the Rice cluster, which is a part of Purdue Community Clusters. “Rice is

optimized for Purdue’s communities running traditional, tightly-coupled science and

engineering applications” (ITaP Research Computing, 2017). On the cluster, the

evaluation system was constructed with all ML classifers, their ensembles, and accuracy

measurement methods.

Once the evaluation program was set, the training data was input to the system to

generate classifcation models and ensembles. The test data, then, was input to generate

the prediction outcome. The running time was measured during those training and test

processes. Figure 3.1 describe the overview of the experiment.

17

Figure 3.1. Overview of the experiment.

3.2 Dataset

Finding an appropriate network traffc dataset for machine learning is challenging

since, because supervised machine learning classifers require the data to be labeled unless

the target feature is already in the dataset, labeling each network traffc can be very

onerous. Even further, the data is preferred to resemble a real-world network traffc to be

cleanly captured at a well-administered lab. Specifcally, Sommer and Paxson (2010)

discussed the importance of getting a perfect data which is not defcient in certain

statistical characteristics. For this reason, even though Honeynet project, CAIDA and

18

other similar types of projects have presented an enormous number of network traffc

dataset, researchers have generated their own datasets like those of Livadas et al. (2006);

Saad et al. (2011); Shiravi, Shiravi, Tavallaee, and Ghorbani (2012). For example, Shiravi

et al. (2012) set up a distributed DoS attack using an IRC botnet to generate the dataset

which is suitable for intrusion detection.

The CTU-13 dataset is also one of these cases. Garcia et al. (2014) created the

CTU-13 dataset where the data is labeled as botnet, normal, or background. Garcia et al.

(2014) mentioned that even though there had been several botnet datasets downloadable,

such as Dainotti, King, Papale, Pescape, et al. (2012); Saad et al. (2011); Shiravi et al.

(2012); Sony and Cho (2000), they are either a) not representative of the real-world

traffc, b) not labeled, or c) not suitable for every detection algorithms that the authors

wanted to compare. For these reasons, the CTU-13 dataset was generated with several

fundamental design goals as follow.

Garcia et al. (2014) set the design goals (Garcia et al., 2014):

• “Must have real botnets attacks and not simulations.

• Must have unknown traffc from a large network.

• Must have ground-truth labels for training and evaluating the methods.

• Must include different types of botnets.

• Must have several bots infected at the same time to capture

synchronization patterns.

• Must have NetFlow fles to protect the privacy of the users.”

The CUT-13 dataset was captured in the CTU University, the Czech Republic in

2011. On top of a Linux Debian host, they constructed a set of virtual machines with the

Microsoft Windows XP SP2 operating system and bridged each virtual machine into the

University network. After infecting the virtual machines with a particular botnet, they

19

captured the traffc both on the Linux host and on one of the University router using

tcpdump. Once they gathered all pcap fles for the 13 different infection scenarios, the

captures were aggregated into the NetFlow fle standards in the form of CSV fle. Each

fow was labeled with Botnet, Normal, or Background where two former labels meant the

network traffcs were generated from their testbed and the last label meant the traffc came

from the University networks.

For the evaluation, the author chose three datasets out of 13 datasets in the

CTU-13: Scenarios 4, 10 and 11. The reason for selecting these datasets is that they

feature the same bot, Rbot, but with different ratios of botnet traffc: 0.15%, 8.11%, and

7.6%, respectively.

3.3 Accuracy Metrics

To measure the accuracy of a classifer, taking into account the confusion matrix is

the most common way; in particular, precision and recall are often used. Precision pertains

the percentage of correctly predicted event from the pool of total predicted events while

recall concerns the percentage of correctly predicted event from the pool of actual events.

T P T P
Precision = ,Recall = (3.1)

T P+ FP T P + FN

3.3.1 F1 score

Taking both precision and recall into account, the F1 score gives a more balanced

view compared to using only precision or recall. The F1 score can be between 0 and 1. A

20

F1 score of 0 means there are no true positives, 1 means there are neither false negatives

or false positives, and undefned when there are only true negatives in the prediction.

P∗ R
F1 = 2 ∗ , where P is Precision, R is Recall (3.2)

P + R

which can also be represented as:

2T P
F1 = (3.3)

2T P + FN + FP

3.3.2 Matthews Correlation Coeffcient(MCC)

The Matthews correlation coeffcient, also known as the phi coeffcient, was

introduced by Matthews (1975). As another measure of the quality of binary

classifcation, the MCC incorporates True Negative as well, unlike the F1 score. The range

of the MCC lie between -1 to +1 where +1 means a perfect prediction, 0 no better than a

random prediction, and -1 perfect disagreement between true values and predictions.

T P ∗ T N − FP ∗ FN
MCC = p (3.4)

(T P + FP)(T P + FN)(T N + FP)(T N + FN)

According to Boughorbel, Jarray, and El-Anbari (2017):

Most standard machine learning algorithms work well with balanced training

data but they face challenges when the dataset classes are imbalanced. In such

situation, classifcation methods tend to be biased towards the majority class.

These algorithms are ineffcient in this case mainly because they seek to

maximize a measure of performance such as accuracy which is no longer a

proper measure for imbalanced data.

21

Taking True Negatives into consideration, the MCC is regarded more robust to the

data imbalance. In the same study, Boughorbel et al. (2017) showed that MCC and Area

Under ROC Curve (AUC) are more robust to data imbalance than the F1 score and

accuracy. In the recent studies by Chicco (2017); Powers (2011), MCC was claimed to be

the most informative score in a context of confusion matrix and to be the best

measurement for a binary classifcation.

3.4 Machine Learning Library

There are multiple machine learning libraries available, such as Theano,

TensorFlow, Scikit-learn, Caffe, etc. In this thesis, Scikit-learn was used because it comes

as a service consisting of all algorithms to be used.

The reason why Scikit-learn was chosen rather than the other popular machine

learning libraries like SparkML and Torch, which can also parallelize the classifer to take

advantage of using big data, was a lack of stable implementation of ensemble methods at

the time of this thesis.

Scikit-learn is well known for its high-level functions that allow users to take care

of the parameters of functions, or confguration rather than their implementation itself

(Pedregosa et al., 2011). For example, to build a Linear Support Vector Machine with

Scikit-learn, one can call LinearSVC() training with the researcher’s dataset and then test

iteratively changing its parameters such as class weights, the maximum number of

iterations to be run, etc. For the classifcation, the following methods were used.

• naive bayes.GaussianNB(): GaussianNB() works by assuming a Gaussian

distribution of data. In this reason, the data should be normalized beforehand.

• neural network.MLPClassifer(): This multi-layer perceptron classifer has

parameters including hidden layer sizes defning number of hidden layers and

neurons and solver for weight optimization.

22

• tree.DecisionTreeClassifer(): This builds a decision tree having max depth,

min samples split, etc. as parameters.

For the ensembles, ensemble.AdaboostClassifer(), ensemble.BaggingClassifer(),

ensemble.VotingClassifer() were used. The frst two methods take a single type of base

estimator to make an ensemble, and number of estimators can be set to defne the

maximum number of estimators at which the ensemble method is terminated. In case of a

perfect ft, the learning procedure stops early. VotingClassifer() takes a list of estimators

to make a voting ensemble.

Scikit-learn also provides various accuracy metrics for classifcation, regression,

clustering, etc. In this study, metrics.f1 score() and metrics.matthews corrcoef() were

used.

3.5 Data preparation and evaluation

Table 3.1 provides the list of features in the CTU-13 dataset. After capturing

PCAP fles, Garcia et al. carefully selected features while aggregating the traffc to

NetFlow standards. While the previous work used WEKA tool for the classifcation which

can handle categorical data, a proper data preprocessing was needed for this thesis.

Because Scikit-learn only expects continuous input, all categorical features should be

encoded with sklearn.preprocessing.LabelEncoder.

After encoding, data standardization was conducted. While Scikit-learn provides

functionality to convert the data into standard normally distributed data which is Gaussian

with zero mean and unit variance, scaling the data to a certain range is an alternative

preprocessing.

https://metrics.f1

23

Table 3.1. Data features in the CTU-13 dataset (Garcia et al., 2014)

Feature Type
Start time
End time
Duration
Protocol
Src IP address
Src port number
Direction
Dst IP address
Dst port number
Flags
Type of services
Number of packets
Number of bytes
Number of fows
Label

Numerical
Numerical
Numerical
Categorical
Categorical
Categorical
Categorical
Categorical
Categorical
Categorical
Categorical
Numerical
Numerical
Numerical
Categorical

To do so, sklearn.preprocessing.MinMaxScaler offers “scaling features to lie

between a given minimum and maximum,” which is considered to provide “robustness to

very small standard deviations of features and preserving zero entries in sparse data”

(Pedregosa et al., 2011). For more details about data preprocessing, please refer to

Appendix A.

Once preprocessing was done, the data was randomly split into the training data

and the test data with the ratio of 8 to 2. For each classifer, the input parameters were

selected to the optimum after a few empirical tests. For each scenario, the average time

and accuracy of 5 times of the each classifer were recorded as the fnal results.

3.6 Deliverables

From this research, the following were delivered to future researchers.

24

• A comparative study of ML algorithms and ensembles used to detect botnet traffc

based on a literature survey.

• A report on the authors approach towards the research questions and the way to

implement the evaluable to be scalable.

3.7 Summary

This chapter described methodology for the research including a description of

dataset, accuracy metrics, machine learning library, data preprocessing, and deliverables.

25

CHAPTER 4. RESULTS

This chapter provides the result of the experiment. It includes the comparison of

accuracies and training time.

4.1 Results

To evaluate the classifcation algorithms along with ensemble methods for the

CTU-13 dataset, Scikit-learn on a single core of Intel Xeon-E5 with 64GB of memory was

used. The results are described in Table 4.1, Table 4.2, and Figure 4.1.

For every data and algorithms, F1 scores were higher than MCC scores. This is

because the F1 score does not consider the true negatives. For this reason, MCC is

preferred for a binary classifcation. In the following discussion, accuracy refers to MCC

score and S denotes scenario of the dataset.

Among individual algorithms, all showed decent accuracies over 0.91 on S10 and

S11. But for S4, GNB and NN showed poor results of 0.13 and 0.00 respectively. In terms

of the training time, GNB run much faster than other algorithms on S4 and S10. For S11,

Table 4.1. Time consumed for model training (sec)

Method Scenario 4 Scenario 10 Scenario 11
GNB 2.68 1.59 1.57
NN 76.24 163.86 21.44
DT 25.48 35.39 0.62
Voting 103.05 139.56 18.06
Boosting-GNB 554.14 222.48 15.20
Boosting DT 56.77 83.23 0.77
Bagging-GNB 62.90 22.13 1.47
Bagging-NN 437.37 654.84 41.61
Bagging-DT 175.11 186.07 2.65
RF 43.17 63.74 1.44

26

Fi
gu

re
 4

.1
. E

xp
er

im
en

t r
es

ul
ts

27

Table 4.2. Evaluation result

Method Scenario 4 Scenario 10 Scenario 11
F1 MCC F1 MCC F1 MCC

GNB 0.986159 0.135260 0.988762 0.910358 0.992302 0.982357
NN 0.998489 0.000000 0.992646 0.939776 0.993299 0.984639
DT 0.999990 0.996779 0.999982 0.999849 0.999971 0.999935
Voting 0.999117 0.644421 0.994763 0.956586 0.993841 0.985878
Boosing-GNB 0.967339 0.043543 0.867776 0.162963 0.378982 0.168781
Boosing-DT 0.999989 0.996285 0.999983 0.999857 0.999963 0.999916
Bagging-GNB 0.986170 0.135319 0.988758 0.910333 0.992253 0.982245
Bagging-NN 0.998489 0.000000 0.993613 0.946912 0.993670 0.985486
Bagging-DT 0.999991 0.996955 0.999981 0.999836 0.999955 0.999897
RF 0.999997 0.998930 0.999988 0.999896 0.999972 0.999935

DT run faster taking 0.62 seconds. Regarding S10, even though NN showed high accuracy

as DT, it took 3-4 times longer than DT did.

The only structure difference among the three datasets is the ratio of botnet traffc.

Even though S4 is the largest dataset, it only brings one Rbot having 0.15% of botnet

traffc ratio, which means the dataset is highly scarce. In contrast, S10 has 8.11% of

botnet traffc and S11 has 7.6% which can be considered fairly large enough.

Overall, NN and DT showed relatively higher accuracy than GNB, and NN was

the slowest classifer among all. This pattern appeared the same on the result of voting.

For the voting, it showed relatively higher accuracies on S10 and S11, recording 0.96 and

0.99, respectively while it recorded only 0.64 on S4.

Boosting method did not signifcantly help either GNB or DT. Especially for

GNB, the accuracy signifcantly dropped down on all datasets showing less than 0.17.

Especially it recorded a MCC score of 0.04 on S4 where 0 means no better than random

prediction. The training time was also huge compared to the GNB classifer recording

554.14 seconds on S4 for example. When it comes to boosting DT, The accuracy results

were not largely different from those of DT classifer. But, of course, it took longer time

than DT taking 2-3 times longer than DT did.

28

Each bagging algorithm seemed very similar to using a single classifer only for

each dataset. The results of using s bagging classifer showed the same pattern where DT

and NN were relatively more accurate than GNB while GNB run the fastest. But the

training time of bagging was much larger than that of using a classifer without ensemble

methods except when bagging was applied to GNB against S4.

While the ensemble methods offered by Scikit-learn were not signifcantly

benefcial on each algorithm, random forest appeared highly effective in terms of both

accuracy and training time. It showed very decent accuracies in MCC scoring more than

0.998 for every dataset, recording moderate training time compared to other ensembles.

Especially noteworthy is that it took less time than using NN alone.

Figure 4.2, 4.3, and 4.4 provide graphical views to compare the classifers against

each scenario based on their time consumption and MCC score.

Figure 4.2. Time and MCC evaluation against S4

29

Figure 4.3. Time and MCC evaluation against S10

Figure 4.4. Time and MCC evaluation against S11

30

For the S4 data, DT, RF, Boosting DT, and Bagging DT give the predictions of

high quality as shown in Figure 4.2. On the other hand, Bagging DT and Boosting DT

took a longer time than decision tree alone or random forest. Compared to those

classifers, bagging NN or boosting GNB turned out to be the worst with poor predictions

and enormous time consumption. Also, differently from S10 and S11, the neural networks

classifers worked poorly giving a low MCC score.

Figure 4.3 shows slightly different results from those of S4. For S10, most

classifers worked well showing high MCC scores with the exception of Boosting GNB.

Considering time consumption together, GNB, Bagging GNB, DT, RF and Boosing DT

seem reasonable. Similarly with the case of S4, the decision tree classifer and the random

forest classifer gave better MCC that the Gaussian naive Bayes classifer. Unlike S4,

Bagging NN provide accurate prediction, but it took too long which makes considering

bagging neural networks undesirable.

Because the size of S11 is very small compared to the previous 2 datasets, all

classifers ended in 45 seconds for Scenario 11 (Figure 4.4). Similarly with the case of

S10, Boosting GNB gave the poor prediction and the time bagging neural networks took

was longer than any other classifers. This time, the Gaussian naive Bayes and decision

tree, and random forest classifers provided fair accuracies in a very short time.

4.2 Summary

This chapter described the result of the experiment in terms of training time and

accuracy.

31

CHAPTER 5. CONCLUSION

In this chapter, more detailed discussion on the evaluation results and future work

are described.

5.1 Discussion

After the experiment, to detect botnet traffc out of all network traffc, decision tree

without any ensemble method or random forest would be the most reliable approaches.

They run much faster than NN alone and with better accuracy. Even though GNB ran the

fastest, the accuracy varied on the dataset. Unlike the common expectation, adopting

ensemble methods on machine learning algorithms for botnet detection in a hope of

enhancing the accuracy is not preferable because it does not give remarkably more

accurate result while consuming much more time.

Voting showed the same pattern with using other classifers without ensemble

methods. This is on the ground that voting works by averaging out each outcome from the

models.

When it comes to boosting, it showed minimally better accuracy compared to

using a sole algorithm primarily because of the nature of boosting. In boosting, it turns

weak models with slightly better prediction than random into a strong one. In this regard,

it obviously did not make DT strong as it already had a good accuracy. On the other hand,

boosting GNB showed the results that deviated with those of other algorithms. For S4, the

MCC score was near zero which means the prediction is not better than random. As for

S10 and S11, it only showed around 0.16 of MCC which is the opposite result of using a

sole GNB. According to Ting and Zheng (2003), the similar drop-down appeared in a

specifc dataset, Tic-tac-toe. Because Naive Bayes is very stable classifer carrying a

32

strong bias, in the boosting process the sub-classifers may not be diverse enough (Ting &

Zheng, 2003). This does warrant additional inquiry.

While training a bagging model, multiple sub-datasets sampled out from the

original dataset make their own classifer. Then predictions from those classifers are

voted. This dataset, however, might not take the beneft from sampling because the data is

too sparse or skewed.

Random forest, as a combination of decision tree, performs implicit feature

selection taking feature importance into consideration. Also making multiple sub-decision

trees with part of features and data rows, it can run extremely faster than other methods

and even can be easily parallelized. Considering parallelization is tough to be

implemented in ensemble methods, Random forest seems like an excellent choice.

5.2 Comparison with the benchmarks

The results of the evaluation were also compared to those of the previous research

by Garcia et al. (2014). In the previous research, the authors separated the entire CTU-13

dataset into two groups considering the following criteria (Garcia et al., 2014):

• The “training and cross-validation datasets should be approximately 80% of the

dataset.

• The testing dataset should be approximately 20% of the dataset.

• None of the botnet families used in the training and cross-validation dataset should

be used in the testing dataset.”

Meeting those criteria, they separated the dataset into training, testing, and

cross-validation carefully considering features, such as the duration in minutes, the

number of clusters, the number of NetFlow and the number of aggregated NetFlows of the

scenarios. Scenarios 1, 2, 6, 8, and 9 were selected for training and cross-validation and

33

the others were for testing. Among 20 different botnet detection methods analyzed in the

research, the BClus (Garcıa, 2014) and the BotHunter (Gu et al., 2007) methods were

considered for further comparison with this thesis as they have utilized machine learning

approaches as well as rule-based approaches.

Even though the authors of the research did not adopt MCC score, they measured

F1 scores. The score of Scenario 8 could not be computed because the BotHunter

algorithm could not detect a single TP against the dataset (Garcia et al., 2014). Compared

to the result of this thesis, the F1 scores are far below for all of the Scenarios except

Scenario 11. According to Garcia et al. (2014), the data separation was meant to ensure

that the methods can generalize and detect new behaviors and to avoid the bias toward the

majority class of Background. Thus, the evaluation utilizing three machine learning

algorithms and their ensembles offer better detection accuracy compared to the previous

research.

5.3 Future work

The error metrics from the thesis looks more prominent than those of the

benchmarks from Garcia et al. (2014), but still the gap between those two research can be

narrowed. Firstly, the different use of the dataset can be resolved. while the previous

research used the entire CTU-13 dataset to split the training data and the test data, the

author utilized 3 out of 13 datasets. Secondly, the metric can also be expanded in scope. In

the Garcia et al. (2014), they suggested the new error metric to resolve the semantic gap

between the traditional error metrics and the practical application.

Specifcally Garcia et al. (2014) stated:

The error metrics usually used by researchers to analyze their results (e.g.

FPR, FMeasure) were historically designed from a statistical point of view,

and they are really good to measure differences and to compare most

34

methods. But the needs of a network administrator that is going to use a

detection method are slightly different. These error metrics should have a

meaning that can be translated to the network.

To resolve the problem, they established the following principles for a proper error

metric (Garcia et al., 2014):

• “Errors should account for IP addresses instead of NetFlows.

• To detect a botnet IP address (TP) early is better than later.

• To miss a botnet IP address (FN) early is worst than later.

• The value of detecting a normal IP address (TN) is not affected by time.

• The value of missing a normal IP address (FP) is not affected by time.”

Considering the principles together would give a more reliable comparison of the

thesis to the benchmark study.

Also, even though the CTU-13 dataset were generated for the use of machine

learning technologies for botnet detection, it is still the best to use the actual datasets to

which the detection system would be applied. In this reason, capturing network packets of

the targeted network and evaluating the algorithms against the network data would

provide the more practical results.

5.4 Summary

In this study, three popular machine learning algorithms – Gaussian naive Bayes,

neural networks, decision tree – were tested against part of the CTU-13 dataset featuring

one or more Rbots. Furthermore, the ensemble methods – voting, boosting, and bagging –

were also compared to measure how signifcantly benefcial the ensemble methods would

be for botnet detection. Along with these, Random forest. Based on this study, decision

35

tree without any ensemble methods or random forest would be the most reliable

approaches to detect botnet traffc out of all network traffc.

36

REFERENCES

Boughorbel, S., Jarray, F., & El-Anbari, M. (2017). Optimal classifer for imbalanced data

using matthews correlation coeffcient metric. PloS one, 12(6), e0177678.

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123–140.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32.

Chandrasekar, K., Cleary, G., Cox, O., Lau, H., Nahorney, B., et al. (2017, April). Internet

security threat report. Technical Report, 22.

Chicco, D. (2017). Ten quick tips for machine learning in computational biology.

BioData mining, 10(1), 35.

Dainotti, A., King, A., Papale, F., Pescape, A., et al. (2012). Analysis of a/0 stealth scan

from a botnet. In Proceedings of the 2012 acm conference on internet

measurement conference (pp. 1–14).

Dietterich, T. G., et al. (2000). Ensemble methods in machine learning. Multiple

classifer systems, 1857, 1–15.

Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC press.

Ekbal, A., & Saha, S. (2011). Weighted vote-based classifer ensemble for named entity

recognition: A genetic algorithm-based approach. ACM Transactions on Asian

Language Information Processing (TALIP), 10(2), 9.

Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression

trees. Journal of Animal Ecology, 77(4), 802–813.

Freund, Y., & Schapire, R. E. (1995). A desicion-theoretic generalization of on-line

learning and an application to boosting. In European conference on computational

learning theory (pp. 23–37).

37

Garcıa, S. (2014). Identifying, modeling and detecting botnet behaviors in the network.

Unpublished doctoral dissertation, Universidad Nacional del Centro de la

Provincia de Buenos Aires.

Garcia, S., Grill, M., Stiborek, J., & Zunino, A. (2014). An empirical comparison of

botnet detection methods. computers & security, 45, 100–123.

Garcı́a, S., Zunino, A., & Campo, M. (2014). Survey on network-based botnet detection

methods. Security and Communication Networks, 7(5), 878–903.

Grizzard, J. B., Sharma, V., Nunnery, C., Kang, B. B., & Dagon, D. (2007). Peer-to-peer

botnets: Overview and case study. HotBots, 7, 1–1.

Gu, G., Perdisci, R., Zhang, J., Lee, W., et al. (2008). Botminer: Clustering analysis of

network traffc for protocol-and structure-independent botnet detection. In Usenix

security symposium (Vol. 5, pp. 139–154).

Gu, G., Porras, P. A., Yegneswaran, V., Fong, M. W., & Lee, W. (2007). Bothunter:

Detecting malware infection through ids-driven dialog correlation. In Usenix

security symposium (Vol. 7, pp. 1–16).

Gu, G., Zhang, J., & Lee, W. (2008). Botsniffer: Detecting botnet command and control

channels in network traffc. In Ndss (Vol. 8, pp. 1–18).

Itap research computing. (2017). Retrieved 2017-10-19, from

https://www.rcac.purdue.edu/compute/rice

Kearns, M., & Valiant, L. (1994). Cryptographic limitations on learning boolean formulae

and fnite automata. Journal of the ACM (JACM), 41(1), 67–95.

Livadas, C., Walsh, R., Lapsley, D., & Strayer, W. T. (2006). Using machine learning

techniques to identify botnet traffc. In Local computer networks, proceedings

2006 31st ieee conference on (pp. 967–974).

https://www.rcac.purdue.edu/compute/rice

38

Lu, W., Rammidi, G., & Ghorbani, A. A. (2011). Clustering botnet communication traffc

based on n-gram feature selection. Computer Communications, 34(3), 502–514.

Matthews, B. W. (1975). Comparison of the predicted and observed secondary structure

of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure,

405(2), 442–451.

McCallum, A., Nigam, K., et al. (1998). A comparison of event models for naive bayes

text classifcation. In Aaai-98 workshop on learning for text categorization

(Vol. 752, pp. 41–48).

Mendes-Moreira, J., Soares, C., Jorge, A. M., & Sousa, J. F. D. (2012). Ensemble

approaches for regression: A survey. ACM Computing Surveys (CSUR), 45(1), 10.

Metsis, V., Androutsopoulos, I., & Paliouras, G. (2006). Spam fltering with naive

bayes-which naive bayes? In Ceas (Vol. 17, pp. 28–69).

Micro, T. (2006). Taxonomy of botnet threats. A Trend Micro White Paper.

Micro, T. (2010). The botnet chronicles: A journey to infamy. A Trend Micro White

Paper.

Nielsen, M. A. (2015). Neural networks and deep learning. Determination Press.

Retrieved 2017-06-07, from http://neuralnetworksanddeeplearning.com

Panda, M., & Patra, M. R. (2009). Ensemble voting system for anomaly based network

intrusion detection. International journal of recent trends in engineering, 2(5).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . .

Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of

Machine Learning Research, 12, 2825–2830.

Powers, D. M. (2011). Evaluation: from precision, recall and f-measure to roc,

informedness, markedness and correlation.

http://neuralnetworksanddeeplearning.com

39

Quinlan, J. R. (1987). Simplifying decision trees. International journal of man-machine

studies, 27(3), 221–234.

Quinlan, J. R., et al. (1996). Bagging, boosting, and c4. 5. In Aaai/iaai, vol. 1 (pp.

725–730).

Rokach, L., & Maimon, O. (2014). Data mining with decision trees: theory and

applications. World scientifc.

Saad, S., Traore, I., Ghorbani, A., Sayed, B., Zhao, D., Lu, W., . . . Hakimian, P. (2011).

Detecting p2p botnets through network behavior analysis and machine learning. In

Privacy, security and trust (pst), 2011 ninth annual international conference on

(pp. 174–180).

Salem, M. B., Hershkop, S., & Stolfo, S. J. (2008). A survey of insider attack detection

research. Insider Attack and Cyber Security, 69–90.

Sangkatsanee, P., Wattanapongsakorn, N., & Charnsripinyo, C. (2011). Practical real-time

intrusion detection using machine learning approaches. Computer

Communications, 34(18), 2227–2235.

Schapire, R. E. (1990). The strength of weak learnability. Machine learning, 5(2),

197–227.

Shiravi, A., Shiravi, H., Tavallaee, M., & Ghorbani, A. A. (2012). Toward developing a

systematic approach to generate benchmark datasets for intrusion detection.

computers & security, 31(3), 357–374.

Silva, S. S., Silva, R. M., Pinto, R. C., & Salles, R. M. (2013). Botnets: A survey.

Computer Networks, 57(2), 378–403.

40

Sommer, R., & Paxson, V. (2010). Outside the closed world: On using machine learning

for network intrusion detection. In Security and privacy (sp), 2010 ieee symposium

on (pp. 305–316).

Sony, C., & Cho, K. (2000). Traffc data repository at the wide project. In Proceedings of

usenix 2000 annual technical conference: Freenix track (pp. 263–270).

Spamhaus botnet threat report 2017. (2018). Retrieved 2018-04-01, from

https://www.spamhaus.org/news/article/772/

spamhaus-botnet-threat-report-2017

Strayer, W. T., Lapsely, D., Walsh, R., & Livadas, C. (2008). Botnet detection based on

network behavior. In Botnet detection (pp. 1–24). Springer.

Ting, K. M., & Zheng, Z. (2003). A study of adaboost with naive bayesian classifers:

Weakness and improvement. Computational Intelligence, 19(2), 186–200.

Tsai, C.-F., Hsu, Y.-F., Lin, C.-Y., & Lin, W.-Y. (2009). Intrusion detection by machine

learning: A review. Expert Systems with Applications, 36(10), 11994–12000.

van der Meulen, R. (2017, Feburary). Gartner says 8.4 billion connected ”things” will be

in use in 2017, up 31 percent from 2016. Retrieved 2017-11-08, from

https://www.gartner.com/newsroom/id/3598917

Vezhnevets, A., & Vezhnevets, V. (2005). Modest adaboost-teaching adaboost to

generalize better. In Graphicon (Vol. 12, pp. 987–997).

Wang, P., Sparks, S., & Zou, C. C. (2010). An advanced hybrid peer-to-peer botnet. IEEE

Transactions on Dependable and Secure Computing, 7(2), 113–127.

Yeh, C.-C., Chi, D.-J., & Lin, Y.-R. (2014). Going-concern prediction using hybrid

random forests and rough set approach. Information Sciences, 254, 98–110.

https://www.gartner.com/newsroom/id/3598917
https://www.spamhaus.org/news/article/772

41

Zhou, Z.-H., Wu, J., & Tang, W. (2002). Ensembling neural networks: many could be

better than all. Artifcial intelligence, 137(1-2), 239–263.

42

APPENDIX A. DATA PREPARATION

In this appendix, the methods taken to pre-process the CTU-13 data is introduced.

Because the CTU-13 dataset contains categorical values for the most of the

feature, it needed to be transformed into numeric data that Scikit-learn can process. In this

regard, sklearn.preprocessing offers LabelEncoder that encodes labels with value

between 0 and n classes-1. In addition, sklearn.preprocessing.MinMaxScaler

transforms features by scaling each feature to a given range. To split the dataset into

training and test set, both masking and using model selection.train test split

could be applied. After practice, masking approach was mainly used.

def data_prep(df):

from sklearn import preprocessing, decomposition, model_selection

categorical = [’Prot’, ’Src_IP’, ’Src_Port’, \

’Dst_IP’, ’Dst_Port’, ’Flags’, ’Tos’]

#Categorical

le = preprocessing.LabelEncoder()

for col in categorical:

df[col] = le.fit_transform(df[col])

#Normalize

scaler = preprocessing.MinMaxScaler()

toNormalize = [’Durat’, ’Packets’, ’Bytes’, ’Flows’]

for col in toNormalize:

df[col] = scaler.fit_transform(df[col])

df[’Target’] = 1

43

df.loc [df[’Label’] == ’Botnet’, ’Target’] = 2

msk = np.random.rand(len(df)) < 0.8

trainDF = df[msk]

testDF = df[~msk]

#X = df[cols[:-1]]

#y = df[’Target’]

#return model_selection.train_test_split(X, y, train_size=0.6, random_state=42)

return trainDF[cols[:-1]], trainDF[’Target’], testDF[cols[:-1]], testDF[’Target’]

	Comparison of Machine Learning Algorithms and Their Ensembles for Botnet Detection
	Recommended Citation

