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ABSTRACT 

Wahl, Theodore P. PhD, Purdue University, December 2017. Autonomous Guid-
ance Strategy for Spacecraft Formations and Reconfiguration Maneuvers. Major 
Professor: Kathleen C. Howell. 

A guidance strategy for autonomous spacecraft formation reconfiguration maneu-

vers is presented. The guidance strategy is presented as an algorithm that solves the 

linked assignment and delivery problems. The assignment problem is the task of as-

signing the member spacecraft of the formation to their new positions in the desired 

formation geometry. The guidance algorithm uses an auction process (also called an 

“auction algorithm”), presented in the dissertation, to solve the assignment problem. 

The auction uses the estimated maneuver and time of flight costs between the space-

craft and targets to create assignments which minimize a specific “expense” function 

for the formation. The delivery problem is the task of delivering the spacecraft to their 

assigned positions, and it is addressed through one of two guidance schemes described 

in this work. The first is a delivery scheme based on artificial potential function (APF) 

guidance. APF guidance uses the relative distances between the spacecraft, targets, 

and any obstacles to design maneuvers based on gradients of potential fields. The 

second delivery scheme is based on model predictive control (MPC); this method uses 

a model of the system dynamics to plan a series of maneuvers designed to minimize a 

unique cost function. The guidance algorithm uses an analytic linearized approxima-

tion of the relative orbital dynamics, the Yamanaka-Ankersen state transition matrix, 

in the auction process and in both delivery methods. The proposed guidance strategy 

is successful, in simulations, in autonomously assigning the members of the formation 

to new positions and in delivering the spacecraft to these new positions safely using 

both delivery methods. This guidance algorithm can serve as the basis for future 

autonomous guidance strategies for spacecraft formation missions. 
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1. INTRODUCTION 

The options afforded by satellites or spacecraft operating in formation is an impor-

tant development that may allow new civilian and military operational capabilities; 

autonomous, decentralized control and guidance for these formations is essential to 

the success of such operations. Current formation flying missions include: PRISMA, 

Cluster, and the Magnetospheric Multiscale (MMS) Mission. [1–3] In recent years, 

other mission concepts have also been explored including the developments for Ter-

restrial Planet Finder (TPF) from NASA and Darwin by ESA. [4,5] Closer to Earth, 

TechSat-21 was a planned Air Force satellite mission to demonstrate formation fly-

ing technology. [6] Spacecraft formations have, in fact, long been investigated for 

mission scenarios that cannot be accomplished by a single vehicle; cooperating for-

mations are potentially more robust and adaptable than single monolithic spacecraft. 

However, multiple spacecraft operating in close proximity also introduce additional 

complexities. To quickly and efficiently operate in cluttered environments, to en-

able formations of large numbers of spacecraft, and to provide for missions distant 

from Earth, guidance and control algorithms that operate autonomously are also a 

key capability. Thus, a decentralized autonomous guidance algorithm for formation 

maneuvers is examined. 

For the development of this formation guidance system, two problems have tra-

ditionally been identified that any such algorithm must solve. The first is defined as 

the “assignment problem”, i.e., assigning the spacecraft in the formation to their new 

positions. A satisfying solution to the assignment problem fills all the positions in 

the formation such that overall propellant consumption, time of flight, or some com-

bination of both is minimized. The next step is a solution to the “delivery problem”, 

that is, the task of delivering each spacecraft to their assigned positions by balancing 

the maneuver cost (ΔV ) and travel time while avoiding collisions between the space-
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craft and any other orbital objects. For this investigation, the goal is the creation 

of a straightforward guidance strategy for autonomous delivery of the reconfigura-

tion maneuvers for formations of spacecraft, and the guidance strategy addresses the 

assignment problem and delivery problem in two separate, but linked, steps. How-

ever, this does not preclude future endeavors which solve the assignment and delivery 

problems simultaneously. The manifestation of the guidance strategy developed in 

this work is a guidance algorithm that performs simulated reconfiguration maneuvers. 

This analysis addresses this goal through three main objectives: Creation of a scheme 

to assign spacecraft to positions in the formation, creation of methodologies to de-

liver the spacecraft to their new positions, and evaluation of the guidance algorithm 

in varied scenarios. 

In the overarching strategy, the assignment problem is addressed through an auc-

tion process; auction algorithms are a well accepted approach for solving the classical 

assignment problem, that is, matching n spacecraft and n target positions. [7, 8] A 

cost is associated with every spacecraft-target combination, and each target carries 

a price. The cost of each pairing between spacecraft and target is determined by a 

combination of the estimated ΔV and the estimated time of flight for that pairing. 

A spacecraft’s “satisfaction” with its assignment is based on the trade-off between 

cost and price. Initially unassigned, a simple algorithm is employed to allow a space-

craft to bid on the targets that result in the most spacecraft satisfaction. Then, each 

target selects the spacecraft with the largest bid; the target price increases based on 

the winning bid, and the process repeats for all spacecraft that remain unassigned. 

As the auction continues and the targets receive new bids, the assignments change 

and the prices rise–changing the calculus of desirability. The algorithm terminates 

when all the spacecraft are assigned to targets. In an update to the authors’ previous 

work [9], the improved auction algorithm avoids initialization bias in the assignments 

and accommodates a broader spectrum of formations–uneven numbers of spacecraft 

and targets or restrictions on spacecraft-target pairing, for example. 
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The second task in any reconfiguration problem is the “delivery problem,” i.e., de-

livering each spacecraft to its assigned position. Any guidance strategy that supports 

a formation of vehicles operating autonomously must be sufficiently straightforward 

in terms of the on-board computational requirements while still offering accurate and 

propellant-efficient relative trajectory computations and delivery. Simultaneously, the 

complexity involving multiple vehicles in the likely operational environment implies 

continually evolving relative motions yet includes constraints on both the path and 

the time of flight. Two strategies to achieve delivery of the vehicles are examined. 

The first is based on Artificial Potential Function (APF) guidance and is similar to a 

previously introduced technique. [9] Alternatively, a second approach involves Model 

Predictive Control (MPC). [10] Of course, both delivery schemes possess advantages 

and disadvantages. 

1.1 Research Objectives 

For this investigation, the goal is the creation of a guidance strategy for au-

tonomous control of reconfiguration maneuvers for formations of spacecraft. The 

manifestation of this strategy is a guidance algorithm that will operate in simulated 

reconfiguration maneuvers. This analysis seeks to address this goal of guidance strat-

egy/algorithm creation through three main objectives: 

1. Creation of a method of assigning spacecraft to positions in the formation. 

2. Creation of a method of delivering the spacecraft to their new positions. 

3. Testing the guidance algorithm in varied scenarios. 

For this report, as previously discussed, the assignment problem is addressed through 

an auction process and the delivery problem is addressed through an artificial po-

tential function or model predictive control scheme. Initially, the guidance algorithm 

is developed to work in the classical two body problem, where the spacecraft are 

represented as point masses and the only force is due to the gravitational field of a 
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spherically symmetric Earth; however, the guidance algorithm is also tested under 

orbital dynamics perturbed by Earth’s J2 gravity harmonic. The guidance algorithm 

will operate in the Hill frame, which is a rotating reference frame attached to an or-

biting spacecraft. There are several well known approximations of relative spacecraft 

motion–for example, the Clohessy-Wiltshire equations [11]–that operate in the Hill 

frame, and the guidance algorithm may make use of these. 

1.2 Summary of Previous Contributions 

The concept of spacecraft operating as a formation has been studied for many 

years. One of the first examples of a proposed formation comes from Labeyrie who, 

in a survey of interferometry methods, discusses using a group of space telescopes 

working as a long-baseline interferometer. [12] Formations of space telescopes have 

continued to be studied for space missions; some examples are NASA’s Terrestrial 

Planet Finder - Interferometer (TPF-I) and ESA’s Darwin mission, both of which 

were to search for Earth-like exoplanets. [4, 5] The Air Force Research Laboratory 

(AFRL), in the proposed TechSat 21 mission studied using a formation of satellites 

in low Earth orbit for space-based radar and geolocation missions. [6, 13] 

Formations of two satellites which have flown include NASA’s GRAIL mission– 

launched in 2011, DLR’s TanDEM-X–launched in 2010, and the German/Swedish 

PRISMA–also launched in 2010. [14–16] TanDEM-X involves two spacecraft in close 

orbit above Earth performing synthetic aperture radar interferometry for the purposes 

of digital elevation mapping; the formation is controlled by small changes in the 

inclination, eccentricity, and perigee of one of the satellites. [15] GRAIL is a mission of 

two spacecraft in low lunar orbit, one spacecraft following the other, designed to map 

the Moon’s gravity field by measuring the relative motion between the orbiters. [14] 

PRISMA is a mission of two small satellites in Earth orbit designed to test and 

demonstrate elements of autonomous formation flying; one spacecraft was “fixed” in 

the relative frame while the other performed close proximity operations around it. 
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The maneuvers were designed based on controlling the relative orbital elements of 

the chaser spacecraft with respect to the fixed spacecraft. [17] 

Multiple spacecraft formations include ESA’s Cluster–launched in 2000–and NASA’s 

MMS mission–launched in 2015. Both formations are composed of four spacecraft 

each, and both missions are investigating Earth’s magnetosphere. [2, 3] Both forma-

tions are in highly elliptic orbits, however Cluster is polar while MMS is more equa-

torial. The orbit of each spacecraft is designed so that the formation achieves a tetra-

hedral shape in the region of interest; Cluster has a minimum spacecraft separation of 

200 km, while MMS goes as low as 10 km. [18,19] An example of a planned formation 

mission is eLISA (formerly LISA and NGO), which will include three spacecraft in 

a heliocentric orbit; the spacecraft will be in an equilateral triangle formation with 

one million kilometer separation between them. [20] With the exception of PRISMA, 

which was specifically designed to test autonomous guidance, none of these examples 

involve autonomous guidance of the formation. However, formations are and will 

continue to be of interest for space missions, and the ability to perform formation 

maneuvers autonomously will increase their utility. 

Scharf et al. provide a concise summary of spacecraft formation guidance and 

control thought from early in the century. [21, 22] Their papers divide the guidance 

of formations based on the environment–deep space or planetary orbit–and control 

of formations by architecture–leader/follower, multiple-input-multiple-output, virtual 

structure, cyclic, and behavioral. Under their rubric, the algorithm described in this 

work operates in the planetary (in this case Earth) orbit environment and has a behav-

ioral style control architecture. For this investigation, the guidance of the individual 

spacecraft is based around artificial potential functions and model predictive control. 

The motivation for artificial potential function guidance is robot motion planning 

with a methodology that links the kinematic planning problem with the dynamic ex-

ecution problem in an appropriate manner. [23,24] Such a connection is accomplished 

by creating a potential function that incorporates the necessary freespace and goal 

information. The artificial potential function is structured such that the negative 
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gradient of the potential leads to the desired target and avoids any obstacles. The 

minimum of the potential is placed at the target location, and obstacle locations are 

surrounded by areas of high potential. 

Investigations of using APF guidance for spacecraft include work done on au-

tonomous rendezvous by Lopez and McInnes which utilizes the inherent obstacle 

avoidance abilities of potential functions and the possibility of shaping the attractive 

potential to fit specified scenarios. [25,26]. The initial development of APF guidance 

involved static objectives and targets; however, in the orbital environment, space-

craft are in near constant relative motion. To address the problems of moving targets 

and obstacles, Ge and Cui developed a framework for dynamic motion planning with 

artificial potential functions. [27, 28] Other examinations of APF guidance for space 

operations involve path-planning for autonomous close proximity maneuvers, once 

more relying on the potential functions to avoid collisions. [29–31] 

Artificial potential functions are mathematically simple and do not rely on any 

a priori dynamical assumptions to successfully guide spacecraft to target positions. 

This simplicity is attractive because it facilitates on-board operation–necessary for 

an autonomous guidance system. However, APF guidance of spacecraft can require a 

larger amount of maneuvering ΔV than is strictly necessary. To lower the magnitude 

of the total ΔV as a consequence of the maneuvers, the potential functions in the 

guidance algorithm are adapted to leverage the natural dynamics. This extension of 

the fundamental strategy is labeled adaptive artificial potential function guidance. 

The development of Adaptive Artificial Potential Function guidance is described 

by Muñoz. [30] The goal involves the incorporation of the natural dynamics in shap-

ing the potential functions for autonomous on-orbit maneuvers. For the rendezvous 

problem, Muñoz assumes relative dynamics consistent with the Clohessy-Wiltshire 

(CW) system which has the advantage of linearity due to a circular Chief orbit, but 

the principles still apply in the nonlinear relative motion system used in this analysis. 

Model predictive control (MPC), or “receding horizon control”, has been inves-

tigated for many years as a method of solving constrained multi-variable dynamic 
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optimization problems. [32, 33]. It can take many forms, but, in general, the basic 

structure of MPC uses a model of the system dynamics to design a series of control 

inputs that minimize an objective function; after the first set of control inputs are 

implemented, the system information is updated, and the processes is repeated such 

that a new set of control inputs are created–this process can repeat indefinitely, or can 

terminate when some end goal is reached. MPC has been the subject of investigation 

for control of formations of autonomous vehicles and swarms of small satellites. [34,35] 

The MPC formulation in this work is based on the work of Park et al, which uses the 

method of Brand et al to re-cast the model predictive control problem into a quadratic 

programming problem–to ease the computational burden on the spacecraft. [36–38] 

However, the obstacle avoidance element of the MPC control is partly handled by 

treating the obstacles as nonlinear path constraints, a method derived from the work 

of Jewison et al. [39]. 

The assignment problem is the problem of matching n agents to n tasks such 

that the total group benefit is maximized, or the total cost is minimized. There are 

numerous methods developed to solve the assignment problem, an early example is 

the “Hungarian method” by Kuhn. [8, 40] The traditional auction algorithm was de-

veloped by Bertsekas as a method for solving the classical assignment problem. [41] 

The algorithm proceeds similarly to its namesake: the agents “bid” on tasks, the 

“prices” of the tasks go up–changing their desirability, and the process continues 

until all the agents are ”satisfied” with their tasks. The “bids,” “prices,” and “sat-

isfaction” are mathematically defined in relation to the goals of the specific scenario. 

The auction algorithm is an intuitive and computationally simple method that has 

been shown to be effective and efficient at solving the assignment problem. [7,41] The 

auction algorithm also lends itself to parallelization, which can increase the speed of 

the assignment and decentralizes the decision making process. [42] There has been 

further investigation into distributed auctions for agents operating with limited or 

time-delayed information. [43] Auctions have been studied for use in assigning posi-
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tions inside swarms of small spacecraft, a similar application to what is discussed in 

this investigation. [35] 

1.3 Scope of Present Work 

The over-all goal is the creation of a decentralized autonomous guidance strategy 

for formation reconfiguration maneuvers. This work is focused on the development of 

this strategy manifested as a guidance algorithm and demonstrations of its feasibility 

through simulated formation reconfigurations. Rather than having a ground based 

operator controlling each spacecraft in the formation, the new formation geometry is 

determined by the operator, the guidance algorithm decides which spacecraft will go 

where in the new formation, and each spacecraft guides itself to its assigned position. 

An auction algorithm is developed to assign the spacecraft, and MPC and APF guid-

ance schemes are created to deliver the spacecraft. Special attention is applied to the 

collision avoidance requirements on each delivery method. The guidance algorithm 

is demonstrated in simulations of various reconfiguration maneuvers under Keplerian 

and perturbed orbital conditions. This work is arranged as follows: 

‹ Chapter 2: This chapter summarizes the system dynamics used in the simula-

tions. The Hill frame is defined and the relative equations of motion are derived, 

along with the linearized relative motion approximations used by the guidance 

algorithm. The orbital equations of motion perturbed by Earth’s J2 spherical 

harmonic term are provided. 

‹ Chapter 3: This chapter summarizes the auction algorithm created for the 

guidance algorithm and provides a demonstration the auction in action. The 

linear relative motion approximation described in the previous chapter along 

with simplified versions of the APF and MPC delivery schemes are used to 

estimate the maneuver effort and times of flight of the possible spacecraft-

target pairings to inform the costs used in the auction. The auction seeks an 

assignment which minimizes the formation cost. 
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‹ Chapter 4: This chapter summarizes the basic artificial potential function de-

livery method. The attractive potential is created from the spacecraft-target 

distance while the repulsive potential is based on the spacecraft-obstacle sep-

arations. The parameters which govern the attractive potential are discussed 

and their impacts analyzed. 

‹ Chapter 5: This chapter summarizes the adaptive artificial potential function 

method used by the APF delivery method in the guidance algorithm. The 

method of adapting the attractive potential to the relative motion dynamics is 

discussed, and the parameters involved are analyzed. The obstacle avoidance 

feature of APF guidance is demonstrated and examined. 

‹ Chapter 6: This chapter summarizes the model predictive control method of 

guiding the spacecraft. The objective function used in the MPC is presented 

and Brand et al’s method of reformatting MPC as a quadratic programming 

problem is presented. The impact of the various parameters involved is also 

discussed. 

‹ Chapter 7: This chapter summarizes the the additional steps undertaken to add 

collision avoidance to the MPC framework. Two methods of collision prevention 

are introduced and analyzed through simulations. Parameter variations are 

performed to high-light features of the MPC delivery scheme. 

‹ Chapter 8: This chapter presents simulation results of the guidance algorithm 

under various scenarios. The different delivery methods are compared, along 

with the impact of different spacecraft-target assignments. The performance of 

the guidance algorithm under perturbed conditions is also examined. 
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2. RELATIVE MOTION 

For a formation of spacecraft, accurately modeling the relative motion is a necessity 

for a guidance strategy. To represent the relative motion of spacecraft orbiting Earth, 

the Hill or Local-Vertical Local-Horizontal (LVLH) frame is used. The Hill frame is a 

reference frame attached to a spacecraft as it orbits the Earth. For a formation, one 

spacecraft can be designated the “Chief” while the others are denoted as “Deputies.” 

Alternatively, it is not required that the Chief be a physical vehicle, rather it may 

exist simply as a reference orbit for the formation. The Chief’s motion serves as the 

basis for the definition of the Hill frame with the Chief located at the origin. The x̂ 

direction is then aligned with the radius vector directed from Earth’s center toward 

the Chief, the ẑ direction is aligned with the Chief’s orbital angular momentum vector, 

and ŷ  is formed from ŷ = ẑ× x̂. If the Chief moves in a circular orbit, the ŷ  direction 

is aligned with the in-track velocity direction. The elements of the Hill frame are 

illustrated in Figure 2.1. The Chief orbit is given in red, with the vector connecting 

Earth’s center to the Chief given by rc and the Chief true anomaly represented by 

θc. The x̂ and ŷ  directions are indicated with ẑ  coming out of the page. In the Hill 

frame the positions of the Deputy spacecraft with respect to the Chief are given by 

ρ = xx̂+ yŷ + zẑ. 

2.1 Equations of Relative Motion 

The derivation of the equations of relative motion in the Hill frame begins with 

finding the kinematic equations of the Chief and Deputy. In the Hill frame, the vector 

connecting the center of the Earth and the Chief is represented as rc = rcx̂ where 

rc represents the distance from Earth’s center to the Chief, rc = |rc|. The angular 

velocity of the Chief is given by ω = θ̇  
cẑ  where θ̇  

c is the time rate of change of the 
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Figure 2.1. Schematic of the Hill frame. 

Chief’s true anomaly. The vector connecting the Earth’s center to the Deputy, rd, 

can be represented as: 

rd = rc + ρ = (rc + x)x̂ + yŷ + zẑ  = 

⎛ ⎜⎜⎜⎝ 
rc + x 

y 

z 

⎞ ⎟⎟⎟⎠ (2.1) 

Next, the time derivative of this rd vector is taken. Since the Hill frame is a rotating 

coordinate system, the basic kinematic equation is utilized: 

= 

⎛ ⎜⎜⎜⎝ 
ṙc + ẋ − θ̇  

cy 

ẏ + θ̇  
c(rc + x) 

⎞ ⎟⎟⎟⎠ ∂ 
ṙd = (rd) + ω × rd (2.2)

∂t 
ż 

The procedure is done again to find the time derivative of ṙd: 

= 

⎛ ⎜⎜⎜⎝ 
¨ r̈  c + ẍ − 2θ̇  

cẏ − θcy − θ̇  
c 
2 
(rc + x) 

¨ ÿ + 2θ̇  
c(ṙc + ẋ) + θc(rc + x) − θ̇  

c 
2 
y 

⎞ ⎟⎟⎟⎠ ∂ 
r̈  d = (ṙd) + ω × ṙd (2.3)

∂t 
z̈  

The same process is applied to find the time derivative of rc: 

ṙc = 
∂ 
(rc) + ω × rc = ṙcx̂+ θ̇  

crcŷ  (2.4)
∂t 
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And to find the time derivative of ṙc: 

2 
rc 

¨ θcrc + 2θ̇  
c r̈c = 

∂ 
(ṙc) + ω × ṙc = (r̈  c − θ̇  

c )x̂ + ( ṙc)ŷ (2.5)
∂t 

With the kinematic equations for r̈  c and r̈  d, found in Eq. (2.5) and (2.3), the next 

step is deriving the dynamical equations. 

Assuming the only force on the spacecraft is the force of gravity due to a spherically 

symmetric Earth, the dynamical equations for the Chief spacecraft in the Hill frame 

are given by: 
µ µ 

r̈  c = − rc = − x̂ (2.6)
3 2r rc c 

Where µ is the gravitational parameter of Earth. In this dissertation research, the 

m 2value of µ used in simulations and analysis is 3.986004415 × 1014 3/s . When the 

components of Eq. (2.5) are equated with the above, the following relationships are 

produced: 
µ 
r 

2 
r̈c = θ̇  

c rc − (2.7)
2 
c 

¨ θc 
2θ̇  

cṙc 
= − (2.8) 

rc 

Similarly, the dynamical equations for the Deputy spacecraft in the Hill frame are 

given by: ⎛ ⎜⎜⎜⎝ 
rc + x 

y 

⎞ ⎟⎟⎟⎠ (2.9)
µ µ

r̈d = − = −rd3 3r rd d 

z 

+ x)2 + y2 + z2
p

with rd = |rd| = (rc . When the components of Eq. (2.3) are equated 

with the previous equation, the nonlinear equations of relative motion are created: 

ṙcyµ µ2 
+ θ̇  

c x − 2θ̇  
c − ẏ) −¨ ( (rc + x) (2.10)x = 

32r rc rdc 

ṙcx µ2 
θ̇  
c y − 2θ̇  

c(ẋ − ) −ÿ = (2.11)y
3rc rd 

z̈ = − 
µ 

(2.12)z
3rd 
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These equations of motion are valid for any Chief on a Keplerian orbit and require 

no assumptions of circularity. Unless otherwise specified, the simulations in this work 

utilize these equations to represent the relative motion dynamics. 

2.2 Bounded Relative Motion 

To avoid drifting apart, it is necessary that the relative motion of the vehicles 

within the formation remain bounded. A fundamental concept in formation flying is 

the matching of the orbital energies of the Deputy spacecraft with that of the Chief. 

The purpose of this investigation is not to design the best formations for a particular 

mission, rather it is to create a guidance strategy for a formation to achieve any desired 

geometry. For this reason, the formation designs used in the simulations presented in 

this report are chosen more to highlight features of the guidance algorithm and the 

main restriction on the formation geometries is that the orbital energy is matched 

across the formation members. The Chief’s specific orbital energy is represented as 

Ec and is evaluated from the Chief orbit semi-major axis, ac: 

µ
Ec = − (2.13)

2ac 

The specific energy associated with the orbit of a Deputy is represented by Ed, and 

is defined as: 

1 µ 1 µ
Ed = ṙd 

2 − = ((ẋ − θ̇  
cy + ṙc)

2 + (ẏ + θ̇  
c(x + rc))

2 + ż2) − p
2 rd 2 (rc + x)2 + y2 + z2 

(2.14) 

When these two energies are equated, the following relationship is produced: 

1 µ µ
(( ̇x − θ̇  

cy + ṙc)
2 + (ẏ + θ̇  

c(x + rc))
2 + ż2) − p = − (2.15)

2 (rc + x)2 + y2 + z2 2ac 

Matching orbital energy allows formations that are bounded. For a given Chief or-

bit, an initial Deputy position, ρ, is selected and the relative velocity values are 

determined from Eq. (2.15). If all the initial relative velocity is chosen to be in the 

y direction, periodic motion–known as natural motion circumnavigation (NMC)–is 

produced in the Hill frame. This is demonstrated in Figure 2.2. 
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(a) x–y projection. (b) 3-D view. 

Figure 2.2. Natural motion circumnavigation in the Hill frame. 

Figure 2.2 shows three examples of energy matched natural motion circumnav-

igation trajectories. The positions corresponding to Chief orbit perigee are shown 

as squares with the arrows indicating the direction of motion. The Chief position is 

shown as an asterisk. The Chief orbit has a perigee altitude of 1,000 km, an inclina-

tion of 10 degrees, and an eccentricity of 0.1. The periods of the NMC ellipses are 

the same as the Chief period. 

2.3 Relative Motion Approximations 

The equations of relative motion given above exactly describe the relative mo-

tion of spacecraft orbiting a spherically symmetric body, however their nonlinearity 
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requires that they be numerically integrated to find the relative position and veloc-

ity of the Deputy spacecraft. In order to avoid this type of computationally costly 

process, it is often useful to use an approximation of the relative motion that can 

yield the relative position and velocity analytically. Perhaps the most well-known 

approximation is the Clohessy-Wiltshire (also known as, the Clohessy-Wiltshire-Hill 

or the Euler-Hill) equations–often abbreviated as “CW”, which use the assumption 

of a circular Chief orbit in their derivation. [11] The guidance algorithm described in 

this work makes use of the less well-known Yamanaka-Ankersen, abbreviated “YA”, 

state transition matrix (STM) approximation of relative motion. The YA STM does 

not make an assumption about orbit eccentricity in its derivation; therefore, the YA 

STM applies to a larger class of orbits than the CW approximation, however, the YA 

STM has a much more complex form. 

2.3.1 Clohessy-Wiltshire Equations 

The derivation of the CW approximation begins by examining the length of rd: s p 2x x2 + y2 + z2 

rd = |rd| = (rc + x)2 + y2 + z2 = rc 1 + + (2.16)
2rc rc 

The next step is to assume ρ < rc where ρ = |ρ| = 
p 
x2 + y2 + z2 . This is a safe 

assumption for many formation sizes since rc is measured from Earth center to the 

Chief orbit and ρ is measuring intra-formation distances. This assumption implies 

then that ρ2 << rc 
2 which indicates the last term in Eq. (2.16) can be safely ignored: r 

2x 
rd ≈ rc 1 + (2.17) 

rc 

Using the above approximation, the acceleration of rd in Eq. (2.9) is also examined: 

µ µ≈ (2.18)
3 r3 )3/2rd c (1 + 2 

r
x 
c 

The above approximation can be expanded as a Taylor series about x = 0, and this 

expansion yields: 
µ µ 3µx≈ − + O2 (2.19)
3 3 4 )5/2r r r (1 + 2 

r
x 
cd c c 
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The higher order terms are then neglected in the approximation. Next, a second 

assumption is made–again related to the difference in distance scales between the 

Chief orbital radius and the Chief-Deputy separation. This assumption is: � �5/2
2x 

1 + ≈ 1 
rc 

With the above assumption, the approximation in Eq. (2.19) takes the form: �� 
µ µ 3x 
3 ≈ 

3 
1 − (2.20) 

r r rcd c 

Since there is another underlying assumption that there are no disturbing forces acting 

on the spacecraft, we can use the conservation of orbital angular momentum to create 

a useful relation: 
µ rc 2 
= θ̇  

c (2.21) 
rc 
3 pc 

where pc is the semilatus rectum of the Chief orbit, defined as pc = ac(1−e2 
c ) where ac 

is the semimajor axis of the Chief and ec is the eccentricity of the Chief orbit. Using 

the approximation in Eq. (2.20) the dynamical equation of rd given in Eq. (2.9) can 

be written as: ⎛ ⎜⎜⎜⎝ 
rc + x 

y 

⎞ ⎟⎟⎟⎠ ≈ 

⎛ ⎜⎜⎜⎝ 
rc + x 

y 

⎞ ⎟⎟⎟⎠ ≈ 

⎛ ⎜⎜⎜⎝ 
rc − 2x 

y 

⎞ ⎟⎟⎟⎠ (2.22) 

�� 
3xµ µ µ

r̈d = − 1 −
3 3 3r r rc rd c c 

z z z 

In the last step of the approximation, the second order terms (x2/rc, xy/rc, and xz/rc) 

are neglected. With the acceleration thus approximated and using the relation in 

Eq. (2.21) the kinematic terms from Eq. (2.3) can be combined component-wise with 

Eq. (2.22) to form: ���� 
ṙc 2 rc 

ẍ = 2θ̇  
c ẏ − y + xθ̇  

c 1 + 2 (2.23) 
rc pc� �� � 
ṙc 2 rc 

ÿ = −2θ̇  
c ẋ − x + yθ̇  

c 1 − (2.24) 
rc pc 

rc 2 
z̈ = − θ̇  

c z (2.25) 
pc 

The last assumption for the Clohessy-Wiltshire approximation is that the Chief orbit 

is circular, thus, ec = 0, ṙc = 0, θ̇  
c = nc (where nc is the mean motion of the Chief 
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orbit), and pc = rc. Substituting these relations into Eq. (2.23)-(2.25) produces the 

Clohessy-Wiltshire equations of relative motion: 

ẍ = 2ncẏ + 3n 2 
c x (2.26) 

ÿ = −2ncẋ (2.27) 

z̈ = −n 2 
c z (2.28) 

Eq. (2.26)-(2.28) can in turn be solved to produce analytic expressions of the positions 

of the Deputy spacecraft: 

x(t) = A0 cos(nct + α) + xoff (2.29) 

3 
y(t) = −2A0 sin(nct + α) − nctxoff + yoff (2.30)

2 

z(t) = B0 cos(nct + β) (2.31) 

Where A0, α, xoff , yoff , B0, and β are determined by the initial conditions of the 

Deputy spacecraft. Though the CW equations provide analytic expressions for the 

relative motion in the Hill frame, Eq. (2.29)-(2.31), which eliminate the need for 

numerical integration, the circular reference orbit assumption severely curtails their 

region of applicability. 

2.3.2 Yamanka-Ankersen STM 

The guidance algorithm in this work makes use of a linear approximation of the 

relative motion dynamics known as the Yamanaka-Ankersen (YA) state transition 

matrix (STM) which does not assume a circular chief. [44] Since the YA approximation 

can be applied to eccentric reference orbits, its region of applicability is much larger 

than the CW equations; the trade off is that the YA STM is slightly more complex 

than the CW version as it requires information about the Chief true anomaly to 

accurately calculate the relative motion. Fortunately, the true anomaly of an orbit 

can be easily calculated using an iterative process on Kepler’s equation. [45] The YA 

approximation begins by changing the equations of motion into a format where the 

https://2.29)-(2.31
https://2.26)-(2.28
https://2.23)-(2.25
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Chief true anomaly, θc, is the dependent variable. This change can be performed 

because θc is monotonically increasing with respect to time. The derivative of an 

arbitrary variable, ζ for example, with respect to time can be reformulated as a 

derivative with respect to θc like so: 

dζ dθc dζ 
ζ̇ = = = θ̇  

cζ
0 (2.32)

dt dt dθc 

where (.)0 indicates the derivative with respect to the Chief true anomaly, θc. Simi-

larly, the second derivative with respect to time can be rewritten as: � � � � 
d2ζ d dζ d dζ¨ ζ = = = θ̇  

c θ̇  
c = 

dt2 dt dt dθc dθc! (2.33)
dθ̇  

c dζ d2ζ 0 2 
ζ 00θ̇  

c + θ̇  
c = θ̇  

cθ̇  
c ζ
0 + θ̇  

c
dθc dθc dθc 

2 

where (.)00 indicates the second derivative with respect to the Chief true anomaly, θc. 

Using the assumption that orbital angular momentum is conserved, a new constant, 

κ can be formed from the Chief specific orbital angular momentum magnitude, hc 

and the gravitational parameter of Earth, µ, like so: 

µ
κ ≡ (2.34)

3/2
hc 

The Chief specific orbital angular momentum magnitude can be expressed as hc = 

θ̇  
crc 
2 , which can be reformulated such that: 

hc hc
θ̇  
c = = (1 + ec cos(θc))

2 = κ2ν2 (2.35) 
r2 p2 
c c 

where an auxiliary variable, ν, is introduced such that: 

ν = 1 + ec cos(θc) (2.36) 

With this relation, the θ̇  
c 
0 
term in Eq. (2.33) can be expressed as: 

θ̇  
c 
0 
= 

d 
(κ2ν2) = 2κ2νν 0 = −2κ2 ec sin(θc)ν (2.37)

dθc 

Next, the approximate equations of relative motion, Eq. (2.23)-(2.25), can be rewrit-

ten as: 
3/2 2¨ ẍ = 2κθ̇  

c x + 2θ̇  
cẏ + θcy + θ̇  

c x (2.38) 

https://2.23)-(2.25
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3/2 2¨ ÿ = −κθ̇  
c y − 2θ̇  

c ẋ − θcx + θ̇  
c y (2.39) 

3/2 
z̈ = −κθ̇  

c z (2.40) 

These can be rewritten to be differential equations with respect to θc: 

2 0 3/2 2 2 000 0 0θ̇  
c x + θ̇  

cθ̇  
c x = (2κθ̇  

c + θ̇  
c )x + 2θ̇  

c y + θ̇  
cθ̇  

c y (2.41) 

2 0 2 3/2 2 000 0 0θ̇  
c y + θ̇  

cθ̇  
c y = (θ̇  

c − κθ̇  
c )y − 2θ̇  

c x + θ̇  
cθ̇  

c x (2.42) 

2 0 3/2 
θ̇  
c z 

00 + θ̇  
cθ̇  

c z 
0 = −κθ̇  

c z (2.43) 

Using the relations in Eq. (2.35)-(2.37) the above equations can be reformatted as: 

νx00 − 2ecsin(θc)x 0 − (3 + eccos(θc))x = 2νy0 − 2ecsin(θc)y (2.44) 

νy00 − 2ecsin(θc)y 0 − eccos(θc)y = −2νx0 + 2ecsin(θc)x (2.45) 

νz00 − 2ec 
0sin(θc)z = −z (2.46) 

A convenient coordinate transformation is: ⎤ ⎥⎥⎥⎦ 
z̃  z 

This transformation yields: 

⎡ ⎢⎢⎢⎣ 
⎡ ⎢⎢⎢⎣ 
⎤ ⎥⎥⎥⎦ 

x̃ x 

= ν (2.47)ỹ  y 

⎡ ⎢⎢⎢⎣ 
⎤ ⎥⎥⎥⎦ = ν 

⎡ ⎢⎢⎢⎣ 
⎤ ⎥⎥⎥⎦− ecsin(θc) 

⎡ ⎢⎢⎢⎣ 
x 

y 

⎤ ⎥⎥⎥⎦ 
0 0x̃ x 

0 0 (2.48)ỹ  y 

0 0z̃  z z 

It also yields: ⎡ ⎢⎢⎢⎣ 
⎤ ⎥⎥⎥⎦ = ν 

⎡ ⎢⎢⎢⎣ 
⎤ ⎥⎥⎥⎦− 2ecsin(θc) 

⎡ ⎢⎢⎢⎣ 
⎤ ⎥⎥⎥⎦− eccos(θc) 

⎡ ⎢⎢⎢⎣ 
x 

y 

⎤ ⎥⎥⎥⎦ 
00 00 0x̃ x x 

00 00 0 (2.49)ỹ  y y 

00 00 0z̃  z z z 

With these transformations Eq. (2.44)-(2.46) can be transformed to become: 

3 
x̃00 = 2ỹ 0 + x̃ (2.50)

ν 

https://2.44)-(2.46
https://2.35)-(2.37
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ỹ00 = −2x̃ 0 (2.51) 

z̃00 = −z̃  (2.52) 

This form of the approximate equations of relative motion is greatly simplified. The 

equation for z̃, Eq. (2.52), is a harmonic oscillator and can be solved analytically. 

The equations for x̃ and ỹ, Eq. (2.50) and (2.51), are coupled, but, also, ultimately 

solvable analytically. The details of the solution are presented in detail in Yamanka 

& Ankersen. [44] 

The solution to Eq. (2.50)-(2.52) are provided in the form of a state transition 

matrix (STM) which move the Deputy spacecraft’s state at time t0 and Chief true 

anomaly θc,0 to the spacecraft’s state at time tf and θc,f . The STM is created from 

two intermediate matrices, Φf and Φ− 
0
1 , like so: ⎛ ̃⎝ρ 

ṽ ṽ0 

where ρ̃0 and ṽ0 represent the Deputy spacecraft’s transformed initial Hill frame po-

sition and velocity. The transformation is given by ρ̃ = νρ and ṽ = −ecsin(θc)ρ + 

(1/κ2ν)v The intermediate matrices are composed of the following auxiliary vari-

ables: s = ν sin(θc), c = ν cos(θc), J = κ2(tf − t0), s0 = cos(θc) + ec cos(2θc), and 

c0 = −(sin(θc) + ec sin(2θc)). Unless otherwise indicated, all the elements in Φ− 
0
1 are 

evaluated at θc,0 and all the elements in Φf are evaluated at θc,f . The matrices are 

composed like so: 

⎞⎠ = Φf Φ
− 
0
1 

⎛⎝ρ̃0 

⎞⎠ (2.53) 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

−3ecs(ν 
1 + 

ν 
1 
2 ) 1 − ec 

2 0 ecc − 2 −ecs(1 + 
ν 
1 ) 0 

0 0 e2 
c − 1 0 0 0 

2ec3s( 1 + )
ν ν2 0 0 2ec − c s(1 + 1 )

ν 0 

3( c + ec)ν 0 0 s c(1 + 1 ) + ecν 0 

0 0 0 0 0 2e − 1c 

2−(3ν + e − 1)c 0 0 −ecs −ν2 0 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
Φ−1 = 

1 
1 − e2 

c 

(2.54) 

0 

https://2.50)-(2.52


 
 
 

22 

Φf = 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

0 0 −s −c 0 −(2 − 3ecsJ) 

1 0 −c(1 + 1 )
ν s(1 + 1 )

ν 0 3ν2J 

0 − cos(θc,f − θc,0) 0 0 − sin(θc,f − θc,0) 0 

0 0 0−s 0−c 0 s3ec(s
0J + )

ν2 

0 0 2s 2c − ec 0 3(1 − 2ecsJ) 

0 sin(θc,f − θc,0) 0 0 − cos(θc,f − θc,0) 0 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
(2.55) 

Using Eq. (2.54) and (2.55) in Eq. (2.53) produces the state of the Deputy spacecraft 

at time tf in the transformed coordinates: ρ̃ and ṽ. A simple transformation returns 

these to the standard Hill frame format: ρ = (1/ν)ρ̃ and v = κ2(ec sin(θc)ρ̃+ νṽ). 

2.4 Orbital Perturbations 

The strategy to assign and deliver spacecraft in a formation is initially applied 

under the assumptions of Keplerian motion. Even in Earth orbit, however, spacecraft 

are subject to numerous forces including the gravitational effects of Earth oblateness, 

Lunar gravity, Solar gravity, atmospheric drag, and numerous smaller accelerations. 

To demonstrate the applicability of the approach to more complex dynamical mod-

els, in select simulations an additional force is introduced, i.e., Earth oblateness. To 

include such a force into the dynamical model, the numerical integration is accom-

plished in the Earth Centered Inertial (ECI) frame, although the formulation of the 

assignement and delivery problems remains in the Hill frame. Thus, for simulations 

that incorporate oblateness, the equations of orbital motion are perturbed by the 

Earth J2 spherical harmonics. The dynamical equations are then rewritten as: �2 
!�� �2 �� µX Z X3 Reµ¨ X = − − 1 − 5J2 (2.56)

3 22r r r r r �2 
!�� �2 �� µY Z Y3 Reµ¨ Y = − − 1 − 5J2 (2.57)

3 22r r r r r �� �2 � �2 
!� µZ 3 Re 

3 − 5 
Z Zµ¨ Z = − − J2 (2.58) 

r3 2 r2 r r r 
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where µ is once again the Earth’s gravitational constant, Re is the Earth equatorial 
√ 

radius, r is the orbital radius (r = X 2 + Y2 + Z2), and J2 = 1082.63 × 10−6 and 

is non-dimensional In these equations X , Y , and Z represent the ECI x, y, and z 

coordinates, respectively. 

2.5 Relative Motion Demonstrations 

This section demonstrates the ability of the Clohessy-Wiltshire and Yamanaka-

Ankersen approximations to replicate the relative motion in the Hill frame. Simula-

tions are performed with the same initial conditions propagated using the non-linear 

equations of relative motion–Eq. (2.10)-(2.12), the CW equations–Eq. (2.29)-(2.31), 

the YA STM–Eq. (2.53), and, in the last example, the equations of orbital motion 

perturbed by the Earth J2 spherical harmonic–Eq. (2.56)-(2.58). The initial position 

of the Deputy is ρ = [2.5, 0, 2.3]T km in the Hill frame, with an initial velocity to 

travel on a natural motion circumnavigation arc–as calculated assuming a spherically 

symmetric Earth. The simulations presented in this section use a Chief orbit with a 

perigee altitude of 5,000 km and an inclination of 28 degrees, the Chief eccentricity 

varies in each simulation. 

2.5.1 ec = 0 

In the first simulation, the Chief eccentricity, ec, is zero–meaning the Chief orbit 

is circular. With a circular Chief orbit, the CW equations and YA STM produce 

the same prediction of relative motion. The initial conditions are propagated for 5 

periods of the Chief orbit under the CW, YA, and non-linear equations of relative 

motion (referred to as “2B” in the figures). The trajectories of each are depicted in 

Figure 2.3 with the key providing the color codes for each method of propagation and 

the black arrow showing the direction of motion. The initial and final position of the 

Deputy are represented by a circle and a square respectively, with the same color as 

the corresponding trajectory. There is little visual difference between the trajectories, 

https://2.56)-(2.58
https://2.29)-(2.31
https://2.10)-(2.12
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however, Figure 2.4 shows the position and velocity differences of the CW and YA 

approximations from the integrated 2B motion. Since the CW and YA approximations 

have the same output for this Chief eccentricity, there is no difference between them, 

but–as is expected with a linear approximation–the position error grows with time, 

while the velocity error varies sinusoidally. 

Figure 2.3. ec = 0 Relative Motion Demonstration. 

2.5.2 ec = 0.1 

In the next simulation, the Chief orbit has an eccentricity of 0.1; now the CW 

and YA approximations will give different results. Again, only the CW, YA, and 2B 

propagations are used in this simulation; and each propagation is performed for 5 

Chief orbits. The trajectories for this simulation are presented in Figure 2.5 with the 

same symbolism as in the previous example. The most obvious difference between the 
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Figure 2.4. CW & YA differences from 2B for Figure 2.3. 

propagations is the divergence of the CW prediction from the YA and 2B behavior; 

given initial conditions which create periodic motion under the nonlinear relative 

motion dynamics, the CW equations predict motion which departs from the Chief’s 

immediate area. A zoomed view of the trajectories is provided in Figure 2.6, which 

highlights how the YA approximation closely matches the integrated motion of the 2B 

trajectory. The position and velocity differences of the CW and YA approximations 

are shown in Figure 2.7, the CW motion–unsurprisingly–has a large difference from 

the integrated motion in both position and velocity, though the velocity difference 

behavior is, once again, sinusoidal. A zoomed view of the differences in Figure 2.8 

displays the YA separation from the integrated motion in a useful manner. The YA 

position and velocity differences are on the same order of magnitude as in Figure 2.4, 

demonstrating that the YA ATM is a superior approximation to the relative motion 

than the CW equations, for elliptic Chief orbits. 
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Figure 2.5. ec = 0.1 Relative Motion Demonstration. 

Figure 2.6. Zoomed view of Figure 2.5. 

2.5.3 J2 Dynamics 

The final simulation has a Chief of 0.2 eccentricity, and the J2 equations of motion 

are included in the propagation; the trajectory in the Hill frame produced by this 
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Figure 2.7. CW & YA differences from 2B for Figure 2.5. 

Figure 2.8. Zoomed view of Figure 2.7. 

propagation is labeled “J2” in the following figures. Once again all the propagations 

originate from the same initial conditions in the Hill frame and are performed for 

five Chief orbital periods–as calculated assuming a spherical Earth. The trajectories 

are displayed in Figure 2.9 with the same symbolism as previously used. As in the 

previous example, the CW approximation departs the vicinity of the Chief and its 
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full trajectory is not displayed in the figure. The J2 trajectory, shown in green, is also 

not periodic, however it stays in the vicinity of the 2B and YA trajectories. The J2 

trajectory appears to “spread” in the Hill ŷ  (or In-track) direction, when compared to 

the 2B motion. The position and velocity difference between the YA approximation 

and the J2 trajectory is shown in Figure 2.10, due to differences in scale, only portions 

of the CW-J2 position and velocity differences are able to be displayed. For this 

simulation, the YA STM prediction and the integrated J2 equations of motion diverge 

to a much greater degree than the YA-2B differences seen in previous examples; 

however, the YA approximation is still closer than the CW version. 

Figure 2.9. ec = 0.2 Relative Motion Demonstration. 

2.6 Relative Motion Summary 

The guidance algorithm developed in this dissertation operates in the Hill frame, 

defined in this chapter. In the simulations to follow, the system dynamics will either 

use the nonlinear equations of orbital relative motion for a spherically symmetric body, 
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Figure 2.10. CW & YA differences from J2 for Figure 2.9. 

Eq. (2.10)-(2.12), that operate in the Hill frame, or the simulations will utilize the 

orbital equations of motion perturbed by Earth’s J2 harmonic, Eq. (2.56)-(2.58), that 

operate in the ECI frame. Two approximations of relative motion in the Hill frame 

are introduced, the Clohessy-Wiltshire equations and the Yamanaka-Ankersen STM. 

As demonstrated in simulations, the YA STM provides a superior approximation 

than the Clohessy-Wiltshire equations for elliptic and perturbed Chief orbits. As a 

wide range of eccentricities are possible for future formation missions, the guidance 

algorithm makes use of the Yamanaka-Ankersen approximation to simulate relative 

orbital motion when necessary. 

As outlined in following chapters, the guidance algorithm utilizes state transition 

matrices for designing maneuvers in the relative motion frame. It is possible to 

create a state transition matrix by numerically integrating linearized equations of 

motion for variations around a reference trajectory, a reference trajectory that is 

created through numerical integration of either the nonlinear equations of relative 

motion–Eq. (2.10)-(2.12)–or the nonlinear equations of perturbed orbital motion– 

Eq. (2.56)-(2.58). Additionally, there are other numerical methods of producing a 

STM, however, a state transition matrix created through numerical means remains a 

https://2.56)-(2.58
https://2.56)-(2.58
https://2.10)-(2.12
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linearized approximation of nonlinear dynamics. Therefore, the guidance algorithm 

uses the analytic Yamanaka-Ankersen STM where appropriate rather than an STM 

created numerically. 



31 

3. AUCTION ALGORITHM 

The assignment problem is formulated as the task of assigning spacecraft to new 

positions in the formation; consequently, n spacecraft must be matched to n targets 

in the desired formation. A quantifiable cost, bij , is associated with the matching 

of each spacecraft i to target j, and the goal is the assignment that minimizes the 

total cost to the entire formation. This construction of the assignment problem is 

known as a “linear sum assignment problem” and there are numerous approaches 

to solving such problems, each with advantages and disadvantages. [8] As previously 

discussed, the overarching guidance scheme employs an auction process (also labeled 

an “auction algorithm”) to assign the spacecraft; the auction algorithm is attractive 

because of its computational simplicity, its success in producing near-equilibrium 

(minimized cost) assignments, [7] and its ability to be implemented in parallel. [42,43] 

The auction process used in the guidance algorithm is based on the version developed 

by Bertsekas, however, it is modified to look for a minimum expense rather than a 

maximum benefit. [46] 

3.1 Cost, Price, Expense, and Satisfaction 

A key to a successful auction is determining the costs associated with each spacecraft-

target pairing such that the final assignment corresponds to a desirable formation from 

the operator viewpoint. The costs used in the auction are based on the estimated 

ΔV , the estimated time of flight (T oF ), or some suitable combination. Before the 

auction commences, the algorithm first determines the cost values for each spacecraft 

to reach every target. These estimates are produced via running a simulation of the 

spacecraft traveling to every target using the Yamanaka-Ankersen approximation to 

represent the relative motion dynamics and either the artificial potential function or 
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model predictive control (depending on which approach is used during the compu-

tation of the maneuver) guidance strategy to deliver the spacecraft. In these cost 

calculation simulations, no obstacles are incorporated, and, in the MPC case, the 

quadratic-programming formulation calculates the control costs. For example, for 

spacecraft i traveling to target j, the maneuvering ΔV in the simulation is ΔVij in 

units of m/s and time required is T oFij in units of the Chief orbital period. These 

are combined to yield the cost of target j for spacecraft i such that: 

bij = ΔVij
F T oFij

L (3.1) 

where F and L are the scalar weightings on maneuvering cost and time of flight, 

respectively. In a more sophisticated strategy, the weightings can be separated by 

spacecraft, Fi and Li, by target, Fj and Lj , or some combination of the two. In the 

examples in this dissertation, the values of F and L are always either 1 or 0, such 

that if F = 1 then L = 0 and vice versa, thus the cost is based solely on ΔV or T oF . 

Separate from the cost assessed for every pairing, each target also commands its 

own price. The prices can be initially set the same to the same value over all targets, 

or the prices can be set individually. For target j, the price is denoted pj . As the 

auction proceeds, the prices may rise, and the desirability of the targets are modified. 

The expense of target j to spacecraft i is represented by vij and is the combination 

of cost and price, i.e.: 

vij = bij + pj (3.2) 

In the auction, each spacecraft is seeking to minimize its expense. Spacecraft i is 

“satisfied” with target j if: 

vij ≤ min {vik} + � (3.3) 
k=1,...,n 

where � is a slack variable introduced to prevent tie bids and to speed up the auction 

process–this technique is labeled as “�-Complementary Slackness.” [7] An “equilib-

rium assignment” occurs when all spacecraft are satisfied. Bertsekas investigates the 

optimal size for � and determines that, for n members of the auction, the optimal 
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size is � < 1/n. [7] In the auction algorithm incorporated into the guidance strategy, 

� = 1/(n + 1). As the number of spacecraft, n, increases, � decreases. 

3.2 Bidding Phase 

Once all the costs are computed for every spacecraft, the auction begins. In the 

beginning, all the spacecraft are unassigned, and, as the auction proceeds, spacecraft 

are gradually assigned until the auction terminates with every spacecraft assigned to 

a target. Each round of the auction starts with the bidding phase and only unassigned 

spacecraft participate in the bidding phase. Let I indicate the subset of unassigned 

spacecraft. Then for each spacecraft i, where i ∈ I, the algorithm determines the 

target, ji, with the minimum expense for spacecraft i: 

ji = argmin{vij } (3.4) 
j∈A(i) 

where A(i) is the subset of targets that are available to spacecraft i. For the following 

simulations, every target is available to every spacecraft, so A(i) = 1, ..., n. However, 

this auction formulation allows for scenarios where certain spacecraft are restricted to 

subsets of the targets. With the most desirable target identified, the corresponding 

minimum expense, vi, is also constructed: 

vi = viji = biji + pji = min {vij } (3.5) 
j∈A(i) 

The second lowest expense, wi is also evaluated: 

wi = min {vij } (3.6) 
j∈A(i), j 6=ji 

With the lowest, vi, and second lowest, wi, set of expenses determined, spacecraft i 

will create a bid, γi, for target ji, one that is based on the difference between the 

minimum and second lowest expense such that: 

γi = wi − vi + � (3.7) 

where the slack variable, �, once again emerges to ensure that the minimum bid size 

is �. Every unassigned spacecraft is processed and submits a bid. It is possible that 
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one target receives multiple bids and several targets receive no bids. The auction 

algorithm records which targets received bids, the bid values, and the spacecraft 

bidding. The auction then moves into the assignment phase. 

3.3 Assignment Phase 

In the assignment phase, every target that received a bid follows up with a pro-

cedure to be assigned a spacecraft. For target j, let Π(j) be the set of spacecraft 

submitting bids. First, the algorithm identifies the bidder, ij , with the highest bid: 

ij = argmax{γi} (3.8) 
i∈Π(j) 

The corresponding maximum bid, γ∗ , is determined: 

γ ∗ = max {γi} (3.9) 
i∈Π(j) 

Next, target j is assigned to spacecraft ij and target j’s price, pj , increases by γ∗ : 

p + 
j = p − 

j + γ ∗ (3.10) 

where p − 
j represents the prior price and p + 

j represents the price after the bid is added. 

Any spacecraft that was previously assigned to target j is now unassigned, and any 

other spacecraft in Π(j) remain unassigned. Once every target that received a bid goes 

through this procedure and the prices are accordingly adjusted, the algorithm returns 

to the bidding phase and the process repeats if any spacecraft remain unassigned. The 

auction terminates once every spacecraft is assigned, and that assignment is then 

used in the delivery phase of the guidance algorithm. This auction structure allows 

for scenarios with an unequal number of spacecraft and targets, perhaps representing 

a formation that has lost one or more spacecraft. 

3.4 Demonstration 

A demonstration of the improved auction process in action will begin with the 

formation depicted in Figure 3.1. The Chief orbit for this scenario has a perigee 
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altitude of 1,000 km and an eccentricity of 0.1; the Chief point in the Hill frame is 

depicted as a black asterisk. The initial positions of the spacecraft (corresponding 

to Chief perigee) are depicted as red circles and numbered 1 through 4. The initial 

positions of the targets in the desired formation are depicted as blue circles and 

identified as A through D, their trajectories are given in blue with arrows indicating 

the direction of motion. For this simulation the auction will use the APF guidance 

described in a later chapter to calculate the costs. Additionally, all the cost will be 

calculated from the estimated ΔV , so F = 1 and L = 0 in Eq. (3.1). The costs for 

each pairing (bij ) are given in Table 3.1. Initially, all the targets have the same price, 

zero (pj = 0 for j ∈ [A, B, C, D]), thus, at the beginning of the auction, the expenses 

for each pairing–vij in Eq. (3.2)–are equal to the costs. 

Figure 3.1. Auction Demonstration Example Formation. 
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Table 3.1. Pairing Costs for Figure 3.1. 

A B C D 

1 

2 

3 

4 

1.5147 

2.4462 

1.6945 

2.1928 

4.5493 

2.5407 

3.4004 

4.1472 

0.7919 

1.8264 

1.1334 

0.9358 

4.3041 

4.6580 

5.6651 

3.3964 

With the costs for each pairing tabulated, the auction begins. As is evident in 

Table 3.1, target C has the lowest cost for each spacecraft and therefore receives bids 

from all four spacecraft like so: 

S/C Bid 

1 0.9228 

2 0.8198 

3 0.7611 

4 1.4570 

Since spacecraft 4 has the largest bid, it is assigned to target C, and the price of 

target C is increased to pC = 1.4570. Since spacecraft 1, 2, and 3 are still unassigned 

the auction continues. With the price change of target C, the expenses for each 

target-spacecraft pairing are expressed in Table 3.2. These are the values which will 

form the basis of the bids in the second round. 

Table 3.2. Expense Table after Round 1. 

A B C D 

1 

2 

3 

4 

1.5147 

2.4462 

1.6945 

2.1928 

4.5493 

2.5407 

3.4004 

4.1472 

2.2488 

3.2834 

2.5904 

2.3928 

4.3041 

4.6580 

5.6651 

3.3964 
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In the second round, only spacecraft 1, 2, and 3 participate since spacecraft 4 is 

assigned to target C. From Table 3.2, it is clear that target A has the lowest expense 

for these spacecraft, so they submit bids on target A like so: 

S/C Bid 

1 0.9342 

2 0.2945 

3 1.0959 

Since spacecraft 3 has the highest bid, it is now assigned to target A–whose price 

increases to pA = 1.0959. With the price increase of target A, the pairing expense 

values change again, the new expenses are presented in Table 3.3. Since two spacecraft 

(1 and 2) are still unassigned the auction continues. 

Table 3.3. Expense Table after Round 2. 

A B C D 

1 

2 

3 

4 

2.6106 

3.5421 

2.7904 

3.2887 

4.5493 

2.5407 

3.4004 

4.1472 

2.2488 

3.2834 

2.5904 

2.3928 

4.3041 

4.6580 

5.6651 

3.3964 

In the third round, spacecraft 2 places a bid of 0.9426 on target B, since it has the 

lowest expense value for this spacecraft, while spacecraft 1 places a bid of 0.5618 on 

target C. Since both spacecraft are the only bidders on those targets, they “win” this 

round and are assigned to them. However, because spacecraft 4 had been assigned to 

target C, it is now unassigned and the auction continues. At the end of three rounds 

the assignments are: 

S/C T ar 

1 C 

2 B 

3 A 

4 − 



38 

In this scenario, the auction terminates after seven rounds–when all spacecraft are 

assigned to targets. The final prices for each target are given in Table 3.4 where it 

can be seen that target C has the highest price–corresponding to its desirability–and 

target D has the lowest–corresponding to its high cost for every spacecraft. 

Table 3.4. Final Prices for Targets in Figure 3.1 

A B C D 

p 2.0301 0.9426 2.7911 0.5305 

In an auction process, the measure of an assignment is each spacecraft’s satisfac-

tion, described in Eq. (3.3). The final assignment (T ar), the corresponding expense 

(Exp), the minimum expense (Exp∗), and the corresponding desired target (T ar∗) 

are presented for each spacecraft (S/C) in Table 3.5. There are two spacecraft (3 and 

4) which are not assigned to their most desired target (A and C respectively). How-

ever, these spacecraft are within � of their minimum expenses, demonstrating these 

spacecraft are “satisfied” with the assignment. (For four spacecraft � = 1/5.) The 

auction process succeeds in producing satisfactory assignments for the formation. 

Table 3.5. Final Assignment and Expenses for Figure 3.1 

S/C T ar Exp Exp∗ T ar∗ 

1 

2 

3 

4 

A 

B 

C 

D 

3.5448 

3.4834 

3.9246 

3.9269 

3.5448 

3.4834 

3.7246 

3.7269 

A 

B 

A 

C 

3.5 Auction Summary 

According to Burkard and Ç ela, the worst case complexity of an auction algorithm 

of this structure is O(n3 ∗ log(nB)) steps to find a satisfactory assignment for n 

spacecraft–where B = max{bij }. [8] For comparison, a full grid-search method which 

tests every pairing permutation to find the minimum overall cost has n! steps. The 
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guidance algorithm outlined in this dissertation is designed to work with formations 

of any number of spacecraft, even extremely large numbers, and for that reason this 

auction process is chosen over a method which tests every possible combination of 

spacecraft and targets. 

The auction operates with costs calculated from the estimated maneuver ΔV and 

time of flight values for each spacecraft to reach each target. Depending on the deliv-

ery method used, either MPC or APF guidance is used to calculate these estimates, 

and the estimates are created using the YA approximation of relative motion–thus, 

eliminating the need to integrate equations of motion. The auction proceeds in rounds 

with each round consisting of a bidding phase and an assigning phase; the auction 

only terminates when all spacecraft are assigned. The auction delivers assignments 

that are “satisfactory” to each spacecraft, as defined in this chapter. With the as-

signment determined, the guidance algorithm next begins delivering the spacecraft to 

their assigned targets. 
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4. ARTIFICIAL POTENTIAL FUNCTIONS 

Once the spacecraft have been assigned to their new positions in the formation, the 

next task of the guidance algorithm is to deliver the spacecraft safely and efficiently 

to these positions. In choosing a delivery method, a balance must be struck be-

tween maneuvering ΔV used, time of flight, and computational demands on the 

spacecraft. This chapter introduces the fundamentals of artificial potential function 

(APF) guidance and the additions to APF guidance, designed to maintain robustness 

and simplicity while reducing the ΔV usage. 

Artificial potential function guidance is an autonomous motion planning method-

ology that links the kinematic planning problem with the dynamic execution problem 

in an efficient manner. [23, 24] This linkage is accomplished by creating a potential 

function that incorporates the necessary system information for the spacecraft to 

reach its goal: the minimum of the potential is placed at the target location and 

any obstacle locations are surrounded by areas of high potential. Consequently, the 

negative gradient of the potential leads to the desired target and avoids any obsta-

cles. This gradient can represent the vehicle path; however, in this work, the negative 

gradient is used to design maneuvers for the spacecraft. The APF guidance strategy 

offers simple mathematical guidance laws that can be implemented in real time and 

do not require any a priori assumptions concerning the system dynamics. [23,24] The 

trade-off for this simplicity is an APF control law that is not inherently optimal. 

Therefore, the guidance algorithm actually employs an extension of APF guidance 

denoted Adaptive Artificial Potential Function (AAPF) guidance. The AAPF guid-

ance method uses a state transition matrix representation of the system dynamics 

to adapt the potential field to the natural flow of the system in an effort to improve 

the propellant performance of the guidance system, and is described in the following 

chapter. [30] 
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4.1 Artificial Potential Function Construction 

To create a potential field with the minimum at the target and maximums sur-

rounding the obstacles, the potential function is separated into attractive and re-

pulsive pieces. The attractive potential function is typically a Lyapunov candidate 

function to ensure that the spacecraft approaches the target asymptotically. The 

attractive potential, φa, is a quadratic function based on the separation between the 

spacecraft position in the Hill frame, ρ, and the target position in the Hill frame, ρt. 

It is described as follows: 

1 
φa = (ρ − ρt)

T Q (ρ − ρt) (4.1)
2 

This construction of φa ensures the attractive potential is a Lyapunov function if 

the shaping matrix, Q, is a positive-definite matrix. An example of an attractive 

potential of this construction is shown in Figure 4.1 for a two-dimensional system. 

Figure 4.1. φa Surface Plot. 

The repulsive potential, φr, is designed to create areas of high potential around 

any obstacle. For a single obstacle, φr is described: 

K (ρ − ρt)
T Q (ρ − ρt)

φr = 
T (4.2)

2 (ρ − ρo) P (ρ − ρo) − 1 

Here, K is a scalar weighting factor, determined by the user, ρo is the position of the 

obstacle in the Hill frame, and P is a positive-definite matrix that describes the size 
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and shape of an ellipsoid. The denominator in the repulsive potential is structured 

to create an ellipsoid of repulsion around the obstacle. This ellipsoid accommodates 

uncertainty in the obstacle position and shape. The numerator essentially contains 

the attractive potential–which ensures that the target position is at the minimum 

of the total potential–similar to the method described by Ge and Cui as well as 

Muñoz. [27,30] If there are multiple obstacles, the repulsive potential is a combination 

of the individual potentials. For example, if there are N obstacles, and ρo,i represents 

the position of the i-th obstacle in the Hill frame, the repulsive potential is: 

XK 
N 

(ρ − ρt)
T Q (ρ − ρt) 

= (4.3)φr 
2 T 

i=1 (ρ − ρo,i) P (ρ − ρo,i) − 1 

Marking the other spacecraft as obstacles prevents intra-formation collisions, however, 

it is also possible to include obstacles beyond the formation members which could 

represent debris or even other satellites. An example of a repulsive potential for a 

two-dimensional system with three obstacles is shown in Figure 4.2. 

Figure 4.2. φr Surface Plot. 

The total potential is the sum of the attractive and repulsive portions: φ = φa +φr. 

An example of φ is shown in Figure 4.3; this potential is a combination of Figure 4.1 

and 4.2. The desired velocity recommended by the APF guidance law, i.e., vd, is the 

negative gradient of the total potential: 

vd = −rφ = −rφa −rφr (4.4) 
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This desired velocity, vd, is the velocity as defined in the Hill frame, so it is a velocity 

with respect to the Chief. This desired velocity guides the spacecraft to the target 

location—provided the target is stationary. For a moving target, the spacecraft must 

match the target position and velocity to enable a rendezvous or to achieve the 

correct natural motion circumnavigation for the formation. The velocity matching is 

accomplished with a method similar to one used by Ge and Cui and by Muñoz: a 

simple velocity matching condition that is added to the vd calculation. [28, 30] 

Figure 4.3. φ Surface Plot. 

To match the velocity vectors, the difference between the spacecraft and target 

velocities is combined with the desired velocity from the negative gradient of the 

potential function. Additionally, a velocity vector angle separation threshold deter-

mines if a maneuver is necessary. The Hill frame velocity vector of the spacecraft is 

represented by v and the target velocity vector by vt. 

v = 

⎡ ⎢⎢⎢⎣ 
ẋ 

ẏ 

⎤ ⎥⎥⎥⎦ (4.5) 

ż 

An error in velocity, εv, is defined as the difference between the spacecraft and target 

velocity vectors: 

εv = v − vt (4.6) 
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The angle, ψ, between εv and vd is also defined: � � 
εv · vd

ψ = arccos (4.7)
|vd||εv| 

If ψ is larger than a user set threshold, ψ ≥ ψ∗ , then the APF guidance strategy 

recommends an impulsive ΔV, defined as the difference between vd and εv: 

ΔV = vd − εv (4.8) 

Again, this impulsive ΔV is expressed in terms of Hill frame coordinates and is 

relative to the Chief. 

4.2 Parameter Choice 

There are several parameters that affect the performance of the artificial potential 

function guidance method. Among them are Q–the attractive potential shape matrix, 

K–the repulsive potential weighting, ψ∗–the threshold angle, and umax–the maximum 

control effort allowed at each maneuver. The repulsive potential weighting parameter 

is examined in a later chapter; this section will examine the impact that varying Q, 

ψ∗ , and umax have on the spacecraft trajectory. All the simulations in this section are 

performed with only one spacecraft and one target; no obstacles are present. 

The simulations take place in two scenarios. The first is named the “Near Sce-

nario” and its initial conditions in the Hill frame are displayed in Figure 4.4. This 

scenario has a Chief orbit with a perigee altitude of 1,000 km, an orbital period of 

just under 179.5 minutes, and an eccentricity of 0.3. The Chief is represented by a 

black asterisk in all the following Hill frame representations. The spacecraft initial 

position is [500, 150, 150]T m in the Hill frame and is represented by a red circle in 

Figure 4.4; the spacecraft’s initial trajectory places it on a natural motion circum-

navigation ellipse, which is shown in red. The target trajectory is depicted in blue 

and is also an NMC ellipse in the Hill frame, the target position at Chief perigee, 

also the start time of all the simulations, is [200, −15, −25]T m. The black arrows in 

Figure 4.4 indicate the direction of motion. The second scenario is the “Far Scenario” 
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displayed in Figure 4.5. For this scenario, the Chief orbit has an eccentricity of 0.15, 

a perigee altitude of 3,000 km, and a period of slightly over 192 minutes. The same 

symbolism as in Figure 4.4 is used in Figure 4.5, the initial spacecraft position is 

[100, 0, 0]T m in the Hill frame and the initial spacecraft Hill velocity of 6.9687 cm/s 

in the radial direction places the spacecraft on a trajectory that leaves the Chief 

vicinity. The target trajectory is again an NMC ellipse with a Chief perigee position 

of [1.155, 1.155, 1.155]T km in the Hill frame. 

Figure 4.4. Near Scenario. 

4.2.1 Attractive Potential Strength 

The first parameter for consideration is the attractive potential shape matrix, Q, 

specifically the strength of the shape matrix. The matrix Q must be a positive definite 

matrix in order to satisfy the requirement that the attractive potential function, φa, 

be a Lyapunov candidate function. For the analysis in this section, Q is of the 

form: Q = k ∗ I3×3, where I3×3 represents a 3 × 3 identity matrix and k is a scaling 

factor. This form of Q is a positive definite matrix, and, in essence, this form gives 
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Figure 4.5. Far Scenario. 

no preference for the potential function to any direction in the Hill frame. Because 

the attractive potential is constructed from spacecraft-target position differences, the 

magnitude of vd, vd = |vd|, can be much larger than the difference in relative velocities 

between the spacecraft and target; thus, k serves to scale the attractive potential so 

that the recommended maneuvers are more appropriately sized. The first simulations 

take place in the Near Scenario with ψ∗ = 45O and umax = 0.5 m/s, meaning that 

maneuvers are only performed if ψ ≥ 45O and the size of each individual maneuver 

ΔV is capped at 0.5 m/s. In the simulations, the size of each time step is 30 seconds, 

meaning that it is possible to perform a maneuver once every 30 seconds. The scaling 

on φa, k, varies from 0.005 to 1. There is a time limit of twice the Chief orbital period, 

about 359 minutes, applied to each simulation; if the spacecraft does not match the 

target position to within 2 m and the target velocity to within 1 cm/s under this time 

limit, the simulation is recorded as a failure. 
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The results for the successful simulations are displayed in Figure 4.6 where the 

total trajectory ΔV for each simulation is displayed in the top graph, while the times 

of flight (T oF ) for each simulation are displayed in the bottom graph. There is a clear 

change in behavior after k = 0.065: under this value, the ΔV results show similar if 

increasing behavior with k while the T oF results have similar values. For k > 0.065 

the simulation results become more erratic, in many simulations the spacecraft fails to 

reach the target, and in the successful simulations the trajectory ΔV costs increase 

drastically along with the times of flight. The minimum ΔV and T oF cases are 

displayed in Table 4.1; both occur for low k values. 

Figure 4.6. φa Scaling, Near Scenario. 

Table 4.1. φa Scaling, Near Scenario Minimums 

k ΔV [m/s] T oF [min] 

min ΔV 0.005 1.2103 12.5000 

min T oF 0.020 3.5364 12.0000 

Similar simulations are performed under the Far Scenario with identical param-

eter values except for a longer time limit. For these simulations the time limit is 3 
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times the Chief orbit period, about 9.6 hours. The ΔV and time of flight results 

for the successful simulations are displayed in Figure 4.7. There is a clear connec-

tion between increasing k and increasing ΔV and T oF values. Similar to the Near 

Scenario simulations, there is a change of behavior at k = 0.065 where simulations 

with k > 0.065 experiencing failures and “noisily” increasing ΔV and T oF results 

if successful. The minimum cases for the Far Scenario k variation simulations are 

displayed in Table 4.2. Again, similarly to the Near Scenarios, the minimums occur 

for low values of k. 

Figure 4.7. φa Scaling, Far Scenario. 

Table 4.2. φa Scaling, Far Scenario Minimums 

k ΔV [m/s] T oF [min] 

min ΔV 0.005 4.0348 33.0000 

min T oF 0.010 6.5361 31.5000 

In both the Near and Far scenarios it is expected that as k increases the value of 

φa increases (for the same spacecraft-target separation) and thus, vd, also increases, 

meaning the size of the desired maneuvers increases. This leads to a larger number of 

maneuvers performed at the maximum ΔV value of umax, and, therefore, a correlation 
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between increasing k and increasing trajectory ΔV cost is expected. However, the 

increasing times of flight and failures to reach the target require further explanation. 

It is useful to examine the behavior of a successful simulation to understand the 

failure cases. 

The simulation with k = 0.005 under the Near Scenario is an example of a suc-

cessful simulation. The trajectories are displayed in Figure 4.8, where the spacecraft 

trajectory is in red, the target trajectory in blue, and the initial spacecraft trajectory 

in pink. The final spacecraft position is represented by a red square with the corre-

sponding final target position as a blue “x”. The small colored arrows indicate the 

position and orientation of maneuvers while the black arrows indicate the direction 

of motion. In this simulation the spacecraft moves toward the target trajectory and 

matches the target state without incident. The corresponding spacecraft-target po-

sition differences are displayed in the top graph in Figure 4.9 as functions of time, 

while the velocity differences are displayed in the bottom graph. The position dif-

ferences decrease smoothly with time while the velocity differences do not decrease 

smoothly, however the simulation terminates with the spacecraft successfully reaches 

the target. The attractive potential value for the spacecraft at each time step is 

shown in Figure 4.10; it corresponds with the top graph in Figure 4.9. The difference 

between the magnitude of vd, vd, and the magnitude of εv, εv, is shown for each 

time step in Figure 4.11; this demonstrates how the maneuver recommended by the 

negative gradient of φa and the spacecraft-target velocity difference are on the same 

order. The sizes of each maneuver are displayed in Figure 4.12; only three maneuvers 

are performed, and two are at the umax limit of 0.5 m/s while the final maneuver is 

lower–corresponding to the low vd and εv values at that time step. The separation 

angle between εv and vd, ψ, is shown for each time step in Figure 4.13, where the zero 

values from Figure 4.12 occur at time steps where ψ < ψ∗ = 45O . In this simulation, 

the values of φa–and, by extension, vd–are of the correct order of magnitude to create 

maneuvers that allow the spacecraft to match the target position and velocity. 
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Figure 4.8. Near Scenario, k = 0.005 simulation trajectory. 

Figure 4.9. Spacecraft-target position and velocity differences from Figure 4.8. 

The Near Scenario simulation with k = 0.4 serves as an example of the APF 

guidance failing to reach the target. The trajectories are displayed in Figure 4.14 

with the same symbolism as in the previous example. The spacecraft appears to 

continuously overshoot the target position, which leads to the spacecraft trajectory 

circling around the target trajectory in a helical manner. This behavior is reflected 
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Figure 4.10. φa values from Figure 4.8. 

Figure 4.11. Difference between vd and εv values from Figure 4.8. 

in Figure 4.15, where, in the top graph, the spacecraft-target position difference is 

presented as a function of time–the position difference decreases initially, but begins 

to oscillate around values above zero. The velocity difference–presented in the bottom 

graph in Figure 4.15, after an initial transitory period, oscillates between close to zero 
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Figure 4.12. Maneuver values from Figure 4.8. 

Figure 4.13. vd and εv separation angle from Figure 4.8. 

and the umax value of 0.5 m/s. These oscillations are highlighted in Figure 4.16, which 

provides a zoomed view of Figure 4.15 after the 50 minute mark. The φa values at 

each time step, shown in Figure 4.17, again follow the spacecraft-target separation 

values; however, compared to Figure 4.10, the φa values are much higher for the same 
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separation–showing the impact of k. The higher φa values lead to correspondingly 

larger values of vd; the difference between vd and εv is shown for every time step 

in Figure 4.18 where initially the value of vd is orders of magnitude larger than 

εv. Figure 4.19 highlights the portion of Figure 4.18 for the time period when the 

spacecraft is in close proximity to the target; even at these lower separation distances 

the strength of φa is such that the size of vd is often several meters per second larger 

than εv. These high values of φa and vd lead to numerous maneuvers at the maximum 

ΔV level of umax, demonstrated in Figure 4.20 where the maneuver values at each time 

step are displayed. There is not a correlation between decreasing spacecraft-target 

separation, or decreasing vd value, and decreasing maneuver size as was shown in 

Figure 4.12. Finally, the separation angle between vd and εv, displayed in Figure 4.21, 

initially grows with time to be larger than ψ∗ , and then grows in an oscillating manner 

to be near 180O–which indicates the maneuver direction recommended by the negative 

gradient of φa is anti-parallel to the direction of which will match the spacecraft’s 

velocity to the target velocity. At the same time, the angle ψ oscillates from near 

zero to near 1800–another demonstration of the spacecraft overshooting the target due 

to the large maneuvers recommended by the high values of φa caused by the larger 

value of k. This simulation demonstrates the effects of scaling φa incorrectly; resulting 

in spacecraft maneuvers that prevent the spacecraft from matching the target velocity 

and position. 

4.2.2 Threshold Angle 

The second parameter for examination is the threshold angle, ψ∗ . This parameter 

determines if a maneuver is performed at a time step or not; if the angle between 

vd and εv, ψ, is greater than or equal to ψ∗ , a maneuver is performed. The first 

simulations take place in the Near Scenario with k = 0.005 and umax = 0.5 m/s, 

meaning that the shape matrix is Q = 0.005 ∗ I3×3 and the size of each individual 

maneuver ΔV is capped at 0.5 m/s. In the simulations, the size of each time step is 
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Figure 4.14. Near Scenario, k = 0.4 simulation trajectory. 

Figure 4.15. Spacecraft-target position and velocity differences from Figure 4.14. 

30 seconds, meaning that it is possible to perform a maneuver once every 30 seconds. 

The threshold angle,ψ∗ , varies from 0 to 90 degrees with steps of 5 degrees. There 

is a time limit of twice the Chief orbital period, about 359 minutes, that is applied 

to each simulation; if the spacecraft does not match the target position to within 2 

m and the target velocity to within 1 cm/s under this time limit, the simulation is 

recorded as a failure. 
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Figure 4.16. Zoomed view of Figure 4.15. 

Figure 4.17. φa values from Figure 4.14. 

The results for the successful simulations are displayed in Figure 4.22 where the 

total trajectory ΔV for each simulation is displayed in the top graph, while the times 

of flight (T oF ) for each simulation are displayed in the bottom graph. There are no 

failures in this set of simulations, all values of ψ∗ result in the spacecraft reaching the 

target under the time limit. The ΔV values exist in three groups, while the times of 
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Figure 4.18. Difference between vd and εv values from Figure 4.14. 

Figure 4.19. Zoomed view of Figure 4.18. 

flight do not exhibit the same clear division. There is a trend of increasing time of 

flight with increasing threshold angle. The minimum ΔV and time of flight cases for 

these simulations are displayed in Table 4.3, with both minimum ΔV and minimum 

time of flight occurring when ψ∗ = 40O . 
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Figure 4.20. Maneuver values from Figure 4.14. 

Figure 4.21. vd and εv separation angle from Figure 4.14. 

Table 4.3. Threshold Angle, Near Scenario Minimums 

ψ∗ [deg] ΔV [m/s] T oF [min] 

min ΔV 40 1.2103 12.5000 

min T oF 40 1.2103 12.5000 
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Figure 4.22. Threshold Angle, Near Scenario. 

Similar simulations are performed under the Far Scenario with identical parameter 

values–except for a longer time limit. For these simulations the time limit is 3 times 

the Chief orbit period, about 9.6 hours. The ΔV and time of flight results for the 

successful simulations are displayed in Figure 4.23. Once again, there are no failure 

cases for these simulations. There is a smoother curve of ΔV values for these simu-

lations than the previous examples, with the values initially decreasing with ψ∗ but 

rising again after ψ∗ = 60O . The times of flight again show a clear trend of increasing 

with ψ∗ . The minimum cases for these simulations are presented in Table 4.4, and 

they do not occur for the same ψ∗ value for this scenario. 

Table 4.4. Threshold Angle, Far Scenario Minimums 

ψ∗ [deg] ΔV [m/s] T oF [min] 

min ΔV 60 3.6657 47.5000 

min T oF 5 9.1832 19.5000 

There are no failure cases for these simulations, however useful information about 

the impact of ψ∗ can be extracted from examining the extreme cases. In the Far Sce-
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Figure 4.23. Threshold Angle, Far Scenario. 

nario simulations, the simulation with the maximum ΔV usage occurs when ψ∗ = 0O , 

essentially when the spacecraft performs a maneuver at every time step. The trajec-

tories for this simulation are presented in Figure 4.24 where the spacecraft trajectory 

is in red, the target trajectory in blue, and the initial spacecraft trajectory in pink–the 

initial spacecraft trajectory is only propagated for the length of the simulation, which 

is why it appears so short in this figure. The final spacecraft position is represented 

by a red square with the corresponding final target position as a blue “x”. The black 

arrows indicate the direction of motion. The spacecraft-target position differences for 

each time step are shown in the top graph in Figure 4.25 while the velocity differences 

are shown in the bottom graph. The position differences decrease smoothly with time, 

while the velocity differences initially grow–but then decrease smoothly to zero when 

the spacecraft matches the target position. The maneuver sizes are displayed for each 

time step in Figure 4.26, where–as expected, there is a maneuver performed at every 

time step. The initial maneuvers, with one exception, are at the umax limit of 0.5 m/s. 

This corresponds to the initial large position separation between the spacecraft and 

target, as the position separation decreases a threshold is reached and the maneuver 
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sizes begin decreasing. The separation angle between vd and εv for each time step is 

displayed in Figure 4.27. Even though it has no impact on the APF guidance in this 

simulation, it is interesting to note how small ψ quickly becomes. 

Figure 4.24. Far Scenario, ψ∗ = 0O simulation trajectory. 

For comparison with the maximum ΔV case, the maximum time of flight case 

of the Far Scenario simulations occurs when ψ∗ = 90O–corresponding to performing 

maneuvers only if vd and εv are at least perpendicular. The trajectories are pre-

sented in Figure 4.28, with the same symbolism as in the prior example. For this 

simulation the spacecraft stays on its initial trajectory for a short time before per-

forming a maneuver. The trajectory appears to overshoot the target at certain points; 

however, the spacecraft-target position differences at each time step are displayed in 

Figure 4.29 in the top graph, and the position differences decrease smoothly with 

time. The spacecraft-target velocity differences are similarly displayed in the bottom 

graph in Figure 4.29, and have some discontinuities corresponding to maneuvers, but 
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Figure 4.25. Spacecraft-target position and velocity differences from Figure 4.24. 

Figure 4.26. Maneuver values from Figure 4.24. 

fundamentally decrease with time. The maneuver sizes at each time step are shown 

in Figure 4.30; as is expected with a large ψ∗ value, there are large gaps between 

maneuvers–the first maneuver doesn’t occur until 35 minutes into the simulation. 

The initial performed maneuvers are at the umax limit for this simulation, again cor-

responding to the large spacecraft-target separation at those times; as the separation 
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Figure 4.27. vd and εv separation angle from Figure 4.24. 

decreases the maneuver sizes decrease as well. The vd and εv separation angle at 

each time step is given in Figure 4.31; this angle grows with time until the ψ∗ thresh-

old is reached at which point there is a discontinuity corresponding to a performed 

maneuver. 

4.2.3 Maneuver Size 

The final parameter for examination is the maximum maneuver size, umax. This 

parameter determines the size of performed maneuvers, if the magnitude of ΔV, ΔV , 

from Eq. (4.8) is larger than umax, the maneuver is rescaled like so: 

ΔV− 

ΔV+ = umax ∗ 
ΔV − 

where the − superscripts represent the values before the maneuver is rescaled, and 

the + superscript afterwards. In application, the value of umax is determined by the 

properties of the maneuvering system of the spacecraft; additionally, based on the 

impact the value of umax can have on the resulting trajectory, future operators may 

choose to vary umax for different maneuvers. The first simulations for this examination 

once again take place in the Near Scenario with k = 0.005 and ψ∗ = 45O , meaning 
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Figure 4.28. Far Scenario, ψ∗ = 90O simulation trajectory. 

Figure 4.29. Spacecraft-target position and velocity differences from Figure 4.28. 

that the shape matrix is Q = 0.005 ∗ I3×3 and maneuvers are only performed if 

ψ ≥ 45O . In the simulations, the size of each time step is 30 seconds, meaning that it 
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Figure 4.30. Maneuver values from Figure 4.28. 

Figure 4.31. vd and εv separation angle from Figure 4.28. 

is possible to perform a maneuver once every 30 seconds. The maximum maneuver 

size varies according to these values: 0.1, 0.5, 1, 1.5, 2, 5, 10, or 100 m/s. There 

is a time limit of twice the Chief orbital period, about 359 minutes, that is applied 

to each simulation; if the spacecraft does not match the target position to within 2 
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m and the target velocity to within 1 cm/s under this time limit, the simulation is 

recorded as a failure. 

The results for the successful simulations are displayed in Figure 4.32 where the 

total trajectory ΔV for each simulation is displayed in the top graph, while the times 

of flight (T oF ) for each simulation are displayed in the bottom graph. There are 

no failures in this set of simulations, all values of umax allow spacecraft trajectories 

which reach the target under the time limit. The ΔV results increase with umax until 

a maximum value of 4 m/s is reached. Similarly, the times of flight reach a minimum 

of 12 minutes for the same umax values. This indicates that the largest maneuver 

sizes recommended by the APF guidance scheme for this scenario are at or beneath 

2 m/s. The minimum cases for these simulations are displayed in Table 4.5; for the 

Near Scenario the minimum ΔV result corresponds with the lowest tested umax value. 

Figure 4.32. umax Variations, Near Scenario. 

Table 4.5. umax Variations, Near Scenario Minimums 

umax [m/s] ΔV [m/s] T oF [min] 

min ΔV 0.1 1.1068 23.0000 

min T oF 2.0 3.9499 12.0000 
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Similar simulations are performed under the Far Scenario with identical param-

eter values except for a longer time limit. For these simulations the time limit is 3 

times the Chief orbit period, about 9.6 hours. The ΔV and time of flight results 

for the successful simulations–and all the simulations are successful–are displayed in 

Figure 4.33; once again, the ΔV values for each trajectory increase with umax and the 

times of flight show a clear decreasing trend. In the Far Scenario, the ΔV values reach 

a maximum of 19.2011 m/s and the times of flight reach a minimum of 12.5 minutes, 

indicating that the maximum maneuver sizes recommended by the APF guidance at 

each time step are at most 10 m/s in this scenario. The larger size compared to the 

Near Scenario is explained by the larger initial spacecraft-target separations in these 

simulations. 

Figure 4.33. umax Variations, Far Scenario. 

Table 4.6. umax Variations, Far Scenario Minimums 

umax [m/s] ΔV [m/s] T oF [min] 

min ΔV 0.5 4.0348 33.0000 

min T oF 10.0 19.2011 12.5000 
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4.3 APF Summary 

The artificial potential function guidance scheme presented in this chapter is fun-

damentally based around the position separation between the spacecraft and the 

target, and it primarily aims to reduce that separation in designing the maneuvers. 

Adding a velocity matching term to the recommended maneuver allows the space-

craft to match the target state, employing a threshold angle on the recommended 

ΔV limits the number of maneuvers the spacecraft implements, and a maximum 

maneuver size limit prevents the spacecraft from performing physically impossible or 

undesirably large maneuvers. However, the scaling of the attractive potential shape 

matrix is the parameter that has been shown to determine whether the spacecraft 

reaches the target or not. The following chapter will implement a method to adapt 

the attractive shape matrix to incorporate the influence of the natural dynamics, and 

it will examine the behavior of APF guidance in the presence of obstacles–including 

the effects of K, the repulsive potential weighting. 
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5. ADAPTIVE ARTIFICIAL POTENTIAL FUNCTIONS 

The development of the Adaptive Artificial Potential Function method is described 

by Muñoz. [30] The goal involves the incorporation of the natural dynamics in shap-

ing the potential functions for autonomous on-orbit maneuvers. For the rendezvous 

problem, Muñoz assumes relative dynamics consistent with the Clohessy-Wiltshire 

(CW) system which has the advantage of linearity due to a circular Chief orbit, but 

the principles still apply in the nonlinear relative motion system used in this analysis. 

The Adaptive Artificial Potential Function (AAPF) development begins with a two 

point boundary value problem in the linear system. In a linear system, the equations 

of motion of a spacecraft can be easily described using a State Transition Matrix 

(STM), Φ(t, t0): ⎡⎣ρ 
⎤⎦ ⎡⎣ρ0 

⎤⎦= Φ(t, t0) (5.1) 
v v0 

Here, t0 is the starting time, t is the current time, and ρ0 and v0 represent the 

initial position and initial velocity vectors of the spacecraft in the Hill frame. The 

STM in Muñoz’s work is evaluated using the CW equations and a circular Chief orbit 

as a reference. For the nonlinear relative motion system in this investigation, the 

State Transition Matrix used in AAPF guidance can be created either by numerical 

integration of the relative motion equations using the target as a reference or with an 

analytical approximation using the Chief elliptical orbit as a reference. The guidance 

algorithm described in this work uses the Yamanaka-Ankersen (YA) approximation of 

the relative motion state transition matrix for Φ(t, t0)–created from Eq. (2.54)-(2.55). 

Similar to the spacecraft, in the linear system, the equations of motion of the target 

can be written as: ⎡⎣ρt 

⎤⎦ ⎡⎣ρt,0 

⎤⎦= Φ(t, t0) (5.2) 
vt vt,0 

https://2.54)-(2.55
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Errors in position and velocity, er and ev, are then defined as the difference between 

the spacecraft and target states: ⎡⎣er 

⎤⎦ = 

⎡⎣ρ − ρt 

⎤⎦ ⎡⎣er,0 

⎤⎦= Φ(t, t0) (5.3) 
ev v − vt ev,0 

At the final time, tf , the error in position, er, should be zero. To match the spacecraft 

to the target final position, an impulsive ΔV is applied to the error in velocity, ev, 

at the initial time, t0. ⎡⎣er 

⎤⎦ = 

⎡⎣Φ11(tf , t0) Φ12(tf , t0) 
⎡⎣ ⎤⎦ er,0 

⎤⎦ (5.4) 
ev Φ21(tf , t0) Φ22(tf , t0) ev,0 + ΔV 

The top line yields a simple targeter when solved such that er = 0 

0 = Φ11(tf , t0)er,0 + Φ12(tf , t0)(ev,0 + ΔV) (5.5) 

The ΔV vector that solves the above equation is: 

ΔV = −Φ−1(tf , t0)Φ11(tf , t0)er,0 − ev,0 (5.6)12 

In the linear variational system, this ΔV will bring the spacecraft to the target’s 

position by tf . The goal of AAPF is to adapt the potential shape such that the 

gradient of the attractive potential follows the velocity profile supplied by the linear 

system analysis. With the appropriate substitution of Eq. (5.6) into Eq. (5.4) the 

error in velocity is predicted for any time, t, after this maneuver as: 

ev = (Φ21(t, t0) − Φ22(t, t0)Φ
−1(tf , t0)Φ11(tf , t0))er,0 (5.7)12 

A feedback update for the potential shape is necessary, so the starting time, t0, is 

shifted to the current time, t. This shift produces a simpler form for the velocity: 

v0 = −Φ−1(tf , t)Φ11(tf , t)er (5.8)12 

where v0 represents the desired velocity profile with which the artificial potential 

function gradient is aligned. In application, the “final time”, tf , is updated at every 
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time step and is expressed as a function of the current time: tf = t+τ . The parameter 

τ is denoted the “look-ahead time”, and is selected by the operator to advance tf . 

To adapt the potential function to the desired velocity profile in Eq. (5.8), the 

shape factor, Q, is considered as a time varying matrix, Q(t). To maintain the benefits 

of a symmetric positive-definite shaping matrix, a Cholesky factorization is performed 

on Q(t): 

Q(t) = R(t)T R(t) (5.9) 

where the Cholesky factor, R(t), is the upper right triangular matrix: 

R(t) = 

⎡ ⎢⎢⎢⎣ 
q11(t) q12(t) q13(t) 

0 q22(t) q23(t) 

0 0 q33(t) 

⎤ ⎥⎥⎥⎦ (5.10) 

Now, the attractive potential is written as: 

φa =
1 
er 

T R(t)T R(t)er (5.11)
2 

A new error variable, ε, is introduced as the difference between the desired velocity 

profile, v0, and the negative gradient of the attractive potential: 

ε = v0 − (−rφa) (5.12) 

This error variable is re-written in terms of the error position, STM, and R(t) as: 

ε = −Φ−1 
12 (tf , t)Φ11(tf , t)er + R(t)T R(t)er (5.13) 

The elements of R(t) are determined to drive ε to zero, by setting ε̇ = −ε. The time 

derivative, ε̇, is evaluated as: 

ε = −Φ−1˙ 12 (tf , t)Φ11(tf , t)ev + R(t)T R(t)ev + Y q̇ (5.14) 
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Here, q is a vector of the Cholesky factors described in Eq. (5.10): 

q11 

q12 

q13 

q22 

q23 

q33 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 
q = (5.15) 

and Y is a matrix comprised of the Cholesky factor elements and the error position 

elements: 

(2q11er1 + q12er2 + q13er3) q12er1 q13er1 

q11er2 (q11er1 + 2q12er2 + q13er3) q13er2 

q11er3 q12er3 (q11er1 + q12er2 + 2q13er3) 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 
Y T = 

0 (2q22er2 + q23er3) q23er2 

0 q22er3 (q22er2 + 2q23er3) 

0 0 2q33er3 

(5.16) 

When ε̇ = −ε, it is possible to solve for q̇ , that is: 

q̇ = Y T (Y Y T )−1[Φ−1 − R(t)T R(t)ev − ε] (5.17)12 (tf , t)Φ11(tf , t)ev 

Once the six scalar differential equations in Eq. (5.17) are numerically integrated, the 

Cholesky factor, R, is created from the elements of q as ordered in Eq. (5.10). From R, 

the new attractive potential shaping matrix, Q, is formed as in Eq. (5.9). The initial 

conditions for the integration of Eq. (5.17) are provided by the Cholesky factorization 

of Q0–an initial value provided by the user. With Q established, the AAPF guidance 

procedure is identical to the APF guidance described in the preceding chapter. 

Since artificial potential function guidance and, to a lesser extent, adaptive arti-

ficial potential function guidance use the distance between the spacecraft and target 

as the basis for the size of the recommended ΔV maneuvers, APF and AAPF can 

recommend maneuvers that are not feasible for actual implementation. The incorpo-

ration of an approximation of the natural dynamics in the AAPF calculations reduces 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
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this effect, but may not eliminate it in every scenario. Capping the size of individual 

maneuvers in the simulations bounds the upper limit of any impulsive ΔV . For the 

simulations here, each impulsive ΔV is capped at umax–a parameter determined by 

the user. The total ΔV along a trajectory is not limited, but each impulsive maneuver 

is bounded. Conversely, there is no lower bound on ΔV . 

5.1 Look-Ahead Time 

The choice of look-ahead time, τ , impacts the performance of the AAPF guidance 

algorithm. If τ is too small, the AAPF guidance gets no information from the state 

transition matrix and is essentially standard APF guidance. If τ is too large, the 

calculation of q–and, therefore, Q–can become computationally difficult as v0 in 

Eq. (5.8) further separates from the line connecting the spacecraft and its target. 

This section examines the impact of the τ value on the calculation of Q and on the 

resulting trajectory of the spacecraft. 

The scenario depicted in Figure 5.1 is used to highlight elements of varying the τ 

parameter. The position of a spacecraft in the Hill frame is depicted as a red circle, 

its location is ρ = [2, 1, 1.4]T km relative to the Chief. The Chief point is depicted 

as a black asterisk, and the Chief orbit has a perigee altitude of 5,000 km and an 

eccentricity of 0.2. The target position at the starting time, t0–which corresponds to 

the Chief perigee–is depicted by a blue circle, its location is ρt = [−2, 0, −1.4]T . The 

target trajectory is highlighted in blue, with the black arrow indicating the direction 

of motion. The target trajectory is a natural motion ellipse in the Hill frame, meaning 

that the target trajectory is periodic in the Hill frame. As τ is increased, the aim 

point used in the AAPF calculation moves along the target trajectory. The angle 

between the velocity profile created from the state transition matrix, v0, and the 

vector pointing from the spacecraft to the target, −er, is denoted as ξ; the graph of ξ 

as τ advances from 0 to one orbital period of the Chief, p, is provided in Figure 5.2. 

The angle ξ increases as τ increases until the half period mark, where there is a sharp 
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transition to a lower value, and afterwards increases once again. The vectors v0 and 

−er at select τ values are displayed in Figure 5.3 originating from the spacecraft 

position in the Hill frame, with −er in blue and v0 in red. For τ = 0 there is no v0 

vector. 

Figure 5.1. τ Demonstration Scenario. 

The Q matrix for each τ value is attempted to be computed using the methods 

described in the previous section; however, the integrator–Matlab’s ode113 function– 

fails to create Q at τ = 0.4319p for this scenario. This τ value corresponds to an 

angle ξ = 103.0989O . The computational power required to calculate Q varies with the 

angle τ , this is demonstrated in Figure 5.4 and Figure 5.5 where computational time is 

given as a function of ξ. The units of time are a fraction of computational time of the 

lowest τ value used, which is τ = 30 seconds. Clearly there is a transition in behavior 

in computational time as it begins to rise exponentially at ξ = 90 degrees. This is to 

be expected as the angle between v0 and −er becomes greater than perpendicular, 

calculating the values of q in Eq. (5.17) that maintain the positive semi-definite nature 

of Q while reducing the error between −rφa and v0 becomes more difficult. 
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Figure 5.2. Angle between v0 and −er from Figure 5.1. 

Figure 5.3. The vectors v0 and −er at select τ values. 

In the guidance algorithm an angle check is performed prior to computing Q at 

each time step. If ξ is above a certain threshold, ξ∗ , the look-ahead time, τ , is reduced 
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Figure 5.4. Time to compute Q vs ξ for Figure 5.1. 

Figure 5.5. Zoomed view of Figure 5.4. 

until ξ < ξ∗ . For the simulations presented in this work, the value of ξ∗ is set at 89O 

and τ is decreased in increments of dt–the operational time step. 
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5.1.1 Impact of τ 

The impact of different τ values on the trajectory produced by the artificial poten-

tial function guidance scheme is investigated in this section. In two scenarios, “Closer 

Scenario”–where the spacecraft and target start relatively closer to each other–and 

“Longer Scenario”–where the spacecraft travels a longer distance to the target, the 

APF delivery method guides the spacecraft to its target with no obstacles present. 

The simulations have the same parameters: Q0 = (1/200) ∗ I3×3 is the starting value 

of Q for each AAPF calculation (except for the τ = 0 case, where it is the value of 

Q used at each time step), umax = 0.5 m/s is the maximum allowed maneuver size 

at each time step, and ψ∗ = 45O is the angle threshold used to determine whether a 

maneuver is or is not performed. The look-ahead time, τ , is varied from 0, p/6, p/5, 

p/4, p/3, to p/2, where p is the orbital period of the Chief. 

Closer Scenario 

The “Closer Scenario” initial conditions are displayed in Figure 5.6; the Chief 

orbit has a perigee altitude of 3,000 km, an eccentricity of 0.15 and a period of 

192 minutes, the Chief position is represented by a black asterisk. The spacecraft’s 

initial position is ρ = [500, 150, 150]T m in the Hill frame and is represented by a red 

circle; the spacecraft’s initial trajectory is displayed in red and forms natural motion 

circumnavigation. The target trajectory is given in blue–also forming an NMC ellipse, 

with the target position at the Chief perigee represented by a blue circle, this position 

is ρt = [200, −15, −25]T m in the Hill frame. 

The results for the simulations in the Closer Scenario are displayed in Figure 5.7 

with the top graph displaying the total trajectory maneuvering ΔV versus τ value 

while the bottom displays the times of flight for each τ value. There is an initial trend 

of decreasing ΔV with increasing τ , however this trend changes with τ = p/3 where the 

ΔV begins to increase. The times of flight, however, show an trend of increasing with 

τ , except for the τ = p/2 simulation which has a lower time of flight than the τ = p/3 
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Figure 5.6. Closer Scenario. 

simulation. The minimum cases of the simulations are shown in Table 5.1; the τ = 0 

case has the lowest time of flight and the τ = p/4 cases uses the lowest trajectory 

ΔV . The trajectories for these simulations are presented in Figure 5.8; the initial 

spacecraft trajectory is in pink, the target trajectory is in blue, and each simulation 

is color coded. The initial position of the spacecraft is given as a circle and the final 

positions of the simulations are represented as squares–with the corresponding final 

target positions as blue “x” symbols. The arrows indicate the direction of motion. 

The long time of flight of the τ = p/3 simulation can be observed in the way its 

trajectory shadows the target trajectory before finally reaching the target. The high 

ΔV usage of the τ = p/2 simulation can be observed in the numerous plane changes 

the spacecraft performs. 

Table 5.1. Look-Ahead Time, Closer Scenario Minimums 

τ [orbits] ΔV [m/s] T oF [min] 

min ΔV 0.2500 0.2749 103.5000 

min T oF 0.0000 1.2210 16.0000 
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Figure 5.7. Look-Ahead Time, Closer Scenario. 

Figure 5.8. Closer Scenario Trajectories. 

Longer Scenario 

The “Longer Scenario” initial conditions are displayed in Figure 5.9; the Chief 

orbit is the same as in the previous scenario. The spacecraft’s initial position is 
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ρ = [100, 0, 0]T m in the Hill frame and is represented by a red circle; the spacecraft 

has an initial velocity of 0.0697 m/s in the Hill x̂ direction, and the trajectory given 

by this velocity is displayed in red. The target trajectory is given in blue, with 

the target position at the Chief perigee represented by a blue circle, this position is 

ρt = [1.155, 1.155, 1.155]T km in the Hill frame. 

Figure 5.9. Longer Scenario. 

The simulation results for this scenario are displayed in Figure 5.10 with the 

simulation ΔV usage in the top graph and the times of flight in the bottom. Similar 

to the Closer Scenario, there is a trend of initial decrease in ΔV usage with increasing 

τ value, and this trend reverses with the τ = p/3 simulation. Also, the times of 

flight have the same pattern as the prior scenario: an initial slow increase with τ , a 

large jump in time of flight at the τ = p/3 simulation, followed by a shorter τ = p/2 

simulation. The minimum cases for these simulations are displayed in Table 5.2, 

where the τ = 0 simulation once again has the shortest time of flight and the τ = p/4 
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simulation has the lowest ΔV usage. The simulation trajectories are displayed in 

Figure 5.11, with the same symbolism as used for the previous scenario. The τ = p/3 

simulation trajectory reflects its long time of flight by shadowing the target trajectory 

for several orbits before matching with the target state; while the τ = p/2 simulation 

initially performs maneuvers that results in a trajectory different from all the other 

simulations. 

Figure 5.10. Look-Ahead Time, Longer Scenario. 

Table 5.2. Look-Ahead Time, Longer Scenario Minimums 

τ [orbits] ΔV [m/s] T oF [min] 

min ΔV 0.2500 1.2981 128.0000 

min T oF 0.0000 4.0348 33.0000 

τ Impact Analysis 

Clearly the selection of look-ahead time impacts the performance of the APF 

guidance method, however it is not the case that a larger τ value results in less over-

all ΔV usage by the spacecraft, nor is it the case that a shorter time of flight results 
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Figure 5.11. Longer Scenario Trajectories. 

from a smaller τ value. Due to the complex interaction of the various parameters 

chosen by the operator in the APF guidance scheme, a consistent method of choosing 

the best τ for every scenario has not been found. The simulations using APF in 

this work all use constant values of τ over the trajectory, however, it is possible to 

implement a time varying τ parameter. 

5.2 Obstacle Avoidance 

Artificial potential function guidance incorporates obstacle avoidance into the de-

sign of maneuvers by surrounding any obstacles with regions of high potential. This 
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information is encoded in the repulsive potential, denoted as φr. The repulsive po-

tential used in this guidance algorithm is given by Eq. 4.3, but is reprinted here: 

K 
φr = 

N 

T2 (ρ − ρo,i) P (ρ − ρo,i) − 1i=1 

X (ρ − ρt)
T Q (ρ − ρt) 

(5.18) 

where K is the scaling of the repulsive potential, ρ is the spacecraft position vector in 

the Hill frame, ρt is the target position vector, Q is the attractive potential shaping 

matrix, ρo,i is the position vector of the i-th obstacle, and P is the shaping matrix 

for the ellipsoid around each obstacle. For N obstacles, each obstacle is surrounded 

by an ellipsoid of repulsion–described by P –such that the value of the potential goes 

to infinity at the boundary of the ellipsoid. Additionally, the attractive potential 

information is included in the numerator position of the summation; this ensures that 

the target position is at the minimum of the total potential–similar to the method 

described by Ge and Cui as well as Muñoz. [27, 30] The value of φr is then the sum 

of the potentials for each obstacle. The total potential, φ, is, then, the combination 

of the attractive and repulsive potentials like so: φ = φa + φr; and it is the negative 

gradient of this total potential that is used to design the maneuvers that guide the 

spacecraft away from obstacles and toward the target. 

There are two parameters in the repulsive potential that can be varied: P –the 

obstacle shape matrix, and K–the scaling on φr. The matrix P determines the size 

and shape around each obstacle, and P is not varied in this analysis. In application 

it is possible to designate a unique P for each obstacle, however, this would require 

a different set of P values for each spacecraft in the formation since each spacecraft 

views the other members as obstacles. In this analysis P is fixed for every obstacle 

at: 

1 
P = 

252 

⎡ ⎢⎢⎢⎣ 
1 0 0 

0 1 0 

⎤ ⎥⎥⎥⎦ 
0 0 1 

This selection for P sets up a sphere of repulsion with a 25 m radius. The scaling 

on the repulsive matrix, K, is varied in the following simulations, and the impact 
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on the resulting trajectory is analyzed. K is varied from 0 (which is equivalent to 

having no repulsive potential) and 1 in steps of 0.01. The other parameters are kept 

uniform over the simulations: Q0 = (1/200) ∗ I3×3 is the starting value of Q for each 

AAPF calculation, τ = p/4 where p is the Chief orbital period, umax = 0.5 m/s is 

the maximum allowed maneuver size at each time step, and ψ∗ = 45O is the angle 

threshold used to determine whether a maneuver is or is not performed. The scenarios 

for the simulations and their results are described in the following sections. 

5.2.1 Long Range Scenario 

The first scenario for consideration is the “Long Range” scenario, displayed in 

Figure 5.12. The Chief orbit has a perigee altitude of 1,275.6 km and an eccentricity 

of 0.125. The spacecraft’s initial position is ρ = [100, 0, 0]T m in the Hill frame and 

is represented by a red circle; the spacecraft has an initial velocity of 0.0945 m/s 

in the Hill x̂ direction, and the trajectory given by this velocity is displayed in red. 

The target trajectory is given in blue, with the target position at the Chief perigee 

represented by a blue circle, this position is ρt = [1.155, 1.155, 1.155]T km in the Hill 

frame. Three obstacles are present, their initial positions are represented by green 

spheres and their trajectories in green. One obstacle is on an NMC ellipse which keeps 

it in close proximity to the target position, the other two obstacles are on trajectories 

which would intercept the spacecraft if no obstacle avoidance considerations are made 

in the APF delivery scheme. Each simulation begins when the Chief orbit is at perigee. 

Each simulation uses the APF guidance scheme to deliver the spacecraft to the 

target with a constant K value, but the K value differs for every simulation. There are 

three possible results for each simulation: the spacecraft can collide with an obstacle– 

a “collision”, the spacecraft can reach the target safely–a “success”, or the spacecraft 

can fail to reach the target under the time limit–a “failure”. The time limit for these 

simulations is three orbital periods of the Chief, slightly longer than 407 minutes. For 

these simulations there are no failures, and there is only one collision–the simulation 
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Figure 5.12. Long Range Scenario. 

with K = 0. The results for the successful simulations are shown in Figure 5.13 

with the top graph representing the total trajectory ΔV used in each simulation 

and the bottom graph displaying the time of flight T oF . There is a general trend 

correlating increasing K with increased resulting ΔV , but this trend is not uniform 

nor constant. For the times of flight, after the initial simulations with lower values of 

K, the average settles to around 152 minutes with small variations. The minimum 

ΔV and time of flight cases are presented in Table 5.3, with the lowest implemented 

value of K corresponding to the lowest resulting ΔV usage. 

Table 5.3. φr Scaling, Long Range Minimums 

K ΔV [m/s] T oF [min] 

min ΔV 0.01 1.8857 158.5000 

min T oF 0.31 1.9309 150.5000 
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Figure 5.13. φr Scaling, Long Range Scenario. 

An example of the APF guidance in the presence of obstacles is presented in Fig-

ure 5.14 with an alternate view in Figure 5.15. These figures present the trajectories 

from the K = 0.01 simulation in the Long Range scenario–this is the simulation that 

uses the least amount of maneuvering ΔV . The spacecraft trajectory is displayed in 

red, the initial spacecraft trajectory in pink, and the target trajectory in blue. The 

initial spacecraft position is represented by a red circle, and the final positions of the 

spacecraft and target are represented by a red square and a blue “x” respectively. 

The obstacle trajectories are depicted in green with spheres at their initial and final 

positions. The black arrows indicate the direction of motion. The spacecraft-obstacle 

separation distances over time are shown in Figure 5.16 with a separate line for each 

obstacle. These distances are measured from the center of each obstacle, and the 

black dashed line represents the surface of each obstacle ellipsoid. The spacecraft 

travels in close proximity to an obstacle for an extended period of time in the early 

part of the trajectory, and toward the end as the spacecraft approaches the target it 

also approaches the obstacle traveling with the target. The maneuver values at each 

time step are displayed in Figure 5.17; as is common for APF guidance the majority 
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of the maneuvers values are zero–indicating that ψ < ψ∗ at those instances. How-

ever, several maneuvers at the maximum allowed value (umax = 0.5 m/s) take place 

at the same times the spacecraft is in close proximity to an obstacle, these maneuvers 

prevent the spacecraft from colliding with the obstacle. 

Figure 5.14. Long Range Scenario, K = 0.01 simulation trajectories. 

5.2.2 Close Proximity Scenario 

The second scenario for consideration is the “Close Proximity” scenario, displayed 

in Figure 5.18. The Chief orbit for this scenario is identical to the Long Range sce-

nario. The spacecraft’s initial position is ρ = [250, 150, 150]T m in the Hill frame and 

is represented by a red circle; the spacecraft’s initial trajectory is given in red and de-

scribes a NMC ellipse. The target trajectory is given in blue, with the target position 

at the Chief perigee represented by a blue circle, this position is ρt = [200, −15, −25]T 
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Figure 5.15. Alternate view of Figure 5.14. 

Figure 5.16. Spacecraft-Obstacle distances from Figure 5.14. 

m in the Hill frame. Three obstacles are present, their initial positions are represented 

by green spheres and their trajectories in green. One obstacle is on an NMC ellipse 

which keeps it in close proximity to the target position, the other two obstacles are 

on trajectories which would intercept the spacecraft if no obstacle avoidance consid-
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Figure 5.17. Maneuver values from Figure 5.14. 

erations are made in the APF delivery scheme. The scenario begins when the Chief 

orbit is at perigee. This scenario tests the APF guidance by requiring maneuvers in 

close proximity to several obstacles. 

Figure 5.18. Close Proximity Scenario. 
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As in the previous scenario, the simulations use the APF guidance scheme to 

deliver the spacecraft to the target with a constant K value, but use a different K 

value for each simulation. There are, again, three possible results for the simulations: 

‘collision, success, or failure. The time limit for these simulations is three orbital 

periods of the Chief, slightly longer than 407 minutes. For the Close Proximity 

simulations there are no failures and only one collision–the simulation where K = 0. 

The results for the successful simulations are shown in Figure 5.19 with the top 

graph presenting the total trajectory ΔV used in each simulation and the bottom 

graph displaying the time of flight (T oF ). Compared to the previous scenario, there 

is a more pronounced trend correlating increasing K with increased resulting ΔV ; 

however, this trend levels out at about 0.5 m/s. For the times of flight, there is a 

larger range of values than the in the Long Range scenario, and the times of flight 

exist in several distinct ranges. There is not a uniform trend, but there is a consistent 

correlation between the higher K values and the longer times of flight. The minimum 

ΔV and time of flight cases are presented in Table 5.4, with the lowest implemented 

value of K corresponding to the shortest resultant time of flight. 

Figure 5.19. φr Scaling, Close Proximity Scenario. 
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Table 5.4. φr Scaling, Close Proximity Minimums 

K ΔV [m/s] T oF [min] 

min ΔV 0.04 0.3244 78.0000 

min T oF 0.01 0.4399 74.0000 

An example of a successful simulation trajectory is shown in Figure 5.20. This 

simulation is with K = 0.57, it has the maximum ΔV usage of the simulations, 

0.5597 m/s, and a 92 minute time of flight. The spacecraft trajectory is displayed 

in red, the initial spacecraft trajectory in pink, and the target trajectory in blue. 

The black arrows indicate the direction of motion while the small colored arrows 

indicate the location and direction of maneuvers performed by the spacecraft. The 

initial spacecraft position is represented by a red circle, and the final positions of the 

spacecraft and target are represented by a red square and a blue “x” respectively. 

The obstacle trajectories are depicted in green with spheres at their initial and final 

positions. The spacecraft-obstacle separations as functions of time are displayed in 

Figure 5.21, with a separate red line for each spacecraft while the black dashed line 

represents the obstacle surface condition. Commensurate with the larger K value 

in this simulation, the spacecraft maintains a relatively large separation from each 

obstacle–with one closest approach of 40 meters. The maneuver values at each time 

step for this simulation are shown in Figure 5.22; the one close approach with an 

obstacle corresponds to a large maneuver as in the example from the Long Range 

scenario. All the maneuvers are under the umax constraint of 0.5 m/s, which is to be 

expected based on the close starting positions of the spacecraft and target. 

5.3 AAPF Summary 

The adaptive artificial potential function calculation described in this chapter is a 

method of introducing natural dynamics information, from the Yamanaka-Ankersen 

state transition matrix, into the maneuvers calculated by the artificial potential func-
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Figure 5.20. Close Proximity Scenario, K = 0.57 simulation trajectories. 

Figure 5.21. Spacecraft-Obstacle distances from Figure 5.20. 

tion guidance scheme described in the previous chapter. The APF delivery method 

used in the guidance algorithm and presented in later simulations uses the AAPF 

method to calculate Q–the attractive potential shaping matrix. The parameter τ– 
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Figure 5.22. Maneuver values from Figure 5.20. 

the look-ahead time–used to calculate the YA STM for the AAPF method affects 

the guidance algorithm performance in two ways: without an appropriate ξ check, 

described in this chapter, a large value of τ can negatively impact the computational 

effort required to calculate Q, and different values of τ will result in different maneu-

vers recommended by the guidance algorithm–no consistent method of choosing the 

best τ value for a given scenario has yet been determined, but τ = p/4 is used in all 

the following simulations. The APF delivery scheme has demonstrated robust obsta-

cle avoidance in simulations, and this is not degraded by using the AAPF method 

to calculate Q. The choice of K, the repulsive potential scaling factor, can impact 

the guidance algorithm performance thusly: a larger K value is connected with larger 

maneuvering ΔV usage and increased trajectory separation from obstacles. The APF 

guidance scheme using AAPF is not an optimal control scheme and is not guaranteed 

to deliver the lowest ΔV trajectories nor the lowest time of flight trajectories. 
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6. MODEL PREDICTIVE CONTROL GUIDANCE 

Artificial potential function guidance possesses advantages and disadvantages. The 

main advantages include its computational simplicity that enables on-board operation 

and its inherent obstacle avoidance capability that prevents collisions. The main 

disadvantage of an APF guidance strategy is the inefficient use of maneuvers. While 

an adaptive artificial potential function alteration mitigates these inefficiencies, it 

is possible that a different guidance approach may yield more propellant efficient 

trajectories. Thus, a model predictive control (MPC) strategy is investigated as an 

alternative approach to solve the delivery problem and to serve as a comparison for 

maneuver efficiency. 

Model predictive control (MPC) is an optimization-based control strategy that is 

structured and implemented in numerous ways. To reduce the computational load, 

and deliver a guidance algorithm more amenable to on-board implementation, the 

optimization of the cost function is recast as a quadratic programming problem as 

described by Brand et al. [38]. This approach requires a linear model of the dy-

namics and, for this investigation, the Yamanaka-Ankersen state transition matrix 

is employed to approximate the relative motion dynamics. [44] Once the optimiza-

tion of the MPC cost function is recast as a quadratic programming problem, it is 

solved more efficiently, for example, using the interior-point and active-set methods 

described by Wright. [47] However, one of the disadvantages of using quadratic pro-

gramming to solve the optimization problem is its requirement for linear inequality 

constraints. Obstacles, e.g., other spacecraft or general debris, represent nonlinear 

constraints on the spacecraft’s trajectory–if collisions are to be avoided. To overcome 

the problem of collisions, two additional steps are introduced. The first is establish-

ing ellipsoidal path constraints about any obstacles in a manner similar to Jewison et 

al. [39] These nonlinear constraints violate the parameters of a quadratic problem, so 
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a nonlinear optimization method is now required; the guidance algorithm described 

in this dissertation uses sequential quadratic programming. The second step is the 

inclusion of an element in the cost function that seeks to maximize the separation 

between the spacecraft and any obstacles. The steps are detailed in the next chapter, 

this chapter focuses on the objective function and its parameters. 

6.1 Objective Function Design 

Model predictive control is essentially a receding horizon approach to compute 

a future control profile that opimizes an open-loop performance objective. Over a 

number of future time steps, N , a series of control inputs, ui, are computed such that 

a cost function is minimized; subsequently, only the first control input is implemented 

and, at the next time step, the process repeats with the computation of a new series of 

ui. A type of feedback loop is implemented as the positions and velocities for both the 

spacecraft and target are updated and as the future control inputs are reconstructed 

at each step. As previously noted, the dynamic model incorporated into the MPC 

guidance scheme is linear. The traditional linear model of dynamics is: 

xk+1 = Axk + Buk (6.1) 

where xk is the state of the spacecraft in the Hill frame, x = [ρ, v]T at time tk, u 

represents an impulsive ΔV maneuver, A is the system matrix, and B is the control 

matrix. The model of linear dynamics used in the MPC delivery scheme in this 

guidance algorithm is: 

xk+1 = Φ(tk+1, tk)(xk + Buk) (6.2) 

where Φ(tk+1, tk) is the YA STM from time tk to tk+1. The control matrix, B, is 

defined as: 

B = 

⎡⎣03×3 

⎤⎦ 
I3×3 

This formulation does allow the incorporation of the Yamanaka-Ankersen state tran-

sition matrix, not as a constant matrix, but one that evolves with time. 
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The objective function to be minimized is based on the quadratic difference be-

tween the spacecraft state at each time step, xk and the target state at the final 

time step (originating from time step k), xk 
∗ , and a quadratic function of the control 

cost at each time step, uk. This construction of the objective function sets up the 

optimization as a linear quadratic regulator (LQR) type problem. The use of a LQR 

as the cost function in the model predictive control scheme follows from the work of 

Brand et al., Wang, and Bemporad et al., among others. [38,48,49] The aim-point of 

the objective function is the modeled target state at the final time step, xk 
∗ , and it is 

constructed from the target position, ρt, and velocity, vt, at time tk like so: ⎛⎝ρt 

⎞⎠∗ xk = Φ(tk+N , tk) (6.3) 
vt 

tk 

The optimization problem is then characterized as: 

min J (Uk, xk) (6.4) 
Uk 

where Uk is a stacked vector of the control vectors, Uk = [uk, ..., uk+N−1]T , and 

the objective function, J , is a balance between the deviations and the control ef-

fort: J (Uk, xk) = J1(xk) + J2(Uk). The first component, J1, addresses the state 

differences: XN−1 
∗ ∗ ∗ ∗J1(xk) = (xk+N − xk)

T S̄(xk+N − xk) + (xk+i − xk)
T S(xk+i − xk) (6.5) 

i=1 

where S is the weighting (or penalty) matrix on the difference in the six dimensional 

¯ state for all but the final time step; then, the matrix S is the weighting on the final 

¯time step. The weighting on the final state variation, S is formed from the discrete-

time algebraic Riccati equation, i.e.: 

S̄ = Φ(tk+N , tk)
T ¯ SB)HSΦ(tk+N , tk) + S ∗ − HT (R + BT ¯ 

(6.6) 
H = (R + BT ¯ SΦ(tk+N , tk)SB)−1BT ¯ 

¯where S∗ functions as an initial value for S. Note that R is also a weighting matrix 

on the control cost. It is shown by Wang and Bemporad et al. that using the 
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¯solution to the discrete-time algebraic Riccati equation, S, as the final state weighting 

leads to asymptotic stability of the unconstrained closed loop system if S∗ � 0 and 

R � 0. [38,48,49] Prior to every time step, the discrete-time algebraic Riccati equation 

¯is solved for S, but this computation is efficiently accomplished with a numerical 

algorithm built into Matlab. Under this formulation, the spacecraft reaching the 

target state at the final time, tk+N , is not a constraint that must be satisfied to create 

an optimal control history, Uk; rather, the spacecraft-target separation becomes a 

penalty. The second component of J is then defined: 

N−1X 
J2(Uk) = u Tk+iRuk+i (6.7) 

i=0 

where R is the weighting on the control cost, which also appears in Eq. (6.6). The 

choice of values for R, S∗ , and S, determines the priority of the optimizer; either 

minimization of control effort or minimization of the difference in spacecraft-target 

state vectors. 

6.2 Quadratic Program Formulation 

The optimization problem in Eq. (6.4) can be recast as a quadratic programming 

problem in a manner described by Brand et al. [38] Recasting the optimization prob-

lem as a quadratic programming problem allows a solution with a number of fast 

numerical algorithms–thus, easing the computational burden on the spacecraft. Sim-

ilar to Uk, a stacked state vector, Xk = [xk+1, ..., xk+N ]
T ∈ R6N , and a stacked target 

∗ ∗ ]T ∈ R6Nvector, Γk = [xk, ..., xk are created. The stacked state vector is produced 

from xk and Uk through: 

Xk = Ψxk + ΩUk (6.8) 

where Ψ is a matrix composed of Φ matrices that move the dynamics from time tk 

through tk+N in increments of dt–the time step size; dt = tk+1 − tk. 

∈ R6N×6Ψ = [Φ(tk+1, tk), Φ(tk+2, tk), ..., Φ(tk+N , tk)]
T (6.9) 
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Similarly, Ω ∈ R6N×3N is composed of Φ and B like so: 

Ω = 

⎡ ⎢⎢⎢⎢⎢⎢⎣ 
Φ(tk+1, tk)B 0 . . . . . . 0 

Φ(tk+2, tk)B Φ(tk+2, tk+1)B 0 . . . 0 
. . . 

. . . 
. . . . . . 

. . . 

Φ(tk+N , tk)B Φ(tk+N , tk+1)B . . . Φ(tk+N , tk+N −2)B Φ(tk+N , tk+N −1)B 

⎤ ⎥⎥⎥⎥⎥⎥⎦ 
With these stacked vectors and matrices it is possible to recast Eq. (6.4) as: 

1 
UTmin QUk + HT Ukk

Uk 2 

VUk ≤ W 

(6.10) 

(6.11) 

With Q ∈ R3N ×3N and H ∈ R3N ×1 given by: 

Q = 2L1 + 2ΩT L2Ω (6.12) 

T ∗T ¯H = 2x ΨT L2Ω − 2ΓT L3Ω − 2x SL4Ωk k k (6.13) 

With the L matrices given by: ⎡ ⎢⎢⎢⎢⎢⎢⎣ 

⎤ ⎥⎥⎥⎥⎥⎥⎦ 
R 0 . . . 0 

0 
. . . 

. . . 
. . . 

. . . 0 
∈ R3N×3NL1 (6.14)= 

0 . . . 0 R ⎡ ⎢⎢⎢⎢⎢⎢⎣ 

⎤ ⎥⎥⎥⎥⎥⎥⎦ 
S 0 . . . 0 

. . . .0 . . 
∈ R6N×6NL2 (6.15)= 

⎡ ⎢⎢⎢⎢⎢⎢⎣ 

. . . S 0 

0 . . . 0 S̄ ⎤ ⎥⎥⎥⎥⎥⎥⎦ 
S 0 . . . 0 

. . . .0 . . 
∈ R6N×6NL3 (6.16)= . . . S 0 

0 . . . 0 0 
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h i 
∈ R6×6NL4 = 0 . . . 0 I6×6 (6.17) 

The linear constraint matrices, V and W , are constructed like so: 

V = [−I3N×3N , I3N×3N ]
T 

(6.18) 
W = [Umax, − Umin]

T 

where Umax and −Umin are the component-wise maximum and minimum permissi-

ble values for Uk. For the implementation in this work, the elements of Umax and 

Umin are set uniformly to be umax–a scalar value that determines the maximum, or 

minimum (−umax) possible value for each component in a given control vector, uk. 

Similarly, linear component-wise constraints could be applied to the stacked state vec-

tor, Xk, by the addition of Xk,max − Xk and −Xk,min + Xk terms to W as described 

in Brand et al. [38]. 

Recasting the optimization problem as a quadratic programming problem in this 

way allows it to be solved with a number of fast numerical algorithms. The guidance 

algorithm in this work uses a numerical algorithm based on Wright et al’s method [47] 

to solve for the optimal Uk when the cost function, J , is composed of J = J1 + J2 

only. This is the method used to produce the ΔV and T oF costs used in the auction 

algorithm described in Chapter 3. However, the quadratic program formulation is 

limited to linear constraints only–the V and W matrices. Obstacles in the relative 

motion frame present non-linear constraints on the path, which must be avoided to 

prevent collisions. The steps taken to overcome this difficulty are described in the 

following chapter. 

6.3 Parameter Selection 

There are several parameters in the model predictive control formulation described 

previously that can be varied in order to change the output of the optimizer. These 

parameters are N –the number of time steps used to calculate Uk, dt–the size of 

each time step, R–the control penalty weighting, S–the running state error penalty 

¯weighting, and S∗–the initial value used to compute the final state error penalty, S. 
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Park et al. examine the impact of varying R in spacecraft rendezvous simulations 

in a similar manner to the present analysis, however the state error weightings were 

held constant in their work. [36, 50] This section explores the impact of varying the 

time horizon (N and dt) and weighting (R, S, and S∗) parameters by performing 

simulations of the MPC delivery scheme guiding one spacecraft to one target without 

any obstacles present. 

6.3.1 Close Scenario 

The first scenario for investigation is the “Close Scenario,” so-called because the 

initial spacecraft and target trajectories are in close proximity. The initial conditions 

for the scenario are highlighted in Figure 6.1 where the spacecraft’s initial trajectory 

is given in red and its starting position is represented by a red circle, the target 

trajectory is in blue with the target position at Chief perigee represented by a blue 

circle, the Chief point is represented by the black asterisk, and the arrows indicate 

the direction of movement. For this scenario the Chief orbit has a perigee altitude of 

5,000 km and an eccentricity of 0.5. The spacecraft’s starting point is [500, 150, 150]T 

m in the Hill frame while the target point at Chief perigee–the starting time for 

the simulations–is [−200, 0, −140]T m in the Hill frame; both the target and initial 

spacecraft trajectories are natural motion circumnavigation ellipses. 

Weightings 

The first set of parameters for consideration are the running state penalty weight-

ing, S, and the control usage weighting, R. These weightings are structured as 

matrices, 6 × 6 for S and 3 × 3 for R, but these are diagonal matrices where the only 

non-zero values appear on the diagonal elements. These non-zero values are uniform 

for each matrix, and in the simulations are varied from 1 ∗ 10−10 to 1 ∗ 100 for S and 

from 2 ∗ 100 to 2 ∗ 104 for R. The S∗ parameter is held fixed at 1 ∗ 10−1 ∗ I6×6. The 

time horizon parameters are also kept fixed at N = 11 steps of dt = 5 minutes in 
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Figure 6.1. Close Scenario. 

length. The scalar component-wise constraint on the control, umax, is set at 1 m/s. 

For each simulation there is an additional time limit of 3 orbital periods of the Chief, 

about 28.5 hours, where, if the spacecraft does not reach the target in this time limit, 

that simulations is a “failure.” The ΔV results for these simulations are displayed in 

Table 6.1 and the time of flight results are displayed in Table 6.2; the failure cases 

are represented by “-” symbols. 

Table 6.1. Weightings, Close Scenario ΔV Table [m/s] 

R = 2 ∗ 100 R = 2 ∗ 101 R = 2 ∗ 102 R = 2 ∗ 103 R = 2 ∗ 104 

S = 1 ∗ 10−10 

S = 1 ∗ 10−8 

S = 1 ∗ 10−6 

S = 1 ∗ 10−4 

S = 1 ∗ 10−2 

S = 1 ∗ 100 

0.6751 

0.6897 

-

-

-

-

0.6611 

0.6597 

-

-

-

-

0.6657 

0.6662 

0.6514 

-

-

-

0.6667 

0.6667 

0.6681 

-

-

-

0.6602 

0.6603 

0.6604 

0.6438 

-

-
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Table 6.2. Weightings, Close Scenario Time of Flight Table [min] 

R = 2 ∗ 100 R = 2 ∗ 101 R = 2 ∗ 102 R = 2 ∗ 103 R = 2 ∗ 104 

S = 1 ∗ 10−10 

S = 1 ∗ 10−8 

S = 1 ∗ 10−6 

S = 1 ∗ 10−4 

S = 1 ∗ 10−2 

S = 1 ∗ 100 

200.0000 

205.0000 

-

-

-

-

175.0000 

170.0000 

-

-

-

-

170.0000 

170.0000 

90.0000 

-

-

-

170.0000 

170.0000 

170.0000 

-

-

-

175.0000 

175.0000 

175.0000 

90.0000 

-

-

These tables display interesting results; paradoxically, increasing the S weighting 

while keeping the R weighting constant leads to the spacecraft failing to reach the 

target in this time limit. This phenomenon is discussed in a later section. There is 

a general trend of decreasing ΔV with increasing R value in Table 6.1–which is not 

surprising as R penalizes control usage–however, there is also a general trend of de-

creasing ΔV with increasing S values. This is reflected in a decreasing time of flight 

for increasing S values–which corresponds to S’s impact on penalizing the state differ-

ence between spacecraft and target, and suggests a counterintuitive relation between 

time of flight and control cost: with a shorter time of flight fewer maneuvers are per-

formed, possibly leading to lowered ΔV costs for the trajectory. This is demonstrated 

in the minimum values of ΔV and time of flight from these simulations, displayed in 

Table 6.3 where the minimum ΔV case has the minimum time of flight value. 

Table 6.3. Weightings, Close Scenario Minimums 

R = 2 ∗ 10() S = 1 ∗ 10() ΔV [m/s] T oF [min] 

min ΔV 

min T oF 

4 

2 

-4 

-6 

0.6438 

0.6514 

90.0000 

90.0000 

Final Weighting 

The next parameter examined is the final state difference weighting, S̄. Since 

S̄ is re-calculated from the discrete algebraic Riccati equation for every time step, 
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¯the actual parameter varied is S∗–the initial guess used to compute S. For these 

simulations N = 11 steps, dt = 5 min, and umax = 1 m/s as before; but now: S = 

1∗10−10 ∗I6×6 and R = 2∗104 ∗I3×3. Again, S∗ is a 6×6 diagonal matrix with uniform 

non-zero elements, and these elements are varied from 1 ∗ 10−4 to 1 ∗ 104 . The ΔV 

and time of flight T oF results for these simulations are displayed in Figure 6.2. Once 

again, these same time limit is applied to these simulations, and the S∗ = 1∗104 ∗I6×6 

simulation fails to deliver the spacecraft to the target under that limit–thus it is not 

displayed in the graphs in Figure 6.2. When compared to the results displayed in 

¯Table 6.1, the spread of ΔV values is much larger–demonstrating the impact S has 

on the model predictive control output. There is a trend of increasing ΔV result with 

increasing S∗ value, which is once again to be expected. The times of flight show a 

similar decrease with increasing S∗ value–to a point. At some S∗ value (1 ∗ 104 ∗ I6×6 

for this scenario), it no longer appears to aid in delivering the spacecraft to the 

target. The minimum values of the simulations are displayed in Table 6.4, where the 

minimum ΔV is lower than in Table 6.3, but the lowest time of flight is higher. 

Figure 6.2. Final Weighting, Close Scenario. 



105 

Table 6.4. Final Weighting, Close Scenario Minimums 

S∗ = 1 ∗ 10() ΔV [m/s] T oF [min] 

min ΔV -4 0.3849 500.0000 

min T oF 0 0.6667 170.0000 

Time Horizon 

The final parameters investigated for this scenario are the time horizon param-

eters: N and dt. These are values are varied from 2 to 11 time steps for N while 

the time step size (dt) varies from 1 to 10 minutes in length. The other parameters– 

S = 1∗10−10 ∗I6×6, R = 2∗104 ∗I3×3, S∗ = 1∗10−1 ∗I6×6, and umax = 1 m/s–are kept 

constant in these simulations. The ΔV and time of flight results for the simulations 

are displayed in Table 6.5 and 6.6. Once again a time limit of three orbital periods 

is applied, but none of the simulations fail to reach the target. For the ΔV results, 

there is a clear relation between increasing the values of N and dt and decreasing 

resultant ΔV usage. This is mirrored in Table 6.6, where there is a trend linking 

increasing N or dt values and increasing time of flight. Compared to the other pa-

rameter variations, the time horizon variations produce the largest spread in ΔV and 

time of flight values, with the possible exception of the S∗ variations. This is reflected 

in the table of minimums for these simulations, Table 6.7, where the minimum ΔV 

simulation has a long time of flight and the lowest time of flight case has a high ΔV 

cost. 

6.3.2 Long Scenario 

The second scenario for investigation is the “Long Scenario,” so-called because 

the initial spacecraft and target trajectories are farther apart than in the previous 

scenario. The initial conditions for the scenario are highlighted in Figure 6.3 where the 

spacecraft’s initial trajectory is given in red and its starting position is represented by 

a red circle, the target trajectory is in blue with the target position at Chief perigee 
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Table 6.5. Time Horizon, Close Scenario ΔV Table [m/s] 

dt [min] N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 N = 11 

1 3.0900 2.6401 2.4385 2.4172 2.3575 2.2894 2.2101 2.1237 2.0317 1.9381 

2 2.0701 1.8865 1.8022 1.7295 1.6393 1.5395 1.4383 1.3435 1.2581 1.1811 

3 1.6638 1.5542 1.4874 1.3971 1.2900 1.1908 1.0998 1.0217 0.9555 0.8993 

4 1.4244 1.3692 1.2909 1.1916 1.0867 0.9924 0.9153 0.8510 0.7979 0.7534 

5 1.3042 1.2469 1.1549 1.0485 0.9506 0.8661 0.7980 0.7438 0.6985 0.6602 

6 1.1997 1.1583 1.0573 0.9466 0.8522 0.7759 0.7160 0.6674 0.6272 0.5924 

7 1.1231 1.0870 0.9817 0.8667 0.7780 0.7082 0.6536 0.6091 0.5718 0.5393 

8 1.0649 1.0259 0.9160 0.8034 0.7190 0.6545 0.6038 0.5621 0.5270 0.4962 

9 1.0227 0.9758 0.8607 0.7507 0.6706 0.6103 0.5626 0.5231 0.4893 0.4602 

10 0.9882 0.9287 0.8124 0.7049 0.6294 0.5730 0.5277 0.4899 0.4576 0.4297 

Table 6.6. Time Horizon, Close Scenario Time of Flight Table [min] 

dt [min] N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 N = 11 

1 22.0000 21.0000 20.0000 34.0000 36.0000 37.0000 38.0000 40.0000 42.0000 44.0000 

2 28.0000 44.0000 46.0000 50.0000 52.0000 56.0000 60.0000 64.0000 70.0000 74.0000 

3 33.0000 54.0000 57.0000 63.0000 66.0000 75.0000 81.0000 90.0000 99.0000 108.0000 

4 36.0000 64.0000 68.0000 76.0000 84.0000 92.0000 104.0000 116.0000 128.0000 140.0000 

5 65.0000 70.0000 75.0000 85.0000 100.0000 115.0000 125.0000 145.0000 160.0000 175.0000 

6 72.0000 78.0000 84.0000 102.0000 114.0000 132.0000 150.0000 168.0000 192.0000 210.0000 

7 77.0000 84.0000 98.0000 112.0000 133.0000 154.0000 175.0000 196.0000 224.0000 245.0000 

8 80.0000 88.0000 104.0000 128.0000 152.0000 176.0000 200.0000 224.0000 256.0000 280.0000 

9 90.0000 99.0000 117.0000 144.0000 171.0000 198.0000 225.0000 252.0000 279.0000 315.0000 

10 90.0000 100.0000 130.0000 150.0000 180.0000 220.0000 250.0000 280.0000 310.0000 350.0000 

Table 6.7. Time Horizon, Close Scenario Minimums 

N [steps] dt [min] ΔV [m/s] T oF [min] 

min ΔV 

min T oF 

11 

4 

10 

1 

0.4297 

2.4385 

350.0000 

20.0000 

represented by a blue circle, the Chief point is represented by the black asterisk, 

and the arrows indicate the direction of movement. For this scenario the Chief orbit 
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has a perigee altitude of 10,000 km and an eccentricity of 0.2. The spacecraft’s 

starting point is [475.5283, 154.5085, 0]T m in the Hill frame while the target point 

at Chief perigee–the starting time for the simulations–is [1.6180, 1.1756, 0]T km in 

the Hill frame; both the target and initial spacecraft trajectories are natural motion 

circumnavigation ellipses. 

Figure 6.3. Long Scenario. 

Weightings 

The first set of parameters for consideration are the running state penalty weight-

ing, S, and the control usage weighting, R. The non-zero values are uniform for each 

matrix, and in the simulations are varied, once again, from 1 ∗ 10−10 to 1 ∗ 100 for S 

and from 2 ∗ 100 to 2 ∗ 104 for R. The S∗ parameter is held fixed at 1 ∗ 10−1 ∗ I6×6. 

The time horizon parameters are again kept fixed at N = 11 steps of dt = 5 min-

utes in length. The scalar component-wise constraint on the control, umax, is set at 

1 m/s. For each simulation there is a time limit of 3 orbital periods of the Chief, 

about 24.3 hours, where, if the spacecraft does not reach the target in this time limit, 

that simulations is a “failure.” The ΔV results for these simulations are displayed in 
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Table 6.8 and the time of flight results are displayed in Table 6.9; the failure cases 

are represented by “-” symbols. 

Table 6.8. Weightings, Long Scenario ΔV Table [m/s] 

R = 2 ∗ 100 R = 2 ∗ 101 R = 2 ∗ 102 R = 2 ∗ 103 R = 2 ∗ 104 

S = 1 ∗ 10−10 

S = 1 ∗ 10−8 

S = 1 ∗ 10−6 

S = 1 ∗ 10−4 

S = 1 ∗ 10−2 

S = 1 ∗ 100 

0.6711 

-

-

-

-

-

0.6779 

0.6729 

-

-

-

-

0.6856 

0.6850 

-

-

-

-

0.6842 

0.6846 

0.6578 

-

-

-

0.6660 

0.6660 

0.6655 

-

-

-

Table 6.9. Weightings, Long Scenario Time of Flight Table [min] 

R = 2 ∗ 100 R = 2 ∗ 101 R = 2 ∗ 102 R = 2 ∗ 103 R = 2 ∗ 104 

S = 1 ∗ 10−10 

S = 1 ∗ 10−8 

S = 1 ∗ 10−6 

S = 1 ∗ 10−4 

S = 1 ∗ 10−2 

S = 1 ∗ 100 

230.0000 

-

-

-

-

-

185.0000 

160.0000 

-

-

-

-

175.0000 

170.0000 

-

-

-

-

170.0000 

175.0000 

95.0000 

-

-

-

175.0000 

175.0000 

170.0000 

-

-

-

As in the Close Scenario results, increasing the S weighting while keeping the R 

weighting constant leads to the spacecraft failing to reach the target under the time 

limit. There is not a trend linking increasing R values with decreasing ΔV results 

in Table 6.8, nor is there a trend linking decreasing ΔV with increasing S values. 

However, there is a trend linking increasing S values with decreasing time of flight 

results–which corresponds to S’s impact on penalizing the state difference between 

spacecraft and target. There is, once again, the surprising result demonstrated in 

the minimum values of ΔV and time of flight from these simulations, displayed in 

Table 6.10, where the minimum ΔV case has the minimum time of flight value. 
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Table 6.10. Weightings, Long Scenario Minimums 

R = 2 ∗ 10() S = 1 ∗ 10() ΔV [m/s] T oF [min] 

min ΔV 

min T oF 

3 

3 

-6 

-6 

0.6578 

0.6578 

95.0000 

95.0000 

Final Weighting 

¯The next parameter examined is the final state difference weighting, S. Once 

¯again, S∗–the initial guess used to compute S–is the parameter that is actually varied 

in these simulations. For these simulations N = 11 steps, dt = 5 min, and umax = 1 

m/s as before; but now: S = 1 ∗ 10−10 ∗ I6×6 and R = 2 ∗ 104 ∗ I3×3. Again, S∗ is a 

6 × 6 diagonal matrix with uniform non-zero elements, and these elements are varied 

from 1 ∗ 10−4 to 1 ∗ 104 . The ΔV and time of flight T oF results for these simulations 

are displayed in Figure 6.4. Once again, these same time limit is applied to these 

simulations, and the S∗ = 1 ∗ 104 ∗ I6×6 simulation fails to deliver the spacecraft to 

the target under that limit–thus it is not displayed in the graphs in Figure 6.4. When 

compared to the results displayed in Table 6.8, the spread of ΔV values is much 

¯larger–once more demonstrating the impact S has on the model predictive control 

output. There is a trend of increasing ΔV result with increasing S∗ value, and the 

times of flight show a similar decrease with increasing S∗ value–to a point. At some 

S∗ value (1 ∗ 104 ∗ I6×6 for this scenario), it no longer appears to aid in delivering 

the spacecraft to the target. The minimum values of the simulations are displayed in 

Table 6.11, where the minimum ΔV is much lower than in Table 6.10, but the lowest 

time of flight is higher. 

Table 6.11. Final Weighting, Long Scenario Minimums 

S∗ = 1 ∗ 10() ΔV [m/s] T oF [min] 

min ΔV -4 0.2827 450.0000 

min T oF 1 0.6862 170.0000 
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Figure 6.4. Final Weightings, Long Scenario. 

Time Horizon 

The final parameters investigated for this scenario are the time horizon param-

eters: N and dt. These values are varied from 2 to 11 time steps for N while the 

time step size (dt) varies from 1 to 10 minutes in length. The other parameters– 

S = 1 ∗ 10−10 ∗ I6×6, R = 2 ∗ 104 ∗ I3×3, S∗ = 1 ∗ 10−1 ∗ I6×6, and umax = 1 m/s–are 

again kept constant in these simulations. The ΔV and time of flight results for the 

simulations are displayed in Table 6.12 and 6.13. Once again a time limit of three 

orbital periods is applied, but none of the simulations fail to reach the target. For the 

ΔV results, there is a clear relation between increasing the values of N and dt and 

decreasing resultant ΔV usage. This is mirrored in Table 6.13, where there is a trend 

linking increasing N or dt values and increasing time of flight. Compared to the other 

parameter variations, the time horizon variations once again produce a large spread 

in ΔV and time of flight values. This is reflected in the table of minimums for these 

simulations, Table 6.14, where the minimum ΔV simulation has the longest time of 

flight and the lowest time of flight case has the second highest ΔV cost. 
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Table 6.12. Time Horizon, Long Scenario ΔV Table [m/s] 

dt [min] N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 N = 11 

1 5.8400 5.0006 4.7228 4.5406 4.4231 4.2961 4.1340 3.9479 3.7478 3.5530 

2 3.8847 3.4585 3.3139 3.1500 2.9384 2.7124 2.4929 2.2796 2.0759 1.8936 

3 3.0411 2.7991 2.6154 2.4144 2.1808 1.9392 1.7133 1.5188 1.3550 1.2146 

4 2.5619 2.4185 2.2213 1.9488 1.6849 1.4586 1.2656 1.1036 0.9716 0.8642 

5 2.2117 2.1223 1.9032 1.6213 1.3588 1.1468 0.9815 0.8502 0.7469 0.6660 

6 2.0065 1.8796 1.6439 1.3657 1.1225 0.9348 0.7946 0.6886 0.6088 0.5486 

7 1.8787 1.6999 1.4339 1.1680 0.9467 0.7836 0.6667 0.5821 0.5211 0.4761 

8 1.7769 1.5670 1.2671 1.0114 0.8150 0.6748 0.5780 0.5106 0.4630 0.4286 

9 1.6916 1.4522 1.1318 0.8897 0.7144 0.5948 0.5150 0.4610 0.4233 0.3956 

10 1.6182 1.3549 1.0224 0.7931 0.6372 0.5352 0.4693 0.4253 0.3942 0.3705 

Table 6.13. Time Horizon, Long Scenario Time of Flight Table [min] 

dt [min] N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 N = 11 

1 23.0000 22.0000 35.0000 37.0000 38.0000 39.0000 40.0000 42.0000 44.0000 46.0000 

2 30.0000 46.0000 50.0000 52.0000 54.0000 58.0000 62.0000 68.0000 72.0000 78.0000 

3 33.0000 57.0000 60.0000 66.0000 72.0000 78.0000 84.0000 93.0000 102.0000 111.0000 

4 60.0000 68.0000 72.0000 76.0000 88.0000 96.0000 108.0000 120.0000 132.0000 144.0000 

5 70.0000 75.0000 80.0000 90.0000 105.0000 115.0000 130.0000 145.0000 160.0000 175.0000 

6 78.0000 78.0000 90.0000 102.0000 120.0000 138.0000 156.0000 174.0000 192.0000 210.0000 

7 84.0000 91.0000 98.0000 119.0000 133.0000 154.0000 175.0000 196.0000 224.0000 245.0000 

8 88.0000 96.0000 112.0000 128.0000 152.0000 176.0000 200.0000 224.0000 248.0000 272.0000 

9 90.0000 99.0000 117.0000 144.0000 171.0000 198.0000 225.0000 252.0000 279.0000 306.0000 

10 100.0000 110.0000 130.0000 160.0000 190.0000 220.0000 250.0000 280.0000 310.0000 340.0000 

Table 6.14. Time Horizon, Long Scenario Minimums 

N [steps] dt [min] ΔV [m/s] T oF [min] 

min ΔV 

min T oF 

11 

3 

10 

1 

0.3705 

5.0006 

340.0000 

22.0000 

6.3.3 Failure Analysis 

In both the Close and Long scenarios there were several instances when the model 

predictive control guidance scheme failed to deliver the spacecraft to the target under 
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the respective time limits of the scenarios; this section explains the reasons for these 

failures. These failures fall into two categories: when the value of S is large and when 

the value of S∗ is large. These failure cases arise are analyzed in this section. 

Large S 

For the first category, the failure is due to the structure of the cost function, 

specifically the piece of the cost function that seeks to minimize the spacecraft-target 

state difference, J1. In Eq. (6.5), the modeled spacecraft states are represented by xk+i 

where i represents the i-th time step after time tk, however, the target is represented 

only by its final modeled state x ∗ 
k which represents the modeled state of the target at 

time tk+N . Thus, the true purpose of J1 is to minimize the separation between the 

modeled spacecraft states and the final modeled target state. If S is large enough, 

as the total cost function is minimized, the resulting stacked control vector, Uk, will 

drive all the modeled spacecraft states toward the final modeled target state, which 

results in the spacecraft never reaching the actual target state. 

The effect of a large S is displayed in Figures 6.5 and 6.6. The trajectory from 

the Close Scenario simulation with S = 1 ∗ 10−6 and R = 2 ∗ 100 is displayed in 

Figure 6.5, where the spacecraft trajectory is in red, the target trajectory in blue, 

and the initial spacecraft trajectory in pink. The final spacecraft position is repre-

sented by a red square with the corresponding target position as a blue “x”–which is 

partially obscured by the spacecraft’s trajectory. It is evident that the spacecraft’s 

trajectory stays in close proximity to the target’s trajectory, however the spacecraft 

never reaches the target. The position separation between the spacecraft and the 

target as a function of time is shown in the top graph in Figure 6.6 while the po-

sition separation between the spacecraft and the modeled final target position (the 

aim-point for J1) is shown in the bottom graph. In Figure 6.6 it is apparent that 

the spacecraft is closer to the modeled final target position than the actual target 

position. When compared to the simulation results displayed in Figures 6.7 and 6.8, 
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which display similar information for the successful S = 1 ∗ 10−10 and R = 2 ∗ 100 

simulations, the effect of S is apparent. In Figure 6.7 the spacecraft trajectory, once 

again in red, clearly reaches the target trajectory, in blue, and the final spacecraft 

position–the red square–is co-located with the final target position–the blue “x” sym-

bol. The separation between the spacecraft position and the target position and 

the spacecraft position and the modeled final target position as functions of time are 

shown in Figure 6.8; the spacecraft-target separation goes to zero while the spacecraft-

modeled final target separation does not. With S being the only difference between 

the simulations it is the source of the differences in the results. 

Figure 6.5. Close Scenario, S = 1 ∗ 10−6 & R = 2 ∗ 100 simulation trajectory. 

The relation between large S and the spacecraft delivering itself to the modeled 

target position rather than the actual target position is more evident in the Long 

Scenario failure cases; one example is shown in Figures 6.9 and 6.10 for the simulation 

with S = 1 ∗ 100 and R = 2 ∗ 104 . The spacecraft trajectory in Figure 6.9, once more 
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Figure 6.6. Close Scenario, S = 1 ∗ 10−6 & R = 2 ∗ 100 simulation 
spacecraft-target separation. 

Figure 6.7. Close Scenario, S = 1 ∗ 10−10 & R = 2 ∗ 100 simulation trajectory. 
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Figure 6.8. Close Scenario, S = 1 ∗ 10−10 & R = 2 ∗ 100 simulation 
spacecraft-target separation. 

in red, follows very closely the target trajectory in blue. Again, the final spacecraft 

position is represented by a red square while the final target position is displayed as 

a blue “x”, and the separation is evident. Figure 6.10 displays the position difference 

between the spacecraft and the target, in the top graph, and the spacecraft and 

the modeled final target position, in the bottom graph, as functions of time. A 

successful simulation’s results are displayed in Figure 6.11 and 6.12, the simulation 

with S = 1 ∗ 10−6 and R = 2 ∗ 104 . The spacecraft’s trajectory and final position 

clearly match the target’s trajectory and final position, shown in Figure 6.11, while 

the spacecraft-target separation–not the spacecraft-modeled target separation–goes 

to zero, shown in Figure 6.12. It is clear that, as a result of the large S value, the 

MPC guidance sends the spacecraft toward the modeled final target position rather 

than the actual target position. 
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Figure 6.9. Long Scenario, S = 1 ∗ 100 & R = 2 ∗ 104 simulation trajectory. 

Figure 6.10. Long Scenario, S = 1 ∗ 100 & R = 2 ∗ 104 simulation 
spacecraft-target separation. 

Large S∗ 

The other failures occur when the value of S∗ becomes large, as demonstrated in 

Figures 6.2 and 6.4. The S∗ term does not appear in Eq. (6.5), rather it appears in 

¯ ¯Eq. (6.6)–the discrete-time algebraic Riccati equation used to find S. The S term 
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Figure 6.11. Long Scenario, S = 1 ∗ 10−6 & R = 2 ∗ 104 simulation trajectory. 

Figure 6.12. Long Scenario, S = 1 ∗ 10−6 & R = 2 ∗ 104 simulation 
spacecraft-target separation. 

determines the weighting on the difference between the modeled spacecraft final state, 

¯ xk+N , and the modeled target final state, xk 
∗ . When the various weightings–S, S, and 

R–are in a good balance, the control vector produced by minimizing J creates a series 

of maneuvers for the spacecraft so that it matches the natural dynamics of the target; 

and thus, the final modeled spacecraft state will match with the modeled target state 
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because they are on the same trajectory. This behavior is demonstrated in a successful 

simulation from Figure 6.4, the simulation where S∗ = 1 ∗ 10−1 , whose trajectory is 

displayed in Figure 6.13. As in the previous examples: the target trajectory is in blue, 

the spacecraft trajectory is in red, the initial spacecraft trajectory is in pink, the final 

spacecraft position is represented by a red square, and the final target position is a blue 

“x”. The spacecraft’s trajectory matches smoothly with the targets. The maneuvers 

performed by the spacecraft in this simulation are presented in Figure 6.14 as ΔV 

values as a function of time. The differences in position and velocity between the 

spacecraft and target as functions of time are displayed in Figure 6.15. The maneuvers 

from Figure 6.14 drive the state differences to zero, and, as the state differences 

get smaller, the more the spacecraft closely matches the natural trajectory of the 

target. This is demonstrated in Figure 6.16, which displays the position and velocity 

differences between xk+N and xk 
∗ as functions of time. The more the spacecraft 

trajectory matches the target trajectory, the smaller the maneuvers necessary to 

match xk+N with xk 
∗ become–which minimizes J1 and J2. 

Figure 6.13. Long Scenario, S∗ = 1 ∗ 10−1 simulation trajectory. 

However, when the weightings in Eq. (6.5) and (6.7) are not in balance, the model 

predictive control guidance scheme fails to deliver the spacecraft to the target. For 
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Figure 6.14. Long Scenario, S∗ = 1 ∗ 10−1 simulation spacecraft maneuvers. 

Figure 6.15. Long Scenario, S∗ = 1∗10−1 simulation spacecraft-target 
position and velocity difference. 

the cases when S∗ is large–that is, large compared to R and S–the control vector 

produced by minimizing J emphasizes reducing the difference between xk+N and x ∗ 
k 

over reducing the sum of the control vectors, uk. Rather than producing maneuvers 

which align the spacecraft trajectory with the natural motion of the target state, 
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Figure 6.16. Long Scenario, S∗ = 1 ∗ 10−1 simulation modeled final 
spacecraft-target position and velocity difference. 

the maneuvers drive xk+N to xk 
∗ only, and the spacecraft does not reach the actual 

target state. This behavior is displayed in another simulation in the Long Scenario, 

the simulation when S∗ = 1 ∗ 104 . The trajectory for this simulation is displayed in 

Figure 6.17, where the spacecraft’s motion approximates the target trajectory, but the 

spacecraft never reaches the target location. The maneuvers for this simulation are 

represented in Figure 6.18 as ΔV values; compared to the maneuvers in Figure 6.14, 

the maneuvers for this simulation do not follow a smooth curve that decreases to 

zero–rather, these maneuvers show an oscillating behavior. The differences between 

the spacecraft and target positions and velocities are presented as functions of time 

in Figure 6.19 and the differences between the respective positions and velocities of 

xk+N and xk 
∗ are displayed in Figure 6.20. It is evident that the maneuvers from 

Figure 6.18 lead to reduced separation between xk+N and x ∗ 
k rather than reduced 

separation between the actual spacecraft and target states. Without a large enough 

weighting on the control costs, R, to balance the weighting on the final modeled state 

difference, the spacecraft maneuvers do not lead the spacecraft to match the target 

trajectory. 
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Figure 6.17. Long Scenario, S∗ = 1 ∗ 104 simulation trajectory. 

Figure 6.18. Long Scenario, S∗ = 1 ∗ 104 simulation spacecraft maneuvers. 

6.4 Summary 

From the examples displayed in the previous sections, it is clear that the choices of 

the parameters of the model predictive control have a great impact on the resulting 

¯spacecraft trajectory. The weightings inside the cost function–S, S, and R, and 

especially their relative values, impact whether the spacecraft will reach the target or 
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Figure 6.19. Long Scenario, S∗ = 1 ∗ 104 simulation spacecraft-target 
position and velocity difference. 

Figure 6.20. Long Scenario, S∗ = 1 ∗ 104 simulation modeled final 
spacecraft-target position and velocity difference. 

not. These weightings also have impact on the time of flight and total maneuvering 

cost for the trajectory. The time horizon parameters–the number of time steps to 

model, N , and the size of each time step, dt–have an impact on the time of flight and 
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the ΔV cost for the trajectory. These parameters can be tuned to fit a particular 

mission, or to reflect equipment limitations. For the maneuver simulations that use 

MPC guidance in this work, unless otherwise noted, have parameter values of: dt 

= 5 minutes, N = 11 time steps, S = 1 ∗ 10−10 ∗ I6×6, R = 2 ∗ 104 ∗ I3×3, and 

S∗ = 1 ∗ 10−1 ∗ I6×6. 
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7. MPC OBSTACLE AVOIDANCE 

One of the necessary features of an autonomous solution to the delivery problem is 

the successful avoidance of collisions between the spacecraft of the formation and 

other obstacles. Artificial potential function guidance has an advantage in that it has 

inherent obstacle avoidance with the inclusion of a repulsive potential; casting the 

optimization in model predictive control as a quadratic programming problem greatly 

reduces the computational burden of an optimizer, but to successfully avoid collisions 

the strict quadratic programming structure is abandoned in this implementation. 

As previously discussed, two steps are taken to add robust obstacle avoidance to the 

MPC guidance system. The first is a similar step to the method described by Jewison 

et al. [39]: the MPC optimization problem is solved with a constrained non-linear 

optimization method, in this case sequential quadratic programming (SQP), with 

ellipsoidal path constraints around every obstacle. The second step is the inclusion 

of a third element to the cost function in Eq. (6.4) that penalizes closeness to any 

obstacle; the inclusion of this element is motivated by the author’s work with APF 

guidance and its success in collision avoidance. 

7.1 Path Constraints 

To create the constraints for the model predictive control path, the motion of the 

spacecraft and any obstacles are also modeled over a series of time-steps. Similar to 

creating the path of the spacecraft through the stacked control vector, Uk, and the YA 

STM, the paths of any obstacles are also modeled with the same linear approximation. 

The state corresponding to an obstacle at time tk in the Hill frame is represented as 

xo,k, and the obstacles are assumed to move only with the natural dynamics–i.e., 

they do not introduce any maneuvers. Depending on the length of the time steps, it 
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may be necessary to interpolate between the time steps to properly avoid collisions; 

for example, the time steps in the cost function are nominally 5 minutes apart but 

potential collisions may occur between the 5 minute measurements. Interpolation 

adds numerous elements to the constraint function–adding to the computational load. 

To offset this increase, the constraint computations over the N time steps are not 

fully activated. The constraint is applied over N ∗ time-steps with an interpolation 

every dti seconds. Over the total number interpolated steps, an inequality constraint 

must be satisfied for every step i: 

c(i) = 1 − (ρi − ρo,i)
T P (ρi − ρo,i) < 0 (7.1) 

where ρi and ρo,i represent the position of the spacecraft and obstacle relative to the 

Chief in the Hill frame at step i. The matrix P is the same quantity that appears 

in the APF guidance method and it serves to define an ellipsoid surrounding every 

obstacle. This constraint is applied for every obstacle, which, at a minimum, includes 

the other spacecraft in the formation. For N obstacles this yields a total number 

of N ∗ (dt/dti) ∗ N ∗ constraints which the optimizer must satisfy. As N and N ∗ 

get larger while dti gets smaller, this number of constraints can adversely affect the 

computational load upon the spacecraft. For this reason, it was decided to explore 

incorporating a penalty function into the objective function, J , being minimized. 

7.2 Penalty Function 

The second step incorporated to avoid obstacles is the addition of an element 

to the objective function. Thus, the cost function includes a third term, i.e., J = 

J1 + J2 + J3. The new addition, J3, is structured similarly to the repulsive potential, 

φr, from the APF guidance scheme. For N obstacles and N time steps: 

N NXX 1 J3 = K (7.2) 
j=1 i=1 

((ρk+i − ρo,j,k+i)
T P (ρk+i − ρo,j,k+i) − 1)2 

where ρi is the position of the spacecraft at step i and ρo,j,i is the position of the j-th 

obstacle at step i. An ellipsoidal boundary–of size and shape determined by P –is 
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established around each obstacle. Once again, P is the same matrix that appears in 

the APF delivery scheme. The weighting on J3 is K , which is not the same weighting, 

K, used in φr, and is selected to be sufficiently large to influence the path away from 

obstacles, but not too large to prevent reaching the target. 

7.3 Parameter Evaluation 

In order to determine the appropriate combination of path constraints and J3 sev-

eral simulations of the MPC delivery scheme are performed with various parameter 

permutations under different scenarios. The parameters that are varied are K–the 

weighting on J3, N ∗–the number of time-steps over which to apply the path con-

straints, and dti–the size of the interpolation time-steps. The weightings in J1 and 

J2 are kept fixed at S = 1∗10−10 ∗I6×6, S∗ = 1∗10−1 ∗I6×6, and R = 2∗104 ∗I3×3. The 

optimizer looks ahead for N = 11 time-steps, each with a size dt = 5 minutes. The 

obstacles are represented by P = (1/252) ∗ I3×3; this selection for P creates a sphere 

of repulsion with a 25 m radius, and was selected to create obstacles of substantial 

size. Four scenarios are presented to demonstrate the behavior of the MPC delivery 

scheme. 

7.3.1 Close & Intercept 

The first scenario for consideration is the “Close & Intercept” scenario, displayed 

in Figure 7.1. The Chief orbit has a perigee altitude of 1,275.6 km and an eccen-

tricity of 0.125. The spacecraft’s initial position is ρ = [250, 150, 150]T m in the Hill 

frame and is represented by a red circle; the spacecraft’s initial trajectory is given 

in red and describes an NMC ellipse. The target trajectory is given in blue, with 

the target position at the Chief perigee represented by a blue circle, this position is 

ρt = [200, −15, −25]T m in the Hill frame. Three obstacles are present, their initial 

positions are represented by green spheres and their trajectories in green. One ob-

stacle is on an NMC ellipse which keeps it in close proximity to the target position, 
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the other two obstacles are on trajectories which would intercept the spacecraft if no 

obstacle avoidance considerations are made in the MPC delivery scheme. The sce-

nario begins when the Chief orbit is at perigee. This scenario tests the MPC guidance 

by having an obstacle ”close” to the target while others ”intercept” the spacecraft’s 

path. 

Figure 7.1. Close & Intercept Scenario. 

For the simulations performed under this scenario, N ∗ varies from 0 to 5–where 0 

indicates no constraints are applied, dti is either 60, 30, or 20 seconds, and K varies 

from 0 to 0.7–where 0 indicates J3 is not applied. There are three possible outcomes 

for each scenario: either the spacecraft collides with an obstacle, the spacecraft suc-

ceeds in reaching the target safely, or the spacecraft fails to reach the target under 

the time limit. For these simulations, a time limit of two orbital periods of the Chief, 

about 271 minutes, is applied. The results for the Close & Intercept simulations 

are displayed in the following tables; the ΔV results are in Table 7.1, the time of 

flight results are in Table 7.2, and the average computational times to produce the 

U control vector are displayed in Table 7.3. In Table 7.3 the average computational 
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times are displayed as a percentage of the average computational time it takes the 

MPC guidance to create the control vector for without any obstacles present; this 

is repeated in the similar tables for the other scenarios. In all these tables, a “-” 

indicates that simulation either collided are failed to reach the target. 

Table 7.1. Close & Intercept ΔV Table [m/s] 

N ∗ [step] dti [sec] K = 0 K = 0.1 K = 0.2 K = 0.3 K = 0.4 K = 0.5 K = 0.6 K = 0.7 

0 60 - - 0.2681 0.2428 0.2320 0.2363 0.2428 -

0 30 - - 0.2681 0.2428 0.2320 0.2363 0.2428 -

0 20 - - 0.2681 0.2428 0.2320 0.2363 0.2428 -

1 60 - 0.2328 - - 0.2321 0.2682 0.2357 -

1 30 - 0.2948 - 0.3351 0.2386 0.2430 0.2558 -

1 20 - 0.2414 - 0.2551 0.2904 0.3041 0.2401 0.2939 

2 60 0.2206 0.2474 0.2385 0.2735 0.2383 0.2720 0.3211 -

2 30 0.2209 0.2425 0.2687 0.2364 0.2320 0.2339 0.2623 -

2 20 0.2218 0.2804 0.3163 0.2383 0.2576 0.2417 0.2356 -

3 60 0.2211 0.2241 0.2277 0.2298 0.2320 0.2695 0.2377 -

3 30 0.2201 0.2402 0.2399 0.2297 0.2707 0.2338 0.2381 -

3 20 0.2196 0.2246 0.2277 0.2396 0.2394 0.2422 0.2358 -

4 60 - 0.2241 0.2339 0.2304 0.2320 0.2362 0.2376 0.2391 

4 30 - 0.2259 0.2275 0.2301 0.2319 0.2353 0.2421 -

4 20 - 0.2242 0.2401 0.2302 0.2322 0.2344 0.2505 -

5 60 0.2126 0.2242 0.2277 0.2318 0.2338 0.2366 0.2357 -

5 30 0.2127 0.2242 0.2276 0.2337 0.2381 0.2431 0.2358 -

5 20 0.2126 0.2241 0.2276 0.2302 0.2337 0.2361 0.2358 -

In Table 7.1-7.3, the “-” markers under K = 0.7 represent failures to reach the 

target under the time limit while the “-” markers elsewhere indicate simulations where 

the spacecraft collided with an obstacle. This gives a reliable upper limit on K if the 

MPC delivery scheme is used in situations where obstacles are in close proximity to the 

target position. Another result is that the simulations using only constraints, K = 0, 

have a consistent time of flight of 120 minutes, lower than any simulations using J3. 

The comparison of the best performances of the constraint only and the J3 inclusive 
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Table 7.2. Close & Intercept Time of Flight Table [min] 

N ∗ [step] dti [sec] K = 0 K = 0.1 K = 0.2 K = 0.3 K = 0.4 K = 0.5 K = 0.6 K = 0.7 

0 60 - - 200.0000 205.0000 205.0000 205.0000 210.0000 -

0 30 - - 200.0000 205.0000 205.0000 205.0000 210.0000 -

0 20 - - 200.0000 205.0000 205.0000 205.0000 210.0000 -

1 60 - 190.0000 - - 205.0000 210.0000 210.0000 -

1 30 - 195.0000 - 205.0000 205.0000 210.0000 210.0000 -

1 20 - 190.0000 - 205.0000 205.0000 210.0000 210.0000 210.0000 

2 60 120.0000 190.0000 195.0000 205.0000 205.0000 205.0000 210.0000 -

2 30 120.0000 190.0000 195.0000 200.0000 205.0000 205.0000 210.0000 -

2 20 120.0000 190.0000 200.0000 205.0000 205.0000 210.0000 210.0000 -

3 60 120.0000 190.0000 200.0000 200.0000 205.0000 210.0000 210.0000 -

3 30 120.0000 190.0000 200.0000 200.0000 205.0000 205.0000 210.0000 -

3 20 120.0000 190.0000 200.0000 200.0000 205.0000 205.0000 210.0000 -

4 60 - 190.0000 200.0000 205.0000 205.0000 210.0000 210.0000 210.0000 

4 30 - 190.0000 200.0000 205.0000 205.0000 210.0000 210.0000 -

4 20 - 190.0000 200.0000 205.0000 205.0000 210.0000 210.0000 -

5 60 120.0000 190.0000 200.0000 205.0000 205.0000 210.0000 210.0000 -

5 30 120.0000 190.0000 200.0000 205.0000 205.0000 210.0000 210.0000 -

5 20 120.0000 190.0000 200.0000 205.0000 205.0000 210.0000 210.0000 -

simulations is displayed in Table 7.4 where “min ΔV ” identifies the simulations with 

the lowest ΔV , ”min T oF ” indicates the simulations with the lowest time of flight, 

and “min RT ” designates the simulations with the lowest average computational time. 

Both of the minimum ΔV simulations have the maximum amount of interpolating 

constraints applied–N ∗ = 5 steps and dti = 20 seconds–and correspondingly high 

average computational costs. For all the cases in Table 7.4, the K = 0 simulations 

have lower ΔV results and shorter times of flights. However, in the cases of min T oF 

and min RT the K > 0 simulations have lower computational time. This is further 

demonstrated in Table 7.3: the average computational times for the same N ∗ and 

dti values are higher for the K > 0 simulations, but the K > 0 simulations succeed 

in reaching the target for lower N ∗ values. In fact, the MPC guidance succeeds with 

no constraints applied as long as 0.1 ≤ K < 0.7. For this scenario, the inclusion of 
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Table 7.3. Close & Intercept Avg. Comp. Time Table [%] 

N ∗ [step] dti [sec] K = 0 K = 0.1 K = 0.2 K = 0.3 K = 0.4 K = 0.5 K = 0.6 K = 0.7 

0 60 - - 948.02 927.37 960.47 959.81 990.43 -

0 30 - - 942.86 928.66 993.91 935.00 917.87 -

0 20 - - 956.09 931.17 974.58 1013.09 913.14 -

1 60 - 2100.79 - - 2037.95 2087.95 2257.73 -

1 30 - 3707.92 - 3869.14 3644.23 3669.67 3854.75 -

1 20 - 6340.64 - 6173.22 6403.40 6459.48 6292.73 6459.01 

2 60 3440.84 3976.25 3828.36 3858.87 3852.37 3878.52 4526.65 -

2 30 8907.22 10394.48 9554.64 9398.18 9774.81 9662.96 9612.70 -

2 20 18151.17 18870.70 19836.54 18880.84 19331.50 19535.39 18325.61 -

3 60 5901.91 6585.28 6774.53 6303.27 6553.57 6434.79 6509.65 -

3 30 17638.86 19360.22 19665.33 18747.12 19480.09 19961.46 18997.06 -

3 20 37931.33 40984.32 41449.18 39671.13 40437.90 41415.76 39249.41 -

4 60 - 10140.21 10052.47 9755.09 9986.88 10045.03 10298.97 9846.05 

4 30 - 33606.31 34470.92 32637.19 32597.56 34925.48 32424.51 -

4 20 - 70422.13 68670.94 68835.26 68166.43 71382.46 68588.36 -

5 60 12728.36 14593.97 14640.91 14577.66 14626.25 14442.27 14549.52 -

5 30 43513.61 50839.90 51435.47 49643.84 49640.07 52275.69 48865.98 -

5 20 96353.66 107480.61 106231.35 104980.54 105994.60 110194.65 104371.00 -

K allows for successful delivery at lower computational loads, but with higher ΔV 

usage and longer times of flight. 

Table 7.4. Close & Intercept Minimums 

K N ∗ [step] dti [sec] ΔV [m/s] RT [%] T oF [min] 

min ΔV 0.00 5 20 0.2126 96353.66 120.0000 

min ΔV 0.10 5 20 0.2241 107480.61 190.0000 

min T oF 0.00 2 60 0.2206 3440.84 120.0000 

min T oF 0.10 1 60 0.2328 2100.79 190.0000 

min RT 0.00 2 60 0.2206 3440.84 120.0000 

min RT 0.60 0 20 0.2428 913.14 210.0000 
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7.3.2 Long Distance 

The second scenario for consideration is the “Long Distance” scenario, displayed 

in Figure 7.2. The Chief orbit is the same as in the Close & Intercept scenario. The 

spacecraft’s initial position is ρ = [100, 0, 0]T m in the Hill frame and is represented by 

a red circle; the spacecraft has an initial velocity of 0.0945 m/s in the Hill x̂ direction, 

and the trajectory given by this velocity is displayed in red. The target trajectory is 

given in blue, with the target position at the Chief perigee represented by a blue circle, 

this position is ρt = [1.155, 1.155, 1.155]T km in the Hill frame. Three obstacles are 

present, their initial positions are represented by green spheres and their trajectories 

in green. One obstacle is on an NMC ellipse which keeps it in close proximity to 

the target position, the other two obstacles are on trajectories which would intercept 

the spacecraft if no obstacle avoidance considerations are made in the MPC delivery 

scheme. The scenario begins when the Chief orbit is at perigee. This scenario tests 

the MPC guidance by having an obstacle in proximity to the target with the target 

a “long distance” from the spacecraft’s initial position. 

For the simulations performed under this scenario, N ∗ varies from 0 to 5–where 0 

indicates no constraints are applied, dti is either 60, 30, or 20 seconds, and K varies 

from 0 to 1–where 0 indicates J3 is not applied. There are three possible outcomes for 

each scenario: either the spacecraft collides with an obstacle, the spacecraft succeeds 

in reaching the target safely, or the spacecraft fails to reach the target under the time 

limit. For these simulations, a time limit of three orbital periods of the Chief, about 

407 minutes, is applied. The results for the Long Distance simulations are displayed 

in the following tables; the ΔV results are in Table 7.5, the time of flight results are 

in Table 7.6, and the average computational times to produce the U control vector 

are displayed in Table 7.7. In these tables, a “-” indicates that simulation collided 

with an obstacle; in the Long Distance simulations there are no time limit failures. 

The results of the Long Distance simulations present different trends than the 

Close & Intercept simulations. The number of successful simulations for both con-
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Figure 7.2. Long Distance Scenario. 

straint only and J3 only MPC delivery options is much smaller in the Long Distance 

scenario. Additionally, in the Close & Intercept scenario, there is a connection be-

tween increasing N ∗ value and decreasing ΔV usage–demonstrated in Table 7.1; how-

ever, this trend is reversed in Table 7.5: the highest ΔV values occur for the highest 

N ∗ numbers. The times of flight, displayed in Table 7.6, display a general trend 

that increasing K value increases time of flight, which is consistent with Table 7.2. 

The average computational times in Table 7.7 offer a similar trend to Table 7.3 with 

increasing computational time with increasing N ∗ and dti values, however there are 

simulations at the same N ∗ and dti values where K > 0 simulations have lower av-

erage computational times–which does not occur in the Close & Intercept scenario. 

The comparison between the minimum values of interest–ΔV , T oF , and RT –between 

the K = 0 and K > 0 simulations, displayed in Table 7.8, offers another difference be-

tween the Long Distance and Close & Intercept scenarios. In Table 7.8, all the lowest 

minimum values occur for K > 0 simulations; that is not the case in Table 7.4. In the 
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Table 7.5. Long Distance ΔV Table [m/s] 

N ∗ [step] dti [sec] K = 0 K = 0.1 K = 0.2 K = 0.3 K = 0.4 K = 0.5 K = 0.6 K = 0.7 K = 0.8 K = 0.9 K = 1 

0 60 - - - - 1.6800 - - 1.6797 - - -

0 30 - - - - 1.6800 - - 1.6797 - - -

0 20 - - - - 1.6800 - - 1.6797 - - -

1 60 - 1.6797 1.6797 1.6795 1.6795 1.6793 1.6794 1.6792 1.7190 1.7316 1.6896 

1 30 - 1.6635 1.6785 1.6794 1.6799 1.6793 1.6793 1.6792 1.7046 1.6840 1.6896 

1 20 - 1.6797 1.6796 1.6795 1.6794 1.6793 1.6793 1.6792 1.6792 1.6896 1.6862 

2 60 - 1.6750 1.6944 1.6748 1.6736 1.6738 1.6738 1.6734 1.6733 1.6888 1.7001 

2 30 - 1.6773 1.6747 1.6740 1.7965 1.6738 1.6736 1.6732 1.6743 1.6836 1.6834 

2 20 - 1.6750 1.6749 1.6739 1.6900 1.6794 1.6761 1.6993 1.6932 1.6855 1.6847 

3 60 1.7377 1.7336 1.7399 1.7548 1.7387 1.7642 1.7447 1.7455 1.7481 1.7509 1.7542 

3 30 1.8140 1.8193 1.8154 1.8103 1.8044 1.8113 1.8095 1.8151 1.8063 1.8044 1.8079 

3 20 - 1.6846 1.7155 1.6945 1.6973 1.6791 1.7045 1.6893 1.6790 1.6897 1.6897 

4 60 - 1.6738 1.6865 1.6754 1.6784 1.6892 1.6739 1.6793 1.6896 1.6927 1.7005 

4 30 - 1.7017 1.7039 1.7232 1.7031 1.7045 1.7181 1.6695 1.7203 1.7219 1.6906 

4 20 - 1.6692 1.6715 1.6868 1.6699 1.6773 1.6788 1.7216 1.6841 1.6953 1.6932 

5 60 3.0448 3.0426 3.0923 2.8592 2.8510 2.8567 2.8906 2.8244 2.8345 2.8771 2.9097 

5 30 2.9751 2.9002 3.0604 2.9978 2.9836 3.0042 3.0557 2.9353 3.0510 3.0394 3.0570 

5 20 3.1139 3.1138 2.9823 3.2997 2.9808 3.3355 3.1137 3.1489 3.3364 3.2374 3.1144 

Table 7.6. Long Distance Time of Flight Table [min] 

∗N [step] dti [sec] K = 0 K = 0.1 K = 0.2 K = 0.3 K = 0.4 K = 0.5 K = 0.6 K = 0.7 K = 0.8 K = 0.9 K = 1 

0 60 - - - - 190.0000 - - 190.0000 - - -

0 30 - - - - 190.0000 - - 190.0000 - - -

0 20 - - - - 190.0000 - - 190.0000 - - -

1 60 - 190.0000 190.0000 190.0000 190.0000 190.0000 190.0000 190.0000 255.0000 190.0000 255.0000 

1 30 - 190.0000 190.0000 190.0000 190.0000 190.0000 190.0000 190.0000 255.0000 255.0000 255.0000 

1 20 - 190.0000 190.0000 190.0000 190.0000 190.0000 190.0000 190.0000 190.0000 255.0000 255.0000 

2 60 - 190.0000 190.0000 190.0000 190.0000 190.0000 190.0000 190.0000 190.0000 255.0000 255.0000 

2 30 - 190.0000 190.0000 190.0000 185.0000 190.0000 190.0000 190.0000 190.0000 255.0000 255.0000 

2 20 - 190.0000 190.0000 190.0000 255.0000 190.0000 190.0000 255.0000 255.0000 255.0000 255.0000 

3 60 190.0000 190.0000 190.0000 190.0000 190.0000 190.0000 190.0000 190.0000 255.0000 255.0000 255.0000 

3 30 190.0000 190.0000 190.0000 190.0000 190.0000 190.0000 190.0000 190.0000 190.0000 190.0000 190.0000 

3 20 - 190.0000 190.0000 190.0000 190.0000 190.0000 255.0000 190.0000 190.0000 255.0000 255.0000 

4 60 - 190.0000 190.0000 190.0000 190.0000 190.0000 190.0000 190.0000 255.0000 255.0000 255.0000 

4 30 - 190.0000 190.0000 255.0000 190.0000 190.0000 190.0000 190.0000 255.0000 255.0000 255.0000 

4 20 - 190.0000 190.0000 190.0000 190.0000 190.0000 190.0000 255.0000 190.0000 255.0000 255.0000 

5 60 250.0000 250.0000 245.0000 245.0000 245.0000 245.0000 245.0000 245.0000 245.0000 245.0000 245.0000 

5 30 240.0000 240.0000 240.0000 240.0000 240.0000 240.0000 240.0000 240.0000 240.0000 240.0000 240.0000 

5 20 195.0000 195.0000 195.0000 200.0000 195.0000 200.0000 195.0000 200.0000 200.0000 205.0000 260.0000 
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Table 7.7. Long Distance Avg. Comp. Time Table [%] 

N ∗ [step] dti [sec] K = 0 K = 0.1 K = 0.2 K = 0.3 K = 0.4 K = 0.5 K = 0.6 K = 0.7 K = 0.8 K = 0.9 K = 1 

0 60 - - - - 942.94 - - 1083.38 - - -

0 30 - - - - 1036.79 - - 1190.31 - - -

0 20 - - - - 948.18 - - 1051.36 - - -

1 60 - 2125.38 2104.77 2137.06 2059.78 2224.91 2146.79 2927.33 2293.92 2175.16 2192.96 

1 30 - 3997.63 3971.80 3896.36 3859.42 4332.23 4219.10 4735.15 4271.51 3984.62 3990.75 

1 20 - 6568.00 6612.90 6594.45 6548.38 6610.97 6832.57 6780.56 6679.99 6603.70 6458.19 

2 60 - 3924.95 4116.46 3772.87 4004.00 4149.49 3878.05 4423.55 4250.04 3981.55 4041.97 

2 30 - 10062.91 10060.79 9991.99 11673.58 10809.25 11405.41 11613.85 11141.30 10110.17 10243.68 

2 20 - 19572.39 19689.74 19536.44 19894.49 20019.37 20857.53 20380.43 19798.53 19615.02 20107.22 

3 60 6836.54 6920.65 7240.46 6752.38 6565.69 6809.03 6487.78 6854.36 7115.76 6652.66 6747.28 

3 30 20638.56 20486.40 19795.87 19905.80 20851.41 20620.01 21063.81 20918.55 22637.06 20044.06 20261.54 

3 20 - 44508.31 43226.82 42324.64 41550.23 45086.21 44401.17 45462.02 42271.46 42143.56 41875.71 

4 60 - 10720.43 10442.60 10025.06 10640.26 10945.58 10579.10 11281.50 10813.66 10570.18 10455.44 

4 30 - 36677.10 36187.77 33906.66 36779.37 36763.74 37570.16 37814.66 36912.53 34223.49 33893.43 

4 20 - 74100.17 71904.62 70308.81 75368.62 74300.83 77356.55 74695.08 73052.80 72196.92 71473.93 

5 60 16104.12 15509.14 15244.85 15160.78 15585.74 15738.02 16284.66 16093.45 15831.74 15365.68 15293.70 

5 30 52676.35 53631.38 52832.97 50208.49 51772.62 52948.74 55138.27 54761.85 53052.55 51885.60 52720.47 

5 20 115555.55 112810.23 111585.97 108794.86 114780.22 109699.80 116228.22 113424.67 111523.22 109209.63 107861.90 

Long Distance scenario, the combination of path constraints and penalty function in 

the MPC guidance scheme succeeds in delivering the spacecraft safely using less ΔV 

and less average computational time than path constraints only version of the MPC 

scheme. 

Table 7.8. Long Distance Minimums 

K N ∗ [step] dti [sec] ΔV [m/s] RT [%] T oF [min] 

min ΔV 0.00 3 60 1.7377 6836.54 190.0000 

min ΔV 0.10 1 30 1.6635 3997.63 190.0000 

min T oF 0.00 3 60 1.7377 6836.54 190.0000 

min T oF 0.40 2 30 1.7965 11673.58 185.0000 

min RT 0.00 3 60 1.7377 6836.54 190.0000 

min RT 0.40 0 60 1.6800 942.94 190.0000 



136 

7.3.3 Mid-Range 

The third scenario for consideration is the “Mid-Range” scenario, displayed in 

Figure 7.3. The Chief orbit is the same as in the Close & Intercept and Long Range 

scenarios. The spacecraft’s initial position is ρ = [475.5283, 154.5085, 0]T m in the 

Hill frame and is represented by a red circle; the spacecraft’s initial trajectory is 

given in red and describes an NMC ellipse. The target trajectory is given in blue, 

with the target position at the Chief perigee represented by a blue circle, this position 

is ρt = [1.4142, 0, 1.4142]T km in the Hill frame. Three obstacles are present, their 

initial positions are represented by green spheres and their trajectories in green. One 

obstacle is on a close approach trajectory with the target position after one orbital 

period of the Chief, but none of the obstacles are on NMC paths in the Hill frame. 

The scenario begins when the Chief orbit is at perigee. This scenario tests the MPC 

guidance by having the spacecraft transition from a NMC ellipse to a larger NMC 

path while avoiding intercepting obstacles. 

Figure 7.3. Mid-Range Scenario. 
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For the simulations performed under this scenario, N ∗ varies from 0 to 5–where 0 

indicates no constraints are applied, dti is either 60, 30, or 20 seconds, and K varies 

from 0 to 1–where 0 indicates J3 is not applied. There are three possible outcomes for 

each scenario: either the spacecraft collides with an obstacle, the spacecraft succeeds 

in reaching the target safely, or the spacecraft fails to reach the target under the time 

limit. For these simulations, a time limit of two orbital periods of the Chief, about 

271 minutes, is applied. The results for the Mid-Range simulations are displayed in 

the following tables; the ΔV results are in Table 7.9, the time of flight results are in 

Table 7.10, and the average computational times to produce the U control vector are 

displayed in Table 7.11. In these tables, a “-” indicates that simulation collided with 

an obstacle; in the Mid-Range simulations there are, again, no time limit failures. 

Table 7.9. Mid-Range ΔV Table [m/s] 

N ∗ [step] dti [sec] K = 0 K = 0.1 K = 0.2 K = 0.3 K = 0.4 K = 0.5 K = 0.6 K = 0.7 K = 0.8 K = 0.9 K = 1 

0 60 - - - - - - - - - - -

0 30 - - - - - - - - - - -

0 20 - - - - - - - - - - -

1 60 - 2.2217 2.2236 2.2247 2.2343 2.2203 2.2273 2.2197 2.2255 2.2193 2.2108 

1 30 - 2.4234 2.2259 2.2226 2.2205 2.2203 2.2200 2.2198 2.2196 2.2194 2.2192 

1 20 - 2.2069 2.2078 2.2298 2.2172 2.2202 2.2200 2.2332 2.2196 2.2194 2.2192 

2 60 - 2.2190 2.2261 2.2086 2.2039 2.2007 2.1989 2.2198 2.1977 2.2682 2.2031 

2 30 - - 2.2258 2.2030 2.1828 2.1872 2.2199 2.1981 2.2188 2.2156 2.2227 

2 20 - 2.2001 2.2419 2.2208 2.2019 2.2293 2.2032 2.1993 2.1976 2.2194 2.2336 

3 60 - 2.2207 2.2212 2.2209 2.2205 2.2203 2.2200 2.2198 2.2196 2.2194 2.2192 

3 30 - 2.2217 2.2213 2.2208 2.2207 2.2203 2.2198 2.2198 2.2198 2.2193 2.2192 

3 20 - 2.2217 2.2212 2.2208 2.2205 2.2203 2.2200 2.2198 2.2196 2.2194 2.2192 

4 60 - 2.2217 2.2212 2.2209 2.2205 2.2203 2.2201 2.2198 2.2196 2.2195 2.2192 

4 30 - 2.2216 2.2212 2.2207 2.2206 2.2203 2.2201 2.2199 2.2196 2.2194 2.2192 

4 20 - 2.2216 2.2212 2.2209 2.2206 2.2203 2.2200 2.2198 2.2196 2.2194 2.2193 

5 60 - 2.2217 2.2216 2.2209 2.2208 2.2202 2.2200 2.2198 2.2195 2.2194 2.2196 

5 30 - 2.2217 2.2213 2.2209 2.2206 2.2203 2.2200 2.2198 2.2197 2.2194 2.2192 

5 20 - 2.2218 2.2212 2.2208 2.2206 2.2203 2.2200 2.2198 2.2196 2.2194 2.2192 

The results of the Mid-Range simulations offer interesting comparisons to both the 

Close & Intercept and Long Range scenarios, particularly that neither path constraint 

only (K = 0) nor penalty function only (N ∗ = 0) versions of the MPC delivery method 
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Table 7.10. Mid-Range Time of Flight Table [min] 

∗N [step] dti [sec] K = 0 K = 0.1 K = 0.2 K = 0.3 K = 0.4 K = 0.5 K = 0.6 K = 0.7 K = 0.8 K = 0.9 K = 1 

0 60 - - - - - - - - - - -

0 30 - - - - - - - - - - -

0 20 - - - - - - - - - - -

1 60 - 250.0000 245.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 

1 30 - 230.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 

1 20 - 255.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 

2 60 - 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 190.0000 255.0000 

2 30 - - 250.0000 255.0000 250.0000 185.0000 250.0000 250.0000 250.0000 250.0000 250.0000 

2 20 - 250.0000 255.0000 250.0000 255.0000 250.0000 255.0000 250.0000 250.0000 250.0000 250.0000 

3 60 - 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 

3 30 - 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 

3 20 - 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 

4 60 - 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 

4 30 - 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 

4 20 - 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 

5 60 - 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 

5 30 - 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 

5 20 - 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 250.0000 

Table 7.11. Mid-Range Avg. Comp. Time Table [%] 

N ∗ [step] dti [sec] K = 0 K = 0.1 K = 0.2 K = 0.3 K = 0.4 K = 0.5 K = 0.6 K = 0.7 K = 0.8 K = 0.9 K = 1 

0 60 - - - - - - - - - - -

0 30 - - - - - - - - - - -

0 20 - - - - - - - - - - -

1 60 - 2272.32 2303.62 2390.25 2206.47 2307.39 2361.30 2298.76 2321.57 2634.26 2423.87 

1 30 - 4009.96 4202.64 4256.28 4227.75 4313.90 4127.00 4248.55 4502.07 4295.84 4783.45 

1 20 - 6947.03 7154.68 7780.84 7665.75 8779.25 7094.66 7117.01 7115.49 7148.36 7236.46 

2 60 - 4213.35 4279.21 4618.24 4157.21 4325.97 4260.76 4295.22 4340.99 4853.36 4523.39 

2 30 - - 10818.87 11883.88 11436.88 11049.16 10803.65 10580.77 11412.86 10974.46 11543.53 

2 20 - 21501.74 22042.94 25118.20 23244.12 22639.23 21219.32 22520.91 21140.24 21423.76 21616.17 

3 60 - 7157.15 7195.26 7436.62 7207.31 7580.44 7180.79 7229.12 7290.56 7763.13 7481.44 

3 30 - 21479.85 23703.38 22796.81 24090.26 25176.87 21723.98 21450.21 21917.05 21553.22 22645.24 

3 20 - 44825.39 47939.92 48114.79 47808.27 48498.76 44157.49 47729.55 44708.91 45400.21 48581.50 

4 60 - 11200.65 11084.58 11502.75 11154.95 11573.27 11211.05 11086.66 11258.16 11969.83 12028.56 

4 30 - 36694.58 40675.95 39630.33 39498.07 39595.17 36600.22 36450.93 36551.51 36453.19 38497.90 

4 20 - 76570.41 83294.17 76643.14 82003.14 81079.32 76843.45 80667.68 77176.51 83850.91 81471.75 

5 60 - 16116.47 16151.93 17264.09 16321.28 16765.90 16277.96 16197.42 16537.68 16596.49 16778.39 

5 30 - 54493.45 57657.04 58037.00 60569.34 58821.15 55089.81 57498.91 55394.15 55958.95 57306.47 

5 20 - 118016.07 126321.68 116526.40 126060.77 124938.47 117156.32 121679.99 120732.44 124052.10 119638.22 

succeed in guiding the spacecraft safely to the target. Only the mixed version of the 

MPC guidance scheme succeeds in delivery, with only the K = 0.1 N ∗ = 2 dti = 30 
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simulation colliding with an obstacle. There is only a small spread of ΔV and time 

of flight values in Table 7.9 & 7.10; however, in Table 7.11 the computational times 

increase with increasing N ∗ and dti values–consistent with the Close & Intercept 

and Long Range simulations. Without any path constraint only successes, the table 

of minimums for the Mid-Range simulations, Table 7.12, contains only mixed MPC 

obstacle avoidance results. The lack of successes for either the path constraint only or 

penalty function only MPC delivery schemes in the Mid-Range scenario is motivation 

to use the mixed (N ∗ > 0 and K > 0) MPC obstacle avoidance method in the 

formation reconfiguration maneuver simulations that follow. 

Table 7.12. Mid-Range Minimums 

K N ∗ [step] dti [sec] ΔV [m/s] RT [%] T oF [min] 

min ΔV 0.40 2 30 2.1828 11436.88 250.0000 

min T oF 0.50 2 30 2.1872 11049.16 185.0000 

min RT 0.40 1 60 2.2343 2206.47 250.0000 

7.3.4 Low Danger 

The third scenario for consideration is the “Low Danger” scenario, displayed in 

Figure 7.4. The Chief orbit, the target trajectory, and the initial spacecraft posi-

tion and trajectory are the same as in the Mid-Range scenario. The only difference 

between the scenarios are the obstacles; there are only two obstacles in the Low Dan-

ger scenario and both are on NMC trajectories in the Hill frame. Since the NMC 

trajectories of the obstacles were not created with the intention of intercepting the 

spacecraft’s path, in contrast to the previous scenarios, the obstacles represent a “low 

danger”. 

For the simulations performed under this scenario, N ∗ varies from 0 to 5–where 0 

indicates no constraints are applied, dti is either 60, 30, or 20 seconds, and K varies 

from 0 to 1–where 0 indicates J3 is not applied. There are three possible outcomes for 

each scenario: either the spacecraft collides with an obstacle, the spacecraft succeeds 
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Figure 7.4. Low Danger Scenario. 

in reaching the target safely, or the spacecraft fails to reach the target under the time 

limit. For these simulations, a time limit of two orbital periods of the Chief, about 

271 minutes, is applied–the same conditions as in the Mid-Range simulations. The 

results for the Low Danger simulations are displayed in the following tables; the ΔV 

results are in Table 7.13, the time of flight results are in Table 7.14, and the average 

computational times to produce the U control vector are displayed in Table 7.15. 

In these tables, a “-” would indicate a simulation that collided with an obstacle or 

failed to reach the target in the time limit, but, in the Low Danger simulations, the 

spacecraft always reaches the target. 

The results for the Low Danger simulations have trends that correspond with the 

other scenarios, primarily that increasing N ∗ and dti values lead to longer average 

computational times–displayed in Table 7.15. However, the fact that all the simu-

lations succeed in reaching the target, including the simulations where K and N ∗ 

are both zero, means that no considerations for obstacle avoidance are necessary for 



141 

Table 7.13. Low Danger ΔV Table [m/s] 

N ∗ [step] dti [sec] K = 0 K = 0.1 K = 0.2 K = 0.3 K = 0.4 K = 0.5 K = 0.6 K = 0.7 K = 0.8 K = 0.9 K = 1 

0 60 2.2310 2.2310 2.2310 2.2311 2.2311 2.2310 2.2310 2.2310 2.2310 2.2310 2.2310 

0 30 2.2310 2.2310 2.2310 2.2311 2.2311 2.2310 2.2310 2.2310 2.2310 2.2310 2.2310 

0 20 2.2310 2.2310 2.2310 2.2311 2.2311 2.2310 2.2310 2.2310 2.2310 2.2310 2.2310 

1 60 2.2310 2.2310 2.2310 2.2310 2.2310 2.2311 2.2310 2.2310 2.2310 2.2310 2.2310 

1 30 2.2310 2.2310 2.2311 2.2310 2.2311 2.2310 2.2310 2.2310 2.2311 2.2310 2.2310 

1 20 2.2310 2.2310 2.2310 2.2310 2.2310 2.2310 2.2310 2.2309 2.2311 2.2310 2.2310 

2 60 2.2310 2.2310 2.2310 2.2310 2.2310 2.2310 2.2310 2.2311 2.2311 2.2310 2.2310 

2 30 2.2310 2.2311 2.2310 2.2310 2.2310 2.2311 2.2310 2.2310 2.2310 2.2310 2.2311 

2 20 2.2310 2.2311 2.2310 2.2310 2.2310 2.2310 2.2310 2.2310 2.2310 2.2311 2.2310 

3 60 2.2311 2.2310 2.2310 2.2310 2.2310 2.2311 2.2310 2.2310 2.2310 2.2310 2.2311 

3 30 2.2310 2.2310 2.2309 2.2310 2.2311 2.2310 2.2310 2.2310 2.2310 2.2311 2.2310 

3 20 2.2311 2.2310 2.2310 2.2310 2.2311 2.2310 2.2310 2.2310 2.2310 2.2309 2.2310 

4 60 2.2309 2.2313 2.2310 2.2318 2.2313 2.2311 2.2312 2.2293 2.2274 2.2310 2.2314 

4 30 2.2192 2.2223 2.2375 2.2406 2.2274 2.2134 2.2280 2.2203 2.2268 2.2310 2.2226 

4 20 2.2309 2.2310 2.2309 2.2310 2.2331 2.2414 2.2317 2.2389 2.2309 2.2309 2.2311 

5 60 2.2311 2.2310 2.2309 2.2310 2.2310 2.2310 2.2311 2.2310 2.2305 2.2311 2.2313 

5 30 2.2295 2.2288 2.2305 2.2310 2.2311 2.2310 2.2311 2.2311 2.2313 2.2327 2.2309 

5 20 2.2309 2.2310 2.2310 2.2310 2.2310 2.2310 2.2311 2.2310 2.2310 2.2310 2.2310 

Table 7.14. Low Danger Time of Flight Table [min] 

∗N [step] dti [sec] K = 0 K = 0.1 K = 0.2 K = 0.3 K = 0.4 K = 0.5 K = 0.6 K = 0.7 K = 0.8 K = 0.9 K = 1 

0 60 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 

0 30 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 

0 20 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 

1 60 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 

1 30 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 

1 20 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 

2 60 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 

2 30 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 

2 20 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 

3 60 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 

3 30 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 

3 20 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 

4 60 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 

4 30 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 

4 20 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 

5 60 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 

5 30 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 

5 20 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 
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Table 7.15. Low Danger Avg. Comp. Time Table [%] 

N ∗ [step] dti [sec] K = 0 K = 0.1 K = 0.2 K = 0.3 K = 0.4 K = 0.5 K = 0.6 K = 0.7 K = 0.8 K = 0.9 K = 1 

0 60 843.51 843.31 896.69 843.39 1176.37 1372.27 851.91 910.40 849.91 857.55 919.78 

0 30 843.63 855.53 836.00 843.62 1311.24 921.36 853.24 997.46 845.93 854.74 840.00 

0 20 838.01 837.29 861.94 831.48 853.74 900.89 826.76 1274.46 867.38 921.01 915.93 

1 60 1920.47 1964.11 2057.97 1975.17 2038.04 2080.07 2026.85 2267.49 2067.73 2008.89 2164.93 

1 30 3785.15 3731.80 4721.30 3816.23 4887.02 4014.83 3800.61 3871.14 3876.55 3829.80 3885.11 

1 20 6438.73 6415.58 6604.09 6399.17 7656.80 6580.31 6485.15 6527.86 6441.58 7378.48 6969.49 

2 60 3692.49 3768.26 3828.57 3740.24 3793.91 3967.18 3835.66 3963.38 3857.65 3823.32 3945.16 

2 30 10174.92 10008.49 12017.49 10057.23 10267.40 10092.79 10082.58 10293.70 10216.33 10192.86 10097.56 

2 20 19836.31 21780.61 20398.78 19481.38 22628.28 20389.12 19768.99 22513.03 19538.81 20704.32 20363.05 

3 60 6420.63 6433.99 6501.23 6505.78 6998.90 6541.99 6458.33 7621.62 6655.34 6629.53 7007.56 

3 30 19697.25 19904.44 20263.38 19715.57 20458.90 21347.17 20017.67 20725.66 20082.00 19917.10 23259.67 

3 20 41322.51 44980.58 44953.49 42509.44 45001.01 43765.76 41330.86 43165.04 40951.60 43523.53 44931.62 

4 60 9923.36 9914.58 12289.28 10082.31 10694.51 10738.22 10043.46 10914.81 10093.21 10168.60 10306.93 

4 30 32728.83 33161.95 35686.95 33530.09 36798.81 36329.83 33477.25 35786.46 33249.86 33138.45 36022.55 

4 20 69737.87 72420.75 74011.45 75276.75 75340.18 71210.26 69643.75 71418.34 72678.35 74509.92 71806.40 

5 60 14530.97 14228.31 14947.08 14509.17 16769.62 15628.68 14702.31 17278.46 14646.41 14646.03 14485.15 

5 30 49509.07 49275.17 54316.27 50305.70 53151.15 54016.97 50468.32 53920.88 51080.59 52025.11 54129.61 

5 20 107043.11 115281.47 115097.39 115643.25 113177.50 108997.46 108534.71 110518.40 109910.67 114648.86 110062.32 

this scenario. From Table 7.14, all the simulations have the same time of flight: 255 

minutes, and from Table 7.13, the ΔV values for all the simulations are similar. The 

simulations with the minimum values of interest are displayed in Table 7.16 for both 

K = 0 and K > 0 MPC schemes. Unsurprisingly, the minimum average computa-

tional times occur when N ∗ = 0; surprisingly, the minimum ΔV value occurs when 

K = 0.5, N ∗ = 4, and dti = 30. Future investigation into this behavior may be 

necessary to explain this result. 

Table 7.16. Low Danger Minimums 

K N ∗ [step] dti [sec] ΔV [m/s] RT [%] T oF [min] 

min ΔV 0.00 4 30 2.2192 32728.83 255.0000 

min ΔV 0.50 4 30 2.2134 36329.83 255.0000 

min T oF 0.00 0 60 2.2310 843.51 255.0000 

min T oF 0.10 0 60 2.2310 843.31 255.0000 

min RT 0.00 0 20 2.2310 838.01 255.0000 

min RT 0.60 0 20 2.2310 826.76 255.0000 
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7.4 Success, Collision, and Failure 

In the simulations displayed in the preceding sections there were three possibilities 

for termination: success–the spacecraft succeeded in matching the target state with-

out colliding with an obstacle under the simulation time limit, collision–the spacecraft 

collided with an obstacle, and failure–the spacecraft neither collided with an obstacle 

nor did it reach the target under the time limit. In this section, examples of each 

of these termination cases will be examined and analyzed. The examples will be 

taken from the Close & Intercept scenario as it is the only one to display all three 

termination possibilities. 

7.4.1 K = 0 Success 

The first example for consideration is the Close & Intercept simulation with K = 0, 

N ∗ = 2 steps, and dti = 60 seconds. This is a successful simulation with a total 

trajectory ΔV cost of 0.2206 m/s, an average maneuver computation time of 3440.84% 

of the no obstacle computation time, and a flight time of 120 minutes. The trajectories 

for this simulation are displayed in Figure 7.5, with the spacecraft trajectory displayed 

in red, the initial spacecraft trajectory in pink, and the target trajectory in blue. The 

initial spacecraft position is represented by a red circle, and the final positions of the 

spacecraft and target are represented by a red square and a blue “x” respectively. 

The colored arrows depict the direction and location of maneuvers performed by 

the spacecraft, and the positions of the obstacles at each time step are represented 

by colored spheres–light green is earlier in the simulation, dark red is later. The 

spacecraft trajectory clearly travels in close proximity to the obstacles before safely 

reaching the target. The distances between the spacecraft and the obstacles’ centers 

are displayed as functions of time in Figure 7.6, with each colored line representing 

an obstacle. The dashed line represents the surface of each obstacle (the obstacles for 

these simulations are spheres of radius 25 m), and the spacecraft trajectory travels 

brushes against the surface of several obstacles–but does not collide with any. The 
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path constraint values, from Eq. (7.1), for this simulation are displayed in Figure 7.7 

where each red “x” represents a constraint value. In this simulation there are 24 time 

steps and there are N ∗ × dt/dti + 1 path constraints for each obstacle, this gives a 

total of 33 constraints at each time step. Since all the constraint values are less than 

zero, the maneuver profiles produced by the model predictive control optimizer, U, 

at each time step are satisfied, and the maneuvers performed by the spacecraft steer 

its trajectory safely to the target. 

Figure 7.5. Close & Intercept simulation with K = 0, N ∗ = 2 steps, 
and dti = 60 seconds. 

7.4.2 K = 0 Collision 

The second example is a collision case, the Close & Intercept simulation with 

K = 0, N ∗ = 4 steps, and dti = 60 seconds. Like the previous example, the MPC 

guidance in this simulation does not utilize the penalty function J3 since K = 0. The 

trajectories are displayed in Figure 7.8 with the same symbolism as used in the pre-

vious example. Since the simulation ends when a collision is detected during a time 
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Figure 7.6. Spacecraft-Obstacle distances from Figure 7.5. 

Figure 7.7. Path constraint values from Figure 7.5. 

step, the spacecraft does not reach the target trajectory. The spacecraft-obstacle dis-

tances are displayed in Figure 7.9, where, once again, the spacecraft path comes close 

to the surface of several obstacles, but it is hard to separate the collision from other 

close approaches. Figure 7.10 provides a zoomed in view of the obstacle boundary 

layer during the final time step, and the spacecraft violates the boundary by less than 
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one centimeter. The path constraints for this simulation are displayed in Figure 7.11, 

where there are numerous constraint values near zero, but all the constraints are 

technically satisfied. This behavior is common to the simulations where only path 

constraints are used; the spacecraft trajectory will skim the edges of obstacles in order 

to minimize J while satisfying the constraints. It is important to remember that the 

constraint function, like the cost function, is evaluated using the Yamanaka-Ankersen 

approximation of the relative motion dynamics, while the simulation dynamics use 

the nonlinear equations of relative motion. In cases of close approach, the constraints 

may be satisfied under the YA dynamics, but the same maneuvers may lead to col-

lisions under the nonlinear dynamics. This could be addressed, in future work, by 

increasing the size of the obstacle boundaries used in the constraint calculations. 

Figure 7.8. Close & Intercept simulation with K = 0, N ∗ = 4 steps, 
and dti = 60 seconds. 
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Figure 7.9. Spacecraft-Obstacle distances from Figure 7.8. 

Figure 7.10. Zoomed view of Figure 7.9. 

7.4.3 K > 0 Success 

The next example is the Close & Intercept simulation with K = 0.1, N ∗ = 4 

steps, and dti = 60 seconds. The trajectories are displayed in Figure 7.12, with the 

same symbolism as in Figure 7.5. This simulation is a success with a total trajectory 

ΔV cost of 0.2241 m/s, an average maneuver computation time of 10140.21% of the 

https://10140.21
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Figure 7.11. Path constraint values from Figure 7.8. 

no obstacle computation time, and a flight time of 190 minutes. Compared to the 

trajectory in Figure 7.5, the longer time of flight is apparent in the larger number of 

represented obstacle spheres in Figure 7.12. The spacecraft-obstacle differences are 

displayed in Figure 7.13; compared to the distances displayed in Figures 7.6 and 7.9, 

the spacecraft trajectory in Figure 7.12 lacks the close approaches of those examples. 

This shows the impact that including J3 in the cost function has on the maneuvers 

produced by the MPC guidance scheme. The components of the cost function–J1, J2, 

J3, and J –are displayed for each time step in Figure 7.14; for this simulation J2 and 

J1 have the larger values initially, and as the simulation proceeds all the components 

decrease in value as the spacecraft matches with the target’s trajectory–the position 

and velocity differences of the spacecraft and target as functions of time are shown 

in Figure 7.15. 

7.4.4 K > 0 Failure 

The final example is of a failure to reach the target, Close & Intercept simulation 

with K = 0.7, N ∗ = 3 steps, and dti = 60 seconds. The trajectories are displayed 

in Figure 7.16 with the same symbolism as used in the previous examples. In this 
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Figure 7.12. Close & Intercept simulation with K = 0.1, N ∗ = 4 
steps, and dti = 60 seconds. 

Figure 7.13. Spacecraft-Obstacle distances from Figure 7.12. 

simulation the spacecraft never reaches the target, and so the simulation ends when 

the simulation time exceeds the time limit–in this case, after 280 minutes. This long 

time of flight is reflected in the large number of obstacle spheres represented in Fig-
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Figure 7.14. Cost function values from Figure 7.12. 

Figure 7.15. Spacecraft-Target position and velocity differences from Figure 7.12. 

ure 7.16. The spacecraft-obstacle center distances are displayed in Figure 7.17; once 

again the larger value of K in the MPC maneuver calculations results in a spacecraft 

trajectory that maintains larger separations from the obstacles. The component val-

ues of the cost functions, J are displayed as functions of time in Figure 7.18. As in 

the prior example, Figure 7.14, the values of J2 and J1 initially dominate, however, 
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as the simulation continues the value of J3 outweighs the other two. This is displayed 

in Figure 7.19, which highlights the later times of Figure 7.18. The position and ve-

locity differences between the spacecraft and target are displayed in Figure 7.20; the 

spacecraft gets in close proximity to the target location–but it never reaches it to the 

satisfaction of the guidance algorithm. In this simulation, the combination of a high 

value of K and an obstacle on a close natural motion circumnavigation trajectory to 

the target trajectory leads the model predictive control guidance scheme to design 

maneuvers that do not bring the spacecraft to the target. 

Figure 7.16. Close & Intercept simulation with K = 0.7, N ∗ = 3 
steps, and dti = 60 seconds. 

7.5 Obstacle Avoidance Conclusions 

From the simulations performed under these four scenarios, some general con-

clusions about the implementation of MPC obstacle avoidance can be drawn. The 

inclusion of a penalty function, J3, into the cost function, J in Eq. (6.4), along with 

nonlinear path constraints, Eq. (7.1), can have an effect on the MPC performance 
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Figure 7.17. Spacecraft-Obstacle distances from Figure 7.16. 

Figure 7.18. Cost function values from Figure 7.16. 

and resulting trajectory. While the inclusion of J3 does not always reduce the aver-

age computational time, as seen in the Close & Intercept simulations, it can reduce 

the computational time, as seen in the Long Distance simulations; furthermore, the 

mixed method can succeed in scenarios where path constraints fail to prevent colli-

sions, as seen in the Mid-Range simulations. In scenarios where there is no danger of 

collision, the inclusion of J3 in the cost function has no adverse effects on the MPC 
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Figure 7.19. Zoomed view of Figure 7.18. 

Figure 7.20. Spacecraft-Target position and velocity differences from Figure 7.16. 

performance, as shown in the Low Danger simulations. Based on these results, the 

MPC delivery scheme used in the formation reconfiguration maneuvers simulated in 

this work utilizes the mixed method of obstacle avoidance: both path constraints and 

J3 are used simultaneously. 
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8. FORMATION RECONFIGURATION MANEUVERS 

The performance of the complete guidance algorithm is analyzed through maneuver 

simulations in several formation reconfiguration scenarios. The differences between 

the performance of the APF and the MPC delivery options are particularly high-

lighted. Unless otherwise noted, all simulation dynamics assume a spherically sym-

metric Earth. The parameters for the APF guidance option are: Q0 = (1/200) ∗ I3×3, 

K = 1/20, ψ∗ = 45O , umax = 0.5 m/s, τ = p/4 (where p is the orbital period of the 

Chief), and the time steps are dt = 30 seconds. The parameters for the MPC guid-

ance option are: S = 1 ∗ 10−10 ∗ I6×6, S̄ = 1 ∗ 10−1 ∗ I6×6, R = 2 ∗ 104 ∗ I3×3, K = 0.2, 

the time steps are dt = 5 minutes, N = 11 time steps, and the constraint time steps 

are N ∗ = 2–with an interpolation every dti = 20 seconds. Both guidance options 

assume every obstacle is a sphere of radius 25 m, so: P = (1/252) ∗ I3×3. Each simula-

tion terminates if there is a collision between a spacecraft and another spacecraft or 

obstacle, or if the simulation runs longer than ten times the Chief orbital period, or if 

every spacecraft matches its assigned target position to within 2 meters and velocity 

to within 10 cm/s. 

8.1 Pentagon Reconfiguration 

The initial scenario (Pentagon Reconfiguration) involves a 5 spacecraft formation 

with a Chief orbit perigee altitude of 1,000 km and eccentricity of 0.1. In this forma-

tion, the Chief location is actually unoccupied by any spacecraft and exists only as 

a reference point. The initial state for this scenario is displayed in Figure 8.1, where 

the spacecraft initial positions are represented as red circles, and the target formation 

appears in blue. The spacecraft are numbered 1 - 5 and the targets are A - E. For 
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the simulations under this scenario, no additional obstacles are included; that is, the 

spacecraft are only avoiding intra-formation collisions. 

Figure 8.1. Pentagon Reconfiguration Scenario. 

Four simulations are performed for this starting scenario. Each delivery method, 

MPC and APF, is tested and each auction cost computation approach, i.e., all ΔV 

or all T oF is employed. The results from the simulations appear in Table 8.1, where 

the “DM” column indicates the delivery method, “Auc” reflects the auction cost 

evaluation approach, underneath each “S/C” is the spacecraft assignment, “ΔV ” lists 

the total formation maneuvering ΔV , and “Time” is the time interval required for 

each of the reconfiguration maneuvers. For this scenario, the MPC delivery method 

produces maneuvers that use less ΔV when compared to the APF method, and– 

conversely–the APF method offers much shorter times of flight. This result is not 

surprising since the MPC method is built around optimizing control usage. The 

different auction cost computation approaches do not result in a significant difference 

as the delivery schemes, however, there is an effect. For MPC delivery, there is 

no difference in the time of flight; the resulting ΔV values are different, however, 

with the lower ΔV value emerging from the auction using estimated ΔV in its cost 

calculations. For APF delivery, the results conform to expectations. The assignment 
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based on T oF yields a lower time of flight, and the assignment based on ΔV produces 

a lower total control cost. 

Table 8.1. Guidance Comparison Results for Figure 8.1 

DM Auc S/C 1 S/C 2 S/C 3 S/C 4 S/C 5 ΔV [m/s] Time [min] 

MPC ΔV E A B C D 8.05 300 

MPC T oF D A B E C 8.39 300 

APF ΔV D A B C E 10.13 142.5 

APF T oF C B A D E 10.82 138 

The formation maneuver with MPC delivery and ΔV auction weighting is plotted 

in Figure 8.2. The spacecraft initial positions are represented by red circles and their 

final positions by red squares; the spacecraft trajectories are depicted in red while the 

target trajectories are in blue with blue “x” symbols depicting the final target posi-

tions. The black arrows indicate the direction of motion and the colored arrows depict 

the location and direction of maneuvers performed by the spacecraft. The maneuver 

values for each spacecraft at each time step are shown in Figure 8.3; every spacecraft 

performs its largest maneuvers in the first sixth of the trajectory, and afterwards nu-

merous smaller maneuvers are performed until all the spacecraft have reached their 

trajectories. The spacecraft-target separation distances are displayed in Figure 8.4, 

with a zoomed view in Figure 8.5. (Inside the guidance algorithm, once the auction 

determines the assignments, the targets are renamed to match their corresponding 

spacecraft; so Target E becomes Target 1 in this example.) Several spacecraft ex-

hibit the curious behavior of reaching their assigned target, moving slightly away, 

and then returning before the simulation ends. This can be explained by noting that 

the simulation terminates only when all the spacecraft are at their targets, and, un-

til that happens, the MPC guidance scheme recommends a maneuver at every time 

step–causing these deviations. 

The formation maneuver with APF delivery and T oF auction weighting is shown 

in Figure 8.6 with the same symbolism as in the previous example. Clearly, the 

differences in the trajectories between Figure 8.6 and Figure 8.2 are evident. This 
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Figure 8.2. Pentagon Reconfiguration Scenario, MPC formation guid-
ance, ΔV auction weighting. 

Figure 8.3. Maneuver values from Figure 8.2. 

simulation has the lowest time of flight which is expressed in the direct paths each 

spacecraft takes toward its target. The non-zero maneuver values as functions of time 

for each spacecraft are presented in Figure 8.7; every spacecraft’s initial maneuvers 

are at the allowed umax limit, and as the spacecraft approach their targets the size 

of the maneuvers decrease. Several of the spacecraft perform a large number of small 
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Figure 8.4. Spacecraft-Target separation from Figure 8.2. 

Figure 8.5. Zoomed view of Figure 8.4. 

maneuvers, as can be seen in the spacecraft-target separation distances–shown in 

Figure 8.8 and Figure 8.9–these small maneuvers correspond to the times when the 

spacecraft is in close proximity to its target. Similar to the previous MPC guidance 

example, the APF delivery scheme will perform maneuvers–provided the ψ∗ condition 

is satisfied–until all the spacecraft have reached their assigned target. However, unlike 
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the MPC example, there is not a pattern of the spacecraft drifting away from the 

target after reaching it, as shown in Figure 8.5. 

Figure 8.6. Pentagon Reconfiguration Scenario, APF formation guid-
ance, T oF auction weighting. 

Figure 8.7. Maneuver values from Figure 8.6. 
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Figure 8.8. Spacecraft-Target separation from Figure 8.6. 

Figure 8.9. Zoomed view of Figure 8.8. 

8.2 Tetrahedron Deployment 

The second scenario (Tetrahedron Deployment) involves a simulated deployment 

maneuver. The four spacecraft originate close to the Chief location and then move 

to a formation selected to form a tetrahedron at the Chief orbit perigee. The Chief 

orbit has a perigee altitude of 3,189 km and eccentricity of 0.15. The scenario start-
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ing conditions are displayed in Figure 8.11, where the spacecraft initial positions are 

denoted by red circles, and the target formation trajectories are in blue with the posi-

tions at perigee represented by blue circles. The initial–that is, before any maneuvers 

are performed–trajectories of the spacecraft are in red as well. The spacecraft are 

numbered 1 - 4 and the targets are A - D. Once again, no extra-formation obstacles 

are included in the simulations. 

Figure 8.10. Tetrahedron Deployment Scenario, Spacecraft initial po-
sitions and trajectories. 

Again, four simulations are presented for this deployment scenario. Each delivery 

method, MPC and APF, is tested with each auction cost computation approach, all 

ΔV or all T oF . The internal parameters for each delivery method are the same as 

in the previous example, and the simulation dynamics again assume a spherically 

symmetric Earth. The results for the simulations are presented in Table 8.2. There 

is a surprising result that the MPC delivery method does not give the lowest ΔV 

maneuvers. APF delivery with ΔV auction weighting gives the lowest, followed by 

the two MPC simulations, and then the other APF simulation. Once again, the MPC 
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Figure 8.11. Tetrahedron Deployment Scenario, Target formation. 

simulations have the same time of flight, but the ΔV weighted auction does have a 

lower maneuver cost. The APF simulations behave as expected, with the T oF auction 

weighting delivering a shorter time of flight, but higher ΔV cost. 

Table 8.2. Guidance Comparison Results for Figure 8.11 

DM Auc S/C 1 S/C 2 S/C 3 S/C 4 ΔV [m/s] Time [min] 

MPC ΔV C A B D 4.09 220 

MPC T oF A C D B 4.36 220 

APF ΔV C A B D 3.66 185 

APF T oF B D A C 5.29 118.5 

The formation maneuver with MPC delivery and T oF auction weighting is shown 

in Figure 8.12 with the same symbolism as used in the prior examples. The maneu-

ver values for each spacecraft at each time step are displayed in Figure 8.13, and 

the spacecraft-target separation distances over time are shown in Figure 8.14 and 
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Figure 8.15. Compared to the MPC delivery example displayed for the Pentagon Re-

configuration scenario, the spacecraft in this simulation approach their targets more 

directly, with only spacecraft 3 exhibiting the behavior of nearly matching its target, 

drifting away from its target, before finally reaching its target. As is characteristic 

of this MPC guidance scheme, a maneuver is performed at every time step, however, 

the large majority of maneuvers are very small. 

Figure 8.12. Tetrahedron Deployment Scenario, MPC formation guid-
ance, T oF auction weighting. 

The formation maneuver with APF delivery and ΔV auction weighting is shown 

in Figure 8.16; this simulation gives the lowest formation ΔV for the Tetrahedron 

Deployment scenario. The maneuver values are displayed in Figure 8.17, where it is re-

vealed that spacecraft 2 performs only two maneuvers in this simulation–undoubtedly 

a reason for the low over-all ΔV result for the formation maneuver. The other space-

craft perform a large number of small maneuvers while in close proximity to their 

targets, similar to behavior in Figure 8.7. The spacecraft-target separation distances 
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Figure 8.13. Maneuver values from Figure 8.12. 

Figure 8.14. Spacecraft-Target separation from Figure 8.12. 

over time are revealed in Figure 8.18 and 8.19. Again, similar to the behavior in 

Figure 8.9, once each spacecraft has reached its target, it stays with it despite–or 

because of–the small maneuvers performed afterwards. 

Of interest for future examination, but beyond the scope of this dissertation, is 

the reverse maneuver: rather than deployment, a coming together of the formation 
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Figure 8.15. Zoomed view of Figure 8.14. 

Figure 8.16. Tetrahedron Deployment Scenario, APF formation guid-
ance, ΔV auction weighting. 

to a single point. This type of maneuver could be an end of mission scenario for 

a formation, the member spacecraft gather together and link up to occupy a single 
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Figure 8.17. Maneuver values from Figure 8.16. 

Figure 8.18. Spacecraft-Target separation from Figure 8.16. 

graveyard orbit–preferable to having n new pieces of orbital debris. The guidance 

algorithm presented in this work could serve as a basis for controlling such a maneuver, 

however, the autonomous docking element requires a different strategy. 
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Figure 8.19. Zoomed view of Figure 8.18. 

8.3 Cluttered Reconfiguration 

The next scenario is “Cluttered Reconfiguration”–so-called because of the presence 

of non-formation obstacles. The Chief orbit for this scenario has a perigee altitude of 

30,000 km, an eccentricity of 0.2, and a period of 1,608.4 minutes (or 26.81 hours). 

The initial spacecraft formation is displayed in Figure 8.20, with the starting positions 

as red circles and initial trajectories in red. The three spacecraft are labeled 1, 2, 

and 3. The target formation and initial formation are displayed in Figure 8.21; the 

three target positions at Chief perigee are depicted as blue circles and labeled A 

through C with their associated trajectories in blue. The target formation is similar 

to the initial formation, just larger and slightly repositioned. There are six extra-

formation obstacles included in this scenario, four start near the Chief on trajectories 

which leave the vicinity of the formation, and the other two obstacles are on natural 

motion circumnavigation trajectories around the Chief. The full scenario–obstacle 

trajectories, target formation, and initial formation–is displayed in Figure 8.22 with 

the obstacle trajectories in green. 
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Figure 8.20. Cluttered Reconfiguration, Spacecraft initial positions and trajectories. 

Once more, four simulations are performed in this scenario, each delivery method– 

MPC or APF–is performed with each auction weighting option–ΔV or T oF . For 

these simulations, the velocity matching condition required for each spacecraft-target 

pair was tightened to 1 cm/s while the position tolerance was kept at 2 m. All 

four simulations ended successfully with every spacecraft delivered to the appropriate 

target under the time limit of 10 Chief orbits and without any collisions. The results 

for the simulations are displayed in Table 8.3; there is the interesting result that both 

auction weighting options give the same assignment for the MPC delivery option– 

therefore they have the same formation ΔV usage and times of flight. There is a 

surprising reversal, however, in that the MPC delivery option gives the shorter time 

of flight and the higher ΔV cost. Additionally, the difference in ΔV values and times 

of flight is very large. 

The simulation (since the assignments are identical, the MPC simulations are iden-

tical) with MPC guidance is displayed in Figure 8.23 with the standard symbolism. 

The MPC guidance option gives the largest total formation ΔV and shortest time 
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Figure 8.21. Cluttered Reconfiguration, Target formation. 

Table 8.3. Guidance Comparison Results for Figure 8.22 

DM Auc S/C 1 S/C 2 S/C 3 ΔV [m/s] Time [min] 

MPC ΔV B A C 3.75 190 

MPC T oF B A C 3.75 190 

APF ΔV B C A 0.75 2244 

APF T oF A C B 0.80 1446.5 

of flight. The maneuver values at each time step are presented in Figure 8.24 and 

the spacecraft-target separations over time are given in Figure 8.25. The spacecraft 

approach their targets smoothly and the maneuver values are at similar levels to the 

previous examples; aside from the assignments being identical, nothing differentiates 

the MPC delivery behavior from the previous examples. 

The simulation with APF guidance for the delivery option and ΔV auction weighting– 

the simulation with the lowest formation ΔV and longest time of flight for this 
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Figure 8.22. Cluttered Reconfiguration Scenario. 

scenario–is presented in Figure 8.26 with the usual symbolism. Though the time 

of flight is longer than the others, it is only slightly longer than the Chief orbital 

period, so the spacecraft trajectories do not “shadow” the target trajectories the 

way other simulations with long times of flight do in later examples. The maneu-

ver ΔV values for each spacecraft are displayed in Figure 8.27, where there are two 

noteworthy elements: the first is the comparatively low value of the maneuvers for 

each spacecraft–especially when compared to the MPC maneuvers in Figure 8.24 and 

the previous APF guidance examples in Figure 8.7 and 8.17. The second point is 

that spacecraft 2 and 3 do not perform a maneuver until after 500 minutes into the 

simulation–contributing to the long time of flight for this simulated maneuver. The 

spacecraft-target separation distances are shown in Figure 8.28, where it is evident 

that spacecraft 1 reaches its target well before the others, followed by spacecraft 2, 

and the simulation ends when spacecraft 3 reaches its target. The tighter velocity 
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Figure 8.23. Cluttered Reconfiguration Scenario, MPC formation guidance. 

Figure 8.24. Maneuver values from Figure 8.23. 
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Figure 8.25. Spacecraft-Target separation from Figure 8.23. 

tolerances for these simulations did not prevent either delivery option from achieving 

the formation. 

8.4 Inspection 

The following scenario is named “Inspection”, it involves a three spacecraft forma-

tion which inspects other orbiting bodies by surrounding them with natural motion 

circumnavigation trajectories. At the start of the formation reconfiguration maneu-

ver, the spacecraft are situated near an object and the target formation surrounds 

another object some distance away. The new object of interest serves as the Chief 

point for the Hill frame and it, as well as the original object, is treated as an obstacle 

by the guidance algorithm. The Chief (new object) orbit has a perigee altitude of 

1,500 km and an eccentricity of 0.2; the original object has the same orbital charac-

teristics as the Chief–except it has an argument of perigee smaller by 0.25 degrees. 

The starting conditions for the Inspection scenario are displayed in Figure 8.29 with 

the initial spacecraft positions given by red circles and the target formation in blue. 

Figure 8.30 is a zoomed view of the spacecraft starting positions with the spacecraft 
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Figure 8.26. Cluttered Reconfiguration Scenario, APF formation 
guidance, ΔV auction weighting. 

numbered 1 through 3, and showing the initial separation from the original object of 

interest. Figure 8.31 shows the target formation in greater detail, the target positions 

at Chief perigee are labeled A through C and the black arrows indicate the direction 

of motion. The new and original objects of interest are represented by green spheres 

with radii of 25 m. 

Four simulations are performed under this scenario; again, each delivery method– 

APF or MPC–and each auction weighting–ΔV or T oF –are used to assign and guide 

the formation through the maneuver. The simulations have target matching condi-

tions of 2 m for position and 1 cm/s in velocity; it is necessary for each spacecraft to 

meet these conditions with its assigned target for the simulation to terminate success-

fully. The results of the simulations are displayed in Table 8.4; once again, the MPC 
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Figure 8.27. Maneuver values from Figure 8.26. 

Figure 8.28. Spacecraft-Target separation from Figure 8.26. 

delivery options have the same times of flight–regardless of the auction assignment 

result–however the different target assignments give different ΔV results. The MPC 

simulation trajectories use less ΔV than the APF options, and the APF simulations 

have shorter times of flight. There is a surprising result among the APF simulations: 

the assignment using ΔV weighting in the auction results in higher ΔV usage in the 
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Figure 8.29. Inspection Scenario, Target formation and Spacecraft initial positions. 

Figure 8.30. Inspection Scenario, Spacecraft initial positions. 

simulation, and the assignment using T oF weighting in the auction results in a longer 

time of flight. 
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Figure 8.31. Inspection Scenario, Target formation. 

Table 8.4. Guidance Comparison Results for Figure 8.29 

DM Auc S/C 1 S/C 2 S/C 3 ΔV [m/s] Time [min] 

MPC ΔV A C B 49.70 295 

MPC T oF A B C 49.74 295 

APF ΔV B C A 114.16 249.5 

APF T oF C B A 105.77 277 

The simulation with MPC as the delivery option and ΔV as the auction weighting 

is shown in Figure 8.32, 8.33, and 8.34. The spacecraft trajectories are in red, with 

the colored arrows indicating the location and direction of performed maneuvers. 

The target formation trajectories are in blue with the final positions of the space-

craft represented by red squares and the targets by blue “x” symbols. Figure 8.32 

gives the over-all simulation result while Figure 8.33 highlights the spacecraft de-

parting the original object and Figure 8.34 highlights the spacecraft arriving at the 
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target formation. The trajectories of the spacecraft are similar to a phasing maneuver 

depicted in the Hill frame. The individual maneuver values for each spacecraft are dis-

played in Figure 8.35; the patterns of the maneuvers are nearly identical between the 

spacecraft–corresponding to the similar spacecraft trajectories. Additionally, the ini-

tial maneuvers are larger than in previous MPC examples, due to the longer distance 

the spacecraft need to travel in this simulation. The spacecraft-target separations are 

shown in Figure 8.36, like the maneuver values, they are virtually identical between 

the spacecraft. 

Figure 8.32. Inspection Scenario, MPC formation guidance, ΔV auction weighting. 

For comparison, the trajectories from the simulation with APF delivery guidance 

and T oF auction weighting is presented in Figure 8.37, with the same symbolism 

as in the previous example. The spacecraft trajectories are not as curved as in Fig-

ure 8.32, and–after some initial maneuvers–move more directly toward the new for-

mation. Figure 8.38 highlights the spacecrafts departing from their original positions 

and Figure 8.39 displays the spacecraft arriving at the target formation; similar in 

content to Figure 8.33 and 8.34, but differences in the trajectories are evident. The 

maneuver values for each spacecraft are revealed in Figure 8.40, where the space-

craft initially perform numerous maneuvers at the maximum ΔV limit of umax = 0.5 

m/s. The spacecraft-target separation distances are shown in Figure 8.41, similar 
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Figure 8.33. Zoomed view of departure conditions from Figure 8.32. 

Figure 8.34. Zoomed view of arrival conditions from Figure 8.32. 

to Figure 8.36,–as is expected from the similarities of the spacecraft trajectories–the 

separation distances are virtually identical between the spacecraft. All the spacecraft 

smoothly approach their targets and match velocities without incident. 
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Figure 8.35. Maneuver values from Figure 8.32. 

Figure 8.36. Spacecraft-Target separation from Figure 8.32. 

A possible application of this type of inspection formation is investigating a comet 

or asteroid; a formation of spacecraft could be deployed a safe distance away from 

the object and then successive reconfiguration maneuvers would allow the spacecraft 

to examine the object fully, before proceeding closer or traveling onward. The de-

velopment of such a scenario is outside the scope of this dissertation, however, the 
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Figure 8.37. Inspection Scenario, APF formation guidance, T oF auction weighting. 

Figure 8.38. Zoomed view of departure conditions from Figure 8.37. 

guidance algorithm described in this work could serve as a basis for a formation con-

trol algorithm for this type of mission. All the examples presented in this work are for 
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Figure 8.39. Zoomed view of arrival conditions from Figure 8.37. 

Figure 8.40. Maneuver values from Figure 8.37. 

formations relative to Chief orbits around Earth, however there is nothing precluding 

the use of the guidance algorithm for heliocentric Chief orbits. 
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Figure 8.41. Spacecraft-Target separation from Figure 8.37. 

8.5 J2 Deployment 

For the following scenario (J2 Deployment), the simulations take place under 

dynamics perturbed by Earth’s J2 spherical harmonic and utilizing Eq. (2.56)-(2.58). 

The Chief orbit for this simulation once again has a perigee altitude of 1,000 km, 

eccentricity of 0.1, and an inclination of 10 degrees. The scenario is once again a 

deployment maneuver for a four spacecraft formation, and the spacecraft start at 

similar locations as in Figure 8.10; however, the target formation is different. The 

target formation and initial spacecraft positions are displayed in Figure 8.42, with the 

targets labeled A through D. For the simulations under this scenario, the spacecraft-

target matching condition is relaxed to 6 meters in position, but the velocity condition 

is still 10 cm/s; this is necessary due to the discrepancy between the Yamanaka-

Ankersen approximation of the relative dynamics used to design the MPC maneuvers 

and the perturbed non-linear system dynamics. 

The first simulation for this scenario uses the MPC guidance scheme to deliver 

the spacecraft and the auction algorithm with ΔV weighting to assign the targets 

to spacecraft. The full maneuver is displayed in Figure 8.43 with the spacecraft 

https://2.56)-(2.58
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Figure 8.42. J2 Deployment Scenario, Target formation. 

details in Table 8.5. The formation total maneuver ΔV is 13.18 m/s and the time 

of flight is 610 minutes. This long time of flight is reflected in the trajectories of 

the spacecraft in Figure 8.43; these trajectories “shadow” the paths of the targets for 

several revolutions before finally achieving the formation. This “shadowing” behavior 

is due to the influence of the J2 perturbation on the spacecraft which is not modeled 

by the Yamanaka-Ankersen STM used in the MPC calculations; thus, a larger number 

of maneuvers are required to deliver all the spacecraft to their correct positions. Since 

the influence of Earth oblateness decreases with increasing distance from Earth, it is 

likely that the guidance algorithm will require less time of flight for a formation with 

a larger orbital radius. 

Table 8.5. Maneuver Results for Figure 8.43 

S/C 1 S/C 2 S/C 3 S/C 4 

Target 

ΔV [m/s] 

C 

3.14 

A 

3.41 

D 

3.15 

B 

3.43 

The maneuver values for this simulation are displayed for each spacecraft at each 

time step in Figure 8.44; the initial maneuvers for this simulation are at larger ΔV 
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Figure 8.43. J2 Deployment Scenario, MPC formation guidance, ΔV 
auction weighting. 

values than the previous MPC guidance examples in Figure 8.3 and 8.13, in fact they 

are close to the umax limit applied to the APF delivery scheme. The spacecraft-target 

separations are presented in Figure 8.45 with a zoomed view of the later times in 

Figure 8.46. The spacecraft exhibit an extreme version of the behavior in Figure 8.5, 

where the spacecraft approach their targets, travel away from their targets, and repeat 

until they finally match. 

The second simulation for this scenario uses the APF guidance scheme for delivery 

and, again, the ΔV weighting for the auction. The formation maneuver is presented 

in Figure 8.47 with the spacecraft particulars in Table 8.6. The guidance algorithm 

takes 362 minutes to achieve the formation with a total ΔV of 15.57 m/s. Once 

again, the APF guidance has a shorter time of flight but higher control cost–when 

compared to the MPC example. The APF delivery method also uses the YA STM to 

plan maneuvers, but is not as reliant as the MPC method on accurately predicting 

the future motion. This agnosticism to dynamics models is one of the advantages of 

APF guidance. 
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Figure 8.44. Maneuver values from Figure 8.43. 

Figure 8.45. Spacecraft-Target separation from Figure 8.43. 

Table 8.6. Maneuver Results for Figure 8.47 

S/C 1 S/C 2 S/C 3 S/C 4 

Target 

ΔV [m/s] 

C 

4.06 

B 

3.75 

D 

4.02 

A 

3.74 
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Figure 8.46. Zoomed view of Figure 8.45. 

Figure 8.47. J2 Deployment Scenario, APF formation guidance, ΔV 
auction weighting. 

The non-zero maneuver values and their corresponding times are presented for 

each spacecraft in Figure 8.48; once again the initial maneuver values are at or near 

the umax limit of 0.5 m/s, and–as the spacecraft approach their targets–the maneuver 

values decrease, aside from the occasional exception. The spacecraft-target position 
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separations are shown in Figure 8.49 and Figure 8.50. In comparison to the MPC 

example above, once in close proximity to their assigned targets, the separations 

do not exhibit the oscillatory behavior in Figure 8.46. Additionally, spacecraft 1 

and 3 have no difficulty in matching with their targets, indicating that, if a tighter 

position tolerance had been used on the overall formation, spacecraft 2 and 4 could 

have matched to a closer degree as well. This is in contrast to the behavior of the 

spacecraft in Figure 8.43, which have difficulty matching their targets. 

Figure 8.48. Maneuver values from Figure 8.47. 

8.6 J2 Reconfiguration 

The final scenario presented in this work involves a formation reconfiguration 

maneuver of five spacecraft under perturbed orbital dynamics created by Earth’s J2 

spherical harmonic and, once more, using Eq. (2.56)-(2.58) as the equations of motion. 

The initial positions of the spacecraft–labeled 1 through 5–appear in Figure 8.51 as red 

circles along with the target–labeled A through E–positions, depicted as blue circles, 

at Chief perigee. The Chief orbit for this scenario has a perigee altitude of 10,000 km, 

an eccentricity of 0.2, and an inclination of 10O . The Chief point, depicted as a black 

https://2.56)-(2.58
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Figure 8.49. Spacecraft-Target separation from Figure 8.47. 

Figure 8.50. Zoomed view of Figure 8.49. 

asterisk, is initially unoccupied, but is the location of the E target position. The 

target trajectories are shown in blue in Figure 8.52 along with the initial spacecraft 

trajectories–depicted in red. The target matching conditions for the spacecraft in 

these simulations in this scenario are returned to 2 m in position and 10 cm/s in 

velocity. 
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Figure 8.51. J2 Reconfiguration Scenario, Target & Spacecraft initial positions. 

The first simulation under this scenario uses the MPC delivery option with the ΔV 

weighting in the auction algorithm, the maneuver is completed in 185 minutes with a 

total formation ΔV cost of 4.81 m/s. The resultant trajectories are displayed in Fig-

ure 8.53 with the individual spacecraft assignments and ΔV usage in Table 8.7. The 

maneuver values at each time step for each spacecraft are displayed in Figure 8.54 and 

the spacecraft-target separations over time are displayed in Figure 8.55. Compared to 

the J2 Deployment scenario MPC guidance example (shown in Figure 8.43 - 8.46), this 

simulation does not display the same “shadowing” behavior; the spacecraft approach 

their targets directly, and match them within a much shorter time-frame. This can 

be explained by the difference between the Chief orbits in the two scenarios, the Chief 

orbit in the J2 Reconfiguration scenario has a larger perigee and, thus, the perturbing 

effects of Earth’s oblateness are lessened. This smaller perturbing effect allows the 
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Figure 8.52. J2 Reconfiguration Scenario, Target & Spacecraft initial trajectories. 

MPC delivery system to more accurately model the trajectory of the spacecraft, and 

yields a shorter time of flight for the formation maneuver. 

Table 8.7. Maneuver Results for Figure 8.53 

S/C 1 S/C 2 S/C 3 S/C 4 S/C 5 

Target 

ΔV [m/s] 

E 

0.55 

A 

0.97 

D 

1.41 

C 

0.94 

B 

0.94 

The second simulation under this scenario uses the APF delivery option to guide 

the spacecraft and the ΔV auction weighting to assign the targets. The total for-

mation maneuvering ΔV cost is 3.04 m/s and the maneuver takes 115 minutes to 

complete. For this scenario the APF delivery option uses less ΔV and has a shorter 

time of flight than the MPC option. The spacecraft trajectories are shown in Fig-
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Figure 8.53. J2 Reconfiguration Scenario, MPC formation guidance, 
ΔV auction weighting. 

Figure 8.54. Maneuver values from Figure 8.53. 
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Figure 8.55. Spacecraft-Target separation from Figure 8.53. 

ure 8.56 and the individual spacecraft details are presented in Table 8.8. The auction 

algorithm gives the same assignments for the MPC and APF cases when ΔV is used 

to calculate the costs and expenses; given the same target assignments it is interest-

ing to observe the similarities and differences between Figure 8.53 and Figure 8.56. 

The maneuver values for each spacecraft are displayed in Figure 8.57 for this simu-

lation; common to the previous APF examples, the spacecraft coast for long periods 

between maneuvers–except for spacecraft 3, which performs numerous small maneu-

vers to further match the velocity of its target after it has matched position. The 

spacecraft-target separation distances are displayed in Figure 8.58; spacecraft 3 meets 

its target first and the other spacecraft meet theirs almost simultaneously later. 

Table 8.8. Maneuver Results for Figure 8.56 

S/C 1 S/C 2 S/C 3 S/C 4 S/C 5 

Target 

ΔV [m/s] 

E 

0.14 

A 

0.38 

D 

1.51 

C 

0.50 

B 

0.50 
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Figure 8.56. J2 Reconfiguration Scenario, APF formation guidance, 
ΔV auction weighting. 

Figure 8.57. Maneuver values from Figure 8.56. 
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Figure 8.58. Spacecraft-Target separation from Figure 8.56. 

8.7 Formation Reconfiguration Maneuvers Summary 

In varied scenarios operating under Keplerian and perturbed orbital dynamics, 

the guidance algorithm succeeds in autonomously assigning spacecraft to new posi-

tions in the formation and then guiding the spacecraft to their assigned targets. The 

different auction weighting options and different delivery schemes are implemented 

and the results are compared. For the MPC delivery option, there is little to no dif-

ference between the resulting times of flight between the different assignments, and 

only small difference in total formation ΔV expenditures. For the APF delivery op-

tion, the different assignments result in larger variation between the resulting times 

of flight and ΔV usage; usually the T oF weighting gives a shorter time of flight and 

larger ΔV result, but this result is not universal. It is important to note that the 

MPC delivery option explicitly incorporates control usage minimization into its ma-

neuver design, and the APF delivery option is designed to reduce ΔV usage through 

the AAPF framework; thus, neither method is concerned with minimizing time of 

flight. Comparison of the delivery option results for each scenario yields no universal 

conclusions, for most scenarios the MPC option uses less total formation control effort 



196 

and takes longer to achieve the formation; however, this is not true for all scenarios. 

The parameter values chosen for each delivery option play a large role in determining 

the performance of each delivery option, and different parameter choices will yield 

different results for the same scenarios; the results presented in this chapter–and any 

conclusions drawn from them–only apply for the parameters chosen at the beginning 

of this chapter. 
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9. SUMMARY AND RECOMMENDATIONS 

The goal of this dissertation is the creation of an autonomous guidance strategy for re-

configuration maneuvers of spacecraft formations. The manifestation of this strategy 

is the guidance algorithm described in the previous chapters. This analysis address 

the goal of guidance strategy/algorithm creation through three main objectives: 

1. Creation of a method of assigning spacecraft to positions in the formation. 

2. Creation of a method of delivering the spacecraft to their new positions. 

3. Testing the guidance algorithm in varied scenarios. 

The first two items form the pieces that allow the guidance algorithm to solve the as-

signment and delivery problems, respectively, while the third item is key to analyzing, 

modifying, and demonstrating the performance of the guidance algorithm. 

The first objective is achieved through an auction process, with the details of the 

algorithm described in Chapter 3. The auction process uses the Yamanaka-Ankersen 

approximation of the orbital relative motion dynamics to estimate the delivery costs 

for the spacecraft to achieve the desired formation, and uses those costs to determine 

the assignment of new positions in the formation to the member spacecraft of the for-

mation. The auction delivers satisfactory assignments for each spacecraft–satisfaction 

being specifically defined for the auction. 

The second objective is achieved through two separate delivery schemes. The first 

uses artificial potential function guidance, described in Chapter 4 and 5, and the sec-

ond uses model predictive control, described in Chapter 6 and 7. Artificial potential 

function (APF) guidance uses the relative distances and velocities between the space-

craft, target, and any obstacles to design maneuvers for the spacecraft to reach the 

target while avoiding collisions with the obstacles. Additionally, information on the 
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natural dynamics is included in the maneuver design through the Yamanaka-Ankersen 

(YA) state transition matrix (STM) and used to improve the control performance of 

the APF delivery scheme. The model predictive control (MPC) delivery scheme uses 

a model, the YA STM, to design a series of maneuvers that minimize a cost function 

based on spacecraft-target separation, control effort, and spacecraft-obstacle sepa-

ration, while meeting any path constraints. Once the first maneuver is performed, 

a new series of maneuvers are calculated with the updated spacecraft, target, and 

obstacle information. 

The third objective is achieved throughout the dissertation; the elements of the 

guidance algorithm–auction process, APF and MPC delivery schemes–and their sub-

components are tested, first individually and then collectively, in numerous scenarios. 

The auction process’s phases’ operations are demonstrated in Chapter 3 and the 

components of the APF and MPC delivery methods are tested through parameter 

evaluation in their respective chapters. The complete guidance algorithm is tested in 

several formation reconfiguration maneuvers in Chapter 8. 

In conclusion, an autonomous guidance strategy for reconfiguration maneuvers 

is presented that: i) autonomously assigns the members of the formation to posi-

tions in the formation, ii) uses either APF or MPC guidance to autonomously deliver 

the spacecraft to their assigned locations in a decentralized manner, iii) is designed 

to robustly avoid intra- and extra-formation collisions, iv) utilizes the Yamanaka-

Ankersen approximation of relative motion, and v) successfully guides example for-

mations through simulated reconfiguration maneuvers under Keplerian and perturbed 

orbital dynamics. The performance of the APF and MPC delivery options is depen-

dent on the parameters chosen inside each method, however the parameter values 

used in Chapter 8 give reliable obstacle avoidance without extraordinary ΔV us-

age or times of flight. The APF delivery option produces comparable results to the 

MPC scheme without requiring the use of an optimizer, enhancing the likelihood 

of on-board implementation. This research validates that an autonomous formation 
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guidance strategy based on the guidance algorithm presented in this dissertation could 

provide an alternative to traditional ground-based formation control methods. 

9.1 Recommendations 

Many challenges still remain in the development of a fully decentralized au-

tonomous guidance strategy for formation reconfiguration maneuvers. The work 

presented in this dissertation is of a preliminary nature and can serve as the ba-

sis for more comprehensive developments taking into account specific spacecraft or 

mission limitations and requirements. Future work is likely to be some combination of 

increasing the fidelity of the autonomous delivery methods, fully parallelizing the auc-

tion algorithm, and incorporating relative navigation concepts suitable for on-board 

implementation. 

Potential improvements in the autonomous delivery schemes include increasing 

the accuracy of the relative motion approximation used in the APF and MPC guid-

ance schemes. The Yamanaka-Ankersen approximation is an improvement on the 

Clohessy-Wiltshire equations for elliptic reference orbits, however it does not include 

any information on the non-spherical gravity perturbations. When the largest non-

spherical term, J2, is included in the dynamics, the performance of the MPC delivery 

scheme is impacted. There exist analytic approximations of relative motion under the 

J2 perturbation, the Gim-Alfriend STM being an example, that are possible replace-

ments for the YA STM in the APF and MPC schemes. [51] Alternative structures 

of the objective function, J , used in the MPC delivery scheme are also worthy of 

investigation; for example, the targeting of the modeled target final state, xk 
∗ , could 

be replaced by targeting the modeled target state at each of the N time steps. 

The auction algorithm as currently designed represents a bottleneck in the au-

tonomous guidance algorithm, as it is currently run sequentially. A true “Chief” 

spacecraft could be used to run the formation and assign the Deputy spacecraft to 

positions; however, to become more decentralized, it is desirable to spread the auction 
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around the formation members and run it in parallel. As discussed, the auction algo-

rithm can be run in parallel and with delayed information sharing between the space-

craft. [42, 43] This implementation would create a truly decentralized autonomous 

guidance algorithm for the formation reconfiguration maneuver problem. 

In an operation context, relative positioning errors leading to uncertainties be-

tween the spacecraft and obstacles, along with imprecise maneuver implementations, 

must be considered and addressed. The current investigation assumes perfect knowl-

edge of the relative positions and velocities and does not take into account maneuver 

errors; in the “real world” there will always be uncertainty in the exact states of the 

spacecraft and maneuvers will never be executed perfectly. At a minimum, a process 

for incorporating relative state uncertainty should be incorporated into the guidance 

algorithm, and the guidance algorithm’s sensitivity to these uncertainties should be 

evaluated. A Kalman filtering approach to uncertainty errors is a likely candidate for 

addressing the estimation problem, and inclusion of such an estimator would better 

prepare the guidance algorithm for mission applications. To address errors in maneu-

ver implementations, a scheme to reduce the total number of maneuvers is likely to be 

beneficial–for example, a minimum ΔV threshold on maneuvers would eliminate the 

large number of small thrusts recommended by both the APF and MPC schemes–or, 

alternatively, a continuous control effort may replace the impulsive maneuvers. 

Before implementation on a formation, a comprehensive investigation into the 

“best” values of the various parameters in each delivery scheme is necessary for the 

specific mission application. As shown in the development chapters, Chapter 4-7, 

the choice of parameters in the APF and MPC delivery schemes can greatly affect 

their performance. A more thorough sensitivity analysis of each delivery method is 

warranted to better explain this behavior. The demonstrations in Chapter 8 also 

show that the same parameter choices do not yield similar results when applied over 

different scenarios and different Chief orbits. Once a Chief orbit is chosen, and likely 

formation scales decided, a Monte Carlo style approach can be used to determine ap-

propriate values for each delivery scheme. Such an investigation could also determine 
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if one delivery option is superior to another–for a specific maneuver. These parameter 

values, auction weighting method, and delivery option choices can be updated and 

changed as the mission proceeds. 

9.2 Concluding Remarks 

Spacecraft formations are an enabling tool for many possible space missions. There 

has been much effort into investigating these formations for applications ranging 

from Earth observations in low orbit, space telescopes in libration orbits, to gravity 

wave detectors in Solar orbit. However, as these formations become more complex, 

the orbital environment becomes more cluttered, and in order to reduce reliance on 

ground-based operators; it is desirable to develop autonomous guidance strategies for 

spacecraft formation flying missions. An autonomous guidance algorithm for forma-

tion reconfiguration maneuvers is proposed and presented in this dissertation. The 

guidance algorithm of interest utilizes an auction process to assign spacecraft to posi-

tions and either APF or MPC guidance to deliver the spacecraft to these positions. It 

is demonstrated that the guidance algorithm succeeds in autonomously assigning and 

guiding spacecraft in simulated formation maneuvers. The collision avoidance charac-

teristics of the delivery methods receive special attention, and the performance of the 

guidance algorithm under perturbed dynamical conditions is explored. Although the 

feasibility of the guidance strategy is demonstrated, further analysis and additions 

incorporating operational constraints and measurement uncertainties are necessary 

before it can be employed on-board a formation. 
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