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Investigating the fatigue performance of machine components has been of significant 

interest to improve reliability and reduce the maintenance costs.  In the current work, 

analytical as well as experimental approaches are used to investigate material response to 

contact fatigue damage.  In particular, two fatigue phenomena namely; fretting fatigue and 

rolling contact fatigue (RCF) are studied.  Fretting fatigue is a damage mechanism 

observed in machine components subjected to fretting in tandem with fluctuating bulk 

stresses.  A fretting test fixture was developed to investigate fretting fatigue behavior of 

AISI 4140 vs. Ti-6Al-4V in a cylinder-on-flat contact configuration.  The critical damage 

value for AISI 4140 was extracted using the method of variation of elasticity modulus.  The 

fretting fatigue lives obtained from the proposed computational fatigue damage model were 

found to be in good agreement with the experimental results.   

The RCF investigation focuses on developing a modified 2D numerical model to simulate 

RCF damage in line contact configuration.  First, a new computationally efficient approach 

is developed to investigate sub-surface initiated spalling in large bearings.  Previously 

developed continuum damage mechanics based 2D fatigue model was modified to 

incorporate stress mapping procedure and dynamic remeshing tool to make the model 

computationally efficient.  The new approach was validated against the previous numerical 

model for small rolling contacts.  The scatter in the RCF lives and the progression of fatigue 

spalling for large bearings obtained from the model show good agreement with 

experimental results available in open literature.  The ratio of L10 lives for different sized 

bearings computed from the model correlate well with the formula derived from the basic 

life rating for radial roller bearing as per ISO 281.  Furthermore, the RCF model was 

extended to incorporate elastic-plastic material in order to investigate RCF of case 

carburized steels.  A series of micro-indentation tests were conducted to obtain the hardness 
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gradient in the case carburized 8620 steel.  The hardness gradient in the material was 

modeled by changing the yield strength as a function of depth.  The residual stress 

distribution due to carburization process was modeled by modifying the damage evolution 

law.  The model was used to compare the rolling contact fatigue (RCF) lives of through 

hardened and case carburized bearing steel with different case depths.  Based on the model 

results, the optimum case depths to maximize the RCF lives of the case carburized bearings 

at different loading conditions were obtained.  This model was then modified to investigate 

RCF in refurbished case carburized bearings.  Refurbishing process was simulated by 

removing a layer of material from the original surface after a set number of fatigue cycles.  

The original material properties, residual stresses and the fatigue damage accumulated 

prior to refurbishing in the remaining material were preserved.  The refurbished geometry 

was then subjected to additional fatigue cycles until damage was detected.  According to 

model results, more fatigue cycles prior to refurbishing enhance the total fatigue life of 

refurbished bearings.  It was also found that beneficial impact of refurbishing on RCF lives 

of case carburized bearings depends on the relative values of case depth, contact half width, 

refurbishing depth.  
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1. INTRODUCTION 

 Background 

Fatigue is the process of progressive damage accumulation which occurs when machine 

components are subjected to cyclic loading below the ultimate strength of the material.  

Fatigue causes localized damage which is manifested by the formation of micro-cracks, 

debonding, voids, etc. in areas of stress concentration within the material.  These stress 

concentrations are typically associated with defects and inclusions at the microstructural 

level, grain boundaries which act as physical discontinuities in the polycrystalline material, 

or slip planes.  The localized nature of fatigue damage coupled with random distribution 

of material microstructure results in a significant amount of variability in the fatigue life of 

machine components, making the fatigue life prediction a paramount aspect of the 

mechanical design.  The fatigue failure process consists of three stages, crack nucleation, 

propagation, and catastrophic failure.  Fatigue failures can be categorized as occurring in 

either the low or high cycle regimes based on the number of life cycles.  Low cycle fatigue 

is characterized by significant plastic deformation which causes leads to early crack 

initiation and most of the life is spent in the crack propagation stage.  On the other hand, 

little or no plastic strain can be detected at the macroscopic level in the high cycle fatigue 

regime.  Plastic strains are confined to slip that occurs in a few poorly oriented grains.  A 

major portion of fatigue life is spent in crack nucleation phase and once initiated the cracks 

propagates rapidly causing the component to fail.  Therefore, in high cycle fatigue it is 

important to understand the factor governing the crack initiation process.  Grain 

microstructure plays a significant role in the fatigue crack nucleation in the polycrystalline 

materials as grain boundaries can act as physical discontinuities.    

The characteristics of two types of fatigue phenomena associated with contacting bodies 

namely, rolling contact fatigue and fretting fatigue will be reviewed in the sections which 

follow. 
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 Rolling Contact Fatigue 

Rolling element bearings (REB) are frequently used in machineries such as transmission 

systems, wind turbines, rail-wheel and cam-follower mechanisms.  They are used to allow 

rotary motion and reduce friction between moving parts while supporting a significant 

amount of load.  It is often presumed that if REBs are properly maintained and operated 

under conditions of elastohydrodynamic lubrication, thus the life-limiting failure 

mechanism is rolling contact fatigue (RCF) [1].  In rolling element bearings, RCF occurs 

when rolling bearing elements and the raceway roll with respect to each other, producing 

alternating contact stresses over a small volume.  RCF manifests through a variety of 

different modes that eventually lead to failure.  

The two most dominant modes of RCF failure are surface originated pitting and subsurface 

initiated spalling ([2], [3]).  Pitting is characterized by the initiation of a crack at a surface 

irregularity e.g. dents or scratches [4].  Other causes for surface pitting can be improper 

lubrication which increases friction and wear or contaminants in the lubricant which can 

be trapped in the contact and leads to increase in the contact stress.  On the other hand, sub 

surface spalling is characterized by micro-cracks originated below the surface at material 

inhomogeneities such as non-metallic inclusions which propagates towards the surface 

forming a relatively large spall.  These cracks are often found to initiate in the region of 

maximum shear stress reversal below the surface.  This mode of RCF is dominant when 

contacting surfaces are smooth, free of defects and operate under clean lubricated 

conditions ([1], [2]).  Figure 1.1 compares the two modes of failure.  As can be seen, in 

surface pitting, the crack propagates at a shallow angle to the surface until it reaches some 

critical length or depth at which time it branches and propagates to the surface, removing 

a piece of material [4].  The subsurface spalls are commonly deeper than those of surface 

failure. 
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Figure 1.1: Surface pitting (left) and subsurface initiated spalling (right) [5]. 

1.2.1 Classical Fatigue vs. RCF 

Investigation of rolling contact fatigue is more challenging compared to classical fatigue 

due to some key differences that distinguish them.  

1. Classical fatigue failures generally initiate at the free surfaces due to existence of 

stress concentrating features such as scratches and/ or notches.  Also, some 

common fatigue failures involving bending are caused by maximum tensile stress 

that occurs at the surface.  The RCF damage is confined within subsurface material 

which makes it more difficult to locate and track prior to catastrophic failure to the 

load bearing surfaces.   

2. In uniaxial or torsion fatigue, specimens are subjected to loadings that produce bulk 

stresses that cause damage to a large volume of the material and complete failure 

of the component.  However, the stresses in RCF are highly localized in the region 

close to the non-conformal contact.  Typical bearing contact half-widths are on the 

order of 100 – 500 μm.  Consequently, very small volumes of the material are 

subjected to RCF. 

3. In Hertzian line contact loading, there is a significant compressive component of 

hydrostatic stress in rolling contacts.  Therefore, mode I crack growth is inhibited 

and crack propagation is dominated by mode II crack.  However, there is not 

sufficient information regarding how compressive hydrostatic stress affects the 

Mode II crack growth.  

4. Due to limited knowledge of mode II crack growth, it becomes difficult to apply 

common fatigue analysis methods such as linear elastic fracture mechanics (LEFM).  
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Further, the localized nature of stresses can cause the crack propagation to be 

affected by microstructural geometry of the material. 

5. The state of stress experienced by a material point during a loading cycle is non-

proportional [6].  Figure 1.2 illustrates the stress history of a material point at depth 

of the maximum orthogonal shear stress during a rolling cycle.  In the figure the 

stress components are non-dimensionalized with the maximum Hertzian contact 

pressure, pmax, and the spatial location is non-dimensionalized with the Hertzian 

half width, b.  Contrary to classical fatigue, different stress components are out of 

phase during a loading cycle.  The shear stress, 𝜏𝑥𝑧 is the only stress component 

which undergoes reversal, while normal stresses are always compressive.  Due to 

this complex multiaxial stress distribution, the direction and magnitude of principle 

stresses vary significantly during a loading cycle.    

The above points are some of the reasons classical fatigue results cannot be directly 

translated to RCF.  Therefore, the RCF phenomenon has drawn attention of many 

researchers over the last century.  The next section presents a review of important rolling 

contact fatigue life models and their limitations.   

 

Figure 1.2: Stress history at a material point at the depth of maximum orthogonal shear 

stress as Hertzian line contact passes over the surface. 
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1.2.2 Review of RCF Life Models 

A vast array of models has been developed to predict RCF failures in bearing components.  

According to Sadeghi et al. [7], these models can be classified as: (1) Empirical models; 

(2) Analytical models; and (3) Computational models.   

 Empirical models:  As discussed previously, it is difficult to directly correlate RCF to 

classical fatigue due to the major differences in underlying phenomena, which led most of 

the early investigators to pursue an empirical characterization of the phenomenon [8].  

These empirical models were mostly probabilistic providing a statistical characterization 

of RCF based on variables obtained from extensive full-scale bearing fatigue testing.  

Hence, the empirical formulas possessed a limited scope of validity over operating 

conditions and bearing geometries.  The first bearing life model which served as the basis 

for the first industrial bearing life standards [9] and many subsequent models for REBs was 

proposed by Lundberg and Palmgren [10], [11].  They correlated the scatter in the fatigue 

lives of REBs to the location of crack initiation.  They postulated that a crack originates 

from sub-surface “weak points” of the in the vicinity of maximum orthogonal shear stress.  

Assuming stochastic distribution for the material weak points and applying The Weibull 

strength theory to the stressed volume in a pure Hertzian contact, Lundberg and Palmgren 

postulated following expression for the probability of survival, S for bearings subjected to 

N fatigue cycles –  

ln
1

𝑆
 ~
𝜏0
𝑐𝑁𝑒𝑉

𝑧0
ℎ   (1.1) 

where, 𝜏0 is the maximum orthogonal shear stress in the contact at a depth, z0.  V represents 

the stressed volume.  The exponents c, e and h must be determined experimentally.  The 

parameter e is the Weibull slope for the experimental life data.  The stressed volume V was 

assumed to be proportional to an annular volume of the bearing ring material directly 

affected by contact stresses 

𝑉 ~ 𝑏𝑧0(2𝜋𝑟𝑟)  (1.2) 

where, 𝑏  and 𝑟𝑟 correspond to contact half-width and raceway radius, respectively.  

Substituting for 𝜏0 , z0 and V in terms of the bearing dimensions and Hertzian contact 

parameter,  the following load-life equation was obtained by Lundberg and Palmgren -  
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𝐿10 = (
𝐶

𝑃
)
𝑝

  (1.3) 

where 𝐿10 is the life cycles at which probability of failure is 10%,  𝐶 is the bearing basic 

dynamic load rating and 𝑃 is the equivalent load on the bearing.  The exponent p is 3 for 

ball bearings having an elliptical contact area, 10/3 for roller bearings having modified line 

contact areas and 4 for pure line contacts.  Though the LP theory was widely accepted, it 

ignores possibility of surface initiated failure, the effects of lubrication, contamination, 

surface shear traction, etc.  It also assumes the contacting surfaces to be perfectly smooth, 

ignoring surface roughness, scratches and dents, which affects the stress distribution in the 

material. 

Ioannides and Harris [12] attempted to overcome some of the limitations associated with 

the Lundberg-Palmgren model and to establish a link structural fatigue and RCF.  Their 

first distinction was considering the bearing raceway to be composed of discrete material 

volumes.  They assumed that fatigue crack can originate at any point in the material, 

therefore each discrete material volume will have its own probability of survival.  The the 

overall failure risk for the bearing is the multiplication of failure risks of individual 

volumes.  They also incorporated a stress threshold below which failure would not occur, 

similar to a fatigue limit in classical structural fatigue.  Based upon these modifications, 

the bearing’s probability of survival according to Ioannides and Harris [12] –  

ln
1

𝑆
 ~𝐴𝑁𝑒∫

(𝜎 − 𝜎𝑢)
𝑐

𝑧ℎ𝑉𝑅

𝑑𝑉  (1.4) 

where, 𝜎 is a stress quantity occurring at a depth 𝑧, 𝜎𝑢 is the stress threshold and A is an 

empirical constant.  𝑉𝑅 are the volumes that are at risk of failure, i.e. where 𝜎 > 𝜎𝑢.  Here, 

the critical stress quantity, σ could be any stress causing the fatigue damage, e.g., the 

orthogonal shear stress, the maximum shear stress or the equivalent von Mises stress.  The 

load-life equation was modified by Ioannides et al. [13] to  

𝐿10 = 𝑎1 [
𝐴

〈1 − (𝜂
𝑃𝑢
𝑃 )

𝑤

〉
𝑐
𝑒

] (
𝐶

𝑃
)
𝑝

, 𝑃 > 𝑃𝑢  (1.5) 
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where, 𝑎1 is the reliability factor ( 𝑎1=1 for n=10),  𝑃𝑢 is the load corresponding to the 

stress threshold 𝜎𝑢.  The threshold modification parameter, η accommodates the deviation 

in stress from Hertzian theory.  Setting 𝜎𝑢 = 0 in (1.5) makes the Ioannides and 

Harris model equivalent to the LP model. 

The current ISO standard [9] for rolling bearing life is based on modified Lundberg-

Palmgren equation -  

𝐿10 = 𝑎1𝑎2𝑎3 (
𝐶

𝑃
)
𝑝

 
 

 (1.6) 

where a1, a2 and a3 are life modifying factors that account for reliability, material and 

operating conditions. 

The Lundberg- Palmgren Equation (1.1) can be rearranged to relate the life of a bearing for 

a given probability of survival S to the critical stress, 𝜏0 and the Weibull slope, e as follows 

N  ∝
𝑧0
ℎ/𝑒

𝜏0
𝑐/𝑒
𝑉1/𝑒

  (1.7) 

This indicates that the stress-life exponent depends on the scatter in bearing life data.  

However, exponents published in the literature appear to be independent of the life scatter.  

Therefore Zaretsky [14] presented a modified Lundberg and Palmgren [11] model with two 

changes: 1) eliminating the dependence of the stress-life relation on the Weibull slope e, 

and 2) eliminating the depth term.  Additionally, Zaretsky changed the critical stress 

quantity to the maximum shear stress instead of the orthogonal shear stress.  The equation 

developed by Zaretsky is given by 

ln
1

𝑆
 ~𝜏0

𝑐𝑒𝑁𝑒𝑉  (1.8) 

 Analytical models: As opposed to the empirical models, the analytical models 

consider the physical mechanisms of the failure process that occurs during RCF.  Typically, 

the analytical models study either the crack initiation or crack propagation stage of the 

fatigue phenomenon by trying to address the underlying physical mechanisms responsible 

for RCF.  Using the stress-strain behavior information for the materials, these models are 

usually combined with a material failure model to estimate the RCF lives.  

The first analytical model for RCF phenomenon was developed by Keer and Bryant [15] 

who used fracture mechanics approach for crack propagation in rolling/sliding Hertzian 
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contacts.  They considered hydraulic effects and friction forces to study the propagation of 

inclined surface crack.  They assumed crack nucleation life to be small compared to 

propagation life.   

𝑁 ≈ 𝑁𝑐 =
1

2𝛽𝑜
∫

𝑑𝑏

ΔKm

𝑏

𝑏0

= 𝛽0
−1𝑝𝑚𝑎𝑥

−𝑚 𝑐1−
𝑚
2   (1.9) 

where 𝛽𝑜 and m are the Paris’ law material parameters and ΔK is the stress intensity range 

at the crack tip.  𝑝𝑚𝑎𝑥 is the maximum Hertzian pressure and 𝑐 is the contact half-width.  

However, this model predicted fatigue lives orders of magnitude shorter than those 

predicted for similar Hertzian pressures using empirical models [16].   

Hanson and Keer [17] extended this model to a 3D crack propagation model for line contact.  

They replaced the stress intensity factor in the Paris law by energy release rate, Δ𝐺 to 

account for mixed-mode propagation, 

𝑑𝑎

𝑑𝑁
= 𝐶(Δ𝐺)𝑚 〈Δ𝐺 −  Δ𝐺𝑡ℎ〉  

Δ𝐺 = [(1 − ν)Δ𝐾𝐼
2 + (1 − ν)Δ𝐾𝐼𝐼

2 + Δ𝐾𝐼𝐼𝐼
2  ]/2𝜇 

 (1.10) 

Where C and m are Paris law constants for the material and  Δ𝐺𝑡ℎ is a threshold energy 

release rate below which a crack does not propagate.  This model predicted fatigue lives in 

the order of 107 cycles for maximum Hertzian pressures near 2 GPa, which is within the 

experimentally observed ranges. 

Zhou et al. ([18], [19]) introduced a life model incorporating both the crack nucleation and 

crack propagation stages.  The equation for final life was - 

𝑁 =
𝐴𝑊𝑐

(Δ𝜎 − 2𝜎𝑘)2𝐷
+∫

𝑑𝑏

cΔKm

𝑎

𝑎1

  (1.11) 

Where, A, c and m are material parameters, 𝑊𝑐 is the specific fracture energy per unit area, 

Δ𝜎  is the local shear stress range, 𝜎𝑘  is the friction stress for the material, D is the 

accumulated damage and ΔK is range of the stress intensity factor at the crack tip. 

Bhargava et al. [6] developed a RCF life model in which the fatigue life were predicted 

from the accumulated plastic strain under cyclic contact stress in strain hardening materials.   

Jiang and Sehitoglu [20] computed RCF lives for crack initiation in line contacts using an 

elastic-plastic FE model incorporating the effects of cyclic ratcheting in conjunction with 

a multi-axial fatigue criterion [21].   Total damage 𝐷 was assumed to be a sum of damage 
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due to fatigue (𝐷𝑓) and ratcheting (𝐷𝑟).  The rates of damage accumulation for the two 

phenomena were given by 

𝑑𝐷𝑓

𝑑𝑁
=
(𝐹𝑃 − 𝐹𝑃0)

𝑚

𝐶
;  
𝑑𝐷𝑟
𝑑𝑁

=
|
𝑑𝛾𝑟
𝑑𝑁
|

𝛾𝑐𝑟𝑖𝑐
  (1.12) 

where, 𝐹𝑃  is a fatigue parameter, 𝛾𝑟  is the ratcheting strain, 𝐹𝑃0 , 𝑚 , 𝐶  and 𝛾𝑐𝑟𝑖𝑐  are  

material constants.  The fatigue parameter FP was calculated from stresses and strains on 

the critical plane according to the following multi-axial fatigue criterion [21], 

𝐹𝑃 =
Δ𝜖

2
𝜎𝑚𝑎𝑥 + 𝐽Δ𝛾Δ𝜏  (1.13) 

where, Δ𝜖 is the normal strain range , 𝜎𝑚𝑎𝑥 is the maximum normal stress, Δ𝛾 is the shear 

strain range, Δ𝜏 is the shear stress range and J is a material constant.  It was found that the 

combination of fatigue and ratcheting damage is the maximum at a depth corresponding to 

the occurrence of maximum orthogonal shear stress range, which is in agreement with 

predictions from the Lundberg-Palmgren theory. 

 Computational models:  Since, these analytical models assume a homogeneous 

description of the material microstructure and do not directly include the microstructural 

features in the life prediction mechanisms, they fail to capture the stochastic nature of RCF.  

However, in RCF, the localized nature of the contact stresses enhances the effects of these 

heterogeneous microscale features such as grain size and orientation, distribution of initial 

defects and material inclusions on the fatigue life and lead to the scatter in the RCF lives 

of otherwise identical bearings [22]. 

Raje et al. [23] presented a statistical model to estimate life scatter in rolling element 

bearings taking into account the material microstructure explicitly.  The fatigue life N was 

assumed to be related to the critical stress and the corresponding depth - 

𝑁 ~
𝑧𝑟

𝜏𝑞
  (1.14) 

The advantage of this model was that an explicit Weibull life distribution was not assumed, 

hence Weibull parameters from experimental data were not required.  Instead, it was 

hypothesized that the variation occurring in the critical stress τ and corresponding depth z 

due to randomness in the material microstructural characteristics lead to scatter in fatigue 

life.  They assumed that fatigue damage occurs along the weak planes that experiences the 
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maximum alternating shear stress during the loading cycle.  This assumption is similar to 

several multi-axial fatigue criteria proposed in literature ([24]–[26]).  The geometric 

randomness and topological variability of material microstructure were simulated in the 

model using a Voronoi tessellation of randomly generated nucleation or seed points.  They 

used discrete element method to capture the stress history during a rolling cycle for forty 

random Voronoi meshes.  Applying Equation (1.14), they found that the scatter in the RCF 

lives obtained from the model results compared well with experimental results. 

This model was further improved upon by incorporating a continuum damage mechanics 

based fatigue model to simulate the gradual material degradation due to fatigue [27].   In 

continuum damage mechanics, the Damage due to fatigue is incorporated through an 

internal damage variable 𝐷 which varies from 0 to 1.  Raje et al. [27]  implemented the 

damage variable in their discrete element model through degradation of the springs.  

Damage evolution rate given by [28] was modified for shear stress driven  rolling contact 

fatigue as following 

𝑑𝐷

𝑑𝑁
= [

Δ𝜏

𝜏𝑟(1 − 𝐷)
]
𝑚

   (1.15) 

where Δ𝜏 is the critical stress range acting along the inter-element joint,  𝜏 and m are 

material parameters that are experimentally determined.  The growth of damaged zones in 

the material is interpreted an spalling.  They concluded that the initiation lives do not show 

much scatter.  The scatter in the total lives (Weibull slope = 1.85) is primarily governed by 

the scatter in propagation lives. 

Jalalahmadi and Sadeghi [29] developed the similar model in a finite element framework 

with elastically deformable material grains.  They also used Voronoi tessellation to 

represent the randomness in the material microstructure.  They studied the influence of the 

randomness inherent in the microstructure model on the magnitude and location of shear 

stress quantities supposed to be causing the RCF damage.  Moreover, they found that 

introducing heterogeneity in the material model by varying the elastic properties and 

randomly distributing material flaws increased the fatigue life scatter.  Jalalahmadi [30] 

also improved the model incorporating damage mechanics theory to simulate the RCF 

process similar to the model developed by Raje et al. [27].   
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These RCF models utilized a two-dimensional simplification of the material microstructure.  

However, 3D geometry is a more realistic representation of the subsurface material 

topology.  Recognizing that the three-dimensional characteristics of the microstructure can 

significantly influence the fatigue lives, Weinzapfel et al. [31] extended the damage 

mechanics based RCF model by incorporating 3D Voronoi Tessellation.  Since, 

constructing the model in a three-dimensional framework incurs a substantial increase in 

computational expense; Bomidi et al. [32]  implemented several solution strategies  to 

improve efficiency.    Warhadpande et al. [33] and Bomidi et al. [34] included the effect of 

plasticity to accurately capture the stresses in the contact region under high loads.   

 Fretting Fatigue 

Fretting is a combination of wear, fatigue and corrosion that can occur between contacting 

bodies due to small amplitude relative oscillatory motion between the surfaces [35].  The 

relative movement can result from external vibration, or can be the consequence of one of 

the members of the contact being subjected to a cyclic stress.  Fretting damage may be 

classified into two different regimes depending on the magnitude of displacement between 

the contacting surfaces.  In the partial slip regime, a portion of contact sticks while the 

remainder slips.  In the gross slip regime, all the points in contact experience relative slip.  

Crack formation mainly occurs under partial slip conditions while gross slip conditions 

cause wear or galling.  Fretting fatigue damage is prevalent in mechanical components.  

The combination of vibratory surface load and centripetal force in the dovetail blade/disk 

type attachments in gas turbine engines makes them vulnerable to fretting damage.  Bolted 

or riveted structures such as aircraft wings subjected to alternating stress also experience 

fretting.  Splines are usually designed to allow slight misalignments at the junction, which 

may increase their vulnerability to fretting damage.  The corrosive conditions produced by 

the body fluids may give rise to fretting fatigue failures in bone plates used to fix fractured 

bones.   

1.3.1 Classical Fatigue vs. Fretting Fatigue 

Similar to rolling contact fatigue, fretting fatigue displays a number of important features 

that sets it apart from classical fatigue.  As per Nowell [36], the following features must be 
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considered in any experimental and analytical analysis or while designing susceptible 

machine components:   

I.  Due to the localized stress concentration at the contact, the magnitude of stress 

gradients is usually much higher than those associated with typical design features 

of components (e.g. notches and holes).  

II. The non-proportional loading in the contact region caused by the non-linear nature 

of the friction at the contact interface, although the external loading is applied in a 

proportional fashion.  

III. As cracks propagate away from the contact, they experience a variable R-ratio.  

IV. Due to high localized stresses, the surface damage at the asperity level may 

accelerate crack initiation at the asperity scale.  

1.3.2 History of Fretting Fatigue 

The ‘fretting’ phenomenon has been researched for well over a century.  In early days, it 

was recognized primarily as a surface damage phenomenon, which is now known as 

‘fretting wear’.  Eden et al. [37] in 1911 reported that brown oxide debris was formed in 

the steel grips of their fatigue machine in contact with a steel specimen.  However, fretting 

fatigue was not specifically mentioned in their study.   

The first experimental investigation of fretting was conducted by Tomlinson [38]  in 1927.  

He designed two machines to produce small amplitude rotational movement between two 

annuli, and an annulus and a flat.  A long lever system controlled the movement of the 

components.  He established that the damage could be a result of relative movement of the 

components of amplitudes as small as a few millionths of an inch.  He termed the relative 

motion of the component as 'slip'.  Further, the resultant debris on his steel specimens was 

the red iron oxide which had arisen from chemical reaction with oxygen in the air, he 

coined the phrase 'fretting corrosion'.  Warlow-Davies [39] in 1941 investigated the adverse 

effects of fretting of fatigue strength of the materials.  They applied fretting damage on the 

gauge length of steel fatigue specimens and found that pitting of the surface reduces the 

fatigue strength.  Later investigations by McDowell [40] showed that the combined action 

of fretting and fatigue, which is often the case in real applications, was much more adverse 

reducing the fatigue strength considerably.  In 1958, Fenner and Field [41] demonstrated 
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that fretting greatly accelerated the crack initiation process.  Following these early 

investigations, the phenomenon where microslip between contacting surfaces leads to a 

reduction in fatigue life when compared to a plain fatigue was came to be referred as 

‘fretting fatigue’. 

1.3.3 Review of Fretting Fatigue Investigations 

Multitude of inter-dependent parameters influence the fretting fatigue strength of machine 

components.  These include materials, relative displacement amplitudes, normal force at 

the fretting contact, alternating tangential force, the contact geometry, surface integrity 

parameters, the environment, etc.  Different types of experimental apparatus have been 

developed to study fretting fatigue at various design service conditions and determine the 

effects of fretting parameters on the fatigue lives.  Fretting fatigue tests are generally 

performed in one of three types of loading configurations.  In the ‘bridge’ configuration 

which was popular till 1990s, the bridge-type pads (Figure 1.1(a)) were simply clamped to 

the specimen by a proving ring or similar arrangement.  The cyclic strain in the specimen 

causes relative motion between the bridge feet and the specimen.  However, in this 

configuration, the conditions at the pad feet are difficult to characterize as the slip at each 

foot may not be absolutely identical.  Nishioka and Hirakawa ([42], [43]) used cylindrical 

pads clamped against a flat specimen (Figure 1.3(b)).  In this configuration, the pad 

alignment is less critical compared to the bridge type as flat-on-flat contact is avoided.  

Further, the theoretical stresses can be predicted by classical Hertzian contact equations.  

Important parameters for subsequent stress analysis (normal load, P, tangential load Q(t), 

and specimen remote stress σ(t) can be readily monitored.  Many other researchers, 

including Hills et al. [44], Szolwinski and Farris [45], Cortez et al.[46], Jin and Mall [47] 

adopted this configuration.  The grip-type fretting fatigue test configuration (Figure 1.3(c)) 

is usually employed for flat fretting pads.  Some researchers designed a test set-up closely 

related mimicking the geometry of the machine component under investigation.  For 

example, Ruiz et al. [48], Papaniknos and Meguid [49], and Conner and Nicholas [50] 

performed fretting experiments in a dovetail geometry.  Since, the large number of 

interacting variables which affect fretting fatigue makes experimental testing difficult, 

efforts to establish fretting fatigue test standards have been going on since the late eighties.  
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Attia and Waterhouse [51] summarized some of the previous works which examined the 

possibility of standardizing the fretting fatigue test methods and equipment.  ASTM Task 

Group E0.05.05 has been developing a standard guide for fretting fatigue since 2007, with 

latest version ASTM E2789-10 [52] published in 2011.  Neu [53] reviewed the current 

standards pertaining to fretting fatigue testing and discussed the new developments in the 

standardization.  

(a) 

 

(b) 

 

(c) 

 

Figure 1.3: Fretting fatigue test configurations (a) Bridge-type, (b) 

Single clamps and (c) Grip-type [52]. 

 

Many different approaches have been developed to analytically model both crack initiation 

and propagation aspects of the fretting fatigue phenomenon.  The initial fretting fatigue 

models can be divided into three distinct categories – (1) empirical models, (2) fatigue 

parameter based models, and (3) fracture mechanics based models [54].  The empirical 
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models attempted to estimate fretting fatigue life as a function of applied alternating stress 

without taking into account the effect of stress concentration caused by the contact ([55]–

[57]).  Harris [58] developed a sensitivity index based on the difference in fatigue strength 

for plain fatigue and fretting fatigue.  However, these empirical models did not attempt to 

determine the stress distribution along the contact surface for the applied loading 

conditions.  Many investigators ([59]–[61]) studied the stress concentration at the edge of 

contact due to fretting and derived an equation for stress intensity factor as a function of 

axial stress amplitude and the frictional force.  They studied different contact and loading 

conditions and determined the stress intensity factors required for onset of crack 

propagation and crack arrest.  Golden and Grandt[62], Fadag et al. [63], Proudhon and 

Basseville [64] used fracture mechanics to analyze the fretting fatigue crack propagation 

rate.  Recently, Giner et al. [65] and Baietto et al. [66] have used XFEM to predict fretting 

fatigue crack propagation.  However, the drawback of the fracture mechanics approach is 

that it requires an initial crack length to start the analysis.  Thus, it cannot predict the fatigue 

life for the crack initiation stage.  As significant amount of life is consumed during this 

stage, there has been lot of focus to estimate the fretting fatigue life consumed in this stage.  

Early attempts frequently employed ‘special’ empirical parameters, some based on 

classical fatigue while some formulated solely for the fretting case.  The two parameters 

proposed by Ruiz et al. [67] which come under the second category are particularly popular.  

The first Ruiz parameter was based on maximum frictional work the product of the local 

slip amplitude with the maximum shear traction.   

𝜅1 = (𝜏𝛿)max  (1.16) 

Where, 𝛿 is the local slip amplitude and 𝜏 is the maximum shear traction.   

The second Ruiz parameter which combined surface tangential stress with the first Ruiz 

parameter was more successful in predicting the location of crack initiation [68], though 

they lack in exact physical sense.  

𝜅2 = (𝜎𝑇𝜏𝛿)max  (1.17) 

Elkholy [22] developed a fretting fatigue strength reduction parameter, 𝜎𝑅  which should 

be subtracted from plain fatigue strength.  Here, 𝑢 is the slip and 𝑓 is the friction coefficient.  

𝜎𝑅
𝑝0
= 2𝑓 (1 − exp (−

𝐸𝑢

𝑎𝑝0
))  (1.18) 
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The more general classical fatigue based parameters consider the inherent multiaxial nature 

of the stress field in the fretting region.  These include Socie [69], Nishioka and Hirakawa 

[70], Smith, Watson, Topper[71], etc.  Socie [69] used maximum principle strain while 

Nishioka and Hirakawa [70] used maximum principle stress as a criterion for the location 

of fretting crack initiation.  These parameters were also modified to incorporate the “critical 

plane” approach.  For example, Szolwinski and Farris [45] assumed that crack initiation 

occur on the plane where SWT parameter is maximum.   

Γ = 𝜎𝑚𝑎𝑥𝜖𝑎   (1.19) 

Socie [72] developed a critical plane multiaxial parameter based on shear initiation.  They 

postulated that during the shear loading frictional forces at irregularly shaped cracks 

surfaces reduce crack tip stress, thus retarding the crack initiation.  However, normal load 

on the crack faces diminishes this impact [54].  Including these effects, they proposed the 

following parameter -   

FS = Δ𝛾 [1 +
𝜎𝑛,𝑚𝑎𝑥
𝜎𝑦

]   (1.20) 

Where Δ𝛾 is the shear strain range on the critical plane, 𝜎𝑛,𝑚𝑎𝑥  
is the maximum value of 

direct stress across the plane, σ
y 
is the yield stress, and 𝑘′ is a fitting parameter.  Neu et al. 

[73] found that F-S parameter was most effective at prediction the location and initial 

growth direction of fretting fatigue cracks in PH 13-8 stainless steel.  Fouvry et al. [74] 

applied Dang Van’s mesoscopic parameter (Dang Van et al.[75]) with averaging dimension 

of 6μm and found the fretting results to be consistent with plain fatigue in low alloy steel 

(30NCD16).   

Nowell et al. [36] have reviewed more recent developments, including applying multiaxial 

initiation criteria to the fretting problem, size effects, crack arrests and characterizing crack 

initiation using asymptotic analysis.   

 Scope of this Work 

As noted before, multitude of machine components are susceptible to fretting and rolling 

contact fatigue and the complex multi-axial nature of state of stress in the contact region 

makes their study a challenging research task.  Further, the advancements in wind turbines 
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where the contacts are an order of magnitude higher in scale and improvements in steel 

production and processing techniques to enhance the fatigue life of the material open new 

areas of research.  Therefore, it is of significant importance to modify the current fatigue 

models for accurate predictions of fatigue lives for these new frontiers of research.  The 

objectives of this investigation are to expand the continuum damage mechanics based 

fatigue model to determine the material response to fretting fatigue and rolling contact 

fatigue.   

The second chapter presents the experimental investigation of the fretting fatigue behavior 

of AISI 4140 vs. Ti-6-4 in a cylinder-on-flat contact configuration.  It also discusses a 

microstructure sensitive computational model based on continuum damage mechanics 

developed to simulate the experiments.   

Chapter three onwards, this dissertation focus on the study of rolling contact fatigue in 2D 

line contact configuration.  This study utilizes an existing fatigue model as a basis.  

However, the existing model requires significant computational effort to study large rolling 

contacts.  Since large bearings employed in wind turbine applications have half-contact 

widths that are usually greater than 1 mm, chapter three presents a modified 

computationally efficient approach to investigate RCF life scatter and spall formation in 

large bearings.  It consists of a Delaunay triangle mesh and stress mapping to improve 

efficiency and dynamic remeshing tool for mesh refinement to retain accuracy in stress 

calculations around the fatigue damage.  The model is applied to obtain the L10 lives and 

fatigue life scatter for different half-contact widths at fixed maximum contact pressure.  An 

equation for the ratio of L10 lives for different half-contact widths is derived based on the 

basic life rating for radial roller bearing as per ISO 281 to validate the model results.  The 

effect of random distribution of initial defects on the fatigue lives for different contact 

widths is also investigated.   

The RCF models developed till now assumes homogeneous pristine material with uniform 

distribution of material properties.  However, the case carburized material which is getting 

popular in the manufacturing of high performance ball and rolling element bearings, is 

characterized by the hardened exterior and gradient in the material properties as a function 

of depth.  Therefore, chapter four presents an elastic-plastic finite element model based on 

micro-indentation tests to investigate the rolling contact fatigue of case carburized bearings.  
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It considers both yield strength and residual stress gradient within the material due to 

carburizing process.  The model is used to compare the rolling contact fatigue (RCF) lives 

of through hardened and case carburized bearing steel with different case depths at contact 

pressures ranging from 2 to 3.5 GPa.  The model results are used to obtain the optimum 

case depth in order to maximize the RCF lives for the applied load. 

Chapter 5 builds upon the RCF damage model developed in Chapter 4 to add the capability 

to simulate RCF in refurbished bearing made from case carburized steel.  To simulate the 

refurbishing process, accumulated damage is calculated for a set number of fatigue cycles 

(fatigue cycles prior to the refurbishing) with the original bearing geometry.  Then, a layer 

of preset depth (refurbishing depth) is removed from the from the top of the random 

Voronoi domains preserving the original material properties, residual stresses and the 

accumulated fatigue damage in the remaining material.  The model is implemented for 

various refurbishing depths and number of fatigue cycles prior to the refurbishing, to 

analyze their influence on the life of refurbished case carburized bearings.  The results are 

used to compare the improvement in the RCF lives due to refurbishing of case carburized 

steels with different case depths and through hardened steel.  

Finally, Chapter 6 summarizes the developments made in this dissertation and offers 

recommendations for further research. 
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2. EXPERIMENTAL AND NUMERICAL ANALYSIS OF FRETTING 

FATIGUE 

 Introduction 

Low amplitude tangential relative oscillatory motion between contacting bodies causes 

different forms of fretting damage such as pits, scarring, and material transfer on the surface.  

If the material is concurrently subjected to partial slip fretting and fluctuating bulk loading, 

the geometrically significant stick zone in the fretted area causes a stress concentration at 

the contact region resulting in premature nucleation and acceleration of crack growth when 

compared to fatigue situations without fretting [76].  This type of fatigue damage is known 

as fretting fatigue.   

A number of mechanical, physical and environmental factors affect the fretting fatigue 

degradation process.  These primarily include macroscopic factors such as bulk stress 

amplitude, contact geometry, normal contact load, coefficient of friction, slip amplitude, 

frequency, material properties, and temperature [56].  Due to the complex nature of the 

problem and its significance in the engineering applications, extensive research work has 

been undertaken over the past decades to characterize the fretting fatigue phenomenon both 

experimentally and analytically.  Depending on the objective of the tests, fretting fatigue 

tests can be performed in various contact and loading configurations: single clamp loading 

configuration (Szolwinski and Farris [45], Cortez et al. [46], Jin and Mall [47]), grip type 

loading configuration (Hutson et al. [77]), and the bridge type loading configuration 

(Rayaprolu and Cook [55], Pape and Neu [78]).  Many investigators have studied the crack 

initiation process with strain or critical plane based parameters such as Smith-Watson-

Topper (SWT), and Fatemi-Socie (FS) which predict fretting fatigue initiation life from 

uniaxial fatigue tests.  Ruiz parameters have also been used to investigate crack initiation 

in fretting fatigue.  Lykins et al. [79] have compared several commonly used fatigue 

parameters and found that strain or critical plane based parameters are more effective in 

predicting cycles to crack initiation and its location.  Quraishi et al. [80], Aghdam et al. 

[81], Zhang et al. [82], and Hojjati-Talemi and Wahab [83] have employed continuum 

damage mechanics approach for predicting crack formation in fretting.  Scatter in fretting 

fatigue has been analyzed by Golden et al. [84] using probabilistic analysis to predict total 
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life and Slack et al. [85] using the randomness of material microstructure topology to 

predict initiation. 

In the current work, experimental results for the line contact between an AISI 4140 flat 

specimen and Ti-6-4 cylindrical contact pads are presented for the single clamp loading 

configuration.  Figure 2.1 illustrates a schematic of the single clamp fretting fatigue tests 

for cylinder on flat contact configuration as given in [52]. 

 

Figure 2.1: Fretting fatigue test configuration as given in ASTM standard [52]. 

 

The focus of the analytical part of this work is to develop a new approach to estimate 

fretting fatigue life using damage mechanics.  A finite element model was developed using 

the commercial FEM software ABAQUS to evaluate the stress at the microstructure level.  

In order to incorporate the material randomness and disorder, the internal topology of the 

material microstructure is modeled using Voronoi tessellation with Voronoi cells 

representing grains of the material microstructure.  Gradual material degradation induced 

by fretting fatigue is modeled using damage mechanics.  Randomly generated Voronoi 

domains were subjected to fretting fatigue loading conditions and the fatigue damage 

model was applied to estimate the fretting fatigue lives and conduct life variability studies.  

Life estimates from analytical model compare well with the experimental results conducted 

as a part of this investigation. 

 Fretting Fatigue Test Rig 

2.2.1 Experimental Setup 

A fretting fatigue test rig was designed and developed to investigate the fretting fatigue 

behavior of an AISI 4140 specimen in contact with two Ti-6-4 pads.  The contact pads are 
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modularly designed so that the rig is capable of performing experiments with different 

contact configurations i.e. point contact (sphere on flat), line contact (cylinder on flat) and 

area contact (flat on flat).  Also, by changing the geometry of contact pads, it is possible to 

perform tests in both bridge type and single clamp type loading configurations.  In this 

study, experiments were conducted under the single clamp configuration with line contact. 

A schematic of the fretting test rig is shown in Figure 1.2.  The test rig uses a 100 kN (22 

kip) capacity Material Testing System (MTS) 810 machine.  This system has hydraulic 

actuators capable of applying a precise axial load to the specimen gripped between the 

hydraulic clamps.  The actuator is attached to the bottom grip while the top grip is attached 

to the crosshead which is held stationary.  The position of the crosshead can be adjusted in 

order to incorporate various specimen sizes.  The MTS machine is controlled by a computer 

and MTS Flex-Test SE which also acts as a data acquisition system.  The amplitude and 

mean of the sinusoidal axial load applied to the specimen can be controlled via computer.  

In this study, the frequency was kept constant at 5 Hz to ensure that the rig was operated 

with minimal vibrations and the tests were completed in a reasonable amount of time.  The 

MTS contains a load cell between the bottom grips and the actuator to measure the axial 

load applied to the specimen.  In the case of fretting fatigue, the fretting fixture attached to 

the test frame applies normal contact load to the specimen.  Since axial bulk load is applied 

at the bottom end of the specimen while the top end is held stationary, tangential force (FT) 

is induced between the specimen and contact pads.  This tangential load varies in phase 

with the applied bulk axial load.  Due to the presence of this tangential load, different axial 

loads (Fu and Fb) are experienced by the specimen sections above and below the contact 

area.  A second load cell is located between the crosshead and the upper grip of the MTS 

machine to measure the axial load on the upper section of specimen.  The difference 

between the axial loads in the lower and upper sections of specimen is the tangential load 

transmitted between the pads and specimen: 

𝐹𝑏 − 𝐹𝑢 = 2𝐹𝑇  (2.1) 

Figure 2.2 depicts the force flow in the test rig.  In order to apply the fretting loading to the 

specimen, the fretting fixture was mounted on the MTS frame and the specimen was 

clamped from both sides.  The CAD model of the designed fretting fixture is shown in 

Figure 2.3.  In this configuration there is a cylindrical pad on each side of the specimen.  
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Normal contact force is applied using a load screw.  An inline load cell is added to 

continuously monitor the normal force.  The edges of the specimen and the contact pads 

must be aligned to minimize the stress concentration at the edges.  Therefore, the plates 

carrying the contact pads were supported with precision shafts and all parts were precision 

machined.  Oil free bushings were used between the plates and the shafts since they are 

more precise than linear bushings.  Since the position of the specimen is fixed by the MTS 

grips, the contact pads must be moved for contact alignment.  If the contact pads are not 

centered properly, the specimen will bend due to the non-symmetric loading.  This would 

also apply a side load to the MTS hydraulic actuator.  The positioning mechanism centers 

the contact pads on the specimen automatically as the normal load is applied using the load 

screw.  The two contact pads are attached to the plates numbered 2 and 3.  Plates 1 and 3 

are constrained to float together on the support shafts.  The load screw is threaded into the 

plate 1 and adjusts the position of the plate 2 on the support shafts with respect to the plate 

3.  To apply the normal load, load screw is rotated so that it pushes the plate 2 towards the 

specimen.  After the cylindrical pad on plate 2 comes into contact with the specimen; load 

screw is further turned to pull plate 3 towards the specimen.  Any imbalanced force would 

move plates 1 and 3 assembly until the force is again balanced.  After desired normal load 

is achieved, a lock nut is used to prevent the load screw from relaxing while in operation.  

In order for plates to move freely on the support shafts, there must be a clearance between 

the bushing and the shafts; this would cause the plates to vibrate during the test.  To avoid 

this, the top support bars (Figure 2.4) are affixed to the plates after the desired normal load 

is achieved.  The addition of the top support bars negligibly altered the applied normal load.  

The bars also add to the stiffness of the test rig.  Figure 2.4 shows the fretting fatigue fixture 

constructed for this investigation and mounted on the MTS machine. 
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Figure 2.2: Schematic of fretting fatigue test rig. 

 

 

Figure 2.3: CAD model of fretting fatigue test fixture. 

 

 

Figure 2.4: Fretting fatigue fixture mounted on MTS machine. 
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2.2.2 Specimen and Contact Pad Geometry 

In this investigation, the flat tensile specimens were AISI 4140 steel while the 5 mm radius 

cylindrical pads were made from Ti-6-4.  For a normal force of 11 kN the contact has a 

Hertzian pressure of 3 GPa and half width of 364 μm.  The fatigue specimen dimensions 

are the same as those used by Cortez et al. [46] except for an extended griping section.  To 

avoid edge effects, both the specimen and cylindrical pads are edge relieved.  The 

contacting surfaces were ground to surface finish of Ra = 0.2μm.  Figure 2.5 shows a CAD 

drawing of the tensile specimen and the contact pad. 

Contact pads are attached to the fretting fixture through contact pad holders.  Figure 2.6 

shows the assembly of contact pad in the holder.  Contact pads are placed into the V-groove 

in the holder.  The friction between the contacts pads and the groove walls and set screws 

prevent the pads from rolling caused by the tangential force (FT).  

  
(a) (b) 

Figure 2.5: Geometry and dimensions of (a) Specimen; and (b) Contact pad (all the 

length dimensions in mm and the surface roughness ‘Ra’ is in μm). 
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Figure 2.6: Assembly of contact pads in the contact pad holder. 

 Experimental Results 

2.3.1 Fretting Fatigue Tests 

Fretting fatigue tests were conducted under completely reversed constant-amplitude axial 

load control conditions (R = -1) at 5 Hz frequency.  The amplitude of the axial bulk stress 

was varied from 100 MPa to 600 MPa while the normal force was held constant at 11 kN 

(peak Hertzian pressure of 3 GPa).  The bulk stress (σ0) is calculated by dividing the applied 

axial force (Fb) measured by the bottom load cell by the cross sectional area of the specimen 

under the contact region.  Axial force applied by the actuator was controlled throughout 

the test.  The force at the top of the specimen, actuator displacement and the applied normal 

load were recorded.  Table Table 2.1 shows the summary of the experimental conditions 

and corresponding fretting fatigue lives.  FT is the amplitude of the tangential load between 

the specimen and contact pad during the 1000th cycles while FN is the average contact force 

during the same period of time.  The stiffness of the test rig defines the variation of FT with 

respect to the change in bulk stress.  The linear relationship between FT and σ0 evident in 

Table Table 2.1 states that the stiffness of the test rig was same for all the tests and the only 

parameter varied during the test was the applied bulk stress.  McVeigh and Farris [86] 

showed that maximum fretting stress (σfretting) at the trailing edge of the contact can be 

approximately expressed as;  
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𝜎𝑓𝑟𝑒𝑡𝑡𝑖𝑛𝑔 = 𝜎0 + 2𝑝ℎ√
𝜇𝐹𝑇
𝐹𝑁

 

(2.2) 

Figure 2.7 illustrates the fretting stress vs. life for AISI 4140 against Ti-6-4.  As expected, 

it can be seen that for the fixed contact pressure, as the σ fretting increases fretting fatigue life 

decreases. 

 

Figure 2.7: Fretting and bulk stress vs. life. 

 

All the tests were continued until complete fracture or until the specimen could not carry 

the applied load.  In every test, the crack nucleated at the edge of the contact on the actuator 

side of the specimen, (i.e. trailing edge of the contact).  This is consistent with the 

observations in previous fretting fatigue experimental studies (Szolwinski and Farris [45]) 

and with the analytical solution for fretting stresses (Szolwinski and Farris [87]).  Figure 

2.8 illustrates the location of the crack with respect to the contact region for the test #9.  In 

this case, the test was stopped just before the final fracture.  As expected in fretting fatigue 

the crack initiated at an angle of 45º relative to the surface.  Once the crack grows out of 

the fretting loading range, it turns nearly perpendicular to the contact surface.  In this stage 

crack growth is driven by the bulk axial stresses.  These observations are in agreement with 

the previous study [45].  A crack usually formed at both contact pads, but one became 

dominant by propagating faster than the other.  The dominant crack could initiate at either 

fretting pad, so we can conclude that there was no loading imbalance on the specimen.   
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Top view of the fretting scar. Front view of the crack. 

Figure 2.8: Fretting wear scar and crack for test #9.  The arrow shows the loading 

direction.  Left side was attached to the actuator while the right side was stationary. 

 

Figure 2.9 shows the axial force measured by the upper and lower load cells, displacement 

of the actuator measured by the LVDT of the MTS and normal load applied to achieve the 

Hertzian contact pressure vs. time for the 1000th cycle of test #7 (Table Table 2.1).  The 

normal force is stable until crack initiation.  The tangential load, FT, and displacement vary 

in phase with the applied lower force.  The maximum displacement in the positive (tensile) 

direction increases as the crack grows in the specimen.  This is because as the crack grows 

the effective area carrying the load decreases reducing the stiffness of the specimen, thus 

at the tensile peak axial load, the crack opens wider causing a larger deformation.  When 

the crack has initiated there is significantly less material to support the same normal load.  

This causes plastic deformation near the contact region and the contact pads indent into the 

specimen.  Since normal force is applied using a displacement-controlled mechanism, the 

normal force measured by the load cell decreases.  The MTS machine was set up such that 

it would automatically stop if the normal load drops by 10% of the desired normal load.  

Both of these phenomena were used to estimate the crack initiation life.  Earlier 

microscopic cracks did not affect the normal forces and displacement significantly, so 

crack initiation is defined as when a crack grows long enough to affect the measured normal 

force and displacement.  Figure 2.10 shows the evolution of the displacement during a 

fretting test.  The displacement starts to increase at around 34,000 cycles (estimated crack 

initiation life for this test).  Table Table 2.1 shows that crack initiation life is around 90% 
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of the total fretting fatigue life for all the tests.  Szolwinski and Farris [45], Namjoshi et al. 

[88] also made similar estimates. 

  

  

Figure 2.9: Measured experimental data for 1000th cycle for test #7. 

 

 

Figure 2.10: Displacement vs. Life cycles for test #7 and determination of estimated 

crack initiation. 

 

For test condition 7, crack growth was monitored with a camera.  Figure 2.11 shows 

pictures of the crack at various cycle numbers.  A horizontal line was drawn along the 
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length of the crack from start to the end (solid lines in Figure 2.11).  Another horizontal 

line was drawn along the width of the specimen (dashed line in Figure 2.11).  The length 

of the dashed line in the picture is 10 mm (the actual width of the specimen) and it is used 

to calibrate the solid line.  The first visible crack initiated around 33,420 cycles with a 

length of 765 microns which is close to the estimated initiation life of 34,000 cycles.  The 

experimental crack length vs. the number of elapsed life cycles is shown in Figure 2.12.  

The crack growth rate increases as the crack length increases as expected for fretting fatigue. 

Table 2.1: Fretting fatigue experimental results. 

 

Bulk 

Stress 

(MPa) 

Hertzian 

pressure 

(GPa) 

FN (N) FT (N) FT/ FN 

Initiation 

Life 

(Cycles) 

Total 

Life 

(Cycles) 

σfretting 

(MPa) 

1 598 2.93 10313 4993 0.48 3785 4288 3756 

2 550 2.97 11733 4905 0.42 6530 7472 3525 

3 500 2.94 11027 4367 0.40 15000 16268 3366 

4 450 3.00 11187 4192 0.37 40900 42470 3295 

5 400 2.83 10360 2700 0.26 18170 19482 2638 

6 382 2.99 11720 3242 0.28 23100 25130 2819 

7 348 2.84 10525 2929 0.28 43620 50350 2668 

8 313 2.89 10708 2633 0.25 83200 88880 2533 

9 278 3.01 10447 2263 0.22 150000 169957 2448 

10 243 2.88 10514 2064 0.20 239000 266000 2220 

11 209 2.90 10727 1736 0.16 520000 557000 2016 

12 174 2.99 11121 1170 0.11 861000 927000 1676 

13 104 3.01 11307 1037 0.09 2532000 2594000 1516 
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Figure 2.11: Pictures of the crack growth taken as the test is running for test #7 (Solid line 

denotes the effective crack length). 
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Figure 2.12: Crack length vs. life cycles for test #7 based on measured effective crack 

length using pictures in Figure 2.11. 

2.3.2 Coefficient of Friction Measurement 

Many researchers (Iyer and Mall [76], Lykins et al. [89]) have used the coefficient of 

friction (CoF) in the gross slip regime for numerical modelling of friction during fretting 

fatigue.  In this study, a fretting test was performed in the gross slip regime to determine 

the CoF for the current experimental configuration.  The specimen was only held with the 

bottom grip (the top end of specimen was free), but in other aspects the test was carried out 

similar to the fretting fatigue tests.  Completely-reversed sinusoidal displacement at a 

frequency of 1 Hz was applied to the specimen.  The force and the displacement of the 

actuator were recorded.  In this configuration the force on the actuator and the friction force 

between the specimen and contact pads are the same.  At the beginning of each test, 

displacement amplitude was increased until gross slip condition was achieved.  Figure 2.13 

illustrates the fretting loop at different cycles for contact stress of 585 MPa and 

displacement amplitude of 150 microns.  It resembles the fretting loop commonly reported 

by many researchers (Mulvihill et al. [90]) for reciprocating sliding.  It can be noted that 

the friction force varies during sliding and it increases more rapidly as sliding proceeds.  

Mulvihill et al. [90] have proposed that this variation is due to wear-scar interaction.  

Therefore the values of the friction force and normal force at the start of the gross slip were 

used to determine CoF.  The experimental data and calculations required for coefficient of 

friction measurement are presented in Table Table 2.2.  The CoF of 0.6 was used in this 

study. 
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Figure 2.13: Fretting wear test at gross slip (displacement amplitude = 150 μm). 

Table 2.2: Coefficient of friction calculations. 

Disp. Amp.  (μm) Normal force (N) Contact stress (MPa) Friction force  (N) COF 

150 392 567.2 216 0.6 

 Fretting Fatigue Damage Model  

2.4.1 Finite Element Modeling 

An ABAQUS finite element model was developed to investigate fretting fatigue and 

corroborate with the experimental results.  The finite element model was used to determine 

the stress, strain and displacement distributions during a fretting cycle.  The geometry of 

the contacting bodies with boundary and loading conditions applied are shown in Figure 

2.14.  The cylinder-on-flat contact configuration of the fretting fatigue test rig can be 

represented by a two-dimensional FE model.  Making use of the symmetry of contact 

between the specimen and two pads, only one contact pad and half of the specimen are 

modeled under plane strain conditions.  The theoretically infinite domain is truncated to 

fifteen and ten times the Hertzian half width (a) in the horizontal and vertical direction 

respectively.  The domain was meshed with constant strain triangular elements and the 

“master-slave” algorithm was used for contact modeling in ABAQUS.  The Lagrange 

Multiplier method was used for friction calculations using a friction coefficient of 0.60 as 

determined from the experiments.  The left and the right edges of the upper body are 

constrained to zero displacement in x-direction (normal to the surface).  This boundary 

condition assumes the infinite stiffness of the test fixture holding the contact pads.  The 
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bottom edge of the lower body is constrained in the y-direction (perpendicular to the 

surface).  This boundary condition corresponds to the symmetry of the experimental 

domain.  The loads are applied to the model in two steps.  The uniform pressure 

corresponding to the normal load (FN) is applied on the top surface of the upper body.  In 

the second step, one cycle of a sinusoidal bulk stress is applied with the amplitude, (σ0) 

selected to match the experimental loading.  The approach described by Talemi and Wahab 

[91] was used to model the tangential force (FT) measured during the experiments.  The 

sinusoidal reaction stress with amplitude “σreaction” is applied on the left edge of the lower 

body in phase with the bulk stress such that the frictional force generated between the lower 

and upper body would match the experimental tangential force.  The experimental results 

illustrated in Figure 2.15 show that the ratio of tangential force to normal force (FT/FN) 

varies linearly with the applied bulk stress (σ0).  The numerical reaction stress was 

calculated based on this relationship and the applied loads:   

𝜎𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 = 𝜎𝑜 −
(
𝐹𝑇
𝐹𝑁
)
𝑙𝑖𝑛𝑒 𝑓𝑖𝑡

∗𝐹𝑁

𝐴𝑠
  (2.3) 

where, As is the cross-sectional area of the flat specimen geometry used in the model as 

shown in the Figure 2.14. 

 

Figure 2.14: The geometry of the two-dimensional finite element model showing the 

applied boundary and loading conditions (a = 365 μm). 
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Figure 2.15: Comparison of FT/FN obtained from experiments and FE model.   

2.4.2 Voronoi Tessellation 

A single phase polycrystalline material consists of micron level grains of random size and 

shape which can be represented by Voronoi tessellation to a good degree of accuracy as 

shown by Mücklich et al. [92], Espinosa and Zavattieri [93] and Jalalahmadi and Sadeghi 

[29].  In the present study geometric disorder and randomness of material microstructure 

topology is simulated using Voronoi tessellation to account for the variability in fretting 

fatigue life.  The Voronoi cells and their boundaries resulting from a random tessellation 

represent the grains and grain boundaries respectively in the real microstructure.  This 

approach has been used in different numerical models to investigate the scatter in uniaxial 

fatigue (Warhadpande et al. [94], Bomidi et al. [95]), rolling contact fatigue (Raje et al. 

[96], Jalalahmadi and Sadeghi [30], Slack and Sadeghi [97]) and in fretting fatigue (Slack 

et al. [85]).  In this approach, a set of seed points are randomly placed in the domain.  Then, 

the domain was divided into regions around each seed point such that each region consists 

of the points which are closer to the seed point than any other seed point in the domain.  

The set of points which are equally close to more than one seed point form the boundary 

between the regions corresponding to those seed points.  This process results in the domain 

divided into convex polygons known as Voronoi cells.  The generated cells have different 

number of sides with a median of 6.  By distributing the seed points randomly in the domain, 

distinct simulation domains can be generated.  The minimum distance between two seed 
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points can be specified to match the grain size of the relevant material.  The random 

Voronoi microstructure was generated in MATLAB and the cells were meshed with 

constant strain triangular elements using Triangle software [98].  Figure 2.16 shows a 

randomly generated domain with red lines denoting the boundaries of the Voronoi cells 

(grains).  The randomly located and oriented Voronoi cell boundaries are considered to be 

“critical planes” on which the damage occurs.  From our experiments, it is clear that only 

the tensile specimen become damaged during the fretting fatigue and damage near the 

contact region is the most significant for fretting fatigue life.  Therefore, in order to save 

the computation time, Voronoi tessellation is used only for the tensile specimen in the 

contact region.  The rest of the domain is meshed using Triangle software [98].  

 

Figure 2.16: Finite element mesh using the random Voronoi cells at the contact region. 

The red lines represent the voronoi cell boundaries. 

2.4.3 Model Validation 

In order to validate the finite element model developed for this investigation, the contact 

half width and peak Hertzian pressure obtained from FE model were compared to analytical 

solution.  The material properties and loading conditions used in the simulations are listed 

in the Tables Table 2.3 and Table 2.4, respectively.  Both bodies were assumed to be elastic.  

According to Hertzian theory, contact half width and maximum contact pressure (Ph) for 

the loading conditions used in this analysis are 365 μm and 3.0 GPa.  The finite element 

model used in this analysis resulted in half contact width of 368 microns and Ph=3.02 GPa, 

an error of about 1%.  The tangential load (FT) was calculated from the force on the left 

and right edges of the upper body (contact pad) at the tensile peak of the bulk stress cycle.  
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This reaction force is equal to frictional force between the specimen and contact pad.  

Figure 2.15 illustrates the comparison between FT/FN calculated from the model and the 

results obtained from the experiments for different values of bulk stresses.  This figure 

demonstrates that there is good correlation between FE model and experimental results; 

this indicates that FE model obeys the force equilibrium and is working as expected.  

Further, to validate the stress distribution obtained from the FE model, shear stress 

distribution on the contact surface was compared with the analytical solution reported in 

Hills and Nowell [99].  Figure 2.17 depicts the shear stress distribution for loading 

condition 3 in Table Table 2.4 obtained from the current FE model and the analytical 

solution.  Szolwinski and Farris [87] have used Westergaard stress functions to provide the 

analytical solution for subsurface stresses due to fretting loading (i.e. normal load, FN and 

tangential load, FT) without considering the bulk stress.  The analytical solution for 

distribution of the tangential stress (σ11) just below the surface was obtained for loading 

condition 3 in Table Table 2.4 by adding the bulk stress to the stress distribution calculated 

using the analytical solution given in [87].  Figure 2.17 compares the normalized surface 

tangential stress obtained from the analytical solution and our finite element model.  The 

shear and tangential stress distribution from FE model correlate well with the analytical 

solution.   

Table 2.3: Material properties used in the analysis. 

Material 1 (tensile specimen) AISI 4140 

Undamaged elasticity modulus for material 1, E1 205 GPa 

Poisson’s ratio for material 1, ν1 0.29 

Material 2 (cylindrical contact cad) Ti-6Al-4V 

Elasticity modulus for material 2, E2 113.8 GPa 

Poisson’s ratio for material 2, ν2 0.342 

Coefficient of friction 0.6 

Damage rate law coefficient for material 1, 𝜎𝑟 16061 MPa 

Damage rate law exponent for material 1, m 7.5 

Critical damage for material 1, Dcrit 0.12 
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Table 2.4: Loading conditions and predicted Weibull slope and strength parameters for 

fatigue damage model. 

Loading 
condition 

Bulk stress 
σ0 (MPa) 

σreaction 

(MPa) 
FT/ FN 

Ph 

(GPa) 
σfretting 

(MPa) 
Weibull 

slope 
Weibull strength 

(cycles) 

1 174 113 0.13 3 1850 3.14 1,084,200 

2 278 178 0.21 3 2426 3.36 140,810 

3 400 253 0.31 3 2991 3.92 25,756 

4 550 347 0.43 3 3602 5.96 6,048 

 

  

Figure 2.17: Comparison of shear stress distribution and normalized tangential stress, 

σ11/μp0 on the contact surface at the positive peak of the fretting cycle obtained using 

FE model and analytical solution for loading condition 3 in Table 4. 

2.4.4 Fatigue Damage Model 

Fatigue damage is associated with the progressive material deterioration due to the 

initiation and growth of micro-cracks and voids.  Damage mechanics treats these 

microscopic failure mechanisms in an empirical fashion.  Material degradation (damage) 

is recognized by introducing a thermodynamic state variable tensor D into the constitutive 

relations.  This damage variable accounts for the micro-cracks and cavities in the 

representative volume element (RVE) of the material.  If it is assumed that Poisson’s ratio 

remains constant and damage is isotropic, D reduces to a scalar.  D is defined by Kachanov 

[28] as,  

𝐷 =
𝐴 − �̃�

𝐴
 (2.4) 
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Here, A is the apparent (undamaged) area and Ã is the effective (actual) area which carries 

the load.  This changes the effective stress at the representative volume element.  Effective 

stress then becomes, 

�̃� =
𝐹

�̃�
=

𝜎

(1 − 𝐷)
 (2.5) 

The value of D for undamaged material is 0.  Applying Hooke’s law, if E is the elasticity 

modulus for the undamaged material, elastic strain in the material is,  

휀 =  
�̃�

𝐸 
=  

𝜎

𝐸(1 − 𝐷)
 (2.6) 

Defining elastic modulus of the damaged element to be, 

�̃� = 𝐸(1 − 𝐷) (2.7) 

We can say that increase in the internal damage as the fatigue cycles progress, manifests 

as the reduction in the modulus of elasticity.  Rearranging this equation, the damage 

variable can be calculated by 

𝐷 = 1 −
�̃�

𝐸
 (2.8) 

At rupture the crack occupies the entire surface of the RVE which corresponds to D=1.  

But in many cases, rupture occurs suddenly after the crack occupies a certain area in the 

RVE due to the decohesion of atoms in the remaining resisting area [100].  The value of D 

at the final rupture is defined as the critical value of damage variable Dcrit, which depends 

upon the material and loading conditions.  Equation (2.8) can be used to measure the value 

of the damage variable at rupture by variation of elasticity modulus test. 

Many different constitutive equations for the evolution of damage variable at a material 

point have been formulated according to the damage mechanism for the phenomenon of 

interest.  Lemaitre [100] has reviewed the different damage mechanisms and equations.  

For high cycle fatigue with brittle damage mechanism, the model proposed by Xiao et al. 

[101] is commonly used in the fatigue literature (for example, Warhadpande et. al. [94]).  

𝑑𝐷

𝑑𝑁
= [

∆𝜎

𝜎𝑟(1 − 𝐷)
]
𝑚

 (2.9) 

Here, Δσ is the stress range that causes the damage, N is the cycle number, σr and m are the 

fatigue damage properties of the material undergoing cyclic loading.  The value of σr, 

which is usually a function of mean stress, characterizes the ability of the material to resist 
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accumulation of fatigue damage.  The fatigue damage model which used damage 

mechanics for modeling fatigue was developed and used in investigations of various 

fatigue phenomena such as rolling contact fatigue by Raje et al. [96], Jalalahmadi and 

Sadeghi [30], Slack and Sadeghi [97] and uniaxial fatigue by Warhadpande et al. [94].  A 

similar approach has been used in this analysis for modeling fretting fatigue as described 

below.  

In fatigue damage model, damage coupled material constitutive equations and damage 

evolution relations are solved simultaneously for each element.  Therefore, after every 

stress cycle, stress-strain relationships have to be evaluated and accordingly damage and 

elastic modulus for each element need to be updated until final failure.  However, it is 

computationally impractical to employ this iterative method after every loading cycle.  

Therefore, the standard ‘jump-in cycles’ approach developed by Lemaitre [100] is used 

here to make the solution computationally feasible.  In this algorithm the stress response is 

assumed to remain unaltered over a finite number of cycles, ΔNi, in a block i.  During this 

block of cycles, damage for each element is also assumed to remain constant.  Thus, 

damage evolution is piecewise linear with respect to the block of cycles.  A constant 

damage increment ΔD over that number of cycles is prescribed for the element which has 

largest damage evolution rate.  Current stress field in the domain is found for each block 

of cycles by using the material constitutive relations and damage obtained from the 

previous block of cycles.  The current stress field is then used in the damage evolution law 

to update the damage for each element and find number of cycle in the current block.   

In order to introduce randomness into the life predictions, the alternating normal stress 

(𝜎𝑛𝑎) acting along the Voronoi grain boundary during the fretting cycle is assumed to 

cause damage.  The Voronoi cells are divided into triangles by connecting pairs of adjacent 

Voronoi edge vertices to the centroid of their Voronoi cell; these will be referred to as 

‘Voronoi triangles’.  𝜎𝑛𝑎 for a Voronoi triangular element is given by; 

𝜎𝑛𝑎 = 
𝜎𝑛𝑚𝑎𝑥 − 𝜎𝑛𝑚𝑖𝑛

2
 (2.10) 

𝜎𝑛𝑚𝑎𝑥  and 𝜎𝑛𝑚𝑖𝑛  are the maximum and the minimum normal stresses acting on the 

Voronoi grain boundary during a fretting cycle.  The values of the stress used to calculate 

the normal stresses (σn) for a Voronoi triangle are taken from the finite element model at 
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the centroid of the Voronoi Triangle.  Figure 2.18 depicts a single Voronoi cell divided 

into Voronoi Triangles and normal stresses along the grain boundaries.   

 

Figure 2.18: Voronoi grain divided into Voronoi Triangles and stresses resolved along 

the grain boundaries.  The red dot denotes the centroid of the Voronoi grain while blue 

dots denote the centroids of the Voronoi Triangles. 

 

The step by step procedure for damage evolution is given below: 

(1) The material domain is assumed to contain no initial flaw.  Hence, the initial 

damage for each Voronoi Triangle is set to 0 and pristine elasticity modulus 

is assigned to each of the Voronoi Triangles.   

𝐷𝑗
0 = 0, 𝐸𝑗

0 = 𝐸                 𝑗

= 1 . . . 𝑛 (𝑉𝑜𝑟𝑜𝑛𝑜𝑖 𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠) 
(2.11) 

(2) The stress field for a single fretting cycle is evaluated using ABAQUS for 

the current iteration, i.  From this stress field, the alternating normal stress, 

𝜎𝑛𝑎, for Voronoi triangles is calculated.  The damage evolution rate for 

each Voronoi Triangle j is calculated using the current alternating normal 

stress and state of damage for that Triangle, 

(
𝑑𝐷

𝑑𝑁
)
𝑗

𝑖

=  [
(𝜎𝑛𝑎)𝑗

𝑖

𝜎𝑅(1 − 𝐷𝑗
𝑖)
]

𝑚

 (2.12) 

(3) The maximum damage evolution rate in the domain is found.  The number 

of cycles required for the damage of the Voronoi Triangle with maximum 

damage evolution rate to increase by ΔD is calculated, 
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∆𝑁𝑖 =
∆𝐷 

(
𝑑𝐷
𝑑𝑁
)
𝑐𝑟𝑖𝑡

𝑖
 

(2.13) 

where 

(
𝑑𝐷

𝑑𝑁
)
𝑐𝑟𝑖𝑡

𝑖

= 𝑀𝑎𝑥
𝑖
|(
𝑑𝐷

𝑑𝑁
)
𝑗

𝑖

| (2.14) 

(4) The total number of cycles (N) elapsed, damage and elasticity modulus for 

each Voronoi Triangle are updated.   

𝑁𝑖+1 = 𝑁𝑖 + ∆𝑁𝑖 (2.15) 

𝐷𝑗
𝑖+1 = 𝐷𝑗

𝑖 + (
𝑑𝐷

𝑑𝑁
)
𝑗

𝑖

∆𝑁𝑖 (2.16) 

𝐸𝑘
𝑖+1 = 𝐸(1 − 𝐷𝑘

𝑖+1) (2.17) 

(5) This procedure is repeated until accumulated damage for any Voronoi 

Triangle reaches the critical value of damage Dcrit.  Therefore, the total 

number of cycles (N) at this stage represents the crack initiation life.  

Experimental observations show that crack initiation constitutes the 

majority of the total fretting fatigue life, so N is assumed to be the total 

fretting fatigue life. 

 Analytical Results 

2.5.1 Identification of Material Dependent Fatigue Damage Properties 

As described earlier, the tensile specimen undergoes fatigue damage during the fretting 

fatigue and most of the fatigue life is spent for the crack initiation near the contact region.  

Therefore, in this study damage is evaluated only for the contact region of the tensile 

specimen.  In this section, material dependent properties needed for the fatigue damage 

model are evaluated for AISI 4140, the material of the tensile specimen in our fretting 

experiments.  

 Method of Variation of Elasticity Modulus:  The critical damage at fracture can be 

found by measuring the reduction in the elasticity modulus of the material during a test.  

This procedure is described as the method of variation of elasticity modulus by 

Lemaitre [100].  Accurate strain measurements are important for these calculations so 
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a strain gage was installed on in the constant cross sectional area region of the specimen.  

Figure 2.19 shows the mounted strain gauge.  Test was performed in the displacement-

controlled condition.  In each cycle, displacement was gradually increased until plastic 

deformation occurs.  Then, the displacement was decreased until the force (i.e. stress 

in the specimen) returns to zero.  In the next cycle, displacement was increased further 

to create incrementally more plastic deformation.  This procedure was repeated until 

the fracture.  Figure 2.20 depicts the stress vs. strain plot for each cycle of the test.  

Elasticity modulus was calculated from the slope of the unloading curve.  As expected, 

the elasticity modulus decreases as the plastic deformation increases (i.e. specimen is 

getting more damaged).  Table Table 2.5 shows the decrease in the elasticity modulus 

as the damage increases.  The critical damage value or damage at the time of fracture 

is 0.12.  Warhadpande et al. [94] found the critical damage value of AISI 4142 to be 

was 0.11. 

 

Figure 2.19: Strain gauge mounted on the tensile specimen for ‘Variation of Elasticity 

Modulus Test’. 
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Figure 2.20: Stress vs. strain plot at various cycles for the variation of elasticity 

modulus test.   

 

Table 2.5: Variation of Elasticity Modulus. 

Cycle No. E (1-D) (GPa) D 

1 176.0 0 

2 167.1 0.051 

3 160.6 0.088 

4 157.3 0.106 

5 155.8 0.115 

6 155.2 0.119 

7 154.5 0.123 

8 154.5 0.122 

 

 Evaluation of resistance stress (σr) and damage exponent (m):  Figure 2.17 

illustrates that there is a large stress concentration at the trailing edge of the contact (x/a 

≈ 1) compared to the bulk stress (x/a > 1.5).  Szolwinski and Farris [45] hypothesized 

that the peak in the tensile stress at the trailing edge (σfretting) drives crack initiation in 

fretting fatigue.  In this analysis the critical stress component causing the damage is the 

fretting stress (σfretting) as defined in Equation (2.2).  The damage evolution equation for 

fretting fatigue becomes 
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𝑑𝐷

𝑑𝑁
= [

𝜎𝑓𝑟𝑒𝑡𝑡𝑖𝑛𝑔

𝜎𝑅(1 − 𝐷)
]
𝑚

 (2.18) 

The damage parameters σr and m were evaluated using the maximum fretting stress σfretting 

and fretting fatigue life data from experiments.  Figure 2.7 shows the plot of σfretting against 

experimental total life.  Applying a power law curve fit of the following form to the data: 

𝜎𝑓𝑟𝑒𝑡𝑡𝑖𝑛𝑔 = 𝐴𝑁
𝑏 (2.19) 

Where 

𝐴 = 11440 𝑀𝑃𝑎,   𝑏 = −0.13 (2.20) 

Assuming that maximum fretting stress (σfretting) in the damage evolution rate equation 

(Equation (2.18)) is constant, we can separate the two variables D and N.  Simple 

integration from undamaged state (N=0 and D=0) to fully damaged state (N = Nf and D = 

Dcrit) yields, 

∫ 𝑑𝑁
𝑁𝑓

0

= ∫ {
𝜎𝑅(1 − 𝐷)

𝜎𝑓𝑟𝑒𝑡𝑡𝑖𝑛𝑔
}

𝑚

𝑑𝐷
𝐷𝑐𝑟𝑖𝑡

0

 (2.21) 

or 

𝑁𝑓 = (
𝜎𝑅

𝜎𝑓𝑟𝑒𝑡𝑡𝑖𝑛𝑔
)

𝑚

[
1

𝑚 + 1
−
(1 − 𝐷𝑐𝑟𝑖𝑡)

𝑚+1

𝑚 + 1
] (2.22) 

Rearranging this equation,  

𝜎𝑓𝑟𝑒𝑡𝑡𝑖𝑛𝑔 = 𝜎𝑅 [
1

𝑚 + 1
−
(1 − 𝐷𝑐𝑟𝑖𝑡)

𝑚+1

𝑚 + 1
]

1
𝑚

𝑁𝑓
−
1
𝑚 (2.23) 

Since Eqs. (2.19) and (2.23) are equivalent, comparing the exponents and coefficients gives 

𝑚 = −
1

𝑏
, 𝜎𝑅 = 𝐴 [

1

−
1
𝑏
+ 1

−
(1 − 𝐷𝑐𝑟𝑖𝑡)

−
1
𝑏
+1

−
1
𝑏
+ 1

]

𝑏

  (2.24) 

Substitution of the values for A and b results in 

𝑚 = 7.5, 𝜎𝑅 =  16061 𝑀𝑃𝑎 (2.25) 

2.5.2 Fretting Fatigue Life Predictions 

After obtaining the material dependent parameters required for the fatigue damage model, 

30 unique material domains were generated to analyze the scatter in the fretting fatigue 

lives.  Voronoi cells with an average size of 10 microns were used to model the 
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microstructural grains of AISI 4140.  For each loading condition listed in Table Table 2.4, 

the fatigue damage model was run for all 30 randomly generated microstructure domains 

until the damage in one Voronoi Triangle in the domain reaches the critical value Dcrit.  

Damage increment, ΔD of 0.02 was used in the jump-in cycle algorithm.  The randomness 

in the microstructure topology of the domains causes variation in the magnitude of the 

largest alternating normal stress, 𝜎𝑛𝑎  experienced in each domain.  However, for all the 

domains the element experiencing the largest alternating normal stress was located near 

the trailing edge of the contact.  The fatigue life obtained from the model for each domain 

vs. maximum fretting stress (σfretting) is shown in Figure 2.21.  The power law fit for the 

experimental data is also plotted on this figure.  The fretting fatigue lives obtained from 

the fatigue damage model and their scatter follow the experimental data closely.  Degree 

of scatter is quantified using two-parameter Weibull probability distribution.  Weibull 

strength parameter indicates the number of cycles for which the probability of failure is 

63.2%.  Weibull slope denotes the amount of scatter present in the data.  Smaller Weibull 

slopes indicate that there is more scatter in the data.  Weibull plot is presented for all 4 

loading conditions in Figure 2.22.  Weibull slope and strength cycles obtained from the 

current analysis are also listed in Table Table 2.4.  It can be observed that the scatter in the 

fretting fatigue lives increases with decreasing the bulk applied stress for the same contact 

pressure.  As expected, the probability of survival also increases with decreasing bulk stress 

as shown by the variation of Weibull strength cycles. 
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Figure 2.21: Comparison between the fretting fatigue lives obtained from the fatigue 

damage model for different loading conditions and experimental results. 

 

 

Figure 2.22: Weibull probability plot for fretting fatigue lives for different loading 

conditions. 

 Summary and Conclusions 

This chapter presented the results of experimental investigation and a fatigue damage 

model for fretting fatigue.  For the experimental investigation, a fretting fixture was 
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designed, built and used with an MTS 810 machine simulating the fretting fatigue in a 

cylinder-on-flat configuration.  For a fixed contact pressure, the fretting fatigue life 

decreased with increasing bulk stress.  The observed crack nucleation at the trailing edge 

of the contact was consistent with the previous experimental investigations.  In the 

analytical part of this work, a fatigue damage finite element model was proposed to 

replicate the fretting fatigue experiments and numerically estimate the fretting fatigue life.  

The model was tested with the same loading conditions as the experiments.  The fretting 

fatigue lives predicted by the fatigue damage model are in good agreement with the 

experimental results.  The fatigue damage model was further used to study the variability 

occurring due to the randomness in material microstructure.  The predicted fatigue life data 

displayed a larger degree of scatter for the lower bulk stress when the contact pressure is 

fixed.  
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3. SUB-SURFACE INITIATED SPALLING IN LARGE ROLLING 

CONTACTS 

 Introduction 

In REBs, the Hertzian loading results in a complex multi-axial stress distribution in the 

contact region (Hertz [102]).  Several factors including material properties, surface profile, 

size effects, residual stresses, nonmetallic inclusions etc. need to be taken into account 

when investigating RCF ([103]–[106]).  Several empirical and numerical models have been 

proposed to estimate the fatigue lives of REBs.  Predictive methods described by Lundberg 

and Palmgren [11], Ioannides and Harris [12] are widely used as the basis for bearing life 

algorithms.  A comprehensive review of RCF models has been compiled by Sadeghi, et al. 

[7].  An alternative modeling approach developed by [27-30] seeks to overcome the 

limitations of the previous models by incorporating microstructural features in fatigue life 

simulation.  This approach utilizes Voronoi tessellations to account for geometric disorder 

and the randomness in the material microstructure topology.  Unlike previous numerical 

models, this model captures both the initiation and propagation phases of RCF.  

Furthermore, it does not rely on the Weibull regression parameters obtained from full-scale 

bearing fatigue test data.  Espinosa and Zavattieri [93]; Jalalahmadi and Sadeghi [29] 

showed that Voronoi tessellations represent the grain structure of the polycrystalline 

material and can be used to simulate its effect on the fatigue life.  Since bearing materials 

are polycrystalline in nature, many researchers [[27], [30], [32], [97], [107]] have applied 

this approach in conjunction with continuum damage mechanics (Lemaitre [100]) to 

simulate rolling contact fatigue.  They assumed a shear driven intergranular failure 

mechanism and used the model to obtain life estimates, spalling patterns and the scatter in 

the RCF lives.   

Typically, these models deal with experimental scale bearings with half-contact width, b, 

around 100 μm.  But many applications such as wind turbine have large bearings with half-

contact widths in the order of 1 mm or more.  Kim, et al. [108] studied the radial cracking 

in the large bearings subjected to significant tensile hoop stress.  However, there are not 

many studies which investigate subsurface initiated spalling and try to predict fatigue lives 

for large bearings.  The damage mechanics based Voronoi model [97] described earlier can 
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be used to model large bearings but the computational expense renders it impractical.  

Therefore, this investigation presents a new innovative approach in which efficient 

computational strategies are implemented to make the RCF model tractable to study 

bearings with large half-contact width.  The internal topology of the material 

microstructure is modeled using randomly generated Voronoi cells which represent grains 

in the material microstructure.  However, simulation time for a contact rolling pass is 

significantly reduced by using the Delaunay triangle [98] approach to generate an FE mesh.  

A MATLAB code is used to transfer the stresses from Delaunay mesh to Voronoi cells.  

Material degradation due to fatigue loading is accounted using the continuum damage 

mechanics.  Simulation time for an RCF investigation with the new microstructure model 

is further expedited by an integration algorithm that considers the strain energy released 

through damage formation and growth.  The model uses a ‘kill element’ approach similar 

to Slack and Sadeghi [97] to simulate the initiation and propagation of fatigue damage.  A 

remeshing tool was developed to refine the Delaunay mesh around the damaged element 

to capture accurate stress field.  The results of the model are compared with the previous 

model predictions for validation.  The model was then employed for large bearings with 

half-contact width of 200 μm, 400 μm and 1000 μm.  The spalling patterns and the 

topological effect on fatigue life scatter obtained from the model show good agreement 

with experimental observations.  The ratio of L10 lives for different half-contact widths 

compared well with the basic life rating for radial roller bearing as per ISO 281.  

Furthermore, the effect of random distribution of initial defects on the fatigue lives is also 

investigated.  It was found that the larger bearings have lesser L10 lives if the density of 

initial defects is assumed to be the same.  

 Modeling Approach 

3.2.1 Microstructure Topology Model 

A polycrystalline material contains micron level grains of random sizes and shapes.  Ito 

and Fuller [109] showed that these grains can be geometrically represented by Voronoi 

tessellation to a good degree of accuracy.  Geometric representation of material 

microstructure by Voronoi tessellation has been widely employed in numerical 
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investigations to account for the variability in fatigue life e.g. some researchers [94], [95] 

have adapted it for studying uniaxial fatigue; others [30], [31], [97] have used it for 

investigating RCF and Slack, et al. [85] applied it for analyzing fretting fatigue.  In the 

Voronoi tessellation approach, a set of seed points are randomly placed in the Euclidian 

space.  Around every seed point, a region is formed with the criterion that every point in a 

particular region is closer to the seed point of that region than any other seed point in the 

space.  The set of points which are equidistant to two or more seed points define the 

boundary between the regions formed by corresponding seed points.  This process divides 

the space into convex polygons called as Voronoi cells.  The Voronoi cells have variable 

orientations and variable number of sides with a median of 6.  Mucklich, et al. [92] 

illustrated that the real microstructure of a single-phase polycrystalline material and the 

one generated using Voronoi tessellation quantitatively correlate well.  Further, the 

formation of Voronoi tessellation is similar to the process of solidification in the 

polycrystalline material.  The seed points represent the various crystal nucleation sites 

within a liquefied material.  As the material cools, the crystals grow by adding surrounding 

liquid atoms to the solidified crystal structure until the extremities of adjacent crystals 

impinge on one another [110].  Therefore, it can be assumed that the Voronoi cell and their 

boundaries represent the grains and grain boundaries, respectively.  In this investigation, 

the minimum distance between two seed points was specified to match the measured 

average grain size in the bearing steel.  It was hypothesized that fatigue life scatter is mainly 

caused by the randomness of the microstructure in the representative volume element 

(RVE), identified as the critically stressed region during a rolling pass.  The dimensions 

for the microstructure topology region for line contact are given in Table 3.1 in terms of 

half-contact width, b.  Distinct simulation domains were generated by randomly 

distributing the seed points in the RVE.  Figure 3.1 depicts a random material 

microstructure generated using a Voronoi tessellation.   

Table 3.1: Model dimensions. 

Dimension Microstructure topology region Simulation domain 

X (half-contact width) (-2b, 2b) (-5b, 5b) 

Y (half-contact width) (0, -1b) (0, -7b) 
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Figure 3.1: Random material microstructure generated using a Voronoi tessellation.  

The Voronoi cell boundaries represent the weak planes in the material microstructure. 

3.2.2 Fatigue Damage Model 

Material deterioration due to fatigue cycles manifests through the initiation and 

propagation of micro cracks and voids.  The theory of continuum damage mechanics 

provides a framework to model these microscopic mechanisms of fatigue failure in an 

empirical fashion ([28], [111]).  The effect of fatigue damage on the homogenized material 

response is captured by introducing a thermodynamic state variable, D into the material 

constitutive relations in the following form:  

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙(𝐼𝑘𝑙𝑚𝑛 − 𝐷𝑘𝑙𝑚𝑛)𝜖𝑚𝑛 (3.1) 

Where, σij, Cijkl, Dklmn, εmn corresponds to the stress, stiffness, damage and strain tensors.  

However, assuming the isotropic damage and neglecting the effect of Poison’s ratio on 

damage, the damage tensor reduces to a scalar quantity as follows: 

𝜎 =  𝐸(1 − 𝐷)휀 (3.2) 

Where, E is the elasticity modulus for the undamaged material.  D can range from 0 to 1 

where a value of 0 means an undamaged or pristine material and 1 corresponds to a 

completely damaged material. 

The effective elastic modulus of the damaged element is defined to be: 

�̃� = 𝐸(1 − 𝐷) (3.3) 

As the fatigue cycles progress, the internal damage manifests as the reduction in the 

effective modulus of elasticity.   

The evolution of damage variable at a material point has been formulated by a rate law 

according to the damage mechanism for the phenomenon in interest.  As mentioned in the 

Introduction section, reversal in shear stress is considered to be the critical stress 

component responsible for causing RCF (Littman [2], Lundberg and Palmgren [11].  
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Further, the presence of compressive hydrostatic component in the stress field makes the 

mode II crack growth dominate.  To account for the randomness in material microstructure 

and introduce variability in fatigue life predictions of the model, it is assumed that grain 

boundaries constitute the “critical planes” along which the fatigue damage advances.  

Consequently, the action of the maximum shear stress reversal Δτcritical along the Voronoi 

grain boundary is considered to be the damage causing stress (Figure 3.2).  The damage 

evolution law for modeling RCF therefore becomes ([27], [30], [97], [107]) -  

𝑑𝐷

𝑑𝑁
= [

∆𝜏𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
𝜏𝑟(1 − 𝐷)

]
𝑚

 (3.4) 

The fatigue damage parameters, τr and m are material properties that need to be determined 

experimentally.  The value of τr, which is usually a function of mean stress, characterizes 

the ability of the material to resist accumulation of fatigue damage (Bolotin and Belousov 

[112]).  However, during the rolling pass the shear stress undergoes a complete reversal so 

the mean stress is equal to 0.  It was hypothesized that failure mechanism for torsional 

fatigue and rolling contact fatigue are equivalent, because, the mechanism for damage 

accumulation is similar for both types of fatigue phenomena.  Then, damage parameters 

can be extracted from the stress-life (SN) relationship for the material in torsional fatigue 

[97].  Figure 3.3 illustrates the torsion SN curve for AISI 52100 bearing steel [113].  The 

results from [113] were used to obtain τr and m [97] -   

𝑚 = 10.1, 𝜏𝑟 =  6113 𝑀𝑃𝑎 (3.5) 

 

 

Figure 3.2: Voronoi cell divided into Voronoi elements and stresses resolved along the 

grain boundaries. 
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Figure 3.3: S-N curve for bearing steel AISI 52100 in completely reversed torsional 

fatigue (Styri [113]). 

3.2.3 RCF Simulation 

A finite element model was developed to simulate a rolling pass for a cylindrical roller 

bearing.  The line contact between the roller and the raceway is modeled as a Hertzian 

loading on a semi-infinite half-space.  Elastic plane strain conditions are assumed.  The 

theoretically infinite domain was truncated to allow for reasonable computation time for 

the FE simulation as depicted in Figure 3.4.  The dimensions for the half space model are 

listed in Table 3.1.  The Hertzian pressure and friction force were applied as a surface 

traction using the ABAQUS user-defined subroutine, UTRACLOAD.  Equation (3.6) 

defines the normal component of the surface traction as a function of maximum Hertzian 

pressure (pmax), the coordinate of the center of the Hertzian pressure distribution (xc, yc) and 

the half-contact width, b.   

𝑡𝑦(𝑥) = 𝑝𝑚𝑎𝑥 √1 − (
(𝑥−𝑥𝑐)

𝑏
)
2

  (3.6) 

The magnitude of the surface traction in shear direction is given by Equation (3.7) where 

µs is the coefficient of friction.  The shear traction was applied in the direction of rolling.  

𝑡𝑥(𝑥) = 𝜇𝑠|𝑡𝑦(𝑥)|  (3.7) 

(x, y) is the coordinate where the pressure is evaluated.  By varying xc the surface traction 

was translated over the half-space in a sequence of 41 discrete steps from -2.5b to 2.5b in 

the rolling direction.  
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Figure 3.4: Computational domain used in FE simulation. 

 

In the earlier investigations based on Voronoi tessellation (Jalalamadi and Sadeghi [29]), 

the mesh for the FE model was generated using a two-step process.  The RVE is first 

discretized into Voronoi cells using the process described in section 2.1.  In the second step, 

the Voronoi cells are divided into finer triangular elements by connecting pairs of adjacent 

vertices to the centroid of the cell.  The FE mesh generated using this procedure will be 

referred to as ‘Voronoi mesh’ from here on.  Figure 3.2 illustrates a Voronoi cell divided 

into finer triangular elements.  It can be noted that the size of the RVE increase with the 

half-contact width.  However, the size of the Voronoi cells remains the same irrespective 

of the half-contact width since Voronoi cells correspond to the grains in the material 

microstructure of the bearing steel.  This results in a huge increase in the number of 

elements in the Voronoi mesh for larger domains.  Figure 3.5(a) compares the number of 

elements in the Voronoi mesh for b = 100 µm and b = 400 µm.  Therefore it is not 

computationally practical to use Voronoi mesh for modeling large bearings with half-

contact width of much greater than 100 µm.  
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(a) (b) 

Figure 3.5: Comparison of number of elements in the (a) Voronoi mesh and (b) 

Delaunay mesh for b = 100 µm and b = 400 µm. 

 

In the current investigation, the problem associated with large number of element and 

significant computational effort was resolved by meshing the simulation domain with 

Delaunay triangles.  Open source software, Triangle [98], was used for this purpose.  This 

mesh is referred to as ‘Delaunay mesh’ in the current study.  A finer mesh is used in the 

RVE while the mesh becomes progressively courser away from the contact region.  The 

advantage of the Delaunay mesh is that it can be scaled according to the half-contact width 

so that the number of elements in the simulation domain remains the same as shown in 

Figure 3.5(b).  Therefore, the time taken by ABAQUS to solve for the stress solution for a 

single load pass is the same regardless of the physical size of the model.  This translates to 

significant computational benefits over the earlier investigations using Voronoi meshes 

throughout the RVE, especially for large-size bearings.  However, this necessitates another 

step where Delaunay mesh needs to be coupled with the Voronoi tessellation based fatigue 

damage model.  Figure 3.6 illustrates the flow chart for this procedure. 
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Figure 3.6: Flow chart for the procedure to couple Delaunay mesh with fatigue damage 

model. 

3.2.4 Stress Mapping Procedure 

Fatigue damage model involves applying damage evolution (Equation (3.4)) and 

constitutive relationships (Equation (3.3)) to each element in the Voronoi mesh within the 

material domain repeatedly until failure.  Please note that Voronoi mesh represents the 

random material microstructure.  Therefore, the fatigue damage model requires knowledge 

of the maximum shear stress reversal Δτcritical along each Voronoi grain boundary.  

However, Delaunay mesh is used in FE simulations to obtain the state of stress after every 

load pass.  In order to incorporate the Delaunay mesh in the fatigue damage model, a stress 

mapping procedure was developed.  Figure 3.7 demonstrates the state of stress for the 

Delaunay mesh obtained from the FE simulation and mapped stresses on the Voronoi mesh.  

The Delaunay mesh consisting of constant strain triangles (CST elements) is used in 

ABAQUS to solve for the stress solution during a load pass (Figure 3.7(a)).  Stress mapping 

procedure maps this stress solution onto the Voronoi mesh (Figure 3.7(b)) using a 

MATLAB function ‘ScatteredInterpolant’.  This function performs an interpolation on a 

2D scattered data and returns a surface which can be evaluated at any query point.  

ABAQUS provides stresses at the centroids of the elements in the Delaunay mesh.  This 

data is passed to the MATLAB function and stresses at the centroids of the elements in the 

Voronoi mesh are evaluated.  Δτcritical is then calculated for each Voronoi element by 

transforming the state of stress along the grain boundary.   
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(a)                                                                  (b) 

Figure 3.7: State of stress for the (a) Delaunay mesh obtained from FE simulation and 

stresses mapped onto the (b) Voronoi mesh. 

3.2.5 Numerical Implementation of Fatigue Damage Model  

Since high cycle RCF life is in the range of billions of cycles, it is computationally 

impractical to employ fatigue damage model after every loading cycle.  Therefore, the 

standard ‘jump-in cycles’ (JIC) approach developed by Lemaitre [100] is used in the 

previous RCF investigations ([27], [30], [97]) to make the solution tractable.  In this 

approach, the stress-strain response is assumed to remain unaltered over a finite number of 

cycles, ΔNi, in a block i.  During this block of cycles, damage for each element is also 

assumed to remain constant.  Thus, damage evolution is piecewise linear with respect to 

the block of cycles.  A constant damage increment ΔD over that number of cycles is 

prescribed for the element which has largest damage evolution rate per cycle.  However, 

as D approaches 1, damage evolution rate approaches infinity as evident in Equation (3.4).  

This causes ΔNi to be less than 1, consequentially slows down the standard JIC algorithm.  

To avoid this situation and expedite the fatigue damage simulation, a modified JIC 

algorithm developed by Weinzapfel and Sadeghi [107] is used in this investigation.  This 

modification is motivated by following two principles (I) strain energy is released by the 

formation and growth of damage as fatigue progresses, (II) the strain energy released in 

each block of cycles should advance the total by some minimum fraction of the previous 

total.   

The step by step procedure for damage evolution as per modified JIC approach is given 

below: 

i. The number of elapsed cycles, N, and released strain energy are initialized to 0.  

The material domain is assumed to contain no initial flaw.  Hence, the initial 

damage of each Voronoi element is set to 0.  Similarly, initial damage of 0 and 

pristine elasticity modulus is assigned to each of the Delaunay element.   
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𝑁𝑖 =  0 𝜑𝐷 =  0  

(3.8) 𝐷𝑗
0 = 0  j = 1 … nV (Voronoi elements) 

𝐷𝑘
0 = 0 𝐸𝑘

0 = 𝐸 k = 1 … nD (Delaunay elements) 

ii. Alternating shear stress along the Voronoi grain boundary (∆𝜏𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙)𝑗
𝑖  for the 

current loading cycle is evaluated by stress mapping procedure.  The damage 

evolution rate for each Voronoi element j is then calculated using the current 

alternating shear stress and state of damage for that element. 

(
𝑑𝐷

𝑑𝑁
)
𝑗

𝑖

= [
(∆𝜏𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙)𝑗

𝑖

𝜏𝑟(1 − 𝐷𝑗
𝑖)
]

𝑚

 (3.9) 

iii. The maximum damage evolution rate in the domain is determined and number of 

cycles in the current block is computed as  

∆𝑁𝐷
𝑖 =

∆𝐷 

(
𝑑𝐷
𝑑𝑁
)
𝑐𝑟𝑖𝑡

𝑖
 

Where, (
𝑑𝐷

𝑑𝑁
)
𝑐𝑟𝑖𝑡

𝑖

= 𝑀𝑎𝑥
𝑖
(
𝑑𝐷

𝑑𝑁
)
𝑗

𝑖

 (3.10) 

iv. In addition, the maximum damage strain energy release rates (Y) for Voronoi 

elements are calculated by Equation (3.11).  The damage strain energy rate is 

defined as variation in the sum of the shear strain energy and volume dilatation 

energy due to an infinitesimal increase of damage at constant stress [111].   

𝑌𝑗
𝑖 =

(𝜎𝑒𝑞,𝑗
𝑖 )2𝑅𝑣,𝑗

𝑖 𝑉𝑗   

2𝐸(1 − 𝐷𝑗
𝑖)
2  Where, 𝑅𝑣,𝑗

𝑖 =
2

3
(𝑖 + 𝜈) + 3(1 − 2𝜈) (

𝜎𝐻

𝜎𝑒𝑞
)
2

 (3.11) 

Vj is the volume of the element; σH and σeq are measured at the step during the 

loading cycle where σeq is maximum.  

v. The strain energy released during the current block of cycles (∆𝜑𝐷
𝑖 ) is calculated. 

State of the damage in each element is updated 

∆𝜑𝐷
𝑖 = ∑𝑌𝑗

𝑖 (
𝑑𝐷

𝑑𝑁
)
𝑗

𝑖

∆𝑁𝐷
𝑖  

(3.12) 

𝐷𝑗
𝑖+1 = 𝐷𝑗

𝑖 + (
𝑑𝐷

𝑑𝑁
)
𝑗

𝑖

∆𝑁𝐷
𝑖  

vi. The ratio of increment in strain energy to the total strain energy released thus far is 

compared to a desired minimum ratio.  If the ratio is less than the threshold, then 

the number of cycles in the current block is supplemented by a number of cycle,  
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∆𝑁𝜙
𝑖 =  

{
 
 

 
            0,                            

∆𝜑𝐷
𝑖

𝜑𝐷
 ≥ 𝑓

(
𝑓𝜑𝐷

∆𝜑𝐷
𝑖
− 1)∆𝑁𝐷

𝑖 ,        
∆𝜑𝐷

𝑖

𝜑𝐷
 < 𝑓 

}
 
 

 
 

 (3.13) 

∆𝑁𝑖 = ∆𝑁𝐷
𝑖 + ∆𝑁𝜑

𝑖   

The value for the threshold ratio, f, must be chosen wisely.  If f is set to 0, then the 

modified JIC algorithm is exactly same as the standard JIC algorithm, however it 

causes large errors in the solution if f is chosen to be arbitrary large number.  [32], 

[107] have performed a detailed study on the effect of f on the RCF simulation.   

vii. The state of damage and strain energy release are updated according to the revised 

number of cycles in the current block  

∆𝜑𝐷
𝑖 = ∆𝜑𝐷

𝑖 + ∑𝑌𝑗
𝑖 (
𝑑𝐷

𝑑𝑁
)
𝑗

𝑖

∆𝑁𝜙
𝑖   

(3.14) 

𝐷𝑗
𝑖+1 = 𝐷𝑗

𝑖+1 + (
𝑑𝐷

𝑑𝑁
)
𝑗

𝑖

∆𝑁𝜙
𝑖   

viii. Finally, the total number of cycles elapsed (N) and total released strain energy (𝜑𝐷) 

are updated.  

𝜑𝐷 = 𝜑𝐷 + ∆𝜑𝐷
𝑖  

(3.15) 
𝑁 = 𝑁 + ∆𝑁𝑖 

ix. The state of damage is mapped back onto the Delaunay mesh using the procedure 

similar to stress mapping.  The state of damage on the Voronoi mesh (b) and the 

mapped state of damage on Delaunay mesh (a) is depicted in Figure 3.8. 

𝐷𝑗
𝑖+1

𝑚𝑎𝑝
⇒  𝐷𝑘

𝑖+1 j = 1 … nV (Voronoi elements) 
(3.16) 

𝐸𝑘
𝑖+1 = 𝐸(1 − 𝐷𝑘

𝑖+1) k = 1 … nD (Delaunay elements) 

In the present investigation, a kill element approach developed by Slack and Sadeghi [97] 

has been used for damage propagation.  In this formulation, the simulation will continue 

with the completely damaged elements, i.e. state of damage equal to critical damage value, 

until another element fails.  Therefore, the damaged elements will have zero stiffness and 

act as voids in the simulation domain.  This method allows damage to propagate 

continuously through the material microstructure, whereas the node release procedure 

assumes damage to be localized at the grain boundaries.  The simulation ends when the 

damage propagates to the surface and forms a spall. 
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(a)                                                                          (b) 

Figure 3.8: State of damage for the Voronoi mesh (b) obtained by modified JIC 

algorithm and damage mapped onto the Delaunay mesh (a). 

3.2.6 Dynamic Remeshing Tool 

Due to the difference in the number of elements in the Voronoi and Delaunay meshes, there 

could be a loss of information while communicating the stresses and the damage states 

between the two meshes.  For this reason, a remeshing procedure was developed to redefine 

the Delaunay mesh in order to compute the stresses accurately in the critically damaged 

region.  This remeshing procedure involves identifying Voronoi elements around the 

critically damaged elements after every load pass.  Elements having centroids within a 15 

µm radius from the centroid of a failed element are found.  These elements are imported 

directly into the FE mesh, while the remainder of the domain is meshed using Delaunay 

triangles.  This process guarantee that the exact damaged areas of the Voronoi cell 

microstructure are analyzed in the FEA solution, and that the resulting stresses are 

communicated precisely back to the Voronoi mesh in the critical regions where damage is 

rapidly evolving.  Figure 3.9 demonstrates the remeshing process where critically damaged 

elements are depicted in black color, while the surrounding elements are colored in red.  

These elements also appear in the FE mesh (Figure 3.9(a)) and the remainder of the domain 

comprising of Delaunay triangles are shown in white.  The progression of Delaunay mesh 

at various stages of the simulation is depicted in Figure 3.10.  The damaged elements 

depicted in black color form the spall.  
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(a)                                                             (b)  

Figure 3.9: Remeshing procedure: (a) Delaunay mesh, (b) Voronoi mesh.  Critically 

damaged Voronoi elements are colored black and Voronoi elements surrounding the 

critically damaged elements are colored red. 

 

(1)  (2)  

(3)  (4)  

(5)  (6)  

(7)  (8)  

Figure 3.10: Progression of the Delaunay mesh at various stages of simulation (b = 200 

µm).  The spall pattern is shown in black color.  The Voronoi mesh is depicted in (1).   

 Results and Discussion 

This section describes results obtained from the new modeling approach for simulating 

sub-surface initiated spalling in cylindrical roller bearings of varying sizes.  Typical 

dimensions of contact region between rollers and raceway can be of the order of a hundred 

to a few thousand microns depending on the size of the bearing.  Therefore the RCF model 
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was used to compare spall patterns and fatigue lives for domains of contact width ranging 

from 50 to 1000 μm.  The grain diameters, dg, for bearing steel are in the order of 10 μm.  

This grain size was used during Voronoi tessellation procedure to generate 35 random 

microstructure domains for each contact width to study the influence of subsurface 

microstructure topology on fatigue lives.  Table 3.2 summarizes the material and damage 

parameters used for this study.  The material properties are assumed to be isotropic and 

homogenous.  Maximum Hertzian pressure of 2.0 GPa and coefficient of friction of 0.05 

are prescribed in Equation (3.6) and Equation (3.7) to define applied traction.  A constant 

damage increment (ΔD) and threshold strain energy ratio, f, used in modified JIC algorithm 

are 0.25 and 0.015 respectively.  

Table 3.2: Material properties used in the simulation. 

Material  AISI 52100 

Undamaged elasticity modulus, E 200 GPa 

Poisson’s ratio, ν 0.3 

Material grain diameter, dg 10 μm 

Maximum Hertzian pressure, pmax 2 GPa 

Surface coefficient of friction, µs 0.05 

Damage rate law coefficient, τr 6113 MPa 

Damage rate law exponent, m 10.1 

Critical damage value, Dcrit  1 

3.3.1 Fatigue Life Predictions and Spall Patterns 

The validity of the model is first assessed by comparing the results for b = 100 μm with 

previous 2D RCF models based on Damage mechanics and Voronoi tessellation.  A 

Weibull cumulative distribution function is commonly used to characterize the scatter of 

fatigue lives in roller element bearings.  The slope of the line for 2-parameter Weibull 

distribution provides the measure for the scatter present in the life data.  Smaller Weibull 

slopes indicate more scatter in the data.  L10 life describes the number of load cycles that 

90% members of the population can expect to survive.  Table 3.3 presents the comparison 

of Weibull slopes and L10 lives for initiation and final lives obtained from the current model 

and Slack and Sadeghi [97].  It can be observed that the results are in good agreement with 
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the previous results.  Please note that these slopes represent the scatter in fatigue lives due 

to the variability in stresses acting on the grain boundaries or weak planes alone.  In this 

study, the initiation life was defined as the life cycles at which the first damage occurs in 

the domain i.e. when the damage value of the first element reaches 1.  The initiation phase 

constitutes an average of 86.9% of the total life.  This is also in accordance with the general 

observation that the initiation phase dominates the high cycle fatigue [95].  

Table 3.3: Comparison of results obtained with current model to previous model by Slack 

and Sadeghi [97] for half-contact width of 100 μm. 

 Initiation lives Final lives  

 Weibull slope Weibull slope L10 life Avg. % initiation 

Ref. [97] 7.15 12.54 1.61E+07 85.9 

Current model 5.16 8.38 1.58E+07 86.9 

 

Figure 3.11 depicts the Weibull probability results for (a) the initiation lives and (b) final 

lives for different contact sizes.  Table 3.4 lists the Weibull slopes and L10 lives for the 

same.  Two important inferences can be made using these results: (I) the Weibull slopes 

systematically increase as contact size increases, i.e. the scatter in fatigue lives decreases 

for larger bearings (II) the L10 lives for larger contact size are higher.  The first phenomenon 

can be explained as following: as the bearing size becomes larger, the number of Voronoi 

grains/weak planes in the critically stressed region (around 0.5b below the surface) also 

increase.  Therefore, probabilistically, larger domains have much better chance of having 

at least one Voronoi cell which has the orientation that causes higher critical stress during 

initiation.  This causes the initiation life to be more deterministic, increasing the Weibull 

slopes.  This also explains why crack propagation life is less for larger contacts than for 

smaller contacts, which is evident by the increase in the ‘average % initiation’ with the 

contact size (See Table 3.4).   
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Table 3.4: Predicted Weibull slopes and L10 lives for different contact sizes. 

 Initiation lives Final lives  

b (μm) Weibull slope L10 life Weibull slope L10 life Avg. % ini 

50 2.01 4.86E+06 3.26 1.02E+07 71.0 

100 5.16 1.21E+07 8.38 1.58E+07 86.9 

200 12.39 1.87E+07 14.47 1.96E+07 96.5 

400 18.87 2.21E+07 18.14 2.23E+07 98.3 

1000 29.99 2.44E+07 28.08 2.46E+07 98.0 

 

To substantiate the second observation (II), the relationship between half-contact width (b) 

and basic life rating (L10 life) is formulated for cylindrical roller bearing according to the 

ISO 281 standard [9].  To derive this formulation, basic Hertzian relationships for line 

contact need to be considered.  Maximum Hertzian pressure Pmax and half-contact width, 

(b), for two cylinders in contact carrying a load F is given by 

𝑝𝑚𝑎𝑥 =
2𝐹

𝜋𝑏𝐿
   (3.17a)  

𝑏 = √
2𝐹𝐷′

𝜋𝐿𝐸′
  → 𝐹 =

𝑏2𝜋𝐿𝐸′

2𝐷′
 

(3.17b) 

𝐸′ =
1−𝜈1

2

𝐸1
+ 

1−𝜈1
2

𝐸1
    &    𝐷′ =

2𝑟1𝑟2

𝑟1+𝑟2
 (3.17c) 

Where, L is the length of the cylinders; D’ is the equivalent diameter and E’ is the 

equivalent stiffness.  Substituting F from Equation (3.17a)b) into Equation (3.17a) and 

simplifying yields 

  
(a) (b) 

Figure 3.11: Weibull probability plots for (a) initiation and (b) final lives for different 

contact sizes. 
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𝑝𝑚𝑎𝑥 =
𝐸′𝑏

𝐷′
  (3.18)  

From Equation (3.17a) and Equation (3.18), it can be deduced that for fixed pmax, the half-

contact width, b, is directly proportional to applied load F and equivalent diameter D’.  

Hence,  

𝑏 ∝ 𝐹  (3.19a)  

𝑏 ∝ 𝐷′ (3.19b) 

Now, the basic life rating for roller bearing as per ISO 281 is given by 

𝐿10 =  (
𝐶𝑟
𝑃𝑟
)
10/3

 (3.20a)  

𝐶𝑟 = 𝑏𝑚𝑓𝑐(𝑖 𝐿𝑤𝑒 cos 𝛼)
7/9

 𝑍3/4 𝐷𝑤𝑒
29/27 (3.20b) 

𝑓𝑐  𝑖𝑠 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 (
𝐷𝑤𝑒 cos𝛼

𝐷𝑝𝑤
)  (3.20c) 

Considering radial roller bearings of equal breadth but different diameters such that the 

radial dimensions of all components are scaled equally, Dwe (rolling element diameter) is 

the only factor in Equation (3.20a) which changes with the bearing size.  fc is a function of 

the ratio of component diameters expressed in Equation (3.20a),  𝑏𝑚 is bearing type factor, 

i is number of rows of rollers,  𝐿𝑤𝑒 is length of roller and  Z is number of rollers.  Further, 

for radial roller bearing contact angle α = 0
o

.  If the bearing is subjected to radial load only, 

Pr is equal to the applied load F.  From Equation (3.19a), we know that the bearing size is 

directly proportional to half-contact width, b.  Therefore, Pr and Cr can be expressed in 

terms of half-contact width, b as follows:   

𝐶𝑟 ∝ 𝐷𝑤𝑒
29/27

  →  𝐶𝑟 ∝ 𝑏
29/27 (3.21a)  

𝑃𝑟 = 𝐹  → 𝑃𝑟 ∝ 𝑏   (3.21b) 

Using these relationships in Equation (3.20a), relationship between L10 life and b can be 

determined 

𝐿10 =  (
𝐶𝑟

𝑃𝑟
)
10/3

 → L10 ∝ (
𝑏
29
27

𝑏
)

10/3

  → 𝑳𝟏𝟎 ∝ 𝒃
𝟐𝟎/𝟖𝟏 (3.22)  

Therefore, if the size factor fs is defined as the ratio of two contact widths, the ratio of 

corresponding L10 lives for same type of radial roller bearing can be expressed as 
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𝑳𝟏𝟎(𝒃𝟐)

𝑳𝟏𝟎 (𝒃𝟏)
= (

𝒃𝟐

𝒃𝟏
)
𝟐𝟎/𝟖𝟏

= 𝒇𝒔
𝟐𝟎/𝟖𝟏

  (3.23)  

It is evident from Equation (3.23) that, if contact pressure is fixed, a longer L
10

 life is 

expected for the larger bearing with the same breadth i.e. larger contact size.  In Figure 

3.12, the ratio of L10 lives calculated using Equation (3.23) is plotted against the size factor, 

fs.  The ratios obtained from the model are shown with square markers.  For this purpose, 

b = 100 μm is considered to be the base contact width.  It can be seen that there is a good 

correlation between the model results and basic life rating for radial roller bearing as per 

ISO 281.  

 

Figure 3.12: Relationship between L10 lives and size factor fs from the model results 

and Equation (3.23) derived from ISO 281. 

 

Figure 3.13 depicts the typical spall patterns for different contact sized obtained from the 

model.  It was observed that spalls initiate at around a depth of 0.5b from the surface for 

all cases.  This is expected since this is the region where maximum shear stress reversal 

(∆𝜏𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) occurs.  After initiation, the damage propagates parallel to the surface before 

turning upwards and propagating towards the surface at steep angle (>45o) in the direction 

of applied friction.  Further, the width of the spall increases with increase in the contact 

size.  The simulation was stopped when first crack reached to the surface.  However, most 

experimentally observed spalls show multiple cracks reaching the surface as shown in 

Figure 3.14 (Tallian [114] and Lou, et al. [5]).  Therefore, the simulation was continued for 

few more loading cycles after the first crack reaches the surface for a couple of domains 
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with b = 400 μm.  The resulting spall patterns as depicted in Figure 3.15 show good 

resemblance to the experimental results.   

(I)  

(II)  

(III)  

(IV)  

Figure 3.13: Typical spall patterns obtained from the model for different contact sizes 

(I) b = 100 µm (II) b = 200 µm (III) b = 400 µm (IV) b = 1000 µm 
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(I)  

(II)  

Figure 3.14: Experimentally observed spall patterns (I) Tallian [114]; (II) Lou, et al. [5] 

 

 

 

Figure 3.15: Spalls obtained from the model by continuing the simulation after the first 

crack reaches the surface.  (b = 400 µm) 

3.3.2 Effect of Material Flaws 

It can be noted that the scatter in the fatigue lives observed in the model results is 

considerably less than what is generally observed in the experiments.  Harris and Barnsby 
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[115] state that fatigue data for AISI 52100 steel follow a range of Weibull slopes between 

0.51 and 5.7.  Possible reason for high Weibull slopes could lay in the assumption that the 

material domain is homogeneous and free of voids and inclusions.  Rolling contact fatigue 

is strongly influenced by the steel cleanliness [116].  Cracks are often found to initiate 

around the interfaces of the inclusions, voids and other inhomogeneities in the material.  

These material defects are randomly distributed within the material, which consequently 

reduces the fatigue lives and increases their scatter.  Ai [116] has investigated the effect of 

steel cleanliness on the bearing fatigue life.  In this section, the model was expanded to 

incorporate a distribution of initial internal voids and its effect on the RCF life is explored.  

Two types of initial voids, small and large, are investigated using an approach similar to 

Slack and Sadeghi [97].  Small void was introduced by setting the elasticity modulus of a 

Voronoi element equal to zero and large void was modeled by setting the elasticity modulus 

of all the Voronoi elements within a Voronoi cell equal to zero.  Figure 3.16 illustrates the 

types of initial voids investigated in this study.  The sizes of the initial voids correspond 

well with the experimentally observed range for inclusions in bearing steel [117].  The 

initial voids were placed within the bounds of microstructure topology region i.e. -2b < x 

< 2b and -1b < y < 0.  However, they were not allowed to occur on the surface.   

  
(a) 

 
 (b) 

Figure 3.16: Types of initial voids randomly placed in the microstructure topology 

region (a) small void and (b) large void.  Elasticity modulus of elements colored in red 

is set to 0. 

 

Simulations were performed for 35 random microstructure domains of size b=100 μm with 

1 randomly placed initial void.  Figure 3.17 displays the Weibull probability plots for final 

lives obtained from the model for pristine, small void and large void cases.  Table 3.5 

presents the Weibull slopes and L10 lives for the results shown in Figure 3.17.  It is evident 

that the presence of initial voids results in significant increase in the scatter in the fatigue.  



70 

 

Further, it also causes considerable reduction in L10 lives with larger void resulting in more 

reduction than small void.  The average percentage of life spent during initiation also 

decreases going from pristine to large void.  These observations are in accordance with the 

expectation since larger initial voids results in a bigger stress concentration.  The typical 

spall patterns for small and large initial void are depicted in Figure 3.18.  The initial void 

is colored in red and failed elements that form the spall are colored in black.  In majority 

of the cases the spalls initiated from the initial voids, however if the void occurred farther 

from the critically stressed region, it did not give rise to the spall.  These results are in 

agreement with the results from the previous RCF models [97].   

Table 3.5: Comparison of scatter and fatigue lives for different simulation conditions for 

domains with half-contact width of 100 μm. 

Simulation condition 
Final lives 

Weibull slope L10 life (cycles) 

Pristine 8.38 1.58E+07 

1 small initial void 2.82 6.32E+06 

1 large initial void 1.44 1.10E+06 

 

 

 

Figure 3.17: Weibull probability plots for final lives for different simulation condition 

(b = 100 µm). 
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The effect of initial voids on the fatigue of different sized bearings was also investigated.  

The procedure to introduce the small and large voids is the same as before.  Therefore, the 

size of the voids does not change for different contact widths.  However, to keep the initial 

void density the same, the number of initial voids was increased for larger contact width 

according to the area of the microstructure topology region.  Since the area is proportional 

to the square of the half-contact width, b; 1, 4 and 25 initial voids are placed randomly in 

the microstructure topology region for b = 200, 400 and 1000 μm respectively.  Simulations 

were carried out for 35 microstructure domains for each contact width and with small and 

large voids.  Figure 3.19 presents examples of spalls obtained from the model for different 

simulation conditions.  Figure 3.20 illustrates the Weibull probability plots for the fatigue 

life data for simulation with initial voids obtained from the model.  The summary of the 

results of the simulations is presented in Table 3.6.  It is worth noting that the Weibull 

slopes for the final lives are within the experimentally observed range after the effect of 

initial defects is taken into account.  Furthermore, for both types of initial voids, the L10 

lives decreased with increase in the contact size as expected and commonly observed in 

the applications.  This can be explained as follows.  The number of initial defects and 

number of Voronoi cells in the critically stressed region rises as the bearing size increases.  

Consequently, the probability of an initial defect occurring at the critically stressed region 

also increases, resulting in the reduction in the fatigue lives.   

(a)  

(b)  

Figure 3.18: Typical spall pattern for randomly placed (a) small and (b) large initial 

void for b = 100µm.  The initial void is colored in red. 
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(a)  

(b)  

Figure 3.19:  Examples of spalls obtained for different simulation condition.  (a) 4 

small initial voids randomly placed in the domain with   b = 400µm (b) 4 large initial 

voids randomly placed in the domain with   b = 400µm The initial void is colored in 

red. 

  
    (a)       (b) 

Figure 3.20:  Weibull probability plots for final lives for different contact sizes having 

same initial void density (a) small voids and (b) large voids.   
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Table 3.6: Weibull slopes and L10 lives obtained for different contact sizes with same 

initial void density. 

b (μm) Initial voids 
Final lives 

Weibull slope L10 life (cycles) 

200 1 small 3.03 8.11E+06 

200 1 large 1.69 3.27E+06 

400 4 small 3.12 5.22E+06 

400 4 large 2.37 2.88E+06 

1000 25 small 4.22 4.67E+06 

1000 25 large 1.65 7.38E+05 

 Summary and Conclusions 

This chapter presented a computationally efficient modeling approach for investigating 

subsurface initiated spalling and attempts to predict the variability in rolling contact fatigue 

lives for large rolling element bearings.  The model incorporates damage mechanics 

constitutive relations in a finite element model to capture progressive damage for rolling 

contact fatigue of AISI 52100.  Randomly generated Voronoi tessellations were used to 

study the variability occurring due to the randomness in material microstructure.  However, 

this approach decoupled the Voronoi mesh from the FE solution.  Instead, Delaunay 

triangulation was used to generate the FE mesh.  A mapping procedure was developed to 

communicate the state of stress and damage between FE mesh and Voronoi tessellations.  

A remeshing tool was developed to refine the mesh as the fatigue damage advances.  Use 

of a Delaunay mesh significantly reduced the simulation time compared to the previous 

approach as demonstrated in Table 3.7.  The new approach showed 50% improvement in 

the computational time for contact size of 200 μm.  The new approach required 15 hours 

on an average to complete the simulation for one domain while the previous approach took 

more than 30 hours for the same simulation.  For 400 and 1000 μm domains, the simulation 

conducted using previous approach was allowed to run for 200 hours, yet did not finish.  

However, when the new approach was implemented the simulations concluded between 25 

to 80 hours on the average for contact sizes of 400 and 1000 μm, respectively.  To 

summarize, the new model enabled simulation of RCF for contacts up to an order of 

magnitude larger than previously possible with similar models.  For equivalent contact 

pressures and bearing width, the simulated RCF lives were shown to increase for bearings 
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of larger diameter and these results were substantiated by calculations of the basic rating 

life per ISO 281.  Additionally, the shapes of the spalls obtained from the model were found 

to resemble those commonly observed in experiments.  When initial flaws were included 

in the model, the scatter in the fatigue lives was within the experimentally observed range 

and L10 lives decreased with increasing contact size as expected.   

Table 3.7: Comparison between average computational times taken by previous and new 

approach to complete one simulation domain.  

Half-contact width, b (μm) 
Time in hrs. 

Previous approach New approach 

100 3 3 

200  30  15 

400 >200 25 

1000 >200 80 
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4. ROLING CONTACT FATGUE IN CASE CARBURIZED STEELS 

 Introduction 

Bearing manufacturers have used various techniques to increase the working life of REBs, 

of which one of the ways is to limit the RCF related bearing damage.  Hardened steels are 

commonly used in high-performance ball and rolling element bearings.  The hardening of 

steel is usually achieved by some type of heat treatment, which either hardens the part 

throughout its thickness or generates a hardened exterior that progressively tapers into a 

softer core beneath the surface.  The first type of material is called “through hardened” and 

the second “case hardened.”  

Many researchers (Bhatacharya et al. [118], Widmark and Melander [119], Scott [120], 

Zwirlein and Schlicht [121]) have studied the effect of hardness on the rolling contact 

fatigue life.  There is a general trend of increase in fatigue life with increasing hardness 

[122].  However, most of this research focused on experimental investigation of the effect 

of hardness on RCF lives.  There are not many analytical models to simulate the material 

hardness and describe its effect on the RCF life.  The current model was used to simulate 

rolling contact fatigue of case carburized bearing steel with different case depths and 

investigate the effect of hardening process on RCF lives.  Based on the results of the micro-

indentation tests, the variation of hardness with depth was assumed to be bilinear for the 

case carburized steel.  The effect of the carburizing process was incorporated by changing 

the yield strength of the material linearly with the hardness and including the residual stress 

distribution in the model.  Thus, Mises based plasticity model with kinematic hardening 

was implemented in the FE model to incorporate material plasticity.  The geometric 

disorder and randomness in the material microstructure was simulated using Voronoi 

tessellation to account for the variability in rolling contact fatigue life.  Material 

degradation due to fatigue damage was modeled using continuum damage mechanics.  

Equivalence between torsion and rolling contact fatigue was utilized to determine the 

damage parameters in the elastic and plastic damage law.  The damage evolution laws were 

modified to include the effect of residual stress.  Experimental torsion SN results for 
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through-hardened AISI 52100 with yield strength of 2GPa was used to assume SN plots 

for the materials having other yield strength values.   

The FE model developed for this investigation was used to carry out simulations of rolling 

contact fatigue of case carburized and through hardened bearing steel under various 

operating conditions.  Since, the location of the initial damage in rolling contact depends 

on the half-width of the contact (b), all the dimensions in this study are normalized with b, 

which was fixed at 100 μm.  To assess the effect of plastic deformation, the Hertzian 

pressure was varied from 2 to 3.5 GPa for all cases.  First, the effect of hardness variation 

was analyzed without including the effect of the residual stress.  Then, the effect of residual 

stress distributions was studied with constant yield strength throughout the depth.  In the 

end, the combined effect of hardness variation and residual stress distribution for the case 

carburized steel was investigated.  From the results of the model, an equation for RCF life 

considering hardness and residual stress distribution was derived.  The model was used to 

determine the optimum case depth for the case carburized materials.  The results suggest 

that the RCF lives are maximum for the materials with a case-depth of 6.2b at low loads 

and 7.6b for high loads. 

 Modeling Approach 

4.2.1 Microstructure Topology Model 

Fatigue experiments demonstrate a high degree of variability in lives even under identical 

loading and environmental conditions.  Miller [22] showed that the scatter in fatigue lives 

can be explained by considering the effect of the heterogeneous microscale features such 

as grain size and orientation, distribution of initial defects and material inclusions on early 

crack growth.  In RCF, the localized nature of the contact stresses enhances the effects of 

the material microstructure on the fatigue life and results in the scatter in the fatigue lives 

of otherwise identical bearing.  A single phase polycrystalline material contains micron 

level grains of random sizes and shapes.  Mücklich et al. [92], Espinosa and Zavattieri [93]; 

Jalalahmadi and Sadeghi [29] showed that Voronoi tessellations can be used to represent 

the grain structure of the polycrystalline material to a good degree of accuracy and can be 

used to simulate its effect on the fatigue life.  Thus, this approach has been widely applied 
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in numerical investigation ([27], [30], [33], [97], [107]) to account for geometric disorder 

and the randomness in the material microstructure topology.  It assumes that the Voronoi 

cells and their boundaries resulting from a random tessellation represent the grains and 

grain boundaries respectively in the real microstructure.   

In the Voronoi tessellation procedure, a set of distinct nucleation or seed points are 

randomly placed in the Euclidian space.  A region is formed around every seed point with 

the condition that it consists of points which are closer to the seed point of that region than 

any other seed point in the domain.  The set of points which are equally close to more than 

one seed point define the boundary between the regions formed by corresponding seed 

points.  This process results in a set of convex polygons referred to as Voronoi cells.  The 

Voronoi cells have different number of sides with the most probable number of 6.  The 

grain size in the generated microstructure can be controlled by specifying the minimum 

distance constraint between two nucleation points.  The representative volume element 

(RVE) was identified as the critically stressed region during a rolling pass.  It was 

hypothesized that the topological randomness in the RVE region has a major contribution 

to the fatigue life scatter.  The microstructure topology region was restricted to the RVE to 

reduce the computational expense.  The dimensions for the microstructure topology region 

are given in Table 4.1 in terms of half-contact width, b.  Distinct simulation domains were 

generated by randomly distributing the seed points in the RVE.  Figure 4.1(a) depicts a 

random material microstructure generated using a Voronoi tessellation.  To generate the 

triangular mesh for the FE model, the Voronoi cells are divided into finer triangles by 

connecting pairs of adjacent Voronoi edge vertices to the centroid of their Voronoi cell.  

Figure 4.1(b) illustrates a Voronoi cell divided into finer triangular elements.   

Table 4.1: Model dimensions. 

Dimension Microstructure topology region Simulation domain 

X (half-contact width) (-b, b) (-5b, 5b) 

Y (half-contact width) (0, -1b) (0, -7b) 
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(a)  (b)  

Figure 4.1: (a) Random material microstructure generated using a Voronoi 

tessellation.  (b) Triangular FE elements generated by connecting the centroids (red 

dots) of the Voronoi cells to the edges. 

4.2.2 Modeling Case Carburized Steel 

Hardened steels are commonly used in high-performance ball and rolling element bearing 

applications.  These materials are either hardened throughout the thickness of the part or 

they have a hardened exterior that progressively tapers into a softer core beneath the surface.  

The first type of material is called through-hardened and the second as case-hardened 

material.  Case-hardening of steel is usually accomplished by the surface heat treatment 

method called carburization.  Carburization of steel results in a material with gradients in 

microstructure and composition as a function of depth [123].  The affected region typically 

includes carbides surrounded by the steel matrix.  The distribution of carbides varies with 

the depth; the region closer to surface has the higher density of carbides and it reduces with 

depth.  Since carbide phase is much harder than surrounding steel matrix, their distribution 

results in a gradient in mechanical properties of the material.  Klecka et al. [124] have 

extensively studied the relationship between the variations in mechanical properties and 

gradient in the subsurface microstructure of case-carburized steels.  Depending on the type 

and time period of the carburization process, the gradient and the extent of the carburization 

i.e. depth of the affected region can vary.  

A number of investigators (Branch et al.[125], Choi et al. [126]) have characterized the 

graded material properties of the hardened steel.  Cahoon [127] investigated the 

relationship between hardness and yield and tensile strength of the steel.  Pavlina and Tyne 

[128]  have compiled hardness and strength values for different types of steel having wide 

range of compositions and microstructure from almost 20 years of experimental work.  

Using least-square regression analysis, they showed that there is a linear correlation 

between yield strength (𝑆𝑦) and Vickers hardness (Hv).   
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𝑆𝑦 = −90.7 + 2.876𝐻𝑣  (4.1) 

Where, yield strength is described in MPa and Hv has units of (Kgf/mm2). 

To evaluate the variation of the hardness with depth due to the hardening process, Vickers 

hardness measurements were performed using micro-indentation tests at regular intervals 

on the cross-section of the case-carburized 8620 and through hardened 52100 steel 

components.  0.3 kgf of load was used for all tests.  Figure 4.2 and Figure 4.3 demonstrate 

the measured variation of the hardness as a function of depth for through and case 

carburized material respectively.  It can be noted that for through-hardened steel, the 

hardness is approximately constant throughout the depth; corresponding 𝑆𝑦  calculated 

using Equation (4.1) is 2.4 GPa.  On the other hand for case carburized steel, it closely 

follows a bilinear profile.  Hardness is a maximum at the surface (𝑆𝑦 = 2.0 GPa) and it 

decreases linearly with depth in the carburized region and then it is approximately constant 

in the core region (𝑆𝑦 = 1.2 GPa).  The distance from the surface where the carburized 

region ends is the case depth of that material.  For this material, case depth is around 500μm.  

Klecka et al. [124] have also obtained similar type of distributions in their micro-

indentation hardness measurements.  In the current analysis, a constant hardness is assumed 

for through-hardened steel; while a bilinear hardness profile with different case-depths is 

assumed for the case carburized steel.  The hardness profile of the steel is incorporated in 

the model by utilizing this linear relationship between hardness and yield stress.  Therefore, 

the variation of yield strength with depth follows the same profile as hardness.  For through-

hardened material, the yield strength is set to 2 GPa throughout the depth.  For better 

comparison, the maximum hardness at the surface of the case-carburized material is also 

set to 2 GPa whereas, the yield strength of the core material is assumed to be 1 GPa.  

Different case-depths change the slope of the decay of yield strength with depth.  Figure 

4.4 illustrates the different profiles of yield strength vs. depth studied in the current 

investigation.  The depth has been non-dimensionalized by dividing with half Hertzian 

contact width, b.  The finite elements in the simulation have been assigned the yield 

strength values depending on the y-coordinates of their centroids.   

In addition to the hardness variation, case carburization introduces residual stresses (RS) 

in the material.  Residual stresses play a decisive part in improving the rolling contact 

fatigue strength of the case carburized material [129].  Parrish and Harper [130] have 
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surveyed around 70 RS distributions and results for carburized and hardened steels, where 

case depths were generally less than 1 mm.  According to their results, the typical RS 

distribution is as shown in Figure 4.5.  For majority of samples, the depth at which peak 

RS occurs was 20% of the case depth.  The residual stress diminishes to zero at a depth 

equal to the case depth of the material.  Figure 4.6 illustrates the RS distribution for 

different case depths used in this study.  The value of RS at the surface and peak RS were 

fixed at -200 and -450 MPa respectively. 

  

Figure 4.2: Vickers hardness measurements at different depths from the surface for a 

through hardened material. 

 

  

Figure 4.3: Vickers hardness measurements at different depths from the surface for a 

case carburized material. 
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Figure 4.4: Profiles of yield strength vs. depth for case carburized steel with different 

case depths. 

 

 

Figure 4.5: Typical residual stress distribution in case carburized steel [130]. 

 

 

Figure 4.6: Profiles of residual stress vs. depth for case carburized steel with different 

case depths. 
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4.2.3 Simulation of a Rolling Pass 

A finite element model was developed to simulate the line contact which usually arises 

between the roller and raceway in rolling element bearings.  The line contact can be 

represented by a Hertzian loading on a semi-infinite half-space or explicitly modeled as 

two bodies in contact.  In this analysis, the first approach has been used.  Plane strain 

conditions are assumed.  To allow for the reasonable computational time, the FEA domain 

is truncated as depicted in Figure 4.7.  The dimensions for the half space model are listed 

in Table 4.1.  The rolling pass is simulated by subjecting the half-space model to a sequence 

of surface tractions.  The user subroutine UTRACLOAD is used to apply the Hertzian 

pressure as a non-uniform surface traction vectors.  Equation (4.2) defines the normal 

component of the surface traction.  

𝑝𝑦(𝑥) = 𝑃𝑚𝑎𝑥  √1 − (
(𝑥−𝑥𝑐)

𝑏
)
2

  (4.2) 

Where, (xc, yc) is the coordinate of the center of the Hertzian pressure distribution; Pmax is 

the magnitude of the pressure at the center; b is the half-contact width.  The magnitude of 

the shear surface traction in the rolling direction is given by Equation(4.2) where µs is the 

coefficient of friction.   

𝑡𝑥(𝑥) = 𝜇𝑠|𝑝𝑦(𝑥)|  (4.3) 

In Equation (4.2) and Equation (4.2), (x, y) is the coordinate where the pressure is evaluated.  

A single rolling pass is modeled by sequentially applying pressure distribution defined by 

Equation (4.2) and Equation (4.2) over the half-space at 21 discrete locations from -2.0b to 

2.0b in the rolling direction.  The discrete locations were uniformly spaced and were 

defined by changing the x-coordinate of the center, xc.  All displacements on the lower 

boundary of the model are fixed.  
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Figure 4.7: Computational domain used in FE simulation.  The lower boundary of the 

domain is fixed in all directions. 

4.2.4 Damage Coupled Elastic-plastic Constitutive Relations 

An appropriate material model is required to correctly capture the stress-strain response of 

the rolling line contact.  Due to the high localized compressive stress at the contact region, 

plastic deformation is often observed in rolling element bearings.  Further, as described in 

section 2.2, hardening process affects the plastic response of the material.  Therefore an 

elastic-plastic material model is needed to model the effect of hardness on rolling contact.  

AISI 52100 is the most widely used steel in rolling element bearings.  Hahn et al. [131] 

suggested that the stress-strain response of AISI 52100 can be approximated as a linear 

elastic and linear kinematic hardening plastic (ELKP) material instead of the power law 

curve fit.  This bi-linear representation simplifies the analysis by reducing the number of 

variables and enables us to emphasize on the effect of other parameters such as hardness 

and residual stress variation.  Figure 4.8 shows a typical stress strain relationship for the 

ELKP material model.  In the figure, E is the elasticity modulus; M is the linear hardening 

modulus.  The details of the constitutive relationships for Mises plasticity model with linear 

kinematic hardening are provided in Warhadpande et al [33].  In this investigation, an 

extended ELKP material model is implemented to account for the material degradation due 

to cyclic loading (Warhadpande et al. [33] and Bomidi et al. [34]).   
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Figure 4.8: Typical stress-strain relationship for Linear Elastic-linear kinematic plastic 

(EKLP) material.   

 

Damage due to cyclic loading is a process of material deterioration which manifests 

through the initiation and propagation of micro cracks and voids.  The theory of continuum 

damage mechanics (Lemaitre [100], Kachanov [28]) has been widely used as a convenient 

framework to model these microscopic mechanisms of fatigue failure in an empirical 

fashion.  The concept of damage mechanics defines a thermodynamic state variable, D to 

account for the progressive deterioration in material due to fatigue.  For the most general 

elastic case, the damage variable is introduced into the material constitutive relations in the 

following form,  

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙(𝐼𝑘𝑙𝑚𝑛 − 𝐷𝑘𝑙𝑚𝑛)𝜖𝑚𝑛 (4.4) 

Where, σij, Cijkl, Dklmn, εmn corresponds to the stress, stiffness, damage and strain tensors.  It 

should be noted that, similar to stress and strain damage variable is also a tensor.  However, 

under the assumption of isotropic damage and neglecting the effect of Poison’s ratio on 

damage, the damage tensor reduces to a scalar quantity simplifying the Equation ((4.4) as 

follows: 

𝜎 =  𝐸(1 − 𝐷)휀 (4.5) 

Where, E is the elasticity modulus for the undamaged material.  In scalar case, the damage 

variable, D ranges from 0 for an undamaged or pristine material to 1 corresponding to 

completely damaged material.  As the fatigue cycles progress, the internal damage 

manifests as the reduction in the effective modulus of elasticity.  Thus, the above equations 

follow the effective stress concept in the damage mechanics; with the stress acting on the 

undamaged area satisfy the following constitutive relation: 
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�̃�𝑖𝑗 =
𝜎𝑖𝑗

1−𝐷
= 𝐶𝑖𝑗𝑘𝑙𝜖𝑘𝑙  (4.6) 

These principles of damage mechanics can also be applied to the elastic-plastic material 

behavior (Warhadpande et al. [33] and Bomidi et al. [34]).  Thus, the damage variable was 

introduced in the Mises yield criterion for kinematic hardening.  Accordingly, the yield 

function f was modified in the presence of damage as below:  

𝑓 = (�̃� − 𝛼)𝑒𝑞 − 𝑆𝑦   (4.7(a)) 

(�̃� − 𝛼)𝑒𝑞 = √
3

2
(
𝜎𝑖𝑗
𝐷

1 − 𝐷
− 𝛼𝑖𝑗)(

𝜎𝑖𝑗
𝐷

1 − 𝐷
− 𝛼𝑖𝑗)  (4.7(b)) 

Where 𝛼 is the backstress tensor which represents the center of the yield surface; 𝑆𝑦 is the 

radius of the yield surface i.e. the yield strength; and 𝜎𝐷 is the deviatoric part of the stress 

tensor. 

Similarly, the modified rate equations for plastic strain and kinematic hardening take the 

following form:   

𝜖�̇�𝑗
𝑝 = �̇�

𝜕𝑓

𝜕𝜎𝑖𝑗
=

�̇�

1 − 𝐷
 (
𝜎𝑖𝑗
𝐷

1 − 𝐷
− 𝛼𝑖𝑗) (4.8) 

�̇�𝑖𝑗 = −�̂��̇�
𝜕𝑓

𝜕𝛼𝑖𝑗
= �̂��̇� (

𝜎𝑖𝑗
𝐷

1 − 𝐷
− 𝛼𝑖𝑗)  (4.9) 

Here, �̇� is a plastic multiplier, and �̂� is the scalar multiplier for hardening.  A subroutine 

for user defined material (UMAT) is utilized in ABAQUS to implement this extended 

EKLP material model. 

The evolution of damage variable at a material point is governed by a rate law according 

to the failure mechanism for the phenomenon in interest.  For elastic material, the damage 

is only dependent on the state of stress.  However, for elastic-plastic material undergoing 

yielding, then damage is dependent on the accumulated plastic strain as well as the state of 

stress.  Therefore, the current model considers two different damage evolution laws in the 

constitutive damage modeling, each for high and low cycle fatigue.  As mentioned earlier, 

in the case of rolling contact fatigue, the shear component of the state of stress is the one 

undergoing reversal during a rolling pass.  Further, the presence of compressive normal 

stresses hinders crack opening and makes the mode II crack growth dominate.  Therefore, 

the reversal in shear stress is considered to be the critical stress component that promotes 
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the failure (Littman [2], Lundberg and Palmgren [11]).  To account for the variability in 

fatigue life due to randomness in material microstructure, it is assumed that Voronoi grain 

boundaries are the “weak planes” along which the fatigue damage advances (Raje et al. 

[27], Jalalahmadi et al. [30], and Slack et al. [97]).  Thus, in the current model the stress 

and the strain field are resolved along the grain boundary (Figure 4.9). 

 

Figure 4.9: Voronoi cell divided into Voronoi elements and stresses resolved along the 

grain boundaries. 

 

For the elastic case, the damage evolution law utilizes maximum shear stress reversal 

Δτcritical along the Voronoi grain boundary as the damage causing stress.  Shen et al. [132] 

derived the damage rate law to include the effect of the mean stress due to the presence of 

residual stresses.  The damage evolution law for modeling RCF therefore becomes [30], 

[97], [132]; 

𝑑𝐷

𝑑𝑁
= [

∆𝜏𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

𝜏𝑟𝑜 (1 −
𝜎𝑚
𝑆𝑢𝑠
) (1 − 𝐷)

]

𝑚

 (4.10) 

The damage law for plastic case (Lamaitre [100]) considers maximum Von Mises stress 

(𝜎max) over a rolling pass and accumulated plastic strain over a fatigue cycle (�̇�) resolved 

along grain boundary.  

𝑑𝐷

𝑑𝑁
= [

𝜎max
2

2𝐸𝑆0 (1 −
𝜎𝑚
𝑆𝑢𝑠
)
2
(1 − 𝐷)2

]

𝑞

�̇� (4.11) 

Here, E is the modulus of elasticity for pristine material.  𝜏𝑟0 and S0 are the material 

parameters that characterizes the material’s resistance to fatigue damage.  𝜎𝑚 represents 
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the mean stress due to the presence of residual stresses and 𝑆𝑢𝑠 is the ultimate strength in 

shear.  

4.2.5 Evaluation of Damage Parameters 

The elastic and plastic damage rate laws given in Equations (4.10) and (4.11) introduced 

two new material parameters each.  These parameters need to be determined 

experimentally.  In this study, these parameters are extracted from the torsional fatigue 

stress-life (SN) data.  The choice of torsion fatigue experiments is valid because the 

mechanism for damage accumulation for both torsion fatigue and rolling contact fatigue is 

shear stress driven.  Thus, it can be presumed that failure mechanisms for both phenomena 

are equivalent.  Figure 4.10 illustrates the torsion SN results for bearing steel JIS SUJ2 

(AISI 52100 variant) from [133].  Applying power law fit, fatigue strength coefficient (𝜏𝑓
′ ) 

and fatigue strength exponent (𝑏) for the Basquin’s law can be obtained.  Note that there is 

no mean stress due to residual stress for this torsion SN curve.  

𝛥𝜏 = 𝜏𝑓
′𝑁𝑓

𝑏 
(4.12) 

𝜏𝑓
′ =  2.39 𝐺𝑃𝑎 𝑎𝑛𝑑 𝑏 = −0.09  

 

Figure 4.10: Experimental S-N data for through hardened bearing steel JIS SUJ2 (AISI 

52100 variant) in completely reversed torsional fatigue [133] and power law fit to the 

data. 

 

Integrating the elastic damage rate law (Equation 4.10) from undamaged state (N=0 and 

D=0) to fully damaged state (N = Nf and D = 1) and with no mean stress due to residual 

stress:  
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𝑁𝑓 =
1

𝑚 + 1
(
𝜏𝑟0
𝛥𝜏
)
𝑚

 → 𝛥𝜏 =
𝜏𝑟0

(𝑚 + 1)1/𝑚  
𝑁𝑓
−
1
𝑚  (4.13) 

Since Equation (4.12) and (4.13) are equivalent, we can obtain the elastic damage 

parameters in terms of Basquin’s parameters.  

𝑚 = −
1

𝑏
   𝑎𝑛𝑑 𝜏𝑟 = 2𝜏𝑓

′ (1 −
1

𝑏
)
−𝑏

 (4.14) 

Similar procedure was used to evaluate the plastic damage parameters, S0 and q (Lemaitre 

[100]).  Integrating the plastic damage rate law (Equation (4.11) and with no mean stress 

due to residual stress: 

𝜎𝑚𝑎𝑥 = √3 (
𝛥𝜏

2
) =

(2𝐸𝑆0)
1
2

(2(2𝑞 + 1)𝛥𝜖𝑝)
1/2𝑞

 𝑁𝑓
−1/2𝑞

 (4.15) 

Equating Equation (4.12) and (4.15), we obtain; 

√3(𝜏𝑓
′𝑁𝑓

𝑏) =
(2𝐸𝑆0)

1
2

(2(2𝑞 + 1)𝛥𝜖𝑝)
1/2𝑞

 𝑁𝑓
−1/2𝑞

 (4.16) 

Here, 𝛥𝜖𝑝 is the range of plastic strain corresponding to 𝜎𝑚𝑎𝑥 through the cyclic stress-

strain behavior over one fatigue cycle.  𝛥𝜖𝑝 can be expressed in term of  𝜎𝑚𝑎𝑥  and yield 

strength 𝑆𝑦 by considering the hardening modulus M (Figure 4.11): 

𝛥𝜖𝑝 = 2(
𝜎𝑚𝑎𝑥 − 𝑆𝑦

𝑀
) (4.17) 

 

Figure 4.11: Equation to calculate accumulated plastic strain 𝚫𝝐𝒑 during low cycle 

fatigue. 
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Since, plastic strain is observed in the fatigue process during low cycle fatigue regime; two 

different values for 𝑁𝑓 (𝑁1 = 10 𝑎𝑛𝑑 𝑁2 = 1000) were selected from this portion of SN 

curve.  Substituting in Equation (4.16), 

√3(𝜏𝑓
′𝑁1

𝑏) =
(2𝐸𝑆0)

1
2

(2(2𝑞 + 1)𝛥𝜖𝑝1)
1/2𝑞

 𝑁1
−1/2𝑞

 (4.18(a)) 

√3(𝜏𝑓
′𝑁2

𝑏) =
(2𝐸𝑆0)

1
2

(2(2𝑞 + 1)𝛥𝜖𝑝2)
1/2𝑞

 𝑁2
−1/2𝑞

 (4.18(b)) 

Dividing Equation (4.18(a)) by (4.18(b)) to eliminate S0 and rearranging the equation, we 

obtain  

𝑞 = −

𝑙𝑛 (
𝑁2∆휀𝑝2
𝑁1∆휀𝑝1

)

2𝑏 𝑙𝑛 (
𝑁2
𝑁1
)

 (4.19) 

The value of S0 can be obtained by substituting q into either (4.18(a)) by (4.18(b)).  

The material used for above experiments was through-hardened with yield strength of 2 

GPa.  As discussed earlier, the process of hardening causes changes in the yield strength 

of the material.  Consequently, the SN behavior of the material would also get affected by 

the hardening process.  In this study, it was assumed that for the same material i.e. with 

same chemical composition fatigue strength coefficient (𝜏𝑓
′ ) change linearly with hardness 

and hence with yield strength (Equation (4.1)).  However, the slope of the SN curve i.e. 

fatigue strength exponent (𝑏) does not change with respect to the hardness.   

𝜏𝑓
′  ∝  𝐻𝑣  ∝ 𝑆𝑦 (4.20) 

Figure 4.12 depicts the original SN curve [133] for 𝑆𝑦 = 2 GPa along with the few other 

SN curves for yield strength varying from 2 GPa to 1 GPa generated using the above 

assumption.  The damage parameters 𝜏𝑟0 and S0 are dependent on the fatigue strength 

coefficient (𝜏𝑓
′ ).  Hence, 𝜏𝑟0 and S0 also vary with respect to the yield strength.  This 

variation is demonstrated in Figure 4.13.  However, the exponents, m and q in the damage 

rate law depend only on the fatigue strength exponent (𝑏). Therefore, they do not change 

with yield strength.  
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Figure 4.12: Analytically generated torsional SN curves for bearing steel with different 

yield strength values.  The experimental SN curve from [133] is also shown for 

comparison. 

 

  

Figure 4.13: Variation of damage parameters 𝜏𝑟0 and S0 with change in yield strength. 

4.2.6 Numerical Implementation 

To implement the damage mechanics based fatigue modeling, damage coupled material 

constitutive equations and damage evolution laws (Equation (4.4) - (4.11)) need to be 

solved simultaneously for each element to update its damage and the elasticity modulus.  

However, this iterative process cannot be employed after every load pass since evaluating 

the stress-strain relations using the finite element model becomes computationally 
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impossible because of the large number of the fatigue cycles (more than billions for high 

cycle fatigue).  Therefore, a solution strategy referred as the ‘jump-in cycles’ procedure 

developed by Lemaitre [100] was used in the previous and current RCF investigations [30], 

[97] to make the solution tractable.  This approach assumes that the state of stress and the 

accumulated plastic strain histories for each element in the domain remains constant ΔNi, 

in a block i.  During this block of cycles, damage for each element is also assumed to 

remain constant.  Thus, damage evolution is piecewise linear with respect to the block of 

cycles.  Current stress field and accumulated plastic strain is found for each block of cycles 

by using the material constitutive relations and damage obtained from the previous block 

of cycles.  Both damage evolution rates (Equations (4.10) and (4.11)) is concurrently 

evaluated for each element in the domain and the greater of the two is used to update the 

damage for that element.  Note that, the yield strength (𝑆𝑦) and mean stress due to residual 

stress (𝜎𝑚) values are assigned to each finite element as per its depth from the surface as 

described in section 2.2 (Figure 4.4 and Figure 4.6).  Thus, the damage parameters 𝜏𝑟0 and 

S0 also vary for different elements depending on the depth (Figure 4.13).  A constant 

damage increment ΔD over that number of cycles is prescribed for the element which has 

largest damage evolution rate per cycle.  The numbers of cycles in the current block are 

calculated by dividing ΔD by the maximum damage evolution rate.  The step by step 

algorithm used in this investigation is provided by Warhadpande et al. [33].  Please note 

that the stress range and accumulated plastic strain is computed for the stabilized stress-

strain loop.  Once the damage for an element reaches 1 i.e. the critical damage value, the 

fatigue damage is assumed to be initiated.  In this study, a kill element formulation 

developed by Slack and Sadeghi [97] has been used for damage propagation.  In this 

formulation, the simulation continues with the completely damaged elements having state 

of damage equal to 1, until another element fails.  Therefore, the completely damaged 

elements will have zero stiffness and act as voids in the simulation domain.  This method 

allows damage to propagate continuously through the material microstructure.  Moreover, 

in the kill element approach, the internal interfaces in the material do not come into direct 

contact.  Thus, the internal interfaces are implicitly frictionless.  The simulation ends when 

the damage propagates to the surface and forms a spall. 
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 Results and Discussion 

This section describes results obtained from the elastic-plastic finite element model for 

sub-surface initiated spalling in the cylindrical roller bearing made from through-hardened 

and case carburized bearing steel with different case depths.  Table 4.2 summarizes the 

parameters and material properties used in this simulation.  Typical size of the contact 

region between rollers and raceway of the cylindrical roller bearing can be of the order of 

a hundred microns depending on the bearing size.  In this study, the half-width of contact 

was kept fixed at 100 µm for all cases.  The grain diameters, dg, in the order of 10μm are 

generally observed in bearing steels.  Thus, average size of the Voronoi cells was controlled 

to be 10μm during Voronoi tessellation procedure to construct random microstructure 

domains to investigate variability in fatigue lives due to subsurface microstructure topology.  

Maximum Hertzian pressure, Pmax was varied from 2.0 GPa to 3.5 GPa so that considerable 

portion of the material would undergo plastic deformation.  The traction coefficient, µs in 

Equation (4.3), however was set at 0.05 which is a representative of lubricated rolling-

sliding contact conditions.  Experimental measurements using twin-disk test rig by 

Mihallidis et al. [134], [135] suggest that 0.05 is a reasonable traction coefficient for 

elastohydrodynamically lubricated bearing contacts.  Further, many analytical 

investigations [33], [34], [97], [107] also use this value in their model.  Klecka, et al. [124] 

has shown that the elastic modulus, (E) of the carburized material can vary +/- 20 GPa in 

the case region which they attributed to the high number of carbides and elevated carbon 

concentration in the matrix.  Since, the variation in E is small compared to the variation in 

Sy and residual stress, the effect of carburization on elasticity modulus is neglected in this 

work.   
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Table 4.2: Material properties used in the simulation. 

Undamaged elasticity modulus, E 200 GPa 

Hardening modulus, M 10 GPa 

Poisson’s ratio, ν 0.3 

Material grain diameter, dg 10 μm 

Maximum Hertzian pressure, pmax 2.0-3.5 GPa 

Contact half-width, b 100 μm 

Surface coefficient of friction, µs 0.05 

Critical damage value, Dcrit 1 

4.3.1 Effect of Hardness on Stress Solution 

The effect of the hardening process on the sub-surface stress field for Hertzian loading 

conditions is examined in this section.  For this purpose, Hertzian pressure profile was 

applied to center of top surface by setting the value of xc to be 0 in Equation (4.2) and the 

sub-surface stresses along the center line of the contact were studied.  Figure 4.14 illustrates 

the maximum in plane shear stress, 𝜏𝑥𝑦/𝑃𝑚𝑎𝑥 vs. non-dimensional depth for Pmax = 2.0, 

2.75 and 3.5 GPa.  The maximum shear stress is defined as one-half of the maximum 

difference between two principal stresses.   

Analyzing the maximum in-plane shear stress (𝜏xy) plots in Figure 4.14, we can infer that 

as the case depth increases, the depth at which maximum 𝜏𝑥𝑦 occurs also increases.  The 

cause of this phenomenon is the presence of softer material near to the surface for lower 

case depths.  However, when yielding does not occur, the shear stress profile coincides 

with the through hardened case irrespective of the case depth.  This can be observed for 

Pmax = 2.75 GPa, for which the plots for case depths more than 4b coincide with that of 

through hardened material.   
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(a) 

 
(b) 

 
(c) 

Figure 4.14: Variation of non-dimensional shear stress with for (a) Pmax = 2GPa, (b) 

Pmax = 2.75GPa and (c) Pmax = 3.5GPa.   

4.3.2 Parametric Study 

In this section, rolling contact fatigue lives obtained for different operating conditions are 

analyzed.  35 random material domains were simulated for each operating condition.  A 2 

parameter Weibull cumulative distribution function was used to determine the variability 

in the fatigue lives for different residual stress and yield strength.  Two of the more 

important parameters obtained from the Weibull plots are the Weibull slope and L10 life.  

The slope of the line for Weibull distribution provides a measure for the scatter present in 

the fatigue life data.  Smaller Weibull slopes indicate more scatter in the data.  L10 life 

describes the probability of survival.  It is the number of load cycles that 90% members of 

the population can be expected to survive. 



95 

 

 

 

Figure 4.15: Yield strength and residual stress distribution as a function of depth. 

 

Figure 4.15 illustrates the general trend for yield strength and residual stress distribution as 

a function of depth used in the parametric study.  In the figure, DH is the case hardness 

depth; Dp is the depth at which the peak residual stress occurs, while residual stress goes 

to 0 at depth De from the surface.  RSp is the value of peak compressive residual stress.  

Different scenarios were investigated to analyze the effects of these parameters.  In 

scenario 1, the case hardness depth (DH) was varied as illustrated in Figure 4.16(a) but 

without any residual stress in the material.  Figure 4.17 depicts the Weibull probability 

results for various case depths at Pmax = 2.0 and 3.5 GPa respectively.  It can be noted that 

for a fixed load, as the case depth of the material increases the L10 life for RCF also 

increases.  Through hardened material has the longest L10 life for all load levels.  This is as 

expected from the model since the damage parameters 𝜏𝑟0 and S0 increases with the fatigue 

strength coefficient (𝜏𝑓
′ ) which is evident in Figure 4.13.  Further, 𝜏𝑓

′  is directly proportional 

to the yield strength (Equation (4.21)).  Since 𝜏𝑟0 and S0 represents the fatigue resistance 

of the material, it can be concluded that highest yield strength corresponds to higher fatigue 

resistance.  It can also be observed from Figure 4.4 that through-hardened steel has the 

highest yield strength at all depths compared to the case carburized steels.  Therefore, 

through-hardened material will exhibit longer life as is the limiting criteria for fatigue.  

For scenarios 2 through 5, the yield strength was kept constant at 2 GPa throughout the 

depth of the domain.  Therefore, DH is infinity, similar to the through hardened material. In 

scenario 2, the depth at which the peak residual stress occurs (Dp) is varied keeping other 

parameters fixed, as shown in Figure 4.16 (b).  From the Weibull probability results 

depicted in the Figure 4.18, we can conclude that the residual stress distribution enhances 
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the RCF life.  Further, the fatigue life is proportional to the residual stress value at the 

critical depth.  At low loads (Pmax = 2 GPa), the elastic damage law is dominant and the 

main mode of failure.  Therefore the critical depth occurs at 0.5b below the surface where 

shear stress reversal is the maximum.  On the other hand, at high load (Pmax =3.5 GPa), the 

fatigue life is governed by the plastic damage law.  Since, Von-Mises stress is the 

maximum at a depth 0.7b below the surface, which is the critical depth for high loads.  In 

both cases, the compressive residual stress at the critical depth was the highest for Dp of 

40µm and it had the largest RCF life.  In scenario 3, the value of peak residual stress (RSp) 

was varied while Dp was kept fixed at 50µm (Figure 4.16 (c)).  It can be observed in Figure 

4.19 that as RSp increased the fatigue life also increase.  In scenario 4 as demonstrated in 

Figure 4.16 (d), De was varied but Dp was kept fixed at 100µm so that the residual stress at 

the critical depth would remain the same for all cases.  As expected the fatigue life for all 

cases were the same (Figure 4.20).  Scenarios 3 and 4 confirm that when the yield strength 

is not varied with depth, the fatigue life was governed by the residual stress value at the 

critical depth.   

Scenario 5, illustrated in Figure 4.16 (e) resembles the residual stress distribution typically 

observed in case carburized steel.  The peak residual stress occurred at 20% of the De.  

Weibull probability plots obtained from the model for this scenario are depicted in Figure 

4.21.  The scenario with residual stress depth (De) of 200 µm found to have largest RCF 

life at low load however at high load De of 400 µm had the largest life.  This is because the 

critical depth for high load was deeper into the material.  It can be noticed from the model 

results for parametric study that while the gradient in hardness (so the yield strength) in 

case carburized steel diminishes the fatigue strength, the presence of residual stress in the 

material enhances the fatigue life.  The right balance between these two competing 

phenomena would yield the largest RCF life.   
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(1) 

 
(2) 

 
(3) 

 
(4) 

 
(5) 

Figure 4.16: Different yield strength and residual stress profiles (scenarios) considered 

for parametric study. 
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(a) (b) 

Figure 4.17: Weibull probability plots for test scenario 1 at (a) Pmax = 2.0 GPa and (b) 

Pmax = 3.5 GPa. 

 

 
 

(a) (b) 

Figure 4.18: Weibull probability plots for test scenario 2 at (a) Pmax = 2.0 GPa and (b) 

Pmax = 3.5 GPa. 

 

  
(a) (b) 

Figure 4.19: Weibull probability plots for test scenario 3 at (a) Pmax = 2.0 GPa and (b) 

Pmax = 3.5 GPa. 
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(a) (b) 

Figure 4.20: Weibull probability plots for test scenario 4 at (a) Pmax = 2.0 GPa and (b) 

Pmax = 3.5 GPa. 

 

  
(a) (b) 

Figure 4.21: Weibull probability plots for test scenario 5 at (a) Pmax = 2.0 GPa and (b) 

Pmax = 3.5 GPa. 

 

To analyze the combined effect of yield strength and residual stress as it occurs in case 

carburized steel, the model was simulated with yield strength and residual stress profiles 

shown in Figure 4.4 and Figure 4.6 respectively.  Figure 4.22 depicts the comparison of 

RCF lives for case carburized steel with case depths of 1b, 2b, 4b, 5b and 10b and the 

through hardened steel.  The Weibull slopes and L10 lives obtained from the model are 

listed in Table 4.3.  The combined effect of yield strength and residual stress leads to the 

largest RCF life for case depth of 4b at Pmax= 2 GPa and 5b at Pmax= 3.5 GPa.   
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(a) (b) 

Figure 4.22: Weibull probability plots for case carburized steel with different case 

depths at (a) Pmax = 2.0 GPa and (b) Pmax = 3.5GPa. 

 

To quantify the effects of the different parameters on the RCF lives, a modifying factor 𝛽 

was defined as the ratio of L10 lives for the test case (𝐿10𝑐) and through hardened steel (𝐿10𝑡) 

at the same load level.  

𝛽 = [
𝐿10𝑐
𝐿10𝑡

]
𝑃𝑚𝑎𝑥

 (4.21) 

From the results of the parametric study, it is clear that modifying factor 𝛽 is a function of 

case hardness depth (DH ) and the value of compressive residual stress at the critical depth, 

SRS.  Please note that SRS has to be calculated from the parameters De, Dp, RSp and the critical 

depth for the applied load.  The case hardness depth can be normalized by the contact half-

width (b) and residual stress can be normalized with applied maximum Hertzian pressure 

(𝑃𝑚𝑎𝑥). 

𝛽 = 𝑓 (
𝑏

𝐷𝐻
) 𝑔 (

𝑆𝑅𝑆
𝑃𝑚𝑎𝑥

) (4.22) 

The modifying factor 𝛽 was calculated from the L10 lives obtained from the model results 

of parametric study at all load levels.  The function f is evaluated by curve fitting the 

modifying factor obtained from scenario 1, while function g is evaluated by the results of 

test scenarios 2 through 5.  Figure 4.23 demonstrates the modifying factor against the 

normalized case hardness depth (DH) and residual stress at critical depth (SRS) with the 

curve fit equations.  Therefore, from the parametric study we can derive the following 

equation for the modifying factor   
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𝛽 = (1.61 (
𝑏

𝐷𝐻
)
2

− 2.58 (
𝑏

𝐷𝐻
) + 0.98)(184.97 (

𝑆𝑅𝑆
𝑃𝑚𝑎𝑥

)
2

− 4.10 (
𝑆𝑅𝑆
𝑃𝑚𝑎𝑥

) + 1.17) 

(4.23) 

Table 4.3: Predicted Weibull slopes and L10 lives for case carburized steel. 

  Pmax (GPa) Core Depth (μm) Weibull Slope L10 Life 

Case carburized 2.00 1b 23.95 8.17E+04 

Case carburized 2.00 2b 9.87 1.10E+08 

Case carburized 2.00 4b 8.85 2.42E+08 

Case carburized 2.00 5b 9.02 2.37E+08 

Case carburized 2.00 10b 10.36 1.55E+08 

Through Hardened 2.00 Infinity 9.83 7.58E+07 

Case carburized 3.50 1b 11.7 2.07E+03 

Case carburized 3.50 2b 36.22 2.41E+04 

Case carburized 3.50 4b 45.99 1.42E+05 

Case carburized 3.50 5b 40.04 1.61E+05 

Case carburized 3.50 10b 40.2 9.77E+04 

Through Hardened 3.50 Infinity 26.77 1.02E+05 

 

 
(a) 

 
(b) 

Figure 4.23: The modifying factor 𝜷 obtained from model results of parametric study 

plotted against (a) the normalized case hardness depth, (b) residual stress at critical depth 

(SRS). 
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4.3.3 Effect of Case Carburization on RCF Lives 

The optimized case depth for the case carburized steel which will provide largest RCF 

strength can be obtained from the Equation (4.23).  From Figure 4.4 and Figure 4.6, we 

know that for case carburized material case hardness depth (DH) is equal to the RS depth 

(De) and depth of peak residual stress (Dp) is 20% of RS depth (De).  Substituting these 

relations and 450 MPa for peak compressive residual stress in Equation (4.23), the 

modifying factor (𝛽) is plotted against case depth in Figure 4.24.  The maximum 𝛽 occurs 

at case depth of 6.2b for Pmax= 2 GPa and 7.6b for Pmax= 3.5 GPa.   

 
(a) 

 
(b) 

Figure 4.24: Variation of modifying factor 𝜷 with case depth of a case carburized steel 

as per Equation (4.23) for (a) Pmax = 2 GPa and (b) Pmax = 3.5 GPa. 

4.3.4 Effect of Case Carburization on Spall Patterns 

Figure 4.25 illustrate the typical spall patterns observed in the results obtained in this study 

at Pmax = 2.75 GPa for different case depths.  It can be stated from the figure that spalls 

initiated deeper in the domain for lower case depths and as the case depth increases the 

initiation occurred at around 0.5b below the surface, which is the location of maximum 

shear stress reversal for elastic material.  Please note that the location of damage initiation 

depends on the combined effect of shear stress reversal (Δτcritical), Von Mises stress (σmax) 

and damage parameters 𝜏𝑟0 and S0, which are all functions of depth.  This is evident from 

the damage evolution laws of Equations (4.10) and (4.11).  For low case depths, plastic 

damage rate law is dominant, and Equation (4.11) governs the damage initiation, while for 

higher case depths, material does not yield and initiation occurs according to maximum 

shear stress reversal.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.25: Typical spall patterns obtained from the model at Pmax = 2.75 GPa for (a) 

Case depth = 2b, (b) Case depth = 4b, (c) Case depth = 10b, (d) Through Hardened. 

4.3.5 Effect on Initial Flaws 

Experimental fatigue data for steel shows significant amount of scatter, Weibull slopes in 

the range of 0.51 to 5.7 (Harris and Barnsby [115]).  However, the Weibull slopes for RCF 

lives obtained from the model results are considerably higher.  One possible reason for this 

discrepancy could be because the model assumes homogeneous material without any voids 

or inclusions.  In fact, the steel cleanliness has a strong influence on rolling contact fatigue 

[116].  Analysis of fractured surface often finds that cracks initiate around the 

inhomogeneities in the material.  The random distribution of these material defects leads 

to reduction in fatigue lives and increase in the scatter.  Therefore, in this section the effect 

of distribution of initial internal voids on the RCF lives is explored.  An initial void was 

introduced by setting the elasticity modulus of a random Voronoi element equal to zero.  

The random Voronoi element was selected from the microstructure topology region i.e. -b 

< x < b and -1b < y < 0.  Figure 4.26 illustrates an initial void and its random placement 

in the domain.  The sizes of the initial voids correspond well with the experimentally 

observed range for inclusions in bearing steel [117].  Note that, initial voids were not 

allowed to occur on the surface as that signifies the end of the simulation.  
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(a) 

 
(b) 

Figure 4.26: (a) initial void.  (b) Example of a material domain with randomly 

introduced 5 initial voids. 

 

Simulations were performed for 35 random microstructure domains for through hardened 

material with 1, 2 and 5 randomly placed initial voids at loads Pmax = 2.0, 2.75 and 3.5 GPa.  

Figure 4.27 (a) depicts the Weibull probability plots from the model results for pristine and 

with voids case for Pmax = 2.0 GPa while Figure 4.27 (b) shows results for 1 initial void at 

different loads.  The same results are reported in tabular format in Table 4.4.  It is evident 

from the results that when material flaws are taken into account, model results show 

considerable scatter in the fatigue lives.  As the number of voids increase, the L10 life for 

RCF decreases.  Further, for the same no. of voids, as the pressure increases the L10 life 

decreases and fatigue lives become more deterministic.   

 
(a) 

 
(b) 

Figure 4.27: Weibull plots for RCF lives for through hardened with initial voids.  (a) 

𝑃𝑚𝑎𝑥 = 2 GPa, (b) Number of voids = 1. 

 

The typical spall patterns from model results with initial voids are depicted in Figure 4.28 

and Figure 4.29.  The initial void is colored in red.  It was observed that if the initial void 
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occurs close to critically stressed region, spalls initiate at the void.  As the load increases 

the damaged zone grows in size.  These results are in accordance with the experimentally 

observed spalls. 

 
(a) 

 
(b) 

 
(c) 

Figure 4.28: Typical spall patterns obtained from the model for through hardened material 

with initial voids at (a) Pmax = 2.0 GPa, (b) Pmax = 2.75 GPa, (c) Pmax = 3.5GPa. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4.29: Typical spall patterns for through hardened material at Pmax = 2.0 GPa with (a) 

1 void, (b) 2 voids and (c) 5 voids. 
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Table 4.4: Weibull plots and L10 lives obtained from the model results for through 

hardened material with initial voids. 

 Pristine Voids = 1 Voids = 2 Voids = 5 

 Slope L10 Life Slope L10 Life Slope L10 Life Slope L10 Life 

Pmax = 2 GPa 9.82 7.58E+07 1.07 5.61E+06 0.81 9.80E+05 0.82 3.00E+05 

Pmax = 2.75 GPa 8.13 2.03E+06 0.92 4.81E+04 1.99 1.62E+04 3.96 7.57E+04 

Pmax = 3.5 GPa 26.39 1.02E+05 1.99 1.62E+04 4.24 1.99E+04 4.41 1.36E+04 

 Summary and Conclusions 

This chapter presented a numerical model based on micro-indentation tests to study the 

effect of case carburizing on rolling contact fatigue lives rolling element bearings.  In order 

to achieve the objectives, micro-indentation tests were performed to calculate Vicker’s 

hardness at various depths along the cross-section.  It was observed that hardness follows 

a bilinear profile for case-carburized 8620 steel.  The hardness decreases linearly with the 

depth in the case carburized region and remains constant in the core region.  Whereas for 

the through hardened steel the hardness (yield strength) was assumed constant throughout 

the depth.  In the simulations, the hardness of the material was modeled by examining the 

change in mechanical properties of the material due to hardening.  It was assumed that the 

hardening process only affects the plastic response of the material and there is a linear 

correlation between hardness and yield strength.  The residual stress distribution typically 

observed in the case carburized material is also taken into account in the model.  Damage 

mechanics constitutive relations for linear elastic kinematic plastic material were 

incorporated in the finite element model to capture progressive damage for rolling contact 

fatigue.  Randomly generated Voronoi tessellations were used to study the variability 

occurring due to the randomness in material microstructure.   

The model was utilized to study the effect of hardening process on sub-surface stress 

distribution for pristine material.  Then parametric study was conducted by varying the 

parameters related to the yield strength and residual stress distribution in the case 

carburized steel.  From the results of the parametric study an equation for the modifying 

factor to calculate the L10 lives of case carburized steels is derived.  The optimized case 

depth for maximizing the RCF strength is 6.2b for Pmax= 2 GPa and 7.6b for Pmax= 3.5 GPa.  
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Additionally, the model resulted in spall patterns which resemble those commonly 

observed in experiments.  The location of initial damage and the size of the damaged zone 

for different case depths were explained with the help from the sub-surface stress solutions.  

When the random distribution of initial flaws was considered in the model, the scatter in 

the fatigue lives fell within the experimentally observed range. 
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5. ROLLING CONTACT FATIGUE IN REFURBISHED CASE 

CARBURIZED BEARINGS 

 Introduction 

Bearing manufacturers have used various techniques to increase the working life of REBs, 

of which one of the ways is to limit the RCF related bearing damage.  Chapter 4 

investigated hardened steels which are commonly used in high-performance ball and 

rolling element bearings.  In addition to using heat-treated steels, bearing refurbishment 

has gained popularity as a means of extending the fatigue life of rolling element bearings 

since NASA published recommended procedures for bearing repair in the mid-1970s [136].  

Between 60% and 80% of the cost of new bearings can be saved by using typical repaired 

bearings instead of replacing them [137].  Additionally, the lead times can be significantly 

reduced for custom bearings.  Therefore, bearing repair procedures have been implemented 

in various applications including commercial and military aircraft and off-highway and 

construction equipment [136].  

According to the NASA specifications [138], bearing repairs are categorized into four 

levels according to the extent of the damage to the bearing surfaces and the recommended 

replacement of the bearing components.  Among the four repair categories, Level 3 shows 

significant improvement in the lives of REBs with minimal cost.  It comprises removal of 

surface damage by grinding up to 0.015 inches off the inner and/or outer race and replacing 

the original rollers with larger-sized rollers that compensate for the material removal from 

the races [139].  In Level 3 repairs, the surface damage is usually caused by non-optimal 

operating conditions.  This type of repair avoids bearing damages from surface-initiated 

pitting, which accounts for more than 90% of bearing damages observed in industry.  The 

repaired bearings then generally fail because of the subsurface-initiated spalling mode of 

RCF, since in this mode the damage penetrates below the maximum allowable grinding 

depth.  However, limited research and testing to determine the life of the repaired bearings 

after grinding and reassembling has restricted the widespread implementation of bearing 

restoration.  
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Testing has been conducted for specific industries and applications; therefore it cannot be 

generalized [140].  In terms of analytical modeling, Coy et al. [136] extended the 

Lundberg-Palmgren bearing life equation [14] to determine the fatigue life of the outer 

races of repaired bearings.  Zaretsky and Branzai [141] modified the equation using 

maximum shear stress criteria and included the fatigue damage of the inner races as well 

as the rolling elements.  Kotzalas and Eckels [140] considered the entire stress field for the 

contacting bodies and created an analytical model for refurbishment using the ISO 

281:2007 standard [142].  However, these models are empirical in nature and use the 

Weibull probability distribution function to explain the fatigue life scatter without 

explaining the underlying physical mechanisms responsible for RCF.  Further, they assume 

the Weibull parameters for refurbished bearings are based on the Weibull parameters of 

the original bearings.  Experimental testing must be conducted to determine the Weibull 

parameters for RCF lives of refurbished bearings.  

Recently, Paulson et al. [143] developed a finite element (FE) model for rolling contact 

fatigue in refurbished bearings.  The model was based on a numerical model for RCF 

developed by Raje et al. [27], Jalalahmadi and Sadeghi [30] and Slack and Sadeghi [97].  

The material removal from the surface by grinding was simulated by cutting the top layer 

of the microstructure domain.  The initial damage that had occurred before the 

refurbishment was retained in the remaining microstructure.  This accounted for the initial 

load passes undergone by the material.  Using the model results, a population L10 life of 

the resurfaced bearings was proposed.  However, the material considered by Paulson et al. 

[143] was through hardened steel, and the study did not take into account the plastic 

behavior of the material.  Case carburized steels are characterized by a hardened exterior, 

gradients in the material properties as a function of depth, and residual stresses, so 

refurbishment of bearings made from case carburized steels requires greater care and more 

in-depth analysis.  But there has been no analytical model developed to study refurbishing 

of case carburized bearings.   

In this chapter, the RCF model for case carburized steel developed in Chapter 4 was 

modified to incorporate the procedure to simulate bearing refurbishing developed by 

Paulson et al. [143].  Similar to Chapter 4, material degradation due to fatigue damage was 

modeled using continuum damage mechanics.  The effect of the carburizing process was 
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incorporated by changing the yield strength of the material linearly with the hardness and 

including the residual stress distribution in the model.  Thus, the von Mises plasticity-based 

model with kinematic hardening was implemented in the FE model to incorporate material 

plasticity.  Equivalence between torsion and rolling contact fatigue was utilized to 

determine the damage parameters in the elastic and plastic damage law.  The damage 

evolution laws were modified to include the effect of residual stress.  The geometric 

disorder and randomness in the material microstructure was simulated using Voronoi 

tessellation to account for the variability in rolling contact fatigue life.  The procedure to 

simulate the grinding of the material during the refurbishment process and the retention of 

the accumulated damage that had occurred before the refurbishment was implemented as 

per Paulson et al. [143].  However, the altered yield strength and residual stress distribution 

in the refurbished material due to the material removal from the surface during refurbishing 

were also taken into account.   

The model was then used to investigate the effect of hardening on the RCF lives of the 

refurbished bearings under various operating conditions.  To assess the effect of plastic 

deformation, the contact was subjected to Hertzian pressure of 2 and 3.5 GPa.  The half-

width of the contact (b) was fixed at 100 μm.  The surface regrinding depth was varied 

from 0.125 to 0.75 times the contact half width.  The effects of fatigue cycles prior to 

refurbishing were also investigated.  From the simulation results, the RCF lives of 

refurbished bearings made from case carburized and through hardened bearing steel were 

compared.  First, the effects of hardness and residual stress variation were analyzed 

separately.  Then, the combined effect of hardness variation and residual stress distribution 

for the case carburized steel was investigated.  The analytical results from the model 

suggest that the increase in RCF life due to refurbishing is more significant in through 

hardened material than in case carburized material.  As expected, the absolute RCF life is 

significantly more for refurbished case carburized bearings due to the compressive residual 

stresses induced during regrinding of the bearing surface can have a beneficial impact on 

the fatigue performance of the refurbished bearing. 
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 Modeling Approach 

The modeling approach consisted of simulating rolling contact fatigue in pristine case 

carburized material first, and then simulating the refurbishing operation.  Modeling rolling 

contact fatigue constitutes implementing the material properties of case carburized steel in 

the FE model, which simulates a rolling pass, and modifying the damage mechanics model, 

which simulates material degradation due to fatigue.  In this section, the modeling approach 

is described in brief for completeness.  For a detailed description, please refer to Chapter 

4. 

5.2.1 Material properties of case carburized steel 

Case carburized steels are characterized by a hardened exterior that progressively tapers 

into a softer core beneath the surface.  The distance from the surface where the carburized 

region ends is referred to as the “case depth”.  The carburized region includes a harder 

carbide phase surrounded by the steel matrix.  The distribution of carbides gradually 

reduces with the depth, affecting the material properties of the material.  The gradient and 

depth of the carburization vary depending on its type and time duration.  Carburization 

causes gradients in the material microstructure and composition as a function of depth 

([144], [145]).  Pavlina and Tyne [128] showed that there is a linear correlation between 

yield strength (𝑆𝑦) and Vickers hardness (Hv): 

𝑆𝑦 = −90.7 + 2.876𝐻𝑣  (5.1) 

where yield strength is described in MPa and Hv in units of (Kgf/mm2). 

Additionally, the carburization process introduces residual stresses (RS) in the case region 

of the material.  Residual stresses are highly beneficial in improving the fatigue strength of 

the case carburized material [129].  Parrish and Harper [130] surveyed around 70 different 

carburized steels with case depths lower than 1 mm and their residual stress distributions.  

They found that the typical RS distribution in case carburized material follows the pattern 

depicted in Figure 4.5.  For the majority of samples, the depth at which peak RS occurs 

was 20% of the case depth.  The residual stress diminishes to zero at a depth equal to the 

case depth of the material. 

As described in Chapter 4, the hardness of the material is not simulated directly.  Instead, 

the linear relationship between hardness and yield stress as given by Equation (5.1) was 
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used to account for the variation in hardness in the case carburized material.  Therefore, 

the yield strength of the through hardened steel was set to 2 GPa throughout the depth, 

while a bilinear yield strength profile was assumed for the case carburized steel.  The 

maximum hardness at the surface of the case carburized material was also set to 2 GPa, 

whereas the yield strength of the core material was assumed to be 1 GPa.  The yield strength 

values for the finite elements were assigned depending on the y-coordinates of their 

centroids.  A simplified piecewise linear profile was used to approximate the residual stress 

distribution for the case carburized material.  The surface and peak values of RS were fixed 

at -200 and -450 MPa, respectively.  Figure 5.1 illustrates the yield strength and RS 

distribution for the case carburized material with a case depth of 500 μm used in this study.  

Please note that there would be tensile residual stresses below the case region of the 

material for the residual stress distribution to be in equilibrium.   

(a) 

 

(b) 

Figure 5.1: (a) Yield strength and (b) RS distribution for case carburized material with 

case depth of 500 μm. 

5.2.2 Simulation of a rolling pass 

An FE model used in this study to simulate the line contact arising between the roller and 

raceway in rolling element bearings was same as described in chapter 4.  The rolling pass 

was simulated by subjecting the domain to a sequence of surface tractions at 21 discrete 

locations uniformly spaced from -2.0b to 2.0b in the rolling direction.  The user subroutine 

UTRACLOAD was used to apply the Hertzian pressure as non-uniform surface traction 

vectors.  Equation (5.2) defines the normal and tangential component of the surface traction: 
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𝑝𝑦(𝑥) = 𝑃𝑚𝑎𝑥  √1 − (
(𝑥 − 𝑥𝑐)

𝑏
)

2

 
(5.2) 

𝑡𝑥(𝑥) = 𝜇𝑠|𝑝𝑦(𝑥)|  
 

Where (xc, 0) is the coordinate of the center of the Hertzian pressure distribution, Pmax is 

the maximum Hertzian pressure and (x, y) is the coordinate where the pressure is evaluated.  

µs is the coefficient of friction.  

Similar to the model used in Chapter 4, Voronoi tessellation was utilized to account for 

geometric disorder and the randomness in the material microstructure topology.  Voronoi 

tessellation is well accepted as an approach to model the topology of the prior austenitic 

grain structure of the bearing steel ([30], [33], [34], [97], [107]) i.e. the parent austenite 

grain structure before quenching, in contrast to the final microstructure of bearing steels 

which will be composed of martensite, ferrite and austenite.  Mücklich et al. [92], Espinosa 

and Zavattieri [93] and Jalalahmadi and Sadeghi [29] have shown that Voronoi 

tessellations can be used to represent the grain structure of the polycrystalline material to 

a good degree of accuracy and can be used to simulate its effect on fatigue life.  

Experimental evidences show that fatigue failure in bearings can be intergranular or 

transgranular.  The present work assumes that the austenite (prior) grain boundaries 

constitute weak planes in the material, and therefore fatigue cracks are predominantly 

intergranular.   

In this analysis, the Voronoi cell size was chosen to be 10 μm, which is the common grain 

size for commercially used bearing steels ([27], [30]).  Please note that for case carburized 

AISI 8620 steel, the microstructure consists of coarse grains in the core region and finer 

grains near to the surface.  In the current investigation the gradient in grain size observed 

in the case carburized material is not taken into account. 

RCF is characterized by highly localized multi-axial stress distribution in the contact region, 

which causes considerable plastic deformation at high loads.  Furthermore, case 

carburization affects the yield strength of the material.  Therefore, an elastic-plastic 

material model is needed to correctly capture the stress-strain response of the rolling line 

contact.  The extended ELKP model described in Chapter 4 was implemented to define a 

material model for both pristine and refurbished material. 
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5.2.3 Fatigue damage model 

The fatigue damage model for RCF in refurbished case carburized bearings is same as the 

RCF model for case carburized bearings described in Chapter 4.  Material degradation from 

fatigue damage is modeled using continuum damage mechanics (CDM) which introduces 

a thermodynamic state variable, D, into the material constitutive relationship.  For isotropic 

damage and neglecting the effect of Poisson’s ratio on damage, the damage tensor reduces 

to a scalar quantity: 

𝜎 =  𝐸(1 − 𝐷)휀 (5.3) 

where E is the elasticity modulus for the undamaged material.  The value of D is equal to 

0 for the pristine material, while the value of 1 for D corresponds to completely damaged 

material.  For elastic-plastic material behavior, the damage variable is introduced in the 

von Mises yield criterion for kinematic hardening (Warhadpande et al. [33] and Bomidi et 

al. [34]).  Accordingly, the yield function f is modified as below:  

𝑓 = (�̃� − 𝛼)𝑒𝑞 − 𝑆𝑦  (5.4 (a)) 

(�̃� − 𝛼)𝑒𝑞 = √
3

2
(
𝜎𝑖𝑗
𝐷

1 − 𝐷
− 𝛼𝑖𝑗)(

𝜎𝑖𝑗
𝐷

1 − 𝐷
− 𝛼𝑖𝑗)  (5.4 (b)) 

where 𝛼 is the back-stress tensor representing the center of the yield surface; 𝑆𝑦  is the 

radius of the yield surface (i.e., the yield strength); and 𝜎𝐷 is the deviatoric part of the 

stress tensor. 

Similarly, plastic strain and kinematic hardening rate equations are modified as:  

𝜖�̇�𝑗
𝑝 = �̇�

𝜕𝑓

𝜕𝜎𝑖𝑗
=

�̇�

1 − 𝐷
 (
𝜎𝑖𝑗
𝐷

1 − 𝐷
− 𝛼𝑖𝑗) (5.5 (a)) 

�̇�𝑖𝑗 = −�̂��̇�
𝜕𝑓

𝜕𝛼𝑖𝑗
= �̂��̇� (

𝜎𝑖𝑗
𝐷

1 − 𝐷
− 𝛼𝑖𝑗)  (5.5 (b)) 

Here, �̇� is a plastic multiplier and �̂� is the scalar multiplier for hardening.  

The stress component that governs the damage evolution variable depends on the bearing 

damage mechanism for the phenomenon of interest.  Shear stress reversal is considered to 

be the critical stress component that promotes RCF damage in the elastic regime.  In the 

damage law-plastic case, maximum von Mises stress (𝜎max) and accumulated plastic strain 
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over a rolling pass are considered the damage-causing stressors (Lamaitre [100]).  The 

damage evolution laws for modeling RCF in case carburized steels are as follows: 

(
𝑑𝐷

𝑑𝑁
)
𝑒𝑙𝑎𝑠𝑡𝑖𝑐

= [
∆𝜏𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

𝜏𝑟𝑜 (1 −
𝜎𝑚
𝑆𝑢𝑠
) (1 − 𝐷)

]

𝑚

 (5.6 (a)) 

(
𝑑𝐷

𝑑𝑁
)
𝑝𝑙𝑎𝑠𝑡𝑖𝑐

= [
𝜎max
2

2𝐸𝑆0 (1 −
𝜎𝑚
𝑆𝑢𝑠
)
2
(1 − 𝐷)2

]

𝑞

�̇� (5.6 (b)) 

Here, Δτcritical is the maximum shear stress reversal and �̇� is the accumulated plastic strain 

resolved along the grain boundary.  𝜏𝑟0 and S0 are the material parameters that characterize 

the material’s resistance to fatigue damage. 𝜎𝑚  represents the mean stress due to the 

presence of residual stresses and 𝑆𝑢𝑠 is the ultimate strength in shear.   

5.2.4 Evaluation of damage parameters and numerical implementation 

As described in Chapter 4, it can be presumed that the bearing damage mechanisms for 

rolling contact fatigue and torsion fatigue are equivalent, and the material parameters in 

the elastic and plastic damage rate laws can be determined using the stress-life (S-N) data 

from torsion fatigue experiments.  The detailed derivation of equations to calculate the 

damage parameters for case carburized steel from torsion SN curve is presented section 

4.2.5.  The variations of τr0 and S0 with the yield strength are demonstrated in Figure 5.2.  

Note that the exponents, m and q in the damage rate law depend only on the fatigue strength 

exponent (b).  Therefore, they remain constant irrespective of the yield strength.  Please 

refer to section 4.2.6 for the step-by-step procedure of numerical implementation of the 

fatigue damage model.  4.2.5 
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Figure 5.2: Variation of damage parameters 𝜏𝑟0 and S0 with change in yield strength. 

 

5.2.5 Simulating refurbishment 

In this investigation, the procedure for simulating bearing resurfacing developed by 

Paulson et al. [143] was implemented.  To find the fatigue life of the refurbished bearing, 

it is necessary to determine the state of the damage for all the elements in the domain prior 

to the refurbishment.  In order to make this determination, the random Voronoi domain 

was subjected to rolling contact fatigue simulations using the fatigue damage model.  The 

bearing damage criterion in this case is when the damage reaches the surface.  The damage 

evolution curve for each element in the domain was evaluated from this simulation.  Using 

this curve, the value of damage variable for the element once the bearing has been 

refurbished (Nrefurb) can be interpolated.  This process is demonstrated in Figure 5.3, where 

Ncrit is the number of fatigue cycles undergone when the element damage reaches 1.  If 

Nrefurb is greater than Ncrit, the damage value is equal to 1. 
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Figure 5.3: Damage evolution curve and interpolated damage at refurbishing cycle.  

 

To simulate the grinding of the material during the refurbishment process, a line was passed 

through the domain at the desired depth.  The Voronoi cells that were completely above 

this line were removed from the domain.  As illustrated in Figure 5.4, the cutline forms the 

upper boundary of the Voronoi cells that intersect the cutline.  New nodes are created at 

the point of intersection between the Voronoi cells and the cutline.  As mentioned before, 

the yield strength and residual stresses vary with depth for case carburized steel. In order 

to simplify the problem, it was assumed that the grinding process does not alter the yield 

strength or residual stress distribution in the material remaining after refurbishing.  It 

should be noted that this simplification is one of the limitations of the model and does not 

accurately represent reality.   

 
(a) 

 
(b) 

Figure 5.4: (a) Original microstructure domain.  (b) Microstructure domain after 

resurfacing. 

 

Figure 5.5 depicts the distribution of yield strength and residual stress in the modified 

microstructure domain (resurfaced material) for different grinding depths.  Once the 
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refurbishing was simulated, RCF modeling was restarted with the modified domain and 

continued until the damage reached the surface.  The accumulated damage retained to 

account for the fatigue damage before refurbishing acted as an initial condition for this 

simulation.  The total life of the bearing was calculated by adding the life of the refurbished 

bearing and the life cycles experienced by the original bearing before refurbishing. 

 
(a) 

 
(b) 

Figure 5.5: Distribution of (a) yield strength and (b) residual stress vs. depth after 

resurfacing to different grinding depths. 

 Results and Discussion 

This section describes the results obtained from the fatigue damage model for rolling 

contact fatigue of refurbished cylindrical roller bearings made from through-hardened and 

case carburized bearing steel.  Fatigue cycles prior to the refurbishing and depths of 

grinding were varied to investigate their effects on the total fatigue life of the bearing.   

In this study, the half-width of contact was kept fixed at 100 µm for all cases.  Thirty-three 

random microstructure domains were constructed using the Voronoi tessellation procedure 

to investigate variability in fatigue lives due to subsurface microstructure topology.  

Maximum Hertzian pressure (Pmax) was varied from 2.0 GPa to 3.5 GPa so the fatigue 

performance of the steels could be analyzed when a considerable portion of the material 

was undergoing plastic deformation.  For all cases, the simulations were performed for 33 

microstructure domains without refurbishing to obtain the L10 life.  Microstructure domains 

were ground to 12.5, 25, 50 and 75 µm below the original surface.  The selected running 

times prior to the refurbishing were 50% and 90% of the population L10 life cycles of the 

bearing without refurbishing (L10/original).  Table 5.1: Material properties used in the 
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simulationTable 4.2 summarizes the parameters and material properties used in this 

simulation.  Please note that the elastic modulus (E) of the carburized material can vary +/- 

20 GPa in the case region [124].  Since the variation in E is small compared to the variation 

in Sy and residual stress, the elasticity modulus of the pristine material is assumed to be 

uniform throughout the domain. 

Table 5.1: Material properties used in the simulation. 

Undamaged elasticity modulus, E 200 GPa 

Hardening modulus, M 10 GPa 

Poisson’s ratio, ν 0.3 

Material grain diameter, dg 10 μm 

Maximum Hertzian pressure, pmax 2.0-3.5 GPa 

Contact half-width, b 100 μm 

Surface coefficient of friction, µs 0.05 

Critical damage value, Dcrit 1 

5.3.1 Accumulated damage before refurbishing  

Figure 5.6 depicts the accumulated damage before refurbishing at 50% and 90% of 

L10/original for different grinding depths for case carburized steel (case depth = 500 µm) at 

Pmax = 2 GPa.  It can be observed that for both cases, the damage is concentrated at 0.5b (50 

µm) below the original surface.  However, damage for the bearing refurbished at 90% of 

L10 life is considerably higher than the bearing refurbished at 50% of L10 life for all 

regrinding depths.  This is expected because the bearing is experiencing more fatigue 

cycles.  For the regrinding depths of 12.5 and 25 µm, the range of damage is nearly the 

same.  Additionally, the elements with the most damage grew closer to the surface.  In the 

case of the regrinding depths of 50 and 75 µm, the range of damage became significantly 

smaller since the most damaged elements occurring around 50 µm below the original 

surface were ground off.  However, for regrinding depths of 50 µm, there is a possibility 

that the element with the most damage may occur just below the depth of 50 µm; 

consequently, it would remain in the resurfaced material.  For those material domains, the 

damage would be very close to the surface and thus, regrinding depths >75 µm will 

minimize initiation and occurrence of RCF related surface damage.   
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Refurbished 

Depth 

Refurbished at 50% of L10/original Refurbished at 90% of L10/original 

 

 

12.5 μm 

 

 

 

 

25 μm 

 

 

 

 

50 μm 

 

 

 

 

75 μm 

 

 

 

Figure 5.6: Accumulated damage before refurbishing at different cycles for different 

grinding depths for case carburized steel at Pmax = 2.0 GPa.  The colorbar represents the 

value of the damage variable for each element.   

5.3.2 Comparison of RCF lives 

Figure 5.7 and Figure 5.8 illustrate the Weibull plots for through hardened material at Pmax 

= 2 GPa and 3.5 GPa, respectively.  The L10 lives and Weibull slopes obtained from the 

model results are listed in Table 5.2 and Table 5.3.  𝐿10/𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 refers the RCF life of the 

pristine bearings with no refurbishing.  While, 𝐿10/𝑟𝑒𝑓𝑢𝑟𝑏𝑖𝑠ℎ𝑖𝑛𝑔 refers the total RCF life of 

the refurbished bearings.  The total RCF life of the refurbished bearings is calculated by 

addition of the fatigue cycles prior to refurbishing and the fatigue cycles experienced by 

the bearings after the refurbishing until the final failure.  The ratio of the L10 life of 

refurbished bearings to the L10 life of bearings without refurbishing, which signifies the 

effectiveness of the refurbishing process, are also listed in the tables.  Please note that there 

are no residual stresses, and material properties are uniform throughout the depth.   
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Refurbished at 50% of L10/original Refurbished at 90% of L10/original 

  

Figure 5.7: Weibull probability plots for refurbished bearings of through hardened steel 

at Pmax = 2 GPa. 

 

Refurbished at 50% of L10/original Refurbished at 90% of L10/original 

  

Figure 5.8: Weibull probability plots for refurbished bearings of through hardened steel 

at Pmax = 3.5 GPa. 

 

Table 5.2: Predicted Weibull slopes and L10 lives for refurbished bearings with through 

hardened steel at Pmax = 2 GPa. 

 Refurbished after 50% of L10/orig Refurbished after 90% of L10/orig 

Refurbishing 

Depth 

L10 Life 

(Cycles) 

L10/refurb

L10/orig
 

Weibull 

Slope 

L10 Life 

(Cycles) 

L10/refurb

L10/orig
 

Weibull 

Slope 

Pristine 7.58E+07 - 9.87 7.58E+07 - 9.87 

12.5 μm 4.48E+07 0.59 6.07 6.87E+07 0.91 12.73 

25 μm 4.64E+07 0.61 5.51 6.60E+07 0.87 7.80 

50 μm 8.08E+07 1.07 8.63 1.05E+08 1.39 10.67 

75 μm 1.09E+08 1.44 11.69 1.38E+08 1.82 13.94 
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Table 5.3: Predicted Weibull slopes and L10 lives for refurbished bearings with through 

hardened steel at Pmax = 3.5 GPa. 

 Refurbished after 50% of L10/orig Refurbished after 90% of L10/orig 

Refurbishing 

Depth 

L10 Life 

(Cycles) 

L10/refurb

L10/orig
 

Weibull 

Slope 

L10 Life 

(Cycles) 

L10/refurb

L10/orig
 

Weibull 

Slope 

Pristine 1.02E+05 - 25.82 1.02E+05 - 25.82 

12.5 μm 5.66E+04 0.56 9.89 9.68E+04 0.95 43.45 

25 μm 5.68E+04 0.56 9.77 9.66E+04 0.95 44.04 

50 μm 5.50E+04 0.54 5.83 9.61E+04 0.95 29.71 

75 μm 1.12E+05 1.11 9.55 9.45E+04 0.93 7.78 

 

It can be noted from Table 5.2 and Table 5.3 that as the refurbishing depth increases, L10 

life also increases, up to a maximum refurbishing depth of 75 µm.  This is expected, since 

the part of the material critically damaged due to the fatigue cycles prior to refurbishing is 

removed by grinding.  Thus, the refurbished bearing performs as well as the pristine 

bearing.  For refurbishing depths smaller than 0.5b (50 µm), the total fatigue life of the 

refurbished bearings is actually less than the life of the unrefurbished bearings, which can 

also be explained by analyzing the accumulated damage before refurbishing shown in 

Figure 5.6.  It is also interesting to see from the model results that refurbishing the bearing 

after 90% of L10/original  is more effective than refurbishing after 50% of L10/original .  

However, it should be recognized that life after refurbishing is more significant for bearings 

refurbished after 50% of L10/original , which can be explained by the state of accumulated 

damage illustrated in Figure 5.6.   

These results are consistent with the refurbishing model previously proposed by Paulson 

et al. [143].  Some minor differences in the values result from the fact that an elastic-plastic 

material model was incorporated in the current model.  Comparing the effectiveness of 

refurbishing for Pmax = 2 GPa and 3.5 GPa, model results show that refurbished bearings 

experiencing higher loads do not perform as well.  This is because the extent of damage 

(volume of the material damaged) due to fatigue cycles prior to refurbishing is greater at 

higher loads.  Therefore, there is a lot of damage close to the surface after resurfacing, 

which lowers the fatigue life after refurbishing.  It should also be noted that in general, the 
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scatter in fatigue lives is very high at low loads — a phenomenon often observed in the 

fatigue experiments. 

The RCF lives of refurbished bearings made of case carburized steel (case depth = 500 µm) 

were investigated next.  As described in section 2.1, there is variation in yield strength and 

residual stresses with depth in case carburized steels.  To simplify the analysis and their 

effects on life distribution, each variable was first accounted for separately, and then their 

combined effect was studied.  Figure 5.9 depicts the results accounting only for hardness 

with no residual stress.  Similar to through hardened steel, as the refurbishing depth 

increases, the fatigue life increases.  For Pmax = 2 GPa, the refurbished bearing life is more 

than the original bearing life only if the bearing is refurbished after 90% of L10/original and 

refurbishing depth is more than 50 µm.   

 Refurbished at 50% of L10/original Refurbished at 90% of L10/original 

(a) 

  

(b) 

  

Figure 5.9: Weibull probability plots for refurbished bearings of case carburized steel 

accounting only for hardness variation: (a) Pmax = 2 GPa; (b) Pmax = 3.5 GPa. 

 

Compared to through hardened steel, the effectiveness of refurbishing is less in this case.  

This can be best explained by studying the yield strength variation for refurbished bearings 

shown in Figure 5.5(a).  During the refurbishing process, the harder region near the surface 
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is removed.  Therefore, critical stress due to rolling contact (shown by the dashed line in 

Figure 5.5(a)) occurs in the comparatively softer region, which diminishes the fatigue 

strength of the material.  This phenomenon does not occur in the through hardened steel 

because it has uniform yield strength throughout the depth.  This effect is even more 

pronounced for Pmax = 3.5 GPa; the fatigue lives of the refurbished bearings for all test 

cases were lower than the original bearing life.   

Figure 5.10 illustrates the Weibull plots for refurbished bearings while accounting only for 

the variation in residual stress, with the yield strength kept uniform at 2 GPa throughout 

the depth.  In this case, refurbishing to the depth of 50 and 75 µm increases the fatigue life 

significantly above the life of the original bearing at Pmax = 2 GPa.  Moreover, the 

refurbishing is more effective in case carburized steel than in the through hardened steel, 

especially at a refurbishing depth of 50 µm.  This can be explained by examining the RS 

distribution for refurbished bearings in Figure 5.5(b).  After refurbishing, the critically 

stressed region (shown by the dashed line) exhibits the maximum compressive residual 

stress, which enhances the fatigue performance.  For Pmax = 3.5 GPa, however, the effect 

of the damage accumulated before refurbishing dominates, and the refurbishing process 

improves the fatigue life only in the case of a refurbishing depth of 75 µm.   

Therefore, for case carburized steel, the variation of yield strength and residual stress with 

depth have conflicting influences on the effectiveness of refurbishing.  Yield strength 

diminishes the fatigue life of the refurbished bearing — but, on the other hand, residual 

stress enhances fatigue life when compared to the life for through hardened steel.   
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 Refurbished at 50% of L10/original Refurbished at 90% of L10/original 

(a) 

  

(b) 

  

Figure 5.10: Weibull probability plots for refurbished bearings of case carburized steel 

accounting only for residual stress variation: (a) Pmax = 2 GPa; (b) Pmax = 3.5 GPa. 

 

Accounting for both variations simultaneously, the model resulted in the fatigue lives 

demonstrated in Figure 5.11.  The Weibull parameters calculated from the results are 

presented in Table 5.4 and Table 5.5.  It can be observed from the tables that the adverse 

effect of hardness variation on the fatigue lives of the refurbished bearings dominates the 

effect of residual stress at a refurbishing depth of 75 µm.  The ratio of L10/refurbished to 

L10/original  for bearings refurbished after 90% of L10/original reduces to 1.52 for case 

carburized steel at Pmax = 2 GPa as compared to 1.82 for through hardened steel.  At a 

refurbishing depth of 50 µm, however, the refurbishing effectiveness is higher in the case 

of carburized bearings due to higher compressive residual stresses at the critically stressed 

region (Figure 5.5(b)).  The ratio of L10/refurbished  to L10/original  is 1.45 for case 

carburized steel compared to 1.39 for through hardened steel.   
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 Refurbished at 50% of L10/original Refurbished at 90% of L10/original 

(a) 

  

(b) 

  

Figure 5.11: Weibull probability plots for refurbished bearings of case carburized steel 

(Case depth = 500μm) accounting for both yield strength and residual stress variation: 

(a) Pmax = 2 GPa; (b) Pmax = 3.5 GPa. 

 

It should be noted that the ratio of the refurbishing depth and case depth significantly 

affects the RCF lives of the refurbished case carburized bearings.  If the case depth is larger 

compared to the refurbishing depth, the fatigue performance of the refurbished bearing 

would increase as the adverse effect of hardness gradient reduces.  In order to investigate 

the effect of case depth on refurbishing life, additional test cases were simulated with case 

depth of 1000 µm while keeping the contact half width fixed at 100 µm.  The Weibull plots 

of the RCF lives for these test cases are depicted in Figure 5.12 and the parameters are 

listed in Table 5.6 and Table 5.7.  In this case, the refurbishing effectiveness is higher than 

the through hardened bearings.  This can be attributed to reduction in the hardness gradient 

as well as the higher compressive stresses at the critically stressed region due to larger case 

depth.  Furthermore, since the peak residual stress occurs deeper in this case as compared 

to the case depth of 500 µm, the refurbishing effectiveness is greater for refurbishing depth 

of 75 µm than that of 50 µm.  
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 Refurbished at 50% of L10/original Refurbished at 90% of L10/original 

(a) 

  

(b) 

  

Figure 5.12: Weibull probability plots for refurbished bearings of case carburized 

steel (Case depth = 1000μm) accounting for both yield strength and residual stress 

variation: (a) Pmax = 2 GPa; (b) Pmax = 3.5 GPa. 

 

These results also signify an important difference between refurbishing through hardened 

and case carburized bearings.  For through hardened bearings, larger the refurbishing depth 

would yield more RCF life for refurbished bearing and the fatigue life after refurbishing 

would approach the pristine when all the accumulated damage before refurbishing is 

removed (refurbishing depth > b).  This is, however, not true for case carburized bearings 

since the refurbishing process removes the hardened case region.  Therefore, there is an 

optimum refurbishing depth for case carburized bearings which is related to the original 

case depth and contact half-width.   

The model suggests that for the case depths and contact half widths studied in this chapter, 

refurbishing bearings exposed to higher loads (Pmax = 3.5 GPa) may not always restore full 

RCF life when comparing the predicted performance of the refurbished bearing with the 

original bearing.  However, this is highly dependent upon assumptions in the modeled 

material, contact conditions, and amount of material removed in the refurbishing process.   



128 

 

Table 5.4: Predicted Weibull slopes and L10 lives for refurbished bearings with case 

carburized steel (case depth = 500μm) at Pmax = 2 GPa. 

 Refurbished after 50% of L10/orig Refurbished after 90% of L10/orig 

Refurbishing 

Depth 

L10 Life 

(Cycles) 

L10/refurb

L10/orig
 

Weibull 

Slope 

L10 Life 

(Cycles) 

L10/refurb

L10/orig
 

Weibull 

Slope 

Pristine 2.37E+08 - 9.04 2.37E+08 - 9.04 

12.5 μm 1.40E+08 0.59 5.74 2.19E+08 0.92 13.35 

25 μm 1.41E+08 0.59 4.82 2.20E+08 0.93 9.71 

50 μm 2.71E+08 1.14 8.2 3.43E+08 1.45 9.48 

75 μm 2.82E+08 1.19 13.1 3.60E+08 1.52 13.56 

 

Table 5.5: Predicted Weibull slopes and L10 lives for refurbished bearings with case 

carburized steel (case depth = 500μm) at Pmax = 3.5 GPa. 

 Refurbished after 50% of L10/orig Refurbished after 90% of L10/orig 

Refurbishing 

Depth 

L10 Life 

(Cycles) 

L10/refurb

L10/orig
 

Weibull 

Slope 

L10 Life 

(Cycles) 

L10/refurb

L10/orig
 

Weibull 

Slope 

Pristine 1.61E+05 - 39.55 1.61E+05 - 39.55 

12.5 μm 1.03E+05 0.64 30.22 1.53E+05 0.95 40.43 

25 μm 1.01E+05 0.63 28.46 1.51E+05 0.94 39.88 

50 μm 1.02E+05 0.63 28.97 1.47E+05 0.91 36.47 

75 μm 1.32E+05 0.82 16.56 1.51E+05 0.94 12.19 

 

Table 5.6: Predicted Weibull slopes and L10 lives for refurbished bearings with case 

carburized steel (case depth = 1000μm) at Pmax = 2 GPa. 

 Refurbished after 50% of L10/orig Refurbished after 90% of L10/orig 

Refurbishing 

Depth 

L10 Life 

(Cycles) 

L10/refurb

L10/orig
 

Weibull 

Slope 

L10 Life 

(Cycles) 

L10/refurb

L10/orig
 

Weibull 

Slope 

Pristine 1.54E+08 - 10.16 1.54E+08 - 10.16 

12.5 μm 9.28E+07 0.60 4.98 1.49E+08 0.97 12.23 

25 μm 9.86E+07 0.64 4.79 1.45E+08 0.94 7.69 

50 μm 1.87E+08 1.21 6.68 2.30E+08 1.49 7.81 

75 μm 3.11E+08 2.02 9.99 3.71E+08 2.40 11.60 
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Table 5.7: Predicted Weibull slopes and L10 lives for refurbished bearings with case 

carburized steel (case depth = 1000μm) at Pmax = 3.5 GPa. 

 Refurbished after 50% of L10/orig Refurbished after 90% of L10/orig 

Refurbishing 

Depth 

L10 Life 

(Cycles) 

L10/refurb

L10/orig
 

Weibull 

Slope 

L10 Life 

(Cycles) 

L10/refurb

L10/orig
 

Weibull 

Slope 

Pristine 9.78E+04 - 41.17 9.78E+04 - 41.17 

12.5 μm 7.09E+04 0.72 20.18 9.75E+04 1.00 43.13 

25 μm 7.06E+04 0.72 22.00 9.50E+04 0.97 37.33 

50 μm 7.30E+04 0.75 20.38 9.18E+04 0.94 34.65 

75 μm 1.06E+05 1.09 7.90 9.28E+04 0.95 10.51 

5.3.3 Comparison of spall patterns 

Figure 5.13 and Figure 5.14 illustrate the spall patterns obtained from the model for 

different refurbishing depths for through hardened and case carburized bearings, 

respectively, for the same microstructure domain.  Bearings were refurbished after 50% of 

L10/original in both cases.  Here, the red area represents the material elements for which the 

damage value is more than 0.999, i.e. the effective stiffness of these material elements is 

close to 0.  It can be observed that for refurbishing depths of 12.5 and 25 µm, the spall 

shapes were very similar to those of the unrefurbished bearing.  The depth below the 

original surface where the damage initiates was also the same.  This is expected, since the 

critical damage that occurred prior to refurbishing would be still present in the refurbished 

microstructure at these refurbishing depths.  But for refurbishing depths of 50 and 75 µm, 

the spalls initiate at around 0.5b (50 µm) below the refurbished surface, since the initial 

critically damaged material has been removed during grinding.  Comparing the spall 

patterns for through hardened and case carburized material, the patterns are nearly the same 

except for the refurbishing depth of 75 µm.  In that case, the spall in the case carburized 

steel appears to initiate deeper in the material. 
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(a) 

 
(b) 

 

(c) 

 
(d) 

 

(e) 

 

Figure 5.13: Spall patterns obtained from the model for through hardened steel at 

Pmax = 2 GPa.  Bearing refurbishing was conducted after 50% of L10/original.  (a) No 

refurbishing, (b) Refurbished – 12.5 μm, (c) Refurbished – 25 μm, (d) Refurbished – 

50 μm, (e) Refurbished – 75 μm. 
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(a) 

 
(b) 

 

(c) 

 
(d) 

 

(e) 

 

Figure 5.14: Spall patterns obtained from the model for case carburized steel at 

Pmax = 2 GPa.  Bearing refurbishing was conducted after 50% of L10/original.  (a) No 

refurbishing, (b) Refurbished – 12.5 μm, (c) Refurbished – 25 μm, (d) Refurbished 

– 50 μm, (e) Refurbished – 75 μm. 

 Summary and Conclusions 

This chapter presents a numerical model to analyze the RCF lives of refurbished bearings 

made from case carburized steel.  The focus of the study was to investigate whether 

refurbishing case carburized bearings is useful to extend their fatigue life.  Gradients in 

hardness and residual stress distribution typically observed in case carburized material 

were also taken into account in the model.  The hardness was modeled using the linear 
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correlation between hardness and yield strength.  A linear elastic kinematic plastic material 

model was incorporated in the finite element solver.  Progressive degradation of material 

due to rolling contact fatigue was captured using damage mechanics.  Scatter in fatigue life 

due to randomness in the material microstructure was simulated using Voronoi tessellations.  

Refurbishing was simulated by removing a layer of surface (0.125, 0.25, 0.5 and 0.75b) 

from the microstructural domain, but the damage in the remaining domain due to fatigue 

cycles before refurbishing was retained.  The refurbished microstructure was again 

simulated using the fatigue damage model under RCF loading until the damage was 

observed.  It should be noted that the current model does not account for the residual 

stresses or changes in material properties during the refurbishing process.  The compressive 

residual stresses induced by the regrinding of the bearing surface can have a beneficial 

impact on the fatigue performance of the refurbished bearing.  However, this factor is 

ignored in the current modeling.   

The model compared case carburized steel against through hardened steel with respect to 

the RCF performance of refurbished bearings.  It was found that increasing depths of 

refurbishing beyond 0.5b enhances the RCF life of the refurbished bearings for small loads 

(Pmax = 2 GPa).  Further, refurbishing the bearing earlier (50% of L10/original) increases 

the fatigue life of the refurbished bearings.  However, the total life of the refurbished 

bearing is greater if the bearings are refurbished after 90% of L10/original.   

According to the results obtained from the model, the ratio of total L10 life of the 

refurbished bearings to L10/original is higher for through hardened bearings than for case 

carburized bearings with case depth of 500 µm.  This is attributed to the removal of the 

surface layer, which has higher fatigue resistance, and exposing the soft core to fatigue 

stress.  However, this effect reduces as the case depth increases relative to contact half 

width; therefore the effectiveness of refurbishing for larger case depth (1000 µm) is more 

than the through hardened bearings.  The model also suggested that it is not beneficial to 

refurbish bearings exposed to a higher load (Pmax = 3.5 GPa) for the case depths and contact 

half width studied in this chapter since for higher load the total RCF life of the refurbished 

bearing is less than the total life of the original bearing.    
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6. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

FOR FUTURE RESEARCH 

 Summary and Conclusions 

This dissertation investigated material response to two types of fatigue damages often 

experienced by machine components containing contact bodies: fretting fatigue and rolling 

contact fatigue (RCF).  Chapter 1 presented a comprehensive literature review of two types 

of fatigue phenomena that commonly occur in contacting bodies.  The topic of fretting 

fatigue and rolling contact fatigue were introduced with brief historical background, 

machine elements frequently affected by them, mechanism of their manifestations and 

comparison with classical fatigue phenomenon.  Relevant empirical, analytical, and 

numerical models previously developed to predict RCF and fretting fatigue failures in 

machine components were also reviewed. 

In Chapter 2, the fretting fatigue behavior of AISI 4140 vs. Ti-6-4 was studied 

experimentally in a cylinder-on-flat contact configuration.  For this purpose, a fretting test 

fixture was designed and developed which was coupled with an MTS machine to impose 

the fretting fatigue damage.  Fretting fatigue experiments were conducted under completely 

(R=-1) reversed axial stress amplitudes, a constant maximum Hertzian Pressure (Ph) of 3 

GPa and at a frequency of 5 Hz.  A fretting test in gross slip regime was performed to 

determine the friction coefficient for the current experimental configuration.  The critical 

damage value for AISI 4140 was extracted using the method of variation of elasticity 

modulus.  A finite element model was developed incorporating damage mechanics 

constitutive relations to simulate fatigue degradation and Voronoi tessellation to account 

for the geometric randomness of the material microstructure.  Alternating normal stress 

resolved on the Voronoi cell boundary was used as the damaging criterion.  Friction 

coefficient of 0.6 and critical damage value of 0.12 obtained from the experiments were 

used in the simulations.  Fretting fatigue lives predicted from the analytical model showed 

good agreement with the measured experimental results. 

The third chapter presented a new computationally efficient approach to investigate RCF 

life scatter and spall formation in large line contacts.  This model was built on the 

previously developed RCF model which incorporated continuum damage mechanics to 
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capture progressive fatigue damage and Voronoi tessellations to study the variability 

occurring due to the randomness in material microstructure.  To make this model 

computationally efficient, Voronoi tessellation and finite element model was decoupled by 

using Delaunay triangulation to generate the FE mesh.  Use of a Delaunay mesh 

significantly reduced the simulation time compared to the previous approach.  A mapping 

procedure was developed to communicate the state of stress and damage between FE mesh 

and Voronoi tessellations.  Further, a remeshing tool was built to dynamically refine the 

Delaunay triangle mesh around the damaged elements in order to capture the stress 

concentration accurately.  The new modeling approach enabled simulation of RCF in line 

contacts of widths up to 1 mm.  For fixed contact pressures, the simulated RCF lives were 

shown to increase with increase in the half contact width.  The ratio of L10 lives for different 

sized bearings computed from the model correlated well with the formula derived from the 

basic life rating for radial roller bearing as per ISO 281.  The model was then extended to 

study the effect of initial internal voids on RCF life.  It was found that for the same initial 

void density, the L10 life decreases with the increase in the bearing size. 

In Chapter 4, an elastic-plastic finite element model based on micro-indentation tests 

developed to investigate the rolling contact fatigue of case carburized steels was presented.  

It employed Mises based plasticity model with kinematic hardening to incorporate the 

effect of material plasticity.  The hardness gradient in the material was modeled by 

changing the yield strength as a function of depth.  Linear relationship between hardness 

and yield strength was assumed.  The FE model was coupled with continuum damage 

mechanics approach to capture material degradation due to fatigue damage.  It considers 

both; stress and accumulated plastic strain based damage evolution laws for fatigue failure 

initiation and propagation.  The effects of residual stress distribution due to carburization 

process on fatigue damage progression were modeled by modifying the damage evolution 

law.  Material dependent parameters used in the damage evolution laws were determined 

using the SN results for torsional fatigue of the bearing steel.  Similar to fatigue damage 

models developed in previous chapters, this model also accounted for the effects of 

topological randomness in the material microstructure through the use of Voronoi 

tessellations.  The model was used to compare the rolling contact fatigue (RCF) lives of 

through hardened and case carburized bearing steel with different case depths at contact 
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pressures ranging from 2 to 3.5 GPa.  The results showed that the optimum case depth for 

which maximum RCF lives were 6.2b for Pmax= 2 GPa and 7.6b for Pmax= 3.5 GPa.  The 

spall shapes and the depth below the surface where damage initiates were found to be 

dependent on the case depth. 

Chapter 5 built upon the model developed in chapter 4 with a modification to quantify the 

RCF lives of refurbished bearings made from case carburized steel.  In order to simulate 

the refurbishing process, damage accumulation was calculated for a set number of fatigue 

cycles with the original bearing geometry.  A layer of the original surface was then removed, 

but the fatigue damage accumulated prior to refurbishing was preserved.  The yield strength 

and residual stresses in the remaining material were assumed to be the same as the original 

material.  The refurbished geometry was then subjected to additional fatigue cycles until 

the damage was detected.  The model was used to compare the RCF lives of refurbished 

bearings made from through hardened and case carburized bearing steel at contact 

pressures ranging from 2 to 3.5 GPa.  The number of fatigue cycles prior to the refurbishing 

and the depth of material removal were varied to analyze their influence on refurbished life.  

It was found that greater regrinding depth (more than 0.5 times the half-width) and more 

fatigue cycles prior to refurbishing enhanced the total fatigue life of refurbished bearings.  

The model predicted that the ratio of the total RCF life of refurbished bearing to that of 

unrefurbished bearing is more for through hardened bearings than case carburized bearings 

with case depth of 500 μm.  This was expected, because the material properties are uniform 

with depth in through hardened steel, therefore material properties in the critically stressed 

region are not affected by refurbishing.  In the case hardened bearing steel, however, the 

refurbishing process removes part of the hardened case region and exposes the softer 

material to the critical stress which reduces the fatigue performance of the refurbished 

bearing.  Since this effect diminishes as the case depth increases; the increase in the fatigue 

life after refurbishing was found to be larger for case carburized bearings with case depth 

of 1000 μm than through hardened bearings. 

 Recommendations for Future Work 

The fatigue damage models developed and presented in this dissertation have demonstrated 

an excellent capacity for predicting the fretting fatigue and rolling contact fatigue behavior 
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of machine components by taking into account the microstructure topology and the some 

of the mechanical properties of the material.  However, accurately modeling all aspect of 

reality is difficult therefore; these models were built on some simplifying assumptions 

which were essential to developing a computationally feasible modeling approach.  Some 

of the major assumptions include homogenous, isotropic material and idealized contact 

pressure.  In reality, steels used to manufacture machine components consist of multiple 

phases due to heat treatment.  These phases can also transform during the life of the 

machine component depending on the operating load, temperature, etc.  Furthermore, the 

pressure distribution between contacting bodies depend on speed, applied load, lubricant 

viscosity, temperature, surface roughness, presence of surface defects etc.  Material 

degradation due to fatigue increases the deformation, which further modifies the pressure 

profile.  These changes, in some cases can significantly influence the state of stress in the 

material causing significant variation in fatigue lives of the machine components.  

Therefore, there is great scope for improvements to the fatigue damage models presented 

in this dissertation to achieve the goal of developing an accurate tool to predict the fatigue 

life of machine components. 

6.2.1 Effects of Residual Stress Evolution on RCF 

The beneficial effects of compressive residual stresses on fatigue life have been a focus of 

research interest since many years.  Most commonly, residual stresses are produced by 

processes used to form and fabricate them into engineering components.  Examples of these 

processes are welding, forging, rolling, grinding, machining, etc.  Residual stresses are 

imparted by inducing plastic deformation in the material through severe temperature 

gradients or mechanical forces.  Another common source of residual stresses, which is not 

the direct result of plastic deformation, is localized permanent elastic expansion or 

contraction of the metallic lattice by heat treatment which induces phase transformation.  

Case carburization is one such process which has become increasing more popular in high-

performance ball and rolling element bearing applications.  In Chapter 4, rolling contact 

fatigue damage model for case carburized steel was presented. However, this investigation 

assumed that distribution of residual stresses do not vary with cycles.  However, the 
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residual stress distribution in the bearing material evolves during the operation due to the 

loading and other microstructural phenomena.   

Retained austenite (RA) is the austenite that does not transform to martensitic phase upon 

quenching.  The RA in the bearing microstructure exhibits metastablilty at ambient 

temperatures and undergoes a phase transformation during RCF.  These transformations 

are accompanied by volume expansion of approximately 4 percent caused by the RA 

changing from the face-centered cubic lattice structure to a martensitic body centered 

tetragonal or body centered cubic structure.  The volume expansion induces compressive 

residual stresses in the material.  Voskamp [146] have studied the decomposition of RA 

and corresponding variation in residual stresses during RCF.  Figure 6.1: Decomposition 

of retained austenite and evolution of residual stresses with fatigue cycles. demonstrates 

the evolution of residual stress due to RA transformation during RCF.  There is a general 

agreement among researchers that there exist an optimum austenite content that results in 

the highest fatigue endurance.  Additionally, the microscale plasticity due to the fatigue 

loading causes residual stress relaxation.  The demand for greater reliability of tribological 

components has focused attention on understanding the sources of residual stresses and 

their interactions with applied stresses to affect material fatigue.  Therefore, it is important 

to study and analyze the evolution of residual stresses.   

  

Figure 6.1: Decomposition of retained austenite and evolution of residual stresses with 

fatigue cycles. 

 

Some preliminary experiments for this investigation were conducted during the course of 

this research at Mechanical Engineering Tribology Laboratory of Pursue University.  Using 

the equivalence between RCF and torsion fatigue ([30], [97], [113]), the variation in 



138 

 

residual stresses due to stress cycles were analyzed using torsion fatigue test rig ([147]).  

The test specimens were fatigued for a preset number of cycles at 3 different load levels – 

0.8 Sus, 0.6 Sus, 0.4 Sus.  The preset number of cycles for each load level was chosen based 

on the SN curve of the material (Figure 6.2(a)).  After the torsion testing, the sub-surface 

residual stress distributions on the fatigued specimen were measured using XRD at four 

different depths: 12.7µm, 25.4µm, 50.8µm and 76.2µm.  Please note that a new specimen 

needed tested for each data point as XRD technique for RS measurement is destructive.  

Also, the depths where RS measurements are performed are very close to the surface, hence 

the shear stress experienced by the material points at these depth can be assumed to be the 

same as the maximum shear stress at the cross-section.  At 0.4 Sus, as the fatigue cycles 

increase, the residual stress values increase (more negative) at all depths, which can be 

attributed to the volume expansion due to RA transformation.  At 0.6 Sus, however, the 

magnitude of residual stress increases till cycle number 10 then start to decrease (less 

negative).  The initial increase in the residual stresses can be explained by the RA 

decomposition while the decrease in the magnitude can be caused by stress relaxation due 

to microscale plasticity.  Since plasticity does not occur at low loads, it can be inferred that 

the decrease in the magnitude was not observed at 0.4 Sus.  The effect of microscale 

plasticity on stress relaxation is more evident at higher load of 0.8 Sus.  It can also be 

observed that the initial magnitude of residual stress also play a role in determining the rate 

of change in residual stresses.   

Future work in this regard should involve performing more experiments with different 

initial residual stress distribution and RA content.  The RA composition in the material at 

different cycles also need be measured.  From the experimental results, an equation the 

evolution of residual stresses with fatigue cycles cycles, N may be derived in terms of state 

of stress, initial RA composition, and residual stress similar to the following: 

𝜎𝑅𝑆(𝑁) = 𝜎𝑅𝑆(0) + 𝛼1(% 𝑅𝐴)
𝜁1
+ 𝛼2 (

𝜎′

𝑆𝑦
)

𝜁2

 (6.1) 

The RCF model for case carburized steels presented in Chapter 4 should be modified to 

account for the variation in the residual stresses with fatigue cycles.  From the model results, 

optimal residual stress distribution to enhance the RCF lives can be estimated.   
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(a) (b) 

  
(c) (d) 

Figure 6.2: (a) Data points for residual stress measurement using XRD; Evolution of 

residual stress during torsion fatigue at (b) 0.4Sus , (c) 0.6Sus, (d) 0.8Sus. 

6.2.2 3D RCF Modeling of Large Bearing Contacts 

Two-dimensional representations of materials are commonly used in the formulation of 

RCF models.  This is because the contact geometry can usually be approximated as 

infinitely wide.  However, the grains of the material microstructure are three dimensional.  

Furthermore, the contact geometry in the RCF experiments is often elliptical which 

produce spall which have 3D shapes.  Figure 6.3 depicts the rendition of the spalls obtained 

during RCF experiments.  The existing 3D rolling contact fatigue damage models 

incorporated 3D representations of the subsurface material topology.  However, these 

studies only considered line contact geometry in 3D and simulated contact half-width of 

50 μm.  The contact sizes in large bearings can be as large as 1000 μm.  The typical contact 

sizes in RCF experiments are also in range of 200-400 μm.  The existing 3D RCF models 

becomes computationally infeasible for contact sizes beyond 50 μm.  In Chapter 3 of this 

dissertation, a modified approach for 2D RCF studies of large bearings was presented.  As 

in 2D, the computational costs of using the Voronoi meshes in the FE solver for large 
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contacts are enormous since the number of nodes and elements increases with cube of 

contact half-width.  The 2D RCF model for large bearings incorporates decoupling of 

Voronoi mesh representing material microstructure and the FE mesh.  Similar approach 

can be implemented in 3D RCF model to develop a computationally efficient model that 

can simulate large elliptical contacts.  The stress mapping procedure for communicating 

stress and damage information between Delaunay and Voronoi mesh developed for 2D 

elements in Chapter 3 can be modified to work for 3D meshes.  This model can also be 

used to study the effects of material defects and inclusion sizes, white etching bands on the 

large bearings. 

 

Figure 6.3: 3D rendition of a spall observed in 8620 steel at 3.6GPa of maximum 

Hertzian pressure during 3-ball-on-rod tests [148]. 

6.2.3 Effects of EHL Pressure on RCF in Case Carburized Bearings Incorporating 

Surface Dents  

Most of the RCF damage models including those presented in this dissertation assume 

idealized Hertzian pressure between contacting bodies.  However, this assumption is only 

applicable to dry contact conditions, whereas, bearings operate in the presence of a 

lubricant.  As the speed increases the wedge effect of the lubricant at the inlet becomes 

significant.  Lubricant properties and temperature also play an important role in deciding 

the lubrication regime.  Pressure profile between contacting bodies during 

elastohydrodynamic lubrication (EHL) regime differs considerably from the Hertzian 

pressure.  As mentioned in Chapter 4, case carburized material is characterized by hardened 

outer layer and residual stresses in the case region.  These characteristics can also 

significantly influence the pressure profile.  Furthermore, when debris enters an EHL 

contact, it indents the mating surfaces.  Depending on the material properties of the debris 

(i.e. whether it is ductile or brittle) the dent generated by the debris can be either large and 



141 

 

shallow or small with sharp edges.  However, due to the plastic deformation of the surfaces, 

residual stresses are generated around the dent, which affect the sub-surface-stress 

distribution.  Case carburized material is supposed to provide better resistance to the plastic 

deformation due to the debris due to improved hardness at the surface. 

Paulson et al. [149] developed a coupled finite element EHL and damage mechanics model 

to investigate the effects of EHL pressure profile in RCF lives.  The modeling approach for 

case carburized material presented in this dissertation can implemented in the model 

developed by Paulson et al. [150].  This model may be used to investigate spall initiation 

and propagation from the surface dent in case carburized material and evaluate its 

performance against through hardened material.   

6.2.4 Effects of grain size on RCF 

It is well established that material properties are related to the grain size.  Hall–Petch 

equation [150] given in Equation (6.2) relates yield stress of the material to the grain size, 

(d in microns) for conventional metals with grains at micron scale.. 𝑆𝑦𝑜, 𝑘 are the material 

constants independent of grain size.  The equation indicates that the decrease of grain size 

will improve the mechanical properties of the material.   

𝑆𝑦 = 𝑆𝑦𝑜 +
𝑘

𝑑0.5
  (6.2) 

The material constants in Equation (6.2) should be evaluated from torsion experiments on 

bearing steel with different prior austenite grain sizes.  In Chapter 4, the hardness gradient 

in the case carburized material was simulated using the relationship between hardness and 

yield strength.  Damage parameters for different yield strengths were also evaluated.  

Similarly, the yield strength and the corresponding damage parameters can be calculated 

for the material with different grain sizes.  The model results may be considered to estimate 

the best grain size for bearing materials to maximize their RCF performance. 
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