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ABSTRACT 

Author: Verner, Kari, A. PhD 
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Degree Received: December 2017 
Title: Skeletal Biomechanics and Response to Mechanical Load: A Comparative Approach in the 

Mouse and Chukar Partridge  
Major Professor: Russell Main 
 

Dynamic mechanical loading plays an important role in regulating bone geometry and 

strength. A healthy skeleton adapts to the bone tissue strain profile and magnitude of loads it 

experiences on a daily basis in order to maintain reasonable safety factors. In skeletal diseases, 

such as osteoporosis, a bone’s ability to adapt and maintain structural integrity in response to 

increased mechanical strains is apparently impaired, which allows skeletal resorption to progress 

unabated and could eventually lead to mechanical failure. In order to develop better treatments 

for bone wasting diseases, it is important to understand the mechanobiology of how the healthy 

skeleton responds to mechanical load. The non-invasive, axial compressive murine tibial loading 

model has been used extensively to study skeletal adaptation, but sole use of rodent models 

propagates a large gap in understanding skeletal sensitivity and response to load across terrestrial 

vertebrate groups. The avian skeleton exhibits several features that make it unique compared to 

the mammalian rodent skeleton, and these differences could affect how the avian skeleton 

responds to mechanical load relative to the rodent skeleton.  

To begin expanding our understanding of skeletal sensitivity across vertebrate species, we 

developed a novel non-invasive avian tibiotarsal (TBT) loading model using the chukar partridge 

to complement the use of the murine tibial loading model. For both the mouse and the bird, 

relatively similar increases in strain stimuli via experimentally applied loads were determined 

through a combination of in vivo strain gauging and finite element models. The cross-sectional 

strain distributions during locomotion and experimental loading were further characterized in the 

bird TBT after validating the use of planar strain theory for cortical bone loaded in bending. In 

response to several weeks of experimentally applied loading, the mouse tibia adapted its 

geometry and mass. In contrast, the birds adapted their cross-sectional geometry without 

complementary increases in bone mass while suppressing normal endocortical bone growth. 

Lastly, in order to study cortical bone’s response to mechanical load without the potentially 
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confounding effects of varied systemic factors across species, we developed a novel isolated 

cortical bone culture model that can be mechanically loaded in vitro. We validated that 

osteocytes in a murine tibial bone segment maintained adequate survival over a five day culture 

period, and comprehensively characterized the load induced strain profile. Overall, this work 

takes novel steps to develop and validate comparative in vivo and in vitro models for 

comparatively assessing skeletal sensitivity across terrestrial vertebrate species. Continued work 

in this direction will enhance our understanding of how a healthy skeleton is regulated to 

maintain adequate bone strength.
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1.  INTRODUCTION 

The skeleton is a fascinating mechanical structure that has the ability to adapt its bone-

specific architecture to optimize structure for daily function, and it can also repair itself when 

mechanical failure does occur. Although bone’s ability to adapt to mechanical loads was 

identified over a hundred years ago [1], theories regarding the necessary stimuli and the cellular 

and genetic mechanisms responsible for controlling bone mass and quality properties are 

continuously updated as researchers learn more through studies employing animal models and 

experimentally applied mechanical loading techniques. While many rules for bone adaptation 

have been suggested [2-6], the molecular and cellular pathways capable of coordinating whole-

bone changes in mass and morphology are still not completely understood.   

 Basic Bone Biology 

Bone is a multiscale material with functions beyond providing mechanical support to the 

body. Two types of bone exist: cortical bone, which is the dense outer shell of all bones and 

carries the majority of a load, and cancellous bone, which is primarily found in the marrow 

cavity of the epiphyses and metaphyses of long bones and in all vertebrae, and is comprised of a 

‘sponge-like’ network of individual trabeculae that act to redirect load to the surrounding cortical 

shell. Cortical bone is composed of a Haversian system, also called osteons, often containing 

vascular channels, surrounded by concentric layers of lamellae that look similar to tree rings. 

Cancellous bone is composed of hemi-osteons surrounded by lamellae. While most bone 

deposited after skeletal maturity under normal conditions is lamellar, rapidly forming and highly 

disorganized woven bone is created for quick repair of fracture or in response to inflammation, 

as well as during growth for many mammals and birds. Compositionally, bone is 65% mineral, 

25% organic, and 10% water, and these proportions are highly related to the entire bone’s 

specific mechanical behavior [1]. Bone’s other functions include hematopoiesis, mineral 

exchange, and as an endocrine organ mediating phosphate and energy metabolism.   

 

Bone possesses three primary cell types, osteoclasts, osteoblasts, and osteocytes, which are 

activated to perform either bone modeling or remodeling. Osteoclasts are recognized by their 
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multi-nucleation and are primarily involved in mineralized bone resorption, which is essential for 

bone modeling and remodeling. They undergo apoptosis when bone resorption is complete.  

Osteoblasts originate from mesenchymal progenitors likely activated by either bone matrix 

proteins or the Wnt signaling pathway [2] and are responsible for bone formation through bone 

matrix protein secretion and bone mineralization. As newly mineralized bone is laid down, some 

osteoblasts become embedded into the new bone matrix and further differentiate into osteocytes.  

The remaining osteoblasts either become bone lining cells or die by apoptosis. Osteocytes are the 

most abundant cells in bone and are distributed regularly throughout mineralized bone. 

Osteocytes, encased in small fluid-filled spaces called lacunae, exhibit dendritic processes that 

extend out from the cell body through microscopic fluid-filled canals that connect lacunae called 

canaliculi, creating a lacunar-canalicular network that extends throughout the entire bone 

volume. It is currently believed that interstitial fluid flow through the lacunar-canalicular 

network leads to mechanical load-induced pressure gradients in the bone matrix makes which 

acts as a stimulus to osteocytes[3]. The network of osteocytes throughout the bone matrix makes 

them ideal mechanosensory cells capable of sensing not only mechanical load, but also damage, 

and then signaling for the appropriate response [4]. Bone modeling occurs in order to shape bone 

or increase bone mass and can occur on periosteal, endosteal, or trabecular bone surfaces. 

Modeling can be either formative through osteoblasts, or resorptive through osteoclasts. Bone 

remodeling is activated in order to renew bone and can occur intracortically, as well as on 

periosteal, endosteal, and trabecular surfaces. Remodeling requires osteoclasts and osteoblasts to 

work together in what are known as bone multicellular units; osteoclasts resorb bone followed by 

osteoblast-mediated new bone formation at the same location. Bone adaptation involves a precise 

combination of formative/resorptive modeling and remodeling to achieve the resulting gross 

changes in morphology.   

 Skeletal Disease 

Several factors can reduce bone’s ability to adapt and maintain structural integrity in 

response to increased mechanical strains, which allows skeletal resorption to progress unabated 

and could eventually lead to mechanical failure. Skeletal diseases can be characterized by 

decreased bone quality and quantity resulting from poor regulation of skeletal metabolism. Bone 

health is extremely dependent on adequate bone turnover because modeling and remodeling aid 
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in mineral metabolism, renew the skeleton by repairing micro-damage, and more generally 

maintain adequate bone strength to resist daily loading events. If bone turnover rates are 

insufficient, micro-cracks could accumulate over time and eventually coalesce to form a more 

serious fracture. Conversely, if bone turnover rates are too high, bone volume will slowly 

decrease due to the negative bone balance that occurs during remodeling. Osteoporosis is the 

most common bone metabolic disorder. The National Institutes of Health Consensus 

Development Panel on Osteoporosis defines it as “a skeletal disorder characterized by 

compromised bone strength predisposing the skeleton to an increased risk of fracture [5].” It is 

clinically characterized by a gradual reduction over time of bone mineral density and bone mass 

due to imbalanced bone modeling/remodeling. Although some degree of bone loss is expected 

with age, decreases in bone mineral density (BMD) greater than even one standard deviation 

below the young adult reference mean significantly increases a person’s chance for sustaining 

fragility fractures. There is not a single known cause for osteoporosis, and risk factors range 

from age, race, and genetic factors, to lifestyle choices [6]. In the year 2000, the panel reported 

that 10 million people had already been diagnosed with osteoporosis, and 18 million were 

osteopenic, which puts them at high risk for developing osteoporosis [5]. Approximately $10-15 

billion dollars are spent annually on in-patient treatment alone for osteoporotic fractures, which 

most commonly occur at cortico-cancellous sites such as the femoral head, vertebrae, and distal 

radius [7]. While postmenopausal women are the most common sufferers of this disorder, the 

condition of osteoporosis also affects men [8], astronauts in conditions of microgravity [9, 10], 

and patients on long-term bed rest or with paralysis [11, 12].  

The second most common skeletal disease is Paget disease of bone (PDB) [13]. This 

disease typically affects older adults and is characterized by focal lesions with increased coupled 

osteoclastic and osteoblastic activity that can present in any bone. The lesions most commonly 

cause pain, but depending on their location can also lead to bone deformities, gait abnormalities, 

neurologic symptoms, or increased incidence of fracture. The precise cause of PDB is unknown, 

although several studies have suggested involvement of certain genetic mutations [14] and 

environmental factors [15].  

There are currently no treatments that can cure osteoporosis, PDB, or other bone 

turnover-related diseases. Nutritional supplementation of calcium and vitamin D to insure 

adequate availability in the body is typically the first intervention [16]. Pharmacologic treatments 
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include anti-catabolic and anabolic drugs that, in general, aim to directly affect the bone 

remodeling process. Anti-catabolic drugs, such as bisphosphonates, estrogen, and selective 

estrogen receptor modulators (SERMS), have been used most frequently [17-21]. Anti-catabolic 

treatments act to inhibit osteoclast activity or formation to suppress remodeling and further bone 

loss. There is only one FDA-approved anabolic pharmacological treatment currently available, 

teriparatide, which has an identical amino acid sequence to endogenous PTH, and can therefore 

bind to the same receptor, stimulating bone apposition without bone resorption [22]. Although 

several current treatments exist and have shown to successfully decrease fracture incidence, the 

majority aim to prevent further bone loss but cannot return bone to a pre-disease state, and often 

carry negative side effects.  

Since bone quality maintenance is so important for skeletal health, understanding how 

modeling and remodeling are activated and controlled is critical for developing treatments that 

aim to restore proper balance and prevent further bone degradation. Since one of the skeleton’s 

primary functions is to serve as the load bearing mechanical structure for the body, loss of 

skeletal integrity can lead to rapid decrease in quality of life. The forces perceived by the 

skeleton act as inputs to which this highly dynamic organ regulates its strength appropriately. By 

assessing the tissue-, transcriptomic-, and cellular-level skeletal response to experimentally 

applied mechanical load, we gain insight into how the skeleton is naturally regulated, which can 

then inform how we can potentially modulate it during states of disease when normal 

osteoregulation is unsuccessful.   

 Characterizing a Bone’s Mechanical Environment 

It was initially proposed that bone’s adaptive response is directly related to the mechanical 

forces it experiences on a daily basis [23]. Therefore, a major continuous effort exists to 

characterize the loads and strains experienced by a bone so that they may be related to the 

identified adaptive effects. Understanding the stimulus is critical to evaluating skeletal sensitivity 

as well.  

The most direct method used to assess how mechanical forces are transmitted through a 

bone is to measure bone strain by surgically attaching strain gauges to bone surfaces. The strain 

gauge method involves surgically exposing suitable bone surface(s) and attaching wired strain 

gauge(s). Strain gauges measure the resulting deformation of a bone when it is loaded and can 
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provide real-time, in vivo information about a bone surface’s mechanical environment at the 

location of the gauge throughout a subject’s gait or load cycle. This method has been used to 

characterize the physiological strain environment in a wide variety of animals including, but not 

limited to, turkeys [24], chicks [25], horses [26, 27], sheep [28], dogs [29], rats [30], and mice 

[31]. Eventually, it was recognized that peak strains during rigorous locomotion are similar (-

2000 to -3000 με) for all species and a variety of bones studied [32]. While loading events 

engendering peak strains typically occur only a few times each day, low magnitude loading 

events occur constantly throughout the day [33]. These findings suggest that limb bones as whole 

structures are designed to maintain similar safety factors across species.   

Strain gauges have also been used to determine the necessary loads to induce specific bone 

strains during artificial loading, a technique that is used frequently in studies. Despite the 

enormous benefits strain gauges provide to the field, a few considerations and limitations must 

be recognized. Since the gauges are attached surgically, there is always a possibility for post-

operative lameness, and the wires must be contained under the skin and exit at some point to 

connect to external equipment. Both could affect the subject’s gait and the resulting strain, but 

these issues would be less critical when load is applied artificially through a mechanical 

apparatus. The largest limitation is that each gauge can only provide strain information for the 

surface area to which it is attached. While it is recognized that three rosette strain gauges spaced 

equally around a cross section of bone can adequately characterize the local strain environment 

at that level of the bone [24, 26], the number and type of gauge(s) that can be used is dependent 

on the bone surface and size at the location of interest. For instance, the mouse tibia is used 

frequently for adaptation studies, but only one single element gauge can be placed in vivo on the 

medial midshaft due to the small bone size and shape [34]. 

 Computational Modeling Approach to Characterizing Bone Strains 

Finite element analysis (FEA), while strictly a computational technique, offers the unique 

capability of predicting a variety of parameters such as stress and strain throughout the entire 

bone, including the endocortical surface and cancellous bone volumes [35]. This technique may, 

in fact, be the only method capable of suggesting the possible strain environment for cancellous 

bone since non-invasive, in vivo strain measurements are not currently possible. Development of 

the computer model has advanced from projecting an image of the bone and digitizing the bone’s 
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surfaces using a stylus [36] to reconstructing high resolution microcomputed tomography (µCT) 

images of the bone via computer programs to create very accurate three dimensional models [35, 

37-39]. Models can be validated by comparing in vivo strain measurements to model-predicted 

strain values at the gauge site(s) of the same specimen. The level of validation is dependent on 

the amount of strain information gathered in vivo. The size of the mouse tibia, for instance, limits 

in vivo strain data to one single element gauge, yet measured strains at that gauge correlated 

closely to the FE-calculated peak strains in the midshaft cortical bone [39]. The well-defined 

load-application points of the functionally-isolated ulnar loading technique [36] and the four-

point bending technique [40] are ideal for defining load and boundary conditions in FEMs, but 

by iteratively adjusting the load and boundary conditions and validating the results with in vivo 

strain measurements, the conditions of axial loading techniques can be approximated 

successfully [38]. Many models have assumed homogenous values of Young’s Modulus and 

Poisson’s Ratio, values characterizing the stiffness and elasticity, respectively, of a material, 

although heterogeneity of tissue mechanical properties has been shown to have the largest 

(positive) effect on the predicted cancellous strain environment [39]. The ability to characterize 

whole bone tissue-level strain will allow comparisons between patterns of bone formation and 

resorption and the local strain environment at cortical and cancellous bone sites [41, 42].   

 Experimental Models of Skeletal Adaption 

Determining the sensitivity and multi-scale response of the skeleton to mechanical load 

stimuli is important to understanding how the mechanobiology naturally maintains bone quality, 

and how it could be potentially be modulated pharmacologically to prevent or reverse bone loss 

during diseased states. Exercise as a mechanical stimulus has proven to successfully increase 

bone density in humans and animal models, although the skeletal benefits slowly decline after 

cessation of the regimen [43-46]. While the benefits of exercise to the skeleton in humans and 

animal models are well recognized, physical activity as a method of mechanically loading the 

skeleton to study bone’s adaptive response has many limitations including lack of a contralateral 

control limb, difficulties characterizing the resulting strain environment, and inability to tightly 

control load parameters, all of which are extremely important for understanding the resulting 

skeletal response. Experimentally applied loading allows much tighter control over more 

parameters of the load. Previous studies have used the ulna or tibia from animal models such as 
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the turkey, rat, and mouse, and have employed a few different loading methods including 

functional isolation, four-point bending, and axial compressive loading. Currently, axial 

compressive loading of the mouse tibia is used most frequently because it is noninvasive and 

induces a strain environment in the bone that more closely emulates physiologic conditions 

compared to the other methods [34], although all methods have provided significant insight into 

skeletal adaptation. The highly controllable load parameters of these methods allowed 

revelations into bone’s sensitivity and resulting adaptive response to parameters such as load 

magnitude, rate, frequency, number of cycles, and study duration. The load must be applied 

dynamically in order to be osteogenic [47]. Applied loading engendering strains from sub- to 

supraphysiologic levels produces a linear dose response relationship with the amount of new 

bone formed [24, 30, 47-50], except for loads engendering physiologic-level strains to which the 

bone is already adapted [51]. The load-induced signal for adaptation will saturate after a certain 

number of consecutive load events [50]. Increasing the strain rate [52, 53] or frequency [54] 

while maintaining identical load levels causes proportional increases in bone formation.  

Incorporating rest periods both between each load in a loading bout [55], and separating a set 

number of loading cycles into bouts throughout the day, makes the applied load more osteogenic 

for cortical bone than applying that set number of loading cycles consecutively [56-58]. Despite 

load parameter optimization, increasing age has a negative effect on skeletal responsiveness to 

mechanical stimuli [59-61]. 

 Assessing Tissue-level Skeletal Response to Load 

Tissue-level skeletal adaptation is typically identified by changes in bone geometry and/or 

density relative to the non-loaded contralateral control limb as measured by micro-computed 

tomography (μCT) or histology. Typical cortical bone measures from μCT include maximum 

and minimum moments of inertia (Imax, Imin), cortical bone area (Ct.Ar), cortical thickness 

(Ct.Th), and bone mineral density (BMD). Several studies have reported that bone curvature 

decreased as a result of loading through location specific bone formation and resorption [30, 52] 

which would decrease bending strains at the midshaft and correlate to increases in moment of 

inertia. Similarly, increases in Ct.Ar, Ct.Th, or BMD would increase bone strength and resistance 

to bending and reduce the strain induced relative to the applied load. If flourochromes are 

injected to the subject during the experimental loading study, fluorescence will incorporate as 
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new mineral is deposited. After completion of the loading study, histomorphometry can be used 

to measure the active mineralizing surface (MS), mineral apposition rate (MAR) and bone 

formation rate (BFR)[62]. Unlike morphometry measures from μCT, multiple flourochrome 

injections throughout the study can be used to determine the skeletal response throughout the 

course of loading rather than just the final adaptive outcome, as well as the specific surfaces 

where mineral was deposited.  

 Genetic Regulation of the Skeletal Response to Mechanical Load 

Understanding the genetic mechanisms responsible for osteoregulation during skeletal 

adaptation is critical for the development of pharmacologic treatments for bone loss conditions 

when external loading is an insufficient stimulus for bone maintenance. One of the first signaling 

pathways recognized as important in bone cell mechanotransduction was the cyclooxygenase 

(COX)-prostaglandin E2 (PGE2) response; while load-induced bone formation was only partially 

inhibited by blocking both constitutive (COX-1) and inducible (COX-2) cyclooxygenase, 

completely blocking COX-2 resulted in almost no bone formation [63] with a greater effect on 

the endocortical versus periosteal surfaces [64]. Also, blocking COX-2 after load application did 

not suppress new bone formation, further suggesting that the COX-2 pathway is part of the very 

early adaptive response [64]. The canonical Wnt signaling pathway has also been implicated as 

key for bone cell mechanotransduction. Wnt signaling occurs through low-density lipoprotein 

receptor-related protein-5 or -6 (LRP5/6) and a heptahelical frizzled (FZD) receptor complex in 

osteocytes that, when activated, prevents proteosomal degradation of β-catenin, a transcription 

factor associated with several genes that enhance osteogenesis and reduce resorption, therefore 

allowing increased transcription of bone formation associated genes [65]. Loading increases 

activation of the Wnt pathway and Wnt/β-catenin target genes of a whole bone, which is further 

enhanced in LRP-5 G171V transgenic mice, a mutation which causes greater activation of the 

Wnt pathway, as well as non-transgenic animals treated with  a canonical Wnt pathway activator 

[66]. Deletion of functional LRP5 prevents an osteogenic response to load [67, 68]. Sclerostin, 

produced by the osteocyte and encoded by the SOST gene, binds to the LRP5/6 receptors and 

inhibits the Wnt signaling pathway, but is down-regulated by mechanical load which then allows 

the Wnt pathway to activate[69, 70].  In addition to SOST, osteocytes also express the Wnt 

inhibitors DKK1 and sFRP1, which prevent osteoblast differentiation and LRP5/6-Wnts binding 
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[71]. Mechanical load also stimulates the nitric oxide (NO) signaling pathway, which has been 

shown to be critical for an osteogenic response [72, 73]. Up-regulation of c-fos, transforming 

growth factor-β (TGF-β) and insulin-like growth factor-I (IGF-I) during the early periosteal 

osteogenic response cause cell proliferation and increased synthesis of growth factors [74]. 

Known osteoblast-specific genes that up-regulate in response to load in order to increase bone 

formation include the osteoblast precursor Col1a1 and alkaline phosphatase (Alp)[75, 76].  

Bone cells responsible for instigating a response to mechanical load as well as general 

modeling/remodeling are also controlled by systemic factors including several hormones and 

growth factors [77]. Parathyroid hormone (PTH) is involved in regulating calcium homeostasis 

by inducing bone turnover. Intermittently elevated levels of PTH reduce sclerostin synthesis and 

increase osteoblast numbers, ultimately enhancing the bone formation rate without coupled prior 

resorption typical in bone turnover [78, 79]. The effects are further enhanced when coupled with 

mechanical load [80]. Calcitonin inhibits osteoclast formation and promotes apoptosis, 

preventing bone resorption, while also inhibiting osteocyte and osteoblast apoptosis [81, 82]. 

Elevated glucocorticoid levels have a negative effect on bone mineral density by causing 

osteocyte and osteoblast apoptosis, and over time can lead to osteoporotic levels of bone loss 

[83-85]. Growth hormone and IGF-I increase bone formation by stimulating osteoblast activity 

and decreasing osteoclast numbers [86], and mechanical load has a regulatory effect on IGF-I 

levels [87]. The sex hormones, estrogen and androgen, stimulate osteocyte and osteoblast 

proliferation and decrease apoptosis, while reducing osteoclast formation and lifespan [88]. 

Additionally, serum levels of calcium and phosphate regulate whether mineral deposition to bone 

or resorption occurs. Resting metabolic rate (RMR) has also been correlated to periosteal bone 

growth rates [89].  

 Gap Statement 

Comparatively assessing bone cell populations and changes in skeletal gene expression in 

response to mechanical load stimuli in diverse vertebrate groups may provide novel insights into 

the cellular mechanisms that regulate skeletal mechanobiology and the causes behind skeletal 

diseases such as osteoporosis. A deeper understanding of how the skeleton is naturally 

modulated will help to better inform the development of physical and pharmacological 

treatments to treat skeletal diseases like osteoporosis. Improved treatments would seek to not 
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only stop further bone loss, but also to reverse it and reestablish skeletal integrity, or even to 

prevent the initial failure of the mechanisms responsible for maintaining adequate bone quality 

properties. 

 

Mice have provided a wealth of knowledge regarding the skeleton and the mechanobiology of 

bone adaptation over the past 30 years, which describes how different cells and tissues sense and 

respond to mechanical forces. However, sole use of rodent models only propagates a large gap in 

understanding the basic cellular mechanobiological mechanisms responsible for skeletal 

structural diversity and homeostasis in terrestrial vertebrate groups. Although the skeleton is 

comprised of the same bone cells and similar material composition, it is extremely diverse across 

vertebrate species in its morphology, geometry, and mechanical properties. Ectothermic reptiles 

and amphibians have greater cortical thickness relative to diameter and increased safety factors 

compared to endothermic mammals and birds [90], which may be necessary due to a lower 

potential for skeletal adaptation. Despite evolving from reptilian ancestors, avian species today 

have a lighter and less metabolically costly skeleton, due to pneumatization of certain bones, 

making them more similar to derived mammals such as the mouse [91-93]. Additionally, avian 

bone is more dense than mammalian bone, which gives it greater stiffness and strength while 

minimizing bone mass and volume [93]. Stiffness and toughness of a bone is relative to its 

mineral content, and mechanical properties such as these vary considerably across all species, as 

well as by the specific bone [94, 95]. Avian and reptilian species are also unique to vertebrates in 

that they lay eggs with calcified shells, which involves special regulation of calcium balance 

hormones and more labile skeletons [96]. Additionally, avian species are uniquely able to form 

medullary bone, non-structural woven bone on endosteal surfaces, which serves as a calcium 

reservoir for egg-laying females and experiences varying rates of osteoclastic and osteoblastic 

activities [96, 97], although it can be induced in male birds as well with the administration of 

estrogen [98]. Fracture repair across vertebrate species received some brief attention several 

decades ago, and showed that repair was slower in reptiles relative to rodents [99]. Despite 

similar cell types and genes acting in the skeletons of these different species, osteoregulatory 

genetic and cellular mechanisms, as well as systemic physiologic factors are likely expressed 

differently across vertebrate taxa. Within two inbred strains of mice, differential responses to 
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similar mechanical loads have been demonstrated [100]. How these differences are regulated and 

how they may affect skeletal response to similar mechanical loads is unknown.  

Since one of the primary functions of the skeleton is to provide mechanical support during 

movement, it is likely that skeletal sensitivity and response to mechanical load is tuned to the 

needs of each species, yet skeletal adaptation studies have been performed on only a few select 

mammalian and avian species, and that number decreases more when only considering 

noninvasive models for inducing adaptation. There is a lack of fundamental insight into the 

mechanisms responsible for the potentially differential regulation of the skeleton in response to 

mechanical load across species. By comparatively assessing skeletal adaptation and its 

mechanobiological regulation across novel vertebrate species, we will establish a deeper 

understanding regarding the genetic, cellular, and systemic factors involved in bone 

modeling/remodeling, as well as potentially identify novel mechanisms and previously 

unrealized targets that could further enhance the development of pharmacologic treatments for 

skeletal metabolic diseases.  
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2. EXPERIMENTAL TESTS OF PLANAR STRAIN THEORY FOR 
PREDICTING BONE CROSS-SECTIONAL LONGITUDINAL AND 

SHEAR STRAINS 

 Introduction 

The application of methods for predicting the distribution of longitudinal strains normal to 

a long bone’s transverse cross-section, and the location of the neutral axis of bending in the 

cross-section, has significantly enhanced our understanding of the diversity of in vivo skeletal 

loading regimes found in vertebrate long bones during locomotion. Surface strain gauge 

measurements are used frequently to characterize ‘typical’ bone tissue strains during locomotion 

in vivo, as well as artificially-induced ex vivo strains, in order to estimate safety factors and 

mechanical properties in a large variety of animals and bones [24, 101-105]. Limitations of bone 

size and surgical surface availability often restrict the possible locations for gauge implantation 

as well as the type and size of the strain gauge used (single element versus rosette gauge). As a 

result, it is often difficult to place gauges at the exact locations of maximum strain, even if these 

locations can be estimated a priori. However, if three strain gauges can be distributed around the 

diaphyseal cortex, planar strain theory (PST) can be used to estimate the cross-sectional strain 

distribution, the sites of maximum tensile and minimum compressive strains, and the location of 

the neutral axis of bending [106-108]. Although this technique is used frequently in in vivo 

skeletal biomechanics studies, its accuracy for this application and the possible effect of gauge 

distribution around the diaphysis have not been validated experimentally to our knowledge.   

Measures of shear strain, which are dependent upon the magnitudes and orientations of 

the principal strains in the bone, describe the off-axis loading of the bone including long-axis 

torsion, and can be calculated directly when a rosette gauge is attached to the bone’s surface 

[106, 109]. While these direct measures of bone tissue shear are only valid at the location of the 

rosette gauge, there is interest in determining maximum shear strains around a bone’s 

circumference, which may not coincide with the location of the attached rosette strain gauge. 

Some studies have applied PST-based longitudinal strain ratios to shear strain measures at one 

location to estimate shear strains at the PST-determined maximum longitudinal strain location on 

the bone [102, 105]. In this approach, an average longitudinal strain ratio was determined 

between the longitudinal strain values measured at a rosette gauge site and the site of maximum 
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compressive strain on the bone, determined using PST from all animals in the study. This 

average longitudinal strain ratio was then applied to the shear strain measured at the rosette 

gauge for each animal to predict each individual’s maximal shear strains. In this way, the 

estimated peak shear strain in the bone would always be larger than the measured shear strain, 

ensuring that any safety factor determined based upon the in vivo strain data would not be 

artificially inflated by using submaximal shear strain values.  This approach requires the 

assumptions that shear strains increase in proportion to longitudinal strains around the bone’s 

cortex, and that maximum shear strains occur at the same location as maximum longitudinal 

strains. These assumptions have not been experimentally validated in published literature. While 

the equation for shear strain does include a component of the longitudinal strain, it also depends 

on off-axis strain values and principal strain angles that do not necessarily change in a 

predictable way around a bone cross-section, but could have a large impact on shear strain 

values. 

 One goal of this paper is to evaluate the accuracy of PST in predicting cross-sectional 

strains given different strain gauge distributions around the cross-section of the bone. To address 

this goal, we attached four strain gauges around the midshafts of adult emu tibiotarsi (TBT) and 

loaded the instrumented bones in ex vivo four-point bending. Using combinations of 

experimentally measured strain values from three of the four gauges to create planar strain 

reconstructions for the midshaft cross-sections, we determined the predicted strain value at the 

location of the fourth gauge and compared it to the corresponding experimentally measured 

value. We hypothesized that regardless of the distribution of the gauges around the midshaft used 

for calculations, reconstructed strains would not be significantly different from the measured 

strains.  

Our second goal was to evaluate the use of longitudinal strain ratios for extrapolating 

shear strains measured from a rosette strain gauge to positions on the bone cross-section that 

were not strain gauge-instrumented or were instrumented with a single element gauge incapable 

of measuring shear strain. To this end, in vivo longitudinal and shear strains were measured using 

three rosette strain gauges on the posterior, anterior, and medial midshaft surfaces of guinea fowl 

TBT at a specific point in the stride during treadmill running. With this data we tested the 

assumptions made when using longitudinal strain ratios relating the longitudinal strains at two 

gauge sites for predicting shear strain from one rosette gauge site to another. Like similar 
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attempts to do this previously (Blob and Biewener, 1999; Butcher et al., 2008), this prediction 

makes the assumption that shear strains change in proportion to longitudinal strains across the 

cross-section. While our methods require shear strain predictions to be extrapolated to locations 

on the bone surface that may not coincide with the maximum longitudinal strain, our 

extrapolations to sites of empirically-measured shear strains allow us to experimentally test the 

predictions. We hypothesized that this type of extrapolation would not provide reliably accurate 

estimations of measured shear strains since it does not include the necessary contributions of off-

axis strain.   

 Materials & Methods 

2.2.1 Planar Strain Theory Validation 

The TBTs of emu (Dromaius novaehollandiae, Mathews) were used in four-point bending tests 

to validate PST for animal long bones. The TBTs used in this study (n=5) were from the non-

instrumented right limbs of birds used in a prior in vivo bone strain study (Main and Biewener, 

2007). At time of sacrifice, the birds ranged in age from 36 to 75 weeks of age (62+18 weeks, 

mean + 1 SD) and in mass from 29 to 52 kg (40.6 + 11.4 kg). Upon sacrifice, the birds’ hind 

limbs were dissected from the body and frozen at -20oC. At a later date, each TBT was thawed, 

cleaned of soft tissue and muscle, wrapped in water soaked paper towel, wrapped in a plastic 

bag, and re-frozen at -20oC. Prior to the testing conducted for this study, the bones were 

individually thawed, aligned using a custom alignment frame and fixed in machined aluminum 

pots using a commercial fast drying cement (Body Filler, 3M, Saint Paul, MN, USA). The 

proximal and distal ends of the bone were embedded such that 50% of bone length centered at 

the midshaft remained exposed. Exposed bone was kept moist at all times using saline-soaked 

paper towels during potting and between mechanical tests. Once the cement hardened, the potted 

bones were refrozen at -20oC. At a later date, the bones were thawed for the final time to conduct 

strain gauge implantation and mechanical testing. Thus, all bones went through three freeze-thaw 

cycles prior to mechanical testing. Once thawed, three rosette strain gauges (FRA-2-11, Tokyo 

Sokki Kekyujo Co., Ltd, Tokyo, Japan) and one single element gauge (FLA-3-11) were attached 

around the circumference of the bone’s midshaft (Figure 2.1). A 1.5 cm2 region of periosteum 

was scraped away at each gauge attachment site using a periosteal elevator. The bone surface 
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was defatted and dried using 2-butanone (Sigma-Aldrich, St. Louis, MO, USA) and the gauges 

bonded to each site using a self-catalyzing cyanoacrylate adhesive (DURO Superglue, Loctite, 

Westlake, OH, USA). Rosette strain gauges were attached to anterior, posterior, and medial 

surfaces and a single element gauge was attached to an anterior-medial surface at the bone’s 

midshaft with a goal of spacing the gauges as evenly around the cross-section as possible while 

respecting any bone surface limitations. The gauges were oriented so that the central element of 

each gauge was aligned with the long axis of the bone. Gauge lead wires were soldered to a 

micro-connector (4-103240-0, Digi-Key, Thief River Falls, MN, USA) that was plugged into a 

1m shielded cable (NMuF 6/30-404655, Coonerwire, Chatsworth, CA, USA), to convey raw 

strain signals to Vishay amplifiers (2110B, Vishay Precision Group, City of Industry, CA, USA). 

During testing, amplified strain signals were sampled at 100 Hz through an A/D converter and 

converted to microstrain (με, strain x 106) in the manufacturer’s software (Labchart7, 

ADInstruments, Dunedin, New Zealand).  

Each instrumented emu TBT was loaded over its linear elastic range (i.e. not to failure) in 

four-point bending. A -10 N pre-load was applied to hold the specimen in place and to maintain 

equal distribution of load among the four contact points. Five triangular waveform cycles of 

preconditioning from -10 to -20 N were applied at a load rate of 0.25 mm/sec, immediately 

followed by 10 triangular waveform load-unload cycles from -10 to -175 N compressive load at 

0.25 mm/s to induce an average peak bending moment of -9.63 Nm at the time of maximum 

applied load (Table 2.1, Figure 2.2). Each surface of the bone was loaded in turn in compression 

by placing the surfaces sequentially ‘face-up’ in the load fixture in the following order: anterior, 

medial, posterior, and lateral. The applied load from the load cell and bone strain readings from 

the four strain gauges were collected synchronously. The length:width aspect ratio of the tested 

bone region was approximately 18:1.  

Following the four-point bend tests, planar strain analyses were conducted using different 

three-gauge combinations in order to test the accuracy of this method for modeling load-induced 

strains against the measured strain in the fourth gauge. Using a custom MATLAB (Mathworks, 

Natick, MA, USA) program, the raw longitudinal strain values were zeroed by subtracting the 

average strain in each channel measured prior to the upper load fixture contacting the sample. 

Then, a single cross-sectional slice from a CT scan (0.63 mm in-plane resolution, GE Lightspeed 

VCT, GE Healthcare, Purdue Veterinary Teaching Hospital) of each bone with all 4 gauges 



16 
 

visible was imported into MATLAB and the location of each gauge manually selected in the 

program. In each bending orientation, the longitudinal strains were predicted for each gauge 

location in turn using the strain measures from the three other gauges and equations previously 

described for calculating the distribution of longitudinal strains normal to the bone’s cross-

section [106, 107]. 

Eqn 1 represents the equations used for PST predictions. ‘x’ and ‘y’ are the 2D 

coordinates of the strain gauge position on the bone cross-section. Strain (ε) is the strain 

measured at the corresponding gauge site. By solving the set of three equations, the coefficients 

A, B, and C can be determined. Once those coefficients are known, the strain at any location 

across the bone’s cross-section can be determined. For each gauge, peak and predicted strains 

were determined for the final five load cycles for each bending direction and then averaged, 

resulting in a measured strain and predicted strain for each gauge on each bone.  Thus, in Figure 

3 each data point represents a mean value for measured and predicted strains for five cycles of 

loading for each bone.  Calculated versus measured strains were plotted for the four gauge 

locations in each of the four bending directions for the n=5 bones tested, such that each bone is 

represented by 4 data points (once for each bending direction). A least-squares linear regression 

was fit to the predicted vs. measured strain data for each strain gauge location for all birds (20 

data points; 5 birds with 4 strain gauge predictions each) across the four bending directions to 

determine the slope between the measured and calculated strain values. Ninety-five percent 

confidence intervals (CI) were calculated to determine if the slope of the regression was 

significantly different from unity.  

We also quantitatively characterized the extent of the circumferential coverage of the 

strain gauges for the different 3-gauge combinations by measuring the length along the bone’s 

circumference between the three successive gauges for each combination. This was achieved by 

manually tracing the total circumference of the bone and the length of the perimeter between the 

center of the gauge foil for each of the three successive gauges for each combination from the 

CT scan images (ImageJ, National Institutes of Health, Bethesda, Maryland, USA). Coverage 

percentages were averaged for all five animals for each of the four three-gauge combinations.  

𝜀𝜀1 = 𝐴𝐴 𝑥𝑥1 + 𝐵𝐵 𝑦𝑦1 + 𝐶𝐶 

𝜀𝜀2 = 𝐴𝐴 𝑥𝑥2 + 𝐵𝐵 𝑦𝑦2 + 𝐶𝐶 

         𝜀𝜀3 = 𝐴𝐴 𝑥𝑥3 + 𝐵𝐵 𝑦𝑦3 + 𝐶𝐶   (1), 
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2.2.2 Extrapolation of Planar Strain Theory to Shear Strains  

Male french guinea fowl (Numida meleagris, Linnaeus) were used to evaluate the validity of 

using the relationship between planar strains at two cortical bone sites in a cross-section to 

determine shear strains at a bone site remote to the location of a rosette strain gauge. All birds 

used were obtained from a commercial farm (JM Hatchery, New Holland, PA, USA; n=5) as 

hatchlings and raised at Purdue University in an indoor enclosure with free access to game bird 

feed and water until they were used in the study (age: 21.6+0.9 weeks, mass: 2.72+0.27 kg). All 

surgical and experimental procedures followed protocols approved by the Purdue University 

IACUC (PACUC Protocol #1310000977). 

Aseptic surgery was conducted to attach strain gauges to each bird’s left TBT. The birds 

were induced for surgery through mask inhalation of isoflurane (5%), and maintained at a 

surgical anesthetic plane with 2-4% isoflurane at a 1L/min O2 flow rate. Breathing and heart rate 

were monitored throughout surgery, and anesthesia adjusted as necessary. To attach strain 

gauges to the midshaft of the TBT, incisions were made at the lateral border of the synsacrum 

and on the medial side of the TBT at the midshaft. Three rosette strain gauges (FRA-1-11, Tokyo 

Sokki Kenkyujo Co., LTD, Tokyo, Japan) and their lead wires were passed subcutaneously from 

the incision at the sacrum to the incision at the TBT midshaft. After retracting the overlying 

muscles to expose anterior, posterior, and medial bone surfaces, each surface was prepared for 

gauge attachment by removing an approximately 1 cm2 region of periosteum, lightly scraping the 

underlying surface with a periosteal elevator, and defatting and drying the surface using 2-

butanone (Sigma-Aldrich, St. Louis, MO, USA). Strain gauges were then bonded to each site 

using a self-catalyzing cyanoacrylate adhesive (DURO Superglue, Loctite, Westlake, OH, USA). 

Gauges were centered on each surface as much as possible (Fig. 4), and the central element of 

the rosette was aligned with the long axis of the bone within 5o. Once all three gauges were 

bonded to the TBT, the overlying musculature was carefully replaced and the incisions overlying 

the hip and TBT were sutured (4-0 coated Vicryl violet braided, J392H, ETHICON, Somerville, 

NJ, USA). The lead wires exiting over the synsacrum were further anchored to the skin with 

suture to provide tension relief for the wires, and the incision and the pre-soldered epoxy 

mounted connector were covered with gauze and elastic bandaging tape. Following surgery and 

immediately prior to experimental testing the following day, each bird was given intramuscular 

injections of analgesic (0.5 mg/kg meloxicam, VETone, Boise, ID, USA).  
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The day following surgery, in vivo bone strain data were collected as the birds ran on a 

motorized treadmill over a range of speeds, but we only present data collected at the greatest 

running speed achieved, which was at 2.68 m/s. While on the treadmill, the lead wire connector 

over the hip was connected to a 5.4 m long shielded cable and the plug-cable connection was 

secured to the tail feathers with additional elastic bandaging tape. The cable was connected to a 

Vishay bridge amplifier, from which raw strain signals were sampled by an A/D converter at 

2000 Hz. Following data collection, the birds were induced to a surgical plane of anesthesia by 

mask inhalation of isoflurane (5%) at a 1L/min O2 flow rate and then euthanized via intravenous 

injection of sodium pentobarbital in the brachial vein (320 mg/kg Beuthanasia-D, Schering-

Plough Animal Health, Union, NJ, USA).  

Raw strain data for five consecutive, steady footfalls within each trial for each bird were 

imported into a custom MATLAB program for further analysis. Zero strain levels were 

determined by averaging the strains during the swing phases of the selected strides. Raw strain 

data from each rosette were used to calculate principal tensile and compressive strains and the 

orientation of these strains relative to the long axis of the bone using standard equations that 

assume a uniaxial planar state of strain [106].  

The equation for calculating shear strains (γ) relies on the calculation of principal strains 

E1 and E2, as well as the angle of principal tension, ϕ. The equations for principal tension, 

compression, and the angle of principal tension include contributions from longitudinal strain 

measures (εb) as well as the off-axis components of strain (εa and εc) that can all only be 

experimentally measured simultaneously using a rosette strain gauge.  

The time point during stance corresponding to minimum longitudinal strain (peak 

compression) on the medial surface was chosen for further shear strain analysis in order to 

guarantee that both posterior and medial gauges were simultaneously measuring compression so 

that our shear predictions based upon the measured longitudinal strains would not attempt to 

cross the neutral axis. Shear strains were calculated for each gauge at the relevant time point 

Principal Tension: E1 = (εa + εc)/2 + [(εa - εc)2 + (2εb - εa - εc )2]1/2 /2 

Principal Compression: E2 = (εa + εc)/2 - [(εa - εc)2 + (2εb - εa - εc )2]1/2 /2 

         Angle of Principal Compression ϕ = ½(tan-1 [(2εb - εa - εc)/(εa - εc)]    

𝛾𝛾 = 2 ∗ (𝐸𝐸1 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠 𝛷𝛷 ∗ 𝑐𝑐𝑐𝑐𝑠𝑠𝛷𝛷 − 𝐸𝐸2 ∗sin 𝛷𝛷 ∗ 𝑐𝑐𝑐𝑐𝑠𝑠𝛷𝛷 )       (2), 
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using Eq. 2 [103], and mean values for the five stance phases analyzed per bird were calculated 

for both the medial and posterior gauges. Based upon these mean values, an individual ratio 

between posterior and medial longitudinal strain was found for each bird as well as the ratio 

between the mean medial and posterior longitudinal strains for all animals. Both ratios were then 

used to separately predict shear strain values at the posterior gauge site using the mean shear 

strain value measured for each bird at the medial gauge site (Table 2.3). Our methods were 

designed to closely replicate those used previously [102, 105]. Previous use of this approach 

used experimentally measured shear and longitudinal strains collected at one bone location to 

project shear strains to a site on the bone where the maximum longitudinal strains were expected 

to occur based upon the planar strain analysis of longitudinal strains. Because we did not know 

the location of peak longitudinal strain prior to gauge implantation, and would therefore not have 

a gauge present at this site to experimentally validate the extrapolation of shear strains from 

known measures, we had to make predictions from a medial to a posterior location, where we 

could reliably attach rosette gauges in all birds. Additionally, while similar prior studies used a 

mean longitudinal strain ratio from all animals in the study (typically n=2-4), we also found 

individual ratios for each animal to highlight the variation within a sample. Thus, the measured 

shear strain data plotted in Figure 5 represent the mean shear strain values from the posterior 

gauge measured over five consecutive stance phases and a single predicted posterior shear strain 

value for each individual. The predicted shear values are based upon the mean shear strains 

measured at the medial rosette gauge site and either a (i) mean longitudinal strain ratio for each 

bird or (ii) a mean longitudinal strain ratio averaged across our five bird sample. Predicted vs. 

measured shear strains for both ratios were plotted and a least squares linear regression fit was 

applied to each to determine the relationship between measured and predicted shear strain values 

at the posterior gauge site. Ninety-five percent confidence intervals were calculated to determine 

if the relationships between measured and predicted shear strains were significantly different 

from unity.  
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 Results  

2.3.1 Measured vs. Calculated Longitudinal Strains 

All emu TBTs underwent 4-point bending in both directions across the medio-lateral and antero-

posterior axes, sequentially placing each of the anterior, posterior, medial, and lateral bone 

surfaces in compressive and tensile strains of varying magnitudes. Strains near zero indicate that 

the gauge site was close to the neutral axis during bending, as would happen for the anterior 

gauge site when the upper load points contact the medial or lateral bone surface. For all strain 

gauge sites, the relationship between measured and calculated longitudinal strains was linear, and 

the slope of the regression line not significantly different from 1.0 as indicated by 95% CIs that 

include the value 1.0 (Figure 2.3). Y-axis intercept values were all less than 6με, thus not 

deviating markedly from the origin. R2 values for anterior, posterior, medial and anterior-medial 

(single-element gauge) sites were 0.99, 0.94, 0.98, and 0.99, respectively. The percentage of 

gauge coverage of the bone’s circumference during prediction of the anterior, posterior, medial 

and anterior-medial gauge sites was 47+4%, 32+3%, 55+4% and 70+2%, respectively. This 

indicates that predictions for the anterior-medial gauge were based upon the broadest gauge 

coverage of the bone circumference, while predictions for the posterior site were based upon the 

most restricted gauge coverage of each bone’s circumference. Even for the surface with the most 

restricted gauge coverage, the correlation between measured and predicted strains was strong. 

2.3.2 Extrapolation of Planar Strain Theory to Shear Strains 

Measured shear strains at each rosette gauge and predicted values were analyzed at the 

time point of the minimum medial axial strain (maximum compression) during stance phase 

(29+7% through stance) for the five most consistent steps from each trial. Inter-animal variation 

in gauge position and the approximate location of the neutral axis at the time point analyzed are 

depicted in Figure 2.4. The individual-specific ratios of posterior to medial longitudinal strains 

(‘longitudinal strain ratio’, Table 2.3) varied considerably across the different birds (range: 0.28-

5.35) indicating that for some birds, posterior longitudinal strains were greater than medial 

longitudinal strains, while for others the opposite occurred. The causes for this variation can be 

discerned from the varying strain distributions in the guinea fowl TBT (Figure 2.4), where for 

some birds the medial gauge is located closer to the neutral axis (e.g. Birds 3 and 4), while for 

others the neutral axis of bending falls closer to the posterior rosette gauge (e.g. Birds 1 and 2). 
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Extrapolated shear strain values using the individual-specific ratio of posterior:medial 

longitudinal strains resulted in a poor correlation overall between the measured and predicted 

shear strains at the posterior gauge site. The applied linear fit had a slope of 0.23 (R2= 0.10) and 

intercept value of -327με (Figure 2.5). The sample-mean multiplier (1.52) also resulted in a 

better correlation between measured and predicted shear strains at the posterior gauge site than 

the individual-specific correlation, with an applied linear fit slope of 0.52 (R2 = 0.37) and an 

intercept value of -217 με. Although the resulting confidence ranges for both multipliers 

included relationships with slopes equal to 1.0, they also included lines with slopes equal to 0.0. 

Both the individual-specific and sample-mean ratios produced a positive slope between the 

measured and predicted posterior site shear strains, which may suggest that, at least for the 

guinea fowl TBT, using this technique could help prevent underestimation of maximal shear 

strains in the bone.  

 Discussion 

Planar strain theory (PST) is used in skeletal mechanics studies to predict the distribution 

of longitudinal strains normal to the bone’s transverse cross-section and the location of the 

neutral axis of bending [24, 102-105, 108, 110]. To our knowledge, application of this theory to 

skeletal mechanics has not been experimentally validated. One of our primary goals in this study 

was to assess the accuracy of PST calculations in matching experimentally measured strain 

values at several strain gauge sites around a bone’s cross-section. We found that predicted strain 

values closely matched experimentally measured values in long bones loaded in four-point 

bending. PST has also been used to extrapolate possible peak shear strain values at locations on 

the bone not instrumented with rosette strain gauges [102, 105]. We sought to test the use of a 

linear model based upon longitudinal strain measures for predicting shear strains in long bones. 

Shear strains include contributions from off-axis strain components (Eqn. 2) that can only be 

measured using rosette strain gauges and which may not scale linearly across a bone’s cross-

section as longitudinal strains do during long bone loading. For our experimental conditions, we 

found that shear strain values predicted from in vivo measures of longitudinal strain generally did 

not correlate well to experimentally measured shear strain values for the guinea fowl. However, 

both ratios did result in a relationship with a (non-significant) positive slope between the 

predicted and measured shear strains. Therefore, this technique may help to prevent 
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underestimation of maximal shear strains by predicting increased shear strains with increased 

longitudinal strains. However, because both positive relationships were non-significant trends, 

the accuracy of this method could still be questioned.    

2.4.1 Planar Strain Theory: Longitudinal Strain  

PST predicts that for an element in bending, longitudinal strains increase linearly 

perpendicular to the neutral axis of bending. When applied to long-bone biomechanics, this 

theory assumes that bone material is linearly elastic, isotropic in the transverse plane of section, 

and has a perfectly cylindrical cross-section [109]. If these assumptions are closely matched, 

longitudinal strain values predicted theoretically at particular sites across the plane of section 

should equal the experimental strain gauge measures at those same sites. Our results showed that 

for all four gauge sites sampled, measured and predicted longitudinal strains had a linear 

relationship not significantly different from unity with y-intercept values less than ±6 με. These 

data support our hypothesis and the use of PST for predicting bone cross-sectional longitudinal 

strain distributions when the three gauges required for making longitudinal strain predictions are 

evenly distributed around the cross-section. In addition, our data evaluated the effect of an 

uneven distribution of gauges in making longitudinal strain predictions. Theoretically, the 

location of the three gauges around the cross-section should not affect predicted strain values. 

While we found that the linear fit for measured versus calculated longitudinal strains was good 

for all gauge sites and strain gauge distributions tested, gauge distribution did have a small effect 

on the confidence of the prediction. Predicted strains for the anterior-medial gauge site had the 

tightest 95% confidence interval (±0.08) and the greatest percentage of bone perimeter covered 

(70±2%) by the three gauges used to predict the strains at this fourth gauge site. Predicted strains 

for the posterior gauge site showed the largest confidence interval (±0.24) and the three gauges 

used to predict longitudinal strains at this site covered the lowest percentage of bone perimeter 

(32±3%) of the different gauge combinations examined. Even though surgical accessibility and 

bone surface limitations often limit gauge placement and distribution around a cross-section 

during in vivo experiments, our results suggest that an even distribution of gauges around the 

cross-section is not critical when the goal is to model cross-sectional strain distributions using 

PST. However, predictions made from uneven gauge distributions seem to have slightly more 

variability. Because the emu TBTs tested here were not solid cylindrical columns of 
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homogeneous bone tissue, results from PST predictions appear to be relatively insensitive to the 

presence of a marrow canal and the bone tissue heterogeneity likely present in the bones we 

tested.    

The bending moment applied to each bone varied slightly (-8.6 to -10.7 Nm). Because 

our 4-point bending device allows the support points to be adjusted, and they were manually 

reset between each experiment, the distance between the inner-most and outer-most supports 

varied (0.10 to 0.12m), causing slight variations in the applied moment. Since our analysis did 

not depend on achieving specific strain values or specific loads, but rather examined the 

relationship between strains around a bone’s cross-section, the variation in applied moments do 

not affect our results or conclusions. Theoretically, regardless of the moment applied, 

longitudinal strains should increase linearly perpendicular to the neutral axes.   

Planar strain theory is often used to evaluate how the in vivo strain environment across a 

bone’s cross-section varies during locomotion [102, 103, 111], which typically induces a 

combination of bending, axial compressive, and torsional loads in long bones. We evaluated PST 

predictions using strain data from bones loaded ex vivo in four-point bending, which induces 

only pure bending. While our results suggest that longitudinal strain predictions closely match 

the measured strains around a cross-section for pure bending situations, we could not assess the 

effect of other types of loading combined with bending on the cross-sectional strain distribution 

and the accuracy of PST predictions in these experiments. Limitations of our mechanical loading 

system prevented us from applying combinations of bending, compressive and torsional loads to 

specimens ex vivo. Additionally, muscle forces during locomotion could affect the local in vivo 

strain environment which we could not account for in our ex vivo loading model. A valuable 

future study would include a similar four-gauge analysis conducted in vivo. However, as 

previously stated, in vivo gauge attachment is often limited by bone size and surfaces as well as 

muscle attachment locations. For example, we were not able to perform such a study with the 

guinea fowl TBT that were used to predict shear strains because there was not an available 

surface to add a fourth gauge.   

2.4.2 Planar Strain Theory: Shear Strain  

Determining the maximum diaphyseal shear strain in a bone during locomotion is also 

commonly of interest, as shear strain accounts for the off-axis strain components due to torsional 
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and eccentric loading in a bone during locomotion. Just as for longitudinal strains, it is difficult 

to place a rosette gauge at the location of maximum shear strain without a priori knowledge of 

where peak strains occur around a bone’s circumference. Thus, to be able to accurately predict 

shear strains at non-instrumented locations would be a valuable extension of PST. Attempts have 

been made to predict shear strains using PST, which makes the assumption that shear strains 

increase linearly perpendicular to the neutral axis and in proportion to longitudinal strains. As 

this has been applied to in vivo locomotion and ex vivo mechanical tests, an average longitudinal 

strain ratio for the animals used in the study is first determined between measured longitudinal 

strain values from a rosette gauge located at a similar bone site in each animal, and the 

longitudinal strain values determined by PST at a non-instrumented location (typically the 

location of maximum longitudinal strain). Then the average ratio between the strains at these two 

sites across all animals in the study is applied to the shear strain measured at each rosette gauge 

location to produce predicted shear strain values at the non-instrumented locations [102, 105]. 

However, since shear strains include contributions from off-axis components of strain in addition 

to longitudinal strain (Eqn. 2), it is unclear how accurately the ratio between two longitudinal 

strain values at different sites around a bone’s circumference can be used for predicting shear 

strains at sites remote to rosette gauge locations.  

Our ex vivo loading model was not capable of applying the combined axial or bending 

and torsional loads necessary to create significant shear strain in the bone, so we turned to in vivo 

rosette strain data collected from the guinea fowl TBT during treadmill locomotion to test the 

accuracy of shear strains predicted using longitudinal strain ratios. At this time we cannot 

compare the accuracy of our in vivo PST-based shear strain predictions to similar in vivo 

locomotor longitudinal strain predictions because we did not have a fourth strain gauge placed in 

vivo for longitudinal strain validation. However insight into the accuracy of applying PST to 

shear strain predictions is still important for drawing conclusions from its future use. We did not 

have a priori knowledge of the location of the maximum axial or shear strain at the TBT 

midshaft in this experiment, so it was not possible to place a rosette gauge at those specific 

locations to provide empirical data to compare to our predictions. Therefore, we were not able to 

exactly mimic the methods used previously where measured shear strains were extrapolated to 

the site of the predicted peak compressive strains on the bone [102, 105]. However, if the 

assumption holds that shear strains, like axial strains, increase linearly perpendicular to the 
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neutral axis, the longitudinal strain ratio should be able to reliably predict the sub-maximal shear 

strain values we measured just as successfully as it would maximal values.  

Our methods tested extrapolation of shear strains from a rosette gauge site on the medial 

surface of the guinea fowl TBT to a rosette gauge site on the posterior surface. We used both 

individual-specific and sample-mean longitudinal strain ratios in order to highlight intra-species 

variation and to more closely mimic previous methods, respectively. We found that for both of 

the ratios used for shear strain prediction, the predicted versus measured shear strains did not 

correlate linearly with a zero y-intercept for the guinea fowl in this study. Furthermore, while a 

slope of 1.0 fell within the confidence intervals for the linear regressions for both ratios used, the 

intervals themselves were large (-1.10 to +1.50 for individual-specific ratios, -0.73 to +1.77 for 

sample-mean ratio). There are some limitations in using 95% confidence intervals to distinguish 

our empirical relationship from an idealized slope since 95% confidence intervals rely heavily on 

sample size. In this case, a linear regression based upon five data points may have led to 

particularly wide intervals. An increased sample size in future studies could potentially reduce 

the width of these intervals. Additionally, the individual longitudinal strain ratio between 

posterior and medial longitudinal strains was both above and below 1.0 depending on the bird, 

indicating that the location of the neutral axis varied considerably across the birds at the time 

point used for analysis (when medial longitudinal compressive strains were maximal). We also 

examined using the time point at which posterior compressive strains were maximal, but this 

corresponded to positive (tensile) strains on the medial surface for some birds, further indicating 

the prevalent variation in the neutral axis position and strain distribution present between the 

individual birds examined. Although it is reasonable to expect greater variation in measured and 

predicted strain values in a less controlled mode of mechanical loading, such as locomotion, 

when compared to the highly controlled ex vivo bending we used for the PST validation, we 

would expect a robust method to be able to account for this type of natural variation and still 

produce a linear relationship with a near zero intercept. Instead we found non-significant trends 

that generally showed an increase in predicted shear strain with increased measured shear strains, 

but also included slopes of zero, indicating no relationship between the measured and predicted 

shear strains. Measures from additional guinea fowl would likely reduce the confidence intervals, 

perhaps even generating significant trends, which is an important consideration in attempting to 

evaluate the validity of using this method to predict shear strains in long bone diaphyses. 
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However, the sample size we used here reflects closely the sample sizes typically used in in vivo 

bone strain studies [24, 102-105]. Therefore, the variation present in this sample should be 

indicative of that seen in studies that would attempt to apply this methodology for estimating 

shear strains across a bone’s cross-section.       

Table 2 clearly shows inter-individual variation in the medial and posterior axial strain 

magnitudes, which affect the resultant ratio of these strains and consequently our predicted shear 

strains. There are several possible contributing factors to the variation in strain magnitudes 

measured in these birds on the posterior and medial bone surfaces. Although we intend to place 

the gauges at the bone midshaft and centered on each surface, slight differences in gauge 

placement both around the circumference of the midshaft and/or the proximal-distal position 

relative to the midshaft were sometimes necessary due to surface limitations, such as bone size 

and surface features (i.e. unexpected ridges) which caused us to shift gauge placement slightly. 

The greatest difference in proximal-distal gauge placement between any two birds was only 

about 13.9mm (-8.1mm to +5.8mm from midshaft), which only amounts to about 4-6% of the 

bone’s length, which is within the variation described in other in vivo strain studies [101]. 

Additionally, slight differences in bone geometry can affect how load is transmitted through the 

bone and the resultant strain at a given location. Although none of the animals appeared lame 

while running on the treadmill, slight differences in running kinematics could easily affect the 

strain distribution throughout the bone as well. A combination of these factors could have 

contributed to the inter-individual variation in the neutral axis orientation and location across the 

birds examined, which would significantly impact the calculated longitudinal strain ratios for 

predicting shear strain. However, regardless of the variation in axial and shear strain measures 

between animals, the predicted shear strains did not closely match the measured shear strains in 

most of the animals examined here, especially using the individual-specific multiplier, 

suggesting that the planar relationship between longitudinal strains does not necessarily correlate 

linearly to shear strains present in long bones during locomotion, at least for the guinea fowl 

TBT.   

While our results do not indicate a significant relationship between measured and 

predicted peak shear strains in the guinea fowl TBT it could be argued that a one-to-one 

relationship between the measured and predicted shear strains also exists within the variation of 

our data. Similarly, the generally positive (though non-significant) relationships between the 
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measured and predicted shear strains indicate that predicted strains calculated using a 

longitudinal strain multiplier could increase in relation to increasing measured shear strains. 

These two results could be used to argue in favor of applying a longitudinal strain multiplier for 

prediction of shear strains at non-instrumented sites on a bone surface. Extrapolation of 

measured shear strains to bone sites of maximal longitudinal strains may help to prevent 

underestimation of maximal shear strains and therefore, artificially inflated safety factor 

estimates [112, 113]. It is also possible that were this experiment repeated in a different 

vertebrate taxon, that a more consistent relationship could be determined between the measured 

and predicted shear strains and that the lack of correlation that we found here could be the result 

of the variability in bone loading seen in the guinea fowl TBT. In some cases the margin of error 

that PST-based predictions of shear strains may incur might be acceptable given the goals of a 

particular study, as long as the investigator recognizes the assumptions made and the uncertainty 

of the results we have found here in attempting to validate this technique. While we found that a 

one-to-one relationship could be possible between predicted and measured shear strains in the 

guinea fowl TBT, the variation within this relationship also indicates that shear strain predictions 

using a longitudinal strain multiplier could equally over- or under-estimate the true shear strains 

occurring at a cortical bone location. If one does hope to apply this methodology, we recommend 

using a sample-mean based average longitudinal strain ratio for estimating shear strains since 

this resulted in a relationship closer to 1.0 and a somewhat tighter confidence interval for the 

guinea fowl TBT than using an individual-based strain multiplier. However, if a lower margin of 

error is desired, one should look towards other methods of assessing bone strains at non-

instrumented locations, such as finite element analysis [39, 114, 115].  

In conclusion, PST is a robust and accurate method for predicting the distribution of 

longitudinal bone strains normal to the cross-section and for determining the location of the 

neutral axis of bending for bones loaded in ex vivo bending. Predicted longitudinal strain values 

closely matched measured values regardless of the distribution of gauges used for the prediction 

or the strain magnitudes measured. Repeating a similar analysis with strain data collected during 

in vivo locomotion would further validate the use of this method for bones undergoing more 

complicated loading regimes than the pure bending examined here. Shear strains measured 

during in vivo locomotion, however, could not be accurately predicted in the guinea fowl TBT 

using longitudinal strain measures. As long as an investigator can accept the potential margin of 
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error present in making shear strain predictions, the method may still have merit for some 

experiments. However, if more accuracy is desired, alternative methods should be considered. 

Additional work in several animal species with greater sample sizes would be necessary to 

attempt to validate a repeatable relationship between longitudinal and shear strain measures in 

long bones.  
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 Table 2.1 Emu subject data and 4 point bending test parameters  

 

 

 

 

 

 

 

 

 

 
Table 2.2 GF subject data and strain gauge positions relative to the bone midshaft 

   

Gauge Distance from 
Midshaft (mm)         

+ proximal, - distal 
Animal 
Number 

Mass 
(kg) 

Age 
(wks) Anterior  Posterior  Medial 

1 2.6 21 -2.0 -3.1 -4.8 

2 2.9 21 +4.5 +2.4 +3.8 

3 3 21 -1.5 -2.3 -3.9 

4 2.8 22 -8.1 -6.4 -6.5 
5 2.3 23 +5.8 +2.2 +2.4 

Animal 
Number 

Age 
(wks) 

Mass 
(kg) 

TBT 
Length 
(cm) 

TBT AP 
Diameter 

(mm) 

TBT ML 
Diameter 

(mm) 

4-pt Bend Test Parameters 
inner 
span 

distance 
(m) 

outer 
span 

distance 
(m) a (m) 

Peak 
Load 
(N) 

Moment 
Applied  

(Nm) 
A 36 27.4 42 19.4 23.7 0.256 0.452 0.098 -175 -8.58 
B 48 30.0 44 21.8 24.9 0.234 0.452 0.109 -175 -9.54 
C 74 43.1 43.5 25.8 28.6 0.233 0.460 0.114 -175 -9.93 
D 75 50.9 43 24.8 29.2 0.255 0.470 0.108 -175 -9.41 
E 75 51.7 43 24.5 27.8 0.200 0.445 0.123 -175 -10.72 
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Table 2.3 GF longitudinal and shear strains measured during treadmill locomotion, individual-specific longitudinal strain multiplier, 
and shear strain extrapolations to posterior gauge site for both multipliers 

 

 

 

 

 

 

 

 

 

 

 

 

 

Animal 
Number 

Medial 
Longitudinal 
Strain (με) 

Posterior 
Longitudinal 
Strain (με)  

Individual-
Specific 

Posterior/Medial 
Longitudinal 
Strain Ratio 

Measured 
Medial 
shear 
strain 
(με) 

Measured 
Posterior 

Shear 
Strain 
(με) 

Calculated 
Posterior 

Shear 
Strain – 

Individual-
Specific- 

(με) 

Calculated 
Posterior 

Shear 
Strain – 
Sample-
Mean -

(με) 
1 -231 -64 0.28 -360 -217 -100 -547 

2 -384 -302 0.79 -657 -1000 -518 -1000 

3 -51 -271 5.35 -159 -263 -852 -242 

4 -27 -33 1.20 -179 -35 -215 -273 

5 -153 -616 4.03 -118 -695 -473 -179 
Medial and posterior longitudinal and shear strains are experimentally determined values. The 
individual-specific posterior/medial longitudinal strain multipliers were found by dividing the 
posterior longitudinal strain value by the medial longitudinal strain value for each animal.  A 
sample-mean multiplier was determined by dividing the mean posterior strain value by the 
mean medial longitudinal strain value, and for our sample was 1.52. Calculated (extrapolated) 
posterior shear strains were then determined by multiplying the measured medial shear strain 
values by the individual-specific and sample-mean multipliers for each bird.   
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Figure 2.1 Cross sections for each emu TBT included in this study. The strain gauge positions 
are indicated with black rectangles. Gauge coverage percentage was measured as the distance 
around the circumference of the gauge for three consecutive gauges used for the prediction (ie 
for posterior site prediction, circumference between anterior, anterior-medial, and medial gauge 
locations was measured) over the total circumference. 

 

 

Figure 2.2 Schematic of the four-point bending apparatus. The load points were adjusted 
horizontally for each bone to maximize the bending moment. The equation shown calculates the 
bending moment the bone will experience where M is moment, F is the total force applied from 
the top load points, and ‘a’ is the horizontal distance between the top and bottom load points.  

 

 

Linear Actuator

Load Cell
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Figure 2.3 Measured versus predicted longitudinal strains (με) for the gauge sites tested. Sites 
include the (A) anterior gauge site, (B) posterior gauge site, (C) medial gauge site, and (D) 
anterior-medial gauge site. Each plot contains data from all for bending directions such that, for 
example, in A, strains would be large and positive or negative during posterior and anterior 
bending respectively, and close to zero during medial and lateral bending indicating the gauge 
site was close to the neutral axis. The line through the data represents the linear regression fit.   
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Figure 2.4 Cross sectional strain distributions for each GF TBT included in this study at the time 
of peak compressive longitudinal strain on the posterior bone surface. The strain gauge positions 
are represented by black rectangles. The average longitudinal strain values (microstrain) have 
been included next to the appropriate gauge. The approximate location of the neutral axis for 
each animal at the time of analysis is indicated on each cross-section. 

 

 

Figure 2.5 Measured versus predicted (extrapolated) shear strain values for each GF for both 
individual-specific ratios and the sample-mean ratio. The solid and dotted lines represent the 
linear regression fits for the individual-specific and sample-mean data, respectively, and the 
slopes, R2s, and 95% confidence intervals are placed closest to their line in the plot.  

 

[Note: This chapter was published in the Journal of Experimental Biology in 2016. I would like 

to acknowledge my co-authors Michael Lehner, Luis P. Lamas, and Russell P. Main]
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3. CHARACTERIZATION OF THE STRAIN ENVIRONMENT IN THE 
MOUSE TIBIA AND THE CHUKAR PARTRIDGE TIBIOTARSUS 

DURING LOCOMOTION AND EXPERIMENTALLY APPLIED 
MECHANICAL LOADING 

 Introduction 

Dynamic mechanical loading plays an important role in regulating bone geometry and 

strength [24, 47, 51, 116-119]. While a healthy skeleton is adapted to the bone tissue strain 

profile and magnitude of loads it experiences on a daily basis in order to maintain reasonable 

safety factors [120], when load magnitudes increase, such as in athletes [121-123], or decrease, 

such as for astronauts in microgravity [10, 124, 125], the affected bones will adapt to the change 

in stimuli. Although it is unclear if the strain magnitude induced by a given load is the direct 

stimulus that causes adaptation, it has been established that there is a relationship between strains 

induced by controlled, experimentally applied loads and the resulting adaptive response [30, 34, 

51, 119, 126-129]. Studying bone adaptation using experimental loading models has been 

essential in determining the sensitivity of bone, as well as the mechanobiological mechanisms 

responsible for bone modeling and remodeling. Therefore, accurately characterizing the strain 

environment induced throughout the bone is critical for interpreting the mechanobiological 

response of the bone to physical stimuli. In addition to knowing what strains are induced in the 

bone at a given load magnitude, assessing the sensitivity of the bone and relationship between 

the load stimulus and the adaptive response requires determining the relative increase in strain 

magnitude between the experimentally applied load and peak physiologic activities to which the 

bone should be adapted to.  

The non-invasive, axial compressive murine tibial loading model has been used 

extensively to study the skeleton’s response to mechanical load. Since quantifying the stimulus is 

so important to interpreting the adaptive response, several groups have published independent 

studies characterizing in vivo bone strains during physiologic activities and under experimentally 

applied loads using strain gauges, digital image correlation, and finite element models [34, 39, 

51, 130-133]. Bone size and strength are dependent on several factors including sex [134, 135], 

age [136, 137], species strain [100], and husbandry conditions [138, 139], and these variations 

could affect the range of physiologic strains as well as the strains induced by a given load 
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magnitude a bone experiences. Therefore, in order to determine the precise relationship between 

applied loads and the resulting strain environment, it is important that the strains be characterized 

during both physiologic activities and under experimental loading conditions on animals similar 

to those that will be used in future studies. Previous studies have used either female mice or male 

mice of a different age than we intend to use for future skeletal adaptation studies, both factors 

that could have significant impact on bone strains. 

Sole use of rodent models propagates a large gap in understanding the basic cellular 

mechanobiological mechanisms responsible for skeletal structural diversity and homeostasis in 

terrestrial vertebrate groups. Although the skeleton is comprised of the same bone cells and 

similar material composition, it is extremely diverse across vertebrate species in its morphology, 

geometry, and mechanical properties. The avian skeleton exhibits several features that make it 

unique to the mammalian skeleton. Despite evolving from reptilian ancestors, avian species 

today have a lighter and less metabolically costly skeleton, due to pneumatization of certain 

bones, making them more similar to derived mammals such as the mouse [91-93]. Yet, avian 

species are unique compared to vertebrates in that they lay eggs with calcified shells, which 

involves special regulation of calcium balance hormones and more labile skeletons [96]. 

Additionally, avian species are uniquely able to form medullary bone, non-structural woven bone 

on endosteal surfaces, which serves as a calcium reservoir for egg-laying females and 

experiences varying rates of osteoclastic and osteoblastic activities [96, 97]. The formation of 

medullary bone can be induced in male birds as well through the administration of estrogen [98]. 

One of the early animal models employed to study skeletal adaptation was the surgically isolated 

turkey ulna. Although this model was useful in gaining early insight to the skeleton’s sensitivity 

to dynamic versus static loading [47], axial versus torsional loading [140], the applied number of 

cycles [50], and the load magnitude [24], the invasiveness and highly non-physiologic strain 

profile induced [24] have been recognized as significant limitations to the model [141]. Here we 

take the initial steps to develop a non-invasive, axially compressive avian tibiotarsal (TBT) 

loading model in which we can begin investigating differences in skeletal sensitivity and 

response to mechanical load across vertebrate species. Given the novelty of this model, the strain 

environment during both physiologic activities and under experimental loading conditions was 

previously unknown.  
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While strain gauges have been used to measure in vivo strains during physiologic 

activities in a variety of species [24, 26-30, 111, 142, 143] and during experimental loading 

studies [24, 30, 34, 40, 48], the surfaces of a bone to which they can be attached without 

disturbing muscle and other soft tissues is often limited. Bone size and surface features also 

affect the ability to properly instrument a bone. Bone strains measured at instrumented locations 

are not necessarily the peak bone strains, nor do they correlate with peaks strains at various 

regions of interest throughout the bone [39]. These limitations make strain gauge measurements 

alone an inadequate method to characterize a localized adaptive response relative to the induced 

strain environment. While strain gauges do provide valuable in vivo data, high resolution finite 

element (FE) models provide complementary and more complete assessments of the strain 

environment throughout the bone [39, 133, 144]. FE models can provide strain predictions on 

periosteal and endosteal surfaces of the entire diaphysis, as well as trabecular bone regions which 

are not accessible during in vivo conditions.  

The intent of this work is to set up the mouse tibial and avian TBT loading models such 

that in future loading studies we will be able to apply loads that induce similar increases in strain 

at the midshaft relative to peak strains measured during fast locomotion for these species. 

Therefore, the objectives of this chapter are to (1) characterize the strain environment in the tibia 

of the mouse and the TBT of the bird during treadmill running to determine peak physiologic 

bone strains, (2) determine the relationship between experimentally applied axial compressive 

loads and the resulting strain environment at the bone midshaft, and (3) develop specimen-

specific finite element models that approximate in vivo experimental tibial/TBT loading 

conditions in order to provide more robust characterizations of the whole-bone strain 

environment for the mouse tibia and the chukar TBT for future applied loading studies.  

 Methods 

Male mice were obtained at 15 weeks (Jackson Labs, n=8) and housed individually with free 

access to rodent chow and water until used (16 weeks, mass: 26.8±1.2 g). One mouse was not 

used for mechanical loading strain data collection due to strain gauge failure between 

experiments, and two mice were instrumented and used solely for mechanical loading strain data 

collection. Male chukar partridge were obtained as juveniles from a commercial farm (CM Game 

Bird Farm & Hatchery, Calais, ME, USA; n=4) and were maintained in an indoor enclosure with 
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free access to game bird feed and water until the they were used in the study (16±2 weeks, mass: 

0.44±0.02 kg). All surgical and experimental procedures followed protocols approved by the 

Purdue University IACUC (PACUC Protocol #1310000977). 

3.2.1 Strain Gauge Surgeries  

Aseptic surgery was conducted to attach strain gauges to the left tibia of each mouse and 

the left TBT of each bird. Animals were induced for surgery through mask inhalation of 

isoflurane (mice: 2%; chukar: 5%), and maintained at a surgical anesthetic plane with 2-4% 

isoflurane at a 1L/min O2 flow rate. Breathing and heart rate were monitored throughout surgery, 

and anesthesia adjusted as necessary. To attach strain gauges to the midshaft of the tibia/TBT, 

incisions were made on the medial side of the tibia/TBT at the midshaft and the gauges’ lead 

wires were passed subcutaneously from an incision at either the shoulder (mice) or the 

synsacrum (chukar) to the incision at the tibia/TBT midshaft. Overlying musculature was 

retracted as necessary to expose the medial surface of the mouse tibia, and the anterior, posterior, 

and medial surfaces of the chukar TBT. Each surface was prepared for gauge attachment by 

removing a region of periosteum (mice: 0.05 cm2; chukar: 0.5-1 cm2), lightly scraping the 

underlying surface with a periosteal elevator, and defatting and drying the surface using 2-

butanone (Sigma-Aldrich, St. Louis, MO, USA). Strain gauges were then bonded to each site 

using a self-catalyzing cyanoacrylate adhesive (DURO Superglue, Loctite, Westlake, OH, USA). 

Mice were instrumented with one single element gauge (EA-06-015LA-120, Micro-

measurements, Vishay Precision Group, LTD., Raleigh, NC, USA) on the medial surface, and 

each bird was instrumented with one rosette gauge (FRA-1-11, Tokyo Sokki Kenkyujo Co., 

LTD, Tokyo, Japan) on the anterior surface and single element gauges (FLA-1-11, Tokyo Sokki 

Kenkyujo Co., LTD, Tokyo, Japan) on the medial and posterior surfaces. Gauges were centered 

on each surface, and the single element or central element of the rosette was aligned with the 

long axis of the bone within 5 ͦ. Once all gauges were bonded to the tibia/TBT, the overlying 

musculature was carefully replaced as necessary and the incisions overlying the shoulder 

(mouse) or hip (chukar) and tibia/TBT were sutured (4-0 coated Vicryl violet braided, J392H, 

ETHICON, Somerville, NJ, USA). The lead wires exiting over the shoulder blades (mice) or 

synsacrum (chukar) were further anchored to the skin with suture to provide tension relief for the 

wires, and the incision and the pre-soldered epoxy mounted connector were covered with gauze 
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and elastic bandaging tape. Following surgery, and immediately prior to experimental testing 

(the following day for the chukar), each animal was given intramuscular injections of analgesic 

(0.5 mg/kg meloxicam, VETone, Boise, ID, USA).  

3.2.2 In Vivo Strain Data Collection 

In vivo bone strains during treadmill running were collected one hour after surgery for the 

mice, and 24 hours after surgery for the birds. Once each animal was placed on the treadmill, the 

strain gauge lead wire connector was connected to a longer shielded cable (mice: 1m; chukar: 

5.4m) and the plug-cable connection was further secured to the animal as necessary with 

additional elastic bandaging tape. The cable was connected to a Vishay bridge amplifier, from 

which raw strain signals were sampled by an A/D converter at 2000 Hz. Data was collected for 

10 second intervals while each animal ran on the treadmill at gradually increasing speeds (mice: 

0.18-0.50 m/s; chukar: 0.4-1.34 m/s) with two trials at each speed until each animal reached its 

peak speed (defined as the highest speed that could be maintained for 10 seconds), while strain 

data were collected simultaneously.    

Immediately following treadmill running, animals were anesthetized and the knee and 

ankle of the gauged limb were secured in the appropriate custom cups of a mechanical loading 

device (ElectroForce Testbench, TA Instruments, New Castle, DE, USA) with a preload (mouse: 

-1N; chukar: -10N). In vivo bone strains were collected while the limb was loaded cyclically with 

a triangular waveform at 4 Hz at incrementally increasing axial compressive loads until 

maximum longitudinal strain on the medial gauge reached approximately 3-times the maximum 

strains recorded during locomotion. Strain data were similarly collected at 2000 Hz, and applied 

load data were simultaneously collected by reading in the applied voltage from the mechanical 

loading device to the A/D converter using a coaxial cable. Following data collection and while 

still under anesthesia, mice were euthanized by cervical dislocation and the chukar via 

intravenous injection of sodium pentobarbital in the brachial vein (320 mg/kg Beuthanasia-D, 

Schering-Plough Animal Health, Union, NJ, USA). Gauge lead wires were cut, and the 

tibiae/TBT, with gauges still intact, were carefully dissected, cleaned of all soft tissue, and stored 

in 70% ethanol at room temperature.  
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3.2.3 Strain Data Analysis 

For treadmill stains, raw strain data for five consecutive, steady strides from both trials at 

the highest speed each species could maintain (10 total strides per speed per animal) were 

imported into a custom MATLAB (Mathworks, Natick, MA, USA) program for further analysis. 

Raw data were filtered using a fourth order Butterworth filter. Zero strain levels were determined 

by averaging the strains during the entire swing phases of the selected strides. Peak longitudinal 

strains on all gauged surfaces were determined for single element gauges and from the central 

element of each rosette gauge. For the birds, filtered strain data from the rosette gauges on the 

anterior surface were also used to calculate peak principal tensile and compressive strains and the 

orientation of these strains relative to the long axis of the bone using standard equations that 

assume a uniaxial planar state of strain [106].  

A separate custom MATLAB program was used to calculate peak longitudinal (and 

principal, when applicable) strains at each applied axial load. Zero strain levels were determined 

from the strain trace prior to applying the preload to the limb. For the applied loading tests, peak 

strains were averaged over the final five load cycles at each load magnitude to account for any 

viscoelastic damping effects that the soft tissue in the knee or ankle may have had on the first 

half of the applied load cycles. Viscoelastic damping would cause peak strains to occur slightly 

after the timing of the peak applied load. Linear regression analyses were performed to define the 

applied load and resulting strain relationship. 

3.2.4 Finite Element Modeling 

 Tibiae/TBT with gauges still attached were scanned in 70% ethanol using microCT 

(mice: µCT 40, Scanco Medical AG; chukar: Skyscan 1176, Bruker MicroCT, Kontich, 

Belgium). Any remaining wire and solder leads were carefully removed with a scalpel prior to 

scanning. Scanning the bone with gauges in place allows the precise location of each gauge to be 

identified later in the models. For the chukar, the intact knee and ankle joints were positioned in 

angular configurations similar to that during in vivo mechanical loading so that joint contact 

locations could be determined during modeling. Joint contacts have been previously determined 

for the mouse in our lab [39], so mouse tibiae were scanned without the femur and metatarsal 

bone. Bones were scanned with an isotropic voxel resolution of 10 µm (55 kVp, 145 µA, 300 ms 

integration time, no frame averaging) and 16.81 µm (55 kVp, 455 μA, 224 ms exposure time, no 
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frame averaging) for the mouse and chukar, respectively. An aluminum filter was used to reduce 

beam hardening effects. MicroCT scanner-specific calibrations were performed using bone 

phantoms (hydroxyapatite) provided by each manufacturer in order to convert attenuation values 

to bone mineral density (mg HA/ccm). 

 Specimen-specific FE models were developed for instrumented bones for the mouse 

(n=6) and chukar (n=4) using the microCT image stacks. In each image stack containing a whole 

bone, the gauge(s) were omitted either during the bone contouring (mice, Scanco software), or in 

ImageJ (NIH) using a black paintbrush (chukar) to prevent the gauge(s) from being rendered as 

bone during model development. A threshold value was chosen for each species to separate bone 

and background pixels in their respective scan sets. Three-dimensional FE mesh models with 

tetrahedral elements were generated using the segmented tibial microCT images for each species 

and a Matlab-based mesh generation and processing program [145]. Using the grayscale-based 

bone density values, the modulus of elasticity was assigned to each voxel based upon a published 

relationship between bone tissue density and isotropic elastic modulus [146]. A poisons ratio of 

0.3 was used for all elements [144]. For the mice, contact areas, load application points, and 

boundary conditions were applied as described previously [39]. Briefly, the contact nodes on the 

tibial plateau surface were approximated as two ellipses with anterior-posterior and medial-

lateral diameters of 0.3 and 0.4 mm, respectively, and rigidly coupled to a reference point 

approximating the location of patella, at which the compressive load was applied. All nodes on 

the concave distal articular surface of the tibia were coupled to a distal reference point. Boundary 

conditions were applied to these reference points such that all translation and rotation was 

prevented proximally, and only axial translation was allowed distally. For the chukar, load 

application and boundary conditions were applied similarly to the mouse. Contact areas were 

determined by assessing joint configurations from the microCT scans with the femur and 

tarsometatarsus intact. The soft tissue connection between the fibula and tibia for the chukar was 

modeled separately and given an elastic modulus of 800 MPA, which was between reported 

maximum elastic moduli values for avian periosteum (230 MPa) [147] and tendon (1479 MPa) 

[148]. A sensitivity analysis was performed to assess the effect of the elastic moduli of the tibia-

fibular soft tissue connection over an order of magnitude on the resulting bone strains measured 

at the gauge location. An initial proximal reference point location at which load is applied was 

determined based on the location of patella through which load was applied in vivo. This point 
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was then iteratively adjusted by 2mm increments in the anterior-posterior and medial-lateral 

directions. Modeled strains at the posterior and medial gauge sites were assessed for each 

reference point location. Ultimately, the reference point location was accepted when the resulting 

posterior and medial strains had a root mean square error less than 140, which would represent 

average errors of less than 100µε for the modeled strains relative to the measured strains at each 

location for each model.  

 Linear elastic finite element analysis was performed in Abaqus 6.13.3 (Simulia, Dassault 

Systemes, Waltham, MA, USA) for both species to simulate the in vivo axial compressive 

loading. Peak principal strains, defined by the cut-off values for the upper 95th percentile, as well 

as the average nodal strains, were found for cortical volumes located at 90%, 50%, and 37% of 

bone length relative to the proximal end of the tibia/TBT. The volume of cortical bone at 37% of 

bone length relative to the proximal end of the tibia was chosen for additional analyses because it 

has previously been identified as the site with higher strains and the greatest osteogenic response 

to axial compressive loading in mice [119]. The volume of cortical bone at 90% of bone length 

relative to the proximal end of the bone was selected for analyses because of the fractures 

observed at that location in the chukar TBT when the applied load was increased above -160N 

during preliminary experiments. An additional volume of cortical bone at 10% of bone length for 

the chukar only was selected post hoc for analysis because of the high strains indicated in that 

region of the models as well. Each volume analyzed at these locations captured 2.5% of total 

bone length. Finally, planar strain analyses were performed using standard equations [107, 149, 

150] for the chukar during treadmill running and experimentally applied axial compressive load 

conditions at the cross-section containing all three gauges in order to compare the strain 

distributions during each load condition with the modeled strain distribution during axial 

compression.  

 Results 

3.3.1 In Vivo Bone Strains and Finite Element Model Results for the Mouse Tibia 

Mice ran on a treadmill at speeds between 0.18 m/s and 0.5 m/s while strains were measured 

simultaneously (figure x). The peak speed all mice were able to maintain on the treadmill was 
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0.5 m/s. The peak longitudinal strain measured at the medial midshaft surface at this speed was 

236 ± 61 µε (Figure 3.1).  

To determine the relationship between experimentally applied axial compressive loads 

and the resulting tibial midshaft strains, incrementally increasing axial compressive loads from –

4N to –15N were applied to the mouse hind limb. Longitudinal strains on the medial surface of 

the tibia increased with increasing applied load. A linear regression determined a relationship 

between applied load and strain as y= -84.533x + 73.321 (R2= 0.987) (Figure 3.2). Extrapolation 

of strain values at the gauge location to incremental load increases determined that the load 

necessary to induce 2.5x peak strains during treadmill running is -6.5N. Tibial FE models were 

used assess principal strains at several cortical volumes throughout the diaphysis after their 

accuracy was verified by matching modeled longitudinal strain values at the gauge location to in 

vivo measured strains (Table 3.2). Models were also used to predict principal compressive and 

tensile strains at 37%, 50%, and 90% of bone length relative to the proximal end of the bone 

(Table 3.3). For the cortical volume at the 37% site, peak principal tensile strains at a 6.5N load 

were 978 ± 251 µε and occurred on the anterior surface of the bone, while the mean principal 

tensile strains over the volume were 512 ± 129 µε. Peak principal compressive strains were -

1965 ± 402 µε and occurred on the posterior-lateral surface of the bone, and mean principal 

compressive strains over the volume were -695 ± 154 µε. For the cortical volume at 50% of bone 

length (mid-diaphysis), peak principal tensile strains were 1023 ± 320 µε and occurred on the 

anterior surface of the bone, while the mean principal tensile strains throughout the volume were 

452 ± 140 µε. Peak principal compressive strains were -1601 ± 449 µε and occurred on the 

posterior surface of the bone, and mean principal compressive strains throughout the volume 

were -663 ± 168 µε. For the cortical volume at 90%, peak principal tensile strains were 291 ± 27 

µε and occurred on the anterior surface of the bone, while the mean principal tensile strains over 

the volume were 161 ± 9 µε. Peak principal compressive strains were -843 ± 80 µε and occurred 

on the posterior surface of the bone, and mean principal compressive strains throughout the 

volume were -384 ± 11 µε.  

3.3.2 In Vivo Bone Strains and Finite Element Model Results for the Chukar Partridge 
TBT 

In vivo TBT strains were measured at treadmill belt speeds between 1.8 m/s and 2.3 m/s, 

but the peak treadmill belt speed all birds could maintain was 2.0 m/s.  At this speed, peak 
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longitudinal strains were -438 ± 154με, -397 ± 197με, and 118 ± 119με on the posterior, medial, 

and anterior TBT midshaft surfaces, respectively (Table 3.1, Figure 3.3). Although 2.0 m/s was 

the peak speed all birds reached, strains measured at 1.8 m/s (N=4) and 2.3 m/s (N=2) were not 

different from those measured at 2.0 m/s. Peak longitudinal strains on the posterior and medial 

surfaces were compressive, while the peak longitudinal strains on the anterior surface were 

tensile, indicating that the bone was loaded in a combination of posterior-anterior and medial-

lateral bending at the point in stride at which peak strains occurred (Figure 3.3). Additionally, 

principal strains were measured on the anterior midshaft surface of the TBT. Peak principal 

tensile strains on the anterior surface were 154 ± 120 µε, and were oriented at an angle -29 ͦ  ± 5ͦ  

from the longitudinal axis of the bone, acting in a proximal-lateral to a distal-medial direction.  

The relationship between non-invasive compressive load magnitudes and the resulting 

midshaft strains in the chukar partridge TBT were previously unknown. To determine the 

relationship between experimentally applied axial compressive loads and the resulting TBT 

midshaft strains, incrementally increasing axial compressive loads from –100N to –200N were 

applied to the chukar TBT [load range chosen based on unpublished preliminary data so that 

induced strains were similar to or greater than peak physiologic strains during treadmill running]. 

Longitudinal strains on the posterior and medial midshaft surfaces of the chukar TBT during 

axial compressive loading increased with increasing applied load. Loads above -150N were not 

assessed for the entire sample due to concern about bone fracture, so those data were not 

included in the development of the load:strain relationship. However, above -150N the absolute 

strains on the medial surface began to decrease (although sample size decreased from n=4 to n=2 

at -160N, and to n=1 for load magnitudes of -170N, -185N, and -200N due to concern for 

fracture failure). Although posterior strains continued to increase linearly after -150N, medial 

strains decreased. The decrease in strain magnitude could indicate that some shift in joint 

orientation and contact points changed above a certain load magnitude, resulting in an altered 

strain profile for that bird. A linear regression over the load range from -100 to -150N described 

a relationship between applied load and strain for the posterior surface as y= 8.05x + 446 (R2= 

0.95) (Figure 3.4).  For the medial surface, the linear regression relationship between applied 

load and midshaft strain was y=4.99x – 345 (R2= 0.81) between loads of -100N and -150N. 

Planar strain analyses were used to determine the similarity between cross-sectional strain 

distributions during treadmill running and experimental loading. The neutral axis rotated slightly 
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from representing primarily antero-posterior bending, so a combination of medio-lateral and 

antero-posterior bending, relocating peak strains from the posterior surface to between the 

posterior and medial surfaces of the cross-section (Figure 3.7). 

Finite element models for the chukar TBT were validated for n=3 out of 4 bones. Bird 1’s 

root mean square error was 431, although the majority of this error came from the posterior 

surface, which under the modeled conditions, estimated posterior strains to be approximately 400 

µε higher in magnitude than what was measured in vivo. On the medial surface, measured and 

modeled strains had a difference of less than 50µε (Table 3.4). During the sensitivity analysis, 

moving the reference point 1 and 2 mm in the anterior direction did reduce the error, however 

this location was on the anterior edge of the cnemial crest of the TBT, considerably different 

from the other three models. Root mean square error was less than 140 for the remaining three 

birds, indicating strong agreement between modeled strains at the medial and posterior gauge 

locations compared to in vivo measurements (Table 3.5). Anterior strains were not considered 

during model validation due to the low magnitude and considerable variability in in vivo strains 

measured on that surface. Results from Bird 1’s model were ultimately included due to the good 

agreement on the medial surface. Sensitivity analyses of the elastic modulus for the soft tissue 

connection between the fibula and tibia showed no effect on tibial strains over an order of 

magnitude change, so a value of 800 MPA was accepted.  

Chukar TBT FE models were used to assess principal strains in cortical volumes 

throughout the diaphysis (Figure 3.6). An applied load level of -130N was chosen after 

preliminary in vivo loading studies employing higher loads (as low as -160N) caused several 

TBT’s to fracture after one to three days of cyclic loading (data not included). At -130N, strains 

at the posterior and medial gauge locations were about 1.6x and 2.3x higher, respectively, than 

peak strains measured during treadmill running (Table 3.7). Models were used to predict 

principal compressive and tensile strains at 10%, 37%, 50%, and 90% of bone length relative to 

the proximal end of the bone for this load of -130N. For the cortical volume at the 10% site, peak 

principal tensile strains were 1625 ± 800 µε and occurred on the anterior surface of the bone, 

while the mean principal tensile strains over the volume were 756 ± 141 µε. Peak principal 

compressive strains were -3059 ± 1133 µε and occurred on the posterior-lateral surface of the 

bone, and mean principal compressive strains over the volume were -1271 ± 221 µε. For the 

cortical volume at the 37% site, peak principal tensile strains were 303 ± 78 µε and occurred on 
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the anterior surface of the bone, while the mean principal tensile strains over the volume were 

193 ± 36 µε. Peak principal compressive strains were -955 ± 239 µε and occurred on the 

posterior-medial surface of the bone, and mean principal compressive strains over the volume 

were -519 ± 41 µε. For the cortical volume at the 50% site, peak principal tensile strains were 

364 ± 125 µε and occurred on the anterior surface of the bone, while the mean principal tensile 

strains over the volume were 219 ± 86 µε. Peak principal compressive strains were -1157 ± 377 

µε and occurred on the posterior-medial surface of the bone, and mean principal compressive 

strains over the volume were -584 ± 91 µε. For the cortical volume at the 90% site, peak 

principal tensile strains were 831 ± 142 µε and occurred on the posterior surface of the bone, 

while the mean principal tensile strains over the volume were 429 ± 59 µε. Peak principal 

compressive strains were -2006 ± 377 µε and occurred on the anterior surface of the bone, and 

mean principal compressive strains over the volume were -887 ± 169 µε. 

 Discussion 

In this study, we developed the relationship between peak bone strains in vivo during 

experimental loading conditions relative to strains that occur during physiologic activity such 

that futures studies will be able to assess skeletal sensitivity across these two vertebrate species, 

the mouse and chukar partridge. In vivo strain gauge data were complemented with specimen-

specific finite element models for both species in order characterize whole bone strains. 

Additionally, because we were able to instrument the chukar TBT with three gauges for in vivo 

strain measurements, we were able to use planar strain analyses to make novel assessments 

regarding the similarity of cross-sectional strain distributions that occur during treadmill running 

and experimentally applied loads.  

3.4.1 Development of the Chukar TBT finite element models 

Specimen-specific chukar TBT finite element models were developed and validated using 

the instrumented bones from the in vivo strain experiments. The models were developed 

similarly to the mouse models, which have previously undergone significant sensitivity analyses 

to assess the effect of features such as scan resolution, bone threshold, mesh refinement, tissue 

heterogeneity, fibula inclusion, and reference point location [39]. Of those analyses, the only 

parameters shown to strongly influence model outcome were tissue heterogeneity, fibula 
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inclusion, and reference point location. Sensitivity analyses to assess the effect of homogenous 

versus heterogeneous bone tissue moduli on results were not performed for the chukar models 

because previous studies have shown heterogeneous models to be more accurate. We used the 

same mathematical relationship to relate bone tissue mineral density and elastic modulus for both 

the mouse and chukar, rather than developing species-specific values through mechanical testing, 

because the relationship used here was determined through testing a comprehensive sample of 

vertebrate species [146], and its use has resulted in models for both species that strongly agree 

with in vivo measurements. We did include the fibula in our chukar models as there appeared to 

be substantial articular contact between the lateral condyle of the femur and the proximal fibula. 

Our sensitivity analysis showed that a range of connective tissue mechanical properties over an 

order of magnitude did not affect the resulting TBT strains at the medial and posterior gauges, so 

it seems that for the chukar, the fibula may not have as strong of an impact on TBT strains during 

axial compressive loading compared to the mouse tibia under similar loading conditions. 

Proximal reference point location was important for the chukar as well, and was chosen through 

iterative adjustments until the root mean square error was below 140, indicating mean errors less 

than 100με for the posterior and medial surfaces.  

3.4.2 Tibial strains for the mouse during experimental loading relative to locomotion 

Peak strains measured at the medial midshaft of the mouse tibia during treadmill running 

were tensile with a magnitude of about 230 µε. Longitudinal strains on the medial surface of the 

mouse tibia did not increase significantly with increased treadmill belt speeds, despite previous 

studies in other species that have shown that bone strains do typically change with speed [29, 

142, 151]. One previous study using inverse dynamics and finite element models predicted that 

the mouse tibia is loaded primarily in antero-posterior bending during locomotion [152], which 

would mean that our gauge on the medial surface was likely located near the neutral axis of 

bending. Higher strain magnitudes likely did occur on posterior and anterior surfaces during 

locomotion, even though medial surface strains did not change much. The location of the neutral 

axis may cause medial midshaft strains to be a poor representative of what happens on other 

surfaces of the bone during locomotion, however, measuring strain in vivo on posterior or 

anterior surfaces is not possible due to bone geometry. Longitudinal medial midshaft strains were 

similar to what has been reported previously for the mouse during locomotion, although strains 
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reported during jumping were even greater than what have been measured during locomotion 

[34], which suggests that strains during fast locomotion may not represent the highest strains the 

bone experiences. 

Murine tibial medial midshaft strains were tensile and increased linearly up to 1200µε in 

response to experimentally applied axial compressive loads between -4N to -15N. Peak 

longitudinal strains on the medial midshaft surface were tensile, similar to the peak strains 

measured during treadmill locomotion for the mouse tibia. Finite element models of the mouse 

tibia showed that at the midshaft, the bone is loaded primarily in antero-posterior bending, such 

that peak strains actually occur on the posterior surface at the midshaft and the neutral axis of 

bending does cross through the medial surface of the bone. Based on the longitudinal strain 

distribution throughout the whole bone though, antero-posterior bending shifts towards medial-

lateral bending as you move proximally and distally from the midshaft due to the curvature and 

geometry of the bone during experimentally applied axial compressive loads. Of our three 

regions of interest, the highest strain magnitude was compressive and occurred at the 37% 

volume of interest. Despite higher compressive strains at the 37% site compared to the midshaft, 

peak principal tensile strains were similar at both locations, likely due to the difference in 

cortical cross-sectional geometry and resulting strain distribution between the two diaphyseal 

regions of the bone. Peak principal compressive and tensile strains during a -6.5N load were 2-3x 

higher at the midshaft and 2-4x higher at 37% than peak longitudinal strains measured at the 

gauge location during treadmill locomotion. Peak strains at 90% of bone length were 

compressive, but their magnitudes were half as high as those predicted at the midshaft. Finite 

element strain distributions did not indicate any additional areas along the tibial diaphysis where 

strains were higher than the areas previously recognized. The mouse tibia could only be 

instrumented with one, single element strain gauge at the midshaft, which prevented in vivo 

assessments of principal strains as well as planar strain analyses, which could have determined 

the degree of similarity in the cross-sectional strain distribution between treadmill locomotion 

and experimentally applied loading. Although, based on the aforementioned predictions of in 

vivo strain distribution during locomotion for the mouse tibia [152], the two loading scenarios do 

cause similar strain profiles.  
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3.4.3 Chukar Partridge Tibiotarsal strains during experimental loading relative to 
locomotion 

For the chukar, we were able to measure strains on three surfaces at the TBT midshaft 

during treadmill running and experimental loading conditions, which provides a more 

comprehensive understanding of the induced strain profile during various mechanical loading 

scenarios than is possible using the mouse tibia. During treadmill locomotion, longitudinal 

strains on the posterior and medial midshaft surfaces where compressive, while strains on the 

anterior surface were tensile, indicating that during peak loading the chukar TBT experiences a 

combination of anterior-posterior and medial-lateral bending. Although the peak principal strains 

on the anterior surface are lower than what has been reported previously for the emu [142] and 

chicken TBTs [25, 153], the angle of principal tension is similar to what was reported for those 

species, as well as the guinea fowl during level locomotion (unpublished data collected by 

author), indicating that torsional loading may be a consistent component of the loading profile on 

the anterior midshaft of the avian TBT. The posterior and medial surfaces of the chukar TBT 

could only be instrumented with single element strain gauges due to surface size, so we cannot 

comment on off-axis strain components on those surfaces. Only peak principal strains have been 

reported for the posterior and medial surfaces of the TBT for other avian species, however the 

principal strains for the emu [142] and chicken [25, 153] were larger than the longitudinal strains 

we report for the chukar. It is possible that since we only had single element gauges on the 

medial and posterior surfaces, we could not measure additional components of the strain field 

that could potentially contribute to significant increases in TBT strain. Torsion did occur on the 

posterior and medial surfaces of the emu TBT, therefore off-axis strains had an influence on 

principal strains. Due to the similarities of torsional loading on the anterior surface between the 

chukar, emu, chicken, and guinea fowl, it seems possible that torsional loading might also be 

similar on the other surfaces, which would suggest that principal strains may be higher than the 

longitudinal strains that we were able to measure for the posterior and medial surfaces of the 

chukar TBT during locomotion. Regardless, relative differences in strain between the avian 

species could also be associated with differences in animal size [25], genetic background [154], 

and specific husbandry conditions during growth [153, 155].   

The chukar TBT models showed that, unlike the mouse, peak strains occur at the 

proximal and distal metaphyses when the bone is loaded in axial compression. The highest 
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principal strains occurred at the 10% site on the postero-lateral edge of the cross-section, and 

were approximately -3000µε (figure x). The volume with the lowest principal strains was at 37% 

of bone length, although peak strains at the midshaft were only 200µε higher in magnitude. 

Overall, the models demonstrated that peak strains in the avian TBT do not occur at or near the 

midshaft during axial compressive loading, and can be 2-3x higher at other locations on the 

bone. At the midshaft, axial compressive loads induced peak strains on both the posterior and 

medial surfaces that were compressive. On the posterior and medial gauged surfaces, peak 

longitudinal strains induced by a -130N load were 1.2x and 2.5x higher, respectively, than peak 

longitudinal strains measured at those respective gauge locations during treadmill locomotion.  

Planar strain analysis of the cortical cross-section at the gauge locations shows that there 

is a slight shift in neutral axis orientation between the peak strain profiles during treadmill 

running compared to axial compressive loading. At the time in stride of peak strains during 

treadmill running, the bone is loaded in antero-posterior bending, with the greatest strain 

magnitudes occurring on the posterior and anterior surfaces, while the medial surface is near the 

neutral axis. During axial compressive loading, the neutral axis shifts due to similarly high 

magnitudes of compression on the medial and posterior surfaces, while the anterior and lateral 

surfaces are under low magnitude tension. The shift in the neutral axis between treadmill running 

and experimental loading is likely what makes it possible to induce a larger strain differential on 

the medial surface compared to the posterior surface. In addition to bending loads, principal 

strain angles during treadmill running indicated that the chukar TBT is also loaded in torsion, 

which is an aspect of physiologic loading we are not able to recreate experimentally. While it is 

unclear what effect the lack of torsional load component during experimental loading may have 

on skeletal sensitivity, a previous study did demonstrate that torsional loads alone were not 

anabolic to the avian skeleton [140]. Previous studies have shown that the necessary strain 

stimuli to induce a response may be relative to the change in strain profile between physiologic 

loading activities and the experimentally applied load [24, 34, 156], so these differences between 

loading scenarios should be taken into consideration when assessing the skeletal response to a 

given experimental load during future studies. Relative changes in strain profile could affect the 

strain threshold necessary to cause an adaptive response.  

The chukar TBT FE models helped to elucidate why attempts to increase strains at the 

midshaft using higher load magnitudes during in vivo preliminary testing caused fracture failure 
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to occur at approximately 90% of bone length in several animals. Fracture failure was observed 

in multiple birds at loads of either -200N, -180N, or -160N after 1, 3, and almost 14 days of 

loading, respectively. With 216 cycles applied daily, the two highest loads caused fracture in less 

than 700 total cycles, and the third load level caused fracture after approximately 2100 cycles. If 

strains at 90% of bone length are assumed to increase linearly, the 95th percentile of peak strains 

would be about -3000 με during a -200N load, which is less than yield and failure strains 

previously reported for cortical bone in longitudinal compression [106, 107]. Although we use 

the cut-off values for the upper 95th percentile for strains in each volume to represent peak 

strains, small areas of locally higher strains do occur in that region, likely due to stress 

concentrations related to the supratendinal bridge. Based on the models, local maximum strains 

could be as high as approximately -15,000 με at loads of -200N, which is above the yield strain 

range and within the range of strains previously reported to cause fracture failure. Between the 

high local strain values and the increasing number of cycles required to cause fracture with 

decreasing load, it is likely that fracture failure resulted from a combination of high strains and 

low cycle fatigue. Peak strains in the TBT during locomotion may occur at sites distant to the 

midshaft, so our assessment of peak strains in vivo may not represent the highest strains the 

chukar TBT experiences during normal activities. Although it is of interest to assess the response 

of the bone to a specific increase in strain, which we can do near the midshaft, we cannot assess 

strains in vivo at locations such as the 10% and the 90% sites due to bone geometry and muscle 

attachments. Ultimately, it may be more feasible to assess the adaptive response relative to the 

absolute strain stimuli predicted by the models at the various regions of the TBT rather than 

relative to peak strains measured during physiologic activities.   

3.4.4 Strain profile comparisons between the Mouse Tibia and Chukar TBT 

The differences in shape between the mouse tibia and the chukar TBT cause axial 

compressive loading to induce fairly different strain profiles throughout the whole bones. The 

mouse tibia has a substantial amount of curvature between the tibia-fibular junction (TFJ) and 

the proximal epiphysis of the bone. Axial compressive loads cause bending to occur in that 

region, as evidenced by the compressive strains on the posterior surface and the tensile strains on 

the anterior surface. Alternatively, the chukar TBT has a relatively straight diaphysis, with the 

most significant curvatures occurring at the proximal and distal metaphyses. When loaded in 
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axial compression, FEA models show that the diaphysis of the chukar TBT is loaded almost 

entirely in compression. Peak strains in the bone were compressive and estimated to occur on the 

postero-lateral surface of the proximal metaphysis and the anterior surface of the distal 

metaphysis. The volume at 50% is used frequently in the mouse model, but it is not necessarily 

the location of peak strains during axial compression for either species. Although future loading 

studies will be designed to assess the sensitivity of each skeleton to similar relative increases in 

strain, comparing the magnitude of those peak strains induced is interesting as well. Based on 

our models, the cortical bone volumes with the most similar peak principal strains during 

experimentally applied axial compressive loading in the two species were the 37% site for the 

mouse, and the 90% site for the chukar. At the midshaft, peak principal compressive and tensile 

strains for the chukar were approximately 400με and 600με lower in magnitude, respectively, 

compared to the mouse, which constitutes large percentages of the peak values. There is still 

significant debate in the field over whether an adaptive response is triggered by absolute strain 

magnitudes or relative strain increases, so knowing both will help when interpreting future 

loading study results.  

 Although comparisons across species would ideally be made at similar locations on the 

bone using experimentally applied loads that induce similar increases in strain relative to peak 

physiological strains (during activities such as high speed locomotion), differences in bone shape 

and size have significant impact on the resulting strain profile. Reaching similarly high strain 

magnitudes on midshaft surfaces of the mouse and chukar bones was not possible because 

although peak strains did occur near the midshaft for the mouse, they occurred near the proximal 

and distal epiphyses for the chukar, such that further increasing the load caused fracture failure to 

occur distally. Querying the strain profile at similar bone locations in multiple species, such as 

the mouse and chukar, is interesting for comparative load induced strain assessments, but 

ultimately making assessments about the sensitivity of the bone to relatively similar strain 

stimuli may require choosing species-specific volumes of interest.  
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Table 3.1 Peak strains for the chukar TBT midshaft during treadmill running at 2.01 m/s. 
Longitudinal strains are reported for all surfaces, while principal tension (E1) and its angle (φ1) 
relative to the long axis of the bone are reported only for the anterior surface. For each animal, 
data is presented as mean ± one standard deviation.  

 

Animal 
Number 

Posterior Medial Anterior 
με με E1, με φ1 με 

1 -217 ± 14 -235 ± 28 120 ± 18 -33 112 ± 19 
2 -502 ± 39 -620 ± 43 57 ± 17 -33 39 ± 20 
3 -573 ± 102 -226 ± 56 328 ± 78 -27 289 ± 78 
4 -458 ± 37 -505 ± 45 109 ± 17 -23 33 ± 13 

Average -438 -397 154 -29 118 
Std. Dev 154 197 120 5 119 

 
Table 3.2 Extrapolation of longitudinal strain measures (με) at the gauge to incrementally 
increasing applied axial compressive load levels (N) based on finite element models for the 
mouse tibia. 

Load (N) 1 4 5 6 6.5 7 8 
Gauge 
Strain (με) 92 367 459 551 590 643 735 

 
Table 3.3 Peak and mean principal strains determined by finite element analysis for a -6.5N 
compressive load for cortical cross-sections at 37%, 50%, and 90% of bone length relative to the 
proximal end of the mouse tibia. Values represent mean (n=6) ± one standard deviation.  

Cortical Cross-Section Strains 

   37% 50% 90% 
Principal 
Tension 

95% percentile 978 ± 251 1023 ± 320 291 ± 27 
Mean 512 ± 129 452 ± 140 161 ± 9 

Principal 
Compression 

95% percentile -1965 ± 402 -1601 ± 449 -843 ± 80 
Mean -695 ± 154 -663 ± 168 -384 ± 11 
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Table 3.4 Sensitivity analysis for the proximal reference point location for the chukar FE 
models. An initial location was chosen, then adjusted 2mm in the anterior (A) or posterior (P) 
direction and 2mm in the medial (M) or lateral (L) direction. Mean longitudinal strains at the 
posterior, medial and anterior gauge sites were assessed under each condition. Additional 
assessments were made 1mm in specific directions dependent on the results of the error 
assessment (Table 3.5).  

Posterior 

Animal # 
In Vivo 
Strains 

(με) 

Modeled 
Strains +2 A-P +1 A-P -2 A-P +2 M-L +1 M-L -2 M-L 

1 -385 -802 -286 -542 -1298 -520 
 

-1060 
2 -556 -587 -123 

 
-1089 -451 -526 -756 

3 -726 -757 -195 
 

-1319 -816 
 

-699 
4 -607 -663 -128 

 
-1210 -372 

 
-963          

Medial 

Animal # 
In Vivo 
Strains 

(με) 

Modeled 
Strains +2 A-P +1 A-P -2 A-P +2 M-L +1 M-L -2 M-L 

1 -637 -705 -422 -560 -955 -1185 
 

-195 
2 -1413 -1246 -1084 

 
-1370 -1784 -1509 -675 

3 -807 -853 -803 
 

-900 -1348 
 

-356 
4 -985 -884 -669 

 
-1078 -1405 

 
-340          

Anterior 

Animal # 
In Vivo 
Strains 

(με) 

Modeled 
Strains +2 A-P +1 A-P -2 A-P +2 M-L +1 M-L -2 M-L 

1 265 -194 -790 -505 441 -123 
 

-229 
2 46 14 -638 

 
675 250 133 -215 

3 197 -103 -252 
 

469 -531 
 

-426 
4 15 -158 -868 

 
578 -123 

 
-171 

Table 3.5 Root square mean evaluation of the error between the in vivo measured strains and the 
predicted strains in the FE models for the posterior and medial gauges at each reference point 
location. 

Error assessment for posterior and medial gauges 
Animal 

# 
Modeled 
Strains 

+2 A-P +1 A-P -2 A-P +2 M-L +1 M-L -2 M-L 

1 423 237 175 967 564 
 

807 
2 170 544 

 
535 386 101 765 

3 55 531 
 

600 548 
 

452 
4 115 574 

 
610 481 

 
737 
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Table 3.6 Extrapolation of longitudinal strain measures (με) at the posterior and medial gauges to incrementally increasing applied 
axial compressive load levels (N) based on finite element models for the chukar TBT. 

 
 
 
 
 

  

 

 

Table 3.7 Peak and mean principal strains determined by finite element analysis for a -130N compressive load for cortical cross-
sections at 10%, 37%, 50%, and 90% of bone length relative to the proximal end of the chukar TBT. Volumes representing 2.5% of 
bone length were assessed at each site. Values represent mean (n=4) ± one standard deviation

Load: Gauge Strain Extrapolations 

Load (N) -1 -100 -110 -120 -130 -140 -150 -160 
Posterior 

Gauge Strain 
(με) -5 -540 -594 -648 -702 -756 -810 -864 

Medial Gauge 
Strain (με) -7 -709 -780 -851 -922 -993 -1064 -1135 

    10% 37% 50% 90% 

Principal 
Compression 

95% -3059.25 ± 1133 -955 ± 239 -1157.75 ± 377 -2006.5 ± 377 

Mean -1271.75 ± 221 -519 ± 41 -584.75 ± 91 -887.5 ± 169 

Principal 
Tension 

95% 1625.75 ± 800 303.75 ± 78 364.25 ± 125 831.75 ± 142 

Mean 756.25 ± 141 193.5 ± 36 219.75 ± 86 429.75 ± 59 
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Figure 3.1 Mean peak longitudinal strains at the medial midshaft of the mouse tibia during 
treadmill running.Error bars represent ± one standard deviation. The sample size at each speed is 
indicated adjacent to the data point. 

 
Figure 3.2 Mean peak longitudinal strains at the medial midshaft of the mouse tibia during axial 
compressive applied mechanical loading (n=7). Error bars represent ± one standard deviation. 

 
 



56 
 

 
Figure 3.3 Mean peak longitudinal strains on the medial and posterior surfaces of the chukar 
TBT during treadmill running at the highest speeds achieved. Error bars represent ± one standard 
deviation. Note that the x-axis starts at 1.5 m/s rather than 0. The grey dashed error bar is for the 
medial surface while the black solid error bar is for the posterior surface. The sample size at each 
speed is indicated next to the data points and applies to both surfaces. 

 
 

 
Figure 3.4 Mean peak longitudinal strains on the posterior and medial midshaft surfaces of the 
chukar TBT during axial compressive applied mechanical loading. Data is from n=4 animals 
unless otherwise noted. Note that the x-axis begins at -90N rather than 0. Error bars represent ± 
one standard deviation. The grey dashed error bar is for the medial surface while the black solid 
error bar is for the posterior surface. 



57 
 

 

 
Figure 3.5 Representative finite element modeling of the longitudinal strain (με) profile for the 
mouse tibia during axial compressive loading at -6.5N. Images show the lateral, antero-medial, 
and posterior surfaces of the whole bone from left to right. Cross-sectional strain distributions at 
37%, 50%, and 90% relative to the proximal end of the bone are shown as well.  
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Figure 3.6 Representative finite element modeling of the longitudinal strain (με) profile for the 
chukar TBT during axial compressive loading at -130N. Images show the Anterior, medial, and 
posterior surfaces of the whole bone from left to right. Cross-sectional strain distributions at 
10%, 37%, 50%, and 90% relative to the proximal end of the bone are shown as well.  
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Figure 3.7 Representative cross-sectional longitudinal strain distributions during treadmill 
running (left), experimentally applied axial compressive loading (center), and finite element 
modeling of experimentally applied axial compressive loading (right). Data from bird 3 was used 
for all cross sections, and the values next to each gauge represent the mean measured values for 
each gauge. For axial compression loading figures, the data is shown for a -130N load. The solid 
line represents the location and orientation of the neutral axis for each condition.  
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4. COMPARATIVE ASSESSMENT OF THE SKELETAL RESPONSE TO 
EXPERIMENTALLY APPLIED MECHANICAL LOADING BETWEEN 

THE MOUSE AND CHUKAR PARTRIDGE 

 Introduction 

Bone mass, geometry, and strength are regulated by mechanical load. However, all of the 

studies done using non-invasive, experimentally applied mechanical loads have employed rodent 

models [34, 40, 48, 157]. Use of these models has provided significant insight into the many 

variables of a load stimulus that the skeleton is sensitive to, such as load magnitude [129, 158], 

load rate [116], frequency [54, 56], and cycle number [50, 129], in addition to the effects of age 

[59, 60, 132] and sex [58, 159]. Rodent models have been key in developing the concepts of the 

pre-adapted strain range or “lazy zone,” and the minimum effective strain (MES) stimulus, 

where above that stimulus there is a linear relationship between the applied load and the resulting 

increase in bone volume relative to non-loaded control bones [51]. They have also helped to 

provide insight to the genetic and cellular level mechanisms involved in bone adaptation [68, 80, 

160-162]. However, it is known that the skeleton of small rodents does not undergo haversian 

remodeling similar to larger vertebrates [163], including humans, and it is unknown how 

mechanobiological processes involved in modeling and remodeling may differ because of it. 

Also, the small size of the murine skeleton, the most commonly used rodent model, limits the 

ability to experimentally characterize the strain profile in vivo under various loading conditions, 

which is important for interpreting the skeleton’s response to a specific stimulus. 

Despite the insights made regarding skeletal adaptation using rodent models, there have 

been no direct attempts to compare skeletal plasticity across vertebrate species. Studies have 

shown that there is significant diversity in skeletal morphology, geometry, and mechanical 

properties across various vertebrate groups [164], yet direct comparisons of the sensitivity and 

adaptive response of the skeleton between vertebrate species have not been evaluated. The avian 

skeleton, in particular, exhibits several features that make it unique to the mammalian skeleton. 

Despite evolving from reptilian ancestors, avian species today have a lighter and less 

metabolically costly skeleton, due to pneumatization of certain bones, making them more similar 

to derived mammals such as the mouse [91-93]. Avian species are also differ from most 

vertebrates in that they lay eggs with calcified shells, which involves special regulation of 
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calcium balance hormones and more labile skeletons [96]. Additionally, avian species are 

uniquely able to form medullary bone, non-structural woven bone on endosteal surfaces, which 

serves as a calcium reservoir for egg-laying females and experiences varying rates of osteoclastic 

and osteoblastic activities [96, 97]. The formation of medullary bone can be induced in male 

birds as well through the administration of estrogen [98]. Although one of the early animal 

models employed to study skeletal adaptation was the surgically isolated turkey ulna [24, 47, 

50], it was limited by the invasiveness and highly non-physiologic strain profile induced [24, 

141]. Given the available non-invasive skeletal loading models, it is currently impossible to 

make direct assessments of the sensitivity of various vertebrate skeletons. 

Although the rodent models have generally shown increases in bone mass and moments 

of inertia relative to the load stimulus above a certain MES [34, 51, 165], it seems possible that 

different vertebrates may regulate bone strength or stiffness variably based on species-specific 

factors. Development of a novel avian model to study bone adaptation could be used to provide 

initial insights into skeletal sensitivity across vertebrates, and would also offer a novel bipedal 

model that, unlike the small rodent models, is known to exhibit haversian remodeling [24]. In 

this chapter, we sought to evaluate skeletal sensitivity and adaptive response of the mouse tibia 

and a novel avian model, the chukar partridge tibiotarsus, to relatively similar increases in bone 

strains. Previous comprehensive strain characterizations (Chapter 2) were used to determine the 

necessary experimental loads that induced similar increases in strain relative to peak strains 

measured during treadmill running for each species. Non-invasive, axially compressive 

experimentally applied loading studies were conducted for both species and the resulting tissue 

level responses were measured by microCT and histomorphometry. Additionally, colony 

forming unit-osteoblast assays were performed for each species to compare the osteogenic 

potential of bone marrow-derived mesenchymal stem cells from similar quantities of total 

marrow cells.  

 Methods  

4.2.1 Animals 

C57Bl/6 male mice (Jackson Laboratory, Bar Harbor, ME, USA) were obtained at 15 

weeks of age and housed individually with free access to water and a maintenance diet in a 12-
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hour light/dark cycle. The chukar partridge was chosen as the avian model because it is a 

flightless avian species that is commercially available, and its tibiotarsi are large enough to 

instrument with three strain gauges yet small enough that loads above -200N would not be 

necessary. Chukar partridge were obtained at 10±2 weeks of age (CM Game birds, Calais, ME, 

USA) and group-housed in indoor enclosures with free access to water and a maintenance game 

bird diet in a 12-hour light/dark cycle. All procedures were approved by the Purdue University 

IACUC (Protocol # 1310000977).  

4.2.2 Experimentally Applied Loading: Mice 

 The left tibia of each mouse was loaded while the right tibia served as a paired, non-

loaded contralateral control. Mice underwent either two weeks (n=5, Mass: 27.47 ± 1.35 g) or 

four weeks (n=10, Mass: 27.90 ± 1.32 g) of non-invasive externally applied axial compressive 

loading five days per week, with load bouts occurring approximately 24 hours apart. Mice were 

anesthetized (2% isoflurane, 2 L/min), and the left limb was secured between custom cups that 

fitted the knee and ankle (Figure 4.1). The load protocol consisted of 216 cycles applied 

cyclically at 4 Hz. The target load level was chosen such that the strains induced at the medial 

midshaft were 2.5x the peak strains measured during high speed locomotion. Based on the 

experimentally applied load and bone strain relationship determined in Chapter 2, a load of -6.5N 

was used. In order to assess the time course of osteoid mineralization throughout the duration of 

the study, the bone fluorochromes calcein (50 mgs/kg) and alizarin red (50 mgs/kg) were 

administered via intraperitoneal injections at specific time points (Figure 4.2).  

Three days following the final episode of loading, the animals were euthanized by 

cervical dislocation. Both left and right tibiae were dissected, cleaned of soft tissue, fixed for 24 

hours in 10% neutral buffered formalin, and then stored in 70% ethanol. Whole bones were 

scanned by high resolution microCT with an isotropic voxel size of 10 µm and integration time 

of 300 ms (µCT40, Scanco Medical, Basserdorf, Switzerland). Volumes representing 2.5% of 

bone length at the midshaft, and 2.5% of bone length at 37% and 90% of bone length relative to 

the proximal end of the bone were selected for bone morphometry analyses. Cortical bone tissue 

was segmented from non-bone tissue using a Gaussian filter with a fixed threshold. The 

threshold value was determined by identifying the voxel grayscale value at the average value 

representing 1/3 of the bone peak from histograms of the midshaft volume of the right non-
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loaded control limbs (mouse: 2530 mg HA/ccm; chukar: 2605 mg HA/ccm). Maximum (Imax) 

and minimum (Imin) moments of inertia, bone volume, bone area, and bone mineral density 

were evaluated. Student’s paired, one-way t-tests were performed to test for differences between 

the loaded and control limbs for each parameter, with p<0.05 indicating significance.  

4.2.3 Experimentally Applied Loading: Chukar Partridge 

 The left TBT of each bird was loaded while the right TBT served as a paired, non-loaded 

contralateral control. Birds were to undergo four weeks (n=4, Mass: 0.44± 0.05 kg) of non-

invasive, externally applied axial compressive loading five days per week, with load bouts 

occurring approximately 24 hours apart. Three out of four birds developed significant soft tissue 

damage at the knee and ankle of the loaded limb prior to completion of the study, so all four 

birds were euthanized seven days early, making the actual study duration three weeks. Each day, 

birds were anesthetized (4% isoflurane, 4 L/min) and the left limb was secured between custom 

cups that fitted the knee and ankle (Figure 4.1). The load protocol was applied five days per 

week and consisted of 216 cycles applied cyclically at 4 Hz. The original target load level was 

chosen such that the strains induced were 2.5x the peak strains measured on the medial midshaft 

surface during high speed locomotion, however due to several fracture failures that occurred 

during preliminary tests, a load of -130N was ultimately used. Based on the experimentally 

applied load and bone strain relationship determined in Chapter One, a load of -130N would 

induce strains approximately 1.5x and 2.5x higher strains on the posterior and medial midshaft 

surfaces, respectively. In order to assess the time course of osteoid mineralization throughout the 

duration of the study, the bone fluorochromes calcein (30 mgs/kg) and alizarin red (80 mgs/kg) 

were administered via intraperitoneal injections at specific time points (Figure 4.2).  

Three days following the final episode of loading, the animals were euthanized via 

intravenous injection of sodium pentobarbital in the brachial vein (320 mg/kg Beuthanasia-D, 

Schering-Plough Animal Health, Union, NJ, USA). Both left and right tibiae were dissected, 

cleaned of soft tissue, cut into three equal segments, fixed for 24 hours in 10% neutral buffered 

formalin, and then stored in 70% ethanol. Bone segments were scanned by high resolution 

microCT with an isotropic voxel size of 15 µm and an integration time of 300 ms (µCT40, 

Scanco Medical, Basserdorf, Switzerland). Volumes representing 2.5% of bone length at the 

midshaft, 37%, and 90% of bone length relative to the proximal end of the bone were selected 



64 
 

for bone morphometry analyses. Cortical bone tissue was segmented from non-bone tissue using 

a Gaussian filter with a fixed threshold. The threshold was determined by identifying the voxel 

grayscale value at the average value representing 1/3 of the bone peak from histograms of the 

midshaft volume from the right non-loaded control limbs. Maximum (Imax) and minimum 

(Imin) moments of inertia, bone volume, bone area, and bone mineral density (BMD) were 

evaluated. Marrow area was additionally evaluated post hoc for the chukar only based on 

histomorphometry results. Student’s paired, two-way t-tests were performed to test for 

differences between the loaded and control limbs for each parameter, with p<0.05 indicating 

significance.  

4.2.4 Mineralized Tissue Histology 

Following microCT scanning, mouse and chukar bones were processed for mineralized 

tissue histology in order to assess time-sensitive parameters of osteoid mineralization at the 

midshaft via fluorochrome incorporation during the loading studies. Midshaft bone segments 

were dehydrated and infiltrated under a vacuum (17 Hg) over several days at incrementally 

increasing concentrations of ethanol and methyl methacrylate (MMA) before being embedded 

(96% MMA + 4% dibutyl phthalate + 0.8% perkadox). Once polymerization was complete, 

sections were cut, ground (mouse: 50±5 μm, chukar: 90±5 μm), polished, and cover-slipped. 

Green and red fluorochrome labels were visualized independently using a microscope with 

fluorescence (Mouse: BX53, Olympus Life Science Solutions, Center Valley, PA, USE; Chukar: 

AF6000, Leica Microsystems, Wetzlar, Germany) then merged (ImageJ), and histomorphometry 

measurements were made using the OsteoMeasure software (OsteoMetrics Inc., Decatur, GA, 

USA).  

Although all normal cortical bone parameters were assessed, only specific basic 

parameters and measures with significant differences were reported. For the mice that received 

two weeks of loading, reported values include cortical profile perimeter (Ct.Pf.Pm, mm), marrow 

profile perimeter (Ma.Pf.Pm, mm), cortical bone area (Ct. B. Ar., mm2), endocortical and 

periosteal single label perimeters (Ec.Sl.Pm, Ps.sL.Pm, mm), endocortical and periosteal 

mineralizing perimeters (Ec.M.Pm, Ps.M.Pm, mm), and endocortical and periosteal mineralizing 

surfaces normalized to bone surface (Ec.MS/BS, Ps.MS/BS, %) (Table x). Double label-related 

parameters for both the periosteal and endocortical surfaces were not reported because less than 
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half of the sample did not have measurable double labels on either surface. For the mice who 

received four weeks of loading and the birds, reported values include periosteal perimeter (mm), 

endocortical perimeter (mm), cortical bone area (mm2), marrow area (mm2), total endocortical 

mineralizing perimeter (T.Ec.M.Pm, mm), total endocortical inter-label thickness (T.Ec.Ir.L.Th), 

and total endocortical mineral apposition rate (T.MAR) (table x). The total values were 

determined for each limb in order to assess combined double label data in addition to the single 

labels. Assessing totals between successive first (calcein) label and third (calcein) labels would 

not have fully captured the total study duration since first and second sets of double labels did 

not necessarily occur at the same locations. The values were then calculated as follows:  

T.Ec.M.Pm = Ec.dL.Pm (first label set) + Ec.dL.Pm (second label set) + Ec.sL.Pm/2 

T.Ec.Ir.L.Th = Ec.Ir.L.Th (first label set) + Ec.Ir.L.Th (second label set) 

T.MAR = T.Ec.Ir.L.Th/14 

When calculating mineral apposition rates (MAR), in cases where values were zero, a nominal 

value of 0.1 µm/day was used [166]. Standard values for Ec.MAR, Ec.dL.Pm, and Ec.Ir.L.Th 

were also reported for the individual label sets in order to assess differences between each 

measure during different weeks of loading (Table 4.3). T.MAR was divided by 14 because that 

was the number of days between successive calcein labels for both species. A mixed model 

repeated measures ANOVA was performed on chukar and mouse Ec. MAR, Ec.dL.Pm, and 

Ec.Ir.L.Th parameters between each label set to determine if mineral apposition rates within a 

limb changed depending on the week of loading.  

4.2.5 Colony Forming Units-Osteoblast Assays 

Non-loaded tibiae/TBTs from new animals for both species were dissected immediately 

after each animal was euthanized by approved Purdue IACUC methods. Bones were stored in 

sterile DPBS and transferred to a sterile, negative flow hood. Bones were rinsed in four serial 

washes of a solution containing 10 ml DPBS, 2ml fungizone, and 2 ml pen/strep to reduce the 

risk of contamination. For the chukar TBTs, a small hole was drilled in the distal epiphysis, and 

for the mouse tibiae, proximal and distal ends of the bones were removed using scissors. Marrow 

was isolated through centrifugation (8000G, 1 minute), re-suspended in primary culture media 

(alpha-MEM, 10% FBS, 1% pen/strep), and the cell suspension density determined using normal 

hemocytometer methods. Cells were plated in 6-well uncoated plastic dishes at densities of either 
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1 or 2 million cells per well (n=6 wells/density/animal for n=3 animals of each species). Cells 

were maintained in 3 ml of primary culture (10% FBS, 1% Penicillin/Streptomycin, 89% 

αMEM) media for the first seven days, then cultured in osteogenic media for the next 14 days 

(primary culture media + 0.05% ascorbic acid, 0.00392% 1 x 10-8 M dexamethasone, 0.3% 3mM 

β-glycerophosphate), with media changed every 2-3 days throughout.  

Staining and absorbance analyses procedures followed previously reported methods 

exactly [167]. Briefly, on day 21, wells were rinsed with sterile dPBS, and then fixed for 15 

minutes with 10% neutral buffered formalin. The wells were then washed with dH20 prior to the 

addition of 1mL 40 mM alizarin red stain (pH 4.1-4.3), and incubated at room temperature for 20 

minutes with gentle shaking on a rocker. Wells were washed with dH20 to remove excess stain, 

and then imaged using an inverted camera (Nikon). In order to quantitatively assess 

mineralization, wells were rocked gently at room temperature for 30 minutes with 800 μL acetic 

acid to lift the cell layer. The slurry was then vortexed, heated to 80°C via a water bath, cooled in 

ice, and the supernatant removed. Supernatant samples were neutralized to a pH between 4.1-4.5 

with 200µL of 10% ammonium hydroxide, then aliquoted (150 μL) and read in triplicate at 405 

nm in 96-well format using black-walled, transparent-bottomed plates using a plate reader 

(Glomax Discover System, Promega, Madison, WI, USA).  

 Results 

4.3.1 Bone geometry, volume, and mineral density in response to mechanical load 

 For the mouse in the cortical VOI at 50% of the tibia’s length from its proximal end, 

daily applied dynamic loading increased maximum and minimum moments of inertia, bone 

volume, and bone area in the left loaded compared to the right contralateral control limb after 

two weeks of loading, but these differences were not apparent in loaded versus contralateral 

control limbs for mice who received four weeks of loading (Figure 4.3). Alternatively, bone 

mineral density increased after four weeks of load, but not after two weeks. There was no 

statistical difference between the right control limbs for any of the measures between the two 

week and four week load groups.  

In the cortical VOI at 37% of the tibia’s length from its proximal end, daily applied 

dynamic loading increased the maximum moment of inertia in the left loaded limb compared to 
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the right contralateral control limb after two weeks of loading, but there was not a difference 

between limbs for mice who received four weeks of loading (Figure 4.4). No other parameters 

were significantly affected by load for both the two week and four week load groups. There were 

no statistical differences between the right control limbs for any of the measures between the two 

week and four week load groups.  

 For the chukar, in the cortical VOI at 50% of the tibia’s length from its proximal end, 

daily applied dynamic loading increased the maximum moment of inertia and decreased bone 

area in the left loaded limb compared to the right contralateral control limb after three weeks of 

loading (Figure 4.5). There were also trends that marrow area was larger and cortical bone 

volume was lower in the loaded limbed compared to the control limb. In the cortical VOIs at 

37% and 90% of the tibia’s length from its proximal end, no significant effect of load was 

measured by microCT (Figure 4.6, Figure 4.7).  

4.3.2 Histomorphometry 

 For the mouse, no significant differences were found for the left-loaded limb compared to the 

right-control limb after both two weeks and four weeks of loading for bone geometry parameters 

as well as label-related parameters such as mineralizing surfaces and mineral apposition rates 

(Table 4.1). For the four week group, less than half of the sample size had visible periosteal 

single or double labels, so sample means for periosteal surface labeling-related parameters were 

not calculated. For the four week study duration group, triple labeling allowed investigation into 

differences between mineral apposition rates, labeled surfaces, and inter-label thicknesses for 

weeks 2-3 and weeks 3-4, separately. Although within each week the left and right limbs did not 

have different Ec.MAR, Ec.dL.P, or Ec.In.L.Th., these parameters increased similarly from 

weeks 2-3 to weeks 3-4 for both the left and right limbs (Table 4.3).  

 For the chukar, no significant differences were found for the left-loaded limb compared 

to the right-control limb for bone geometry parameters as well as for the majority of labeling-

related parameters (Table 4.2). The exceptions were Ec.MAR, T.Ec.M.Pm, and T.Ec.MAR, 

which were all greater in the right-control limb compared to the left-loaded limb. Again, the 

series of three labels allowed investigation into differences between endocortical mineral 

apposition rates, labeled surface perimeters, and inter-label thicknesses between weeks 1-2 and 

2-3 (Figure 4.8). Although all left to right limb comparisons were non-significant each week, 
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there were trends seen that Ec.MAR and Ec.dL.P were lower for the left limb compared to the 

right. Additionally, from weeks 1-2 to 2-3, all three parameters decreased significantly in both 

loaded and control TBTs with time (Table 4.3). 

4.3.3 CFU-OB Assay 

For both species, bone marrow cultures were successfully completed for n=3 animals, 

with 6 wells per animal at densities of 1 and 2 million cells each for a total of n=18 wells per cell 

density. Absorbance, which increases relative to the amount of mineral present in each culture, 

was measured at 0.162 ± 0.028 and 0.193 ± 0.017 for wells with a cell density of 1 million, and 

0.304 ± 0.067 and 0.220 ± 0.046 for wells with a cell density of 2 million, for the mice and 

chukar, respectively (Figure 4.10). Absorbance significantly increased with cell density for the 

mouse (p<0.001), but not for the chukar. Comparatively, absorbance was greater in the mouse 

for 2 million cells/well (p=0.003), but was similar between the species for the 1 million 

cells/well cultures. Images of the wells prior to stain extraction were qualitatively assessed for 

any gross differences between mouse and chukar colonies (Figure 4.9). Qualitatively, mouse 

colonies were more numerous but smaller relative to the colonies formed by chukar MSCs. 

 Discussion 

Although rodent models have provided extensive insight into skeletal sensitivity and the 

adaptive response to mechanical load, no studies to our knowledge have previously attempted to 

determine if sensitivity is consistent across vertebrate species. The skeleton is very diverse in its 

morphology, geometry, and mechanical properties across vertebrate species, so it seems possible 

that adaptation may vary by rate and bone quality feature (i.e. independent changes in BMD, 

bone volume, or cross-sectional geometry) based on the needs of each species. Here we’ve 

attempted to make initial assessments of skeletal sensitivity in a novel non-invasive avian model, 

the chukar partridge TBT, relative to the mouse tibial loading model. In order to compare 

sensitivities and adaptive responses, experimental load magnitudes were applied such that they 

would induce similar relative increases in peak bone strains measured during treadmill running at 

the medial midshaft surface. The new loading model encountered several issues including 

fracture failure, which limited our load magnitude, as well as serious soft tissue damage due to 

daily load application, which ultimately limited our study duration. Despite these issues, we were 
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able to measure a load-related geometry response for the chukar TBT. Although we had to limit 

our load level for the mouse tibia in order to maintain similar relative increases in load to the 

chukar, we were also able to measure a geometry and bone mass response to load after two 

weeks, although not after four weeks. CFU-OB assays also demonstrated that despite similar 

amounts of mineral generated, the colonies were qualitatively quite different. Overall, the results 

suggest that while the mouse skeleton adapted to our load initially through increases in bone 

mass and geometry, the chukar skeleton attempted to adjust only geometry to better resist our 

induced bending without complementary increases in bone mass.  

4.4.1 The Mouse Tibia showed a geometry and bone volume response after 2 weeks but 
not after 4 weeks 

Although we measured a geometric and volumetric response to load in the mouse after 

two weeks, it seems that our stimulus was no longer anabolic by weeks 3-4, possibly due to 

natural bone growth over the course of the study. Increasing endocortical fluorochrome labeling 

from weeks 2-3 to weeks 3-4 further implies that the rate of natural growth may have increased 

towards the latter half of the four week study when the mice were 18-19 weeks old, whereas the 

two week study would have ended at the end of their 17th week prior to the growth increase. It 

seems possible that while our load may have induced strains just above the MES in order to 

invoke an early adaptive response, the response saturated after a few weeks and natural growth 

ultimately muted any load-related response by the end of four weeks. Increases in maximum and 

minimum moments of inertia, bone volume, and bone area measured at the midshaft after two 

weeks of loading are all adaptations that would make the bone more resistant to bending and 

likely decrease the strain induced by our applied load [168-170], and represents a similar type of 

response to what has been reported in other studies employing the mouse tibial loading model 

[34, 51, 119, 165]. After four weeks of our loading protocol, the only significant difference was a 

higher bone mineral density in the loaded limb. The four week group did show increased BMD 

relative to the control limb, which is a response similar to what has been seen during exercise 

studies [17-19]. The strains induced in the bone during exercise would represent a small relative 

increase in loading to the skeleton compared to the strains that can be induced during 

experimental loading. It seems possible that natural growth over time altered the necessary 

adaptation to our chosen load magnitude from a bone volume and geometry response to an 

increase in BMD based on the bone’s natural threshold for adaptation.  
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Despite higher peak strains predicted in the mouse tibia at 37% of bone length relative to 

the proximal end of the tibia compared to the midshaft (Chapter 2), maximum moment of inertia 

was the only parameter that increased in the loaded limb relative to the control, and only after 

two weeks. The 37% volume was originally selected due to the higher peak strains predicted by 

our finite element models. If peak strain magnitude is the most important stimuli to the bone, we 

should have measured a significant bone volume response at 37% compared to at the midshaft. 

Although previous mouse tibial adaptation studies have shown a stronger response at this 

location relative to the midshaft [51, 119, 165], that is not what we have observed at a -6.5N load 

magnitude.  

 Although we were able to measure load-related differences by microCT, 

histomorphometry measurements were not able to discern geometric differences between the 

loaded and control limbs for either study duration, and any fluorochrome labeling present in the 

loaded limb was not significantly different from the control limb. One of the significant 

limitations of the histological approach to assessing bone deposition is that measurements are 

limited to a single section of bone, rather than a volume that can be accurately selected during 

microCT analyses, so it is possible that we missed areas of load-related labeling. The presence of 

labeling in the right-control limb, though, suggests that some natural bone growth was occurring 

throughout the duration of our studies.  

4.4.2 The Chukar Partridge TBT showed a geometric cortical bone response after 3 
weeks of loading 

Increased maximum moment of inertia and decreased bone area along with suppressed 

endocortical bone deposition at the midshaft VOI could indicate that the avian TBT attempted to 

adapt its cross-sectional geometry to increase resistance to the bending our axial compressive 

loads without increasing bone mass. The average maximum radius of the midshaft cross-section 

VOI would have had to increase enough through modeling and remodeling to overcome a lower 

mass in the loaded limb compared to the control in order for the loaded limb to achieve a higher 

maximum moment of inertia. Since the avian skeleton prioritizes a ‘light’ skeleton, this seems 

like a reasonable strategy for adapting to relatively small increases in bone strains without 

metabolically costly increases in bone mass. Histomorphometry results indicated that while some 

bone deposition did occur at the midshaft throughout the study in both limbs, mineral apposition 

was suppressed in the loaded limb compared to the control limb.  
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Despite the decreased endocortical mineral apposition rates, mineralizing surfaces, and 

label thicknesses, there wasn’t a significant difference in cortical thickness or bone area by 

histology, or bone volume by microCT between left and right bones, although the trends seen by 

microCT do support the histomorphometry results. It is possible that the small differences 

between left and right TBT’s were not well represented by the single cross-section used for 

histomorphometry analysis. Especially for the chukar relative to the mouse, a 90µm thick section 

represents a very small portion of total bone length. While there were trends that cortical bone 

area was lower and marrow area was higher in the loaded limbs relative to the control limbs, the 

individual differences for each animal were less than 0.15mm2 and 0.3mm3, respectively. 

Regardless, it seems that such small differences in bone volume and area would have a fairly 

small impact on bone stiffness or strength, although for a load inducing strains equal to or less 

than 2.5x peak strains measured during fast running, a more significant response may not have 

been necessary.  

Although statistical analyses did not show differences in bone area and volume at the 

90% VOI for the complete sample, woven bone was identified by qualitative observations of the 

microCT scans for one of the loaded TBTs (Figure 4.11). This was the smallest bird by 

individual mass, so it’s possible that its bones were smaller and the resulting peak strains from a 

-130N load were higher relative to the other three chukar. While we estimated the peak strains 

that occur in TBT of a male chukar at approximately 16 weeks of age using finite element 

models (Chapter 3), a range of responses from no response to a woven bone response suggests a 

potentially large discrepancy in strains in the 90% VOI. An alternative explanation could be that 

the strain window for a lamellar bone response is comparatively small and that the threshold for 

a woven bone response is lower in the avian skeleton compared to the murine skeleton. Based on 

results from Chapter 3 of this thesis, peak compressive strains in that volume were 

approximately -3000µε. In the turkey ulnar loading model, the only other avian species in which 

bone adaptation has been studied to our knowledge, bending loads inducing peak strains around -

1000µε resulted in insignificant amounts of periosteal bone deposition [140], but peak strains of 

approximately -1700µε induced a significant woven bone response [42]. It is unclear if that 

woven bone response was a result of the peak strain magnitudes or the abnormal strain profile 

and disuse osteopenia induced by that loading model, but taken together with our results could 



72 
 

suggest that the strain window for generating no response to a woven bone response is a small 

strain range for the avian skeleton. 

Initially, two and four week studies with a load magnitude of -200N were planned for the 

birds. Unfortunately, within the first three days of those studies, which were happening 

simultaneously, six of the birds experienced TBT fractures distally during applied loading. As a 

result, we ended the studies immediately due to concern for the birds. We attempted to restart the 

studies with just two birds at a load of -160N, but one of those birds experienced fracture after 

two weeks of loading, so we did not feel comfortable committing a larger sample size to a study 

at that load magnitude. At that point, we had four remaining birds who had no applied loading 

history. We chose to run a four week loading study with a load magnitude of -130N. 

Unfortunately that study also had to be cut short by a week due to significant soft tissue damage 

at the knee and ankle, an effect from loading this author had never seen during several other 

preliminary loading experiments in both chukar and guinea fowl. One of the consistent 

difficulties with the bird model has been the availability of animals; juvenile adult chukar are 

only available between September and November. While additional loading studies to increase 

our sample size and complete the two week study duration are planned, they could not be fully 

completed prior to the writing of this thesis.  

4.4.3 Colony Forming Unit – Osteoblast assays revealed qualitative differences in the 
colonies between the species 

Despite the results showing that initial marrow cell density had a significant effect on 

mineral deposition in 2D cultures for the mouse but not the chukar, the arguably more interesting 

assessment may come from the qualitative difference between the colonies formed by each 

species. Counting colonies is the most common analysis technique for the CFU-OB assay 

because a single osteoblast progenitor is responsible for each colony, so this analysis method 

reflects the original percentage of mesenchymal stem cells present in the marrow [171, 172]. We 

chose to quantitatively assess mineralization via absorbance of alizarin red stain instead of 

colony numbers because the colonies formed, especially for the mouse, were not always distinct, 

which would make colony counting very subjective. However, the obvious discrepancy between 

the number of colonies and the mineral produced by each raises questions regarding marrow cell 

population and marrow-derived osteoblast progenitors across the two species. Previous studies 

have demonstrated correlations between treatment-related (i.e. bisphosphonate/ glucocorticoid 
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stimulation,) in vivo increases or decreases in bone mass with similar changes in 

osteoblastogenesis and mineral deposition via the CFU-OB assay [85, 173]. For those studies, 

species and culture duration were the same, so the resulting number of colonies was related to 

the treatment. Additionally, differences in proliferation rate and differentiation potential have 

been shown to vary even within different strains in inbred mice [174]. These previous results 

suggest that systemic factors have an impact on marrow cell population or osteoblast progenitors. 

For our studies, culture duration and conditions were the same, so any differences between the 

colonies and the amounts of mineral produced by the completion of the study are inherent to the 

species. Based on our results, it seems that osteoblast progenitor cells are more prevalent in the 

marrow of mice, but a single progenitor can generate more mineral over the same period of time 

for the chukar relative to the mouse. Unfortunately, we do not know what systemic factor 

differences occur between these two species or what led to the results we found through the 

CFU-OB assay, but it seems reasonable to expect that whatever these differences are could also 

more generally affect skeletal adaptation.  

Despite the differences in study durations and the varied peak strain magnitudes at 

relatively similar volumes along the diaphysis (Chapter 3), the results generally suggest that the 

birds adapted to increase their bone strength through changes in geometry without increasing 

bone mass, whereas the mouse adapted via changes in geometry in addition to increased bone 

mass. CFU-OB results further suggested that there are inherent differences between marrow cell 

populations or marrow-derived osteoblast progenitors, possibly due to differences in systemic 

factors, between the two species, which could impact skeletal adaptation. While this work will 

benefit from larger sample sizes and more study durations, these findings provide early evidence 

that skeletal adaptation across vertebrates is variable and that probing the mechanobiology 

responsible for these differences could generate novel insight into skeletal regulation.   
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Table 4.1 Select histomorphometry results for the two week mouse loading group (n=5).Values 
represent the mean ± standard deviation for each measure for the left (L) loaded limbs and the 
right (R) control limbs. Paired, two-tailed students T-test were used to evaluate statistical 
differences between loaded and control limbs for each measure. 
 

  
Ct.Pf.Pm 

(mm) 
Ma.Pf.Pm 

(mm) 
Ct. B. Ar. 

(mm2) 
Ct. Ma. Ar 

(mm2) 
Ec.sL.Pm 

(mm) 

L 4.37 ± 0.37 2.74 ± 0.33 1.13 ± 0.11 0.44 ± 0.08 1.36 ± 0.40 
R 4.31 ± 0.44 2.78 ± 0.36 1.11 ± 0.10 0.45 ± 0.06 1.16 ± 0.63 

P-Value 0.48 0.71 0.23 0.45 0.15 
           

  
Ps.sL.Pm 

(mm) 
Ps.M.Pm 

(mm) Ps.MS/BS (%) 
Ec.M.Pm 

(mm) Ec.MS/BS (%) 

L 2.50 ± 1.19 1.26 ± 0.61 76.88 ± 34.66 0.80 ± 0.37 29.33 ± 14.08 
R 1.93 ± 1.11 0.96 ± 0.56 64.22 ± 38.12 0.61 ± 0.36 22.67 ± 14.18 

P-Value 0.47 0.46 0.63 0.19 0.21 

 

 
Table 4.2 Select histomorphometry results for left (loaded) versus right (control) limbs for the 
mice (n=10) after four weeks of loading and chukar (n=4) after three weeks of loading. Values 
represent mean ± standard deviation. Student’s paired two-way t-tests were used to assess 
statistical differences between the left and right limbs for both species. 

 Limb Mouse P-value Chukar P-value 
Periosteal Perimeter 

(mm) 
Left 4.25 ± 0.34  

0.66 
12.88 ± 1.44 

0.53 
Right 4.30 ± 0.28  13.48 ± 0.69 

Endocortical Perimeter 
(mm) 

Left 2.80 ± 0.39 
0.65 

9.68 ± 1.17 
0.50 

Right 2.85 ± 0.35 10.37 ± 0.66 

Cortical Bone Area (mm2) Left 1.13 ± 0.12 0.60 11.56 ± 1.94 0.25 
Right 1.15 ± 0.12 13.05 ± 0.90 

Marrow Area (mm2) 
Left 0.47 ± 0.08  

0.39 
6.32 ± 1.26 

0.49 
Right  0.50 ± 0.08  6.82 ± 0.33 

Total Endocortical 
Mineralizing Surface 

(mm) 

Left 0.61 ± 0.30  
0.97 

5.34 ± 2.64 
0.02 

Right  0.61 ± 0.27  7.42 ± 2.65 
Total Endocortical 

Interlabel Thickness 
Left 4.58 ± 3.42  

0.55 
9.01 ± 1.84 

0.046 
Right 5.53 ± 5.10  15.61 ± 3.58 

Total Endocortical 
Mineral Apposition Rate 

Left  0.35 ± 0.24  0.48 0.64 ± 0.13 0.046 
Right 0.42 ±  0.33 1.12 ± 0.26 
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Table 4.3 Time point specific histomorphometry results for the mouse (n=10) after four weeks of load and the chukar (n=4) after three 
weeks of load. Values represent mean ± standard deviation. Paired two-tail students t-tests were used to compare left versus right 
limbs within each week. A mixed model repeated measures ANOVA was used to assess how values changed from week to week. 

  

Limb Mouse 

L vs. R 
comparison 

P-value 

 

Chukar 

L vs. R 
comparison 

P-value 

  

    

Week to 
Week 

Comparison 
P-Value 

Week to 
Week 

Comparison 
P-Value 

Endocortical 
Mineral 

Apposition 
Rate 

Week1-2 Left       1.21 ± 0.26 0.15 
0.003 Right       1.66 ± 0.40 

Week 2-3 Left  0.15 ± 0.16  0.39 
<0.001 

 

0.35 ± 0.29 0.08 
Right  0.30 ± 0.48  0.97 ± 0.62 

Week 3-4 Left  0.72± 0.40 0.94       

Right  0.73 ± 0.47        

Endocortical 
Double-
Label 

Perimeter 

Week1-2 Left       3.25 ± 3.17 0.23 
0.01 Right       3.80 ± 3.53 

Week 2-3 Left 0.002 ± 0.006  0.25 
<0.001 

 

0.33 ± 0.59 0.09 
Right  0.01 ± 0.03  1.01 ± 1.02 

Week 3-4 Left 0.21 ± 0.17  0.43       

Right  0.16 ± 0.16        

Endocortical 
Interlabel 
Thickness 

Week1-2 Left       7.23 ± 1.55 0.15 
0.003 Right       9.95 ± 2.38 

Week 2-3 Left  0.36 ± 1.12 0.41 
<0.001 

 

1.78 ± 2.07 0.25 
Right  1.31 ± 3.10  5.66 ± 4.02 

Week 3-4 Left  4.22 ± 2.64  0.1       
Right  4.22 ± 3.12        
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Figure 4.1 Diagrams representing the configuration of a mouse tibia (top) and chukar TBT 
(bottom) while held in the cups of the loading device. Load is applied through the actuator, 
which is connected to the ankle cup, and is transmitted through the tibia/TBT and knee, to the 
load cell. Figures are not to scale.  

 

 

 

Figure 4.2 Timeline of the loading study for both the mice and chukar. The days on which 
flourochromes were given for each of the studies is indicated. Red ‘X’ indicates the day on 
which animals for each study were euthanized.  
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Figure 4.3 Cortical bone morphometry results by microCT for the mouse tibia for 2.5% of bone 
length, centered at the midshaft for bones loaded either two weeks (n=5) or four weeks (n=10). 
Parameters include maximum and minimum moments of inertia, cortical bone area, cortical bone 
volume, and bone mineral density. Units are indicated on the y-axis for each plot. Purple bars 
represent the loaded, left limb, and white bars represent the right, non-loaded control limb. 
Asterisks (*) indicate a significant difference between loaded and controls limbs (paired, one-
way T-test, p<0.05). 
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Figure 4.4 Cortical bone morphometry results by microCT for the mouse tibia for 2.5% of bone 
length, centered at 37% of bone length relative to the proximal end for bones loaded either two 
weeks (n=5) or four weeks (n=10). Parameters include maximum and minimum moments of 
inertia, cortical bone area, cortical bone volume, and bone mineral density. Units are indicated on 
the y-axis for each plot. Purple bars represent the loaded, left limb, and white bars represent the 
right, non-loaded control limb. Asterisks (*) indicate a significant difference between loaded and 
controls limbs (paired, one-way T-test, p<0.05). 

  



79 
 

 

Figure 4.5 Cortical bone morphometry results by microCT for the chukar TBT for 2.5% of bone 
length, centered at the midshaft for bones loaded for three weeks (n=4). Parameters include 
maximum and minimum moments of inertia, marrow area, cortical bone area, cortical bone 
volume, and bone mineral density. Units are indicated on the y-axis for each plot. Purple bars 
represent the loaded, left limb, and white bars represent the right, non-loaded control limb. 
Asterisks (*) indicate a significant difference between loaded and controls limbs (paired, one-
way T-test, p<0.05). Parameters whose p-values were trending towards significance have also 
been included.  
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Figure 4.6 Cortical bone morphometry results by microCT for the chukar TBT for 2.5% of bone 
length, centered at 37% of bone length relative to the proximal end for bones loaded for three 
weeks (n=4). Parameters include maximum and minimum moments of inertia, cortical bone area, 
cortical bone volume, and bone mineral density. Units are indicated on the y-axis for each plot. 
Purple bars represent the loaded, left limb, and white bars represent the right, non-loaded control 
limb. Asterisks (*) indicate a significant difference between loaded and controls limbs (paired, 
one-way T-test, p<0.05). 
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Figure 4.7 Cortical bone morphometry results by microCT for the chukar TBT for 2.5% of bone 
length, centered at 90% of bone length relative to the proximal end for bones loaded for three 
weeks (n=4). Parameters include cortical bone area, cortical bone volume, and bone mineral 
density. Units are indicated on the y-axis for each plot. Purple bars represent the loaded, left 
limb, and white bars represent the right, non-loaded control limb. Asterisks (*) indicate a 
significant difference between loaded and controls limbs (paired, one-way T-test, p<0.05). 
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Figure 4.8 Representative fluorescent image of a chukar TBT cortical midshaft cross-section. 
Green labeling represents calcein stain while the red represents alizarin red stain. Inset images 
show instances of double labeling on the endocortical surface.  
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Figure 4.9 Representative images of mouse and chukar CFU-OB wells stained with alizarin red 
for both marrow cell densities, 1 million and 2 million cells/well.  

 

 

Figure 4.10 Absorbance results at 405 nm for the mouse and chukar CFU-OB assays. For each 
species, marrow was cultured at two densities (marrow from n=3 animals per species; n=18 wells 
per density), 1 million cells/well (purple bars) and 2 million cells/well (white bars). Results are 
plotted as mean ± standard deviation. An increase in absorbance would indicate increased 
mineral produced by the culture.  
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Figure 4.11 MicroCt cross-sectional image of a chukar TBT showing woven bone on the antero-
lateral surface near the distal metaphysis.  

 
 
 
 
 
 
 
 
 
 
 
 
 

[For this chapter, I would like to specifically acknowledge the Purdue Bone and Body 
Composition Core, and the Purdue Histology Research Laboratory for their assistance with 
microCT scanning and mineralized tissue histology processing, respectively.]  
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5. DEVELOPMENT OF A NOVEL ISOLATED BONE ORGAN CULTURE 
SYSTEM 

 Introduction 

The skeleton is highly integrated with systemic physiology through its vascularity and the 

lacunar-canalicular network. Systemic factors are involved in regulating osteoblast and 

osteoclast activity necessary for bone remodeling [4, 175-177]. Systemic regulators of bone 

metabolism include factors such as basal metabolic rate, parathyroid hormone, and calcitonin, as 

well as several other hormones, cytokines, and growth factors [77, 178, 179]. Relative 

differences in these factors across vertebrate species and or as a result of disease states could 

play a role in differential bone metabolism rates during skeletal adaptation in response to 

mechanical stimulation, but there is not currently a way to assess bone cell activity and response 

to mechanical load while cortical bone is isolated from these factors.  

In vitro techniques, such as 2D cell cultures or 3D bioreactor systems, are often used to 

test a variety of factors and conditions on specific cells or tissues in an isolated system [180-

182], such as stimulating osteoblast-like cells cultured from trabecular bone explants in vitro 

with human growth factor, but there are some drawbacks to the current models.  Some studies 

have used embryonic bone organ explants to study the effects of various hormones and growth 

factors, and/or mechanical load on bone [183-188]. Their small size and cartilaginous state likely 

benefit cell survival. However, embryonic bones do not accurately represent the post-natal or 

mature skeleton. They are also very fragile and already actively involved in growth and 

mineralization, which could confound any response to experimentally applied stimuli. Utilizing 

mature bone segments in culture maintains the native density and network of the bone cells in 

their complex 3D environment as well as cellular interactions with the native extracellular 

matrix. Maintaining those features of the native bone is an obvious benefit compared to 2D in 

vitro culture or current 3D hydrogel techniques, while still allowing more control over chemical 

and mechanical stimuli to the cells relative to in vivo studies. So far, in vitro mature bone organ 

cultures have been limited to cancellous bone explants loaded in compression, and good cell 

viability can be maintained up to four weeks under perfusive media conditions [189-194]. 

Although the porous nature of cancellous bone provides an innately large surface area to media 

ratio which likely benefits the model’s ability to maintain cell viability, the porosity also makes it 
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difficult to directly measure the strain induced by the compressive loads. It is well established 

that there is a relationship between strains induced by a mechanical load and the resulting 

adaptive response, so characterizing the strain stimulus is critical for interpreting the bone’s 

mechanobiologic response. Additionally, in vivo loading studies have also shown that cortical 

and cancellous bone have different responses to mechanical stimuli [195, 196], therefore 

studying them both under in vitro conditions is important. Cortical bone segments could be 

instrumented with strain gauges in vitro similar to how intact tibiae are instrumented in vivo in 

order to experimentally measure the strains induced by a given load. Yet to our knowledge, a 

mature cortical bone segment has not previously been kept in in vitro conditions for more than 

24 hours [197].  

Development of a model to study cortical bone’s innate response to mechanical load 

while isolated from systemic factors could provide unique insight into the vertebrate skeleton of 

various species, specifically the mechanobiological regulation of osteocyte’s response to load 

independent from systemic factors. Using a bioreactor with the capabilities to continuously 

perfuse media through and around the bone, as well as apply mechanical loads should help to 

maintain cell viability in cortical bone throughout the culture period relative to previous models. 

The overarching goal of this work is to take initial steps towards developing a bone organ culture 

model for mechanobiology studies by validating cell viability in cortical bone samples and to 

determine the potential for applying physiological tissue strains to the bone samples. 

Specifically, I will (1) validate the viability of bone cells in a segment of a mouse tibial cortical 

bone cultured in the biodynamic chamber for five days and (2) determine the relationship 

between experimentally applied axially compressive load magnitudes and the resulting strains 

induced in the bone segment when loaded in the biodynamic chamber. Successful development 

of this model will allow in vitro investigations into the skeletal response to mechanical load 

relative to the stimulus across vertebrate species since the induced strain environment can be 

characterized through a combination of experimental measurements and finite element models. 

Additionally, this system will provide a new in vitro cortical bone model with the potential for an 

extensive variety of future biomedical and basic science applications beyond the comparative 

skeletal biology goals of this thesis.  
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 Methods 

5.2.1 Bone Specimens 

Tibiae from male, C57Bl/6 mice between the ages of 16-25 weeks were used in all 

studies (Jackson Labs, Bar Harbor, ME). Each mouse used was euthanized by cervical 

dislocation and both tibiae were dissected immediately. Euthanasia procedures were approved by 

Purdue University IACUC (Protocol # 1310000977).  

5.2.2 Validation of Osteocyte Viability in Bone Organ Culture 

5.2.2.1 Initial Processing of the Tibiae 

Immediately after dissection, bones were maintained in sterile Dulbecco’s phosphate 

buffered saline (dPBS) at room temperature until transferred to a sterile hood. Once in a sterile, 

negative pressure hood, bones were rinsed twice in a combination of 10 ml dPBS, 1.5 ml 

Penicillin/streptomycin (pen/strep) and 1 ml fungizone. The proximal and distal ends of the 

bones were then removed with sterilized scissors, and the bones were rinsed once more in 

dPBS/pen/strep/fungizone solution.  

5.2.2.2 Lactate Dehydrogenase Assay for Cell Viability 

A lactate dehydrogenase assay (LDH) was used to assess osteocyte cell viability in 

negative and positive control samples, as well as tibial samples cultured for five days. Lactate 

dehydrogenase is an enzyme found in almost all living cells, but is released during tissue damage 

or cell apoptosis, and can therefore be used to assess tissue breakdown or viability [198]. A 

benefit of the LDH assay is that the LDH enzyme is present for up to 36 hours after cell death 

[199], meaning the near-term effects of tissue processing following euthanasia would not affect 

cell viability analyses. Using this method, viable osteocytes and osteoblasts react with the 

primary stain to form non-reversible tetrazolium-formazan granules. Following the bone 

processing outlined above, the LDH staining protocol was performed as follows: bones were 

rinsed in 37ͦC Hanks buffered saline, incubated with gentle shaking in the LDH stain for four 

hours (37°C, 5% CO2), fixed in 4% paraformaldehyde for 24 hours, demineralized in 15% 

EDTA for four days, then stored at 4°C in a 2.5% sucrose/deionized water solution. Between 

each successive step after LDH staining, the bones were rinsed in deionized water. Within two 

weeks, bones were cut in half with a scalpel along the sagittal plane, embedded cut-surface down 
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in OCT and stored at -80°C until sectioning. All sections were cut using a cryostat (7µm, Leica 

CM1950, Leica Biosystems, Buffalo Grove, IL, USA), and cover-slipped using a mounting 

medium (Richard-Allen Scientific Cytoseal XYL, Thermo Scientific, VWR Product #8312-4). 

Sections were imaged for LDH staining using an upright microscope (BX53, Olympus Life 

Sciences, Tokyo, Japan) at 20x.  

5.2.2.3 Positive and Negative Controls 

Positive control bones samples to establish maximum osteocyte viability were dissected 

following mouse euthanasia and immediately subjected to the LDH staining protocol (n=3). 

Since the LDH enzyme is valid for several hours after cell or tissue death, the immediate 

processing and staining procedures for the positive control bones provides a baseline for 

maximum cell viability. Negative control bones were generated by autoclaving the bone samples 

(121°C, 30 minutes) immediately following euthanasia and dissection (n=3). These bones were 

then maintained at room temperature for a minimum of 36 hours prior to performing the LDH 

assay on the bone samples.  

5.2.2.4 Bone Organ Culture in the Biodynamic Chamber 

Three organ culture trials (n=2 tibiae per trial from n=3 mice) were completed using a 

biodynamic chamber (BioDynamic 5100, TA Instruments, New Castle, DE, USA). This 

biodynamic chamber has previously been used to culture and mechanically stimulate bone cell-

seeded scaffolds [200-202], but to our knowledge it has not be used on an actual mature bone. It 

is designed such that a perfusive flow loop exists between a reservoir bottle and the chamber 

(Figure 5.1). Fluid enters the chamber through one piston, and then leaves through the other. 

The pistons have porous platens that hold the bone in place (Figure 5.4). The entire chamber was 

sterilized as recommended by the manufacturer. The closed chamber and flow loop were set up 

under sterile conditions and filled with medium (300 mL per culture: 1% pen/strep, 10% FBS, 

89% αMEM). Each bone went through initial processing as described above, was secured 

between the two porous platens, and the chamber sealed. The chamber, reservoir bottle and 

tubing were then transferred to and maintained in an incubator (37°C, 5% CO2). A peristaltic 

pump (Masterflex C/L Dual channel Variable Speed compact pump, Cole-Parmer, Vernon Hills, 

IL, USA) was used to recirculate media between the reservoir and chamber for the duration of 
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the culture period at a flow rate of 0.3 mL/minute [189]. Bones were maintained in culture for 

five days, and were processed for osteocyte cell viability using the LDH assay on the sixth day.  

5.2.2.5 Quantitative Analysis of Bone Cell Viability 

 Cell viability was measured in positive controls (n=3) and cultured bones (n=6) by 

counting the LDH+ cells within selected areas of cortical bone until a minimum of 450 positive 

cells had been counted per sample. This required analyzing 13±2 sections from each bone, and 

average areas of 1.001 ± 0.112 mm2 and 0.736 ± 0.093 mm2 for cultured and control bones, 

respectively. Cells were counted from three slides and a minimum of three sections per slide in 

order to ensure the areas assessed were broadly representative of a larger volume of the tibial 

diaphysis. Each image was taken within an acceptable range around the midshaft which was 

above the tibial-fibular junction and below any cancellous bone proximally, indicated in Figure 

5.2. Pixels were scaled to mm using a microscope calibration slide image, and then cortical area 

selections and cell counting were performed in ImageJ (NIH). Cell viability was reported as the 

number of viable cells per mm2 of cortical bone area. A Students T-test (non-paired, two-tail, 

two sample equal variance) was used to determine if there was a difference between the mean 

viable cell densities of the positive control bones compared to the cultured bones. Negative 

controls (n=3) were qualitatively assessed to verify that ‘dead’ cells or empty lacunae did not 

stain positively for LDH. Given the complete lack of staining in the negative controls, cells were 

counted as LDH+ if there was any stain present and appeared to be in a lacunae.  

5.2.3 Applied Load and Strain Relationship 

Characterization of the strain environment induced in the tibial segments while being 

loaded in compression in the biodynamic chamber were determined through a combination of 

empirical strain gauge measures and finite element analysis. These analyses were conducted in 

preparation for future in vitro studies to examine the organ culture’s response to cyclic 

compressive loading.  

Left and right tibiae from two mice (n=4 bones) were dissected from freshly euthanized 

16 week old male mice. The bones were carefully cleaned of all soft tissue, the proximal and 

distal ends removed with scissors at the growth plate, and then stored in PBS. Each bone was 

instrumented with one single element strain gauge, placed on the medial midshaft surface. The 



90 
 

surface was prepared for gauge attachment by removing a 0.05 cm2 region of periosteum, lightly 

scraping the underlying surface with a periosteal elevator, and defatting and drying the surface 

using 2-butanone (Sigma-Aldrich, St. Louis, MO, USA). A single element strain gauge (EA-06-

015LA-120, Micro-measurements, Vishay Precision Group, LTD., Raleigh, NC, USA) was then 

bonded to the site using a self-catalyzing cyanoacrylate adhesive (DURO Superglue, Loctite, 

Westlake, OH, USA). The instrumented bone was kept moist using phosphate buffered saline 

throughout instrumentation and the duration of testing.  

The biodynamic chambers were interfaced directly with a mechanical loading system 

(ElectroForce Testbench, TA Instruments, New Castle, DE, USA). Instrumented bones were 

placed one at a time between the two platens of the chamber and a -1N preload applied to secure 

the bone (Figure 5.3, Figure 5.4). Strain data were collected at 2000 Hz while each bone was 

loaded cyclically using a triangular waveform at 4 Hz at incrementally increasing axial 

compressive loads between -4N and -13.5N, similar to the loads applied during in vivo testing 

(Chapter 3 of this thesis). Multiple trials over this load range were collected for each bone. 

Following each trial, the bone was released from the preload and platens, and then re-secured for 

the subsequent trial. Care was taken to position the bone with the proximal and distal ends 

centered on their respective platens, and the medial surface facing up. After recognizing the 

potential for variation in strains for each trial if the bone after the bone had been re-secured, for 

the second two bones, a replicate of load and strain data was collected for each trial without re-

securing the bone in order to assess the repeatability of strains once the bone had been secured. 

For these tests, the mean of the two trials was used in developing the relationship between load 

and strain. After testing, tibiae with gauges still attached were stored in 70% ethanol. A custom 

MATLAB (MathWorks, Natick, MA, USA) program was used to calculate peak longitudinal 

strain at each applied axial load. Zero strain levels were determined from the strain trace prior to 

the bone being secured with a preload. Peak strains were averaged over the final five load cycles 

for each load magnitude. For results from each bone, a linear regression analysis was performed 

to determine the relationship between applied compressive load magnitude and the resulting 

longitudinal strains, as well as if that relationship resulted in a slope greater than zero. 

At a later date, bones were scanned by micro-computed tomography in 70% ethanol 

(µCT 40, Scanco Medical AG, Wayne, PA, USA). Any remaining wire and solder leads were 

carefully removed with a scalpel prior to scanning. Bones were scanned with an isotropic voxel 
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resolution of 10 µm (55 kVp, 145 mA, 300 ms integration time, no frame averaging). An 

aluminum filter was used to reduce beam hardening effects. A scanner-specific calibration was 

performed using bone phantoms (hydroxyapatite) provided by the manufacturer in order to 

convert attenuation values to bone mineral density (mg HA/ccm). In each bone segment scan, the 

gauge was omitted during the bone contouring to prevent it from being rendered as part of the 

bone during model development. A threshold value was chosen to separate bone and background 

pixels. Three-dimensional FE mesh models with tetrahedral elements were generated using the 

segmented tibial microCT images and a Matlab-based mesh generation and processing program 

[145]. A voxel-specific modulus of elasticity was applied based on the grayscale to bone density 

calibration and a previously determined relationship between bone mineral density and modulus 

[146]. A poisons ratio of 0.3 was applied to all elements [144]. Meshed models were imported 

into Abaqus 6.13.3 (Simulia, Dassault Systemes, Waltham, MA, USA) where boundary 

conditions and the load were applied. The contact nodes on the proximal and distal cut surfaces 

were selected and rigidly coupled to a reference point centered in the cross-sectional area of each 

surface and 50µm from the surface. A new coordinate system was defined such that the primary 

longitudinal axis was connected to both proximal and distal reference points. The proximal 

surface was constrained from all translational and rotational movement along this longitudinal 

axis, and the distal surface was similarly constrained, except for allowing translational movement 

along the primary longitudinal axis. A concentrated compressive load was applied through the 

distal reference point. Linear elastic finite element analysis was performed in Abaqus for a 

simulated -10N compressive load, which represented an intermediate load level of what was 

tested experimentally. Each model was validated by iteratively adjusting the proximal reference 

point in the proximal-distal direction until modeled strains at the gauge location matched the 

corresponding strains measured during experimental testing at that load magnitude.  

Once validated, models were used to evaluate peak principal and mean strains for two 

volumes of interest (VOI): 2.5% of total (pre-cut) bone length at the anatomical 37% 

(proximal/mid-diaphysis) and 50% (mid-diaphysis) regions along the diaphysis, relative to the 

proximal end of the bone. The ‘peak’ principal tensile and compressive strains were defined 

using the cut-off value at the 95th percentile of the range of strains induced in the VOI during 

loading. Since proximal and distal ends of each tibia had been removed prior to scanning by 

µCT, the distance from the tibia-fibular junction (TFJ) to each region was determined in 
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microCT images from a previous set of 16 week old male mice, and that distance was used to 

select the appropriate regions in these bones. Similarly, the size of the volume used to represent 

2.5% of bone length was determined from the prior bone scans as well. For each bone, values 

were extrapolated linearly from the results mean results at -10N to determine the peak and mean 

strains at other load levels, and therefore, standard deviations were not included at the other load 

levels. Finite element data from the in vivo tibial axial compression models (Chapter 3) was 

extrapolated to a -10N load in order to compare peak and mean principal strains between a tibia 

loaded in vivo and the bone segments loaded in vitro. Additionally, modeled cross-sectional 

strain distributions for 50% and 37% VOIs from representative in vivo (Chapter 3) and in vitro 

models were included to qualitatively assess any changes in the neutral axis orientation between 

loading situations. 

 Results 

5.3.1 Bone Cell Viability 

 LDH staining was completed to assess osteocyte viability in bone segments after five 

days in culture relative to positive control bones. The mean and standard deviation for the 

density of viable osteocytes were determined for each tibia from the cell counts from all sections 

(Table 5.1). Overall means and standard deviations for positive controls and cultured bones were 

based upon the individual mean values for each bone included in the two groups (n=3, n=6 

respectively). Positive control bones, stained immediately after dissection, were used to 

determine the density of viable cells in fresh cortical bone. The average density of viable 

osteocytes in the cortical diaphysis of the control bones was 689 ± 72 cells/mm2. For the cultured 

bones, the mean density of viable osteocytes was 539 ± 124 cells/mm2. Although the two 

samples were not statistically different (p=0.10), the mean cultured bone cell density relative to 

the positive controls indicates an approximately 78% cell viability rate after five days in culture.  

5.3.2 Tibial Bone Segment Strain during Axial Compression 

 For all bones and trials, measured peak strains on the medial midshaft surface were 

positive, indicating that this surface of the bone was consistently loaded in tension. Strains 

increased in magnitude as the applied load increased, as evidenced by the significant slopes of 

the linear regression for each bone (Figure 5.6). However, the differences in peak strains 
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between separate trials for which the bone was repositioned between trials at the same load level 

ranged from 100µε to 1500 µε depending on the bone. For the left and right bones from the 

second mouse, trial replicates (when loading was repeated without repositioning the bone) had 

average standard deviations of ±15µε and ±29µε, respectively. For the greatest applied load (-

13.5N), peak strains at the gauge location ranged from 400 to 1600 µε for one bone in particular.  

5.3.3 Finite Element Modeling 

 Absolute peak compressive principal strains were greater than peak tensile principal 

strains in both the 50% and 37% volumes of interest (Table 5.2). The greatest strains occurred in 

the 37% volume, although mean strains were similar across both VOIs. Standard deviations were 

less than 150 µε and 55 µε for peak and mean principal strains, respectively, for both VOIs, 

which indicates that predicted mean values across the four bone samples were similar despite the 

discrepancy in strains measured experimentally. Based on extrapolations of peak principal strains 

modeled at -10N to the highest load applied empirically (-14N), peak principal compressive 

strains as high as -2324 µε and -2656 µε were reached in the 50% and 37% VOIs, respectively, 

at sites remote to the gauge measures (Figure 5.8).   

 Comparatively, the finite element models showed that a -10N load induced greater 

principal strain magnitudes during in vivo tibial loading relative to the in vitro bone segment 

loading (Table 5.3). Peak and mean principal tensile strains were 1.8-2x greater in models of 

whole bone loading, while peak and mean principal compressive strains were 1.5-1.6x greater 

during whole bone compressive loading, suggesting that removing of the epiphyses likely 

reduces the amount of bending that occurs at a given load magnitude and effectively stiffening 

the bone. Cross-sectional strain distributions showed that, despite differences in stiffness, the 

neutral axis orientation is fairly consistent between the whole-bone and bone segments loaded in 

axial compression (Figure 5.9).  

 Discussion 

5.4.1 Bone Cell Viability is Maintained during Organ Culture 

Cortical bone segments in culture exhibited 78% osteocyte viability relative to the 

positive control bones after five days in culture. The LDH assay has previously been used to 

assess cell viability during embryonic bone organ cultures and cancellous bone explants [186, 
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191, 203]. Some studies using embryonic bone or cancellous bone explants have reported lower 

cell viabilities after their respective culture periods, but have successfully identified RNA and 

growth factor secretion responses to mechanical stimulation [186, 191], so we believe our 

osteocyte cell viability is sufficient for continued use of this model. Although we only 

quantitatively assessed osteocyte cell viability in cortical bone proximal to the TFJ and below 

any cancellous bone, qualitative observations of cortical bone areas both distal and proximal also 

showed good cell survival after five days in culture for all samples. Previous studies in mature 

cancellous bone explants have shown improved cell viability with mechanical loading [190, 

191], so future mechanically loaded cortical bone segments in culture may retain even greater 

cell viability than 78% after five days, although this could affect results from the non-loaded 

control bones in future studies. Mechanical loading likely improves cell viability by increasing 

fluid flux through the lacunar-canalicular system to distribute nutrients and remove waste [204, 

205].  

While we completed the cell viability validation for the mouse tibia in culture, it seems 

reasonable to expect that other long bones could also be used successfully in this model. The 

murine tibia and the ulna have been used for the majority of in vivo studies likely because their 

position in the respective limbs allows load to be applied axially and non-invasively to the bone, 

which would not be possible with bones such as the femur or humerus. Ultimately, the only 

limitations to bone selection are length and cross-sectional diameter of the chosen segment, as 

the piston ends that hold the segment in place are 10 mm in diameter and the chamber length is 

12.5 cm. It also seems possible that isolated trabecular bone segments could be used successfully 

in this model. Although some trabecular bone remains in the proximal and distal ends of our 

tibial segment, the majority is removed when the epiphyses are cut during the initial processing 

steps. Trabecular bone is often of significant interest to researchers since it is significantly 

impacted by osteoporosis [206-208]. This model could provide a new way to study isolated 

trabecular bone under various fluid flow, mechanical load, and media chemistry composition 

conditions.  

5.4.2 Mechanical Loading of Cortical Bone Segments In Vitro 

Tibial bone segments could successfully undergo axial compressive loading within the 

biodynamic chamber, and the induced strain environment was characterized via direct 
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measurements (strain gauges) and finite element modeling. A concern prior to attempting to 

apply an axial compressive load to a murine tibial bone segment using the biodynamic chamber 

was that due to the shape of their tibiae, high loads would cause a bending moment significant 

enough that the bone would not stay secured between the platens. This problem was not realized 

for any of the bones tested up to a compressive load of -13.5N. A single user secured each bone 

between the platens for all tests with the intention to install the bone in the same position each 

time.  

A novel benefit to using cortical bone segments compared to cancellous bone explants 

was the ability to directly measure strains induced to the bone segment during axial compressive 

loading in the culture chamber. Due to the shape of the tibia, imperceptible changes in the bone’s 

orientation following repositioning did cause similar magnitudes of axially compressive load to 

induce strain ranges at the gauge position of up to ±625µε from the mean at the highest load. The 

variability in orientation of the cut proximal and distal surfaces, as well as the uneven porous 

surfaces between which the bone is secured potentially also played a role in strain discrepancies 

between trials. Once a bone was secured between the platens though, strain magnitudes were 

repeatable for multiple trials, indicated by the low standard deviations within trial replicates for 

the second set of left and right tibial segments. During a culture period, the bone segments would 

not be re-orientated, so once a bone is initially secured between the platens, the resulting strain 

profile should not vary from day to day of applied loading.  

Given some variability in how the tibiae may have been cut and positioned in the 

chamber fixtures, finite element models were validated individually in order to recreate the strain 

profile determined by the average stiffness measure for each bone across all load magnitudes and 

trials. Individual validations allowed assessment of the peak strain similarities across the four 

bones while accounting for variation in how each bone was oriented during experimental 

loading. The variation in the strains measured empirically across the four bones likely represents 

normal variation that would occur during future loaded bone organ culture experiments. Despite 

the variation in peak strains at the gauge location across the bones during experimental loading, 

the mean and peak principal strains at the 50% and 37% VOI’s predicted by the models indicate 

that the gross strain profile was actually fairly repeatable across the sample size. It seems 

possible that the variation in longitudinal strains measured experimentally across bones was 

likely due to a combination of gauge position on the bone and small variations in the precise 
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orientation of the bone between the platens. Validated computational characterization of the 

strain profile induced throughout the cortical bone segment will provide a significant advantage 

for this model compared to embryonic and cancellous bone cultures when it comes to relating the 

response to the stimulus in future studies.  

5.4.3 Strain Induced In Vivo vs. In Vitro in the Murine Tibia under Axial Compressive 
Loading 

Bone stiffness during axial compressive loading was higher in the bone segments 

compared to intact tibiae loaded in vivo, but the neutral axis positions were fairly similar between 

cases indicating that the overall bending orientations were similar. Removing the epiphyses 

shortens the whole bone and reduces the curvature primarily on the proximal 50% of the bone, 

which results in decreased load-induced bending and therefore, lower strains at a given load 

magnitude. An applied load between -16N and -18N would be necessary to induce peak strains 

in the bone segment similar to peak strains induced by a -10N load applied to an intact hind limb 

loaded in vivo. Maintaining a similar strain profile between axial compressive loading of the 

bone segment and of an intact hind limb in vivo is important because a bone’s sensitivity and 

adaptive response to load is dependent on the change in strains induced by the experimentally 

applied load relative to the strains induced during physiologic activities [51]. Additionally, 

differences in strain profile would make interpretation of organ culture results relative to in vivo 

studies difficult. Based on modeling results for both cases though, it seems that increasing the 

load magnitude will effectively compensate for the increased stiffness of the bone segment while 

maintaining a similar strain profile, at least for the mouse tibia.  

In vivo bone adaptation studies typically run 2-4 weeks in order for a tissue level 

response to occur that is significant enough to measure by microCT or histomorphometry, but 

studies have shown that in vivo and in vitro cellular responses to mechanical or chemical 

stimulation of a bone or bone cells can be detected as early as hours after a single load bout [74, 

75, 118, 188, 189, 194, 195, 209]. Therefore, our five day survival time point is relevant for 

assessing a bone’s response to a mechanical stimulus. Studies similar to those conducted in vivo 

could be repeated with this organ culture model to assess RNA expression and factor secretion 

into the media without the potentially confounding effects of systemic physiology. Although 

complete removal of systemic factors does not provide specific information about the effects of 

the systemic factors individually, future use of this organ culture system could also re-introduce 
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controlled levels of hormones or growth factors to assess the effects of each on the skeletal 

response to mechanical stimuli independently. Furthermore, with this model, mechanical 

stimulation could include both axially compressive loads as well as changes in fluid flow rate. 

The biodynamic chamber interacts with the same mechanical loading device that has been used 

for my in vivo studies, so the same parameters can be adjusted including load magnitude, 

waveform, load rate, and cycle frequency. 

 In conclusion, we were able to validate adequate survival of osteocytes within the 

mineralized matrix of murine tibial bone segments for five days in culture, and successfully 

apply axial compressive load to the bone segment within the culture chamber as a preliminary 

mechanical characterization for future organ culture loading studies. Using cortical bone 

segments allowed us to fully characterize the strain environment induced using both 

experimental measurements and finite element models, something that has not been done with 

previously published embryonic and cancellous bone in vitro models. With the developed 

relationship between compressive loads applied to the bone segment and the resulting strain 

profile, bone segments can be stimulated similar to in vivo murine tibial loading studies while 

gaining more control over systemic chemical factors. While our interest in developing this model 

was to be able to compare the skeletal response to load across vertebrate species in a more 

controlled environment than in vivo studies allow, this validation opens the model up to a large 

variety of basic science and biomedically motivated experiments.  
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Table 5.1 Bone cell viability results for the positive controls and cultured bone segments. Total 
bone area analyzed (mm2), total number of LDH+ cells counted, and the average number of 
LDH+ cells per mm2 of cortical bone ± one standard deviation of are presented. For each set of 
samples, the mean number of LDH+ cells/mm2 ± one standard deviation of the sample means are 
also shown in bold.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Table 5.2 Modeled peak (represented by the 95th percentile) and mean principal strains (µε) for 
volumes at 37% and 50% of anatomical bone length for a load of -10N.  

 

 

 

 

 

 

 

 

 

  

Sample 
Type Sample 

Total 
Bone 
Area 

Analyzed 
(mm2) 

Number 
of 

LDH+ 
cells 

counted Cells/mm2 

Cultured 
bones 

1 0.970 502 513 ± 123 
2 1.024 560 532 ± 178 
3 1.034 492 498 ± 126 
4 1.185 485 393 ± 113 
5 0.846 600 769 ± 383 
6 0.949 484 531 ± 146 

        539 ± 124 

Positive 
Controls 

1 0.7 504 717 ± 161 
2 0.841 483 607 ± 137 
3 0.666 494 742 ± 195 

        689 ± 72 

Cortical Cross-Section Strains 

   37% 50% 

Principal 
Tension 

95th percentile 737 ± 97 841 ± 143 
Mean 407 ± 39 393 ± 44 

Principal 
Compression 

95th percentile -1897 ± 143 -1659 ± 113 
Mean -728 ± 43 -742 ± 52 
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Table 5.3 Modeled peak (represented by the 95th percentile) and mean principal strains (µε) for 
volumes at 37% and 50% of anatomical bone length for a simulated load of -10N for the bone 
segments used for organ culture and the whole bone in vivo models presented in Chapter 1 of 
this thesis. Values were extrapolated for the in vivo models, and therefore standard deviations 
were not relevant; standard deviations were omitted for the bone segment results for clarity but 
can be found in Table x.  

   37% 50% 

   
Bone 

Segment In Vivo 
Bone 

Segment In Vivo 

Principal 
Tension 

95th percentile 737 1529 841 1600 
Mean 407 800 393 707 

Principal 
Compression 

95th percentile -1897  -3071 -1659 -2502 
Mean -728 -1085 -742 -1037 
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\ 

Figure 5.1 Image showing the flow loop between the reservoir bottle and the chamber.  
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Figure 5.2 Diagram indicating the acceptable region around the midshaft from which cortical 
bone images were taken to assess cell viability via LDH+ staining.  

 

 

Figure 5.3 Image showing a biodynamic chamber interfaced with the Bose Testbench 
mechanical loading system. Prior to connecting each side of the chamber to the loading device, it 
is secured in a horizontal orientation to the breadboard so that the chamber itself remains 
stationary at all times. During loading, the shaft locks are removed on each side so that one shaft 
can be axially controlled by the actuator (left) and the other shaft can transmit load to the load 
cell (right).  
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Figure 5.4 Image depicting a gauged bone segment being held in the biodynamic chamber.   

 

 

Figure 5.5 Representative images of LDH stained bone samples for a (A) positive control, (B) 
negative control, and (C) cultured bone segment. Purple/blue staining indicates a LDH+ cell. 
Scale bar shown in panel A applies to panels B and C as well.  
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Figure 5.6 Longitudinal strains on the medial midshaft surface of left and right tibial bone 
segments under axial compression applied through the platens of the biodynamic chamber.Each 
plot represents a single bone and the trials performed (A: mouse 1-left, B: mouse 1-right, C: 
mouse 2-left, D: mouse 2-right). The linear regression, R2, and 95% slope confidence interval 
values are shown in each subplot. For C and D, data points and error bars represent the mean ± 
standard deviation for the two replicates of each trial.   
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Figure 5.7 Representative finite element model images of the mouse tibial bone segment under a 
simulated -10N axial compressive load.Images depict longitudinal strain distributions (µε) on the 
lateral, antero-medial, and posterior surfaces of the bone segment from left to right. Cross-
sectional strain distributions at 37% and 50% relative to the proximal end of the bone are shown 
as well.  
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Figure 5.8 Plot indicating the finite element model-based extrapolated peak and mean principal 
tensile and compressive strains (µε) for axial compressive loads ranging from -1N to -14N. 
Boxes represent compressive strains while triangles represent tensile strains. Green points 
indicate strains in the 37% VOI while blue points indicate strains in the 50% VOI.  
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Figure 5.9 Finite element modeled representative cross-sectional longitudinal strain (µε) 
distributions for a bone segment and for the tibia of an intact hind limb loaded in vivo, both with 
simulated compressive loads of -10N. Cross-sections are shown for VOIs at anatomical 37% and 
50% of bone length relative to the proximal end of the bone. The black line over each cross-
section represents the location and orientation of the neutral axis for each respective case.   
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6. CONCLUSIONS AND FUTURE DIRECTIONS 

It has long been recognized that the healthy skeleton has mechanobiological mechanisms 

that self-regulate its mass and structure based on day-to-day mechanical input in order to 

minimize fracture risk. Failure of these mechanisms results in skeletal diseases, such as 

osteoporosis, that affect millions of people each year. Studying the skeletons anabolic response 

to mechanical stimuli using rodent models has significantly improved our ability to develop 

better preventative and remedial treatments. However, the rodent skeleton does not represent 

vertebrates as a whole (or even the human skeleton), and sole use of those models will continue 

to propagate a gap in our understanding of skeletal response to mechanical stimuli more broadly. 

The work in this dissertation was structured to validate biomechanical techniques (Chapter 2) 

and to develop new animal (Chapters 3 and 4) and in vitro models (Chapter 5) in order to begin 

addressing the large gap in the field regarding skeletal sensitivity and adaptation in vertebrate 

species beyond the common rodent models.  

 In chapter 2, we validated the use of planar strain theory (PST), which predicts cross-

sectional strain distributions based on three longitudinal strain measures, for use on cortical 

bone. This theory has been used frequently to evaluate the diversity of skeletal loading regimes 

in vertebrate long bones during locomotion, but the application of this theory to skeletal 

mechanics had not been previously validated experimentally. PST assumes that cortical bone is 

linearly elastic, isotropic in the transverse plane of section, and has a perfectly cylindrical cross-

section. To validate the use of PST on bone, emu tibiotarsi were instrumented with four rosette 

strain gauges and then loaded in four point bending ex vivo. Measures from three gauges were 

used to predict strains at the fourth gauge site, and each prediction was validated against the 

experimental measures. We found that for all four gauge sites tested, not only did measured and 

predicted longitudinal strains match closely, gauge distribution around the cross section had only 

a small effect on the confidence intervals of our predictions. Our results indicate that PST 

predictions appear to be relatively insensitive to the presence of a marrow canal and the bone 

tissue heterogeneity likely present in the bones we tested. Validating this technique was of 

interest for this thesis because we intended to use PST during the development of a new avian 

tibiotarsus loading model to determine the similarity of the cross-sectional strain distributions 

induced between experimentally applied loading conditions and locomotion. Unfortunately, due 
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to size and cross-sectional geometry, this technique cannot be used on mouse tibiae in vivo. A 

limitation to this work was that we assessed PST in bones ex vivo under pure bending conditions, 

but it is likely that during locomotion, a bone is loaded in a combination of bending, compression 

and torsion, and it is unknown what effects combinations of those loads may have on PST 

predictions.  

Chapters 3 and 4 were complementary in the development of our murine and novel avian 

skeletal loading models in that the former characterized the in vivo bone strains during 

locomotion and axial loading necessary to apply similar relative loads, and the later utilized 

those load levels to assess the multi-week cortical bone response for each species. In Chapter 3, 

in vivo bone strain measurements during locomotion and experimentally applied loading were 

complemented by specimen-specific finite element models. One of the prominent results of the 

comprehensive strain characterizations was how differences in whole-bone geometry between 

the mouse tibia and the chukar partridge TBT led to largely different strain profiles and peak 

strain locations under axial compressive loads. The diaphysis of the chukar TBT is relatively 

straight, with the most significant curvatures occurring at the metaphyses. Fracture failure 

occurred in multiple birds as we attempted to increase our load magnitude to achieve higher peak 

strains at the midshaft, so we were ultimately limited in the increase in strains we could achieve 

at the midshaft relative to peak strains during locomotion. Although loads up to -13N have been 

used successfully to generate a significant woven bone response for the mouse tibial loading 

model (previous unpublished results from author), our desire to compare the response between 

species ultimately limited our load magnitude for the mouse as well. In the end, we applied 

experimental loads inducing 2.5x peak strains during locomotion on the medial midshaft surface 

of the tibia/TBT for both species. The birds also experienced significant soft tissue damage at the 

knee and ankle as a result of daily loading, such that our planned four week study was cut short 

by one week.  

Despite the issues we experienced while developing our avian loading model, our multi-

week loading study results at the midshaft suggest that while the mouse tibia increased its bone 

mass in addition to changes in cross-sectional geometry in response to loading, the bird TBT 

only adapted its geometry and the load actually seemed to suppress natural endosteal growth. 

Based on the models though, despite similar relative increases in strain on the medial midshaft 

surface, peak principal compressive strains were approximately 400µε lower in the midshaft 
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volume of interest for the bird compared to the mouse, so our assessment of the response is based 

solely on the increase in strain relative to during locomotion. The finite element models of the 

mouse tibia and the chukar TBT suggested that the volumes of bone with the most similar peak 

principal compressive strain magnitudes were the 37% volume for the mouse and the 90% 

volume for chukar, but at these regions, an increase in maximum moment of inertia was 

measured at 37% for the mouse, while no statistically significant response was measured at 90% 

for the chukar. In Chapter 4, we also used the CFU-OB assay to assess mineral production from 

similar starting volumes of marrow cells. While the biological significance of quantitative 

differences in mineral produced by 2 million but not 1 million starting cell volumes of marrow 

cells was not clear, the colonies that formed for each species were qualitatively quite different. 

These differences suggest that there were innate differences in the osteoblast progenitor cells 

before they were isolated from the animal, possibly indicating inherent cellular differences 

between the species. 

 In chapter 5, we developed and validated a novel in vitro model to culture murine tibial 

cortical bone segments that can be mechanically loaded in axial compression, similar to current 

popular in vivo tibial loading models. This model was designed so that future studies could 

assess the response to load of cortical bone from various vertebrate species while removed from 

potentially confounding systemic factors including metabolism, growth factors, hormones, etc. 

Currently available models include embryonic and cancellous explants, however both had 

limitations that would prevent a user from assessing a response relative to an applied load, a 

particularly important aspect to consider when the ultimate goal is comparing skeletal sensitivity 

across species. For mouse tibial segments, we validated osteocyte viability at 78% after five days 

in culture, and we suspect that future studies involving mechanical loading of the bones may help 

to retain even higher viability. Additionally, we used similar methods to Chapter 3 (strain gauge 

measurements, finite element models, and planar strain theory) to show that peak principal 

strains were repeatable across multiple bone segments in two volumes of interest, that a similar 

cross-sectional strain distribution relative to in vivo loading is retained, and that simply 

increasing the load magnitude will compensate for the increased stiffness of the mouse tibial 

segment loaded in vitro relative to the in vivo loading situation. Future studies could assess a 

bone’s response to load via genetic regulation, factors released in the media, or possibly even 

gross changes in tissue mass and geometry. While our interest in developing this model was to 
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be able to compare the skeletal response to load across vertebrate species in a more controlled 

environment than in vivo studies allow, we foresee this model being relevant for a large variety 

of basic science and biomedically motivated experiments. 

In general, the chukar partridge tibiotarsal loading model developed in these chapters 

represents a novel non-invasive loading model utilizing an avian species. The functionally 

isolated turkey ulnar loading model was used often back in the 1980s, but it is unclear how the 

invasiveness and non-physiologic loading pattern may have confounded any results. The size of 

the chukar TBT makes it possible to instrument with three strain gauges for in vivo 

characterizations, a significant benefit over the rodent models, who are typically only 

instrumented with one. Using planar strain theory, we were able to compare the cross-sectional 

strain distribution between locomotion and experimentally applied loads using in vivo measured 

values, something that has not been previously done for the rodent models. Not only do a 

minimum of three measurements allow cross-sectional strain characterizations, validations of 

finite element models are more comprehensive. The chukar partridge is also a bipedal animal 

model that exhibits haversian remodeling, making it more similar to humans than the rodents in 

at least a few known aspects.  

Since the overarching goal of this work was to begin assessing skeletal sensitivity and 

response to load across vertebrate species, future studies should seek to increase the number of 

species assessed. Although determining the sensitivity of the skeleton to a specific increase in 

strain is of interest, which can be done if a specific bone region is selected (such as the midshaft), 

development of the bird model demonstrated that differences in whole-bone geometry could 

make achieving similar strains at a specific location difficult across multiple species. Ultimately, 

it may be more feasible to assess the adaptive response relative to the absolute strain stimuli 

predicted by the models at the various regions of the bone rather than relative to peak strains 

measured during physiologic activities. Alternatively, loading methods such as 4-point bending 

could be used to achieve more consistent strain distributions during experimental loading across 

species, but the potentially less physiologic strain distribution induced and the effects of the load 

contact points being close to the region of interest could confound any comparative assessments 

across the species.  Therefore, investigators must carefully choose the loading method and 

magnitude depending on what outcomes they are hoping to assess across species, because the 

issues we experienced with the bird model could occur in other species as well. 
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In addition to assessing the tissue-level response to load across species, future studies 

should also delve into the cellular, genetic, and systemic mechanisms responsible for any 

differences seen across species. Our early work shows that there are differences in the skeleton’s 

response to load across avian and rodent species, implying there must be mechanistic differences 

as well. We have set up a novel cortical bone organ culture model in which bone’s response to 

mechanical load can be studied in vitro without the confounding effects of various levels of 

systemic factors. We believe this model will be very useful in determining how differences in 

innate cell populations and networks across vertebrate species may affect their ability to sense 

and respond to mechanical stimuli. Characterizing genetic regulation after varied amounts of 

loading could also provide insight into mechanistic variations and their tissue-level effect on the 

skeleton. Such insight could allow researchers to make more informed pharmaceutical targets to 

aid in preventing and treating skeletal diseases such as osteoporosis. Ultimately, we hope the 

work presented in this thesis grows the interest in studying skeletal adaptation in a variety of 

vertebrate species both to further enhance our basic understanding of skeletal biology as well as 

to better inform biomedical advancements for treating skeletal disease.  

 

 

 

 

 

 

 

  



112 
 

REFERENCES 

[1] D.M. Cullinane, T.A. Einhorn, Biomechanics of bone, Principles of bone biology 1 (2002) 
17-32. 

[2] T. Katagiri, N. Takahashi, Regulatory mechanisms of osteoblast and osteoclast 
differentiation, Oral Dis 8(3) (2002) 147-59. 

[3] S.P. Fritton, S. Weinbaum, Fluid and Solute Transport in Bone: Flow-Induced 
Mechanotransduction, Annu Rev Fluid Mech 41 (2009) 347-374. 

[4] L.E. Lanyon, Osteocytes, strain detection, bone modeling and remodeling, Calcif Tissue Int 
53 Suppl 1 (1993) S102-6; discussion S106-7. 

[5] Osteoporosis Prevention, Diagnosis, and Therapy., NIH Consens Statement, 2000, pp. 1-36. 

[6] National Institute of Arthritis and Musculoskeletal and Skin Diseases: "Osteoporosis.". 

[7] L.J. Melton, Adverse outcomes of osteoporotic fractures in the general population, J Bone 
Miner Res 18(6) (2003) 1139-41. 

[8] S. Khosla, S. Amin, E. Orwoll, Osteoporosis in men, Endocr Rev 29(4) (2008) 441-64. 

[9] L. Vico, M.H. Lafage-Proust, C. Alexandre, Effects of gravitational changes on the bone 
system in vitro and in vivo, Bone 22(5 Suppl) (1998) 95S-100S. 

[10] T. Lang, A. LeBlanc, H. Evans, Y. Lu, H. Genant, A. Yu, Cortical and trabecular bone 
mineral loss from the spine and hip in long‐duration spaceflight, J Bone M iner Res 19(6) (2004) 
1006-1012. 

[11] J.E. Zerwekh, L.A. Ruml, F. Gottschalk, C.Y.C. Pak, The Effects of Twelve Weeks of Bed 
Rest on Bone Histology, Biochemical Markers of Bone Turnover, and Calcium Homeostasis in 
Eleven Normal Subjects, J Bone Miner Res 13(10) (1998) 1594-1601. 

[12] H. Sievänen, Immobilization and bone structure in humans, Arch. Biochem. Biophys. 
503(1) (2010) 146-152. 

[13] G.D. Roodman, J.J. Windle, Paget disease of bone, J Clin Invest 115(2) (2005) 200-208. 

[14] A. Morales‐Piga, J. Rey‐ Rey, J. Corres‐ González, Í.S. Garc, G. LÓPez‐ Abente, 
Frequency and characteristics of familial aggregation of Paget's disease of bone, J Bone Miner 
Res 10(4) (1995) 663-670. 

[15] T. Van Staa, P. Selby, H. Leufkens, K. Lyles, J. Sprafka, C. Cooper, Incidence and natural 
history of Paget's disease of bone in England and Wales, Journal of Bone and Mineral Research 
17(3) (2002) 465-471. 

[16] R.P. Heaney, Nutritional factors in osteoporosis, Annu. Rev. Nutr. 13(1) (1993) 287-316. 

[17] J.R. Tucci, R.P. Tonino, R.D. Emkey, C.A. Peverly, U. Kher, A.C. Santora, U.A.P.I.O.T.S. 
Group, Effect of three years of oral alendronate treatment in postmenopausal women with 
osteoporosis, Am J Med 101(5) (1996) 488-501. 



113 
 

[18] S.R. Cummings, D.B. Karpf, F. Harris, H.K. Genant, K. Ensrud, A.Z. LaCroix, D.M. Black, 
Improvement in spine bone density and reduction in risk of vertebral fractures during treatment 
with antiresorptive drugs, Am J Med 112(4) (2002) 281-289. 

[19] B. Ettinger, D.M. Black, B.H. Mitlak, R.K. Knickerbocker, T. Nickelsen, H.K. Genant, C. 
Christiansen, P.D. Delmas, J.R. Zanchetta, J. Stakkestad, Reduction of vertebral fracture risk in 
postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year 
randomized clinical trial, Jama 282(7) (1999) 637-645. 

[20] E.G. Lufkin, H.W. Wahner, W.M. O'Fallon, S.F. Hodgson, M.A. Kotowicz, A.W. Lane, 
H.L. Judd, R.H. Caplan, B.L. Riggs, Treatment of postmenopausal osteoporosis with transdermal 
estrogen, Ann. Intern. Med. 117(1) (1992) 1-9. 

[21] P.D. Delmas, N.H. Bjarnason, B.H. Mitlak, A.-C. Ravoux, A.S. Shah, W.J. Huster, M. 
Draper, C. Christiansen, Effects of raloxifene on bone mineral density, serum cholesterol 
concentrations, and uterine endometrium in postmenopausal women, N Engl J Med 337(23) 
(1997) 1641-1647. 

[22] A.B. Hodsman, D.C. Bauer, D.W. Dempster, L. Dian, D.A. Hanley, S.T. Harris, D.L. 
Kendler, M.R. McClung, P.D. Miller, W.P. Olszynski, Parathyroid hormone and teriparatide for 
the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use, 
Endocr Rev 26(5) (2005) 688-703. 

[23] J. Wolff, P. Maquet, R. Furlong, The law of bone remodelling, Springer-Verlag Berlin1986. 

[24] C.T. Rubin, L.E. Lanyon, Regulation of bone mass by mechanical strain magnitude, Calcif 
Tissue Int 37(4) (1985) 411-7. 

[25] A.A. Biewener, S.M. Swartz, J.E. Bertram, Bone modeling during growth: dynamic strain 
equilibrium in the chick tibiotarsus, Calcified Tissue International 39(6) (1986) 390-5. 

[26] T.S. Gross, K.J. McLeod, C.T. Rubin, Characterizing bone strain distributions in vivo using 
three triple rosette strain gages, J Biomech 25(9) (1992) 1081-7. 

[27] D.M. Nunamaker, D.M. Butterweck, M.T. Provost, Fatigue fractures in thoroughbred 
racehorses: relationships with age, peak bone strain, and training, J Orthop Res 8(4) (1990) 604-
11. 

[28] L.E. Lanyon, S. Bourn, The influence of mechanical function on the development and 
remodeling of the tibia. An experimental study in sheep, J Bone Joint Surg Am 61(2) (1979) 
263-73. 

[29] C.T. Rubin, L.E. Lanyon, Limb mechanics as a function of speed and gait: a study of 
functional strains in the radius and tibia of horse and dog, J Exp Biol 101 (1982) 187-211. 

[30] J.R. Mosley, B.M. March, J. Lynch, L.E. Lanyon, Strain magnitude related changes in 
whole bone architecture in growing rats, Bone 20(3) (1997) 191-8. 

[31] Y. Kodama, Y. Umemura, S. Nagasawa, W.G. Beamer, L.R. Donahue, C.R. Rosen, D.J. 
Baylink, J.R. Farley, Exercise and mechanical loading increase periosteal bone formation and 
whole bone strength in C57BL/6J mice but not in C3H/Hej mice, Calcif Tissue Int 66(4) (2000) 
298-306. 



114 
 

[32] C.T. Rubin, L.E. Lanyon, Dynamic strain similarity in vertebrates; an alternative to 
allometric limb bone scaling, J Theor Biol 107(2) (1984) 321-7. 

[33] S.P. Fritton, K.J. McLeod, C.T. Rubin, Quantifying the strain history of bone: spatial 
uniformity and self-similarity of low-magnitude strains, J Biomech 33(3) (2000) 317-25. 

[34] R.L. De Souza, M. Matsuura, F. Eckstein, S.C. Rawlinson, L.E. Lanyon, A.A. Pitsillides, 
Non-invasive axial loading of mouse tibiae increases cortical bone formation and modifies 
trabecular organization: a new model to study cortical and cancellous compartments in a single 
loaded element, Bone 37(6) (2005) 810-8. 

[35] M.E. Lynch, R.P. Main, Q. Xu, D.J. Walsh, M.B. Schaffler, T.M. Wright, M.C. van der 
Meulen, Cancellous bone adaptation to tibial compression is not sex dependent in growing mice, 
J Appl Physiol (1985) 109(3) (2010) 685-91. 

[36] T.D. Brown, D.R. Pedersen, M.L. Gray, R.A. Brand, C.T. Rubin, Toward an identification 
of mechanical parameters initiating periosteal remodeling: a combined experimental and analytic 
approach, J Biomech 23(9) (1990) 893-905. 

[37] G.H. van Lenthe, R. Müller, Prediction of failure load using micro-finite element analysis 
models: Toward in vivo strength assessment, Drug Discov Today Technol 3(2) (2006) 221-9. 

[38] A. Torcasio, X. Zhang, J. Duyck, G.H. van Lenthe, 3D characterization of bone strains in 
the rat tibia loading model, Biomech Model Mechanobiol 11(3-4) (2012) 403-10. 

[39] H. Yang, K.D. Butz, D. Duffy, G.L. Niebur, E.A. Nauman, R.P. Main, Characterization of 
Cancellous and Cortical Bone Strain in the in vivo Mouse Tibial Loading Model Using 
MicroCT-Based Finite Element Analysis, Bone (66) (2014) 131-139. 

[40] M.P. Akhter, D.M. Raab, C.H. Turner, D.B. Kimmel, R.R. Recker, Characterization of in 
vivo strain in the rat tibia during external application of a four-point bending load, J Biomech 
25(10) (1992) 1241-6. 

[41] F.M. Lambers, G. Kuhn, C. Weigt, K.M. Koch, F.A. Schulte, R. Müller, Bone adaptation to 
cyclic loading in murine caudal vertebrae is maintained with age and directly correlated to the 
local micromechanical environment, J Biomech 48(6) (2015) 1179-1187. 

[42] T.S. Gross, J.L. Edwards, K.J. McLeod, C.T. Rubin, Strain gradients correlate with sites of 
periosteal bone formation, J Bone Miner Res 12(6) (1997) 982-8. 

[43] Y. Umemura, T. Ishiko, T. Yamauchi, M. Kurono, S. Mashiko, Five jumps per day increase 
bone mass and breaking force in rats, J Bone Miner Res 12(9) (1997) 1480-1485. 

[44] K.J. Hart, J.M. Shaw, E. Vajda, M. Hegsted, S.C. Miller, Swim-trained rats have greater 
bone mass, density, strength, and dynamics, J Appl Physiol (1985) 91(4) (2001) 1663-8. 

[45] R.K. Fuchs, J.J. Bauer, C.M. Snow, Jumping improves hip and lumbar spine bone mass in 
prepubescent children: a randomized controlled trial, J Bone Miner Res 16(1) (2001) 148-56. 

[46] C. Snow, D. Williams, J. LaRiviere, R. Fuchs, T. Robinson, Bone gains and losses follow 
seasonal training and detraining in gymnasts, Calcif. Tissue Int. 69(1) (2001) 7-12. 

[47] L.E. Lanyon, C.T. Rubin, Static vs dynamic loads as an influence on bone remodelling, 
Journal of Biomechanics 17(12) (1984) 897-905. 



115 
 

[48] A.G. Torrance, J.R. Mosley, R.F. Suswillo, L.E. Lanyon, Noninvasive loading of the rat 
ulna in vivo induces a strain-related modeling response uncomplicated by trauma or periostal 
pressure, Calcif Tissue Int 54(3) (1994) 241-7. 

[49] Y.F. Hsieh, A.G. Robling, W.T. Ambrosius, D.B. Burr, C.H. Turner, Mechanical loading of 
diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location, J 
Bone Miner Res 16(12) (2001) 2291-7. 

[50] C.T. Rubin, L.E. Lanyon, Regulation of bone formation by applied dynamic loads, J Bone 
Joint Surg Am 66(3) (1984) 397-402. 

[51] T. Sugiyama, L.B. Meakin, W.J. Browne, G.L. Galea, J.S. Price, L.E. Lanyon, Bones' 
adaptive response to mechanical loading is essentially linear between the low strains associated 
with disuse and the high strains associated with the lamellar/woven bone transition, Journal of 
Bone and Mineral Research 27(8) (2012) 1784-93. 

[52] J.R. Mosley, L.E. Lanyon, Strain rate as a controlling influence on adaptive modeling in 
response to dynamic loading of the ulna in growing male rats, Bone 23(4) (1998) 313-8. 

[53] C.H. Turner, I. Owan, Y. Takano, Mechanotransduction in bone: role of strain rate, Am J 
Physiol 269(3 Pt 1) (1995) E438-42. 

[54] Y.F. Hsieh, C.H. Turner, Effects of loading frequency on mechanically induced bone 
formation, J Bone Miner Res 16(5) (2001) 918-24. 

[55] A.G. Robling, D.B. Burr, C.H. Turner, Recovery periods restore mechanosensitivity to 
dynamically loaded bone, J Exp Biol 204(Pt 19) (2001) 3389-99. 

[56] A.G. Robling, D.B. Burr, C.H. Turner, Partitioning a daily mechanical stimulus into discrete 
loading bouts improves the osteogenic response to loading, J Bone Miner Res 15(8) (2000) 
1596-602. 

[57] S. Srinivasan, D.A. Weimer, S.C. Agans, S.D. Bain, T.S. Gross, Low-magnitude mechanical 
loading becomes osteogenic when rest is inserted between each load cycle, J Bone Miner Res 
17(9) (2002) 1613-20. 

[58] S. Srinivasan, S.C. Agans, K.A. King, N.Y. Moy, S.L. Poliachik, T.S. Gross, Enabling bone 
formation in the aged skeleton via rest-inserted mechanical loading, Bone 33(6) (2003) 946-55. 

[59] C.H. Turner, Y. Takano, I. Owan, Aging changes mechanical loading thresholds for bone 
formation in rats, J Bone Miner Res 10(10) (1995) 1544-9. 

[60] C.T. Rubin, S.D. Bain, K.J. McLeod, Suppression of the osteogenic response in the aging 
skeleton, Calcif Tissue Int 50(4) (1992) 306-13. 

[61] L.B. Meakin, G.L. Galea, T. Sugiyama, L.E. Lanyon, J.S. Price, Age‐Rel ated Impairment 
of Bones' Adaptive Response to Loading in Mice Is Associated With Sex‐Related Deficiencies 
in Osteoblasts but No Change in Osteocytes, J Bone Miner Res 29(8) (2014) 1859-1871. 

[62] A.M. Parfitt, M.K. Drezner, F.H. Glorieux, J.A. Kanis, H. Malluche, P.J. Meunier, S.M. Ott, 
R.R. Recker, Bone histomorphometry: standardization of nomenclature, symbols, and units: 
report of the ASBMR Histomorphometry Nomenclature Committee, J Bone and Miner Res 2(6) 
(1987) 595-610. 



116 
 

[63] M.R. Forwood, Inducible cyclo-oxygenase (COX-2) mediates the induction of bone 
formation by mechanical loading in vivo, J Bone Miner Res 11(11) (1996) 1688-93. 

[64] J. Li, D.B. Burr, C.H. Turner, Suppression of prostaglandin synthesis with NS-398 has 
different effects on endocortical and periosteal bone formation induced by mechanical loading, 
Calcif Tissue Int 70(4) (2002) 320-9. 

[65] V. Krishnan, H.U. Bryant, O.A. MacDougald, Regulation of bone mass by Wnt signaling, J 
Clin Invest 116(5) (2006) 1202-1209. 

[66] J.A. Robinson, M. Chatterjee-Kishore, P.J. Yaworsky, D.M. Cullen, W. Zhao, C. Li, Y. 
Kharode, L. Sauter, P. Babij, E.L. Brown, A.A. Hill, M.P. Akhter, M.L. Johnson, R.R. Recker, 
B.S. Komm, F.J. Bex, Wnt/beta-catenin signaling is a normal physiological response to 
mechanical loading in bone, J Biol Chem 281(42) (2006) 31720-8. 

[67] L.K. Saxon, B.F. Jackson, T. Sugiyama, L.E. Lanyon, J.S. Price, Analysis of multiple bone 
responses to graded strains above functional levels, and to disuse, in mice in vivo show that the 
human Lrp5 G171V High Bone Mass mutation increases the osteogenic response to loading but 
that lack of Lrp5 activity reduces it, Bone 49(2) (2011) 184-93. 

[68] K. Sawakami, A. Robling, N. Pitner, S. Warden, J. Li, M. Ai, M. Warman, C. Turner, Site-
specific osteopenia and decreased mechanoreactivity in Lrp5-mutant mice, J Bone Miner Res, 
AMER SOC BONE & MINERAL RES, 2004, pp. S38-S38. 

[69] D.G. Winkler, M.K. Sutherland, J.C. Geoghegan, C. Yu, T. Hayes, J.E. Skonier, D. 
Shpektor, M. Jonas, B.R. Kovacevich, K. Staehling‐ Hampton, Osteocyte control of bone 
formation via sclerostin, a novel BMP antagonist, EMBO J. 22(23) (2003) 6267-6276. 

[70] X. Li, Y. Zhang, H. Kang, W. Liu, P. Liu, J. Zhang, S.E. Harris, D. Wu, Sclerostin binds to 
LRP5/6 and antagonizes canonical Wnt signaling, J. Biol. Chem. 280(20) (2005) 19883-19887. 

[71] T.A. Burgers, B.O. Williams, Regulation of Wnt/β-catenin signaling within and from 
osteocytes, Bone 54(2) (2013) 244-249. 

[72] M. Watanuki, A. Sakai, T. Sakata, H. Tsurukami, M. Miwa, Y. Uchida, K. Watanabe, K. 
Ikeda, T. Nakamura, Role of inducible nitric oxide synthase in skeletal adaptation to acute 
increases in mechanical loading, J Bone Miner Res 17(6) (2002) 1015-25. 

[73] S.W. Fox, T.J. Chambers, J.W. Chow, Nitric oxide is an early mediator of the increase in 
bone formation by mechanical stimulation, Am J Physiol 270(6 Pt 1) (1996) E955-60. 

[74] D.M. Raab-Cullen, M.A. Thiede, D.N. Petersen, D.B. Kimmel, R.R. Recker, Mechanical 
loading stimulates rapid changes in periosteal gene expression, Calcif Tissue Int 55(6) (1994) 
473-8. 

[75] S.M. Mantila Roosa, Y. Liu, C.H. Turner, Gene expression patterns in bone following 
mechanical loading, J Bone Miner Res 26(1) (2011) 100-112. 

[76] X. Tu, J. Delgado-Calle, K.W. Condon, M. Maycas, H. Zhang, N. Carlesso, M.M. Taketo, 
D.B. Burr, L.I. Plotkin, T. Bellido, Osteocytes mediate the anabolic actions of canonical Wnt/β-
catenin signaling in bone, Proc. Natl. Acad. Sci. USA 112(5) (2015) E478-E486. 

[77] D.J. Hadjidakis, I.I. Androulakis, Bone remodeling, Ann. N. Y. Acad. Sci. 1092(1) (2006) 
385-396. 



117 
 

[78] C.H. Kim, E. Takai, H. Zhou, D. Von Stechow, R. Müller, D.W. Dempster, X.E. Guo, 
Trabecular bone response to mechanical and parathyroid hormone stimulation: the role of 
mechanical microenvironment, J Bone Miner Res 18(12) (2003) 2116-2125. 

[79] L. Qin, L.J. Raggatt, N.C. Partridge, Parathyroid hormone: a double-edged sword for bone 
metabolism, Trends Endocrinol Metab 15(2) (2004) 60-65. 

[80] T. Sugiyama, L.K. Saxon, G. Zaman, A. Moustafa, A. Sunters, J.S. Price, L.E. Lanyon, 
Mechanical loading enhances the anabolic effects of intermittent parathyroid hormone (1-34) on 
trabecular and cortical bone in mice, Bone 43(2) (2008) 238-48. 

[81] L.I. Plotkin, R.S. Weinstein, A.M. Parfitt, P.K. Roberson, S.C. Manolagas, T. Bellido, 
Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin, J Clin Invest 
104(10) (1999) 1363-1374. 

[82] T. Chambers, C. Magnus, Calcitonin alters behaviour of isolated osteoclasts, J. Pathol. 
136(1) (1982) 27-39. 

[83] C.A. O’Brien, D. Jia, L.I. Plotkin, T. Bellido, C.C. Powers, S.A. Stewart, S.C. Manolagas, 
R.S. Weinstein, Glucocorticoids act directly on osteoblasts and osteocytes to induce their 
apoptosis and reduce bone formation and strength, Endocrinology 145(4) (2004) 1835-1841. 

[84] E. Canalis, G. Mazziotti, A. Giustina, J.P. Bilezikian, Glucocorticoid-induced osteoporosis: 
pathophysiology and therapy, Osteoporosis International 18(10) (2007) 1319-1328. 

[85] R.S. Weinstein, R.L. Jilka, A.M. Parfitt, S.C. Manolagas, Inhibition of osteoblastogenesis 
and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential 
mechanisms of their deleterious effects on bone, J Clin Invest 102(2) (1998) 274. 

[86] E. Spencer, C. Liu, E. Si, G. Howard, In vivo actions of insulin-like growth factor-I (IGF-I) 
on bone formation and resorption in rats, Bone 12(1) (1991) 21-26. 

[87] J.K. Yeh, J.F. Aloia, M. Chen, N. Ling, H. Koo, W.J. Millard, Effect of growth hormone 
administration and treadmill exercise on serum and skeletal IGF-I in rats, Am J Physiol 
Endocrinol Metab 266(1) (1994) E129-E135. 

[88] T. Kameda, H. Mano, T. Yuasa, Y. Mori, K. Miyazawa, M. Shiokawa, Y. Nakamaru, E. 
Hiroi, K. Hiura, A. Kameda, Estrogen inhibits bone resorption by directly inducing apoptosis of 
the bone-resorbing osteoclasts, The Journal of experimental medicine 186(4) (1997) 489-495. 

[89] L. Montes, N. Le Roy, M. Perret, V. De Buffrenil, J. Castanet, J. Cubo, Relationships 
between bone growth rate, body mass and resting metabolic rate in growing amniotes: a 
phylogenetic approach, Biol J Linnean Soc 92(1) (2007) 63-76. 

[90] R.W. Blob, A.A. Biewener, In vivo locomotor strain in the hindlimb bones of Alligator 
mississippiensis and Iguana iguana: implications for the evolution of limb bone safety factor and 
non-sprawling limb posture, J Exp Biol 202(9) (1999) 1023-1046. 

[91] A. Casinos, J. Cubo, Avian long bones, flight and bipedalism, Comp Biochem Physiol A 
Mol Integr Physiol 131(1) (2001) 159-167. 

[92] J. Cubo, A. Casinos, Incidence and mechanical significance of pneumatization in the long 
bones of birds, Zoological Journal of the Linnean Society 130(4) (2000) 499-510. 



118 
 

[93] E.R. Dumont, Bone density and the lightweight skeletons of birds, Proceedings of the Royal 
Society of London B: Biological Sciences  (2010) rspb20100117. 

[94] J. Currey, The many adaptations of bone, J Biomech 36(10) (2003) 1487-1495. 

[95] J. Currey, The evolution of the mechanical properties of amniote bone, J Biomech 20(11) 
(1987) 1035-1044. 

[96] K. Simkiss, Calcium metabolism and avian reproduction, Biological Reviews 36(3) (1961) 
321-359. 

[97] C. Dacke, S. Arkle, D. Cook, I. Wormstone, S. Jones, M. Zaidi, Z. Bascal, Medullary bone 
and avian calcium regulation, Journal of Experimental Biology 184(1) (1993) 63-88. 

[98] S.C. Miller, B.M. Bowman, Medullary bone osteogenesis following estrogen administration 
to mature male Japanese quail, Developmental biology 87(1) (1981) 52-63. 

[99] J. Pritchard, A. Ruzicka, Comparison of fracture repair in the frog, lizard and rat, Journal of 
anatomy 84(Pt 3) (1950) 236. 

[100] M.P. Akhter, D.M. Cullen, E.A. Pedersen, D.B. Kimmel, R.R. Recker, Bone response to in 
vivo mechanical loading in two breeds of mice, Calcif Tissue Int 63(5) (1998) 442-9. 

[101] R.P. Main, A.A. Biewener, Skeletal strain patterns and growth in the emu hindlimb during 
ontogeny, J Exp Biol 210(Pt 15) (2007) 2676-90. 

[102] R.W. Blob, A.A. Biewener, In vivo locomotor strain in the hindlimb bones of Alligator 
mississippiensis and Iguana iguana: implications for the evolution of limb bone safety factor and 
non-sprawling limb posture, Journal of Experimental Biology 202(9) (1999) 1023-1046. 

[103] A. Biewener, K. Dial, In vivo strain in the humerus of pigeons (Columba livia) during 
flight, Journal of Morphology 225(1) (1995) 61-75. 

[104] M.T. Butcher, B.J. White, N.B. Hudzik, W.C. Gosnell, J.H. Parrish, R.W. Blob, In vivo 
strains in the femur of the Virginia opossum (Didelphis virginiana) during terrestrial locomotion: 
testing hypotheses of evolutionary shifts in mammalian bone loading and design, The Journal of 
experimental biology 214(15) (2011) 2631-2640. 

[105] M.T. Butcher, N.R. Espinoza, S.R. Cirilo, R.W. Blob, In vivo strains in the femur of river 
cooter turtles (Pseudemys concinna) during terrestrial locomotion: tests of force-platform models 
of loading mechanics, Journal of Experimental Biology 211(15) (2008) 2397-2407. 

[106] A. Biewener, In vivo measurement of bone strain and tendon force, Biomechanics–
Structures and Systems: A Practical Approach  (1992) 123-147. 

[107] D. Carter, W. Harris, R. Vasu, W. Caler, The mechanical and biological response of 
cortical bone to in vivo strain histories, Mechanical properties of bone 45 (1981) 81-92. 

[108] D.E. Lieberman, J.D. Polk, B. Demes, Predicting long bone loading from cross‐sectional 
geometry, American Journal of Physical Anthropology 123(2) (2004) 156-171. 

[109] D.R. Carter, Anisotropic analysis of strain rosette information from cortical bone, Journal 
of biomechanics 11(4) (1978) 199-202. 

[110] R.P. Main, Ontogenetic relationships between in vivo strain environment, bone 
histomorphometry and growth in the goat radius, Journal of anatomy 210(3) (2007) 272-293. 



119 
 

[111] R.P. Main, A.A. Biewener, Ontogenetic patterns of limb loading, in vivo bone strains and 
growth in the goat radius, Journal of Experimental Biology 207(15) (2004) 2577-2588. 

[112] M.T. Butcher, R.W. Blob, Mechanics of limb bone loading during terrestrial locomotion in 
river cooter turtles (Pseudemys concinna), J Exp Biol 211(8) (2008) 1187-1202. 

[113] M.T. Butcher, B.J. White, N.B. Hudzik, W.C. Gosnell, J.H. Parrish, R.W. Blob, In vivo 
strains in the femur of the Virginia opossum (Didelphis virginiana) during terrestrial locomotion: 
testing hypotheses of evolutionary shifts in mammalian bone loading and design, J Exp Biol 
214(15) (2011) 2631-2640. 

[114] K.A. Metzger, W.J. Daniel, C.F. Ross, Comparison of beam theory and finite‐element 
analysis with in vivo bone strain data from the alligator cranium, The Anatomical Record Part A: 
Discoveries in Molecular, Cellular, and Evolutionary Biology 283(2) (2005) 331-348. 

[115] O. Panagiotopoulou, S. Wilshin, E. Rayfield, S. Shefelbine, J. Hutchinson, What makes an 
accurate and reliable subject-specific finite element model? A case study of an elephant femur, 
Journal of The Royal Society Interface 9(67) (2012) 351-361. 

[116] C.H. Turner, Three rules for bone adaptation to mechanical stimuli, Bone 23(5) (1998) 
399-407. 

[117] L.E. Lanyon, Control of bone architecture by functional load bearing, Journal of Bone and 
Mineral Research 7(S2) (1992). 

[118] M. Pead, T. Skerry, L. Lanyon, JBMR Anniversary Classic, JOURNAL OF BONE AND 
MINERAL RESEARCH 3(6) (1988). 

[119] T. Sugiyama, J.S. Price, L.E. Lanyon, Functional adaptation to mechanical loading in both 
cortical and cancellous bone is controlled locally and is confined to the loaded bones, Bone 46(2) 
(2010) 314-321. 

[120] C.T. Rubin, K.J. McLeod, S.D. Bain, Functional strains and cortical bone adaptation: 
epigenetic assurance of skeletal integrity, Journal of Biomechanics 23 (1990) 4351-4954. 

[121] A.L. Huddleston, D. Rockwell, D.N. Kulund, R.B. Harrison, Bone mass in lifetime tennis 
athletes, Jama 244(10) (1980) 1107-1109. 

[122] H. Haapasalo, P. Kannus, H. Sievänen, M. Pasanen, K. Uusi‐Rasi, A. Heinonen, P. Oja, I . 
Vuori, Effect of long‐term unilateral  activity on bone mineral density of female junior tennis 
players, Journal of Bone and Mineral Research 13(2) (1998) 310-319. 

[123] S.J. Warden, E.D. Bogenschutz, H.D. Smith, A.R. Gutierrez, Throwing induces substantial 
torsional adaptation within the midshaft humerus of male baseball players, Bone 45(5) (2009) 
931-941. 

[124] P.C. Rambaut, R.S. Johnston, Prolonged weightlessness and calcium loss in man, Acta 
astronautica 6(9) (1979) 1113-1122. 

[125] J.D. Sibonga, H.J. Evans, H. Sung, E. Spector, T. Lang, V. Oganov, A. Bakulin, L. 
Shackelford, A. LeBlanc, Recovery of spaceflight-induced bone loss: bone mineral density after 
long-duration missions as fitted with an exponential function, Bone 41(6) (2007) 973-978. 

[126] C.H. Turner, M.R. Forwood, J.Y. Rho, T. Yoshikawa, Mechanical loading thresholds for 
lamellar and woven bone formation, J Bone Miner Res 9(1) (1994) 87-97. 



120 
 

[127] M.R. Forwood, C.H. Turner, Skeletal adaptations to mechanical usage: results from tibial 
loading studies in rats, Bone 17(4 Suppl) (1995) 197S-205S. 

[128] K.C. Lee, A. Maxwell, L.E. Lanyon, Validation of a technique for studying functional 
adaptation of the mouse ulna in response to mechanical loading, Bone 31(3) (2002) 407-12. 

[129] D. Cullen, R. Smith, M. Akhter, Bone-loading response varies with strain magnitude and 
cycle number, Journal of Applied Physiology 91(5) (2001) 1971-1976. 

[130] P. Sztefek, M. Vanleene, R. Olsson, R. Collinson, A.A. Pitsillides, S. Shefelbine, Using 
digital image correlation to determine bone surface strains during loading and after adaptation of 
the mouse tibia, J Biomech 43(4) (2010) 599-605. 

[131] A. Moustafa, T. Sugiyama, J. Prasad, G. Zaman, T.S. Gross, L.E. Lanyon, J.S. Price, 
Mechanical loading-related changes in osteocyte sclerostin expression in mice are more closely 
associated with the subsequent osteogenic response than the peak strains engendered, Osteoporos 
Int 23(4) (2012) 1225-34. 

[132] B.M. Willie, A.I. Birkhold, H. Razi, T. Thiele, M. Aido, B. Kruck, A. Schill, S. Checa, 
R.P. Main, G.N. Duda, Diminished response to in vivo mechanical loading in trabecular and not 
cortical bone in adulthood of female C57Bl/6 mice coincides with a reduction in deformation to 
load, Bone 55(2) (2013) 335-46. 

[133] T.K. Patel, M.D. Brodt, M.J. Silva, Experimental and finite element analysis of strains 
induced by axial tibial compression in young-adult and old female C57Bl/6 mice, J Biomech 
47(2) (2014) 451-7. 

[134] E.S. Orwoll, J.K. Belknap, R.F. Klein, Gender specificity in the genetic determinants of 
peak bone mass, Journal of Bone and Mineral Research 16(11) (2001) 1962-1971. 

[135] B.T. Kim, L. Mosekilde, Y. Duan, X.Z. Zhang, L. Tornvig, J.S. Thomsen, E. Seeman, The 
structural and hormonal basis of sex differences in peak appendicular bone strength in rats, 
Journal of Bone and Mineral Research 18(1) (2003) 150-155. 

[136] P. Zioupos, J. Currey, Changes in the stiffness, strength, and toughness of human cortical 
bone with age, Bone 22(1) (1998) 57-66. 

[137] X. Wang, X. Shen, X. Li, C.M. Agrawal, Age-related changes in the collagen network and 
toughness of bone, Bone 31(1) (2002) 1-7. 

[138] L.B. Meakin, T. Sugiyama, G.L. Galea, W.J. Browne, L.E. Lanyon, J.S. Price, Male mice 
housed in groups engage in frequent fighting and show a lower response to additional bone 
loading than females or individually housed males that do not fight, Bone 54(1) (2013) 113-117. 

[139] R. Fleming, C. Whitehead, D. Alvey, N. Gregory, L. Wilkins, Bone structure and breaking 
strength in laying hens housed in different husbandry systems, British poultry science 35(5) 
(1994) 651-662. 

[140] C. Rubin, T. Gross, Y.X. Qin, S. Fritton, F. Guilak, K. McLeod, Differentiation of the 
bone-tissue remodeling response to axial and torsional loading in the turkey ulna, J Bone Joint 
Surg Am 78(10) (1996) 1523-33. 

[141] J.E. Bertram, S.M. Swartz, The 'law of bone transformation': a case of crying Wolff?, Biol 
Rev Camb Philos Soc 66(3) (1991) 245-73. 



121 
 

[142] R.P. Main, A.A. Biewener, Skeletal strain patterns and growth in the emu hindlimb during 
ontogeny, Journal of Experimental Biology 210(Pt 15) (2007) 2676-90. 

[143] A.A. Biewener, C.R. Taylor, Bone strain: a determinant of gait and speed?, Journal of 
Experimental Biology 123(1) (1986) 383-400. 

[144] M.J. Silva, M.D. Brodt, W.J. Hucker, Finite element analysis of the mouse tibia: 
Estimating endocortical strain during three‐point bending in SAMP6 osteoporotic mice, Anat 
Rec A Discov Mol Cell Evol Biol 283(2) (2005) 380-390. 

[145] Q. Fang, D.A. Boas, Tetrahedral mesh generation from volumetric binary and grayscale 
images, Biomedical Imaging: From Nano to Macro, 2009. ISBI'09. IEEE International 
Symposium on, Ieee, 2009, pp. 1142-1145. 

[146] S.K. Easley, M.G. Jekir, A.J. Burghardt, M. Li, T.M. Keaveny, Contribution of the intra-
specimen variations in tissue mineralization to PTH-and raloxifene-induced changes in stiffness 
of rat vertebrae, Bone 46(4) (2010) 1162-1169. 

[147] J. Bertram, Y. Polevoy, D. Cullinane, Mechanics of avian fibrous periosteum: tensile and 
adhesion properties during growth, Bone 22(6) (1998) 669-675. 

[148] A. Matson, N. Konow, S. Miller, P.P. Konow, T.J. Roberts, Tendon material properties 
vary and are interdependent among turkey hindlimb muscles, Journal of Experimental Biology 
215(20) (2012) 3552-3558. 

[149] K.A. Verner, M. Lehner, L.P. Lamas, R.P. Main, Experimental tests of planar strain theory 
for predicting bone cross-sectional longitudinal and shear strains, Journal of Experimental 
Biology 219(19) (2016) 3082-3090. 

[150] A.A. Biewener, Biomechanics-- structures and systems: a practical approach, IRL Press at 
Oxford University Press1992. 

[151] D.B. Burr, C. Milgrom, D. Fyhrie, M. Forwood, M. Nyska, A. Finestone, S. Hoshaw, E. 
Saiag, A. Simkin, In vivo measurement of human tibial strains during vigorous activity, Bone 
18(5) (1996) 405-410. 

[152] J. Prasad, B.P. Wiater, S.E. Nork, S.D. Bain, T.S. Gross, Characterizing gait induced 
normal strains in a murine tibia cortical bone defect model, Journal of biomechanics 43(14) 
(2010) 2765-2770. 

[153] A.A. Biewener, J.E. Bertram, Structural response of growing bone to exercise and disuse, 
Journal of Applied Physiology 76(2) (1994) 946-955. 

[154] L. Rowland, J.L. Fry, R. Christmas, A. O’Steen, R. Harms, Differences in tibia strength 
and bone ash among strains of layers, Poultry Science 51(5) (1972) 1612-1615. 

[155] N. Rath, G. Huff, W. Huff, J. Balog, Factors regulating bone maturity and strength in 
poultry, Poultry Science 79(7) (2000) 1024-1032. 

[156] M.R. Forwood, M.B. Bennett, A.R. Blowers, R.L. Nadorfi, Modification of the in vivo 
four-point loading model for studying mechanically induced bone adaptation, Bone 23(3) (1998) 
307-10. 



122 
 

[157] T.S. Gross, S. Srinivasan, C.C. Liu, T.L. Clemens, S.D. Bain, Noninvasive loading of the 
murine tibia: an in vivo model for the study of mechanotransduction, J Bone Miner Res 17(3) 
(2002) 493-501. 

[158] L.E. Lanyon, C.T. Rubin, Static vs dynamic loads as an influence on bone remodelling, J 
Biomech 17(12) (1984) 897-905. 

[159] M.E. Lynch, R.P. Main, Q. Xu, T.L. Schmicker, M.B. Schaffler, T.M. Wright, M.C. van 
der Meulen, Tibial compression is anabolic in the adult mouse skeleton despite reduced 
responsiveness with aging, Bone 49(3) (2011) 439-46. 

[160] K.C. Lee, H. Jessop, R. Suswillo, G. Zaman, L.E. Lanyon, The adaptive response of bone 
to mechanical loading in female transgenic mice is deficient in the absence of oestrogen 
receptor-alpha and -beta, J Endocrinol 182(2) (2004) 193-201. 

[161] A. Morse, M. McDonald, N. Kelly, K. Melville, A. Schindeler, I. Kramer, M. Kneissel, M. 
van der Meulen, D. Little, Mechanical Load Increases in Bone Formation Via a Sclerostin-
Independent Pathway, J Bone Miner Res  (2014). 

[162] S. Harris, J. Gluhak-Heinrich, M. Harris, W. Yang, L. Bonewald, D. Riha, P. Rowe, A. 
Robling, C. Turner, J. Feng, M. McKee, D. Nicollela, DMP1 and MEPE expression are elevated 
in osteocytes after mechanical loading in vivo: Theoretical role in controlling mineral quality in 
the perilacunar matrix, Journal of Musculoskeletal Neuronal Interactions 7(4) (2007) 313-5. 

[163] R.L. Jilka, The Relevance of Mouse Models for Investigating  Age-Related Bone Loss in 
Humans, The Journals of Gerontology: Series A 68(10) (2017) 1209-1217. 

[164] A.A. Biewener, Safety factors in bone strength, Calcified Tissue International 53 (1993) 
S68-S74. 

[165] H. Yang, R.E. Embry, R.P. Main, Effects of Loading Duration and Short Rest Insertion on 
Cancellous and Cortical Bone Adaptation in the Mouse Tibia, PloS one 12(1) (2017) e0169519. 

[166] D.W. Dempster, J.E. Compston, M.K. Drezner, F.H. Glorieux, J.A. Kanis, H. Malluche, 
P.J. Meunier, S.M. Ott, R.R. Recker, A.M. Parfitt, Standardized nomenclature, symbols, and 
units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry 
Nomenclature Committee, Journal of Bone and Mineral Research 28(1) (2013) 2-17. 

[167] C.A. Gregory, W. Grady Gunn, A. Peister, D.J. Prockop, An Alizarin red-based assay of 
mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction, 
Analytical Biochemistry 329(1) (2004) 77-84. 

[168] H.M. Frost, S.C.C. Department of Orthopaedic Surgery, Pueblo, CO 81004, Skeletal 
structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff's Law: The bone 
modeling problem, The Anatomical Record 226(4) (2017) 403-413. 

[169] A.G. Robling, A.B. Castillo, C.H. Turner, Biomechanical and molecular regulation of bone 
remodeling, Annu Rev Biomed Eng 8 (2006) 455-98. 

[170] M.C.H.v.d. Meulen, mcv3@cornell.edu, C.U. Sibley School of Mechanical and Aerospace 
Engineering, Ithaca, NY, USA, R.D. Biomechanics and Biomaterials Section, Hospital for 
Special Surgery, New York, NY, USA, K.J. Jepsen, M.S.S.o.M. Department of Orthopedics, 
New York, NY, USA, B. Mikić, S.C. Picker Engineering Program, Northampton, MA, USA, 
Understanding bone strength: size isn’t everything, Bone 29(2) (2001) 101-104. 



123 
 

[171] R.L. Jilka, K. Takahashi, M. Munshi, D.C. Williams, P.K. Roberson, S.C. Manolagas, 
Loss of estrogen upregulates osteoblastogenesis in the murine bone marrow. Evidence for 
autonomy from factors released during bone resorption, Journal of Clinical Investigation 101(9) 
(1998) 1942. 

[172] J.E. Aubin, Bone stem cells, Journal of Cellular Biochemistry 72(S30‒31) (1998) 73-82. 

[173] N. Giuliani, M. Pedrazzoni, G. Negri, G. Passeri, M. Impicciatore, G. Girasole, 
Bisphosphonates Stimulate Formation of Osteoblast Precursors and Mineralized Nodules in 
Murine and Human Bone Marrow Cultures In Vitro and Promote Early Osteoblastogenesis in 
Young and Aged Mice In Vivo, Bone 22(5) (1998) 455-461. 

[174] A. Peister, J.A. Mellad, B.L. Larson, B.M. Hall, L.F. Gibson, D.J. Prockop, Adult stem 
cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface 
epitopes, rates of proliferation, and differentiation potential, Blood 103(5) (2004) 1662-1668. 

[175] D.W. Dempster, F. Cosman, M. Parisien, V. Shen, R. Lindsay, Anabolic actions of 
parathyroid hormone on bone, Endocrine reviews 14(6) (1993) 690-709. 

[176] L.G. Raisz, Physiology and pathophysiology of bone remodeling, Clinical chemistry 45(8) 
(1999) 1353-1358. 

[177] R.L. Duncan, C.H. Turner, Mechanotransduction and the functional response of bone to 
mechanical strain, Calcif Tissue Int 57(5) (1995) 344-58. 

[178] E.F. Eriksen, Cellular mechanisms of bone remodeling, Rev Endocr Metab Disord 11(4) 
(2010) 219-227. 

[179] S. Fukumoto, T.J. Martin, Bone as an endocrine organ, Trends Endocrinol Metab 20(5) 
(2009) 230-236. 

[180] M. Kassem, W. Blum, J. Ristelli, L. Mosekilde, E. Eriksen, Growth hormone stimulates 
proliferation and differentiation of normal human osteoblast-like cells in vitro, Calcified Tissue 
International 52(3) (1993) 222-226. 

[181] E. Canalis, M. Centrella, T. McCarthy, Effects of basic fibroblast growth factor on bone 
formation in vitro, Journal of Clinical Investigation 81(5) (1988) 1572. 

[182] E. Canalis, J. Lian, Effects of bone associated growth factors on DNA, collagen and 
osteocalcin synthesis in cultured fetal rat calvariae, Bone 9(4) (1988) 243-246. 

[183] H. Stracke, A. Schulz, D. Moeller, S. Rossol, H. Schatz, Effect of growth hormone on 
osteoblasts and demonstration of somatomedin-C/IGF I in bone organ culture, Acta 
endocrinologica 107(1) (1984) 16-24. 

[184] G.A. Howard, B.L. Bottemiller, R.T. Turner, J.I. Rader, D.J. Baylink, Parathyroid 
hormone stimulates bone formation and resorption in organ culture: evidence for a coupling 
mechanism, Proceedings of the National Academy of Sciences 78(5) (1981) 3204-3208. 

[185] A.H. Tashjian, J.E. Tice, K. Sides, Biological activities of prostaglandin analogues and 
metabolites on bone in organ culture, Nature 266(5603) (1977) 645-647. 

[186] M.M. Saunders, L.A. Simmerman, G.L. Reed, N.A. Sharkey, A.F. Taylor, Biomimetic 
bone mechanotransduction modeling in neonatal rat femur organ cultures: structural verification 
of proof of concept, Biomech Model Mechanobiol 9(5) (2010) 539-550. 



124 
 

[187] S.L. Dallas, G. Zaman, M.J. Pead, L.E. Lanyon, Early strain‐related changes in cultured 
embryonic chick tibiotarsi parallel those associated with adaptive modeling in vivo, Journal of 
Bone and Mineral Research 8(3) (1993) 251-259. 

[188] G. Zaman, S.L. Dallas, L.E. Lanyon, Cultured embryonic bone shafts show osteogenic 
responses to mechanical loading, Calcified tissue international 51(2) (1992) 132-136. 

[189] S.C. Rawlinson, A.J. El‐Haj, S.L. M inter, I .A. Tavares, A. Bennett, L.E. Lanyon, 
Loading‐related increases in prostaglandin production in cores of adult canine cancellous bone 
in vitro: A role for prostacyclin in adaptive bone remodeling?, Journal of bone and mineral 
research 6(12) (1991) 1345-1351. 

[190] M.E. Chan, X.L. Lu, B. Huo, A.D. Baik, V. Chiang, R.E. Guldberg, H.H. Lu, X.E. Guo, A 
Trabecular Bone Explant Model of Osteocyte–Osteoblast Co-Culture for Bone Mechanobiology, 
Cellular and Molecular Bioengineering 2(3) (2009) 405-415. 

[191] V. Mann, C. Huber, G. Kogianni, D. Jones, B. Noble, The influence of mechanical 
stimulation on osteocyte apoptosis and bone viability in human trabecular bone, Journal of 
musculoskeletal & neuronal interactions 6(4) (2006) 408. 

[192] C. Davies, D. Jones, M. Stoddart, K. Koller, E. Smith, C. Archer, R. Richards, 
Mechanically loaded ex vivo bone culture system ‘Zetos’: systems and culture preparation, Eur 
Cell Mater 11 (2006) 57-75. 

[193] E. Takai, R.L. Mauck, C.T. Hung, X.E. Guo, Osteocyte viability and regulation of 
osteoblast function in a 3D trabecular bone explant under dynamic hydrostatic pressure, Journal 
of bone and mineral research 19(9) (2004) 1403-1410. 

[194] A.J.E. Haj, S.L. Minter, S.C. Rawlinson, R. Suswillo, L.E. Lanyon, Cellular responses to 
mechanical loading in vitro, Journal of Bone and Mineral Research 5(9) (1990) 923-932. 

[195] N. Kelly, J. Schimenti, F.P. Ross, M. Van Der Meulen, RNA Seq-based Gene Expression 
in Mouse Cortical and Cancellous Bone, J Bone Miner Res, 2014, pp. S459-S459. 

[196] C. Rubin, A. Turner, C. Mallinckrodt, C. Jerome, K. McLeod, S. Bain, Mechanical strain, 
induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not 
cortical bone, Bone 30(3) (2002) 445-452. 

[197] Y.H. Gao, M. Yamaguchi, Anabolic effect of daidzein on cortical bone in tissue culture: 
comparison with genistein effect, Molecular and cellular biochemistry 194(1) (1999) 93-98. 

[198] S.Y. Wong, C. Dunstan, R. Evans, E. Hills, The determination of bone viability: a 
histochemical method for identification of lactate dehydrogenase activity in osteocytes in fresh 
calcified and decalcified sections of human bone, Pathology 14(4) (1982) 439-442. 

[199] S. Wong, J. Kariks, R. Evans, C. Dunstan, E. Hills, The effect of age on bone composition 
and viability in the femoral head, JBJS 67(2) (1985) 274-283. 

[200] R. Rumney, A. Sunters, G. Reilly, A. Gartland, Application of multiple forms of 
mechanical loading to human osteoblasts reveals increased ATP release in response to fluid flow 
in 3D cultures and differential regulation of immediate early genes, Journal of biomechanics 
45(3) (2012) 549-554. 



125 
 

[201] A. Sittichockechaiwut, A.M. Scutt, A.J. Ryan, L.F. Bonewald, G.C. Reilly, Use of rapidly 
mineralising osteoblasts and short periods of mechanical loading to accelerate matrix maturation 
in 3D scaffolds, Bone 44(5) (2009) 822-829. 

[202] Z. Kong, J. Li, Q. Zhao, Z. Zhou, X. Yuan, D. Yang, X. Chen, Dynamic compression 
promotes proliferation and neovascular networks of endothelial progenitor cells in demineralized 
bone matrix scaffold seed, Journal of Applied Physiology 113(4) (2012) 619-626. 

[203] C.E. Hoffler, K.D. Hankenson, J.D. Miller, S.K. Bilkhu, S.A. Goldstein, Novel explant 
model to study mechanotransduction and cell–cell communication, Journal of orthopaedic 
research 24(8) (2006) 1687-1698. 

[204] C. Price, X. Zhou, W. Li, L. Wang, Real-time measurement of solute transport within the 
lacunar‐canalicular system of mechanically loaded bone: Direct evidence for load‐ induced 
fluid flow, Journal of Bone and Mineral Research 26(2) (2017) 277-285. 

[205] C. Ciani, D. Sharma, S.B. Doty, S.P. Fritton, Ovariectomy enhances mechanical load-
induced solute transport around osteocytes in rat cancellous bone, Bone 59(Supplement C) 
(2014) 229-234. 

[206] P. Mc Donnell, P. Mc Hugh, D. O’mahoney, Vertebral osteoporosis and trabecular bone 
quality, Annals of biomedical engineering 35(2) (2007) 170-189. 

[207] E.F. Eriksen, S.F. Hodgson, R. Eastell, B.L. RIGGS, S.L. Cedel, W.M. O'Fallon, 
Cancellous bone remodeling in type I (postmenopausal) osteoporosis: quantitative assessment of 
rates of formation, resorption, and bone loss at tissue and cellular levels, Journal of Bone and 
Mineral Research 5(4) (1990) 311-319. 

[208] B. Li, R.M. Aspden, Composition and mechanical properties of cancellous bone from the 
femoral head of patients with osteoporosis or osteoarthritis, Journal of Bone and Mineral 
Research 12(4) (1997) 641-651. 

[209] W. Xing, D. Baylink, C. Kesavan, Y. Hu, S. Kapoor, R.B. Chadwick, S. Mohan, Global 
gene expression analysis in the bones reveals involvement of several novel genes and pathways 
in mediating an anabolic response of mechanical loading in mice, Journal of cellular 
biochemistry 96(5) (2005) 1049-1060. 

 

 


	Skeletal Biomechanics and Response to Mechanical Load: A Comparative Approach in the Mouse and Chukar Partridge
	Recommended Citation

	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1.  INTRODUCTION
	1.1 Basic Bone Biology
	1.2 Skeletal Disease
	1.3 Characterizing a Bone’s Mechanical Environment
	1.4 Computational Modeling Approach to Characterizing Bone Strains
	1.5 Experimental Models of Skeletal Adaption
	1.6 Assessing Tissue-level Skeletal Response to Load
	1.7 Genetic Regulation of the Skeletal Response to Mechanical Load
	1.8 Gap Statement

	2. Experimental Tests of Planar Strain Theory for Predicting Bone Cross-sectional Longitudinal and Shear Strains
	2.1 Introduction
	2.2 Materials & Methods
	2.2.1 Planar Strain Theory Validation
	2.2.2 Extrapolation of Planar Strain Theory to Shear Strains

	2.3 Results
	2.3.1 Measured vs. Calculated Longitudinal Strains
	2.3.2 Extrapolation of Planar Strain Theory to Shear Strains

	2.4 Discussion
	2.4.1 Planar Strain Theory: Longitudinal Strain
	2.4.2 Planar Strain Theory: Shear Strain


	3. Characterization of the strain environment in the mouse tibia and the chukar partridge tibiotarsus during locomotion and experimentally applied mechanical loading
	3.1 Introduction
	3.2 Methods
	3.2.1 Strain Gauge Surgeries
	3.2.2 In Vivo Strain Data Collection
	3.2.3 Strain Data Analysis
	3.2.4 Finite Element Modeling

	3.3 Results
	3.3.1 In Vivo Bone Strains and Finite Element Model Results for the Mouse Tibia
	3.3.2 In Vivo Bone Strains and Finite Element Model Results for the Chukar Partridge TBT

	3.4 Discussion
	3.4.1 Development of the Chukar TBT finite element models
	3.4.2 Tibial strains for the mouse during experimental loading relative to locomotion
	3.4.3 Chukar Partridge Tibiotarsal strains during experimental loading relative to locomotion
	3.4.4 Strain profile comparisons between the Mouse Tibia and Chukar TBT


	4. Comparative assessment of the skeletal response to experimentally applied mechanical loading between the mouse and chukar partridge
	4.1 Introduction
	4.2 Methods
	4.2.1 Animals
	4.2.2 Experimentally Applied Loading: Mice
	4.2.3 Experimentally Applied Loading: Chukar Partridge
	4.2.4 Mineralized Tissue Histology
	4.2.5 Colony Forming Units-Osteoblast Assays

	4.3 Results
	4.3.1 Bone geometry, volume, and mineral density in response to mechanical load
	4.3.2 Histomorphometry
	4.3.3 CFU-OB Assay

	4.4 Discussion
	4.4.1 The Mouse Tibia showed a geometry and bone volume response after 2 weeks but not after 4 weeks
	4.4.2 The Chukar Partridge TBT showed a geometric cortical bone response after 3 weeks of loading
	4.4.3 Colony Forming Unit – Osteoblast assays revealed qualitative differences in the colonies between the species


	5. Development of a novel isolated bone organ culture system
	5.1 Introduction
	5.2 Methods
	5.2.1 Bone Specimens
	5.2.2 Validation of Osteocyte Viability in Bone Organ Culture
	5.2.2.1 Initial Processing of the Tibiae
	5.2.2.2 Lactate Dehydrogenase Assay for Cell Viability
	5.2.2.3 Positive and Negative Controls
	5.2.2.4 Bone Organ Culture in the Biodynamic Chamber
	5.2.2.5 Quantitative Analysis of Bone Cell Viability

	5.2.3 Applied Load and Strain Relationship

	5.3 Results
	5.3.1 Bone Cell Viability
	5.3.2 Tibial Bone Segment Strain during Axial Compression
	5.3.3 Finite Element Modeling

	5.4 Discussion
	5.4.1 Bone Cell Viability is Maintained during Organ Culture
	5.4.2 Mechanical Loading of Cortical Bone Segments In Vitro
	5.4.3 Strain Induced In Vivo vs. In Vitro in the Murine Tibia under Axial Compressive Loading


	6. Conclusions and future directions
	REFERENCES

