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ABSTRACT

Barrios, Alexander J. PhD, Purdue University, May 2018. Minimal Models of Ratio-
nal Elliptic Curves with non-Trivial Torsion. Major Professor: Edray H. Goins.

This dissertation concerns the formulation of an explicit modified Szpiro conjec-
ture and the classification of minimal discriminants of rational elliptic curves with
non-trivial torsion.

The Frey curve y*> = z (x + a) (x — b) is a two-parameter family of elliptic curves
which comes equipped with an easily computable minimal discriminant which helped
pave the mathematical bridge that led to the proof of Fermat’s Last Theorem. In
this dissertation, we extend the ideas of the Frey curve by considering two- and three-
parameter families of elliptic curves which parameterize all rational elliptic curves
with non-trivial torsion subgroup. First, we use these families to give a new proof of
a classic result of Frey, Flexor, and Oesterlé which pertains to the primes at which
an elliptic curve over a number field can have additive reduction. While our proof
gives a weaker variant of the original statement, it is explicit and does not require
the Néron model of an elliptic curve. As a consequence of this new proof, we attain
our classification of minimal discriminants of rational elliptic curves with non-trivial
torsion. In addition, we give necessary and sufficient conditions for when a rational
elliptic curve with non-trivial torsion has additive reduction at a given prime. We
also study the connection between torsion structure of a rational elliptic curve and
the possible reduced minimal models

The second theme of this dissertation concerns the modified Szpiro conjecture,
which is equivalent to the ABC' Conjecture. Roughly speaking, the modified Szpiro
conjecture states that certain elliptic curves, known as good elliptic curves, are rare in

nature. Masser gave a non-constructive proof which showed that there were infinitely
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many good Frey curves. In this dissertation, we give a constructive proof of Masser’s
assertion. We then extend this result by proving that for each of the fifteen torsion
subgroups T allowed by Mazur’s Torsion Theorem, there are infinitely many good el-
liptic curves E with torsion subgroup isomorphic to 7. This proof is also constructive
and allows for the construction of a database which consists of 13870964 good elliptic
curves. We provide an analysis of these good elliptic curves to parallel the work done
by the ABC@Home project concerning the ABC' Conjecture and good ABC' triples.
The data obtained is then used to formulate an explicit version of the modified Szpiro
conjecture. We then show that this explicit formulation allows for the construction
of databases of elliptic curves which are exhaustive up to a given conductor.

Lastly, we use the classification of minimal discriminants to study the local data
of rational elliptic curves at a given prime via Tate’s Algorithm. These results and a
study of the naive height of an elliptic curve allow us to prove that there is a lower
bound on the modified Szpiro ratio which depends only on the torsion structure of

an elliptic curve.



1. INTRODUCTION

“We live on an island surrounded by a sea of ignorance. As our island of

knowledge grows, so does the shore of our ignorance.”

- John Archibald Wheeler

1.0.1 Layout of this Dissertation
Chapter 2

This short chapter provides definitions and results which will be assumed in the

subsequent chapters. References are provided for the reader.

Chapter 3

In this chapter, we give a succinct survey of the ABC Conjecture. We follow this
by introducing the modified Szpiro conjecture and prove the equivalence between the
ABC Conjecture and the modified Szpiro conjecture by following an argument due
to Oesterlé [1]. Roughly speaking, the modified Szpiro conjecture states that certain
elliptic curves, known as good elliptic curves are rare in nature. The goal of this
chapter is to study and create a database of good elliptic curves to parallel the work
done for good ABC triples by the ABC@Home project [2].

We start by giving an overview of current databases of rational elliptic curves and
then construct a new database of rational elliptic curves. This database consists of

130789162 rational elliptic curves E with the property that T — FE(Q), . where

tors

T = Cy x Cyy with N = 2,3,4. Assuming Theorem 5.14, we show that there is a

subset of this database which is exhaustive up to a given naive height.



Next, we give a constructive proof that there are infinitely many good Frey curves.
The original proof due to Masser [3] is non-constructive. Building on this constructive
result and models of elliptic curves which are studied in Chapter 4, we create a new
database consisting of 13870964 good elliptic curves. The data obtained is then used
to formulate an explicit version of the modified Szpiro conjecture. In Appendix B,

we order these good elliptic curves by their modified Szpiro and Szpiro ratios.

Chapter 4

In this chapter, we extend the result of Chapter 3 pertaining to infinitely many
good Frey curves. Specifically, we prove that if T"is one of the fifteen torsion subgroups
allowed by Mazur’s Torsion Theorem, then there are infinitely many good elliptic

curves F with E(Q), .. = 7. This proof is constructive and we conclude the chapter

tors

with examples.

Chapter 5

In this chapter, we give a new proof of a result due to Frey-Flexor-Oesterlé which
does not require use of the Néron model of an elliptic curve. We then consider rational
elliptic curves and use the Explicit version of Frey-Flexor-Oesterlé to prove our main
result, Theorem 5.14. This Theorem is the classification of minimal discriminants of
rational elliptic curves with non-trivial torsion subgroup. As a consequence of this
Theorem, we give necessary and sufficient conditions for additive reduction to occur

in a rational elliptic curve with non-trivial torsion subgroup.

Chapter 6

In this chapter, we use Theorem 5.14 to study the naive height of a rational elliptic
curve. In fact, let T" be one of the fifteen torsion subgroups allowed by Mazur’s

Torsion Theorem. We show that if F is a rational elliptic curve and 7" — E(Q)

tors



with T # Cy,Cy,Cy x (5, then there is an explicit function that coincides with

the naive height of rational elliptic curve E with T — E(Q) Next, we use the

tors”®
results of Chapter 5 to study the local data of an elliptic curve via Tate’s Algorithm.
These results together with the work on the explicit naive height allow us to prove
that there is a lower bound on the modified Szpiro ratio which only depends on the

torsion subgroup of a rational elliptic curve.

Chapter 7

In this chapter, we review the reduced minimal model of a rational elliptic curve.
It is well known that each rational elliptic curve has a unique reduced minimal model.
The classification of minimal discriminants in Chapter 4 relied on a Theorem of Kraus
and therefore did not yield a global minimal model in all cases. We give a partial
answer in regards to global minimal models by classifying the reduced minimal models
of rational elliptic curves with a rational torsion point of order at least 3. This is done

by use of the Laska-Kraus-Connell Algorithm and Theorem 5.14.






2. BACKGROUND

In this chapter, we state definitions and results which will be used in this thesis.

Unless stated otherwise, the main references for this chapter are [4], [5], and [6].

2.1 Elliptic Curves

An elliptic curve is a pair (E,O), where E' is a smooth projective curve of genus
one and O € E. The elliptic curve F is defined over a field K if E is defined over
K as a curve and O is a K-rational point on E. The set of K-rational points on F
is denoted by E(K) and a result of Poincaré shows that if F is an elliptic curve over
K, then the set F(K) is a group with identity O. Mordell and Weil then showed
that F(K) is a finitely generated abelian group if K is a number field. The torsion
subgroup of E(K) is denoted by F(K), .. We say E is a rational elliptic curve if

E' is defined over the rational numbers Q. Mazur proved that the torsion subgroup

E(Q),,, is one of fifteen possible groups.
Theorem 2.1 (Mazur’s Torsion Theorem [7]) Let E be a rational elliptic curve

and let C'y denote the cyclic group of N elements. Then

N for N=1,2,...,10,12
o X Con fOTN:1,2,374.

E(Q) tors =

We say that two elliptic cugves E' and E’ are K-isomorphic if there is an iso-
morphism between E and E’ which is defined over K. Now suppose F is an elliptic
curve defined over a field K. Then the point O corresponds to a very ample divisor
and therefore via the Riemann-Roch Theorem we obtain an embedding of £ into

P2 = ProjK|[X,Y, Z]. In fact, the K-isomorphic image of F in P% is given by

ProjK(X,Y,Z] | (Y’Z + XY Z + a3V Z? — X® — s X*Z — ay X 2% — a6 Z°) (



with each coefficient a; € K and O corresponding to the homogeneous prime ideal
(X, Z). Moreover, every smooth cubic curve in P2% is cut out by an equation of the
form

Y22+ XYZ +a3YZ? = X3+ au X2Z + ay X 7% + ag Z°.

Henceforth, by an elliptic curve F defined over K we will write F in affine coordinates,

i.e., E is given by the Weierstrass model
E: v+ axy + azy = 2° + a92” + a4z + ag (2.1)

with each a; € K, and it will be understood that there is an additional point O =
(0,1,0) which we call the point at infinity. For an elliptic curve E given by the

Weierstrass model (2.1), we define the following quantities:

by = a2 + 4day by = 2a4 + ajas bg = a3 + 4ag

bs = alag + 4asag — ajazay + axal — a3

(2.2)
Cqy = b% - 24b4 Cg = —b% + 36b2b4 - 216b6

c3—c2 . c3
A= J=a

We say A is the discriminant of E and the assumption that F is smooth is equivalent
to A # 0. The quantity j is known as the j-invariant and we call the quantities
¢y and cg the invariants associated to the Weierstrass model of E. In particular, we
have the identity 1728A = ¢} — ¢2.

The admissible change of variables x — u*x +r and y — udy + u?sx + w for
u,r, s, w € K and u # 0 gives a K-isomorphism from F onto an elliptic curve £’ whose
Weierstrass model arises from the given change of variables on F. Conversely, if E
and E’ are K-isomorphic and the isomorphism preserves the point at infinity O, then
there is an admissible change of variables on E,  — v?z+7r and y — uy+u?sz+w
with u,r,s,w € K and u # 0, which gives the Weierstrass model of E’.

Moreover, let A’, 5, ¢}, and ¢f denote the quantities attained from the Weierstrass

model for E'. Then

/ — -/ . / — / —
A =y 1A, i =17 dy=u""ey, s = u"Ccs.



2.2 Minimal Discriminant

The main reference for this section is Chapter VII and VIII of [4] and Chapter IV
of [5].

2.2.1 Local Definition

Let K be a local field, complete with respect to a discrete valuation v. Let R
denote the ring of integers of K and let m be a uniformizer for the unique maximal

ideal of R. Now suppose F is an elliptic curve over K given by the Weierstrass model

E y2 + a1y + azy = x3+a2x2+a4x+a6.

2

The admissible change of variables z —— w2z and y —— % 3y leads to a K-

isomorphic elliptic curve £’ to E with Weierstrass model
E' oy +utagzy + u3asy = 22 + v a0 + v tayr + v Ca.

In particular, we can choose u to be divisible by a sufficiently large power of 7 so
that we obtain a Weierstrass model with the property that each coefficient is in R
and v(A) > 0. Since v is discrete, we have that among all Weierstrass equations with

coefficients in R, there is one that minimizes the value of v(A).

Definition 2.1 Let FE be an elliptic curve defined over K. A Weierstrass model for
E is said to be a minimal Weierstrass model for E at v if v(A) is minimized
subject to the condition that each a; € R. The minimal value of v(A) is called the

valuation of the minimal discriminant of E at v.

Definition 2.2 Let E be an elliptic curve defined over K. We say E has additive
reduction at v if v(A) > 0 and v(cy) > 0. If E does not have additive reduction at

v, we say F is semastable at v.



2.2.2 Global Definition

Now let K be a number field and let R denote its ring of integers. Let E be an

elliptic curve over K. For each finite prime p there is a Weierstrass model
y2 + a1y + azpy = 3+ ag,pxz + Q4T + Qg p

that is a minimal equation for £ at p. That is, vy(a;,) > 0 for each j where vy is the

p-adic valuation.

Definition 2.3 Let E be an elliptic curve over a number field K. The minimal
discriminant Dy is the (integral) ideal of K given by
DE/K: H pUP(AP)
p finit

where A, is the minimal discriminant of a minimal equation for E at p.

Definition 2.4 Let E be an elliptic curve over a number field K. A global minimal

model for E is a Weierstrass model
y2 + a2y + asy = x° + a2x2 + asx + ag

for E such that each a; € R and the discriminant A of the equation satisfies Dg/x =

(A). If a global minimal model for E exists, we denote the minimal discriminant of

E by Apn,

In general, we say E is given by an integral Weierstrass model if each a; € R.
If K has class number one, then each elliptic curve over K has a global minimal

model [4, Corollary VIIIL.8.3].

Definition 2.5 Let E be an elliptic curve over a number field K. The conductor

of £ is the ideal

< 0  ifptDg/x
1 if p|Dp/k and E is semistable at p

p finit C_|_ 0p if E has additive reduction at p.

Ng/k = H(pfp where f, =



The quantity 6, = 0 if p 1 6. If p has residue characteristic 2 or 3 and E has
additive reduction at p, then d, is a measure of the wild ramification in the extension

K,(Ep]) /K, forp a a prime lying above the rational prime p [5, IV.10].

2.2.3 Rational Elliptic Curves

We now consider rational elliptic curves and state results which will be used in

the subsequent chapters.

Lemma 2.2 Let E be a rational elliptic curve and let p be a prime. If p divides
ged(cq, A, then E has additive reduction at p. If p does not divide ged(cq, AB™),

then E is semistable at p. We say E is semistable if E is semistable at all primes.

For a rational elliptic curve E, we consider the conductor Ng of F as the integer

plAm +9, if £ has additive reduction at p.

1 if F is semistable at
Ng = H(pf” where f, = b

The quantity 9, = 0 for each priméd p > 5. In particular, if F is semistable, then
Ng = rad (£B™) fvhere rad(n) is the product of the distinct primes dividing n.

Lemma 2.3 Let E be a rational elliptic curve and let Ng be its conductor and let 9,

as given above. Then 6y < 6 and i3 < 3.
Proof [5, IV.10.4]. u

Lemma 2.4 Let K be a local field, complete with respect to a discrete valuation v
and let R denote its ring of integers. If E is an elliptic curve given by an integral
Weierstrass model, then any admissible change of variables x — u?x +1r and y —
wdy+u?sx+w used to produce a minimal Weierstrass equation satisfies u,r, s, w € R.

In particular, if E is a rational elliptic curve and x — v’z +r and y —
wdy +usx +w is an admissible change of variables which results in a global minimal

model for E, then u,r,s,w € 7Z.
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Definition 2.6 The rational elliptic curve
F:y*=x(x+a)(x—0)

with a and b relatively prime integers is known as a Frey curve. The discriminant

of F is A = (4ab (a +b))*,

Lemma 2.5 Let F' : y> = z(x+a)(x—0b) be a Frey curve. Then the minimal
discriminant of F is u=2A where u is either 1 or 2. Moreover, u = 2 if and only if
a=0 mod16 and b =3 mod4. The Frey curve is semistable at all odd primes and

semistable at 2 if and only if u = 2.

At the time of its formulation, it was not possible to state the above result as an
equivalence. The minimal discriminant being 27'?A was proven to hold under the
given congruences due to the existence of an integral Weierstrass model for F' under
these assumptions. An application of a Theorem of Kraus shows that the above is in,

fact, an equivalence.

Theorem 2.6 (Kraus, [8]) Let «, 3, and v be integers such that o® — 3? = 1728y
with v # 0. Then there exists a rational elliptic curve E given by an integral Weier-
strass equation having invariants ¢4 = « and cg¢ = B if and only if the following
conditions hold:

(i) vs(B) # 2

(17) either 8 = —1 mod4 or both ve(a) > 4 and B =0 or 8 mod 32.

2.3 Reduced Minimal Model

Given a rational elliptic curve, there are infinitely many possible global minimal
models. Among these, there is a unique global minimal model known as the reduced

minimal model of E.
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Definition 2.7 Let E be a rational elliptic curve. The reduced minimal model

of E is given by a Weierstrass model
Y2 4 ayxy + asy = 2 + asx® + agx + ag
which is a global minimal model for E and satisfies ai, a3 € {0,1} and ay € {—1,0,1}.

Proposition 2.7 ( [9, Chapter III]) The reduced minimal model of rational ellip-

tic curve is unique.

Following Kraus’s Theorem, Connell modified an existing algorithm of Laska’s [10]
to output the reduced minimal model of a rational elliptic curve, given the invariants

¢4 and c¢g associated to a global minimal model of E.

Algorithm 2.8 (Laska-Kraus-Connell Algorithm, [9, 3.2]) Let E be a rational
elliptic curve with invariants ¢y and cg associated to a global minimal model of E.
Then the coefficients a; of the reduced minimal model of E are determined from the

quantities below:

by =—cg mod12 € {5 —4,...,6} by= b%;f;

—b3+36babs—cg

b6:T a1:b2 mOdZG{O,l}
agzl’?jT‘“ az =bg mod2 € {0,1}
ay = b4—¢211a3 ag = bezaa

In particular, the quantities bg, ay, and ag are integers.

2.4 Local Data of a Rational Elliptic Curve

In this section, we assume familiarity with algebraic geometry. We follow the
terminology in [6].

Let R be a Dedekind domain with field of fractions K and E an elliptic curve
over K. Then there exists a regular arithmetic surface C/R, proper over R, whose

generic fiber is isomorphic to E over K. We call C/R a proper regular model for E/K.
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In addition, there exists a proper regular model C™"/R for E/K with the following
minimal property:

Let C/R be any other regular model for £/K. Fix an isomorphism from the
generic fiber of C to the generic fiber of C™". Then the induced R-birational map
C --» C™™ is an R-isomorphism. We call C™®/R the minimal proper reqular model
for £/K. It is unique up to unique R-isomorphism.

We define the Néron model of E over R to be a scheme N/ — Spec R which
is smooth, separated, and of finite type, with generic fiber isomorphic to E, and
that verifies the following universal property: for any smooth scheme X over R, the
canonical map Mapg (X, N) — Mapy(Xk, E) is bijective. In fact, A is the open
subscheme of the minimal proper regular model C™" associated to F which is made
up of points that are smooth over R [6, Theorem 10.2.14].

Now suppose E is a rational elliptic curve and let p be a finite prime. Let Z,
be the p-adic integers and denote by C;ni“ and N, the minimal proper regular model
and Néron model over Z,), respectively. The special fiber N;, of N, is a scheme over
the residue field F,. Since A, is an algebraic group, we let /\_/;? be the connected
component of N, containing the unit element of A,. Similarly, denote by C_;,“i“ the
special fiber of C"™.

Tate’s Algorithm [5, Chapter IV] returns the following local data for each prime
p of Z:

1. The reduction type of the special fiber @gﬁn over F,. We will use Kodaira

symbols to describe the reduction type.

2. my: the number of components, defined over I_Fp and counted without multiplic-

ity, on é;“i“.
3. v (A%ﬁn): the valuation of the minimal discriminant of F'/K with respect to p;

4. f,: the exponent appearing at the prime p of the conductor of £. This will be
computed via Ogg’s formula: f, = v, (A?Eli“) (~ my, + 1;
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5. ¢p: the local Tamagawa number at p, i.e., the order of the group of components
No(F,) /ND(F,). Equivalently, ¢, is the number of components of C2™ which

have multiplicity 1 and are defined over F,,.

2.5 Universal Elliptic Curves

Let N > 2 be an integer. The modular curve X;(NN) (with cusps removed) pa-
rameterizes isomorphism classes of pairs (F, P) where E is an elliptic curve and
P is a torsion point of order N on E. Two isomorphism classes of pairs (E, P)
and (E’, P') are isomorphic if there exists an isomorphism ¢ : E — E’ such that
©(P) = P’ [5]. Now let m > 1 be an integer. The modular curve X;(2,2m) parame-
terize isomorphism classes of pairs (E, P, Q) where E is a rational elliptic curve and
(P, Q) = Cy x Cyyy, and e(P,mQ) = (o where ey is the Weil pairing [4, I11.8]. It is well
known that the modular curve X;(N) and X;(2,2m) has genus 0 if [11, Proposition
3.7 N =23,...,10,12 or m = 1,2,3,4. When N =4,5,...,10,12 and m = 2,3,4
these modular curves are parameterizable by a single parameter ¢ [12, Table 3]. More
precisely, for these values of N and M, we consider the abelian groups T' = Cy and
T = Cyx Cy,,. Fort € P, define X, as the mapping which takes T to the elliptic curve
X, (T) where the Weierstrass model of X;(T) is given in Table 2.1'. Then X,(T) is a
one-parameter family of elliptic curves with the property that if ¢ € K for some field

K, then X, (T) is an elliptic curve over K and T — X,(T)(K) The Weierstrass

tors*®
model of X;(T) is known as the universal elliptic curve over X;(N) (resp. X;(2,2m))
if T'=Cy (resp. T'= Cy x Cyp,).

We summarize the above with the following result which will be used in the

subsequent chapters.

LOur parameterizations differ slightly from [12, Table 3]. We instead use [13, Table 3] which expands
the implicit expressions for the parameters b and ¢ in [12, Table 3] to express the universal elliptic
curves in terms of a single parameter t.
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Table 2.1.: Universal Elliptic Curve X,(T)

X(T):y*+(1—g)wy — fy=a3— f2?
/ g T
t 0 Cy
t t Cs
2+t t Cs
13— 12 2 —t C-
213 — 3t + 1 A7Bt+l Cs
o — 2t 4 23 — 12 3 —t2 Cy
25 -3t 4¢3 —2t34-3t2—t C
(t2—3t+1)2 12—3t+1 10
1263085434t 2134742 —t | —6t2 4983 —5t2 4t C
(t—1)4 (t—1)3 12
42 + t 0 Cy x Cy
—2¢34+14¢2—221+10 —2t+10 ,
(t+3)2(t—3)° (t+3)(t—3) C2 x Ce
16t3+16t2+6t+1 16t3+16t2+6t+1
T 8217 2t(4t41)(8t2—1) Cs x Cy

Lemma 2.9 Let K be a field. Ift € K such that X;(T) is an elliptic curve, then
T C X,(T)(K)
such that E is K-isomorphic to Xy(T).

iors- Moreover, if E is an elliptic curve over K, then there is at € K
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3. THE EXPLICIT MODIFIED SZPIRO CONJECTURE
The story of the ABC' Conjecture begins with the following theorem:

Theorem 3.1 (Mason-Stothers) Let a,b,c be nonconstant relatively prime com-

plex polynomials in one variable such that a +b = c. Then
max{dega, degb, deg c} < ng(abe)
where no(f) denotes the number of distinct roots of f.

This was first proven by Stothers [14] in 1981, but rediscovered three years later by
Mason [15]. The following year, Masser and Oesterlé were discussing Mason’s recent
paper and the pair came up with the novel idea of reformulating the Mason-Stothers
Theorem as a statement pertaining to the integers. In the hours that followed, the
ABC' Conjecture was conceived. In the years since, the literature has been replete
with applications of the ABC' Conjecture, most notably Fermat’s Last Theorem which
at the time remained unproven. We refer the interested reader to the classic article
by Lang [16] as well as the survey article of Martin and Miao [17] to learn more about
the numerous applications of the ABC' Conjecture.

As with Fermat’s Last Theorem, the ABC' Conjecture has also manifested itself
in the theory of elliptic curves where it has an equivalent formulation known as the
modified Szpiro conjecture. The modified Szpiro conjecture roughly says that for a

rational elliptic curve E| it is rare for the inequality
N§ < max{ N

to hold where Ng is the conductor of E and ¢4 and c¢g are the invariants associated
with a global minimal model of E. We will say that if an elliptic curve satisfies the

above inequality, then it is a good elliptic curve.
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In the first section, we give a succinct introduction to the ABC' Conjecture and
state known results which will motivate our study of the modified Szpiro conjecture
which begins in section two. In section three, we briefly go over current databases of
rational elliptic curves and find all good elliptic curves in Cremona’s database which as
of this writing consists of all elliptic curves of conductor at most 400000. In addition,

we construct new databases consisting of elliptic curves with E(Q) = Oy x Cyyy,

tors
where m = 2, 3,4 and summarize the data obtained pertaining to the modified Szpiro
conjecture. In section 4 we give a constructive proof that there are infinitely many
good Frey curves. In section 5, we use the elliptic curves from section 4 as well as
certain models of elliptic curves which will be studied in further detail in chapter 4
to construct a database consisting of 13870964 good elliptic curves and conjecture
an explicit formulation of the modified Szpiro conjecture based on the data acquired,
i.e., what is the smallest real number \ such that max{|c}|,c2} < N3 holds for all
rational elliptic curves E. As an application, we show at the end how the explicit
Modified Szpiro conjecture can be used to construct exhaustive databases of elliptic
curves up to a given conductor. We note that as of this writing, the 2012 proof of
the modified Szpiro conjecture by Mochizuki is still under review. Even if the proof

is found to be correct, it does not shed light on the explicit version of the modified

Szpiro conjecture.

3.1 The ABC Conjecture

We begin with the following definition which will simplify the statement of the
ABC' Conjecture.

Definition 3.1 By an ABC triple P = (a,b,c) we mean a triple of integers a,b, c
such that a, b, c are relatively prime non-zero integers and a + b = c. The quality of
an ABC' triple P = (a,b,c) is the quantity

_ logmas{lal, i, |}
log rad(abc)

q(P)
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where rad(n) denotes the product of all distinct primes dividing n.
We say an ABC' triple is good if q(P) > 1 and if a,b, c are positive, we say that

P is positive.

Proposition 3.2 The following are equivalent:
(1) For every e > 0 there exists a positive constant k. such that for all ABC' triples
P = (a,b,c) we have
max{|al, D], |¢|} < kerad(abe) ™ ; (3.1)

(13) For every € > 0 there are finitely many ABC triples P = (a,b, c) satisfying
rad(abe) ™ < max{|al, |b],|c|} .
(7i1) For every e > 0 there are finitely many ABC' triples P = (a, b, c) satisfying
q(P)>1+e.
We refer to each of these equivalent statements as the ABC' Conjecture.

Proof By the previous definition it follows that (i7) and (iii) are equivalent.
(i = 1ii) Fix € > 0 and suppose there exists a positive constant k. so that (3.1)

holds. If k. < 1, then

max{|al, |b], |¢|} < rad(abe)'*

log max{|al, |b], ||}
s <1
log rad(abc) =i

and thus (#77) holds. Now suppose k. > 1 and towards a contradiction, assume that
there are infinitely many ABC triples P = (a, b, ¢) such that ¢(P) > 1 + €. Taking

logarithms in (3.1) yields

log max{|al, |b], |c|} <log ke + (1 + €) lograd(abc)

1
Y

—+1+e
~ lograd(abc) e
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In particular,

log k. log k.
81 +1+e€ = 0<q(P)< O~

1 P) < o
+e<q(P) ~ lograd(abc)

~ lograd(abc)

—  logmax{lal, [b],|c|} <logr.
which is our desired contradiction since there are finitely many ABC' triples satisfying
log max{|al, b, |c[} < log e

for any fixed constant k..
(i7i = i) Fix € > 0. Observe that if P is an ABC triple satisfying ¢(P) < 1+,
then

log max{|al, |b], |c|} < (1 + €)lograd(abe)

— max{|al,|b|, |¢|} < rad(abe)" .

Now assume that there are finitely many ABC' triples P satisfying ¢(P) > 1 +e¢€. In

particular, there is a real number s, > 1 such that

max{|al, [b], |c|}

rad(abe)' ™~

€

for all P = (a, b, ¢) satisfying ¢(P) > 14e¢. Since max{|a|, |b], |¢|} < rad(abc)'* holds
for all ABC triples P satisfying q(P) < 1+ ¢, it follows that (¢) holds for all ABC

triples. [ |

The following lemma shows that the € is necessary for the statement of the ABC

Conjecture.

Lemma 3.3 Let p be an odd prime. Then (1,pP=DF — 1, p®=1F) (z's a good ABC

triple for each positive integer k.

Proof Note that p~Y* — 1 = (p — 1) P where

p—1)k

(
P=> p

Jj=1
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Since p = F1 mod (p + 1), it follows that P = 0 mod (p +1). In particular, P =
0 mod 4. Therefore,

Dk P P =Dk _
rad((”_ e _ 1) rad(;) é 5= pZ(p——l)l (3.2)
Moreover, rad((ﬁp_l)k — 1) pP=k) = pmd((i”‘l)’c -1)) énd

max{tp(pl)k — ,p(pfl)k = p(pfl)k and so w& attain

PP Dk _ prad(([<“>k ~1)) 6 pPIr — 2o 62

> 0.

In the special case when p = 3 and k = 1 we get the ABC' triple P = (1,8,9)
with quality ¢(P) ~ 1.2263. Since there are infinitely many good ABC triples, we
have that the ABC Conjecture is equivalent to

limsup¢(P) =1

where the limsup ranges over all ABC triples P. Assuming the ABC' Conjecture,
Browkin et al. [18] proved that the set of limit points of ¢(P) as P ranges over all
ABC triples is equal to the closed interval [%, 1}. Specifically, they proved that given
any real number € in the closed interval [%, 1}, here is a sequence of ABC' triples
{Pn}nzo such that lim,,, q(P,) = €. At the end\of section 3.3.2, we present evidence
for what the analogous result should be for the modified Szpiro conjecture based on
a result which will be proven in chapter 6.

While there are infinitely many good ABC' triples, there is strong numerical evi-
dence for the ABC Conjecture being true. The ABC@Home project was a network
computing project which began in 2007 with the goal of finding all good ABC' triples
P = (a,b, c) with max{|al, ||, |c|} < 108. This goal was accomplished in 2011 with
the finding of 14482065 good ABC triples. The project continued until 2015 with the
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finding of an additional 9345651 good ABC' triples with 10'® < max{|al, ||, |¢|} <
203 Of the 23827716 good ABC triples found by the ABC@Home project, only 240
of them have quality greater than 1.4. In fact, P = (2,3 . 109, 23%) is the triple with
largest known quality ¢(P) =~ 1.6299. As of May 2018, this data is available at Bart
de Smit’s webpage [2].

The data also gives support for Baker’s [19] explicit formulation of the ABC

Conjecture,

Conjecture 3.4 (Explicit ABC' Conjecture) Let P = (a,b,c) be an ABC' triple.
Then

max{|al,|0], |¢|} < rad(abe)"™ .

While this variant does not imply the ABC Conjecture, it does imply Fermat’s

Last Theorem.
Proposition 3.5 The explicit ABC Conjecture implies Fermat’s Last Theorem.

Proof Towards a contradiction, suppose Fermat’s Last Theorem is false for some
exponent n > 2. That is, there are relatively prime positive integers a, b, and ¢ such

that a” + 0" = ¢". Then
¢ = max{|a”],|0"|, |c"|} < rad(a™b"¢)"™ = rad(abe)" ™ < (abe)"" < &P

In particular, n < 5 which is our desired contradiction since these cases have been

known since 1825. ]

In fact, the data compiled by the ABC@QHome project suggests that Baker’s
exponent of 1.75 may be replaced with 1.63. In section 3, we will study the explicit side
of the modified Szpiro conjecture and formulate an explicit modified Szpiro conjecture
based on numerical evidence from Cremona’s database of rational elliptic curves and

further data acquired from rational elliptic curves with non-trivial torsion.


https://rad(abc)1.75
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3.2 The Modified Szpiro Conjecture

Let E be a rational elliptic curve with minimal discriminant A®®. Throughout
this section, the invariants ¢4 and c¢g will be assumed to be associated with a global
minimal model of E so that 1728A%™ = ¢ — ¢2. In 1981, Szpiro [20] made the
following deep conjecture pertaining to the minimal discriminant and conductor of a

rational elliptic curve.

Conjecture 3.6 (Szpiro, 1981) For every € > 0 there exists a positive constant k.

such that for all rational elliptic curves F,
AP < g N

Soon after, it was shown that Szpiro’s conjecture implied the Asymptotic Fermat’s
Last Theorem [4, Proposition VIII.11.2]. After the formulation of the ABC' Conjec-
ture, it was shown that the ABC' Conjecture implied Szpiro’s conjecture. While the
converse did not hold, a modification of Szpiro’s conjecture resulted in an equivalence
with the ABC Conjecture [1]. As with the previous section, we begin with a definition

which will simplify our description of the modified Szpiro conjecture.

Definition 3.2 Let E be a rational elliptic curve with minimal discriminant AR™
and associated invariants ¢y and cg. Define the modified Szpiro ratio o,,(E) and

Szpiro ratio o(F) of E to be the quantities

ooy loEma ] ) loslag)
" log Ng

log Ng

where Ng is the conductor of E.

We say that E is good if 0,,(E) > 6.
Lemma 3.7 For all rational elliptic curves, o(E) < op(F).

Proof Since 1728A%™ = ¢} — 2, it suffices to show that AB™ < max{|c}|, 2}

Case I. Suppose ¢;, AB™ > 0. Then AR® < 1728 AN 4 2 = ¢
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Case II. Suppose ¢4 = 0. Then AP®™ < 1728 A®n = 2,

Case III. Suppose ¢4 > 0 and AR < (0. Then AR < 1728 AR 4 3 = 2

Case IV. Suppose ¢4 < 0. Let a = min{|c}|,c2}, b = max{|c}|,c%}, and ¢ =
1728 A%n | Then a, b, c are nonnegative and satisfy a + b = c. In particular 5 <b

since a < b. Hence AR™ < max{|c]|, c2}. [

Proposition 3.8 The following are equivalent:
(i) For every € > 0 there exists a positive constant k. such that for all rational

elliptic curves E,
max{ Cﬁ o < KNS (3.3)

(73) For every € > 0 there are fintbely many rational elliptic curves E satisfying
Npte <max{ £ .t
(1ii) For every € > 0 there are finitely many rational elliptic curves E satisfying
om(E) > 6+ €.

We refer to each of these equivalent statements as the modified Szpiro con-
jecture. In particular, the modified Szpiro conjecture implies Conjecture 3.6 since

Amin < max {|c3], 2} for all rational elliptic curves by the proof of Lemma 3.7.

Proof By definition, (ii) and (iii) are equivalent.
(1t = i1) Fix € > 0 and suppose there exists a positive constant x. so that (3.3)

holds. If k. < 1, then

1 3 2
maX{ 3 ,cg < NgJ’E — Ogmixg{]‘v?j G} <6+e€

and thus (#77) holds. Now suppose k. > 1 and towards a contradiction, assume that
there are infinitely many rational elliptic curves E satisfying o,,(E) > 6 + €. Taking

logarithms in (3.3) yields

+6+e.

log ke
logmax{ 2 et <logke+ (6+¢€)log Np — om(F) < OB K
log Ng
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In particular,

log ri.
t6+re =  0<on(B)< 8"

log k.
6 < on(l) <
e “ ( ) _10gNE

o 10gNE

— log max{ G e < log ke

which is our desired contradiction since there are only finitely many elliptic curves
satisfying the inequality above for any fixed constant ..

(11t = 1) Lastly, suppose that for a given € > 0, there are finitely many rational
elliptic curves F satisfying 0,,,(E) > 6+e¢. In particular, there is a real number k. > 1

such that
max {|c}] , &}
Note

for all rational elliptic curves E satisfying o,,(E) > 6+e¢. Since max{|c}|, 2} < N&**

< Ke

holds for all rational elliptic curves F satisfying 0,,(E) < 6 + ¢, it follows that (7)

holds for all rational elliptic curves. [ |
Theorem 3.9 The modified Szpiro conjecture is equivalent to the ABC Conjecture.

Proof Assume that the modified Szpiro conjecture is true and let P = (a, b, c) be
an ABC triple. Relabeling if necessary, we may assume 1 < a < b < ¢ so that ¢ < 2b.
In particular,

2

1+g+%<a2+ab+b2.

By Lemma 2.5, the Frey curve
E:y*=z(x+a)(z—0)

. . . . . i _ 2 . . . .
has minimal discriminant AB™ = 4 ~!2. (4abc)” where u is either 1 or 2. The invariants

¢y and c¢g associated to a global minimal model of E have the form

c4u4-16(a2+ab—|—62)imd06u6-32(b—a)(a—|—c)(b+c).

Hence ¢4 and AR™ are always positive and therefore max{d, c2, 1728A%"™ = ¢} since
c3 = 2 + 1728 A" Applying the modified Szpiro conjectyre to E yields

¢ A\’ .
<<+ 5T Z) < Kk NpF
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for all e > 0. Multiplying by 64 gives
6 ¢ CQ ’ 6+¢
c’ <64 +§+—4 < 64k Np

= c< 2&2/6]\7]1;6/6

for all e > 0. Since E is semistable at all odd primes it follows that N = 27 rad (AR™)
for some nonnegative integer j. By Lemma 2.3, j < 7 and therefore Np < 27 rad(abc). <
Now set € = 6e so that ¢ < ke rad(abc)Hel with ke = £/%22+¢ which is the ABC
Conjecture.
Conversely, assume that the ABC Conjecture is true and let E be a rational elliptic
curve with minimal discriminant A" and invariant jz # 0,1728. In particular, the
3

. 2
associated invariants ¢, and ¢ are nonzero. Let d = ged (ﬁ; 3, Apm) (a =4 p="5%

4 d
1728?‘51“. Then (a,b,c) is an ABC triple and by the ABC C

and ¢ = njecture we get

that

max{|a|,b} < max{|a|,b,|c|} < k. rad(abc)'**

= max{ £} ,c¢ < k. (drad(abc)) .
We claim that drad(abc) divides 36¢4c6 Ng. It is clear that
rad(abc) = rad (6¢;cgAR™d™?)
divides 36¢c4c6 Ng. So it suffices to show that for all primes p dividing d, the inequality
vp (drad (GEicg AR™d™?)) £ v,(36cace NE)

holds. Since p divides d, it follows that p divides both A™ and ¢, and therefore E
has additive reduction at p by Lemma 2.2. Thus v,(Ng) > 2. In particular, we have

the following inequalities:
vy (drad (GEScg AR™d™?)) £ vp(d) + 1 Up(36¢4c6) + 2 < v,(36c4¢6NE)

Hence it suffices to show v,(d) + 1 < v,(36¢4c6) + 2 for each prime p dividing d. For
p > 3, we have v,(cs) < 4 or v,(cg) < 6 by [4, VII. Remark 1.1]. For p = 2,3,
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vp(cs) < 8 or vy(cs) < 12 [21, Proposition 3]. Since d is the greatest common divisor

of ¢} and ¢, we observe that

vp(d) = min{v,(c}) (vp(cf) } (3.4)

for each prime p dividing d. In particular, v,(d) < 12 it p > 3 and v,(d) < 24 if
p=23.

We now verify that v,(d) < v,(36¢sc6) + 1 for v,(d) < 24. by (3.4), vy(d) is
divisible by 2 or 3, and

up(d) Up(d)
3 and vp(cg) > 5

Up(c4) >

with equality holding for at least one of them. The table below summarizes all
possibilities for v,(d) < 24 and the middle two rows are to be read as follow: at least
one of v,(cyq) or v,(ce) is equal to the entry in the table. For instance, if v,(d) = 10,
then v,(d) = v,(c3) since 3v,(cs) does not divide 10. Hence v,(cg) = 5 and since

vp(c3) > v,(c2) and this implies that v,(cs) > 4. The remaining cases can be checked

similarly
vp(d)=12[3|4|6[8|9[10]|12|14|15]16 |18 |20 |21 |22
vpleg) > 111212133445 |5[6|6|7]7]|8
vplcg) > 112123455 |6 |7|8[8|9|10]11]11
vp(cacg) +1> 1314151689 |10|11 13|14 |15 |16 | 18| 19|20

Thus max{|c}|, 2} < k. (c4csN)' with &, = 36'*<k,. In particular, we obtain

the following three inequalities:
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Now raise the first inequality to the 2 + 2¢ power, raise the second inequality to the
3 + 3¢ power, and raise the third inequality to the 1 — 5e power. Multiplying the

resulting inequalities results in

4+42¢—2€2 3—3e2 1—5¢ 9.2 9 9.2
‘C4| +2e—2¢ |06| € 2 S /€/€6N6+6603+26 2e Cg 3e

max{ e

1-5
<~ max{ 2 ,cé < RQ’N(6+66)/(1756) with Fég _ ,%6/(1756)_

Now take € = < > 0's0 that max{|c}|, 2} < s/, N9*<. This is the modified Szpiro

conjecture, which concludes the proof. [ |

The proof above varies slightly from that given originally in [1]. The original proof
reduces the argument to showing that if the modified Szpiro conjecture is true for

semistable Frey curves, then the ABC' Conjecture is true.

3.3 Database of Modified Szpiro Ratios

As with the ABC' Conjecture, we could ask whether there are infinitely many
good elliptic curves. This question was first considered by Masser [3] who proved
that there are infinitely many good Frey curves. This showed, that as with the ABC'
Conjecture, we also have an equivalent formulation of the modified Szpiro conjecture,
namely

limsupo,,(E) =6

where the limsup ranges over all rational elliptic curves E. The main theorem of
the next chapter asserts that if T" is one of the fifteen possible torsion subgroups
allowed by Theorem 2.1, then there are infinitely many good elliptic curves E with
E(Q),,s = T. In the next section, we will prove a weaker version of this result for
elliptic curves with full 2-torsion as well as expand on the history of the existence of
infinitely many good curves in the literature.

In this section, we review current databases of elliptic curves with the intention

of stating an explicit modified Szpiro conjecture. In addition, we wish to study the
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behavior of how the modified Szpiro ratio and Szpiro ratio vary as the naive height
of elliptic curves increases, akin to how the ABC@QHome project studied good ABC'
triples P = (a, b, ¢) with max{|al, |0, |c|} < 2. To this end, we create a new database
consisting of elliptic curves E with T'<— E(Q) where T' = Cy x Cy,,, where m = 2, 3, 4.
This will allow us to study how the modified Szpiro ratio and Szpiro ratio behave for
elliptic curves with a large conductor (> 102).

Nitaj in [22] and [23] studied the case of the explicit Szpiro conjecture and showed
that the elliptic curve

Enitaj : 2 + 2y = 2 + 2% 4 349410011109107572x — 775428774618307505842556592

has conductor 2526810 and Szpiro ratio o(Enita;) ~ 8.8119. At the time, this was
the elliptic curve with largest known Szpiro ratio. Recently Bennett and Yazdani [24]

found the elliptic curve
Fpy : y* +ry = 2° —424151762667003358518 — 6292273164116612928531204122716

which has conductor 12735814 and Szpiro ratio o(Fp.y) ~ 9.01996.

These findings suggest the following explicit form of the Szpiro conjecture:
Explicit Szpiro Conjecture. For all rational elliptic curves F, AR < NJ02

As with the explicit ABC' Conjecture, this does not imply Szpiro’s conjecture
but can be used to tackle problems due to its absolute bound on how the minimal
discriminant and conductor are related. In fact, this explicit Szpiro conjecture was
used recently by Sadek [25] to study the elliptic curve discrete logarithm problem in
cryptography.

While Szpiro’s conjecture has been studied on the explicit side, there has been no
research on the explicit modified Szpiro conjecture - which is the goal of this section.
We begin by computing the modified Szpiro ratios of the previous two elliptic curves.
Since o(F) < 0,(F) we know that these are good elliptic curves and in fact, their

modified Szpiro ratios are

m(Enitaj) = 9.3169 and om(Epy) ~ 9.4962.
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In contrast to the Szpiro ratio, we have found modified Szpiro ratios which exceed
10. In fact, the largest known modified Szpiro ratio is approximately 16.0587. This

is the modified Szpiro ratio of the elliptic curve
By oy —y = a4+ 2* — 78200 — 263580

which has conductor 11, yet its Szpiro ratio is equal to 1 since its AL™ = —11. In
Appendix B we order good elliptic curves by their modified Szpiro and Szpiro ratios.
At the end of this section, we describe how the elliptic curves in Appendix B were
found.

A technique first employed by Nitaj [23] is to check if curves isogenous to a good
elliptic curve are also good. In the following example, we demonstrate this technique

by considering the isogeny classes of Exitaj and Ep.y.

Example 3.10 Let Cyitoj and Cp.y denote the set of Q-isomorphism classes of el-
Then CNitaj =
{[E1], [Ea], [Es], [F4)} and Cpy = {[Fi],[F2]} and computing their modified Szpiro

liptic curves which are isogenous to Enge and Ep.y, respectively.

ratio and Szpiro ratio yields:

E1 E2 E3 E4 Fl FQ
o(—) | 8.81194 | 8.46189 | 8.22578 | 8.34794 | 9.01996 | 8.62243
om(—) | 9.31690 | 9.14240 | 8.77950 | 9.70439 | 9.49618 | 9.05540

Remark Each curve in the two isogeny classes above are good, but this is not the

case in general. For instance, if C is the isogeny class of the elliptic curve
FEi:y? + 2y = 23 — 23421148172 — 46491207963039,

then C = {[E4], [Es], [F3]} has three distinct Q-isomorphism classes and computing

the modified Szpiro ratio and Szpiro ratio for these curves returns

Ey Es Es
0(—) 5.23078 | 4.76945 | 4.77440
Um(—) 5.98001 | 5.35237 | 7.00531

and therefore only one of the elliptic curves in the isogeny class is good.
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3.3.1 Current Databases of Elliptic Curves

Our first step in analyzing good elliptic curves is by considering Cremona’s database
[26] which, as of May 2018, has an exhaustive list of elliptic curves whose conductor
is at most 400000. For each of these elliptic curves, we have computed their mod-
ified Szpiro ratio and Szpiro ratio. This has been done previously by Bennett and
Yazdani [24] where they computed the Szpiro ratio of all elliptic curves in Cremona’s
database, which at the time had an exhaustive list of elliptic curves with conductor
at most 230000. Table 3.1 summarizes our findings for both the modified Szpiro ratio

and Szpiro ratio of elliptic curves in Cremona’s database,

Table 3.1.: Modified Szpiro and Szpiro Ratios in Cremona’s Database

Conductor 1-99999 | 100000-199999 | 200000-299999 | 300000-399999 Total
# of Curves || 657396 624965 607003 594 285 2483649
Om > 6 30641 17903 14774 12949 76267
% w. opm>6 | 4.66% 2.86% 2.44% 2.18% 3.07%
Om > 7 7798 3621 2697 2358 16474
om > 8 1415 474 303 266 2458
Om > 9 196 43 15 21 275
om > 10 26 2 0 0 28
oc>6 4061 2561 2096 1861 10579
o>7 534 272 214 182 1202
o>38 41 15 10 2 68

In contrast to Cremona’s database, the Stein-Watkins database [27] as of May
2018 contains 36832795 elliptic curves with conductor at most 10%. This database
is constructed by finding elliptic curves whose minimal discriminant AR™ satisfies

Amin - < 10'? and whose conductor is at most 10%. For each rational elliptic curve
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which satisfies these conditions, they compute its isogeny class as well as certain twists
of representatives in the isogeny class to attain a larger database of elliptic curves
which may not satisfy the original assumptions. From this data, they then input
more elliptic curves into the database via isogenies and twists. By construction, the
Stein-Watkins database does not have an exhaustive list of elliptic curves of conductor
at most 10® and furthermore misses most good elliptic curves. To illustrate this, we
compared Cremona’s database to the Stein-Watkins database for elliptic curves of
conductor at most 400000. We found that the Stein-Watkins database has 1766993
elliptic curves or roughly 71.2% of all elliptic curves of conductor at most 400000.
Moreover, the Stein-Watkins database for elliptic curves of conductor at most 400000
contains 14894 good elliptic curves, of these, only 384 elliptic curves satisfy o(E) > 6.
For these reasons, we did not pursue a further study of the Stein-Watkins database.

Constructing an exhaustive database of elliptic curves up to a given conductor is
difficult and Cremona’s achievement!® is the state of the art in this direction. If we
instead focus our attention on the naive height of an elliptic curve, then it is much
simpler to create an exhaustive database. This has been done recently in [28], where

Balakrishnan et al. considered the collection of elliptic curves JF,, where
Fn = {[E]Q | E:y? =2° + agw + as, a4, a6 €Z, Ap #0, max{ ai ,27a; <n

where [E], denotes the Q-isomorphism class of E. For n = 2.7 - 10'°) they found
that #F,, = 238764310. We note that Balakrishnan et al. refer to the quantity
max{4 |a3|,27a2} as the naive height of F which is slightly different than the one
defined in this thesis since it does not depend on a global minimal model. While this
collection of elliptic curves is significantly larger than the number of elliptic curves
found in Cremona’s and the Stein-Watkins database, it is insufficient for studying the

explicit side of the modified Szpiro conjecture as the following lemma demonstrates.

!By Cremona’s achievement, we mean the works of Birch, Cremona, Stein, Swinnerton-Dyer, and
Wakins whose efforts constructed the exhaustive database of rational elliptic curves up to conductor
400 000.
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Lemma 3.11 If E is a good curve in F, where n = 2.7-10'°, then the conductor of

E is at most 301. In particular, E is in Cremona’s database.

Proof Let E : y? = 2® + a4z + ag be a good curve contained in JF,, of conductor N.
Then N < max{|c}|, 2} where ¢; and ¢ are the invariants associated to a global
minimal model of E. Since F is contained in F,, it also satisfies {4 |a}|,27a2} < n.
Let ¢4 and ¢g denote the invariants associated to the given Weierstrass model of E.
Then

64 = —48CL4 and 66 = —864(16.

Since E is given by an integral Weierstrass model, it follows that ¢, = u=*¢s and

cg = u~%¢s for some positive integer v by Lemma 2.4. Therefore,

N < maX{ c e < max{ (2 G =327, 27111&}({4(@?1 ,27a; < 32%-27%-10°

= N < 301.19.

3.3.2 New Databases of Elliptic Curves

In order to bypass the bottleneck presented by the aforementioned databases in
studying the explicit modified Szpiro conjecture, we will focus on elliptic curves F

with F(Q), .. <= T where T' = Cy x Cy,, for m = 2,3,4. Recall that these elliptic

tors

curves are parameterized by the curve X;(T), as defined in Table 2.1. Recall that the

naive height of an elliptic curve E is defined as the quantity

1
Paive(E) = Elog max{ £} ,c;
We will now show that for elliptic curves F with T — E(Q) we can create an
exhaustive database up to a certain naive height.
By Lemma 2.4 there exists relatively prime integers a and b such that Er(a,b) is
Q-isomorphic to &y, where Ep = Er(a,b) is as defined in Table D.1. By Lemma 2.4

we also have that the discriminant of Er is yr = 7r(a,b) and the invariants ¢, and
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cg of the Weierstrass model for Ep are given by ar = ar(a,b) and Br = fr(a,b),
respectively. Since vyr is a square, it follows that ar > S from the identity a3 — 82 =
172877

Now consider the set of rational numbers
S ={(a,b) € Z* | a,b # 0, ged(a,b) =1, |a|,[b] < 7000

It can be verified with SageMath [29] that #S = 59580582. For each T, we construct
the following set:

Fr ={Er(a,b),cqueea | (@:0) €S, yr(a,b) # 0}

where Ep(a,b),.quceq 15 the reduced minimal model of Ep(a,b). In other words, the
map

ET(CL7 b)reduced — [ET(a’7 b)]

is a bijection between Fr and the set of Q-isomorphism classes of elliptic curves which
have a representative Er(a,b) for (a,b) € S. Note that #F < #5 since the Q-rational
noncuspidal points of the modular curves X;(2,2m). Recall that the modular curve
X1(2,2m) (with cusps removed) parameterize isomorphism classes of pairs (F, P, Q)
where E is a rational elliptic curve and (P, Q) = Cy x Cy,,, and e(P,mQ) = (» where ey
is the Weil pairing. In particular, the Q-isomorphism class of F may contain distinct
isomorphism classes of pairs (F,(P,Q)). In fact, computing the order of Fr shows

that this is the case,

T 02><C4 OQXCG CQXCS
#Fr | 49030354 | 47003904 | 34754904

Now let ur and [ be the real numbers defined in Table 3.2
In order to show that F7 contains all elliptic curves Er(a,b) up to a certain naive

height, we admit the following result which will be proven in Chapter 5:

Lemma 3.12 Let cyp be the invariant associated with a global minimal model of

Er(a,b). Then u;4ozT <ecyr.
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Table 3.2.: The numbers ur and Ir

T CQXC4 CQXCG CQXCB
ur 4 16 64
lp | 3.2433 6.4865 | 13.5747

Proof This follows automatically from Theorem 5.14. [ |

We can now show that Fr contains an exhaustive list of rational elliptic curves
whose naive height is at most [r. To this end, we will consider the following two sets

in the next two results:
Ry ={(fr,y) eR*|z,y>0 and Ro={(z,y) eR*|z>0,y<0 .

Lemma 3.13 Let €,0 > 0 with equality holding for at most one them. Then

r(z+ey—+0) forT=CyxCyCyxCyand (x,y) € Ry
ar(z,y) < (3.5)
r(x+ey—20) forT=CyxCqand (x,y) € R_.

Proof VIa a cymputer algebra system such as Mathematica [30] it is verified that
the partial derivative a%aT(:v, y) > 0 on R, for each T. Whereas the partial derivative
8%0@(3;, y) > 0on R, for T = Cyx Cy, Cy x Cyg and the partial derivative 8%0@(:6, y) <
Oon R_ fOI'T:CQXCG.

By the Mean Value Theorem, we can find P and P’ in Ry such that

0 < @(P) _ ar(z+e,y+06) —ar(z,y£0)
Ox B
0 < £007 py _ 4 (Cx(z.y ) — ar(wy)
5T 6
This yields
9 )
arle-+ ey =0) —ar(e,y) = e E(P) %05 L(P) > 0.
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Theorem 3.14 Let E be an elliptic curve with T — E(Q). If hyiwe(E) < lr, then

E is Q-isomorphic to Er(a,b) for some (a,b) € S.

Proof SinceT — E(Q), there exists a rational number ¢ such that F is Q-isomorphic

to X (T"). We claim that X;(T") is Q-isomorphic to the curve &} (1) where t; is given

in Table 3.3.
Table 3.3.: Quantities for Proof of Theorem 3.14
T ] t]‘ ’LL]‘ Tj Sj ’U}j Ij
Cyx Cy || 1| =52 1 0 0 0 (oo, 1)
—(1+4
2| g1 [ 2aevy) | oa | ar@ern | (B
3| =L | ostrr [ 2wre2) | a0 | ar@+1) | (Loo) K
15+t t—9 —2(t—5)(t—1) 4(1—t) 4(t—5)(t—1)2 '
02 X CG 1 1+t 2(i—3) (t43)(t-3)° 2_9 (t13)2(t—3)° ( 15, 1) \
—21+45¢ t—9 4(5—t)(t—1) 8 16(t—1)(t—5)2 21
2 —1+t t+3 (t4+3)%(t—3) t+3 (t—3)°(t+3)* (]ﬂ 5 ) /
—9+5
3 7515 1 0 0 0 (g 5) )ﬂ
—21+¢ t—9 —2(t=5)(t—1) 4(1—t) 4(t—5)(t—1)2
il e 2(t=3) (t+3)(t—3)° 29 (t+3)2(t—3)° (5\\21) \
. t—9 4(5—t)(t—1) 8 16(t—1)(t—5)>
5| 61 t+3 (t+3)°(t=3) t+3 (t—3)%(t+3)° (6, 00)
(8t2+8t+1) (8t2+4t+1) (82+4t+1)
—(1+2t) 26(8t2—1) 2(1—8t)° (4t+1)° 22(82-1)7 -1
Cax Gyl 2 (2t + 1) (2t+1)1(4t+1) 2t(8t>—1) (2t+1)i(4t+1) ((OO’ 2)
—(1+42) Vi o1
2 4(1+2t) 1 0 0 0 (féﬂ _Z)
(8t2+8t+1) (862 44t+1) (862 +4t+1) \
3| =0+ 2(812—1) 2t(1-8t)2 (4t+1)2 12 (82-1)° ( 1 0)
™ (2t +1) CIESAICTERY 24(8t2-1) <zt+1>j<4t+1> 47 (
A}

For each j, let u;,7;,s;,w; be as given in Table 3.3. The admissible change of

variables x — u?x +r; and y — u?y +u;s;x + w; gives a Q-isomorphism between

X,(T) and &, (T).

We now claim that if ¢ < 0 (resp. ¢t > 0), then at least one t; > 0 (resp. t; < 0)
for T = CQ X C4,C2 X Cg (resp. T = CQ X C@)
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First, suppose T'is Cy x Cy or Cy x Cg. It is easily checked that ¢; > 0 for ¢t € [;NQ
where I; is the open interval given in Table 3.3.

Similarly, if T' = Cy x Cg, then t; < 0 for t € I; N Q where [; is the open interval
given in Table 3.3.The claim now follows. By Lemma 2.4, &}/,(7T") is Q-isomorphic
to Er(a,b). Since Er(a,—b) = Er(—a,b), we conclude that if £ is an elliptic curve
with 7" — F(Q), then there are relatively prime integers a and b such that E is
Q-isomorphic to Er(a,b) where a > 0,b > 0 (resp. b < 0) if T'= Cy x Cy,Cy x Cy
(resp. T = Cy x Cj).

Now let ur be as defined in (3.2) and define hy = 127! log(f4aT(x, y)g).(;et

Sy ={(z,y) € Z* | x > 0,y > 7000} St ={(z,y) €Z* | x>0,y < —7000}

Sy = {(z,y) € Z* | x > 7000,y > 0} St ={(z,y) € Z* | z > 7000,y < 0}

Sy = {(x,y) € Z* | x > 7000,y > 7000} S% = {(z,y) € Z* | z > 7000,y < —7000}
In particular, S3 (resp. S3) is the union of S; and Sy (resp. S} and S}). By Lemma

3.13, we have that the minimum value of hy on Ss (resp. S5) occurs on the boundary

of Sy (resp. S%).

hT|S§ Z ZT :min{hT|51,hT|S2} lfT:CQ X 04,02 X Cg (3 6)
hT’S:’,) ZlT:min{ T|SiahT’S§ ifT:CQ XCﬁ.
Now let alpT and uT be the Mathematica input for ar(z,y) and ug, respectively. We

then verify that Iy is the value claimed in (3.2) via the Mathematica input:

NMinimize[Log[{12"-1Log[10,alpT/uT"4)"3],x>0&&y>7000},{x,y}, Integers]

NMinimize[Log[{12"-1Log[10,alpT/uT"4)"3],x>7000&&y>0},{x,y}, Integers]
for T'= Cy x Cy,Cy x Cg and
NMinimize[Log[{12"-1Log[10,alpT/uT"4) 3] ,x>0&&y<-7000},{x,y}, Integers]

NMinimize[Log[{12"-1Log[10,alpT/uT"4) 3] ,x>7000&&y<0},{x,y}, Integers]
for T = CQ X Cﬁ.

Lastly, suppose hnaive(E7(a,b)) < lr. By the second claim we may assume (a,b) €
Ry if T'=Cy x Cy,Cy x Cg or (a,b) € R_if T = C5 x Cg. Since

127 log (1§T4aT(a, b)%) G Pnaive(Er(a, b))
( .

by Lemma 3.12 it follows that (a,b) € S by (3.6), as desired. n
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Thus Fr contains an exhaustive list of elliptic curves of naive height at most (7.

In particular,

T 02 X 04
# {E € FT ’ hnaive(E) < ZT} 502472

CQ X Cﬁ
701964

Cg X 08
1106 884

For each elliptic curve E in Fp, we saved the following information into our
database: its reduced minimal model, a pair (a,b) in S such that F is Q-isomorphic
to Er(a,b), its naive height, its modified Szpiro ratio, and its Szpiro ratio. The table

below summarizes the data obtained on good elliptic curves in Fr.

T Cox Cy | Oy xCy | Oy x Cy

Max oy, 8.4797 | 8.5262 | 7.3412

Max o 6.8890 | 7.2555 | 6.9407
# of Curves w. 0, > 6 915 11085 7480
# of Curves w. 0 > 6 79 1139 967

The above table is insufficient in conveying the information obtained from our
database of elliptic curves arising from each Fp. To this end, the next three sub-
sections provide histograms for the naive height, modified Szpiro ratio, and Szpiro
ratio of those elliptic curves in {E € Fr | hpaive(E) < Ir} with a bin size of 10000. At
the end of Appendix B we provide further histograms for the naive height, modified

Szpiro ratio, and Szpiro ratio of elliptic curves in Fp with a bin size of 50000.
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Summary of Data for F¢,«c,
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Summary of Data for F¢, ¢,
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Summary of Data for F¢, ¢,
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The set | J/Fr contains 19480 distinct good elliptic curves. Of these, 225 occur
in Cremona’s \Jatabase. By Nitaj’s heuristic, we expect to get more good elliptic
curves by considering representatives in the isogeny class of these good elliptic curves.
Motivated by the remark following Example 3.10, we consider elliptic curves in Fr
whose modified Szpiro ratio is at least 5.7. In particular, we construct the following

set

SW=|J{E € Fr|on(E) > 5.7, Ng > 400000} . (3.7)
T

For each E € S, we compute its isogeny class and consider those Q-isomorphism
classes of elliptic curves which have representatives £ with o,,,(E) > 6. To this end,

for a set S of Q-isomorphism classes of elliptic curves, let Z be the map defined by
Z(S) = { lg | E is isogenous to a curve in S and 0,,,(E) > 6 . (3.8)

Returning to the set S above, we compute the order #Z(S(l)) ~ 248391. Since
isogenous elliptic curves have the same conductor, we conclude thay for each [E], €
z (8(1))(E is not in Cremona’s database. Below we give a brief summary of the

elliptic durves found in Z(S (1)).(

# of [E], € Z(SW) ﬁvith J(E)\> 6 | Max 0,,, | Max 0 | Max hpaive | Max Ng
36 315\ 9.2416 | 7.8063 18.1118 | 1.548-10%

In the next two sections, we develop an efficient way of computing good elliptic curves.
Specifically, we will construct additional sets SU) and then consider S = J ; SU). We
will then show that Z(S) has 13870964 distinct Q-isomorphism classes (f elliptic
curves whose representatives are good.

We conclude this section by noting that there is a leftward shift in comparing the
histograms for the modified Szpiro ratio of {E € Fr | hpaive(E) < Ir} and F. This
will be explained in Chapter 6 where we show that the modified Szpiro ratio of an
elliptic curve is bounded below by a number depending only on the torsion subgroup

of the elliptic curve. Below is the main result which explains the behavior observed

in the three histograms.
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Theorem 6.6 Let T be one of the fifteen torsion subgroups allowed by Theorem 2.1.
If T'— E(Q), then 0,,(E) > lp where I is as given below:

T|C, | Cy | Cy Cy Cs Cs Cr Cs
lr | 1 | 15| 3 3 3 3 4 4
T Cg Cl() 012 Cg X CQ 02 X C4 Cg X Cﬁ 02 X Cg

Ir | 45| 4.5 | 4.8 2 3 4 4.8

This result motivates the following conjecture which is an analogue the aforemen-

tioned Theorem by Browkin et al [18]:

Conjecture 3.15 Assuming the modified Szpiro conjecture, the set of limit points
of om(E) as E ranges over all elliptic curves is equal to the closed interval [1,6].
Moreover, if T is one of the fifteen torsion subgroups allowed by Theorem 2.1 and lp
is defined in Theorem 6.6, then the set of limit points of o,,(E) as E ranges over all
elliptic curves with T — E(Q) is equal to the closed interval [l7, 6].

In Corollary 6.20 we show that 1 is in the set of limit points of 0,,(E) as E ranges

over all elliptic curves.

3.4 Infinitely Many Good Frey Curves

While Masser [3] proved that there are infinitely many good Frey curves, his
proof was non-constructive. Nitaj [22] [23] improved on Masser’s result by showing
how good ABC triples can be used to construct good elliptic curves, but his approach
has to be done one elliptic curve at a time. Our goal in this section and the next
chapter is to develop techniques which will allow for the construction of infinitely
many good elliptic curves with specified torsion subgroup. Our work is motivated by
Lemma 3.3, where fixing an odd prime p results in the explicit family of good ABC'
triples {(Ep(p_l)k — 1,p(p_1)k) }fl The main theorem of this section is based on an

unpublish&d work which is included in Appendix A.
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Let P = (a,b,c) be an ABC triple with a even and b = 1 mod 4. For T' = Cy x Cs,,,
where m = 1,2, 3,4, let Ay = Ar(a,b), Br(a,b), €& = Cr(a,b), and D7 = Dr(a,b)
be as defined in Table A.3. Assume further that a =0 mod3 if T'= C5 x Cs. Then
the elliptic curve Fr = Fr(a,b) given by the Weierstrass model

Fr:y* =x(z —Ar)(z + Br)

is semistable and satisfies Fr(Q),.,.. = T by Lemma A.6. Moreover, by Lemma 2.5

tors
the minimal discriminant of Fr is A = (16’1QLT%T€T)2 and the invariant cyp =

car(a,b) associated with a global minimal model of Fr is

Table 3.4.: The Invariant ¢4 of Fr

car T

a® + 60a®b? + 134a*b* + 60a%b5 + b® Cy x O
a® + 14a'b* + v® Cy x Cy
9a® + 228a5b? + 30a*b* — 124265 + b8 Cy x Cq
a'® —8a'bh? 4 12a'2b* + 8a b5 4 230a8b% + 8aSbh0 + 12a*b'? — 8a?b' +b'¢ | Oy x Cy

Lemma 3.16 Let P = (a,b,c) be a good positive ABC' triple satisfying a = 0 mod 2,
b=1 mod4, and % > O where O is as given in Lemma A.2. Assume further that
a =0 mod3 if T = Cy x Cs. Then the Frey curve Fr = Fr(2p,Br) is good and
Fr(Q)y, =T,

Proof By Lemma A.6, Fr(Q), . = 7. Since Fr is a Frey curve we have that the

tors
invariants ¢, and cg associated to a global minimal model of Fr satisfy max{|c}|, 2} =
3 since ¢4 is always positive. The congruences on a and b imply that ¢y = ¢y . TIt,
therefore, suffices to show that ¢} , — N > 0 where Ny is the conductor of Fp. Since

F’r is semistable,

Np = rad(QlT‘BT€T) < D
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by Lemma A.4. Note that Dy is positive since g > Or. Thus

3 — N§ 1,1)* —Dr(1,1)° b
4,T g > C4,T< 1) g( 1) for t — — (3.9)
5)T(lvt) Z)T(Lt) a
Lastly, for each T', the polynomial ¢4 (1, t)g—QT(l, t)6 is positive on the open interval

(07, 00) from which we conclude that Fr is a good elliptic curve. [

Theorem 3.17 For each T, let PL = (ag, by, co) be a good positive ABC' satisfying
apy = 0 mod2, by = 1 mod4, and 2_?) > Or where 01 is as giwen in Lemma A.2.

Assume further that ag =0 mod3 if T'= Cy x Cg. For j > 1, define P]T recursively

by
Pl = (aj,bj,¢;) = (Ar(a;_1,b—1) , Br(aj1,bj—1) , €r (aj_1,b;1)).

Then for each j, the Frey curve Fr(a;,b;) is good and Fr(a;,b;) (Q),,,.. = T.

tors

Proof By Proposition A.5, PjT = (aj;,b;,c;) satisfies a; = 0 mod2, b; =1 mod4,
and Z—i > O for each j. For T' = Cy x Cg, if ap = 0 mod 3, then a; = 0 mod 3 for each
j. Hence PjT is a good positive ABC' triple for each j by Proposition A.5. Therefore
the result follows by Lemma 3.16. [ |

In Example A.8 we began with a good ABC triple Py = (ag,bo, o). For each
T, we constructed an infinite sequence of good ABC' triples P! = (a;,b;,¢;). By

J
Theorem 3.17, each Frey curve Fr(a;,b;) (Q),, .. is a good elliptic curve with torsion

tors
subgroup isomorphic to T'. Table 3.5 lists the modified Szpiro and Szpiro ratios of the
Frey curves corresponding to PjT. Due to computatonal limitations, we could only
compute these ratios up to j = 3.

The above example illustrates that while we can explicitly write down infinitely

many good Frey curves F, it is not necessarily the case that o(F) > 6 infinitely many

times. Observe that the main ingredient in proving Lemma 3.16 is the inequality

NP < DY < &
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CoxCy | Oy xCy | Oy xCq | Cy x Cg

(Fr(ay,by)) | 6.4204 | 7.4219 | 6.7269 | 6.1985

(Fr(ay,by)) | 5.9524 | 6.7268 | 5.8544 | 5.4642

(Fr(a, by)) | 6.1912 | 6.3124 | 6.1666 | 6.0241

(Fr(as, b)) | 6.0511 | 6.1586 | 5.6515 | 5.7399
(Fr(as,b3)) | 6.0901 | 6.0769
o(Fr(as,bs)) | 6.0656 | 6.0371

Therefore, extending Lemma 3.16 to yield o(Fr) > 6 would require a proof of the
inequality
(3.10)

Brer)’ .
Ng<®g<( T TT) :A%un’

16
where A" is the minimal discriminant of Fp. However, for a given T the validity
of this inequality may be false or result in stricter assumptions on the good ABC
triple. As a result, an analog of Theorem 3.17 under the techniques developed in this
section is not possible. To illustrate, we demonstrate what occurs for T' = Cy x Cy

and T' = Cy x Cy. For both of these cases, we consider the difference

(2:2e0)’ o

i

(Ar(1,8) Br(1,1) Cp(1,1)) — 28D4(1,1)°
2D 1(1,1)° '

The polynomial

(Ar(1,8) Br(1,t) €p(1,1))* — 28D4(1,1)°

is never positive for T' = Cy x Cy and is positive for T'= Cy x Cy on the interval

(=01, —1) U (=1, —0:) U (65, 1) U (1,6,) (3.11)

4/ 33+v65
32

holds for T = Cy x (.

and 0y = ¢ 333—2 V65

For T = (5 x C4, we consider the ABC triple P =

where 0; = In particular, inequality (3.10) never
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(59969536, 56 746089, 116 715625) which is good since ¢(P) ~ 1.1035. Moreover,

56746089 = 1 mod4 and 230898 ~ 0.94625 is in the interval (3.11) and so we ex-

pect the associated Frey curve to have Szpiro ratio at least 6. Indeed, the elliptic

curve Fr = Fr(59969536, 56 746 089) of conductor ~ 4.97 - 10?® satisfies
om(Fr) ~6.6211  o(Fr) ~ 6.3618.

Therefore an extension of Theorem 3.17 for infinitely many Frey curves for ' = Cy xC}
whose Szpiro ratio is at least 6 would require a sequence of good positive ABC' triples
P; = (aj, bj, ¢;) which satisfy the following conditions for each j: a; = 2 mod4, b; =

1 mod4, and Z—J is in the interval (3.11). The stricter condition that Z—] is in the
J J

P]-C2 XC4 - Gimilar

interval (3.11) for infinitely many j is not satisfied by our sequence
conclusions hold for Cy x Cg and C5 x Cy and therefore we are only interested in
constructing good elliptic curves without requiring any assumptions of the Szpiro

ratio.

3.5 Database of Good Elliptic Curves

In section 3.3, we analyzed Cremona’s database which contains an exhaustive list
of elliptic curves of conductor at most 400000. This analysis showed that Cremona’s
database has 76267 good elliptic curves. We then proceeded to construct databases
of elliptic curves £ with T — E(Q),,, where T" = Cy x Cy,, where m = 2,3,4.
This produced a database consisting of 130789162 QQ-isomorphism classes of ellip-
tic curves. We then considered the subcollection SM) as defined in (3.7) which
consist of Q-isomorphism classes of elliptic curves whose conductor and modified
Szpiro ratio is at least 400000 and 5.7, respectively. We then considered the set
Z(SW) fvhere T is as defined in (3.8) and found that its order is 248391. Now let
S = (V Jo | E is in Cremona’s Database and 0,,,(E) > 6 so that S = Z(S®)
since isoggnous curves have the same conductor. By Table (3.1), #S® = 76267. In

particular, the methods of section 3.3 resulted in 324658 good elliptic curves.

(
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In this section, we will construct additional sets SU) with the intention of con-
structing 13870964 good Q-isomorphism classes of elliptic curves. This will be done
by using good ABC' triples to construct good elliptic curves via the Frey curves Fr of
the previous section as well as the elliptic curves Hr = Hy(a,b) which will be studied

in further detail in the next chapter. To this end, let
A, = { ,b) € Z* | (a,b,a +b) is a good positive ABC' triple, a < b, a +b<n

The ABC@Home project showed that #Agis = 14482065 and Bart de Smit’s
webpage [2] as of May 2018 has a file containing all good ABC triples in A;q:s available
for download. In what follows we will use elements in A, for n < 10'® to construct
good elliptic curves. Due to computational limitations, we will restrict ourselves to

A, where n; is as given below
7 J

j 1 2 3
n; |3-102 ] 10 | 10 (3.12)
#A,. | 359905 | 116988 | 51689

In the following subsections we use good ABC triples (a,b) € A,, to construct good

elliptic curves.

3.5.1 Good Elliptic Curves Arising From F

Let T = Cy x Cy,, where m = 1,2,3.4 and let 2y = Ar(a,b), Br(a,b) be as
defined in Table A.3. In the previous section, we considered the Frey curve Fr =
Fr(a,b), where

Fr:y*=x(z —Ar)(z +Br),

and proved in Theorem 3.16 that under the assumptions that (a,b,a + b) is a good
positive ABC' triple satisfying a =0 mod 2, b =1 mod4, and S > O where O is as
given in Lemma A.2 we could construct infinitely many good Frey curves under the

additional assumption that a = 0 mod 3 whenever T' = (5 x Cg. However, what if
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we drop the assumptions on a and b? Then Fr(a,b) may still be good if (a,b,a + b)
is a good ABC' triple. Indeed, for T'= Cy x C5 we have

5648 if (a,b) = (1,8)
1598 if (a,b) = (169, 343)

om(Fr(a,b)) ~

This motivates the study of Fr(a,b)\for (a,b) € A, for some n. In fact, for a pair
(a,b) € A, for some n, we will consider the elliptic curves Fr(a,b) and Fr(— (a +b) , a).
To this end, let

1019 if T = Cy x Cy
. 1012 lfT:CQ X CQ,CQ X 04,02 X 06

nr =

where n; is as defined in\(3.12). Now consider the set

Sr={ lg | B is Q-isomorphic to Fr(a,b) or Fr(a,— (a+b)) for (a,b) € A

nr

By construction, Fg,«c,(a,b) and Fe,xc,(a,b) are isogenous for all (a,b) € A,, and

therefore

I(SC2><02) = I(Scz><04) .

In particular, we only compute S¢, ¢, since our goal is to construct the set | J£Z(Sr).
The following table summarizes the data obtained from Sy and Z(Sr)

SCQXC’Q SC’QXCG 802><Cs I(SCQ XCQ) I(SCQXCG) I(SCQ><C'8)
#(-) 719768 719803 103334 4777029 4961688 803659
Max o,, 8.0503 7.9683 7.1115 8.6852 8.5825 8.0997

Max o 7.0510 7.4256 6.9407 7.3622 7.5762 7.1800
#w.0o>6 | 110848 | 113765 10172 852672 1215292 220938
Max Anaive 25.293 25.402 40.000 25.5940 25.7167 40.7743

#wW. 0, >6| 531726 | 580396 | 102364
Max Ng 2.5-10°%° | 1.0-10° | 9.8-10™

Now let S = |, Sy and we compute #I(((?))) C 10542 376.
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3.5.2 Good Elliptic Curves Arising From Hp

In the following chapter we prove that for each of the fifteen torsion subgroups
T allowed by Theorem 2.1, there are infinitely many good elliptic curves T' such
that F(Q), .. = T. For each T except T' = Cs let Hy = Hr(a,b) be given by the

tors

Weierstrass model

s_Ar—1  3Ar +2Br -1
48 1728

Hr vy +ry==x

where Ay = Ar(a,b) and By = Br(a,b) are as defined in Table (E.1) and Table
(E.2), respectively. In the next chapter, we prove under certain assumptions on a

and b, that Hp is given by a global minimal model and Hr(Q), . = T. Following

tors
a similar approach to the previous section will then result in an explicit proof that
there are infinitely many good elliptic curves with specified torsion. In this section,
however, we focus on the specific case of when T' = C';, Cy, Cig, C12,Cy x Cy. For

these T let
3-102 if T =0C5

mr = 101t if T'= ClO
1010 T = Cg, 012, 02 X Cg

where n; is as defined in (3.12). Now consider the set

{

Ely | E = Hr(a,b) or Hr(b,a) for (a,b) € An, for T'= C7,Cy, C1
Ely | E = Hy(—a,b) or Hr(b,a) for (a,b) € Ay, for T =Chy
f](@ | E = Hr(a,b) for (a,b) € A, for T = Cy x Cs.

[
Sr={ [
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The table below summarizes the data pertaining to the isomorphism classes of

elliptic curves in G

Sr Cr Co Cho Crz Cay x Cy
#Gr 719810 103378 233976 103378 51679
Max oy, 7.2265 6.9232 7.3152 6.9645 7.1098
Max o 6.9203 6.6725 6.6937 6.6035 6.9407
# of Curves w. g, > 6 | 663202 96216 193497 102188 51679
# of Curves w. 0 > 6 32295 4524 14487 9335 5494
Max hpaive 24.98 30.00 33.33 40.00 40.00
Max Conductor 1.4-10% | 1.06 - 10% | 7.79-10% | 9.82-10™ | 9.82-10™
Next we compute Z(Sr) for T # Cha,Cy x Cyg and find
Z(6r) Cr Cy Cio
#I(S7) 1337841 | 291101 | 814414
Max oy, 9.4006 | 7.5658 | 7.6216
Max o 7.2053 | 6.8701 | 7.3306
# of Curves w. 0 > 6 | 291618 | 62291 | 176518
Max hyaive 25.3731 | 30.39 33.60

For T' = C5 we compute a proper subset of Z(&7) which we denote by J(&r):

#J(S¢y,) | Max 0, | Max o

# of Curves w. 0 > 6

Max hnaive

561584 7.3700 | 6.8430

150443

40.41

Lastly, let SW = U(GT and we compute #Z(S™W) C 3056619.

3.5.3 Good Elliptic Curves due to Bennett, Nitaj, and Yazdani

In [22] and [23], Nitaj found 142 good elliptic curves. For each elliptic curve in

Nitaj’s papers, we computed its Q-isogeny class. This, in turn, provided us with
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336 distinct good elliptic curves with conductor at least 400000. The table below

summarizes the data of these 336 good elliptic curves:

Max 0, | Max o | # of Curves w. ¢ > 6 | Max hpave | Max Ng

10.1148 | 8.8119 315 21.68 1.18 - 100

Building on Nitaj’s techniques, Bennett and Yazdani [24] found 25 good elliptic
curves with Szpiro ratio at least 8.4861. In addition, Bennett and Yazdani found an
additional 1933 good elliptic curves, of which the aforementioned 25 were the ones
with best known Szpiro ratio. For each of these elliptic curves, we also computed their
Q-isogeny class. This resulted in 3253 distinct good elliptic curves with conductor
at least 400000. The table below summarizes the data of these 3253 good elliptic

curves:

Max o0, | Max o | # of Curves w. ¢ > 6 | Max hpave | Max Ng
10.1609 | 9.0200 3200 13.7936 | 3.80 - 10%°

Let S®) be the set of Q-isomorphism classes of the elliptic curves found by Bennett,
Nitaj, and Yazdani. Then #Z (8(5)) = 3467. The intention of these works was to
construct good elliptic curves with higC Szpiro ratio. Consequently, almost all elliptic
curves of conductor at least 400000 appearing in Appendix B are due to the works

of Nitaj and Bennett and Yazdani.

3.5.4 The Explicit Modified Szpiro Conjecture

Let § = U?Zl z (S (G )). Then S contains 13870964 Q-isomorphism classes of good
elliptic curves from whicl\ we create our database of good elliptic curves. For each

[E]g in S we save the following information into our database:

NE hnaive(E) [ab a2, a3, a4, aﬁ}reduced Um(E> U(E) E(Q)tors

where [ay, as, as, ay, ag) 4 are the unique invariants of the reduced minimal model

reduce

of E. That is F is Q-isomorphic to the elliptic curve

y2 + a1y + azy = x?’ + ang + asx + ag.



Table 3.6.: Summary of Data of Elliptic Curves in §

T 4 Cy Cs Cy Cs

#w. 0, >6 ] 801523 | 3890675 | 98058 | 2089799 69

#w.0>6 | 304931 | 1248830 | 16824 305948 18
max o, 16.0587 | 13.3951 | 9.8648 | 10.1145 | 8.5371
max o 9.0200 8.8119 8.6224 8.5352 8.0067

T Cs C; Cs Cy Cho
#w. 0, >6 11923692 | 663228 | 209723 96221 | 404826
#w.0>6 | 481403 32311 26307 96221 31307
max o, 9.7672 8.6345 8.2265 6.9232 7.3163
max o 8.3096 7.3625 7.3403 6.6725 7.0006
T Cio CoxCy | CyxCy | Oy xCq | Cy x Cy
#w. 0, >6] 91037 | 1407167 | 1422306 | 663101 | 109539
#w.0>6 10348 299930 | 119765 | 125004 | 11106
max o, 7.8752 9.7559 8.4797 8.5262 7.3412
max o 6.9035 8.4619 7.4605 7.4256 6.9407

ol

Table 3.6 summarizes the data obtained from our database for each of the fifteen
torsion subgroups allowed by Theorem 2.1.

For each of the fifteen torsion subgroups 7T, we order the elliptic curves in S by
their modified Szpiro and Szpiro ratio. These rankings can be found in Appendix B.
The data acquired through this study motivates the following explicit formulation of

the modified Szpiro conjecture and Szpiro conjecture
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Conjecture 3.18 (The Explicit Modified Szpiro Conjecture) Let E be an el-
liptic curve of conductor Ng > 300000 with T < E(Q). Then max{|c}, 2|} < NI

and |[AT™| < NJT' where

T | Cy | Cy | C3 Cy Cs Cs C; Cs
fr| 11 | 10.2 | 9.87 10.2 8.54 9.77 8.63 8.23
gr | 9.02 | 8.82 | 8.63 8.54 8.01 8.31 7.37 7.35
T | Cy | Cip | Cia | CaxCy | CyxCy | CyxCq | CyxCy

fr 1693 | 7.32 | 7.88 9.76 8.48 8.53 7.35

gr | 6.68 | 7.01 | 6.91 8.47 7.47 7.43 6.95

Corollary 3.19 Assuming the explicit modified Szpiro conjecture, the database Fr

constructed in section 3.3.2 contains all elliptic curves of conductor at most Ny where

38866 if T = Cy x Cy
Nr=1{ [.334-10° if T =C, x Cs
454102 §f T = Cy x O

Proof Suppose E is an elliptid curve with 7" — F(Q) and hpaive(E) = k. Applying

the explicit modified Szpiro conjecture yields

1

Elogmax{ Ci o =k
= max { Ci 2 =10"%* < NJr
= 10""X < Np.

Now let I1 is as defined in 3.2. By Theorem 3.14, Fr contains an exhaustive list
of all elliptic curves up to naive height [r. The result now follows by taking k = Ip

above. -

3.5.5 Further Analysis of S

We now consider the following subset of S,

S — {|<;1]Q By [Ealg
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which satisfies 0,,,(E;) > 0 (Ex) > 6.5 and hpaive(E;) < Rnaive(Ey) for j < k. This
determines S uniquely and similarly we define S as the unique subset of S which
satisfies 0(E;) > o(E)) > 6.5 and hyaive(Ej) < hnaive(Ej) for j < k. Then #8587 =
150 and #S87 = 120. Tables B.1 and B.2 list the approximate conductor, naive height,
modified Szpiro ratio, Szpiro ratio, and torsion subgroup of each element in $7 and
S7, respectively. Figure 3.4 contains the scatter plot of the modified Szpiro ratio
(resp. Szpiro ratio) against the naive height for each element in S7 (resp. S7m).
In addition, each scatter plot has a logarithmic trendline which acts as a heuristic of
expected largest modified Szpiro ratio or Szpiro ratio for a given naive height between
0 and 40. Figure 3.5 consists of histograms for the modified Szpiro ratio, Szpiro ratio,

and naive height of elliptic curves in S.
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4. GOOD ELLIPTIC CURVES WITH SPECIFIED
TORSION SUBGROUP

In this chapter we extend the result of Chapter 3.4 by proving the following Theorem.

Theorem 4.1 For each of the fifteen torsion subgroups T allowed by Theorem 2.1,

there are infinitely many elliptic curves E with E(Q), =T.

tors

While this was proven for T' = Cy x (s, for m = 1,2, 3,4, the method relied on
results in Appendix A. The result of Appendix A relied on the construction of the
ABC triple (r(a,b),Br(a,b),&r(a,b)). Since these ABC' triples were constructed
via the forgetful map X;(2,2m) — X(2) for m = 2,3, 4, we have that this approach

does not work for constructing good elliptic curves E with T — E(Q) where

tors
T # Cy x Cy,, for m = 1,2,3,4. Instead, for each of the fifteen torsion subgroups T,
we will first construct modular curves Y7 consisting of isomorphism classes of pairs
(E, P) where E is an elliptic curve and P is a torsion point on £. We will then prove
that there is a subset of Y7 (Q) consisting of isomorphism classes of pairs (F, P) where

E is a rational elliptic curve with E(Q), . = T. We then consider two-parameter

tors
families of elliptic curves Hr = Hrp(a,b) with the property that the discriminant of
Hr is minimal when a and b satisfy certain conditions and show that the isomorphism
class of (Hr, P) for P a torsion point on Hr lies in the aforementioned subset of Y(Q)

which allows us to conclude that Hr(Q), . = 7. In section 4, we use the minimal

tors
discriminant of Hy as well as the associated invariants ¢4 and cg to prove that for each
T except T' = Cy,Cy, C5 we can construct an infinite sequence of good ABC' triples.
We combine all these results in section 4.4 to prove Theorem 4.1 and conclude the

chapter with examples for each T



4.1 Models of Elliptic Curves

o8

Let T be one of the fifteen torsion subgroups allowed by Theorem 2.1. For t €

P!, define ); as the mapping which takes T to the elliptic curve );(T) where the
Weierstrass model of Y, (T) for T # C} is given in Table 4.1.

(+1)(1+2t—12)

(1+2t—12)*

aq a2 as ay T
—2(t* — 126+ 8
’ 612 — 12t + 1) 0 (t+1) “
t(t+1)(t2+t+l)3
! 0 , (t34+6t2+3t—1)" 0 Cs
t2+1
1 ( (St)z) D) 0 C4
— t;_; _t;_;) a2 0 Cs
2(+1 46341062 —4¢41) —8t(t-1)%(12+1)
(t2—4t+1) (2—4t+1)° a2 0 Cs
—t2 —t+1 —t(t4+1)° s 0 C;
tt—at3 212 4141 —t(1+t)?
(241 (t—1) 1+2)% a2 0 Cs
2
—3— 22—t +1 —t({t+1)" as 0 Cy
(P +t+1)
_ 3
i | Semer |, 0 Cu
_t4—2t3+2t2—2t 1 (t—l)(tg—t+1)(t2+l)
—t3(t+1) - t4(t+1)? a2 0 Chz
th— 12634 —8t(t—1)*-
0 2 0 g ) Cy x Oy
6t — 12t + 1 (" +1)
—t(1+¢2
1 2((1—t)4> a9 0 Cg X 04
24— 443 412 4442 —82(t—1)° (2+1)
(t+1)° (2 —4t+1) (t+ D (t2—4t+1)? a2 0 Cy x Cg
Lt -0 (1+7) as 0 Cy x Cy

Table 4.1.: The Weierstrass model for Y;(T) : y* + a12y + azy = 2 + asx? + asx

For T' = (1}, let

Vi(CL) : y? + arvy + azy = 2° + agx® + agr + ag
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where ay, as, a3 are as defined in Table 4.1 for T' = Cy and

ag = =5t (t +1) (§f + 9t° + 287 + 53t° + 61¢° 4 47¢* + 25¢° + 8> — 1) (

15 4 93¢1 4+ 162t + 643112 + 1621t + (
ag = —t(t+1) 878110 4 3778¢% + 372118 + 2719t7 + 145310+
608t° + 266t + 1453 + 652 + 13t — 1

For T # C}, it is checked via SageMath [29] that the point (0,0) of V,(T) is a point

of order N where

5| 1| if T'=Cy x Cyp forn=1,2,3,4

N= (4.1)

T|  otherwise.

Now let Y7 be the set congisting of isomorphism classes of pairs (£, P) where each
isomorphism class (F, P) contains a representative ()4(T),(0,0)) for T" # C; and
(Ve(Cy),0). For each T, we endow the set Yr with the structure of a modular
curve via the rational map P! — Y7 where t is mapped to the isomorphism class of
(Ve(T), P) where P is O or (0,0) if T'= C} or all other T', respectively.

The next three results will aid us in proving that there is a subset of Y7 (Q)

consisting of isomorphism classes (E, P) with E(Q), .= T.

tors

Remark When T is clear from context, we will simply write }; in place of V,(T).

Lemma 4.2 For each T, there exists an embedding T — YV,(T)(Q)

tors®

Proof For T' = (] there is nothing to show. For the remaining 7', we have by the
discussion above that the point P = (0,0) is a torsion point of order N where N
is as given in (4.1). Therefore for T" # Cy x Cy,, for m = 1,2,3,4, we have that
T = Y.(T)(Q).

Next, assume T = Cy x (5. The admissible change of variables x —— a%x and

Y — aiﬁy gives a Q-isomorphism between the elliptic curve ) and the elliptic curve

- ((_ Sab (( +1%)) ((+ (a—0)") (
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which has ((8ab (a® + 1?),0), (0,0)) = Cy x Cy. Thus T — Y;(Q). For the remaining
T, let t’ be as defined in the table below

T CQXC4 CgXC(; CQXCg

v t 14-8t+t> 1
2(t—1)° 142 2(t—1)

Then Y(T') = Xy (T') where Xy (T) is as given in Table 2.1. In particular, T —
V() (Q). =

Lemma 4.3 Fizt € Q and consider the elliptic curve Yi(T). Then

2 2 2

Yi(Cy) Vi(Cy x Cy) Vi(Cy x Cy) Yi(Cy)

Yi(Cy)

Yi(Cs)

Yi(Ch)

where each Yi(T) == V,(T") is an isogeny defined over Q of degree p whose kernel is

rational.

Proof In [31], Nitaj completely classified the isogeny class over Q of a rational
elliptic £ with E(Q),,,, = Cy. Our models for Y,(T) for T' = C4, C5, Cy are isomorphic
over Q to the three models given by Nitaj. We omit the proof of the first row, but
remark that the proof follows mutandis mutatis to the one given by [31]. Namely,
the rational isogeny YV, (7T') 2 Vi(T") is obtained by applying Vélu’s formulas [32] to
the elliptic curve Y,(T) and its torsion point of order 2, P = £ (0,0) where N is as
in (4.1). u
Lemma 4.4 The rational map f : P* — P! defined by f(t) = m induces
a morphism X1(10) — X;(5) with [(E,P)] — [(E,2P)]. In particular, if E is an
elliptic curve with a K-torsion point of order b, then E has a K-rational torsion

point of order 10 if and only if E s isomorphic over K to an elliptic curve with

Weierstrass equation

VA (1—ft)oy— f)y =2~ f(t)2* and t € K. (4.2)
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Proof Since Y;(Co) = Xi11(Cho), it follows that Y (Cho) and X;(10) are isomorphic
as modular curves. Therefore the rational map n; : P! — X(10) defined by ¢ —
(Vi (Cho) , (0,0))] is an isomorphism of curves since X;(10) has genus 0. The universal

elliptic curve for X;(5) is given by
X(Cs) 2+ (1 —t) oy — ty = 2° — ta*.

Consequently, we have an isomorphism of curves 7, : P! — X;(5) defined by t —

[(X:(Cs), (0,0))]. Let g =m0 fon* so that the following diagram commutes.

P! P!

m 2

g

X1(10) —— X;(5)

Then ¢([()V:(Cho),(0,0))]) = [(if(t)<05) ) (0,0))}.( Lastly, writing J;(Cjp) in Tate

normal form with respect to 2 - (§,0) results is the\Weierstrass equation of Xz (C5).

Hence g is a well-defined morphism of curves. [ |

Proposition 4.5 For T = Cf5, let t = 2™ for some positive integer n. For all other
T, lett = g where a and b are relatively prime positive integers with a = 0 mod 6.

Assume further that ve(a) is even if T = Cy,Cy. Then

VTN Q) = T

Proof By Lemma 4.2, T — Y(T)(Q),. . for each T. Consequently, it suffices to

tors

show |V(T)(Q),,.| = |T|. Observe that for any non-trivial isogeny ¢ : £ — E’ we

have the following equality via the First Isomorphism Theorem:

|EN(Q)sors! HE(Q)[0)] = [E(Q)rors| [B'(@)rors * H(E(Q)iors)] - (4.3)

We now claim that Yi(T)(Q),,s
and Cy x Cy. By Lemma 4.3, Y,(T) for T = Cy, Cy, Cy x Cy is 2F-isogenous to the

is not divisible by an odd prime for 7' = C5, Cy,
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curve Y;(Cy x Cy) where k is either 1 or 2. Let ¢r : Vi(T) — Vi(Cy x Cy) be the
degree 2% isogeny for T = Cy, Cy, Cy x Cy. Now let

Ve(Co X Ca)(Q) s+ AHTNQ) )] =1

for some integer [. Taking £ = V(T and E' = Y;(Cy x Cy) in (4.3), we obtain

ok+3

— = VD) Q)
since |V, (Cy x C4)(Q),,.s] = 8. In particular, |V(T)(Q),,,.| is not divisible by an
odd prime as claimed. We now prove the Proposition by considering various cases
separately.

Case I. By Theorem 2.1, [Y,(T)(Q),,.| € {1,2,3,4,5,6,7,8,9,10,12,16}. There-
fore Yi(T)(Q),,,s =T for T' = C7, Cy, Chg, C12,Cy x C, Cy x Cs.

Case II. We now show the Proposition for 7' = C}, C5. By [31], we know that the
isogeny class over Q containing an elliptic curve with torsion subgroup isomorphic to
Cy, contains exactly 3 isomorphism classes of rational elliptic curves. Therefore by
Lemma 4.3 we have that the isogeny class over Q of Vy(Cy) is {[V.(C1)]g, [Ve(C3)]g,
[Vi(Cy)lg} where [E]g, denotes the Q-isomorphism class of E. By [33, Proposition
3], Vi(Cy) is isogenous over Q to an elliptic curve with trivial torsion. Since C3 —
Yi(C3)(Q), it follows that V,(C1)(Q),,,, is trivial. Now let ¢ : Vi(Cs5) — Vi(C4) be

the 3-isogeny with rational kernel from Lemma 4.3. We claim that

3= |))t(03)(@)[¢]| = |yt<03>((@)tors| :

Indeed, this follows upon choosing £ = );(C;) and E' = Y;(Cy) in (4.3) since
Yi(C1)(Q),,,, 1s trivial.

Case III. Assume T' = Cy x Cy. By Theorem 2.1, |Y,(Co x C4)(Q),,.] € {8,16}. In
fact, V,(Cy x Cy)(Q),,, is either Co x Cy or Cy x Cg. Our model for Y, (Cy x Cy) differs
by a linear change of variable in ¢ from the model given in [34], which parametrizes el-
liptic curves F' over Q(¢) having F/(Q(7)),,,, = C4 x Cy. Thus Y,(Cy x Cy)(Q(7))
Cy x Cy and therefore Cy x Cs > Yi(Co x Cy)(Q(7)),,,s- Hence Vi (Co x Cy)(Q),y,e =
Cy x Cy.

tors
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Case IV. Next, assume T' = Cy x (5. By the claim at the start of the proof, we
know that |V,(Cy x C2)(Q),,,,| is not divisible by an odd prime. Consequently, by
Theorem 2.1 we have |V;(Cy x C2)(Q),...| € {4,8,16}. In fact, V,(Cy x Cs)(Q)
either Cy x Cy, Cy x Cy, or Cy x Cg. By the proof of Lemma 4.3, ); is Q-isomorphic

tors tors 18

to the elliptic curve given by the Weierstrass model
y> =z (3 — 8ab (a* + %)) (g + (a — b))

This model satisfies the assumptions of [35, Main Theorem 1| and therefore we have
that Y, (Ca x C2)(Q),,,. = C2 X Cs if 8ab (a* + b?) is not a square. If it were a square
we would have a nontrivial integer solution to the Diophantine equation z* — y* = 22

since
8ab (a® + b*) f (a — b)' = (a+b)*.
This contradicts Fermat’s Theorem anc therefore Y, (Cy x C2)(Q),,s = C2 x Co.
Case V. Next, assume T' = C5. By Theorem 2.1, it suffices to show that Cjy 4
Vi(C5)(Q),,s- Observe that Y,(C5) is already in Tate normal form and therefore by
Lemma 4.4, it suffices to show that there is no rational number ¢ = % with

95(4n—1) _ u®y . (4.4)
(u+v)* (2u + v)

Towards a contradiction, suppose this equality holds. Now consider the quantities

u?v and (u +v)® (2u 4 v) as polynomials in Z [u, v, 7, s] and set

p = —5ur — duvr — v*r + 16u*s + 36uvs + 22v%s

v = u’r — Suvs + 20%s

Then
puto + v (u+0)? (2u+v) =2 (ru® + sv®) ( (4.5)

Without loss of generality, u and v are relatively prime integers and therefore
we may find integers r and s such that ru® + sv® = 1. Therefore by (4.5) d =
gcd(rv, (u+v)” (2u + v)) divides 2. If d = 1, then (u+ v)* (2u+v) = +1 and

u?v % £2°47=D By parity considerations on u and v, there are no integers where
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this holds. If d = 2, then (u+v)® (2u+v) = +£2 and v?v = 24"~V If 4 is even,
then v is even which is a contradiction since they are relatively prime. Consequently,
u = £1 which also gives a contradiction. Hence, no such rational numbers exist and
we conclude that YV,(C5) (Q),,., = Cs.

Case VI. Next, assume T' = Cg. It suffices to show that Cy x Cy 4 V(Cs)(Q)

tors

by Theorem 2.1. To show this, we consider the admissible change of variables x ——

udz + rp and y — uby + uksrx + wr where

1 (a® — b?)? (a —b)* (a + b)*

ur = rp = ————mmF wr =
T 2@=-b%(@+?) 1 4(a2+b2)° T 8 (a2 2)

_a4 — 4a3b — 2a2b? — 4ab® + b*
2 (a—b)* (a2 + b?) '

ST =
This admissible change of variables gives a Q-isomorphism between );(Cs) and the
elliptic curve

=232 ( — 4a5* — 26a*b* — 40205 + bs) 2 + (a2 — b2)8 x.

Let ay and a4 denote the coefficients of this Weierstrass model and observe that
2

a3 — 4a, = —256a*b* (g( +2ab — V) (¢* — 2ab — b*) (¢ + %)

Moreover, Cy x Cy = Vi(Cs)(Q), o1
— (a® + 2ab — b%) (a* — 2ab — b?) is a square. Since a = 0 mod 6 and > = 1 mod4,

if and only if a3 — 4a, is a square if and only if

we observe that
— (q% + 2ab — b%) (¢" — 2ab — b*) £ —1 mod 4. (4.6)

Thus a3 —4ay is not a square since (4.6) is not congruent to 1 modulo 4. In particular,

Cy x Cy 5 Vi(Cs)(Q),,,. Which shows that V;(Cs)(Q),,,. = Cs.
It remains to prove the Proposition for T' = C5, Cy, Cg, Cs. To prove these cases

we will consider the elliptic curve

Z(T) : y* =z (2° + 2myx + my — nidr)

(( <fT+nT@)(<+((anT dT>><
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Table 4.2.: Quantities for T' = Cy, Cy, Cg

ur rT ST wWr T
_m 0 _% 0 Cy
& - - o o
(a274;b+b2)2 B (az’(i::i)zﬂf B “4_4“2?52321’@5?2“1’3*64 (az’(i::i)zﬂ)‘* Co
dr mr nr T
—2ab(a®+b*) | —(a* — 12a3b + 6a%0? — 12ab® + b*) 4(a —b)? Csy
-1 — (a* — 2ab — b*) (a® + 2ab — V?) 4ab (a® — b?) C,y

—(a® — 4a"b + 4a5b* + 20a°b3—
ab (a?® — ab + b?) 26a*b* + 20a3b° + 4a2b5— 8ab (a — b)3 (a+0) || Cs

4ab” + b®)

where dp, mp, and ny are as defined in Table 4.2.

Case VII. Next, assume T = C5. Let up,rr, sy, wr be as defined in Table 4.2.
The admissible change of variables x — u2x +r7 and y — ujy + u%spx +wr gives
a Q-isomorphism between ), (Cs) and Z;(Cs). Now observe that the discriminant of

the quadratic z* + 2mrz + m? — ndy is
Ami — 4 (mf — nidr) C Adrng = —128ab (a® + b°) fa — b)*. (4.7)

Since a and b are assumed to be positive, the quantity (4.7) is negative and therefore
is not a square. In particular, Cy x Cy < YV, (C1)(Q)
the proof, we know that |),(Cs)(Q)
by Theorem 2.1, V,(C2)(Q), s
Vi(C2)(Q),ps = O if Vi(C5)(Q),,, does not contain a point of order 4. We will show

By the claim at the start of

tors”

tors| 18 D0t divisible by an odd prime. Therefore

is isomorphic to either Cy, Cy, or Cg. In particular,

this by applying the main theorem of [36]. To apply this Theorem, we first need to

verify that my and npdr are relatively prime under our assumptions on a and b.
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To show this, we consider my and npdr as polynomials in R = Z[a, b, r, s]. Let /-
and v/, be the polynomials defined in Tables E.7 and E.8, respectively. In particular,
wr, v € R. Then the we have the identity

wrmy + Vinpdy = 2° (mg + sbg) (4.8)

Now let a and b be as in the assumption. Then for a given integer k£ > 1, we may
find integers r and s such that ra® + sb* = 1. Therefore, by (4.8), ged(mz, nrdr)
divides 28. Since a is even, it follows that my = —b* mod 2 and so my is odd. Hence
ged(myp, nrdr) = 1, and so we may use the main theorem of [36].

Now write dr = d'h? with d’' squarefree and set n’ = nph. By [36], C; —
Yi(Cs) (Q),,, if and only if there exist relatively prime integers v and v satisfying
mr = u? 4+ v2d’ with n’ = 2uv. Towards a contradiction, we suppose this is the case.
Since b is odd, we have that mp = —1 mod4 and n’ = 2uv implies that exactly one
of w or v is even. Therefore u? + v?d’ = —1 mod4 if and only if u is even and v2d’
is odd with d = —1 mod4. Since vs(a) is even, we have that d’ is even, which is a
contradiction. Thus, V;(C5)(Q),,,, = Ca.

Case VIII. Next, assume T = Cy. Let up,r, sp,wr be as defined in Table 4.2.
The admissible change of variables x — u2x +r7 and y — ujy + u%srx +wr gives
a Q-isomorphism between );(Cy) and Z;(Cy). Now observe that the discriminant of

the quadratic z* + 2mrz + m? — nady is
4m3 — 4 (m% — nQTdT) 4drn3 = —64a’b? (a2 — b2)2

is always negative and therefore is not a square. In particular, CoxCy 4 Yi(C1)(Q),y -
By the claim at the start of the proof, we know that |),(Cy)(Q)
an odd prime. Therefore by Theorem 2.1, Y;(C4)(Q), s

or Cs. In particular, V;(Cy)(Q),,.. = T if Yi(C4)(Q),,,, does not contain a point of

| is not divisible by

tors

is isomorphic to either Cy,

order 8. We will show this by applying the main theorem of [36]. To do so, we must

first verify that my and npdr are relatively prime under our assumptions on a and
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b. To this end, consider my and nydr as polynomials in R = Z[a, b, r, s|. Let u and

v be the polynomials defined in Tables E.7 and E.8, respectively. Then
wemyp + Vinpdy = 2* (ra7 + Sb7)

Now let a and b be as in the assumption. Then for a given integer £ > 1, we
may find integers r and s such that ra® + sb* = 1. Consequently ged(my, npdr)
divides 2*. But ms = —b* mod 2 and therefore m¢ is odd since b is relatively prime
to a. In particular, gcd(mr, nrdr) = 1 and so we may use the main theorem of [36].
By [36], Y:(C4)(Q),,,. = Cs if and only if there exist non-zero integers u, v, w such

2 — w?dyp. Towards a contradiction,

that mpy = u* +v*w?dp, np = 2u?vw, and 2u® —v
suppose Vi(Cy)(Q),.,. = Cs. Then 2ab(a® — b*) = v?vw with my = u* — v*w? for
nonzero integers u,v,w. In particular, at least one of u,v,w must be even. Since

ms = —1 mod 4, we verify that u* — v>w? = —1 mod4 if and only if v is even and

v*w? =1 mod 4. Since vy(a) is even, it follows that one of v or w must be even which

is a contradiction. Hence ),(C4)(Q), . = Cy.

tors

Case IX. Lastly, assume T' = Cy and let up, rr, sy, wr be as defined in Table 4.2.
The admissible change of variables x — u2.x +rp and y — uby + uZspx +wr gives
a Q-isomorphism between );(Cs) and Z;(Cg). Observe that the discriminant of the

quadratic 22 + 2mpz + m% — nidr is
4mi — 4 (my — nidr) E 4dpni, = 256ab (a — b)° (a +b)* (a* — ab+ b*)

is a square if and only if ab(a* — ab+ b?) is a square. Since a and b are relatively
prime, we have that both a and b are relatively prime to (a? — ab + b?). In particular,
ab (a®> — ab + b?) is a square if and only if a,b, and a* — ab + b* are squares. We
claim this is not the case. Towards a contradiction, suppose a, b, and a? — ab + b? are

squares. Then

<X,y>(§(<+m) ﬁ(fbwm))
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is a rational point on the elliptic curve y? = 23 — 22 — 4z +4. The Mordell-Weil group

of this elliptic curve is isomorphic to Cy x Cy and it is equal as a set to
{0, (4,£6),(£2,0),(0,£2),(1,0)}.
Our desired contradiction is now obtained since
X=0=a=b0Y=0=—=a=0o0orb=0;and X =4=—a=0bor b=0.

Therefore 4drn? is not a square which is equivalent to Cy X Cy ¥ V;(Cs)(Q)
Theorem 2.1, V,(Cs)(Q), s
Cra 2 Yi(Cs) (Q),,- This is equivalent to showing that Cy ¥+ Vi(Cs) (Q),ors- AS

By

tors”

is isomorphic to either Cg, or C5. It suffices to show that

with the previous two cases, we first show that my and npdr are relatively prime. To
this end, let p/. and /. be the polynomials defined in Tables E.7 and E.8, respectively

and consider my and npdr as polynomials in R = Z[a, b, r, s]. Then
prmag + Viengpdp = 273 (ra” + sb”)

Now let @ and b be as in the assumption. Then for a given integer £ > 1, we may
find integers r and s such that ra*+sb* = 1. Therefore, ged(myp, npdr) divides 273 for
each T'. Since a = 0 mod 6, it follows that my = —b® mod 6 and so mp = —1 mod 6.
Hence ged(mqg, npdr) = 1. We may, therefore, use the main theorem of [36].

Let dp = d'h? with d’ squarefree and set n’ = nph. By [36], Cy — V,(Cs) (Q),,,, if
and only if there exist relatively prime integers v and v satisfying my = u?4+v?d’ with
n' = 2uv. Towards a contradiction, we suppose this is the case. Since dr is always
positive, we have that u? + v%d’ is always positive and therefore my # u? + v?d’ since

my is always negative whenever a and b are positive. Thus Cy % V(Cs)(Q),,,, and

therefore V;(Cs)(Q),,,. = Cs which concludes the proof. [

Remark If t = 28 then Y,(Cy) (Q),,, = Cs, which shows the need for the assump-

tion of vy(a) being even.
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4.2 Elliptic Curves with Minimal Discriminant

Consider the polynomial ring R = Q[a, b]. For each T we define the polynomials
Ar = Agp(a,b), By = Br(a,b), Dy = Dr(a,b), and Dy = Dr(a,b) as given in
Tables E.1, E.2, E.3, and E.4, respectively. Our first result can be verified with a

computer algebra system.

Lemma 4.6 For each T, the identity A3 — B2 = 1728 Dy holds in R. Moreover, let
wr and vy be as defined in Tables E.5 and E.6, respectively. Then ug, vy € Z [a, b, r, s]
and ppAr + v By is the quantity given in the Table 4.5.

Table 4.3.: urAr + vrBr

urAr + vrBr T urAr + v Br T
—2132 (ra® + sb*) | Oy 2134 (ra®® + sb*) Cy
22232 (ral® + sb'?) Cy —23325 (ra® + sb*) Cio
21312 (ra? + sb*0) | Cy 273% (ra® + sb*) Chz
21432 (ral® + sb1®) | Oy 21432 (ra'® + sb'®) Cy x Oy
219325 Cs | | 2082 (ral + sb1%) | Cy x C,
22234 (ra®® + sb3) | C 21131 (ra3® + sb) Cy x C
21327 (ra'® + sb'9) | Cy 21432 (ra3® + sb) Cy x Cy
22232 (ra’® + sb®) Cs

Proposition 4.7 Let T be one of the fifteen torsion subgroups in Theorem 2.1. For
T # Cs, suppose a and b be relatively prime integers with a = 0 mod 6. Moreover, (i)
for T = Cs, assume that b = 2" for some nonnegative integer n; (i) for T = Clo,
assume that a = 0 mod b5, and (iii) for T = C; assume that a = 0 mod7. Then

Ar = Ar(a,b), Br = Br(a,b), and Dy = Dy(a,b) are integers with Ar and Br and

fT =C
ng(AT, BT) = Zf >

otherwise.
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Proof We proceed by cases.
Case I. For T = C5, let b = 2"*! and observe that

AT — 280n+60 —3. 260n+47 4 7. 240n+31 + 3. 220n+17 + 1

BT _ _2120n+90 + 9 X 2100n+76 o 75 A 280n+60 . 75 . 240n+30 _ 9 X 220n+16 o 1

Since n is a nonnegative integer, we have that Ar and Br are integers. Now let
pur = pr(a,b) and vr = vr(a,b) be as defined in Tables E.5 and E.6, respectively.
Since they are integers we have that ged(Ar, Br) divides 249325 since pr Ar+ purBr =
219325 by the previous lemma. The ged(Ag, Br) is not divisible by 2 since A and
Br are odd. Moreover, ged(Ar, Br) is not divisible by 3 since

Ap = 280n+60 4 940431 1 1 116d3 =1 mod 3.

Therefore ged(Ar, fr) |5. Reducing modulo 5 and applying Fermat’s Little Theorem,
we deduce that

Ap = (22On+15)4 X (215n+12)4 + (210n+8)4 + (25”+4)4 +1 mod5 = 0 mod5.
Similarly,
By = (230n+23)4 +4. (220n+19)4 + (25n+4)4 +4 mod5 =0 mod5.

Thus ged(Ar, Br) = 5.
Case II. Let T' = (. By assumption a is even and so we may write a = 2a for

some integer a. Then Ar and Dp are integers since

Ap = 25662 + 2048a''b + 66566962 + 11520a°0% + 11520486 + 652847 b°+
664a°6°5 — 192a°0" — 240a*0° — 40a°b° + 164%™ + 8ab'! + b'2
Dy = a®b™ (a+b)" (26 + b)'? (—4a® — 2ab + b%)%(a® + 3ab + b?).
Consequently, By is an integer due to the identity B2 = 1728 Dy — A3.. Since a

and b are relatively prime, we can find integers r and s such that ra® + sb*® = 1. In

particular, by Lemma 4.6 it follows that ged(Ar, Br) divides 22325. By assumption
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a = 0 mod 30 and therefore Ay = b'2 mod 30. In particular, A7 is not divisible by
2,3, or 5 and thus ged(Ap, Br) = 1.

Case III. Let T = C%. From the definition of A, By, and Dy it is clear that these
quantities are integers. By a similar argument to Case II, it follows that ged( Az, Br)
divides 2*327. By assumption a = 0 mod 42 and by inspection A7 = b° mod42. In
particular, Ar is not divisible by 2,3, or 7 and so ged(Ar, Br) = 1.

Case IV. Let T'= (5, Cy,Cy x Cy, Cy x Cy. That Ar and B are integers follows
from their definitions in Tables E.1 and E.2, respectively. By Table E.4, it is clear
that Dy is an integer in each of these cases since a is even. A similar argument to
the preceding two cases shows that ged(Ar, Br) divides 22232, Since a is divisible by
6, we have by inspection that A7 = b®* mod 6. Consequently Ay is not divisible by 2
or 3 and so gcd(Ar, Br) = 1.

Case V. For the remaining 7', we observe that Ar, By, Dy are integers by their
definition in Tables E.1, E.2, and E.4, respectively. A similar argument to the above
shows that ged(Ar, Br) divides 222321, Since a = 0 mod 6, Ar = b* mod 6 for some

positive integer k. Hence Ar is not divisible by 2 or 3 and so ged(Ar, Br) = 1. [ ]

Theorem 4.8 Assume the terminology of Proposition 4.7. For each T, let Hp =
Hr(Ar, Br) be the rational elliptic curve given by

o Q4T Ge, T

a2 — 3 _ = .
Hr:y*+zy+asry =2° + agre 18 T 7758 where (4.9)
Q4T = Ap — L,
if T = Cs 5Ar +2Br 4+ 307 if T = Cj
QT = Q3T = , and a7 =
if T # Cs Ar +2Br —1 if T # Cs.

The invariants of Hp are ¢4 = Ar and cg¢ = Br\ Its discriminant is Dy and it is
the minimal discriminant since (4.9) is the reduced minimal Weierstrass model for
Hr. Moreover, for all T except T = C5, Hp is semistable. For T = C5, Hp is
semistable away from p = 5. Suppose further that vy(a) is even if T = Cy,Cy. Then
HT(Q)tors =T.
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Proof By Proposition 4.7, Ay, By, and Dy are integers. It is verified via the formu-
las (2.2) that ¢4 and ¢4 are as claimed and that the discriminant of Hp is Dy. We now
claim that Hrp is given by an integral Weierstrass model. To this end, it suffices to
show that as7 =0 mod 16, a4 7 =0 mod3, agr = 0 mod 27, and asr = 0 mod 64.
We show most of these congruences via Mathematica [30]. We consider the cases
T =Csand T # Cs.

Case I. For T = Cs, let b = 2" for some nonnegative integer n and consider

AT = AT(l, 2n+1> and BT = BT(l, 2n+1>. Then
Qg = 280n+60 +3. 260n+47 +7. 240n+31 +3. 220n+17'

In particular, a; 7 = 0 mod 16 and ay 7 = 23" +2- 21" mod 3. Since squares modulo

3 are congruent to 1 modulo 3, we conclude that a, 7 =0 mod 3. Next,

Qg = —2120m 0L 4 . 9l00n4TT _ g oS0n-+60

45 . 260n+47 =+ 15 . 24On+32 4 9 X 220n+19 4 265
Thus agr = 0 mod 64 and
agr = 25 - 2120 1 18- 2100 1 18. 200 1. 240m 4 18. 220" 1 23 mod 27.

Since 25 - 21207 4 6. 240" = 4 mod 27 and 18 - 22°* = 0 mod 27 for each nonnega-
tive integer n, it follows that agr = 0 mod27. Hence Hr is given by an integral
Weierstrass model. We claim that Hp is a global minimal model for Hy. Indeed,
since ged(Ar, Br) = 5 by Proposition 4.7 we have that the only fourth power di-
viding ¢4 and cg is 1. Thus Hr is a global minimal model. By Lemma 2.2, Hrp
has additive reduction at 5 since 5 divides its discriminant and invariant c¢;. More-
over, Er is semistable at each prime p # 5. Lastly, let ur,rr, sy, and wr be as
defined in the table E.9. Then the admissible change of variables z — u%x + 77 and
Y — upy + uhspx + wr gives a Q-isomorphism between Hy and Yy, (T'). Therefore,
Hp(Q),,,s =T by Proposition 4.5.

Case II. Now suppose T' # C5 and let a4T[a,b] and a6T[a,b] be the Mathemat-

ica inputs for ayr = asr(a,b) and asr = agr(a,b), respectively. Write a = 6k
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for some integer k. Since b is odd and congruent to £1 mod3, we verify that
asgr = 0 mod16, ayr = 0 mod3, agr = 0 mod27, and agr = 0 mod 64 via

the Mathematica inputs

Table [Mod[a4[6xk,b],16],{k,1,16},{b,1,16,2}]
Table [Mod[a4[6%k,b],3],{k,1,3},{b,1,2}]

Table [Mod [a6[6%k,b],27],{k,1,27},{b,1,27,3}]
Table [Mod [a6 [6*k,b],27],{k,1,27},{b,2,27,3}]
Table [Mod[a6[6*k,b],64],{k,1,64},{b,1,64,2}]

Hence Hr is given by an integral Weierstrass model for all 7. By Proposition 4.7
ged(Ar, Br) = 1 and therefore Hyp is a global minimal model since there is no fourth
power other than 1 dividing ged(cy, ¢g). In particular, (4.9) is the reduced minimal
model for Hyr. Moreover, Hr is semistable.

Next, let ur, rr, sy, and wy be as defined in the table E.9. Then the admissible
change of variables  — u%x+rr and y — udy+uzspr+wr gives a Q-isomorphism

between Hp and Yo (T"). Therefore, Hy(Q),,.. = T by Proposition 4.5. u

tors

4.3 Sequences of Good ABC Triples

In this section, we will consider Ay = Ar(a,b), Br = Br(a,b), Dr = Dr(a,b),
and Dy = ﬁT(a, b) as polynomials in a and b. Note that for each T" except T' = Cs,

A3 B2, Dr, and DS are homogenous polynomials in Q [a, b] of degree ngy where

24 ifT = 02,04, 07, Cg X CQ, Cg X 04
nr = 6 if T = Cl, Cg, Cg, Cl(] (410)
8 if T = 067087 012, Cg X 06; CQ,CQ X Cg.
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We will now consider Ap(1,z), Br(1,z), Dr(1,z), and Dp(1,z) as functions
from R — R as well as the rational functions f7, gr, hy : R — R as defined below
Ar(Le)’ r T = 04, Cg

P& = o (4
s —x  for all other T except T' = C1, Cs.

T8 Dr(1,7)
|} =Br(1,2) = Ar(1,2) Dr(1,2) if T = Cy, Cs
gr(@) = Ar(1, x)z + Br(1, z) ﬁT(l,x) for all other T except T' = C1, Cs.
( (4.12)
Br(1,2)° — Dp(1,2)° if T = Cy, Cy, Cs
hr(z) =

r(1,2)* = Dp(1,2)° for all other T
The following \emma can be verified with a computer algebra system.
Lemma 4.9 Let fr(z), gr(x), and hp(x) be as defined above. Let 61 be the largest
real root of fr(z) and for each T let ~yr be given by
argest real root of Ar(1,z) if T = Cy, Cy, Cy

T =
argest real root of Dr(1,z) otherwise.

Then yp =1, if T = Cy x Cs, Cy x Cy and we have the approximations

( 63.4033 T = Cy
3243 if T = C, )
441147 if T = C1,C3,Cy
43.3677 if T = Cj

15.382 if T = Oy

7.07956 if T = Cs
759575 if T = C,

12.2476 if T = Cy

1.34123 if T = C;
4.75552 if T = Cy
or ~ and yr = ¢ 3.73205 if T = Cg, C1a, Cy x Cq
3.06311 if T = Cyy

6.2959 if T = Cx

3.89418 if T = Chs
417101 if T = Cg
432.569 if T = Cy x Cy
1.61803 if T = Cyo
2.41421 if T = Cy x Cs.
6.00485 if T = Cy x Cy ‘
\ (.38169 if T = Cy x Cy
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Moreover,

(1) For each T except T' = C1,Cs, Cs, the functions fr(x), gr(z), —Br(l,z) are
positive on the interval (é,00);

(i1) For each T, the functions hy(x) , Ap(1,x), Dr(1,2) are positive on the interval
(7, 00);

(1ii) On (yr,00), the function Dp(1,x) is negative if T = Cy, Cy,Cs and it is

positive for the remaining T

Corollary 4.10 For each T except T = Cs, let a and b be relatively prime positive
integers with a = 0 mod 6 and g > ~p where vy is as in the previous lemma. Assume
further that a = 0 modb (resp. a =0 mod7) whenever T = Cyg (resp. T = C5).
Then

(—=1728D7, A3, B%) is a positive ABC' triple if T = Cs,Cy, Cg

(1728 Dy, B2, A3) s a positive ABC' triple for the remaining T.
Proof By Lemma 4.6 and Proposition 4.7 it follows that they are ABC triples for
each T. Let t = 2 so that Dr(a,b) = a"* Dy here ny is as given in (4.10). By
Lemma 4.9 (m) the assumption that 2 rj(allo<:s us to conclude that —Dr(a,b)
is positive if T' = Cy, C4, Cg and that DT (a,b) is positive for the remaining 7. By

Lemma 4.9 (ii), Ar(1,x) is positive on (7, 00) and thus Ar(a,b) is positive for all T’

since Ar(a,b) = a”T/3AT((’) Q ]
Proposition 4.11 Let Py = (ay, by, co) be a positive ABC' triple with ag = 0 mod 6
and Z—g > dp. For each T except T = Cy,Cs,Cs, define PT = (a,,b,,c,) recursively

(ZRH Q (—1728DT<ambn) <
el Ar(an,by,)? f T = Cy,Cy

by

Cnt1 Br(an, bn)2
n+1 728DT(&n, bn)
il Br(ay, bn)2 or all other T.

I
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Assume further that ag =0 mod5 (resp. ag =0 mod7) whenever T = Co (resp.
T = C%7). Then for each n, the same congruences above hold for a,, Z—Z > 07, and
PT = (a,,b,,c,) is a positive ABC triple. Additionally, for n > 1, vs(ay) is even if
T =Cy,Cy x Cy,Cy x Cy.

Proof For each T and any given n we have that the statement on congruences is
automatic since Dr(ap,b,) = 0 moda,. Moreover, by Lemma 4.6 and Proposition

4.7 we deduce that P! is an ABC triple for each n. Now let fr be as defined in (4.11)

bn bn+1 bn
fT(an> 6 Qp+1 an.

By Lemma 4.9, fr is positive on (d7,00). Since Z—g > O, it follows that Z—ll > Z—g > Op

and observe that

and in fact we obtain an increasing sequence {Z—Z} (of rational numbers. Hence PT
is a positive ABC triple by Corollary 4.10.
Lastly, for T'= Cy, Cy x Cy, Cy x Cy, observe that ve(a,1) = vg (2”‘@2) there m

and k are positive even integers. Hence vq(a,,) is even for all n > 1. |

Lemma 4.12 For T = C5, let b = 2™ for some positive integer n. Then %ZA)T(l,b)
is a positive integer and rad(Dr(1,0)) < %ﬁT(l, b). For the remaining T, let (a,b, c)
be a good ABC' triple with a even and max {|a|,|b|,|c|} = |¢|. Then Dp(a,b) is an
integer and

rad(Dy(a,b)) < Drp(a,b) .

Proof We first consider the case when T' = Cj. By Lemma 4.9 (ii), the quantity
Dr(1,b) is positive since b > ~7. It suffices to show that %DT(I, b) is divisible by
21053 since this would imply that %ﬁT(l, b) is an integer and that any prime dividing
Dr(1,b) also divides %ﬁT(l, b), which is equivalent to the desired inequality. That
the quantity is divisible by 219 is clear. By Fermat’s Little Theorem we deduce that it
is divisible by 5% since the quantities (% — 20 —4), (b0 — 4b'2 4 160% — 24b* + 16),

and (b'® + 6b'% + 166% + 16b* + 16) are all congruent to 0 modulo 5.
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For T' # Cj5, we let (a,b,c) be a good ABC triple with max {|a|, |b], |c|} = |¢| and

a even. By definition, rad(abc) < ¢ and by properties of the radical we have that
rad (abed®) £ rad(abed) < rad(abe) rad(d) < crad(d) < cd

for any positive integers d and k. Moreover, if 2¥ divides a, then rad(Q%) K rad(a).
Using these two statements it is easy to verify by inspection that the claim(holds for
all T" with the possible exception of T = C'.

For T = ('}, we first observe that

rad(Dr(a,b)) < rad(4096 Dr(a,b)) = rad(Q(a, b)) where
Q(a,b) = ab(a+b) (a + 2b) (c( + 6ab + 40%) ((aQ —ab+b?) (

Moreover,

Qa,b) , ) )
—ab(a+B)—(a+2b)(t(+6ab+4b)(<a —Ab—l—b) 0 mod 8

and therefore (a + 2b) (a® + 6ab + 40*) (—a® — Ab + b*) = 8P for some P. The result

now follows since

rad(Q(a, b)) = rad(8ab (a + b) P)
= rad(ab (a + b) P) since a is even
< |a + b|rad(P)

A

<la+|P|= Dr(a,b) .
|

Proposition 4.13 Assume the statement of Proposition 4.11 with the additional as-
sumption that Py = (ag, by, o) is a good positive ABC' triple. For T # Cy,Cs,Cs, PT
is a good positive ABC' triple for each n.

Proof Fix T and let Py be a good positive ABC' triple with Z—g > d7. By Proposition

4.11, PT = (ay, by, c,) is a positive ABC triple, a,, is even, and Z—Z > 0 for each n.
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We proceed by induction on n and assume that P! is good. Since d > v7, we have
by Lemma 4.12 that
rad(a,110p41¢n11) = rad(Dr(ay, by) Ar(an, by) Br(an, by)) (4.13)
< DT(aTw bn) AT(@na bn) ’BT(ana bn)‘ .

Recall that the polynomials A3, B2, Dy, and DS are of the same homogenous degree

nr. Let t, = 2—" and observe that

n |Br(1,t,)| gr(t,) if T = Cy, Cy
a'm Ar(1,t,) gr(t,) for all other T

Cp+1 — [)T(ana bn) AT<an7 bn) ‘BT(G/TH bn)| =

Since t,, > dr, it follows that gz (t,) is positive\by Lemma 4.9 and hence the left hand
side is positive. Equivalently, DT(an, by) Ar(an, by) |Br(an, by)| < ¢ayi1. By (4.13), we
conclude that rad(a, 16, 11Cni1) < cnp1 and so P is a good positive ABC' triple for

each n, as desired. [ |

4.4 Proof of Theorem 4.1

Lemma 4.14 For each T except T = Cs, let PT = (ag,br,cr) be a good positive
ABC triple with ar =0 mod 6 and Z—; > ~p where yr is as in Lemma 4.9. Assume
further, that ap = 0 modb (resp. ar = 0 mod7) if T = Cyy (resp. T = C)
and that ve(ar) is even if T = Cy,Cy. Let Hy be the rational elliptic curve given
by the Weierstrass equation (4.9) in Theorem 4.8 with Ay = Ar(ar,br) and Br =
Br(ar,br). Then Hr is a good semistable elliptic curve with Hp(Q), = =T.

tors

Proof Foreach T, we have by Theorem 4.8 that Hr is a semistable elliptic curve with
Hp(Q), = T and that the discriminant Dy = Dr(ar, br) is minimal. Moreover, the
invariants ¢, and cg associated with a global minimal model of Hy are Ay and By,

respectively. By Corollary 4.10 we have that

if T'=Cy,Cy, Cyg
for all other T.

2
3 2 T
max{<4T,BT = ;
T
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Let ny be the homogenous degree of A3, B2, and DS and let t = 2L Observe that

hr(t) is positive by Lemma 4.9. Therefore
max { A% B2 — DS = a} hr(t)

is positive by Lemma 4.9. Since Hrp is semistable and Dy = 0 mod 6, we have that
rad(1728 D7) = Np, where Ny, is the conductor of Hr. Since P is a good ABC
triple, N, < ﬁT by Lemma 4.12 and therefore Hr is good. |

Theorem 4.1. For T' = (5, let b, = 2" and set Ar,, = Ar(1,b,) and Br, =
Br(1,b,). For the remaining T, let P = (ag, by, co) be a good positive ABC' triple
satisfying ap = 0 mod 6 and ap = 0 mod5 (resp. Ag =0 mod7) if T = Cyy (resp.
T = (7). Assume further the following conditions:

(a) If T = C}, let Z_?) > 0cy. Let PT' = {(an,bn,cn)}, be the sequence of ABC
triples associated to T' = Cy.

(b) If T = Cy, let 2 > yp. Let PT = {(an,bn,cn)}, be the sequence of ABC
triples associated to T'= Cy x Cy.

(¢) For the remaining T, let Z—g > 0r and let P = {(an,bn, ¢u)},, be the sequence
of ABC' triples associated to T'.

For each T except T = Cs, let Apg = Ar(ag, by) and Brg = Br(ag, by), and define

Ar,, and Br, recursively by
AT,n+1 = AT(an7 bn) and BT,nJrl = BT(ana bn) .

For each positive integer n, let Hr,, be the rational elliptic curve given by the Weier-
strass equation (4.9) in Theorem 4.8 with Ay = Ar,, and Br = Br,. Then each

Hr,, is a good elliptic curve with Hy,(Q), .. = T. Moreover, each Hy, is semistable

tors

away from 5 for each T'. If T' # Cj, then Hrp,, is semistable.

Proof By Theorem 4.8, Hy,, is the reduced minimal Weierstrass model of Hr, and

the invariants ¢4 and ¢g are ¢4 = Ap,, and c¢s = Br,,, respectively.
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We first consider the case when 7" = C5. By Theorem 4.8, Hrp, has additive
reduction at 5 for each n and hence vs(Np,., ) (= 2 where Ny, denotes the con-
((;T(Lbn)) < Dy(1,b,) by Lemma

4.12. By Lemma 4.9, Dyp(1,b,), Ar(1,b,), and hy(b,) are positive for each n

ductor of Hrp,. In particular, Ny, = Srad

and hence max { bn »B7, = A%},. In particular, Hr, is a good elliptic curve
since A%, > Dp\(1,b,)° and thus A3, > Ny, for each n. By Theorem 4.8,
Hp, (Q),,. = Cs for each n.

For the remaining 7', let B be a good ABC triple. By Proposition 4.11 and
Proposition 4.13 we have that for each P? satisfies the assumptions of Lemma 4.14.

Hence each Hr, is a good semistable elliptic curve with Hr,(Q), .. = T. u

tors

Lemma 4.15 Let E be a good semistable elliptic curve with minimal discriminant

Ap =0 mod6. Then the ABC triple (1728Ag, —c3, c2) is good.
Proof Since F is good,
Np <max{ ¢} ,¢g < max{ Ci e, 1728 | Ag|

where Ng is the conductor of F and ¢; and c¢g are the invariants associated with a
global minimal model of E. Since F is semistable and Ag = 0 mod 6, rad(1728Ag) =
Npg. Now observe that

rad(1728 Acycs) = Ngrad(cacs) < Ng |cyl |cg| -

It suffices to show that Ng|cy||cs] < max{|c]|,c2} since this would imply that
rad(1728 Acycs) < max{|c3|, 2, 1728 |Ag|}.

Case 1. Suppose max{|c3| 2} = |¢3]. Then Ng < |es]"/? and |cg| < |ca|*®. Thus

Ng Jeal fes| < [ea]? Jea [eaf? = €}

Case I1. Suppose max{|c3|, 2} = 2. Then Ny < |cs|"* and |cs| < |cs|”’®. Hence

Ng lea [es| < |es" [es|*® |es| = ¢

which concludes the proof. [ |
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The following result now follows.

Corollary 4.16 Assume the statement of Theorem 4.1. Let {Hr,}, -, be the se-
quence of good elliptic curves associated to'l' = Cy,Cy. Then { 28D7 —A%n, B%,n
1s a sequence of good ABC' triples for each n.

Remark The converse to the previous lemma does not hold. Let E be the elliptic

curve given by the Weierstrass equation
E:y? 4+ 2y = 2 — 2342114817z — 46491207963039.

The curve E is semistable and its discriminant A is minimal. Let ¢4 and ¢g be the

invariants associated to a global minimal model of E, given explicitly below
A = —23397367°1273, ¢4 = 19-53- 157 - 251 - 2833, ¢ = 13%73 - 5651 - 576166333.

The positive ABC triple (—1728A, c3, ¢2) is good and satisfies A = 0 mod 6, yet E is
not good since max {cj, 2} = c2 < N%. However, F is 3-isogenous to the good elliptic
curve

F oy 4+ oy = 2° — 193149169647z — 32672893402475361.

4.5 Examples

Recall that for an ABC triple P = (a,b,c) and a rational elliptic curve E, the
quality ¢(P) of P and the modified Szpiro ratio o(FE) of E are defined as

_ log(max{|A[,[B],[C]}) _ log(max {|ci], [§[})

atP) = rad(ABC) and o (B) = logN g

where Ng is the conductor of E' and ¢4 and c¢g are the invariants associated to a global
minimal model of E. Moreover, P is a good ABC triple if and only if ¢(P) > 1 and
E is a good elliptic curve if and only if 0,,(E) > 6. Due to computational limitations,
it is difficult to find ¢(P) and o,,(E) for the second term of our sequences since they
require the factorization of very large numbers. To bypass this, we use Lemma 4.12
for T # C5. We start with the following definition which will be used to bypass the

need of factorization of large numbers.
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Definition 4.1 Consider the ABC' triple P = (1728Dr, B2, A3) and let Hy =

Hr(Ar, Br) be the elliptic curve defined in Theorem 4.8. The pseudo quality ¢'(P)

of P and the pseudo modified Szpiro ratio o, ,(Hr) of Hr are as defined below

max{|A%|, BZ,[1728 Dr|})
log ATBTDT

_ log(max {|A}[, B3})

¢'(P) = Log( and o (Hr)

log Dy

Lemma 4.17 Let (a,b,c) be a good ABC' triple with a = 0 mod6 and let Ay =
Ar(a,b), Br = Br(a,b), Dy = Dr(a,b), and Dy = Dr(a,b). Let P be the ABC
triple (1728 Dy, B2, A3.) and let Hr = Hy(Ar, Br). Then

q'(P) < q(P) and ol (Hr) < on(Hr).

Proof Note that rad(1728D7) = rad(Dr) = Np, where Ny, is the conductor of
Hyp. By Lemma 4.12, Ny, < Dr and rad(1728A;BpDy) < ApBrDyp . These two
inequalities respectively imply that o, (Hr) < 0,,(Hr) and ¢'(P) < q(P). n

Remark Whenever we use the pseudo quality or pseudo modified Szpiro ratio, we

will place a * by the number, e.g. 6.07*.

The table below list the initial exceptional ABC triple PY = (ag, by, co) for T' # Cs.

We also give the approximate values of its quality q(POT ) (énd the ratio Z—g

T i ML GHE:
Cy,Cy, Cra, Cy x Cy, Cy x Co, Cy x C | (253,472, 7) 10258 | 11.505
Cs, Cy, Cy x Cy (2243, 3°7°,17%) | 1.0969 | 484.6
Remaining T (2-34,5-71,23%) | 1.1090 | 74.1

Note that for each T' # C1, Cs, C5, we have % > )7 and in the case of T'= C1, Cy we
have Z_?) > vp. Let { e ., be the sequence of good ABC' triples given in Proposition
4.11 associated to T\for T" # C},Cs, Cs. While ag does not satisfy the necessary
congruences for some of the triples above, we check that P/ is a good ABC triple and
so AT satisfies the required congruences of this chapter. Thus we are able to conclude

that each P! is a good ABC triple. Moreover, let Hr,, denote the exceptional elliptic
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curve associated to P! as in Theorem 4.1. We also mention that in all examples when

=T.

ar, does not satisfy the necessary congruences, we still have that E71(Q),, .
T o(PT) oulBr) | a(PY)( o (Era)
Ch — \ 6.3029643908 | — \ 6.0000000048*
Cy — 6.7239778673 | — 6.0000000000*
Cs 1.0189474430 | 6.1016117819 | 1.0000000000* | 6.0000000000*
Cy 1.0036966403 | 6.1355002205 | 1.0000000966* | 6.0000007851*
Cs 1.0000365997* | 6.0759107746 | 1.0000002115* | 6.0000074862*
Cr 1.0042477843 | 6.1562385739 | 1.0000000000* | 6.0000000000*
Cs 1.0000008631* | 6.0747174816 | 1.0000000000* | 6.0000000000*
Co 1.0011947214 | 6.0432683528 | 1.0000000001* | 6.0000000048*
Cho 1.0048032166 | 6.1771707434 | 1.0000000000* | 6.0000000000*
Cha 1.0008399918 | 6.0303672474 | 1.0000000000* | 6.0000000000*
Cy x Cy | 1.0036975919 | 6.1354933081 | 1.0000001278* | 6.0000005612*
Cy x Cy | 1.0010799142 | 6.0384795691 | 1.0000000000* | 6.0000000001*
Cy x Cg | 1.0008421129 | 6.0303765948 | 1.0000000778* | 6.0000028021*
Cy x Cyg | 1.0000421851 | 6.0206718011 | 1.0000000000* | 6.0000000000*

Lastly, for T' = Cj, let Hrp,, be the sequence of elliptic curves corresponding to

T = C5 in Theorem 4.1. Then

n 1

Um(En>

6.2766

6.1155 | 6.0730

6.0533

6.0420

6.0347
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5. CLASSIFICATION OF MINIMAL DISCRIMINANTS

Let E be an elliptic curve over a number field K. Frey [37] proved that if E(K)
contains a point of order ¢ for ¢ a prime greater than 3, then E is semistable at
all primes p of K whose residue field has a characteristic different from ¢. Flexor
and Oesterlé [38] then showed that if E(K) contains a point of order n and F has
additive reduction at a prime p of K whose residue characteristic does not divide n,
then n < 4. Moreover, if E' has additive reduction at at least two primes of K with
different residue characteristics then n divides 12.

The proof of these results and their generalizations to abelian varieties [39] require
a study of the Néron model of the abelian variety. In this chapter, we give a new
effective proof of Frey’s and Flexor-Oesterlé’s result, but note that for Frey’s result,
our proof only holds for ¢ = 5,7. Let T be one of the fourteen non-trivial torsion
subgroups allowed by Mazur’s Torsion Theorem. In section one, we show that if T #
Cs, Cyx (Cy, then there are two-parameter families of elliptic curves which parameterize
all elliptic curves over K with 7' — FE(K). Care must be taken for T = Cj by
considering those rational elliptic curves E whose j-invariant is 0 and 7" — E(K)
separately. For T' = Cy, Cy x (5, we must assume that K has class number one in
order to parameterize elliptic curves with T'— E(K) by a three-parameter family of
elliptic curves.

In section two, we use these families of elliptic curves to give an effective proof
of Frey’s and Flexor-Oesterlé’s result. In section three, we restrict our attention
to rational elliptic curves and use the effective version of Frey-Flexor-Oesterlé to
provide necessary and sufficient conditions for a given polynomial to coincide with
the minimal discriminant of a rational elliptic curve with non-trivial torsion. Section 4
is devoted to the proof of the classification of minimal discriminants of rational elliptic

curves with non-trivial torsion subgroup. In section 5 we build on the classification
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of minimal discriminants and provide necessary and sufficient conditions for when
additive reduction occurs on a rational elliptic curve with non-trivial torsion. We

conclude the chapter with a couple of examples.

5.1 Parameterization of Certain Elliptic Curves with non-Trivial Torsion

Let K be a number field with ring of integers Rx and let E be the elliptic curve

given by the Weierstrass model
E 9y +aiwy + azy = 2° + agx® + agr + ag (5.1)

where each a; € K. Suppose further that P = (a,b) € E(K) is a torsion point of
order N. Then the admissible change of variables x — x —a and y — y — a results
in a K-isomorphic elliptic curve with P translated to the origin. In particular, we

may assume that ag = 0 in (5.1) and that P = (0,0).

5.1.1 Point of Order N =2

First suppose N = 2, so that P = —P. By [4, 1I1.2.3], —P = (0, —a3) and so
az = 0. The change of variables z — u2z and y — 63y + u?sz with u = (2a1) "

and s = —% results in a K-isomorphic elliptic curve given by the Weierstrass model
Y=+ (a‘l1 + 4a§a2) 2 1+ 16atas.

As a result, if E is an elliptic curve over K with a torsion point of order 2, we may

assume that E is given by the Weierstrass model
E:y2 = 23 + asx® + ayx

where each a; € K. In fact, we may assume that as,a4 € Rg since the admissible

change of variables z — u 22 and y — u 3y results in the Weierstrass model

y2 =23+ a2u2332 + a4u4:v.
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Note that if a2 — 4ay is a square in K, then 22 + asx + a4 = (v + «) (v + 3) for
some «, f € K. In particular, we observe that F has full 2-torsion in K if and only

if a3 — 4ay is a square since (—a, 0) is a torsion point of order 2.

Lemma 5.1 Let K be a number field with class number equal to 1. Let E be an
elliptic curve over K with a rational torsion point P of order 2. Suppose further that

E does not have full 2-torsion over K. Then E is K-isomorphic to the elliptic curve
Ec,(a,b,d) : y* = 2° + 2a2” + (a® — b°d)
for some a,b,d € Ry with d # 1,b # 0 such that ged(a, b) and d are squarefree.

Proof By the above discussion, we may assume that F is given by the Weierstrass
model
E:y? =2°+ a2 + aux
with ag, a4 € R and P = (0,0).
Since F[2] #+ FE(K), we have that a3 — 4ay4 is not a square in K. Then

23+ agr? + agr = x (v — 0y) (v — 0y)

with 61 = a 4+ bv/d and 0, = a — b\/d for some a,b,d € Ry with d # 1,b # 0, and d

squarefree. Therefore
E:y? =2’ + 2a2® + (a® — b*d) f.

Now suppose ged(a,b) = ¢*h with h squarefree. Then the admissible change of

variables x — g%z and y — ¢y results in the K-isomorphic elliptic curve

5 202 (a® —bd)
Y =x" + 7 + o x.

In particular, we may assume that ged(a,b) and d are squarefree, which completes

the proof. [ |

Remark If we omit the condition that K has class number equal to 1, the lemma

still holds with the omission that the ged(a, b) is squarefree.
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Lemma 5.2 Let K be a number field with class number equal to 1. Let E be an
elliptic curve over K with a rational torsion point P of order 2. Suppose further that

E has full 2-torsion over K. Then E is K-isomorphic to the elliptic curve
Ecyxoy, = Ecyxey(a,b,d) - y* = 2% + (ad + bd) 2* + abd?
for some a,b,d € R — {0} such that ged(a,b) = 1 and d is squarefree.

Proof By the above discussion, we may assume that F is given by the Weierstrass
model
E:y2 = 2% + ayx? + ayx
with as,ay € Ri and P = (0,0).
Since E[2| — E(K),

23+ ayr® +agr =z (. + A) (v + B)
=2+ (A+ B)z+ ABx

for A, B € Rx —{0}. Now suppose that gcd(A, B) = g?d with d squarefree. Then the
admissible change of variables x — ¢g?z and y — g3y results in the K-isomorphic

elliptic curve
A+ B AB
y2:$3+( i )ZE+ 5T
g
and so we may assume that gcd(A, B) = d. Taking A = ad and B = bd gives the

lemma. [ ]

Remark If we omit the condition that K has class number equal to 1, the lemma

still holds with the omission that ged(a,b) = 1 and d is squarefree.

5.1.2 Point of Order N =3
Now suppose N > 3 and once more consider the elliptic curve F over K given by
the Weierstrass model
E:y* +a1zy + asy = 2 + axx® + aqx (5.2)

with P = (0,0) the point of order N.
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Lemma 5.3 Let E be given by the Weierstrass model (5.2) and P = (0,0) a torsion
point of order N.

(1) If N > 3, then ag # 0 and, after a change of coordinates, we can suppose
as = 0.

(73) If a3 # 0 and aqg = 0, then P is of order 3 if and only if as = 0.
Proof See [40, Lemma 1.1]. u

Corollary 5.4 Let E be an elliptic curve over K with a rational torsion point of
order 3. If the j-invariant of E is non-zero, then E is K-isomorphic to the elliptic
curve

X(Cs) - y* + ay + ty = 2°

for some t € K*.
Proof By Lemma 5.3, we may assume that F is given by the Weierstrass model
By +axy + asy = 2°.

The invariant ¢, = a; (a3 — 24as3). Since the j-invariant of F is 0 if and only if ¢4 = 0,
we may assume that a; # 0 and a} — 24ag # 0.
Since a; # 0, the admissible change of variables z — a?z and y — a’y results

in the K-isomorphic elliptic curve
a
vty + —y =2
ay

and so we may take ¢t = 2% which completes the proof. [ |
1

5.1.3 Point of Order N > 4 and Modular Curves

Lemma 5.5 (Tate Normal Form) Let E be an elliptic curve over K with a ratio-
nal torsion point of order N > 4. Then every K-isomorphism class of pairs (E, P)
with E an elliptic curve over K and P € E(K) a torsion point of order n contains a

unique model of the form

v+ (1 —gzy— fy=2a’— fa’ (5.3)
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with f,ge K*, g€ K.
Proof See [40, Proposition 1.3]. u

By the proof of the above lemma, we observe that the model is indeed independent
of the characteristic of K. Now let T'= Cy where N =4,...,10,12. For these T, we
defined the elliptic curve &;(T) in Table 2.1 and its Weierstrass model is (5.3) with f
and g as in the lemma. Now assume further that T'= Cy as above or T' = Cy x Cy)s

where M = 2,3,4. We now restate the result given in the introduction.

Proposition 5.6 Let E be an elliptic curve over K with T — FE(K). Then there is
at € K such that E is K-isomorphic to X,(T).

5.1.4 The Elliptic Curves Er(a,b) and Er(a,b,d)

Let T be one of the fourteen non-trivial torsion subgroups allowed by Theorem
2.1 and let Ep be the elliptic curve defined in Table D.1. Then for T'= C5, Cy x Cj,
Er = Er(a,b,d) is the three parameter family of elliptic curves which was the subject
of Lemmas 5.1 and 5.2. For T' # C5,Cy x Cy, we show that Er = Er(a,b) is K-
isomorphic to A4, (7T"). For the following lemma, let ar, fr, and v be as defined in

Tables D.2, D.3, and D.4, respectively.

Lemma 5.7 ForT # C,, CoxCs, the elliptic curves Xyo(T) and Er are K -isomorphic
for coprime elements a,b € Ryx. Moreover, the discriminant of Er is yr and the in-

variants ¢4 and cg of Er are ar and Br, respectively.
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Proof Let
( (Z it T = Gy, C4, Cs, Cs, Cy x Cly

2 it T =0y

ab if T = Cj
3 if T = Cy

U =

CL(CL2 — 3ab + b%) if T =CYy

a(—a+b)° if T = Cyy

—9a2 + b? if T = Cy x C

2

\ Cb (a +4b) (—a? + 8b?) if T = Cy x Cs.

Then the admissible change of variables x — u;’z and y — u;’y gives a K-
isomorphism from A} ,(7") onto Er = Ep(a,b). It is now verified via the formulas in
(2.2) that the discriminant of Er is vy and that the invariants ¢4, and cg of Ep are

ar and (7, respectively. [ |

5.2 Explicit Flexor-Frey-Oesterlé
We begin by formally stating the results of Frey and Flexor-Oesterlé.

Theorem 5.8 (Frey, [37]) Let E be an elliptic curve over K. If E(K) contains a
point of prime order £ > 3, then E is semistable at all primes p of K whose residue

characteristic is different from £.

Theorem 5.9 (Flexor-Oesterlé, [38]) Let E be an elliptic curve over K. If E(K)
contains a point of order N and E has additive reduction at a prime p of K whose
residue characteristic does not divide N, then N < 4. Moreover, if E has additive

reduction at at least two primes of K with different residue characteristics then N

divides 12.

Now let E7p be as defined in the previous section. In the previous section, we

saw that these families of elliptic curves parameterize all elliptic curves over K with
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T — E(K) where T is one of the fourteen non-trivial torsion subgroups allowed by
Theorem 2.1. Moreover, the discriminant of E7r is given by yr and the invariants ¢,
and cg are ap and fr, respectively. In the following lemma, we consider ar, B, yr as

polynomials in S = Z[a,b,d,r, s].

Lemma 5.10 Let ar,Br,yr be as given in Tables D.2, D.3, and D.4, respectively.
For j =1,2,3, let ,ug,?), u:(ﬁ') be as defined in Tables D.5 through D.10. Then for each
T, the identity o — 3% = 17287 holds in S and we have the additional identities in
S:

In particular, for T # Cy, Cy x Cy suppose K is a number field with ring of integers

Ry and a,b € Ry such that the principal ideals generated by a and b are coprime.

uar + v gy uar 4+ v p 1 Br + v T
2832 (rb*d® + sa®) | 20 (rbSd® + sab) 212 (rbBd* + sa') Cy
2633a3 (ra® + sb3) | 215353 (ra® + sb%) | 263%* (ra® + sb?) Csy
283%a% (ra® + sb°) | 2'2a? (ra'? + sb) | 28a3 (ra'! + sb') C,
213%5 (ra® + sb”) | 5 (ra'® + sb') 53 (ra'™ + sb'7) Cs
273% (ra® + sb) 2134 (ra's + sb°) 2933 (ra'™ + sb'") Cs
21327 (ra'® + sb'%) | 7% (ra®' + sb') 7 (ra* + sb®) Cq
273% (ra'® 4 sb'?) | 2% (ra®® + sb3') 29 (ra®* + sb®) Cyg
234 (12 4 sb2) | 34 (ra¥ + sb*) 33 (ra® + sb°%) Co
273%5 (ra® + sb®) | 2*5 (ra*” + sb*7) 285 (ra® + sb*") Cho
2734 (ra® + sb®) | 243% (raS? + sb%3) | 2933 (ra™ + sb™) Cha
2532d* (ra* + sb*) | 2*d° (ra® + sb®) 27d® (ra® + sb®) Cy x Cy
21432 (ra® + sb®) 216 (gt + sb'?) 224 (ral® + sb'0) Cy x Cy
23134 (ra'® + sb1%) | 2534 (ra® + sb®) | 2°633 (ra3* + sb®) | Cy x Cg
21932 (ra38 + sb3®) | 2™ (ra®? + sb%?) 290 (ra™ + sb7) Cy x Cy
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Then the ideal (cp(a,b) + Br(a,b)) C yRxk and the ideals (ar(a, b)) + (Ar(a,b)) and
(Br(a,b) +yr(a,b)) are contained in the principal ideal 6 Ry where v and § are:

T 03 04 05 Cﬁ C7 Cg Cg ClO 012 02 X C4 CQ X Cﬁ CQ X Cg
6a | 6a | 30 | 6 |42 6 | 6 | 10 6 2 6 2
0|6a|2a| b5 |6 | 7] 2|3 ]10 6 2 6 2

Proof The identities can be checked with a computer algebra system. For the second
statement, note that since the ideals generated by a and b are coprime, it follows that
the ideals generated by a™ and 0™ are coprime for any positive integers n and m. In
particular, there exist r, s € Rg such that ra” 4+ sb™ = 1 and thus the second claim

now follows. u

Theorem 5.11 Let E be an elliptic curve over a number field K with ring of integers
Rk . Suppose further that the j-invariant of E is not 0 or 1728 and that T — E(K)
for one of the T in the previous lemma. If E has additive reduction at a prime p of
K, then the residue characteristic of F, = Ry /p is one of the following elements of

the set of primes S':

T 03 04 05 06 07 Cg 09 CIO
S {23 us. | {2}us. | {5} {2,3y [ {7} | {2} | {3} [ {5}

T 012 Cg X 04 CQ X Cﬁ 02 X Cg
S| {23} {2} {2,3} {2}

where S, = {p a prime | p divides |Ry/aRk|} for some a € R.

Proof Let E be an elliptic curve with 7" — E(K) and assume that E has additive
reduction at a prime p of K. By Lemma 5.7, there are coprime elements a,b €
Rk such that E is K-isomorphic to Er = Er(a,b). Now let z — ugx + 7, and
Yy — ugy + spugx + t, be an admissible change of variables resulting in a minimal
equation for Ep at p. Since Erp is given by an integral Weierstrass model, we have

that uy, sy, 7,1, € Rk, by Lemma 2.4 where R, denotes the ring of integers of K.
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Let A, denote the minimal discriminant with respect to p and let csp and cg), be
the associated invariants so that 1728A, = ¢}, — ¢§,. Moreover, A, = u,?yp and
Cap = up_404T are both in Rg, and by Lemma 5.10, ¢4, Rk, + Ay Rk, C ar(a,b) Rg, +
yr(a,b) Rk, C 6Rk, where 0 is as in Lemma 5.10. Since £ has additive reduction at
p, we have that v,(A,),v(cqp) > 0 and therefore v,(§) > 0. In particular, the residue
characteristic of v, divides ¢. This shows all cases claimed except for T = ('jy. Note
that if Cjp — E(K), then C5 — E(K). Therefore E¢,,(a,b) is K-isomorphic to
Ec, (', ) for two coprime elements o', € Rg. In particular, if E¢,, has additive

reduction at a prime p, it follows that the residue characteristic of p is 5. [ ]

This is Frey’s result in the case when ¢ = 5,7. To attain Flexor-Oesterlé’s result,
observe that only for T' = C3, Cy, Cg, C12, and Cs x Cy is additive reduction possible

at two or more distinct valuations with different residue characteristic.

Proof [Proof of Flexor-Oesterlé|Let E be an elliptic curve over K with a rational
torsion point of order N. First suppose E has additive reduction at a prime p of K
whose residue characteristic does not divide N. If ¢ divides N for £ > 3 a prime, we
have by Frey’s Theorem that the residue characteristic of p must divide N. If 6, 8,
or 9 divides N, then the residue characteristic of p must divide N by Theorem 5.11.
Therefore N < 4 since the only primes dividing N are 2 and 3.

Next, suppose E has additive reduction at at least two primes of K with different
residue characteristics. By Frey’s Theorem, the only primes dividing N are 2 and 3.

By Theorem 5.11, 8 nor 9 divide N and so N =1,2,3,4,6,12. [ |

5.3 Classification of Minimal Discriminants

In this section, we restrict our attention to rational elliptic curves. As before, let
T be one of the fourteen non-trivial torsion subgroups allowed by Theorem 2.1 and
let Er be as given in Table D.1. Then if F is a rational elliptic curve with 7' — E(Q)
where T # Cy, Cy x Cs, we have that there are relatively prime integers a and b

such that E is Q-isomorphic to Er = Er(a,b). If T'= Cy and E does not have full
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2-torsion, then E is Q-isomorphic to Er = Ep(a,b, d) with ged(a, b) and d squarefree
integers. For T' = Cy x Cy, E is Q-isomorphic to Er = Er(a,b,d) with a and b
relatively prime and d squarefree. However, we can assume in this case that a is even

as demonstrated in the following lemma.

Lemma 5.12 Let T = Cy x Cy and suppose T — E(Q). Then there are integers

a,b,d with a and b relatively prime, a even, and d a positive squarefree integer.

Proof By Lemma 5.2, E is Q-isomorphic to
Er:y* = 2% + (ad + bd) 2 + abd?

where a, b, d are integers such that a and b are relatively prime and d is a squarefree
integer. By the proof of Lemma 5.2, d may be assumed to be positive. It remains to
show that a may be assumed to be even. Observe that if b were even, then we can
interchange a and b. So suppose a and b are odd. Then ¢ = b — a is even and the
admissible change of variables x —— x — ad gives a Q-isomorphism from Er onto the

elliptic curve given by the Weierstrass model
y* = 2° + (cd — ad) 2* — acd®z.
This shows that we may assume a to be even. [ ]

Lemma 5.13 For T # C,,Cy x Cy, we have that Er(—a,b) is Q-isomorphic to
ET(CL, —b)

Proof Let E and E’ be rational elliptic curves. Suppose further than the invariants
¢4 and cg of their Weierstrass model coincide. Then F and E’ are Q-isomorphic since

they are both Q-isomorphic to the elliptic curve
y2 — 2% — 27cqx — Hdcg.

In particular, the invariants ¢4, and cg of a Weierstrass model determine an elliptic

curve up to Q-isomorphism.
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Since ar(a,b) and Br(a, b) are the invariants ¢, and ¢ of the Weierstrass model of

Er(a,b), it suffices to verify by the remark above that the following equalities hold:
ar(—a,b) = ar(a, —b) and Br(—a,b) = pBr(a,=b) .
This is easily checked via a computer algebra system such as Mathematica [30]. W

Remark Henceforth, we will assume that a is even in the Weierstrass model of E7p

for T' = Cy x Cy. Similarly, we will assume that a is positive in the Weierstrass model

of ET for T 7é CQ, Cg X CQ.
We now state the main theorem of this section.

Theorem 5.14 The minimal discriminant of Er is up'*yr where ur is one of the

possibilities below

T Cg 03 04 05 CG C? CY8

up | 1,2, 004 | *d | c or2c 1 1 or?2 1 1 or?2

T Cg 010 012 02 X CQ 02 X C4 CQ X 06 CQ X Cg

urp 1 lor2| 1lor2 | lor2 |1,2,0rd4 | 1,4 or16 | 1,16, or 64
where

3d%e with d and e squarefree and ged(d,e) =1 if T = Cy (5.4)
a= .
2d with d squarefree if T'= Cy.

Moreover, th&re are necessary and sufficient conditions on a, b, d to determine exactly

the value of ur. Table 5.1 summarizes these necessary and sufficient conditions.
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T Conditions on ur
Cy ur=4 <= vy (b?d—a?) > 8 with va(a) = vy(b) =1 and 27'a =
1 mod4.
ur =2 <= either (i) ur # 4, vo (b*d —a®) > 4 with vy(a) =
vo(b) = 1 and d = 1 mod4, (ii) ve(b) > 3 and a =
—1 mod4, or (iii) a = 3b with b a squarefree even
integer not divisible by 3.
ur =1 <= The previous conditions are not satisfied.
Cy ur =2¢ <= wy(a) > 8 is even with bd =3 mod4
ur =c <= The previous condition is not satisfied.
Cs ur=1 <= w(a+b) <3
ur =2 <= w(a+b)>3
Cy ur = < wyfa) #1
ur =2 <= wy(a)=1
Cho ur=1 <= a is odd.
ur =2 <= a s even.
Cia ur =1 <= a is odd.
ur =2 < a s even.
CoxCy | ur=2 <= wa)>4andbd=1 modd4.
ur =1 <= The previous condition is not satisfied.
CoxCy| ur=1 <= wuy(a) <1
ur =2 <= wy(a) > 2 and ve(a + 4b) <
ur =4 <= wy(a) =2 and vg(a +4b) > 4.
CoxCs | ur = <~ w(a+b) =
up = <~ wla+b) >
r=16 <= w(a+b)=

continued on next page
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Table 5.1.: continued

T Conditions on up

CoxCg | ur=1 <= aisodd.
ur =16 <= w(a) =1

ur =64 <= wy(a) >2

In Theorem 5.11, we considered elliptic curves whose j-invariant was not 0 or
1728. Consequently, in order to prove Theorem 5.14 as stated we need knowledge of
when FE7 has j-invariant 0 or 1728. Below we prove a series of easy lemmas which

will allow us to distinguish those Er’s whose j-invariant is 0 or 1728.

Lemma 5.15 Let E be a rational elliptic curve with a rational torsion point of order
N > 4. If E has j-invariant 0, then E is Q-isomorphic to Ec,(3,—1). If E has
j-invariant 1728, then E is Q-isomorphic to E¢, (8, —1).

Proof From (2.2) it is checked that j = 0 if and only if ¢, = 0. Similarly, j = 1728
if and only if ¢ = 0. By Proposition 5.6 and Lemma 5.7, F is Q-isomorphic to Ep
for some T'. We now consider the cases when j = 0 and j = 1728.

Case I. Suppose 7 = 0. Then the invariant ¢4 of F is 0. In particular, it suffices to
check when there are integer solutions to the equations a7 = 0. By inspection, this
only occurs for T' = (s with a = 3 and b = —1 since we assuming a to be even by
Remark 5.3.

Case II. Suppose 7 = 1728. Then the invariant cg of E is 0. In particular, it suffices
to check when there are integer solutions to the equations Sy = 0. By inspection,
this only occurs for T = C); with @ = 8 and b = —1 since we assuming a to be even

by Remark 5.3. ]

Lemma 5.16 Let E be a rational elliptic curve with a rational torsion point of order
N = 3. Then the j-invariant of E is not equal to 1728. Moreover, if the j-invariant
of E is 0, then E is Q-isomorphic to either Ec,(24,1) or

Eco(a) : v’ 4 ar = 2°
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for some cubefree integer a.
Proof By Lemma 5.3, we may assume that F is given by the Weierstrass model
E:y* + ajzy + azy = 2°

for some integers a; and ay. Then ¢4 = a; (a3 — 24a3) and ¢g = —a$ + 36a3as — 216a3.
By inspection, ¢ = 0 does not have any real solutions and therefore there is no elliptic
curve E with a torsion point of order 3 which has j-invariant 1728.

Next, the j-invariant of E is 0 if and only if ¢4 = 0. In particular, either a; = 0
or aj — 24a3 = 0. We consider each of these cases separately.

Case I. Suppose a; # 0. Then E is Q-isomorphic to Er(a,b) for some relatively
prime integers a and b by Corollary 5.4. But then ar = a®(a — 24b) = 0. Conse-
quently, a — 24b = 0 and so a = 24b. Since a and b are relatively prime, we conclude
that E is Q-isomorphic to E¢,(24,1).

Case II. Suppose a; = 0. Then

E:y?+ azx =23

We claim that E' is Q-isomorphic to Egg (a) where a is the cubefree part of az. Indeed,

3a with @ and ¢ positive integers such that a is cubefree. Then the

write as = ¢
admissible change of variables x — a?z and y — a3y gives a Q-isomorphism from
E onto

Ego(a) : y? 4 ar = 2°,

which concludes the proof. [ |

Corollary 5.17 For a cubefree integer a, Ecg = ECg(a) 15 a global minimal model for

Ecg. Moreover, Egy has additive reduction at each prime dividing the discriminant.

Proof Let A denote the discriminant of Eg and cg the invariant associated to the

Weierstrass model of Egy. Then

A= —-33* and cs = 233342
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Observe that for p a prime, v,(A) < 11 since a is cubefree. In particular, Ego is a
global minimal model for Egg. It now follows that Eqo has additive reduction at each

prime dividing the discriminant. [ ]

Lemma 5.18 Let T = Cy. Then

(1) If Ex has j-invariant 0, then it is Q-isomorphic to Er(3b,b, —3) for b a square-
free integer not divisible by 3.

(13) If Er has j-invariant 1728, then it is Q-isomorphic to E1(0,b,d) for squarefree

integers b and d.
Proof (i) If Er has j-invariant 0, then ar = 0. In particular,
ar =16 (3’d+d*) £0 = a®=-3bd

Since ged(a,b) and d are squarefree, it follows that d = —3 and a = 3b with b a
squarefree integer not divisible by 3.

(17) If Ep has j-invariant 1728, then
ﬁT:—64a( 2d—a2) 0 = a =0 or a® = 9b?d.

Since d # 1, it follows that the latter cannot occur. Consequently, a = 0. Now
suppose b = b2e for e a squarefree integer. Then the admissible change of variables

z — br and Y — Bgy gives a Q-isomorphism from FE7 onto
B y? =2 — e*da.
In particular, we may assume b is a squarefree integer which concludes the proof. m

Lemma 5.19 Let T = Cy x Cy. Then the j-invariant of Er is nonzero. Moreover, if
Er has j-invariant 1728, then Er is Q-isomorphic to Ep(2,1,d) for some squarefree

integer d.

Proof Towards a contradiction, suppose the j-invariant of Ep is 0. Then

ar = 16d> (a2 —ab+ b2) C 0.



101

But this is a contradiction since a? — ab + b% # 0 for integers a and b.

Next, suppose the j-invariant of Ep is 1728. Then
fBr =—32(a+0b)(a—2b)(2a —b) =0

Since a and b are relatively and a is assumed to be even by Lemma 5.12, we have
that Sy = 0 if and only if @ = £2 and b = 1. The admissible change of variables
x — = — 2d gives a Q-isomorphism from FEr(2,1,d) onto Ep(—2,—1,d), which

concludes the proof. [ |

5.4 Proof of Theorem 5.14
The proof will rely on extensive use of Kraus’s Theorem which we recall below:

Lemma 2.6 Let o, 3, and 7y be integers such that o® — 3% = 1728y with v # 0. Then
there exists a rational elliptic curve E' given by an integral Weierstrass equation having
invariants ¢4 = a and ¢g = ( if and only if the following conditions hold:

(1) vs(B) # 2;

(1) either f = —1 mod 4 or both ve(a) > 4 and =0 or 8 mod 32.

The following corollary is automatic by Lemma 2.4 and the definition of an integral

Weierstrass model.

Corollary 5.20 Let E be a rational elliptic curve which is given by an integral Weier-
strass model. Let ¢, and cg be the invariants associated to this model. If x — vz +7

and y — u® +u?sx +w is an admissible change of variables between E and a global

4 6

minimal model of E, then a = u~

Theorem 2.6.

ccqy and B = u® - ¢cg satisfy the conditions of

Lemma 5.21 Let o, 3, and v be integers such that a3 — 3% = 1728y with v # 0. If
vo(ap) = 4k for some integer k and vo(yr) > 12k, then vo(fSr) = 6k.



102

Proof The assumption implies that 2'2* divides o® and ~. Then 2'?* divides 2
since o® — 1728y = 32. Since 27'?*. a3 is odd and 27'2% . 1728~ is even, it follows that
2712% . 32 is odd. Therefore vy(fr) = 6k. |

Remark By Lemma 5.15, the j-invariant of Er is not equal to 0 or 1728 for T' #
Cy, C3,Cy, Cg, and Cy x Cy. Consequently, for these T', we will implicitly assume in
the proof of Theorem 5.14 that the j-invariant of E7 is not 0 or 1728.

5.4.1 Proof of Theorem 5.14 for T = C5,C7, Cy.

Theorem 5.14 for T = C5,C7,Cy. For T' = (5, C7, Cy, the minimal discriminant
of Er is vr.

Proof Let x — uix + rr and y — ud + u2srx + wr be an admissible change
of variables between Er and a global minimal model of Er. Since Er is given by
an integral Weierstrass model, we have by Lemma 2.4 that ur, sy, rr,wr € Z and
moreover, u%| By and ul?|yr. In particular, u$ divides ged(Sr,v7). Since a and b are
relatively prime, we have that for a fixed positive integer k, there are integers r and

s such that ra® + sb* = 1 and so by Lemma 5.10, ged(Br, yr) divides dr where

5% if T = Cs
dr = if T'= 07
3 lf T - Cg.
In particular, ur = 1 which shows that\ £ is a global minimal model for Er. [ |

5.4.2 Proof of Theorem 5.14 for T = C,

Theorem 5.14 for T' = C5. The minimal discriminant of Er is u}m'y;p with ur €
{1,2,4}. Moreover,
(i) ur = 4 <= vy (b?d — a?) > 8 with vy(a) = vo(b) = 1 and 27'a = 1 mod 4.
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(ii) either (1) up = 2 <= up # 4, vy (b?d — a®) > 4 with vy(a) = v5(b) = 1 and
d=1 mod4, (2) v2(b) > 3 and a = —1 mod 4, or (3) a = 3b with b a squarefree even
integer not divisible by 3.

Otherwise up = 1.

Proof Recall that the discriminant of E7 is 47 and the invariants ¢4 and cg of Erp

are ap and Br where
ar =16 (38°d+a?) [ Br = —64a (W*d—a®) [ ~p = 646%d (b°d — a®)*.

By assumption, a, b, d are integers with d # 1,b # 0 such that ged(a, b) and d are
squarefree.

First, suppose the j-invariant of Fr is 0. By Lemma 5.18 Er is Q-isomorphic to
Er(3b,b, —3) for b a squarefree integer not divisible by 3. Then

Br=2%3%%  and = yp = 2'93%°,

In particular, if b is odd, then v,(yr) < 12 for all primes p and therefore 7 is the
minimal discriminant of Er. Now suppose b = 2b for some odd squarefree integer b.
The admissible change of variables x —— 4x and y —— 8y gives a Q-isomorphism
from Er onto
Ey o y? = 2% + 30223 + bz,

Note that the discriminant of FE’. is u;u’yT = 243305 with uy = 2. In particular,
Up (u;lsz) 12 for each prime p. Thus u}lQ'yT is the minimal discriminant of Er.

Next, suCpose the j-invariant of Er is 1728. By Lemma 5.18 E7p is Q-isomorphic
to Er(0,b,d) for squarefree integers b and d. Then

ar = 243b%d and Yr = 20553,

In particular, v,(yr) < 9 for each odd prime p and vy(yr) < 15. Now let z —
UQT:U—H’T and y — u:}+u?psT$—l—wT be an admissible change of variables between Er

and a global minimal model of E7. Since Er is given by an integral Weierstrass model,
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we have by Lemma 2.4 that ur, s7, rp, wr € Z. Then up divides 2 since vg(yr) < 15.
Towards a contradiction, suppose ur = 2. Then b is even since vo(yr) > 12 if and

only if b is even. Write b = 2b for b an odd squarefree integer. Then
uptor = 120%d and up Py = o’

Since u;GﬁT = 0 and vy (u;4aT) < 3, we have by Theorem 2.6 there is no integral
Weierstrass model having invariants ¢y = u;laT and ¢g = 0. This contradicts the
assumption that U;HWT is the minimal discriminant of Erp.

Next, suppose the j-invariant of E7 is not equal to 0 or 1728. Let ged(a,b) = mn
such that ged(a,d) = ml and ged(b,l) = 1. In particular, m,n,l are squarefree

relatively prime positive integers. Hence
a = mnla, b = mnb, and d=mld

for some integers a, b, and d. Then by Lemma 5.10,

ged(ar, Br)  divides 2832 ged(b1d?,a®) = 2832m3n31?,
ged(ar, ) divides 210 gcd (B3, a®) = 219mSnSi3, (5.5)
ged(Br, r) divides 212 ged(B¥dt, a™) = 22mTn"Ih

Next let z — uZx + rp and y — ud + uZspr + wr be an admissible change
of variables between Ep and a global minimal model of Ep. Since Ep is given by
an integral Weierstrass model, we have by Lemma 2.4 that ur, sp,rr,wr € Z and
moreover, un|ar, u$|Br, and ui?|yr. We claim that ug is 1, 2, or 4. To this end,
suppose p is an odd prime dividing up. If p > 3, then uh divides m*n31? by (5.5). But
m,n, | are relatively prime which contradicts the assumption that p* divides m3n3i2.
So suppose p = 3. By (5.5) we observe that 3 does not divide [ since this would imply
that 3* does not divide ged(ar,yr). We may therefore assume that 3 divides either
m or n.

Case I. Suppose 3 divides ur and m. Write a = 3a, b = 313,and d = 3d for some

integers a, l;, d with 3 dividing at most one of a and b. In particular,

4 < vy(ar) = vy (fﬂ + 811%) — 24wy (d2 n 913%2) (
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Note that the inequality only holds if v3(a) > 0 and so 3 does not divide b. Since

12 < v(yr) = vy (270%d) + 204 ((76%2_ 03?) (

and v (275%? — 9d2> é 6 since vsz(a) > 0, we conclude that v3(yr) = 9 which contra-
dict the assumption that 3 divides uy.
Case II. Suppose 3 divides ur and n. Write a = 3a and b = 3b for some integers

a and b with 3 dividing at most one of a and b. Then

4 < vs(ar) = vs ((gﬂ + 27(3%?) =2+ s <&2 + 3(3%?) (

But this is a contradiction since vg (&2 + 3B2CZ> <§ 1 with equality if and only if
vg(a) > 0.

Since uyp is not divisible by odd primes, we conclude that uyp divides 4 by (5.5)
since uj divides ged(aq, Br) and m,n, [ are squarefree.

Now suppose ur = 4. Then vy(ar) > 8 and so vy(3b?°d + a?) > 4. For this to
occur, we must have either 3b%d and a? are both even or are both odd.

Case 1. Assume that 3b%d and a? are both odd. Now observe that

24 < vy(vy7) - 9 < vy (id — a2) (

12 < ve(Br) - 6 < Ug( 2d — a2)

But 96%d — a® = b%d — a* + 8b?d = 8b*d mod 64. But this is a contradiction since b%d
is assumed to be odd and therefore 9b*d — a® #Z 0 mod 64.
Case II. Assume that 3b?d and a? are both even.
Subcase 1. Assume further that b is odd and d is even. Write a = 2a and

d = 2d for some integers a and d. Then
8 < waar) = 4 + vy (6b2ci + 4&2) (

But then vy(ar) = 5 since b2d being odd implies that v, <3b2d+ 2&2> <: 0. This

contradicts the assumption that uy = 4.
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Subcase II. Assume further that b and d are both even and write a = 2a, b =

2b, and d = 2d for some integers a, lA), d with at most one of @ and b being even. Then

8 S UQ(CMT) =4+ (%) (24[320? + 4&2) <

=6+ vy (6132¢Z+ d2> (

But v, (66262 + &2> <§ 1 with equality if and only if vy(a) > 0. This contradicts the
assumption that up\= 4.
Subcase III. Assume further that b is even and d is odd and write a = 2a and

b = 2b for some integers a and b such that at most one of @ and b is even. Then

8 < wylar) =4+ vy (12(32d + 4d2> <

= 6+ v (3% + @)
Therefore vy <382d + d2> 6 2 and we deduce that @ and b are both odd. Next,
24 < vy(r) = 12 + 205 (132(1 . a2) ( — < (B%z - a2> (

Now observe that v, <l32d— &2>(j 6 <= vy(b?d —a®) > 8 which is part of the

assumption of (7). Now write B;\d — a2 = 20k for some integer k. Solving for a2

yields a2 = b%d — 26k. Since odd squares are congruent to 1 modulo 4, it follows that

d=1 mod4. Then

v (3132d + a2) = vy (z{ﬂd . 2%) 6 2
since Vg (Bzd — 24k> 6 0. Consequently, vo(ar) = 8. Now observe that
1708y = —27% (90%d - a?) (
— 273 (8132d + 2%)

= —a ($d+2°%) ( (

is odd since ab?d is odd. Now let ¢, and ¢ denote the invariants associated to a global

minimal model of Fr. In particular, ¢4 and cg satisfy Theorem 2.6. By construction,
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cs = 4 %ap and ¢g = 4796y and are both odd. Therefore cg = —1 mod4. Since
—a <B2d+ 23k‘> (E —ad mod4 it follows that ¢¢ = —1 mod4 if and only if a =
1 mod 4. It remains to show that v3(47%87) = v3(fr) # 2. Observe that

9*d — a®* = —a* mod9. (5.6)

If @ is divisible by 3, then a (9b*d — a?) = 0 mod 27. This concludes the proof of (7).

Now assume that up = 2. Observe that 2* and 2% divide ar and Bp. The
invariants ¢, and cg associated with a global minimal model of Er are 2 %o and
27637, respectively. The argument preceding (5.6) shows that vs(cs) # 2. Therefore
by Theorem 2.6, either —cg = —1 mod 4 or both vy(¢s) > 4 and ¢g = 0 or 8 mod 32.

Moreover, the minimal discriminant is 27247 and so we get the inequality
Vg (bzd) + 22}2( d— a2) 6.

Note that b*d — a? is even if both b?d and a? are odd or if they are both even. We

now proceed by cases.
Case 1. Suppose vy(b*d — a?) > 3 with b*d and a® odd. Write b*d — a* = 8k for

some integer k and observe that
cs = 3b%d + a® = 3b°d — 3a® + 4a® = 24k + 4a”.

Since ¢g is even, it follows by Theorem 2.6 that ve(cy) > 4. Reducing modulo 16

yields

24k + 4a® = (tJr a?) Cnod 16
which is congruent to 0 modulo 16 if and only if £ and a are even, which contradicts
the assumptions.
Case II. Suppose vq(b*d — a?) > 3 with d and a? even and b odd. Write a = 24 and
d = 2d for some integers a and b so that 2b2d — 44 = 8k. In particular, b2d — 2a = 4k

which is impossible since b%d is odd.
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Case IT1. Suppose v5(b%d — a?) > 2 with a and b even. Write a = 2a and b = 2b
for some integers a and b. Moreover, b*d — a*> = 4k for some integer k. Since cq is

even, we have that vs(cy) > 4 by Theorem 2.6. Observe that
cy = 3b%d — 3a® + 4a® = 12k mod 16
and so k£ must be divisible by 4. Write k& = 4k for some integer k: and observe that

b2d — a? = 4k <= 4b%d — 442 = 16k

— V’d—a? = 4k. (5.7)

This only occurs when both b2d and a2 are even or they are both odd. We claim that
they are both odd. Indeed, if a2 and b2d are even, then @ and d are even and b is odd
since at most one of @ and b can be even. Write d = 2d and a = 2a for integers d and

a and observe that
b2d — a2 = 4k <= 20%°d — 4a® = 4k < b*d — 2a> = 2k

which is impossible since b2d is odd.

Therefore b2d and a* are both odd. We now return to equation (5.7). Since odd
squares modulo 4 are 1, we have that b2d — a2 = d — 1 mod 4 and so b?d — a* = 4k
if and only if d = 1 mod4. To summarize we have shown that if ur = 2 and
vo(b?d — a?) > 2 with a and b even, then vy(a) = v2(b) =1 and d = 1 mod 4. In fact
by the above vy(b*d — a?) > 4 since k is divisible by 4. It remains to show that cg = 0

or 8 mod 32. Indeed,
co = —a (9P~ a?) - —sa (9% - a*) = —sa <f2d —9a% + 8a°)
— 8 ( 6k + 807 = —324 (9/% + 2a2> 0 mdd 32,

Case IV. Suppose vy(b?d — a?) = 1 and v, (b*d) > 2. Note that vy(b*d) > 2 implies
that v, (b) > 1 since d is squarefree. In particular, a is even. Now write b*d — a* = 2k,

a = 24, and b = 2b for some integers d and b and k an odd integer. Then

2k = b2d — a = 4b%d — 44>
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implies that £ is even, which contradicts our assumption on k being odd.
Case V. Suppose v9(b?d) > 6. Then vy(b) > 3 since d is squarefree and so we write
b = 8b for some integer b. We first claim a is odd. Suppose not, then a = 2a for some

odd integer a and we attain
2 — o = 640 — 40* = 4 (161%d - @?) (

and so vy(b’d — a®) = 2. But these are the assumptions of Case III, where we saw
that up = 2 if vy(b) = 1. Therefore ur # 2 under the assumptions of Case V with
a even. Therefore a is odd, as claimed. Then ¢4 is odd and so ¢g = —1 mod4 by

Theorem 2.6. Now observe that
Cg = —a (9b2d — aQ) —a (7252d — a2) = ¢® mod4.

Therefore c¢ = —1 mod4 if and only if a = —1 mod 4.
By the above, we have exhausted the possibilities when u7 = 2,4 and so it follows

that uy = 1 if (¢) and (i) do not hold. [

5.4.3 Proof of Theorem 5.14 for T = Cs

Theorem 5.14 for T = Cs. Let a = c*d’e with d, e positive squarefree integers

such that ged(d, ) = 1. Then the minimal discriminant of Er is u;lQWT with up = ¢2d.

Proof First, suppose Er has j-invariant 0. Then by Lemma 5.16, Er = Er(24,1).
Since 24 = 8 - 3, it is verified that the minimal discriminant of E7(24,1) is up'2qr
with upr = 4 which verifies the Theorem.

Next, suppose the j-invariant of Er is not equal to 0 or 1728. The admissible
change of variables  — v?x and y — v3y with v = c*d results in a Q-isomorphism

between Ep and the elliptic curve

El :y? + cdexy + de*by = 2°.
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In particular, F’. is given by an integral Weierstrass model and its discriminant A

and invariants ¢, and cg are

cy = v tar = cd?e® (a — 24b)
cs = v By = d%e? (—a2 + 36ab — 216()2) (
A = v Pyp = d*e®® (a — 270) .

We claim that Ef is a global minimal model for Er. By the assumption on Er, a

and b are relatively prime integers and therefore
ged(Br, vyr) divides 263%q*

by Lemma 5.10. Since ged(cs, A) = v=¢ged(fr,77) we conclude that ged(cg, A)
divides 2°63%d%¢*. Now let  — uZx+7rr and y — w3 +usrx+wr be an admissible
change of variables between E7. and a global minimal model of Er. Since E. is given
by an integral Weierstrass model, we have by Lemma 2.4 that up, sy, rr, wr € Z and
moreover, u$|c, and ul?|A. Therefore u$ divides 263°d?e*. In particular, v,(ur) = 0
for all primes p > 5 since d and e are relatively prime squarefree integers.

We now claim that vs(ur) = 0. If this is not the case, we have
12 < v3(A) = v3(d*e?) £ v3(a — 27b) .

First, suppose vs(a) > 0 with v3(a) # 3. Then vz(a — 27b) < 3 and v3(d*e®b?) <
8 since a and b are relatively prime and d,e are squarefree and relatively prime.
Therefore this case is not possible. Suppose instead that v3(a) = 3 and write a = 274

for some integer a. Note that 3 does not divide de and so
v3(cg) = v3< 3042 + 3%4ab — 398132> =5+u3 (—3@2 + dab — 348132) é 5

since —3a? + 4ab — 3*8b* = 4ab mod 3. It follows that this quantity is not 0 modulo
3 since ab is not divisible by 3. But this is our desired contradiction since vg(ur) >0
implies that v3(cg) > 6. Next, suppose vz(a) = 0. Then ¢; = acd®*e¢® mod 3 which is

nonzero modulo 3 since a = c¢*d?e. In particular, we have shown that v3(ur) = 0.
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It remains to show that vy(ur) = 0. To this end, observe that ¢, is even if and
only if a is even. Therefore, if vy(ur) > 0, then ve(a) > 0 since va(cy) > 4. But then

we have a contradiction since a — 27b is odd and
12 < vy(A) = vy (d'e®) £ 8.

Hence vg(uz) = 0 which implies that |ur| = 1. Hence E’. is a global minimal model

for Erp. |

5.4.4 Proof of Theorem 5.14 for T = Cy

Theorem 5.14 for T = C,. Let a = ¢*d with d a positive squarefree integer. Then
the minimal discriminant of Er is uy;'?yr with upr € {¢,2c}. Moreover, uy = 2c if

and only if ve(a) > 8 is even with bd = 3 mod 4.

Proof First, suppose Er has j-invariant 1728. Then by Lemma 5.15, Er is Q-
isomorphic to Er(8, —1). Then a = ¢*d with ¢ = 2 and d = 2. The admissible change
of variables z — u2x and y — udy with up = ¢ gives a Q-isomorphism from FEr
onto

EL oy 4+ day + Sy = 2% + 222

Then the discriminant of Ef = —2'. We claim that the minimal discriminant is
—212 Indeed, if this were not the case, then the only possibility for the minimal
discriminant is —1. But this is absurd since there is no rational elliptic curve of
conductor 1.

Next, suppose Er has j-invariant not equal to 0 or 1728. The admissible change
of variables x — c?z and y — c®y results in a Q-isomorphism between E; and the
elliptic curve

EL 9 + cdry — cd*by = 2 — bda?.
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In particular, F’. is given by an integral Weierstrass model and its discriminant A

and invariants ¢, and cg are

cy = ¢ tap = d? (a2 + 16ab + 16b2) Q
6 = ¢ °Br = d® (a + 8b) (—a® — 16ak + 8b*) <
A = ¢ 2yp = bAd" (a + 16b) .

Since a and b are relatively prime integers, we have that
ged(Br, yr) divides 21843

by Lemma 5.10. Since ged(cg, A) = ¢ %ged(Br,7r) we conclude that ged(cg, A)
divides 2'8d3. Now let # — u?z + rr and y — u3 + uksrx + wr be an admissible
change of variables between E’. and a global minimal model of Er. Since E. is given
by an integral Weierstrass model, we have by Lemma 2.4 that ur, sy, v, wr € Z and
moreover, ug|cy and ui?|A. Therefore uf. divides 2'%d*. In particular, v,(ur) = 0 for
all odd primes p since d is squarefree. Therefore ur divides 23.

We first claim that up # 4,8. Towards a contradiction, suppose ur is 4 or 8. In
either case, we have that vy(cy) > 8 and ve(cg) > 12. We show that these inequalities

never hold. First, observe that ¢, is even if and only if a is even. But
va(cy) = 2v5(d) + va(a® + 16ab + 16b*) £ 6

whenever a is even with vy(a) # 2. So suppose v(a) = 2 so that a = 4a for some odd

integer a. Then

12 < wy(cg) = 3va(d) 4 vo(4a + 8b) + vo(—16a* — 64ab + 8b°)
=5+ 3v2(d) + va(@ + 2b) + va(—24° — 8ab + b°)

<3

since va(a@ + 2b) = vo(—2a* — 8ab + b*) = 0. This is our desired contradiction and so

we conclude that up divides 2.
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Suppose ur = 2. Then 2%|cy, 25|cg, and 2'2|A. In particular, a is even since c4
is even if and only if a is even. Since a = c*d with d squarefree, we claim that if

vo(a) # 4, then ve(A) > 12 if and only if vy(a) = 3,5 or ve(a) > 7. Indeed,
12 < 0a(A) = 2vs(c) + Tva(d) + vo(a + 16b)

and note that

0 if ve(a) is odd if v9(a) is odd
ve(c) = 2(a) and  wy(d) = 2(a)

”2;“) if vo(a) is even if vo(a) is even.

Lastly ve(a + \6b) < 4 with equality holding if vy(a) > 4. The claim now follows.

Next, suppose vo(a) = 4. Then by inspection vy(cy) = 4 and vy(cg) = 6 since
vo(d) = 0. In addition, vo(A) > 12 if and only if ve(a + 16b) > 8.

Since ur = 2, we have that 27%c; and 2 %¢4 satisfy the conclusion of Theorem
2.6. We now show that Theorem 2.6 is satisfied if and only if vy(a) > 8 is even with
bd = 3 mod4.

Case 1. Suppose vs(a) > 3 is odd. In particular, ¢ and d are even and we write

¢ =2¢ and d = 2d for integers ¢ and d. Next, observe that
2, = 274 (f (fng 1 166%bd + 1682)) £
= 16¢*dX + 822 d°b + 402 d? = 4b*®R mod 16
270¢5 =27° (@ (id + 8b) ((:40[2 — 16¢*db + 8b%)) Q
= —64e0° \ 192621 d°\- 1206%¢%d* + 8b*d® = § mod 4.
Since 27%c¢ £ —1 mod4, v5(27%c4) > 4 by Theorem 2.6. But this is not satisfied
since b2d? is odd.

Case II. Next suppose vs(a) = 4 and vy(a + 16b) > 8. Then d is odd and ¢ = 4¢

for some odd integer ¢. Write a+ 16b = 28k for some integer k and solving for b yields
16b = 2%k — 16¢°d < b = 16k — ¢*d.

Then
2760 = 8d8 — 528¢* APk — 84482 d*k? + 409643k = ¢5d° mod 4.
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Since odd squares are congruent to 1 modulo 4, we have 2 %4 = 1 mod4. But then
27%¢¢ is odd and does not satisfy Theorem 2.6. So this case is not possible.
Case III. Suppose vy(a) > 8 is even. Then ¢ = 16¢ for some integers ¢ and d, with

d odd. Then

270 =27 (&® (16¢*d + 8b) (G64é4d2 —16°¢*db + 8b%)) g
d4.

= 2186846 — 2133p& ® —\R0H?E2dt + B3 d® = bPd® m

Since bd is odd, we have by Theorem 2.6 that 27%c = 3 mod4. But this occurs if
and only if bd = 3 mod 4. It remains to check that v3(27%cs) # 2. To verify this, we
observe that v3(27%) = 2 if and only if 27%c¢ = 0,18 mod 27. Reducing modulo 27,

we attain

27 6cq = 26¢5d° + 21664 d° + 6b*?d* + b*d® mod 27.

Now let f[c,d,b] be the Mathematica input for 26¢%d5 + 21be&*d® + 6b%¢2d* + b3d3.

The Mathematica input

Table[Mod[f [c,d,b],27],{c,1,27},{d,1,27},{b,1,27}]

verifies that 27%c¢ # 0, 18 mod 27. Therefore the minimal discriminant of E7 in terms
of vp is (2¢) % 47, as claimed.
It now follows that if v5(a) > 8 is even with bd = 3 mod 4 does not hold, then E.

is a global minimal model for E7, which completes the proof. [ ]

5.4.5 Proof of Theorem 5.14 for T = Cg

Theorem 5.14 for T' = Cg. The minimal discriminant of Ep is u;lQ’yT with ur €

{1,2}. Moreover, up = 2 if and only if vy(a + b) > 3.

Proof First, suppose Er has j-invariant 0. Then by Lemma 5.15 E7 is Q-isomorphic
to E7(3,—1). Then yp = —2%3? and therefore it is the minimal discriminant of Er.
Next, suppose the j-invariant of Er is not equal to 0 or 1728. Let x — u2x +7r

and y — u?’p + u?psTx + wr be an admissible change of variables between Er and
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a global minimal model of Ep. Since Er is given by an integral Weierstrass model,
we have by Lemma 2.4 that ur, sz, rr, wr € Z and moreover, u$|fr and u}?|yr. In
particular, u$ divides ged(Br, 7). Since a and b are relatively prime, we have that
for a fixed positive integer k, there are integers r and s such that ra* 4+ sb* = 1 and
so by Lemma 5.10, ged(Br, yr) divides 2933, Therefore ur divides 2.

Suppose up = 2. Then 2*|ay, 20|37, and 2'2|y7. Observe that ar = (a + b)* mod 2.
Hence a7 is even if and only if a + b is even. Consequently, a and b are both odd

since a and b are relatively prime. Next,
12 < wa(yr) = va(a + 9b) + 3ve(a +b) . (5.8)

We claim that the above inequality holds if and only if vs(a +b) > 3. Suppose
va(a+b) < 2sothat a+b=+2,4 mod8. Since a+9b = a+b mod8, it follows that
vo(a +9b) < 2 and so inequality (5.8) does not hold. Now suppose vs(a + b) > 3.
Then vy(a + 9b) > 3 since a + 90 = a + b mod 8 and therefore vy(y7) > 12. We now
claim that if vo(a + b) > 3, then 27 %ap and 27537 are integers.

Since a + 3b is even, it suffices to show that
a® +9a%b + 3ab® 4+ 3b°> = 0 mod 8

to show that vo(ar) > 4. Since odd squares are congruent to 1 modulo 8, we conclude

that

a® + 9a*b + 3ab® + 30> = a + 9b + 3a + 3b mod 8
=4(a+b) mod8

=0 mod38.

We now conclude that 37 is divisible by 2° from the identity % = a3 — 1728v7. The
admissible change of variables x —— 42 and y —— 8y gives a Q-isomorphism from

Er onto the elliptic curve E’. given by the Weierstrass model

a;bxy— ab(a+b)y:x3_ b(a+b)w2'

El:2
T Y + 3 1
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Since v3(a + b) > 3, it follows that E’. is an integral Weierstrass model. By the above,
we conclude that it is a global minimal model for E7 whenever vs(a + b) > 3.
To recap ur divides 2 and is exactly 2 if and only if ve(a + b) > 3. Consequently,

Er is a global minimal model for Er if vy(a + b) < 3. [ ]

5.4.6 Proof of Theorem 5.14 for T = Cg

Theorem 5.14 for T' = Cg. The minimal discriminant of Ep is u;myT with ur €

{1,2}. Moreover, up = 2 if and only if vy(a) = 1.

Proof Let r — u%x + rr and y — u + udsrx + wr be an admissible change
of variables between Ep and a global minimal model of Ep. Since Ep is given by
an integral Weierstrass model, we have by Lemma 2.4 that ur, sp,rr,wr € Z and
moreover, u%| 7 and u¥?|yr. In particular, u$. divides ged(Sr,y7). Since a and b are
relatively prime, we have that for a fixed positive integer k, there are integers r and s
such that ra* 4+ sb* = 1 and so by Lemma 5.10, ged(Br, vr) divides 2°. In particular,
ur divides 2.

Suppose ur = 2 so that 2¢|ar, 2°|87, and 2'%|y7. Reducing modulo 2, shows
ar = a® mod?2
and so ar is even if and only if a is even. Observe that
12 < vo(yr) = 2v2(a) 4 4va(a — 2b) + vo(¢* — 8ab + 8b*) (5.9)
We claim that inequality (5.9) holds if and only if va(a) = 1 or ve(a) > 2. Indeed,

) if va(a) =1
Vg — 8ab b
(( o )C if vo(a) > 1

and for vy(a — 20) we have that vy(a — 20) =\1 if va(a) > 1 and ve(a —2b) > 2 if
vg(a) = 1. The claim now follows. By inspection, vs(ar) = 4 and so vy(f87) = 6 by

Lemma 5.21.
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This shows that uy = 2 is possible only if a is even and vy(a) # 2. Since 27587
is odd, we have by Theorem 2.6 that 27687 = 3 mod4. Now write a = 2a for some

integer a such that a is odd or vy(a) > 1. Then
2798, = 2a*® 4 b'? mod 4.

Since odd squares are congruent to 1 modulo 4, we deduce that 2753, = 2a*+1 mod 4.

In particular,

264 = mod4 if ve(a) =0

mod4 if ve(a) > 1.

Hence Theorem 2.6 only holds if apd only if va(a) = 1. It remains to show that
v3(27%Br) # 2. To this end we note that v3(27%87) = 2 if and only if 27987 =
9,18 mod 27. Since 2793 is in terms of @ and b, we let betalal,b] be the Math-

ematica input for 2768, with al being the input corresponding to a. Then the

Mathematica input

Table[Mod[betalal,b],27],{a1,1,27}{b,1,27}]

verifies that v3(27987) # 2. We conclude that ur = 2 if and only if ve(a) = 1.
Lastly, since up divides 2 it follows that if vy(a) # 1, then Er is a global minimal

model for Ep. [ |

5.4.7 Proof of Theorem 5.14 for T' = C4g

Theorem 5.14 for T = Cy. The minimal discriminant of Eris u:;wyT with ur €

{1,2}. Moreover, up = 2 if and only if a is even.

Proof Let v — uiz + rr and y — u3 + uksrxr + wr be an admissible change
of variables between Ep and a global minimal model of Ep. Since Ep is given by
an integral Weierstrass model, we have by Lemma 2.4 that ur, sp,rr,wr € Z and
moreover, u%| 7 and u¥?|yr. In particular, u$ divides ged(Sr,yr). Since a and b are

relatively prime, we have that for a fixed positive integer k, there are integers r and
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s such that ra® + sb* =1 and so by Lemma 5.10, ged (87, vr) divides 285. Therefore
ur divides 2.
Suppose ur = 2. Then 27 4|az, 275|6r, and 272|y7. Reducing az modulo 2 yields

ar = a'? mod 2 and so ar is even if and only if a is even. Now observe that
12 < va(yr) = Sua(a) + 5va(a — 2b) + va(a® + 2ab — 4b°) (5.10)

It is clear that (5.10) holds if vy(a) > 2. So suppose vo(a) = 1. Then vy(a — 2b) > 2
and so inequality (5.10) holds. By inspection, vs(ag) = 4 if a is even and consequently
vo(Br) = 6 by Lemma 5.21. The admissible change of variables x — 4z and y — 8y

gives a Q-isomorphism from FE7 onto the elliptic curve

B y2+a3 — 2a%b —2 2ab* + 2b3 y a’b® (a — 2b) (a —8b) (a* — 3ab + v?) _
_ AT
B0 (a—2b)(a—b)b 2

4

In particular, E’. is given by an integral Weierstrass model if a is even. Therefore E;
is a global minimal model for E7 if a is even.

Lastly, if a is not even, then E7r is a global minimal model for Er. [ |

5.4.8 Proof of Theorem 5.14 for T = C;,

Theorem 5.14 for T' = C5. The minimal discriminant of Er is u;leyT with up €

{1,2}. Moreover, ur = 2 if and only if a is even.

Proof Let z — ubz + rr and y — u3 + u%srx + wr be an admissible change
of variables between Er and a global minimal model of Er. Since Er is given by
an integral Weierstrass model, we have by Lemma 2.4 that ur, sp,rr,wr € Z and
moreover, u%| 7 and ui?|yr. In particular, u$. divides ged(Sr,yr). Since a and b are
relatively prime, we have that for a fixed positive integer k, there are integers r and
s such that ra* + sb* = 1 and so by Lemma 5.10, ged(Br, yr) divides 2933, Therefore

ur divides 2.
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Suppose ur = 2 so that 274|ap, 275|8r, and 272|y7. Then ar = a'® mod 2 and

so ag is even if and only if a is even. Next, observe that
Us(yr) = 2va(a) + 6v2(A — 2b) + va (¢ — 6ab + 6b%) + v, (( — 2ab + 2b%)

By inspection, we see that a is even if and only if vo(yr) > "12. By inspection,
vo(ar) = 4 and so vy(Br) = 6 by Lemma 5.21. The admissible change of variables
xr — 4z and y —— 8y gives a Q-isomorphism from FEr onto the elliptic curve
E’T : y2 + a1y + azy = 2% + asw? where

1
ar=-3 (a* — 2a°b — 2a’b* + 8ab® — 6b*)

az = %Lb (a — 2b) (a — b)* (n( — 3ab + 3b?) (* — 2ab + 2b%) C
) ®)

1
agz—gab(a—%)(a—b (¢ — 3ab + 3b* (c(—ZQb—I—Q

[

Since a is even, E’. is given by an integral Weierstrass model. Therefore E7. is a global
minimal model for Er if a is even.

Lastly, if a is not even, then E7r is a global minimal model for Er. [ ]

5.4.9 Proof of Theorem 5.14 for T = C5 X C,

Theorem 5.14 for T' = C5 X C5. The minimal discriminant of Er is u}wfyT with

ur € {1,2}. Moreover, ur = 2 if and only if vs(a) > 4 and bd =1 mod 4.

Proof First, suppose Er has j-invariant equal to 1728. By Lemma 5.19, Er is
Q-isomorphic to Ep(2,1,d). Then yr = 64d°. Since d is squarefree, we have that
vp(yr) < 6 for each odd prime p. In particular, if d is even, yr is the minimal dis-
criminant of Er. Now suppose d = 2d for some odd squarefree integer d and let
T — urr + rr and y — ud + uFspx + wr be an admissible change of variables
between Er and a global minimal model of Fr. Since Er is given by an integral Weier-
strass model, we have by Lemma 2.4 that up,sp,rp,wr € Z and moreover, up|ar
and u?|yr. Since d is even, it follows that uz divides 2. Towards a contradiction,

suppose ur = 2. Then u;myT — d% and u;laT = 12d2. Since Vg (u;lozT) C 2, we have
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our desired contradiction. Indeed, by Theorem 2.6 there is no integral Weierstrass
model having invariants ¢, = u;404T and ¢g = 0.

Next, suppose Er does not have j-invariant equal to 1728. Let x — u2x + 77
and y — u3T + U%STJ: + wr be an admissible change of variables between Er and
a global minimal model of E7. Since Er is given by an integral Weierstrass model,
we have by Lemma 2.4 that ur, sz, rp, wr € Z and moreover, u$|fr and ul?|yr. In
particular, u$ divides ged(Br,v7). Since a and b are relatively prime, we have that
for a fixed positive integer k, there are integers r and s such that ra* 4 sb* = 1 and
so by Lemma 5.10, ged(Br, ) divides 27d®. In particular, ur divides 2d. Recall that
d is a squarefree integer.

We claim that v,(ugy) = 0 for all odd primes. Towards a contradiction, suppose
an odd prime p divides ur. In particular, p divides d and moreover, p'? divides 7.
In particular, v,(ab(a — b)) > 3 since yp = 16a2b?dS (a — b)®. Since a,b, and a — b
are relatively prime, it follows that p divides exactly one of these. If p divides one of
a or b, then p does not divide a®> — ab + b* which contradicts the assumption that p*

divides avp. Therefore p divides a — b and a® — ab + b*. But then p divides
a? —ab+b* — (a — b)* = ab

which is a contradiction. Hence v,(uz) = 0 for all odd primes.
Consequently ur divides 4. We claim that ur # 4. Towards a contradiction,
suppose ur = 4 so that ve(ar) > 8. Note that since ur = 4, we have by Lemma 5.10

that d is even. Since d is squarefree, we deduce
8 < va(ar) =6 + vo(a® — ab+ b°) (5.11)

Recall that by Lemma 5.12, a is even. Thus a? — ab + > = —ab + 1 mod 4 since
b> = 1 mod4. If a and b are odd, then a®> — ab + b*> = 2 — ab mod4. Since
ab = £1 mod4, we conclude that a®> — ab + b? is always odd. Therefore inequality

(5.11) does not hold.
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Now assume ur = 2. Then 2*|ar, 25|87, and 2'2|yy. By definition of az and fr,

we see that the first two divisibilities are always satisfied. Now observe that
12 < vy(yr) = 4+ 6va(d) + 2vz(a) . (5.12)

We now consider the cases where d is even or odd.
Case I. Suppose d is even. Since d is squarefree, it follows that ve(a) > 1. Since

27687 is even and

2 tap = d? (a2 —ab+ 62) C 4 modS8,

we conclude by Theorem 2.6 that there is no integral Weierstrass equation having
invariants ¢, = 2 *ap and ¢g = 27%87. Therefore d cannot be even.

Case II. Suppose d is odd. Then by (5.12), va(a) > 4. Write a = 16a for some

integer a. Then
2798r = —d® (16a + b) (8a — b) (32a — b) = —bd mod 4.

By Theorem 2.6, there is an integral Weierstrass model having invariants ¢, = 2~ 4ayp
and ¢g = 27%37 if and only if bd = 1 mod 4 and v3(27%8r) # 2. Since v3(27%8r) # 2
if and only if 2787 # 9,18 mod27, we verify that this indeed the case via the

Mathematica input

Table [Mod [beta[al,b],27],{al,1,27}{b,1,27}]

where beta and al are the Mathematica inputs for 2753, and a, respectively. Hence
up = 2 if and only if vy(a) > 4 and bd = 1 mod 4.
Consequently, Er is a global minimal model for Er if and only if the above

equivalence does not hold. [ |

5.4.10 Proof of Theorem 5.14 for T = C5 x C}

Theorem 5.14 for T = C5 X C4. The minimal discriminant of Eqp is u;u’yT with

ur € {1,2,4}. Moreover, ur = 4 if and only if ve(a) = 2
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(1) up = 1 if and only if ve(a) < 1.
(17) ur = 2 if and only if ve(a) > 2 with ve(a + 4b) < 4.
(173) ur = 4 if and only if v5(a) = 2 and ve(a + 4b) > 4.

Proof Let xz — udx + rr and y — u} + udsrx + wr be an admissible change
of variables between Ep and a global minimal model of Er. Since Er is given by
an integral Weierstrass model, we have by Lemma 2.4 that ur, sy, rr,wr € Z and
moreover, u|ar and u$|Br. In particular, u}. divides ged(aq, Br). Since a and b are
relatively prime, we have that for a fixed positive integer k, there are integers r and s
such that ra* + sb* =1 and so by Lemma 5.10, ged(ar, fr) divides 21432, Therefore
up divides 8. Note that oy = a* mod2 and so ar is even if and only if a is even.

Under this assumption, we observe that
va(ar) = va(a 4 16a’b + 80a*b” + 128ab” + 256b") C

Therefore ur divides 4. Moreover, observe that if vy(ar) =\8 and ve(yr) > 24, then
v9(Br) = 12 by Lemma 5.21. In particular, 4= - B7 is odd under these assumptions.

(ii1) Suppose ur = 4. Then 4*|az, 4%|fr, and 4'2|yp. By (5.13), 4*|az if and only
if va(a) > 2. Then

24 < vo(yr) = 2va(a) + 2va(a + 8b) + 4vs(a + 4b) . (5.14)

Case 1. Suppose wvg(a) > 4. Then vy(yr) = 2v3(a) + 14 and thus inequality
(5.14) holds if vy(a) > 5. Now assume further that vy(a) > 5. Since vy(ar) = 8,
it follows that vy(B8r) = 12. In particular, 4 %87 is odd and by Theorem 2.6 we
must have 468y = —1 mod4. Write a = 2°a for some integer @ and observe that
4798, = b5 mod4. Hence 4 87 = 1 mod4 and by Theorem 2.6 we conclude that
there is no integral Weierstrass model having invariants ¢, = 4 *ap and ¢g = 475537.

Case II. Suppose vz(a) = 3. Write a = 8a for some odd integer a. Then vy(vyr) =
20 + 2vy(a + b) and so inequality (5.14) holds if ve(a 4+ b) > 2. Under this additional
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assumption, we have that 4% . Br is odd by the discussion following (5.13). By

Theorem 2.6 we must have 4 %87 = —1 mod4. But

4758, = 26%b* + 2ab® + b° mod 4
= 3 + 2ab mod4

=1 mod4

since odd squares are congruent to 1 modulo 4 and 2k = 2 mod4 for odd integers
k. In particular, there is no integral Weierstrass model having invariants ¢, = 4 *ar
and cg = 47587,

Case II1. Suppose ve(a) = 2. Write a = 4a for some odd integer a. Then vy(vyy) =
16 + 4vy(a + b) and so inequality (5.14) holds if ve(a + b) > 2. Under this additional
assumption, we have that 47*- 37 is odd by the discussion following (5.13). Now write

a + b = 4k for some integer k. Hence b = 4k — a and so

47 Bp = 3a° mod4

=3 mod4.

It remains to show that v3(4™% - Br) # 2. Since v3(4™* - Br) # 2 if and only 47 31 £
9,18 mod 27. Now let c6[x,y] and al be the Mathematica inputs for Sr(z,y) and

a, respectively. Then the Mathematica input
Table [Mod [c6[2"2*al,4*k-all/4°6,27],{al,1,27},{k,1,27}]

verifies that 47* - By # 9,18 mod 27. Hence up = 4 if and only if vy(a) = 2 and
vo(a + 4b) > 4.

(i1) Suppose ur = 2. Then 2% ap, 25|37, and 2'%|yp. By (5.13), 24|ar if and only
if vg(a) > 1.

Case 1. Suppose vy(a) = 2 with vy(a + 4b) < 3. By (5.13), 4*|ar. In fact, since
ve(a) = 2, va(a + 4b) = 3. Then vy(y7) = 20 and hence vo(fr) > 6 by the identity
1728vr = a3 — B2. By Theorem 2.6, there is an integral Weierstrass model having

invariants ¢s = 2 %ar and ¢g = 27987 if and only if 2787 = 0,8 mod32 and
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v3(27%07) # 2. To this end, let a+4b = 8k for some odd integer k and let a = 8k —4b.
Then SBr(x,y) =0 mod 32. Let c6[x,y] be the Mathematica input for 27¢37. Then

Mathematica input

Table [Mod [c6 [8%k-4*b,b] /276,271 ,{b,1,27},{k,1,27}]

verifies that v3(27¢37) # 2. Thus, there is an integral Weierstrass model having
invariants ¢, = 2 %*ap and ¢ = 27%57.

Case II. Suppose vy(a) > 3. By (5.13), 4*|ar and we note that
vo(y7) = 2v2(a) + 2va(a + 8b) + 4va(a + 4b) > 20

and so vy(B7) > 6 from the identity 1728yy = a3 — 2. By Theorem 2.6, there is an
integral Weierstrass model having invariants ¢, = 27 *ar and cg = 27587 if and only
if 27687 = 0,8 mod 32 and v3(27%67) # 2. Set a = 8a for some integer a and observe
that 27687 = 0 mod32. Now let c6[x,y] be the Mathematica input for Bz(z,y).

Then Mathematica input

Table [Mod [c6[8*a,b]/2°6,27],{a,1,27},{b,1,27}]

verifies that v3(27%87) # 2. Thus, there is an integral Weierstrass model having
invariants ¢, = 2 *ap and ¢ = 27%67.

Case III. Suppose v3(a) = 1. Then
vo(yr) = 2va(a) + 2ve(a + 8b) + 4vy(a + 4b) = 8

and so ve(yr) < 12. This contradicts the assumption that up = 2.
Therefore up = 2 if and only if ve(a) > 2 with ve(a + 4b) # 3.
(73i) Since (¢) and (ii) exhaust the possibilities when ve(a) > 2 and ugp > 2, it

follows that Er is a global minimal model for E7 if and only if vy(a) < 1. [ |

5.4.11 Proof of Theorem 5.14 for T = C5, X Cg

Theorem 5.14 for T' = C5 X Cgs. The minimal discriminant of Er is u}uyT with

ur € {1,4,16}. Moreover,
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(i) ur = 1 if and only if ve(a + b) = 0;
(17) ur = 4 if and only if ve(a + b) > 2;
(¢43) ur = 16 if and only if vy(a +b) = 1.

Proof Let z — udx + rr and y — u} + udsrx + wr be an admissible change
of variables between Ep and a global minimal model of Er. Since Er is given by
an integral Weierstrass model, we have by Lemma 2.4 that ur, sy, rr,wr € Z and
moreover, ur|ar and u%|By. In particular, uj. divides ged(ag, Br). Since a and b
are relatively prime, we have that for a fixed positive integer k, there are integers r
and s such that ra® + sb* = 1 and so by Lemma 5.10, gcd(ar, B7) divides 273. But
u$. divides ged(Br,v7) , and so we conclude by Lemma 5.10 that that up divides 2.
Since ap = a® + b® mod 2, we deduce that o is even if and only if a + b is even.

(1) Suppose va(a+b) = 0. Then ar is odd and therefore by the above Er is a
global minimal model for Er if vo(a + b) = 0. This is the converse of (7).

In what follows we will prove the converse of (i) and (ziz). This will exhaust
all possibilities which then gives the forward implication. To prove the converse
for (i1) and (iii) we will exhibit a global minimal model which satisfies u;*ar and
u}G Br as the invariants ¢4 and c¢g, respectively of the constructed model. Namely, we
consider the admissible change of variables # — u%x and y — u3y. This gives a

Q-isomorphic from E7 onto the elliptic curve

2 2
By y* — ﬂxy + %y =23+ %ﬁ where (5.15)
a; = 19a® — 2ab — b?
ay = a(b—a)’ (b—5a)

as = a(b—5a) (b—3a) (3a+0b) (b —a)®.

We will show for each of the cases below that F,, is an integral Weierstrass model

under the desired assumptions on a + b.



126

(#73) Suppose vg(a+b) = 1. Write a + b = 2k for some odd integer k so that
b =2k — a. Then

va(yr) = 6 + 202((b — 9a) (b — 3a) (3a + b)) + 6v5((b — 5a) (b — a)) .
We claim that ve(yr) > 48. Note that
(b—5a) (b—a) = (2k — 6a) (2k — 2a) =4 ( —4ak+3a2)(
Since odd squares are congruent to 0 modulo 8, we deduce
k* — 4ak + 3a®> = 4 — 4ak mod 8.

But 4n = 4 mod8 for all odd integers n, and so (b —5a) (b—a) = 0 mod32. In
particular, vo((b — 5a) (b — a)) > 5. Next,

(b—9a) (b — 3a) (3a + b) = (2k — 10a) (2k — 4a) (2k + 2a)
= 8 (k* — 6ak® 4 3a°k + 10a°) (

Since odd squares are congruent to 1 modulo 8, we deduce

k3 — 6ak® + 3a%k + 10a® = k — 6a + 3k + 10a mod 8
=4k 4+ 4a mod 8

=0 mod38.

Hence vo((b — 9a) (b — 3a) (3a + b)) > 6. In particular, ve(yr) > 48.
Now let ar = P(Q) where P is the factor of degree 2 and () is the factor of degree
6. Then

P=-4 (a2 — dak — kQ) (mod 2°
Q= —64 (a2 + dak — k:2)3 mod 213,

Since a? & 4ak — k* = 4 mod8 and 21z = 2= mod 2 for all odd integers = and
positive integers [, we have that P = 16 mod32 and Q = 2'2 mod2!3. Therefore
vo(ar) = 16 and by Lemma 5.21 we have that vy(87) = 24. Thus 16 *ar and 167537
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are odd integers. Then 16 *ap and 167587 are the invariants ¢4 and cg, respectively
of the elliptic curve E,, in (5.15) with ur = 16. We claim that £, is given by an

integral Weierstrass model. Indeed,

a; = 3a® — 2ab — b* mod 16
= 3a®> — 2a (2k — a) — (2k — a)® mod 16
= 44 — 4k* mod 16

= 0 mod 16 since 4/ = 4 mod 16 for odd integers [.

We have already established that (b —5a)(b—a) = 0 mod32. Since vy(a+b) =
1, we have that a + b = 2mod4 which implies that b — a = 0 mod4. Hence
Ug((b —5a) (b— a)2) > 7 and so 1672 - 2ay is an integer. Lastly, observe that by
the above (b— a)’ EC mod 16. Therefore, to show that 1672 - 2a3 is an integer, it
suffices to show that (b — 5a) (b — 3a) (3a + b) = 0 mod 8. But this is automatic since
each factor is even. Therefore E,, with ur = 16 is a global minimal model for Er
whenever vy(a + b) = 1. This shows the converse of (ii).

(i7) Suppose va(a +b) > 2. Write a + b = 4k for some integer k. Then b —a =
4k —2a = 2 mod 4 since a is odd. Since b—5a and b—9a are congruent to b—a mod 4

we have that ve(b — a) = v3(b — 5a) = vo(b — 9a) = 1. Therefore
va(yr) = 6 + 202((b — 9a) (b — 3a) (3a + b)) + 6va((b — 5a) (b — a))
=20 + 2v9((b — 3a) (3a + b))
Since (b — 3a) (3a + b) is a difference of odd squares, it follows that it is divisible by
8 which implies that vy(vyr) > 26.
As before, let ar = PQ where P is the factor of degree 2 and () is the factor of

degree 6. Then

P =4a® mod8 =4 mod8

Q = 64a* mod 128 = 64 mod 128.

Therefore vy(ar) = 8 and so by Lemma 5.21, vo(f87) = 24. In particular, 4 %oy

and 47937 are odd integers and they are the invariants c¢s and cg, respectively of the
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Weierstrass model of E,, for ur = 4. We claim that F,, is an integral Weierstrass

model. Indeed,

a; = 19a® — 2ab — b* = 20a® — 16k*> = 0 mod 4
ay =a(b—a)’(b—>5a) =0 mod8

az = a(b—5a) (b—3a) (b+ 3a) (b—a)® =0 mod 64.

This shows that E,,,. is a global minimal model for Er if vy(a + b) > 2. This is the
converse of (ii).
Since the converse of (i), (i7), and (i77) exhaust all possibilities for a and b, we

get that the forward implication in each holds as well, which concludes the proof. B

5.4.12 Proof of Theorem 5.14 for T = C5 X Cg

Theorem 5.14 for T = C5 X Cg. The minimal discriminant of Ep is u;wyT with
ur € {1,16,64}. Moreover,

(1) ur = 1 if and only if a is odd;

(i7) up = 16 if and only if ve(a) = 1;

(173) ur = 64 if and only if vy(a) > 2.

Proof Let r — u%x + rr and y — u} + udsrx + wr be an admissible change
of variables between Er and a global minimal model of Er. Since Er is given by
an integral Weierstrass model, we have by Lemma 2.4 that ur, sp,rr,wr € Z and
moreover, un|ar and u$|Br. In particular, w4 divides ged(ag, 7). Since a and b are
relatively prime, we have that for a fixed positive integer k, there are integers r and
s such that ra® + sb* = 1 and so by Lemma 5.10, ged(ar, fr) divides 2'2.

16 mod 2. Therefore ar is even if and only if a is even.

Observe that ar = a
(i) Suppose a is odd so that a7 is odd. Since ur divides 22, it follows that Ep is

a global minimal model for E7p if a is odd. This shows the converse of ().
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For (ii) and (i74) we will consider the admissible change of variables x — u%x

and y — udy which gives a Q-isomorphism between E7 and the elliptic curve

4
a 8a 4das

E.:y —u—xy+—33y— 3—u—x where
ur T

ay = a* + 8a’b + 24a*b* — 64b*
ay = ab® (a + 2b) (a + 4b)* (I + 4ab + 8b°)

az = ab® (a + 2b) (a + 4b)” (& — 8b?) (¢ + 4ab + 8b?)

We will prove the converse of (i) and (zi¢) by demonstrating that E,, is an integral

Weierstrass model under the assumptions on a. Note that if a is even, then

va(y7) = 8 + 8va(a (a + 2b) (a + 4b)) + 2v2((a® — 8V?) (c( + 8ab + 8b7)) ( (5.16)
+ 4v, (a2 + 4ab + 8b2)

(17) Suppose ve(a) = 1. Then

49 (a + 4ab + 8()2

205 ((a® — 8b°) (n( + 8ab + 8b%))
8uvg(a (a + 4b))

8ug(a + 2() Z 16.
Therefore vy(y7) > 56. Next, we observe that
ar = 219k mod 217,

In particular, ve(ar) = 16 since k is odd. By Lemma 5.21, vo(f87) = 24. In particular,
16~*ar and 167587 are odd integers and they are the invariants ¢, and cg, respectively
of the Weierstrass model for E,, with upy = 16. We claim that F,, is an integral
Weierstrass model. By inspection, vy(a;) > 4, va(ag) > 7, and ve(as) > 10. Therefore
E

up 15 an integral Weierstrass model and therefore it is a global minimal model for

Er when vy(a) = 1. This shows the converse of (7).



130

(i73) Suppose va(a) > 2 so that a = 4k for some integer k. Observe that vy(yr) >

72 since

12 = 2uy

((a® — 8b%) (UC + 8ab + 8b%)) (
12 = 4vg(a + 4ab + 8

‘)
24 = 8uq(a (a + 2b)) <
16 < 8vy(a + 4b)

Next, we compute ar = 2266 mod 2% and so vy(ar) = 24. By Lemma 5.21 we
conclude that vy(B7) = 36. In particular, 27*ap and 27368 are odd integers and
they are the invariants ¢, and cg, respectively of the Weierstrass model for £, with
up = 64. By inspection, we observe that vy(a;) > 6, va(ag) > 10, and vy(ag) > 15.
Therefore E,, is an integral Weierstrass model and therefore it is a global minimal
model for E7 when vs(a) > 2. This shows the converse of (7).

Since the converse of (i), (i7), and (i77) exhaust all possibilities for a and b, we

get that the forward implication in each holds as well, which concludes the proof. B

5.4.13 Corollaries and Examples

The following two statements were proven in the proof of Theorem 5.14.

Corollary 5.22 Let ¢y and cg be the invariants associated to a global minimal model

of Ex. Then ¢4 and cg are always odd if T = Cg, C12, Cy X Cg, Cy x Cs.

Corollary 5.23 Let E be a rational elliptic curve with discriminant A containing a
point of order 3,5, or 7. Then A is minimal if and only if v,(A) < 12 or vy(cy) < 4

for all primes p.

For an arbitrary elliptic curve, this is only true for primes p > 5 [4, Remark

VIIL.1.1].
Example 5.24 The elliptic curve

E :y? = 2® — 1900650154752z + 990015042347311104
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has torsion subgroup E(Q), == Cy x Cy. The point P = (222288, 760596480) has

tors
order 4 and placing E in Tate normal form with respect to P results in the elliptic
curve

4585 5 4585

Ernp: 12 _ 2000 g3 2999 o
NP YT T aeeenY T T 36864”

Now consider the elliptic curve X;(Cy). It is clear if t = %, then X(Cy) is Ernp.
Therefore E is isomorphic over Q to E¢,(36864,4585). Moreover, 36864 = 212 . 32
and 4585 = 1 mod4. In particular, in the notation of Theorem 5.14, we have that
c =253 and hence the minimal discriminant of E and associated invariants c, and

Cg are
A — (i -3) 7" A4(36864,4585) = 2'0 . 32 . 5% . 71 . 832 . 131
6

-3) 7" (36864, 4585) = 2* - 274978321

ce = (29 3) 7" B4(36864,4585) = —20 - 232947 - 313 - 317 - 1439.

5.5 Necessary and Sufficient Conditions for Semistability of Er

Theorem 5.25 Assume the statement of Theorem 5.14. Assume further that the
J-inmvariant of Er is not equal to O or 1728. Then Ep with T' = Cy X Cy is semistable

and Er is semistable if and only if

Table 5.2.: Semustablity of Er

Necessary and Sufficient Conditions for Semistablity of Er T
ged(a,bd) = 1 and either up = 4 or vy(b) > 3 with a = —1 mod 4. Cy
a is a cube and 3 does not divide a. Cs
a is a square and either a is odd or ve(a) > 8 is even with b = 3 mod 4. Cy
vs(a + 3b) = 0. Cs
v3(a) =0 and va(a + b) # 1,2. Cs
vr(a + 4b) = 0. Cy

continued on next page
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Table 5.2.: continued

Necessary and Sufficient Conditions for Semistablity of Erp T
vo(a) < 1. Cy
v3(a+b) = 0. Cy
vs(a+b) = 0. Cho
v3(a) = 0. Cis
d=1 and ve(a) > 4 with b =1 mod 4. Cy x Oy
either a is odd or vo(a) = 2 with ve(a + 4b) > 4. Cy x Cy
v3(b) = 0. Cy x Cg

In particular, if for T = Cy x Cg and T = Cy where N = 5,7,8,9,10,12, the
equivalence above is not satisfied, then Erp has additive reduction at p where p is
the prime that appears in the valuation v, above. For the remaining T we have the
following necessary and sufficient conditions for additive reduction to occur at a prime
p:

(T'= C3) Er has additive reduction at each prime p dividing ged(a, bd). In addi-
tion, Er has additive reduction at p = 2 if and only if ur = 1 or vy (b*d — a®) > 4
with ve(a) = ve(b) =1 and d =1 mod4.

(T'= C3) Er has additive reduction at all primes dividing de. In addition, Er has
additive reduction at 3 if and only if vs(a) > 0.

(T = Cy) Er has additive reduction at all primes dividing d. In addition, Ep has
additive reduction at 2 if and only if a is even and ur = c.

(T' = Cs) Er has additive reduction at 2 (resp. at 3) if and only if vo(a +b) = 1,2
(resp. vs(a) > 0).

(T'=Cy x Cy) Er has additive reduction at all primes dividing d. In addition,

Er has additive reduction at 2 if and only if ad is even with ur = 1.
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(T = Cy x C4) Er has additive reduction at 2 if and only if ve(a + 4b) < 4 with a

even.

Proof We first consider the case when T # Cs, C3, Cy, or Cy x Cy. For these T, let
S be the set of primes at which Fr can have additive reduction. By Theorem 5.11,

we have:

T|Cs| Cr| Cs| Cy|Crp| Cia |CoxCyl|CyxCs|CyxCs
ST 20 8 B[ {Z3 ] {2 | {23 | {2

Let ur be as given in Theorem 5.14. Then the minimal discriminant of Ep is u;lZ’yT

(5.17)

and the invariant ¢, associated to a global minimal model of Er is u;‘laT. In par-
ticular, Er has additive reduction at a prime p if and only if p divides both u;4ozT
and u;"?yr. In what follows we will proceed by cases and reduce uy'ar and up'?yr
modulo p for p € S where S is as given in (5.17).

Suppose T' = C5. Then ur = 1 and we verify that

ar=(a+3b)" mod5 and 7 =4a’V’ (a+ 3b)° mod 5.

Therefore Er has additive reduction at 5 if and only if 5 divides a + 3b.
Suppose T' = Cs. By Theorem 5.14, ur is either 1 or 2. Note that vs(ar) =
U3 (u}4ozT) Cnd v3(yr) = v3 (uleyT)(Therefore Er has additive reduction at 3 if and

only if 3 di\ides a since

ar =a* mod3 and vr = a’t’ (a+b) (¢ — ab+ b?) finod 3.

It remains to verify that additive reduction occurs at 2 if and only if vy(a + b) =
1,2.
Case I. Suppose ur = 1. Then vy(a + b) < 3 and we have that

ar = (a+b)* mod2 and  yp = a?® (a+b)° mod2

Since a and b are relatively prime, we conclude that Er with ur = 1 has additive
reduction at 2 if and only if a + b is even. Similarly, £y with uy = 1 has additive

reduction at 3 if and only if 3 divides a.
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Case II. Suppose ur = 2 so that ve(a +b) > 3. Write a + b = 8k for some

integer k. Then b = 8k — a and we have the reduction:

uplar =a* mod2  and  up'yp = a®k’ (a + k) mod?2

Since a + b = 8k, a is odd and therefore Fr with up = 2 is semistable at 2.
Therefore Er has additive reduction at 2 if and only if vy(a + b) = 1, 2.

Suppose T'= C7. Then ur = 1 and we verify that
ar=(a+4b) (a+2b)" mod7  and A7y =6a"D" (a +4b) (a —b)" mod7.

It is clear that E7 has additive reduction at 7 if 7 divides a+4b. Suppose instead that
a + 2b is divisible by 7 and a + 4b is not divisible by 7. Since a and b are relatively
prime, it follows that neither a nor b is divisible by 7. Next, a — b = —3b mod 7 and
so it is not divisible by 7. Therefore Er has additive reduction at 7 if and only if 7
divides a + 4b.
Suppose T' = Cg. Then up is either 1 or 2.
Case I. Suppose ur = 1 so that ve(a) # 1. Then

ar=a® mod2 and  yp =a®b® (a+b)° mod2

and so Er has additive reduction at 2 if vy(a) > 1.
Case II. Suppose ur = 2 so that vy(a) = 1. Then u;4o¢T = b® mod?2 and
since a is even, b is odd. In particular, Er is semistable at 2.
We conclude that Er has additive reduction at 2 if and only if ve(a) > 1.

Suppose T' = Cy. Then ur = 1 and we verify that
ar = (a4 )" mod3 and v =2a"" (¢ — 62)9 mod 3.

Therefore Er has additive reduction at 3 if and only if 3 divides a + b.
Suppose T" = Cg. Then ur is either 1 or 2. Since vs(ar) = vs (u#aT) And
vs(yr) = vs (u;leyT),Ct suffices to consider ar and 7 modulo 5. To this end,

ar = (a+ )" mod5 and vr = ' (a +b)° (a4 @'’ + 3b") mod5.
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Therefore Er has additive reduction at 5 if and only if 5 divides a + b.

Suppose T' = (5. Then ur is either 1 or 2. By Corollary 5.22, u;4ozT is always
odd and therefore E7 is semistable at 2. Since vz(ar) = vs (u;4aT) nd vs(vyr) =
v3(uryr),(we verify that ar = a'® mod3. Hence, ar is divisible byC’) if and only
if a is divisine by 3. In particular, if a is divisible by 3, then 3 divides 7. Thus Er
has additive reduction at 3 if and only if 3 divides a.

Suppose T' = Cy x C4. Then uy is either 1,2, or 4.

Case I. Suppose ur = 1 so that vy(a) < 1. Then ar is even if and only if
vo(a) = 1 since ar = a* mod2. But if a is even, then 7 is even and so we attain
that Ep with ur = 1 has additive reduction at 2 if and only if vy(a) = 1.

Case II. Suppose ur = 2 so that vy(a) > 2 with ve(a + 4b) < 4. Write a = 4k
for some integer k. Then uy*ar and u;'?y7 are divisible by 2 and so we have that
Er with upr = 2 always has additive reduction at 2.

Case III. Suppose up = 4 so that vy(a) = 2 with vy(a +4b) > 4. Write
a + 4b = 16k for some integer k. Thus a = 16k — 4b and we have u;'ar = b* mod 2.
Since b is odd, it follows that Er with uy = 4 is semistable at 2.

We conclude that Ep has additive reduction at 2 if and only if a is even and
vo(a + 4b) < 4.

Suppose T' = Cy x (. Then up is either 1,4, or 16. By Corollary 5.22, u;4ozT is
always odd, and so Er is semistable at 2. Since vz(ar) = v3 (u;"aT) nd v3(yr) =

ﬁand only if 3
divides b.
at 3 if and only if 3 divides b.

U3 (u}w’y;p) iwe verify that ar = b® mod 3. Hence o is divisible by 3 i

ut if this is the case, 3 also divides yr. Thus Er has additive reduction

Suppose T' = Cy x Cg. Then ug is either 1,16, or 64. By Corollary 5.22, u;*ar is
always odd, and so Fr is semistable at all primes.

It remains to show the Theorem for T'= Cy, Cs, Cy, Cy x (5.

Suppose T' = C5. Let A = u;lzﬂyT be the minimal discriminant of Er where ur is
one of the possibilities allowed by Theorem 5.14. Then ¢4, = u;4aT is the invariant

associated with a global minimal model of E7. In particular, F has additive reduction
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at a prime p if and only if p divides ged(A, ¢4). Since ged(A, ¢y) divides ged(ar, v7),
it follows that ged(A, ¢4) divides 2!9 ged(a, 0°d®) by Lemma 5.10. In particular, Erp
has additive reduction at an odd prime p if and only if p divides a and bd. It remains
to check when additive reduction occurs at p = 2.

Case I. Suppose ur = 1. Then Er always has additive reduction at 2.

Case II. Suppose ur = 2. Then vy (b*d — a?) > 2 with vy(a) = ve(b) = 1 and
d =1 mod4 or ve(b) > 3 and a = —1 mod 4.

Subcase 1. First suppose vy (b?d — a?) > 4 with ve(a) = ve(b) = 1 and d =

1 mod4. Write a = 24, b = 2a, and b*d — a® = 16k for some odd integers a, b, and

an integer k. In particular, a®> = b*d — 16k and so

1
uptor = 4b%d — 16k and  wup'?yp = 6—4de (16k)* = 4b2dk>.

In particular, Er always has additive reduction at 2.

Subcase II. Suppose v5(b) > 3 and @ = —1 mod4 and write b = 8b. Then
. . . 2
u}40zT = 192b%d + a* and u}myT = b%d <64b2d — a2> )

Since a = —1 mod 4, u;4aT is odd and hence Er is semistable at 2.

Case III. Suppose ur = 4 so that vy (b°d — a?) > 8 with vy(a) = ve(b) = 1 and
271q =1 mod4. Write b = 2b for some odd integer b. Then 4b%d — a2 = 28k for some
integer k. Then a? = 4b*d — 28k and

1 - - 1 . R
uptar = oo (1604 —2%) = BPd—16k  and  ug'ty = Soabd (2%)" = Bk
Since d is odd under these assumptions, we conclude that Er is semistable at 2.

Suppose T = C5. Write a = c3d?e with d and e relatively prime positive squarefree

integers. By Theorem 5.14, the minimal discriminant of Er is u;ufyT with up = 2d.

In particular,
uptar = cd’e® (a — 24b) and up Py = d'edv’ (a — 27b) .

In particular, EFr has additive reduction at all primes dividing de. By Lemma 5.10,

ged(ar, yr) divides 21°3%3. Now suppose a is a cube so that de = 1. Then a = ¢* and
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we observe that u,'?yr = —27b* modc. Since b is relatively prime to c, it follows
that the only prime dividing a at which Er has additive reduction is 3. We now
consider the cases of additive reduction at 2 or 3.

Observe that

uplar = acd’e® mod2  and  upPyr = d*e®? (a 4+ b) mod 2.

Yar is even if and only if 2 divides a. Under this assumption, b is odd

Therefore ;.
and therefore u}lQVT is even if and only if de is even. But we have already shown
that Ep has additive reduction at all primes dividing de.

Next, we compute
uptar = acd®e® mod 3 and up 2y = ad*e®b® mod 3.

Therefore uy*ar is divisible by 3 if and only if 3 divides a. But if this is so, we
conclude that u;lQ’yT is divisible by 3 and therefore F7 has additive reduction at 3 if
and only if 3 divides a.

Suppose T' = C,. Write a = c¢%d for d a positive squarefree integer. Then uy is

either ¢ or 2c. Then
¢ *ar = d* (a® + 16ab + 16%) ( and ¢ 2yp = b*c*d" (a + 16b) .

By Lemma 5.10, ged(ar,v7) divides 2*2a®. Therefore, Er has additive reduction at
an odd prime p if and only if p divides d. Next, observe that

ctar = a?’d® mod?2 and c‘myT = ab*?d” mod 2.

Then ¢ *ar is even if and only if a is even. In particular, Er with ur = c has additive
reduction at 2 if and only if a is even.
Now suppose ur = 2c¢ so that vy(a) > 8 is even with bd = 3 mod 4. Then ¢ = 2%k

for some integer k and so
(2¢) " ap = b2d? + 256bd°k? + 4096dk* = 1 mod 4

since bd is odd. Hence Ep is semistable at 2 if ur = 2c.
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We conclude that Er has additive reduction at all primes dividing d and moreover,
Er has additive reduction at 2 if and only if a is even and ur = c.

Lastly, suppose T' = C5 x Cy. By Theorem 5.14, the minimal discriminant of Erp
is up'?yp where up is either 1 or 2. By Lemma 5.10, ged(ar, v7) divides 24d°. Since d
divides both a7 and v, we conclude that Er has additive reduction at an odd prime
p if and only if p divides d. Moreover, if ur = 1, both ar and v are even and hence
FEr has additive reduction at 2.

So suppose ur = 2 so that vy(a) > 4 and bd =1 mod 4. Then
uptar = d* (a® — ab+ b?) 6 1 mod 2.

Therefore Er is semistable at 2.
Thus, Er has additive reduction at 2 if and only if ad is even with ur = 1 and

Er has additive reduction at an odd prime p if and only if p divides d. [ |

Remark If the j-invariant of Er is 0 or 1728, then Theorem 5.14 classified the
minimal discriminants of these elliptic curves. From the identity 1728A%" = ¢f — ¢
we conclude that these elliptic curves have additive reduction at all primes dividing

the minimal discriminant AE™.

Corollary 5.26 Let E be a rational elliptic curve. If E has additive reduction at
=Cy for N=1,...,4 or E(Q),,. = Cyx (Cs.
If E has additive reduction at two primes, then E(Q), _ can be embedded into Cy, Cs,
or Cy X Cs.

three or more primes, then E(Q)

tors tors

tors

Proof The elliptic curve ? = 2® + 30 has additive reduction at the primes 2,3, and
5 and has trivial torsion subgroup. The Corollary now holds for the remaining 7" by

Theorem 5.25. [ ]

Remark The previous corollary does not hold in arbitrary number fields. Indeed,
suppose F is an elliptic curve over a number field K with a K-torsion point of order

n. If E has additive reduction at two places with distinct residue characteristics,



139

then n divides 12 by Theorem 5.9. In fact, Flexor and Oesterlé proved a stronger
statement, namely that under these assumption the order of E(K), . divides 12.
They also showed that this divisibility condition is sharp since the elliptic curve
y? =2y = 2% over K = Q(v/-3) f(\aS additive reduction at two places and their

residue characteristic is 2 and 3. Mdgeover, E(K), .. = Cy x Cg.

tors

Example 5.27 Consider the elliptic curve E given by the Weierstrass equation
E :y? = 2% — 19057987954261048752x + 31955359661403338940204703104.

The point P = (2365794828, 10458914400000) is a torsion point of order 12 on E.

Placing E in Tate normal form with respect to P yields the Weierstrass equation

. ,, 6021 430408, 430408
: —ay — =1z’ — x”.
INE YT o5 Y T 1875 Y 1875

In particular, Ernp is equal to Xy(Chs) for some t. Therefore, we solve for t and

attain

1266 — 3085 + 34¢* — 213 + 72—t 430408 q —6t* 4+ 9t — 52+t 6021
= an — =

(t—1)" ~ 1875 (t—1)° 125

Observe that the common rational solution to both equations is t = % and so E 1is
isomorphic over Q to Ep(6,11) for T = C5. Since v3(6) > 0, we have by Theorem

5.25 that E has additive reduction at 3. Moreover, its minimal discriminant is
AT = 2724p(6,11) = 2% .37 5% . 1112 . 61 - 67* - 73°.
since 6 is even. In particular, a global minimal model of E has associated invariants

cs =2 Yar(6,11) = 3% 23 - 107 - 227 - 27361 - 320687

ce = 27%87(6,11) = —3% . 503 - 769 - 47221 - 18748939480561.
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6. LOWER BOUNDS ON THE MODIFIED
SZPIRO RATIO

Let T be one of the fourteen non-trivial torsion subgroups allowed by Theorem 2.1

and suppose F is a rational elliptic curve with 7' — E(Q) In the previous chapter,

tors”

we saw that for T' # Cy, Cy x Cy, C3, there exist relatively prime integers a and b such
that F is Q-isomorphic to Ep = Er(a,b) where Er is as defined in Table D.1. The
same holds for T' = C}, so long as the j-invariant of F is non-zero. If instead, F had
J-invariant equal to 0, then F is parametrized by the one-parameter family of elliptic
curves Er = Er(a) where T = CY.

For T' = C5, Cy x C5 we have similar parameterizations, namely E is Q-isomorphic
to Epr = Er(a,b,d) for some integers a,b,d. We note that in order for E to be Q-
isomorphic to Ep for T' = (5, F must not have full 2-torsion as demonstrated in
Lemma 5.2.

In particular, a study of the elliptic curves Er is equivalent to a study of all
rational elliptic curves with non-trivial torsion. Moreover, the minimal discriminant
of Er is up'?yr where 47 is as defined in Table D.4 and uy is an integer. By Theorem
5.14, we have necessary and sufficient conditions on a and b to determine ur. In this
chapter, we use Theorem 5.14 to explicitly construct the naive height of Er. Recall

that for a rational elliptic curve E, the naive height hp.ive(E) of E is defined as

1
Pnaive(E) = Elogmax{ 5

where ¢4, and cg are the invariants associated to a global minimal model of E. By

Theorem 5.14, we have that

1

hnaive(ET> = E log (U;IQ max{ a%’ 75%}) ( (61)



142

where ar and fr are as defined in Tables D.2 and D.3, respectively. Our first result
is that for T" # Cy, Cy x Cy, we can define an explicit function which coincides with
the naive height of Er.

In section 6.3 we revisit the modified Szpiro conjecture and state the main theorem
of the chapter. Recall that the modified Szpiro ratio o,,,(F) of a rational elliptic curve

F is defined as
_ logmax{|cj| , 3}

n(E) =
om () log Ng

where Ng is the conductor of E and ¢4 and c¢g are the invariants associated to a global

minimal model of E. Our main result states that if £ is a rational elliptic curve, then
there is a lower bound on the modified Szpiro ratio which depends only on the torsion
subgroup of F.

In section 6.4, via Tate’s Algorithm, we prove stricter upper bounds on the ex-
ponent of the conductor of a rational elliptic curve at 2 and 3. These results will
allow us to bound the conductor of rational elliptic curves with non-trivial torsion in

Section 6.5. We finish in Section 6.6 with the proof of the main theorem.

6.1 Results on Polynomials

Let T be one of the fourteen non-trivial possible torsion subgroups allowed by
Theorem 2.1. Let ar, Br,vr, and d7 be as defined in Tables D.2, D.3, D.4, and 6.2,
respectively.

For T 7£ CQ,CQ X CQ let

(

12 if T = C3,Cy, Cs, Cs, Cy x Cy
4 i T =Cy, Cs, Cy x Cg
36 if T = Cy, Cho

\‘Cg if T = Cl, Oy x Cs.

It is then verified that we hawe the following identities:

s ey (1 0) 2 g (1 0)
ar(a,b)” =a™"ar 1,@ Br(a,b)” = a7 Br 1,a (6.3)
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Assume further that T # Cy x Cyy where M = 2,3, 4 and consider ar(1,z) and

pr(1,x) as functions from R — R. To this end, set
Sr={feR| ar(1,0)° - Br(1,0)>=0 .

Now write Sy = {61, 6,...,0,} where 0; < 6 if j < k.
Table 6.1, with a few exception, lists the approximate value up to four decimal
places of the 0;’s. For the exceptions, Table 6.1 lists the exact value of 6;. The

following three results are easily verified via compute algebra system:

Lemma 6.1 For T' = Cy with N > 3, let 0; be as given in Table 6.1. Then the

function |ar(1,z)]> — Br(1,x)* is nonnegative on the interval Iy where

' Gjl,ez] U [65, 4] ifT =y

1, 02] U [03, 00) if T =Cy

[61, 62] U [03, 64] U [65, 6] U [7, 0) if T'=Cj

Iy = C(Hoo, 6] U [0, 65] U [61, 00) if T = C
1,02] U 03, 04] U [05,06] U [07, 0] U [y, 010] U [011,00) if T = C7,Cy
(—00, 0] U (03, 04] U [05, 7] U [05, o0) if T'= Cs, Chz

| [01,02] U 03, 06] U [67, 0] U 69, 00) if T =Cho

For T ng x Oy, let mp = 6 and observe that

2

3
ar(a,b,d)® = (ad)™ aT(1,§,1) Br(a,b,d)* = (ad)™ 5T(1,§,1> . (6.4)

Lemma 6.2 For T = Cy x Cy, the function |arp(1,z,1)|* = Br(1,z,1)* is nonnegative

on It = R.
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For T' = (s, set

dﬂmB)uﬂf+BB)g Bﬂ@B)z—mﬂ@ﬂ?+wﬂ<

In particular, ar(a, B) = ar(a,b,d) and B(a, B) = Br(a,b,d) with B = b%d. Let

mr = 6 and observe that
2
a™ & (1, §)3 = ér(a, B)® a™ Br <1, g) = fBr(a, B)*. (6.5)
Then
ST:{eeR\@ﬂLm3—BﬂLm2:o}<
= {64, 05,05}
where 0, ~ —4.0860, 6, = 0, and 03 = 1.

Lemma 6.3 For T = Cy, the function |ép(1,2)[> — Br(1,x)? is nonnegative on the

interval Ip = (—o0, 6] U [0, 00).

6.2 Explicit Naive Height

In the following Proposition, let IS denote the complement of I in R.

Proposition 6.4 Let ¢y and cg be the invariants associated to a global minimal model

Of ET. Set

Y )

otherwise b  otherwise.

2 T =C 2d if T =C
A— ( if 2 B if 2
a

and I7 =R for T = Cy x Copr for M =1,2,3,4. Then

Al ifBel
max{Cf;,cg _ el dael (6.6)

: ifelf.
Proof By Theorem 5.14, ¢4 = u}4aT and & = UE%’T where ur is a positive integer

uniquely determined by a and b. Hence

b\’ b\ >
max{ Ci ,Cg = u;12 max{ C/gw ,ﬁ% = u;mCLmT maX{ <06T (( a) ,ﬁT (( a) } .
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Now suppose T' = C'y where N > 3. Then

b\? b\’
u;mmax{ C":} 76’12" :U’;12a’mT maX{ OéT(l,—> 7ﬁT(17_> }
a a

by (6.3). By Lemma 6.1, |ar(1,z)[> > Br(1,2)* if and only if € Iy, which gives
(6.6).
For T = (5, observe that

B\* . (. B\’
u}umax{ C“% , BF :u;nameax{ dT(LZ) 7/3T(17Z) }

by (6.5). By Lemma 6.3, |dT(1,x)\3 > BT(l,x)Q if and only if x € Iy, which gives
(6.6).
Next, Suppose T' = Cy x (5. Then

b\’ b\’
UElQ max{ C‘% ’ﬁ% = U7_112 (ad)mT max{ ar (17 ) 1> 7BT (17 ) 1) }
a a
by (6.4). By Lemma 6.2, |arp(1,z,1)|*> > Br(1,2,1) for all # € I; = R, which gives
(6.6). In particular, max{|c}|, 2} = |c].
Lastly, assume T' = Cy x Cyyy for M = 2,3,4. Since Cy x Cy — E7p, it follows
that Er is Q-isomorphic to Ec,xc,(a,b, d) for some integers a, b, d. By the above, we

conclude that max{|c}|,c2} = |ci]. |

By Theorem 5.14, ¢4 = u;lozT and cg = u;GBT where up is a positive integer
uniquely determined by a and b and in the case of T' = C5, Cy x Cs, up is uniquely

determined by a, b, and d. Now let

St = {g € Q| ged(a,b) =1 and Ap(a,b) # 0}(

For T # Cy, Cy x Cy we can construct a function ur : Sy — Q such that ar(a,b) =

ur?. Now define fT St — Q by

~ (b OéT(CL, b)3 if % e Ir
fr( - )
a r(a,b)”  if 2 e If.
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Corollary 6.5 ForT # Cy, Cy x Cy, there is an explicitly defined function fr : Sp —

R such that
fT(g) 6 hnaive(ET(aa b)) .

Proof Let fT,ﬂT : Q@ — Qbe as defined above. Define fT(g) C %log( T(%) fT(f(D

Then
b 1 A
fT<a> =1 log (UT (5) é‘ax{ CVT(aab)g , Br(a, b)2 ) <
1
= Elogmax{fl e
by the definition of ﬁT(g) (AT(C%) (an the proof of 6.4. [ |

6.3 Lower Bounds on the Modified Szpiro Ratio

'(1 it T = C,

D T =0,
2 T = CyCy,Cy x C

Iy = (3 it T = Cs. Cy. Cy x C (6.7)
4 T = Cy,Cy, Cy x Co

4.5 if T = Cy, Cyy
k£8 if T'= 012702 X Cg.

Let

We may now state the main thdorem of this chapter:

Theorem 6.6 Let T' be one of the fifteen torsion subgroups allowed by Theorem 2.1
and let lp be as given in (6.7). If E is a rational elliptic curve with T — E(Q)
then o, (E) > lr.

tors’

The proof of this result will be given in section 6.6. The main step is to bound the
conductor. This will be done in the next two sections. Namely, we will prove a series
of lemmas in the next section which relies on Tate’s Algorithm. These results will
then allow us to bound the conductor in section 6.5. Once these results are proven,

the proof of Theorem 6.6 is done in section 6.6.
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6.4 Tate’s Algorithm and the Conductor of Er

In Section 2.4, we reviewed the terminology pertaining to the local data of a
rational elliptic curve. In this section, we will use Tate’s Algorithm to establish
upper bounds on the conductor of an elliptic curve at the primes 2 and 3 under certain
conditions. For the reader’s benefit, we restate the quantities which are obtained from
Tate’s Algorithm.For each prime p of Z, Tate’s Algorithm [5, Chapter IV] returns the

following local data:

1. The reduction type of the special fiber @gﬁn over I_Fp. We will use Kodaira
symbols to describe the reduction type.

2. my: the number of components, defined over F, and counted without multiplic-

ity, on C_;ni“.
3. v (Ar,gin): the valuation of the minimal discriminant of E/K with respect to p;

4. f,: the exponent appearing at the prime p of the conductor of £. This will be

computed via Ogg’s formula: f, = v, (A}f;‘in) my, + 1;

5. ¢p: the local Tamagawa number at p, i.e., the order of the group of components
No(Fp) /NJ(F,). Equivalently, ¢, is the number of components of C2*™ which

have multiplicity 1 and are defined over F,,.

Theorem 6.7 (Ogg’s Formula, [5, 4.11.1]) Let E be a rational elliptic curve with
manimal discriminant A", For p a prime, let f, denote the exponent of the conductor

at p and let my, be as defined above. Then
v (AF")  fotmp =1
In particular, f, < v,(AB™) for each prime.

Remark From this point onward, we assume familiarity with Tate’s Algorithm and

follow the Algorithm as outlined in [5, Chapter IV].
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Proposition 6.8 LetT' = C5 and consider the elliptic curve Ep. If p does not divide
Ag;”, thenm, =1, f, =0, and ¢, = 1. Moreover, Ex has multiplicative reduction of
type I, where n = v, (A’g;”) f and only if p divides b or (a — 27b).

Now suppose E has addi(ive reduction at p. If p divides d, then E has reduction
type IV at p and m, = ¢, = 3 and

p#3 | p=3andvz(a) =2 | p=3 and v3(a) =2 mod 3 with vs(a) # 2
I 2 4 )
vp(A) 4 6 7

If p divides e, then E has reduction type IV* at p and m, =17, ¢, =3, and

p#3 | p=3andvs(a) =1 |p=3 and vs(a) =1 mod3 with vs(a) # 1
£ 2 3 5
vp(A) 8 9 11

Now suppose 3 divides a with vz(a) =0 mod 3. Write a = 27a and set n = vs(a — b).
If n = 0, then reduction at 3 is type II if and only if v3(2b%d*e* — bed?e® + 1) = 1.
Otherwise, reduction type at 3 is type III. If type II, then m3 = c4 = 1 and f3 =
v3(A) = 3. If type 1, then ms = c3 = 2, v3(A) =3, and f3 = 2.

Lastly,

n Type ms3 /3 03(A) C3

1 11 1 4 4 1

2 v 3 3 ) 1or3
3+n, n>0| I |n+5|2|6+n|2o0r4

Proof The rational elliptic curve
EL :y? + cdexy + bde*y = 2°

is a global minimal model for the elliptic curve Er by Theorem 5.14. In particular,

the minimal discriminant of Er is

A%ﬁTn =b'd'e® (Pd’e — 270) (
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Now let p be a prime. The admissible change of variables x — x + p and y — ¥y

gives a Q-isomorphism from E/. onto the elliptic curve
Erfpl) Y + cdexy + (bde® + cdep) y = x* + 3pa® + 3p” + p°. (6.8)
Now let by, by, bg, bg be as in (2.2). Then

by = Ad*® +12p b = b*d*e + 2bcd*e®p + Ad?e*p? + 4p®

bs = p (3b°d*e* + 3bed’e®p + *d’e*p? + 3p?)

In what follows, aq, as, as, as, ag will refer to the coefficients of the Weierstrass model
for E;l).

Case 1. Suppose p 1 Afg;n. Then E7 has good reduction at p and the reduction
type is Iy. Consequently, m, =1, f, =0, and ¢, = 1.

Case II. Suppose that p|A§iT“ and that Er has multiplicative reduction at p. By
Theorem 5.25, p divides b or c3d?e—27b. Otherwise, E7 would have additive reduction
at p. The Weierstrass model for E(Tl) satisfies the condition that p divides as, a4, ag
and so we may proceed with Step 2 of Tate’s Algorithm. Since p does not divide cde,
it follows that p does not divide by. By Tate’s Algorithm, the reduction type at p is
Type I, where n = v, (AB).

Case III. Suppose p dividL d. By Theorem 5.25, Fr has additive reduction at p.
Then p|by, p?|ag, p?|bs. But p? t bg since de is relatively prime to b. Now observe that
for an indeterminate T,

2 3 A ~ A
T2+MT%T2+<{<de2+cdep>(pT<T+bdez> mod p

with d = ch. In particular, I, is the splitting field of the polynomial 7' (T + bCZ(BQ) (
We conclude by Tate’s Algorithm that Er has reduction type IV at p and thus
my = ¢, =3 and f, = v, (AB") 2.
Subcase I. Suppose p #Q Then v, (Ag}“)ﬁ 4 and thus f, = 2.

h

Subcase II. Suppose p = 3 and v3(a) = 2. Then 3 divides d and we have that

V3 (A%“Tn) C 6. Thus f3 = 4.
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Subcase III. Suppose p = 3 and v3(a) = 2 mod3 with 3 dividing ¢. In
particular, 3 divides d. Then vs(AB?) £ 7 and so f3 = 5.

Case IV. Suppose p divides e. By gheorem 5.25, Er has additive reduction at

p. Now observe that p divides bs, a;, aq, p? divides ag, as, as, and p? divides bg, bs, ag.

Consequently, Tate’s Algorithm runs through Step 6. Now consider the polynomial
3,2, 30 P

P(T):T3+?T2+p—2T+E

= (T +1)° modp.
Since this polynomial has a triple root over F,, Tate’s Algorithm skips to Step 8. To
proceed, we consider the admissible change of variables x — x + p? and y — ¥y

which gives a Q-isomorphism from E. onto
Eg) 1y + cdexy + (bd62 + cdep2) y = x> + 3p*z? + 3pta + pb.

Let a} correspond to the coefficients of the Weierstrass model for Erf ). Then p?|ab, p¥la),

and p*|aj. Now consider the polynomial

bd 2 d 2 6
L E_ry (bdé2+cdép2)£p2.

p? p
Viewed as a polynomial in [F),, we observe that [, is its splitting field since

T + (t(lé2 + cdép®) ( —p> =T (T + bdé?) gnod p.
By Tate’s Algorithm we ¥onclude that\ Fr has reduction typeIV* at p and moreover
m, =17, fp= vp(A%“iTn)i: 6, and ¢, = 3.

se p # 3. Then vp(A%liTn)f 8 and so f, = 2.
h

en 3 divides e and we have that

Subcase I. Sup
Subcase II. Suppose p = 3 and v3(a) = 1.
v3(AB") £9. Thus f3 = 3.
"
particular, 3 divides e. Then wvs (A%;n) C 11 and so f3 = 5.
0

case III. Suppose p = 3 and v3(a) = 1 mod3 with 3 dividing c¢. In

Case V. Suppose p = 3 and v3(a) =\0 mod 3. Then ¢ = 3¢ for some integer ¢ and
3 does not divide de. Now consider the admissible change of variables z — x — 1

and y — y + bde* which gives a Q-isomorphism from E} onto

E(T?’) : 2% + cdexy + de (3be — ¢)y = 2° — 3% + (3 — bed®e®) x + bed’e® — 2b°de* — 1.
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Let @} denote the coefficients of E;?’ ). Then 3 divides as and aj. Note that
ay = bed?e® — 2b*d*e* — 1 =0 mod3

since b?d?e? is square not divisible by 3. Now compute the quantities b, b}, by, by for

Eé?’) via the formulas in (2.2). Then
by =9¢°d*e* — 12 b = (CCZ@Q — 3éde — 2) (t(lez — 3éde + 2) (
by = 3+ 9béd’e® — 92 d%e® —\3b*de?.

Note that 3 divides bf.
Subcase I. Suppose v3(a) > 6. Then vs(AR™) C 3. Then

ap = Tb*d*e¢* — 1 mod 9.

By Tate’s Algorithm, Er has reduction type I if and only if af # 0 mod9. If this
is the case, then mg = ¢ = 1 and f3 = 3. Now suppose af = 0 mod9. Then
bde? = £2 mod9. In particular, b*°d?e* = 4 mod9 and so b*d?*e* = 4 + 9k for some

integer k. Now observe that since 3 divides ¢ we attain
by = 3 — 3b°d*e* mod27 =3 —3(4+ 9k) mod27 = —9 mod 27.

Thus we have that if af = 0 mod 9, then Er has reduction type I/1 at 3. In particular,
m3=c3 = f3=2.

Subcase II. Suppose v3(a) = 3. Then ¢ = 3¢ with ¢ an odd integer. Then
FCdPe — 27 = 27 (d*e — b)

Set it = v3(é*d®e — b) so that vs(AR™) £ 3+7n. We now consider the following cases:
() 2 =0, (i§) & = 1, (iii) 7 = 2, and (k)
(i) Suppose n = 0. Since f, < v (Af,g;n) (?e note that the only possibilities

n > 3.
with f, > 2 are Type II or Type III. Moreover, Uype II occurs if and only if ag #
0 mod9. If this is the case, then m3 = ¢3 = 1 and f3 = 3. Otherwise, Fr has

reduction type II1 at 3 with mg = c3 = f3 = 2.
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(i) Suppose 7 = 1. Then b = ¢3d%e — 3k for some integer k not divisible by
3. Now observe that

ag = 3c*d*e* — 9ed* e’k — 2 (°d*e? — 6 d*ek + 3k*) Pet — 1
-1

= 3¢d e — 9¢d?e3k — 208d%e® + 128%d Pk — 3dPe

=8+3 mod9 #0 mod9 (6.9)

since 31> = 3 mod9, —2I° =7 mod9, and 12/ = £3 mod9 for all [ not divisible by
3. Thus E7 has reduction type II at 3 and in particular mz = ¢3 = 1 and f3 = 4.
(4ii) Suppose i = 2. Then b = ¢3d?*e — 9k for some integer k not divisible by
3. Then
ag = 8 + 3¢td*e* + 7¢°d%° mod9 =0 mod9

since 3[* = 3 mod9 and 7I° = 7 mod9 for integers [ not divisible by 3. Next, we

consider by and observe that
by = 3+ 18¢%d*e* + 9¢'d*e* 4 24¢°d°¢® mod 27 = 0 mod 27

since 1812 = 18 mod 27, 912 = 9 mod 27, and 24{% = 24 mod 27 for integers [ which

are not divisible by 3. Next, we consider by and observe that
by = 23 + 92 d%e? + 21&* d e + ¢%dPe® 4 93 d ek mod 27 = 9¢°d* e’k mod 27

since 234912 +211*+15 = 0 mod 27. Moreover, édek is not divisible by 3 and therefore
we conclude that b is not divisible by 27. By Tate’s Algorithm, we conclude that
Er has reduction type IV at 3. In particular, m3s = f3 = 3. Lastly, consider the

polynomial

" " bAdQ 3 2b2d2 4 1
T2+%T—%:T2+de(be—é)T—3ce 5 <

Now observe that

3bcd?e® — 22d%e* — 1 = —1 4 3¢ d e — 285d5¢5 — 27¢d?e3k + 3683 d e’k — 162d%e* k2

= 9¢3d*e®k mod 27.
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Since de (be — ¢) = —éde + 3d3e® — 9de?k = 0 mod 3, we have that

o, a3 ag 2, 345
T 4+ 2T — 2 =T*“+¢&d e’k mod3.

3 9

But ¢3d*e’k is square modulo 3 if and only if ¢*d*e’k = 1 mod3. If this congru-
ence holds, then Fj is the splitting field of this polynomial and therefore by Tate’s
Algorithm, c5 = 3 if and only if 3d*e’k = 1 mod 3. Otherwise ¢ = 1.

(iv) Suppose . = 3 + n for some integer n > 0. Then b = ¢*d?e — 27k for
some integer k satisfying v3(k) = n. Proceeding as above shows that 9 divides ag and

81 divides b;. We now show that bf is divisible by 27. Indeed,
by = —4 +98°d*e? — 6¢*d e + ¢°d°e® mod 27 = 0 mod 27

since —4 + 912 — 61* + 15 = 0 mod 27 for integers [ not divisible by 3. To proceed
through Tate’s algorithm we must satisfy further divisibility conditions, which are not

)

satisfied by the coefficients of the Weierstrass model for E}d . To this end, consider

the admissible change of variables x — z and y — y — ¢dex from E(T3 ) onto

EY 4 — 9édexy + 3de (be — &)y = &® — (188%d%e? + 3) a?+

(15bed?e® — 18¢°d?e® + 3) ff — 2b°d?e” + 3bed®e® — 1.

Let a; denote the coefficients of the Weierstrass model for E(T4 ) Observe that 3 divides

a1 and as. We claim that 9 divides a3 and a4 and that 27 divides ag. Indeed,

az = cde (T 3c*d*e?) £“0d9 =0 mod9
a4 = 3+ 6&d*e* modd=0 mod9

ag = —1 + 3¢'d"e* — 2¢°d°® mod 27 = 0 mod 27
since 312 = 3 mod9, 6/* = 6 mod9, and 3I* — 2/ = 1 mod 27 for integers [ not

divisible by 3.

Now consider the polynomial

a i a
P(T)=T%+ §2T2 + §4T+ 2—?
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The discriminant of this polynomial is

Disc(P) = 37% - (—4ajae + a3a; — 4a3 — 27ag + 18a2a4ds)
2368d8e® — 328619410610 4 9261241212
mod 3.

_ 9 710 11
e + 3

But 23608 — 328/ + 92{'? is divisible by 9 for all integers [. Thus Disc(P) =
A2dPek mod3. In particular, P(T) has distinct roots over an algebraic closure
of F3 if and only if % is not divisible by 3. Equivalently, v3(k) = n = 0. By Tate’s
Algorithm, if this is the case, then Ep has reduction type I}, ms = 5, f3 = 3, and
c3=14+#{a Q3| Pla)=0}.

Now suppose n is positive. Then we may write b = ¢3d?e — 81k for some integer

k satisfying v3(k) = n — 1. Then P(T) does not have distinct roots and in fact

mod 3.

1 A4d4 4 A4d4 4_2’\6d6 6 1
P(T)=T? + 277 + <é2d2e2+M)T+ sede —2cde

3 27
Since P(T') does not have distinct roots over an algebraic closure of Fs, it follows that
either P(T') has a double root or a triple root over an algebraic closure of F3. Suppose
P(T) had a triple root over an algebraic closure of F3. Then P(T) = (T — \)* mod 3
for some X in an algebraic closure of F3. In particular, P(T) = T® + 2)3. Since the
coefficient of P(T") modulo 3 is 2, we conclude that P(T") does not have a triple root
over an algebraic closure of Fs.

Since n = v (A%ﬁTn) 6, we conclude by Tate’s Algorithm that Er has reduction
type I* at 3 and moreoCer, ms = v (AR") ( 1 and f3 = 2. Lastly, c3 = 2 or 4. This

concludes the proof. [ |

Example 6.9 Let T'= C3 and let Ey = Er(27,—-8) and FE5(27,—17). Then
v3(AB™) E£3+v3(1+8) =5 and  v3(AR") £ 3+ v3(1417) = 5.

By Proposition 6.8, the reduction type at 3 is Type II for both E, and E5. Next we
compute the local Tamagawa number at 3. With notation as in part (iii) of the proof

of Proposition 6.8, we saw that cs = 3 if and only if *d*e®k =1 mod 3 where ¢ = 3¢
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and b = ¢d*e — 9k. Since de = 1 for both B, and E, we observe that k = 1 for E;
and k = 2 for E,. In particular, since ¢*d*e®k = k, we conclude that c3 = 3 for E;

and cs =1 for Es.

Lemma 6.10 Let T = Cy. If ur = ¢, then v,(Ny) < 2 for all odd primes p.

Moreover, if va(a) < 2, then v,(N7) < 6.

Proof Since we are assuming ur = ¢, we have by Theorem 5.14 that a global

minimal model for Ep is
El o y? + cdry — cd*by = 2° — bda?

with a = c?d for d a positive squarefree integer. Moreover, the minimal discriminant
of Er is
AR® = b*Pd" (c*d + 16b) (

For p > 5 a prime, it is true that v,(N7) < 2. So it sufficss to show that the inequality
holds for p = 3 to prove the first claim. If Er is semistable at 3, then v3(Ny) < 1. So
suppose Fr has additive reduction at 3. By Theorem 5.25, Er has additive reduction
at 3 if and only if 3 divides d. We may, therefore, assume that d = 3d with d a
positive integer not divisible by 3. We now consider Tate’s Algorithm for FEr at
the prime 3. To this end, consider the admissible change of variables * — x and

y — y — 2cdx + 2bed? which gives a Q-isomorphism from EZ. onto
E(Tl) :y* — 3cday + 3bed®y = 2° — (202d2 — bd) 2 4bPdBr — 207 Pd!

Now let a; be the coefficient of the Weierstrass model for E;l). Since 3 divides d,
we have that 3 divides a; and as, 9 divides a3 and a4, and 81 divides ag. Now we

compute the b; as given in (2.2),

by = d (*d — 4b) ( be = P!, by = B,
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Now observe that the assumption of d being divisible by 3 implies that 3 divides by, 27
divides bg and bg. Thus Tate’s Algorithm runs through Step 6. Next, we consider the

polynomial

3 9 27

P(T)=T3+2 42404 26 3y (6&&2 - bd) (‘2 + 126c2d3T + 6b2c2d!
= T% _ bdT? mod3 = T2 (T _ bci) (mod 3.

Since bd is not divisible by 3, we have that P(T) over 3 has a double root at 0 and

a simple root at bd. Now let
n=uvs(AR") £ 6 =14 2vs(c)

since vs (Arngn) 7+2v3(c). By Tate’s Algorithm, we conclude that Er has reduction
Type I at 3. V\Creover, mg =n+5, f3 =2, and c; is either 2 or 4. Hence v,(Nr) < 2
for all odd primes p.

It remains to show that if ur = ¢ and vy(a) < 2, then vy(N7) < 6. By Theorem
5.25, Er additive reduction occurs at 2 with uy = ¢ if and only if a is even. So it
suffices to consider the cases va(a) = 1 and ve(a) = 2.

Case 1. Suppose vz(a) = 1. Then d = 2d for some odd integer d and ¢ is odd.
Since d is even, we note that 2 divides a; and as, 4 divides a3 and a4, and 8 divides ag.

Moreover, 2 divides by and 8 divides both bg and bg. In particular, Tate’s Algorithm

runs through Step 6. Now consider the polynomial

2 4 8

PT) =T+ 2+ 2+ % = 7% — (42 — bd) (2 + 8bAdPT — Ab?Ad
=T~ bdT? mod2 = T* (T - bd) <mod 2

Since bd is odd it follows that P(T) has a double root at 0 over F, and a simple root
at bd. Now observe that v, (A%“Tn) rC 8. Since the double root of P(T') over Fy occurs
c

at 0 we may proceed to the subprpcedure of Step 7 in Tate’s Algorithm. Indeed, 4
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does not divide ao, but 8 and 32 divide a4 and ag, respectively. Next we consider the
polynomial

Y2 %Y — (11_665 — Y2 4 3bed?Y — 2b%2d*

= V2 4+ bed?Y mod2 =Y (Y n bccP) <mod 2.

Since bed is odd, we have that this polynomial is Y (Y + 1) over Fy. Since it has
distinct roots over Fy, we conclude by Tate’s Algorithm that the reduction type at 2

is Type I7 and moreover my = 6, f, = 3, and ¢ = 4.
Case II. Suppose v9(a) = 2. Then ¢ = 2¢ for some odd integer ¢ and d is odd. In
particular, vq (Ag;n) (: 4. By Ogg’s Formula we conclude that f, <4 which concludes
|

the proof.
Lemma 6.11 Let T'= Cs. Then v,(Nr) <2 for all p.

Proof By Theorem 5.25, Er is semistable at all primes p > 5. Consequently,
v,(N7) < 1 for all primes p > 5. By Proposition 6.8, vo(Nyp) < 2 since Erp is Q-
isomorphic to Fg,(a’,b’) for some relatively prime integers o’ and ¢'. It remains to
show that v3(N7) < 2. To this end, we assume E7 has additive reduction at 3. By
Theorem 5.25, Er has additive reduction at 3 if and only if 3 divides a. By Theorem
5.14, the minimal discriminant of Er is u;'?vys where up is either 1 or 2. Moreover,
up = 2 if and only if ve(a 4+ b) > 3. We will now prove the Lemma by considering the
cases ur = 1 and ur = 2 separately.
Case 1. Suppose ur = 1. Then Er is a global minimal model for Er. We now
consider the cases vs(a) = 1, vsz(a) = 2, and vs(a) > 2 separately.
Subcase 1. Suppose v3(a) = 1. Then a = 3a for some integer a not divisible
by 3. In particular, vs (A%“Tn) C 3. The admissible change of variables x — x and

y — y + 3 gives a Q-isomorphism from E7 onto

EWY :y? 4 (a—b)zy + (6—a2b—ab2)<:
x? — (ab—l—b2)<2+(3b—3a)x+3a b+ 3ab* — 9.
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Let ag.l) denote the coefficients of E%l ). Observe that 3 divides agl), afll), and aél). Now

let b§1) be as given in (2.2) for the Weierstrass model of EFEFI). Then
b =a® —6ab— 30 b\ = —a’b® — 3a’b* — 3a%D° — a?0°.

) (

Since a = 3a we observe that 3 divides bgl and 9 divides %1)' However,

b = 18a26° mod 27 = 18 mod 27

since 18/% = 18 mod 27 for integers [ not divisible by 3. Therefore 27 does not divide
bg) and by Tate’s Algorithm, we conclude that Er has reduction Type I11 at 3. In
particular, mg = 2, f3 =2, and c3 = 2.

Before proceeding to the next two subcases, we will consider a new translation
of Er. Let z — z and y — y + (a — b) x — a*b — ab® be an admissible change of

variables from Ep onto
Eg) y” + (3a — 3b) xy — (3a®b + 3ab?) y = 2° + (3(@6 —2a” — 3b%) z*
+ (4a3b — dab®) f — 2a*b? — 4a”b* — 2a*b*.
Let agg) denote the coefficients the Weierstrass model for E;Z) and we compute the
@ o i .
b;” as given in (2.2):
b =a* —6ab— 36 b = a'0? + 2a°0° + b’
B = —ab® — 3a'b* — 3d°H° — %0,
Observe that if v3(a) > 2, then 3 divides a§2), agz), and bgz), 9 divides a?) and af), and

27 divides ag), béQ), and bgf). Consequently, if v3(a) > 2, then Tate’s Algorithm runs

through Step 6. Let a = 9a for some integer a and consider the polynomial

e NC R
P(T) :T3+%T2+%T+2i7

=T°+ (iib —9a® — b*) T? + (324a°b — 4ab®) C — 486a*b* — 108a°b”* — 6a°b*
o

b) (mod 3.

=T° — b0 + 2ab*T mod3 =T (T + 2T +



160

Subcase II. Suppose vz(a) = 2 and let a = 9a for some integer a not divisible
by 3. Then vs(AB") £ 6 + vs(a +b). In what follows we let n = vs(a + b).
First, assume n —g Then a+b = 1,2 mod 3. But this only occurs if a = b mod 3.
In particular, 2ab®> = 2 mod3. Moreover, P(T) = T3 + 2T% + T mod 3 which
has distinct roots over an algebraic closure of F3. Indeed, the discriminant of the
polynomial is congruent to a3 + a?b'® mod 3. Since & = b mod 3, we get that the
discriminant is 2 mod3 and therefore has distinct roots. Therefore the reduction
type is [ at 3 and m3 =5, f3 =2, and c3 =1+ #{a € F5 | P(a) =0 mod 3} = 2.
Next, assume n > 0. Then ¢ = —b mod 3. Then 2ab = 1 mod3 and so P(T) =
T (T +1)* mod 3. Therefore P(T) has a double root over F5 and by Tate’s Algorithm,
we conclude that Er has reduction Type I} at 3. Moreover ms = v3 (A%“Tn) 1 and
f3 = 2. Lastly, c3 is 2 or 4. C
Subcase III. Suppose vz(a) > 2. Then 3 divides a and we observe that
P(T) = T*(T +2) mod3. Therefore P(T) has a double root over F3. By Tate’s
Algorithm, we conclude that Ep has reduction Type I} at 3 where n = v3 (Ag;n) 6.
In particular, f3 = 2 and mgz = v (A%“Tn) 1. Lastly, c3 is either 2 or 4. (
Case II. Suppose ur = 2. Then vy(a w(jb) > 3. Let a + b = 8k for some integer k

so that b = 8k — a. Note that a and k are relatively prime since a and b are relatively

prime. By the proof of Theorem 5.14, a global minimal model for Er is
By y? + (a — 4k) vy + ak (a — 8k)y = 2° + 2k (a — 8k) 2%
Moreover, the minimal discriminant of Ep is
AR® = a’k* (9% — a) (a — 8k)°.

Since Er has additive reduction at 3 if and only if v3(a) > 0, we have that if Er has

additive reduction at 3, then

vs (A" C 2us(a) + v3(9k — a) .
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Henceforth we will assume v3(a) > 0. Now consider the admissible change of variables
x+— x and y —> y+ (a — k) x + ak (a — 8k) which gives a Q-isomorphism between

E’, and the elliptic curve

E§:°’>:y2+3(a—4k)xy+3ak(a—8k)y:x3—2(a2—9ak+24k2)<2—

dak (a — 8k) (a — 4k) x — 2a°k? (a — 8k)”.

Let a§3) denote the coefficients the Weierstrass model for E;g ) and we compute the

b§-3) as given in (2.2):

b = a2 — 48k bY = a%k? (a—8k)? b = 2a%k3 (a — 8k)°

Now observe that

U3 <a§3)> 1 U3 (a(;’)) 1 U3 <a§3)> 1+ wv3(a)
U3 (af’)) v3(a) U3 (ag)’)) 2u3(a) w3 (b§3)> 1
(bé3)> 2v3(a)

Subcase I. Suppose v3(a) = 1 so that vs(AR") /= 3. Then v; (bég)) = 2
and by Tate’s Algorithm we conclude that Ep has reduc(ion Type I11 at 3. Thus
m3 = f3=c3=2.

Subcase II. Suppose v3(a) > 2 so that a = 9a for some integer a. Now

consider the polynomial

NC) JRCI NG
P(T) :T3+%T2+%T+2ﬁ—7

=T° —2(3a° — 27ak + 8k?) C — 4ak (9a — 8k) (9a — 4k) T — 64°k* (94 — 8k)*
=T° — 16k*T% — 128ak°T myd3 =T (1% + 2T + ak) fmod 3
since k2 = 1 mod3. We now consider two additional cases (a) vs(a) = 2 and (b)

v3(a) > 2.

(a) Suppose vz(a) = 2. Then a is odd and

oy (Am) C 6+ v(k — @)
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Let n = v3(k—a). We first assume n = 0 so that k —a = 1,2 mod3. This
occurs when @ = —k mod3. In particular, ak = 1 mod3. Therefore P(T) =
T3 4272 +T mod 3. But we already saw in Case I that this polynomial has distinct
roots over F3. Therefore by Tate’s Algorithm, Ep has reduction Type Ij at 3. In
particular, mz =5, f3 =c3 = 2.

Now assume n > 0. Then £ —a = 0 mod3 and so a = k£ mod3. Thus
ak = 1 mod3 from which we attain the congruence P(T) = T (T + 1)* mod3. In
particular, P(T) has a double root over F3 and by Tate’s Algorithm we conclude that
Er has reduction type I since n = v3(AR") £~ 6. In particular, ms = vs(AB") £~ 1
and f3 = 2. Moreover, c3 is 2 or 4. C (

(b) Suppose vs(a) > 2. Then vs(AB™) £ 2+ 2v3(a). Then @ = 0 mod 3 and
therefore P(T) = T? (T + 2) mod 3. ThereforeCP
Tate’s Algorithm, we conclude that Ep has reduction Type I? where n = v3 (A%‘;n) (6.

(T') has a double root over F3. By

In particular, f3 = 2 and ms = v (A%ﬁTn) 1. Lastly, c3 is either 2 or 4. [ |

Lemma 6.12 Let T = Cg and let j be 0 or 1. If va(a) =2+ j, then vay(Nr) < 6+ 7.

Proof Since vy(a) = 2,3, we have by Theorem 5.14 that uy = 1. Therefore Er is
a global minimal model for Ep. In particular, v7 is the minimal discriminant of Er.

Since va(a) > 2, we observe that

(%) (’YT) =7+ 2’U2<CL> .
Now consider the admissible change of variables z — x and

yr—y— (a2 — 4ab + 2b2) (— a®b® 4 3a?b* — 2ab’.
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This gives a Q-isomorphism between Er and the elliptic curve

EL oy + ayxy + agy = 2° + ayx® + agr + ag where
a, = —3a* + 12ab — 6b*

ag = —2a* 4 16a®b — 41a*b* + 35ab® — 10b*

as = —3a®b® + 9a%b* — 6ab’

a; = —4a°b® + 28a*b? — 64a3® + 56a° — 16ab”

ag = —2a°° + 12a°b" — 26a*b° + 24a®0’ — 8a*b™.
We now use (2.2) to compute

by = a* — 8a3b + 16a%b* — 4ab® — 4b*
bg = a®b® — 6a°b” + 13a*b® — 12a°0° + 4a*p'°

bg = —a®b® +9a7b° — 33a°b'% + 63a°b'! — 66a’b'? + 36a3b' — 8ab.
Since vg(a) > 2, we observe that

v3(ar) =1 v3(az) =1 v3(as) = va(a) + 1

vs(ay) =4+ va(a) vs(ag) = 3+ 2vy(a)  w3(be) =2

v3(bg) = 2+ 2ua(a)  w3(bs) = 3 + 2v9(a)
In particular, Tate’s Algorithm runs through Step 6. Now let a = 4a for some integer
a and consider the polynomial

P(T):T3+%T2+%T+%

=T% - 5b"T? mod2 = T?(T + 1) mod 2

since —5b* is odd. Since this polynomial has a double root, we proceed to the sub-
procedure of Step 7 in Tate’s Algorithm.

Now suppose vs(a) = 2. Then vy(y7) = 11. By the subprocedure of Step 7, we
observe that fo = 11 — k with £ > 5. In particular, f; <6.

If vo(a) = 3, then vy(yr) = 13. It suffices to show that Er does not have reduction
Type I7 at 2. Indeed, if this is the case, then fo = 13 — k for £ > 6 which implies
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that f, < 7. To this end, we observe that Ep has reduction Type I7 at 2 if and only
if
as ag
V24 2V — — 2 1
+ 16 mod (6.10)

has distinct roots over an algebraic closure of Fy. But 4 'as and 16 'ag are both

even and therefore (6.10) is congruent to Y2 mod 2. This concludes the proof. |
Lemma 6.13 Let T = Cy. Then v3(Nr) < 3.

Proof By Theorem 5.25, Er has additive reduction at 3 if and only if a + b = 3k
for some nonzero integer k. By Theorem 5.14, E7r is a global minimal model for Erp

and therefore the minimal discriminant is 7. Note that
vr = 3%a° (3k — 2a)° (3k — a)’ (a* = 3ak + 31{:2)3 (IC;?’ — 9ak® + 64’k — a®) (

Consequently, v3(yr) = 5 since a and k are not divisible by 3. Now consider the
admissible change of variables x — x and y —— y + 3 which gives a Q-isomorphic

from Er onto the elliptic curve

E{F : y2 + a1y + asy = 3+ ang + asx + ag where

ar =3 (a3 — 5a%k + 12ak* — 9/{:3)(0

as = 3a (2a — 3k) (3k — a)? (( — 3ak + 3k?)

az = 3 (2a” — 21a%k + 87a"k*\~ 180a°k* + 189a°k* — 81a'k® + 2) (

ay =9 (9K* — 12k* + 50’k — ai(
180a°k?

ag =9 (—2a° + 21a°k — 87a"k? — 189a°k" + 81a'k® — 1) (

We now use (2.2) to compute

by = 3 (11a°® — 114a’k + 495a*k* — 1134a’k® + 1458a°k* — 972ak” + 243k°) (
bs = 9a® (3k — 2a)* (3k — a)* (a® — 3ak + 3k2)2
bs = 27a° (2a — 3k)® (3k — a)° (a® — 3ak + 3k%).

In particular, 3 divides by, 9 divides ag, and 27 divides bgs. However, 27 does not

divide bg since a and k are not divisible by 3. By Tate’s Algorithm, we conclude that
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Er has reduction Type IV at 3. Moreover, f3 = mg = c3 = 3. We note that c3 = 3
since the polynomial

T2+%T—%ET2+(2a9+2)T+2a9—|—1 mod 3

(T'+1) mod3 if a=1 mod3
T+1)(T+2) mod3 ifa=2 mod3

has distinct roots over Fs. [ |

Lemma 6.14 Let T = Cyx Cy and suppose d is odd. If vy(a) = 1,2,3, then vy(Ny) <
5.

Proof Since vy(a) = 1,2,3, we have by Theorem 5.14 that Er is a global minimal
model for Er. Thus
AT = 7 = 16a°b%d° (a — b)?

is the minimal discriminant of E7. The admissible change of variables © —— = + 2
and y — y + x + 6 gives a Q-isomorphism from E7 onto F' where F' is given by the

Weierstrass model

F:y® 4+ ayzy + asy = 2° + agx® + aux + ag where

a; = 2 as = ad + bd + 5 as = 12
ay = d(abd + 4a + 4b) ag = 2 (abd* + 2ad + 2bd — 14)

We now use (2.2) to compute

by =4 (ad + bd + 6) bs = 8 (bd + 2) (ad + 2)

bg = —a?b%d* + 24abd® + 32ad + 32bd + 48.

Observe that each a; and b; is even since a is even and bd is odd.

Case I. First assume vy(a) = 1. Observe that

bs = —a’b*d* mod8 =4 mod 8 (6.11)
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since bd is odd. Thus 8 does not divide bg. Since 4 divides ag, we have by Tate’s

Algorithm that Er has reduction type I11 at 2 and my = ¢ = 2. Since bd is odd,

vs(4£B™) £ 6 and so fo = 5.

Zéase g Next, assume vy(a) = 2. Then by (6.11), 8 divides bg. Since 8 divides
bg, Tate’s Algorithm continues to Step 6. By inspection, 4 divides a3z and a4. Now
write a = 4a for some odd integer a. Since 2"k = 2" mod 2" holds for all positive

integers n and odd integers k, we have

ay = 4abd®> + 4bd mod 8 = 0 mod 8
ag = 8abd® + 4bd + 4 mod 16 = 12 + 4bd mod 16

mod16 if bd =1 mod4
mod 16 if bd = 3 mod 4.

In particular, 8 divides as\and ag. Next, we consider the polynomial

P(T) =T*+ 27° + %TJF %
bd + 1 12 + 4bd
=7° i T? + + mod 2
2 8
2(T+1) if bd =1 mod4

T+1)(T*+T+1) if bd=3 mod4.
Subcase 1. Suppose bd 1 mod4. Then P(T) has a double root over Fo. More-
over, as = 2 mod4 and 16 divides ag. In particular, the polynomial

Y2+%Y—‘f—gzy2+¥+k mod 2

where k is either 0 or 1 has distinct roots over an algebraic closure of Fy. By Tate’s
Algorithm, Er has reduction type 7. Moreover, ms = 6 and f, = 3 since vy (Ag;n) =
8. Lastly, ¢y is either 2 or 4 with ¢, = 4 if and only if £ = 0. Note that £ = 0 if and
only if ag = 0 mod 32. Observe that

ad —8 mod32 ifbd=1 mod8
ad+8 mod32 if bd =5 modS.

ag = 8abd® + 4bd + 20 mod 32 =
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From this we see that k£ = 0 if and only if either (i) bd =1 mod8 and ad =1 mod 4
or (i) bd =5 mod 8 and ad = 3 mod 4.

Subcase I1. Suppose bd = 3 mod 4. Then P(T') has distinct roots over an algebraic
closure of [F5. Hence by Tate’s Algorithm, E7 has reduction type I at 2. Moreover,
my = 5 and ¢y = 2. Since vg( ngn) 8, fo =4.

Case III. Lastly, assume v;ﬁa) :C. The admissible change of variables x —— x+4

and y — y + x + 12 gives a Q-isomorphism from FE7 onto F’ where F’ is given by

the Weierstrass model

F' oy +d oy + ayy = 2° + aha® + a)yx + af where
ay =2 ab = ad + bd + 11 ay =24
ay, = abd® + 8ad + 8bd + 24 ag = 4 (abd® + 4ad + 4bd — 20) .

We now use (2.2) to compute

b, = 4 (ad + bd + 12) by = 16 (bd + 4) (ad + 4)

by = —a’b*d" + 96abd” + 256ad + 256bd + T68.
Now observe that a} and b/, are even, 8 divides a%. Now observe that

a)y, = abd* + 8bd + 8 mod 16 = 8 mod 16

ag = 16bd + 16 mod 16 = 0 mod 32.

Indeed, for an odd integer k, the congruences 2"k = 2" mod 2"*! holds for all positive
integers n. From this, it follows that abd®> = 8 mod 16 since vy(a) = 3. In particular,
Tate’s Algorithm runs through Step 6. Now consider the polynomial

!/

/ /
P(T):T3+%T2+%T+%

=177 (T+de_1> (mod?

3 mod 2 if bd =1 mod4
2(T+1) mod2 if bd =3 mod4.
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Subcase 1. Suppose bd = 1 mod4. Then 4 divides a, and we have that the
polynomial P(T") has a triple root over Fy. Thus Tate’s Algorithm continues to Step

8. Since the polynomial

! !
Y2+%Y_(1Z_(655Y2 mod 2

we have that Tate Algorithm goes to Step 9. By Tate’s Algorithm, we conclude that
Er has reduction type 11" at 2. Moreover, my = 8, ¢o = 2, and fo = 3 since
vy (AB") £ 10.

SubcaC II. Suppose bd = 3 mod4. Then P(T) has a double root over Fy and
Tate’s Algorithm continues to the subprocedure of Step 7. Since 4 does not divide a),

we may proceed with the Weierstrass for F’. Next, the polynomial

/ /
%Y—% =Y? mod?2
4 16

Y2+
has a double root over Fy. Next, we claim that a; = 0 mod64. To this end, write

bd = 3 + 4k for some integer k since bd = 3 mod4. Then
ag = 16 + 16bd mod 64 = 16 + 16 (3 + 4k) mod 64 = 0 mod 64.

In particular, the polynomial
/

ay ay g
EX2+§X+§ =X (X +1) mod2

has distinct roots over Fy. By Tate’s Algorithm, we conclude that Er has reduction
type I; at 2. Moreover, mo = 7, ¢; = 4, and fy = 4 since vy (A%“Tn)ﬁ 10. This

concludes the proof. [ |

Example 6.15 Let T'= C5 x Cy and consider the following elliptic curves:

E, = Er(20,7,13) Ey = Ep(52,11,3)
By = Er(76,11,3) E, = Ep(40,7,11) .

We now use Lemma 6.14 to compute the local data at 2 of each E;j. Observe that
ve(a) = 2 for Fy, By, E5 and ve(a) = 3 for Ey. By the proof of Lemma 6.1/ we
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conclude that E4 has reduction type I11* at 2. Moreover, mo = 8, co = 2, and
J2a = 3.

For E; we note that bd = 3 mod 4 and so Ey has reduction type I at 2. Moreover,
me =5, co =2, and fo = 4. Both Ey and E5 satisfy bd =1 mod4 and so reduction
type at 2 1s I7. Moreover, mg = 6 and fy = 3. It remains to compute the Tamagawa
number at 2. For both Ey and Es5 we have that bd =1 mod8. Since 13-3 = 3 mod 4,
we have by the proof of Lemma 6.14 that co = 2 for Ey. Similarly, 19-3 =1 mod4

and so co =4 for Es.

6.5 Upper Bound on the Conductor of E

Throughout this section, Ny will denote the conductor of Ep. For each T, we
have by Theorem 5.14 that the minimal discriminant of Erp is u;m%p. For each ur,

we let o7 be as given in Table 6.2.

Table 6.2.: The Polynomials d,,,

T ur | Ouy

Cy | 1| 273024 (12d — a?)

2 | 602 (1?d — a2)

4| 202 (0%d — a?)

Cs c*d | 3bd*e* (BdPe — 27b)

Cy c | 4bc*d* (16D + c3d)

2¢ | 3bc2d* (b + 16c¢3d)

Cs 1 | ab(a®+ 11lab —b?)

Cs 1 | abla+b)(a+ 9b)

2 | ab(a+b)(a+9b)

Cy 1 | ab(a—b) (a® + 5a%b — 8ab* + b?)
Cs 1 | ab(a — 2b) (a — b) (a* — 8ab + 8b%)

continued on next page



170

Table 6.2.: continued

T ur 5uT
2 | 15ab(a —2b) (a —b) (a® — 8ab + 8b?)
Co 1 | ab(a—b)(a* — ab+ b*) (a® + 3a*b — 6ab* + V?)
Cho 1 | ab(a — 2b) (a —b) (a* + 2ab — 4b*)(a® — 3ab + b?)
2 | s=ab (20— a) (a — b) (a* + 2ab — 4b%) (a® — 3ab + b?)
Cha 1 | ab(a—2b)(a—10)(a* — 6ab+ 6b*) (a® — 2ab + 2b*) (a* — 3ab + 3b?)
2 | s=ab(a — 2b) (a — b) (a* — 2ab + 2b%) (a® — 3ab + 3b?) (a®> — Gab +
662)
02 X Cg 1 144abd3 (CL — b)
2 | Sabd®(b—a)
CoxCy| 1 |8ab(a+4b)(a+ 8b)
2 | 3ab(a+ 4b) (a + 8b)
4 | sab (a+ 4b) (a + 8b)
Cy x Cg a(b—9a)(b—3a)(3a+0b)(b—>5a)(b—a)
4 | gza(a—10b)(3a—1b)(5a—b)(9a —b) (3a +b)
16 | w5570 (b—9a) (b —3a) 3a+b) (b —5a) (b — a)
Cox Cg | 1 | 2ab(a+2b)(a+ 4b) (a® — 8b?) (a® + 8ab + 8b?) (a® + 4ab + 8b?)
16 | =5ab(a + 2b) (a + 4b) (a* — 8V?) (a* + 4ab + 8b?) (a* 4 8ab + 8b?)
64 | tasrab (a4 2b) (a + 4b) (a® — 8V?) (a® + 4ab + 8b?) (a® + 8ab + 8b?)

We show that if the minimal discriminant of Er is uz'?vyr, then Ny < [6,,.|.

Proposition 6.16 Suppose u}uyT 1s the minimal discriminant of Ep. Then Np <

|0ur| where . is as given in Table 6.2.

We will consider most cases separately in the following subsections.
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6.5.1 Proof of Proposition 6.16 for T' = C,

Proof By Theorem 5.14, the minimal discriminant of Er is u;an where up is
either 1,2, or 4. By Theorem 5.25, Er has additive reduction at each prime p dividing
ged(a, bd). Moreover, Ep has additive reduction at p = 2 if and only if uy = 1 and
va(b2d — a?) > 4 with ve(a) = v2(b) =1, d =1 mod4, and ur # 4.

Case L. Suppose ur = 1. Then each prime dividing the minimal discriminant
divides

8up = 2730%d (Vd — @)

Suppose Er has additive reduction at an odd prime p.( Then p divides ged(a, bd). In
particular, v,(6,,) > 2. If p > 5, then v,(N7) < 2 which shows that v,(Nz) < v,(6y,.)-
Now suppose 3 divides ged(a, bd).

Subcase I. Suppose 3 does not divide b. Then 3 divides d and we attain
v3(yr) = 3 and by Theorem 6.7 we have that v3(Nr) < 3. Since v3(6,,.) = 3 it follows
that v3(Ny) < v3(0yy. ).

Subcase II. Suppose 3 divides b. Then v3(d,,.) > 5 and so v3(Nr) < v3(0u,)
since v3(Np) < 5.

If b%d (b*d — a?) is even, then vy(d,,) > 8 and so vy(N7) < v3(dy,.) since vo(Ny) <
8. So suppose b*d (b?d — a?) is odd. Then vy(yr) = 6 and therefore vy(Ny) < 6 by
Theorem 6.7. This shows that Ny < |d,,| in the case when ur = 1.

Case II. Suppose ur = 2. By Theorem 5.14 we have that either vy(b) > 3 with
a = —1 mod4 or vy(b*d — a*) > 4 with vy(a) = v2(b) =1 and d = 1 mod 4.

Subcase L. First suppose v(b) > 3. Then b = 8b and the minimal discriminant
of Er is

upyp = bd (64?)2(1 — a2>2 .

In particular, each prime dividing the minimal discriminant divides

Bup = 6b°d (V2d — a?)

— 97312 (6452d <a2) (
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By Theorem 5.25, Er is semistable at 2. Consequently vo(N7) < 1. Now suppose Er
has additive reduction at an odd prime. By Theorem 5.25, p must divide ged(a, bd). In
particular, v,(d,,) > 2. Since v,(Nr) < 2 for p # 3, it follows that v,(N7) < v,(0u,.)
for each odd prime p # 3. Now suppose E7 has additive reduction at 3. Then 3 divides
ged(a, bd). If 3 divides b, then v3(d,,.) > 5 and so v3(Nr) < v3(dy,.). So suppose 3
divides d but not b. Then v3 (u}lQ'yT) 3 since d is squarefree. By Theorem 6.7 we
have that v3(Nr) < 3. Consequently, vC(NT) < v3(dy,) and so Ny < |d,,.| under the
assumptions of this subcase.

Subcase II. Now suppose vy(b*d — a?) > 4. Write b*d = 16k + a? for some

integer k and let a = 2a for some odd integer a. Then the minimal discriminant is

up Py = 16k* (6° + 4k)
In particular, every prime dividing the minimal discrhginant divides
Sup = 6b°d (b*d — a®)
= 273k (a® + 4k)

By Theorem 5.25, Er has additive reduction at each‘odd prime dividing ged(a, bd).
Equivalently, E7 has additive reduction at each odd prime p dividing ged(a, k). If
this is the case, then v,(d,,) > 2. Consequently, if p > 5, then v,(Nr) < v,(0,,.) since
v,(N7) < 2. Now suppose p = 3. From Case I above, we observe that vs (u}m'y;p) 3
if 3 does not divide b since v3(yr) = v3 (u;leyT) 3. Therefore by Theorem 6.7Cve
have that v3(Nr) < 3. Next suppose 3 divides b.CThen vs3(k) = v3(a® + 4k) = 2 and
50 v3(0y,) = b and therefore v3(Nr) < v3(6y,.) since vs(Np) < 5.

By Theorem 5.25, Er has additive reduction at 2. If k(a* + 4k) is odd, then
Vg (u}w’yT) 4 and so vo(N7) < 4 by Theorem 6.7. But v2(d,,) = 7 and so va(Ny) <
Vo (Ouy)- Laf

since vy (Nrp) < 8.

tly, if & (a® 4 4k) is even, then vy(d,,,.) > 8 which implies vo(N7) < v9(dy;.)

Case I1I. Suppose ur = 4. Then v, (b*d — a?) = 256k for some integer k and a = 2a

for some odd integer a. Write b*d = 256k + 4a®. Then the minimal discriminant is

urPyr = k* (a* + 64k) (
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and each prime dividing the minimal discriminant divides

_i2 2; 2
bup = 1570 (0% a)(

= 3k (a® + 64k)

By Theorem 5.25 is semistable at 2 and therefore vo(N7) < 1. Moreover, Er
has additive reduction at an odd prime p if and only if p divides ged(a, bd) which is
equivalent to p dividing ged(a, k). If this is the case, then v,(d,,) > 2. If p # 3, then
U (N7) < v,(0uy). So it remains to show this inequality for p = 3. From Case I above,
we observe that vs (U;HVT) £ 3 if 3 does not divide b since v3(yr) = v (u;lQVT).
Therefore by Theorem 6.7 wg have that v3(Nr) < 3. But if 3 does not divide b, then
v3(k) = v3(a* + 64k) = 1 and so v3(d,,.) = 3 which shows that v3(Ny) < v3(0y,).
If 3 divides b, then v3(k) = wvs(a®+ 64k) = 2 and so v3(d,,) = 5 and therefore
v3(Nr) < wv3(d

ur

) since v3(N7) < 5. This concludes the proof. n

6.5.2 Proof of Proposition 6.16 for T' = C5,C5,Cyr,Cy

Proof Suppose T'= C5. Then the minimal discriminant of Er is
AR® = b*d*e® (°b%e — 27b)

with a = ¢*d?e where d and e are positive squarefree integers. Since
Sup = 3bd’e* (d’e — 27b)

it is clear that each prime p dividing A%iTn divides d,,. In particular, if Ep is
semistable, then Ny < |0,,.].

Now suppose Er has additive reduction at a prime p # 3. By Proposition 6.8,
vp(Nr) < 2 for each p # 3. By Theorem 5.25, Er has additive reduction at a prime
p # 3 if and only if p divides de. In particular, p?|d,, and so v,(Nr) < v,(d,,) for
each prime p # 3.

Now suppose Er has additive reduction at p = 3. By Theorem 5.25, this occurs

if and only if a is divisible by 3.
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Case 1. Suppose 3 divides e. Then v3(d,,.) > 6. But v3(Nr) < 5 by Lemma 2.3
and so v3(N7) < v3(dy,.).

Case II. Suppose 3 divides d. Then wv3(d,,) > 5 and so v3(Nr) < v3(dy,.) by
Lemma 2.3.

Case III. Suppose 3 divides ¢. Then v3(d,,.) > 4. Butif vs(a) = 3, then v3(Nr) < 4

by Proposition 6.8. If v3(a) > 4, then v3(d,,.) > 5 and so we conclude that in either

T
case v3(Np) < v3(0yy).

By the above we conclude that v,(Nr) < v,(d,,) for all primes p and therefore
Ny < |0uyl-

Suppose T" = (5. Then the minimal discriminant of Er is y7 and so ur = 1.

Moreover, it is clear that each prime dividing
Oup = ab (a® + 11ab — b°)

divides yr. By Theorem 5.25, the only prime at which E7 can have additive reduction
is 5 and so v,(Nr) < v,(0y,) for each prime p # 5. In particular, Er has additive
reduction at 5 if and only if vs(a + 3b) > 0. So suppose a + 3b = 5k for some integer
k. Then a = 5k — 3b and we verify that

8up = 25b(3b — 5k) (b — bk — K?)

In particular, v5(d,,.) > vs(Nr) = 2. Consequently, Ny < |§,,.|.
Suppose T" = (C%. Then the minimal discriminant of Er is vy and so ur = 1.

Moreover, it is clear that each prime dividing

Sup = ab (a — b) (a® + 5a’b — 8ab® + b”)

T

divides yr. By Theorem 5.25, the only prime at which E; can have additive reduction
is 7 and so v,(Nr) < vp(dy,) for each prime p # 7. In particular, Er has additive
reduction at 7 if and only if v7(a + 4b) > 0. Now let a 4+ 4b = Tk for some integer k.
Then a = Tk — 4b and we verify that

Sup = 49b (4b — Tk) (5b — k) (b° — TbK* + Tk (
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Thus v7(0y,) > v7(Nr) = 2. Consequently, Ny < |J,,.].
Lastly, suppose T' = Cy. Then the minimal discriminant of Er is vy and so ur = 1.

Moreover, it is clear that each prime dividing
buy = ab(a —b) (a* — ab+b°) (¢ + 3a*b — Gab® 4 b°)

divides yr. By Theorem 5.25, the only prime at which E; can have additive reduction
is 3 and so v,(Ny) < v,(dy,) for each prime p # 3. Furthermore, Er has additive
reduction at 3 if and only if vs(a + b) > 0. Let a + b = 3k for some integer k so that
a =3k —b. Then

Sup = 27 (b — 3k) (2b — 3k) (b° — 3bk + 3Kk”) (iff — 30k + 3k?) (

In particular, v3(d,,.) > 3. But by Lemma 6.13, v3(N7) < 3 and so v3(Nr) < v3(0u,.).

Thus N7 < |d,,|, which concludes the proof. [

6.5.3 Proof of Proposition 6.16 for T' = C,

Proof Let a = c2d with d a positive squarefree integer. By Theorem 5.14, the
minimal discriminant of Er is u;lzfyT where ur is either ¢ or 2c. Moreover, ur = 2¢
if and only if ve(a) > 8 is even and bd = 3 mod 4.

Case 1. Suppose ur = c¢. Then the minimal discriminant of Er is
A%ﬁTn = up2yp = brPd’ (16b + ch) (
Therefore each prime dividing A%ﬁTn divides
Sup = 4bc*d* (16b + ¢*d)

By Theorem 5.25, E7 has additive reduction at an odd prime p if and only if p divides
d. But if this is the case, we have v,(0,,) > 4. By Lemma 6.10 v,(Ny) < 2 for all
odd primes p. Thus v,(N7) < v,(d7) for all odd primes p.

Now suppose Er has additive reduction at 2. It follows by Theorem 5.25 that a

1s even.
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Subcase 1. Suppose va(a) < 2. Then vy(d,,) > 6 and by Lemma 6.10 we have
that vo(Ny) < 6. Thus ve(Nr) < va(0u, ).
Subcase II. Suppose vg(a) > 3. Then vy(d,,) > 8 and therefore vo(Np) <
v9(dy,) by Lemma 2.3.
We conclude that if up = ¢, then Ny < |0,,.|.

Case II. Suppose ur = 2c¢ for some integer ¢. Then vs(a) > 8 is even and bd =

3 mod 4. In particular, ¢ = 2*¢ and observe that
A%ﬁTH = up2yp = b’ (b + 1662d) (
Consequently, each prime p dividing A%ﬂTn divides
Sup = 3bc*d* (b + 16¢*d)

By Theorem 5.25, E7 is semistable at 2 and so vy(Np) <'1. Moreover, Er has additive
reduction at an odd prime p if and only if p divides d. Since v,(dy,.) > 4 for each odd
prime p we conclude that v,(Nr) < v,(dy,.) for each odd prime p # 3 by Lemma 2.3.
For p = 3, we observe that v3(d,,) > 5 and thus v3(Nr) < v5(dy,)-

We conclude that if ur = 2¢, then Np < |dy,|. [

6.5.4 Proof of Proposition 6.16 for T' = Cj

Proof By Theorem 5.14, the minimal discriminant of Ep is uy;'?yp where uyp is
either 1 or 2. Moreover, ur = 2 if and only if vy(a + b) > 3.

Case 1. Suppose ur = 1. Then each prime dividing v divides
duyp = aba +b)(a+90).

By Theorem 5.25, the only primes at which Er can have additive reduction are 2
and 3. By Lemma 6.11, v,(Ny) < 2 for all primes and so it suffices to check that
Up(yy) > 2 if Ep has additive reduction at p = 2, 3. Indeed, E7 has additive reduction
at 2 if and only if vy(a +b) = 1,2. In particular, a + 9b is also even and we have

v9(dyy) > 2. Now suppose Ep has additive reduction at 3. This occurs if and only if
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3 divides a. But then 3 divides a + 9b and so v3(d,,) > 2. Therefore Ny < |d,,] if
ur = 1.

Case II. Suppose ur = 2. Then a + b = 8k and so b = 8k — a. Then
AFTH =272y, = a®’K*(9k — a)(a — 81{;)6 .
In particular, each prime p dividing A%ﬁTn divides

1
Oup = 6—4ab (a+b) (a+9b)

= —ak(9k — a)(a — 8k) .

By Theorem 5.25, Ep is semistable at 2 and additive reduction at 3 occurs if and
only if 3 divides a. As before we observe that vs3(d7) > 2 under these assumptions.

From the previous two cases, we conclude that Ny <|d,,| for each uy. n

6.5.5 Proof of Proposition 6.16 for T' = Cjg

Proof By Theorem 5.14, the minimal discriminant of Er is u;lz'yT where ur is
either 1 or 2. Moreover, up = 2 if and only if vy(a) = 1.

Case 1. Suppose ur = 1. It is automatic that each prime dividing vy divides
Ouy = ab(a — 2b)(a — b) (a® — 8ab + 8b°)

By Theorem 5.25, Er can only have additive reduction at 2. II( fact, Er has additive
reduction at 2 if and only if ve(a) > 1.

Subcase 1. Suppose vy(a) = 2 4 j where j is either 0 or 1. Then vy(d,,) >
6 + j. By Lemma 6.12, vo(N7) < 6 + j and so ve(N7) < v2(d,,.) which implies that
Ny < |0y, | for up = 1.

Subcase II. Suppose vg(a) > 4. Then vy(d,,) > 8 and v9(N7) < 8 by Lemma
2.3. Thus Np < |8y, | for ur = 1.

Case II. Suppose ur = 2. Then vy(a) = 1 and by Theorem 5.25 we have that Er

is semistable. Let a = 2a for some odd integer a and observe that

. 1
A = 2712 = 1—668&2(b —2a)%(b — a)" (2b* — 4ba + 0*) (
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Note that this is an integer since b — a is even. In particular, each prime p dividing
AB" divides
1 2 2
Oup = 1—6ab(a—26) (a—b) (a® — 8ab+ 8b )(

= ab(b — 2a)(b — a) (20> — 4ba + a*)

Since E7p is semistable, rad(ArﬁiTn) C Np and therefore Ny < [0,,,.| for up = 2. [ |

6.5.6 Proof of Proposition 6.16 for T' = C

Proof By Theorem 5.14, the minimal discriminant of Er is u;lzfyT where up is
either 1 or 2. Moreover, ur = 2 if and only if a is even. Moreover, Er can only have
additive reduction at 5 by Theorem 5.25. In fact, Er has additive reduction at 5 if
and only if 5 divides a + b.

Case I. Suppose ur = 1. Then each prime dividing vy divides

dup = ab(a — 2b)(a — b) (¢ + 2ab — 4b%) (a® — 3ab + b°)

T

If Er is semistable, then Ny < |4, o suppose Er has additive reduction at 5.

rl-

Then a + b = 5k and setting a = bk — b we observe that
Sup = 25b(b — 5k)(2b — 5k)(3b — 5k) (b* — 5k7) (b( — 5bk + 5k?) (

Thus v5(dy,) > 2 from which we conclude that Ny < |d,,.| if ur = 1.

|

Case II. Suppose ur = 2. Then a = 2a for some integer a and we compute
AR = 97120 — 510 — 2a) (b — a)° (if — ab — @?) (b( — 6ab + 4a?)”.
In particular, each prime dividing AEﬂTn divides

Vup = 1—16ab (26 —a) (a —b) (CC + 2ab — 4b°) (f( — 3ab+b*) (
— ab(b — 2a)(b— a) (b* — b — a?) (t( — Gab+4a°) (
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It remains to consider the case when Er has additive reduction at 5. To this end
suppose a + b = 57 so that b = 55 — 2a. Then
Yur = 25a(55 — 4a)(55 — 3a) (55 — 2a) (55> — 5ja + a°) (Kf — 10ja + 4a”) <

and so v5(dy,.) > 2. Hence Ny < |0,,.| if ur = 2, which concludes the proof. n

6.5.7 Proof of Proposition 6.16 for T' = C,

Proof By Theorem 5.14, the minimal discriminant of Er is u;nv;p where up is
either 1 or 2. Moreover, ur = 2 if and only if a is even. Since Cg4 — FE7, there exist
relatively prime integers ¢’ and b such that E¢,,(a,b) is Q-isomorphic to Eg,(da’,b').
Therefore by Lemma 6.11, v,(Nr) < 2 for each prime p.

Case 1. Suppose ur = 1. Then a is odd and each prime dividing 7 divides

Sur = ab(a —2b) (a — b) (( — 6ab + 6b°) (¢ — 2ab + 2b%) (( — 3ab + 3b%) (

Therefore v,(Nr) < v,(d,,.) for each prime p # 3. This inequality holds for p*= 3
since E has additive reduction at 3 implies that 3 divides a by Theorem 5.25 and so
v3(5uT) Z 3. Thus NT S |5UT‘ if ur = 1.

Case II. Suppose ur = 2. Then a is even and so a = 2a for some integer a. Then

A = 2712y, = a2p'% (b — 24)" (b — 4)° (3b® — 6ab + 2a%) (
(bC — 2ab + 2a2)° (f — 6ab +4a?)".
In particular, each '
1
dur = 750b(a = 2b) (a =) (EC— 2ab + 2b%) ([C— 3ab + 3b°) (n( — 6ab + 6b%)

=ab(b—2a)(b—a) (P° 2ab + 24°) (t — 6ab + 4a”)

6ab + 24°) (cg
It suffices to show that v3(d,,.)"> 2 if Er has additive reduction at 3. But this is clear

prime dividing AE™ divides

since Er has additive reduction at 3 if and only if 3 divides a which is equivalent to
3 dividing a. Therefore 27 divides 6, from which we conclude that Ny < |d,,| if

’U,TZQ. |



180

6.5.8 Proof of Proposition 6.16 for T'= C5 x C,

Proof By Theorem 5.14, the minimal discriminant of Er is u;an where up is
either 1 or 2. By Theorem 5.25, E7 has additive reduction at all primes dividing d.
Moreover, it has additive reduction at 2 if and only if ad is even and ur = 1. Recall
that by Lemma 5.12, we may assume a is even.

Case 1. Suppose ur = 1. Then every prime dividing the minimal discriminant
divides

Sup = 2*3%abd?® (a — b) .

If B is semistable at a prime p, then v,(Np) < v,(d,,). So suppose Er has additive
reduction at a prime p # 2,3. Then v,(Nr) = 2 and we note that v,(dr) > 3 since p
divides d. Now suppose p = 3. Then v3(d,,) > 5 since 3 divides d. But v3(Nr) <5
and so v3(Nr) < v3(du,)-

Now suppose p = 2. Then FEr has additive reduction at 2 if and only if ad is
even. Recall that by Lemma 5.12, we may assume that a is even. Thus if d were
even, we have vy(d,,) > 8. Since v9(N7) < 8 we conclude that ve(Ny) < v(dy,). So
it remains to consider the case where d is odd. We now show that vy(Nr) < v3(0y;.)
also holds in the case when d is odd by considering two subcases.

Subcase I. Suppose va(a) = j for 1 < j < 3. Then vy(dy,) > 5 and va(Nr) <5
by Lemma 6.14.
Subcase II. Suppose va(a) > 4. Then vy(d,,) > 8, but vy(Ny) < 8 which
concludes the case when up = 1.
Case II. Suppose ur = 2. Then vy(a) > 4 and bd = 1 mod 4. Then a = 16a and

the minimal discriminant of Er is
ur Py = a*b*d° (b — 16a) .

In particular, each prime dividing the minimal discriminant divides

Oup = gabd3 (b—a)

=2-3%bd® (b — 16a) .
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By Theorem 5.25, Er is semistable at 2 and has additive reduction at an odd prime
p if and only if p divides d. If p # 3, then v,(d,,) > 3, but v,(Nr) < 2. Lastly, if
p = 3, then v3(d,,) > 5. Since v3(Ny) < 5, we conclude that Ny < |d,,| in the case

when up = 2. |

6.5.9 Proof of Proposition 6.16 for T'= C;, X C,

Proof By Theorem 5.14, the minimal discriminant of Ep is u;IQVT where up is
either 1,2, or 4. By Theorem 5.25, Er is semistable at all primes except possibly 2.
Consequently, v,(N7) < 1 for all primes p # 2. Moreover, Er has additive reduction
at 2 if and only if 1 < ve(a + 4b) < 3.
By Proposition 5.7, Er is Q-isomorphic to &p,(Cy x Cy). From the Weierstrass
equation of &; in Table 2.1, it is clear that Xj/,(Cy x Cy) = Xy (Cy) where
t’:4<§>2+ézw.

a a a?

Case 1. Suppose ur = 1 so that ve(a) < 1. Then each prime dividing v divides
Sup = 2°ab (a + 4b) (a + 8b) .

If a is odd, then Er is semistable and so Ny < |4, So suppose va(a) = 1. Then

rl-

v2(0yy) = 6. We claim that vy(Nr) < 6. To this end, write a = 2a for some odd

integer a. Then
v 20% + ab
202
In particular, Fr is Q-isomorphic to E¢,(2a,2b* + ab) since 2a is relatively prime to
20% + ab. Since v9(2a) = 1, we conclude by Lemma 6.10 that vy(N7) < 6. Conse-
quently, Ny < |0,,.| holds for uy = 1.
Case II. Suppose ur = 2 and vy(a) > 3. Then a = 8a for some integer @ and we

have that
up 2y = 256420 (a + b)* (2a + b)* .
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In particular, each prime dividing U;H’YT divides
1
Oup = §ab (a + 4b) (a + 8b)
=128ab(a+0b)(2a +0b).

It follows that v(d,,.) > 8 and so ve(N7) < v9(dy,.).
Case III. Suppose ur = 2 and ve(a + 4b) = 3. Then vy(a) = 2 and hence a = 4a
for some odd integer a. Since a 4+ 4b = 8k for some odd integer k, we attain that

a = 8k — 4b. In particular, the minimal discriminant is
upthr = 2560k (b7 — 4k%)°.

Moreover, every prime dividing the minimal discriminant divides

1
Oup = éab (a + 4b) (a + 8b)

= —64bk (b* — 4k°)
Thus v2(d,,.) = 6 since bk is odd. We claim that vo(Wr) < 6. To this end, observe

that
, bk

Therefore Er is Q-isomorphic to the elliptic curve EC4( (b— 2]{;)2,17]{:). Since bk
is relatively prime to 2 (b — 2k), we have that va(9(b— 21)2) = 1 we CL
Lemma 6.10 that ve(Np) = 3. { (

clude by

Case III. Suppose ur = 4 so that a + 4b = 16k for some integer k. Then by
Theorem 5.25, Er is semistable at all primes and therefore v,(N7) < 1 for all primes

p.- The minimal discriminant of Er is
upyp = bkt (B - 16k2)”.
Therefore each prime dividing the minimal discriminant divides

1
= —-——— 4
Ourp 256ab (a+ 4b) (a + 8b)

= bk (16k* — b°) (

and so Nt < |0,,|, which concludes the proof.
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6.5.10 Proof of Proposition 6.16 for T'= C5y X Cg

Proof By Theorem 5.14, the minimal discriminant of Er is u;an where up is
either 1,4, or 16. By Theorem 5.25, Er is semistable at all primes except possibly
3. Moreover, Ep has additive reduction at 3 if and only if b is divisible by 3. In
particular, v,(Nr) < 1 for all primes p # 3 and v3(Ny) < 2 by Lemma 6.11. Indeed,
since Cg — Er, we have that Er is Q-isomorphic to Eg,(a’,b") for some relatively
prime integers o’ and ¥'.

Case I. Suppose ur = 1. Then a + b is odd and we observe that each prime

dividing the minimal discriminant v divides
dup =a(b—9a)(b—3a)(3a+0b)(b—>5a)(b—a).
Moreover, if 3 divides b, it is clear that v3(d,,.) > 2. Consequently, Ny < |d,,.|.
Case II. Suppose ur = 4. Then vs(a + b) > 2 and we write a + b = 4k for some
nonzero integer k. Then a = 4k — b and we observe that
—12 2 6 2 6 2 6

up“yr = 4 (5b — 18k)” (3b — 10k)” (b — 6k)” (b — 4k)” (b — 3k)” (b — 2k)".

In particular, each prime dividing the minimal discriminant divides

1
T:6—4(1(@—b)(3a—b)(5a—b)(9a—b)(3a+b)

— (5b— 18k) (3b — 10k) (b — 6k) (b — 4k) (b — 3k) (b — 2k).

Ou

We note that if 3 divides b, then v3(d,,.) > 3 and so Ny < [d,.].

Case III. Suppose up = 16. Then vy(a 4+ b) = 1. Write a = 2k — b for some odd
integer k. In the proof of Theorem 5.14, we established that

ve((b—5a) (b—a)) >5  vy((b—9a) (b—3a) (3a+b)) > 6.

Consequently,
1
Oup =
T 1024

is an integer and each prime dividing the minimal discriminant divides 9,,. Lastly,

a(b—9a)(b—3a)(3a+b)(b—>5a)(b—a)

E7r can only have additive reduction at 3, which occurs exactly when 3 divides b. If

this is the case, then v3(d,,) > 2 and so Ny < |d,,| which concludes the proof. [ |
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6.5.11 Proof of Proposition 6.16 for T'= C5 X Cy

Proof By Theorem 5.14, the minimal discriminant of Er is u;an where up is
either 1,16, or 64. By Theorem 5.25, Er is semistable. Therefore v,(Ny) <1 for all
primes p.

Case 1. Suppose ur = 1. Then a is odd and each prime dividing v divides

Sup = 2ab (a +2b) (a + 4b) (a® — 8b?) (( + 8ab + 8b) (( + 4ab + 8b%) (

Thus Ny < |,,| for up = 1.

Case II. Suppose ur = 16 so that a = 2a for an odd integer a. Then
uptap = a%b% (@ + b)® (a + 2b)° (a° + 2ab + 26%)" (a* + 4a°b — 8ab® — 4b*)” .

In particular, each prime dividing the minimal discriminant divides

012

Sup = ) (a+ 2b) (a + 4b) (a® — 8b%) (¢ + 4ab + 8b°) (( + 8ab + 8b°) (
= ak (a+b) (a+ 2b) (&° + 2ab + 2b%) (§* + 4a’b — 8ab™— 4b*) (

Thus Np < |dy,| for ur = 16.

Case III. Suppose ur = 64 so that a = 4a for a nonzero integer a. Then

up Py = 16;84% (a + 2b) (a + 4b) (a2 — 8b2) (C + 4ab + 8b2) (t + 8ab + 8b2) (
)

= @b (a +b)® (20 + b)® (2a% + 2ab + 0PN (b* + 4ab® — 8a%h — 4a*)” .

Therefore each prime dividing the minimal discriminant divides
Sup = ab (a + b) (2a + b) (2a° + 2ab + b°) (i + 4ab® — 8a*b — 4a*) (

This shows that Ny < |d,,.|, which concludes the proof. [
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6.6 Proof of Theorem 6.6

For the reader’s convenience, we recall the quantities ms and Iy defined earlier in

the chapter:

( (1 if T =0C;
5 T =Cy '(6 i = Oy Cy x Cy
2 if T = (5,04, Cy x Cy 2 ifT=0C5Cy,Cs,Cq,Cy x Cy
3 fT=0CsCsCyxCy and mp = 64 if T =C% Cs,Cy x Cy
4 if T = Cy, Cy Co x Cg 6 if T = Cy, Chg
45 if T = Cy,Co 48 if T = Oy, Cy x Cs.
\ (.8 if T'=Ch9,Cy x Cy

Iy

(6.12)

Lemma 6.17 Let 6, be as defined in Table 6.2. For T' = Cy, let B = b%d. Then we

have the following equalities:

160y (a, B) a6, (1,2) " if T = Cy
)

N
bur(c,dye, D)™ = (ede)™ 8y (1,1,1, 5y )l( if T = Cy
Bup (e, d, D)™ = (ed)™ 8, (1,1, 1) " T =0Cy
6ur(a,b, )" = (ad)™ 6,,(1,2,1) " if T = Cy x Cy
0, (a,D)|"" = a ™6, (1,2) r for the remaining T.

Proof For T # Cy, Cy, Cg, C12, Cy x Cy, it is easily verified that the equalities hold
with the omission of the absolute value, which gives the lemma in these cases.

We now show by cases that equality holds for these remaining T’

Case I. Suppose T' = C5. Then we check via a computer algebra system that the
following equality holds:

<5uT(a, B)IT>2 = a0, <1, g)lT) 2 :

In particular, the equality in the lemma holds.
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Case II. Suppose T' = Cy, (. Then via a computer algebra system, we verify

<§UT(a, b)lT>2 = a0y, (1, E) lT) 2
a

This gives the lemma in this case as well.

that

Case III. Suppose T' = C12, C5 x Cs. As before, via a computer algebra system, it

<5uT(a, b)lT)5 = a™,, (1, S)ZT>

holds. This concludes the proof. [ |

is verified that .

6.6.1 The Polynomials &, ,3 for T = C,, C3, C4, and Cy X Cs

In section 6.1, we established that for T # C5, Cy x Cs the following equalities

hold

3 2
ar(a,b)® = aar (1, 2) Br(a,b)’ = a¥?pr (1, 2) : (6.13)

Now suppose T' = C5 so that a = c*d?e with d and e relatively prime positive square-
free integers. Let ar = ar(c,d, e, b) and Br = BT(C, d,e,b) such that ar(c,d, e, b) =
ar(Ed?e,b) and Br(c, d,e,b) = Br(Ed%e,b).

Similarly for T' = C,, write a = c2d for d a positive squarefree integer Now let dip =
ar(c,d,b) and Br = Br(c,d,b) such that dr(c,d,b) = ap(c3d,b) and Br(c,d,b) =
Br(c*d,b).

Consequently, (6.13) yields the following equalities

) ( Par(Y1,1,=52)° T =Gy
) ( 1(1 1, =bo)? T =Cy
ar(c,e,0) = () ar(Y1, L)’ it T =0y
) ( (K1 2)? if 7=,
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By Theorem 5.14 the minimal discriminant of Erp is U;H’YT where up = 2d.

Therefore

b 3
~12 3 _ 12 4
up “ar(a,b)” = (cde) aT<1, 1,1, m)

. b \?2
—12 2 12
’LLT ﬁT(CL, b) = (Cde) BT(l,l,l,m) .
For T' = C}, the minimal discriminant of Er is u;uyT where ur is either ¢ or 2c.

In particular,

i b\’
c2ar(a,b)’ = (cd)? ér (1, 1, %)

2
280(a. b = (cd)'? BT<1, 1, %) |

For T = Cy, we set B = bd so that ar(a, B) = ar(a,b,d) and S(a, B) =
Br(a,b,d). Then

B\* . B\?2
OZT(CL, b7 d>3 = amTOAéT (17 E) BT(GW ba d)2 = a6BT<17 _2>

a

Lastly, for T'= Cy x C5 we saw that

3

2
OZT(CL, ba d>3 = (ad)ﬁ ar <1a 27 1) BT(C% ba d>2 = (ad)ﬁ /BT (17 Sa 1) :

6.6.2 Real-Valued Functions

Let u;an be the minimal discriminant of E7 where ur is as given in Theorem

5.14.For each ur we define a real valued function ¢, : R — R given by

{ ar(1,z)? ,BT(L:U)?} ( it T =y
{ (1,1,1,2)° ,BT(1,1,1,x)2}<ifT:O3
Gup () = u;lzmax{ hr(1,1,2)° ,BT(1,1,x)2} it T =C,
{ 1,2,1)° , Br(1, 1)2} i T = Cy x Cy
{ ax(

1, :c)3 , Br(1, 33)2 otherwise.
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T

Next, define ¢, : R = R by
2 64, (1, 2)] if T =C,
10,,(1,1,1,2)"" if T = C4

<0T< -
ur (T) —
wr (@) = 0, (1,1, 2)'T T =C,4
up (@) = (;T@) Gu (L, DT T = Cy x Cy (6.14)
(x)" —
(x)” =
(z) —

X

X

20, (L) i T =Cy, Cho
> ‘5uT(1,l‘)’5lT T = Clg, CQ X Cg

100, (1, 2)['" otherwise.

X

Pup T

T

CUT
Lemma 6.18 Let 1, be as defined in (6.14). Then 1, is nonnegative. Moreover,
if Yu, has a root, then the root is irrational. In particular, for v € Q we have the

following inequalities:
) if T =C4

) if T =Cy

) ZfT = OQ X Cz
)

if otherwise.

Proof For each ur, let psiuT[x] be the Mathematica input [30] for 4,,. Then the

following Mathematica inputs

Reduce [psiuT[x] >=0,x,Reals] if T =C5 x Cy and up = 2

Reduce [psiuT[x] >0,x,Reals] otherwise

return True which verifies that v, is nonnegative. Now suppose T' = Cy x Cy with

up = 2. Then solving ¥,..(z) = 0 gives the solution set
{—3 +5,1+5 } .

In particular, ¥,..(x) is positive for all rational numbers x. Now observe that if n, m,
and k are positive real numbers such that n¥ < mF, then n < m. From this, the last

claim now follows. [ |
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6.6.3 Proof of Theorem 6.6
We are now ready to prove Theorem 6.6.

Theorem 6.6. Let T' be one of the fifteen torsion subgroups allowed by Theorem
2.1 and let Iy be as given in (6.7). If E is a rational elliptic curve with j-invariant

#0,1728, then T'— E(Q),, .., then 0,,(E) > Ir where Iy is as given in (6.12).

tors?

Proof Let E be a rational elliptic curve with conductor Ng. By Theorem 6.7,
Np < AR Let ¢4 and cg be the invariants associated to a global minimal model
of E so that 1728A%" = ¢3 — ¢2. From this, we obtain that AR" < max{|c3|, 2}
In particular, o,,(E) > 1 for all rational elliptic curves E.

Now suppose T' is one of the fourteen non-trivial torsion subgroups allowed by
Theorem 2.1. If T' — E(Q)
and b (and d in the case T = Cy, Cy x Cy). So it suffices to prove that o,,(Er) > lr.

tors: then Eis Q-isomorphic to Fp for some integers a

Let ¢4 and cg be the invariants associated with a global minimal model of E7. By

Theorem 5.14, ¢4, = u}A‘aT and cg = u;ﬁﬁT. In particular,
3 2 . —12 3 2
max{ ¢} ,cg =uz?max{ i} 07

For T = (5, let B = b%d. As we saw in the proof of Proposition 6.4,

am max{fT(La%f Br(1,5)" it T = G,
max { C:} B =1 ((ad)™ ma { T 1,2,1)3 ,BT(l,g,l)Q} if T =Cy x Cy
mr max{ T 1,9)3 ,BT(l,g)z} otherwise.

a

It suffices to show the ex¥stence of a number yr such that Ny < |yr|'" < max{|c}|, 2} .

Indeed, this would imply

log Ny < Iy log |y| < log max{ﬁi  Co

I7log |y| _ lo
log Np log N1

maxe{|cd] 2}

O'm(ET) .

Since ll)ogg]'g; > 1 it follows that Ir < 0,,(E7). We now show this by cases.
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Case 1. Suppose T' = (5. Then

B 1 . B\’ B\’
Puy (ﬁ) 6 Ur max{ Qr <1, §> , Br (1, ?) )
By Lemmas 6.17 and 6.18,
B 1.5 B
brl13) <o (3) (
B\ "° B
= a® S, (1, ?> < a%p,, <?) (

= |6, (a, B)|"® < max{ £} ,c;

By Proposition 6.16, Ny < |6,,.(a, B)|"”. Consequently, o,,(Er) > 1.5.
Case II. Suppose T' = (5. Then

b 1 b\ 4 b\’
Pur | 5 g Uy - max 1,1,1, —— B ol L, 1,1, ——— S .

By Lemmas 6.17 and 6.18,

b\ 2 b
5 1,].,]_, 3d2 <QDUT m

2
— (cde)™ 0, (1,1,1, 322 ) < (cde)'? o, (%)(

= |0y, (c,d,e,b)]” < max{ £} ,cg

By Proposition 6.16, Ny < [d,,.(¢c,d, e, b) 2. Consequently, om(ET) > 2.
Case III. Suppose T'= C;. Then

b 1 ) b \° b\’
Pur (%) 6UT max{ aT(]w]w%) 7ﬂT( y L 2d) .
By Lemmas 6.17 and 6.18,
b\ 2 b
(5 (1, 1, 2d> < Purp (@) (
b\ ° b
12 12
= (e (10 57) < e o (1) (

= |0y, (c,d,b)]> < max { (i e
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By Proposition 6.16, Ny < |8, (¢, d, b)|*. Consequently, o,,(Er) > 2.
Case IV. Suppose T' = Cy x (5. Then

b ~ A b\, b\’
Purg (a) 6UT12ma‘X{ aT(]waa]-) 75T(17aa1> } .
By Lemmas 6.17 and 6.18,
b\ > b
(120) <o ()
6 b\’ 6 b
- (ad)” 9y | 1,—,1 < (ad)’ pu, | —
a a
= |04, (a,b,d)]> < max{ £} ,c;

By Proposition 6.16, Ny < |8, (a, b, d)|*. Consequently, o,,(Er) > 2.
Now let T' # Cy, C3, Cy, Cy x Cy. Then

b . b\’ b\?
Pur (5) 6 up'? max{ ar (17 a) , B (L a) } :
By Lemmas 6.17 and 6.18,
b\ " b
(SuT (1, 5) < Qup (a) (
. b\ * b

— a’T 5uT (17 a) < a"" Pup (5) (
= [dur(a,b)]"" < max{ <§ g

By Proposition 6.16, Ny < |8, (a,b)|"". Consequently, o,,(Er) > Iy which concludes
the proof. m

The Theorem automatically implies the following corollary.

Corollary 6.19 Let E be a rational elliptic curve such that op,(E) < 1.5. Then
EQ),,,, is trivial.

Now let n be a positive integer and consider the elliptic curve E, given by the
Weierstrass model

E,:Y?’+y=2a3+nz.
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Using (2.2), we compute
cy = —48n, cg = —216, A, = — (64n° + 27)

In particular, F, is a global minimal model for E,. Indeed, suppose x +— u?x +r
and y — u®y + u?sx + w were an admissible change of variables between E, and
a global minimal model of E. Then by 2.4 u,r, s,w € 7Z since FE, is given by an
integral Weierstrass model. But then u? divides ged(cy, cg). But this only occurs

when |u| = 1. Thus E,, is a global minimal model for E,.

Corollary 6.20 If A, s squarefree, then the elliptic curve E, has trivial torsion
subgroup for each positive integer n. Moreover, there are infinitely many n’s such

that A, is squarefree and in particular,

lim om(En) = 1.

n—oo, Ay squarefree

Proof Let Ng, denote the conductor of F,. If A, is squarefree, then n is not
divisible by 3. Moreover, since 4A,, is odd we have that these assumption imply that

ged(216, A,) =1 and so E, is semistable. In particular, Ny, = A,,. Since
A, = — (4n+3) (16n*> — 12n + 9)

is not divisible by some square of a linear polynomial in n with integral coefficient,
we have by the main Theorem of [41] that there infinitely many n such that A, is
squarefree. To this end, it is easy to verify via Calculus that the function f: R — R

defined by
~ 3log(48x)
Jx) = log (6423 + 27)

is differentiable on [1, 00) and is monotonically decreasing. Moreover,

lim f(x)=1.

T—00

Consequently,

log(4
lim om(Ey) = lim 3log(48n)

=1.
n—o00, A, squarefree n—o0, Ay squarefree log(64n3 + 27)



193

It remains to show that E(Q), . is trivial whenever A,, is squarefree. Since f(z)

tors
is monotonically decreasing, we have that for any positive integer j such that A, 4;
is squarefree the inequality

Om(En) < 0m(Ensy)

holds. Moreover, for each > 36, f(z) < 1.5 and so by Corollary 6.19 E,(Q),,,. is

trivial if n > 36 and A,, is squarefree. For n < 36, we verify via SageMath [29] that
E,(Q),,, is trivial. [ |

As a direct consequence of this corollary we have that 1 is in the set of limit points

of 0,,(F) where E ranges over all rational elliptic curves E.
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7. CLASSIFICATION OF REDUCED MINIMAL MODELS

The goal of this chapter is to classify the reduced minimal models of rational elliptic
curves with 7' — E(Q) where T'= Cy for N =3,...,10,12 or T'= Cy x Cs. As in
the previous two chapters, we will consider the elliptic curves Er = Er(a,b) which
parameterize all rational elliptic curves with 7" — E(Q). We recall, that for 7' = Cs,
we need to consider those curves F which have j-invariant 0 separately. In section 1,
we give a brief review of the reduced minimal model as well as a couple of results which
will ease the use of the Laska-Kraus-Connell Algorithm in our setting. In section 2,
we state the main theorem and in section 3 we provide its proof by considering
each T separately. The proof relies on computer verification via Mathematica [30].
The reader is referred to Appendix C which contains a review of the Mathematica
commands Table and Mod which we will use in the course of proving the main theorem.

We conclude the chapter with examples.

7.1 Reduced Minimal Models and Torsion

Let E be a rational elliptic curve. As we saw in Chapter 2.3, E is Q-isomorphic
to a unique elliptic curve R known as the reduced minimal model of E. Recall
that the reduced minimal model of E is an elliptic curve R which is Q-isomorphic to

E and whose Weierstrass model
R:y* 4+ a1y + asy = 2 + asx® + asx + ag

has the property that R is a global minimal model for £ and a,a3 € {0,1} and ay €

{—=1,0,1}. Moreover, if ¢, and ¢4 are the invariants associated with a global minimal
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model of F, then the Laska-Kraus-Connell Algorithm (Algorithm 2.8) computes the

a;’s of the Weierstrass model of R:

by = —cg mod12 € {—5,—4,...,6}

b o 7bg+3662b4706
6= 216

ay = ba—ay

ay = bi—aias

2

- b%—a;
by = 24

a; = by mod2 € {0,1
e 0.1} (7.1)
as = b6 mod2 € {O, ]_}

ag = bGZas

In particular, the quantities a; and b; are integers.

Table 7.1.: The Reduced Minimal Models R; for 1 < j < 12 where

R;:y* 4+ aywy + asy = 2 + as2® — Lo — 155
J || a1 | a2 | as A B
1 0 0 0 Cy4 2c6
2 0] O 1 Cy4 2c6 + 216
300 | =110 ]|ca—16]| 2(—6¢c4+ cs+ 32)
410 | =1|1 |eg—16|2(—6¢c4+ cg+ 248)
500 110 |ei—16] 2(6e+cs—32)
61/ 0] 1 |1 |cim16| 2(6es+ co+184)
7 110 [0 ] eg—1 3¢y + 2¢c6 — 1
8 110 1 | ey +23 3cy + 2¢¢ + 431
9 1| —-1[01] cs—9 —9c¢4 + 2¢6 + 27
10 1| =11 |cg+15| —9c4+ 2c6+ 459
119 1 1 0 |cy—25 15¢c4 + 2¢c4 — 125
12 ] 1 1 1| es—1 15¢4 + 2¢4 + 307

Now suppose we run the Laska-Kraus-Connell Algorithm for an elliptic curve

E with invariants ¢, and cg associated to a global minimal model of E. We show

that computing aq, as, and as uniquely determines a4 and ag in terms of ¢4 and cq.
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In particular, there are exactly 12 possible reduced minimal models R; for F with

Jj=1,2,...,12. Table 7.1 gives the 12 possible Weierstrass models of R;.
Lemma 7.1 Let R be a rational elliptic curve given by the global minimal model
R:y* 4+ a1y + asy = 2 + asx® + asx + ag

such that ay, a3 € {0,1} and ay € {—1,0,1}. Then a4 and ag are uniquely determined
by the invariants cy4 and cg of the Weierstrass model for R. In particular, there are 12

possible reduced minimal models and they coincide with the ones given in Table 7.1.

Proof Let S;:y?+ ajzy + azy = 2 + ax? + a4x + ag where ay, as, az are as given

in Table 7.1 for R;. Computing the invariants ¢, and cg of the model of S; yields

(484, =1 ( (:864% =1
—48ay if =2 216 (4ag + 1) if =2
—16(3a; —1) if j =3 —32(9ay + 27a — 2) if j =3
—16(3a4—1) ifj=4 —8(36a4 + 108ag + 19) if j=4
—16(3a4 — 1) if =5 —32(—9ay + 27a¢ + 2) if =5
—16(3a, — 1) ifj=6 —8(—36a4 + 108ag +35) if j =6

cy = and cg =
—(48ay—1) ifj=7 — (—T2a4 + 864as + 1) ifj="7
— (48a4 +23) if j=38 —(=T72ay4 + 864as + 181) if j =38
—3(16ays —3) if7=9 —27 (8ay + 32a6 — 1) if7=9
—3(16ay +5) if j =10 —27 (8ay + 32a6 + 11) if 7 =10
— (48a4 — 25) if j =11 — (—360ay 4 864as + 125) if j =11
| —(48a,— 1) if j =12 | — (—360a, + 864ag + 161) if j = 12
For each j, solving for a4 and ag in terms of ¢4 and ¢4 allows us to verify that ay = —fB
and ag = —% for A and B as given in Table 7.1 in terms of ¢4 and c¢g. Hence R; = 5

for each j. [ |

As a result, given a rational elliptic curve E with invariants ¢, and cg associated

to a global minimal model of F, the reduced minimal model is uniquely determined
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upon computing ai, as, and az. The next result simplifies the computation of ag in

the Laska-Kraus-Connell Algorithm:

Lemma 7.2 Let E be a rational elliptic curve E with invariants ¢4 and cg associated
to a global minimal model of E and let R be the reduced minimal model of E. Let bs

and by be as in (7.1). If these quantities are known, then the invariant as of R is

if — b3 + 36byby — cg =0 mod 16
if — b3+ 36byby — cg =8 mod 16

as =

Proof Observe that az =% mod2 € {0,1} and

by — —b% + 36bgb4 — Cq
6= 216 '

In particular, —bg + 36b9bs — ¢ = 0 mod 8 since 216 = & - 27. Thus bg is even if and
only if —b3 + 36byby — cg is divisible by 16. [ ]

7.2 Classification of Reduced Minimal Models

Let ¢4 and c¢g be the invariants associated to a global minimal model of EFr =
Er(a,b) for some integers a and b. By Theorem 5.14 we have necessary and sufficient
conditions on a and b so that ¢, = u;40zT(a, b) and cg = u;%’T(a, b) for ur as defined in
Theorem 5.14. The following Theorem gives necessary and sufficient conditions on a
and b for Er to be Q-isomorphic to R; for some j for T' = Cy where N = 3,...,10,12
or T = C9,Cy x Cg. Recall that Er with T = C3 parameterizes all rational elliptic
curves E with non-zero j-invariant such that C3 < E(Q). Whereas Er for T = C¥,
parameterizes all rational elliptic curves £ with j-invariant 0 such that C3 — E(Q).

With this terminology, we now state the main Theorem of this chapter.

Theorem 7.3 Let T = Cy where N = 3,...,10,12 or T = C9,Cy x Cs. Then the
reduced minimal model of Er for T = Cio, Cy X Cg is R;. For the remaining T, Table
7.2 lists the necessary and sufficient conditions on a and b for R; to be the reduced

minimal model of Er.
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Table 7.2.: Necessary and Sufficient Conditions for R;

T Conditions to determine R,
Cs | R <= a=0 mod6 and 31 vs(a)
Ry, <= a=0 mod6 and 3|vs(a)
R; <= a=+2 mod6and 31 vs(a)
Ry <= a= =2 mod6 and 3|vy(a)
R; <= a==1 mod6 and b is even
Ry <= a==+1 mod6 and b is odd
Ry <= a=3 mod6 and b is odd
Rip <— a=3 mod6 and b is even
CY | Ry <= aiseven
Ry, <= a1sodd
Cy | R <= wup=c, ais even, and either 3t ab(a +b) or vs(a) is odd
Ry <= wur =c, a is even, and either 3| (a + b) or vz(a) > 0 is even
with bd = 1,4 mod 6
Rs <= wur =c, a is even, and either 3|b or vs(a) > 0 is even with
bd =2,5 mod6
R; <= one of the following holds: (i) a is odd and either 3|b or
vz(a) > 0 is even with bd = 2,5 mod6 or (ii) ur = 2c,
bd = 7,15 mod 16, and either 3|b or vs(a) > 0 is even with
bd =11 mod 12
Ry <= wur = 2c, bd = 3,11 mod 16, and either 3|b or vs(a) > 0 is
even with bd = 11 mod 12
Ry <= wur = 2¢, bd = 3,11 mod 16, and either 3 t ab(a +b) or

vs(a) is odd

continued on next page
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Table 7.2.: continued

T Conditions to determine R,
Ry <= one of the following holds: (i) a is odd and either 3 ¢
ab (a + b) orvs(a) is odd or (ii) ur = 2¢, bd = 7,15 mod 16,
and either 31 ab(a + b) or vs(a) is odd
Ry, < wur=2c, bd = 3,11 mod16, and either 3| (a +b) or vs(a) >
0 with bd =7 mod 12
Ris <= one of the following holds: (i) a is odd and either 3| (a + b)
or vs(a) > 0 is even with bd = 1,4 mod6 or (ii) ur = 2c,
bd = 7,15 mod 16, and either 3| (a +b) or vs(a) > 0 with
bd =7 mod 12
Cs | Ry <= ab==x1mod6
Ry <= ab=3 modb6
R; <= ab=0 mod6
Ry <= ab==+2 mod6
Cs | Ri <= a=3 mod6 with va(a+b)=1,2
Rs <= a==£1 mod6 with vao(a+0b) =1,2
R; <= a==+1 mod6 with va(a+0b)#1,2,3
Ry <= cithera =+2 mod6 ora =+1 mod6 with va(a+b) =3
Ry <= eithera=0 mod6 or a =3 mod6 with va(a+0b) =3
Ry <= a=3 mod6 with va(a+0b)#1,2,3
C; | R <= a+b==+1 mod3
Ry < a+0=0 mod3
Cs | R <= a=0 modl2
Ry <— a=24 modl12
R, <= a=4+1,42,45 mod12
Ry <— a=43,6 modl2

continued on next page
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Table 7.2.: continued

T Conditions to determine R,
Cy | R <= a+b==1 mod3

Ry < a+b=0 mod3
Cip| R < a==£1,£2,4+5 mod12

Ry <— a=244 modl12

Ry <— a=0 modl12

Ry < a=+3,6 modl2

7.3 Proof of Theorem 7.3

The proof relies on computer verification via Mathematica [30] and we refer the
reader to Appendix C which reviews the Mathematica inputs Mod and Table. In what
follows the Mathematica inputs c4[a,b] and c6[a,b] will refer to ¢; = uy*ar(a,b)
and cg = uz’fr(a,b) where T will be known from context. Moreover, for each T we
will compute —cg mod 12 and —b3 + 36byby — ¢g mod 16 via the Mathematica inputs
Mod and Table. The Mathematica input V[a,b] will correspond to —bg + 36byby — cg
where by and by are as defined in the Laska-Kraus-Connell Algorithm (7.1). For
T = (3, we will prove most of the result directly, but for the remaining 7', we will use
Mathematica to compute the congruences in the Laska-Kraus-Connell Algorithm.

The proof of the Theorem follows the same structure for each case presented
below. Namely, we first compute —cg mod 12 from which we deduce by, a1, and as as
defined in the Laska-Kraus-Connell Algorithm. Next we use Lemma 7.2 to compute
az, namely checking the congruence —b% + 36b9bs — ¢ mod 16. This will conclude
the proof of each case since by Lemma 7.1, the reduced minimal model is uniquely

determined by aq, as, and as.
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7.3.1 Proof of Theorem 7.3 for T' = C;

Theorem 7.3 for T' = C3. The reduced minimal model of E7 is

(i) R <= a=0 mod6 and 31vy(a)
(77) Ry <= a=0 mod6 and 3|vs(a)
(1) Ry <= a==42 mod6 and 31 wvy(a)
(iv) Rs <= a==2 mod6 and 3|vy(a)
(v) Ry <= a==£1 mod6 and b is even
(vi) Rs <= a==1 mod6 and b is odd
(vii) Ry <= a=3 mod6 and b is odd
(viii) Rip <= a =3 mod6 and b is even

Proof By the proof of Theorem 5.14 the invariants ¢, and cg associated to a global

minimal model of Er(a,b) are
cy = cd®e® (a — 24b) and cg = —d’e* (¢ — 36ab + 216b°)

where a = c*d?e with d and e relatively prime squarefree positive integers. Conse-
quently —cg = ®d%e® mod 12. Note that it suffices to prove the converse of statements
(1) through (viii) since these exhausts all possibilities for a and b.

Case I. Suppose a = 0 mod 6. Then —cg = 0 mod 6 and therefore by = a1 = as =

0. We now consider,
—b3 + 36byby — cg = 8b*d%e* mod 16
since @ = 0 mod 6. By Lemma 7.2,

if de is even if 31 ve(a)

3
if de is odd if 3|vy(a)

since 3|vg(a) if and\only if de is odd. This shows the convégse of (i) and (7).
Case II. Suppose a = +2 mod 6. Then a? = c%d*e? = 4 mod 12 and therefore

—cg = 4d*e* mod 12.
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Since de is not divisible by 3 it follows that —cg = 4 mod 12 since 4k* = 4 mod 12
for all integers k not divisible by 3. Therefore b, = 4 and thus a; = 0 and ay = 1.
Since a = £2 mod 6, it follows that 2 divides cde and so

—b3 + 36byby — cg = 8b*d%e* mod 16
and so by Lemma 7.2,

if de is even if 31 va(a)
as = <~ as =
if de is odd if 3|va(a)

This shows the conyerse of (iii) and (iv).

Case III. Suppose a = +1 mod 6. Then a®? = ®d*e? =1 mod 12. Thus
—cg = d*e* mod 12.

Since de = +1 mod 6 we have —cg = 1 mod12. Hence b, = 1 and so a; = 1 and

as = 0. We now compute

3 1 —3c'd'e! 2 3 252 4 345 6 16 6
—b2+36b2b4—CG:T+36bcde + 216b°d“e* — 36bc’d*e® + c’d’e

1— 3k
= 23 + 361 (Y- kQ)g k® + 216b°d%e?

where k = cde and | = bed?e3. Since a = +1

+ 361 ((— k?) (t K

Table [Mod [ (1-3%k~4) /2+36x1x(1-k"2)+k~6,16],{k,1,16,2},{1,0,16}]

od 6, we have that k£ is odd. Using
Mathematica, we verify that

1 — 3k*

is divisible by 16 via the input

Therefore
—b3 + 36byby — cg = 8b*d?e* mod 16.
By Lemma 7.2,
if b2d%e* is even if b is even

if b2d?e* is odd if b is odd
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This shows the converse of (v) and (vi).
Case IV. Lastly, suppose a = 3 mod 6. Then a = 43 mod 12 and so a? = c%d*e? =
9 mod 12. Thus
—cg = 9d%¢* mod12 =9 mod12.

since de = #1,£3 mod 12 implies that d?e¢* = 1,9 mod 12. Hence by = —3 and so

a; =1 and ap, = —1. Then

9ctdrer — 27
—bg + 36b2by — cg = % — 36bcd?e? (t—i— C2d2€2)§; A0S + 216b%de?
9k* — 27
= g 361 (Y K) X+ 2160°d%

where k& = cde and | = bed?e?. Since a = 3 mod 6, it follows that k is odd. We now

verify that
9kt — 27

—— — 30l (:C k?) (t ° (7.2)
is not divisible by 16 via the Mathematica input

Table [Mod [ (9%k~4-27) /2-36%1(3+k"2)+k~6,16] ,{k,1,16,2},{1,0,16}]

In fact, through Mathematica we see that expression (7.2) is congruent to8 modulo
16. Therefore
—b3 + 36byby — cg = 8 + 8b*d*e* mod 16

and so

if b2d?e* is odd if b is odd
as = < as =
if B2d%e* is even if b is even

which concludes khe converse of (vii) and (viii). This concludes the proof since we

have exhausted all possibilities for a and b. [ |

7.3.2 Proof of Theorem 7.3 for T'= C?

Theorem 7.3 for T' = C3. The reduced minimal model of Er is

(i) Ry <= aiseven (1) Ry <= aisodd.
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Proof By Lemma 5.16, we may assume that
Er:y* +ay =2°

for some cubefree integer a. In particular, Fr is a global minimal model for E by
Corollary 5.17. Thus the invariants ¢4 and cg associated to a global minimal model
of E are ¢y = 0 and ¢ = —216a®. Thus —cg = 0 mod 12 and so by = a1 = as = 0.

The Theorem now follows since

if a is even

if a is odd.

—b3 + 36byby — cg = —cg = 8a® mod 16 =

7.3.3 Proof of Theorem 7.3 for T = C,

Theorem 7.3 for T = Cy4. Let a = ¢*d for d a positive squarefree integer and let
ur be as given in Theorem 5.14.
(a) If ur = ¢, the reduced minimal model of Er is
(i) Ry <= aiseven and either 3t ab(a+ b) or vs3(a) is odd
(1i) R3 <= ais even and either 3| (a + b) or v3(a) > 0 is even with
bd =1,4 mod6
(i1i) Rs <= ais even and either 3|b or v3(a) > 0 is even with
bd = 2,5 mod6
(tv) R; <= aisodd and either 3|b or v3(a) > 0 is even with
bd = 2,5 mod6
(v) Ryy <= aisodd and either 3t ab(a + b) or vs3(a) is odd
(vi) Rj2 <= ais odd and either 3| (a 4 b) or v3(a) > 0 is even with
bd = 1,4 mod6

(b) If ur = 2¢, the reduced minimal model of Er is
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(1) Ry <= bd=7,15 mod16 and either 3|b or v3(a) > 0 is even with

bd =11 mod 12

(1) Rs <= bd=3,11 mod16 and either 3|b or v3(a) > 0 is even with
bd =11 mod 12

(1ii) Rg <= bd=3,11 mod 16 and either 31 ab(a + b) or vs(a) is odd

(iv) Rip <= 0bd=7,15 mod16 and either 31 ab(a + b) or vs(a) is odd

(v) Ry <= bd=3,11 mod 16 and either 3| (a + b) or vs3(a) > 0 with
bd =7 mod 12

(vi) Ria <= bd=7,15 mod16 and either 3| (a + b) or vz(a) > 0 with
bd =7 mod 12

Proof By Theorem 5.14, the invariants associated with a global minimal model of
Er = Er(a,b) are ¢, = upar(a,b) and cg = uz’Br(a,b) where ur is either ¢ or 2c.
Moreover, ur = 2¢ if and only if vy(a) > 8 is even and bd = 1 mod4. It suffices to
show the converse of each statement to prove the Theorem, as this will exhaust all
possibilities for a and b.

(a) First, assume ur = ¢. Then
cy = d? (( + 16ab + 16b%) ( and ¢ =d*(a+ 8b) (<a2 — 16ab + 8b) .

Thus
—cg = 8b°d® + ®d® mod 12.

Case 1. Suppose a is even and 3 does not divide ab (a + b). Note that if k is an
even integer not divisible by 3, then k% = 4 mod 12. Hence —cg = 8b3d® + 4 mod 12

from which we deduce

mod 12 if bd =1 mod3
—cg = (7.3)
mod 12 if bd =2 mod 3.
We claim that bd = 1 mod3. \ndeed, since c is not divisible by 3 we have that
¢ =1 mod3. Then

a+b=c*d+b=d+b mod3. (7.4)
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Towards a contradiction, suppose bd = 2 mod3 so that exactly one of b or d is
congruent to 2 modulo 3. This is a contradiction, since then a +b = 0 mod 3 which
contradicts our assumption. Hence —cg = 0 mod 12 and so by = a1 = a; = 0. Now

observe that
— b3 + 36byby — cg = —cg = 8b*?d* + 8bc'd® 4 *d° mod 16 (7.5)

Since 2 divides cd, we conclude that —cg = 0 mod 16 and so a3 = 0.

Case II. Suppose a is even and wv3(a) is odd. Thus 3 divides d and so —cg =
0 mod 12 which implies by = a; = as = 0. Since cd is even, we have from (7.5) that
—c¢ =0 mod 16 and so az = 0 which concludes the converse of (7).

Case III. Suppose a is even and 3 divides a + b. Since 3 does not divide cd, we
infer that —cg = 8b%d® + 4 mod 12. Since a + b is divisible by 3, we deduce that
bd = 2 mod3 from congruence (7.4). Indeed, towards a contradiction, note that
if bd = 1 mod3, then b,d = 1 mod3 which implies that 3 does not divide a + b.
Therefore —cg = 8 mod 12 by (7.3). Hence by = —4 and so a; = 0 and ay = —1.

Reducing modulo 16, we attain

—b3 + 36byby — cg = 8b*Pd* + 6¢*d* + 8bc*d® + °d® mod 16

=0 mod 16

since 2 divides c¢d. Therefore a3 = 0.

Case IV. Suppose a is even, vz(a) > 0 is even, and bd = 1,4 mod 6. Since vs(a)
is even, 3 only divides c. Therefore —cg = 8b3d®> mod 12. Since 8k = 8 mod 12 for
k= 1,4 mod6 we deduce that —cg = 8 mod 12. It follows that by = —4 and so

a; = 0 and as = —1. Reducing modulo 16, we attain

—b3 + 36boby — cg = 8b*c*d" + 6¢'d* + 8bc'd® + °d® mod 16

=0 mod 16

since 2 divides cd. Therefore az = 0 which concludes the converse of (i).
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Case V. Suppose a is even and 3 divides b. Then —cg = 4 mod 12 and so by = 4.

Consequently, a; = 0 and as = 1. Then a3 = 0 since

—b3 4 36bgby — cg = 8b*c2d* + 10c*d* 4 8bc*d® + %d® mod 16

=0 mod 16

since 2 divides cd.

Case VI. Suppose a is even, vz(a) > 0 is even, and bd = 2,5 mod6. Then
—cs = 8b%d® mod 12 since 3 divides c¢. Moreover, —c = 4 mod 12 since 8k* =
4 mod12 for £k = 2,5 mod6. Hence b = 4 and so a; = 0 and ay = 1. Lastly,
—b3 + 36byby — g = 0 mod 16 since 2 divides cd. Consequently, a3 = 0 which

concludes the converse of (iii).

Case VII. Suppose a is odd and 3 divides b. In particular,

—cg = 8b3d® + °d® mod 12
=1 mod 12
since k® = 1 mod 12 for odd integers k not divisible by 3. Hence b, = 1 and so a; = 1

and ay = 0. Then
1 — 3k*

—b3 + 36boby — cg = — 241 — 641* — 241k* 4+ 1200%k” + 241k* + K°

with £ = ¢d and | = bd. Since k is odd, we verify via the Mathematica input
Table [Mod [(1-3%k"4)/2-24*1"2-64%1"3-24*1%k"2+120*1 2%k "2+
24x1xk"4+k"~6,16] ,{k,1,16,2},{1,1,16}]

that —b3 + 36beby — cg = 0 mod 16. Hence a3 = 0.

Case VIII. Suppose a is odd and wvz(a) > 0 is even with bd = 2,5 mod 6. Since
v3(a) > 0 is even, it follows that ¢ is divisible by 3. We now observe that k% =
9 mod12 for odd integers k divisible by 3 and 8/ = 4 mod 12 for integers [ =

2,5 mod 6. In particular,

—cg = 8b%d® + *d® mod 12

=1 mod12
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and so by = 1. Consequently, a; = 1 and a; = 0. Since b, = 1, we observe that the
proof above for Case VII follows identically to show that —b3+36bybs—cg = 0 mod 16.
Hence ag = 0 which concludes the converse of (iv).

Case IX. Suppose a is odd and 3 does not divide ab (a + b). Since 3 does not divide
a+ b, it follows that a = b mod 3. Since a = c*d, we have that ¢> = 1 mod 3 and so
a=d mod3. Hence bd =1 mod 3 and so 8b*°d®> = 8 mod 12. Since %d® =1 mod 12

we conclude that —cg =9 mod 12 and so b, = —3. Thus a; = 1 and as = —1. Then

Kt —2
—bi 4 36bgby — cg = 977 + 721 — 641° + T21k* + 1200°k* + 241K* + K°

with £ = c¢d and [ = bd. Since k is odd, we verify via the Mathematica input

Table [Mod [ (9%k~4-27) /2+72%1°2-64%1"3+72x1xk"2+120%1 " 2%k "2+
24%1%k"4+k"6,16] ,{k,1,16,2},{1,1,16}]

that —b3 + 36beby — cg = 8 mod 16. Hence a3 = 1.

Case X. Suppose a is odd and wv3(a) is odd. Since vz(a) is odd, 3 divides d and so
8b3d® = 0 mod 12. Moreover, c®d® =9 mod 12 since cd is an odd integer divisible by
3. Thus b = —3 and so a; = 1 and as = —1. Since by = —3, we observe that the
proof above for Case IX follows identically to show that —b3 +36bybs —cg = 8 mod 16.
Thus ag = 1 which concludes the converse of (v).

Case XI. Suppose a is odd and 3| (a + b). Since 3 divides a + b, it follows that
a = —b mod 3. Moreover, a = c*d = d mod 3 since c is not divisible by 3. Thus
d = —b mod 3 and so bd = 2 mod3. Therefore 86*d®> = 4 mod 12. Since cd is odd
and not divisible by 3, we have %d® = 1 mod12 and so —cg = 5 mod 12. Hence
bs = 5 and so a; = ay = 1. Next, we compute

125 — 15k%

5 — 1200% — 6413 — 1201k* 4+ 1200%k* + 241k* + kS

—b3 + 36boby — cg =
with k£ = c¢d and | = bd. Since k is odd, we verify via the Mathematica input

Table [Mod [ (125-15%k"4) /2-120%1"2-64+1"3-120% 1%k~ 2+120%1~2+k "2+
24%1%k~4+k"6,16] ,{k,1,16,2},{1,1,16}]
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that —b3 + 36byby — ¢ = 8 mod 16. Hence a3 = 1.

Case XII. Suppose a is odd and wvz(a) > 0 is even with bd = 1,4 mod 6. Since
v3(a) > 0 is even, we have that 3 divides c. In particular, ¢®d® = 9 mod12. The
assumption that bd = 1,4 mod6 implies that 8b3d®> = 8 mod12 and so —cg =
5 mod 12. Hence by = 5 and so a; = a, = 1. Since by = 5, we observe that the proof
above for case XI follows identically to show that —b3 +36bobs — cg = 8 mod 16. Thus
az = 1 which concludes the converse of (vi).

(b) Now suppose v2(a) > 8 and bd = 3 mod 4 so that ur = 2¢ by Theorem 5.14.

In what follows, we let a = 28¢?d and assume bd = 3 mod 4. In particular,

cy=d*( +16ab+16b2)C2‘4:dQ(f+ab+16—1.a2)
*Xa +8b) (¢ + 16a —8b2)-26:—d3(r1-a—|—b)(i‘l-a2+2ab—b2)<

163d® mod 12 if 3|ed
163 +4 mod12 if 31cd

C6:—d

Thus —cg = 116%d> + 4¢%d® mod 12 and so

—Cg =

Since bd = 3 mod4, bd is congkuent to either 3,7,11, or 15 modulo 16. Similarly,
bd is congruent to either 3,7, or 11 modulo 12. In particular, if vs(a) > 0 is even,
then bd is not divisible by 3 and so the only possibilities for bd modulo 12 are 7,11.
The conditions on a and b in the converse of statements (i) through (vi) exhaust all
possibilities satisfying vs(a) > 8 and bd = 3 mod 4.
Case 1. Suppose 3 divides b. We claim that —cg = 1 mod 12. Since bd = 3 mod 4,

it follows that exactly one of b or d is congruent to 1 (resp. 3) modulo 4.

Subcase I. Assume that b =1 mod4 and d = 3 mod4. Since 3 divides b, it
follows that b = 9 mod 12. Then 1163d®> = 9 mod 12 and so —cg = 1 mod 4 since 3
does not divide cd.

Subcase II. Assume that b =3 mod4 and d =1 mod4. Since 3 divides b, it
follows that b = 3 mod 12. Then 1103d®> = 9 mod 12 and so —cg = 1 mod 4 since 3

does not divide cd.
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From the claim, we conclude that b = 1 and so a; = 1 and as = 0. Then

1 — 2 72
—b3 + 36boby — ¢ = % + 156°d* mod 16 (7.6)
1 — 3k?

+ 15k% mod 16

2

with k = bd. Since k is odd, we observe via the Mathematica input

Table[Mod[(1-3%k"~2)/2+15%k"~3,16],{k,1,16,2}]

that
0 mod16 if bd = 7,15 mod 16
—b3 + 36bsby — ¢ = mod 16  if bd = 3,11 mod 16
4 mod16 if bd =1,5,9,13 mod 16
Since bd is never congruent to 1,\5,9,13 modulo 16, we conclude that az = 0 if

bd = 7,15 mod 16 and a3 = 1 if bd = 3,11 mod 16. This concludes the first half of
the converse of (i) and (7).

Case II. Suppose vs(a) > 0 is even with bd = 11 mod 12. In particular, 3 divides
c and so —cg = 116°d® mod 12. Hence —cg = 1 mod 12. In particular, b, = 1 and so
a; = 1 and ay = 0. Since by = 1, we note that —bj3 + 36byby — g is congruent to the
quantity (7.6). Therefore ag = 0if bd = 7,15 mod 16 and a3 = 1 if bd = 3,11 mod 16.
This concludes the converse of (i) and (ii).

Case III. Suppose 3 does not divide ab (a + b). Since 3 does not divide ab (a + b),
we have that bd is congruent to 7 or 11 modulo 12. We claim that bd = 7 mod 12.
Towards a contradiction, suppose bd = 11 mod 12. Then b = —d mod 12 and observe

that @ = 4d mod 12 since ¢ = 4 mod 12. Hence

a+b=4d —d mod12 = 3d mod 12
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which contradicts the assumption that 3 does not divide a + b. Therefore bd =
7 mod 12 as claimed and it follows that —cs = 9 mod 12 since 1163d®> = 5 mod 12.
Thus by = —3 and so a; = 1 and a; = —1. Then

9W2d? — 27

—b3 4 36byby — c = + 150°d® mod 16

2
-2
= % + 15k% mod 16

with £ = bd. Since k is odd, we observe via the Mathematica input

Table [Mod [(9%k~2-27)/2+15%k"~3,16] ,{k,1,16,2}]
that
0 mod 16 if bd = 3,11 mod 16
— b3 + 36boby — cg = mod 16 if bd =1,5,9,13 mod 16 (7.7)
mod 16 if bd = 7,15 mod 16.
Since bd = 3 mod 4, we see that (7.f) is either 0 mod 16 or 8 mod 16. In particular,
az = 0 if bd = 3,11 mod 16 and az = 1 if bd = 7,15 mod 16.
Case IV. Suppose vs(a) is odd. Then 3 divides d and therefore bd = 3k for some
integer k. Since bd = 3 mod 4, it follows that K =1 mod 4 and so

—cg =11-(3k)’ mod12 =9 mod12.

Hence by, = —3 and so a; = 1 and ay = —1. Since by = —3, we note that —b3 +
36b2by — cg is congruent to the quantity (7.7). Therefore ag = 0 if bd = 3,11 mod 16
and a3 = 1 if bd = 7,15 mod 16. This concludes the converse of (iii) and (iv).

Case V. Suppose 3 divides a+b. Then a = —b mod 3 since a = d mod 3. We first
claim that bd = 11 mod 12. Suppose instead bd = 7 mod 12. Since bd = 3 mod 4, we
have to consider the two subcases arising from b = —d mod 4.

Subcase I. Suppose b =1 mod4 and d =3 mod4. Then b is congruent to 1
or 5 modulo 12 and d is congruent to 7 or 11 modulo 12 since bd is not divisible by
3. Since bd = 7 mod 12, it follows that either b = 1 mod 12 and d = 7 mod 12 or
b=5 mod12 and d = 11 mod 12. For both of these cases, it follows that a + b is not

congruent to 0 modulo 3, which contradicts our assumption.
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Subcase II. Suppose b = 3 mod4 and d = 1 mod4. Then b is congruent to

7 or 11 modulo 12 and d is congruent to 1 or 5 modulo 12 since bd is not divisible

by 3. Since bd = 7 mod 12, it follows that either b =7 mod 12 and d =1 mod 12 or

b =11 mod12 and d =5 mod 12. For both of these cases, it follows that a + b is not
congruent to 0 modulo 3, which contradicts our assumption.

Therefore bd = 11 mod 12 and so —cg = 5 mod 12 since 1163d®> = 1 mod 12.

Hence b, = 5 and so a; = a, = 1. Next, we compute

125 — 15b%d?
—b3 + 36byby — g = — 7 156°d*> mod 16
125 — 15k2

=—F— + 15k% mod 16

with k = bd. Since k is odd, we check via the Mathematica input

Table [Mod[(125-15%k"~2)/2+15%k"~3,16],{k,1,16,2}]

that
0 mod16 if bd = 3,11 mod 16

— b3 + 36byby — ¢ = mod16 if bd =1,5,9,13 mod 16 (7.8)
mod 16 if bd = 7,15 mod 16.
Since bd = 3 mod 4, we see that (7.8) is either 0 mod 16 or 8 mod 16. In particular,
az = 0if bd = 3,11 mod 16 and a3 = 1 if bd = 7,15 mod 16.

Case VI. Suppose vz(a) > 0 is even with bd = 7 mod 12. Then 3 divides ¢ and
therefore —cg = 1163d® mod 12. Since bd = 7 mod 12, it follows that —cg = 5 mod 12
and so by = 5 and a; = ay = 1. Since by = 5, —b% + 36b2b4 — cg is congruent to the
quantity (7.8) and so ag = 0 if bd = 3,11 mod 16 and ag = 1 if bd = 7,15 mod 16
which concludes the converse of (v) and (vi).

This concludes the proof of the Theorem since as remarked at the start, it sufficed
to show the converse for each statement as this would exhaust all possibilities for a

and b. [ ]
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7.3.4 Proof of Theorem 7.3 for T' = Cj

Theorem 7.3 for T' = Cy. The reduced minimal model of Er is
(i) Ry <= ab==+1 mod6 (it) Rs¢ <= ab=3 mod6

(i1i) Ry <= ab=0 mod6 (iv) Rz <= ab= =42 mod6

Proof Observe that
—cg = a® + 6a°b + 3a*b? + 3a%b* + 6ab® + b° mod 12.

Case I. Suppose ab = £1 mod6. Since k? = 1 mod 12 and 6k = 6 mod 12 for
k = +1 mod6, we have that

—cg=a® + 1% +6 mod 12.

Since ab = £1 mod 6 implies a,b = 1 mod 6, it follows that —cg = 8 mod 12 and
therefore by = —4. Hence a; = 0 and ay = —1. Since a and b are odd, we verify that

—b3 4 36byby — cg = 8 mod 16 via the Mathematica input

Table[Mod[V[a,b],16],{a,1,16,2},{b,1,16,2}]

Thus ag = 1. This shows the converse of (7).
Case II. Suppose ab = 3 mod6. Since 6k = 6 mod 12 and 3k?> = 3 mod 12 for
k =3 mod6, it follows that

—cs=a®+ 1% +6 mod12.

Since a and b are relatively prime, we may assume without loss of generality that

a=3 mod6 and b = +1 mod6. Then
—c=9+1+6 modl2 =4 mod12

and therefore b, = 4. Thus a; = 0 and a, = 1. Since a and b are odd, we verify that

—bg’ + 36byby — cg = 8 mod 16 via the Mathematica input

Table[Mod[V[a,b],16],{a,1,16,2},{b,1,16,2}]
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Hence a3 = 1 and the converse of (iz) holds.

Case III. Suppose ab =0 mod 6 so that
—cg = a® + b° mod12.

First, suppose a = 0 mod 6 so that b = £1 mod6. Then —csg = 1 mod 12. Next,
we assume without loss of generality that a is even and b is divisible by 3. Then
—c¢ = 1 mod 12 which allow us to conclude that b, = 1. Hence a; = 1 and ay = 0.
We then verify that —b3 + 36byb, — cg = 0 mod 16 by considering the cases a is even

(resp. odd) and b is odd (resp. even) in Mathematica via the inputs

Table [Mod[V[a,b],16],{a,2,16,2},{b,1,16,2}]
Table[Mod[V[a,b],16],{a,1,16,2},{b,0,16,2}]

Thus a3 = 0 and the converse of (ii7) holds.

Case IV. Suppose ab = +2 mod 6. Then
—cg = a® +b° mod 12

and without loss of generality, we may assume ¢ = +2 mod6 and b = +1 mod6
so that —cg = 5 mod 12 and so by = 5. Hence a; = ay = 1. Next, we verify that

—bg + 36boby — cg = 8 mod 16 via the Mathematica input

Table[Mod[V[a,b],16],{a,2,16,2},{b,1,16,2}]
Table[Mod[V[a,b],16],{a,1,16,2},{b,0,16,2}]

Thus a3 = 1 and the converse of (iv) holds.

This concludes the proof since we have exhausted all possibilities for @ and b. B

7.3.5 Proof of Theorem 7.3 for T = Cg

Theorem 7.3 for T' = Cg. The reduced minimal model of Er is
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(1) R <= a=3 mod6 with va(a+b) =1,2

(it) Rs; <= a==1 mod6 with va(a+0b)=1,2

(i1i) Ry <= a==+1 mod6 with va(a+0)#1,2,3

(tv) Rg <= either a =42 mod6 or a = +1 mod6 with ve(a+b) =3
(v) Ry <= eithera =0 mod6 or a =3 mod6 with vy(a +b) =3
(vi) Rip <= a=3 mod6 with va(a+0b)#1,2,3

Proof By Theorem 5.14, the invariants associated with a global minimal model of

Er(a,b) are ¢y = up*ar(a,b) and cg = ur’Br(a, b) where

if vo(a+b) <3
ur =
lf ”Ug(a—l-b) 2 3

First assume up = 1 so that va(a + W) < 3.
Case I. Suppose @ = 3 mod6 and ve(a +b) = 1,2. In particular, a = 3 + 6k
for some odd integer k£ and b is odd. Then —cg = 0 mod 12 as is checked via the

Mathematica input

Table [Mod [-c6 [3+6%k,b],12],{k,1,12},{b,1,12,2}]

Hence by = a1 = a3 = 0. Next we check that —cg = 0 mod 16 via the Mathematica
input

Table [Mod [V[3+6%k,b],16],{k,1,16},{b,1,16,2}]
Hence a3 = 0 which concludes the converse of ().

Case II. Suppose a = +1 mod 6 and ve(a + b) = 1,2. Then a = +1 + 6k for some
integer k£ and b is odd. From the Mathematica input

Table [Mod [-c6 [1+6%k,b] ,12] ,{k,1,12},{b,1,12,2}]
Table [Mod [-c6[-1+ 6%k,bl,12],{k,1,12},{b,1,12,2}]
we conclude that —cg = 4 mod 12 and so by = 4. Consequently, a; = 0 and as = 1.

Next we verify that —bg + 36b2by — cg = 0 mod 16 via the Mathematica input

Table [Mod [V [1+6%k,b],16],{k,1,16},{b,1,16,2}]
Table [Mod [V[-1+6%k, b],16],{k,1,16},{b,1,16,2}]
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Hence a3 = 0 which concludes the converse of (ii).
Case III. Suppose a = +1 mod6 and b is even. In particular, vs(a +b) = 0.
Then a = £1 + 6k for some integer k£ and we check that —cg = 1 mod 12 from the

Mathematica input
Table [Mod [-c6 [1+6*k,b],12],{k,1,12},{b,2,12,2}]
Table [Mod [-c6 [-1+6%k,b] ,12] ,{k,1,12},{b,2,12,2}]
Hence by = a; = 1 and ay = 0. Next we verify that —b3 + 36byby, — cg = 0 mod 16 via
the Mathematica input
Table [Mod [V[1+6%k,b] ,16],{k,1,16},{b,2,16,2}]
Table [Mod [V[-1+6%k,b],16],{k,1,16},{b,2,16,2}]

Hence a3z = 0.
Case IV. Suppose a = +2 mod 6 so that b is odd. Then a = +2 4 6k for some

integer k and we verify that —c4 = 1 mod 12 via the Mathematica input
Table [Mod [-c6 [2+6%k,b] ,12] ,{k,1,12},{b,1,12,2}]
Table[Mod[-c6[-2+6%k,b],12],{k,1,12},{b,1,12,2}]

Hence by = a; = 1 and ay = 0. Then we check that —b3 + 36byby — ¢ = 8 mod 16
from the Mathematica input

Table [Mod [V [2+6%k,b] ,16],{k,1,16},{b,1,16,2}]

Table [Mod [V[-2+6%k,b],16],{k,1,16},{b,1,16,2}]

Thus a3z = 1.
Case V. Suppose a = 0 mod 6 so that b is odd. Then a = 6k for some integer k

and we verify that —cg = 9 mod 12 from the Mathematica input

Table [Mod [-c6 [6%k,b],12],{k,1,12},{b,1,12,2}]

Hence b, = —3 and so a; = 1 and ay = —1. We now check that —b3 + 36byby — cg =
0 mod 16 by the Mathematica input

Table [Mod [V[6%k,b],16],{k,1,16},{b,1,16,2}]
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Hence a3z = 0.
Case VI. Suppose a = 3 mod 6 and b is even. In particular, vs(a + b) = 0. Then
a = 3+ 6k for some integer k£ and we verify that —cg = 9 mod 12 via the Mathematica
input
Table [Mod [-c6[3+6%k,b],12],{k,1,12},{b,2,12,2}]
Hence by = —3 and so a; = 1 and a9 = —1. Then a3z = 1 since —bg + 36boby — cg =

8 mod 16 which is verified by the Mathematica input
Table [Mod [V [3+6%k,b],16],{k,1,16},{b,2,16,2}]

Now assume that ur = 2 so that ve(a + b) > 3.

Case I. Suppose a = +1 mod6 and b is odd. Then a = £1 + 6k and a + b = 8]
for some integer k£ and [. In particular, b = 8/ F 1 — 6k. Since b is odd it follows that
either [ and k are both even or are both odd. Then —cg = 1 mod 12 is verified via

the Mathematica inputs

Table [Mod [-c6[1+6%k,8*1-1-6%k],12],{1,1,12,2},{k,1,12,2}]

Table [Mod [-c6 [1+6%k,8%1-1-6xk],12],{1,2,12,2},{k,2,12,2}]

Table [Mod [-c6 [-1+6%k,8%1+1-6%k] ,12],{1,1,12,2},{k,1,12,2}]

Table [Mod [-c6[-1+6%k,8x1+1-6%k],12],{1,2,12,2},{k,2,12,2}]
Hence by = a; = 1 and so ay; = 0. Now we consider two subcases corresponding to
whether [ is even or odd.

Subcase I. Suppose [ is even so that va(a +b) > 4. We verify that —b3 +
36b2b4 — cg = 0 mod 16 via the Mathematica inputs

Table [Mod [V[1+6%k,8%1-1-6xk],16],{1,2,16,2},{k,2,16,2}]

Table [Mod [V[-1+6%k,8+1+1-6%k],16],{1,2,16,2},{k,2,16,2}]
Thus a3 = 0 and this concludes the converse of (7).

Subcase II. Suppose [ is odd so that ve(a +b) = 3. We verify that —b3 +
36byby — cg = 8 mod 16 via the Mathematica inputs

Table [Mod [V [1+6%k,8x1-1-6xk],16],{1,1,16,2},{k,1,16,2}]

Table [Mod [V[-1+6%k,8%1+1-6%k],16],{1,1,16,2},{k,1,16,2}]
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Hence a3 = 1 and this concludes the converse of (iv).
Case II. Suppose a = 3 mod 6 with b odd such that vy(a + b) > 3. Then a = 3+6k
and a + b = 8l for some integers [ and k. In particular, b = 8/ — 6k — 3. Then

—cg =9 mod 12 as is verified via the Mathematica input

Table [Mod [-c6 [3+6*k,8%1-6%k-3],12] ,{k,1,12},{1,1,12}]

Hence b = —3 and so a; = 1 and ay = —1. Lastly we consider the two subcases
corresponding to whether [ is even or odd.

Subcase I. Suppose [ is odd so that ve(a +b) = 3. We then verify that
—b3 4 36bybs — cg = 0 mod 16 via the Mathematica input

Table [Mod [V [3+6%k,8+1-6%k-3],16],{1,1,16,2},{k,1,16}]

Hence a3 = 0 and this concludes the converse of (v).
Subcase II. Suppose [ is even so that vy(a+b) > 4. We then verify that
—b3 4 36bybs — cg = 0 mod 16 via the Mathematica input

Table [Mod [V [3+6%k,8+1-6%k-3],161,{1,2,16,2},{k,1,16}]

Thus a3 = 1 which concludes the converse of (vi).

The Theorem now follows since we have exhausted all possibilities for ¢ and 5. B

7.3.6 Proof of Theorem 7.3 for T = C7,Cy

Theorem 7.3 for T' = C7,Cy. The reduced minimal model of Er is
(1) Ry < a+b=+1 mod3 (i1) Rip <= a+b=0 mod3
Proof Let T be C; or Cy.

Case I. Suppose a +b = +1 mod 3. Then a+ b = +1 + 3k for some integer k£ and
so b= 41+ 3k —a. If k is odd, we note that a + b is even and thus a and b are both
odd since they are relatively prime. In this case, we verify that —cg = 1 mod 12 via
the Mathematica input

Table [Mod[-c6[a,1+3%k-al,12],{a,1,12,2},{k,1,12,2}]
Table [Mod [-c6[a,-1+3%k-a],12],{a,1,12,2},{k,1,12,2}]
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Next, we consider the case when k is even and verify that —cg = 1 mod 12 holds in

this case as well via the Mathematica input

Table [Mod [-c6[a,1+3*k-a],12],{a,1,12},{k,2,12,2}]
Table [Mod [-c6[a,-1+3xk-a],12],{a,1,12},{k,2,12,2}]

Therefore by = 1. Hence a; = 1 and ay = 0.
We now verify that —b3 + 36byby — ¢ = 0 mod 16 by considering the two subcases:
(1) a is odd and (2) a is even and b is odd. The verification is done in Mathematica

for these two subcases via the inputs:

Table[Mod[V[a,b]l,16],{a,1,16,2},{b,1,16}]
Table[Mod[V[a,b],16],{a,0,16,2},{b,1,16,2}]

Hence a3 = 0 from which the converse of (i) follows.
Case II. Suppose a + b = 0 mod3. Then a + b = 3k for some integer k so that
b = 3k — a. Since a and b are relatively prime, we observe that if a is even, then k is

odd. We then verify that —cg =9 mod 12 via the Mathematica inputs:
Table [Mod[-c6[a,3*k-a]l,12],{a,2,12,2},{k,1,12,2}]
Table [Mod [-c6 [a,3%k-a] ,12] ,{a,1,12,2},{k,1,12}]
Hence b, = —3 from which we attain a; = 1 and ay; = —1. We then verify that
—b% + 36b2b4 — Cg = 8 mod 16 via
Table[Mod[V[a,bl,16],{a,1,16,2},{b,1,16}]
Table[Mod[V[a,b],16],{a,0,16,2},{b,1,16,2}]

Thus az = 1 and so the converse of (ii) holds.

The Theorem thus holds since we have exhausted all possibilities for ¢ and b. B

7.3.7 Proof of Theorem 7.3 for T' = Cj

Theorem 7.3 for T' = Cg. The reduced minimal model of Et is

(i) Ry <= a=0 modl2 (i) Ry <= a==4 modl2
(i) Ry <= a==+1,4+245 mod12 () R <= a==+3,6 modl2
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Proof By Theorem 5.14, the invariants associated with a global minimal model of
Er(a,b) are ¢y = up ar(a,b) and cg = uz’Br(a, b) where

if va(a) # 1
if vo(a) =1

ur =

In particular, uy = 2 if and only if a & £2,6 mod 12.
Case 1. Suppose a =0 mod 12 so that a = 12k for some integer k. Then b is odd
and not divisible by 3 and we verify that —cg = 8 mod 12 via the Mathematica input

Table [Mod [-c6 [12+k,b],12],{k,1,12},{b,1,12,3}]
Table [Mod [-c6 [12+k,b],12],{k,1,12},{b,2,12,3}]

Hence by = —4 so that a; = 0 and ay = —1. Therefore az = 0 since —b3 +36byby —cg =

0 mod 16 as is checked via the Mathematica input

Table [Mod [V[12+k,b],16],{k,1,16},{b,1,16}]

This concludes the converse of ().

Case II. Suppose a = +4 mod 12. Then a = +4 + 12k for some integer k and b
is odd. Moreover, by = 4 since —cg = 4 mod 12 as is checked via the Mathematica
input

Table [Mod [-c6 [4+12+k,b],12],{k,1,12},{b,1,12,2}]
Table [Mod [-c6[-4+12%k,b] ,12],{k,1,12},{b,1,12,2}]
In particular, a; = 0 and ay = 1. Then a3 = 0 since —b3 + 36byby — cg = 0 mod 16 as

is checked via the Mathematica input
Table [Mod [V[4+12+k,b],16],{k,1,16},{b,1,16,2}]
Table [Mod [V [-4+12+k,b],16],{k,1,16},{b,1,16,2}]

This concludes the converse of (7).
Case III. Suppose a = +1,+5 mod 12. Then a = £1 mod 6 and we write a =

+1+6k for some integer k. We now verify that —cg = 1 mod 12 via the Mathematica

Table [Mod [-c6 [1+6%k,b],12],{k,1,12},{b,1,12}]
Table [Mod [-c6 [-1+6%k,b] ,12] ,{k,1,12},{b,1,12}]
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In particular, b, = 1 and so a; = 1 and ay, = 0. It then follows that as = 0 since

—b3 4 36byby — cg = 0 mod 16 as is checked via the Mathematica input
Table [Mod [V[1+6%k,b],16],{k,1,16},{b,1,16}]
Table [Mod [V[-1+6%k,b],16],{k,1,16},{b,1,16}]
Case IV. Suppose a = £3 mod 12. Then ¢ = 3 mod 6 and so a = 3 + 6k for some
integer k. In particular, b = £1 mod 3 and so we verify that —cg = 5 mod 12 via the
Mathematica input
Table [Mod [-c6[3+6%k,b],12],{k,1,12},{b,1,12,3}]
Table [Mod [-c6[3+6%k,b],12],{k,1,12},{b,2,12,3}]
Hence by = 5 and so a; = as = 1. Next we verify that —b3 + 36byby — cg = 8 mod 16

via the Mathematica input

Table [Mod [V [3+6*k,b],161,{k,1,16},{b,1,16}]

In particular, as = 1.

We now assume that up = 2 and consider the remaining cases, namely a =
+2,6 mod 12.

Case I. Suppose a = £2 mod 12. Then a = £2 + 12k for some integer k and b is

odd. Then —cg =1 mod 12 as is verified via the Mathematica input
Table [Mod [-c6[2+12%k,b],12],{k,1,12},{b,1,12,2}]
Table [Mod [-c6 [-2+12%k,b],12],{k,1,12},{b,1,12,2}]
Hence b3 = a; = 1 and a; = 0. Then a3 = 0 since —bg + 36byby — cg = 0 mod 16

which is verified via the Mathematica input
Table [Mod [V [2+4*k,b] ,16],{k,1,16},{b,1,16,2}]

This concludes the converse of (ii7).
Case II. Suppose a = 6 mod 12 so that a = 6 + 12k for some integer k and
b= 41 modb5. Then —cg =5 mod 12 as is verified via the Mathematica input

Table [Mod [-c6 [6+12%k,b],12] ,{k,1,12},{b,1,12,6}]
Table [Mod [-c6 [6+12+k,b] ,12],{k,1,12},{b,5,12,6}]
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Hence b = 5 and so a; = 1 and ay = 1. Lastly, we verify that a3 = 1 since

—b3 + 36byby — cg = 8 mod 16 as is verified via the Mathematica input

Table [Mod [V[6+12+k,b],16],{k,1,16},{b,1,16,2}]

This concludes the converse of (iv).

The Theorem now follows since we have exhausted all possibilities for ¢ and 5. B

7.3.8 Proof of Theorem 7.3 for T = Cy

Theorem 7.3 for T' = C;¢. The reduced minimal model of Er is R;.

Proof By Theorem 5.14, the invariants associated with a global minimal model of
Er(a,b) are ¢y = up ar(a,b) and cg = ur’Br(a, b) where

if a is odd
ur =
if a is even.

Case 1. Suppose a is odd. From thd Mathematica input

Table [Mod[-c6[a,bl,12],{a,1,12,2},{b,1,12}]

we conclude that —cg = 1 mod 12. Note that the above input does return —cg =
9 mod 12 which occurs only when 3 divides ged(a, b) which is not possible since a and
b are assumed to be relatively prime. Hence by = 1 and therefore a; = 1 and ay = 0.

From the Mathematica input

Table[Mod[V[a,b],16],{a,1,16,2},{b,1,16}]

we conclude that —b3 + 36bybs — cg = 0 mod 16. Therefore az = 1.
Case II. Suppose a is even and write a = 2k for some integer k. Then ur = 2 and

we verify that —cg = 1 mod 12 from the Mathematica input

Table [Mod [-c6 [2%k,b] ,12],{k,1,12,2},{b,1,12,2}]
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As before, we note that the above input does return —cg = 9 mod 12 which occurs
only when 3 divides ged(a, b). Hence by = 1 and so a; = 1 and ay = 0. Next we verify

that as = 1 since the Mathematica input

Table [Mod [V [2*k,b] ,16],{k,1,16,2},{b,1,16,2}]

verifies that —b3 + 36byby — ¢ = 0 mod 16.

This concludes the proof since we have exhausted all possibilities for a. [ |

7.3.9 Proof of Theorem 7.3 for T = C;,

Theorem 7.3 for T' = C15. The reduced minimal model of Er is

(i) Ry <= a=%£1,42,45 mod12 (it) Rg <= a= =44 modl2
(1ii) Ry <= a=0 modl2 (iv) Ry <= a=43,6 modl12

Proof By Theorem 5.14, the invariants associated with a global minimal model of

Er(a,b) are ¢y = up ar(a,b) and cg = ur’Br(a, b) where

if a is odd
ur =
if a is even.

We first assume that ur = 1 and coNsider the cases where a = £1, 43, 5 mod 12.
Case I. Suppose a = +1,£5 mod 12. Then a = £1 mod 6 and so a = 1+ 6k for

some integer k. We then verify that —cg =1 mod 12 in Mathematica via the input

Table [Mod [-c6 [1+6*k,b] ,12],{k,1,12},{b,1,12}]
Table [Mod [-c6 [-1+6%k,b] ,12] ,{k,1,12},{b,1,12}]

Hence by = 1 which implies that a; = 1 and ay = 0. Next we verify that —b3 +
36bsb4 — cg = 0 mod 16 via the input

Table[Mod[V[a,b],16],{a,1,16,2},{b,1,16}]

We note that the congruence holds for all odd integers a. In particular, ag = 0.
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Case II. Suppose a = 43 mod 12. Then a = 3 mod 6 so that a = 3 + 6k for some

integer k. We verify that —cg = 9 mod 12 via the Mathematica input

Table [Mod [-c6 [3+6%k,b],12],{k,1,12},{b,1,12}]

Thus by = —3 and consequently a; = 1 and as = —1. We then verify that —b3 +
36byby — cg = 8 mod 16 via the input

Table[Mod[V[a,b],16],{a,1,16,2},{b,1,16}]

Hence a3 = 1.

Now assume that uy = 2 so that a = 0,42, +4,6 mod 12.

Case I. Suppose a = +2,+4 mod 12. Then a = +2 mod 6 and so a = £2 + 6k for
some integer k. Since b is odd we verify that —cg = 1 mod 12 via the Mathematica
inputs

Table [Mod [-c6[2+6%k,b] ,12],{k,1,12}, {b,1,12,2}]
Table [Mod [-c6 [-2+6%k,b] ,12],{k,1,12}, {b,1,12,2}]
Thus by =1 and so a; = 1 and ay = 0.
Subcase I. Suppose a = £2 mod 12. Then a = £2,£6 mod 16. In particular,
a = =+£2 mod8.
We verify that —b3 + 36byby — cg = 0 mod 16 via the input

Table[Mod[V[a,b],16],{a,2,16,4},{b,1,16,2}]

Note that {a,2,16,4} refers to the case where a = £2 mod 8 since its considers
a=2,6,10,14 mod 16. In particular, a3 = 0 which concludes the converse of (7).

Subcase II. Suppose a = +4 mod 12. Then a = 0 mod 4 and we verify that
—b3 4 36bybs — cg = 8 mod 16 via the input

Table[Mod[V[a,b],16],{a,4,16,4},{b,1,16,2}]

Hence a3 = 1 which concludes the converse of (ii).
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Case III. Suppose a = 0 mod 6 so that a = 6k for some integer k. Then b is odd

and we verify that —cg =9 mod 12 via the Mathematica input

Table [Mod [-c6 [6%k,b],12],{k,1,12},{b,1,12,2}]

Therefore b, = —3 and consequently a; = 1 and a, = —1. Lastly, we conclude that
5 mod 16 if k is even if a =0 mod12

—b2+36b2b4—06 = < as =
mod 16 if k is odd if a =6 mod12

from the Mathematica input

Table [Mod [V [6%k,b] ,16],{k,2,16,2},{b,1,16,2}]

This concludes the converse of (ii7) and (iv) and therefore the Theorem now follows

since we have exhausted all possibilities for a and b. [ |

7.3.10 Proof of Theorem 7.3 for T = C5 X Cjg

Theorem 7.3 for T' = Cy X Cg. The reduced minimal model of Er is R;.

Proof By Theorem 5.14, the invariants associated with a global minimal model of
Er(a,b) are ¢, = up*ar(a,b) and cg = uy’Br(a, b) where
1 ifw(a)=0
ur = 6 if vg(a) =1
4 if vy(a) > 2
Case I. We first assume that ur 1 so that a is odd. From the Mathematica
input
Table [Mod[-c6[a,b],12],{a,1,12,2},{b,1,12}]
we conclude that —cg = 1 mod 12. Note that the above input does return —cg =
9 mod 12 which occurs only when 3 divides ged(a, b) which is not possible since a and
b are assumed to be relatively prime. Hence by = 1 and therefore a; = 1 and a, = 0.

From the Mathematica input

Table [Mod[V[a,b],16],{a,1,16,2},{b,1,16}]
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we conclude that —b3 + 36byby — ¢g = 0 mod 16. Therefore az = 1.
Case II. Next, assume ur = 16 so that a = 2k for some odd integer k. Then

—cg = 1 mod 12 from the Mathematica input
Table[Mod[-c6[2%k,b],12],{k,1,12,2},{b,1,12,2}]
Hence by = 1 and so a; = 1 and ay = 0. Next we verify that ag = 1 since the
Mathematica input
Table [Mod [V[2*k,b],16],{k,1,16,2},{b,1,16,2}]

verifies that —b3 + 36byby — ¢ = 0 mod 16.
Case III. Lastly, assume ur = 64 so that a = 4k for some integer k. Then

—cg = 1 mod 12 is verified from the Mathematica input

Table [Mod [-c6 [4%k,b],12],{k,1,12},{b,1,12,2}]

and so by = a; = 1 and as = 0. Finally, az = 0 since the Mathematica input

Table [Mod [V [4*k,b],16],{k,1,16},{b,1,16,2}]

verifies that —b3 + 36byby — cg = 0 mod 16. [ |

7.4 Examples

Example 7.4 The reduced minimal model of the elliptic curve Er(5%,14) for T = Cj
18

v oy =ad 4+ 220 —4

Example 7.5 Let E be the elliptic curve in Example 5.27. Then as noted, E is Q-
isomorphic to the elliptic curve Ep(6,11) for T = C15. Since 6 =6 mod 12, we have
by Theorem 7.3 that the reduced minimal model of E is given by

£15  —9¢y + 26 + 459
Rio - 12 _.3_,2_“ _
0y Iy =" A8 1728

15 —9¢y + 24 + 459
0418 — 919077351189287 and C4+1720§+ — —10701785524467279561311

with
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A. GOOD ABC TRIPLES

Introduction

The ABC Conjecture [1] of Masser and Oesterlé states that for each € > 0, there
exists finitely many relatively prime positive integers a, b, ¢ satisfying a + b = ¢ and
rad(abc)' ™ < ¢ where rad(n) denotes the product over all the distinct prime factors
of n. By an ABC triple we mean a triple P = (a, b, ¢) where a, b, ¢ are relatively prime
positive integers such that a + b = ¢. We say an ABC triple P = (a,b,¢) is good if
rad(abc) < c. Following ideas of Frey [42, §1], we associate to an ABC triple P an
elliptic curve Fp : y* = z (z — a) (z + b). This elliptic curve is known as a Frey curve
and its Mordell-Weil group contains Fp[2] = Cy x Cy. Therefore by Theorem 2.1, the

torsion subgroup Ep(Q), . = Cy x Con where N = 1,2,3,4. Let T = Cy x Con be

tors
one of these four groups. In this appendix we associate to each T" a sequence of good

ABC triples {7 and prove:

Theorem A.1 LetT be one of Co x Con where N = 1,2,3,4. Then for each T, there
is a sequence of good ABC' triples { T ., Such that the Frey curve Fpr has torsion

subgroup isomorphic to T for each n % 1.

Certain Polynomials

In this section we establish a series of technical results which will ease the proofs
in the sections that are to follow. Let T' = C5 x Cyy where N = 1,2,3,4. For
each T let Ay = Ar(a,b), By = Br(a,b), € = Er(a,b), Dr = Dr(a,b), AL =
A(a,b), BL =B(a,b), & = (a,b), Ur =Ur(a,b,r,s), Vr = Vr(a,b,r,s), and
Wr = Wy (a,b,r,s) be the polynomials in R = Z[a, b, r, s] defined in Table A.3.
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For a fixed T', the polynomials 207, B, &, and D1 are homogenous polynomials

in a and b of the same degree my. In particular, we have the equalities

CLmTQlT(l, ) QIT(a, b) CLmT%TU_,

g ) %T(CL, b)
a™Cr(1,2) & Er(a,b) a™Dr(1,

) @T(a, b) .

QI 9|

The first result can be venfied via a computer algebra system and we note that we

are considering Ay (1,t), Br(1,t), Cr(1,t), Dr(1,t) as functions from R to R.

Lemma A.2 ForT = CyxCoy with N =1,2,3,4, let fr,gr : R — R be the function
in the variable t defined in Table A.3. Let O be the greatest real root of fr(t). The
(approximate) value of Or is found in Table A.3. Then for each T,

1. QlT + %T = QtT,'

2. UpBr + Vp&p = Wrp;
Br(a,b) .

3. fT(g) C Ql;:(a,b) - %7

4. gT(t) = Q:T(l,t> - @T(l,t);

. fT(t) ,gT(t), Q[T(l,t) , %T(l,t) , Q:T(l,t), @T(l,t) >0 fOTt > HT;

6. For T = CQ X CQN fO’l“ N = 1,2, fT(t),gT(t), Q[T(l,t), %T(l,t), QtT(l,t),
Dr(1,t) >0 fort in (0,1).

In particular, Ar € 4R.

Good ABC' Triples|Good ABC Triples

Definition A.1 By an ABC' triple, we mean a triple P = (a, b, ¢) such that a,b, and
¢ are relatively prime positive integers with a +b = c. We say P = (a,b,c) is good if

rad(abc) < c.
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Lemma A.3 For each T = Cy x Coy, let P = (a,b,a+b) be an ABC' triple with
a even and g > O where O is as defined in Lemma A.2. Suppose further that a =
0 mod3 if N =3. Then (U, Br,Cr) is an ABC triple with Ar =0 mod 16, By =
1 mod4, and % > Or. Moreover, if N = 3, then Ay =0 mod 3.

Proof Since a and b are relatively prime, there exist integers r» and s such that
ra™ + sb™ = 1, for any positive integer n. Therefore, by lemma A.2, ged(Br, €r)
divides 32 if N # 3 and ged(Br, €r) divides 48 if N = 3. Since a is even and
a =0 mod3 when N = 3, we conclude that gcd(Br, €r) = 1. By lemma A.2 we also
have that 20y + Br = € for each T and therefore (A, Br, Er) is an ABC triple.
Since a is even it is easily verified that 2l = 0 mod 16. Similarly, when N = 3,
2Ar =0 mod 3 since a = 0 mod 3. It easily checked that for each T, By = b** mod4

for some integer k. Since b is odd, it follows that 8,7 =1 mod4. Now observe that

b %T(K%) (b _ Br(ab) b
fT(a)% Ar (L2 a  Ap(a,b) o

Since g > 6, we have by Lemma A.2 tha fT(g) (s positive and therefore 3—; > g >

Or. |

Lemma A.4 Let P = (a,b,a+b) be a good ABC' triple and assume the statement
of Lemma A.3. Then (U7, Br,Cr) is a good ABC' triple.

Proof Since a is assumed to be even, we have that rad(2"ax) = rad(az) for some

integer x. Therefore
rad(Ar) = rad(2A}) , rad(Br) = rad(B7), rad(Cr) = rad(¢7) .

Since (a,b,a +b) is a good ABC' triple, we have that rad(ab(a 4+ b)) < a + b. From
this and the fact that rad(xyk) (: rad(zy) < zy for positive integers k, z,y, we have

that for each T', we attain

rad(Q(T‘BTQ:T) = rad(ﬂ;%;@;) < |©T| .
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Since % > Or, @T(l, g) (s positive by Lemma A.2. In particular, ® is positive since

amTi‘DT(l, g) 7 whexe mp is the homogenous degree of ®7. Now observe that

b b
¢r — 1ad(ArBrCr) > € — Dy = ™7 <€T(1, a) 6@7“ (1, 5)) é 0

where the positivity follows from Lemma A.2. Hence (Up,Br,Er) is a good ABC
triple since rad(ArBrEr) < Er. [ |

Proposition A.5 Let (ag,bo,co) be a good ABC' triple with ag even. For each T

define the triple PjT recursively by
Pl (aj41,bj11,¢501) = (Ar(ay,by) , Br(ay, by), Er(ay, by)) -

Assume further that Z—g > Op and that by =0 mod 3 if T' = Cy x Cg. Then for each
j>1, PjT is a good ABC' triple with a; = 0 mod 16, b; = 1 mod4, and Z—J > Or.

Additionally, if T' = Cy x Cg, then a; =0 mod 3.

Proof This follows automatically from Lemmas A.3 and A.5. [ |

Frey Curves

Let P = (a,b,c) be an ABC triple. Let Fp = Fp(a,b) be the Frey curve given by
the Weierstrass model

Fp:y’=xz(r—a)(x+b).

Lemma A.6 Let (a,b,c) be an ABC triple which satisfies the assumptions of Lemma
A.3. Then for each T, the Frey curve Fp with P = (U7, B, €r) has torsion subgroup

FP(@)tors =T.

Proof Let X;(T) be as defined in Table 2.1 for T'= Cy x Cg, Cy x Cg and let V(7))
be as defined in Table 4.1 for T' = Cy x Cs, Cy x Cy. In addition, let urp, rr, s7, wr,
and t7 be as defined in Table A.2. We now proceed by cases.

Case 1. Suppose T' = (5 x Cg. Then the admissible change of variables x —

uzx + rp and y — uby + uksrx + wr gives a Q-isomorphism from Fp onto ;. (T).
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In particular, Cy x Cs C Fp(Q)
FP(Q)tors = Gy x Cs.

tors Py Lemma 2.9. By Theorem 2.1 we conclude that

Case II. Suppose T' = (5 x (. Then the admissible change of variables ©
udz +rp and y — udy + ukbspx + wr gives a Q-isomorphism from Fp onto X, (T).
In particular, Cy x Cy C Fp(Q)
FP(Q)tors = 02 x 06'

by Lemma 2.9. By Theorem 2.1 we conclude that

tors

Case III. Suppose T' = Cy x Cy4. Then the admissible change of variables © —
udz+rr and y — udy+uksrr+wr gives a Q-isomorphism from Fp onto V,.(T). In

particular, Cy x Cy C Fp(Q), . by Lemma 4.2. Note that in the proof of Proposition

tors

4.5 for T = Cy x (4, the only assumptions on a and b used was that they were

relatively prime. Consequently, we get that Fp(Q), .. = Cy x Cy.

tors
Case IV. Suppose T' = Cy x (5. Then the admissible change of variables © —
urdx+ry and y — udy+uisrr+wr gives a Q-isomorphism from Fp onto V. (T). In

particular, Cy x Cy C Fp(Q),.,. by Lemma 4.2. Note that in the proof of Proposition

tors
4.5 for T = (5 x (s, the only assumptions on a and b used was that they were

relatively prime. Consequently, we get that Fp(Q), .= Cy x Cy which concludes the

tors

lemma. [ ]

Theorem A.7 (Barrios-Tillman-Watts) Let T = Cy x Cyoy for N = 1,2,3,4
and consider the sequence of exceptional ABC' triples PjT defined in Proposition A.5.

Then for each j > 1, the Frey curve Fpn determined by PjT has torsion subgroup
J

FPJN (Q)tors = 02 X CQN'

Proof In Proposition A.5, we saw that each PJT satisfies the assmptions of Lemma

A.3. Consequently, the Theorem follows from Lemma A.6. [ |

Examples

Recall that for a positive ABC' triple P = (a, b, ¢), the quality of P is given by

__ log(e)
alP) = log(rad(abc))
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In particular, P is a good ABC triple is equivalent to q(P) > 1.

Example A.8 For T = Cy x Cy,Cy x Cy, let Py = (2°,7%,3%). Then Py is a good
ABC triple since q(P) =~ 1.1757. By Proposition A.5, this good ABC' triple results
in two distinct infinite sequences of good ABC' triples PJ-T for T = Cy x Cy, Cy x Cy.

For T = Cy x Cg, let Py = (243%,17361,537%). Then P, is a good ABC' triple since
q(P) =~ 1.0261. Moreover, 12%631 > Op. By Proposition A.5, this good ABC' triple
results in an infinite sequence of good ABC' triples P]-T.

For T = Cy x Cg, let Py = (22,112,5%). Then Py is a good ABC triple since
q(P) ~ 1.0272. Moreover, % > Or. By Proposition A.5, this good ABC' triple
results in an infinite sequence of good ABC' triples PjT.

Table A.1 gives gives ay and by of PF = (a;,bj,¢;) as well as the quality q(PT)
for 3 =1,2,3. We note that the values of a; and b; are not given for j > 2 due to
the size of these quantities. For T = Cy x Cg, Cy x Cg, we only compute q(PjT) (or

7 =1,2 due to computational limitations.

Table A.1.: Table for Example A.8

T a by a(PF) (a(P) ((a(PY)
Cy x Cy || 2511214657 38131 1.0755 \ 1.0324 \ 1.015
Cyx Cy | 2127 38172 1.2425 | 1.0531 | 1.0130
Cy x Cy || 2163917361 5971211 . 27127 11211 | 1.0278 | —
Cyx Cs || 212118 | 7-31-503-1951- 146572 | 1.0331 | 1.0040 | —
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B. TABLES OF GOOD ELLIPTIC CURVES

Elliptic Curves in §7™

Let 87" and S be as defined in Section 3.5.5. Tables B.1 and B.2 list data
pertaining to elliptic curves in these sets. The Weierstrass models of these elliptic

curves are not included due to their length, but will be made available upon request.

Table B.1.: Elliptic Curves E; in §°™

j log N, haive(Ej) | om(Ej) | o(Ej) T
1 1.04 1.3936 16.0587 1 Ch
2 2.08 1.9143 11.0293 3.5 Ch
3 3.33 2.9593 10.6692 | 6.8123 Cs
4 4.73 4.1427 10.5204 | 4.7602 Cy
5 6.23 5.2735 10.1609 | 5.3004 Cy
6 9.67 8.1514 10.1145 | 4.9403 Cy
7 10.15 8.39 9.921 | 4.9901 Cy
8 10.37 8.5009 9.8371 | 5.0117 Cy
9 10.52 8.574 9.7838 | 5.0254 Cy
10 10.85 8.7395 9.6684 | 5.0552 Cy
11 10.95 8.7908 9.634 5.064 Cy
12 10.99 8.8125 9.6196 | 5.0677 Cy
13 11.13 8.8826 9.574 | 5.0795 Cy
14 11.16 8.8971 9.5647 | 5.0819 Cy
15 11.22 8.9235 9.548 | 5.0862 Cy
16 11.43 9.0294 9.4822 | 5.1031 Cy

continued on next page



Table B.1.: continued

J log Ng, hnaive(Ej) | om(Ej) | o(Ej) T
17 11.61 9.1212 9.4272 | 5.1173 Cy
18 11.64 9.1357 9.4186 | 5.1195 Cy
19 11.65 9.1403 9.4159 | 5.1202 Cy
20 11.69 9.162 9.4032 | 5.1235 Cy
21 11.79 9.2133 9.3736 | 5.1311 Cy
22 12.81 9.9851 9.3529 | 7.0748 Cy
23 13.11 9.9851 9.1382 | 6.9123 Cy
24 14.67 10.9168 8.9271 | 6.9383 Cy
25 15.67 11.6026 8.8847 | 8.1963 Cy
26 16.15 11.8411 8.7994 | 8.1314 Cy
27 16.37 11.9521 8.7615 | 8.1025 Cy
28 16.78 12.1595 8.6932 | 8.0505 Cs
29 16.85 12.1906 8.6833 | 8.043 Cs
30 16.95 12.2419 8.667 | 8.0306 Cs
31 17.13 12.3338 8.6384 | 8.0088 Cy
32 17.24 12.3867 8.6223 | 7.9965 Cy
33 17.26 12.3981 8.6188 | 7.9938 Cy
34 17.3 12.4193 8.6124 | 7.989 Cy
35 17.43 12.4805 8.594 7.975 Cy
36 17.48 12.509 8.5856 | 7.9685 Cy
37 17.61 12.5723 8.567 | 7.9544 Cy
38 17.65 12.5914 8.5614 | 7.9502 Cy
39 17.68 12.6047 8.5576 | 7.9472 Cy
40 17.72 12.6252 8.5516 | 7.9427 Cy
41 17.78 12.6579 8.5423 | 7.9356 Cy

continued on next page
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Table B.1.: continued

J log Ng, hnaive(Ej) | om(Ej) | o(Ej) T
42 17.83 12.6833 8.535 | 7.9301 Cy
43 17.84 12.6892 8.5333 | 7.9288 Cy
44 17.94 12.7362 8.5201 | 7.9187 Cy
45 17.96 12.7476 8.5169 | 7.9162 Cy
46 18 12.7688 8.5109 | 7.9117 Cy
47 18.06 12.7989 8.5026 | 7.9054 Cy
48 18.13 12.83 8.494 | 7.8988 Cy
49 18.15 12.8433 8.4903 | 7.896 Cy
50 18.25 12.8907 8.4774 | 7.8862 Cy
51 18.31 12.9218 8.469 | 7.8798 Cy
52 18.32 12.9277 8.4674 | 7.8786 Cy
53 18.35 12.9436 8.4631 | 7.8753 Cs
54 18.37 12.9542 8.4603 | 7.8731 Cs
55 18.41 12.9731 8.4552 | 7.8693 Cs
56 18.42 12.9747 8.4548 | 7.869 Cy
57 18.42 12.9763 8.4544 | 7.8687 Cy
58 18.48 13.0073 8.4461 | 7.8624 Cy
59 18.52 13.026 8.4412 | 7.8586 Cy
60 18.54 13.0375 8.4382 | 7.8563 Cy
61 18.54 13.0386 8.4379 | 7.8561 Cy
62 18.58 13.0587 8.4326 | 7.8521 Cy
63 18.63 13.0823 8.4264 | 7.8474 Cy
64 18.7 13.1179 8.4172 | 7.8404 Cy
65 18.72 13.1293 8.4143 | 7.8381 Cy
66 18.76 13.1484 8.4093 | 7.8344 Cy

continued on next page
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Table B.1.: continued

J log Ng, hnaive(Ej) | om(Ej) | o(Ej) T
67 18.77 13.1505 8.4088 | 7.834 Cy
68 18.79 13.1617 8.4059 | 7.8318 Cy
69 18.83 13.1822 8.4007 | 7.8278 Cy
70 18.85 13.1928 8.398 | 7.8257 Cy
71 18.87 13.2034 8.3953 | 7.8237 Cy
72 18.9 13.2148 8.3924 | 7.8215 Cy
73 18.95 13.2402 8.386 | 7.8166 Cy
74 18.96 13.2461 8.3845 | 7.8155 Cy
75 18.99 13.2646 8.3799 | 7.8119 Cy
76 19.02 13.2772 8.3767 | 7.8095 Cy
77 19.05 13.2931 8.3727 | 7.8065 Cy
78 19.06 13.2972 8.3717 | 7.8057 Cs
79 19.14 13.3359 8.3621 | 7.7984 Cs
80 19.18 13.3564 8.3571 | 7.7946 Cs
81 19.22 13.3755 8.3524 | 7.791 Cy
82 19.24 13.3888 8.3491 | 7.7885 Cy
83 19.24 13.3891 8.3491 | 7.7885 Cy
84 19.27 13.4003 8.3463 | 7.7864 Cy
85 19.28 13.4082 8.3444 | 7.785 Cy
86 19.31 13.4204 8.3415 | 7.7827 Cy
87 19.31 13.4215 8.3412 | 7.7825 Cy
88 19.33 13.4318 8.3387 | 7.7806 Cy
89 19.35 13.442 8.3362 | 7.7787 Cy
90 19.4 13.4674 8.3301 | 7.7741 Cy
91 19.42 13.4788 8.3274 | T7.772 Cy

continued on next page
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Table B.1.: continued

J log Ng, hnaive(Ej) | om(Ej) | o(Ej) T
92 19.43 13.4827 8.3264 | 7.7713 Cy
93 19.44 13.4847 8.326 | 7.7709 Cy
94 19.55 13.491 8.2794 | 8.0307 Cy
95 19.58 13.5031 8.2766 | 8.0282 Cy
96 19.61 13.5188 8.2729 | 8.025 Cy
97 19.64 13.5342 8.2694 | 8.0218 Cy
98 19.65 13.5411 8.2678 | 8.0204 Cy
99 19.66 13.5449 8.2669 | 8.0196 Cy
100 19.68 13.555 8.2646 | 8.0175 Cy
101 19.69 13.5607 8.2633 | 8.0163 Cy
102 19.72 13.5734 8.2603 | 8.0137 Cy
103 19.73 13.5811 8.2586 | 8.0122 Cy
104 19.74 13.5855 8.2576 | 8.0113 Cs
105 19.74 13.5861 8.2574 | 8.0111 Cs
106 19.75 13.5892 8.2567 | 8.0105 Cy
107 19.77 13.5969 8.255 | 8.0089 Cy
108 19.79 13.6072 8.2526 | 8.0069 Cy
109 19.8 13.6122 8.2515 | 8.0058 Cy
110 19.85 13.6374 8.2458 | 8.0007 Cy
111 19.88 13.652 8.2425 | 7.9978 Cy
112 19.89 13.6592 8.2409 | 7.9964 Cy
113 19.9 13.6622 8.2402 | 7.9958 Cy
114 19.91 13.6716 8.2381 | 7.9939 Cy
115 19.94 13.6853 8.235 | 7.9912 Cy
116 19.96 13.6933 8.2332 | 7.9895 Cy
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Table B.1.: continued

J log Ng, hnaive(Ej) | om(Ej) | o(Ej) T
117 19.98 13.7054 8.2305 | 7.9871 Cy
118 19.99 13.7079 8.2299 | 7.9867 Cy
119 20.01 13.7182 8.2276 | 7.9846 Cy
120 20.02 13.7251 8.2261 | 7.9832 Cy
121 20.03 13.7296 8.2251 | 7.9823 Cy
122 20.05 13.7417 8.2224 7.98 Cy
123 20.06 13.7446 8.2218 | 7.9794 Cy
124 20.09 13.7573 8.219 | 7.9769 Cy
125 32.05 20.7895 7.7831 7.405 Cy
126 35.53 21.852 7.3805 | 5.7173 Cs
127 35.8 21.9098 7.3444 | 6.4075 Cy
128 37.54 22.7925 7.286 | 5.4236 Cs
129 39.66 23.952 7.247 6.428 Cs
130 40.29 24.1201 7.184 | 4.4724 Cs
131 41.35 24.5769 7.1315 | 7.0026 Cy
132 42.38 24.8519 7.0363 | 5.1039 Cy
133 42.94 25.0177 6.9916 | 4.711 Cy
134 43.1 25.0359 6.9714 | 5.8854 Cy
135 45.39 26.367 6.9705 | 6.7577 Ch
136 47.94 27.7515 6.9464 | 6.8701 4
137 50.21 28.5603 6.8255 | 6.6845 Cy
138 57.18 32.5053 6.8218 | 6.1759 Cy
139 59.01 33.2702 6.7659 | 6.3336 Cs
140 59.73 33.633 6.7575 | 6.3286 Cy
141 62.34 35.0898 6.7543 | 6.6107 Cs
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Table B.1.: continued

J log Ng, hnaive(Ej) | om(Ej) | o(Ej) T
142 64.58 35.6548 | 6.6252 | 6.0727 Cy
143 64.76 35.6692 | 6.6095 | 6.4893 Cy
144 67.18 36.9559 | 6.6011 | 6.5522 Cs
145 70.54 38.7635 | 6.5939 | 6.5253 Cs
146 71.28 39.1547 | 6.5913 | 6.5376 | Cy x Cy
147 72.05 39.3702 | 6.5573 | 6.506 Cy
148 72.94 39.7962 | 6.5475 | 6.5031 Cy
149 73.39 39.9817 | 6.5375 | 6.1138 Cy
150 74.82 40.7383 6.534 | 6.2822 Cy

Elliptic Curves in S
Table B.2.: Elliptic Curves E; in S
j log N, hoaive(Ej) | om(Ej) | o(Ej) | T
1 7.11 5.6226 9.4962 9.02 C
2 7.95 6.0451 9.1245 | 8.6989 | 4
3 11.22 8.5426 9.1332 | 8.689 | Cy
4 11.7 8.7812 9.0055 | 8.5793 | Cy
5 11.92 8.8921 8.9495 | 8.5313 | Cy
6 12.07 8.9652 8.9138 | 8.5007 | Cy
7 15.67 11.3498 | 8.6911 | 8.4834 | (s
8 16.15 11.5883 | 8.6116 | 8.41 | Cy
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Table B.2.: continued

J log Ng; Pnaive(Ej) | om(E;) | o(Ej) | T
9 16.9 12.0705 8.573 | 8.3864 | (5
10 16.9 12.162 8.638 | 8.3502 | (5
11 17.37 12.309 8.5023 | 8.3209 | (Y
12 17.59 12.42 8.4708 | 8.2916 | (Y
13 17.74 12.493 8.4504 | 8.2727 | (Y
14 17.59 12.5115 8.5332 | 8.2568 | (Y
15 17.94 12.5912 8.4236 | 8.2479 | (Y
16 18.01 12.6275 8.4138 | 8.2388 | (Y
17 18.07 12.6585 8.4055 | 8.2311 | (Y
18 18.17 12.7099 8.3919 | 8.2185 | (%
19 18.22 12.7316 8.3862 | 8.2132 | (Y
20 18.07 12.7501 8.4663 | 8.1972 | (Y
21 18.41 12.8297 | 8.3608 | 8.1896 | Cs
22 18.44 12.8425 8.3575 | 8.1866 | (Y
23 18.46 12.8546 8.3544 | 8.1837 | (Y
24 18.49 12.866 8.3515 | 8.181 | (Y
25 18.57 12.9065 8.3413 | 8.1715 | (Y
26 18.62 12.9326 8.3347 | 8.1654 | (Y
27 18.64 12.9407 | 8.3327 | 8.1636 | (5
28 18.65 12.9484 8.3308 | 8.1618 | (Y
29 18.71 12.9769 8.3236 | 8.1552 | (Y
30 18.78 13.0137 | 8.3145 | 8.1467 | (5
31 18.85 13.05 8.3056 | 8.1385 | (Y
32 18.87 13.0593 8.3034 | 8.1363 | (Y
33 18.92 13.0811 8.2981 | 8.1314 | (Y
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Table B.2.: continued

J log Ng; Pnaive(Ej) | om(E;) | o(Ej) | T
34 18.94 13.0931 8.2951 | 8.1287 | (Y
35 19.02 13.1324 8.2857 | 8.1199 | (Y
36 19.04 13.1451 8.2826 | 8.1171 | (Y
37 19.05 13.1481 8.2819 | 8.1164 | (Y
38 19.1 13.1712 8.2764 | 8.1113 | (Y
39 19.11 13.1792 8.2745 | 8.1095 | (Y
40 19.16 13.2041 8.2686 | 8.1041 | (Y
41 19.18 13.211 8.2669 | 8.1026 | (Y
42 19.19 13.2155 8.2659 | 8.1016 | (5
43 19.22 13.2306 8.2623 | 8.0983 | ()
44 19.26 13.2523 8.2572 | 8.0935 | (Y
45 19.27 13.256 8.2563 | 8.0927 | Cs
46 19.29 13.2668 | 8.2538 | 8.0904 | Cs
47 19.31 13.2771 8.2514 | 8.0881 | (Y
48 19.32 13.2821 8.2502 | 8.0871 | (Y
49 19.33 13.2886 8.2487 | 8.0857 | (Y
50 19.35 13.2979 8.2466 | 8.0837 | (Y
51 19.41 13.3291 8.2393 | 8.077 | (Y
52 19.46 13.3552 8.2333 | 8.0714 | (Y
53 19.48 13.3632 8.2315 | 8.0697 | (Y
54 19.5 13.371 8.2297 | 8.068 | (Y
5%5) 19.51 13.3753 8.2287 | 8.0671 | (Y
56 19.53 13.3867 | 8.2261 | 8.0647 | (5
57 19.55 13.3995 8.2232 | 8.062 | (Y
o8 19.58 13.4116 8.2205 | 8.0595 | (Y
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Table B.2.: continued

J log Ng; Pnaive(Ej) | om(E;) | o(Ej) | T
59 19.61 13.4272 8.2169 | 8.0562 | (Y
60 19.64 13.4426 8.2135 | 8.053 | (Y
61 19.65 13.4496 8.2119 | 8.0515 | (Y
62 19.66 13.4533 8.211 | 8.0507 | (s
63 19.68 13.4635 8.2088 | 8.0486 | (Y
64 19.69 13.4691 8.2075 | 8.0474 | (Y
65 19.72 13.4819 8.2046 | 8.0448 | (Y
66 19.73 13.4896 8.2029 | 8.0432 | (Y
67 19.74 13.494 8.2019 | 8.0423 | (Y
68 19.74 13.4946 8.2018 | 8.0422 | (Y
69 19.75 13.4976 | 8.2011 | 8.0415 | (s
70 19.77 13.5054 | 8.1994 | 8.0399 | Cs
71 19.79 13.5157 | 8.1971 | 8.0378 | (5
72 19.8 13.5207 8.196 | 8.0368 | (5
73 19.85 13.5459 8.1904 | 8.0316 | (Y
74 19.88 13.5605 8.1872 | 8.0286 | (Y
75 19.89 13.5676 8.1856 | 8.0272 | (Y
76 19.9 13.5707 8.185 | 8.0265 | (5
77 19.9 13.572 8.1847 | 8.0263 | (Y
78 19.91 13.58 8.1829 | 8.0246 | (Y
79 19.94 13.5937 | 8.1799 | 8.0218 | (5
80 19.96 13.6018 8.1782 | 8.0202 | (Y
81 19.98 13.6138 8.1755 | 8.0178 | (Y
82 19.99 13.6163 8.175 | 8.0173 | (s
83 20.01 13.6266 8.1727 | 8.0152 | (Y
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Table B.2.: continued

J log Ng; Pnaive(Ej) | om(E;) | o(Ej) | T
84 20.02 13.6335 8.1712 | 8.0138 | (Y
85 20.03 13.638 8.1703 | 8.0129 | (Y
86 20.05 13.6501 8.1677 | 8.0105 | (Y
87 20.06 13.6531 8.167 | 8.0099 | (5
88 20.09 13.6658 8.1643 | 8.0073 | (Y
89 20.11 13.6786 8.1615 | 8.0048 | (Y
90 20.13 13.6894 8.1592 | 8.0026 | (Y
91 20.14 13.6906 8.1589 | 8.0024 | (Y
92 20.14 13.6919 8.1587 | 8.0021 | (Y
93 20.16 13.7021 8.1565 | 8.0001 | (5
94 19.98 13.7054 | 8.2305 | 7.9871 | (5
95 19.99 13.7079 | 8.2299 | 7.9867 | Cs
96 20.01 13.7182 | 8.2276 | 7.9846 | Cs
97 20.02 13.7251 8.2261 | 7.9832 | (Y
98 20.03 13.7296 8.2251 | 7.9823 | (Y
99 20.05 13.7417 | 8.2224 7.98 Cy
100 20.06 13.7446 8.2218 | 7.9794 | (Y
101 20.09 13.7573 8.219 | 7.9769 | (s
102 20.14 13.7822 8.2135 | 7.972 | (Y
103 20.14 13.7834 8.2132 | 7.9717 | (Y
104 20.16 13.7936 8.211 | 7.9697 | (s
105 32.05 20.5156 7.6806 | 7.5762 | Cy
106 32.05 20.7895 7.7831 | 7.405 | Cy
107 38.91 23.1808 7.1498 | 7.0676 | Cy
108 38.91 23.2766 7.1793 | 7.0497 | Cy
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Table B.2.: continued

J log Ng; Pnaive(Ej) | om(E;) | o(Ej) | T
109 39.37 23.2866 7.0985 | 7.0151 | Cy
110 41.35 24.5769 7.1315 | 7.0026 | C4
111 47.94 27.7515 6.9464 | 6.8701 | C4
112 66.42 37.6628 6.8043 | 6.7205 | C4
113 66.42 37.9637 | 6.8587 | 6.6912 | (Y
114 70.54 38.9732 6.6296 | 6.585 | (Y
115 70.54 39.1164 6.654 | 6.5667 | Cs
116 71.28 39.2668 6.6102 | 6.566 | Cy
117 71.28 39.4515 6.6413 | 6.5353 | (Y
118 72.05 39.3455 6.5532 | 6.5085 | (Y
119 72.05 39.3702 | 6.5573 | 6.506 | Cy
120 72.94 39.7962 | 6.5475 | 6.5031 | Cs
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Best Known Modified Szpiro and Szpiro Ratios

The tables that follow give the best known modified Szpiro and Szpiro ratios of
elliptic curves. As before, the Weierstrass models of these elliptic curves is not given
but will be provided upon request. Each table has a column “By” which refers to
where the given elliptic curve originated from. By “C” we refer to elliptic curves found
in Cremona’s database, “N” refers to elliptic curves found by Nitaj, “B-Y” refers to
elliptic curves found by Bennett and Yazdani, and “Ba” refers to elliptic curves found

by the author.

Table B.3.: Best Known Modified Szpiro Ratios

Rank log Ng huaive(E) | om(E) | o(E) | T | By
1 1.0414 1.3936 | 16.0587 1 C,| C
2 1.1461 1.2794 | 13.3951 | 3.8385 | Cy | C
3 1.1761 1.2539 | 12.7942 | 2.2171 | Cy | C
4 2.0828 1.9143 | 11.0293 3.5 Cy| C
5) 1.4771 1.3521 10984 | 3.323 | Cy | C
6 1.6532 1.4925 | 10.8333 | 3.3088 | Cy | C
7 1.2788 1.1418 | 10.7152 1 C C
8 3.3284 2.9593 | 10.6692 | 6.8123 | Cy | C
9 4.7253 4.1427 | 10.5204 | 4.7602 | C5 | C
10 3.0856 2.6873 | 10.4507 | 5.9897 | Cy | C
11 3.0065 2.6116 | 10.4239 | 6.0767 | C, | C
12 1.3222 1.1439 | 10.3816 | 1.6392 | C5 | C
13 4.3376 3.7425 | 10.3536 | 4.9188 | ¢} | C
14 3.6425 3.134 10.3249 | 4.2314 | C5 | C
15 3.7386 3.2063 | 10.2914 | 437 | Cy| C
16 2.3222 1.9912 10.2894 | 2.3927 | Cy | C
17 1.8751 1.6034 | 10.2615 | 3.6272 | Cy | C
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Table B.3.: continued

Rank log N hoaive(E) | om(E) | o(E) | T | By
18 1.9912 1.7019 | 10.2565 | 4.7559 | Cy | C
19 1.1461 0.9785 | 10.2445 | 5.465 | Cy | C
20 2.7559 2.351 10.2371 | 3.392 | Cy | C
21 6.228 5.2735 | 10.1609 | 5.3004 | ¢ | B-Y
22 5.2027 4.3951 | 10.1373 | 7.8574 | C; | C
23 4.3733 3.6867 | 10.116 | 7.0314 | C; | C
24 9.671 8.1514 | 10.1145 | 4.9403 | Cy | N
25 5.2025 4.3813 | 10.1058 | 4.8739 | Cy | C
26 3.2874 2.7653 | 10.0944 | 7.4446 | Cy | C
27 3.8055 3.1978 | 10.0838 | 6.7104 | Cy | C
28 3.0453 2.5589 | 10.0832 | 4.6301 | Cy | C
29 3.69 3.0923 | 10.0561 | 5.9294 | ¢}, | C
30 3.4849 2.905 | 10.0032 | 5.3061 | C, | C

Table B.4.: Best Known Szpiro Ratios

Rank log N hoaive(E) | om(E) | o(B) | T | By
1 7.105 5.6226 | 9.4962 | 9.02 | C; | B-Y
2 3.1106 2577 19.9413 | 89037 | C, | C
3 3.9782 3.2011 | 9.6561 | 8.8431 | Cy C
4 5.4462 4.2596 | 9.3855 | 8.8333 | C} C
5) 6.4026 4.971 9.3169 | 8.8119 | (5 N
6 3.9863 3.2727 | 9.8517 | 8.8016 | Cy | C
7 3.601 2.9082 | 9.6914 | 8.7924 | 4 C
8 4.514 3.5735 | 9.4999 | 8.7827 | C} C

continued on next page
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Table B.4.: continued

Rank log N5 haive(E) | om(E) | o(E) | T | By
9 2.9335 2.4104 | 9.8601 | 8.7573 | ¢y | C
10 7.9501 6.0451 | 9.1245 | 8.6989 | Cy | B-Y
11 11.224 8.5426 | 9.1332 | 8.689 | Cy | N
12 10.4331 8.0134 | 9.2169 | 8.6622 | Cy | B-Y
13 7.105 5.3616 | 9.0554 | 8.6224 | Cy | B-Y
14 6.8797 5.2096 | 9.0869 | 8.6169 | C, | N
15 8.219 6.1795 | 9.0223 | 8.6107 | Cy | B-Y
16 8.7857 6.5548 | 8.9529 | 8.5966 | C; | N
17 11.7011 8.7812 | 9.0055 | 8.5793 | Cy | N
18 8.3838 6.2619 | 8.9629 | 8.5593 | C} | B-Y
19 10.9102 8.252 | 9.0762 | 8.5458 | Cy | B-Y
20 4.4553 3.4397 | 9.2646 | 8.5387 | ¢y | C
21 11.5576 8.6875 | 9.02 |85373|Cy | B-Y
22 11.5576 8.6874 | 9.02 |85373 | Cy | B-Y
23 7.1015 5.3205 | 8.9904 | 85352 | C; | N
24 8.7583 6.509 | 8.9181 | 85318 | Cy | N
25 11.923 8.8921 |8.9495 | 85313 | Cy | N
26 5.1083 3.9073 | 9.1788 | 85253 | Cy | C
27 3.5877 2.8155 | 9.4172 | 85175 | ¢y | C
28 4.9911 3.8121 | 9.1653 | 8.5167 | ¢y | C
29 5.3607 41073 | 9.1944 | 85157 | ¢y | C
30 8.5674 6.3538 | 8.8994 | 8.5045 | Cy | B-Y
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Best 0,, and ¢ by Torsion Subgroup

Table B.5.: Best o, for E(Q),.,, = Ci
Rank | log Ng | hnaive(E) | om(E) | o(E) | By
1 1.0414 | 1.3936 | 16.0587 1 C
2 2.0828 | 19143 | 11.0293 3.5 C
3 1.2788 | 1.1418 | 10.7152 1 C
4 3.0065 | 2.6116 | 10.4239 | 6.0767 | C
5 4.3376 | 3.7425 | 10.3536 | 4.9188 | C
6 6.228 2.2735 | 10.1609 | 5.3004 | B-Y
7 5.2027 | 4.3951 | 10.1373 | 7.8574 | C
8 4.3733 | 3.6867 10.116 | 7.0314 | C
9 3.69 3.0923 | 10.0561 | 5.9294 | C
10 3.4849 2.905 10.0032 | 5.3061 | C
Table B.6.: Best o for £(Q),,,. = C1
Rank | log Ng | hpaive(E) | om(E) | o(E) | By
1 7.105 5.6226 | 9.4962 | 9.02 | B-Y
2 3.1106 2.577 9.9413 | 8.9037 | C
3 3.9782 | 3.2011 | 9.6561 | 8.8431 | C
4 5.4462 | 4.2596 | 9.3855 | 8.8333 | C
) 3.601 29082 | 9.6914 | 8.7924 | C
6 4.514 3.5735 | 9.4999 | 8.7827 | C
7 29335 | 24104 | 9.8601 | 8.7573 | C
8 7.9501 | 6.0451 | 9.1245 | 8.6989 | B-Y
9 8.219 6.1795 | 9.0223 | 8.6107 | B-Y
10 8.7857 | 6.5548 | 8.9529 | 8.5966 | N
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Table B.7.: Best o, for E(Q),,, = C5
Rank | log Ng | huaive(E) | 0m(E) | o(E) | By
1 1.1461 1.2794 | 13.3951 | 3.8385 | C
2 1.1761 1.2539 | 12.7942 | 2.2171 | C
3 1.4771 | 1.3521 10.984 | 3.323 | C
4 1.6532 | 1.4925 | 10.8333 | 3.3088 | C
D 3.3284 | 29593 | 10.6692 | 6.8123 | C
6 4.7253 | 4.1427 | 10.5204 | 4.7602 | C
7 3.0856 | 2.6873 | 10.4507 | 5.9897 | C
8 1.3222 1.1439 | 10.3816 | 1.6392 | C
9 3.6425 3.134 10.3249 | 4.2314 | C
10 3.7386 | 3.2063 | 10.2914 | 437 | C
Table B.8.: Best o for £(Q),.,s = C>
Rank | log Ng | hpaive(E) | om(E) | o(E) | By
1 6.4026 4.971 9.3169 | 8.8119 N
2 3.9863 3.2727 | 9.8517 | 8.8016 C
3 11.224 8.5426 | 9.1332 | 8.689 N
4 10.4331 | 8.0134 | 9.2169 | 8.6622 | B-Y
) 6.8797 5.2096 | 9.0869 | 8.6169 N
6 11.7011 | 8.7812 | 9.0055 | 8.5793 N
7 10.9102 8.252 9.0762 | 8.5458 | B-Y
8 11.5576 | 8.6875 9.02 | 8.53729 | B-Y
9 11.5576 | 8.6874 9.02 | 853728 | B-Y
10 8.7583 6.509 8.9181 | 8.5318 | N
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Table B.9.: Best o, for E(Q), ., = Cs
Rank | log Ng | hpaive(E) | om(E) | o(E) | By
1 6.7052 0.5121 | 9.8648 | 5.3502 | B-Y
2 5.5836 4.4626 | 9.5907 | 3.7718 | C
3 3.8519 29978 | 9.3392 | 7.0964 | C
4 5.9966 4.6322 | 9.2696 | 5.3561 | N
5 6.3505 4.9031 9.265 | 6.9488 | B-Y
6 6.3505 4.9031 9.265 | 2.3163 | B-Y
7 6.228 4.7964 | 9.2416 | 7.6215 | B-Y
8 4.6378 3.55645 | 9.1969 | 3.1264 | C
9 10.2284 | 7.8202 | 9.1747 | 8.063 | B-Y
10 3.8837 29497 | 9.1141 | 7.3068 | C
Table B.10.: Best o for £(Q),,,. = Cs
Rank | log Ng | hpaive(E) | om(E) | o(E) | By
1 7.105 5.3616 | 9.0554 | 8.6224 | B-Y
2 9.7512 7.1087 8.748 | 8.3541 | B-Y
3 8.0593 5.8611 8.727 | 83072 | B-Y
4 5.1896 3.7988 8.784 | 8.1606 C
) 8.7857 6.4368 | 8.7918 | 8.1579 | N
6 6.932 5.0013 | 8.6578 | 8.1254 | B-Y
7 8.004 5.6807 | 8.5168 | 8.1117 | B-Y
8 10.2284 | 7.8202 | 9.1747 | 8.063 | B-Y
9 9.74 6.7933 | 8.3696 | 8.0483 | N
10 12.8001 | 9.0919 | 8.5236 | 8.0005 | B-Y
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Table B.11.: Best o, for E(Q), .= C,

tors

Rank | log Ng | hpaive(E) | om(E) | o(E) | By
1 9.671 8.1514 | 10.1145 | 4.9403 | N
2 3.6933 3 9.7475 | 4.4081 | C
3 4.1483 3.3112 9.5784 | 5.7275 | C
4 1.8921 1.4995 9.5102 | 4.2522 | C
5 5.0217 3.8794 9.2705 | 3.8597 | C
6 10.5741 | 8.1514 9.2506 | 8.0676 | B-Y
7 4.7278 3.6419 9.2437 | 3.7546 | C
8 1.7993 1.3825 9.2197 | 2.7955 | C
9 12.0691 | 9.2659 9.2129 | 7.5614 | N
10 1.1761 0.8961 9.1433 1 C

Table B.12.: Best o for E(Q),,,. = Cu

Rank | log Ng | hpaive(E) | om(E) | o(E) | By
1 7.1015 5.3205 | 8.9904 | 8.5352 | N
2 15.6709 | 11.0439 | 8.4569 | 8.2502 | B-Y
3 16.574 | 11.6508 | 8.4355 | 8.2391 | B-Y
4 12,9722 | 9.2662 | 8.5717 | 8.1874 | B-Y
) 10.0461 7.096 8.4761 | 8.1453 | B-Y
6 12.2037 | 8.6077 8.464 | 8.1074 | B-Y
7 13.317 9.2474 | 8.3329 | 8.0884 | B-Y
8 11.6474 | 8.1202 | 8.3661 | 8.0878 | B-Y
9 12.8363 | 8.9223 | 8.3409 | 8.087 | B-Y
10 10.5741 | 8.1514 | 9.2506 | 8.0676 | B-Y
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Table B.13.: Best o, for E(Q), .= Cs

tors

Rank | log Ng | hpaive(E) | om(E) | o(E) | By
1 13.3832 | 9.5211 | 85371 | 7.3009 | B-Y
2 11.8831 8.449 8.5321 | 6.2449 N
3 13.7441 | 9.6366 | 8.4138 | 54948 | N
4 8.5927 6.0068 | 8.3887 | 8.0067 | B-Y
) 9.5534 6.6564 | 8.3612 | 7.5939 | N
6 7.3134 5.045 8.2779 | 6.7144 | N
7 1.0414 0.7169 | 8.2605 5 C
8 13.7715 | 9.4136 | 8.2027 | 7.5004 | N
9 11.641 7.947 8.192 | 6.9278 | B-Y
10 11.5493 | 7.8442 | 8.1503 | 7.2499 | B-Y

Table B.14.: Best o for £(Q),.,. = Cs

Rank | log Ng | hpaive(E) | om(E) | o(E) | By
1 8.5927 6.0068 | 8.3887 | 8.0067 | B-Y
2 9.5534 6.6564 | 8.3612 | 7.5939 | N
3 13.7715 | 9.4136 | 8.2027 | 7.5004 | N
4 13.9764 | 9.0574 | 7.7766 | 7.4436 | N
5 7.0098 4.66 7.9774 | 7.3561 | B-Y
6 11.6205 | 7.6857 | 7.9367 | 7.3437 | B-Y
7 13.3832 | 9.5211 | 8.5371 | 7.3009 | B-Y
8 11.5493 | 7.8442 | 8.1503 | 7.2499 | B-Y
9 12.5761 | 7.8386 | 7.4795 | 7.2223 | B-Y
10 15.2647 | 10.1548 | 7.983 | 7.1909 | N
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Table B.15.: Best o, for E(Q),,,, = Cs
Rank | log Ng | hpaive(F) | om(E) | o(E) | By
1 1.9542 | 1.5906 | 9.7672 | 3.9766 | C
2 5.1083 | 3.8883 | 9.1342 | 7.3124 | C
3 7.2107 | 5.4243 | 9.0271 | 5.6695 | N
4 5.4979 4.094 8.9357 | 7.0766 | C
> 5.5854 | 4.1459 | 8.9072 | 8.3096 | C
6 4.1096 | 3.0464 | 8.8955 | 5.6309 | C
7 3.6789 2.691 87775 | 52711 | C
8 2.7993 | 2.0453 | 8.7675 | 3.7427 | C
9 5.376 3.9205 | 8.7511 | 6.4273 | C
10 5.5854 | 4.0716 | 8.7477 | 7.8873 | C
Table B.16.: Best o for £(Q),,,. = Cs
Rank | log Ng | hpaive(E) | om(E) | o(E) | By
1 5.5854 4.1459 | 8.9072 | 8.3096 | C
2 5.5854 4.0716 | 8.7477 | 7.8873 | C
3 5.5774 3.9221 | 8.4385 | 7.8611 | C
4 7.2107 5.1233 | 8.5262 | 7.6868 | N
d 15.0308 | 9.7856 | 7.8125 | 7.5729 | N
6 6.7336 4.515 8.0463 | 7.5699 | N
7 5.1083 3.5879 | 8.4284 | 7.5161 | C
8 32.0533 | 20.2606 | 7.5851 | 7.4877 | Ba
9 32.0533 | 20.3147 | 7.6053 | 7.4784 | Ba
10 5.5774 3.8209 | 8.2209 | 7474 | C
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Table B.17.: Best o, for E(Q),,,, = C7
Rank | log Ng | hpaive(E) | om(E) | o(E) | By
1 2.9335 2.1108 | 8.6345 | 6.6196 | C
2 8.3071 5.3759 | 7.7658 | 5.4996 | N
3 17.2439 | 10.8613 | 7.5584 | 7.3625 | N
4 18.966 | 11.7054 | 7.4061 | 6.7331 | B-Y
5 8.0805 4.9865 | 7.4052 | 6.3564 | N
6 17.8125 | 10.9867 | 7.4016 | 6.6911 | N
7 16.8791 | 10.3484 | 7.3571 | 6.4517 | N
8 16.1434 9.866 7.3338 | 7.1062 | N
9 11.296 6.9 7.33 | 5.7148 | B-Y
10 15.828 9.6244 | 7.2967 | 6.4658 | N
Table B.18.: Best o for £(Q),,,, = C7
Rank | log Ng | huaive(E) | om(F) | o(E) | By
1 17.2439 | 10.8613 | 7.5584 | 7.3625 | N
2 16.1434 9.866 7.3338 | 7.1062 | N
3 22.1241 | 13.0172 | 7.0605 | 6.9203 | Ba
4 41.3549 | 24.05642 | 6.9798 | 6.9015 | Ba
d 31.529 | 18.3693 | 6.9914 | 6.8898 | Ba
6 30.5304 | 17.5546 | 6.8999 | 6.8019 | Ba
7 36.9497 | 21.2101 | 6.8883 | 6.8004 | Ba
8 32.5831 | 18.9757 | 6.9885 | 6.7945 | Ba
9 26.4268 | 15.2317 | 6.9165 | 6.7652 | Ba
10 19.15 11.0648 | 6.9336 | 6.7645 | N

258



Table B.19.: Best o, for £(Q),,,, = Cs
Rank | log Ng | hpaive(E) | om(E) | o(E) | By
1 1.1761 0.8063 | 8.2265 | 5.5659 | C
2 3.7568 2.5057 | 8.0036 | 5.2881 | C
3 6.0392 3.964 7.8765 | 7.3403 | Ba
4 5.6389 3.6912 7.855 | 7.0385 | Ba
5 0.4264 3.5049 | 7.7508 | 4.9534 | C
6 4.1996 2.696 7.7037 | 5.6891 | C
7 13.5995 | 8.7096 | 7.6852 | 5.65646 | N
8 11.5099 | 7.3698 | 7.6836 | 6.7376 | N
9 5.6894 3.6276 | 7.6513 | 7.0911 | Ba
10 2.3222 1.4648 | 7.5695 | 4.7718 | C
Table B.20.: Best o for £(Q),,,. = Cs
Rank | log Ng | hpaive(E) | om(E) | o(E) | By
1 6.0392 3.964 7.8765 | 7.3403 | Ba
2 11.2638 | 7.0332 | 7.4928 | 7.0962 | Ba
3 5.6894 3.6276 | 7.6513 | 7.0911 | N
4 5.6389 3.6912 7.855 | 7.0385 | Ba
5) 22.1795 | 13.2545 | 7.1712 | 7.0305 | Ba
6 16.8025 | 10.2792 | 7.3412 | 6.9995 | Ba
7 10.8492 | 6.5354 | 7.2286 | 6.8817 | N
8 23.8054 | 13.9792 | 7.0467 | 6.8343 | Ba
9 27.446 | 15.8907 | 6.9478 | 6.8297 | Ba
10 9.9853 5.9207 | 7.1153 | 6.8203 | N
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Table B.21.: Best o, for E(Q), .= Cy

tors

Rank | log Ng | huaive(E) | om(E) | o(E) | By
1 22.2722 | 12.8496 | 6.9232 | 6.2785 | Ba
2 47.9415 | 27.6277 | 6.9153 | 6.5242 | Ba
3 8.8598 5.0701 | 6.8671 | 5.1416 | Ba
4 45.392 | 25.8181 | 6.8254 | 6.6725 | Ba
5 40.5668 | 23.066 | 6.8231 | 5.7852 | Ba
6 25.8537 | 14.6733 | 6.8106 | 5.5363 | Ba
7 25.8546 | 14.6736 | 6.8105 | 5.5362 | Ba
8 31.8033 | 17.8476 | 6.7342 | 6.3266 | Ba
9 30.6628 | 17.1762 | 6.722 | 5.5376 | Ba
10 | 30.6632 | 17.1764 | 6.7219 | 5.5375 | Ba

Table B.22.: Best o for £(Q),,,. = Co

Rank | log Ng | hpaive(E) | om(E) | o(E) | By
1 45.392 | 25.8181 | 6.8254 | 6.6725 | Ba
2 46.0298 | 25.5196 | 6.653 | 6.5844 | Ba
3 41.9014 | 23.1685 | 6.6351 | 6.5424 | Ba
4 38.4149 | 21.4147 | 6.6895 | 6.5378 | Ba
5 47.9415 | 27.6277 | 6.9153 | 6.5242 | Ba
6 34.3046 | 18.8048 | 6.5781 | 6.4836 | Ba
7 474918 | 26.3517 | 6.6584 | 6.4834 | Ba
8 51.9158 | 28.2517 | 6.5302 | 6.4679 | Ba
9 40.6088 | 22.6083 | 6.6808 | 6.452 | Ba
10 | 40.3045 | 22.0003 | 6.5502 | 6.4517 | Ba
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Table B.23.: Best o, for E(Q),.,. = Cio
Rank | log Ng | hpaive(E) | om(E) | o(E) | By
1 14.1479 | 8.6258 | 7.3163 | 7.0006 | Ba
2 14.1479 | 8.6246 | 7.3152 | 6.686 | Ba
3 2.7559 1.6564 | 7.2124 | 5.8239 | C
4 17.7436 | 10.622 | 7.1837 | 5.1316 | Ba
5 23.9438 | 13.9711 | 7.0019 | 5.8695 | Ba
6 17.7436 | 10.321 | 6.9801 | 5.954 | Ba
7 8.5358 4.9615 | 6.9751 | 5.7738 | Ba
8 20.9924 | 12.1684 | 6.9559 | 4.9759 | Ba
9 39.3827 | 22.5171 | 6.861 | 6.1057 | Ba
10 | 23.9438 13.67 6.851 | 6.2848 | Ba
Table B.24.: Best o for E(Q),,,, = Cho
Rank | log Ng | hnaive(E) | om(E) | o(E) | By
1 14.1479 | 8.6258 | 7.3163 | 7.0006 | Ba
2 44.8544 | 25.2964 | 6.7676 | 6.6937 | Ba
3 14.1479 | 8.6246 | 7.3152 | 6.686 | Ba
4 44.8544 | 25.2268 | 6.749 | 6.6402 | Ba
) 50.2119 | 28.1464 | 6.7266 | 6.6219 | Ba
6 57.1791 | 31.8115 | 6.6762 | 6.6105 | Ba
7 50.2119 | 27.8946 | 6.6664 | 6.6018 | Ba
8 50.6744 | 28.1466 | 6.6653 | 6.5959 | Ba
9 43.2765 | 24.0527 | 6.6695 | 6.5649 | Ba
10 | 42.3074 | 23.5139 | 6.6694 | 6.5631 | Ba
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Table B.25.: Best o, for E(Q),,,, = Ci2
Rank | log Ng | hpaive(E) | om(E) | o(E) | By
1 16.4632 | 10.8042 | 7.8752 | 6.4694 | Ba
2 6.8059 4.3028 | 7.5866 | 6.1696 | Ba
3 5.192 3.1899 | 7.3727 | 5.2997 | C
4 11.2702 | 6.8354 | 7.2781 | 6.9035 | Ba
) 12.1426 | 7.3229 | 7.2369 | 6.5351 | Ba
6 8.9416 5.3242 | 7.1453 | 5.2472 | Ba
7 8.014 4.7655 | 7.1358 | 5.2583 | Ba
8 8.5442 5.067 7.1164 | 5.322 | Ba
9 14.8786 | 8.8097 | 7.1053 | 6.7731 | Ba
10 11.1158 | 6.5582 | 7.0798 | 6.556 | Ba
Table B.26.: Best o for E(Q),,,. = Ci2
Rank | log Ng | hpaive(E) | om(E) | o(E) | By
1 11.2702 | 6.8354 | 7.2781 | 6.9035 | Ba
2 14.8786 | 8.8097 | 7.1053 | 6.7731 | Ba
3 22.5087 | 12.7648 | 6.8053 | 6.6692 | Ba
4 39.044 | 21.9509 | 6.7465 | 6.6631 | Ba
) 30.9516 | 17.4563 | 6.7678 | 6.6489 | Ba
6 30.4164 | 17.4477 | 6.8836 | 6.6315 | Ba
7 40.815 | 22.8596 | 6.721 | 6.6242 | Ba
8 39.481 | 22.1265 | 6.7252 | 6.6178 | Ba
9 8.8844 5.1638 | 6.9746 | 6.6108 | Ba
10 | 62.3421 | 34.5759 | 6.6554 | 6.6035 | Ba
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Table B.27.: Best 0, for E(Q),.,, = C2 x Cy
Rank | log Ng | hpaive(E) | om(E) | o(E) | By
1 4.7253 3.8417 | 9.7559 | 6.8759 C
2 9.671 7.8504 | 9.7409 | 7.1539 N
3 1.1761 0.9529 | 9.7228 | 4.4341 C
4 10.1481 8.089 9.5651 | 7.0996 | B-Y
) 10.37 8.1999 | 9.4888 | 7.0761 | B-Y
6 10.5161 | 8.2729 | 9.4403 | 7.0611 | B-Y
7 5.2025 4.0802 | 9.4115 | 6.7955 C
8 10.8471 | 8.4384 | 9.3353 | 7.0287 | B-Y
9 10.9498 | 8.4898 | 9.3041 | 7.0191 | B-Y
10 10.9932 | 8.5115 9.291 | 7.0151 | B-Y
Table B.28.: Best o for E(Q),,,, = Ca x Cy
Rank | log Ng | hpaive(E) | om(E) | o(E) | By
1 6.4026 4.8779 | 9.1424 | 8.4619 N
2 10.7537 7.724 8.6192 | 8.3121 N
3 15.6709 | 11.3016 | 8.6542 | 8.31 B-Y
4 6.8797 5.1165 | 8.9245 | 8.2912 N
) 16.8956 | 11.9317 | 8.4744 | 8.2778 | B-Y
6 11.7928 | 8.4825 | 8.6316 | 8.2572 N
7 11.224 8.5423 | 9.1329 | 8.245 N
8 16.148 | 11.5402 | 8.5758 | 8.2417 | B-Y
9 7.1015 5.2274 | 8.8331 | 8.2196 N
10 17.3727 | 12.1702 | 8.4064 | 8.2153 | B-Y
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Table B.29.: Best o, for E(Q),,, = C2 x C4
Rank | log Ng | hpaive(E) | om(E) | o(E) | By
1 4.7278 3.3408 | 84797 | 5.7351 | C
2 4.7592 3.3399 | 8.4215 | 6.6384 | C
3 7.539 5.1921 | 8.2644 | 6.9951 | N
4 12.2528 | 8.3861 | 8.2131 | 7.218 | N
5 5.0879 3.4491 | 8.1348 | 6.7562 | C
6 4.6308 3.1374 813 |5.3121 | C
7 13.1559 | 8.6871 | 7.9239 | 7.4605 | N
8 13.1516 | 8.6558 | 7.8979 | 7.4051 | N
9 5.6389 3.6902 | 7.8531 | 6.2239 | C
10 11.2638 | 7.3329 | 7.8122 | 7.0216 | N
Table B.30.: Best o for E(Q),,, = Co x Cy4
Rank | log Ng | hnaive(E) | om(E) | o(E) | By
1 13.1559 | 8.6871 | 7.9239 | 7.4605 | N
2 13.1516 | 8.6558 | 7.8979 | 7.4051 | N
3 12.2528 | 8.3861 | 8.2131 | 7.218 | N
4 11.2638 | 7.3329 | 7.8122 | 7.0216 | N
5 22.1795 | 13.3086 | 7.2005 | 7.017 | Ba
6 31.6677 | 18.7487 | 7.1045 | 6.9989 | Ba
7 7.539 5.1921 | 8.2644 | 6.9951 | N
8 9.9853 6.11 7.3428 | 6.992 | N
9 31.6677 | 18.6731 | 7.0759 | 6.9248 | Ba
10 | 28.2863 | 16.5874 | 7.037 | 6.9087 | Ba
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Table B.31.: Best 0, for E(Q),,, = C2 x Cg
Rank | log Ng | hpaive(E) | om(E) | o(E) | By
1 7.2107 5.1233 | 8.5262 | 6.8473 | N
2 8.0892 5.4227 | 8.0444 | 6.3285 | Ba
3 5.0712 3.3891 | 8.0196 | 5.6586 | C
4 12.542 8.3282 | 7.9683 | 6.7848 | N
5) 4.1611 2.7581 | 7.9541 | 5.9662 | C
6 1.9542 1.2897 | 7.9191 | 5.0234 | C
7 14.5536 | 9.5391 | 7.8653 | 6.4214 | Ba
8 6.7336 4.41 7.8591 | 7.2555 | N
9 4.2986 2.8126 | 7.8515 | 5.4686 | C
10 7.3646 4.8077 | 7.8337 | 6.3186 | N
Table B.32.: Best o for E(Q),,,, = Cs x C
Rank | log Ng | hnaive(E) | om(E) | o(E) | By
1 32.0533 | 20.1472 | 7.5426 | 7.4256 | Ba
2 15.0308 | 9.7777 | 7.8061 | 7.3401 | N
3 6.7336 4.41 7.8591 | 7.2555 | N
4 22,5824 | 13.7778 | 7.3213 | 7.1742 | Ba
5 12.0649 | 7.6128 | 7.5719 | 7.1615 | N
6 17.1442 | 10.5259 | 7.3675 | 7.1208 | N
7 11.1071 | 6.8536 | 7.4046 | 7.113 | Ba
8 31.111 | 18.6111 | 7.1786 | 7.0744 | Ba
9 24.3925 | 15.0043 | 7.3814 | 7.0626 | Ba
10 9.6698 2.9515 | 7.3857 | 7.042 | Ba
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Table B.33.: Best 0, for E(Q),,, = C2 x Cy
Rank | log Ng | hpaive(E) | om(E) | o(E) | By
1 16.8025 | 10.2792 | 7.3412 | 6.6577 | Ba
2 13.8562 | 8.3466 | 7.2284 | 6.5386 | Ba
3 15.086 8.9404 | 7.1115 | 5.8465 | Ba
4 22.1795 | 13.1411 | 7.1098 | 6.9407 | Ba
5) 17.6296 | 10.4426 | 7.108 | 5.8551 | Ba
6 5.4264 3.2038 | 7.0851 | 5.6864 | Ba
7 7.045 4.1548 | 7.0771 | 6.3162 | Ba
8 10.9852 | 6.4212 | 7.0144 | 5.7357 | Ba
9 22.9852 | 13.3984 | 6.995 | 6.3868 | Ba
10 17.4688 | 10.1638 | 6.9819 | 6.5084 | Ba
Table B.34.: Best o for £(Q),,,, = Cs x Cy
Rank | log Ng | hnaive(E) | om(E) | o(E) | By
1 22.1795 | 13.1411 | 7.1098 | 6.9407 | Ba
2 27.446 | 15.8296 | 6.921 | 6.7363 | Ba
3 16.5597 | 9.5532 | 6.9227 | 6.7266 | Ba
4 27.0283 | 15.5744 | 6.9147 | 6.7124 | Ba
) 22.0659 | 12.681 | 6.8963 | 6.7024 | Ba
6 17.1056 | 9.8012 | 6.8758 | 6.6777 | Ba
7 66.4215 | 37.3617 | 6.7499 | 6.6662 | Ba
8 16.8025 | 10.2792 | 7.3412 | 6.6577 | Ba
9 24.4226 | 13.9132 | 6.8362 | 6.6574 | Ba
10 16.5906 | 9.4403 | 6.8282 | 6.628 | Ba
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Summary of Data for F¢, ¢,
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C. REVIEW OF MATHEMATICA COMMANDS

To illustrate, 5 = 1 mod4 can be verified via the Mathematica input Mod[5,4]
which outputs 1. Now suppose we want to compute via Mathematica the congruence

k? modS8 for 1 < k < 8. Then the input
Table [Mod[k"2,16],{k,1,8}]
outputs
{1,4,1,0,1,4,1,0}

where the j-th entry refers to j2 mod8. Indeed, the sixth entry is 4 and which agrees
with 62 = 4 mod 8. From this we see the classic fact that an odd square is congruent

to 1 mod 8. This can be checked more efficiently via the input
Table [Mod [k"2,16],{k,1,8,2}]
which outputs
{1,1,1,1}

Namely, the j-th entry in this set corresponds to (2j — 1)* mod 8.
To check the different possibilities of a? + b?> mod4 for 1 <a <4 and 1 < b < 3,

we use the input
Table[Mod[a"2+b"2,4],{a,1,4},{b,1,3}]
which outputs

{{2,1,2},{1,0,1},{2,1,2},{1,0,1}}



272

In particular, the set is an output of four sets consisting of three integers. Viewing
(i 1 (
0

21
(1 : (4
we have the interpretation that the a;p entry of M is interpretted as j* + k? =

this output as the matrix

A:

— N =N

ajr mod4. Indeed, ax; = 1 which verifies 2 + 12 = 1 mod 4. Lastly, we consider

consider a? + b*> mod 8 where 1 < a,b < 8 with a even and b odd. Then the input
Table[Mod[a"2+b"2,8],{a,2,8,2},{b,1,8,2}]
outputs

{{5,5,5,5},{1,1,1,1},{5,5,5,5},{1,1,1,1}}

(‘5 5
1

5 5

As before, let

A:

A N ) |

L = W {
VR

Q | i
and we observe that for a;; in A we hawe (25)° + (2k — 1)* = @, mod8. Indeed,

as3 = 1 which corresponds to 42 + 52 =1 mod 8.
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