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ABSTRACT 

Jain, Samarth. M.S.A.A., Purdue University, May 2018. A Multi-Fidelity Approach 
to Address Multi-Objective Constrained Mixed-Discrete Nonlinear Programming Prob-
lems With Application to Greener Aircraft Design. Major Professor: William A. 
Crossley. 

Engineering problems often involve solving constrained multi-objective Mixed-

Discrete Nonlinear Programming (MDNLP) problems. These problems are inher-

ently difficult to solve given the presence of multiple competing objectives, nonlinear 

objective and constraint functions, mixed-discrete type design variables, and expen-

sive analysis tools. This work presents a multi-fidelity approach that addresses all 

these features together and exhibits its efficacy to solve constrained multi-objective 

MDNLP problems within a reasonable computational budget. The work addresses 

the high computational cost drawback associated with a previously developed “hy-

brid multi-objective optimization approach” that combines a Genetic Algorithm (GA) 

with the gradient-based Sequential Quadratic Programming (SQP) algorithm. The 

multi-fidelity hybrid algorithm in this work employs surrogate models to provide 

low-fidelity approximations of the objective and constraint functions that are fast to 

evaluate. The gradient-based SQP algorithm uses these surrogate models in a goal 

attainment formulation. The combination of the GA with SQP then finds a diverse 

set of designs representing the best possible trade-off solutions for the multi-objective 

problem. For this thesis, the author initially pursues both Kriging and Radial Ba-

sis Function (RBF) surrogate modeling techniques, with their respective application 

to test problems (three-bar and ten-bar truss constrained, multi-objective, MDNLP 

problems) determining their feasibility of implementation in the multi-fidelity ap-

proach. The test problem results indicate that using RBF technique makes use of the 

hybrid approach more feasible as compared to using the Kriging technique. The re-
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sults show a reduction of at least 98% in the “high-fidelity” function evaluations with 

respect to the previously-developed hybrid approach, along with a reduction of at least 

89% in the computational runtime. Subsequently, the multi-fidelity approach using 

RBF surrogate models is employed to solve a complex aerospace engineering problem 

used in previous studies – a ‘greener’ aircraft design problem – posed as a constrained 

multi-objective MDNLP problem. The resulting non-dominated design solutions are 

comparable to those obtained using the previously-developed hybrid approach. The 

result indicates a compromise that exists between the number of “high-fidelity” eval-

uations performed and the ability of the multi-fidelity hybrid algorithm to find as 

diverse non-dominated designs as possible (indicating the spread of the Pareto fron-

tier). This work also suggests a preliminary approach to choose the population size 

for the multi-objective multi-fidelity hybrid algorithm, so that the algorithm finds a 

satisfactory spread for the Pareto frontier at a reasonable computational cost. 
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1. INTRODUCTION 

Engineering simulations and analyses can be categorized into different levels of “fi-

delity” based upon the accuracy of representation of the physics of the problem 

through computer programs using mathematical models. “High-fidelity” analyses in-

volve fewer assumptions about the physics governing the problem. “Higher-fidelity” 

usually leads to more accurate calculations but requires longer setup and execu-

tion times, ultimately increasing the computational cost of the analyses. On the 

other hand, “lower-fidelity” analyses tend to have shorter run times (computation-

ally cheaper to evaluate), but with a lesser detailed depiction of the physics and 

more assumptions in the analysis. In general, the “high-fidelity” analyses tend to be 

expensive for optimization due to their high computational cost. 

Constrained multi-objective mixed-discrete problems are inherently difficult to 

solve given the presence of multiple competing objectives, nonlinear objective and 

constraint functions, mixed-discrete and continuous type design variables, and com-

putationally expensive analysis tools. There is published work that tries to address 

some of these aspects simultaneously [1–10], but limited works exist that try to ad-

dress all of these issues concurrently [11]. Although the hybridization of Genetic 

Algorithm (GA) with gradient-based search seems promising for constrained multi-

objective mixed-discrete problems, using expensive “high-fidelity” analyses with this 

approach limits its applicability to a wider domain of engineering optimization prob-

lems. The work here proposes a multi-fidelity approach to solve constrained multi-

objective Mixed-Discrete Nonlinear Programming (MDNLP) problems and to find 

these solutions within a reasonable computational budget. The effort here combines 

surrogate-based approximation techniques with a previously developed hybrid ap-

proach that couples the design space exploration capability of the GA with the com-

putational efficiency of a gradient-based Sequential Quadratic Programming (SQP) 
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algorithm. The motivation for this research directly comes from the need to reduce 

the computational cost incurred in solving multi-objective engineering optimization 

problems. 

The proposed multi-fidelity approach seeks to find optimum design solutions by 

utilizing the hybrid approach as the base for design optimization. Design optimization 

involves using numerical methods to solve design problems. This includes performing 

design iterations and analyses using optimization algorithms, which work to find the 

best combination of design variables that lead to optimized designs while satisfying 

problem constraints. 

Many engineering design problems are multi-objective in nature. Multi-objective 

problems require simultaneous optimization of two or more competing objectives. 

There exists no single meaningful solution to such problems, rather there exists a 

range of best possible solutions amidst all objectives. This set of best possible solu-

tions is called the Pareto-optimal set. Several previous efforts have shown that the 

population-based Evolutionary Algorithms (EAs) are capable of generating a good 

representation of the Pareto-optimal set of designs [12, 13]. This capability of evolu-

tionary algorithms to handle multiple solutions simultaneously makes them suitable 

for solving multi-objective problems. 

GA is a well-known class of population-based EA, which shows capability to ex-

plore the entire design space and locate the near-global optimal design solution. In 

addition, GA can easily handle both continuous and discrete design variables, making 

it a plausible choice for solving MDNLP problems. GA provides a near-global opti-

mum solution for a problem, because of its probabilistic, not calculus-based, search. 

Different GA runs can find different optimum solutions, but usually these solutions 

are similar. GA cannot directly enforce constraints, because it relies on a penalty 

approach to account for violated constraints. 

On the other hand, SQP is a well-known gradient-based search algorithm that 

converges to a local optima while directly handling problem constraints. SQP is 

computationally efficient, because it relies on gradient information to find a local 
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minima (or maxima), which includes satisfaction of constraints. However, unlike GA, 

SQP cannot handle discrete variables. 

To overcome the limitations of both, the population-based search algorithm - GA, 

and the gradient-based search algorithm – SQP, a hybrid approach combines both 

these algorithms to fully address constrained multi-objective problems that comprise 

both continuous and discrete variables. The hybrid approach uses a population of 

designs from GA, and the “fitness evaluation” of each design involves the use of SQP 

to solve a gradient-based version of the problem. This requires the hybrid approach 

to conduct many “high-fidelity” function evaluations, via the gradient-based local 

search, to find diverse trade-off points representing the different problem solutions. 

To overcome this limitation, the work here employs a surrogate modeling approach 

to provide “low-fidelity” approximations of the objective functions and constraint 

functions in the local search step, reducing the number of “high-fidelity” function 

evaluations required for solving MDNLP problems using a hybrid approach. 

Surrogate models are analytic models that approximate objective / constraint 

function values for different combinations of design variables, based on a limited 

set of computationally expensive (“high-fidelity”) analyses. These models have a 

characteristic advantage of reducing the computational cost associated with complex 

simulations by predicting their values at different points in the design space. However, 

as these surrogate models are approximations, the predictions will include modeling 

error. 

The hybrid optimization approach (GA in conjunction with SQP) and the sur-

rogate modeling techniques have inherent advantages and disadvantages associated 

with their applicability to optimization problems. Combining surrogate modeling 

techniques with the hybrid approach leads to a novel multi-fidelity algorithm to solve 

constrained multi-objective MDNLP problems within a limited computational bud-

get. To demonstrate the efficacy of this proposed multi-fidelity approach to solve 

complex aerospace engineering problems with reduced computational cost, the work 

here applies this multi-fidelity algorithm to re-solve the ‘greener’ aircraft design prob-
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lem presented in Refs. [1–3, 14]. The aircraft design problem serves as a plausible 

example of a constrained multi-objective MDNLP engineering problem. The same 

problem is re-solved to establish a quantitative and qualitative basis for comparison 

with the standalone hybrid approach. 

The aircraft design problem intends to illustrate the consequences of including 

‘greener’ technologies (i.e., ones that reduce environmental impact) in a short-to-

medium range commercial aircraft. These ‘greener’ technologies include composite 

structures, natural laminar flow, and hybrid laminar flow. The goal of solving this 

‘greener’ aircraft problem is to demonstrate the ability of the proposed multi-fidelity 

hybrid algorithm to consider the discrete technologies in addition to continuous vari-

ables, so that the resulting designs are the best possible range of aircraft trade-offs. 

The technologies used in aircraft along the Pareto frontier are those that hold promise 

for further investigation in the near future. With the goal to search for a ‘greener’ 

aircraft while studying the interactions between the various environmental, economic, 

and performance metrics, the competing objectives for the problem include the total 

fuel carried (for every pound of fuel consumed, the engines produce about 3.2 pounds 

of CO2, making the total fuel carried an index of aircraft CO2 emissions), emissions 

of nitrogen oxides (NOX ), and the total operating cost. 
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2. OPTIMIZATION TECHNIQUES 

Design optimization is the process of finding an optimal combination of design vari-

ables that minimize (or maximize) the objective function(s) while satisfying all the 

constraints in the design space. The definitions of the terms associated with opti-

mization are as follows: 

Objective function: The function to be minimized (or maximized) in the op-

timization problem, e.g., cost, weight, etc. An objective function may be uni-modal 

with just one optimal solution, or multi-modal with multiple locally-optimal solutions 

and a global optimal solution. 

Constraint function: The restrictions/bounds that must be satisfied to pro-

duce a feasible design, e.g., allowable stress, maximum displacement, etc. Design 

constraints are also functions of the design variables. A problem could have equality 

or inequality constraints, or maybe both. 

Design variables: The quantities that describe a design. A change in the design 

variables alters the design, changing its objective and constraint function values. 

Design variables can be continuous, discrete, or mixed-discrete continuous in nature. 

Feasible design: A design that satisfies all constraints. 

The following expression shows the mathematical formulation for a general opti-

mization problem. 

Minimize: 

f(x) (Single − objective formulation) 
(2.1) 

f(x), where f = {f1, f2, ..., fn} (Multi − objective formulation) 
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Subject to: 

gj (x) ≤ 0, j = 1, ..., m (inequality constraints) 

hk(x) = 0, k = 1, ..., l (equality constraints) (2.2) 

xi
L ≤ xi ≤ xi

U , i = 1, ..., p (bound constraints) 

where x = [ x1, x2, ..., xp]T . 

2.1 Hybrid Optimization Approach 

This work employs the hybrid optimization approach presented in Ref. [1–3] to 

solve constrained multi-objective MDNLP problems. The multi-objective hybrid al-

gorithm combines the capability of an evolutionary algorithm to explore the whole 

design space, while handling discrete variables, with the local optima searching and 

constraint handling capabilities of a gradient-based search. This hybrid technique 

exploits modified two-branch tournament GA [1–3] as the evolutionary algorithm, 

and SQP with goal-attainment technique as the gradient-based search method. The 

two-branch tournament GA [15] compares designs with respect to both of the prob-

lem objectives one by one in a two-step process. The two-branch tournament GA is 

explained in detail in Section 2.3.2.1, while the modified two-branch tournament GA 

appears in Section 3.1.2.1. 

In this hybrid approach, GA acts like a guide for a multi-start approach through 

how it combines the discrete and continuous design variables. The local search can 

be considered as “learning” that takes place in an individual design during every GA 

generation [1–3]. The two-branch tournament GA includes both the continuous and 

discrete variables in the representation of each design. The continuous variable values 

in the GA individual are used as initial points for local search using a goal-attainment 

problem with SQP algorithm, which essentially converts the multi-objective problem 

into a single-objective optimization problem. The goal-attainment algorithm seeks 

objective values as close as possible to a set of predefined objective goal values, with-

out violating any of the problem constraints. The objective values of the solutions 
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obtained from the local search problem are returned to the GA-level for use in the 

modified two-branch tournament selection [1–3]. A single-objective version of this 

hybrid approach appears in [16], which combines a binary coded GA with SQP algo-

rithm as the hybrid optimizer to solve constrained single-objective MDNLP problems. 

The following Sections 2.2 and 2.3 provide a review of gradient-based optimiza-

tion (with a focus on SQP algorithm and goal attainment formulation), evolutionary 

algorithms (with a focus on single-objective GA), and multi-objective GA formula-

tion (two branch tournament GA), all of which form an integral part of the proposed 

multi-fidelity hybrid algorithm. Section 2.4 discusses the limitations of the hybrid 

approach, which acts as a motivation to combine the hybrid approach with approxi-

mation/surrogate models. 

2.2 Gradient-Based Optimization 

Gradient-based optimization strategies usually follow an iterative approach. An 

initial set of design variables, x0 , are utilized to find the optimal set of design vari-

ables by updating the design variables in every optimization iteration. The following 

mathematical expression depicts the iterative approach [17]: 

q q−1 x = x + α ∗ Sq (2.3) 

where q denotes the iteration number, Sq denotes the search direction in the design 

space, and α∗ denotes the step length. The chosen search direction, Sq, should lead 

to a feasible direction without usually violating any constraints, ensuring that the 

next design point gets closer to the optimal design. For instance, the steepest descent 

method uses the negative of the objective function gradient as its search direction, 

Sq. With Sq known, the problem is one-dimensional, requiring an estimation of 

the step length, α∗ . The step length signifies the distance moved along the search 

direction to find the optimal design without violating any of the constraints. Hence, 

a nonlinear gradient-based optimization algorithm can be split into two components: 

1) determining the search direction S, and 2) determining the step length, α∗ . 
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2.2.1 Determining the Search Direction 

Many methods exist to estimate the search direction for determining the optimal 

design [17]. These methods can be classified as zero-order, first-order, and second-

order methods, based on the order of objective function derivative required for the 

method. 

A zero-order method finds the optimal design solution, x ∗ , by evaluating the 

objective function, f (x), at a large number of random initial design points x. A well-

known zero-order method is Powell’s method [17], which uses successive conjugate 

steps to approximate the Hessian matrix. The Hessian matrix contains the second-

order partial derivatives of the objective function with respect to the design variables. 

The first-order methods use gradient information (first order partial derivatives) to 

find the search direction. The Steepest Descent method uses negative of the gradient 

of the objective function as the search direction for an unconstrained search. More so-

phisticated first-order methods are derived from this method. The conjugate direction 

method uses search directions that are conjugate to each other. The convergence rate 

of this method is significantly greater (faster) than to the Steepest Descent method. 

Other popular unconstrained first-order methods include variable metric methods like 

the Broyden-Fanno-Goldfarb-Shanno (BFGS) and Davidon-Fletcher-Powell (DFP) 

method. 

Newton’s method is a second-order method that uses both first- and second-

derivative information of the objective function. In this method, the search direction 

results from finding S so that rf (x + S) = 0. If the objective function is a quadratic 

function, then there is no need to find a step length. For a general function, f (x), 

Newton’s method does find a search direction, S. Because of the second-order infor-

mation, Newton’s method is more efficient than the zero-order or first-order methods. 

For computational consideration, the Hessian matrix is not updated every generation 

using an assumption that this matrix does not show any drastic changes between a 
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few successive iterations, reducing the computational burden associated with New-

ton’s method for every iteration. 

2.2.2 Determining the Step Length 

The step length is determined by solving a one-dimensional optimization problem 

- minimizing the function value along the search direction using step length, α, as the 

design variable. The most popular techniques for solving this problem are polynomial 

approximation and Golden search technique [17]. The polynomial approximation 

technique models the objective function using a polynomial curve fit. It finds the 

value of α∗ for which the first derivative of the polynomial model of the objective 

function is zero. The Golden section search technique works by dividing the design 

space into smaller portions until the optimal solution is found. This method even 

works for functions that do not possess continuous derivatives. 

2.2.3 Constraint Handling 

Constrained optimization problems can be solved using any unconstrained opti-

mization algorithm by the addition of a penalty function to the original objective 

function. The pseudo-objective function, φ(x), is expressed as follows: 

φ(x) = f(x) + rpP (x) (2.4) 

where P(x) is the penalty function, and r p is the penalty multiplier. The value of 

r p is kept constant for a complete unconstrained minimization [17]. There are three 

main types of penalty functions: exterior penalty function, interior penalty function, 

and extended interior penalty function. 

Exterior penalty functions are the easiest to implement and penalize the objective 

function only when a constraint is violated. These functions are applicable to both 

inequality and equality constraints. 
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Interior penalty functions penalize the objective functions that approach the fea-

sible design space boundary internally. This ensures that there is absolutely no con-

straint violation. These functions can only be used to enforce inequality constraints 

and require a feasible starting point. 

Extended interior penalty functions combine the advantages of exterior and inte-

rior penalty functions. The penalty function behaves as an interior penalty function 

when the constraint value is less than a small negative value �. For constraint values 

greater than �, the function becomes a linear extended penalty function. 

2.2.4 Optimality Criteria – The Karush-Kuhn-Tucker Conditions 

The Karush-Kuhn-Tucker conditions for constrained problems define the necessary 

conditions for a design to be optimal. The Lagrangian function accounts for the 

objective function and the constraint functions in a single equation. The Lagrangian 

function is expressed as: 

m lX X 
L(x, λ) = f(x) + λj gj (x) + λm+khk(x) (2.5) 

j=1 k=1 

For an optimal design x ∗ , the following Karush-Kuhn-Tucker conditions must be 

satisfied: 

1. x ∗ is feasible 

2. λj g j (x ∗) = 0 ∀ j = 1,m & λj ≥ 0 

P m Pl3. rf (x ∗) + λjrg j (x ∗) + λm+krhk(x ∗) = 0j=1 k=1 

λj ≥ 0 

λm+k unrestricted in sign 

Condition 1 states that the optimum design x ∗ must satisfy all the problem con-

straints. Condition 2 states that if constraint g j (x) is not active (i.e., g j (x ∗) < 0), 

then the corresponding Lagrange multiplier, λj , must be zero. Condition 3 states 
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the gradient of the Lagrangian function should be zero at the optimal point. This 

implies that at the optimal point, a linear combination of the gradient of the objective 

function and the gradients of the constraints must equal zero. 

For unconstrained problems, the optimal solution is found when the gradient of 

the objective function is equal to zero. The second-order derivative of the objective 

function with respect to the design variables (known as the Hessian matrix) describes 

the curvature of the objective function, stating whether the optimal solution is max-

ima or minima. For the minimum of a function, the Hessian matrix will always be 

positive definite, implying that all its eigenvalues will be greater than zero. However, 

this does not guarantee that the optimal solution will be a global minimum. Hence, 

one of the drawbacks of gradient-based optimization is that it does not guarantee a 

global optimal solution; for problems that have more than one local optimum, the 

solution obtained by the gradient-based search is dependent upon the chosen starting 

design. 

2.2.5 Sequential Quadratic Programming 

This work exploits SQP for the local search portion of the multi-fidelity hybrid 

algorithm. SQP is a well-known computationally efficient gradient-based technique 

that outperforms other gradient-based techniques for solving constrained optimization 

problems. The comparison of SQP with other gradient-based algorithms appears in 

Ref. [18]. However, as with every gradient-based technique, SQP finds a local minima 

depending on the starting point. 

The basic algorithm for SQP can essentially be divided into two parts: First, the 

algorithm finds the search direction, S, by approximating the Lagrangian function for 

the constrained problem as a quadratic function and then minimizes this approximat-

ing function with linearized constraints using quadratic programming. Second, the 

search direction so obtained is used to minimize the augmented Lagrangian to find 

the step length, α∗ . The BFGS approach updates the approximation to the quadratic 
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Figure 2.1. Flowchart for Sequential Quadratic Programming. 

Lagrangian function. These two basic steps are discussed in detail in the following 

paragraphs. 

SQP technique finds the search direction by solving a subproblem with a quadratic 

approximation to the augmented objective function, and a linear approximation to 

the constraints [17]. The subproblem is expressed as follows: 

Minimize: 

Q(S) = f(x) + rf(x)T S +
1 
ST BS (2.6)
2 

Subject to: 

rgj(x)T S + δj gj (x) ≤ 0, j = 1,m 
(2.7) 

rhk(x)T S + ¯ k = 1, l δhk(x) ≤ 0, 

where S is the search direction, B is a positive definite update matrix which is ini-

tially posed as an identity matrix. Matrix B is updated in subsequent iterations to 
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approximate eventually the Hessian of the Lagrangian function. The scalar parame-

¯ ters, δ and δ, are usually problem dependent and are added to ensure that there is 

a feasible space when using the linearized constraints. These parameters are defined 

as: 

δj = 1, gj (x) < 0 

δj = δ,̄ gj (x) ≥ 0 (2.8) 

0 ≤ δ̄  ≤ 1 

With the search direction known, the SQP algorithm now calculates the step 

length, α, using a one-dimensional search problem. The search problem here employs 

an augmented Lagrangian function, φ, with an exterior penalty function to convert 

to an unconstrained problem. The problem is expressed as follows: 

m lX X 
φ = f(x) + uj {max[0, gj (x)]} + um+k|hk(x)| (2.9) 

j=1 k=1 

q−1where, x = x + αS, 

u j = |λj|, j =1,m+l for first iteration, 

u j = max[|λj |, 1 (uj + |λj |)] for subsequent iterations, and, 2 

u 0 j = uj from the previous iteration. This one-dimensional problem is well-

conditioned and usually α = 1.0 is a very good initial estimate for α∗ [17]. 

Now once the search direction, S, and step length, α∗ , are known for updating the 

design, the SQP technique updates the matrix B for use in the subsequent iteration. 

Ref. [19] recommends the Broyden-Fanno-Goldfarb-Shanno (BFGS) update formula 

for this task. A flowchart for the SQP technique appears in Fig. 2.1. 

2.2.6 Gradient-Based Methods for Multi-Objective Optimization 

Multi-objective optimization requires simultaneous optimization of two or more 

competing objectives. These problems do not possess a single optimal solution. 

Rather, there exists a range of possible optimal solutions amongst all the objec-

tives called the Pareto-optimal set, named after Vilfredo Pareto [20]. The Pareto set 
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comprises the Pareto-optimal designs. A trade-off curve representing these designs 

forms the Pareto frontier. Mathematically, all of these Pareto-optimal designs are 

non-dominated. A non-dominated solution is a design such that there is no improve-

ment possible in any of the objective function values without degrading some of the 

other objective values. A solution x i dominates another solution x j only if the so-

lution x i performs better than or equal to x j in all objectives, plus is strictly better 

than x j in at least one objective. This relationship between the dominating design, 

x i, and the dominated design, x j , can be expressed as: 

fl(xi) ≤ fl(xj ), l = 1, ..., L 
(2.10) 

fl(xi) < fl(xj ), l ∈ [1, L] 

where L is the number of objectives. A Pareto-optimal solution cannot be dominated 

by any other solution in the design space. 

For multi-objective optimization using gradient-based methods, the multiple ob-

jectives in the problem need to be “scalarized”. This process can be undertaken using 

any one of the three approaches – 1) weighted sum approach, 2) �-constraint approach, 

and 3) goal-attainment formulation. This work implements the goal-attainment ap-

proach to solve the multi-objective local search problem embedded in the multi-fidelity 

hybrid approach. The next few paragraphs explain the weighted sum approach and 

the �-constraint approach briefly for context. A detailed explanation of the goal-

attainment approach follows. 

The weighted sum approach converts multiple objectives into a single objective 

by assigning weights to each of the objectives and then adding together the prod-

ucts of each weight coefficient and its corresponding objective function. The result 

is a single objective function. Any of the previously discussed gradient methods can 

solve the converted single objective optimization problem; if the original problem had 

constraints, the gradient-based algorithm must also handle these original constraints. 

For a specific set of weights, the optimal problem solution will lead to a single point 

on the Pareto frontier. Hence, the problem needs to be solved with different combi-

nations of weights to find multiple points on the Pareto frontier. This process can be 
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problematic, because it is very difficult to compare different functions without proper 

scaling and identify their relative weights. Also, the weighted sum approach can-

not find Pareto optimal designs in regions of the Pareto frontier where the trade-off 

between objectives is non-convex. Additional details of the weighted sum approach 

appear in sources like Ref. [21]. 

The �-constraint approach addresses multi-objective optimization by converting 

one of the multiple objectives into a single primary objective and incorporating the 

other objectives as inequality constraints that limits the maximum value these other 

objectives can have (assuming that all objectives are minimized). This approach can 

handle both convex and non-convex Pareto frontiers. The limiting constraint values 

�l are user-defined, and the epsilon-constraint problem must be solved multiple times, 

each with a different set of �l values, to find different solutions on the Pareto frontier. 

Also, a prior knowledge of the design space is often important for this approach, 

because the chosen �l values need to be within the range of possible values of their 

corresponding objective function values, for the approach to find feasible designs. 

2.2.6.1 Goal Attainment Formulation 

The goal attainment formulation solves a multi-objective problem by working to 

attain specific user-defined goal values for the multiple objectives, f Gl . This technique 

minimizes a goal attainment factor, γ, instead of a weighted or primary objective 

function. In this approach, the multiple objective functions are converted into a set 

of inequality constraints using the goal values, f Gl . Any other inequality or equality 

constraints in the problem are included alongside these objective-goal constraints. 

Solving the goal attainment problem brings the optimal design point as close as 

possible to the desired goal point by minimizing the attainment factor, γ, along the 

direction of the weight vector, w, while satisfying constraints. The weight vector 

signifies the relative importance of each objective in attaining the goal point. The 

mathematical formulation of this technique is as follows: 
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Minimize: 

γ (2.11) 

Subject to: 

fl(x) − wlγ ≤ fl
G , l = 1, ..., L 

gj (x) ≤ 0, j = 1, ..., J (2.12) 

hk(x) = 0, k = 1, ..., K 

The goal attainment technique requires two types of user-defined inputs - the goal 

points and the weight vector. Similar to the weighted sum and �-constraint approach, 

there exists a single point on the Pareto frontier for every goal attainment problem 

solution for each combination of fG and w values. 

2.2.6.2 Comments about Gradient-Based Multi-Objective Approaches 

Gradient-based multi-objective approaches are fairly effective in solving multi-

objective optimization problems. The gradient-based methods can be fast to solve, 

they can meet KT conditions and find at least “weakly” Pareto optimal solutions, 

if not “strongly” Pareto optimal solutions. However, they depend on a number of 

user-defined input values and require multiple solutions to find multiple points on the 

Pareto frontier. 

For a continuous problem that can be solved via a gradient-based method, finding 

lots of Pareto-optimal solutions via multiple solutions is still most always faster than 

the population-based EA / GA approaches. However, if the problem requires use of a 

GA, like the constrained mixed-discrete nonlinear problem, then the hybrid approach 

becomes appealing. The implementation of a population-based EA / GA approach 

can often remove the need for a user-defined set of weights. 
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2.3 Population-Based Optimization Algorithms 

Evolutionary algorithms (EA) are global optimization algorithms that depend on 

a population-based search to find a globally optimal solution. EAs do not require 

calculation of any function derivative, making them zero-order methods that depend 

only on function values calculated at different design points. EAs can solve prob-

lems with discontinuous functions and still near-globally optimum design solution 

– which the gradient based optimization techniques cannot. Further, when using 

a population-based search for problems, the population can provide a way to find 

multiple non-dominated solutions for multi-objective problems in a single run of the 

search algorithm. 

The Genetic Algorithm (GA) is one of the most well-known class of population-

based EA that finds its application in engineering design, game theory, machine learn-

ing, numerical optimization, etc [22]. The main difference between EA and GA lies 

in the fitness assignment techniques, elitism and the methods to obtain a diversified 

solution. Specifically, EA relies upon selection and almost entirely on mutation for 

its search whereas GA relies upon selection and mostly crossover for its search. This 

work employs a variant of GA as the global search component of a hybrid method to 

solve constrained multi-objective MDNLP problems. The following sections discuss 

single-objective GA and multi-objective GA variants in detail. 

2.3.1 Genetic Algorithm 

GA is a computational model of the evolution displayed by natural populations. 

Holland [23] and his students developed this algorithm in 1960s and 1970s as a com-

putational representation of the natural selection process. Since then, GA has been 

utilized for solving optimization problems. GA is inspired by Darwin’s “Theory of 

Natural Selection”, which advocates the concept of survival of the fittest. For GA, 

survival of the fittest acts as an analog to the selection of a better design in an 

optimization algorithm [22]. This analogy also includes representing the designs as 
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a population, performing selection (survival of the fittest), mutation, and crossover 

(reproduction) of designs in the current population to create new designs (offspring) 

that form the next population. GA differs from the gradient-based optimization 

approaches as it follows a probabilistic search instead of a calculus-based search, 

providing a near-global optimum solution, x ∗ . There is no mathematical proof of 

convergence of the algorithm to a global solution; hence, the ”near-global” modifier. 

The Karush-Kuhn-Tucker optimality cannot be established because the algorithm has 

no gradient information available. GA requires no initial starting point – evaluating 

all designs in the population at the same time. Instead of using the actual design 

variables, GA uses coding of the design variables – usually binary (0s and 1s) and 

in some cases, real numbers. Each encoded design variable string represents a gene; 

these genes are linked together to form a chromosome that represents an individual in 

the population. This coding equips GA with the ability to handle continuous, integer, 

and discrete design variables. Because there are some random numbers used in the 

operators for the global search, different GA runs can find different x ∗ , but usually 

these x ∗ are similar. GA is computationally expensive, because it evaluates every 

individual in each generation. The computational expense associated with GA lim-

its its applicability to problems with “high-fidelity” function evaluations that require 

even moderate amounts of computational time. 

2.3.1.1 Fitness Function and Constraint Handling 

GA is naturally suited to solve unconstrained optimization problems, because it 

uses a single fitness function value to drive the search via the selection operator. For 

constrained problems, a penalty addition approach is the most widely used technique 

to take care of any problem constraints. For implementing this technique, the fitness 

function for GA must reflect all objectives and constraints. The penalty constraint 

handling approach adds penalties to the fitness function for violation of any inequality 

or equality constraints. For constrained problems, the fitness function, φ, is given by 
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the addition of gm(x)≤0 (equality constraints) and hl(x)=0 (inequality constraints) 

to f(x) via an exterior quadratic penalty function. The expression for the fitness 

function φ appears below: 

nconX 
φ(x) = f(x) + rp cj {max[0, gj (x)]}2 (2.13) 

j=1 

where, f (x) is the objective function, r p is the penalty multiplier, ncon is the number of 

constraints, and cj is the multiplier that may be needed to reflect different constraints. 

The penalty multiplier, r p, is often a “large” number which can stay constant for the 

entire run or can vary from generation to generation. Other penalty functions for 

handling constraints include the exterior linear and the exterior step-linear penalty 

functions, expressed as follows: 

Pj (x) = cj {max[0, gj (x)]} Exterior linear ⎧ ⎨ (2.14)0 if g j (x) ≤ 0 
Pj (x) = Exterior step-linear⎩ cj [1 + gj (x)] else 

While a gradient-based approach for constrained problems must have first-order con-

tinuity (hence, the {max[0, gj (x)]}2 term in exterior quadratic penalty – commonly 

used by gradient-based approach), the GA does not have this requirement, so other 

forms – like the exterior linear and exterior step-linear penalty functions – are options. 

The penalty addition technique to handle problem constraints is inefficient. De-

signs that are infeasible, but close to the constraint boundary, may contain important 

“genetic information” that is needed to find a feasible solution that is on the feasible 

side of the constraint boundary. Too strong a penalty may remove useful “genetic 

information” from the population, while too weak a penalty might not encourage 

feasible designs. 

2.3.1.2 Design Variable Coding 

In GA, an individual design in a population is often expressed in terms of binary-

coded strings, known as chromosomes. The chromosomes comprise genes, where each 
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gene (an adjacent segment of 0s and 1s in the chromosome) represents a binary-

coded design variable. The GA implemented in this work employs Gray coding to 

encode/decode these variables. The Gray code represents discretized values of a 

design variable within its upper and lower bound, where consecutive integers are 

represented by binary numbers differing in only one digit. Hence, all the design 

variables are discretized, including the continuous variables that are converted into 

a range of discretized values based on their resolution. The resolution, r i, between 

discretized values of a continuous design variable, x i, is expressed as follows: 

xi
U − xi

L 

ri = (2.15)
2bi − 1 

where, x i
U is the upper bound on variable, x i

L is the lower bound on variable, and bi 

is the number of bits to code x i. Ideally, for representing a continuous variable, the 

number of bits should be very large to make the resolution small, but this leads to 

an increase in the computational cost of the algorithm. 

2.3.1.3 Selection Operator 

The GA selection operator mimics the survival of the fittest approach by choos-

ing which individuals out of the current population will become parents of the next 

generation of designs. The classical binary tournament selection technique is one of 

the most common selection operator, and is employed in this work. 

The tournament selection puts the current generation individuals in an empty pot, 

called P1 for the discussion here. This technique randomly selects two individuals 

from P1 without replacement, and conducts a tournament that compares these two 

individuals based on their fitness function values. If the optimization problem intends 

to minimize the objective function, then the individual with lower fitness value (better 

design) is copied to the parent pool pot, P2. This process is repeated until P1 is 

empty, and the parent pool P2 is half full. The technique then refills the pot P1 

with the current generation individuals and conducts a second tournament until the 

pot P1 is again empty. This way, every design in the current population competes 
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twice so that the best design gets two copies in the parent pool while the worst design 

is automatically rejected from further consideration. To keep the selection process 

simple, the parent pool has the size as the population size. 

2.3.1.4 Crossover Operator 

The crossover operator mimics the natural process of reproduction in which the 

genes from the parents are passed-on to the children. For computational simplicity, 

this work assumes that two parents form two children. A number of crossover tech-

niques exist in the literature, such as: binary crossover, single point crossover, and 

multi-point crossover. Binary crossover has proven to be effective with the binary-

coded GA and tournament selection approach, as suggested in Ref. [24]. The binary 

crossover technique transfers bits from a parent to a child based on a probability 

function. For uniform crossover, the first child receives the bit from the first parent 

with a 50% chance. This work employs uniform crossover technique to generate the 

next generation of points. 

2.3.1.5 Mutation Operator 

The mutation operator introduces new “genetic patterns” not present in the pre-

vious population. The probability of mutation is less than one percent. Williams and 

Crossley [24] derived the following empirical formula for mutation rate concerning 

binary-coded GAs using uniform crossover: 

l + 1 
Pm = (2.16)

2Npopl 

where l is the length of chromosome, and N pop is the population size. A high Pm 

value implies more exploration of the design space and an increased randomness in 

the search. 
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2.3.1.6 Elitism 

Elitism is a technique to ensure that the best designs from the current generation 

pass directly to the next generation. Often this process is undertaken by replacing 

the worst individual designs in the current population by the best designs from the 

previous generations. This ensures that the best designs or the lowest fitness value 

(when minimizing an objective function) is not lost by mutation or design space 

exploration in the subsequent generations. 

2.3.2 Multi-Objective Evolutionary Algorithms 

As discussed in the previous section, single-objective EA finds only one near-

global optimal solution. However, for a problem with multiple competing objectives, 

the ability of EA to explore the whole design space can lead to a Pareto-optimal 

set of solutions in one run of the algorithm. This capability of EA to find a set of 

trade-off designs as the generations progress makes it suitable for application to multi-

objective problems. Several multi-objective GA approaches are available in literature, 

the earliest one being Vector Evaluated GA (VEGA), proposed by Schaffer [25] in 

1985. A comprehensive list of several multi-objective evolutionary algorithms appears 

in Refs. [26–28]. Ref. [29] provides a detailed comparison of various multi-objective 

optimization algorithms. 

Strength Pareto Evolutionary Algorithm (SPEA & SPEA-II) [5] is an elitist multi-

criterion EA which implements elitism by maintaining a fixed number of designs in the 

non-dominated set. Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) [30,31] 

is one of the most widely accepted multi-objective EA. This algorithm implements the 

idea of non-dominated sorting to evolve to a Pareto frontier. Basically, the combined 

parent and offspring population (2N ) is divided into a number of non-dominated sets 

based on their level of dominance in the design space. The non-dominated sets are 

collected in a set of N designs based on their dominance, forming the parent pool for 
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the next generation. NSGA-II tends to suffer from a slow convergence rate after a 

few generations. 

2.3.2.1 Two-Branch Tournament Genetic Algorithm 

Crossley et al. [15] proposed the two-branch tournament GA with the motivation 

to compare designs on the basis of both the two competing objectives, rather than 

a single converted objective value. The overall process remains the same as the 

traditional GA with a modification in the tournament selection operator. The first 

branch of the selection operator assesses the individuals with respect to the first 

objective, while the second branch assesses the individuals with respect to the second 

objective. Fig. 2.2 shows the two-branch tournament selection GA using a flowchart. 

Figure 2.2. Flowchart for the two-branch tournament selection Ge-
netic Algorithm [adapted from Ref. [15] (with permission)] 
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In this approach, the entire population is placed in a pot. Two individuals are 

randomly selected without replacement and compared on the basis of the first objec-

tive, φ1. The better performing individual (having lower fitness value if the objective 

functions are minimized) is copied to the parent pool. This process is repeated until 

the pot is empty. At the end of the first tournament, the individuals in the parent 

pool are by nature strong in objective 1, or φ1 strong. The pot is refilled and a similar 

tournament is conducted with respect to objective 2, adding φ2 strong individuals to 

the parent pool. The crossover of two randomly selected parents hence results in 

25% φ1 -φ1 strong parents, 25% φ2 -φ2 strong parents, and 50% φ1 -φ2 strong parents. 

A modified two-branch tournament selection technique [3] is exploited as the global 

search optimizer for this thesis work. This modified approach is explained in detail 

in the next chapter. 

2.4 Overview of Hybrid Optimization Approach 

With the background discussion of gradient-based optimization techniques and 

population-based search algorithms presented in Sections 2.2 and 2.3, this section 

summarizes the need for and the limitations of the hybrid approach presented in 

Refs. [1–3] for constrained multi-objective MDNLP problems. This summary first 

discusses the benefit of creating the hybrid approach and then throws light on one of 

its major drawbacks, leading to proposal of the multi-fidelity approach developed for 

this thesis. 

The motivation for the hybrid approach comes from the desire to mitigate the 

drawbacks of both the gradient-based optimization techniques and population-based 

search algorithms for solving constrained multi-objective MDNLP problems. As de-

scribed in the previous sections, SQP – a gradient-based technique – cannot handle 

discrete design variables and tends to converge to a local optima because the under-

lying search works to satisfy conditions for a local optimum. However, SQP has the 

capability to enforce the constraints directly and strictly, and the solution obtained 
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by SQP can meet the conditions for local optimality. On the other hand, GA – a 

population-based search algorithm – cannot handle constraints directly and strictly. 

However, the GA can handle discrete variables while using its population search strat-

egy to find a near-global optimum solution, but there is no associated way to show 

optimality of the solution. The combination of these algorithms allows SQP to handle 

the constraints and perform local optimization using the goal-attainment formulation, 

while the modified two-branch tournament GA performs population-based search and 

handles the discrete variables. The modified two-branch tournament GA can be ex-

tended to handle more than two-objectives, forming the N-branch tournament GA. 

As discussed back in Section 2.1, the two-branch tournament GA acts as the “overall” 

search strategy, and the fitness evaluation of each individual uses SQP to solve a goal 

attainment problem for the set of discrete variable values in the individual’s chro-

mosome, while using the continuous variable values in the chromosome as the initial 

point for the SQP. This leads to a set of non-dominated design solutions that meet 

local optimality conditions, and this set of designs represents the best trade-offs be-

tween both objectives in a two-objective problem. Hence, both of the algorithms can 

complement each other and improve the overall optimization process for constrained 

multi-objective MDNLP problems. 

However, the hybrid approach, as employed in Refs. [1–3] is computationally ex-

pensive because each GA-level fitness evaluation requires a local optimization. If 

the SQP uses finite-difference derivatives, each of these local optimizations will re-

quire many function evaluations. So, for every individual in the GA population, the 

hybrid algorithm performs a local search. Then, if those function evaluations use 

“high-fidelity” analyses, the solution time for each of these fitness evaluation / local 

optimizations might be very high. The hybrid approach requires more function evalu-

ations than the standalone GA itself. The standalone GA requires one “high-fidelity” 

analysis for each fitness evaluation, resulting in number of fitness evaluations equal to 

the number of individuals multiplied by the number of generations that the GA runs. 

Whereas, for the same problem, the hybrid approach will require a number of fitness 
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evaluations equal to the product of the number of individuals, the number of function 

evaluations conducted during local optimization of every individual, and the number 

of generations that the GA runs. The high computational time and cost involved 

with the hybrid approach can be demonstrated using an example. Assume that each 

“high-fidelity” function evaluation takes two minutes to complete, the population 

size for the modified two-branch tournament GA is set to 48, and the upper limit of 

function evaluations for SQP with goal-attainment formulation is set to 300 for every 

individual in the population. Hypothetically assuming that each individual requires 

an average of 150 function evaluations for the SQP search in every generation, and the 

GA terminates after 50 generations, the total number of function evaluations would 

be, 48∗150∗50 = 360,000. This would result in a computational time of approximately 

500 days (in serial computation) to generate a set of non-dominated solutions to this 

multi-objective problem, which clearly shows that the hybrid approach is inefficient 

for problems requiring analyses with modest computational cost. 

The hybrid approach presents a promising technique to simultaneously address 

multiple competing objectives, nonlinear design space, and mix of categorically dis-

crete and continuous design variables. These features compel the author to employ 

this hybrid technique as a backbone for the proposed multi-fidelity approach to solve 

constrained multi-objective MDNLP problems within a limited computational bud-

get. To increase the efficiency of the hybrid approach, the author computationally 

assists the hybrid algorithm by utilizing “low-fidelity” function evaluations from ap-

proximation/surrogate models, reducing the computational cost involved in solving 

constrained multi-objective optimization problems. 

2.5 Surrogate Modeling 

Surrogate models are analytic models that approximate the input / output be-

havior of complex mathematical models or systems. The surrogate models are con-

structed from a finite set of actual calculations using the complex mathematical 
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model; these actual calculations are considered the “high-fidelity” analyses in the 

context of design optimization. A surrogate model approximates the output of a com-

plex mathematical model at design points outside the limited set of “high-fidelity” 

points used to construct them. The purpose of a surrogate model is to reduce the 

computational time to perform an analysis; this reduction in computational time has 

an associated modeling error that can often make the surrogate less accurate than 

the original analysis. In simple words, surrogate modeling leads to the construction 

of an approximation model that tries to represent the response of simulation models 

for different design points. Because a surrogate is actually a model of a complex 

simulation model, it can also be termed as a metamodel [32]. 

There are two contexts for surrogate model construction. The first context is the 

global surrogate modeling in which the surrogate model represents the whole problem 

design space (i.e., the surrogate model predicts responses for any combination of 

variable values within the bounds of the problem). A global surrogate model generally 

sacrifices accuracy of prediction. Global surrogate models tend to provide “gross” 

representations of the functions, but with limited detail. A specific instance of this 

might be when a problem has multiple local minima that the surrogate model cannot 

reflect. The second context is the local surrogate modeling wherein the surrogate 

model represents only a specific region of the multi-modal design space. This local 

context might provide a higher accuracy through the ability to reflect more detailed 

behavior of the functions because the approximation is made over a very small range 

of the possible design variable values. 

A number of surrogate modeling strategies exist; the literature describing these 

generally differentiate the strategies by the combination of basis functions deployed 

to construct the model [33, 34]. Most strategies follow the steps listed below [35]: 

1. Identify the basis function. 

2. Design an experiment or plan a sampling strategy to find design points to 

construct the surrogate. 



28 

3. Conduct “high-fidelity” analyses (simulation experiments) for a limited set of 

design points (known as the training points or sample points). 

4. Construct the surrogate to fit the training data. 

5. Assess the adequacy of the surrogate model (confidence intervals, hypothesis 

tests, lack of fit and other model diagnostics). 

The surrogate model maps a computationally expensive function y = f (x) with 

ˆk design variables to an approximating function ŷ = f (x) using the “high-fidelity” 

function values for evaluations at n training points, where x ∈ D ⊂ Rk . D denotes 

the design space, which is the domain defined by the design variables, k. Each i th 

(i) (i)
training point and its actual function value is denoted by x(i) = (x 1 ,...,x k ) and 

y (i) = y(x(i)) respectively. The approximating function ŷ then cheaply predicts the 

value of the expensive black-box function at any desired point in the design space, D. 

Because ŷ also includes modeling error, ŷ provides a ”low-fidelity” analysis for y. 

The following section reviews different surrogate modeling strategies based on 

their basis functions. Although there are many surrogate modeling strategies, the 

section reviews only those two that are most relevant to this work – the interpolating 

surrogate models – Kriging models and RBF models. 

2.5.1 Kriging Models 

Kriging models are interpolating surrogate models that predict a more expensive 

or complicated function value at a specific point by computing a weighted average of 

the known values of the function in the neighborhood of the point. Danie G. Krige 

developed this approximation model for mining engineering with the motivation to es-

timate the most likely distribution of gold based on samples from a few boreholes [36]. 

Initial efforts for application of Kriging to computer experiments appears in Ref. [37]. 

Since then Kriging has been widely used to approximate nonlinear, computationally 

expensive objective and constraint functions in optimization problems [38–46]. 
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Kriging models are a function of the spatial distance between design points, with 

their basis function given by the following mathematical expression: 

kX 
ψ(i) = exp(− θj |x(i) − xj |pj ) (2.17)j 

j=1 

where x denotes the design points, k denotes the number of design variables, and θj 

and pj are correlation parameters. θj is essentially a ‘width’ parameter that signifies 

how far a design point’s influence extends, and the value of θj typically lies between 

10−3 and 100 [33]. pj acts like a ‘smoothness’ parameter, and its value varies between 0 

and 2. As the design points get close to each other, the spatial distance between them 

tends to zero, causing the right hand side of Eq. 2.17 to approach a value of unity. 

Hence, the highest correlation occurs when the points are closest. Using a similar 

logic, points with a greatest distance from each other have the lowest correlation [33]. 

Kriging models provide function approximations by linearly combining a global 

trend function, µ, with a random process, Z (x), given by the following expression [46]: 

y(x) = µ + Z(x) (2.18) 

where k is the number of basis functions, y(x) is the unknown function value, and 

Z (x) is a stochastic process with mean zero, variance σ2 , and non-zero covariance 

[33, 45–47]. 

The spatial correlation function for constructing Kriging models is given by the 

following mathematical expression: 

kX 
(i) (l)

R[Z(x i), Z(x l)] = exp(− θj |x − x |pj ) (2.19)j j 
j=1 

For n sample design points, the correlation matrix R is a n × n matrix with its (i th , 

j th) element given by R[Z (xi), Z (xl)]. The spatial correlation function shown in Eq. 

2.17 and Eq. 2.19 corresponds to the general exponential function, which includes 

the exponential and Gaussian correlation functions. However, a number of different 

correlation functions exist, listed in Table 2.1 [48,49]. This work employs the general 

exponential correlation function to build the Kriging models. 
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Table 2.1. Correlation functions for Kriging surrogate models. 

Correlation Function Rj (θj , x1, x2) 

Exponential exp(−θj |x2 − x1|) 

General Exponential exp(−θj |x2 − x1|pj ), 0 < pj < 2 

Gaussian exp(−θj |x2 − x1|2) 

Linear max{0, 1 − θj |x2 − x1|} 

Spherical 1 − 1.5ξj + 0.5ξ3 
j , ξ = min{1, θj |x2 − x1|} 

Cubic 1 − 3ξ2 
j + 2ξ3 

j , ξ = min{1, θj |x2 − x1|} 

To formulate the Kriging surrogate model, 2k + 2 hyper-parameters need to be 

determined. These include k unknown θj values, k unknown pj values, the σ2 value, 

and the constant µ (leading to 2k+2 unknown hyper-parameters). These parameters 

are estimated by maximizing the likelihood function given by the following expression: 

1 (y − 1µ̂)T R−1(y − 1µ̂)
L = q exp[−

(2π σ̂2)n|R| 2 σ̂2 
] (2.20) 

where 1 denotes a k -dimensional unit vector, and, µ̂ and σ̂2 denote the maximum 

likelihood estimates for µ and σ2 respectively. 

σ̂2The maximum likelihood estimates for µ̂ and are obtained by taking partial 

derivatives (with respect to µ̂ and σ̂2) of the natural logarithm of the likelihood 

function (log-likelihood function) given in Eq. 2.20. Equating these two expressions 

to zero gives, 
1T R−1 y 

µ̂ = (2.21)
1T R−11 

(y − 1µ)T R−1(y − 1µ)
σ̂2 = (2.22) 

n 

Substituting the values of µ̂ and σ̂2 obtained in Eq. 2.21 and 2.22 into Eq. 2.20, 

the likelihood function depends only on θj and pj . These hyper-parameter values are 

obtained by solving a 2k dimensional unconstrained non-linear optimization prob-

lem; maximizing the likelihood function with θj and pj as decision variables. This 
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NLP problem can be solved by using either evolutionary algorithms (such as GA or 

Simulated Annealing) or using gradient-based algorithms (such as SQP or Newton-

Raphson method). Because this is a global optimization problem with many possible 

local optima, using a gradient-based search requires a multi-start approach to find the 

hyper-parameters. The θj and pj values from this log-likelihood problem are used to 

evaluate R, µ, and σ2 . The following expression gives the linear estimator to predict 

the function value, ŷ, at any point x using the Kriging model. 

ŷ(x) = µ̂+ r T (x)R−1(y − 1µ̂) (2.23) 

where ŷ  is the predicted function value at design point x, and rT is the correlation 

vector between x and the sampled design points {x1,...,xn,}, expressed as: 

r T (x) = [R(x, x1), ..., R(x, xn)]
T (2.24) 

Forrester et al. [33] recommend Kriging as a good surrogate modeling strategy 

for problems having less than 20 design variables (k) with a sample size (n) limited 

to 500 points. Although, Kriging models show great promise for building accurate 

global approximations of a design space [37], the additional effort required to solve for 

the hyper-parameters increases the computational time required to construct these 

approximation models, making them computationally expensive when compared to 

simple response surface models. 

This work initially investigated Kriging models as a surrogate modeling strategy to 

approximate function / constraint values to solve MDNLP problems using proposed 

the multi-fidelity hybrid approach. Later, this work replaces the Kriging models with 

simpler (and, hence, comparatively computationally cheaper) RBF models, without 

altering any other aspect of the multi-fidelity hybrid approach. 

2.5.2 Radial Basis Function Models 

The RBF method is one of the primary tools to develop approximation models for 

multidimensional scattered data. Rolland Hardy [50] developed this approximation 
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method for modeling irregular topographical contours of geographical data. The past 

two decades have witnessed an increasing interest in this simple yet effective modeling 

strategy [51–60]. 

RBF models are real-valued approximation functions whose values depend on their 

distance from the origin or a certain point c, known as a center. The center is a subset 

of the “high-fidelity” design points that act as the training points (or sample points) 

for making the RBF model. The RBF approximation (f̂) is given by the following 

mathematical expression [33]: 

ncX 
T Φ = (j) − c (j)f̂(x(j)) = w wiφ(||x (i)||) = y (2.25) 

i=1 

where j = {1,...n}, w denotes the basis weights, c(i) denotes the i th of the nc basis 

centers, and Φ contains the values of the basis functions φ evaluated at Euclidean 

(i)distance between the sample design point x and the basis center c . Although Eq. 

2.25 shows that the predictor, f̂ , is linear in terms of basis function weights w, it 

can still predict highly nonlinear function values. Hence, RBF modeling strategy can 

be implemented to model nonlinear design space containing multiple local minima / 

maxima. 

The approximation strategy shown in Eq. 2.25 is similar to the artificial neural 

network approach. This formulation represents a single-layer neural network with 

radial coordinate neurons, having an input x, hidden units Φ, weights w, linear 

output transfer functions and output f̂(x) [33]. 

This work uses RBF models with a series of basis functions that are symmetric and 

centered at each sample point, which means that the basis center actually coincides 

(i) (i) 1with the sample points – c = x , where x = {x ,...,xn}. This leads to Eq. 2.26 [33]: 

Φw = y (2.26) 

where Φ denotes the Gram matrix, and y = {y1 ,...,yn} denotes the known function 

values at the sample points x. The Gram matrix is defined as follows: 

Φi,j = φ(||x(i) − x(j)||) (2.27) 



33 

Table 2.2. Common basis functions for RBF modeling. 

Type of Basis Function φ(r) 

Linear r 

Cubic 3r

Thin plate spline 2r log r 

Gaussian −r2/(2σ2)e

Multiquadric 2 + σ2)1/2(r

Inverse multiquadric 2 + σ2)−1/2(r

Φ−1with i,j = {1,...n}. The weights, w, are calculated using w = y. However, the 

choice of the basis function φ affects the calculation of the weights. 

The various basis functions for modeling RBF approximations appear in Table 

2.2. Linear, cubic and thin-plate spline basis functions are known as fixed basis 

functions. For these functions, the number of parameters to be estimated for RBF 

approximation stands at one for each basis function. Gaussian, multiquadric and 

inverse multiquadric basis functions are known as parametric basis functions. These 

basis functions represent the nonlinear design space much better than the fixed ba-

sis functions at the expense of a more complex parameter estimation process. This 

involves the estimation of σ as an extra parameter introduced via the parametric 

basis functions along with estimating the weights, w. Usually the value of σ is taken 

to be same for all basis centers, increasing the generalization of the RBF model at 

the expense of estimating just one extra parameter as compared to the fixed basis 

functions. Taking a closer look at the Gaussian basis functions, choosing different σ 

values for each basis center eventually leads to the Kriging basis function given in Eq. 

2.17. Hence, the RBF Gaussian basis function is actually a simplified version of the 

Kriging basis function, with fewer parameters to be solved for RBF Gaussian mod-

eling leading to a lower computational burden when compared to Kriging surrogate 

modeling. 
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The Gaussian and multiquadric functions are one of the most popular basis func-

tions among those listed in Table 2.2. The reason for their popularity can be at-

tributed to the their ability to generate a positive definite symmetric Gram matrix 

while computing the weights, w, using Cholesky factorization [61]. Cholesky fac-

torization is a technique that decomposes a positive definite symmetric matrix into 

an upper triangular matrix and its transpose, used for numerical calculation of the 

inverse of a matrix. However, very close proximity of two sample points can lead to 

ill-conditioning of the Gram matrix, because the distance between x(i) and x(j) is so 

small that Φi,j approaches zero, causing the Cholesky factorization to fail. This issue 

will not cause any problems when a space-filling sampling plan is used for the sampling 

points, because a space-filling plan intentionally scatters sample points throughout 

the design space. However, if clusters of sampling points focusing on a specific region 

of the design space are used, RBF modeling could fail. 

This works uses RBF modeling with a provision to ensure that the sampling design 

points do not get too close to each other, ensuring that RBF modeling does not fail. 

The motivation to integrate RBF with the multi-fidelity hybrid approach for the latter 

part of this work comes from the lower number of parameters that must be estimated 

when constructing RBF models. 

2.5.3 Sampling Strategies 

For generating a global surrogate model, it is important to use sampling points 

that exhibit good coverage of the whole design space. A good sampling strategy works 

to find these points, ultimately leading to the formation of a good surrogate model 

that better represents the design space. Because the accuracy of approximation is 

better at a design point close to one of the sample points than at a point further away 

from them, it would be beneficial to have a sampling plan that spreads the sample 

points uniformly throughout the design space (space-filling sampling plan). Some 

of the methods to create a uniform spread of the space-filling include full-factorial 
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sampling, Latin-Hypercube Sampling (LHS), Monte-Carlo methods, orthogonal ar-

rays [33]. Based on the work in Ref. [62], this work employs LHS technique to generate 

the initial set of sampling points (replacing the randomly-generated initial popula-

tion in the hybrid approach [1–3] with an LHS approach in the multi-fidelity approach 

presented in this work), so the next subsection describes this. 

2.5.3.1 Latin-Hypercube Sampling 

LHS technique works by partitioning the design space into equal sized hypercubes 

and placing a point in each hypercube, ensuring that if the design space is exited along 

any direction parallel to any axes, no other filled hypercube would be encountered. 

This work uses MATLAB’s Statistics Toolbox [63] to generate the LHS sampling. The 

LHS design in the toolbox is based on the “maximin” criterion, developed by Johnson 

et al. [64]. This criterion tends to generate a space-filling sampling by maximizing 

the minimum distance between all the sample points. 

2.6 Surrogate-Based Optimization 

The motivation behind surrogate-based optimization is to limit the number of 

“high-fidelity” function evaluations (computationally expensive actual function eval-

uations) to as few as possible. These optimization techniques use surrogate models 

to approximate function / constraint values with much faster to evaluate functions, 

which leads to a significant reduction in the computational time required to solve 

an optimization problem. This reduction in computational time, and hence cost, 

can be directly attributed to the reduction in the number of “high-fidelity” function 

evaluations required by these surrogate-based optimization techniques. 

Surrogate-based optimization has recently gained popularity for solving problems 

with expensive objective / constraint functions [55,56,65,66]. Examples of surrogate-

based optimization to complex engineering problems appear in Refs. [33, 52] 
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Jones et al. [38] developed the popular surrogate-based optimization technique 

– Efficient Global Optimization (EGO) – which combines a Bayesian approach with 

Kriging surrogate modeling to reduce the function evaluations for global search, while 

handling only continuous variables. 

Several new surrogate-based optimization techniques that can handle mixed inte-

ger programming problems have appeared recently; see, for example, Refs. [59,60,67, 

68]. One of these techniques is Surrogate Optimization-Mixed Integer (SO-MI) [59], 

which uses a stochastic sampling approach to determine new training points (also 

know as infill points) for constructing (or updating) the surrogate models. This tech-

nique uses cubic RBF models, while implementing a branch-and-bound approach to 

handle the integer variables. An updated version of this approach is Mixed-Integer 

Surrogate Optimization (MISO) [60], which uses several sampling strategies to de-

termine the infill points for updating the RBF models. Very recently, Muller and 

Woodbury developed Global Optimization with Surrogate Approximation of Con-

straints (GOSAC) [69], which uses a two-phase optimization approach with RBF 

models to solve mixed-integer problems with computationally cheap objective func-

tion and expensive black-box constraints. Roy [70–72] developed a mixed-integer 

EGO framework employing Kriging models for large-scale problems and leverages the 

computationally efficient framework of NASA’s Open source Multidisciplinary Design 

Analysis and Optimization (OpenMDAO) to solve a simultaneous aircraft design, air-

line allocation and revenue management problem. 

To handle both continuous and discrete variables, Kolencherry [62, 73] combined 

surrogate modeling techniques with a single objective binary-coded genetic algorithm 

to find optimum design solutions using sequential Kriging surrogate modeling. This 

technique approximated function values using Kriging models and selectively replaced 

the design point having the worst “low-fidelity” fitness with the design point having 

the best “low-fidelity” fitness. A “high-fidelity” function evaluation of the best point 

was conducted, and this point was used to update the Kriging model in the next 

iteration. This reduced the number of “high-fidelity” runs required by the GA for 
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global optimization. However, this approach suffers from the same constraint handling 

issues as a traditional GA and uses an exterior penalty function to reflect constraints 

in the fitness function. 

The key to obtaining a global solution using surrogate-based approach lies in the 

balance between exploiting the surrogate (local search near the expected minima 

where the prediction error of objective / constraint values using the surrogate is 

expected to be low) and exploring the design space (global search where prediction 

error of objective and / or constraint values using the surrogate is expected to be 

high). This work leverages surrogates for conducting the local search portion of the 

multi-fidelity hybrid algorithm, while relying on “high-fidelity” analyses for the global 

search. This reduces the number of “high-fidelity” function evaluations associated 

with the hybrid algorithm, making it more efficient to solve complex engineering 

problems. 
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3. MULTI-FIDELITY APPROACH FOR CONSTRAINED 

MULTI-OBJECTIVE MIXED DISCRETE NONLINEAR 

PROGRAMMING PROBLEMS 

As discussed in the previous chapter, the standalone hybrid approach [1–3] can solve 

constrained multi-objective MDNLP problems by combining global search using an 

evolutionary algorithm with a gradient-based local search technique. However, using 

a gradient-based approach that requires “high-fidelity” models for evaluating objec-

tive(s) and / or constraints is computationally expensive. To reduce the computa-

tional cost of the standalone hybrid approach, this work exploits surrogate modeling 

techniques. 

3.1 Methods and Approach 

The proposed multi-fidelity hybrid algorithm combines the modified two-branch 

tournament GA for global search with surrogate-assisted local search using the goal 

attainment SQP algorithm provided in the fgoalattain solver available in the MAT-

LAB Optimization Toolbox [74]. The problem statement for the proposed algorithm 

contains three components – surrogate models, two-branch tournament genetic algo-

rithm, and sequential quadratic programming. These components are explained in 

detail in the following sections. 

3.1.1 Surrogate Models 

The multi-fidelity approach first builds global surrogate models for each objective 

and constraint function in the problem, providing “low-fidelity” approximations for 

all objective and constraint functions during the local search phase of the algorithm. 
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The LHS technique generates the initial population for the two-branch tournament 

GA. This initial population acts as a sample set for constructing the initial global 

surrogate models. The LHS generated initial population is different than the more 

traditional, randomly generated initial population. The sample set and hence, the 

surrogate models, are updated every generation by selectively adding design points 

obtained after the local search conducted by the SQP algorithm. The sample set 

for constructing the surrogate models is always scaled between 0 and 1, as recom-

mended by Forrester et al. in Ref. [33]. This means that the smallest design variable 

value (lower bound of design variable) corresponds to zero, the largest design variable 

value (upper bound of design variable) corresponds to 1; almost always via a linear 

transformation. 

The combination of GA and SQP works to to converge the GA population to 

a representation of the Pareto frontier. With every subsequent GA generation, the 

GA population converges along the Pareto frontier and after several generations, the 

population tends to focus along this frontier. This leads to the issue where design 

points or individuals in the GA population might be very close to the design points 

present in the sample set for constructing the surrogate models, while still being 

spread out in the design space that corresponds to Pareto optimal designs. Design 

points with very close proximity to each other (or clusters of points in a specific 

region of the design space) tend to cause matrix ill-conditioning issues – leading to 

the failure of Cholesky factorization while building surrogate models, as mentioned in 

Section 2.5.2. An acceptance criterion works to prevent this matrix ill-conditioning 

by accepting new points for inclusion in the sample set on the basis of their spatial 

distance from the points already in the sample set. This acceptance criterion is 

explained in detail in Section 3.2.1. 

This thesis research initially investigated Kriging as the surrogate modeling strat-

egy and thereafter used RBF for surrogate modeling due to the inherent benefit that 

the process of constructing RBF surrogate models is computationally cheaper than 

constructing Kriging models (discussed in Section 2.5.1). However, the multi-fidelity 



41 

hybrid algorithm framework can use almost any (or maybe any) surrogate modeling 

strategy for approximations in the local search / fitness evaluation. 

3.1.1.1 Kriging Models 

In this research, the Kriging models are based on the Kriging toolbox setup of 

Forrester at al. [33]. However, two changes have been embedded in this setup. 

• First, to find the optimum value of the correlation function parameters, θj , 

this work employs a multi-start approach using MATLAB’s constrained non-

linear optimization solver fmincon [75], with 12 different sets of initial θj values, 

typically varying from 10−3 to 100 [33], generated using the LHS method. The 

reason for performing twelve initial starting values of θj (instead of any other 

random number) lies in the fact that the server used for conducting the runs 

connects to 12 parallel processors at once. Hence, performing 12 fmincon runs in 

parallel took similar time as compared to a single fmincon run. In this manner, 

the multi-start local search helps find very good values for θj without the very 

high expense of conducting a non-gradient global search for θj . Reference [49] 

implements a similar scheme to find the correlation function parameters. 

• Second, the Kriging basis function in this setup uses a general exponential 

correlation function with a small modification – the correlation parameter pj is 

same for all the design variables, essentially making it scalar p ranging from 0 to 

2 (refer to Table 2.1). Reference [76] shows a comparison of the various Kriging 

correlation functions possible. The parameter p is an additional variable along 

with the θj values found using the fmincon solver to maximize the log-likelihood 

function. 
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3.1.1.2 Radial Basis Function Models 

The RBF models implemented in this work are based on the SURROGATES 

toolbox setup [77], using the RBF models by Jekabsons [78]. This work employs 

Gaussian basis functions for constructing the RBF models. The extra parameter, 

σ, is not calculated using an optimization problem, instead, the work here uses a 

fixed value throughout the entire run of the multi-fidelity framework to solve the 

constrained multi-objective MDNLP problem. Using an approach that keeps σ fixed 

for the entire helps to reduce the computational time required to construct and update 

the RBF models. 

Estimating σ Value for RBF models: For this work, the σ value for con-

structing the RBF models is estimated by using a directed trial-and-error approach. 

This involves computing the prediction error of the objective and constraint RBF 

models by implementing the Leave One Out Cross Validation (LOOCV) technique 

for different σ values. The author recommends using 0.1, 0.5, 1.0, and 1.5 as the 

initial trial σ values for this approach. 

The LOOCV technique tests the accuracy of a surrogate model by separating the 

sample set into two parts. For n points in a sample set, LOOCV uses n – 1 points to 

construct a surrogate model and then calculates a prediction error for the remaining 

point using the same surrogate model. This process is repeated until every point 

in the sample set is left out once from forming a surrogate model and a prediction 

error is computed for the left out sample point by using the surrogate predicted value 

and its actual “high-fidelity” function value. The accuracy of the RBF model is then 

quantified by calculating its Root Mean Square (RMS) error value using the predicted 

errors obtained for every sample point. 

The author recommends running the multi-fidelity hybrid algorithm for three GA 

generations using each of the initial trial σ values. This trial-and-error approach 

calculates the RMS error values for all the objective and constraint RBF models after 

the completion of the third GA generation. These error values obtained for all the 
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RBF models using different σ values are then compared to identify the σ value that 

leads to minimum prediction error (given by the minimum RMS error value) for all 

(or most) of the objective and constraint RBF models. This σ value is considered to 

be suitable for constructing the RBF models for a particular problem. Usually the σ 

value is problem dependent and tends to vary from problem to problem. The author 

recommends searching for a more suitable σ value by conducting the same trial-and-

error approach for some more integer values close to the chosen σ value. The value 

of σ stays constant throughout the algorithm run for every problem. A study of the 

change in prediction error of the RBF models by using the same σ value throughout 

the optimization run appears in Section 4.1.2.3. This is a somewhat ad hoc approach, 

but it provides a computationally efficient approach that – for the problems solved 

here – provides good results. 

3.1.2 Two-Branch Tournament Genetic Algorithm 

The two-branch tournament GA solves an unconstrained multi-objective optimiza-

tion problem with both the continuous and discrete variables. The multi-objective 

GA already formulated in the standalone hybrid approach [1–3] employs a modified 

two branch tournament selection technique, along with the mutation and crossover 

operators. The design variables represented in the chromosome of every individual 

in the GA act as starting points for the local search to evaluate that individual’s 

fitness function. However, only the continuous variables (xc) undergo minimization 

using the SQP algorithm and the discrete variables remain constant throughout this 

goal-attainment search. The formulation for two-branch tournament GA appears 

below: 

Minimize: 

f1(xd, xc 
0) 

(3.1) 
f2(xd, xc 

0) 
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Subject to: 

0)L 0)U(xc i ≤ xi ≤ (xc i 
(3.2) 

(xd)i ∈ A,B,C,D, ... (Discrete variables) 

where, x0 
c is the vector of initial continuous variable values (starting point) used in 

the local search, and xd is the set of discrete variable values that remain constant 

throughout the SQP optimization. 

3.1.2.1 Modified Two-branch Tournament Selection 

The modified two-branch tournament selection employed in the standalone hybrid 

approach [1–3] divides the parents into three sub-pools. This is in addition to the two 

parent pools (based on the fitness function associated with the first objective, φ1, and 

second objective, φ2) already created in the original two-branch tournament selection 

approach [15] for crossover (refer to Section 2.3.2). The first sub-pool contains 

φ1 -φ1 type parents, the second sub-pool contains φ2 -φ2 type parents, and the third 

sub-pool contains φ1 -φ2 type parents, all paired for crossover operation within their 

respective sub-pools. The modified two-branch tournament requires the population 

size to always be a multiple of 8, i.e., 8n, to enable the formation of sub-pools as 

explained in the following example. 

Fig. 3.1 illustrates the modified tournament selection technique with an example. 

Consider the population size to be 8 (n = 1). After the two-branch tournament 

selection process, 4 parents are φ1-strong (i.e., they were selected based upon their 

performance in the first objective function) and the other 4 are φ2-strong (similarly, 

selected based upon their performance on the second objective function), divided into 

separate parent pools. The modified tournament selection further divides the parent 

pool into sub-pools using selective parent mixing. Half of the parents from pool 1 

are randomly moved to sub-pool 1, creating a mix of φ1 -φ1 type parents that would 

lead to φ1-strong offspring after crossover. Similarly, half of the parents from pool 2 

are randomly moved to sub-pool 2, creating a mix of φ2 -φ2 type parents that would 
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Figure 3.1. Illustration of the modified two-branch tournament selec-
tion [adapted from Ref. [1, 3] (with permission)]. 

lead to φ2-strong offspring after crossover. The remaining parent population from 

both parent pools is moved to sub-pool 3, allowing crossover between φ1-strong and 

φ2-strong parents. 

3.1.3 Goal Programming via Sequential Quadratic Programming 

The SQP algorithm searches the continuous design space using the goal-attainment 

formulation to find non-dominated trade-off designs that represent a Pareto frontier, 

similar to the standalone hybrid approach [1–3]. The fgoalattain solver converts the 

multi-objective problem into a single-objective optimization problem by converting 

all the objectives into a set of inequality constraints and minimizes a slack variable, 

γ, as the objective. The goal values for every individual in the population, f Gl , are 
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generated by using the goal formulation technique presented under the next heading. 

The goal-attainment problem formulation solved via SQP appears below: 

Minimize: 

γ (3.3) 

Subject to: 

f̂  
l(xc) − αlγ ≤ fl

G (l = 1, 2) (3.4) 

ĝj (xc) ≤ 0 (3.5) 

ĥk(xc) = 0 (3.6) 

(xc)i
L ≤ (xc)i ≤ (xc)

U
i (3.7) 

The weights, αl, are set as absolute values of the corresponding goal values, f Gl , 

as discussed in Ref. [1–3]. The multi-fidelity approach presented here uses the sur-

rogate models to provide “low-fidelity” objective and constraint approximations to 

fgoalattain, which uses them to find the optimized continuous design variables, xc 
∗ , 

for every individual in the GA population (while keeping the discrete design variables 

fixed for every individual in this step). These optimized designs so obtained satisfy 

all “low-fidelity” constraints but may or may not satisfy the actual “high-fidelity” 

problem constraints. This is different from the standalone hybrid approach which 

uses actual (“high-fidelity”) objective and constraint function values to conduct this 

local search step using goal-attainment via SQP, providing constraint satisfaction as 

part of the local optimality. However, the multi-fidelity approach here gives up some 

of this benefit of the standalone hybrid approach with the intent of greatly reducing 

the computational cost. 

This SQP goal-attainment approach (using fgoalattain solver) seems to be success-

ful in enforcing “low-fidelity” problem constraints (approximated from the surrogate 

models for constraint functions), except for two cases when the SQP algorithm would 

not be able to successfully handle these problem constraints. First case, when SQP is 

unable to find a feasible local solution for a given starting point. Second case, when 
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SQP is unable to find a feasible solution within the maximum possible number of 

iterations, set to MATLAB’s default value for this work. In both these cases, the 

designs receive a high objective value penalty in the GA-level problem in an effort to 

remove them from the subsequent GA generations. 

3.1.3.1 Goal Formulation Technique 

This work employs the goal formulation technique developed in the standalone 

hybrid approach [1, 3]. The goal formulation technique assigns goal values to every 

individual in the population based on the sub-pool it belongs to among those gener-

ated in the modified two-branch tournament selection (refer to Section 3.1.2.1). The 

fgoalattain solver employs these goal values to perform the goal-oriented local search 

while satisfying the problem constraints. The hybrid approach identifies an ideal 

point – a combination of minimum f 1 and minimum f 2 values – to find the utopia 

point. The utopia point is set as 0.9 times the ideal point. If a lower f1 and (or) 

f2 value is available in the subsequent GA generations, the ideal point changes, also 

updating the the utopia point. For two-objective problems, a set of perpendicular 

lines originate from the utopia point, shown in Fig. 3.2 as dashed lines. The point 

of intersection of a goal vector – originating from an individual in the population – 

with the dashed lines defines the goal point for that individual. 

In this goal formulation technique, children of parents from sub-pool 1 are assigned 

a goal vector with a zero slope that tends to seek maximum improvement along the 

direction of objective 1, f 1. Children of parents from sub-pool 2 are assigned a goal 

vector with a 90 degree slope that tends to seek maximum improvement along the 

direction of objective 2, f 2. However, for children with parents from sub-pool 3, 

the goal vector depends on their relative spatial position in the design space, with 

an individual having better objective 1 value inclined towards more improvement in 

objective 1 and an individual having better objective 2 value inclined towards more 

improvement in objective 2. 
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Figure 3.2. Illustration of the goal formulation technique [adapted 
from Ref. [1, 3] (with permission)]. 

Fig. 3.2 illustrates the goal formulation technique following the example presented 

in Fig. 3.1. Parents 1 and 4 from sub-pool 1 create offspring C11−4 and C21−4. These 

individuals are assigned goal points that seek to improve their f 1 values, without 

improving their f 2 values. Similarly, C15−7 and C25−7 result from sub-pool 2 and are 

assigned goal points that seek to improve their f 2 values, without improving their f 1 

values. C13−6, C23−6, C12−8, C22−8, all result from sub-pool 3 and are assigned goal 

points that seek to improve both their f 1 and f 2 values. 

3.2 Multi-Fidelity Optimization Framework 

The LHS strategy generates initial design points at the beginning of the two-

branch tournament GA. The GA population size (number of initial design points for 

GA) depends on the number of design variables present in the problem in consider-
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ation. Section 3.2.3 provides a technique to approximate the GA population size for 

different problems. 

3.2.1 Algorithm Description 

Fig. 3.3 shows a simplified flowchart depicting the communication between the 

GA, SQP and the surrogate models. The left portion of the figure signifies the basic 

framework of the multi-fidelity hybrid algorithm, which possesses similar basic op-

erational characteristics as a GA. The right portion of the figure depicts the local 

optimization that is conducted to evaluate the fitness function values of every indi-

vidual in the GA population. Once again it is pointed out that the basic algorithm 

remains the same for both Kriging and RBF surrogate modeling strategies. A de-

tailed description of the steps involved in the proposed mutli-fidelity hybrid algorithm 

appears below. For algorithm description purposes, the term “high-fidelity” will be 

referred to as hifi, and the term “low-fidelity” will be referred to as lofi. 

• GENERATE THE INITIAL POINTS: The algorithm generates a set of initial 

design points (initial population for the GA) using the LHS strategy. 

• EVALUATE THE INITIAL (SAMPLE) POINTS: This step evaluates the initial 

design points (sample set for surrogate models) using hifi analysis to find their 

actual objective and constraint values. All the design points are scaled between 

0 and 1 using the upper and lower bounds of each design variable. 

• CREATE hifi DATABASE: To ensure that no design point undergoes hifi anal-

ysis more than once, a database stores the objective and constraint information 

for these design points. 

• CONSTRUCT SURROGATE MODELS: The points with hifi evaluations (the 

initial GA population here) act as sample points to construct surrogate models 

for each objective and constraint function in the problem. These models give 
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approximate objective and constraint information for evaluating different design 

points. 

• MODIFIED TWO-BRANCH TOURNAMENT SELECTION: The GA popu-

lation is ultimately divided into three sub-pools based on the fitness values of 

the individuals with respect to the first and the second objective. 

• GOAL ASSIGNMENT: The goal formulation technique assigns a goal point to 

every individual in the GA population. 

Figure 3.3. A simplified flowchart depicting the multi-fidelity multi-
objective hybrid algorithm. 
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• CROSSOVER & MUTATION: The crossover occurs between the respective 

sub-pools (generated by modified tournament selection operator), followed by 

the mutation operator. 

• NEW POPULATION: A new GA population is generated which now requires 

local search to evaluate the fitness function values for all the individuals in the 

new GA population. 

• SURROGATE-BASED FITNESS EVALUATION: The right section of Fig. 3.3 

depicts the local search step that is undertaken using the lofi approximations 

provided by the objective and constraint surrogate models. 

– MULTI-OBJECTIVE LOCAL SEARCH: The SQP algorithm with goal-

attainment formulation employs the surrogate models to perform local 

search using MATLAB’s fgoalattain solver, with the individual goals as-

signed in the previous step. 

This step performs gradient-based optimization by using the objective and 

constraint surrogates, instead of conducting actual (hifi) function / con-

straint evaluations. The local search works to find objective values nearest 

to the assigned goal values while satisfying the lofi problem constraints 

for every individual in the GA population. If the local search encounters 

any infeasible point for which the objectives cannot be minimized while 

satisfying the problem constraints, it assigns very high objective values to 

that design point as a penalty. 

– hifi ANALYSES: This step conducts hifi analyses for each of the individ-

uals that satisfy the lofi constraints. These individuals are referred to as 

new hifi for algorithm description purposes. At this step, the algorithm 

communicates with the database to ensure that hifi information for design 

points that are already existing in the database is not re-calculated. 

– UPDATE THE DATABASE: With every generation, the algorithm up-

dates the database by adding hifi information for any new design point, 
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making the database grow dynamically. However, a database like this 

could grow to be very large. Hence, caution needs to be exercised in this 

database looking approach, because for some problems, at some point, 

the computational cost to sort through the list might make this approach 

irrelevant. 

– IDENTIFY FEASIBLE POINTS: Using the hifi information obtained in 

the previous steps, the algorithm performs a constraint check to find fea-

sible points – among the new hifi points – that satisfy the actual (hifi) 

problem constraints. These individuals are referred to as feas hifi points 

for algorithm description purposes. 

It is possible that the new hifi points that satisfy the lofi constraints may 

not satisfy the actual (hifi) problem constraints, so they cannot be used 

to find a reliable non-dominated set of designs that will lead to a Pareto 

frontier between the two competing objectives. 

– IDENTIFY NON-DOMINATED DESIGNS: The feas hifi points from the 

previous step compete for inclusion in the non-dominated design set. The 

points from the non-dominated set represent the Pareto frontier. 

– UPDATE THE SAMPLE SET: The algorithm employs an acceptance cri-

terion to filter and add points from the new hifi set to the already existing 

set of hifi points. As mentioned before, all the design points are scaled 

between 0 and 1 using the upper and lower bounds of each design variable. 

Acceptance Criterion: The acceptance criterion uses the spatial dis-

tance of the concerned point from all the hifi points as a basis for selecting 

points into the sample set. This approach constructs imaginary hyper-

spheres with fixed radius, R, for every hifi point, with each point acting as 

the center for their respective hyper-spheres. The algorithm calculates the 

spatial distance of each new hifi point from all the hifi points, and checks 

whether that point lies outside all hyper-spheres. If true, then the point 
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gets added to the hifi set of points, ensuring that the next point in new hifi 

set calculates its distance from the original hifi set of points and the newly 

added point. All the design points are scaled between 0 and 1 to ensure 

that there are no scaling issues while comparing different design points. 

This makes the hifi set grow dynamically with every new selection from 

new hifi set of points, leading to the employment of an equal or increased 

number of sample design points for constructing each objective and con-

straint surrogate model, when compared to the surrogate models in the 

previous generation. A value of R = 0.05 seems to work for all problems 

tested here. This, too, is a somewhat ad hoc selection made by some trial 

and error while using the approach to solve test problems. 

– UPDATE THE SURROGATE MODELS: The updated set of hifi points 

act as the sample set to update the surrogate models. 

• CONTINUE WITH ALGORITHM: The algorithm then continues with the 

modified two-branch tournament selection, the goal assignment, crossover, and 

mutation operations to generate the new GA population. The algorithm contin-

ues with the steps as described above until any termination criteria is satisfied. 

3.2.2 Termination Criteria 

This work employs three different termination criteria to terminate the algorithm. 

These termination criteria prevent any wastage of “high-fidelity” function evaluations 

by stopping the algorithm after a fixed number of GA generations or when there is 

no alteration in the non-dominated set for a few consecutive generations. Out of the 

three criteria, whichever criterion gets satisfied first leads to the termination of the 

algorithm. The termination criteria are described below: 

• First, the algorithm cannot exceed the maximum number of GA generations 

limit which has been set to 50 generations for this work. This limit has been 

adapted from the standalone hybrid algorithm in Ref. [1–3]. 
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• Second, the algorithm ends if there is no change in the non-dominated design 

set for 10 consecutive GA generations, adapted from Ref. [1–3]. In this case, the 

algorithm is unable to find any new non-dominated designs for a few consecutive 

generations, hinting towards a wastage of computational effort in continuing 

further with the algorithm. 

• Third, if the average distance between consecutive non-dominated design points 

for 10 consecutive GA generations remains constant, the algorithm ends. This 

termination criteria signifies that there is no improvement in the spread of the 

Pareto frontier, which may lead to a wastage of computational effort if continued 

further with the algorithm. Even if there is any significant improvement after 

10 generations, the additional computational cost incurred cannot be justified. 

3.2.3 Choosing the Population Size 

The multi-fidelity approach involves building surrogate models for all objective 

and constraint functions. The sample size recommended to train a surrogate model 

tends to depend on the number of design variables present in the sample data / 

problem in consideration [33]. Hence, it seems plausible to assume that the GA 

population size varies proportionately with the number of design variables in the 

problem. The author recommends that the minimum appropriate number of points 

in the GA population should be 8 times the number of total design variables (denoted 

by n), i.e., 8n. This value for the population size could be treated as an initial 

approximate number to get a fairly good Pareto frontier with reasonable number 

of “high-fidelity” function evaluations. For instance, if the problem has 10 design 

variables (n=10), then the GA population size should be 80 to get a Pareto frontier 

showing a fairly good spread in the objective space. This technique also takes care of 

the requirement of the modified two-branch tournament selection technique to set the 

population size as a multiple of 8 (refer to Section 3.1.2). Increasing the population 

size beyond the 8n formulation could lead to a wider spread in the Pareto frontier but 
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at the expense of more “high-fidelity” function evaluations and, hence, computational 

cost. 

Section 5.4 conducts experiments with different GA population sizes on the prob-

lem of interest – the ‘greener’ aircraft design problem – to illustrate the reason for 

settling on a population size that depends on the number of design variables as a 

multiple of 8, given by the 8n guideline. 
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4. TEST PROBLEMS 

This work uses two test problems – versions of three-bar and ten-bar truss problems 

– to demonstrate the applicability of the multi-fidelity approach to solve simple con-

strained multi-objective MDNLP problems. The test problems serve as a base to test 

out the proposed algorithm before applying it to solve a complex “greener” aircraft 

design problem. 

Each test problem is first solved using Kriging as the surrogate modeling strategy. 

This followed by solving the same test problem using RBF as the alternate surro-

gate modeling strategy. Kriging models are replaced by RBF models in the latter 

part of this work due to the higher computational cost involved in solving for the 

Kriging hyper-parameters. The Kriging models provide good approximation for the 

objective and constraint values, however, are computationally expensive when com-

pared to RBF models. Because the proposed algorithm requires building a surrogate 

model for each objective and constraint function, constructing multiple Kriging mod-

els every generation sometimes consumes more computational time than the actual 

“high-fidelity” evaluations for these test problems. This impacts the computational 

runtime of the multi-fidelity approach, making the computationally cheaper RBF 

models more suitable for employment in the proposed algorithm. 

The following test problems intend to demonstrate the efficacy of the multi-fidelity 

hybrid algorithm to solve multi-objective optimization problems, while also indicating 

an increased compatibility of the RBF surrogate modeling strategy with the proposed 

multi-fidelity approach (as compared to the Kriging surrogate modeling strategy) to 

solve such problems. 
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4.1 Three-Bar Truss Problem 

The three-bar truss problem solved here is a constrained multi-objective MDNLP 

problem with six design variables – three continuous and three discrete. The two 

competing objectives for this problem include minimizing the weight of the truss 

while simultaneously minimizing the deflection of the free node. The deflection of a 

node is calculated as the resultant of the sum of all deflections in both the x and y 

directions. The continuous variables signify the cross-sectional area of the three bars, 

ranging from 1e-6 cm2 to 5 cm2 . The discrete variables vary from 1 to 4, signifying the 

material selection properties of these bars, where the discrete integer values represent 

Aluminium, Titanium, Steel, and Nickel respectively. This leads to the availability 

of 43 (= 64) combinations of possible material choices. The yield stress for every bar 

acts as a constraint for the problem (total three constraints), not allowing the stress 

in the bar to go beyond that upper limit. 

Since the three-bar problem has only 64 possible combinations of discrete variables, 

a search for finding the actual non-dominated designs is conducted by using a gradient-

based method (instead of the hybrid approach) for every material choice combination 

possible for the three bars. The following sub-section investigates the actual Pareto 

frontier for the three-bar truss problem by using the weighted sum approach for 

solving multi-objective optimization problems. Ideally, this actual Pareto frontier 

should coincide with the one obtained using the standalone hybrid algorithm. 

4.1.1 Investigating Actual Pareto Frontier 

The actual Pareto frontier for the three-bar truss problem is obtained by vary-

ing the importance of the two objective functions in a gradient-based method for 

multi-objective optimization. The weighted sum approach performs a similar task 

by converting the multiple objectives into a single objective using weights for the 

objective functions (described in Section 2.2.6). 
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Figure 4.1. Three-bar truss problem: Actual Pareto frontier obtained 
using the weighted sum approach for each discrete combination. 

In this work, the weighted sum approach solves the constrained three-bar truss 

problem using MATLAB’s fmincon solver with varying weights for the two objec-

tives given by the formulation – [wa, 1 - wa], where wa = {0.00,0.01,...,0.99,1.00}. 

The weights for the two objectives are hence given by the vectors – [0.00,1.00], 

[0.01,0.99],..., [0.5,0.5],...,[0.99,0.01], [1.00,0.00]. Each combination of these weights 

leads to a single point in the objective space, for a specific combination of discrete 

variables. The weighted sum approach hence conducts gradient-based search for all 

101 weight pairs corresponding to each of the 64 possible discrete combinations pos-

sible. Fig. 4.1 shows the Pareto frontier obtained using the gradient-based approach. 

The non-dominated set consists of 348 designs. Hence, this approach is feasible only 

for a problem with small number of total possible discrete combinations (64 for this 

problem), making it infeasible for a problem with larger number of possible discrete 

combinations. Moreover, the gradient-based approach requires an initial point as in-

put for its local search procedure, leading to different solutions with different initial 

points. 

https://1.00,0.00
https://0.01,0.99
https://0.00,1.00
https://0.00,0.01,...,0.99,1.00
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4.1.2 Solving Three-Bar Truss Problem using Multi-Fidelity Approach 

The following two sections solve the three-bar truss problem using the multi-

fidelity approach, implementing Kriging surrogate modeling strategy and RBF strat-

egy in sequence. The three-bar truss problem is set up with the GA population size 

limited to 48 individuals. This is consistent with the approach presented in Section 

3.2.3, which recommends the population size to be 8n, where n is the number of 

design variables – equivalent to 6 in this case. The upper limit for the number of 

generations is set to 50. The probability of crossover is set to 0.5 while the mutation 

rate is fixed to be 0.005. The number of bits chosen for the continuous and discrete 

variables are 8 and 2 respectively. The three-bar truss problem requires constructing 

five surrogate models for every GA generation, one for each objective function, and 

the remaining three corresponding to each problem constraint. 

4.1.2.1 Implementing Kriging Models 

This section employs Kriging surrogate modeling strategy to construct the surro-

gate models. The algorithm uses parallel computation to build five Kriging models 

for each generation in this problem. The resulting Pareto frontier for the three-bar 

truss problem using multi-fidelity hybrid algorithm with Kriging surrogate models is 

shown in Fig. 4.2. 

The Pareto frontier for this problem shows a large spread across the plot (refer to 

Fig. 4.2), leading to 235 trade-off designs with a total of 902 “high-fidelity” function 

evaluations. The analysis of the non-dominated design set shows that an increase 

in the weight of the three-bar truss system is accompanied by a similar increase in 

the cross-sectional area of the bars. The material configuration for all three bars 

gradually shifts to Steel as we move from left to right along the Pareto frontier, with 

the maximum mass design having a configuration of two Steel bars and one Nickel 

bar, shown in Fig. 4.2. 
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Figure 4.2. Three-bar truss problem: Pareto frontier for multi-fidelity 
approach using Kriging models. 

GA search includes random numbers (not a random search though), which means 

that two consecutive runs of GA would not find the same results, however, the results 

would be similar. To assess the repeatability of the multi-fidelity hybrid algorithm, 

the three-bar problem is run 40 times to see the changes in the spread of the Pareto 

frontier with every run. It is observed that the spread of the Pareto frontier changes 

for different runs, which can be attributed to the randomness associated with genetic 

algorithms (GA) and the different initial population points generated using the LHS 

sampling strategy. The standalone hybrid algorithm runs for the three-bar problem 

also show similar behavior with different runs. 

The Pareto frontier using the standalone hybrid approach [1, 3] is shown in Fig. 

4.3, with 247 trade-off design solutions obtained using 59,147 “high-fidelity” func-

tion evaluations. The number of non-dominated design solutions obtained using the 

multi-fidelity approach is comparable to that obtained by the standalone hybrid ap-

proach, with the comparison of their Pareto frontier appearing in Fig. 4.3. For this 

comparison run, the multi-fidelity approach uses only 1.53% of the total number of 
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Non-dominated designs using
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Non-dominated designs using
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Figure 4.3. Three-bar truss problem: Comparison of Pareto fron-
tiers for the multi-fidelity approach (using Kriging models) and the 
standalone hybrid approach. 

“high-fidelity” analysis performed for the standalone hybrid approach. The number 

of “high-fidelity” function evaluations for different runs using the Kriging version of 

the multi-fidelity approach ranges from 443 to 1225 with an average of 884 evalua-

tions, while those for the standalone hybrid approach ranges from 41,567 to 65,416 

with an average of 54,418 evaluations. 

Fig. 4.4 compares the Pareto frontiers obtained using the multi-fidelity approach 

(with Kriging models) and the standalone hybrid approach with the actual Pareto 

frontier obtained using gradient-based approach in Fig. 4.1. Both the multi-fidelity 

approach and the standalone hybrid approach are able to find non-dominated designs 

comparable to the ones obtained using the gradient-based approach (implementing 

weighted sum approach for every possible discrete material combination). 

Comparing the computational load of the Kriging version of the multi-fidelity ap-

proach with the standalone hybrid approach, the multi-fidelity approach shows an 
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Figure 4.4. Three-bar truss problem: Comparison of the actual Pareto 
frontier with the ones obtained from the multi-fidelity approach (using 
Kriging models) and the standalone hybrid approach. 

average reduction of 98.38% in the total number of “high-fidelity” function evalua-

tions. However, using Kriging surrogate models, the multi-fidelity approach currently 

takes an average of 3.8 hours to complete a single run, while the standalone hybrid 

approach takes only 7.75 seconds on an average to solve the same problem. This 

anomaly can be attributed to the very “low-fidelity” nature of the three-bar problem, 

allowing the standalone hybrid approach to perform ‘quick’ actual function evalua-

tions. On the other hand, the multi-fidelity approach takes time to construct five 

Kriging models for each GA generation. As the number of sample points usually 

increase after every GA generation, the computational intensity of the optimization 

problem to solve for the Kriging hyper-parameters also increases, consuming more 

computational time to solve the entire constrained, multi-objective MDNLP problem 
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compared to the standalone hybrid approach. This renders the Kriging version of the 

multi-fidelity approach impractical even with a lower number of actual “high-fidelity” 

function evaluations. 

4.1.2.2 Implementing Radial Basis Function Models 

This section employs RBF surrogate modeling strategy to construct the surrogate 

models in the multi-fidelity hybrid algorithm. Here, the RBF surrogate models replace 

Kriging surrogate models due to the computational burden associated with estimating 

the hyper-parameters for the latter. The algorithm uses parallel computation to 

build five RBF surrogate models. For this problem, a value of σ = 0.45 seems to be 

suitable for building the RBF models, estimated using the trial-and-error approach 

of comparing the RBF prediction errors to select a suitable σ value (refer to Section 

3.1.1). The resulting Pareto frontier for the three-bar truss problem using multi-

fidelity hybrid algorithm with RBF surrogate models is shown in Fig. 4.5. 
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Figure 4.5. Three-bar truss problem: Pareto frontier for multi-fidelity 
approach using RBF models. 
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The Pareto frontier for this approach contains 302 non-dominated designs (refer to 

Fig. 4.5) after making a total of 974 “high-fidelity” function evaluations. The spread 

of the Pareto frontier obtained using RBF models is comparable to that obtained 

using the Kriging models (Fig. 4.2). The non-dominated designs show similar trends 

as the previous ones obtained using Kriging, with the material configuration for all 

three bars gradually shifting to Steel as we move from left to right along the Pareto 

frontier. The design with the maximum mass has a configuration of two Steel bars 

and one Nickel bar. 

This RBF version of the multi-fidelity approach is run 40 times (to assess the 

repeatability of the approach) and the Pareto frontier shows variations in the spread 

of the non-dominated designs with different runs, a consequence of the nature of 

the global search algorithm employed – GA, and the generation of different initial 

population points using the LHS strategy. Significant variations are also observed 

when the same initial sample points are employed for different runs. The number of 

“high-fidelity” function evaluations for this approach ranges from 739 to 1,262 with 

an average of 1,013 evaluations. The RBF version of multi-fidelity hybrid algorithm 

is able to find more number of non-dominated design solutions when compared to 

both the standalone hybrid algorithm and the Kriging version of multi-fidelity hybrid 

algorithm. The Pareto frontier so obtained also shows a slightly wider spread when 

compared to both these algorithms. Fig. 4.6 shows the comparison between the 

Pareto front obtained using multi-fidelity approach with RBF and the standalone 

hybrid approach. Fig. 4.7 compares the Pareto frontiers obtained using the multi-

fidelity approach (with RBF models) and the standalone hybrid approach with the 

actual Pareto frontier obtained using gradient-based approach in Fig. 4.1. As with 

the Kriging version of the multi-fidelity approach and the standalone hybrid approach, 

the RBF version is also able to find non-dominated designs comparable to the ones 

obtained using the gradient-based approach (implementing weighted sum approach 

for every possible discrete material combination). 
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Figure 4.6. Three-bar truss problem: Comparison of Pareto frontiers 
for the multi-fidelity approach (using RBF models) and the standalone 
hybrid approach. 

Comparing the RBF version of the multi-fidelity approach with the standalone 

hybrid algorithm, there is a 98.35% reduction in the total number of “high-fidelity” 

function evaluations for the result shown in Fig. 4.5. The RBF version takes only 

12.98 seconds to run (with an average runtime of 12.28 seconds), which is less than 

the computational time required by the Kriging version of the multi-fidelity hybrid 

algorithm to solve the same problem. The RBF models employed in this work do 

not require any optimization problem to be solved to estimate the parameter σ. This 

leads to quick calculations to model the RBF surrogates, as compared to solving an 

optimization problem to estimate the hyper-parameters for building Kriging models. 

Interestingly, the average runtime of the RBF version of multi-fidelity approach is 

still more than the average runtime of the standalone hybrid approach, which is 7.75 

seconds for the three-bar truss problem. Even with a 98.14% average reduction in the 

number of “high-fidelity” function evaluations, the multi-fidelity approach requires 1.6 
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Figure 4.7. Three-bar truss problem: Comparison of the actual Pareto 
frontier with the ones obtained from the multi-fidelity approach (using 
RBF models) and the standalone hybrid approach. 

times the computational runtime required by the standalone hybrid approach to solve 

the three-bar truss problem. The extra time consumed by the multi-fidelity approach 

is due to the formation of five RBF models for every GA generation. The actual 

function evaluation for the three-bar problem involves simply solving a two-by-two 

system of linear equations, which are quicker to actually solve than to approximate 

using RBF models (even though the approximation approach requires far less actual 

function evaluations). The multi-fidelity approach with RBF modeling provides a 

higher number of trade-off solutions (with slightly better Pareto frontier) by using 

an average of only 1.86% of the total number of “high-fidelity” function evaluations 

required by the standalone hybrid approach (equivalent to a reduction of 98.14%) , 

while showcasing a slightly increased computational runtime. 
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Table 4.1. Three-bar truss problem: GA generation-wise RMS error 
values for objective and constraint RBF models using σ = 0.45 

GA RMS Error for RBF Models 

Generations Obj. 1 Obj. 2 Constr. 1 Constr. 2 Constr. 3 

1 

5 

10 

15 

20 

25 

1.1276 

0.6004 

0.4398 

0.4348 

0.4135 

0.4066 

0.0036 

0.0024 

0.0018 

0.0017 

0.0016 

0.0016 

2.2596 

1.5523 

1.1745 

1.0886 

1.0587 

1.0256 

2.4806 

1.7213 

1.2857 

1.1767 

1.1404 

1.1038 

2.3990 

1.6319 

1.1149 

2.0885 

2.4043 

3.3280 

4.1.2.3 Effect of σ Value on RBF Prediction 

This sub-section studies the change in the prediction error of RBF models by 

using the same σ value throughout the multi-fidelity optimization run, demonstrated 

using the three-bar truss problem. The prediction error (RMS error value) for each 

RBF model is calculated using the LOOCV technique for every GA generation with 

a σ value of 0.45 (as this is the most suitable value found using the trial-and-error 

approach). Table 4.1 shows the RMS error values for all the objective and constraint 

RBF models for every 5 generations. This run terminates after 26 GA generations. All 

the prediction error values (except for the third constraint function) tend to decrease 

as the GA generations progress, indicating an increase in the quality of function and 

constraint value predictions. This implies that the RBF models usually tend to better 

represent the design space as more points are added to the sample set after every GA 

generation, for the same σ value. 
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4.2 Ten-Bar Truss Problem 

The ten-bar truss problem is actually a scaled-up version of the three-bar truss 

problem with twenty design variables, ten continuous and ten discrete. The problem 

minimizes two competing objectives – weight of the ten-bar truss system and resultant 

displacement of the bars simultaneously. The displacement is taken as the absolute 

of the maximum calculated displacement among all the elements. The continuous 

variables signify the cross-sectional diameters of the ten bars, ranging from 0.1 cm2 

to 40 cm2 . The discrete variables signify the material selection properties of these 

bars, with four choices available for each bar in the problem – including Aluminum, 

Titanium, Steel, and Nickel. For this problem, there are 410 (=1,048,576) possible 

material choice combinations compared to only 64 for the three-bar truss problem. 

The constraint for each bar ensures that the calculated maximum displacement always 

remains less than the maximum displacement allowed for the bar in the ten-bar 

system. The ten-bar truss problem requires constructing 12 surrogate models for every 

GA generation, one for each objective function, and the remaining ten corresponding 

to each problem constraint. 

The GA population has been limited to 160 individuals as per the approach de-

scribed in Section 3.2.3, with n equivalent to 20. The upper limit for the number of 

generations is set to 50. The probability of crossover is set to 0.5 while the mutation 

rate is fixed to be 0.005. The number of bits chosen for the continuous and discrete 

variables are 8 and 2 respectively. 

4.2.1 Implementing Kriging Models 

In this section, the Kriging surrogate modeling technique is implemented to solve 

the ten-bar truss problem using the multi-fidelity hybrid algorithm. This problem 

requires the generation of twelve Kriging models for every generation. The resulting 

Pareto frontier for is shown in Fig. 4.8. 
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Figure 4.8. Ten-bar truss problem: Pareto frontier for multi-fidelity 
hybrid approach using Kriging models. 

The non-dominated set obtained for the ten-bar truss problem is incomplete, with 

only 26 trade-off designs in the set. The algorithm took 253.5 hours (approximately 

10 days) to complete just 12 GA generations with only 1271 “high-fidelity” func-

tion evaluations, forcing the author to terminate the algorithm prematurely. On 

the other hand, the standalone hybrid algorithm takes an average of 1.71 hours to 

solve the ten-bar truss problem using an average of 1,466,037 “high-fidelity” function 

evaluations. This implies that it takes approximately 1.71 hours to perform 1,466,037 

“high-fidelity” function evaluations on an average for the ten-bar truss problem, which 

is in stark contrast to the runtime of 235.5 hours for the multi-fidelity approach with 

only 1271 similar “high-fidelity” evaluations. Hence, building twelve Kriging models 

for every GA generation consumes a considerable chunk of the the total computa-

tional runtime involved in solving the ten-bar truss problem using the multi-fidelity 

approach. 
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4.2.2 Implementing Radial Basis Function Models 

This section employs RBF surrogate models to solve the ten-bar truss problem 

using the multi-fidelity hybrid algorithm. The algorithm uses parallel computation 

to build the twelve RBF models for this problem. For this problem, a value of σ = 

0.5 is found to be suitable for building the RBF models, based on the trial-and-error 

approach of comparing the RBF prediction errors to select a suitable σ value (refer 

to Section 3.1.1). The resulting Pareto frontier appears in Fig. 4.9. 
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Figure 4.9. Ten-bar truss problem: Pareto frontier for multi-fidelity 
hybrid approach using RBF models. 

With the implementation of the RBF version of multi-fidelity hybrid algorithm, 

the non-dominated set contains 80 trade-off designs, with 6,537 total “high-fidelity” 

function evaluations and 9.32 minutes of total runtime, for the result shown in Fig. 

4.9. For this approach, the 40 runs conducted to assess repeatability show that 

the number of “high-fidelity” function evaluations ranges from 3,985 to 8,146 with 

an average of 6,348 evaluations. The Pareto frontier shows a large spread across 

the objective space, with each point on the Pareto frontier representing a unique 
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combination of the ten continuous variables (cross-sectional diameter for each bar) 

and the ten discrete variables (material choices available for each bar). 
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Figure 4.10. Ten-bar truss problem: Comparison of Pareto frontiers 
for the multi-fidelity approach (using RBF models) and the standalone 
hybrid approach. 

Comparing the results obtained from the multi-fidelity approach with the stan-

dalone hybrid approach (refer to Fig. 4.10), the total number of “high-fidelity” func-

tion evaluations show an average reduction of 99.57%. This is accompanied by an 

average reduction of 89.36% in the ten-bar problem runtime – decreasing from an aver-

age of 102.43 minutes (standalone hybrid approach) to 10.90 minutes (multi-fidelity 

approach). The number of trade-off designs in the non-dominated set is similar – 

80 for the multi-fidelity approach (with 6,537 “high-fidelity” evaluations and 9.32 

minutes of runtime) and 81 for the standalone hybrid approach (with 946,579 “high-

fidelity” evaluations and 68.27 minutes of runtime) considering the results presented 

in Fig. 4.10. However, there is a difference in the spread of the Pareto frontier for 

the two approaches, visible in Fig. 4.10. The Pareto frontier for RBF version of the 

multi-fidelity approach shows a reduced spread when compared to the standalone hy-
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brid approach. This could be attributed to the fact that the multi-fidelity approach 

does not perform a “high-fidelity” analysis for every point, essentially giving rise to 

a trade-off between obtaining a larger spread of the Pareto frontier and the com-

putational cost associated with the problem. However, the multi-fidelity approach 

does find a few better non-dominated designs in terms of one of the two objectives. 

The top-left point on the Pareto frontier for the multi-fidelity approach could not be 

obtained using the standalone hybrid approach for any run. This design point indi-

cates minimum mass for the ten-bar truss system, with a maximum net displacement 

among all the designs in the problem design space. 

When comparing the Kriging version with the RBF version of the multi-fidelity 

hybrid algorithm, the runtime observed for the latter is approximately 3,280 times 

less than the runtime for the terminated Kriging version with only 12 completed GA 

generations. This observation indicates that it is plausible to favor the implementation 

of RBF models over Kriging models for solving the ten-bar truss problem using the 

proposed multi-fidelity hybrid algorithm. 

4.3 Conclusion 

On the basis of the performance of Kriging and RBF versions of the multi-fidelity 

hybrid algorithm to solve the three-bar and ten-bar truss test problems, the author 

recommends using the RBF version of the multi-fidelity hybrid algorithm to solve all 

constrained multi-objective MDNLP problems. A comparison of the performance of 

the two surrogate modeling approaches to solve the test problems appears in Table 

4.2. 

For this work, the RBF version of the multi-fidelity hybrid algorithm outperforms 

the Kriging version by reducing the computational cost incurred to solve for the surro-

gate hyper-parameters. As discussed in previous sub-sections, the high computational 

cost associated with the Kriging version of the multi-fidelity hybrid algorithm can be 

attributed to the need to solve an optimization problem for estimating the Kriging 
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Table 4.2. Comparison between Kriging and RBF versions of the 
multi-fidelity hybrid approach for test problems – three-bar truss and 
ten-bar truss. 

Test Problem Three-bar Truss Ten-bar Truss 

Comparison Parameters 
Kriging 

Version 

RBF 

Version 

Kriging 

Version 

(aborted) 

RBF 

Version 

Non-dominated Designs 235 302 12 80 

“High-fidelity” Evaluations 902 974 923 6,537 

Computational Runtime (in hours) 3.8 0.004 253.5 0.16 

hyper-parameters. The complexity of the optimization problem increases with an 

increase in the number of design variables or sample design points or both, making 

this optimization problem even harder to solve. On the other hand, RBF surro-

gate modeling does not require solving any optimization problem to estimate σ – the 

only parameter associated with Gaussian function RBF models. The parameter σ is 

estimated based on the trial-and-error approach of comparing prediction errors for 

different σ values (refer to Section 3.1.1), leading to ‘quick’ calculations for building 

the RBF surrogate models. Although Kriging models tend to be more accurate in 

modeling the design space, the RBF models are better suited for this work due to 

their less computationally intensive nature. 

Because the main motivation of this work is to reduce the computational cost (and 

hence the computational time) associated with solving constrained multi-objective 

MDNLP problems using a hybrid approach, the Kriging surrogate model based multi-

fidelity approach seems infeasible for use in the proposed multi-fidelity hybrid algo-

rithm. The author concludes that the RBF surrogate modeling technique outperforms 

the Kriging technique for the proposed multi-fidelity approach, and recommends using 

the RBF technique to build the surrogate models to solve constrained multi-objective 

MDNLP problems when using the presented multi-fidelity approach. 
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Figure 4.11. Comparison of “high-fidelity” evaluations and compu-
tational runtime for the multi-fidelity approach (using RBF models) 
with the standalone hybrid approach – three-bar and ten-bar truss 
problems. 

Fig. 4.11 uses pie charts to visualize the small fraction of “high-fidelity” func-

tion evaluations and computational runtime required by the multi-fidelity approach 

(with RBF surrogates) compared to the standalone hybrid approach. For the three-

bar problem, the multi-fidelity approach uses only 1.86% of “high-fidelity” function 

evaluations required by the hybrid approach for the three-bar problem. However, as 

previously discussed, the runtime for the three-bar problem increases for the multi-

fidelity approach (in comparison to the runtime of the standalone hybrid approach for 

the same problem), an attribute of the very “low-fidelity” nature of this problem. For 

the ten-bar problem, the multi-fidelity approach uses only 0.43% of “high-fidelity” 

function evaluations, and only 10.64% of the computational runtime (analogous to 

computational cost) required by the hybrid approach. 
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Interestingly, for the ten-bar problem (which is a “higher-fidelity” problem when 

compared to the three-bar problem), the reduction in the computational runtime ob-

tained using the multi-fidelity approach (with RBF surrogates) is not proportional to 

the reduction in the “high-fidelity” function evaluations performed. This behavior can 

be attributed to the requirement of building new (or updating existing) RBF models 

in every GA generation to approximate the objective and constraint function values. 

Also, as the “high-fidelity” database grows larger, some computational time might 

be consumed in looking for existing “high-fidelity” information for design points in 

the database. The computational time required to build the RBF models and to 

look up the “high-fidelity” database (in some cases) adds up to the computational 

time required to perform “high-fidelity” function evaluations, leading to a dispropor-

tional decrease in the computational runtime compared to the “high-fidelity” analyses 

conducted for solving constrained multi-objective MDNLP problems using the multi-

fidelity approach (with RBF surrogates). 

Because the test problem results demonstrate the ability of the multi-fidelity 

approach (using the RBF surrogate modeling technique) to successfully solve con-

strained multi-objective MDNLP problems, the author further pursues this approach 

to solve the ‘greener’ aircraft design problem. 
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5. AIRCRAFT DESIGN PROBLEM 

The ‘greener’ aircraft design problem is a step forward to determine which future 

technologies (including composite structures, laminar flow technologies) will be of ut-

most importance for designing a fuel-efficient, environment friendly, and economically 

viable aircraft. Through this problem, the ability of an optimization algorithm to sift 

through different discrete technology combinations with varying continuous design 

variables can be tested, making it a plausible constrained MDNLP problem in the 

aerospace engineering discipline. 

Lehner and Crossley [14] investigated the ‘greener’ aircraft design problem as 

a constrained MDNLP problem using the two-branch tournament GA (without hy-

bridization), followed by a single-objective hybrid approach [?]. Roy [1–3] investigated 

this problem using a multi-objective hybrid approach. This work re-solves this prob-

lem to demonstrate the capability of the multi-fidelity hybrid algorithm to solve a 

constrained multi-objective MDNLP problem with reduced computational cost. The 

‘greener’ aircraft design problem is the “highest-fidelity” problem solved in this work 

using the proposed multi-fidelity hybrid algorithm. 

Here, the aircraft design problem employs the NASA sizing code FLOPS [79] to 

perform the sizing and performance calculations of the candidate aircraft designs. The 

Flight Optimization System (FLOPS) [79] is a multidisciplinary system of computer 

programs for conceptual and preliminary design and evaluation of advanced aircraft 

concepts. This software consists of ten primary modules: 1) weights, 2) aerodynamics, 

3) engine cycle, 4) analysis, 5) propulsion data scaling and interpolation, 6) mission 

performance, 7) takeoff and landing, 8) noise footprint, 9) cost analysis, and 10) 

program control. For this work, FLOPS acts as the “highest-fidelity” application 

that is used to enable aircraft analysis. 
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FLOPS accepts a set of both continuous and discrete design variables as input and 

returns the aircraft performance (fuel burn), environment (NOX and CO2 emissions) 

and economic metrics (total operating cost) as outputs. Simple models simulating the 

potential ‘greener technologies’ are modeled using MATLAB and then integrated with 

FLOPS for their performance calculations. The goal of the aircraft sizing problem is 

to develop an aircraft with 2940 nmi design range with a seat capacity of 162 seats 

in two classes, similar to a Boeing 737 or Airbus A320 type aircraft. The following 

section describes the modeling of the discrete technologies and their integration with 

FLOPS software to evaluate candidate aircraft designs. 

5.1 Simulating Discrete Technologies 

The aircraft optimization study here involves the modeling of three discrete tech-

nologies. These discrete technologies are modeled on current technology develop-

ment efforts to reduce the environmental impact of commercial aircraft, like NASA’s 

Subsonic Fixed Wing Project [80]. These discrete technologies tend to serve as 

promising options for reducing drag, reducing empty weight and improving engine 

efficiency. The set of potential technologies considered here is the same set consid-

ered in Ref. [1–3,14], except for the engine technologies. Discrete engine technologies 

such as direct driven turbofan (DDF), geared turbofan (GTF), contra-rotating ducted 

turbofan (CRTF), and open rotor (OR) engine are not considered in this work due 

to the difficulties associated with modeling them in FLOPS. However, this work uses 

a ‘baseline’ engine to model engine(s) for every candidate aircraft design in the algo-

rithm. 

All the three discrete technologies are modeled using MATLAB and can be eas-

ily integrated with FLOPS for their performance assessment on different candidate 

aircraft designs. Table 5.1 lists the discrete technologies considered in this study. 
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Table 5.1. Discrete technologies. 

Laminar Flow 
Engine position Composite Material Choices 

Technologies 

Wing Fuselage Nacelle Tail 

NLF-Wing 2 wing Yes Yes Yes Yes 

HLFC-Wing 2 fuselage No No No No 

HLFC-Wing 2 wing + 

+ Nacelle 1 fuselage 

HLFC-Wing 
3 fuselage 

+ Tail 

HLFC-Wing 
4 wing 

+ Tail + Nacelle 

NLF-Wing 2 wing + 

+ HLFC-Tail 2 fuselage 

NLF-Wing 
1 fuselage 

+ HLFC-Nacelle 

NLF-Wing 
4 wing + 

+ HLFC-Tail 
1 fuselage 

+ HLFC-Nacelle 

5.1.1 Composite Materials 

Composite materials reduce the empty weight of an aircraft by making the air-

frame lighter, leading to a decrease in the aircraft specific fuel consumption. However, 

the decrease in fuel consumption comes at the cost of increased production and man-

ufacturing cost. The design problem employs four discrete variables using 1 bit each 

corresponding to the application of composite materials to the aircraft wing, fuselage, 
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nacelle, and tail. This study employs the weight factors suggested by the FLOPS 

Reference Manual [81] to account for the use of composite material on different com-

ponents. Consequently, the increase in component maintenance and operating cost 

is handled by FLOPS and no multiplication factor needs to be manually included in 

FLOPS for incorporating these costs. 

5.1.2 Number of Engines and their Position 

This work acknowledges eight possibilities for the number of engines and their 

placement on the aircraft, represented by a single discrete variable coded with 3 bits, 

as shown in Table 5.1. This discrete technology choice is modeled using the default 

FLOPS commands for engine placement given in the FLOPS Reference Manual [81]. 

5.1.3 Laminar Flow Technologies 

Skin friction drag contributes to approximately 50 percent of the total aerody-

namic drag of an aircraft. Maintaining laminar flow and preventing transition to 

turbulent flow acts as a key factor for reducing the skin friction drag. Natural Lam-

inar Flow (NLF) technology and Hybrid Laminar Flow Control (HLFC) technology 

work to reduce the skin friction drag by using two different techniques. 

Natural laminar flow (NLF) focuses on the shape of the airfoil to delay the tran-

sition to turbulent flow by creating a favorable pressure gradient over a long part of 

the airfoil. This technique does not require any additional equipment to maintain 

laminar flow over the wing, but, leads to a 5% increase in the manufacturing and 

maintenance cost of the aircraft due to the required airfoil shape. Natural laminar 

flow can only be applied to low-swept wings due to cross-flow instabilities [14, 82]. 

Also, the Tollmien-Schlichting instability [14, 82] causes the laminar flow to be lim-

ited to a maximum of 50% of the airfoil chord length. NLF does not add any extra 

weight penalty to the aircraft. 
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Table 5.2. Design penalties for laminar flow technologies. 

% Laminar Manufacturing Maintenance Weight 

Flow Cost Cost 

Wing NLF Up to 50% 5% increase 5% increase No change 

Wing HLFC Up to 50% 50% increase 50% increase 
150% increase in 

air conditioning system 

Nacelle NLF NA NA NA NA 

Nacelle HLFC 60% 50% increase 50% increase 
500 lbs increase in 

air conditioning system 

Tail NLF NA NA NA NA 

Tail HLFC 60% 50% increase 50% increase 
20% increase in 

air conditioning system 

Hybrid laminar flow control (HLFC) employs a suction technique to maintain lam-

inar flow over the wing. This technique removes the boundary layer air by suction 

through minute holes on the skin surface. The suction is applied only on the leading 

edge of the wing to prevent the cross-flow instabilities, making it applicable to swept 

wings. However, the suction system, which forms the backbone of HLFC, adds ad-

ditional weight and cost penalties to the aircraft. The weight of the suction system 

– for the case of HLFC being applied on the wing – is simulated by a introducing a 

150% increase in the air-conditioning system weight. This simulation is based on the 

similar need of both the suction and air-conditioning system to generate a pressure 

differential to perform their tasks [14,83]. HLFC technique is also applicable to engine 

nacelle and the aircraft tail, with the increase in weight and cost summarized in Ta-

ble 5.2 [3,14] . Hence, hybrid laminar flow control is much more effective in delaying 

boundary layer transition when compared to natural laminar flow, but this advantage 

comes at an increased weight, and increased manufacturing and maintenance costs. 

A single discrete variable coded with three bits showcases eight different combina-

tions of laminar flow technologies, depending on the type of laminar flow technology 
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(NLF or HLFC) and its application on different component(s) (wing, nacelle, tail). 

These combinations appear in Table 5.1. Natural Laminar Flow (NLF) is applied 

only to the wing of the aircraft. Hybrid Laminar Flow Control (HLFC) is applied to 

the wing, nacelle, and tail of the aircraft in various combinations. A MATLAB code 

calculates the percentage of laminar flow on the wing based on the process described 

in Ref. [14], using the wing sweep and flight conditions information. 

5.2 Problem Formulation 

The aircraft design problem focuses on the simultaneous minimization of two 

different pairs of competing objectives – the first pair being total fuel carried and 

the total operating cost of the aircraft, and the second pair being Nitrogen Oxide 

(NOX ) emissions and the total operating cost of the aircraft. The total fuel carried is 

proportional to the fuel burnt by an aircraft during a mission. For every pound of fuel 

consumed by an aircraft, the engines produce about 3.2 pounds of CO2. Hence, the 

total fuel carried is an index of the CO2 emissions of an aircraft. An airline always 

tends to reduce the operating cost of an aircraft to increase profit on any mission 

segment. The total operating cost acts as a problem objective to find potential 

aircraft designs that could minimize this cost metric (maximizing airline’s profit) 

while keeping a check on the environmental emissions (here, CO2 and NOx emissions) 

of the aircraft. 

The problem consists of ten continuous design variables and six discrete design 

variables, making a total of 16 design variables. The continuous variables include 

the wing and the engine design variables. The specific upper and lower limits of 

these continuous design variables (appears in Table 5.3) are based on the work in 

Ref. [1–3], with each continuous variable coded using 5 bits. This work models the 

engine technology using incremental values for all the engine continuous variables 

(Δdesignvariable) - except thrust - from a ‘baseline’ engine design. Table 5.4 lists 

the ‘baseline’ engine design parameters along with the function to obtain the final 
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Table 5.3. Continuous variables. 

Design Variables Lower Bound Upper Bound 

Aspect Ratio 

Taper Ratio 

Thickness to Chord Ratio 

Wing Area [ft2] 

Wing Sweep at 25 % [deg] 

Thrust per Engine [lbs] 

By-Pass Ratio (BPR) 

Turbine Inlet Temperature (TIT) [R] 

Overall Pressure Ratio (OPR) 

Fan Pressure Ratio (FPR) 

8 

0.3 

0.09 

1000 

0 

20000 

0 

0 

0 

0 

12 

0.5 

0.17 

1500 

40 

30000 

10 

500 

20 

0.4 

engine design variable value for a candidate aircraft. For instance, if the bypass ratio 

continuous variable ΔBPR = 5, then the engine bypass ratio value for a particular 

aircraft design is the sum of the bypass ratio for the ‘baseline’ engine design and half 

of the bypass ratio continuous variable, i.e., ‘Baseline’ + ΔBPR/2 = (10 + 5/2) = 

12.5. This incremental type of modeling for the engine variables allows compatibility 

with all the other GA coded variables. This problem has 1,024 possible discrete 

technology combinations. Table 5.1 lists the all the possible discrete technologies for 

this work. 

The problem here involves four constraints to meet the aircraft performance re-

quirements as well as FAA requirements. The take-off and landing distances of the 

candidate aircraft designs are limited to 8,500 feet and 7,000 feet respectively. The 

landing gear length is limited to 150 inches to ensure that the wing-mounted engines 

meet the minimum required clearance above the ground. There is also a constraint 

on the total fuselage fuel capacity of every candidate aircraft, limiting it a maximum 

of 28,800 pounds. 



84 

Table 5.4. Design variables for engine modeling. 

Engine Design Variables 
Baseline Engine 

Design Parameters 

Engine Design 

Variable Values 

(Δ − Cont. variable value) 

By-Pass Ratio 

Turbine Inlet Temperature [R] 

Overall Pressure Ratio 

Fan Pressure Ratio 

5 

3010 

35 

1.6 

5 + ΔBPR/2 

3010 + ΔTIT 

35 + ΔOPR 

1.6 + ΔFPR 

The multi-fidelity approach requires constructing six RBF models for every GA 

generation in this design problem, one for each objective function, and the remaining 

four corresponding to each problem constraint. For this problem, a value of σ = 0.5 

is found to be suitable for building the RBF models, based on the trial-and-error 

approach of comparing the RBF prediction errors to select a suitable σ value (refer 

to Section 3.1.1). 

In cases where FLOPS cannot “close” a design for the combination of design 

variables describing the aircraft, the objectives (the fuel burn, NOX emissions, and 

total operating cost) are assigned high values of 105 to ensure that they are not 

selected in the future GA generations. 

The approach presented in Section 3.2.3 governs the GA population size. Accord-

ing to this approach, a good initial approximation of the GA population size could 

be given by 8n, where n is the number of problem design variables. For this problem, 

sixteen design variables (n = 16) lead to a population size of 128 individuals ( = 

8×16). The upper limit for the number of generations is set to 50 for this problem. 

The probability of crossover is set to 0.5 while fixing the mutation rate to 0.005. The 

maximum GA generation limit, crossover probability, and mutation probability are 

similar to the ones used in the standalone hybrid algorithm in Ref. [1–3]. The max-
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imum number of function evaluations for the SQP minimization has been limited to 

the default value of 100 times the total number of continuous variables. 

5.3 Results 

5.3.1 Total Fuel Carried vs Total Operating Cost 

Fig. 5.1 shows the Pareto frontier for the case of simultaneously minimizing the 

total fuel carried by an aircraft and the total operating cost, without considering the 

aircraft NOX emissions. The multi-fidelity approach finds 44 non-dominated designs 

by conducting a total of 6,492 “high-fidelity” function evaluations using FLOPS [79]. 

The total fuel carried by an aircraft is an index of the CO2 emitted by an aircraft 

during a mission (as for every pound of fuel consumed, the engines produce about 

3.2 pounds of CO2). The Pareto frontier consists of designs employing combinations 

of composite structures, eight different engine placement configurations, and a mix of 

eight different laminar flow technologies, modeled as a part of the ‘greener’ technology 

initiative described in the previous section. 

The following specific discussion of the non-dominated design results is based 

upon the technology modeling approach employed in this work. Assuming those 

are correct, the following observations are made for different non-dominated designs 

along the Pareto frontier. To reduce the CO2 emissions, all the non-dominated aircraft 

designs opt for a two-engine configuration (two wing-mounted engines), along with 

NLF technology on wings and HLFC technology on the tail and nacelles. Every 

aircraft in the non-dominated design set opts for a non-composite structure for both 

the tail and nacelles, while different combinations of composite wings and composite 

fuselage are visible along the Pareto frontier. The use of composite structures leads to 

a decrease in the fuel consumption (due to the assumptions of reduced empty weight) 

and an increase in the total operating cost (due to the assumptions of increased 

manufacturing and maintenance costs associated with composites). As we move from 
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Figure 5.1. Pareto frontier for the objective pair – total fuel carried 
(index for CO2 emissions) and total operating cost. 

left to right along the Pareto frontier (refer to Fig. 5.1), designs tend to opt for an 

all non-composite structure configuration to reduce the total operating cost. 

The design with minimum CO2 emissions (represented by the leftmost point in 

Fig. 5.1) selects a two-engine configuration (wing-mounted engines) along with com-

posite wings and fuselage. Consequently, it has the maximum total operating cost 

due to the increased manufacturing and maintenance costs associated with the all-

composite wing and fuselage structure. Analyzing the engine design variables, it 

features the highest TIT and FPR among all designs, along with one of the lowest 

OPR – all contributing to the minimum CO2 characteristic of this design. Also, the 

NLF technology on wing and HLFC technology on tail and nacelles work to maintain 

laminar flow on the aircraft wings, tail and nacelles – reducing the drag induced by 
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skin friction which ultimately decreases the aircraft fuel consumption (analogous to 

reduction in CO2 emissions). 

The design with the minimum total operating cost (represented by the rightmost 

point in Fig. 5.1) selects a two-engine configuration (wing-mounted engines) without 

any composite material components. Even though this design has the lowest total 

operating cost amidst all non-dominated designs, it still opts for NLF technology 

on wings along with HLFC technology on the tail and nacelles. This signifies the 

importance of employing laminar flow technologies in future ‘greener’ aircraft designs, 

based upon the technology modeling employed here. 

Examining the region near the fourteenth to nineteenth non-dominated designs 

(represented by ND14 and ND19 respectively in Fig. 5.1), it is visible that the 

design points seem to align themselves along the horizontal axis, indicating that a 

considerable reduction in total fuel carried by an aircraft is possible for a nominal 

increase in its total operating cost. Considering designs ND14 and ND19, a 0.05% 

increase in total operating cost leads to a 2% reduction in the aircraft CO2 emissions 

as we move from right to left along the Pareto frontier. This is attributed to a change 

in the composite material application, changing from a composite wing and fuselage 

configuration (ND14) to a composite wing and non-composite fuselage configuration 

(ND19). The non-composite material nature of the fuselage in ND19 reduces the 

manufacturing and maintenance costs for the aircraft – reducing the total operating 

cost; while increasing the aircraft weight (leads to an increase in the fuel burn) – 

raising the CO2 emissions. 

Similarly, examining the bottom right portion of the Pareto frontier, a substantial 

reduction in total fuel carried is achievable with a minimal increase in total operating 

cost. Analyzing designs ND35 and ND36 (refer to Fig. 5.1), a 1.45% reduction in total 

fuel carried (CO2 emissions) is possible with a 0.4% increase in total operating cost. 

This reduction in total fuel carried is equivalent to a 442.9 lb decrease in the total 

CO2 emissions per aircraft per trip. This is attributed to a shift from a no-composite 

configuration (ND36) to a composite fuselage configuration (ND35), reducing the 
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aircraft weight and hence, the fuel burn (CO2 emissions). This is accompanied by 

a decrease in the wing area (directly reducing aircraft weight) and the thrust per 

engine (directly decreasing the fuel burn). Moreover, comparing ND35 and ND44 

(rightmost point in the Pareto frontier) can lead to a further decrease of 69.2 lbs in 

CO2 emissions per trip (a total of 512.1 lbs per trip) with an additional increase of 

just 0.07% in the total operating cost (a total of 0.47%). 

An interesting region from an airline’s point of view would be the near the points 

ND19 and ND20, where a nearly vertical portion is visible in the Pareto frontier 

(refer to Fig. 5.1). Moving from left to right in this region, a substantial decrease in 

total operating cost is possible for a marginal increase in the total fuel carried (CO2 

emissions) by the aircraft. A change from a composite wing configuration (ND19) 

to a composite fuselage configuration (ND20) is responsible for this decrease in total 

operating cost. This is accompanied by an increase in the wing sweep and thrust per 

engine from ND19 to ND20. 

The aircraft geometry design variables show a general trend as we move from left to 

right along the Pareto frontier (refer to Fig. 5.1). The wing area and thrust per engine 

tends to increase for a specific combination of composite structures along the Pareto 

frontier. The engine BPR and OPR generally increases from the costliest design to 

the cheapest design, along with a decrease in the FPR. Also, none of the designs 

employ HLFC technology for all components together – wings, tail and nacelles. This 

can be attributed to the weight and cost penalties associated with HLFC (especially 

for aircraft wings), which suggest that the designs employing NLF technology for 

wings are more affordable as compared to those employing HLFC. 

The aircraft design problem for this objective is run 40 times to see the changes 

in the spread of the Pareto frontier with every run. The initial population points 

generated using the LHS strategy tends to influence the spread of the Pareto frontier 

for different runs. Also, the randomness associated with the two-branch tournament 

GA adds to the changes observed in the Pareto frontier spread. This means that even 
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with same set of initial population points, an exact same set of design solutions is not 

obtained for different runs of the algorithm. 

5.3.1.1 Comparison with Standalone Hybrid Approach 

This section compares the results obtained using the multi-fidelity approach (using 

RBF models) with the ones obtained using the standalone hybrid approach for the 

total fuel carried (index of CO2 emissions) vs total operating cost objective pair to 

solve the ‘greener’ aircraft design problem. 
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Figure 5.2. Comparison of Pareto frontiers obtained using multi-
fidelity hybrid approach and standalone hybrid approach for the ob-
jective pair – total fuel carried (index for CO2 emissions) and total 
operating cost. 

Fig. 5.2 collectively plots the resulting Pareto frontiers from both the approaches. 

The standalone hybrid approach finds 11 non-dominated designs using a total of 
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1,739,004 “high-fidelity” function evaluations (with an average of 1,711,620 “high-

fidelity” evaluations over all 10 runs). The total algorithm runtime for obtaining 

this solution set is 578.10 minutes (with an average runtime of 571.22 minutes over 

all 10 runs). On the other hand, the multi-fidelity approach finds 44 non-dominated 

design solutions using 6,492 “high-fidelity” function evaluations (6,490 “high-fidelity” 

evaluations on average over all 40 runs), with a total runtime of 4.62 minutes (5.76 

minutes on average over all 40 runs), for the results presented in Fig. 5.1 and Fig. 5.2. 

This approach shows an average reduction of 99.62% in the total number of “high-

fidelity” function evaluations along with a 98.99% average reduction in the algorithm 

runtime – leading to a proportional decrease in the computational cost associated 

with solving the ‘greener’ aircraft design problem (fuel carried vs total operating 

cost objective pair) presented in this work. Fig. 5.3 illustrates the decrease in the 

number of “high-fidelity” evaluations and computational runtime for the multi-fidelity 

approach – with respect to the standalone hybrid approach. 

Figure 5.3. Comparison of “high-fidelity” evaluations and compu-
tational runtime for the multi-fidelity approach with the standalone 
hybrid approach – total fuel carried (index for CO2 emissions) and 
total operating cost. 
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Hence, the multi-fidelity approach (using RBF models) is able to find more non-

dominated designs with a less number of “high-fidelity” analyses and lesser runtime. 

This behavior appears to be an attribute of the discontinuities present in the FLOPS 

sizing tool. The RBF models tend to smoothen FLOPS’ internal discontinuities by 

building a continuous approximation model, allowing the multi-fidelity hybrid algo-

rithm to perform local search on a continuous design space. However, the standalone 

hybrid algorithm encounters discontinuities while performing local search by directly 

employing the FLOPS sizing tool for design evaluations, causing the standalone hy-

brid algorithm to penalize some potentially good designs by stopping the local search 

because of one of these discontinuities. This leads to a smaller set of non-dominated 

design solutions for the standalone hybrid approach when compared to the multi-

fidelity approach. 

Analyzing the design solutions in Fig. 5.2, the non-dominated designs obtained 

using the standalone hybrid approach constitute a Pareto frontier with a wider spread 

as compared to the ones obtained using the multi-fidelity approach. However, the 

multi-fidelity approach is able to find a number of trade-off designs with low operating 

cost and high CO2 emissions (visible as black points in the bottom right portion of 

Fig. 5.2). The standalone hybrid approach is unable to find these designs even after 

multiple runs. This behavior is also likely due to the presence of discontinuities in 

the FLOPS sizing tool, causing the standalone hybrid algorithm to penalize some 

potentially good designs in the local search step. 

An interesting point to note in Fig. 5.2 is that the trade-off design solutions 

obtained from the multi-fidelity approach (represented by black points) are visibly 

closer to both the horizontal and vertical axes of the figure, when compared to those 

obtained using the standalone hybrid approach (represented by red points). This 

indicates that the black points are better design solutions as they essentially domi-

nate the solutions represented by the red points. Hence, the design solutions from 

the multi-fidelity approach dominate the ones obtained using the standalone hybrid 

approach. This behavior is also an attribute of the presence of discontinuities in the 
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FLOPS sizing tool. These discontinuities hinder the standalone hybrid algorithm 

from performing local search in certain regions of the design space. On the other 

hand, the continuous design space approximation generated by the RBF models al-

lows the multi-fidelity algorithm to search a discontinuity-free design space, allowing 

the multi-fidelity approach to find a better set of non-dominated design solutions (ob-

tainable with the multi-fidelity hybrid algorithm). Subsequently, the CO2 emission 

value for the lowest CO2 emission designs obtained using both the approaches (repre-

sented by leftmost black and red points) are comparable. However, the multi-fidelity 

approach is able to find this design for a lower total operating cost than that found 

by the standalone hybrid approach. This reduces the spread of the Pareto frontier 

for the multi-fidelity approach, as seen in Fig. 5.2. 

5.3.2 NOX Emissions vs Total Operating Cost 

Fig. 5.4 shows the Pareto frontier for the case of simultaneously minimizing the 

NOx emissions and the total operating cost incurred by the aircraft, without consider-

ing the fuel consumption. The multi-fidelity approach finds 88 non-dominated designs 

by conducting a total of 6,100 “high-fidelity” function evaluations using FLOPS [79]. 

The non-dominated designs show the best combination of aircraft geometry design 

variable values and different discrete ‘greener’ aircraft technologies to reduce the air-

craft NOX emissions. 

The following specific discussion of the non-dominated design results is based 

upon the technology modeling approach employed in this work. Assuming those are 

correct, the following observations are made for different non-dominated designs along 

the Pareto frontier. All the non-dominated aircraft designs employ NLF technology 

on wings along with HLFC technology on the tail and nacelles. These aircraft opt for 

a non-composite structure for both the tail and nacelles, and a composite structure 

for fuselage for every aircraft – except one. This exception could be attributed to the 

mutation operator in the two-branch tournament GA. 
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The design with minimum NOX emissions (represented by the leftmost point in 

Fig. 5.4) selects a three-engine configuration with one fuselage-mounted and two 

wing-mounted engines, along with composite wings and fuselage. This design fea-

tures the maximum wing area among all the non-dominated designs. Consequently, 

it has the maximum total operating cost due to the increased manufacturing and 

maintenance costs associated with the largest composite wing and the all-composite 

fuselage structure. The cost associated with operating and maintaining three engines 

also adds up to the total cost, making this design the costliest to operate. This is an 

interesting outcome as perhaps no designer would choose three engines for an aircraft 

to meet the specified mission requirements, however, the impact on the aircraft NOX 

emissions is clearly visible when a three-engine configuration is selected while solving 

the problem using the multi-fidelity hybrid approach. 

The design with maximum NOX emissions (represented by the rightmost point 

in Fig. 5.4) employs two wing-mounted engines along with a composite fuselage 

structure, leading to minimum total operating cost amidst all designs. This design 

also has the lowest thrust per engine among all the designs, leading to very high NOX 

emissions. Analyzing the engine design variables, it features one of the highest BPR 

(second to maximum), TIT (third to maximum), and OPR (maximum), along with 

the lowest FPR – all contributing to the high NOX emissions for this design. 

Examining the right portion of the Pareto frontier, the design points tend to align 

themselves in an almost horizontal line, indicating that a substantial decrease in the 

NOX emissions can be obtained for a marginal increase in the total operating cost as 

we move towards the left part of the Pareto frontier. Analyzing the sixty-ninth and 

eighty-eighth non-dominated designs (represented by ND69 and ND88 respectively in 

Fig. 5.4), it is observed that a marginal increase of 0.18% in the total operating cost 

leads to a 71.9% reduction in the aircraft NOX emissions (from 539.61 lbs to 308.86 lbs 

per trip). This behavior is an attribute of the higher thrust per engine and very low 

TIT and OPR values of ND69 (both almost equivalent to their respective ‘baseline’ 

engine parameters) when compared to ND88. Higher turbine temperatures lead to 
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Figure 5.4. Pareto frontier for the objective pair – amount of NOX 

emissions and total operating cost. 

increased NOX formation. The TIT of ND88 and ND70 is almost 314 Rankine and 

257 Rankine more than that of ND69, leading to the huge difference in NOX emissions 

visible in the right part of the Pareto frontier. Additionally, there is a reduction in 

the wing area along with a simultaneous increase in the aspect ratio and wing sweep 

from designs ND69 to ND88. 

An interesting region from an airline’s point of view would be the near the points 

ND8 and ND9, where a nearly vertical portion is visible in the Pareto frontier (refer 

to Fig. 5.4). Moving from top to bottom in this region (from ND8 to ND9), a 2.95% 

decrease in total operating cost is possible for a marginal increase of 0.45% in the 

NOX emissions of the aircraft. This behavior is attributed to a shift in the number 

of engines on the aircraft – from a three-engine configuration (two wing-mounted and 
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one fuselage-mounted) in ND8 to a two-engine configuration (two wing-mounted) in 

ND9. 

The engine design variables show a general trend as we move from left to right 

along the Pareto frontier (refer to Fig. 5.4). The BPR and OPR tend to gradually 

increase – with OPR being maximum at the rightmost end of the Pareto frontier, while 

FPR gradually decreases as we move from the left end to the right end. For a specific 

combination of composite structures and number of engines with their position, the 

thrust per engine tends to decrease as the NOX emissions of an aircraft increases. 

The employment of NLF technology on all aircraft wings and HLFC technology on 

all aircraft tail and nacelles signifies the importance of the laminar flow technologies 

in ‘greener’ aircraft design configurations. The highest NOX emitting design shows an 

increase of 165.3% emissions as compared to the lowest NOX emitting design across 

the Pareto frontier, with an overall decrease in total operating cost of about 11.5%. 

For this objective pair, the problem is run 40 times to see the changes in the spread 

of the Pareto frontier with every run. The spread of the Pareto frontier changes for 

different runs, which is an attribute of the different set of initial population points 

generated using the LHS technique and probably because the GA uses some random 

numbers during the operators. 

5.3.2.1 Comparison with Standalone Hybrid Approach 

This section compares the NOX vs total operating cost objective pair results ob-

tained using the multi-fidelity approach (using RBF models) with the ones obtained 

using the standalone hybrid approach for the ‘greener’ aircraft design problem. Fig. 

5.5 plots the resulting Pareto frontiers from both the approaches together. The stan-

dalone hybrid approach finds 28 non-dominated designs using a total of 1,579,997 

“high-fidelity” function evaluations (with an average of 1,556,142 “high-fidelity” eval-

uations over all 10 runs). The total algorithm runtime for obtaining this solution set 

is 931.67 minutes (with an average runtime of 923.50 minutes over all 10 runs). On 
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Figure 5.5. Comparison of Pareto frontiers obtained using multi-
fidelity hybrid approach and standalone hybrid approach for the ob-
jective pair – amount of NOX emissions and total operating cost. 

the other hand, the multi-fidelity approach finds 88 non-dominated design solutions 

using 6,100 “high-fidelity” function evaluations (5,921 “high-fidelity” evaluations on 

average from 40 runs), with a total runtime of only 6.25 minutes (7.36 minutes on 

average from 40 runs). This approach shows an average reduction of 99.62% in the 

number of “high-fidelity” function evaluations along with a 99.20% average reduction 

in the algorithm runtime, leading to a proportional decrease in the computational cost 

associated with solving the ‘greener’ aircraft design problem presented in this work. 

Fig. 5.6 illustrates the decrease in the number of “high-fidelity” evaluations and com-

putational runtime for the multi-fidelity approach – with respect to the standalone 

hybrid approach. 
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Similar to the observation for the previous objective pair, the multi-fidelity ap-

proach (using RBF models) is able to find more non-dominated designs along with a 

reduction in the “high-fidelity” analyses and computational runtime when compared 

to the standalone hybrid approach. This behavior is an attribute of the discontinu-

ities present in the FLOPS sizing tool, with the RBF models providing a continuous 

design space to the multi-fidelity approach for the local search step. 

Figure 5.6. Comparison of “high-fidelity” evaluations and compu-
tational runtime for the multi-fidelity approach with the standalone 
hybrid approach – amount of NOX emissions and total operating cost. 

Taking a closer look at Fig. 5.5, the non-dominated designs obtained from the 

multi-fidelity approach run constitute a much wider Pareto frontier when compared 

to the one obtained using the standalone hybrid approach. Focusing on the rightmost 

portion of the Pareto frontier, the multi-fidelity approach finds a number of trade-off 

designs with high NOX emissions and low total operating cost (represented by black 

points in the bottom right portion). The standalone hybrid approach is unable to find 

these designs even after multiple runs. As was the case in the previous discussion, this 

behavior is most likely due to the presence of discontinuities in the FLOPS sizing tool, 

causing the standalone hybrid algorithm to penalize some potentially good designs 

in the local search step by stopping the search as a result of one (or more) of these 



98 

discontinuities. However, the standalone hybrid approach finds a design solution 

with maximum total operating cost among all the designs in the Pareto frontier 

(including those from multi-fidelity approach), represented by a red point in the top 

left corner in Fig. 5.5. The multi-fidelity approach is unable to find this point 

without compromising the low total operating cost designs (those in the bottom right 

portion). It seems that the multi-fidelity approach tends to favor the total operating 

cost objective more than the NOX emissions objective. 

As with the total fuel carried vs total operating cost objective pair, the trade-

off design solutions obtained from the multi-fidelity approach (represented by black 

points) dominate the design solutions obtained from the standalone hybrid approach 

(represented by red points). This behavior is due to the presence of discontinuities 

in the FLOPS sizing tool, with the RBF models (employed in the multi-fidelity ap-

proach) building continuous approximation models to eliminate their effect on the 

‘greener’ aircraft design problem solution. 

5.4 Spread of Pareto Frontier vs Computational Cost 

This section signifies the trade-off that exists between obtaining a Pareto frontier 

with a wide spread across the objective space and the computational cost (essentially 

the number of “high-fidelity” analyses) associated with the algorithm. 

Table 5.5. Comparison of results obtained using different population 
sizes for the objective pair – total fuel carried and total operating 
cost. 

Comparison Parameters 

Population Size 

64 

(4n) 

96 

(6n) 

128 

(8n) 

160 

(10n) 

192 

(12n) 

Non-dominated Designs 

“High-fidelity” Evaluations 

Computational Runtime (in sec) 

32 

2,827 

145.94 

34 

4,831 

196.67 

44 

6,492 

277.42 

63 

8,123 

388.64 

97 

9,758 

470.07 
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Table 5.6. Comparison of results obtained using different population 
sizes for the objective pair – aircraft NOX emissions and total oper-
ating cost. 

Comparison Parameters 

Population Size 

64 

(4n) 

96 

(6n) 

128 

(8n) 

160 

(10n) 

192 

(12n) 

Non-dominated Designs 

“High-fidelity” Evaluations 

Computational Runtime (in sec) 

46 

2,821 

144.05 

69 

3,496 

179.88 

88 

6,100 

375.33 

95 

8,084 

612.81 

119 

9,747 

722.42 

The spread of a Pareto frontier across the objective space is visualized by the max-

imum (or minimum) value of each objective in a two-objective optimization problem. 

These maximum (or minimum) values of both the objectives signify the ability of 

an algorithm to find design solutions on the extreme ends of the Pareto frontier – 

designs that show most improvement in one objective and least improvement in the 

other objective – widening the spread of the Pareto frontier. However, to find these 

extreme trade-off design solutions using the multi-fidelity approach, an increase in 

the GA population size is required. Hence, increasing the population size leads to 

an increase in the spread of the Pareto frontier, but at the expense of more “high-

fidelity” function evaluations and computational runtime (and computational cost). 

Table 5.5 and 5.6 compares the non-dominated designs, “high-fidelity” function eval-

uations, and computational runtime, associated with different GA population sizes 

for total fuel carried vs total operating cost (first objective pair) and NOX emissions 

vs total operating cost (second objective pair) objective pairs respectively. The GA 

population sizes chosen for comparison are all dependent on the number of problem 

design variables (n), with the population size incrementing from 64 (analogous to 

4n for the aircraft design problem) to 192 (analogous to 12n for the aircraft design 

problem). 
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Fig. 5.7 to 5.10 compare the Pareto frontier obtained for both the objective pairs 

using different populations sizes (4n, 6n, 10n, 12n) with the one obtained using 8n 

population size (based on the approach in Section 3.2.3). Using a population size 

of 64 points, the Pareto frontiers obtained for both the objectives show a minimal 

spread compared to the ones obtained using 128 points. In fact, these design solutions 

(denoted by black points) seem to be dominated by the solutions obtained using 128 

points (denoted by red points), appearing in Fig. 5.7. This case requires the minimum 

number of “high-fidelity” evaluations among all the cases (based on population size), 

leading to minimum computational runtime. Similarly, for a population size of 96 

points (Fig. 5.8), the solutions seem to be dominated by the one obtained using 128 

points, with the Pareto frontier having greater spread than the case with 64 points 

(that too only for the second objective pair), but still being less wider than the one 

obtained using 128 points. For both these cases, the results look somewhat diminished 

and unacceptable for the number of “high-fidelity” function evaluations conducted. 

Figure 5.7. Comparison of Pareto frontiers for population size 128 and 
64 – (a) Total fuel carried vs total operating cost, (b) NOX emissions 
vs total operating cost. 
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Figure 5.8. Comparison of Pareto frontiers for population size 128 and 
96 – (a) Total fuel carried vs total operating cost, (b) NOX emissions 
vs total operating cost. 

In contrast, the cases with a population size of 160 points (Fig. 5.9) and 192 

points (Fig. 5.10) show a wider spread in their Pareto frontiers as compared to the 

one obtained for 128 points. However, this is accompanied with a respective increase 

of 40% and 69.4% in the computational time for the first objective pair, and an 

increase of 63.3% and 92.5% in the computational time for the second objective pair. 

Examining the Pareto frontier for the first objective pair obtained using a population 

size of 160 points, the Pareto frontier contains more trade-off designs favoring one 

of the objectives (visible in the top-left portion of Fig. 5.9a). However, the designs 

favoring the other objective still seem to be dominated by the solutions obtained using 

128 points (visible in the bottom-right portion of Fig. 5.9a) – indicating only minor 

improvements in the Pareto frontier for an almost 40% increase in cost. Similarly, 

for the second objective pair with a population size of 160 points, the Pareto frontier 

shows a wider spread, but with a huge gap in the designs obtained in the bottom-

right portion (denoted by black points) of Fig. 5.9b. Examining the Pareto frontiers 
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obtained using a population size of 192 points, a wider spread is visible for both the 

objective pairs (Fig. 5.10). However, this is accompanied by a 69.4% and 92.5% 

increase in computational runtime for first and second objective pair respectively, 

making this case very expensive when compared to all the other cases. 

Figure 5.9. Comparison of Pareto frontiers for population size 128 and 
160 – (a) Total fuel carried vs total operating cost, (b) NOX emissions 
vs total operating cost. 

Subsequently, Fig. 5.11 depicts the increment in number of “high-fidelity” func-

tion evaluations and computational runtime for different population sizes for both the 

problem objective pairs. An almost linear increase in the number of “high-fidelity” 

function evaluations is visible for both objective pairs for a similar increase in pop-

ulation size (refer to Fig. 5.11a). A rather steep gradient is visible in Fig. 5.11b for 

the computational runtime from 96 (6n) points to 160 points (10n) for the second 

objective pair (NOX emissions vs total operating cost), indicating a disproportional 

increase in the computational cost incurred for every 2n increments in the popula-

tion size. For the “high-fidelity” aircraft design problem presented in this work, the 

increase in computational time seems negligible (or minor) for both the objectives, 
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Figure 5.10. Comparison of Pareto frontiers for population size 128 
and 192 – (a) Total fuel carried vs total operating cost, (b) NOX 

emissions vs total operating cost. 

but for a “higher-fidelity” optimization problem, this minor increase in computational 

runtime – analogous to an increase in the population size – will correspond to a large 

portion of the computational cost involved in solving the “higher-fidelity” problem. 

The above discussion suggests that a trade-off exists between the spread of the 

Pareto frontier attained for a problem and the computational cost associated with 

the same. An increase in spread of the Pareto frontier comes at the cost of increased 

“high-fidelity” function evaluations and increased computational cost. To obtain a 

Pareto frontier with decent spread using reasonable number of “high-fidelity” function 

evaluations (with a feasible computational runtime), choosing a GA population size 

of 8n for the multi-fidelity hybrid algorithm seems plausible. 

Hence, the author recommends using the 8n guideline for choosing the population 

size for the multi-fidelity approach, where n is the number of problem design variables. 

This recommendation is based on the comparison of computational runtime incurred 

for 8n population size runs with all other runs, along with spread of the Pareto 

frontier observed for the 8n population size when compared to the ones obtained for 
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Figure 5.11. Aircraft design problem: (a)“High-fidelity” function eval-
uations using different population sizes; (b) Computational runtime 
using different population sizes. 

other population sizes. The 8n population size also tends to satisfy the condition 

required for the implementation of the modified two-branch tournament GA – which 

requires the population size to be a multiple of 8 for conducting multi-objective GA 

tournament selection and crossover operations. 
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6. CONCLUSION AND RECOMMENDATIONS 

This work presents a multi-fidelity approach to solve constrained multi-objective 

MDNLP problems by utilizing surrogate models to assist SQP in conducting gra-

dient based local search – coupled with the global search conducted by GA. The 

developed algorithm works to reduce the computational expense involved with the 

standalone hybrid algorithm – reducing the number of “high-fidelity” function evalu-

ations required to evolve to a Pareto frontier for a multi-objective problem. 

The first version of this algorithm employed Kriging surrogate models to provide 

“low-fidelity” objective and constraint approximations. Although the Kriging mod-

els seemed to provide good approximations for the objective and constraint values 

in the test problems – the computational burden associated with generating these 

Kriging models (solving for the Kriging hyper-parameters) rendered this approach 

impractical for the multi-fidelity hybrid approach. Subsequently, the second version 

(selected version) employs RBF models to approximate the objective and constraint 

values (“low-fidelity” approximations). The RBF version of the multi-fidelity hybrid 

algorithm reduces the computational runtime associated with the standalone hybrid 

algorithm by at least 89%, leading to a similar decrease in the computational cost. 

The reduction in the number of “high-fidelity” function evaluations also shows a sim-

ilar trend with reduction of at least 98%. These reductions vary from problem to 

problem. 

The aircraft design problem demonstrates the efficacy of the multi-fidelity hybrid 

algorithm to solve complex engineering problems with a reduced computational bud-

get. The algorithm is able to sift through a vast combination of continuous variables 

(representing aircraft geometry and engine variables) and discrete technologies (com-

posite material application, engine placement, and laminar flow technology) to find 

economical aircraft designs with reduced fuel burn (CO2 emissions) and NOX emis-
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sions. For both the objective pairs, all designs opt for natural laminar flow technology 

on the wings and hybrid laminar flow technologies on the tail and nacelles, indicat-

ing the importance of laminar flow technology in enhancing aircraft performance. 

Although discrete technologies modeled in this work are not very “high-fidelity” in 

nature, the design solutions provide a good assessment of the discrete technologies 

that need to be included in the development of a ‘greener’ economical aircraft. 

The non-dominated solution set for the multi-fidelity approach seems to be de-

pendent on the GA population size and the initial GA population generated using the 

LHS technique. Due to lack of a well-defined criterion for choosing the population size 

for a multi-objective hybrid approach, the author recommends using the 8n approach 

suggested in this work to set the population size for a problem, where n corresponds 

to the number of design variables in the problem. 

This work also tends to signify a visible trade-off between the number of “high-

fidelity” function evaluations (hence computational cost) conducted for obtaining the 

non-dominated design solutions and the diversity of the Pareto frontier (suggesting 

its spread in the objective space). Increasing the GA population size seems to widen 

the spread of the Pareto frontier at the cost of an increase in the number of “high-

fidelity” function evaluations (leading to a proportional increase in the computational 

cost associated with solving the problem). 

6.1 Recommendations for Further Research 

Although this work demonstrates the ability of the multi-fidelity approach to solve 

constrained multi-objective MDNLP problems with a limited computational budget, 

there is a need to conduct a comparison concerning the spread (and quality) of the 

Pareto frontier and the computational cost of the presented algorithm with other 

multi-fidelity multi-objective algorithms in existence. Further research would include 

developing a “higher-fidelity” aircraft design problem to enable a better represen-

tation of the impact of the discrete technologies on aircraft performance, probably 
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modeling the whole problem without using the FLOPS sizing tool. Future work would 

include adding more discrete technology options to the already existing mix of dis-

crete technologies. The “higher-fidelity” aircraft design problem will create a good 

platform to further demonstrate the ability of the presented multi-fidelity approach 

to solve highly complex engineering design problems, while maintaining a low-cost 

profile. 
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