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ABSTRACT 

Mokashi, Archit M.S.I.E, Purdue University, May 2018. A Vehicle Routing Problem 
with Payload-Range Dependency by Fuel Consumption. Major Professor: Seokcheon 
Lee. 

In this research, a new variant of vehicle routing problem is introduced. Fuel 

consumption constitutes a significant component of transportation costs especially 

when large volumes of goods are transported using means of transportation such as 

aircrafts. Hence, the objective of this research is to perform efficient routing of a 

heterogeneous fleet of vehicles such that fuel consumption costs are minimized. Re-

duced fuel consumption also reduces greenhouse gases emission and creates a positive 

impact on the environment. Another unique characteristic studied is the dependence 

between load carried by a vehicle and the maximum distance it can travel without 

stopping. Weight of fuel is considered along with the load carried for vehicle capacity 

constraints. Split delivery and time window constraints are also considered. A math-

ematical model for the new problem has been developed. It has been implemented to 

solve a real-world case study for express delivery of goods. An initial solution greedy 

algorithm and a tabu search heuristic algorithm have also been developed in order to 

solve large scale instances of the problem. Comparison with optimal solution suggests 

that a good solution can be obtained using the heuristic algorithm in relatively short 

time. 
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1. INTRODUCTION 

1.1 Vehicle Routing Problems 

Transportation sector has a significant impact on the economy. Transportation 

related goods and services spending in 2015 was $1.48 trillion and accounted for more 

than 8% of U.S. annual Gross Domestic Product [1]. Express delivery of packages 

using aircrafts, supply of raw materials to factories, delivery of finished goods from 

factories to customers, movement of passengers, cargo and freight movement using 

aircrafts, trucks and maritime activities, etc. consist of transportation activities. 

Vehicle Routing Problem (VRP) plays an important role in efficient planning and 

optimization of these activities. 

Objective of the VRP is to determine the optimal route for a set of identical 

vehicles to meet the demands at customer locations. VRP is a generalization of the 

Traveling Salesman Problem (TSP). In TSP, a salesman has to determine the tour in 

order to visit all the cities from a given list exactly once, while minimizing the total 

distance to be traveled. As a graph problem, given a complete weighted graph, where 

the vertices correspond to city locations and the edge weights correspond to distance 

between the cities, the objective is to find the optimal Hamiltonian cycle having 

minimum weight. In Multiple Traveling Salesman Problem (MTSP), more than one 

salesman can be used, where every city is visited by only one of the salesmen exactly 

once. VRP is a MTSP where the set of vehicles corresponds to multiple salesmen. 

A number of characteristics associated with real-world transportation activities 

can be incorporated in the VRP. Customer demand is quantified as either discrete 

number of units or load weight. There are limitations to the quantity that a vehicle 

can carry. The set of vehicles may not consist of identical vehicles. Different vehicle 

types may have different limitations with respect to the maximum quantity that can 
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be carried. More than one product type may be demanded by the customer, that may 

have to be transported either together in a single vehicle or separately. For critical 

shipments, in order to reduce waiting of the customer or avoid excess inventory at 

customer location, time sensitive routing decisions may need to be made. Sometimes, 

it might be necessary or even optimal to allow more than one vehicle to visit a 

customer location. Many of these characteristics have been extensively studied in 

literature and have been included in the literature review. 

Optimality of the VRP route can be determined in a number of ways. Most of 

the times, the objective is to either maximize profits or minimize costs. The most 

common objective is to minimize the total distance traveled by the set of vehicles. 

Sometimes the objective could be improving service by minimizing total customer 

wait time. The objective could also be reducing vehicle emissions by minimizing 

fuel-burn. A multi-objective approach has also been studied. 

VRP is a NP-hard problem. Hence it is not yet possible to obtain an exact solution 

for VRP in polynomial time. As the problem size increases, it may not be possible 

to obtain an exact solution within reasonable amount of time. It is often necessary 

to use heuristic methods in order to solve VRP. 

1.2 Importance of Minimizing Fuel Consumption 

For many transportation activities such as air freight transportation, fuel costs 

account for a major share of the direct operating costs. Figure 1.1 shows the trend 

of jet fuel prices as analyzed by the International Air Transport Association [2]. Jet 

fuel price dropped 71% from $140/barrel to $40/barrel during Feb 2013 to Feb 2016. 

Also, the jet fuel prices have been rising since Feb 2016, having reached $80/barrel in 

Feb 2018 with a 100% increase from Feb 2016. According to the World Bank Group 

report [3], fluctuations in fuel prices would significantly affect the profits of air freight 

companies such as FedEx and UPS. Hence effective planning of transportation activi-
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ties is needed to reduce potential disruptions due to fuel price fluctuation. Minimizing 

fuel consumption can be helpful in achieving this. 

Figure 1.1. Jet fuel price trend 

Minimizing fuel consumption also helps in improving the environment. According 

to the ICF report [4], the amount of CO2 emission is proportional to the quantity 

of fuel consumed. Hence, greenhouse gases emission is reduced by minimizing fuel 

consumption. 

1.3 Payload-Range Dependency 

The quantity of fuel required for a tour is directly proportional to the load carried 

and the distance to be traveled. Hence, larger quantity of fuel is required to carry 

heavier loads over longer distances. All the vehicles that can be used for transporta-

tion have a capacity limitation on the quantity of load that can be carried. This 

limitation varies from vehicle to vehicle. For example, the capacity limitation for a 

truck would be about 20 tons whereas that for a B737 aircraft would be about 255 
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tons. The corresponding fuel tank capacity of the truck is 5 tons i.e. 25% of the 

load capacity whereas that of the aircraft is 79 tons which comes to about 31% of the 

load capacity. Hence, as the quantity of fuel in the fuel tank increases, the vehicle 

available payload decreases. This is referred to as payload-fuel dependency. This is 

significant especially in aircrafts due to larger load carrying capacities. 

Figure 1.2. Payload-range diagram 

With a filled fuel tank, there is a limitation to the maximum distance that the 

vehicle can travel until it consumes all the fuel and would require refueling. In order 

to increase the range of the vehicle, more fuel is required which in turn decreases 

the available payload. This is called payload-range dependency and is explained in 

Figure 1.2 obtained from [5]. For an aircraft, the maximum available payload remains 

constant up to a certain range as seen between points A and B in Figure 1.2. Between 

points B and C, the vehicle range is increased by reducing the payload and increasing 

the fuel required to travel the increased distance. Between points C and D, in order 
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to travel very long distances, the quantity of fuel required increases at a faster rate 

resulting in a substantial decrease in the available payload. 

1.4 Research Goals 

The thesis aims to perform efficient routing of vehicles for transportation activities. 

Due to the uncertainties associated with fuel prices, the fuel consumption related to 

routing activities needs to be minimized. This could in turn reduce the disruptive 

costs associated with fuel price fluctuation. In addition, it is important to study the 

effects of payload-range dependency on routing decisions since many transportation 

activities involve such interactions. Hence, the thesis aims to develop a mathematical 

model that incorporates these real-world characteristics. 

The model also needs to be validated in order to ensure that all the relevant prob-

lem characteristics are accurately represented in the formulation. Implementation of 

the model to solve a real-world case study is essential in demonstrating the usefulness 

of the model. Analyzing the significance of the results would lead to recommending 

decisions in order to efficiently plan the transportation activities. 

Due to NP-hardness of VRP, it may not be always possible to obtain an exact 

solution of a large scale problem within reasonable computational time. Heuristic 

methods are often necessary and helpful in solving such large scale problems. Hence, 

the thesis also aims to develop a heuristic method in order to solve the proposed 

routing problem. 

1.5 Overview of Thesis 

The following work has been divided into seven chapters. Chapter 2 gives an 

overview of the literature surveyed. Different VRP variants that have been studied in 

literature are discussed. VRP involving fuel consumption are investigated. Literature 

pertaining to estimating fuel consumption is discussed. Various heuristic methods 

used to solve VRP with closely associated characteristics have also been studied. 
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In Chapter 3, a mathematical model of the problem is formulated as a mixed 

integer programming problem. The assumptions associated with the problem are 

also discussed. The objective function and the calculation of fuel consumption is 

proposed. The constraints associated with the model with respect to split deliveries, 

time windows, payload-range dependency are also explained. 

In Chapter 4, a real-world case study of the Indianapolis hub for express delivery of 

packages by FedEx is discussed. The problem is introduced along with relevant data 

sources. Solution of the problem is compared with actual FedEx routes. Sensitivity 

analysis is also performed. 

Chapter 5 discusses the heuristic method developed to solve the problem. The 

algorithm for generating initial solution is described. Local search operator moves in 

order to move from current solution to a better solution are discussed. A tabu search 

algorithm is developed. 

In Chapter 6, performance of the proposed heuristic method is evaluated. Various 

problem instances are generated in order to perform the experimental study. Solution 

quality of the initial solution and the tabu search algorithm solution is evaluated 

for each of these problem instances. Comparison is also made with respect to the 

computational time. 

In Chapter 7, a summary of the thesis is presented. It is followed by recommen-

dations in Chapter 8. 



7 

2. LITERATURE REVIEW 

2.1 VRP Variants 

VRP was first introduced by Dantzig & Ramser [6], where they discussed capacity 

limitations on trucks used to deliver from a single depot. This is called the capacitated 

vehicle routing problem (CVRP). Toth & Vigo [7] explains vehicle flow formulations 

for the CVRP. Some of the constraints involved in the formulation include every 

customer is visited exactly once. Also, all vehicles start from the depot and return 

back to the depot at the end of their tours. However, there are a lot of complications 

involved while considering real-world features in vehicle routing problems as identified 

by Schrage [8]. A good survey of the VRP variants is done by Caceres-Cruz [9]. 

Since real-world problems constitute a number of characteristics, such problems 

are said to belong to a new class of problems called rich vehicle routing problems 

(Rich VRP). An extensive survey of Rich VRP is done by Caceres-Cruz [9]. Golden, 

Raghavan & Wasil [10] compile numerous recent contributions related to VRP and 

its variants. Different dimensions of richness in VRP was also studied by Drexl [11]. 

2.1.1 VRP variants associated with constraints 

For certain VRP problems, the customer cannot receive the deliveries too late. In 

other problems, the customer cannot receive the deliveries too early, since then extra 

inventory costs will need to be incurred. These problems are called vehicle routing 

problems with time windows (VRPTW). Each customer is associated with a time 

interval in which the deliveries are made. 

Sometimes the demands associated with a customer exceed the vehicle capacity 

limitations. For such problems, more than one vehicle is allowed to visit a customer. 
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This is called split-delivery vehicle routing problem (SDVRP). Sometimes allowing 

split-deliveries may lead to an improved solution as discussed by Dror & Trudeau 

[12]. An excellent survey on the literature related to SDVRP is done by Archetti & 

Speranza [13]. 

If more than one type of vehicle is available, then the routing problem is called 

heterogeneous fleet vehicle routing problem (HVRP). If the number of vehicles consti-

tuting the fleet is not limited, the problem is called fleet size and mix vehicle routing 

problem (FSMVRP). If more than one depot is available, it is a multiple depot vehicle 

routing problem (MDVRP). If the solution routes do not need to return back to the 

depot, the problem is called Open VRP. Repoussis, Tarantilis & Ioannou [14] present 

a generalized formulation of the Open VRP. 

2.1.2 VRP variants associated with objective function 

The most common objective function associated with VRP is minimizing total 

distance traveled. The problem of minimizing customer waiting time while visiting all 

of them in a single tour is called the traveling repairman problem and was studied by 

Afrati, Cosmadakis, Papadimitriou, Papageorgiou & Papakostantinou [15]. It is also 

called minimum latency problem (MLP). This problem is significantly different from 

the TSP as was observed by Blum, Chalasani, Coppersmith, Pulleyblank, Raghavan 

& Sudan [16]. The problem associated with minimizing the sum of arrival times at 

customers is also called cumulative capacitated vehicle routing problem (CCVRP) as 

studied by Ngueveu, Prins & Calvo [17]. A complete survey of MLP can be found 

in Moshref-Javadi & Lee [18]. MLP with multiple depots and more than one vehicle 

were also studied by Duket [19]. A bi-objective vehicle routing problem that aims to 

minimize vehicle travel time as well as customer wait times was studied by Hong & 

Park [20]. 

Another type of VRP variants called Green VRP aim at including different envi-

ronmental aspects while making routing decisions. An excellent survey of Green VRP 
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can be found in Demir, Bektas & Laporte [21]. They discuss the different aspects 

such as greenhouse gas emissions, pollution and fuel consumption models. Another 

survey of Green VRP topics is done by Lin, Choy, Ho, Chung & Lam [22]. 

2.2 Aircraft Routing Problem 

As discussed in the introduction, payload-range dependency is most significant in 

aircrafts. The aircraft schedule planning problem typically consists of four subprob-

lems schedule design, fleet assignment, maintenance routing and crew scheduling [23]. 

The schedule design problem is to determine when and where to offer flights. The 

fleet assignment problem assigns aircraft types to flight legs. Fleet balance require-

ments and repeatability of flight schedule are also considered here. The maintenance 

routing problem accounts for mandatory maintenance checks. Crew scheduling con-

sists of identifying crew pairs for a flight route. Crew rest and periodic repeatability 

also need to be considered. 

Integrated design approaches considering two subproblems of the schedule plan-

ning problem have also been studied. Lohatepanont & Barnhart [24] studied inte-

grated models for schedule design and fleet assignment. They consider a mandatory 

and optional flights policy , determining whether the optional flight is flown and how 

many passengers are redirected to other flights. Faust, Gönsch & Klein [25] con-

sidered two types of customers and developed a piecewise linear approximation of 

nonlinear revenue function. They solved the problem of allocating seating capacity 

to each customer type and whether a particular rotation is included in the flight 

schedule. Kim & Barnhart [26] studied flight schedule design for a charter airline. 

Trips were classified into four types based upon flying time and flight assignment was 

performed. Yan & Tseng [27] modeled the interrelationships between passenger trip 

demands and flight supplies. They performed fleet assignment based upon fleet-flow 

and passenger-flow time-space networks. 
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The express delivery activities of FedEx from a single hub were identified as an 

aircraft routing problem by Kuby & Gray [28]. They discussed the delivery problem to 

be Open VRP, since the vehicles do not need to return back to the hub. The delivery 

activities are followed by pickup activities, which can be considered independent of 

each other due to the large time interval between them. 

2.3 Fuel Consumption Estimation 

Xiao, Zhao, Kaku & Xu [29] developed a fuel consumption optimization model. 

They estimated a linear relationship between fuel consumption rate and the gross ve-

hicle weight, which was used to estimate fuel consumption based upon distance trav-

eled. A fuel consumption minimization objective function was proposed by Kopfer & 

Kopfer [30]. Fuel consumption for each leg of a route was calculated based upon load 

carried by the vehicle and distance travelled for that leg. They used two fuel consump-

tion constants, one for empty vehicle per kilometer and other for load of the vehicle 

per ton per kilometer. Computational experiments showed significant fuel savings by 

using a heterogeneous fleet. This study was extended to include time windows and 

split deliveries by Vornhusen & Kopfer [31]. However, the fuel consumption constants 

and computational experiments were restricted to a heterogeneous fleet consisting of 

different types of trucks only. 

Fuel consumption in passenger aircrafts and its dependence on seats and distance 

was studied by Park & O’Kelly [32]. The authors performed analysis of historical 

data to come up with fuel burn constant as the amount of fuel per seat-nautical 

mile. A similar analysis of fuel use in air freight network of FedEx was performed by 

O’Kelly [33]. Fuel burn is estimated as a function of distance using two constants, 

first is kg of fuel per flight and second is kg of fuel per nautical mile. Dependence on 

payload is established by analysing historical data of FedEx aircrafts and scaling the 

fuel consumption constants by a load factor. 
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2.4 Heuristics for VRP 

Since VRP and its variants are NP-hard, various heuristic methods have been 

used to solve them. The heuristic methods are problem-specific. Hence there exists 

extensive literature on different heuristic methods for solving VRP variants having 

different problem characteristics. As defined by Sörensen & Glover [34], a meta-

heuristic is a problem-independent algorithm used to develop heuristic optimization 

algorithms. Various metaheuristics like tabu search, simulated annealing, scatter 

search, etc. have been used to solve VRP and its variants. 

Dror & Trudeau [12] first introduced the SDVRP where they considered hetero-

geneous fleet of vehicles with vehicle capacity and split delivery constraints. Two 

heuristic methods were developed viz. k-split interchange and route addition. In 

k-split interchange, savings are calculated w.r.t. removing a customer demand from 

one of the routes and splitting it between k other routes. The move resulting in 

maximum possible savings is selected. In route addition, a new route is added in 

order to eliminate one of the splits. They evaluated their heuristic by performing 

computational experiments on 3 problem sets of customer locations, 6 demand range 

parameters, generating 30 problem instances for each of the six demand parameters. 

They demonstrated that for certain problems, allowing split deliveries could lead to 

significant cost savings. 

Ho & Haugland [35] developed a tabu search heuristic to solve a VRP considering 

homogeneous fleet, split deliveries and time window constraints. They discussed 

different move operators such as relocate, exchange, relocate split and 2-opt. Their 

tabu search algorithm identified the best move that is either not tabu or overrides an 

aspiration criteria. They also included a post-optimization phase after termination of 

the tabu search algorithm. They evaluated their algorithm based upon the Solomon 

test problems [36]. The test problems consist of 6 sets based upon whether the 

geographical location of the customers is randomly distributed, clustered or semi-

clustered; each of which can have either a short or long scheduling horizon. 
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Archetti, Speranza & Hertz [37] developed a tabu search algorithm to improve 

over the results of Dror & Trudeau [12]. They used the GENIUS algorithm [38] to 

construct the initial feasible solution. The tabu search phase consists of two proce-

dures viz. order routes and best neighbor. In the order routes procedure, given a 

customer, savings are calculated by removing that customer from each of its routes 

and ordering the routes by non-increasing value of the savings. The best neighbor 

procedure identifies the best neighbor solution for each customer. A neighbor solu-

tion is obtained by including a customer in a route and removing that customer from 

a subset of routes as identified from the order routes procedure. Two parameters 

are required to be set for the tabu search algorithm viz. length of the tabu list and 

maximum number of iterations without any improvement. 

Despaux & Basterrech [39] studied the multi-trip vehicle routing problem consid-

ering heterogeneous fleet and time windows. They developed a simulated annealing 

based algorithm. Initial solution was constructed using the Solomon insertion heuris-

tic [36]. They discussed different move operators such as revert the order of customers 

within a route, relocate, exchange and vehicle assignment. They also developed op-

erators to address violation of time window and capacity constraints. 

Belfiore & Yoshizaki [40] developed a scatter search algorithm to solve the FS-

MVRP. Scatter search generates subsets of solutions by weighted linear combination 

of subset solutions from a reference solution set. They also compared the results 

of their heuristic with the results of Ho & Haugland [35]. Yoshizaki, Tsugunobu & 

Belfiore [41] also developed a scatter search algoithm to solve a real-world Brazilian 

retail group problem. They considered VRP with heterogeneous fleet, time windows 

and split deliveries. 

Chen & Golden [42] developed an endpoint mixed integer program (EMIP) to solve 

the SDVRP. They considered homogeneous fleet of vehicles, capacity constraints and 

allowed split deliveries. Initial solution is obtained from the Clarke-Wright savings 

algorithm [43] to the VRP while not considering split deliveries. The decision variables 

for EMIP consist of which customer should be moved from the end of current route to 
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the end of different route and how much of the customer’s demand should be relocated. 

EMIP is a smaller size problem compared to SDVRP, and an exact solution can be 

easily obtained. Their heuristic was tested on 6 problem sets of customer locations, 

6 demand range parameters same as in [12], and generating 30 problem instances for 

each of the six demand parameters. They compared the performance of their heuristic 

with the tabu search algorithm developed by Archetti, Speranza & Hertz [37]. 

2.5 Research Gap 

From the above literature review, it is observed that vehicle routing in order to 

optimize fuel consumption, pollution resulting due to vehicles involved in transporta-

tion activities and other environmental considerations is a new and upcoming area 

of research interest. There have been attempts to model the vehicle routing problem 

that aim to minimize vehicle emissions and fuel consumption. Most of them consider 

the dependence of fuel consumption on distance to be traveled and load to be carried. 

However, there have been no attempts to consider the weight of fuel limiting the pay-

load capacity. This is significant especially when large quantities of load need to be 

transported over long distances. For such problems, the weight of fuel required is con-

siderably high. This dependence between load carried, fuel weight limiting distance 

to be traveled is called payload -range dependency. There have been no previous 

attempts that consider this property in vehicle routing problems. 

Another observation is that most of the literature associated with developing 

heuristic methods to solve large scale vehicle routing problems is restricted to distance 

based cost functions. Also, a completely new model is being proposed in this research 

that has never been studied before. Hence, the existing heuristic methods cannot be 

applied as they are. A new heuristic method is needed to solve large scale problem 

instances of the proposed new model. 

In order to address the observed gaps in literature, a mathematical model is 

proposed in order to study the new problem. A case study associated with express 
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delivery of packages using aircrafts is considered. The proposed model is applied to 

solve this case study based upon the operations at FedEx Indianapolis hub. A tabu 

search heuristic is also developed in order to solve large scale problem instances. 
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3. MODEL FORMULATION 

3.1 Model Assumptions 

3.1.1 Problem description 

The problem being studied is described as follows. Products are to be delivered 

from a central depot or hub to a number of customers using vehicles available at the 

depot. Each customer has a unique location determined by its latitude and longitude. 

Each customer has its own demand in terms of load or weight of products. Different 

types of vehicles are available in the fleet at the depot. Each vehicle has its own 

capacity limitation on the load or weight that it can carry. This capacity limitation 

is inclusive of the weight of fuel, the weight of products as well empty vehicle weight, 

equivalent to the gross vehicle weight. It may be the case that a customer demand 

is more than a single vehicle capacity limitation. Each vehicle has its own average 

speed of travel. Each customer has to receive the shipment of all its demand before 

a time deadline. This time deadline is called latest service start time. Whenever a 

vehicle visits a customer, it takes some time to offload the products, this is referred to 

as service time. Every customer has its own service time associated with each vehicle. 

The quantity of fuel required for a trip is estimated based upon the distance, the load 

of products being carried and fuel consumption constant of the vehicle. It is assumed 

that the quantity of fuel filled in a vehicle at the start of a trip is just sufficient for it 

to complete the trip. Refueling takes place at every customer visit. The objective is 

to minimize total fuel consumption over all the trips. The decisions to be made are 

identifying the trips by determining the routes for each vehicle as well as the load or 

weight of products being carried by a vehicle during each trip of the route. 
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3.1.2 Notation 

• L = {0, 1, 2, ..., N, N + 1} is the set of city locations and is indexed by i, j 

0 is the depot location. 

N + 1 is the dummy destination location where all the used vehicles return to 

N = # of cities 

• V = {1, 2, ..., K} is the set of available vehicles and is indexed by k 

K = # of vehicles 

• distij = distance between customer i and customer j, ∀i, j ∈ L 

distiN+1 = 0, ∀i ∈ L\{N + 1}, ∀k ∈ V 

• di = demand of products (load or weight) from customer i, ∀i ∈ L\{0, N + 1} 

• li = latest service start time at customer i, ∀i ∈ L 

l0 = 0 

• Qk = maximum vehicle capacity limitation (weight) of vehicle k, ∀k ∈ V 

• fk 
cap = fuel tank capacity (weight of fuel) of vehicle k, ∀k ∈ V 

• empk = Empty weight of vehicle k, ∀k ∈ V 

• speedk = Average speed of vehicle k, ∀k ∈ V 

• bk = fuel consumption constant (weight of fuel required per unit distance per 

unit load) of vehicle k, ∀k ∈ V 

• tkij = travel time from customer i to customer j using vehicle k, 

∀i ∈ L\{N + 1}, ∀j ∈ L\{0}, ∀k ∈ V 

tij
k = distij /speed

k (3.1) 

• sk = service time of vehicle k at customer i, ∀i ∈ L\{N + 1}, ∀k ∈ Vi 

s0 
k = 0, ∀k ∈ V 
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• fijk = weight of fuel required for a trip from customer i to customer j using 

vehicle k, ∀i ∈ L\{N + 1}, ∀j ∈ L\{0} and ∀k ∈ V 

• fpg = fuel price per unit fuel weight 

• M is a very large positive number 

3.1.3 Decision variables 

• xk = ij 

⎧⎨ ⎩ 

1, if vehicle k is assigned to route from customer i to customer j 

0 otherwise 
∀i, j ∈ L and ∀k ∈ V 

• yik = 

⎧⎨ ⎩ 

1 if vehicle k visits customer i 

0 otherwise 
∀i ∈ L\{0, N + 1} and ∀k ∈ V 

• qijk = load (weight) carried by vehicle k from customer i to customer j (not 

including weight of fuel) 

∀i ∈ L\{N + 1}, ∀j ∈ L\{0} and ∀k ∈ V 

• zik = proportion of customer i demand carried by vehicle k 

∀i ∈ L\{0, N + 1} and ∀k ∈ V 

• wi
k = time at which offloading of vehicle k at customer i starts 

∀i ∈ L and ∀k ∈ V ; w0 
k = 0, ∀k ∈ V 

3.2 Objective Function 

The objective of the formulated mathematical model is to minimize fuel consump-

tion cost. In order to estimate fuel consumption for a trip from customer i to customer 

j using vehicle k, the fuel consumption constant bk is used. Equation 3.2 is used to 
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estimate the fuel consumption for that trip. Total fuel consumption cost can be es-

timated by summing the estimated fuel consumption over all trips as given by the 

expression in Equation 3.3. Hence objective of the formulated mathematical model 

is to minimize the expression given by Equation 3.3. 

fk = bk q k distij (3.2)ij ij 

N N+1XXX 
fij
k fpg (3.3) 

i=0 j=1 k∈V 

3.3 Model Constraints 

In order to obtain a valid solution in the form of decision variables, following 

constraints need to be imposed. All routes are supposed to be continuous. In a route 

for vehicle k, if the vehicle visits any customer, then it also leaves the customer. This 

is enforced by constraint 3.4. 

N N+1X X 
x k = x k ∀j ∈ L\{0, N + 1} ∀k ∈ V (3.4)ij ji 

i=0 i=1 

The relation between variables x and y is established by constraint 3.5. If a vehicle 

k visits customer j, then it does so exactly once. Together, constraints 3.4 and 3.5 

state that the number of times a vehicle visits a customer j is equal to the number of 

times it leaves that customer. Also, this number is 1 if the vehicle k visits customer 

j and 0 otherwise. 

NX 
x k = y k ∀j ∈ L\{0, N + 1} ∀k ∈ V (3.5)ij j 

i=0 

Constraints 3.6 and 3.7 are necessary for continuity of routes. If a vehicle k is 

used, then it leaves the depot exactly once. All the vehicle routes terminate at the 

dummy node customer N + 1. Hence, there can be no trip leaving from customer 

N + 1. Constraint 3.7 ensures that the open vehicle routing problem requirement is 
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satisfied and that instead of all the vehicles returning back to the depot, they end 

their routes at node N + 1. 
NX 

x k ≤ 1 ∀k ∈ V (3.6)0j 
j=1 

N+1X 
xN
k 
+1j = 0 ∀k ∈ V (3.7) 

j=1 

Constraint 3.8 ensures that the demand for any customer i is satisfied. Sum of 

the proportions of demand of customer i carried by all the vehicles together has to 

meet the total customer demand. X 
z k = di ∀i ∈ L\{0, N + 1} (3.8)i 

k∈V 

Constraint 3.9 ensures that the proportion of a customer i demand carried by 

vehicle k is always less than the total demand of customer i i.e. di. It also determines 

the relation between variables y and z. If vehicle k does not visit customer i, then 

proportion of customer i demand carried by vehicle k is 0. 

zi
k ≤ diyi

k ∀i ∈ L\{0, N + 1} ∀k ∈ V (3.9) 

Constraint 3.10 ensures that the maximum load capacity limitation of vehicle k 

is not exceeded for any of its trips. If vehicle k travels from customer i to customer 

j, then the total weight of the vehicle consisting of the empty weight empk , quantity 

of load carried qij
k and the weight of fuel required for the trip fij

k is less than vehicle 

capacity limitation. If vehicle k does not travel from customer i to customer j, then 

the load carried qij
k and the fuel consumed on that trip fij

k is 0. Hence, constraint 

3.10 also gives the relation between variables q and x. 

k k kfij
k + qij + emp k ≤ Qk xij + emp k(1 − xij ) ∀i ∈ L\{N + 1} ∀j ∈ L\{0} ∀k ∈ V 

(3.10) 

Constraint 3.11 determines the relation between variable z and q. The proportion 

of customer j demand satisfied by vehicle k is equal to the quantity of load carried to 
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customer j by vehicle k minus the quantity of load carried from customer j by vehicle 

k. Constraints 3.8, 3.9 and 3.11 together represent the split delivery constraints. 

N N+1X X 
k k k z = q − q ∀j ∈ L\{0, N + 1} ∀k ∈ V (3.11)j ij ji 

i=0 i=1 

Constraint 3.12 ensures that the time at which offloading of vehicle k starts at 

customer i is less than the latest service start time at customer i. 

wi
k ≤ li ∀i ∈ L ∀k ∈ V (3.12) 

Consider customer j is served immediately after customer i by vehicle k. Offload-

ing of products at customer j cannot be started before the vehicle k has reached 

customer j. Also, vehicle k cannot leave its previous customer i before service at 

customer i has been completed. This is ensured by constraint 3.13. Constraints 3.12 

and 3.13 together represent the time window constraints. 

k k k k k w + s + t − M(1 − x ) ≤ w ∀i ∈ L\{N + 1} ∀j ∈ L\{0} ∀k ∈ V (3.13)i i ij ij j 

Constraints 3.14 are called sub-tour elimination constraints. They ensure that the 

route for any vehicle k is continuous and does not contain any sub-tours. X 
x k ≤ |S| − 1 ∀S ⊆ L 2 ≤ |S| ≤ N + 1 ∀k ∈ V (3.14)ij 

(i,j)∈SXS 

Constraint 3.15 ensures that none of the routes return back to the depot. Vehicles 

only depart from the depot and never visit it again. 

x ki0 = 0 ∀i ∈ L, ∀k ∈ V (3.15) 

Constraint 3.16 ensures that the quantity of fuel required for a trip from customer 

i to customer j by vehicle k does not exceed the vehicle’s fuel tank capacity. 

fk ≤ fk ∀i, j ∈ L ∀k ∈ V (3.16)ij cap 

The domains for all the decision variables is determined by constraints 3.17, 3.18, 

3.19, 3.20 and 3.21. x and y are binary variables. q, z and w are non-negative 

variables. 

x k ∈ {0, 1} ∀i, j ∈ L ∀k ∈ V (3.17)ij 
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k
i ∈ {0, 1} ∀i ∈ L\{0, N + 1} ∀k ∈ V (3.18)y 

k
i 

k qij 

z 

≥ 0 

≥ 0 ∀i ∈ L\{0, N + 1} ∀k ∈ V (3.19) 

∀i ∈ L\{N + 1} ∀j ∈ L\{0} ∀k ∈ V (3.20) 

w ki ≥ 0 ∀i ∈ L ∀k ∈ V (3.21) 

The complete model formulation is also included in the appendix. 
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4. CASE STUDY 

4.1 Problem Description 

As identified in the literature review, fuel consumption costs are a significant com-

ponent in aircraft routing problems. In this case study, an aircraft routing problem 

for express delivery of packages is being studied. Express delivery of packages usu-

ally involves overnight operations of pickup and delivery. Packages are collected from 

customers at different locations before the end of the day. These packages are then 

transported to a sorting facility or hub. At the hub, the packages are sorted based 

upon their destinations and loaded onto vehicles traveling to corresponding destina-

tions. The packages are then delivered to these destinations by the vehicles. The 

vehicle fleet typically consists of aircrafts as well as trucks. The packages need to 

be delivered to the destination locations before early morning, so that they can be 

delivered to individual customers from the destination location on time. 

Some assumptions are made regarding the aircraft routing problem. All packages 

are supposed to be picked up and transported to the hub before the sort starts. The 

vehicles can depart from the hub only after the sort has been completed. In reality 

however, vehicle depart as soon as all the packages corresponding to their assigned 

destination locations have been loaded. It is reasonable to consider the pickup and 

delivery activities independently since they are separated by the sort. The delivery 

problem can then be modeled according to the formulated mathematical model. This 

is called the express shipment delivery problem (ESDP). The fleet of vehicles can be 

considered to consist of aircrafts alone, since majority of the load is transported using 

aircrafts and also payload-range dependency, fuel consumption and its costs are more 

significant in aircrafts as compared to trucks. All the packages are routed through a 

single hub. 
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4.2 Data Collection 

Data related to the express shipment activities of FedEx at the Indianapolis hub 

has been collected from available sources. The departure of aircrafts operated by 

FedEx at Indianapolis (IND) hub was monitored for a mid-week night available from 

FlightAware [44]. 42 domestic destination locations within the United States were 

identified. They are identified by their IATA airport code in Fig. 4.1. Distance was 

calculated between each pair of destination locations. 

Figure 4.1. Customer locations 

The vehicle fleet was identified to be consisting of 3 MD10, 3 MD11, 15 B757, 

15 B767 and 12 A300 aircrafts. The estimated parameters associated with the air-

crafts are given in Table 4.1. The vehicle parameters are obtained from manufacturer 

specifications. The vehicle capacity limitation Qk is given in terms of the maximum 

takeoff weight of the aircraft. Cruise speed of the aircraft is considered as the average 

speed speedk . Fuel burn rate available in (kg/km) is considered to be calculated at 
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maximum payload in order to estimate the fuel consumption constant bk . Fuel tank 

capacity is given by fk . Operating empty weight of the aircraft is used as empk .cap 

Table 4.1. 
Vehicle fleet parameters 

Type Fuel burn Payload Qk speedk bk fk 
cap 

kemp

k (kg/km) (1000 lb) (1000 lb) (1000 mi/hr) * (1000 lb) (1000 lb) 

MD10 10 170 430 0.564 0.2087 152.101 240.171 

MD11 10 180 610 0.544 0.1971 270.690 248.567 

B757 4.6 87.7 255 0.528 0.1861 79.038 115.380 

B767 5.51 116 412 0.529 0.1685 161.740 190.000 

B777 7.57 224.9 767 0.562 0.1194 320.863 318.300 

A300 6 106.5 376 0.518 0.1999 117.958 180.133 

A310 6 80 317 0.528 0.2661 246.917 174.169 

* (lb/ 1000 lb/ 1000 mi) 

The parameters associated with a customer location i consist of demand di and 

latest service start time li. Demand is estimated using the data from AeroWeb 2016 

cargo volumes report [45]. The report contains annual domestic freight volume in 

tons of cargo. The annual domestic cargo volumes for each airport are scaled down 

by a factor of 365 in order to obtain daily volumes. For larger destination cities 

such as ATL, BOS, DEN, DFW, EWR, IAH, JFK, LAX, MIA, OAK, ONT, ORD, 

PDX, PHL and PHX, these volumes were scaled down by a factor of 3 to account 

for volumes of cargo carried by other airlines. Demand volumes of destinations which 

also serve as hubs was scaled down further by a factor of 2. These include DFW, 

EWR, LAX, MIA, MCI, OAK, ONT and ORD. Some of these destinations may also 

be served by Memphis hub, also operated by FedEx. 

It is assumed that the sort ends at 5AM eastern standard time (EST) and all the 

vehicles depart at once from the hub. Packages need to reach the destination locations 
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before 7AM local time. Since MIA is at a longer distance from IND despite following 

EST, 8AM EST is considered to be the latest service start time for MIA. The latest 

service start time is considered relative to the sort end time. For example, if 6AM 

pacific standard time (PST) is the local time in LAX, then relative time difference 

between 5AM EST and 7AM PST i.e. 5 hours is the latest service time at LAX. 

Table 4.2 gives the customer demand and latest service start time parameters. The 

service time ski associated with a customer i served by vehicle k is assumed to be 1 

hour for all customer locations and all vehicles. Fuel price (fpg in $1000/ 1000 lb) is 

considered to be 0.746. 

Table 4.2. 
Customer parameters 

Customer 

i 

di 

(1000 lb) 

li 

(hr) 

Customer 

i 

di 

(1000 lb) 

li 

(hr) 

Customer 

i 

di 

(1000 lb) 

li 

(hr) 

ABE 

ATL 

BDL 

BNA 

BOS 

BWI 

CAE 

CID 

CLE 

CLT 

DEN 

DFW 

DTW 

EWR 

87 

236 

162 

73 

95 

157 

89 

54 

110 

168 

104 

152 

222 

131 

2 

2 

2 

3 

2 

2 

2 

3 

2 

2 

4 

3 

2 

2 

GRR 

GSO 

GSP 

IAD 

IAH 

JFK 

LAX 

MCI 

MDT 

MIA 

MKE 

MSP 

OAK 

OMA 

61 

117 

43 

145 

118 

197 

179 

80 

85 

91 

116 

284 

134 

101 

2 

2 

2 

2 

3 

2 

5 

3 

2 

3 

3 

3 

5 

3 

ONT 

ORD 

PDX 

PHL 

PHX 

PIT 

RDU 

RIC 

SAN 

SEA 

STL 

SYR 

TPA 

TYS 

138 

210 

98 

157 

164 

114 

99 

93 

103 

123 

105 

59 

85 

56 

5 

3 

5 

2 

4 

2 

2 

2 

5 

5 

3 

2 

2 

2 
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4.3 Case Study Solution 

The ESDP is solved considering the above described case study parameters using 

IBM ILOG CPLEX solver. The solution is obtained allowing 1% tolerance to optimal 

cost. The solution obtained in terms of routes is displayed in Table 4.3. FedEx routes 

are obtained for comparison from FlightAware [44]. A comparison of the total fuel 

consumption costs shows that ESDP routes have fuel consumption cost of $588526 

and result in saving $30832 over FedEx routes for one day’s routing. However this is 

assuming that the demands associated with FedEx routes and ESDP are the same. 

The fuel consumption costs depend upon the destination demands. The forecasted 

demands of FedEx at the destination locations could not be accessed. An insightful 

comparison between FedEx routes and ESDP routes can be made when the same 

demand data is used for ESDP as forecasted by FedEx. 

Table 4.3. 
Comparison of ESDP and FedEx routes 

Aircraft Type FedEx Routes ESDP Routes 

MD10 IND-JFK, IND-LAX, IND-MSP IND-ATL, IND-BWI, IND-ABE 

MD11 IND-EWR, IND-EWR, IND-LAX IND-ORD, ORD-MKE, IND-DTW, IND-SYR 

IND-ABE, IND-BNA, IND-CAE IND-CAE, IND-CLT, IND-MSP 

IND-CID, IND-CLE, IND-GRR IND-OMA, OMA-MCI, IND-BOS, IND-MDT 

B757 IND-GSO, IND-GSP, IND-MCI IND-GSO, IND-EWR, IND-TPA 

IND-MDT, IND-MSP, IND-PDX IND-PIT, IND-IAD, IND-MIA 

IND-SYR, IND-TPA, IND-TYS IND-RIC, IND-BWI, IND-RDU 

IND-ATL, IND-ATL, IND-BOS IND-SEA, IND-DFW, IND-PHX, PHX-ONT 

IND-DEN, IND-DFW, IND-DFW IND-PHX, PHX-SAN, IND-PDX, IND-BDL 

B767 IND-DTW, IND-OAK, IND-OAK IND-PHX, PHX-LAX, IND-PHL, IND-OAK 

IND-ORD, IND-PHL, IND-PHX IND-STL, STL-LAX, IND-MSP, IND-JFK 

IND-RDU, IND-SAN, IND-STL IND-IAH, IND-ATL, IND-MCI, MCI-DEN 

IND-BDL, IND-BWI, IND-CLT IND-CLE, CLE-PIT, IND-TYS, IND-BWI 

A300 
IND-IAD, IND-IAH, IND-MIA 

IND-MKE, IND-OMA, IND-ONT 

IND-EWR, IND-GSP, IND-IAD 

IND-ABE, IND-BNA, IND-CLT 

IND-PIT, IND-RIC, IND-SEA IND-GRR, IND-STL, IND-CID 

Total cost (in $1000) 619 589∗ 

4.8% reduction in fuel consumption costs 
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Another observation is that all the routes in FedEx solution are direct routes. 

Allowing stopovers can lead to reduced fuel consumption costs as observed from ESDP 

routes. An interesting observation from ESDP routes is that the routes serving west 

coast destinations of LAX, SAN and ONT visit the intermediate destination PHX. 

Instead of assigning a separate flight to PHX, its demand is split over 3 flights where 

each of these flights eventually serve west coast destinations. Hence, routing west 

coast destinations through PHX may results in reduced fuel consumption. 

4.4 Sensitivity Analysis 

The possibility of expanding the existing fleet can also be considered with the 

help of the proposed mathematical model. It is possible to study the impact of fleet 

expansion on the fuel consumption costs. More fuel efficient aircrafts are added while 

replacing less fuel efficient aircrafts such as MD10, MD11 and A300. Addition of upto 

5 vehicles of 3 different aircraft types viz. B757, B767 and B777 are considered indi-

vidually for the ESDP solution obtained earlier. The fuel consumption cost reduction 

achieved is calculated for each scenario. Comparison of these scenarios can be seen 

in Figure 4.2. 

Addition of B777 vehicles to the fleet results in huge savings of fuel consumption 

cost. Savings of upto $112730 is achieved by adding 5 B777 vehicles to the existing 

fleet. Maximum possible savings achieved by adding 5 B757 vehicles is $1570 while 

those achieved by adding 5 B767 vehicles is $7770. The capacity of B777 aircrafts 

is greater than that of B757 and B767 aircrafts. Thus B777 aircrafts are able to 

carry greater number of goods and possibly reduce the number of aircrafts needed to 

serve large demand destinations such as LAX and EWR. Also, the fuel consumption 

constant given by weight of fuel per unit distance per unit load is smaller for B777 

aircrafts, thus making them more fuel efficient. 
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Figure 4.2. Reduction in fuel consumption costs by fleet expansion 
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5. HEURISTIC METHOD 

Since VRP and its variants are NP-hard problems, it is not possible to obtain exact 

solution of very large size problem instances. While performing sensitivity analysis on 

the case study, it was also observed that the computational time to obtain an exact 

solution may no longer be reasonable. Hence, heuristic methods have to be used in 

order to solve large-scale problem instances. Since the fuel consumption VRP with 

payload-range dependency is a completely new problem that has never been studied 

before, a new heuristic method is developed. In the proposed heuristic method, an 

initial feasible solution is first obtained. This initial solution then serves as an input 

to the next step of the heuristic method. 

5.1 Initial Solution 

The initial solution algorithm is inspired from the Clark-Wright savings algo-

rithm [43]. However, unique factors such as fuel consumption minimization objective, 

payload-range dependency, split deliveries and heterogeneous fleet also need to be 

considered. In Clark-Wright savings algorithm, initial routes are obtained by assign-

ing a separate vehicle to each customer. Savings are then calculated for merging 

any two routes. The savings are then ordered in non-increasing order and routes are 

merged until no more feasible solution can be obtained by merging routes. 

Since the research problem being studied considers heterogeneous fleet, it is re-

quired to determine which vehicles are assigned to which customers while obtaining 

initial routes. Also, some of the customer demands may exceed vehicle capacity, hence 

more than one vehicle may need to be assigned to a customer. This process is referred 

to as route initialization. Table 5.1 describes the algorithm used to perform route 

initialization. Separate vehicles are assigned to each customer that carry load directly 
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Table 5.1. 
Algorithm for route initialization 

Step 1 Remaining customers = set of all customers 

Step 2 Remaining vehicles = set of all vehicles 

Step 3 Remaining demand = demand associated with each of the customers 

Step 4 While Remaining customers 6= φ 

- Do 

- 4.1 Sample a customer i ∈ Remaining customers 

- 4.2 Identify Possible vehicles ⊆ Remaining vehicles s.t. time window 

- constraint of latest arrival time at customer i is not violated 

- 4.3 For all vehicles k ∈ Possible vehicles 

- Do 

- 4.3.1 Identify maximum possible load q optk(i) that can be carried 

- to customer i without violating vehicle capacity constraints 

- 4.3.2 If q optk(i) ≥ Remaining demand(i) 

- Then 

- - Calculate cost associated with transporting load 

- - Remaining demand(i) from depot to customer i 

- Else 

- - Calculate cost associated with transporting load 

- - q optk(i) from depot to customer i 

- End If 

- End For 

- 4.4 Assign vehicle k∗ having minimum cost to customer i. 

- Remove vehicle k∗ from Remaining vehicles 

- 4.5 If q optk ∗ 
(i) ≥ Remaining demand 

- Then 

- 4.5.1 Load Remaining demand(i) is carried from depot to customer i using k∗ 

- 4.5.2 Remove customer i from Remaining customers 

- 4.5.3 Update Remaining demand(i) to 0 

- Else 

- 4.5.4 Load q optk ∗ 
(i) is carried from depot to customer i using k∗ 

- 4.5.5 Update Remaining demand(i) = Remaining demand(i) - q optk ∗ 
(i) 

- End If 

- End While 

from depot to the customer. The idea behind the route initialization algorithm is that 

the quantity of load carried by a vehicle is either the maximum possible load that 

can be carried or the entire demand of that customer, whichever is less. However, in 
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order for the route initialization algorithm to obtain a feasible solution, the number 

of available vehicles should be more than that required for an optimal solution. The 

number of used vehicle will be reduced in the savings algorithm. 

Once the initial routes are obtained, the next step is to calculate the savings by 

merging two routes. The two routes can be identified as original route which accom-

modates the added route resulting in merged route. If we have n routes from the 

route initialization algorithm, the number of possible merge combinations is given by 

nP2 and not nC2. This is because the merged route obtained depends upon which 

are the original and added routes. Fig 5.1 and Fig 5.2 demonstrate two examples of 

merged routes and highlights the difference depending upon the order of original and 

merged routes. The added route is appended to the original route. In case the added 

and original routes have common customers, these customers are visited only once 

and in the same order as that in the original route. 

original route 

a1 

a2 

a3 

a4 

added route 

b1 

a4 

a1 

b2 

merged route 

a1 

a2 

a3 

a4 

b1 

b2 

Figure 5.1. Merging routes 

Savings associated with objective function cost are calculated for all nP2 merge 

combinations. The merge combinations are then ordered in non-increasing order 
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original route added route merged route 

b1 a1 b1 

a4 a2 a4 

a1 a3 a1 

b2 a4 b2 

a2 

a3 

Figure 5.2. Merging routes 

based upon the savings. If positive savings are obtained by merging routes and the 

resultant solution is feasible, then the solution obtained from route initialization algo-

rithm is updated by including merged route. When two routes are merged considering 

fuel consumption cost function, the changes in load carried along with route changes 

affect savings calculations. Hence, the savings costs need to be updated by remov-

ing all the combinations associated with the added route and changing the vehicle 

assigned to the customers originally included in the added route. Now, the savings 

associated with the new merged route can also be considered and the process is re-

peated by calculating savings of all merge combinations. The algorithm terminates 

when no positive savings can be found from all the merge combinations. The savings 

algorithm to obtain initial solution is described in Table 5.2. 

5.2 Local Search Operators 

Local search operators are essential in order to explore the solution space. Seven 

different search operators are considered in this study. The operators relocate, ex-
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Table 5.2. 
Savings algorithm for initial solution 

Step 1 Obtain Initial routes solution from route initialization algorithm 

Step 2 Calculate Savings table associated with all possible route merge combinations of initial routes 

Step 3 Order the merge combinations in non-increasing order based upon the calculated savings 

Step 4 Go through all the positive savings merge combinations and identify the combination 

- that generates largest savings and results in a feasible solution 

Step 5 If feasible solution is found 

- Then 

- 5.1 Update Initial routes solution to the feasible solution 

- 5.2 Update Savings table based upon the merged route 

- 5.3 Go to Step 3 

- End If 

Step 6 Set Initial solution = Initial routes solution 

change, intrarelocate and 2-opt have been inspired from the works of Ho & Haug-

land [35]. The split and split-relocate operators have been inspired from the works of 

Ho & Haugland [35] and Chen, Golden & Wasil [42]. The assignment operator has 

been inspired from the works of Despaux & Basterrech [39]. 

5.2.1 Relocate 

The relocate operator calls the relocate function. The relocate function takes a 

route r1, a city c1 on route r1, and a route r2 as input. It removes c1 from route 

r1 and inserts it into route r2. The position of insertion in route r2 is chosen as the 

one that minimizes fuel consumption cost. Fig 5.3 demonstrates an example of the 

relocate function. If the city c1 already exists in route r2, then the split of city c1 

is eliminated as shown in Fig 5.4. If c1 is the only city on route r1, then route r1 is 

eliminated as shown in Fig 5.5 The relocate function returns the updated solution if 

it is feasible, else it returns the current solution. 
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Route r1 Route r2 Route r1 Route r2 

Figure 5.3. Relocate function example 

Route r1 Route r2 Route r1 Route r2 

a1 

a2 

c1 

a3 

b1 

b2 

b3 

b4 

⇒ 

a1 

a2 

a3 

b1 

c1 

b2 

b3 

b4 

a1 c1 a1 c1 

a2 

c1 

a3 

b1 

b2 

b3 

⇒ 

a2 

a3 

b1 

b2 

b3 

Figure 5.4. Relocate function eliminating split 

Route r1 Route r2 Route r1 Route r2 

c1 b1 b1 

⇒b2 c1 

b2 

Figure 5.5. Relocate function eliminating route 
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Table 5.3. 
Algorithm for relocate operator 

- Best1 = current solution 

- For all customers c1 

- Do 

- Best2 = current solution 

- For all routes r1 s.t. c1 is on r1 

- Do 

- Best3 = current solution 

- For all routes r2 6= r1 

- Do 

- ans = relocate(r1, c1, r2) 

- If ans objective < Best3 objective 

- Then 

- Best3 = ans 

- End If 

- End For 

- If Best3 objective < Best2 objective 

- Then 

- Best2 = Best3 

- End If 

- End For 

- If Best2 objective < Best1 objective 

- Then 

- Best1 = Best2 

- End If 

- End For 

- Return Best1 

The relocate operator searches for all possible relocate moves from the current 

solution and returns the best feasible solution having minimum fuel consumption 

cost. The algorithm for relocate operator is given in Table 5.3. 

5.2.2 Exchange 

The exchange function takes a route r1 and a city c1 on route r1, another route 

r2 and a different city c2 on route r2 as input. It removes city c1 from route r1 
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and inserts it in route r2. Similarly, it removes city c2 from route r2 and inserts 

it in route r1. Hence it exchanges cities c1 and c2 between routes r1 and r2. The 

position of insertion is chosen such that fuel consumption cost is minimized. Fig 5.6 

demonstrates an example of the exchange function. Similar to the relocate function, 

if a city to be exchanged (say c1) also lies on the other route r2, then the split of city 

c1 is eliminated as shown in Fig 5.7. 

Route r1 Route r2 Route r1 Route r2 

a1 b1 a1 b1 

a2 c2 a2 c1 

c1 

a3 

b2 

b3 

⇒ 
c2 

a3 

b2 

b3 

Figure 5.6. Exchange function example 

Route r1 Route r2 Route r1 Route r2 

a1 

a2 

c1 

a3 

b1 

c2 

b2 

c1 

⇒ 

a1 

a2 

c2 

a3 

b1 

b2 

c1 

Figure 5.7. Exchange function eliminating split 

The exchange function returns the updated solution if it is feasible, else it returns 

the current solution. The exchange operator calls the exchange function. The ex-

change operator searches for all possible exchange moves from the current solution 
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Table 5.4. 
Algorithm for exchange operator 

- Best1 = current solution 

- For all routes r1 

- Do 

- Best2 = current solution 

- For all customers c1 on route r1 

- Do 

- Best3 = current solution 

- For all routes r2 6= r1 

- Do 

- Best4 = current solution 

- For all customers c2 on route r2 s.t. c2 6= c1 

- Do 

- ans = exchange(r1, c1, r2, c2) 

- If ans objective < Best4 objective 

- Then 

- Best4 = ans 

- End If 

- End For 

- If Best4 objective < Best3 objective 

- Then 

- Best3 = Best4 

- End If 

- End For 

- If Best3 objective < Best2 objective 

- Then 

- Best2 = Best3 

- End If 

- End For 

- If Best2 objective < Best1 objective 

- Then 

- Best1 = Best2 

- End If 

- End For 

- Return Best1 

and returns the best feasible solution having minimum fuel consumption cost. The 

algorithm for exchange operator is given in Table 5.4. 
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5.2.3 Split 

The split function takes a route r1, a city c1 on route r1, and a route r2 as input. 

City c1 is split between routes r1 and r2. City c1 is appended to the end of route r2. 

Fig. 5.8 shows an example of change in routes due to split function. If city c1 already 

exists on route r2, then both the routes remain same as shown in Fig. 5.9, while the 

split demand of customer c1 on route r1 is redistributed between routes r1 and r2. 

Route r1 Route r2 Route r1 Route r2 

a1 

a2 

c1 

b1 

b2 

b3 

⇒ 

a1 

a2 

c1 

b1 

b2 

b3 

a3 a3 c1 

Figure 5.8. Split function example 

Route r1 Route r2 Route r1 Route r2 

a1 b1 a1 b1 

a2 c1 a2 c1 

c1 

a3 

b2 

⇒ 
c1 

a3 

b2 

Figure 5.9. Split function redistributing split 

The quantity of load to be split from city c1 on route r1 also needs to be deter-

mined. For example, consider the example in Fig. 5.8. The following optimization 



39 

problem is solved. Let load be the quantity of load of customer c1 to be moved from 

route r1 to route r2. Hence the load carried by the vehicle to all the customers before 

customer c1 on route r1 is reduced by quantity load. Whereas there is no change in 

the quantity of load carried by the vehicle on route r1 to any of the customers visited 

after customer c1. Similarly, the quantity of load carried by the vehicle to all the 

customers visited before c1 on route r2 is increased by load. Hence total change in 

fuel consumption cost for the example in 5.8 is given by Equation 5.1 where, b(r1) 

and b(r2) are the fuel consumption constants of vehicles used on routes r1 and r2 

respectively. 

cost = (−br1 (dist(depot, a1) + dist(a1, a2) + dist(a2, c1)) 
(5.1) 

+br2 (dist(depot, b1) + dist(b1, b2) + dist(b2, b3) + dist(b3, c1)))load 

Vehicle capacity constraints need to be ensured for all the customers on route r2 

visited before customer c1 due to added load quantity of customer c1. For example, 

the capcity constraint for customer b2 on route r2 of example in Fig. 5.8 is given in 

Equation 5.2. 

r2 r2 r2emp + br2 dist(b2, b3)(q + load) + q + load ≤ Qr2 (5.2)b2,b3 b2,b3 

The decision variable load should be positive. It cannot be 0, since then there is 

no split operation. Also, the quantity to be split has to be less than the load carried 

to customer c1 on route r1. It cannot be equal to the load of customer c1 on route r1, 

since then there will be no split but a relocate operation. The complete optimization 

problem to determine optimal split quantity load for the example in Fig. 5.8 is given 

below. 

Minimize cost = (−br1 (dist(depot, a1) + dist(a1, a2) + dist(a2, c1)) 
(5.3) 

+br2 (dist(depot, b1) + dist(b1, b2) + dist(b2, b3) + dist(b3, c1)))load 

r2 r2 r2subject to emp + br2 dist(depot, b1)(q + load) + q + load ≤ Qr2 (5.4)depot,b1 depot,b1 

r2 r2 r2emp + br2 dist(b1, b2)(q + load) + q + load ≤ Qr2 (5.5)b1,b2 b1,b2 

r2 r2 r2emp + br2 dist(b2, b3)(q + load) + q + load ≤ Qr2 (5.6)b2,b3 b2,b3 
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r2 r2 r2emp + br2 dist(b3, c1)(q + load) + q + load ≤ Qr2 (5.7)b3,c1 b3,c1 

0 < load < zc
r 
1 

1 (5.8) 

The objective function Equation 5.3 corresponds to minimizing fuel consumption 

cost due to split function. Constraints given by Equation 5.4, 5.5, 5.6, 5.7 correspond 

to capacity constraints for vehicle on route r2 departing from location of depot, cus-

tomers b1, b2 and b3 respectively. Constraint given by Equation 5.8 determines domain 

of the decision variable load. 

Table 5.5. 
Algorithm for split operator 

- Best1 = current solution 

- For all routes r1 

- Do 

- Best2 = current solution 

- For all customers c1 on route r1 

- Do 

- Best3 = current solution 

- For all routes r2 6= r1 

- Do 

- ans = relocate(r1, c1, r2) 

- If ans objective < Best3 objective 

- Then 

- Best3 = ans 

- End If 

- End For 

- If Best3 objective < Best2 objective 

- Then 

- Best2 = Best3 

- End If 

- End For 

- If Best2 objective < Best1 objective 

- Then 

- Best1 = Best2 

- End If 

- End For 

- Return Best1 
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The split function returns the updated solution if it is feasible, else it returns 

the current solution. The split operator calls the split function. The split operator 

searches for all possible split moves from the current solution and returns the best 

feasible solution having minimum fuel consumption cost. The algorithm for split 

operator is given in Table 5.5. 

5.2.4 Split-relocate 

The split-relocate function takes a route r1, a city c1 on route r1, a route r2, a 

city c2 on route r2, and a route r3 as input. City c1 is split between routes r1 and r2, 

whereas city c2 is relocated from route r2 to route r3. Fig. 5.10 shows an example 

of change in routes due to split-relocate function. Similar to the splits function, city 

c1 is appended to the end of route r2. If city c2 already exists on route r2, then its 

position on route r2 remains the same and only the load carried to city c1 on route r1 

is redistributed. Similar to relocate function, city c2 is inserted in a position in route 

r3 such that fuel consumption cost is minimized. If city c2 already exists on route 

r3, then split of city c2 is eliminated. Even when city c1 and city c2 are the same, 

the city is appended to the end of route r2, with the demand of that city on route r1 

being redistributed. Whereas demand of that city on route r2 is moved to route r3. 

Route r1 

a1 

a2 

c1 

a3 

Route r2 

b1 

c2 

b2 

b3 

Route r3 

e1 

e2 

e3 

⇒ 

Route r1 

a1 

a2 

c1 

a3 

Route r2 

b1 

b2 

b3 

c1 

Route r3 

e1 

c2 

e2 

e3 

Figure 5.10. Split-relocate function example 
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Table 5.6. 
Algorithm for split-relocate operator 

- Best1 = current solution 

- For all routes r1 

- Best2 = current solution 

- For all customers c1 on route r1 

- Best3 = current solution 

- For all routes r2 6= r1 

- Best4 = current solution 

- For all customers c2 on r2 

- Best5 = current solution 

- For all routes r3 6= r2 6= r1 

- ans = split-relocate(r1, c1, r2, c2, r3) 

- If ans objective < Best5 objective 

- Then 

- Best5 = ans 

- End If 

- End For 

- If Best5 objective < Best4 objective 

- Then 

- Best4 = Best5 

- End If 

- End For 

- If Best4 objective < Best3 objective 

- Then 

- Best3 = Best4 

- End If 

- End For 

- If Best3 objective < Best2 objective 

- Then 

- Best2 = Best3 

- End If 

- End For 

- If Best2 objective < Best1 objective 

- Then 

- Best1 = Best2 

- End If 

- End For 

- Return Best1 
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The split-relocate function returns the updated solution if it is feasible, else it 

returns the current solution. The split-relocate operator calls the split-relocate func-

tion. The split-relocate operator searches for all possible split-relocate moves from 

the current solution and returns the best feasible solution having minimum fuel con-

sumption cost. The algorithm for split-relocate operator is given in Table 5.6. 

5.2.5 Intrarelocate 

The intrarelocate function takes a route r1 and a city c1 on route r1 as input. 

City c1 is relocated inside route r1 such that fuel consumption cost is minimized. 

All positions for city c1 are tried until the one with lowest fuel consumption cost is 

identified. Fig. 5.11 gives an example of the intrarelocate function. 

Route r1 Route r1 

a1 c1 

a2 a1 

⇒ 
c1 a2 

a3 a3 

Figure 5.11. Intrarelocate function example 

The intrarelocate function returns the updated solution if it is feasible, else it re-

turns the current solution. The intrarelocate operator calls the intrarelocate function. 

The intrarelocate operator searches for all possible intrarelocate moves from the cur-

rent solution and returns the best feasible solution having minimum fuel consumption 

cost. The algorithm for intrarelocate operator is given in Table 5.6. 
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Table 5.7. 
Algorithm for intrarelocate operator 

- Best1 = current solution 

- For all customers c1 

- Do 

- Best2 = current solution 

- For all routes r1 s.t. c1 is on r1 

- Do 

- ans = intrarelocate(r1, c1) 

- If ans objective < Best2 objective 

- Then 

- Best2 = ans 

- End If 

- End For 

- If Best2 objective < Best1 objective 

- Then 

- Best1 = Best2 

- End If 

- End For 

- Return Best1 

5.2.6 2-opt 

The 2-opt function takes a route r1, a city c1 on route r1, route r2, and a city c2 

on route r2 as input. It modifies route r1 by identifying all the customers visited after 

c2 on route r2 and appends them after customer c1 on route r1 in the same order. 

Similarly, route r2 is modified by identifying all the customers visited on route r1 after 

customer c1 and appending them after customer c2 on route r2 in the same order. 

Fig. 5.12 gives an example of the 2-opt function. Essentially, customers visited after 

cities c1 and c2 are exchanged between the two routes. If any of these cities is already 

visited on other route, then split of that city is eliminated as shown in Fig. 5.13. If 

c1 and c2 are the last cities on routes r1 and r2 respectively, then 2-opt is not possible 

as shown in Fig. 5.14. 

The 2-opt function returns the updated solution if it is feasible, else it returns the 

current solution. The 2-opt operator calls the 2-opt function. The 2-opt operator 
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Route r1 Route r2 Route r1 Route r2 

Figure 5.12. 2-opt function example 

Route r1 Route r2 Route r1 Route r2 

a1 

a2 

c1 

a3 

b1 

c2 

b2 

b3 

⇒ 

a1 

a2 

c1 

b2 

b3 

b1 

c2 

a3 

a1 a3 a1 a3 

a2 c2 a2 c2 

c1 

a3 

b2 

⇒ 
c1 

b2 

Figure 5.13. 2-opt function eliminating split 

Route r1 Route r2 Route r1 Route r2 

a1 b1 a1 b1 

a2 

c1 

a2 

c1 

b2 
⇒ b2 

c2c2 

Figure 5.14. 2-opt function not possible 
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searches for all possible 2-opt moves from the current solution and returns the best 

feasible solution having minimum fuel consumption cost. The algorithm for 2-opt 

operator is given in Table 5.8. 

Table 5.8. 
Algorithm for 2-opt operator 

- Best1 = current solution 

- For all routes r1 

- Do 

- Best2 = current solution 

- For all customers c1 on route r1 

- Do 

- Best3 = current solution 

- For all routes r2 6= r1 

- Do 

- Best4 = current solution 

- For all customers c2 on route r2 

- Do 

- ans = 2-opt(r1, c1, r2, c2) 

- If ans objective < Best4 objective 

- Then 

- Best4 = ans 

- End If 

- End For 

- If Best4 objective < Best3 objective 

- Then 

- Best3 = Best4 

- End If 

- End For 

- If Best3 objective < Best2 objective 

- Then 

- Best2 = Best3 

- End If 

- End For 

- If Best2 objective < Best1 objective 

- Then 

- Best1 = Best2 

- End If 

- End For 

- Return Best1 
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Route r1 Route r2 Route r1 Route r2 

5.2.7 Assignment 

The assignment function takes two routes r1 and r2 as input. All the cities on 

route r1 are moved to route r2, whereas all the cities on route r2 are moved to route 

r1 in the same order. Thus, the vehicle assignment of the cities on routes r1 and r2 

is exchanged. Fig. 5.15 gives an example of the assignment function. 

a1 

a2 

a3 

b1 

b2 

b3 

⇒ 

b1 

b2 

b3 

a1 

a2 

a3 

Figure 5.15. Assignment function example 

Table 5.9. 
Algorithm for assignment operator 

- Best1 = current solution 

- For all routes r1 

- Do 

- Best2 = current solution 

- For all routes r2 6= r1 

- Do 

- ans = assignment(r1, r2) 

- If ans objective < Best2 objective 

- Then 

- Best2 = ans 

- End If 

- End For 

- If Best2 objective < Best1 objective 

- Then 

- Best1 = Best2 

- End If 

- End For 

- Return Best1 
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The assignment function returns the updated solution if it is feasible, else it re-

turns the current solution. The assignment operator calls the assignment function. 

The assignment operator searches for all possible assignment moves from the current 

solution and returns the best feasible solution having minimum fuel consumption cost. 

The algorithm for assignment operator is given in Table 5.9. 

5.3 Tabu Search 

A tabu search algorithm has been developed in order to avoid the heuristic method 

getting stuck at local optima. A move in a heuristic method can be considered as 

examining a neighboring solution from the current solution. Hence, the solution 

space is searched with the help of such moves. Tabu search prohibits certain moves 

which have been recently encountered and encourages exploration of the search space. 

These prohibited moves are said to be tabu. When a move is selected by the heuristic 

method, it is set as tabu for a certain number of following search moves called tabu 

count. Initially, the tabu count is set based upon a parameter determining maximum 

tabu count moves. A record of all previous moves is kept in a tabu table. It consists 

of the move being made as well as the tabu count. The table is updated after every 

move, decreasing the tabu count and removing entries if the tabu count reaches 0. 

The tabu search algorithm in this research is similar to the one developed by Ho 

& Haugland [35]. However, in this research, additional search operators such as split 

and assignment have been considered. Also, the split and split-relocate operators 

have been developed separately, with the difference being the method of determining 

the quantity of load to be split. A move for the proposed heuristic method consists of 

considering all the neighboring solutions that can be obtained from the local search 

operators. These moves differ based upon the operator and hence need to be recorded 

in different tabu tables. 
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5.3.1 Tabu moves 

The relocate operator removes a customer c1 from route r1 and relocates it to 

route r2. A tabu move for relocate operator corresponds to the route and customer 

pair (r1, c1). Hence it is tabu for customer c1 to be visited by route r1 for any solution. 

The exchange operator removes customer c1 from route r1 and assigns it to route r2. 

It also removes customer c2 from route r2 and assigns it to route r1. Hence tabu moves 

for the exchange operator are route and customer pairs (r1, c1) and (r2, c2). For the 

assignment operator, all the customers are exchanged between two routes. Hence the 

tabu moves consist of all route and customer pairs corresponding to the original two 

routes and their customers before assignment. If we consider the assignment operator 

example of Fig. 5.15, tabu moves are given by (r1, a1), (r1, a2), (r1, a3), (r2, b1), (r2, a2) 

and (r2, b3). For the split-relocate operator, relocates customer c2 from route r2 to 

route r3. Hence tabu move is given by the route and customer pair (r2, c2). All the 

above examples correspond to tabu moves in the form of route and customer pairs. 

These entries are recorded in a tabu table called Tabu table 1. 

The 2 opt operator exchanges all the customers visited following customer c1 on 

route r1 with route r2 and similarly all the customers visited after customer c2 on 

route r2 are moved to route r1. If a1 is the next customer after c1 on route r1, and 

a2 is the next customer after c2 on route r2, then the tabu moves associated with the 

2 opt operator are given by the pair of customers (c1, a1) and (c2, a2). This means 

that customer a1 cannot be visited immediately after customer c1 in any solution. 

Similarly, customer a2 cannot be visited immediately after customer c2. If one of the 

customers among c1 and c2 (say c2) is the last visited customer on route r2, then 

only (c1, a1) is considered as a tabu move. Both c1 and c2 cannot be the last visited 

customers on routes r1 and r2 respectively by definition of the 2 opt operator. This 

example corresponds to tabu moves in the form of pair of customers. These entries 

are recorded in a tabu table called Tabu table 2. 



50 

The split operator splits the demand of customer c1 on route r1 between routes 

r1 and r2. The tabu move associated with the split operator is not allowing the split 

of customer c1 demand in any solution. Similar tabu moves is also associated with 

the split-relocate operator. These examples correspond to tabu moves in the form of 

a single customer. These entries are recorded in a tabu table called Tabu table 3. 

Table 5.10. 
Tabu table example 

Tabu table 1 Tabu table 2 Tabu table 3 

route customer tabu count customer1 customer2 tabu count customer tabu count 

r1 c1 1 c1 a1 1 c1 1 

r2 c2 1 c2 a2 2 c2 3 

r1 c3 3 - - - - -

- - - - - - - -

Table 5.11. 
Tabu moves based upon local search operator 

Operator Tabu table 1 

(route,customer) pair 

Tabu table 2 

(customer1,customer2) pair 

Tabu table 3 

customer 

Relocate 

Exchange 

Split 

Split-relocate 

2 opt 

Assignment 

one pair 

two pairs 

-

one pair 

-

variable number of pairs 

-

-

-

-

one or two pairs 

-

-

-

one customer 

one customer 

-

-

An example of the tabu table and its entries is given in Table 5.10. A summary of 

the tabu moves associated with different local search operators can be found in Table 

5.11. Tabu tables are updated according to the selected move operator. 

The heuristic method is allowed to violate tabu moves if objective function cost 

is the minimum observed so far. This is called the aspiration criteria. The aspiration 

criteria helps to keep track of the global optimum observed. For example, if the 
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move (r1, c1) is tabu with its tabu count being non-zero and the solution obtained 

from relocate operator relocate(r2, c1, r1) results in lower cost than the best solution 

observed, then aspiration criteria is satisfied and customer c1 is allowed to relocate 

to route r1 even though the move is tabu. If aspiration criteria is satisfied, then the 

tabu count associated with the move is reset to the parameter determining maximum 

tabu count moves. 

5.3.2 Tabu search algorithm 

There are 3 parameters associated with the tabu search algorithm. Parameter p 

corresponds to the maximum tabu count for any tabu move. Whenever the heuristic 

method makes a move, that move is entered in tha tabu table and given a tabu count 

of p. Parameter v corresponds to the maximum number of tabu search iterations until 

no improvement in solution is observed. Parameter h corresponds to the maximum 

number of iterations after intrarelocate operator such that no improvement in solution 

is observed. The tabu search algorithm is given in Table 5.12. 

Tabu tables are created. Initial solution obtained from the algorithm given in 

Table 5.2 is the first step before tabu search. Once a feasible solution is available, its 

neighboring solutions given by the local search operators are determined. For any of 

the search operators, the neighboring solution is either the solution with lowest cost 

among all its operator moves and satisfies the aspiration criteria, or is the solution 

with the lowest cost among all non-tabu operator moves. The solution corresponding 

to the lowest cost among all neighbors is selected as the next move. Tabu table is 

updated based upon the selected operator moves. If the solution obtained is less 

than the overall best solution for v consecutive moves, intrarelocate operator move 

is performed and the tabu search steps are repeated. If the solution obtained after 

intrarelocate operator moves is less than the overall best solution for h consecutive 

moves, then the algorithm terminates. 
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Table 5.12. 
Tabu search algorithm 

- Initialize tabu table 

- overall.best = initial solution() 

- ans = overall.best 

- While number of consecutive iterations s.t. (ans objective ≥ overall.best objective) ≤ h 

- Do 

- best = overall.best 

- While number of consecutive iterations s.t. (best objective ≥ overall.best objective) ≤ v 

- Do 

- ans1 = relocate.operator() 

- ans2 = exchange.operator() 

- ans3 = split.operator() 

- ans4 = split-relocate.operator() 

- ans5 = 2 opt.operator() 

- ans6 = assignment.operator() 

- best = minobjective{ans1, ans2, ans3, ans4, ans5, ans6} 

- Update tabu table with best solution move 

- If best objective < overall.best objective 

- Then 

- overall.best = best 

- End If 

- End While 

- ans = intrarelocate.operator() 

- If ans objective < overall.best objective 

- Then 

- overall.best = ans 

- End If 

- End While 

- Return overall.best 
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6. EXPERIMENTAL STUDY 

The problem being studied consists of a number of parameters such as customer 

demand, fleet size and composition, time window, customer locations and distance 

between them. A study of how individual parameters impact the solution requires 

large number of computational experiments. In this study, data available from the 

case study is used to generate problem instances. Performance of the proposed initial 

solution and heuristic method is compared with the exact solution obtained for each 

of these problem instances. 

6.1 Problem Instances 

As observed from Ho & Haugland [35], customer locations for experimental study 

are selected as either randomly spread out or clustered together, with the locations 

being either at short or long distance from the depot. From the 42 customer locations 

observed in the case study, 3 sets of problems are considered. The first set consists 

of 5 locations viz. ABE, BOS, EWR, JFK and PIT clustered together at a closer 

distance from the depot. The second set consists of 12 locations viz. BNA, CID, 

DEN, DFW, IAH, LAX, MCI, OAK, ONT, PHX, PDX, SAN and SEA at longer 

distances from the depot. Problem set 3 consists of 25 locations viz. ABE, ATL, 

BDL, BNA, BOS, BWI, CAE, CLE, CLT, DTW, EWR, GRR, GSO, GSP, IAD, 

JFK, MDT, MIA, PHL, PIT, RDU, RIC, SYR, TPA and TYS. 

For each of the problem sets, where customer locations have already been identi-

fied, customer demand (in 1000 lb) is randomly sampled from the following demand 

ranges viz. (3-30), (30-90), (30-150), (30-270), (90-210) and (210-270). In Chen & 

Golden [42], the demand ranges were chosen where maximum demand was 1 and 

minimum demand was 0.01. In this research problem, it is assumed that the min-
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imum and maximum demands (in 1000 lb) are 3 and 270 respectively. Hence, the 

demand ranges have been scaled accordingly. For the first problem set, 30 instances 

are generated where the demand at each customer location is sampled from a uniform 

distribution over the demand range. Similarly, 5 instances are generated for the each 

of the first 5 demand ranges for the second and third problem set. The randomly 

generated demand (in 1000 lbs) associated with each of the problem instances is given 

in appendix. 

The number of available aircrafts in vehicle fleet for problem set 1 is considered 

to be 15. The proportion of each vehicle type is maintained the same as in the case 

study. Hence, it is considered that the fleet consists of 1 MD10, 1 MD11, 4 B757, 

6 B767 and 3 A300 aircrafts. The number of available aircrafts in vehicle fleet for 

problem set 2 is considered to be 25. It is considered that the fleet consists of 1 MD10, 

1 MD11, 7 B757, 11 B767 and 5 A300 aircrafts. The number of aircrafts available 

for problem set 3 is considered to be 48. It consists of 3 MD10, 3 MD11, 15 B757, 

15 B767 and 12 A300 aircrafts. Time window parameter given by latest service start 

time li for each customer i is relaxed by +3 hours from that considered in case study 

of Chapter 4. 

6.2 Experiment Results 

Best Cplex solution and time required for solving each of the problem instances 

is obtained from GAMS software. The Cplex solution is taken as the best solution 

obtained by the software within 1800 sec of computational time. For large scale 

problem instances where the software is not able to obtain the exact optimal solution 

within 1800 sec, the time at which the best solution was obtained is noted. 

Parameters for the tabu search algorithm are chosen as p=3, h=1, v=1. Split-

relocate operator is not considered since most of the routes associated with the test 

problem solutions do not visit more than two customers. Also, it is a time intensive 

search operator involving input combinations of 5 variables. The initial solution and 
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heuristic algorithm are coded in R. Performance of the initial solution and heuristic 

method is measured in terms of solution accuracy and computational time. Relative 

gap of heuristic solution with respect to best solution is used as a measure of solution 

accuracy. If Ch is the obtained heuristic solution objective function value and Co is 

the Cplex solution objective function value, then relative gap is given by Equation 

6.1. Similarly, if Ci is the initial solution objective function value, then relative gap 

is given by Equation 6.2. 

Heuristic gap = 100(Ch − Co)/Co (6.1) 

Initial gap = 100(Ci − Co)/Co (6.2) 

Results for each of the problem instances are summarized in the tables 6.1 - 6.12. 

Best solution is obtained using IBM ILOG CPLEX solver available in GAMS software 

on a computer system having Intel 2.66 GHz processor and 4GB RAM. The heuristic 

solutions are obtained on a computer system having Intel 2.40 GHz processor and 

4GB RAM. For all the problem instances in problem set 3, consisting of 25 cities, 

GAMS software is not able to obtain the optimal solution within 1800 sec. 

Table 6.13 summarizes the results of the experimental study. It is observed that 

the heuristic method performs as good as the CPLEX solver for small size problem 

instances with 5 cities and less than 90000 lb demand. For these problem instances, 

the initial solution method also provides equally good solution. For large size problems 

with 25 cities, the heuristic solution is better than obtained optimal solution for 

some instances. On average, heuristic method obtains a solution quicker than GAMS 

software for all problem sets. For problem set 3 having 25 cities, since the optimal 

solution is not obtained within 1800 sec for any of the instances, heuristic method 

with average computational time of 1137.45 sec for demand (90-210) in 1000 lb is still 

faster. 

Fig. 6.1 shows the comparison of initial solution method and heuristic method 

in terms of solution quality as the demand range is varied. It can be observed that 



56 

Table 6.1. 
Problem set 1: 5 cities, demand range (3-30) in 1000 lb 

Instance Co Ci Ch Cplex Time Init Time Hrstic Time Initial gap Heuristic gap 

($1000) ($1000) ($1000) (sec) (sec)∗ (sec) (%) (%) 

1-1-1 7.0358 7.0358 7.0358 6.60 0.00 0.25 0.00 0.00 

1-1-2 6.9537 6.9542 6.9542 6.05 0.02 0.16 0.01 0.01 

1-1-3 6.7998 6.7999 6.7999 6.16 0.00 0.14 0.00 0.00 

1-1-4 4.9959 4.9959 4.9959 5.45 0.02 0.15 0.00 0.00 

1-1-5 7.0454 7.0454 7.0454 5.90 0.02 0.16 0.00 0.00 

1-1-6 8.2675 8.2675 8.2675 6.41 0.00 0.15 0.00 0.00 

1-1-7 5.4948 5.4954 5.4954 5.60 0.00 0.15 0.01 0.01 

1-1-8 6.9734 6.9737 6.9737 6.13 0.02 0.14 0.00 0.00 

1-1-9 3.4397 3.4411 3.4411 6.10 0.00 0.16 0.04 0.04 

1-1-10 6.3034 6.3038 6.3038 5.65 0.00 0.16 0.01 0.01 

1-1-11 3.2466 3.2466 3.2466 6.61 0.00 0.17 0.00 0.00 

1-1-12 7.2974 7.2981 7.2981 6.27 0.02 0.16 0.01 0.01 

1-1-13 5.9811 5.9811 5.9811 5.83 0.01 0.16 0.00 0.00 

1-1-14 8.8501 8.8506 8.8506 5.88 0.00 0.19 0.01 0.01 

1-1-15 7.6832 7.6833 7.6833 5.22 0.00 0.16 0.00 0.00 

1-1-16 6.2934 6.2948 6.2948 5.27 0.00 0.16 0.02 0.02 

1-1-17 8.4111 8.4112 8.4112 5.64 0.02 0.16 0.00 0.00 

1-1-18 8.0110 8.0110 8.0110 5.69 0.00 0.14 0.00 0.00 

1-1-19 5.3263 5.3264 5.3264 5.42 0.02 0.14 0.00 0.00 

1-1-20 8.9056 8.9056 8.9056 5.31 0.02 0.16 0.00 0.00 

1-1-21 7.1507 7.1507 7.1507 5.65 0.00 0.14 0.00 0.00 

1-1-22 8.2627 8.2627 8.2627 6.37 0.02 0.17 0.00 0.00 

1-1-23 6.8823 6.8824 6.8824 6.09 0.00 0.16 0.00 0.00 

1-1-24 6.4942 6.4948 6.4948 7.07 0.00 0.19 0.01 0.01 

1-1-25 7.2720 7.2720 7.2720 6.40 0.00 0.19 0.00 0.00 

1-1-26 6.8128 6.8128 6.8128 6.02 0.00 0.20 0.00 0.00 

1-1-27 6.9009 6.9013 6.9013 5.80 0.02 0.14 0.01 0.01 

1-1-28 5.1615 5.1615 5.1615 6.11 0.02 0.14 0.00 0.00 

1-1-29 4.0852 4.0859 4.0859 6.03 0.00 0.17 0.02 0.02 

1-1-30 5.4252 5.4252 5.4252 5.81 0.00 0.16 0.00 0.00 

∗ time less than 0.01 sec is listed as 0.00 sec 

for small demand ranges given in 1000 lb (3-30) and (30-90), there is not much 

improvement of heuristic solution over initial solution since both are very close to the 
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Table 6.2. 
Problem set 1: 5 cities, demand range (30-90) in 1000 lb 

Instance Co Ci Ch Cplex Time Init Time Hrstic Time Initial gap Heuristic gap 

($1000) ($1000) ($1000) (sec) (sec)∗ (sec) (%) (%) 

1-2-1 25.6856 25.6857 25.6857 7.79 0.00 0.17 0.00 0.00 

1-2-2 25.5037 25.5045 25.5045 7.12 0.12 0.19 0.00 0.00 

1-2-3 25.1614 25.1616 25.1616 6.12 0.00 0.17 0.00 0.00 

1-2-4 21.1522 21.1525 21.1525 6.13 0.02 0.17 0.00 0.00 

1-2-5 25.7058 25.7070 25.7070 6.42 0.02 0.17 0.00 0.00 

1-2-6 28.4228 28.4228 28.4228 5.57 0.01 0.17 0.00 0.00 

1-2-7 22.2608 22.2626 22.2626 5.62 0.00 0.16 0.01 0.01 

1-2-8 25.5478 25.5478 25.5478 5.27 0.02 0.17 0.00 0.00 

1-2-9 17.6971 17.6975 17.6975 5.43 0.00 0.17 0.00 0.00 

1-2-10 24.0591 24.0591 24.0591 5.73 0.00 0.16 0.00 0.00 

1-2-11 17.2648 17.2653 17.2653 6.49 0.00 0.19 0.00 0.00 

1-2-12 26.2685 26.2685 26.2685 6.01 0.00 0.16 0.00 0.00 

1-2-13 23.3419 23.3419 23.3419 5.46 0.00 0.14 0.00 0.00 

1-2-14 29.7179 29.7186 29.7186 5.83 0.00 0.17 0.00 0.00 

1-2-15 27.1242 27.1247 27.1247 5.62 0.00 0.17 0.00 0.00 

1-2-16 24.0390 24.0390 24.0390 5.27 0.00 0.14 0.00 0.00 

1-2-17 28.7419 28.7422 28.7422 5.51 0.02 0.17 0.00 0.00 

1-2-18 27.8527 27.8529 27.8529 5.60 0.00 0.14 0.00 0.00 

1-2-19 21.8866 21.8871 21.8871 5.45 0.02 0.16 0.00 0.00 

1-2-20 29.8404 29.8408 29.8408 6.52 0.02 0.16 0.00 0.00 

1-2-21 25.9410 25.9410 25.9410 5.45 0.02 0.14 0.00 0.00 

1-2-22 28.4117 28.4122 28.4122 5.55 0.00 0.16 0.00 0.00 

1-2-23 25.3440 25.3447 25.3447 5.62 0.00 0.17 0.00 0.00 

1-2-24 24.4821 24.4834 24.4834 5.41 0.00 0.14 0.01 0.01 

1-2-25 26.2105 26.2105 26.2105 5.76 0.02 0.17 0.00 0.00 

1-2-26 25.1901 25.1901 25.1901 6.28 0.02 0.17 0.00 0.00 

1-2-27 25.3868 25.3868 25.3868 5.55 0.00 0.16 0.00 0.00 

1-2-28 21.5194 21.5207 21.5207 5.50 0.00 0.19 0.01 0.01 

1-2-29 19.1300 19.1303 19.1303 6.28 0.00 0.14 0.00 0.00 

1-2-30 22.1066 22.1067 22.1067 5.65 0.00 0.16 0.00 0.00 

∗ time less than 0.01 sec is listed as 0.00 sec 

exact optimal solution. For the other demand ranges, heuristic method improves over 

initial solution by at least 1.5% on average. 
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Table 6.3. 
Problem set 1: 5 cities, demand range (30-150) in 1000 lb 

Instance Co Ci Ch Cplex Time Init Time Hrstic Time Initial gap Heuristic gap 

($1000) ($1000) ($1000) (sec) (sec)∗ (sec) (%) (%) 

1-3-1 38.4478 39.6577 38.6119 6.19 0.11 0.63 3.15 0.43 

1-3-2 38.0867 38.0867 38.0867 5.75 0.02 0.19 0.00 0.00 

1-3-3 37.4002 37.4010 37.4010 6.16 0.00 0.16 0.00 0.00 

1-3-4 29.3824 29.3828 29.3828 5.80 0.01 0.17 0.00 0.00 

1-3-5 38.4933 39.6467 38.6489 6.07 0.09 0.66 3.00 0.40 

1-3-6 43.9234 45.4241 44.2299 6.74 0.11 0.58 3.42 0.70 

1-3-7 31.6028 32.6507 31.8037 5.51 0.11 0.64 3.32 0.64 

1-3-8 38.1734 38.1734 38.1734 5.69 0.00 0.13 0.00 0.00 

1-3-9 22.4729 22.4729 22.4729 6.89 0.02 0.14 0.00 0.00 

1-3-10 35.1961 35.1961 35.1961 5.10 0.00 0.12 0.00 0.00 

1-3-11 21.6082 21.6085 21.6085 5.71 0.02 0.20 0.00 0.00 

1-3-12 39.6142 40.7698 39.8010 5.46 0.09 0.63 2.92 0.47 

1-3-13 33.7630 34.3742 33.8295 5.56 0.09 0.56 1.81 0.20 

1-3-14 46.5194 48.2824 46.7971 5.66 0.14 0.84 3.79 0.60 

1-3-15 41.3281 42.4821 41.5401 5.72 0.11 0.67 2.79 0.51 

1-3-16 35.1544 35.1557 35.1557 5.49 0.02 0.17 0.00 0.00 

1-3-17 44.5632 46.0627 44.9153 5.51 0.12 0.63 3.36 0.79 

1-3-18 42.7832 43.9385 42.9541 6.45 0.08 0.41 2.70 0.40 

1-3-19 30.8520 30.8521 30.8521 6.23 0.00 0.16 0.00 0.00 

1-3-20 46.7591 47.3719 46.8277 6.05 0.09 0.67 1.31 0.15 

1-3-21 38.9593 39.5723 39.0262 5.80 0.09 0.61 1.57 0.17 

1-3-22 43.9020 45.0571 44.1455 5.99 0.08 0.59 2.63 0.55 

1-3-23 37.7672 37.7672 37.7672 6.78 0.00 0.17 0.00 0.00 

1-3-24 36.0447 36.0447 36.0447 5.40 0.02 0.17 0.00 0.00 

1-3-25 39.4992 40.7073 39.6488 5.80 0.08 0.64 3.06 0.38 

1-3-26 37.4580 37.4580 37.4580 6.72 0.00 0.19 0.00 0.00 

1-3-27 37.8510 38.8992 38.0348 5.23 0.12 0.59 2.77 0.49 

1-3-28 30.1188 31.3276 30.2548 7.13 0.11 0.66 4.01 0.45 

1-3-29 25.3384 25.3384 25.3384 5.66 0.02 0.19 0.00 0.00 

1-3-30 31.2905 31.2911 31.2911 6.19 0.02 0.16 0.00 0.00 

∗ time less than 0.01 sec is listed as 0.00 sec 

Fig. 6.2 shows the comparison of initial solution method and heuristic method in 

terms of solution quality as the size of the problem increases in terms of number of 

customers, while demand range in 1000 lb is (3-30). Improvement of heuristic solution 
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Table 6.4. 
Problem set 1: 5 cities, demand range (30-270) in 1000 lb 

Instance Co Ci Ch Cplex Time Init Time Hrstic Time Initial gap Heuristic gap 

($1000) ($1000) ($1000) (sec) (sec) (sec) (%) (%) 

1-4-1 63.9755 66.3396 64.7575 6.69 0.12 1.08 3.70 1.22 

1-4-2 63.3479 66.5193 64.8669 5.78 0.16 0.92 5.01 2.40 

1-4-3 61.8798 63.9929 62.6742 7.16 0.11 0.78 3.41 1.28 

1-4-4 45.8434 47.5037 46.6358 7.40 0.14 0.80 3.62 1.73 

1-4-5 64.1061 66.7168 64.9746 6.38 0.14 0.75 4.07 1.35 

1-4-6 74.9907 79.5863 76.6302 5.79 0.30 1.68 6.13 2.19 

1-4-7 50.2837 52.3793 50.8472 5.63 0.14 1.10 4.17 1.12 

1-4-8 63.4245 66.8357 64.7464 5.45 0.21 1.00 5.38 2.08 

1-4-9 32.0235 32.0235 32.0235 5.58 0.02 0.17 0.00 0.00 

1-4-10 57.4303 59.7262 57.9328 6.29 0.11 0.80 4.00 0.88 

1-4-11 30.2946 31.4497 30.5077 7.33 0.08 0.44 3.81 0.70 

1-4-12 66.6381 68.9631 67.0298 6.73 0.14 0.77 3.49 0.59 

1-4-13 54.6014 56.2614 55.7260 5.39 0.11 0.52 3.04 2.06 

1-4-14 80.3728 84.5841 82.7006 5.69 0.28 1.78 5.24 2.90 

1-4-15 69.693 74.2982 72.2098 7.86 0.20 1.24 6.61 3.61 

1-4-16 57.3893 60.2045 58.6060 7.36 0.19 1.35 4.91 2.12 

1-4-17 76.3929 81.5666 77.8700 5.44 0.21 2.12 6.77 1.93 

1-4-18 72.9671 77.5032 75.1213 5.73 0.20 1.27 6.22 2.95 

1-4-19 48.782 51.4375 49.5926 6.17 0.14 0.84 5.44 1.66 

1-4-20 82.1138 84.9658 83.0668 6.18 0.23 1.66 3.47 1.16 

1-4-21 64.0359 67.8125 66.9138 5.73 0.19 1.00 5.90 4.49 

1-4-22 74.9909 79.3586 76.6139 6.64 0.25 1.58 5.82 2.16 

1-4-23 62.6688 65.4810 64.0389 5.41 0.21 1.31 4.49 2.19 

1-4-24 59.1672 62.1431 60.3676 6.38 0.19 0.98 5.03 2.03 

1-4-25 66.1483 68.7846 66.9713 6.02 0.16 0.83 3.99 1.24 

1-4-26 62.2392 64.3573 62.7702 7.74 0.12 0.78 3.40 0.85 

1-4-27 63.1705 66.0310 63.9206 6.55 0.19 1.27 4.53 1.19 

1-4-28 47.3161 49.6795 47.7522 6.15 0.14 0.80 4.99 0.92 

1-4-29 37.7547 38.3672 37.9393 6.51 0.08 0.64 1.62 0.49 

1-4-30 49.6601 51.1607 50.0256 5.81 0.08 0.61 3.02 0.74 

over initial solution increases as size of the problem increases. Also, solution quality 

of both initial and heuristic solutions decreases as size of the problem increases. 
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Table 6.5. 
Problem set 1: 5 cities, demand range (90-210) in 1000 lb 

Instance Co Ci Ch Cplex Time Init Time Hrstic Time Initial gap Heuristic gap 

($1000) ($1000) ($1000) (sec) (sec) (sec) (%) (%) 

1-5-1 64.3261 68.1576 65.3672 7.71 0.19 1.32 5.96 1.62 

1-5-2 63.9312 67.1992 65.2151 5.53 0.16 1.10 5.11 2.01 

1-5-3 63.2445 66.5134 64.1257 5.79 0.19 0.94 5.17 1.39 

1-5-4 55.2268 56.8875 55.7907 9.36 0.20 0.70 3.01 1.02 

1-5-5 64.3688 66.9917 65.4990 7.99 0.14 0.77 4.07 1.76 

1-5-6 69.7678 74.1372 71.0906 5.91 0.25 1.98 6.26 1.90 

1-5-7 57.4472 59.9957 58.2509 6.67 0.14 0.86 4.44 1.40 

1-5-8 64.0179 67.4289 65.3736 6.28 0.14 1.00 5.33 2.12 

1-5-9 48.3172 48.3172 48.3172 5.79 0.02 0.16 0.00 0.00 

1-5-10 61.0404 64.4516 61.8972 6.07 0.20 1.31 5.59 1.40 

1-5-11 47.4526 48.6078 47.7154 5.81 0.08 0.58 2.43 0.55 

1-5-12 65.4585 68.1148 66.7237 5.77 0.11 1.05 4.06 1.93 

1-5-13 59.6074 62.4212 60.5050 5.59 0.22 1.34 4.72 1.51 

1-5-14 72.3593 76.8358 74.2768 6.26 0.30 1.61 6.19 2.65 

1-5-15 67.1725 70.5827 68.6643 6.48 0.19 1.03 5.08 2.22 

1-5-16 60.9988 63.8154 61.8843 8.12 0.14 1.34 4.62 1.45 

1-5-17 70.4075 74.2705 72.1326 8.34 0.20 1.30 5.49 2.45 

1-5-18 68.6275 72.3313 70.3375 9.25 0.14 1.36 5.40 2.49 

1-5-19 56.6963 59.3520 57.4941 8.19 0.16 0.80 4.68 1.41 

1-5-20 72.6035 76.9730 74.4635 8.27 0.30 1.97 6.02 2.56 

1-5-21 64.8036 67.6193 66.1262 7.27 0.22 1.27 4.35 2.04 

1-5-22 69.7464 74.2230 71.2996 5.80 0.27 1.58 6.42 2.23 

1-5-23 63.6119 66.4804 64.6901 5.64 0.22 1.31 4.51 1.69 

1-5-24 61.8898 64.8650 62.8436 6.91 0.27 1.33 4.81 1.54 

1-5-25 65.3548 69.1001 66.6591 5.67 0.14 1.41 5.73 2.00 

1-5-26 63.3027 65.6658 64.5252 6.78 0.11 0.81 3.73 1.93 

1-5-27 63.6953 65.8985 64.9126 6.19 0.16 0.83 3.46 1.91 

1-5-28 55.9632 58.3269 56.6578 6.87 0.11 0.84 4.22 1.24 

1-5-29 51.1833 51.7954 51.7954 5.65 0.08 0.22 1.20 1.20 

1-5-30 57.1348 59.8445 57.6963 6.25 0.14 0.78 4.74 0.98 

Fig. 6.3 shows the comparison of initial solution method and heuristic method 

in terms of solution quality as the size of the problem increases in terms of number 

of customers, while demand range in 1000 lb is (30-90). Improvement of heuristic 
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Table 6.6. 
Problem set 1: 5 cities, demand range (210-270) in 1000 lb 

Instance Co Ci Ch Cplex Time Init Time Hrstic Time Initial gap Heuristic gap 

($1000) ($1000) ($1000) (sec) (sec) (sec) (%) (%) 

1-6-1 104.4502 108.1306 105.3056 10.97 0.37 1.77 3.52 0.82 

1-6-2 104.1385 108.6763 105.6452 8.85 0.39 2.74 4.36 1.45 

1-6-3 103.6914 108.1776 105.3125 9.90 0.48 2.82 4.33 1.56 

1-6-4 99.7329 103.5974 101.9331 5.93 0.31 2.30 3.87 2.21 

1-6-5 104.3749 108.4961 105.6354 6.68 0.41 2.19 3.95 1.21 

1-6-6 107.1845 111.5325 109.0251 6.06 0.47 2.93 4.06 1.72 

1-6-7 100.7542 104.7074 102.6971 6.50 0.44 1.86 3.92 1.93 

1-6-8 104.4029 107.9926 105.3025 6.63 0.37 1.89 3.44 0.86 

1-6-9 96.0325 100.1424 97.3633 7.01 0.41 1.94 4.28 1.39 

1-6-10 102.7818 106.5040 103.7683 7.32 0.39 1.74 3.62 0.96 

1-6-11 95.4172 99.7102 96.8527 6.65 0.28 1.84 4.50 1.50 

1-6-12 104.8957 109.0872 106.2525 6.50 0.41 2.26 4.00 1.29 

1-6-13 102.0885 105.7868 104.1449 6.25 0.33 1.91 3.62 2.01 

1-6-14 108.8420 112.1634 109.5520 6.13 0.31 1.81 3.05 0.65 

1-6-15 106.0502 109.5696 106.9606 5.68 0.28 1.78 3.32 0.86 

1-6-16 102.8708 106.4838 104.9300 6.45 0.30 1.81 3.51 2.00 

1-6-17 107.5126 111.6696 109.1861 6.35 0.39 2.88 3.87 1.56 

1-6-18 106.7270 110.6187 107.8880 5.79 0.47 2.67 3.65 1.09 

1-6-19 100.3098 104.3320 101.4782 6.51 0.34 1.95 4.01 1.16 

1-6-20 108.8779 113.0213 110.4821 6.05 0.42 2.76 3.81 1.47 

1-6-21 104.8951 108.3858 106.9213 6.23 0.39 1.78 3.33 1.93 

1-6-22 107.4569 110.8570 108.2317 6.33 0.30 1.84 3.16 0.72 

1-6-23 104.1898 107.7896 106.1641 5.98 0.33 1.92 3.46 1.89 

1-6-24 103.2796 106.9283 104.2464 7.07 0.42 1.94 3.53 0.94 

1-6-25 104.9255 109.0086 106.5575 7.34 0.73 5.79 3.89 1.56 

1-6-26 103.9666 107.6350 104.7156 6.81 0.41 1.90 3.53 0.72 

1-6-27 104.1839 107.8317 106.2459 5.98 0.37 1.87 3.50 1.98 

1-6-28 99.8624 103.9655 100.9903 6.60 0.31 1.95 4.11 1.13 

1-6-29 97.4502 101.5752 98.7743 7.00 0.47 4.27 4.23 1.36 

1-6-30 100.5496 104.5515 101.6704 6.12 0.66 2.26 3.98 1.11 

solution over initial solution increases as size of the problem increases. Average 

heuristic gap is maintained at about 0% for large scale problem with 25 cities since 

heuristic solution is better than best found optimal solution. 
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Table 6.7. 
Problem set 2: 12 cities, demand range (3-30) in 1000 lb 

Instance Co Ci Ch Cplex Time Init Time Hrstic Time Initial gap Heuristic gap 

($1000) ($1000) ($1000) (sec) (sec)∗ (sec) (%) (%) 

2-1-1 39.1593 39.9053 39.2021 9.11 0.00 1.68 1.90 0.11 

2-1-2 39.4754 40.2557 39.5107 9.66 0.02 1.78 1.98 0.09 

2-1-3 35.1360 35.6647 35.1677 9.04 0.02 1.82 1.50 0.09 

2-1-4 40.8468 41.1240 40.8667 12.80 0.02 1.74 0.68 0.05 

2-1-5 40.6168 41.2176 40.6528 12.29 0.02 1.81 1.48 0.09 

∗ time less than 0.01 sec is listed as 0.00 sec 

Table 6.8. 
Problem set 2: 12 cities, demand range (30-90) in 1000 lb 

Instance Co Ci Ch Cplex Time Init Time Hrstic Time Initial gap Heuristic gap 

($1000) ($1000) ($1000) (sec) (sec)∗ (sec) (%) (%) 

2-2-1 140.4219 142.7183 140.6119 8.19 0.00 1.68 1.64 0.14 

2-2-2 141.1261 143.4969 141.2975 8.58 0.00 1.82 1.68 0.12 

2-2-3 131.4813 133.2948 131.6464 9.44 0.02 1.69 1.38 0.13 

2-2-4 144.1770 145.4264 144.3365 8.23 0.02 1.72 0.87 0.11 

2-2-5 143.6623 145.6346 143.8356 7.93 0.03 1.68 1.37 0.12 

∗ time less than 0.01 sec is listed as 0.00 sec 

Table 6.9. 
Problem set 2: 12 cities, demand range (90-210) in 1000 lb 

Instance Co Ci Ch Cplex Time Init Time Hrstic Time Initial gap Heuristic gap 

($1000) ($1000) ($1000) (sec) (sec) (sec) (%) (%) 

2-5-1 339.8485 355.9139 345.7749 45.83 6.52 18.32 4.73 1.74 

2-5-2 351.6532 374.1394 360.2873 16.89 11.54 27.47 6.39 2.46 

2-5-3 332.0580 348.1090 337.5508 14.35 9.86 38.93 4.83 1.65 

2-5-4 358.6527 383.0077 368.4553 47.55 11.26 36.43 6.79 2.73 

2-5-5 323.2198 338.7000 329.1200 115.08 4.73 22.08 4.79 1.83 
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Table 6.10. 
Problem set 3: 25 cities, demand range (3-30) in 1000 lb 

Instance Co Ci Ch Cplex Time Init Time Hrstic Time Initial gap Heuristic gap 

($1000) ($1000) ($1000) (<1800sec) (sec) (sec) (%) (%) 

3-1-1 34.555 35.2565 34.3967 1504.85 0.05 155.42 2.03 -0.46 

3-1-2 32.3632 33.8891 32.9840 614.25 0.05 133.07 4.71 1.92 

3-1-3 29.1397 30.6590 29.7395 862.98 0.06 116.19 5.21 2.06 

3-1-4 36.3955 38.3503 37.3727 1555.61 0.03 153.07 5.37 2.69 

3-1-5 32.7226 33.1691 32.3136 1573.72 0.03 95.78 1.36 -1.25 

Table 6.11. 
Problem set 3: 25 cities, demand range (30-90) in 1000 lb 

Instance Co Ci Ch Cplex Time Init Time Hrstic Time Initial gap Heuristic gap 

($1000) ($1000) ($1000) (<1800sec) (sec) (sec) (%) (%) 

3-2-1 122.6049 125.3462 122.8346 1447.38 0.05 132.12 2.24 0.19 

3-2-2 117.5939 122.3076 119.6132 573.38 0.05 129.08 4.01 1.72 

3-2-3 111.9145 115.1297 112.4200 725.90 0.05 129.07 2.87 0.45 

3-2-4 127.5165 132.2215 129.3018 1681.22 0.05 149.54 3.69 1.40 

3-2-5 123.2988 120.7077 118.2516 52.87 0.05 110.93 -2.10 -4.09 

Table 6.12. 
Problem set 3: 25 cities, demand range (90-210) in 1000 lb 

Instance Co Ci Ch Cplex Time Init Time Hrstic Time Initial gap Heuristic gap 

($1000) ($1000) ($1000) (<1800sec) (sec) (sec) (%) (%) 

3-5-1 307.7888 321.9192 311.6374 1612.97 137.86 1023.42 4.59 1.25 

3-5-2 310.4916 297.7418 287.6532 567.72 241.32 1078.48 -4.11 -7.36 

3-5-3 286.0358 286.3615 275.2149 1588.00 240.51 1085.56 0.11 -3.78 

3-5-4 314.7524 339.6308 326.3159 821.50 181.66 1616.16 7.90 3.67 

3-5-5 317.476 310.6291 302.0101 45.37 177.70 883.63 -2.16 -4.87 

Fig. 6.4 shows the comparison of initial solution method and heuristic method 

in terms of solution quality as the size of the problem increases in terms of number 
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Table 6.13. 
Summary of results 

Problem Demand No. of inst. No. of inst. Avg. Opt Avg. Init Avg. Hrstic 

Type (in 1000 lb) Ch ≤ Co Time Time Time 

5 cities (3-30) 30 20 5.95 0.01 0.16 

5 cities (30-90) 30 27 5.87 0.01 0.16 

5 cities (90-210) 30 1 6.74 0.17 1.10 

12 cities (3-30) 5 1 10.58 0.01 1.77 

12 cities (30-90) 5 0 8.47 0.01 1.72 

12 cities (90-210) 5 0 47.94 8.78 28.64 

25 cities (3-30) 5 2 1222.28 0.04 130.71 

25 cities (30-90) 5 1 896.15 0.05 130.15 

25 cities (90-210) 5 3 927.11 195.81 1137.45 

Figure 6.1. Performance comparison of initial and heuristic algorithm 
for problem set 1 

of customers, while demand range in 1000 lb is (90-210). Initial gap is about 1% on 

average for problems of the size of 25 cities. Heuristic solution performs better on 

average for large size problems. 
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Figure 6.2. Performance comparison of initial and heuristic algorithm 
for demand range (3-30) in 1000 lb 

From Fig. 6.5, 6.6 and 6.7, it is observed that computational times for Cplex, 

initial and heuristic solution are small for problems of the size of 5 and 12 cities. For 

large size problems with 25 cities, initial solution time is still very small. Cplex solu-

tion time increases for all demand ranges for large size problems. Heuristic solution 

time increases with increase in demand range. A significant increase in heuristic solu-

tion computational time can be seen for demand range (90-210) in 1000 lb. However, 

it is still less than Cplex solution time. 
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Figure 6.3. Performance comparison of initial and heuristic algorithm 
for demand range (30-90) in 1000 lb 

Figure 6.4. Performance comparison of initial and heuristic algorithm 
for demand range (90-210) in 1000 lb 
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Figure 6.5. Performance comparison of initial and heuristic algorithm 
for demand range (3-30) in 1000 lb 

Figure 6.6. Performance comparison of initial and heuristic algorithm 
for demand range (30-90) in 1000 lb 
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Figure 6.7. Performance comparison of initial and heuristic algorithm 
for demand range (90-210) in 1000 lb 
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7. CONCLUSION 

7.1 Summary of Results 

A new variant of vehicle routing problem is introduced to the literature. It is 

a mixed-integer programming formulation that aims to minimize fuel consumption 

costs and considers the limitations on payload based upon range of travel distance. 

Implementation of the model to solve a real-world case study shows that up to 5% 

reduction in fuel consumption costs could be achieved. The model can also be used 

to perform sensitivity analysis with respect to time windows, fleet composition and 

changing customer locations and demand. The study also showed that modernizing 

the fleet with 5 B777 aircrafts, which are more fuel efficient, could result in saving 

fuel consumption by 19%. 

An initial solution and heuristic method was also developed to solve the formu-

lated problem. Comparison with Cplex solution shows that relative gap associated 

with heuristic solution is less than 4% for all the test problem instances. Both the 

initial solution and heuristic methods obtain solutions close to optimal solution for 

problems with small number of customers and small demands associated with them. 

Another observation is that relative gap of initial solution increases as the number 

of customers increases. However, improvement of heuristic solution over initial solu-

tion also increases, with the heuristic solution being better than best found optimal 

solution for some instances. On average, heuristic solution takes less computational 

time than the Cplex solution for all problem instances. For large size problems, the 

heuristic method terminates within reasonable time whereas the exact solution may 

not be observed. 



70 

7.2 Research Contributions 

The significant contributions of this research can be summarized below: 

• A new variant of vehicle routing problem is introduced along with its mathe-

matical formulation 

• A real-world case study implementation of the problem is performed 

• An initial solution or greedy algorithm is developed 

• A heuristic algorithm is developed 

7.3 Future Research Directions 

Future work related to this research can be divided into 3 categories. 

7.3.1 Model formulation 

• More than one depot can be considered for problem formulation 

• A multi-objective approach can also be explored where reducing customer wait 

times is also important 

• Shipment of more than one product type (e.g. based upon weight of product) 

can be explored 

• Pickup and delivery problem can be considered together with multiple planning 

horizons 

• Model could be used to analyze impact of alternative fuel such as bio-fuel and 

study the trade-off between efficiency and environmental, tax benefits 

• Speed and service time could be functions of decision variables 
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7.3.2 Case study 

• The case study can be extended to consider crew costs, hiring and maintenance 

costs of vehicles as well as revenue generated by transportation 

• Vehicle fleet can also include trucks and corresponding vehicle parameters can 

be used for the case study 

• The model could also be applied to other transportation problems using heli-

copters, ships and railroad 

7.3.3 Computational experiments 

• Computational time for optimal solution could be extended beyond 1800 sec 

and the results can be compared 

• Analyze influence of problem parameters such as time windows, service time on 

the performance of the proposed heuristic 

• Analyze influence of vehicle parameters such as average speed, capacity, fuel 

consumption constant 

• Analyze influence of customer parameters such as their number and locations 

on the performance of proposed heuristic 
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APPENDIX A 

APPENDIX: COMPLETE MODEL FORMULATION 

Complete model formulation along with brief explanation of constraints can be found 

below. 

minimize 
N N+1X X X 

fk 
ij fpg (A.1) 

i=0 j=1 k∈V 

subject to 
N N+1X X 

k k x = xij ji 
i=0 i=1 

∀j ∈ L\{0, N + 1} ∀k ∈ V (A.2) 

NX 
x k = y k ∀j ∈ L\{0, N + 1} ∀k ∈ V (A.3)ij j 

i=0 

NX 
x k ≤ 1 ∀k ∈ V (A.4)0j 

j=1 

N+1X 
x kN+1j = 0 ∀k ∈ V (A.5) 

j=1 X 
z k = di ∀i ∈ L\{0, N + 1} (A.6)i 

k∈V 

z k k ∀i ∈ L\{0, N + 1} ∀k ∈ V (A.7)i ≤ diyi 

fij
k + qij

k + emp k ≤ Qk x kij + emp k(1 − x kij ) ∀i ∈ L\{N + 1} ∀j ∈ L\{0} ∀k ∈ V 

(A.8) 
N N+1X X 

k k k z = q − q ∀j ∈ L\{0, N + 1} ∀k ∈ V (A.9)j ij ji 
i=0 i=1 

wi
k ≤ li ∀i ∈ L ∀k ∈ V (A.10) 

k k k k k w + s + t − M(1 − x ) ≤ w ∀i ∈ L\{N + 1} ∀j ∈ L\{0} ∀k ∈ V (A.11)i i ij ij j X 
x k ≤ |S| − 1 ∀S ⊆ L 2 ≤ |S| ≤ N + 1 ∀k ∈ V (A.12)ij 

(i,j)∈SXS 
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xi
k 
0 = 0 ∀i ∈ L, ∀k ∈ V (A.13) 

fk ≤ fk ∀i, j ∈ L ∀k ∈ V (A.14)ij cap 

x kij ∈ {0, 1} ∀i, j ∈ L ∀k ∈ V (A.15) 

y k ∈ {0, 1} ∀i ∈ L\{0, N + 1} ∀k ∈ V (A.16)i 

zi
k ≥ 0 ∀i ∈ L\{0, N + 1} ∀k ∈ V (A.17) 

q k ≥ 0 ∀i ∈ L\{N + 1} ∀j ∈ L\{0} ∀k ∈ V (A.18)ij 

wi
k ≥ 0 ∀i ∈ L ∀k ∈ V (A.19) 

Objective function (A.1) minimizes the total fuel consumption cost. Constraint (A.2) 

ensures that every vehicle that arrives also leaves from a destination. Constraint (A.3) 

ensures that any destination location is visited by a vehicle atmost once. Con-

straint (A.4) ensures that all the vehicles can leave the depot/hub atmost once. Con-

straint (A.5) ensures that all the routes end at the dummy location and none of the 

arriving vehicles leave. This constraint is used to ensure open vehicle routing problem 

and that vehicles do not need to return back to the depot. Constraints (A.6), (A.7) 

and (A.9) are used to satisfy split delivery requirements. Destination demand is sat-

isfied by all the splits together. Demand at a destination is split to a vehicle only if 

it visits the location. Constraint (A.9) satisfies the relation between load delivered to 

a destination and corresponding split load. Constraint (A.8) ensures that maximum 

takeoff weight of the aircraft is not exceeded. Constraints (A.10) and (A.11) ensure 

time window requirements. Every destination location is visited before the latest ser-

vice time allowed. Constraint (A.12) ensures subtour elimination. Constraint (A.13) 

ensures that no vehicles return to the depot. Constraint (A.14) ensures that fuel tank 

capacity of the vehicle is not exceeded. Constraints (A.15), (A.16), (A.17), (A.18) 

and (A.19) determine the domain of the decision variables. 
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APPENDIX: PROBLEM INSTANCES FOR 

EXPERIMENTAL STUDY 
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Table B.1. 
Problem set 1: 5 cities, demand range (3-30) in 1000 lb 

Instance ABE BOS EWR JFK PIT 

1-1-1 10.17 13.05 18.47 27.52 8.45 

1-1-2 7.99 21.96 18.48 7.54 28.48 

1-1-3 7.54 24.8 13.39 11.85 19.26 

1-1-4 18.82 3.24 10.93 10.49 24.97 

1-1-5 8.41 21.5 27.76 10.68 5.83 

1-1-6 19.37 28.32 10.14 13.26 24.8 

1-1-7 29.7 13.74 6.12 4.88 9.58 

1-1-8 15.59 8.61 24.59 20.6 11.68 

1-1-9 8.98 3.65 8.59 8.82 14.98 

1-1-10 16.7 11.28 14.53 21.71 5.3 

1-1-11 10.49 3.01 16.79 3.38 4.75 

1-1-12 4.87 25.08 28.45 10.27 7.57 

1-1-13 22.18 9.65 13.52 5.47 28.98 

1-1-14 9.86 20.22 28.84 17.92 29.54 

1-1-15 19.26 8.27 29.09 20.57 12.91 

1-1-16 21.44 9.59 15.15 9.19 26.31 

1-1-17 7.19 29.15 15.64 23.97 14.01 

1-1-18 25.22 22.18 29.08 5.12 4.45 

1-1-19 6.16 16.07 20.58 4.85 12.86 

1-1-20 26.69 23.75 10.53 17.29 29 

1-1-21 24.23 9.82 21.88 7.98 28.91 

1-1-22 11.22 15.82 29.83 17.06 25.77 

1-1-23 18.57 9.02 11.96 22.19 25.13 

1-1-24 10.9 9.07 22.01 17.01 20.89 

1-1-25 14.24 21.76 7.02 27.23 6.36 

1-1-26 3.45 10.82 26.61 24.6 11.43 

1-1-27 29.24 5.26 26.59 11.89 9 

1-1-28 3.77 5.39 15.81 26.91 5.47 

1-1-29 5.69 9.5 5.79 11.79 18.79 

1-1-30 5.67 16.18 12.83 14.36 11.13 
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Table B.2. 
Problem set 1: 5 cities, demand range (30-90) in 1000 lb 

Instance ABE BOS EWR JFK PIT 

1-2-1 45.93 52.33 64.37 84.49 42.1 

1-2-2 41.09 72.14 64.4 40.08 86.63 

1-2-3 40.08 78.45 53.1 49.66 66.13 

1-2-4 65.15 30.54 47.62 46.64 78.81 

1-2-5 42.01 71.11 85.01 47.06 36.28 

1-2-6 66.38 86.26 45.86 52.81 78.45 

1-2-7 89.33 53.86 36.94 34.18 44.62 

1-2-8 57.98 42.47 77.98 69.11 49.29 

1-2-9 43.3 31.45 42.43 42.94 56.62 

1-2-10 60.45 48.41 55.61 71.59 35.11 

1-2-11 46.63 30.03 60.64 30.84 33.88 

1-2-12 34.16 79.07 86.56 46.16 40.16 

1-2-13 72.62 44.77 53.38 35.48 87.72 

1-2-14 45.24 68.27 87.43 63.15 88.98 

1-2-15 66.13 41.7 87.99 69.05 52.02 

1-2-16 70.99 44.65 57.01 43.77 81.81 

1-2-17 39.3 88.1 58.1 76.61 54.47 

1-2-18 79.37 72.61 87.95 34.72 33.22 

1-2-19 37.03 59.04 69.07 34.1 51.92 

1-2-20 82.65 76.11 46.74 61.75 87.77 

1-2-21 77.17 45.15 71.96 41.07 87.58 

1-2-22 48.26 58.48 89.61 61.24 80.59 

1-2-23 64.6 43.38 49.91 72.64 79.17 

1-2-24 47.55 43.49 72.25 61.13 69.76 

1-2-25 54.97 71.69 38.93 83.84 37.46 

1-2-26 31 47.37 82.47 78 48.73 

1-2-27 88.31 35.03 82.43 49.75 43.34 

1-2-28 31.71 35.3 58.46 83.12 35.49 

1-2-29 35.98 44.45 36.19 49.54 65.1 

1-2-30 35.93 59.29 51.84 55.24 48.06 
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Table B.3. 
Problem set 1: 5 cities, demand range (30-150) in 1000 lb 

Instance ABE BOS EWR JFK PIT 

1-3-1 61.86 74.65 98.74 138.98 54.2 

1-3-2 52.19 114.28 98.8 50.17 143.26 

1-3-3 50.16 126.9 76.19 69.33 102.25 

1-3-4 100.3 31.07 65.25 63.28 127.63 

1-3-5 54.03 112.23 140.03 64.13 42.56 

1-3-6 102.75 142.52 61.72 75.61 126.9 

1-3-7 148.67 77.73 43.88 38.37 59.25 

1-3-8 85.96 54.94 125.96 108.22 68.58 

1-3-9 56.59 32.91 54.85 55.89 83.25 

1-3-10 90.9 66.81 81.23 113.17 40.22 

1-3-11 63.27 30.06 91.27 31.69 37.76 

1-3-12 38.32 128.13 143.11 62.33 50.32 

1-3-13 115.24 59.54 76.76 40.97 145.45 

1-3-14 60.48 106.54 144.86 96.31 147.97 

1-3-15 102.25 53.41 145.98 108.11 74.05 

1-3-16 111.97 59.29 84.01 57.53 133.62 

1-3-17 48.61 146.21 86.19 123.22 78.95 

1-3-18 128.75 115.22 145.9 39.43 36.44 

1-3-19 44.06 88.08 108.14 38.21 73.84 

1-3-20 135.3 122.22 63.48 93.5 145.55 

1-3-21 124.33 60.29 113.91 52.14 145.15 

1-3-22 66.51 86.97 149.22 92.48 131.19 

1-3-23 99.19 56.77 69.83 115.29 128.33 

1-3-24 65.11 56.99 114.51 92.27 109.51 

1-3-25 79.93 113.37 47.86 137.69 44.93 

1-3-26 31.99 64.74 134.94 125.99 67.47 

1-3-27 146.61 40.05 134.86 69.51 56.67 

1-3-28 33.43 40.6 86.92 136.25 40.99 

1-3-29 41.96 58.91 42.39 69.07 100.2 

1-3-30 41.85 88.59 73.68 80.47 66.12 
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Table B.4. 
Problem set 1: 5 cities, demand range (30-270) in 1000 lb 

Instance ABE BOS EWR JFK PIT 

1-4-1 93.72 119.31 167.48 247.97 78.4 

1-4-2 74.37 198.57 167.6 70.33 256.52 

1-4-3 70.33 223.8 122.39 108.66 174.5 

1-4-4 170.59 32.15 100.5 96.57 225.26 

1-4-5 78.05 194.45 250.05 98.26 55.12 

1-4-6 175.5 255.03 93.44 121.22 223.8 

1-4-7 267.34 125.46 57.77 46.74 88.5 

1-4-8 141.91 79.88 221.92 186.45 107.16 

1-4-9 83.18 35.82 79.71 81.78 136.49 

1-4-10 151.79 103.62 132.46 196.34 50.43 

1-4-11 96.54 30.12 152.55 33.37 45.53 

1-4-12 46.65 226.27 256.23 94.65 70.64 

1-4-13 200.48 89.07 123.51 51.93 260.9 

1-4-14 90.97 183.08 259.73 162.61 265.94 

1-4-15 174.51 76.81 261.95 186.22 118.1 

1-4-16 193.95 88.59 138.03 85.06 237.24 

1-4-17 67.21 262.41 142.38 216.44 127.89 

1-4-18 227.5 200.45 261.8 48.87 42.87 

1-4-19 58.11 146.17 186.29 46.42 117.67 

1-4-20 240.61 214.45 96.95 157 261.1 

1-4-21 218.67 90.59 197.82 74.27 260.31 

1-4-22 103.03 143.94 268.45 154.96 232.38 

1-4-23 168.38 83.54 109.66 200.57 226.67 

1-4-24 100.22 83.97 199.01 154.54 189.03 

1-4-25 129.87 196.74 65.71 245.37 59.85 

1-4-26 33.98 99.47 239.88 221.98 104.94 

1-4-27 263.22 50.1 239.73 109.02 83.35 

1-4-28 36.86 51.21 143.85 242.49 51.98 

1-4-29 53.92 87.82 54.77 108.14 170.4 

1-4-30 53.71 147.18 117.37 130.95 102.23 
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Table B.5. 
Problem set 1: 5 cities, demand range (90-210) in 1000 lb 

Instance ABE BOS EWR JFK PIT 

1-5-1 121.86 134.65 158.74 198.98 114.2 

1-5-2 112.19 174.28 158.8 110.17 203.26 

1-5-3 110.16 186.9 136.19 129.33 162.25 

1-5-4 160.3 91.07 125.25 123.28 187.63 

1-5-5 114.03 172.23 200.03 124.13 102.56 

1-5-6 162.75 202.52 121.72 135.61 186.9 

1-5-7 208.67 137.73 103.88 98.37 119.25 

1-5-8 145.96 114.94 185.96 168.22 128.58 

1-5-9 116.59 92.91 114.85 115.89 143.25 

1-5-10 150.9 126.81 141.23 173.17 100.22 

1-5-11 123.27 90.06 151.27 91.69 97.76 

1-5-12 98.32 188.13 203.11 122.33 110.32 

1-5-13 175.24 119.54 136.76 100.97 205.45 

1-5-14 120.48 166.54 204.86 156.31 207.97 

1-5-15 162.25 113.41 205.98 168.11 134.05 

1-5-16 171.97 119.29 144.01 117.53 193.62 

1-5-17 108.61 206.21 146.19 183.22 138.95 

1-5-18 188.75 175.22 205.9 99.43 96.44 

1-5-19 104.06 148.08 168.14 98.21 133.84 

1-5-20 195.3 182.22 123.48 153.5 205.55 

1-5-21 184.33 120.29 173.91 112.14 205.15 

1-5-22 126.51 146.97 209.22 152.48 191.19 

1-5-23 159.19 116.77 129.83 175.29 188.33 

1-5-24 125.11 116.99 174.51 152.27 169.51 

1-5-25 139.93 173.37 107.86 197.69 104.93 

1-5-26 91.99 124.74 194.94 185.99 127.47 

1-5-27 206.61 100.05 194.86 129.51 116.67 

1-5-28 93.43 100.6 146.92 196.25 100.99 

1-5-29 101.96 118.91 102.39 129.07 160.2 

1-5-30 101.85 148.59 133.68 140.47 126.12 
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Table B.6. 
Problem set 1: 5 cities, demand range (210-270) in 1000 lb 

Instance ABE BOS EWR JFK PIT 

1-6-1 225.93 232.33 244.37 264.49 222.1 

1-6-2 221.09 252.14 244.4 220.08 266.63 

1-6-3 220.08 258.45 233.1 229.66 246.13 

1-6-4 245.15 210.54 227.62 226.64 258.81 

1-6-5 222.01 251.11 265.01 227.06 216.28 

1-6-6 246.38 266.26 225.86 232.81 258.45 

1-6-7 269.33 233.86 216.94 214.18 224.62 

1-6-8 237.98 222.47 257.98 249.11 229.29 

1-6-9 223.3 211.45 222.43 222.94 236.62 

1-6-10 240.45 228.41 235.61 251.59 215.11 

1-6-11 226.63 210.03 240.64 210.84 213.88 

1-6-12 214.16 259.07 266.56 226.16 220.16 

1-6-13 252.62 224.77 233.38 215.48 267.72 

1-6-14 225.24 248.27 267.43 243.15 268.98 

1-6-15 246.13 221.7 267.99 249.05 232.02 

1-6-16 250.99 224.65 237.01 223.77 261.81 

1-6-17 219.3 268.1 238.1 256.61 234.47 

1-6-18 259.37 252.61 267.95 214.72 213.22 

1-6-19 217.03 239.04 249.07 214.1 231.92 

1-6-20 262.65 256.11 226.74 241.75 267.77 

1-6-21 257.17 225.15 251.96 221.07 267.58 

1-6-22 228.26 238.48 269.61 241.24 260.59 

1-6-23 244.6 223.38 229.91 252.64 259.17 

1-6-24 227.55 223.49 252.25 241.13 249.76 

1-6-25 234.97 251.69 218.93 263.84 217.46 

1-6-26 211 227.37 262.47 258 228.73 

1-6-27 268.31 215.03 262.43 229.75 223.34 

1-6-28 211.71 215.3 238.46 263.12 215.49 

1-6-29 215.98 224.45 216.19 229.54 245.1 

1-6-30 215.93 239.29 231.84 235.24 228.06 
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Table B.7. 
Problem set 2: 12 cities, demand range (3-30) in 1000 lb 

Instance BNA CID DEN DFW IAH LAX OAK ONT PDX PHX SAN SEA 

2-1-1 10.17 13.05 18.47 27.52 8.45 27.26 28.51 20.84 19.99 4.67 8.56 7.77 

2-1-2 7.99 21.96 18.48 7.54 28.48 28.47 6.49 25.5 15.64 17.85 17.92 9.45 

2-1-3 7.54 24.8 13.39 11.85 19.26 19.32 6.37 10.95 18.6 20.04 16.82 16.64 

2-1-4 18.82 3.24 10.93 10.49 24.97 10.03 22.56 27.46 28.62 4.97 23.38 10.72 

2-1-5 8.41 21.5 27.76 10.68 5.83 21.93 17.25 24.81 28.83 5.98 10.38 16.24 

Table B.8. 
Problem set 2: 12 cities, demand range (30-90) in 1000 lb 

Instance BNA CID DEN DFW IAH LAX OAK ONT PDX PHX SAN SEA 

2-2-1 45.93 52.33 64.37 84.49 42.1 83.9 86.68 69.65 67.75 33.71 42.36 40.59 

2-2-2 41.09 72.14 64.4 40.08 86.63 86.61 37.75 80.01 58.08 63 63.16 44.33 

2-2-3 40.08 78.45 53.1 49.66 66.13 66.26 37.48 47.68 64.66 67.86 60.72 60.3 

2-2-4 65.15 30.54 47.62 46.64 78.81 45.63 73.46 84.37 86.94 34.39 75.28 47.16 

2-2-5 42.01 71.11 85.01 47.06 36.28 72.06 61.68 78.48 87.39 36.63 46.4 59.43 

Table B.9. 
Problem set 2: 12 cities, demand range (90-210) in 1000 lb 

Instance BNA CID DEN DFW IAH LAX OAK ONT PDX PHX SAN SEA 

2-5-1 121.86 134.65 158.74 198.98 114.2 197.81 203.36 169.3 165.49 97.41 114.72 111.19 

2-5-2 112.19 174.28 158.8 110.17 203.26 203.22 105.5 190.01 146.16 156 156.32 118.67 

2-5-3 110.16 186.9 136.19 129.33 162.25 162.53 104.96 125.35 159.31 165.72 151.44 150.6 

2-5-4 160.3 91.07 125.25 123.28 187.63 121.25 176.93 198.73 203.88 98.78 180.56 124.32 

2-5-5 114.03 172.23 200.03 124.13 102.56 174.13 153.36 186.95 204.78 103.25 122.79 148.86 
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Table B.10. 
Problem set 3: 25 cities, demand range (3-30) in 1000 lb 

Instance 3-1-1 3-1-2 3-1-3 3-1-4 3-1-5 

ABE 10.17 7.99 7.54 18.82 8.41 

ATL 13.05 21.96 24.8 3.24 21.5 

BDL 18.47 18.48 13.39 10.93 27.76 

BNA 27.52 7.54 11.85 10.49 10.68 

BOS 8.45 28.48 19.26 24.97 5.83 

BWI 27.26 28.47 19.32 10.03 21.93 

CAE 28.51 6.49 6.37 22.56 17.25 

CLE 20.84 25.5 10.95 27.46 24.81 

CLT 19.99 15.64 18.6 28.62 28.83 

DTW 4.67 17.85 20.04 4.97 5.98 

EWR 8.56 17.92 16.82 23.38 10.38 

GRR 7.77 9.45 16.64 10.72 16.24 

GSO 21.55 23.53 17.42 5.7 11.6 

GSP 13.37 7.88 18.05 28.76 18.1 

IAD 23.79 13.94 26.43 14.22 10.09 

JFK 16.44 26.05 25.4 15.29 8.45 

MDT 22.38 29.36 6.01 29.22 13.46 

MIA 29.78 9.1 22 18.77 26.97 

PHL 13.26 15.01 27.23 28.98 17.98 

PIT 23.99 5.02 10.55 23.57 25.74 

RDU 28.24 20.87 9.16 22.29 27.04 

RIC 8.73 13.46 3.41 29.91 22.46 

SYR 20.6 25.6 6.48 16.67 8.71 

TPA 6.39 7.06 5.52 16.23 9.09 

TYS 10.21 12.38 9.4 20.53 6.78 
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Table B.11. 
Problem set 3: 25 cities, demand range (30-90) in 1000 lb 

Instance 3-2-1 3-2-2 3-2-3 3-2-4 3-2-5 

ABE 45.93 41.09 40.08 65.15 42.01 

ATL 52.33 72.14 78.45 30.54 71.11 

BDL 64.37 64.40 53.10 47.62 85.01 

BNA 84.49 40.08 49.66 46.64 47.06 

BOS 42.10 86.63 66.13 78.81 36.28 

BWI 83.90 86.61 66.26 45.63 72.06 

CAE 86.68 37.75 37.48 73.46 61.68 

CLE 69.65 80.01 47.68 84.37 78.48 

CLT 67.75 58.08 64.66 86.94 87.39 

DTW 33.71 63.00 67.86 34.39 36.63 

EWR 42.36 63.16 60.72 75.28 46.40 

GRR 40.59 44.33 60.30 47.16 59.43 

GSO 71.22 75.63 62.04 36.00 49.10 

GSP 53.05 40.85 63.43 87.24 63.55 

IAD 76.19 54.32 82.08 54.94 45.76 

JFK 59.86 81.21 79.78 57.31 42.11 

MDT 73.06 88.58 36.69 88.26 53.25 

MIA 89.51 43.55 72.22 65.04 83.27 

PHL 52.80 56.69 83.85 87.73 63.30 

PIT 76.65 34.50 46.78 75.70 80.53 

RDU 86.08 69.71 43.69 72.87 83.41 

RIC 42.73 53.25 30.92 89.80 73.24 

SYR 69.10 80.21 37.74 60.38 42.68 

TPA 37.53 39.03 35.60 59.40 43.54 

TYS 46.03 50.84 44.21 68.95 38.40 



88 

Table B.12. 
Problem set 3: 25 cities, demand range (90-210) in 1000 lb 

Instance 3-5-1 3-5-2 3-5-3 3-5-4 3-5-5 

ABE 121.86 112.19 110.16 160.30 114.03 

ATL 134.65 174.28 186.90 91.07 172.23 

BDL 158.74 158.80 136.19 125.25 200.03 

BNA 198.98 110.17 129.33 123.28 124.13 

BOS 114.20 203.26 162.25 187.63 102.56 

BWI 197.81 203.22 162.53 121.25 174.13 

CAE 203.36 105.50 104.96 176.93 153.36 

CLE 169.30 190.01 125.35 198.73 186.95 

CLT 165.49 146.16 159.31 203.88 204.78 

DTW 97.41 156.00 165.72 98.78 103.25 

EWR 114.72 156.32 151.44 180.56 122.79 

GRR 111.19 118.67 150.60 124.32 148.86 

GSO 172.44 181.26 154.08 102.01 128.21 

GSP 136.09 111.70 156.87 204.49 157.10 

IAD 182.38 138.63 194.15 139.87 121.51 

JFK 149.72 192.43 189.57 144.61 114.23 

MDT 176.11 207.17 103.37 206.53 136.50 

MIA 209.03 117.10 174.44 160.08 196.54 

PHL 135.60 143.38 197.70 205.46 156.59 

PIT 183.29 99.00 123.57 181.40 191.06 

RDU 202.16 169.43 117.38 175.74 196.82 

RIC 115.46 136.51 91.84 209.59 176.48 

SYR 168.20 190.43 105.48 150.75 115.36 

TPA 105.07 108.06 101.21 148.79 117.09 

TYS 122.07 131.67 118.43 167.90 106.80 
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