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ABSTRACT 

Kyle, Trevor A. M.S.M.E., Purdue University, May 2018. Synthesis of Inhomogeneous 
Waves Using the Least-Squares Method. Major Professors: Jeffrey F. Rhoads and 
J. Stuart Bolton, School of Mechanical Engineering. 

The aim of the work presented in this document is to demonstrate the versatil-

ity and applicability of least-squares reconstruction of acoustic waves. Appropriately 

tailored, certain kinds of acoustic waves are able to thermomechanically excite ener-

getic materials in a safe, reliable manner. This allows for easier and more effective 

detection than current methods are able to offer. 

Typically, due to the large impedance difference between any given fluid and 

solid, it is exceedingly difficult to transmit energy between the two dissimilar media. 

However, it has been shown that certain spatially decaying plane waves, called inho-

mogeneous waves, are able to breach the fluid–solid barrier and transfer most of their 

energy into the second medium. However, as inhomogeneous acoustic waves cannot be 

easily generated from a single source, they must be reconstructed as a superposition 

of several waves from independent sources. This approach was studied through the 

lens of the least-squares method, which tunes a discrete number of sources to produce 

a desired waveform on a target surface. The simulations presented in this document 

analyze the range of parameters for which the least-squares method of sound field 

reconstruction provides an acceptable and physically feasible output. 

The conditions of these simulations were tested with real sources to determine the 

extent to which irregularities in the sources affected the reconstruction accuracy. By 

constructing an array of sources and an array of receivers, the effects of varying the 

standoff distance, source spacing, and level of inhomogeneity were analyzed. While 

empirical adjustments to the established model were not able to reduce the recon-
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struction error to the theoretical levels, they did allow for accurate reconstruction 

over a wide range of excitation parameters. 

This document provides the framework for further tests of least-squares recon-

struction over a wide span of parameters. Utilizing the methods discussed here, 

progress can be made towards the eventual goal of inducing a temperature increase 

in a mock energetic material utilizing inhomogeneous acoustic waves. 
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1. INTRODUCTION 

Portions of this chapter have been adapted from Kyle et al.: “Least-squares recon-

struction of low-frequency inhomogeneous plane waves” [1]. 

1.1 Background and Motivation 

The ability to determine a material’s chemical properties is in the interest of nu-

merous industries, both to ensure quality products and to detect potentially harmful 

substances. A chemical signature can provide significant insight into the characteris-

tics of a material, ranging from tensile and compressive strength [2] to acidity [3]. Of 

particular interest is the ability to positively identify energetic materials, substances 

that are able to detonate or deflagrate under certain conditions. These materials are 

used in the creation of improvised explosive devices (IEDs), which often contain en-

ergetic crystals suspended in a matrix of binder material [4]. IEDs pose a significant 

threat to both the armed forces and civilians due to their ability to be concealed or 

otherwise hidden, so it is critically important to be able to detect and classify them. 

One of the most commonly used strategies of identifying sensitive materials, such 

as the explosives RDX and HMX, is trace vapor detection, which uses a sensor to 

analyze air with the intent of discovering very small amounts of the material that 

have vaporized. Trace vapor detection can be implemented through various methods, 

such as the use of trained animals or the sampling of air in the vicinity of a suspected 

energetic material [5, 6]. However, since many IEDs are obscured or contained within 

packaging, their vapor pressure may be too low to allow for reliable detection. It has 

been shown that the vapor pressure of many energetic materials is highly dependent 

on temperature, with even small increases in temperature leading to greatly increased 

concentrations of vapors. For RDX, an increase in temperature from 25 ◦C to 27 ◦C 



2 

(a) (b) 

Figure 1.1. A diagram showing the relationship between vapor pressure 
and temperature of the explosives (a) RDX and (b) HMX, reproduced 

¨ from Ostmark et al. [7] 

results in a 40% increase in vapor pressure [7]. For HMX, the same temperature 

change increases the pressure by 60% [7]. Fig. 1.1 shows the strong temperature 

dependence of these explosives’ vapor pressures. 

Temperature changes in materials can be induced by mechanical vibrations [8], 

but due to the typically concealed nature of IEDs and their unknown composition, 

the mechanical excitation of them is often impossible or dangerous. An alternative to 

mechanical excitation is acoustic excitation, which utilizes sound waves to transmit 

energy into the material. Because energy can be transmitted through waves, it is not 

necessary to be physically in contact with or even near an IED in order to interact 

with it and identify it. This significantly reduces the risk of inadvertently triggering 

a deadly reaction that could harm the investigators. 
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The use of acoustic waves as a method of excitation comes at a cost, however, as 

sound waves do not typically transmit a significant amount of energy when they are 

incident on a barrier or interface between two different media. This is attributable to 

the acoustic impedance difference between the two media, which are often a fluid (like 

air), and a solid (like an energetic material) [9–11]. In order to address this limitation, 

previous work has considered the use of incident inhomogeneous plane waves. It was 

demonstrated that by tuning the incidence angle and inhomogeneity, small reflection 

(and large energy transmission) values are predicted in the context of lossless and 

low-loss fluid–solid interfaces [12, 13]. 

By developing a method to reliably implement the type of acoustic wave necessary 

to transmit energy across the boundary of a medium, it will be possible to thermome-

chanically excite energetic materials, which will allow for detection and identification. 

The remainder of Chapter 1 describes the representation and behavior of acoutic 

waves. Chapter 2 provides a framework that models the reconstructed sound field 

at any point in space as a function of source inputs. Chapter 3 explores various 

methods of characterizing real sources and compares theoretical and experimental 

results. Chapter 4 draws pertinent conclusions and provides a basis for future work, 

which includes the first steps in connecting the reconstruction of sound fields with 

the excitation of mock energetic materials. 

1.2 Representation of Acoustic Waves 

Materials or fluids that are homogeneous and isotropic have a uniform composi-

tion and bulk properties that are independent of direction. A harmonic plane wave 

propagating in a homogeneous, isotropic, fluid can be represented by the complex 

pressure as [9, 14]: 

i(ωt−K̃ ·r)p̃ = p̃0e , (1.1) 

where p̃0 denotes the complex pressure amplitude, i is the imaginary unit, ω denotes 

˜the angular frequency, t denotes the time variable, K is the complex wavevector, 
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and r is the position vector. The wavevector must satisfy the material wavenumber 

condition in the fluid [14], i.e., 

K̃ · K̃ = k̃2 , (1.2) 

where k̃ is the material wavenumber for longitudinal waves. If the fluid is assumed to 

be lossless, which is a good approximation for air in the low-frequency regime, then 

the material wavenumber is simply k = ω/v, where v is the longitudinal wave speed. 

In that case, for the plane wave under consideration, the planes of constant amplitude 

must be perpendicular to the planes of constant phase. 

By expanding the wavevector into its scalar components and assuming that the 

wave is traveling at an angle θ with respect to a coordinate system, Eq. (1.1) can be 

written as 

i(ωt−k cos θz−k sin θx)p̃ = p̃0e (1.3) 

This type of wave is known as a homogeneous plane wave, as its amplitude is constant 

along a line perpendicular to its propagation vector. In practice, very few waves are 

truly plane waves, although spherical waves can sometimes be approximated as plane 

waves if their frequency is low and they are very far away from their source. 

1.2.1 Reflection and Transmission of Plane Waves 

When an acoustic wave is incident on an interface between two media, the nature 

of the wave that propagates into the second medium and the amount of energy that it 

carries are highly dependent on the difference in the material properties of the media. 

In the case of a homogeneous plane wave incident on a fluid–fluid boundary (e.g., 

air to water), the pressure field in the first medium can be represented by the super-

position of the incident and reflected waves: 

i(ωt−k1 cos θz−k1 sin θx) i(ωt+k1 cos θr z−k1 sin θrx)p1 = e + Re (1.4) 
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where k1 is the material wavenumber of the first medium, θ is the angle of incidence, 

θr is the angle of reflection, and R is the pressure reflection coefficient. Because fluids 

cannot support shear waves, the pressure field in the second medium is simply the 

transmitted longitudinal wave: 

i(ωt−k2 cos θtz−k2 sin θtx)p2 = T e (1.5) 

where k2 is the material wavenumber of the second medium, θt is the angle of trans-

mission, and T is the pressure transmission coefficient. The fluid–fluid interface with 

the incident, reflected, and transmitted waves is shown in Fig. 1.2. 

Figure 1.2. A diagram showing the interaction of a plane wave incident 
on a fluid–fluid boundary. 

Since the pressures in each medium are equal at the interface where z = 0, 

Eqs. (1.4) and (1.5) reduce to 

−ik1 sin θx −ik1 sin θr x −ik2 sin θtx e + Re = T e (1.6) 
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Because the pressure boundary condition is independent of x, the quantities in the 

exponents must be equal. By equating the first two exponents, it can be seen that 

θr = θ. By equating the first and third exponents, Snell’s Law is recovered [9]: 

sin θt v2 
= (1.7)

sin θ v1 

where v1 and v2 represent the longitudinal wave speeds in each medium. Notably, if 

v2 > v1, there exists a critical angle θc such that any higher value of θ would lead to 

sin θt to be greater than unity [9]. As a result, θt is complex and cos θt is imaginary: q 
cos θt = ±i (v2/v1)2 sin2 θ − 1 (1.8) 

By evaluating Eq. (1.5) and Eq. (1.7) using the negative root of Eq. (1.8), it can be 

seen that the transmitted wave now has an amplitude that exponentially decays into 

the second medium but does not propagate: 

−ζz i(ωt−k1 sin θx)p2 = T e e (1.9) p
with ζ = k2 (v2/v1)2 sin2 θ − 1. This wave is evanescent, as it clings to the boundary 

but does not transmit energy into the second medium [9]. For media that have 

wave speeds much greater than the surrounding fluid, the critical angle is very small, 

meaning that there is a very small range of angles that are able to be exploited for 

acoustic excitation. 

For all incidence angles such that θ < θc, the values of the pressure reflection 

coefficient and pressure transmission coefficient can be found by reexamining Eq. (1.6) 

and again noting that the exponents all must be equal. As a result, the following 

equality can be made: 

1 + R = T (1.10) 

Because the component of particle velocity normal to the boundary must also be 

continuous across the media, the following equality can be made, noting that particle 

velocity is given as u = ±p/ρc: 

cos θ cos θ cos θt− R = T (1.11)
ρ1v1 ρ1v1 ρ2v2 
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Solving Eqs. (1.10) and (1.11) simultaneously yields an expression for the reflection 

coefficient [9]: 

ρ2v2 − ρ1v1 
cos θt cos θR = (1.12)ρ2v2 ρ1v1+ 
cos θt cos θ 

The value of the transmission coefficient can then be found using Eq. (1.10). 

As was previously stated, at values of θ greater than θc, the transmitted angle θt 

will be complex. As a result, the magnitude of the pressure reflection coefficient, and 

therefore the power reflection coefficient, is unity at large incidence angles [9]. 

The mechanics of transmission and reflection become more complicated when a 

wave is incident on a fluid–solid boundary because solids are able to sustain shear 

waves as well as longitudinal waves. This is shown in Fig. 1.3, which displays the 

incident and reflected waves, along with the two transmitted waves. 

Figure 1.3. A diagram showing the interaction of a plane wave incident 
on a fluid–solid boundary. 

The same boundary conditions of the fluid–fluid interface are maintained for a 

fluid–solid interface: trace wavenumber continuity, pressure/normal stress continuity, 
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and normal particle velocity continuity. The angle of the transmitted shear wave can 

be found using an expanded version of Snell’s Law as 

sin θ sin θtL sin θtS = = (1.13) 
v1 v2L v2S 

where v2L is the speed of the longitudinal wave in the solid, and v2S is the speed of the 

shear wave in the solid. By utilizing the boundary conditions as stated, it is possible 

to once again solve for the pressure reflection coefficient, which Brekhovskikh reports 

in terms of the transmitted shear angle [10]: 

ρ2v2L ρ2v2S − ρ1v1cos2 2θ2S + sin2 2θ2Scos θtL cos θtS cos θ 
R = (1.14)ρ2v2L ρ2v2S ρ1v1cos2 2θ2S + sin2 2θ2S + 

cos θtL cos θtS cos θ 

In the context of transmitting acoustic energy from a fluid into a solid, it is desirable 

to minimize the magnitude of the reflection coefficient (thereby maximizing the mag-

nitudes of the shear and longitudinal transmission coefficients). This is possible by 

exploiting the Rayleigh phenomenon, the condition where an incident wave perfectly 

excites the free wave solution of the surface. This causes the shear and longitudinal 

waves to travel at the same velocity along the material interface, appearing as bulk 

Rayleigh waves. The speed of these Rayleigh waves can be found by solving the char-

acteristic equation and taking the positive root that is smaller than the shear wave 

velocity [10, 18]: � �6 � �4 
" � �2 

#� �2 
" � �2 

# 
vRay vRay v2S vRay v2S− 8 + 24 − 16 − 16 1 − = 0 
v2S v2S v2L v2S v2L 

(1.15) 

where vRay is the Rayleigh wave speed. The Rayleigh angle θRay is then found as 

follows: 

v1LθRay = arcsin (1.16)
vRay 

While transmission would generally be optimized at the Rayleigh angle, the large 

impedance difference between fluids and solids often places the Rayleigh angle much 
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higher than the critical angle, which, as mentioned previously, leads to the total 

reflection of homogeneous plane waves. However, the Rayleigh phenomenon can still 

be exploited, and the reflection coefficient can be reduced to zero, if the incident wave 

takes the form of an evanescent wave, hereafter referred to as an inhomogeneous plane 

wave. 

1.2.2 Inhomogeneous Plane Waves 

˜In a homogeneous plane wave, the wavevector K is real, and the directional 

wavenumbers are simply projections of the material wavenumber onto an arbitrary 

coordinate system. However, for inhomogeneous plane waves, this is not the case. By 

writing the complex wavevector in terms of the real propagation vector C and real 

˜attenuation vector A, K = C − iA; this condition is then C ⊥ A, where A = 0 for 

homogeneous plane waves and A 6= 0 for inhomogeneous waves. Introducing the inho-

mogeneity, or decay, parameter β = |A|, Eq. (1.1) can be written, for two-dimensional 

propagation in the xz-plane: 

−β[− cos θx+sin θz] i[ωt−|C| sin θx−|C| cos θz]p̃ = p̃0e e (1.17) 

where the incidence angle θ and right-handed Cartesian coordinate system shown in 

Figs. 1.2 and 1.3 have been used, and where |C| is computed from Eq. (1.2). 

In the context of mathematical completeness, this decay parameter can be ex-

pressed as an imaginary component of a complex incidence angle, such that θ = 

θ< + iθ=, as follows: ⎛ "� �2 
#1/2 

⎞ 
β 

θ= = ± ln ⎝ |β| + + 1 ⎠ (1.18)
k k 

This corresponds to the inversion of β = k sinh θ=. It should be noted that evanescent 

waves and inhomogeneous waves have the same mathematical representation, but 

in the interest of clarity, only the transmitted waves that result from supercritical 

incidence will be referred to as evanescent. 
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To illustrate the potential impact of inhomogeneous waves, consider a 2 m long 

interface of air and sea water, which have densities of ρ1 = 1.21 kg/m3 and ρ2 = 1026 

kg/m3 and wave speeds of v1 = 343 m/s and v2 = 1500 m/s, respectively. Because of 

the large ratio of wave speeds, the critical angle is θc = 13.22◦ . A 2 kHz plane wave 

incident at an angle of θ = 10◦ both reflects and transmits as a plane wave across 

the z = 0 boundary, as seen in Fig. 1.4. Note that although the maximum pressure 

amplitude is the same in both media, the amount of energy transmitted into the 

second medium is still extremely low because the impedance of water is much higher 

than that of air. If the same homogeneous plane wave is incident on the interface at 

Figure 1.4. A diagram showing the interaction of a homogeneous plane 
wave incident (blue arrow) and reflected (red arrow) on a fluid–fluid 
boundary below the critical angle. A plane wave propagates into the 
second medium (green arrow). 

θ = 15◦ , slightly higher than θc, evanescent waves are created that propagate along 

the interface and decay into the medium. However, they do not propagate into the 

medium or dissipate energy, as seen in Fig. 1.5. 

By introducing an inhomogeneity in the amplitude of the incident wave, as shown 

in Fig. 1.6, it can be seen that the waves created in the second medium appear 
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Figure 1.5. A diagram showing the interaction of a homogeneous plane 
wave incident (blue arrow) and reflected (red arrow) on a fluid–fluid 
boundary above the critical angle. Note the evanescent waves clinging 
to the interface in the bottom medium (green arrow). 

evanescent but ultimately propagate away from the surface. This allows for the 

transfer of energy from one medium to another at an angle greater than θc. 

Figure 1.6. A diagram showing the interaction of an inhomogeneous 
plane wave incident (blue arrow) and reflected (red arrow) on a fluid–fluid 
boundary above the critical angle. Note the evanescent waves propagating 
into the bottom medium (green arrow). 
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With these parameters, the reflection coefficient is still close to but not equal to 

unity. However, at a near grazing angle and a small decay parameter of β = 0.042 

rad/m, the reflection coefficient goes to zero and all incident energy is transmitted, 

as shown in Fig. 1.7. 

Figure 1.7. A diagram showing the interaction of an inhomogeneous 
plane wave incident (blue arrow) and reflected (red arrow) on a fluid–fluid 
boundary at a grazing angle. The evanescent waves propagating into the 
bottom medium (green arrow) carry all of the energy of the incident wave. 

In order to exploit the Rayleigh phenomenon in solids, the optimal angle and 

decay parameter value must be determined. Of particular interest is the material 

Sylgard 184, which is used as a binder material for many energetic and mock energetic 

materials. Sylgard 184 has a density of ρ = 1030 kg/m3 , a longitudinal wave speed of 

vL = 1100 m/s, and a shear wave speed of vS = 570 m/s [15]. For a 2000 Hz plane wave 

in air incident on Sylgard 184, the Rayleigh angle is 40.32◦ and the corresponding 

decay parameter that allows for zero reflection is β = 0.0043 rad/m, as shown in 

Fig. 1.8. The optimum decay parameter scales directly with frequency, so a wave 

with double the frequency will require a decay parameter that is twice as large. 
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Figure 1.8. A diagram showing the minimization of the pressure reflection 
coefficient of a 2000 Hz inhomogeneous plane wave incident on Sylgard 
184. 

Inhomogeneous plane wave profiles of the form given in Eq. (1.17) are considered in 

the sound field reconstruction methods investigated in this work. In particular, broad 

ranges of the inhomogeneity parameter β are explored, in order to target efficient 

energy transmission [12, 13] into a wide range of solid materials. 

In the context of acoustic energy transmission into solid media, at a particular 

frequency, the incidence angle θ and inhomogeneity parameter β are considered to be 

tunable in order to maximize the transmission. In Fig. 1.3, the fluid–solid interface 

is located at the z = 0 plane (with the fluid occupying the region z < 0 and the solid 

occupying the region z > 0), and Eq. (1.17) then represents the incident wave alone, 

and not the reflected wave (in the fluid) or the transmitted waves (in the solid) [10, 14]. 

It is well-known that the plane wave reflection coefficient is minimized, and the 

intensity transmission is maximized, with incidence near the Rayleigh angle, at which 

the incident wave efficiently excites the free wave solution along the solid surface [16– 

18]. Moreover, previous work has shown that, for lossless and low-loss fluid–solid 

interfaces, the inhomogeneity β can also be tuned to further reduce the reflection co-

efficient magnitude, and thus further increase the fraction of the incident energy which 
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is transmitted into the solid medium [12, 13]. It should also be noted that similar re-

sults have been shown for bounded incident waves, where the effective beamwidth 

may be tuned as well [19, 20]. 

As it is extremely difficult for a single simple source to create an inhomogeneous 

plane wave, other wave generation methods must be utilized, the easiest of which is an 

acoustic array with independent tunable sources. Though it is straightforward to ad-

just the incidence angle of an impinging wave on a solid surface with an acoustic array, 

adjusting the inhomogeneity of the incident wave requires additional consideration in 

the array design, particularly if large ranges of the inhomogeneity are considered. 

Specifically, for a set number of sources, the inhomogeneity affects the optimal source 

spacing, as quantified by the pressure errors and power consumption in the least-

squares method. Here, the objective is to identify source array parameters that allow 

for the reasonable reconstruction of inhomogeneous plane waves over broad ranges 

of the incident wave inhomogeneity, β, which may be required for maximum energy 

transmission if solids with wide ranges of material properties are targeted. 
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2. RECONSTRUCTION OF ACOUSTIC PLANE WAVES 

Portions of this chapter have been adapted from Kyle et al.: “Least-squares recon-

struction of low-frequency inhomogeneous plane waves” [1]. 

2.1 Introduction 

As was discussed in Chapter 1, it is generally infeasible to create inhomogeneous 

plane waves from a single source. Although the amplitude of a wave attenuates as 

an exponential function of distance to the source in a lossy medium, this attenua-

tion is in the direction of propagation, not perpendicular to it as is required for an 

inhomogeneous wave. 

Several factors must be weighed when evaluating the efficacy of a reconstruction 

method, the most important of which are error in pressure and power demand. The 

reconstructed wave profile must closely match the desired profile or the wave may not 

be correctly tailored to transmit into a desired material. If the reconstruction attempt 

requires a significant amount of power, it may not be electrically or mechanically 

feasible to drive the sources in the optimal manner. 

Methods for the reproduction of arbitrary sound fields, including plane waves and 

random pressure fields, have been described in detail in a wide variety of contexts [21– 

28]. Commonly employed techniques include the least-squares method [23], the wave 

field synthesis approach [24], and the spectral division method [25, 27]. In the least-

squares method, the desired pressure field is specified at a discrete number of points 

(e.g., on a receiver plane) and the least-squares algorithm is utilized to compute the 

source strengths (amplitudes and phases) for a specified number of sources and source 

locations [23]. Inevitably, a finite number of sources are used, and the generated pres-

sure field is in error relative to the desired field, with that error depending on the 



16 

nature of the desired field, the separation distance, and the parameters which char-

acterize the source and receiver arrays [23]. Moreover, errors in the regions between 

the receivers also occur (for a continuous desired pressure distribution), since a finite 

number of receivers are used in the solution algorithm. 

In the context of inhomogeneous plane waves, which are investigated here as pro-

files which may enhance energy transmission into solid materials, approximations to 

such plane wave fields have, in fact, been previously generated [26, 29–32], and the 

reflection phenomena at solid interfaces have been documented in relation to plane 

wave theory [31]. However, no previous work has reported tuning the inhomogene-

ity in order to enhance energy transmission. It is thus the purpose of this work to 

apply the least-squares method for sound field reconstruction, using one-dimensional 

linear source and receiver arrays, to reproduce inhomogeneous plane wave fields over 

a range of inhomogeneity values. In particular, the source spacing will be varied 

to find values which simultaneously yield low errors in the generated pressure and 

low power consumption requirements over orders of magnitude of the incident wave 

inhomogeneity, which will make the array robust for a large range of incident wave 

parameters. A simple monopole point source model is considered, and the effects of 

the separation distance between the source and receiver locations are also addressed. 

Moreover, Gaussian noise distributions superimposed on the source amplitudes and 

phases will be introduced as a consideration for practical implementations, and the 

effects on the generated pressure field will be additionally explored. 

2.2 The Least-Squares Method 

The details of the least-squares method will be briefly outlined here, following 

the work of Kirkeby and Nelson [23]. Broadly speaking (and for any sound field 

reproduction method), in order to reconstruct a desired pressure field at a given 

standoff distance, the amplitudes and relative phases of the specified sources must be 

tuned to the appropriate levels. Note that unlike the methods of Itou et al. [26] and 
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Figure 2.1. A diagram showing the one-dimensional linear source and 
receiver arrays. 

Trivett et al. [29], which create true evanescent waves decaying away from the array, 

the least squares method creates a sound field that simply resembles evanescent waves 

decaying parallel to the array, and only on the plane specified by the standoff distance. 

In a one-dimensional linear array setup with S sound sources, the source strengths 

˜can be written as the elements of a vector Q, with S elements. For a desired sound 

pressure distribution, p̃(x), on a corresponding target surface, here taken to be a line, 

a finite number of points R must be chosen at which to evaluate (i.e., specify) the 

pressure or, in an experimental sense, to place the receivers. This sampled pressure 

˜distribution is then a vector P with R elements. A diagram showing the source-

receiver array setup is given in Fig. 2.1, where x0 is the coordinate on the design 

line. While the least-squares method can be used for any arbitrary distribution and 

alignment of sources and target receivers, the experimental setup discussed here will 

assume that the source line and the design line are parallel. 

Since the generated pressure at any point in P̃ is the sum of the sound pressures 

generated by each source in the source array, traveling varying distances and at vary-
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ing angles, it is possible to relate the desired pressures P̃ to the source strengths Q̃ 

through the use of an impedance matrix Z̃ [23]: 

P̃ = Z̃Q̃ , (2.1) 

or, with the elements expanded: ⎡ ⎢⎢⎢⎣ 
P̃1 

. . . 

⎤ ⎥⎥⎥⎦ = 

⎡ ⎢⎢⎢⎣ 
⎡ ⎢⎢⎢⎣ 

⎤ ⎥⎥⎥⎦ 
Q̃1 

. . . 

⎤ ⎥⎥⎥⎦ . (2.2) 

˜ ˜Z11 · · · Z1S 

. ... . . . . . 

˜ ˜ ˜ ˜PR ZR1 · · · ZRS QS 

With a monopole point source model employed for each of the sources, each element 

Z̃mn of the impedance matrix can be calculated as [23]: 

−ikrmne
Z̃mn = iωρ , (2.3)

4πrmn 

where ρ is the density of the fluid medium and rmn is the distance between receiver 

m at position rm and source n at position rn, i.e., 

rmn = |rm − rn|. (2.4) 

To remove the frequency dependence, Eq. (2.1) can be rewritten to give 

˜ ˜P = Hã, (2.5) 

˜where H is the modified impedance matrix and ã is the vector of source volumetric 

accelerations. Thus, with the relationships [23]: 

1˜ ˜H = Z,
iω (2.6) 

ã = iωQ̃ , 

the accelerations, and therefore the source strengths, can be determined by solving 

the matrix equation. 

Since it is not required that R equals S, Eq. (2.5) does not, in general, have a 

unique, exact solution. Thus, as in the case of an overdetermined system, an ap-

proximate method for the solution is necessary. For the least-squares fitting model, 
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the components of the source acceleration vector ã are determined through the equa-

tion [23]: � �−1 
H̃ ∗ ˜ H̃ ∗ ˜ã = H P, (2.7) 

where H̃ ∗ denotes the complex conjugate transpose of the modified impedance matrix. 

The actual pressure distribution at the target can be evaluated by multiplying the 

modified impedance matrix by the acceleration vector given in Eq. (2.7). 

The complex source strengths can be found by applying Eq. (2.6), and the monopole 

source input powers can then be found through the equation [33]: 

|Q̃ 
n|2ρvk2 

Wn = . (2.8) 
8π 

The total acoustic power required for the array can be found by summing the monopole 

powers. This assumes that the source powers are not correlated, and although this 

sum will not be exactly equal to the true electrical power demand of the entire array, it 

is useful as a metric of how much electrical power will be required to drive the sources. 

While not particularly meaningful in a theoretical sense, this piece of information is 

important to note when considering the practicality of real experimental applications 

of the array. Note that the relative phase offset of each source is determined as the 

phase of the complex source strength: ! 
Im[Q̃ 

n]
φn = arctan . (2.9)

Re[Q̃ 
n] 

It should be further emphasized here that the pressure field from each source is har-

monic in time, through the dependence eiωt , and that the relative phases, φn, among 

the sources serve to reproduce the desired pressure field at the receivers through the 

interference of the respective generated fields. 

2.3 Theoretical Results 

To evaluate the performance of an acoustic array, a consistent basis will be used 

in the course of this analysis: 8 sound sources with a frequency of 10 kHz; 8 design 
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points over the span of 17.5 cm; and room temperature air as the medium. While 

many of these parameters are able to be modified, only certain general cases will be 

explored in depth. 

By using the least-squares reconstruction method, it is possible to determine the 

pressure error profile on the target surface and the source power profile. The opti-

mum experimental setup occurs when both the pressure errors and source powers are 

minimized, as an inaccurate pressure profile will be ineffective at energy transmission 

and a high value for source power will be difficult to physically achieve and sustain. 

˜In the case of homogeneous plane waves, the vector P will have elements that 

are all equal in value, while in the case of inhomogeneous plane waves, the values of 

the elements will be determined by evaluating an exponential function at the target 

points. To provide a comparison of wave types, homogeneous plane wave examples 

will be shown first, followed by a detailed analysis of inhomogeneous plane waves. 

For a normally incident homogeneous plane wave with an amplitude of 1 Pa (the 

source array and target surface are aligned), every element of P is real and equal to 

unity. It is a simple matter to turn this reconstructed homogeneous plane wave into 

an inhomogeneous plane wave by adding an exponential decay parameter, β. Thus, 

instead of the desired pressure profile being a uniform 1 Pa, it now takes the form 

Γeβx
0 
, with Γ determined such that the pressure at the edge of the design span equals 

1 Pa, and x0 representing the position along the design line. For this analysis, the 

decay parameter will take a relatively high value of β = 1 rad/m in order to provide an 

extreme limit in contrast to the homogeneous wave. By assuming that the sources are 

monopoles with an equal spacing of δ = 6 cm and that the standoff distance between 

the sources and receivers is Δ = 50 cm, the pressure profiles can be generated using 

Eq. (2.5), and are shown in Fig. 2.2. In this case, there are 8 design points, each 

separated by 25 mm. These design points are simply used as parameters in the 

least-squares algorithm, and do not necessarily correspond to physical microphones 

or receivers on the target surface. 
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(a) 

(b) 

Figure 2.2. A diagram comparing the magnitude of the pressure distri-
bution of a reconstructed (a) homogeneous plane wave and (b) inhomo-
geneous plane wave with decay parameter β = 1 rad/m. The ideal 1 Pa 
plane wave is shown in blue and the reconstructed wave is shown in red. 
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Noticeably, the error in pressure magnitude essentially vanishes at the 8 target 

points, but the errors can become significant between those points. By subtracting 

the ideal pressure distribution from the generated profile, the error can be plotted. 

As shown in Fig. 2.3, the maximum error along the design span for a homogeneous 

wave under the given conditions is 4.5 × 10-3 Pa, or 0.45%. In the case of the 

inhomogeneous wave, the error pattern is no longer completely symmetric, but scales 

slightly higher as the pressure gradient increases. This is indicative of the difficulty 

in fitting a pressure distribution that changes significantly over a small distance. The 

maximum error for an inhomogeneous wave is 4.6 × 10-3 Pa, or 0.47%. 

The homogeneous plane wave requires a total acoustic power of 3.5 mW from the 

sources, distributed symmetrically as seen in Fig. 2.4a. This symmetry is lost for 

the case of the inhomogeneous plane wave (Fig. 2.4b), which, because it ultimately 

demands lower pressure magnitudes on the design surface, only requires 3.0 mW. 

In this analysis, the span of the sound sources is 2.4 times wider than the target 

surface due to the physical experimental limitations of the sources themselves. As 

such, sources near the edges of the array do not significantly contribute to the overall 

consumption of power, even in the case of an inhomogeneous wave. 

The distribution of initial source phases is also shown in Figs. 2.5a and 2.5b. 

While small deviations exist, the sources are almost in phase with each other. Even 

when the power symmetry is broken in the case of the inhomogeneous wave, the phase 

range does not significantly expand. 

As was mentioned in the previous section, the number of sources and the number 

of design points are not required to be equal. By increasing the number of design 

points from 8 to 128 on the same target span, the root mean square error is reduced 

from 2.1 × 10-3 Pa to 1.6 × 10-3 Pa. The resulting pressure distribution, as seen in 

Fig. 2.6, is closer to the desired pressure distribution of 1 Pa. While this reduction in 

error is appreciable, experimentally, it is not currently possible to verify the pressure 

at so many locations over such a small range. Because of this limitation, the 8-point 

model will be used. 
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(a) 

(b) 

Figure 2.3. A diagram comparing the magnitude of the maximum pres-
sure error of a reconstructed (a) homogeneous plane wave and (b) inho-
mogeneous plane wave with decay parameter β = 1 rad/m. 
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(a) 

(b) 

Figure 2.4. A diagram comparing the magnitude of the required acoustic 
source powers for (a) a homogeneous plane wave and (b) an inhomoge-
neous plane wave with decay parameter β = 1 rad/m. 



25 

(a) 

(b) 

Figure 2.5. A diagram comparing the initial source phases for (a) a 
homogeneous plane wave and (b) an inhomogeneous plane wave with decay 
parameter β = 1 rad/m. 
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(a) 

(b) 

Figure 2.6. (a) A diagram showing the reproduced homogeneous pressure 
distribution when 128 design points are used, and (b) the root mean square 
error of a homogeneous wave as a function of the number of design points. 
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2.3.1 Variation of Array Parameters 

The possibility of a large standoff distance between the array and the target surface 

is critically important to real world applications of this apparatus, as in some cases, 

it may be difficult or dangerous to deploy an array very close to a target material. 

As seen in Fig. 2.7, the maximum error in pressure decreases with increasing standoff 

because the spherical waves begin to naturally appear more like plane waves. However, 

if a very large standoff is attempted, a significant amount of power could be required 

due to the spatially decaying nature of spherical waves. Despite the power demand 

growing exponentially with respect to standoff distance, as seen in Fig. 2.8, both 

homogeneous and inhomogeneous waves can be generated with relatively low power 

outputs from the sources for the current parameters of interest. 
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(a) 

(b) 

Figure 2.7. A diagram comparing the maximum pressure error with 
respect to varying separation distance for (a) a homogeneous plane wave 
and (b) an inhomogeneous plane wave with decay parameter β = 1 rad/m. 
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(a) 

(b) 

Figure 2.8. A diagram comparing the total acoustic power consumption 
with respect to varying separation distance for (a) a homogeneous plane 
wave and (b) an inhomogeneous plane wave with decay parameter β = 1 
rad/m. 

A large spike in errors and power consumption occurs at approximately Δ = 20 

cm for this configuration, as the source spacing and standoff distance were such that 

in order to match the desired pressure distribution at the design points, a significant 

amount of power was required. While errors at the design points were still small, errors 

in the spaces between them were large due to the excessive power of the sources and 

the near-singular nature of the impedance matrix as specified in Eq. (2.1). Kirkeby 

and Nelson noted this issue, specifying that the matrix to be inverted is poorly condi-

tioned [23]. This is not only an issue with numerical solvers, but also indicative that 
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very small errors in the source accelerations, even rounding errors, could cause a dras-

tically different pressure distribution from the one desired [23]. A smoother curve in 

Figs. 2.7 and 2.8 can generally be obtained by increasing the number of design points, 

or by increasing both the number of design points and the number of sources. While 

numerical methods exist to compensate for poor conditioning, it is generally recom-

mended to avoid specifying design parameters that cause near-singular matrices due 

to the relatively high level of error that will result during reconstruction. Because 

of this restriction and prohibitively high pressure error, the only practical separation 

distances are those greater than 20 cm, for this case. 

The minimum value of total power consumption for an inhomogeneous wave occurs 

at a standoff distance of Δ = 31 cm (barring the highly erroneous case when the 

standoff distance is 10 cm). While the power is very low at 1.6 mW, the corresponding 

maximum pressure error is 19.2%. Thus, in the scope of practical applications, it will 

be important to quantify whether reducing the pressure error or reducing the power 

consumption is the dominant design criterion. 

Fig. 2.9 illustrates the effect of varying both source spacing and standoff distance, 

with the color bar representing the logarithm of maximum pressure error in pascals. It 

can be seen that in general, as source spacing increases, a greater standoff distance is 

required to maintain a low level of error. Of note is the dark red strip which represents 

an extreme error in pressure, which was previously seen in Fig. 2.7. While there 

are slight variations in pressure error between the homogeneous and inhomogeneous 

waves, it is not significant, and as a result, part (b) of the figure shows the logarithm 

of the difference of maximum errors between homogeneous and inhomogeneous waves. 
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(a) 

(b) 

Figure 2.9. A diagram comparing (a) the logarithm of maximum pres-
sure error (in Pa) with respect to varying separation distance and source 
spacing for a homogeneous plane wave and (b) the logarithm of the differ-
ence in maximum pressure error (in Pa) with respect to an inhomogeneous 
plane wave with decay parameter β = 1 rad/m. 

Fig. 2.10 shows how source spacing and standoff distance affect the total power 

consumption by the sources, with the color bar representing the logarithm of total 

acoustic power in watts. The strip of highest power corresponds to the strip of 

highest pressure error as seen in the previous figure, and in general, no waveform 

reconstruction should be attempted in the region below this strip due to these high 

values of power consumption and pressure error. For a given source spacing, there is 

an optimal standoff distance that will require the least amount of power. Increasing 
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the standoff reduces pressure errors, but it increases power consumption. Again, the 

results for the homogeneous case and the inhomogeneous case are very similar, so 

Fig. 2.10b shows the logarithm of the difference in total acoustic power between the 

homogeneous and inhomogeneous waves. 

(a) 

(b) 

Figure 2.10. A diagram comparing (a) the logarithm of total acoustic 
power consumption (in W) with respect to varying separation distance and 
source spacing for a homogeneous plane wave and (b) the logarithm of the 
difference in total acoustic power (in W) with respect to an inhomogeneous 
plane wave with decay parameter β = 1 rad/m. 

As the range of parameters shown only encompasses a small portion of the possible 

standoff distance and source spacing values, it is possible to broaden the scope of the 
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simulation to investigate notable mathematical artifacts. Fig. 2.11a shows the maxi-

mum pressure error and Fig. 2.11b shows the power consumption of a homogeneous 

plane wave, with the source spacing varying up to 20 cm and the standoff distance 

varying up to 10 m. 

(a) 

(b) 

Figure 2.11. A diagram comparing (a) the logarithm of maximum pres-
sure error (in Pa) and (b) the logarithm of total acoustic power consump-
tion (in W) with respect to significantly varying separation distance and 
source spacing for a homogeneous plane wave. 

It can be seen that at large standoff distances, pressure errors remain generally 

low, but there are discontinuities in the plot. The region where this occurs is more 

readily apparent in Fig. 2.11b, where the power requirement is unreasonably high. 
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This region, like the small-standoff region, is a result of a near-singular impedance 

matrix. Since each row of the impedance matrix corresponds to the distance between 

a given design point and every source, at very large standoff distances, the spacing of 

the sources and the length of the design line become negligible. This is especially true 

for the design points in the middle of the design line, and as a result, the innermost 

rows of the impedance matrix are extremely similar, resulting in a poorly conditioned 

matrix. At this distance, the waves from the individual sources are already nearly 

planar, making some of them redundant. Thus, a valid method to reduce the power 

demand at large standoff distances is to make the system overdetermined by reducing 

the number of sources. 

After choosing a 50 cm standoff distance and introducing inhomogeneity, it is 

revealed that errors in pressure, and the maximum power consumption, are largely 

controlled by the source spacing, with little dependence on the degree of inhomo-

geneity. This is not surprising, as Figs. 2.9b and 2.10b show very small differences. 

Figs. 2.12 and 2.13 show plots of pressure error and power consumption as a func-

tion of source spacing and decay parameter, with the color bars representing those 

quantities in pascals and watts. 

Figure 2.12. A diagram showing the logarithm of maximum pressure 
error (in Pa) with respect to varying decay parameter and source spacing 
for an inhomogeneous plane wave at a standoff distance of 50 cm. 
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Figure 2.13. A diagram showing the logarithm of total acoustic power 
consumption (in W) with respect to varying decay parameter and source 
spacing for an inhomogeneous plane wave at a standoff distance of 50 cm. 

The total power consumption appears to be loosely correlated with the decay 

parameter, but only when it reaches relatively high values on the order of β = 1 

rad/m. As the degree of inhomogeneity required for many transmission applications 

is several orders of magnitude less than this, it does not appear as though introducing 

a degree of inhomogeneity to a wave field will adversely affect either the accuracy of 

the reconstructed wave or the source powers required to generate the wave. 

2.3.2 Sensitivity of Reconstruction to Source Inconsistencies 

In a realistic experimental setup, each source will not be exactly tuned to the 

specified power and phase necessary for the least-squares solution. By first identify-

ing the least-squares solution and then simulating the results when small Gaussian-

distributed errors are applied to each source, an error band can be generated to show 

an expected range of values for the magnitude of the reconstructed plane wave. 

To investigate the effects of adding Gaussian errors to both source power and 

initial phase offset, 5000 simulations were first run with only errors in phase and 

then with only errors in power. Fig. 2.14 shows the average magnitude for both a 



36 

reconstructed homogeneous plane wave and an inhomogeneous plane wave, assuming 

a Gaussian error in initial source phase with a mean value of 0 degrees and a standard 

deviation of 1 degree, a value intended to capture small perturbations but still remain 

physically plausible. At any given point on the target surface, the expected maximum 

deviation from the target pressure distribution is 2.1% for the homogeneous case and 

2.3% for the inhomogeneous case. 

(a) 

(b) 

Figure 2.14. A diagram comparing the effects of adding a Gaussian error 
in initial source phase (mean value of 0 degrees and standard deviation of 
1 degree) on the average magnitude of the pressure distribution (bounded 
by one standard deviation) of a reconstructed (a) homogeneous plane wave 
and (b) inhomogeneous plane wave with decay parameter β = 1 rad/m. 
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Fig. 2.15 show the results of the same simulation, but with a zero-mean, 1% 

standard deviation Gaussian error in source power and no error in phase angle. This 

standard deviation, again, is meant to represent a relatively small but still realistic 

source error. The maximum error in pressure is about 0.92% for the homogeneous 

case and 0.94% for the inhomogeneous case, much less than the variation caused by 

the phase error that was explored. 

(a) 

(b) 

Figure 2.15. A diagram comparing the effects of adding a 1% Gaussian 
error in source power on the average magnitude of the pressure distribution 
(bounded by one standard deviation) of a reconstructed (a) homogeneous 
plane wave and (b) inhomogeneous plane wave with decay parameter β = 
1 rad/m. 
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As, in this case, the error in phase angle dominates the error in source power, 

the combination of a 1 degree phase error and a 1% power error yields a maximum 

deviation of 2.2% from the desired pressure in a homogeneous wave and 2.3% in an 

inhomogeneous wave, as seen in Fig. 2.16. 

(a) 

(b) 

Figure 2.16. A diagram comparing the effects of adding both Gaussian er-
ror in initial source phase (mean value of 0 degrees and standard deviation 
of 1 degree) and a 1% Gaussian error in source power on the average mag-
nitude of the pressure distribution (bounded by one standard deviation) 
of a reconstructed (a) homogeneous plane wave and (b) inhomogeneous 
plane wave with decay parameter β = 1 rad/m. 

By fitting an exponential curve to the extreme values of the pressure standard 

deviation, bounds for the decay parameter can be determined. In this case, β has a 
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range of 0.804 rad/m to 1.198 rad/m. This variation can have a significant impact 

on the pressure reflection coefficient when the inhomogeneous wave is incident on a 

solid surface. 

For example, for a wave incident on a solid material such that the density ratio 

ρ2/ρ1 = 1000, the longitudinal wave speed ratio v2L /v1L = 10, and the shear wave 

speed ratio v2S /v1L = 7, the optimal angle of incidence θ is 9.37 degrees, the optimal 

decay parameter β is 1.06 × 10-3 rad/m, and the resulting magnitude of the pressure 

reflection coefficient |R| is 0 [12, 34]. If the aforementioned errors are present in the 

sources, β can vary from 0 rad/m to 0.1955 rad/m, and it can be clearly seen that 

|R| increases substantially even with small changes to β (Fig. 2.17). Ultimately, even 

small errors in a sound source could hinder the ability to transmit energy into a 

material if the inhomogeneous wave is not properly formed. 
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(a) 

(b) 

Figure 2.17. (a) A diagram showing the effects of varying the decay 
parameter β on the magnitude of the reflection coefficient |R| when an 
inhomogeneous wave is incident on a solid material at the optimal angle, 
and (b) a zoomed-in view of the same diagram to highlight the results 
near β = 0 rad/m. 

The actual process of signal generation requires numerous electrical components 

that could delay the signal, effectively changing the phase. Particularly at such a high 

frequency as 10 kHz, phase angle errors could prevent the accurate reconstruction of 

plane waves. If these errors are consistent and systemic, however, compensations can 

be added to the data acquisition system in order to remove them. 
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2.4 Conclusions 

In order to reconstruct a spatially decaying plane wave at a specified target surface, 

the acoustic power outputs and relative phases of sound sources organized in a linear 

array can be tuned to cause pressure interference in the desired manner. By modeling 

a realistic source array using 8 sources, each separated by δ = 6 cm, and a target 

microphone array with 8 design points, each separated by 25 mm, at a standoff of 

Δ = 50 cm, an inhomogeneous plane wave can be reconstructed with minimal error 

and acoustic power consumption. While the sources do vary significantly in terms of 

power output, their respective phases are relatively similar. 

Since the minimum ratio of source array span to target span is dictated by physical 

constraints to be 2.4 in this investigation, an increase of source separation increases 

both pressure errors and power consumption. An increase of standoff distance al-

ways reduces pressure errors and generally increases power consumption, but due 

to the fact that certain combinations of parameters lead to near-singular impedance 

matrices, there is an optimal standoff distance for any given source spacing that min-

imizes power consumption. However, by evaluating the pressure distribution at the 

parameters of minimum power, it is clear that the pressure errors that occur at those 

parameters are rather high, suggesting that many operating points for an acoustic 

array will not be at the optimized parameter for minimum power. 

The addition of inhomogeneity to homogeneous plane waves did not significantly 

affect the maximum pressure error or total power consumption, leading to the op-

timistic assertion that inhomogeneous waves are not more difficult to physically re-

construct than homogeneous waves. Inhomogeneous waves follow the same trends as 

homogeneous waves, with total source power generally increasing with both source 

separation and standoff distance. 

When errors are added to the sources in terms of power and phase deviations, the 

effects on any individual pressure distribution can be significant. However, the aver-

age magnitude of pressure across many simulations tends towards the least-squares 
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solution. Errors in relative phase angle can cause significant variation in generated 

pressure distributions, so any time lag in signal generation must be quantified in order 

to ensure that the appropriate phase relations are met. 

This work is unique with respect to previous work in that it does not create true 

evanescent waves that decay away from the array; it reconstructs inhomogeneous 

plane waves that have a similar mathematical representation and similar expected 

physical properties to evanescent waves at a defined plane. This technique will be 

useful in expanding the capabilities of arrays transmitting energy into solid materials, 

a task which generally requires the use of spatially decaying waves. 
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3. PHYSICAL IMPLEMENTATION OF THE LEAST-SQUARES METHOD 

3.1 Introduction 

Based on the simulation presented in Chapter 2, an experimental setup comprising 

the source and receiver arrays was developed. The source array was constructed out 

of 80/20 T-slotted aluminum framing, and comprised of four crossbars, each with a 

length of 6 feet (1.83 m). The top bar of the array is 4 feet (1.22 m) above the ground 

and the other bars are spaced equidistantly with respect to each other, though their 

positions are adjustable. 

The sources selected were Pyle PDBT35 1” Titanium Super Tweeters, with a 

power rating of 500 W peak, and an electrical impedance of 4-8 Ω. These sources were 

selected based on their compactness, cost, and pressure frequency response, which was 

reported to be highest in the range of 2-22 kHz. The 32 tweeters were distributed 

along the four crossbars of the array, although for most of the following tests, only the 

8 sources on the top bar were used. This facilitated a less cumbersome evaluation of 

the least-squares algorithm, as the array was linear rather than planar. The sources 

were powered by Crown DCi 8/300N 8 Channel BLU Link Power Amplifiers, each 

of which could supply 300 W across 8 sources and apply a voltage gain of 34 dBV. 

The input voltage, phase, and frequency were controlled by a National Instruments 

PXIe-8840 Quad-Core Data Acquisition System (DAQ) through a LabVIEW Virtual 

Instrument, with the signals being sent through a PXIe-6739 16-bit Analog Output 

card coupled with two SCB-68A Connector Blocks. The source array setup can be 

seen in Fig. 3.1, and the DAQ can be seen in Fig. 3.2. 
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Figure 3.1. A diagram showing the source array, with the 32 tweeters 
evenly distributed among the crossbars. 
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Figure 3.2. A diagram showing the data acquisition systems for both the 
source array and receiver array. 

The receiver array also comprised of four crossbars, each with a length of 6 feet 

(1.83 m). The heights of the crossbars were all easily adjustable, so the top bar was 

aligned to the same height as the top bar of the source array. Microphone clips with 

a thickness of 0.375 inches (0.95 cm) were attached to the bars at regular intervals 

that were dictated by the test parameters. 
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The microphones selected were PCB Piezotronics ICP Free-Field Array Micro-

phones, Model 130F21. The frequency response of these microphones was reported 

to be within 4 dB over the range of 10-20,000 Hz. The 64 microphones were dis-

tributed along the four crossbars of the array, and were easily movable. Like the 

sources, only the microphones on the top bar were typically utilized due to the linear 

nature of the tests. Signals from the microphones were processed by several National 

Instruments PXIe-4497 24-Bit Sigma-Delta Analog-to-Digital Converters, and the 

digital signals were interpreted by a separate but identical DAQ through a LabVIEW 

Virtual Instrument. The receiver array setup can be seen in Fig. 3.3. 

Figure 3.3. A diagram showing the array of microphones, with the 64 
receivers distributed among the crossbars. 

The microphones were calibrated using a PCB Piezotronics CAL250 pistonphone 

outputting 114 dB at 251.2 Hz. Supplied with the microphones were calibration 

sheets with each frequency response plotted over the operating range, with respect 

to 250 Hz. These frequency responses were sampled and used to adjust the reported 

pressure magnitudes to their true values over the range of 2-15 kHz. The tests were 
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performed in both a fully anechoic chamber and a hemi-anechoic chamber with ab-

sorptive material on the floor. 

3.2 Source Characterization 

A key assumption of the least-squares algorithm is that each source is a perfect 

monopole, with the pressure field at any given distance not depending on a radial 

angle. Pressure decays with the inverse of distance, and sound power decreases with 

the inverse of the distance squared. In real sources, however, small deviations from 

these ideal behaviors exist, even at low frequencies. Additionally, the least-squares 

algorithm only dictates the acoustic power that a given source must provide, a value 

that is not equivalent to the electrical power that must be consumed or converted 

by the source. This section details the process of empirically determining fitting 

parameters that allow for real sources to be used in the least-squares reconstruction, 

with the intent of the adjustment parameters being to reduce the reconstruction error. 

3.2.1 Effective Impedance 

While each source had a reported electrical impedance of 4-8 Ω, it was not known 

how an applied voltage would translate to a desired pressure at a given distance. 

Thus, each source was placed at a distance of 1 m from a microphone and supplied 

100 mV peak digital voltage from the DAQ. The resultant root-mean-square (RMS) 

pressure at the microphone was converted to sound power level (LP ): 

2prms prms 
LP = 10 log = 20 log (3.1)

pref 
2 pref 

with pref = 20 µPa. Still using the assumption of a monopole source with equally 

radiated power, Eq. (3.2) was used to convert the sound pressure level into a sound 

power level (LW ): 

LW = LP + 10 log 4πr2 ≈ LP + 11 + 20 log r (3.2) 
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where r is expressed in meters. This sound power level was then converted to sound 

power through the definition 

LW = 10 log 
Wrms ∴ Wrms = Wref 10

LW /10 (3.3)
Wref 

with Wref = 1 pW. Finally, relating the sound power to the peak input voltage 

through Joule’s First Law and Ohm’s Law, an effective coupling impedance Zeff was 

determined: 

V 2 V 2 G2 V 2 G2 
rms pk pk

Wrms = = ∴ Zeff = (3.4)
Zeff 2Zeff 2Wrms 

where G is the gain of the amplifier, a factor of 50 (34 dBV). The impedance of 

each source was determined at various frequencies, and the values at 7000 Hz, the 

frequency of most of the following reconstruction tests, are reported in Table 3.1. 

Table 3.1. 
Effective impedances of sources S0-S7, the sources on the top bar of the 
array. 

Source Number 

0 13.215 

1 15.501 

2 9.994 

3 16.140 

4 17.659 

5 23.413 

6 14.493 

7 14.834 

Zeff [Ω] 

Using these effective impedance values, the acoustic powers of each source as 

determined by Eq. (2.8) could be translated into peak input voltages to be generated 

from the DAQ. 
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3.2.2 Radial Adjustment 

Because the tweeters selected did not exhibit perfect monopole behavior, the pres-

sure field around them did not decay exactly with the inverse of the distance from the 

source. This imperfection was important to consider not just to facilitate reconstruc-

tion at variable standoff distances, but also to compensate for the increased distance 

between sources and receivers that were on opposite sides of the array. The Green’s 

Function for two points (i.e. the source and the receiver) appears in Eq. (2.3) and 

includes the ideal 1/r pressure trend: 

ikr e 
G = (3.5) 

4πr 

In order to determine the extent of radial correction needed, each source was driven 

by the appropriate voltage such that the pressure at 1 m would be equal for each 

source. Measurements of the pressure field were taken from 60 cm to 140 cm away 

from each source, directly in front of the source. The data were fitted with a least-

squares power regression curve, such that p ∝ 1/rn . The pressures were normalized 

to the values at 1 m and are shown in Fig. 3.4. 

Figure 3.4. A diagram showing the normalized pressure distributions of 
the sources as a function of distance. 
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The fitting exponent n was determined by the regression curve for each source, and 

its values, along with the corresponding coefficient of determination R2 , are presented 

in Table 3.2. 

Table 3.2. 
Radial decay exponents of sources S0-S7, the sources on the top bar of 
the array. 

Source Number n R2 

0 

1 

2 

3 

4 

5 

6 

7 

1.457 

1.473 

1.481 

1.739 

1.615 

1.953 

1.559 

1.570 

0.817 

0.867 

0.773 

0.895 

0.812 

0.903 

0.853 

0.832 

Note that this empirical correction requires the distance r to be given in meters. 

Thus, with this adjustment made, the Green’s Function becomes 

ikr e˜ (3.6)G = 
4πrn 

Ultimately, compensating for distance variances is more consequential for the mag-

nitude of the reconstructed pressure wave than for the actual shape. Since the shape 

of the distribution is more important in the transmission of sound than the magnitude, 

this adjustment may not be necessary. 

3.2.3 Angular Adjustment 

Due to the physical construction of the sources and the manner in which they 

are driven, the sound field at any given distance is not independent of the angle 
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with respect to the source’s axis. In order to determine how much to compensate for 

these irregularities in pressure, each source was supplied an input voltage to generate 

a pressure field on a linear arrangement of microphones at a distance of 1 m. As 

every microphone except for the one on the source’s axis was slightly farther than 

1 m from the source, the expected pressure field at those microphones was slightly 

lower. The pressures were normalized to the value at the axial microphone, which 

would theoretically have the highest value. The normalized pressures, along with the 

theoretical normalized pressure, can be seen in Fig. 3.5. 

Figure 3.5. A diagram showing the normalized pressure distributions of 
the sources as a function of angle. 

For each source, at each angle, an adjustment factor τ was found by dividing 

the actual normalized pressure by the expected normalized pressure. By adding this 

factor to the least-squares algorithm, the modified Green’s Function becomes 

e
Ĝ̃ = τ(θ) 

ikr 
(3.7) 

4πrn 

The lack of a clear trend in angular pressure distribution may prove to be problem-

atic in the implementation of the least-squares algorithm, as small changes in angle 
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between a source and a receiver could have significantly different values of τ , leading 

to inconsistent results. 

Both the radial and angular adjustments have the effect of demanding larger source 

accelerations from sources at large standoffs and angles in an attempt to balance the 

least-squares algorithm to match the desired pressures. Testing the results of the 

algorithm both with and without these adjustments will determine if they improve 

the efficacy of the model. 

3.3 Reconstruction Testing Results 

An analysis of pressure errors during a preliminary frequency sweep for homoge-

neous plane wave reconstruction led to a frequency of 7000 Hz being selected for all 

tests. To minimize the interference between microphones, the spacing of the receiver 

array was kept at 1 inch (2.54 cm). Sixteen microphones were used, for a total span 

of 38.1 cm. All of the tests used the 8 tweeters on the top bar of the source array. 

In order to account for the physical dimensions of the array components, the 

default configuration parameters were set at a standoff distance of 1 m, a source 

spacing of 3 inches (7.62 cm), and the aforementioned design span of 38.1 cm. When 

the effect of certain parameters was being tested, the other parameters were held at 

their default values. In the default configuration, the ideal pressure distribution of 

a 1 Pa homogeneous wave has a maximum pressure error of 18.2 × 10-3 Pa, a RMS 

pressure error of 6.8 × 10-3 Pa, and demands 17.3 mW of power, as seen in Fig. 3.6. 
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Figure 3.6. A diagram showing the magnitude of the pressure distribution 
of a reconstructed homogeneous plane wave. The ideal 1 Pa plane wave 
is shown in blue and the reconstructed wave is shown in red. 

By adjusting the standoff distance, source spacing, and inhomogeneity, plots sim-

ilar to those depicted in Figs. 2.9-2.13 were constructed. The color bar represents 

the logarithm of the quantity of interest: pressure in pascals and power in watts, 

respectively. These figures provided the theoretical bounds for all of the tests that 

were performed. In Fig. 3.7, it can be seen that for the minimum source spacing, 

approximately 60 cm of standoff distance is required to avoid large errors. 

https://2.9-2.13
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(a) 

(b) 

Figure 3.7. A diagram showing the effect of standoff distance and source 
spacing on (a) the logarithm of the maximum pressure error and (b) the 
logarithm of the total power consumption. 

This is again visible in Fig. 3.8, where it can be seen that inhomogeneity does not 

have a significant effect on either pressure error or power demand. 
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(a) 

(b) 

Figure 3.8. A diagram showing the effect of standoff distance and inho-
mogeneity on (a) the logarithm of the maximum pressure error and (b) 
the logarithm of the total power consumption. 

Errors in pressure generally increase with larger source spacings relative to the 

design span, and do not depend significantly on inhomogeneity, as seen in Fig. 3.9. 
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(a) 

(b) 

Figure 3.9. A diagram showing the effect of inhomogeneity and source 
spacing on (a) the logarithm of the maximum pressure error and (b) the 
logarithm of the total power consumption. 

In initial tests, only the impedance of source S0 was found, and the preliminary 

assumption was made that each source had approximately the same impedance. As is 

shown in Table 3.1, this is not the case. However, the result of this false assumption 

was that the radial and angular adjustment factors were able to compensate for the 

large pressure deviations and ultimately reduce the RMS error. Operating at the 

minimum source spacing with no inhomogeneity, the standoff distance was varied to 

evaluate the reconstruction accuracy both with and without the empirical adjust-
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ments. At 1 m, the adjustments significantly reduced the RMS error along the design 

span, as shown in Fig. 3.10. 

Figure 3.10. A diagram showing the magnitude of the pressure distribu-
tion of a reconstructed homogeneous plane wave with no corrections (red), 
radial corrections (green), and radial and angular corrections (blue) com-
pared with the ideal pressure distribution as given by the least-squares 
solution (black). The first source’s impedance was applied to every source 
in this model. 

Without corrections, the RMS error was 0.26 Pa, but by adding radial and angular 

adjustments, the error was reduced to 0.16 Pa. Over a range of standoff distances 

ranging from 0.5 m to 2.0 m, the empirical corrections consistently lowered the RMS 

error of the reconstructed wave, as shown in Fig. 3.11. 
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Figure 3.11. A diagram comparing the RMS error of a reconstructed 
wave at various standoff distances no corrections (red), radial corrections 
(green), and radial and angular corrections (blue) compared with the ideal 
pressure distribution as given by the least-squares solution (black). 

Over this range of standoff distances, the minimum RMS error was about 0.15 Pa, 

or 15%, with most of the errors being much higher. At this point, it was hypothesized 

that finding the impedances of all of the tweeters, not just one, would allow for better 

reconstruction. Thus, Table 3.1 was formed. 

By using these impedances, the test shown in Fig. 3.10 was repeated, with dras-

tically different results. The RMS errors were much lower than when using only one 

impedance, but the adjustment factors did not serve to improve the reconstruction 

from the uncorrected trial, as seen in Fig. 3.12. 
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Figure 3.12. A diagram showing the magnitude of the pressure distribu-
tion of a reconstructed homogeneous plane wave with no corrections (red), 
radial corrections (green), and radial and angular corrections (blue) com-
pared with the ideal pressure distribution as given by the least-squares 
solution (black). Each source’s unique impedance was used. 

Without any adjustments, the RMS error on the design span was only 0.083 Pa, a 

reduction of 49% with respect to the previous corrected case. Adding the radial and 

angular adjustments slightly increased the overall error, though the errors remained 

below the values yielded by the previous tests. The standoff distance was again varied, 

and the RMS pressure error at each distance was determined, as seen in Fig. 3.13. 
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Figure 3.13. A diagram comparing the RMS error of a 1 Pa homogeneous 
plane wave reconstructed at various standoff distances with no corrections 
(red), radial corrections (green), and radial and angular corrections (blue) 
compared with the ideal pressure distribution as given by the least-squares 
solution (black). 

Since the amplitude of the reconstructed wave can ultimately be altered simply 

through a voltage multiplier, the overall pressure magnitude is less critical to recon-

struction than the shape of the wave. By normalizing each reconstructed wave to its 

mean value along the design span, the RMS errors can be shown to be even smaller, 

as shown in Fig. 3.14. 
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Figure 3.14. A diagram comparing the RMS error of a 1 Pa homogeneous 
plane wave reconstructed at various standoff distances with no corrections 
(red), radial corrections (green), and radial and angular corrections (blue) 
compared with the ideal pressure distribution as given by the least-squares 
solution (black), normalized to the mean pressure of the wave. 

Keeping the standoff distance at 1 m and adjusting the spacing of the tweeters 

along the span of the source array, the reconstruction tests were repeated. Since 

increasing the source spacing increased the range of angles between the sources and 

the microphones but did not significantly increase the distance between them, the 

angular corrections played a much larger role in these tests. Because only a small 

range of source spacings yields a small theoretical pressure error, the widest spacing 

was limited to 10 cm. At this spacing, the radial and angular adjustments test yielded 

the best result, with the RMS error being 0.10 Pa, compared to the unadjusted test 

where the RMS error was 0.11 Pa. The adjustments had a very small effect on the 

overall shape of the wave, but the magnitudes at the design points were much closer 

to the desired values, as seen in Fig. 3.15. 
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Figure 3.15. A diagram showing the magnitude of the pressure distribu-
tion of a reconstructed homogeneous plane wave with no corrections (red), 
radial corrections (green), and radial and angular corrections (blue) com-
pared with the ideal pressure distribution as given by the least-squares 
solution (black). Each source’s unique impedance was used. 

The angular adjustments did not reduce the RMS error at other source spacings, 

but as was the case with the standoff tests, the errors remained relatively low and 

did not vary much (Fig. 3.16). 
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Figure 3.16. A diagram comparing the RMS error of a 1 Pa homogeneous 
plane wave reconstructed at various source spacings with no corrections 
(red), radial corrections (green), and radial and angular corrections (blue) 
compared with the ideal pressure distribution as given by the least-squares 
solution (black). 

Since the mean value of the reconstructed waves was near the desired amplitude, 

normalizing the errors did not serve to appreciably reduce the errors (Fig. 3.17). 

Figure 3.17. A diagram comparing the RMS error of a 1 Pa homogeneous 
plane wave reconstructed at various source spacings with no corrections 
(red), radial corrections (green), and radial and angular corrections (blue) 
compared with the ideal pressure distribution as given by the least-squares 
solution (black), normalized to the mean pressure of the wave. 
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To test the reconstruction of an inhomogeneous wave, the desired amplitude on 

the design span was set as an exponential increase up to 1 Pa. Thus, for a decay 

parameter of β = 1 rad/m, the desired distribution was governed by the equation 

p = 0.827ex
0 
, with x0 ranging from −19.05 cm to +19.05 cm. For small decay param-

eters, the inhomogeneous wave appears very similar to a homogeneous wave, and for 

larger decay parameters, only a small range of the design span requires non-negligible 

pressures. The largest decay parameter tested, β = 1 rad/m, saw an improvement 

in reconstruction with the full set of adjustments (Fig. 3.18). Since the desired am-

plitude is not constant, the RMS errors are reported as percentages, with the radial 

and angular corrections yielding an error of 16%. 

Figure 3.18. A diagram showing the magnitude of the pressure distri-
bution of a reconstructed inhomogeneous plane wave with no corrections 
(red), radial corrections (green), and radial and angular corrections (blue) 
compared with the ideal pressure distribution as given by the least-squares 
solution (black). Each source’s unique impedance was used. 

While the errors in the uncorrected tests tended to increase with increasing decay 

parameter, the errors in the radially and angularly corrected tests stayed constant, 

as seen in Fig. 3.19. 
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Figure 3.19. A diagram comparing the percent RMS error of a 1 Pa inho-
mogeneous plane wave reconstructed with various decay parameters with 
no corrections (red), radial corrections (green), and radial and angular 
corrections (blue) compared with the ideal pressure distribution as given 
by the least-squares solution (black). 

3.4 Conclusions 

Even when attempting to compensate for imperfections in the sources, it was very 

difficult to significantly reduce the error in the reconstructed plane waves. While 

adjusting for radial and angular imperfections enhanced the reconstruction of some 

waves, for some combinations of parameters the adjustments increased the amount 

of error. This was likely due to the complex nature of the sources, which, despite 

attempting construction well outside of the near field, had highly variable pressure 

profiles. A possible solution to this problem would be to operate at lower frequen-

cies, using different sources, although this would place further restrictions on the 

appropriate dimensions of the arrays. Nevertheless, it is still possible that the cur-

rent configuration of the acoustic array would be able to generate inhomogeneous 

waves that are completely transmitted into a solid. While the reconstructed profile 

might not exactly match the desired profile over the entire design span, the correct 

decay parameter may appear in localized portions of the target surface, allowing for 

transmission. 
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4. FUTURE WORK AND CONCLUSIONS 

4.1 Mock Energetic Material Preparation and Preliminary Testing 

In anticipation of future tests aiming to excite a mock energetic material, prepa-

rations were made for the full utilization of the array. As Sylgard 184 is a common 

binder material for many types of polymer-based explosives, it was selected as the 

mock energetic material to be subjected to acoustic excitation. A total of 2.43 kg of 

Sylgard 184 was mixed and allowed to set in a square frame for 48 hours. 

In order to provide a sizeable target area for the source array, and also to allow 

for a large enough design span should inhomogeneous waves be reconstructed, the 

Sylgard 184 sample was cast as a square with each side measuring 2 feet (0.61 m). It 

had a thickness of 1/4 inch (6.35 mm). Twenty reinforced holes with a diameter of 

1/4 inch were evenly spaced along the edges to allow for suspension within a metal 

frame. Fig. 4.1 shows the sample in its mold. 

By applying a peak voltage of 100 mV in a digital signal to each of the 32 tweeters, 

it was estimated that approximately 26.9 W of acoustic power would be generated, 

leading to a sound power level of 134 dB SWL. The corresponding sound pressure 

level at a distance of 1 m would be 123 dB SPL, meaning that the pressure at the 

surface of the sample would be 29.2 Pa. On a target surface of 0.37 m2 , the anticipated 

average force would be 10.8 N. 

Thermal measurements of the surface of the sample were taken using a Forward 

Looking Infrared (FLIR) C3 Pocket Thermal Camera, placed 75 cm behind the source 

array. The sample was placed in the sound field for a period of 30 minutes, with 

thermal images being taken every minute. A microphone was placed at the top 

of the sample to verify the pressure present near the surface. The sample itself 
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Figure 4.1. A diagram showing the Sylgard 184 sample in its mold. 
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Figure 4.2. A diagram showing the Sylgard 184 sample suspended in its 
frame. 

was suspended within its stand using lightly tensioned bungee cords to ensure that 

significant lateral movement would not occur, as shown in Fig. 4.2. 

The source array was positioned at a distance of 1 m from the sample such that 

the sample was normal to the incident pressure waves. The full experimental setup 

is shown in Fig. 4.3. 

Solving Eq. (1.15) using the longitudinal and shear wave speeds for Sylgard 184, 

the Rayleigh wave speed can be found to be 530 m/s. As stated in Chapter 1, 

the corresponding Rayleigh angle is 40.32◦ . While the magnitude of the reflection 

coefficient is in fact minimized at this angle of incidence, for all practical purposes, it 

is still approximately equal to unity, as seen in Fig. 4.4a. The ordinate of Fig. 4.4a 

is 1 − |R| to illustrate the very small departure from unity. To reduce the reflection 

coefficient to zero, inhomogeneity must be introduced into the incident wave. The 

optimum decay parameter scales linearly with frequency, so at 7000 Hz, β takes a 

value of 0.01505 rad/m. As seen in Fig. 4.4b, at the Rayleigh angle, the incident 

inhomogeneous wave is completely transmitted. 
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Figure 4.3. A diagram showing the experimental setup of the source 
array, Sylgard 184 sample, and FLIR camera. 

(a) (b) 

Figure 4.4. A diagram showing the departure from unity of the magnitude 
of the pressure reflection coefficient for an incident wave with (a) β = 0 
rad/m and (b) β = 0.01505 rad/m. 
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Figure 4.5. A diagram showing the minimization of the pressure reflection 
coefficient of a 7000 Hz inhomogeneous plane wave incident on Sylgard 
184. 

By finding the reflection coefficient at various decay parameters and incidence 

angles, Fig. 1.8 can be reproduced for a 7000 Hz wave, as seen in Fig. 4.5. 

Since the optimum decay parameter is very small, the incident wave would appear 

almost as a homogeneous wave. As was shown in Chapter 3, errors in the reconstruc-

tion process would render such an inhomogeneous wave as almost indistinguishable 

from a homogeneous wave. As such, surface temperature and vibration tests will 

focus on the transmission of acoustic energy without respect to the exact form of the 

incident wave. 

Tests were performed with the sample positioned at normal incidence and also 

angled at 40.32◦ , the Rayleigh angle. Thermal imaging was used to identify the 

hottest spot near the middle of the sample. 

In the normal incidence test, the measured sound pressure level was approximately 

111 dB, significantly less than the predicted 123 dB. This is likely due to the fact that 

the measurement was taken at the top of the sample rather than at the point directly 

across from the center of the source array. At this pressure level, the particle velocity 

is approximately 17 mm/s and is conserved across the interface. Despite the sources 
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receiving the same input voltage for the Rayleigh angle test, the sound pressure level 

increased to 117 dB, with a normal particle velocity of about 26 mm/s. While the 

absolute position of the microphone did not change between the two tests, reflections 

from the sample itself likely contributed to this rise in pressure level. 

The maximum temperature trends over the course of the tests are plotted in 

Fig. 4.6. 

Figure 4.6. A diagram showing the maximum temperature of the Sylgard 
184 sample when subjected to acoustic excitation at normal incidence and 
at the Rayleigh angle. 

While the maximum temperature tended to increase during the normal incidence 

test and tended to decrease during the Rayleigh angle test, the magnitude of these 

changes was very small. By examining the thermal images of the sample (Fig. 4.7), it 

can be seen that while the temperature of the sample varied, so did the temperature 

of the surroundings. This suggests that the thermomechanical effect of the acoustic 

excitation is negligible compared to the effect of airflow in the environment. 

Additionally, despite the high pressures at the surface of the sample, no lateral 

motion was observed. It is possible that surface vibrations were so small and occur-

ring at such a high frequency that they were not visible to the unaided eye. Future 

work will utilize a laser Doppler vibrometer to determine the extent to which vibra-
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(a) (b) 

(c) (d) 

Figure 4.7. A diagram showing the lowest and highest maximum tem-
peratures recorded on the Sylgard 184 sample at (a)-(b) normal incidence 
and (c)-(d) the Rayleigh angle. 
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tions are induced on the surface of the sample. Direct-contact mechanical testing 

of mock energetic materials has shown that low-frequency excitations lead to appre-

ciable particle velocities on the materials’ surfaces. For example, when a cylinder of 

sucrose-loaded mock energetic material was excited near its resonance at 11.41 kHz 

for a period of 15 minutes, the particle velocity at the surface was calculated to be 

about 65 mm/s, slightly higher than the estimated velocities from the acoustics tests. 

This direct-contact excitation yielded a maximum temperature increase of 12 ◦C on 

the top surface of the cylinder [35]. In order to induce higher surface velocities and 

therefore higher heating rates, higher acoustic pressures will be required, which will 

mean either reducing the standoff distance or increasing the source powers. 

4.2 Future Work 

Future work in the area of energetic material detection will be largely two-fold: 

modeling the sources and transmitting energy into the material. In order to re-

construct a sound field more accurately, the properties of the sources must be well 

understood. In the context of the work discussed in Chapter 3, this could mean either 

replacing the current sources with a more consistent type of speaker, or developing 

a more universal model of the current sources. Sources designed for low-frequency 

outputs would likely exhibit a more monopole-like pressure distribution, but they 

would likely be larger in size, limiting the parameter of source spacing. If the current 

sources are used, a more complex model could be utilized to determine their proper-

ties through the use of the least-squares method itself. Prior work has suggested that 

any complex sound source can be modeled as the superposition of multiple simple 

sources, like monopoles, dipoles, and quadrupoles [36, 37]. By taking sound pressure 

measurements at several locations in space in front of a given source, applying the 

least-squares algorithm with the appropriate Green’s Functions, and treating each 

source as a combination of other sources, a more comprehensive model could be de-
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veloped. This model would take the place of the modified Green’s Function as given 

by Eq. (3.6). 

While the analysis of transmission discussed in Chapter 1 assumes a lossless solid 

medium, all materials ultimately have some level of dissipation, generally through 

hysteretic damping [13]. This leads to the attenuation of any transmitted wave along 

the direction of propagation. For a homogeneous wave, the attenuation vector is in 

the same direction as the propagation vector, but for an inhomogeneous wave, which 

already exhibits attenuation perpendicular to propagation, the attenuation vector 

bends towards the propagation vector. The difference between the propagation angle 

and the attenuation angle is known as the degree of inhomogeneity. Damping in the 

target material ultimately causes the optimum decay parameter for transmission to 

change slightly, but the optimum incidence angle remains the Rayleigh angle. By 

knowing the Lamé parameters of the target material in question, the complex longi-

tudinal and shear wavenumbers can be found, leading to the calculation of the decay 

parameter that will minimize reflection at the Rayleigh angle [13]. The material prop-

erties of Sylgard 184 will need to be studied more comprehensively in order to fully 

incorporate the effect of dissipation into the model of transmission. As previously 

mentioned, the response of a material to an inhomogeneous wave will be recorded 

using an infrared camera to measure temperature variance and a laser Doppler vi-

brometer to measure surface velocity. 

4.3 Overall Conclusions 

As many current methods of energetic material detection are ineffective or dan-

gerous, there exists a need to provide a reliable, easily implementable procedure for 

exciting and identifying these materials. The most promising of potential excitation 

methods is that of acoustic perturbation, where specially tailored waves are able to 

bridge the impedance gap between the energetic material and the surrounding air. 

The result is the full transmission of acoustic energy into mechanical energy, and ul-
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timately heat that increases the temperature of the material. A temperature increase 

corresponds to a vapor pressure increase, which in turn allows for the identification 

of the energetic material through a trace vapor detection probe. 

The least-squares method of sound field reconstruction was shown to be a powerful 

tool in allowing for the design of specialized inhomogeneous pressure waves at a 

prescribed standoff distance. In simulations utilizing perfect monopole sources, it was 

shown that 8 sources were able to reconstruct a desired pressure field with minimal 

errors and power consumption, provided that a sufficient standoff distance was chosen. 

Because spherical waves appear similar to plane waves at large distances from their 

sources, pressure errors are minimized at large standoff distances. However, this comes 

at the cost of an increased demand in power, as the intensity of a wave decreases with 

the inverse of the distance squared. Inhomogeneous plane waves can be reconstructed 

with the same level of accuracy as homogeneous plane waves, but could cause larger 

relative errors at locations where the desired pressure amplitude is very low. Small 

deviations in the prescribed source powers or phases could lead to noticeable errors 

in the reconstructed wave, so care must be taken to ensure that the source positions 

and outputs are as close to the model as possible. 

When implementing least-squares reconstruction utilizing real sources, it became 

important to characterize each source based on its response to system inputs. By 

relating the applied voltage to the acoustic power dissipated by each source, an ef-

fective impedance was formulated. While in many cases, this effective impedance 

was sufficient to enable the least-squares model to generate pressure profiles with low 

levels of error, some tests required empirical adjustments based on the imperfections 

of the source in order to keep the pressure errors low. However, due to irregularities 

in the sources, it was not possible to reduce the pressure error to the values predicted 

by the least-squares model. 

Using the full source array of 32 tweeters generating a 7000 Hz wave, a panel of 

the mock energetic binder Sylgard 184 was subjected to pressure levels of over 111 

dB. At both normal incidence and the Rayleigh angle, no appreciable temperature 



76 

change was observed, confirming the principle that untuned acoustic waves are not 

able to easily transmit energy across the fluid–solid interface. However, by using 

more precise sources and models in the future, it should be possible to reconstruct 

waves with sufficient accuracy to induce thermomechanical excitations in energetic 

materials. 
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