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ABSTRACT 

Zhong, Changchun PhD, Purdue University, December 2017. STUDY OF ATOMIC 
QUASI-STABLE STATES, DECOHERENCE AND COOLING OF MESOSCALE 
PARTICLES. Major Professor: Francis Robicheaux. 

Quantum mechanics, since its very beginning, has totally changed the way we un-

derstand nature. The past hundred years have seen great successes in the application 

of quantum physics, including atomic spectra, laser technology, condensed matter 

physics and the remarkable possibility for quantum computing, etc. This thesis is 

dedicated to a small regime of quantum physics. 

In the first part of the thesis, I present the studies of atomic quasi-stable states, 

which refer to those Rydberg states of an atom that are relatively stable in the 

presence of strong fields. Through spectrally probing the quasi-stable states, series 

of survival peaks are found. If the quasi-stable electrons were created by ultraviolet 

(UV) lasers with two different frequencies, the survival peaks could be modulated by 

continuously changing the phase difference between the UV and the IR laser. The 

quantum simulation, through directly solving the Schrödinger equation, matches the 

experimental results performed with microwave fields, and our studies should provide 

a guidance for future experiments. 

Despite the huge achievements in the application of quantum theory, there are 

still some fundamental problems that remain unresolved. One of them is the so-

called quantum-to-classical transition, which refers to the expectation that the system 

behaves in a more classical manner when the system size increases. This basic question 

was not well answered until decoherence theory was proposed, which states that the 

coherence of a quantum system tends to be destroyed by environmental interruptions. 

Thus, if a system is well isolated from its environment, it is in principle possible to 

observe macroscopic quantum coherence. Quite recently, testing quantum principles 
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in the macroscale has become a hot topic due to rapic technological developments. A 

very promising platform for testing macroscale quantum physics is a laser levitated 

nanoparticle, and cooling its mechanical motion to the ground state is the first step. 

In the second part of this thesis, we develop the theory of decoherence for a meso-

scopic system’s rotational degrees of freedom. Combining decoherence in the transla-

tional degrees of freedom, the system’s shot noise heating is discussed. We then focus 

on cooling the nanoparticle in the laser-shot-noise-dominant regime using two differ-

ent feedback cooling schemes: the force feedback cooling and the parametric feedback 

cooling. Both quantum and classical calculations are performed, and an exact match 

is observed. We also explore the parameters that could possibly affect the cooling 

trend, where we find that the cooling limit for both cooling schemes strongly depends 

on the position measurement efficiency, and it poses good questions for researchers 

interested in achieving ground state cooling: what is the best measurement efficiency 

for a given measurement setup and what can be done to get a better measurement 

efficiency? 
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1. INTRODUCTION 

This thesis is composed of two different research directions: One is the study of atomic 

quasi-stable states (Chaps. 2 and 3) [1, 2]; the other is the theory of decoherence for 

mesoscopic particles and its application to the cooling of laser trapped nanoparticles 

(Chaps. 4, 5 and 6) [3–5]. 

In Chaps. 2 and 3, as is reported in Refs. [1, 2], quantum simulations of quasi-

stable states of Rydberg atoms are presented. The term quasi-stable state [6–8] refers 

to an atomic Rydberg state that is relatively stable in the presence of strong laser 

fields. In the simulations, we spectrally probe the quasi-stable states in the presence 

of strong infrared (IR) fields, where series of survival peaks are found. We also study 

coherence effects when the quasi-stable electrons are created by ultraviolet (UV) lasers 

with two different frequencies. As expected, the survival peaks are greatly modulated 

when we continuously change the phase difference between the UV and the IR laser. 

Our quantum simulation, through directly solving the Schrödinger equation, matches 

the experimental result done with microwave fields [6]. 

In Chap. 4, as is reported in Ref. [3], the theory of decoherence for a mesoscale 

particle’s rotational degrees of freedom is discussed. Decoherence is a mechanism 

for a quantum system to gradually lose its quantum coherence due to the interaction 

with its environment [9], and it plays an important role in explaining the quantum-to-

classical transition. Based on a scattering decoherence model [10], we derive a general 

expression of the decoherence rate for a quantum system in its rotational degrees of 

freedom. The decoherence rate is related to the difference of the scattering ampli-

tudes for different orientational configurations. To understand the general result, we 

calculate two examples of scattering decoherence from two different environment par-

ticles, thermal photons and air molecules. The scattering of environmental particles 
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is the main sources of decoherence of macroscopic quantum systems, and thus plays 

a vital role in the emergence of classicality in the world around us. 

In Chaps. 5 and 6, as is reported in Refs. [4, 5], we discuss the shot noise heat-

ing and feedback cooling of a laser trapped nanoparticle, both semi-classically and 

quantum mechanically. We first show that the decoherence from the laser beam cor-

responds to shot noise heating of the nanoparticle. For a laser trapped nanoparticle, 

this shot noise heating from the laser always exists no matter how well the nanopar-

ticle is isolated from its thermal environment. Remarkably, recent experiments show 

that the current technology is already able to isolate the nanoparticle in the laser-

shot-noise-dominant regime [11], which leads to hope for ground state cooling. In 

Chap. 5, the classical parametric feedback cooling is analyzed, and we compare in 

great detail the parameters that could possibly affect the cooling limit in the particle’s 

translational and rotational degrees of freedom, such as the nanoparticle shape, the 

dielectric constant, or the laser parameters etc. In Chap. 6, by adopting the theory 

of continuous quantum measurement [12], the quantum version of force feedback and 

parametric feedback cooling is discussed. The feedback signal is obtained by continu-

ously monitoring the position of the nanoparticle. The system evolution is described 

by a stochastic master equation (SME) or equivalently a stochastic Schrödinger equa-

tion (SSE). The force feedback and parametric cooling are simulated by numerically 

unraveling the SME. Our calculation shows that the force feedback cooling can give us 

a much lower cooling limit than that from a parametric cooling scheme. We also per-

form semi-classical calculations of the force feedback and parametric feedback cooling, 

which yield exactly the same results as those from the fully quantum calculations. By 

rescaling the semi-classical equation, we find that the cooling dynamics only depends 

on three parameters: feedback strength, position measurement efficiency, and the 

occupation number change due to the laser shot noise during one oscillation period. 

Interestingly, the position measurement efficiency is shown to be the key ingredient 

in obtaining a lower cooling limit. Thus, lastly we give a brief analysis of the position 

measurement efficiency for a widely used measurement scheme in experiments: the 
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balanced homodyne detection scheme. Under certain approximations, an intrinsic 

measurement efficiency is obtained which sets an upper bound for the measurement 

efficiency that can be reached in experiments. 

Chapter 7 gives a brief summary of the thesis and an outlook for future work is 

discussed. 
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2. SPECTRUM OF QUASI-STABLE STATES 

In this chapter, the quasi-stability of highly-exicited H and He atoms in a strong 

infrared (IR) field is discussed based on three-dimensional quantum calculations [1]. 

The spectra of atoms that survive the IR field show a series of IR-frequency-modulated 

peaks which extend from deeply bound states all the way to the ionization threshold 

and above. The atoms that survive mainly consist of highly-excited Rydberg states, 

even after hundreds of the intense IR cycles. Also, they tend to have initial energies 

which allow emission or absorption of an integer number of IR photons to reach 

these quasi-stable states. Peaks above the ionization threshold in the survival spectra 

indicate the existence of multi-photon assisted recombination in the intense IR field. 

2.1 Introduction 

Quasi-stable states of Li atoms in a strong microwave field has recently been 

discussed [6–8, 13, 14]. Arakelyan et al. [8] showed that when laser-excited atoms of 

Li were exposed to an intense microwave pulse, � 10% of the atoms were found in 

Rydberg states subsequent to the pulse, even if the microwave was far more intense 

than that required for static field ionization. Similar phenomenon of atoms in a 

strong laser pulse has been predicted and extensively discussed for the past half 

century [15–17]. Various mechanisms for strong-field stabilization of atoms have been 

proposed [18–21], and some related experimental papers can be found in Refs. [22–24]. 

Considering the existence of quasi-stable states of atoms in the presence of a strong 

microwave field, it is possible to study them spectrally. In the microwave experiment 

of Refs. [7,8], Arakelyan et al. measured the optical spectra of Li atoms that survive 

the strong microwave field. They found a periodic train of peaks separated by the 

microwave frequency. The experimental observations suggest that Li atoms survive 



6 

UV laser pulse 

IR pulse, λ = 1000nm 

(a) (b) 

Figure 2.1. (a) The timing envelope for the UV laser and IR field used in 
our simulation. We choose the duration of the UV laser (four IR cycles) 
in a way that is short on the scale of the IR duration and long on the 
scale of IR laser cycles. The duration of the IR is about 1.6 × 104 a.u.. 
(b) Each black line corresponds to an energy level of the H atom. The 
red arrow shows the electron being brought to the desired state by a UV 
laser. Then, the electron (blue arrow) continues evolving in the presence 
of the IR field plus atomic potential. 

the intense microwave field in quasi-stable states, where the Rydberg electron stays 

in a weakly bound orbit infrequently visiting the Li core. Interestingly, the spectrum 

also revealed peaks above the ionization threshold which is explained by multi-photon 

assisted recombination [13,14]. Those electrons excited to the continuum are able to 

stimulatedly emit a certain number of microwave photons, thus causing the recombi-

nation of ions and electrons [14]. 

Since quasi-stable states can also form in an intense laser field [15–17], one natural 

thing to do is to detect them spectrally. In this chapter, we spectrally probe the quasi-

stable states of H and He atoms in the presence of an intense IR field by numerically 

solving the three-dimensional (3D) time dependent Schrödinger equation [1]. In order 

to simulate a prospective experiment, the IR laser is smoothly turned on and off in 

our calculation, and a weak UV laser is used to prepare atoms at the desired states, 

as shown in Fig. 2.1(a). After the IR laser is turned off, we compute the probability 
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of atoms in excited, bound states. The survival spectra show a periodic train of peaks 

separated by the IR frequency extending from deeply bound states to the ionization 

threshold and above. To get more information about the bound electrons, we also 

calculate the survival population as a function of principal quantum number of the 

electron after the IR field is turned off. The results show that the majority of the 

population is concentrated in high-lying states. Our analysis not only indicates the 

existence of multi-photon assisted recombination in a strong IR field, but also reveals 

that the atoms in IR fields, similar to the case in microwave fields, derive their quasi-

stability from the time electrons spend away from the nucleus. In the sections which 

follow, we introduce the numerical approach that we use, present the results and 

analysis, compare them to our expectations, and comment on their implications. 

We use atomic units except where explicitly stated otherwise. 

2.2 The model and numerical method 

Similar to the recent experiment of Li atom in a microwave field [8], we assume 

all atoms are in the ground state at the beginning, then a weak UV laser is turned 

on to bring atoms to the desired states through one photon absorption, while the IR 

field is on all the time. In the numerical simulation, we treat the UV laser as a source 

term since it is weak. After the UV laser is off, the source term stops providing 

electrons to the near threshold energy region. The IR field keeps interacting with 

the atoms until it is smoothly turned off. Figure 2.1 shows a schematic picture of 

the time evolution of atoms, with the short arrows in Fig. 2.1(b) denoting the IR 

laser induced multi-photon transitions. The wavelength of the IR field is fixed at 

λ = 1000 nm, which corresponds to frequency ω � 0.0455 a.u.. The intense IR field 

is treated in a non-perturbative manner. In order to study the influence of the IR 

field strength on the quasi-stable states of atoms, we use six different IR intensities, 

2which are I, 4I, 9I, 16I, 25I, 36I with I = 2.66 × 1011 W~cm . These IR intensities are 
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weak in the sense of affecting the ground states of H and He atoms, while strong in 

the sense of interacting with their excited states. 

The dynamics is governed by the following time dependent Schrödinger equation 

r, t)
i
∂Ψ(Ñ 

= HΨ(Ñr, t), (2.1)
∂t 

where the wave function and Hamiltonian can be written in the form Ψ(r, tÑ ) = 

Ψg(Ñr, t) + Ψe(Ñr, t), and H = H0 + HUV + HIR. Ψg(Ñr, t) is the ground state wave 

function and Ψe(Ñr, t) is the wave function of the electron after it has absorbed one 

UV photon. In the simulation, the IR field is treated non-perturbatively while the 

UV laser is treated using first order time dependent perturbation approximation. 

Noticing i∂Ψg(Ñ (Ñr, t)~∂t = H0Ψg r, t), Eq. 2.1 can be written as 

i
∂Ψe(Ñr, t)

− H̃Ψe(Ñr, t) = S(Ñr, t) = HUV Ψg(Ñr, t). (2.2)
∂t 

S(Ñ = (t)zΨg r) exp(−i(Eg )t), which acts as a source of amplituder, t) FUV (Ñ + ωUV 

for Ψe(Ñr, t). The UV laser in the source takes a Gaussian envelope, FUV (t) „

exp(−t2~2tw 
2 ) and tw is chosen to make sure it lasts 4 IR periods in time (The duration 

controls the peak width in the energy domain). Ψe(Ñr, t) is initially zero everywhere 

˜before the UV laser is on. H = H0 + HIR, which reads 

H̃ = −
1
©2 + V (rÑ) − FIR(t)z. (2.3)
2 

The third term in Eq. 2.3 is the interaction (dipole approximation is used) between 

the atom and the IR field (linearly polarized). The IR field strength is 

FIR(t) = Fmax cos(ωIRt)„erf[
(t − ti)

] − erf[
(t − tf )

]‚ . (2.4)
tw tw 

The IR field is smoothly turned on and off through the use of two error functions, as 

depicted in Fig. 2.1(a). V (r) is the interaction of the electron with the nucleus and 

the core electrons (if any). For the H atom, V (r) is a pure Coulomb potential, while 

for the He atom the following model potential is used, 

α 
2 

− 
Z⁄ 

V (r) = −0.5 „1 − exp(−( 
r 
)3)‚ , (2.5)

4r rc r 
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where α = 0.81, rc = 1, and Z⁄ = 1 + exp(−4.746r) + 0.2125r exp(−3.537r). The model 

potential gives energy levels of the spin singlet of a He atom. The eigenvalues, ex-

cept the ground state energy, deviate less than 0.1% from the energy levels of a He 

atom. The single active electron approximation is considered in our calculation since 

the strengths and frequencies of the fields insures that only a single electron will 

participate in the dynamics. 

The quantum simulation is performed by numerically solving Eq. 2.2. The wave 

function is represented on a 2D space spanned by discrete radial points and an angular 

momentum basis. For the radial part, a nonlinear square root mesh is used. The 

propagation operator is constructed using a split-operator technique of the form, 

U(δt) = U1(δt~2)U2(δt)U1(δt~2), (2.6) 

where the approximation Ui(δt) = (1−iHiδt~2)~(1+iHiδt~2) is used. During the time 

propagation, an absorbing potential is used. The radial position where the absorbing 

potential is turned on is set far away from the nucleus such that the potential mainly 

absorbs the ionized electron. One can refer to [25] for the numerical method in detail. 

In the following, all the data shown are collected after the IR field is smoothly turned 

off. 

2.3 Results and discussions 

We first discuss the results for a H atom. In order to see enough peaks in the 

spectrum, we choose to study the launch energy (the initial energy of electrons) 

ranging from E = −0.17 a.u. to E = 0.11 a.u. relative to the ionization threshold. 

This range covers about seven IR photons. In our simulation, the different launch 

energies are obtained by tuning the frequency of the UV laser. The duration of the 

UV laser is about four IR cycles, which is appropriate for us to see the spectrum 

in the energy domain (The peaks in the energy domain will be sharper for longer 

duration of the UV laser pulse). For each launch energy, we calculate the survival 
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(a) (b) 

Figure 2.2. For each solid curve from the bottom to the top, IR field 
intensity increases from I, 4I, 9I, 16I, 25I to 36I. (a) Each curve records 
the total survival probability of H as a function of the launch energy. The 
vertical dotted lines help to locate the peak positions. (b) Each curve 
records the survival probability of H in states with principal quantum 
number bigger than six as a function of the launch energy. The faint 
(nearly vertical) lines are calculated to track the right shifting of the 
peaks with increasing intensities. QE is the difference of peak shifts for 
intensities 16I and 9I. The periodic structure keeps the same even when 
we double the IR duration. 

probability after the IR field is smoothly turned off, and results with six different IR 

intensities are compared. 

In Fig. 2.2, the six curves correspond to the results of six different intensities, 

which increase from the bottom to the top. First, those curves mainly consist of a 

series of peaks, which are separated by the energy of one IR photon. Meanwhile, as 

shown in Fig. 2.2(a), an abnormal peak appears when the IR intensity is relatively 

2weak. For instance, for the curve with intensity I = 2.66×1011 W~cm , one may expect 

the first left peak to sit a little left, but it is at E = −0.125 a.u., which is the first 

excited energy level of H atom. In this case, electrons with initial energy close to E = 

−0.125 a.u. will be stuck there (the 2p state) because the IR field intensity is too weak 

to trigger multiphoton transition at that binding energy. In other words, multiphoton 
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I 9I 

(a) (b) 

16I 25I 

(c) (d) 

Figure 2.3. Survival probability distribution of H in each bound state for 
launch energy close to the first (n = 2) excited state. (a) IR intensity I = 

22.66 × 1011W~cm , and the initial launch energy E = −0.125 a.u. (marked 
by a vertical black line in Fig. 2.2(a)). (b), IR intensity is 9I, and E = 
−0.132 a.u.. (c), IR intensity is 16I. E = −0.128 a.u.. (d), IR intensity is 
25I. E = −0.120 a.u.. The energies are marked with vertical line in 2.2(a). 
For cases (b), (c) and (d), the survival probability concentrates on the 
highly excited states (The peak principal quantum number n � 10). 
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process is a necessary condition for the formation of IR-frequency-modulated peaks. 

In Fig. 2.2(b), the abnormal peak disappears because we only count the probability 

of electrons bound in high-lying states. In the following section, we will see it more 

clearly from the probability distribution in each energy eigenstate. Second, as the 

field strength increases, the peaks above the ionization threshold gradually emerge, 

which indicates that the so-called multi-photon assisted recombination also happens 

in the IR field [14]. It would be interesting for experimentalists to see how far the 

peaks can go above the threshold if the field strength keeps increasing. Third, all 

the peaks tend to shift to the right with increasing intensities (the dotted nearly 

vertical curves make it obvious), and the shifting amount is exactly the difference of 

ponderomotive energy in various IR fields. Take the curves with intensity 16I and 9I 

for example, the amount of shifting is QE � 0.006 a.u.. This shift equals the difference 

of the ponderomotive energies of electrons when subjected to the corresponding IR 

fields, which is QE = F 2 ~4ω2 −F 2 ~4ω2 This phenomenon can be understood if one16I IR 9I IR. 

imagines that the energy levels of high-lying states are shifted by the ponderomotive 

energy, thus the resonance is also shifted [26]. The peaks respectively are shifted by 

a different amount because electrons in the IR field with bigger intensity have bigger 

ponderomotive energy. As a final point, the periodic structure is still found when we 

increase the IR duration (TIR = 3.2×104 a.u.), which is much longer than the Rydberg 

period (TRyd = 2πn3 � 6000 a.u.). 

In order to understand how the electrons survive, we perform a projection of the 

final wave function to each bound state. By doing this, we are able to see how the 

survival probability is distributed in each bound state. Figures 2.3 and 2.4 show the 

results for different IR intensities and different initial launch energies. 

The situation depicted in Fig. 2.3(a) is obviously different from Fig. 2.3(b)-2.3(d). 

The first excited state holds nearly all electrons that survive the IR field. This actually 

corresponds to the abnormal peak in Fig. 2.2(a). The launch energy is close to the first 

excited energy level and the IR intensity is relatively small (I = 2.66 × 1011 W~cm2). 

The intensity is too small to trigger multiphoton absorption from the IR field, so 
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4I 

(a) 

16I 

(b) 

25I 

(c) 

36I 

(d) 

Figure 2.4. Survival probability distribution of H over each bound state 
for the launch energy relatively away from the first (n = 2) excited state. 

2(a), IR intensity is 4I, where I = 2.66 × 1011W~cm , and the initial launch 
energy E = −0.093 a.u. (marked by a vertical blue line in Fig. 2.2(a)). 
(b), IR intensity is 16I, and E = −0.082 a.u.. (c), IR intensity is 25I. 
E = −0.073 a.u.. (d), IR intensity is 36I. E = −0.0615 a.u.. The energies 
are marked with vertical line in 2.2(a). For cases (a), (b), (c) and (d), the 
surviving probability all closely concentrates on the relatively high excited 
states (peak principal quantum number n � 10). 
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(a) (b) 

(c) 

n=9 

(d) 

Figure 2.5. The survival probability distribution of H along the radial di-
rection and over each orbital angular momentum. The IR intensity is 16I, 

2where I = 2.66×1011W~cm . (a) and the launch energy is E = −0.128 a.u.. 
The red, blue and green curves correspond to the distribution at three 
successive time after the IR field is off. (b) The survival probability over 
each orbital angular momentum for launch energy E = −0.128 a.u.. (c) 
The survival probability over each orbital angular momentum for launch 
energy E = −0.073 a.u.. (d) The survival probability over each orbital 
angular momentum with n = 9. The green and red lines correspond to 
launch energy E = −0.128 a.u. and E = −0.073 a.u. respectively. 
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those electrons get stuck at the first excited energy level, which is the reason why we 

see a big peak for n = 2 in Fig. 2.3(a). As we increase the IR intensity, the electrons 

can not stay there (n=2) anymore. Figure 2.3(b)-2.3(d) show the result with larger 

intensities, while the launch energy is still close to the first excited energy level. The 

probability distribution at each energy level indicates that most of the electrons that 

survive the IR field stay in highly-excited states (principal quantum number n � 10), 

with binding energy ten times smaller than one IR photon. The low-lying states 

contribute almost nothing to the survival probability. Figure 2.4 gives the results 

for a launch energy relatively far away from the first excited state. The survival 

probability peaks around the same highly-excited states (n � 10) for intensities 4I, 

16I, 25I and 36I respectively. The IR duration is much longer than the Rydberg 

period (TIR > TRydberg � 2πn3) of the highly-excited states (n � 10), which indicates 

the electrons visit the core several times during the IR pulse. 

Based on the above observation, the electron in highly excited states has a rel-

atively high probability to survive, or we could say the atom becomes quasi-stable. 

In the process of time propagation, the electron can be directly excited to the quasi-

stable states by the UV laser, or by absorbing integer number of IR photons after 

the UV laser excitation. Thus, one can imagine that electrons will have a higher 

probability to survive with initial energy which allows emission or absorption of an 

integer number of IR photons to reach the quasi-stable states. These initial energies 

of the electrons define the positions of the peaks in Fig. 2.2(b). In contrast, for 

electrons with other initial energies, it will be relatively easy to be ionized, because 

they can’t reach the quasi-stable states through multiphoton processes during the IR 

interaction. In short, the quasi-stable states act like a safe harbor, which keeps the 

electron bound for a relatively long time. Admittedly, the harbor is not permanently 

safe. The electrons in the quasi-stable state still have probability to be ionized, which 

means the peaks in Fig. 2.2(b) will go lower and lower with increasing IR intensity 

or duration. 
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The probability distribution along the radial direction is also checked. In Fig. 

2.5(a), the red, blue and green curves are picked at three successive time after the IR 

field is turned off. They show the radial probability distribution for IR intensity 16I 

and launch energy E = −0.128 a.u.. Refer to the result of Fig. 2.3(c), the state with 

principal quantum number n � 9 has the biggest probability. This corresponds to the 

outer radial turning point 160 a.u. (r � 2n2). As shown in Fig. 2.5(a), the probability 

is centered around r � 160 a.u. for most of the time, and the structure persists even 

after hundreds of IR cycles, which obviously results from the electron staying in the 

safe harbor (the quasi-stable states) in the presence of IR field. Besides, we calculate 

the survival probability distribution over each orbital angular momentum, as shown in 

Fig. 2.5(b)-2.5(c) for launch energy E = −0.128 a.u. and E = −0.073 a.u. respectively. 

Figure 2.5(d) records the distribution with principal quantum number n = 9. In Fig. 

2.5(b), the peaks at l = 2, 4 are due to the fact that the initial launch energy is three 

IR-photons away from the threshold. Thus, electrons survived at the quasi-stable 

states tend to have angular momentum l = 0, 2, 4 (The peak at l = 0 appears when 

using different IR intensity). The same argument applies to the result in Fig. 2.5(c). 

In order to check that quasi-stability is not just for an atom with a pure Coulomb 

potential, a simulation of He atoms was also performed. In our calculation, the sin-

gle active electron approximation was used, and the electron experienced a model 

potential given by Eq. (2.5). The eigen-energies were obtained by numerically diago-

nalizing the Hamiltonian without external fields. The model potential simulates the 

spin singlet of a He atom. It gives a 1s2 state with the bound energy E � −0.736 a.u., 

2which deviates about 0.17 a.u. from the 1s state of the He atom. For the other 

states, the deviation is less than 0.1%. Similar to the case of the H atom, for each 

launch energy we measured their survival probability, and we also performed the pro-

jection of the final wave function to the bound states. The results are shown in Fig. 

(5.7). Figure 2.6(a) gives the result of survival spectra for IR intensities 16I, 25I, 

and 36I from the bottom to the top respectively. The IR-frequency-modulated peaks 
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(a) 

25I 

(b) 

36I 

(c) 

16I 

(d) 

Figure 2.6. (a) Each curve records survival probability of He with princi-
pal quantum number n bigger than six. The Blue, Green and Red curves 
correspond to IR intensities 16I, 25I and 36I. The dotted (nearly vertical) 
curves help to track the right shifting of peaks. QE is the difference of 
peak shift for intensities 25I and 36I. (b) IR intensity is 25I, and the 
launch energy E = −0.072 a.u. (marked by a vertical brown line in Fig. 
2.6(a)). (c) IR intensity is 36I. E = −0.063 a.u.. (d) IR intensity is 
16I. E = −0.082 a.u.. (b), (c) and (d), give the probability distribution 
of He over each bound state, where electrons in the states with principal 
quantum number n � 13 are relatively stable. 
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can also be seen in each curve, and as the IR intensity increases, the whole set of 

peaks shifts to the right, with the amount determined by the difference of electron’s 

ponderomotive energy. Figure 2.6(b)-2.6(d) show the projection results of final wave 

on to the bound states, where the peaks all focus around the state with principal 

quantum number n � 13. These high-lying states are the quasi-stable states, similar 

to what we discussed for the case of H atoms. 

2.4 Summary and conclusion 

In this chapter, we discussed the quasi-stability of H and He atoms in the presence 

of an intense IR field. The survival spectra and the population distribution in each 

bound state reveal how electrons survive the strong IR field. In the spectra, the 

peaks above the threshold are due to electrons launched in the continuum. Through 

the process of multi-photon assisted recombination [13, 14], those electrons could 

stimulatedly emit a certain number of IR photons, thus get caught by the core. Similar 

to that in the microwave experiments [7,8], the bound electron tends to stay in states 

with high principal quantum number, such that the electron spends a relatively long 

time away from the ion. Instead of being ionized, electrons away from the core only 

experience a ponderomotive quiver motion [8,23,27]. If the electron doesn’t visit the 

core before the laser pulse is over, it must stay bound. However, in the present case 

the electron does visit the core since the Rydberg period of electrons is shorter than 

the IR field duration (TRyd � 2πn3 < TIR). The quasi-stability of the states shown in 

Fig. 2.2 persists even when we double the IR duration. This indicates that atoms in 

quasi-stable states can also survive collisions between the electron and the core. As 

a result, atoms in high-lying states become quasi-stable in the strong IR field. The 

quasi stability of atoms in an IR field is essentially the same as that in a microwave 

field [7] [8]. With the growing techniques of strong IR lasers, the phenomena discussed 

above could be investigated experimentally. 
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3. COHERENCE AND QUASI-STABLE STATES 

In this chapter, we discuss the quasi-stability of UV-pulse-train-excited H atoms in 

a strong IR laser as a function of the phase delay of the UV-pulse-train relative to 

the IR laser [2]. The UV-pulse-train contains two frequency components. When the 

two components have frequencies separated by two IR photons, the population of 

surviving electrons is modulated by up to ten percent. When electrons are excited to 

right above or below the threshold, the survival probabilities have inverted phase delay 

dependence which can be explained classically. When the two frequencies are one IR-

photon apart, the angular symmetry of the quasi-stable electrons is broken, and the 

asymmetry is also controlled by the phase delay. The asymmetrical distribution can 

be observed while the IR is on and smoothly evolves to a nonzero asymmetry that 

only weakly depends on the duration of the IR field. 

3.1 Introduction 

As discussed in the previous chapter, when highly excited atoms are exposed to 

an intense microwave or laser field, a certain fraction will stay bound for a long 

time [6–8, 13, 14], leading to their classification as quasi-stable states. Classically, 

the electrons in quasi-stable states derive their stability through orbiting in a weakly 

bound trajectory where they have little chance to absorb enough energy to escape 

[8,13,27]. These quasi-stable states can be studied spectrally, and a series of survival 

peaks can be detected [7,8]. These peaks are formed because electrons at the correct 

initial energy can reach the quasi-stable states through multi-photon transitions, while 

other initial energies will lead to ionization because the electron can not reach the 

quasi-stable state by absorbing integer number of photons. 
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As is well known, the properties of an excited electron wave packet in an intense 

IR field will differ depending on whether it was created by a single UV pulse or a 

train of them [28]. The properties of electrons excited by a single UV pulse are mainly 

determined by the IR intensity and frequencies. However, the behavior of electron 

wave packets produced by a UV-pulse-train is also affected by coherence, such as the 

large peak to peak modulation observed experimentally [28]. The coherence, timing, 

and varied energy of electrons could be controlled independently by changing the 

properties of the UV-pulse-train. A recent experiment can be seen in Ref. [29] for 

Li atoms in a microwave field, where they observed modulation of the population of 

weakly bound electrons by changing the delay in the pulse train and the detuning 

relative to threshold. Studying these features provides a novel, powerful tool to 

explore strong field interactions [28, 30]. 

In this chapter, we numerically study the survival probability of H in quasi-stable 

states as a function of the phase delay of a UV-pulse-train relative to an intense IR 

laser. The system is similar to the experiment [29], while we replace the microwave 

field by an intense IR field. The UV-pulse-train is created by combining two UV 

lasers with frequencies ω1 and ω2, as shown in Fig. 3.1(a). The phase delay between 

the pulse train and the IR laser is controlled by changing the initial phase of the two 

UV lasers. In our simulation, the two UV lasers are treated as two separate sources 

of excitation due to the linearity of the Schrödinger equation. Thus, a modulation 

by coherence in the survival probability is expected if the surviving electrons from 

each source have the same quantum numbers. This is satisfied when the two UV 

frequencies are separated by two IR photons (ω2 − ω1 = 2ωIR), since the wave packets 

that reach the quasi-stable states will have the same even or odd parity [1]. In this 

case, a modulation of the population of weakly bound electrons is observed and is 

closely related to the phase delay. The peak to peak modulation in the survival 

probability varies for different launch energies. The launch energy is defined as the 

initial energy of electrons excited by the UV laser with frequency ω1. When the 

launch energies are right above and below the threshold, the modulations are phase 
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(a) 

(b) 

Figure 3.1. (a) Each black line corresponds to an energy level of the H 
atom. The red arrows show the electron being brought to the desired 
states by the UV lasers. Then the electron (blue arrows) continues evolv-
ing in the presence of the intense IR field plus atomic potential. (b) A 
sketch for the UV-pulse-train and IR field, where ω2 − ω1 = 2ωIR. The IR 
laser lasts 1.6 × 104 a.u. in time. Δφ is the phase delay of the UV with 
respect to the IR. 
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inverted, which is the same as the experimental result in Ref. [29]. When the two 

UV frequencies are only one IR-photon apart (ω2 − ω1 = ωIR), no coherence in the 

survival probability is seen. However, an interesting phenomenon is observed that 

the angular symmetry of the bound wave packet is broken and is also controlled by 

the phase delay. This asymmetrical distribution can be observed while the IR is on 

and smoothly evolves to a final value that only weakly depends on the IR duration. In 

the sections which follow, we introduce the numerical approach that we use, present 

the results and analysis, compare them to our expectations, and comment on their 

implications. 

Similar to Chap. 2, we use atomic units except where explicitly stated otherwise. 

3.2 Theory and method 

In a simulation, H atoms were prepared in the ground state at the beginning. 

Then a weak UV-pulse-train was turned on to bring the electrons to the desired states 

through one-photon absorption. The UV-pulse-train was created by turning on two 

UV lasers with frequencies ω1 and ω2, as shown in Fig. (3.1). The beat frequency of 

the two lasers was assumed to be a multiple of an intense IR field so that the beats 

stay in phase with the IR over many cycles. After the UV pulse, the excited electrons 

continue to evolve in the presence of the intense IR field. The energy and angular 

momentum of the electrons change through multi-photon transitions. By tuning the 

initial phase of the UV lasers, the envelope of the UV-pulse-train can be shifted 

relative to the IR field. Figure 3.1(b) schematically shows the phase delay between 

the UV-pulse-train and the IR laser, where the UV frequency separation is two IR 

photons. In the simulation, the weak UV-pulse-train was treated as a source term in 

the Schrödinger equation. The duration of the pulse train should be short on the scale 

of the IR duration and long on the scale of one IR cycle. As long as this condition 

is satisfied, the actual duration of the pulse train becomes less important. In the 

simulation, we made the pulse train last about 4 IR cycles. The IR field lasted about 
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1.6 × 104 a.u. and its wavelength is 1000 nm, giving the frequency ωIR � 0.0455 a.u.. 

2The IR intensity was chosen to be I = 4.256 × 1012 W~cm . Similar to Ref. [1], the 

intensity was weak in the sense of affecting the H ground state, while strong in the 

sense of interacting with its excited states. 

The dynamics is approximately governed by the following time dependent Schrödinger 

equation with a source term [1], 

i
∂Ψe(Ñ 

− ̃  (Ñ r, t), (3.1)
r, t) 

HΨe r, t) = S(Ñ 
∂t 

where Ψe(Ñr, t) is the excited wave function of the electron after absorbing one UV 

photon and it is initially zero everywhere before the UV-pulse-train is on. The source 

term is 

S(Ñr, t) = ŽFUV 1(t) exp(−i(ω1t + σ1))+ 
(3.2) 

FUV 2(t) exp(−i(ω2t + σ2))žzΨg(rÑ) exp(−iEgt), 

which provides the source of amplitude for the excited wave function. The UV lasers 

in the source take a Gaussian envelope, FUV (1,2)(t) „ exp(−t2~2tw 
2 ) and tw is chosen 

˜to make sure they last 4 IR periods in time. H is the electron Hamiltonian without 

the UV interaction, 

H̃ = −
1
©2 + V (rÑ) − FIR(t)z, (3.3)
2 

where the third term is the interaction (using the dipole approximation) between 

the electron and the IR field (linearly polarized), and V (r) is the interaction of the 

electron with the nucleus. FIR(t) reads, 

FIR(t) = Fm cos(ωIRt)„erf[
(t − ti)

] − erf[
(t − tf )

]‚ . (3.4)
tw tw 

The error function is used to smoothly turn on and off the IR laser. Noticing the 

linearity of Eq. (3.1), we can separate it into two parts, each of them treats only one 

UV laser. By doing this, the numerical calculation is greatly simplified. The excited 

wave function can be written as Ψe(Ñr, t) = Ψe1(Ñr, t) + Ψe2(Ñr, t). Thus the separated 

equations are 

i
∂Ψei(Ñr, t)

− ̃  (Ñ (Ñ (3.5)HΨei r, t) = Si r, t),
∂t 
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in which 

Si(Ñ (t)zΨg r) exp(−i(Eg )).r, t) = FUV i (Ñ t + ωUV it + σi (3.6) 

The index i = (1, 2). The phase delay of the UV-pulse-train relative to the IR can be 

changed by tuning σi (the initial phase of UV lasers). 

The quantum simulation is performed by numerically solving Eq. (3.5). Each 

wave function is represented on a 2D space spanned by discrete radial points and an 

angular momentum basis. For the radial part, we use a nonlinear square root mesh. 

The propagation operator is constructed using a split-operator technique of the form, 

U(δt) = U1(
δt

)U2(δt)U1(
δt

), (3.7)
2 2 

where the approximation Ui(δt) = (1 − iHiδt~2)~(1 + iHiδt~2) is used. During the 

time propagation, an absorbing potential is used, such that the ionized electrons are 

efficiently absorbed. One can refer to [25] for the details of the numerical technique. 

The final wave function in the quasi-stable states is obtained by adding Ψe1 and Ψe2. 

In the sections that follow, one will see that most of the interesting effects are from 

the interference between these two wave packets. 

3.3 Results and discussion 

The UV-pulse-train was simulated by turning on two UV lasers which act as 

two independent sources in the system. In order to study the survival spectrum, 

the frequency of the first UV laser (ω1) was scanned such that the electrons have 

initial energies ranging from E = −0.17 a.u. to E = 0.11 a.u. relative to the ionization 

threshold. For each frequency ω1, the frequency of the second UV laser was tuned 

to satisfy ω2 = ω1 + N � ωIR (N = 1 or 2). For each launch energy, the data was 

accumulated after the intense IR laser is smoothly turned off. 

Refer to Eq. (3.5), the final wave function can be written as 

r, t) =Ψe1 r, t) + Ψe2 r, t)Ψe(Ñ (Ñ (Ñ 
(3.8) 

=ψe1(Ñr, t) exp(−iσ1) + ψe2(Ñr, t) exp(−iσ2), 
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(a) (b) 

Figure 3.2. The survival probability in quasi-stable states (with principal 
quantum number n > 6) as a function of the launch energies. Each figure 
has a given phase delay between the UV-pulse-train and the IR. The digits 
from 1 to 6 are to label each peak close to different launch energies. The 
peak 5 and 6 are multiplied by 4 to make them visible. Figure 3.2(a) and 
3.2(b) are plotted in the same scale. (a) The phase delay is Δφa = π~2. 
(b) The phase delay is Δφb = π. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 3.3. All the graphs record the integrated probability for each peak 
of Fig. 3.2 as a function of the phase delay of the UV-pulse-train relative to 
the IR. The integrated probability is obtained by integrating the survival 
probabilities of each peak in the spectrum of Fig. 3.2 and dividing it by 
twice its average over phase delay. The graph (a) corresponds to peak 1 
in Fig. 3.2, (b) corresponds to peak 2 in Fig. 3.2, etc. All curves oscillate 
around 0.5. The bigger the oscillation is, the more the peak is in contrast 
with different phase delay. 
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where ψei(Ñr, t) are the solutions to Eq. (3.5) when σi = 0 (i = 1 or 2). In principle, 

ˆany observable A can be obtained through evaluating 

` ̂  
2 

ˆ ˆAe = Q `ψeiS A Sψeie + 2Re{`ψe2S A Sψe1e exp(i(σ2 − σ1))}. (3.9) 
i=1 

The second term shows clearly how the coherence is manifest in the value of an 

observable. By tuning the value of σi (i = 1 or 2), the phase delay of the UV-pulse-

train relative to the IR laser will change accordingly, and so will the value of `Âe. 

In the following subsections, observables Â = Î  and Â = cosθ are discussed. They 

respectively correspond to the survival probability and orientation of electrons that 

survive the intense IR field. While the IR laser is on, the angular symmetry as a 

function of time is also discussed. 

3.3.1 Coherence for two ωIR separation 

Equation (3.9) gives the population of survival electrons when the observable 

Â = Î. The coherence in the survival population is greatly determined by the overlap 

`ψe2Sψe1e. Since ψe1 and ψe2 are the electron wave functions in the quasi-stable states, 

they will have similar principal quantum numbers. Moreover they tend to have even 

(odd) angular quantum numbers if their initial energies are odd (even) number of 

IR-photon’s away from the threshold [1]. When the two UV lasers have frequencies 

separated by two IR photons (N=2), they will create two electron wave packets with 

initial energies separated by two IR photons. As a result, ψe1 and ψe2 will concurrently 

have either odd or even angular quantum numbers when they reach the quasi-stable 

states. Thus, the overlap between ψe1 and ψe2 becomes significant, and coherence is 

expected in the electron’s survival probability. 

Figure (3.2) shows the survival spectrum for two different phase delays of the 

UV-pulse-train relative to the IR. The equally separated train of peaks is formed by 

electrons trapped in the quasi-stable states, which is discussed in Ref. [1, 7, 8]. The 

height of the peaks in the Fig. 3.2(a) and 3.2(b) are quite different, indicating the 

level of coherence in the electron population. Continuously changing the phase delay 
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(a) (b) 

Figure 3.4. The digits are used to track each peaks. The peak 5 and 6 are 
multiplied by 4 to make them visible. (a) The survival spectrum for the 
two components of the UV-pulse-train being separated by one IR photon. 
The shape of the spectrum keeps unchanged for any phase delay. (b) The 
straight lines denote the integrated survival probability of each peak in 
Fig. 3.4(a) in terms of the phase delay. Those lines are straight because 
no modulation is observed in this case. 
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will lead to a change in the interference term in Eq. (3.9). This phase sensitivity is 

an evidence that, after the UV excitation, most of the energy transfer from the IR 

to the excited electrons happens during the first few IR cycles, as suggested by the 

Simpleman’s model [13, 14]. In order to clearly show this, for each phase delay, we 

integrate the survival probabilities of each peak in the spectrum and divide it by the 

twice average over phase delay. This quantity oscillates around 0.5, which contrast 

the survival probabilities of different phase delays. The result is shown in Fig. (3.3). 

Each line from 3.3(a) to 3.3(f) corresponds to each peak in Fig. 3.2 from the left to the 

right. Each curve is oscillating with a period of π in terms of phase delay. The period 

π is determined by the fact that the UV-pulse-train repeats itself when its envelope 

shifts by π. What is more, the survival probability of electrons with different launch 

energies have varied phase delay dependence. For those peaks right above and below 

the threshold, shown by the grey, green and black curves in Fig. 3.3, they tend to 

have inverted phase delay dependence, because of the fact that the ionization and 

recombination happens at the same time when electrons are tuned below or above 

the threshold. For those peaks far below the threshold, shown by the red curve, the 

phase delay dependence is not inverted compared to the above threshold curve, which 

is a topic that deserves further study. 

3.3.2 Coherence for one ωIR separation 

When the frequencies of the two UV lasers are separated by one IR photon (N=1), 

although ψe1 and ψe2 still have similar principal quantum numbers, they will have 

different parity (even for one and odd for the other) [1]. Thus, the overlap `ψe1Sψe2e 

is expected to be zero, indicating no coherence in the survival probability. As shown 

in Fig. 3.4(a), the height of the survival peaks remains the same for any phase delay 

of the UV-pulse-train relative to the IR. As a result, the integrated probability for 

each peak will approximately be a constant, which is shown by the horizontal lines 

in Fig. 3.4(b). 
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(a) (b) 

(c) (d) 

Figure 3.5. The orientation of the survival population as a function of 
the phase delay of the UV-pulse-train relative to the IR. The red (orange, 
gray, green) line is for the launch energy E = 0.057 a.u. (E = 0.011 a.u.,E = 
−0.034 a.u.,E = −0.077 a.u.). Each line is oscillating periodically around 
zero, indicating the phase delay is controlling the angular symmetry of 
the survival wave packets. 



31 

However, the parity difference of the two wave packets indicates an angular sym-

metry broken. The angular symmetry of an electron can be evaluated by the quantity 

(the orientation) 
`Ψe(rÑ)ScosθSΨe(rÑ)e

Orientation = , (3.10)
`Ψe(Ñr)SΨe(Ñr)e

where θ is the polar angle. Obviously, the orientation takes the value between [−1, 1], 

and it being larger (smaller) than zero means the electrons are distributed more at 

the upper (lower) half sphere. From Eq. (3.9), when the observable Â = cosθ, the first 

term will vanish because the angular integral is nonzero only if the functions in the 

integral have angular quantum numbers differ by one (Δl = ±1). So the numerator in 

Eq. (3.10) simplifies to 

`cosθe = 2Re(`ψe2S cosθ Sψe1e exp(i(σ2 − σ1))). (3.11) 

Thus, the orientation is also phase delay dependent. Meanwhile, `ψe2S cosθ Sψe1e is 

nonzero since the two wave packets exclusively have even or odd angular quantum 

numbers (l = 1, 3, 5... for ψe1, then l = 2, 4, 6... for ψe2 or vice versa), which contributes 

to a nonzero integral. In Fig. (3.5), four different launch energies are shown. Each 

line records the orientation in terms of the phase delay. The oscillation of each 

line indicates that the surviving electrons’ angular distribution switches between the 

upper and lower half sphere when continuously tuning the phase delay. Since the 

energy transfer from the IR to the electron (after excited) mostly happens at the first 

few IR cycles [14], the time of the electron being excited (controlled by phase delay) 

becomes crucial in determining the phase of the electron wave packets trapped at the 

quasi-stable states. As a result, tuning the phase delay will change the orientation, 

as indicated by Eq. (3.11). Figure (3.5) also reveals different phase delay dependence 

for varied launch energies. The below threshold behavior, shown by Fig. 3.5(a) 

and 3.5(b), has inverted phase delay dependence with respect to the above threshold 

behavior, shown by Fig. 3.5(d). However, they are not inverted with respect to Fig. 

3.5(c), and more study is needed to understand this contrary result. 
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(a) (b) 

(c) (d) 

Figure 3.6. `cosθe as a function of time while the IR is on (black lines). 
The plot is normalized by the final bound population (u= `Ψe(Ñr)SΨe(Ñr)e). 
The red curves are the IR. The launch energy E = −0.082 a.u. and N = 1 
for Fig. 3.6(a) 3.6(b) and 3.6(c). (a) Δφ1 = π~2. (b) Δφ2 = π. (c) The 
IR field is being smoothly turned off, while `cosθe stabilizes close to the 
peak value. (d) For E = −0.127 a.u. and the two laser has a frequency 
separation of 2ωIR, `cosθe (black line) oscillates around zero and vanishes 
as the IR is turned off. Similar results apply to any phase delays. 
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(a) (b) 

Figure 3.7. The bound population (BP) of electrons (`ψe1(t)SP̂ Sψe1(t)e). 
The plot (blue curve) is normalized by the final bound population (u= 
`ψe1Sψe1e). The peak is going lower due to ionization. The launch energy 
E = −0.082 a.u.. The red curve is the IR field. (a) The IR is on. (b) The 
IR is being turned off. 
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We want to check the angular symmetry while the IR is still on. In the following 

discussion, we use the quantity `Ψe(Ñ S (Ñr, t)Scosθ Ψe r, t)e, which is time dependent since 

the IR is still on. First, `cosθe is oscillating in time while the IR is on, as depicted 

by the black lines in Fig. 3.6(a) and Fig. 3.6(b). The cases shown in Fig. 3.6(a) 

and 3.6(b) have the same launch energy E = −0.082 a.u.. They have inverted angular 

distribution because their phase delays differ by π~2, which match the results in Fig. 

(3.5). The peak in the black line repeats every half of one IR cycle and follows the IR 

intensity. Also, when we smoothly turn off the IR field, `cosθe stops oscillating and 

stabilizes near the peak value, as depicted in Fig. 3.6(c). In order to find the reason, 

we calculate `ψe1(t)SP̂ Sψe1(t)e as a function of time, where P̂  is an projection operator 

to all bound states. Figure 3.7(a) reveals that the population of bound electrons 

also oscillates periodically while the IR is on. During each IR cycle, the electrons 

experience ionization and combination twice due to the ponderomotive motion, which 

is the reason for the periodical oscillation of `cosθe. As the IR is being turned off, 

shown in Fig. 3.7(b), the population of bound electrons stabilizes, which is the final 

amount of electrons that survive the IR laser. This amount of electrons contributes 

both to the maximal of `cosθe while the IR is on and the stable value of it when the 

IR is off, as shown in Fig. 3.6(c). 

Second, the final stable value of the orientation does not depend on the time of 

turning off the IR. Figure 3.6(c) shows the behavior of the orientation when the IR 

is being turned off at time t = 13.5 × 103 a.u.. Similar behavior is observed when we 

turn off IR at other longer or shorter times, although the survival population varies. 

As a final point, we also calculate `cosθe for N = 2. As expected, a symmetrical 

distribution (`cosθe � 0) is obtained for any phase delay. Fig. 3.6(d) shows that 

`cosθe (black line) oscillates about zero while the IR is on and goes to zero when it is 

off. The magnitude of oscillation is approximately an order smaller than that in Fig. 

3.6(c). 
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3.4 Conclusion 

Quasi-stability of highly excited atoms in a strong field have been extensively 

discussed in the past fifty years [15–17]. Various mechanisms of stabilization and 

many related experiments can be found [19–24]. The fact that Rydberg atoms have 

lower chances to absorb energy keeps the electron bound for a relatively long time. 

Those surviving electrons, besides the same principal quantum number, tend to have 

the same even or odd (depending on the initial energy) angular quantum numbers [1]. 

Thus, a coherent effect is expected if electrons are being excited from different laser 

sources. The UV-pulse-train can be divided into two components, and they could 

separately act as a source, contributing electrons to the quasi-stable states. 

In summary, we have studied the quasi-stability of UV-pulse-train-excited atoms 

in a strong IR field. When the two frequencies are separated by two IR photons, 

the survival probability will be a coherent superposition of the two contributions. 

By tuning the phase delay between the IR and the UV-pulse-train, we can coher-

ently modulate the probability. The same coherence in the survival probability is 

not expected if the frequency separation is only one IR photon, where the survival 

probability is an incoherent addition of the two contributions. However, an asym-

metry of the electron’s angular distribution is observed in this case. By evaluating 

the orientation, we show the symmetry is oscillating as a function of the phase delay. 

And interestingly, the value of `cosθe oscillates periodically in time while the IR is 

on. The period is half the IR cycle, and it stablizes after the IR is turned off. The 

oscillation of `cosθe is due to the electrons experiencing recombination and ionization 

in each IR period, which is an interesting picture of quasi-stability in strong IR fields. 

With the growing techniques of attosecond physics [31], faster laser control and more 

accurate detection become possible. The above discussed coherence and angular dis-

tribution should be detectable in the lab. When studying pulse-train-excited atoms, 

the coherent effect shown above is surely of great importance to consider. 
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4. DECOHERENCE OF ROTATIONAL STATES 

From this chapter, I start discussing the second part of the thesis. This chapter 

discusses the theory of decoherence for mesoscopic systems, which plays an important 

role in the fundamental problem of quantum-to-classical transitions. Back to the 

early age of quantum mechanics, people realized that there is an unclear boundary 

between quantum and classical physics, and it was vaguely said that the distinction 

is just the demarcation between the macroscopic and the microscopic. However, this 

answer is not satisfactory since the concept of macroscopic or microscopic is not 

well defined when we are dealing with real physical systems. In the past several 

decades, many new experimental results suggest the failure of the distinction. For 

example, superconducting Josephson junctions have quantum states associated with 

currents involving a huge number of electrons, while they could tunnel through the 

maxima of the effective potential [32]; Series of recent experiments has shown that 

molecules consisting of many atoms, such as fullerenes, can produce an interference 

pattern after traveling through a grating [33]. The size of the particle used in the 

interference experiments is still increasing, and even more strikingly, the theories of 

quantum superposition states of living organisms were recently reported [34] [35]. 

These experiments indicate that the macroscopic systems can not always be safely 

regarded as classical. Thus, a natural question, as raised by W. Zurek, is “where is 

the boundary of classical and quantum, or might there be no boundary at all” [36]. 

4.1 Introduction 

Decoherence refers to the mechanism through which the classical world emerges 

from quantum systems in the sense of losing quantum coherence. The key point is 

that quantum systems in reality are never isolated from the environment. In this 
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case, we are not expecting the system to follow the Schrödinger equation, which 

only works for closed quantum systems. Due to the coupling with the environment, 

a system generally suffers from the loss of quantum coherence. The environment, 

usually with a huge number of degrees of freedom, is in some sense monitoring the 

system all the time, and the information of the system is gradually leaked into the 

environment, causing quantum decoherence. Mathematically, the ignorance of the 

environment requires us to trace out its degrees of freedom. Thus, the system we are 

interested in evolves in a way that the density matrix is quickly reduced to a classical 

mixed distribution. 

In the past few decades, many environmental decoherence mechanisms have been 

proposed for a system’s center of mass degree of freedom, such as air molecule collision, 

thermal radiation etc, where an exponential localized wave packet can be obtained. 

Detailed descriptions can be found in many literatures and books [10, 37–39]. While 

much work is devoted to the decoherence of the system’s center of mass degree of 

freedom, little has been done for decoherence of its rotational degree of freedom. 

In a recent Ref. [40], Timo Fischer discussed the orientational decoherence through 

a Poisson process, and a orientational decoherence master equation is derived. In 

this thesis, I will mainly present our results based on scattering theory. With the 

growing interests in small system’s internal degree of freedom, we believe that a 

general decoherence formalism for a system’s rotational degree of freedom will be 

instrumental for future experiments. 

4.2 The general theory of rotational decoherence due to scattering 

We consider an object (system S) with only rotational degree of freedom interact-

ing with its environment (environment E). As usual, the system and the environment 

are assumed initially uncorrelated. The combined system is described by 

ρ(SE) = ρ(S) a ρ(E), (4.1) 
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where ρ(E) is the environment density operator. The system density operator ρ(S) = 

SψS e `ψS S, where SψS e = n CΩ SΩe and SΩe = Sα, β, γe. α, β, and γ are the Euler angles 

used to specify the configuration of the orientational state. In the following, we will 

show how correlation between the system and the environment is established from 

scattering events, which in the end leads to an exponential decay of the non-diagonal 

elements of system density matrix. 

We first consider one single scattering event and confine our discussion to elastic 

collisions. SΩe = Sα, β, γe can be thought of a system S0, 0, 0e rotated by an operator 

ˆSΩe = DS (Ω) S0, 0, 0e , (4.2) 

ˆ ˆ ˆ ˆwhere DS (Ω) = exp(−hÒ
i Lzα) exp(−hÒ

i Lyβ) exp(− Ò
i Lzγ). Now we denote the incomingh 

particle by Sχe, Then the effect of the scattering event is formally described by the 

scattering operator Ŝ acting on the initial state, 

SΩe Sχe� Ŝ SΩe Sχe . (4.3) 

Then we have, 

†ˆ χe� Ŝ ˆ χe� Ŝ ˆ 0, 0, 0e ˆS SΩe S DS (Ω) S0, 0, 0e S DS(Ω) S DE (Ω)D̂ (Ω) SχeE 

† †
� ŜD̂ 

S (Ω)D̂ 
E (Ω) S0, 0, 0e D̂ 

E (Ω) Sχe� ŜD̂
 
SE (Ω) S0, 0, 0e D̂ 

E (Ω) Sχe (4.4) 

†
� D̂ 

SE (Ω)Ŝ S0, 0, 0e D̂ 
E (Ω) Sχe , 

ˆwhere DE (Ω) is the rotational operator of the environment. The last line used the 

fact that the scattering interaction is rotational symmetric. The next step is to 

include the non-recoil assumption, which states that the scattering event essentially 

does not disturb the system, except establishing entanglement between the system 

and the incoming particles [10, 39]. This assumption holds for the case that the 

system is much more massive than the incoming particle, and currently we restrict 

ˆour discussion to this situation. After the action of the operator S, the rotational 

state of the system remains as SΩe. So, the above evaluation continues 

DSE E 
† †ˆ (Ω) S0, 0, 0e ŜD̂ (Ω) Sχe� D̂ 

S (Ω) S0, 0, 0e D̂ 
E (Ω)ŜD̂ (Ω) SχeE 

(4.5)
†

� SΩe D̂ 
E (Ω)ŜD̂ (Ω) Sχe� SΩe Ŝ(Ω) Sχe� SΩe Sχ(Ω)e ,E 
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ˆ S ˆ †where Ŝ(Ω) = DE (Ω) ̂D (Ω). Sχ(Ω)e is introduced to denote the state of the out-E 

going particle, which carries the information of the system. Equation (4.5) shows 

how the scattering event establishes correlations between the system and the envi-

ronment particle. Accordingly, the initial separable density matrix of the combined 

system ρ(SE) = ρS a ρ(E) is transformed into the following entangled density matrix, 

expressed in the rotational configuration space, 

ρ = S dΩ S dΩ
œρS(Ω, Ωœ) SΩe `ΩœSa Sχ(Ω)e `χ(Ωœ)S . (4.6) 

The system we are interested in is described by the following reduced density matrix 

ρS , which is obtained by tracing over the environment, 

ρS = trE (ρ) = S dΩ S dΩ
œρS (Ω, Ωœ) SΩe `ΩœS `χ(Ωœ)Sχ(Ω)e . (4.7) 

As a result, the evolution of the reduced density matrix due to the scattering event is 

ρS (Ω, Ωœ)� ρS (Ω, Ωœ) `χ(Ωœ)Sχ(Ω)e , (4.8) 

ˆwhere `χ(Ωœ)Sχ(Ω)e = `χSS†(Ωœ)Ŝ(Ω)Sχe. Thus, a suppression is attached to the 

system density matrix element, and the value is determined by the average of the 

operator Ŝ†(Ωœ)Ŝ(Ω) over the state of incoming particle. 

4.2.1 Time evolution of the system density matrix elements 

Recall the case for a symmetric system’s translational degree of freedom [10, 39], 

the density matrix elements have a exponential decay in terms of time, 

œρ(x,Ñ xÑ , t)„ exp ›−κ(xÑ − xÑœ)2t” 

with the decay rate depending on the scattering amplitude and the distance. For 

the decoherence of a system’s rotational degree of freedom, it is reasonable to guess 

that the rate should depend on the orientational configuration difference. To confirm 

this, we need to evaluate the suppression in Eq. (4.8). The suppression of the system 

density matrix element is determined by the average of the operator Ŝ†(Ωœ)Ŝ(Ω) in 
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terms of the environment particles. As usual, we first confine the environment particle 

in a box with a periodic boundary condition. The box volume has a finite value V 

and the momentum eigenstate is denoted by SKÑ e. Later we push the box size to the 

limit of infinity, and the momentum eigenstate in this space is SkÑe. Considering the 

normalization condition, these eigenstates have the following simple connection 

SKÑ e = „
(2π)3 

‚ 

1~2 

SkÑe . (4.9)
V 

Obviously, we have the relation 

Q δ(KÑ − KÑ œ) = S d
3kδÑ (kÑ − kÑœ),

ÑK (4.10)
(2π)3 

Q = S d
3k.Ñ 

V 

The state of the incoming particle is described by the density operator, 

ρE =
(2π)3 

Q µ(k) SKÑ e `KÑ S , (4.11)
V 

where the summation runs over the set of momenta that satisfy the periodic boundary 

condition. µ(k) is the momentum probability distribution. We assume the environ-

ment is spherically symmetric such that µ(k) depends only on the magnitude of the 

momentum. Then the average of the operator Ŝ†(Ωœ)Ŝ(Ω) can be written as 

`χSŜ†(Ωœ)Ŝ(Ω)Sχe�
(2π)3 

Q µ(k) `KÑ S Ŝ†(Ωœ)Ŝ(Ω) SKÑ e 
V (4.12)

�
(2π)3 

Q µ(k) `KÑ (Ωœ) ̂  † 
(Ωœ)DE SD† 

SKÑ eS S†D (Ω) ̂  (Ω) . 
V

DE E E 

In the following, we will denote the rotational operator of the environment by D(Ω). 

ˆ ˆ ˆTo proceed, the identity S = I + iT̂  is used to express the scattering operator S in 

terms of T̂  operator. So the above expression reads 

�
(2π)3 

Q µ(k) `KÑ S D(Ωœ)(Î − iT̂ †)D†(Ωœ)D(Ω)(Î + iT̂ )D†(Ω) SKÑ e 
V 

�
(2π)3 

Q µ(k) `KÑ Î − i ̂  T + D(Ωœ) ̂  TD†(Ω) SKÑ eS T † + i ̂  T †D†(Ωœ)D(Ω) ̂  (4.13)
V 

d3Ñ T̂ † ˆ Ñ�1 −
(2π)3 

S kµ(k) `kÑS T − D(Ωœ)T̂ †D†(Ωœ)D(Ω) ̂  Ske ,TD†(Ω)
V 
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T † + iT̂  = −T̂ †T̂ , R d3Ñwhere −i ̂  kµ(k) = 1 and relation (4.9), (4.10) are used. The above 

expression can be written in a more symmetric form if we notice the fact that the 

operator ρE commute with the rotation D(Ω), resulting from the environment being 

spherically symmetric. 1 Thus we have 

d3Ñ (D(Ω)T̂ †D†(Ω)D(Ω) ̂  T †D†(Ωœ)D(Ωœ) ̂�1 −
(2π)3 

S kµ(k) `kÑS TD†(Ω) + D(Ωœ) ̂  TD†(Ωœ)
2V 

Ñ− D(Ωœ)T̂ †D†(Ωœ)D(Ω) ̂  T †D†(Ωœ)D(Ω) ̂  Ske .TD†(Ω) − D(Ωœ) ̂  TD†(Ω) 

(4.14) 

We denote T̂  
Ω = D(Ω) ̂  T operator. The above expressionTD†(Ω), which is the rotated ˆ 

simplifies to 

�1 −
(2π)3 

d3Ñ ˆ† ˆ + ̂ † T̂  
Ωœ − ̂

† ˆ − ̂ † ˆ Ñ
S kµ(k) `kÑS TΩTΩ TΩœ TΩœ TΩ TΩœ TΩ Ske 

2V 
† †d3 Ñ d3Ñ ˆ Ñ kœ ˆ Ñ ˆ Ñ kœ ˆ Ñ�1 −

(2π)3 

S kœ S kµ(k)œ `kÑS TΩ Sk
œe ` Ñ S TΩ Ske + `kÑS TΩœ Sk

œe ` Ñ S TΩœ Ske (4.15)2V 

Ω 
† 
œ TΩ Ω 

† 
œ TΩ− `kÑS T̂  SkÑœe `kÑœS ̂  SkÑe − ̀kÑS T̂  SkÑœe `kÑœS ̂  SkÑe¡, 

where an identity operator Î  = R d3kÑœ SkÑœe `kÑœS is inserted in the second step. Next, 

ˆwe connect the T operator with the scattering amplitude by the following familiar 

formula 
hÒ2

`kÑS ̂  S Ñ δ(E − Eœ)fΩ k, k ̂  (4.16)TΩ kœe = − (kˆ kœ). 
2πm 

Using the above formula, we have 

hÒ4 

d3 Ñ d3Ñ Ñ kœ Ñ kœ Ñ kœ Ñ�1 −
(2

2 
π

V

)3 

S kœ S kµ(k)
(2πm)2 

δ2(E − Eœ)œf⁄(kÑœ , k)fΩ(Ñ , k) + fΩ 
⁄
œ (Ñ , k)fΩœ (Ñ , k)Ω 

− fΩ 
⁄
œ (kÑœ , kÑ)fΩ(kÑ

œ , kÑ) − fΩ 
⁄
œ (kÑœ , kÑ)fΩ(kÑ

œ , kÑ)¡. 

(4.17) 

The squared delta function can be evaluated by the following formula [39], 

t t 
δ2(Eœ − E) = δ(Eœ − E) = Ò

m
δ(kœ − k), (4.18)Ò Ò h2k2πh 2πh 

1This condition can be released if we remember the total rotation DSE (Ω) = DS (Ω)DE (Ω) commutes 
with all operators. This is important for the later discussions, which treat the laser beam as a non-
spherical environment. 
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where the parameter t is interpreted as the time when the interaction is on during the 

scattering event, and t is assumed to be much shorter than the system’s decoherence 

time induced by a large amount of collisions [39]. Using Eq. (4.18) and integrate the 

magnitude of momentum kœ , we get 

Òt h 
d3 Ñ d3Ñ (kÑœ Ñ (kÑœ Ñ kœ Ñ kœ Ñ�1 − S kœ S kµ(k) δ(k − kœ)œfΩ 

⁄ , k)fΩ , k) + fΩ 
⁄
œ (Ñ , k)fΩœ (Ñ , k)

2V mk 

Ñ Ñ kœ Ñ kœ Ñ− fΩ 
⁄
œ (kÑœ , k)fΩ(kÑ

œ , k) − fΩ 
⁄
œ (Ñ , k)fΩ(Ñ , k)¡

Òt hk
�1 − dkk2 d2ˆ kœœf⁄ kœ, kˆ (kˆ k) + f⁄ kœ, kˆ kœ, kˆµ(k) kd2 ˆ (k ̂  k)fΩ kœ, kˆ Ωœ (k

ˆ k)fΩœ (kˆ k)S U Ω2V m 

− fΩ 
⁄
œ (kk̂œ, kk̂)fΩ(kk̂œ, kk̂) − fΩ 

⁄
œ (kk̂œ, kk̂)fΩ(kk̂œ, kk̂)¡. 

(4.19) 

The integral can be further simplified. Since fΩ(kˆ k) = f⁄ k, kk̂œ) and kk, kˆ ˆ arekœ, kˆ (kˆ kœ Ω 

symmetric in swapping the integral index, the integral of each term is real. It means 

T d2ˆ kœf⁄ kœ, kˆ (kˆ k) = T d2ˆ kœfΩœ (kˆ k)f⁄ kœ, kˆ Thus the above kd2 ˆ (kˆ k)fΩ kœ, kˆ kd2 ˆ kœ, kˆ (kˆ k).Ωœ Ω 

formula can be expressed in a more symmetric form, 

Òt hk 
µ(k) kd2 ˆ (k ̂  k)U

2 
(4.20)�1 − dkk2 d2ˆ kœUfΩ kœ, kk̂) − fΩœ (kk̂œ, kˆ .S U2V m 

Equation (4.20) gives the suppression of the system density matrix element by one 

scattering event, and it confirms our expectation that the result depends on the 

difference of the scattering amplitudes for different rotational configurations. Now we 

can proceed to derive the time evolution of the system density matrix. By substituting 

the above result into Eq. (4.8) and taking the limit t � 0, the following formula is 

obtained 
∂ρ(Ω, Ωœ, t)

= −Λ � ρ(Ω, Ωœ, t), (4.21)
∂t 

d2 ̂1 hk kd2k̂œ where Λ = R dkk2µ(k)
Ò 
T 4π2 SfΩ(kk̂œ, kk̂) − fΩœ (kk̂œ, kk̂)S2 . We call it decoher-2V m 

ence rate which quantifies how fast the matrix elements decay. Eq. (4.21) describes 

the decoherence effect by one particle scattering. An ensemble of N incoming particles 
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will build up the decoherence effect, in a way that the decoherence rate is multiplied 

by the number of particle, 

Òhk
S S S d

2ˆ fΩ kœ, kˆ , (4.22)Λ = 
Σ 

dkk2 µ(k) kd2k̂œU (k ̂  k) − fΩœ (kk̂œ, kk̂)U
2 

2 m 

where Σ = N~V , which is the number density for the incoming particles. Thus, we 

derive the general expression for the localization rate of a quantum rotational system 

from the scattering model. Equation (4.21) and (4.22) are our main results in this 

section. The expression is general, since we have not specified the concrete form of the 

scattering amplitude. Taking into account the spherical symmetry of the environment, 

we could further simplify the Eq. (4.22). Denote the scattering amplitude as 

fΩ(kk̂œ, kk̂) = D†(Ω)f(kk̂œ, kk̂)D(Ω). (4.23) 

f(kk̂œ, kk̂) is the scattering amplitude for a configuration of the system, which could 

be initially chosen to be symmetrically aligned with the coordinate axis. Thus we 

have 

UfΩ(kk̂œ, kk̂) − fΩœ (kk̂œ, kk̂)U
2 
� ›fΩ 

⁄(kk̂œ, kk̂) − fΩ 
⁄
œ (kk̂œ, kk̂)”›fΩ(kk̂œ, kk̂) − fΩœ (kk̂œ, kk̂)” 

� D(Ω)„f⁄(kk̂œ, kk̂) − D†(Ω)D(Ωœ)f⁄(kk̂œ, kk̂)D(Ωœ)D†(Ω)‚„f(kk̂œ, kk̂)

− D†(Ω)D(Ωœ)f(kk̂œ, kk̂)D†(Ωœ)D(Ω)‚D†(Ω)

� D(Ω)Uf(kk̂œ, kk̂) − D†(Ω)D(Ωœ)f(kk̂œ, kk̂)D†(Ωœ)D(Ω)U
2 
D†(Ω) 

(4.24) 

Using the above formula and the rotational symmetry of the environment, Eq. (4.22) 

can be written as 

Òhk 
Λ = 

Σ 
dkk2 µ(k) kd2 ˆ U kœ, kˆ kœ, kˆ ,d2ˆ kœ f(k ̂  k) − D†(ω)f(k ̂  k)D(ω)U

2 
(4.25)S S S2 m 

where we define D(ω) = D†(Ωœ)D(Ω), and ω can be interpreted as the absolute 

angle distance between two rotational configurations. Equation (4.25) shows that the 

decoherence rate only depends on the absolute difference of the configuration. This 
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could greatly simplify the future evaluation since we can always fix one configuration, 

from which the other configuration is rotated to by some absolute angles. In the 

following sections, we will test this theory by calculating the localization rate for two 

main source of decoherence: thermal photons and air molecules. 

4.3 Localization due to scattering of thermal photons 

We first consider a dielectric ellipsoid immersed in a photon-gas environment. As-

suming black-body radiation at temperature TE , the average number of photons with 

Òenergy hck per unit volume is given by the Planck distribution, thus the probability 

distribution of k with N photons in volume V is 

2 
µ(k) = 

N

V 

exp( 
Ò 

) − 1 
. (4.26)

hck 
kB TE 

To get the decoherence rate, a key task is to evaluate the scattering amplitude differ-

ence. For a dielectric object, the cross section is determined by the scattered radiation 

from the induced dipole. Detailed discussion can be found in the text book [41]. If 

we have an incoming field EÑ inc = Ñ k � Ñ ξÑ, the farξE exp(−ikˆ r) with a polarization vector 

field approximation gives a scattering amplitude 

k2 
Ñf(kk̂œ, kk̂) = ξœ � p,Ñ (4.27)

4π�0E 

where ξÑœ is the polarization of the outgoing radiation, pÑ is the induced dipole moment. 

The induced dipole moment is given by 

pÑ = ᾱ Ω � EÑ inc, (4.28) 

where ᾱ Ω is the polarizability of the ellipsoid with configuration Ω = (α, γ, β). Ac-

cording to Eq. (4.25), we can simply choose a configuration with the semi-axis of the 

ellipsoid aligned with the coordinate axis, such that the polarizability is diagonal 

™ f αx 0 0 

ᾱ 0 = 0 αy 0 , (4.29)
Œ Š
f 0 0 αz Ł 
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where the subscript means the Euler angles are zero for this situation. Then the 

polarizability with any configuration can be easily derived through the following ro-

tation 

ᾱ Ωœ = R−1(Ωœ)ᾱ 0R(Ωœ). (4.30) 

Now we are ready to calculate the difference of the scattering amplitude in Eq. (4.22). 

Through combining the Eqs. (4.27), (4.28), (4.29) and (4.30), we have 

ξœÑ
k4 

k)U
2 
= 

2
U (kk̂œ, kk̂) − fΩœ (kk̂œ, kˆ 

Thus, the integral becomes 

hkÒ 

U � (ᾱ 0 − ᾱ Ωœ ) � 

Ñξœ 

ÑUξfΩ (4.31)
(4π�0)2 

. 

d2ˆ kœU kd2 ˆ k4 

(4π�0)2 
Λ = 

Σ 
2 S 

2 
dkk2µ(k) 

m 
U � (ᾱ 0 − ᾱ Ωœ ) � 

Then we should average over the polarization direction of the incoming and outgoing 

ÑUξ (4.32). 

field. The expression can be simplified by using the following useful identity 

(λ) (λ)
ξ ξ = δij − k̂ 

i � kj ,Q
λ 

ˆ (4.33)i j 

ξ(1)where {Ñ 

arrive at the final result 

, ξ(2), Ñ k̂} form a orthogonal basis set. Including the expression (4.26), we 

7 

Ò

k TB E
„

hc 

ª χ61 
ζ(7) = dχS6! 0 eχ − 1 

is the Riemann ζ-function for n = 7, c is the speed of light, and the other parameters 

are 

2 2 2ζ(7) ›x a1 + y a2 + z a3 + xya4 + xza5 − yza6 ” , 
c 

Λ = 6! (4.34)‚
36�20 

where 

¢̈
¨̈
¨̈
¨̈
¨̈
¨̈
¨̈
¨̈
¨̈
¨̈
¨̈
¨̈
¨̈ 
¦
¨̈
¨̈
¨̈
¨̈
¨̈
¨̈
¨̈
¨̈
¨̈
¨̈
¨̈
¨̈
¤̈ 

a1 = 3 − 3 cos(2α) cos(2γ) − cos(2α) cos(2β) cos(2γ) + 4 cos β sin(2α) sin(2γ), 

a2 = a3 = 2 − cos(2β), 

a4 = a5 = 2 cos(2α) sin
2 β + 2 cos(2γ) sin2 β, 

a6 = 2 cos(2β), 

x = αx − αy, 

y = αx − αz, 

z = αy − αz. 
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For a cylindrical symmetric ellipsoid, only one angle dependence is expected for the 

decoherence rate, and this emerges from the general expression. Consider a z axis 

cylindrical symmetrical ellipsoid, we have αx = αy. The above result can be reduced 

to 
7 

2c kB TE
Λ = 6! „ ‚ ζ(7)(αx − αz)

2 sin2 β. (4.35)
9�2 Òhc0 

First, we see that the decoherence rate depends on the sine square of the angle, and 

it will get its maximal when β = π~2. This is reasonable because, as β increases, the 

configuration begins to repeat itself when β becomes larger than π~2. Second, the 

decoherence rate strongly depends on the thermal temperature. Increasing the tem-

perature will greatly suppress quantum coherence. Also, we find that the temperature 

dependence for rotational decoherence is two powers lower in TE than that for center 

of mass decoherence [39]. Third, if we continue setting αx = αz, the decoherence rate 

is zero, which is trivial because the scattering event can not distinguish the rotational 

state of a spherically symmetrical object. 

4.4 Localization due to scattering of air molecules 

In this section, we will consider the localization of a ellipsoidal system due to 

collision with air molecules. The air molecule is assumed to be in thermal equilibrium, 

which satisfy the Maxwell-Boltzmann distribution 

3~2 
hÒ2 hÒ2k2 

µ(k) = „ ‚ exp(− ). (4.36)
2πmkBTE 2mkBTE 

Refer to Eq. (4.25), a key part is to calculate the difference of scattering amplitude. In 

the current situation, we will adopt the Born approximation to evaluate the scattering 

amplitude. In the Born approximation, the scattering amplitude is given by the 

following formula 

m 
f(kÑœ , kÑ) = − S d

3 rÑexp Ž − i(kÑœ − kÑ)rÑž ⁄ V (rÑ), (4.37)Ò2πh2 
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in which V (Ñr) is the potential of the system. In a real situation, the potential can 

be very complicated. Here, we consider a cylindrically symmetric ellipsoid which is 

modeled by the following potential 

V (rÑ) = D†(θ, φ)V0(rÑ)D(θ, φ), (4.38) 

where V0(rÑ) = V0 exp Ž − a(x2 + y2) − bz2ž, with its symmetric axis placed at the z 

direction. The parameters a and b are positive and unequal. The symmetric axis of 

the potential V (Ñr) is in a direction determined by the polar and azimuthal angles 

(θ, φ). Since the system is cylindrically symmetric, only two Euler angles are enough 

to specify its rotational configuration. We first calculate the scattering amplitude 

Eq. (4.37) with the above potential V (rÑ). A convenient way to do the integral is in 

Cartesian coordinates. We first perform a coordinate rotation O(x, y, z)� OÇ(x,˜ y,̃ z̃)

to get V (rÑ) � VÇ(rÑ), such that the symmetric axis of the potential VÇ(rÑ) is aligned 

with the z̃  axis, then calculate the integral in the OÇ coordinate. The final scattering 

amplitude is obtained by rotating the integral result back to the original coordinate 

O. The scattering amplitude is given 

½ 2 2 2 
mV0 π π ΔÉkx ΔÉky ΔÉkz

fθ,φ(kÑœ , kÑ) = Ò exp œ − − − ¡, (4.39)
2πh2 a b 4a 4a 4b 

Ð� Ð� Ð� 
È Éwhere the vectors Δk = (ΔÉkx, ΔÉky, Δkz) and Δk = (Δkx, Δky, Δkz) satisfy ΔÈk = 

Ry 
−1(θ)Rz 

−1(φ)
Ð� 
Δk, and Δki = ki 

œ −ki, ΔÉki = kÇi 
œ −kÇi, (i = x, y, z). Substituting Eq. (4.36) 

and Eq. (4.39) into Eq. (4.25), we get 

Ò

» 
0Λ = 

32π N 
2πm7(kbTE )

5 
(a − b)2V 2 

sin2 θ. (4.40)
15h8 V a4b3 

First, we see that the decoherence rate only depends on the polar angle, which specifies 
(a−b)2V 2 

the angle difference for current situation. Second, the parameter a4b3
0 is determined 

by the size and geometry of the system particle. When we set a = b, the system 

becomes spherically symmetric, which reduces the decoherence rate to zero. Moreover, 

the rate has a dependence on the two and a half power of the temperature, which is 

one power higher than that for the case of center of mass decoherence [39]. The rate 
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is also proportional to environment particle density N~V , which is quite reasonable 

because higher density increases the scattering rate. 

4.5 Summary and conclusion 

One of the main features of decoherence of a quantum system is to take into ac-

count of the unavoidable environment interactions. For whatever quantum system, 

it will more or less suffer from the scattering with the environment, including ther-

mal photons, air molecules, or even 3K cosmic background radiation etc [39]. These 

interactions produce a system-environment entanglement, which causes the system 

information to leak into the environment. This quantum to classical transition mech-

anism due to scattering not only works for the center of mass degree of freedom, but 

is also true for the system’s rotational states. 

In this chapter, we derived a general expression for the decoherence of a rotational 

quantum system. The decoherence rate depends on the difference of the scattering 

amplitude for different rotational configurations. To test the formula we obtained, we 

calculated the localization rate due to scattering of thermal photons and air molecules. 

The system is modeled as an ellipsoid, which is initially prepared in any quantum 

rotational superposition states. Our calculation shows that, for a given environment, 

the angular difference of the superposed states determines the decoherence rate. If 

we introduce a concept of angular distance, we may claim that the further the super-

posed states are distributed, the quicker the scattering will get them localized. The 

formalism developed in this chapter will be used to study heating and cooling of a 

laser levitated nanoparticle in the coming chapters. 
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5. CLASSICAL CALCULATION OF HEATING AND 

COOLING OF AN ELLIPSOIDAL NANOPARTICLE 

TRAPPED IN A LASER BEAM 

In this chapter, we investigate heating and parametric feedback cooling of an op-

tically trapped anisotropic nanoparticle in the laser-shot-noise-dominant regime. It 

is demonstrated that the related dynamical parameters, such as the oscillating fre-

quency and shot noise heating rate, depend on the shape of the trapped particle. For 

an ellipsoidal particle, the ratio of the axis lengths and the overall size controls the 

shot noise heating rate relative to the frequency. For a particle with smaller ellip-

ticity or bigger size, the relative heating rate for rotation tends to be smaller than 

that for translation indicating a better rotational cooling. For the parametric feed-

back scheme, we also present results on the lowest occupation number that can be 

achieved as a function of the heating rate and the amount of classical uncertainty in 

the position measurement. 

5.1 introduction 

As mentioned in the previous chapter, the transition between a quantum and a 

classical description of a system as its size is increased has been a problem since 

the birth of quantum mechanics [10, 37, 38, 42]. Understanding the behavior of in-

creasingly large systems in terms of quantum mechanics is one of the motivations for 

investigating mesoscopic quantum phenomena [43,44]. In order to observe mesoscopic 

quantum coherence, a mesoscopic system needs to be cooled to the quantum regime 

and it should be well isolated from its environment such that the quantum coherence 

is not destroyed before any observation. Recently, laser levitated nanoparticles have 
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become a promising candidate to study mesoscopic quantum phenomena due to this 

system’s favorable properties regarding decoherence and thermalization. [43, 45–48]. 

Despite the great advantage of laser levitation, the nanoparticle still suffers from 

shot noise due to photon scattering from the trapping laser. In ultrahigh vacuum, this 

shot noise is the dominant source of decoherence [11], which will lead to an increase in 

energy of the solid body degrees of freedom: the center of mass motion and the solid 

body rotations. Thus, in a laser levitated cooling experiment, the photon scattering, 

as an unavoidable factor, plays the role of setting a fundamental cooling limit to the 

system since the heating from shot noise will counteract whatever method is used to 

cool the nanoparticle. 

Cooling and controlling the center of mass vibration of levitated nanoparticles 

have been discussed intensively in the past several years [49–52]. The interest in the 

rotational motion of a non-spherical nanoparticle is also increasing [3,48,53,54]. The 

anisotropy of a dielectric nanoparticle has an orientation dependent interaction with 

a linearly polarized optical field which leads to a restricted, librational motion in 

some of the orientation angles when the laser intensity is large enough [55, 56]. The 

oscillating frequency of the rotational degrees of freedom can be much larger than 

that of the spatial degrees of freedom indicating that the rotational ground state can 

be reached at a higher temperature [48]. However, this feature does not guarantee 

that the ground state of the librational motion is easier to reach than that for the 

center of mass vibration. From our previous study [3], the decoherence rate due to 

shot noise in the rotational degrees of freedom was several orders of magnitude faster 

than that in the translational degrees of freedom for a nanoparticle interacting with 

blackbody radiation. The results from the previous chapter suggested that cooling 

the center of mass vibrations has a practical advantage over cooling the librational 

motion. 

In this chapter, we investigate the shot noise heating and parametric feedback 

cooling [49] of a nano ellipsoid trapped in a linearly polarized laser beam. The 

nanoparticle is trapped in the center of the beam with its long axis closely aligned 
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with the laser polarization direction. Because the nanoparticle is nearly oriented 

with the laser polarization, the decoherence and shot noise heating rate of the libra-

tional motion is qualitatively changed from that for a nanoparticle interacting with 

blackbody radiation. The heating rate differs in the rotational and the translational 

degrees of freedom depending on the particle size and geometry. Importantly, we 

find that the relative rotational heating rate is slower than translation for a wide 

range of nanoparticle sizes and shapes, suggesting a better rotational than transla-

tional cooling. However, the preference for smaller relative heating rates becomes 

much less certain when classical feedback uncertainty is included in the calculation. 

By one measure, a lower optimal cooling limit can be reached for motions with a 

higher relative heating rate. Thus, the details of the limitations imposed by the clas-

sical measurement uncertainty will determine whether lower quantum numbers can be 

achieved for vibrations or librations. The results of the feedback cooling calculations 

are suggestive, instead of definitive, because they are based on classical mechanics. 

Quantum calculations with more realistic measurement assumption would allow for 

estimates of the feedback cooling limits [12, 57–60]. Although more computationally 

demanding, a quantum version of feedback cooling of levitated nanoparticles should 

be within reach. We leave that discussion for the next chapter. 

5.2 Shot noise heating in a laser beam 

We consider a nano ellipsoid with a size about 50 nm and mass m trapped in a 

linearly polarized laser beam, as shown in Fig. (5.1). The laser field is polarized 

in z and propagating in the positive y direction, which can be denoted by EÑ inc = 

ξEÑ exp(ikÑ 0 �rÑ), where ξÑ, E and kÑ 0 = k0ŷ  are the polarization vector, the field magnitude 

and wave number respectively. The system is assumed to be well isolated from its 

environment and recoil from the elastically scattered photons is the major source of 

decoherence. 



54 

z

x

y

↵

�

�

Figure 5.1. A symmetric ellipsoidal nanoparticle is trapped in a laser 
beam (shown by the red line), which is polarized in the z direction and 
propagating in the positive y direction (shown by the red arrow). Besides 
the vibrational motion in the center of mass degrees of freedom, the ellip-
soid also rotationally vibrates with its long axis closely aligned with the 
laser polarization direction. The angles α, β, γ denote an orientation of 
the nanoparticle. 
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5.2.1 Shot noise in translational degrees of freedom 

In order to compare the shot noise in rotation and translation, we first present the 

well known photon recoil heating of a trapped nanoparticle in its center of mass motion 

[11, 43]. Classically, the levitated nanoparticle experiences a momentum kick from 

each scattered photon [11], each of which gives an average recoil energy ΔE = hÒ2k2~2m 

when the nanoparticle is much smaller than the wavelength of the light. The shot noise 

heating rate can be derived through multiplying the recoil energy by the momentum 

transfer cross section and the photon flux. Quantum mechanically, the interaction 

between the system and the incoming photons causes a decoherence in the system 

state [37], which generates a diffusion in momentum space. The classical and quantum 

mechanical treatments lead to the same shot noise heating rate. In the position basis, 

the master equation can be written as [10] 

∂ 
ρ(x, x œ) = −Λ(x, x œ)ρ(x, x œ). (5.1)

∂t 

The unitary part of the time evolution is not shown in the above expression. Λ(x, xœ)

is the decoherence rate. In a long-wavelength approximation (which is a good ap-

proximation in the cases we consider), the decoherence rate Λ = D(x − xœ)2 , where D 

is the momentum diffusion constant and it takes the form 

2 
D = Jp S d

3kµÑ (kÑ) S d
2k̂œUf(k,Ñ kÑœ)U

2 k2 

Uk̂ − k̂œU . (5.2)
2 

Jp is the photon flux, µ(kÑ) is the incoming wave number distribution and dσ~dΩ = 

Sf(k,Ñ kÑœ)S2 is the differential cross section. kÑ and kÑœ are the incoming and outgoing wave 

vectors, respectively. The shot noise heating rate can be evaluated by the following 

formula 

= 
d ̀ HT e ∂

ĖT = tr(KT ρ), (5.3)
dt ∂t 

where HT = KT + VT denotes the system Hamiltonian and KT = P
2
~2m is the free 

system Hamiltonian. The potential energy VT is absent from the right hand side of 
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Eq. (5.3) since it has zero contribution after taking the trace. Combining the above 

equations, a straightforward calculation yields the following result 

˙ d3Ñ d2k̂œ 
dσ hÒ2k2 

ET = Jp S kµ(kÑ) S 2(1 − cos θ), (5.4)
dΩ 2m 

where θ is the angle between the incoming and outgoing wave vector. Equation (5.4) 

gives the translational shot noise heating rate, which is exactly the same as what one 

would expect from a classical derivation [49]. 

In order to compare the above calculation with experimental results [11], Eq. 

(5.4) needs to be further evaluated. We are interested in the shot noise of a system 

coherently illuminated by a laser beam, so the incoming wave vector distribution can 

be approximated by 

µ(kÑ) = δ(kÑ − kÑ 0), (5.5) 

in which kÑ 0 = k0ŷ  is the incoming wave vector. If we denote ξœ as the polarization 

vector of the outgoing wave, the scattering amplitude can be written as [61] 

k2 

f(kÑœ , kÑ) = ξÑœ � P ,Ñ (5.6)
4π�0E 

where PÑ = α � EÑ inc is the induced dipole moment. For now, we choose a spherical 

nanoparticle (a non-spherical particle is discussed below), such that the polarizability 

is a scalar 
� − 1 

α = 4π�0 „ ‚ r 3 , (5.7)
� + 2 

where r is the radius, � and �0 are the relative and the vacuum dielectric constant 

respectively. Substituting the above equations into Eq. (5.4) and using the following 

well-known formula [62] 

Q �i
λ�λj = δij − k̂ 

ik̂ 
j (5.8) 

λ=(1,2) 

to average the polarization of the outgoing wave, the shot noise heating rate is ob-

tained 
2 

hÒ2 k2 hÒ2k2 

Ė 
T = D = 

8πJp 
„ 0 ‚ α2 0 . (5.9) 

m 3 4π�0 2m 
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Using the parameters in Ref. [11], the laser wavelength λ = 1064 nm, the particle 

mass of a fused silica of radius r = 50 nm is approximately 1.2 × 10−18 kg, the rel-

ative dielectric constant is about 2.1, and the photon flux Jp is equal to the laser 

intensity over the energy of a photon. The laser intensity at the focus is given by 

I = Pk2NA2~2π. The laser power is P = 70 mW and NA = 0.9 is the numerical aper-

ture for focusing [11] (These values are used throughout this chapter unless specified 

otherwise). Combining all of these factors, the translational shot noise heating rate 

is 

ĖT � 200 mK/sec, (5.10) 

which matches well the experimental result in Ref. [11]. 

5.2.2 Shot noise in rotational degrees of freedom 

Inspired by the experiment of laser trapping and cooling of non-spherical nanopar-

ticles [48, 54], the master equation of rotational decoherence was studied for either 

mass particles or thermal photons scattered from an anisotropic system, and a squared 

sine dependence on the orientation difference was found in the angular localization 

rate [3, 53]. Similar to the momentum diffusion induced by the translational deco-

herence, the rotational decoherence generates an angular momentum diffusion, which 

was discussed for a spherically symmetric environment in Ref. [53]. Based on the 

rotational master equation, the time evolution of the expectation value of the angular 

momentum J was shown to be a constant, while the second moment of the angular 

momentum indeed follows the diffusion equation 

`J2et = `J2e0 + 4Dt, (5.11) 

where D is the diffusion coefficient determined by different types of scattering. The 

diffusion coefficients of Rayleigh-type and Van der Waals-type scattering were given 

in Ref. [53]. 

In this section, we discuss the rotational shot noise from photon scattering in a 

laser beam. The starting point is the master equation of rotational decoherence. As 
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shown in Fig. (5.1), the configuration of the ellipsoid can be described by its Euler 

angles SΩe = Sα, β, γe [3,53]. If we denote ρ(Ω, Ωœ) as the density matrix of the system 

in the orientational basis, the time evolution follows the equation [3] 

∂ 
ρ(Ω, Ωœ) = −Λ(Ω, Ωœ)ρ(Ω, Ωœ), (5.12)

∂t 

where 
Jp 

d3Ñ kœ (Ñ k) − fΩœ (ÑΛ = S kµ(kÑ) S d
2ˆ UfΩ k

œ , Ñ kœ , kÑ)U
2 

(5.13)
2 

is the rotational decoherence rate. Detailed discussion about the equation can be 

found in the previous chapter [3]. Similar to Eq. (5.3), the rotational shot noise 

heating can be obtained by evaluating 

d ∂
ĖR = `HRe = tr(KR ρ), (5.14)

dt ∂t 

where HR = KR +VR is the rotational Hamiltonian, VR is the potential energy which 

has zero contribution in the above equation, and KR is the free rotational part. For 

a symmetric top, KR takes the following form [63] 

hÒ2 

( 
∂2 ∂ 

+ (
I1 2 β) 

∂2 

KR = − + cot β + cot 
2I1 ∂β2 ∂β I3 ∂γ2 

(5.15)
1 ∂2 

− 
2 cos β ∂2

+ ), 
sin2 β ∂α2 sin2 β ∂α∂γ 

where I1 and I3 are the moments of inertia of the ellipsoid along the short and long 

axis, respectively. To calculate the shot noise heating, the next step is to determine 

the decoherence rate Λ. As with the derivation of the translational shot noise, the 

distribution of the laser wave vector takes the delta function µ(kÑ) = δ(kÑ − kÑ 0), where 

kÑ 0 is in the propagating y direction. The scattering amplitude is given by 

k2 

kœ Ñ ξÑœ ÑfΩ(Ñ , k) = � ᾱ Ω � Einc, (5.16)
4π�0E 

where ᾱ Ω is the polarizability matrix for a specific configuration SΩe = Sα, β, γe. If we 

place the ellipsoid symmetrically along the coordinate axis, the polarizability matrix 

will be diagonal 
™ f αx 0 0 

ᾱ 0 = 0 αy 0 , (5.17)
Œ Š
f 0 0 αz Ł 



¯ ¯

59 

where αx = αy for a symmetric top. The polarizability with other rotational configu-

ration can be derived through the following operation 

ᾱ Ω = R
†(Ω)ᾱ 0R(Ω). (5.18) 

Combining the above equations and averaging over the polarizations of the outgoing 

wave using Eq. (5.8), the integral of Eq. (5.13) becomes 

k4Jp 0 2π 
Λ = 

2 (4π�0)2 3 
(αz − αx)

2(1 − cos(2β) cos(2βœ) 
(5.19) 

− cos(α − αœ) sin(2β) sin(2βœ)). 

The polarizability αx,z should not be confused with the Euler angle α and αœ . As 

expected, Λ differs from the decoherence rate from blackbody radiation given in the 

previous chapter [3]. The localization rate Λ depends on the orientations SΩe and 

SΩœe individually since the polarization of incoming photons is not isotropic. There 

is no dependence on γ because we’re assuming a symmetric top. The localization 

rate depends only on the difference of the angle α because the photons are linearly 

polarized in the z-direction which does not have a preferential angle in the xy-plane. 

For the cases considered below, we take the small oscillation approximation β P 1 

which will be justified in the next section. (Unless specified otherwise, the symbol � 

in this chapter means this approximation is used.) Combining the Eqs. (5.12), (5.15) 

and Eq. (5.19), a direct evaluation of Eq. (5.14) yields the rotational shot noise 

heating rate 
2 

Ė 
R � 

8πJp 
„ 
k0
2 

‚ (αz − αx)
2 h
Ò2 

, (5.20)
3 4π�0 2I1 

where terms of order β2 have been dropped. 
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(a, b)~nm αz −αx 
αz 

ωβ1 ~2π ωx ~2π ωy ~2π ĖR(mK/s) ĖT (mK/s) ĖR ~ ĖT 
ωβ1 
ωx 

` ̇neR
` ̇neT 

ΔnR 
ΔnT 

(15, 70)

(38, 60) 

0.60 

0.28 

0.07 

4.02 MHz 

2.20 MHz 

998 kHz 

625 kHz 

497 kHz 

454 kHz 

398 kHz 

316 kHz 

289 kHz 

3.83 × 103 

1.84 × 103 

113 

382 

838 

824 

10.0 

2.20 

0.14 

6.43 

4.42 

2.20 

1.56 

0.50 

0.06 

0.24 

0.11 

0.03 

Table 5.1. 
The parameters for three different nano-diamonds in a laser trap. The 
data is ordered for diamonds with decreasing ellipticity, while their sizesº 
a2 + b2 are kept approximately the same. The trapping laser has wave-

length λ = 1064 nm and power P = 70 mW. 

(48, 53) 

Table 5.2. 
The parameters for three different nano-diamonds in a laser trap. The 
data is for diamonds with increasing size while fixing the ellipticity such 
that the ratio (αz − αx)~αz stays approximately the same. The trapping 
laser has wavelength λ = 1064 nm and power P = 70 mW. 

(49, 78) 

(a, b)~nm αz −αx 
αz 

ωβ1 ~2π ωx ~2π ωy ~2π ĖR(mK/s) ĖT (mK/s) ĖR ~ ĖT 
ωβ1 
ωx 

` ̇neR
` ̇neT 

ΔnR 
ΔnT 

(27, 42)

(38, 60) 

0.28 

0.28 

0.28 

3.14 MHz 

2.20 MHz 

1.68 MHz 

497 kHz 

497 kHz 

497 kHz 

316 kHz 

316 kHz 

316 kHz 

1.23 × 103 

1.84 × 103 

2.46 × 103 

292 

838 

1830 

4.22 

2.20 

1.34 

6.31 

4.42 

3.40 

0.68 

0.50 

0.39 

0.11 

0.11 

0.11 
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Table 5.3. 
The parameters for three different fused silica in a laser trap. The dataº 
is for silica with different ellipticities, while their sizes a2 + b2 are kept 
approximately the same. The trapping laser has wavelength λ = 1064 nm 
and power P = 70 mW. 

(a, b)~nm αz −αx 
αz 

ωβ1 ~2π ωx ~2π ωy ~2π ĖR(mK/s) ĖT (mK/s) ĖR ~ ĖT 
ωβ1 
ωx 

` ̇neR
` ̇neT 

ΔnR 
ΔnT 

(15, 70)

(38, 60) 

0.30 

0.13 

0.03 

1.90 MHz 

1.17 MHz 

549 kHz 

419 kHz 

388 kHz 

374 kHz 

267 kHz 

247 kHz 

238 kHz 

119 

93.2 

6.50 

48.6 

197 

240 

2.45 

0.47 

0.03 

4.52 

3.01 

1.47 

0.54 

0.16 

0.02 

0.12 

0.05 

0.01(48, 53) 

Table 5.4. 
The parameters for three different fused silica in a laser trap. The data 
is for silica with increasing sizes while the ellipticity is fixed such that the 
ratio (αz − αx)~αz stays approximately the same. The trapping laser has 
wavelength λ = 1064 nm and power P = 70 mW. 

(49, 78) 

(a, b)~nm αz −αx 
αz 

ωβ1 ~2π ωx ~2π ωy ~2π ĖR(mK/s) ĖT (mK/s) ĖR ~ ĖT 
ωβ1 
ωx 

` ̇neR
` ̇neT 

ΔnR 
ΔnT 

(27, 42)

(38, 60) 

0.13 

0.13 

0.13 

1.67 MHz 

1.17 MHz 

899 kHz 

388 kHz 

388 kHz 

388 kHz 

247 kHz 

247 kHz 

247 kHz 

62.6 

93.2 

124 

69.1 

197 

427 

0.91 

0.47 

0.29 

4.30 

3.01 

2.31 

0.21 

0.16 

0.12 

0.05 

0.05 

0.05 
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5.3 Relative cooling of the ellipsoid in the laser beam 

There are several possible quantities that are useful when comparing the cooling of 

translation and rotation. The first one is the ratio of magnitudes of the translational 

and rotational shot noise, which is written as 

Ė 
R 
� 5 „ º

λ 
‚ 

2 
(αz − αx)

2 

, (5.21) 
Ė 

T 2π a2 + b2 αz 
2 

where the moment of inertia I1 = 
1 m(a2 + b2) with a and b being the short and long 5 

axis of the ellipsoid and k0 = 2π~λ are used. The polarizability can be determined by 

the formula [64] 
� − 1 

αi = �0V (5.22)
1 + Li(� − 1)

, 

where V is the particle volume, and � is the relative dielectric constant. Li=(x,y,z) is 

determined by 

= 
1 − Lz

Lx = Ly , 

2 
2 (5.23)

1 − e 1 + e 
Lz = ( 

1 
ln ),

2e 2e 1 − e 

where e =
» 
1 − a2~b2 is the ellipticity of the nanoparticle. Using the wavelength 

λ = 1064 nm and � = 5.7 for diamonds and � = 2.1 for silica, the rotational and 

translational shot noise and their ratios Ė 
R ~Ė 

T for several nano-diamonds and fused 

silica are given in Tab. 5.1, 5.2, 5.3 and 5.4 (For convenience, other related quantities 

are included in the tables). The geometries of the ellipsoids in the tables are chosen 
º 

in a way such that their sizes a2 + b2 or ellipticities are approximately fixed. From 

the table, we see that the ratio Ė 
R ~Ė 

T differs depending on the ellipticity or size of 

the nanoparticle. More elongated or smaller ellipsoid tends to have higher shot noise 

heating in the rotational degrees of freedom, which suggests that particles with more 

spherical shape or bigger size may be better for rotational cooling. 

The second useful quantity is the ratio of the rate of change of occupation number 

`ṅ eR ~ ` ̇ where hω is defined as the mean occupation number, and EneT , `ne � E~Ò 

and ω are the energy and the oscillating frequency in the corresponding degree of 



63 

freedom. For exploration of quantum phenomena, the occupation should be as small 

as possible. In order to get the ratio, it is necessary to analyze the mechanical motion 

of the nanoparticle in the laser trap. We consider an incident Gaussian beam which 

is z polarized and propagates in the y direction, as shown in Fig. (5.1). The detailed 

discussion of the Gaussian beam can be found in Ref. [49, 65]. The ellipsoid in the 

laser trap experiences a force and a torque 

Fi = 
1
(PÑ � ∂iEÑ inc),
2 (5.24)
1 

Mi = (PÑ × EÑ inc)i,
2 

where no absorption is assumed such that the dipole moment PÑ is real. For the cen-

ter of mass motion, using the small oscillation approximation, the particle oscillates 

harmonically in the trap and each degree of freedom has an oscillating frequency, 

½ 
αz E0

ωx = ωz � , 
m w0

½ (5.25)
αz E0

ωy � ,
2m y0 

where all corrections quadratic in the amplitude of oscillations have been dropped. 

y0 = πw2~λ, w0 = λ~(πNA) is the beam waist and E0 is the field strength in the0 

center of the laser focus. Similarly, for the rotational motion, due to the torque 

exerted on the particle, the long axis of the ellipsoid will tend to be aligned with the 

direction of the laser polarization, 1 as shown in Fig. (5.1). From the small oscillation 

approximation, the torsional oscillating frequencies can be written as 

¾ 
αz − αx

ωβ1 = ωβ2 � E0, (5.26)
2I1 

where all corrections quadratic in the amplitude of oscillations have been dropped. 

The subindex β1 and β2 are used to denote the torsional vibration along the x and 

y axis, respectively. From the above equations, one finds that the ratio of torsional 

1Strictly speaking, we are restricting the discussion to the case I3 P I1 = I2, where the rotation in 
the symmetric degree of freedom is ignored. Or the symmetric rotation is small. 
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Figure 5.2. The ratio of the occupation number change `ṅ Re ~ `ṅ T e in 
terms of ellipticity (a) and size (b). (a) The size of particles is fixed

º 
at a2 + b2 = 71 nm while the ellipticity increases. (b) The ellipticity is 
fixed at e = 0.77 while the particle size increases. The blue curves are for 
diamonds while the yellow curves are for silica. 

Figure 5.3. The ratio ΔnR ~ΔnT in terms of the particle ellipticity. The 
blue and yellow curves correspond to Diamond and Silica respectively. 

oscillating frequency to the translational oscillating frequency is aproximately given 

by 
ωβ1 5w0 αz − αx 

º ¾ 

� » . (5.27)
ωx 2(a2 + b2) αz 

In an experiment, the beam waist is much bigger than the size of the particle, and the 

polarizability αz and αz − αx are roughly the same order, so the rotational oscillating 

frequency is generally higher than the translational oscillating frequency [48]. 
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Thus, the ratio of the corresponding rate of change of occupation number is ob-

tained ¿
˙`ṅ eR ER ~ωβ1 λ2 

À10(αz − αx)
3 

`ṅ e
� 
˙ 

� 
4π2 

Á
(a2 + b2)α3 

, (5.28) 
T ET ~ωx w0 z 

where the ratio is determined by the laser parameters, the particle size and the 

quantity (αz − αx)~αz (determined by the particle ellipticity and dielectric constant). 

The ratios `ṅ eR ~`ṅ eT with respect to the particle ellipticity and size are given in Fig. 

(5.2). The blue and yellow curves are for diamonds and silica respectively. In Fig. 

5.2(a), the particle size is kept fixed while we increase the ellipticity. As the particle 

shape approaches more spherical (ellipticity decreases), the ratio `ṅ eR ~`ṅ eT becomes 

smaller. In Fig. 5.2(b), we change the particle size while the particle ellipticity stays 

fixed. As the particle size increases, we see `ṅ eR ~`ṅ eT gets smaller. In addition, 

comparing the results for diamond and silica with the same geometries, we see that 

the ratio `ṅ e ~`ṅ e is generally smaller for silica. The reason is that (αz − αx)~αz inR T 

Eq. (5.28) is smaller for particles with smaller dielectric constants and silica has a 

smaller dielectric constant than diamond. Intuitively, the ratio `ṅ eR ~`ṅ eT should be 

chosen as small as possible so as to get a better rotational cooling to the ground state. 

However, we will show later that the unavoidable measurement noise quantitatively 

modifies this expectation. 

The third useful quantity is the ratio ΔnR ~ΔnT , where Δn � 2π ˙ hω2E~Ò is the 

change in occupation number over one vibrational period in the corresponding degree 

of freedom. The ratio can be written as 

Ė 
R ~ω2ΔnR β λ2 αz − αx

= � 
2 , (5.29)

ΔnT ˙ 2π2w αzET ~ωx 
2

0 

which only depends on the laser parameters, the particle ellipticity and the particle 

dielectric constant. The ratios ΔnR ~ΔnT for diamond and silica with respect to the 

particle ellipticity are given in the tables and are plotted in Fig. (5.3). The curves 

show that the ratio increases with the particle ellipticity and also increases with the 

particle dielectric constant. This quantity is important and we will show in Sec. 
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Figure 5.4. The classical simulation results of shot noise heating for nano-
diamonds in both the translational and rotational degrees of freedom. 
Each curve is averaged over 400 individual reheating trajectories. (a) and 
(b) are for the nanoparticle with half axes (a = 15 nm, b = 70 nm), while 
(c) and (d) with half axes (a = 38 nm, b = 60 nm), (e) and (f) with half 
axes (a = 48 nm, b = 53 nm). The dashed lines are the heating curves 

˙ ˙T = T0 + Et with T0 the initial temperature and E the corresponding 
heating rate from Tab. 5.1. 

5.5 that this quantity actually controls the classical dynamics during the feedback 

cooling. 
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The above equations are based on a small oscillation angle approximation. In a 

cooling experiment, the maximal oscillation angle can be estimated by 
¿

À
2kBT 

βmax � Á 
I1ω2 , (5.30) 

β 

where kB is the Boltzmann constant and T denotes the temperature. Using the data 

(a = 48 nm, b = 53 nm) from Tab. 5.1 and 5.3, we find that the maximal angle spread 

is still small (βmax � 10−3 rad for diamond, βmax � 10−2 rad for silica) at T = 0.1 K. 

For higher oscillating frequencies and lower temperature, the maximal angle spread 

βmax will be even smaller. 

5.4 Simulation of shot noise heating and feedback cooling 

Parametric feedback cooling is discussed in Ref. [49], where a single laser beam is 

used for both trapping and cooling. The spatial motion of a nanoparticle is cooled 

from room temperature to subkelvin, and the quantum ground state cooling is also 

suggested with the same cooling mechanism. In this parametric feedback scheme, 

a signal at twice the oscillation frequency is obtained by multiplying the particle’s 

position with its first time derivative x(t)ẋ (t). This information is then fed back to 

the system, which leads to a loop that on average acts as a drag on the particle. 

The parametric cooling works by simply modulating the intensity of the trapping 

laser, and this scheme is extremely suitable for rotational cooling since it avoids 

relatively complex operations if one tries to feedback torque. In this section, the 

feedback cooling calculations are based on ideal assumptions about measuring the 

nanoparticle’s position and orientation. The discussions of feedback cooling with the 

measurement uncertainty are given in the next section. 

Combining the translational and rotational motion, the classical dynamics of the 

ellipsoid is governed by 

d2xi 
m � −mω2(1 + Δ)xi,
dt2 i 

(5.31)
d2βj

I1 � −I1ω
2 (1 + Δ)βj .βjdt2 
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Figure 5.5. The parametric feedback cooling for nano-diamonds in all de-
grees of freedom, where each curve shows the time evolution of the average 
occupation number in the corresponding degree of freedom. Data are col-
lected by averaging 30 cooling trajectories. Calculations are for classical 
parametric feedback cooling, thus results for occupation numbers less than 
10 are suggestive. (a) and (b) depict the translational and rotational cool-
ing respectively for a nanoparticle with half axes (a = 15 nm, b = 70 nm). 
The cooling parameter Δ1 = {χi = 1.1 × 1011 s~m2, ζi = 1011 s~m2} for 
t < 100ms and Δ2 = 10Δ1 for t > 100ms. Similarly, (c) and (d) show the 
cooling for half axes (a = 38 nm, b = 60 nm) while (e) and (f) for half axes 
(a = 48 nm, b = 53 nm). 
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Figure 5.6. The parametric feedback cooling in only the rotational 
degrees of freedom for a nano-diamond (a = 48 nm, b = 53 nm). All curves 
are averaged over 400 trajectories. (a) and (b) show the cooling in both 
β1 and β2 with the cooling parameters Δ1 = {χ1,2,3 = 0, ζi = 1011 s~m2}. 
The black and purple lines show the rotational motion gets cooled as we 
increase the feedback parameters from Δ1 to Δ2 = 10Δ1. The red, green 
and blue lines depict that the heating trajectories in translational degrees 
of freedom. (c), (d) and (e) show the result of cooling in only β1 with 
parameters Δ1 = {χ1,2,3 = 0, ζ2 = 0, ζ1 = 1011 s~m2} and Δ2 = 10Δ1, and 
heating in β2 and x, y, z respectively. In (d), resonance heating causes 
massive heating in the uncooled β2 degree of freedom. The dashed lines 
in (b), (d) and (e) are the heating curves T = T0 + Et˙ with T0 the initial 

˙temperature and E the corresponding heating rate from Tab. 5.1. 
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The small oscillation approximation is used in the above equations where all correc-

tions quadratic in the amplitude of oscillations have been dropped. xi = (x, y, z) and 

βj = (β1, β2). The shot noises in translation and rotation are added at each time step 

according to 

pi(t + δt) = pi(t) + δWi � δpi, 
(5.32) 

Li(t + δt) = Li(t) + δRj � δLj , 

where δWi, δRj are the standard normally distributed random numbers, and δpi = 
¼ ¼ 

2Ė 
Ti δt � m, δLj = 2Ė 

Rj δt � I are the fluctuation of the momentum and angular 

momentum for each degree of freedom induced by the shot noise. The heating rate 

in the z direction (optical polarization direction) is half that of the other two trans-

lational degrees of freedom because the photons scatter less in the direction of the 

laser polarization [11]. Δ is a scalar which takes the form 

Δ = Q χixiẋi + Q ζir 2βiβ̇ 
i, (5.33) 

i=1,2,3 i=1,2 

where r is the size of the nanoparticle. The feedback parameters χi and ζi have 

the unit T ime~Length2 and they control the cooling limit and speed. Details about 

the parameters and the parametric feedback cooling limit are given in Appx. A. 

Simulations are performed for three different nano-diamonds with decreasing el-

lipticity, whose half axes go from (a = 15 nm, b = 70 nm), (a = 38 nm, 60 nm) to 

(a = 48 nm, b = 53 nm). The corresponding parameters are given in Tab. 5.1. The 

classical equations of motion are numerically solved using a fourth-order Runga-Kutta 

algorithm with adaptive time steps [66]. All simulations are repeated many times and 

data is collected by averaging over the different runs to reduce the random noise. 

We start by presenting the simulation with zero feedback (χ1,2,3 = 0, ζ1,2 = 0), 

which corresponds to the pure shot noise heating process. The system is prepared 

initially at temperature Ti = 1 µK. The result is shown in Fig. (5.4), where each curve 

depicts the time evolution of the energy in the corresponding degrees of freedom. 

Figure 5.4(a) and 5.4(b) show the case (a = 15 nm, b = 70 nm) in the first 100 ms. 

The rotational shot noise is about an order of magnitude larger than that in the 
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translational motion. The case (a = 38 nm, b = 60 nm) is given in Fig. 5.4(c) and 

5.4(d), in which the rotational and translational shot noise heating rates are of similar 

size. As the ellipticity gets smaller, the shot noise in the rotational degrees of freedom 

becomes less than that in the translational motion, which is shown in the Fig. 5.4(e) 

and 5.4(f) for the case (a = 48 nm, b = 53 nm). From Tab. 5.1, the case (a = 48 nm, b = 

53 nm) has a higher rotational than translational oscillating frequency, which suggests 

that it might be a good candidate for rotational cooling. 

The non-zero feedback cooling is performed with the system temperature initially 

prepared at Ti = 0.1 K. The feedback parameters (χi, ζi) are chosen in a way such 

that Eq. (5.33) is much smaller than one and the position and velocity are assumed 

to be measured perfectly. 

First, we turn on the feedback in all degrees of freedom. The results are shown 

in Fig. (5.5). Because the calculations are classical, the results for occupation less 

than 10 are qualitative/suggestive. However, we do expect that the classical results 

are approximately correct for `ne � 10 so we do expect this feedback could get to 

near the ground state. By tuning the feedback parameters from Δ1 = {χ1,2,3 = 1.1 × 

1011 s~m2, ζ1,2 = 1011 s~m2} to Δ2 = 10Δ1, the system is observed to be quickly cooled. 

Both the translational and rotational occupation numbers can get down to less than 

one in this classical calculation, which suggests a possibility of ground state cooling 

in all degrees of freedom. Figure 5.5(a) and 5.5(b) depict the cooling of a nano-

diamond with half axes (a = 15 nm, b = 70 nm) in the translational and rotational 

degrees of freedom respectively. We see that rotation and translation are cooled 

with almost equal speed though the rotational oscillating frequency is more than six 

times higher than that for the translational motion. As the ellipticity goes lower, 

the cooling in rotation becomes more effective than in translation. As shown in 

Fig. 5.5(c) and 5.5(d) for case (a = 38 nm, b = 60 nm), when the parameter Δ1 is 

taken, the rotational occupation numbers go down close to 10 while the translational 

occupation numbers are still around 20. The cooling in rotation gets even better 

when the particle with half axes (a = 48 nm, b = 53 nm) is used, where the rotation 



72 

is close to the ground state (`ne < 1) while the translational occupation numbers are 

still more than 10, as shown in Fig. 5.5(e) and 5.5(f). The reason is that when the 

ellipticity of the nanoparticle gets smaller, the rotational shot noise heating is less 

than that for translational heating while the rotational oscillating frequency is still 

larger than that for translation. Thus, a better rotational cooling for a particle with 

low ellipticity is expected, which was suggested in the previous section. From Appx. 

˙A, the steady state value of `ne is proportional to the square root of E~ω2 . This 

suggests that smaller values of Δn = 2πĖ ~(Òhω2), as defined in the previous section, 

are better for cooling to the ground state. However, we will see in the next section 

that measurement noise qualitatively modifies this trend. 

Second, we keep the feedback cooling only in the rotational degrees of freedom with 

Δ1 = {χ1,2,3 = 0, ζ1,2 = 1011 s~m2} and Δ2 = 10Δ1. The results are shown in Fig. 5.6(a) 

and 5.6(b) for the nano-diamond with half axes (a = 48 nm, b = 53 nm). As shown 

in Fig. 5.6(a), when the feedback is increased from Δ1 to Δ2 = 10Δ1, the rotational 

occupation number goes down all the way to the quantum regime. However, as shown 

in Fig. 5.6(b), the translational motion is heated up in the mean time. In order to see 

the cooling in only one rotational degree of freedom, we also calculate the case with 

Δ1 = {χ1,2,3 = 0, ζ2 = 0, ζ1 = 1011 s~m2}. As shown in Fig. 5.6(c), 5.6(d) and 5.6(e), 

the motion in β1 degree of freedom quickly gets cooled to the ground state regime 

when Δ2 are taken, while all other degrees of freedom (β2, x, y and z) are heated up. 

For β2, extra heating is observed due to the resonance heating: the changes in the 

laser intensity are predominantly at the frequency to resonantly couple with either of 

the rotational degrees of freedom. In Fig. 5.6(b), 5.6(d) and 5.6(e), the dashed lines 

show the heating from pure shot noise. We see that the pure shot noise heating rates 

are slightly lower (almost the same) than the heating rate with feedback cooling. The 

reason is because the cooling in one degree of freedom can add to the heating in the 

other degrees of freedom. Fortunately, this extra heating is not excessive and should 

not be a problem in experiments. 
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5.5 The parametric feedback cooling limit with classical uncertainty 

The above discussion of feedback cooling is based on an ideal measurement of 

the particle’s position and velocity. In reality, a measurement can’t be infinitely 

accurate and is fundamentally limited by the quantum uncertainty δxδp E hÒ~2, which 

introduces an extra feedback noise during the cooling process. The uncertainty in 

the position measurement can be reduced by increasing the photon scattering rate, 

however stronger photon scattering induces faster shot noise heating. Thus, tuning an 

appropriate photon recoil rate and a proper feedback parameter should be important 

in optimizing the feedback cooling. 

This section numerically studies the optimal cooling limit when the main error 

in the position measurement is due to classical measurement uncertainty. As we will 

show below, the equations of motion can be scaled. Therefore, the simulation is 

performed in only the x degree of freedom for the case (a = 48 nm, b = 53 nm) in Tab. 

5.1. The calculation is still classical, but the feedback signal is modified to satisfy 

δxδp = NhÒ~2, where N is a measure of the classical uncertainty. The dynamical 

equation is given by 

d2x 
m = −mω2(1 + χxmẋ m)x,
dt2 x 

(5.34) 
xm = x + δR � δx, 

and the shot noise is added according to 

p(t + δt) = p(t) + δW � δp, (5.35) 

¼ 

where δR and δW are Gaussian random numbers with unit variance, δp = 2Ė 
Tx δt � m 

˙is the momentum fluctuation determined by the shot noise ETx , and xm is the mea-
¼ 

sured position with δx = NhÒ~(2 2Ė 
Tx δt � m), which is chosen to satisfy the relation 

δxδp = NhÒ~2. Several values of N are used in the the pure classical calculation. In 

reality, the results are not physically possible for N < 1, and for small N the result 

is only suggestive because it would require a true quantum treatment. Figure (5.7) 

shows the results, where each curve corresponds to the steady state occupation in 
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Figure 5.7. The steady state occupation in terms of the feedback paramter 
χ for x degree of freedom of the particle (a = 48 nm, b = 53 nm) from Tab. 
5.1. The different curves correspond to several different values of classical 
uncertainty. 

terms of the feedback parameter χ. The pink line corresponds to the classical feed-

back with no noise in the position measurement (N = 0), where the occupation keeps 

decreasing as we increase the feedback parameter. As we add uncertainty to the feed-

back signal, the purple (N = 1), black (N = 1.5), green (N = 2), red (N = 2.5) and 

blue (N = 3) lines will go up after passing their minimal occupations, which are the 

corresponding optimal cooling limit. The reason is that, as χ increases, the feedback 

cooling is strengthened, but the noise in the measured value of x leads to the feedback 

procedure itself adding noise to the motion. Beyond a value of χ, the feedback noise 

heating becomes faster than the feedback cooling, which indicates that the steady 

state occupation can reach a minimum and then increase. Moreover, one can see 

that a larger uncertainty in the position measurement leads to a larger occupation 

for optimal cooling limit. The reason is that the feedback noise heating is generally 

faster with a big N in the position measurement than that with a smaller N . 

The steady state occupation is also related to the shot noise heating and the
¼ 
˙oscillating frequency, as suggested by the result in Appx. A, `ne „ ET ~ω2 

limit 
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for ideal measurements. In fact, the one dimensional dynamical equation for the 

nanoparticle can be scaled 

d2 ̃  Òx h ˙= −x̃(1 + χ x̃mx̃m), 
dt̃2 2m (5.36) 
x̃m = x̃ + δR � δx,˜ 

and the shot noise is added according to 

p̃(t + δt) = p̃(t) + δp̃(t)δW, (5.37) 

»
Ò ˙where the scaled position x̃ = x~a0 with a0 = h~(2mωx), t̃  = ωxt, and Ẽ 

T =¼ ¼ 

2 ˙ hω2 p ˜̇ t and δ˜ Ė̃ 
T d˜ET ~(Ò x). δ ̃  = 2ET ~d˜ x = N 1~(2 t). The scaled equation shows 

that Δn = 2π ˙ ~(Ò ) (as defined previously), N and χ determine the particle’sET hωx 
2 

dynamics. To confirm that, we simulate the cooling of the x degree of freedom 

for particle (a = 48 nm, b = 53 nm) with fixed measurement uncertainty (N = 2). 

First, we choose (Ė 
T , ωx) to be different values (470 mK/s,343 kHz), (824 mK/s,454 

kHz) and (1295 mK/s,569 kHz), which are obtained by tuning the laser power to 

P = (40 mW, 70 mW, 110 mW) respectively. Figure 5.8(a) gives the simulation re-

sults, where the three curves give the steady state occupation in terms of the feed-

back parameter. Those curves match each other, which confirms that Δn indeed 

determines the dynamics, since varying the laser power doesn’t change the quan-

tity Δn � 0.083. All three curves get to an optimal cooling limit around `ne = 8.5 

2when χ = 3.3 × 1012 s~m . In Fig. 5.8(b), we take Δn � 0.026 by changing the laser 

beam waist. Using the same laser powers P = (40 mW, 70 mW, 110 mW), the shot 

noise heating and the x translational oscillating frequency are (1488 mK/s,1085 kHz), 

(2603 mK/s,1434 kHz) and (4092 mK/s,1798 kHz) respectively. The three curves still 

match, but the minimal point is shifted to (`ne = 12, χ = 5×1011 s~m2), which suggests 

that the optimal cooling limit should depend on the choice of Δn for a given value 

of N , the scale factor between the uncertainty in the position measurement, δx, and 

the momentum shot noise scale, δp. 

Comparing the two results in Fig. (5.8), we see that a lower optimal cooling limit 

is reached for the motion with a bigger Δn when N is held fixed. This motivates us 
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Figure 5.8. The steady state occupation for x degree of freedom 
of particle (a = 48 nm, b = 53 nm) from Tab. 5.1 in terms of the 
feedback parameter χ with N = 2. Three different laser powers P = 
(40 mW, 70 mW, 110 mW) are used. (a) The quantity Δn = 0.083; (b) 
The quantity Δn = 0.026. 

to calculate the optimal cooling limit for varied Δn (by changing the beam waist), 

and the result is show in Fig. (5.9), where the two curves correspond to N = (1, 2). 

Both curves reveal that a bigger Δn leads to a lower optimal cooling limit, which 

suggests that a more accurate feedback cooling can beat the cost from the higher 

shot noise heating for fixed N . The fact that a higher shot noise leads to a lower 

optimal occupation might be because of (1) a higher shot noise indicates a more 

accurate and effective feedback cooling; (2) an accurate feedback induces a lower 

feedback noise. Figure (5.9) also shows that a smaller N generally has a lower optimal 

cooling limit, which matches the result in Fig. (5.7). The data in Fig. (5.9) stops 

at Δn = 0.41, since a bigger χ is needed in order to get to the optimal cooling limit. 

Our calculation becomes unstable when χ is too larger. In reality, a bigger feedback 

parameter χ means a lot more effort in feedback cooling. The maximal realizable χ 

in the experiment should physically bound the lowest cooling limit for fixed N . The 

actual shot noise heating rate and measurement uncertainty determines the minimum 

occupation number. By scaling these parameters, one can understand how the system 

will respond in terms of the dimensionless Eqs. (5.36) and (5.37). 
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Figure 5.9. The optimal cooling limit for x degree of freedom of particle 
(a = 48 nm, b = 53 nm) from Tab. 5.1 with respect to Δn. The blue 
and yellow curves correspond to the classical uncertainty measure N = 1 
and N = 2 respectively. Our data stops at Δn = 0.41 since the feedback 
calculation with a larger χ becomes unstable when we try to reach the 
optimal cooling limit. 
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5.6 Summary and conclusion 

The translational and rotational shot noise heating and feedback cooling of an 

optically trapped nano-ellipsoid were analytically and numerically investigated. The 

detailed analysis suggests that a lower relative rotational heating rate is expected for 

a wide range of nanoparticle geometries. This conclusion is in contrast to that when 

scattering from black body radiation was studied [3] which reported that rotational 

degrees of freedom decohered much faster than translational degrees of freedom. The 

qualitatively different conclusion is due to the difference in photon scattering from a 

polarized beam aligned along the nanoparticle axis compared to unpolarized photons. 

The analysis and numerical calculation of the shot noise heating suggest that a 

lower relative rotational heating rate results from (1), a nanoparticle with near to 

spherical shape for fixed size; (2), a nanoparticle with a bigger size for fixed ellip-

ticity; (3), a trapping laser with a shorter wavelength and a bigger beam waist; (4), 

a nanoparticle with lower dielectric constant. In addition, the calculation of the 

feedback cooling in only the rotational degrees of freedom reveals that a separate ro-

tational cooling should be experimentally possible, since heating in the other degrees 

of freedom was only slightly faster than the shot noise. 

The feedback cooling with classical measurement uncertainty was analyzed. The 

measurement uncertainty introduces an extra noise during the feedback, which com-

petes with the cooling when the feedback parameter increases. When the scaled 

classical uncertainty N is held fixed, a system with a bigger value of Δn = 2πĖ ~(Òhω2)

could in principle get to a lower optimal cooling limit. While this is an interesting 

result, it is hard to imagine an experiment where the N can be held fixed while the 

shot noise heating rate is changed as it would require the uncertainty in x to decrease
» 

proportional to 1~ Ė as the heating rate increases. A more effective way to achieve 

small occupation number is to decrease N which is proportional to the uncertainty 
» 
˙in x times E. 
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In conclusion, the shot noise heating, the measurement uncertainty, and the feed-

back parameter are important factors to consider when cooling a levitated nanopar-

ticle in the shot noise dominant region. The results presented here can provide a 

framework for thinking about how these parameters affect the heating and the feed-

back cooling of levitated nanoparticles. However, since our calculations are classical, 

there is still a need for investigations of quantum effects on feedback cooling for small 

occupation number. The results in Fig. (5.9) suggest there may be non-intuitive 

trends in the quantum limit. We will investigate the quantum cooling in the next 

chapter. 
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6. QUANTUM CALCULATION OF FORCE FEEDBACK 

AND PARAMETRIC FEEDBACK COOLING OF A 

LASER LEVITATED NANOPARTICLE 

In this chapter, we explore the quantum feedback cooling of an optically trapped 

nanoparticle in the laser-shot-noise-dominant regime. We numerically investigate the 

levitated system using both parametric and force feedback cooling schemes. We show 

that, for the same position measurement efficiency, the cooling limit from the force 

feedback is lower than that from the parametric feedback. We also develop a set 

of semi-classical equations for feedback cooling that accurately match the quantum 

results. By rescaling the semi-classical equations, the cooling dynamics is shown to be 

determined simply by the following parameter set: the feedback strength, the position 

measurement efficiency and the change of occupation number over one oscillation 

period due to the shot noise. The minimum occupation number that can be reached 

is determined by the measurement efficiency and the change of occupation number 

over one period. 

6.1 Introduction 

The system of optically trapped nanoparticles has recently emerged as an exciting 

candidate for tests of quantum mechanics at the mesoscale [43,49,56,57,60]. It helps 

not only in our understanding of quantum fundamentals, such as the role decoherence 

plays in the quantum-classical transition, but also in the study of many other physical 

topics, such as ultrasensitive metrologies [43,44,47,54,67–69], spin optomechanics [70, 

71], and nonlinear physics [50]. Because the nanoparticle is levitating, good thermal 

isolation can be reached. Recent experiments with optical cavities have demonstrated 
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cooling of a levitated particle to several kelvin [72, 73], and ground state cooling 

was also suggested [74]. For a trapped nanoparticle without a cavity, much lower 

temperatures have been reached by feedback cooling [49,75]. While most discussions 

are given in the classical regime, the first quantum model for parametric feedback 

cooling and force sensing using a single-laser-trapped nanoparticle was studied in Ref. 

[57], and it demonstrated quite different features from the standard cavity-assisted 

cooling [74, 76, 77], such as the non-exponential decay of phonon number and the 

nonlinear dissipative mechanism [57]. 

In a recent experiment [11], it was reported that the photon shot noise overwhelms 

the thermal noise by at least a factor of 25 when the particle is trapped in ultrahigh 

vacuum (the pressure is about 10−8 mbar). Thus, the shot noise from the trapping 

laser becomes the particle’s major source of decoherence. In this chapter, we present 

results on the quantum feedback cooling of a single-laser-trapped nanoparticle in the 

shot-noise-dominant regime. The feedback signal is obtained through continuously 

measuring the particle’s position [78]. Due to the measurement back-action, the 

system state evolves stochastically, which is described by a stochastic master equation 

or equivalently by a stochastic Schrödinger equation [12, 79]. The measured position 

is used to modify the system Hamiltonian such that cooling of the center of mass 

degrees of freedom is achieved [59]. 

The force feedback and the parametric feedback schemes are widely used in cool-

ing optically trapped mesoscale particles [49,80–82]. They are realized by controlling 

the force exerted on the particle (force feedback) [80] or by changing the trapping 

laser intensity (parametric feedback) [49]. In this chapter, the cooling of an optically 

trapped nanoparticle is simulated using these two feedback cooling schemes. For 

each cooling scheme, we calculate and compare the steady state occupation number 

as a function of the feedback strength and the measurement efficiency. It is demon-

strated that a lower cooling limit can be reached by force feedback cooling than by 

parametric feedback cooling for the same measurement efficiency. We also develop 

a set of semi-classical equations for modeling the feedback cooling, and introduce 
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a concept of classical measurement uncertainty [4]. It is shown that the quantum 

and semi-classical results of the cooling limit are identical. Remarkably, by rescaling 

the semi-classical equations, we find that the optimal cooling limit is uniquely de-

termined by the parameter set: Δn (defined as the change of occupation number in 

a vibrational period due to the shot noise), the feedback cooling strength, and the 

measurement efficiency. Our study provides a useful guide and framework for the 

community to think about how those parameters affect the the feedback cooling of 

levitated nanoparticles. 

The measurement efficiency plays a significant role in both the force feedback and 

the parametric feedback cooling. In order to achieve ground state cooling (`ne < 1), 

a suitable measurement efficiency must be reached. For the force feedback scheme, 

more than ten percent measurement efficiency is sufficient for cooling the nanoparti-

cle to the ground state, while a higher efficiency (more than forty percent) is needed 

for the parametric feedback to achieve ground state cooling. In practice, the mea-

surement efficiency is determined by the photon collection efficiency and the actual 

measurement scheme. For a widely used balanced Homodyne detection scheme, the 

position measurement efficiency is shown to be bound from above by an intrinsic de-

tection efficiency. This bound places a challenge for reaching the ground state cooling. 

However, this derivation we present is only accurate for trapping lasers with small 

numerical aperture (NA). It might be possible to get a higher position measurement 

efficiency than that for balanced Homodyne detection using other methods, such as 

using a tightly focused laser beam, using a different photon collection scheme [83], or 

using quantum metrology that could possibly break the Cramér-Rao bound [84, 85]. 

6.2 The laser levitated nanoparticle 

A laser levitated nanoparticle in ultrahigh vacuum is well isolated from its thermal 

environment. Due to the isolation, the trapping laser is the particle’s major source of 

heating [11], which results from the recoil caused by each of the randomly scattered 
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Figure 6.1. A nanoparticle with mass m is trapped at the focus of a laser 
beam (schematically shown by the red line), which is polarized in the z 
direction and propagating in the positive y direction (shown by the red 
arrow). 
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photons. We consider a nanoparticle trapped in the focus of a linearly polarized laser 

beam, as shown in Fig. (6.1). The laser field is polarized in z and propagating in the 

positive y direction. Using a scattering model [3, 10, 37, 38], one can show that the 

system density operator ρ follows the master equation 

dρ 1
= [H , ρ] − κ[x, [x, ρ]], (6.1)Òdt ih 

where the wavelength of the light is assumed to be much larger than the size of the 

nanoparticle. H is the system Hamiltonian which will be given below. The last term 

is from the decoherence due to photon scattering which localizes the position of the 

˙nanoparticle. x is the position operator and κ = Em~hÒ2 is the interaction strength, 

˙where E is the shot noise heating from the trapping laser and m is the particle mass. 

Ė takes the form [11, 49] 

2 
8πJp k2 hÒ2k2 

˙ 0 α2 0E = „ ‚ , (6.2)
3 4π�0 2m 

where Jp is the laser photon flux, k0 is the incoming wave vector, α = 4π�0R3(� − 

1)~(� + 2) is the particle polarizability, �0 is the vacuum dielectric constant and � is 

the relative dielectric constant. It is worth mentioning that, because of the detailed 

pattern of dipole radiation, the shot noise is different in each degree of freedom by 

the factors ζx = ζy = 2~5, ζz = 1~5. The factors must be added to the corresponding 

degree of freedom when evaluating the shot noise [49]. 

The nanoparticle is trapped at the focus by an optical gradient force. If one models 

the laser beam as Gaussian and takes a small oscillation approximation [65,86], each 

degree of freedom of the particle oscillates as an independent harmonic oscillator 

along its principal axis. The Hamiltonian can be written as 

† 
+ 
1 

H = Q hωi i ai ), Ò (a (6.3)
2i=x,y,z 
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Table 6.1. 
The parameters for diamond and fused silica with sizes R � 50 nm trapped 
in a laser beam. The laser has wavelength λ = 1064 nm, power P = 70 mW 
and an objective lens with numerical aperture NA= 0.9. The parameters 
are given in the x degree of freedom. 

� mass (kg) ωx (kHz) Ė (W) Δn 

diamond 5.7 1.79 × 10−18 2π × 454 4.55 × 10−24 0.033 

silica 2.1 1.13 × 10−18 2π × 374 1.32 × 10−24 0.014 
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where ai 
† , ai are creation and annihilation operators respectively. The oscillation 

frequencies ωi were shown to be [65, 86] 
½ 

α E0
ωx,z � , 

mw0
½ 

α E0 
(6.4) 

ωy � ,
2m y0 

where y0 = πw2~λ, w0 = λ~(πNA) is the beam waist, and E0 is the field strength0 

at the center of the laser focus. In this following discussions, we use a laser with 

wavelength λ = 1064 nm, power P0 = 70 mW, and an objective lens with numerical 

aperture NA= 0.9. The particle size is R = 50 nm. For later discussions, we evaluate 

the parameters related to feedback cooling Tab. (6.1). Since each degree of freedom of 

the nanoparticle is essentially decoupled, we focus on only the x degree of freedom in 

the following discussions. The notations without subindex all correspond to quantities 

in the x degree of freedom. 

6.3 Continuous quantum measurement and the feedback cooling scheme 

In quantum feedback control, a system needs to be continuously measured and the 

measured information collected to modify the system Hamiltonian so as to achieve 

a targeted outcome [59]. The system evolution conditioned on the measurement 

result can be derived by the theory of continuous quantum measurement [12,79]. For 

demonstration, I am going to briefly summarize the theory in this thesis. 

6.3.1 Continuous quantum measurement 

Quantum states can be identified with linear operators ρ defined on a Hilbert 

1space, where ρ is positive and trace one (ρ C 0, tr(ρ) = 1) [87]. Imagine we directly 

measure an observable which has a spectral decomposition, 

O =Q λnPn, (6.5) 

1ρ C 0 means all its eigenvalues are non-negative. Pure or mixed quantum states can be identified 
with ρ’s, where pure states correspond to ρ’s with only one non-zero eigenvalue whereas mixed 
states have more than one. 



88 

where the Pn are the projection operators. The measurement will project the system 

onto an eigenstate of the observable 

PnρPn
ρf = (6.6)

tr(PnρPn)
, 

with a probability given by P (n) = tr(PnρPn). This projection measurement is also 

called the von Neumann measurement, which is sometimes referred to as the process 

of wave function collapse. 

Besides projection measurement, there is a more generalized measurement which 

is called positive operator valued measurement (POVM). The generalized POVM 

typically can be implemented by first coupling the system to an auxiliary system, 

then performing a projection measurement on the auxiliary system. This enables 

us to do a so-called weak measurement, by which the system information is partially 

revealed. Continuous quantum measurement corresponds to the process where partial 

information is continuously extracted by applying POVM repeatedly. 

Unlike the projection measurement, the POVM is described as a set of arbitrary 
†operators {Em} satisfying the completeness relation Pm EmEm = I. The operators 

Em don’t need to be orthogonal to each other. A POVM measurement on the system 
†will yield an outcome m with probability P (m) = tr(EmρEm), and the system state 

becomes 
Em m 

† 

ρf = 
ρE 

(6.7) 
tr(EmρEm 

† 
)
. 

In the following, we discuss the continuous position measurement. The observable 

X has a continuous spectrum 

X Sxe = x Sxe , (6.8) 

where `xSxœe = δ(x − xœ). Suppose one designs a POVM 

Eα = C S 
ª 

exp[−2κΔt(x − α)2] Sxe `xS dx, (6.9)
−ª 

where C = (4κΔt~π)1~4 , κ is the measurement strength (discussed below) and α 

is a continuous index, which serves to label the measured results. Δt is the time 

interval for the measurement; we will take the small time limit Δt � 0 to recover 
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the continuous measurement. One can easily check that the completeness formula 

nα Eα 
† Eα = I is satisfied. 

Suppose that we have an initial state ρ = Sψe `ψS. The probability for getting a 

result α is 

P (α) =tr(Eα 
† Eαρ), 

2
=(
4κΔt

)1~2 
S 

ª 

Tψ(x)T exp[−4κΔt(x − α)2]dx,
π −ª 

ª 
(6.10) 

=(
4κΔt

)1~2 
S δ(x − `Xe) exp[−4κΔt(x − α)2]dx,

π −ª 

=(
4κΔt

)1~2 exp[−4κΔt(α − `Xe)2],
π 

where we use ψ(x) � δ(x − `Xe), because for sufficiently small Δt, the expression 

exp[−4κΔt(x − α)2] will be much broader than ψ(x), such that ψ(x) can be ap-

proximated as a δ-function centered at `Xe. From the above result, we see that the 

probability of getting a result α satisfies a Gaussian distribution, and the maximal 

probability is obtained when α = `Xe. It is equivalent to say that the measured result 

is a stochastic quantity 

º
dW 

α = `Xe + , (6.11) 
8κΔt 

where dW is a Gaussian random number with standard deviation equal to one. Also, 

we see that the measurement strength κ is related to the uncertainty of the measured 

position. It is quite reasonable that a weak measurement gives us a large amount of 

noise while a small uncertainty is guaranteed if a system is strongly measured. 

The time evolution of the system state can be derived by calculating the change 

in the time interval Δt and then taking the small time limit. The system state after 

a measurement Eα is given by 

Sψ(t + Δt)e „ Eα Sψ(t)e , 
(6.12) 

„ exp[−2κΔt(X − α)2] Sψ(t)e . 

Now, if one Taylor expands the above expression and keep the terms to the order of 

O(Δt), and normalizes the state, the following formula follows 

º º 
d Sψ(t)e = [−κ(X − `Xe)2dt + 2κ(X − `Xe) dtdW ] Sψ(t)e , (6.13) 
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where d Sψ(t)e = Sψ(t + Δt)e−Sψ(t)e and the limit Δt � dt is taken. The above equation 

is defined as the stochastic Schrödinger equation (SSE), which is conditioned on the 

measured result (To indicate position measurement, we use xi instead of α as the 

measured result from now) 

º
dW 

xi = `Xe + . (6.14) 
8κdt 

We see that Sψ(t)e evolves randomly and each realization is called the quantum tra-

jectory. 

The above SSE can be recast into a stochastic master equation (SME) if we identify 

ρ(t) = Sψ(t)e `ψ(t)S. The result is 

º º 
dρ = −κ[X, [X, ρ]]dt + 2κ(Xρ + ρX − 2 ̀ Xe ρ) dtdW, 

(6.15) 
xi = `Xe + º

dW 
, 

8κdt 

which describes the system evolution under perfect detection efficiency. In reality, 

we will encounter inefficient measurement, where not all measured information can 

be collected. We can imagine two observers are making position measurements on 

the same system with measurement strengths κ1 and κ2. Each observer does not 

have access to the information from the other, so they must average over each other’s 

results. It is equivalent to say that each observer has a less certain measured result. 

Take the first observer for example: the system state, from his knowledge, evolves 

» º 
dρ = −κ[X, [X, ρ]]dt + 2ηκ(Xρ + ρX − 2 ̀ Xe ρ) dtdW, 

(6.16) 
xi = `Xe + º

dW 
, 

8ηκdt 

κ1where κ = κ1 + κ2 and η = κ is defined as the detection efficiency for the first ob-

server. For the second observer, a similar expression can be derived. The above 

expression is actually very general, since it is impossible to collect all signals in any 

real measurement. 
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6.3.2 The feedback cooling schemes 

From the previous subsection, it is demonstrated that, due to the position mea-

surement, the system state evolves stochastically according to 

dρ = 
1 
[H , ρ]dt − κ[x, [x, ρ]]dtÒih
» º 

+ 2ηκ(xρ + ρx − 2 ̀ xe ρ) dtdW, (6.17) 

xi = `xe + º
dW 

, 
8ηκdt 

which is the SME discussed above. xi is the directly measured value of position. 

In our feedback cooling calculation, xi is time averaged to get a better estimate 

of the particle position xm (shown in Appx. B). `xe = tr(ρx). The parameter 

η is the measurement efficiency, which determines the uncertainty in the measured
º 

position, Δx = 1~ 8ηκdt. From Eq. (6.2), a random momentum kick can be obtained
º 

Δp = 2κdthÒ . Thus, one immediately finds 

Ò1 h 
ΔxΔp = º , (6.18)

η 2 

where the measurement efficiency η is by definition smaller than one, η B 1, and η = 1 

corresponds to the minimal uncertainty allowed by quantum mechanics. Obviously, 

the classical uncertainty N defined in the previous chapter is related to the measure-
º 

ment efficiency η by N = 1~ η. dW is a standard normally distributed Gaussian 

random variable. Since dW is random, there would be many solutions to the above 

equation and each realization ρ(t) defines a quantum trajectory. Equation (6.17), 

excluding the last stochastic term, is the same as Eq. (6.1). Actually, if all the 

measured information were lost, one would need to average all the possible quantum 

trajectories, which leads to Eq. (6.1) due to the zero mean of dW . The evolution of 

the system can also be written in terms of a wave function Sψe, 

d Sψe ={ 
1 
Hdt − κ(x − `xe)2dtÒih (6.19)º º 

+ 2κ(x − `xe) dtdW } Sψe , 
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which is referred to as the stochastic Schrödinger equation (SSE). In quantum simu-

lations, the SSE is generally favored since the numerical calculation cost is much less 

than that required by the SME [88]. 

The stochastic equation is conditioned on the measured position, which we can 

use to modify the system Hamiltonian. We investigate two different feedback cooling 

schemes. The first one is force feedback. Force feedback was first used in cooling 

an optically trapped microsphere [80]. It works by exerting a force on the particle 

with the force direction opposite to the particle’s instantaneous momentum. Thus, 

the modified Hamiltonian can be written as 

H = Ò † a + 
1 

X, (6.20)hω(a ) + γpm
2 

where pm = mẋ m is the feedback momentum (the subscript m indicates a measured 

variable while the parameter m is the mass). pm is obtained from the measured 

position xm according to the formula 

ẋm � −ωxm(t − T ~4), (6.21) 

where the small oscillation approximation is used and T is the oscillation period. The 
»

Òparameter γ is the force feedback strength, and X = h~(2mω)(a† +a) is the position 

operator. In the next section, this Hamiltonian is used in the force feedback cooling 

by numerically calculating both the SSE and the SME. It is worth mentioning that an 

extra noise might be introduced depending on the way force feedback is implemented, 

such as force feedback by implementing radiation pressure [80]. This noise is another 

source of heating, which is not taken into account in the current discussion. 

The other cooling method is parametric feedback, where a single laser beam is 

used for both trapping and cooling [49, 89]. In the parametric feedback scheme, a 

signal at twice the oscillation frequency is obtained by multiplying the measured 

particle’s position with its first time derivative xm(t)ẋm(t). This signal is then used 

to modify the laser trapping depth, which on average acts as a drag on the particle. 

The modified Hamiltonian can be written as 

H = Ò † a + 
1
) + 

χ
mω2 ˙ X2 (6.22)hω(a xmxm ,

2 2 



93 

where χ is the parametric feedback strength. In the following section, this Hamilto-

nian is used in the SSE to simulate the quantum parametric feedback cooling. 

6.4 The numerical simulation of feedback cooling 

6.4.1 Cooling by force feedback 

In this subsection, we present the numerical calculations of the force feedback 

cooling. Both the SME and the SSE are numerically solved. We first define an average 

†occupation number of the nanoparticle as `ne = `a ae = tr(ρa†a). In an experiment, 

it is this number that one wants to decrease to less than one (the ground state). In the 

simulation, the particle occupation number `ne is calculated with respect to different 

values of the force feedback strength γ. Besides the quantum calculations, the cooling 

process is also simulated semi-classically, and we will show later that the quantum 

calculations match the semi-classical results. The semi-classical occupation is defined 
2p 
+ 1 2as `ne = E~hωÒ − 0.5, where the energy is calculated through E = 2m 2 mω

2x . The 

semi-classical equation of motion for force feedback is given by 

d2x 
m = −mω2 x − γpm,
dt2 

(6.23) 
xi = x + dW � Δx, 

where xi is the directly measured position, pm is the feedback momentum which is 

obtained from the measured position as discussed in the previous section, and Δx = 
» 

hÒ~ 8η ˙ � m. During one time step, the shot noise induces a random momentum Edt 

kick on the particle by 

p(t + dt) = p(t) + dW � Δp, (6.24) 

where Δp =
» 

2 ˙ � m. It is worth mentioning that classically there is no theoretical Edt 

limit to measure the position accurately. The uncertainty in the measured position 

xi is added to quantitatively satisfy Eq. (6.18). We call it the classical uncertainty in 
Ò

position and momentum, which also satisfies ΔxΔp = º1 
η
h 
2 [4]. The classical uncer-
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(a) Diamond (b) Silica 

Figure 6.2. The steady state occupation in terms of the force feedback 
strength for diamond (left) and silica (right). The parameters in Tab. 6.1 
are used. The solid lines, the asterisks and the diamonds correspond to the 
SSE, SME and the semi-classical results respectively. The data shown by 
the colors red, green, yellow and blue are for four different measurement 
efficiencies η = (1.0, 0.4, 0.2, 0.1). 

Figure 6.3. The steady state occupation in terms of the scaled force 
feedback strength for diamond, with the parameters given in Tab. 6.1. 
Δn is tuned by changing the beam waist. The measurement efficiency is 
fixed at η = 0.1. The solid lines are results from SSE and the symbols 
from semi-classical calculations. 

tainty is fundamentally different from the quantum uncertainty, which intrinsically 

limits what we can know about physical observables. 
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The SSE and SME are numerically solved in the harmonic eigen-basis; details 

of the numerical method are given in Appx. B. The semi-classical equations of 

motion are numerically solved using a fourth-order Runge-Kutta algorithm and the 

momentum kick is added to the nanoparticle at each time step. All simulations are 

repeated over one thousand times and data is collected by averaging over the different 

runs to reduce the random noise. 

The results are given in Figs. (6.2), which show the steady state occupation 

number with respect to the feedback strength for both diamond and silica. First, 

the quantum and semi-classical results match, even for the measurement efficiency 

η = 1.0, where a variation is intuitively expected between semi-classical and quantum 

calculations. This match justifies the use of semi-classical equations in the further 

analysis, which are more intuitively revealing and less computationally demanding. 

Second, as the measurement efficiency increases, the steady state occupation number 

is smaller for the same feedback strength. A better measurement efficiency indicates 

a more accurate measured position, which in turn leads to better feedback cooling. 

Third, for a fixed measurement efficiency η, the steady state occupation number has 

a minimal point (the optimal cooling limit), which can be reached as the feedback 

strength is tuned. As one increases the feedback strength, the feedback cooling is 

strengthened, but the feedback procedure itself adds heat into the system due to the 

noise of the measured position. The competition between the cooling and heating 

leads to the curved structure, which has a globe minimal. Fourth, even for the η = 0.1 

measurement efficiency, a steady state occupation number close to `ne = 1 can be 

reached, indicating the possibility of ground state cooling using the force feedback 

cooling scheme. Lastly, one can see that the optimal cooling limits are quite close 

for both silica and diamond when the measurement efficiency is chosen the same. 

We show below that the optimal cooling limit mainly depends on the measurement 

efficiency, but weakly depends on other parameters. 
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The fact that the quantum and semi-classical results match encourages us to 

further study the semi-classical equations, since they are intuitively revealing and 

can be solved more rapidly. We rescale the above semi-classical equations 

d2x̃ 

dt̃2 
= −x̃ − γ̃p̃m, 

(6.25)p̃(t + dt) = p̃(t) + dW � Δp̃, 

x̃i = x̃ + dW � Δx̃, 

»
Ò ˜with the rescaled quantities x̃ = x~a0 with a0 = h~(2mω), t = tω, p̃  = p~(mωa0) and¼ ¼ 
˜ ˜the scaled feedback strength γ̃ = γ~ω. Δp̃ = 2Ė � dt̃  and Δx̃ = 1~(2ηEd˙ t̃) with 

˜̇E = 2Ė ~(Ò We define an important quantity hω2). 

Δn � 
2πĖ ˜

= πE,˙ (6.26)Òhω2 

which denotes the change in occupation number over one oscillation period. A detailed 

discussion of this quantity can be found in Ref. [4], and its importance will be shown 

below. As shown in the scaled semi-classical equation, the dynamics of force feedback 

cooling is totally governed by the parameter set {η,γ̃,Δn}. In an experiment, if 

the measurement efficiency η is fixed, and we assume the feedback strength γ̃ can be 

freely tuned, then the parameter Δn determines the optimal cooling limit. As defined 

above, Δn = (2πĖ )~(Òhω2) is determined both by the laser parameters (beam waist, 

wavelength, power) and the particle material properties (radius, dielectric constant, 

mass density). It is remarkable that all these parameters can group into one single 

variable Δn that determines the cooling limit. 

In the rest of this subsection, we explore the trend of force feedback cooling as 

the parameter set is tuned. On the one hand, we numerically demonstrate that the 

parameter set {η,γ̃,Δn} indeed controls the dynamics (the cooling limit stays the 

same as long as the parameter set is fixed, no matter what material, beam waist or 

laser power are used). Using Eqs. (6.2) and (6.4), Δn is shown to be 

˙ 
= 
π � − 1 

R3 2Δn = 2π Ò
E

w0k0
5 , (6.27)

hω2 3 � + 2 
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where k0 = 2π~λ is the incoming wave vector and w0 is the beam waist. One finds 

that Δn is independent of the laser power, which means changing the laser power 

has no effect on the steady state occupation number if all other parameters are fixed. 

This is shown in Fig. (6.3) with η = 0.1 (the results with other η are similar), where 

the steady state occupation numbers in terms of the scaled feedback strength are 

exactly the same for the case with different trapping laser powers. Further, as we 

change Δn (by tuning w0, α, or k0), the steady state occupation number with respect 

to γ̃ varies, as shown by the curves with Δn = 0.033 and Δn = 0.076. It is worth 

noting that Fig. (6.3) also indicates the good agreement between semi-classical and 

quantum calculation as shown before. 

The optimal cooling limit only depends on Δn and η. As shown in Fig. (6.2), a 

higher measurement efficiency η will lead to a lower steady state occupation number. 

However, it is not obvious how the optimal cooling limit depends on Δn. Figure 

(6.3) seems to show that the optimal cooling limits do not vary strongly with dif-

ferent Δn. To understand the role of Δn, we calculate the optimal cooling limit for 

several measurement efficiencies as a function of Δn. The result is shown in Fig. 

(6.4). The optimal cooling limit weakly depends on the parameter Δn. For mea-

surement efficiencies η = (0.1, 0.2, 0.4), the optimal cooling limit weakly increases as 

we increase the parameter Δn. The fact that Δn has little effect on the optimal 

cooling limit essentially means the measurement efficiency η is the most important 

parameter affecting the optimal cooling limit using force feedback. For reference, we 

list the optimal cooling limit with varied parameters in Tab. C.1 (shown in Appx. 

C). 

6.4.2 Cooling by parametric feedback 

In this subsection, we present the simulation results of the parametric feedback 

cooling by solving the SSE and the semi-classical equations. The SSE for parametric 

feedback cooling was already introduced in section 6.3. The semi-classical parametric 
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Figure 6.4. The optimal cooling limit in terms of the parameter Δn (by 
tuning the laser beam waist). The blue, yellow and green curves corre-
spond to the cases with measurement efficiency η fixed at (0.1, 0.2, 0.4). 
The data is based on semi-classical calculations. 
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feedback cooling was discussed in the previous chapter. For demonstration, we list 

below the semi-classical equations for parametric feedback cooling 

d2x 
m = −mω2(1 + χxmẋ m)x,
dt2 

xi = x + dW � Δx, (6.28) 

p(t + dt) = p(t) + dW � Δp, 

where χ is the parametric feedback strength and the other quantities are the same 

as those in the force feedback equations. The semi-classical equation for parametric 

feedback cooling can also be scaled and the dynamics were shown to depend on the 

parameter set: the measurement efficiency η, the scaled parametric feedback strength 

χ̃ = Òhχ~(2m), and the Δn (Eq. (6.26)). One can refer to the previous chapter for a 

detailed discussion. Similar to solving the equations for force feedback cooling, the 

semi-classical equations of motion for parametric feedback cooling are numerically 

solved using a fourth-order Runge-Kutta algorithm. The momentum kick is added to 

the nanoparticle at each time step. The SSE is solved in a harmonic eigen-basis and 

details are presented in Appx. B. All simulations are repeated over one thousand 

times and data is collected by averaging over the different runs. 

Figure (6.5) gives the steady state occupation number in terms of parametric 

feedback strength, which has a similar structure to the force feedback cooling. First, 

the quantum and semi-classical results also match very well. Second, for different 

measurement efficiencies, there is also a minimal point (the optimal cooling limit) 

which can be reached when the parametric feedback strength is tuned. Comparing 

Fig. (6.2) with Fig. (6.5), the optimal cooling limit from the parametric feedback 

cooling is higher than that by force feedback. This indicates that ground state cooling 

by force feedback may be favored over parametric feedback. To clearly see that, 

we perform a calculation and collect the optimal cooling limit with respect to the 

measurement efficiency for the two cooling schemes. Figure (6.6) gives the result, 

which shows a much lower occupation number can be reached using the force feedback 

when the same measurement efficiency is used. 
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Figure 6.5. The steady state occupation in terms of the parametric 
feedback strength for diamond with parameters given in Tab. 6.1. The 
solid line is the semi-classical calculation while the asterisks correspond to 
the SSE. The blue, yellow, green, and red color correspond the calculations 
with measurement efficiencies η = (1.0, 0.25, 0.16, 0.1) respectively. 

(a) (b) 

Figure 6.6. The optimal cooling limit with respect to the measurement 
efficiency. The blue lines connect the results from force feedback cooling, 
while the yellow lines connect the results from parametric feedback. The 
y axes are given in log scales. The data is obtained from solving semi-
classical equations. (a) Δn = 0.0142. (b) Δn = 0.1372. 
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Similar to the force feedback, the parametric feedback cooling also only depends 

on the parameter set {η,χ̃,Δn}. First, as shown in Fig. (6.5), a lower optimal cooling 

limit can be obtained if one increases the measurement efficiency, which is the same 

as was observed for force feedback cooling. However, the dependence of the optimal 

cooling limit on Δn is quite different. As one increases Δn, the optimal cooling limit 

is observed to decrease significantly. The detailed discussion can be found in the 

previous chapter. Thus, unlike the force feedback cooling, one can efficiently tune 

both η and Δn so as to parametrically cool the levitated nanoparticle. For reference, 

we list the optimal cooling limit from parametric feedback with varied parameters in 

Tab. C.2 (shown in Appx. C). 

In Ref. [11], `ne = 63 was reached using parametric cooling. A recent experiment 

[75], reached `ne = 21 with a better detection efficiency. In this experiment, a fused 

silica nano-sphere with radius about R = 50 nm was trapped in a polarized laser 

beam with wavelength λ = 1064 nm. The silica has a dielectric constant � = 2.1 and 

a mass of about m = 1.13 × 10−18 kg. The oscillation frequency in one transverse 

degree of freedom was measured to be ω = 2π × 143 kHz, which corresponds to an 

effective numerical aperture NA� 0.5. The shot noise in this degree of freedom was 

measured close to `ṅ e � 21 kHz [11]. Combining the above parameters, we arrive 

at Δn � 0.9. With these parameters, we simulate the parametric feedback cooling 

by scanning the measurement efficiency. The result is shown in Fig. (6.7), where an 

occupation number lower than 20 can be reached if the measurement efficiency is more 

than η = 0.015, and lower occupation number can be reached when the measurement 

efficiency increases. 

6.5 The position measurement efficiency 

The above calculation shows that the optimal cooling limit strongly depends on 

the position measurement efficiency. Thus, a natural question to ask is what is the 

maximal measurement efficiency for a given measurement scheme. In this section, we 
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Figure 6.7. The simulation of an experiment [75] of parametric cooling 
of a fused silica, with Δn � 0.9. The plot gives the optimal cooling limit 
in terms of the measurement efficiency η. The measurement efficiency is 
scanned from η = 0.005 to η = 0.35. The occupation number gets below 
`ne = 20 when the measurement efficiency η C 0.015. 
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Figure 6.8. A schematic plot of the position measurement of a dielectric 
particle in a laser trap. The dipole induced radiation (denoted by the yel-
low lines) interferes with the laser beam (shown by the red lines), which is 
then detected at the detector. Using a balanced photon-detection scheme, 
the position of the particle is shown to be proportional to the measured 
signal. 
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analyze the position measurement efficiency using a balanced Homodyne detection 

scheme, which is widely used in recent experiments [49]. Similar to the case in the 

previous sections, we consider an incident Gaussian beam polarized along z, and 

propagating in y. The Gaussian beam is described by the formula 

2
+z 2

− 
x i„ky−η(y)+ 

k(
2 
x
R 

2 

(

+ 

y
z 
) 

2
) 
‚w0

EÑ G(r) = E0 
w(y)

e w2(y) e z,̂ 
(6.29) 

1 
HÑ G(r) = (EÑ G � ẑ)x̂ 

Z0 
» 

where w(y) = w0 1 + (y~y0)2 , η(y) = arctan(y~y0), R(y) = y(1 + (y0 ~y)2), w0 is the
¼ 

laser beam waist, y0 is the Rayleigh length and Z0 = 
µ
�0
0 is the vacuum impedance. 

Ñ ÑAs depicted in Fig. (6.8), the laser beam induces a dipole moment P = αEG(rd)

from the nanoparticle located at rd. A radiated electric field is produced from the 

dipole [61] 

Ñ ÑED(r) = Z0HD × n,ˆ 

k2 ikSrÑ−rÑdS (6.30)eÑHD(r) = (n̂ × PÑ)
4π�0 SrÑ− rÑdS 

where PÑ is the induced dipole moment defined above, and n̂ is a unit vector in the 

radiation direction. The Gaussian beam and the dipole field interfere at the detector 

and the interference pattern depends on the nanoparticle’s position. Monitoring the 

pattern should give us information of the particle’s position. 

In the following, I will show how the particle’s position is obtained from the 

photons through the detector. For demonstration, I only consider the dipole motion 

in the direction with rÑd = (xd, 0, 0). The analysis of the other motions is similar. The 

fields interfere at the detector and induce an intensity distribution which is denoted 

by the average Poynting vector in the forward direction, 

1 
I(r) = `Se = (EÑ G + EÑ D) × (HÑ ⁄ + HÑ ⁄ ) � y.̂ (6.31)y G D2 

In the balanced photodetection scheme, a signal is obtained by subtracting the de-

tected photons in one half plane (xm > 0) from those in the other half plane (xm < 0) 

S̃ = 
Δt 

‰S I(r)ds − S I(r)ds’ . (6.32)Òhω xm>0 xm<0 
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Substituting the fields by the formula given above and taking the paraxial approxi-

mation (r � L Q xm), we arrive at the result for the above integral 2 

αk3 º w 
S̃ = 

1 
�0cE0

2 Δ
Ò 

t 
2 πy0 

0
3 

xd. (6.33)
2 hω 4π�0 y0

3 

Obviously, the position xd can be evaluated from the signal. 

In a real measurement, an uncertainty will be attached to the measured position 

1 Δ
Ò 
t πw0

2 

due to the photon statistics. For a collection of N � �0cE2 photons, the2 0 hω 2
º 

minimum uncertainty in photon number is N , which yields a measured signal S̃ 
m = 

º 
S̃ + dW N . Thus, the measured position is given by 

º 
dW N 

xm = x + . (6.34)
1 Δ

Ò 
t αk3 º w0

3 

�0cE0
2 2 πy0 32 hω 4π�0 y0 

The above equation can be reduced to the following familiar form 

Òh dW 
xm = x + » , (6.35)

2 2mΔtEη˙ in 

8π 

where 8πJpĖ = 2 
5 3 − k

2 
‘
2 

4π�0 
α2 hÒ2k2 

2m is exactly the heating rate in the x degree of freedom, 

and 

ηin = 
15 
NA4 . (6.36) 

We call ηin the intrinsic achievable measurement efficiency, which defines an upper-

bound for the balanced detection scheme. If the detector loses track of some fraction 

of the incoming photons, the overall measurement efficiency will be smaller by a factor 

of f : η = fηin with f < 1. 

According to the formula ηin = 8
15 
π NA

4 , for NA=(0.9, 0.5), we can get efficiency 

ηin=(0.39,0.037). We should keep in mind that the result for high NA is not accurate 

since the above derivation is based on the paraxial approximation. For lower NA, 

we see that the intrinsic efficiency is too small to be satisfactory. In order to make 

the ground state cooling possible, we must find a measurement scheme with a higher 

intrinsic measurement efficiency. 

2The integral can be greatly simplified if one notices that only the cross terms in Eq. (6.31) contribute 
to the integral. 
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There are several methods that are worth investigating for a better position mea-

surement efficiency. This research is still ongoing and I shall only briefly mention 

them. One of the possibilities is to release the paraxial approximation by directly 

considering a tightly focused laser beam. The analytical calculation would be chal-

lenging, but we could numerically get an intuitive result. The other is to use a different 

measurement scheme, such as the one proposed in Ref. [83], where a parabolic mirror 

is used to collect the dipole radiation. Moreover, it is reported that there is possibility 

to get a better measurement efficiency by adopting the quantum metrology, by which 

one could possibly break the classical Cramér-Rao bound [84, 90, 91] and quantum 

Fisher information plays a role. 

6.6 Summary and conclusion 

In summary, we have extended the semi-classical calculation of the feedback cool-

ing of a laser levitated nanoparticle in the shot-noise-dominant regime to the quantum 

domain. Using the theory of continuous quantum measurement, the measured particle 

position can be obtained continuously and the system state evolves stochastically due 

to the measurement back action. Cooling is achieved by feeding back the measured 

information (force and parametric feedback). Similar to the results from a model 

of semi-classical feedback scheme, the quantum cooling only depends on the feed-

back strength, the change of occupation number in one vibrational period (Δn) and 

the measurement efficiency. The minimum occupation number only depends on Δn 

and the measurement efficiency. The match between quantum and semi-classical re-

sults suggests that one can perform the much faster and more intuitive semi-classical 

calculation when analyzing the cooling of a levitated nanoparticle. The compari-

son between parametric feedback and force feedback cooling reveals that the force 

feedback cooling scheme is the more effective method to reach the ground state. 
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7. SUMMARY AND OUTLOOK 

This thesis covered a small area of quantum physics based on five published papers 

during my graduate studies. In Chaps. 2 and 3, I discussed quasi-stable states of 

atoms and their related observing quantum effects. We spectrally probed the quasi-

stable states of H and He atoms, where a series of survival peaks in the spectrum is 

formed as expected. When the electron is excited by UV laser with two frequencies, 

due to coherence, the survival spectrum can be modulated up to 10% by tuning the 

phase delay. The orientation of the quasi-stable state was also analyzed, which can 

be controlled by the phase delay as well. The relative stability of Rydberg states in 

the presence of strong lasers have attracted people’s attention for decades. Various 

classical or semi-classical mechanisms have been proposed to explain this phenomenon 

[18–20]. The results presented in Chaps. 2 and 3 have aided in the understanding 

of this rapid expanding field. With the growing techniques of strong IR lasers, the 

phenomena discussed could be investigated experimentally. 

In Chap. 4, I discussed the theory of decoherence and specifically explored the 

decoherence corresponding to the rotational degrees of freedom of a mesoscale quan-

tum system. The theory of decoherence has been proposed to connect the quantum 

to classical transitions [9, 36]. It has been suggested that the decoherence theory ad-

dresses the problem of quantum measurement, however, some criticisms can also be 

found [92]. In the past decades, much effort has been placed on the decoherence of a 

meso-system’s center of mass degree of freedom, while the rotational decoherence was 

widely ignored, probably due to the lack of efficient control over rotational motions. 

In Chap. 4, the general expression for rotational localization was obtained and the 

equation was applied to the cases of thermal photon and air molecule scattering. The 

study of rotational decoherence is important for the spreading interest in accurate 

quantum control over a system’s mechanical motions. Together with decoherence in 
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translational degrees of freedom, rotational decoherence will surely contribute as a 

useful guide to future mesoscale experiments and applications. 

Chapters 5 and 6 investigated shot noise heating and feedback cooling of a laser 

trapped nanoparticle. The shot noise heating from the trapping laser in the trans-

lational and rotational degrees of freedom were evaluated and compared in great 

detail. The feedback cooling of the levitated nanoparticle was then discussed in the 

laser-shot-noise-dominant regime. Both classical and quantum simulations were per-

formed, where an exact match was observed. In the simulations, two different widely 

used feedback cooling schemes were discussed: the force feedback and the paramet-

ric feedback. Generally, the force feedback cooling yielded a better cooling limit 

than that from the parametric feedback cooling. Also, it was demonstrated that the 

cooling dynamics depends on three parameters: the feedback strength, the position 

measurement efficiency η and the change of occupation number in one vibrational 

period (Δn). Importantly, the position measurement efficiency was shown to be the 

key ingredient in getting a lower optimal cooling limit. Thus, the intrinsic position 

measurement efficiency of a given measurement scheme is important for ground state 

cooling. We analyzed the balanced Homodyne detection scheme and an upper bound 

of the position measurement efficiency was obtained. Since in a real experiment, the 

actual measurement efficiency should be smaller than the bound and the bound itself 

is not big enough, this analysis draws attention to big challenges to get the ground 

state cooling. 

Fortunately, there are still many possibilities to improve the measurement effi-

ciency. One of them is to release the paraxial approximation in the analysis. The 

other is to use a better measurement scheme, such as using a parabolic mirror to 

efficiently collect the dipole radiation [83, 93]. Moreover, it is reported that quan-

tum metrology can break the classical shot noise limit [90], which could possibly be 

adopted to improve the measurement efficiency. The upper bound of the intrinsic 

position measurement efficiency in feedback cooling could be higher. To theoretically 
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predict the bound and experimentally get close to it should be an interesting and 

exciting work to do in the future. 
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A. Parametric feedback cooling scheme 

This appendix describes the parametric feedback cooling scheme and analyzes the 

cooling limit in the shot noise dominant regime. Perfect measurement is assumed in 

the following derivation. As an example, the average cooling power for one transla-

tional degree of freedom from the feedback is given by 

2e � −
χE2

`P e = −χk ̀ x 2 ẋ . (A.1)
2m 

where E is the system energy in this degree of freedom and k is the spring constant. 

The approximation is made above by ignoring the noise when taking the cycle average. 

The negative sign of the power guarantees an effective cooling during the feedback 

process. Combining with the translational shot noise heating rate, the system energy 

follows the differential equation 

dE 
− 
χE2 

˙= ET . (A.2)
dt 2m 

A steady state can be reached when the heating and cooling are balanced, which 

yields the cooling limit ¿ 
˙

À2mÁ ET
`nelimit = Ò , (A.3)

χh2ω2 

where ω is the oscillation frequency. One finds that a bigger χ gives a lower steady 

state energy and the particle mass together with the quantity Ė 
T ~ω2 determine the 

final occupation. The differential equation can be analytically solved 

™ f 
2 

E = Elimit Œ1 + ¼ Š , (A.4) 
χĖ 

Tf B exp(2 t) − 1Ł2m 

where » » 
˙χ~2mEi + ET

B = » » . (A.5)
˙χ~2mEi − ET 
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Ei is the initial energy of the system. The system gets cooled as time increases and
¼ 

χĖ 
Tthe parameter 2m is a measure of how fast the system is cooled. The feedback 

parameter χ has the unit T ime~Length2 , which can be tuned to control the speed of 

cooling and the final steady state energy. 
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B. The numerical method for solving the SSE and the SME 

This appendix introduces the numerical schemes used in the main text. The SSE 

(Eq. 6.19) is used in the calculations of the force feedback and parametric feedback 

cooling. The Hamiltonian is given by 

H = H0 + H1,2, (B.1) 

†where H0 = hωÒ (a a+1 ), H1 = γpmx denotes the force feedback and H2 = 
χ mω2xmẋ mx2 

2 2 

is the parametric feedback. At each time step, the Hamiltonian H is modified accord-

ing to the measured position xm and Eq. (6.21) is used in evaluating H1 and H2. To 

get a better estimate of the particle position, xm at time t is calculated by taking the 

weighted time average of the directly measured positions in the earlier time xi(tœ), 

xm(t) = 
1 t 

xi(t
œ)e − 

(t− 
τ
tœ) 

dtœ , (B.2)
τ S−ª 

where τ P T and T = 2π~ω is the oscillation period. In our calculation, we take 

τ = T ~20. The wave function Sψ(t)e is represented in the eigen-basis of the operator 

H0. The initial state is chosen to be Gaussian, which is sensible because any other 

initial state would evolve rapidly into Gaussians under the continuous monitoring 

[59,94–96]. The numerical propagation of Eq. (6.19) is split into two parts. The first 

part is the unitary evolution d Sψe = −hÒ
i Hdt Sψe which is solved by the well known 

Crank-Nicolson method [66]. For the second part, the increment d Sψe = (−κ(x −
º 

`xe)2dt + 2κ(x − `xe)
º 
dtdW ) Sψe is directly calculated in the eigen-basis, and the 

random number dW is generated and used at each time step. The wave function in 

the next time step is obtained by renormalizing the sum from the first and the second 

part of the propagation. Each calculation is repeated more than one thousand times 

and data is collected by averaging over them. The convergence is checked by changing 

the time step size as well as the number of eigenstates used in the simulation. 
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The SME (Eq. 6.17) is used in the force feedback cooling calculation. The density 

operator is also represented in the eigen-basis of Hamiltonian H0. Equation (6.17) 

is numerically solved using a second order Runge-Kutta algorithm. At each time 

step, a random number is generated and used, and the measured position xm is used 

to get a feedback signal pm, such that a modified Hamiltonian H is obtained. The 

simulation is performed many times and data is collected by averaging over a thousand 

trajectories. The convergence is also checked by changing the time step size and the 

number of eigenstates. The SME is basically equivalent to the SSE, so the results are 

expected to match when the same values of the parameters are used. 
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C. The data for optimal cooling limit 

For reference, this appendix lists the data of optimal cooling limit with respect to the 

parameter set from both the force feedback and the parametric feedback cooling. 

Table C.1. 
This table gives the optimal cooling limit from the force feedback cooling 
scheme in terms of the parameters η and Δn. Each data point is obtained 
by scanning the feedback strength. The data roughly follows the formula 
`ne = 0.48 − η + 0.15º Δn − 0.01Δn.η η1~3 

Δn 

η 
0.01 0.05 0.10 0.15 0.20 0.25 0.30 

0.005 6.71 6.80 6.85 6.92 6.93 6.95 6.99 

0.01 4.62 4.69 4.73 4.76 4.81 4.86 4.90 

0.05 1.82 1.86 1.88 1.90 1.92 1.94 2.00 

0.1 1.13 1.17 1.18 1.22 1.27 1.30 1.31 

0.2 0.68 0.70 0.71 0.74 0.76 0.80 0.79 

0.4 0.34 0.35 0.36 0.39 0.42 0.44 0.45 
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Table C.2. 
This table gives the optimal cooling limit from the parametric feedback 
cooling scheme in terms of the parameters η and Δn. The data stops at 
Δn = 0.2 since our calculation becomes unstable for bigger values of Δn. 
Each data point is obtained by scanning the feedback strength. 

Δn 

η 
0.01 0.05 0.10 0.15 0.20 

0.005 129 65.9 56.0 48.0 43.9 

0.01 76.6 42.1 36.0 31.0 28.9 

0.05 35.0 19.0 16.3 14.1 12.2 

0.1 15.1 9.05 7.81 6.89 6.30 

0.2 9.40 5.72 4.71 4.19 3.86 

0.4 6.27 3.53 2.89 2.49 2.43 
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