Purdue University

Purdue e-Pubs

5-2018

Minimal Models of Rational Elliptic Curves with non-Trivial Torsio

Alexander J. Barrios

Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Recommended Citation

Barrios, Alexander J., "Minimal Models of Rational Elliptic Curves with non-Trivial Torsio" (2018). Open Access Dissertations. 1686.
https://docs.lib.purdue.edu/open_access_dissertations/1686

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

MINIMAL MODELS OF RATIONAL ELLIPTIC CURVES WITH NON-TRIVIAL TORSION

A Dissertation
Submitted to the Faculty
of
Purdue University
by
Alexander J. Barrios
In Partial Fulfillment of the Requirements for the Degree
of
Doctor of Philosophy

May 2018

Purdue University
West Lafayette, Indiana

THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF DISSERTATION APPROVAL

Dr. Edray H. Goins, Chair
Department of Mathematics
Dr. Donu V.B. Arapura
Department of Mathematics
Dr. Tong Liu
Department of Mathematics
Dr. Chung Pang Mok
Department of Mathematics

Approved by:
Dr. David Goldberg
Head of the School Graduate Program

To my parents, Miriam and Victor; my brothers, Carlos and Victor Jr.; and my wife and best friend, Carla.

ACKNOWLEDGMENTS

I would not be where I am today had it not been for the immense support of many people at various stages of my academic career.

I am especially grateful to Edray Goins, who has been my mentor and research advisor since my participation in the Mathematical Sciences Research Institute Undergraduate Program in 2010. Throughout all these years, he has been fundamental in my growth as an individual and mathematician through his exemplary advising, encouragement, generosity, guidance, and patience. I am truly thankful and amazed at how he goes above and beyond for his students, the department, and the community.

I also want to thank my dissertation committee, Donu Arapura, Tong Liu, and Chung Pang Mok for their advice and encouragement throughout the writing of this dissertation. Special thanks to Jamie Weigandt for conversation and for his helpful comments during the writing of this dissertation. I would also like to thank Mike Bennett and Soroosh Yazdani for providing and allowing me to use the data they acquired while investigating good elliptic curves. In addition, I want to thank Alejandra Alvarado, Rodrigo Bañuelos, Steve Bell, Kelly Beranger, Greg Buzzard, Shannon Cassady, Joe Chen, Rachel Davis, Owen Davis, Huimei Delgado, Patrick Devlin, Danielli Donatella, David Goldberg, William Heinzer, Rebecca Lank, Leonard Lipshitz, Kenji Matsuki, Ben McReynolds, Philip Mummert, Dominic Naughton, Deepam Patel, Shaun Ponder, Freydoon Shahidi, Bernd Ulrich, and Mark Ward for their mentoring and support throughout my years in the mathematics department.

As an undergraduate, I was fortunate to participate in three summer programs in mathematics and I am incredibly grateful to Katie Ansaldi, Jason Boynton, Ken Brown, Duane Cooper, Huimei Delgado, Oguz Durumeric, Edray Goins, Ebony Harvey, Kristine Jones, Philip Kutzko, Luis Lomelí, Matt Noonan, Ravi Ramakrishna,

Mutiara Sondjaja, and to the many behind the scenes who made these programs possible. Thank you for giving me the motivation to pursue a career in mathematics.

I would also like to thank Johnny Guzman for being a wonderful mentor and role model during my undergraduate studies and for his continued encouragement in the years since.

Additionally, I am appreciative of all the mentors, professors, and teachers I have had throughout this journey, who saw something in me and encouraged me to succeed. Particularly, Marcia Anglin, Cecilia Armesto, E. Carter Burrus Jr., Alvio Dominguez, Tom Goodwillie, Alfredo Granado, Alina Grandal, Christopher Hill, Jeffrey Hoffstein, Giselle Martinez, Jennie Olaguibel-Lundahl, Jill Pipher, Eric Richey, and Richard Schwartz.

I would like to express my thanks and gratitude to the AGEP, MEP, and LSAMP community at Purdue for their years of support and for their shared vision of a more equitable future. Thank you, Ignacio Camarillo, Quincy Clark, Ashlee Colbert, Martha Delaney, Belayneh Desta, Darryl Dickerson, Kathy Dixon, Brittni Echols, Curtis Martin, Maithilee Motlag, Vivek Muralidharar, Keturah Nix, Bonnie Prado, Darryl Reano, Cinthia Sanchez, Carol Stwalley, Elizabeth Suazo Flores, Michelle Visbal, Richard Womack, Virginia Womack, and to the many not listed here who help make your programs a success.

I would also like to thank all my graduate student peers, which include Tyler Billingsley, Jacob Bond, Frankie Chan, Kyle Dahlin, David Daniels, Nicole Eikmeier, Hongshan Li, Reggie McGee, Joan Ponce, Alessio Sammartano, Gabe Sosa, and Razan Taha. Additional thanks to Kate Brubaker, Alessandra Constantini, Tan Dang, Christina Jamroz, Abhishek Parab, and Mark Pengitore for years of friendship, support, and running of our multi-year learning seminar on algebraic geometry.

Special thanks to Sharon Raszap Skorbiansky for being a great friend and running partner. Thank you for motivating me to pursue long-distance running. Prior to entering graduate school, I would not have imagined that I would go on to complete several marathons.

Thank you, Lila Albizu, Nicole Baker-Carson, Dane Bardroff, Matt Carson, Alex Cherin, Cory Colbert, Anthony Hearst, Jared Lafer, Jhon Pereda, Elizabeth Reuter, Andrew Ritchie, Christopher Roemmele, Apollo Roemmele, Alejo Stark, and Lee Zhi for the continued friendship, great conversations, and support throughout the years.

I am eternally grateful for the love and encouragement of my family: Carla Barrios, Carlos Gazabon, Miriam Barrios, Victor Barrios, and Victor Barrios Jr. Their constant support and encouragement have been instrumental in reaching this point in my career. Thank you for helping me achieve this. In addition, I would like to thank my wife Carla Barrios who has stood by me throughout my graduate studies. For her friendship and unconditional love which has kept me going through the ups and downs of graduate school. Words cannot express the gratitude I have for your understanding and support through each step of the way.

TABLE OF CONTENTS

Page
LIST OF TABLES xi
LIST OF FIGURES xiv
SYMBOLS xv
ABSTRACT xvii
1 INTRODUCTION 1
1.0.1 Layout of this Dissertation 1
2 BACKGROUND 5
2.1 Elliptic Curves 5
2.2 Minimal Discriminant 7
2.2.1 Local Definition 7
2.2.2 Global Definition 8
2.2.3 Rational Elliptic Curves 9
2.3 Reduced Minimal Model 10
2.4 Local Data of a Rational Elliptic Curve 11
2.5 Universal Elliptic Curves 13
3 THE EXPLICIT MODIFIED SZPIRO CONJECTURE 15
3.1 The $A B C$ Conjecture 16
3.2 The Modified Szpiro Conjecture 21
3.3 Database of Modified Szpiro Ratios 26
3.3.1 Current Databases of Elliptic Curves 29
3.3.2 New Databases of Elliptic Curves 31
3.4 Infinitely Many Good Frey Curves 41
3.5 Database of Good Elliptic Curves 45
3.5.1 Good Elliptic Curves Arising From F_{T} 46
3.5.2 Good Elliptic Curves Arising From H_{T} 48
3.5.3 Good Elliptic Curves due to Bennett, Nitaj, and Yazdani 49
3.5.4 The Explicit Modified Szpiro Conjecture 50
3.5.5 Further Analysis of \mathcal{S} 52
4 GOOD ELLIPTIC CURVES WITH SPECIFIED TORSION SUBGROUP 57
4.1 Models of Elliptic Curves 58
4.2 Elliptic Curves with Minimal Discriminant 69
4.3 Sequences of Good $A B C$ Triples 73
Page
4.4 Proof of Theorem 4.1 78
4.5 Examples 81
5 CLASSIFICATION OF MINIMAL DISCRIMINANTS 85
5.1 Parameterization of Certain Elliptic Curves with non-Trivial Torsion 86
5.1.1 Point of Order $N=2$ 86
5.1.2 Point of Order $N=3$ 88
5.1.3 Point of Order $N \geq 4$ and Modular Curves 89
5.1.4 The Elliptic Curves $E_{T}(a, b)$ and $E_{T}(a, b, d)$ 90
5.2 Explicit Flexor-Frey-Oesterlé 91
5.3 Classification of Minimal Discriminants 94
5.4 Proof of Theorem 5.14 101
5.4.1 Proof of Theorem 5.14 for $T=C_{5}, C_{7}, C_{9}$ 102
5.4.2 Proof of Theorem 5.14 for $T=C_{2}$ 102
5.4.3 Proof of Theorem 5.14 for $T=C_{3}$ 109
5.4.4 Proof of Theorem 5.14 for $T=C_{4}$ 111
5.4.5 Proof of Theorem 5.14 for $T=C_{6}$ 114
5.4.6 Proof of Theorem 5.14 for $T=C_{8}$ 116
5.4.7 Proof of Theorem 5.14 for $T=C_{10}$ 117
5.4.8 Proof of Theorem 5.14 for $T=C_{12}$ 118
5.4.9 Proof of Theorem 5.14 for $T=C_{2} \times C_{2}$ 119
5.4.10 Proof of Theorem 5.14 for $T=C_{2} \times C_{4}$ 121
5.4.11 Proof of Theorem 5.14 for $T=C_{2} \times C_{6}$ 124
5.4.12 Proof of Theorem 5.14 for $T=C_{2} \times C_{8}$ 128
5.4.13 Corollaries and Examples 130
5.5 Necessary and Sufficient Conditions for Semistability of E_{T} 131
6 LOWER BOUNDS ON THE MODIFIED SZPIRO RATIO 141
6.1 Results on Polynomials 142
6.2 Explicit Naive Height 145
6.3 Lower Bounds on the Modified Szpiro Ratio 147
6.4 Tate's Algorithm and the Conductor of E_{T} 148
6.5 Upper Bound on the Conductor of E_{T} 169
6.5.1 Proof of Proposition 6.16 for $T=C_{2}$ 171
6.5.2 Proof of Proposition 6.16 for $T=C_{3}, C_{5}, C_{7}, C_{9}$ 173
6.5.3 Proof of Proposition 6.16 for $T=C_{4}$ 175
6.5.4 Proof of Proposition 6.16 for $T=C_{6}$ 176
6.5.5 Proof of Proposition 6.16 for $T=C_{8}$ 177
6.5.6 Proof of Proposition 6.16 for $T=C_{10}$ 178
6.5.7 Proof of Proposition 6.16 for $T=C_{12}$ 179
6.5.8 Proof of Proposition 6.16 for $T=C_{2} \times C_{2}$ 180
6.5.9 Proof of Proposition 6.16 for $T=C_{2} \times C_{4}$ 181
6.5.10 Proof of Proposition 6.16 for $T=C_{2} \times C_{6}$ 183
Page
6.5.11 Proof of Proposition 6.16 for $T=C_{2} \times C_{8}$ 184
6.6 Proof of Theorem 6.6 185
6.6.1 The Polynomials $\hat{\alpha}, \hat{\beta}$ for $T=C_{2}, C_{3}, C_{4}$, and $C_{2} \times C_{2}$ 186
6.6.2 Real-Valued Functions 187
6.6.3 Proof of Theorem 6.6 189
7 CLASSIFICATION OF REDUCED MINIMAL MODELS 195
7.1 Reduced Minimal Models and Torsion 195
7.2 Classification of Reduced Minimal Models 198
7.3 Proof of Theorem 7.3 201
7.3.1 Proof of Theorem 7.3 for $T=C_{3}$ 202
7.3.2 Proof of Theorem 7.3 for $T=C_{3}^{0}$ 204
7.3.3 Proof of Theorem 7.3 for $T=C_{4}$ 205
7.3.4 Proof of Theorem 7.3 for $T=C_{5}$ 214
7.3.5 Proof of Theorem 7.3 for $T=C_{6}$ 215
7.3.6 Proof of Theorem 7.3 for $T=C_{7}, C_{9}$ 219
7.3.7 Proof of Theorem 7.3 for $T=C_{8}$ 220
7.3.8 Proof of Theorem 7.3 for $T=C_{10}$ 223
7.3.9 Proof of Theorem 7.3 for $T=C_{12}$ 224
7.3.10 Proof of Theorem 7.3 for $T=C_{2} \times C_{8}$ 226
7.4 Examples 227
A GOOD $A B C$ TRIPLES 229
B TABLES OF GOOD ELLIPTIC CURVES 237
C REVIEW OF MATHEMATICA COMMANDS 271
D E_{T} AND ITS ASSOCIATED QUANTITIES 273
E H_{T} AND ITS ASSOCIATED QUANTITIES 325
REFERENCES 348
VITA 351

LIST OF TABLES

Table Page
2.1 Universal Elliptic Curve $\mathcal{X}_{t}(T)$ 14
3.1 Modified Szpiro and Szpiro Ratios in Cremona's Database 29
3.2 The numbers u_{T} and l_{T} 33
3.3 Quantities for Proof of Theorem 3.14 34
3.4 The Invariant c_{4} of F_{T} 42
3.5 Example of Good Frey Curves 44
3.6 Summary of Data of Elliptic Curves in \mathcal{S} 51
4.1 The Weierstrass model for $\mathcal{Y}_{t}(T): y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x$ 58
4.2 Quantities for $T=C_{2}, C_{4}, C_{6}$ 65
$4.3 \mu_{T} A_{T}+\nu_{T} B_{T}$ 69
5.1 Necessary and Sufficient Conditions on u_{T} 97
5.2 Semistablity of E_{T} 131
6.1 Roots of $\alpha_{T}(1, x)^{3}-\beta_{T}(1, x)^{2}$ 144
6.2 The Polynomials $\delta_{u_{T}}$ 169
7.1 The Reduced Minimal Models R_{j} 196
7.2 Necessary and Sufficient Conditions for R_{j} 199
A. 1 Table for Example A. 8 234
A. 2 Admissible Change of Variables for Lemma A. 6 235
A. 3 Polynomials For Appendix A 236
B. 1 Elliptic Curves E_{j} in $\mathcal{S}^{\sigma_{m}}$ 237
B. 2 Elliptic Curves E_{j} in \mathcal{S} 243
B. 3 Best Known Modified Szpiro Ratios 249
B. 4 Best Known Szpiro Ratios 250
B. 5 Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{1}$ 252
Table Page
B. 6 Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{1}$ 252
B. 7 Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{2}$ 253
B. 8 Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{2}$ 253
B. 9 Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{3}$ 254
B. 10 Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{3}$ 254
B. 11 Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{4}$ 255
B. 12 Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{4}$ 255
B. 13 Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{5}$ 256
B. 14 Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{5}$ 256
B. 15 Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{6}$ 257
B. 16 Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{6}$ 257
B. 17 Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{7}$ 258
B. 18 Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{7}$ 258
B. 19 Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{8}$ 259
B. 20 Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{8}$ 259
B. 21 Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{9}$ 260
B. 22 Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{9}$ 260
B. 23 Best σ_{m} for $E(\mathbb{Q})_{\mathrm{tors}} \cong C_{10}$ 261
B. 24 Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{10}$ 261
B. 25 Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{12}$ 262
B. 26 Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{12}$ 262
B. 27 Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{2} \times C_{2}$ 263
B. 28 Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{2} \times C_{2}$ 263
B. 29 Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{2} \times C_{4}$ 264
B. 30 Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{2} \times C_{4}$ 264
B. 31 Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{2} \times C_{6}$ 265
B. 32 Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{2} \times C_{6}$ 265
B. 33 Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{2} \times C_{8}$ 266
Table Page
B. 34 Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{2} \times C_{8}$ 266
D. 1 Weierstrass Model of E_{T} 273
D. 2 The Polynomials α_{T} 275
D. 3 The Polynomials β_{T} 276
D. 4 The Polynomials γ_{T} 278
D. 5 The Polynomials $\mu_{T}^{(1)}$ 279
D. 6 The Polynomials $\mu_{T}^{(2)}$ 284
D. 7 The Polynomials $\mu_{T}^{(3)}$ 295
D. 8 The Polynomials $\nu_{T}^{(1)}$ 304
D. 9 The Polynomials $\nu_{T}^{(2)}$ 307
D. 10 The Polynomials $\nu_{T}^{(3)}$ 312
E. 1 The Polynomials A_{T} 325
E. 2 The Polynomials B_{T} 326
E. 3 The Polynomials D_{T} 328
E. 4 The Polynomials \hat{D}_{T} 330
E. 5 The Polynomials μ_{T} 331
E. 6 The Polynomials ν_{T} 338
E. 7 The Polynomials μ_{T}^{\prime} 341
E. 8 The Polynomials ν_{T}^{\prime} 342
E. 9 The values of u_{T}, r_{T}, s_{T}, and w_{T} 343

LIST OF FIGURES

Figure Page
3.1 Histograms for Exhaustive Subregion of $\mathcal{F}_{C_{2} \times C_{4}}$ 37
3.2 Histograms for Exhaustive Subregion of $\mathcal{F}_{C_{2} \times C_{6}}$ 38
3.3 Histograms for Exhaustive Subregion of $\mathcal{F}_{C_{2} \times C_{8}}$ 39
3.4 Histograms for Elliptic Curves in \mathcal{S}^{σ} 54
3.5 Histograms for Elliptic Curves in \mathcal{S} 55
B. 1 Histograms for $\mathcal{F}_{C_{2} \times C_{4}}$ 267
B. 2 Histograms for $\mathcal{F}_{C_{2} \times C_{6}}$ 268
B. 3 Histograms for $\mathcal{F}_{C_{2} \times C_{8}}$ 269

SYMBOLS

a, b, c, d, \ldots	Integers
$\hat{a}, \hat{b}, \hat{c}, \hat{d}, \ldots$	Factors of a, b, c, d, \ldots
$a_{1}, a_{2}, a_{3}, a_{4}, a_{6}$	Coefficients of a Weierstrass model of E
A_{T}	Invariant c_{4} of H_{T} given in Table E. 1
α_{T}	Invariant c_{4} of E_{T} given in Table D. 2
$b_{2}, b_{4}, b_{6}, b_{8}, c_{4}, c_{6}$	Quantities associated to a Weierstrass model of E (see (2.2))
B_{T}	Invariant c_{6} of H_{T} given in Table E. 2
β_{T}	Invariant c_{6} of E_{T} given in Table D. 3
c_{p}	Local Tamagawa number at p
C_{N}	Cyclic group of N elements
$\mathcal{C}^{\text {min }} / R_{K}$	Minimal proper regular model of E / K
$\Delta_{E}^{\text {min }}$	Minimal discriminant of a rational elliptic curve E
D_{T}	Discriminant of H_{T} given in Table E. 3
γ_{T}	Discriminant of E_{T} given in Table D. 4
$\delta_{u_{T}}$	Polynomial depending on T and u_{T} in Table 6.2
E	Elliptic Curve
$[E]_{K}$	K-isomorphism class of E
$E(K)$	Mordell-Weil group of an elliptic curve E defined over a field K
$E(K){ }_{\text {tors }}$	Torsion subgroup of $E(K)$
E_{T}	Elliptic curve given by the Weierstrass model in Table D. 1
f_{p}	Exponent appearing at the prime p of the conductor of E
F_{P}	Frey curve determined by an $A B C$ triple P as defined in Section A
\mathcal{F}_{T}	Database of rational elliptic curves with $T \hookrightarrow E(\mathbb{Q})_{\text {tors }}$

$h_{\text {naive }}(E)$	Naive height of an elliptic curve E
H_{T}	Elliptic curve given by the Weierstrass model in Theorem 4.8
m_{p}	Number of components of $\overline{\mathcal{C}}_{p}^{\text {min }}$
N_{E}	Conductor of E
\mathcal{N}	Néron model of E
p, ℓ	Rational prime numbers
\mathfrak{p}	Prime ideal
P	An $A B C$ triple
$q(P)$	Quality of an $A B C$ triple P
$\operatorname{rad}(n)$	Product of the distinct prime factors of an integer n
R_{K}	Integral closure of \mathbb{Z} in K
R_{j}	The j-th reduced minimal model (see Table 7.1$)$
\mathcal{S}	Database of good elliptic curves
$\sigma_{m}(E)$	Modified Szpiro ratio of a rational elliptic curve E
$\sigma(E)$	Szpiro ratio of a rational elliptic curve E
T	T is either C_{N} for $N=1, \ldots, 10,12$ or $C_{2} \times C_{2 m}$ for $m=$
$\mathcal{Y}_{t}(T)$	$1,2,3,4$
\mathbb{Z}_{p}	Constant depending on T (see Theorem 5.14$)$
u_{T}	Elliptic curve given by the Weierstrass model in Table 4.1
$v_{\mathfrak{p}}$	The \mathfrak{p}-adic valuation on K
$X_{1}(N)$	Modular Curves
$X_{1}(2,2 m)$	Modular Curves
$\mathcal{X}_{t}(T)$	Elliptic curve given by the Weierstrass model in Table 2.1

Abstract

Barrios, Alexander J. PhD, Purdue University, May 2018. Minimal Models of Rational Elliptic Curves with non-Trivial Torsion. Major Professor: Edray H. Goins.

This dissertation concerns the formulation of an explicit modified Szpiro conjecture and the classification of minimal discriminants of rational elliptic curves with non-trivial torsion.

The Frey curve $y^{2}=x(x+a)(x-b)$ is a two-parameter family of elliptic curves which comes equipped with an easily computable minimal discriminant which helped pave the mathematical bridge that led to the proof of Fermat's Last Theorem. In this dissertation, we extend the ideas of the Frey curve by considering two- and threeparameter families of elliptic curves which parameterize all rational elliptic curves with non-trivial torsion subgroup. First, we use these families to give a new proof of a classic result of Frey, Flexor, and Oesterlé which pertains to the primes at which an elliptic curve over a number field can have additive reduction. While our proof gives a weaker variant of the original statement, it is explicit and does not require the Néron model of an elliptic curve. As a consequence of this new proof, we attain our classification of minimal discriminants of rational elliptic curves with non-trivial torsion. In addition, we give necessary and sufficient conditions for when a rational elliptic curve with non-trivial torsion has additive reduction at a given prime. We also study the connection between torsion structure of a rational elliptic curve and the possible reduced minimal models

The second theme of this dissertation concerns the modified Szpiro conjecture, which is equivalent to the $A B C$ Conjecture. Roughly speaking, the modified Szpiro conjecture states that certain elliptic curves, known as good elliptic curves, are rare in nature. Masser gave a non-constructive proof which showed that there were infinitely
many good Frey curves. In this dissertation, we give a constructive proof of Masser's assertion. We then extend this result by proving that for each of the fifteen torsion subgroups T allowed by Mazur's Torsion Theorem, there are infinitely many good elliptic curves E with torsion subgroup isomorphic to T. This proof is also constructive and allows for the construction of a database which consists of 13870964 good elliptic curves. We provide an analysis of these good elliptic curves to parallel the work done by the $A B C @ H$ me project concerning the $A B C$ Conjecture and good $A B C$ triples. The data obtained is then used to formulate an explicit version of the modified Szpiro conjecture. We then show that this explicit formulation allows for the construction of databases of elliptic curves which are exhaustive up to a given conductor.

Lastly, we use the classification of minimal discriminants to study the local data of rational elliptic curves at a given prime via Tate's Algorithm. These results and a study of the naive height of an elliptic curve allow us to prove that there is a lower bound on the modified Szpiro ratio which depends only on the torsion structure of an elliptic curve.

1. INTRODUCTION

"We live on an island surrounded by a sea of ignorance. As our island of knowledge grows, so does the shore of our ignorance."

- John Archibald Wheeler

1.0.1 Layout of this Dissertation

Chapter 2

This short chapter provides definitions and results which will be assumed in the subsequent chapters. References are provided for the reader.

Chapter 3

In this chapter, we give a succinct survey of the $A B C$ Conjecture. We follow this by introducing the modified Szpiro conjecture and prove the equivalence between the $A B C$ Conjecture and the modified Szpiro conjecture by following an argument due to Oesterlé [1]. Roughly speaking, the modified Szpiro conjecture states that certain elliptic curves, known as good elliptic curves are rare in nature. The goal of this chapter is to study and create a database of good elliptic curves to parallel the work done for good $A B C$ triples by the $A B C @ H$ ome project [2].

We start by giving an overview of current databases of rational elliptic curves and then construct a new database of rational elliptic curves. This database consists of 130789162 rational elliptic curves E with the property that $T \hookrightarrow E(\mathbb{Q})_{\text {tors }}$ where $T=C_{2} \times C_{2 N}$ with $N=2,3,4$. Assuming Theorem 5.14 , we show that there is a subset of this database which is exhaustive up to a given naive height.

Next, we give a constructive proof that there are infinitely many good Frey curves. The original proof due to Masser [3] is non-constructive. Building on this constructive result and models of elliptic curves which are studied in Chapter 4, we create a new database consisting of 13870964 good elliptic curves. The data obtained is then used to formulate an explicit version of the modified Szpiro conjecture. In Appendix B, we order these good elliptic curves by their modified Szpiro and Szpiro ratios.

Chapter 4

In this chapter, we extend the result of Chapter 3 pertaining to infinitely many good Frey curves. Specifically, we prove that if T is one of the fifteen torsion subgroups allowed by Mazur's Torsion Theorem, then there are infinitely many good elliptic curves E with $E(\mathbb{Q})_{\text {tors }} \cong T$. This proof is constructive and we conclude the chapter with examples.

Chapter 5

In this chapter, we give a new proof of a result due to Frey-Flexor-Oesterlé which does not require use of the Néron model of an elliptic curve. We then consider rational elliptic curves and use the Explicit version of Frey-Flexor-Oesterlé to prove our main result, Theorem 5.14. This Theorem is the classification of minimal discriminants of rational elliptic curves with non-trivial torsion subgroup. As a consequence of this Theorem, we give necessary and sufficient conditions for additive reduction to occur in a rational elliptic curve with non-trivial torsion subgroup.

Chapter 6

In this chapter, we use Theorem 5.14 to study the naive height of a rational elliptic curve. In fact, let T be one of the fifteen torsion subgroups allowed by Mazur's Torsion Theorem. We show that if E is a rational elliptic curve and $T \hookrightarrow E(\mathbb{Q})_{\text {tors }}$
with $T \neq C_{1}, C_{2}, C_{2} \times C_{2}$, then there is an explicit function that coincides with the naive height of rational elliptic curve E with $T \hookrightarrow E(\mathbb{Q})_{\text {tors }}$. Next, we use the results of Chapter 5 to study the local data of an elliptic curve via Tate's Algorithm. These results together with the work on the explicit naive height allow us to prove that there is a lower bound on the modified Szpiro ratio which only depends on the torsion subgroup of a rational elliptic curve.

Chapter 7

In this chapter, we review the reduced minimal model of a rational elliptic curve. It is well known that each rational elliptic curve has a unique reduced minimal model. The classification of minimal discriminants in Chapter 4 relied on a Theorem of Kraus and therefore did not yield a global minimal model in all cases. We give a partial answer in regards to global minimal models by classifying the reduced minimal models of rational elliptic curves with a rational torsion point of order at least 3. This is done by use of the Laska-Kraus-Connell Algorithm and Theorem 5.14.

2. BACKGROUND

In this chapter, we state definitions and results which will be used in this thesis. Unless stated otherwise, the main references for this chapter are [4], [5], and [6].

2.1 Elliptic Curves

An elliptic curve is a pair (E, \mathcal{O}), where E is a smooth projective curve of genus one and $\mathcal{O} \in E$. The elliptic curve E is defined over a field K if E is defined over K as a curve and \mathcal{O} is a K-rational point on E. The set of K-rational points on E is denoted by $E(K)$ and a result of Poincaré shows that if E is an elliptic curve over K, then the set $E(K)$ is a group with identity \mathcal{O}. Mordell and Weil then showed that $E(K)$ is a finitely generated abelian group if K is a number field. The torsion subgroup of $E(K)$ is denoted by $E(K)_{\text {tors }}$. We say E is a rational elliptic curve if E is defined over the rational numbers \mathbb{Q}. Mazur proved that the torsion subgroup $E(\mathbb{Q})_{\text {tors }}$ is one of fifteen possible groups.

Theorem 2.1 (Mazur's Torsion Theorem [7]) Let E be a rational elliptic curve and let C_{N} denote the cyclic group of N elements. Then

$$
E(\mathbb{Q})_{\text {tors }} \cong \begin{cases}C_{N} & \text { for } N=1,2, \ldots, 10,12 \\ C_{2} \times C_{2 N} & \text { for } N=1,2,3,4\end{cases}
$$

We say that two elliptic cutves E and E^{\prime} are K-isomorphic if there is an isomorphism between E and E^{\prime} which is defined over K. Now suppose E is an elliptic curve defined over a field K. Then the point \mathcal{O} corresponds to a very ample divisor and therefore via the Riemann-Roch Theorem we obtain an embedding of E into $\mathbb{P}_{K}^{2}=\operatorname{Proj} K[X, Y, Z]$. In fact, the K-isomorphic image of E in \mathbb{P}_{K}^{2} is given by

$$
\operatorname{Proj} K[X, Y, Z] /\left(Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}-X^{3}-a_{2} X^{2} Z-a_{4} X Z^{2}-a_{6} Z^{3}\right)(
$$

with each coefficient $a_{i} \in K$ and \mathcal{O} corresponding to the homogeneous prime ideal (X, Z). Moreover, every smooth cubic curve in \mathbb{P}_{K}^{2} is cut out by an equation of the form

$$
Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3} .
$$

Henceforth, by an elliptic curve E defined over K we will write E in affine coordinates, i.e., E is given by the Weierstrass model

$$
\begin{equation*}
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \tag{2.1}
\end{equation*}
$$

with each $a_{i} \in K$, and it will be understood that there is an additional point $\mathcal{O}=$ $(0,1,0)$ which we call the point at infinity. For an elliptic curve E given by the Weierstrass model (2.1), we define the following quantities:

$$
\begin{align*}
& b_{2}=a_{1}^{2}+4 a_{2} \quad b_{4}=2 a_{4}+a_{1} a_{3} \quad b_{6}=a_{3}^{2}+4 a_{6} \\
& b_{8}=a_{1}^{2} a_{6}+4 a_{2} a_{6}-a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}-a_{4}^{2} \tag{2.2}\\
& c_{4}=b_{2}^{2}-24 b_{4} \quad c_{6}=-b_{2}^{3}+36 b_{2} b_{4}-216 b_{6} \\
& \Delta=\frac{c_{4}^{3}-c_{6}^{2}}{1728} \quad j=\frac{c_{4}^{3}}{\Delta}
\end{align*}
$$

We say Δ is the discriminant of E and the assumption that E is smooth is equivalent to $\Delta \neq 0$. The quantity j is known as the j-invariant and we call the quantities c_{4} and c_{6} the invariants associated to the Weierstrass model of E. In particular, we have the identity $1728 \Delta=c_{4}^{3}-c_{6}^{2}$.

The admissible change of variables $x \longmapsto u^{2} x+r$ and $y \longmapsto u^{3} y+u^{2} s x+w$ for $u, r, s, w \in K$ and $u \neq 0$ gives a K-isomorphism from E onto an elliptic curve E^{\prime} whose Weierstrass model arises from the given change of variables on E. Conversely, if E and E^{\prime} are K-isomorphic and the isomorphism preserves the point at infinity \mathcal{O}, then there is an admissible change of variables on $E, x \longmapsto u^{2} x+r$ and $y \longmapsto u^{3} y+u^{2} s x+w$ with $u, r, s, w \in K$ and $u \neq 0$, which gives the Weierstrass model of E^{\prime}.

Moreover, let $\Delta^{\prime}, j^{\prime}, c_{4}^{\prime}$, and c_{6}^{\prime} denote the quantities attained from the Weierstrass model for E^{\prime}. Then

$$
\Delta^{\prime}=u^{-12} \Delta, \quad j^{\prime}=j, \quad c_{4}^{\prime}=u^{-4} c_{4}, \quad c_{6}^{\prime}=u^{-6} c_{6} .
$$

2.2 Minimal Discriminant

The main reference for this section is Chapter VII and VIII of [4] and Chapter IV of [5].

2.2.1 Local Definition

Let K be a local field, complete with respect to a discrete valuation v. Let R denote the ring of integers of K and let π be a uniformizer for the unique maximal ideal of R. Now suppose E is an elliptic curve over K given by the Weierstrass model

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} .
$$

The admissible change of variables $x \longmapsto u^{-2} x$ and $y \longmapsto u^{-3} y$ leads to a K isomorphic elliptic curve E^{\prime} to E with Weierstrass model

$$
E^{\prime}: y^{2}+u^{-1} a_{1} x y+u^{-3} a_{3} y=x^{3}+u^{-2} a_{2} x^{2}+u^{-4} a_{4} x+u^{-6} a_{6} .
$$

In particular, we can choose u to be divisible by a sufficiently large power of π so that we obtain a Weierstrass model with the property that each coefficient is in R and $v(\Delta) \geq 0$. Since v is discrete, we have that among all Weierstrass equations with coefficients in R, there is one that minimizes the value of $v(\Delta)$.

Definition 2.1 Let E be an elliptic curve defined over K. A Weierstrass model for E is said to be a minimal Weierstrass model for E at v if $v(\Delta)$ is minimized subject to the condition that each $a_{i} \in R$. The minimal value of $v(\Delta)$ is called the valuation of the minimal discriminant of E at v.

Definition 2.2 Let E be an elliptic curve defined over K. We say E has additive reduction at v if $v(\Delta)>0$ and $v\left(c_{4}\right)>0$. If E does not have additive reduction at v, we say E is semistable at v.

2.2.2 Global Definition

Now let K be a number field and let R denote its ring of integers. Let E be an elliptic curve over K. For each finite prime \mathfrak{p} there is a Weierstrass model

$$
y^{2}+a_{1, \mathfrak{p}} x y+a_{3, \mathfrak{p}} y=x^{3}+a_{2, \mathfrak{p}} x^{2}+a_{4, \mathfrak{p}} x+a_{6, \mathfrak{p}}
$$

that is a minimal equation for E at \mathfrak{p}. That is, $v_{\mathfrak{p}}\left(a_{j, \mathfrak{p}}\right) \geq 0$ for each j where $v_{\mathfrak{p}}$ is the \mathfrak{p}-adic valuation.

Definition 2.3 Let E be an elliptic curve over a number field K. The minimal discriminant $\mathcal{D}_{E / K}$ is the (integral) ideal of K given by

$$
\mathcal{D}_{E / K}=\prod_{\mathfrak{p} \text { finit }}\left(\mathfrak{p}^{v_{p}\left(\Delta_{\mathfrak{p}}\right)}\right.
$$

where $\Delta_{\mathfrak{p}}$ is the minimal discriminant of a minimal equation for E at \mathfrak{p}.
Definition 2.4 Let E be an elliptic curve over a number field K. A global minimal model for E is a Weierstrass model

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

for E such that each $a_{j} \in R$ and the discriminant Δ of the equation satisfies $\mathcal{D}_{E / K}=$ (Δ). If a global minimal model for E exists, we denote the minimal discriminant of E by $\Delta_{E}^{\min }$.

In general, we say E is given by an integral Weierstrass model if each $a_{i} \in R$. If K has class number one, then each elliptic curve over K has a global minimal model [4, Corollary VIII.8.3].

Definition 2.5 Let E be an elliptic curve over a number field K. The conductor of E is the ideal

$$
N_{E / K}=\prod_{\mathfrak{p} \text { finit }}\left(\mathfrak{p}^{f_{\mathfrak{p}}} \text { where } f_{\mathfrak{p}}= \begin{cases}\left(\begin{array}{ll}
0 & \text { if } \mathfrak{p} \nmid \mathcal{D}_{E / K} \\
1 & \text { if } \mathfrak{p} \mid \mathcal{D}_{E / K} \text { and E is semistable at } \mathfrak{p} \\
\mathfrak{2}+\delta_{\mathfrak{p}} & \text { if } E \text { has additive reduction at } \mathfrak{p}
\end{array}\right.\end{cases}\right.
$$

The quantity $\delta_{\mathfrak{p}}=0$ if $\mathfrak{p} \nmid 6$. If \mathfrak{p} has residue characteristic 2 or 3 and E has additive reduction at \mathfrak{p}, then $\delta_{\mathfrak{p}}$ is a measure of the wild ramification in the extension $K_{\mathfrak{p}}(E[p]) / K_{\mathfrak{p}}$ for \mathfrak{p} a a prime lying above the rational prime p [5, IV.10].

2.2.3 Rational Elliptic Curves

We now consider rational elliptic curves and state results which will be used in the subsequent chapters.

Lemma 2.2 Let E be a rational elliptic curve and let p be a prime. If p divides $\operatorname{gcd}\left(c_{4}, \Delta_{E}^{\min }\right)$, then E has additive reduction at p. If p does not divide $\operatorname{gcd}\left(c_{4}, \Delta_{E}^{\min }\right)$, then E is semistable at p. We say E is semistable if E is semistable at all primes.

For a rational elliptic curve E, we consider the conductor N_{E} of E as the integer

$$
N_{E}=\prod_{p \mid \Delta_{E}^{\text {mix }}}\left(p^{f_{p}} \text { where } f_{\mathfrak{p}}=\left\{\begin{array}{cl}
1 & \text { if } E \text { is semistable at } p \\
2+\delta_{p} & \text { if } E \text { has additive reduction at } p
\end{array}\right.\right.
$$

The quantity $\delta_{p}=0$ for each prime $p \geq 5$. In particular, if E is semistable, then $N_{E}=\operatorname{rad}\left(\chi_{E}^{\min }\right)($ where $\operatorname{rad}(n)$ is the product of the distinct primes dividing n.
Lemma 2.3 Let E be a rational elliptic curve and let N_{E} be its conductor and let δ_{p} as given above. Then $\delta_{2} \leq 6$ and $\delta_{3} \leq 3$.

Proof [5, IV.10.4].

Lemma 2.4 Let K be a local field, complete with respect to a discrete valuation v and let R denote its ring of integers. If E is an elliptic curve given by an integral Weierstrass model, then any admissible change of variables $x \longmapsto u^{2} x+r$ and $y \longmapsto$ $u^{3} y+u^{2} s x+w$ used to produce a minimal Weierstrass equation satisfies $u, r, s, w \in R$.

In particular, if E is a rational elliptic curve and $x \longmapsto u^{2} x+r$ and $y \longmapsto$ $u^{3} y+u^{2} s x+w$ is an admissible change of variables which results in a global minimal model for E, then $u, r, s, w \in \mathbb{Z}$.

Definition 2.6 The rational elliptic curve

$$
F: y^{2}=x(x+a)(x-b)
$$

with a and b relatively prime integers is known as a Frey curve. The discriminant of F is $\Delta=(4 a b(a+b))^{2}$.

Lemma 2.5 Let $F: y^{2}=x(x+a)(x-b)$ be a Frey curve. Then the minimal discriminant of F is $u^{-12} \Delta$ where u is either 1 or 2 . Moreover, $u=2$ if and only if $a \equiv 0 \bmod 16$ and $b \equiv 3 \bmod 4$. The Frey curve is semistable at all odd primes and semistable at 2 if and only if $u=2$.

At the time of its formulation, it was not possible to state the above result as an equivalence. The minimal discriminant being $2^{-12} \Delta$ was proven to hold under the given congruences due to the existence of an integral Weierstrass model for F under these assumptions. An application of a Theorem of Kraus shows that the above is in, fact, an equivalence.

Theorem 2.6 (Kraus, [8]) Let α, β, and γ be integers such that $\alpha^{3}-\beta^{2}=1728 \gamma$ with $\gamma \neq 0$. Then there exists a rational elliptic curve E given by an integral Weierstrass equation having invariants $c_{4}=\alpha$ and $c_{6}=\beta$ if and only if the following conditions hold:
(i) $v_{3}(\beta) \neq 2$;
(ii) either $\beta \equiv-1 \bmod 4$ or both $v_{2}(\alpha) \geq 4$ and $\beta \equiv 0$ or $8 \bmod 32$.

2.3 Reduced Minimal Model

Given a rational elliptic curve, there are infinitely many possible global minimal models. Among these, there is a unique global minimal model known as the reduced minimal model of E.

Definition 2.7 Let E be a rational elliptic curve. The reduced minimal model of E is given by a Weierstrass model

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

which is a global minimal model for E and satisfies $a_{1}, a_{3} \in\{0,1\}$ and $a_{2} \in\{-1,0,1\}$.

Proposition 2.7 ([9, Chapter III]) The reduced minimal model of rational elliptic curve is unique.

Following Kraus's Theorem, Connell modified an existing algorithm of Laska's [10] to output the reduced minimal model of a rational elliptic curve, given the invariants c_{4} and c_{6} associated to a global minimal model of E.

Algorithm 2.8 (Laska-Kraus-Connell Algorithm, [9, 3.2]) Let E be a rational elliptic curve with invariants c_{4} and c_{6} associated to a global minimal model of E. Then the coefficients a_{i} of the reduced minimal model of E are determined from the quantities below:

$$
\begin{array}{ll}
b_{2}=-c_{6} \bmod 12 \in\{-5,-4, \ldots, 6\} & b_{4}=\frac{b_{2}^{2}-c_{4}}{24} \\
b_{6}=\frac{-b_{2}^{3}+36 b_{2} b_{4}-c_{6}}{216} & a_{1}=b_{2} \bmod 2 \in\{0,1\} \\
a_{2}=\frac{b_{2}-a_{1}}{4} & a_{3}=b_{6} \bmod 2 \in\{0,1\} \\
a_{4}=\frac{b_{4}-a_{1} a_{3}}{2} & a_{6}=\frac{b_{6}-a_{3}}{4}
\end{array}
$$

In particular, the quantities b_{6}, a_{4}, and a_{6} are integers.

2.4 Local Data of a Rational Elliptic Curve

In this section, we assume familiarity with algebraic geometry. We follow the terminology in [6].

Let R be a Dedekind domain with field of fractions K and E an elliptic curve over K. Then there exists a regular arithmetic surface \mathcal{C} / R, proper over R, whose generic fiber is isomorphic to E over K. We call \mathcal{C} / R a proper regular model for E / K.

In addition, there exists a proper regular model $\mathcal{C}^{\min } / R$ for E / K with the following minimal property:

Let \mathcal{C} / R be any other regular model for E / K. Fix an isomorphism from the generic fiber of \mathcal{C} to the generic fiber of $\mathcal{C}^{\min }$. Then the induced R-birational map $\mathcal{C} \rightarrow \mathcal{C}^{\text {min }}$ is an R-isomorphism. We call $\mathcal{C}^{\text {min }} / R$ the minimal proper regular model for E / K. It is unique up to unique R-isomorphism.

We define the Néron model of E over R to be a scheme $\mathcal{N} \rightarrow \operatorname{Spec} R$ which is smooth, separated, and of finite type, with generic fiber isomorphic to E, and that verifies the following universal property: for any smooth scheme X over R, the canonical map $\operatorname{Map}_{K}(X, \mathcal{N}) \rightarrow \operatorname{Map}_{K}\left(X_{K}, E\right)$ is bijective. In fact, \mathcal{N} is the open subscheme of the minimal proper regular model $\mathcal{C}^{\text {min }}$ associated to E which is made up of points that are smooth over R [6, Theorem 10.2.14].

Now suppose E is a rational elliptic curve and let p be a finite prime. Let \mathbb{Z}_{p} be the p-adic integers and denote by $\mathcal{C}_{p}^{\text {min }}$ and \mathcal{N}_{p} the minimal proper regular model and Néron model over $\mathbb{Z}_{(p)}$, respectively. The special fiber $\overline{\mathcal{N}}_{p}$ of \mathcal{N}_{p} is a scheme over the residue field \mathbb{F}_{p}. Since $\overline{\mathcal{N}}_{p}$ is an algebraic group, we let $\overline{\mathcal{N}}_{p}^{0}$ be the connected component of $\overline{\mathcal{N}}_{p}$ containing the unit element of $\overline{\mathcal{N}}_{p}$. Similarly, denote by $\overline{\mathcal{C}}_{p}^{\min }$ the special fiber of $\mathcal{C}_{p}^{\text {min }}$.

Tate's Algorithm [5, Chapter IV] returns the following local data for each prime p of \mathbb{Z} :

1. The reduction type of the special fiber $\overline{\mathcal{C}}_{p}^{\min }$ over $\overline{\mathbb{F}}_{p}$. We will use Kodaira symbols to describe the reduction type.
2. m_{p} : the number of components, defined over $\overline{\mathbb{F}}_{p}$ and counted without multiplicity, on $\overline{\mathcal{C}_{p}}$ min.
3. $v_{p}\left(\Delta_{E}^{\min }\right):$ (the valuation of the minimal discriminant of E / K with respect to p;
4. f_{p} : the exponent appearing at the prime p of the conductor of E. This will be computed via Ogg's formula: $f_{p}=v_{p}\left(\Delta_{E}^{\min }\right)\left(m_{p}+1\right.$;
5. c_{p} : the local Tamagawa number at p, i.e., the order of the group of components $\overline{\mathcal{N}}_{p}\left(\mathbb{F}_{p}\right) / \overline{\mathcal{N}}_{p}^{0}\left(\mathbb{F}_{p}\right)$. Equivalently, c_{p} is the number of components of $\overline{\mathcal{C}}_{p}^{\text {min }}$ which have multiplicity 1 and are defined over \mathbb{F}_{p}.

2.5 Universal Elliptic Curves

Let $N \geq 2$ be an integer. The modular curve $X_{1}(N)$ (with cusps removed) parameterizes isomorphism classes of pairs (E, P) where E is an elliptic curve and P is a torsion point of order N on E. Two isomorphism classes of pairs (E, P) and $\left(E^{\prime}, P^{\prime}\right)$ are isomorphic if there exists an isomorphism $\varphi: E \rightarrow E^{\prime}$ such that $\varphi(P)=P^{\prime}[5]$. Now let $m \geq 1$ be an integer. The modular curve $X_{1}(2,2 m)$ parameterize isomorphism classes of pairs (E, P, Q) where E is a rational elliptic curve and $\langle P, Q\rangle \cong C_{2} \times C_{2 m}$ and $e(P, m Q)=\zeta_{2}$ where e_{2} is the Weil pairing [4, III.8]. It is well known that the modular curve $X_{1}(N)$ and $X_{1}(2,2 m)$ has genus 0 if [11, Proposition 3.7] $N=2,3, \ldots, 10,12$ or $m=1,2,3,4$. When $N=4,5, \ldots, 10,12$ and $m=2,3,4$ these modular curves are parameterizable by a single parameter t [12, Table 3]. More precisely, for these values of N and M, we consider the abelian groups $T=C_{N}$ and $T=C_{2} \times C_{2 m}$. For $t \in \mathbb{P}^{1}$, define \mathcal{X}_{t} as the mapping which takes T to the elliptic curve $\mathcal{X}_{t}(T)$ where the Weierstrass model of $\mathcal{X}_{t}(T)$ is given in Table 2.1^{1}. Then $\mathcal{X}_{t}(T)$ is a one-parameter family of elliptic curves with the property that if $t \in K$ for some field K, then $\mathcal{X}_{t}(T)$ is an elliptic curve over K and $T \hookrightarrow \mathcal{X}_{t}(T)(K)_{\text {tors }}$. The Weierstrass model of $\mathcal{X}_{t}(T)$ is known as the universal elliptic curve over $X_{1}(N)$ (resp. $X_{1}(2,2 m)$) if $T=C_{N}\left(\right.$ resp. $\left.T=C_{2} \times C_{2 m}\right)$.

We summarize the above with the following result which will be used in the subsequent chapters.

[^0]Table 2.1.: Universal Elliptic Curve $\mathcal{X}_{t}(T)$

$\mathcal{X}_{t}(T): y^{2}+(1-g) x y-f y=x^{3}-f x^{2}$		
f	g	T
t	0	C_{4}
t	t	C_{5}
$t^{2}+t$	t	C_{6}
$t^{3}-t^{2}$	$t^{2}-t$	C_{7}
$2 t^{3}-3 t+1$	$\frac{2 t^{2}-3 t+1}{t}$	C_{8}
$t^{5}-2 t^{4}+2 t^{3}-t^{2}$	$t^{3}-t^{2}$	C_{9}
$\frac{25^{5}-3 t^{4}+t^{3}}{\left(t^{2}-3 t+1\right)^{2}}$	$\frac{-2 t^{3}+3 t^{2}-t}{t^{2}-3 t+1}$	C_{10}
$\frac{12 t^{6}-30 t^{5}+34 t^{4}-21 t^{3}+7 t^{2}-t}{(t-1)^{4}}$	$\frac{-6 t^{4}+9 t^{3}-5 t^{2}+t}{(t-1)^{3}}$	C_{12}
$4 t^{2}+t$	0	$C_{2} \times C_{4}$
$\frac{-2 t^{3}+14 t^{2}-22 t+10}{(t+3)^{2}(t-3)^{2}}$	$\frac{-2 t+10}{(t+3)(t-3)}$	$C_{2} \times C_{6}$
$\frac{16 t^{3}+16 t^{2}+6 t+1}{\left(8 t^{2}-1\right)^{2}}$	$\frac{16 t^{3}+16 t^{2}+6 t+1}{2 t(4 t+1)\left(8 t^{2}-1\right)}$	$C_{2} \times C_{8}$

Lemma 2.9 Let K be a field. If $t \in K$ such that $\mathcal{X}_{t}(T)$ is an elliptic curve, then $T \subset \mathcal{X}_{t}(T)(K)_{\text {tors }}$. Moreover, if E is an elliptic curve over K, then there is a $t \in K$ such that E is K-isomorphic to $\mathcal{X}_{t}(T)$.

3. THE EXPLICIT MODIFIED SZPIRO CONJECTURE

The story of the $A B C$ Conjecture begins with the following theorem:

Theorem 3.1 (Mason-Stothers) Let a, b, c be nonconstant relatively prime complex polynomials in one variable such that $a+b=c$. Then

$$
\max \{\operatorname{deg} a, \operatorname{deg} b, \operatorname{deg} c\}<n_{0}(a b c)
$$

where $n_{0}(f)$ denotes the number of distinct roots of f.

This was first proven by Stothers [14] in 1981, but rediscovered three years later by Mason [15]. The following year, Masser and Oesterlé were discussing Mason's recent paper and the pair came up with the novel idea of reformulating the Mason-Stothers Theorem as a statement pertaining to the integers. In the hours that followed, the $A B C$ Conjecture was conceived. In the years since, the literature has been replete with applications of the $A B C$ Conjecture, most notably Fermat's Last Theorem which at the time remained unproven. We refer the interested reader to the classic article by Lang [16] as well as the survey article of Martin and Miao [17] to learn more about the numerous applications of the $A B C$ Conjecture.

As with Fermat's Last Theorem, the $A B C$ Conjecture has also manifested itself in the theory of elliptic curves where it has an equivalent formulation known as the modified Szpiro conjecture. The modified Szpiro conjecture roughly says that for a rational elliptic curve E, it is rare for the inequality

$$
N_{E}^{6}<\max \left\{\chi_{4}^{3}, c_{6}^{2}\right.
$$

to hold where N_{E} is the conductor of E and c_{4} and c_{6} are the invariants associated with a global minimal model of E. We will say that if an elliptic curve satisfies the above inequality, then it is a good elliptic curve.

In the first section, we give a succinct introduction to the $A B C$ Conjecture and state known results which will motivate our study of the modified Szpiro conjecture which begins in section two. In section three, we briefly go over current databases of rational elliptic curves and find all good elliptic curves in Cremona's database which as of this writing consists of all elliptic curves of conductor at most 400000. In addition, we construct new databases consisting of elliptic curves with $E(\mathbb{Q})_{\text {tors }} \cong C_{2} \times C_{2 m}$ where $m=2,3,4$ and summarize the data obtained pertaining to the modified Szpiro conjecture. In section 4 we give a constructive proof that there are infinitely many good Frey curves. In section 5, we use the elliptic curves from section 4 as well as certain models of elliptic curves which will be studied in further detail in chapter 4 to construct a database consisting of 13870964 good elliptic curves and conjecture an explicit formulation of the modified Szpiro conjecture based on the data acquired, i.e., what is the smallest real number λ such that $\max \left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\}<N_{E}^{\lambda}$ holds for all rational elliptic curves E. As an application, we show at the end how the explicit Modified Szpiro conjecture can be used to construct exhaustive databases of elliptic curves up to a given conductor. We note that as of this writing, the 2012 proof of the modified Szpiro conjecture by Mochizuki is still under review. Even if the proof is found to be correct, it does not shed light on the explicit version of the modified Szpiro conjecture.

3.1 The $A B C$ Conjecture

We begin with the following definition which will simplify the statement of the $A B C$ Conjecture.

Definition 3.1 By an ABC triple $P=(a, b, c)$ we mean a triple of integers a, b, c such that a, b, c are relatively prime non-zero integers and $a+b=c$. The quality of an $A B C$ triple $P=(a, b, c)$ is the quantity

$$
q(P)=\frac{\log \max \{|a|,|b|,|c|\}}{\log \operatorname{rad}(a b c)}
$$

where $\operatorname{rad}(n)$ denotes the product of all distinct primes dividing n.
We say an $A B C$ triple is good if $q(P)>1$ and if a, b, c are positive, we say that P is positive.

Proposition 3.2 The following are equivalent:
(i) For every $\epsilon>0$ there exists a positive constant κ_{ϵ} such that for all $A B C$ triples $P=(a, b, c)$ we have

$$
\begin{equation*}
\max \{|a|,|b|,|c|\} \leq \kappa_{\epsilon} \operatorname{rad}(a b c)^{1+\epsilon} \tag{3.1}
\end{equation*}
$$

(ii) For every $\epsilon>0$ there are finitely many $A B C$ triples $P=(a, b, c)$ satisfying

$$
\operatorname{rad}(a b c)^{1+\epsilon}<\max \{|a|,|b|,|c|\}
$$

(iii) For every $\epsilon>0$ there are finitely many $A B C$ triples $P=(a, b, c)$ satisfying

$$
q(P)>1+\epsilon
$$

We refer to each of these equivalent statements as the $\boldsymbol{A B C}$ Conjecture.

Proof By the previous definition it follows that (ii) and (iii) are equivalent.
($i \Longrightarrow$ iii) Fix $\epsilon>0$ and suppose there exists a positive constant κ_{ϵ} so that (3.1) holds. If $\kappa_{\epsilon} \leq 1$, then

$$
\begin{aligned}
\max \{|a|,|b|,|c|\} & \leq \operatorname{rad}(a b c)^{1+\epsilon} \\
& \Longrightarrow \quad \frac{\log \max \{|a|,|b|,|c|\}}{\log \operatorname{rad}(a b c)} \leq 1+\epsilon
\end{aligned}
$$

and thus (iii) holds. Now suppose $\kappa_{\epsilon}>1$ and towards a contradiction, assume that there are infinitely many $A B C$ triples $P=(a, b, c)$ such that $q(P)>1+\epsilon$. Taking logarithms in (3.1) yields

$$
\begin{aligned}
\log \max \{|a|,|b|,|c|\} & \leq \log \kappa_{\epsilon}+(1+\epsilon) \log \operatorname{rad}(a b c) \\
& \Longrightarrow \quad q(P) \leq \frac{\log \kappa_{\epsilon}}{\log \operatorname{rad}(a b c)}+1+\epsilon
\end{aligned}
$$

In particular,

$$
\begin{aligned}
1+\epsilon<q(P) \leq \frac{\log \kappa_{\epsilon}}{\log \operatorname{rad}(a b c)}+1+\epsilon \quad & \Longrightarrow \quad 0<q(P) \leq \frac{\log \kappa_{\epsilon}}{\log \operatorname{rad}(a b c)} \\
& \Longrightarrow \quad \log \max \{|a|,|b|,|c|\} \leq \log \kappa_{\epsilon}
\end{aligned}
$$

which is our desired contradiction since there are finitely many $A B C$ triples satisfying

$$
\log \max \{|a|,|b|,|c|\} \leq \log \kappa_{\epsilon}
$$

for any fixed constant κ_{ϵ}.
$(i i i \Longrightarrow i)$ Fix $\epsilon>0$. Observe that if P is an $A B C$ triple satisfying $q(P) \leq 1+\epsilon$, then

$$
\begin{aligned}
\log \max \{|a|,|b|,|c|\} & \leq(1+\epsilon) \log \operatorname{rad}(a b c) \\
& \Longrightarrow \quad \max \{|a|,|b|,|c|\} \leq \operatorname{rad}(a b c)^{1+\epsilon}
\end{aligned}
$$

Now assume that there are finitely many $A B C$ triples P satisfying $q(P)>1+\epsilon$. In particular, there is a real number $\kappa_{\epsilon} \geq 1$ such that

$$
\frac{\max \{|a|,|b|,|c|\}}{\operatorname{rad}(a b c)^{1+\epsilon}} \leq \kappa_{\epsilon}
$$

for all $P=(a, b, c)$ satisfying $q(P)>1+\epsilon$. Since $\max \{|a|,|b|,|c|\} \leq \operatorname{rad}(a b c)^{1+\epsilon}$ holds for all $A B C$ triples P satisfying $q(P) \leq 1+\epsilon$, it follows that (i) holds for all $A B C$ triples.

The following lemma shows that the ϵ is necessary for the statement of the $A B C$ Conjecture.

Lemma 3.3 Let p be an odd prime. Then $\left(1, p^{(p-1) k}-1, p^{(p-1) k}\right)$ (is a good $A B C$ triple for each positive integer k.

Proof Note that $p^{(p-1) k}-1=(p-1) P$ where

$$
P=\sum_{j=1}^{(p-1) k} p^{j-1}
$$

Since $p \equiv \mp 1 \bmod (p \pm 1)$, it follows that $P \equiv 0 \bmod (p \pm 1)$. In particular, $P \equiv$ $0 \bmod 4$. Therefore,
$\begin{aligned} & \operatorname{rad}\left(p^{(p-1) k}-1\right)=\operatorname{rad}\left(\frac{P}{2}\right)\left(\leq \frac{P}{2}=\frac{p^{(p-1) k}-1}{2(p-1)} .\right. \\ & \text { Moreover, } \operatorname{rad}\left(\left(p^{(p-1) k}-1\right) p^{(p-1) k}\right)=p \operatorname{rad}\left(\left(p^{(p-1) k}-1\right)\right) \text { and } \\ & \max \left\{1, p^{(p-1) k}-p^{(p-1) k}=p^{(p-1) k} \text { and so we attain }\right. \\ & p^{(p-1) k}-p \operatorname{rad}\left(\left(中^{(p-1) k}-1\right)\right) \notin p^{(p-1) k}-\frac{p^{(p-1) k}-1}{2(p-1)} \text { by }(3.2) \\ &=p^{(p-1) k}\left(1-\frac{p}{2(p-1)}\right)\left(+\frac{p}{2(p-1)}\right. \\ &>0 .\end{aligned}$

In the special case when $p=3$ and $k=1$ we get the $A B C$ triple $P=(1,8,9)$ with quality $q(P) \approx 1.2263$. Since there are infinitely many good $A B C$ triples, we have that the $A B C$ Conjecture is equivalent to

$$
\limsup q(P)=1
$$

where the limsup ranges over all $A B C$ triples P. Assuming the $A B C$ Conjecture, Browkin et al. [18] proved that the set of limit points of $q(P)$ as P ranges over all $A B C$ triples is equal to the closed interval $\left[\frac{1}{3}, 1\right]$. Specifically, they proved that given any real number ϵ in the closed interval $\left[\frac{1}{3}, 1\right]$, there is a sequence of $A B C$ triples $\left\{P_{n}\right\}_{n \geq 0}$ such that $\lim _{n \rightarrow \infty} q\left(P_{n}\right)=\epsilon$. At the end (of section 3.3.2, we present evidence for what the analogous result should be for the modified Szpiro conjecture based on a result which will be proven in chapter 6 .

While there are infinitely many good $A B C$ triples, there is strong numerical evidence for the $A B C$ Conjecture being true. The $A B C @ H$ me project was a network computing project which began in 2007 with the goal of finding all good $A B C$ triples $P=(a, b, c)$ with $\max \{|a|,|b|,|c|\}<10^{8}$. This goal was accomplished in 2011 with the finding of 14482065 good $A B C$ triples. The project continued until 2015 with the
finding of an additional 9345651 good $A B C$ triples with $10^{18} \leq \max \{|a|,|b|,|c|\}<$ 2^{63}. Of the 23827716 good $A B C$ triples found by the $A B C @ H$ me project, only 240 of them have quality greater than 1.4. In fact, $P=\left(2,3^{10} \cdot 109,23^{5}\right)$ is the triple with largest known quality $q(P) \approx 1.6299$. As of May 2018 , this data is available at Bart de Smit's webpage [2].

The data also gives support for Baker's [19] explicit formulation of the $A B C$ Conjecture,

Conjecture 3.4 (Explicit $A B C$ Conjecture) Let $P=(a, b, c)$ be an $A B C$ triple. Then

$$
\max \{|a|,|b|,|c|\} \leq \operatorname{rad}(a b c)^{1.75}
$$

While this variant does not imply the $A B C$ Conjecture, it does imply Fermat's Last Theorem.

Proposition 3.5 The explicit ABC Conjecture implies Fermat's Last Theorem.

Proof Towards a contradiction, suppose Fermat's Last Theorem is false for some exponent $n>2$. That is, there are relatively prime positive integers a, b, and c such that $a^{n}+b^{n}=c^{n}$. Then

$$
c^{n}=\max \left\{\left|a^{n}\right|,\left|b^{n}\right|,\left|c^{n}\right|\right\} \leq \operatorname{rad}\left(a^{n} b^{n} c^{n}\right)^{1.75}=\operatorname{rad}(a b c)^{1.75} \leq(a b c)^{1.75}<c^{5.25}
$$

In particular, $n \leq 5$ which is our desired contradiction since these cases have been known since 1825 .

In fact, the data compiled by the $A B C @ H$ me project suggests that Baker's exponent of 1.75 may be replaced with 1.63 . In section 3 , we will study the explicit side of the modified Szpiro conjecture and formulate an explicit modified Szpiro conjecture based on numerical evidence from Cremona's database of rational elliptic curves and further data acquired from rational elliptic curves with non-trivial torsion.

3.2 The Modified Szpiro Conjecture

Let E be a rational elliptic curve with minimal discriminant $\Delta_{E}^{\min }$. Throughout this section, the invariants c_{4} and c_{6} will be assumed to be associated with a global minimal model of E so that $1728 \Delta_{E}^{\min }=c_{4}^{3}-c_{6}^{2}$. In 1981, Szpiro [20] made the following deep conjecture pertaining to the minimal discriminant and conductor of a rational elliptic curve.

Conjecture 3.6 (Szpiro, 1981) For every $\epsilon>0$ there exists a positive constant κ_{ϵ} such that for all rational elliptic curves E,

$$
\Delta_{E}^{\min } \leq \kappa_{\epsilon} N_{E}^{6+\epsilon}
$$

Soon after, it was shown that Szpiro's conjecture implied the Asymptotic Fermat's Last Theorem [4, Proposition VIII.11.2]. After the formulation of the $A B C$ Conjecture, it was shown that the $A B C$ Conjecture implied Szpiro's conjecture. While the converse did not hold, a modification of Szpiro's conjecture resulted in an equivalence with the $A B C$ Conjecture [1]. As with the previous section, we begin with a definition which will simplify our description of the modified Szpiro conjecture.

Definition 3.2 Let E be a rational elliptic curve with minimal discriminant $\Delta_{E}^{\min }$ and associated invariants c_{4} and c_{6}. Define the modified $\boldsymbol{S z p i r o}$ ratio $\sigma_{m}(E)$ and Szpiro ratio $\sigma(E)$ of E to be the quantities

$$
\sigma_{m}(E)=\frac{\log \max \left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\}}{\log N_{E}} \quad \text { and } \quad \sigma(E)=\frac{\log \left|\Delta_{E}^{\min }\right|}{\log N_{E}}
$$

where N_{E} is the conductor of E.
We say that E is good if $\sigma_{m}(E)>6$.

Lemma 3.7 For all rational elliptic curves, $\sigma(E)<\sigma_{m}(E)$.

Proof Since $1728 \Delta_{E}^{\min }=c_{4}^{3}-c_{6}^{2}$, it suffices to show that $\Delta_{E}^{\min }<\max \left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\}$. Case I. Suppose $c_{4}, \Delta_{E}^{\min }>0$. Then $\Delta_{E}^{\min }<1728 \Delta_{E}^{\min }+c_{6}^{2}=c_{4}^{3}$.

Case II. Suppose $c_{4}=0$. Then $\Delta_{E}^{\min }<1728 \Delta_{E}^{\min }=c_{6}^{2}$.
Case III. Suppose $c_{4}>0$ and $\Delta_{E}^{\min }<0$. Then $\Delta_{E}^{\min }<1728 \Delta_{E}^{\min }+c_{4}^{3}=c_{6}^{2}$.
Case IV. Suppose $c_{4}<0$. Let $a=\min \left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\}, b=\max \left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\}$, and $c=$ $1728 \Delta_{E}^{\min }$. Then a, b, c are nonnegative and satisfy $a+b=c$. In particular $\frac{c}{2}<b$ since $a<b$. Hence $\Delta_{E}^{\min }<\max \left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\}$.

Proposition 3.8 The following are equivalent:
(i) For every $\epsilon>0$ there exists a positive constant κ_{ϵ} such that for all rational elliptic curves E,

$$
\begin{equation*}
\max \left\{\xi_{4}^{3}, c_{6}^{2} \leq \kappa_{\epsilon} N_{E}^{6+\epsilon}\right. \tag{3.3}
\end{equation*}
$$

(ii) For every $\epsilon>0$ there are finitely many rational elliptic curves E satisfying

$$
N_{E}^{6+\epsilon}<\max \left\{c_{4}^{3}, c_{6}^{2}\right.
$$

(iii) For every $\epsilon>0$ there are finitely many rational elliptic curves E satisfying

$$
\sigma_{m}(E)>6+\epsilon .
$$

We refer to each of these equivalent statements as the modified Szpiro conjecture. In particular, the modified Szpiro conjecture implies Conjecture 3.6 since $\Delta_{E}^{\min }<\max \left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\}$ for all rational elliptic curves by the proof of Lemma 3.7.

Proof By definition, (ii) and (iii) are equivalent.
$(i \Longrightarrow i i)$ Fix $\epsilon>0$ and suppose there exists a positive constant κ_{ϵ} so that (3.3) holds. If $\kappa_{\epsilon} \leq 1$, then

$$
\max \left\{c_{4}^{3}, c_{6}^{2} \leq N_{E}^{6+\epsilon} \quad \Longrightarrow \quad \frac{\log \max \left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\}}{\log N_{E}} \leq 6+\epsilon\right.
$$

and thus (iii) holds. Now suppose $\kappa_{\epsilon}>1$ and towards a contradiction, assume that there are infinitely many rational elliptic curves E satisfying $\sigma_{m}(E)>6+\epsilon$. Taking logarithms in (3.3) yields

$$
\log \max \left\{c_{4}^{3}, c_{6}^{2} \leq \log \kappa_{\epsilon}+(6+\epsilon) \log N_{E} \quad \Longrightarrow \quad \sigma_{m}(E) \leq \frac{\log \kappa_{\epsilon}}{\log N_{E}}+6+\epsilon\right.
$$

In particular,

$$
\begin{aligned}
6+\epsilon & <\sigma_{m}(E) \leq \frac{\log \kappa_{\epsilon}}{\log N_{E}}+6+\epsilon \quad \Longrightarrow \quad 0<\sigma_{m}(E) \leq \frac{\log \kappa_{\epsilon}}{\log N_{E}} \\
& \Longrightarrow \quad \log \max \left\{\psi_{4}^{3}, c_{6}^{2} \leq \log \kappa_{\epsilon}\right.
\end{aligned}
$$

which is our desired contradiction since there are only finitely many elliptic curves satisfying the inequality above for any fixed constant κ_{ϵ}.
(iii $\Longrightarrow i)$ Lastly, suppose that for a given $\epsilon>0$, there are finitely many rational elliptic curves E satisfying $\sigma_{m}(E)>6+\epsilon$. In particular, there is a real number $\kappa_{\epsilon} \geq 1$ such that

$$
\frac{\max \left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\}}{N_{E}^{6+\epsilon}} \leq \kappa_{\epsilon}
$$

for all rational elliptic curves E satisfying $\sigma_{m}(E)>6+\epsilon$. Since $\max \left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\} \leq N_{E}^{6+\epsilon}$ holds for all rational elliptic curves E satisfying $\sigma_{m}(E) \leq 6+\epsilon$, it follows that (i) holds for all rational elliptic curves.

Theorem 3.9 The modified Szpiro conjecture is equivalent to the ABC Conjecture.
Proof Assume that the modified Szpiro conjecture is true and let $P=(a, b, c)$ be an $A B C$ triple. Relabeling if necessary, we may assume $1 \leq a<b<c$ so that $c<2 b$. In particular,

$$
1+\frac{c}{2}+\frac{c^{2}}{4}<a^{2}+a b+b^{2}
$$

By Lemma 2.5, the Frey curve

$$
E: y^{2}=x(x+a)(x-b)
$$

has minimal discriminant $\Delta_{E}^{\min }=u^{-12} \cdot(4 a b c)^{2}$ where u is either 1 or 2 . The invariants c_{4} and c_{6} associated to a global minimal model of E have the form

$$
c_{4}=u^{-4} \cdot 16\left(a^{2}+a b+b^{2}\right)\left(\text { and } c_{6}=u^{-6} \cdot 32(b-a)(a+c)(b+c)\right.
$$

Hence c_{4} and $\Delta_{E}^{\min }$ are always positive and therefore $\max \left\{q_{4}^{3}, c_{6}^{2}, 1728 \Delta_{E}^{\min }=c_{4}^{3}\right.$ since $c_{4}^{3}=c_{6}^{2}+1728 \Delta_{E}^{\min }$. Applying the modified Szpiro conjecture to E yields

$$
\left(\left(+\frac{c}{2}+\frac{c^{2}}{4}\right)^{3}<\kappa_{\epsilon} N_{E}^{6+\epsilon}\right.
$$

for all $\epsilon>0$. Multiplying by 64 gives

$$
\begin{aligned}
c^{6} & <64\left(\left(+\frac{c}{2}+\frac{c^{2}}{4}\right)^{3}<64 \kappa_{\epsilon} N_{E}^{6+\epsilon}\right. \\
& \Longrightarrow \quad c<2 \kappa_{\epsilon}^{1 / 6} N_{E}^{1+\epsilon / 6}
\end{aligned}
$$

for all $\epsilon>0$. Since E is semistable at all odd primes it follows that $N_{E}=2^{j} \operatorname{rad}\left(\Delta_{E}^{\min }\right)($ for some nonnegative integer j. By Lemma 2.3, $j \leq 7$ and therefore $N_{E} \leq 2^{7} \operatorname{rad}(a b c)$. (Now set $\epsilon^{\prime}=6 \epsilon$ so that $c<\kappa_{\epsilon^{\prime}} \operatorname{rad}(a b c)^{1+\epsilon^{\prime}}$ with $\kappa_{\epsilon^{\prime}}=\kappa_{\epsilon}^{1 / 6} 2^{2+\epsilon^{\prime}}$, which is the $A B C$ Conjecture.

Conversely, assume that the $A B C$ Conjecture is true and let E be a rational elliptic curve with minimal discriminant $\Delta_{E}^{\min }$ and invariant $j_{E} \neq 0,1728$. In particular, the associated invariants c_{4} and c_{6} are nonzero. Let $d=\operatorname{gcd}\left(q_{4}^{\$}, c_{6}^{2}, \Delta_{E}^{\min }\right)\left(a=\frac{c_{4}^{3}}{d}, b=\frac{c_{6}^{2}}{d}\right.$, and $c=\frac{1728 \Delta_{E}^{\min }}{d}$. Then (a, b, c) is an $A B C$ triple and by the $A B C$ C\&njecture we get that

$$
\begin{aligned}
& \max \{|a|, b\} \leq \max \{|a|, b,|c|\} \leq \kappa_{\epsilon} \operatorname{rad}(a b c)^{1+\epsilon} \\
& \Longrightarrow \quad \max \left\{c_{4}^{3}, c_{6}^{2} \leq \kappa_{\epsilon}(d \operatorname{rad}(a b c))^{1+\epsilon}\right.
\end{aligned}
$$

We claim that $d \operatorname{rad}(a b c)$ divides $36 c_{4} c_{6} N_{E}$. It is clear that

$$
\operatorname{rad}(a b c)=\operatorname{rad}\left(6 c_{4}^{3} c_{6}^{2} \Delta_{E}^{\min } d^{-3}\right)(
$$

divides $36 c_{4} c_{6} N_{E}$. So it suffices to show that for all primes p dividing d, the inequality

$$
v_{p}\left(d \operatorname { r a d } (\emptyset (c _ { 4 } ^ { 3 } c _ { 6 } ^ { 2 } \Delta _ { E } ^ { \operatorname { m i n } } d ^ { - 3 })) \left(-v_{p}\left(36 c_{4} c_{6} N_{E}\right)\right.\right.
$$

holds. Since p divides d, it follows that p divides both $\Delta_{E}^{\min }$ and c_{4} and therefore E has additive reduction at p by Lemma 2.2. Thus $v_{p}\left(N_{E}\right) \geq 2$. In particular, we have the following inequalities:

$$
v_{p}\left(d \operatorname{rad}\left(\oint c_{4}^{3} c_{6}^{2} \Delta_{E}^{\min } d^{-3}\right)\right)\left(-v_{p}(d)+1 \quad v_{p}\left(36 c_{4} c_{6}\right)+2 \leq v_{p}\left(36 c_{4} c_{6} N_{E}\right)\right.
$$

Hence it suffices to show $v_{p}(d)+1 \leq v_{p}\left(36 c_{4} c_{6}\right)+2$ for each prime p dividing d. For $p>3$, we have $v_{p}\left(c_{4}\right)<4$ or $v_{p}\left(c_{6}\right)<6$ by [4, VII. Remark 1.1]. For $p=2,3$,
$v_{p}\left(c_{4}\right)<8$ or $v_{p}\left(c_{6}\right)<12$ [21, Proposition 3]. Since d is the greatest common divisor of c_{4}^{3} and c_{6}^{2}, we observe that

$$
\begin{equation*}
v_{p}(d)=\min \left\{v_{p}\left(c_{4}^{3}\right)\left\{v_{p}\left(c_{6}^{2}\right)\right\}\right. \tag{3.4}
\end{equation*}
$$

for each prime p dividing d. In particular, $v_{p}(d)<12$ if $p>3$ and $v_{p}(d)<24$ if $p=2,3$.

We now verify that $v_{p}(d) \leq v_{p}\left(36 c_{4} c_{6}\right)+1$ for $v_{p}(d)<24$. by $(3.4), v_{p}(d)$ is divisible by 2 or 3 , and

$$
v_{p}\left(c_{4}\right) \geq \frac{v_{p}(d)}{3} \quad \text { and } \quad v_{p}\left(c_{6}\right) \geq \frac{v_{p}(d)}{2}
$$

with equality holding for at least one of them. The table below summarizes all possibilities for $v_{p}(d)<24$ and the middle two rows are to be read as follow: at least one of $v_{p}\left(c_{4}\right)$ or $v_{p}\left(c_{6}\right)$ is equal to the entry in the table. For instance, if $v_{p}(d)=10$, then $v_{p}(d)=v_{p}\left(c_{6}^{2}\right)$ since $3 v_{p}\left(c_{4}\right)$ does not divide 10 . Hence $v_{p}\left(c_{6}\right)=5$ and since $v_{p}\left(c_{4}^{3}\right)>v_{p}\left(c_{6}^{2}\right)$ and this implies that $v_{p}\left(c_{4}\right) \geq 4$. The remaining cases can be checked similarly

$v_{p}(d)=$	2	3	4	6	8	9	10	12	14	15	16	18	20	21	22
$v_{p}\left(c_{4}\right) \geq$	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
$v_{p}\left(c_{6}\right) \geq$	1	2	2	3	4	5	5	6	7	8	8	9	10	11	11
$v_{p}\left(c_{4} c_{6}\right)+1 \geq$	3	4	5	6	8	9	10	11	13	14	15	16	18	19	20

Thus max $\left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\} \leq \kappa_{\epsilon}^{\prime}\left(c_{4} c_{6} N\right)^{1+\epsilon}$ with $\kappa_{\epsilon}^{\prime}=36^{1+\epsilon} \kappa_{\epsilon}$. In particular, we obtain the following three inequalities:

$$
\begin{aligned}
\left|c_{4}\right|^{2-\epsilon} & \leq \kappa_{\epsilon}^{\prime}\left(c_{6} N\right)^{1+\epsilon} \\
\left|c_{6}\right|^{1-\epsilon} & \leq \kappa_{\epsilon}^{\prime}\left(c_{4} N\right)^{1+\epsilon} \\
\max \left\{\psi_{4}^{3}, c_{6}^{2}\right. & \leq \kappa_{\epsilon}^{\prime}\left(c_{4} c_{6} N\right)^{1+\epsilon}
\end{aligned}
$$

Now raise the first inequality to the $2+2 \epsilon$ power, raise the second inequality to the $3+3 \epsilon$ power, and raise the third inequality to the $1-5 \epsilon$ power. Multiplying the resulting inequalities results in

$$
\begin{aligned}
& \left|c_{4}\right|^{4+2 \epsilon-2 \epsilon^{2}}\left|c_{6}\right|^{3-3 \epsilon^{2}} \max \left\{\chi_{4}^{3}, c_{6}^{2}{ }^{1-5 \epsilon} \leq \kappa_{\epsilon}^{\prime 6} N^{6+6 \epsilon} c_{4}^{4+2 \epsilon-2 \epsilon^{2}} c_{6}^{3-3 \epsilon^{2}}\right. \\
& \Longleftrightarrow \max \left\{\left(_{4}^{3}, c_{6}^{2}{ }^{1-5 \epsilon} \leq\left\langle\kappa_{\epsilon}^{\prime 6} N^{6+6 \epsilon}\right.\right.\right. \\
& \Longleftrightarrow \max \left\{\begin{array}{l}
3 \\
k_{4}^{3}, c_{6}^{2} \leq \kappa_{\epsilon}^{\prime \prime} N^{(6+6 \epsilon) /(1-5 \epsilon)} \text { with } \kappa_{\epsilon}^{\prime \prime}=\kappa_{\epsilon}^{\prime 6 /(1-5 \epsilon)} .
\end{array}\right.
\end{aligned}
$$

Now take $\epsilon=\frac{-6+\epsilon^{\prime}}{6+5 \epsilon^{\prime}}>0$ so that $\max \left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\} \leq \kappa_{\epsilon^{\prime}}^{\prime \prime} N^{6+\epsilon^{\prime}}$. This is the modified Szpiro conjecture, which concludes the proof.

The proof above varies slightly from that given originally in [1]. The original proof reduces the argument to showing that if the modified Szpiro conjecture is true for semistable Frey curves, then the $A B C$ Conjecture is true.

3.3 Database of Modified Szpiro Ratios

As with the $A B C$ Conjecture, we could ask whether there are infinitely many good elliptic curves. This question was first considered by Masser [3] who proved that there are infinitely many good Frey curves. This showed, that as with the $A B C$ Conjecture, we also have an equivalent formulation of the modified Szpiro conjecture, namely

$$
\limsup \sigma_{m}(E)=6
$$

where the limsup ranges over all rational elliptic curves E. The main theorem of the next chapter asserts that if T is one of the fifteen possible torsion subgroups allowed by Theorem 2.1, then there are infinitely many good elliptic curves E with $E(\mathbb{Q})_{\text {tors }} \cong T$. In the next section, we will prove a weaker version of this result for elliptic curves with full 2-torsion as well as expand on the history of the existence of infinitely many good curves in the literature.

In this section, we review current databases of elliptic curves with the intention of stating an explicit modified Szpiro conjecture. In addition, we wish to study the
behavior of how the modified Szpiro ratio and Szpiro ratio vary as the naive height of elliptic curves increases, akin to how the $A B C @ H$ ome project studied good $A B C$ triples $P=(a, b, c)$ with $\max \{|a|,|b|,|c|\}<2^{63}$. To this end, we create a new database consisting of elliptic curves E with $T \hookrightarrow E(\mathbb{Q})$ where $T=C_{2} \times C_{2 m}$ where $m=2,3,4$. This will allow us to study how the modified Szpiro ratio and Szpiro ratio behave for elliptic curves with a large conductor $\left(>10^{20}\right)$.

Nitaj in [22] and [23] studied the case of the explicit Szpiro conjecture and showed that the elliptic curve
$E_{\text {Nitaj }}: y^{2}+x y=x^{3}+x^{2}+349410011109107572 x-775428774618307505842556592$ has conductor 2526810 and Szpiro ratio $\sigma\left(E_{\text {Nitaj }}\right) \approx 8.8119$. At the time, this was the elliptic curve with largest known Szpiro ratio. Recently Bennett and Yazdani [24] found the elliptic curve
$E_{\mathrm{B}-\mathrm{Y}}: y^{2}+x y=x^{3}-424151762667003358518 x-6292273164116612928531204122716$
which has conductor 12735814 and Szpiro ratio $\sigma\left(E_{\mathrm{B}-\mathrm{Y}}\right) \approx 9.01996$.
These findings suggest the following explicit form of the Szpiro conjecture:
Explicit Szpiro Conjecture. For all rational elliptic curves $E, \Delta_{E}^{\min }<N_{E}^{9.02}$.
As with the explicit $A B C$ Conjecture, this does not imply Szpiro's conjecture but can be used to tackle problems due to its absolute bound on how the minimal discriminant and conductor are related. In fact, this explicit Szpiro conjecture was used recently by Sadek [25] to study the elliptic curve discrete logarithm problem in cryptography.

While Szpiro's conjecture has been studied on the explicit side, there has been no research on the explicit modified Szpiro conjecture - which is the goal of this section. We begin by computing the modified Szpiro ratios of the previous two elliptic curves. Since $\sigma(E)<\sigma_{m}(E)$ we know that these are good elliptic curves and in fact, their modified Szpiro ratios are

$$
\sigma_{m}\left(E_{\mathrm{Nitaj}}\right) \approx 9.3169 \quad \text { and } \quad \sigma_{m}\left(E_{\mathrm{B}-\mathrm{Y}}\right) \approx 9.4962
$$

In contrast to the Szpiro ratio, we have found modified Szpiro ratios which exceed 10. In fact, the largest known modified Szpiro ratio is approximately 16.0587. This is the modified Szpiro ratio of the elliptic curve

$$
E_{11}: y^{2}-y=x^{3}+x^{2}-7820 x-263580
$$

which has conductor 11, yet its Szpiro ratio is equal to 1 since its $\Delta_{E}^{\min }=-11$. In Appendix B we order good elliptic curves by their modified Szpiro and Szpiro ratios. At the end of this section, we describe how the elliptic curves in Appendix B were found.

A technique first employed by Nitaj [23] is to check if curves isogenous to a good elliptic curve are also good. In the following example, we demonstrate this technique by considering the isogeny classes of $E_{\text {Nitaj }}$ and $E_{\mathrm{B}-\mathrm{Y}}$.

Example 3.10 Let $\mathcal{C}_{\text {Nitaj }}$ and \mathcal{C}_{B-Y} denote the set of \mathbb{Q}-isomorphism classes of elliptic curves which are isogenous to $E_{\text {Nitaj }}$ and E_{B-Y}, respectively. Then $\mathcal{C}_{\text {Nitaj }}=$ $\left\{\left[E_{1}\right],\left[E_{2}\right],\left[E_{3}\right],\left[E_{4}\right]\right\}$ and $\mathcal{C}_{B-Y}=\left\{\left[F_{1}\right],\left[F_{2}\right]\right\}$ and computing their modified Szpiro ratio and Szpiro ratio yields:

	E_{1}	E_{2}	E_{3}	E_{4}	F_{1}	F_{2}
$\sigma(-)$	8.81194	8.46189	8.22578	8.34794	9.01996	8.62243
$\sigma_{m}(-)$	9.31690	9.14240	8.77950	9.70439	9.49618	9.05540

Remark Each curve in the two isogeny classes above are good, but this is not the case in general. For instance, if \mathcal{C} is the isogeny class of the elliptic curve

$$
E_{1}: y^{2}+x y=x^{3}-2342114817 x-46491207963039
$$

then $\mathcal{C}=\left\{\left[E_{1}\right],\left[E_{2}\right],\left[E_{3}\right]\right\}$ has three distinct \mathbb{Q}-isomorphism classes and computing the modified Szpiro ratio and Szpiro ratio for these curves returns

	E_{1}	E_{2}	E_{3}
$\sigma(-)$	5.23078	4.76945	4.77440
$\sigma_{m}(-)$	5.98001	5.35237	7.00531

and therefore only one of the elliptic curves in the isogeny class is good.

3.3.1 Current Databases of Elliptic Curves

Our first step in analyzing good elliptic curves is by considering Cremona's database [26] which, as of May 2018, has an exhaustive list of elliptic curves whose conductor is at most 400000 . For each of these elliptic curves, we have computed their modified Szpiro ratio and Szpiro ratio. This has been done previously by Bennett and Yazdani [24] where they computed the Szpiro ratio of all elliptic curves in Cremona's database, which at the time had an exhaustive list of elliptic curves with conductor at most 230000 . Table 3.1 summarizes our findings for both the modified Szpiro ratio and Szpiro ratio of elliptic curves in Cremona's database,

Table 3.1.: Modified Szpiro and Szpiro Ratios in Cremona's Database

Conductor	$1-99999$	$100000-199999$	$200000-299999$	$300000-399999$	Total
\# of Curves	657396	624965	607003	594285	2483649
$\sigma_{m}>6$	30641	17903	14774	12949	76267
$\%$ w. $\sigma_{m}>6$	4.66%	2.86%	2.44%	2.18%	3.07%
$\sigma_{m}>7$	7798	3621	2697	2358	16474
$\sigma_{m}>8$	1415	474	303	266	2458
$\sigma_{m}>9$	196	43	15	21	275
$\sigma_{m}>10$	26	2	0	0	28
$\sigma>6$	4061	2561	2096	1861	10579
$\sigma>7$	534	272	214	182	1202
$\sigma>8$	41	15	10	2	68

In contrast to Cremona's database, the Stein-Watkins database [27] as of May 2018 contains 36832795 elliptic curves with conductor at most 10^{8}. This database is constructed by finding elliptic curves whose minimal discriminant $\Delta_{E}^{\min }$ satisfies $\Delta_{E}^{\min } \leq 10^{12}$ and whose conductor is at most 10^{8}. For each rational elliptic curve
which satisfies these conditions, they compute its isogeny class as well as certain twists of representatives in the isogeny class to attain a larger database of elliptic curves which may not satisfy the original assumptions. From this data, they then input more elliptic curves into the database via isogenies and twists. By construction, the Stein-Watkins database does not have an exhaustive list of elliptic curves of conductor at most 10^{8} and furthermore misses most good elliptic curves. To illustrate this, we compared Cremona's database to the Stein-Watkins database for elliptic curves of conductor at most 400000. We found that the Stein-Watkins database has 1766993 elliptic curves or roughly 71.2% of all elliptic curves of conductor at most 400000 . Moreover, the Stein-Watkins database for elliptic curves of conductor at most 400000 contains 14894 good elliptic curves, of these, only 384 elliptic curves satisfy $\sigma(E)>6$. For these reasons, we did not pursue a further study of the Stein-Watkins database.

Constructing an exhaustive database of elliptic curves up to a given conductor is difficult and Cremona's achievement ${ }^{1}$ is the state of the art in this direction. If we instead focus our attention on the naive height of an elliptic curve, then it is much simpler to create an exhaustive database. This has been done recently in [28], where Balakrishnan et al. considered the collection of elliptic curves \mathcal{F}_{n} where

$$
\mathcal{F}_{n}=\left\{[E]_{\mathbb{Q}} \mid E: y^{2}=x^{3}+a_{4} x+a_{6}, a_{4}, a_{6} \in \mathbb{Z}, \Delta_{E} \neq 0, \max \left\{q \left(a_{4}^{3}, 27 a_{6}^{2} \leq n\right.\right.\right.
$$

where $[E]_{\mathbb{Q}}$ denotes the \mathbb{Q}-isomorphism class of E. For $n=2.7 \cdot 10^{10}$, they found that $\# \mathcal{F}_{n}=238764310$. We note that Balakrishnan et al. refer to the quantity $\max \left\{4\left|a_{4}^{3}\right|, 27 a_{6}^{2}\right\}$ as the naive height of E which is slightly different than the one defined in this thesis since it does not depend on a global minimal model. While this collection of elliptic curves is significantly larger than the number of elliptic curves found in Cremona's and the Stein-Watkins database, it is insufficient for studying the explicit side of the modified Szpiro conjecture as the following lemma demonstrates.

[^1]Lemma 3.11 If E is a good curve in \mathcal{F}_{n} where $n=2.7 \cdot 10^{10}$, then the conductor of E is at most 301. In particular, E is in Cremona's database.

Proof Let $E: y^{2}=x^{3}+a_{4} x+a_{6}$ be a good curve contained in \mathcal{F}_{n} of conductor N. Then $N^{6}<\max \left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\}$ where c_{4} and c_{6} are the invariants associated to a global minimal model of E. Since E is contained in \mathcal{F}_{n} it also satisfies $\left\{4\left|a_{4}^{3}\right|, 27 a_{6}^{2}\right\} \leq n$. Let \tilde{c}_{4} and \tilde{c}_{6} denote the invariants associated to the given Weierstrass model of E. Then

$$
\tilde{c}_{4}=-48 a_{4} \quad \text { and } \quad \tilde{c}_{6}=-864 a_{6} .
$$

Since E is given by an integral Weierstrass model, it follows that $c_{4}=u^{-4} \tilde{c}_{6}$ and $c_{6}=u^{-6} \tilde{c}_{6}$ for some positive integer u by Lemma 2.4. Therefore,

$$
\begin{aligned}
N^{6} & <\max \left\{c_{4}^{3}, c_{6}^{2} \leq \max \left\{\not_{4}^{3}, \tilde{c}_{6}^{2}=32^{2} \cdot 27 \max \left\{\not \left\{a_{4}^{3}, 27 a_{6}^{2} \leq 32^{2} \cdot 27^{2} \cdot 10^{9}\right.\right.\right.\right. \\
& \Longrightarrow \quad N<301.19 .
\end{aligned}
$$

3.3.2 New Databases of Elliptic Curves

In order to bypass the bottleneck presented by the aforementioned databases in studying the explicit modified Szpiro conjecture, we will focus on elliptic curves E with $E(\mathbb{Q})_{\text {tors }} \hookleftarrow T$ where $T=C_{2} \times C_{2 m}$ for $m=2,3,4$. Recall that these elliptic curves are parameterized by the curve $\mathcal{X}_{t}(T)$, as defined in Table 2.1. Recall that the naive height of an elliptic curve E is defined as the quantity

$$
h_{\text {naive }}(E)=\frac{1}{12} \log \max \left\{\chi_{4}^{3}, c_{6}^{2}\right.
$$

We will now show that for elliptic curves E with $T \hookrightarrow E(\mathbb{Q})$ we can create an exhaustive database up to a certain naive height.

By Lemma 2.4 there exists relatively prime integers a and b such that $E_{T}(a, b)$ is \mathbb{Q}-isomorphic to $\mathcal{X}_{b / a}$ where $E_{T}=E_{T}(a, b)$ is as defined in Table D.1. By Lemma 2.4 we also have that the discriminant of E_{T} is $\gamma_{T}=\gamma_{T}(a, b)$ and the invariants c_{4} and
c_{6} of the Weierstrass model for E_{T} are given by $\alpha_{T}=\alpha_{T}(a, b)$ and $\beta_{T}=\beta_{T}(a, b)$, respectively. Since γ_{T} is a square, it follows that $\alpha_{T}>\beta_{T}$ from the identity $\alpha_{T}^{3}-\beta_{T}^{2}=$ $1728 \gamma_{T}$.

Now consider the set of rational numbers

$$
S=\left\{(\mid a, b) \in \mathbb{Z}^{2}|a, b \neq 0, \operatorname{gcd}(a, b)=1,|a|,|b| \leq 7000 .\right.
$$

It can be verified with SageMath [29] that $\# S=59580582$. For each T, we construct the following set:

$$
\mathcal{F}_{T}=\left\{E_{T}(a, b)_{\text {reduced }} \mid(a, b) \in S, \gamma_{T}(a, b) \neq 0\right\}
$$

where $E_{T}(a, b)_{\text {reduced }}$ is the reduced minimal model of $E_{T}(a, b)$. In other words, the map

$$
E_{T}(a, b)_{\text {reduced }} \longmapsto\left[E_{T}(a, b)\right]
$$

is a bijection between \mathcal{F}_{T} and the set of \mathbb{Q}-isomorphism classes of elliptic curves which have a representative $E_{T}(a, b)$ for $(a, b) \in S$. Note that $\# \mathcal{F}<\# S$ since the \mathbb{Q}-rational noncuspidal points of the modular curves $X_{1}(2,2 m)$. Recall that the modular curve $X_{1}(2,2 m)$ (with cusps removed) parameterize isomorphism classes of pairs (E, P, Q) where E is a rational elliptic curve and $\langle P, Q\rangle \cong C_{2} \times C_{2 m}$ and $e(P, m Q)=\zeta_{2}$ where e_{2} is the Weil pairing. In particular, the \mathbb{Q}-isomorphism class of E may contain distinct isomorphism classes of pairs $(E,(P, Q))$. In fact, computing the order of \mathcal{F}_{T} shows that this is the case,

T	$C_{2} \times C_{4}$	$C_{2} \times C_{6}$	$C_{2} \times C_{8}$
$\# \mathcal{F}_{T}$	49030354	47003904	34754904

Now let u_{T} and l_{T} be the real numbers defined in Table 3.2
In order to show that \mathcal{F}_{T} contains all elliptic curves $E_{T}(a, b)$ up to a certain naive height, we admit the following result which will be proven in Chapter 5:

Lemma 3.12 Let $c_{4, T}$ be the invariant associated with a global minimal model of $E_{T}(a, b)$. Then $u_{T}^{-4} \alpha_{T} \leq c_{4, T}$.

Table 3.2.: The numbers u_{T} and l_{T}

T	$C_{2} \times C_{4}$	$C_{2} \times C_{6}$	$C_{2} \times C_{8}$
u_{T}	4	16	64
l_{T}	3.2433	6.4865	13.5747

Proof This follows automatically from Theorem 5.14.

We can now show that \mathcal{F}_{T} contains an exhaustive list of rational elliptic curves whose naive height is at most l_{T}. To this end, we will consider the following two sets in the next two results:

$$
R_{+}=\left\{(x, y) \in \mathbb{R}^{2} \mid x, y>0 \quad \text { and } \quad R_{-}=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0, y<0\right.\right.
$$

Lemma 3.13 Let $\epsilon, \delta \geq 0$ with equality holding for at most one them. Then

$$
\alpha_{T}(x, y) \leq \begin{cases}\alpha_{T}(x+\epsilon, y+\delta) & \text { for } T=C_{2} \times C_{4}, C_{2} \times C_{8} \text { and }(x, y) \in R_{+} \tag{3.5}\\ \alpha_{T}(x+\epsilon, y-\delta) & \text { for } T=C_{2} \times C_{6} \text { and }(x, y) \in R_{-}\end{cases}
$$

Proof VIa a c@mputer algebra system such as Mathematica [30] it is verified that the partial derivative $\frac{\partial}{\partial x} \alpha_{T}(x, y)>0$ on R_{+}for each T. Whereas the partial derivative $\frac{\partial}{\partial y} \alpha_{T}(x, y)>0$ on R_{+}for $T=C_{2} \times C_{4}, C_{2} \times C_{8}$ and the partial derivative $\frac{\partial}{\partial y} \alpha_{T}(x, y)<$ 0 on R_{-}for $T=C_{2} \times C_{6}$.

By the Mean Value Theorem, we can find P and P^{\prime} in $R_{ \pm}$such that

$$
\begin{aligned}
& 0<\frac{\partial \alpha_{T}}{\partial x}(P)=\frac{\alpha_{T}(x+\epsilon, y \pm \delta)-\alpha_{T}(x, y \pm \delta)}{\epsilon} \\
& 0< \pm \frac{\partial \alpha_{T}}{\delta_{T}}\left(P^{\prime}\right)= \pm\left(\frac{\alpha_{T}(x, y \pm \delta)-\alpha_{T}(x, y)}{\delta}\right)
\end{aligned}
$$

This yields

$$
\alpha_{T}(x+\epsilon, y \pm \delta)-\alpha_{T}(x, y)=\epsilon \frac{\partial \alpha_{T}}{\partial x}(P) \pm \delta \frac{\partial \alpha_{T}}{\partial y}\left(P^{\prime}\right)>0
$$

Theorem 3.14 Let E be an elliptic curve with $T \hookrightarrow E(\mathbb{Q})$. If $h_{\text {naive }}(E) \leq l_{T}$, then E is \mathbb{Q}-isomorphic to $E_{T}(a, b)$ for some $(a, b) \in S$.

Proof Since $T \hookrightarrow E(\mathbb{Q})$, there exists a rational number t such that E is \mathbb{Q}-isomorphic to $\mathcal{X}_{t}(T)$. We claim that $\mathcal{X}_{t}(T)$ is \mathbb{Q}-isomorphic to the curve $\mathcal{X}_{t_{j}}(T)$ where t_{j} is given in Table 3.3.

Table 3.3.: Quantities for Proof of Theorem 3.14

T	j	t_{j}	u_{j}	r_{j}	s_{j}	w_{j}	I_{j}
$C_{2} \times C_{4}$	1	$\frac{-(1+4 t)}{4}$	1	0	0	0	$\left(f \infty,-\frac{1}{4}\right)$
	2	$\frac{-(1+4 t)}{4(1+8 t)}$	$8 t+1$	$2\left(4 t^{2}+2\right)$	$4 t$	$4 t^{2}(4 t+1)$	$\left(\Varangle \frac{1}{4},-\frac{1}{8}\right)$
	3	$\frac{-t}{1+8 t}$	$8 t+1$	$2\left(4 t^{2}+2\right)$	$4 t$	$4 t^{2}(4 t+1)$	$(x-\infty) x$
$C_{2} \times C_{6}$	1	$\frac{15+t}{-1+t}$	$\frac{t-9}{2(t-3)}$	$\frac{-2(t-5)(t-1)}{(t+3)(t-3)^{2}}$	$\frac{4(1-t)}{t^{2}-9}$	$\frac{4(t-5)(t-1)^{2}}{(t+3)^{2}(t-3)^{3}}$	$(-15,1)$
	2	$\frac{-21+5 t}{-1+t}$	$\frac{t-9}{t+3}$	$\frac{4(5-t)(t-1)}{(t+3)^{2}(t-3)}$	$-\frac{8}{t+3}$	$\frac{16(t-1)(t-5)^{2}}{(t-3)^{2}(t+3)^{3}}$	(17, $\frac{21}{5}$)
	3	$\frac{-9+5 t}{-5+t}$	1	0	0	0	$(6,5) \times$
	4	$\frac{-21+t}{-5+t}$	$\frac{t-9}{2(t-3)}$	$\frac{-2(t-5)(t-1)}{(t+3)(t-3)^{2}}$	$\frac{4(1-t)}{t^{2}-9}$	$\frac{4(t-5)(t-1)^{2}}{(t+3)^{2}(t-3)^{3}}$	(5, 21)
	5	$6-t$	$\frac{t-9}{t+3}$	$\frac{4(5-t)(t-1)}{(t+3)^{2}(t-3)}$	$-\frac{8}{t+3}$	$\frac{16(t-1)(t-5)^{2}}{(t-3)^{2}(t+3)^{3}}$	$(6, \infty)$
$C_{2} \times C_{8}$	1	$\frac{-(1+2 t)}{2}$	$\begin{aligned} & \frac{\left(8 t^{2}+8 t+1\right)}{2 t\left(88 t^{2}-1\right)} . \\ & (2 t+1) \end{aligned}$	$\begin{aligned} & \frac{\left(8 t^{2}+4 t+1\right)}{2 t(1-8 t)^{2}} . \\ & \frac{(2 t+1)(4 t+1)}{1} \end{aligned}$	$\frac{(4 t+1)^{2}}{2 t\left(8 t^{2}-1\right)}$	$\begin{aligned} & \frac{\left(8 t^{2}+4 t+1\right)}{4 t^{2}\left(8 t^{2}-1\right)^{3}} . \\ & \frac{(2 t+1)^{2}(4 t+1)}{1} \\ & \hline \end{aligned}$	$\left(\nrightarrow \infty,-\frac{1}{2}\right)$
	2	$\begin{aligned} & \frac{-(1+4 t)}{4(1+2 t)} \\ & \hline \end{aligned}$	1	0	0	0	$\left(-\frac{1}{2},-\frac{1}{4}\right)$
	3	$\frac{-(1+4 t)}{8 t}$	$\begin{aligned} & \frac{\left(8 t^{2}+8 t+1\right)}{2 t\left(8 t^{2}-1\right)} . \\ & (2 t+1) \end{aligned}$	$\begin{aligned} & \frac{\left(8 t^{2}+4 t+1\right)}{2 t(1-8 t)^{2}} . \\ & \frac{(2 t+1)(4 t+1)}{1} \\ & \hline \end{aligned}$	$\frac{(4 t+1)^{2}}{2 t\left(8 t^{2}-1\right)}$	$\begin{aligned} & \frac{\left(8 t^{2}+4 t+1\right)}{4 t^{2}\left(8 t^{2}-1\right)^{3}} \\ & \frac{(2 t+1)^{2}(4 t+1)}{1} \\ & \hline \end{aligned}$	$\left(\nmid \frac{1}{4}, 0\right)$

For each j, let $u_{j}, r_{j}, s_{j}, w_{j}$ be as given in Table 3.3. The admissible change of variables $x \longmapsto u_{j}^{2} x+r_{j}$ and $y \longmapsto u_{j}^{3} y+u_{j} s_{j} x+w_{j}$ gives a \mathbb{Q}-isomorphism between $\mathcal{X}_{t}(T)$ and $\mathcal{X}_{t_{j}}(T)$.

We now claim that if $t<0($ resp. $t>0)$, then at least one $t_{j}>0\left(\right.$ resp. $\left.t_{j}<0\right)$ for $T=C_{2} \times C_{4}, C_{2} \times C_{8}\left(\right.$ resp. $\left.T=C_{2} \times C_{6}\right)$.

First, suppose T is $C_{2} \times C_{4}$ or $C_{2} \times C_{8}$. It is easily checked that $t_{j}>0$ for $t \in I_{j} \cap \mathbb{Q}$ where I_{j} is the open interval given in Table 3.3.

Similarly, if $T=C_{2} \times C_{6}$, then $t_{j}<0$ for $t \in I_{j} \cap \mathbb{Q}$ where I_{j} is the open interval given in Table 3.3.The claim now follows. By Lemma 2.4, $\mathcal{X}_{b / a}(T)$ is \mathbb{Q}-isomorphic to $E_{T}(a, b)$. Since $E_{T}(a,-b)=E_{T}(-a, b)$, we conclude that if E is an elliptic curve with $T \hookrightarrow E(\mathbb{Q})$, then there are relatively prime integers a and b such that E is \mathbb{Q}-isomorphic to $E_{T}(a, b)$ where $a>0, b>0($ resp. $b<0)$ if $T=C_{2} \times C_{4}, C_{2} \times C_{8}$ (resp. $T=C_{2} \times C_{6}$).
Now let u_{T} be as defined in (3.2) and define $h_{T}=12^{-1} \log \left(\psi_{T}^{-4} \alpha_{T}(x, y)^{3}\right) \cdot$. Set
$S_{1}=\left\{(x, y) \in \mathbb{Z}^{2} \mid x>0, y>7000\right\} \quad S_{1}^{\prime}=\left\{(x, y) \in \mathbb{Z}^{2} \mid x>0, y<-700\right.$ b $\}$
$S_{2}=\left\{(x, y) \in \mathbb{Z}^{2} \mid x>7000, y>0\right\} \quad S_{2}^{\prime}=\left\{(x, y) \in \mathbb{Z}^{2} \mid x>7000, y<0\right\}$
$S_{3}=\left\{(x, y) \in \mathbb{Z}^{2} \mid x>7000, y>7000\right\} \quad S_{3}^{\prime}=\left\{(x, y) \in \mathbb{Z}^{2} \mid x>7000, y<-7000\right\}$
In particular, S_{3} (resp. S_{3}^{\prime}) is the union of S_{1} and S_{2} (resp. S_{1}^{\prime} and S_{2}^{\prime}). By Lemma 3.13, we have that the minimum value of h_{T} on S_{3} (resp. S_{3}^{\prime}) occurs on the boundary of $S_{3}\left(\right.$ resp. $\left.S_{3}^{\prime}\right)$.

$$
\begin{array}{ll}
\left.h_{T}\right|_{S_{3}^{\prime}} \geq l_{T}=\min \left\{\left.h_{T}\right|_{S_{1}},\left.h_{T}\right|_{S_{2}}\right\} & \text { if } T=C_{2} \times C_{4}, C_{2} \times C_{8} \tag{3.6}\\
\left.h_{T}\right|_{S_{3}^{\prime}} \geq l_{T}=\min \left\{\left.\eta_{T}\right|_{S_{1}^{\prime}},\left.h_{T}\right|_{S_{2}^{\prime}}\right. & \text { if } T=C_{2} \times C_{6} .
\end{array}
$$

Now let alpT and uT be the Mathematica input for $\alpha_{T}(x, y)$ and u_{T}, respectively. We then verify that l_{T} is the value claimed in (3.2) via the Mathematica input:

NMinimize [Log[\{12^-1Log[10, alpT/uT~4)^3], $x>7000 \& \& y>0\},\{x, y\}$, Integers] for $T=C_{2} \times C_{4}, C_{2} \times C_{8}$ and
NMinimize[Log [\{12^-1亩og[10, alpT/uT^4) ^3], $x>0 \& \& y<-7000\},\{x, y\}$, Integers]
NMinimize $\left[\log \left[\left\{12^{\wedge}-1 \log [10\right.\right.\right.$, alpT/uT^4) 3$\left.], x>7000 \& \& y<0\right\},\{x, y\}$, Integers] for $T=C_{2} \times C_{6}$.

Lastly, suppose $h_{\text {naive }}\left(E_{T}(a, b)\right)<l_{T}$. By the second claim we may assume $(a, b) \in$ R_{+}if $T=C_{2} \times C_{4}, C_{2} \times C_{8}$ or $(a, b) \in R_{-}$if $T=C_{2} \times C_{6}$. Since

$$
12^{-1} \log \left(\psi_{T}^{-4} \alpha_{T}(a, b)^{3}\right)<h_{\text {naive }}\left(E_{T}(a, b)\right)
$$

by Lemma 3.12 it follows that $(a, b) \in S$ by (3.6), as desired.

Thus \mathcal{F}_{T} contains an exhaustive list of elliptic curves of naive height at most l_{T}. In particular,

T	$C_{2} \times C_{4}$	$C_{2} \times C_{6}$	$C_{2} \times C_{8}$
$\#\left\{E \in \mathcal{F}_{T} \mid h_{\text {naive }}(E)<l_{T}\right\}$	502472	701964	1106884

For each elliptic curve E in \mathcal{F}_{T}, we saved the following information into our database: its reduced minimal model, a pair (a, b) in S such that E is \mathbb{Q}-isomorphic to $E_{T}(a, b)$, its naive height, its modified Szpiro ratio, and its Szpiro ratio. The table below summarizes the data obtained on good elliptic curves in \mathcal{F}_{T}.

T	$C_{2} \times C_{4}$	$C_{2} \times C_{6}$	$C_{2} \times C_{8}$
$\operatorname{Max} \sigma_{m}$	8.4797	8.5262	7.3412
$\operatorname{Max} \sigma$	6.8890	7.2555	6.9407
\# of Curves w. $\sigma_{m}>6$	915	11085	7480
\# of Curves w. $\sigma>6$	79	1139	967

The above table is insufficient in conveying the information obtained from our database of elliptic curves arising from each \mathcal{F}_{T}. To this end, the next three subsections provide histograms for the naive height, modified Szpiro ratio, and Szpiro ratio of those elliptic curves in $\left\{E \in \mathcal{F}_{T} \mid h_{\text {naive }}(E)<l_{T}\right\}$ with a bin size of 10000 . At the end of Appendix B we provide further histograms for the naive height, modified Szpiro ratio, and Szpiro ratio of elliptic curves in \mathcal{F}_{T} with a bin size of 50000 .

Summary of Data for $\mathcal{F}_{C_{2} \times C_{4}}$

Figure 3.1.: Histograms for Exhaustive Subregion of $\mathcal{F}_{C_{2} \times C_{4}}$

Summary of Data for $\mathcal{F}_{C_{2} \times C_{6}}$

Figure 3.2.: Histograms for Exhaustive Subregion of $\mathcal{F}_{C_{2} \times C_{6}}$

Summary of Data for $\mathcal{F}_{C_{2} \times C_{8}}$

Figure 3.3.: Histograms for Exhaustive Subregion of $\mathcal{F}_{C_{2} \times C_{8}}$

The set $\bigcup_{q}\left(\mathcal{F}_{T}\right.$ contains 19480 distinct good elliptic curves. Of these, 225 occur in Cremona's database. By Nitaj's heuristic, we expect to get more good elliptic curves by considering representatives in the isogeny class of these good elliptic curves. Motivated by the remark following Example 3.10, we consider elliptic curves in \mathcal{F}_{T} whose modified Szpiro ratio is at least 5.7. In particular, we construct the following set

$$
\begin{equation*}
\mathcal{S}^{(1)}=\bigcup_{T}\left\{E \in \mathcal{F}_{T} \mid \sigma_{m}(E)>5.7, N_{E}>400000\right\} \tag{3.7}
\end{equation*}
$$

For each $E \in \mathcal{S}^{(1)}$, we compute its isogeny class and consider those \mathbb{Q}-isomorphism classes of elliptic curves which have representatives E with $\sigma_{m}(E)>6$. To this end, for a set S of \mathbb{Q}-isomorphism classes of elliptic curves, let \mathcal{I} be the map defined by

$$
\begin{equation*}
\mathcal{I}(S)=\left\{[E]_{\mathbb{Q}} \mid E \text { is isogenous to a curve in } S \text { and } \sigma_{m}(E)>6\right. \tag{3.8}
\end{equation*}
$$

Returning to the set $\mathcal{S}^{(1)}$ above, we compute the order $\# \mathcal{I}\left(\mathcal{S}^{(1)}\right)=248391$. Since isogenous elliptic curves have the same conductor, we conclude that for each $[E]_{\mathbb{Q}} \in$ $\mathcal{I}\left(\mathcal{S}^{(1)}\right),(E$ is not in Cremona's database. Below we give a brief summary of the elliptic durves found in $\mathcal{I}\left(\mathcal{S}^{(1)}\right)$.

$\#$ of $[E]_{\mathbb{Q}} \in \mathcal{I}\left(\mathcal{S}^{(1)}\right)$ (with $\sigma(E)>6$	Max σ_{m}	Max σ	Max $h_{\text {naive }}$	$\operatorname{Max} N_{E}$
36315	9.2416	7.8063	18.1118	$1.548 \cdot 10^{36}$

In the next two sections, we develop an efficient way of computing good elliptic curves. Specifically, we will construct additional sets $\mathcal{S}^{(j)}$ and then consider $\mathcal{S}=\bigcup_{j}\left(\mathcal{S}^{(j)}\right.$. We will then show that $\mathcal{I}(\mathcal{S})$ has 13870964 distinct \mathbb{Q}-isomorphism classes of elliptic curves whose representatives are good.

We conclude this section by noting that there is a leftward shift in comparing the histograms for the modified Szpiro ratio of $\left\{E \in \mathcal{F}_{T} \mid h_{\text {naive }}(E)<l_{T}\right\}$ and \mathcal{F}. This will be explained in Chapter 6 where we show that the modified Szpiro ratio of an elliptic curve is bounded below by a number depending only on the torsion subgroup of the elliptic curve. Below is the main result which explains the behavior observed in the three histograms.

Theorem 6.6 Let T be one of the fifteen torsion subgroups allowed by Theorem 2.1. If $T \hookrightarrow E(\mathbb{Q})$, then $\sigma_{m}(E)>l_{T}$ where l_{T} is as given below:

T	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	C_{8}
l_{T}	1	1.5	3	3	3	3	4	4

T	C_{9}	C_{10}	C_{12}	$C_{2} \times C_{2}$	$C_{2} \times C_{4}$	$C_{2} \times C_{6}$	$C_{2} \times C_{8}$
l_{T}	4.5	4.5	4.8	2	3	4	4.8

This result motivates the following conjecture which is an analogue the aforementioned Theorem by Browkin et al [18]:

Conjecture 3.15 Assuming the modified Szpiro conjecture, the set of limit points of $\sigma_{m}(E)$ as E ranges over all elliptic curves is equal to the closed interval $[1,6]$. Moreover, if T is one of the fifteen torsion subgroups allowed by Theorem 2.1 and l_{T} is defined in Theorem 6.6, then the set of limit points of $\sigma_{m}(E)$ as E ranges over all elliptic curves with $T \hookrightarrow E(\mathbb{Q})$ is equal to the closed interval $\left[l_{T}, 6\right]$.

In Corollary 6.20 we show that 1 is in the set of limit points of $\sigma_{m}(E)$ as E ranges over all elliptic curves.

3.4 Infinitely Many Good Frey Curves

While Masser [3] proved that there are infinitely many good Frey curves, his proof was non-constructive. Nitaj [22] [23] improved on Masser's result by showing how good $A B C$ triples can be used to construct good elliptic curves, but his approach has to be done one elliptic curve at a time. Our goal in this section and the next chapter is to develop techniques which will allow for the construction of infinitely many good elliptic curves with specified torsion subgroup. Our work is motivated by Lemma 3.3, where fixing an odd prime p results in the explicit family of good $A B C$ triples $\left\{\left(\mathcal{Y}, p^{(p-1) k}-1, p^{(p-1) k}\right)\right\}_{,}, \geq 1$. The main theorem of this section is based on an unpublished work which is included in Appendix A.

Let $P=(a, b, c)$ be an $A B C$ triple with a even and $b \equiv 1 \bmod 4$. For $T=C_{2} \times C_{2 m}$ where $m=1,2,3,4$, let $\mathfrak{A}_{T}=\mathfrak{A}_{T}(a, b), \mathfrak{B}_{T}(a, b), \mathfrak{C}_{T}=C_{T}(a, b)$, and $\mathfrak{D}_{T}=\mathfrak{D}_{T}(a, b)$ be as defined in Table A.3. Assume further that $a \equiv 0 \bmod 3$ if $T=C_{2} \times C_{6}$. Then the elliptic curve $F_{T}=F_{T}(a, b)$ given by the Weierstrass model

$$
F_{T}: y^{2}=x\left(x-\mathfrak{A}_{T}\right)\left(x+\mathfrak{B}_{T}\right)
$$

is semistable and satisfies $F_{T}(\mathbb{Q})_{\text {tors }} \cong T$ by Lemma A.6. Moreover, by Lemma 2.5 the minimal discriminant of F_{T} is $\Delta_{T}=\left(16^{-1} \mathfrak{A}_{T} \mathfrak{B}_{T} \mathfrak{C}_{T}\right)^{2}$ and the invariant $c_{4, T}=$ $c_{4, T}(a, b)$ associated with a global minimal model of F_{T} is

Table 3.4.: The Invariant c_{4} of F_{T}

$c_{4, T}$	T
$a^{8}+60 a^{6} b^{2}+134 a^{4} b^{4}+60 a^{2} b^{6}+b^{8}$	$C_{2} \times C_{2}$
$a^{8}+14 a^{4} b^{4}+b^{8}$	$C_{2} \times C_{4}$
$9 a^{8}+228 a^{6} b^{2}+30 a^{4} b^{4}-12 a^{2} b^{6}+b^{8}$	$C_{2} \times C_{6}$
$a^{16}-8 a^{14} b^{2}+12 a^{12} b^{4}+8 a^{10} b^{6}+230 a^{8} b^{8}+8 a^{6} b^{10}+12 a^{4} b^{12}-8 a^{2} b^{14}+b^{16}$	$C_{2} \times C_{8}$

Lemma 3.16 Let $P=(a, b, c)$ be a good positive $A B C$ triple satisfying $a \equiv 0 \bmod 2$, $b \equiv 1 \bmod 4$, and $\frac{b}{a}>\theta_{T}$ where θ_{T} is as given in Lemma A.2. Assume further that $a \equiv 0 \bmod 3$ if $T=C_{2} \times C_{6}$. Then the Frey curve $F_{T}=F_{T}\left(\mathfrak{A}_{T}, \mathfrak{B}_{T}\right)$ is good and $F_{T}(\mathbb{Q})_{\text {tors }} \cong T$.

Proof By Lemma A.6, $F_{T}(\mathbb{Q})_{\text {tors }} \cong T$. Since F_{T} is a Frey curve we have that the invariants c_{4} and c_{6} associated to a global minimal model of F_{T} satisfy $\max \left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\}=$ c_{4}^{3} since c_{4} is always positive. The congruences on a and b imply that $c_{4}=c_{4, T}$. It, therefore, suffices to show that $c_{4, T}^{3}-N_{T}^{6}>0$ where N_{T} is the conductor of F_{T}. Since F_{T} is semistable,

$$
N_{T}=\operatorname{rad}\left(\mathfrak{A}_{T} \mathfrak{B}_{T} \mathfrak{C}_{T}\right)<\mathfrak{D}_{T}
$$

by Lemma A.4. Note that D_{T} is positive since $\frac{b}{a}>\theta_{T}$. Thus

$$
\begin{equation*}
\frac{c_{4, T}^{3}-N_{T}^{6}}{\mathfrak{D}_{T}(1, t)^{6}}>\frac{c_{4, T}(1, t)^{3}-\mathfrak{D}_{T}(1, t)^{6}}{\mathfrak{D}_{T}(1, t)^{6}} \text { for } t=\frac{b}{a} \tag{3.9}
\end{equation*}
$$

Lastly, for each T, the polynomial $c_{4, T}(1, t)^{3}-\mathfrak{D}_{T}(1, t)^{6}$ is positive on the open interval $\left(\theta_{T}, \infty\right)$ from which we conclude that F_{T} is a good elliptic curve.

Theorem 3.17 For each T, let $P_{0}^{T}=\left(a_{0}, b_{0}, c_{0}\right)$ be a good positive $A B C$ satisfying $a_{0} \equiv 0 \bmod 2, b_{0} \equiv 1 \bmod 4$, and $\frac{b_{0}}{a_{0}}>\theta_{T}$ where θ_{T} is as given in Lemma A.2. Assume further that $a_{0} \equiv 0 \bmod 3$ if $T=C_{2} \times C_{6}$. For $j \geq 1$, define P_{j}^{T} recursively by

$$
P_{j}^{T}=\left(a_{j}, b_{j}, c_{j}\right)=\left(\mathfrak{A}_{T}\left(a_{j-1}, b_{j-1}\right), \mathfrak{B}_{T}\left(a_{j-1}, b_{j-1}\right), \mathfrak{C}_{T}\left(a_{j-1}, b_{j-1}\right)\right)
$$

Then for each j, the Frey curve $F_{T}\left(a_{j}, b_{j}\right)$ is good and $F_{T}\left(a_{j}, b_{j}\right)(\mathbb{Q})_{\text {tors }} \cong T$.

Proof By Proposition A.5, $P_{j}^{T}=\left(a_{j}, b_{j}, c_{j}\right)$ satisfies $a_{j} \equiv 0 \bmod 2, b_{j} \equiv 1 \bmod 4$, and $\frac{b_{j}}{a_{j}}>\theta_{T}$ for each j. For $T=C_{2} \times C_{6}$, if $a_{0} \equiv 0 \bmod 3$, then $a_{j} \equiv 0 \bmod 3$ for each j. Hence P_{j}^{T} is a good positive $A B C$ triple for each j by Proposition A.5. Therefore the result follows by Lemma 3.16.

In Example A. 8 we began with a good $A B C$ triple $P_{0}=\left(a_{0}, b_{0}, c_{0}\right)$. For each T, we constructed an infinite sequence of good $A B C$ triples $P_{j}^{T}=\left(a_{j}, b_{j}, c_{j}\right)$. By Theorem 3.17, each Frey curve $F_{T}\left(a_{j}, b_{j}\right)(\mathbb{Q})_{\text {tors }}$ is a good elliptic curve with torsion subgroup isomorphic to T. Table 3.5 lists the modified Szpiro and Szpiro ratios of the Frey curves corresponding to P_{j}^{T}. Due to computatonal limitations, we could only compute these ratios up to $j=3$.

The above example illustrates that while we can explicitly write down infinitely many good Frey curves E, it is not necessarily the case that $\sigma(E)>6$ infinitely many times. Observe that the main ingredient in proving Lemma 3.16 is the inequality

$$
N_{T}^{6}<\mathfrak{D}_{T}^{6}<c_{4, T}^{3} .
$$

Table 3.5.: Example of Good Frey Curves

T	$C_{2} \times C_{2}$	$C_{2} \times C_{4}$	$C_{2} \times C_{6}$	$C_{2} \times C_{8}$
$\sigma_{m}\left(F_{T}\left(a_{1}, b_{1}\right)\right)$	6.4204	7.4219	6.7269	6.1985
$\sigma\left(F_{T}\left(a_{1}, b_{1}\right)\right)$	5.9524	6.7268	5.8544	5.4642
$\sigma_{m}\left(F_{T}\left(a_{2}, b_{2}\right)\right)$	6.1912	6.3124	6.1666	6.0241
$\sigma\left(F_{T}\left(a_{2}, b_{2}\right)\right)$	6.0511	6.1586	5.6515	5.7399
$\sigma_{m}\left(F_{T}\left(a_{3}, b_{3}\right)\right)$	6.0901	6.0769		
$\sigma\left(F_{T}\left(a_{3}, b_{3}\right)\right)$	6.0656	6.0371		

Therefore, extending Lemma 3.16 to yield $\sigma\left(F_{T}\right)>6$ would require a proof of the inequality

$$
\begin{equation*}
N_{T}^{6}<\mathfrak{D}_{T}^{6}<\left(\frac{\mathfrak{A}_{T} \mathfrak{B}_{T} \mathfrak{C}_{T}}{16}\right)^{2}=\Delta_{T}^{\min }, \tag{3.10}
\end{equation*}
$$

where $\Delta_{T}^{\min }$ is the minimal discriminant of F_{T}. However, for a given T the validity of this inequality may be false or result in stricter assumptions on the good $A B C$ triple. As a result, an analog of Theorem 3.17 under the techniques developed in this section is not possible. To illustrate, we demonstrate what occurs for $T=C_{2} \times C_{2}$ and $T=C_{2} \times C_{4}$. For both of these cases, we consider the difference

$$
\frac{\left(\frac{\mathfrak{A}_{T} \mathfrak{B}_{T} \mathfrak{C}_{T}}{16}\right)^{2}-\mathfrak{D}_{T}^{6}}{\mathfrak{D}_{T}^{6}}=\frac{\left(\mathfrak{A}_{T}(1, t) \mathfrak{B}_{T}(1, t) \mathfrak{C}_{T}(1, t)\right)^{2}-2^{8} \mathfrak{D}_{T}(1, t)^{6}}{2^{8} \mathfrak{D}_{T}(1, t)^{6}}
$$

The polynomial

$$
\left(\mathfrak{A}_{T}(1, t) \mathfrak{B}_{T}(1, t) \mathfrak{C}_{T}(1, t)\right)^{2}-2^{8} \mathfrak{D}_{T}(1, t)^{6}
$$

is never positive for $T=C_{2} \times C_{2}$ and is positive for $T=C_{2} \times C_{4}$ on the interval

$$
\begin{equation*}
\left(-\theta_{1},-1\right) \cup\left(-1,-\theta_{2}\right) \cup\left(\theta_{2}, 1\right) \cup\left(1, \theta_{1}\right) \tag{3.11}
\end{equation*}
$$

where $\theta_{1}=\sqrt[4]{\frac{33+\sqrt{65}}{32}}$ and $\theta_{2}=\sqrt[4]{\frac{33-\sqrt{65}}{32}}$. In particular, inequality (3.10) never holds for $T=C_{2} \times C_{2}$. For $T=C_{2} \times C_{4}$, we consider the $A B C$ triple $P=$
(59969536, 56746089, 116715625) which is good since $q(P) \approx 1.1035$. Moreover, $56746089 \equiv 1 \bmod 4$ and $\frac{56746089}{59969536} \approx 0.94625$ is in the interval (3.11) and so we expect the associated Frey curve to have Szpiro ratio at least 6. Indeed, the elliptic curve $F_{T}=F_{T}(59969536,56746089)$ of conductor $\approx 4.97 \cdot 10^{28}$ satisfies

$$
\sigma_{m}\left(F_{T}\right) \approx 6.6211 \quad \sigma\left(F_{T}\right) \approx 6.3618
$$

Therefore an extension of Theorem 3.17 for infinitely many Frey curves for $T=C_{2} \times C_{4}$ whose Szpiro ratio is at least 6 would require a sequence of good positive $A B C$ triples $P_{j}=\left(a_{j}, b_{j}, c_{j}\right)$ which satisfy the following conditions for each $j: a_{j} \equiv 2 \bmod 4, b_{j} \equiv$ $1 \bmod 4$, and $\frac{b_{j}}{a_{j}}$ is in the interval (3.11). The stricter condition that $\frac{b_{j}}{a_{j}}$ is in the interval (3.11) for infinitely many j is not satisfied by our sequence $P_{j}^{C_{2} \times C_{4}}$. Similar conclusions hold for $C_{2} \times C_{6}$ and $C_{2} \times C_{8}$ and therefore we are only interested in constructing good elliptic curves without requiring any assumptions of the Szpiro ratio.

3.5 Database of Good Elliptic Curves

In section 3.3, we analyzed Cremona's database which contains an exhaustive list of elliptic curves of conductor at most 400000 . This analysis showed that Cremona's database has 76267 good elliptic curves. We then proceeded to construct databases of elliptic curves E with $T \hookrightarrow E(\mathbb{Q})_{\text {tors }}$ where $T \cong C_{2} \times C_{2 m}$ where $m=2,3,4$. This produced a database consisting of $130789162 \mathbb{Q}$-isomorphism classes of elliptic curves. We then considered the subcollection $\mathcal{S}^{(1)}$ as defined in (3.7) which consist of \mathbb{Q}-isomorphism classes of elliptic curves whose conductor and modified Szpiro ratio is at least 400000 and 5.7, respectively. We then considered the set $\mathcal{I}\left(\mathcal{S}^{(1)}\right)$ (where \mathcal{I} is as defined in (3.8) and found that its order is 248391 . Now let $\mathcal{S}^{(2)}=\left\{[\in]_{\mathbb{Q}} \mid E\right.$ is in Cremona's Database and $\sigma_{m}(E)>6 \quad$ so that $\mathcal{S}^{(2)}=\mathcal{I}\left(\mathcal{S}^{(2)}\right)($ since isogenous curves have the same conductor. By Table (3.1), $\# \mathcal{S}^{(2)}=76267$. In particular, the methods of section 3.3 resulted in 324658 good elliptic curves.

In this section, we will construct additional sets $\mathcal{S}^{(j)}$ with the intention of constructing 13870964 good \mathbb{Q}-isomorphism classes of elliptic curves. This will be done by using good $A B C$ triples to construct good elliptic curves via the Frey curves F_{T} of the previous section as well as the elliptic curves $H_{T}=H_{T}(a, b)$ which will be studied in further detail in the next chapter. To this end, let

The $A B C @ H$ me project showed that $\# \mathcal{A}_{10^{18}}=14482065$ and Bart de Smit's webpage [2] as of May 2018 has a file containing all good $A B C$ triples in $\mathcal{A}_{10^{18}}$ available for download. In what follows we will use elements in \mathcal{A}_{n} for $n \leq 10^{18}$ to construct good elliptic curves. Due to computational limitations, we will restrict ourselves to $\mathcal{A}_{n_{j}}$ where n_{j} is as given below

j	1	2	3
n_{j}	$3 \cdot 10^{12}$	10^{11}	10^{10}
$\# \mathcal{A}_{n_{j}}$	359905	116988	51689

In the following subsections we use good $A B C$ triples $(a, b) \in \mathcal{A}_{n_{j}}$ to construct good elliptic curves.

3.5.1 Good Elliptic Curves Arising From F_{T}

Let $T=C_{2} \times C_{2 m}$ where $m=1,2,3,4$ and let $\mathfrak{A}_{T}=\mathfrak{A}_{T}(a, b), \mathfrak{B}_{T}(a, b)$ be as defined in Table A.3. In the previous section, we considered the Frey curve $F_{T}=$ $F_{T}(a, b)$, where

$$
F_{T}: y^{2}=x\left(x-\mathfrak{A}_{T}\right)\left(x+\mathfrak{B}_{T}\right)
$$

and proved in Theorem 3.16 that under the assumptions that $(a, b, a+b)$ is a good positive $A B C$ triple satisfying $a \equiv 0 \bmod 2, b \equiv 1 \bmod 4$, and $\frac{b}{a}>\theta_{T}$ where θ_{T} is as given in Lemma A. 2 we could construct infinitely many good Frey curves under the additional assumption that $a \equiv 0 \bmod 3$ whenever $T=C_{2} \times C_{6}$. However, what if
we drop the assumptions on a and b ? Then $F_{T}(a, b)$ may still be good if $(a, b, a+b)$ is a good $A B C$ triple. Indeed, for $T=C_{2} \times C_{2}$ we have

$$
\sigma_{m}\left(F_{T}(a, b)\right) \approx \begin{cases}6.5648 & \text { if }(a, b)=(1,8) \\ 6.1598 & \text { if }(a, b)=(169,343)\end{cases}
$$

This motivates the study of $F_{T}(a, b)$ for $(a, b) \in \mathcal{A}_{n}$ for some n. In fact, for a pair $(a, b) \in \mathcal{A}_{n}$ for some n, we will consider the elliptic curves $F_{T}(a, b)$ and $F_{T}(-(a+b), a)$. To this end, let

$$
n_{T}= \begin{cases}10^{10} & \text { if } T=C_{2} \times C_{8} \\ 8 \cdot 10^{12} & \text { if } T=C_{2} \times C_{2}, C_{2} \times C_{4}, C_{2} \times C_{6}\end{cases}
$$

where n_{j} is as defined in (3.12). Now consider the set

$$
\mathcal{S}_{T}=\left\{[\mathcal{E}]_{\mathbb{Q}} \mid E \text { is } \mathbb{Q} \text {-isomorphic to } F_{T}(a, b) \text { or } F_{T}(a,-(a+b)) \text { for }(a, b) \in \mathcal{A}_{n_{T}}\right.
$$

By construction, $F_{C_{2} \times C_{2}}(a, b)$ and $F_{C_{2} \times C_{4}}(a, b)$ are isogenous for all $(a, b) \in \mathcal{A}_{n_{1}}$ and therefore

$$
\mathcal{I}\left(\mathcal{S}_{C_{2} \times C_{2}}\right)=\mathcal{I}\left(\mathcal{S}_{C_{2} \times C_{4}}\right) .
$$

In particular, we only compute $\mathcal{S}_{C_{2} \times C_{2}}$ since our goal is to construct the set $\bigcup_{T}\left(\mathcal{I}\left(\mathcal{S}_{T}\right)\right.$.
The following table summarizes the data obtained from \mathcal{S}_{T} and $\mathcal{I}\left(\mathcal{S}_{T}\right)$

	$\mathcal{S}_{C_{2} \times C_{2}}$	$\mathcal{S}_{C_{2} \times C_{6}}$	$\mathcal{S}_{C_{2} \times C_{8}}$	$\mathcal{I}\left(\mathcal{S}_{C_{2} \times C_{2}}\right)$	$\mathcal{I}\left(\mathcal{S}_{C_{2} \times C_{6}}\right)$	$\mathcal{I}\left(\mathcal{S}_{C_{2} \times C_{8}}\right)$	
\# $(-)$	719768	719803	103334	4777029	4961688	803659	
$\operatorname{Max} \sigma_{m}$	8.0503	7.9683	7.1115	8.6852	8.5825	8.0997	
Max σ	7.0510	7.4256	6.9407	7.3622	7.5762	7.1800	
\# w. $\sigma>6$	110848	113765	10172	852672	1215292	220938	
Max $h_{\text {naive }}$	25.293	25.402	40.000	25.5940	25.7167	40.7743	
\# w. $\sigma_{m}>6$	531726	580396	102364				
Max N_{E}	$2.5 \cdot 10^{50}$	$1.0 \cdot 10^{51}$	$9.8 \cdot 10^{79}$				

Now let $\mathcal{S}^{(3)}=\bigcup_{T} \mathcal{S}_{T}$ and we compute $\# \mathcal{I}\left(\boldsymbol{\mathcal { ~ }}^{(3)}\right) \neq 10542376$.

3.5.2 Good Elliptic Curves Arising From H_{T}

In the following chapter we prove that for each of the fifteen torsion subgroups T allowed by Theorem 2.1, there are infinitely many good elliptic curves T such that $E(\mathbb{Q})_{\text {tors }} \cong T$. For each T except $T=C_{5}$ let $H_{T}=H_{T}(a, b)$ be given by the Weierstrass model

$$
H_{T}: y^{2}+x y=x^{3}-\frac{A_{T}-1}{48} x-\frac{3 A_{T}+2 B_{T}-1}{1728}
$$

where $A_{T}=A_{T}(a, b)$ and $B_{T}=B_{T}(a, b)$ are as defined in Table (E.1) and Table (E.2), respectively. In the next chapter, we prove under certain assumptions on a and b, that H_{T} is given by a global minimal model and $H_{T}(\mathbb{Q})_{\text {tors }} \cong T$. Following a similar approach to the previous section will then result in an explicit proof that there are infinitely many good elliptic curves with specified torsion. In this section, however, we focus on the specific case of when $T=C_{7}, C_{9}, C_{10}, C_{12}, C_{2} \times C_{8}$. For these T let

$$
m_{T}= \begin{cases}3 \cdot 10^{12} & \text { if } T=C_{7} \\ \left(10^{11}\right. & \text { if } T=C_{10} \\ 10^{10} & \text { if } T=C_{9}, C_{12}, C_{2} \times C_{8}\end{cases}
$$

where n_{j} is as defined in (3.12). Now consider the set

$$
\mathfrak{S}_{T}= \begin{cases}\left\{[E]_{\mathbb{Q}} \mid E \cong H_{T}(a, b) \text { or } H_{T}(b, a) \text { for }(a, b) \in \mathcal{A}_{m_{T}}\right. & \text { for } T=C_{7}, C_{9}, C_{10} \\ \left\{[E]_{\mathbb{Q}} \mid E \cong H_{T}(-a, b) \text { or } H_{T}(b, a) \text { for }(a, b) \in \mathcal{A}_{m_{T}}\right. & \text { for } T=C_{12} \\ {\left[[E]_{\mathbb{Q}} \mid E \cong H_{T}(a, b) \text { for }(a, b) \in \mathcal{A}_{m_{T}}\right.} & \text { for } T=C_{2} \times C_{8} .\end{cases}
$$

The table below summarizes the data pertaining to the isomorphism classes of elliptic curves in \mathfrak{S}_{T}

\mathfrak{S}_{T}	C_{7}	C_{9}	C_{10}	C_{12}	$C_{2} \times C_{8}$
$\# \mathfrak{S}_{T}$	719810	103378	233976	103378	51679
Max σ_{m}	7.2265	6.9232	7.3152	6.9645	7.1098
Max σ	6.9203	6.6725	6.6937	6.6035	6.9407
\# of Curves w. $\sigma_{m}>6$	663202	96216	193497	102188	51679
\# of Curves w. $\sigma>6$	32295	4524	14487	9335	5494
Max $h_{\text {naive }}$	24.98	30.00	33.33	40.00	40.00
Max Conductor	$1.4 \cdot 10^{50}$	$1.06 \cdot 10^{60}$	$7.79 \cdot 10^{66}$	$9.82 \cdot 10^{79}$	$9.82 \cdot 10^{79}$

Next we compute $\mathcal{I}\left(\mathfrak{S}_{T}\right)$ for $T \neq C_{12}, C_{2} \times C_{8}$ and find

$\mathcal{I}\left(\mathfrak{S}_{T}\right)$	C_{7}	C_{9}	C_{10}
$\# \mathcal{I}\left(\mathfrak{S}_{T}\right)$	1337841	291101	814414
$\operatorname{Max} \sigma_{m}$	9.4006	7.5658	7.6216
$\operatorname{Max} \sigma$	7.2053	6.8701	7.3306
$\#$ of Curves w. $\sigma>6$	291618	62291	176518
Max $h_{\text {naive }}$	25.3731	30.39	33.60

For $T=C_{12}$ we compute a proper subset of $\mathcal{I}\left(\mathfrak{S}_{T}\right)$ which we denote by $\mathcal{J}\left(\mathfrak{S}_{T}\right)$:

$\# \mathcal{J}\left(\mathfrak{S}_{C_{12}}\right)$	Max σ_{m}	$\operatorname{Max} \sigma$	$\#$ of Curves w. $\sigma>6$	Max $h_{\text {naive }}$
561584	7.3700	6.8430	150443	40.41

Lastly, let $\mathcal{S}^{(4)}=\bigcup_{\mathscr{T}}\left(\mathfrak{S}_{T}\right.$ and we compute $\# \mathcal{I}\left(\mathcal{S}^{(4)}\right) \neq 3056619$.

3.5.3 Good Elliptic Curves due to Bennett, Nitaj, and Yazdani

In [22] and [23], Nitaj found 142 good elliptic curves. For each elliptic curve in Nitaj's papers, we computed its \mathbb{Q}-isogeny class. This, in turn, provided us with

336 distinct good elliptic curves with conductor at least 400000 . The table below summarizes the data of these 336 good elliptic curves:

$\operatorname{Max} \sigma_{m}$	$\operatorname{Max} \sigma$	\# of Curves w. $\sigma>6$	$\operatorname{Max} h_{\text {naive }}$	$\operatorname{Max} N_{E}$
10.1148	8.8119	315	21.68	$1.18 \cdot 10^{40}$

Building on Nitaj's techniques, Bennett and Yazdani [24] found 25 good elliptic curves with Szpiro ratio at least 8.4861. In addition, Bennett and Yazdani found an additional 1933 good elliptic curves, of which the aforementioned 25 were the ones with best known Szpiro ratio. For each of these elliptic curves, we also computed their \mathbb{Q}-isogeny class. This resulted in 3253 distinct good elliptic curves with conductor at least 400000 . The table below summarizes the data of these 3253 good elliptic curves:

$\operatorname{Max} \sigma_{m}$	$\operatorname{Max} \sigma$	\# of Curves w. $\sigma>6$	$\operatorname{Max} h_{\text {naive }}$	$\operatorname{Max} N_{E}$
10.1609	9.0200	3200	13.7936	$3.80 \cdot 10^{20}$

Let $\mathcal{S}^{(5)}$ be the set of \mathbb{Q}-isomorphism classes of the elliptic curves found by Bennett, Nitaj, and Yazdani. Then $\# \mathcal{I}\left(\mathcal{S}^{(5)}\right)=3467$. The intention of these works was to construct good elliptic curves with high Szpiro ratio. Consequently, almost all elliptic curves of conductor at least 400000 appearing in Appendix B are due to the works of Nitaj and Bennett and Yazdani.

3.5.4 The Explicit Modified Szpiro Conjecture

Let $\mathcal{S}=\bigcup_{j=1}^{5} \mathcal{I}\left(\mathcal{S}^{(j)}\right) .($ Then \mathcal{S} contains $13870964 \mathbb{Q}$-isomorphism classes of good elliptic curves from which we create our database of good elliptic curves. For each $[E]_{\mathbb{Q}}$ in \mathcal{S} we save the following information into our database:

$$
\begin{array}{|l|l|l|l|l|l|}
\hline N_{E} & h_{\text {naive }}(E) & {\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right]_{\text {reduced }}} & \sigma_{m}(E) & \sigma(E) & E(\mathbb{Q})_{\text {tors }} \\
\hline
\end{array}
$$

where $\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right]_{\text {reduced }}$ are the unique invariants of the reduced minimal model of E. That is E is \mathbb{Q}-isomorphic to the elliptic curve

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} .
$$

Table 3.6.: Summary of Data of Elliptic Curves in \mathcal{S}

T	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}
\# w. $\sigma_{m}>6$	801523	3890675	98058	2089799	69
\# w. $\sigma>6$	304931	1248830	16824	305948	18
$\max \sigma_{m}$	16.0587	13.3951	9.8648	10.1145	8.5371
$\max \sigma$	9.0200	8.8119	8.6224	8.5352	8.0067

T	C_{6}	C_{7}	C_{8}	C_{9}	C_{10}
\# w. $\sigma_{m}>6$	1923692	663228	209723	96221	404826
\# w. $\sigma>6$	481403	32311	26307	96221	31307
$\max \sigma_{m}$	9.7672	8.6345	8.2265	6.9232	7.3163
$\max \sigma$	8.3096	7.3625	7.3403	6.6725	7.0006

T	C_{12}	$C_{2} \times C_{2}$	$C_{2} \times C_{4}$	$C_{2} \times C_{6}$	$C_{2} \times C_{8}$
\# w. $\sigma_{m}>6$	91037	1407167	1422306	663101	109539
\# w. $\sigma>6$	10348	299930	119765	125004	11106
$\max \sigma_{m}$	7.8752	9.7559	8.4797	8.5262	7.3412
$\max \sigma$	6.9035	8.4619	7.4605	7.4256	6.9407

Table 3.6 summarizes the data obtained from our database for each of the fifteen torsion subgroups allowed by Theorem 2.1.

For each of the fifteen torsion subgroups T, we order the elliptic curves in \mathcal{S} by their modified Szpiro and Szpiro ratio. These rankings can be found in Appendix B. The data acquired through this study motivates the following explicit formulation of the modified Szpiro conjecture and Szpiro conjecture

Conjecture 3.18 (The Explicit Modified Szpiro Conjecture) Let E be an elliptic curve of conductor $N_{E}>300000$ with $T \hookrightarrow E(\mathbb{Q})$. Then $\max \left\{\left|c_{4}^{3}, c_{6}^{2}\right|\right\}<N_{E}^{f_{T}}$ and $\left|\Delta_{E}^{\text {min }}\right|<N_{E}^{g_{T}}$ where

T	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	C_{8}
f_{T}	11	10.2	9.87	10.2	8.54	9.77	8.63	8.23
g_{T}	9.02	8.82	8.63	8.54	8.01	8.31	7.37	7.35

T	C_{9}	C_{10}	C_{12}	$C_{2} \times C_{2}$	$C_{2} \times C_{4}$	$C_{2} \times C_{6}$	$C_{2} \times C_{8}$
f_{T}	6.93	7.32	7.88	9.76	8.48	8.53	7.35
g_{T}	6.68	7.01	6.91	8.47	7.47	7.43	6.95

Corollary 3.19 Assuming the explicit modified Szpiro conjecture, the database \mathcal{F}_{T} constructed in section 3.3.2 contains all elliptic curves of conductor at most N_{T} where

$$
N_{T}= \begin{cases}38866 & \text { if } T=C_{2} \times C_{4} \\ 1.334 \cdot 10^{9} & \text { if } T=C_{2} \times C_{6} \\ 1.454 \cdot 10^{22} & \text { if } T=C_{2} \times C_{8}\end{cases}
$$

Proof Suppose E is an elliptid curve with $T \hookrightarrow E(\mathbb{Q})$ and $h_{\text {naive }}(E)=k$. Applying the explicit modified Szpiro conjecture yields

$$
\begin{aligned}
\frac{1}{12} \log \max \left\{c_{4}^{3}, c_{6}^{2}\right. & =k \\
& \Longrightarrow \quad \max \left\{\chi_{4}^{3}, c_{6}^{2}=10^{12 k}<N_{E}^{f_{T}}\right. \\
& \Longrightarrow \quad 10^{12 k / f}<N_{E} .
\end{aligned}
$$

Now let l_{T} is as defined in 3.2. By Theorem 3.14, \mathcal{F}_{T} contains an exhaustive list of all elliptic curves up to naive height l_{T}. The result now follows by taking $k=l_{T}$ above.

3.5.5 Further Analysis of \mathcal{S}

We now consider the following subset of \mathcal{S},

$$
\mathcal{S}^{\sigma_{m}}=\left\{\left[E_{1}\right]_{\mathbb{Q}},\left[E_{2}\right]_{\mathbb{Q}}, \ldots,\left[E_{n}\right]_{\mathbb{Q}}\right.
$$

which satisfies $\sigma_{m}\left(E_{j}\right)>\sigma_{m}\left(E_{k}\right)>6.5$ and $h_{\text {naive }}\left(E_{j}\right)<h_{\text {naive }}\left(E_{k}\right)$ for $j<k$. This determines $\mathcal{S}^{\sigma_{m}}$ uniquely and similarly we define \mathcal{S}^{σ} as the unique subset of \mathcal{S} which satisfies $\sigma\left(E_{j}\right)>\sigma\left(E_{k}\right)>6.5$ and $h_{\text {naive }}\left(E_{j}\right)<h_{\text {naive }}\left(E_{k}\right)$ for $j<k$. Then $\# \mathcal{S}^{\sigma_{m}}=$ 150 and $\# \mathcal{S}^{\sigma}=120$. Tables B. 1 and B. 2 list the approximate conductor, naive height, modified Szpiro ratio, Szpiro ratio, and torsion subgroup of each element in $\mathcal{S}^{\sigma_{m}}$ and \mathcal{S}^{σ}, respectively. Figure 3.4 contains the scatter plot of the modified Szpiro ratio (resp. Szpiro ratio) against the naive height for each element in $\mathcal{S}^{\sigma_{m}}$ (resp. $\mathcal{S}^{\sigma_{m}}$). In addition, each scatter plot has a logarithmic trendline which acts as a heuristic of expected largest modified Szpiro ratio or Szpiro ratio for a given naive height between 0 and 40. Figure 3.5 consists of histograms for the modified Szpiro ratio, Szpiro ratio, and naive height of elliptic curves in \mathcal{S}.

Summary of Data for Elliptic Curves in \mathcal{S}

Figure 3.4.: Histograms for Elliptic Curves in \mathcal{S}^{σ}

(a) Modified Szpiro Ratio for Elliptic Curves in \mathcal{S}

(b) Szpiro Ratio for Elliptic Curves in \mathcal{S}

(c) Naive Height for Elliptic Curves in \mathcal{S}

Figure 3.5.: Histograms for Elliptic Curves in \mathcal{S}

4. GOOD ELLIPTIC CURVES WITH SPECIFIED TORSION SUBGROUP

In this chapter we extend the result of Chapter 3.4 by proving the following Theorem.

Theorem 4.1 For each of the fifteen torsion subgroups T allowed by Theorem 2.1, there are infinitely many elliptic curves E with $E(\mathbb{Q})_{\text {tors }} \cong T$.

While this was proven for $T=C_{2} \times C_{2 m}$ for $m=1,2,3,4$, the method relied on results in Appendix A. The result of Appendix A relied on the construction of the $A B C$ triple $\left(\mathfrak{A}_{T}(a, b), \mathfrak{B}_{T}(a, b), \mathfrak{C}_{T}(a, b)\right)$. Since these $A B C$ triples were constructed via the forgetful map $X_{1}(2,2 m) \rightarrow X(2)$ for $m=2,3,4$, we have that this approach does not work for constructing good elliptic curves E with $T \hookrightarrow E(\mathbb{Q})_{\text {tors }}$ where $T \neq C_{2} \times C_{2 m}$ for $m=1,2,3,4$. Instead, for each of the fifteen torsion subgroups T, we will first construct modular curves Y_{T} consisting of isomorphism classes of pairs (E, P) where E is an elliptic curve and P is a torsion point on E. We will then prove that there is a subset of $Y_{T}(\mathbb{Q})$ consisting of isomorphism classes of pairs (E, P) where E is a rational elliptic curve with $E(\mathbb{Q})_{\text {tors }} \cong T$. We then consider two-parameter families of elliptic curves $H_{T}=H_{T}(a, b)$ with the property that the discriminant of H_{T} is minimal when a and b satisfy certain conditions and show that the isomorphism class of $\left(H_{T}, P\right)$ for P a torsion point on H_{T} lies in the aforementioned subset of $Y_{T}(\mathbb{Q})$ which allows us to conclude that $H_{T}(\mathbb{Q})_{\text {tors }} \cong T$. In section 4 , we use the minimal discriminant of H_{T} as well as the associated invariants c_{4} and c_{6} to prove that for each T except $T=C_{1}, C_{2}, C_{5}$ we can construct an infinite sequence of good $A B C$ triples. We combine all these results in section 4.4 to prove Theorem 4.1 and conclude the chapter with examples for each T.

4.1 Models of Elliptic Curves

Let T be one of the fifteen torsion subgroups allowed by Theorem 2.1. For $t \in$ \mathbb{P}^{1}, define \mathcal{Y}_{t} as the mapping which takes T to the elliptic curve $\mathcal{Y}_{t}(T)$ where the Weierstrass model of $\mathcal{Y}_{t}(T)$ for $T \neq C_{1}$ is given in Table 4.1.

a_{1}	a_{2}	a_{3}	a_{4}	T
0	$\begin{aligned} & -2\left(t^{4}-12 t^{3}+\right. \\ & \left.6 t^{2}-12 t+1\right) \end{aligned}$	0	$(t+1)^{8}$	C_{2}
1	0	$\frac{t(t+1)\left(t^{2}+t+1\right)^{3}}{\left(t^{3}+6 t^{2}+3 t-1\right)^{3}}$	0	C_{3}
1	$\frac{\left(t^{2}+1\right)^{2}}{(8 t)^{2}}$	a_{2}	0	C_{4}
$1-\frac{t^{20}}{32}$	$-\frac{t^{20}}{32}$	a_{2}	0	C_{5}
$\frac{2\left(t^{4}-4 t^{3}+10 t^{2}-4 t+1\right)}{\left(t^{2}-4 t+1\right)^{2}}$	$\frac{-8 t(t-1)^{2}\left(t^{2}+1\right)^{2}}{\left(t^{2}-4 t+1\right)^{4}}$	a_{2}	0	C_{6}
$-t^{2}-t+1$	$-t(t+1)^{2}$	a_{2}	0	C_{7}
$\frac{t^{4}-4 t^{3}-2 t^{2}-4 t+1}{\left(t^{2}+1\right)(t-1)^{2}}$	$\frac{-t(1+t)^{2}}{\left(1+t^{2}\right)^{2}}$	a_{2}	0	C_{8}
$-t^{3}-2 t^{2}-t+1$	$\begin{aligned} & -t(t+1)^{2} \\ & \left(t^{2}+t+1\right) \end{aligned}$	a_{2}	0	C_{9}
$\frac{2 t^{3}+4 t^{2}-1}{t^{2}-t-1}$	$\frac{-t(2 t+1)(t+1)^{3}}{\left(t^{2}-t-1\right)^{2}}$	a_{2}	0	C_{10}
$\frac{-t^{4}-2 t^{3}+2 t^{2}-2 t+1}{-t^{3}(t+1)}$	$\frac{(t-1)\left(t^{2}-t+1\right)\left(t^{2}+1\right)}{t^{4}(t+1)^{2}}$	a_{2}	0	C_{12}
0	$\begin{aligned} t^{4} & -12 t^{3}+ \\ 6 t^{2} & -12 t+1 \end{aligned}$	0	$\begin{gathered} -8 t(t-1)^{4} \\ \quad\left(t^{2}+1\right) \end{gathered}$	$C_{2} \times C_{2}$
1	$\frac{-t\left(1+t^{2}\right)}{2(1-t)^{4}}$	a_{2}	0	$C_{2} \times C_{4}$
$\frac{2 t^{4}-4 t^{3}-4 t^{2}-4 t+2}{(t+1)^{2}\left(t^{2}-4 t+1\right)}$	$\frac{-8 t^{2}(t-1)^{2}\left(t^{2}+1\right)}{(t+1)^{4}\left(t^{2}-4 t+1\right)^{2}}$	a_{2}	0	$C_{2} \times C_{6}$
$\frac{1+4 t-t^{4}}{(1+t)\left(1+2 t-t^{2}\right)}$	$\frac{t(1-t)\left(1+t^{2}\right)}{\left(1+2 t-t^{2}\right)^{2}}$	a_{2}	0	$C_{2} \times C_{8}$

Table 4.1.: The Weierstrass model for $\mathcal{Y}_{t}(T): y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x$

For $T=C_{1}$, let

$$
\mathcal{Y}_{t}\left(C_{1}\right): y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where a_{1}, a_{2}, a_{3} are as defined in Table 4.1 for $T=C_{9}$ and

$$
\begin{aligned}
& a_{4}=-5 t(t+1)\left(\begin{array}{l}
t t^{8}+9 t^{8}+28 t^{7}+53 t^{6}+61 t^{5}+47 t^{4}+25 t^{3}+8 t^{2}-1 \\
a_{6}=-t(t+1) \\
\left(\begin{array}{l}
15
\end{array} 23 t^{14}+162 t^{13}+643 t^{12}+1621 t^{11}+\right. \\
8878 t^{10}+3778 t^{9}+3721 t^{8}+2719 t^{7}+1453 t^{6}+ \\
608 t^{5}+266 t^{4}+145 t^{3}+65 t^{2}+13 t-1
\end{array}\right)\left(\begin{array}{l}
(
\end{array}\right)\left(\begin{array}{l}
\end{array}\right)
\end{aligned}
$$

For $T \neq C_{1}$, it is checked via SageMath [29] that the point $(0,0)$ of $\mathcal{Y}_{t}(T)$ is a point of order N where

$$
N= \begin{cases}\frac{1}{2}|T| & \text { if } T=C_{2} \times C_{2 n} \text { for } n=1,2,3,4 \tag{4.1}\\ |T| & \text { otherwise }\end{cases}
$$

Now let Y_{T} be the set consisting of isomorphism classes of pairs (E, P) where each isomorphism class (E, P) contains a representative $\left(\mathcal{Y}_{t}(T),(0,0)\right)$ for $T \neq C_{1}$ and $\left(\mathcal{Y}_{t}\left(C_{1}\right), \mathcal{O}\right)$. For each T, we endow the set Y_{T} with the structure of a modular curve via the rational map $\mathbb{P}^{1} \rightarrow Y_{T}$ where t is mapped to the isomorphism class of $\left(\mathcal{Y}_{t}(T), P\right)$ where P is \mathcal{O} or $(0,0)$ if $T=C_{1}$ or all other T, respectively.

The next three results will aid us in proving that there is a subset of $Y_{T}(\mathbb{Q})$ consisting of isomorphism classes (E, P) with $E(\mathbb{Q})_{\text {tors }} \cong T$.

Remark When T is clear from context, we will simply write \mathcal{Y}_{t} in place of $\mathcal{Y}_{t}(T)$.
Lemma 4.2 For each T, there exists an embedding $T \hookrightarrow \mathcal{Y}_{t}(T)(\mathbb{Q})_{\text {tors }}$.

Proof For $T=C_{1}$ there is nothing to show. For the remaining T, we have by the discussion above that the point $P=(0,0)$ is a torsion point of order N where N is as given in (4.1). Therefore for $T \neq C_{2} \times C_{2 m}$ for $m=1,2,3,4$, we have that $T \hookrightarrow \mathcal{Y}_{t}(T)(\mathbb{Q})$.

Next, assume $T=C_{2} \times C_{2}$. The admissible change of variables $x \longmapsto \frac{1}{a^{4}} x$ and $y \longmapsto \frac{1}{a^{6}} y$ gives a \mathbb{Q}-isomorphism between the elliptic curve \mathcal{Y}_{t} and the elliptic curve

$$
y^{2}=x\left(\not x-8 a b\left(q^{2}+b^{2}\right)\right)\left(x\left(+(a-b)^{4}\right)(\right.
$$

which has $\left\langle\left(8 a b\left(a^{2}+b^{2}\right), 0\right),(0,0)\right\rangle \cong C_{2} \times C_{2}$. Thus $T \hookrightarrow \mathcal{Y}_{t}(\mathbb{Q})$. For the remaining T, let t^{\prime} be as defined in the table below

T	$C_{2} \times C_{4}$	$C_{2} \times C_{6}$	$C_{2} \times C_{8}$
t^{\prime}	$\frac{t}{2(t-1)^{2}}$	$\frac{1+8 t+t^{2}}{1+t^{2}}$	$\frac{1}{2(t-1)}$

Then $\mathcal{Y}_{t}(T)=\mathcal{X}_{t^{\prime}}(T)$ where $\mathcal{X}_{t^{\prime}}(T)$ is as given in Table 2.1. In particular, $T \hookrightarrow$ $\mathcal{Y}_{t}(T)(\mathbb{Q})$.

Lemma 4.3 Fix $t \in \mathbb{Q}$ and consider the elliptic curve $\mathcal{Y}_{t}(T)$. Then

$$
\begin{aligned}
& \mathcal{Y}_{t}\left(C_{4}\right) \xrightarrow{2} \mathcal{Y}_{t}\left(C_{2} \times C_{4}\right) \xrightarrow{2} \mathcal{Y}_{t}\left(C_{2} \times C_{2}\right) \xrightarrow{2} \mathcal{Y}_{t}\left(C_{2}\right) \\
& \mathcal{Y}_{t}\left(C_{9}\right) \xrightarrow{3} \mathcal{Y}_{t}\left(C_{3}\right) \xrightarrow{3} \mathcal{Y}_{t}\left(C_{1}\right)
\end{aligned}
$$

where each $\mathcal{Y}_{t}(T) \xrightarrow{p} \mathcal{Y}_{t}\left(T^{\prime}\right)$ is an isogeny defined over \mathbb{Q} of degree p whose kernel is rational.

Proof In [31], Nitaj completely classified the isogeny class over \mathbb{Q} of a rational elliptic E with $E(\mathbb{Q})_{\text {tors }} \cong C_{9}$. Our models for $\mathcal{Y}_{t}(T)$ for $T=C_{1}, C_{3}, C_{9}$ are isomorphic over \mathbb{Q} to the three models given by Nitaj. We omit the proof of the first row, but remark that the proof follows mutandis mutatis to the one given by [31]. Namely, the rational isogeny $\mathcal{Y}_{t}(T) \xrightarrow{2} \mathcal{Y}_{t}\left(T^{\prime}\right)$ is obtained by applying Vélu's formulas [32] to the elliptic curve $\mathcal{Y}_{t}(T)$ and its torsion point of order $2, P=\frac{N}{2}(0,0)$ where N is as in (4.1).

Lemma 4.4 The rational map $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ defined by $f(t)=\frac{t^{2}}{(t+1)^{2}(2 t+1)}$ induces a morphism $X_{1}(10) \rightarrow X_{1}(5)$ with $[(E, P)] \rightarrow[(E, 2 P)]$. In particular, if E is an elliptic curve with a K-torsion point of order 5 , then E has a K-rational torsion point of order 10 if and only if E is isomorphic over K to an elliptic curve with Weierstrass equation

$$
\begin{equation*}
y^{2}+(1-f(t)) x y-f(t) y=x^{3}-f(t) x^{2} \text { and } t \in K \tag{4.2}
\end{equation*}
$$

Proof Since $\mathcal{Y}_{t}\left(C_{10}\right)=\mathcal{X}_{t+1}\left(C_{10}\right)$, it follows that $\mathcal{Y}_{t}\left(C_{10}\right)$ and $X_{1}(10)$ are isomorphic as modular curves. Therefore the rational map $\eta_{1}: \mathbb{P}^{1} \rightarrow X_{1}(10)$ defined by $t \longmapsto$ $\left[\left(\mathcal{Y}_{t}\left(C_{10}\right),(0,0)\right)\right]$ is an isomorphism of curves since $X_{1}(10)$ has genus 0 . The universal elliptic curve for $X_{1}(5)$ is given by

$$
\mathcal{X}_{t}\left(C_{5}\right): y^{2}+(1-t) x y-t y=x^{3}-t x^{2}
$$

Consequently, we have an isomorphism of curves $\eta_{2}: \mathbb{P}^{1} \rightarrow X_{1}(5)$ defined by $t \longmapsto$ $\left[\left(\mathcal{X}_{t}\left(C_{5}\right),(0,0)\right)\right]$. Let $g=\eta_{2} \circ f \circ \eta_{1}^{-1}$ so that the following diagram commutes.

Then $g\left(\left[\left(\mathcal{Y}_{t}\left(C_{10}\right),(0,0)\right)\right]\right)=\left[\left(\mathfrak{X}_{f(t)}\left(C_{5}\right),(0,0)\right)\right]$. Lastly, writing $\mathcal{Y}_{t}\left(C_{10}\right)$ in Tate normal form with respect to $2 \cdot(\mathbb{Q} 0)$ results is the Weierstrass equation of $\mathcal{X}_{f(t)}\left(C_{5}\right)$. Hence g is a well-defined morphism of curves.

Proposition 4.5 For $T=C_{5}$, let $t=2^{n}$ for some positive integer n. For all other T, let $t=\frac{b}{a}$ where a and b are relatively prime positive integers with $a \equiv 0 \bmod 6$. Assume further that $v_{2}(a)$ is even if $T=C_{2}, C_{4}$. Then

$$
\mathcal{Y}_{t}(T)(\mathbb{Q})_{\text {tors }} \cong T
$$

Proof By Lemma 4.2, $T \hookrightarrow \mathcal{Y}_{t}(T)(\mathbb{Q})_{\text {tors }}$ for each T. Consequently, it suffices to show $\left|\mathcal{Y}_{t}(T)(\mathbb{Q})_{\text {tors }}\right|=|T|$. Observe that for any non-trivial isogeny $\phi: E \rightarrow E^{\prime}$ we have the following equality via the First Isomorphism Theorem:

$$
\begin{equation*}
\left|E^{\prime}(\mathbb{Q})_{\text {tors }}\right||E(\mathbb{Q})[\phi]|=\mid E(\mathbb{Q})_{\text {tors }}\left[E^{\prime}(\mathbb{Q})_{\text {tors }}: \phi\left(E(\mathbb{Q})_{\text {tors }}\right)\right] . \tag{4.3}
\end{equation*}
$$

We now claim that $\mathcal{Y}_{t}(T)(\mathbb{Q})_{\text {tors }}$ is not divisible by an odd prime for $T=C_{2}, C_{4}$, and $C_{2} \times C_{2}$. By Lemma 4.3, $\mathcal{Y}_{t}(T)$ for $T=C_{2}, C_{4}, C_{2} \times C_{2}$ is 2^{k}-isogenous to the
curve $\mathcal{Y}_{t}\left(C_{2} \times C_{4}\right)$ where k is either 1 or 2 . Let $\phi_{T}: \mathcal{Y}_{t}(T) \rightarrow \mathcal{Y}_{t}\left(C_{2} \times C_{4}\right)$ be the degree 2^{k} isogeny for $T=C_{2}, C_{4}, C_{2} \times C_{2}$. Now let

$$
\left[\mathcal{Y}_{t}\left(C_{2} \times C_{4}\right)(\mathbb{Q})_{\text {tors }}: \phi\left(\mathcal{Y}_{t}(T)(\mathbb{Q})_{\text {tors }}\right)\right]=l
$$

for some integer l. Taking $E=\mathcal{Y}_{t}(T)$ and $E^{\prime}=\mathcal{Y}_{t}\left(C_{2} \times C_{4}\right)$ in (4.3), we obtain

$$
\frac{2^{k+3}}{l}=\left|\mathcal{Y}_{t}(T)(\mathbb{Q})_{\mathrm{tors}}\right|
$$

since $\left|\mathcal{Y}_{t}\left(C_{2} \times C_{4}\right)(\mathbb{Q})_{\text {tors }}\right|=8$. In particular, $\left|\mathcal{Y}_{t}(T)(\mathbb{Q})_{\text {tors }}\right|$ is not divisible by an odd prime as claimed. We now prove the Proposition by considering various cases separately.

Case I. By Theorem 2.1, $\left|\mathcal{Y}_{t}(T)(\mathbb{Q})_{\text {tors }}\right| \in\{1,2,3,4,5,6,7,8,9,10,12,16\}$. Therefore $\mathcal{Y}_{t}(T)(\mathbb{Q})_{\text {tors }} \cong T$ for $T=C_{7}, C_{9}, C_{10}, C_{12}, C_{2} \times C_{6}, C_{2} \times C_{8}$.

Case II. We now show the Proposition for $T=C_{1}, C_{3}$. By [31], we know that the isogeny class over \mathbb{Q} containing an elliptic curve with torsion subgroup isomorphic to C_{9}, contains exactly 3 isomorphism classes of rational elliptic curves. Therefore by Lemma 4.3 we have that the isogeny class over \mathbb{Q} of $\mathcal{Y}_{t}\left(C_{9}\right)$ is $\left\{\left[\mathcal{Y}_{t}\left(C_{1}\right)\right]_{\mathbb{Q}},\left[\mathcal{Y}_{t}\left(C_{3}\right)\right]_{\mathbb{Q}}\right.$, $\left.\left[\mathcal{Y}_{t}\left(C_{9}\right)\right]_{\mathbb{Q}}\right\}$ where $[E]_{\mathbb{Q}}$ denotes the \mathbb{Q}-isomorphism class of E. By [33, Proposition 3], $\mathcal{Y}_{t}\left(C_{9}\right)$ is isogenous over \mathbb{Q} to an elliptic curve with trivial torsion. Since $C_{3} \hookrightarrow$ $\mathcal{Y}_{t}\left(C_{3}\right)(\mathbb{Q})$, it follows that $\mathcal{Y}_{t}\left(C_{1}\right)(\mathbb{Q})_{\text {tors }}$ is trivial. Now let $\phi: \mathcal{Y}_{t}\left(C_{3}\right) \rightarrow \mathcal{Y}_{t}\left(C_{1}\right)$ be the 3 -isogeny with rational kernel from Lemma 4.3. We claim that

$$
3=\left|\mathcal{Y}_{t}\left(C_{3}\right)(\mathbb{Q})[\phi]\right|=\left|\mathcal{Y}_{t}\left(C_{3}\right)(\mathbb{Q})_{\text {tors }}\right| .
$$

Indeed, this follows upon choosing $E=\mathcal{Y}_{t}\left(C_{3}\right)$ and $E^{\prime}=\mathcal{Y}_{t}\left(C_{1}\right)$ in (4.3) since $\mathcal{Y}_{t}\left(C_{1}\right)(\mathbb{Q})_{\text {tors }}$ is trivial.

Case III. Assume $T=C_{2} \times C_{4}$. By Theorem 2.1, $\left|\mathcal{Y}_{t}\left(C_{2} \times C_{4}\right)(\mathbb{Q})_{\text {tors }}\right| \in\{8,16\}$. In fact, $\mathcal{Y}_{t}\left(C_{2} \times C_{4}\right)(\mathbb{Q})_{\text {tors }}$ is either $C_{2} \times C_{4}$ or $C_{2} \times C_{8}$. Our model for $\mathcal{Y}_{t}\left(C_{2} \times C_{4}\right)$ differs by a linear change of variable in t from the model given in [34], which parametrizes elliptic curves F over $\mathbb{Q}(i)$ having $F(\mathbb{Q}(i))_{\text {tors }} \cong C_{4} \times C_{4}$. Thus $\mathcal{Y}_{t}\left(C_{2} \times C_{4}\right)(\mathbb{Q}(i))_{\text {tors }} \cong$ $C_{4} \times C_{4}$ and therefore $C_{2} \times C_{8} \nrightarrow \mathcal{Y}_{t}\left(C_{2} \times C_{4}\right)(\mathbb{Q}(i))_{\text {tors }}$. Hence $\mathcal{Y}_{t}\left(C_{2} \times C_{4}\right)(\mathbb{Q})_{\text {tors }} \cong$ $C_{2} \times C_{4}$.

Case IV. Next, assume $T=C_{2} \times C_{2}$. By the claim at the start of the proof, we know that $\left|\mathcal{Y}_{t}\left(C_{2} \times C_{2}\right)(\mathbb{Q})_{\text {tors }}\right|$ is not divisible by an odd prime. Consequently, by Theorem 2.1 we have $\left|\mathcal{Y}_{t}\left(C_{2} \times C_{2}\right)(\mathbb{Q})_{\text {tors }}\right| \in\{4,8,16\}$. In fact, $\mathcal{Y}_{t}\left(C_{2} \times C_{2}\right)(\mathbb{Q})_{\text {tors }}$ is either $C_{2} \times C_{2}, C_{2} \times C_{4}$, or $C_{2} \times C_{8}$. By the proof of Lemma 4.3, \mathcal{Y}_{t} is \mathbb{Q}-isomorphic to the elliptic curve given by the Weierstrass model

$$
y^{2}=x\left(\nsupseteq-8 a b\left(a^{2}+b^{2}\right)\right)\left(\not\left(+(a-b)^{4}\right)\right.
$$

This model satisfies the assumptions of [35, Main Theorem 1] and therefore we have that $\mathcal{Y}_{t}\left(C_{2} \times C_{2}\right)(\mathbb{Q})_{\text {tors }} \cong C_{2} \times C_{2}$ if $8 a b\left(a^{2}+b^{2}\right)$ is not a square. If it were a square we would have a nontrivial integer solution to the Diophantine equation $x^{4}-y^{4}=z^{2}$ since

$$
8 a b\left(a^{2}+b^{2}\right)\left((a-b)^{4}=(a+b)^{4}\right.
$$

This contradicts Fermat's Theorem and therefore $\mathcal{Y}_{t}\left(C_{2} \times C_{2}\right)(\mathbb{Q})_{\text {tors }} \cong C_{2} \times C_{2}$.
Case V. Next, assume $T=C_{5}$. By Theorem 2.1, it suffices to show that $C_{10} \nLeftarrow$ $\mathcal{Y}_{t}\left(C_{5}\right)(\mathbb{Q})_{\text {tors }}$. Observe that $\mathcal{Y}_{t}\left(C_{5}\right)$ is already in Tate normal form and therefore by Lemma 4.4, it suffices to show that there is no rational number $t=\frac{u}{v}$ with

$$
\begin{equation*}
2^{5(4 n-1)}=\frac{u^{2} v}{(u+v)^{2}(2 u+v)} \tag{4.4}
\end{equation*}
$$

Towards a contradiction, suppose this equality holds. Now consider the quantities $u^{2} v$ and $(u+v)^{2}(2 u+v)$ as polynomials in $\mathbb{Z}[u, v, r, s]$ and set

$$
\begin{aligned}
& \mu=-5 u^{2} r-4 u v r-v^{2} r+16 u^{2} s+36 u v s+22 v^{2} s \\
& \nu=u^{2} r-8 u v s+2 v^{2} s
\end{aligned}
$$

Then

$$
\begin{equation*}
\mu u^{2} v+\nu(u+v)^{2}(2 u+v)=2\left(r u^{5}+s v^{5}\right) \tag{4.5}
\end{equation*}
$$

Without loss of generality, u and v are relatively prime integers and therefore we may find integers r and s such that $r u^{5}+s v^{5}=1$. Therefore by (4.5) $d=$ $\operatorname{gcd}\left(\psi^{2} v,(u+v)^{2}(2 u+v)\right)$ divides 2. If $d=1$, then $(u+v)^{2}(2 u+v)= \pm 1$ and $u^{2} v= \pm 2^{5(4 n-1)}$. By parity considerations on u and v, there are no integers where
this holds. If $d=2$, then $(u+v)^{2}(2 u+v)= \pm 2$ and $u^{2} v=2^{4(5 n-1)}$. If u is even, then v is even which is a contradiction since they are relatively prime. Consequently, $u= \pm 1$ which also gives a contradiction. Hence, no such rational numbers exist and we conclude that $\mathcal{Y}_{t}\left(C_{5}\right)(\mathbb{Q})_{\text {tors }} \cong C_{5}$.

Case VI. Next, assume $T=C_{8}$. It suffices to show that $C_{2} \times C_{2} \nrightarrow \mathcal{Y}_{t}\left(C_{8}\right)(\mathbb{Q})_{\text {tors }}$ by Theorem 2.1. To show this, we consider the admissible change of variables $x \longmapsto$ $u_{T}^{2} x+r_{T}$ and $y \longmapsto u_{T}^{3} y+u_{T}^{2} s_{T} x+w_{T}$ where

$$
\begin{aligned}
u_{T} & =\frac{1}{2(a-b)^{2}\left(a^{2}+b^{2}\right)} \quad r_{T}=-\frac{\left(a^{2}-b^{2}\right)^{2}}{4\left(a^{2}+b^{2}\right)^{2}} \quad w_{T}=\frac{(a-b)^{2}(a+b)^{4}}{8\left(a^{2}+b^{2}\right)^{3}} \\
s_{T} & =-\frac{a^{4}-4 a^{3} b-2 a^{2} b^{2}-4 a b^{3}+b^{4}}{2(a-b)^{2}\left(a^{2}+b^{2}\right)} .
\end{aligned}
$$

This admissible change of variables gives a \mathbb{Q}-isomorphism between $\mathcal{Y}_{t}\left(C_{8}\right)$ and the elliptic curve

$$
y^{2}=x^{3}-2\left(\oint^{8}-4 a^{6} b^{2}-26 a^{4} b^{4}-4 a^{2} b^{6}+b^{8}\right) x^{2}+\left(a^{2}-b^{2}\right)^{8} x
$$

Let a_{2} and a_{4} denote the coefficients of this Weierstrass model and observe that

$$
a_{2}^{2}-4 a_{4}=-256 a^{4} b^{4}\left(q^{2}+2 a b-b^{2}\right)\left(q^{2}-2 a b-b^{2}\right)\left(q^{2}+b^{2}\right)^{2}
$$

Moreover, $C_{2} \times C_{2} \hookrightarrow \mathcal{Y}_{t}\left(C_{8}\right)(\mathbb{Q})_{\text {tors }}$ if and only if $a_{2}^{2}-4 a_{4}$ is a square if and only if $-\left(a^{2}+2 a b-b^{2}\right)\left(a^{2}-2 a b-b^{2}\right)$ is a square. Since $a \equiv 0 \bmod 6$ and $b^{2} \equiv 1 \bmod 4$, we observe that

$$
\begin{equation*}
-\left(q^{2}+2 a b-b^{2}\right)\left(q^{2}-2 a b-b^{2}\right) \neq-1 \bmod 4 \tag{4.6}
\end{equation*}
$$

Thus $a_{2}^{2}-4 a_{4}$ is not a square since (4.6) is not congruent to 1 modulo 4. In particular, $C_{2} \times C_{2} \nrightarrow \mathcal{Y}_{t}\left(C_{8}\right)(\mathbb{Q})_{\text {tors }}$ which shows that $\mathcal{Y}_{t}\left(C_{8}\right)(\mathbb{Q})_{\text {tors }} \cong C_{8}$.

It remains to prove the Proposition for $T=C_{2}, C_{4}, C_{6}, C_{8}$. To prove these cases we will consider the elliptic curve

$$
\begin{aligned}
\mathcal{Z}_{t}(T): y^{2} & =x\left(x^{2}+2 m_{T} x+m_{T}^{2}-n_{T}^{2} d_{T}\right)(\\
& =x\left(\not (+ (\not n _ { T } + n _ { T } \sqrt { d _ { T } })) \left(\not\left(+\left(\not n_{T}-n_{T} \sqrt{d_{T}}\right)\right)(\right.\right.
\end{aligned}
$$

Table 4.2.: Quantities for $T=C_{2}, C_{4}, C_{6}$

u_{T}	r_{T}	s_{T}	w_{T}	T
$-\frac{1}{2(a-b)^{2}}$	0	$-\frac{1}{2}$	0	C_{2}
$\frac{1}{8 a b}$	$-\frac{\left(a^{2}+b^{2}\right)^{2}}{64 a^{2} b^{2}}$	$-\frac{1}{2}$	0	C_{4}
$\frac{1}{\left(a^{2}-4 a b+b^{2}\right)^{2}}$	$-\frac{\left(a^{2}+b^{2}\right)^{2}}{\left(a^{2}-4 a b+b^{2}\right)^{2}}$	$-\frac{a^{4}-4 a^{3} b+10 a^{2} b^{2}-4 a b^{3}+b^{4}}{\left(a^{2}-4 a b+b^{2}\right)^{2}}$	$\frac{\left(a^{2}+b^{2}\right)^{4}}{\left(a^{2}-4 a b+b^{2}\right)^{4}}$	C_{6}

d_{T}	m_{T}	n_{T}	T
$-2 a b\left(a^{2}+b^{2}\right)$	$-\left(a^{4}-12 a^{3} b+6 a^{2} b^{2}-12 a b^{3}+b^{4}\right)$	$4(a-b)^{2}$	C_{2}
-1	$-\left(a^{2}-2 a b-b^{2}\right)\left(a^{2}+2 a b-b^{2}\right)$	$4 a b\left(a^{2}-b^{2}\right)$	C_{4}
	$-\left(a^{8}-4 a^{7} b+4 a^{6} b^{2}+20 a^{5} b^{3}-\right.$		
$a b\left(a^{2}-a b+b^{2}\right)$	$26 a^{4} b^{4}+20 a^{3} b^{5}+4 a^{2} b^{6}-$	$8 a b(a-b)^{3}(a+b)$	C_{6}
	$\left.4 a b^{7}+b^{8}\right)$		

where d_{T}, m_{T}, and n_{T} are as defined in Table 4.2.
Case VII. Next, assume $T=C_{2}$. Let $u_{T}, r_{T}, s_{T}, w_{T}$ be as defined in Table 4.2. The admissible change of variables $x \longmapsto u_{T}^{2} x+r_{T}$ and $y \longmapsto u_{T}^{3} y+u_{T}^{2} s_{T} x+w_{T}$ gives a \mathbb{Q}-isomorphism between $\mathcal{Y}_{t}\left(C_{2}\right)$ and $\mathcal{Z}_{t}\left(C_{2}\right)$. Now observe that the discriminant of the quadratic $x^{2}+2 m_{T} x+m_{T}^{2}-n_{T}^{2} d_{T}$ is

$$
\begin{equation*}
4 m_{T}^{2}-4\left(m_{T}^{2}-n_{T}^{2} d_{T}\right)=4 d_{T} n_{T}^{2}=-128 a b\left(a^{2}+b^{2}\right)(a-b)^{4} \tag{4.7}
\end{equation*}
$$

Since a and b are assumed to be positive, the quantity (4.7) is negative and therefore is not a square. In particular, $C_{2} \times C_{2} \nrightarrow \mathcal{Y}_{t}\left(C_{2}\right)(\mathbb{Q})_{\text {tors }}$. By the claim at the start of the proof, we know that $\left|\mathcal{Y}_{t}\left(C_{2}\right)(\mathbb{Q})_{\text {tors }}\right|$ is not divisible by an odd prime. Therefore by Theorem 2.1, $\mathcal{Y}_{t}\left(C_{2}\right)(\mathbb{Q})_{\text {tors }}$ is isomorphic to either C_{2}, C_{4}, or C_{8}. In particular, $\mathcal{Y}_{t}\left(C_{2}\right)(\mathbb{Q})_{\text {tors }} \cong C_{2}$ if $\mathcal{Y}_{t}\left(C_{2}\right)(\mathbb{Q})_{\text {tors }}$ does not contain a point of order 4 . We will show this by applying the main theorem of [36]. To apply this Theorem, we first need to verify that m_{T} and $n_{T} d_{T}$ are relatively prime under our assumptions on a and b.

To show this, we consider m_{T} and $n_{T} d_{T}$ as polynomials in $R=\mathbb{Z}[a, b, r, s]$. Let μ_{T}^{\prime} and ν_{T}^{\prime} be the polynomials defined in Tables E. 7 and E.8, respectively. In particular, $\mu_{T}^{\prime}, \nu_{T}^{\prime} \in R$. Then the we have the identity

$$
\begin{equation*}
\mu_{T}^{\prime} m_{T}+\nu_{T}^{\prime} n_{T} d_{T}=2^{8}\left(r a^{9}+s b^{9}\right)(\tag{4.8}
\end{equation*}
$$

Now let a and b be as in the assumption. Then for a given integer $k \geq 1$, we may find integers r and s such that $r a^{k}+s b^{k}=1$. Therefore, by (4.8), $\operatorname{gcd}\left(m_{T}, n_{T} d_{T}\right)$ divides 2^{8}. Since a is even, it follows that $m_{T} \equiv-b^{4} \bmod 2$ and so m_{T} is odd. Hence $\operatorname{gcd}\left(m_{T}, n_{T} d_{T}\right)=1$, and so we may use the main theorem of [36].

Now write $d_{T}=d^{\prime} h^{2}$ with d^{\prime} squarefree and set $n^{\prime}=n_{T} h . \quad$ By [36], $C_{4} \hookrightarrow$ $\mathcal{Y}_{t}\left(C_{2}\right)(\mathbb{Q})_{\text {tors }}$ if and only if there exist relatively prime integers u and v satisfying $m_{T}=u^{2}+v^{2} d^{\prime}$ with $n^{\prime}=2 u v$. Towards a contradiction, we suppose this is the case. Since b is odd, we have that $m_{T} \equiv-1 \bmod 4$ and $n^{\prime}=2 u v$ implies that exactly one of u or v is even. Therefore $u^{2}+v^{2} d^{\prime} \equiv-1 \bmod 4$ if and only if u is even and $v^{2} d^{\prime}$ is odd with $d^{\prime} \equiv-1 \bmod 4$. Since $v_{2}(a)$ is even, we have that d^{\prime} is even, which is a contradiction. Thus, $\mathcal{Y}_{t}\left(C_{2}\right)(\mathbb{Q})_{\text {tors }} \cong C_{2}$.

Case VIII. Next, assume $T=C_{4}$. Let $u_{T}, r_{T}, s_{T}, w_{T}$ be as defined in Table 4.2. The admissible change of variables $x \longmapsto u_{T}^{2} x+r_{T}$ and $y \longmapsto u_{T}^{3} y+u_{T}^{2} s_{T} x+w_{T}$ gives a \mathbb{Q}-isomorphism between $\mathcal{Y}_{t}\left(C_{4}\right)$ and $\mathcal{Z}_{t}\left(C_{4}\right)$. Now observe that the discriminant of the quadratic $x^{2}+2 m_{T} x+m_{T}^{2}-n_{T}^{2} d_{T}$ is

$$
4 m_{T}^{2}-4\left(m_{T}^{2}-n_{T}^{2} d_{T}\right)\left(=4 d_{T} n_{T}^{2}=-64 a^{2} b^{2}\left(a^{2}-b^{2}\right)^{2}\right.
$$

is always negative and therefore is not a square. In particular, $C_{2} \times C_{2} \nrightarrow \mathcal{Y}_{t}\left(C_{4}\right)(\mathbb{Q})_{\text {tors }}$. By the claim at the start of the proof, we know that $\left|\mathcal{Y}_{t}\left(C_{4}\right)(\mathbb{Q})_{\text {tors }}\right|$ is not divisible by an odd prime. Therefore by Theorem 2.1, $\mathcal{Y}_{t}\left(C_{4}\right)(\mathbb{Q})_{\text {tors }}$ is isomorphic to either C_{4}, or C_{8}. In particular, $\mathcal{Y}_{t}\left(C_{4}\right)(\mathbb{Q})_{\text {tors }} \cong T$ if $\mathcal{Y}_{t}\left(C_{4}\right)(\mathbb{Q})_{\text {tors }}$ does not contain a point of order 8 . We will show this by applying the main theorem of [36]. To do so, we must first verify that m_{T} and $n_{T} d_{T}$ are relatively prime under our assumptions on a and
b. To this end, consider m_{T} and $n_{T} d_{T}$ as polynomials in $R=\mathbb{Z}[a, b, r, s]$. Let μ_{T}^{\prime} and ν_{T}^{\prime} be the polynomials defined in Tables E. 7 and E.8, respectively. Then

$$
\mu_{T}^{\prime} m_{T}+\nu_{T}^{\prime} n_{T} d_{T}=2^{4}\left(r a^{7}+s b^{7}\right)
$$

Now let a and b be as in the assumption. Then for a given integer $k \geq 1$, we may find integers r and s such that $r a^{k}+s b^{k}=1$. Consequently $\operatorname{gcd}\left(m_{T}, n_{T} d_{T}\right)$ divides 2^{4}. But $m_{T} \equiv-b^{4} \bmod 2$ and therefore m_{T} is odd since b is relatively prime to a. In particular, $\operatorname{gcd}\left(m_{T}, n_{T} d_{T}\right)=1$ and so we may use the main theorem of [36]. By [36], $\mathcal{Y}_{t}\left(C_{4}\right)(\mathbb{Q})_{\text {tors }} \cong C_{8}$ if and only if there exist non-zero integers u, v, w such that $m_{T}=u^{4}+v^{2} w^{2} d_{T}, n_{T}=2 u^{2} v w$, and $2 u^{2}-v^{2}=w^{2} d_{T}$. Towards a contradiction, suppose $\mathcal{Y}_{t}\left(C_{4}\right)(\mathbb{Q})_{\text {tors }} \cong C_{8}$. Then $2 a b\left(a^{2}-b^{2}\right)=u^{2} v w$ with $m_{T}=u^{4}-v^{2} w^{2}$ for nonzero integers u, v, w. In particular, at least one of u, v, w must be even. Since $m_{T} \equiv-1 \bmod 4$, we verify that $u^{4}-v^{2} w^{2} \equiv-1 \bmod 4$ if and only if u is even and $v^{2} w^{2} \equiv 1 \bmod 4$. Since $v_{2}(a)$ is even, it follows that one of v or w must be even which is a contradiction. Hence $\mathcal{Y}_{t}\left(C_{4}\right)(\mathbb{Q})_{\text {tors }} \cong C_{4}$.

Case IX. Lastly, assume $T=C_{6}$ and let $u_{T}, r_{T}, s_{T}, w_{T}$ be as defined in Table 4.2. The admissible change of variables $x \longmapsto u_{T}^{2} x+r_{T}$ and $y \longmapsto u_{T}^{3} y+u_{T}^{2} s_{T} x+w_{T}$ gives a \mathbb{Q}-isomorphism between $\mathcal{Y}_{t}\left(C_{6}\right)$ and $\mathcal{Z}_{t}\left(C_{6}\right)$. Observe that the discriminant of the quadratic $x^{2}+2 m_{T} x+m_{T}^{2}-n_{T}^{2} d_{T}$ is

$$
4 m_{T}^{2}-4\left(m_{T}^{2}-n_{T}^{2} d_{T}\right)\left(=4 d_{T} n_{T}^{2}=256 a b(a-b)^{6}(a+b)^{2}\left(a^{2}-a b+b^{2}\right)\right.
$$

is a square if and only if $a b\left(a^{2}-a b+b^{2}\right)$ is a square. Since a and b are relatively prime, we have that both a and b are relatively prime to $\left(a^{2}-a b+b^{2}\right)$. In particular, $a b\left(a^{2}-a b+b^{2}\right)$ is a square if and only if a, b, and $a^{2}-a b+b^{2}$ are squares. We claim this is not the case. Towards a contradiction, suppose a, b, and $a^{2}-a b+b^{2}$ are squares. Then

$$
(X, Y)=\left(\frac { 2 } { b } \left(\left\{+\sqrt{a^{2}-a b+b^{2}}\right), \frac{2}{b} \sqrt{\frac{a}{b}}\left(\not 2\left(a-b+2 \sqrt{a^{2}-a b+b^{2}}\right)\right)\right.\right.
$$

is a rational point on the elliptic curve $y^{2}=x^{3}-x^{2}-4 x+4$. The Mordell-Weil group of this elliptic curve is isomorphic to $C_{2} \times C_{4}$ and it is equal as a set to

$$
\{\mathcal{O},(4, \pm 6),(\pm 2,0),(0, \pm 2),(1,0)\}
$$

Our desired contradiction is now obtained since

$$
X=0 \Longrightarrow a=b ; Y=0 \Longrightarrow a=0 \text { or } b=0 ; \text { and } X=4 \Longrightarrow a=b \text { or } b=0 .
$$

Therefore $4 d_{T} n_{T}^{2}$ is not a square which is equivalent to $C_{2} \times C_{2} \nrightarrow \mathcal{Y}_{t}\left(C_{6}\right)(\mathbb{Q})_{\text {tors }}$. By Theorem 2.1, $\mathcal{Y}_{t}\left(C_{6}\right)(\mathbb{Q})_{\text {tors }}$ is isomorphic to either C_{6}, or C_{12}. It suffices to show that $C_{12} \nrightarrow \mathcal{Y}_{t}\left(C_{6}\right)(\mathbb{Q})_{\text {tors }}$. This is equivalent to showing that $C_{4} \nrightarrow \mathcal{Y}_{t}\left(C_{6}\right)(\mathbb{Q})_{\text {tors }}$. As with the previous two cases, we first show that m_{T} and $n_{T} d_{T}$ are relatively prime. To this end, let μ_{T}^{\prime} and ν_{T}^{\prime} be the polynomials defined in Tables E. 7 and E.8, respectively and consider m_{T} and $n_{T} d_{T}$ as polynomials in $R=\mathbb{Z}[a, b, r, s]$. Then

$$
\mu_{T}^{\prime} m_{T}+\nu_{T}^{\prime} n_{T} d_{T}=2^{7} 3\left(r a^{17}+s b^{17}\right)
$$

Now let a and b be as in the assumption. Then for a given integer $k \geq 1$, we may find integers r and s such that $r a^{k}+s b^{k}=1$. Therefore, $\operatorname{gcd}\left(m_{T}, n_{T} d_{T}\right)$ divides $2^{7} 3$ for each T. Since $a \equiv 0 \bmod 6$, it follows that $m_{T} \equiv-b^{8} \bmod 6$ and so $m_{T} \equiv-1 \bmod 6$. Hence $\operatorname{gcd}\left(m_{T}, n_{T} d_{T}\right)=1$. We may, therefore, use the main theorem of [36].

Let $d_{T}=d^{\prime} h^{2}$ with d^{\prime} squarefree and set $n^{\prime}=n_{T} h$. By [36], $C_{4} \hookrightarrow \mathcal{Y}_{t}\left(C_{6}\right)(\mathbb{Q})_{\text {tors }}$ if and only if there exist relatively prime integers u and v satisfying $m_{T}=u^{2}+v^{2} d^{\prime}$ with $n^{\prime}=2 u v$. Towards a contradiction, we suppose this is the case. Since d_{T} is always positive, we have that $u^{2}+v^{2} d^{\prime}$ is always positive and therefore $m_{T} \neq u^{2}+v^{2} d^{\prime}$ since m_{T} is always negative whenever a and b are positive. Thus $C_{4} \nrightarrow \mathcal{Y}_{t}\left(C_{6}\right)(\mathbb{Q})_{\text {tors }}$ and therefore $\mathcal{Y}_{t}\left(C_{6}\right)(\mathbb{Q})_{\text {tors }} \cong C_{6}$ which concludes the proof.

Remark If $t=\frac{2209}{18}$, then $\mathcal{Y}_{t}\left(C_{4}\right)(\mathbb{Q})_{\text {tors }} \cong C_{8}$, which shows the need for the assumption of $v_{2}(a)$ being even.

4.2 Elliptic Curves with Minimal Discriminant

Consider the polynomial ring $R=\mathbb{Q}[a, b]$. For each T we define the polynomials $A_{T}=A_{T}(a, b), B_{T}=B_{T}(a, b), D_{T}=D_{T}(a, b)$, and $\hat{D}_{T}=\hat{D}_{T}(a, b)$ as given in Tables E.1, E.2, E.3, and E.4, respectively. Our first result can be verified with a computer algebra system.

Lemma 4.6 For each T, the identity $A_{T}^{3}-B_{T}^{2}=1728 D_{T}$ holds in R. Moreover, let μ_{T} and ν_{T} be as defined in Tables E. 5 and E.6, respectively. Then $\mu_{T}, \nu_{T} \in \mathbb{Z}[a, b, r, s]$ and $\mu_{T} A_{T}+\nu_{T} B_{T}$ is the quantity given in the Table 4.3.

Table 4.3.: $\mu_{T} A_{T}+\nu_{T} B_{T}$

$\mu_{T} A_{T}+\nu_{T} B_{T}$	T	$\mu_{T} A_{T}+\nu_{T} B_{T}$	T
$-2^{4} 3^{21}\left(r a^{29}+s b^{29}\right)$	C_{1}	$2^{4} 3^{4}\left(r a^{39}+s b^{29}\right)$	C_{9}
$2^{22} 3^{2}\left(r a^{19}+s b^{19}\right)$	C_{2}	$-2^{3} 3^{2} 5\left(r a^{29}+s b^{29}\right)$	C_{10}
$2^{4} 3^{12}\left(r a^{29}+s b^{29}\right)$	C_{3}	$2^{7} 3^{4}\left(r a^{39}+s b^{39}\right)$	C_{12}
$2^{14} 3^{2}\left(r a^{18}+s b^{18}\right)$	C_{4}	$2^{14} 3^{2}\left(r a^{18}+s b^{18}\right)$	$C_{2} \times C_{2}$
$2^{49} 3^{2} 5$	C_{5}	$2^{6} 3^{2}\left(r a^{16}+s b^{16}\right)$	$C_{2} \times C_{4}$
$2^{22} 3^{4}\left(r a^{39}+s b^{39}\right)$	C_{6}	$2^{14} 3^{4}\left(r a^{39}+s b^{39}\right)$	$C_{2} \times C_{6}$
$2^{4} 3^{2} 7\left(r a^{19}+s b^{19}\right)$	C_{7}	$2^{14} 3^{2}\left(r a^{38}+s b^{38}\right)$	$C_{2} \times C_{8}$
$2^{22} 3^{2}\left(r a^{38}+s b^{38}\right)$	C_{8}		

Proposition 4.7 Let T be one of the fifteen torsion subgroups in Theorem 2.1. For $T \neq C_{5}$, suppose a and b be relatively prime integers with $a \equiv 0 \bmod 6$. Moreover, (i) for $T=C_{5}$, assume that $b=2^{n+1}$ for some nonnegative integer n; (ii) for $T=C_{10}$, assume that $a \equiv 0 \bmod 5$, and (iii) for $T=C_{7}$ assume that $a \equiv 0 \bmod 7$. Then $A_{T}=A_{T}(a, b), B_{T}=B_{T}(a, b)$, and $D_{T}=D_{T}(a, b)$ are integers with A_{T} and B_{T} and

$$
\operatorname{gcd}\left(A_{T}, B_{T}\right)= \begin{cases}5 & \text { if } T=C_{5} \\ 1 & \text { otherwise }\end{cases}
$$

Proof We proceed by cases.
Case I. For $T=C_{5}$, let $b=2^{n+1}$ and observe that

$$
\begin{aligned}
& A_{T}=2^{80 n+60}-3 \cdot 2^{60 n+47}+7 \cdot 2^{40 n+31}+3 \cdot 2^{20 n+17}+1 \\
& B_{T}=-2^{120 n+90}+9 \cdot 2^{100 n+76}-75 \cdot 2^{80 n+60}-75 \cdot 2^{40 n+30}-9 \cdot 2^{20 n+16}-1
\end{aligned}
$$

Since n is a nonnegative integer, we have that A_{T} and B_{T} are integers. Now let $\mu_{T}=\mu_{T}(a, b)$ and $\nu_{T}=\nu_{T}(a, b)$ be as defined in Tables E. 5 and E.6, respectively. Since they are integers we have that $\operatorname{gcd}\left(A_{T}, B_{T}\right)$ divides $2^{49} 3^{2} 5$ since $\mu_{T} A_{T}+\mu_{T} B_{T}=$ $2^{49} 3^{2} 5$ by the previous lemma. The $\operatorname{gcd}\left(A_{T}, B_{T}\right)$ is not divisible by 2 since A_{T} and B_{T} are odd. Moreover, $\operatorname{gcd}\left(A_{T}, B_{T}\right)$ is not divisible by 3 since

$$
A_{T} \equiv 2^{80 n+60}+2^{40 n+31}+1 \bmod 3=1 \bmod 3
$$

Therefore $\operatorname{gcd}\left(A_{T}, \beta_{T}\right) \mid 5$. Reducing modulo 5 and applying Fermat's Little Theorem, we deduce that

$$
A_{T} \equiv\left(2^{20 n+15}\right)^{4}+\left(2^{15 n+12}\right)^{4}+\left(2^{10 n+8}\right)^{4}+\left(2^{5 n+4}\right)^{4}+1 \bmod 5=0 \bmod 5
$$

Similarly,

$$
B_{T} \equiv\left(2^{30 n+23}\right)^{4}+4 \cdot\left(2^{20 n+19}\right)^{4}+\left(2^{5 n+4}\right)^{4}+4 \bmod 5=0 \bmod 5
$$

Thus $\operatorname{gcd}\left(A_{T}, B_{T}\right)=5$.
Case II. Let $T=C_{10}$. By assumption a is even and so we may write $a=2 \hat{a}$ for some integer \hat{a}. Then A_{T} and D_{T} are integers since

$$
\begin{aligned}
& A_{T}=256 \hat{a}^{12}+2048 \hat{a}^{11} b+6656 \hat{a}^{10} b^{2}+11520 \hat{a}^{9} b^{3}+11520 \hat{a}^{8} b^{4}+6528 \hat{a}^{7} b^{5}+ \\
& 664 \hat{a}^{6} b^{6}-192 \hat{a}^{5} b^{7}-240 \hat{a}^{4} b^{8}-40 \hat{a}^{3} b^{9}+16 \hat{a}^{2} b^{10}+8 \hat{a} b^{11}+b^{12} \\
& D_{T}=\hat{a}^{5} b^{10}(\hat{a}+b)^{10}(2 \hat{a}+b)^{10}\left(-4 \hat{a}^{2}-2 \hat{a} b+b^{2}\right)^{2}\left(\hat{a}^{2}+3 \hat{a} b+b^{2}\right) .
\end{aligned}
$$

Consequently, B_{T} is an integer due to the identity $B_{T}^{2}=1728 D_{T}-A_{T}^{3}$. Since a and b are relatively prime, we can find integers r and s such that $r a^{29}+s b^{29}=1$. In particular, by Lemma 4.6 it follows that $\operatorname{gcd}\left(A_{T}, B_{T}\right)$ divides $2^{3} 3^{2} 5$. By assumption
$a \equiv 0 \bmod 30$ and therefore $A_{T} \equiv b^{12} \bmod 30$. In particular, A_{T} is not divisible by 2,3 , or 5 and thus $\operatorname{gcd}\left(A_{T}, B_{T}\right)=1$.

Case III. Let $T=C_{7}$. From the definition of A_{T}, B_{T}, and D_{T} it is clear that these quantities are integers. By a similar argument to Case II, it follows that $\operatorname{gcd}\left(A_{T}, B_{T}\right)$ divides $2^{4} 3^{2} 7$. By assumption $a \equiv 0 \bmod 42$ and by inspection $A_{T} \equiv b^{6} \bmod 42$. In particular, A_{T} is not divisible by 2,3 , or 7 and $\operatorname{sog} \operatorname{gcd}\left(A_{T}, B_{T}\right)=1$.

Case IV. Let $T=C_{2}, C_{4}, C_{2} \times C_{2}, C_{2} \times C_{4}$. That A_{T} and B_{T} are integers follows from their definitions in Tables E. 1 and E.2, respectively. By Table E.4, it is clear that D_{T} is an integer in each of these cases since a is even. A similar argument to the preceding two cases shows that $\operatorname{gcd}\left(A_{T}, B_{T}\right)$ divides $2^{22} 3^{2}$. Since a is divisible by 6 , we have by inspection that $A_{T} \equiv b^{8} \bmod 6$. Consequently A_{T} is not divisible by 2 or 3 and so $\operatorname{gcd}\left(A_{T}, B_{T}\right)=1$.

Case V. For the remaining T, we observe that A_{T}, B_{T}, D_{T} are integers by their definition in Tables E.1, E.2, and E.4, respectively. A similar argument to the above shows that $\operatorname{gcd}\left(A_{T}, B_{T}\right)$ divides $2^{22} 3^{21}$. Since $a \equiv 0 \bmod 6, A_{T} \equiv b^{k} \bmod 6$ for some positive integer k. Hence A_{T} is not divisible by 2 or 3 and so $\operatorname{gcd}\left(A_{T}, B_{T}\right)=1$.

Theorem 4.8 Assume the terminology of Proposition 4.7. For each T, let $H_{T}=$ $H_{T}\left(A_{T}, B_{T}\right)$ be the rational elliptic curve given by

$$
\begin{align*}
& H_{T}: y^{2}+x y+a_{3, T} y=x^{3}+a_{2, T} x^{2}-\frac{a_{4, T}}{48} x-\frac{a_{6, T}}{1728} \text { where } \tag{4.9}\\
& a_{4, T}=A_{T}-1, \\
& a_{2, T}=a_{3, T}=\left\{\begin{array}{r}
1 \\
\text { if } T=C_{5} \\
0 \\
\text { if } T \neq C_{5}
\end{array}, ~ \text { and } a_{6, T}=\left\{\begin{array}{l}
15 A_{T}+2 B_{T}+307 \\
\left(\begin{array}{ll}
\text { if } T=C_{5} \\
3 A_{T}+2 B_{T}-1 & \text { if } T \neq C_{5} .
\end{array}\right. \\
\text { The invariants of } N_{T} \text { are } c_{4}=A_{T} \text { and } c_{6}=B_{T}\left(\text { Its discriminant is } D_{T}\right. \text { and it is }
\end{array}\right.\right.
\end{align*}
$$ the minimal discriminant since (4.9) is the reduced minimal Weierstrass model for H_{T}. Moreover, for all T except $T=C_{5}, H_{T}$ is semistable. For $T=C_{5}, H_{T}$ is semistable away from $p=5$. Suppose further that $v_{2}(a)$ is even if $T=C_{2}, C_{4}$. Then $H_{T}(\mathbb{Q})_{\text {tors }} \cong T$.

Proof By Proposition 4.7, A_{T}, B_{T}, and D_{T} are integers. It is verified via the formulas (2.2) that c_{4} and c_{6} are as claimed and that the discriminant of H_{T} is D_{T}. We now claim that H_{T} is given by an integral Weierstrass model. To this end, it suffices to show that $a_{4, T} \equiv 0 \bmod 16, a_{4, T} \equiv 0 \bmod 3, a_{6, T} \equiv 0 \bmod 27$, and $a_{6, T} \equiv 0 \bmod 64$. We show most of these congruences via Mathematica [30]. We consider the cases $T=C_{5}$ and $T \neq C_{5}$.

Case I. For $T=C_{5}$, let $b=2^{n+1}$ for some nonnegative integer n and consider $A_{T}=A_{T}\left(1,2^{n+1}\right)$ and $B_{T}=B_{T}\left(1,2^{n+1}\right)$. Then

$$
a_{4, T}=2^{80 n+60}+3 \cdot 2^{60 n+47}+7 \cdot 2^{40 n+31}+3 \cdot 2^{20 n+17}
$$

In particular, $a_{4, T} \equiv 0 \bmod 16$ and $a_{4, T} \equiv 2^{80 n}+2 \cdot 2^{40 n} \bmod 3$. Since squares modulo 3 are congruent to 1 modulo 3, we conclude that $a_{4, T} \equiv 0 \bmod 3$. Next,

$$
\begin{aligned}
& a_{6, T}=-2^{120 n+91}+9 \cdot 2^{100 n+77}-148 \cdot 2^{80 n+60}+ \\
& \quad 45 \cdot 2^{60 n+47}+15 \cdot 2^{40 n+32}+9 \cdot 2^{20 n+19}+2^{6} 5 .
\end{aligned}
$$

Thus $a_{6, T} \equiv 0 \bmod 64$ and

$$
a_{6, T} \equiv 25 \cdot 2^{120 n}+18 \cdot 2^{100 n}+18 \cdot 2^{60 n}+6 \cdot 2^{40 n}+18 \cdot 2^{20 n}+23 \bmod 27 .
$$

Since $25 \cdot 2^{120 n}+6 \cdot 2^{40 n} \equiv 4 \bmod 27$ and $18 \cdot 2^{20 n} \equiv 0 \bmod 27$ for each nonnegative integer n, it follows that $a_{6, T} \equiv 0 \bmod 27$. Hence H_{T} is given by an integral Weierstrass model. We claim that H_{T} is a global minimal model for H_{T}. Indeed, since $\operatorname{gcd}\left(A_{T}, B_{T}\right)=5$ by Proposition 4.7 we have that the only fourth power dividing c_{4} and c_{6} is ± 1. Thus H_{T} is a global minimal model. By Lemma 2.2, H_{T} has additive reduction at 5 since 5 divides its discriminant and invariant c_{4}. Moreover, E_{T} is semistable at each prime $p \neq 5$. Lastly, let u_{T}, r_{T}, s_{T}, and w_{T} be as defined in the table E.9. Then the admissible change of variables $x \longmapsto u_{T}^{2} x+r_{T}$ and $y \longmapsto u_{T}^{3} y+u_{T}^{2} s_{T} x+w_{T}$ gives a \mathbb{Q}-isomorphism between H_{T} and $\mathcal{Y}_{b / a}(T)$. Therefore, $H_{T}(\mathbb{Q})_{\text {tors }} \cong T$ by Proposition 4.5.

Case II. Now suppose $T \neq C_{5}$ and let a4T [a,b] and a6T [a, b] be the Mathematica inputs for $a_{4, T}=a_{4, T}(a, b)$ and $a_{6, T}=a_{6, T}(a, b)$, respectively. Write $a=6 k$
for some integer k. Since b is odd and congruent to $\pm 1 \bmod 3$, we verify that $a_{4, T} \equiv 0 \bmod 16, a_{4, T} \equiv 0 \bmod 3, a_{6, T} \equiv 0 \bmod 27$, and $a_{6, T} \equiv 0 \bmod 64$ via the Mathematica inputs

```
Table[Mod [a4[6*k, b] , 16],{k,1,16},{b,1, 16,2}]
Table[Mod[a4[6*k,b] ,3],{k,1,3},{b,1,2}]
Table[Mod[a6[6*k, b] , 27],{k,1,27},{b,1,27,3}]
Table[Mod [a6[6*k , b] , 27] , {k,1,27},{b, 2, 27,3}]
Table[Mod[a6[6*k, b] , 64],{k,1,64},{b,1,64,2}]
```

Hence H_{T} is given by an integral Weierstrass model for all T. By Proposition 4.7 $\operatorname{gcd}\left(A_{T}, B_{T}\right)=1$ and therefore H_{T} is a global minimal model since there is no fourth power other than 1 dividing $\operatorname{gcd}\left(c_{4}, c_{6}\right)$. In particular, (4.9) is the reduced minimal model for H_{T}. Moreover, H_{T} is semistable.

Next, let u_{T}, r_{T}, s_{T}, and w_{T} be as defined in the table E.9. Then the admissible change of variables $x \longmapsto u_{T}^{2} x+r_{T}$ and $y \longmapsto u_{T}^{3} y+u_{T}^{2} s_{T} x+w_{T}$ gives a \mathbb{Q}-isomorphism between H_{T} and $\mathcal{Y}_{b / a}(T)$. Therefore, $H_{T}(\mathbb{Q})_{\text {tors }} \cong T$ by Proposition 4.5.

4.3 Sequences of Good $A B C$ Triples

In this section, we will consider $A_{T}=A_{T}(a, b), B_{T}=B_{T}(a, b), D_{T}=D_{T}(a, b)$, and $\hat{D}_{T}=\hat{D}_{T}(a, b)$ as polynomials in a and b. Note that for each T except $T=C_{5}$, $A_{T}^{3}, B_{T}^{2}, D_{T}$, and \hat{D}_{T}^{6} are homogenous polynomials in $\mathbb{Q}[a, b]$ of degree n_{T} where

$$
n_{T}= \begin{cases}24 & \text { if } T=C_{2}, C_{4}, C_{7}, C_{2} \times C_{2}, C_{2} \times C_{4} \tag{4.10}\\ 36 & \text { if } T=C_{1}, C_{3}, C_{9}, C_{10} \\ 48 & \text { if } T=C_{6}, C_{8}, C_{12}, C_{2} \times C_{6}, C_{2}, C_{2} \times C_{8}\end{cases}
$$

We will now consider $A_{T}(1, x), B_{T}(1, x), D_{T}(1, x)$, and $\hat{D}_{T}(1, x)$ as functions from $\mathbb{R} \rightarrow \mathbb{R}$ as well as the rational functions $f_{T}, g_{T}, h_{T}: \mathbb{R} \rightarrow \mathbb{R}$ as defined below

$$
\begin{align*}
& f_{T}(x)= \begin{cases}\frac{A_{T}(1, x)^{3}}{-1728 D_{T}(1, x)}-x & \text { if } T=C_{4}, C_{8} \\
\frac{B_{T}(1, x)^{2}}{1728 D_{T}(1, x)}-x & \text { for all other } T \text { except } T=C_{1}, C_{2} .\end{cases} \tag{4.11}\\
& g_{T}(x)= \begin{cases}-B_{T}(1, x)-A_{T}(1, x) \hat{D}_{T}(1, x) & \text { if } T=C_{4}, C_{8} \\
A_{T}(1, x)^{2}+B_{T}(1, x) \hat{D}_{T}(1, x) & \text { for all other } T \text { except } T=C_{1}, C_{2} .\end{cases} \tag{4.12}\\
& h_{T}(x)= \begin{cases}B_{T}(1, x)^{2}-\hat{D}_{T}(1, x)^{6} & \text { if } T=C_{2}, C_{4}, C_{8} \\
A_{T}(1, x)^{3}-\hat{D}_{T}(1, x)^{6} & \text { for all other } T\end{cases} \\
& \text { The following } \begin{array}{l}
\text { lemma can be verified with a computer algebra system. }
\end{array}
\end{align*}
$$

Lemma 4.9 Let $f_{T}(x), g_{T}(x)$, and $h_{T}(x)$ be as defined above. Let δ_{T} be the largest real root of $f_{T}(x)$ and for each T let γ_{T} be given by

$$
\begin{aligned}
& \gamma_{T}= \begin{cases}\text { kargest real root of } A_{T}(1, x) & \text { if } T=C_{2}, C_{4}, C_{8} \\
\text { kargest real root of } D_{T}(1, x) & \text { otherwise } .\end{cases} \\
& \text { if } T=C^{2} \times C_{2}, C_{2} \times C_{4} \text { and we have the approximations }
\end{aligned}
$$

Moreover,
(i) For each T except $T=C_{1}, C_{2}, C_{5}$, the functions $f_{T}(x), g_{T}(x),-B_{T}(1, x)$ are positive on the interval $\left(\delta_{T}, \infty\right)$;
(ii) For each T, the functions $h_{T}(x), A_{T}(1, x), \hat{D}_{T}(1, x)$ are positive on the interval $\left(\gamma_{T}, \infty\right) ;$
(iii) On $\left(\gamma_{T}, \infty\right)$, the function $D_{T}(1, x)$ is negative if $T=C_{2}, C_{4}, C_{8}$ and it is positive for the remaining T.

Corollary 4.10 For each T except $T=C_{5}$, let a and b be relatively prime positive integers with $a \equiv 0 \bmod 6$ and $\frac{b}{a}>\gamma_{T}$ where γ_{T} is as in the previous lemma. Assume further that $a \equiv 0 \bmod 5($ resp. $a \equiv 0 \bmod 7)$ whenever $T=C_{10}\left(\right.$ resp. $\left.T=C_{7}\right)$. Then

$$
\begin{array}{ll}
\left(-1728 D_{T}, A_{T}^{3}, B_{T}^{2}\right) & \text { is a positive } A B C \text { triple if } T=C_{2}, C_{4}, C_{8} \\
\left(1728 D_{T}, B_{T}^{2}, A_{T}^{3}\right) & \text { is a positive } A B C \text { triple for the remaining } T .
\end{array}
$$

Proof By Lemma 4.6 and Proposition 4.7 it follows that they are $A B C$ triples for each T. Let $t=\frac{b}{a}$ so that $D_{T}(a, b)=a^{n_{T}} D_{T}\left(1, \frac{b}{a}\right)$ (where n_{T} is as given in (4.10). By Lemma 4.9 (iii), the assumption that $\frac{b}{a}>\gamma_{T}$ allows us to conclude that $-D_{T}(a, b)$ is positive if $T=C_{2}, C_{4}, C_{8}$ and that $D_{T}(a, b)$ is positive for the remaining T. By Lemma $4.9(i i), A_{T}(1, x)$ is positive on $\left(\gamma_{T}, \infty\right)$ and thus $A_{T}(a, b)$ is positive for all T since $A_{T}(a, b)=a^{n_{T} / 3} A_{T}\left(1, \frac{b}{a}\right) .($
Proposition 4.11 Let $P_{0}=\left(a_{0}, b_{0}, c_{0}\right)$ be a positive $A B C$ triple with $a_{0} \equiv 0 \bmod 6$ and $\frac{b_{0}}{a_{0}}>\delta_{T}$. For each T except $T=C_{1}, C_{2}, C_{5}$, define $P_{n}^{T}=\left(a_{n}, b_{n}, c_{n}\right)$ recursively by

Assume further that $a_{0} \equiv 0 \bmod 5\left(\right.$ resp. $\left.a_{0} \equiv 0 \bmod 7\right)$ whenever $T=C_{10}$ (resp. $T=C_{7}$). Then for each n, the same congruences above hold for $a_{n}, \frac{b_{n}}{a_{n}}>\delta_{T}$, and $P_{n}^{T}=\left(a_{n}, b_{n}, c_{n}\right)$ is a positive ABC triple. Additionally, for $n \geq 1, v_{2}\left(a_{n}\right)$ is even if $T=C_{4}, C_{2} \times C_{2}, C_{2} \times C_{4}$.

Proof For each T and any given n we have that the statement on congruences is automatic since $D_{T}\left(a_{n}, b_{n}\right) \equiv 0 \bmod a_{n}$. Moreover, by Lemma 4.6 and Proposition 4.7 we deduce that P_{n}^{T} is an $A B C$ triple for each n. Now let f_{T} be as defined in (4.11) and observe that

$$
f_{T}\left(\frac{b_{n}}{a_{n}}\right)=\frac{b_{n+1}}{a_{n+1}}-\frac{b_{n}}{a_{n}} .
$$

By Lemma 4.9, f_{T} is positive on $\left(\delta_{T}, \infty\right)$. Since $\frac{b_{0}}{a_{0}}>\delta_{T}$, it follows that $\frac{b_{1}}{a_{1}}>\frac{b_{0}}{a_{0}}>\delta_{T}$ and in fact we obtain an increasing sequence $\left\{\frac{b_{n}}{a_{n}}\right\}$, (of rational numbers. Hence P_{n}^{T}
is a positive $A B C$ triple by Corollary 4.10. is a positive $A B C$ triple by Corollary 4.10.

Lastly, for $T=C_{4}, C_{2} \times C_{2}, C_{2} \times C_{4}$, observe that $v_{2}\left(a_{n+1}\right)=v_{2}\left(2^{m} a_{n}^{k}\right)$
k are positive even integers. Hence $v_{2}\left(a_{n}\right)$ is even for all $n \geq 1$.$\left(\begin{array}{r}\text { where } m \\ \square\end{array}\right.$ and k are positive even integers. Hence $v_{2}\left(a_{n}\right)$ is even for all $n \geq 1$.

Lemma 4.12 For $T=C_{5}$, let $b=2^{n}$ for some positive integer n. Then $\frac{1}{5} \hat{D}_{T}(1, b)$ is a positive integer and $\operatorname{rad}\left(D_{T}(1, b)\right) \leq \frac{1}{5} \hat{D}_{T}(1, b)$. For the remaining T, let (a, b, c) be a good ABC triple with a even and max $\{|a|,|b|,|c|\}=|c|$. Then $\hat{D}_{T}(a, b)$ is an integer and

$$
\operatorname{rad}\left(D_{T}(a, b)\right)<\hat{D}_{T}(a, b)
$$

Proof We first consider the case when $T=C_{5}$. By Lemma 4.9 (ii), the quantity $\hat{D}_{T}(1, b)$ is positive since $b>\gamma_{T}$. It suffices to show that $\frac{2^{35}}{b^{100}} D_{T}(1, b)$ is divisible by $2^{10} 5^{3}$ since this would imply that $\frac{1}{5} \hat{D}_{T}(1, b)$ is an integer and that any prime dividing $D_{T}(1, b)$ also divides $\frac{1}{5} \hat{D}_{T}(1, b)$, which is equivalent to the desired inequality. That the quantity is divisible by 2^{10} is clear. By Fermat's Little Theorem we deduce that it is divisible by 5^{3} since the quantities $\left(b^{8}-2 b^{4}-4\right),\left(b^{16}-4 b^{12}+16 b^{8}-24 b^{4}+16\right)$, and $\left(b^{16}+6 b^{12}+16 b^{8}+16 b^{4}+16\right)$ are all congruent to 0 modulo 5.

For $T \neq C_{5}$, we let (a, b, c) be a good $A B C$ triple with max $\{|a|,|b|,|c|\}=|c|$ and a even. By definition, $\operatorname{rad}(a b c)<c$ and by properties of the radical we have that

$$
\operatorname{rad}\left(a b c d^{k}\right)=\operatorname{rad}(a b c d) \leq \operatorname{rad}(a b c) \operatorname{rad}(d)<c \operatorname{rad}(d) \leq c d
$$

for any positive integers d and k. Moreover, if 2^{k} divides a, then $\operatorname{rad}\left(\frac{a}{2^{k}}\right) \leq \operatorname{rad}(a)$. Using these two statements it is easy to verify by inspection that the claim(holds for all T with the possible exception of $T=C_{10}$.

For $T=C_{10}$, we first observe that

$$
\begin{aligned}
\operatorname{rad}\left(D_{T}(a, b)\right) & \leq \operatorname{rad}\left(4096 D_{T}(a, b)\right)=\operatorname{rad}(Q(a, b)) \text { where } \\
Q(a, b) & =a b(a+b)(a+2 b)\left(q^{2}+6 a b+4 b^{2}\right)\left(f a^{2}-a b+b^{2}\right)
\end{aligned}
$$

Moreover,

$$
\frac{Q(a, b)}{a b(a+B)}=(a+2 b)\left(q^{2}+6 a b+4 b^{2}\right)\left(\left(a^{2}-A b+b^{2}\right) \neq 0 \bmod 8\right.
$$

and therefore $(a+2 b)\left(a^{2}+6 a b+4 b^{2}\right)\left(-a^{2}-A b+b^{2}\right)=8 P$ for some P. The result now follows since

$$
\begin{aligned}
\operatorname{rad}(Q(a, b)) & =\operatorname{rad}(8 a b(a+b) P) \\
& =\operatorname{rad}(a b(a+b) P) \text { since } a \text { is even } \\
& <|a+b| \operatorname{rad}(P) \\
& \leq|a+b||P|=\hat{D}_{T}(a, b) .
\end{aligned}
$$

Proposition 4.13 Assume the statement of Proposition 4.11 with the additional assumption that $P_{0}=\left(a_{0}, b_{0}, c_{0}\right)$ is a good positive ABC triple. For $T \neq C_{1}, C_{2}, C_{5}, P_{n}^{T}$ is a good positive $A B C$ triple for each n.

Proof Fix T and let P_{0} be a good positive $A B C$ triple with $\frac{b_{0}}{a_{0}}>\delta_{T}$. By Proposition 4.11, $P_{n}^{T}=\left(a_{n}, b_{n}, c_{n}\right)$ is a positive $A B C$ triple, a_{n} is even, and $\frac{b_{n}}{a_{n}}>\delta_{T}$ for each n.

We proceed by induction on n and assume that P_{n}^{T} is good. Since $\delta_{T}>\gamma_{T}$, we have by Lemma 4.12 that

$$
\begin{align*}
\operatorname{rad}\left(a_{n+1} b_{n+1} c_{n+1}\right) & =\operatorname{rad}\left(D_{T}\left(a_{n}, b_{n}\right) A_{T}\left(a_{n}, b_{n}\right) B_{T}\left(a_{n}, b_{n}\right)\right) \tag{4.13}\\
& <\hat{D}_{T}\left(a_{n}, b_{n}\right) A_{T}\left(a_{n}, b_{n}\right)\left|B_{T}\left(a_{n}, b_{n}\right)\right|
\end{align*}
$$

Recall that the polynomials $A_{T}^{3}, B_{T}^{2}, D_{T}$, and \hat{D}_{T}^{6} are of the same homogenous degree n_{T}. Let $t_{n}=\frac{b_{n}}{a_{n}}$ and observe that
$c_{n+1}-\hat{D}_{T}\left(a_{n}, b_{n}\right) A_{T}\left(a_{n}, b_{n}\right)\left|B_{T}\left(a_{n}, b_{n}\right)\right|= \begin{cases}a_{n}^{n_{T}}\left|B_{T}\left(1, t_{n}\right)\right| g_{T}\left(t_{n}\right) & \text { if } T=C_{4}, C_{8} \\ a_{n}^{n_{T}} A_{T}\left(1, t_{n}\right) g_{T}\left(t_{n}\right) & \text { for all other } T .\end{cases}$
Since $t_{n}>\delta_{T}$, it follows that $g_{T}\left(t_{n}\right)$ is positive by Lemma 4.9 and hence the left hand side is positive. Equivalently, $\hat{D}_{T}\left(a_{n}, b_{n}\right) A_{T}\left(a_{n}, b_{n}\right)\left|B_{T}\left(a_{n}, b_{n}\right)\right|<c_{n+1}$. By (4.13), we conclude that $\operatorname{rad}\left(a_{n+1} b_{n+1} c_{n+1}\right)<c_{n+1}$ and so P_{n}^{T} is a good positive $A B C$ triple for each n, as desired.

4.4 Proof of Theorem 4.1

Lemma 4.14 For each T except $T=C_{5}$, let $P^{T}=\left(a_{T}, b_{T}, c_{T}\right)$ be a good positive ABC triple with $a_{T} \equiv 0 \bmod 6$ and $\frac{b_{T}}{a_{T}}>\gamma_{T}$ where γ_{T} is as in Lemma 4.9. Assume further, that $a_{T} \equiv 0 \bmod 5\left(\right.$ resp. $\left.a_{T} \equiv 0 \bmod 7\right)$ if $T=C_{10} \quad\left(\right.$ resp. $\left.T=C_{7}\right)$ and that $v_{2}\left(a_{T}\right)$ is even if $T=C_{2}, C_{4}$. Let H_{T} be the rational elliptic curve given by the Weierstrass equation (4.9) in Theorem 4.8 with $A_{T}=A_{T}\left(a_{T}, b_{T}\right)$ and $B_{T}=$ $B_{T}\left(a_{T}, b_{T}\right)$. Then H_{T} is a good semistable elliptic curve with $H_{T}(\mathbb{Q})_{\text {tors }} \cong T$.

Proof For each T, we have by Theorem 4.8 that H_{T} is a semistable elliptic curve with $H_{T}(\mathbb{Q})_{\text {tors }} \cong T$ and that the discriminant $D_{T}=D_{T}\left(a_{T}, b_{T}\right)$ is minimal. Moreover, the invariants c_{4} and c_{6} associated with a global minimal model of H_{T} are A_{T} and B_{T}, respectively. By Corollary 4.10 we have that

$$
\max \left\{\left(A_{T}^{3}, B_{T}^{2}= \begin{cases}B_{T}^{2} & \text { if } T=C_{2}, C_{4}, C_{8} \\ A_{T}^{3} & \text { for all other } T .\end{cases}\right.\right.
$$

Let n_{T} be the homogenous degree of A_{T}^{3}, B_{T}^{2}, and \hat{D}_{T}^{6} and let $t=\frac{b_{T}}{a_{T}}$. Observe that $h_{T}(t)$ is positive by Lemma 4.9. Therefore

$$
\max \left\{\left(A_{T}^{3}, B_{T}^{2}-\hat{D}_{T}^{6}=a_{T}^{n_{T}} h_{T}(t)\right.\right.
$$

is positive by Lemma 4.9. Since H_{T} is semistable and $D_{T} \equiv 0 \bmod 6$, we have that $\operatorname{rad}\left(1728 D_{T}\right)=N_{H_{T}}$ where $N_{H_{T}}$ is the conductor of H_{T}. Since P^{T} is a good $A B C$ triple, $N_{H_{T}}<\hat{D}_{T}$ by Lemma 4.12 and therefore H_{T} is good.

Theorem 4.1. For $T=C_{5}$, let $b_{n}=2^{n}$ and set $A_{T, n}=A_{T}\left(1, b_{n}\right)$ and $B_{T, n}=$ $B_{T}\left(1, b_{n}\right)$. For the remaining T, let $P_{0}^{T}=\left(a_{0}, b_{0}, c_{0}\right)$ be a good positive $A B C$ triple satisfying $a_{0} \equiv 0 \bmod 6$ and $a_{0} \equiv 0 \bmod 5\left(\right.$ resp. $\left.A_{0} \equiv 0 \bmod 7\right)$ if $T=C_{10}($ resp. $T=C_{7}$). Assume further the following conditions:
(a) If $T=C_{1}$, let $\frac{b_{0}}{a_{0}}>\delta_{C_{9}}$. Let $P_{n}^{T}=\left\{\left(a_{n}, b_{n}, c_{n}\right)\right\}_{n}$ be the sequence of $A B C$ triples associated to $T=C_{9}$.
(b) If $T=C_{2}$, let $\frac{b_{0}}{a_{0}}>\gamma_{T}$. Let $P_{n}^{T}=\left\{\left(a_{n}, b_{n}, c_{n}\right)\right\}_{n}$ be the sequence of $A B C$ triples associated to $T=C_{2} \times C_{4}$.
(c) For the remaining T, let $\frac{b_{0}}{a_{0}}>\delta_{T}$ and let $P_{n}^{T}=\left\{\left(a_{n}, b_{n}, c_{n}\right)\right\}_{n}$ be the sequence of $A B C$ triples associated to T.

For each T except $T=C_{5}$, let $A_{T, 0}=A_{T}\left(a_{0}, b_{0}\right)$ and $B_{T, 0}=B_{T}\left(a_{0}, b_{0}\right)$, and define $A_{T, n}$ and $B_{T, n}$ recursively by

$$
A_{T, n+1}=A_{T}\left(a_{n}, b_{n}\right) \text { and } B_{T, n+1}=B_{T}\left(a_{n}, b_{n}\right) .
$$

For each positive integer n, let $H_{T, n}$ be the rational elliptic curve given by the Weierstrass equation (4.9) in Theorem 4.8 with $A_{T}=A_{T, n}$ and $B_{T}=B_{T, n}$. Then each $H_{T, n}$ is a good elliptic curve with $H_{T, n}(\mathbb{Q})_{\text {tors }} \cong T$. Moreover, each $H_{T_{n}}$ is semistable away from 5 for each T. If $T \neq C_{5}$, then $H_{T, n}$ is semistable.

Proof By Theorem 4.8, $H_{T, n}$ is the reduced minimal Weierstrass model of $H_{T, n}$ and the invariants c_{4} and c_{6} are $c_{4}=A_{T, n}$ and $c_{6}=B_{T, n}$, respectively.

We first consider the case when $T=C_{5}$. By Theorem 4.8, $H_{T, n}$ has additive reduction at 5 for each n and hence $v_{5}\left(N_{H_{T, n}}\right)=2$ where $N_{H_{T, n}}$ denotes the conductor of $H_{T, n}$. In particular, $N_{H_{T, n}}=5 \operatorname{rad}\left(X_{T}\left(1, b_{n}\right)\right) \leq \hat{D}_{T}\left(1, b_{n}\right)$ by Lemma 4.12. By Lemma 4.9, $D_{T}\left(1, b_{n}\right), A_{T}\left(1, b_{n}\right)$, and $h_{T}\left(b_{n}\right)$ are positive for each n and hence max $\left\{\left(A_{T, n}^{3}, B_{T, n}^{2}=A_{T, n}^{3}\right.\right.$. In particular, $H_{T, n}$ is a good elliptic curve since $A_{T, n}^{3}>\hat{D}_{T}\left(1, b_{n}\right)^{6}$ and thus $A_{T, n}^{3}>N_{H_{T, n}}^{6}$ for each n. By Theorem 4.8, $H_{T_{n}}(\mathbb{Q})_{\text {tors }} \cong C_{5}$ for each n.

For the remaining T, let P_{0}^{T} be a good $A B C$ triple. By Proposition 4.11 and Proposition 4.13 we have that for each P_{n}^{T} satisfies the assumptions of Lemma 4.14. Hence each $H_{T, n}$ is a good semistable elliptic curve with $H_{T, n}(\mathbb{Q})_{\text {tors }} \cong T$.

Lemma 4.15 Let E be a good semistable elliptic curve with minimal discriminant $\Delta_{E} \equiv 0 \bmod 6$. Then the $A B C$ triple $\left(1728 \Delta_{E},-c_{4}^{3}, c_{6}^{2}\right)$ is good.

Proof Since E is good,

$$
N_{E}^{6}<\max \left\{c_{4}^{3}, c_{6}^{2} \leq \max \left\{c_{4}^{3}, c_{6}^{2}, 1728\left|\Delta_{E}\right|\right.\right.
$$

where N_{E} is the conductor of E and c_{4} and c_{6} are the invariants associated with a global minimal model of E. Since E is semistable and $\Delta_{E} \equiv 0 \bmod 6, \operatorname{rad}\left(1728 \Delta_{E}\right)=$ N_{E}. Now observe that

$$
\operatorname{rad}\left(1728 \Delta c_{4} c_{6}\right)=N_{E} \operatorname{rad}\left(c_{4} c_{6}\right) \leq N_{E}\left|c_{4}\right|\left|c_{6}\right|
$$

It suffices to show that $N_{E}\left|c_{4}\right|\left|c_{6}\right|<\max \left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\}$ since this would imply that $\operatorname{rad}\left(1728 \Delta c_{4} c_{6}\right)<\max \left\{\left|c_{4}^{3}\right|, c_{6}^{2}, 1728\left|\Delta_{E}\right|\right\}$.

Case I. Suppose $\max \left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\}=\left|c_{4}^{3}\right|$. Then $N_{E}<\left|c_{4}\right|^{1 / 2}$ and $\left|c_{6}\right|<\left|c_{4}\right|^{3 / 2}$. Thus

$$
N_{E}\left|c_{4}\right|\left|c_{6}\right|<\left|c_{4}\right|^{1 / 2}\left|c_{4}\right|\left|c_{4}\right|^{3 / 2}=c_{4}^{3} .
$$

Case II. Suppose max $\left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\}=c_{6}^{2}$. Then $N_{E}<\left|c_{6}\right|^{1 / 3}$ and $\left|c_{4}\right|<\left|c_{6}\right|^{2 / 3}$. Hence

$$
N_{E}\left|c_{4}\right|\left|c_{6}\right|<\left|c_{6}\right|^{1 / 3}\left|c_{6}\right|^{2 / 3}\left|c_{6}\right|=c_{6}^{2}
$$

which concludes the proof.

The following result now follows.
Corollary 4.16 Assume the statement of Theorem 4.1. Let $\left\{H_{T, n}\right\}_{n \geq 1}$ be the sequence of good elliptic curves associated to $T=C_{1}, C_{2}$. Then $\left\{1 / 728 D_{T, n},-A_{T, n}^{3}, B_{T, n}^{2}\right.$
is a sequence of good $A B C$ triples for each n.

Remark The converse to the previous lemma does not hold. Let E be the elliptic curve given by the Weierstrass equation

$$
E: y^{2}+x y=x^{3}-2342114817 x-46491207963039
$$

The curve E is semistable and its discriminant Δ is minimal. Let c_{4} and c_{6} be the invariants associated to a global minimal model of E, given explicitly below

$$
\Delta=-2^{3} 3^{6} 7^{3} 67^{9} 127^{3}, c_{4}=19 \cdot 53 \cdot 157 \cdot 251 \cdot 2833, c_{6}=13^{2} 73 \cdot 5651 \cdot 576166333
$$

The positive $A B C$ triple $\left(-1728 \Delta, c_{4}^{3}, c_{6}^{2}\right)$ is good and satisfies $\Delta \equiv 0 \bmod 6$, yet E is not good since $\max \left\{c_{4}^{3}, c_{6}^{2}\right\}=c_{6}^{2}<N_{E}^{6}$. However, E is 3-isogenous to the good elliptic curve

$$
F: y^{2}+x y=x^{3}-193149169647 x-32672893402475361
$$

4.5 Examples

Recall that for an $A B C$ triple $P=(a, b, c)$ and a rational elliptic curve E, the quality $q(P)$ of P and the modified Szpiro ratio $\sigma(E)$ of E are defined as

$$
q(P)=\frac{\log (\max \{|A|,|B|,|C|\})}{\operatorname{rad}(A B C)} \text { and } \sigma_{m}(E)=\frac{\log \left(\max \left\{\left|c_{4}^{3}\right|,\left|c_{6}^{2}\right|\right\}\right)}{\log N_{E}}
$$

where N_{E} is the conductor of E and c_{4} and c_{6} are the invariants associated to a global minimal model of E. Moreover, P is a good $A B C$ triple if and only if $q(P)>1$ and E is a good elliptic curve if and only if $\sigma_{m}(E)>6$. Due to computational limitations, it is difficult to find $q(P)$ and $\sigma_{m}(E)$ for the second term of our sequences since they require the factorization of very large numbers. To bypass this, we use Lemma 4.12 for $T \neq C_{5}$. We start with the following definition which will be used to bypass the need of factorization of large numbers.

Definition 4.1 Consider the $A B C$ triple $P=\left(1728 D_{T}, B_{T}^{2}, A_{T}^{3}\right)$ and let $H_{T}=$ $H_{T}\left(A_{T}, B_{T}\right)$ be the elliptic curve defined in Theorem 4.8. The pseudo quality $q^{\prime}(P)$ of P and the pseudo modified Szpiro ratio $\sigma_{m}^{\prime}\left(H_{T}\right)$ of H_{T} are as defined below $q^{\prime}(P)=\frac{\log \left(\max \left\{\left|A_{T}^{3}\right|, B_{T}^{2},\left|1728 D_{T}\right|\right\}\right)}{\log A_{T} B_{T} \hat{D}_{T}} \quad$ and $\quad \sigma_{m}^{\prime}\left(H_{T}\right)=\frac{\log \left(\max \left\{\left|A_{T}^{3}\right|, B_{T}^{2}\right\}\right)}{\log \hat{D}_{T}}$

Lemma 4.17 Let (a, b, c) be a good $A B C$ triple with $a \equiv 0 \bmod 6$ and let $A_{T}=$ $A_{T}(a, b), B_{T}=B_{T}(a, b), D_{T}=D_{T}(a, b)$, and $\hat{D}_{T}=\hat{D}_{T}(a, b)$. Let P be the $A B C$ triple $\left(1728 D_{T}, B_{T}^{2}, A_{T}^{3}\right)$ and let $H_{T}=H_{T}\left(A_{T}, B_{T}\right)$. Then

$$
q^{\prime}(P)<q(P) \quad \text { and } \quad \sigma_{m}^{\prime}\left(H_{T}\right)<\sigma_{m}\left(H_{T}\right)
$$

Proof Note that $\operatorname{rad}\left(1728 D_{T}\right)=\operatorname{rad}\left(D_{T}\right)=N_{H_{T}}$ where $N_{H_{T}}$ is the conductor of H_{T}. By Lemma 4.12, $N_{H_{T}}<\hat{D}_{T}$ and $\operatorname{rad}\left(1728 A_{T} B_{T} D_{T}\right)<A_{T} B_{T} \hat{D}_{T}$. These two inequalities respectively imply that $\sigma_{m}^{\prime}\left(H_{T}\right)<\sigma_{m}\left(H_{T}\right)$ and $q^{\prime}(P)<q(P)$.

Remark Whenever we use the pseudo quality or pseudo modified Szpiro ratio, we will place a * by the number, e.g. 6.07^{*}.

The table below list the initial exceptional $A B C$ triple $P_{0}^{T}=\left(a_{0}, b_{0}, c_{0}\right)$ for $T \neq C_{5}$. We also give the approximate values of its quality $q\left(P_{0}^{T}\right)$ and the ratio $\frac{b_{0}}{a_{0}}$.

T	P_{0}^{T}	$q\left(P_{0}^{T}\right)$	$\frac{B_{0}}{A_{0}}$
$C_{1}, C_{9}, C_{12}, C_{2} \times C_{4}, C_{2} \times C_{6}, C_{2} \times C_{8}$	$\left(2^{6} 3,47^{2}, 7^{4}\right)$	1.0258	11.505
$C_{2}, C_{4}, C_{2} \times C_{2}$	$\left(2^{2} 43,3^{5} 7^{3}, 17^{4}\right)$	1.0969	484.6
Remaining T	$\left(2 \cdot 3^{4}, 5 \cdot 7^{4}, 23^{3}\right)$	1.1090	74.1

Note that for each $T \neq C_{1}, C_{2}, C_{5}$, we have $\frac{b_{0}}{a_{0}}>\delta_{T}$ and in the case of $T=C_{1}, C_{2}$ we have $\frac{b_{0}}{a_{0}}>\gamma_{T}$. Let $\left\{\not \varnothing_{n}^{T}{ }_{n}\right.$ be the sequence of good $A B C$ triples given in Proposition 4.11 associated to T for $T \neq C_{1}, C_{2}, C_{5}$. While a_{0} does not satisfy the necessary congruences for some of the triples above, we check that P_{1}^{T} is a good $A B C$ triple and so A_{1}^{T} satisfies the required congruences of this chapter. Thus we are able to conclude that each P_{n}^{T} is a good $A B C$ triple. Moreover, let $H_{T, n}$ denote the exceptional elliptic
curve associated to P_{n}^{T} as in Theorem 4.1. We also mention that in all examples when $a_{T, 0}$ does not satisfy the necessary congruences, we still have that $E_{T, 1}(\mathbb{Q})_{\text {tors }} \cong T$.

T	$q\left(P_{1}^{T}\right)($	$\sigma_{m}\left(E_{T, 1}\right)$	$q\left(P_{2}^{T}\right)($	$\sigma_{m}\left(E_{T, 2}\right)$
C_{1}	-	6.3029643908	-	6.0000000048^{*}
C_{2}	-	6.7239778673	-	6.0000000000^{*}
C_{3}	1.0189474430	6.1016117819	1.0000000000^{*}	6.0000000000^{*}
C_{4}	1.0036966403	6.1355002205	1.0000000966^{*}	6.0000007851^{*}
C_{6}	1.0000365997^{*}	6.0759107746	1.0000002115^{*}	6.0000074862^{*}
C_{7}	1.0042477843	6.1562385739	1.0000000000^{*}	6.0000000000^{*}
C_{8}	1.0000008631^{*}	6.0747174816	1.0000000000^{*}	6.0000000000^{*}
C_{9}	1.0011947214	6.0432683528	1.0000000001^{*}	6.0000000048^{*}
C_{10}	1.0048032166	6.1771707434	1.0000000000^{*}	6.0000000000^{*}
C_{12}	1.0008399918	6.0303672474	1.0000000000^{*}	6.0000000000^{*}
$C_{2} \times C_{2}$	1.0036975919	6.1354933081	1.0000001278^{*}	6.0000005612^{*}
$C_{2} \times C_{4}$	1.0010799142	6.0384795691	1.0000000000^{*}	6.0000000001^{*}
$C_{2} \times C_{6}$	1.0008421129	6.0303765948	1.0000000778^{*}	6.0000028021^{*}
$C_{2} \times C_{8}$	1.0000421851	6.0206718011	1.0000000000^{*}	6.0000000000^{*}

Lastly, for $T=C_{5}$, let $H_{T, n}$ be the sequence of elliptic curves corresponding to $T=C_{5}$ in Theorem 4.1. Then

n	1	2	3	4	5	6
$\sigma_{m}\left(E_{n}\right)$	6.2766	6.1155	6.0730	6.0533	6.0420	6.0347

5. CLASSIFICATION OF MINIMAL DISCRIMINANTS

Let E be an elliptic curve over a number field K. Frey [37] proved that if $E(K)$ contains a point of order ℓ for ℓ a prime greater than 3 , then E is semistable at all primes \mathfrak{p} of K whose residue field has a characteristic different from ℓ. Flexor and Oesterlé [38] then showed that if $E(K)$ contains a point of order n and E has additive reduction at a prime \mathfrak{p} of K whose residue characteristic does not divide n, then $n \leq 4$. Moreover, if E has additive reduction at at least two primes of K with different residue characteristics then n divides 12 .

The proof of these results and their generalizations to abelian varieties [39] require a study of the Néron model of the abelian variety. In this chapter, we give a new effective proof of Frey's and Flexor-Oesterlé's result, but note that for Frey's result, our proof only holds for $\ell=5,7$. Let T be one of the fourteen non-trivial torsion subgroups allowed by Mazur's Torsion Theorem. In section one, we show that if $T \neq$ $C_{2}, C_{2} \times C_{2}$, then there are two-parameter families of elliptic curves which parameterize all elliptic curves over K with $T \hookrightarrow E(K)$. Care must be taken for $T=C_{3}$ by considering those rational elliptic curves E whose j-invariant is 0 and $T \hookrightarrow E(K)$ separately. For $T=C_{2}, C_{2} \times C_{2}$, we must assume that K has class number one in order to parameterize elliptic curves with $T \hookrightarrow E(K)$ by a three-parameter family of elliptic curves.

In section two, we use these families of elliptic curves to give an effective proof of Frey's and Flexor-Oesterle's result. In section three, we restrict our attention to rational elliptic curves and use the effective version of Frey-Flexor-Oesterlé to provide necessary and sufficient conditions for a given polynomial to coincide with the minimal discriminant of a rational elliptic curve with non-trivial torsion. Section 4 is devoted to the proof of the classification of minimal discriminants of rational elliptic curves with non-trivial torsion subgroup. In section 5 we build on the classification
of minimal discriminants and provide necessary and sufficient conditions for when additive reduction occurs on a rational elliptic curve with non-trivial torsion. We conclude the chapter with a couple of examples.

5.1 Parameterization of Certain Elliptic Curves with non-Trivial Torsion

Let K be a number field with ring of integers R_{K} and let E be the elliptic curve given by the Weierstrass model

$$
\begin{equation*}
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \tag{5.1}
\end{equation*}
$$

where each $a_{i} \in K$. Suppose further that $P=(a, b) \in E(K)$ is a torsion point of order N. Then the admissible change of variables $x \longmapsto x-a$ and $y \longmapsto y-a$ results in a K-isomorphic elliptic curve with P translated to the origin. In particular, we may assume that $a_{6}=0$ in (5.1) and that $P=(0,0)$.

5.1.1 Point of Order $N=2$

First suppose $N=2$, so that $P=-P$. By [4, III.2.3], $-P=\left(0,-a_{3}\right)$ and so $a_{3}=0$. The change of variables $x \longmapsto u^{2} x$ and $y \longmapsto u^{3} y+u^{2} s x$ with $u=\left(2 a_{1}\right)^{-1}$ and $s=-\frac{a_{1}}{2}$ results in a K-isomorphic elliptic curve given by the Weierstrass model

$$
y^{2}=x^{3}+\left(a_{1}^{4}+4 a_{1}^{2} a_{2}\right) \not x^{2}+16 a_{1}^{4} a_{4} x .
$$

As a result, if E is an elliptic curve over K with a torsion point of order 2, we may assume that E is given by the Weierstrass model

$$
E: y^{2}=x^{3}+a_{2} x^{2}+a_{4} x
$$

where each $a_{i} \in K$. In fact, we may assume that $a_{2}, a_{4} \in R_{K}$ since the admissible change of variables $x \longmapsto u^{-2} x$ and $y \longmapsto u^{-3} y$ results in the Weierstrass model

$$
y^{2}=x^{3}+a_{2} u^{2} x^{2}+a_{4} u^{4} x
$$

Note that if $a_{2}^{2}-4 a_{4}$ is a square in K, then $x^{2}+a_{2} x+a_{4}=(x+\alpha)(x+\beta)$ for some $\alpha, \beta \in K$. In particular, we observe that E has full 2 -torsion in K if and only if $a_{2}^{2}-4 a_{4}$ is a square since $(-\alpha, 0)$ is a torsion point of order 2 .

Lemma 5.1 Let K be a number field with class number equal to 1 . Let E be an elliptic curve over K with a rational torsion point P of order 2 . Suppose further that E does not have full 2-torsion over K. Then E is K-isomorphic to the elliptic curve

$$
E_{C_{2}}(a, b, d): y^{2}=x^{3}+2 a x^{2}+\left(a^{2}-b^{2} d\right)
$$

for some $a, b, d \in R_{K}$ with $d \neq 1, b \neq 0$ such that $\operatorname{gcd}(a, b)$ and d are squarefree.

Proof By the above discussion, we may assume that E is given by the Weierstrass model

$$
E: y^{2}=x^{3}+a_{2} x^{2}+a_{4} x
$$

with $a_{2}, a_{4} \in R_{K}$ and $P=(0,0)$.
Since $E[2] \nleftarrow E(K)$, we have that $a_{2}^{2}-4 a_{4}$ is not a square in K. Then

$$
x^{3}+a_{2} x^{2}+a_{4} x=x\left(x-\theta_{1}\right)\left(x-\theta_{2}\right)
$$

with $\theta_{1}=a+b \sqrt{d}$ and $\theta_{2}=a-b \sqrt{d}$ for some $a, b, d \in R_{K}$ with $d \neq 1, b \neq 0$, and d squarefree. Therefore

$$
E: y^{2}=x^{3}+2 a x^{2}+\left(a^{2}-b^{2} d\right) \not x
$$

Now suppose $\operatorname{gcd}(a, b)=g^{2} h$ with h squarefree. Then the admissible change of variables $x \longmapsto g^{2} x$ and $y \longmapsto g^{3} y$ results in the K-isomorphic elliptic curve

$$
y^{2}=x^{3}+\frac{2 a x^{2}}{g^{2}}+\frac{\left(a^{2}-b^{2} d\right)}{g^{4}} x
$$

In particular, we may assume that $\operatorname{gcd}(a, b)$ and d are squarefree, which completes the proof.

Remark If we omit the condition that K has class number equal to 1 , the lemma still holds with the omission that the $\operatorname{gcd}(a, b)$ is squarefree.

Lemma 5.2 Let K be a number field with class number equal to 1 . Let E be an elliptic curve over K with a rational torsion point P of order 2 . Suppose further that E has full 2-torsion over K. Then E is K-isomorphic to the elliptic curve

$$
E_{C_{2} \times C_{2}}=E_{C_{2} \times C_{2}}(a, b, d): y^{2}=x^{3}+(a d+b d) x^{2}+a b d^{2}
$$

for some $a, b, d \in R_{K}-\{0\}$ such that $\operatorname{gcd}(a, b)=1$ and d is squarefree.
Proof By the above discussion, we may assume that E is given by the Weierstrass model

$$
E: y^{2}=x^{3}+a_{2} x^{2}+a_{4} x
$$

with $a_{2}, a_{4} \in R_{K}$ and $P=(0,0)$.
Since $E[2] \hookrightarrow E(K)$,

$$
\begin{aligned}
x^{3}+a_{2} x^{2}+a_{4} x & =x(x+A)(x+B) \\
& =x^{3}+(A+B) x+A B x
\end{aligned}
$$

for $A, B \in R_{K}-\{0\}$. Now suppose that $\operatorname{gcd}(A, B)=g^{2} d$ with d squarefree. Then the admissible change of variables $x \longmapsto g^{2} x$ and $y \longmapsto g^{3} y$ results in the K-isomorphic elliptic curve

$$
y^{2}=x^{3}+\frac{(A+B)}{g} x+\frac{A B}{g^{2}} x
$$

and so we may assume that $\operatorname{gcd}(A, B)=d$. Taking $A=a d$ and $B=b d$ gives the lemma.

Remark If we omit the condition that K has class number equal to 1 , the lemma still holds with the omission that $\operatorname{gcd}(a, b)=1$ and d is squarefree.

5.1.2 Point of Order $N=3$

Now suppose $N \geq 3$ and once more consider the elliptic curve E over K given by the Weierstrass model

$$
\begin{equation*}
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x \tag{5.2}
\end{equation*}
$$

with $P=(0,0)$ the point of order N.

Lemma 5.3 Let E be given by the Weierstrass model (5.2) and $P=(0,0)$ a torsion point of order N.
(i) If $N \geq 3$, then $a_{3} \neq 0$ and, after a change of coordinates, we can suppose $a_{4}=0$.
(ii) If $a_{3} \neq 0$ and $a_{4}=0$, then P is of order 3 if and only if $a_{2}=0$.

Proof See [40, Lemma 1.1].
Corollary 5.4 Let E be an elliptic curve over K with a rational torsion point of order 3. If the j-invariant of E is non-zero, then E is K-isomorphic to the elliptic curve

$$
\mathcal{X}_{t}\left(C_{3}\right): y^{2}+x y+t y=x^{3}
$$

for some $t \in K^{*}$.
Proof By Lemma 5.3, we may assume that E is given by the Weierstrass model

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}
$$

The invariant $c_{4}=a_{1}\left(a_{1}^{3}-24 a_{3}\right)$. Since the j-invariant of E is 0 if and only if $c_{4}=0$, we may assume that $a_{1} \neq 0$ and $a_{1}^{3}-24 a_{3} \neq 0$.

Since $a_{1} \neq 0$, the admissible change of variables $x \longmapsto a_{1}^{2} x$ and $y \longmapsto a_{1}^{3} y$ results in the K-isomorphic elliptic curve

$$
y^{2}+x y+\frac{a_{3}}{a_{1}^{3}} y=x^{3}
$$

and so we may take $t=\frac{a_{3}}{a_{1}^{3}}$ which completes the proof.

5.1.3 Point of Order $N \geq 4$ and Modular Curves

Lemma 5.5 (Tate Normal Form) Let E be an elliptic curve over K with a rational torsion point of order $N \geq 4$. Then every K-isomorphism class of pairs (E, P) with E an elliptic curve over K and $P \in E(K)$ a torsion point of order n contains a unique model of the form

$$
\begin{equation*}
y^{2}+(1-g) x y-f y=x^{3}-f x^{2} \tag{5.3}
\end{equation*}
$$

with $f, g \in K^{\times}, g \in K$.

Proof See [40, Proposition 1.3].

By the proof of the above lemma, we observe that the model is indeed independent of the characteristic of K. Now let $T=C_{N}$ where $N=4, \ldots, 10,12$. For these T, we defined the elliptic curve $\mathcal{X}_{t}(T)$ in Table 2.1 and its Weierstrass model is (5.3) with f and g as in the lemma. Now assume further that $T=C_{N}$ as above or $T=C_{2} \times C_{2 M}$ where $M=2,3,4$. We now restate the result given in the introduction.

Proposition 5.6 Let E be an elliptic curve over K with $T \hookrightarrow E(K)$. Then there is a $t \in K$ such that E is K-isomorphic to $\mathcal{X}_{t}(T)$.

5.1.4 The Elliptic Curves $E_{T}(a, b)$ and $E_{T}(a, b, d)$

Let T be one of the fourteen non-trivial torsion subgroups allowed by Theorem 2.1 and let E_{T} be the elliptic curve defined in Table D.1. Then for $T=C_{2}, C_{2} \times C_{2}$, $E_{T}=E_{T}(a, b, d)$ is the three parameter family of elliptic curves which was the subject of Lemmas 5.1 and 5.2. For $T \neq C_{2}, C_{2} \times C_{2}$, we show that $E_{T}=E_{T}(a, b)$ is K isomorphic to $\mathcal{X}_{b / a}(T)$. For the following lemma, let α_{T}, β_{T}, and γ_{T} be as defined in Tables D.2, D.3, and D.4, respectively.

Lemma 5.7 For $T \neq C_{2}, C_{2} \times C_{2}$, the elliptic curves $\mathcal{X}_{b / a}(T)$ and E_{T} are K-isomorphic for coprime elements $a, b \in R_{K}$. Moreover, the discriminant of E_{T} is γ_{T} and the invariants c_{4} and c_{6} of E_{T} are α_{T} and β_{T}, respectively.

Proof Let

$$
u_{T}= \begin{cases}\left(\begin{array}{ll}
a & \text { if } T=C_{3}, C_{4}, C_{5}, C_{6}, C_{2} \times C_{4} \\
a^{2} & \text { if } T=C_{7} \\
a b & \text { if } T=C_{8} \\
a^{3} & \text { if } T=C_{9} \\
a\left(a^{2}-3 a b+b^{2}\right) & \text { if } T=C_{10} \\
a(-a+b)^{3} & \text { if } T=C_{12} \\
-9 a^{2}+b^{2} & \text { if } T=C_{2} \times C_{6} \\
2 b(a+4 b)\left(-a^{2}+8 b^{2}\right) & \text { if } T=C_{2} \times C_{8} .
\end{array},\right.\end{cases}
$$

Then the admissible change of variables $x \longmapsto u_{T}^{-2} x$ and $y \longmapsto u_{T}^{-3} y$ gives a K isomorphism from $\mathcal{X}_{b / a}(T)$ onto $E_{T}=E_{T}(a, b)$. It is now verified via the formulas in (2.2) that the discriminant of E_{T} is γ_{T} and that the invariants c_{4} and c_{6} of E_{T} are α_{T} and β_{T}, respectively.

5.2 Explicit Flexor-Frey-Oesterlé

We begin by formally stating the results of Frey and Flexor-Oesterlé.

Theorem 5.8 (Frey, [37]) Let E be an elliptic curve over K. If $E(K)$ contains a point of prime order $\ell>3$, then E is semistable at all primes \mathfrak{p} of K whose residue characteristic is different from ℓ.

Theorem 5.9 (Flexor-Oesterlé, [38]) Let E be an elliptic curve over K. If $E(K)$ contains a point of order N and E has additive reduction at a prime \mathfrak{p} of K whose residue characteristic does not divide N, then $N \leq 4$. Moreover, if E has additive reduction at at least two primes of K with different residue characteristics then N divides 12.

Now let E_{T} be as defined in the previous section. In the previous section, we saw that these families of elliptic curves parameterize all elliptic curves over K with
$T \hookrightarrow E(K)$ where T is one of the fourteen non-trivial torsion subgroups allowed by Theorem 2.1. Moreover, the discriminant of E_{T} is given by γ_{T} and the invariants c_{4} and c_{6} are α_{T} and β_{T}, respectively. In the following lemma, we consider $\alpha_{T}, \beta_{T}, \gamma_{T}$ as polynomials in $S=\mathbb{Z}[a, b, d, r, s]$.

Lemma 5.10 Let $\alpha_{T}, \beta_{T}, \gamma_{T}$ be as given in Tables D.2, D.3, and D.4, respectively. For $j=1,2,3$, let $\mu_{T}^{(j)}, \nu_{T}^{(j)}$ be as defined in Tables D. 5 through D.10. Then for each T, the identity $\alpha_{T}^{3}-\beta_{T}^{2}=1728 \gamma_{T}$ holds in S and we have the additional identities in S :

$\mu_{T}^{(1)} \alpha_{T}+\nu_{T}^{(1)} \beta_{T}$	$\mu_{T}^{(2)} \alpha_{T}+\nu_{T}^{(2)} \gamma_{T}$	$\mu_{T}^{(3)} \beta_{T}+\nu_{T}^{(3)} \gamma_{T}$	T
$2^{8} 3^{2}\left(r b^{4} d^{2}+s a^{3}\right)$	$2^{10}\left(r b^{6} d^{3}+s a^{6}\right)$	$2^{12}\left(r b^{8} d^{4}+s a^{7}\right)$	C_{2}
$2^{6} 3^{3} a^{3}\left(r a^{3}+s b^{3}\right)$	$2^{15} 3^{6} a^{3}\left(r a^{9}+s b^{9}\right)$	$2^{6} 3^{9} a^{4}\left(r a^{9}+s b^{9}\right)$	C_{3}
$2^{8} 3^{2} a^{2}\left(r a^{5}+s b^{5}\right)$	$2^{12} a^{2}\left(r a^{12}+s b^{11}\right)$	$2^{18} a^{3}\left(r a^{11}+s b^{11}\right)$	C_{4}
$2^{4} 3^{2} 5\left(r a^{9}+s b^{9}\right)$	$5\left(r a^{15}+s b^{15}\right)$	$5^{3}\left(r a^{17}+s b^{17}\right)$	C_{5}
$2^{7} 3^{4}\left(r a^{9}+s b^{9}\right)$	$2^{4} 3^{4}\left(r a^{15}+s b^{5}\right)$	$2^{9} 3^{3}\left(r a^{17}+s b^{17}\right)$	C_{6}
$2^{4} 3^{2} 7\left(r a^{19}+s b^{19}\right)$	$7^{2}\left(r a^{31}+s b^{31}\right)$	$7\left(r a^{35}+s b^{35}\right)$	C_{7}
$2^{7} 3^{2}\left(r a^{18}+s b^{19}\right)$	$2^{4}\left(r a^{30}+s b^{31}\right)$	$2^{9}\left(r a^{34}+s b^{35}\right)$	C_{8}
$2^{4} 3^{4}\left(r a^{29}+s b^{29}\right)$	$3^{4}\left(r a^{47}+s b^{47}\right)$	$3^{3}\left(r a^{53}+s b^{53}\right)$	C_{9}
$2^{7} 3^{2} 5\left(r a^{29}+s b^{29}\right)$	$2^{4} 5\left(r a^{47}+s b^{47}\right)$	$2^{8} 5\left(r a^{53}+s b^{47}\right)$	C_{10}
$2^{7} 3^{4}\left(r a^{38}+s b^{39}\right)$	$2^{4} 3^{4}\left(r a^{62}+s b^{63}\right)$	$2^{9} 3^{3}\left(r a^{70}+s b^{71}\right)$	C_{12}
$2^{5} 3^{2} d^{4}\left(r a^{4}+s b^{4}\right)$	$2^{4} d^{6}\left(r a^{6}+s b^{6}\right)$	$2^{7} d^{8}\left(r a^{8}+s b^{8}\right)$	$C_{2} \times C_{2}$
$2^{14} 3^{2}\left(r a^{8}+s b^{8}\right)$	$2^{16}\left(r a^{14}+s b^{12}\right)$	$2^{24}\left(r a^{16}+s b^{16}\right)$	$C_{2} \times C_{4}$
$2^{31} 3^{4}\left(r a^{18}+s b^{19}\right)$	$2^{45} 3^{4}\left(r a^{30}+s b^{31}\right)$	$2^{56} 3^{3}\left(r a^{34}+s b^{35}\right)$	$C_{2} \times C_{6}$
$2^{49} 3^{2}\left(r a^{38}+s b^{38}\right)$	$2^{74}\left(r a^{62}+s b^{62}\right)$	$2^{90}\left(r a^{70}+s b^{70}\right)$	$C_{2} \times C_{8}$

In particular, for $T \neq C_{2}, C_{2} \times C_{2}$ suppose K is a number field with ring of integers R_{K} and $a, b \in R_{K}$ such that the principal ideals generated by a and b are coprime.

Then the ideal $\left(\alpha_{T}(a, b)+\beta_{T}(a, b)\right) \subset \gamma R_{K}$ and the ideals $\left(\alpha_{T}(a, b)\right)+\left(\Delta_{T}(a, b)\right)$ and $\left(\beta_{T}(a, b)+\gamma_{T}(a, b)\right)$ are contained in the principal ideal δR_{K} where γ and δ are:

T	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	C_{8}	C_{9}	C_{10}	C_{12}	$C_{2} \times C_{4}$	$C_{2} \times C_{6}$	$C_{2} \times C_{8}$
γ	$6 a$	$6 a$	30	6	42	6	6	10	6	2	6	2
δ	$6 a$	$2 a$	5	6	7	2	3	10	6	2	6	2

Proof The identities can be checked with a computer algebra system. For the second statement, note that since the ideals generated by a and b are coprime, it follows that the ideals generated by a^{n} and b^{m} are coprime for any positive integers n and m. In particular, there exist $r, s \in R_{K}$ such that $r a^{n}+s b^{m}=1$ and thus the second claim now follows.

Theorem 5.11 Let E be an elliptic curve over a number field K with ring of integers R_{K}. Suppose further that the j-invariant of E is not 0 or 1728 and that $T \hookrightarrow E(K)$ for one of the T in the previous lemma. If E has additive reduction at a prime \mathfrak{p} of K, then the residue characteristic of $\mathbb{F}_{\mathfrak{p}}=R_{K} / \mathfrak{p}$ is one of the following elements of the set of primes S :

T	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	C_{8}	C_{9}	C_{10}
S	$\{2,3\} \cup S_{a}$	$\{2\} \cup S_{a}$	$\{5\}$	$\{2,3\}$	$\{7\}$	$\{2\}$	$\{3\}$	$\{5\}$

T	C_{12}	$C_{2} \times C_{4}$	$C_{2} \times C_{6}$	$C_{2} \times C_{8}$
S	$\{2,3\}$	$\{2\}$	$\{2,3\}$	$\{2\}$

where $S_{a}=\left\{p\right.$ a prime $\mid p$ divides $\left.\left|R_{K} / a R_{K}\right|\right\}$ for some $a \in R_{K}$.

Proof Let E be an elliptic curve with $T \hookrightarrow E(K)$ and assume that E has additive reduction at a prime \mathfrak{p} of K. By Lemma 5.7, there are coprime elements $a, b \in$ R_{K} such that E is K-isomorphic to $E_{T}=E_{T}(a, b)$. Now let $x \longmapsto u_{\mathfrak{p}}^{2} x+r_{\mathfrak{p}}$ and $y \longmapsto u_{\mathfrak{p}}^{3} y+s_{\mathfrak{p}} u_{\mathfrak{p}}^{2} x+t_{\mathfrak{p}}$ be an admissible change of variables resulting in a minimal equation for E_{T} at \mathfrak{p}. Since E_{T} is given by an integral Weierstrass model, we have that $u_{\mathfrak{p}}, s_{\mathfrak{p}}, r_{\mathfrak{p}}, t_{\mathfrak{p}} \in R_{K_{\mathfrak{p}}}$ by Lemma 2.4 where $R_{K_{\mathfrak{p}}}$ denotes the ring of integers of $K_{\mathfrak{p}}$.

Let $\Delta_{\mathfrak{p}}$ denote the minimal discriminant with respect to \mathfrak{p} and let $c_{4, \mathfrak{p}}$ and $c_{6, \mathfrak{p}}$ be the associated invariants so that $1728 \Delta_{\mathfrak{p}}=c_{4, \mathfrak{p}}^{3}-c_{6, \mathfrak{p}}^{2}$. Moreover, $\Delta_{\mathfrak{p}}=u_{\mathfrak{p}}^{-12} \gamma_{T}$ and $c_{4, \mathfrak{p}}=u_{\mathfrak{p}}^{-4} \alpha_{T}$ are both in $R_{K_{\mathfrak{p}}}$ and by Lemma 5.10, $c_{4, \mathfrak{p}} R_{K_{\mathfrak{p}}}+\Delta_{\mathfrak{p}} R_{K_{\mathfrak{p}}} \subset \alpha_{T}(a, b) R_{K_{\mathfrak{p}}}+$ $\gamma_{T}(a, b) R_{K_{\mathfrak{p}}} \subset \delta R_{K_{\mathfrak{p}}}$ where δ is as in Lemma 5.10. Since E has additive reduction at \mathfrak{p}, we have that $v_{\mathfrak{p}}\left(\Delta_{\mathfrak{p}}\right), v\left(c_{4, \mathfrak{p}}\right)>0$ and therefore $v_{\mathfrak{p}}(\delta)>0$. In particular, the residue characteristic of $v_{\mathfrak{p}}$ divides δ. This shows all cases claimed except for $T=C_{10}$. Note that if $C_{10} \hookrightarrow E(K)$, then $C_{5} \hookrightarrow E(K)$. Therefore $E_{C_{10}}(a, b)$ is K-isomorphic to $E_{C_{5}}\left(a^{\prime}, b^{\prime}\right)$ for two coprime elements $a^{\prime}, b^{\prime} \in R_{K}$. In particular, if $E_{C_{10}}$ has additive reduction at a prime \mathfrak{p}, it follows that the residue characteristic of \mathfrak{p} is 5 .

This is Frey's result in the case when $\ell=5,7$. To attain Flexor-Oesterlé's result, observe that only for $T=C_{3}, C_{4}, C_{6}, C_{12}$, and $C_{2} \times C_{6}$ is additive reduction possible at two or more distinct valuations with different residue characteristic.

Proof [Proof of Flexor-Oesterlé]Let E be an elliptic curve over K with a rational torsion point of order N. First suppose E has additive reduction at a prime \mathfrak{p} of K whose residue characteristic does not divide N. If ℓ divides N for $\ell>3$ a prime, we have by Frey's Theorem that the residue characteristic of \mathfrak{p} must divide N. If 6,8 , or 9 divides N, then the residue characteristic of \mathfrak{p} must divide N by Theorem 5.11. Therefore $N \leq 4$ since the only primes dividing N are 2 and 3 .

Next, suppose E has additive reduction at at least two primes of K with different residue characteristics. By Frey's Theorem, the only primes dividing N are 2 and 3. By Theorem 5.11, 8 nor 9 divide N and so $N=1,2,3,4,6,12$.

5.3 Classification of Minimal Discriminants

In this section, we restrict our attention to rational elliptic curves. As before, let T be one of the fourteen non-trivial torsion subgroups allowed by Theorem 2.1 and let E_{T} be as given in Table D.1. Then if E is a rational elliptic curve with $T \hookrightarrow E(\mathbb{Q})$ where $T \neq C_{2}, C_{2} \times C_{2}$, we have that there are relatively prime integers a and b such that E is \mathbb{Q}-isomorphic to $E_{T}=E_{T}(a, b)$. If $T=C_{2}$ and E does not have full

2-torsion, then E is \mathbb{Q}-isomorphic to $E_{T}=E_{T}(a, b, d)$ with $\operatorname{gcd}(a, b)$ and d squarefree integers. For $T=C_{2} \times C_{2}, E$ is \mathbb{Q}-isomorphic to $E_{T}=E_{T}(a, b, d)$ with a and b relatively prime and d squarefree. However, we can assume in this case that a is even as demonstrated in the following lemma.

Lemma 5.12 Let $T=C_{2} \times C_{2}$ and suppose $T \hookrightarrow E(\mathbb{Q})$. Then there are integers a, b, d with a and b relatively prime, a even, and d a positive squarefree integer.

Proof By Lemma $5.2, E$ is \mathbb{Q}-isomorphic to

$$
E_{T}: y^{2}=x^{3}+(a d+b d) x^{2}+a b d^{2}
$$

where a, b, d are integers such that a and b are relatively prime and d is a squarefree integer. By the proof of Lemma 5.2, d may be assumed to be positive. It remains to show that a may be assumed to be even. Observe that if b were even, then we can interchange a and b. So suppose a and b are odd. Then $c=b-a$ is even and the admissible change of variables $x \longmapsto x-a d$ gives a \mathbb{Q}-isomorphism from E_{T} onto the elliptic curve given by the Weierstrass model

$$
y^{2}=x^{3}+(c d-a d) x^{2}-a c d^{2} x
$$

This shows that we may assume a to be even.

Lemma 5.13 For $T \neq C_{2}, C_{2} \times C_{2}$, we have that $E_{T}(-a, b)$ is \mathbb{Q}-isomorphic to $E_{T}(a,-b)$.

Proof Let E and E^{\prime} be rational elliptic curves. Suppose further than the invariants c_{4} and c_{6} of their Weierstrass model coincide. Then E and E^{\prime} are \mathbb{Q}-isomorphic since they are both \mathbb{Q}-isomorphic to the elliptic curve

$$
y^{2}=x^{3}-27 c_{4} x-54 c_{6} .
$$

In particular, the invariants c_{4} and c_{6} of a Weierstrass model determine an elliptic curve up to \mathbb{Q}-isomorphism.

Since $\alpha_{T}(a, b)$ and $\beta_{T}(a, b)$ are the invariants c_{4} and c_{6} of the Weierstrass model of $E_{T}(a, b)$, it suffices to verify by the remark above that the following equalities hold:

$$
\alpha_{T}(-a, b)=\alpha_{T}(a,-b) \quad \text { and } \quad \beta_{T}(-a, b)=\beta_{T}(a,-b) .
$$

This is easily checked via a computer algebra system such as Mathematica [30].

Remark Henceforth, we will assume that a is even in the Weierstrass model of E_{T} for $T=C_{2} \times C_{2}$. Similarly, we will assume that a is positive in the Weierstrass model of E_{T} for $T \neq C_{2}, C_{2} \times C_{2}$.

We now state the main theorem of this section.

Theorem 5.14 The minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ where u_{T} is one of the possibilities below

T	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	C_{8}
u_{T}	1,2, or 4	$c^{2} d$	c or $2 c$	1	1 or 2	1	1 or 2

T	C_{9}	C_{10}	C_{12}	$C_{2} \times C_{2}$	$C_{2} \times C_{4}$	$C_{2} \times C_{6}$	$C_{2} \times C_{8}$
u_{T}	1	1 or 2	1 or 2	1 or 2	1,2, or 4	1,4, or 16	1,16, or 64

where

$$
a= \begin{cases}\chi^{3} d^{2} e \text { with } d \text { and e squarefree and } \operatorname{gcd}(d, e)=1 & \text { if } T=C_{3} \tag{5.4}\\ x^{2} d \text { with } d \text { squarefree } & \text { if } T=C_{4}\end{cases}
$$

Moreover, there are necessary and sufficient conditions on a, b, d to determine exactly the value of u_{T}. Table 5.1 summarizes these necessary and sufficient conditions.

Table 5.1.: Necessary and Sufficient Conditions on u_{T}

T	Conditions on u_{T}
C_{2}	$\begin{aligned} u_{T}=4 \Longleftrightarrow & v_{2}\left(b^{2} d-a^{2}\right) \geq 8 \text { with } v_{2}(a)=v_{2}(b)=1 \text { and } 2^{-1} a \equiv \\ & 1 \bmod 4 . \\ u_{T}=2 \Longleftrightarrow & \text { either }(i) u_{T} \neq 4, v_{2}\left(b^{2} d-a^{2}\right) \geq 4 \text { with } v_{2}(a)= \\ & v_{2}(b)=1 \text { and } d \equiv 1 \bmod 4,(i i) v_{2}(b) \geq 3 \text { and } a \equiv \\ & -1 \bmod 4 \text {, or }(\text { iii }) a=3 b \text { with } b \text { a squarefree even } \\ & \text { integer not divisible by } 3 . \\ u_{T}=1 \Longleftrightarrow & \text { The previous conditions are not satisfied. } \end{aligned}$
C_{4}	$u_{T}=2 c \quad \Longleftrightarrow \quad v_{2}(a) \geq 8$ is even with $b d \equiv 3 \bmod 4$ $u_{T}=c \quad \Longleftrightarrow$ The previous condition is not satisfied.
C_{6}	$\begin{aligned} & u_{T}=1 \quad \Longleftrightarrow \quad v_{2}(a+b)<3 \\ & u_{T}=2 \quad \Longleftrightarrow \quad v_{2}(a+b) \geq 3 \end{aligned}$
C_{8}	$\begin{aligned} & u_{T}=1 \quad \Longleftrightarrow \quad v_{2}(a) \neq 1 \\ & u_{T}=2 \quad \Longleftrightarrow \quad v_{2}(a)=1 \end{aligned}$
C_{10}	$\begin{aligned} & u_{T}=1 \quad \Longleftrightarrow \quad a \text { is odd. } \\ & u_{T}=2 \quad \Longleftrightarrow \quad a \text { is even. } . \end{aligned}$
C_{12}	$\begin{aligned} & u_{T}=1 \quad \Longleftrightarrow \quad a \text { is odd } . \\ & u_{T}=2 \quad \Longleftrightarrow \quad a \text { is even } . \end{aligned}$
$C_{2} \times C_{2}$	$u_{T}=2 \quad \Longleftrightarrow \quad v_{2}(a) \geq 4$ and $b d \equiv 1 \bmod 4$. $u_{T}=1 \quad \Longleftrightarrow$ The previous condition is not satisfied.
$C_{2} \times C_{4}$	$\begin{aligned} & u_{T}=1 \quad \Longleftrightarrow \quad v_{2}(a) \leq 1 \\ & u_{T}=2 \quad \Longleftrightarrow \quad v_{2}(a) \geq 2 \text { and } v_{2}(a+4 b)<4 \\ & u_{T}=4 \quad \Longleftrightarrow \quad v_{2}(a)=2 \text { and } v_{2}(a+4 b) \geq 4 \end{aligned}$
$C_{2} \times C_{6}$	$\begin{aligned} & u_{T}=1 \Longleftrightarrow v_{2}(a+b)=0 \\ & u_{T}=4 \Longleftrightarrow \\ & v_{2}(a+b) \geq 2 \\ & u_{T}=16 \Longleftrightarrow \\ & v_{2}(a+b)=1 \end{aligned}$

continued on next page

Table 5.1.: continued

T	Conditions on u_{T}			
$C_{2} \times C_{8}$	$u_{T}=1$	$\Longleftrightarrow a$ is odd.		
	$u_{T}=16$	\Longleftrightarrow	$v_{2}(a)=1$	
	$u_{T}=64$	\Longleftrightarrow	$v_{2}(a) \geq 2$	

In Theorem 5.11, we considered elliptic curves whose j-invariant was not 0 or 1728. Consequently, in order to prove Theorem 5.14 as stated we need knowledge of when E_{T} has j-invariant 0 or 1728 . Below we prove a series of easy lemmas which will allow us to distinguish those E_{T} 's whose j-invariant is 0 or 1728 .

Lemma 5.15 Let E be a rational elliptic curve with a rational torsion point of order $N \geq 4$. If E has j-invariant 0 , then E is \mathbb{Q}-isomorphic to $E_{C_{6}}(3,-1)$. If E has j-invariant 1728 , then E is \mathbb{Q}-isomorphic to $E_{C_{4}}(8,-1)$.

Proof From (2.2) it is checked that $j=0$ if and only if $c_{4}=0$. Similarly, $j=1728$ if and only if $c_{6}=0$. By Proposition 5.6 and Lemma $5.7, E$ is \mathbb{Q}-isomorphic to E_{T} for some T. We now consider the cases when $j=0$ and $j=1728$.

Case I. Suppose $j=0$. Then the invariant c_{4} of E is 0 . In particular, it suffices to check when there are integer solutions to the equations $\alpha_{T}=0$. By inspection, this only occurs for $T=C_{6}$ with $a=3$ and $b=-1$ since we assuming a to be even by Remark 5.3.

Case II. Suppose $j=1728$. Then the invariant c_{6} of E is 0 . In particular, it suffices to check when there are integer solutions to the equations $\beta_{T}=0$. By inspection, this only occurs for $T=C_{4}$ with $a=8$ and $b=-1$ since we assuming a to be even by Remark 5.3.

Lemma 5.16 Let E be a rational elliptic curve with a rational torsion point of order $N=3$. Then the j-invariant of E is not equal to 1728. Moreover, if the j-invariant of E is 0 , then E is \mathbb{Q}-isomorphic to either $E_{C_{3}}(24,1)$ or

$$
E_{C_{3}^{0}}(a): y^{2}+a x=x^{3}
$$

for some cubefree integer a.

Proof By Lemma 5.3, we may assume that E is given by the Weierstrass model

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}
$$

for some integers a_{1} and a_{2}. Then $c_{4}=a_{1}\left(a_{1}^{3}-24 a_{3}\right)$ and $c_{6}=-a_{1}^{6}+36 a_{1}^{3} a_{3}-216 a_{2}^{2}$. By inspection, $c_{6}=0$ does not have any real solutions and therefore there is no elliptic curve E with a torsion point of order 3 which has j-invariant 1728 .

Next, the j-invariant of E is 0 if and only if $c_{4}=0$. In particular, either $a_{1}=0$ or $a_{1}^{3}-24 a_{3}=0$. We consider each of these cases separately.

Case I. Suppose $a_{1} \neq 0$. Then E is \mathbb{Q}-isomorphic to $E_{T}(a, b)$ for some relatively prime integers a and b by Corollary 5.4. But then $\alpha_{T}=a^{3}(a-24 b)=0$. Consequently, $a-24 b=0$ and so $a=24 b$. Since a and b are relatively prime, we conclude that E is \mathbb{Q}-isomorphic to $E_{C_{3}}(24,1)$.

Case II. Suppose $a_{1}=0$. Then

$$
E: y^{2}+a_{3} x=x^{3} .
$$

We claim that E is \mathbb{Q}-isomorphic to $E_{C_{3}^{0}}(a)$ where a is the cubefree part of a_{3}. Indeed, write $a_{3}=c^{3} a$ with a and c positive integers such that a is cubefree. Then the admissible change of variables $x \longmapsto a^{2} x$ and $y \longmapsto a^{3} y$ gives a \mathbb{Q}-isomorphism from E onto

$$
E_{C_{3}^{0}}(a): y^{2}+a x=x^{3},
$$

which concludes the proof.

Corollary 5.17 For a cubefree integer a, $E_{C_{3}^{0}}=E_{C_{3}^{0}}(a)$ is a global minimal model for $E_{C_{3}^{0}}$. Moreover, $E_{C_{3}^{0}}$ has additive reduction at each prime dividing the discriminant.

Proof Let Δ denote the discriminant of $E_{C_{3}^{0}}$ and c_{6} the invariant associated to the Weierstrass model of $E_{C_{3}^{0}}$. Then

$$
\Delta=-3^{3} a^{4} \quad \text { and } \quad c_{6}=2^{3} 3^{3} a^{2}
$$

Observe that for p a prime, $v_{p}(\Delta) \leq 11$ since a is cubefree. In particular, $E_{C_{3}^{0}}$ is a global minimal model for $E_{C_{3}^{0}}$. It now follows that $E_{C_{3}^{0}}$ has additive reduction at each prime dividing the discriminant.

Lemma 5.18 Let $T=C_{2}$. Then
(i) If E_{T} has j-invariant 0 , then it is \mathbb{Q}-isomorphic to $E_{T}(3 b, b,-3)$ for b a squarefree integer not divisible by 3.
(ii) If E_{T} has j-invariant 1728 , then it is \mathbb{Q}-isomorphic to $E_{T}(0, b, d)$ for squarefree integers b and d.

Proof (i) If E_{T} has j-invariant 0 , then $\alpha_{T}=0$. In particular,

$$
\alpha_{T}=16\left(3 b^{2} d+a^{2}\right) \neq 0 \quad \Longrightarrow \quad a^{2}=-3 b^{2} d
$$

Since $\operatorname{gcd}(a, b)$ and d are squarefree, it follows that $d=-3$ and $a=3 b$ with b a squarefree integer not divisible by 3 .
(ii) If E_{T} has j-invariant 1728 , then

$$
\beta_{T}=-64 a\left(q b^{2} d-a^{2}\right)\left(=0 \quad \Longrightarrow \quad a=0 \text { or } a^{2}=9 b^{2} d\right.
$$

Since $d \neq 1$, it follows that the latter cannot occur. Consequently, $a=0$. Now suppose $b=\hat{b}^{2} e$ for e a squarefree integer. Then the admissible change of variables $x \longmapsto \hat{b} x$ and $y \longmapsto \hat{b}^{3} y$ gives a \mathbb{Q}-isomorphism from E_{T} onto

$$
E_{T}^{\prime}: y^{2}=x^{3}-e^{2} d x
$$

In particular, we may assume b is a squarefree integer which concludes the proof.

Lemma 5.19 Let $T=C_{2} \times C_{2}$. Then the j-invariant of E_{T} is nonzero. Moreover, if E_{T} has j-invariant 1728 , then E_{T} is \mathbb{Q}-isomorphic to $E_{T}(2,1, d)$ for some squarefree integer d.

Proof Towards a contradiction, suppose the j-invariant of E_{T} is 0 . Then

$$
\alpha_{T}=16 d^{2}\left(a^{2}-a b+b^{2}\right)(=0
$$

But this is a contradiction since $a^{2}-a b+b^{2} \neq 0$ for integers a and b.
Next, suppose the j-invariant of E_{T} is 1728 . Then

$$
\beta_{T}=-32(a+b)(a-2 b)(2 a-b)=0
$$

Since a and b are relatively and a is assumed to be even by Lemma 5.12 , we have that $\beta_{T}=0$ if and only if $a= \pm 2$ and $b= \pm 1$. The admissible change of variables $x \longmapsto x-2 d$ gives a \mathbb{Q}-isomorphism from $E_{T}(2,1, d)$ onto $E_{T}(-2,-1, d)$, which concludes the proof.

5.4 Proof of Theorem 5.14

The proof will rely on extensive use of Kraus's Theorem which we recall below:

Lemma 2.6 Let α, β, and γ be integers such that $\alpha^{3}-\beta^{2}=1728 \gamma$ with $\gamma \neq 0$. Then there exists a rational elliptic curve E given by an integral Weierstrass equation having invariants $c_{4}=\alpha$ and $c_{6}=\beta$ if and only if the following conditions hold:
(i) $v_{3}(\beta) \neq 2$;
(ii) either $\beta \equiv-1 \bmod 4$ or both $v_{2}(\alpha) \geq 4$ and $\beta \equiv 0$ or $8 \bmod 32$.

The following corollary is automatic by Lemma 2.4 and the definition of an integral Weierstrass model.

Corollary 5.20 Let E be a rational elliptic curve which is given by an integral Weierstrass model. Let c_{4} and c_{6} be the invariants associated to this model. If $x \longmapsto u^{2} x+r$ and $y \longmapsto u^{3}+u^{2} s x+w$ is an admissible change of variables between E and a global minimal model of E, then $\alpha=u^{-4} \cdot c_{4}$ and $\beta=u^{-6} \cdot c_{6}$ satisfy the conditions of Theorem 2.6.

Lemma 5.21 Let α, β, and γ be integers such that $\alpha^{3}-\beta^{2}=1728 \gamma$ with $\gamma \neq 0$. If $v_{2}\left(\alpha_{T}\right)=4 k$ for some integer k and $v_{2}\left(\gamma_{T}\right) \geq 12 k$, then $v_{2}\left(\beta_{T}\right)=6 k$.

Proof The assumption implies that $2^{12 k}$ divides α^{3} and γ. Then $2^{12 k}$ divides β^{2} since $\alpha^{3}-1728 \gamma=\beta^{2}$. Since $2^{-12 k} \cdot \alpha^{3}$ is odd and $2^{-12 k} \cdot 1728 \gamma$ is even, it follows that $2^{-12 k} \cdot \beta^{2}$ is odd. Therefore $v_{2}\left(\beta_{T}\right)=6 k$.

Remark By Lemma 5.15, the j-invariant of E_{T} is not equal to 0 or 1728 for $T \neq$ $C_{2}, C_{3}, C_{4}, C_{6}$, and $C_{2} \times C_{2}$. Consequently, for these T, we will implicitly assume in the proof of Theorem 5.14 that the j-invariant of E_{T} is not 0 or 1728 .

5.4.1 Proof of Theorem 5.14 for $T=C_{5}, C_{7}, C_{9}$.

Theorem 5.14 for $\boldsymbol{T}=\boldsymbol{C}_{\mathbf{5}}, \boldsymbol{C}_{\mathbf{7}}, \boldsymbol{C}_{\mathbf{9}}$. For $T=C_{5}, C_{7}, C_{9}$, the minimal discriminant of E_{T} is γ_{T}.

Proof Let $x \longmapsto u_{T}^{2} x+r_{T}$ and $y \longmapsto u_{T}^{3}+u_{T}^{2} s_{T} x+w_{T}$ be an admissible change of variables between E_{T} and a global minimal model of E_{T}. Since E_{T} is given by an integral Weierstrass model, we have by Lemma 2.4 that $u_{T}, s_{T}, r_{T}, w_{T} \in \mathbb{Z}$ and moreover, $u_{T}^{6} \mid \beta_{T}$ and $u_{T}^{12} \mid \gamma_{T}$. In particular, u_{T}^{6} divides $\operatorname{gcd}\left(\beta_{T}, \gamma_{T}\right)$. Since a and b are relatively prime, we have that for a fixed positive integer k, there are integers r and s such that $r a^{k}+s b^{k}=1$ and so by Lemma $5.10, \operatorname{gcd}\left(\beta_{T}, \gamma_{T}\right)$ divides d_{T} where

$$
d_{T}= \begin{cases}5^{3} & \text { if } T=C_{5} \\ 7 & \text { if } T=C_{7} \\ 83 & \text { if } T=C_{9} .\end{cases}
$$

In particular, $u_{T}=1$ which shows that $\left(E_{T}\right.$ is a global minimal model for E_{T}.

5.4.2 Proof of Theorem 5.14 for $T=C_{2}$

Theorem 5.14 for $\boldsymbol{T}=\boldsymbol{C}_{2}$. The minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ with $u_{T} \in$ $\{1,2,4\}$. Moreover,
(i) $u_{T}=4 \Longleftrightarrow v_{2}\left(b^{2} d-a^{2}\right) \geq 8$ with $v_{2}(a)=v_{2}(b)=1$ and $2^{-1} a \equiv 1 \bmod 4$.
(ii) either (1) $u_{T}=2 \Longleftrightarrow u_{T} \neq 4, v_{2}\left(b^{2} d-a^{2}\right) \geq 4$ with $v_{2}(a)=v_{2}(b)=1$ and $d \equiv 1 \bmod 4$, (2) $v_{2}(b) \geq 3$ and $a \equiv-1 \bmod 4$, or (3) $a=3 b$ with b a squarefree even integer not divisible by 3 .

Otherwise $u_{T}=1$.

Proof Recall that the discriminant of E_{T} is γ_{T} and the invariants c_{4} and c_{6} of E_{T} are α_{T} and β_{T} where

$$
\alpha_{T}=16\left(3 b^{2} d+a^{2}\right)\left(\beta_{T}=-64 a\left(9 b^{2} d-a^{2}\right)\left(\gamma_{T}=64 b^{2} d\left(b^{2} d-a^{2}\right)^{2}\right.\right.
$$

By assumption, a, b, d are integers with $d \neq 1, b \neq 0$ such that $\operatorname{gcd}(a, b)$ and d are squarefree.

First, suppose the j-invariant of E_{T} is 0 . By Lemma $5.18 E_{T}$ is \mathbb{Q}-isomorphic to $E_{T}(3 b, b,-3)$ for b a squarefree integer not divisible by 3 . Then

$$
\beta_{T}=2^{8} 3^{3} b^{3} \quad \text { and } \quad \gamma_{T}=2^{10} 3^{3} b^{6}
$$

In particular, if b is odd, then $v_{p}\left(\gamma_{T}\right)<12$ for all primes p and therefore γ_{T} is the minimal discriminant of E_{T}. Now suppose $b=2 \hat{b}$ for some odd squarefree integer \hat{b}. The admissible change of variables $x \longmapsto 4 x$ and $y \longmapsto 8 y$ gives a \mathbb{Q}-isomorphism from E_{T} onto

$$
E_{T}^{\prime}: y^{2}=x^{3}+3 \hat{b} x^{2} 3+\hat{b}^{2} x
$$

Note that the discriminant of E_{T}^{\prime} is $u_{T}^{-12} \gamma_{T}=2^{4} 3^{3} \hat{b}^{6}$ with $u_{T}=2$. In particular, $v_{p}\left(u_{T}^{-12} \gamma_{T}\right)<12$ for each prime p. Thus $u_{T}^{-12} \gamma_{T}$ is the minimal discriminant of E_{T}.

Next, suppose the j-invariant of E_{T} is 1728 . By Lemma $5.18 E_{T}$ is \mathbb{Q}-isomorphic to $E_{T}(0, b, d)$ for squarefree integers b and d. Then

$$
\alpha_{T}=2^{4} 3 b^{2} d \quad \text { and } \quad \gamma_{T}=2^{6} b^{6} d^{3}
$$

In particular, $v_{p}\left(\gamma_{T}\right) \leq 9$ for each odd prime p and $v_{2}\left(\gamma_{T}\right) \leq 15$. Now let $x \longmapsto$ $u_{T}^{2} x+r_{T}$ and $y \longmapsto u_{T}^{3}+u_{T}^{2} s_{T} x+w_{T}$ be an admissible change of variables between E_{T} and a global minimal model of E_{T}. Since E_{T} is given by an integral Weierstrass model,
we have by Lemma 2.4 that $u_{T}, s_{T}, r_{T}, w_{T} \in \mathbb{Z}$. Then u_{T} divides 2 since $v_{2}\left(\gamma_{T}\right) \leq 15$. Towards a contradiction, suppose $u_{T}=2$. Then b is even since $v_{2}\left(\gamma_{T}\right) \geq 12$ if and only if b is even. Write $b=2 \hat{b}$ for \hat{b} an odd squarefree integer. Then

$$
u_{T}^{-4} \alpha_{T}=12 \hat{b}^{2} d \quad \text { and } \quad u_{T}^{-12} \gamma_{T}=\hat{b}^{6} d^{3}
$$

Since $u_{T}^{-6} \beta_{T}=0$ and $v_{2}\left(u_{T}^{-4} \alpha_{T}\right) \leq 3$, we have by Theorem 2.6 there is no integral Weierstrass model having invariants $c_{4}=u_{T}^{-4} \alpha_{T}$ and $c_{6}=0$. This contradicts the assumption that $u_{T}^{-12} \gamma_{T}$ is the minimal discriminant of E_{T}.

Next, suppose the j-invariant of E_{T} is not equal to 0 or 1728 . Let $\operatorname{gcd}(a, b)=m n$ such that $\operatorname{gcd}(a, d)=m l$ and $\operatorname{gcd}(b, l)=1$. In particular, m, n, l are squarefree relatively prime positive integers. Hence

$$
a=m n l \tilde{a}, \quad b=m n \tilde{b}, \text { and } \quad d=m l \tilde{d}
$$

for some integers \tilde{a}, \tilde{b}, and \tilde{d}. Then by Lemma 5.10,

$$
\begin{array}{llrl}
\operatorname{gcd}\left(\alpha_{T}, \beta_{T}\right) & \text { divides } & 2^{8} 3^{2} \operatorname{gcd}\left(b^{4} d^{2}, a^{3}\right) & =2^{8} 3^{2} m^{3} n^{3} l^{2} \\
\operatorname{gcd}\left(\alpha_{T}, \gamma_{T}\right) & \text { divides } & 2^{10} \operatorname{gcd}\left(b^{6} d^{3}, a^{6}\right) & =2^{10} m^{6} n^{6} l^{3} \tag{5.5}\\
\operatorname{gcd}\left(\beta_{T}, \gamma_{T}\right) & \text { divides } & 2^{12} \operatorname{gcd}\left(b^{8} d^{4}, a^{7}\right) & =2^{12} m^{7} n^{7} l^{4}
\end{array}
$$

Next let $x \longmapsto u_{T}^{2} x+r_{T}$ and $y \longmapsto u_{T}^{3}+u_{T}^{2} s_{T} x+w_{T}$ be an admissible change of variables between E_{T} and a global minimal model of E_{T}. Since E_{T} is given by an integral Weierstrass model, we have by Lemma 2.4 that $u_{T}, s_{T}, r_{T}, w_{T} \in \mathbb{Z}$ and moreover, $u_{T}^{4}\left|\alpha_{T}, u_{T}^{6}\right| \beta_{T}$, and $u_{T}^{12} \mid \gamma_{T}$. We claim that u_{T} is 1,2 , or 4 . To this end, suppose p is an odd prime dividing u_{T}. If $p>3$, then u_{T}^{4} divides $m^{3} n^{3} l^{2}$ by (5.5). But m, n, l are relatively prime which contradicts the assumption that p^{4} divides $m^{3} n^{3} l^{2}$. So suppose $p=3$. By (5.5) we observe that 3 does not divide l since this would imply that 3^{4} does not divide $\operatorname{gcd}\left(\alpha_{T}, \gamma_{T}\right)$. We may therefore assume that 3 divides either m or n.

Case I. Suppose 3 divides u_{T} and m. Write $a=3 \hat{a}, b=3 \hat{b}$, and $d=3 \hat{d}$ for some integers $\hat{a}, \hat{b}, \hat{d}$ with 3 dividing at most one of \hat{a} and \hat{b}. In particular,

$$
4 \leq v_{3}\left(\alpha_{T}\right)=v_{3}\left(\oint \hat{a}^{2}+81 \hat{b}^{2} \hat{d}\right)=2+v_{3}\left(\hat{a}^{2}+9 \hat{b}^{2} \hat{d}\right)(
$$

Note that the inequality only holds if $v_{3}(\hat{a})>0$ and so 3 does not divide \hat{b}. Since

$$
12 \leq v_{3}\left(\gamma_{T}\right)=v_{3}\left(27 \hat{b}^{2} \hat{d}\right)+2 v_{3}\left(\nVdash 7 \hat{b}^{2} \hat{d}-9 \hat{a}^{2}\right)(
$$

and $v_{3}\left(27 \hat{b}^{2} \hat{d}-9 \hat{a}^{2}\right)=6$ since $v_{3}(\hat{a})>0$, we conclude that $v_{3}\left(\gamma_{T}\right)=9$ which contradict the assumption that 3 divides u_{T}.

Case II. Suppose 3 divides u_{T} and n. Write $a=3 \hat{a}$ and $b=3 \hat{b}$ for some integers \hat{a} and \hat{b} with 3 dividing at most one of \hat{a} and \hat{b}. Then

$$
4 \leq v_{3}\left(\alpha_{T}\right)=v_{3}\left(\nmid \hat{a}^{2}+27 \hat{b}^{2} \hat{d}\right)=2+v_{3}\left(\hat{a}^{2}+3 \hat{b}^{2} \hat{d}\right)(
$$

But this is a contradiction since $v_{3}\left(\hat{a}^{2}+3 \hat{b}^{2} \hat{d}\right)(\leq 1$ with equality if and only if
$v_{3}(\hat{a})>0$. $v_{3}(\hat{a})>0$.

Since u_{T} is not divisible by odd primes, we conclude that u_{T} divides 4 by (5.5) since u_{T}^{4} divides $\operatorname{gcd}\left(\alpha_{T}, \beta_{T}\right)$ and m, n, l are squarefree.

Now suppose $u_{T}=4$. Then $v_{2}\left(\alpha_{T}\right) \geq 8$ and so $v_{2}\left(3 b^{2} d+a^{2}\right) \geq 4$. For this to occur, we must have either $3 b^{2} d$ and a^{2} are both even or are both odd.

Case I. Assume that $3 b^{2} d$ and a^{2} are both odd. Now observe that

$$
\left.\begin{array}{lll}
24 \leq v_{2}\left(\gamma_{T}\right) & \Longrightarrow & 9 \leq v_{2}\left(b^{2} d-a^{2}\right) \\
12 \leq v_{2}\left(\beta_{T}\right) & \Longrightarrow & 6 \leq v_{2}\left(b_{b}^{2} d-a^{2}\right)
\end{array}\right\}
$$

But $9 b^{2} d-a^{2}=b^{2} d-a^{2}+8 b^{2} d \equiv 8 b^{2} d \bmod 64$. But this is a contradiction since $b^{2} d$ is assumed to be odd and therefore $9 b^{2} d-a^{2} \not \equiv 0 \bmod 64$.

Case II. Assume that $3 b^{2} d$ and a^{2} are both even.
Subcase I. Assume further that b is odd and d is even. Write $a=2 \hat{a}$ and $d=2 \hat{d}$ for some integers \hat{a} and \hat{d}. Then

$$
8 \leq v_{2}\left(\alpha_{T}\right)=4+v_{2}\left(6 b^{2} \hat{d}+4 \hat{a}^{2}\right)
$$

But then $v_{2}\left(\alpha_{T}\right)=5$ since $b^{2} \hat{d}$ being odd implies that $v_{2}\left(3 b^{2} \hat{d}+2 \hat{a}^{2}\right)(=0$. This
contradicts the assumption that $u_{T}=4$.

Subcase II. Assume further that b and d are both even and write $a=2 \hat{a}, b=$ $2 \hat{b}$, and $d=2 \hat{d}$ for some integers $\hat{a}, \hat{b}, \hat{d}$ with at most one of \hat{a} and \hat{b} being even. Then

$$
\begin{aligned}
8 \leq v_{2}\left(\alpha_{T}\right) & =4+v_{2}\left(24 \hat{b}^{2} \hat{d}+4 \hat{a}^{2}\right)(\\
& =6+v_{2}\left(6 \hat{b}^{2} \hat{d}+\hat{a}^{2}\right)(
\end{aligned}
$$

But $v_{2}\left(6 \hat{b}^{2} \hat{d}+\hat{a}^{2}\right)\left(\leq 1\right.$ with equality if and only if $v_{2}(\hat{a})>0$. This contradicts the assumption that $u_{T}=4$.

Subcase III. Assume further that b is even and d is odd and write $a=2 \hat{a}$ and $b=2 \hat{b}$ for some integers \hat{a} and \hat{b} such that at most one of \hat{a} and \hat{b} is even. Then

$$
\begin{aligned}
8 \leq v_{2}\left(\alpha_{T}\right) & =4+v_{2}\left(12 \hat{b}^{2} d+4 \hat{a}^{2}\right) \\
& =6+v_{2}\left(3 \hat{b}^{2} d+\hat{a}^{2}\right)
\end{aligned}
$$

Therefore $v_{2}\left(3 \hat{b}^{2} d+\hat{a}^{2}\right) \geq 2$ and we deduce that \hat{a} and \hat{b} are both odd. Next,

$$
24 \leq v_{2}\left(\gamma_{T}\right)=12+2 v_{2}\left(\hat{b}^{2} d-\hat{a}^{2}\right)\left(\Longrightarrow \quad 6 \leq v_{2}\left(\hat{b}^{2} d-\hat{a}^{2}\right)(\right.
$$

Now observe that $v_{2}\left(\hat{b}^{2} d-\hat{a}^{2}\right)\left(\geq 6 \Longleftrightarrow v_{2}\left(b^{2} d-a^{2}\right) \geq 8\right.$ which is part of the assumption of (i). Now write $\hat{b} \ell d-\hat{a}^{2}=2^{6} k$ for some integer k. Solving for \hat{a}^{2} yields $\hat{a}^{2}=\hat{b}^{2} d-2^{6} k$. Since odd squares are congruent to 1 modulo 4 , it follows that $d \equiv 1 \bmod 4$. Then

$$
v_{2}\left(3 \hat{b}^{2} d+\hat{a}^{2}\right)=v_{2}\left(4 \hat{b}^{2} d-2^{6} k\right)=2
$$

since $v_{2}\left(\hat{b}^{2} d-2^{4} k\right)=0$. Consequently, $v_{2}\left(\alpha_{T}\right)=8$. Now observe that

$$
\begin{aligned}
4^{-6} \beta_{T} & =-2^{-3} \hat{a}\left(9 \hat{b}^{2} d-\hat{a}^{2}\right)(\\
& =-2^{-3} \hat{a}\left(8 \hat{b}^{2} d+2^{6} k\right)(y \\
& =-\hat{a}\left(\hat{b}^{2} d+2^{3} k\right)
\end{aligned}
$$

is odd since $\hat{a} \hat{b}^{2} d$ is odd. Now let c_{4} and c_{6} denote the invariants associated to a global minimal model of E_{T}. In particular, c_{4} and c_{6} satisfy Theorem 2.6. By construction,
$c_{4}=4^{-4} \alpha_{T}$ and $c_{6}=4^{-6} \beta_{T}$ and are both odd. Therefore $c_{6} \equiv-1 \bmod 4$. Since $-\hat{a}\left(\hat{b}^{2} d+2^{3} k\right)\left(\equiv-\hat{a} d \bmod 4\right.$ it follows that $c_{6} \equiv-1 \bmod 4$ if and only if $\hat{a} \equiv$ $1 \bmod 4$. It remains to show that $v_{3}\left(4^{-6} \beta_{T}\right)=v_{3}\left(\beta_{T}\right) \neq 2$. Observe that

$$
\begin{equation*}
9 b^{2} d-a^{2} \equiv-a^{2} \bmod 9 \tag{5.6}
\end{equation*}
$$

If a is divisible by 3 , then $a\left(9 b^{2} d-a^{2}\right) \equiv 0 \bmod 27$. This concludes the proof of (i).
Now assume that $u_{T}=2$. Observe that 2^{4} and 2^{6} divide α_{T} and β_{T}. The invariants c_{4} and c_{6} associated with a global minimal model of E_{T} are $2^{-4} \alpha_{T}$ and $2^{-6} \beta_{T}$, respectively. The argument preceding (5.6) shows that $v_{3}\left(c_{6}\right) \neq 2$. Therefore by Theorem 2.6, either $-c_{6} \equiv-1 \bmod 4$ or both $v_{2}\left(c_{4}\right) \geq 4$ and $c_{6} \equiv 0$ or $8 \bmod 32$. Moreover, the minimal discriminant is $2^{-12} \gamma_{T}$ and so we get the inequality

$$
v_{2}\left(b^{2} d\right)+2 v_{2}\left(b^{2} d-a^{2}\right) \notin 6
$$

Note that $b^{2} d-a^{2}$ is even if both $b^{2} d$ and a^{2} are odd or if they are both even. We now proceed by cases.

Case I. Suppose $v_{2}\left(b^{2} d-a^{2}\right) \geq 3$ with $b^{2} d$ and a^{2} odd. Write $b^{2} d-a^{2}=8 k$ for some integer k and observe that

$$
c_{4}=3 b^{2} d+a^{2}=3 b^{2} d-3 a^{2}+4 a^{2}=24 k+4 a^{2} .
$$

Since c_{6} is even, it follows by Theorem 2.6 that $v_{2}\left(c_{4}\right) \geq 4$. Reducing modulo 16 yields

$$
24 k+4 a^{2} \equiv 4\left(2\left(k+a^{2}\right)(\bmod 16\right.
$$

which is congruent to 0 modulo 16 if and only if k and a are even, which contradicts the assumptions.

Case II. Suppose $v_{2}\left(b^{2} d-a^{2}\right) \geq 3$ with d and a^{2} even and b odd. Write $a=2 \hat{a}$ and $d=2 \hat{d}$ for some integers \hat{a} and \hat{b} so that $2 b^{2} \hat{d}-4 \hat{a}=8 k$. In particular, $b^{2} \hat{d}-2 \hat{a}=4 k$ which is impossible since $b^{2} \hat{d}$ is odd.

Case III. Suppose $v_{2}\left(b^{2} d-a^{2}\right) \geq 2$ with a and b even. Write $a=2 \hat{a}$ and $b=2 \hat{b}$ for some integers \hat{a} and \hat{b}. Moreover, $b^{2} d-a^{2}=4 k$ for some integer k. Since c_{6} is even, we have that $v_{2}\left(c_{4}\right) \geq 4$ by Theorem 2.6. Observe that

$$
c_{4}=3 b^{2} d-3 a^{2}+4 a^{2} \equiv 12 k \bmod 16
$$

and so k must be divisible by 4 . Write $k=4 \hat{k}$ for some integer \hat{k} and observe that

$$
\begin{align*}
b^{2} d-a^{2}=4 k & \Longleftrightarrow 4 \hat{b}^{2} d-4 \hat{a}^{2}=16 \hat{k} \\
& \Longleftrightarrow \hat{b}^{2} d-\hat{a}^{2}=4 \hat{k} . \tag{5.7}
\end{align*}
$$

This only occurs when both $\hat{b}^{2} d$ and \hat{a}^{2} are even or they are both odd. We claim that they are both odd. Indeed, if \hat{a}^{2} and $\hat{b}^{2} d$ are even, then \hat{a} and d are even and \hat{b} is odd since at most one of \hat{a} and \hat{b} can be even. Write $d=2 \hat{d}$ and $\hat{a}=2 \bar{a}$ for integers \hat{d} and \bar{a} and observe that

$$
\hat{b}^{2} d-\hat{a}^{2}=4 \hat{k} \Longleftrightarrow 2 \hat{b}^{2} \hat{d}-4 \bar{a}^{2}=4 k \Longleftrightarrow \hat{b}^{2} \hat{d}-2 \bar{a}^{2}=2 k
$$

which is impossible since $\hat{b}^{2} \hat{d}$ is odd.
Therefore $\hat{b}^{2} d$ and \hat{a}^{2} are both odd. We now return to equation (5.7). Since odd squares modulo 4 are 1 , we have that $\hat{b}^{2} d-\hat{a}^{2} \equiv d-1 \bmod 4$ and so $\hat{b}^{2} d-\hat{a}^{2}=4 \hat{k}$ if and only if $d \equiv 1 \bmod 4$. To summarize we have shown that if $u_{T}=2$ and $v_{2}\left(b^{2} d-a^{2}\right) \geq 2$ with a and b even, then $v_{2}(a)=v_{2}(b)=1$ and $d \equiv 1 \bmod 4$. In fact by the above $v_{2}\left(b^{2} d-a^{2}\right) \geq 4$ since k is divisible by 4 . It remains to show that $c_{6} \equiv 0$ or $8 \bmod 32$. Indeed,

$$
\begin{aligned}
c_{6} & =-a\left(9 b^{2} d-a^{2}\right) \neq-8 \hat{a}\left(9 \hat{b}^{2} d-\hat{a}^{2}\right)=-8 \hat{a}\left(\left\{\hat{b}^{2} d-9 \hat{a}^{2}+8 \hat{a}^{2}\right)\right. \\
& =-8 \hat{a}\left(\$ 6 \hat{k}+8 \hat{a}^{2}\right)=-32 \hat{a}\left(9 \hat{k}+2 \hat{a}^{2}\right) \equiv 0 \bmod 32
\end{aligned}
$$

Case IV. Suppose $v_{2}\left(b^{2} d-a^{2}\right)=1$ and $v_{2}\left(b^{2} d\right) \geq 2$. Note that $v_{2}\left(b^{2} d\right) \geq 2$ implies that $v_{2}(b) \geq 1$ since d is squarefree. In particular, a is even. Now write $b^{2} d-a^{2}=2 k$, $a=2 \hat{a}$, and $b=2 \hat{b}$ for some integers \hat{a} and \hat{b} and k an odd integer. Then

$$
2 k=b^{2} d-a^{2}=4 \hat{b}^{2} d-4 \hat{a}^{2}
$$

implies that k is even, which contradicts our assumption on k being odd.
Case V. Suppose $v_{2}\left(b^{2} d\right) \geq 6$. Then $v_{2}(b) \geq 3$ since d is squarefree and so we write $b=8 \hat{b}$ for some integer \hat{b}. We first claim a is odd. Suppose not, then $a=2 \hat{a}$ for some odd integer \hat{a} and we attain

$$
b^{2} d-a^{2}=64 \hat{b}^{2} d-4 \hat{a}^{2}=4\left(16 \hat{b}^{2} d-\hat{a}^{2}\right)(
$$

and so $v_{2}\left(b^{2} d-a^{2}\right)=2$. But these are the assumptions of Case III, where we saw that $u_{T}=2$ if $v_{2}(b)=1$. Therefore $u_{T} \neq 2$ under the assumptions of Case V with a even. Therefore a is odd, as claimed. Then c_{4} is odd and so $c_{6} \equiv-1 \bmod 4$ by Theorem 2.6. Now observe that

$$
c_{6}=-a\left(9 b^{2} d-a^{2}\right)\left(-a\left(72 \hat{b}^{2} d-a^{2}\right) \equiv a^{3} \bmod 4\right.
$$

Therefore $c_{6} \equiv-1 \bmod 4$ if and only if $a \equiv-1 \bmod 4$.
By the above, we have exhausted the possibilities when $u_{T}=2,4$ and so it follows that $u_{T}=1$ if (i) and $(i i)$ do not hold.

5.4.3 Proof of Theorem 5.14 for $T=C_{3}$

Theorem 5.14 for $\boldsymbol{T}=\boldsymbol{C}_{\mathbf{3}}$. Let $a=c^{3} d^{2} e$ with d, e positive squarefree integers such that $\operatorname{gcd}(d, e)=1$. Then the minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ with $u_{T}=c^{2} d$.

Proof First, suppose E_{T} has j-invariant 0 . Then by Lemma 5.16, $E_{T}=E_{T}(24,1)$. Since $24=8 \cdot 3$, it is verified that the minimal discriminant of $E_{T}(24,1)$ is $u_{T}^{-12} \gamma_{T}$ with $u_{T}=4$ which verifies the Theorem.

Next, suppose the j-invariant of E_{T} is not equal to 0 or 1728 . The admissible change of variables $x \longmapsto v^{2} x$ and $y \longmapsto v^{3} y$ with $v=c^{2} d$ results in a \mathbb{Q}-isomorphism between E_{T} and the elliptic curve

$$
E_{T}^{\prime}: y^{2}+c d e x y+d e^{2} b y=x^{3}
$$

In particular, E_{T}^{\prime} is given by an integral Weierstrass model and its discriminant Δ and invariants c_{4} and c_{6} are

$$
\begin{aligned}
& c_{4}=v^{-4} \alpha_{T}=c d^{2} e^{3}(a-24 b) \\
& c_{6}=v^{-6} \beta_{T}=d^{2} e^{4}\left(-a^{2}+36 a b-216 b^{2}\right) \\
& \Delta=v^{-12} \gamma_{T}=d^{4} e^{8} b^{3}(a-27 b) .
\end{aligned}
$$

We claim that E_{T}^{\prime} is a global minimal model for E_{T}. By the assumption on E_{T}, a and b are relatively prime integers and therefore

$$
\operatorname{gcd}\left(\beta_{T}, \gamma_{T}\right) \quad \text { divides } \quad 2^{6} 3^{9} a^{4}
$$

by Lemma 5.10. Since $\operatorname{gcd}\left(c_{6}, \Delta\right)=v^{-6} \operatorname{gcd}\left(\beta_{T}, \gamma_{T}\right)$ we conclude that $\operatorname{gcd}\left(c_{6}, \Delta\right)$ divides $2^{6} 3^{9} d^{2} e^{4}$. Now let $x \longmapsto u_{T}^{2} x+r_{T}$ and $y \longmapsto u_{T}^{3}+u_{T}^{2} s_{T} x+w_{T}$ be an admissible change of variables between E_{T}^{\prime} and a global minimal model of E_{T}. Since E_{T}^{\prime} is given by an integral Weierstrass model, we have by Lemma 2.4 that $u_{T}, s_{T}, r_{T}, w_{T} \in \mathbb{Z}$ and moreover, $u_{T}^{6} \mid c_{4}$ and $u_{T}^{12} \mid \Delta$. Therefore u_{T}^{6} divides $2^{6} 3^{9} d^{2} e^{4}$. In particular, $v_{p}\left(u_{T}\right)=0$ for all primes $p \geq 5$ since d and e are relatively prime squarefree integers.

We now claim that $v_{3}\left(u_{T}\right)=0$. If this is not the case, we have

$$
12 \leq v_{3}(\Delta)=v_{3}\left(d^{4} e^{8} b^{3}\right)\left(v_{3}(a-27 b)\right.
$$

First, suppose $v_{3}(a)>0$ with $v_{3}(a) \neq 3$. Then $v_{3}(a-27 b) \leq 3$ and $v_{3}\left(d^{4} e^{8} b^{3}\right) \leq$ 8 since a and b are relatively prime and d, e are squarefree and relatively prime. Therefore this case is not possible. Suppose instead that $v_{3}(a)=3$ and write $a=27 \hat{a}$ for some integer \hat{a}. Note that 3 does not divide de and so

$$
v_{3}\left(c_{6}\right)=v_{3}\left(\left(3^{6} a^{2}+3^{5} 4 a \hat{b}-3^{9} 8 \hat{b}^{2}\right)=5+v_{3}\left(-3 a^{2}+4 a \hat{b}-3^{4} 8 \hat{b}^{2}\right)(=5\right.
$$

since $-3 a^{2}+4 a \hat{b}-3^{4} 8 \hat{b}^{2} \equiv 4 a \hat{b} \bmod 3$. It follows that this quantity is not 0 modulo 3 since $a \hat{b}$ is not divisible by 3 . But this is our desired contradiction since $v_{3}\left(u_{T}\right)>0$ implies that $v_{3}\left(c_{6}\right) \geq 6$. Next, suppose $v_{3}(a)=0$. Then $c_{4} \equiv a c d^{2} e^{3} \bmod 3$ which is nonzero modulo 3 since $a=c^{3} d^{2} e$. In particular, we have shown that $v_{3}\left(u_{T}\right)=0$.

It remains to show that $v_{2}\left(u_{T}\right)=0$. To this end, observe that c_{4} is even if and only if a is even. Therefore, if $v_{2}\left(u_{T}\right)>0$, then $v_{2}(a)>0$ since $v_{2}\left(c_{4}\right) \geq 4$. But then we have a contradiction since $a-27 b$ is odd and

$$
12 \leq v_{2}(\Delta)=v_{2}\left(d^{4} e^{8}\right)<8
$$

Hence $v_{2}\left(u_{T}\right)=0$ which implies that $\left|u_{T}\right|=1$. Hence E_{T}^{\prime} is a global minimal model for E_{T}.

5.4.4 Proof of Theorem 5.14 for $T=C_{4}$

Theorem 5.14 for $\boldsymbol{T}=\boldsymbol{C}_{4}$. Let $a=c^{2} d$ with d a positive squarefree integer. Then the minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ with $u_{T} \in\{c, 2 c\}$. Moreover, $u_{T}=2 c$ if and only if $v_{2}(a) \geq 8$ is even with $b d \equiv 3 \bmod 4$.

Proof First, suppose E_{T} has j-invariant 1728. Then by Lemma 5.15, E_{T} is \mathbb{Q} isomorphic to $E_{T}(8,-1)$. Then $a=c^{2} d$ with $c=2$ and $d=2$. The admissible change of variables $x \longmapsto u_{T}^{2} x$ and $y \longmapsto u_{T}^{3} y$ with $u_{T}=c$ gives a \mathbb{Q}-isomorphism from E_{T} onto

$$
E_{T}^{\prime}: y^{2}+4 x y+8 y=x^{3}+2 x^{2} .
$$

Then the discriminant of $E_{T}^{\prime}=-2^{12}$. We claim that the minimal discriminant is -2^{12}. Indeed, if this were not the case, then the only possibility for the minimal discriminant is -1 . But this is absurd since there is no rational elliptic curve of conductor 1 .

Next, suppose E_{T} has j-invariant not equal to 0 or 1728 . The admissible change of variables $x \longmapsto c^{2} x$ and $y \longmapsto c^{3} y$ results in a \mathbb{Q}-isomorphism between E_{T} and the elliptic curve

$$
E_{T}^{\prime}: y^{2}+c d x y-c d^{2} b y=x^{3}-b d x^{2}
$$

In particular, E_{T}^{\prime} is given by an integral Weierstrass model and its discriminant Δ and invariants c_{4} and c_{6} are

$$
\begin{aligned}
& c_{4}=c^{-4} \alpha_{T}=d^{2}\left(a^{2}+16 a b+16 b^{2}\right) \\
& c_{6}=c^{-6} \beta_{T}=d^{3}(a+8 b)\left(-a^{2}-16 a b+8 b^{2}\right) \\
& \Delta=c^{-12} \gamma_{T}=b^{4} c^{2} d^{7}(a+16 b) .
\end{aligned}
$$

Since a and b are relatively prime integers, we have that

$$
\operatorname{gcd}\left(\beta_{T}, \gamma_{T}\right) \quad \text { divides } \quad 2^{18} a^{3}
$$

by Lemma 5.10. Since $\operatorname{gcd}\left(c_{6}, \Delta\right)=c^{-6} \operatorname{gcd}\left(\beta_{T}, \gamma_{T}\right)$ we conclude that $\operatorname{gcd}\left(c_{6}, \Delta\right)$ divides $2^{18} d^{3}$. Now let $x \longmapsto u_{T}^{2} x+r_{T}$ and $y \longmapsto u_{T}^{3}+u_{T}^{2} s_{T} x+w_{T}$ be an admissible change of variables between E_{T}^{\prime} and a global minimal model of E_{T}. Since E_{T}^{\prime} is given by an integral Weierstrass model, we have by Lemma 2.4 that $u_{T}, s_{T}, r_{T}, w_{T} \in \mathbb{Z}$ and moreover, $u_{T}^{6} \mid c_{4}$ and $u_{T}^{12} \mid \Delta$. Therefore u_{T}^{6} divides $2^{18} d^{3}$. In particular, $v_{p}\left(u_{T}\right)=0$ for all odd primes p since d is squarefree. Therefore u_{T} divides 2^{3}.

We first claim that $u_{T} \neq 4,8$. Towards a contradiction, suppose u_{T} is 4 or 8 . In either case, we have that $v_{2}\left(c_{4}\right) \geq 8$ and $v_{2}\left(c_{6}\right) \geq 12$. We show that these inequalities never hold. First, observe that c_{4} is even if and only if a is even. But

$$
v_{2}\left(c_{4}\right)=2 v_{2}(d)+v_{2}\left(a^{2}+16 a b+16 b^{2}\right)<6
$$

whenever a is even with $v_{2}(a) \neq 2$. So suppose $v_{2}(a)=2$ so that $a=4 \hat{a}$ for some odd integer \hat{a}. Then

$$
\begin{aligned}
12 \leq v_{2}\left(c_{6}\right) & =3 v_{2}(d)+v_{2}(4 \hat{a}+8 b)+v_{2}\left(-16 \hat{a}^{2}-64 \hat{a} b+8 b^{2}\right) \\
& =5+3 v_{2}(d)+v_{2}(\hat{a}+2 b)+v_{2}\left(-2 \hat{a}^{2}-8 \hat{a} b+b^{2}\right) \\
& \leq 8
\end{aligned}
$$

since $v_{2}(\hat{a}+2 b)=v_{2}\left(-2 \hat{a}^{2}-8 \hat{a} b+b^{2}\right)=0$. This is our desired contradiction and so we conclude that u_{T} divides 2 .

Suppose $u_{T}=2$. Then $2^{4}\left|c_{4}, 2^{6}\right| c_{6}$, and $2^{12} \mid \Delta$. In particular, a is even since c_{4} is even if and only if a is even. Since $a=c^{2} d$ with d squarefree, we claim that if $v_{2}(a) \neq 4$, then $v_{2}(\Delta) \geq 12$ if and only if $v_{2}(a)=3,5$ or $v_{2}(a) \geq 7$. Indeed,

$$
12 \leq v_{2}(\Delta)=2 v_{2}(c)+7 v_{2}(d)+v_{2}(a+16 b)
$$

and note that

$$
v_{2}(c)=\left\{\begin{array}{cl}
0 & \text { if } v_{2}(a) \text { is odd } \\
v_{2}(a) & \text { if } v_{2}(a) \text { is even }
\end{array} \quad \text { and } \quad v_{2}(d)= \begin{cases}1 & \text { if } v_{2}(a) \text { is odd } \\
0 & \text { if } v_{2}(a) \text { is even }\end{cases}\right.
$$

Lastly $v_{2}\left(a+(6 b) \leq 4\right.$ with equality holding if $v_{2}(a)>4$. The claim now follows.
Next, suppose $v_{2}(a)=4$. Then by inspection $v_{2}\left(c_{4}\right)=4$ and $v_{2}\left(c_{6}\right)=6$ since $v_{2}(d)=0$. In addition, $v_{2}(\Delta) \geq 12$ if and only if $v_{2}(a+16 b) \geq 8$.

Since $u_{T}=2$, we have that $2^{-4} c_{4}$ and $2^{-6} c_{6}$ satisfy the conclusion of Theorem 2.6. We now show that Theorem 2.6 is satisfied if and only if $v_{2}(a) \geq 8$ is even with $b d \equiv 3 \bmod 4$.

Case I. Suppose $v_{2}(a) \geq 3$ is odd. In particular, c and d are even and we write $c=2 \hat{c}$ and $d=2 \hat{d}$ for integers \hat{c} and \hat{d}. Next, observe that

$$
\begin{aligned}
2^{-4} c_{4} & =2^{-4}\left(q^{2}\left(q^{4} d^{2}+16 c^{2} b d+16 b^{2}\right)\right) \\
& =16 \hat{c}^{4} d t+32 \hat{c}^{2} \hat{d}^{3} b+4 b^{2} \hat{d}^{2} \equiv 4 b^{2} d^{2} \bmod 16 \\
2^{-6} c_{6} & =2^{-6}\left(q^{3}\left(q^{2} d+8 b\right)\left(-c^{4} d^{2}-16 c^{2} d b+8 b^{2}\right)\right) \\
& =-64 \hat{c} \hat{c} \hat{d}^{6}-192 b \hat{c}^{4} \hat{d}^{5}\left(120 b^{2} \hat{c}^{2} \hat{d}^{4}+8 b^{3} \hat{d}^{3} \equiv \bmod 4 .\right.
\end{aligned}
$$

Since $2^{-6} c_{6} \not \equiv-1 \bmod 4, v_{2}\left(2^{-4} c_{4}\right) \geq 4$ by Theorem 2.6. But this is not satisfied since $b^{2} \hat{d}^{2}$ is odd.

Case II. Next suppose $v_{2}(a)=4$ and $v_{2}(a+16 b) \geq 8$. Then d is odd and $c=4 \hat{c}$ for some odd integer \hat{c}. Write $a+16 b=2^{8} k$ for some integer k and solving for b yields

$$
16 b=2^{8} k-16 \hat{c}^{2} d \Longleftrightarrow b=16 k-\hat{c}^{2} d
$$

Then

$$
2^{-6} c_{6}=\hat{c}^{6} d^{6}-528 \hat{c}^{4} d^{5} k-8448 \hat{c}^{2} d^{4} k^{2}+4096 d^{3} k^{3} \equiv \hat{c}^{6} d^{6} \bmod 4
$$

Since odd squares are congruent to 1 modulo 4 , we have $2^{-6} c_{6} \equiv 1 \bmod 4$. But then $2^{-6} c_{6}$ is odd and does not satisfy Theorem 2.6. So this case is not possible.

Case III. Suppose $v_{2}(a) \geq 8$ is even. Then $c=16 \hat{c}$ for some integers \hat{c} and d, with d odd. Then

$$
\begin{aligned}
2^{-6} c_{6} & =2^{-6}\left(d^{3}\left(16^{2} \hat{c}^{2} d+8 b\right)\left(-16^{4} \hat{c}^{4} d^{2}-16^{3} \hat{c}^{2} d b+8 b^{2}\right)\right)(\\
& =-2^{18} \hat{c}^{6} d^{6}-2^{13} 3 b \hat{c}^{4} d^{5}-\left(480 b^{2} \hat{c}^{2} d^{4}+b^{3} d^{3} \equiv b^{3} d^{3} \operatorname{mbd} 4 .\right.
\end{aligned}
$$

Since $b d$ is odd, we have by Theorem 2.6 that $2^{-6} c_{6} \equiv 3 \bmod 4$. But this occurs if and only if $b d \equiv 3 \bmod 4$. It remains to check that $v_{3}\left(2^{-6} c_{6}\right) \neq 2$. To verify this, we observe that $v_{3}\left(2^{-6} c_{6}\right)=2$ if and only if $2^{-6} c_{6} \equiv 0,18 \bmod 27$. Reducing modulo 27 , we attain

$$
2^{-6} c_{6} \equiv 26 \hat{c}^{6} d^{6}+21 b \hat{c}^{4} d^{5}+6 b^{2} \hat{c}^{2} d^{4}+b^{3} d^{3} \bmod 27
$$

Now let $\mathrm{f}[\mathrm{c}, \mathrm{d}, \mathrm{b}]$ be the Mathematica input for $26 \hat{c}^{6} d^{6}+21 b \hat{c}^{4} d^{5}+6 b^{2} \hat{c}^{2} d^{4}+b^{3} d^{3}$. The Mathematica input

Table[Mod[f[c, d, b] , 27] , $\{c, 1,27\},\{d, 1,27\},\{b, 1,27\}]$
verifies that $2^{-6} c_{6} \not \equiv 0,18 \bmod 27$. Therefore the minimal discriminant of E_{T} in terms of γ_{T} is $(2 c)^{-12} \gamma_{T}$, as claimed.

It now follows that if $v_{2}(a) \geq 8$ is even with $b d \equiv 3 \bmod 4$ does not hold, then E_{T}^{\prime} is a global minimal model for E_{T}, which completes the proof.

5.4.5 Proof of Theorem 5.14 for $T=C_{6}$

Theorem 5.14 for $\boldsymbol{T}=\boldsymbol{C}_{\mathbf{6}}$. The minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ with $u_{T} \in$ $\{1,2\}$. Moreover, $u_{T}=2$ if and only if $v_{2}(a+b) \geq 3$.

Proof First, suppose E_{T} has j-invariant 0 . Then by Lemma 5.15 E_{T} is \mathbb{Q}-isomorphic to $E_{T}(3,-1)$. Then $\gamma_{T}=-2^{4} 3^{3}$ and therefore it is the minimal discriminant of E_{T}.

Next, suppose the j-invariant of E_{T} is not equal to 0 or 1728 . Let $x \longmapsto u_{T}^{2} x+r_{T}$ and $y \longmapsto u_{T}^{3}+u_{T}^{2} s_{T} x+w_{T}$ be an admissible change of variables between E_{T} and
a global minimal model of E_{T}. Since E_{T} is given by an integral Weierstrass model, we have by Lemma 2.4 that $u_{T}, s_{T}, r_{T}, w_{T} \in \mathbb{Z}$ and moreover, $u_{T}^{6} \mid \beta_{T}$ and $u_{T}^{12} \mid \gamma_{T}$. In particular, u_{T}^{6} divides $\operatorname{gcd}\left(\beta_{T}, \gamma_{T}\right)$. Since a and b are relatively prime, we have that for a fixed positive integer k, there are integers r and s such that $r a^{k}+s b^{k}=1$ and so by Lemma $5.10, \operatorname{gcd}\left(\beta_{T}, \gamma_{T}\right)$ divides $2^{9} 3^{3}$. Therefore u_{T} divides 2 .

Suppose $u_{T}=2$. Then $2^{4}\left|\alpha_{T}, 2^{6}\right| \beta_{T}$, and $2^{12} \mid \gamma_{T}$. Observe that $\alpha_{T} \equiv(a+b)^{4} \bmod 2$. Hence α_{T} is even if and only if $a+b$ is even. Consequently, a and b are both odd since a and b are relatively prime. Next,

$$
\begin{equation*}
12 \leq v_{2}\left(\gamma_{T}\right)=v_{2}(a+9 b)+3 v_{2}(a+b) . \tag{5.8}
\end{equation*}
$$

We claim that the above inequality holds if and only if $v_{2}(a+b) \geq 3$. Suppose $v_{2}(a+b) \leq 2$ so that $a+b \equiv \pm 2,4 \bmod 8$. Since $a+9 b \equiv a+b \bmod 8$, it follows that $v_{2}(a+9 b) \leq 2$ and so inequality (5.8) does not hold. Now suppose $v_{2}(a+b) \geq 3$. Then $v_{2}(a+9 b) \geq 3$ since $a+9 b \equiv a+b \bmod 8$ and therefore $v_{2}\left(\gamma_{T}\right) \geq 12$. We now claim that if $v_{2}(a+b) \geq 3$, then $2^{-4} \alpha_{T}$ and $2^{-6} \beta_{T}$ are integers.

Since $a+3 b$ is even, it suffices to show that

$$
a^{3}+9 a^{2} b+3 a b^{2}+3 b^{3} \equiv 0 \bmod 8
$$

to show that $v_{2}\left(\alpha_{T}\right) \geq 4$. Since odd squares are congruent to 1 modulo 8 , we conclude that

$$
\begin{aligned}
a^{3}+9 a^{2} b+3 a b^{2}+3 b^{3} & \equiv a+9 b+3 a+3 b \bmod 8 \\
& \equiv 4(a+b) \bmod 8 \\
& \equiv 0 \bmod 8
\end{aligned}
$$

We now conclude that β_{T} is divisible by 2^{6} from the identity $\beta_{T}^{2}=\alpha_{T}^{3}-1728 \gamma_{T}$. The admissible change of variables $x \longmapsto 4 x$ and $y \longmapsto 8 y$ gives a \mathbb{Q}-isomorphism from E_{T} onto the elliptic curve E_{T}^{\prime} given by the Weierstrass model

$$
E_{T}^{\prime}: y^{2}+\frac{a-b}{2} x y-\frac{a b(a+b)}{8} y=x^{3}-\frac{b(a+b)}{4} x^{2} .
$$

Since $v_{3}(a+b) \geq 3$, it follows that E_{T}^{\prime} is an integral Weierstrass model. By the above, we conclude that it is a global minimal model for E_{T} whenever $v_{3}(a+b) \geq 3$.

To recap u_{T} divides 2 and is exactly 2 if and only if $v_{2}(a+b) \geq 3$. Consequently, E_{T} is a global minimal model for E_{T} if $v_{2}(a+b)<3$.

5.4.6 Proof of Theorem 5.14 for $T=C_{8}$

Theorem 5.14 for $\boldsymbol{T}=\boldsymbol{C}_{\mathbf{8}}$. The minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ with $u_{T} \in$ $\{1,2\}$. Moreover, $u_{T}=2$ if and only if $v_{2}(a)=1$.

Proof Let $x \longmapsto u_{T}^{2} x+r_{T}$ and $y \longmapsto u_{T}^{3}+u_{T}^{2} s_{T} x+w_{T}$ be an admissible change of variables between E_{T} and a global minimal model of E_{T}. Since E_{T} is given by an integral Weierstrass model, we have by Lemma 2.4 that $u_{T}, s_{T}, r_{T}, w_{T} \in \mathbb{Z}$ and moreover, $u_{T}^{6} \mid \beta_{T}$ and $u_{T}^{12} \mid \gamma_{T}$. In particular, u_{T}^{6} divides $\operatorname{gcd}\left(\beta_{T}, \gamma_{T}\right)$. Since a and b are relatively prime, we have that for a fixed positive integer k, there are integers r and s such that $r a^{k}+s b^{k}=1$ and so by Lemma $5.10, \operatorname{gcd}\left(\beta_{T}, \gamma_{T}\right)$ divides 2^{9}. In particular, u_{T} divides 2.

Suppose $u_{T}=2$ so that $2^{4}\left|\alpha_{T}, 2^{6}\right| \beta_{T}$, and $2^{12} \mid \gamma_{T}$. Reducing modulo 2, shows

$$
\alpha_{T} \equiv a^{8} \bmod 2
$$

and so α_{T} is even if and only if a is even. Observe that

$$
\begin{equation*}
12 \leq v_{2}\left(\gamma_{T}\right)=2 v_{2}(a)+4 v_{2}(a-2 b)+v_{2}\left(q^{2}-8 a b+8 b^{2}\right) \tag{5.9}
\end{equation*}
$$

We claim that inequality (5.9) holds if and only if $v_{2}(a)=1$ or $v_{2}(a)>2$. Indeed,

$$
v_{2}\left(q^{2}-8 a b+8 b^{2}\right)= \begin{cases}2 & \text { if } v_{2}(a)=1 \\ 3 & \text { if } v_{2}(a)>1\end{cases}
$$

and for $v_{2}(a-2 b)$ we have that $v_{2}(a-2 b)=1$ if $v_{2}(a)>1$ and $v_{2}(a-2 b) \geq 2$ if $v_{2}(a)=1$. The claim now follows. By inspection, $v_{2}\left(\alpha_{T}\right)=4$ and so $v_{2}\left(\beta_{T}\right)=6$ by Lemma 5.21.

This shows that $u_{T}=2$ is possible only if a is even and $v_{2}(a) \neq 2$. Since $2^{-6} \beta_{T}$ is odd, we have by Theorem 2.6 that $2^{-6} \beta_{T} \equiv 3 \bmod 4$. Now write $a=2 \hat{a}$ for some integer \hat{a} such that \hat{a} is odd or $v_{2}(\hat{a})>1$. Then

$$
2^{-6} \beta_{T} \equiv 2 \hat{a}^{4} b^{8}+b^{12} \bmod 4
$$

Since odd squares are congruent to 1 modulo 4 , we deduce that $2^{-6} \beta_{T} \equiv 2 \hat{a}^{4}+1 \bmod 4$. In particular,

$$
2^{-6} \beta_{T} \equiv \begin{cases}\beta \bmod 4 & \text { if } v_{2}(\hat{a})=0 \\ 1 \bmod 4 & \text { if } v_{2}(\hat{a})>1\end{cases}
$$

Hence Theorem 2.6 only holds if and only if $v_{2}(a)=1$. It remains to show that $v_{3}\left(2^{-6} \beta_{T}\right) \neq 2$. To this end we note that $v_{3}\left(2^{-6} \beta_{T}\right)=2$ if and only if $2^{-6} \beta_{T} \equiv$ $9,18 \bmod 27$. Since $2^{-6} \beta_{T}$ is in terms of \hat{a} and b, we let beta $[\mathrm{a} 1, \mathrm{~b}]$ be the Mathematica input for $2^{-6} \beta_{T}$ with a1 being the input corresponding to \hat{a}. Then the Mathematica input

$$
\operatorname{Table}[\operatorname{Mod}[\operatorname{beta}[\mathrm{a} 1, \mathrm{~b}], 27],\{\mathrm{a} 1,1,27\}\{\mathrm{b}, 1,27\}]
$$

verifies that $v_{3}\left(2^{-6} \beta_{T}\right) \neq 2$. We conclude that $u_{T}=2$ if and only if $v_{2}(a)=1$.
Lastly, since u_{T} divides 2 it follows that if $v_{2}(a) \neq 1$, then E_{T} is a global minimal model for E_{T}.

5.4.7 Proof of Theorem 5.14 for $T=C_{10}$

Theorem 5.14 for $\boldsymbol{T}=\boldsymbol{C}_{\mathbf{1 0}}$. The minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ with $u_{T} \in$ $\{1,2\}$. Moreover, $u_{T}=2$ if and only if a is even.

Proof Let $x \longmapsto u_{T}^{2} x+r_{T}$ and $y \longmapsto u_{T}^{3}+u_{T}^{2} s_{T} x+w_{T}$ be an admissible change of variables between E_{T} and a global minimal model of E_{T}. Since E_{T} is given by an integral Weierstrass model, we have by Lemma 2.4 that $u_{T}, s_{T}, r_{T}, w_{T} \in \mathbb{Z}$ and moreover, $u_{T}^{6} \mid \beta_{T}$ and $u_{T}^{12} \mid \gamma_{T}$. In particular, u_{T}^{6} divides $\operatorname{gcd}\left(\beta_{T}, \gamma_{T}\right)$. Since a and b are relatively prime, we have that for a fixed positive integer k, there are integers r and
s such that $r a^{k}+s b^{k}=1$ and so by Lemma $5.10, \operatorname{gcd}\left(\beta_{T}, \gamma_{T}\right)$ divides $2^{8} 5$. Therefore u_{T} divides 2.

Suppose $u_{T}=2$. Then $2^{-4}\left|\alpha_{T}, 2^{-6}\right| \beta_{T}$, and $2^{-12} \mid \gamma_{T}$. Reducing α_{T} modulo 2 yields $\alpha_{T} \equiv a^{12} \bmod 2$ and so α_{T} is even if and only if a is even. Now observe that

$$
\begin{equation*}
12 \leq v_{2}\left(\gamma_{T}\right)=5 v_{2}(a)+5 v_{2}(a-2 b)+v_{2}\left(a^{2}+2 a b-4 b^{2}\right) \tag{5.10}
\end{equation*}
$$

It is clear that (5.10) holds if $v_{2}(a) \geq 2$. So suppose $v_{2}(a)=1$. Then $v_{2}(a-2 b) \geq 2$ and so inequality (5.10) holds. By inspection, $v_{2}\left(\alpha_{T}\right)=4$ if a is even and consequently $v_{2}\left(\beta_{T}\right)=6$ by Lemma 5.21. The admissible change of variables $x \longmapsto 4 x$ and $y \longmapsto 8 y$ gives a \mathbb{Q}-isomorphism from E_{T} onto the elliptic curve

$$
\begin{aligned}
E_{T}^{\prime}: y^{2}+ & \frac{a^{3}-2 a^{2} b-2 a b^{2}+2 b^{3}}{2} x y-\frac{a^{2} b^{3}(a-2 b)(a-b)\left(a^{2}-3 a b+b^{2}\right)}{8}= \\
& x^{3}-\frac{a(a-2 b)(a-b) b^{3}}{4} x^{2} .
\end{aligned}
$$

In particular, E_{T}^{\prime} is given by an integral Weierstrass model if a is even. Therefore E_{T}^{\prime} is a global minimal model for E_{T} if a is even.

Lastly, if a is not even, then E_{T} is a global minimal model for E_{T}.

5.4.8 Proof of Theorem 5.14 for $T=C_{12}$

Theorem 5.14 for $\boldsymbol{T}=\boldsymbol{C}_{\mathbf{1 2}}$. The minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ with $u_{T} \in$ $\{1,2\}$. Moreover, $u_{T}=2$ if and only if a is even.

Proof Let $x \longmapsto u_{T}^{2} x+r_{T}$ and $y \longmapsto u_{T}^{3}+u_{T}^{2} s_{T} x+w_{T}$ be an admissible change of variables between E_{T} and a global minimal model of E_{T}. Since E_{T} is given by an integral Weierstrass model, we have by Lemma 2.4 that $u_{T}, s_{T}, r_{T}, w_{T} \in \mathbb{Z}$ and moreover, $u_{T}^{6} \mid \beta_{T}$ and $u_{T}^{12} \mid \gamma_{T}$. In particular, u_{T}^{6} divides $\operatorname{gcd}\left(\beta_{T}, \gamma_{T}\right)$. Since a and b are relatively prime, we have that for a fixed positive integer k, there are integers r and s such that $r a^{k}+s b^{k}=1$ and so by Lemma $5.10, \operatorname{gcd}\left(\beta_{T}, \gamma_{T}\right)$ divides $2^{9} 3^{3}$. Therefore u_{T} divides 2 .

Suppose $u_{T}=2$ so that $2^{-4}\left|\alpha_{T}, 2^{-6}\right| \beta_{T}$, and $2^{-12} \mid \gamma_{T}$. Then $\alpha_{T} \equiv a^{16} \bmod 2$ and so α_{T} is even if and only if a is even. Next, observe that

$$
v_{2}\left(\gamma_{T}\right)=2 v_{2}(a)+6 v_{2}(A-2 b)+v_{2}\left(q^{2}-6 a b+6 b^{2}\right)+3 v_{2}\left(q^{2}-2 a b+2 b^{2}\right)
$$

By inspection, we see that a is even if and only if $v_{2}\left(\gamma_{T}\right) \geq 12$. By inspection, $v_{2}\left(\alpha_{T}\right)=4$ and so $v_{2}\left(\beta_{T}\right)=6$ by Lemma 5.21. The admissible change of variables $x \longmapsto 4 x$ and $y \longmapsto 8 y$ gives a \mathbb{Q}-isomorphism from E_{T} onto the elliptic curve $E_{T}^{\prime}: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}$ where

$$
\begin{aligned}
& a_{1}=-\frac{1}{2}\left(a^{4}-2 a^{3} b-2 a^{2} b^{2}+8 a b^{3}-6 b^{4}\right) \\
& a_{2}=\frac{1}{4} b(a-2 b)(a-b)^{2}\left(q^{2}-3 a b+3 b^{2}\right) \\
& a_{3}=-\frac{1}{8} a b(a-2 b)(a-b)^{2}\left(q^{2}-3 a b+3 b^{2}\right)\left(q^{2}-2 a b+2 b^{2}\right)
\end{aligned}
$$

Since a is even, E_{T}^{\prime} is given by an integral Weierstrass model. Therefore E_{T}^{λ} is a global minimal model for E_{T} if a is even.

Lastly, if a is not even, then E_{T} is a global minimal model for E_{T}.

5.4.9 Proof of Theorem 5.14 for $T=C_{2} \times C_{2}$

Theorem 5.14 for $\boldsymbol{T}=\boldsymbol{C}_{\mathbf{2}} \times \boldsymbol{C}_{\mathbf{2}}$. The minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ with $u_{T} \in\{1,2\}$. Moreover, $u_{T}=2$ if and only if $v_{2}(a) \geq 4$ and $b d \equiv 1 \bmod 4$.

Proof First, suppose E_{T} has j-invariant equal to 1728 . By Lemma 5.19, E_{T} is \mathbb{Q}-isomorphic to $E_{T}(2,1, d)$. Then $\gamma_{T}=64 d^{6}$. Since d is squarefree, we have that $v_{p}\left(\gamma_{T}\right) \leq 6$ for each odd prime p. In particular, if d is even, γ_{T} is the minimal discriminant of E_{T}. Now suppose $d=2 \hat{d}$ for some odd squarefree integer \hat{d} and let $x \longmapsto u_{T}^{2} x+r_{T}$ and $y \longmapsto u_{T}^{3}+u_{T}^{2} s_{T} x+w_{T}$ be an admissible change of variables between E_{T} and a global minimal model of E_{T}. Since E_{T} is given by an integral Weierstrass model, we have by Lemma 2.4 that $u_{T}, s_{T}, r_{T}, w_{T} \in \mathbb{Z}$ and moreover, $u_{T}^{4} \mid \alpha_{T}$ and $u_{T}^{12} \mid \gamma_{T}$. Since d is even, it follows that u_{T} divides 2 . Towards a contradiction, suppose $u_{T}=2$. Then $u_{T}^{-12} \gamma_{T}=\hat{d}^{6}$ and $u_{T}^{-4} \alpha_{T}=12 \hat{d}^{2}$. Since $v_{2}\left(u_{T}^{-4} \alpha_{T}\right)=2$, we have
our desired contradiction. Indeed, by Theorem 2.6 there is no integral Weierstrass model having invariants $c_{4}=u_{T}^{-4} \alpha_{T}$ and $c_{6}=0$.

Next, suppose E_{T} does not have j-invariant equal to 1728 . Let $x \longmapsto u_{T}^{2} x+r_{T}$ and $y \longmapsto u_{T}^{3}+u_{T}^{2} s_{T} x+w_{T}$ be an admissible change of variables between E_{T} and a global minimal model of E_{T}. Since E_{T} is given by an integral Weierstrass model, we have by Lemma 2.4 that $u_{T}, s_{T}, r_{T}, w_{T} \in \mathbb{Z}$ and moreover, $u_{T}^{6} \mid \beta_{T}$ and $u_{T}^{12} \mid \gamma_{T}$. In particular, u_{T}^{6} divides $\operatorname{gcd}\left(\beta_{T}, \gamma_{T}\right)$. Since a and b are relatively prime, we have that for a fixed positive integer k, there are integers r and s such that $r a^{k}+s b^{k}=1$ and so by Lemma $5.10, \operatorname{gcd}\left(\beta_{T}, \gamma_{T}\right)$ divides $2^{7} d^{8}$. In particular, u_{T} divides $2 d$. Recall that d is a squarefree integer.

We claim that $v_{p}\left(u_{T}\right)=0$ for all odd primes. Towards a contradiction, suppose an odd prime p divides u_{T}. In particular, p divides d and moreover, p^{12} divides γ_{T}. In particular, $v_{p}(a b(a-b)) \geq 3$ since $\gamma_{T}=16 a^{2} b^{2} d^{6}(a-b)^{2}$. Since a, b, and $a-b$ are relatively prime, it follows that p divides exactly one of these. If p divides one of a or b, then p does not divide $a^{2}-a b+b^{2}$ which contradicts the assumption that p^{4} divides α_{T}. Therefore p divides $a-b$ and $a^{2}-a b+b^{2}$. But then p divides

$$
a^{2}-a b+b^{2}-(a-b)^{2}=a b
$$

which is a contradiction. Hence $v_{p}\left(u_{T}\right)=0$ for all odd primes.
Consequently u_{T} divides 4 . We claim that $u_{T} \neq 4$. Towards a contradiction, suppose $u_{T}=4$ so that $v_{2}\left(\alpha_{T}\right) \geq 8$. Note that since $u_{T}=4$, we have by Lemma 5.10 that d is even. Since d is squarefree, we deduce

$$
\begin{equation*}
8 \leq v_{2}\left(\alpha_{T}\right)=6+v_{2}\left(a^{2}-a b+b^{2}\right) \tag{5.11}
\end{equation*}
$$

Recall that by Lemma $5.12, a$ is even. Thus $a^{2}-a b+b^{2} \equiv-a b+1 \bmod 4$ since $b^{2} \equiv 1 \bmod 4$. If a and b are odd, then $a^{2}-a b+b^{2} \equiv 2-a b \bmod 4$. Since $a b \equiv \pm 1 \bmod 4$, we conclude that $a^{2}-a b+b^{2}$ is always odd. Therefore inequality (5.11) does not hold.

Now assume $u_{T}=2$. Then $2^{4}\left|\alpha_{T}, 2^{6}\right| \beta_{T}$, and $2^{12} \mid \gamma_{T}$. By definition of α_{T} and β_{T}, we see that the first two divisibilities are always satisfied. Now observe that

$$
\begin{equation*}
12 \leq v_{2}\left(\gamma_{T}\right)=4+6 v_{2}(d)+2 v_{2}(a) \tag{5.12}
\end{equation*}
$$

We now consider the cases where d is even or odd.
Case I. Suppose d is even. Since d is squarefree, it follows that $v_{2}(a) \geq 1$. Since $2^{-6} \beta_{T}$ is even and

$$
2^{-4} \alpha_{T}=d^{2}\left(a^{2}-a b+b^{2}\right) \neq 4 \bmod 8,
$$

we conclude by Theorem 2.6 that there is no integral Weierstrass equation having invariants $c_{4}=2^{-4} \alpha_{T}$ and $c_{6}=2^{-6} \beta_{T}$. Therefore d cannot be even.

Case II. Suppose d is odd. Then by (5.12), $v_{2}(a) \geq 4$. Write $a=16 \hat{a}$ for some integer \hat{a}. Then

$$
2^{-6} \beta_{T}=-d^{3}(16 \hat{a}+b)(8 \hat{a}-b)(32 \hat{a}-b) \equiv-b d \bmod 4 .
$$

By Theorem 2.6, there is an integral Weierstrass model having invariants $c_{4}=2^{-4} \alpha_{T}$ and $c_{6}=2^{-6} \beta_{T}$ if and only if $b d \equiv 1 \bmod 4$ and $v_{3}\left(2^{-6} \beta_{T}\right) \neq 2$. Since $v_{3}\left(2^{-6} \beta_{T}\right) \neq 2$ if and only if $2^{-6} \beta_{T} \not \equiv 9,18 \bmod 27$, we verify that this indeed the case via the Mathematica input

$$
\operatorname{Table}[\operatorname{Mod}[\operatorname{beta}[\mathrm{a} 1, \mathrm{~b}], 27],\{\mathrm{a} 1,1,27\}\{\mathrm{b}, 1,27\}]
$$

where beta and a1 are the Mathematica inputs for $2^{-6} \beta_{T}$ and \hat{a}, respectively. Hence $u_{T}=2$ if and only if $v_{2}(a) \geq 4$ and $b d \equiv 1 \bmod 4$.

Consequently, E_{T} is a global minimal model for E_{T} if and only if the above equivalence does not hold.

5.4.10 Proof of Theorem 5.14 for $T=C_{2} \times C_{4}$

Theorem 5.14 for $\boldsymbol{T}=\boldsymbol{C}_{\mathbf{2}} \times \boldsymbol{C}_{\mathbf{4}}$. The minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ with $u_{T} \in\{1,2,4\}$. Moreover, $u_{T}=4$ if and only if $v_{2}(a)=2$
(i) $u_{T}=1$ if and only if $v_{2}(a) \leq 1$.
(ii) $u_{T}=2$ if and only if $v_{2}(a) \geq 2$ with $v_{2}(a+4 b)<4$.
(iii) $u_{T}=4$ if and only if $v_{2}(a)=2$ and $v_{2}(a+4 b) \geq 4$.

Proof Let $x \longmapsto u_{T}^{2} x+r_{T}$ and $y \longmapsto u_{T}^{3}+u_{T}^{2} s_{T} x+w_{T}$ be an admissible change of variables between E_{T} and a global minimal model of E_{T}. Since E_{T} is given by an integral Weierstrass model, we have by Lemma 2.4 that $u_{T}, s_{T}, r_{T}, w_{T} \in \mathbb{Z}$ and moreover, $u_{T}^{4} \mid \alpha_{T}$ and $u_{T}^{6} \mid \beta_{T}$. In particular, u_{T}^{4} divides $\operatorname{gcd}\left(\alpha_{T}, \beta_{T}\right)$. Since a and b are relatively prime, we have that for a fixed positive integer k, there are integers r and s such that $r a^{k}+s b^{k}=1$ and so by Lemma $5.10, \operatorname{gcd}\left(\alpha_{T}, \beta_{T}\right)$ divides $2^{14} 3^{2}$. Therefore u_{T} divides 8 . Note that $\alpha_{T} \equiv a^{4} \bmod 2$ and so α_{T} is even if and only if a is even. Under this assumption, we observe that

$$
\begin{align*}
& \quad v_{2}\left(\alpha_{T}\right)=v_{2}\left(a^{4}+16 a^{3} b+80 a^{2} b^{2}+128 a b^{3}+256 b^{4}\right) \in \begin{cases}4 & \text { if } v_{2}(a)=1 \\
8 & \text { if } v_{2}(a) \geq 2 \\
8 \text { and } v_{2}\left(\gamma_{T}\right) \geq 24, \text { then }\end{cases} \tag{5.13}\\
& \text { Therefore } \left.u_{T} \text { divides 4. Moreover, observe that if } v_{2}\left(\alpha_{T}\right)=8.13\right)
\end{align*}
$$ $v_{2}\left(\beta_{T}\right)=12$ by Lemma 5.21. In particular, $4^{-4} \cdot \beta_{T}$ is odd under these assumptions.

(iii) Suppose $u_{T}=4$. Then $4^{4}\left|\alpha_{T}, 4^{6}\right| \beta_{T}$, and $4^{12} \mid \gamma_{T}$. By (5.13), $4^{4} \mid \alpha_{T}$ if and only if $v_{2}(a) \geq 2$. Then

$$
\begin{equation*}
24 \leq v_{2}\left(\gamma_{T}\right)=2 v_{2}(a)+2 v_{2}(a+8 b)+4 v_{2}(a+4 b) \tag{5.14}
\end{equation*}
$$

Case I. Suppose $v_{2}(a) \geq 4$. Then $v_{2}\left(\gamma_{T}\right)=2 v_{2}(a)+14$ and thus inequality (5.14) holds if $v_{2}(a) \geq 5$. Now assume further that $v_{2}(a) \geq 5$. Since $v_{2}\left(\alpha_{T}\right)=8$, it follows that $v_{2}\left(\beta_{T}\right)=12$. In particular, $4^{-6} \beta_{T}$ is odd and by Theorem 2.6 we must have $4^{-6} \beta_{T} \equiv-1 \bmod 4$. Write $a=2^{5} \hat{a}$ for some integer \hat{a} and observe that $4^{-6} \beta_{T} \equiv b^{6} \bmod 4$. Hence $4^{-6} \beta_{T} \equiv 1 \bmod 4$ and by Theorem 2.6 we conclude that there is no integral Weierstrass model having invariants $c_{4}=4^{-4} \alpha_{T}$ and $c_{6}=4^{-6} \beta_{T}$.

Case II. Suppose $v_{2}(a)=3$. Write $a=8 \hat{a}$ for some odd integer \hat{a}. Then $v_{2}\left(\gamma_{T}\right)=$ $20+2 v_{2}(\hat{a}+b)$ and so inequality (5.14) holds if $v_{2}(\hat{a}+b) \geq 2$. Under this additional
assumption, we have that $4^{-4} \cdot \beta_{T}$ is odd by the discussion following (5.13). By Theorem 2.6 we must have $4^{-6} \beta_{T} \equiv-1 \bmod 4$. But

$$
\begin{aligned}
4^{-6} \beta_{T} & \equiv 2 \hat{a}^{2} b^{4}+2 \hat{a} b^{5}+b^{6} \bmod 4 \\
& \equiv 3+2 \hat{a} b \bmod 4 \\
& \equiv 1 \bmod 4
\end{aligned}
$$

since odd squares are congruent to 1 modulo 4 and $2 k \equiv 2 \bmod 4$ for odd integers k. In particular, there is no integral Weierstrass model having invariants $c_{4}=4^{-4} \alpha_{T}$ and $c_{6}=4^{-6} \beta_{T}$.

Case III. Suppose $v_{2}(a)=2$. Write $a=4 \hat{a}$ for some odd integer \hat{a}. Then $v_{2}\left(\gamma_{T}\right)=$ $16+4 v_{2}(\hat{a}+b)$ and so inequality (5.14) holds if $v_{2}(\hat{a}+b) \geq 2$. Under this additional assumption, we have that $4^{-4} \cdot \beta_{T}$ is odd by the discussion following (5.13). Now write $\hat{a}+b=4 k$ for some integer k. Hence $b=4 k-\hat{a}$ and so

$$
\begin{aligned}
4^{-4} \cdot \beta_{T} & \equiv 3 \hat{a}^{6} \bmod 4 \\
& \equiv 3 \bmod 4
\end{aligned}
$$

It remains to show that $v_{3}\left(4^{-4} \cdot \beta_{T}\right) \neq 2$. Since $v_{3}\left(4^{-4} \cdot \beta_{T}\right) \neq 2$ if and only $4^{-4} \cdot \beta_{T} \not \equiv$ $9,18 \bmod 27$. Now let $c 6[\mathrm{x}, \mathrm{y}]$ and a1 be the Mathematica inputs for $\beta_{T}(x, y)$ and \hat{a}, respectively. Then the Mathematica input

$$
\text { Table }\left[\operatorname{Mod}\left[c 6\left[2^{\wedge} 2 * a 1,4 * \mathrm{k}-\mathrm{a} 1\right] / 4^{\wedge} 6,27\right],\{\mathrm{a} 1,1,27\},\{\mathrm{k}, 1,27\}\right]
$$

verifies that $4^{-4} \cdot \beta_{T} \not \equiv 9,18 \bmod 27$. Hence $u_{T}=4$ if and only if $v_{2}(a)=2$ and $v_{2}(a+4 b) \geq 4$.
(ii) Suppose $u_{T}=2$. Then $2^{4}\left|\alpha_{T}, 2^{6}\right| \beta_{T}$, and $2^{12} \mid \gamma_{T}$. By (5.13), $2^{4} \mid \alpha_{T}$ if and only if $v_{2}(a) \geq 1$.

Case I. Suppose $v_{2}(a)=2$ with $v_{2}(a+4 b) \leq 3$. By (5.13), $4^{4} \mid \alpha_{T}$. In fact, since $v_{2}(a)=2, v_{2}(a+4 b)=3$. Then $v_{2}\left(\gamma_{T}\right)=20$ and hence $v_{2}\left(\beta_{T}\right) \geq 6$ by the identity $1728 \gamma_{T}=\alpha_{T}^{3}-\beta_{T}^{2}$. By Theorem 2.6, there is an integral Weierstrass model having invariants $c_{4}=2^{-4} \alpha_{T}$ and $c_{6}=2^{-6} \beta_{T}$ if and only if $2^{-6} \beta_{T} \equiv 0,8 \bmod 32$ and
$v_{3}\left(2^{-6} \beta_{T}\right) \neq 2$. To this end, let $a+4 b=8 k$ for some odd integer k and let $a=8 k-4 b$. Then $\beta_{T}(x, y) \equiv 0 \bmod 32$. Let $\mathrm{c} 6[\mathrm{x}, \mathrm{y}]$ be the Mathematica input for $2^{-6} \beta_{T}$. Then Mathematica input

$$
\text { Table }\left[\operatorname{Mod}\left[c 6[8 * k-4 * b, b] / 2^{\wedge} 6,27\right],\{b, 1,27\},\{k, 1,27\}\right]
$$

verifies that $v_{3}\left(2^{-6} \beta_{T}\right) \neq 2$. Thus, there is an integral Weierstrass model having invariants $c_{4}=2^{-4} \alpha_{T}$ and $c_{6}=2^{-6} \beta_{T}$.

Case II. Suppose $v_{2}(a) \geq 3$. By (5.13), $4^{4} \mid \alpha_{T}$ and we note that

$$
v_{2}\left(\gamma_{T}\right)=2 v_{2}(a)+2 v_{2}(a+8 b)+4 v_{2}(a+4 b) \geq 20
$$

and so $v_{2}\left(\beta_{T}\right) \geq 6$ from the identity $1728 \gamma_{T}=\alpha_{T}^{3}-\beta_{T}^{2}$. By Theorem 2.6, there is an integral Weierstrass model having invariants $c_{4}=2^{-4} \alpha_{T}$ and $c_{6}=2^{-6} \beta_{T}$ if and only if $2^{-6} \beta_{T} \equiv 0,8 \bmod 32$ and $v_{3}\left(2^{-6} \beta_{T}\right) \neq 2$. Set $a=8 \hat{a}$ for some integer \hat{a} and observe that $2^{-6} \beta_{T} \equiv 0 \bmod 32$. Now let $\mathrm{c} 6[\mathrm{x}, \mathrm{y}]$ be the Mathematica input for $\beta_{T}(x, y)$. Then Mathematica input

$$
\text { Table }\left[\operatorname{Mod}\left[c 6[8 * a, b] / 2^{\wedge} 6,27\right],\{a, 1,27\},\{b, 1,27\}\right]
$$

verifies that $v_{3}\left(2^{-6} \beta_{T}\right) \neq 2$. Thus, there is an integral Weierstrass model having invariants $c_{4}=2^{-4} \alpha_{T}$ and $c_{6}=2^{-6} \beta_{T}$.

Case III. Suppose $v_{2}(a)=1$. Then

$$
v_{2}\left(\gamma_{T}\right)=2 v_{2}(a)+2 v_{2}(a+8 b)+4 v_{2}(a+4 b)=8
$$

and so $v_{2}\left(\gamma_{T}\right)<12$. This contradicts the assumption that $u_{T}=2$.
Therefore $u_{T}=2$ if and only if $v_{2}(a) \geq 2$ with $v_{2}(a+4 b) \neq 3$.
(iii) Since (i) and (ii) exhaust the possibilities when $v_{2}(a) \geq 2$ and $u_{T} \geq 2$, it follows that E_{T} is a global minimal model for E_{T} if and only if $v_{2}(a) \leq 1$.

5.4.11 Proof of Theorem 5.14 for $T=C_{2} \times C_{6}$

Theorem 5.14 for $\boldsymbol{T}=\boldsymbol{C}_{\mathbf{2}} \times \boldsymbol{C}_{\mathbf{6}}$. The minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ with $u_{T} \in\{1,4,16\}$. Moreover,
(i) $u_{T}=1$ if and only if $v_{2}(a+b)=0$;
(ii) $u_{T}=4$ if and only if $v_{2}(a+b) \geq 2$;
(iii) $u_{T}=16$ if and only if $v_{2}(a+b)=1$.

Proof Let $x \longmapsto u_{T}^{2} x+r_{T}$ and $y \longmapsto u_{T}^{3}+u_{T}^{2} s_{T} x+w_{T}$ be an admissible change of variables between E_{T} and a global minimal model of E_{T}. Since E_{T} is given by an integral Weierstrass model, we have by Lemma 2.4 that $u_{T}, s_{T}, r_{T}, w_{T} \in \mathbb{Z}$ and moreover, $u_{T}^{4} \mid \alpha_{T}$ and $u_{T}^{6} \mid \beta_{T}$. In particular, u_{T}^{4} divides $\operatorname{gcd}\left(\alpha_{T}, \beta_{T}\right)$. Since a and b are relatively prime, we have that for a fixed positive integer k, there are integers r and s such that $r a^{k}+s b^{k}=1$ and so by Lemma 5.10, $\operatorname{gcd}\left(\alpha_{T}, \beta_{T}\right)$ divides $2^{7} 3$. But u_{T}^{6} divides $\operatorname{gcd}\left(\beta_{T}, \gamma_{T}\right)$, and so we conclude by Lemma 5.10 that that u_{T} divides 2^{7}. Since $\alpha_{T} \equiv a^{8}+b^{8} \bmod 2$, we deduce that α_{T} is even if and only if $a+b$ is even.
(i) Suppose $v_{2}(a+b)=0$. Then α_{T} is odd and therefore by the above E_{T} is a global minimal model for E_{T} if $v_{2}(a+b)=0$. This is the converse of (i).

In what follows we will prove the converse of (ii) and (iii). This will exhaust all possibilities which then gives the forward implication. To prove the converse for (ii) and (iii) we will exhibit a global minimal model which satisfies $u_{T}^{-4} \alpha_{T}$ and $u_{T}^{-6} \beta_{T}$ as the invariants c_{4} and c_{6}, respectively of the constructed model. Namely, we consider the admissible change of variables $x \longmapsto u_{T}^{2} x$ and $y \longmapsto u_{T}^{3} y$. This gives a \mathbb{Q}-isomorphic from E_{T} onto the elliptic curve

$$
\begin{align*}
E_{u_{T}} & : y^{2}-\frac{a_{1}}{u_{T}} x y+\frac{2 a_{3}}{u_{T}^{3}} y=x^{3}+\frac{2 a_{2}}{u_{T}^{2}} x^{2} \text { where } \tag{5.15}\\
a_{1} & =19 a^{2}-2 a b-b^{2} \\
a_{2} & =a(b-a)^{2}(b-5 a) \\
a_{3} & =a(b-5 a)(b-3 a)(3 a+b)(b-a)^{2} .
\end{align*}
$$

We will show for each of the cases below that $E_{u_{T}}$ is an integral Weierstrass model under the desired assumptions on $a+b$.
(iii) Suppose $v_{2}(a+b)=1$. Write $a+b=2 k$ for some odd integer k so that $b=2 k-a$. Then

$$
v_{2}\left(\gamma_{T}\right)=6+2 v_{2}((b-9 a)(b-3 a)(3 a+b))+6 v_{2}((b-5 a)(b-a)) .
$$

We claim that $v_{2}\left(\gamma_{T}\right) \geq 48$. Note that

$$
(b-5 a)(b-a)=(2 k-6 a)(2 k-2 a)=4\left(k^{2}-4 a k+3 a^{2}\right)
$$

Since odd squares are congruent to 0 modulo 8 , we deduce

$$
k^{2}-4 a k+3 a^{2} \equiv 4-4 a k \bmod 8
$$

But $4 n \equiv 4 \bmod 8$ for all odd integers n, and so $(b-5 a)(b-a) \equiv 0 \bmod 32$. In particular, $v_{2}((b-5 a)(b-a)) \geq 5$. Next,

$$
\begin{aligned}
(b-9 a)(b-3 a)(3 a+b) & =(2 k-10 a)(2 k-4 a)(2 k+2 a) \\
& =8\left(k^{3}-6 a k^{2}+3 a^{2} k+10 a^{3}\right)
\end{aligned}
$$

Since odd squares are congruent to 1 modulo 8 , we deduce

$$
\begin{aligned}
k^{3}-6 a k^{2}+3 a^{2} k+10 a^{3} & \equiv k-6 a+3 k+10 a \bmod 8 \\
& \equiv 4 k+4 a \bmod 8 \\
& \equiv 0 \bmod 8
\end{aligned}
$$

Hence $v_{2}((b-9 a)(b-3 a)(3 a+b)) \geq 6$. In particular, $v_{2}\left(\gamma_{T}\right) \geq 48$.
Now let $\alpha_{T}=P Q$ where P is the factor of degree 2 and Q is the factor of degree 6. Then

$$
\begin{aligned}
P & \equiv-4\left(a^{2}-4 a k-k^{2}\right) \\
Q & \equiv-64\left(a^{2}+4 a k-k^{2}\right)
\end{aligned} m^{3} \bmod 2^{5} .
$$

Since $a^{2} \pm 4 a k-k^{2} \equiv 4 \bmod 8$ and $2^{l-1} x \equiv 2^{l-1} \bmod 2^{l}$ for all odd integers x and positive integers l, we have that $P \equiv 16 \bmod 32$ and $Q \equiv 2^{12} \bmod 2^{13}$. Therefore $v_{2}\left(\alpha_{T}\right)=16$ and by Lemma 5.21 we have that $v_{2}\left(\beta_{T}\right)=24$. Thus $16^{-4} \alpha_{T}$ and $16^{-6} \beta_{T}$
are odd integers. Then $16^{-4} \alpha_{T}$ and $16^{-6} \beta_{T}$ are the invariants c_{4} and c_{6}, respectively of the elliptic curve $E_{u_{T}}$ in (5.15) with $u_{T}=16$. We claim that $E_{u_{T}}$ is given by an integral Weierstrass model. Indeed,

$$
\begin{aligned}
a_{1} & \equiv 3 a^{2}-2 a b-b^{2} \bmod 16 \\
& \equiv 3 a^{2}-2 a(2 k-a)-(2 k-a)^{2} \bmod 16 \\
& \equiv 4 a^{2}-4 k^{2} \bmod 16 \\
& \equiv 0 \bmod 16 \text { since } 4 l \equiv 4 \bmod 16 \text { for odd integers } l .
\end{aligned}
$$

We have already established that $(b-5 a)(b-a) \equiv 0 \bmod 32$. Since $v_{2}(a+b)=$ 1, we have that $a+b \equiv 2 \bmod 4$ which implies that $b-a \equiv 0 \bmod 4$. Hence $v_{2}\left((b-5 a)(b-a)^{2}\right) \geq 7$ and so $16^{-3} \cdot 2 a_{2}$ is an integer. Lastly, observe that by the above $(b-a)^{2} \equiv 0 \bmod 16$. Therefore, to show that $16^{-2} \cdot 2 a_{3}$ is an integer, it suffices to show that $(b-5 a)(b-3 a)(3 a+b) \equiv 0 \bmod 8$. But this is automatic since each factor is even. Therefore $E_{u_{T}}$ with $u_{T}=16$ is a global minimal model for E_{T} whenever $v_{2}(a+b)=1$. This shows the converse of (iii).
(ii) Suppose $v_{2}(a+b) \geq 2$. Write $a+b=4 k$ for some integer k. Then $b-a=$ $4 k-2 a \equiv 2 \bmod 4$ since a is odd. Since $b-5 a$ and $b-9 a$ are congruent to $b-a \bmod 4$ we have that $v_{2}(b-a)=v_{2}(b-5 a)=v_{2}(b-9 a)=1$. Therefore

$$
\begin{aligned}
v_{2}\left(\gamma_{T}\right) & =6+2 v_{2}((b-9 a)(b-3 a)(3 a+b))+6 v_{2}((b-5 a)(b-a)) \\
& =20+2 v_{2}((b-3 a)(3 a+b))
\end{aligned}
$$

Since $(b-3 a)(3 a+b)$ is a difference of odd squares, it follows that it is divisible by 8 which implies that $v_{2}\left(\gamma_{T}\right) \geq 26$.

As before, let $\alpha_{T}=P Q$ where P is the factor of degree 2 and Q is the factor of degree 6. Then

$$
\begin{aligned}
& P \equiv 4 a^{2} \bmod 8=4 \bmod 8 \\
& Q \equiv 64 a^{2} \bmod 128=64 \bmod 128
\end{aligned}
$$

Therefore $v_{2}\left(\alpha_{T}\right)=8$ and so by Lemma 5.21, $v_{2}\left(\beta_{T}\right)=24$. In particular, $4^{-4} \alpha_{T}$ and $4^{-6} \beta_{T}$ are odd integers and they are the invariants c_{4} and c_{6}, respectively of the

Weierstrass model of $E_{u_{T}}$ for $u_{T}=4$. We claim that $E_{u_{T}}$ is an integral Weierstrass model. Indeed,

$$
\begin{aligned}
& a_{1}=19 a^{2}-2 a b-b^{2}=20 a^{2}-16 k^{2} \equiv 0 \bmod 4 \\
& a_{2}=a(b-a)^{2}(b-5 a) \equiv 0 \bmod 8 \\
& a_{3}=a(b-5 a)(b-3 a)(b+3 a)(b-a)^{2} \equiv 0 \bmod 64
\end{aligned}
$$

This shows that $E_{u_{T}}$ is a global minimal model for E_{T} if $v_{2}(a+b) \geq 2$. This is the converse of (ii).

Since the converse of (i), (ii), and (iii) exhaust all possibilities for a and b, we get that the forward implication in each holds as well, which concludes the proof.

5.4.12 Proof of Theorem 5.14 for $T=C_{2} \times C_{8}$

Theorem 5.14 for $\boldsymbol{T}=\boldsymbol{C}_{\mathbf{2}} \times \boldsymbol{C}_{\mathbf{8}}$. The minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ with $u_{T} \in\{1,16,64\}$. Moreover,
(i) $u_{T}=1$ if and only if a is odd;
(ii) $u_{T}=16$ if and only if $v_{2}(a)=1$;
(iii) $u_{T}=64$ if and only if $v_{2}(a) \geq 2$.

Proof Let $x \longmapsto u_{T}^{2} x+r_{T}$ and $y \longmapsto u_{T}^{3}+u_{T}^{2} s_{T} x+w_{T}$ be an admissible change of variables between E_{T} and a global minimal model of E_{T}. Since E_{T} is given by an integral Weierstrass model, we have by Lemma 2.4 that $u_{T}, s_{T}, r_{T}, w_{T} \in \mathbb{Z}$ and moreover, $u_{T}^{4} \mid \alpha_{T}$ and $u_{T}^{6} \mid \beta_{T}$. In particular, u_{T}^{4} divides $\operatorname{gcd}\left(\alpha_{T}, \beta_{T}\right)$. Since a and b are relatively prime, we have that for a fixed positive integer k, there are integers r and s such that $r a^{k}+s b^{k}=1$ and so by Lemma $5.10, \operatorname{gcd}\left(\alpha_{T}, \beta_{T}\right)$ divides 2^{12}.

Observe that $\alpha_{T} \equiv a^{16} \bmod 2$. Therefore α_{T} is even if and only if a is even.
(i) Suppose a is odd so that α_{T} is odd. Since u_{T} divides 2^{12}, it follows that E_{T} is a global minimal model for E_{T} if a is odd. This shows the converse of (i).

For (ii) and (iii) we will consider the admissible change of variables $x \longmapsto u_{T}^{2} x$ and $y \longmapsto u_{T}^{3} y$ which gives a \mathbb{Q}-isomorphism between E_{T} and the elliptic curve

$$
\begin{aligned}
E_{u_{T}} & : y^{2}-\frac{a^{4}}{u_{T}} x y+\frac{8 a_{3}}{u_{T}^{3}} y=x^{3}-\frac{4 a_{2}}{u_{T}^{2}} x^{2} \text { where } \\
a_{1} & =a^{4}+8 a^{3} b+24 a^{2} b^{2}-64 b^{4} \\
a_{2} & =a b^{2}(a+2 b)(a+4 b)^{2}\left(q^{2}+4 a b+8 b^{2}\right) \\
a_{3} & =a b^{3}(a+2 b)(a+4 b)^{3}\left(d^{2}-8 b^{2}\right)\left(q^{2}+4 a b+8 b^{2}\right)
\end{aligned}
$$

We will prove the converse of (ii) and (iii) by demonstrating that $E_{u_{T}}$ is an integral Weierstrass model under the assumptions on a. Note that if a is even, then

$$
\begin{align*}
v_{2}\left(\gamma_{T}\right) & =8+8 v_{2}(a(a+2 b)(a+4 b))+2 v_{2}\left(\left(a^{2}-8 b^{2}\right)\left(q^{2}+8 a b+8 b^{2}\right)\right)(\tag{5.16}\\
& +4 v_{2}\left(a^{2}+4 a b+8 b^{2}\right)(
\end{align*}
$$

(ii) Suppose $v_{2}(a)=1$. Then

$$
\begin{aligned}
4 v_{2}\left(a^{2}+4 a b+8 b^{2}\right) & \neq 8 \\
2 v_{2}\left(\left(a^{2}-8 b^{2}\right)\left(q^{2}+8 a b+8 b^{2}\right)\right) & \neq 8 \\
8 v_{2}(a(a+4 b)) & \neq 16 \\
8 v_{2}(a+2 b) & \geq 16 .
\end{aligned}
$$

Therefore $v_{2}\left(\gamma_{T}\right) \geq 56$. Next, we observe that

$$
\alpha_{T} \equiv 2^{16} k^{16} \bmod 2^{17}
$$

In particular, $v_{2}\left(\alpha_{T}\right)=16$ since k is odd. By Lemma 5.21, $v_{2}\left(\beta_{T}\right)=24$. In particular, $16^{-4} \alpha_{T}$ and $16^{-6} \beta_{T}$ are odd integers and they are the invariants c_{4} and c_{6}, respectively of the Weierstrass model for $E_{u_{T}}$ with $u_{T}=16$. We claim that $E_{u_{T}}$ is an integral Weierstrass model. By inspection, $v_{2}\left(a_{1}\right) \geq 4, v_{2}\left(a_{2}\right) \geq 7$, and $v_{2}\left(a_{3}\right) \geq 10$. Therefore $E_{u_{T}}$ is an integral Weierstrass model and therefore it is a global minimal model for E_{T} when $v_{2}(a)=1$. This shows the converse of $(i i)$.
(iii) Suppose $v_{2}(a) \geq 2$ so that $a=4 k$ for some integer k. Observe that $v_{2}\left(\gamma_{T}\right) \geq$ 72 since

$$
\begin{aligned}
& 12=2 v_{2}\left(\left(a^{2}-8 b^{2}\right)\left(q^{2}+8 a b+8 b^{2}\right)\right) \\
& 12=4 v_{2}\left(a^{2}+4 a b+8 \hbar^{2}\right) \\
& 24=8 v_{2}(a(a+2 b)) \\
& 16 \leq 8 v_{2}(a+4 b)
\end{aligned}
$$

Next, we compute $\alpha_{T} \equiv 2^{24} b^{16} \bmod 2^{25}$ and so $v_{2}\left(\alpha_{T}\right)=24$. By Lemma 5.21 we conclude that $v_{2}\left(\beta_{T}\right)=36$. In particular, $2^{-24} \alpha_{T}$ and $2^{-36} \beta_{T}$ are odd integers and they are the invariants c_{4} and c_{6}, respectively of the Weierstrass model for $E_{u_{T}}$ with $u_{T}=64$. By inspection, we observe that $v_{2}\left(a_{1}\right) \geq 6, v_{2}\left(a_{2}\right) \geq 10$, and $v_{2}\left(a_{3}\right) \geq 15$. Therefore $E_{u_{T}}$ is an integral Weierstrass model and therefore it is a global minimal model for E_{T} when $v_{2}(a) \geq 2$. This shows the converse of (iii).

Since the converse of (i), (ii), and (iii) exhaust all possibilities for a and b, we get that the forward implication in each holds as well, which concludes the proof.

5.4.13 Corollaries and Examples

The following two statements were proven in the proof of Theorem 5.14.
Corollary 5.22 Let c_{4} and c_{6} be the invariants associated to a global minimal model of E_{T}. Then c_{4} and c_{6} are always odd if $T=C_{10}, C_{12}, C_{2} \times C_{6}, C_{2} \times C_{8}$.

Corollary 5.23 Let E be a rational elliptic curve with discriminant Δ containing a point of order 3,5 , or 7 . Then Δ is minimal if and only if $v_{p}(\Delta)<12$ or $v_{p}\left(c_{4}\right)<4$ for all primes p.

For an arbitrary elliptic curve, this is only true for primes $p \geq 5$ [4, Remark VII.1.1].

Example 5.24 The elliptic curve

$$
E: y^{2}=x^{3}-1900650154752 x+990015042347311104
$$

has torsion subgroup $E(\mathbb{Q})_{\text {tors }} \cong C_{2} \times C_{4}$. The point $P=(222288,760596480)$ has order 4 and placing E in Tate normal form with respect to P results in the elliptic curve

$$
E_{T N F}: y^{2}+x y-\frac{4585}{36864} y=x^{3}-\frac{4585}{36864} x^{2}
$$

Now consider the elliptic curve $\mathcal{X}_{t}\left(C_{4}\right)$. It is clear if $t=\frac{4585}{36864}$, then $\mathcal{X}_{t}\left(C_{4}\right)$ is $E_{T N F}$. Therefore E is isomorphic over \mathbb{Q} to $E_{C_{4}}(36864,4585)$. Moreover, $36864=2^{12} \cdot 3^{2}$ and $4585 \equiv 1 \bmod 4$. In particular, in the notation of Theorem 5.14, we have that $c=2^{6} \cdot 3$ and hence the minimal discriminant of E and associated invariants c_{4} and c_{6} are

$$
\begin{aligned}
\Delta_{E}^{\min } & =\left(2^{6} \cdot 3\right)^{-12} \Delta_{4}(36864,4585)=2^{16} \cdot 3^{2} \cdot 5^{4} \cdot 7^{4} \cdot 83^{2} \cdot 131^{4} \\
c_{4} & =\left(2^{6} \cdot 3\right)^{-4} \alpha_{4}(36864,4585)=2^{4} \cdot 274978321 \\
c_{6} & =\left(2^{6} \cdot 3\right)^{-4} \beta_{4}(36864,4585)=-2^{6} \cdot 23 \cdot 29 \cdot 47 \cdot 313 \cdot 317 \cdot 1439 .
\end{aligned}
$$

5.5 Necessary and Sufficient Conditions for Semistability of E_{T}

Theorem 5.25 Assume the statement of Theorem 5.14. Assume further that the j-invariant of E_{T} is not equal to 0 or 1728 . Then E_{T} with $T=C_{2} \times C_{8}$ is semistable and E_{T} is semistable if and only if

Table 5.2.: Semistablity of E_{T}

Necessary and Sufficient Conditions for Semistablity of E_{T}	T
$\operatorname{gcd}(a, b d)=1$ and either $u_{T}=4$ or $v_{2}(b) \geq 3$ with $a \equiv-1 \bmod 4$.	C_{2}
a is a cube and 3 does not divide a.	C_{3}
a is a square and either a is odd or $v_{2}(a) \geq 8$ is even with $b \equiv 3 \bmod 4$.	C_{4}
$v_{5}(a+3 b)=0$.	C_{5}
$v_{3}(a)=0$ and $v_{2}(a+b) \neq 1,2$.	C_{6}
$v_{7}(a+4 b)=0$.	C_{7}

continued on next page

Table 5.2.: continued

Necessary and Sufficient Conditions for Semistablity of E_{T}	T
$v_{2}(a) \leq 1$.	C_{8}
$v_{3}(a+b)=0$.	C_{9}
$v_{5}(a+b)=0$.	C_{10}
$v_{3}(a)=0$.	C_{12}
$d=1$ and $v_{2}(a) \geq 4$ with $b \equiv 1 \bmod 4$.	$C_{2} \times C_{2}$
either a is odd or $v_{2}(a)=2$ with $v_{2}(a+4 b) \geq 4$.	$C_{2} \times C_{4}$
$v_{3}(b)=0$.	$C_{2} \times C_{6}$

In particular, if for $T=C_{2} \times C_{6}$ and $T=C_{N}$ where $N=5,7,8,9,10,12$, the equivalence above is not satisfied, then E_{T} has additive reduction at p where p is the prime that appears in the valuation v_{p} above. For the remaining T we have the following necessary and sufficient conditions for additive reduction to occur at a prime p:
$\left(T=C_{2}\right) E_{T}$ has additive reduction at each prime p dividing $\operatorname{gcd}(a, b d)$. In addition, E_{T} has additive reduction at $p=2$ if and only if $u_{T}=1$ or $v_{2}\left(b^{2} d-a^{2}\right) \geq 4$ with $v_{2}(a)=v_{2}(b)=1$ and $d \equiv 1 \bmod 4$.
$\left(T=C_{3}\right) E_{T}$ has additive reduction at all primes dividing de. In addition, E_{T} has additive reduction at 3 if and only if $v_{3}(a)>0$.
$\left(T=C_{4}\right) E_{T}$ has additive reduction at all primes dividing d. In addition, E_{T} has additive reduction at 2 if and only if a is even and $u_{T}=c$.
$\left(T=C_{6}\right) E_{T}$ has additive reduction at 2 (resp. at 3) if and only if $v_{2}(a+b)=1,2$ (resp. $\left.v_{3}(a)>0\right)$.
$\left(T=C_{2} \times C_{2}\right) E_{T}$ has additive reduction at all primes dividing d. In addition, E_{T} has additive reduction at 2 if and only if ad is even with $u_{T}=1$.
$\left(T=C_{2} \times C_{4}\right) E_{T}$ has additive reduction at 2 if and only if $v_{2}(a+4 b)<4$ with a even.

Proof We first consider the case when $T \neq C_{2}, C_{3}, C_{4}$, or $C_{2} \times C_{2}$. For these T, let S be the set of primes at which E_{T} can have additive reduction. By Theorem 5.11, we have:

T	C_{5}	C_{7}	C_{8}	C_{9}	C_{10}	C_{12}	$C_{2} \times C_{4}$	$C_{2} \times C_{6}$	$C_{2} \times C_{8}$
S	$\{5\}$	$\{7\}$	$\{2\}$	$\{3\}$	$\{5\}$	$\{2,3\}$	$\{2\}$	$\{2,3\}$	$\{2\}$

Let u_{T} be as given in Theorem 5.14. Then the minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ and the invariant c_{4} associated to a global minimal model of E_{T} is $u_{T}^{-4} \alpha_{T}$. In particular, E_{T} has additive reduction at a prime p if and only if p divides both $u_{T}^{-4} \alpha_{T}$ and $u_{T}^{-12} \gamma_{T}$. In what follows we will proceed by cases and reduce $u_{T}^{-4} \alpha_{T}$ and $u_{T}^{-12} \gamma_{T}$ modulo p for $p \in S$ where S is as given in (5.17).

Suppose $T=C_{5}$. Then $u_{T}=1$ and we verify that

$$
\alpha_{T} \equiv(a+3 b)^{4} \bmod 5 \quad \text { and } \quad \gamma_{T} \equiv 4 a^{5} b^{5}(a+3 b)^{2} \bmod 5
$$

Therefore E_{T} has additive reduction at 5 if and only if 5 divides $a+3 b$.
Suppose $T=C_{6}$. By Theorem 5.14, u_{T} is either 1 or 2 . Note that $v_{3}\left(\alpha_{T}\right)=$ $v_{3}\left(u_{T}^{-4} \alpha_{T}\right)$ and $v_{3}\left(\gamma_{T}\right)=v_{3}\left(u_{T}^{-12} \gamma_{T}\right)$. (Therefore E_{T} has additive reduction at 3 if and
only if 3 difides a since $\alpha_{T} \equiv a^{4} \bmod 3 \quad$ and $\quad \gamma_{T} \equiv a^{3} b^{6}(a+b)\left(a^{2}-a b+b^{2}\right)(\bmod 3$.
It remains to verify that additive reduction occurs at 2 if and only if $v_{2}(a+b)=$ 1,2 .

Case I. Suppose $u_{T}=1$. Then $v_{2}(a+b)<3$ and we have that

$$
\alpha_{T} \equiv(a+b)^{4} \bmod 2 \quad \text { and } \quad \gamma_{T} \equiv a^{2} b^{6}(a+b)^{6} \bmod 2
$$

Since a and b are relatively prime, we conclude that E_{T} with $u_{T}=1$ has additive reduction at 2 if and only if $a+b$ is even. Similarly, E_{T} with $u_{T}=1$ has additive reduction at 3 if and only if 3 divides a.

Case II. Suppose $u_{T}=2$ so that $v_{2}(a+b) \geq 3$. Write $a+b=8 k$ for some integer k. Then $b=8 k-a$ and we have the reduction:

$$
u_{T}^{-4} \alpha_{T} \equiv a^{4} \bmod 2 \quad \text { and } \quad u_{T}^{-12} \gamma_{T} \equiv a^{8} k^{3}(a+k) \bmod 2
$$

Since $a+b=8 k, a$ is odd and therefore E_{T} with $u_{T}=2$ is semistable at 2 .
Therefore E_{T} has additive reduction at 2 if and only if $v_{2}(a+b)=1,2$.
Suppose $T=C_{7}$. Then $u_{T}=1$ and we verify that

$$
\alpha_{T} \equiv(a+4 b)(a+2 b)^{7} \bmod 7 \quad \text { and } \quad \gamma_{T} \equiv 6 a^{7} b^{7}(a+4 b)^{3}(a-b)^{7} \bmod 7
$$

It is clear that E_{T} has additive reduction at 7 if 7 divides $a+4 b$. Suppose instead that $a+2 b$ is divisible by 7 and $a+4 b$ is not divisible by 7 . Since a and b are relatively prime, it follows that neither a nor b is divisible by 7 . Next, $a-b \equiv-3 b \bmod 7$ and so it is not divisible by 7 . Therefore E_{T} has additive reduction at 7 if and only if 7 divides $a+4 b$.

Suppose $T=C_{8}$. Then u_{T} is either 1 or 2 .
Case I. Suppose $u_{T}=1$ so that $v_{2}(a) \neq 1$. Then

$$
\alpha_{T} \equiv a^{8} \bmod 2 \quad \text { and } \quad \gamma_{T} \equiv a^{8} b^{8}(a+b)^{8} \bmod 2
$$

and so E_{T} has additive reduction at 2 if $v_{2}(a)>1$.
Case II. Suppose $u_{T}=2$ so that $v_{2}(a)=1$. Then $u_{T}^{-4} \alpha_{T} \equiv b^{8} \bmod 2$ and since a is even, b is odd. In particular, E_{T} is semistable at 2 .

We conclude that E_{T} has additive reduction at 2 if and only if $v_{2}(a)>1$.
Suppose $T=C_{9}$. Then $u_{T}=1$ and we verify that

$$
\alpha_{T}=(a+b)^{12} \bmod 3 \quad \text { and } \quad \gamma=2 a^{9} b^{9}\left(q^{2}-b^{2}\right)^{9} \bmod 3
$$

Therefore E_{T} has additive reduction at 3 if and only if 3 divides $a+b$.
Suppose $T=C_{10}$. Then u_{T} is either 1 or 2 . Since $v_{5}\left(\alpha_{T}\right)=v_{5}\left(u_{T}^{-4} \alpha_{T}\right)$ (and $v_{5}\left(\gamma_{T}\right)=v_{5}\left(u_{T}^{-12} \gamma_{T}\right)$, (it suffices to consider α_{T} and γ_{T} modulo 5 . To this end, $\alpha_{T} \equiv(a+b)^{12} \bmod 5 \quad$ and $\quad \gamma_{T} \equiv a^{5} b^{10}(a+b)^{6}\left(a^{15}+a^{10} b^{5}+3 b^{15}\right) \bmod 5$.

Therefore E_{T} has additive reduction at 5 if and only if 5 divides $a+b$.
Suppose $T=C_{12}$. Then u_{T} is either 1 or 2 . By Corollary $5.22, u_{T}^{-4} \alpha_{T}$ is always odd and therefore E_{T} is semistable at 2. Since $v_{3}\left(\alpha_{T}\right)=v_{3}\left(u_{T}^{-4} \alpha_{T}\right)$ and $v_{3}\left(\gamma_{T}\right)=$ $v_{3}\left(u_{T}^{-12} \gamma_{T}\right)$, (we verify that $\alpha_{T} \equiv a^{16} \bmod 3$. Hence, α_{T} is divisible by 3 if and only if a is divisible by 3 . In particular, if a is divisible by 3 , then 3 divides γ_{T}. Thus E_{T} has additive reduction at 3 if and only if 3 divides a.

Suppose $T=C_{2} \times C_{4}$. Then u_{T} is either 1,2 , or 4 .
Case I. Suppose $u_{T}=1$ so that $v_{2}(a) \leq 1$. Then α_{T} is even if and only if $v_{2}(a)=1$ since $\alpha_{T} \equiv a^{4} \bmod 2$. But if a is even, then γ_{T} is even and so we attain that E_{T} with $u_{T}=1$ has additive reduction at 2 if and only if $v_{2}(a)=1$.

Case II. Suppose $u_{T}=2$ so that $v_{2}(a) \geq 2$ with $v_{2}(a+4 b)<4$. Write $a=4 k$ for some integer k. Then $u_{T}^{-4} \alpha_{T}$ and $u_{T}^{-12} \gamma_{T}$ are divisible by 2 and so we have that E_{T} with $u_{T}=2$ always has additive reduction at 2 .

Case III. Suppose $u_{T}=4$ so that $v_{2}(a)=2$ with $v_{2}(a+4 b) \geq 4$. Write $a+4 b=16 k$ for some integer k. Thus $a=16 k-4 b$ and we have $u_{T}^{-4} \alpha_{T} \equiv b^{4} \bmod 2$. Since b is odd, it follows that E_{T} with $u_{T}=4$ is semistable at 2 .

We conclude that E_{T} has additive reduction at 2 if and only if a is even and $v_{2}(a+4 b)<4$.

Suppose $T=C_{2} \times C_{6}$. Then u_{T} is either 1,4 , or 16 . By Corollary $5.22, u_{T}^{-4} \alpha_{T}$ is always odd, and so E_{T} is semistable at 2. Since $v_{3}\left(\alpha_{T}\right)=v_{3}\left(u_{T}^{-4} \alpha_{T}\right)$ and $v_{3}\left(\gamma_{T}\right)=$ $v_{3}\left(u_{T}^{-12} \gamma_{T}\right)$, (we verify that $\alpha_{T} \equiv b^{8} \bmod 3$. Hence α_{T} is divisible by 3 int and only if 3 divides b. But if this is the case, 3 also divides γ_{T}. Thus E_{T} has additive reduction at 3 if and only if 3 divides b.

Suppose $T=C_{2} \times C_{8}$. Then u_{T} is either 1,16 , or 64 . By Corollary $5.22, u_{T}^{-4} \alpha_{T}$ is always odd, and so E_{T} is semistable at all primes.

It remains to show the Theorem for $T=C_{2}, C_{3}, C_{4}, C_{2} \times C_{2}$.
Suppose $T=C_{2}$. Let $\Delta=u_{T}^{-12} \gamma_{T}$ be the minimal discriminant of E_{T} where u_{T} is one of the possibilities allowed by Theorem 5.14. Then $c_{4}=u_{T}^{-4} \alpha_{T}$ is the invariant associated with a global minimal model of E_{T}. In particular, E has additive reduction
at a prime p if and only if p divides $\operatorname{gcd}\left(\Delta, c_{4}\right)$. Since $\operatorname{gcd}\left(\Delta, c_{4}\right)$ divides $\operatorname{gcd}\left(\alpha_{T}, \gamma_{T}\right)$, it follows that $\operatorname{gcd}\left(\Delta, c_{4}\right)$ divides $2^{10} \operatorname{gcd}\left(a^{6}, b^{6} d^{3}\right)$ by Lemma 5.10. In particular, E_{T} has additive reduction at an odd prime p if and only if p divides a and $b d$. It remains to check when additive reduction occurs at $p=2$.

Case I. Suppose $u_{T}=1$. Then E_{T} always has additive reduction at 2 .
Case II. Suppose $u_{T}=2$. Then $v_{2}\left(b^{2} d-a^{2}\right) \geq 2$ with $v_{2}(a)=v_{2}(b)=1$ and $d \equiv 1 \bmod 4$ or $v_{2}(b) \geq 3$ and $a \equiv-1 \bmod 4$.

Subcase I. First suppose $v_{2}\left(b^{2} d-a^{2}\right) \geq 4$ with $v_{2}(a)=v_{2}(b)=1$ and $d \equiv$ $1 \bmod 4$. Write $a=2 \hat{a}, b=2 \hat{a}$, and $b^{2} d-a^{2}=16 k$ for some odd integers \hat{a}, \hat{b}, and an integer k. In particular, $a^{2}=b^{2} d-16 k$ and so

$$
u_{T}^{-4} \alpha_{T}=4 b^{2} d-16 k \quad \text { and } \quad u_{T}^{-12} \gamma_{T}=\frac{1}{64} b^{2} d(16 k)^{2}=4 b^{2} d k^{2}
$$

In particular, E_{T} always has additive reduction at 2.
Subcase II. Suppose $v_{2}(b) \geq 3$ and $a \equiv-1 \bmod 4$ and write $b=8 \hat{b}$. Then

$$
u_{T}^{-4} \alpha_{T}=192 \hat{b}^{2} d+a^{2} \quad \text { and } \quad u_{T}^{-12} \gamma_{T}=\hat{b}^{2} d\left(64 \hat{b}^{2} d-a^{2}\right)^{2}
$$

Since $a \equiv-1 \bmod 4, u_{T}^{-4} \alpha_{T}$ is odd and hence E_{T} is semistable at 2 .
Case III. Suppose $u_{T}=4$ so that $v_{2}\left(b^{2} d-a^{2}\right) \geq 8$ with $v_{2}(a)=v_{2}(b)=1$ and $2^{-1} a \equiv 1 \bmod 4$. Write $b=2 \hat{b}$ for some odd integer \hat{b}. Then $4 \hat{b}^{2} d-a^{2}=2^{8} k$ for some integer k. Then $a^{2}=4 \hat{b}^{2} d-2^{8} k$ and
$u_{T}^{-4} \alpha_{T}=\frac{1}{16}\left(16 \hat{b}^{2} d-2^{8} k\right)=\hat{b}^{2} d-16 k \quad$ and $\quad u_{T}^{-12} \gamma_{T}=\frac{1}{2^{18}} 4 \hat{b}^{2} d\left(2^{8} k\right)^{2}=\hat{b}^{2} d k^{2}$.
Since d is odd under these assumptions, we conclude that E_{T} is semistable at 2 .
Suppose $T=C_{3}$. Write $a=c^{3} d^{2} e$ with d and e relatively prime positive squarefree integers. By Theorem 5.14, the minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ with $u_{T}=c^{2} d$. In particular,

$$
u_{T}^{-4} \alpha_{T}=c d^{2} e^{3}(a-24 b) \quad \text { and } \quad u_{T}^{-12} \gamma_{T}=d^{4} e^{8} b^{3}(a-27 b)
$$

In particular, E_{T} has additive reduction at all primes dividing de. By Lemma 5.10, $\operatorname{gcd}\left(\alpha_{T}, \gamma_{T}\right)$ divides $2^{15} 3^{6} a^{3}$. Now suppose a is a cube so that $d e=1$. Then $a=c^{3}$ and
we observe that $u_{T}^{-12} \gamma_{T} \equiv-27 b^{4} \bmod c$. Since b is relatively prime to c, it follows that the only prime dividing a at which E_{T} has additive reduction is 3 . We now consider the cases of additive reduction at 2 or 3 .

Observe that

$$
u_{T}^{-4} \alpha_{T} \equiv a c d^{2} e^{3} \bmod 2 \quad \text { and } \quad u_{T}^{-12} \gamma_{T} \equiv d^{4} e^{8} b^{3}(a+b) \bmod 2
$$

Therefore $u_{T}^{-4} \alpha_{T}$ is even if and only if 2 divides a. Under this assumption, b is odd and therefore $u_{T}^{-12} \gamma_{T}$ is even if and only if $d e$ is even. But we have already shown that E_{T} has additive reduction at all primes dividing de.

Next, we compute

$$
u_{T}^{-4} \alpha_{T} \equiv a c d^{2} e^{3} \bmod 3 \quad \text { and } \quad u_{T}^{-12} \gamma_{T} \equiv a d^{4} e^{8} b^{3} \bmod 3
$$

Therefore $u_{T}^{-4} \alpha_{T}$ is divisible by 3 if and only if 3 divides a. But if this is so, we conclude that $u_{T}^{-12} \gamma_{T}$ is divisible by 3 and therefore E_{T} has additive reduction at 3 if and only if 3 divides a.

Suppose $T=C_{4}$. Write $a=c^{2} d$ for d a positive squarefree integer. Then u_{T} is either c or $2 c$. Then

$$
c^{-4} \alpha_{T}=d^{2}\left(a^{2}+16 a b+16 b^{2}\right)\left(\text { and } c^{-12} \gamma_{T}=b^{4} c^{2} d^{7}(a+16 b)\right.
$$

By Lemma 5.10, $\operatorname{gcd}\left(\alpha_{T}, \gamma_{T}\right)$ divides $2^{12} a^{2}$. Therefore, E_{T} has additive reduction at an odd prime p if and only if p divides d. Next, observe that

$$
c^{-4} \alpha_{T} \equiv a^{2} d^{2} \bmod 2 \quad \text { and } \quad c^{-12} \gamma_{T} \equiv a b^{4} c^{2} d^{7} \bmod 2 .
$$

Then $c^{-4} \alpha_{T}$ is even if and only if a is even. In particular, E_{T} with $u_{T}=c$ has additive reduction at 2 if and only if a is even.

Now suppose $u_{T}=2 c$ so that $v_{2}(a) \geq 8$ is even with $b d \equiv 3 \bmod 4$. Then $c=2^{4} k$ for some integer k and so

$$
(2 c)^{-4} \alpha_{T}=b^{2} d^{2}+256 b d^{3} k^{2}+4096 d^{4} k^{4} \equiv 1 \bmod 4
$$

since $b d$ is odd. Hence E_{T} is semistable at 2 if $u_{T}=2 c$.

We conclude that E_{T} has additive reduction at all primes dividing d and moreover, E_{T} has additive reduction at 2 if and only if a is even and $u_{T}=c$.

Lastly, suppose $T=C_{2} \times C_{2}$. By Theorem 5.14, the minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ where u_{T} is either 1 or 2 . By Lemma $5.10, \operatorname{gcd}\left(\alpha_{T}, \gamma_{T}\right)$ divides $2^{4} d^{6}$. Since d divides both α_{T} and γ_{T}, we conclude that E_{T} has additive reduction at an odd prime p if and only if p divides d. Moreover, if $u_{T}=1$, both α_{T} and γ_{T} are even and hence E_{T} has additive reduction at 2 .

So suppose $u_{T}=2$ so that $v_{2}(a) \geq 4$ and $b d \equiv 1 \bmod 4$. Then

$$
u_{T}^{-4} \alpha_{T}=d^{2}\left(a^{2}-a b+b^{2}\right) \neq 1 \bmod 2
$$

Therefore E_{T} is semistable at 2 .
Thus, E_{T} has additive reduction at 2 if and only if $a d$ is even with $u_{T}=1$ and E_{T} has additive reduction at an odd prime p if and only if p divides d.

Remark If the j-invariant of E_{T} is 0 or 1728 , then Theorem 5.14 classified the minimal discriminants of these elliptic curves. From the identity $1728 \Delta_{E_{T}}^{\min }=c_{4}^{3}-c_{6}^{2}$ we conclude that these elliptic curves have additive reduction at all primes dividing the minimal discriminant $\Delta_{E_{T}}^{\min }$.

Corollary 5.26 Let E be a rational elliptic curve. If E has additive reduction at three or more primes, then $E(\mathbb{Q})_{\text {tors }} \cong C_{N}$ for $N=1, \ldots, 4$ or $E(\mathbb{Q})_{\text {tors }} \cong C_{2} \times C_{2}$. If E has additive reduction at two primes, then $E(\mathbb{Q})_{\text {tors }}$ can be embedded into C_{4}, C_{6}, or $C_{2} \times C_{2}$.

Proof The elliptic curve $y^{2}=x^{3}+30$ has additive reduction at the primes 2,3 , and 5 and has trivial torsion subgroup. The Corollary now holds for the remaining T by Theorem 5.25.

Remark The previous corollary does not hold in arbitrary number fields. Indeed, suppose E is an elliptic curve over a number field K with a K-torsion point of order n. If E has additive reduction at two places with distinct residue characteristics,
then n divides 12 by Theorem 5.9. In fact, Flexor and Oesterlé proved a stronger statement, namely that under these assumption the order of $E(K)_{\text {tors }}$ divides 12 . They also showed that this divisibility condition is sharp since the elliptic curve $y^{2}-2 y=x^{3}$ over $K=\mathbb{Q}(\sqrt{-3})$ has additive reduction at two places and their residue characteristic is 2 and 3 . Mreover, $E(K)_{\text {tors }} \cong C_{2} \times C_{6}$.

Example 5.27 Consider the elliptic curve E given by the Weierstrass equation

$$
E: y^{2}=x^{3}-19057987954261048752 x+31955359661403338940204703104
$$

The point $P=(2365794828,10458914400000)$ is a torsion point of order 12 on E. Placing E in Tate normal form with respect to P yields the Weierstrass equation

$$
E_{T N F}: y^{2}+\frac{6021}{125} x y-\frac{430408}{1875} y=x^{3}-\frac{430408}{1875} x^{2}
$$

In particular, $E_{T N F}$ is equal to $\mathcal{X}_{t}\left(C_{12}\right)$ for some t. Therefore, we solve for t and attain

$$
\frac{12 t^{6}-30 t^{5}+34 t^{4}-21 t^{3}+7 t^{2}-t}{(t-1)^{4}}=\frac{430408}{1875} \text { and } 1-\frac{-6 t^{4}+9 t^{3}-5 t^{2}+t}{(t-1)^{3}}=\frac{6021}{125}
$$

Observe that the common rational solution to both equations is $t=\frac{11}{6}$ and so E is isomorphic over \mathbb{Q} to $E_{T}(6,11)$ for $T=C_{12}$. Since $v_{3}(6)>0$, we have by Theorem 5.25 that E has additive reduction at 3. Moreover, its minimal discriminant is

$$
\Delta_{12}^{\min }=2^{-12} \gamma_{T}(6,11)=2^{18} \cdot 3^{7} \cdot 5^{12} \cdot 11^{12} \cdot 61 \cdot 67^{4} \cdot 73^{3} .
$$

since 6 is even. In particular, a global minimal model of E has associated invariants

$$
\begin{aligned}
& c_{4}=2^{-4} \alpha_{T}(6,11)=3^{2} \cdot 23 \cdot 107 \cdot 227 \cdot 27361 \cdot 320687 \\
& c_{6}=2^{-6} \beta_{T}(6,11)=-3^{3} \cdot 503 \cdot 769 \cdot 47221 \cdot 18748939480561
\end{aligned}
$$

6. LOWER BOUNDS ON THE MODIFIED SZPIRO RATIO

Let T be one of the fourteen non-trivial torsion subgroups allowed by Theorem 2.1 and suppose E is a rational elliptic curve with $T \hookrightarrow E(\mathbb{Q})_{\text {tors }}$. In the previous chapter, we saw that for $T \neq C_{2}, C_{2} \times C_{2}, C_{3}$, there exist relatively prime integers a and b such that E is \mathbb{Q}-isomorphic to $E_{T}=E_{T}(a, b)$ where E_{T} is as defined in Table D.1. The same holds for $T=C_{3}$, so long as the j-invariant of E is non-zero. If instead, E had j-invariant equal to 0 , then E is parametrized by the one-parameter family of elliptic curves $E_{T}=E_{T}(a)$ where $T=C_{3}^{0}$.

For $T=C_{2}, C_{2} \times C_{2}$ we have similar parameterizations, namely E is \mathbb{Q}-isomorphic to $E_{T}=E_{T}(a, b, d)$ for some integers a, b, d. We note that in order for E to be \mathbb{Q} isomorphic to E_{T} for $T=C_{2}, E$ must not have full 2-torsion as demonstrated in Lemma 5.2.

In particular, a study of the elliptic curves E_{T} is equivalent to a study of all rational elliptic curves with non-trivial torsion. Moreover, the minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ where γ_{T} is as defined in Table D. 4 and u_{T} is an integer. By Theorem 5.14, we have necessary and sufficient conditions on a and b to determine u_{T}. In this chapter, we use Theorem 5.14 to explicitly construct the naive height of E_{T}. Recall that for a rational elliptic curve E, the naive height $h_{\text {naive }}(E)$ of E is defined as

$$
h_{\text {naive }}(E)=\frac{1}{12} \log \max \left\{c_{4}^{3}, c_{6}^{2}\right.
$$

where c_{4} and c_{6} are the invariants associated to a global minimal model of E. By Theorem 5.14, we have that

$$
\begin{equation*}
h_{\text {naive }}\left(E_{T}\right)=\frac{1}{12} \log \left(u_{T}^{-12} \max \left\{\alpha_{T}^{3}, \beta_{T}^{2}\right\}\right)(\tag{6.1}
\end{equation*}
$$

where α_{T} and β_{T} are as defined in Tables D. 2 and D.3, respectively. Our first result is that for $T \neq C_{2}, C_{2} \times C_{2}$, we can define an explicit function which coincides with the naive height of E_{T}.

In section 6.3 we revisit the modified Szpiro conjecture and state the main theorem of the chapter. Recall that the modified Szpiro ratio $\sigma_{m}(E)$ of a rational elliptic curve E is defined as

$$
\sigma_{m}(E)=\frac{\log \max \left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\}}{\log N_{E}}
$$

where N_{E} is the conductor of E and c_{4} and c_{6} are the invariants associated to a global minimal model of E. Our main result states that if E is a rational elliptic curve, then there is a lower bound on the modified Szpiro ratio which depends only on the torsion subgroup of E.

In section 6.4, via Tate's Algorithm, we prove stricter upper bounds on the exponent of the conductor of a rational elliptic curve at 2 and 3 . These results will allow us to bound the conductor of rational elliptic curves with non-trivial torsion in Section 6.5. We finish in Section 6.6 with the proof of the main theorem.

6.1 Results on Polynomials

Let T be one of the fourteen non-trivial possible torsion subgroups allowed by Theorem 2.1. Let $\alpha_{T}, \beta_{T}, \gamma_{T}$, and δ_{T} be as defined in Tables D.2, D.3, D.4, and 6.2, respectively.

For $T \neq C_{2}, C_{2} \times C_{2}$ let

$$
m_{T}=\left\{\begin{array}{ll}
12 & \text { if } T=C_{3}, C_{4}, C_{5}, C_{6}, C_{2} \times C_{4} \tag{6.2}\\
84 & \text { if } T=C_{7}, C_{8}, C_{2} \times C_{6} \\
36 & \text { if } T=C_{9}, C_{10}
\end{array}\right\} \begin{aligned}
& 48 \text { if } T=C_{12}, C_{2} \times C_{8} .
\end{aligned}
$$

It is then verified that we hane the following identities:

$$
\begin{equation*}
\alpha_{T}(a, b)^{3}=a^{m_{T}} \alpha_{T}\left(1, \frac{b}{a}\right)^{3} \quad \beta_{T}(a, b)^{2}=a_{T}^{m_{T}} \beta_{T}\left(1, \frac{b}{a}\right)^{2} \tag{6.3}
\end{equation*}
$$

Assume further that $T \neq C_{2} \times C_{2 M}$ where $M=2,3,4$ and consider $\alpha_{T}(1, x)$ and $\beta_{T}(1, x)$ as functions from $\mathbb{R} \rightarrow \mathbb{R}$. To this end, set

$$
S_{T}=\left\{\theta|\in \mathbb{R}| \alpha_{T}(1, \theta)^{3}-\beta_{T}(1, \theta)^{2}=0\right.
$$

Now write $S_{T}=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right\}$ where $\theta_{j}<\theta_{k}$ if $j<k$.
Table 6.1, with a few exception, lists the approximate value up to four decimal places of the θ_{j} 's. For the exceptions, Table 6.1 lists the exact value of θ_{j}. The following three results are easily verified via compute algebra system:

Lemma 6.1 For $T=C_{N}$ with $N \geq 3$, let θ_{j} be as given in Table 6.1. Then the function $\left|\alpha_{T}(1, x)\right|^{3}-\beta_{T}(1, x)^{2}$ is nonnegative on the interval I_{T} where

$$
\begin{aligned}
& I_{T}= \begin{cases}\left(\left[\theta_{1}, \theta_{2}\right] \cup\left[\theta_{3}, \theta_{4}\right]\right. & \text { if } T=C_{3} \\
{\left[\theta_{1}, \theta_{2}\right] \cup\left[\theta_{3}, \infty\right)} & \text { if } T=C_{4} \\
{\left[\theta_{1}, \theta_{2}\right] \cup\left[\theta_{3}, \theta_{4}\right] \cup\left[\theta_{5}, \theta_{6}\right] \cup\left[\theta_{7}, \infty\right)} & \text { if } T=C_{5} \\
\left(-\infty, \theta_{1}\right] \cup\left[\theta_{2}, \theta_{3}\right] \cup\left[\theta_{4}, \infty\right) & \text { if } T=C_{6} \\
{\left[\theta_{1}, \theta_{2}\right] \cup\left[\theta_{3}, \theta_{4}\right] \cup\left[\theta_{5}, \theta_{6}\right] \cup\left[\theta_{7}, \theta_{8}\right] \cup\left[\theta_{9}, \theta_{10}\right] \cup\left[\theta_{11}, \infty\right)} & \text { if } T=C_{7}, C_{9} \\
\left(-\infty, \theta_{2}\right] \cup\left[\theta_{3}, \theta_{4}\right] \cup\left[\theta_{6}, \theta_{7}\right] \cup\left[\theta_{8}, \infty\right) & \text { if } T=C_{8}, C_{12} \\
{\left[\theta_{1}, \theta_{2}\right] \cup\left[\theta_{3}, \theta_{6}\right] \cup\left[\theta_{7}, \theta_{8}\right] \cup\left[\theta_{9}, \infty\right)} & \text { if } T=C_{10} \\
C_{2} \times C_{2}, \text { let } m_{T}=6 \text { and observe that } & \\
\text { For } T\end{cases} \\
& \hline
\end{aligned}
$$

$$
\begin{equation*}
\alpha_{T}(a, b, d)^{3}=(a d)^{m_{T}} \alpha_{T}\left(1, \frac{b}{a}, 1\right)^{3} \quad \beta_{T}(a, b, d)^{2}=(a d)^{m_{T}} \beta_{T}\left(1, \frac{b}{a}, 1\right)^{2} \tag{6.4}
\end{equation*}
$$

Lemma 6.2 For $T=C_{2} \times C_{2}$, the function $\left|\alpha_{T}(1, x, 1)\right|^{3}-\beta_{T}(1, x, 1)^{2}$ is nonnegative on $I_{T}=\mathbb{R}$.
Table 6.1.: Roots of $\alpha_{T}(1, x)^{3}-\beta_{T}(1, x)^{2}$

T	θ_{1}	θ_{2}	θ_{3}	θ_{4}	θ_{5}	θ_{6}	θ_{7}	θ_{8}	θ_{9}	θ_{10}	θ_{11}
C_{7}	-0.2802	-0.1846	0.1588	0	0.7811	0.8419	0.8629	1	4.5685	6.4180	7.2959
C_{9}	-0.3480	-0.2539	-0.2267	0	0.7418	0.7975	0.8152	1	3.8735	4.9381	5.4115
C_{10}	-0.4873	-0.3479	$\frac{1-\sqrt{5}}{4}$	0	$\frac{3-\sqrt{5}}{2}$	$\frac{1}{2}$	0.7532	0.7948	$\frac{1+\sqrt{5}}{4}$	1	$\frac{3+\sqrt{5}}{2}$
C_{8}	0	$\frac{2-\sqrt{2}}{4}$	0.1611	0.2062	$\frac{1}{2}$	0.7938	0.8389	$\frac{2+\sqrt{2}}{4}$	1		
C_{12}	0	$\frac{3-\sqrt{3}}{6}$	0.2231	0.2568	$\frac{1}{2}$	0.7432	0.7769	$\frac{3+\sqrt{3}}{6}$	1		
C_{5}	-0.2119	-0.1130	$\frac{11-5 \sqrt{5}}{2}$	0	4.7183	8.8512	$\frac{11+5 \sqrt{5}}{2}$				
C_{6}	-1	-0.1994	-0.1303	$-\frac{1}{9}$	0						
C_{3}	0	$\frac{1}{27}$	0.0654	0.4913							
C_{4}	-0.2246	-0.08660	$-\frac{1}{16}$	0							

For $T=C_{2}$, set

$$
\hat{\alpha}_{T}(a, B)=16\left(a^{2}+3 B\right)\left(\begin{array}{c}
\hat{\beta}_{T}(a, B)=-64 a\left(-a^{2}+9 B\right)
\end{array}\right.
$$

In particular, $\hat{\alpha}_{T}(a, B)=\alpha_{T}(a, b, d)$ and $\hat{\beta}(a, B)=\beta_{T}(a, b, d)$ with $B=b^{2} d$. Let $m_{T}=6$ and observe that

$$
\begin{equation*}
a^{m_{T}} \hat{\alpha}_{T}\left(1, \frac{B}{a^{2}}\right)^{3}=\hat{\alpha}_{T}(a, B)^{3} \quad a^{m_{T}} \hat{\beta}_{T}\left(1, \frac{B}{a^{2}}\right)^{2}=\hat{\beta}_{T}(a, B)^{2} . \tag{6.5}
\end{equation*}
$$

Then

$$
\begin{aligned}
S_{T} & =\left\{\theta \in \mathbb{R} \mid \hat{\alpha}_{T}(1, \theta)^{3}-\hat{\beta}_{T}(1, \theta)^{2}=0\right\}(\\
& =\left\{\theta_{1}, \theta_{2}, \theta_{3}\right\}
\end{aligned}
$$

where $\theta_{1} \approx-4.0860, \theta_{2}=0$, and $\theta_{3}=1$.
Lemma 6.3 For $T=C_{2}$, the function $\left|\hat{\alpha}_{T}(1, x)\right|^{3}-\hat{\beta}_{T}(1, x)^{2}$ is nonnegative on the interval $I_{T}=\left(-\infty, \theta_{1}\right] \cup[0, \infty)$.

6.2 Explicit Naive Height

In the following Proposition, let I_{T}^{C} denote the complement of I_{T} in \mathbb{R}.

Proposition 6.4 Let c_{4} and c_{6} be the invariants associated to a global minimal model of E_{T}. Set

$$
A=\left\{\begin{array}{ll}
a^{2} & \text { if } T=C_{2} \\
a & \text { otherwise }
\end{array}, \quad B=\left\{\left(\begin{array}{ll}
b^{2} d & \text { if } T=C_{2} \\
b & \text { otherwise } .
\end{array},\right.\right.\right.
$$

and $I_{T}=\mathbb{R}$ for $T=C_{2} \times C_{2 M}$ for $M=1,2,3,4$. Then

$$
\max \left\{\chi_{4}^{3}, c_{6}^{2}= \begin{cases}\left\langle c_{4}^{3}\right| & \text { if } \frac{B}{A} \in I_{T} \tag{6.6}\\ x_{6}^{2} & \text { if } \frac{B}{A} \in I_{T}^{C}\end{cases}\right.
$$

Proof By Theorem 5.14, $c_{4}=u_{T}^{-4} \alpha_{T}$ and $\phi_{6}=u_{T}^{-6} \beta_{T}$ where u_{T} is a positive integer uniquely determined by a and b. Hence

$$
\max \left\{\chi_{4}^{3}, c_{6}^{2}=u_{T}^{-12} \max \left\{\alpha_{T}^{3}, \beta_{T}^{2}=u_{T}^{-12} a^{m_{T}} \max \left\{\left(\alpha_{T}\left(f, \frac{b}{a}\right)^{3}, \beta_{T}\left(f, \frac{b}{a}\right)^{2}\right\} .\right.\right.\right.
$$

Now suppose $T=C_{N}$ where $N \geq 3$. Then

$$
u_{T}^{-12} \max \left\{\alpha_{T}^{3}, \beta_{T}^{2}=u_{T}^{-12} a^{m_{T}} \max \left\{\alpha_{T}\left(1, \frac{b}{a}\right)^{3}, \beta_{T}\left(1, \frac{b}{a}\right)^{2}\right\}\right.
$$

by (6.3). By Lemma $6.1,\left|\alpha_{T}(1, x)\right|^{3} \geq \beta_{T}(1, x)^{2}$ if and only if $x \in I_{T}$, which gives (6.6).

For $T=C_{2}$, observe that

$$
u_{T}^{-12} \max \left\{\alpha_{T}^{3}, \beta_{T}^{2}=u_{T}^{-12} a^{m_{T}} \max \left\{\hat{\alpha}_{T}\left(1, \frac{B}{A}\right)^{3}, \hat{\beta}_{T}\left(1, \frac{B}{A}\right)^{2}\right\}\right.
$$

by (6.5). By Lemma $6.3,\left|\hat{\alpha}_{T}(1, x)\right|^{3} \geq \hat{\beta}_{T}(1, x)^{2}$ if and only if $x \in I_{T}$, which gives (6.6).

Next, Suppose $T=C_{2} \times C_{2}$. Then

$$
u_{T}^{-12} \max \left\{\alpha_{T}^{3}, \beta_{T}^{2}=u_{T}^{-12}(a d)^{m_{T}} \max \left\{\alpha_{T}\left(1, \frac{b}{a}, 1\right)^{3}, \beta_{T}\left(1, \frac{b}{a}, 1\right)^{2}\right\}\right.
$$

by (6.4). By Lemma $6.2,\left|\alpha_{T}(1, x, 1)\right|^{3} \geq \beta_{T}(1, x, 1)^{2}$ for all $x \in I_{T}=\mathbb{R}$, which gives (6.6). In particular, $\max \left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\}=\left|c_{4}^{3}\right|$.

Lastly, assume $T=C_{2} \times C_{2 M}$ for $M=2,3,4$. Since $C_{2} \times C_{2} \hookrightarrow E_{T}$, it follows that E_{T} is \mathbb{Q}-isomorphic to $E_{C_{2} \times C_{2}}(a, b, d)$ for some integers a, b, d. By the above, we conclude that $\max \left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\}=\left|c_{4}^{3}\right|$.

By Theorem 5.14, $c_{4}=u_{T}^{-4} \alpha_{T}$ and $c_{6}=u_{T}^{-6} \beta_{T}$ where u_{T} is a positive integer uniquely determined by a and b and in the case of $T=C_{2}, C_{2} \times C_{2}, u_{T}$ is uniquely determined by a, b, and d. Now let

$$
S_{T}=\left\{\left.\frac{b}{a} \in \mathbb{Q} \right\rvert\, \operatorname{gcd}(a, b)=1 \text { and } \Delta_{T}(a, b) \neq 0\right\}(
$$

For $T \neq C_{2}, C_{2} \times C_{2}$ we can construct a function $\hat{u}_{T}: S_{T} \rightarrow \mathbb{Q}$ such that $\hat{u}_{T}(a, b)=$ u_{T}^{-12}. Now define $\hat{f}_{T}: S_{T} \rightarrow \mathbb{Q}$ by

$$
\hat{f}_{T}\left(\frac{b}{a}\right)= \begin{cases}\alpha_{T}(a, b)^{3} & \text { if } \frac{b}{a} \in I_{T} \\ \beta_{T}(a, b)^{2} & \text { if } \frac{b}{a} \in I_{T}^{C}\end{cases}
$$

Corollary 6.5 For $T \neq C_{2}, C_{2} \times C_{2}$, there is an explicitly defined function $f_{T}: S_{T} \rightarrow$ \mathbb{R} such that

$$
f_{T}\left(\frac{b}{a}\right)\left(=h_{\text {naive }}\left(E_{T}(a, b)\right)\right.
$$

Proof Let $\hat{f}_{T}, \hat{u}_{T}: \mathbb{Q} \rightarrow \mathbb{Q}$ be as defined above. Define $f_{T}\left(\frac{b}{a}\right) \neq \frac{1}{12} \log \left(\psi_{T}\left(\frac{b}{a}\right) \hat{f}_{T}\left(\frac{b}{q}\right)\right)$.
Then

$$
\begin{aligned}
f_{T}\left(\frac{b}{a}\right) & =\frac{1}{12} \log \left(\hat { u } _ { T } (\frac { b } { a }) \left(\max \left\{\alpha_{T}(a, b)^{3}, \beta_{T}(a, b)^{2}\right)(\right.\right. \\
& =\frac{1}{12} \log \max \left\{\xi_{4}^{3}, c_{6}^{2}\right.
\end{aligned}
$$

by the definition of $\hat{u}_{T}\left(\frac{b}{a}\right)\left(\hat{f}_{T}\left(\frac{b}{a}\right)\right.$ (and the proof of 6.4.

6.3 Lower Bounds on the Modified Szpiro Ratio

Let

We may now state the main theorem of this chapter:
Theorem 6.6 Let T be one of the fifteen torsion subgroups allowed by Theorem 2.1 and let l_{T} be as given in (6.7). If E is a rational elliptic curve with $T \hookrightarrow E(\mathbb{Q})_{\text {tors }}$, then $\sigma_{m}(E) \geq l_{T}$.

The proof of this result will be given in section 6.6. The main step is to bound the conductor. This will be done in the next two sections. Namely, we will prove a series of lemmas in the next section which relies on Tate's Algorithm. These results will then allow us to bound the conductor in section 6.5. Once these results are proven, the proof of Theorem 6.6 is done in section 6.6.

6.4 Tate's Algorithm and the Conductor of E_{T}

In Section 2.4, we reviewed the terminology pertaining to the local data of a rational elliptic curve. In this section, we will use Tate's Algorithm to establish upper bounds on the conductor of an elliptic curve at the primes 2 and 3 under certain conditions. For the reader's benefit, we restate the quantities which are obtained from Tate's Algorithm.For each prime p of \mathbb{Z}, Tate's Algorithm [5, Chapter IV] returns the following local data:

1. The reduction type of the special fiber $\overline{\mathcal{C}}_{p}^{\min }$ over $\overline{\mathbb{F}}_{p}$. We will use Kodaira symbols to describe the reduction type.
2. m_{p} : the number of components, defined over $\overline{\mathbb{F}}_{p}$ and counted without multiplicity, on $\overline{\mathcal{C}_{p}}{ }^{\text {min }}$.
3. $v_{p}\left(\Delta_{E}^{\min }\right):$ (the valuation of the minimal discriminant of E / K with respect to p;
4. f_{p} : the exponent appearing at the prime p of the conductor of E. This will be computed via Ogg's formula: $f_{p}=v_{p}\left(\Delta_{E}^{\min }\right)\left(-m_{p}+1 ;\right.$
5. c_{p} : the local Tamagawa number at p, i.e., the order of the group of components $\overline{\mathcal{N}}_{p}\left(\mathbb{F}_{p}\right) / \overline{\mathcal{N}}_{p}^{0}\left(\mathbb{F}_{p}\right)$. Equivalently, c_{p} is the number of components of $\overline{\mathcal{C}_{p}^{\text {min }}}$ which have multiplicity 1 and are defined over \mathbb{F}_{p}.

Theorem 6.7 (Ogg's Formula, $[5,4.11 .1])$ Let E be a rational elliptic curve with minimal discriminant $\Delta_{E}^{\text {min }}$. For p a prime, let f_{p} denote the exponent of the conductor at p and let m_{p} be as defined above. Then

$$
v_{p}\left(\Delta_{E}^{\min }\right) \neq f_{p}+m_{p}-1
$$

In particular, $f_{p} \leq v_{p}\left(\Delta_{E}^{\text {min }}\right)$ for each prime.
Remark From this point onward, we assume familiarity with Tate's Algorithm and follow the Algorithm as outlined in [5, Chapter IV].

Proposition 6.8 Let $T=C_{3}$ and consider the elliptic curve E_{T}. If p does not divide $\Delta_{E_{T}}^{\min }$, then $m_{p}=1, f_{p}=0$, and $c_{p}=1$. Moreover, E_{T} has multiplicative reduction of type I_{n} where $n=v_{p}\left(\Delta_{E_{T}}^{m i n}\right)$ (f and only if p divides b or $(a-27 b)$.

Now suppose E has addikive reduction at p. If p divides d, then E has reduction type $I V$ at p and $m_{p}=c_{p}=3$ and

	$p \neq 3$	$p=3$ and $v_{3}(a)=2$	$p=3$ and $v_{3}(a) \equiv 2 \bmod 3$ with $v_{3}(a) \neq 2$
f_{p}	2	4	5
$v_{p}(\Delta)$	4	6	7

If p divides e, then E has reduction type $I V^{*}$ at p and $m_{p}=7, c_{p}=3$, and

	$p \neq 3$	$p=3$ and $v_{3}(a)=1$	$p=3$ and $v_{3}(a) \equiv 1 \bmod 3$ with $v_{3}(a) \neq 1$
f_{p}	2	3	5
$v_{p}(\Delta)$	8	9	11

Now suppose 3 divides a with $v_{3}(a) \equiv 0 \bmod 3$. Write $a=27 \hat{a}$ and set $n=v_{3}(\hat{a}-b)$. If $n=0$, then reduction at 3 is type II if and only if $v_{3}\left(2 b^{2} d^{2} e^{4}-b c d^{2} e^{3}+1\right)=1$. Otherwise, reduction type at 3 is type III. If type II, then $m_{3}=c_{4}=1$ and $f_{3}=$ $v_{3}(\Delta)=3$. If type III, then $m_{3}=c_{3}=2, v_{3}(\Delta)=3$, and $f_{3}=2$.

Lastly,

n	Type	m_{3}	f_{3}	$v_{3}(\Delta)$	c_{3}
1	$I I$	1	4	4	1
2	$I V$	3	3	5	1 or 3
$3+\tilde{n}, \tilde{n} \geq 0$	$I_{\tilde{n}}^{*}$	$\tilde{n}+5$	2	$6+\tilde{n}$	2 or 4

Proof The rational elliptic curve

$$
E_{T}^{\prime}: y^{2}+c d e x y+b d e^{2} y=x^{3}
$$

is a global minimal model for the elliptic curve E_{T} by Theorem 5.14. In particular, the minimal discriminant of E_{T} is

$$
\Delta_{E_{T}}^{\min }=b^{3} d^{4} e^{8}\left(c^{3} d^{2} e-27 b\right)(
$$

Now let p be a prime. The admissible change of variables $x \longmapsto x+p$ and $y \longmapsto y$ gives a \mathbb{Q}-isomorphism from E_{T}^{\prime} onto the elliptic curve

$$
\begin{equation*}
E_{T}^{(1)}: y^{2}+c d e x y+\left(b d e^{2}+c d e p\right) y=x^{3}+3 p x^{2}+3 p^{2}+p^{3} . \tag{6.8}
\end{equation*}
$$

Now let $b_{2}, b_{4}, b_{6}, b_{8}$ be as in (2.2). Then

$$
\begin{aligned}
& b_{2}=c^{2} d^{2} e^{2}+12 p \quad b_{6}=b^{2} d^{2} e^{4}+2 b c d^{2} e^{3} p+c^{2} d^{2} e^{2} p^{2}+4 p^{3} \\
& b_{8}=p\left(3 b^{2} d^{2} e^{4}+3 b c d^{2} e^{3} p+c^{2} d^{2} e^{2} p^{2}+3 p^{3}\right)
\end{aligned}
$$

In what follows, $a_{1}, a_{2}, a_{3}, a_{4}, a_{6}$ will refer to the coefficients of the Weierstrass model for $E_{T}^{(1)}$.

Case I. Suppose $p \nmid \Delta_{E_{T}}^{\min }$. Then E_{T} has good reduction at p and the reduction type is I_{0}. Consequently, $m_{p}=1, f_{p}=0$, and $c_{p}=1$.

Case II. Suppose that $p \mid \Delta_{E_{T}}^{\min }$ and that E_{T} has multiplicative reduction at p. By Theorem 5.25, p divides b or $c^{3} d^{2} e-27 b$. Otherwise, E_{T} would have additive reduction at p. The Weierstrass model for $E_{T}^{(1)}$ satisfies the condition that p divides a_{3}, a_{4}, a_{6} and so we may proceed with Step 2 of Tate's Algorithm. Since p does not divide $c d e$, it follows that p does not divide b_{2}. By Tate's Algorithm, the reduction type at p is Type I_{n} where $n=v_{p}\left(\Delta_{E_{T}}^{\min }\right)$.

Case III. Suppose p divides d. By Theorem $5.25, E_{T}$ has additive reduction at p. Then $p\left|b_{2}, p^{2}\right| a_{6}, p^{3} \mid b_{8}$. But $p^{3} \nmid b_{6}$ since de is relatively prime to b. Now observe that for an indeterminate T,

$$
\left.T^{2}+\frac{b d e^{2}+c d e p}{p} T-\frac{p^{3}}{p^{2}}=T^{2}+(\not\} \hat{d} e^{2}+c \hat{d} e p\right)\left(r-p \equiv T\left(T+b \hat{d} e^{2}\right) \bmod p\right.
$$

with $d=\hat{d} p$. In particular, \mathbb{F}_{p} is the splitting field of the polynomial $T\left(T+b \hat{d} e^{2}\right)($ We conclude by Tate's Algorithm that E_{T} has reduction type $I V$ at p and thus $m_{p}=c_{p}=3$ and $f_{p}=v_{p}\left(\Delta_{E_{T}}^{\min }\right) \not-2$.

Subcase I. Suppose $p \neq 3$. Then $v_{p}\left(\Delta_{E_{T}}^{\min }\right) \neq 4$ and thus $f_{p}=2$.
Subcase II. Suppose $p=3$ and $v_{3}(a)=2$. Then 3 divides d and we have that $v_{3}\left(\Delta_{E_{T}}^{\min }\right)\left(=6\right.$. Thus $f_{3}=4$.

Subcase III. Suppose $p=3$ and $v_{3}(a) \equiv 2 \bmod 3$ with 3 dividing c. In particular, 3 divides d. Then $v_{3}\left(\Delta_{E_{T}}^{\min }\right) \neq 7$ and so $f_{3}=5$.

Case IV. Suppose p divides e. By Theorem $5.25, E_{T}$ has additive reduction at p. Now observe that p divides $b_{2}, a_{1}, a_{2}, p^{2}$ divides a_{6}, a_{3}, a_{4}, and p^{3} divides b_{6}, b_{8}, a_{6}. Consequently, Tate's Algorithm runs through Step 6. Now consider the polynomial

$$
\begin{aligned}
P(T) & =T^{3}+\frac{3 p}{p} T^{2}+\frac{3 p^{2}}{p^{2}} T+\frac{p^{3}}{p^{3}} \\
& \equiv(T+1)^{3} \bmod p
\end{aligned}
$$

Since this polynomial has a triple root over \mathbb{F}_{p}, Tate's Algorithm skips to Step 8. To proceed, we consider the admissible change of variables $x \longmapsto x+p^{2}$ and $y \longmapsto y$ which gives a \mathbb{Q}-isomorphism from E_{T}^{\prime} onto

$$
E_{T}^{(2)}: y^{2}+c d e x y+\left(b d e^{2}+c d e p^{2}\right) y=x^{3}+3 p^{2} x^{2}+3 p^{4} x+p^{6} .
$$

Let a_{j}^{\prime} correspond to the coefficients of the Weierstrass model for $E_{T}^{(2)}$. Then $p^{2}\left|a_{2}^{\prime}, p^{3}\right| a_{4}^{\prime}$, and $p^{4} \mid a_{6}^{\prime}$. Now consider the polynomial

$$
T^{2}+\frac{b d e^{2}+c d e p^{2}}{p^{2}} T-\frac{p^{6}}{p^{4}}=T^{2}+\left(b d \hat{e}^{2}+c d e \hat{e} p^{2}\right) \not\left(-p^{2}\right.
$$

Viewed as a polynomial in \mathbb{F}_{p}, we observe that \mathbb{F}_{p} is its splittind field since

By Tate's Algorithm we conclude that E_{T} has reduction type $I V^{*}$ at p and moreover $m_{p}=7, f_{p}=v_{p}\left(\Delta_{E_{T}}^{\min }\right)-6$, and $c_{p}=3$.

Subcase I. Suppose $p \neq 3$. Then $v_{p}\left(\Delta_{E_{T}}^{\min }\right) \neq 8$ and so $f_{p}=2$.
Subcase II. Suppose $p=3$ and $v_{3}(a)=1$. Then 3 divides e and we have that $v_{3}\left(\Delta_{E_{T}}^{\min }\right) \neq 9$. Thus $f_{3}=3$.

Sxbcase III. Suppose $p=3$ and $v_{3}(a) \equiv 1 \bmod 3$ with 3 dividing c. In particular, 3 divides e. Then $v_{3}\left(\Delta_{E_{T}}^{\min }\right) \neq 11$ and so $f_{3}=5$.

Case V. Suppose $p=3$ and $v_{3}(a) \equiv 0 \bmod 3$. Then $c=3 \hat{c}$ for some integer \hat{c} and 3 does not divide $d e$. Now consider the admissible change of variables $x \longmapsto x-1$ and $y \longmapsto y+b d e^{2}$ which gives a \mathbb{Q}-isomorphism from E_{T}^{\prime} onto
$E_{T}^{(3)}: x^{3}+c d e x y+d e(3 b e-c) y=x^{3}-3 x^{2}+\left(3-b c d^{2} e^{3}\right) x+b c d^{2} e^{3}-2 b^{2} d^{2} e^{4}-1$.

Let $a_{j}^{\prime \prime}$ denote the coefficients of $E_{T}^{(3)}$. Then 3 divides $a_{3}^{\prime \prime}$ and $a_{4}^{\prime \prime}$. Note that

$$
a_{6}^{\prime \prime}=b c d^{2} e^{3}-2 b^{2} d^{2} e^{4}-1 \equiv 0 \bmod 3
$$

since $b^{2} d^{2} e^{2}$ is square not divisible by 3 . Now compute the quantities $b_{2}^{\prime \prime}, b_{4}^{\prime \prime}, b_{6}^{\prime \prime}, b_{8}^{\prime \prime}$ for $E_{T}^{(3)}$ via the formulas in (2.2). Then

$$
\begin{aligned}
& b_{2}^{\prime \prime}=9 \hat{c}^{2} d^{2} e^{2}-12 \quad b_{6}^{\prime \prime}=\left(b (d e ^ { 2 } - 3 \hat { c } d e - 2) \left(b\left(d e^{2}-3 \hat{c} d e+2\right)(\right.\right. \\
& b_{8}^{\prime \prime}=3+9 b \hat{c} d^{2} e^{3}-9 \hat{c}^{2} d^{2} e^{2}-3 b^{2} d^{2} e^{4}
\end{aligned}
$$

Note that 3 divides $b_{2}^{\prime \prime}$.

$$
a_{6}^{\prime \prime} \equiv 7 b^{2} d^{2} e^{4}-1 \bmod 9
$$

By Tate's Algorithm, E_{T} has reduction type $I I$ if and only if $a_{6}^{\prime \prime} \not \equiv 0 \bmod 9$. If this is the case, then $m_{3}=c_{3}=1$ and $f_{3}=3$. Now suppose $a_{6}^{\prime \prime} \equiv 0 \bmod 9$. Then $b d e^{2} \equiv \pm 2 \bmod 9$. In particular, $b^{2} d^{2} e^{4} \equiv 4 \bmod 9$ and so $b^{2} d^{2} e^{4}=4+9 k$ for some integer k. Now observe that since 3 divides \hat{c} we attain

$$
b_{8}^{\prime \prime} \equiv 3-3 b^{2} d^{2} e^{4} \bmod 27=3-3(4+9 k) \bmod 27=-9 \bmod 27
$$

Thus we have that if $a_{6}^{\prime \prime} \equiv 0 \bmod 9$, then E_{T} has reduction type $I I I$ at 3 . In particular, $m_{3}=c_{3}=f_{3}=2$.

Subcase II. Suppose $v_{3}(a)=3$. Then $c=3 \hat{c}$ with \hat{c} an odd integer. Then

$$
c^{3} d^{2} e-27 b=27\left(\hat{c}^{3} d^{2} e-b\right)
$$

Set $\hat{n}=v_{3}\left(\hat{c}^{3} d^{2} e-b\right)$ so that $v_{3}\left(\Delta_{E_{T}}^{\min }\right) \neq 3+\hat{n}$. We now consider the following cases: (i) $\hat{n}=0$, (ii) $\hat{n}=1$, (iii) $\hat{n}=2$, and (v) $\hat{n} \geq 3$.
(i) Suppose $\hat{n}=0$. Since $f_{p} \leq v_{3}\left(\Delta_{E_{T}}^{\min }\right)$ (we note that the only possibilities with $f_{p} \geq 2$ are Type II or Type III. Moreover, Fype II occurs if and only if $a_{6}^{\prime \prime} \not \equiv$ $0 \bmod 9$. If this is the case, then $m_{3}=c_{3}=1$ and $f_{3}=3$. Otherwise, E_{T} has reduction type $I I I$ at 3 with $m_{3}=c_{3}=f_{3}=2$.
(ii) Suppose $\hat{n}=1$. Then $b=\hat{c}^{3} d^{2} e-3 k$ for some integer k not divisible by 3. Now observe that

$$
\begin{align*}
a_{6}^{\prime \prime} & =3 \hat{c}^{4} d^{4} e^{4}-9 \hat{c} d^{2} e^{3} k-2\left(\hat{c}^{6} d^{4} e^{2}-6 \hat{c}^{3} d^{2} e k+3 k^{2}\right) 中^{2} e^{4}-1 \\
& =3 \hat{c}^{4} d^{4} e^{4}-9 \hat{c} d^{2} e^{3} k-2 \hat{c}^{6} d^{6} e^{6}+12 \hat{c}^{3} d^{4} e^{5} k-3 d^{2} e k^{2}-1 \\
& \equiv 8 \pm 3 \bmod 9 \neq 0 \bmod 9 \tag{6.9}
\end{align*}
$$

since $3 l^{2} \equiv 3 \bmod 9,-2 l^{6} \equiv 7 \bmod 9$, and $12 l \equiv \pm 3 \bmod 9$ for all l not divisible by 3. Thus E_{T} has reduction type $I I$ at 3 and in particular $m_{3}=c_{3}=1$ and $f_{3}=4$.
(iii) Suppose $\hat{n}=2$. Then $b=\hat{c}^{3} d^{2} e-9 k$ for some integer k not divisible by 3. Then

$$
a_{6}^{\prime \prime} \equiv 8+3 \hat{c}^{4} d^{4} e^{4}+7 \hat{c}^{6} d^{6} e^{6} \bmod 9=0 \bmod 9
$$

since $3 l^{4} \equiv 3 \bmod 9$ and $7 l^{6} \equiv 7 \bmod 9$ for integers l not divisible by 3 . Next, we consider $b_{8}^{\prime \prime}$ and observe that

$$
b_{8}^{\prime \prime} \equiv 3+18 \hat{c}^{2} d^{2} e^{2}+9 \hat{c}^{4} d^{4} e^{4}+24 \hat{c}^{6} d^{6} e^{6} \bmod 27=0 \bmod 27
$$

since $18 l^{2} \equiv 18 \bmod 27,9 l^{2} \equiv 9 \bmod 27$, and $24 l^{6} \equiv 24 \bmod 27$ for integers l which are not divisible by 3 . Next, we consider $b_{6}^{\prime \prime}$ and observe that

$$
b_{6}^{\prime \prime} \equiv 23+9 \hat{c}^{2} d^{2} e^{2}+21 \hat{c}^{4} d^{4} e^{4}+\hat{c}^{6} d^{6} e^{6}+9 \hat{c}^{3} d^{4} e^{5} k \bmod 27=9 \hat{c}^{3} d^{4} e^{5} k \bmod 27
$$

since $23+9 l^{2}+21 l^{4}+l^{6} \equiv 0 \bmod 27$. Moreover, $\hat{c} d e k$ is not divisible by 3 and therefore we conclude that $b_{6}^{\prime \prime}$ is not divisible by 27. By Tate's Algorithm, we conclude that E_{T} has reduction type $I V$ at 3 . In particular, $m_{3}=f_{3}=3$. Lastly, consider the polynomial

$$
T^{2}+\frac{a_{3}^{\prime \prime}}{3} T-\frac{a_{6}^{\prime \prime}}{9}=T^{2}+d e(b e-\hat{c}) T-\frac{3 b \hat{c} d^{2} e^{3}-2 b^{2} d^{2} e^{4}-1}{9} .
$$

Now observe that

$$
\begin{aligned}
3 b \hat{c} d^{2} e^{3}-2 b^{2} d^{2} e^{4}-1 & =-1+3 \hat{c}^{4} d^{4} e^{4}-2 \hat{c}^{6} d^{6} e^{6}-27 \hat{c} d^{2} e^{3} k+36 \hat{c}^{3} d^{4} e^{5} k-162 d^{2} e^{4} k^{2} \\
& \equiv 9 \hat{c}^{3} d^{4} e^{5} k \bmod 27 .
\end{aligned}
$$

Since $d e(b e-\hat{c})=-\hat{c} d e+\hat{c}^{3} d^{3} e^{3}-9 d e^{2} k \equiv 0 \bmod 3$, we have that

$$
T^{2}+\frac{a_{3}^{\prime \prime}}{3} T-\frac{a_{6}^{\prime \prime}}{9} \equiv T^{2}+\hat{c}^{3} d^{4} e^{5} k \bmod 3
$$

But $\hat{c}^{3} d^{4} e^{5} k$ is square modulo 3 if and only if $\hat{c}^{3} d^{4} e^{5} k \equiv 1 \bmod 3$. If this congruence holds, then \mathbb{F}_{3} is the splitting field of this polynomial and therefore by Tate's Algorithm, $c_{3}=3$ if and only if $\hat{c}^{3} d^{4} e^{5} k \equiv 1 \bmod 3$. Otherwise $c_{3}=1$.
(iv) Suppose $\hat{n}=3+n$ for some integer $n \geq 0$. Then $b=\hat{c}^{3} d^{2} e-27 k$ for some integer k satisfying $v_{3}(k)=n$. Proceeding as above shows that 9 divides $a_{6}^{\prime \prime}$ and 81 divides $b_{8}^{\prime \prime}$. We now show that $b_{6}^{\prime \prime}$ is divisible by 27. Indeed,

$$
b_{6}^{\prime \prime} \equiv-4+9 \hat{c}^{2} d^{2} e^{2}-6 \hat{c}^{4} d^{4} e^{4}+\hat{c}^{6} d^{6} e^{6} \bmod 27=0 \bmod 27
$$

since $-4+9 l^{2}-6 l^{4}+l^{6} \equiv 0 \bmod 27$ for integers l not divisible by 3 . To proceed through Tate's algorithm we must satisfy further divisibility conditions, which are not satisfied by the coefficients of the Weierstrass model for $E_{T}^{(3)}$. To this end, consider the admissible change of variables $x \longmapsto x$ and $y \longmapsto y-\hat{c} d e x$ from $E_{T}^{(3)}$ onto

$$
\begin{gathered}
E_{T}^{(4)}: y^{2}-9 \hat{c} d e x y+3 d e(b e-\hat{c}) y=x^{3}-\left(18 \hat{c}^{2} d^{2} e^{2}+3\right) x^{2}+ \\
\left(15 b \hat{c} d^{2} e^{3}-18 \hat{c}^{2} d^{2} e^{2}+3\right)\left(-2 b^{2} d^{2} e^{4}+3 b \hat{c} d^{2} e^{3}-1\right.
\end{gathered}
$$

Let \hat{a}_{j} denote the coefficients of the Weierstrass model for $E_{T}^{(4)}$. Observe that 3 divides \hat{a}_{1} and \hat{a}_{2}. We claim that 9 divides \hat{a}_{3} and \hat{a}_{4} and that 27 divides \hat{a}_{6}. Indeed,

$$
\begin{aligned}
& \hat{a}_{3} \equiv c d e\left(\oint\left(+3 \hat{c}^{2} d^{2} e^{2}\right)(\bmod 9=0 \bmod 9\right. \\
& \hat{a}_{4} \equiv 3+6 \hat{d}^{4} d^{4} e^{4} \bmod d=0 \bmod 9 \\
& \hat{a}_{6} \equiv-1+3 \hat{c}^{4} d^{4} e^{4}-2 \hat{c}^{6} d^{6} e^{6} \bmod 27=0 \bmod 27
\end{aligned}
$$

since $3 l^{2} \equiv 3 \bmod 9,6 l^{4} \equiv 6 \bmod 9$, and $3 l^{4}-2 l^{6} \equiv 1 \bmod 27$ for integers l not divisible by 3 .

Now consider the polynomial

$$
P(T)=T^{3}+\frac{\hat{a}_{2}}{3} T^{2}+\frac{\hat{a}_{4}}{9} T+\frac{\hat{a}_{6}}{27} .
$$

The discriminant of this polynomial is

$$
\begin{aligned}
\operatorname{Disc}(P) & =3^{-6} \cdot\left(-4 \hat{a}_{2}^{3} \hat{a}_{6}+\hat{a}_{2}^{2} \hat{a}_{4}^{2}-4 \hat{a}_{4}^{3}-27 \hat{a}_{6}^{2}+18 \hat{a}_{2} \hat{a}_{4} \hat{a}_{6}\right)(\\
& \equiv \hat{c}^{9} d^{10} e^{11} k+\frac{236 \hat{c}^{8} d^{8} e^{8}-328 \hat{c}^{10} d^{10} e^{10}+92 \hat{c}^{12} d^{12}\left({ }^{12}\right.}{3} \bmod 3 .
\end{aligned}
$$

But $236 l^{8}-328 l^{10}+92 l^{12}$ is divisible by 9 for all integers l. Thus $\operatorname{Disc}(P) \equiv$ $\hat{c}^{9} d^{10} e^{11} k \bmod 3$. In particular, $P(T)$ has distinct roots over an algebraic closure of \mathbb{F}_{3} if and only if k is not divisible by 3 . Equivalently, $v_{3}(k)=n=0$. By Tate's Algorithm, if this is the case, then E_{T} has reduction type $I_{0}^{*}, m_{3}=5, f_{3}=3$, and $c_{3}=1+\#\left\{\alpha \in \mathbb{Q}_{3} \mid P(\alpha)=0\right\}$.

Now suppose n is positive. Then we may write $b=\hat{c}^{3} d^{2} e-81 k$ for some integer k satisfying $v_{3}(k)=n-1$. Then $P(T)$ does not have distinct roots and in fact

$$
P(T) \equiv T^{3}+2 T^{2}+\left(\hat{c}^{2} d^{2} e^{2}+\frac{1+5 \hat{c}^{4} d^{4} e^{4}}{3}\right) T+\frac{3 \hat{c}^{4} d^{4} e^{4}-2 \hat{c}^{6} d^{6} e^{6}-1}{27} \bmod 3 .
$$

Since $P(T)$ does not have distinct roots over an algebraic closure of \mathbb{F}_{3}, it follows that either $P(T)$ has a double root or a triple root over an algebraic closure of \mathbb{F}_{3}. Suppose $P(T)$ had a triple root over an algebraic closure of \mathbb{F}_{3}. Then $P(T) \equiv(T-\lambda)^{3} \bmod 3$ for some λ in an algebraic closure of \mathbb{F}_{3}. In particular, $P(T) \equiv T^{3}+2 \lambda^{3}$. Since the coefficient of $P(T)$ modulo 3 is 2 , we conclude that $P(T)$ does not have a triple root over an algebraic closure of \mathbb{F}_{3}.

Since $n=v_{3}\left(\Delta_{E_{T}}^{\min }\right)-6$, we conclude by Tate's Algorithm that E_{T} has reduction type I_{n}^{*} at 3 and moreoter, $m_{3}=v_{3}\left(\Delta_{E_{T}}^{\min }\right)\left(-1\right.$ and $f_{3}=2$. Lastly, $c_{3}=2$ or 4 . This
concludes the proof.

Example 6.9 Let $T=C_{3}$ and let $E_{1}=E_{T}(27,-8)$ and $E_{2}(27,-17)$. Then

$$
v_{3}\left(\Delta_{E_{1}}^{m i n}\right)=3+v_{3}(1+8)=5 \quad \text { and } \quad v_{3}\left(\Delta_{E_{2}}^{m i n}\right)\left(=3+v_{3}(1+17)=5\right.
$$

By Proposition 6.8, the reduction type at 3 is Type II for both E_{1} and E_{2}. Next we compute the local Tamagawa number at 3. With notation as in part (iii) of the proof of Proposition 6.8, we saw that $c_{3}=3$ if and only if $\hat{c}^{3} d^{4} e^{5} k \equiv 1 \bmod 3$ where $c=3 \hat{c}$
and $b=\hat{c}^{3} d^{2} e-9 k$. Since de $=1$ for both E_{1} and E_{2} we observe that $k=1$ for E_{1} and $k=2$ for E_{2}. In particular, since $\hat{c}^{3} d^{4} e^{5} k=k$, we conclude that $c_{3}=3$ for E_{1} and $c_{3}=1$ for E_{2}.

Lemma 6.10 Let $T=C_{4}$. If $u_{T}=c$, then $v_{p}\left(N_{T}\right) \leq 2$ for all odd primes p. Moreover, if $v_{2}(a) \leq 2$, then $v_{p}\left(N_{T}\right) \leq 6$.

Proof Since we are assuming $u_{T}=c$, we have by Theorem 5.14 that a global minimal model for E_{T} is

$$
E_{T}^{\prime}: y^{2}+c d x y-c d^{2} b y=x^{3}-b d x^{2}
$$

with $a=c^{2} d$ for d a positive squarefree integer. Moreover, the minimal discriminant of E_{T} is

$$
\Delta_{E_{T}}^{\min }=b^{4} c^{2} d^{7}\left(c^{2} d+16 b\right)
$$

For $p \geq 5$ a prime, it is true that $v_{p}\left(N_{T}\right) \leq 2$. So it suffices to show that the inequality holds for $p=3$ to prove the first claim. If E_{T} is semistable at 3 , then $v_{3}\left(N_{T}\right) \leq 1$. So suppose E_{T} has additive reduction at 3 . By Theorem $5.25, E_{T}$ has additive reduction at 3 if and only if 3 divides d. We may, therefore, assume that $d=3 \hat{d}$ with \hat{d} a positive integer not divisible by 3 . We now consider Tate's Algorithm for E_{T} at the prime 3. To this end, consider the admissible change of variables $x \longmapsto x$ and $y \longmapsto y-2 c d x+2 b c d^{2}$ which gives a \mathbb{Q}-isomorphism from E_{T}^{\prime} onto

$$
E_{T}^{(1)}: y^{2}-3 c d x y+3 b c d^{2} y=x^{3}-\left(2 c^{2} d^{2}-b d\right) \not f^{2}+4 b c^{2} d^{3} x-2 b^{2} c^{2} d^{4}
$$

Now let a_{j} be the coefficient of the Weierstrass model for $E_{T}^{(1)}$. Since 3 divides d, we have that 3 divides a_{1} and $a_{2}, 9$ divides a_{3} and a_{4}, and 81 divides a_{6}. Now we compute the b_{j} as given in (2.2),

$$
b_{2}=d\left(c^{2} d-4 b\right)\left(\quad b_{6}=b^{2} c^{2} d^{4}, \quad b_{8}=-b^{3} c^{2} d^{5}\right.
$$

Now observe that the assumption of d being divisible by 3 implies that 3 divides $b_{2}, 27$ divides b_{6} and b_{8}. Thus Tate's Algorithm runs through Step 6. Next, we consider the polynomial

$$
\begin{aligned}
P(T) & =T^{3}+\frac{a_{2}}{3}+\frac{a_{4}}{9}+\frac{a_{6}}{27}=T^{3}+\left(6 c^{2} \hat{d}^{2}-b \hat{d}\right)\left(T^{2}+12 b c^{2} \hat{d}^{3} T+6 b^{2} c^{2} \hat{d}^{4}\right. \\
& \equiv T^{3}-b \hat{d} T^{2} \bmod 3=T^{2}(T-b \hat{d})(\bmod 3
\end{aligned}
$$

Since $b \hat{d}$ is not divisible by 3 , we have that $P(T)$ over \mathbb{F}_{3} has a double root at 0 and a simple root at $b \hat{d}$. Now let

$$
n=v_{3}\left(\Delta_{E_{T}}^{\min }\right)-6=1+2 v_{3}(c)
$$

since $v_{3}\left(\Delta_{E_{T}}^{\min }\right)=7+2 v_{3}(c)$. By Tate's Algorithm, we conclude that E_{T} has reduction Type I_{n}^{*} at 3 . Moreover, $m_{3}=n+5, f_{3}=2$, and c_{3} is either 2 or 4 . Hence $v_{p}\left(N_{T}\right) \leq 2$ for all odd primes p.

It remains to show that if $u_{T}=c$ and $v_{2}(a) \leq 2$, then $v_{2}\left(N_{T}\right) \leq 6$. By Theorem 5.25, E_{T} additive reduction occurs at 2 with $u_{T}=c$ if and only if a is even. So it suffices to consider the cases $v_{2}(a)=1$ and $v_{2}(a)=2$.

Case I. Suppose $v_{2}(a)=1$. Then $d=2 \hat{d}$ for some odd integer \hat{d} and c is odd. Since d is even, we note that 2 divides a_{1} and $a_{2}, 4$ divides a_{3} and a_{4}, and 8 divides a_{6}. Moreover, 2 divides b_{2} and 8 divides both b_{6} and b_{8}. In particular, Tate's Algorithm runs through Step 6. Now consider the polynomial

$$
\begin{aligned}
P(T) & =T^{3}+\frac{a_{2}}{2}+\frac{a_{4}}{4}+\frac{a_{6}}{8}=T^{3}-\left(4 c^{2} \hat{d}^{2}-b \hat{d}\right)\left(T^{2}+8 b c^{2} \hat{d}^{3} T-4 b^{2} c^{2} \hat{d}^{4}\right. \\
& \equiv T^{3}-b \hat{d} T^{2} \bmod 2=T^{2}(T-b \hat{d})(\bmod 2 .
\end{aligned}
$$

Since $b \hat{d}$ is odd it follows that $P(T)$ has a double root at 0 over \mathbb{F}_{2} and a simple root at $b \hat{d}$. Now observe that $v_{2}\left(\Delta_{E_{T}}^{\min }\right)=8$. Since the double root of $P(T)$ over \mathbb{F}_{2} occurs at 0 we may proceed to the subprecedure of Step 7 in Tate's Algorithm. Indeed, 4
does not divide a_{2}, but 8 and 32 divide a_{4} and a_{6}, respectively. Next we consider the polynomial

$$
\begin{aligned}
Y^{2}+\frac{a_{3}}{4} Y-\frac{a_{6}}{16} & =Y^{2}+3 b c \hat{d}^{2} Y-2 b^{2} c^{2} \hat{d}^{4} \\
& \equiv Y^{2}+b c \hat{d}^{2} Y \bmod 2=Y\left(Y+b c \hat{d}^{2}\right)(\bmod 2
\end{aligned}
$$

Since $b c \hat{d}$ is odd, we have that this polynomial is $Y(Y+1)$ over \mathbb{F}_{2}. Since it has distinct roots over \mathbb{F}_{2}, we conclude by Tate's Algorithm that the reduction type at 2 is Type I_{1}^{*} and moreover $m_{2}=6, f_{p}=3$, and $c_{2}=4$.

Case II. Suppose $v_{2}(a)=2$. Then $c=2 \hat{c}$ for some odd integer \hat{c} and d is odd. In particular, $v_{2}\left(\Delta_{E_{T}}^{\min }\right)\left(=4\right.$. By Ogg's Formula we conclude that $f_{p} \leq 4$ which concludes
the proof.

Lemma 6.11 Let $T=C_{6}$. Then $v_{p}\left(N_{T}\right) \leq 2$ for all p.
Proof By Theorem 5.25, E_{T} is semistable at all primes $p \geq 5$. Consequently, $v_{p}\left(N_{T}\right) \leq 1$ for all primes $p \geq 5$. By Proposition 6.8, $v_{2}\left(N_{T}\right) \leq 2$ since E_{T} is \mathbb{Q} isomorphic to $E_{C_{3}}\left(a^{\prime}, b^{\prime}\right)$ for some relatively prime integers a^{\prime} and b^{\prime}. It remains to show that $v_{3}\left(N_{T}\right) \leq 2$. To this end, we assume E_{T} has additive reduction at 3 . By Theorem $5.25, E_{T}$ has additive reduction at 3 if and only if 3 divides a. By Theorem 5.14, the minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ where u_{T} is either 1 or 2 . Moreover, $u_{T}=2$ if and only if $v_{2}(a+b) \geq 3$. We will now prove the Lemma by considering the cases $u_{T}=1$ and $u_{T}=2$ separately.

Case I. Suppose $u_{T}=1$. Then E_{T} is a global minimal model for E_{T}. We now consider the cases $v_{3}(a)=1, v_{3}(a)=2$, and $v_{3}(a)>2$ separately.

Subcase I. Suppose $v_{3}(a)=1$. Then $a=3 \hat{a}$ for some integer \hat{a} not divisible by 3. In particular, $v_{3}\left(\Delta_{E_{T}}^{\min }\right) \neq 3$. The admissible change of variables $x \longmapsto x$ and $y \longmapsto y+3$ gives a \mathbb{Q}-isomorphism from E_{T} onto

$$
\begin{aligned}
& E_{T}^{(1)}: y^{2}+(a-b) x y+\left(6-a^{2} b-a b^{2}\right) \not y= \\
& \quad x^{3}-\left(a b+b^{2}\right) \not x^{2}+(3 b-3 a) x+3 a^{2} b+3 a b^{2}-9 .
\end{aligned}
$$

Let $a_{j}^{(1)}$ denote the coefficients of $E_{T}^{(1)}$. Observe that 3 divides $a_{3}^{(1)}, a_{4}^{(1)}$, and $a_{6}^{(1)}$. Now let $b_{j}^{(1)}$ be as given in (2.2) for the Weierstrass model of $E_{T}^{(1)}$. Then

$$
b_{2}^{(1)}=a^{2}-6 a b-3 b^{2} \quad b_{8}^{(1)}=-a^{5} b^{3}-3 a^{4} b^{4}-3 a^{3} b^{5}-a^{2} b^{6} .
$$

Since $a=3 \hat{a}$ we observe that 3 divides $b_{2}^{(1)}$ and 9 divides $a_{6}^{(1)}$. However,

$$
b_{8}^{(1)} \equiv 18 \hat{a}^{2} b^{6} \bmod 27=18 \bmod 27
$$

since $18 l^{2} \equiv 18 \bmod 27$ for integers l not divisible by 3 . Therefore 27 does not divide $b_{8}^{(1)}$ and by Tate's Algorithm, we conclude that E_{T} has reduction Type III at 3. In particular, $m_{3}=2, f_{3}=2$, and $c_{3}=2$.

Before proceeding to the next two subcases, we will consider a new translation of E_{T}. Let $x \longmapsto x$ and $y \longmapsto y+(a-b) x-a^{2} b-a b^{2}$ be an admissible change of variables from E_{T} onto

$$
\begin{aligned}
E_{T}^{(2)} & : y^{2}+(3 a-3 b) x y-\left(3 a^{2} b+3 a b^{2}\right) y=x^{3}+\left(3\left(a b-2 a^{2}-3 b^{2}\right) x^{2}\right. \\
& +\left(4 a^{3} b-4 a b^{3}\right)\left(-2 a^{4} b^{2}-4 a^{3} b^{3}-2 a^{2} b^{4}\right.
\end{aligned}
$$

Let $a_{j}^{(2)}$ denote the coefficients the Weierstrass model for $E_{T}^{(2)}$ and we compute the $b_{j}^{(2)}$ as given in (2.2):

$$
\begin{aligned}
& b_{2}^{(2)}=a^{2}-6 a b-3 b^{2} \quad b_{6}^{(2)}=a^{4} b^{2}+2 a^{3} b^{3}+a^{2} b^{4} \\
& b_{8}^{(2)}=-a^{5} b^{3}-3 a^{4} b^{4}-3 a^{3} b^{5}-a^{2} b^{6}
\end{aligned}
$$

Observe that if $v_{3}(a) \geq 2$, then 3 divides $a_{1}^{(2)}, a_{2}^{(2)}$, and $b_{2}^{(2)}, 9$ divides $a_{3}^{(2)}$ and $a_{4}^{(2)}$, and 27 divides $a_{6}^{(2)}, b_{6}^{(2)}$, and $b_{8}^{(2)}$. Consequently, if $v_{3}(a) \geq 2$, then Tate's Algorithm runs through Step 6. Let $a=9 \hat{a}$ for some integer \hat{a} and consider the polynomial

$$
\begin{aligned}
P(T) & =T^{3}+\frac{a_{2}^{(2)}}{3} T^{2}+\frac{a_{4}^{(2)}}{9} T+\frac{a_{6}^{(2)}}{27} \\
& =T^{3}+\left(9 \hat{a} b-9 \hat{a}^{2}-b^{2}\right) T^{2}+\left(324 \hat{a}^{3} b-4 \hat{a} b^{3}\right) \not\left(-486 \hat{a}^{4} b^{2}-108 \hat{a}^{3} b^{3}-6 \hat{a}^{2} b^{4}\right. \\
& \equiv T^{3}-b^{2} T^{2}+2 \hat{a} b^{3} T \bmod 3=T\left(T^{2}+2 T+2 \hat{\alpha} b\right)(\bmod 3 .
\end{aligned}
$$

Subcase II. Suppose $v_{3}(a)=2$ and let $a=9 \hat{a}$ for some integer \hat{a} not divisible by 3 . Then $v_{3}\left(\Delta_{E_{T}}^{\min }\right)=6+v_{3}(\hat{a}+b)$. In what follows we let $n=v_{3}(\hat{a}+b)$.

First, assume $n=$. Then $\hat{a}+b \equiv 1,2 \bmod 3$. But this only occurs if $\hat{a} \equiv b \bmod 3$. In particular, $2 \hat{a} b^{3} \equiv 2 \bmod 3$. Moreover, $P(T) \equiv T^{3}+2 T^{2}+T \bmod 3$ which has distinct roots over an algebraic closure of \mathbb{F}_{3}. Indeed, the discriminant of the polynomial is congruent to $\hat{a}^{3} b^{9}+\hat{a}^{2} b^{10} \bmod 3$. Since $\hat{a} \equiv b \bmod 3$, we get that the discriminant is $2 \bmod 3$ and therefore has distinct roots. Therefore the reduction type is I_{0}^{*} at 3 and $m_{3}=5, f_{3}=2$, and $c_{3}=1+\#\left\{\alpha \in \mathbb{F}_{3} \mid P(\alpha) \equiv 0 \bmod 3\right\}=2$.

Next, assume $n>0$. Then $\hat{a} \equiv-b \bmod 3$. Then $2 \hat{a} b \equiv 1 \bmod 3$ and so $P(T) \equiv$ $T(T+1)^{2} \bmod 3$. Therefore $P(T)$ has a double root over \mathbb{F}_{3} and by Tate's Algorithm, we conclude that E_{T} has reduction Type I_{n}^{*} at 3 . Moreover $m_{3}=v_{3}\left(\Delta_{E_{T}}^{\min }\right)(-1$ and
$f_{3}=2$. Lastly, c_{3} is 2 or 4 .

Subcase III. Suppose $v_{3}(a)>2$. Then 3 divides \hat{a} and we observe that $P(T) \equiv T^{2}(T+2) \bmod 3$. Therefore $P(T)$ has a double root over \mathbb{F}_{3}. By Tate's Algorithm, we conclude that E_{T} has reduction Type $I_{\hat{n}}^{*}$ at 3 where $\hat{n}=v_{3}\left(\Delta_{E_{T}}^{\min }\right)(6$.
In particular, $f_{3}=2$ and $m_{3}=v_{3}\left(\Delta_{E_{T}}^{\min }\right)-1$. Lastly, c_{3} is either 2 or 4 .

Case II. Suppose $u_{T}=2$. Then $v_{2}(a-b) \geq 3$. Let $a+b=8 k$ for some integer k so that $b=8 k-a$. Note that a and k are relatively prime since a and b are relatively prime. By the proof of Theorem 5.14, a global minimal model for E_{T} is

$$
E_{T}^{\prime}: y^{2}+(a-4 k) x y+a k(a-8 k) y=x^{3}+2 k(a-8 k) x^{2} .
$$

Moreover, the minimal discriminant of E_{T} is

$$
\Delta_{E_{T}}^{\min }=a^{2} k^{3}(9 k-a)(a-8 k)^{6} .
$$

Since E_{T} has additive reduction at 3 if and only if $v_{3}(a)>0$, we have that if E_{T} has additive reduction at 3 , then

$$
v_{3}\left(\Delta_{E_{T}}^{\min }\right)=2 v_{3}(a)+v_{3}(9 k-a)
$$

Henceforth we will assume $v_{3}(a)>0$. Now consider the admissible change of variables $x \longmapsto x$ and $y \longmapsto y+(a-k) x+a k(a-8 k)$ which gives a \mathbb{Q}-isomorphism between E_{T}^{\prime} and the elliptic curve

$$
\begin{aligned}
& E_{T}^{(3)}: y^{2}+3(a-4 k) x y+3 a k(a-8 k) y=x^{3}-2\left(a^{2}-9 a k+24 k^{2}\right) \not x^{2}- \\
& \quad 4 a k(a-8 k)(a-4 k) x-2 a^{2} k^{2}(a-8 k)^{2} .
\end{aligned}
$$

Let $a_{j}^{(3)}$ denote the coefficients the Weierstrass model for $E_{T}^{(3)}$ and we compute the $b_{j}^{(3)}$ as given in (2.2):

$$
b_{2}^{(3)}=a^{2}-48 k^{2} \quad b_{6}^{(3)}=a^{2} k^{2}(a-8 k)^{2} \quad b_{8}^{(3)}=2 a^{2} k^{3}(a-8 k)^{3}
$$

Now observe that

$$
\begin{array}{lll}
v_{3}\left(a_{1}^{(3)}\right)(1 & v_{3}\left(a_{2}^{(3)}\right)(=1 & v_{3}\left(a_{3}^{(3)}\right)=1+v_{3}(a) \\
v_{3}\left(a_{4}^{(3)}\right) \not v_{3}(a) & v_{3}\left(a_{6}^{(3)}\right)=2 v_{3}(a) & v_{3}\left(b_{2}^{(3)}\right) \neq 1 \\
v_{3}\left(b_{6}^{(3)}\right) \neq 2 v_{3}(a) & v_{3}\left(b_{8}^{(3)}\right) \neq 2 v_{3}(a) &
\end{array}
$$

Subcase I. Suppose $v_{3}(a)=1$ so that $v_{3}\left(\Delta_{E_{T}}^{\min }\right)\left(=3\right.$. Then $v_{3}\left(b_{8}^{(3)}\right)=2$ and by Tate's Algorithm we conclude that E_{T} has reduction Type $I I I$ at 3. Thus $m_{3}=f_{3}=c_{3}=2$.

Subcase II. Suppose $v_{3}(a) \geq 2$ so that $a=9 \hat{a}$ for some integer \hat{a}. Now consider the polynomial

$$
\begin{aligned}
P(T) & =T^{3}+\frac{a_{2}^{(3)}}{3} T^{2}+\frac{a_{4}^{(3)}}{9} T+\frac{a_{6}^{(3)}}{27} \\
& \left.=T^{3}-2\left(3 \hat{a}^{2}-27 \hat{a} k+8 k^{2}\right) \not\right\rceil^{2}-4 \hat{a} k(9 \hat{a}-8 k)(9 \hat{a}-4 k) T-6 \hat{a}^{2} k^{2}(9 \hat{a}-8 k)^{2} \\
& \equiv T^{3}-16 k^{2} T^{2}-128 \hat{a} k^{3} T \operatorname{mqd} 3=T\left(T^{2}+2 T+\hat{a} k\right)(\bmod 3
\end{aligned}
$$

since $k^{2} \equiv 1 \bmod 3$. We now consider two additional cases $(a) v_{3}(a)=2$ and (b) $v_{3}(a)>2$.
(a) Suppose $v_{3}(a)=2$. Then \hat{a} is odd and

$$
v_{3}\left(\Delta_{E_{T}}^{\min }\right) \neq 6+v_{3}(k-\hat{a})
$$

Let $n=v_{3}(k-\hat{a})$. We first assume $n=0$ so that $k-\hat{a} \equiv 1,2 \bmod 3$. This occurs when $\hat{a} \equiv-k \bmod 3$. In particular, $\hat{a} k \equiv 1 \bmod 3$. Therefore $P(T) \equiv$ $T^{3}+2 T^{2}+T \bmod 3$. But we already saw in Case I that this polynomial has distinct roots over \mathbb{F}_{3}. Therefore by Tate's Algorithm, E_{T} has reduction Type I_{0}^{*} at 3 . In particular, $m_{3}=5, f_{3}=c_{3}=2$.

Now assume $n>0$. Then $k-\hat{a} \equiv 0 \bmod 3$ and so $\hat{a} \equiv k \bmod 3$. Thus $\hat{a} k \equiv 1 \bmod 3$ from which we attain the congruence $P(T) \equiv T(T+1)^{2} \bmod 3$. In particular, $P(T)$ has a double root over \mathbb{F}_{3} and by Tate's Algorithm we conclude that E_{T} has reduction type I_{n}^{*} since $n=v_{3}\left(\Delta_{E_{T}}^{\min }\right)\left(-6\right.$. In particular, $m_{3}=v_{3}\left(\Delta_{E_{T}}^{\min }\right)(-1$
and $f_{3}=2$. Moreover, c_{3} is 2 or 4 .
(b) Suppose $v_{3}(a)>2$. Then $v_{3}\left(\Delta_{E_{T}}^{\min }\right)=2+2 v_{3}(a)$. Then $\hat{a} \equiv 0 \bmod 3$ and therefore $P(T) \equiv T^{2}(T+2) \bmod 3$. Therefore $P(T)$ has a double root over \mathbb{F}_{3}. By Tate's Algorithm, we conclude that E_{T} has reduction Type $I_{\hat{n}}^{*}$ where $\hat{n}=v_{3}\left(\Delta_{E_{T}}^{\min }\right) \nprec$. In particular, $f_{3}=2$ and $m_{3}=v_{3}\left(\Delta_{E_{T}}^{\min }\right)\left(-1\right.$. Lastly, c_{3} is either 2 or 4 .
Lemma 6.12 Let $T=C_{8}$ and let j be 0 or 1 . If $v_{2}(a)=2+j$, then $v_{2}\left(N_{T}\right) \leq 6+j$.

Proof Since $v_{2}(a)=2,3$, we have by Theorem 5.14 that $u_{T}=1$. Therefore E_{T} is a global minimal model for E_{T}. In particular, γ_{T} is the minimal discriminant of E_{T}. Since $v_{2}(a) \geq 2$, we observe that

$$
v_{2}\left(\gamma_{T}\right)=7+2 v_{2}(a) .
$$

Now consider the admissible change of variables $x \longmapsto x$ and

$$
y \longmapsto y-\left(a^{2}-4 a b+2 b^{2}\right)\left(-a^{3} b^{3}+3 a^{2} b^{4}-2 a b^{5} .\right.
$$

This gives a \mathbb{Q}-isomorphism between E_{T} and the elliptic curve

$$
\begin{aligned}
& E_{T}^{\prime}: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \text { where } \\
& a_{1}=-3 a^{2}+12 a b-6 b^{2} \\
& a_{2}=-2 a^{4}+16 a^{3} b-41 a^{2} b^{2}+35 a b^{3}-10 b^{4} \\
& a_{3}=-3 a^{3} b^{3}+9 a^{2} b^{4}-6 a b^{5} \\
& a_{4}=-4 a^{5} b^{3}+28 a^{4} b^{4}-64 a^{3} b^{5}+56 a^{2} b^{6}-16 a b^{7} \\
& a_{6}=-2 a^{6} b^{6}+12 a^{5} b^{7}-26 a^{4} b^{8}+24 a^{3} b^{9}-8 a^{2} b^{10} .
\end{aligned}
$$

We now use (2.2) to compute

$$
\begin{aligned}
& b_{2}=a^{4}-8 a^{3} b+16 a^{2} b^{2}-4 a b^{3}-4 b^{4} \\
& b_{6}=a^{6} b^{6}-6 a^{5} b^{7}+13 a^{4} b^{8}-12 a^{3} b^{9}+4 a^{2} b^{10} \\
& b_{8}=-a^{8} b^{8}+9 a^{7} b^{9}-33 a^{6} b^{10}+63 a^{5} b^{11}-66 a^{4} b^{12}+36 a^{3} b^{13}-8 a^{2} b^{14}
\end{aligned}
$$

Since $v_{2}(a) \geq 2$, we observe that

$$
\begin{array}{lll}
v_{3}\left(a_{1}\right)=1 & v_{3}\left(a_{2}\right)=1 & v_{3}\left(a_{3}\right)=v_{2}(a)+1 \\
v_{3}\left(a_{4}\right)=4+v_{2}(a) & v_{3}\left(a_{6}\right)=3+2 v_{2}(a) & v_{3}\left(b_{2}\right)=2 \\
v_{3}\left(b_{6}\right)=2+2 v_{2}(a) & v_{3}\left(b_{8}\right)=3+2 v_{2}(a) &
\end{array}
$$

In particular, Tate's Algorithm runs through Step 6. Now let $a=4 \hat{a}$ for some integer \hat{a} and consider the polynomial

$$
\begin{aligned}
P(T) & =T^{3}+\frac{a_{2}}{2} T^{2}+\frac{a_{4}}{4} T+\frac{a_{6}}{8} \\
& \equiv T^{3}-5 b^{4} T^{2} \bmod 2=T^{2}(T+1) \bmod 2
\end{aligned}
$$

since $-5 b^{4}$ is odd. Since this polynomial has a double root, we proceed to the subprocedure of Step 7 in Tate's Algorithm.

Now suppose $v_{2}(a)=2$. Then $v_{2}\left(\gamma_{T}\right)=11$. By the subprocedure of Step 7, we observe that $f_{2}=11-k$ with $k \geq 5$. In particular, $f_{2} \leq 6$.

If $v_{2}(a)=3$, then $v_{2}\left(\gamma_{T}\right)=13$. It suffices to show that E_{T} does not have reduction Type I_{1}^{*} at 2 . Indeed, if this is the case, then $f_{2}=13-k$ for $k \geq 6$ which implies
that $f_{2} \leq 7$. To this end, we observe that E_{T} has reduction Type I_{1}^{*} at 2 if and only if

$$
\begin{equation*}
Y^{2}+\frac{a_{3}}{4} Y-\frac{a_{6}}{16} \bmod 2 \tag{6.10}
\end{equation*}
$$

has distinct roots over an algebraic closure of \mathbb{F}_{2}. But $4^{-1} a_{3}$ and $16^{-1} a_{6}$ are both even and therefore (6.10) is congruent to $Y^{2} \bmod 2$. This concludes the proof.

Lemma 6.13 Let $T=C_{9}$. Then $v_{3}\left(N_{T}\right) \leq 3$.
Proof By Theorem 5.25, E_{T} has additive reduction at 3 if and only if $a+b=3 k$ for some nonzero integer k. By Theorem $5.14, E_{T}$ is a global minimal model for E_{T} and therefore the minimal discriminant is γ_{T}. Note that

$$
\gamma_{T}=3^{5} a^{9}(3 k-2 a)^{9}(3 k-a)^{9}\left(a^{2}-3 a k+3 k^{2}\right)^{3}\left(3\left(k^{3}-9 a k^{2}+6 a^{2} k-a^{3}\right)\right.
$$

Consequently, $v_{3}\left(\gamma_{T}\right)=5$ since a and k are not divisible by 3 . Now consider the admissible change of variables $x \longmapsto x$ and $y \longmapsto y+3$ which gives a \mathbb{Q}-isomorphic from E_{T} onto the elliptic curve

$$
\begin{aligned}
& \qquad \begin{array}{l}
E_{T}^{\prime}: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \text { where } \\
a_{1}=3\left(a^{3}-5 a^{2} k+12 a k^{2}-9 k^{3}\right)(\\
a_{2}=3 a(2 a-3 k)(3 k-a)^{2}\left(q^{2}-3 a k+3 k^{2}\right) \\
a_{3}=3\left(2 a^{9}-21 a^{8} k+87 a^{7} k^{2}\left(-180 a^{6} k^{3}+189 a^{5} k^{4}-81 a^{4} k^{5}+2\right)(\right. \\
a_{4}=9\left(9 k^{3}-12 k^{2}+5 a^{2} k-a^{3}\right)(\\
a_{6}=9\left(-2 a^{9}+21 a^{8} k-87 a^{7} k^{2}+180 a^{6} k^{3}-189 a^{5} k^{4}+81 a^{4} k^{5}-1\right)
\end{array} \\
& \text { We now use (2.2) to compute }
\end{aligned}
$$

$$
\begin{aligned}
& b_{2}=3\left(11 a^{6}-114 a^{5} k+495 a^{4} k^{2}-1134 a^{3} k^{3}+1458 a^{2} k^{4}-972 a k^{5}+243 k^{6}\right) \\
& b_{6}=9 a^{8}(3 k-2 a)^{2}(3 k-a)^{4}\left(a^{2}-3 a k+3 k^{2}\right)^{2} \\
& b_{8}=27 a^{9}(2 a-3 k)^{3}(3 k-a)^{6}\left(a^{2}-3 a k+3 k^{2}\right)^{3}
\end{aligned}
$$

In particular, 3 divides $b_{2}, 9$ divides a_{6}, and 27 divides b_{8}. However, 27 does not divide b_{6} since a and k are not divisible by 3. By Tate's Algorithm, we conclude that
E_{T} has reduction Type $I V$ at 3 . Moreover, $f_{3}=m_{3}=c_{3}=3$. We note that $c_{3}=3$ since the polynomial
$\begin{array}{ll} & \equiv \begin{cases}(T(T+1) \bmod 3 & \text { if } a \equiv 1 \bmod 3 \\ (T+1)(T+2) \bmod 3 & \text { if } a \equiv 2 \bmod 3\end{cases} \\ \text { has distinct roots over } \mathbb{F}_{3} .\end{array}$

$$
T^{2}+\frac{a_{3}}{3} T-\frac{a_{6}}{9} \equiv T^{2}+\left(2 a^{9}+2\right) T+2 a^{9}+1 \bmod 3
$$

Lemma 6.14 Let $T=C_{2} \times C_{2}$ and suppose d is odd. If $v_{2}(a)=1,2,3$, then $v_{2}\left(N_{T}\right) \leq$ 5.

Proof Since $v_{2}(a)=1,2,3$, we have by Theorem 5.14 that E_{T} is a global minimal model for E_{T}. Thus

$$
\Delta_{E_{T}}^{\min }=\gamma_{T}=16 a^{2} b^{2} d^{6}(a-b)^{2}
$$

is the minimal discriminant of E_{T}. The admissible change of variables $x \longmapsto x+2$ and $y \longmapsto y+x+6$ gives a \mathbb{Q}-isomorphism from E_{T} onto F where F is given by the Weierstrass model

$$
\begin{aligned}
& F: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \text { where } \\
& \\
& \\
& a_{1}=2 \\
& a_{2}=a d+b d+5
\end{aligned} \begin{array}{ll}
a_{4} & =d(a b d+4 a+4 b)
\end{array} \quad a_{6}=2\left(a b d^{2}+2 a d+2 b d-14\right) .
$$

We now use (2.2) to compute

$$
\begin{aligned}
& b_{2}=4(a d+b d+6) \quad b_{6}=8(b d+2)(a d+2) \\
& b_{8}=-a^{2} b^{2} d^{4}+24 a b d^{2}+32 a d+32 b d+48
\end{aligned}
$$

Observe that each a_{j} and b_{j} is even since a is even and $b d$ is odd.
Case I. First assume $v_{2}(a)=1$. Observe that

$$
\begin{equation*}
b_{8} \equiv-a^{2} b^{2} d^{4} \bmod 8=4 \bmod 8 \tag{6.11}
\end{equation*}
$$

since $b d$ is odd. Thus 8 does not divide b_{8}. Since 4 divides a_{6}, we have by Tate's Algorithm that E_{T} has reduction type III at 2 and $m_{2}=c_{2}=2$. Since $b d$ is odd, $\left.\begin{array}{r}v_{2}\left(\chi_{E_{T}}^{\min }\right)\end{array}\right)=6$ and so $f_{2}=5$.

Case I. Next, assume $v_{2}(a)=2$. Then by (6.11), 8 divides b_{8}. Since 8 divides b_{6}, Tate's Algorithm continues to Step 6. By inspection, 4 divides a_{3} and a_{4}. Now write $a=4 \hat{a}$ for some odd integer \hat{a}. Since $2^{n} k \equiv 2^{n} \bmod 2^{n+1}$ holds for all positive integers n and odd integers k, we have

$$
\begin{aligned}
& a_{4} \equiv 4 \hat{a} b d^{2}+4 b d \bmod 8 \equiv 0 \bmod 8 \\
& a_{6} \equiv 8 \hat{a} b d^{2}+4 b d+4 \bmod 16=12+4 b d \bmod 16 \\
& \equiv \begin{cases}0 \bmod 16 & \text { if } b d \equiv 1 \bmod 4 \\
8 \bmod 16 & \text { if } b d \equiv 3 \bmod 4\end{cases} \\
& \text { In particular, } 8 \text { divides } a_{4} \text { and } a_{6} \text {. Next, we consider the polynomial }
\end{aligned}
$$

$$
\begin{aligned}
P(T) & =T^{3}+\frac{a_{2}}{2} T^{2}+\frac{a_{4}}{4} T+\frac{a_{6}}{8} \\
& \equiv T^{3}+\frac{b d+1}{2} T^{2}+\frac{12+4 b d}{8} \bmod 2 \\
& \equiv \begin{cases}T^{2}(T+1) & \text { if } b d \equiv 1 \bmod 4 \\
(T+1)\left(T^{2}+T+1\right) & \text { if } b d \equiv 3 \bmod 4\end{cases}
\end{aligned}
$$

Subcase I. Suppose $b d \equiv 1 \bmod 4$. Then $P(T)$ has a double root over \mathbb{F}_{2}. Moreover, $a_{2} \equiv 2 \bmod 4$ and 16 divides a_{6}. In particular, the polynomial

$$
Y^{2}+\frac{a_{3}}{4} Y-\frac{a_{6}}{16} \equiv Y^{2}+Y+k \bmod 2
$$

where k is either 0 or 1 has distinct roots over an algebraic closure of \mathbb{F}_{2}. By Tate's Algorithm, E_{T} has reduction type I_{1}^{*}. Moreover, $m_{2}=6$ and $f_{2}=3$ since $v_{2}\left(\Delta_{E_{T}}^{\min }\right)=$ 8. Lastly, c_{2} is either 2 or 4 with $c_{2}=4$ if and only if $k=0$. Note that $k=0$ if and only if $a_{6} \equiv 0 \bmod 32$. Observe that

$$
a_{6} \equiv 8 \hat{a} b d^{2}+4 b d+20 \bmod 32= \begin{cases}8 \hat{a} d-8 \bmod 32 & \text { if } b d \equiv 1 \bmod 8 \\ 8 \hat{a} d+8 \bmod 32 & \text { if } b d \equiv 5 \bmod 8\end{cases}
$$

From this we see that $k=0$ if and only if either $(i) b d \equiv 1 \bmod 8$ and $\hat{a} d \equiv 1 \bmod 4$ or $(i i) b d \equiv 5 \bmod 8$ and $\hat{a} d \equiv 3 \bmod 4$.

Subcase II. Suppose $b d \equiv 3 \bmod 4$. Then $P(T)$ has distinct roots over an algebraic closure of \mathbb{F}_{2}. Hence by Tate's Algorithm, E_{T} has reduction type I_{0}^{*} at 2 . Moreover, $m_{2}=5$ and $c_{2}=2$. Since $v_{2}\left(\chi_{E_{T}}^{\min }\right) \neq 8, f_{2}=4$.

Case III. Lastly, assume $v_{2}(a)=3$. The admissible change of variables $x \longmapsto x+4$ and $y \longmapsto y+x+12$ gives a \mathbb{Q}-isomorphism from E_{T} onto F^{\prime} where F^{\prime} is given by the Weierstrass model

$$
\begin{aligned}
& F^{\prime}: y^{2}+a_{1}^{\prime} x y+a_{3}^{\prime} y=x^{3}+a_{2}^{\prime} x^{2}+a_{4}^{\prime} x+a_{6}^{\prime} \text { where } \\
& a_{1}^{\prime}=2 \quad a_{2}^{\prime}=a d+b d+11 \quad a_{3}^{\prime}=24 \\
& a_{4}^{\prime}=a b d^{2}+8 a d+8 b d+24 \quad a_{6}^{\prime}=4\left(a b d^{2}+4 a d+4 b d-20\right) .
\end{aligned}
$$

We now use (2.2) to compute

$$
\begin{aligned}
& b_{2}^{\prime}=4(a d+b d+12) \quad b_{6}^{\prime}=16(b d+4)(a d+4) \\
& b_{8}^{\prime}=-a^{2} b^{2} d^{4}+96 a b d^{2}+256 a d+256 b d+768
\end{aligned}
$$

Now observe that a_{1}^{\prime} and b_{2}^{\prime} are even, 8 divides a_{3}^{\prime}. Now observe that

$$
\begin{aligned}
& a_{4}^{\prime} \equiv a b d^{2}+8 b d+8 \bmod 16=8 \bmod 16 \\
& a_{6}^{\prime} \equiv 16 b d+16 \bmod 16=0 \bmod 32
\end{aligned}
$$

Indeed, for an odd integer k, the congruences $2^{n} k \equiv 2^{n} \bmod 2^{n+1}$ holds for all positive integers n. From this, it follows that $a b d^{2} \equiv 8 \bmod 16$ since $v_{2}(a)=3$. In particular, Tate's Algorithm runs through Step 6. Now consider the polynomial

$$
\begin{aligned}
P(T) & =T^{3}+\frac{a_{2}^{\prime}}{2} T^{2}+\frac{a_{4}^{\prime}}{4} T+\frac{a_{6}^{\prime}}{8} \\
& \equiv T^{2}\left(T+\frac{b d-1}{2}\right)(\bmod 2 \\
& \equiv \begin{cases}T^{3} \bmod 2 & \text { if } b d \equiv 1 \bmod 4 \\
T^{2}(T+1) \bmod 2 & \text { if } b d \equiv 3 \bmod 4 .\end{cases}
\end{aligned}
$$

Subcase I. Suppose $b d \equiv 1 \bmod 4$. Then 4 divides a_{2}^{\prime} and we have that the polynomial $P(T)$ has a triple root over \mathbb{F}_{2}. Thus Tate's Algorithm continues to Step 8. Since the polynomial

$$
Y^{2}+\frac{a_{3}^{\prime}}{4} Y-\frac{a_{6}^{\prime}}{16} \equiv Y^{2} \bmod 2
$$

we have that Tate Algorithm goes to Step 9. By Tate's Algorithm, we conclude that E_{T} has reduction type $I I I^{*}$ at 2 . Moreover, $m_{2}=8, c_{2}=2$, and $f_{2}=3$ since $v_{2}\left(\Delta_{E_{T}}^{\min }\right) \neq 10$.

Subcake II. Suppose $b d \equiv 3 \bmod 4$. Then $P(T)$ has a double root over \mathbb{F}_{2} and Tate's Algorithm continues to the subprocedure of Step 7. Since 4 does not divide a_{2}^{\prime} we may proceed with the Weierstrass for F^{\prime}. Next, the polynomial

$$
Y^{2}+\frac{a_{3}^{\prime}}{4} Y-\frac{a_{6}^{\prime}}{16} \equiv Y^{2} \bmod 2
$$

has a double root over \mathbb{F}_{2}. Next, we claim that $a_{6}^{\prime} \equiv 0 \bmod 64$. To this end, write $b d=3+4 k$ for some integer k since $b d \equiv 3 \bmod 4$. Then

$$
a_{6}^{\prime} \equiv 16+16 b d \bmod 64=16+16(3+4 k) \bmod 64=0 \bmod 64 .
$$

In particular, the polynomial

$$
\frac{a_{2}^{\prime}}{2} X^{2}+\frac{a_{4}^{\prime}}{8} X+\frac{a_{6}^{\prime}}{32} \equiv X(X+1) \bmod 2
$$

has distinct roots over \mathbb{F}_{2}. By Tate's Algorithm, we conclude that E_{T} has reduction type I_{2}^{*} at 2 . Moreover, $m_{2}=7, c_{2}=4$, and $f_{2}=4$ since $v_{2}\left(\Delta_{E_{T}}^{\min }\right)(=10$. This
concludes the proof.

Example 6.15 Let $T=C_{2} \times C_{2}$ and consider the following elliptic curves:

$$
\begin{array}{ll}
E_{1}=E_{T}(20,7,13) & E_{2}=E_{T}(52,11,3) \\
E_{3}=E_{T}(76,11,3) & E_{4}=E_{T}(40,7,11)
\end{array}
$$

We now use Lemma 6.14 to compute the local data at 2 of each E_{j}. Observe that $v_{2}(a)=2$ for E_{1}, E_{2}, E_{3} and $v_{2}(a)=3$ for E_{4}. By the proof of Lemma 6.14 we
conclude that E_{4} has reduction type $I I I^{*}$ at 2. Moreover, $m_{2}=8, c_{2}=2$, and $f_{2}=3$.

For E_{1} we note that $b d \equiv 3 \bmod 4$ and so E_{1} has reduction type I_{0}^{*} at 2 . Moreover, $m_{2}=5, c_{2}=2$, and $f_{2}=4$. Both E_{2} and E_{3} satisfy $b d \equiv 1 \bmod 4$ and so reduction type at 2 is I_{1}^{*}. Moreover, $m_{2}=6$ and $f_{2}=3$. It remains to compute the Tamagawa number at 2 . For both E_{2} and E_{3} we have that $b d \equiv 1 \bmod 8$. Since $13 \cdot 3 \equiv 3 \bmod 4$, we have by the proof of Lemma 6.14 that $c_{2}=2$ for E_{2}. Similarly, $19 \cdot 3 \equiv 1 \bmod 4$ and so $c_{2}=4$ for E_{3}.

6.5 Upper Bound on the Conductor of E_{T}

Throughout this section, N_{T} will denote the conductor of E_{T}. For each T, we have by Theorem 5.14 that the minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$. For each u_{T}, we let δ_{T} be as given in Table 6.2.

Table 6.2.: The Polynomials $\delta_{u_{T}}$

T	u_{T}	$\delta_{u_{T}}$
C_{2}	1	$2^{7} 3 b^{2} d\left(b^{2} d-a^{2}\right)$
	2	$6 b^{2} d\left(b^{2} d-a^{2}\right)$
	4	$\frac{3}{1024} b^{2} d\left(b^{2} d-a^{2}\right)$
C_{3}	$c^{2} d$	$3 b d^{2} e^{4}\left(c^{3} d^{2} e-27 b\right)$
C_{4}	c	$4 b c^{2} d^{4}\left(16 b+c^{2} d\right)$
	$2 c$	$3 b c^{2} d^{4}\left(b+16 c^{2} d\right)$
C_{5}	1	$a b\left(a^{2}+11 a b-b^{2}\right)$
C_{6}	1	$a b(a+b)(a+9 b)$
	2	$\frac{1}{64} a b(a+b)(a+9 b)$
C_{7}	1	$a b(a-b)\left(a^{3}+5 a^{2} b-8 a b^{2}+b^{3}\right)$
C_{8}	1	$a b(a-2 b)(a-b)\left(a^{2}-8 a b+8 b^{2}\right)$

continued on next page

Table 6.2.: continued

T	u_{T}	$\delta_{u_{T}}$
	2	$\frac{1}{16} a b(a-2 b)(a-b)\left(a^{2}-8 a b+8 b^{2}\right)$
C_{9}	1	$a b(a-b)\left(a^{2}-a b+b^{2}\right)\left(a^{3}+3 a^{2} b-6 a b^{2}+b^{3}\right)$
C_{10}	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & a b(a-2 b)(a-b)\left(a^{2}+2 a b-4 b^{2}\right)\left(a^{2}-3 a b+b^{2}\right) \\ & \frac{1}{16} a b(2 b-a)(a-b)\left(a^{2}+2 a b-4 b^{2}\right)\left(a^{2}-3 a b+b^{2}\right) \end{aligned}$
C_{12}	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & a b(a-2 b)(a-b)\left(a^{2}-6 a b+6 b^{2}\right)\left(a^{2}-2 a b+2 b^{2}\right)\left(a^{2}-3 a b+3 b^{2}\right) \\ & \frac{1}{16} a b(a-2 b)(a-b)\left(a^{2}-2 a b+2 b^{2}\right)\left(a^{2}-3 a b+3 b^{2}\right)\left(a^{2}-6 a b+\right. \\ & \left.6 b^{2}\right) \end{aligned}$
$C_{2} \times C_{2}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 144 a b d^{3}(a-b) \\ & \frac{9}{8} a b d^{3}(b-a) \end{aligned}$
$C_{2} \times C_{4}$	$\begin{aligned} & 1 \\ & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 8 a b(a+4 b)(a+8 b) \\ & \frac{1}{2} a b(a+4 b)(a+8 b) \\ & \frac{1}{256} a b(a+4 b)(a+8 b) \end{aligned}$
$C_{2} \times C_{6}$	$\begin{gathered} 1 \\ 4 \\ 16 \end{gathered}$	$\begin{aligned} & a(b-9 a)(b-3 a)(3 a+b)(b-5 a)(b-a) \\ & \frac{1}{64} a(a-b)(3 a-b)(5 a-b)(9 a-b)(3 a+b) \\ & \frac{1}{1024} a(b-9 a)(b-3 a)(3 a+b)(b-5 a)(b-a) \end{aligned}$
$C_{2} \times C_{8}$	$\begin{gathered} 1 \\ 16 \\ 64 \end{gathered}$	$\begin{aligned} & 2 a b(a+2 b)(a+4 b)\left(a^{2}-8 b^{2}\right)\left(a^{2}+8 a b+8 b^{2}\right)\left(a^{2}+4 a b+8 b^{2}\right) \\ & \frac{1}{512} a b(a+2 b)(a+4 b)\left(a^{2}-8 b^{2}\right)\left(a^{2}+4 a b+8 b^{2}\right)\left(a^{2}+8 a b+8 b^{2}\right) \\ & \frac{1}{16384} a b(a+2 b)(a+4 b)\left(a^{2}-8 b^{2}\right)\left(a^{2}+4 a b+8 b^{2}\right)\left(a^{2}+8 a b+8 b^{2}\right) \end{aligned}$

We show that if the minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$, then $N_{T} \leq\left|\delta_{u_{T}}\right|$.
Proposition 6.16 Suppose $u_{T}^{-12} \gamma_{T}$ is the minimal discriminant of E_{T}. Then $N_{T} \leq$ $\left|\delta_{u_{T}}\right|$ where $\delta_{u_{T}}$ is as given in Table 6.2.

We will consider most cases separately in the following subsections.

6.5.1 Proof of Proposition 6.16 for $T=C_{2}$

Proof By Theorem 5.14, the minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ where u_{T} is either 1,2 , or 4 . By Theorem $5.25, E_{T}$ has additive reduction at each prime p dividing $\operatorname{gcd}(a, b d)$. Moreover, E_{T} has additive reduction at $p=2$ if and only if $u_{T}=1$ and $v_{2}\left(b^{2} d-a^{2}\right) \geq 4$ with $v_{2}(a)=v_{2}(b)=1, d \equiv 1 \bmod 4$, and $u_{T} \neq 4$.

Case I. Suppose $u_{T}=1$. Then each prime dividing the minimal discriminant divides

$$
\delta_{u_{T}}=2^{7} 3 b^{2} d\left(b^{2} d-a^{2}\right)
$$

Suppose E_{T} has additive reduction at an odd prime p. Then p divides $\operatorname{gcd}(a, b d)$. In particular, $v_{p}\left(\delta_{u_{T}}\right) \geq 2$. If $p \geq 5$, then $v_{p}\left(N_{T}\right) \leq 2$ which shows that $v_{p}\left(N_{T}\right) \leq v_{p}\left(\delta_{u_{T}}\right)$.

Now suppose 3 divides $\operatorname{gcd}(a, b d)$.
Subcase I. Suppose 3 does not divide b. Then 3 divides d and we attain $v_{3}\left(\gamma_{T}\right)=3$ and by Theorem 6.7 we have that $v_{3}\left(N_{T}\right) \leq 3$. Since $v_{3}\left(\delta_{u_{T}}\right)=3$ it follows that $v_{3}\left(N_{T}\right) \leq v_{3}\left(\delta_{u_{T}}\right)$.

Subcase II. Suppose 3 divides b. Then $v_{3}\left(\delta_{u_{T}}\right) \geq 5$ and so $v_{3}\left(N_{T}\right) \leq v_{3}\left(\delta_{u_{T}}\right)$ since $v_{3}\left(N_{T}\right) \leq 5$.

If $b^{2} d\left(b^{2} d-a^{2}\right)$ is even, then $v_{2}\left(\delta_{u_{T}}\right) \geq 8$ and so $v_{2}\left(N_{T}\right) \leq v_{2}\left(\delta_{u_{T}}\right)$ since $v_{2}\left(N_{T}\right) \leq$ 8. So suppose $b^{2} d\left(b^{2} d-a^{2}\right)$ is odd. Then $v_{2}\left(\gamma_{T}\right)=6$ and therefore $v_{2}\left(N_{T}\right) \leq 6$ by Theorem 6.7. This shows that $N_{T} \leq\left|\delta_{u_{T}}\right|$ in the case when $u_{T}=1$.

Case II. Suppose $u_{T}=2$. By Theorem 5.14 we have that either $v_{2}(b) \geq 3$ with $a \equiv-1 \bmod 4$ or $v_{2}\left(b^{2} d-a^{2}\right) \geq 4$ with $v_{2}(a)=v_{2}(b)=1$ and $d \equiv 1 \bmod 4$.

Subcase I. First suppose $v_{2}(b) \geq 3$. Then $b=8 \hat{b}$ and the minimal discriminant of E_{T} is

$$
u_{T}^{-12} \gamma_{T}=\hat{b}^{2} d\left(64 \hat{b}^{2} d-a^{2}\right)^{2}
$$

In particular, each prime dividing the minimal discriminant divides

$$
\begin{aligned}
\delta_{u_{T}} & =6 b^{2} d\left(b^{2} d-a^{2}\right) \\
& =2^{7} 3 \hat{b}^{2} d\left(64 \hat{b}^{2} d-\left(a^{2}\right)(\right.
\end{aligned}
$$

By Theorem $5.25, E_{T}$ is semistable at 2. Consequently $v_{2}\left(N_{T}\right) \leq 1$. Now suppose E_{T} has additive reduction at an odd prime. By Theorem 5.25, p must divide $\operatorname{gcd}(a, b d)$. In particular, $v_{p}\left(\delta_{u_{T}}\right) \geq 2$. Since $v_{p}\left(N_{T}\right) \leq 2$ for $p \neq 3$, it follows that $v_{p}\left(N_{T}\right) \leq v_{p}\left(\delta_{u_{T}}\right)$ for each odd prime $p \neq 3$. Now suppose E_{T} has additive reduction at 3 . Then 3 divides $\operatorname{gcd}(a, b d)$. If 3 divides b, then $v_{3}\left(\delta_{u_{T}}\right) \geq 5$ and so $v_{3}\left(N_{T}\right) \leq v_{3}\left(\delta_{u_{T}}\right)$. So suppose 3 divides d but not b. Then $v_{3}\left(u_{T}^{-12} \gamma_{T}\right)=3$ since d is squarefree. By Theorem 6.7 we have that $v_{3}\left(N_{T}\right) \leq 3$. Consequently, $v_{3}\left(N_{T}\right) \leq v_{3}\left(\delta_{u_{T}}\right)$ and so $N_{T} \leq\left|\delta_{u_{T}}\right|$ under the assumptions of this subcase.

Subcase II. Now suppose $v_{2}\left(b^{2} d-a^{2}\right) \geq 4$. Write $b^{2} d=16 k+a^{2}$ for some integer k and let $a=2 \hat{a}$ for some odd integer \hat{a}. Then the minimal discriminant is

$$
u_{T}^{-12} \gamma_{T}=16 k^{2}\left(\hat{a}^{2}+4 k\right)
$$

In particular, every prime dividing the minimal discriminant divides

$$
\begin{aligned}
\delta_{u_{T}} & =6 b^{2} d\left(b^{2} d-a^{2}\right) \\
& =2^{7} 3 k\left(\hat{a}^{2}+4 k\right)
\end{aligned}
$$

By Theorem 5.25, E_{T} has additive reduction at each odd prime dividing $\operatorname{gcd}(a, b d)$. Equivalently, E_{T} has additive reduction at each odd prime p dividing $\operatorname{gcd}(\hat{a}, k)$. If this is the case, then $v_{p}\left(\delta_{u_{T}}\right) \geq 2$. Consequently, if $p \geq 5$, then $v_{p}\left(N_{T}\right) \leq v_{p}\left(\delta_{u_{T}}\right)$ since $v_{p}\left(N_{T}\right) \leq 2$. Now suppose $p=3$. From Case I above, we observe that $v_{3}\left(u_{T}^{-12} \gamma_{T}\right) \neq 3$ if 3 does not divide b since $v_{3}\left(\gamma_{T}\right)=v_{3}\left(u_{T}^{-12} \gamma_{T}\right) \neq 3$. Therefore by Theorem 6.7 we have that $v_{3}\left(N_{T}\right) \leq 3$. Next suppose 3 divides b. Then $v_{3}(k)=v_{3}\left(\hat{a}^{2}+4 k\right)=2$ and so $v_{3}\left(\delta_{u_{T}}\right)=5$ and therefore $v_{3}\left(N_{T}\right) \leq v_{3}\left(\delta_{u_{T}}\right)$ since $v_{3}\left(N_{T}\right) \leq 5$.

By Theorem $5.25, E_{T}$ has additive reduction at 2 . If $k\left(\hat{a}^{2}+4 k\right)$ is odd, then $v_{2}\left(u_{T}^{-12} \gamma_{T}\right)=4$ and so $v_{2}\left(N_{T}\right) \leq 4$ by Theorem 6.7. But $v_{2}\left(\delta_{u_{T}}\right)=7$ and so $v_{2}\left(N_{T}\right) \leq$ $v_{2}\left(\delta_{u_{T}}\right)$. Lastly, if $k\left(\hat{a}^{2}+4 k\right)$ is even, then $v_{2}\left(\delta_{u_{T}}\right) \geq 8$ which implies $v_{2}\left(N_{T}\right) \leq v_{2}\left(\delta_{u_{T}}\right)$ since $v_{2}\left(N_{T}\right) \leq 8$.

Case III. Suppose $u_{T}=4$. Then $v_{2}\left(b^{2} d-a^{2}\right)=256 k$ for some integer k and $a=2 \hat{a}$ for some odd integer \hat{a}. Write $b^{2} d=256 k+4 \hat{a}^{2}$. Then the minimal discriminant is

$$
u_{T}^{-12} \gamma_{T}=k^{2}\left(\hat{a}^{2}+64 k\right)(
$$

and each prime dividing the minimal discriminant divides

$$
\begin{aligned}
\delta_{u_{T}} & =\frac{3}{1024} b^{2} d\left(b^{2} d-a^{2}\right) \\
& =3 k\left(\hat{a}^{2}+64 k\right)
\end{aligned}
$$

By Theorem 5.25 is semistable at 2 and therefore $v_{2}\left(N_{T}\right) \leq 1$. Moreover, E_{T} has additive reduction at an odd prime p if and only if p divides $\operatorname{gcd}(a, b d)$ which is equivalent to p dividing $\operatorname{gcd}(\hat{a}, k)$. If this is the case, then $v_{p}\left(\delta_{u_{T}}\right) \geq 2$. If $p \neq 3$, then $v_{p}\left(N_{T}\right) \leq v_{p}\left(\delta_{u_{T}}\right)$. So it remains to show this inequality for $p=3$. From Case I above, we observe that $v_{3}\left(u_{T}^{-12} \gamma_{T}\right)=3$ if 3 does not divide b since $v_{3}\left(\gamma_{T}\right)=v_{3}\left(u_{T}^{-12} \gamma_{T}\right)$. Therefore by Theorem 6.7 we have that $v_{3}\left(N_{T}\right) \leq 3$. But if 3 does not divide b, then $v_{3}(k)=v_{3}\left(\hat{a}^{2}+64 k\right)=1$ and so $v_{3}\left(\delta_{u_{T}}\right)=3$ which shows that $v_{3}\left(N_{T}\right) \leq v_{3}\left(\delta_{u_{T}}\right)$. If 3 divides b, then $v_{3}(k)=v_{3}\left(\hat{a}^{2}+64 k\right)=2$ and so $v_{3}\left(\delta_{u_{T}}\right)=5$ and therefore $v_{3}\left(N_{T}\right) \leq v_{3}\left(\delta_{u_{T}}\right)$ since $v_{3}\left(N_{T}\right) \leq 5$. This concludes the proof.

6.5.2 Proof of Proposition 6.16 for $T=C_{3}, C_{5}, C_{7}, C_{9}$

Proof Suppose $T=C_{3}$. Then the minimal discriminant of E_{T} is

$$
\Delta_{E_{T}}^{\min }=b^{3} d^{4} e^{8}\left(c^{3} b^{2} e-27 b\right)(
$$

with $a=c^{3} d^{2} e$ where d and e are positive squarefree integers. Since

$$
\delta_{u_{T}}=3 b d^{2} e^{4}\left(c^{3} d^{2} e-27 b\right)
$$

it is clear that each prime p dividing $\Delta_{E_{T}}^{\min }$ divides $\delta_{u_{T}}$. In particular, if E_{T} is semistable, then $N_{T} \leq\left|\delta_{u_{T}}\right|$.

Now suppose E_{T} has additive reduction at a prime $p \neq 3$. By Proposition 6.8, $v_{p}\left(N_{T}\right) \leq 2$ for each $p \neq 3$. By Theorem $5.25, E_{T}$ has additive reduction at a prime $p \neq 3$ if and only if p divides $d e$. In particular, $p^{2} \mid \delta_{u_{T}}$ and so $v_{p}\left(N_{T}\right) \leq v_{p}\left(\delta_{u_{T}}\right)$ for each prime $p \neq 3$.

Now suppose E_{T} has additive reduction at $p=3$. By Theorem 5.25 , this occurs if and only if a is divisible by 3 .

Case I. Suppose 3 divides e. Then $v_{3}\left(\delta_{u_{T}}\right) \geq 6$. But $v_{3}\left(N_{T}\right) \leq 5$ by Lemma 2.3 and so $v_{3}\left(N_{T}\right) \leq v_{3}\left(\delta_{u_{T}}\right)$.

Case II. Suppose 3 divides d. Then $v_{3}\left(\delta_{u_{T}}\right) \geq 5$ and so $v_{3}\left(N_{T}\right) \leq v_{3}\left(\delta_{u_{T}}\right)$ by Lemma 2.3.

Case III. Suppose 3 divides c. Then $v_{3}\left(\delta_{u_{T}}\right) \geq 4$. But if $v_{3}(a)=3$, then $v_{3}\left(N_{T}\right) \leq 4$ by Proposition 6.8. If $v_{3}(a) \geq 4$, then $v_{3}\left(\delta_{u_{T}}\right) \geq 5$ and so we conclude that in either case $v_{3}\left(N_{T}\right) \leq v_{3}\left(\delta_{u_{T}}\right)$.

By the above we conclude that $v_{p}\left(N_{T}\right) \leq v_{p}\left(\delta_{u_{T}}\right)$ for all primes p and therefore $N_{T} \leq\left|\delta_{u_{T}}\right|$.

Suppose $T=C_{5}$. Then the minimal discriminant of E_{T} is γ_{T} and so $u_{T}=1$. Moreover, it is clear that each prime dividing

$$
\delta_{u_{T}}=a b\left(a^{2}+11 a b-b^{2}\right)
$$

divides γ_{T}. By Theorem 5.25 , the only prime at which E_{T} can have additive reduction is 5 and so $v_{p}\left(N_{T}\right) \leq v_{p}\left(\delta_{u_{T}}\right)$ for each prime $p \neq 5$. In particular, E_{T} has additive reduction at 5 if and only if $v_{5}(a+3 b)>0$. So suppose $a+3 b=5 k$ for some integer k. Then $a=5 k-3 b$ and we verify that

$$
\begin{aligned}
& \delta_{u_{T}}=25 b(3 b-5 k)\left(b^{2}-b k-k^{2}\right) \\
& v_{5}\left(N_{T}\right)=2 . \text { Consequently, } N_{T} \leq\left|\delta_{u_{T}}\right| .
\end{aligned}
$$

Suppose $T=C_{7}$. Then the minimal discriminant of E_{T} is γ_{T} and so $u_{T}=1$. Moreover, it is clear that each prime dividing

$$
\delta_{u_{T}}=a b(a-b)\left(a^{3}+5 a^{2} b-8 a b^{2}+b^{3}\right)
$$

divides γ_{T}. By Theorem 5.25 , the only prime at which E_{T} can have additive reduction is 7 and so $v_{p}\left(N_{T}\right) \leq v_{p}\left(\delta_{u_{T}}\right)$ for each prime $p \neq 7$. In particular, E_{T} has additive reduction at 7 if and only if $v_{7}(a+4 b)>0$. Now let $a+4 b=7 k$ for some integer k. Then $a=7 k-4 b$ and we verify that

$$
\delta_{u_{T}}=49 b(4 b-7 k)(5 b-7 k)\left(b^{3}-7 b k^{2}+7 k^{3}\right)
$$

Thus $v_{7}\left(\delta_{u_{T}}\right) \geq v_{7}\left(N_{T}\right)=2$. Consequently, $N_{T} \leq\left|\delta_{u_{T}}\right|$.
Lastly, suppose $T=C_{9}$. Then the minimal discriminant of E_{T} is γ_{T} and so $u_{T}=1$. Moreover, it is clear that each prime dividing

$$
\delta_{u_{T}}=a b(a-b)\left(a^{2}-a b+b^{2}\right)\left(q^{\beta}+3 a^{2} b-6 a b^{2}+b^{3}\right)
$$

divides γ_{T}. By Theorem 5.25, the only prime at which E_{T} can have additive reduction is 3 and so $v_{p}\left(N_{T}\right) \leq v_{p}\left(\delta_{u_{T}}\right)$ for each prime $p \neq 3$. Furthermore, E_{T} has additive reduction at 3 if and only if $v_{3}(a+b)>0$. Let $a+b=3 k$ for some integer k so that $a=3 k-b$. Then

$$
\delta_{u_{T}}=27 b(b-3 k)(2 b-3 k)\left(b^{2}-3 b k+3 k^{2}\right)\left(b^{3}-3 b^{2} k+3 k^{3}\right)
$$

In particular, $v_{3}\left(\delta_{u_{T}}\right) \geq 3$. But by Lemma $6.13, v_{3}\left(N_{T}\right) \leq 3$ and so $v_{3}\left(N_{T}\right) \leq v_{3}\left(\delta_{u_{T}}\right)$. Thus $N_{T} \leq\left|\delta_{u_{T}}\right|$, which concludes the proof.

6.5.3 Proof of Proposition 6.16 for $T=C_{4}$

Proof Let $a=c^{2} d$ with d a positive squarefree integer. By Theorem 5.14, the minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ where u_{T} is either c or $2 c$. Moreover, $u_{T}=2 c$ if and only if $v_{2}(a) \geq 8$ is even and $b d \equiv 3 \bmod 4$.

Case I. Suppose $u_{T}=c$. Then the minimal discriminant of E_{T} is

$$
\Delta_{E_{T}}^{\min }=u_{T}^{-12} \gamma_{T}=b^{4} c^{2} d^{7}\left(16 b+c^{2} d\right)(
$$

Therefore each prime dividing $\Delta_{E_{T}}^{\min }$ divides

$$
\delta_{u_{T}}=4 b c^{2} d^{4}\left(16 b+c^{2} d\right)
$$

By Theorem 5.25, E_{T} has additive reduction at an odd prime p if and only if p divides d. But if this is the case, we have $v_{p}\left(\delta_{u_{T}}\right) \geq 4$. By Lemma $6.10 v_{p}\left(N_{T}\right) \leq 2$ for all odd primes p. Thus $v_{p}\left(N_{T}\right) \leq v_{p}\left(\delta_{T}\right)$ for all odd primes p.

Now suppose E_{T} has additive reduction at 2. It follows by Theorem 5.25 that a is even.

Subcase I. Suppose $v_{2}(a) \leq 2$. Then $v_{2}\left(\delta_{u_{T}}\right) \geq 6$ and by Lemma 6.10 we have that $v_{2}\left(N_{T}\right) \leq 6$. Thus $v_{2}\left(N_{T}\right) \leq v_{2}\left(\delta_{u_{T}}\right)$.

Subcase II. Suppose $v_{2}(a) \geq 3$. Then $v_{2}\left(\delta_{u_{T}}\right) \geq 8$ and therefore $v_{2}\left(N_{T}\right) \leq$ $v_{2}\left(\delta_{u_{T}}\right)$ by Lemma 2.3.

We conclude that if $u_{T}=c$, then $N_{T} \leq\left|\delta_{u_{T}}\right|$.
Case II. Suppose $u_{T}=2 c$ for some integer \hat{c}. Then $v_{2}(a) \geq 8$ is even and $b d \equiv$ $3 \bmod 4$. In particular, $c=2^{4} \hat{c}$ and observe that

$$
\Delta_{E_{T}}^{\min }=u_{T}^{-12} \gamma_{T}=b^{4} \hat{c}^{2} d^{7}\left(b+16 \hat{c}^{2} d\right)
$$

Consequently, each prime p dividing $\Delta_{E_{T}}^{\text {min }}$ divides

$$
\delta_{u_{T}}=3 b c^{2} d^{4}\left(b+16 c^{2} d\right)
$$

By Theorem 5.25, E_{T} is semistable at 2 and so $v_{2}\left(N_{T}\right) \leq 1$. Moreover, E_{T} has additive reduction at an odd prime p if and only if p divides d. Since $v_{p}\left(\delta_{u_{T}}\right) \geq 4$ for each odd prime p we conclude that $v_{p}\left(N_{T}\right) \leq v_{p}\left(\delta_{u_{T}}\right)$ for each odd prime $p \neq 3$ by Lemma 2.3. For $p=3$, we observe that $v_{3}\left(\delta_{u_{T}}\right) \geq 5$ and thus $v_{3}\left(N_{T}\right) \leq v_{3}\left(\delta_{u_{T}}\right)$.

We conclude that if $u_{T}=2 c$, then $N_{T} \leq\left|\delta_{u_{T}}\right|$.

6.5.4 Proof of Proposition 6.16 for $T=C_{6}$

Proof By Theorem 5.14, the minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ where u_{T} is either 1 or 2 . Moreover, $u_{T}=2$ if and only if $v_{2}(a+b) \geq 3$.

Case I. Suppose $u_{T}=1$. Then each prime dividing γ_{T} divides

$$
\delta_{u_{T}}=a b(a+b)(a+9 b) .
$$

By Theorem 5.25, the only primes at which E_{T} can have additive reduction are 2 and 3. By Lemma 6.11, $v_{p}\left(N_{T}\right) \leq 2$ for all primes and so it suffices to check that $v_{p}\left(\delta_{u_{T}}\right) \geq 2$ if E_{T} has additive reduction at $p=2,3$. Indeed, E_{T} has additive reduction at 2 if and only if $v_{2}(a+b)=1,2$. In particular, $a+9 b$ is also even and we have $v_{2}\left(\delta_{u_{T}}\right) \geq 2$. Now suppose E_{T} has additive reduction at 3 . This occurs if and only if

3 divides a. But then 3 divides $a+9 b$ and so $v_{3}\left(\delta_{u_{T}}\right) \geq 2$. Therefore $N_{T} \leq\left|\delta_{u_{T}}\right|$ if $u_{T}=1$.

Case II. Suppose $u_{T}=2$. Then $a+b=8 k$ and so $b=8 k-a$. Then

$$
\Delta_{E_{T}}^{\min }=2^{-12} \gamma_{T}=a^{2} k^{3}(9 k-a)(a-8 k)^{6}
$$

In particular, each prime p dividing $\Delta_{E_{T}}^{\min }$ divides

$$
\begin{aligned}
\delta_{u_{T}} & =\frac{1}{64} a b(a+b)(a+9 b) \\
& =-a k(9 k-a)(a-8 k)
\end{aligned}
$$

By Theorem 5.25, E_{T} is semistable at 2 and additive reduction at 3 occurs if and only if 3 divides a. As before we observe that $v_{3}\left(\delta_{T}\right) \geq 2$ under these assumptions.

From the previous two cases, we conclude that $N_{T} \leq\left|\delta_{u_{T}}\right|$ for each u_{T}.

6.5.5 Proof of Proposition 6.16 for $T=C_{8}$

Proof By Theorem 5.14, the minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ where u_{T} is either 1 or 2 . Moreover, $u_{T}=2$ if and only if $v_{2}(a)=1$.

Case I. Suppose $u_{T}=1$. It is automatic that each prime dividing γ_{T} divides

$$
\delta_{u_{T}}=a b(a-2 b)(a-b)\left(a^{2}-8 a b+8 b^{2}\right)
$$

By Theorem 5.25, E_{T} can only have additive reduction at 2 . In fact, E_{T} has additive reduction at 2 if and only if $v_{2}(a)>1$.

Subcase I. Suppose $v_{2}(a)=2+j$ where j is either 0 or 1 . Then $v_{2}\left(\delta_{u_{T}}\right) \geq$ $6+j$. By Lemma 6.12, $v_{2}\left(N_{T}\right) \leq 6+j$ and so $v_{2}\left(N_{T}\right) \leq v_{2}\left(\delta_{u_{T}}\right)$ which implies that $N_{T} \leq\left|\delta_{u_{T}}\right|$ for $u_{T}=1$.

Subcase II. Suppose $v_{2}(a) \geq 4$. Then $v_{2}\left(\delta_{u_{T}}\right) \geq 8$ and $v_{2}\left(N_{T}\right) \leq 8$ by Lemma 2.3. Thus $N_{T} \leq\left|\delta_{u_{T}}\right|$ for $u_{T}=1$.

Case II. Suppose $u_{T}=2$. Then $v_{2}(a)=1$ and by Theorem 5.25 we have that E_{T} is semistable. Let $a=2 \hat{a}$ for some odd integer \hat{a} and observe that

$$
\Delta_{E_{T}}^{\min }=2^{-12} \gamma_{T}=\frac{1}{16} b^{8} \hat{a}^{2}(b-2 \hat{a})^{8}(b-\hat{a})^{4}\left(2 b^{2}-4 b \hat{a}+\hat{a}^{2}\right)(
$$

Note that this is an integer since $b-\hat{a}$ is even. In particular, each prime p dividing $\Delta_{E_{T}}^{\min }$ divides

$$
\begin{aligned}
\delta_{u_{T}} & =\frac{1}{16} a b(a-2 b)(a-b)\left(a^{2}-8 a b+8 b^{2}\right) \\
& =\hat{a} b(b-2 \hat{a})(b-\hat{a})\left(2 b^{2}-4 b \hat{a}+\hat{a}^{2}\right)
\end{aligned}
$$

Since E_{T} is semistable, $\operatorname{rad}\left(\Delta_{E_{T}}^{\min }\right) \neq N_{T}$ and therefore $N_{T} \leq \backslash \delta_{u_{T}} \mid$ for $u_{T}=2$.

6.5.6 Proof of Proposition 6.16 for $T=C_{10}$

Proof By Theorem 5.14, the minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ where u_{T} is either 1 or 2 . Moreover, $u_{T}=2$ if and only if a is even. Moreover, E_{T} can only have additive reduction at 5 by Theorem 5.25. In fact, E_{T} has additive reduction at 5 if and only if 5 divides $a+b$.

Case I. Suppose $u_{T}=1$. Then each prime dividing γ_{T} divides

$$
\delta_{u_{T}}=a b(a-2 b)(a-b)\left(q^{2}+2 a b-4 b^{2}\right)\left(a^{2}-3 a b+b^{2}\right)(
$$

If E_{T} is semistable, then $N_{T} \leq\left|\delta_{u_{T}}\right|$. So suppose E_{T} has additive reduction at 5 . Then $a+b=5 k$ and setting $a=5 k-b$ we observe that

$$
\delta_{u_{T}}=25 b(b-5 k)(2 b-5 k)(3 b-5 k)\left(b^{2}-5 k^{2}\right)\left(b^{2}-5 b k+5 k^{2}\right)
$$

Thus $v_{5}\left(\delta_{u_{T}}\right) \geq 2$ from which we conclude that $N_{T} \leq\left|\delta_{u_{T}}\right|$ if $u_{T}=1$.
Case II. Suppose $u_{T}=2$. Then $a=2 \hat{a}$ for some integer \hat{a} and we compute

$$
\Delta_{E_{T}}^{\min }=2^{-12} \gamma_{T}=\hat{a}^{5} b^{10}(b-2 \hat{a})^{10}(b-\hat{a})^{5}\left(b^{2}-\hat{a} b-\hat{a}^{2}\right)\left(b^{2}-6 \hat{a} b+4 \hat{a}^{2}\right)^{2}
$$

In particular, each prime dividing $\Delta_{E_{T}}^{\min }$ divides

$$
\begin{aligned}
\gamma_{u_{T}} & =\frac{1}{16} a b(2 b-a)(a-b)\left(q^{2}+2 a b-4 b^{2}\right)\left(q^{2}-3 a b+b^{2}\right)(\\
& =\hat{a} b(b-2 \hat{a})(b-\hat{a})\left(b^{2}-\alpha b-\hat{a}^{2}\right)\left(b^{2}-6 \hat{a} d+4 \hat{a}^{2}\right)(
\end{aligned}
$$

It remains to consider the case when E_{T} has additive reduction at 5 . To this end suppose $a+b=5 j$ so that $b=5 j-2 \hat{a}$. Then

$$
\gamma_{u_{T}}=25 \hat{a}(5 j-4 \hat{a})(5 j-3 \hat{a})(5 j-2 \hat{a})\left(5 j^{2}-5 j \hat{a}+\hat{a}^{2}\right)\left(5 j j^{2}-10 j \hat{a}+4 a^{2}\right)(
$$

and so $v_{5}\left(\delta_{u_{T}}\right) \geq 2$. Hence $N_{T} \leq\left|\delta_{u_{T}}\right|$ if $u_{T}=2$, which concludes the proof.

6.5.7 Proof of Proposition 6.16 for $T=C_{12}$

Proof By Theorem 5.14, the minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ where u_{T} is either 1 or 2 . Moreover, $u_{T}=2$ if and only if a is even. Since $C_{6} \hookrightarrow E_{T}$, there exist relatively prime integers a^{\prime} and b^{\prime} such that $E_{C_{12}}(a, b)$ is \mathbb{Q}-isomorphic to $E_{C_{6}}\left(a^{\prime}, b^{\prime}\right)$. Therefore by Lemma 6.11, $v_{p}\left(N_{T}\right) \leq 2$ for each prime p.

Case I. Suppose $u_{T}=1$. Then a is odd and each prime dividing γ_{T} divides

$$
\begin{aligned}
& \delta_{u_{T}}=a b(a-2 b)(a-b)\left(q^{2}-6 a b+6 b^{2}\right)\left(q^{2}-2 a b+2 b^{2}\right)\left(q^{2}-3 a b+3 b^{2}\right)(\\
& \text { Therefore } v_{p}\left(N_{T}\right) \leq v_{p}\left(\delta_{u_{T}}\right) \text { for each prime } p \neq 3 \text {. This inequality holds for } p=3
\end{aligned}
$$ since E has additive reduction at 3 implies that 3 divides a by Theorem 5.25 and so $v_{3}\left(\delta_{u_{T}}\right) \geq 3$. Thus $N_{T} \leq\left|\delta_{u_{T}}\right|$ if $u_{T}=1$.

Case II. Suppose $u_{T}=2$. Then a is even and so $a=2 \hat{a}$ for some integer \hat{a}. Then
 $\begin{aligned} & \delta_{u_{T}}=\frac{1}{16} a b(a-2 b)(a-b)\left(q^{2}-2 a b+2 b^{2}\right)\left(q^{2}-3 a b+3 b^{2}\right)\left(q^{2}-6 a b+6 b^{2}\right) \\ &=\hat{a} b(b-2 \hat{a})(b-\hat{a})\left(3 b^{2}-6 \hat{a} b+2 \hat{a}^{2}\right)\left(q^{2}-2 \hat{a} b+2 \hat{a}^{2}\right)\left(3 b^{h}-6 \hat{a} b+4 \hat{a}^{2}\right) \\ & \text { It suffices to show that } v_{3}\left(\delta_{u_{T}}\right) \geq 2 \text { if } E_{T} \text { has additive reduction at 3. But this is clea }\end{aligned}$. since E_{T} has additive reduction at 3 if and only if 3 divides a which is equivalent to 3 dividing \hat{a}. Therefore 27 divides $\delta_{u_{T}}$ from which we conclude that $N_{T} \leq\left|\delta_{u_{T}}\right|$ if $u_{T}=2$.

6.5.8 Proof of Proposition 6.16 for $T=C_{2} \times C_{2}$

Proof By Theorem 5.14, the minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ where u_{T} is either 1 or 2 . By Theorem $5.25, E_{T}$ has additive reduction at all primes dividing d. Moreover, it has additive reduction at 2 if and only if $a d$ is even and $u_{T}=1$. Recall that by Lemma 5.12 , we may assume a is even.

Case I. Suppose $u_{T}=1$. Then every prime dividing the minimal discriminant divides

$$
\delta_{u_{T}}=2^{4} 3^{2} a b d^{3}(a-b) .
$$

If E_{T} is semistable at a prime p, then $v_{p}\left(N_{T}\right) \leq v_{p}\left(\delta_{u_{T}}\right)$. So suppose E_{T} has additive reduction at a prime $p \neq 2,3$. Then $v_{p}\left(N_{T}\right)=2$ and we note that $v_{p}\left(\delta_{T}\right) \geq 3$ since p divides d. Now suppose $p=3$. Then $v_{3}\left(\delta_{u_{T}}\right) \geq 5$ since 3 divides d. But $v_{3}\left(N_{T}\right) \leq 5$ and so $v_{3}\left(N_{T}\right) \leq v_{3}\left(\delta_{u_{T}}\right)$.

Now suppose $p=2$. Then E_{T} has additive reduction at 2 if and only if $a d$ is even. Recall that by Lemma 5.12, we may assume that a is even. Thus if d were even, we have $v_{2}\left(\delta_{u_{T}}\right) \geq 8$. Since $v_{2}\left(N_{T}\right) \leq 8$ we conclude that $v_{2}\left(N_{T}\right) \leq v_{2}\left(\delta_{u_{T}}\right)$. So it remains to consider the case where d is odd. We now show that $v_{2}\left(N_{T}\right) \leq v_{2}\left(\delta_{u_{T}}\right)$ also holds in the case when d is odd by considering two subcases.

Subcase I. Suppose $v_{2}(a)=j$ for $1 \leq j \leq 3$. Then $v_{2}\left(\delta_{u_{T}}\right) \geq 5$ and $v_{2}\left(N_{T}\right) \leq 5$ by Lemma 6.14.

Subcase II. Suppose $v_{2}(a) \geq 4$. Then $v_{2}\left(\delta_{u_{T}}\right) \geq 8$, but $v_{2}\left(N_{T}\right) \leq 8$ which concludes the case when $u_{T}=1$.

Case II. Suppose $u_{T}=2$. Then $v_{2}(a) \geq 4$ and $b d \equiv 1 \bmod 4$. Then $a=16 \hat{a}$ and the minimal discriminant of E_{T} is

$$
u_{T}^{-12} \gamma_{T}=\hat{a}^{2} b^{2} d^{6}(b-16 \hat{a}) .
$$

In particular, each prime dividing the minimal discriminant divides

$$
\begin{aligned}
\delta_{u_{T}} & =\frac{9}{8} a b d^{3}(b-a) \\
& =2 \cdot 3^{2} \hat{a} b d^{3}(b-16 \hat{a}) .
\end{aligned}
$$

By Theorem 5.25, E_{T} is semistable at 2 and has additive reduction at an odd prime p if and only if p divides d. If $p \neq 3$, then $v_{p}\left(\delta_{u_{T}}\right) \geq 3$, but $v_{p}\left(N_{T}\right) \leq 2$. Lastly, if $p=3$, then $v_{3}\left(\delta_{u_{T}}\right) \geq 5$. Since $v_{3}\left(N_{T}\right) \leq 5$, we conclude that $N_{T} \leq\left|\delta_{u_{T}}\right|$ in the case when $u_{T}=2$.

6.5.9 Proof of Proposition 6.16 for $T=C_{2} \times C_{4}$

Proof By Theorem 5.14, the minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ where u_{T} is either 1,2 , or 4 . By Theorem $5.25, E_{T}$ is semistable at all primes except possibly 2. Consequently, $v_{p}\left(N_{T}\right) \leq 1$ for all primes $p \neq 2$. Moreover, E_{T} has additive reduction at 2 if and only if $1 \leq v_{2}(a+4 b) \leq 3$.

By Proposition 5.7, E_{T} is \mathbb{Q}-isomorphic to $\mathcal{X}_{b / a}\left(C_{2} \times C_{4}\right)$. From the Weierstrass equation of \mathcal{X}_{t} in Table 2.1, it is clear that $\mathcal{X}_{b / a}\left(C_{2} \times C_{4}\right)=\mathcal{X}_{t^{\prime}}\left(C_{4}\right)$ where

$$
t^{\prime}=4\left(\frac{b}{a}\right)^{2}+\frac{b}{a}=\frac{4 b^{2}+a b}{a^{2}}
$$

Case I. Suppose $u_{T}=1$ so that $v_{2}(a) \leq 1$. Then each prime dividing γ_{T} divides

$$
\delta_{u_{T}}=2^{3} a b(a+4 b)(a+8 b) .
$$

If a is odd, then E_{T} is semistable and so $N_{T} \leq\left|\delta_{u_{T}}\right|$. So suppose $v_{2}(a)=1$. Then $v_{2}\left(\delta_{u_{T}}\right)=6$. We claim that $v_{2}\left(N_{T}\right) \leq 6$. To this end, write $a=2 \hat{a}$ for some odd integer \hat{a}. Then

$$
t^{\prime}=\frac{2 b^{2}+\hat{a} b}{2 \hat{a}^{2}}
$$

In particular, E_{T} is \mathbb{Q}-isomorphic to $E_{C_{4}}\left(2 \hat{a}, 2 b^{2}+\hat{a} b\right)$ since $2 \hat{a}$ is relatively prime to $2 b^{2}+\hat{a} b$. Since $v_{2}(2 \hat{a})=1$, we conclude by Lemma 6.10 that $v_{2}\left(N_{T}\right) \leq 6$. Consequently, $N_{T} \leq\left|\delta_{u_{T}}\right|$ holds for $u_{T}=1$.

Case II. Suppose $u_{T}=2$ and $v_{2}(a) \geq 3$. Then $a=8 \hat{a}$ for some integer \hat{a} and we have that

$$
u_{T}^{-12} \gamma_{T}=256 \hat{a}^{2} b^{4}(\hat{a}+b)^{2}(2 \hat{a}+b)^{4}
$$

In particular, each prime dividing $u_{T}^{-12} \gamma_{T}$ divides

$$
\begin{aligned}
\delta_{u_{T}} & =\frac{1}{2} a b(a+4 b)(a+8 b) \\
& =128 \hat{a} b(\hat{a}+b)(2 \hat{a}+b) .
\end{aligned}
$$

It follows that $v_{2}\left(\delta_{u_{T}}\right) \geq 8$ and so $v_{2}\left(N_{T}\right) \leq v_{2}\left(\delta_{u_{T}}\right)$.
Case III. Suppose $u_{T}=2$ and $v_{2}(a+4 b)=3$. Then $v_{2}(a)=2$ and hence $a=4 \hat{a}$ for some odd integer \hat{a}. Since $a+4 b=8 k$ for some odd integer k, we attain that $a=8 k-4 b$. In particular, the minimal discriminant is

$$
u_{T}^{-12} \gamma_{T}=256 b^{4} k^{4}\left(b^{2}-4 k^{2}\right)^{2}
$$

Moreover, every prime dividing the minimal discriminant divides

$$
\begin{aligned}
\delta_{u_{T}} & =\frac{1}{2} a b(a+4 b)(a+8 b) \\
& =-64 b k\left(b^{2}-4 k^{2}\right)
\end{aligned}
$$

Thus $v_{2}\left(\delta_{u_{T}}\right)=6$ since $b k$ is odd. We claim that $v_{2}\left(N_{T}\right) \leq 6$. To this end, observe that

$$
t^{\prime}=\frac{b k}{2(b-2 k)^{2}}
$$

Therefore E_{T} is \mathbb{Q}-isomorphic to the elliptic curve $E_{C_{4}}\left(\mathscr{2}(b-2 k)^{2}, b k\right)$. (Since $b k$ is relatively prime to $2(b-2 k)$, we have that $v_{2}\left(2\left((b-2 k)^{2}\right)(=1\right.$ we conclude by
Lemma 6.10 that $v_{2}\left(N_{T}\right)=3$.

Case III. Suppose $u_{T}=4$ so that $a+4 b=16 k$ for some integer k. Then by Theorem 5.25, E_{T} is semistable at all primes and therefore $v_{p}\left(N_{T}\right) \leq 1$ for all primes p. The minimal discriminant of E_{T} is

$$
u_{T}^{-12} \gamma_{T}=b^{4} k^{4}\left(b^{2}-16 k^{2}\right)^{2}
$$

Therefore each prime dividing the minimal discriminant divides

$$
\begin{aligned}
\delta_{u_{T}} & =-\frac{1}{256} a b(a+4 b)(a+8 b) \\
& =b k\left(16 k^{2}-b^{2}\right)
\end{aligned}
$$

and so $N_{T} \leq\left|\delta_{u_{T}}\right|$, which concludes the proof.

6.5.10 Proof of Proposition 6.16 for $T=C_{2} \times C_{6}$

Proof By Theorem 5.14, the minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ where u_{T} is either 1,4 , or 16 . By Theorem $5.25, E_{T}$ is semistable at all primes except possibly 3. Moreover, E_{T} has additive reduction at 3 if and only if b is divisible by 3 . In particular, $v_{p}\left(N_{T}\right) \leq 1$ for all primes $p \neq 3$ and $v_{3}\left(N_{T}\right) \leq 2$ by Lemma 6.11. Indeed, since $C_{6} \hookrightarrow E_{T}$, we have that E_{T} is \mathbb{Q}-isomorphic to $E_{C_{6}}\left(a^{\prime}, b^{\prime}\right)$ for some relatively prime integers a^{\prime} and b^{\prime}.

Case I. Suppose $u_{T}=1$. Then $a+b$ is odd and we observe that each prime dividing the minimal discriminant γ_{T} divides

$$
\delta_{u_{T}}=a(b-9 a)(b-3 a)(3 a+b)(b-5 a)(b-a) .
$$

Moreover, if 3 divides b, it is clear that $v_{3}\left(\delta_{u_{T}}\right) \geq 2$. Consequently, $N_{T} \leq\left|\delta_{u_{T}}\right|$.
Case II. Suppose $u_{T}=4$. Then $v_{2}(a+b) \geq 2$ and we write $a+b=4 k$ for some nonzero integer k. Then $a=4 k-b$ and we observe that

$$
u_{T}^{-12} \gamma_{T}=4(5 b-18 k)^{2}(3 b-10 k)^{6}(b-6 k)^{2}(b-4 k)^{6}(b-3 k)^{2}(b-2 k)^{6}
$$

In particular, each prime dividing the minimal discriminant divides

$$
\begin{aligned}
\delta_{u_{T}} & =\frac{1}{64} a(a-b)(3 a-b)(5 a-b)(9 a-b)(3 a+b) \\
& =(5 b-18 k)(3 b-10 k)(b-6 k)(b-4 k)(b-3 k)(b-2 k) .
\end{aligned}
$$

We note that if 3 divides b, then $v_{3}\left(\delta_{u_{T}}\right) \geq 3$ and so $N_{T} \leq\left|\delta_{u_{T}}\right|$.
Case III. Suppose $u_{T}=16$. Then $v_{2}(a+b)=1$. Write $a=2 k-b$ for some odd integer k. In the proof of Theorem 5.14, we established that

$$
v_{2}((b-5 a)(b-a)) \geq 5 \quad v_{2}((b-9 a)(b-3 a)(3 a+b)) \geq 6 .
$$

Consequently,

$$
\delta_{u_{T}}=\frac{1}{1024} a(b-9 a)(b-3 a)(3 a+b)(b-5 a)(b-a)
$$

is an integer and each prime dividing the minimal discriminant divides $\delta_{u_{T}}$. Lastly, E_{T} can only have additive reduction at 3 , which occurs exactly when 3 divides b. If this is the case, then $v_{3}\left(\delta_{u_{T}}\right) \geq 2$ and so $N_{T} \leq\left|\delta_{u_{T}}\right|$ which concludes the proof.

6.5.11 Proof of Proposition 6.16 for $T=C_{2} \times C_{8}$

Proof By Theorem 5.14, the minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ where u_{T} is either 1,16 , or 64 . By Theorem $5.25, E_{T}$ is semistable. Therefore $v_{p}\left(N_{T}\right) \leq 1$ for all primes p.

Case I. Suppose $u_{T}=1$. Then a is odd and each prime dividing γ_{T} divides

$$
\delta_{u_{T}}=2 a b(a+2 b)(a+4 b)\left(a^{2}-8 b^{2}\right)\left(q^{2}+8 a b+8 b^{2}\right)\left(q^{2}+4 a b+8 b^{2}\right)(
$$

Thus $N_{T} \leq\left|\delta_{u_{T}}\right|$ for $u_{T}=1$.
Case II. Suppose $u_{T}=16$ so that $a=2 \hat{a}$ for an odd integer \hat{a}. Then

$$
u_{T}^{-12} \gamma_{T}=\hat{a}^{8} b^{8}(\hat{a}+b)^{8}(\hat{a}+2 b)^{8}\left(\hat{a}^{2}+2 \hat{a} b+2 b^{2}\right)^{4}\left(\hat{a}^{4}+4 \hat{a}^{3} b-8 \hat{a} b^{3}-4 b^{4}\right)^{2}
$$

In particular, each prime dividing the minimal discriminant divides

$$
\begin{aligned}
\delta_{u_{T}} & =\frac{1}{512} a b(a+2 b)(a+4 b)\left(a^{2}-8 b^{2}\right)\left(q^{2}+4 a b+8 b^{2}\right)\left(q^{2}+8 a b+8 b^{2}\right)\left(\begin{array}{l}
\left(\hat{q}+4 \hat{a}^{3} b-8 \hat{a} b^{3}-4 b^{4}\right)(\\
\end{array}\right)=\hat{a} k(\hat{a}+b)(\hat{a}+2 b)\left(\hat{a}^{2}+2 \hat{a} b+2 b^{2}\right)(
\end{aligned}
$$

Thus $N_{T} \leq\left|\delta_{u_{T}}\right|$ for $u_{T}=16$.
Case III. Suppose $u_{T}=64$ so that $a=4 \hat{a}$ for a nonzero integer \hat{a}. Then

$$
\begin{aligned}
u_{T}^{-12} \gamma_{T} & =\frac{1}{16384} a b(a+2 b)(a+4 b)\left(a^{2}-8 b^{2}\right)\left(q^{2}+4 a b+8 b^{2}\right)\left(q^{2}+8 a b+8 b^{2}\right)\left(\begin{array}{l}
4 \\
\\
\end{array} \hat{a}^{8} b^{8}(\hat{a}+b)^{8}(2 \hat{a}+b)^{8}\left(2 \hat{a}^{2}+2 \hat{a} b+b^{2}\right)^{4}\left(b^{4}+4 \hat{a} b^{3}-8 \hat{a}^{8} b-4 \hat{a}^{4}\right)^{2} .\right.
\end{aligned}
$$

Therefore each prime dividing the minimal discriminant divides

$$
\delta_{u_{T}}=\hat{a} b(\hat{a}+b)(2 \hat{a}+b)\left(2 \hat{a}^{2}+2 \hat{a} b+b^{2}\right)\left(b^{4}+4 \hat{a} b^{3}-8 \hat{a}^{3} b-4 \hat{a}^{4}\right)(
$$

This shows that $N_{T} \leq\left|\delta_{u_{T}}\right|$, which concludes the proof.

6.6 Proof of Theorem 6.6

For the reader's convenience, we recall the quantities m_{T} and l_{T} defined earlier in the chapter:

$$
l_{T}= \begin{cases}\left(\begin{array}{ll}
1 & \text { if } T=C_{1} \\
1.5 & \text { if } T=C_{2} \\
2 & \text { if } T=C_{3}, C_{4}, C_{2} \times C_{2} \\
3 & \text { if } T=C_{5}, C_{6}, C_{2} \times C_{4} \\
4 & \text { if } T=C_{7}, C_{8}, C_{2} \times C_{6}
\end{array} \quad \text { and } m_{T}=\left\{\begin{array} { l l }
{ 6 } & { \text { if } T = C _ { 2 } , C _ { 2 } \times C _ { 2 } } \\
{ 2 } & { \text { if } T = C _ { 3 } , C _ { 4 } , C _ { 5 } , C _ { 6 } , C _ { 2 } \times C _ { 4 } } \\
{ 4 . 5 } & { \text { if } T = C _ { 9 } , C _ { 1 0 } } \\
{ 4 . 8 } & { \text { if } T = C _ { 1 2 } , C _ { 2 } \times C _ { 8 } }
\end{array} \left(\begin{array}{ll}
24 & \text { if } T=C_{7}, C_{8}, C_{2} \times C_{6} \\
36 & \text { if } T=C_{9}, C_{10} \\
48 & \text { if } T=C_{12}, C_{2} \times C_{8} .
\end{array}\right.\right.\right. \\
\end{cases}
$$

Lemma 6.17 Let $\delta_{u_{T}}$ be as defined in Table 6.2. For $T=C_{2}$, let $B=b^{2} d$. Then we have the following equalities:

$$
\begin{aligned}
& \left|\delta_{u_{T}}(a, B)\right|^{l_{T}}=a^{m_{T}} \delta_{u_{T}}\left(1, \frac{B}{a^{2}}\right)^{l_{T}} \quad \text { if } T=C_{2} \\
& \left|\delta_{u_{T}}(c, d, e, b)\right|^{l_{T}}=(c d e)^{m_{T}} \delta_{u_{T}}\left(1,1,1, \frac{b}{c^{3} d^{2} e}\right) l^{l_{T}} \quad \text { if } T=C_{3} \\
& \left|\delta_{u_{T}}(c, d, b)\right|^{l_{T}}=(c d)^{m_{T}} \delta_{u_{T}}\left(1,1, \frac{b}{c^{2} d}\right)^{l_{T}} \quad \quad \text { if } T=C_{4} \\
& \left|\delta_{u_{T}}(a, b, d)\right|^{l_{T}}=(a d)^{m_{T}} \delta_{u_{T}}\left(1, \frac{b}{a}, 1\right)^{l_{T}} \quad \text { if } T=C_{2} \times C_{2} \\
& \left|\delta_{u_{T}}(a, b)\right|^{l_{T}}=a^{m_{T}} \delta_{u_{T}}\left(1, \frac{b}{a}\right)^{l_{T}} \quad \text { for the remaining } T \text {. }
\end{aligned}
$$

Proof For $T \neq C_{2}, C_{9}, C_{10}, C_{12}, C_{2} \times C_{8}$, it is easily verified that the equalities hold with the omission of the absolute value, which gives the lemma in these cases.

We now show by cases that equality holds for these remaining T
Case I. Suppose $T=C_{2}$. Then we check via a computer algebra system that the following equality holds:

$$
\left.\left(\delta_{u_{T}}(a, B)^{l_{T}}\right)^{2}=a^{m_{T}} \delta_{u_{T}}\left(1, \frac{B}{a^{2}}\right)^{l_{T}}\right)^{2}
$$

In particular, the equality in the lemma holds.

Case II. Suppose $T=C_{9}, C_{10}$. Then via a computer algebra system, we verify that

$$
\left.\left(\delta_{u_{T}}(a, b)^{l_{T}}\right)^{2}=a^{m_{T}} \delta_{u_{T}}\left(1, \frac{b}{a}\right)^{l_{T}}\right)^{2}
$$

This gives the lemma in this case as well.
Case III. Suppose $T=C_{12}, C_{2} \times C_{8}$. As before, via a computer algebra system, it is verified that

$$
\left.\left(\delta_{u_{T}}(a, b)^{l_{T}}\right)^{5}=a^{m_{T}} \delta_{u_{T}}\left(1, \frac{b}{a}\right)^{l_{T}}\right)^{5}
$$

holds. This concludes the proof.

6.6.1 The Polynomials $\hat{\alpha}, \hat{\beta}$ for $T=C_{2}, C_{3}, C_{4}$, and $C_{2} \times C_{2}$

In section 6.1, we established that for $T \neq C_{2}, C_{2} \times C_{2}$ the following equalities hold

$$
\begin{equation*}
\alpha_{T}(a, b)^{3}=a^{12} \alpha_{T}\left(1, \frac{b}{a}\right)^{3} \quad \beta_{T}(a, b)^{2}=a_{T}^{12} \beta_{T}\left(1, \frac{b}{a}\right)^{2} \tag{6.13}
\end{equation*}
$$

Now suppose $T=C_{3}$ so that $a=c^{3} d^{2} e$ with d and e relatively prime positive squarefree integers. Let $\hat{\alpha}_{T}=\hat{\alpha}_{T}(c, d, e, b)$ and $\hat{\beta}_{T}=\hat{\beta}_{T}(c, d, e, b)$ such that $\hat{\alpha}_{T}(c, d, e, b)=$ $\alpha_{T}\left(c^{3} d^{2} e, b\right)$ and $\hat{\beta}_{T}(c, d, e, b)=\beta_{T}\left(c^{3} d^{2} e, b\right)$.

Similarly for $T=C_{4}$, write $a=c^{2} d$ for d a positive squarefree integer Now let $\hat{\alpha}_{T}=$ $\hat{\alpha}_{T}(c, d, b)$ and $\hat{\beta}_{T}=\hat{\beta}_{T}(c, d, b)$ such that $\hat{\alpha}_{T}(c, d, b)=\alpha_{T}\left(c^{2} d, b\right)$ and $\hat{\beta}_{T}(c, d, b)=$ $\beta_{T}\left(c^{2} d, b\right)$.

Consequently, (6.13) yields the following equalities

$$
\begin{aligned}
\hat{\alpha}_{T}(c, d, e, b)^{3} & =\left(c^{3} d^{2} e\right)^{12} \hat{\alpha}_{T}\left(1,1,1, \frac{b}{c^{3} d^{2} e}\right)^{3} & & \text { if } T=C_{3} \\
\hat{\beta}_{T}(c, d, e, b)^{2} & =\left(c^{3} d^{2} e\right)^{12} \hat{\beta}_{T}\left(1\left(1,1, \frac{b}{c^{3} d^{2} e}\right)^{2}\right. & & \text { if } T=C_{3} \\
\hat{\alpha}_{T}(c, e, b)^{3} & =\left(c^{2} d\right)^{12} \hat{\alpha}_{T}\left(1,1, \frac{b}{c^{2} d}\right)^{3} & & \text { if } T=C_{4} \\
\hat{\beta}_{T}(c, e, b)^{2} & =\left(c^{2} d\right)^{12} \hat{\beta}_{T}\left(1, \frac{b}{c^{2} d}\right)^{2} & & \text { if } T=C_{4}
\end{aligned}
$$

By Theorem 5.14 the minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ where $u_{T}=c^{2} d$. Therefore

$$
\begin{aligned}
& u_{T}^{-12} \alpha_{T}(a, b)^{3}=(c d e)^{12} \hat{\alpha}_{T}\left(1,1,1, \frac{b}{c^{3} d^{2} e}\right)^{3} \\
& u_{T}^{-12} \beta_{T}(a, b)^{2}=(c d e)^{12} \hat{\beta}_{T}\left(1,1,1, \frac{b}{c^{3} d^{2} e}\right)^{2} .
\end{aligned}
$$

For $T=C_{4}$, the minimal discriminant of E_{T} is $u_{T}^{-12} \gamma_{T}$ where u_{T} is either c or $2 c$. In particular,

$$
\begin{aligned}
c^{-12} \alpha_{T}(a, b)^{3} & =(c d)^{12} \hat{\alpha}_{T}\left(1,1, \frac{b}{c^{2} d}\right)^{3} \\
c^{-12} \beta_{T}(a, b)^{2} & =(c d)^{12} \hat{\beta}_{T}\left(1,1, \frac{b}{c^{2} d}\right)^{2} .
\end{aligned}
$$

For $T=C_{2}$, we set $B=b^{2} d$ so that $\hat{\alpha}_{T}(a, B)=\alpha_{T}(a, b, d)$ and $\hat{\beta}(a, B)=$ $\beta_{T}(a, b, d)$. Then

$$
\alpha_{T}(a, b, d)^{3}=a^{m_{T}} \hat{\alpha}_{T}\left(1, \frac{B}{a^{2}}\right)^{3} \quad \beta_{T}(a, b, d)^{2}=a^{6} \hat{\beta}_{T}\left(1, \frac{B}{a^{2}}\right)^{2}
$$

Lastly, for $T=C_{2} \times C_{2}$ we saw that

$$
\alpha_{T}(a, b, d)^{3}=(a d)^{6} \alpha_{T}\left(1, \frac{b}{a}, 1\right)^{3} \quad \beta_{T}(a, b, d)^{2}=(a d)^{6} \beta_{T}\left(1, \frac{b}{a}, 1\right)^{2} .
$$

6.6.2 Real-Valued Functions

Let $u_{T}^{-12} \gamma_{T}$ be the minimal discriminant of E_{T} where u_{T} is as given in Theorem 5.14.For each u_{T} we define a real valued function $\varphi_{u_{T}}: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
\varphi_{u_{T}}(x)=\left\{\begin{array}{l}
\left\{\begin{array}{l}
u_{T}^{-12} \max \left\{\hat{\alpha}_{T}(1, x)^{3}, \hat{\beta}_{T}(1, x)^{2}\right\} \\
u_{T}^{-12} \max \left\{\hat{\alpha}_{T}(1,1,1, x)^{3}, \hat{\beta}_{T}(1,1,1, x)^{2}\right\} \\
u^{2}
\end{array}\right\}\left(\begin{array}{l}
\text { if } T=C_{3} \\
\text { if } T=C_{4}
\end{array}\right. \\
\begin{array}{l}
u_{T}^{-12} \max \left\{\begin{array}{l}
\hat{\alpha}_{T}(1,1, x)^{3}, \hat{\beta}_{T}(1,1, x)^{2} \\
u_{T}^{-12} \max \{ \\
\hat{\alpha}_{T}(1, x, 1)^{3}, \hat{\beta}_{T}(1, x, 1)^{2}
\end{array}\right\}\left(\begin{array}{l}
\text { if } T=C_{2} \times C_{2} \\
u_{T}^{-12} \max \left\{\alpha_{T}(1, x)^{3}, \beta_{T}(1, x)^{2}\right.
\end{array}\right. \\
\text { otherwise. }
\end{array}
\end{array}\right.
$$

Next, define $\psi_{u_{T}}: \mathbb{R} \rightarrow \mathbb{R}$ by
$\psi_{u_{T}}(x)= \begin{cases}\left(\varphi_{u_{T}}(x)^{2}-\left|\delta_{u_{T}}(1, x)\right|^{3}\right. & \text { if } T=C_{2} \\ \varphi_{u_{T}}(x)-\left|\delta_{u_{T}}(1,1,1, x)\right|^{l_{T}} & \text { if } T=C_{3} \\ \varphi_{u_{T}}(x)-\left|\delta_{u_{T}}(1,1, x)\right|^{l_{T}} & \text { if } T=C_{4} \\ \left(\varphi_{u_{T}}(x)-\left|\delta_{u_{T}}(1, x, 1)\right|^{l_{T}}\right. & \text { if } T=C_{2} \times C_{2} \\ \varphi_{u_{T}}(x)^{2}-\left|\delta_{u_{T}}(1, x)\right|^{2 l_{T}} & \text { if } T=C_{9}, C_{10} \\ \varphi_{u_{T}}(x)^{5}-\left|\delta_{u_{T}}(1, x)\right|^{l_{T}} & \text { if } T=C_{12}, C_{2} \times C_{8} \\ \varphi_{u_{T}}(x)-\left|\delta_{u_{T}}(1, x)\right|^{l_{T}} & \text { otherwise. }\end{cases}$
Lemma 6.18 Let $\psi_{u_{T}}$ ble as defined in (6.14). Then $\psi_{u_{T}}$ is nonnegative. Moreover, if $\psi_{u_{T}}$ has a root, then the root is irrational. In particular, for $x \in \mathbb{Q}$ we have the following inequalities:

$$
\begin{aligned}
&\left|\delta_{u_{T}}(1,1,1, x)\right|^{l_{T}}<\varphi_{u_{T}}(x) \text { if } T=C_{3} \\
&\left|\delta_{u_{T}}(1,1, x)\right|^{l_{T}}<\varphi_{u_{T}}(x) \text { if } T=C_{4} \\
&\left|\delta_{u_{T}}(1, x, 1)\right|^{l_{T}}<\varphi_{u_{T}}(x) \text { if } T=C_{2} \times C_{2} \\
&\left|\delta_{u_{T}}(1, x)\right|^{l_{T}}<\varphi_{u_{T}}(x) \text { if otherwise. }
\end{aligned}
$$

Proof For each u_{T}, let psiuT [x] be the Mathematica input [30] for $\psi_{u_{T}}$. Then the following Mathematica inputs

$$
\begin{array}{ll}
\text { Reduce }[\mathrm{psiuT}[\mathrm{x}]>=0, \mathrm{x}, \text { Reals] }] & \text { if } T=C_{2} \times C_{4} \text { and } u_{T}=2 \\
\text { Reduce[psiuT }[\mathrm{x}]>0, \mathrm{x}, \text { Reals] } & \text { otherwise }
\end{array}
$$

return True which verifies that $\psi_{u_{T}}$ is nonnegative. Now suppose $T=C_{2} \times C_{4}$ with $u_{T}=2$. Then solving $\psi_{u_{T}}(x)=0$ gives the solution set

$$
\{-3 \pm \sqrt{5}, 1 \pm \sqrt{5}\}
$$

In particular, $\psi_{u_{T}}(x)$ is positive for all rational numbers x. Now observe that if n, m, and k are positive real numbers such that $n^{k}<m^{k}$, then $n<m$. From this, the last claim now follows.

6.6.3 Proof of Theorem 6.6

We are now ready to prove Theorem 6.6.

Theorem 6.6. Let T be one of the fifteen torsion subgroups allowed by Theorem 2.1 and let l_{T} be as given in (6.7). If E is a rational elliptic curve with j-invariant $\neq 0,1728$, then $T \hookrightarrow E(\mathbb{Q})_{\text {tors }}$, then $\sigma_{m}(E) \geq l_{T}$ where l_{T} is as given in (6.12)

Proof Let E be a rational elliptic curve with conductor N_{E}. By Theorem 6.7, $N_{E} \leq \Delta_{E}^{\min }$. Let c_{4} and c_{6} be the invariants associated to a global minimal model of E so that $1728 \Delta_{E}^{\min }=c_{4}^{3}-c_{6}^{2}$. From this, we obtain that $\Delta_{E}^{\min }<\max \left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\}$. In particular, $\sigma_{m}(E)>1$ for all rational elliptic curves E.

Now suppose T is one of the fourteen non-trivial torsion subgroups allowed by Theorem 2.1. If $T \hookrightarrow E(\mathbb{Q})_{\text {tors }}$, then E is \mathbb{Q}-isomorphic to E_{T} for some integers a and b (and d in the case $T=C_{2}, C_{2} \times C_{2}$. So it suffices to prove that $\sigma_{m}\left(E_{T}\right) \geq l_{T}$. Let c_{4} and c_{6} be the invariants associated with a global minimal model of E_{T}. By Theorem 5.14, $c_{4}=u_{T}^{-4} \alpha_{T}$ and $c_{6}=u_{T}^{-6} \beta_{T}$. In particular,

$$
\max \left\{c_{4}^{3}, c_{6}^{2}=u_{T}^{-12} \max \left\{\alpha_{T}^{3}, \beta_{T}^{2}\right.\right.
$$

For $T=C_{2}$, let $B=b^{2} d$. As we saw in the proof of Proposition 6.4,

$$
\max \left\{\alpha_{T}^{3}, \beta_{T}^{2}= \begin{cases}a^{m_{T}} \max \left\{\left(\hat{\alpha}_{T}\left(1, \frac{B}{a^{2}}\right)^{3}, \hat{\beta}_{T}\left(1, \frac{B}{a^{2}}\right)^{2}\right\}\right. & \text { if } T=C_{2} \\ \left((a d) ^ { m _ { T } } \operatorname { m a x } \left\{\left(\alpha_{T}\left(1, \frac{b}{a}, 1\right)^{3}, \beta_{T}\left(1, \frac{b}{a}, 1\right)^{2}\right\}\right.\right. & \text { if } T=C_{2} \times C_{2} \\ a^{m_{T} \max \left\{\left(\alpha_{T}\left(1, \frac{b}{a}\right)^{3}, \beta_{T}\left(1, \frac{b}{a}\right)^{2}\right\}\right.} & \text { otherwise. }\end{cases}\right.
$$

It suffices to show the extstence of a number y_{T} such that $N_{T}<\left|y_{T}\right|^{l_{T}}<\max \left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\}$. Indeed, this would imply

$$
\begin{aligned}
\log N_{T} & <l_{T} \log |y|<\log \max \left\{c_{4}^{3}, c_{6}^{2}\right. \\
& \Longrightarrow \quad \frac{l_{T} \log |y|}{\log N_{T}}<\frac{\log \max \left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\}}{\log N_{T}}=\sigma_{m}\left(E_{T}\right)
\end{aligned}
$$

Since $\frac{\log |y|}{\log N_{T}}>1$ it follows that $l_{T}<\sigma_{m}\left(E_{T}\right)$. We now show this by cases.

Case I. Suppose $T=C_{2}$. Then

$$
\varphi_{u_{T}}\left(\frac{B}{a^{2}}\right)=u_{T}^{-12} \max \left\{\hat{\alpha}_{T}\left(1, \frac{B}{a^{2}}\right)^{3}, \hat{\beta}_{T}\left(1, \frac{B}{a^{2}}\right)^{2}\right\} .
$$

By Lemmas 6.17 and 6.18,

$$
\begin{aligned}
& \delta_{u_{T}}\left(1, \frac{B}{a^{2}}\right)^{1.5}<\varphi_{u_{T}}\left(\frac{B}{a^{2}}\right)(\\
& \Longrightarrow \quad a^{6} \delta_{u_{T}}\left(1, \frac{B}{a^{2}}\right)^{1.5}<a^{6} \varphi_{u_{T}}\left(\frac{B}{a^{2}}\right)(\\
& \Longleftrightarrow \quad\left|\delta_{u_{T}}(a, B)\right|^{1.5}<\max \left\{\xi_{4}^{3}, c_{6}^{2}\right.
\end{aligned}
$$

By Proposition 6.16, $N_{T} \leq\left|\delta_{u_{T}}(a, B)\right|^{1.5}$. Consequently, $\sigma_{m}\left(E_{T}\right)>1.5$.
Case II. Suppose $T=C_{3}$. Then

$$
\varphi_{u_{T}}\left(\frac{b}{c^{3} d^{2} e}\right)\left\{=u_{T}^{-12} \max \left\{\hat{\alpha}_{T}\left(1,1,1, \frac{b}{c^{3} d^{2} e}\right)^{3}, \hat{\beta}_{T}\left(1,1,1, \frac{b}{c^{3} d^{2} e}\right)^{2}\right\} .\right.
$$

By Lemmas 6.17 and 6.18,

$$
\begin{aligned}
& \delta_{u_{T}}\left(1,1,1, \frac{b}{c^{3} d^{2} e}\right)^{2}<\varphi_{u_{T}}\left(\frac{b}{c^{3} d^{2} e}\right) \\
& \Longrightarrow(c d e)^{12} \delta_{u_{T}}\left(1,1,1, \frac{b}{c^{3} d^{2} e}\right)^{2}<(c d e)^{12} \varphi_{u_{T}}\left(\frac{b}{c^{3} d^{2} e}\right)(\\
& \Longleftrightarrow\left|\delta_{u_{T}}(c, d, e, b)\right|^{2}<\max \left\{c_{4}^{3}, c_{6}^{2} .\right.
\end{aligned}
$$

By Proposition 6.16, $N_{T} \leq\left|\delta_{u_{T}}(c, d, e, b)\right|^{2}$. Consequently, $\sigma_{m}\left(E_{T}\right)>2$.
Case III. Suppose $T=C_{4}$. Then

$$
\varphi_{u_{T}}\left(\frac{b}{c^{2} d}\right)=u_{T}^{-12} \max \left\{\hat{\alpha}_{T}\left(1,1, \frac{b}{c^{2} d}\right)^{3}, \hat{\beta}_{T}\left(1,1, \frac{b}{c^{2} d}\right)^{2}\right\} .
$$

By Lemmas 6.17 and 6.18,

$$
\begin{aligned}
& \delta_{u_{T}}\left(1,1, \frac{b}{c^{2} d}\right)^{2}<\varphi_{u_{T}}\left(\frac{b}{c^{2} d}\right)(\\
& \Longrightarrow(c d)^{12} \delta_{u_{T}}\left(1,1, \frac{b}{c^{2} d}\right)^{2}<(c d)^{12} \varphi_{u_{T}}\left(\frac{b}{c^{2} d}\right)(\\
& \Longleftrightarrow\left|\delta_{u_{T}}(c, d, b)\right|^{2}<\max \left\{\epsilon_{4}^{3}, c_{6}^{2} .\right.
\end{aligned}
$$

By Proposition 6.16, $N_{T} \leq\left|\delta_{u_{T}}(c, d, b)\right|^{2}$. Consequently, $\sigma_{m}\left(E_{T}\right)>2$.
Case IV. Suppose $T=C_{2} \times C_{2}$. Then

$$
\varphi_{u_{T}}\left(\frac{b}{a}\right)\left(=u_{T}^{-12} \max \left\{\hat{\alpha}_{T}\left(1, \frac{b}{a}, 1\right)^{3}, \hat{\beta}_{T}\left(1, \frac{b}{a}, 1\right)^{2}\right\} .\right.
$$

By Lemmas 6.17 and 6.18,

$$
\begin{aligned}
& \delta_{u_{T}}\left(1, \frac{b}{a}, 1\right)^{2}<\varphi_{u_{T}}\left(\frac{b}{a}\right)(\\
& \Longrightarrow \quad(a d)^{6} \delta_{u_{T}}\left(1, \frac{b}{a}, 1\right)^{2}<(a d)^{6} \varphi_{u_{T}}\left(\frac{b}{a}\right)(\\
& \Longleftrightarrow \quad\left|\delta_{u_{T}}(a, b, d)\right|^{2}<\max \left\{{c_{4}^{3}, c_{6}^{2}}^{\Longrightarrow}\right.
\end{aligned}
$$

By Proposition 6.16, $N_{T} \leq\left|\delta_{u_{T}}(a, b, d)\right|^{2}$. Consequently, $\sigma_{m}\left(E_{T}\right)>2$.
Now let $T \neq C_{2}, C_{3}, C_{4}, C_{2} \times C_{2}$. Then

$$
\varphi_{u_{T}}\left(\frac{b}{a}\right)=u_{T}^{-12} \max \left\{\alpha_{T}\left(1, \frac{b}{a}\right)^{3}, \beta_{T}\left(1, \frac{b}{a}\right)^{2}\right\} .
$$

By Lemmas 6.17 and 6.18,

$$
\begin{aligned}
& \delta_{u_{T}}\left(1, \frac{b}{a}\right)^{l_{T}}<\varphi_{u_{T}}\left(\frac{b}{a}\right) \\
& \Longrightarrow \quad a^{m_{T}} \delta_{u_{T}}\left(1, \frac{b}{a}\right)^{l_{T}}<a^{m_{T}} \varphi_{u_{T}}\left(\frac{b}{a}\right)(\\
& \Longleftrightarrow \quad\left|\delta_{u_{T}}(a, b)\right|^{l_{T}}<\max \left\{\left(_{4}^{3}, c_{6}^{2}\right.\right.
\end{aligned}
$$

By Proposition 6.16, $N_{T} \leq\left|\delta_{u_{T}}(a, b)\right|^{l_{T}}$. Consequently, $\sigma_{m}\left(E_{T}\right)>l_{T}$ which concludes the proof.

The Theorem automatically implies the following corollary.

Corollary 6.19 Let E be a rational elliptic curve such that $\sigma_{m}(E) \leq 1.5$. Then $E(\mathbb{Q})_{\text {tors }}$ is trivial.

Now let n be a positive integer and consider the elliptic curve E_{n} given by the Weierstrass model

$$
E_{n}: Y^{2}+y=x^{3}+n x
$$

Using (2.2), we compute

$$
c_{4}=-48 n, \quad c_{6}=-216, \quad \Delta_{n}=-\left(64 n^{3}+27\right)(
$$

In particular, E_{n} is a global minimal model for E_{n}. Indeed, suppose $x \longmapsto u^{2} x+r$ and $y \longmapsto u^{3} y+u^{2} s x+w$ were an admissible change of variables between E_{n} and a global minimal model of E. Then by $2.4 u, r, s, w \in \mathbb{Z}$ since E_{n} is given by an integral Weierstrass model. But then u^{4} divides $\operatorname{gcd}\left(c_{4}, c_{6}\right)$. But this only occurs when $|u|=1$. Thus E_{n} is a global minimal model for E_{n}.

Corollary 6.20 If Δ_{n} is squarefree, then the elliptic curve E_{n} has trivial torsion subgroup for each positive integer n. Moreover, there are infinitely many n's such that Δ_{n} is squarefree and in particular,

$$
\lim _{n \rightarrow \infty, \Delta_{n} \text { squarefree }} \sigma_{m}\left(E_{n}\right)=1
$$

Proof Let $N_{E_{n}}$ denote the conductor of E_{n}. If Δ_{n} is squarefree, then n is not divisible by 3 . Moreover, since Δ_{n} is odd we have that these assumption imply that $\operatorname{gcd}\left(216, \Delta_{n}\right)=1$ and so E_{n} is semistable. In particular, $N_{E_{n}}=\Delta_{n}$. Since

$$
\Delta_{n}=-(4 n+3)\left(16 n^{2}-12 n+9\right)
$$

is not divisible by some square of a linear polynomial in n with integral coefficient, we have by the main Theorem of [41] that there infinitely many n such that Δ_{n} is squarefree. To this end, it is easy to verify via Calculus that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)=\frac{3 \log (48 x)}{\log \left(64 x^{3}+27\right)}
$$

is differentiable on $[1, \infty)$ and is monotonically decreasing. Moreover,

$$
\lim _{x \rightarrow \infty} f(x)=1
$$

Consequently,

$$
\lim _{n \rightarrow \infty, \Delta_{n} \text { squarefree }} \sigma_{m}\left(E_{n}\right)=\lim _{n \rightarrow \infty, \Delta_{n} \text { squarefree }} \frac{3 \log (48 n)}{\log \left(64 n^{3}+27\right)}=1
$$

It remains to show that $E(\mathbb{Q})_{\text {tors }}$ is trivial whenever Δ_{n} is squarefree. Since $f(x)$ is monotonically decreasing, we have that for any positive integer j such that Δ_{n+j} is squarefree the inequality

$$
\sigma_{m}\left(E_{n}\right)<\sigma_{m}\left(E_{n+j}\right)
$$

holds. Moreover, for each $x \geq 36, f(x)<1.5$ and so by Corollary $6.19 E_{n}(\mathbb{Q})_{\text {tors }}$ is trivial if $n \geq 36$ and Δ_{n} is squarefree. For $n<36$, we verify via SageMath [29] that $E_{n}(\mathbb{Q})_{\text {tors }}$ is trivial.

As a direct consequence of this corollary we have that 1 is in the set of limit points of $\sigma_{m}(E)$ where E ranges over all rational elliptic curves E.

7. CLASSIFICATION OF REDUCED MINIMAL MODELS

The goal of this chapter is to classify the reduced minimal models of rational elliptic curves with $T \hookrightarrow E(\mathbb{Q})$ where $T=C_{N}$ for $N=3, \ldots, 10,12$ or $T=C_{2} \times C_{8}$. As in the previous two chapters, we will consider the elliptic curves $E_{T}=E_{T}(a, b)$ which parameterize all rational elliptic curves with $T \hookrightarrow E(\mathbb{Q})$. We recall, that for $T=C_{3}$, we need to consider those curves E which have j-invariant 0 separately. In section 1 , we give a brief review of the reduced minimal model as well as a couple of results which will ease the use of the Laska-Kraus-Connell Algorithm in our setting. In section 2, we state the main theorem and in section 3 we provide its proof by considering each T separately. The proof relies on computer verification via Mathematica [30]. The reader is referred to Appendix C which contains a review of the Mathematica commands Table and Mod which we will use in the course of proving the main theorem. We conclude the chapter with examples.

7.1 Reduced Minimal Models and Torsion

Let E be a rational elliptic curve. As we saw in Chapter 2.3, E is \mathbb{Q}-isomorphic to a unique elliptic curve R known as the reduced minimal model of E. Recall that the reduced minimal model of E is an elliptic curve R which is \mathbb{Q}-isomorphic to E and whose Weierstrass model

$$
R: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

has the property that R is a global minimal model for E and $a_{1}, a_{3} \in\{0,1\}$ and $a_{2} \in$ $\{-1,0,1\}$. Moreover, if c_{4} and c_{6} are the invariants associated with a global minimal
model of E, then the Laska-Kraus-Connell Algorithm (Algorithm 2.8) computes the a_{i} 's of the Weierstrass model of R :

$$
\begin{array}{ll}
b_{2}=-c_{6} \bmod 12 \in\{-5,-4, \ldots, 6\} & b_{4}=\frac{b_{2}^{2}-c_{4}}{24} \\
b_{6}=\frac{-b_{2}^{3}+36 b_{2} b_{4}-c_{6}}{216} & a_{1}=b_{2} \bmod 2 \in\{0,1\} \tag{7.1}\\
a_{2}=\frac{b_{2}-a_{1}}{4} & a_{3}=b_{6} \bmod 2 \in\{0,1\} \\
a_{4}=\frac{b_{4}-a_{1} a_{3}}{2} & a_{6}=\frac{b_{6}-a_{3}}{4}
\end{array}
$$

In particular, the quantities a_{j} and b_{j} are integers.

Table 7.1.: The Reduced Minimal Models R_{j} for $1 \leq j \leq 12$ where $R_{j}: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}-\frac{A}{48} x-\frac{B}{1728}$

j	a_{1}	a_{2}	a_{3}	A	B
1	0	0	0	c_{4}	$2 c_{6}$
2	0	0	1	c_{4}	$2 c_{6}+216$
3	0	-1	0	$c_{4}-16$	$2\left(-6 c_{4}+c_{6}+32\right)$
4	0	-1	1	$c_{4}-16$	$2\left(-6 c_{4}+c_{6}+248\right)$
5	0	1	0	$c_{4}-16$	$2\left(6 c_{4}+c_{6}-32\right)$
6	0	1	1	$c_{4}-16$	$2\left(6 c_{4}+c_{6}+184\right)$
7	1	0	0	$c_{4}-1$	$3 c_{4}+2 c_{6}-1$
8	1	0	1	$c_{4}+23$	$3 c_{4}+2 c_{6}+431$
9	1	-1	0	$c_{4}-9$	$-9 c_{4}+2 c_{6}+27$
10	1	-1	1	$c_{4}+15$	$-9 c_{4}+2 c_{6}+459$
11	1	1	0	$c_{4}-25$	$15 c_{4}+2 c_{6}-125$
12	1	1	1	$c_{4}-1$	$15 c_{4}+2 c_{6}+307$

Now suppose we run the Laska-Kraus-Connell Algorithm for an elliptic curve E with invariants c_{4} and c_{6} associated to a global minimal model of E. We show that computing a_{1}, a_{2}, and a_{3} uniquely determines a_{4} and a_{6} in terms of c_{4} and c_{6}.

In particular, there are exactly 12 possible reduced minimal models R_{j} for E with $j=1,2, \ldots, 12$. Table 7.1 gives the 12 possible Weierstrass models of R_{j}.

Lemma 7.1 Let R be a rational elliptic curve given by the global minimal model

$$
R: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

such that $a_{1}, a_{3} \in\{0,1\}$ and $a_{2} \in\{-1,0,1\}$. Then a_{4} and a_{6} are uniquely determined by the invariants c_{4} and c_{6} of the Weierstrass model for R. In particular, there are 12 possible reduced minimal models and they coincide with the ones given in Table 7.1.

Proof Let $S_{j}: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ where a_{1}, a_{2}, a_{3} are as given in Table 7.1 for R_{j}. Computing the invariants c_{4} and c_{6} of the model of S_{j} yields

$$
c_{4}=\left\{\begin{array}{ll}
-48 a_{4} & \text { if } j=1 \\
-48 a_{4} & \text { if } j=2 \\
-16\left(3 a_{4}-1\right) & \text { if } j=3 \\
-16\left(3 a_{4}-1\right) & \text { if } j=4 \\
-16\left(3 a_{4}-1\right) & \text { if } j=5 \\
-16\left(3 a_{4}-1\right) & \text { if } j=6 \\
-\left(48 a_{4}-1\right) & \text { if } j=7 \\
-\left(48 a_{4}+23\right) & \text { if } j=8 \\
-3\left(16 a_{4}-3\right) & \text { if } j=9 \\
-3\left(16 a_{4}+5\right) & \text { if } j=10 \\
-\left(48 a_{4}-25\right) & \text { if } j=11 \\
-\left(48 a_{4}-1\right) & \text { if } j=12
\end{array} \quad \text { if } j=10 \text { if } j=27 口 \begin{array}{ll}
-864 a_{6} \\
-216\left(4 a_{6}+1\right) \\
-32\left(9 a_{4}+27 a_{6}-2\right) & \text { if } j=3 \\
-8\left(36 a_{4}+108 a_{6}+19\right) & \text { if } j=4 \\
-32\left(-9 a_{4}+27 a_{6}+2\right) & \text { if } j=5 \\
-8\left(-36 a_{4}+108 a_{6}+35\right) & \text { if } j=6 \\
-\left(-72 a_{4}+864 a_{6}+1\right) & \text { if } j=7 \\
-\left(-72 a_{4}+864 a_{6}+181\right) & \text { if } j=8 \\
-27\left(8 a_{4}+32 a_{6}-1\right) & \text { if } j=9 \\
-27\left(8 a_{4}+32 a_{6}+11\right) & \text { if } j=10 \\
-\left(-360 a_{4}+864 a_{6}+125\right) & \text { if } j=11 \\
-\left(-360 a_{4}+864 a_{6}+161\right) & \text { if } j=12
\end{array}\right.
$$

For each j, solving for a_{4} and a_{6} in terms of c_{4} and c_{6} allows us to verify that $a_{4}=-\frac{A}{48}$ and $a_{6}=-\frac{B}{1728}$ for A and B as given in Table 7.1 in terms of c_{4} and c_{6}. Hence $R_{j}=S_{j}$ for each j.

As a result, given a rational elliptic curve E with invariants c_{4} and c_{6} associated to a global minimal model of E, the reduced minimal model is uniquely determined
upon computing a_{1}, a_{2}, and a_{3}. The next result simplifies the computation of a_{3} in the Laska-Kraus-Connell Algorithm:

Lemma 7.2 Let E be a rational elliptic curve E with invariants c_{4} and c_{6} associated to a global minimal model of E and let R be the reduced minimal model of E. Let b_{2} and b_{4} be as in (7.1). If these quantities are known, then the invariant a_{3} of R is

$$
\begin{aligned}
& a_{3}= \begin{cases}0 & \text { if }-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 0 \bmod 16 \\
1 & \text { if }-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 8 \bmod 16\end{cases} \\
& \text { nat } a_{3} \equiv b_{6} \bmod 2 \in\{0,1\} \text { and }
\end{aligned}
$$

$$
b_{6}=\frac{-b_{2}^{3}+36 b_{2} b_{4}-c_{6}}{216}
$$

In particular, $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 0 \bmod 8$ since $216=8 \cdot 27$. Thus b_{6} is even if and only if $-b_{2}^{3}+36 b_{2} b_{4}-c_{6}$ is divisible by 16 .

7.2 Classification of Reduced Minimal Models

Let c_{4} and c_{6} be the invariants associated to a global minimal model of $E_{T}=$ $E_{T}(a, b)$ for some integers a and b. By Theorem 5.14 we have necessary and sufficient conditions on a and b so that $c_{4}=u_{T}^{-4} \alpha_{T}(a, b)$ and $c_{6}=u_{T}^{-6} \beta_{T}(a, b)$ for u_{T} as defined in Theorem 5.14. The following Theorem gives necessary and sufficient conditions on a and b for E_{T} to be \mathbb{Q}-isomorphic to R_{j} for some j for $T=C_{N}$ where $N=3, \ldots, 10,12$ or $T=C_{3}^{0}, C_{2} \times C_{8}$. Recall that E_{T} with $T=C_{3}$ parameterizes all rational elliptic curves E with non-zero j-invariant such that $C_{3} \hookrightarrow E(\mathbb{Q})$. Whereas E_{T} for $T=C_{3}^{0}$, parameterizes all rational elliptic curves E with j-invariant 0 such that $C_{3} \hookrightarrow E(\mathbb{Q})$. With this terminology, we now state the main Theorem of this chapter.

Theorem 7.3 Let $T=C_{N}$ where $N=3, \ldots, 10,12$ or $T=C_{3}^{0}, C_{2} \times C_{8}$. Then the reduced minimal model of E_{T} for $T=C_{10}, C_{2} \times C_{8}$ is R_{7}. For the remaining T, Table 7.2 lists the necessary and sufficient conditions on a and b for R_{j} to be the reduced minimal model of E_{T}.

Table 7.2.: Necessary and Sufficient Conditions for R_{j}

T	Conditions to determine R_{j}
C_{3}	$\begin{aligned} & R_{1} \quad \Longleftrightarrow a \equiv 0 \bmod 6 \text { and } 3 \nmid v_{2}(a) \\ & R_{2} \quad \Longleftrightarrow a \equiv 0 \bmod 6 \text { and } 3 \mid v_{2}(a) \\ & R_{5} \quad \Longleftrightarrow a \equiv \pm 2 \bmod 6 \text { and } 3 \nmid v_{2}(a) \\ & R_{6} \Longleftrightarrow a \equiv \pm 2 \bmod 6 \text { and } 3 \mid v_{2}(a) \\ & R_{7} \quad \Longleftrightarrow a \equiv \pm 1 \bmod 6 \text { and } b \text { is even } \\ & R_{8} \quad \Longleftrightarrow a \equiv \pm 1 \bmod 6 \text { and } b \text { is odd } \\ & R_{9} \quad \Longleftrightarrow a \equiv 3 \bmod 6 \text { and } b \text { is odd } \\ & R_{10} \Longleftrightarrow a \equiv 3 \bmod 6 \text { and } b \text { is even } \end{aligned}$
C_{3}^{0}	$\begin{aligned} & R_{1} \quad \Longleftrightarrow a \text { is even } \\ & R_{2} \quad \Longleftrightarrow a \text { is odd } \end{aligned}$
C_{4}	

continued on next page

Table 7.2.: continued

T	Conditions to determine R_{j}
	$\begin{aligned} R_{10} \Longleftrightarrow & \text { one of the following holds: }(i) a \text { is odd and either } 3 \nmid \\ & a b(a+b) \text { or } v_{3}(a) \text { is odd or }(i i) u_{T}=2 c, b d \equiv 7,15 \bmod 16, \\ & \text { and either } 3 \nmid a b(a+b) \text { or } v_{3}(a) \text { is odd } \\ R_{11} \Longleftrightarrow & u_{T}=2 c, b d \equiv 3,11 \bmod 16, \text { and either } 3 \mid(a+b) \text { or } v_{3}(a)> \\ & 0 \text { with } b d \equiv 7 \bmod 12 \\ R_{12} \Longleftrightarrow & \text { one of the following holds: }(i) a \text { is odd and either } 3 \mid(a+b) \\ & \text { or } v_{3}(a)>0 \text { is even with } b d \equiv 1,4 \bmod 6 \text { or }(i i) u_{T}=2 c, \\ & b d \equiv 7,15 \bmod 16, \text { and either } 3 \mid(a+b) \text { or } v_{3}(a)>0 \text { with } \\ & b d \equiv 7 \bmod 12 \end{aligned}$
C_{5}	$\begin{aligned} R_{4} & \Longleftrightarrow a b \equiv \pm 1 \bmod 6 \\ R_{6} & \Longleftrightarrow a b \equiv 3 \bmod 6 \\ R_{7} & \Longleftrightarrow a b \equiv 0 \bmod 6 \\ R_{12} & \Longleftrightarrow a b \equiv \pm 2 \bmod 6 \end{aligned}$
C_{6}	$\begin{aligned} R_{1} & \Longleftrightarrow a \equiv 3 \bmod 6 \text { with } v_{2}(a+b)=1,2 \\ R_{5} & \Longleftrightarrow a \equiv \pm 1 \bmod 6 \text { with } v_{2}(a+b)=1,2 \\ R_{7} & \Longleftrightarrow a \equiv \pm 1 \bmod 6 \text { with } v_{2}(a+b) \neq 1,2,3 \\ R_{8} & \Longleftrightarrow \text { either } a \equiv \pm 2 \bmod 6 \text { or } a \equiv \pm 1 \bmod 6 \text { with } v_{2}(a+b)=3 \\ R_{9} & \Longleftrightarrow a \text { either } a \equiv 0 \bmod 6 \text { or } a \equiv 3 \bmod 6 \text { with } v_{2}(a+b)=3 \\ R_{10} & \Longleftrightarrow a \equiv 3 \bmod 6 \text { with } v_{2}(a+b) \neq 1,2,3 \end{aligned}$
C_{7}	$\begin{aligned} R_{7} & \Longleftrightarrow a+b \equiv \pm 1 \bmod 3 \\ R_{10} & \Longleftrightarrow a+b \equiv 0 \bmod 3 \end{aligned}$
C_{8}	$\begin{aligned} R_{3} & \Longleftrightarrow a \equiv 0 \bmod 12 \\ R_{5} & \Longleftrightarrow a \equiv \pm 4 \bmod 12 \\ R_{7} & \Longleftrightarrow a \equiv \pm 1, \pm 2, \pm 5 \bmod 12 \\ R_{12} & \Longleftrightarrow a \equiv \pm 3,6 \bmod 12 \end{aligned}$

continued on next page

Table 7.2.: continued

| T | | Conditions to determine R_{j} |
| :--- | :--- | :--- | :--- |
| C_{9} | R_{7} | $\Longleftrightarrow a+b \equiv \pm 1 \bmod 3$ |
| | R_{10} | $\Longleftrightarrow a+b \equiv 0 \bmod 3$ |
| C_{12} | R_{7} | $\Longleftrightarrow a \equiv \pm 1, \pm 2, \pm 5 \bmod 12$ |
| | R_{8} | $\Longleftrightarrow a \equiv \pm 4 \bmod 12$ |
| | R_{9} | $\Longleftrightarrow a \equiv 0 \bmod 12$ |
| | R_{10} | $\Longleftrightarrow a \equiv \pm 3,6 \bmod 12$ |

7.3 Proof of Theorem 7.3

The proof relies on computer verification via Mathematica [30] and we refer the reader to Appendix C which reviews the Mathematica inputs Mod and Table. In what follows the Mathematica inputs $\mathrm{c} 4[\mathrm{a}, \mathrm{b}]$ and $\mathrm{c} 6[\mathrm{a}, \mathrm{b}]$ will refer to $c_{4}=u_{T}^{-4} \alpha_{T}(a, b)$ and $c_{6}=u_{T}^{-6} \beta_{T}(a, b)$ where T will be known from context. Moreover, for each T we will compute $-c_{6} \bmod 12$ and $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \bmod 16$ via the Mathematica inputs Mod and Table. The Mathematica input $\mathrm{V}[\mathrm{a}, \mathrm{b}]$ will correspond to $-b_{2}^{3}+36 b_{2} b_{4}-c_{6}$ where b_{2} and b_{4} are as defined in the Laska-Kraus-Connell Algorithm (7.1). For $T=C_{3}$, we will prove most of the result directly, but for the remaining T, we will use Mathematica to compute the congruences in the Laska-Kraus-Connell Algorithm.

The proof of the Theorem follows the same structure for each case presented below. Namely, we first compute $-c_{6} \bmod 12$ from which we deduce b_{2}, a_{1}, and a_{2} as defined in the Laska-Kraus-Connell Algorithm. Next we use Lemma 7.2 to compute a_{3}, namely checking the congruence $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \bmod 16$. This will conclude the proof of each case since by Lemma 7.1, the reduced minimal model is uniquely determined by a_{1}, a_{2}, and a_{3}.

7.3.1 Proof of Theorem 7.3 for $T=C_{3}$

Theorem 7.3 for $\boldsymbol{T}=\boldsymbol{C}_{\mathbf{3}}$. The reduced minimal model of E_{T} is
(i) $\quad R_{1} \Longleftrightarrow a \equiv 0 \bmod 6$ and $3 \nmid v_{2}(a)$
(ii) $\quad R_{2} \Longleftrightarrow a \equiv 0 \bmod 6$ and $3 \mid v_{2}(a)$
(iii) $\quad R_{5} \Longleftrightarrow a \equiv \pm 2 \bmod 6$ and $3 \nmid v_{2}(a)$
(iv) $\quad R_{6} \quad \Longleftrightarrow \quad a \equiv \pm 2 \bmod 6$ and $3 \mid v_{2}(a)$
(v) $\quad R_{7} \quad \Longleftrightarrow \quad a \equiv \pm 1 \bmod 6$ and b is even
(vi) $\quad R_{8} \Longleftrightarrow a \equiv \pm 1 \bmod 6$ and b is odd
(vii) $\quad R_{9} \quad \Longleftrightarrow \quad a \equiv 3 \bmod 6$ and b is odd
(viii) $\quad R_{10} \Longleftrightarrow a \equiv 3 \bmod 6$ and b is even

Proof By the proof of Theorem 5.14 the invariants c_{4} and c_{6} associated to a global minimal model of $E_{T}(a, b)$ are

$$
c_{4}=c d^{2} e^{3}(a-24 b) \quad \text { and } \quad c_{6}=-d^{2} e^{4}\left(q^{2}-36 a b+216 b^{2}\right)(
$$

where $a=c^{3} d^{2} e$ with d and e relatively prime squarefree positive integers. Consequently $-c_{6} \equiv c^{6} d^{6} e^{6} \bmod 12$. Note that it suffices to prove the converse of statements (i) through (viii) since these exhausts all possibilities for a and b.

Case I. Suppose $a \equiv 0 \bmod 6$. Then $-c_{6} \equiv 0 \bmod 6$ and therefore $b_{2}=a_{1}=a_{2}=$ 0 . We now consider,

$$
-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 8 b^{2} d^{2} e^{4} \bmod 16
$$

since $a \equiv 0 \bmod 6$. By Lemma 7.2,

$$
a_{3}=\left\{\begin{array}{ll}
0 & \text { if } d e \text { is even } \\
\lambda & \text { if } d e \text { is odd }
\end{array} \Longleftrightarrow a_{3}= \begin{cases}0 & \text { if } 3 \nmid v_{2}(a) \\
\lambda & \text { if } 3 \mid v_{2}(a)\end{cases}\right.
$$

since $3 \mid v_{2}(a)$ if and lonly if $d e$ is odd. This shows the converse of (i) and (ii).
Case II. Suppose $a \equiv \pm 2 \bmod 6$. Then $a^{2}=c^{6} d^{4} e^{2} \equiv 4 \bmod 12$ and therefore

$$
-c_{6}=4 d^{2} e^{4} \bmod 12
$$

Since $d e$ is not divisible by 3 it follows that $-c_{6} \equiv 4 \bmod 12$ since $4 k^{2} \equiv 4 \bmod 12$ for all integers k not divisible by 3 . Therefore $b_{2}=4$ and thus $a_{1}=0$ and $a_{2}=1$. Since $a \equiv \pm 2 \bmod 6$, it follows that 2 divides $c d e$ and so

$$
-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 8 b^{2} d^{2} e^{4} \bmod 16
$$

and so by Lemma 7.2,

$$
\begin{aligned}
& \quad a_{3}=\left\{\begin{array}{ll}
0 & \text { if } d e \text { is even } \\
1 & \text { if } d e \text { is odd }
\end{array} \Longleftrightarrow a_{3}= \begin{cases}0 & \text { if } 3 \nmid v_{2}(a) \\
\lambda & \text { if } 3 \mid v_{2}(a)\end{cases} \right. \\
& \text { s the conferse of }(i i i) \text { and }(i v) .
\end{aligned}
$$

Case III. Suppose $a \equiv \pm 1 \bmod 6$. Then $a^{2}=c^{6} d^{4} e^{2} \equiv 1 \bmod 12$. Thus

$$
-c_{6} \equiv d^{2} e^{4} \bmod 12
$$

Since $d e \equiv \pm 1 \bmod 6$ we have $-c_{6} \equiv 1 \bmod 12$. Hence $b_{2}=1$ and so $a_{1}=1$ and $a_{2}=0$. We now compute

$$
\begin{aligned}
-b_{2}^{3}+36 b_{2} b_{4}-c_{6} & =\frac{1-3 c^{4} d^{4} e^{4}}{2}+36 b c d^{2} e^{3}+216 b^{2} d^{2} e^{4}-36 b c^{3} d^{4} e^{5}+c^{6} d^{6} e^{6} \\
& =\frac{1-3 k^{4}}{2}+36 l\left(y-k^{2}\right)\left(k^{6}+216 b^{2} d^{2} e^{4}\right. \\
\text { ere } k=c d e \text { and } l & =b c d^{2} e^{3} . \text { Since } a=+1 \text { mod } 6 . \text { we have that } k \text { is odd. Us }
\end{aligned}
$$

where $k=c d e$ and $l=b c d^{2} e^{3}$. Since $a \equiv \pm 1 \bmod 6$, we have that k is odd. Using Mathematica, we verify that
is divisible by 16 via the input

$$
\frac{1-3 k^{4}}{2}+36 l\left(1 (- k ^ { 2 }) \left(+k^{6}\right.\right.
$$

$$
\operatorname{Table}\left[\operatorname{Mod}\left[\left(1-3 * \mathrm{k}^{\wedge} 4\right) / 2+36 * l *\left(1-\mathrm{k}^{\wedge} 2\right)+\mathrm{k}^{\wedge} 6,16\right],\{\mathrm{k}, 1,16,2\},\{1,0,16\}\right]
$$

Therefore

$$
-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 8 b^{2} d^{2} e^{4} \bmod 16 .
$$

By Lemma 7.2,

$$
a_{3}=\left\{\begin{array}{ll}
\varnothing & \text { if } b^{2} d^{2} e^{4} \text { is even } \\
1 & \text { if } b^{2} d^{2} e^{4} \text { is odd }
\end{array} \quad \Longleftrightarrow \quad a_{3}= \begin{cases}\varnothing & \text { if } b \text { is even } \\
x & \text { if } b \text { is odd }\end{cases}\right.
$$

This shows the converse of (v) and (vi).
Case IV. Lastly, suppose $a \equiv 3 \bmod 6$. Then $a \equiv \pm 3 \bmod 12$ and so $a^{2}=c^{6} d^{4} e^{2} \equiv$ $9 \bmod 12$. Thus

$$
-c_{6} \equiv 9 d^{2} e^{4} \bmod 12=9 \bmod 12
$$

since $d e \equiv \pm 1, \pm 3 \bmod 12$ implies that $d^{2} e^{4} \equiv 1,9 \bmod 12$. Hence $b_{2}=-3$ and so $a_{1}=1$ and $a_{2}=-1$. Then

$$
\begin{aligned}
-b_{2}^{3}+36 b_{2} b_{4}-c_{6} & =\frac{9 c^{4} d^{4} e^{4}-27}{2}-36 b c d^{2} e^{3}\left(3 (+ c ^ { 2 } d ^ { 2 } e ^ { 2 }) \not \left(c^{6} d^{6} e^{6}+216 b^{2} d^{2} e^{2}\right.\right. \\
& =\frac{9 k^{4}-27}{2}-36 l\left(3 (+ k ^ { 2 }) \left(+k^{6}+216 b^{2} d^{2} e^{2}\right.\right.
\end{aligned}
$$

where $k=c d e$ and $l=b c d^{2} e^{3}$. Since $a \equiv 3 \bmod 6$, it follows that k is odd. We now verify that

$$
\begin{align*}
& \frac{9 k^{4}-27}{2}-36 l\left(3\left(+k^{2}\right) \notin k^{6}\right. \tag{7.2}\\
& \text { e Mathematica input }
\end{align*}
$$

is not divisible by 16 via the Mathematica input

$$
\text { Table[Mod[(9*k^4-27)/2-36*l*(3+k^2)+k^6,16],\{k,1,16,2\},\{1,0,16\}] }
$$

In fact, through Mathematica we see that expression (7.2) is congruent to8 modulo 16. Therefore

$$
-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 8+8 b^{2} d^{2} e^{2} \bmod 16
$$

and so
$\begin{gathered}\qquad a_{3}=\left\{\begin{array}{l}\rho \\ \text { if } b^{2} d^{2} e^{4} \text { is odd } \\ 1 \\ 1\end{array} \text { if } b^{2} d^{2} e^{4} \text { is even }\right.\end{gathered} \quad \Longleftrightarrow \quad a_{3}=\left\{\begin{array}{ll}\rho & \text { if } b \text { is odd } \\ 1 & \text { if } b \text { is even }\end{array}\right\} \begin{aligned} & \text { which concludes } \\ & \text { the converse of (vii) and (viii). This concludes the proof since we }\end{aligned}$ have exhausted all possibilities for a and b.

7.3.2 Proof of Theorem 7.3 for $T=C_{3}^{0}$

Theorem 7.3 for $\boldsymbol{T}=\boldsymbol{C}_{3}^{0}$. The reduced minimal model of E_{T} is
(i) $R_{0} \Longleftrightarrow a$ is even \quad (ii) $R_{1} \Longleftrightarrow a$ is odd.

Proof By Lemma 5.16, we may assume that

$$
E_{T}: y^{2}+a y=x^{3}
$$

for some cubefree integer a. In particular, E_{T} is a global minimal model for E by Corollary 5.17. Thus the invariants c_{4} and c_{6} associated to a global minimal model of E are $c_{4}=0$ and $c_{6}=-216 a^{2}$. Thus $-c_{6} \equiv 0 \bmod 12$ and so $b_{2}=a_{1}=a_{2}=0$. The Theorem now follows since

$$
-b_{2}^{3}+36 b_{2} b_{4}-c_{6}=-c_{6} \equiv 8 a^{2} \bmod 16= \begin{cases}\ell & \text { if } a \text { is even } \\ 8 & \text { if } a \text { is odd }\end{cases}
$$

7.3.3 Proof of Theorem 7.3 for $T=C_{4}$

Theorem 7.3 for $\boldsymbol{T}=\boldsymbol{C}_{\mathbf{4}}$. Let $a=c^{2} d$ for d a positive squarefree integer and let u_{T} be as given in Theorem 5.14.
(a) If $u_{T}=c$, the reduced minimal model of E_{T} is
(i) $\quad R_{1} \Longleftrightarrow a$ is even and either $3 \nmid a b(a+b)$ or $v_{3}(a)$ is odd
(ii) $\quad R_{3} \Longleftrightarrow a$ is even and either $3 \mid(a+b)$ or $v_{3}(a)>0$ is even with $b d \equiv 1,4 \bmod 6$
(iii) $R_{5} \Longleftrightarrow a$ is even and either $3 \mid b$ or $v_{3}(a)>0$ is even with $b d \equiv 2,5 \bmod 6$
(iv) $\quad R_{7} \Longleftrightarrow a$ is odd and either $3 \mid b$ or $v_{3}(a)>0$ is even with $b d \equiv 2,5 \bmod 6$
$(v) \quad R_{10} \Longleftrightarrow a$ is odd and either $3 \nmid a b(a+b)$ or $v_{3}(a)$ is odd
(vi) $\quad R_{12} \Longleftrightarrow a$ is odd and either $3 \mid(a+b)$ or $v_{3}(a)>0$ is even with $b d \equiv 1,4 \bmod 6$
(b) If $u_{T}=2 c$, the reduced minimal model of E_{T} is
(i) $\quad R_{7} \Longleftrightarrow b d \equiv 7,15 \bmod 16$ and either $3 \mid b$ or $v_{3}(a)>0$ is even with $b d \equiv 11 \bmod 12$
(ii) $\quad R_{8} \Longleftrightarrow b d \equiv 3,11 \bmod 16$ and either $3 \mid b$ or $v_{3}(a)>0$ is even with $b d \equiv 11 \bmod 12$
(iii) $\quad R_{9} \Longleftrightarrow b d \equiv 3,11 \bmod 16$ and either $3 \nmid a b(a+b)$ or $v_{3}(a)$ is odd
(iv) $\quad R_{10} \Longleftrightarrow b d \equiv 7,15 \bmod 16$ and either $3 \nmid a b(a+b)$ or $v_{3}(a)$ is odd
(v) $\quad R_{11} \Longleftrightarrow b d \equiv 3,11 \bmod 16$ and either $3 \mid(a+b)$ or $v_{3}(a)>0$ with $b d \equiv 7 \bmod 12$
$(v i) \quad R_{12} \Longleftrightarrow \quad b d \equiv 7,15 \bmod 16$ and either $3 \mid(a+b)$ or $v_{3}(a)>0$ with
$b d \equiv 7 \bmod 12$
Proof By Theorem 5.14, the invariants associated with a global minimal model of $E_{T}=E_{T}(a, b)$ are $c_{4}=u_{T}^{-4} \alpha_{T}(a, b)$ and $c_{6}=u_{T}^{-6} \beta_{T}(a, b)$ where u_{T} is either c or $2 c$. Moreover, $u_{T}=2 c$ if and only if $v_{2}(a) \geq 8$ is even and $b d \equiv 1 \bmod 4$. It suffices to show the converse of each statement to prove the Theorem, as this will exhaust all possibilities for a and b.
(a) First, assume $u_{T}=c$. Then

$$
c_{4}=d^{2}\left(q^{2}+16 a b+16 b^{2}\right)\left(\text { and } \quad c_{6}=d^{3}(a+8 b)\left(f a^{2}-16 a b+8 b^{2}\right)\right.
$$

Thus

$$
-c_{6} \equiv 8 b^{3} d^{3}+c^{6} d^{6} \bmod 12
$$

Case I. Suppose a is even and 3 does not divide $a b(a+b)$. Note that if k is an even integer not divisible by 3 , then $k^{6} \equiv 4 \bmod 12$. Hence $-c_{6} \equiv 8 b^{3} d^{3}+4 \bmod 12$ from which we deduce

$$
-c_{6} \equiv \begin{cases}0 \bmod 12 & \text { if } b d \equiv 1 \bmod 3 \tag{7.3}\\ 8 \bmod 12 & \text { if } b d \equiv 2 \bmod 3\end{cases}
$$

We claim that $b d \equiv 1 \bmod 3$. Indeed, since c is not divisible by 3 we have that $c^{2} \equiv 1 \bmod 3$. Then

$$
\begin{equation*}
a+b=c^{2} d+b \equiv d+b \bmod 3 \tag{7.4}
\end{equation*}
$$

Towards a contradiction, suppose $b d \equiv 2 \bmod 3$ so that exactly one of b or d is congruent to 2 modulo 3 . This is a contradiction, since then $a+b \equiv 0 \bmod 3$ which contradicts our assumption. Hence $-c_{6} \equiv 0 \bmod 12$ and so $b_{2}=a_{1}=a_{2}=0$. Now observe that

$$
\begin{equation*}
-b_{2}^{3}+36 b_{2} b_{4}-c_{6}=-c_{6} \equiv 8 b^{2} c^{2} d^{4}+8 b c^{4} d^{5}+c^{6} d^{6} \bmod 16 \tag{7.5}
\end{equation*}
$$

Since 2 divides $c d$, we conclude that $-c_{6} \equiv 0 \bmod 16$ and so $a_{3}=0$.
Case II. Suppose a is even and $v_{3}(a)$ is odd. Thus 3 divides d and so $-c_{6} \equiv$ $0 \bmod 12$ which implies $b_{2}=a_{1}=a_{2}=0$. Since $c d$ is even, we have from (7.5) that $-c_{6} \equiv 0 \bmod 16$ and so $a_{3}=0$ which concludes the converse of (i).

Case III. Suppose a is even and 3 divides $a+b$. Since 3 does not divide $c d$, we infer that $-c_{6} \equiv 8 b^{3} d^{3}+4 \bmod 12$. Since $a+b$ is divisible by 3 , we deduce that $b d \equiv 2 \bmod 3$ from congruence (7.4). Indeed, towards a contradiction, note that if $b d \equiv 1 \bmod 3$, then $b, d \equiv 1 \bmod 3$ which implies that 3 does not divide $a+b$. Therefore $-c_{6} \equiv 8 \bmod 12$ by (7.3). Hence $b_{2}=-4$ and so $a_{1}=0$ and $a_{2}=-1$. Reducing modulo 16, we attain

$$
\begin{aligned}
-b_{2}^{3}+36 b_{2} b_{4}-c_{6} & \equiv 8 b^{2} c^{2} d^{4}+6 c^{4} d^{4}+8 b c^{4} d^{5}+c^{6} d^{6} \bmod 16 \\
& \equiv 0 \bmod 16
\end{aligned}
$$

since 2 divides $c d$. Therefore $a_{3}=0$.
Case IV. Suppose a is even, $v_{3}(a)>0$ is even, and $b d \equiv 1,4 \bmod 6$. Since $v_{3}(a)$ is even, 3 only divides c. Therefore $-c_{6} \equiv 8 b^{3} d^{3} \bmod 12$. Since $8 k^{3} \equiv 8 \bmod 12$ for $k \equiv 1,4 \bmod 6$ we deduce that $-c_{6} \equiv 8 \bmod 12$. It follows that $b_{2}=-4$ and so $a_{1}=0$ and $a_{2}=-1$. Reducing modulo 16 , we attain

$$
\begin{aligned}
-b_{2}^{3}+36 b_{2} b_{4}-c_{6} & \equiv 8 b^{2} c^{2} d^{4}+6 c^{4} d^{4}+8 b c^{4} d^{5}+c^{6} d^{6} \bmod 16 \\
& \equiv 0 \bmod 16
\end{aligned}
$$

since 2 divides $c d$. Therefore $a_{3}=0$ which concludes the converse of $(i i)$.

Case V. Suppose a is even and 3 divides b. Then $-c_{6} \equiv 4 \bmod 12$ and so $b_{2}=4$. Consequently, $a_{1}=0$ and $a_{2}=1$. Then $a_{3}=0$ since

$$
\begin{aligned}
-b_{2}^{3}+36 b_{2} b_{4}-c_{6} & \equiv 8 b^{2} c^{2} d^{4}+10 c^{4} d^{4}+8 b c^{4} d^{5}+c^{6} d^{6} \bmod 16 \\
& \equiv 0 \bmod 16
\end{aligned}
$$

since 2 divides $c d$.
Case VI. Suppose a is even, $v_{3}(a)>0$ is even, and $b d \equiv 2,5 \bmod 6$. Then $-c_{6} \equiv 8 b^{3} d^{3} \bmod 12$ since 3 divides c. Moreover, $-c_{6} \equiv 4 \bmod 12$ since $8 k^{4} \equiv$ $4 \bmod 12$ for $k \equiv 2,5 \bmod 6$. Hence $b_{2}=4$ and so $a_{1}=0$ and $a_{2}=1$. Lastly, $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 0 \bmod 16$ since 2 divides $c d$. Consequently, $a_{3}=0$ which concludes the converse of (iii).

Case VII. Suppose a is odd and 3 divides b. In particular,

$$
\begin{aligned}
-c_{6} & \equiv 8 b^{3} d^{3}+c^{6} d^{6} \bmod 12 \\
& \equiv 1 \bmod 12
\end{aligned}
$$

since $k^{6} \equiv 1 \bmod 12$ for odd integers k not divisible by 3 . Hence $b_{2}=1$ and so $a_{1}=1$ and $a_{2}=0$. Then

$$
-b_{2}^{3}+36 b_{2} b_{4}-c_{6}=\frac{1-3 k^{4}}{2}-24 l^{2}-64 l^{3}-24 l k^{2}+120 l^{2} k^{2}+24 l k^{4}+k^{6}
$$

with $k=c d$ and $l=b d$. Since k is odd, we verify via the Mathematica input

$$
\begin{aligned}
& \text { Table }\left[\operatorname { M o d } \left[\left(1-3 * \mathrm{k}^{\wedge} 4\right) / 2-24 * \mathrm{l} \wedge 2-64 * \mathrm{l} \wedge 3-24 * \mathrm{l} * \mathrm{k} \wedge 2+120 * \mathrm{l} \wedge 2 * \mathrm{k} \wedge 2+\right.\right. \\
& 24 * \mathrm{l} * \mathrm{k} \wedge 4+\mathrm{k} \wedge 6,16],\{\mathrm{k}, 1,16,2\},\{1,1,16\}] \\
& \text { that }- \\
& b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 0 \bmod 16 . \text { Hence } a_{3}=0 .
\end{aligned}
$$

Case VIII. Suppose a is odd and $v_{3}(a)>0$ is even with $b d \equiv 2,5 \bmod 6$. Since $v_{3}(a)>0$ is even, it follows that c is divisible by 3 . We now observe that $k^{6} \equiv$ $9 \bmod 12$ for odd integers k divisible by 3 and $8 l^{3} \equiv 4 \bmod 12$ for integers $l \equiv$ $2,5 \bmod 6$. In particular,

$$
\begin{aligned}
-c_{6} & \equiv 8 b^{3} d^{3}+c^{6} d^{6} \bmod 12 \\
& \equiv 1 \bmod 12
\end{aligned}
$$

and so $b_{2}=1$. Consequently, $a_{1}=1$ and $a_{2}=0$. Since $b_{2}=1$, we observe that the proof above for Case VII follows identically to show that $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 0 \bmod 16$. Hence $a_{3}=0$ which concludes the converse of (iv).

Case IX. Suppose a is odd and 3 does not divide $a b(a+b)$. Since 3 does not divide $a+b$, it follows that $a \equiv b \bmod 3$. Since $a=c^{2} d$, we have that $c^{2} \equiv 1 \bmod 3$ and so $a \equiv d \bmod 3$. Hence $b d \equiv 1 \bmod 3$ and so $8 b^{3} d^{3} \equiv 8 \bmod 12$. Since $c^{6} d^{6} \equiv 1 \bmod 12$ we conclude that $-c_{6} \equiv 9 \bmod 12$ and so $b_{2}=-3$. Thus $a_{1}=1$ and $a_{2}=-1$. Then

$$
-b_{2}^{3}+36 b_{2} b_{4}-c_{6}=\frac{9 k^{4}-27}{2}+72 l^{2}-64 l^{3}+72 l k^{2}+120 l^{2} k^{2}+24 l k^{4}+k^{6}
$$

with $k=c d$ and $l=b d$. Since k is odd, we verify via the Mathematica input

$$
\begin{aligned}
& \text { Table }\left[\operatorname { M o d } \left[(9 * \mathrm{k} \wedge 4-27) / 2+72 * l^{\wedge} 2-64 * l^{\wedge} 3+72 * l * \mathrm{k}^{\wedge} 2+120 * l^{\wedge} 2 * \mathrm{k}^{\wedge} 2+\right.\right. \\
& \left.\left.24 * \mathrm{l} * \mathrm{k}^{\wedge} 4+\mathrm{k} \wedge 6,16\right],\{\mathrm{k}, 1,16,2\},\{\mathrm{l}, 1,16\}\right]
\end{aligned}
$$

that $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 8 \bmod 16$. Hence $a_{3}=1$.
Case X. Suppose a is odd and $v_{3}(a)$ is odd. Since $v_{3}(a)$ is odd, 3 divides d and so $8 b^{3} d^{3} \equiv 0 \bmod 12$. Moreover, $c^{6} d^{6} \equiv 9 \bmod 12$ since $c d$ is an odd integer divisible by 3. Thus $b_{2}=-3$ and so $a_{1}=1$ and $a_{2}=-1$. Since $b_{2}=-3$, we observe that the proof above for Case IX follows identically to show that $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 8 \bmod 16$. Thus $a_{3}=1$ which concludes the converse of (v).

Case XI. Suppose a is odd and $3 \mid(a+b)$. Since 3 divides $a+b$, it follows that $a \equiv-b \bmod 3$. Moreover, $a=c^{2} d \equiv d \bmod 3$ since c is not divisible by 3. Thus $d \equiv-b \bmod 3$ and so $b d \equiv 2 \bmod 3$. Therefore $8 b^{3} d^{3} \equiv 4 \bmod 12$. Since $c d$ is odd and not divisible by 3 , we have $c^{6} d^{6} \equiv 1 \bmod 12$ and so $-c_{6} \equiv 5 \bmod 12$. Hence $b_{2}=5$ and so $a_{1}=a_{2}=1$. Next, we compute

$$
-b_{2}^{3}+36 b_{2} b_{4}-c_{6}=\frac{125-15 k^{4}}{2}-120 l^{2}-64 l^{3}-120 l k^{2}+120 l^{2} k^{2}+24 l k^{4}+k^{6}
$$

with $k=c d$ and $l=b d$. Since k is odd, we verify via the Mathematica input

```
Table[Mod[(125-15*k^4)/2-120*l^2-64*l^3-120*l*k^2+120*l^2*k^2+
24*l*k^4+k^6,16],{k,1,16,2},{l,1,16}]
```

that $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 8 \bmod 16$. Hence $a_{3}=1$.
Case XII. Suppose a is odd and $v_{3}(a)>0$ is even with $b d \equiv 1,4 \bmod 6$. Since $v_{3}(a)>0$ is even, we have that 3 divides c. In particular, $c^{6} d^{6} \equiv 9 \bmod 12$. The assumption that $b d \equiv 1,4 \bmod 6$ implies that $8 b^{3} d^{3} \equiv 8 \bmod 12$ and so $-c_{6} \equiv$ $5 \bmod 12$. Hence $b_{2}=5$ and so $a_{1}=a_{2}=1$. Since $b_{2}=5$, we observe that the proof above for case XI follows identically to show that $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 8 \bmod 16$. Thus $a_{3}=1$ which concludes the converse of (vi).
(b) Now suppose $v_{2}(a) \geq 8$ and $b d \equiv 3 \bmod 4$ so that $u_{T}=2 c$ by Theorem 5.14. In what follows, we let $a=2^{8} c^{2} d$ and assume $b d \equiv 3 \bmod 4$. In particular,

$$
\begin{aligned}
& c_{4}=d^{2}\left(q^{2}+16 a b+16 b^{2}\right)(\begin{array}{l}
2^{-4}=d^{2}\left(b^{2}+a b+16^{-1} \cdot a^{2}\right) \\
c_{6}=-d^{3}
\end{array}(a+8 b)\left(q^{2}+16 d b-8 b^{2}\right) \cdot 2 \underbrace{6}=-d^{3}\left(\&^{-1} \cdot a+b\right)\left(\&^{-1} \cdot a^{2}+2 a b-b^{2}\right)(
\end{aligned}
$$

Thus $-c_{6} \equiv 11 b^{3} d^{3}+4 c^{6} d^{6} \bmod 12$ and so

$$
-c_{6} \equiv \begin{cases}11 b^{3} d^{3} \bmod 12 & \text { if } 3 \mid c d \\ 11 b^{3} d^{3}+4 \bmod 12 & \text { if } 3 \nmid c d\end{cases}
$$

Since $b d \equiv 3 \bmod 4, b d$ is congquent to either $3,7,11$, or 15 modulo 16. Similarly, $b d$ is congruent to either 3,7 , or 11 modulo 12 . In particular, if $v_{3}(a)>0$ is even, then $b d$ is not divisible by 3 and so the only possibilities for $b d$ modulo 12 are 7,11 . The conditions on a and b in the converse of statements (i) through (vi) exhaust all possibilities satisfying $v_{2}(a) \geq 8$ and $b d \equiv 3 \bmod 4$.

Case I. Suppose 3 divides b. We claim that $-c_{6} \equiv 1 \bmod 12$. Since $b d \equiv 3 \bmod 4$, it follows that exactly one of b or d is congruent to 1 (resp. 3) modulo 4.

Subcase I. Assume that $b \equiv 1 \bmod 4$ and $d \equiv 3 \bmod 4$. Since 3 divides b, it follows that $b \equiv 9 \bmod 12$. Then $11 b^{3} d^{3} \equiv 9 \bmod 12$ and so $-c_{6} \equiv 1 \bmod 4$ since 3 does not divide $c d$.

Subcase II. Assume that $b \equiv 3 \bmod 4$ and $d \equiv 1 \bmod 4$. Since 3 divides b, it follows that $b \equiv 3 \bmod 12$. Then $11 b^{3} d^{3} \equiv 9 \bmod 12$ and so $-c_{6} \equiv 1 \bmod 4$ since 3 does not divide $c d$.

From the claim, we conclude that $b_{2}=1$ and so $a_{1}=1$ and $a_{2}=0$. Then

$$
\begin{align*}
-b_{2}^{3}+36 b_{2} b_{4}-c_{6} & \equiv \frac{1-3 b^{2} d^{2}}{2}+15 b^{3} d^{3} \bmod 16 \tag{7.6}\\
& \equiv \frac{1-3 k^{2}}{2}+15 k^{3} \bmod 16
\end{align*}
$$

with $k=b d$. Since k is odd, we observe via the Mathematica input

$$
\operatorname{Table}\left[\operatorname{Mod}\left[(1-3 * k \wedge 2) / 2+15 * k^{\wedge} 3,16\right],\{k, 1,16,2\}\right]
$$

that

$$
-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv \begin{cases}\left(\begin{array}{ll}
0 \bmod 16 & \text { if } b d \equiv 7,15 \bmod 16 \\
8 \bmod 16 & \text { if } b d \equiv 3,11 \bmod 16 \\
4 \bmod 16 & \text { if } b d \equiv 1,5,9,13 \bmod 16
\end{array}\right.\end{cases}
$$

Since $b d$ is never congruent to $1,5,9,13$ modulo 16 , we conclude that $a_{3}=0$ if $b d \equiv 7,15 \bmod 16$ and $a_{3}=1$ if $b d \equiv 3,11 \bmod 16$. This concludes the first half of the converse of (i) and (ii).

Case II. Suppose $v_{3}(a)>0$ is even with $b d \equiv 11 \bmod 12$. In particular, 3 divides c and so $-c_{6} \equiv 11 b^{3} d^{3} \bmod 12$. Hence $-c_{6} \equiv 1 \bmod 12$. In particular, $b_{2}=1$ and so $a_{1}=1$ and $a_{2}=0$. Since $b_{2}=1$, we note that $-b_{2}^{3}+36 b_{2} b_{4}-c_{6}$ is congruent to the quantity (7.6). Therefore $a_{3}=0$ if $b d \equiv 7,15 \bmod 16$ and $a_{3}=1$ if $b d \equiv 3,11 \bmod 16$. This concludes the converse of (i) and (ii).

Case III. Suppose 3 does not divide $a b(a+b)$. Since 3 does not divide $a b(a+b)$, we have that $b d$ is congruent to 7 or 11 modulo 12 . We claim that $b d \equiv 7 \bmod 12$. Towards a contradiction, suppose $b d \equiv 11 \bmod 12$. Then $b \equiv-d \bmod 12$ and observe that $a \equiv 4 d \bmod 12$ since $c^{2} \equiv 4 \bmod 12$. Hence

$$
a+b \equiv 4 d-d \bmod 12=3 d \bmod 12
$$

which contradicts the assumption that 3 does not divide $a+b$. Therefore $b d \equiv$ $7 \bmod 12$ as claimed and it follows that $-c_{6} \equiv 9 \bmod 12$ since $11 b^{3} d^{3} \equiv 5 \bmod 12$. Thus $b_{2}=-3$ and so $a_{1}=1$ and $a_{2}=-1$. Then

$$
\begin{aligned}
-b_{2}^{3}+36 b_{2} b_{4}-c_{6} & \equiv \frac{9 b^{2} d^{2}-27}{2}+15 b^{3} d^{3} \bmod 16 \\
& \equiv \frac{9 k^{2}-27}{2}+15 k^{3} \bmod 16
\end{aligned}
$$

with $k=b d$. Since k is odd, we observe via the Mathematica input

$$
\operatorname{Table}\left[\operatorname{Mod}\left[\left(9 * \mathrm{k}^{\wedge} 2-27\right) / 2+15 * \mathrm{k}^{\wedge} 3,16\right],\{\mathrm{k}, 1,16,2\}\right]
$$

that

$$
-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv \begin{cases}(0 \bmod 16 & \text { if } b d \equiv 3,11 \bmod 16 \tag{7.7}\\ 6 \bmod 16 & \text { if } b d \equiv 1,5,9,13 \bmod 16 \\ 8 \bmod 16 & \text { if } b d \equiv 7,15 \bmod 16\end{cases}
$$

Since $b d \equiv 3 \bmod 4$, we see that $(7 .(\gamma)$ is either $0 \bmod 16$ or $8 \bmod 16$. In particular, $a_{3}=0$ if $b d \equiv 3,11 \bmod 16$ and $a_{3}=1$ if $b d \equiv 7,15 \bmod 16$.

Case IV. Suppose $v_{3}(a)$ is odd. Then 3 divides d and therefore $b d=3 k$ for some integer k. Since $b d \equiv 3 \bmod 4$, it follows that $k \equiv 1 \bmod 4$ and so

$$
-c_{6} \equiv 11 \cdot(3 k)^{3} \bmod 12=9 \bmod 12
$$

Hence $b_{2}=-3$ and so $a_{1}=1$ and $a_{2}=-1$. Since $b_{2}=-3$, we note that $-b_{2}^{3}+$ $36 b_{2} b_{4}-c_{6}$ is congruent to the quantity (7.7). Therefore $a_{3}=0$ if $b d \equiv 3,11 \bmod 16$ and $a_{3}=1$ if $b d \equiv 7,15 \bmod 16$. This concludes the converse of (iii) and (iv).

Case V. Suppose 3 divides $a+b$. Then $a \equiv-b \bmod 3$ since $a \equiv d \bmod 3$. We first claim that $b d \equiv 11 \bmod 12$. Suppose instead $b d \equiv 7 \bmod 12$. Since $b d \equiv 3 \bmod 4$, we have to consider the two subcases arising from $b \equiv-d \bmod 4$.

Subcase I. Suppose $b \equiv 1 \bmod 4$ and $d \equiv 3 \bmod 4$. Then b is congruent to 1 or 5 modulo 12 and d is congruent to 7 or 11 modulo 12 since $b d$ is not divisible by 3. Since $b d \equiv 7 \bmod 12$, it follows that either $b \equiv 1 \bmod 12$ and $d \equiv 7 \bmod 12$ or $b \equiv 5 \bmod 12$ and $d \equiv 11 \bmod 12$. For both of these cases, it follows that $a+b$ is not congruent to 0 modulo 3 , which contradicts our assumption.

Subcase II. Suppose $b \equiv 3 \bmod 4$ and $d \equiv 1 \bmod 4$. Then b is congruent to 7 or 11 modulo 12 and d is congruent to 1 or 5 modulo 12 since $b d$ is not divisible by 3 . Since $b d \equiv 7 \bmod 12$, it follows that either $b \equiv 7 \bmod 12$ and $d \equiv 1 \bmod 12$ or $b \equiv 11 \bmod 12$ and $d \equiv 5 \bmod 12$. For both of these cases, it follows that $a+b$ is not congruent to 0 modulo 3 , which contradicts our assumption.

Therefore $b d \equiv 11 \bmod 12$ and so $-c_{6} \equiv 5 \bmod 12$ since $11 b^{3} d^{3} \equiv 1 \bmod 12$. Hence $b_{2}=5$ and so $a_{1}=a_{2}=1$. Next, we compute

$$
\begin{aligned}
-b_{2}^{3}+36 b_{2} b_{4}-c_{6} & \equiv \frac{125-15 b^{2} d^{2}}{2}+15 b^{3} d^{3} \bmod 16 \\
& \equiv \frac{125-15 k^{2}}{2}+15 k^{3} \bmod 16
\end{aligned}
$$

with $k=b d$. Since k is odd, we check via the Mathematica input

$$
\operatorname{Table}\left[\operatorname{Mod}\left[\left(125-15 * \mathrm{k}^{\wedge} 2\right) / 2+15 * \mathrm{k}^{\wedge} 3,16\right],\{\mathrm{k}, 1,16,2\}\right]
$$

that

$$
-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv \begin{cases}0 \bmod 16 & \text { if } b d \equiv 3,11 \bmod 16 \tag{7.8}\\ 6 \bmod 16 & \text { if } b d \equiv 1,5,9,13 \bmod 16 \\ 8 \bmod 16 & \text { if } b d \equiv 7,15 \bmod 16\end{cases}
$$

Since $b d \equiv 3 \bmod 4$, we see that $(7 . \beta)$ is either $0 \bmod 16$ or $8 \bmod 16$. In particular, $a_{3}=0$ if $b d \equiv 3,11 \bmod 16$ and $a_{3}=1$ if $b d \equiv 7,15 \bmod 16$.

Case VI. Suppose $v_{3}(a)>0$ is even with $b d \equiv 7 \bmod 12$. Then 3 divides c and therefore $-c_{6} \equiv 11 b^{3} d^{3} \bmod 12$. Since $b d \equiv 7 \bmod 12$, it follows that $-c_{6} \equiv 5 \bmod 12$ and so $b_{2}=5$ and $a_{1}=a_{2}=1$. Since $b_{2}=5,-b_{2}^{3}+36 b_{2} b_{4}-c_{6}$ is congruent to the quantity (7.8) and so $a_{3}=0$ if $b d \equiv 3,11 \bmod 16$ and $a_{3}=1$ if $b d \equiv 7,15 \bmod 16$ which concludes the converse of (v) and $(v i)$.

This concludes the proof of the Theorem since as remarked at the start, it sufficed to show the converse for each statement as this would exhaust all possibilities for a and b.

7.3.4 Proof of Theorem 7.3 for $T=C_{5}$

Theorem 7.3 for $\boldsymbol{T}=\boldsymbol{C}_{5}$. The reduced minimal model of E_{T} is
(i) $R_{4} \Longleftrightarrow a b \equiv \pm 1 \bmod 6 \quad$ (ii) $\quad R_{6} \Longleftrightarrow a b \equiv 3 \bmod 6$
(iii) $R_{7} \Longleftrightarrow a b \equiv 0 \bmod 6 \quad$ (iv) $\quad R_{12} \Longleftrightarrow a b \equiv \pm 2 \bmod 6$

Proof Observe that

$$
-c_{6} \equiv a^{6}+6 a^{5} b+3 a^{4} b^{2}+3 a^{2} b^{4}+6 a b^{5}+b^{6} \bmod 12
$$

Case I. Suppose $a b \equiv \pm 1 \bmod 6$. Since $k^{2} \equiv 1 \bmod 12$ and $6 k \equiv 6 \bmod 12$ for $k \equiv \pm 1 \bmod 6$, we have that

$$
-c_{6} \equiv a^{6}+b^{6}+6 \bmod 12 .
$$

Since $a b \equiv \pm 1 \bmod 6$ implies $a, b \equiv \pm 1 \bmod 6$, it follows that $-c_{6} \equiv 8 \bmod 12$ and therefore $b_{2}=-4$. Hence $a_{1}=0$ and $a_{2}=-1$. Since a and b are odd, we verify that $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 8 \bmod 16$ via the Mathematica input

$$
\operatorname{Table}[\operatorname{Mod}[V[a, b], 16],\{a, 1,16,2\},\{b, 1,16,2\}]
$$

Thus $a_{3}=1$. This shows the converse of (i).
Case II. Suppose $a b \equiv 3 \bmod 6$. Since $6 k \equiv 6 \bmod 12$ and $3 k^{2} \equiv 3 \bmod 12$ for $k \equiv 3 \bmod 6$, it follows that

$$
-c_{6} \equiv a^{6}+b^{6}+6 \bmod 12
$$

Since a and b are relatively prime, we may assume without loss of generality that $a \equiv 3 \bmod 6$ and $b \equiv \pm 1 \bmod 6$. Then

$$
-c_{6} \equiv 9+1+6 \bmod 12=4 \bmod 12
$$

and therefore $b_{2}=4$. Thus $a_{1}=0$ and $a_{2}=1$. Since a and b are odd, we verify that $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 8 \bmod 16$ via the Mathematica input

$$
\operatorname{Table}[\operatorname{Mod}[V[a, b], 16],\{a, 1,16,2\},\{b, 1,16,2\}]
$$

Hence $a_{3}=1$ and the converse of (ii) holds.
Case III. Suppose $a b \equiv 0 \bmod 6$ so that

$$
-c_{6} \equiv a^{6}+b^{6} \bmod 12
$$

First, suppose $a \equiv 0 \bmod 6$ so that $b \equiv \pm 1 \bmod 6$. Then $-c_{6} \equiv 1 \bmod 12$. Next, we assume without loss of generality that a is even and b is divisible by 3 . Then $-c_{6} \equiv 1 \bmod 12$ which allow us to conclude that $b_{2}=1$. Hence $a_{1}=1$ and $a_{2}=0$. We then verify that $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 0 \bmod 16$ by considering the cases a is even (resp. odd) and b is odd (resp. even) in Mathematica via the inputs

$$
\begin{aligned}
& \operatorname{Table}[\operatorname{Mod}[V[a, b], 16],\{a, 2,16,2\},\{b, 1,16,2\}] \\
& \operatorname{Table}[\operatorname{Mod}[V[a, b], 16],\{a, 1,16,2\},\{b, 0,16,2\}]
\end{aligned}
$$

Thus $a_{3}=0$ and the converse of (iii) holds.
Case IV. Suppose $a b \equiv \pm 2 \bmod 6$. Then

$$
-c_{6} \equiv a^{6}+b^{6} \bmod 12
$$

and without loss of generality, we may assume $a \equiv \pm 2 \bmod 6$ and $b \equiv \pm 1 \bmod 6$ so that $-c_{6} \equiv 5 \bmod 12$ and so $b_{2}=5$. Hence $a_{1}=a_{2}=1$. Next, we verify that $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 8 \bmod 16$ via the Mathematica input

$$
\begin{aligned}
& \operatorname{Table}[\operatorname{Mod}[V[a, b], 16],\{a, 2,16,2\},\{b, 1,16,2\}] \\
& \text { Table }[\operatorname{Mod}[V[a, b], 16],\{a, 1,16,2\},\{b, 0,16,2\}]
\end{aligned}
$$

Thus $a_{3}=1$ and the converse of (iv) holds.
This concludes the proof since we have exhausted all possibilities for a and b.

7.3.5 Proof of Theorem 7.3 for $T=C_{6}$

Theorem 7.3 for $\boldsymbol{T}=\boldsymbol{C}_{6}$. The reduced minimal model of E_{T} is
(i) $\quad R_{1} \Longleftrightarrow a \equiv 3 \bmod 6$ with $v_{2}(a+b)=1,2$
(ii) $\quad R_{5} \Longleftrightarrow a \equiv \pm 1 \bmod 6$ with $v_{2}(a+b)=1,2$
(iii) $\quad R_{7} \Longleftrightarrow a \equiv \pm 1 \bmod 6$ with $v_{2}(a+b) \neq 1,2,3$
(iv) $\quad R_{8} \Longleftrightarrow \quad$ either $a \equiv \pm 2 \bmod 6$ or $a \equiv \pm 1 \bmod 6$ with $v_{2}(a+b)=3$
(v) $\quad R_{9} \Longleftrightarrow \quad$ either $a \equiv 0 \bmod 6$ or $a \equiv 3 \bmod 6$ with $v_{2}(a+b)=3$
(vi) $\quad R_{10} \Longleftrightarrow a \equiv 3 \bmod 6$ with $v_{2}(a+b) \neq 1,2,3$

Proof By Theorem 5.14, the invariants associated with a global minimal model of $E_{T}(a, b)$ are $c_{4}=u_{T}^{-4} \alpha_{T}(a, b)$ and $c_{6}=u_{T}^{-6} \beta_{T}(a, b)$ where

$$
u_{T}= \begin{cases}1 & \text { if } v_{2}(a+b)<3 \\ 2 & \text { if } v_{2}(a+b) \geq 3\end{cases}
$$

First assume $u_{T}=1$ so that $v_{2}(a+b)<3$.
Case I. Suppose $a \equiv 3 \bmod 6$ and $v_{2}(a+b)=1,2$. In particular, $a=3+6 k$ for some odd integer k and b is odd. Then $-c_{6} \equiv 0 \bmod 12$ as is checked via the Mathematica input

$$
\text { Table }[\operatorname{Mod}[-c 6[3+6 * k, b], 12],\{k, 1,12\},\{b, 1,12,2\}]
$$

Hence $b_{2}=a_{1}=a_{2}=0$. Next we check that $-c_{6} \equiv 0 \bmod 16$ via the Mathematica input

$$
\text { Table }[\operatorname{Mod}[v[3+6 * k, b], 16],\{k, 1,16\},\{b, 1,16,2\}]
$$

Hence $a_{3}=0$ which concludes the converse of (i).
Case II. Suppose $a \equiv \pm 1 \bmod 6$ and $v_{2}(a+b)=1,2$. Then $a= \pm 1+6 k$ for some integer k and b is odd. From the Mathematica input

$$
\begin{aligned}
& \text { Table }[\operatorname{Mod}[-c 6[1+6 * k, b], 12],\{k, 1,12\},\{b, 1,12,2\}] \\
& \text { Table }[\operatorname{Mod}[-c 6[-1+6 * k, b], 12],\{k, 1,12\},\{b, 1,12,2\}]
\end{aligned}
$$

we conclude that $-c_{6} \equiv 4 \bmod 12$ and so $b_{2}=4$. Consequently, $a_{1}=0$ and $a_{2}=1$. Next we verify that $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 0 \bmod 16$ via the Mathematica input

$$
\begin{aligned}
& \text { Table }[\operatorname{Mod}[\mathrm{V}[1+6 * \mathrm{k}, \mathrm{~b}], 16],\{\mathrm{k}, 1,16\},\{\mathrm{b}, 1,16,2\}] \\
& \text { Table }[\operatorname{Mod}[\mathrm{V}[-1+6 * \mathrm{k}, \mathrm{~b}], 16],\{\mathrm{k}, 1,16\},\{\mathrm{b}, 1,16,2\}]
\end{aligned}
$$

Hence $a_{3}=0$ which concludes the converse of (ii).
Case III. Suppose $a \equiv \pm 1 \bmod 6$ and b is even. In particular, $v_{2}(a+b)=0$. Then $a= \pm 1+6 k$ for some integer k and we check that $-c_{6} \equiv 1 \bmod 12$ from the Mathematica input

$$
\begin{aligned}
& \text { Table }[\operatorname{Mod}[-c 6[1+6 * \mathrm{k}, \mathrm{~b}], 12],\{\mathrm{k}, 1,12\},\{\mathrm{b}, 2,12,2\}] \\
& \text { Table }[\operatorname{Mod}[-\mathrm{c} 6[-1+6 * \mathrm{k}, \mathrm{~b}], 12],\{\mathrm{k}, 1,12\},\{\mathrm{b}, 2,12,2\}]
\end{aligned}
$$

Hence $b_{2}=a_{1}=1$ and $a_{2}=0$. Next we verify that $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 0 \bmod 16$ via the Mathematica input

```
Table[Mod[V[1+6*k, b] ,16],{k,1,16},{b,2,16,2}]
Table[Mod[V[-1+6*k, b] , 16],{k,1,16},{b, 2 , 16 , 2}]
```

Hence $a_{3}=0$.
Case IV. Suppose $a \equiv \pm 2 \bmod 6$ so that b is odd. Then $a= \pm 2+6 k$ for some integer k and we verify that $-c_{6} \equiv 1 \bmod 12$ via the Mathematica input

$$
\begin{aligned}
& \text { Table }[\operatorname{Mod}[-c 6[2+6 * k, b], 12],\{k, 1,12\},\{b, 1,12,2\}] \\
& \text { Table }[\operatorname{Mod}[-c 6[-2+6 * k, b], 12],\{k, 1,12\},\{b, 1,12,2\}]
\end{aligned}
$$

Hence $b_{2}=a_{1}=1$ and $a_{2}=0$. Then we check that $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 8 \bmod 16$ from the Mathematica input

Table[Mod[V[2+6*k, b] , 16] , $\{\mathrm{k}, 1,16\},\{\mathrm{b}, 1,16,2\}]$
Table[Mod[V[-2+6*k, b] , 16] , \{k, 1, 16\}, $\{\mathrm{b}, 1,16,2\}]$
Thus $a_{3}=1$.
Case V. Suppose $a \equiv 0 \bmod 6$ so that b is odd. Then $a=6 k$ for some integer k and we verify that $-c_{6} \equiv 9 \bmod 12$ from the Mathematica input

$$
\operatorname{Table}[\operatorname{Mod}[-c 6[6 * k, b], 12],\{k, 1,12\},\{b, 1,12,2\}]
$$

Hence $b_{2}=-3$ and so $a_{1}=1$ and $a_{2}=-1$. We now check that $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv$ $0 \bmod 16$ by the Mathematica input

$$
\operatorname{Table}[\operatorname{Mod}[V[6 * k, b], 16],\{k, 1,16\},\{b, 1,16,2\}]
$$

Hence $a_{3}=0$.
Case VI. Suppose $a \equiv 3 \bmod 6$ and b is even. In particular, $v_{3}(a+b)=0$. Then $a=3+6 k$ for some integer k and we verify that $-c_{6} \equiv 9 \bmod 12$ via the Mathematica input

$$
\operatorname{Table}[\operatorname{Mod}[-c 6[3+6 * k, b], 12],\{k, 1,12\},\{b, 2,12,2\}]
$$

Hence $b_{2}=-3$ and so $a_{1}=1$ and $a_{2}=-1$. Then $a_{3}=1$ since $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv$ $8 \bmod 16$ which is verified by the Mathematica input

$$
\text { Table }[\operatorname{Mod}[v[3+6 * k, b], 16],\{k, 1,16\},\{b, 2,16,2\}]
$$

Now assume that $u_{T}=2$ so that $v_{2}(a+b) \geq 3$.
Case I. Suppose $a \equiv \pm 1 \bmod 6$ and b is odd. Then $a= \pm 1+6 k$ and $a+b=8 l$ for some integer k and l. In particular, $b=8 l \mp 1-6 k$. Since b is odd it follows that either l and k are both even or are both odd. Then $-c_{6} \equiv 1 \bmod 12$ is verified via the Mathematica inputs

$$
\begin{aligned}
& \text { Table }[\operatorname{Mod}[-c 6[1+6 * k, 8 * l-1-6 * k], 12],\{1,1,12,2\},\{k, 1,12,2\}] \\
& \text { Table }[\operatorname{Mod}[-c 6[1+6 * k, 8 * l-1-6 * k], 12],\{1,2,12,2\},\{k, 2,12,2\}] \\
& \text { Table }[\operatorname{Mod}[-c 6[-1+6 * k, 8 * l+1-6 * k], 12],\{1,1,12,2\},\{k, 1,12,2\}] \\
& \text { Table }[\operatorname{Mod}[-c 6[-1+6 * k, 8 * l+1-6 * k], 12],\{1,2,12,2\},\{k, 2,12,2\}]
\end{aligned}
$$

Hence $b_{2}=a_{1}=1$ and so $a_{2}=0$. Now we consider two subcases corresponding to whether l is even or odd.

Subcase I. Suppose l is even so that $v_{2}(a+b) \geq 4$. We verify that $-b_{2}^{3}+$ $36 b_{2} b_{4}-c_{6} \equiv 0 \bmod 16$ via the Mathematica inputs

$$
\begin{aligned}
& \text { Table }[\operatorname{Mod}[V[1+6 * \mathrm{k}, 8 * \mathrm{l}-1-6 * \mathrm{k}], 16],\{1,2,16,2\},\{\mathrm{k}, 2,16,2\}] \\
& \text { Table }[\operatorname{Mod}[\mathrm{V}[-1+6 * \mathrm{k}, 8 * \mathrm{l}+1-6 * \mathrm{k}], 16],\{1,2,16,2\},\{\mathrm{k}, 2,16,2\}]
\end{aligned}
$$

Thus $a_{3}=0$ and this concludes the converse of (iii).
Subcase II. Suppose l is odd so that $v_{2}(a+b)=3$. We verify that $-b_{2}^{3}+$ $36 b_{2} b_{4}-c_{6} \equiv 8 \bmod 16$ via the Mathematica inputs

Table $[\operatorname{Mod}[\mathrm{V}[1+6 * \mathrm{k}, 8 * 1-1-6 * \mathrm{k}], 16],\{1,1,16,2\},\{\mathrm{k}, 1,16,2\}]$
Table [Mod $[V[-1+6 * k, 8 * l+1-6 * k], 16],\{1,1,16,2\},\{k, 1,16,2\}]$

Hence $a_{3}=1$ and this concludes the converse of (iv).
Case II. Suppose $a \equiv 3 \bmod 6$ with b odd such that $v_{2}(a+b) \geq 3$. Then $a=3+6 k$ and $a+b=8 l$ for some integers l and k. In particular, $b=8 l-6 k-3$. Then $-c_{6} \equiv 9 \bmod 12$ as is verified via the Mathematica input

$$
\text { Table }[\operatorname{Mod}[-c 6[3+6 * k, 8 * l-6 * k-3], 12],\{k, 1,12\},\{1,1,12\}]
$$

Hence $b_{2}=-3$ and so $a_{1}=1$ and $a_{2}=-1$. Lastly we consider the two subcases corresponding to whether l is even or odd.

Subcase I. Suppose l is odd so that $v_{2}(a+b)=3$. We then verify that $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 0 \bmod 16$ via the Mathematica input

$$
\text { Table }[\operatorname{Mod}[\mathrm{V}[3+6 * \mathrm{k}, 8 * \mathrm{l}-6 * \mathrm{k}-3], 16],\{1,1,16,2\},\{\mathrm{k}, 1,16\}]
$$

Hence $a_{3}=0$ and this concludes the converse of (v).
Subcase II. Suppose l is even so that $v_{2}(a+b) \geq 4$. We then verify that $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 0 \bmod 16$ via the Mathematica input

Table[Mod[V[3+6*k, $8 * l-6 * k-3], 16],\{1,2,16,2\},\{k, 1,16\}]$
Thus $a_{3}=1$ which concludes the converse of (vi).
The Theorem now follows since we have exhausted all possibilities for a and b.

7.3.6 Proof of Theorem 7.3 for $T=C_{7}, C_{9}$

Theorem 7.3 for $\boldsymbol{T}=\boldsymbol{C}_{\mathbf{7}}, \boldsymbol{C}_{\boldsymbol{9}}$. The reduced minimal model of E_{T} is

$$
\text { (i) } \quad R_{7} \Longleftrightarrow a+b \equiv \pm 1 \bmod 3 \quad \text { (ii) } \quad R_{10} \Longleftrightarrow a+b \equiv 0 \bmod 3
$$

Proof Let T be C_{7} or C_{9}.
Case I. Suppose $a+b \equiv \pm 1 \bmod 3$. Then $a+b= \pm 1+3 k$ for some integer k and so $b= \pm 1+3 k-a$. If k is odd, we note that $a+b$ is even and thus a and b are both odd since they are relatively prime. In this case, we verify that $-c_{6} \equiv 1 \bmod 12$ via the Mathematica input

$$
\begin{aligned}
& \text { Table } \operatorname{Mod}[-c 6[a, 1+3 * k-a], 12],\{a, 1,12,2\},\{k, 1,12,2\}] \\
& \text { Table }[\operatorname{Mod}[-c 6[a,-1+3 * k-a], 12],\{a, 1,12,2\},\{k, 1,12,2\}]
\end{aligned}
$$

Next, we consider the case when k is even and verify that $-c_{6} \equiv 1 \bmod 12$ holds in this case as well via the Mathematica input

$$
\begin{aligned}
& \text { Table }[\operatorname{Mod}[-c 6[a, 1+3 * k-a], 12],\{a, 1,12\},\{k, 2,12,2\}] \\
& \text { Table }[\operatorname{Mod}[-c 6[a,-1+3 * k-a], 12],\{a, 1,12\},\{k, 2,12,2\}]
\end{aligned}
$$

Therefore $b_{2}=1$. Hence $a_{1}=1$ and $a_{2}=0$.
We now verify that $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 0 \bmod 16$ by considering the two subcases: (1) a is odd and (2) a is even and b is odd. The verification is done in Mathematica for these two subcases via the inputs:

$$
\begin{aligned}
& \operatorname{Table}[\operatorname{Mod}[\mathrm{V}[\mathrm{a}, \mathrm{~b}], 16],\{\mathrm{a}, 1,16,2\},\{\mathrm{b}, 1,16\}] \\
& \operatorname{Table}[\operatorname{Mod}[\mathrm{V}[\mathrm{a}, \mathrm{~b}], 16],\{\mathrm{a}, 0,16,2\},\{\mathrm{b}, 1,16,2\}]
\end{aligned}
$$

Hence $a_{3}=0$ from which the converse of (i) follows.
Case II. Suppose $a+b \equiv 0 \bmod 3$. Then $a+b=3 k$ for some integer k so that $b=3 k-a$. Since a and b are relatively prime, we observe that if a is even, then k is odd. We then verify that $-c_{6} \equiv 9 \bmod 12$ via the Mathematica inputs:

$$
\begin{aligned}
& \text { Table }[\operatorname{Mod}[-c 6[a, 3 * k-a], 12],\{a, 2,12,2\},\{k, 1,12,2\}] \\
& \text { Table }[\operatorname{Mod}[-c 6[a, 3 * k-a], 12],\{a, 1,12,2\},\{k, 1,12\}]
\end{aligned}
$$

Hence $b_{2}=-3$ from which we attain $a_{1}=1$ and $a_{2}=-1$. We then verify that $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 8 \bmod 16$ via

$$
\begin{aligned}
& \operatorname{Table}[\operatorname{Mod}[\mathrm{V}[\mathrm{a}, \mathrm{~b}], 16],\{\mathrm{a}, 1,16,2\},\{\mathrm{b}, 1,16\}] \\
& \operatorname{Table}[\operatorname{Mod}[\mathrm{V}[\mathrm{a}, \mathrm{~b}], 16],\{a, 0,16,2\},\{b, 1,16,2\}]
\end{aligned}
$$

Thus $a_{3}=1$ and so the converse of (ii) holds.
The Theorem thus holds since we have exhausted all possibilities for a and b.

7.3.7 Proof of Theorem 7.3 for $T=C_{8}$

Theorem 7.3 for $\boldsymbol{T}=\boldsymbol{C}_{8}$. The reduced minimal model of E_{T} is
(i) $R_{3} \Longleftrightarrow a \equiv 0 \bmod 12 \quad$ (ii) $R_{5} \Longleftrightarrow a \equiv \pm 4 \bmod 12$
(iii) $\quad R_{7} \Longleftrightarrow a \equiv \pm 1, \pm 2, \pm 5 \bmod 12 \quad$ (iv) $\quad R_{12} \quad \Longleftrightarrow a \equiv \pm 3,6 \bmod 12$

Proof By Theorem 5.14, the invariants associated with a global minimal model of $E_{T}(a, b)$ are $c_{4}=u_{T}^{-4} \alpha_{T}(a, b)$ and $c_{6}=u_{T}^{-6} \beta_{T}(a, b)$ where

$$
u_{T}= \begin{cases}1 & \text { if } v_{2}(a) \neq 1 \\ 2 & \text { if } v_{2}(a)=1\end{cases}
$$

In particular, $u_{T}=2$ if and only if $a \equiv \pm 2,6 \bmod 12$.
Case I. Suppose $a \equiv 0 \bmod 12$ so that $a=12 k$ for some integer k. Then b is odd and not divisible by 3 and we verify that $-c_{6} \equiv 8 \bmod 12$ via the Mathematica input

$$
\begin{aligned}
& \text { Table }[\operatorname{Mod}[-c 6[12 * \mathrm{k}, \mathrm{~b}], 12],\{\mathrm{k}, 1,12\},\{\mathrm{b}, 1,12,3\}] \\
& \text { Table }[\operatorname{Mod}[-\mathrm{c} 6[12 * \mathrm{k}, \mathrm{~b}], 12],\{\mathrm{k}, 1,12\},\{\mathrm{b}, 2,12,3\}]
\end{aligned}
$$

Hence $b_{2}=-4$ so that $a_{1}=0$ and $a_{2}=-1$. Therefore $a_{3}=0$ since $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv$ $0 \bmod 16$ as is checked via the Mathematica input

$$
\text { Table }[\operatorname{Mod}[\mathrm{V}[12 * \mathrm{k}, \mathrm{~b}], 16],\{\mathrm{k}, 1,16\},\{\mathrm{b}, 1,16\}]
$$

This concludes the converse of (i).
Case II. Suppose $a \equiv \pm 4 \bmod 12$. Then $a= \pm 4+12 k$ for some integer k and b is odd. Moreover, $b_{2}=4$ since $-c_{6} \equiv 4 \bmod 12$ as is checked via the Mathematica input

$$
\begin{aligned}
& \text { Table }[\operatorname{Mod}[-c 6[4+12 * k, b], 12],\{k, 1,12\},\{b, 1,12,2\}] \\
& \text { Table }[\operatorname{Mod}[-c 6[-4+12 * k, b], 12],\{k, 1,12\},\{b, 1,12,2\}]
\end{aligned}
$$

In particular, $a_{1}=0$ and $a_{2}=1$. Then $a_{3}=0$ since $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 0 \bmod 16$ as is checked via the Mathematica input

$$
\begin{aligned}
& \operatorname{Table}[\operatorname{Mod}[\mathrm{V}[4+12 * \mathrm{k}, \mathrm{~b}], 16],\{\mathrm{k}, 1,16\},\{\mathrm{b}, 1,16,2\}] \\
& \text { Table }[\operatorname{Mod}[\mathrm{V}[-4+12 * \mathrm{k}, \mathrm{~b}], 16],\{\mathrm{k}, 1,16\},\{\mathrm{b}, 1,16,2\}]
\end{aligned}
$$

This concludes the converse of (ii).
Case III. Suppose $a \equiv \pm 1, \pm 5 \bmod 12$. Then $a \equiv \pm 1 \bmod 6$ and we write $a=$ $\pm 1+6 k$ for some integer k. We now verify that $-c_{6} \equiv 1 \bmod 12$ via the Mathematica

$$
\begin{aligned}
& \text { Table }[\operatorname{Mod}[-c 6[1+6 * k, b], 12],\{k, 1,12\},\{b, 1,12\}] \\
& \text { Table }[\operatorname{Mod}[-c 6[-1+6 * k, b], 12],\{k, 1,12\},\{b, 1,12\}]
\end{aligned}
$$

In particular, $b_{2}=1$ and so $a_{1}=1$ and $a_{2}=0$. It then follows that $a_{3}=0$ since $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 0 \bmod 16$ as is checked via the Mathematica input

$$
\begin{aligned}
& \text { Table }[\operatorname{Mod}[\mathrm{V}[1+6 * \mathrm{k}, \mathrm{~b}], 16],\{\mathrm{k}, 1,16\},\{\mathrm{b}, 1,16\}] \\
& \text { Table }[\operatorname{Mod}[\mathrm{V}[-1+6 * \mathrm{k}, \mathrm{~b}], 16],\{\mathrm{k}, 1,16\},\{\mathrm{b}, 1,16\}]
\end{aligned}
$$

Case IV. Suppose $a \equiv \pm 3 \bmod 12$. Then $a \equiv 3 \bmod 6$ and so $a=3+6 k$ for some integer k. In particular, $b \equiv \pm 1 \bmod 3$ and so we verify that $-c_{6} \equiv 5 \bmod 12$ via the Mathematica input

$$
\begin{aligned}
& \operatorname{Table}[\operatorname{Mod}[-c 6[3+6 * k, b], 12],\{k, 1,12\},\{b, 1,12,3\}] \\
& \operatorname{Table}[\operatorname{Mod}[-c 6[3+6 * k, b], 12],\{k, 1,12\},\{b, 2,12,3\}]
\end{aligned}
$$

Hence $b_{2}=5$ and so $a_{1}=a_{2}=1$. Next we verify that $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 8 \bmod 16$ via the Mathematica input

$$
\operatorname{Table}[\operatorname{Mod}[\mathrm{V}[3+6 * \mathrm{k}, \mathrm{~b}], 16],\{\mathrm{k}, 1,16\},\{\mathrm{b}, 1,16\}]
$$

In particular, $a_{3}=1$.
We now assume that $u_{T}=2$ and consider the remaining cases, namely $a \equiv$ $\pm 2,6 \bmod 12$.

Case I. Suppose $a \equiv \pm 2 \bmod 12$. Then $a= \pm 2+12 k$ for some integer k and b is odd. Then $-c_{6} \equiv 1 \bmod 12$ as is verified via the Mathematica input

$$
\begin{aligned}
& \text { Table }[\operatorname{Mod}[-c 6[2+12 * k, b], 12],\{k, 1,12\},\{b, 1,12,2\}] \\
& \text { Table }[\operatorname{Mod}[-c 6[-2+12 * k, b], 12],\{k, 1,12\},\{b, 1,12,2\}]
\end{aligned}
$$

Hence $b_{2}=a_{1}=1$ and $a_{2}=0$. Then $a_{3}=0$ since $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 0 \bmod 16$ which is verified via the Mathematica input

$$
\operatorname{Table}[\operatorname{Mod}[\mathrm{V}[2+4 * \mathrm{k}, \mathrm{~b}], 16],\{\mathrm{k}, 1,16\},\{\mathrm{b}, 1,16,2\}]
$$

This concludes the converse of (iii).
Case II. Suppose $a \equiv 6 \bmod 12$ so that $a=6+12 k$ for some integer k and $b \equiv \pm 1 \bmod 5$. Then $-c_{6} \equiv 5 \bmod 12$ as is verified via the Mathematica input

Table [Mod[-c6[6+12*k, b] , 12] , $\{\mathrm{k}, 1,12\},\{\mathrm{b}, 1,12,6\}]$
Table[Mod[-c6[6+12*k, b] , 12] , $\{\mathrm{k}, 1,12\},\{\mathrm{b}, 5,12,6\}]$

Hence $b_{2}=5$ and so $a_{1}=1$ and $a_{2}=1$. Lastly, we verify that $a_{3}=1$ since $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 8 \bmod 16$ as is verified via the Mathematica input

$$
\operatorname{Table}[\operatorname{Mod}[\mathrm{V}[6+12 * \mathrm{k}, \mathrm{~b}], 16],\{\mathrm{k}, 1,16\},\{\mathrm{b}, 1,16,2\}]
$$

This concludes the converse of $(i v)$.
The Theorem now follows since we have exhausted all possibilities for a and b.

7.3.8 Proof of Theorem 7.3 for $T=C_{10}$

Theorem 7.3 for $\boldsymbol{T}=\boldsymbol{C}_{\mathbf{1 0}}$. The reduced minimal model of E_{T} is R_{7}.

Proof By Theorem 5.14, the invariants associated with a global minimal model of $E_{T}(a, b)$ are $c_{4}=u_{T}^{-4} \alpha_{T}(a, b)$ and $c_{6}=u_{T}^{-6} \beta_{T}(a, b)$ where

$$
\begin{aligned}
& u_{T}= \begin{cases}1 & \text { if } a \text { is odd } \\
2 & \text { if } a \text { is even. }\end{cases} \\
& \text { From th\& Mathematica input }
\end{aligned}
$$

$$
\operatorname{Table}[\operatorname{Mod}[-c 6[a, b], 12],\{a, 1,12,2\},\{b, 1,12\}]
$$

we conclude that $-c_{6} \equiv 1 \bmod 12$. Note that the above input does return $-c_{6} \equiv$ $9 \bmod 12$ which occurs only when 3 divides $\operatorname{gcd}(a, b)$ which is not possible since a and b are assumed to be relatively prime. Hence $b_{2}=1$ and therefore $a_{1}=1$ and $a_{2}=0$. From the Mathematica input

$$
\operatorname{Table}[\operatorname{Mod}[V[a, b], 16],\{a, 1,16,2\},\{b, 1,16\}]
$$

we conclude that $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 0 \bmod 16$. Therefore $a_{3}=1$.
Case II. Suppose a is even and write $a=2 k$ for some integer k. Then $u_{T}=2$ and we verify that $-c_{6} \equiv 1 \bmod 12$ from the Mathematica input

$$
\operatorname{Table}[\operatorname{Mod}[-c 6[2 * \mathrm{k}, \mathrm{~b}], 12],\{\mathrm{k}, 1,12,2\},\{\mathrm{b}, 1,12,2\}]
$$

As before, we note that the above input does return $-c_{6} \equiv 9 \bmod 12$ which occurs only when 3 divides $\operatorname{gcd}(a, b)$. Hence $b_{2}=1$ and so $a_{1}=1$ and $a_{2}=0$. Next we verify that $a_{3}=1$ since the Mathematica input

$$
\operatorname{Table}[\operatorname{Mod}[\mathrm{V}[2 * \mathrm{k}, \mathrm{~b}], 16],\{\mathrm{k}, 1,16,2\},\{\mathrm{b}, 1,16,2\}]
$$

verifies that $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 0 \bmod 16$.
This concludes the proof since we have exhausted all possibilities for a.

7.3.9 Proof of Theorem 7.3 for $T=C_{12}$

Theorem 7.3 for $\boldsymbol{T}=\boldsymbol{C}_{\mathbf{1 2}}$. The reduced minimal model of E_{T} is
(i) $R_{7} \Longleftrightarrow a \equiv \pm 1, \pm 2, \pm 5 \bmod 12 \quad$ (ii) $\quad R_{8} \quad \Longleftrightarrow a \equiv \pm 4 \bmod 12$
(iii) $R_{9} \Longleftrightarrow a \equiv 0 \bmod 12 \quad$ (iv) $R_{10} \Longleftrightarrow a \equiv \pm 3,6 \bmod 12$

Proof By Theorem 5.14, the invariants associated with a global minimal model of $E_{T}(a, b)$ are $c_{4}=u_{T}^{-4} \alpha_{T}(a, b)$ and $c_{6}=u_{T}^{-6} \beta_{T}(a, b)$ where

$$
u_{T}= \begin{cases}1 & \text { if } a \text { is odd } \\ 2 & \text { if } a \text { is even }\end{cases}
$$

We first assume that $u_{T}=1$ and consider the cases where $a \equiv \pm 1, \pm 3, \pm 5 \bmod 12$.
Case I. Suppose $a \equiv \pm 1, \pm 5 \bmod 12$. Then $a \equiv \pm 1 \bmod 6$ and so $a= \pm 1+6 k$ for some integer k. We then verify that $-c_{6} \equiv 1 \bmod 12$ in Mathematica via the input

$$
\begin{aligned}
& \text { Table }[\operatorname{Mod}[-c 6[1+6 * \mathrm{k}, \mathrm{~b}], 12],\{\mathrm{k}, 1,12\},\{\mathrm{b}, 1,12\}] \\
& \text { Table }[\operatorname{Mod}[-\mathrm{c} 6[-1+6 * \mathrm{k}, \mathrm{~b}], 12],\{\mathrm{k}, 1,12\},\{\mathrm{b}, 1,12\}]
\end{aligned}
$$

Hence $b_{2}=1$ which implies that $a_{1}=1$ and $a_{2}=0$. Next we verify that $-b_{2}^{3}+$ $36 b_{2} b_{4}-c_{6} \equiv 0 \bmod 16$ via the input

$$
\text { Table }[\operatorname{Mod}[V[a, b], 16],\{a, 1,16,2\},\{b, 1,16\}]
$$

We note that the congruence holds for all odd integers a. In particular, $a_{3}=0$.

Case II. Suppose $a \equiv \pm 3 \bmod 12$. Then $a \equiv 3 \bmod 6$ so that $a=3+6 k$ for some integer k. We verify that $-c_{6} \equiv 9 \bmod 12$ via the Mathematica input

$$
\text { Table }[\operatorname{Mod}[-c 6[3+6 * k, b], 12],\{k, 1,12\},\{b, 1,12\}]
$$

Thus $b_{2}=-3$ and consequently $a_{1}=1$ and $a_{2}=-1$. We then verify that $-b_{2}^{3}+$ $36 b_{2} b_{4}-c_{6} \equiv 8 \bmod 16$ via the input

$$
\operatorname{Table}[\operatorname{Mod}[V[a, b], 16],\{a, 1,16,2\},\{b, 1,16\}]
$$

Hence $a_{3}=1$.
Now assume that $u_{T}=2$ so that $a \equiv 0, \pm 2, \pm 4,6 \bmod 12$.
Case I. Suppose $a \equiv \pm 2, \pm 4 \bmod 12$. Then $a \equiv \pm 2 \bmod 6$ and so $a= \pm 2+6 k$ for some integer k. Since b is odd we verify that $-c_{6} \equiv 1 \bmod 12$ via the Mathematica inputs

$$
\begin{aligned}
& \text { Table }[\operatorname{Mod}[-c 6[2+6 * k, b], 12],\{k, 1,12\}, \quad\{b, 1,12,2\}] \\
& \text { Table }[\operatorname{Mod}[-c 6[-2+6 * k, b], 12],\{k, 1,12\}, \quad\{b, 1,12,2\}]
\end{aligned}
$$

Thus $b_{2}=1$ and so $a_{1}=1$ and $a_{2}=0$.
Subcase I. Suppose $a \equiv \pm 2 \bmod 12$. Then $a \equiv \pm 2, \pm 6 \bmod 16$. In particular, $a \equiv \pm 2 \bmod 8$.

We verify that $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 0 \bmod 16$ via the input

$$
\operatorname{Table}[\operatorname{Mod}[V[a, b], 16],\{a, 2,16,4\},\{b, 1,16,2\}]
$$

Note that $\{\mathrm{a}, 2,16,4\}$ refers to the case where $a \equiv \pm 2 \bmod 8$ since its considers $a \equiv 2,6,10,14 \bmod 16$. In particular, $a_{3}=0$ which concludes the converse of (i).

Subcase II. Suppose $a \equiv \pm 4 \bmod 12$. Then $a \equiv 0 \bmod 4$ and we verify that $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 8 \bmod 16$ via the input

$$
\operatorname{Table}[\operatorname{Mod}[\mathrm{V}[\mathrm{a}, \mathrm{~b}], 16],\{\mathrm{a}, 4,16,4\},\{\mathrm{b}, 1,16,2\}]
$$

Hence $a_{3}=1$ which concludes the converse of (ii).

Case III. Suppose $a \equiv 0 \bmod 6$ so that $a=6 k$ for some integer k. Then b is odd and we verify that $-c_{6} \equiv 9 \bmod 12$ via the Mathematica input

$$
\operatorname{Table}[\operatorname{Mod}[-c 6[6 * k, b], 12],\{k, 1,12\},\{b, 1,12,2\}]
$$

Therefore $b_{2}=-3$ and consequently $a_{1}=1$ and $a_{2}=-1$. Lastly, we conclude that $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv\left\{\begin{array}{ll}\rho \bmod 16 & \text { if } k \text { is even } \\ 8 \bmod 16 & \text { if } k \text { is odd }\end{array} \quad \Longleftrightarrow \quad a_{3}= \begin{cases}\rho & \text { if } a \equiv 0 \bmod 12 \\ 1 & \text { if } a \equiv 6 \bmod 12\end{cases} \right.$
from the Mathematica (input

$$
\text { Table }[\operatorname{Mod}[V[6 * k, b], 16],\{k, 2,16,2\},\{b, 1,16,2\}]
$$

This concludes the converse of (iii) and (iv) and therefore the Theorem now follows since we have exhausted all possibilities for a and b.

7.3.10 Proof of Theorem 7.3 for $T=C_{2} \times C_{8}$

Theorem 7.3 for $\boldsymbol{T}=C_{2} \times \boldsymbol{C}_{\mathbf{8}}$. The reduced minimal model of E_{T} is R_{7}.
Proof By Theorem 5.14, the invariants associated with a global minimal model of $E_{T}(a, b)$ are $c_{4}=u_{T}^{-4} \alpha_{T}(a, b)$ and $c_{6}=u_{T}^{-6} \beta_{T}(a, b)$ where

$$
\begin{aligned}
& u_{T}= \begin{cases} \begin{cases}1 & \text { if } v_{2}(a)=0 \\
16 & \text { if } v_{2}(a)=1 \\
64 & \text { if } v_{2}(a) \geq 2\end{cases} \\
\text { that } u_{T}=1 \text { so that } a \text { is odd. From the Mathematica }\end{cases}
\end{aligned}
$$ input

$$
\operatorname{Table}[\operatorname{Mod}[-c 6[a, b], 12],\{a, 1,12,2\},\{b, 1,12\}]
$$

we conclude that $-c_{6} \equiv 1 \bmod 12$. Note that the above input does return $-c_{6} \equiv$ $9 \bmod 12$ which occurs only when 3 divides $\operatorname{gcd}(a, b)$ which is not possible since a and b are assumed to be relatively prime. Hence $b_{2}=1$ and therefore $a_{1}=1$ and $a_{2}=0$. From the Mathematica input

$$
\operatorname{Table}[\operatorname{Mod}[V[a, b], 16],\{a, 1,16,2\},\{b, 1,16\}]
$$

we conclude that $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 0 \bmod 16$. Therefore $a_{3}=1$.
Case II. Next, assume $u_{T}=16$ so that $a=2 k$ for some odd integer k. Then $-c_{6} \equiv 1 \bmod 12$ from the Mathematica input

$$
\operatorname{Table}[\operatorname{Mod}[-c 6[2 * \mathrm{k}, \mathrm{~b}], 12],\{\mathrm{k}, 1,12,2\},\{\mathrm{b}, 1,12,2\}]
$$

Hence $b_{2}=1$ and so $a_{1}=1$ and $a_{2}=0$. Next we verify that $a_{3}=1$ since the Mathematica input

$$
\operatorname{Table}[\operatorname{Mod}[\mathrm{V}[2 * \mathrm{k}, \mathrm{~b}], 16],\{\mathrm{k}, 1,16,2\},\{\mathrm{b}, 1,16,2\}]
$$

verifies that $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 0 \bmod 16$.
Case III. Lastly, assume $u_{T}=64$ so that $a=4 k$ for some integer k. Then $-c_{6} \equiv 1 \bmod 12$ is verified from the Mathematica input

$$
\operatorname{Table}[\operatorname{Mod}[-c 6[4 * k, b], 12],\{k, 1,12\},\{b, 1,12,2\}]
$$

and so $b_{2}=a_{1}=1$ and $a_{2}=0$. Finally, $a_{3}=0$ since the Mathematica input

$$
\operatorname{Table}[\operatorname{Mod}[V[4 * k, b], 16],\{k, 1,16\},\{b, 1,16,2\}]
$$

verifies that $-b_{2}^{3}+36 b_{2} b_{4}-c_{6} \equiv 0 \bmod 16$.

7.4 Examples

Example 7.4 The reduced minimal model of the elliptic curve $E_{T}\left(5^{3}, 14\right)$ for $T=C_{3}$ is

$$
y^{2}+x y=x^{3}+22 x-4
$$

Example 7.5 Let E be the elliptic curve in Example 5.27. Then as noted, E is \mathbb{Q} isomorphic to the elliptic curve $E_{T}(6,11)$ for $T=C_{12}$. Since $6 \equiv 6 \bmod 12$, we have by Theorem 7.3 that the reduced minimal model of E is given by

$$
\begin{gathered}
R_{10}: y^{2}+x y+y=x^{3}-x^{2}-\frac{c_{4}+15}{48}-\frac{-9 c_{4}+2 c_{6}+459}{1728} \text { with } \\
\frac{c_{4}+15}{48}=919077351189287 \text { and } \frac{-9 c_{4}+2 c_{6}+459}{1728}=-10701785524467279561311
\end{gathered}
$$

APPENDICES

A. GOOD $A B C$ TRIPLES

Introduction

The $A B C$ Conjecture [1] of Masser and Oesterlé states that for each $\epsilon>0$, there exists finitely many relatively prime positive integers a, b, c satisfying $a+b=c$ and $\operatorname{rad}(a b c)^{1+\epsilon}<c$ where $\operatorname{rad}(n)$ denotes the product over all the distinct prime factors of n. By an $A B C$ triple we mean a triple $P=(a, b, c)$ where a, b, c are relatively prime positive integers such that $a+b=c$. We say an $A B C$ triple $P=(a, b, c)$ is good if $\operatorname{rad}(a b c)<c$. Following ideas of Frey [42, §1], we associate to an $A B C$ triple P an elliptic curve $F_{P}: y^{2}=x(x-a)(x+b)$. This elliptic curve is known as a Frey curve and its Mordell-Weil group contains $F_{P}[2] \cong C_{2} \times C_{2}$. Therefore by Theorem 2.1, the torsion subgroup $E_{P}(\mathbb{Q})_{\text {tors }} \cong C_{2} \times C_{2 N}$ where $N=1,2,3,4$. Let $T=C_{2} \times C_{2 N}$ be one of these four groups. In this appendix we associate to each T a sequence of good $A B C$ triples $\left\{\begin{array}{ll}\not \eta_{n}^{T} & n\end{array}\right.$ and prove:
Theorem A. 1 Let T be one of $C_{2} \times C_{2 N}$ where $N=1,2,3,4$. Then for each T, there
 subgroup isomorphic to T for each $n \notin 1$.

Certain Polynomials

In this section we establish a series of technical results which will ease the proofs in the sections that are to follow. Let $T=C_{2} \times C_{2 N}$ where $N=1,2,3,4$. For each T let $\mathfrak{A}_{T}=\mathfrak{A}_{T}(a, b), \mathfrak{B}_{T}=\mathfrak{B}_{T}(a, b), \mathfrak{C}_{T}=\mathfrak{C}_{T}(a, b), \mathfrak{D}_{T}=\mathfrak{D}_{T}(a, b), \mathfrak{A}_{T}^{r}=$ $\mathfrak{A}_{T}^{r}(a, b), \mathfrak{B}_{T}^{r}=\mathfrak{B}_{T}^{r}(a, b), \mathfrak{C}_{T}^{r}=\mathfrak{C}_{T}^{r}(a, b), U_{T}=U_{T}(a, b, r, s), V_{T}=V_{T}(a, b, r, s)$, and $W_{T}=W_{T}(a, b, r, s)$ be the polynomials in $R=\mathbb{Z}[a, b, r, s]$ defined in Table A.3.

For a fixed T, the polynomials $\mathfrak{A}_{T}, \mathfrak{B}_{T}, \mathfrak{C}_{T}$, and \mathfrak{D}_{T} are homogenous polynomials in a and b of the same degree m_{T}. In particular, we have the equalities

$$
\begin{array}{ll}
a^{m_{T}} \mathfrak{A}_{T}\left(1, \frac{b}{a}\right) \\
a^{m_{T}} \mathfrak{C}_{T}\left(1, \frac{b}{a}\right)
\end{array}=\begin{array}{ll}
=\mathfrak{A}_{T}(a, b) & a^{m_{T}} \mathfrak{B}_{T}\left(1, \frac{b}{a}\right) \\
=\mathfrak{C}_{T}(a, b) & a^{m_{T}} \mathfrak{D}_{T}\left(1, \frac{b}{a}\right)
\end{array}=\mathfrak{B}_{T}(a, b)=\mathfrak{D}_{T}(a, b) .
$$

The first result can be verified via a computer algebra system and we note that we are considering $\mathfrak{A}_{T}(1, t), \mathfrak{B}_{T}(1, t), \mathfrak{C}_{T}(1, t), \mathfrak{D}_{T}(1, t)$ as functions from \mathbb{R} to \mathbb{R}.

Lemma A. 2 For $T=C_{2} \times C_{2 N}$ with $N=1,2,3,4$, let $f_{T}, g_{T}: \mathbb{R} \rightarrow \mathbb{R}$ be the function in the variable t defined in Table A.3. Let θ_{T} be the greatest real root of $f_{T}(t)$. The (approximate) value of θ_{T} is found in Table A.3. Then for each T,

1. $\mathfrak{A}_{T}+\mathfrak{B}_{T}=\mathfrak{C}_{T}$;
2. $U_{T} \mathfrak{B}_{T}+V_{T} \mathfrak{C}_{T}=W_{T}$;
3. $f_{T}\left(\frac{b}{a}\right)=\frac{\mathfrak{B}_{T}(a, b)}{\mathfrak{A}_{T}(a, b)}-\frac{b}{a}$;
4. $g_{T}(t)=\mathfrak{C}_{T}(1, t)-\mathfrak{D}_{T}(1, t)$;
5. $f_{T}(t), g_{T}(t), \mathfrak{A}_{T}(1, t), \mathfrak{B}_{T}(1, t), \mathfrak{C}_{T}(1, t), \mathfrak{D}_{T}(1, t)>0$ for $t>\theta_{T}$;
6. For $T=C_{2} \times C_{2 N}$ for $N=1,2, f_{T}(t), g_{T}(t), \mathfrak{A}_{T}(1, t), \mathfrak{B}_{T}(1, t), \mathfrak{C}_{T}(1, t)$, $\mathfrak{D}_{T}(1, t)>0$ for t in $(0,1)$.

In particular, $\mathfrak{A}_{T} \in 4 R$.

Good $A B C$ Triples]Good $\boldsymbol{A B C}$ Triples

Definition A. 1 By an $A B C$ triple, we mean a triple $P=(a, b, c)$ such that a, b, and c are relatively prime positive integers with $a+b=c$. We say $P=(a, b, c)$ is good if $\operatorname{rad}(a b c)<c$.

Lemma A. 3 For each $T=C_{2} \times C_{2 N}$, let $P=(a, b, a+b)$ be an ABC triple with a even and $\frac{b}{a}>\theta_{T}$ where θ_{T} is as defined in Lemma A.2. Suppose further that $a \equiv$ $0 \bmod 3$ if $N=3$. Then $\left(\mathfrak{A}_{T}, \mathfrak{B}_{T}, \mathfrak{C}_{T}\right)$ is an $A B C$ triple with $\mathfrak{A}_{T} \equiv 0 \bmod 16$, $\mathfrak{B}_{T} \equiv$ $1 \bmod 4$, and $\frac{\mathfrak{B}_{T}}{\mathfrak{A}_{T}}>\theta_{T}$. Moreover, if $N=3$, then $\mathfrak{A}_{T} \equiv 0 \bmod 3$.

Proof Since a and b are relatively prime, there exist integers r and s such that $r a^{n}+s b^{n}=1$, for any positive integer n. Therefore, by lemma A.2, $\operatorname{gcd}\left(\mathfrak{B}_{T}, \mathfrak{C}_{T}\right)$ divides 32 if $N \neq 3$ and $\operatorname{gcd}\left(\mathfrak{B}_{T}, \mathfrak{C}_{T}\right)$ divides 48 if $N=3$. Since a is even and $a \equiv 0 \bmod 3$ when $N=3$, we conclude that $\operatorname{gcd}\left(\mathfrak{B}_{T}, \mathfrak{C}_{T}\right)=1$. By lemma A. 2 we also have that $\mathfrak{A}_{T}+\mathfrak{B}_{T}=\mathfrak{C}_{T}$ for each T and therefore $\left(\mathfrak{A}_{T}, \mathfrak{B}_{T}, \mathfrak{C}_{T}\right)$ is an $A B C$ triple. Since a is even it is easily verified that $\mathfrak{A}_{T} \equiv 0 \bmod 16$. Similarly, when $N=3$, $\mathfrak{A}_{T} \equiv 0 \bmod 3$ since $a \equiv 0 \bmod 3$. It easily checked that for each $T, \mathfrak{B}_{T} \equiv b^{2 k} \bmod 4$ for some integer k. Since b is odd, it follows that $\mathfrak{B}_{T} \equiv 1 \bmod 4$. Now observe that

$$
f_{T}\left(\frac{b}{a}\right)\left(=\frac{\mathfrak{B}_{T}\left(\mathcal{1}, \frac{b}{a}\right)}{\mathfrak{A}_{T}\left(\mathbb{1}, \frac{b}{a}\right)}\left(\overline{\frac{b}{a}}=\frac{\mathfrak{B}_{T}(a, b)}{\mathfrak{A}_{T}(a, b)}-\frac{b}{a}\right.\right.
$$

Since $\frac{b}{a}>\theta_{T}$, we have by Lemma A. 2 that $f_{T}\left(\frac{b}{a}\right)$ (s positive and therefore $\frac{\mathfrak{B}_{T}}{\mathfrak{A}_{T}}>\frac{b}{a}>$ θ_{T}.

Lemma A. 4 Let $P=(a, b, a+b)$ be a good $A B C$ triple and assume the statement of Lemma A.3. Then $\left(\mathfrak{A}_{T}, \mathfrak{B}_{T}, \mathfrak{C}_{T}\right)$ is a good $A B C$ triple.

Proof Since a is assumed to be even, we have that $\operatorname{rad}\left(2^{n} a x\right)=\operatorname{rad}(a x)$ for some integer x. Therefore

$$
\operatorname{rad}\left(\mathfrak{A}_{T}\right)=\operatorname{rad}\left(\mathfrak{A}_{T}^{r}\right), \quad \operatorname{rad}\left(\mathfrak{B}_{T}\right)=\operatorname{rad}\left(\mathfrak{B}_{T}^{r}\right), \quad \operatorname{rad}\left(\mathfrak{C}_{T}\right)=\operatorname{rad}\left(\mathfrak{C}_{T}^{r}\right)
$$

Since $(a, b, a+b)$ is a good $A B C$ triple, we have that $\operatorname{rad}(a b(a+b))<a+b$. From this and the fact that $\operatorname{rad}\left(x y^{k}\right)(\operatorname{rad}(x y) \leq x y$ for positive integers k, x, y, we have
that for each T, we attain

$$
\operatorname{rad}\left(\mathfrak{A}_{T} \mathfrak{B}_{T} \mathfrak{C}_{T}\right)=\operatorname{rad}\left(\mathfrak{A}_{T}^{r} \mathfrak{B}_{T}^{r} \mathfrak{C}_{T}^{r}\right)<\left|\mathfrak{D}_{T}\right|
$$

Since $\frac{b}{a}>\theta_{T}, \mathfrak{D}_{T}\left(1, \frac{b}{a}\right)$ /s positive by Lemma A.2. In particular, \mathfrak{D}_{T} is positive since $a^{m_{T}} \mathfrak{D}_{T}\left(1, \frac{b}{a}\right)\left(=\mathfrak{D}_{T}\right.$ where m_{T} is the homogenous degree of \mathfrak{D}_{T}. Now observe that $\mathfrak{C}_{T}-\operatorname{rad}\left(\mathfrak{A}_{T} \mathfrak{B}_{T} \mathfrak{C}_{T}\right)>\mathfrak{C}_{T}-\mathfrak{D}_{T}=a^{m_{T}}\left(\mathfrak{C}_{T}\left(1, \frac{b}{a}\right)\left(-\mathfrak{D}_{T}\left(1, \frac{b}{a}\right)\right)(>0\right.$
where the positivity follows from Lemma A.2. Hence $\left(\mathfrak{A}_{T}, \mathfrak{B}_{T}, \mathfrak{C}_{T}\right)$ is a $\operatorname{good} A B C$ triple since $\operatorname{rad}\left(\mathfrak{A}_{T} \mathfrak{B}_{T} \mathfrak{C}_{T}\right)<\mathfrak{C}_{T}$.

Proposition A. 5 Let $\left(a_{0}, b_{0}, c_{0}\right)$ be a good $A B C$ triple with a_{0} even. For each T define the triple P_{j}^{T} recursively by

$$
P_{j}^{T}\left(a_{j+1}, b_{j+1}, c_{j+1}\right)=\left(\mathfrak{A}_{T}\left(a_{j}, b_{j}\right), \mathfrak{B}_{T}\left(a_{j}, b_{j}\right), \mathfrak{C}_{T}\left(a_{j}, b_{j}\right)\right) .
$$

Assume further that $\frac{b_{0}}{a_{0}}>\theta_{T}$ and that $b_{0} \equiv 0 \bmod 3$ if $T=C_{2} \times C_{6}$. Then for each $j \geq 1, P_{j}^{T}$ is a good $A B C$ triple with $a_{j} \equiv 0 \bmod 16, b_{j} \equiv 1 \bmod 4$, and $\frac{b_{j}}{a_{j}}>\theta_{T}$. Additionally, if $T=C_{2} \times C_{6}$, then $a_{j} \equiv 0 \bmod 3$.

Proof This follows automatically from Lemmas A. 3 and A. 5 .

Frey Curves

Let $P=(a, b, c)$ be an $A B C$ triple. Let $F_{P}=F_{P}(a, b)$ be the Frey curve given by the Weierstrass model

$$
F_{P}: y^{2}=x(x-a)(x+b) .
$$

Lemma A. 6 Let (a, b, c) be an ABC triple which satisfies the assumptions of Lemma A.3. Then for each T, the Frey curve F_{P} with $P=\left(\mathfrak{A}_{T}, \mathfrak{B}_{T}, \mathfrak{C}_{T}\right)$ has torsion subgroup $F_{P}(\mathbb{Q})_{\text {tors }} \cong T$.

Proof Let $\mathcal{X}_{t}(T)$ be as defined in Table 2.1 for $T=C_{2} \times C_{6}, C_{2} \times C_{8}$ and let $\mathcal{Y}_{t}(T)$ be as defined in Table 4.1 for $T=C_{2} \times C_{2}, C_{2} \times C_{4}$. In addition, let $u_{T}, r_{T}, s_{T}, w_{T}$, and t_{T} be as defined in Table A.2. We now proceed by cases.

Case I. Suppose $T=C_{2} \times C_{8}$. Then the admissible change of variables $x \longmapsto$ $u_{T}^{2} x+r_{T}$ and $y \longmapsto u_{T}^{3} y+u_{T}^{2} s_{T} x+w_{T}$ gives a \mathbb{Q}-isomorphism from F_{P} onto $\mathcal{X}_{t_{T}}(T)$.

In particular, $C_{2} \times C_{8} \subset F_{P}(\mathbb{Q})_{\text {tors }}$ by Lemma 2.9. By Theorem 2.1 we conclude that $F_{P}(\mathbb{Q})_{\text {tors }} \cong C_{2} \times C_{8}$.

Case II. Suppose $T=C_{2} \times C_{6}$. Then the admissible change of variables $x \longmapsto$ $u_{T}^{2} x+r_{T}$ and $y \longmapsto u_{T}^{3} y+u_{T}^{2} s_{T} x+w_{T}$ gives a \mathbb{Q}-isomorphism from F_{P} onto $\mathcal{X}_{t_{T}}(T)$. In particular, $C_{2} \times C_{6} \subset F_{P}(\mathbb{Q})_{\text {tors }}$ by Lemma 2.9. By Theorem 2.1 we conclude that $F_{P}(\mathbb{Q})_{\mathrm{tors}} \cong C_{2} \times C_{6}$.

Case III. Suppose $T=C_{2} \times C_{4}$. Then the admissible change of variables $x \longmapsto$ $u_{T}^{2} x+r_{T}$ and $y \longmapsto u_{T}^{3} y+u_{T}^{2} s_{T} x+w_{T}$ gives a \mathbb{Q}-isomorphism from F_{P} onto $\mathcal{Y}_{t_{T}}(T)$. In particular, $C_{2} \times C_{4} \subset F_{P}(\mathbb{Q})_{\text {tors }}$ by Lemma 4.2. Note that in the proof of Proposition 4.5 for $T=C_{2} \times C_{4}$, the only assumptions on a and b used was that they were relatively prime. Consequently, we get that $F_{P}(\mathbb{Q})_{\text {tors }} \cong C_{2} \times C_{4}$.

Case IV. Suppose $T=C_{2} \times C_{2}$. Then the admissible change of variables $x \longmapsto$ $u_{T}^{2} x+r_{T}$ and $y \longmapsto u_{T}^{3} y+u_{T}^{2} s_{T} x+w_{T}$ gives a \mathbb{Q}-isomorphism from F_{P} onto $\mathcal{Y}_{t_{T}}(T)$. In particular, $C_{2} \times C_{2} \subset F_{P}(\mathbb{Q})_{\text {tors }}$ by Lemma 4.2. Note that in the proof of Proposition 4.5 for $T=C_{2} \times C_{2}$, the only assumptions on a and b used was that they were relatively prime. Consequently, we get that $F_{P}(\mathbb{Q})_{\text {tors }} \cong C_{2} \times C_{2}$ which concludes the lemma.

Theorem A. 7 (Barrios-Tillman-Watts) Let $T=C_{2} \times C_{2 N}$ for $N=1,2,3,4$ and consider the sequence of exceptional $A B C$ triples P_{j}^{T} defined in Proposition A.5. Then for each $j \geq 1$, the Frey curve $F_{P_{j}^{N}}$ determined by P_{j}^{T} has torsion subgroup $F_{P_{j}^{N}}(\mathbb{Q})_{\text {tors }} \cong C_{2} \times C_{2 N}$.

Proof In Proposition A.5, we saw that each P_{j}^{T} satisfies the assmptions of Lemma A.3. Consequently, the Theorem follows from Lemma A.6.

Examples

Recall that for a positive $A B C$ triple $P=(a, b, c)$, the quality of P is given by

$$
q(P)=\frac{\log (c)}{\log (\operatorname{rad}(a b c))}
$$

In particular, P is a good $A B C$ triple is equivalent to $q(P)>1$.

Example A. 8 For $T=C_{2} \times C_{2}, C_{2} \times C_{4}$, let $P_{0}=\left(2^{5}, 7^{2}, 3^{4}\right)$. Then P_{0} is a good ABC triple since $q(P) \approx 1.1757$. By Proposition A.5, this good ABC triple results in two distinct infinite sequences of good $A B C$ triples P_{j}^{T} for $T=C_{2} \times C_{2}, C_{2} \times C_{6}$.

For $T=C_{2} \times C_{6}$, let $P_{0}=\left(2^{4} 3^{3}, 17^{3} 61,5^{3} 7^{4}\right)$. Then P_{0} is a good $A B C$ triple since $q(P) \approx$ 1.0261. Moreover, $\frac{17^{3} 61}{2^{4} 3^{3}}>\theta_{T}$. By Proposition A.5, this good ABC triple results in an infinite sequence of good $A B C$ triples P_{j}^{T}.

For $T=C_{2} \times C_{8}$, let $P_{0}=\left(2^{2}, 11^{2}, 5^{3}\right)$. Then P_{0} is a good $A B C$ triple since $q(P) \approx 1.0272$. Moreover, $\frac{121}{4}>\theta_{T}$. By Proposition A.5, this good ABC triple results in an infinite sequence of good $A B C$ triples P_{j}^{T}.

Table A. 1 gives gives a_{1} and b_{1} of $P_{j}^{T}=\left(a_{j}, b_{j}, c_{j}\right)$ as well as the quality $q\left(P_{j}^{T}\right)($ for $j=1,2,3$. We note that the values of a_{j} and b_{j} are not given for $j \geq 2$ due to the size of these quantities. For $T=C_{2} \times C_{6}, C_{2} \times C_{8}$, we only compute $q\left(P_{j}^{T}\right)$ (for $j=1,2$ due to computational limitations.

Table A.1.: Table for Example A. 8

T	a_{1}	b_{1}	$q\left(P_{1}^{T}\right)$	$q\left(P_{2}^{T}\right)$	$q\left(P_{3}^{T}\right)$
$C_{2} \times C_{2}$	$2^{5} 11^{2} 14657$	$3^{8} 13^{4}$	1.0755	1.0324	1.015
$C_{2} \times C_{4}$	$2^{12} 7^{4}$	$3^{8} 17^{2}$	1.2425	1.0531	1.0130
$C_{2} \times C_{6}$	$2^{16} 3^{9} 17^{3} 61$	$5^{9} 7^{12} 11 \cdot 27127$	1.1211	1.0278	-
$C_{2} \times C_{8}$	$2^{12} 11^{8}$	$7 \cdot 31 \cdot 503 \cdot 1951 \cdot 14657^{2}$	1.0331	1.0040	-

Table A.2.: Admissible Change of Variables for Lemma A.6

T	u_{T}	r_{T}	0	s_{T}	w_{T}
$C_{2} \times C_{2}$	a^{2}	0	0	t_{T}	
$C_{2} \times C_{4}$	$2(a-b)^{2}$	$-2 a b(a-b)^{2}$	$(a-b)^{2}$	$-2 a b(a-b)^{2}\left(a^{2}+b^{2}\right)$	$\frac{b}{a}$
$C_{2} \times C_{6}$	$9 a^{2}-b^{2}$	$-4 a^{2}(a+b)(-3 a+b)$	$5 a^{2}-b^{2}$	$36 a^{6}-40 a^{4} b^{2}+4 a^{2} b^{4}$	$\frac{9 a+b}{a+b}$
$C_{2} \times C_{8}$	$\frac{1}{2 a(a+b)\left(b^{2}-2 a b-a^{2}\right)}$	$\frac{a b\left(a^{2}+b^{2}\right)}{(a+b)^{2}\left(b^{2}-2 a b-a^{2}\right)}$	$\frac{a^{4}+4 a^{3} b-b^{4}}{2 a(a+b)\left(b^{2}-2 a b-a^{2}\right)}$	$\frac{a b^{2}\left(a^{2}+b^{2}\right)^{2}}{(a+b)^{3}\left(b^{2}-2 a b-a^{2}\right)^{2}}$	$\frac{a}{2(b-a)}$

Table A.3.: Polynomials For Appendix A

T	$C_{2} \times C_{2}$	$C_{2} \times C_{4}$	$C_{2} \times C_{6}$	$C_{2} \times C_{8}$
$\mathfrak{A}_{\mathfrak{T}}$	$8 a b\left(a^{2}+b^{2}\right)$	$(2 a b)^{2}$	$16 a^{3} b$	$(2 a b)^{4}$
$\mathfrak{B}_{\mathfrak{T}}$	$(a-b)^{4}$	$(a+b)^{4}$	$\left(a^{2}-b^{2}\right)^{2}$	$(a+b)^{3}(b-3 a)$
$\mathfrak{C}_{\mathfrak{T}}$	$b^{4}-a^{4}$	$\left(a^{2}+b^{2}\right)^{2}$	$(3 a+b)(b-a)^{3}$	$\left(a^{4}-6 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)^{2}$
$\mathfrak{D}_{\mathfrak{T}}$	$a b\left(a^{2}+b^{2}\right)$	$b^{4}-a^{4}$	$\left(b^{2}-a^{2}\right)\left(b^{2}-9 a^{2}\right)$	$\left(a^{2}-b^{2}\right)^{4}$
\mathfrak{A}_{T}^{r}	$(a-b)$	$a b$	$a b$	$\left(a^{4}-6 a^{2} b^{2}+b^{4}\right)\left(b^{4}-a^{4}\right)$
\mathfrak{B}_{T}^{r}	$a+b$	$a^{2}-b^{2}$	$(a+b)(b-3 a)$	$a b$
\mathfrak{C}_{T}^{r}	$\frac{(1-t)^{4}-t}{8 t\left(1+t^{2}\right)}$	$a^{2}+b^{2}$	$(3 a+b)(b-a)$	$\left(a^{4}-6 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)$
f_{T}	$4 t^{3}+6 t^{2}+4 t+2$	$2 t^{2}+2$	$\frac{(1+t)^{3}(t-3)}{16 t}-t$	$a^{2}-b^{2}$
g_{T}	1	$4 t^{2}+8 t-12$	$\frac{\left(1-6 t^{2}+t^{4}\right)\left(1+t^{2}\right)^{2}}{(2 t)^{4}-t}$	
θ_{T}	$20 a b^{2} s+5 b^{3} s$	4.87517	$2 t^{6}+6 t^{4}-10 t^{2}+2$	
	$5 a^{3} r+20 a^{2} b r+29 a b^{2} r+$	$a^{2} r+2 b^{2} r+$	$-54 a^{3} r+144 a^{2} b r-117 a b^{2} r+$	$4 a^{6} r-15 a^{4} b^{2} r+20 a^{2} b^{4} r-$
U_{T}	$16 b^{3} r+16 a^{3} s+29 a^{2} b s+$	$2 a^{2} s+b^{2} s$	$24 b^{3} r-8 a^{3} s+$	$10 b^{6} r-10 a^{6} s+$
	$20 a b^{2}$	$6 a^{2} b s-b^{3} s$	$20 a^{4} b^{2} s-15 a^{2} b^{4} s+4 b^{6} s$	
	$-5 a^{3} r+20 a^{2} b r-29 a b^{2} r+$	$-a^{2} r+2 b^{2} r+$	$54 a^{3} r+144 a^{2} b r+$	$-4 a^{6} r+15 a^{4} b^{2} r+44 a^{2} b^{4} r+$
V_{T}	$16 b^{3} r+16 a^{3} s-$	$2 a^{2} s-b^{2} s$	$117 a b^{2} r+24 b^{3} r-$	$26 b^{6} r+26 a^{6} s+$
W_{T}	$32\left(r a^{7}+s b^{7}\right)$	$4\left(r a^{6}+s b^{6}\right)$	$8 a^{3} s-6 a^{2} b s+b^{3} s$	$44 a^{4} b^{2} s+15 a^{2} b^{4} s-4 b^{6} s$

B. TABLES OF GOOD ELLIPTIC CURVES

Elliptic Curves in $\mathcal{S}^{\sigma_{m}}$

Let $\mathcal{S}^{\sigma_{m}}$ and \mathcal{S} be as defined in Section 3.5.5. Tables B. 1 and B. 2 list data pertaining to elliptic curves in these sets. The Weierstrass models of these elliptic curves are not included due to their length, but will be made available upon request.

Table B.1.: Elliptic Curves E_{j} in $\mathcal{S}^{\sigma_{m}}$

j	$\log N_{E_{j}}$	$h_{\text {naive }}\left(E_{j}\right)$	$\sigma_{m}\left(E_{j}\right)$	$\sigma\left(E_{j}\right)$	T
1	1.04	1.3936	16.0587	1	C_{1}
2	2.08	1.9143	11.0293	3.5	C_{1}
3	3.33	2.9593	10.6692	6.8123	C_{2}
4	4.73	4.1427	10.5204	4.7602	C_{2}
5	6.23	5.2735	10.1609	5.3004	C_{1}
6	9.67	8.1514	10.1145	4.9403	C_{4}
7	10.15	8.39	9.921	4.9901	C_{2}
8	10.37	8.5009	9.8371	5.0117	C_{2}
9	10.52	8.574	9.7838	5.0254	C_{2}
10	10.85	8.7395	9.6684	5.0552	C_{2}
11	10.95	8.7908	9.634	5.064	C_{2}
12	10.99	8.8125	9.6196	5.0677	C_{2}
13	11.13	8.8826	9.574	5.0795	C_{2}
14	11.16	8.8971	9.5647	5.0819	C_{2}
15	11.22	8.9235	9.548	5.0862	C_{2}
16	11.43	9.0294	9.4822	5.1031	C_{2}

continued on next page

Table B.1.: continued

j	$\log N_{E_{j}}$	$h_{\text {naive }}\left(E_{j}\right)$	$\sigma_{m}\left(E_{j}\right)$	$\sigma\left(E_{j}\right)$	T
17	11.61	9.1212	9.4272	5.1173	C_{2}
18	11.64	9.1357	9.4186	5.1195	C_{2}
19	11.65	9.1403	9.4159	5.1202	C_{2}
20	11.69	9.162	9.4032	5.1235	C_{2}
21	11.79	9.2133	9.3736	5.1311	C_{2}
22	12.81	9.9851	9.3529	7.0748	C_{2}
23	13.11	9.9851	9.1382	6.9123	C_{2}
24	14.67	10.9168	8.9271	6.9383	C_{2}
25	15.67	11.6026	8.8847	8.1963	C_{2}
26	16.15	11.8411	8.7994	8.1314	C_{2}
27	16.37	11.9521	8.7615	8.1025	C_{2}
28	16.78	12.1595	8.6932	8.0505	C_{2}
29	16.85	12.1906	8.6833	8.043	C_{2}
30	16.95	12.2419	8.667	8.0306	C_{2}
31	17.13	12.3338	8.6384	8.0088	C_{2}
32	17.24	12.3867	8.6223	7.9965	C_{2}
33	17.26	12.3981	8.6188	7.9938	C_{2}
34	17.3	12.4193	8.6124	7.989	C_{2}
35	17.43	12.4805	8.594	7.975	C_{2}
36	17.48	12.509	8.5856	7.9685	C_{2}
37	17.61	12.5723	8.567	7.9544	C_{2}
38	17.65	12.5914	8.5614	7.9502	C_{2}
39	17.68	12.6047	8.5576	7.9472	C_{2}
40	17.72	12.6252	8.5516	7.9427	C_{2}
41	17.78	12.6579	8.5423	7.9356	C_{2}

continued on next page

Table B.1.: continued

j	$\log N_{E_{j}}$	$h_{\text {naive }}\left(E_{j}\right)$	$\sigma_{m}\left(E_{j}\right)$	$\sigma\left(E_{j}\right)$	T
42	17.83	12.6833	8.535	7.9301	C_{2}
43	17.84	12.6892	8.5333	7.9288	C_{2}
44	17.94	12.7362	8.5201	7.9187	C_{2}
45	17.96	12.7476	8.5169	7.9162	C_{2}
46	18	12.7688	8.5109	7.9117	C_{2}
47	18.06	12.7989	8.5026	7.9054	C_{2}
48	18.13	12.83	8.494	7.8988	C_{2}
49	18.15	12.8433	8.4903	7.896	C_{2}
50	18.25	12.8907	8.4774	7.8862	C_{2}
51	18.31	12.9218	8.469	7.8798	C_{2}
52	18.32	12.9277	8.4674	7.8786	C_{2}
53	18.35	12.9436	8.4631	7.8753	C_{2}
54	18.37	12.9542	8.4603	7.8731	C_{2}
55	18.41	12.9731	8.4552	7.8693	C_{2}
56	18.42	12.9747	8.4548	7.869	C_{2}
57	18.42	12.9763	8.4544	7.8687	C_{2}
58	18.48	13.0073	8.4461	7.8624	C_{2}
59	18.52	13.026	8.4412	7.8586	C_{2}
60	18.54	13.0375	8.4382	7.8563	C_{2}
61	18.54	13.0386	8.4379	7.8561	C_{2}
62	18.58	13.0587	8.4326	7.8521	C_{2}
63	18.63	13.0823	8.4264	7.8474	C_{2}
64	18.7	13.1179	8.4172	7.8404	C_{2}
65	18.72	13.1293	8.4143	7.8381	C_{2}
66	18.76	13.1484	8.4093	7.8344	C_{2}

continued on next page

Table B.1.: continued

j	$\log N_{E_{j}}$	$h_{\text {naive }}\left(E_{j}\right)$	$\sigma_{m}\left(E_{j}\right)$	$\sigma\left(E_{j}\right)$	T
67	18.77	13.1505	8.4088	7.834	C_{2}
68	18.79	13.1617	8.4059	7.8318	C_{2}
69	18.83	13.1822	8.4007	7.8278	C_{2}
70	18.85	13.1928	8.398	7.8257	C_{2}
71	18.87	13.2034	8.3953	7.8237	C_{2}
72	18.9	13.2148	8.3924	7.8215	C_{2}
73	18.95	13.2402	8.386	7.8166	C_{2}
74	18.96	13.2461	8.3845	7.8155	C_{2}
75	18.99	13.2646	8.3799	7.8119	C_{2}
76	19.02	13.2772	8.3767	7.8095	C_{2}
77	19.05	13.2931	8.3727	7.8065	C_{2}
78	19.06	13.2972	8.3717	7.8057	C_{2}
79	19.14	13.3359	8.3621	7.7984	C_{2}
80	19.18	13.3564	8.3571	7.7946	C_{2}
81	19.22	13.3755	8.3524	7.791	C_{2}
82	19.24	13.3888	8.3491	7.7885	C_{2}
83	19.24	13.3891	8.3491	7.7885	C_{2}
84	19.27	13.4003	8.3463	7.7864	C_{2}
85	19.28	13.4082	8.3444	7.785	C_{2}
86	19.31	13.4204	8.3415	7.7827	C_{2}
87	19.31	13.4215	8.3412	7.7825	C_{2}
88	19.33	13.4318	8.3387	7.7806	C_{2}
89	19.35	13.442	8.3362	7.7787	C_{2}
90	19.4	13.4674	8.3301	7.7741	C_{2}
91	19.42	13.4788	8.3274	7.772	C_{2}

continued on next page

Table B.1.: continued

j	$\log N_{E_{j}}$	$h_{\text {naive }}\left(E_{j}\right)$	$\sigma_{m}\left(E_{j}\right)$	$\sigma\left(E_{j}\right)$	T
92	19.43	13.4827	8.3264	7.7713	C_{2}
93	19.44	13.4847	8.326	7.7709	C_{2}
94	19.55	13.491	8.2794	8.0307	C_{2}
95	19.58	13.5031	8.2766	8.0282	C_{2}
96	19.61	13.5188	8.2729	8.025	C_{2}
97	19.64	13.5342	8.2694	8.0218	C_{2}
98	19.65	13.5411	8.2678	8.0204	C_{2}
99	19.66	13.5449	8.2669	8.0196	C_{2}
100	19.68	13.555	8.2646	8.0175	C_{2}
101	19.69	13.5607	8.2633	8.0163	C_{2}
102	19.72	13.5734	8.2603	8.0137	C_{2}
103	19.73	13.5811	8.2586	8.0122	C_{2}
104	19.74	13.5855	8.2576	8.0113	C_{2}
105	19.74	13.5861	8.2574	8.0111	C_{2}
106	19.75	13.5892	8.2567	8.0105	C_{2}
107	19.77	13.5969	8.255	8.0089	C_{2}
108	19.79	13.6072	8.2526	8.0069	C_{2}
109	19.8	13.6122	8.2515	8.0058	C_{2}
110	19.85	13.6374	8.2458	8.0007	C_{2}
111	19.88	13.652	8.2425	7.9978	C_{2}
112	19.89	13.6592	8.2409	7.9964	C_{2}
113	19.9	13.6622	8.2402	7.9958	C_{2}
114	19.91	13.6716	8.2381	7.9939	C_{2}
115	19.94	13.6853	8.235	7.9912	C_{2}
116	19.96	13.6933	8.2332	7.9895	C_{2}

continued on next page

Table B.1.: continued

j	$\log N_{E_{j}}$	$h_{\text {naive }}\left(E_{j}\right)$	$\sigma_{m}\left(E_{j}\right)$	$\sigma\left(E_{j}\right)$	T
117	19.98	13.7054	8.2305	7.9871	C_{2}
118	19.99	13.7079	8.2299	7.9867	C_{2}
119	20.01	13.7182	8.2276	7.9846	C_{2}
120	20.02	13.7251	8.2261	7.9832	C_{2}
121	20.03	13.7296	8.2251	7.9823	C_{2}
122	20.05	13.7417	8.2224	7.98	C_{2}
123	20.06	13.7446	8.2218	7.9794	C_{2}
124	20.09	13.7573	8.219	7.9769	C_{2}
125	32.05	20.7895	7.7831	7.405	C_{2}
126	35.53	21.852	7.3805	5.7173	C_{6}
127	35.8	21.9098	7.3444	6.4075	C_{4}
128	37.54	22.7925	7.286	5.4236	C_{6}
129	39.66	23.952	7.247	6.428	C_{2}
130	40.29	24.1201	7.184	4.4724	C_{2}
131	41.35	24.5769	7.1315	7.0026	C_{1}
132	42.38	24.8519	7.0363	5.1039	C_{2}
133	42.94	25.0177	6.9916	4.711	C_{2}
134	43.1	25.0359	6.9714	5.8854	C_{4}
135	45.39	26.367	6.9705	6.7577	C_{1}
136	47.94	27.7515	6.9464	6.8701	C_{1}
137	50.21	28.5603	6.8255	6.6845	C_{2}
138	57.18	32.5053	6.8218	6.1759	C_{2}
139	59.01	33.2702	6.7659	6.3336	C_{6}
140	59.73	33.633	6.7575	6.3286	C_{2}
141	62.34	35.0898	6.7543	6.6107	C_{6}

continued on next page

Table B.1.: continued

j	$\log N_{E_{j}}$	$h_{\text {naive }}\left(E_{j}\right)$	$\sigma_{m}\left(E_{j}\right)$	$\sigma\left(E_{j}\right)$	T
142	64.58	35.6548	6.6252	6.0727	C_{2}
143	64.76	35.6692	6.6095	6.4893	C_{2}
144	67.18	36.9559	6.6011	6.5522	C_{6}
145	70.54	38.7635	6.5939	6.5253	C_{8}
146	71.28	39.1547	6.5913	6.5376	$C_{2} \times C_{2}$
147	72.05	39.3702	6.5573	6.506	C_{2}
148	72.94	39.7962	6.5475	6.5031	C_{2}
149	73.39	39.9817	6.5375	6.1138	C_{2}
150	74.82	40.7383	6.534	6.2822	C_{2}

Elliptic Curves in \mathcal{S}

Table B.2.: Elliptic Curves E_{j} in \mathcal{S}

j	$\log N_{E_{j}}$	$h_{\text {naive }}\left(E_{j}\right)$	$\sigma_{m}\left(E_{j}\right)$	$\sigma\left(E_{j}\right)$	T
1	7.11	5.6226	9.4962	9.02	C_{1}
2	7.95	6.0451	9.1245	8.6989	C_{1}
3	11.22	8.5426	9.1332	8.689	C_{2}
4	11.7	8.7812	9.0055	8.5793	C_{2}
5	11.92	8.8921	8.9495	8.5313	C_{2}
6	12.07	8.9652	8.9138	8.5007	C_{2}
7	15.67	11.3498	8.6911	8.4834	C_{2}
8	16.15	11.5883	8.6116	8.41	C_{2}

continued on next page

Table B.2.: continued

j	$\log N_{E_{j}}$	$h_{\text {naive }}\left(E_{j}\right)$	$\sigma_{m}\left(E_{j}\right)$	$\sigma\left(E_{j}\right)$	T
9	16.9	12.0705	8.573	8.3864	C_{2}
10	16.9	12.162	8.638	8.3502	C_{2}
11	17.37	12.309	8.5023	8.3209	C_{2}
12	17.59	12.42	8.4708	8.2916	C_{2}
13	17.74	12.493	8.4504	8.2727	C_{2}
14	17.59	12.5115	8.5332	8.2568	C_{2}
15	17.94	12.5912	8.4236	8.2479	C_{2}
16	18.01	12.6275	8.4138	8.2388	C_{2}
17	18.07	12.6585	8.4055	8.2311	C_{2}
18	18.17	12.7099	8.3919	8.2185	C_{2}
19	18.22	12.7316	8.3862	8.2132	C_{2}
20	18.07	12.7501	8.4663	8.1972	C_{2}
21	18.41	12.8297	8.3608	8.1896	C_{2}
22	18.44	12.8425	8.3575	8.1866	C_{2}
23	18.46	12.8546	8.3544	8.1837	C_{2}
24	18.49	12.866	8.3515	8.181	C_{2}
25	18.57	12.9065	8.3413	8.1715	C_{2}
26	18.62	12.9326	8.3347	8.1654	C_{2}
27	18.64	12.9407	8.3327	8.1636	C_{2}
28	18.65	12.9484	8.3308	8.1618	C_{2}
29	18.71	12.9769	8.3236	8.1552	C_{2}
30	18.78	13.0137	8.3145	8.1467	C_{2}
31	18.85	13.05	8.3056	8.1385	C_{2}
32	18.87	13.0593	8.3034	8.1363	C_{2}
33	18.92	13.0811	8.2981	8.1314	C_{2}

continued on next page

Table B.2.: continued

j	$\log N_{E_{j}}$	$h_{\text {naive }}\left(E_{j}\right)$	$\sigma_{m}\left(E_{j}\right)$	$\sigma\left(E_{j}\right)$	T
34	18.94	13.0931	8.2951	8.1287	C_{2}
35	19.02	13.1324	8.2857	8.1199	C_{2}
36	19.04	13.1451	8.2826	8.1171	C_{2}
37	19.05	13.1481	8.2819	8.1164	C_{2}
38	19.1	13.1712	8.2764	8.1113	C_{2}
39	19.11	13.1792	8.2745	8.1095	C_{2}
40	19.16	13.2041	8.2686	8.1041	C_{2}
41	19.18	13.211	8.2669	8.1026	C_{2}
42	19.19	13.2155	8.2659	8.1016	C_{2}
43	19.22	13.2306	8.2623	8.0983	C_{2}
44	19.26	13.2523	8.2572	8.0935	C_{2}
45	19.27	13.256	8.2563	8.0927	C_{2}
46	19.29	13.2668	8.2538	8.0904	C_{2}
47	19.31	13.2771	8.2514	8.0881	C_{2}
48	19.32	13.2821	8.2502	8.0871	C_{2}
49	19.33	13.2886	8.2487	8.0857	C_{2}
50	19.35	13.2979	8.2466	8.0837	C_{2}
51	19.41	13.3291	8.2393	8.077	C_{2}
52	19.46	13.3552	8.2333	8.0714	C_{2}
53	19.48	13.3632	8.2315	8.0697	C_{2}
54	19.5	13.371	8.2297	8.068	C_{2}
55	19.51	13.3753	8.2287	8.0671	C_{2}
56	19.53	13.3867	8.2261	8.0647	C_{2}
57	19.55	13.3995	8.2232	8.062	C_{2}
58	19.58	13.4116	8.2205	8.0595	C_{2}

continued on next page

Table B.2.: continued

j	$\log N_{E_{j}}$	$h_{\text {naive }}\left(E_{j}\right)$	$\sigma_{m}\left(E_{j}\right)$	$\sigma\left(E_{j}\right)$	T
59	19.61	13.4272	8.2169	8.0562	C_{2}
60	19.64	13.4426	8.2135	8.053	C_{2}
61	19.65	13.4496	8.2119	8.0515	C_{2}
62	19.66	13.4533	8.211	8.0507	C_{2}
63	19.68	13.4635	8.2088	8.0486	C_{2}
64	19.69	13.4691	8.2075	8.0474	C_{2}
65	19.72	13.4819	8.2046	8.0448	C_{2}
66	19.73	13.4896	8.2029	8.0432	C_{2}
67	19.74	13.494	8.2019	8.0423	C_{2}
68	19.74	13.4946	8.2018	8.0422	C_{2}
69	19.75	13.4976	8.2011	8.0415	C_{2}
70	19.77	13.5054	8.1994	8.0399	C_{2}
71	19.79	13.5157	8.1971	8.0378	C_{2}
72	19.8	13.5207	8.196	8.0368	C_{2}
73	19.85	13.5459	8.1904	8.0316	C_{2}
74	19.88	13.5605	8.1872	8.0286	C_{2}
75	19.89	13.5676	8.1856	8.0272	C_{2}
76	19.9	13.5707	8.185	8.0265	C_{2}
77	19.9	13.572	8.1847	8.0263	C_{2}
78	19.91	13.58	8.1829	8.0246	C_{2}
79	19.94	13.5937	8.1799	8.0218	C_{2}
80	19.96	13.6018	8.1782	8.0202	C_{2}
81	19.98	13.6138	8.1755	8.0178	C_{2}
82	19.99	13.6163	8.175	8.0173	C_{2}
83	20.01	13.6266	8.1727	8.0152	C_{2}

continued on next page

Table B.2.: continued

j	$\log N_{E_{j}}$	$h_{\text {naive }}\left(E_{j}\right)$	$\sigma_{m}\left(E_{j}\right)$	$\sigma\left(E_{j}\right)$	T
84	20.02	13.6335	8.1712	8.0138	C_{2}
85	20.03	13.638	8.1703	8.0129	C_{2}
86	20.05	13.6501	8.1677	8.0105	C_{2}
87	20.06	13.6531	8.167	8.0099	C_{2}
88	20.09	13.6658	8.1643	8.0073	C_{2}
89	20.11	13.6786	8.1615	8.0048	C_{2}
90	20.13	13.6894	8.1592	8.0026	C_{2}
91	20.14	13.6906	8.1589	8.0024	C_{2}
92	20.14	13.6919	8.1587	8.0021	C_{2}
93	20.16	13.7021	8.1565	8.0001	C_{2}
94	19.98	13.7054	8.2305	7.9871	C_{2}
95	19.99	13.7079	8.2299	7.9867	C_{2}
96	20.01	13.7182	8.2276	7.9846	C_{2}
97	20.02	13.7251	8.2261	7.9832	C_{2}
98	20.03	13.7296	8.2251	7.9823	C_{2}
99	20.05	13.7417	8.2224	7.98	C_{2}
100	20.06	13.7446	8.2218	7.9794	C_{2}
101	20.09	13.7573	8.219	7.9769	C_{2}
102	20.14	13.7822	8.2135	7.972	C_{2}
103	20.14	13.7834	8.2132	7.9717	C_{2}
104	20.16	13.7936	8.211	7.9697	C_{2}
105	32.05	20.5156	7.6806	7.5762	C_{2}
106	32.05	20.7895	7.7831	7.405	C_{2}
107	38.91	23.1808	7.1498	7.0676	C_{2}
108	38.91	23.2766	7.1793	7.0497	C_{2}

continued on next page

Table B.2.: continued

j	$\log N_{E_{j}}$	$h_{\text {naive }}\left(E_{j}\right)$	$\sigma_{m}\left(E_{j}\right)$	$\sigma\left(E_{j}\right)$	T
109	39.37	23.2866	7.0985	7.0151	C_{2}
110	41.35	24.5769	7.1315	7.0026	C_{1}
111	47.94	27.7515	6.9464	6.8701	C_{1}
112	66.42	37.6628	6.8043	6.7205	C_{4}
113	66.42	37.9637	6.8587	6.6912	C_{2}
114	70.54	38.9732	6.6296	6.585	C_{2}
115	70.54	39.1164	6.654	6.5667	C_{2}
116	71.28	39.2668	6.6102	6.566	C_{2}
117	71.28	39.4515	6.6413	6.5353	C_{2}
118	72.05	39.3455	6.5532	6.5085	C_{2}
119	72.05	39.3702	6.5573	6.506	C_{2}
120	72.94	39.7962	6.5475	6.5031	C_{2}

Best Known Modified Szpiro and Szpiro Ratios

The tables that follow give the best known modified Szpiro and Szpiro ratios of elliptic curves. As before, the Weierstrass models of these elliptic curves is not given but will be provided upon request. Each table has a column "By" which refers to where the given elliptic curve originated from. By "C" we refer to elliptic curves found in Cremona's database, "N" refers to elliptic curves found by Nitaj, "B-Y" refers to elliptic curves found by Bennett and Yazdani, and "Ba" refers to elliptic curves found by the author.

Table B.3.: Best Known Modified Szpiro Ratios

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	T	By
1	1.0414	1.3936	16.0587	1	C_{1}	C
2	1.1461	1.2794	13.3951	3.8385	C_{2}	C
3	1.1761	1.2539	12.7942	2.2171	C_{2}	C
4	2.0828	1.9143	11.0293	3.5	C_{1}	C
5	1.4771	1.3521	10.984	3.323	C_{2}	C
6	1.6532	1.4925	10.8333	3.3088	C_{2}	C
7	1.2788	1.1418	10.7152	1	C_{1}	C
8	3.3284	2.9593	10.6692	6.8123	C_{2}	C
9	4.7253	4.1427	10.5204	4.7602	C_{2}	C
10	3.0856	2.6873	10.4507	5.9897	C_{2}	C
11	3.0065	2.6116	10.4239	6.0767	C_{1}	C
12	1.3222	1.1439	10.3816	1.6392	C_{2}	C
13	4.3376	3.7425	10.3536	4.9188	C_{1}	C
14	3.6425	3.134	10.3249	4.2314	C_{2}	C
15	3.7386	3.2063	10.2914	4.37	C_{2}	C
16	2.3222	1.9912	10.2894	2.3927	C_{2}	C
17	1.8751	1.6034	10.2615	3.6272	C_{2}	C

continued on next page

Table B.3.: continued

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	T	By
18	1.9912	1.7019	10.2565	4.7559	C_{2}	C
19	1.1461	0.9785	10.2445	5.465	C_{2}	C
20	2.7559	2.351	10.2371	3.392	C_{2}	C
21	6.228	5.2735	10.1609	5.3004	C_{1}	$\mathrm{~B}-\mathrm{Y}$
22	5.2027	4.3951	10.1373	7.8574	C_{1}	C
23	4.3733	3.6867	10.116	7.0314	C_{1}	C
24	9.671	8.1514	10.1145	4.9403	C_{4}	N
25	5.2025	4.3813	10.1058	4.8739	C_{2}	C
26	3.2874	2.7653	10.0944	7.4446	C_{2}	C
27	3.8055	3.1978	10.0838	6.7104	C_{2}	C
28	3.0453	2.5589	10.0832	4.6301	C_{2}	C
29	3.69	3.0923	10.0561	5.9294	C_{1}	C
30	3.4849	2.905	10.0032	5.3061	C_{1}	C

Table B.4.: Best Known Szpiro Ratios

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	T	By
1	7.105	5.6226	9.4962	9.02	C_{1}	$\mathrm{~B}-\mathrm{Y}$
2	3.1106	2.577	9.9413	8.9037	C_{1}	C
3	3.9782	3.2011	9.6561	8.8431	C_{1}	C
4	5.4462	4.2596	9.3855	8.8333	C_{1}	C
5	6.4026	4.971	9.3169	8.8119	C_{2}	N
6	3.9863	3.2727	9.8517	8.8016	C_{2}	C
7	3.601	2.9082	9.6914	8.7924	C_{1}	C
8	4.514	3.5735	9.4999	8.7827	C_{1}	C

continued on next page

Table B.4.: continued

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	T	By
9	2.9335	2.4104	9.8601	8.7573	C_{1}	C
10	7.9501	6.0451	9.1245	8.6989	C_{1}	B-Y
11	11.224	8.5426	9.1332	8.689	C_{2}	N
12	10.4331	8.0134	9.2169	8.6622	C_{2}	B-Y
13	7.105	5.3616	9.0554	8.6224	C_{3}	B-Y
14	6.8797	5.2096	9.0869	8.6169	C_{2}	N
15	8.219	6.1795	9.0223	8.6107	C_{1}	B-Y
16	8.7857	6.5548	8.9529	8.5966	C_{1}	N
17	11.7011	8.7812	9.0055	8.5793	C_{2}	N
18	8.3838	6.2619	8.9629	8.5593	C_{1}	$\mathrm{~B}-\mathrm{Y}$
19	10.9102	8.252	9.0762	8.5458	C_{2}	$\mathrm{~B}-\mathrm{Y}$
20	4.4553	3.4397	9.2646	8.5387	C_{1}	C
21	11.5576	8.6875	9.02	8.5373	C_{2}	$\mathrm{~B}-\mathrm{Y}$
22	11.5576	8.6874	9.02	8.5373	C_{2}	$\mathrm{~B}-\mathrm{Y}$
23	7.1015	5.3205	8.9904	8.5352	C_{4}	N
24	8.7583	6.509	8.9181	8.5318	C_{2}	N
25	11.923	8.8921	8.9495	8.5313	C_{2}	N
26	5.1083	3.9073	9.1788	8.5253	C_{2}	C
27	3.5877	2.8155	9.4172	8.5175	C_{1}	C
28	4.9911	3.8121	9.1653	8.5167	C_{1}	C
29	5.3607	4.1073	9.1944	8.5157	C_{1}	C
30	8.5674	6.3538	8.8994	8.5045	C_{1}	B-Y

Best σ_{m} and σ by Torsion Subgroup

Table B.5.: Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{1}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	1.0414	1.3936	16.0587	1	C
2	2.0828	1.9143	11.0293	3.5	C
3	1.2788	1.1418	10.7152	1	C
4	3.0065	2.6116	10.4239	6.0767	C
5	4.3376	3.7425	10.3536	4.9188	C
6	6.228	5.2735	10.1609	5.3004	$\mathrm{~B}-\mathrm{Y}$
7	5.2027	4.3951	10.1373	7.8574	C
8	4.3733	3.6867	10.116	7.0314	C
9	3.69	3.0923	10.0561	5.9294	C
10	3.4849	2.905	10.0032	5.3061	C

Table B.6.: Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{1}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	7.105	5.6226	9.4962	9.02	B-Y
2	3.1106	2.577	9.9413	8.9037	C
3	3.9782	3.2011	9.6561	8.8431	C
4	5.4462	4.2596	9.3855	8.8333	C
5	3.601	2.9082	9.6914	8.7924	C
6	4.514	3.5735	9.4999	8.7827	C
7	2.9335	2.4104	9.8601	8.7573	C
8	7.9501	6.0451	9.1245	8.6989	B-Y
9	8.219	6.1795	9.0223	8.6107	B-Y
10	8.7857	6.5548	8.9529	8.5966	N

Table B.7.: Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{2}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	1.1461	1.2794	13.3951	3.8385	C
2	1.1761	1.2539	12.7942	2.2171	C
3	1.4771	1.3521	10.984	3.323	C
4	1.6532	1.4925	10.8333	3.3088	C
5	3.3284	2.9593	10.6692	6.8123	C
6	4.7253	4.1427	10.5204	4.7602	C
7	3.0856	2.6873	10.4507	5.9897	C
8	1.3222	1.1439	10.3816	1.6392	C
9	3.6425	3.134	10.3249	4.2314	C
10	3.7386	3.2063	10.2914	4.37	C

Table B.8.: Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{2}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	6.4026	4.971	9.3169	8.8119	N
2	3.9863	3.2727	9.8517	8.8016	C
3	11.224	8.5426	9.1332	8.689	N
4	10.4331	8.0134	9.2169	8.6622	B-Y
5	6.8797	5.2096	9.0869	8.6169	N
6	11.7011	8.7812	9.0055	8.5793	N
7	10.9102	8.252	9.0762	8.5458	B-Y
8	11.5576	8.6875	9.02	8.53729	B-Y
9	11.5576	8.6874	9.02	8.53728	B-Y
10	8.7583	6.509	8.9181	8.5318	N

Table B.9.: Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{3}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	6.7052	5.5121	9.8648	5.3502	B-Y
2	5.5836	4.4626	9.5907	3.7718	C
3	3.8519	2.9978	9.3392	7.0964	C
4	5.9966	4.6322	9.2696	5.3561	N
5	6.3505	4.9031	9.265	6.9488	B-Y
6	6.3505	4.9031	9.265	2.3163	B-Y
7	6.228	4.7964	9.2416	7.6215	B-Y
8	4.6378	3.5545	9.1969	3.1264	C
9	10.2284	7.8202	9.1747	8.063	B-Y
10	3.8837	2.9497	9.1141	7.3068	C

Table B.10.: Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{3}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	7.105	5.3616	9.0554	8.6224	B-Y
2	9.7512	7.1087	8.748	8.3541	B-Y
3	8.0593	5.8611	8.727	8.3072	B-Y
4	5.1896	3.7988	8.784	8.1606	C
5	8.7857	6.4368	8.7918	8.1579	N
6	6.932	5.0013	8.6578	8.1254	B-Y
7	8.004	5.6807	8.5168	8.1117	B-Y
8	10.2284	7.8202	9.1747	8.063	B-Y
9	9.74	6.7933	8.3696	8.0483	N
10	12.8001	9.0919	8.5236	8.0005	B-Y

Table B.11.: Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{4}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	9.671	8.1514	10.1145	4.9403	N
2	3.6933	3	9.7475	4.4081	C
3	4.1483	3.3112	9.5784	5.7275	C
4	1.8921	1.4995	9.5102	4.2522	C
5	5.0217	3.8794	9.2705	3.8597	C
6	10.5741	8.1514	9.2506	8.0676	$\mathrm{~B}-\mathrm{Y}$
7	4.7278	3.6419	9.2437	3.7546	C
8	1.7993	1.3825	9.2197	2.7955	C
9	12.0691	9.2659	9.2129	7.5614	N
10	1.1761	0.8961	9.1433	1	C

Table B.12.: Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{4}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	7.1015	5.3205	8.9904	8.5352	N
2	15.6709	11.0439	8.4569	8.2502	B-Y
3	16.574	11.6508	8.4355	8.2391	B-Y
4	12.9722	9.2662	8.5717	8.1874	B-Y
5	10.0461	7.096	8.4761	8.1453	B-Y
6	12.2037	8.6077	8.464	8.1074	B-Y
7	13.317	9.2474	8.3329	8.0884	B-Y
8	11.6474	8.1202	8.3661	8.0878	B-Y
9	12.8363	8.9223	8.3409	8.087	B-Y
10	10.5741	8.1514	9.2506	8.0676	B-Y

Table B.13.: Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{5}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	13.3832	9.5211	8.5371	7.3009	B-Y
2	11.8831	8.449	8.5321	6.2449	N
3	13.7441	9.6366	8.4138	5.4948	N
4	8.5927	6.0068	8.3887	8.0067	$\mathrm{~B}-\mathrm{Y}$
5	9.5534	6.6564	8.3612	7.5939	N
6	7.3134	5.045	8.2779	6.7144	N
7	1.0414	0.7169	8.2605	5	C
8	13.7715	9.4136	8.2027	7.5004	N
9	11.641	7.947	8.192	6.9278	$\mathrm{~B}-\mathrm{Y}$
10	11.5493	7.8442	8.1503	7.2499	$\mathrm{~B}-\mathrm{Y}$

Table B.14.: Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{5}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	8.5927	6.0068	8.3887	8.0067	B-Y
2	9.5534	6.6564	8.3612	7.5939	N
3	13.7715	9.4136	8.2027	7.5004	N
4	13.9764	9.0574	7.7766	7.4436	N
5	7.0098	4.66	7.9774	7.3561	B-Y
6	11.6205	7.6857	7.9367	7.3437	B-Y
7	13.3832	9.5211	8.5371	7.3009	B-Y
8	11.5493	7.8442	8.1503	7.2499	B-Y
9	12.5761	7.8386	7.4795	7.2223	B-Y
10	15.2647	10.1548	7.983	7.1909	N

Table B.15.: Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{6}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	1.9542	1.5906	9.7672	3.9766	C
2	5.1083	3.8883	9.1342	7.3124	C
3	7.2107	5.4243	9.0271	5.6695	N
4	5.4979	4.094	8.9357	7.0766	C
5	5.5854	4.1459	8.9072	8.3096	C
6	4.1096	3.0464	8.8955	5.6309	C
7	3.6789	2.691	8.7775	5.2711	C
8	2.7993	2.0453	8.7675	3.7427	C
9	5.376	3.9205	8.7511	6.4273	C
10	5.5854	4.0716	8.7477	7.8873	C

Table B.16.: Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{6}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	5.5854	4.1459	8.9072	8.3096	C
2	5.5854	4.0716	8.7477	7.8873	C
3	5.5774	3.9221	8.4385	7.8611	C
4	7.2107	5.1233	8.5262	7.6868	N
5	15.0308	9.7856	7.8125	7.5729	N
6	6.7336	4.515	8.0463	7.5699	N
7	5.1083	3.5879	8.4284	7.5161	C
8	32.0533	20.2606	7.5851	7.4877	Ba
9	32.0533	20.3147	7.6053	7.4784	Ba
10	5.5774	3.8209	8.2209	7.474	C

Table B.17.: Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{7}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	2.9335	2.1108	8.6345	6.6196	C
2	8.3071	5.3759	7.7658	5.4996	N
3	17.2439	10.8613	7.5584	7.3625	N
4	18.966	11.7054	7.4061	6.7331	$\mathrm{~B}-\mathrm{Y}$
5	8.0805	4.9865	7.4052	6.3564	N
6	17.8125	10.9867	7.4016	6.6911	N
7	16.8791	10.3484	7.3571	6.4517	N
8	16.1434	9.866	7.3338	7.1062	N
9	11.296	6.9	7.33	5.7148	$\mathrm{~B}-\mathrm{Y}$
10	15.828	9.6244	7.2967	6.4658	N

Table B.18.: Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{7}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	17.2439	10.8613	7.5584	7.3625	N
2	16.1434	9.866	7.3338	7.1062	N
3	22.1241	13.0172	7.0605	6.9203	Ba
4	41.3549	24.0542	6.9798	6.9015	Ba
5	31.529	18.3693	6.9914	6.8898	Ba
6	30.5304	17.5546	6.8999	6.8019	Ba
7	36.9497	21.2101	6.8883	6.8004	Ba
8	32.5831	18.9757	6.9885	6.7945	Ba
9	26.4268	15.2317	6.9165	6.7652	Ba
10	19.15	11.0648	6.9336	6.7645	N

Table B.19.: Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{8}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	1.1761	0.8063	8.2265	5.5659	C
2	3.7568	2.5057	8.0036	5.2881	C
3	6.0392	3.964	7.8765	7.3403	Ba
4	5.6389	3.6912	7.855	7.0385	Ba
5	5.4264	3.5049	7.7508	4.9534	C
6	4.1996	2.696	7.7037	5.6891	C
7	13.5995	8.7096	7.6852	5.6546	N
8	11.5099	7.3698	7.6836	6.7376	N
9	5.6894	3.6276	7.6513	7.0911	Ba
10	2.3222	1.4648	7.5695	4.7718	C

Table B.20.: Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{8}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	6.0392	3.964	7.8765	7.3403	Ba
2	11.2638	7.0332	7.4928	7.0962	Ba
3	5.6894	3.6276	7.6513	7.0911	N
4	5.6389	3.6912	7.855	7.0385	Ba
5	22.1795	13.2545	7.1712	7.0305	Ba
6	16.8025	10.2792	7.3412	6.9995	Ba
7	10.8492	6.5354	7.2286	6.8817	N
8	23.8054	13.9792	7.0467	6.8343	Ba
9	27.446	15.8907	6.9478	6.8297	Ba
10	9.9853	5.9207	7.1153	6.8203	N

Table B.21.: Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{9}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	22.2722	12.8496	6.9232	6.2785	Ba
2	47.9415	27.6277	6.9153	6.5242	Ba
3	8.8598	5.0701	6.8671	5.1416	Ba
4	45.392	25.8181	6.8254	6.6725	Ba
5	40.5668	23.066	6.8231	5.7852	Ba
6	25.8537	14.6733	6.8106	5.5363	Ba
7	25.8546	14.6736	6.8105	5.5362	Ba
8	31.8033	17.8476	6.7342	6.3266	Ba
9	30.6628	17.1762	6.722	5.5376	Ba
10	30.6632	17.1764	6.7219	5.5375	Ba

Table B.22.: Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{9}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	45.392	25.8181	6.8254	6.6725	Ba
2	46.0298	25.5196	6.653	6.5844	Ba
3	41.9014	23.1685	6.6351	6.5424	Ba
4	38.4149	21.4147	6.6895	6.5378	Ba
5	47.9415	27.6277	6.9153	6.5242	Ba
6	34.3046	18.8048	6.5781	6.4836	Ba
7	47.4918	26.3517	6.6584	6.4834	Ba
8	51.9158	28.2517	6.5302	6.4679	Ba
9	40.6088	22.6083	6.6808	6.452	Ba
10	40.3045	22.0003	6.5502	6.4517	Ba

Table B.23.: Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{10}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	14.1479	8.6258	7.3163	7.0006	Ba
2	14.1479	8.6246	7.3152	6.686	Ba
3	2.7559	1.6564	7.2124	5.8239	C
4	17.7436	10.622	7.1837	5.1316	Ba
5	23.9438	13.9711	7.0019	5.8695	Ba
6	17.7436	10.321	6.9801	5.954	Ba
7	8.5358	4.9615	6.9751	5.7738	Ba
8	20.9924	12.1684	6.9559	4.9759	Ba
9	39.3827	22.5171	6.861	6.1057	Ba
10	23.9438	13.67	6.851	6.2848	Ba

Table B.24.: Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{10}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	14.1479	8.6258	7.3163	7.0006	Ba
2	44.8544	25.2964	6.7676	6.6937	Ba
3	14.1479	8.6246	7.3152	6.686	Ba
4	44.8544	25.2268	6.749	6.6402	Ba
5	50.2119	28.1464	6.7266	6.6219	Ba
6	57.1791	31.8115	6.6762	6.6105	Ba
7	50.2119	27.8946	6.6664	6.6018	Ba
8	50.6744	28.1466	6.6653	6.5959	Ba
9	43.2765	24.0527	6.6695	6.5649	Ba
10	42.3074	23.5139	6.6694	6.5631	Ba

Table B.25.: Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{12}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	16.4632	10.8042	7.8752	6.4694	Ba
2	6.8059	4.3028	7.5866	6.1696	Ba
3	5.192	3.1899	7.3727	5.2997	C
4	11.2702	6.8354	7.2781	6.9035	Ba
5	12.1426	7.3229	7.2369	6.5351	Ba
6	8.9416	5.3242	7.1453	5.2472	Ba
7	8.014	4.7655	7.1358	5.2583	Ba
8	8.5442	5.067	7.1164	5.322	Ba
9	14.8786	8.8097	7.1053	6.7731	Ba
10	11.1158	6.5582	7.0798	6.556	Ba

Table B.26.: Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{12}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	11.2702	6.8354	7.2781	6.9035	Ba
2	14.8786	8.8097	7.1053	6.7731	Ba
3	22.5087	12.7648	6.8053	6.6692	Ba
4	39.044	21.9509	6.7465	6.6631	Ba
5	30.9516	17.4563	6.7678	6.6489	Ba
6	30.4164	17.4477	6.8836	6.6315	Ba
7	40.815	22.8596	6.721	6.6242	Ba
8	39.481	22.1265	6.7252	6.6178	Ba
9	8.8844	5.1638	6.9746	6.6108	Ba
10	62.3421	34.5759	6.6554	6.6035	Ba

Table B.27.: Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{2} \times C_{2}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	4.7253	3.8417	9.7559	6.8759	C
2	9.671	7.8504	9.7409	7.1539	N
3	1.1761	0.9529	9.7228	4.4341	C
4	10.1481	8.089	9.5651	7.0996	B-Y
5	10.37	8.1999	9.4888	7.0761	B-Y
6	10.5161	8.2729	9.4403	7.0611	B-Y
7	5.2025	4.0802	9.4115	6.7955	C
8	10.8471	8.4384	9.3353	7.0287	B-Y
9	10.9498	8.4898	9.3041	7.0191	B-Y
10	10.9932	8.5115	9.291	7.0151	B-Y

Table B.28.: Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{2} \times C_{2}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	6.4026	4.8779	9.1424	8.4619	N
2	10.7537	7.724	8.6192	8.3121	N
3	15.6709	11.3016	8.6542	8.31	B-Y
4	6.8797	5.1165	8.9245	8.2912	N
5	16.8956	11.9317	8.4744	8.2778	B-Y
6	11.7928	8.4825	8.6316	8.2572	N
7	11.224	8.5423	9.1329	8.245	N
8	16.148	11.5402	8.5758	8.2417	$\mathrm{~B}-\mathrm{Y}$
9	7.1015	5.2274	8.8331	8.2196	N
10	17.3727	12.1702	8.4064	8.2153	B-Y

Table B.29.: Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{2} \times C_{4}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	4.7278	3.3408	8.4797	5.7351	C
2	4.7592	3.3399	8.4215	6.6384	C
3	7.539	5.1921	8.2644	6.9951	N
4	12.2528	8.3861	8.2131	7.218	N
5	5.0879	3.4491	8.1348	6.7562	C
6	4.6308	3.1374	8.13	5.3121	C
7	13.1559	8.6871	7.9239	7.4605	N
8	13.1516	8.6558	7.8979	7.4051	N
9	5.6389	3.6902	7.8531	6.2239	C
10	11.2638	7.3329	7.8122	7.0216	N

Table B.30.: Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{2} \times C_{4}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	13.1559	8.6871	7.9239	7.4605	N
2	13.1516	8.6558	7.8979	7.4051	N
3	12.2528	8.3861	8.2131	7.218	N
4	11.2638	7.3329	7.8122	7.0216	N
5	22.1795	13.3086	7.2005	7.017	Ba
6	31.6677	18.7487	7.1045	6.9989	Ba
7	7.539	5.1921	8.2644	6.9951	N
8	9.9853	6.11	7.3428	6.992	N
9	31.6677	18.6731	7.0759	6.9248	Ba
10	28.2863	16.5874	7.037	6.9087	Ba

Table B.31.: Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{2} \times C_{6}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	7.2107	5.1233	8.5262	6.8473	N
2	8.0892	5.4227	8.0444	6.3285	Ba
3	5.0712	3.3891	8.0196	5.6586	C
4	12.542	8.3282	7.9683	6.7848	N
5	4.1611	2.7581	7.9541	5.9662	C
6	1.9542	1.2897	7.9191	5.0234	C
7	14.5536	9.5391	7.8653	6.4214	Ba
8	6.7336	4.41	7.8591	7.2555	N
9	4.2986	2.8126	7.8515	5.4686	C
10	7.3646	4.8077	7.8337	6.3186	N

Table B.32.: Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{2} \times C_{6}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	32.0533	20.1472	7.5426	7.4256	Ba
2	15.0308	9.7777	7.8061	7.3401	N
3	6.7336	4.41	7.8591	7.2555	N
4	22.5824	13.7778	7.3213	7.1742	Ba
5	12.0649	7.6128	7.5719	7.1615	N
6	17.1442	10.5259	7.3675	7.1208	N
7	11.1071	6.8536	7.4046	7.113	Ba
8	31.111	18.6111	7.1786	7.0744	Ba
9	24.3925	15.0043	7.3814	7.0626	Ba
10	9.6698	5.9515	7.3857	7.042	Ba

Table B.33.: Best σ_{m} for $E(\mathbb{Q})_{\text {tors }} \cong C_{2} \times C_{8}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	16.8025	10.2792	7.3412	6.6577	Ba
2	13.8562	8.3466	7.2284	6.5386	Ba
3	15.086	8.9404	7.1115	5.8465	Ba
4	22.1795	13.1411	7.1098	6.9407	Ba
5	17.6296	10.4426	7.108	5.8551	Ba
6	5.4264	3.2038	7.0851	5.6864	Ba
7	7.045	4.1548	7.0771	6.3162	Ba
8	10.9852	6.4212	7.0144	5.7357	Ba
9	22.9852	13.3984	6.995	6.3868	Ba
10	17.4688	10.1638	6.9819	6.5084	Ba

Table B.34.: Best σ for $E(\mathbb{Q})_{\text {tors }} \cong C_{2} \times C_{8}$

Rank	$\log N_{E}$	$h_{\text {naive }}(E)$	$\sigma_{m}(E)$	$\sigma(E)$	By
1	22.1795	13.1411	7.1098	6.9407	Ba
2	27.446	15.8296	6.921	6.7363	Ba
3	16.5597	9.5532	6.9227	6.7266	Ba
4	27.0283	15.5744	6.9147	6.7124	Ba
5	22.0659	12.681	6.8963	6.7024	Ba
6	17.1056	9.8012	6.8758	6.6777	Ba
7	66.4215	37.3617	6.7499	6.6662	Ba
8	16.8025	10.2792	7.3412	6.6577	Ba
9	24.4226	13.9132	6.8362	6.6574	Ba
10	16.5906	9.4403	6.8282	6.628	Ba

Summary of Data for $\mathcal{F}_{C_{2} \times C_{4}}$

Figure B.1.: Histograms for $\mathcal{F}_{C_{2} \times C_{4}}$

Summary of Data for $\mathcal{F}_{C_{2} \times C_{6}}$

(a) Modified Szpiro Ratio in $\mathcal{F}_{C_{2} \times C_{6}}$

(b) Szpiro Ratio in $\mathcal{F}_{C_{2} \times C_{6}}$

(c) Naive Height in $\mathcal{F}_{C_{2} \times C_{6}}$

Figure B.2.: Histograms for $\mathcal{F}_{C_{2} \times C_{6}}$

Summary of Data for $\mathcal{F}_{C_{2} \times C_{8}}$

(a) Modified Szpiro Ratio in $\mathcal{F}_{C_{2} \times C_{8}}$

(b) Szpiro Ratio in $\mathcal{F}_{C_{2} \times C_{8}}$

(c) Naive Height in $\mathcal{F}_{C_{2} \times C_{8}}$

Figure B.3.: Histograms for $\mathcal{F}_{C_{2} \times C_{8}}$

C. REVIEW OF MATHEMATICA COMMANDS

To illustrate, $5 \equiv 1 \bmod 4$ can be verified via the Mathematica input Mod $[5,4]$ which outputs 1. Now suppose we want to compute via Mathematica the congruence $k^{2} \bmod 8$ for $1 \leq k \leq 8$. Then the input

$$
\text { Table }\left[\operatorname{Mod}\left[k^{\wedge} 2,16\right],\{k, 1,8\}\right]
$$

outputs

$$
\{1,4,1,0,1,4,1,0\}
$$

where the j-th entry refers to $j^{2} \bmod 8$. Indeed, the sixth entry is 4 and which agrees with $6^{2} \equiv 4 \bmod 8$. From this we see the classic fact that an odd square is congruent to $1 \bmod 8$. This can be checked more efficiently via the input

$$
\text { Table }[\operatorname{Mod}[k \wedge 2,16],\{k, 1,8,2\}]
$$

which outputs

$$
\{1,1,1,1\}
$$

Namely, the j-th entry in this set corresponds to $(2 j-1)^{2} \bmod 8$.
To check the different possibilities of $a^{2}+b^{2} \bmod 4$ for $1 \leq a \leq 4$ and $1 \leq b \leq 3$, we use the input

$$
\operatorname{Table}[\operatorname{Mod}[a \wedge 2+b \wedge 2,4],\{a, 1,4\},\{b, 1,3\}]
$$

which outputs

$$
\{\{2,1,2\},\{1,0,1\},\{2,1,2\},\{1,0,1\}\}
$$

In particular, the set is an output of four sets consisting of three integers. Viewing this output as the matrix

$$
A=\left(\begin{array}{lll}
2 & 1 & 2 \\
1 & 0 & 1 \\
2 & 1 & 2 \\
1 & 0 & 1
\end{array}\right)
$$

we have the interpretation that the $a_{j, k}$ entry of A is interpretted as $j^{2}+k^{2} \equiv$ $a_{j, k} \bmod 4$. Indeed, $a_{2,1}=1$ which verifies $2^{2}+1^{2} \equiv 1 \bmod 4$. Lastly, we consider consider $a^{2}+b^{2} \bmod 8$ where $1 \leq a, b \leq 8$ with a even and b odd. Then the input

$$
\text { Table }\left[\operatorname{Mod}\left[a^{\wedge} 2+b^{\wedge} 2,8\right],\{a, 2,8,2\},\{b, 1,8,2\}\right]
$$

outputs

$$
\{\{5,5,5,5\},\{1,1,1,1\},\{5,5,5,5\},\{1,1,1,1\}\}
$$

As before, let

$$
A=\left(\begin{array}{llll}
\left(\begin{array}{llll}
5 & 5 & 5 & 5 \\
1 & 1 & 1 & 1 \\
5 & 5 & 5 & 5 \\
(1 & 1 & 1 & 1
\end{array}\right)
\end{array}\right.
$$

and we observe that for $a_{j, k}$ in A we have $(2 j)^{2}+(2 k-1)^{2} \equiv a_{j, k} \bmod 8$. Indeed, $a_{2,3}=1$ which corresponds to $4^{2}+5^{2} \equiv 1 \bmod 8$.
D. E_{T} AND ITS ASSOCIATED QUANTITIES
Table D.1.: Weierstrass Model of E_{T}
where $E_{T}: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x$
\(\left.$$
\begin{array}{|c|c|c|c|c|}\hline a_{1} & a_{2} & a_{3} & a_{4} & T \\
\hline 0 & 2 a & 0 & a^{2}-b^{2} d & C_{2} \\
\hline 0 & 0 & a & 0 & C_{3}^{0} \\
\hline a & 0 & a^{2} b & 0 & C_{3} \\
\hline a & -a b & -a^{2} b & 0 & C_{4} \\
\hline a-b & -a b & -a^{2} b & 0 & C_{5} \\
\hline a-b & -a b-b^{2} & -a^{2} b-a b^{2} & 0 & C_{6} \\
\hline a^{2}+a b-b^{2} & a^{2} b^{2}-a b^{3} & a^{4} b^{2}-a^{3} b^{3} & 0 & C_{7} \\
\hline-a^{2}+4 a b-2 b^{2} & -a^{2} b^{2}+3 a b^{3}-2 b^{4} & -a^{3} b^{3}+3 a^{2} b^{4}-2 a b^{5} & 0 & C_{8} \\
\hline a^{3}+a b^{2}-b^{3} & \left(a^{4} b^{2}-2 a^{3} b^{3}+\right. \\
\left.2 a^{2} b^{4}-a b^{5}\right)\end{array}
$$ \quad \begin{array}{c}\left(a^{7} b^{2}-2 a^{6} b^{3}+\right.

\left.2 a^{5} b^{4}-a^{4} b^{5}\right)\end{array}\right]\)| C_{9} |
| :---: |

continued on next page
Table D.1.: continued

a_{1}	a_{2}	a_{3}	a_{4}	T
$\left(a^{3}-2 a^{2} b-\right.$				
$\left.2 a b^{2}+2 b^{3}\right)$	$-a^{3} b^{3}+3 a^{2} b^{4}-2 a b^{5}$	$\left(-a^{6} b^{3}+6 a^{5} b^{4}-12 a^{4} b^{5}+\right.$	0	C_{10}
$\left(-a^{4}+2 a^{3} b+2 a^{2} b^{2}-\right.$	$\left(a^{7} b-9 a^{6} b^{2}+36 a^{5} b^{3}-\right.$			
$\left.8 a b^{3}+6 b^{4}\right)$	$83 a^{4} b^{4}+119 a^{3} b^{5}-$	$\left(-a^{11} b+12 a^{2} b^{7} b^{2}-66 a^{9} b^{3}+\right.$		
$\left.106 a^{2} b^{6}+54 a b^{7}-12 b^{8}\right)$	$812 a^{5} b^{4}+485 a^{7} b^{5}+748 a^{6} b^{6}-$ 9	$90 a^{2} b^{10}-12 a b^{41} b^{8}-304 a^{3} b^{9}+$	0	C_{12}
0	$a d+b d$	0	$a b d^{2}$	$C_{2} \times C_{2}$
a	$-a b-4 b^{2}$	$-a^{2} b-4 a b^{2}$	0	$C_{2} \times C_{4}$
$-19 a^{2}+2 a b+b^{2}$	$\left(-10 a^{4}+22 a^{3} b-\right.$	$\left(90 a^{6}-198 a^{5} b+116 a^{4} b^{2}+\right.$	0	$C_{2} \times C_{6}$
$\left(-a^{4}-8 a^{3} b-\right.$	$\left.14 a^{2} b^{2}+2 a b^{3}\right)$	$\left.4 a^{3} b^{3}-14 a^{2} b^{4}+2 a b^{5}\right)$		
$\left.24 a^{2} b^{2}+64 b^{4}\right)$	$\left(-4 a^{6} b^{2}-56 a^{5} b^{3}-\right.$	$\left(8 a^{9} b^{3}+144 a^{8} b^{4}+1024 a^{7} b^{5}+\right.$		
$320 a^{4} b^{4}-960 a^{3} b^{5}-$	$3328 a^{6} b^{6}+2048 a^{5} b^{7}-$	0	$C_{2} \times C_{8}$	
$\left.1536 a^{2} b^{6}-1024 a b^{7}\right)$	$21504 a^{4} b^{8}-77824 a^{3} b^{9}-$			

Table D.2.: The Polynomials α_{T}

α_{T}	T
$16\left(3 b^{2} d+a^{2}\right)$	C_{2}
$a^{3}(a-24 b)$	C_{3}
$a^{2}\left(a^{2}+16 a b+16 b^{2}\right)$	C_{4}
$\left(a^{4}+12 a^{3} b+14 a^{2} b^{2}-12 a b^{3}+b^{4}\right)$	C_{5}
$(a+3 b)\left(a^{3}+9 a^{2} b+3 a b^{2}+3 b^{3}\right)$	C_{6}
$\left(a^{2}-a b+b^{2}\right)\left(a^{6}+5 a^{5} b-10 a^{4} b^{2}-15 a^{3} b^{3}+30 a^{2} b^{4}-11 a b^{5}+b^{6}\right)$	C_{7}
$\left(a^{8}-16 a^{7} b+96 a^{6} b^{2}-288 a^{5} b^{3}+480 a^{4} b^{4}-448 a^{3} b^{5}+224 a^{2} b^{6}-64 a b^{7}+16 b^{8}\right)$	C_{8}
$\left(a^{3}-3 a b^{2}+b^{3}\right)\left(a^{9}-9 a^{7} b^{2}+27 a^{6} b^{3}-45 a^{5} b^{4}+54 a^{4} b^{5}-48 a^{3} b^{6}+27 a^{2} b^{7}-9 a b^{8}+b^{9}\right)$	C_{9}
$\left(a^{12}-8 a^{11} b+16 a^{10} b^{2}+40 a^{9} b^{3}-240 a^{8} b^{4}+432 a^{7} b^{5}-256 a^{6} b^{6}-288 a^{5} b^{7}+720 a^{4} b^{8}-720 a^{3} b^{9}+416 a^{2} b^{10}-\right.$	C_{10}
$\left.128 a b^{11}+16 b^{12}\right)$	
$\left(a^{4}-6 a^{3} b+12 a^{2} b^{2}-12 a b^{3}+6 b^{4}\right)\left(a^{12}-18 a^{11} b+144 a^{10} b^{2}-684 a^{9} b^{3}+2154 a^{8} b^{4}-4728 a^{7} b^{5}+7368 a^{6} b^{6}-\right.$	C_{12}
$\left.8112 a^{5} b^{7}+6132 a^{4} b^{8}-3000 a^{3} b^{9}+864 a^{2} b^{10}-144 a b^{11}+24 b^{12}\right)$	
$16 d^{2}\left(a^{2}-a b+b^{2}\right)$	$C_{2} \times C_{2}$
$a^{4}+16 a^{3} b+80 a^{2} b^{2}+128 a b^{3}+256 b^{4}$	$C_{2} \times C_{4}$
$\left(21 a^{2}-6 a b+b^{2}\right)\left(6861 a^{6}-2178 a^{5} b-825 a^{4} b^{2}+180 a^{3} b^{3}+75 a^{2} b^{4}-18 a b^{5}+b^{6}\right)$	$C_{2} \times C_{6}$

continued on next page
Table D.2.: continued

α_{T}	T
$\left(a^{16}+32 a^{15} b+448 a^{14} b^{2}+3584 a^{13} b^{3}+17664 a^{12} b^{4}+51200 a^{11} b^{5}+51200 a^{10} b^{6}-237568 a^{9} b^{7}-1183744 a^{8} b^{8}-\right.$	$C_{2} \times C_{8}$
$1900544 a^{7} b^{9}+3276800 a^{6} b^{10}+26214400 a^{5} b^{11}+72351744 a^{4} b^{12}+117440512 a^{3} b^{33}+117440512 a^{2} b^{14}+$	
$\left.67108864 a b^{15}+16777216 b^{16}\right)$	

Table D.3.: The Polynomials β_{T}

β_{T}	T
$-64 a\left(9 b^{2} d-a^{2}\right)$	C_{2}
$a^{4}\left(-a^{2}+36 a b-216 b^{2}\right)$	C_{3}
$a^{3}(a+8 b)\left(-a^{2}-16 a b+8 b^{2}\right)$	C_{4}
$-\left(a^{2}+b^{2}\right)\left(a^{4}+18 a^{3} b+74 a^{2} b^{2}-18 a b^{3}+b^{4}\right)$	C_{5}
$-\left(a^{2}+6 a b-3 b^{2}\right)\left(a^{4}+12 a^{3} b+30 a^{2} b^{2}+36 a b^{3}+9 b^{4}\right)$	C_{6}
$-\left(a^{12}+6 a^{11} b-15 a^{10} b^{2}-46 a^{9} b^{3}+174 a^{8} b^{4}-222 a^{7} b^{5}+273 a^{6} b^{6}-486 a^{5} b^{7}+570 a^{4} b^{8}-354 a^{3} b^{9}+117 a^{2} b^{10}-\right.$	C_{7}
$\left.18 a b^{11}+b^{12}\right)$	
$-\left(a^{4}-8 a^{3} b+16 a^{2} b^{2}-16 a b^{3}+8 b^{4}\right)\left(a^{8}-16 a^{7} b+96 a^{6} b^{2}-288 a^{5} b^{3}+456 a^{4} b^{4}-352 a^{3} b^{5}+80 a^{2} b^{6}+32 a b^{7}-8 b^{8}\right)$	C_{8}
continued on next page	

Table D.3.: continued

β_{T}	T	
$-\left(a^{18}-18 a^{16} b^{2}+42 a^{15} b^{3}+27 a^{14} b^{4}-306 a^{13} b^{5}+735 a^{12} b^{6}-1080 a^{11} b^{7}+1359 a^{10} b^{8}-2032 a^{9} b^{9}+3240 a^{8} b^{10}-\right.$	C_{9}	
$\left.4230 a^{7} b^{11}+4128 a^{6} b^{12}-2970 a^{5} b^{13} 1359 a^{10} b^{8}-570 a^{3} b^{15}+135 a^{2} b^{16}-18 a b^{17}+b^{18}\right)$		
$-\left(a^{2}-2 a b+2 b^{2}\right)\left(a^{4}-2 a^{3} b+2 b^{4}\right)\left(a^{4}-2 a^{3} b-6 a^{2} b^{2}+12 a b^{3}-4 b^{4}\right)\left(a^{8}-6 a^{7} b+4 a^{6} b^{2}+48 a^{5} b^{3}-146 a^{4} b^{4}+\right.$	C_{10}	
$\left.176 a^{3} b^{5}-104 a^{2} b^{6}+32 a b^{7}-4 b^{8}\right)$		
$-\left(a^{8}-12 a^{7} b+60 a^{6} b^{2}-168 a^{5} b^{3}+288 a^{4} b^{4}-312 a^{3} b^{5}+216 a^{2} b^{6}-96 a b^{7}+24 b^{8}\right)\left(a^{16}-24 a^{15} b+264 a^{14} b^{2}+\right.$	C_{12}	
$8208 a^{12} b^{4}-27696 a^{11} b^{5}+70632 a^{10} b^{6}-138720 a^{9} b^{7}+211296 a^{8} b^{8}-248688 a^{7} b^{9}+222552 a^{6} b^{10}-146304 a^{5} b^{11}+$		
$\left.65880 a^{4} b^{12}-17136 a^{3} b^{13}+1008 a^{2} b^{14}+576 a b^{15}-72 b^{16}\right)$		
$-32 d^{3}(a+b)(a-2 b)(2 a-b)$	$C_{2} \times C_{4}$	
$-\left(a^{2}+8 a b-16 b^{2}\right)\left(a^{2}+8 a b+8 b^{2}\right)\left(a^{2}+8 a b+32 b^{2}\right)$	C_{2}	
$-\left(183 a^{4}-36 a^{3} b-30 a^{2} b^{2}+12 a b^{3}-b^{4}\right)\left(393 a^{4}-156 a^{3} b+30 a^{2} b^{2}-12 a b^{3}+b^{4}\right)\left(759 a^{4}-228 a^{3} b-30 a^{2} b^{2}+\right.$	C_{6}	
$12 a b^{3}-b^{4}$	$C_{2} \times C_{8}$	
$-\left(a^{8}+16 a^{7} b+96 a^{6} b^{2}+256 a^{5} b^{3}-256 a^{4} b^{4}-4096 a^{3} b^{5}-12288 a^{2} b^{6}-16384 a b^{7}-8192 b^{8}\right)\left(a^{8}+16 a^{7} b+\right.$		
$\left.96 a^{6} b^{2}+256 a^{5} b^{3}+128 a^{4} b^{4}-1024 a^{3} b^{5}-3072 a^{2} b^{6}-4096 a b^{7}-2048 b^{8}\right)\left(a^{8}+16 a^{7} b+96 a^{6} b^{2}+256 a^{5} b^{3}+\right.$		
$\left.512 a^{4} b^{4}+2048 a^{3} b^{5}+6144 a^{2} b^{6}+8192 a b^{7}+4096 b^{8}\right)$		

Table D.4.: The Polynomials γ_{T}

γ_{T}	T
$64 b^{2} d\left(b^{2} d-a^{2}\right)^{2}$	C_{2}
$a^{8} b^{3}(a-27 b)$	C_{3}
$a^{7} b^{4}(a+16 b)$	C_{4}
$(a b)^{5}\left(-a^{2}-11 a b+b^{2}\right)$	C_{5}
$a^{2} b^{6}(a+9 b)(a+b)^{3}$	C_{6}
$(a b)^{7}(-a+b)^{7}\left(a^{3}+5 a^{2} b-8 a b^{2}+b^{3}\right)$	C_{7}
$a^{2} b^{8}(a-2 b)^{4}(a-b)^{8}\left(a^{2}-8 a b+8 b^{2}\right)$	C_{8}
$(a b)^{9}(-a+b)^{9}\left(a^{2}-a b+b^{2}\right)^{3}\left(a^{3}+3 a^{2} b-6 a b^{2}+b^{3}\right)$	C_{9}
$a^{5} b^{10}(a-2 b)^{5}(a-b)^{10}\left(a^{2}+2 a b-4 b^{2}\right)\left(a^{2}-3 a b+b^{2}\right)^{2}$	C_{10}
$a^{2} b^{12}(a-2 b)^{6}(a-b)^{12}\left(a^{2}-6 a b+6 b^{2}\right)\left(a^{2}-2 a b+2 b^{2}\right)^{3}\left(a^{2}-3 a b+3 b^{2}\right)^{4}$	C_{12}
$16 a^{2} b^{2} d^{6}(a-b)^{2}$	$C_{2} \times C_{2}$
$a^{2} b^{4}(a+8 b)^{2}(a+4 b)^{4}$	$C_{2} \times C_{4}$
$(2 a)^{6}(-9 a+b)^{2}(-3 a+b)^{2}(3 a+b)^{2}(-5 a+b)^{6}(-a+b)^{6}$	$C_{2} \times C_{6}$
$(2 a b)^{8}(a+2 b)^{8}(a+4 b)^{8}\left(a^{2}-8 b^{2}\right)^{2}\left(a^{2}+8 a b+8 b^{2}\right)^{2}\left(a^{2}+4 a b+8 b^{2}\right)^{4}$	$C_{2} \times C_{8}$

Table D.5.: The Polynomials $\mu_{T}^{(1)}$

$\mu_{T}^{(1)}$	T
$48 b^{2} d r-4 a^{2} r+108 a s$	C_{2}
$a^{2} r-12 a b r-72 b^{2} r+15552 a^{2} s-124416 a b s$	C_{3}
$-a^{3} r-22 a^{2} b r-88 a b^{2} r+144 b^{3} r+51968 a^{3} s+413696 a^{2} b s-212992 a b^{2} s$	C_{4}
$-3121 a^{5} r-56475 a^{4} b r-239450 a^{3} b^{2} r-22800 a^{2} b^{3} r-236305 a b^{4} r+33663 b^{5} r+33663 a^{5} s+236305 a^{4} b s-$	C_{5}
$22800 a^{3} b^{2} s+239450 a^{2} b^{3} s-56475 a b^{4} s+3121 b^{5} s$	
$-10 a^{5} r-177 a^{4} b r-936 a^{3} b^{2} r-1494 a^{2} b^{3} r-702 a b^{4} r+1215 b^{5} r+1670139 a^{5} s+15348366 a^{4} b s+31389282 a^{3} b^{2} s+$	C_{6}
$27054648 a^{2} b^{3} s-9760581 a b^{4} s-5183190 b^{5} s$	
$-86718 a^{11} r-538213 a^{10} b r+1184537 a^{9} b^{2} r+4196345 a^{8} b^{3} r-14193432 a^{7} b^{4} r+16599205 a^{6} b^{5} r-20778709 a^{5} b^{6} r+$	C_{7}
$38254845 a^{4} b^{7} r-42322212 a^{3} b^{8} r+23351603 a^{2} b^{9} r-6305919 a b^{10} r+575487 b^{11} r-63181 a^{11} s-693257 a^{10} b s+$	
$204867 a^{9} b^{2} s+6273544 a^{8} b^{3} s-12066603 a^{7} b^{4} s+10691961 a^{6} b^{5} s-18844497 a^{5} b^{6} s+31181840 a^{4} b^{7} s-$	
$23670877 a^{3} b^{8} s+8967083 a^{2} b^{9} s-1492111 a b^{10} s+86718 b^{11} s$	
$-73848 a^{11} r+1685380 a^{10} b r-15738648 a^{9} b^{2} r+79535073 a^{8} b^{3} r-243082192 a^{7} b^{4} r+472307520 a^{6} b^{5} r-$	C_{8}
$593480800 a^{5} b^{6} r+470894488 a^{4} b^{7} r-205849824 a^{3} b^{8} r+17561360 a^{2} b^{9} r+20674464 a b^{10} r-4013912 b^{11} r+$	
$7939456 a^{10} s-129476608 a^{9} b s+852553728 a^{8} b^{2} s-3040530432 a^{7} b^{3} s+6517843968 a^{6} b^{4} s-8762834944 a^{5} b^{5} s+$	
$7329972224 a^{4} b^{6} s-3378085888 a^{3} b^{7} s+343171072 a^{2} b^{8} s+334233600 a b^{9} s-66846720 b^{10} s$	

continued on next page
Table D.5.: continued

$\mu_{T}^{(1)}$	T
$\begin{aligned} & -1226439 a^{17} r-244494 a^{16} b r+22022128 a^{15} b^{2} r-47126079 a^{14} b^{3} r-42424647 a^{13} b^{4} r+366718037 a^{12} b^{5} r- \\ & 828596070 a^{11} b^{6} r+1160606676 a^{10} b^{7} r-1437637049 a^{9} b^{8} r+2208303306 a^{8} b^{9} r-3536970804 a^{7} b^{10} r+ \\ & 4488727213 a^{6} b^{11} r-4177124136 a^{5} b^{12} r+2820215667 a^{4} b^{13} r-1355696806 a^{3} b^{14} r+433546551 a^{2} b^{15} r- \\ & 80947617 a b^{16} r+6344929 b^{17} r-1509634 a^{17} s-1969182 a^{16} b+25088703 a^{15} b^{2} s-32212634 a^{14} b^{3} s- \\ & 83911401 a^{13} b^{4} s+367882251 a^{12} b^{5} s-671480020 a^{11} b^{6} s+822495528 a^{10} b^{7} s-1065165066 a^{9} b^{8} s+ \\ & 1797411572 a^{8} b^{9} s-2734457013 a^{7} b^{10} s+3077148984 a^{6} b^{11} s-2487390935 a^{5} b^{12} s+1445707773 a^{4} b^{13} s- \\ & 580111959 a^{3} b^{14} s+148685480 a^{2} b^{15} s-21093957 a b^{16} s+1226439 b^{17} s \end{aligned}$	C_{9}
$\begin{aligned} & -6523389056 a^{17} r+63087926272 a^{16} b r-165987178496 a^{15} b^{2} r-361329740800 a^{14} b^{3} r+3070640097280 a^{13} b^{4} r- \\ & 6455127277568 a^{12} b^{5} r+451386679296 a^{11} b^{6} r+25113889800192 a^{10} b^{7} r-59895333888000 a^{9} b^{8} r+ \\ & 78301390315520 a^{8} b^{9} r-75429907677184 a^{7} b^{10} r+70609949360128 a^{6} b^{11} r-68357168144384 a^{5} b^{12} r+ \\ & 54456447795200 a^{4} b^{13} r-29922586787840 a^{3} b^{14} r+10435287187456 a^{2} b^{15} r-2082858074112 a b^{16} r+ \\ & 180193591296 b^{17} r-397080 a^{17} s+4270002 a^{16} b-13736234 a^{15} b^{2} s-15544820 a^{14} b^{3} s+218902960 a^{13} b^{4} s- \\ & 556182675 a^{12} b^{5} s+249618296 a^{11} b^{6} s+1779966128 a^{10} b^{7} s-4995435080 a^{9} b^{8} s+7030769520 a^{8} b^{9} s- \\ & 6911468520 a^{7} b^{10} s+6352978528 a^{6} b^{11} s-6234485776 a^{5} b^{12} s+5216995960 a^{4} b^{13} s-3016234040 a^{3} b^{14} s+ \\ & 1099023280 a^{2} b^{15} s-227714752 a b^{16} s+20338184 b^{17} s \end{aligned}$	C_{10}

continued on next page
Table D.5.: continued

$\mu_{T}^{(1)}$	T
	C_{12}
$-8 a^{2} r d^{2}+8 a b r d^{2}+22 b^{2} r d^{2}+22 a^{2} s d^{2}+8 a b s d^{2}-8 b^{2} s d^{2}$	$C_{2} \times C_{2}$
$\begin{aligned} & -a^{4} r-16 a^{3} b r-80 a^{2} b^{2} r-128 a b^{3} r+704 b^{4} r+3325952 a^{4} s+26476544 a^{3} b s+92274688 a^{2} b^{2} s-109051904 a b^{3} s- \\ & 218103808 b^{4} s \end{aligned}$	$C_{2} \times C_{4}$

Table D.5.: continued

$\mu_{T}^{(1)}$			T			
$1067140860516356259150 a^{11} r$	-	$785574147613496920515 a^{10} b r$	+	$11120665966135353720 a^{9} b^{2} r$	+	$C_{2} \times C_{6}$
$139392294038691794919 a^{8} b^{3} r$	-	$54026331312207739356 a^{7} b^{4} r$	+	$12025645230119922450 a^{6} b^{5} r$	-	
$1810091346646626504 a^{5} b^{6} r$	-	$254602730001280482 a^{4} b^{7} r$	+	$207685684999394622 a^{3} b^{8} r$	-	
$40223459978629695 a^{2} b^{9} r+3369402100004256 a b^{10} r-98694372323349 b^{11} r+209691261 a^{10} s-49111434 a^{9} b s-$						
$28026945 a^{8} b^{2} s+13520952 a^{7} b^{3} s-2963502 a^{6} b^{4} s+670356 a^{5} b^{5} s+14670 a^{4} b^{6} s-52776 a^{3} b^{7} s+11649 a^{2} b^{8} s-$						
$1050 a b^{9} s+35 b^{10} s$						

continued on next page
Table D.5.: continued

| $\mu_{T}^{(1)}$ | | T | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $-13209 a^{22} r-581196 a^{21} b r-11576762 a^{20} b^{2} r-137600720 a^{19} b^{3} r-1077037264 a^{18} b^{4} r-5710255296 a^{17} b^{5} r-$ | $C_{2} \times C_{8}$ | | | |
| $19612356744 a^{16} b^{6} r-32139665664 a^{15} b^{7} r+67579970048 a^{14} b^{8} r+654116311040 a^{13} b^{9} r+2539506890752 a^{12} b^{10} r+$ | | | | |
| $7576036622336 a^{11} b^{11} r+20926819385344 a^{10} b^{12} r+49766416842752 a^{9} b^{13} r+71499449008128 a^{8} b^{14} r$ | - | | | |
| $49546029170688 a^{7} b^{15} r-594695737573376 a^{6} b^{16} r-1737832804646912 a^{5} b^{17} r-3062535049707520 a^{4} b^{18} r$ | - | | | |
| $3577238700163072 a^{3} b^{19} r-2727157029666816 a^{2} b^{20} r-1234538286022656 a b^{21} r-251783498694656 b^{22} r$ | - | | | |
| $4224226142835961757696 a^{22} s-165696923878975044845568 a^{21} b s-2928262563368869124112384 a^{20} b^{2} s$ | - | | | |
| $30728246454371888213786624 a^{19} b^{3} s$ | - | $210455806101560524244254720 a^{18} b^{4} s$ | - | |
| $955383687919928815025913856 a^{17} b^{5} s$ | - | $2615499513803006279998767104 a^{16} b^{6} s$ | - | |
| $1743245925865610951226556416 a^{15} b^{7} s$ | + | $20125305744387565039248211968 a^{14} b^{8} s$ | + | |
| $112064008174291341614038122496 a^{13} b^{9} s$ | + | $376984063943539642166721642496 a^{12} b^{10} s$ | + | |
| $1091821942697524503459231956992 a^{11} b^{11} s$ | + | $2927852105445251608192013565952 a^{10} b^{12} s$ | + | |
| $6033158092096936875735195320320 a^{9} b^{13} s$ | + | $4986521647937652009843159990272 a^{8} b^{14} s$ | - | |
| $18971909987788747557810909216768 a^{7} b^{15} s$ | - | $92616736137948046779718066765824 a^{6} b^{16} s$ | - | |
| $215727345747674278873189085872128 a^{5} b^{17} s$ | - | $325514539284174435175029450735616 a^{4} b^{18} s$ | - | |
| $332698126411126193945151212093440 a^{3} b^{19} s$ | - | $223927143829335898781277111713792 a^{2} b^{20} s$ | - | |
| $89935724884063234281283925311488 a b^{21} s-16351949978920588051142531874816 b^{22} s$ | | | | |

Table D.6.: The Polynomials $\mu_{T}^{(2)}$

$\mu_{T}^{(2)}$	T	
$20 b^{4} d^{2} r+36 b^{4} d^{2} s-4 a^{2} b^{2} d r-84 a^{2} b^{2} d s+64 a^{4} s$	C_{2}	
$a^{5} b^{3} r-3 a^{4} b^{4} r-72 a^{3} b^{5} r-1728 a^{2} b^{6} r-41472 a b^{7} r-995328 b^{8} r+23887872 a^{8} s+573308928 a^{7} b s+$	C_{3}	
$13759414272 a^{6} b^{2} s+2972033482752 a^{5} b^{3} s$		
$4096 a^{10} s-65536 a^{9} b s+983040 a^{8} b^{2} s-14680064 a^{7} b^{3} s+3271557120 a^{6} b^{4} s+14 a^{5} b^{4} r+209 a^{4} b^{5} r-224 a^{3} b^{6} r+$	C_{4}	
$240 a^{2} b^{7} r-256 a b^{8} r+256 b^{9} r$	C_{5}	
$1461113 a^{6} b^{5} r+16210516 a^{5} b^{6} r+72975 a^{4} b^{7} r+6900 a^{3} b^{8} r+650 a^{2} b^{9} r+60 a b^{10} r+5 b^{11} r+5 a^{11} s-60 a^{10} b s+$		
$650 a^{9} b^{2} s-6900 a^{8} b^{3} s+72975 a^{7} b^{4} s-16210516 a^{6} b^{5} s+1461113 a^{5} b^{6} s$		
$-14 a^{5} b^{6} r-180 a^{4} b^{7} r-555 a^{3} b^{8} r-644 a^{2} b^{9} r-192 a b^{10} r+144 b^{11} r+1296 a^{11} s-15552 a^{10} b s+$	C_{6}	
$147744 a^{9} b^{2} s-1321920 a^{8} b^{3} s+11605680 a^{7} b^{4} s-101243520 a^{6} b^{5} s+37105834644 a^{5} b^{6} s+112064430042 a^{4} b^{7} s+$		
$112339252836 a^{3} b^{8} s+37494993069 a^{2} b^{9} s$		

continued on next page
Table D.6.: continued

$\mu_{T}^{(2)}$		T	
$1651723461 a^{16} b^{7} r-3053281690 a^{15} b^{8} r-36782602949 a^{14} b^{9} r+204185576679 a^{13} b^{10} r-489777156547 a^{12} b^{11} r+$	C_{7}		
$679075714135 a^{11} b^{12} r-582586779859 a^{10} b^{13} r+306736145405 a^{9} b^{14} r-91184305523 a^{8} b^{15} r+11718436003 a^{7} b^{16} r+$			
$14216370 a^{6} b^{17} r+1993320 a^{5} b^{18} r+277585 a^{4} b^{19} r+38024 a^{3} b^{20} r+4998 a^{2} b^{21} r+588 a b^{22} r+49 b^{23} r+49 a^{23} s-$			
$196 a^{22} b s+1470 a^{21} b^{2} s-8624 a^{20} b^{3} s+53361 a^{19} b^{4} s-324576 a^{18} b^{5} s+1980874 a^{17} b^{6} s+1785698469 a^{16} b^{7} s-$			
$669951077 a^{15} b^{8} s-47015940877 a^{14} b^{9} s+197639682387 a^{13} b^{10} s-386355913895 a^{12} b^{11} s+434312001991 a^{11} b^{12} s-$			
$293599696103 a^{10} b^{13} s+115624987021 a^{9} b^{14} s-23374293686 a^{8} b^{15} s+1651723461 a^{7} b^{16} s$			
$-357458640 a^{15} b^{8} r+8158710360 a^{14} b^{9} r-80486629680 a^{13} b^{10} r+462999914325 a^{12} b^{11} r-1751207521180 a^{11} b^{12} r+$	C_{8}		
$4629708846410 a^{10} b^{13} r-8841897565516 a^{9} b^{14} r+12392459288439 a^{8} b^{15} r-12779259296936 a^{7} b^{16} r$	+		
$9595977477844 a^{6} b^{17} r-5108730463880 a^{5} b^{18} r+\quad 1828677484739 a^{4} b^{19} r$	-	$394956635884 a^{3} b^{20} r$	+
$38913849610 a^{2} b^{21} r+4 a b^{22} r+b^{23} r+16 a^{22} s+256 a^{21} b s+2560 a^{20} b^{2} s+20992 a^{19} b^{3} s+156160 a^{18} b^{4} s+$			
$1104896 a^{17} b^{5} s+7614976 a^{16} b^{6} s+51758080 a^{15} b^{7} s+253102534400 a^{14} b^{8} s-4072815337472 a^{13} b^{9} s+$			
$29609435103232 a^{12} b^{10} s-128858517192704 a^{11} b^{11} s+374187054964736 a^{10} b^{12} s-764274088935424 a^{9} b^{13} s+$			
$1126470388744192 a^{8} b^{14} s-1207848547123200 a^{7} b^{15} s+935574791454720 a^{6} b^{16} s-510806411182080 a^{5} b^{17} s+$			
$186695700971520 a^{4} b^{18} s-41033505177600 a^{3} b^{19} s+4103350517760 a^{2} b^{20} s$			

Table D.6.: continued

$\mu_{T}^{(2)}$	T
	C_{9}

continued on next page
Table D.6.: continued

$\mu_{T}^{(2)}$	T
	C_{10}

Table D.6.: continued

$\mu_{T}^{(2)}$		T			
$-4971814474984 a^{35} b^{12} r+232323272762586 a^{34} b^{13} r-5253044943025512 a^{33} b^{14} r+76626192763896468 a^{32} b^{15} r-$	C_{12}				
$810976464047842164 a^{31} b^{16} r$	+	$6639085466284932633 a^{30} b^{17} r$	$-43762438506515101516 a^{29} b^{18} r$	+	
$238695067779834414912 a^{28} b^{19} r$	$-1098595757448248655870 a^{27} b^{20} r+4329139817203307331233 a^{26} b^{21} r$	-			
$14768392172533907022336 a^{25} b^{22} r+43986951267804663608451 a^{24} b^{23} r-115138632200530400748294 a^{23} b^{24} r+$					
$266197601531211986912067 a^{22} b^{25} r-545635956895028247508128 a^{21} b^{26} r+994211332301352513076269 a^{20} b^{27} r-$					
$1613158401983939932878534 a^{19} b^{28} r$	+	$2332710506855274908328180 a^{18} b^{29} r$	-		
$3006256651053801903331064 a^{17} b^{30} r$	+	$3449862065404583082697137 a^{16} b^{31} r$	-		
$3519129440477374261342020 a^{15} b^{32} r$	+	$3182440893651242926347585 a^{14} b^{33} r$	-		
$2541819871432653481975260 a^{13} b^{34} r$	+	$1784065389804294788426676 a^{12} b^{35} r$	-		
$1093245840399015710680454 a^{11} b^{36} r$	+	$579948252449981036552259 a^{10} b^{37} r$	-		
$263421158563387896634296 a^{9} b^{38} r+100977116501666342967055 a^{8} b^{39} r-32037412819049278147602 a^{7} b^{40} r+$					
$8187983788098497233011 a^{6} b^{41} r$	$-1619818427808312190440 a^{5} b^{42} r+232739976265175255439 a^{4} b^{43} r$	-			
$21606150474937395198 a^{3} b^{44} r+972645292454212926 a^{2} b^{45} r+72 a b^{46} r+9 b^{47} r+1296 a^{46} s+31104 a^{45} b s+$					
$404352 a^{44} b^{2} s+3794688 a^{43} b^{3} s+28926720 a^{42} b^{4} s+191165184 a^{41} b^{5} s+1141641216 a^{40} b^{6} s+6340239360 a^{39} b^{7} s+$					
$33426908928 a^{38} b^{8} s+169846377984 a^{37} b^{9} s+840955924224 a^{36} b^{10} s+4089770901504 a^{35} b^{11} s+$					

Table D.6.: continued

| $\mu_{T}^{(2)}$ | | | T | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $34182137351849921280 a^{34} b^{12} s-1413439533832166567424 a^{33} b^{13} s+28464543958050971020800 a^{32} b^{14} s$ | - | | | |
| $371821864930551479678976 a^{31} b^{15} s$ | + | $3540042063330267307841280 a^{30} b^{16} s$ | - | |
| $26170242222331525560717312 a^{29} b^{17} s$ | + | $156271324134716829251997696 a^{28} b^{18} s$ | - | |
| $774164983692435701911511040 a^{27} b^{19} s$ | + | $3243053051767478191464972288 a^{26} b^{20} s$ | - | |
| $11650794867793457881658007552 a^{25} b^{21} s$ | + | $36278354590060146057865469952 a^{24} b^{22} s$ | - | |
| $98705273805123939297653391360 a^{23} b^{23} s$ | + | $236104644886102925025811292160 a^{22} b^{24} s$ | - | |
| $498818510124601337767823376384 a^{21} b^{25} s$ | + | $933906611382150544483520839680 a^{20} b^{26} s$ | - | |
| $1552955430323882715756646367232 a^{19} b^{27} s$ | + | $2296424646224773452794836942848 a^{18} b^{28} s$ | - | |
| $3020814689098839654019052077056 a^{17} b^{29} s$ | + | $3532824024687139570047929548800 a^{16} b^{30} s$ | - | |
| $3667672791881656351666146902016 a^{15} b^{31} s$ | + | $3371663350681204956256505364480 a^{14} b^{32} s$ | - | |
| $2734751659907662343591183253504 a^{13} b^{33} s$ | + | $1947558048184436275999397117952 a^{12} b^{34} s$ | - | |
| $1209954150911156533289086353408 a^{11} b^{35} s$ | + | $650304906814703435748637409280 a^{10} b^{36} s$ | - | |
| $299085017209056132788096335872 a^{9} b^{37} s$ | + | $116025052981461016220679536640 a^{8} b^{38} s$ | - | |
| $37236114047895929905238507520 a^{7} b^{39} s$ | + | $9622241072881021483814486016 a^{6} b^{40} s$ | - | |
| $1923932760132995187933708288 a^{5} b^{41} s$ | + | $279296629359036081968775168 a^{4} b^{42} s$ | - | |
| $26188016321639618162196480 a^{3} b^{43} s+1190364378256346280099840 a^{2} b^{44} s$ | | | | |

Table D.6.: continued

$\mu_{T}^{(2)}$	$C_{2} \times C_{2}$
$-a^{2} b^{2} r d^{4}+a b^{3} r d^{4}+b^{4} r d^{4}+a^{4} s d^{4}+a^{3} b s d^{4}-a^{2} b^{2} s d^{4}$	T
$65536 a^{10} s-1048576 a^{9} b s+11534336 a^{8} b^{2} s-109051904 a^{7} b^{3} s+49777999872 a^{6} b^{4} s+826244333568 a^{5} b^{5} s+$	$C_{2} \times C_{4}$
$5010079350784 a^{4} b^{6} s+13400297963520 a^{3} b^{7} s+13400297963520 a^{2} b^{8} s-a^{4} b^{4} r-16 a^{3} b^{5} r-80 a^{2} b^{6} r-128 a b^{7} r+$	
$256 b^{8} r$	

continued on next page
Table D.6.: continued

$\mu_{T}^{(2)}$				T
$1159487207440931318587186950000000 a^{23} r$	-	$8447490799074846955863340497000000 a^{22} b r$	+	$C_{2} \times C_{6}$
$26892338858158823522672033894400000 a^{21} b^{2} r$		$48801352126301672047814422958400000 a^{20} b^{3} r$	+	
$54909961081503776257405980640320000 a^{19} b^{4} r$		$38377900570008945395516797085472000 a^{18} b^{5} r$	+	
$14684480406193246211222514490890240 a^{17} b^{6} r$		$602945496113482431033900709575168 a^{16} b^{7} r$	-	
$2415740388326299448657596156444416 a^{15} b^{8} r$	+	$1250195086306264625681978184165504 a^{14} b^{9} r$		
$254009176402672471049497862074368 a^{13} b^{10} r$		$13083105087436681320966340867584 a^{12} b^{11} r$	+	
$21048861437882954247444412193280 a^{11} b^{12} r$		$5777001839116907514835780425984 a^{10} b^{13} r$	+	
$858992325710048558720447993856 a^{9} b^{14} r$	-	$75424819625032918583275605504 a^{8} b^{15} r$	+	
$3670771113284685051390164352 a^{7} b^{16} r$	-	$76165362610162885325210688 a^{6} b^{17} r$	+	
$\begin{aligned} & 1548198221776504750080 a^{5} b^{18} r+149091454557867737088 a^{4} b^{19} r+13337691771434434560 a^{3} b^{20} r+ \\ & 1060175499780685824 a^{2} b^{21} r+68398419340689408 a b^{22} r+2849934139195392 b^{23} r+2077898720832 a^{22} s- \end{aligned}$				
$13915584294912 a^{21} b s+40444178248704 a^{20} b^{2} s-65148459648000 a^{19} b^{3} s+62258221814528 a^{18} b^{4} s-$				
$33628348661760 a^{17} b^{5} s+6640256596992 a^{16} b^{6} s+3327522388992 a^{15} b^{7} s-2665599371904 a^{14} b^{8} s+$				
$696379846656 a^{13} b^{9} s-11237499904 a^{12} b^{10} s-43105029120 a^{11} b^{11} s+13228720896 a^{10} b^{12} s-2037547008 a^{9} b^{13} s+$				
$180900864 a^{8} b^{14} s-8825856 a^{7} b^{15} s+183872 a^{6} b^{16} s$				

Table D.6.: continued

Table D.6.: continued

Table D.6.: continued

$\mu_{T}^{(2)}$	T
$2307740189133294839736602949990721662416814266646528 a^{23} b^{23} s+$	
$4840517021008719277765021076048926429377710457356288 a^{22} b^{24} s+$	
$4891299921051587670064779306132381998804388550803456 a^{21} b^{25} s-$	
$9573970703780937240253245296790007811630879050039296 a^{20} b^{26} s-$	
$63115994956408238622608203426368443578619572214824960 a^{19} b^{27} s-$	
$186235340570633649499433765896022865374958192227778560 a^{18} b^{28} s-$	
$390749559434433282076411640256653476809546403267215360 a^{17} b^{29} s-$	
$637704495109758341157263306211255428756198779781120000 a^{16} b^{30} s-$	
$832107916162387386428333005213704808321837905613946880 a^{15} b^{31} s-$	
$872430152610318870467796283767747778947391298564259840 a^{14} b^{32} s-$	
$728960325597312339660762511302987781069285619914506240 a^{13} b^{33} s-$	
$475773162755630149680658854560967585141177378605629440 a^{12} b^{34} s-$	
$234182892392296341539904339869543890462590784524779520 a^{11} b^{35} s-$	
$81833714080566324441172355375993143946921092243783680 a^{10} b^{36} s-$	
$18101640876857678502005292198716915497646812456550400 a^{9} b^{37} s-$	
$1905435881774492473895293915654412157647032890163200 a^{8} b^{38} s$	

Table D.7.: The Polynomials $\mu_{T}^{(3)}$

$\mu_{T}^{(3)}$	T	
$-15 a b^{4} d^{2} r+7 a^{3} b^{2} d r+81 b^{4} d^{2} s-153 a^{2} b^{2} d s+64 a^{4} s$	C_{2}	
$a^{4} b^{3} r-18 a^{3} b^{4} r-135 a^{2} b^{5} r-972 a b^{6} r-5832 b^{7} r-1259712 a^{7} s-45349632 a^{6} b-1360488960 a^{5} b^{2} s+$	C_{3}	
$764050599936 a^{4} b^{3} s$	C_{4}	
$1991 a^{4} b^{4} r+32824 a^{3} b^{5} r+15936 a^{2} b^{6} r+7680 a b^{7} r+4096 b^{8} r-262144 a^{8} s+6291456 a^{7} b s-119537664 a^{6} b^{2} s+$		
$2097152000 a^{5} b^{3} s+1206617374720 a^{4} b^{4} s$		
$246553002 a^{6} b^{5} r+2733893761 a^{5} b^{6} r-4703250 a^{4} b^{7} r-391500 a^{3} b^{8} r-31125 a^{2} b^{9} r-2250 a b^{10} r-125 b^{11} r-$	C_{5}	
$125 a^{11} s+2250 a^{10} b s-31125 a^{9} b^{2} s+391500 a^{8} b^{3} s-4703250 a^{7} b^{4} s-2733893761 a^{6} b^{5} s+246553002 a^{5} b^{6} s$		
$-492 a^{5} b^{6} r-5737 a^{4} b^{7} r-12802 a^{3} b^{8} r-9309 a^{2} b^{9} r-1024 a b^{10} r+512 b^{11} r-13824 a^{11} s+248832 a^{10} b s-$	C_{6}	
$3110400 a^{9} b^{2} s+33841152 a^{8} b^{3} s-344134656 a^{7} b^{4} s+3369682944 a^{6} b^{5} s+3392204039415 a^{5} b^{6} s$	+	
$10152372291606 a^{4} b^{7} s+10143558801891 a^{3} b^{8} s+3379639518108 a^{2} b^{9} s$		

continued on next page
Table D.7.: continued

$\mu_{T}^{(3)}$	T
$\begin{aligned} & 2497745017 a^{16} b^{7} r-4638275503 a^{15} b^{8} r-55595615706 a^{14} b^{9} r+309249758202 a^{13} b^{10} r-742980340662 a^{12} b^{11} r+ \\ & 1031980431804 a^{11} b^{12} r-887347384140 a^{10} b^{13} r+468689078146 a^{9} b^{14} r-140068984929 a^{8} b^{15} r+ \\ & 18222532679 a^{7} b^{16} r-7825398 a^{6} b^{17} r-984312 a^{5} b^{18} r-119805 a^{4} b^{19} r-13818 a^{3} b^{20} r-1449 a^{2} b^{21} r-126 a b^{22} r- \\ & 7 b^{23} r-7 a^{23} s+42 a^{22} b s-357 a^{21} b^{2} s+2450 a^{20} b^{3} s-16905 a^{19} b^{4} s+112896 a^{18} b^{5} s-744898 a^{17} b^{6} s+ \\ & 2763834966 a^{16} b^{7} s-1516600104 a^{15} b^{8} s-69252613309 a^{14} b^{9} s+295155166705 a^{13} b^{10} s-579797539293 a^{12} b^{11} s+ \\ & 653546063793 a^{11} b^{12} s-442629420023 a^{10} b^{13} s+174559653789 a^{9} b^{14} s-35325644769 a^{8} b^{15} s+2497745017 a^{7} b^{16} s \end{aligned}$	C_{7}
	C_{8}

Table D.7.: continued

$\mu_{T}^{(3)}$	T
$743422717107 a^{26} b^{9} r$ $-6554079892458 a^{25} b^{10} r$ $+18867078014386 a^{24} b^{11} r$ $+23541974848140 a^{23} b^{12} r$ - $383736209556210 a^{22} b^{13} r+1608819916214036 a^{21} b^{14} r-4262805722241693 a^{20} b^{15} r+8262058761845874 a^{19} b^{16} r-$ $12390869419414560 a^{18} b^{17} r$ + $14762974445910216 a^{17} b^{18} r$ - $14132815125206085 a^{16} b^{19} r$ + $10883287134688772 a^{15} b^{20} r$ - $6688012543537092 a^{14} b^{21} r$ + $3219702449893584 a^{13} b^{22} r$ - $1174411230071765 a^{12} b^{23} r+305971891726518 a^{11} b^{24} r-50805179205795 a^{10} b^{25} r+4042940003106 a^{9} b^{26} r$ - $420689133 a^{8} b^{27} r-71799696 a^{7} b^{28} r-11974149 a^{6} b^{29} r-1930392 a^{5} b^{30} r-295488 a^{4} b^{31} r-41634 a^{3} b^{32} r-$ $5103 a^{2} b^{33} r-486 a b^{34} r-27 b^{35} r-27 a^{35} s-486 a^{33} b^{2} s+1134 a^{32} b^{3} s-8019 a^{31} b^{4} s+32562 a^{30} b^{5} s-159003 a^{29} b^{6} s+$ $714420 a^{28} b^{7} s-3272238 a^{27} b^{8} s+910868506242 a^{26} b^{9} s-7081073425530 a^{25} b^{10} s+15909499292454 a^{24} b^{11} s+$ $44130104332141 a^{23} b^{12} s-421559307462828 a^{22} b^{13} s+1541542193234256 a^{21} b^{14} s-3697476241545988 a^{20} b^{15} s+$ $6554376796322943 a^{19} b^{16} s$ - $9014101041990114 a^{18} b^{17} s$ + $9836940643865847 a^{17} b^{18} s$ - $8590749567811218 a^{16} b^{19} s$ + $5993704020941199 a^{15} b^{20} s$ - $3302944535378860 a^{14} b^{21} s$ + $1404828612017796 a^{13} b^{22} s-443026943934204 a^{12} b^{23} s+96627463762711 a^{11} b^{24} s-12774910752324 a^{10} b^{25} s+$ $743422717107 a^{9} b^{26} s$	C_{9}

Table D.7.: continued

$\mu_{T}^{(3)}$					T
$-186806089765851856896 a^{17} r+1786731211079968096256 a^{16} b r-4614882747586788720640 a^{15} b^{2} r-$					C_{10}
$10492034486593104117760 a^{14} b^{3} r+86519056976343342776320 a^{13} b^{4} r-179315516412696826216448 a^{12} b^{5} r+$					
$7228712307962148814848 a^{11} b^{6} r+707670608164502582067200 a^{10} b^{7} r-1670138487878734934179840 a^{9} b^{8} r+$					
$2172685189713796037345280 a^{8} b^{9} r-2090514177979220423081984 a^{7} b^{10} r+1959225750253128598421504 a^{6} b^{11} r-$					
$1894409563379611562147840 a^{5} b^{12} r$		$+\quad 15038$	456	$647019560960 a^{4} b^{13} r$	
$823277778520630183854080 a^{3} b^{14} r+286182079237632804519936 a^{2} b^{15} r-56960126329285819498496 a b^{16} r+$					
$4915887687818868162560 b^{17} r-16369376293696 a^{17} s+176225237848436 a^{16} b s-568187696377956 a^{15} b^{2} s-$					
$635925848701000 a^{14} b^{3} s+9036606027723200 a^{13} b^{4} s-23023965604314003 a^{12} b^{5} s+10471528296790328 a^{11} b^{6} s+$					
$73427984102451632 a^{10} b^{7} s$	-	$206755326094107000 a^{9} b^{8} s$	+	$291506483368630000 a^{8} b^{9} s$	
$286802766107346904 a^{7} b^{10} s$	+	$263536784536337184 a^{6} b^{11} s$	-	$258602328438533744 a^{5} b^{12} s$	
$216633410165921240 a^{4} b^{13} s$	-	$125439243143043800 a^{3} b^{14} s$		$45772666697705776 a^{2} b^{15} s$	
$9496380366202816 a b^{16} s+8$	6506	$916376 b^{17} s$			

Table D.7.: continued

Table D.7.: continued

| $\mu_{T}^{(3)}$ | | | T | |
| :--- | :--- | :--- | :--- | :--- | :---: |
| $1157488258837701602662466715648 a^{11} b^{11} s$ | + | $1359266156909836031123490078720 a^{10} b^{12} s$ | - | |
| $1321745022211116130151411220480 a^{9} b^{13} s$ | + | $1055068935735288752103852343296 a^{8} b^{14} s$ | - | |
| $681337351781554081029842534400 a^{7} b^{15} s$ | + | $347405390599236200649222782976 a^{6} b^{16} s$ | - | |
| $133921329657195413883794227200 a^{5} b^{17} s$ | + | $35610523516972769977609224192 a^{4} b^{18} s$ | - | |
| $4887726408522637739210833920 a^{3} b^{19} s$ | - | $340581382878689565503127552 a^{2} b^{20} s$ | + | |
| $236958292494558096978345984 a b^{21} s-21541662954050736088940544 b^{22} s$ | | | | |
| $-14 a^{3} b^{2} r d^{5}+21 a^{2} b^{3} r d^{5}-3 a b^{4} r d^{5}-2 b^{5} r d^{5}-2 a^{5} s d^{5}-3 a^{4} b s d^{5}+21 a^{3} b^{2} s d^{5}-14 a^{2} b^{3} s d^{5}$ | $C_{2} \times C_{2}$ | | | |
| $-7 a^{4} r-112 a^{3} b r-560 a^{2} b^{2} r-896 a b^{3} r+3648 b^{4} r+79500918390784 a^{4} s+597945346949120 a^{3} b s+$ | $C_{2} \times C_{4}$ | | | |
| $2082887339868160 a^{2} b^{2} s-2471152383426560 a b^{3} s-4942304766853120 b^{4} s$ | | | | |

Table D.7.: continued

| $\mu_{T}^{(3)}$ | | | T | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $96424175493632460762182795727706110 a^{11} r$ | - | $72802513840133471392569843515987667 a^{10} b r$ | + | $C_{2} \times C_{6}$ |
| $2284179509045724028436488749879240 a^{9} b^{2} r$ | + | $12626413736108588168639564630589948 a^{8} b^{3} r$ | - | |
| $5122027699081132006964731192061652 a^{7} b^{4} r$ | + | $1169849478607363242590175225026190 a^{6} b^{5} r$ | - | |
| $180504041873596645852982108658096 a^{5} b^{6} r$ | - | $20662212702661620002808719297940 a^{4} b^{7} r$ | + | |
| $19311949704588515134814715576966 a^{3} b^{8} r$ | - | $3973162685655024420019519132755 a^{2} b^{9} r$ | + | |
| $359017235446788865503094871736 a b^{10} r-12042470976515473153759860816 b^{11} r+341065560834 a^{10} s$ | - | | | |
| $75948034914 a^{9} b s-45044753445 a^{8} b^{2} s+21649124016 a^{7} b^{3} s-4759891200 a^{6} b^{4} s+1066738284 a^{5} b^{5} s$ | + | | | |
| $25749130 a^{4} b^{6} s-84517152 a^{3} b^{7} s+18599158 a^{2} b^{8} s-1675290 a b^{9} s+55843 b^{10} s$ | | | | |

continued on next page
Table D.7.: continued

Table D.7.: continued

$\mu_{T}^{(3)}$	T
$70650575908994747925776211168673906335855698509824 a^{13} b^{9} s+$	
$237548082363352166502384271018611820771200473235456 a^{12} b^{10} s+$	
$687853202962053088143741244348764332368600043094016 a^{11} b^{11} s+$	
$1842897987370625141370869670901744247908723186466816 a^{10} b^{12} s+$	
$3790693029674710240125205754039133421925191424933888 a^{9} b^{13} s+$	
$3113205490582616382081489792811480477641330317590528 a^{8} b^{14} s-$	
$11984608476442767387120899782827464392702165243658240 a^{7} b^{15} s-$	
$58307848927531491716963643720730879858215284734164992 a^{6} b^{16} s-$	
$135675221006905869539163500843607737823407925098446848 a^{5} b^{17} s-$	
$204614617683581342548343279407819792463274668908871680 a^{4} b^{18} s-$	
$209066532142259299064326292362249212462923292061204480 a^{3} b^{19} s-$	
$140691689999593941764436286765705184322339096439554048 a^{2} b^{20} s-$	
$56501933469224046829469159024717338188431107444178944 a b^{21} s-$	
$10273078812586190332630756186312243306987474080759808 b^{22} s$	

Table D.8.: The Polynomials $\nu_{T}^{(1)}$

| $\nu_{T}^{(1)}$ | T |
| :--- | :---: | :---: |
| $a r+9 s$ | C_{2} |
| $r+13824 s$ | C_{3} |
| $-a r-14 b r+49664 a s+53248 b s$ | C_{4} |
| $-3121 a^{3} r-37749 a^{2} b r-47287 a b^{2} r+32943 b^{3} r+32943 a^{3} s+47287 a^{2} b s-37749 a b^{2} s+3121 b^{3} s$ | C_{5} |
| $-10 a^{3} r-117 a^{2} b r-264 a b^{2} r-21 b^{3} r+1659771 a^{3} s+5514156 a^{2} b s+2101707 a b^{2} s+1727730 b^{3} s$ | C_{6} |
| $-86718 a^{7} r-364777 a^{6} b r+1133629 a^{5} b^{2} r+207018 a^{4} b^{3} r-2955183 a^{3} b^{4} r+4298504 a^{2} b^{5} r-2871141 a b^{6} r+$ | C_{7} |
| $574479 b^{7} r-64189 a^{7} s-560847 a^{6} b s+718620 a^{5} b^{2} s+1121491 a^{4} b^{3} s-2631622 a^{3} b^{4} s+2876111 a^{2} b^{5} s-971803 a b^{6} s+$ | |
| $86718 b^{7} s$ | |
| $-73848 a^{7} r+1094596 a^{6} b r-5800312 a^{5} b^{2} r+14437473 a^{4} b^{3} r-18445448 a^{3} b^{4} r+11363504 a^{2} b^{5} r-3161552 a b^{6} r+$ | C_{8} |
| $1003496 b^{7} r+7938304 a^{6} s-65988608 a^{5} b s+197447680 a^{4} b^{2} s-279629824 a^{3} b^{3} s+181594112 a^{2} b^{4} s-$ | |
| $50135040 a b^{5} s+16711680 b^{6} s$ | |
| $-1226439 a^{11} r-244494 a^{10} b r+14663494 a^{9} b^{2} r-31422897 a^{8} b^{3} r+15865380 a^{7} b^{4} r+47235375 a^{6} b^{5} r-$ | C_{9} |
| $130399407 a^{5} b^{6} r+194946777 a^{4} b^{7} r-193299969 a^{3} b^{8} r+118928988 a^{2} b^{9} r-42901371 a b^{10} r+6343633 b^{11} r-$ | |
| $1510930 a^{11} s-1969182 a^{10} b s+16007571 a^{9} b^{2} s-22838418 a^{8} b^{3} s-1302489 a^{7} b^{4} s+54123471 a^{6} b^{5} s-$ | |
| $107773143 a^{5} b^{6} s+141696162 a^{4} b^{7} s-112816116 a^{3} b^{8} s+55235591 a^{2} b^{9} s-13735323 a b^{10} s+1226439 b^{11} s$ | |

continued on next page
Table D.8.: continued

$\nu_{T}^{(1)}$	T
$\begin{aligned} & -6523394816 a^{11} r+36994300928 a^{10} b r-18010251264 a^{9} b^{2} r-302904093696 a^{8} b^{3} r+858196842496 a^{7} b^{4} r- \\ & 817070891008 a^{6} b^{5} r-229401274368 a^{5} b^{6} r+1337582452736 a^{4} b^{7} r-1579436670976 a^{3} b^{8} r+1021496098816 a^{2} b^{9} r- \\ & 340520927232 a b^{10} r+45048397824 b^{11} r-397080 a^{11} s+2681682 a^{10} b s-3009506 a^{9} b^{2} s-19641244 a^{8} b^{3} s+ \\ & 70821144 a^{7} b^{4} s-83204219 a^{6} b^{5} s-2224452 a^{5} b^{6} s+111722144 a^{4} b^{7} s-146547004 a^{3} b^{8} s+102963784 a^{2} b^{9} s- \\ & 36591584 a b^{10} s+5084456 b^{11} s \end{aligned}$	C_{10}
$\begin{aligned} & -16368060 a^{15} r+371968434 a^{14} b r-3847011768 a^{13} b^{2} r+24165879634 a^{12} b^{3} r-103545204444 a^{11} b^{4} r+ \\ & 321344545212 a^{10} b^{5} r-746902049904 a^{9} b^{6} r+1323272770545 a^{8} b^{7} r-1797785532156 a^{7} b^{8} r+ \\ & 1864752259596 a^{6} b^{9} r-1453384657128 a^{5} b^{10} r+825155421456 a^{4} b^{11} r-324026619960 a^{3} b^{12} r+ \\ & 81998905176 a^{2} b^{13} r-13343938848 a b^{14} r+1849423272 b^{15} r+969115560192 a^{14} s-18156961741824 a^{13} b+ \\ & 155918883916800 a^{12} b^{2} s-817402574997504 a^{11} b^{3} s+2927986683346944 a^{10} b^{4} s-7582944748345344 a^{9} b^{5} s+ \\ & 14624630199465984 a^{8} b^{6} s-21278142234943488 a^{7} b^{7} s+23353733793871872 a^{6} b^{8} s-19082362286407680 a^{5} b^{9} s+ \\ & 11270047067504640 a^{4} b^{10} s-4567054883880960 a^{3} b^{11} s+1179066424688640 a^{2} b^{12} s-192872589557760 a b^{13} s+ \\ & 2755327079680 b^{14} s \end{aligned}$	C_{12}
$-2 a r d+b r d+a s d-2 b s d$	$C_{2} \times C_{2}$
$-a^{2} r-8 a b r-8 b^{2} r+3178496 a^{2} s+3407872 a b s+13631488 b^{2} s$	$C_{2} \times C_{4}$

continued on next page
Table D.8.: continued

$\nu_{T}^{(1)}$						T
$\begin{aligned} & 2816715912781053150 a^{7} r-1254131753648366115 a^{6} b r-154543956764096160 a^{5} b^{2} r \\ & 106454524001840289 a^{4} b^{3} r+10949518510656462 a^{3} b^{4} r-11176427563268121 a^{2} b^{5} r+2178807569806500 a b^{6} r- \\ & 98868318498837 b^{7} r+550293 a^{6} s+28530 a^{5} b s-31431 a^{4} b^{2} s+1332 a^{3} b^{3} s+3039 a^{2} b^{4} s-630 a b^{5} s+35 b^{6} s \end{aligned}$						$C_{2} \times C_{6}$
$-13209 a^{14} r-369852 a^{13} b r-4391066 a^{12} b^{2} r-28456368 a^{11} b^{3} r \quad-\quad 103820176 a^{10} b^{4} r \quad-\quad C_{2} \times C_{8}$						
$159393216 a^{9} b^{5} r \quad+\quad 332251768 a^{8} b^{6} r \quad+\quad 2379693952 a^{7} b^{7} r \quad+\quad 4934706432 a^{6} b^{8} r \quad-$						
$3132680192 a^{5} b^{9} r \quad-\quad 48406967296 a^{4} b^{10} r \quad-\quad 141552214016 a^{3} b^{11} r \quad-\quad 216685813760 a^{2} b^{12} r \quad-$						
$178459344896 a b^{13} r \quad-\quad 61470654464 b^{14} r \quad-\quad 4224231209385542549504 a^{14} s \quad-$						
$98109062399219778715648 a^{13} b s-952994287212899115991040 a^{12} b^{2} s-4980425767936924227469312 a^{11} b^{3} s-$						
$13625349992275086646706176 a^{10} b^{4} s \quad-\quad 7054168672681066932207616 a^{9} b^{5} s+$						
$88895768193351959432921088 a^{8} b^{6} s+342950041455456735822086144 a^{7} b^{7} s+$						
$383060208270845052681453568 a^{6} b^{8} s \quad-\quad 1470142931318753240996118528 a^{5} b^{9} s \quad-$						
$7660576865437930486616817664 a^{4} b^{10} s \quad-\quad 16797674808425540028796502016 a^{3} b^{11} s \quad-$						
$20736222902468481529923239936 a^{2} b^{12} s \quad-\quad 13972613507378432172607143936 a b^{13} s \quad-$						
$3992175287822409192173469696 b^{14} s$						

Table D.9.: The Polynomials $\nu_{T}^{(2)}$

$\nu_{T}^{(2)}$	T
$r-27 s$	C_{2}
-r - $2641807540224 s$	C_{3}
$-3052404736 a^{2} s-3271557120 a b s-14 a r-209 b r$	C_{4}
$\begin{aligned} & 1461113 a^{3} r+17671629 a^{2} b r+22127943 a b^{2} r-15439276 b^{3} r-15439276 a^{3} s-22127943 a^{2} b s+17671629 a b^{2} s- \\ & 1461113 b^{3} s \end{aligned}$	C_{5}
$14 a^{3} r+180 a^{2} b r+555 a b^{2} r+420 b^{3} r-36224549460 a^{3} s-119729917530 a^{2} b s-45681487380 a b^{2} s-37494993069 b^{3} s$	C_{6}
$\begin{aligned} & 1651723461 a^{7} r+6857059076 a^{6} b r-22067823869 a^{5} b^{2} r-3248119070 a^{4} b^{3} r+57189936895 a^{3} b^{4} r- \\ & 84018038727 a^{2} b^{5} r+57050372330 a b^{6} r-11617337047 b^{7} r+1797773049 a^{7} s+10043071381 a^{6} b- \\ & 15073102331 a^{5} b^{2} s-18470724580 a^{4} b^{3} s+47078968860 a^{3} b^{4} s-53760723268 a^{2} b^{5} s+18419123303 a b^{6} s- \\ & 1651723461 b^{7} s \end{aligned}$	C_{7}
$\begin{aligned} & 357458640 a^{7} r-5299041240 a^{6} b r+28085457840 a^{5} b^{2} r-69925413045 a^{4} b^{3} r+89362321300 a^{3} b^{4} r- \\ & 55069807950 a^{2} b^{5} r+15319961076 a b^{6} r-4864231201 b^{7} r-252753342464 a^{6} s+2053135073280 a^{5} b s- \\ & 6091527290880 a^{4} b^{2} s+8589703249920 a^{3} b^{3} s-5577148661760 a^{2} b^{4} s+1538756444160 a b^{5} s-512918814720 b^{6} s \end{aligned}$	C_{8}

continued on next page
Table D.9.: continued

$\nu_{T}^{(2)}$	T
	C_{9}
	C_{10}

continued on next page
Table D.9.: continued

$\nu_{T}^{(2)}$			T			
$4971814474984 a^{15} r-112999725362970 a^{14} b r+1168830739218648 a^{13} b^{2} r-7343265583001516 a^{12} b^{3} r$	+	C_{12}				
$31468492602978204 a^{11} b^{4} r$	-	$97673466621205245 a^{10} b^{5} r$	+	$227054091232077972 a^{9} b^{6} r$	-	
$402323545115665200 a^{8} b^{7} r$	+	$546669605121641658 a^{7} b^{8} r$	-	$567113536226054841 a^{6} b^{9} r$	+	
$442071357364683744 a^{5} b^{10} r$	-	$251021779116423657 a^{4} b^{11} r$	+	$98586726114168570 a^{3} b^{12} r$	-	
$24951348855850266 a^{2} b^{13} r+4060457805627432 a b^{14} r-562873433133225 b^{15} r-34182117705668161536 a^{14} s+$						
$593068802482047320064 a^{13} b s$	-	$4796627768455987298304 a^{12} b^{2} s$	$+23967933328409842483200 a^{11} b^{3} s$	-		
$82595523647337062400000 a^{10} b^{4} s+207316942235906935947264 a^{9} b^{5} s-389873305193352589541376 a^{8} b^{6} s+$						
$555930773740283971239936 a^{7} b^{7} s-600594843978775747952640 a^{6} b^{8} s+484913713195925990277120 a^{5} b^{9} s-$						
$284005838463998846828544 a^{4} b^{10} s+114550000317686681174016 a^{3} b^{11} s-29539502215498659004416 a^{2} b^{12} s+$						
$4822077921177328680960 a b^{13} s-688868274453904097280 b^{14} s$						
$r+s$		$C_{2} \times C_{2}$				
$-48838475776 a^{2} s-52344913920 a b s-209379655680 b^{2} s+r$	$C_{2} \times C_{4}$					

continued on next page
Table D.9.: continued

$\nu_{T}^{(2)}$			T	
$-25462593558191864854955110950 a^{7} r$	+	$11877760566219911346368972397 a^{6} b r$	+	$C_{2} \times C_{6}$
$1189213989266646788761412244 a^{5} b^{2} r$	-	$1005207914850882587506206945 a^{4} b^{3} r$	-	
$81137162975963775737998950 a^{3} b^{4} r$	+	$104272747645620031944654195 a^{2} b^{5} r$	-	
$21643857090770139430244856 a b^{6} r+1190322528519789295296273 b^{7} r-45196737 a^{6} s-2348046 a^{5} b s$	+			
$2579745 a^{4} b^{2} s-108900 a^{3} b^{3} s-249495 a^{2} b^{4} s+51714 a b^{5} s-2873 b^{6} s$				

continued on next page
Table D.9.: continued

$\nu_{T}^{(2)}$	T
$21360675 a^{14} r+598098900 a^{13} b r+7105419630 a^{12} b^{2} r+46125499920 a^{11} b^{3} r+168938921040 a^{10} b^{4} r+$	$C_{2} \times C_{8}$
$262905854400 a^{9} b^{5} r-525880005420 a^{8} b^{6} r \quad-3855997905600 a^{7} b^{7} r \quad-8098291873600 a^{6} b^{8} r \quad+$	
$4753938481920 a^{5} b^{9} r+78224096273280 a^{4} b^{10} r+231185841843200 a^{3} b^{11} r+357941121199104 a^{2} b^{12} r+$	
$299403873079296 a b^{13} r+106046375330816 b^{14} r+500789848492059862845565703014055936 a^{14} s \quad+$	
$11311158520568197629937011451785904128 a^{13} b s+108181065829851530295546152565998616576 a^{12} b^{2} s+$	
$558973066667177185513277093132527206400 a^{11} b^{3} s+1513074075212618936814440705289596436480 a^{10} b^{4} s+$	
$735636348883540733212981861822507253760 a^{9} b^{5} s-10025199760148859831501311762976106086400 a^{8} b^{6} s-$	
$38187953589942464485684602072145802035200 a^{7} b^{7} s-41664506532417970681005602359703890821120 a^{6} b^{8} s+$	
$166636382066837742899845697496297976627200 a^{5} b^{9} s+$	
$856622098633061811353832002533323870044160 a^{4} b^{10} s+$	
$1871072565101284711695290610554701810237440 a^{3} b^{11} s+$	
$2305840501463793579401683541955213294305280 a^{2} b^{12} s+$	
$1552753519781568008156849235480288637747200 a b^{13} s+443643862794733716616242638708653896499200 b^{14} s$	

Table D.10.: The Polynomials $\nu_{T}^{(3)}$

$\nu_{T}^{(3)}$	T
$64 b^{2} d r-7 a^{2} r+729 a s$	C_{2}
$a r-27 b r+803232681984 a s-6112404799488 b s$	C_{3}
$1991 a^{2} r+48752 a b r+262600 b^{2} r+1242201849856 a^{2} s+9342896046080 a b s-4826469498880 b^{2} s$	C_{4}
$\begin{aligned} & -246553002 a^{5} r-4459764775 a^{4} b r-18886000075 a^{3} b^{2} r-1670746025 a^{2} b^{3} r-18639447075 a b^{4} r+ \\ & 2789018761 b^{5} r+2789018761 a^{5} s+18639447075 a^{4} b s-1670746025 a^{3} b^{2} s+18886000075 a^{2} b^{3} s-4459764775 a b^{4} s+ \\ & 246553002 b^{5} s \end{aligned}$	C_{5}
$\begin{aligned} & -492 a^{5} r-8689 a^{4} b r-45748 a^{3} b^{2} r-72846 a^{2} b^{3} r-40752 a b^{4} r+41751 b^{5} r+3424447441143 a^{5} s+ \\ & 30395059879392 a^{4} b s+61798659475842 a^{3} b^{2} s+52797620229732 a^{2} b^{3} s-19165211345313 a b^{4} s- \\ & 10138918554324 b^{5} s \end{aligned}$	C_{6}
$\begin{aligned} & -2497745017 a^{11} r-15343684633 a^{10} b r+35253684339 a^{9} b^{2} r+119805998182 a^{8} b^{3} r-417369430378 a^{7} b^{4} r+ \\ & 495797505553 a^{6} b^{5} r-612871701330 a^{5} b^{6} r+1127680956200 a^{4} b^{7} r-1265252918778 a^{3} b^{8} r+708207103362 a^{2} b^{9} r- \\ & 194452169109 a b^{10} r+18283431419 b^{11} r-2758970190 a^{11} s-20586723093 a^{10} b s+17880417165 a^{9} b^{2} s+ \\ & 158150760545 a^{8} b^{3} s-325690559471 a^{7} b^{4} s+272311306414 a^{6} b^{5} s-486043044305 a^{5} b^{6} s+855286820288 a^{4} b^{7} s- \\ & 665504579057 a^{3} b^{8} s+255559137926 a^{2} b^{9} s-42818879820 a b^{10} s+2497745017 b^{11} s \end{aligned}$	C_{7}

Table D.10.: continued

$\nu_{T}^{(3)}$	T
	C_{8}
$\begin{aligned} & -743422717107 a^{17} r-136724561505 a^{16} b r+13356423201884 a^{15} b^{2} r-28767381691398 a^{14} b^{3} r- \\ & 25362400906164 a^{13} b^{4} r+222821830879885 a^{12} b^{5} r-505438041369924 a^{11} b^{6} r+709950711325941 a^{10} b^{7} r- \\ & 879763065782232 a^{9} b^{8} r+1348861323871773 a^{8} b^{9} r-2160649630918044 a^{7} b^{10} r+2747361223975454 a^{6} b^{11} r- \\ & 2563658421472068 a^{5} b^{12} r+1736573973789912 a^{4} b^{13} r-838212815164505 a^{3} b^{14} r+269641567050804 a^{2} b^{15} r- \\ & 50791368120732 a b^{16} r+4045364893248 b^{17} r-910853714778 a^{17} s-1116676789704 a^{16} b s- \\ & 15029127264852 a^{15} b^{2} s-19839960363847 a^{14} b^{3} s-48921280770273 a^{13} b^{4} s+218833175805216 a^{12} b^{5} s- \\ & 401439535456706 a^{11} b^{6} s+491972245843248 a^{10} b^{7} s-635220039813597 a^{9} b^{8} s+1072797339438948 a^{8} b^{9} s- \\ & 1637059053494439 a^{7} b^{10} s+1847465038159380 a^{6} b^{11} s-1496687033357461 a^{5} b^{12} s+871593129545376 a^{4} b^{13} s- \\ & 350355428676498 a^{3} b^{14} s+89936659308748 a^{2} b^{15} s-12774910752324 a b^{16} s+743422717107 b^{17} s \end{aligned}$	C_{9}

Table D.10.: continued

continued on next page
Table D.10.: continued

$\nu_{T}^{(3)}$				T		
$-994361678361384 a^{35} b^{12} r$	+	$46469787663035004 a^{34} b^{13} r$	-	$1050843674997211472 a^{33} b^{14} r$	+	C_{12}
$15330405748934155436 a^{32} b^{15} r$	-	$162268542603956142344 a^{31} b^{16} r$	$+1328569400984370985152 a^{30} b^{17} r$	-		
$8758456572009112837792 a^{29} b^{18} r+47777096647092388907563 a^{28} b^{19} r-219919948717611798971524 a^{27} b^{20} r+$						
$866720126128415161739220 a^{26} b^{21} r$	-	$2957067404175279478906884 a^{25} b^{22} r$	+			
$8808517213410190135609558 a^{24} b^{23} r$	-	$23059568441630725081086912 a^{23} b^{24} r$	+			
$53319451069248084050693034 a^{22} b^{25} r$	-	$109304043809700133603175240 a^{21} b^{26} r$	+			
$199188381908564161931570719 a^{20} b^{27} r$	-	$323232282344337867047296000 a^{19} b^{28} r$	+			
$467467469293549591466172904 a^{18} b^{29} r$	-	$602517818790680812080933412 a^{17} b^{30} r$	+			
$691511434410046442329122307 a^{16} b^{31} r$	-	$705484075919994973896649708 a^{15} b^{32} r$	+			
$638068417056891825214263038 a^{14} b^{33} r$	-	$509691312216799970111468792 a^{13} b^{34} r$	+			
$357791036391331126328979798 a^{12} b^{35} r$	-	$219277188609790337474926308 a^{11} b^{36} r$	+			
$116338252117233287274667044 a^{10} b^{37} r$	-	$52849682060824347499911056 a^{9} b^{38} r$	+			
$20261607801338447414544931 a^{8} b^{39} r$	-	$6429369553298326659951604 a^{7} b^{40} r$	+			
$1643420644086240240425972 a^{6} b^{41} r-325161940241150782299640 a^{5} b^{42} r+46726875613868078978512 a^{4} b^{43} r-$						
$4338466950964572549448 a^{3} b^{44} r+195333729856848815400 a^{2} b^{45} r+96 a b^{46} r+8 b^{47} r-13824 a^{46} s-497664 a^{45} b s-$						
$9455616 a^{44} b^{2} s-126406656 a^{43} b^{3} s-1337720832 a^{42} b^{4} s-11956875264 a^{41} b^{5} s-94062477312 a^{40} b^{6} s-$						

Table D.10.: continued

$\nu_{T}^{(3)}$			T			
$670154342400 a^{39} b^{7} s$	-	$4415821443072 a^{38} b^{8} s$	-	$27345281163264 a^{37} b^{9} s-161147485974528 a^{36} b^{10} s$	-	
$912732334276608 a^{35} b^{11} s$	$+68342617636200614449152 a^{34} b^{12} s-2895139472448092839501824 a^{33} b^{13} s$	+				
$59605167093387587835125760 a^{32} b^{14} s$	-	$794493012935349929452142592 a^{31} b^{15} s$	+			
$7705709501794416184564666368 a^{30} b^{16} s$	-	$57943820970822561654302687232 a^{29} b^{17} s$	+			
$351464905594685769810014453760 a^{28} b^{18} s$	-	$1766448538678514101677101383680 a^{27} b^{19} s$	+			
$7498841465637925802045972840448 a^{26} b^{20} s$	-	$27271982013210574646351790440448 a^{25} b^{21} s$	+			
$85884290260854852043487334334464 a^{24} b^{22} s$	-	$236116816261431365858260273201152 a^{23} b^{23} s$	+			
$570236169544426262064815241854976 a^{22} b^{24} s$	-	$1215414642750586311535127740809216 a^{21} b^{25} s$	+			
$2294072155947124025454128747249664 a^{20} b^{26} s$	-	$3843209414297520857164263176798208 a^{19} b^{27} s$	+			
$5721975283186102571857991478804480 a^{18} b^{28} s$	-	$7573900419393270452787532171051008 a^{17} b^{29} s$	+			
$8907920454548497138840554405101568 a^{16} b^{30} s$	-	$9295514920391708325193035200593920 a^{15} b^{31} s$	+			
$8584928851056391271780092784148480 a^{14} b^{32} s$	-	$6992159697594140347508412641181696 a^{13} b^{33} s$	+			
$4997875118429031181275432373714944 a^{12} b^{34} s$	-	$3115117923485726617303706480148480 a^{11} b^{35} s$	+			
$1678997311292040033411815234863104 a^{10} b^{36} s$	-	$774067846136366314622201955876864 a^{9} b^{37} s$	+			
$300897330615830505499724743704576 a^{8} b^{38} s$	-	$96727590041000821695885663535104 a^{7} b^{39} s$	+			
$25027949280853287597863092617216 a^{6} b^{40} s-5009007916045593013486199242752 a^{5} b^{41} s+$						

Table D.10.: continued

$\nu_{T}^{(3)}$	$68243988238432731929763643392 a^{3} b^{43} s$	+
$727606102187129484234077503488 a^{4} b^{42} s$	-	
$3101999465383305996807438336 a^{2} b^{44} s$	$C_{2} \times C_{2}$	
$-56 a^{2} r d^{2}+56 a b r d^{2}+114 b^{2} r d^{2}+114 a^{2} s d^{2}+56 a b s d^{2}-56 b^{2} s d^{2}$	$C_{2} \times C_{4}$	
$-7 a^{6} b^{4} r-168 a^{5} b^{5} r-1512 a^{4} b^{6} r-6272 a^{3} b^{7} r-11136 a^{2} b^{8} r-3072 a b^{9} r+4096 b^{10} r-16777216 a^{10} s+$		
$402653184 a^{9} b s-6039797760 a^{8} b^{2} s+73014444032 a^{7} b^{3} s+78711718150144 a^{6} b^{4} s+1242018642657280 a^{5} b^{5} s+$		
$7422047084871680 a^{4} b^{6} s+19769219067412480 a^{3} b^{7} s+19769219067412480 a^{2} b^{8} s$		

continued on next page
Table D.10.: continued

$\nu_{T}^{(3)}$	T
$11589656270890071471319473222510000000 a^{23} r-84409582208014219985243671444839000000 a^{22} b r \quad+$	$C_{2} \times C_{6}$
$268611615330761530370823787595174400000 a^{21} b^{2} r-487219006384630829626386966797313000000 a^{20} b^{3} r+$	
$547883533385549676717145062756186960000 a^{19} b^{4} r-382626678931988042720449314234041227200 a^{18} b^{5} r+$	
$146206720002675150700017153571422132480 a^{17} b^{6} r-5890973546007472706456780751819766848 a^{16} b^{7} r-$	
$24096883167542463851700957777628957056 a^{15} b^{8} r+12448062205827660635408001393919452864 a^{14} b^{9} r-$	
$2525404616397107674675177651598504448 a^{13} b^{10} r-130866412328343335983697909472814272 a^{12} b^{11} r+$	
$209454384758743695141793877848841088 a^{11} b^{12} r \quad-\quad 57486624235271904424596328776594240 a^{10} b^{13} r \quad+$	
$8557658530007206749717133106493696 a^{9} b^{14} r \quad-\quad 753426500962065894495308300025024 a^{8} b^{15} r \quad+$	
$36849428413982012129035110520320 a^{7} b^{16} r \quad-\quad 770771640575666909363188405248 a^{6} b^{17} r$	
$4519259760167570802475008 a^{5} b^{18} r-354489855885377808629760 a^{4} b^{19} r-25004273361537145503744 a^{3} b^{20} r-$	
$1505859600204618006528 a^{2} b^{21} r \quad-70039981404865953792 a b^{22} r-1945555039024054272 b^{23} r \quad+$	
$40958565386368 a^{22} s-276777107970432 a^{21} b s+801242730916672 a^{20} b^{2} s-1286746889804544 a^{19} b^{3} s+$	
$1224602945218240 a^{18} b^{4} s-657765694942848 a^{17} b^{5} s+127855167499072 a^{16} b^{6} s+65925228864000 a^{15} b^{7} s-$	
$52117158883904 a^{14} b^{8} s+13524629594496 a^{13} b^{9} s-196934480960 a^{12} b^{10} s-842855461632 a^{11} b^{11} s+$	
$257698159168 a^{10} b^{12} s-39637223808 a^{9} b^{13} s+3516988864 a^{8} b^{14} s-171549696 a^{7} b^{15} s+3573952 a^{6} b^{16} s$	

continued on next page
Table D.10.: continued

$\nu_{T}^{(3)}$				T
$-7547466318592 a^{38} b^{8} r-573607440212992 a^{37} b^{9} r-20744148420490752 a^{36} b^{10} r-474851872457060352 a^{35} b^{11} r-$				$C_{2} \times C_{8}$
$\begin{aligned} & 7716346963107721216 a^{34} b^{12} r-94555931444454834176 a^{33} b^{13} r-904995026209050385408 a^{32} b^{14} r- \\ & 6901972611098746486784 a^{31} b^{15} r-42288386590880977043456 a^{30} b^{16} r-207111075522872124178432 a^{29} b^{17} r- \end{aligned}$				
$788638755350000561192960 a^{28} b^{18} r$	-	$2132837051351474349277184 a^{27} b^{19} r$	-	
$2560352545095225114361856 a^{26} b^{20} r$	+	$10730930423342858025041920 a^{25} b^{21} r$	+	
$84217518907636637373825024 a^{24} b^{22} r$	+	$320161760068857947207237632 a^{23} b^{23} r$	$+$	
$804815189323712985909166080 a^{22} b^{24} r$	+	$1214743256353369647600369664 a^{21} b^{25} r$	-	
$121251414640644784551624704 a^{20} b^{26} r$	-	$7359581220954699571960741888 a^{19} b^{27} r$	-	
$26904851365096257990466469888 a^{18} b^{28} r$	-	$63630408468415338731226005504 a^{17} b^{29} r$	-	
$113877160508411866915826302976 a^{16} b^{30} r$		$161070161485115439404845891584 a^{15} b^{31} r$	-	
$182009225905637768545641168896 a^{14} b^{32} r$		$163409773404178933786456621056 a^{13} b^{33} r$	-	
$114418011007965219707057864704 a^{12} b^{34} r$		$60372579036592320802164047872 a^{11} b^{35} r$	-	
$22609525504287417823972556800 a^{10} b^{36} r$		$5359918179973563018905649152 a^{9} b^{37} r$	-	
$604750050361867484035809280 a^{8} b^{38} r+$	86	$2431232 a^{7} b^{39} r-3528077726835539968 a$	+	
$2470787345566138368 a^{5} b^{41} r \quad-1538$	2227	$696 a^{4} b^{42} r+819655132181430272 a^{3} b$	-	
$351280770934898688 a^{2} b^{44} r+10808639105$		- $18014398509481984 b^{46} r-$		

Table D.10.: continued

$\nu_{T}^{(3)}$				T	
$1237940039285380274899124224 a^{46} s$	+	$59421121885698253195157962752 a^{45} b s$	-		
$1544949169028154583074107031552 a^{44} b^{2} s$	+	$28839051155192218884049997922304 a^{43} b^{3} s$		-	
$433061136302968869286311232536576 a^{42} b^{4} s$	+	$5563718484401698843169030368395264 a^{41} b^{5} s$	-		
$63556198143642737502840208607936512 a^{40} b^{6} s$	+	$662732804401719244020082422583394304 a^{39} b^{7} s$	-		
$697229337974270743241208213354616257280737280 a^{38} b^{8} s-$					
$49436519460997704760958895459107909001665314816 a^{37} b^{9} s-$					
$1668288522422395544765602686842091110468367155200 a^{36} b^{10} s-$					
$35637680465850268956548353920475845731861726756864 a^{35} b^{11} s-$					
$540323780220625064200069112962940378597947535785984 a^{34} b^{12} s-$					
$6173446695177745303646017752591794781127033705463808 a^{33} b^{13} s-$					
$55008913151349334090915944931316098900857417497575424 a^{32} b^{14} s-$					
$389443753977707718630870380449865539549447847902445568 a^{31} b^{15} s-$					
$2202704633648295964507235854407415104012210834470076416 a^{30} b^{16} s-$					
$9846328794891859769724007890165379301133469357925466112 a^{29} b^{17} s-$					
$33306592755874578734163371108514569847432153448067366912 a^{28} b^{18} s-$					
$72885762126340861738598788631914877288264412164098359296 a^{27} b^{19} s-$					

Table D.10.: continued

$\nu_{T}^{(3)}$	T
$9606526784233455207362546421299779964308201339086700544 a^{26} b^{20} s+$	
$769935009019771486086041516467205318347491211395656056832 a^{25} b^{21} s+$	
$4080897831276003399161411283815995794539347174060531384320 a^{24} b^{22} s+$	
$12987303914285252639189428769843208079022872037149821108224 a^{23} b^{23} s+$	
$27330147428607447522493161377877427756698540078735393030144 a^{22} b^{24} s+$	
$27859088163139464825203731160630465813637379155495653212160 a^{21} b^{25} s-$	
$53176441906558351807996221970283901642081665809588844232704 a^{20} b^{26} s-$	
$354378339887966243188345680044198475773536512442753506869248 a^{19} b^{27} s-$	
$1048280712172191846264710659700495434357042909225002425384960 a^{18} b^{28} s-$	
$2202382718577005287161357369741389766677848842279534939078656 a^{17} b^{29} s-$	
$3597498070603163665522498461676744103280004644804697977257984 a^{16} b^{30} s-$	
$4697239153056342730977244861764409268621141438980582442795008 a^{15} b^{31} s-$	
$4927261593121478474220886543240362462855809016380794253344768 a^{14} b^{32} s-$	
$4118491668266634594476974449713249024752970648722506690592768 a^{13} b^{33} s-$	
$2688754491995638583299664671675277468021268599701693901307904 a^{12} b^{34} s-$	
$1323693826838758062298434159060167759139628976885676380258304 a^{11} b^{35} s-$	

Table D.10.: continued

$\nu_{T}^{(3)}$	T
$462609968285865747670772906947078574363611195823125621112832 a^{10} b^{36} s-$	
$102334986945370582585171964088776194959743127406214566117376 a^{9} b^{37} s-$	
$10772103888986377114228627798818546837867697621706796433408 a^{8} b^{38} s$	

E. H_{T} AND ITS ASSOCIATED QUANTITIES
Table E.1.: The Polynomials A_{T}

A_{T}	T
$\left(a^{3}-3 a^{2} b-6 a b^{2}-b^{3}\right)\left(a^{9}-225 a^{8} b-855 a^{7} b^{2}-1866 a^{6} b^{3}-2844 a^{5} b^{4}-3123 a^{4} b^{5}-2265 a^{3} b^{6}-981 a^{2} b^{7}-234 a b^{8}-b^{9}\right)$	C_{1}
$a^{8}-120 a^{7} b+540 a^{6} b^{2}-840 a^{5} b^{3}+1094 a^{4} b^{4}-840 a^{3} b^{5}+540 a^{2} b^{6}-120 a b^{7}+b^{8}$	C_{2}
$\left(a^{3}-3 a^{2} b-6 a b^{2}-b^{3}\right)\left(a^{3}+3 a^{2} b-b^{3}\right)\left(a^{6}+12 a^{5} b+69 a^{4} b^{2}+88 a^{3} b^{3}+24 a^{2} b^{4}-6 a b^{5}+b^{6}\right)$	C_{3}
$\left(a^{4}-8 a^{3} b+2 a^{2} b^{2}+8 a b^{3}+b^{4}\right)\left(a^{4}+8 a^{3} b+2 a^{2} b^{2}-8 a b^{3}+b^{4}\right)$	C_{4}
$\frac{1}{2^{20}}\left(b^{80}-384 b^{60}+14336 b^{40}+393216 b^{20}+1048576\right)$	C_{5}
$\left(a^{4}+4 a^{3} b-6 a^{2} b^{2}+4 a b^{3}+b^{4}\right)\left(a^{12}-12 a^{11} b+78 a^{10} b^{2}-188 a^{9} b^{3}+111 a^{8} b^{4}+264 a^{7} b^{5}-444 a^{6} b^{6}+264 a^{5} b^{7}+\right.$	C_{6}
$\left.111 a^{4} b^{8}-188 a^{3} b^{9}+78 a^{2} b^{10}-12 a b^{11}+b^{12}\right)$	
$\left(a^{2}+a b+b^{2}\right)\left(a^{6}+11 a^{5} b+30 a^{4} b^{2}+15 a^{3} b^{3}-10 a^{2} b^{4}-5 a b^{5}+b^{6}\right)$	C_{7}
$a^{16}-8 a^{14} b^{2}-228 a^{12} b^{4}+968 a^{10} b^{6}+2630 a^{8} b^{8}+968 a^{6} b^{10}-228 a^{4} b^{12}-8 a^{2} b^{14}+b^{16}$	C_{8}
$\left(a^{3}+3 a^{2} b-b^{3}\right)\left(a^{9}+9 a^{8} b+27 a^{7} b^{2}+48 a^{6} b^{3}+54 a^{5} b^{4}+45 a^{4} b^{5}+27 a^{3} b^{6}+9 a^{2} b^{7}-b^{9}\right)$	C_{9}

continued on next page
Table E.1.: continued

| A_{T} | T |
| :--- | :---: | :---: |
| $\frac{1}{16}\left(a^{12}+16 a^{11} b+104 a^{10} b^{2}+360 a^{9} b^{3}+720 a^{8} b^{4}+816 a^{7} b^{5}+416 a^{6} b^{6}-96 a^{5} b^{7}-240 a^{4} b^{8}-80 a^{3} b^{9}+64 a^{2} b^{10}+\right.$ | C_{10} |
| $\left.64 a b^{11}+16 b^{12}\right)$ | |
| $\left(a^{4}-2 a^{3} b-2 a b^{3}+b^{4}\right)\left(a^{12}-6 a^{11} b+12 a^{10} b^{2}-14 a^{9} b^{3}+3 a^{8} b^{4}+12 a^{7} b^{5}-24 a^{6} b^{6}+12 a^{5} b^{7}+3 a^{4} b^{8}-14 a^{3} b^{9}+\right.$ | C_{12} |
| $\left.12 a^{2} b^{10}-6 a b^{11}+b^{12}\right)$ | |
| $a^{8}+60 a^{6} b^{2}+134 a^{4} b^{4}+60 a^{2} b^{6}+b^{8}$ | $C_{2} \times C_{2}$ |
| $\left(a^{4}-2 a^{3} b+2 a^{2} b^{2}+2 a b^{3}+b^{4}\right)\left(a^{4}+2 a^{3} b+2 a^{2} b^{2}-2 a b^{3}+b^{4}\right)$ | $C_{2} \times C_{4}$ |
| $\left(a^{4}-2 a^{3} b+6 a^{2} b^{2}-2 a b^{3}+b^{4}\right)\left(a^{12}-6 a^{11} b+6 a^{10} b^{2}+10 a^{9} b^{3}+15 a^{8} b^{4}-36 a^{7} b^{5}+84 a^{6} b^{6}-36 a^{5} b^{7}+15 a^{4} b^{8}+\right.$ | $C_{2} \times C_{6}$ |
| $\left.10 a^{3} b^{9}+6 a^{2} b^{10}-6 a b^{11}+b^{12}\right)$ | $C_{2} \times C_{8}$ |
| $a^{16}-8 a^{14} b^{2}+12 a^{12} b^{4}+8 a^{10} b^{6}+230 a^{8} b^{8}+8 a^{6} b^{10}+12 a^{4} b^{12}-8 a^{2} b^{14}+b^{16}$ | |

Table E.2.: The Polynomials B_{T}

B_{T}	T
$-\left(a^{18}+522 a^{17} b-8433 a^{16} b^{2}-56382 a^{15} b^{3}-174843 a^{14} b^{4}-433494 a^{13} b^{5}-1084008 a^{12} b^{6}-2541474 a^{11} b^{7}-\right.$	C_{1}
$4836168 a^{10} b^{8}-7036328 a^{9} b^{9}-7787457 a^{8} b^{10}-6599304 a^{7} b^{11}-4265121 a^{6} b^{12}-2050470 a^{5} b^{13}-692973 a^{4} b^{14}-$	
$\left.148722 a^{3} b^{15}-17154 a^{2} b^{16}-504 a b^{17}+b^{18}\right)$	

continued on next page
Table E.2.: continued

| B_{T} | T |
| :--- | :---: | :---: |
| $-\left(a^{4}-12 a^{3} b+6 a^{2} b^{2}-12 a b^{3}+b^{4}\right)\left(a^{8}+264 a^{7} b-996 a^{6} b^{2}+1848 a^{5} b^{3}-1978 a^{4} b^{4}+1848 a^{3} b^{5}-996 a^{2} b^{6}+264 a b^{7}+b^{8}\right)$ | C_{2} |
| $-\left(a^{6}+12 a^{5} b+15 a^{4} b^{2}-20 a^{3} b^{3}-30 a^{2} b^{4}-6 a b^{5}+b^{6}\right)\left(a^{12}+6 a^{11} b+48 a^{10} b^{2}+428 a^{9} b^{3}+1899 a^{8} b^{4}+3636 a^{7} b^{5}+\right.$ | C_{3} |
| $\left.3030 a^{6} b^{6}+720 a^{5} b^{7}-288 a^{4} b^{8}-58 a^{3} b^{9}+48 a^{2} b^{10}+6 a b^{11}+b^{12}\right)$ | |
| $-\left(a^{2}-2 a b-b^{2}\right)\left(a^{2}+2 a b-b^{2}\right)\left(a^{8}+132 a^{6} b^{2}-250 a^{4} b^{4}+132 a^{2} b^{6}+b^{8}\right)$ | C_{4} |
| $-\frac{1}{2^{30}}\left(b^{4}-2 b^{2}+2\right)\left(b^{4}+2 b^{2}+2\right)\left(b^{16}-2 b^{14}+2 b^{12}-4 b^{8}+8 b^{4}-16 b^{2}+16\right)\left(b^{16}+2 b^{14}+2 b^{12}-4 b^{8}+8 b^{4}+16 b^{2}+\right.$ | C_{5} |
| $16)\left(b^{80}-576 b^{60}+75776 b^{40}+589824 b^{20}+1048576\right)$ | |
| $-\left(a^{8}-4 a^{7} b+4 a^{6} b^{2}+20 a^{5} b^{3}-26 a^{4} b^{4}+20 a^{3} b^{5}+4 a^{2} b^{6}-4 a b^{7}+b^{8}\right)\left(a^{16}-8 a^{15} b+24 a^{14} b^{2}-568 a^{13} b^{3}+\right.$ | C_{6} |
| $2684 a^{12} b^{4}-4776 a^{11} b^{5}+2344 a^{10} b^{6}+4840 a^{9} b^{7}-8826 a^{8} b^{8}+4840 a^{7} b^{9}+2344 a^{6} b^{10}-4776 a^{5} b^{11}+2684 a^{4} b^{12}-$ | |
| $\left.568 a^{3} b^{13}+24 a^{2} b^{14}-8 a b^{15}+b^{16}\right)$ | |
| $-\left(a^{12}+18 a^{11} b+117 a^{10} b^{2}+354 a^{9} b^{3}+570 a^{8} b^{4}+486 a^{7} b^{5}+273 a^{6} b^{6}+222 a^{5} b^{7}+174 a^{4} b^{8}+46 a^{3} b^{9}-15 a^{2} b^{10}-\right.$ | C_{7} |
| $\left.6 a b^{11}+b^{12}\right)$ | |
| $-\left(a^{8}-4 a^{6} b^{2}-26 a^{4} b^{4}-4 a^{2} b^{6}+b^{8}\right)\left(a^{16}-8 a^{14} b^{2}+540 a^{12} b^{4}-2104 a^{10} b^{6}-5050 a^{8} b^{8}-2104 a^{6} b^{10}+540 a^{4} b^{12}-\right.$ | C_{8} |
| $\left.8 a^{2} b^{14}+b^{16}\right)$ | C_{9} |
| $-\left(a^{18}+18 a^{17} b+135 a^{16} b^{2}+570 a^{15} b^{3}+1557 a^{14} b^{4}+2970 a^{13} b^{5}+4128 a^{12} b^{6}+4230 a^{11} b^{7}+3240 a^{10} b^{8}+2032 a^{9} b^{9}+\right.$ | |
| $\left.1359 a^{8} b^{10}+1080 a^{7} b^{11}+735 a^{6} b^{12}+306 a^{5} b^{13}+27 a^{4} b^{14}-42 a^{3} b^{15}-18 a^{2} b^{16}+b^{18}\right)$ | |

continued on next page
Table E.2.: continued

B_{T}	T	
$-\frac{1}{64}\left(a^{2}+2 a b+2 b^{2}\right)\left(a^{4}+6 a^{3} b+6 a^{2} b^{2}-4 a b^{3}-4 b^{4}\right)\left(a^{4}+6 a^{3} b+12 a^{2} b^{2}+8 a b^{3}+2 b^{4}\right)\left(a^{8}+10 a^{7} b+32 a^{6} b^{2}+\right.$	C_{10}	
$\left.40 a^{5} b^{3}+14 a^{4} b^{4}+8 a^{2} b^{6}-4 b^{8}\right)$		
$-\left(a^{8}-4 a^{7} b+4 a^{6} b^{2}-4 a^{5} b^{3}-2 a^{4} b^{4}-4 a^{3} b^{5}+4 a^{2} b^{6}-4 a b^{7}+b^{8}\right)\left(a^{16}-8 a^{15} b+24 a^{14} b^{2}-40 a^{13} b^{3}+44 a^{12} b^{4}-\right.$	C_{12}	
$\left.24 a^{11} b^{5}-32 a^{10} b^{6}+88 a^{9} b^{7}-114 a^{8} b^{8}+88 a^{7} b^{9}-32 a^{6} b^{10}-24 a^{5} b^{11}+44 a^{4} b^{12}-40 a^{3} b^{13}+24 a^{2} b^{14}-8 a b^{15}+b^{16}\right)$		
$-\left(a^{4}+6 a^{2} b^{2}+b^{4}\right)\left(a^{4}-12 a^{3} b+6 a^{2} b^{2}-12 a b^{3}+b^{4}\right)\left(a^{4}+12 a^{3} b+6 a^{2} b^{2}+12 a b^{3}+b^{4}\right)$	$C_{2} \times C_{2}$	
$-\left(a^{2}-2 a b-b^{2}\right)\left(a^{2}+2 a b-b^{2}\right)\left(a^{4}+b^{4}\right)\left(a^{4}+6 a^{2} b^{2}+b^{4}\right)$	$C_{2} \times C_{4}$	
$-\left(a^{8}-4 a^{7} b+4 a^{6} b^{2}-28 a^{5} b^{3}+22 a^{4} b^{4}-28 a^{3} b^{5}+4 a^{2} b^{6}-4 a b^{7}+b^{8}\right)\left(a^{8}-4 a^{7} b+4 a^{6} b^{2}-4 a^{5} b^{3}-2 a^{4} b^{4}-\right.$	$C_{2} \times C_{6}$	
$\left.4 a^{3} b^{5}+4 a^{2} b^{6}-4 a b^{7}+b^{8}\right)\left(a^{8}-4 a^{7} b+4 a^{6} b^{2}+20 a^{5} b^{3}-26 a^{4} b^{4}+20 a^{3} b^{5}+4 a^{2} b^{6}-4 a b^{7}+b^{8}\right)$		
$-\left(a^{8}-4 a^{6} b^{2}-26 a^{4} b^{4}-4 a^{2} b^{6}+b^{8}\right)\left(a^{8}-4 a^{6} b^{2}-2 a^{4} b^{4}-4 a^{2} b^{6}+b^{8}\right)\left(a^{8}-4 a^{6} b^{2}+22 a^{4} b^{4}-4 a^{2} b^{6}+b^{8}\right)$	$C_{2} \times C_{8}$	

Table E.3.: The Polynomials D_{T}

D_{T}	T
$-a b(a+b)\left(a^{2}+a b+b^{2}\right)^{3}\left(a^{3}+6 a^{2} b+3 a b^{2}-b^{3}\right)^{9}$	C_{1}
$-\frac{1}{2} a b(a-b)^{4}(a+b)^{16}\left(a^{2}+b^{2}\right)$	C_{2}
$-(a b)^{3}(a+b)^{3}\left(a^{2}+a b+b^{2}\right)^{9}\left(a^{3}+6 a^{2} b+3 a b^{2}-b^{3}\right)^{3}$	C_{3}

Table E.3.: continued

D_{T}	T
$-\frac{1}{4} b^{2} a^{2}(a-b)^{2}(a+b)^{2}\left(a^{2}+b^{2}\right)^{8}$	C_{4}
$\frac{1}{2^{35}} b^{100}\left(b^{8}-2 b^{4}-4\right)\left(b^{16}-4 b^{12}+16 b^{8}-24 b^{4}+16\right)\left(b^{16}+6 b^{12}+16 b^{8}+16 b^{4}+16\right)$	C_{5}
$(a+b)^{2}(a b)^{3}(a-b)^{6}\left(a^{2}-a b+b^{2}\right)\left(a^{2}-4 a b+b^{2}\right)^{4}\left(a^{2}+b^{2}\right)^{12}$	C_{6}
$-(a b)^{7}(a+b)^{7}\left(a^{3}+8 a^{2} b+5 a b^{2}-b^{3}\right)$	C_{7}
$-(a b)^{4}(a-b)^{16}(a+b)^{16}\left(a^{2}-2 a b-b^{2}\right)\left(a^{2}+2 a b-b^{2}\right)\left(a^{2}+b^{2}\right)^{2}$	C_{8}
$-(a b)^{9}(a+b)^{9}\left(a^{2}+a b+b^{2}\right)^{3}\left(a^{3}+6 a^{2} b+3 a b^{2}-b^{3}\right)$	C_{9}
$\left(\frac{1}{096}\right) d^{5} b^{10}(a+2 b)^{5}(a+b)^{10}\left(a^{2}+6 a b+4 b^{2}\right)\left(a^{2}+a b-b^{2}\right)^{2}$	C_{10}
$(d b)^{12}\left((a+b)^{2}(a-b)^{6}\left(a^{2}-4 a b+b^{2}\right)\left(a^{2}+b^{2}\right)^{3}\left(a^{2}-a b+b^{2}\right)^{4}\right.$	C_{12}
$\left(\frac{1}{f}\right)(a b)^{2}(a-b)^{8}(a+b)^{8}\left(a^{2}+b^{2}\right)^{2}$	$C_{2} \times C_{2}$
$\left(\frac{7}{(4)}\left((a b)^{4}(a-b)^{4}(a+b)^{4}\left(a^{2}+b^{2}\right)^{4}\right.\right.$	$C_{2} \times C_{4}$
$(a b)^{6}(a+b)^{4}(a-b)^{12}\left(a^{2}-4 a b+b^{2}\right)^{2}\left(a^{2}-a b+b^{2}\right)^{2}\left(a^{2}+b^{2}\right)^{6}$	$C_{2} \times C_{6}$
$(a b)^{8}(a-b)^{8}(a+b)^{8}\left(a^{2}-2 a b-b^{2}\right)^{2}\left(a^{2}+2 a b-b^{2}\right)^{2}\left(a^{2}+b^{2}\right)^{4}$	$C_{2} \times C_{8}$

Table E.4.: The Polynomials \hat{D}_{T}

\hat{D}_{T}	T
$(a+b)\left(a^{2}+a b+b^{2}\right)\left(-a^{3}-6 a^{2} b-3 a b^{2}+b^{3}\right)$	C_{1}, C_{3}, C_{9}
$(a+b)(-a+b)\left(a^{2}+b^{2}\right)$	$C_{2}, C_{4}, C_{2} \times C_{2}, C_{2} \times C_{4}$
$\frac{1}{2^{9} 5}\left(b^{8}-2 b^{4}-4\right)\left(b^{16}-4 b^{12}+16 b^{8}-24 b^{4}+16\right)\left(b^{16}+6 b^{12}+16 b^{8}+16 b^{4}+16\right)$	$C_{5} 6$
$(a+b)(-a+b)\left(a^{2}+b^{2}\right)\left(a^{2}-a b+b^{2}\right)\left(a^{2}-4 a b+b^{2}\right)$	$C_{6}, C_{12}, C_{2} \times C_{6}$
$(a+b)\left(-a^{3}-8 a^{2} b-5 a b^{2}+b^{3}\right)$	C_{7}
$(a+b)(-a+b)\left(a^{2}-2 a b-b^{2}\right)\left(a^{2}+2 a b-b^{2}\right)\left(a^{2}+b^{2}\right)$	$C_{8}, C_{2} \times C_{8}$
$\frac{1}{8}(a+b)(a+2 b)\left(a^{2}+6 a b+4 b^{2}\right)\left(-a^{2}-a b+b^{2}\right)$	C_{10}

Table E.5.: The Polynomials μ_{T}

μ_{T}	T
$-114130130479 a^{17} r+1879115953389 a^{16} b r+16153551884991 a^{15} b^{2} r+55924236165662 a^{14} b^{3} r+$ $141543993170631 a^{13} b^{4} r+349960470393840 a^{12} b^{5} r+837732735445061 a^{11} b^{6} r+1677524536313028 a^{10} b^{7} r+$ $2590462038128166 a^{9} b^{8} r+3033318243388525 a^{8} b^{9} r+2707700169632052 a^{7} b^{10} r+1839634739518686 a^{6} b^{11} r+$ $930071439811837 a^{5} b^{12} r+331173637331595 a^{4} b^{13} r+74493869821257 a^{3} b^{14} r+9004572709072 a^{2} b^{15} r+$ $269171877150 a b^{16} r-533493693 b^{17} r+533493693 a^{17} s+278241269931 a^{16} b-4625267532424 a^{15} b^{2} s-$ $27911319845583 a^{14} b^{3} s-81733628093217 a^{13} b^{4} s-200130199006987 a^{12} b^{5} s-503449029251016 a^{11} b^{6} s-$ $1165691591034717 a^{10} b^{7} s-2148524674558036 a^{9} b^{8} s-2999858097459078 a^{8} b^{9} s-3177872505023688 a^{7} b^{10} s-$ $2573564131084052 a^{6} b^{11} s-1583462122040823 a^{5} b^{12} s-719314025130417 a^{4} b^{13} s-226783462679054 a^{3} b^{14} s-$ $44900351509017 a^{2} b^{15} s-4633366624314 a b^{16} s-106178639438 b^{17} s$	C_{1}
$\begin{aligned} & -24090947 a^{11} r+485642118 a^{10} b r-1833566112 a^{9} b^{2} r+4021108998 a^{8} b^{3} r-5922733858 a^{7} b^{4} r+ \\ & 7097059764 a^{6} b^{5} r-5972936796 a^{5} b^{6} r+4084023444 a^{4} b^{7} r-1892608403 a^{3} b^{8} r+514528710 a^{2} b^{9} r-31233420 a b^{10} r- \\ & 123930 b^{11} r-123930 a^{11} s-31233420 a^{10} b s+514528710 a^{9} b^{2} s-1892608403 a^{8} b^{3} s+4084023444 a^{7} b^{4} s- \\ & 5972936796 a^{6} b^{5} s+7097059764 a^{5} b^{6} s-5922733858 a^{4} b^{7} s+4021108998 a^{3} b^{8} s-1833566112 a^{2} b^{9} s+ \\ & 485642118 a b^{10} s-24090947 b^{11} s \end{aligned}$	C_{2}

continued on next page
Table E.5.: continued

μ_{T}	T	
$-35154907 a^{17} r-202968591 a^{16} b r-1812357657 a^{15} b^{2} r-15460281946 a^{14} b^{3} r-74774519625 a^{13} b^{4} r-$	C_{3}	
$177010427664 a^{12} b^{5} r-145839060655 a^{11} b^{6} r+172229805180 a^{10} b^{7} r+480796864254 a^{9} b^{8} r+395661570505 a^{8} b^{9} r+$		
$104012269368 a^{7} b^{10} r-27178558650 a^{6} b^{11} r-11598276815 a^{5} b^{12} r+4408967415 a^{4} b^{13} r+1750560345 a^{3} b^{14} r+$		
$57702256 a^{2} b^{15} r+721638 a b^{16} r-3229353 b^{17} r+3229353 a^{17} s+55620639 a^{16} b s+393035960 a^{15} b^{2} s+$		
$3167583105 a^{14} b^{3} s+22130117955 a^{13} b^{4} s+85428229229 a^{12} b^{5} s+145658752152 a^{11} b^{6} s+24139828863 a^{10} b^{7} s-$		
$262167622540 a^{9} b^{8} s-357219306846 a^{8} b^{9} s-163228989744 a^{7} b^{10} s+5645656744 a^{6} b^{11} s+18303633069 a^{5} b^{12} s-$		
$2440094445 a^{4} b^{13} s-2407000670 a^{3} b^{14} s-135348369 a^{2} b^{15} s-9364914 a b^{16} s-1533206 b^{17} s$		
$93983 a^{10} r-966168 a^{8} b^{2} r+1729162 a^{6} b^{4} r-1052844 a^{4} b^{6} r+128591 a^{2} b^{8} r+1020 b^{10} r+1020 a^{10} s+128591 a^{8} b^{2} s-$	C_{4}	
$1052844 a^{6} b^{4} s+1729162 a^{4} b^{6} s-966168 a^{2} b^{8} s+93983 b^{10} s$		
$3272605696 b^{100}-1894986547200 b^{80}+257107479756800 b^{60}-783402034790400 b^{40}+259820095201607680 b^{20}+$	C_{5}	
1184411517626351616		

continued on next page
Table E.5.: continued

μ_{T}	T
	C_{6}
$\begin{aligned} & 575487 a^{11} r+6305919 a^{10} b r+23351603 a^{9} b^{2} r+42322212 a^{8} b^{3} r+38254845 a^{7} b^{4} r+20778709 a^{6} b^{5} r+ \\ & 16599205 a^{5} b^{6} r+14193432 a^{4} b^{7} r+4196345 a^{3} b^{8} r-1184537 a^{2} b^{9} r-538213 a b^{10} r+86718 b^{11} r-86718 a^{11} s- \\ & 1492111 a^{10} b s-8967083 a^{9} b^{2} s-23670877 a^{8} b^{3} s-31181840 a^{7} b^{4} s-18844497 a^{6} b^{5} s-10691961 a^{5} b^{6} s- \\ & 12066603 a^{4} b^{7} s-6273544 a^{3} b^{8} s+204867 a^{2} b^{9} s+693257 a b^{10} s-63181 b^{11} s \end{aligned}$	C_{7}

continued on next page
Table E.5.: continued

| μ_{T} | | T |
| :--- | :--- | :---: | :---: |
| $-2831841 a^{22} r+327794784 a^{20} b^{2} r-13441903864 a^{18} b^{4} r+9358164944 a^{16} b^{6} r+349776251370 a^{14} b^{8} r+$ | C_{8} | |
| $598346451208 a^{12} b^{10} r+260177870716 a^{10} b^{12} r-42177388712 a^{8} b^{14} r-15008226033 a^{6} b^{16} r+2050586840 a^{4} b^{18} r-$ | | |
| $44679196 a^{2} b^{20} r+3767064 b^{22} r+3767064 a^{22} s-44679196 a^{20} b^{2} s+2050586840 a^{18} b^{4} s-15008226033 a^{16} b^{6} s-$ | | |
| $42177388712 a^{14} b^{8} s+260177870716 a^{12} b^{10} s+598346451208 a^{10} b^{12} s+349776251370 a^{8} b^{14} s+9358164944 a^{6} b^{16} s-$ | | |
| $13441903864 a^{4} b^{18} s+327794784 a^{2} b^{20} s-2831841 b^{22} s$ | | |
| $6344929 a^{17} r+80947617 a^{16} b r+433546551 a^{15} b^{2} r+1355696806 a^{14} b^{3} r+2820215667 a^{13} b^{4} r+4177124136 a^{12} b^{5} r+$ | C_{9} | |
| $4488727213 a^{11} b^{6} r+3536970804 a^{10} b^{7} r+2208303306 a^{9} b^{8} r+1437637049 a^{8} b^{9} r+1160606676 a^{7} b^{10} r+$ | | |
| $828596070 a^{6} b^{11} r+366718037 a^{5} b^{12} r+42424647 a^{4} b^{13} r-47126079 a^{3} b^{14} r-22022128 a^{2} b^{15} r-244494 a b^{16} r+$ | | |
| $1226439 b^{17} r-1226439 a^{17} s-21093957 a^{16} b s-148685480 a^{15} b^{2} s-580111959 a^{14} b^{3} s-1445707773 a^{13} b^{4} s-$ | | |
| $2487390935 a^{12} b^{5} s-3077148984 a^{11} b^{6} s-2734457013 a^{10} b^{7} s-1797411572 a^{9} b^{8} s-1065165066 a^{8} b^{9} s-$ | | |
| $822495528 a^{7} b^{10} s-671480020 a^{6} b^{11} s-367882251 a^{5} b^{12} s-83911401 a^{4} b^{13} s+32212634 a^{3} b^{14} s+25088703 a^{2} b^{15} s+$ | | |
| $1969182 a b^{16} s-1509634 b^{17} s$ | | |

continued on next page
Table E.5.: continued

continued on next page
Table E.5.: continued

| μ_{T} | | T |
| :--- | :--- | :---: | :---: |
| $59801425 a^{23} r-498478732 a^{22} b r+1763578126 a^{21} b^{2} r-3833741424 a^{20} b^{3} r+5712942624 a^{19} b^{4} r-$ | C_{12} | |
| $5662023912 a^{18} b^{5} r+2506276614 a^{17} b^{6} r+2695845756 a^{16} b^{7} r-7891460802 a^{15} b^{8} r+8937869408 a^{14} b^{9} r-$ | | |
| $7508885252 a^{13} b^{10} r+5561847368 a^{12} b^{11} r-6692907948 a^{11} b^{12} r+8535806280 a^{10} b^{13} r-8973743052 a^{9} b^{14} r+$ | | |
| $4990776816 a^{8} b^{15} r+475494897 a^{7} b^{16} r-4710102372 a^{6} b^{17} r+5977463950 a^{5} b^{18} r-4698460024 a^{4} b^{19} r+$ | | |
| $2560049188 a^{3} b^{20} r-929362368 a^{2} b^{21} r+191919774 a b^{22} r-16368060 b^{23} r-16368060 a^{23} s+191919774 a^{22} b s-$ | | |
| $929362368 a^{21} b^{2} s+2560049188 a^{20} b^{3} s-4698460024 a^{19} b^{4} s+5977463950 a^{18} b^{5} s-4710102372 a^{17} b^{6} s+$ | | |
| $475494897 a^{16} b^{7} s+4990776816 a^{15} b^{8} s-8973743052 a^{14} b^{9} s+8535806280 a^{13} b^{10} s-6692907948 a^{12} b^{11} s+$ | | |
| $5561847368 a^{11} b^{12} s-7508885252 a^{10} b^{13} s+8937869408 a^{9} b^{14} s-7891460802 a^{8} b^{15} s+2695845756 a^{7} b^{16} s+$ | | |
| $2506276614 a^{6} b^{17} s-5662023912 a^{5} b^{18} s+5712942624 a^{4} b^{19} s-3833741424 a^{3} b^{20} s+1763578126 a^{2} b^{21} s-$ | | |
| $498478732 a b^{22} s+59801425 b^{23} s$ | | |
| $93983 a^{10} r+966168 a^{8} b^{2} r+1729162 a^{6} b^{4} r+1052844 a^{4} b^{6} r+128591 a^{2} b^{8} r-1020 b^{10} r-1020 a^{10} s+128591 a^{8} b^{2} s+$ | $C_{2} \times C_{2}$ | |
| $1052844 a^{6} b^{4} s+1729162 a^{4} b^{6} s+966168 a^{2} b^{8} s+93983 b^{10} s$ | $C_{2} \times C_{4}$ | |
| $395 a^{8} r+430 a^{4} b^{4} r-13 b^{8} r-13 a^{8} s+430 a^{4} b^{4} s+395 b^{8} s$ | | |

continued on next page
Table E.5.: continued

| μ_{T} | | T |
| :--- | :--- | :--- | :--- | :--- |
| $77229967 a^{23} r-559400692 a^{22} b r+1934924194 a^{21} b^{2} r-3847800240 a^{20} b^{3} r+6362709936 a^{19} b^{4} r$ | - | $C_{2} \times C_{6}$ |
| $3330327288 a^{18} b^{5} r-27997244046 a^{17} b^{6} r+88725852372 a^{16} b^{7} r-175472596662 a^{15} b^{8} r+187429833680 a^{14} b^{9} r-$ | | |
| $170779788116 a^{13} b^{10} r+116573201816 a^{12} b^{11} r-159390898500 a^{11} b^{12} r+184171173912 a^{10} b^{13} r$ | - | |
| $189082516596 a^{9} b^{14} r+111669989328 a^{8} b^{15} r-43675377441 a^{7} b^{16} r+2754240132 a^{6} b^{17} r+5945187250 a^{5} b^{18} r-$ | | |
| $4581750856 a^{4} b^{19} r+2455843612 a^{3} b^{20} r-877585152 a^{2} b^{21} r+178839426 a b^{22} r-15102660 b^{23} r-15102660 a^{23} s+$ | | |
| $178839426 a^{22} b s-877585152 a^{21} b^{2} s+2455843612 a^{20} b^{3} s-4581750856 a^{19} b^{4} s+5945187250 a^{18} b^{5} s$ | + | |
| $2754240132 a^{17} b^{6} s-43675377441 a^{16} b^{7} s+111669989328 a^{15} b^{8} s-189082516596 a^{14} b^{9} s+184171173912 a^{13} b^{10} s-$ | | |
| $159390898500 a^{12} b^{11} s+116573201816 a^{11} b^{12} s-170779788116 a^{10} b^{13} s+187429833680 a^{9} b^{14} s$ | - | |
| $175472596662 a^{8} b^{15} s+88725852372 a^{7} b^{16} s-27997244046 a^{6} b^{17} s-3330327288 a^{5} b^{18} s+6362709936 a^{4} b^{19} s-$ | | |
| $3847800240 a^{3} b^{20} s+1934924194 a^{2} b^{21} s-559400692 a b^{22} s+77229967 b^{23} s$ | | |
| $898107 a^{22} r-3299040 a^{20} b^{2} r+8611016 a^{18} b^{4} r+35391632 a^{16} b^{6} r-233604750 a^{14} b^{8} r-132897944 a^{12} b^{10} r-$ | $C_{2} \times C_{8}$ | |
| $214250660 a^{10} b^{12} r+59575864 a^{8} b^{14} r+2488299 a^{6} b^{16} r-4302472 a^{4} b^{18} r+1256708 a^{2} b^{20} r-105672 b^{22} r-$ | | |
| $105672 a^{22} s+1256708 a^{20} b^{2} s-4302472 a^{18} b^{4} s+2488299 a^{16} b^{6} s+59575864 a^{14} b^{8} s-214250660 a^{12} b^{10} s-$ | | |
| $132897944 a^{10} b^{12} s-233604750 a^{8} b^{14} s+35391632 a^{6} b^{16} s+8611016 a^{4} b^{18} s-3299040 a^{2} b^{20} s+898107 b^{22} s$ | | |

Table E.6.: The Polynomials ν_{T}

ν_{T}	T
$\begin{aligned} & 53235520769 a^{11} r+111843861183 a^{10} b r-504030111156 a^{9} b^{2} r-2531536786203 a^{8} b^{3} r-5979244668579 a^{7} b^{4} r- \\ & 9579118186629 a^{6} b^{5} r-10889855965245 a^{5} b^{6} r-8400858961140 a^{4} b^{7} r-4095789366321 a^{3} b^{8} r \end{aligned}-$	C_{1}
$\begin{aligned} & 13657789 a^{7} r-65207070 a^{6} b r+101536650 a^{5} b^{2} r-133583730 a^{4} b^{3} r+102581797 a^{3} b^{4} r-66556110 a^{2} b^{5} r+ \\ & 14868540 a b^{6} r-123930 b^{7} r-123930 a^{7} s+14868540 a^{6} b s-66556110 a^{5} b^{2} s+102581797 a^{4} b^{3} s-133583730 a^{3} b^{4} s+ \\ & 101536650 a^{2} b^{5} s-65207070 a b^{6} s+13657789 b^{7} s \end{aligned}$	C_{2}
$\begin{aligned} & -26651851 a^{11} r-145094157 a^{10} b r+63348984 a^{9} b^{2} r+2839989297 a^{8} b^{3} r+7392585681 a^{7} b^{4} r+6405656391 a^{6} b^{5} r+ \\ & 296390535 a^{5} b^{6} r-2109182580 a^{4} b^{7} r-692959401 a^{3} b^{8} r+38326138 a^{2} b^{9} r+721638 a b^{10} r-3229353 b^{11} r+ \\ & 3229353 a^{11} s+36244521 a^{10} b s+146504657 a^{9} b^{2} s-472577688 a^{8} b^{3} s-3661950546 a^{7} b^{4} s-5918085159 a^{6} b^{5} s- \\ & 2295484983 a^{5} b^{6} s+1512531063 a^{4} b^{7} s+1017308274 a^{3} b^{8} s+8507403 a^{2} b^{9} s-9364914 a b^{10} s+6969850 b^{11} s \end{aligned}$	C_{3}
$-53473 a^{6} r+132450 a^{4} b^{2} r-61129 a^{2} b^{4} r+1020 b^{6} r+1020 a^{6} s-61129 a^{4} b^{2} s+132450 a^{2} b^{4} s-53473 b^{6} s$	C_{4}
$3351148232704 b^{60}-1297045763653632 b^{40}+51992606342643712 b^{20}+1159078769722392576$	C_{5}

Table E.6.: continued

| ν_{T} | T | |
| :--- | :--- | :---: | :---: |
| $342381179 a^{15} r-2267578176 a^{14} b r-6570128418 a^{13} b^{2} r+57698482892 a^{12} b^{3} r-120333533178 a^{11} b^{4} r+$ | C_{6} | |
| $54119037948 a^{10} b^{5} r+142846493010 a^{9} b^{6} r-276592045944 a^{8} b^{7} r+167051195475 a^{7} b^{8} r+33007126988 a^{6} b^{9} r-$ | | |
| $118432373154 a^{5} b^{10} r+65892347832 a^{4} b^{11} r-11647576732 a^{3} b^{12} r-1351758744 a^{2} b^{13} r+457624458 a b^{14} r-$ | | |
| $57731100 b^{15} r-57731100 a^{15} s+457624458 a^{14} b s-1351758744 a^{13} b^{2} s-11647576732 a^{12} b^{3} s+65892347832 a^{11} b^{4} s-$ | | |
| $118432373154 a^{10} b^{5} s+33007126988 a^{9} b^{6} s+167051195475 a^{8} b^{7} s-276592045944 a^{7} b^{8} s+142846493010 a^{6} b^{9} s+$ | | |
| $54119037948 a^{5} b^{10} s-120333533178 a^{4} b^{11} s+57698482892 a^{3} b^{12} s-6570128418 a^{2} b^{13} s-2267578176 a b^{14} s+$ | | |
| $342381179 b^{15} s$ | | |
| $574479 a^{7} r+2871141 a^{6} b r+4298504 a^{5} b^{2} r+2955183 a^{4} b^{3} r+207018 a^{3} b^{4} r-1133629 a^{2} b^{5} r-364777 a b^{6} r+$ | C_{7} | |
| $86718 b^{7} r-86718 a^{7} s-971803 a^{6} b s-2876111 a^{5} b^{2} s-2631622 a^{4} b^{3} s-1121491 a^{3} b^{4} s+718620 a^{2} b^{5} s+560847 a b^{6} s-$ | | |
| $64189 b^{7} s$ | | |
| $-40580577 a^{14} r-136517412 a^{12} b^{2} r+5100183710 a^{10} b^{4} r+10398531868 a^{8} b^{6} r+3526086071 a^{6} b^{8} r-$ | C_{8} | |
| $863018408 a^{4} b^{10} r-29610940 a^{2} b^{12} r+3767064 b^{14} r+3767064 a^{14} s-29610940 a^{12} b^{2} s-863018408 a^{10} b^{4} s+$ | | |
| $3526086071 a^{8} b^{6} s+10398531868 a^{6} b^{8} s+5100183710 a^{4} b^{10} s-136517412 a^{2} b^{12} s-40580577 b^{14} s$ | | |

continued on next page
Table E.6.: continued

| ν_{T} | T | |
| :--- | :--- | :---: | :---: |
| $6343633 a^{11} r+42901371 a^{10} b r+118928988 a^{9} b^{2} r+193299969 a^{8} b^{3} r+194946777 a^{7} b^{4} r+130399407 a^{6} b^{5} r+$ | C_{9} | |
| $47235375 a^{5} b^{6} r-15865380 a^{4} b^{7} r-31422897 a^{3} b^{8} r-14663494 a^{2} b^{9} r-244494 a b^{10} r+1226439 b^{11} r-1226439 a^{11} s-$ | | |
| $13735323 a^{10} b s-55235591 a^{9} b^{2} s-112816116 a^{8} b^{3} s-141696162 a^{7} b^{4} s-107773143 a^{6} b^{5} s-54123471 a^{5} b^{6} s-$ | | |
| $1302489 a^{4} b^{7} s+22838418 a^{3} b^{8} s+16007571 a^{2} b^{9} s+1969182 a b^{10} s-1510930 b^{11} s$ | | |
| $-21802357760 a^{11} r-298634321920 a^{10} b r-1615259717632 a^{9} b^{2} r-4456911294464 a^{8} b^{3} r-6606908653568 a^{7} b^{4} r-$ | C_{10} | |
| $4627575914496 a^{6} b^{5} r-72345935872 a^{5} b^{6} r+2082365374464 a^{4} b^{7} r+1105711464448 a^{3} b^{8} r-375794827264 a^{2} b^{9} r-$ | | |
| $620045795328 a b^{10} r-180193591296 b^{11} r+1588320 a^{11} s+24216312 a^{10} b s+146933864 a^{9} b^{2} s+461020768 a^{8} b^{3} s+$ | | |
| $795901216 a^{7} b^{4} s+695579052 a^{6} b^{5} s+135672736 a^{5} b^{6} s-255080848 a^{4} b^{7} s-188721936 a^{3} b^{8} s+15423168 a^{2} b^{9} s+$ | | |
| $90074176 a b^{10} s+33657440 b^{11} s$ | | |
| $59791057 a^{15} r-259397448 a^{14} b r+486409386 a^{13} b^{2} r-613091684 a^{12} b^{3} r+390087786 a^{11} b^{4} r-9426516 a^{10} b^{5} r-$ | C_{12} | |
| $511385850 a^{9} b^{6} r+522470208 a^{8} b^{7} r-600862695 a^{7} b^{8} r+195927724 a^{6} b^{9} r+237104778 a^{5} b^{10} r-567458664 a^{4} b^{11} r+$ | | |
| $556386844 a^{3} b^{12} r-358099992 a^{2} b^{13} r+126447534 a b^{14} r-16368060 b^{15} r-16368060 a^{15} s+126447534 a^{14} b s-$ | | |
| $358099992 a^{13} b^{2} s+556386844 a^{12} b^{3} s-567458664 a^{11} b^{4} s+237104778 a^{10} b^{5} s+195927724 a^{9} b^{6} s-600862695 a^{8} b^{7} s+$ | | |
| $522470208 a^{7} b^{8} s-511385850 a^{6} b^{9} s-9426516 a^{5} b^{10} s+390087786 a^{4} b^{11} s-613091684 a^{3} b^{12} s+486409386 a^{2} b^{13} s-$ | | |
| $259397448 a b^{14} s+59791057 b^{15} s$ | | |
| $-53473 a^{6} r-132450 a^{4} b^{2} r-61129 a^{2} b^{4} r-1020 b^{6} r-1020 a^{6} s-61129 a^{4} b^{2} s-132450 a^{2} b^{4} s-53473 b^{6} s$ | $C_{2} \times C_{2}$ | |

continued on next page
Table E.6.: continued

| ν_{T} | T |
| :--- | :---: | :---: |
| $-181 a^{4} r-13 b^{4} r-13 a^{4} s-181 b^{4} s$ | $C_{2} \times C_{4}$ |
| $75902863 a^{15} r-266406072 a^{14} b r+512604294 a^{13} b^{2} r-651100796 a^{12} b^{3} r-81817626 a^{11} b^{4} r-2576280204 a^{10} b^{5} r+$ | $C_{2} \times C_{6}$ |
| $5107433130 a^{9} b^{6} r-9218890368 a^{8} b^{7} r+6096091335 a^{7} b^{8} r-3455358764 a^{6} b^{9} r+264746742 a^{5} b^{10} r-$ | |
| $572882136 a^{4} b^{11} r+547880356 a^{3} b^{12} r-343459368 a^{2} b^{13} r+118428786 a b^{14} r-15102660 b^{15} r-15102660 a^{15} s+$ | |
| $118428786 a^{14} b s-343459368 a^{13} b^{2} s+547880356 a^{12} b^{3} s-572882136 a^{11} b^{4} s+264746742 a^{10} b^{5} s-$ | |
| $3455358764 a^{9} b^{6} s+6096091335 a^{8} b^{7} s-9218890368 a^{7} b^{8} s+5107433130 a^{6} b^{9} s-2576280204 a^{5} b^{10} s-$ | |
| $81817626 a^{4} b^{11} s-651100796 a^{3} b^{12} s+512604294 a^{2} b^{13} s-266406072 a b^{14} s+75902863 b^{15} s$ | |
| $750651 a^{14} r-1476084 a^{12} b^{2} r-3459730 a^{10} b^{4} r-24403124 a^{8} b^{6} r-977293 a^{6} b^{8} r-1177736 a^{4} b^{10} r+834020 a^{2} b^{12} r-$ | $C_{2} \times C_{8}$ |
| $105672 b^{14} r-105672 a^{14} s+834020 a^{12} b^{2} s-1177736 a^{10} b^{4} s-977293 a^{8} b^{6} s-24403124 a^{6} b^{8} s-3459730 a^{4} b^{10} s-$ | |
| $1476084 a^{2} b^{12} s+750651 b^{14} s$ | |

Table E.7.: The Polynomials μ_{T}^{\prime}

μ_{T}^{\prime}	T
$-288 a^{4} b r+584 a^{3} b^{2} r-608 a^{2} b^{3} r+584 a b^{4} r-256 b^{5} r-256 a^{5} s+584 a^{4} b s-608 a^{3} b^{2} s+584 a^{2} b^{3} s-288 a b^{4} s$	C_{2}
$20 a^{2} b r-16 b^{3} r-16 a^{3} s+20 a b^{2} s$	C_{4}

continued on next page
Table E.7.: continued

μ_{T}^{\prime}	T
$2288 a^{7} b^{2} r-6704 a^{6} b^{3} r+6280 a^{5} b^{4} r+712 a^{4} b^{5} r-7048 a^{3} b^{6} r+6368 a^{2} b^{7} r-1536 a b^{8} r-384 b^{9} r-384 a^{9} s-1536 a^{8} b s+$	C_{6}
$6368 a^{7} b^{2} s-7048 a^{6} b^{3} s+712 a^{5} b^{4} s+6280 a^{4} b^{5} s-6704 a^{3} b^{6} s+2288 a^{2} b^{7} s$	

Table E.8.: The Polynomials ν_{T}^{\prime}

ν_{T}^{\prime}	T
$36 a^{3} r-433 a^{2} b r+230 a b^{2} r-457 b^{3} r-457 a^{3} s+230 a^{2} b s-433 a b^{2} s+36 b^{3} s$	C_{2}
$-5 a^{3} r+29 a b^{2} r-29 a^{2} b s+5 b^{3} s$	C_{4}
$286 a^{7} r-1124 a^{6} b r+1051 a^{5} b^{2} r+5842 a^{4} b^{3} r-7062 a^{3} b^{4} r+4942 a^{2} b^{5} r+1677 a b^{6} r-1372 b^{7} r+1372 a^{7} s-1677 a^{6} b s-$	C_{6}
$4942 a^{5} b^{2} s+7062 a^{4} b^{3} s-5842 a^{3} b^{4} s-1051 a^{2} b^{5} s+1124 a b^{6} s-286 b^{7} s$	

Table E.9.: The values of u_{T}, r_{T}, s_{T}, and w_{T}

u_{T}	r_{T}	s_{T}	w_{T}	T
a^{-3}	$\begin{aligned} & \left(\left(\frac{1}{12}\right)\binom{a^{-6} \cdot\left(a^{6}-6 a^{5} b-\right.}{15 a^{4} b^{2}-14 a^{3} b^{3}-6 a^{2} b^{4}+b^{6}-1}\right. \end{aligned}$	$\begin{aligned} & \left(\frac{1}{f}\right) \cdot\left(\begin{array}{l} a^{-3} \cdot\left(-a^{3}+a^{2} b+2 a b^{2}+\right. \\ b^{3} \\ 1) \end{array},\right. \\ & \text { (1) } \end{aligned}$	$\begin{aligned} & \left(-\frac{1}{24}\right)\left(\begin{array}{l} a^{-9} \cdot\left(-a^{9}-5 a^{8} b-\right. \\ 25 a^{7} b^{2} \\ -60 a^{6} b^{3}-80 a^{5} b^{4}- \\ 61 a^{4} b^{5}-27 a^{3} b^{6}-5 a^{2} b^{7}+2 a b^{8}+ \\ \left.b^{9}+a^{3}-a^{2} b-2 a b^{2}-b^{3}\right) \end{array}\right. \end{aligned}$	C_{1}
$2 \cdot a^{-2}$	$\begin{aligned} & \left(\frac{1}{p}\right) \cdot\left(a ^ { - 4 } \cdot \left(2 a^{4}-24 a^{3} b+12 a^{2} b^{2}-\right.\right. \\ & \left.24 a a^{3}+2 b^{4}+1\right) \end{aligned}$	$\left(\frac{1}{p}\right)\left(2 \cdot a^{-2}\right.$	0	C_{2}
a^{-3}	$\begin{aligned} & \left((\frac { 1 } { 1 2 }) \cdot a ^ { - 6 } \cdot \left(-a^{3}+3 a^{2} b+6 a b^{2}+\right.\right. \\ & \left.b^{3}(-1)\right) \cdot\left(-a^{3}+3 a^{2} b+6 a b^{2}+\right. \\ & \left.b^{3}+1\right) \end{aligned}$	$\begin{aligned} & \left(f^{\frac{1}{2}}\right) \cdot a^{-3} \cdot\left(-a^{3}+3 a^{2} b+6 a b^{2}+\right. \\ & b^{3}(-1) \end{aligned}$	$\begin{aligned} & \left(\frac{7}{a^{4}}\right)\left(a ^ { - 9 } \cdot \left(-a^{9}-3 a^{8} b-\right.\right. \\ & 5 a^{7} a^{2}-186 a^{6} b^{3}-120 a^{5} b^{4}+ \\ & 159 a^{4} b^{5}+213 a^{3} b^{6}+69 a^{2} b^{7}+ \\ & \left.6 a b^{8}+b^{9}+a^{3}-3 a^{2} b-6 a b^{2}-b^{3}\right) \end{aligned}$	C_{3}
$\left(\frac{1}{f}\right)\left((a b)^{-1}\right.$	$\left(\begin{array}{l}\left.\frac{1}{192}\right) \\ b^{4}\left(\begin{array}{l}-1\end{array}\right)\end{array} \chi^{-2} \cdot a^{-2} \cdot\left(a^{4}+18 a^{2} b^{2}+\right.\right.$ ($\left(\ell^{\frac{1}{8}}\right)\left(b^{-1} \cdot a^{-1} \cdot(4 a b-1)\right.$		C_{4}
1	$\left(f \frac{1}{12288}\right) \cdot\left(\left(b^{40}-192 b^{20}-4096\right)\right.$	$\left(\frac{7}{4}\right)\left(b^{20}\right.$	$\left(\begin{array}{l}\frac{1}{786432}\end{array}\right)\binom{\left(b^{60}-224 b^{40}-\right.}{1 ¢ 240 b^{20}}$ $262144)$	C_{5}

continued on next page
Table E.9.: continued

u_{T}	r_{T}	s_{T}	w_{T}	T
$\begin{aligned} & 2 \cdot\left(a^{2}-4 a b+\right. \\ & \left.b^{2}\right)^{-2} \end{aligned}$	$\begin{aligned} & \left((\frac { 1 } { 3 }) \cdot \left(\begin{array}{l} \left(a^{2}-4 a b+b^{2}\right)^{-4} \cdot\left(a^{8}-\right. \\ 16 a^{7} b\left(52 a^{6} b^{2}-112 a^{5} b^{3}+\right. \\ 166 a^{4} b^{4}-112 a^{3} b^{5}+52 a^{2} b^{6}- \\ \left.16 a b^{7}+b^{8}-1\right) \end{array}\right.\right. \end{aligned}$	$\begin{aligned} & (-1) \cdot\left(a^{2}-4 a b+b^{2}\right)^{-2} \cdot\left(a^{4}-\right. \\ & \left.4 a^{3} b+10 a^{2} b^{2}-4 a b^{3}+b^{4}-1\right) \end{aligned}$	$\begin{aligned} & \left(\frac{1}{6}\right)\left(\begin{array}{l} \left(a^{2}-4 a b+b^{2}\right)^{-6} \cdot\left(a^{12}-\right. \\ 8 a^{11} b+6 a^{10} b^{2}-40 a^{9} b^{3}+ \\ 335 a^{8} b^{4}-848 a^{7} b^{5}+1172 a^{6} b^{6}- \\ 848 a^{5} b^{7}+335 a^{4} b^{8}-40 a^{3} b^{9}+ \\ 6 a^{2} b^{10}-8 a b^{11}+b^{12}-a^{4}+4 a^{3} b- \\ \left.10 a^{2} b^{2}+4 a b^{3}-b^{4}\right) \end{array}\right. \end{aligned}$	C_{6}
a^{-2}	$\begin{aligned} & \left(-\frac{1}{12}\right) \cdot\left(a ^ { - 4 } \cdot \left(a^{4}-6 a^{3} b-9 a^{2} b^{2}-\right.\right. \\ & 2 a b^{3}+\left(b^{4}-1\right) \end{aligned}$	$\left(\frac{1}{4}\right)\left(a^{-2} \cdot\left(-a^{2}+a b+b^{2}+1\right)\right.$	$\begin{aligned} & \left(\left(\frac{1}{24}\right)\right)\left(a ^ { - 6 } \cdot \left(-a^{6}-5 a^{5} b-\right.\right. \\ & 2 d a^{4} b^{2}-25 a^{3} b^{3}-12 a^{2} b^{4}-a b^{5}+ \\ & \left.b^{6}+a^{2}-a b-b^{2}\right) \end{aligned}$	C_{7}
$\begin{aligned} & (a-b)^{-2} \\ & \left(a^{2}+b^{2}\right)^{-1} \end{aligned}$	$\begin{aligned} & \left((\frac { 1 } { 1 2 }) \cdot \left(\begin{array}{l} (a-b)^{-4} \cdot\left(a^{2}+b^{2}\right)^{-2} \\ \left(a^{8}-12 a^{7} b+20 a^{6} b^{2}+12 a^{5} b^{3}+\right. \\ 22 a^{4} b^{4}+12 a^{3} b^{5}+20 a^{2} b^{6}- \\ \left.12 a b^{7}+b^{8}-1\right) \end{array}\right.\right. \end{aligned}$	$\begin{aligned} & \left(f^{\frac{1}{2}}\right) \\ & \left(d^{4}-4 a^{(a-b)^{-2} \cdot\left(a^{2}+b^{2}\right)^{-1}}\right. \\ & a^{3} b-2 a^{2} b^{2}-4 a b^{3}+b^{4}- \end{aligned}$ 1)	$\begin{aligned} & \left(\frac{7}{4}\right)\left(\cdot (a - b) ^ { - 6 } \cdot \left(a^{2}+\right.\right. \\ & \left.b^{2}\right)^{-3} \cdot\left(a^{12}-4 a^{11} b+18 a^{10} b^{2}+\right. \\ & 12 a^{9} b^{3}-17 a^{8} b^{4}-264 a^{7} b^{5}- \\ & 4 a^{6} b^{6}-264 a^{5} b^{7}-17 a^{4} b^{8}+ \\ & 12 a^{3} b^{9}+18 a^{2} b^{10}-4 a b^{11}+b^{12}- \\ & \left.a^{4}+4 a^{3} b+2 a^{2} b^{2}+4 a b^{3}-b^{4}\right) \end{aligned}$	C_{8}

continued on next page
Table E.9.: continued

u_{T}	r_{T}	s_{T}	w_{T}	T
a^{-3}		$\left.\begin{array}{l} \left(\frac{1}{q}\right) \\ b^{3} \end{array}\right) \cdot\left(\begin{array}{l} a^{-3} \cdot\left(-a^{3}+a^{2} b+2 a b^{2}+\right. \\ 1) \end{array}\right.$	$\begin{aligned} & \left(-\frac{1}{24}\right)\left(a ^ { - 9 } \cdot \left(-a^{9}-5 a^{8} b-\right.\right. \\ & 2 a^{7} a^{7}\left(-60 a^{6} b^{3}-80 a^{5} b^{4}-\right. \\ & 61 a^{4} b^{5}-27 a^{3} b^{6}-5 a^{2} b^{7}+2 a b^{8}+ \\ & \left.b^{9}+a^{3}-a^{2} b-2 a b^{2}-b^{3}\right) \end{aligned}$	C_{9}
$\begin{aligned} & 2 \cdot a^{-1} \cdot\left(-a^{2}-\right. \\ & \left.a b+b^{2}\right)^{-1} \end{aligned}$	$\begin{aligned} & \left((\frac { 1 } { 1 2 }) \cdot \left(a^{-2} \cdot\left(-a^{2}-a b+b^{2}\right)^{-2} .\right.\right. \\ & \left(a^{6}-4 x^{5} b-28 a^{4} b^{2}-40 a^{3} b^{3}-\right. \\ & \left.12 a^{2} b^{4}+8 a b^{5}+4 b^{6}-4\right) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{l} \left.\frac{1}{2}\right) \cdot\binom{a^{-1} \cdot\left(-a^{2}-a b+b^{2}\right)^{-1}}{\left(-a^{3}\right.} \\ \left.4 a b^{2}+2 b^{3}-2\right) \end{array}\right. \end{aligned}$	$\begin{aligned} & \left(\frac{7}{4}\right)\left(\cdot a ^ { - 3 } \cdot \left(-a^{2}-a b+\right.\right. \\ & \left.b^{2}\right)^{-3} \cdot\left(-a^{9}-8 a^{8} b-40 a^{7} b^{2}-\right. \\ & 130 a^{6} b^{3}-240 a^{5} b^{4}-224 a^{4} b^{5}- \\ & 72 a^{3} b^{6}+32 a^{2} b^{7}+32 a b^{8}+8 b^{9}+ \\ & \left.4 a^{3}-16 a b^{2}-8 b^{3}\right) \end{aligned}$	C_{10}
$b^{-3} \cdot(a+b)^{-1}$	$\begin{aligned} & \left((\frac { 1 } { 1 2 }) \left(\begin{array}{l} b^{-6} \cdot(a+b)^{-2} \cdot\left(a^{8}-\right. \\ 4 a^{7} b+\left(a^{6} b^{2}-4 a^{5} b^{3}-2 a^{4} b^{4}+\right. \\ \left.8 a^{3} b^{5}-8 a^{2} b^{6}+8 a b^{7}+b^{8}-1\right) \end{array}\right.\right. \end{aligned}$	$\begin{aligned} & \left(f^{\frac{1}{2}}\right) \\ & 2 d^{3} b \end{aligned}=\left(\begin{array}{l} b^{-3} \cdot(a+b)^{-1} \cdot\left(-a^{4}+\right. \\ \left.2 a^{2} b^{2}+2 a b^{3}+b^{4}-1\right) \end{array}\right.$	$\begin{aligned} & \left(\frac{7}{44}\right)\left(b ^ { - 9 } \cdot (a + b) ^ { - 3 } \cdot \left(-a^{12}+\right.\right. \\ & 6 d^{11} b\left(-14 a^{10} b^{2}+22 a^{9} b^{3}-\right. \\ & 21 a^{8} b^{4}+12 a^{7} b^{5}+12 a^{6} b^{6}- \\ & 36 a^{5} b^{7}+45 a^{4} b^{8}-34 a^{3} b^{9}+ \\ & 18 a^{2} b^{10}-2 a b^{11}+b^{12}+a^{4}- \\ & \left.2 a^{3} b+2 a^{2} b^{2}-2 a b^{3}-b^{4}\right) \end{aligned}$	C_{12}

continued on next page
Table E.9.: continued

u_{T}	r_{T}	s_{T}	w_{T}	T
$2 \cdot a^{-2}$		$\left(\frac{1}{4}\right)\left(2 \cdot a^{-2}\right.$	0	$C_{2} \times C_{2}$
$(a-b)^{-2}$		$\begin{aligned} & \left(\begin{array}{l} \left.\frac{1}{2}\right) \cdot\left(\begin{array}{l} (a-b)^{-2} \cdot(-a+b-1) \\ (-a+(b+1) \end{array}\right. \end{array} .\right. \end{aligned}$	$\begin{aligned} & \left(\frac{x}{b^{4}}\right) \\ & b^{4}-\left(\begin{array}{l} (a-b)^{-4} \cdot\left(a^{4}+6 a^{2} b^{2}+\right. \\ \end{array}\right) \end{aligned}$	$C_{2} \times C_{4}$
$\begin{aligned} & 2 \cdot(a+b)^{-2} . \\ & \left(a^{2}-4 a b+\right. \\ & \left.b^{2}\right)^{-1} \end{aligned}$	$\begin{aligned} & \left(f^{\frac{1}{3}}\right)\left(\begin{array}{l} (a+b)^{-4} \cdot\left(a^{2}-4 a b+\right. \\ \left.b^{2}\right)^{-2} \\ \left(a^{8}-4 a^{7} b-8 a^{6} b^{2}+\right. \\ 20 a^{5} b^{3}-2 a^{4} b^{4}+20 a^{3} b^{5}- \\ \left.8 a^{2} b^{6}-4 a b^{7}+b^{8}-1\right) \end{array}\right. \end{aligned}$	$\begin{aligned} & (-1) \cdot(a+b)^{-2} \cdot\left(a^{2}-4 a b+\right. \\ & \left.b^{2}\right)^{-1} \cdot\left(a^{4}-2 a^{3} b-2 a^{2} b^{2}-2 a b^{3}+\right. \\ & \left.b^{4}-1\right) \end{aligned}$	$\begin{aligned} & \left(\frac{1}{1}\right) \cdot(a+b)^{-6} \cdot\left(a^{2}-4 a b+b^{2}\right)^{-3} \\ & \left(a ^ { 1 2 } \left(-6 a^{11} b+10 a^{10} b^{2}-6 a^{9} b^{3}-\right.\right. \\ & 17 a^{8} b^{4}+44 a^{7} b^{5}-116 a^{6} b^{6}+ \\ & 44 a^{5} b^{7}-17 a^{4} b^{8}-6 a^{3} b^{9}+ \\ & 10 a^{2} b^{10}-6 a b^{11}+b^{12}-a^{4}+ \\ & \left.2 a^{3} b+2 a^{2} b^{2}+2 a b^{3}-b^{4}\right) \end{aligned}$	$C_{2} \times C_{6}$
$\begin{aligned} & a^{-1} \cdot(a+b)^{-1} \\ & \left(-a^{2}-2 a b+\right. \\ & \left.b^{2}\right)^{-1} \end{aligned}$	$\begin{aligned} & \left((\frac { 1 } { 1 2 }) \cdot \left(\begin{array}{l} a^{-2} \cdot(a+b)^{-2} \cdot\left(-a^{2}-\right. \\ 2 a b+\left(b^{2}\right)^{-2} \cdot\left(a^{8}+12 a^{7} b+\right. \\ 20 a^{6} b^{2}-2 a^{4} b^{4}-12 a^{3} b^{5}- \\ \left.4 a^{2} b^{6}+b^{8}-1\right) \end{array}\right.\right. \end{aligned}$	$\begin{aligned} & \left(-\frac{1}{2}\right)\left(\begin{array}{l} a^{-1} \cdot(a+b)^{-1} \cdot\left(-a^{2}-\right. \\ \left.2 a b+b^{2}\right)^{-1} \cdot\left(-a^{4}-4 a^{3} b+b^{4}-1\right) \end{array}\right. \end{aligned}$	$\begin{aligned} & \left(\frac{7}{4}\right)\left(\begin{array}{l} a^{-3} \cdot(a+b)^{-3} \cdot\left(-a^{2}-\right. \\ \left.2 d b+b^{2}\right)^{-3} \cdot\left(-a^{12}-4 a^{11} b-\right. \\ 20 a^{10} b^{2}-32 a^{9} b^{3}+3 a^{8} b^{4}+ \\ 8 a^{7} b^{5}+24 a^{6} b^{6}-32 a^{5} b^{7}- \\ 3 a^{4} b^{8}-4 a^{3} b^{9}-4 a^{2} b^{10}+b^{12}+ \\ \left.a^{4}+4 a^{3} b-b^{4}\right) \end{array}\right. \end{aligned}$	$C_{2} \times C_{8}$

Index

ABC Triple, 16
Pseudo quality, 82
Quality, 16
Admissible Change of Variables, 7

Elliptic Curve, 5
Additive Reduction, 7
Conductor, 8
Global Minimal Model, 8
Integral Weierstrass Model, 8
Minimal Discriminant, 8
Néron model, 12
Rational, 5
Semistable, 7
Tate's Algorithm, 11
Universal Elliptic Curve, 13

Frey Curve, 10

Good
ABC Triple, 16
Elliptic Curve, 21

Kraus's Theorem, 10

Laska-Kraus-Connell Algorithm, 11, 196

Mason-Stothers Theorem, 15
Mazur's Torsion Theorem, 5
Modified Szpiro Ratio, 21
pseudo, 82
Modular Curve, 13

Naive Height, 31

Reduced Minimal Model, 10, 195

Szpiro Ratio, 21
Szpiro's Conjecture, 21
Explicit Version, 27

The ABC Conjecture, 17
Explicit Version, 20
The Modified Szpiro Conjecture, 22
Explicit Version, 51

REFERENCES

REFERENCES

[1] Joseph Oesterlé. Nouvelles approches du "théorème" de Fermat. Astérisque, (161-162):Exp. No. 694, 4, 165-186 (1989), 1988. Séminaire Bourbaki, Vol. 1987/88.
[2] Bart de Smit. ABC-triples, 2018. http://www.math.leidenuniv.nl/ desmit/abc/.
[3] D. W. Masser. Note on a conjecture of Szpiro. Astérisque, (183):19-23, 1990. Séminaire sur les Pinceaux de Courbes Elliptiques (Paris, 1988).
[4] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer, Dordrecht, second edition, 2009.
[5] Joseph H. Silverman. Advanced topics in the arithmetic of elliptic curves, volume 151 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1994.
[6] Qing Liu. Algebraic geometry and arithmetic curves, volume 6 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné, Oxford Science Publications.
[7] B. Mazur. Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math., (47):33-186 (1978), 1977.
[8] Alain Kraus. Quelques remarques à propos des invariants c_{4}, c_{6} et Δ d'une courbe elliptique. Acta Arith., 54(1):75-80, 1989.
[9] J. E. Cremona. Algorithms for modular elliptic curves. Cambridge University Press, Cambridge, second edition, 1997.
[10] Michael Laska. An algorithm for finding a minimal Weierstrass equation for an elliptic curve. Math. Comp., 38(157):257-260, 1982.
[11] David A. Cox and Walter R. Parry. Torsion in elliptic curves over $k(t)$. Compositio Math., 41(3):337-354, 1980.
[12] Daniel Sion Kubert. Universal bounds on the torsion of elliptic curves. Proc. London Math. Soc. (3), 33(2):193-237, 1976.
[13] Everett W. Howe, Franck Leprévost, and Bjorn Poonen. Large torsion subgroups of split Jacobians of curves of genus two or three. Forum Math., 12(3):315-364, 2000.
[14] W. W. Stothers. Polynomial identities and Hauptmoduln. Quart. J. Math. Oxford Ser. (2), 32(127):349-370, 1981.
[15] R. C. Mason. Equations over function fields. In Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983), volume 1068 of Lecture Notes in Math., pages 149-157. Springer, Berlin, 1984.
[16] Serge Lang. Old and new conjectured Diophantine inequalities. Bull. Amer. Math. Soc. (N.S.), 23(1):37-75, 1990.
[17] Greg Martin and Winnie Miao. abc triples. Funct. Approx. Comment. Math., 55(2):145-176, 2016.
[18] J. Browkin, M. Filaseta, G. Greaves, and A. Schinzel. Squarefree values of polynomials and the abc-conjecture. In Sieve methods, exponential sums, and their applications in number theory (Cardiff, 1995), volume 237 of London Math. Soc. Lecture Note Ser., pages 65-85. Cambridge Univ. Press, Cambridge, 1997.
[19] Alan Baker. Experiments on the abc-conjecture. Publ. Math. Debrecen, 65(3-4):253-260, 2004.
[20] Arnaud Beauville Lucien Szpiro. Séminaire sur les Pinceaux de Courbes de Genre au Moins Deux. Société Mathématique de France, Paris, 1981. Astérisque No. 86 (1981) (1981).
[21] Siman Wong. On the density of elliptic curves. Compositio Math., 127(1):23-54, 2001.
[22] Abderrahmane Nitaj. Algorithms for finding good examples for the $a b c$ and Szpiro conjectures. Experiment. Math., 2(3):223-230, 1993.
[23] Abderrahmane Nitaj. Détermination de courbes elliptiques pour la conjecture de Szpiro. Acta Arith., 85(4):351-376, 1998.
[24] Michael A. Bennett and Soroosh Yazdani. A local version of Szpiro's conjecture. Exp. Math., 21(2):103-116, 2012.
[25] Mohammad Sadek. Discrete logarithms and mordell-weil groups. Cryptology ePrint Archive, Report 2013/660, 2013. https://eprint.iacr.org/2013/660.
[26] The LMFDB Collaboration. The l-functions and modular forms database. http: //www.lmfdb.org, 2013.
[27] William A. Stein and Mark Watkins. A database of elliptic curves-first report. In Algorithmic number theory (Sydney, 2002), volume 2369 of Lecture Notes in Comput. Sci., pages 267-275. Springer, Berlin, 2002.
[28] Jennifer S. Balakrishnan, Wei Ho, Nathan Kaplan, Simon Spicer, William Stein, and James Weigandt. Databases of elliptic curves ordered by height and distributions of Selmer groups and ranks. LMS J. Comput. Math., 19(suppl. A):351-370, 2016.
[29] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 8.1), 2017. http://www. sagemath.org.
[30] Wolfram Research, Inc. Mathematica, Version 11.2. Champaign, IL, 2017.
[31] Abderrahmane Nitaj. Isogenous of the elliptic curves over the rationals. J. Comput. Math., 20(4):337-348, 2002.
[32] Jacques Vélu. Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris Sér. $A-B, 273: \mathrm{A} 238-\mathrm{A} 241,1971$.
[33] Raymond Ross. Minimal torsion in isogeny classes of elliptic curves. Trans. Amer. Math. Soc., 344(1):203-215, 1994.
[34] Andrej Dujella and Mirela Jukić Bokun. On the rank of elliptic curves over $\mathbf{Q}(i)$ with torsion group $\mathbf{Z} / 4 \mathbf{Z} \times \mathbf{Z} / 4 \mathbf{Z}$. Proc. Japan Acad. Ser. A Math. Sci., 86(6):93-96, 2010.
[35] Ken Ono. Euler's concordant forms. Acta Arith., 78(2):101-123, 1996.
[36] De Rong Qiu and Xian Ke Zhang. Explicit classification for torsion subgroups of rational points of elliptic curves. Acta Math. Sin. (Engl. Ser.), 18(3):539-548, 2002.
[37] Gerhard Frey. Some remarks concerning points of finite order on elliptic curves over global fields. Ark. Mat., 15(1):1-19, 1977.
[38] M. Flexor and J. Oesterlé. Sur les points de torsion des courbes elliptiques. Astérisque, (183):25-36, 1990. Séminaire sur les Pinceaux de Courbes Elliptiques (Paris, 1988).
[39] A. Silverberg and Yu. G. Zarhin. Semistable reduction and torsion subgroups of abelian varieties. Ann. Inst. Fourier (Grenoble), 45(2):403-420, 1995.
[40] Houria Baaziz. Equations for the modular curve $X_{1}(N)$ and models of elliptic curves with torsion points. Math. Comp., 79(272):2371-2386, 2010.
[41] P. Erdös. Arithmetical properties of polynomials. J. London Math. Soc., 28:416425, 1953.
[42] Gerhard Frey. Elliptic curves and solutions of $A-B=C$. In Séminaire de Théorie des Nombres, Paris 1985-86, volume 71 of Progr. Math., pages 39-51. Birkhäuser Boston, Boston, MA, 1987.

VITA

VITA

Alexander J. Barrios was born in Miami, FL. After graduating from Hialeah High School in 2007, he attended Miami Dade College. In the summer of 2008, he participated in the Math Alliance Research Experience for Undergraduates at the University of Iowa. Through this experience, he received his first exposure to modern mathematics and went on to receive an A.A. in Mathematics in May 2009. He continued his education at Brown University where he received a B.S. in Mathematics in May 2011. During the summer of 2009 and 2010, he participated in the Cornell Summer Math Institute and the Mathematical Sciences Research Institute Undergraduate Program, respectively. Both summer programs were instrumental in his development as a mathematician and led him to pursue doctoral work in number theory at Purdue University, where he began as a graduate student in the fall of 2011. In his time in graduate school, he has had an active role mentoring high school, undergraduate, and graduate students through Purdue Science Bound, the Louis Stokes Alliance for Minority Participation program (LSAMP), Alliance for Graduate Education and the Professoriate (AGEP), Association for Women in Mathematics (AWM), and the Minority Engineering Program (MEP). He has also been the lead instructor for the MEP summer programs for grade 6-12 students since 2014.

[^0]: ${ }^{1}$ Our parameterizations differ slightly from [12, Table 3]. We instead use [13, Table 3] which expands the implicit expressions for the parameters b and c in [12, Table 3] to express the universal elliptic curves in terms of a single parameter t.

[^1]: ${ }^{1}$ By Cremona's achievement, we mean the works of Birch, Cremona, Stein, Swinnerton-Dyer, and Wakins whose efforts constructed the exhaustive database of rational elliptic curves up to conductor 400000.

