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The idea of a quantity D, which tracks the damage state of a material from 0 (virgin) to 1 (failed) 

is a well-established concept.  In fatigue tests, where a given load cycle is repeated until failure, 

it is common to define damage D per cycle as the fraction of total life consumed per cycle, or 

1/Nf.  We begin by using Maximum Entropy method to develop a curve to model the life vs. load 

cycle relationship for a wrought aluminum alloy 2024-T351 in the low cycle fatigue range.  The 

approach is novel in that the loading is described in terms in inelastic dissipation, rather than 

stress or strain.  It is argued that inelastic dissipation provides a closer connection to the 

underlying physical damage processes.  The resulting model is shown to fit the data set better 

than the Coffin-Manson equation, the Weibull distribution function, and other alternative 

functions.  In wrought defect-free alloys such as 2024-T351, low cycle fatigue life is mainly 

determined by the number of cycles required for a persistent slip band (PSB) to form a 

propagating crack.  Literature suggests that the process of crack formation in PSBs can be 

modeled as a Poisson process, for a constant amplitude test.  This implies that once PSBs are 

established, typically in the first 10% of life, crack formation is equally likely on any cycle.  

Once the crack forms, the final 10% of life is occupied with crack growth.  The premise that 

formation of cracks is a Poisson process provides a starting point for building a statistical model 

of the fatigue process.  If the loading cycles are more severe, then the probability of crack 

initiation on each cycle is higher.  It can be shown that the Coffin-Manson relationship and the 

Palmgren-Miner linear damage law can both be deduced from this model.  Finally, it is shown 

that the scatter in lives at a given loading condition should follow the Erlang distribution, with a 

given positive shift.  This is significant because the Erlang distribution has substantially the same 

left skewed shape as the Weibull and Log-normal distributions which are frequently used to 

model the scatter in fatigue lives. 
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The second half of this work is concerned with the fatigue process of cast aluminum alloy 

AS7GU, which has many intrinsic defects from which fatigue cracks tend to initiate.  

Intermediate and high cycle fatigue life is dominated by crack growth rather than time for crack 

initiation.  A different measure of D is developed, based on a non-linear stress-strain relationship 

and applicable to the elastic-dominated high cycle fatigue regime.  It is based on a general 

constitutive law of an elastic material, which is shown to reduce to a quadratic stress strain 

relationship for a uniaxial test.  Like the measure proposed in previous literature, this measure 

associates damage with the difference between the apparent stiffness of the specimen in tension 

vs. compression.  However, unlike previously described measures, it connects the 

tension/compression asymmetry to a general nonlinear material model.  The measure is applied 

to a sequence of axial fatigue tests and a rapid increase in the measured damage late in the life of 

the specimens is observed.  Finally, the damage curves from the axial tests previously mentioned 

are interpreted in terms of a small crack growth law.  The sizes of the cracks growing within the 

specimens during the tests are inferred from the measured D.  A finite element model of the 

specimen was created to determine the relation between damage (as indicated by increase in 

compliance) and the size of a modeled crack.  The finite element-determined relation is used to 

infer the size of the cracks in the specimens previously mentioned.  A small crack growth law is 

fit to these inferred crack growth traces with good success. 
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

Aluminum alloys are important engineering materials in weight-critical applications.  Broadly, 

they are produced in both wrought forms (which are substantially worked during production) and 

cast forms (which are typically cast in their final shape).  Wrought alloys include commonly 

known aerospace grades such as 2024, 6061, and 7075.  Their finished shapes are limited to 

tubes and sheets and shapes that could be produced by machining massive sections, often at 

significant cost, or welding sheet and tube stock together, such as is done in the bicycle industry.  

Cast aluminum alloys such as 319, A356 and AS7GU can be cast into extremely complex shapes, 

such as automotive cylinder heads, or machine casings, that would not be feasible to manufacture 

with wrought alloys.  By virtue of their cast structure, alloys such as AS7GU contain tiny voids 

and inclusions of various types that tend to act as fatigue crack initiation points if the component 

is subjected to severe loading [1].  This contrasts with the behavior of wrought alloys.  If the 

specimen is finely finished and free from internal flaw, fatigue cracks tend to initiate at persistent 

slip bands [2].  In the case of low-cycle fatigue, where the metal is yielding during each cycle, 

the majority of the life is consumed with crack initiation.  The fatigue behavior of both classes of 

material will be covered in this manuscript.   

 

1.2 Stress-Based Fatigue Model 

Fatigue failure can be defined as structural failure after repeated applications of a load [3].  One 

of the first documents concerning fatigue failure is found in a study of the failure of mine hoist 

chains by Albert (Germany) in 1828.  Poncelet (France) discussed fatigue in his book on 

mechanics in 1839.  One of the most famous early fatigue researchers was Wohler, who was 

motivated by failures of railway axles.  Wohler developed design rules to improve the robustness 

of iron and steel components to fatigue failure.  These early researchers were concerned with the 

fatigue life of materials when subjected to known alternating stresses.  One of the most important 

expressions in the field of stress-based fatigue analysis is the Basquin equation, Equation (1.1) 

[4], which expresses the applied uniaxial stress range as a power function of the number of 

cycles that will, on average, cause failure at that stress level.  In the simplest case, the mean 
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stress is zero.  It is also common to define an endurance limit, which is the highest alternating 

stress level that a material can withstand an essentially infinite number of times (Equation (1.2)).  

From the point of view of fatigue testing, infinite life is often associated with ten million load 

cycles [3] [4].  Steels are known to have fairly well defined endurance limits.  Other metals, such 

as aluminum, have less well defined ones [3].   

 

𝜎𝑎𝑙𝑡 = 𝐴 𝑁𝑓
𝑏     − 0.12 < 𝑏 < −.05 

𝜎𝑎𝑙𝑡 =
𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛

2
 

 

(1.1) 

𝜎𝑎𝑙𝑡 < 𝑆𝑒 ,  𝑁𝑓  > 10
7  

 

(1.2) 

The constant 𝑏, is typically in the range shown.  If the alternating stress 𝜎𝑎𝑙𝑡 is less than the 

endurance limit 𝑆𝑒 , the life is interpreted as infinite or greater than ten million cycles.  This 

relationship is typically plotted on log-log coordinates.  An example is shown below (Figure 1.1) 

 

 

Figure 1.1: Basquin equation 𝐴 = 200 MPa, 𝑏 = -0.08. 

The constants in this equation are determined by fitting the equation to sets of experimental data 

points.  References exist to efficiently plan test sequences [5] and also to apply a statistical 

confidence bound to the resulting line [5] [6].  Fatigue data are known to have significant scatter 
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and multiple tests at similar load levels are needed to establish equations that can be used for 

design. 

 

1.2.1 Effect of Mean Stresses 

If a non-zero mean stress is present in a fatigue specimen, the life of the specimen is generally 

different than it would have been for zero mean stress [3] [4] [2] [7].  Figure 1.2 shows a few 

cycles of a load history.  Table 1.1 lists the loading parameters of the history and gives 

definitions of some common variables used in fatigue analysis. 

 

 

Figure 1.2: Example load history. 
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Table 1.1: Definitions of common fatigue load parameters. 
Parameter Expression 

 

Example Value (Fig 1.2) 

Alternating Stress 𝜎𝑎𝑙𝑡 = 𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑒𝑎𝑛 

 

65.0 MPa 

Mean 𝜎𝑚𝑒𝑎𝑛 

 

80.0 MPa 

Maximum 𝜎𝑚𝑎𝑥 

 

145.0 MPa 

Minimum 𝜎𝑚𝑖𝑛 

 

15.0 MPa 

Range ∆𝜎 = 𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛 

 

130.0 MPa 

 

The Goodman equation (Equation (1.3)) [3] was developed to model the combined effect of a 

mean and an alternating stress.  The Goodman equation is only applicable to positive (tensile) 

mean stress states.  The definitions of the variables in it are given in Table 1, and Table 2. 

 

𝜎𝑎𝑙𝑡
𝑆𝑒
+
𝜎𝑚𝑒𝑎𝑛
𝑆𝑢𝑙𝑡

< 1   𝐼𝑛𝑓𝑖𝑛𝑡𝑒 𝑙𝑖𝑓𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 

 

𝜎𝑎𝑙𝑡
𝑆𝑒
+
𝜎𝑚𝑒𝑎𝑛
𝑆𝑢𝑙𝑡

≥ 1  𝐹𝑖𝑛𝑖𝑡𝑒 𝑙𝑖𝑓𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 

 

(1.3) 

 

Table 1.2: Example material properties. 
Parameter Expression 

 

Example Value (Fig 3) 

Endurance Limit 𝑆𝑒 
 

100 MPa 

Ultimate Strength 𝑆𝑢𝑙𝑡 
 

250 MPa 

 

It is clear when Equation (1.3) is plotted (Figure 1.3), that (𝜎𝑚𝑒𝑎𝑛, 𝜎𝑎𝑙𝑡) load histories that plot 

above the Goodman line are predicted to give finite life and those that plot below the line give 

infinite life.  The left side of Equation (1.3) gives 0.97 for the example values given, which is 

barely an infinite life stress state.  
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Figure 1.3: Goodman line. 

 

It is known that the Goodman line is more successful for some materials than others and other 

researchers have made their own attempts to model the effect of mean stress.  The Soderberg line 

uses the yield strength 𝑆𝑦  in place of the ultimate strength [3].  The rationale for this 

modification is that even if the Goodman line is successful in predicting fatigue failure, designers 

usually do not want their component to yield.  The Gerber line is parabolic, and is less 

conservative than the Goodman line [3].  The Morrow equation uses the true fracture strength 

(which is corrected for area reduction due to necking) rather than engineering ultimate strength, 

𝑆𝑢𝑙𝑡.  For a comparative review of these and other mean stress effect models see [7].  The Haigh 

diagram extends into the compressive mean stress range and has a more complex shape based on 

additional test data points.  It is also possible to construct a family of curves above the infinite 

life curves.  Each of these curves is intended to represent a particular finite life.  Curve families 

of this type are termed Master Fatigue Diagrams.  An example is shown in Figure 1.4.  The 

points at which the curve cross the vertical axis (zero mean stress) would be expected to follow 

the Basquin model for life vs. alternating stress.  Note that this diagram shows an effect that is 

frequently observed, which is that moderate mean compressive stresses are protective in fatigue. 

 

Predicted 

Finite Life 

Predicted 

Infinite Life 
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Figure 1.4: Master fatigue diagram example. 

 

1.2.2 Changing Load Histories 

All of the results given so far model fatigue as a consequence of a known applied stress (possibly 

with a known mean stress) applied a known number of times.  Of course, actual usage histories 

include different numbers of cycles of differing stress levels.  An example of a sequence of load 

blocks is given in Table 1.3.  For this example, mean stress is zero. 
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Table 1.3: Example of changing load history. 

Load Block Cycles 𝑁 Stress 𝜎𝑎𝑙𝑡 

 𝑁𝑗 𝜎𝑎𝑙𝑡𝑗 

1 1,000 85 

2 500,000 65 

3 100,000 70 

 

 

It is implied by the form of Equation (1.1), that the amount of fatigue damage caused is 

unaffected by the order of the load blocks [2].  Thus, changing load histories, weather they 

change stochastically or deterministically, can be sorted into blocks, which amounts to 

constructing a histogram of the load history.  The Palmgren-Miner rule [3] (Equation (1.4)) 

allows a designer to add up the equivalent damage due to a sequence of load blocks such as 

given by Table 1.3. 

 

𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑚𝑎𝑔𝑒 𝐷 =∑
𝑁𝑗

𝑁𝑓𝑗
 

𝐷 ≥ 1.0  𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 

(1.4) 

 

The form of Equation (1.4) implies that 𝐷 ≥ 1.0 corresponds to material failure.  In order to 

determine the number of cycles a material can survive at a given stress level, an inverse form of 

Equation (1.1) is needed: 

 

𝑁𝑓 = (
𝜎𝑎𝑙𝑡
𝐴
)

1
𝑏
 

(1.5) 

 

The procedure to apply Equation (1.4) is summarized in Table 1.4.  The parameters used are 𝐴 = 

200 MPa, 𝑏 = -0.08. 
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Table 1.4: Palmgren-Miner rule. 

Load 

Block 
Cycles 𝑁 Stress 𝜎𝑎𝑙𝑡 Cycles to failure 𝑁𝑓 for 

stress 𝜎𝑎𝑙𝑡 
 

Fraction of life 

consumed by Load 

Block j 

 𝑁𝑗 𝜎𝑎𝑙𝑡𝑗 
𝑁𝑓𝑗 = (

𝜎𝑎𝑙𝑡𝑗

𝐴
)

1
𝑏
 

𝑁𝑗

𝑁𝑓𝑗
= 𝑁(

𝐴

𝜎𝑎𝑙𝑡𝑗
)

1
𝑏

 

1 1,000 85 44,200 0.023 

2 500,000 65 1,260,000 0.40 

3 100,000 70 500,000 0.20 

𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑚𝑎𝑔𝑒 =∑
𝑁𝑗

𝑁𝑓𝑗
 

0.61 

 

The total damage is 𝐷 = 0.61 in this example, indicating that the material would be expected to 

survive the load history.  It is also noted that block 2 consumed 0.4 of the specimen life and was 

the most damaging of the three load blocks.  It is known that this rule is not always successful in 

predicting failure (or survival) [3] [2] [8], due to load history effects that will be discussed in a 

later section.  Other damage summation rules have been proposed that are intended to account 

for load sequence effects [2] [8].  A survey of various approaches to damage summation can be 

found in [8]. 

 

1.3 Strain-based Fatigue Modeling 

Prior to the 1950s fatigue researchers had been concerned with predicting fatigue life based on 

the stress history applied to the specimen, possibly including the effect of mean stress.  The 

researchers Coffin and Manson independently discovered that the plastic strain history was more 

effective at predicting fatigue life in cases where plastic strain could be effectively measured.   

 

1.3.1 Modeling Plastic Deformation 

Tension loads below a certain threshold produce purely elastic responses while a sufficiently 

large stress causes permanent plastic yielding.  Some very brittle metals fracture with almost no 

discernable yielding.  An example of the stress strain curve showing yielding is given in Figure 
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1.5 below.  The Ramberg-Osgood relation (Equation (1.6)) [3] is widely used to model plastic 

yielding of metals.  The curve plotted in Figure 1.5 is an example of this function.  The perfectly 

plastic curve is also plotted.  The entire curve in this case is termed ‘elastic-perfectly plastic’ or 

‘EPP’.  This is a simple plastic yielding model that is also frequently used for materials with 

well-defined yield points.  Models that predict a rising stress after yielding (such as Equation 

(1.6)) are referred to as ‘hardening’ models even though the stress drops off from the linear 

response.   

 

 

Figure 1.5: Stress-strain Curve (For a High-Strength Aluminum Alloy). 

 

𝜖𝑡𝑜𝑡𝑎𝑙 = 𝜖𝑒𝑙𝑎𝑠𝑡𝑖𝑐 + 𝜖𝑝𝑙𝑎𝑠𝑡𝑖𝑐 

𝜖𝑡𝑜𝑡𝑎𝑙 =
𝜎

𝐸
+ (
𝜎

𝐻
)

1
𝑛

 

(1.6) 

 

One important feature of Equation (1.6) is lack of a specific yield point.  Finite yielding is 

predicted even for small stresses, although the actual magnitude predicted is very small.  At 300 

MPa, the plastic strain predicted by Equation (1.6) is on the order of 10
-7

.  This behavior is 

consistent with many real materials [3].  If a material is loaded until some plastic deformation is 

observed and then unloaded, in most cases the stress-strain response is linear back to the zero 
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stress line, but shifted over by the amount of plastic strain that occurred (Figure 1.6).    The ‘0.2% 

Offset’ method represents one common approach to define a clear yield point.  The 0.2% Offset 

Yield Strength is the load sufficient to cause 0.2% permanent axial strain in the specimen after 

unloading. This value is commonly reported in material property data tables.  When using this 

value for design it is important to note that yielding actually began at a lower value than the 0.2% 

offset value. 

 

 

Figure 1.6: Linear unloading response. 

 

1.3.2 Cyclic Plastic Deformation and Fatigue Damage 

Plastic yielding causes fatigue damage if it is repeated.  If fatigue failure occurs in about 20,000 

cycles or fewer, it is considered to be in the area of low cycle fatigue.  Alternatively, failures 

occurring in the range of 20,000 cycles or more are classified as high cycle fatigue [3].  Low 

cycle fatigue typically corresponds to loads that cause obvious yielding that can be measured 

with an extensometer.  In high cycle fatigue the lower loads often appear to be purely elastic, but 

yielding in local, possibly microscopic, areas is known to be occurring [3] [2].  If a specimen is 

subjected to fully-revered tensile stress cycles sufficient to cause yielding, the stress-strain 

response of the material usually stabilizes to a loop as shown in Figure 1.7.  The width of the 

loop (measured where the horizontal axis crosses the loop) corresponds to the amount of plastic 
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strain and the area of the loop corresponds to the plastic work (also called inelastic dissipation) 

per load cycle [2].   

 

 

Figure 1.7: Stress-strain loop. 

 

Figure 1.8 shows a wider loop corresponding to larger load and strain amplitude.  Figure 1.9 

shows the loop collapsed to a line for a purely elastic load cycle.  

 

 

 

Figure 1.8: Loop for larger plastic strain. 
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Figure 1.9: Stress-strain loop for elastic response. 

 

The loop plots (Figures 1.7-1.9) are examples of the cyclic form of the Ramberg-Osgood relation 

Equation (1.7).  Note that the loop curves are plotted using a coordinate system fixed at the end 

of the loop as shown in Figure 1.10.  The blue line is referenced to the coordinate system shown.  

The red line is referenced to a reversed coordinate system at the upper right end of the loop.  The 

constants in Equation (1.7) may differ from the values in Equation (1.6) for the same material [3].  

The primes indicate that these are cyclic values, not monotonic values. 

 

∆𝜖 =
∆𝜎

𝐸
+ 2(

∆𝜎

2𝐻′
)

1
𝑛′

 

 

(1.7) 
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Figure 1.10: Coordinate system for cyclic Ramberg-Osgood relation. 

 

1.3.3 Fatigue Damage due to Cyclic Plastic Strain 

The researchers Coffin and Manson discovered that the plastic strain range applied to a specimen 

was related to specimen’s fatigue life by a negative power law of similar mathematical form to 

Equation (1.1) [3] [4].  This expression is called the Coffin-Manson relation and is given below 

in Equation (1.8).  It has been found to be superior to Equation (1.1) for modeling fatigue life in 

the low cycle regime provided that plastic strain data is available.   

 

∆𝜖𝑝 = 𝐵 𝑁𝑓
𝑐     − 0.9 < 𝑐 < −0.6 (1.8) 

 

Developing strain-based fatigue life prediction methods was greatly helped by the availability of 

servo-hydraulic test machines.  The machines could be operated in either load control (applied 

stress) or displacement control (applied strain) modes.  In contrast to the rotating bending fatigue 

tests that simply applied a known load, the servo-hydraulic machines could apply a fixed (and 

adjustable) strain while recording the resulting load.  Constructing loop plots such as Figure 1.8 

requires equipment such as this.   

 

The mean and alternating stress were defined previously.  However, there is another common 

method to classify the load case.  The load ratio is frequently used to characterize the range of 

the loading applied [3] [4].  It is defined in Equation (1.9). 
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𝑅 =
𝜎𝑚𝑖𝑛
𝜎𝑚𝑎𝑥

 (1.9) 

 

It has a simple relationship to mean stress, Equation (1.10): 

 

𝜎𝑚𝑒𝑎𝑛 =
𝜎𝑚𝑎𝑥 + 𝜎𝑚𝑖𝑛

2
= 𝜎𝑚𝑎𝑥

1 + 𝑅

2
 

(1.10) 

 

The load ratio is often quoted as shorthand for different common types of tests.  Particular, 

commonly used values of ‘R’ are summarized in Table 1.5.  Note that R =1 is a constant load 

and R > 1 is not meaningful.  

 

Table 1.5: Examples of commonly used R values. 

𝑅 Value Example Also Called: Used for: 

𝑅 = −1 -100 to 100 

MPa 

‘Fully 

Reversed’ or 

‘mean-zero’ 

Most common choice for 

stress and strain-based 

fatigue studies. 

Cantilevered loads on 

rotating components. 

Many vibrational loads due 

to inertia of loaded 

components. 

𝑅 = 0 0 to 120 MPa ‘Pulsating’  Loads of this type are also 

common in practice, such as 

when components come into 

and out of contact. 

𝑅 = 0.1 𝑡𝑜 0.2 12 to 120 MPa ‘Positive 

Minimum’ 

Fracture mechanics tension 

tests. 

 

 

1.4 Fracture Mechanics 

The field of fracture mechanics is primarily concerned with the mechanics of cracked elastic or 

elastic/plastic solid bodies and the conditions that cause the crack(s) to grow.  The growth may 

suddenly cause the body to break completely or could be stable and gradual.  In his pioneering 

work [9], Griffith studied the load needed to cause fracture in a cracked brittle (purely elastic) 
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body.  Griffith showed that the theoretical energy required to create an increment of new (paired) 

cracked surfaces was equal to the decrease in elastic potential energy of the body due to the 

growth of the crack.  The elastic potential energy stored in the body (under load) provided the 

energy required to extend the crack.  Griffith’s original result was obtained for glass, which has 

essentially no ductility.  Thus, no energy was lost in inelastic dissipation.   

 

1.4.1 Stress Intensity 

In the 1950’s Irwin extended Griffith’s concept to ductile metals, provided the zone of plastic 

yielding was small [10].  He also introduced the material parameter fracture toughness and the 

loading parameter stress intensity factor.  The stress intensity factor is defined in the 

neighborhood of the tip of a crack.  It is determined by the dimensions of the crack, the geometry 

of the body and the boundary conditions applied to the body.  Figure 1.11 shows an edge-cracked 

plate.  The plate has some thickness t in the out of page dimension, which need not be small.  

The crack tip is the point where the two crack faces meet.  The crack tip extends through the 

thickness of the plate and thus is a generally linear feature.  The corresponding stress intensity is 

given by Equation (1.11) [10]. 

 

 

 

Figure 1.11:  Edge cracked plate. 
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𝐾 = 1.12𝜎0√𝜋𝑎  

𝑎 ≤ 0.4 𝑏 

(1.11) 

 

According to the model, the crack will extend if the stress intensity exceeds the fracture 

toughness of the material.  This result is mathematically equivalent to the energy criterion of 

Griffith for the case of brittle materials [10].  Although the stress intensity is derived from 

assumptions of elastic continuum mechanics, it has been shown to be sufficiently valid under the 

conditions of small-scale yielding, meaning that the region of plastic yielding at the crack tip is 

small relative to the dimensions of the crack and the body [10].  Griffith and Irwin’s original 

results didn’t predict crack growth resulting from repeated application of a load too small to 

extend the crack based on the fracture toughness criterion.    

 

For a non-yielding linear elastic cracked body, the distribution of stresses has been derived for 

various geometries and loadings in addition to the edge-cracked plate in Figure 1.11.  These 

analyses were performed under the assumption of a mathematically perfect crack (tip radius = 0) 

in an isotropic homogeneous material (Figure 1.12) [10].  They all share one important feature, 

which is all non-zero stress tensor components become singular at the theoretical crack tip.  It is 

a fundamental result that the magnitude of the stresses is proportional to 1/√𝑟 as shown in 

Equation (1.12) [10].  
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Figure 1.12:  r theta system at crack tip. 

 

𝜎𝑖𝑗 =
𝜎0𝑓𝑐𝑛(𝜃, 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠)

√2𝜋𝑟
 

(1.12) 

 

 

1.4.2 Crack tip plastic zone 

A real crack is not perfectly sharp and a real material will eventually fracture or yield as the 

remote load is gradually increased.  As noted above, in ductile materials, a plastic zone is present 

in the neighborhood of the crack tip (Figure 1.13) [3] [4] [10].  The specific shape of the plastic 

zone depends on the geometry of the specimen, the properties of the material and the loading.  In 

order for linear elastic fracture mechanics to be valid, the approximate diameter of the plastic 

zone must be ¼ or less than the length of the crack.  This same ratio should apply to the width of 

the un-cracked ligament of the specimen [3].   Note that there are several ways a crack could 

potentially violate this criterion.  A crack in a very ductile material under sufficient load could 

create a plastic zone large enough to violate the LEFM assumption.  Alternatively, a very short 

crack could be small enough that even a plastic zone of moderate size is too large in comparison.  

Additionally, real metals have grains, precipitates, and other small-scale inhomogeneities. Cracks 

on the scale of these structures cannot be analyzed with LEFM as they violate the continuum 

assumption inherent in it.  
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Figure 1.13: Yielded zone at crack tip. 
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1.4.3 Loading Modes 

In fracture mechanics three modes of crack displacement are defined (Figure 1.13).  These 

modes are explained in Table 1.6 [3] [10].  These modes apply to any crack, not just ones at the 

edges of plates. 

 

Figure 1.14: Modes of crack opening. 

 

Table 1.6: Modes of crack opening. 

Mode Description—In terms of cracked 

plate 

Examples 

I Perpendicular to crack faces Cracked plate under tension such as a 

portion of a pressure vessel 

Cracked beam under tension or bending 

for cracks lying in transverse plane 

II Shear in plane of crack acting 

perpendicular to crack tip 

Beam under bending with crack 

corresponding to neutral plane 

III Shear in plane of crack acting in 

line with crack tip (tearing) 

Cracked beam under torsion for cracks 

lying in transverse plane 

 

Note that a crack under a general load case may be subjected to mixed mode loading.  An 

inclined crack in a bar under tension can be simultaneously under mode I, II, and III.  The stress 
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intensity expressions are different depending on the mode although they all share the 1 √𝑟⁄  

singularity. 

 

1.5 Crack Growth due to Repeated Loading 

Irwin’s contemporary Paris showed that repeated application of a sub-critical load could cause 

gradual growth of a crack in metal [3] [10].  He expressed the relationship as a power law, 

Equation (1.13). The quantity 𝑁  is the number of completed load cycles.  The differential 

expression is used to represent a small finite growth of the crack (possibly on the order of 10
-10

 

meters/cycle or less) per each discrete load cycle.   

𝑑𝑎

𝑑𝑁
= 𝐶∆𝑘𝑚 

(1.13) 

 

The Paris law is one of many laws of similar form used to represent crack growth as a power 

function of applied stress intensity range [3] [10].  The exponent 𝑚 is typically larger than 2, 

implying super-exponential crack growth rate for a constant amplitude cyclic load.  Thus, laws of 

this type imply that incremental crack growth is governed by the same loading parameter as 

sudden fracture.  The law is plotted in Figure 1.14.  Note that three types of response are 

represented on the curve.  For stress intensities below a lower threshold  ∆𝐾𝑡ℎ, cracks do not 

grow.  This is analogous to the concept of endurance limit in stress-based fatigue.  If the peak 

stress intensity exceeds the fracture toughness, then sudden crack extension, not incremental 

growth is expected.  In between these two limits, power law growth according to Equation (1.13) 

is predicted. 
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Figure 1.15: Paris law example. 

 

1.5.1 Crack Closure 

A crack in a ductile material such as a metal has a zone of plastic yielding near the tip of the 

crack.  As the crack grows, the yielded material is stationary while the crack tip extends further 

[3] [10]. Thus, there is previously yielded material for some finite thickness on both faces of the 

crack.  This is called the plastic wake of the crack (Figure 1.15) [3] [10].  This yielded material, 

since it separated from the material on the opposite side of the crack while in a tensile condition, 

will tend to extend from the crack faces and cause the crack faces to be compressively pressed 

together even when the remote stress is zero.  Additionally, the previously fractured faces may 

not fit together perfectly and thus will be slightly forced apart after fracture on the previous load 

cycle [10].  As the remote stress is increased, the crack will remain closed until the closure force 

is overcome by the tensile stress field.  The applied remote stress will have no effect on the crack 

tip until the closure stresses are zero and the crack opens all the way to the tip.  This remote load 

level is termed the crack opening load 𝐾𝑜𝑝𝑒𝑛 [10].  One important result of this phenomenon is 

that the applied stress amplitude at the crack tip is reduced by the crack opening load as given by 

Equation (1.14).  If the applied stress amplitude does not exceed the crack opening load, then the 

load cycle would not be expected to cause crack growth.  This connects the concept of crack 

∆𝐾 ≤ ∆𝐾𝑡ℎ 

Threshold 

𝑑𝑎

𝑑𝑁
= 𝐶∆𝐾𝑚 

Stable Growth 

𝐾𝑚𝑎𝑥 ≈ 𝐾𝐶 

Unstable 

Growth 
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opening load to the fatigue threshold.  Other potential causes of closure include corrosion, debris, 

and fluids [10]. 

 

 

Figure 1.16: Plastic wake around crack. 

 

∆𝐾 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛    𝐾𝑚𝑖𝑛 > 𝐾𝑜𝑝𝑒𝑛 

∆𝐾 = 𝐾𝑚𝑎𝑥 −𝐾𝑜𝑝𝑒𝑛    𝐾𝑚𝑖𝑛 ≤ 𝐾𝑜𝑝𝑒𝑛 

∆𝐾 = 0    𝐾𝑚𝑎𝑥 ≤ 𝐾𝑜𝑝𝑒𝑛 

(1.14) 

 

1.5.2 Small Cracks 

Cracks that are too small to be modeled with LEFM have distinct properties.  Depending on the 

ductility of the material, ‘small’ cracks range in size from microns to single millimeter. They 

begin at the exterior surface, or at an internal stress riser [11].  Cracks large enough to be 
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modeled with LEFM propagate along planes perpendicular to local principal stress [3] [10] [11].  

Small cracks that begin on an exterior surface initially propagate on planes of maximum sear 

stress at 45 degree angle to local principal stress directions (Stage I in Figure 1.16).  Over the 

course of several microns of growth, they turn until they are aligned along planes normal to 

principal stress (Stage II) [11].  If relatively large defects are present in the material (such as the 

case with cast aluminum) then the cracks may grow directly from existing flaws (possibly at the 

surface). 

 

 

Figure 1.17: Stages of small crack growth. 

 

The stress intensity K is not a valid mechanics parameter at the size scale of very small cracks 

under the condition of large scale yielding (> 50% Sy), which are surrounded by plastically 

deformed material.  Thus, Nisitani and his colleagues model the growth of these small cracks 

with equations that depend explicitly on the crack length and the applied stress range.  Generally, 

these equations are linear in crack length (and a power law in stress) and take the following form: 

 

𝑑𝑎

𝑑𝑁
= 𝐶∆𝜎𝑚𝑎 

(1.15) 
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For a constant cyclic load magnitude, Equation (1.15) implies exponential growth of the crack 

length.  Equation (1.15) would be used for cracks where the plastic zone is too large relative to 

the crack size to use a Paris-type law based on ∆𝐾.  Progressing crack growth may eventually 

enable the crack to satisfy LEFM conditions and a Paris-type law may be used from that point on.  

The authors note that the range of applicability of this equation is limited to small crack regime.  

Various authors (such as [10] and [12] [13] [14] ) have noted that small (below ∆𝐾 applicability 

size) cracks typically grow much faster than would be predicted by naively applying a ‘da/dN 

delta K’ law to them.  Under conditions of small scale yielding, authors such as [15] [16] argue 

that ∆𝐾 may still be used in equations such as Equation (1.13), although ∆𝐾𝑡ℎ is not a material 

constant in this case and is observed to decrease with crack length. 

 

1.6 Monitoring Damage in Specimen During a Fatigue Test 

Several different viewpoints on modeling and monitoring cracks in specimens under fatigue tests 

are evident in the literature.  The oldest approach is represented by the ‘crack initiation’ stress-

based (and later strain-based) approaches to fatigue where generally the crack is not monitored.  

In these approaches, a specimen with no deliberately created notches or crack-like flaws is 

subjected to a cyclic load [3] [4].  Prior to the development of axial test machines, these 

specimens were typically subjected to rotating bending or sometimes in-pane bending loads.  The 

test was most commonly run until the sample separated or successfully completed a large 

number of cycles (such as 10M).  Some researchers stopped the test when a ‘plainly visible’ 

crack was discovered through periodic inspection.  If an instrumented servo-hydraulic load frame 

was used for the test, then the researcher might stop the test when the stiffness of the specimen 

dropped below some threshold.  This measurement indirectly depends on the presence of a crack 

or cracks but it was used as a stopping criterion, not a changing variable recorded during the test.  

In any case, there was usually no ongoing attempt to measure the progress of cracks during test 

that were too small to plainly see.  The cycles-to-failure vs. applied load or applied strain data 

was sufficient to fit Basquin or Coffin-Manson models.  Many of the researchers built relations 

that fit experimental data successfully (cycles to failure as functions of stress or strain), but did 

not provide a strong connection to physical principles beyond stress or plastic strain [3] [4].  It is 

important to note that even though the ‘stress life’ and ‘strain life’ approaches do not attempt to 
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model a crack (or cracks), it is recognized that some portion of the life of the component is 

consumed with the growth of crack(s) prior to final failure [2]. 

 

1.6.1 Measurement of Progressing Cracks 

Fatigue researchers employing fracture mechanics take a very different approach. These 

investigators used specimens with a well-defined notch-like feature, intended to encourage the 

growth of a single crack, such as the compact tension specimen.  They were usually concerned 

with the progress of the crack’s length as a function of the number of fatigue cycles applied.  In 

contrast to the global stress and strain used to predict life in the ‘stress/strain life’ models, 

fracture mechanics researchers used the macroscopic stress and strain to model the stress state in 

a small neighborhood close to the crack tip.  Thus, this approach digs deeper than was the case 

before. Additionally, rather than simply predicting the overall life as a function of a stress 

amplitude, the actual growth of the crack is modeled.  Equation (1.13) (and other ‘da/dN delta k’ 

laws) give a value of incremental crack growth as a function of current crack length and stress 

range (captured in stress intensity).  During an experiment, the state of damage of a specimen is 

measurable and can be modeled throughout its life.  

 

Consider a sequence of load cycle blocks, each with different loading parameters.  In the fracture 

mechanics setting, the result of the evolving sequence of loads can be modeled and predicted, 

since the effect of a sequence of loads can be modeled directly without any assumption of how a 

sequence of changing loads would add together.  It is straightforward to write a computer code to 

compute crack growth as a function of changing load cycles according to Equation (1.13).   In 

the ‘stress/strain life’ approach, the damage due to a sequence of changing loads was typically 

assumed to be a linear combination of the damage of each load group separately (Equation (1.4)).  

The linear damage rule has been shown to have varying degrees of success [2] [8].  Some forms 

of ‘da/dN delta K’ laws satisfy the Palmgren/Miner rule while others do not.  However, even in 

these cases, the fracture mechanics experiment allows the progressing damage to be directly 

measured and compared to predictions.  Several approaches to measuring the length of the crack 

are used and are described in references such as [17], and include visually monitoring the crack 

with the aid of magnification, as well as inferring its length from some other measurable change 

in the specimen.  In the case of fracture mechanics specimens, such as the compact tension 
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specimen or the center-cracked plate specimen, the crack may be viewed and measured from the 

side with the aid of magnification and a suitably fine scale, possibly marked on the specimen 

itself.   The author of [4] mentions additional ‘direct’ measurement methods such as ultrasonics, 

die penetrant, magnetic techniques and x-ray.  He also gives an example of a clear (polymer) 

specimen where the crack may be viewed through the end of the specimen.  As an alternative to 

this ‘direct’ measurement, there are two ‘remote’ measurement methods recommended by [17].  

The first is the electrical resistance method, where the increase in electrical resistance of the 

specimen is associated with the growth of a fatigue crack.  The second is the compliance method, 

where the loss in stiffness of the specimen (in the crack opening direction) over the load history 

is used to infer the size of the crack.  There are documented formulas to compute the size of 

cracks from the measured compliance of the specimens ( [17] references Saxena and Hudak, 

1978).  Many authors (such as [18]) reference the compliance method and demonstrate its use (as 

well as applications of refinements of the method) to measure cracks in traditional fracture 

mechanics type specimens, with large notches, holes and existing cracks.   

 

1.6.2 Measurement of Small Cracks 

The third approach to monitoring the progress of fatigue cracks is exemplified by Nisitani and 

his coworkers [12] [13].  In this case, a traditional (not fracture mechanics) tension specimen is 

used but with one modification.  Nisitani and others (such as [19]) make the point that what was 

regarded as crack initiation cycles in the ‘stress/strain life’ models actually includes a substantial 

amount of micro to small crack growth time.  In [12], a single, microscopic, stress-concentrating 

flaw is deliberately created to encourage the formation of a crack at a predictable location.  

Micrographs of the specimen or a cast replication of its surface can then be used to monitor the 

progress of even very small cracks.  This process requires the interruption of the fatigue test to 

inspect the crack.  Crack length data is only obtained at these inspection intervals, not through 

the entire test.    

 

1.7 Continuum Damage Mechanics 

Stress and strain life approaches model the overall life of a specimen as a function of applied 

loading parameters without attempting to explain the progress of damage.  Fracture mechanics 
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models the progress of a particular crack of known geometry.  A third approach is taken in 

Continuum Damage Mechanics [20] [2], where many small cracks are hypothesized to exist in 

the damaged area of the material.  The degree of material damage represented by these cracks is 

inferred from the macroscopic properties of the specimen.  In [20], Lemaitre builds a general 

framework for modeling damage from various mechanical sources, including plastic deformation, 

creep, and low and high cycle fatigue.  In his development, Lemaitre posits a distributed, 

isotropic, collection of small cracks that reduce the local effective load bearing cross section of 

the material from 𝑆 to 𝑆̃.   

 

𝑆̃ = 𝑆(1 − 𝐷) (1.16) 

 

Here damage is modeled by 𝐷, which ranges from 0 (virgin material) to 1 (failed, separated).  

One relation that follows is: 

 

𝐷 = 1 −
𝐸̃

𝐸
 

(1.17) 

 

Where 𝐸̃ is the modulus of the damaged material and 𝐸 is the modulus of the virgin material.  

Other relations for strength and strain are also developed.  The cracks are assumed to be small 

enough and sufficiently evenly distributed such that the properties of the material vary smoothly 

in the neighborhood of the damaged area.  Although this approach lacks direct evidence of the 

existence of a specific crack (or cracks) of known size and position, such as is available in 

fracture mechanics, it does seek to provide a mathematically detailed model, within the 

framework of continuum mechanics, that explains the experimentally observed behavior of 

damaged material.  The author’s work includes not only the mathematical model of damage, but 

also a set of experimental and data analysis techniques that attempt to reveal the state of damage 

of a given specimen at a particular point in an experiment. The author also shows that, in cases 

where the specimen is taken to the point of separation, a real crack was present and evidence of 

its growth is visible in striations and beach marks on the fracture surface.  
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1.8 Applications of Statistics 

Statistics has been applied to aspects of modeling fracture and fatigue in many ways.  Material 

strength test data (an input to some fatigue models) is subject to random variation.  The cycles to 

failure corresponding to a given stress level is known to have significant statistical variation.  

Statistical procedures have been developed to establish lower bounds (at a specified confidence 

level) on the life values expected at a given load.  Crack growth rates also exhibit random scatter.  

Although metal is frequently treated as a uniform isotropic continuum for many analytical 

purposes, it is known have a spatially random character when viewed at a fine enough scale [1] 

[3] [4] [2].  Within each metal grain, the orientation of the crystal planes is random.  The shapes 

of the grain boundaries are random.  If non-metallic inclusions are present in the metal, their size 

and locations are random.  Some metals (such as cast aluminums) contain voids (internally) or 

pores (at the surface) [1].  The size and locations of these features are random.  Non-metallic 

inclusions, oxide films, voids and pores are especially important to modeling fatigue because 

fatigue cracks frequently originate are such features [1].  Thus, statistical concepts can be applied 

at many levels of the problem—from the microstructure to the analysis of test data. 

 

The most straightforward application of statistics to fracture mechanics and fatigue is the 

analysis of experimental results—the reduction of data.  This is the same application statistics 

has found in any field of study that results in the collection of numerical (or even categorical) 

observables.  Data that is used for design purposes must have some statistical confidence 

associated with it [5].  If the data is being compared to proposed theoretical model, a systematic 

procedure (probably taken from references) must be used to make the comparison.  Many data 

collection systems have basic statistical and curve fitting capabilities built into them. A more 

subtle application of probability theory and statistics involves deducing the variability in a higher 

level quantity (such as cycles to failure) from a more fundamental one (such as the distribution of 

surface defects).  The physical theory may be combined with probability theory to relate the two 

quantities.  For example, if a variable y has a known functional (physical) dependence on another 

variable x, the probability distribution of y is determined by the distribution of x [21].  The 

distribution of y will, in general, be different from that of x but it is derivable from it.  If the 

functional dependence is simple, then it may be possible to symbolically derive the relationship.  

If the function is more complex, a numerical solution would be required.  Potentially several 
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observable effects could all depend, through different physical relationships, on the same 

underlying variable.  Thus some observations subject to random variation may be shown to be 

the consequence of a single deeper random phenomenon.  

 

When applying parametric statistical procedures, selecting the reference probability distribution 

is often the most important decision a researcher has to make.  Frequently standard practice leans 

toward a particular parametric family of distributions [6, 35].  But even in this case, a researcher 

should understand the strengths and weaknesses of the commonly used distributions and be able 

to defend the one finally chosen.  Sometimes a distribution may be defined as a transformation of 

a different distribution.  For example if logarithms of the data are normally distributed, then the 

data is lognormally distributed [21].  The properties of the lognormal distribution are developed 

as modifications of the properties of the normal distribution.  The useful property of the normal 

distribution, that sums of normally distributed random variables are also normally distributed 

becomes an analogous rule involving products in the lognormal case [21].  Another method to 

obtain a reference probability distribution for some purpose is the method of Maximum Entropy 

explained below.  This method has the advantage of providing the ‘most naive’ (in the sense of 

information entropy) probability distribution subject to the mathematical constraints of the 

problem [22].  It is argued in the references cited below that the Maximum Entropy method 

involves the fewest unjustified assumptions.  It is noteworthy that many of the commonly used 

distributions can be derived from the maximum entropy principle.   
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CHAPTER 2. MAXIMUM ENTROPY MODELS FOR FATIGUE OF 

METALS WITH APPLICATION TO LOW-CYCLE FATIGUE OF 

ALUMINUM 2024-T351 

 

2.1 Introduction 

In the present work, damage functions derived from maximum entropy formalism are 

demonstrated to fit the low-cycle fatigue data for aluminum 2024-T351 more accurately and 

consistently than several alternative damage models, including the Weibull distribution function 

and the Coffin-Manson relation.  The formalism is founded on treating the failure process as a 

consequence of the increase in the entropy of the material due to plastic deformation.  This 

argument leads to using inelastic dissipation as the independent variable for predicting low-cycle 

fatigue damage, rather than the more commonly used plastic strain.    The entropy of the 

microstructural state of the material is modeled by statistical cumulative distribution functions, 

following examples in recent literature.  We demonstrate the utility of a broader class of 

maximum entropy statistical distributions, including the truncated exponential and the truncated 

normal distribution. Not only are these functions demonstrated to have the necessary qualitative 

features to model damage, but they are also shown to capture the random nature of damage 

processes with greater fidelity.   

 

2.2 Chapter 2 Nomenclature 

 

Variable Definition 

∆𝜖𝑝 Plastic strain range 

𝜖𝑓′ Fatigue ductility coefficient 

𝑐 Fatigue ductility exponent 

𝑁𝑓 Total cycles (loops) to failure 
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𝐷(𝑡) Material damage parameter as a function of time or pseudo-time 

∆𝜎 Stress range—total height of stress/strain loop 

∆𝜖𝑡𝑜𝑡𝑎𝑙 Total elastic plus plastic strain range 

𝜎𝑓 True fracture stress 

𝜖𝑓 True fracture strain 

𝑊𝑓 Total inelastic dissipation (per unit volume) to failure 

𝐴𝑓 Inelastic dissipation (per unit volume) per stress-strain loop-area of stabilized loop 

2𝑁𝑓 Total reversals to failure 

𝐻 The entropy of a probability distribution 

𝑝𝑖 Probability mass function value of the i
th

 random state 

𝑘𝑏 Boltzmann’s constant 

𝐼(𝑝) The information associated with an event with probability p 

𝑔𝑖(𝑥) The i
th

 moment function 

𝜆𝑖 The Lagrange multiplier corresponding to the i
th

 moment function 

𝑓(𝑥) The probability density function (PDF) of the random variable 𝑥 

𝐹(𝑥) The cumulative distribution function (CDF) of the random variable 𝑥 

 Mean value of a random variable 

 Standard deviation of a random variable 

 Weibull distribution shape parameter 

 Weibull distribution scale parameter 

𝐾 Ramberg-Osgood strength parameter 

1

𝑛
 

Ramberg-Osgood exponent 
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2.3 Background 

The wrought aluminum alloy 2024-T351 is an important light structural metal commonly used in 

aerospace and other weight-critical applications [3].  A common approach to modeling the low 

cycle fatigue (LCF) life of this material, and many other metals, is the Coffin-Manson 

relationship [3] [23]: 

 

∆𝜖𝑝

2
= 𝜖𝑓′(2𝑁𝑓)

𝑐
 

(2.1) 

 

This equation is intended to cover the range of life from 1 to about 20,000 reversals, where 

macroscopic plastic strain is measurable.  However, as has been pointed in references such as 

[23] , Equation (2.1) is less successful in fitting data in the very low reversal count range of 1 to 

about 200.  The inadequacy of Equation (2.1) for modeling a representative LCF data set for 

2024-T351 is demonstrated below and motivates an alternative LCF modeling approach.   

 

In Figure 1, the results from a sequence of low cycle fatigue tests, and two monotonic tension 

tests on tension specimens of 2024-T351 aluminum is shown.  The data is also fitted to a Coffin-

Manson model in the figure.  
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Figure 2.1: Coffin-Manson plot of data from eighteen low cycle fatigue tests and two monotonic 

tests of aluminum 2024-T351 (R
2
=0.92). 

 

It is clear that the data exhibits a curvature that is not captured by the straight-line fit of the 

Coffin-Manson equation. An ideal model would be one based on a sound physical principle that 

assures the “best possible” fit to experimentally obtained fatigue test data, considering the 

statistical uncertainty inherent in the data. An ideal procedure would also provide systematic 

guidance on constructing the model form. Below we argue that the maximum entropy concept 

may provide such a foundational principle. 

 

The concept of entropy occurs in two different contexts in the literature reviewed below.  The 

first case is represented by applications of a class of statistical methods based on information 

entropy (reviewed in detail below) that may be applied to fatigue data, or any other experimental 

data with inherent uncertainty. These applications may not refer to the physical entropy of the 

material.  Alternatively, the physical entropy at a material point in a device or structure may be 

used to model the progress of damage at that point.  In the latter instance, the process of damage 
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and degradation in material behavior is a fundamental consequence of the second law of 

thermodynamics resulting in the increase in entropy of isolated systems with time [24]. In 

contrast to the more commonly used parameters of stress and plastic strain, the argument is that 

specimen entropy has a deeper connection to the physics of the damage process.  

 

Entropy as a purely statistical concept is used in [25] to model the variability of fatigue crack 

growth.  A version of the maximum entropy method is shown to be a viable alternative to 

Bayesian updating for analyzing an evolving data population.  However, the authors do not 

connect the concept of entropy to material damage.  In [26], the maximum entropy method was 

used to build a statistical model of the strength distribution in brittle rocks.   In [27], the authors 

use a combination of stress, strain and temperature data to measure the entropy generated during 

a low cycle fatigue test.  The rate of entropy generation was shown to increase as sample failure 

approaches.  In general, in references [25] [26], entropic dissipation at a material point was not 

directly used to build a predictive fatigue life relationship. Such a relationship is derived in [28], 

which is discussed further below.  A material damage model dependent on specimen entropy is 

shown to accurately predict fatigue life.  

 

The authors in their prior work [28] used the Maximum Entropy statistical framework to derive a 

fatigue life model using material entropy as a predictive variable.  This approach is inspired by 

the work of Jaynes in [22], where he applied the information theory concept of entropy to the 

energy levels of a thermodynamic system and showed that known results from statistical 

mechanics could be obtained.  Information theory entropy was thus proportional to 

thermodynamic entropy.  The fatigue life model in [28] is expressed as a damage function and is 

given in Equation (2.2) below.  The authors describe this approach as a Maximum Entropy 

Fracture Model.   

 

𝐷(𝑡) = 1 − exp (−
𝑊𝑡
𝜌𝑇𝑘𝜓

) 
(2.2) 

In Equation (2.2) the damage parameter 𝐷(𝑡) is a non-decreasing function that ranges from zero 

(virgin state) to one (failed state).  The independent variable is the inelastic dissipation in the 

material, which is proportional to the entropy of the material through J2 plasticity theory and the 
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Clausius-Duhem inequality.  The damage variable 𝐷(𝑡) was derived as a statistical cumulative 

distribution function (CDF) based on the maximum entropy principle.  The single material 

parameter 𝑘𝜓 in Equation (2.2) was obtained from isothermal mechanical cycling tests and then 

used to model fatigue crack propagation under thermal cycling conditions in an electronic 

assembly.  Figure 2 shows a comparison of the estimated/actual number of cycles as well as 

crack fronts at an intermediate stage with the same area of crack from both the finite element 

simulation and thermal cycling fatigue test. 

 

 

Figure 2.2: Comparison of crack fronts predicted by a single-parameter maximum entropy model 

against the experimentally observed creep-fatigue crack in a Sn3.8Ag0.7Cu solder joint under 

thermal fatigue cycling [28]. (permission pending).  

 

Building on the work in [28], in this paper, we propose to develop a systematic procedure for 

development of maximum entropy models for describing metal fatigue. We demonstrate the 

approach using low-cycle fatigue experimental data for Aluminum 2024-T351 material and 

generalize the application of maximum entropy principle using a broader class of statistical 

distributions, including the truncated exponential and the truncated normal distribution.  We 

begin first with a brief review of the maximum entropy principle.  
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2.4 A Review of the Maximum Entropy Principle 

The concept of entropy as applied to heat engines is due to Clausius, but the connection of 

entropy to the probability of the states of a thermodynamic system began with Boltzmann.  

Boltzmann demonstrated that the second law of thermodynamics for an ideal gas is a 

consequence of the mechanics of the collisions of the molecules [29].   He showed that a 

sufficiently large number of interrelated deterministic events will result in random states.  He 

derived the following function, given in Equation (2.3), for a uniform distribution and argued 

that this quantity had the same physical meaning as the entropy of Clausius. This led to the 

Boltzmann H function:   

 

𝐻(𝑝) =∑𝑝𝑖 ln 𝑝𝑖
𝑖

   𝑝𝑖 = 𝑝 =
1

𝑛
 

(2.3) 

 

The above expression is closely related to Gibb’s entropy formula: 

 

𝑆(𝑝) = −𝑘𝑏∑𝑝𝑖 ln 𝑝𝑖
𝑖

 
(2.4) 

 

Shannon’s research in information theory led to a mathematical expression (discussed later in 

Equation (2.6)) strikingly similar to the thermodynamic entropy formulas of Boltzmann and 

Gibbs described above. It is important to note that Shannon’s argument was a purely statistical 

one and no physical significance was claimed.   It was not until the work of Jaynes [22] that a 

connection between the information entropy of Shannon and Thermodynamic entropy was 

established.   

 

Here, we describe the abstract development of Shannon’s formula based on a counting argument 

[30].  Consider the information content of a whole number that can range in value from 0 to 𝑁.  

If we claim that each digit of the number is a unit of information, then it clearly takes log𝑏 𝑁 

digits to represent the number in a base 𝑏 system.  If the base of the logarithm is changed, the 
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resulting information will change by a constant, but the ratios of information for different 𝑁 will 

be preserved, provided the same base is used for all of them.  Thus,  log𝑏 𝑁 is a reasonable 

measure of the information contained in a variable that can range from 0 to 𝑁.  If we consider a 

random experiment with 𝑁  possible equally likely, mutually exclusive outcomes, then the 

information contained in a given outcome is still log𝑏 𝑁 = − log𝑏 𝑝 with 𝑝 being the probability 

of the event.  We argue that the information in a given event is strictly determined by 𝑝 

regardless of how the remaining 1 − 𝑝 probability is allocated to other events.  Thus, even if the 

events do not have equal probabilities, the information for any given event is still − log𝑏 𝑝 [10].  

This function has the expected property that the information contained in the occurrence of two 

(or more) statistically independent events is the sum of the information in each of the events 

separately, as shown below in Equation (2.5).  This property is fundamentally important (as 

pointed out in [8]) and further reinforces the argument for the − log𝑏 𝑝 measure of information. 

 

𝐼(𝑝) = − ln 𝑝𝑖 

𝐼(𝑝𝑖𝑝𝑗) = 𝐼(𝑝𝑖) + 𝐼(𝑝𝑗)     ∶ 𝑖 ≠ 𝑗 

(2.5) 

 

If the events correspond to a discrete random variable, then they must be mutually exclusive and 

the probability of the union of the sequence of the events is equal to one [21].   The entropy of 

the density function is taken as the expected value of the information in the events [31].  This 

leads to the Shannon information entropy formula: 

 

𝐻(𝑝) = 𝐸[𝐼(𝑝)] = −∑𝑝𝑖 ln 𝑝𝑖
𝑖

 
(2.6) 

 

This function (and only this function) satisfies these three conditions: 

1. Continuity: It is a continuous function of the 𝑝𝑖 

2. Monotonicity: It is an increasing function of n, if all the 𝑝𝑖 are equal 

3. Composition:  If an event can be decomposed into two or more lower level events, the 

function 𝐻(𝑝) will evaluate identically whether the lower of higher level events are used in 
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the computation, provided that the appropriate conditional probabilities are used to relate the 

higher and lower level events. 

 

Jaynes [8] noted that there is a symbolic similarity between the expressions for thermodynamic 

(Gibbs) entropy (Equation (2.3)) and Shannon’s information entropy (Equation (2.6)), but 

commented that the similarity did not necessarily imply a deeper connection.  Jaynes then 

proceeded to show that a connection did exist and that many results of statistical 

thermodynamics could be interpreted as applications of Shannon’s information entropy concept 

to physical systems.  The expression for Gibbs entropy is the result of a development involving 

various physical assumptions, some based on experimental evidence, and some not.  Conversely, 

Shannon’s entropy is based on mathematical and logical reasoning, not physical evidence.  

Shannon’s model was developed to model the abstract mathematical properties of digital 

communication and, prior to Jaynes, was not claimed to be applicable to the physical sciences.  

Shannon defined the entropy of a discrete probability distribution as Equation (2.6). 

 

The Maximum Entropy method as set forth by Jaynes is as follows [22]: the probability mass 

function that maximizes Equation (2.6), subject to constraint Equations (2.7) and (2.8), is the 

best choice if no other information is available to specify the probability distribution.  

∑𝑝𝑖
𝑖

= 1 
(2.7) 

𝐸[𝑔(𝑥𝑖)] =∑𝑝𝑖𝑔(𝑥𝑖)

𝑖

    ∶ 𝑥𝑖 ∈ {𝑥1, 𝑥2, … 𝑥𝑖 …𝑥𝑚} 
(2.8) 

The following probability mass function (Equation (2.9)) can be shown to maximize Equation 

(2.6): 

 

𝑝𝑖 = 𝑒
−𝜆0−𝜆1𝑔(𝑥𝑖) (2.9) 

 

The constants 𝜆0 and 𝜆1 are Lagrange multipliers associated with the constraints.  Jaynes calls 

this approach the Maximum Entropy Method and probability functions so derived, maximum 
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entropy distributions (MaxEnt method and MaxEnt distributions).  Multiple expected value 

constraints may be applied (not simply moments as is common in probability analysis), resulting 

in the following form of the MaxEnt distribution: 

 

𝑝𝑖 = 𝑒
−𝜆0−𝜆1𝑔1(𝑥𝑖)−⋯−𝜆𝑚𝑔𝑚(𝑥𝑖) (2.10) 

The entropy of the resulting distribution is [8]: 

 

𝑆𝑚𝑎𝑥 = 𝜆0 + 𝜆1𝐸[𝑔1(𝑥)] + ⋯+ 𝜆𝑚𝐸[𝑔𝑚(𝑥)] (2.11) 

  

Jaynes’ argument was for the discrete case.  The entropy of a continuous probability density 

function is also known and is defined as [21]:  

𝐻(𝑓(𝑥)) = −∫ 𝑓(𝑥) ln 𝑓(𝑥)𝑑𝑥
∞

−∞

 
(2.12) 

  

The corresponding continuous version of Equation (2.10) is given below [21]:  

𝑓(𝑥) = 𝑒−𝜆0−𝜆1𝑔1(𝑥)−⋯−𝜆𝑚𝑔𝑚(𝑥) (2.13) 

 

One important point regarding Equation (2.13) is that it is only a probability density function for 

specific values of the parameters  𝜆𝑘 .  This situation differs from the usual approach to 

representing probability density functions or distribution functions where the functions are 

admissible for ranges of parameter values.  Additionally, the method Jaynes sets forth assumes 

that the values used for moment function constraints are not estimates subject to sampling 

variation.  They are taken as essentially exact values of the distribution moment functions.  This 

assumption differs from traditional inferential statistics where moments or quantiles are 

estimated from data and sampling errors are estimated.  

Jaynes showed that if we choose the probability distribution for the system microstates based on 

maximizing Shannon entropy, known results from statistical mechanics can be obtained, without 

new physical assumptions, and in particular, the thermodynamic entropy of the system is found 

to be the Gibbs entropy of Equation (2.4).  The Shannon entropy of the distribution is 

proportional to the physical entropy of the system if (and only if) the probability distribution is 

applied to the thermodynamic states of the system.  Jaynes [22] argues that this shows that 
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thermodynamic entropy is an application of a more general principle.  Further to this point, 

Jaynes argues that if a probability model is required for some application, where certain expected 

values are known, but not other details, the maximum entropy approach should be used to find 

the probability distribution.  Jaynes uses the term ‘maximally non-committal’ to describe 

probability distributions obtained by this process.  What is known about the random variable in 

question is captured in mathematical constraints, while the principle of maximum entropy 

accounts for what is not known.  While information entropy is only proportional to 

thermodynamic entropy in certain circumstances, Jaynes argues that choosing the probability 

density function that maximizes the Shannon entropy subject to various constraints is appropriate 

to any situation where a reference probability distribution is needed.  The application could be 

physical or not, and need not necessarily have a relationship to thermodynamic states.  

 

2.5 Maximum Entropy Distributions 

We argue that if a given parametric family of distributions is selected for some reason (as is 

common practice), then within that family of distributions, we should prefer the parameter values 

that maximize entropy (subject to any constraints) over those that do not.  For example, if the 

Weibull distribution has already been chosen for some application, and the characteristic life is 

known, then the Weibull exponent should be chosen to maximize entropy.  It is noteworthy that 

the Exponential distribution and the Normal distribution are the MaxEnt distributions 

corresponding to a prescribed mean value, and prescribed mean and variance values respectively 

[32].  Given the fundamental importance of these distributions in statistical theory, it is 

informative that they can be directly derived from the principles of maximum entropy.  Just as 

Jaynes showed that statistical thermodynamic results derivable by other means could be obtained 

from maximum entropy methods, it has also been shown that the well-known and fundamental 

Normal distribution, traditionally derived by other means, can also be based on a maximum 

entropy argument.  Even the Weibull distribution can be derived from a maximum entropy 

approach if appropriate moment functions are chosen [32].  
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Table 2.1: MaxEnt distributions corresponding to moment functions  𝑔𝑟(𝑥). 

Support Type 𝑔𝑟(𝑥) Distribution Function Reference 

[a, b] Discrete  Uniform [22] 

[0, ∞ Discrete 𝑥 Exponential [22] 

[0, ∞ Continuous 𝑥 Exponential [32] 

[0, a] Continuous 𝑥 Truncated Exponential [33] 

[0, ∞ Continuous 𝑥2 Half Normal [34] 

(-∞, ∞) Continuous 𝑥, 𝑥2 Normal [32] 

[0, ∞ Continuous 𝑥, 𝑥2 Left Truncated Normal [34] 

[0, a] Continuous 𝑥, 𝑥2 Left and Right 

Truncated Normal 

[34] 

[0, ∞ Continuous ln(x), 𝑥𝛽 Weibull [32] 

 

Note the references to truncated distributions in Table 2.1.  A distribution is described as 

truncated if the value of its density or mass function is forced to zero (when otherwise it would 

be non-zero) outside of specific range.  Thus, the truncated Normal distribution functions can be 

thought of as ordinary normal probability density functions (PDFs) that are clipped to zero 

probability outside of their non-zero range.  As described later, they are multiplied by a 

normalizing constant to correct for the missing density.  Truncation at 𝑥 = 0 is necessary for 

applications to non-negative variables.  The CDF of a truncated Normal random variable has a 

finite slope at  𝑥 = 0.  If a second truncation at 𝑥 = 𝑎 is specified, then the CDF is forced to be 

exactly equal to 1 for all 𝑥 ≥ 𝑎.  We begin the discussion of MaxEnt distributions with the 

truncated exponential distribution. 
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2.6 MaxEnt Form of Truncated Exponential Distribution 

The truncated Exponential distribution can be constructed in an analogous fashion for positive 

values of 𝜆 (parent PDF is a decreasing function).  An example is plotted in Figure 2.3.  However, 

it is possible for a truncated exponential distribution to be an increasing function within its non-

zero range (Figure 2.4).  Clipping the positive exponent at some specified value enables its use as 

a PDF.  This corresponds to a negative-valued lambda, which is not admissible in the non-

truncated case.  If the specified mean was to the right of the midpoint of the non-zero range, then 

lambda would be negative.   

It should also be noted that changing the location of a distribution function without changing its 

shape has no effect on the entropy value.  Thus, a left endpoint other than zero could be used for 

any of the distributions that have zero value for negative 𝑥.  Naturally, this shift would change 

the moment function values.  Note that specifying a right truncation value changes the shape of 

the remaining distribution function and should be thought of as adding an extra parameter.  Thus, 

a truncated exponential distribution is a two-parameter distribution. 

 

 

Figure 2.3: Truncated Exponential distribution with 𝜆= 0.03; a = 40. 
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Figure 2.4: Rising truncated Exponential distribution with 𝜆= -0.02; a = 40. 

 

 

 

Truncated Exponential Distribution: PDF and CDF 

 

𝑓𝑡𝑟𝑢𝑛𝑐(𝑥, 𝜆, 𝑎) =
𝜆 𝐸𝑥𝑝(−𝜆𝑥)

1 − 𝐸𝑥𝑝(−𝜆𝑎)
    𝑓𝑜𝑟  0 ≤ 𝑥 ≤ 𝑎 

𝐹𝑡𝑟𝑢𝑛𝑐(𝑥, 𝜆, 𝑎) =
1 − 𝐸𝑥𝑝(−𝜆𝑥)

1 − 𝐸𝑥𝑝(−𝜆𝑎)
  𝑓𝑜𝑟  0 ≤ 𝑥 ≤ 𝑎  

(2.14) 

Expected Value of a Truncated Exponential random variable 

 

𝐸(𝑥) =
1

𝜆
(
1 − (𝜆𝑎 + 1)𝐸𝑥𝑝(−𝜆𝑎)

1 − 𝐸𝑥𝑝(−𝜆𝑎)
)  

(2.15) 
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Note that the uniform distribution is a limiting case of the truncated exponential distribution and 

corresponds to lambda approaching zero.  An example is shown in Figure 2.5. 

 

lim
𝜆→0

𝑓𝑡𝑟𝑢𝑛𝑐(𝑥, 𝜆, 𝑎) =
1

𝑎
    𝑓𝑜𝑟  0 ≤ 𝑥 ≤ 𝑎 

lim
𝜆→0

𝐸(𝑥) =
𝑎

2
     

(2.16) 

 

 

Figure 2.5: Rising truncated Exponential distribution with 𝜆 = -0.001; a = 40. 

 

2.7 MaxEnt Form of Truncated Normal Distribution 

The truncated Normal distribution can be explained in terms of the Normal PDF.  For 𝑥 ≥ 0, the 

PDF has the same shape as a non-truncated Normal PDF, but scaled to make up the density lost 

for 𝑥 < 0 (Figure 2.6).  The truncation of the portion of the density less than zero changes the 

mean and standard deviation from the parameters that the truncated distribution inherits from the 

Normal distribution.  Adding a second truncation point at 𝑥 = 𝑎 forces the function be equal to 1 
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for all 𝑥 ≥ 𝑎 and adds a corner to the CDF at 𝑥 = 𝑎 (Figure 2.7).  Additionally, the correction 

factor must be larger to correct for missing density 𝑥 < 0 and also 𝑥 ≥ 𝑎. 

 

 

Figure 2.6: Truncated Normal distribution plotted with the parent (non-truncated) Normal 

distribution density correction for 𝑥 ≥ 0 equal to 1.23. 

 

 

Figure 2.7: Left and right truncated normal distribution. 
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The PDF and the CDF for the left truncated Normal distribution can be shown to be: 

 

𝑁𝑜𝑟𝑚𝑎𝑙 𝐶𝐷𝐹 𝑖𝑛 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑁𝑜𝑟𝑚𝑎𝑙 𝐶𝐷𝐹    

 𝐹𝑛𝑜𝑟𝑚(𝑥, 𝜇, 𝜎) = Φ(
𝑥 − 𝜇

𝜎
) 

 𝐹𝑡𝑟𝑢𝑛𝑐(𝑥, 𝜇, 𝜎) =
 𝐹𝑛𝑜𝑟𝑚(𝑥, 𝜇, 𝜎) − 𝐹𝑛𝑜𝑟𝑚(0, 𝜇, 𝜎)

1 − 𝐹𝑛𝑜𝑟𝑚(0, 𝜇, 𝜎)
  𝑓𝑜𝑟 𝑥 ≥ 0 

𝑓𝑡𝑟𝑢𝑛𝑐(𝑥, 𝜇, 𝜎) = (
 1

1 − 𝐹𝑛𝑜𝑟𝑚(0, 𝜇, 𝜎)
)

1

𝜎√2𝜋
𝐸𝑥𝑝 (−

(𝑥 − 𝜇)2

2𝜎2
)   𝑓𝑜𝑟 𝑥

≥ 0 

 (2.17) 

 

The factor in the denominator of the CDF definition in Equation (2.17) is the area correction 

factor 𝐶. 

 

𝐶 =
 1

1 − 𝐹𝑛𝑜𝑟𝑚(0, 𝜇, 𝜎)
 

(2.18) 

 

 

Truncated Normal Distribution in two-parameter MaxEnt form is: 

 

𝑓𝑡𝑟𝑢𝑛𝑐(𝑥, 𝜇, 𝜎) =  𝐸𝑥𝑝(−𝜆0 − 𝜆1𝑥 + 𝜆2𝑥
2) 

𝜆0 = −
𝜇2

2𝜎2
− ln (

𝐶

𝜎√2𝜋
)    𝜆1 = −

𝜇

𝜎2
    𝜆2 =

1

2𝜎2
 

(2.19) 
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Thus, just as the Normal distribution is MaxEnt for moment functions 𝑥, 𝑥2 where 𝑥 ranges over 

 (−∞,∞), the truncated Normal distribution is MaxEnt for the same moment functions over the 

range [0,∞).  Note that the 𝜇 and 𝜎 are the mean and standard deviation of the parent (un-

truncated) normal distribution, not the truncated normal distribution. 

 

2.8 MaxEnt Form of the Weibull Distribution 

Since the Weibull distribution is widely used, it is useful to know what parameter value choices 

maximize the entropy of the function.  It is often the case that only one of the two parameters is 

known and we seek a rational approach to assigning a value to the second parameter.  In this case, 

we suggest that choosing the parameter value that maximizes the entropy of the distribution is 

the correct approach. 

 

The entropy of the Weibull distribution is (Figure 2.8, derived from Equation (2.80c) in [35]): 

 

𝐻 = 𝛾 (1 −
1

𝛼
) + ln (

𝛽

𝛼
) + 1 

𝛾 = 0.577216…   𝐸𝑢𝑙𝑒𝑟′𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

(2.20) 

 

Mean of a Weibull distribution is [35]: 

𝜇 = 𝛽Γ (1 +
1

𝛼
) 

(2.21) 

 

Thus, the entropy for a Weibull distribution with a fixed mean (moment constraint on x) is: 

 

𝐻𝜇 = 𝛾 (1 −
1

𝛼
) + ln(𝜇) − ln (Γ (1 +

1

𝛼
)) − ln(𝛼) + 1 

(2.22) 
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Figure 2.8: Entropy of a Weibull distribution with a fixed mean. 

 

Maximizing the entropy function: 

𝑑𝐻𝜇

𝑑𝛼
= 0 

(2.23) 

Recalling the properties of the digamma function: 

 

ψ(𝑥) =
𝑑

𝑑𝑥
[ln(Γ(𝑥))] 

ψ(1 + 𝑥) = ψ(𝑥) +
1

𝑥
 

(2.24) 

Therefore: 

𝑑𝐻𝜇

𝑑𝛼
=
𝛾

𝛼2
+
ψ(1 +

1
𝛼
)

𝛼2
−
1

𝛼
= 0 

ψ(
1

𝛼
) = −𝛾 

 

(2.25) 
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This is only true for 𝛼 = 1.  Thus, within the Weibull family of distributions, for a given fixed 

mean, the exponential distribution has the highest entropy, in agreement with Jaynes’ result. 

 

Maximum Entropy for Fixed Characteristic Life is (Figure 2.9): 

 

𝐻 = 𝛾 (1 −
1

𝛼
) + ln (

𝛽

𝛼
) + 1  𝑓𝑜𝑟 𝛽 = 𝑐𝑜𝑛𝑠𝑡. 

(2.26) 

 

 

Figure 2.9: Plot of Equation (2.26) for 𝛽 = 1. 

 

 

Proceeding as above: 

𝑑𝐻

𝑑𝛼
=
𝛾

𝛼2
−
1

𝛼
= 0 

𝛾 = 𝛼 

 

(2.27) 

Thus, for the fixed characteristic life case, 𝛼 = 𝛾, the Euler’s constant.   
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2.9 Application of Maximum Entropy to Low Cycle Fatigue of 2024-T351 Aluminum 

 

When a specimen is subjected to axial load cycles of a magnitude sufficient to cause plastic 

deformation, the stress/strain history for the specimen can frequently be described as a loop, such 

as shown in Figure 2.10.  To determine the fatigue life of the specimen, the load cycles are 

applied until the specimen fails, or until its compliance exceeds some proportion of its initial 

compliance.  The Coffin-Manson relationship (Equation (2.1)) is commonly used to model the 

relationship between plastic strain range and reversals to failure.  The parameter 𝜖𝑓′  is 

determined by fitting the curve to fatigue data.  It is frequently close in value to 𝜖𝑓. 
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Figure 2.10: Stress/Strain loop showing plastic strain,  

variables are defined in Table 2.2. 

 

As mentioned earlier, a sequence of low cycle fatigue tests, and two monotonic tension tests, was 

performed on tension specimens of 2024-T351 aluminum.  Eighteen specimens were tested 

under constant amplitude, fully-reversed fatigue conditions.  In five cases, representative 

stress/strain loops were collected at various cycle intervals.  Two specimens were tested to 

failure monotonically.  The data collected is summarized in Table 2.2.  The data is fitted to a 

Coffin-Manson model as shown in Figure 2.1.  
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Table 2.2: Low cycle fatigue data summary. 

k 2Nf 

Stress 

Amplitude 

MPa 

Plastic 

Strain 

Amplitude 

Data 

1 1 537.810 0.2 Values 

2 1 558.495 0.28 Values 

3 76 503.335 0.01725 Values 

4 38 495.061 0.0129 S-20 Loop fitted 

5 124 492.993 0.0123 Values 

6 144 482.650 0.012 Values 

7 190 475.755 0.01067 Values [36] 

8 114 477.824 0.0085 S-17 loop fitted 

9 440 466.792 0.0083 Values [36]
 

10 560 448.175 0.00606 Values [36]
 

11 920 437.143 0.00472 Values [36]
 

12 516 453.691 0.0038 S-12 loop fitted 

13 1080 441.280 0.0037 Values 

14 800 441.280 0.0036 Values 

15 624 454.381 0.0035 S-11 loop fitted 

16 2800 398.531 0.00178 Values [36]
 

17 1608 430.938 0.0017 S-18 loop fitted 

18 5860 403.358 0.0007 Values 

19 16336 351.645 0.00015 Values 

20 23400 358.540 0.00004 Values 

 

As mentioned earlier, the data exhibits a curvature that is not captured by the straight line fit of 

the Coffin-Manson power law.  An alternative approach to modeling data such as this, using 

concepts developed from Maximum Entropy, is developed below.  The authors of [28] showed 

that material entropy is proportional to inelastic dissipation in experiments such as this where the 

temperature of the specimens is essentially constant.  Thus, inelastic dissipation is exploited as a 

surrogate for entropy in the development that follows. 

 

The variable 𝐷 representing the ability of the material at a point to bear load is fundamental in 

the literature of damage mechanics [2].  The value of 𝐷 = 0 (undamaged) represents virgin 

material, while 𝐷 = 1  is taken to correspond to failed material.  The variable 𝐷  is a non-



53 

 

 

5
3
 

decreasing quantity since damage is inherently irreversible.  The Coffin-Manson equation can be 

rewritten in terms of damage and doing so will be shown to provide a departure point for further 

development.  We begin by rearranging Equation (2.1) into the following form: 

 

1

2𝑁𝑓
= (

∆𝜖𝑝

2𝜖𝑓
′)

−
1
𝑐

 

(2.28) 

 

Depending on the application, the damage variable 𝐷 may be expressed as a function of various 

independent variables.  In fatigue applications, it is common to use the following (applicable to 

constant damage per load cycle) Palmgren-Miner definition of damage.  It is understood that 𝑁𝑓 

may depend on other variable such as temperature or plastic strain amplitude. 

 

𝐷(𝑁) =
𝑁

𝑁𝑓
 

(2.29) 

 

We can write the damage accumulation per reversal: 

𝐷𝑟𝑒𝑣 =
1

2𝑁𝑓
 

(2.30) 

 

Finally, Equation (2.28) can be recast as a damage equation as follows: 

𝐷𝑟𝑒𝑣 = (
∆𝜖𝑝

2𝜖𝑓
′)

−
1
𝑐

= 𝑓𝑐𝑛(∆𝜖𝑝) 

(2.31) 

 

Following [28], we propose to develop a function of form of Equation (2.31) in terms of energy 

per reversal, rather than plastic strain range.  This relationship will have the form: 

 

𝐷𝑟𝑒𝑣 = 𝑓𝑐𝑛 (
𝑊𝑓

2𝑁𝑓
) 

(2.32) 
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In the development that follows, a general approach to deriving functions of the form of the 

above equation will be proposed. In order to apply an equation of the above form to the data in 

Table 2.3, we first need to determine the inelastic dissipation per reversal corresponding to each 

of the test conditions of the form shown in Figure 2.10.  The energy expended in inelastic 

dissipation, for a cyclic test under constant conditions is given by the area enclosed by the loop.  

Note that in Table 2.3, actual loop data was only available for five of the 20 tests.  In all cases the 

plastic strain range and stress range (and reversals to failure) were collected.  Fortunately, the 

shapes of the loops follow known trends and thus it was possible to deduce the inelastic 

dissipation for the tests where loops were not available to measure.  The inelastic dissipation for 

the two monotonic tests were also deduced from the available loop data, although a different 

analytical approach was used. 

 

Plotted loops for the five loop-data samples are given below in Figures 2.11-2.15.  In each case, 

several loops were provided.   

 

 

Figure 2.11: Test 4, 2Nf = 38. 
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Figure 2.12: Test 8, 2Nf = 114. 

 

 

Figure 2.13: Test 12, 2Nf = 516. 
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Figure 2.14: Test 15, 2Nf = 624. 

 

 

Figure 2.15: Test 17, 2Nf = 1608. 
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The Ramberg-Osgood relationship (Equation (2.33)) is frequently successful for modeling data 

such as this.  This model assumes that the plastic portion of the strain range is a power law of the 

stress range.  There is no explicit yield point with this model.  The total strain range is given by 

Equation (2.34) and is used to model the shapes of the loops.  For the purposes of fitting 

Equation (2.34), the origin of the stress and strain range variables is placed at the lower left 

corner of the loop. 

 

Ramberg-Osgood Plasticity Model for Stress-Strain Loops is [2]: 

∆𝜖𝑝 = (
∆𝜎

𝐾
)

1
𝑛

 

(2.33) 

 

∆𝜖𝑡𝑜𝑡𝑎𝑙 =
∆𝜎

𝐸
+ (
∆𝜎

𝐾
)

1
𝑛

 

(2.34) 

 

The fits of Equation (2.34) to loop data was performed using the least squares approach and is 

shown in Figure (2.16).  The fits to the data were of high accuracy as demonstrated by the 𝑅2 

value of 0.997.  This confirms that Equation (2.34) provides a reasonable model of the shape of 

the loops in Figures 2.11-2.15.  The points are samples measured from the loops while the line is 

the fit of Equation (2.34).  A separate fit was performed for the parameters in Equation (2.34) for 

each of the five loops.  A common value of Young’s Modulus was fit simultaneously to the five 

sets of data.  Specific values of n and K were obtained for each loop. 
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Figure 2.16: Fit of Equation (2.34) to 5 data sets (E = 7.38E4 MPa for all fits) (R
2
=0.997). 

 

The five sets of parameters obtained from the fitted loops were used to estimate the parameter 

1/n for the remaining 15 tests.  The fitted 1/n value was found to be a strictly increasing function 

of plastic strain range and is plotted in Figure 2.17.  The ‘interpolation’ line markers show the 

values of 1/n used for the remaining 15 tests.  The values were linearly interpolated between the 

maximum and minimum values.  For plastic strain ranges outside the range of the measured data, 

the value of the nearest measured data value was used.  As will be shown below, the predicted 

inelastic dissipation is mainly determined by the plastic strain range and the stress range and is 

only weakly dependent on the value of 1/n used. 
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Figure 2.17: 5 Fitted values of 1/n with interpolation function. 

 

The five loops (represented by Equation (2.34)) are plotted in Figure 2.18 below using the 

parameters fit to the corresponding loop data.  The inelastic dissipation per cycle is the area 

enclosed by the loop. 

 

Figure 2.18: Ramberg-Osgood curves based on loop fits. 

 

The area of the loop in terms of the parameters in Equation (2.34) and the loading parameters is 

given in Equation (2.35).  The form of this equation has the advantage that it is relatively robust 
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to errors in fitting the parameter n, since both of the actual measured values of the stress range 

and strain range are used.   

 

Loop Area (dissipation per cycle) in terms of n is [2]: 

 

𝐴𝑓 =
1 − 𝑛

1 + 𝑛
∆𝜎∆𝜖𝑝 

(2.35) 

 

In the present case, we wish to describe the evolution of damage in terms of reversals, rather than 

cycles.  It is apparent from Equation (2.36) that the inelastic dissipation per reversal is half the 

area of the loop given by Equation (2.35), and is given in Equation (2.37). 

 

Total Inelastic Dissipation in terms of cycles and reversals: 

 

𝑊𝑓 = 𝑁𝑓𝐴𝑓 = (2𝑁𝑓) (
1

2
𝐴𝑓) 

(2.36) 

 

Inelastic dissipation per reversal: 

𝑊𝑓

2𝑁𝑓
=

1 − 𝑛

2(1 + 𝑛)
∆𝜎∆𝜖𝑝 

(2.37) 

 

For specimens subjected to a monotonic test, the inelastic dissipation is the area under the plastic 

portion of the stress strain curve.  If the plastic portion of the curve is modeled by an equation of 

the form of Equation (2.34), the area under the plastic portion is given by Equation (2.38).  A 

monotonic test to fracture can be interpreted as a fatigue test with failure occurring after a single 

reversal.  Thus, the inelastic dissipation per reversal is given by Equation (2.39): 
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Monotonic Area (Dissipation per reversal) in terms of n: 

 

𝐴𝑓 =
1

1 + 𝑛
𝜎𝑓𝜖𝑓 

 

(2.38) 

 

Inelastic Dissipation for a Monotonic Test: 

 

𝑊𝑓

2𝑁𝑓
= 𝐴𝑓 =

1

1 + 𝑛
𝜎𝑓𝜖𝑓    2𝑁𝑓 = 1 

(2.39) 

 

Note that in Equations (2.37) and (2.39), the area is computed from plastic strain range 

multiplied by stress range times a factor dependent on n.  The functions are given in Equation 

(2.40) and the values of 𝜌 are summarized in Table 2.4 and plotted in Figure 2.19. 

 

𝜌𝑚𝑜𝑛𝑜 =
1

1 + 𝑛
     

𝜌𝑙𝑜𝑜𝑝 =
1 − 𝑛

1 + 𝑛
     

(2.40) 

 

Note that the value of 𝜌 does not change greatly as n is varied.  This observation indicates that 

the computation of areas for the monotonic and cyclic tests is robust to errors in fitting the 

Ramberg-Osgood parameter n.  Thus, the inference of inelastic dissipation for the 2.15 tests for 

which loop data was not available is justified. 
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Figure 2.19: 𝜌 as a function of plastic strain range. 

 

Table 3 below includes values computed from Equations (2.37) and (2.39) for inelastic 

dissipation per reversal as well as damage per reversal, according to Equation (2.30).  These data 

are plotted in Figure 2.20. These points represent data corresponding to a relationship of the form 

of Equation (2.32).  The lack of fit provided by the power law indicates that a different modeling 

equation is required for data of this type.  In the development that follows, various expressions, 

including some based on MaxEnt principals will be proposed to model the data plotted in Figure 

2.20.   
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Table 2.3: Inelastic dissipation and damage. 

k 2Nf Range 

Mpa 

Range Ep 1/n rho Wf/2Nf D/2Nf 

1 1 538 2.00E-01 26.7 0.964 1.04E+02 1.00E+00 

2 1 558 2.80E-01 26.7 0.964 1.51E+02 1.00E+00 

3 76 1007 3.45E-02 26.7 0.928 1.61E+01 1.32E-02 

4 38 990 2.58E-02 26.7 0.928 1.19E+01 2.63E-02 

5 124 986 2.46E-02 26.5 0.927 1.12E+01 8.06E-03 

6 144 965 2.40E-02 26.4 0.927 1.07E+01 6.94E-03 

7 190 952 2.13E-02 25.9 0.926 9.40E+00 5.26E-03 

8 114 956 1.70E-02 25.1 0.923 7.50E+00 8.77E-03 

9 440 934 1.66E-02 24.7 0.922 7.15E+00 2.27E-03 

10 560 896 1.21E-02 21.2 0.910 4.94E+00 1.79E-03 

11 920 874 9.44E-03 19.1 0.900 3.72E+00 1.09E-03 

12 516 907 7.60E-03 17.6 0.893 3.08E+00 1.94E-03 

13 1080 883 7.40E-03 17.4 0.891 2.91E+00 9.26E-04 

14 800 883 7.20E-03 17.1 0.890 2.83E+00 1.25E-03 

15 624 909 7.00E-03 16.9 0.888 2.83E+00 1.60E-03 

16 2800 797 3.56E-03 13.6 0.863 1.22E+00 3.57E-04 

17 1608 862 3.40E-03 13.4 0.862 1.26E+00 6.22E-04 

18 5860 807 1.40E-03 13.4 0.862 4.87E-01 1.71E-04 

19 16336 703 3.00E-04 13.4 0.862 9.09E-02 6.12E-05 

20 23400 717 8.00E-05 13.4 0.862 2.47E-02 4.27E-05 

 

 

Figure 2.20: Damage per reversal as a function of inelastic dissipation per reversal with power 

law fit (R
2
=0.89). 
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2.9.1 Discussion of Candidate Distribution Functions 

Inelastic dissipation is a non-negative valued function so only distribution functions equal to zero 

for 𝑥 ≥ 0 are admissible candidates.   Table 2.5 contains a summary of the fitted functions as 

well as the sum of squares of error remaining after the fitting.  The natural logs of the data were 

fitted to the natural logs of the predicted values.  Plots of the fitted curves and the data are in 

Figure 2.21.  Only the truncated forms of the Normal distribution are considered.  Distributions 

that are truncated on the right, such as the truncated exponential distribution have the additional 

advantage that they are strictly equal one for 𝑥 ≥ 𝑎. 

 

The data set being fit has some noteworthy features.  Even though the data is of low cycle fatigue, 

most of the samples still represent very small values of 𝐷𝑟𝑒𝑣 .   Additionally, the data points show 

a concave-up trend that limits the quality of the fit achievable by a power law relationship.  The 

fit was notably better for the right truncated exponential distribution with a negative 𝜆.  The 

fitting procedure converged to a negative 𝜆, which corresponds to a rising exponential curve that 

becomes constant at 𝐷𝑐𝑦𝑐𝑙𝑒 = 1 .   The best fits were achieved by the truncated Normal 

distribution and the truncated Exponential distribution. The Smith-Ferrante function (popular in 

Cohesive Zone Models of fracture) is typically used to represent the traction vs. separation and is 

founded on relationship binding material together at the microscopic scale [37].  Its integral is 

used here, which has the qualitative features of a damage function.  The Weibull distribution 

function was also tried.  Additionally, a power law expression having the form of the Coffin-

Manson relation was tried.  This function would be truncated at 𝐷𝑟𝑒𝑣 = 1.  
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Table 2.4: Candidate function forms fit to data in Table 2.4. 

Function Form (for 0 ≤ 𝑎) Sum of Sqr 

Error 

Left Truncated Normal 
𝐷𝑟𝑒𝑣 =

 𝐹𝑛𝑜𝑟𝑚(𝑊𝑐, 𝜇, 𝜎) − 𝐹𝑛𝑜𝑟𝑚(0, 𝜇, 𝜎)

1 − 𝐹𝑛𝑜𝑟𝑚(0, 𝜇, 𝜎)
  

5.17 

Truncated Exponential 
𝐷𝑟𝑒𝑣 =

1 − exp(−𝜆𝑊𝑐)

1 − exp(−𝜆𝑎)
 

6.66 

Power law  

(Coffin-Manson form) 
𝐷𝑟𝑒𝑣 = 𝑘(𝑊𝑐)

−
1
𝑐  𝑓𝑜𝑟 𝑊𝑐 ≤ 𝑊𝑐 𝑐𝑟𝑖𝑡 

14.8 

Weibull 𝐷𝑟𝑒𝑣 = 1 − exp(−𝑘𝑊𝑐
𝛼) 15.4 

Smith-Ferrante form 𝐷𝑟𝑒𝑣 = 1 − (1 + 𝑘𝑊𝑐)exp(−𝑘𝑊𝑐) 57.3 

 

Note that the Coffin Manson expression typically relates plastic strain range to cycles to failure.  

In Table 2.4, it is shown in an inverted form and expressed in terms of 𝑊𝑐 = 𝑊𝑓/2𝑁𝑓. It is clear 

from the sum of squared error column in Table 2.4, and from Figure 2.21 below that the 

truncated Normal distribution provided the best fit to the data, followed by the truncated 

Exponential distribution.  The (inverted) Coffin Manson expression and the Weibull distribution 

function provided the next best fit.  

 

Parameters fit by numerical solver to the fatigue data for the truncated Normal distribution 

(Equation (2.41)) and the truncated Exponential distribution (Equation (2.42)) are given below: 

 

 𝐷𝑟𝑒𝑣 =
 𝐹𝑛𝑜𝑟𝑚(𝑥, 72.1, 27.3) − 𝐹𝑛𝑜𝑟𝑚(0,72.1, 27.3)

1 − 𝐹𝑛𝑜𝑟𝑚(0,72.1, 27.3)
  𝑓𝑜𝑟 𝑥 ≥ 0 

(2.41) 

 𝐷𝑟𝑒𝑣 =
1 − 𝐸𝑥𝑝(0.0325𝑥)

1 − 𝐸𝑥𝑝((−0.0325)(127.2))
    𝑓𝑜𝑟  0 ≤ 𝑥 ≤ 127.2  

(2.42) 

The 95% confidence intervals on the parameters are as follows as computed by Matlab non-

linear regression.  For the truncated Normal distribution, 25.8 ≤ 𝜇 ≤ 118.6  and 5.75 ≤ 𝜎 ≤ 48.  

For the truncated Exponential distribution, a was fixed at the mean of the two monotonic test 

values (127.2) and −0.0354 ≤ 𝜆 ≤ −0.0293.  Although the trunated Normal distribution has the 

best fit, the truncated Exponential distribution has some desireable properties.  If monotonic 

tension data points are available, they can be used to directly constrain the point where the curve 
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is strictly equal to 1.0.  The parameter 𝜆 controls the shape of the curve between 𝑥 = 0 and 

𝑥 = 𝑎.  For 𝜆 close to zero, the curve is nearly a ramp function.  For negative 𝜆 values, it has 

varying degrees of concave-up curvature.  Examples of a family of such curves are plotted in 

Figure 22.  In the present case, 𝜆 = −0.0323 giving a strongly rising curve.  A damage function 

of the mathematical form of Equation (2.42) exists in the literature [23].  The authors of [23] 

present Equation (2.43) as an improvement to the Coffin-Manson relationship (Equation (2.2)) 

for modeling LCF in the sub 100 cycle range ( 𝜖𝑝𝑎  is the plastic strain amplitude).  The 

relationship is presented as an empirical improvement and is not derived from physical principles.  

The authors don’t describe it as a truncated Exponential distribution function.  It is clear that 

Equation (2.43) can be rearranged to a form similar to Equation (2.42). 

 

𝐷𝑐𝑦𝑐𝑙𝑒 =

𝐸𝑥𝑝 (
𝜆𝜖𝑝𝑎
𝜖𝑓
) − 1

𝐸𝑥𝑝(𝜆) − 1
 

(2.43) 

 

 

 
 

Figure 2.21: Plots of functions in Table 2.5. 

 



67 

 

 

6
7
 

 

 

Figure 2.22: Plots of truncated Exponential distribution with different shapes. 

 

 

2.10 Conclusions 

In this study, the Maximum Entropy principle was shown to provide a systematic theoretical and 

philosophical basis for selecting a CDF to model damage.  The method was demonstrated on a 

LCF data set for Aluminum 2024-T351. In general, the proposed approach is applicable to 

broader class of materials undergoing fatigue damage. We showed that several maximum 

entropy distributions, including the truncated exponential and the truncated normal distribution 

are good choices for material damage modeling.  Compared to the exponential distribution, the 

truncated exponential distribution has additional flexibility and can model concave-up data.  In 

the limit, it can approximate a uniform distribution.  For the Aluminum 2024-T351 alloy, the 

truncated normal distribution was shown to provide the best fit to the data relative to the more 

common alternatives of Coffin-Manson equation or the Weibull distribution.  Left-truncation of 

the normal distribution extends its applicability to the many applications where data is non-

negative.  Finally, a Coffin Manson function in terms of plastic strain (the standard form) was 

compared to the truncated Normal distribution and shown to provide an inferior fit. 
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CHAPTER 3. LOW CYCLE FATIGUE AS A STOCHASTIC PROCESS 

3.1 Introduction 

Consider a fixed amplitude axial fatigue test of a defect-free crystalline metal where plastic strain 

is occurring during each cycle.  Certain features of this type of test are well known.  The number 

of cycles to failure at a given strain level exhibits considerable scatter ( [3], [38], [39]) while the 

trend in life vs. applied plastic strain amplitude frequently follows the Coffin-Manson power law 

(Equation (3.1)) where the constant c is typically between -0.8 and -0.5 [3].  As is the case with 

any data that exhibit scatter, the cycles to failure can thus be interpreted as a random variable, in 

this case whose distribution is dependent on the applied strain amplitude as a parameter.  

Additionally, the location the failure crack initiates is a spatial random variable over the gauge 

region of the specimen.  Note that this is not the case with alloys, such as cast aluminum, that 

contain defects where fatigue cracks tend to initiate.  In the case of these materials, the position 

of pre-existing flaws is random, but they represent a relatively small number of locations where a 

crack might begin.  Thus, crack ignition location is not spatially Poisson.  The following 

argument is limited, as stated above, to defect free materials, which will tend to exclude most 

ordinary cast metals. 

 

Specimen designs provide uniform (as much as possible) stress states in the gauge region, while 

the random orientation of the individual grains in the metal result in grain-scale inhomogeneities 

that make some grains more likely to initiate cracks than others.  Although the general sequence 

of processes leading to failure has been studied (and is reviewed below), there is no generally 

agreed upon explanation for the form of Equation (3.1) and it is usually referred to as an 

empirical law [3].   

 

𝜖𝑝 = 𝑘𝑁
𝑐  

(3.1) 
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Most predictive equations used in mechanics could be regarded as deterministic.  Given known 

arguments, the equations evaluate to specific values.  In reliability engineering, equations that 

model the distribution in component lives represent exceptions to this rule.  While the mean life 

(or some quantile of life) can be written as explicit functions of parameters that may depend on 

stress factors or component parameters, it is understood that the relationship being modeled is 

essentially random in nature.  The researcher seeks to describe the randomness in terms of an 

appropriate reference probability distribution.  The distributions of lives of complex systems can 

be deduced from the failure distributions of their components.  In these cases, statistics is the 

appropriate framework to describe the behavior of interest.  Some researchers, starting with [38] 

have argued that a fatigue test, and by extension fatigue of engineered components in service, 

can be described by stochastic processes.  Describing the scatter in fatigue data at some constant 

cyclic stress or strain condition with a probability distribution is routine [6]. However, these 

authors show how certain simple (and experimentally supported) assumptions about the 

underlying random processes explain widely observed trends in fatigue data.  Their successes 

suggest that the mathematics of stochastic processes provide the appropriate environment to 

describe the fatigue process. 

 

3.2 The Poisson Process 

There are many random processes in physics that may be modeled as Poisson processes.  

Examples include the times of various events, such as radioactive decay, collisions in an ideal 

gas, or even the incidence of near-Earth asteroids.  The defining feature of a Poisson process is 

that the expected time (or distance) to the next event is independent of the time elapsed since the 

previous event—the process is thus ‘memoryless’.  The distribution is characterized by a single 

parameter  which corresponds to the expected number of events in some reference interval of 

time or region of space.  The Poisson Probability Mass Function (PMF) is given below in 

Equation (3.2) [21]. 

𝑃(𝑁 = 𝑟) =
𝑒−𝜆𝜆𝑟

𝑟!
,    𝑟 = 0, 1, 2, … 

(3.2) 

 

Also of interest is the probability of observing at least one event which is given in Equation (3.3) 

or at least 2 events, which is given by Equation (3.4). 
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𝑃(𝑁 ≥ 1) = 1 − 𝑒−𝜆 
(3.3) 

𝑃(𝑁 ≥ 2) = 1 − 𝑒−𝜆(1 + 𝜆) 
(3.4) 

 

Additionally, Poisson’s theorem states that a discrete time process consisting of a sequence of 

many low probability Bernoulli trials converges to a Poisson process [21].  Following [38], we 

argue that fatigue is such a process, where fatigue cycles correspond to Bernoulli trials.  It can be 

shown that for a large number n of Bernoulli trials with probability p, the resulting Poisson  is 

given by Equation (3.5) [21].  In the case of a fixed amplitude fatigue test, n corresponds to the 

number of cycles and p is the probability of failure on a given cycle.  It is clear that the very 

small p and large n that would apply to a fatigue test satisfies Poisson’s theorem. 

 

𝜆 = 𝑛𝑝 
(3.5) 

 

3.3 Literature Review 

Several of the prior works that will be reviewed treat fatigue failure as the result of a Poisson 

process.  In [39], the authors argue that crack formation can be treated as the result of statistically 

independent processes occurring on the surface of a component undergoing fatigue at each cycle.  

Particularly, they argue that formation of cracks during a particular cycle can be modeled as a 

Poisson point process, the parameters of which change from cycle to cycle.  The assumption that 

the Poisson parameters change during the fatigue test distinguishes [39] from the other works 

that will be reviewed.  The authors of [39] propose that the probability that there is at least one 

crack at cycle 𝑛  is given by Equation (3.6), with the parameter 𝜆  at this point an unknown 

function of cycle count and inelastic dissipation range. 

𝑃(𝑁 ≥ 1) = 1 − 𝑒−𝜆(𝑛,𝜖) 
(3.6) 
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The Coffin-Manson Basquin equation (Equation (3.7)) is interpreted as an experimentally 

observed fact, not a consequence of the proposed statistical model of fatigue.  It is presented as 

defining an implicit functional dependency of 𝑁𝑖𝑑𝑒𝑡 on strain amplitude 𝜖.  Here 𝑁𝑖𝑑𝑒𝑡 represents 

the deterministic cycle count corresponding to a plastic strain amplitude. 

𝜖 =
𝜎′𝑓

𝐸
(2𝑁𝑖𝑑𝑒𝑡)

𝑏 + 𝜖′𝑓(2𝑁𝑖𝑑𝑒𝑡)
𝑐 

(3.7) 

Finally, the form of Equation (3.6) is assumed to be Weibull, by specifying the appropriate form 

for 𝜆(𝑛, 𝜖), although the authors note that any other suitable probability function could be used.  

The value 𝑁𝑖𝑑𝑒𝑡 is used as the Weibull scale parameter.   Although the cycles to failure at a 

particular plastic strain amplitude is modeled as a random variable, the functional relationship 

between average life and plastic strain is deterministic.  This reference may be regarded as 

presenting a hybrid approach that includes features of both stochastic and deterministic 

paradigms of fatigue failure. 

 

The following references draw more exclusively from statistical arguments.  The arguments in 

[38] and [28] provide the starting point for the present work.  The argument in [38], and by 

extension our argument, is based on the statistical trends in the formation of grain-scale cracks 

(mesocracks).  It is widely reported that persistent slip bands that form in single or 

polycrystalline metals during cyclic loading are the source of cracks that develop into a dominant 

failure-causing crack ( [40], [41], and [42]).  When a sample of metal is subjected to cyclic 

loading of magnitudes with plastic strain amplitudes greater that about 0.0001, a particular 

sequence of events typically occurs.  Initially, a period of cyclic hardening occurs, due to 

stacking of defects.  This takes typically less than 10% of the eventual fatigue life.  During this 

stage, the stress amplitude rapidly rises with increasing N at a fixed strain amplitude ([7]).  Once 

the stress amplitude stabilizes (saturates), persistent slip bands (PSBs) begin to form.  The 

population of PSBs grows rapidly and approximately linearly early in the life of the fatigue 

specimen.  By 10% to 25% of specimen life, the PSBs represent an essentially constant fraction 

of the volume of the specimen ( [38], [42]).  The author of [41] proposes that the fraction of the 

specimen occupied by PSBs is proportional to the plastic strain range and this result is used in 

[38].  Under low cycle fatigue (LCF) conditions, no macroscopic crack typically forms until the 

final 10% of life [38].  Recall that in LCF applied loads cause general yielding of the specimen 
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cross section and any macroscopic cracks will grow rapidly.  During the mid-portion of life, 

grain-scale surface cracks randomly form in the PSB population.  The formation of the PSBs 

themselves is treated as a deterministic process, where their density is proportional to the applied 

plastic strain range, following [41].  Since the density of PSBs scale with plastic strain range, the 

rate of formation of grain-scale cracks will also.  These cracks lie in the planes of the PSBs and 

once initiating on the surface, propagate through the body of the grain.  In [38], it is pointed out 

that in order for a crack to grow between two grains, the PSBs in neighboring grains must lie in 

similarly oriented planes.  On the basis of these observations, it is argued in [38] that during the 

middle portion of fatigue life, where a stable fraction of the metal is occupied with PSBs, the 

crack forming process may be modeled as a Poisson process.  This is a Poisson process in cycles 

(time) and also over the surface of the gauge region of the specimen (space).  Given that the 

number of PSBs is constant after the initial portion of fatigue life, the authors assume that the 

probability that any given PSB could form a crack on a given strain cycle is a constant.  

Furthermore, the probability that any given formed crack will propagate to a neighboring grain 

and beyond is also constant.  This model predicts that the population of grain level cracks should 

grow linearly with N and the authors provide experimental evidence of this (Figure 2 in [38]).  

Since the density of PSBs is proportional to the plastic strain range, the probability of 

neighboring grains having cracks is also proportional to plastic strain range.  Finally, since both 

rates scale with plastic strain range, the authors conclude that the time (cycles) to formation of a 

propagating crack should scale as the inverse of plastic strain range squared.  Thus, they 

conclude that statistical considerations suggest a Coffin-Manson exponent of -1/2 (Equation 

(3.5)).  Since the total life is assumed to be simply 125% of the propagating crack nucleation life, 

the same power law exponent will apply.  In [43], the arguments in [38] are extended to stress-

controlled high cycle fatigue (HCF).  The authors explain the transition from LCF to HCF 

exponents in the Coffin-Manson and Basquin laws as resulting from competition between two 

different failure processes—surface (LCF) vs. bulk (HCF) crack propagation.  Our present 

interest is in the LCF domain.  In the work that follows we build on the Poisson process model 

developed by the authors of [38] and propose a statistical framework for describing LCF life 

prediction models.  We adopt the position that cracking can be modeled as a Poisson process, but 

do not assume that the crack density is strictly proportional to the applied plastic strain range.  

Thus, we can account for the fact that the Coffin-Manson exponent is not always equal to -1/2. 



73 

 

 

7
3
 

𝜖𝑝 = 𝑘𝑁
𝑐     𝑐 = −

1

2
    

(3.8) 

 

Another example of statistical reasoning applied to the fatigue life relationship is provided by 

[28].  Rather than viewing fatigue cycles as a stochastic sampling process, the authors in [28] 

focus on the thermodynamic state of the material under test.  Instead of load cycles, the statistical 

variable is the entropy of the material (represented by inelastic dissipation) totaled over all 

applied cycles. A statistical distribution is used to model the probability of material failure 

occurring by the time the observed level of entropy has been accumulated.  The statistical 

distribution itself is unknown, and difficult to measure.  Rather than assuming a reference 

distribution as is common in many applications, the authors use the maximum entropy method of 

[22] to derive one.  The authors derive the maximum entropy distribution corresponding to the 

case of a single expected value constraint, given in Equation (3.8): 

 

𝐸[𝜓(𝑥𝑖)] =∑𝑝𝑖𝜓(𝑥𝑖)

𝑖

    ∶ 𝑥𝑖 ∈ {𝑥1, 𝑥2, … 𝑥𝑖 …𝑥𝑚} 
(3.9) 

 

The solution to problem is the distribution: 

 

𝑝𝑖 = 𝑝0exp(−
𝜓(𝑡𝑖)

𝑘𝜓
) 

(3.10) 

  

The failure of the material at a point is the final state due to an irreversible process.  

Thermodynamic entropy is a measure of irreversibility.  In order to be used to predict failure, 

entropy must be measureable.  In [28] the authors use the Clausius-Duhem Inequality, together 

with the Helmholtz Free Energy to derive the following expression for the rate of entropy 

production during plastic deformation of a J2 type solid.  If the temperature is essentially 

constant during a plastic strain process, then entropy production rate is proportional to inelastic 

dissipation rate 𝑊̇𝑡. 
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𝜓̇ =
1

𝜌𝑇
(𝑊̇𝑡) ≥ 0 

(3.11) 

 

Substituting Equation (3.11) into Equation (3.10) and integrating from zero to t leads to the 

damage parameter 𝐷(𝑡) defined in Equation (3.12).  A value of 𝐷(𝑡) = 1 represents failure with 

a probability of 1.  The value D = 0.95 is used for application of Equation (3.12).  This is used to 

solve for a value of total accumulated inelastic dissipation that corresponds to failure. 

 

𝐷 = 1 − exp (−
𝑊𝑡
𝜌𝑇𝑘𝜓

) 
(3.12) 

 

The damage parameter 𝐷 represents the state of the material on the continuum from zero (virgin) 

to one (failed) and is also a statistical cumulative distribution function (a CDF).  This connection 

is useful in that it brings many results from statistics to bear on a class of damage parameters.  

 

Equation (3.12) gives a fixed value of inelastic dissipation at failure, once D is specified.  For the 

elastic-perfectly plastic material model used in [28], this implies that the product of cycles to 

failure and plastic strain are constant.   

𝑊𝑡 ∝ 𝑁𝜖𝑝 (3.13) 

 

Equation (3.13) can be written in the form of a Coffin-Manson relationship (Equation (3.14)) 

with an exponent of -1.  This value of exponent is characteristic of materials of the type studied 

in [28], and differs from the Coffin-Manson exponent values typically seen in structural metals, 

which are typically between -.5 and -.8.  

 

𝜖𝑝 = 𝑘𝑁
𝑐     𝑐 = −1    

(3.14) 

 

The exponent of value of -1 is a consequence of the fact that total inelastic dissipation to failure 

is a material constant for the alloys studied in [28].  It is known that this quantity is not a 

constant for most structural metals [2] and thus cannot be directly used to build predictive strain 
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amplitude vs. life relationships for these other classes of materials.  However, it is possible to 

extend the probabilistic argument in [28] to the case of materials where failure is not strictly 

predicted by total inelastic dissipation. 

 

3.4 Stochastic Model of Low Cycle Fatigue 

We are concerned here with the low cycle fatigue domain where plastic strain, which causes 

inelastic dissipation, is present to a measurable degree.  Further we stipulate that we are 

concerned with the cycle range to failure of about 1,000 to 20,000.  At the very low cycle range, 

the population of PSBs may not reach a steady state and the statistical sampling argument given 

here may not apply.  Although inelastic dissipation is occurring, for most engineering materials 

under a low cycle fatigue test, plastic strain will be on the order of 0.001 to 0.05.  Thus, 

movement is occurring in the structure of the metal, but not gross distortion.  The macroscopic 

mechanics of the specimen remain essentially constant for the duration of the test.  It is an 

interesting and surprising fact that the macroscopic properties of the specimen usually do not 

change substantially during the test.  Specifically, any significant increase in compliance of the 

specimen due to the presence of large cracks is generally limited to the last few percent of life.  

This means that there is difficulty, generally, to distinguish a specimen that is 20% of the way 

through its expected life from one that is 80% of the way though its expected life.  In the 

Continuum Damage mechanics literature, the damage variable D is defined as 0 for virgin 

material and 1 for failed material.  When applied to fatigue tests it is common to define the value 

of D, at some intermediate point in a fatigue test, as the fraction of expected life consumed.  

Thus the damage per cycle corresponding to a given loading level is the inverse of the expected 

life.  This definition can be regarded as a statement of the Palmgren-Miner rule.  However, it is 

important to note that in most cases, no macroscopic evolution of damage is apparent in the 

sample for most of the test.  The classical definition of D as fraction of initial specimen rigidity 

remaining is not successful for tests of this type.  At stress levels sufficient to cause plastic 

deformation, which by definition stresses exceed the yield strength of the material, any crack of 

significant size would rapidly grow and cause failure.  As pointed out in [2], only microscopic 

widely distributed damage is occurring.  Eventual initiation of a propagating crack can be 

attributed to a random event, the result of a ‘successful’ trial occurring on that particular fatigue 

strain cycle.  
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Following [38], we recognize that the initial and final portions of the fatigue process are not 

consistent with a stochastic process model.  The initial portion of life includes hardening and 

stacking of defects, before PSBs begin to form.  The final portion of life is consumed with the 

growth of a propagating crack.  In the discussions that follow, the cycles n corresponds to the 

middle portion of life where damage occurrence is modeled as a stochastic process.  Cycle n =1 

corresponds to the first cycle where damage is occurring, and failure is defined as the initiation 

of a propagating crack.  The authors of [28] argued that the total inelastic dissipation to failure 

was a random quantity that could be used as the basis for a statistical model of low cycle fatigue.  

Here, we adopt their use of inelastic dissipation as an appropriate predictor of fatigue failure, but 

place it in a stochastic process model after [38].  This viewpoint allows greater flexibility in the 

life vs. inelastic dissipation amplitude relationship. 

 

The development that follows proceeds in two steps.  In the first, we consider the case where a 

single failure event, as modeled by a Poisson process, is sufficient to initiate a crack that will 

become a propagating crack.  In the second step, we consider that possibility that two, or 

possibly m failure events are required to create a propagating crack.  It will be seen that the 

Poisson process model is easily extended to this case.  Recall that in [38] it was argued that 

favorably oriented cracks in adjacent grains must form in order for a propagating crack to occur.  

The development of the model proceeds as follows.  The material is in either of two possible 

states:  intact or failed.  If it is intact, it has survived the fatigue test up to the previous cycle. The 

critical inelastic dissipation range is taken to be a continuous random variable, with a given 

parametric distribution, defined on the interval of 0 to infinity.  At each load cycle, inelastic 

processes cause the state of the material to change and a new value of the critical inelastic 

dissipation is sampled.  If the new sampled value exceeds that value applied during the test, the 

material fails.  Thus, there is a probability of failure with each cycle.  Figure 3.1 below provides 

an illustrative example of this process.  The red line represents a strain-controlled load history 

that applies a given inelastic dissipation per cycle.  The blue diamonds represent random samples 

from the distribution of the specimen’s critical fatigue strength value at that cycle number.  The 

graph shows failure at cycle 34, where the sampled critical inelastic dissipation value was less 

than that the applied inelastic dissipation range.   

 



77 

 

 

7
7
 

 
Figure 3.1:  Example of stochastic process model of fatigue. 

 

Since a strain-controlled fatigue test could potentially last for hundreds or thousands of cycles, 

the vast majority of the sampled strength values must be well above the applied load value.  

Predicting the median life vs. the applied load is a statistical calculation that is carried out below. 

 

Propositions 

1. Inelastic process that occur in the material at each cycle cause random microstructural 

changes in the material. 

2. The statistical properties of the material are essentially constant for the middle 80% of the 

duration of the fatigue test. 

3. The material fails on a given cycle if and only if the inelastic range applied to the material 

exceeds the cycle-by-cycle critical inelastic dissipation. 

4. The cycle-by-cycle critical inelastic dissipation can be modeled as a random variable that is 

independently sampled at each cycle 

Thus, the failure event represents the result of a stochastic process occurring cycle-by-cycle in 

the structure of the metal.  This point of view is used to develop a relationship of the form of 

Equation (3.12) suitable for structural metals.  Additionally, it will be shown that the Coffin-
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Manson relationship, as well as the Palmgren-Miner linear damage law, can both be deduced 

within this framework. 

Table 3.1:  Definitions of variables in stochastic process model. 

𝑊𝑗 Inelastic dissipation range applied to specimen on the 𝑗𝑡ℎ cycle. 

𝑊̂𝑗 Critical value of the inelastic dissipation range that would cause failure on 

the present cycle 

𝐹(𝑊̂𝑗, 𝛼̅) Cumulative distribution function (CDF) of the critical inelastic dissipation 

range.  Each cycle represents a sample from this distribution.  The 

parameter vector  𝛼̅ is fixed for a given specimen. 

𝑝𝑗 Probability of failure on the 𝑗𝑡ℎ cycle  

𝑃(𝑛) Probability of failure on or before the 𝑛𝑡ℎ cycle 

𝑃𝑐𝑟𝑖𝑡 The level of overall probability of failure taken to represent expected 

failure.  𝑃𝑐𝑟𝑖𝑡 = 0.5 would represent a median estimate. 

 

Probability that the applied inelastic dissipation range 𝑊𝑗 exceeds the critical 𝑊̂𝑗 for the material 

specimen on the 𝑗𝑡ℎ cycle: 

𝑝𝑗 = 𝑃(𝑊̂𝑗  ≤ 𝑊𝑗) = 𝐹(𝑊𝑗, 𝛼̅) 
(3.15) 

If the probability of a failure occurring on a given trial is 𝑝, and is the same for all trials, the 

probability of failure occurring by 𝑛 trials is given by Equation (3.16).  This is the probability of 

at least one event in 𝑛 samples from a binomial distribution. 

𝑃(𝑛) = 1 − (1 − 𝑝)𝑛 
(3.16) 

 

Equation (3.16) can be shown to rapidly converge to an exponential form.  This is the form of the 

waiting time to the first event in a Poisson process.  For a fixed 𝑃(𝑛) = 0.5, this approximation 

is within 1% of Equation (3.12) for 𝑛 ≥ 24. 

1 − (1 − 𝑝)𝑛
𝑛→∞
→    1 − 𝑒−𝑛𝑝 

(3.17) 

 

The 𝑊𝑗 are all the same in the case of constant amplitude tests and combining Equations (3.15) 

and (3.16) gives Equation (3.18).  Note that Equation (3.18) has the form of the smallest of 𝑛 
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order statistic for the random variable described by 𝐹. The probability of failure by the n
th

 cycle 

can be equated to a reference probability.  𝑃𝑐𝑟𝑖𝑡 = 0.5 would give a median estimate. 

 

𝑃(𝑊𝑗 , 𝑛) = 1 − (1 − 𝐹(𝑊𝑗, 𝛼̅))
𝑛

= 𝑃𝑐𝑟𝑖𝑡 
(3.18) 

 

Equation (3.18) defines an implicit relationship between 𝑊𝑗 and 𝑛.  For some cases of the chosen 

distribution function 𝐹(𝑊𝑗 , 𝛼̅), such as the example that follows below, Equation (3.18) may 

simplify to a convenient form.  In general, it may be solved for 𝑛 as given below in Equation 

(3.19).  Note that Equation (3.19) can be written as a ratio of cumulative hazard functions for the 

random variable described by 𝐹(𝑊𝑗, 𝛼̅). 

 

𝑛 =
ln(1 − 𝑃𝑐𝑟𝑖𝑡)

ln (1 − 𝐹(𝑊𝑗 , 𝛼̅))
=
𝐻(𝑃𝑐𝑟𝑖𝑡, 𝛼̅)

𝐻(𝑊𝑗, 𝛼̅)
 

(3.19) 

 

Cumulative hazard function: 

1 − 𝐹(𝑊𝑗 , 𝛼̅) = 𝑒
−𝐻(𝑊𝑗,𝛼̅) 

(3.20) 

 

Next, note that Equation (3.17) can be used to simplify Equation (3.18).  A Poisson 

approximation form of Equation (3.18) results. 

𝑃(∆𝜖𝑝, 𝑛) ≈ 1 − 𝑒
−𝑛𝐹(∆𝜖𝑝,𝛼̅) = 𝑃𝑐𝑟𝑖𝑡 

(3.21) 

 

Setting 𝑃𝑐𝑟𝑖𝑡 = 0.5 and solving for the inverse of n gives the desired representation of damage per 

cycle as cumulative distribution function.  Recall that this argument requires that n be reasonably 

large. 
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1

𝑛
= 𝐷𝑗 =

𝐹(𝑊𝑗 , 𝛼̅)

ln(2)
 

(3.22) 

 

Thus if damage per cycle if defined as the inverse of median life n, it is equal to the sampling 

distribution function for the applied inelastic dissipation value of the material times a constant.  

Equation (3.22) could also have been derived from Equation (3.19) since for small values of 

𝐹(𝑥), which we necessarily have in this case, 𝐹(𝑥) ≈ 𝐻(𝑥).   

 

If we assume that the critical plastic strain sampling distribution is Weibull from Equation (3.11) 

[21]: 

 

𝐹(𝑊𝑗) = 1 − 𝑒
−𝑘𝑊𝑗

𝛼
 

 

(3.23) 

 

The resulting overall probability (Equation (3.18)) becomes: 

 

𝑃(𝑛,𝑊𝑗) = 1 − 𝑒
−𝑘𝑛𝑊𝑗

𝛼
= 𝑃𝑐𝑟𝑖𝑡 

 

(3.24) 

 

For a fixed value of 𝑃𝑐𝑟𝑖𝑡, Equation (3.24) requires that the quantity in the exponent be a constant.  

The form of the Coffin-Manson relationship is immediately obtained and is given below in 

Equation (3.25).  In this case the life is modeled by inelastic dissipation per cycle rather than 

plastic strain, but for plasticity models such as elastic, perfectly plastic, the equation would be 

the same within a constant.  The classical Coffin-Manson exponent value of -1/2 corresponds to 

a Weibull exponent of 2 (Rayleigh).  
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𝑊𝑗 = 𝐶𝑛
−
1
𝛼 

(3.25) 

 

Assuming that the failure distribution is exponential gives 𝑛𝑊𝑗 = const., or fixed total inelastic 

dissipation, similar to the result in [28].  This is a consequence of the fact that the first order 

statistic for an exponential distribution is also exponential, so whether we model the probability 

of failure with the total inelastic dissipation (as in [28]) or cycle-by-cycle, the mathematical form 

is the same.  

 

Equation (3.18) can be extended to a variable amplitude loading history:  

𝑃(𝑛) = 1 −∏(1 − 𝐹(𝑊𝑗,  𝛼̅)) = 𝑃𝑐𝑟𝑖𝑡

𝑛

𝑗=1

 

 

(3.26) 

Rewriting as a sum of log terms: 

∑ln(1 − 𝐹(𝑊𝑗 ,  𝛼̅))

𝑛

𝑗=1

= ln(1 − 𝑃𝑐𝑟𝑖𝑡) 

 

(3.27) 

∑
ln(1 − 𝐹(𝑊𝑗 ,  𝛼̅))

ln(1 − 𝑃𝑐𝑟𝑖𝑡)

𝑛

𝑗=1

=∑𝐷𝑗

𝑛

𝑗=1

= 1 

(3.28) 

 

Equation (3.27) can be written as a sequence of terms that sum to 1 (Equation (3.28)).  

Comparison to Equation (3.22) shows that these terms represent the damage (inverse of nj) 

corresponding to that 𝑊𝑗.  Thus, this framework implies linear damage accumulation. 

 

The model as presently constructed assumes a single Poisson event is sufficient to cause failure 

(crack initiation).  This implies that the distribution in crack initiation cycles is modeled by 

Equation (3.21)—the waiting time to an event in a Poisson process.  Alternatively we could 
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follow [38] and specify that 2 events are required to cause failure.  In this case, we replace 

Equation (3.27) with Equation (3.4), yielding Equation (3.29). 

 

1 − 𝑒−𝑛𝐹(𝑊𝑗,𝛼̅) (1 + 𝑛𝐹(𝑊𝑗 , 𝛼̅)) = 𝑃𝑐𝑟𝑖𝑡 

(3.29) 

 

Note the form of Equation (3.29) is still 𝑓𝑐𝑛[𝑛𝐹(𝑊𝑗, 𝛼̅)] = 𝑃𝑐𝑟𝑖𝑡 and thus 𝑛𝐹(𝑊𝑗 , 𝛼̅) = 𝐶𝑜𝑛𝑠𝑡. 

and a form analogous to Equation (3.22) can be obtained (Equation (3.30)).  The constant 𝐾𝑐𝑟𝑖𝑡 

would need to be solved for to satisfy Equation (3.29).   

1

𝑛
= 𝐷𝑗 = 𝐾𝑐𝑟𝑖𝑡𝐹(𝑊𝑗 , 𝛼̅) 

(3.30) 

 

If we consider a particular fixed load amplitude 𝐹(𝑊𝑗 , 𝛼̅) = 𝐶𝑜𝑛𝑠𝑡. and Equation (3.29) can be 

interpreted as the CDF of cycles to failure, i.e., it models the sampling distribution of specimen 

life n at a given constant inelastic dissipation test condition.  Since we hold the inelastic 

dissipation range fixed, the form of 𝐹(𝑊𝑗 , 𝛼̅) does not affect the distribution in cycle life for a 

constant amplitude test and the results that follow are consequences of the underlying Poisson 

process.  This CDF is given in Equation (3.31) below. It shows that for the 2 failure case, the 

distribution of cycles to failure would be Erlang with an exponent of 2 (Equation (3.32)).  

 

1 − 𝑒−𝑛𝑝𝑗(1 + 𝑛𝑝𝑗) = 𝑃(𝑛) = 𝐹𝑛(𝑛) 
(3.31) 

𝑓(𝑛) = 𝑛𝑝𝑗
2𝑒−𝑛𝑝𝑗 

(3.32) 

 

The Weibull and Lognormal distributions are both frequently used to model the scatter of fatigue 

data.  The Erlang distribution has substantially the same left skewed shape.  Figure 3.2 below 

shows 2 samples of 25 data points.  The set labeled ‘Erlang’ is synthetically generated data from 

an Erlang distribution with an exponent of 2.  The set labeled ‘Weibull’ is synthetically 
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generated Weibull data. The plots show the result of plotting both data sets on a Weibull 

probability plot.  It is clear that the fit is comparable, even with a generous sample size of 25.  

This result suggests that the Erlang distribution may be a good candidate to model the spread in 

low cycle fatigue data.   

 

 

Figure 3.2:  Comparison of Weibull plots of Weibull and Erlang synthetic data. 

 

Just as Equation (3.4) gives the probability of at least 2 Poisson events, it can be shown that 

Equation (3.33) gives the probability of at least m events.  Again we have 𝑛𝐹(𝑊𝑗 , 𝛼̅) = 𝐶𝑜𝑛𝑠𝑡. 

for a specified value of 𝑃𝑐𝑟𝑖𝑡.  Equation (3.33) is also an Erlang CDF at a fixed test condition 

where the m is equal to the number of events required for failure.  As m increases, the 

distribution converges to a Normal distribution.  Examples of 3 Erlang probability density 

functions are plotted below in Figure 3.3. 

𝐹𝑛(𝑛) = 1 − 𝑒
−𝑛𝑝𝑗 ∑

(𝑛𝑝𝑗)
𝑘

𝑘!

𝑚−1

𝑘=0

 

(3.33) 
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Figure 3.3:  Erlang distributions corresponding to 2, 4 and 10 Poisson events, same mean. 

 

3.5 Conclusions  

Reference [38] argues that the crack formation process in a low cycle fatigue test may be 

modeled as a Poisson process, where the probability of a crack initiating is constant during the 

middle 80% of specimen life.  This reference (also [42]) indicates  that the number of PSBs 

stabilizes after forming early in the specimen life.  This reference contains data to show that the 

population of microcracks grows linearly as predicted by the Poisson process model.  Here, we 

propose that that the probability of a crack initiating on a particular cycle is determined by a 

reference CDF of the material’s critical inelastic dissipation range sampling distribution.  The 

parameter of inelastic dissipation was chosen following [28], where it is argued that inelastic 

dissipation, a surrogate for material entropy, is more fundamentally connected to the irreversible 

process of damage. Initially, we assume a simple process where a single Poisson event is 

sufficient to cause failure.  By choosing a probability of sample failure, and implicit relationship 

between inelastic dissipation range and cycles is obtained.  We show that the life vs. inelastic 

dissipation range relationship assumes the familiar power law form if the material’s critical 

plastic strain range distribution is taken to be Weibull.  Additionally, it has been shown that for a 

test consisting of sequence of different amplitude cycle blocks, this model predicts linear damage 

accumulation.  Next, we extend the argument to the case where 2 Poisson events are required to 

cause a failure.  It is shown that this condition results in cycles to failure being Erlang distributed 
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(with and exponent of 2).  This distribution has the left-skewed shape expected in fatigue data.  

This result generalizes to m events, with the resulting failure distribution being Erlang with an 

exponent of the m.   

 

Finally, it has been shown that, consistent with a key result in [28], regardless of the number of 

Poisson events required, the appropriate damage parameter is equal to the critical plastic strain 

range distribution function (times a constant).  This follows from the widely used fatigue 

definition of damage per cycle as the inverse of cycles to failure. 
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CHAPTER 4. TRACKING FATIGUE DAMAGE WITH A HIGER-

ORDER CONTSTITUTIVE RELATIONSHIP USING TENSION-

COMPRESSION ASYMMETRY 

4.1 Introduction 

It is desirable to be able to measure the progress of high-cycle fatigue damage in a specimen 

under test.  The present work develops a new approach to the tension vs. compression 

asymmetry measure of damage known in the Continuum Damage Mechanics literature.  This 

measurement is applied to specimens under high cycle fatigue axial test conditions.  The existing 

method of measuring the slopes of the tension vs. compression sides of the stress strain curve, 

while intuitively reasonable, is based on a simplistic conceptual model of the behavior of a 

cracked body.  A model based on a general, non-linear elastic formulation is proposed.  Although 

similar elastic models exist in the literature, these have thus far only been applied to acoustic 

measurement of damage, not stress-strain of the type typically gathered during a servo-hydraulic 

axial fatigue test.  Most existing works do not connect the parameters of the quadratic material 

model to damage D, and none were found that connected D to the asymmetry of the compression 

vs tension sides of the curve.  We propose an explicit formula for D based on a non-linear elastic 

model fitted to stress-strain data.  

 

4.2 Background 

In Continuum Damage Mechanics [20], many small cracks are hypothesized to exist in the 

damaged area of the material.  Unlike the Fracture Mechanics approach, there is no attempt to 

model the geometries and positions of particular cracks.  Rather the behavior of the cracked 

material is modeled by adjusting its virgin bulk properties.  The degree of material damage 

represented by these cracks is inferred from the macroscopic properties of the specimen.  In [20], 

Lemaitre builds a general framework for modeling damage from various mechanical sources, 

including plastic deformation, creep, and low and high cycle fatigue.  In his development, 

Lemaitre posits a distributed, isotropic, collection of small cracks that reduce the local effective 

load bearing cross section of the material from 𝑆 to 𝑆̃.  Here damage is modeled by 𝐷, which 
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ranges from 0 (virgin material) to 1 (failed, separated).  The dependency of 𝑆̃ on D is given by 

Equation (4.1): 

𝑆̃ = 𝑆(1 − 𝐷) (4.1) 

 

One relation that follows is Equation (4.2): 

𝐷 = 1 −
𝐸̃

𝐸
 

(4.2) 

 

Where 𝐸̃ is the modulus of the damaged material and 𝐸 is the modulus of the virgin material.  

Other relations for strength and strain are also developed.  The cracks are assumed to be small 

enough and sufficiently evenly distributed such that the properties of the material vary smoothly 

in the neighborhood of the damaged area.  Although this approach lacks direct evidence of the 

existence of a specific crack (or cracks) of known size and position, such as is available in 

fracture mechanics, it does seek to provide a mathematically detailed model, within the 

framework of continuum mechanics, that explains the experimentally observed behavior of 

damaged material.  The author’s work in [20] includes not only the mathematical model of 

damage, but also a set of experimental and data analysis techniques that attempt to reveal the 

state of damage of a given specimen at a particular point in an experiment. The author also 

shows that, in cases where the specimen is taken to the point of separation, a real crack was 

present and evidence of its growth is visible in striations and beach marks on the fracture surface.  

Many other experimental definitions of D have been proposed by various authors.  All include 

the features that D should be a strictly increasing function of damage that starts at a value of zero 

for undamaged material.  In [44], Ye and his colleagues list various possible definitions of 𝐷 and 

demonstrate different approaches to defining and measuring damage that follow the general idea 

of loss of load bearing area as defined in [20] (Table 4.1 below).  This table references the ratio 

𝑁/𝑁𝑓 which is the fraction of total life consumed after 𝑁 cycles. 
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Table 4.1: Damage variables proposed in [44]. 

 

 

4.3 Tension-Compression Asymmetry 

In [20], Lemaitre presents a special version of the modulus method to evaluate 𝐷 that makes use 

of the difference between modulus in tension and compression.  He argues that cracks would be 

expected to open in tension, but will close to some extent in compression.  For the effective area 

𝑆, the damaged area in tension is defined by the damage variable 𝐷, in the usual way (Equation 

(4.3)). 

𝑆̃𝑡𝑒𝑛𝑠 = 𝑆(1 − 𝐷) (4.3) 

 

In compression, the damage is scaled by a factor ℎ, that varies between 0 (cracks close 

completely) and 1 (no crack closure), as shown in Equation (4.4).  The value of 0.2 is suggested 

absent experimental data. 

 

𝑆̃𝑐𝑜𝑚𝑝 = 𝑆(1 − 𝐷ℎ) (4.4) 

𝐸̃𝑡𝑒𝑛𝑠 = 𝐸(1 − 𝐷)    𝐸̃𝑐𝑜𝑚𝑝 = 𝐸(1 − 𝐷ℎ)  
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Additionally, the following formula is given to determine ℎ, from experimentally measured 

moduli in tension and compression [20].  

 

ℎ =
1 −

𝐸̃𝑐𝑜𝑚𝑝
𝐸

1 −
𝐸̃𝑡𝑒𝑛𝑠
𝐸

 

(4.5) 

 

Applications of tension-compression asymmetry are found in [45].  Figure 4.1, shows an 

asymmetric stress-strain loop and the influence of ℎ.  Note that these authors chose to set ℎ = 1.0 

in the tension direction, which is slightly different from Equation (4.9) but does not contradict it. 

 

 
 

Figure 4.1:  Schematic Representation of Effect of ℎ on Shape of a Stress-Strain Loop.  

 

The authors of [45] were concerned with developing an analytical model of damage as part of a 

finite element code. 

 

In [18], Schweizer, et. al., the authors apply the compliance method of damage measurement to a 

corner-cracked shaft under LCF conditions.  The authors show the evolution of the nearly elastic 

stress-strain curve (Figure 4.2) as a function of 𝑁 .  The asymmetry of the tension vs. 

compression sides of the curve is plainly visible.  This reference clearly shows that a noticeable 

difference can be observed between then tension and compression sides portions of a stress vs. 



90 

 

 

9
0
 

strain loop as a function of progress of fatigue damage.  However, this work was concerned with 

a single dominant fatigue crack, not the diffuse damage posited in [20]. 

 

Figure 4.2:  Asymmetrical Stress Strain Curve from a Fatigue Specimen. 

 

4.4 Ultrasonic Inspection Applications 

In the next several references, the authors used nonlinear material models, quadratic in strain, to 

model the acoustic elastic response of material that is posited to contain damage in the form of 

small cracks.  The cracks are assumed to cause the material to be stiffer in compression than in 

tension, consistent with Equation (4.4).  Thus, tension versus compression asymmetry is modeled 

by a parabolic curve rather than a pair of line segments.  In all but one case, the authors stop at 

characterizing the second degree term in the stress-response, and do not compute a value for D 

corresponding to the measured nonlinearity. 

 

In [46], the authors were concerned with developing a non-destructive method to measure the 

degree of damage in granite used in civil engineering applications.  Granite specimen were 

subjected to varying levels of compressive stresses in the form of a load applied once and then 

removed.  The applied loads were 20% to 80% of the mean compressive strength of the material.  

An ultrasonic, non-destructive inspection was then undertaken to measure the degree of damage 

in the specimens.  The inspection method was based on a non-linear elastic model of the material.  

The degree of non-linearity, as measured by the ultrasonic inspection, was claimed to be a 
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strictly increasing function of damage in the form of small diffuse cracks of the type posited in 

[20].  Undamaged material was assumed to behave linearly, whereas any measurable 

nonlinearity was claimed to indicate damage.  The non-linear material model (in one dimension) 

begins with Equation (4.6).  This stress-strain law is claimed to be based on the work presented 

in [47], which will be discussed below. 

 

𝜎 = 𝐸(𝜖 + 𝛽𝜖2 + 𝛿𝜖3 +⋯) (4.6) 

 

The authors then claim that the magnitude of the coefficient on the second-degree term in 

Equation (4.6) is proportional to the ratio of the first and second harmonics found during the 

ultrasonic inspection.  They define 𝛽′ which is proportional to |𝛽| and defined in Equation (4.7). 

Data is then presented to show that the parameter 𝛽′ is a more sensitive indicator of material 

damage than some other potential responses such as ultrasonic wave velocity or dynamic 

modulus. 

𝛽′ =
𝐴𝑠𝑒𝑐𝑜𝑛𝑑
𝐴𝑓𝑖𝑟𝑠𝑡

 
(4.7) 

 

Unlike the other authors who studied ultrasonic response as a damage indicator, these authors 

propose a damage measure based on the rationale that D should start at zero and converge to 1 as 

’ increases, defined as follows: 

𝐷 = 1 − 𝑒𝛽
′
0−𝛽

′
𝑖 (4.8) 

 

Expanding Equation (4.8) indicates that D is not linear in ’. Note that ’  is a magnitude and is 

thus non-negative. 

𝐷 = 𝛽′𝑖 − 𝛽′0 −
1

2
(𝛽′0 − 𝛽′𝑖)

2 −⋯ 
(4.9) 

 

This measure of D is not conceptually connected to the compliance-based definition in [20]. 
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Another application of Equation (4.3) is found in [48].  Li, et. al., show how the ultrasonic 

VHCF method can be used to monitor the tension vs. compression modulus symmetry of the 

sample during the test.  In this method, a tension specimen is mounted in a fixture that enables an 

ultrasonic axial excitation to be applied—in this case at 20,000Hz.  A schematic of their test 

fixture is shown below in Figure 4.3.  This method allows many millions of cycles to be applied 

per day and is popular in the field of gigacycle (VHCF) fatigue. 

 

 

 

 
 

Figure 4.3:  Ultrasonic fatigue test fixture from [48]. 

 

 

 

 

The loads applied to the specimen would be expected to be well below the level where plastic 

yielding is observed, yet the behavior of the initially linear system becomes subtly non-linear as 

the test progresses.  The cause of the non-linearity is claimed to be the stiffness asymmetry of 

crack opening and closing  [48]. The nonlinearity of the system is captured by a nonlinear stress-

strain relationship Equation (4.10). 

 

𝜎 = 𝐸𝜖(1 + 𝛽𝜖) (4.10) 

  

 

The authors in [2], derive a relationship of similar form to Equation (4.3) by considering the 

elastic energy function as a power series of the strain tensor.  They argue that including the linear 

and the first non-linear term is sufficient to model wave propagation in a class of nonlinear 

materials.  The work in [48] follows this pattern.  Equation (4.10) is used as an assumed stress-

strain relationship in an one dimensional wave equation.   
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Here, 𝛽 is a nonlinearity parameter that is equal to zero for the linear case.  The nonlinearity 

parameter is measured by the feedback system built into the test fixture and is seen to follow an 

increasing trend during the test (see Figure 4.4 below).  Additionally, the resonant frequency (a 

function of the stiffness of the sample) is seen to drop during the course of the test, consistent 

with the hypothesis of CDM [20].  The point ‘A’ in Figure 4.4 is claimed to identify the point at 

which crack initiates [48]. 

 

 
 

Figure 4.4:  Change in elastic response of a fatigue specimen under test, from [48]. 

 

It is important to note that in [48] [49], there is no explicit mention of D as a function of the non-

linearity parameter .  It is simply shown that an increase in has a generally monotonically 

increasing relationship to fatigue damage which is hypothesized to be a consequence of many 

small cracks in the metal of the specimen.  However, their approach is consistent with a main 

idea of damage mechanics, where a material with small scale distributed cracking is modeled 

using a continuum approach that accounts for spatially averaged degraded material properties.  In 

our work, we will derive a relationship of a similar form to Equation (4.10), but apply it to stress-

strain data collected during a servo-hydraulic high-cycle fatigue test.  Furthermore, we will 

obtain an expression for D as a function of the calculated non-linearity.  

 

Other authors employing quadratic one-dimensional stress-strain laws include [50], [51], and 

[52].  These researchers were also concerned with measuring damage by analyzing ultrasonic 
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response.  The relationships given in [46] and [50] are one-dimensional relationships based on an 

equation given in [47].  The authors of [47] present a general framework, where elastic strain 

energy is represented as a power series of the strain tensor.  They present equations to describe 

wave propagation in a material where the terms up to the first non-linear terms are included.  

One result they provide is the elastic strain energy as a function of the strain tensor (Equation 

(4.11)) up to the terms cubic in strain, where G is the shear modulus and 𝜅 is the bulk modulus, 

and A, B and C are higher order constants. 

 

𝑈 = 𝐺𝜖𝑖𝑘
2 + (

1

2
𝜅 −

1

3
𝐺) 𝜖𝑙𝑙

2 +
1

3
𝐴𝜖𝑖𝑘𝜖𝑖𝑙𝜖𝑘𝑙 + 𝐵𝜖𝑖𝑘

2𝜖𝑙𝑙 +
1

3
𝐶𝜖𝑙𝑙

3 
(4.11) 

 

4.5 Stiffness of a Cracked Body 

Although the author of [20] does not specifically associate a crack size with a measured stiffness 

(considering asymmetry or not), he does derive a relationship that shows the dependence of 𝐷𝑖 

(the damage contribution from a particular crack) on crack size 𝑎𝑖 based on continuum damage 

mechanics arguments.  This relationship is given below in Equation (4.12).  He also derives an 

expression for 𝐷𝑖  based on a fracture mechanics argument using the strain energy in a cracked 

body (Equation (4.13)).  This second approach predicts a cubic dependence on crack size.  His 

development proceeds using the form in Equation (4.12). 

𝐷𝑖 ∝ 𝑎𝑖
2 

 

(4.12) 

𝐷𝑖 ∝ 𝑎𝑖
3 

 

(4.13) 

Sayers, et. al., [53] compared several continuum mechanics approaches for modeling the elastic 

properties of a body with many distributed small cracks.  All of the methods converge to the 

form of Equation (4.13) for small crack densities and then diverge as crack densities become 

large enough to allow elastic interaction between the cracks.  This result is also consistent with 

the idea that an embedded crack of a given size results in a given volume of material, in the 

shadow of the crack, that would bear less load due to the presence of the crack.  The affected 

volume would scale with the cube of the crack dimension. 
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4.6 Derivation of 4
th

 Order Stress-Strain Law and Reduction of Quadratic Form 

Equation (4.10) was derived by considering a general power series relationship between stress 

and strain and truncating it after the first non-linear term.  The results were used in [48] [49] to 

develop a method to acoustically monitor the progress of damage in the specimen.  In the present 

work we proceed by deriving the stress-strain relationship for a one-dimensional non-linearly 

elastic body and use the result to provide a damage function that explicitly depends on the 

measured non-linearity of the material.  

 

We begin by assuming a homogeneous deformation without rotation.  The deformation gradient 

is as follows, expressed in terms of stretches along principle directions. 

 

 

𝐹̿ = [

𝜆𝑥 0 0
0 𝜆𝑦 0

0 0 𝜆𝑧

] 

 

(4.14) 

 

Note that for the case of homogenous deformation, engineering strains have a simple and exact 

relationship to the stretches in Equation (4.14) [54], and are also the experimentally observed 

variables in many applications.   The deformation gradient for homogenous deformation in terms 

of the principal stretches expressed as engineering strain is: 

 

𝐹̿ = [

𝜖𝑥 + 1 0 0
0 𝜖𝑦 + 1 0

0 0 𝜖𝑧 + 1
] 

 

(4.15) 
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Now consider the case of uniaxial loading along the x axis.  For Poisson’s ratio defined for an 

infinitesimal change in x, y, z: 

 

𝑑𝑦

𝑦
=
𝑑𝑧

𝑧
= −𝜈

𝑑𝑥

𝑥
 

(4.16) 

 

Integrating from 𝑙0𝑖 to 𝑙(𝑡)𝑖 yields Equation (4.17).  This can be interpreted as expressing the 

effect of Poisson’s ration in terms of logarithmic strain. 

ln(𝜖𝑦 + 1) = ln(𝜖𝑧 + 1) = −𝜈 ln(𝜖𝑥 + 1) 
(4.17) 

 

Equation (4.18) is an expansion of Equation (4.17) accurate to the second order.  The first order 

term can be recognized as the usual linear dependency on Poisson’s ratio: 

𝜖𝑦 = 𝜖𝑧 = −𝜈𝜖𝑥 + (
𝜈2

2
+
𝜈

2
) 𝜖𝑥

2 
(4.18) 

 

The Left Cauchy-Green tensor corresponding to Equation (4.15) and Equation (4.18) is: 

𝐵̿ = 𝐹̿. 𝐹̿𝑇 

 

𝐵̿ =

[
 
 
 
 
 
(𝜖𝑥 + 1)

2 0 0

0 (1 − 𝜈𝜖𝑥 + (
𝜈2

2
+
𝜈

2
) 𝜖𝑥

2)

2

0

0 0 (1 − 𝜈𝜖𝑥 + (
𝜈2

2
+
𝜈

2
) 𝜖𝑥

2)

2

]
 
 
 
 
 

 

(4.19) 

 

The stress-strain law for an isotropic elastic material is given by Equation (4.20) (from [54]).  

The 𝛼𝑗’s are material constants. 
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𝜎 = (𝛼0 + 𝛼1Trace(𝐵̿))𝐼 ̿ + 𝛼2𝐵̿ + 𝛼3(𝐵̿ − 𝐼)̿
2
 

(4.20) 

 

The 𝜎𝑥 term of the expansion of Equation (4.20) is as follows: 

𝜎𝑥 = 𝐴4(𝛼1, 𝛼3)𝜖𝑥
4 + 𝐴3(𝛼1, 𝛼3)𝜖𝑥

3 + 𝐴2(𝛼1, 𝛼2, 𝛼3)𝜖𝑥
2 + 𝐴1(𝛼1, 𝛼2)𝜖𝑥 + 𝛼0

+ 3𝛼1 + 𝛼2 

(4.21) 

 

Where, the 𝐴𝑖  coefficient is a linear combination of the listed 𝛼𝑗 ’s.  We force the curve to 

intersect the origin, and choose to eliminate the parameter 𝛼2: 

𝛼2 = −𝛼0 − 3𝛼1 
(4.22) 

 

We solve the linear system and find that 𝐴4 = 𝐴3.  It can be shown that Equation (4.20) can be 

expressed in terms of the parameters in Equation (4.23): 

𝜎𝑥 = (𝜖𝑥 + 1)𝐴3𝜖𝑥
3 + 𝐴2𝜖𝑥

2 + 𝐴1𝜖𝑥 
(4.23) 

 

Equation (4.23) can be compared to Equation (4.6), which has the form of a general, continuing 

power series.  Equation (4.23), based on a general elastic material model (Equation (4.20)), is at 

most a fourth degree equation, subject to the strong constraint that the third and fourth degree 

terms have the same coefficient.  In applications were strains are much smaller than unity, this 

allows us to immediately neglect the fourth degree term.  Noting that 𝜖𝑥 < 0.004 for the present 

case, we argue that both the 3
rd

 and 4
th

 degree terms may be neglected for our purposes.  The 

working form of stress-strain law is given below: 

𝜎𝑥 = 𝐴2𝜖𝑥
2 + 𝐴1𝜖𝑥 

(4.24) 
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This equation has the same form as Equation (4.10), however it was derived not by considering 

an arbitrary power series in strain, but rather by beginning with a general law for an elastic solid 

(Equation(4.20)).  Additionally, we have shown that even under more general conditions, the 

three-parameter Equation (4.23) is sufficient. 

 

We introduce a dependency on cycle N for the parameters in Equation (4.24). 

𝜎𝑥𝑁 = 𝐴2𝑁𝜖𝑥
2 + 𝐴1𝑁𝜖𝑥 (4.25) 

 

An illustrative example of Equation (4.25) is shown below in Figure 4.5.  Note that for actual 

data, the quadratic stress-strain curve has the visual appearance of a straight line. 

 

 

Figure 4.5:  Quadratic stress-strain curve and lines tangent to curve at ±𝜖𝑟𝑒𝑓. 

Let ±𝜖𝑟𝑒𝑓 be a strain range that captures the range of the strain data (Figure 4.5).  This value is 

kept fixed for all analysis at a given load level.  Lines tangent to the plot of Equation (4.25) 

(Figure 4.5) will have a slope defined by Equation (4.26) evaluated at ±𝜖𝑟𝑒𝑓.   

𝑓′(𝜖𝑥) = 2𝐴2𝑁𝜖𝑥 + 𝐴1𝑁 (4.26) 

 

It is assumed that this analysis method applies to fully-reversed, load-controlled or strain-

controlled test data.  For an expression of the form of Equation (4.25), the tangent lines can be 

+ 𝜖𝑟𝑒𝑓 

− 𝜖𝑟𝑒𝑓 
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shown to intersect on the stress axis for any pair of lines tangent at ±𝜖𝑟𝑒𝑓  and thus are consistent 

with a bi-linear model for values of strain close to ±𝜖𝑟𝑒𝑓. 

 

Earlier, Equation (4.2) was written in terms of elastic modulus.  We rewrite it in terms of the 

stress reached at a given strain level in Equation (4.27) 

 

𝐷 = 1 −

𝜎𝐷
𝜖𝑟𝑒𝑓
𝜎0
𝜖𝑟𝑒𝑓

 

(4.27) 

 

If we assume that small cracks are present that open under tension, resulting in a reduced 

measured stiffness of the component, but close in compression, acting like undamaged material, 

Equation (4.27) may be restated as Equation (4.28) [20]: 

 

𝐷 = 1 −

𝜎𝑡𝑒𝑛𝑠
𝜖𝑡𝑒𝑛𝑠
𝜎𝑐𝑜𝑚𝑝
𝜖𝑐𝑜𝑚𝑝

= 1 −
𝜎𝑡𝑒𝑛𝑠
|𝜎𝑐𝑜𝑚𝑝|

   𝑓𝑜𝑟 𝜖𝑡𝑒𝑛𝑠 = −𝜖𝑐𝑜𝑚𝑝 

(4.28) 

 

As is pointed out in [20], the cracks may not close completely in compression, and thus 

|𝜎𝑐𝑜𝑚𝑝| < |𝜎0|.  The crack closure parameter h is introduced to capture this effect [20]. 

 

𝜎𝑡𝑒𝑛𝑠 = 𝜎0(1 − 𝐷) 

 

𝜎𝑐𝑜𝑚𝑝 = 𝜎0(1 − 𝐷ℎ) 

 

(4.29) 

 

Combining Equations (4.28) and (4.29) yields Equation (4.30) 
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𝐷 = 1 −
𝜎𝑡𝑒𝑛𝑠
𝜎𝑐𝑜𝑚𝑝

(1 − 𝐷ℎ)  𝑓𝑜𝑟 1 > ℎ 𝑓(𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑐𝑟𝑎𝑐𝑘 𝑐𝑙𝑜𝑠𝑢𝑟𝑒) 

 

(4.30) 

 

In this work, the values of damage 𝐷𝑁 of interest are ≤ 0.1, since sample separation typically 

occurs at values of 𝐷 less than this.  In the derivation below, it is assumed that h = 0, however 

non-zero h results in the same form for Equation (4.28) in the small damage approximation, with 

h absorbed into the remaining constants.   

 

Equation (4.28) is effective at comparing the tension vs. compression slopes of a material that 

has a linear response in tension and a linear response with a possibly different slope in 

compression.  For our present purposes, we require an equation that is applicable to a curve of a 

more general shape.  Thus, we argue that Equation (4.31) represents the appropriate 

generalization of Equation (4.28). 

 

𝐷𝑁 = 1 −

𝑑𝜎𝑥𝑁
𝑑𝜖𝑥

|
𝜖𝑥=𝜖𝑟𝑒𝑓

𝑑𝜎𝑥𝑁
𝑑𝜖𝑥

|
𝜖𝑥=−𝜖𝑟𝑒𝑓

 

(4.31) 

 

Thus from Equation (4.26): 

𝐷𝑁 = 1 −
𝐴1𝑁 + 2𝐴2𝑁𝜖𝑟𝑒𝑓

𝐴1𝑁 − 2𝐴2𝑁𝜖𝑟𝑒𝑓
 

(4.32) 

 

We now define N as: 

𝛽𝑁 =
𝐴2𝑁
𝐴1𝑁

    𝛽𝑁 < 0 
(4.33) 

 

Rewriting Equation (4.32) and noting that for small values, it may be linearized, we get: 
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𝐷𝑁 = 1 −
1 + 2𝛽𝑁𝜖𝑟𝑒𝑓

1 − 2𝛽𝑁𝜖𝑟𝑒𝑓
≈ −4𝛽𝑁𝜖𝑟𝑒𝑓 

(4.34) 

 

Although the arguments presented so far suggest that all observed non-linearity is due to damage, 

it was found that even new specimens have measureable non-linearity.  The data to demonstrate 

this effect will be presented in a later section.  Note that this non-linearity is very slight and 

would not be noticed unless carefully looked for.  This is due to a feature of aluminum alloys 

that is noted by previous authors.  In [55] it is stated that for aluminum alloys, the modulus in 

compression is typically about 2% greater than that in tension.  This could be interpreted as 

indicating existing damage, possibly due to microcracks or voids in the material, or alternatively 

as a consequence of the actually subtly non-linear behavior of real materials.  This D0 initial 

nonlinearity could be subtracked off if appropriate to the situation.  We finally note that the form 

of D is that of the ratio of the quadratic to the linear terms in Equation (4.25). 

 

−4𝛽𝑁𝜖𝑟𝑒𝑓 ∝ |
𝐴2𝑁𝜖𝑟𝑒𝑓

2

𝐴1𝑁𝜖𝑟𝑒𝑓
| 

(4.34) 

 

4.7 Data Collection and Analysis 

 

 

 

Figure 4.6:  HCF specimen, 25.4mm x 7.6mm gage, AS7GU cast aluminum. 

 

A high-cycle fatigue axial test program was undertaken to demonstrate the proposed method.  

The specimens were fabricated from the cast aluminum alloy AS7GU-T64.  This alloy was 

developed for demanding applications such as automotive engine components.  A review of this 

alloy can be found in [56] with a discussion of the effect of its microstructure on its fatigue 
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behavior found in [1].  Both load and strain data was collected at intervals during the entire test.  

In addition to the maximum and minimum loads and strains reached at each cycle, a full 

tension/compression cycle ‘loop’ was collected every 100 cycles and consisted of about 160 data 

points sampled at approximately constant intervals of load and includes both load increasing and 

decreasing portions of the cycle.  Data was collected in the form of strain vs. load for these load 

controlled tests.  To fit modeling equations in terms of life vs. stress, load must be converted into 

stress.  Since the damage values of interest are very small and minute differences between 

specimen stiffness in tension and compression are being analyzed, it is necessary to take the step 

of converting the load to true stress.  The measured diameter of the specimens and the slight non-

linearity due to Poisson’s ratio dilation and contraction of the cross section of the specimen are 

both accounted for. 

 

Area of the cross section: 

𝐴 = 𝜋𝑟2 = 𝜋𝑟0
2(1 + 𝑢𝑟𝑟)

2 ≈ 𝜋𝑟0
2(1 − 2 𝜈𝑢𝑖,𝑁 + (2𝜈

2 + 𝜈)𝑢𝑖,𝑁
2) (4.35) 

 

The resulting axial true stress: 

𝜎𝑖,𝑁 =
𝑃

𝐴
=

𝑃𝑖,𝑁

𝜋𝑟0
2(1 − 2 𝜈𝜖𝑖,𝑁 + (2𝜈2 + 𝜈)𝜖𝑖,𝑁2)

 
(4.36) 

 

It can be shown that the linear term provides sufficeint accuracy leading to: 

𝜎𝑖,𝑁 =
𝑃𝑖,𝑁

𝜋𝑟0
2(1 − 2 𝜈𝜖𝑖,𝑁)

 
(4.37) 
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Table 4.2:  Summary of Relationships used in Data Reduction. 

{𝑃𝑖,𝑁 , 𝜖𝑖,𝑁}    Load vs. strain data for i
th

 data sample in 𝑁𝑡ℎ loop. 

𝜎𝑖,𝑁 = 𝑓(𝑃𝑖,𝑁, 𝜖𝑖,𝑁) Stress value 𝜎𝑥 for i
th

 data sample in N
th

 loop, computed 

from corresponding load and strain values according to 

Equation (4.37). 

{𝜎𝑖,𝑁, 𝜖𝑖,𝑁}   𝑖: 1,2, …𝑛 Data set used for model fitting at the N
th

 loop. 

𝜎𝑥𝑁 = 𝐴2𝑁𝜖𝑥
2 + 𝐴1𝑁𝜖𝑥 Quadratic stress-strain law resulting from least squares fit 

to the N
th

 loop (Equation (4.25)) 

𝐷𝑁 = −4𝛽𝑁𝜖𝑟𝑒𝑓 Damage computed for the N
th

 loop (Equation (4.34)) 

 

For each loop N, values for A2N and A1N were computed by the least squares method and a value 

of DN corresponding to the N
th

 loop was computed according to Equation (4.34). 

 

A summary of the observed specimen lives is provided in Table 4.3.  The stress was computed to 

be 170MPa for these fully-reversed tests.  Failure was defined as the last 100 cycle block 

completed before separation.  The empirical Cumulative Distribution Function for this data is 

plotted in Figure 4.7.  While the range in failure times is substantial, it is not unexpected in the 

field of high-cycle fatigue, especially considering that these data represent 11 tests at the same 

condition.  Note that several specimens failed outside the gage area of the sample and their 

results are not reported 
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Table 4.3: Fully-reversed 170MPa, specimen lives. 

 

 

 

Figure 4.7: Empirical cumulative distribution function of data in Table 4.3. 

 

For the loop analysis procedure and the application of Equations (4.25) and (4.34), the mean of 

the strain data, which was typically close to zero, was shifted to zero.  The non-zero mean value 

was due to slight yielding that occurred at the beginning of the test.  The reference strain value 

𝜖𝑟𝑒𝑓 was set at 0.0023 based on the observed range of strain during the tests.  This value was 

held constant for all analysis.  

Number N f

Spec-1 15,200         

Spec-2 234,800       

Spec-3 66,500         

Spec-4 29,900         

Spec-5 159,500       

Spec-6 212,500       

Spec-7 115,400       

Spec-8 86,000         

Spec-9 128,200       

Spec-10 16,100         

Spec-11 38,400         
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We begin with a detailed discussion of Specimen 11, which we present as a typical example that 

captures trends present in these data sets.  The evolution of DN (computed from Equation (4.34)) 

is plotted below in Figure 4.8.  This plot contains several noteworthy features.  First, the 

computed damage is seen to clearly increase, at an accelerating rate, starting at approximately 

N/Nf = 0.4.  However, as noted above, it is not found to begin at zero, and actually decreases 

slightly from values seen at the beginning of the test.   

 

Figure 4.8: Damage evolution for Specimen 11.  Nf = 38,400. 

It is informative to look at the evolution of the nonlinear term 𝐴2𝑁𝜖𝑟𝑒𝑓
2 and the linear term 

𝐴1𝑁𝜖𝑟𝑒𝑓 computed from the least squares fits to the loops.  A plot of the magnitudes of these 

values for Specimen 11 is given in Figure 4.9 below.  Both linear and nonlinear terms evolve 

over the course of the fatigue test.  Since the linear term is in the denominator of Equation (4.34), 

its decrease in value causes an increase in DN just as an increase in the nonlinear term does.  Note 

that although both terms correlate with increasing damage, the nonlinear term increases by a 

factor of seven while the inverse of the linear term increases by less than 10%.  The form of 

Equation (4.34), as a ratio of these values, combines the effects of their trends in an effective 

way. 
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Figure 4.9: Comparison of evolution of linear and nonlinear terms in Equation (4.25)  

(Specimen 11). 

As is the case with all specimens, the stress-strain loops resemble straight lines and neither 

plasticity nor nonlinearity is visibly apparent.  Plots of stress-strain loops for N = 100 and N = 

38,000 (Nf = 38,400) are shown in Figures 4.10 and 4.11.  Note that the plots appear visually 

linear although a quadratic fit to the data shows the substantial increase in the magnitude of the 

coefficient on the quadratic term and a moderate decrease in the coefficient on the linear term. 

 

 

 

Figure 4.10:  Specimen 11 loop at N = 100 cycles. 
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Figure 4.11:  Specimen 11 loop at N = 38,000 cycles. 

In order to visualize the nonlinearity in these curves, special data sets were constructed, where 

the linear portion of the response was subtracted off, leaving only the second degree term.  This 

nonlinear quantity is shown in Equation (4.38). 

𝜎𝑛𝑙𝑁 = 𝜎𝑥𝑁 − 𝐴1𝑁𝜖𝑥 = 𝐴2𝑁𝜖𝑥
2 (4.38) 

 

Plots of Equation (4.38) for Specimen 11 are shown in the figures below.  Note that there is a 

small vertical offset to this data which has no effect on the value of the second degree term found 

from least squares.  Figure 4.12 shows the nonlinear portion of the loop at N = 100 cycles.  The 

curvature that is visible in the data is seen to be modeled with reasonable fidelity with a 

parabolic curve.  Note that the tension and compression portions of the loop cycle are slightly 

separated, indicating a small degree of plastic yielding. 
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Figure 4.12:  Plot of Equation (4.38) at N = 100 for Specimen 11. 

 

In Figure 4.13, the nonlinear portion of the loop at N = 5,000 cycles in plotted.  Note that 

compared to the loop at N = 100 cycles, the tension and compression portions of the loop are 

difficult to distinguish, indicating that strain hardening has occurred.  Also, the R
2
 value has 

improved from 0.54 to 0.65 and the improved fit is also visually apparent.  Finally, the 

coefficient of the nonlinear term has decreased relative to the value seen at N = 100 cycles.  This 

is hypothesized to be related to plasticity effects that are not accounted for in the derivation of 

Equation (4.25).  

 

Figure 4.13:  Plot of Equation (4.38) at N = 5,000 for Specimen 11. 

Figure 4.14 (at N = 15,000) shows a 5% increase in the nonlinear term coefficient relative to N = 

5,000 and further slight improvement in R
2
.  As before, the tension and compression sides of the 

loop show little separation. 
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Figure 4.14:  Plot of Equation (4.38) at N = 15,000 for Specimen 11. 

Finally, Figure 4.15 is given at N = 38,000 or 99% of life.  The expected dramatic increase in the 

value of nonlinear term is seen.  Additionally, the R
2
 value is 0.92.  The good agreement between 

the parabolic curve and the data is clear from the figure. 

 

Figure 4.15:  Plot of Equation (4.38) at N = 38,000 for Specimen 11. 

 

In Figure 4.16, the plots of the non-linear term of the stress (Equation (4.38)) is shown for all 

specimens at the cycle count of 500 cycles before failure.  It can be seen that all the plots have a 

generally parabolic, concave down shape that can be effectively modeled by a quadratic function 

of strain.  Additionally, even though there is scatter between the plots, they overlap substantially. 
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Figure 4.16:  Plot of Equation (4.38) at Nf -500 for all specimens. 

 

The plots DN for the remaining specimens are reviewed below.  A relationship between the shape 

of the curve and the specimen life was observed.  Scanning Electron Micrographs of the fracture 

surfaces were also captured (Figures 4.18 through 4.21).  Figure 4.19 shows an EDS composition 

map of the fracture area of Specimen 1.  The indicated red areas reveal the presence of oxide 

inclusions (probably Al2MgO4 due to the higher concentration of O and Mg), which are known 

to be potential crack initiation sites in this alloy [1].     The region is on the order of 500 microns.  

In Figure 4.20 the fracture initiation site for Specimen 10 is shown.  A porous region of about 

600 microns is seen.  To provide a point of comparison, a micrograph of Specimen 7 (Nf = 

115,400) was taken and is shown in Figure 4.21.  A relatively large silicon particle (identified in 

the EDS image) of about 50 microns can be seen at the fatigue crack initiation site.  Note that the 

smaller crack initiation site corresponded to longer life in this case, in agreement with the trend 

described in [1] 
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Figure 4.17:  Plot of DN for Specimens 1 and 10. 

 

Figure 4.18:  Micrograph of Specimen 1—crack initiation site at bottom. 
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Figure 4.19:  Micrograph of Specimen 1 showing oxide inclusions at crack initiation site. 

 

 

 

Figure 4.20:  Micrograph of Specimen 10 showing porosity at crack initiation site. 
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Figure 4.21:  Micrograph of Specimen 7 showing a silicon particle at crack initiation site. 

 

Another group of specimens failed at intermediate lives.  The DN plots for these are shown in 

Figure 4.22.  These plots of DN begin increasing at N/Nf values of 0.4 to 0.8.  Compared to the 

plots in Figure 4.16, these plots increase more slowly and begin increasing later in the life 

fraction. 

 

Figure 4.22:  Plot of DN for 3, 4, 8, and 11. 
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The remaining specimens survived between 115,400 and 234,800 cycles.  The DN plots for these 

are shown in Figure 4.23.  These specimens did not exhibit an increasing trend in nonlinearity 

until late in life with N/Nf great than 0.8.  A slight decreasing trend was observed on the in the 

case of Specimen 6 between N/Nf = 0 and N/Nf = 0.7.  The reason for this is not clear although a 

slight initial decrease in nonlinearity during a VHCF test was also found in [48] and is visible in 

Figure 4.4.  It is important to note that once the increasing trend begins late in the specimen’s life, 

it accelerates and continues. 

 

 

Figure 4.23:  Plot of DN for Specimens 2, 5, 6, 7, and 9. 

 

4.8 Conclusions 

A method to measure the progress of damage in an axial fatigue specimen, under fully-reversed 

HCF test conditions, was presented.  A general elastic stress-strain relationship is used as a 

starting point to derive a one-dimensional stress-strain relationship exact in terms of engineering 

strain for homogeneous distortions.  This relationship is found to not be a general power series, 

but a fourth-degree expression where both the third and fourth degree terms share the same 
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coefficient.   For the present case where strains are smaller than 0.004, it was argued that only 

the first and second degree terms are needed.  This second degree stress-strain law was used to 

derive a damage expression based on the continuum damage mechanics approach of measuring 

damage by comparing the stiffness in a specimen under tension to its stiffness under compression.  

Finally, a test program was undertaken to demonstrate application of this damage measurement 

approach to the high cycle fatigue testing of cast aluminum specimens.   
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CHAPTER 5. APPLYING A SMALL CRACK GROWTH LAW TO 

DAMAGE INFERRED FORM TENSION-COMPRESSION 

ASYMMETRY 

5.1 Introduction 

It is useful to be able to monitor the progress of damage in a specimen under test.  In this work, a 

small crack growth law is successfully fit to data collected during a sequence of high cycle 

fatigue tests of cast aluminum specimens.  A damage parameter DN based on a higher-order 

constitutive relationship is used to infer the progress of growing cracks.  The measure of damage 

is based on the asymmetry between the tension and compression stiffness of a cracked body.  A 

detailed finite element model of the fatigue specimen provides a connection between the 

measured values of DN and the size of the crack.  Finally, the fitted small crack growth model is 

shown to yield fitted initial flaw sizes well correlated with the flaw sizes measured in the 

fractured specimens. 

 

5.2 The Small Crack Growth Model 

It is a fundamental result in linear elastic fracture mechanics that the growth rate of a crack in an 

elastic body is characterized by the range in the stress intensity parameter K [10], provided the 

conditions of small scale yielding apply.  Additionally, no growth of the crack is predicted if the 

stress intensity range is less than the threshold stress intensity range for the material in question.  

However, it has been known for some time that small cracks, less than about 1mm to 2mm in 

length, will grow even if the apparent delta K is less than the threshold delta K ( [57]), and that 

they may grow much faster than expected by application of delta K growth laws for values of 

delta K around the threshold value ( [57], [10], McDowell).  Additionally, small cracks exhibit 

other anomalous behaviors, such as intermittent arrest and acceleration [16], greater scatter in 

growth rate relative to longer cracks [11], and initial rapid growth that eventually ends with crack 

arrest as the apparent threshold delta K value is approached by the growing crack [58].  Various 

mechanisms have been proposed to explain small crack behavior.  The authors of [16] show the 

relationship of episodes of growth and temporary arrest to the interaction of the crack with 

microstructural barriers in the metal.  The crack is shown to pause in its growth when grain 
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boundaries or inclusions are encountered.  The authors of [58] built an FE model to predict the 

effect of closure on a small crack, which showed that initially minimal closure forces grow with 

the small crack and eventually arrest it if the applied load range is sufficiently low.  This 

behavior contrasts with LEFM where the plastic wake of the crack is established and the closure 

force does not increase purely due to increases in crack length.  Thus, it has been established the 

delta K parameter is not suitable for predicting the growth of small cracks under many conditions, 

motivating the development of alternative approaches.  Many small crack growth laws abandon 

the delta K parameter in favor of explicit dependence on remote stress range and crack length, 

allowing departures from the strict relationship between these values assumed in the definition of 

stress intensity.  There is a significant amount of literature supporting small crack growth laws 

that are linear in crack length with some separate dependency on far field stress. 

 

The authors of [13] derive a linear (in crack length) da/dN law based on two principles.  First, the 

growth of a crack on a given cycle is expected to be proportional to the size of the cyclic plastic 

zone, since crack propagation results from inelastic processes at the crack tip.  The present 

authors comment that this assumption is consistent with regarding the cyclic plastic process zone 

as a region where low-cycle fatigue is occurring on a small scale.  Secondly, the authors of [13] 

present experimental evidence that the size of the cyclic plastic zone is proportional to the crack 

length if the far field stress is greater than 0.6 Sy.  Additionally, the dependency on stress is 

taken to be a power law based on reasoning from the Dougdale model for unidirectional loading.  

The resulting da/dN law is given in Equation (5.1).  They show that this equation models the 

growth rate of small (0.05mm to 1.5mm) cracks in carbon steel specimens at stresses greater than 

0.6 Sy: 

 

𝑑𝑎

𝑑𝑁
= 𝐶∆𝜎𝑚𝑎 

(5.1) 

 

The restriction that remote stresses are greater than 0.6 Sy is satisfied in the present work. The 

authors of [13] point out that cyclic plastic zone size is closely related to crack tip opening 

displacement.  The authors claim that this assumption allows a unifying treatment of small 

cracks (with Equation (5.1)), with a large crack law based on delta K.  The authors of [59] also 
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point out the connection of crack tip opening displacement (CTOD) to small crack growth and 

presented an equation of similar form to Equation (5.1) also linear in crack length.  In [59] it is 

claimed that the growth law has been demonstrated for two cast Al-Si alloys with cracks in the 

length range of 0.1mm to 1.0mm and is valid for steel alloys as well.  In [60] the author 

demonstrated a law of the form of Equation (5.1) for a nickel alloy in the applied stress range of 

0.52 Sy ≤ S ≤ 0.66 Sy, for cracks up to 0.3mm.  The authors of [61] demonstrated a similar law 

for a different nickel alloy for cracks in the range of 0.05 to 2.0mm.  Data for specimens with 

small holes (to initiate a crack) and smooth surfaces both followed the growth behavior implied 

by Equation (5.1).  In [19], the authors studied steel specimens in the low cycle fatigue regime 

(remote stress up to 1.9 Sy) and found a law of the form of Equation (5.1) applied.  Both plain 

and hole-containing specimens were tested. Data was presented for cracks from .05 to 1.0 mm in 

length.  Finally, the authors of [62] studied steel specimens subjected to pre-strain and again 

found an equation of the form of Equation (5.1) applied for crack lengths up to 1.5mm.   

 

Consider a more general da/dN equation given in Equation (5.2).  This relationship assumes the 

form of the Paris law [3] if m = 2n. 

𝑑𝑎

𝑑𝑁
= 𝐶∆𝜎𝑚𝑎𝑛 

(5.2) 

 

It can be shown that constant amplitude loading, the integral of Equation (5.2) can be represented 

according to Equations (5.3) and (5.4) or Equation (5.5), depending on the value of n (assuming 

an initial crack length of a0).  In Equations (5.3) and (5.4) we consider the case of n = 1.  We 

simplify with the substitution 𝑐 = 𝐶∆𝜎𝑚.  The growth is exponential and the ratio of the current 

crack length a (at current cycle N) to the initial crack length a0 grows geometrically in N and is 

not a function of a0.  Thus, in the case of Equation (5.1) it is possible to model the growth of the 

crack relative to its initial size a0 without knowledge of a0.  The largest initial crack grows to 

become the dominant crack as fatigue processes progress.  One could define a dimensionless 

parameter as this ratio, which would be an explicit function of the applied load range and N. 

 

𝑎 = 𝑎0𝑒
𝑐𝑁 

 
(5.3) 
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ln (
𝑎

𝑎0
) = 𝑐𝑁  (5.4) 

 

In Equation (5.5) we consider the case of n ≠ 1.  The ratio of the current crack length to the 

initial crack length is still a function of a0 and normalization of the crack length relative to a0 is 

not useful.  Additionally it can be shown that for n > 1, Equation (5.5) predicts that the ratio 
𝑎

𝑎0
 

increases more rapidly as a function of N for cracks with larger a0.  Thus as was case for the n = 

1 case, a collection of small initial cracks would be expected to yield a dominant crack as fatigue 

processes progressed.  Except, in this case, the dominant crack becomes proportionally larger 

than the other cracks over the course of the test.  The constant n is typically seen in the range of 1 

to 5 [3]. 

 

ln (
𝑎

𝑎0
) =

1

1 − 𝑛
ln(1 − 𝑎0

𝑛−1𝐶(𝑛 − 1)∆𝜎𝑚𝑁) 
(5.5) 

 

The form of Equations (5.1) and (5.3) is fortuitous and enables inferences to be made about the 

proportional growth of a crack or even a collection of cracks of various initial sizes without 

detailed knowledge of the initial crack sizes. 

 

In the present work, we are concerned with the cast aluminum alloy AS7GU in the T6 condition.  

The far field stresses are 0.77 Sy and the specimens are subject to fully reversed axial loading.  

No hole or other stress concentrating feature has been deliberately incorporated into the 

specimens.  However, as previous authors have noted (see [1]), fatigue failure in this material 

begins at existing crack like flaws in the material.  This earlier finding is confirmed in the present 

work through fratographic analysis of the separated specimens.  The specimens had a round 

cross section with a gauge diameter of 7.62mm (0.30 inches) over a gauge length of 25.4mm 

(1.00 inch). 
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5.3 Damage as a Function of Measured Stiffness 

In Chapter 4, a quadratic stress strain law was used to model the stress strain behavior measured 

during a constant amplitude load-controlled high-cycle fatigue test.  A general non-linear 

material model was used as a starting point for the derivation of a stress strain relationship.  A 

detailed derivation was given in Chapter 4 and is briefly reviewed here.  The material model is 

given in Equation (5.6) [54].  In this expression, 𝐵̿  is the left Cauchy-Green tensor 𝐼 ̿ is the 

identity tensor, and the remaining variables are elastic constants. 

𝜎 = (𝛼0 + 𝛼1Trace(𝐵̿))𝐼 ̿ + 𝛼2𝐵̿ + 𝛼3(𝐵̿ − 𝐼)̿
2
 

(5.6) 

 

This material model is applied to an isotropic material under uniaxial stress and stress-strain 

relationship is shown to be given by Equation (5.7). 

𝜎𝑥 = (𝜖𝑥 + 1)𝐴3𝜖𝑥
3 + 𝐴2𝜖𝑥

2 + 𝐴1𝜖𝑥 
(5.7) 

This result is noteworthy in that it shows that even the most general uniaxial material model, 

arising from Equation (5.6), is at most a fourth degree relationship.  Furthermore, the coefficients 

on the third and fourth degree terms are the same.  Thus for small strains we can immediately 

neglect the fourth degree term.  Finally, we argue that for our present purposes, where strains are 

less than 0.003, even the third degree term may be neglected and we are left with a form similar 

given in Equation (5.8). 

𝜎𝑥𝑁 = 𝐴2𝑁𝜖𝑥
2 + 𝐴1𝑁𝜖𝑥 (5.8) 

 

The subscripts in the coefficients contain N to highlight the fact that they are expected to change 

in value over the course of the test.  The change in value of the coefficients, especially the 

quadratic coefficient, may be used to track damage in a manner consistent with the definition of 

damage at any cycle:  

𝐷𝑁 = 1 −

𝜎𝑡𝑒𝑛𝑠
𝜖𝑡𝑒𝑛𝑠
𝜎𝑐𝑜𝑚𝑝
𝜖𝑐𝑜𝑚𝑝

= 1 −
𝜎𝑡𝑒𝑛𝑠
|𝜎𝑐𝑜𝑚𝑝|

   𝑓𝑜𝑟 𝜖𝑡𝑒𝑛𝑠 = −𝜖𝑐𝑜𝑚𝑝 

(5.9) 
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We begin by taking the derivative of Equation (5.8) and combining it with Equation (5.9).  The 

numerator (corresponding to tension) is evaluated at a positive reference strain 𝜖𝑟𝑒𝑓 while the 

denominator (representing compression) is evaluated at the negative of the same reference strain.   

 

𝐷𝑁 = 1 −

𝑑𝜎𝑥𝑁
𝑑𝜖𝑥

|
𝜖𝑥=𝜖𝑟𝑒𝑓

𝑑𝜎𝑥𝑁
𝑑𝜖𝑥

|
𝜖𝑥=−𝜖𝑟𝑒𝑓

= 1 −
𝐴1𝑁 + 2𝐴2𝑁𝜖𝑟𝑒𝑓

𝐴1𝑁 − 2𝐴2𝑁𝜖𝑟𝑒𝑓
 

(5.10) 

 

Figure 5.1 shows the significance of the reference strain values relative to the quadratic stress-

strain law.  Equation (5.12) evaluates DN in terms of the relative slopes of the tangent lines Ltens 

and Lcomp shown in the figure. 

 

 

Figure 5.1:  Definition of reference strains to evaluate tangent slopes to quadratic stress strain 

model. 

 

We define 𝛽𝑁 (Equation (5.11)) as the ratio of the quadratic and linear coefficients, consistent 

with the notation of Equation (5.8).  Since the stress-stain curves in practice are concave-down, 

the coefficient A2N is negative and 𝛽𝑁 is also. 

𝛽𝑁 =
𝐴2𝑁
𝐴1𝑁

    𝛽𝑁 < 0 
(5.11) 

+ 𝜖𝑟𝑒𝑓 
− 𝜖𝑟𝑒𝑓 
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Combining with Equation (5.10) and linearizing (since the values of DN here are less than 0.05) 

gives Equation (5.12).  This is the expression used to evaluate of DN in the work that follows. 

 

𝐷𝑁 = 1 −
1 + 2𝛽𝑁𝜖𝑟𝑒𝑓

1 − 2𝛽𝑁𝜖𝑟𝑒𝑓
≈ −4𝛽𝑁𝜖𝑟𝑒𝑓 

(5.12) 

 

5.4 Damage Corresponding to Cracks of Given Sizes 

Many arguments in CDM, although they assume a population of cracks, do not depend on 

actually modeling their size.  However, the contribution of a particular crack of size ai is argued 

to be proportional to the area of the crack as given in Equation (5.13): 

𝐷𝑖 = 𝜌𝑎𝑖
2 

 

(5.13) 

The author of [20] also presents a separate argument based on linear elastic fracture mechanics 

that results in Equation (5.14). 

𝐷𝑖 = 𝜌𝑎𝑖
3 

 

(5.14) 

In [53] is was also found that the reduction in stiffness of a cracked body was given by Equation 

(5.14) in the limit of small cracks that do not elastically interact with one another.  Several 

continuum mechanics approaches were compared, incorporating different assumptions about the 

interactions of the cracks.  Their predictions all converged in the small crack limit.  The form of 

Equation (5.14) can be interpreted as associating a weakened volume of material enclosing a 

particular crack of size ai.  This is reasonable considering that material close to the plane of the 

crack would be lightly loaded since the crack surface is a free surface from the point of view of 

the stress field.  One important result of the form of Equation (5.14) is that the effect of 

differences in crack sizes is magnified.  If one crack is 50% larger than another, its damage 

contribution with be 3.4 times as great.  The value of DN will tend to be dominated by the largest 

cracks present in the specimen.  The development that follows will proceed along the lines of 

Equation (5.14) although it was expected that as cracks exceed some critical fraction of the cross 

section of the specimen, the relationship may depart from the form of Equation (5.14).  A 

numerical study was undertaken to characterize the functional relationship between axial 

stiffness and crack size, including large cracks of the sizes found in separated specimens. 
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To gain insight into underlying mechanics, a mechanical model is proposed below to justify the 

form of Equation (5.14).  Our analysis is intended to only be valid in the small crack case.  The 

effect of cracks up to a large size will be determined in a numerical study.  First, in Equation 

(5.15), we define the stiffness of an axially loaded body, with a constant cross sectional size and 

shape, where P is the applied axial load and uz is the axial displacement.   Damage D can be 

defined in terms of the changes in stiffness as defined in Equation (5.9), where K0 is the stiffness 

of an un-cracked body and Kt is the stiffness of the cracked body. 

 

𝐾 =
𝑃

𝑢𝑧
 

(5.15) 

𝐷 = 1 −
𝐾𝑡
𝐾0

 
(5.16) 

 

Restricting our attention to axially loaded bodies with a constant cross sectional size and shape, 

we hypothesize that a relationship of the form of Equation (5.17) may be found, where is a 

function of the shape (but not the size) of the body and the crack and  is a function of 

dimensions of the body.  The goal is to determine for a given crack and body geometry through 

a numerical study.  The factor  enables the solution to be used for other crack and body sizes 

(but similar shapes).  This approach is successfully demonstrated below. 

 

1 −
𝐾𝑡
𝐾0
= 𝜌

𝑎3

𝜙
 

(5.17) 

 

We begin by noting that the axial stiffness of a body of constant cross section will be 

proportional to a transverse dimension squared divided by the length as given in Equation (5.18).  

Dimensions are explained in Figure 4. 

𝐾0 ∝
𝑑2

𝐿
 

(5.18) 

 

The assumptions employed in the development below are the following.  With the exception of 

the presence of a crack at some axial position, the cross section of the body is constant.  Also, the 

body is under uniaxial stress.  Finally, the crack is small relative to the cross section.  We argue 
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that for a small crack of general shape, its effect on the axial stiffness of the body is equivalent to 

a void as shown in Figure 5.2.  We do not specify the shape of the equivalent void, but only seek 

to describe its effect on the axial stiffness of the body. 

 

Figure 5.2:  Idealized axially loaded cracked body. 

 

Next we note that an axially-loaded cracked body may be regarded as an axially short cracked 

body in series with a much longer un-cracked body.  We apply the rule for the total stiffness of 

two bodies in series in Equation (5.19).  We note that stress may vary in a given transverse plane 

but assume that strains do not vary within transverse planes. 

1

𝐾𝑡
=

1

𝐾𝑐𝑟𝑎𝑐𝑘𝑒𝑑
+

1

𝐾𝑖𝑛𝑡𝑎𝑐𝑡
 

(5.19) 

 

In Equation (5.20) we assume that from the point of view of the axial stiffness of the body, the 

axial effect of the crack is equivalent to a void of height 𝜏𝐿𝑎 where 𝜏𝐿 is an unknown constant 

(Figure 5.2) that models the effective axial length of the void that is equivalent to a crack of a 

particular shape.  Additionally, we introduce a constant 𝜏𝑇 such that the term 𝜏𝑇𝑎
2 is equal to the 

effective transverse area of a void equivalent to a crack of a particular shape.  The values of these 

constants are assumed to be specific to different crack and body geometries and would need to be 

determined through analysis, experiment or numerical simulation.  The key point is that the once 
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the constants are determined, the effect of the crack could be determined for cracks and bodies of 

other sizes by applying the formulas developed below. 

 

1

𝐾𝑡
∝

𝜏𝐿𝑎

(𝑑2 − 𝜏𝑇𝑎2)
+
(𝐿 − 𝜏𝐿𝑎)

𝑑2
 

(5.20) 

 

Manipulation of Equation (5.20) yields Equation (5.21).  Note that the first term on the right 

hand side of Equation (5.20) is proportional to the compliance of the un-cracked body and thus 

the term on the right represents the increase in compliance due to the presence of the crack. 

 

1

𝐾𝑡
∝
𝐿

𝑑2
+

𝜏𝐿𝜏𝑇𝑎
3

𝑑4 (1 − 𝜏𝑇 (
𝑎
𝑑
)
2

)
 

(5.21) 

 

Finally, Equation (5.21) may be simplified by considering that a << d and may be rewritten as 

Equation (5.22).  The case of larger a is considered separately with a finite element study in the 

following section.  The ratio of the cracked to un-cracked stiffness is then given by Equation 

(5.23).  Note that the length and area constants now appear in a single term (with a
3
) suggesting 

the interpretation of the product as an equivalent volume corresponding to the crack geometry.  

Additionally, the denominator contains a product proportional to the volume of the body. 

 

1

𝐾𝑡
∝
𝐿

𝑑2
(1 +

𝜏𝐿𝜏𝑇𝑎
3

𝐿𝑑2
) 

(5.22) 

 

𝐾𝑡
𝐾0
=

1

1 +
𝜏𝐿𝜏𝑇𝑎3

𝐿𝑑2

 
(5.23) 

 

Next, applying Equation (5.16) (resulting in Equation (5.24)) and linearizing, since the quantity 

containing the variables will always be very small, we arrive at Equation (5.25).  We set equal 

to 𝜏𝐿𝜏𝑇. 
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𝐷 = 1 −
𝐾𝑡
𝐾0
= 1 −

1

1 +
𝜏𝑎3

𝐿𝑑2

 
(5.24) 

 

𝐷 = 1 −
𝐾𝑡
𝐾0
=
𝜏𝑎3

𝐿𝑑2
 

(5.25) 

 

Recall that the cubic dependency of damage on crack size is an existing result that is seen in 

previous work.  The point of Equation (5.25) is to expose the value of the constant of 

proportionality and develop a scalable law that can be applied to crack and body geometries of 

different sizes once the solution for a reference crack and body shapes is available.   

 

Figure 5.3 shows the crack geometries assumed to exist in the specimens for two different 

representative sizes.  This shape is one of several seen in the literature ( [63], [64]) and will be 

shown to be a reasonable approximation of the actual final crack shapes in the separated 

specimens. 

 

 

Figure 5.3:  Proposed crack geometry shown for large and small crack. 

 

The defining characteristic of the proposed crack shape (of all sizes) is that the crack front is a 

circular arc that intersects the surface of the specimen at a right angle.  For small cracks, this 

results in essentially semicircular cracks as can be seen in Figure 5.3 in the diagram on the right.  

The large crack limiting shape is a linear crack front that divides the specimen in half.  Thus this 

model would not be appropriate for fatigue cracks that progressed beyond 50% of the specimen 

area.  In the present case the final cracks were between 24% and 33% of the area of the specimen.  

Furthermore, the final crack shapes will be shown to be reasonably approximated by the shape 
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proposed in Figure 5.3.  The depth of the crack a is defined as the depth at the midline as shown 

in Figure 5.3.  The depth of the final cracks in separated specimens was measured as follows.  

The area of the final crack was measured on a micrograph and the depth a was defined as the 

depth of a crack corresponding to the Figure 5.3 geometry that had the same area. 

  

Figure 5.4 shows the FE modeled region of the fatigue specimen—the model represents ½ of 

gauge section of specimen.  The crack is assumed to grow in a plane perpendicular to loading 

axis.  This characteristic is seen in separated specimens.  For modeling purposes the plane of 

crack is a plane of symmetry, thus half of the specimen is modeled.  Finally, the specimen is 

assumed to be in a state of uniaxial tension. 

 

 

Figure 5.4:  Region of specimen corresponding to FE model. 

 

Nine different crack sizes, ranging from 1% to 33% of the specimen cross section area were 

modeled, as well as an un-cracked specimen.  Cracks were modeled by applying displacement 

control to node sets on end of specimen that represented the crack plane.  The cracked portion 

was not included in the node set (details given later).  The opposite end, at the end of the gage 

section, was kinematically constrained to a node for which the reaction force was tabulated.  

Thus, the stiffness of the specimen was a modeling output.  The modulus was set at 10 times the 

modulus of aluminum to improve resolution of output.  The damage D, as defined in Equation 

(5.9), was computed for each crack size modeled.  It was assumed that the reference stiffness of 

the un-cracked specimen is the same as the specimen in compression with a crack of any size.  

Equation (5.26) gives the resulting definition of D. 
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Definition of Damage consistent with Equation (5.9): 

 

𝐷𝑐𝑟𝑎𝑐𝑘 = 1 −
𝐸𝑡𝑒𝑛𝑠 𝑐𝑟𝑎𝑐𝑘
𝐸𝑐𝑜𝑚𝑝 𝑐𝑟𝑎𝑐𝑘

= 1 −
𝐸𝑡𝑒𝑛𝑠 𝑐𝑟𝑎𝑐𝑘
𝐸𝑖𝑛𝑡𝑎𝑐𝑡

 
(5.26) 

 

Axial stiffness was defined in terms of prescribed displacement of end nodes and the resulting 

reaction force.  This computation was used for both the cracked and intact stiffnesses in Equation 

(5.27). 

𝐸 =
𝐹𝑜𝑢𝑡

𝛿𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑
    𝛿𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑 = 0.005  𝑠𝑎𝑚𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟𝑢𝑛𝑠 

(5.27) 

 

Damage calculation resulting from substitution of Equation (5.27) into Equation (5.26) is given 

in Equation (5.28).  This is the damage value used for Table 1. 

𝐷𝑐𝑟𝑎𝑐𝑘 = 1 −
𝐹𝑜𝑢𝑡(𝑐𝑟𝑎𝑐𝑘)

𝐹𝑜𝑢𝑡(𝑖𝑛𝑡𝑎𝑐𝑡)
 

(5.28) 

 

An image of the actual FE model mesh is given in Figure 5.5.  The model was created using the 

Abaqus FE solver.  The entire model consists of 624,000 elements.  The finest elements were 

used in crack region and were 2
nd

 order pentagonal prisms. 

 

 

Figure 5.5:  FE model mesh. 

 

The remainder of model was comprised of hexahedral elements.  No yielding was included in the 

model.  The separate mesh regions were connected using tied contact.  A detailed view of the 

elements in the crack plane is seen in Figure 5.6. 
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Figure 5.6:  Mesh divided into regions corresponding to various crack sizes. 

 

The element boundaries corresponding to the crack shapes can be clearly seen in the top half of 

Figure 5.6.  The presence of a crack was modeled by apply a displacement (of 0.0005 mm) to 

only the portion of the crack plane that was intended to represent the un-cracked portion of the 

cross section.  The cracked portion was left un-constrained and thus represented the free surface 

of a crack.  In Figures 5.7, 5.8, and 5.9, displacement and stress plots are shown for three 

different crack conditions.  The left side of the images shows axial displacement contours while 

the right side shows the axial stress. In Figure 5.7, the smallest crack modeled is shown, with a 

depth of 0.553 mm.  
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Figure 5.7:  Axial displacement and axial stress corresponding to a crack depth of 0.553mm. 

 

In Figure 5.8, a 1.02mm crack is modeled.  Comparing Figure 5.7 to Figure 5.8 reveals the shape 

of the stress contours is similar between these two cases and is essentially scaled by the size of 

the crack.  The non load-bearing volume of material close to the cracked region can be clearly 

seen.  Both of these cracks have the essentially semicircular shape corresponding to the small 

crack rage of the geometry in Figure 5.3. 

 

 

Figure 5.8:  Axial displacement and axial stress corresponding to a crack depth of 1.02mm. 
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In Figure 5.9, the largest crack modeled (3.10mm) is shown.  This crack is not semicircular and 

the stress contours have a distinctly different shape than was the case in the small crack examples. 

 

 

 

Figure 5.9:  Axial displacement and axial stress corresponding to a crack depth of 3.10mm. 

 

Table 5.1 below gives a summary of variables modeled and computed in the FE model.   

Table 5.1: Finite element modeling results. 

a (a
3
)/(Ld

2
) Fout DN 

0.000 0.000E+00 1.25430E+04 0.00000 

0.553 1.147E-04 1.25380E+04 0.00040 

0.755 2.920E-04 1.25290E+04 0.00112 

1.015 7.100E-04 1.25070E+04 0.00287 

1.336 1.618E-03 1.24540E+04 0.00710 

1.707 3.373E-03 1.23410E+04 0.01610 

2.102 6.293E-03 1.21270E+04 0.03317 

2.482 1.036E-02 1.17880E+04 0.06019 

2.814 1.511E-02 1.13480E+04 0.09527 

3.082 1.984E-02 1.08770E+04 0.13282 
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Plotting the damage D as a function of the first three values of (a
3
)/(Ld

2
) (up to a size of a of 

0.755mm on a 7.62mm diameter section) results in Figure 5.10.  The linear behavior of Equation 

(5.25) is evident.  From Equation (5.25), this gives us a constant tau of 2.96x10
-6

. 

 

 

Figure 5.10:  Plot of damage versus cube of crack length as given in Equation (5.25). 

 

In Figure 5.11, data for all crack sizes is plotted, and nonlinearity is evident.  The crack shape 

defined in Figure 5.3 changes with increasing crack size and contributes to the lack of linearity in 

Figure 5.11. 

 

 

Figure 5.11:  Plot of all crack sizes from Table 1. 
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Damage as a function of a as determined from the FE model is given in Equation (5.29).  Note 

that a power law still applies, but that to fit cracks over a larger range, an exponent slightly 

different from 3 is required. 

𝐷 = 0.00280𝑎3.37 (5.29) 

 

For our purposes below, the inverse relationship is needed and is given in Equation (5.30).  This 

was obtained by directly fitting the data in Table 5.1.  This relationship is plotted in Figure 5.12.  

The power law form of Equation (5.30) is shown to provide excellent fit to the FE model results 

over a large range of damage D.  Equations (5.29) and (5.30) have been shown to provide high-

fidelity models of the D vs. a relationship for cracks of the geometry given in Figure 5.3 within 

the modeled range. 

𝑎 = 5.71𝐷0.296 (5.30) 

 

 

Figure 5.12:  Plot of Equation (5.30) showing excellent fit over a range of crack sizes. 

 

5.5 Fit of Small Crack Growth Law to DN Data for 11 Fatigue Tests 

An experimental program was undertaken where DN vs. N data was obtained for 11 axial tension 

specimens as described in Chapter 4.  These were fully reversed load-controlled tests to failure at 

a nominal stress of level of 170 MPa.  The alloy was cast aluminum AS7GU.  See [56] for a 

review of its properties.  Strain data also collected during test.  Data was gathered every 100 
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cycles and Nf was defined as the end of the last 100 cycle block completed prior to separation.  

Since even the earliest failure was 15,200 cycles, the final 100 block was less than 1% of Nf prior 

to separation.  Load and stain data were collected.  As discussed in Chapter 4, the load was 

converted to true stress based on Equation (5.31) which accounts for the slight Poisson 

contraction or dilation of the cross section under load. 

𝜎𝑖,𝑁 =
𝑃𝑖,𝑁

𝜋𝑟0
2(1 − 2 𝜈𝜖𝑖,𝑁)

 
(5.31) 

 

The data analysis process is summarized in Table 5.2.  Every 100 cycles a stress-strain loop is 

obtained which typically includes about 155 data rows.  The quadratic stress-stain model 

(Equation (5.8)) is fit to the loop and the values of the coefficients found are used to compute DN 

for that loop according to Equation (5.12).  Thus a family of DN vs. N curves were obtained. 

 

Table 5.2:  Summary of relationships used in data reduction. 

{𝑃𝑖,𝑁 , 𝜖𝑖,𝑁}    Load vs. strain data for i
th

 data sample in 𝑁𝑡ℎ loop. 

𝜎𝑖,𝑁 = 𝑓(𝑃𝑖,𝑁, 𝜖𝑖,𝑁) Stress value 𝜎𝑥 for i
th

 data sample in N
th

 loop, computed 

from corresponding load and strain values according to 

Equation (5.31). 

{𝜎𝑖,𝑁, 𝜖𝑖,𝑁}   𝑖: 1,2, …𝑛 Data set used for model fitting at the N
th

 loop. 

𝜎𝑥𝑁 = 𝐴2𝑁𝜖𝑥
2 + 𝐴1𝑁𝜖𝑥 Quadratic stress-strain law resulting from least squares fit 

to the N
th

 loop (Equation (5.8)) 

𝐷𝑁 = −4𝛽𝑁𝜖𝑟𝑒𝑓 Damage computed for the N
th

 loop (Equation (5.12)) 

 

After separation, the fracture surfaces of the separated specimens were examined with a scanning 

electron microscope and also an optical microscope.  The SEM images were primarily used to 

determine the size and characteristics of fatigue crack initiation site.  The optical images were 

used to measure the final crack size and shape prior to separation.  A summary of the findings is 

given in Table 5.3.   
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Figure 5.13:  Electron dispersive spectrograph (EDS) image of specimen 6 initiation Site. 

 

 

Figure 5.14:  Optical micrograph of fracture surface of specimen 6 showing final fatigue crack. 

 

The fracture surfaces were generally transverse to the loading axis.  The size of the both 

initiation and final crack features on micrographs were measured using the image analysis 

capabilities of Photoshop.  As has been reported previously with this material [1], the fatigue 

lives of specimens of this material are inversely related to the size of crack initiation features.  A 

plot of the data is given in Figure 5.15.  It will be shown later that this behavior is consistent with 

the small crack growth law stated in Equation (5.3). 
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Table 5.3: Summary of initial flaw and final crack areas and depths. 

Nf Area A0 Area Af a0 af ln a0 

15200 0.671 13.0 0.647 2.848 -0.435 

16100 0.499 11.8 0.558 2.714 -0.583 

29900 0.363 12.7 0.476 2.815 -0.742 

38400 0.336 12.9 0.458 2.837 -0.781 

66500 0.222 14.6 0.372 3.019 -0.988 

86000 0.182 15.1 0.337 3.070 -1.088 

115400 0.00866 10.8 0.074 2.596 -2.610 

128200 0.0094 11.6 0.077 2.691 -2.569 

159500 0.0102 14.7 0.080 3.029 -2.528 

212500 0.00151 12.9 0.031 2.837 -3.484 

234800 0.0021 14.5 0.036 3.008 -3.319 

 

 

 

 

Figure 5.15:  Nf vs. ln(a0) showing a linear trend. 

 

The DN vs. N curves exhibit several noteworthy features.  A representative example is given in 

Figure 5.16 below.  As expected, they begin at a relatively low value and curve upwards as Nf is 

approached.  This increase in DN is claimed to correspond to growth of the dominant crack that 

eventually leads to separation of the specimen.  The curves also exhibit noise due to the subtlety 

of the phenomenon being measured.  Finally, the curves exhibit a positive offset of unknown 

cause.  The values of this offset were in the range of D = 0.02 to 0.033.   
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Figure 5.16:  Representative example of raw DN vs. N curve. 

 

 

In order to address the noise the raw data was smoothed in Matlab using the command  

‘smooth(data, 75, ‘lowess’)’.  ‘lowess’ is locally-weighted linear regression over a window of 

some fraction of the total record (75 points in our case) [65].  Other narrower and wider windows 

were tried as well as the alternative ‘loess’ which regresses to a quadratic curve.  The chosen 

method offered the best tradeoff of trend fidelity to noise/oscillation removal.  The intention was 

to smooth the data conservatively in order to minimize distortion.  The following were steps 

were taken in the analysis of the data.  Force data to D=0 below the final 60,000 cycles if a 

record is longer than that. Otherwise don’t change.  This is justified based on the fact that the 

data doesn’t trend upwards until after this value typically.  Next we took the minimum value of 

the curve in the last 60k cycles min(i) and removed portion of curve to left of minimum if 

necessary so that the curve is monotonically increasing.  Finally, we shifted all curves down by 

min(i).  Thus all curves start at Di = 0 and are strictly zero to the left of this value if it is not zero.  

They increase almost monotonically from this value.  The resulting curves are shown below in 

Figure 5.17. 
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Figure 5.17: Processed curves of DN vs. N. 

 

The processed DN vs. N curves are used to compute ai vs. N curves by applying the FEA derived 

relationship in Equation (5.30).  The resulting inferred crack growth curves are given below in 

Figure 5.18. 

 

Figure 5.18:  Inferred ai vs. N. 
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Of the 11 curves, the 7 with the longest lives have a similar shape.  They exhibit comparable 

trends for inferred crack lengths from about 0.4 mm to 1.0mm and transition to a steeper trend 

beyond 1.0mm.  This crack length is the range of the upper limit of applicability of the small 

crack growth law, so it is not surprising that shape of the curves qualitatively changes at around 

this value.  The four shortest life specimens have steeper trends from the start. 

 

In the terminology of the small crack references above, a ‘2.0mm crack’ corresponds to a crack 

according to the model in Figure 5.3 with a depth a of 1.0mm.  Thus, the curves in Figure 5.17 

clearly include a certain final portion of life that extends beyond the range of the small crack law.  

Consider partitioning the total life Nf. into a sum of small crack growth life Ns.c and ‘long’ crack 

growth life Nl.c.. This relationship is shown in Equation (5.32).   

𝑁𝑓 = 𝑁𝑠.𝑐. + 𝑁𝑙.𝑐. (5.32) 

 

The small crack growth life, up to some chosen final small crack size, can be obtained by 

manipulating Equation (5.3) and is given in Equation (5.33): 

𝑁𝑠.𝑐. = −
1

𝑐
𝑙𝑛 𝑎0 + 𝑏 

(5.33) 

Combining the two prior results gives Equation (5.34).  Provided that Nl.c.is not correlated with 

a0, we can collapse Nl.c. and b into a single constant b’ for the purposes of fitting Equation (5.34) 

to the data in Table 5.3.  The fitted model is plotted in Figure (5.19) with excellent fit. 

 

 

Figure 5.19:  Small crack growth law fit to Nf vs. ln(a0) data. 
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𝑁𝑓 = −
1

𝑐
𝑙𝑛 𝑎0 + 𝑏 + 𝑁𝑙.𝑐. = −

1

𝑐
𝑙𝑛 𝑎0 + 𝑏′ 

(5.34) 

 

Small initial cracks of irregular shape tend to quickly converge to their preferred shape as they 

grow [64].  Thus, there is some inherent error in measuring equivalent depths of irregularly 

shaped features and inferring an equivalent sized standard crack shape—however, we expect that 

this method would be correct in an average sense.   

 

The final step of fitting a family of curves of the form of Equation (5.35) to the inferred crack 

growth data is undertaken below.  

𝑎 = 𝑎𝑖0′𝑒
𝑐𝑁 

 
(5.35) 

 

For each inferred crack growth curve, a separate small crack growth curve is fitted.  The initial 

crack size is fitted along with a common exponential growth rate, since according to Equation 

(5.1), the exponential rate should be the same (on average) for the same remote stress.  The fit is 

performed with least squares specified interval of crack length (0.4mm to 1.0mm).  The result of 

the fitting operation is shown below in Figure 5.20. 
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Figure 5.20:  Equation (5.35) fit to small crack portion of ai vs. N curves. 

 

Curves based on small crack growth law with common growth rate c and fitted initial crack size 

a0’ exhibit generally excellent fit in regression crack size range.  Trend appears notably different 

for first four failures.  Plots of the fitted vs. the measured a0 yields a regression line with only a 

small divergence from the ideal y = x form and as can be seen in Figure 5.21.  For all 11 points 

the slope is 1.25 with R
2
 = 0.94 .  For the 8 longest lived samples the slope is 1.08 with R

2
 = 0.96.  

Both regressions have P ≤ 0.001 indicating high significance.  Recall that the a0’ values were not 

fit to measured a0 values, rather the exponential small crack growth law curves were fitted to the 

inferred crack growth curves in the length range of interest.  This shows that the fitted a0’ values 

agree well with the measured values in the average sense, for all 11 points, but even better for the 

8 longest lived samples.  Thus, the small crack growth law captures the essential features of this 

data set 
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Figure 5.21:  Fitted a0’ vs. measured a0 for 8 and 11 specimens. 

 

5.6 Conclusions 

An exponential small crack growth law previously reported in the literature was used to model 

inferred crack growth curves based on data collected during axial high-cycle fatigue tests.  The 

sizes of the microstructural features where the cracks initiated were measured.  The sizes of the 

initiating features were found to be inversely related to the lives of the specimens in a manner 

consistent with the small crack growth law.  Finally, a family of small crack growth equations 

were fit to the inferred crack growth data.  The fitted curves were effective in capturing the main 

features of the data curves.  Also, it was found that the fitted initial flaw size correlated well with 

the measured initial flaw size.   

 

  



143 

 

 

1
4
3
 

CHAPTER 6. CONCLUSIONS 

An example of low cycle fatigue of a wrought alloy was modeled in a novel form.  Rather than 

cycles (or reversals) vs. plastic strain, we have used cycles vs. inelastic dissipation, on the basis 

that this variable is more closely connected to underlying thermodynamic processes.  The 

relationship is stated in terms of the damage D per reversal.  The Maximum Entropy approach 

was used to derive a D vs. Nf relationship that fit an LCF data set better than the Coffin-Manson 

relationship.  Future work would naturally include using this approach on other LCF data sets 

from other wrought metals, such as copper alloys or ferrous alloys. 

 

Next, low cycle fatigue, in the 1,000 to 20,000 cycle range, was examined as a stochastic process, 

of the Poisson type.  It was shown that this viewpoint leads to many well established results in 

the field of LCF, including the relationships of the form of the Coffin-Manson equation, and the 

Palmgren-Miner linear damage law.  This model also predicts that the scatter of fatigue lives at a 

given load condition should be Erlang distributed.  This distribution has a substantially similar 

shape to the Weibull and Log normal distributions, which are both popular and frequently 

successful at modeling fatigue data.  In order to verify the prediction that LCF fatigue lives, at a 

given test condition, are Erlang-distributed, a significant test program would be required.  

Samples sizes of 25 or more at each test condition could confirm the predictions of the model. 

 

In the second half of this work, we switched our focus to the cast aluminum alloy AS7GU.  First, 

we modeled the measureable progress of damage D during high-cycle fatigue tests with a 

quadratic stress-strain relationship.  The form of this relationship allowed us to track the increase 

in asymmetry between tension and compression resulting from a crack growing in the specimen.  

Unlike previous applications of tension-compression asymmetry, our approach was based on a 

general, higher order elastic constitutive model.  The damage D was shown to consistently trend 

upwards in the last portion of each test.  In the final section, we used and FE model of the tension 

specimen to infer the size of the crack corresponding to the measured damage D.  Additionally, 

the sizes of the crack initiating features were measured with a scanning electron microscope.  

The log of the size of the features had a negative linear relationship to the fatigue life which was 

shown to be consistent with a small crack growth law in the literature.  Finally, the small crack 
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growth law, which was exponential in cycles, was successfully fitted to the inferred crack growth 

traces.  Thus, the trends in the inferred crack growth data were shown to be consistent with the 

exponential small crack growth law. 

 

This study was performed at a fixed HCF test condition repeated 11 times to get a well repeated 

result with a high confidence.  Future work would naturally include other load conditions within 

the elastic range.  Additionally, this approach could be applied to other cast alloys.  Finally, 

given that the damage D measurement based on quadratic stress strain fit is a subtle signal 

subject to measurement noise, it would be worthwhile to explore improving the sensitivity of the 

measurement systems.  Both improving the existing approach (load cells and knife-edge 

extensometers) and trying alternative approaches, such as laser extensometers, would be 

worthwhile. 
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APPENDIX  

RELATIONSHIP OF MAXIMUM ENTROPY TO MAXIMUM LIKELIHOOD 

In the MaxEnt method as set forth by Jaynes and later authors, the problem is to find an 

unknown PDF that satisfies given moment constraints.  Alternatively, if the problem is to choose 

the parameters of a given PDF to best fit a data set, one of the most common methods employed 

is the method of maximum likelihood (or log-likelihood).  The maximum likelihood (ML) 

method allows one to fit a candidate PDF, with a known form but at least one unknown 

parameter, to a set of data samples.  The ML method has many desirable mathematical properties 

and is known to be ‘optimal’ according to various mathematical criteria [21].  By using the 

Kullback Leibler Divergence entropy function, and a particular form of empirical PDF to 

represent the data set, it can be shown that maximizing entropy and log-likelihood are equivalent.  

The Kullback Leibler Divergence of 𝑓(𝑥)  relative to 𝑔(𝑥) , “…provides a measure of the 

information lost by using g instead of f…, it indicates the capacity of g to approximate f …” [66].  

 

𝐾𝐿(𝑓(𝑥), 𝑔(𝑥)) = ∫ 𝑓(𝑥) ln
𝑓(𝑥)

𝑔(𝑥)
𝑑𝑥

∞

−∞

 
(A.1) 

 

Candidate function to be fit to data—specified up to parameter vector 𝛼̅. 

 

𝑔(𝑥) = 𝑔(𝑥, 𝛼̅) (A.2) 

 

 

 

 

Since the K L divergence, “indicates the capacity of g to approximate f ,” it is reasonable to make 

f the empirical (data) PDF and g the candidate function to be fit to the data.  Naturally, we would 

minimize the K L divergence to ‘best fit’ g to f. 

 

Minimise K L Divergence with respect to 𝛼̅ : 
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argmin
𝛼̅

{𝐾𝐿(𝑓(𝑥), 𝑔(𝑥, 𝛼̅))} 

= argmin
𝛼̅

{∫ 𝑓(𝑥) ln 𝑓(𝑥)𝑑𝑥
∞

−∞

−∫ 𝑓(𝑥) ln 𝑔(𝑥, 𝛼̅)𝑑𝑥
∞

−∞

} 

(A.3) 

 

Since the left term is not a function of 𝛼̅: 

 

argmin
𝛼̅

{−∫ 𝑓(𝑥) ln 𝑔(𝑥, 𝛼̅)𝑑𝑥
∞

−∞

} 
(A.4) 

 

An empirical PDF of data is specified in Equation (A.5) [21].  This form leads to the familiar 

stair-step type empirical CDF and has the property that the data may be exactly recovered from 

the PDF or the CDF. 

 

𝑓(𝑥) =
1

𝑛
∑𝛿(𝑥 − 𝑥𝑖)      𝑓𝑜𝑟 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡: 𝑋 = {𝑥1, 𝑥2, … 𝑥𝑛}

𝑛

𝑖=1

 

𝛿(𝑥 − 𝑥𝑖):     𝐷𝑖𝑟𝑎𝑐 𝑑𝑒𝑙𝑡𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 𝑥𝑖  

(A.5) 

 

 

 

Recall the choosing property of the delta function: 

 

∫ 𝑓(𝑥)𝛿(𝑥 − 𝑥𝑖)𝑑𝑥
∞

−∞

= 𝑓(𝑥𝑖) 
(A.6) 

 

Consequently: 

∫ 𝑓(𝑥)∑𝛿(𝑥 − 𝑥𝑖)

𝑛

𝑖=1

𝑑𝑥
∞

−∞

=∑𝑓(𝑥𝑖)

𝑛

𝑖=1

 
(A.7) 
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argmin
𝛼̅

{−∫ 𝑓(𝑥) ln 𝑔(𝑥, 𝛼̅)𝑑𝑥
∞

−∞

}

= argmin
𝛼̅

{−
1

𝑛
∫ ∑𝛿(𝑥 − 𝑥𝑖)

𝑛

𝑖=1

ln 𝑔(𝑥, 𝛼̅)𝑑𝑥
∞

−∞

} 

(A.8) 

 

argmin
𝛼̅

{𝐾𝐿(𝑓(𝑥), 𝑔(𝑥, 𝛼̅))} = argmin
𝛼̅

{−∑ln𝑔(𝑥𝑖, 𝛼̅)

𝑛

𝑖=1

} 

= argmax
𝛼̅

{∑ln𝑔(𝑥𝑖, 𝛼̅)

𝑛

𝑖=1

} 

(A.9) 

 

The final expression is the brackets is the log-likelihood.  Thus, applying the method of 

maximum log-likelihood to PDF is equivalent to minimizing the KL divergence of the candidate 

PDF from the empirical data PDF, if specified as a delta function sequence. 
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