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ABSTRACT 

Varennes, Julien PhD, Purdue University, December 2017. Computational and Theo-
retical Study of the Physical Constraints on Chemotaxis. Major Professor: Andrew 
Mugler. 

Cell chemotaxis is crucial to many biological functions including development, 

wound healing, and cancer metastasis. Chemotaxis is the process in which cells 

migrate in response to chemical concentration gradients. Recent experiments show 

that cells are capable of detecting shallow gradients as small as a 1% concentration 

difference, and multicellular groups can improve on this by an additional order of 

magnitude. Examples from morphogenesis and metastasis demonstrate collective re-

sponse to gradients equivalent to a 1 molecule difference in concentration across a 

cell body. While the physical constraints to cell gradient sensing are well understood, 

how the sensory information leads to cell migration, and coherent multicellular move-

ment in the case of collectives, remains poorly understood. Here we examine how 

extrinsic sensory noise leads to error in chemotactic performance. First, we study 

single cell chemotaxis and use both simulations and analytical models to place physi-

cal constraints on chemotactic performance. Next we turn our attention to collective 

chemotaxis. We examine how collective cell interactions can improve chemotactic per-

formance. We develop a novel model for quantifying the physical limit to chemotactic 

precision for two stereotypical modes of collective chemotaxis. Finally, we conclude by 

examining the effects of intercellular communication on collective chemotaxis. We use 

simulations to test how well collectives can chemotax through very shallow gradients 

with the help of communication. By studying these computational and theoretical 

models of individual and collective chemotaxis, we address the gap in knowledge 

between chemical sensing and directed migration. 
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1. INTRODUCTION 

Parts of this chapter have been published as J. Varennes, and A. Mugler, “Sense and 

sensitivity: physical limits to multicellular sensing, migration, and drug response,” 

Molecular pharmaceutics 13.7 (2016): 2224-2232. 

Cells are extremely sensitive to their environment, capable of gathering information on 

chemicals in their environment with remarkable precision. For example, the amoeba 

Dictyostelium discoideum is sensitive to chemical concentration differences on the 

order of ten molecules between its front and back half [1]. Cell sensory precision of 

chemical concentrations is limited by the extrinsic noise inherent in molecule diffusion. 

The physical limits to concentration sensing due to extrinsic noise were theoretically 

derived 40 years ago by Berg and Purcell [2], and it was shown that Escheria coli 

bacteria operate very near the physical bound set by extrinsic noise [3]. Studies have 

revisited the topic of cell sensory precision to account for receptor binding kinetics, 

spatiotemporal correlations and spatial confinement [4–6]. 

One very common cellular behavior in response to sensory information is chemo-

taxis and is defined as the process in which a cell or organism moves in response to a 

changing chemical concentration in its environment. Chemotaxis is critical to many 

biological processes in single-celled organisms as well as within multicellular organ-

isms such as: nutrient search, organism development, wound healing, immune system 

targeting, and cancer metastasis [7,8]. One process that stands out for its significant 

impact on organism health is cancer metastasis. The first step of metastasis is inva-

sion, wherein cells break away from their original tumor and invade the surrounding 

tissue. Our understanding of metastatic invasion has benefited tremendously from 

genetic and biochemical studies [9–11]. However, the physical aspects of metastatic 

invasion are still unclear [11]. Previous research shows that cancer cells sense and 
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respond to chemical gradients provided by surrounding cells [12–15] as well as other 

features of the tumor environment [14, 16, 17] (Fig. 1.1A,B). Indeed, cancer cells are 

extremely sensitive, able to detect a 1% difference in concentration across the cell 

length [14], and sometimes chemotax in response to these signals. Since metastasis 

is one of the most critical and lethal stages of cancer, studying the basic physics 

underlying chemotaxis can help us better understand metastasis. 

There are two canonical forms of chemotaxis; cells either move towards the direc-

tion of increasing chemical concentration (positive chemotaxis), or they move away 

from the chemical and migrate in the direction of decreasing chemical concentration 

(negative chemotaxis). Positive chemotaxis may occur in response to nutrients in the 

environment, whereas negative chemotaxis is caused by waste or poisons in the envi-

ronment that cells want to avoid. Analytical and computational models presented in 

this work are developed with respect to positive chemotaxis, though model conclu-

sions are equally valid for the case of negative chemotaxis. We refer to the chemical 

signal that induces positive chemotaxis as the chemoattractant. 

Chemotaxis can be viewed as a three step process: chemical sensing, polarization, 

and locomotion. In the presence of a sufficiently large chemical gradient a cell is 

able to detect a chemical concentration due to its receptors binding with the diffusing 

molecules in the environment. The gradient will result in more receptor binding events 

occurring on the side of the cell facing the higher concentration, and this difference 

causing an asymmetric response in the cell’s internal sensory network. This leads 

to intracellular actin polymerization polarizing the cell along the asymmetry, and 

protrusions and retractions are made in the polarization direction [18]. Due to the 

asymmetric distribution of protrusions the cell will preferentially move in the direction 

of polarization. Many studies have examined chemotaxis at the intracellular level in 

order to understand the biochemical machinery involved in producing polarization and 

locomotion [19], but modeling how cell signaling produces polarization is still unclear 

[7]. Since chemical sensing is necessary for the initiation of chemotaxis, the extrinsic 

noise in the diffusing chemoattractant concentration affects chemotactic performance. 
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Therefore studying the effect of extrinsic noise on chemotaxis can yield physical insight 

into chemotaxis and how it constrains the previously mentioned processes. 

Fig. 1.1. Metastatic invasion is guided by chemical attractants and can 
occur via (A) single cells or (B) multicellular groups. (C) Drugs are de-
livered to the tumor environment in order to prevent tumor growth and 
metastasis. Drugs may cause cell death (orange), block cell-to-cell com-
munication (purple), or prevent cell migration (blue). 

Furthermore, in many biological contexts cells act in close proximity to one an-

other so their interactions may have a significant impact on their chemotactic perfor-

mance [20]. During metastasis, chemotaxis can occur as a multicellular phenomenon 

involving the coherent motion of connected groups of cells (Fig. 1.1B). In either the 

single-cell or multicellular case, the ability to precisely detect chemoattractants in 
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the environment is bounded by the inherent diffusive fluctuations of the chemoat-

tractants. Therefore it is important to understand the impact of diffusive noise on 

chemotactic precision. 

In order to address the open question regarding how gradient sensing is linked 

to chemotactic performance we develop a framework of chemotaxis models. These 

theoretical and computational models link sensing to polarization in order to examine 

how extrinsic noise from cell sensing puts physical constraints on chemotaxis. Starting 

in the following section, we briefly review the fundamental limits to concentration 

sensing and gradient sensing precision for single cells and multicellular collectives. We 

also review how sensitive cells and collectives are to chemical signals and highlight 

how collective effects can enhance sensory response. In Sect. 1.2 we review methods 

for modeling cell motion in relation to chemotaxis which will act as a foundation for 

the computational models developed in the proceeding chapters. 

In Ch. 2 we review the physical limits to sensory precision, and discuss different 

chemotaxis modeling techniques. Starting with Ch. 3, we apply computational and 

theoretical techniques to study human breast cancer cell chemotaxis. Computational 

simulations are conducted to explain and predict breast cancer cell chemotactic per-

formance, and provide a relationship to common cell-migration experimental observ-

ables. We find that our simulations and theoretical model place physical constraints 

on the chemotactic performance of the cells observed in experiments. Single-cell 

chemotaxis simulations also give predictive power over how experimental parameters 

affect chemotactic performance in different ways. Next, in Ch. 4 we examine mul-

ticellular chemotaxis. Cells very often exist and function in collective groups and 

chemotaxis is no different. We develop a novel theoretical approach to studying the 

effects of extrinsic noise on collective chemotaxis. We find that chemotactic perfor-

mance is dependent on the type of collective behavior as well as on experimental 

parameters. In Ch. 5 we extend our single-cell chemotaxis simulations to multicellu-

lar chemotaxis. We developed a model that explicitly accounts for the extrinsic noise 

in the diffusing chemoattractant concentration, as well as noise in intercellular com-
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munication in order to study the performance of communication-aided multicellular 

chemotaxis. Finally, in Ch. 6 we summarize the models and results presented in the 

thesis. 
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2. BACKGROUND 

Parts of this chapter have been published as J. Varennes, and A. Mugler, “Sense and 

sensitivity: physical limits to multicellular sensing, migration, and drug response,” 

Molecular pharmaceutics 13.7 (2016): 2224-2232. 

Cells can sense very small concentration gradients [14] and may also act collectively 

[15,21–23]. We review the physical limits to sensory precision by discussing the basic 

theory of concentration and gradient sensing by cells and multicellular collectives. 

This theory places physical limits to sensory precision due to extrinsic noise caused 

by the diffusing chemical. 

2.1 Single-cell concentration sensing 

Theoretical limits to the precision of concentration sensing were first introduced 

by Berg and Purcell 40 years ago [2]. Berg and Purcell began their study by con-

sidering an idealized cell that acts as a perfect counting instrument. The cell is 

assumed to be spherical and molecules can freely diffuse in and out of it (Fig. 2.1A). 

The concentration of these molecules is uniform in space, and the cell derives all its 

information about the concentration by counting each molecule inside its spherical 

body. The expected count is n̄ = ¯ where c̄  is the mean concentration and VcV is 

the cell volume. However, since molecules arrive and leave via diffusion, there will be 

fluctuations around this expected value. Diffusion is a Poisson process, meaning that 

the variance in this count σn 
2 equals the mean n̄. Therefore the relative error in the 

2 = σ2 2cell’s concentration estimate is σc 
2/c̄  n/n̄ = 1/(c̄V ). 

The cell can improve upon the relative error in its concentration estimate by time-

averaging over multiple measurements. However, consecutive measurements are only 
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Fig. 2.1. Deriving the limits to concentration and gradient sensing. (A) 
An idealized cell as a permeable sphere that counts molecules inside its 
volume. (B) A cell counts molecules in two compartments in order to 
estimate a concentration gradient. (C) The local excitation–global inhibi-
tion (LEGI) model of multicellular gradient sensing. Y molecules diffuse 
between neighboring cells, whereas X molecules do not. The difference 
between X and Y counts in a given cell reports the extent to which that 
cell’s concentration measurements are above the average. 

statistically independent if they are separated by a sufficient amount of time such 

that the molecules inside the cell volume are refreshed. The amount of time required 

is characterized by the diffusion time, τ ∼ V 2/3/D ∼ a2/D, where D is the diffusion 

constant and a is the cell diameter. In a time period T the cell makes ν = T/τ 

independent measurements, and the variance is reduced by the factor 1/ν. This gives 

the long-standing lower limit 

σc 
2 σn 

2 1 
= ∼ (2.1)

2 2c̄  n cDT ¯ a¯ 
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for the cell’s relative error in estimating a uniform concentration. The relative error 

decreases with a and c̄, since the molecule count is larger, and also with D and T , 

since more independent measurements can be made. Berg and Purcell derived this 

limit more rigorously [2], and the problem has been revisited more recently to account 

for binding kinetics, spatiotemporal correlations, and spatial confinement [4–6]. In 

all cases a term of the form in Eq. 2.1 emerges as the fundamental limit for three-

dimensional diffusion. 

Does cell sensory performance reach this limit in real biological contexts? Berg and 

Purcell themselves addressed this question using the Escherichia coli bacterium [2]. 

Motility of E. coli has two distinct phases: the run phase in which a cell swims in a 

fixed direction, and the tumble phase in which the cell erratically rotates in order to 

begin a new run in a different direction. The bacterium biases its motion by contin-

ually measuring the chemoattractant concentration, and extending the time of runs 

for which the change in concentration is positive [2,24]. The change in concentration 

Δc̄ = T vḡ over a run time T depends on the concentration gradient ḡ = ∂c/∂x¯ and 

the bacterium’s velocity v. Berg and Purcell argued that for a change in concentra-

tion to be detectable, it must be larger than the measurement uncertainty, Δc̄ > σc. 

Together with Eq. 2.1, this places a lower limit on the run time, T > [c̄/(aDv2ḡ2)]1/3 . 

Using typical values [2] for the sensory threshold of E. coli of c̄ = 1 mM, ∂c̄/∂x = 1 

mM/cm, a = 1 µm, v = 15 µm/s, and D = 10−5 cm2/s, we find T > 0.1 s. Actual 

run times are on the order of 1 s. Thus we see that E. coli chemotaxis is consistent 

with this physical bound. The fact that actual run times are not too much longer 

than the minimum indicates that the sensory machinery of E. coli operates near the 

optimal precision of a perfect counting device. If E. coli were to use much shorter run 

times, there would be no way to acquire sufficient statistics, and chemotaxis would 

be physically impossible. 
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2.2 Single-cell gradient sensing 

Unlike E. coli bacterium, larger cells do not need to swim in order to detect tem-

poral changes in concentration. Larger cells, like amoeba, epithelial cells, neutrophils, 

and neurons, sense gradients by comparing concentration measurements between spa-

tially separate compartments along the cell body [18]. These compartments are typ-

ically receptors or groups of receptors on the cell surface, but in a simple model we 

may treat these compartments as idealized counting volumes as we did for concen-

tration sensing. The difference in counts between two such compartments provides 

the cell with an estimate of the gradient (Fig. 2.1B). Following the same procedure 

as for concentration sensing we can derive the relative error in gradient sensing. 

Consider two compartments of linear size s on either side of a cell with diameter 

a (Fig. 2.1B). Given that the compartments are aligned with the gradient ḡ of a 

linear concentration profile, then the mean concentrations at each compartment are 

c̄  1 and c̄  2 = c̄  1 + aḡ. The mean molecule counts in the two compartments are roughly 

n̄ 1 = c̄  1s3 and n̄ 2 = c̄  2s3 , and the difference is Δn̄ = n̄ 2 − n̄ 1 = ags¯ 3 . The variance in 

this difference is σ2 = σ2 + σ2 ∼ n̄21/(sc̄  1DT ) + n̄22/(sc̄  2DT ), where the first stepΔn n1 n2 

assumes the two compartments are independent, and the second step uses Eq. 2.1 for 

the variance in each compartment’s measurement. For shallow gradients, where the 

limits on sensing are generally reached, aḡ � c̄  1, and so c̄  1 ≈ c̄  2 ≈ c̄, where c̄  is the 

3)2/(s¯mean concentration at the center of the cell. Thus σΔ
2 
n ∼ 2(c̄s cDT ), and the 

relative error in the cell’s estimate of the gradient is then 

σ2 
g σΔ

2 
n c̄  

= ∼ , (2.2) 
ḡ2 Δn̄2 s(aḡ)2DT 

where the factor of 2 is neglected in this simple scaling estimate. Similar to Eq. 2.1, 

the relative error in gradient sensing decreases with s, since larger compartments allow 

for larger molecule counts. The relative error also decreases with D and T , since they 

increase the number of independent measurements. Additionally, the relative error 

decreases with aḡ, since the concentrations measured by the two compartments are 

more different from each other. However, we see that unlike Eq. 2.1, the relative error 
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increases with the background concentration c̄. The cell is measuring a concentration 

difference, not the concentration itself, and it is more difficult to accurately measure 

a small difference on a larger background than on a smaller background [25]. Eq. 

2.2 has been derived more rigorously in other studies [26], and the problem has been 

extended to describe different receptor configurations and geometries [26–28]. In all 

these cases, the relative error has a term similar to Eq. 2.2, with the lengthscale s 

dictated by the particular sensory mechanism and geometry. The optimal mechanism 

would result in an effective compartment size that is roughly half of the cell volume, 

in which case s ∼ a. 

Experiments on the amoeba Dictyostelium discoideum have tested the limits to 

gradient sensing [29]. Dictyostelium cells exhibit biased movement when exposed to 

gradients of cyclic adenosine monophosphate as small as ḡ = 10 nM/mm, on top 

of a background concentration of c̄  = 7 nM. Bias is typically quantified in terms of 

the chemotactic index (CI), which is the cosine of the angle between the gradient 

direction and the direction of a cell’s actual motion. By relating the error in gradient 

sensing (a term of the form in Eq. 2.2 with s = a) to the error in this angle, Endres 

and Wingreen [27] obtained an expression for the optimal CI, which they then fit to 

the experimental data with one free parameter, the integration time T . The inferred 

value of T = 3.2 s serves as the physical lower bound on the response time required 

to perform chemotaxis. Actual response times of Dictyostelium cells, as measured by 

the time from the addition of a chemoattractant to the peak activity of an observable 

signaling pathway associated with cell motility [30, 31], are about 5 − 10 s. Taken 

together, these results imply that Dictyostelium operates remarkably close to the 

physical limit to sensory precision set by the physics of molecule counting. 

2.3 Multicellular gradient sensing 

Next, we turn our attention to multicellular gradient sensing. In many biological 

processes, such as metastatic invasion [21, 22], cells behave in a collective manner. 
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Collectives of cells sense shallower gradients than single cells, both in terms of per-

cent concentration changes and absolute molecule numbers (Table 2.1). For example, 

neuron collectives respond to gradients equivalent to a difference of less than one 

molecule across an individual neuron’s growth cone [32]. It is likely that this benefit 

in sensory precision found in collectives also translates to better chemotaxis for col-

lectives. This may be a reason why collective invasion is sometimes observed during 

metastasis. 

From Eq. 2.2 we see that a multicellular collective has lower sensory error because 

it is larger than a single cell. The cell collective spans a larger portion of the concen-

tration profile, leading to a larger difference between the concentration measurements 

on either end, and a lower relative error. In terms of Eq. 2.2, if we consider that cells 

on the ends act as the molecule-counting compartments, s → a, and that the entire 

collective acts as the detector, a → Na, where N is the number of cells in the gradient 

direction, then we have [33] 
σ2 c̄  g ∼ . (2.3) 
ḡ2 a(Naḡ)2DT 

As expected, the relative error goes down with the size Na of the multicellular col-

lective. 

It is important to note that in formulating Eq. 2.3 we have overlooked any loss 

of precision caused by communicating sensory information across the collective. The 

larger the group of cells, the more difficult it will be for cells on either end to commu-

nicate measurement information. Eq. 2.3 does not account for this, and assumes that 

any error induced by the communication process is negligible. In fact, Eq. 2.3 states 

that the relative error decreases with increased collective size. For a single cell it may 

be a reasonable approximation to assume that compartments quickly and reliably 

communicate information across the cell body, but for a multicellular collective, the 

communication process should deteriorate as the collective grows in size. This process 

introduces additional noise to the collective’s gradient sensing abilities. Therefore, it 

is imperative when considering collective sensing to properly account for the effects 

of communication. 
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Recent studies have explored the physical limits to collective gradient sensing for 

different communication mechanisms and collective geometries [25, 33, 34]. In two of 

the studies [25, 33] communication was modeled using a multicellular version of the 

local excitation–global inhibition (LEGI) paradigm [35], in which each cell produces 

a “local” and a “global” molecular species in response to the chemical in the environ-

ment. The global species is exchanged between cells to provide the communication, 

whereas the local species remains within the cell it was produced (Fig. 2.1C). The 

difference between local and global molecule numbers in a cell provides it with infor-

mation about the chemical gradient. A positive difference informs the cell that its 

measured concentration (represented by the local species) is above the spatial aver-

age among its neighbors, and therefore that the cell is located up the gradient, not 

down. The relative error of gradient sensing for the LEGI model was shown [33] to 

be limited from below by 
σ2 
g ∼ 

c̄  
, (2.4) 

ḡ2 a(n0aḡ)2DT 

where n0
2 is the ratio of the global species’ cell-to-cell exchange rate to its degradation 

rate. When communication is accounted for the error is bounded by n0a, whereas in 

Eq. 2.3 the error decreases indefinitely with size Na. The communication strength 

defines an effective number of cells n0 over which information can be reliably conveyed, 

and a collective that grows beyond this size no longer improves its sensory precision. 

The communication-limited relative error prediction was tested experimentally in 

epithelial cell collectives [25]. Mouse mammary epithelial cells were grown in organ-

otypic culture and subjected to very shallow gradients of epidermal growth factor (Ta-

ble 2.1). While single epithelial cells did not respond to the gradient, the multicellular 

collectives exhibited a biased cell-branching response. Critical to communication-

limited prediction, the response of large collectives was no more biased than that 

of small collectives, supporting the idea that communication sets an effective collec-

tive size. From experiments the effective collective size was inferred to be n0 ≈ 3.5 

cells, which is consistent with the collective sizes found in nature (the “end buds” 

of growing mammary ducts) [36]. Communication between cells is mediated by gap 
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junctions between cells, and experiments show that when gab junctions are blocked, 

the biased response in collectives vanished [25]. This demonstrates that collective 

response is critically dependent on cell-to-cell communication. Taken together, these 

results indicate that communication is a necessary but imperfect component of col-

lective gradient sensing. The results also speak to the power of simple physical theory 

to quantitatively explain collective cellular capabilities. Many epithelial cancers are 

known to invade collectively [21], and these theoretical predictions may also describe 

the sensory behavior of metastatic cell collectives. 

2.4 Relative changes vs. absolute molecule numbers 

The precision of gradient sensing is often reported in terms of percent concentra-

tion change across a cell body. For example, both amoeba [29] and tumor cells [14] are 

sensitive to a roughly 1% change in concentration across the cell body. However, this 

method of reporting sensitivity may be misleading. Experiments imply very different 

sensory thresholds for these cells in terms of absolute molecule numbers, as we will 

now see. 

The key is that it takes two numbers to specify the conditions for gradient sensing: 

the mean gradient ḡ and the mean background concentration c̄. For the amoeba 

Dictyostelium, these numbers are ḡ = 10 nM/mm and c̄  = 7 nM at the sensory 

threshold [29]. Given a typical cell size of a = 10 µm, these values imply a mean 

percent concentration change of p̄ = ag/¯ c̄ = 1.4% (Table 2.1). However, we may also 

compute from these values the mean molecule number difference Δn̄ = ags¯ 3 from one 

side of the cell to the other, within the effective compartments of size s. Taking s ∼ a 

gives the maximal molecule number difference of Δn̄ = a4ḡ = 60 for Dictyostelium 

(Table 2.1). Together p̄  and Δn̄ specify the sensing conditions as completely as ḡ and 

c̄  do. 

Experiments [14] have shown that breast cancer tumor cells exhibit a chemotactic 

response in a gradient ḡ = 550 nM/mm of the cytokine CCL21, on top of a background 
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Table 2.1.: Gradient sensory thresholds for single cells and multicellular collectives. 

Note that experiments can provide equal percent concentration differences but un-

equal molecule number differences across a cell body, as seen for amoeba and breast 

cancer cells. We see that multicellular groups can detect smaller gradients than single 

cells by all measures. 

Single Cell Multicellular 

Dictyostelium 

(Amoeba) [29] 

Breast 

Cancer [14] 

Neurons [32] Mammary 

Epithelia [25] 

Cell Length 

Scale, a 

10 µm 20 µm 10 µm 10 µm 

Background 

Concentration, c̄ 

7 nM 1100 nM 1 nM 2.5 nM 

Concentration 

Gradient, ḡ 

10 nM/mm 550 nM/mm 0.1 nM/mm 0.5 nM/mm 

Percent Concentration 

Difference, p̄ = ḡa/c̄ 

1.4% 1.0% 0.1% 0.2% 

Molecule Number 

4Difference, Δn̄ = ḡa

60 53,000 0.6 3 

concentration of c̄  = 1100 nM. Given a typical cell size of a = 20 µm, this corresponds 

to a percent difference of ¯ = g/c̄  = 1%, similar to Dictyostelium. Yet, this alsop a¯ 

corresponds to a maximal molecule number difference of Δn̄ = a4ḡ = 53,000, which 

is much higher than that of Dictyostelium (Table 2.1). Even though the sensitivities 

are similar in terms of percent change, they are very different in terms of absolute 

molecule number. 

Lower molecule numbers correspond to higher relative error. We can see this 

explicitly by writing Eq. 2.2 in terms of the percent change p̄ = ag/¯ c̄. Defining p
� = σg/ḡ and taking s ∼ a, we have � ∼ 1/ p̄2a¯ Accounting for the factcDT . 
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that tumor cells (TC) have roughly twice the diameter as Dictyostelium cells (DC), 

this expression implies that the sensitivities of the two cell types over the same in-

tegration time T to chemoattractants with the same diffusion constant D satisfy p
�DC/�TC = 2c̄TC/c̄  DC ≈ 18. We see that because the Dictyostelium experiments 

were performed at lower background concentration, corresponding to lower absolute 

molecule numbers, the relative error in gradient sensing is 18 times that of the tu-

mor cells, despite the fact that both cell types are responsive to 1% concentration 

gradients. Therefore, it is important to take note of the background concentration 

when studying the precision of gradient sensing. These data imply that Dictyostelium 

cells can sense noisier gradients than tumor cells. However, Dictyostelium cells have 

been studied more extensively than tumor cells as exemplars of gradient detection. It 

remains an interesting open question what is the minimum gradient that tumor cells 

can detect, not only in terms of percent concentration change, but also in terms of 

absolute molecule number differences. 

2.5 Models of cell migration and chemotaxis 

Next we review models of migration since chemotaxis involves both sensing and 

movement. From a physical modeling perspective, describing collective cell dynamics 

is an interesting problem, because often rich and unexpected behavior can emerge 

from a few simple interaction rules between cells [37, 38]. Even in the absence of 

sensing, simple models have successfully explained observed collective behaviors such 

as cell streaming, cell sorting, cell sheet migration, wound healing, and cell aggre-

gation [39–42]. Although cell migration has been studied on a single-cell basis [43], 

often times unique collective behavior emerges from studying multicellular models. 

2.5.1 Mechanisms of collective migration 

We will focus specifically on collective dynamics in which sensory cues play a key 

role in the emergent behavior. Chemoattractants in the environment are detected 
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by cells and causing the polarization of a single cell or cell collective via one of 

a variety of mechanisms [18], and the resulting migratory dynamics are directed. 

Mechanisms of collective migration can largely be divided into three categories. First, 

cells may exhibit individual sensing and individual migration (Fig. 2.2A). Here, each 

cell can perform gradient sensing and migration individually, although the precision 

may be low. When many such cells are placed in a group, the group migration can be 

enhanced and focused by local interactions between the cells. Even if each individual 

cell has low sensory and migratory precision, the precision of the group as a whole is 

high due to the interactions. This mechanism is often termed “many wrongs,” and 

it is successful at explaining how group migratory behavior emerges from individual 

agents that act independently [38, 44]. For example, a recent study demonstrated 

that single-cell chemotaxis can be improved through collisions between cells which 

align cell polarization in the gradient direction [38]. Collisions act to average over 

the errors in individual cells’ noisy measurements, thereby decoupling group behavior 

from single-cell properties. We develop a simple model of individual-based chemotaxis 

in conjunction with chemotaxis experiments in Ch. 3, and in Ch. 4 we analyze the 

effects of extrinsic noise on collectives of individually chemotaxing cells. 

Second, cells may exhibit individual sensing but collective migration (Fig. 2.2B). 

In this mechanism, each individual cell senses its own local environment, and tight 

mechanical interactions result in the emergent directed motion of the entire group. 

This mechanism is applicable to the collective migration of connected clusters of 

cells. For example, a model of this type was recently developed by Camley et al. 

to describe behavior seen in clusters of neural crest cells and other cell types [45]. 

In this model, cells are tightly connected but are polarized away from neighboring 

cells due to contact inhibition of locomotion (CIL), the physical phenomenon of cells 

ceasing motion in the direction of cell-cell contact [46]. Individual cells sense a local 

chemoattractant concentration and attempt to migrate away from the group with 

a strength proportional to this concentration. However, the mechanical coupling 

keeps them together. In the presence of a concentration gradient, the imbalance in 
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Fig. 2.2. Mechanisms of collective migration: (A) individual sensing and 
migration (the “many wrongs” mechanism), (B) individual sensing but 
collective migration (emergent chemotaxis), and (C) collective sensing and 
migration. Implementations of collective migration: (D) in force-based 
models, dynamics evolve from stochastic forces acting on each cell; (E) in 
energy-based models, dynamics evolve via energy minimization with ther-
mal noise. E shows the cellular Potts model framework, in which cells are 
collections of lattice sites, and cell-cell (dashed blue) and cell-environment 
(dashed yellow) contacts contribute to the energy of the system. 

their migration strengths results in net directed motion (Fig. 2.2B). Notably, this 

mechanism results in directed motion of a cluster even though individual cells cannot 

execute directed motion alone, since without other cells, there is no CIL to bias the 

motion. In Ch. 4 we develop an analytical model to study the effects of extrinsic 

noise on cell collectives analogous to that illustrated in Fig. 2.2B. 
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Third, cells may exhibit collective sensing and collective migration (Fig. 2.2C). 

As discussed above, multicellular groups exploit cell-to-cell communication to sense 

gradients collectively, thereby enhancing the precision of sensing. A feature of this 

collective sensing, e.g. via the multicellular LEGI mechanism discussed above [25,33], 

is that each cell has information on the extent to which it is up or down the gradient. 

Through CIL or other contact-mediated interactions, this information can translate 

directly into cell polarity, leading to more coherent collective migration than in the 

previous mechanism (Fig. 2.2C vs. B). In fact, the multicellular LEGI model was used 

by Camley et al. [45] to explore a model of this type. Adding collective sensing to 

their model of CIL-dependent migration gave the advantage that the repulsive tension 

on a cell cluster was adaptive and therefore remained constant as the cluster migrated 

to regions of higher chemical concentration. In Ch. 5, we present a computational 

model of collective chemotaxis in which the effects noise caused by the environment 

as well as intercellular communication of explicitly accounted for. 

2.5.2 Model implementations 

To study the above mechanisms quantitatively and compare predictions with ex-

periments, one must turn to mathematical and computational modeling. Models of 

cell dynamics range from continuum or semi-continuum descriptions, which describe 

groups of cells as continuous tissues, to individual-based models, which describe cells 

as individual interacting entities [43, 47, 48]. Physics-driven individual-based models 

generally fall into two categories: force-based models and energy-based models. 

Force-based models (Fig. 2.2D) typically represent cells as centers of mass or as col-

lections of vertices. Cell dynamics evolve from forces acting on individual cells, which 

can be stochastic, and arise from internal features such as cell polarity, and external 

features such as mechanical interactions with other cells [47]. Force-based models 

are able to reproduce multicellular behavior such as chemotaxis, wound healing, and 

cell aggregation [41, 42, 45]. Parameters are often directly relatable to experimental 
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measurements, and the simplest models are often amenable to exact mathematical 

analysis [45]. 

Energy-based models (Fig. 2.2E) allow cell dynamics to emerge from the minimiza-

tion of a potential energy with thermal noise (the so-called Monte Carlo scheme). A 

widely used example is the cellular Potts model (CPM) [49, 50], in which cells are 

represented as collections of co-aligned “spins” on a lattice (Fig. 2.2E). Cells remain 

contiguous because it is energetically favorable for neighboring spins to be co-aligned. 

Biophysical features such as cell shape, cell-cell adhesion, and cell protrusions into 

the environment are modeled by introducing corresponding terms into the global 

potential energy. The CPM has been used to describe cell sorting, streaming, and 

chemotaxis [51] and has successfully reproduced experimental observations of ep-

ithelial streaming, cell sorting, and collective migration [39, 40, 51]. In energy-based 

models, the parameters are less directly relatable to experiments; rather, their values 

can often be set by calibrating emergent features, such as cell diffusion coefficients or 

average speeds, with experimental measurements [40]. 

2.6 Summary 

In summary, we have reviewed the physical limits of concentration and gradient 

sensing, the sensitivity of cells and multicellular collectives, and various modeling 

techniques for cell migration. Chemotaxis is a process of sensing, polarization and 

migration. However, how all three components come together remains an open ques-

tion. Our goal is to investigate how extrinsic noise in chemoattractant concentration 

detection affects chemotaxis for single cells and multicelluar collectives. In doing so 

we hope to better understand the limits to chemotactic performance, as well as the 

role that collective effects have in improving performance. 
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3. CONSTRAINTS ON SINGLE-CELL CHEMOTACTIC 

PERFORMANCE 

In this chapter we examine the constraints that the external environment poses on 

single-cell chemotaxis. The work presented here is the product of a collaborative 

project with Dr. Bumsoo Han’s group at Purdue University. In conjunction with 

Dr. Han and Hye-ran Moon’s experiments on human breast cancer cell chemotaxis, I 

developed a computational model of single-cell chemotaxis. From simulations we are 

able to predict how environmental parameters affect breast cancer cell chemotactic 

performance. Additionally, we use a simple random walk model of chemotaxis to vali-

date simulation results. The analytical model explains how environmental parameters 

constrain chemotactic performance, and predicts limits to chemotactic accuracy and 

persistence. 

As mentioned in Ch. 2, chemotaxis can be broken down into cell sensing, po-

larization, and locomotion. How well the cell executes these aspects of chemotaxis 

determines its performance. Just as the fundamental limits to cell sensory precision 

are set by the extrinsic noise in chemical diffusion, chemotactic performance is lim-

ited by extrinsic and intrinsic parameters comprising its three core components. The 

ability for the cell to polarize and induce motility is an intrinsic property of the par-

ticular cell-type in question, whereas environmental parameters affect what the cell 

can sense and its ability to migrate. Environmental parameters extrinsically constrain 

chemotaxis because they are independent of cell-type. Using our experimental data 

we can fit cell-dependent simulation parameters from observed results, allowing us 

the freedom to vary environment-dependent parameters. Here we focus solely on en-

vironmental parameters since they are independent of cell-type, and study how they 

place extrinsic limits on chemotactic performance. 
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Before presenting experimental, simulation, and analytical results, the most preva-

lent chemotaxis metrics found in the literature are reviewed. This is important be-

cause a wide variety of metrics are used to measure the chemotactic performance. 

Different metrics may be used to characterize one aspect of chmeotaxis, and several 

metrics go by the same or very similar names. All metrics are dependent on the de-

tails of each experimental set-up to varying extents, and it is frequently unclear how 

different metrics can be compared or related between studies. This ambiguity makes 

identifying quantitative patterns between different studies very challenging. Effective 

chemotaxis crucially depends on adequate accuracy, persistence, and speed in cell 

dynamics. From the review three metrics are identified that provide a comprehensive 

and intuitive description of chemotactic behavior. 

With metrics for accuracy, persistence, and speed identified, we present the results 

from the breast cancer cell chemotaxis experiments. Simulations of single-cell chemo-

taxis probe beyond what is experimentally feasible, and identify the characteristic 

effects environmental parameters have on chemotactic performance. Finally, a simple 

analytical model is used to determine the extrinsic limits on cell chemotactic accuracy 

and persistence. Using experimental data we can fix the cell dependent parameters of 

the analytical model and predict a constrained phase-space in chemotactic accuracy 

and precision. 

3.1 Review of Chemotaxis Metrics 

The literature on cell migration and chemotaxis experiments contains a variety of 

different metrics used to characterize cell motion. In this section we briefly review 

some of the more common metrics used for measuring cell motility, persistence (also 

referred to as directionality) and chemotactic performance. Common metrics from 

the literature and their definitions are explained in order to motivate the metrics used 

in our study. 
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Fig. 3.1. a) Illustration of cell chemotaxis. The cell’s displacement makes 
an angle θ with the gradient direction. b) Illustration of cell trajectories 
associated with different CI and CR values. Illustrations of typical cell 
trajectories are shown in different colors. 



23 

3.1.1 Accuracy 

For chemotaxis experiments, often a single metric typically referred to as the 

chemotactic index is reported to quantify how well cells track the chemoattractant 

in question. However, the mathematical definition of the chemotactic index (CI) 

varies throughout the literature, the most common definitions are listed. CI has 

been defined as the ratio of the distance traveled towards the chemoattractant to the 

distance traveled in the absence of chemoattractant [52], the ratio of the number of 

cells that migrate in response to a chemical to the number of cells that migrate in 

the absence of stimulus [53–55], and the population average of the cosine of the angle 

made between a cell’s displacement and the gradient direction [29, 56–58]. 

The former two ratio-based definitions are commonly found in the literature al-

though comparing them between different experiments is difficult. Both definitions 

give a measure of the migratory response when cells are exposed to a certain chemi-

cal. They may confound the effects of chemokinesis and chemotaxis since the former 

induces cell motility but not necessarily directed migration. Exposure to a motility 

inducing chemical will increase the response the cells have and thereby increasing 

CI, although cellular response may not be directed. Furthermore, neither definition 

clearly characterizes the cell’s accuracy in tracking the chemoattractant; instead they 

quantify a fraction of cells that respond to the chemical and this does not capture 

any information about the cells’ directedness. In the case of these two metrics CI = 1 

corresponds to no chemotactic response and CI > 1 represents an increased response. 

Since CI here is unbounded, getting physical intuition for various values that are 

greater than one is difficult. 

In this study we use the definition based on cosine of the angle cell trajectories 

make with the chemoattractant gradient direction as illustrated in Fig. 3.1a. Specifi-

cally, we define CI as the population average of the cosine of the angle made between 

a cell’s displacement and the gradient direction [56–58], 

CI ≡ hcos θi . (3.1) 
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Strictly speaking, CI is bounded between -1 and 1, but for chemotaxis in response 

to a chemoattractant – as is the case in this study – CI generally falls between 0 

and 1. CI = 1 represents perfectly accurate chemotaxis in which cell displacement 

is parallel to the gradient direction (Fig. 3.1b, top-half), and CI = 0 indicates that 

the cells’ migration is unbiased (Fig. 3.1b, bottom-half). Having a bounded metrics 

makes it easy to compare different values of CI and get an intuitive picture for the 

type of cell dynamics it represents. The bounded nature of Eq. 3.1 along with its 

clear characterization of accuracy make it superior to the ratio-based definitions of 

CI, and this metric is also more easily comparable between experiments. 

3.1.2 Persistence 

Cell migratory persistence is commonly quantified using the chemotactic ratio and 

the directional autocorrelation function. The chemotactic ratio (CR) is defined as the 

ratio of the cell’s displacement to the total distance traveled (Fig. 3.1a): � � 
displacement 

CR ≡ . (3.2)
distance 

The CR metric goes by several names in the literature such as the McCutcheon 

index [59], directionality (ratio), length ratio [60], and straightness index [61]. CR is 

dimensionless, bounded between 0 and 1 and intuitive sense can be made of either 

limit. If CR = 1, then the cells are moving in perfectly straight lines and motion is 

optimally efficient (Fig. 3.1b, right-half). However, CR = 0 represents cell motion 

that is neither persistent nor efficient (Fig. 3.1b, left-half), and it can be thought of 

as a cell trajectory that starts and ends at the same location. 

The directional autocorrelation function (AC) calculates on average, how much 

time must pass for the cell’s current direction of motion to be independent from the 

direction it was going in during the past [60, 62]. It quantifies persistence by calcu-

lating the timescale of decay in correlations between current and previous directions 

of motion. The AC is defined as 

AC(Δt) = hcos(θΔt+t − θt)it,N , (3.3) 
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with Δt the time difference between two points in a trajectory and the average in Eq. 

3.3 is taken over all starting times t and all N cell trajectories. The AC measures 

how the direction of cell motion along one trajectory is correlated with the direction 

of motion at a time Δt later. At Δt = 0, AC(0) = 1 since when no time has passed 

both angles in Eq. 3.3 are in fact the same. In the opposite limit, when a very 

large amount of time has passed AC(Δt → ∞) = 0, since trajectories that occurred 

infinitely far apart in time have no effect on each other. Calculating AC for all Δt 

times sets a timescale τ which quantifies the rate at which correlations decay from 1 

to 0. Therefore τ quantifies the persistence in the cells motion, a larger τ is indicative 

of more persistent motion. We define τ as Z ∞ 

τ = dt0 AC(t0) . (3.4) 
0 

The AC is useful for cross-comparing experiments since the persistence timescale τ is 

largely independent of the frequency at which measurements were taken as well as the 

total observation time, unlike the CR. However, the timescale τ obtained from the 

AC is not a bounded dimensionless quantity unlike CR. For this reason we choose to 

use CR as the persistence metric over AC, and we discuss the validity of this choice 

after presenting the experimental results in Sect. 2.2. 

3.1.3 Migration Speed 

The final factor contributing to chemotactic performance is cell speed. Speed is 

important in order to ensure that the cells reach their destination in a timely manner. 

Cell speed is affected by many environmental factors such as collagen stiffness, and 

chemical concentration profiles. We define speed as the population average of the 

instantaneous cell speed during chemotaxis � � 
||Δ~r||

v̄ ≡ , (3.5)
Δt 

with Δt being the time lapsed between observations, and ||Δ~r|| the cell’s displace-

ment during that time period. Experimentally, measuring cell speed is limited by 
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the frequency at which cell trajectories are recorded. Therefore comparison of cell 

speed recorded in different chemotaxis studies necessitates careful consideration of 

the procedures used in each respective study. Nonetheless, speed is a simple, easily 

digestible metric for quantifying how motile cells are during chemotaxis. 

3.2 Experimental Results 

The Han group conducted experiments to measure the effects that the environment 

imposes on cell chemotaxis. Different chemicals known to induce motility and directed 

migration were used to measure how chemotactic performance would change. Human 

breast cancer cell line MDA-MB-231 was used in several different chemotaxis and 

motility assays. 

Experiments were conducted in a soft lithography fabricated microfluidic device. 

The device contains three channels, two side channels and a center channel. Side 

channels are connected to reservoirs in order to control the chemical profile present 

in the center channel. The center channel consists of a collagen gel in which MDA-

MB-231 cells are placed. The cells are surrounded by collagen and so perform three 

dimensional migration. The cells are cultured in the collagen for 48 hours followed by a 

24 hour serum starvation period. Afterwards, concentrations of the chemoattractant 

of interest are added to the side channels. The concentration differences between 

the side channels creates a gradient through the collagen gel in the center channel. 

With the chemoattractant added to the device, images of the cells are taken every 

15 minutes for a total duration of 9 hours in order to obtain single-cell chemotaxis 

trajectories. 

First, a control experiment was conducted to characterize the baseline behavior of 

the MDA-MB-231 cells (Fig. 3.2, gray bars). As expected, when the cells are not in 

the presence of a chemoattractant they do not migrate in any preferred direction as 

indicated by a chemotactic index centered around zero (Fig. 3.2a). However, even in 

the absence of any chemical signal cells do exhibit persistent motion with a CR > 0 
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Fig. 3.2. Human breast cancer MDA-MB-231 cell chemotaxis assays. 
Cells are cultured in different chemical environments and trajectories are 
tracked. CI (a), CR (b) and mean speed (v̄) are reported. d) Summary of 
chemotaxis assay results, data point size is proportional to mean speed. 
In all plots colors: no chemoattractant (gray), 400nM EGF uniform con-
centration (red), 0-800nM EGF gradient (orange), 25nM TGFβ uniform 
concentration (blue), and 0-50nM TGFβ gradient (light blue). Error bars 
are the standard error over the population of trajectories observed. 
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(Fig. 3.2b), since the cell motion is intrinsically directional due to the cells’ internal 

migratory machinery [19]. Similar persistent motion has been observed and modeled 

in the context of other cell types [61,63,64]. Finally, we characterize the baseline cell 

motility, with a speed of ≈ 12µm/hr (Fig. 3.2c). 

What happens when chemicals are added to the external environment? We start 

by performing assays with epidermal growth factor (EGF). EGF is a known motil-

ity inducing agent [63, 65] and may also bias cell migration [66]. Experiments are 

conducted for both a uniform 400nM concentration and gradient of 0-800nM across 

the 1mm chamber. As shown in Fig. 3.2a, adding a uniform 400nM concentration of 

EGF to the cellular environment results in a CI value within one standard error of 

CI = 0 indicative that the addition of EGF does not produce any significant bias to 

cell trajectories. This is expected since adding a uniform concentration of a chemical 

should not bias cell motion. On the other hand, adding a graded EGF concentration 

profile does yield biased cell migration. With an average concentration of c̄  = 400nM 

and gradient of ḡ = 0.80nM/µm of EGF we find a CI value that is signficantly above 

zero (Fig. 3.2a). Examining the persistence and speed of cell movement (Fig. 3.2b-c) 

shows that the uniform concentration gives similar results to the graded concentra-

tion. We observe that adding EGF results in about a 6% increase in CR and an 

increased cell speed in agreement with the literature that EGF induces cell motility. 

Next we used transforming growth factor type beta (TGFβ) as a chemoattractant. 

TGFβ is a known chemoattractant for many cell types [67, 68]. It is also involved 

in development, inflammation, and may be involved in carcinogenesis [69–71]. Here 

we find that TGFβ is a strong chemoattractant (Fig. 3.2a, light-blue) with CI = 

0.278 ± 0.075 when gradient of g = 0.05nM/µm is used. TGFβ does promote more 

directionally persistent motion as its CR value for a uniform concentration (but not 

for the graded concentration) is greater than that recorded for the control (Fig. 3.2b). 

Adding TGFβ to the cellular environment does improve cell speed, but not to the 

extent that was observed for motility-inducing EGF (Fig. 3.2c). 
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Fig. 3.3. a) Directional Autocorrelation from control dataset. Light-
colored trajectories indicate autocorrelations for individual cell trajecto-
ries. Timescale τ is calculated using Eq. 3.4. b) Directional autocorre-
lation timescales and CR values for all experimental assays. Data points 
are color-coded based on chemical environment. 

For all experimental conditions we calculate the AC and its timescale τ in order 

to verify the validity in using the CR as the persistence metric instead of the AC 

timescale. Fig. 3.3a shows the autocorrelations from the control assay, the black dots 

are the AC values for all times Δt observed in our experiment, and its AC has a 

timescale τ = 1.02 hr. In Fig. 3.3b we compare the CR and AC timescale values from 

all experimental conditions. Going from a uniform to a graded concentration of either 

EGF or TGFβ results in a decreased CR value, and the AC timescale also decreases 

when going from a uniform to a graded concentration. This indicates that there is a 

monotonic relationship between CR and τ . As the measured value of CR increases so 

too will the AC timescale τ . Therefore, quantifying persistence with CR leads to the 

same patterns, analysis, and conclusions that could have been deduced from using 

AC. Since CR provides a bounded dimensionless metric with clear intuition we use it 

instead of AC. 

In summary, adding a gradient of EGF or TGFβ results in chemotaxis as indi-

cated by CI values significantly above zero. The experimental parameter affects on 

chemotactic behavior are consolidated into Fig. 3.2d. Movement in the CI-CR plane 
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of Fig. 3.2d indicates changing persistence and accuracy of chemotaxis, whereas the 

size of each data point represents the average speed. Under all conditions the cells 

move at speeds on the order of ∼ 10µm/hr. An increase in speed is observed when the 

MD-MB-231 cells are exposed to either growth factor. This is not not a surprising re-

sult since chemical agents that promote persistent or directed migration often results 

in increased motility [19]. EGF and TGFβ both produce similarly persistent motion 

though EGF promotes more motility as indicated by its fastest cell speed. In either 

case, the addition of the chemoattractant has more significant effect on chemotaxis 

accuracy than on its persistence. 

3.3 Chemotaxis Simulations 

The experiments tell us how cells respond to specific concentration profiles of 

EGF and TGFβ. However, experiments do not tell us how chemotactic performance 

varies from experimental configuration to the next, and we are limited to testing 

conditions that experimentally feasible. Therefore we developed a computational 

model of chemotaxis in order to predict cell chemotactic performance in the presence 

chemical concentration profiles not yet experimentally tested. 

Single cell chemotaxis simulations are also conducted to further probe cell chemo-

tactic performance. With simulations environmental parameters such as collagen 

stiffness in addition to background chemical concentration and gradient can be easily 

varied over a wide range of values which may not be experimentally practical. These 

experimental parameters are individually varied to develop predictions on how each 

each parameter affects chemotactic accuracy (CI), persistence (CR), and speed. 

3.3.1 Computational Implementation 

Cell chemotaxis simulations are implemented using the Cellular Potts Model 

(CPM) [49, 50]. The CPM is a lattice based simulation implementation. Cells com-

prise of lattice sites, and cells move and fluctuate in shape through the stochastic 
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Fig. 3.4. a) Screen shot of simulation. Cell (gray) is migrating to-
wards increasing chemical concentration, and the white line traces out 
the cell’s path. Inset, illustration of the CPM. A Cell is comprised 
of simply connected lattice sites. There is an adhesion energy as-
sociated with cell-collagen contact, α (red-dashed line). Cell motil-
ity occurs through the addition/removal of lattice sites (light-gray). 
The white dot represents the cell’s center of mass and the black ar-
row its polarization vector p~. b) Simulation results. Environmen-
tal parameters collagen stiffness α (red), initial background concentra-
tion c0 (green), and gradient g are varied (blue). Parameter values 
along each trajectory: α ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, c0 ∈ 
{0, 5, 10, 25, 50, 75, 100 nM}, g ∈ {0.1, 1.0, 2.5, 5.0, 7.5, 10.0 nM/µm}. 
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addition and removal of lattice sites. Cells are defined as a finite set of simply con-

nected lattice sites {x} (Fig. 3.4a, inset). Cell lattice sites are given the lattice label 

σ(x) = 1 whereas the extracellular environment’s lattices are labeled σ(x) = 0. Cells 

have a desired size A0 and perimeter P0 from which they can fluctuate at an en-

ergetic cost, and cells adhere to their surrounding environment with an adhesion 

energy α. The energy of the whole system is the sum of adhesion, area-restriction, 

and perimeter-restriction terms, 

u = αP + λA(A0 − A)2 + λP (P0 − P )2 . (3.6) 

In Eq. 3.6 A is the cell area, and P is the cell’s perimeter. The parameters λA and 

λP are the area and perimeter restriction costs. 

Cell motion is a consequence of minimizing the energy of the whole system. This 

stochastic process is sensitive to thermal fluctuations and is modeled using a Monte 

Carlo scheme. In a system of n lattice sites, one Monte Carlo time step (MC step) is 

composed of n attempts to copy a random lattice site’s label to a randomly chosen 

neighboring site. An attempt is accepted with probability P , which depends on the 

change in the system’s energy Δu accrued in copying over the lattice label, ⎧ ⎪ −(Δu−w)⎨e Δu − w > 0, 
P = (3.7)⎪⎩1 Δu − w ≤ 0. 

Here the bias term w acts to bias cell motion in the direction of its polarization, and 

it is necessary in order for cells to exhibit directed motion [40]. The bias term is 

defined as 

w = Δx̂ · ~p , (3.8) 

with Δx̂ the unit vector pointing in the change in the cell’s center of mass caused by 

the proposed addition or removal of a lattice site, and ~p is the cell’s polarization vector 

(Fig. 3.4a, black arrow). The dot product acts to bias cell motion since movement 

that is parallel to the polarization vector will result in a more positive w which in 

turn results in a higher acceptance probability (Eq. 3.7). Having a bias term along 

with a non-zero p~ allows for directed migration in the CPM. 
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After the n random attempts of adding and removing lattice sites occurs during 

one MC step the cell updates its polarization vector. The time evolution of the cell’s 

polarization vector is defined as 

d~p 
= −r~p +Δ~x + �~q . (3.9)

dt 

The first term in Eq. 3.9 results in exponential decay of the cell’s current polarization 

at a rate r. Δx is the cell’s displacement during the last MC step and it enables 

persistence in cell motion because it reinforces p~ in the cell’s direction of motion. The 

third term represents chemotaxis, with � the bias strength and ~q an abstraction of 

the cell’s internal gradient sensing network. We define ~q as 

X1 
NP ci − c̄  

~q = r̂i , (3.10)
NP c̄  

i=1 

with the sum taken over all NP lattice sites which comprise the perimeter of the cell. 

r̂i is a unit vector that points radially outwards from the cell’s center of mass to the 

location of lattice site i. ci is the concentration of the chemoattractant sampled at 

the lattice site i and c̄  is the cell’s measurement of the mean concentration in its local 

environment; ci is sampled from a Poisson distribution and c̄  is the mean from all 

ci measured at each lattice site. If lattice sites along one edge of the cell measure 

concentrations that are higher than the average then ~q will point in that direction. 

Given a sufficiently large chemical gradient ~q will act to bias the cell’s polarization p~ 

in the direction of the gradient. 

The CPM used here is similar to that used in our previously published study 

on collective cell chemotaxis [72]. The source code for the single-cell chemotaxis 

simulations can be found here [73]. 

3.3.2 Calibration of Simulation Parameters 

In order to be able to compare simulation results to experiments we must first 

calibrate the CPM parameters. The length and time scales of the simulation are set 

to the experimentally observed average cell size and speed over all assays. Internal 
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cellular parameters, such as the cell polarization strength and decay rate, are then 

calibrated such that the simulation’s CI and CR values are approximately the same 

as those observed in one experiment. 

From experiments we know that cells are on average 400µm2 in size, and we use 

this to set one lattice site to equal 5µm such that cells occupy ∼ 10 lattice sites. 

Next we calibrate the time-scale in simulations by equating the average cell velocity 

in simulations to approximately that observed experimentally, ∼ 10µm/hr. With this 

we equate a simulation time step to 5min. Finally, we need to calibrate the inter-

nal cell parameters. We consider internal cell parameters to be those which are not 

affected by the environment and are characteristic of the particular cell type we are 

simulating. These include the energy costs of cell area and perimeter fluctuations λA, 

λP , the polarization decay rate r, and the bias strength �. These parameters are set 

such that the CI and CR found from simulations are approximately the same as that 

observed in experiment. With internal cell parameters fixed we may proceed to vary 

external parameters in order to predict chemotactic performance in these environ-

ments. External parameters are the collagen stiffness α, background concentration 

c0, and the concentration gradient g. 

In running simulations internal parameters are fixed to the values used for the 

initial calibration. External parameters are varied in order to quantify their effects on 

chemotactic performance. The internal parameter values used as well as the baseline 

external parameter values are listed in Table 3.1. 

3.3.3 Simulation Results 

With length and time scales of the simulation are calibrated and internal cellular 

parameters fixed, we vary the external, environmental parameters. Fig. 3.4b shows 

the resulting CI, CR and speed values when environmental parameters are changed. 

Each data point along a parameter’s trajectory indicates the CI and CR values, while 

the size of the data point indicates the average speed for that particular choice of 



35 

Table 3.1.: Table of parameters and values used in simulations. The first six param-

eters are intrinsic to the cell and remain fixed. The final three parameters represent 

the environment and are varied in Fig. 3.4. Energy costs are in units of kB T , where 

kBT is the thermal energy of the CPM Monte Carlo scheme. 

Parameter Value Notes 

Relaxed Cell Area A0 
2400 µm

Relaxed Cell Perimeter P0 
√ 

3.6 A0 µm Assumes circular resting shape 

Area Energy Cost λA 

Perimeter Energy Cost λP 

0.3 

0.01 

Prevents “stringy” cell-shapes 

Polarization Bias Strength � 0.1 

Polarization Decay Rate r 2.4 hr−1 Sets polarization memory time 

Cell-environment Contact Energy α 0.7 Sets energy scale 

Concentration c̄ 

Gradient g 

10 nM 

0.5 nM/µm 

parameter value. All other parameters are held fixed along each trajectory. The 

background concentration is varied over three orders of magnitude whereas both the 

gradient and collagen stiffness are varied over one order of magnitude. 

We find that varying the background concentration and gradient most significantly 

affects the accuracy of chemotaxis, not the persistence nor the speed. This is displayed 

in Fig. 3.4b in which both c0 and g have much longer trajectories along the CI axis 

than along either the speed or CR axis. As the background concentration increases, 

the fluctuations in the diffusing chemoattractant become larger relative to the gradient 

making it more difficult for the cell to correctly determine the gradient direction. This 

results in a decreasing CI as c0 increases. Conversely, increasing the gradient enables 

the cell to more accurately detect the gradient direction resulting in increasing CI 

values (Fig. 3.4b,c). 
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Along with changing the accuracy of chemotaxis, varying c0 and g also results in 

slightly increased persistence and speed. This goes hand in hand with the improved 

gradient detection due to increased g or decreased c0. As cells become more accurate 

movements perpendicular to the gradient are reduced, resulting in more persistent 

and faster motion along the gradient direction as shown in Fig. 3.4b. 

Collagen stiffness is the only parameter that significantly affects the persistence 

in the cell’s motion, indicated by the larger displacement in α’s trajectory along CR 

versus CI or speed (Fig. 3.4a,b). Stiffer collagen is more difficult for cells to traverse 

leading to slower speeds, and we find a monotonic relationship between CR and speed 

when stiffness is varied (Fig. 3.4b). As was observed for the chemoattractant-related 

parameters the more persistent cell motion seen at small α also corresponds to more 

accurate, faster chemotaxis. 

From these simulation results we deduce some stereotypical patterns of cell chemo-

taxis. Increasing the relative change in chemoattractant concentration across a cell 

length (either by increasing g or reducing c0) results in more accurate chemotaxis. 

Materials that are more difficult for cells to traverse during chemotaxis, whether 

its stiffer collagen in vitro or denser extracellular matrix in vivo, results in reduced 

chemotactic performance across all metrics. Finally, the simulations show a positive 

correlation between CR and speed since as cell motion becomes more persistent it 

typically enables faster cell movement. 

3.4 Analytical Model of Chemotaxis 

Interestingly, although both experiments and simulations vary environmental pa-

rameters affecting cell chemotaxis, the chemotactic performance metrics do not dra-

matically change. Both CI and CR can range from 0 to 1, but our MDA-MB 231 

cell assays result in CR values close to 0.45 and CI values less than 0.3 for all envi-

ronmental conditions (Fig. 3.2). Simulations allow for probing chemotactic behavior 
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over an even larger parameter space, and yet CI and CR values remain limited to a 

fraction of the whole range (Fig. 3.4). 

Can this phenomenon be explained with a simple physical model? One of the 

simplest models for cell movement and chemotaxis is the biased persistent random 

walk [64, 74]. In its simplest form, a random walk involves a walker that is equally 

likely to move in any direction, and its next step is independent of its previous mo-

tion. To add persistence to the random walk means that the walkers’ movements are 

correlated in time. The walker’s next movement is not equally likely in all directions 

as in the simplest case, but now depends on its previous direction of motion [75]. 

Finally, adding bias means that the walker is more likely to move in a particular fixed 

direction even in the absence of persistence. Before we get into how the BPRW model 

can shed light on the chemotactic performance of MDA-MB-231 breast cancer cells, 

lets review the model formulation. 

3.4.1 Biased Persistent Random Walk Formulation 

The BPRW is modeled as a velocity jump process instead of the typical on lattice 

hopping formulation of the standard random walk [64]. In the BPRW a walker moves 

in a particular direction with fixed speed for an exponentially distributed amount 

of time before changing direction. The walker reorients to a new direction v̂ from 

its previous direction v̂0 depending on the probability density T (~v, ~v0). We assume a 

reorientation frequency λ, thus λ−1 is the average run time, and we assume that it 

moves at a constant speed s. The reorientations are chosen based on a probability 

density T (~v, ~v0) which depends only on the angular direction of the walker’s move-

ments: T (~v, ~v0) = T (θ, θ0). Here the angle θ is taken relative to the x axis which is 

assumed to be parallel to the gradient direction. 

Let p(~r, θ, t)d~rdθ be the number density of individual walkers found between po-

sitions ~r and ~r + d~r with movement orientation between θ and θ + dθ. From Othmer 
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et al. [64] it is shown that the evolution equation for the probability density p(~r, θ, t) 

simplifies to Z π∂p ~ + sξ~ · rp = −λp + λ dθ0 T (θ, θ0) p(~r, θ, t) , (3.11)
∂t −π 

~with ξ = (cos θ, sin θ). In order to derive expressions for the moments some assump-

tions have to made on the reorientation probability density. We assume that T (θ, θ0) 

is the sum of two functions, 

T (θ, θ0) = k(θ) + h(φ) (3.12)|{z} |{z} 
bias persistence 

with φ = θ − θ0 being the turning angle. k(θ) is maximally valued and symmetric 

about θ = 0, and biases movement towards the gradient. h(φ) is the turning angle 

distribution which is assumed to be symmetric about φ = 0. Along with these 

properties T (θ, θ0) and its component functions must obey the following conditions: 

T (θ, θ0) ≥ 0 , for all (θ, θ0) , (3.13)Z π 

dθ T (θ, θ0) = 1 , (3.14) Z− 
π
π 

dθ k(θ) = 0 , (3.15) Z−π 
π 

dφ h(φ) = 1 . (3.16) 
−π 

With Eq. 3.11 and the restrictions on T (θ, θ0) (Eq. 3.13-3.16), Othmer et al. [64] 

derive the moments for the BPRW. �� �
2 2χ2 � �2s χ2te−λ0t 3χ2(1 − ψ)−2 − 1 −λ0thr 2(t)i = 1 − t − + 1 − e 

λ0 (1 − ψ)2 (1 − ψ)2 λ0� (3.17)
χ2λ0t

2 

+ 
2(1 − ψ)2 � −λ0t 

� 
χ 1 − e hx(t)i = s t − (3.18)

1 − ψ λ0 

hy(t)i = 0 (3.19) 

These results are derived with the assumption that individuals in the BPRW start at 

the origin with uniformly distributed initial orientations. The mean squared displace-

ment (Eq. 3.17) and the mean walker location (Eq. 3.18-3.19) both depend on the 
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parameters χ, ψ, and λ0. The bias strength (also referred to as the taxis coefficient) 

is represented by χ which is defined as Z π 

χ ≡ dθ k(θ) cos θ . (3.20) 
−π 

ψ represents the persistence strength (also referred to as the persistence index), and 

it is defined as Z π 

ψ ≡ dφ h(φ) cos φ . (3.21) 
−π 

Note that the restrictions on the reorientation probability density (Eq. 3.13-3.16) 

result in χ ≤ 1−ψ. Finally, λ0 is the effective turning rate of the walker, λ0 ≡ λ(1−ψ). 

Since λ is the reorientation rate and ψ is the persistence strength, λ0 describes the 

effective rate at which the walker forgets its previous orientation. 

Starting from the definitions for CI and CR in Eqs. 3.1-3.2, we use the moments 

given in Eqs. 3.17-3.19 to calculate CI and CR for the BPRW model as functions of 

time: D E s � −λ0t 
� 

x hxi λ 1 − e 
CI(t) = ≈ p = χ t − [ . . . ]−1/2 , (3.22) 

r hr2i 2(1 − ψ) λ0 p r 
hri hr2i 1 2 

CR(t) = ≈ = [ . . . ]1/2 . (3.23)
L st t λ0 

The term [ . . . ] is shorthand for the bracketed term in Eq. 3.17, and L is the total path 

length. In Eq. 3.22 we approximate the two moments as being independent of one p
another, and in both Eqs. 3.22-3.23 we make the approximation that hxi ≈ hx2i. 

These approximations are in very good agreement the exact solutions of CI and CR 

times in which many reorientation events occur, λt � 1. 

Interestingly neither the prediction for CI nor CR depend on the speed s. Ad-
√ 

]1/2ditionally, assuming that χ < 1 − ψ, to first order [ . . . ∼ t and so to first 

order CR decays as CR ∼ t−1/2 . We can make intuitive sense of Eqs. 3.22-3.23 in 

these limits as well. CI is proportional to χ since the bias strength should be the 

most significant factor in determine accuracy. CI is also dependent on the persistence 

strength CI ∼ (1 −ψ)−1/2 , since given some non-zero bias higher persistence will rein-

force movement in the desired direction. Interpretation of CR is more straightforward 
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with CR ∼ λ0 
−1/2 

. CR depends inversely on the effective turning rate because a lower 

turning rate leads to straighter trajectories. 

3.4.2 Biased Persistent Random Walk Results 

The BPRW predictions for CI and CR depend on how strongly persistence and 

bias affect the walker’s movements. The timescales in the BRPW are calibrated to 

those of our experiments; total observation time t = 9hr, the reorientation frequency 

λ = 4hr−1), and we approximate the speed to be s = 15µm/hr. With the BPRW 

timescales calibrated we can proceed to vary T (θ, θ0) which in turn affects the bias 

strength χ, and the persistence strength ψ. 

Fig. 3.5. a) Possible values of CI and CR for a BPRW. Each dot repre-
sents the CI and CR value for a BPRW of a given bias and persistence 
strength. Inset, sample trajectories of a BPRW. b) Example reorientation 
probability densities T (θ, θ0), and their component bias k(θ) and persis-
tence h(θ − θ0) functions. For both b) plots θ0 = 0. For all plots: t = 9hr, 
λ = 4hr−1 , s = 15µm/hr, and θ = 0 is the direction of bias. 
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Simulations of the BPRW are performed with varying T (θ, θ0) to find the result-

ing values of CI and CR possible given our experimental system (Fig. 3.5). In the 

simulations the bias and persistence functions take on the forms: 

k(θ) = k1 cos θ , (3.24) 

h(θ − θ0) = h1fVM(θ| θ0, κ1) + h2fVM(θ| θ0, κ2) . (3.25) 

Here k1 sets the bias strength, and h(θ − θ0) is a linear combination of two von Mises 

1 κ cos(θ−θ0)distributions with fVM(θ| θ0, κ) = e . The von Mises distribution is
2πI0(κ) 

approximately equal to a normal distribution bounded to a circle, and it is commonly 

used in random walk models of biological systems [61]. A linear combination of two 

such distributions is used to construct a broad range of biologically relevant h(θ − θ0) 

distributions. The parameters κ1 and κ2 set the persistence strength with larger values 

of κ resulting in higher persistence. h1 and h2 set the shape of the distribution, with 

{h1, h2} > 0 results in a single-peaked h(θ − θ0) function as shown in Fig. 3.5b, top. 

Whereas, if h1 > 0 and h2 < 0 then the resulting h(θ − θ0) function has two peaks, 

symmetric across θ = θ0 (Fig. 3.5b, bottom). 

Interestingly, even in this idealized model of chemotaxis the whole range of CI 

and CR values is not available to the BPRW (Fig. 3.5a). The mechanics of the biased 

persistent random walk limit its performance resulting in behavior that cannot attain 

perfect accuracy (CI = 1), nor perfect persistence (CR = 1). This is a consequence 

of the reorientation probability density T (θ, θ0) = k(θ) + h(θ − θ0) which cannot 

simultaneously feature high bias and persistence, and the resulting CI and CR values 

are a reflection of this trade-off. By sampling over possible combinations of the bias 

and persistence distributions we find that even when k(θ) and h(θ − θ0) are optimized 

to produced the highest pair of CI and CR values, the end result is still not the ideal. 

By calibrating BPRW to our experiments the parameters t, λ, and s are fixed. 

From here we can sample possible CI and CR values given a particular bias and 

persistence strength. By varying over all possible combinations of bias and persistence 

parameters while enforcing the restrictions on T (θ, θ0) (Eq. 3.13-3.14) all possible 
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Fig. 3.6. Theoretical bounds on chemotactic performance based on the 
biased persistent random walk model. Gray dots represent possible theo-
retical CI and CR values for a BPRW. Colored squares are experimentally 
recorded values for different environmental conditions. 
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values of CI and CR permitted under the BPRW model are calculated. Since our 

BPRW parameters were set by our breast cancer cell experiments, the theoretical CI 

and CR values are compared with the experimental results in Fig. 3.6. We see that for 

a given turning angle probability distribution our simple analytical model is able to 

recover the CI and CR values observed in experiments. More importantly, the BPRW 

puts limits on how well these breast cancer cells can perform chemotaxis. The BPRW 

model predicts that regardless of the environmental conditions of the breast cancer 

cells, their chemotactic performance is limited to a small region of the whole CI-CR 

phase space as shown by the gray-shaded region in Fig. 3.6. Therefore, the internal 

cell parameters λ and s as well as the experimental parameter t restrict chemotactic 

performance of these breast cancer cells. 

In summary, we developed novel chemotaxis CPM simulations, and used those to 

explore the effects of environmental parameters on chemotactic performance. In con-

junction with simulations, breast cancer cell chemotaxis experiments were conducted 

to test the effects of different chemical agents and concentration profiles. Finally, 

we showed that the physics of the BPRW is capable of constraining the chemotactic 

performance of these cells. Future experiments will be conducted to test the rela-

tionships between chemotactic performance and environmental parameters probed 

computationally in Fig. 2.4. More generally, it will be interesting to see whether 

different environments allow the breast cancer cells to fully explore the chemotaxis 

regime shown in Fig. 2.6, or if they go beyond the predicted regime, indicative of 

behavior more complex than a BPRW. 
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4. LIMITS TO COLLECTIVE CHEMOTAXIS 

Parts of this chapter have been published as J. Varennes, S. Fancher, B. Han, and 

A. Mugler, “Emergent versus Individual-Based Multicellular Chemotaxis,” Physical 

Review Letter 119.18 (2017): 188101. 

In this chapter we transition from studying single-cell chemotaxis to that of multi-

cellular collectives. Collective behavior occurs in a variety of biological systems such 

as organism development [20, 76–78], tissue morphogenesis [25] and metastatic inva-

sion [22, 63, 79, 80]. Throughout these systems collective chemotaxis may occur in 

a variety of different ways. The simplest way for cells to collectively chemotax is 

by individual detection and response to the chemical attractant: each cell measures 

the gradient through the spatial difference in chemoattractant across its body and 

moves in the perceived direction of the gradient, while mechanical coupling keeps 

the group together. Groups performing this type of individual-based chemotaxis (IC) 

are throughout cell biology [81]. IC is sometimes referred to as “many wrongs”, as 

alluded to in Ch. 2. However, recent experiments have uncovered an alternative type 

of chemotaxis, in which cells grouped together chemotax differently than if they were 

alone [9, 82–84]. Interactions within the collective results in cell behavior which is 

unlike that of IC. Specifically, outer cells polarize while inner cells do not, a mech-

anism observed in neural crest cells [20] and considered in several recent modeling 

studies [45, 72, 83]. This type of emergent chemotaxis (EC) behavior seen in cell col-

lectives presupposes a machinery within cells which allows for behavior to change 

once a cell is in a group. Since this machinery may come at a cost, this raises the 

question of whether EC offers any fundamental advantage over IC. 

We address this question using simple physical models of IC and EC which are 

described and analyzed in detail in the following sections. In both models cell col-
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lectives respond to graded profiles of freely diffusing molecules. We quantify the 

migratory behavior of various geometries of cells collectives: one-dimensional (1D) 

cell chains, two-dimensional (2D) cell sheets, and three-dimensional (3D) cell clusters 

[Fig. 4.1(a)]. These configurations are designed to mimic physiological multicellular 

structures such as filaments and ducts [21, 79,85]. 

The cell collectives exist at low Reynolds number, hence their velocity ~v is propor-

~tional to the motility force, and in turn the polarization P . Therefore, understanding 

~the behavior of P will inform us of the collective migratory performance. We focus 

on two measures of performance: the mean and the relative error of the polarization 

in the gradient direction Pz, where the relative error is defined 

Var[Pz] Var[vz]
�2 = = . (4.1)

i2 i2hPz hvz 

In either model, cells sense and polarize in response the chemoattractant diffusing 

in the environment. The chemoattractant concentration c(~r, t) is a random variable 

which obeys regular diffusion ċ = Dr2c + ηc with D the diffusion coefficient. The 

Langevin noise term ηc accounts for the diffusive fluctuations in concentration, and it 

~obeys hηc(~r, t)ηc(~r0, t0)i = 2Dδ(t − t0)rr ·r ~ 
r0 (c̄(~r)δ

3(~r − ~r0)) [34,86]. We first consider 

a constant gradient g with mean concentration profile c̄(~r) = c0 + gz. Cells are 

assumed to rigidly adhere to one another, and although cells are soft, here we assume 

as in previous studies [45, 87, 88] that their polarization vectors may be summed as 

if the cells were rigid bodies. Hence, the polarization of a collective of N cells is PN~P (t) = i=1 ~pi(t) though the exact functional form of p~ i will depend on the model. 

The cell polarization will fluctuate due to the particulate nature of diffusion. Fo-

cusing on this extrinsic source of noise, we treat each cell as a sphere of radius a 

through which molecules freely diffuse, akin to the “perfect instrument” described by 

Berg and Purcell [2]. It is important to note that treating cells as permeable spheres 

neglects receptor binding. We expect that the dimensionality-dependent scaling re-

sults derived herein will not change for reversible receptor binding but may change 

if binding is irreversible, as irreversible binding fundamentally changes the boundary 

conditions that cells present to the molecule field. 
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Fig. 4.1. (a) We study the chemotactic performance of 1D chains, 2D 
sheets, and 3D clusters of cells. (b) In individual-based chemotaxis (IC), 
cells in the collective polarize based on their own gradient measurement. 
(c) In emergent chemotaxis (EC), cell polarization depends on intercellular 
interactions: cells on the edge polarize based on their measurement of the 
concentration, and cells in the bulk do not polarize. In both mechanisms 

~the total polarization P will fluctuate in magnitude and direction due to 
noise in cell measurements. 

Collectives performing EC and IC are found to have very similar mean polariza-

tion, with polarization strength scaling linearly with the number of cells regardless of 

chemotactic mechanism or dimensionality. We will show that 1D and 2D EC collec-

tives have higher chemotactic precision than IC collectives: we find that for N cells, 

the relative error in EC scales as {N−2, N−3/2, N−1} for 1D, 2D, and 3D, respectively, 

whereas in IC it scales as N−1 for any dimension. We explain the physical origin of 

this difference and discuss its implications. 
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4.1 Individual-based Chemotaxis 

We first consider IC [Fig. 4.1(b)]. Due to the chemoattractant molecules in the 

environment, each cell i becomes polarized with vector ~pi in its desired direction of 

motion [18]. The components of p~ i reflect the difference in concentration c(~r, t) be-

tween the front and back of the cell in each respective direction. The concentration 

difference is encoded internally as a weighted count of the molecules within the cell 

volume. The weighting function will depend on the sensory network, but will gen-

erally be positive at the front and negative at the back; here we choose cosine for 

simplicity. Orienting our coordinate system such that ẑ  is parallel to the gradient, 

the components of p~ i become Z 
d3 piα(t) = r wα(r̂)c(~r, t), (4.2) 

Ui 

with Ui the cell volume, α ∈ {x, y, z}, and in spherical coordinates the cosine is 

wα(r̂) = {sin θ cos φ, sin θ sin φ, cos θ}. 

To investigate hPzi and �2 for the IC model, we first perform particle-based simu-

lations of the chemoattractant in the presence of the permeable cells [89]. A complete 

description of the simulations used can be found in Section 4.6. We find that the total 

~ mean polarization hP i points solely in the gradient direction with equal magnitude 

regardless of dimensionality [Fig. 4.2(a), blue data points]. Indeed, Eq. 4.2 indicates 

that a single cell will have mean polarization proportional to the concentration differ-

ence across the cell, hp~ ii = πa4g/3 ẑ, regardless of the cell’s location. Therefore the 

mean collective polarization is geometry-independent, depending only on the number 

of cells present, 

~hP iIC = 
π
a 4gN z,̂ (4.3)
3 

as shown in Fig. 4.2(a) (blue lines). 

We next investigate the relative error for IC collectives. Simulations show that the 

error decreases with cluster size as �2 ∼ N−1 for all three geometries [Fig. 4.2(b), blue 

data points]. This is the result that one would obtain if the cells were independent 

sensors, since both the mean and variance scale with N in that case [44]. However, 
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Fig. 4.2. (a) Mean cluster polarization and (b) relative error for both 
mechanisms of collective chemotaxis in every configuration. Points are 
simulation data, colored lines are analytical predictions. 1D EC data 
plotted with respect to N − 1. 

they are not independent: their noise is correlated by fluctuations in the concentration 

[33,34]. To understand why correlations do not affect the relative error we investigate 

the model analytically. 

We begin by linearizing the concentration c(~r, t) = c̄(~r) + δc(~r, t) as well as the 

cell polarization p~ i(t) = h~pii + δ~p(t), and by Fourier transforming in both space and 

time we derive analytic expressions for Var[Pz] and thereby �2 (see Sect. 3.6). Since PNPz = i=1 piz, the variance in the total polarization is a linear combination of all cell 

polarization variances and covariances present in the collective, X X 
Var[Pz] = Var[piz] + Cov[piz, pjz] ≡ V + C, (4.4) 

i i=6 j 

The variance and covariance for cells within the collective are derived from the power 

spectrum in polarization cross correlations, taking the general form Z 
1 dω0 ∗ Cov[piα, pjα] = lim hδp̃iα(ω0)δp̃jα(ω)i , (4.5)
T ω→0 2π 
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with T the cell’s measurement integration time and Var[piα] = Cov[piα, piα] [4,33,34]. 

Eq. 4.5 assumes that the integration time is larger than the timescale of molecule 

diffusion over the radius R of the collective, T � τD = R2/D, though we relax this 

assumption in later simulations. Following this procedure we find that V and C for 

IC are (see Sect. 3.6) 

4πa5c0
VIC = N, (4.6)

45DT Xπa5c0 
N 
3 cos2 Θij − 1 

CIC = − 
3 . (4.7)

18DT niji6=j 

Here nij is the number of cell radii separating the centers of cells i and j, and Θij 

is the angle between the gradient direction and a line connecting the two cells. A 

detailed derivation of these analytic results can be found in Section 4.7. 

VIC scales with N since each cell is involved in gradient sensing and in turn polar-

izes. However, Eq. 4.7 reveals an angular dependence on IC cell cross-correlations. A 

pair of cells can be correlated or anti-correlated depending on their locations relative 

to the gradient. Consider a pair of adjacent IC cells that are aligned parallel to the 

gradient (cos2 Θij = 1). If a fluctuation causes an excess in chemoattractant near the 

boundary of the two cells, then the down-gradient cell will detect a molecule increase 

in its front half, resulting in an increased polarization; whereas the up-gradient cell 

will detect a molecule increase in its back half, resulting in a decreased polarization. 

The end result is an anti-correlation between the two cells. The opposite effect occurs 

if the two adjacent cells are aligned perpendicular to the gradient: fluctuations will 

affect both cells in the same way, causing positive correlations. Since contributions to 

CIC are dependent on cell pair locations, CIC itself will be dimensionality dependent 

because the angles made between cells are determined by geometry. 

For a 1D chain of IC cells, every pair is parallel to the gradient resulting in 

anti-correlated measurements which we find in total scale as N (see Sect. 3.6). As 

dimensionality increases, more and more pairs of cells will be perpendicular to the 

gradient resulting in reduced anti-correlations in the collective. This culminates in 

3D clusters having zero cell-cell covariance contribution to the total cluster variance 
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Table 4.1.: Summary of scaling behavior. N dependence of the leading order term for 

the mean hPzi, and the variance (V ) and covariance (C) contributions to the relative 

error �2 = (V + C)/hPzi2 . C for EC in 2D has a log correction (see Sect. 3.6). 

hPzi V C �2 

IC 

1D N1 N1 −N1 N−1 

2D N1 N1 −N1 N−1 

3D N1 N1 0 N−1 

EC 

1D N1 N0 −N−1 N−2 

2D N1 N1/2 N1/2 N−3/2 

3D N1 N2/3 N1 N−1 

(see Sect. 3.6). The result is that �2 ∼ N−1 regardless of dimensionality, indicating 

that IC cells behave as effectively independent gradient sensors, even though there 

are diffusion-mediated cross-correlations between cells. The scalings for V and C are 

summarized in Table 4.1. The resulting �2 predictions are plotted in Fig. 4.2(b) (blue 

lines), and we see excellent agreement with the simulations. 

4.2 Emergent Chemotaxis 

Next we turn our attention to EC, the mechanism in which grouped cells sense 

and migrate differently than individuals. Often cells in a cluster differentiate, with 

edge cells polarized and bulk cells unpolarized [76, 83]. In accordance with previous 

studies [45, 72], we assume that cell interactions are mediated by contact inhibition 

of locomotion [46]. The interactions result in edge cells polarized away from their 

neighbors, and interior cells that remain uninvolved in chemical sensing and do not 
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polarize [Fig. 4.1(c)]. The edge cells polarize with strength proportional to the local 

concentration which, again like Berg and Purcell’s perfect instrument [2], is estimated 

by counting the molecules present within their cell volume. Hence we define the 

polarization of the ith cell in the collective as ⎧⎪⎨ ⎪ 
R 

r̂i d3r c(~r, t) i ∈ {Nedge}Ui ~pi(t) = (4.8)⎩0 i ∈ {Nbulk} , 

where r̂i points radially outwards from the collective, and Ui is the cell volume. 

Eq. 4.8 dictates that ~pi is dependent on a cell’s location relative to the collective. 

As illustrated in Fig. 4.1(c), only the cells on the edge sense the chemoattractant, 

polarizing with a larger magnitude on the high concentration side of the collective. P ~The total polarization depends only on the cells along the edge: P = pi.i∈{Nedge} ~ 

Simulations for EC show that the mean polarization hPzi scales with N for all 

geometries [Fig. 4.2(a), red points] even though Nedge is dependent on the dimension-

ality of the collective. Our analytical solution helps us understand this result. For 1D 

~EC, only the two opposing cells are polarized so hP i can be solved for exactly, but P ~for 2D and 3D we take the continuum limit of P = i p~ i, assuming the collective is 

much larger than a single cell R � a (see Sect. 3.6). The resulting expressions are 

~hP iEC = fda 4gN z,̂ (4.9) 

where the prefactors are fd = {8π/3, 2π2/3, 16π/9} for d = {1, 2, 3} dimensions, and 

for d = 1 we have taken N − 1 → N for large N . Eq. 4.9 is shown in Fig. 4.2(b) 

(red lines), and we see good agreement. hPzi scales with N because it depends on the 

product of Nedge ∼ N (d−1)/d and the distance spanned in the gradient direction by the 

collective R ∼ N1/d, resulting in a mean polarization which is geometry invariant [83]. 

Comparing EC and IC shows that hPzi ∼ N regardless of collective migration 

mechanism or geometry as seen in Fig. 4.2(a). hPzi has the same parameter depen-

dency for both EC and IC, namely a4g, which is the average change in the number 

of chemoattractant molecules across a cell. Although hPziEC ≈ 6hPziIC meaning that 

EC speed is faster than IC, this relatively small difference may be difficult to detect 
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in biological systems. Moreover, both mechanisms have the same N scaling. Does 

the same equivalence between EC and IC also hold for the relative error? 

Interestingly, simulations show that the EC relative error does depend on geom-

etry and in fact outperforms IC in terms of scaling in 1D and 2D [Fig. 4.2(b), red 

points]. Only in 3D does the relative error appear to scale the same as IC. In order to 

understand the dimension dependence of the EC relative error we again investigate 

the model analytically. Following the procedure outlined by Eqs. 4.4 and 4.5 we find 

analytic expressions for Var[Pz] = V + C for EC, 

NedgeX16πa5c0
VEC = cos 2 Θi, (4.10)

15DT 
i=1 

NedgeX8πa5c0 cos Θi cos Θj
CEC = , (4.11)

9DT nij
i6=j 

with Θi the angle r̂i makes with the gradient. Again, a detailed derivation of these 

results can be found in Section 4.7. Both VEC and CEC depend on dimensionality 

simply because Nedge ∼ N (d−1)/d. From Eqs. 4.10 and 4.11 we see that V ∼ Nedge, 

and that C depends on the angles edge cells make with the gradient. The angular 

dependence means that cells along the front and back sides of the cluster (relative to 

the gradient) are strongly anti-correlated since cos Θi cos Θj ≈ −1, whereas pairs of 

edge cells near the middle are very weakly correlated (cos Θi cos Θj ≈ 0). Unlike in 

the case of IC, the scaling of C with N increases with dimensionality as summarized in 

Table 4.1, and the resulting �2 predictions show good agreement with the simulation 

results [Fig. 4.2(b)]. 

The dimension dependence of the EC relative error can be understood by thinking 

of the collective as one large detector whose sensory surface is comprised of two halves. 

If both halves were to take measurements of their local concentrations and then 

polarize in opposing directions with strengths proportional to their measurements, 

then �2 would depend on the radius of each half aeff and their separation distance Aeff 

A−2according to �2 ∼ a −1 [33]. The radius of each half is independent of N for a 1Deff eff 

chain (each half is a single cell), but it scales as aeff ∼ N1/d for d = 2 or 3 dimensions. 
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The separation distance scales with the ̊radius of the collective for all d, Aeff ∼ N1/d. 

This results in �2 ∼ {N−2, N−3/2, N−1} for d = {1, 2, 3} [Fig. 4.2(b), black lines], 

which agree with the scalings seen in simulations and analytics. 

Thus, the physical origin of the advantage of EC over IC lies in how the errors 

scale with the collective size N . In IC, all N cells contribute to the sensing, and 

cross-correlations between them scale either linearly or sublinearly with N , leading 

to a scaling �2 ∼ 1/N that is characteristic of independent sensors. But in EC, only 

Nedge ∼ N (d−1)/d cells contribute to the sensing, leading to a sublinear scaling with 

N of the variance contributions of the individual cells. The total variance of the 

collective, then, depends on the cross-correlations, which are geometry-specific: in 

1D they are dwarfed by the individual variances, in 2D they are commensurate, and 

in 3D they dominate (Table 4.1). As a result, 1D and 2D EC collectives benefit from 

a variance that scales subextensively, i.e., sublinearly with N . 

4.3 Model Extensions 

Our analytical treatment relies on several assumptions which we now relax using 

the simulations. In Fig. 4.2 the integration time T is larger than the timescale for 

molecule diffusion τD. We relax the assumption that the integration time T must be 

larger than the timescale for diffusion τD ∼ R2/D [Fig. 4.3(a)]. We find that �2 scales 

the same way as previously predicted for both EC and IC, even when T = τD/100. 

The only exception is that �2 for 3D EC [Fig. 4.3(a), red circles] has a more negative 

power-law dependence on N than the expected ∼ N−1 . The shorter integration time 

results in decreased correlations between edge cells which when T > τD results in 

C ∼ N . Hence with T < τD the total variance is less dependent on C, and V ∼ N2/3 

becomes the dominant contribution to Var[Pz] in the case of 3D EC. This results in 

a steeper scaling of �2 closer to Var[Pz]/hPzi2 ∼ N2/3/N2 = N−4/3 . Interestingly, we 

see that relaxing the assumption T � τD results in improved precision for EC over 

IC not just in 1D and 2D but also in 3D configurations. 
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Fig. 4.3. (a) Short-time integration relative error results. Data points 
1 are of simulations for T = 
100 τD. (b) Exponential concentration profile 

−z/λ relative error results. The mean concentration profile is c̄(z) = c0e ,p
the lengthscale λ = D/β is set by the diffusion coefficient D and the 
molecule decay rate β. Lines are from original analytical predictions using 
T > τD and a linear concentration profile. 

In Fig. 4.3(b) we change the concentration profile from linear to exponential which p
−z/λ has a mean concentration of c̄(z) = c0e . The lengthscale λ = D/β depends 

on the diffusion coefficient and the molecule degradation rate β. In Fig. 4.3(b) the 

simulation results are for λ > a. We find that �2 is in very good agreement with our 

original analytic predictions. The only exception is that due to the exponential profile, 

hPzi for 1D EC (Fig. 4.3(b), red squares) is non-linear in N causing the relative error 

data to scale less steeply than the expected N−2 . 

In our model, IC polarization is adaptive to the background concentration as 

observed in the Ras signaling pathway for Dictyostelium discoideum chemotaxis [90]. 

On the other hand, our EC model is non-adaptive. Cell polarization increases with 

background concentration causing tension in the collective [Fig. 4.1(c)], as previously 

studied [45]. However, adaptive collective sensing has been observed in mammary 

epithelial cells [25]. Our EC model could be made adaptive by replacing the integrand 
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~in Eq. 4.8 with c(~r + ~r0, t) − c0. This change does not affect the properties of P since 

the background concentration cancels out when summing over all edge cells, but it 

does remove the internal tension in the collective. 

4.4 Paradigms of EC and IC Behavior 

Both models are paradigmatic, and encompass many observed collective chemo-

taxis strategies in biology. Known strategies of collective cell chemotaxis fall broadly 

into five categories. First, experiments focused on CIL have revealed collective cell 

streaming in which each cell makes independent protrusions [46]. Second, experi-

ments discussed in Refs. [76, 79, 82, 83] all show behavior wherein edge cells exhibit 

an active, motile phenotype or make outward protrusions. Third, studies detailed in 

Refs. [20–22] illustrate cellular behavior wherein active, motile cells form one or more 

multicellular chain-like protrusions extending from the collective. Fourth, experi-

ments on epithelial organoids demonstrated that chemical communication between 

cells can underlie collective gradient sensing [25]. Finally, recent modeling studies 

have highlighted the role played by cell rearrangement within the collective in gov-

erning collective chemotaxis [45, 88]. 

The first strategy in which cells act independently is directly described by the 

IC models. The second strategy in which edge cells make outward protrusions is 

exemplary of the EC model. The third strategy may be considered as a combination 

of our IC and EC models: the cell at the tip of the multicellular protrusion is often of 

a highly invasive phenotype akin to our EC edge cells, while the cells within the bulk 

of the protrusion are less invasive and may behave like bulk cells or IC cells depending 

on their activity. In the case of the fourth strategy, the error in the communication 

process will contribute additional noise to the collective polarization [33], and when 

communication is optimal we recover the same scaling relationship for the relative 

error as in our EC model, as discussed at the end of Sect. 3.3. Finally, the fifth 

strategy, namely collective chemotaxis in which cells rearrange, is not encompassed 
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by our IC and EC models, since we consider cell locations to be fixed relative to the 

collective. It may very well be that cell rearrangement allows for spatial fluctuations, 

and thereby correlations, to be averaged out resulting in a quantitatively improved 

relative error. This is an interesting avenue of further research. 

4.5 Discussion 

Besides the advantage revealed here in terms of chemotactic precision, there may 

be other natural advantages to EC. In EC only edge cells are involved in chemical 

sensing and polarization, freeing bulk cells from receptor and protein production 

necessary for chemotaxis. Bulk cells are free to differentiate into other phenotypes, 

which is in stark contrast with IC where every cell must be of the polarized phenotype. 

Additionally, EC provides a simple solution to bulk cells being shielded from the 

diffusing chemoattractant by edge cells. This phenomenon is especially important for 

3D collectives where it can significantly impact the sensory precision of bulk cells [91]. 

The above advantages may be why EC-style collective migration is more preva-

lent than IC. For example, EC has been observed in two dimensional collectives of 

malignant lymphocytes [83] and in border cell migration [76]. In cancer, metastatic 

invasion sometimes occurs in the form of chains of cells leaving the tumor with a 

leader cell at the front [21,79], analogous to our 1D EC model. Two-dimensional EC 

migration may also be implicated in tumorigenesis and metastasis in pancreatic duc-

tal cells given the cylindrical surface-like geometry of pancreas ducts [85]. Although 

we only study idealized collective shapes, the dimensionality-dependent scalings we 

derive are likely to persist in these systems because the scalings are independent of 

the exact shapes used. 

How can our predictions be tested in experiments? The chemotactic index (CI), 

commonly defined as CI ≡ hcos θi where θ is the angle between the trajectory and 

the gradient [29], is actually a simple monotonic function of �2 . For small deviations 

from perfect chemotaxis, we have CI ≈ 1 − hθ2i/2 = 1 − Var[θ]/2. If vz and vx 



57 

are the components of the velocity of the collective parallel and perpendicular to 

the gradient, respectively, then θ ≈ vx/vz with hvzi > 0 and hvxi = 0, resulting in 

Var[θ] = Var[vz]/hvzi2 = �2 . Therefore the relative error and chemotactic index are 

related as CI = 1−�2/2 for small errors. With this relationship the predicted scalings 

of �2 for EC and IC may be tested with chemotaxis experiments. Additionally, the 

CI scaling behavior could be used to determine whether an EC- or IC-style migration 

is at play in a system of collective chemotaxis. 

We have shown how the fluctuations in a diffusing attractant concentration set 

physical limits to collective chemotactic performance. By focusing on two fundamen-

tal classes of collective chemotaxis, we have found that the mean polarization scales 

with the size of the collective irrespective of the mechanism or geometry, but that the 

emergent mechanism outperforms an individual-based one for 1D and 2D geometries 

in terms of chemotactic precision. This advantage arises due to the ways that errors 

accumulate in the two mechanisms: in an emergent strategy, fewer cells contribute 

their sensory noise to the collective, and in 1D and 2D the cross-correlations between 

cells remain low, ultimately leading to a subextensive scaling of polarization variance 

with collective size. As such, the performance advantage is an inherent property of 

the emergent mechanism, and we suspect that it not only helps explain the preva-

lence of emergent chemotaxis in cellular systems, but that it also is detectable using 

standard measures such as the chemotactic index. 

4.6 Description of Simulations 

Computational simulations are performed to test the properties of EC and IC for 

one, two and three dimensional collectives. In the simulation, the chemical concen-

tration and its dynamics are modeled by a bath of diffusing particles. All particles 

undergo a 3D random walk within a confined volume, and the volume’s boundaries 

are set to produce the desired chemical concentration profiles. Cells are placed at 

fixed positions within the 3D volume in either one, two or three dimensional configu-
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rations. Particles move freely through cells and do not collide with one another. For a 

linear concentration profile, one volume boundary produces particles and is reflective, 

while the boundary on the opposite of the volume absorbs all particles that collide 

with it. The remaining boundaries are all periodic. For an exponential concentration, 

the same boundaries are used as in the linear concentration profile, and particles also 

degrade. 

At each time-step of the simulation particles randomly move and are produced. In 

a given time-step particles move in a random direction with a probability p = DΔt/b2 , 

with b the particle hopping distance, D the diffusion coefficient, and Δt the time-

step. A particle is produced during that time-step with probability q = kΔt, with 

k the production rate. The time-step Δt is set such that p + q ≤ 1. In the case of 

an exponential concentration profile, particles may also degrade during a time-step. 

Particles degrade with probability r = βΔt, with β the degradation rate. In this case 

Δt is set such that p + q + r ≤ 1. 

The simulation code used for this paper can be found at https://doi.org/10. 

5281/zenodo.401040, and the most up-to-date version of the code can be found at 

https://github.com/varennes/particletrack. 

4.7 Derivation of Analytic Results 

We consider collectives in one, two and three dimensions of radius R comprised 

of N cells. Each cell is taken to be a permeable sphere of radius a through which 

molecules of the surrounding chemical concentration c(~r, t) can freely diffuse. The 

chemical concentration is taken to be 

c(~r, t) = c(0, t) + ~r · ~g(~r, t) (4.12) 

with ~g parallel to the z axis. The chemical concentration obeys normal diffusion 

ċ = Dr 2 c + ηc (4.13) 

https://doi.org/10.5281/zenodo.401040
https://doi.org/10.5281/zenodo.401040
https://github.com/varennes/particletrack
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with D the diffusion coefficient, and ηc the Langevin noise due to fluctuations in 

concentration. We express the concentration as c(~r, t) = c̄(~r) + δc(~r, t) with 

c̄(~r) = c0 + ~r · ~g (4.14) 

where c0 is the mean concentration at the origin. The Langevin noise term ηc, and 

the Fourier transformed fluctuation in the concentration δc̃(~k, ω) have the following 

properties (see Ref. [23] of the main text): Z 
(~ (~ d3 y ~ ~k0 i~y·(~k−~k0)hη̃c k
0, ω0)η̃c k, ω)i = 2D 2πδ(ω − ω0) k · c̄(~y) e , (4.15) 

hη̃c(~k0, ω0)η̃c(~k, ω)i hδc̃(~k0, ω0)δc̃(~k, ω)i = . (4.16)
(Dk2 − iω)(Dk02 + iω0) 

Next, we define the cell polarization vectors for individual-based chemotaxis (IC) 

and emergent chemotaxis (EC). Collectives of N cells form shapes of different dimen-

sionality: a chain of cells of length 2R (1D), a disc of cells with radius R (2D), and 

a sphere of cells of radius R (3D). 

4.7.1 Individual-based Chemotaxis 

In the IC mechanism, cells independently measure the chemoattractant gradient 

in order to set their polarization vector p~. For a spherically-shaped cell with volume 

Ui, p~ i is defined as Z 
d3 piα(t) = r wαc(~r, t), (4.17) 

Ui 

where α ∈ {x, y, z}, and in spherical coordinates the cosine is wα = {sin θ cos φ, sin θ sin φ, cos θ}. 

The x, y, z components are written as Z Z a 

dΩ0 02 0 pix(t) = sin θ0 cos φ0 dr0 r c(~ri + ~r , t) (4.18) Z 0Z a 

piy(t) = dΩ0 sin θ0 sin φ0 02 0dr0 r c(~ri + ~r , t) (4.19) Z Z a 
0 

piz(t) = dΩ0 cos θ0 02 0dr0 r c(~ri + ~r , t), (4.20) 
0 

where dΩ0 = sin θ0dθ0dφ0 . The r0 coordinates are relative to the center of the respective 

cell, and the ri coordinates are relative to the center of the collective. Using the mean 
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concentration (Eq. 4.14) with a constant gradient ~g = gẑ, we calculate the mean 

polarization of a single cell: Z Z a 

hpizi = dΩ0 cos θ0 dr0 r 02 c̄(~ri + ~r 0) Z a Z 0 

= dr0 r 02 dΩ0 cos θ0(c0 + gri cos θi + gr 0 cos θ0) 
0 
π 4 = a g . 
3 

The means for the x and y components are hpixi = hpiyi = 0 since they are perpen-

dicular to the gradient. On average, cells performing IC migration will only polarize 

in the z direction. The mean for a collective of IC cells is 

~hP i = 
π
a 4gN ẑ  . (4.21)
3 

4.7.2 Emergent Chemotaxis 

In EC, cells along the edge of the cluster polarize outwards, whereas cells in the 

interior are not involved in chemical sensing and remain unpolarized: ⎧ R⎪⎨r̂i Ui 
d3r c(~r, t) i ∈ {Nedge}

~ (4.22)pi(t) = ⎪⎩0 i ∈ {Nbulk} , 

where r̂  points radially outwards from the collective. In order to break down p~ i(~r, t) 

into component vectors we must be mindful of the dependence of r̂i on the cell loca-

tion. For an edge cell the unit vector r̂i points in the direction of the cell’s location in 

the collective, r̂i = sin Θi cos Φix̂ + sin Θi sin Φiŷ+ cos Θiẑ  where Θi is the polar angle 

made with the gradient direction and Φi is the azimuthal angle along the collective. 

The cell component vectors are 

pix(t) = sinΘi cos Φi pi(t), (4.23) 

piy(t) = sinΘi sin Φi pi(t) , (4.24) 

piz(t) = cosΘi pi(t) , (4.25) 
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R 
with pi(t) = d3r c(~r, t) and i ∈ {Nedge}. The total polarization of the collective, 

Ui 

~ ~ ~ ~P = Px + Py + Pz, is a sum of all the component vectors: 

NedgeX 
Px(t) = sinΘi cos Φi pi(t) , (4.26) 

i 

NedgeX 
Py(t) = sinΘi cos Φi pi(t) , (4.27) 

i 

NedgeX 
Pz(t) = cosΘi pi(t) . (4.28) 

i 

For an edge cell, the mean polarization is equal to the average number of molecules 

the cell counts within its spherical body: Z 
d3hp~ ii = r c̄(~r) r̂i 

Ui 

=
4π
a 3(c0 + gR cos Θi) r̂i ,

3 

where Θi is the angle the cell’s location makes with the gradient direction. The mean 

for a cluster of EC cells will depend on the dimensionality of the cluster. For a 1D 

chain of cells, only the two cells on the opposite ends of the chain are polarized, and 

hP i is the difference in the mean number of molecules counted in between the two 

edge cells: 
8π ~1D : hP i = a 4 g(N − 1) ẑ  . (4.29)
3 

In order to calculate the mean total polarization for two and three dimensional 

clusters we assume that the cluster size is relatively large (a � R) and approximate PNedge~the sum as an integral. For a 2D disc of cells the sum P = i ~pi becomes 

an integral over the circumference of the cluster. The circumference and the total 

number of cells along the edge are related by 2πR = 2aNedge, and so a segment along 

the perimeter of length Rθ is equivalent in length to 2an with n the number of edge 

~cells in that segment. Hence n = 
2 
R
a θ allowing us to write integrals for P (t) as 

R 
Z 2π 

~P (t) = dθ ~pi(t) . (4.30)
2a 0 
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The mean polarization will point only in the z direction with magnitude Z �Z 2π 2π � 
R R 4π 2π2 

hPzi = dθ hpzi = dθ cos θ a 3(c0 + gR cos θ) = a 2gR2 . 
2a 2a 3 30 0 

Using the relation N = (R/a)2 , the mean of the total polarization is 

2π2 
~2D : hP i = a 4gN ẑ  . (4.31)

3 

Similarly, in 3D we approximate the sum as an integral of the spherical surface 

of the cluster. A patch on the surface of area ΩR2 encompasses n = ΩR2/(πa2) edge 

cells. The total polarization can therefore be written as an integral over the surface 

of a spherical cluster: Z 
R2 

~P (t) = dΩ p~ i(t) . (4.32)
πa2 

The mean polarization will point only in the z direction with magnitude Z Z � � 
R2 R2 4π 16π hPzi = dΩ hpzi = dΩ cos θ a 3(c0 + gR cos θ) = agR3 . 
πa2 πa2 3 9 

For a spherical cluster, N = (R/a)3 and the mean of the total cluster polarization is 

~3D : hP i = 
16π

a 4gN ẑ  . (4.33)
9 

4.7.3 Variance in Cell & Cluster Polarization 

Here we derive the variance in cell and collective polarizations. The first section 

gives a general outline for how this is done for either collective migration mechanism. 

The following sections will derive the specific expressions for IC, and EC and provide 

scaling arguments for 1D, 2D and 3D geometries. 
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General Outline 

Since the total collective polarization is a sum of the cell polarization for IC or 

EC, the variance in the total polarization takes the general form: 

N XX 
Var[Pα] = Var[pi,α] + Cov[pi,α, pj,α] 

i=1 i=6 j| {z } | {z } (4.34) 
variance contribution covariance contribution 

≡ V + C , 

with α ∈ {x, y, z}. In order to derive an expression for the variance in collective 

polarization we must first understand the fluctuations occurring in single cell mea-

surements. The fluctuations in the ith cell’s polarization vector are calculated by 

linearizing each component, pi,α(t) = p̄  i,α + δpi,α(t) and taking the Fourier transform. 

The Fourier transform of δpi,α(t) takes the general form Z Z 
d3k −i~ 

d3 c(~ k·(~xi+~x)δp̃i,α(ω) = xi f(θi, φi) δ˜ k, ω) e (4.35)
(2π)3 

where the functional form of f(θi, φi) is dictated by the migration mechanism (EC 

or IC) and the component α. The cross-spectrum between the ith and jth cells is 

hδp̃i,α 
∗ (ω0)δp̃j,α(ω)i. Utilizing the cross-spectrum we can derive an expression for the 

variance and covariance in the long-time averaged cell polarization by calculating the 

power spectrum Z 
dω0 ∗ Sij,α(ω = 0) = lim hδp̃i,α(ω0)δp̃j,α(ω)i . (4.36)

ω→0 2π 

The cell polarization variance and covariance is given by: 

1 
Var[pi,α] = Sii,α(0) , (4.37)

T 
1 

Cov[pi,α, pj,α] = Sij,α(0) , (4.38)
T 

where T is the averaging time. With the above expressions for the cell polarization 

variance and covariance we can solve for Eq. 4.34 and in turn calculate the relative 

error for the whole collective. In subsequent sections we show the derivation only for 
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the z component of the polarization since it is parallel to the gradient. The expressions 

x and y components will be equal to to the z component since the fluctuations in 

concentration are symmetric in each direction. 

4.7.4 Individual-based Chemotaxis 

For IC the variance in Pz is 

NX X 
Var[Pz] = Var[pi,z] + Cov[pi,z, pj,z] ≡ VIC + CIC . (4.39) 

i=1 i=6 j 

The Fourier-transformed fluctuations in IC cell polarization is Z Z 
d3k −i~k·(x~i+~x)δp̃j,z(~k, ω) = d3 x cos θδc̃(~k, ω)e . (4.40) 

V (2π)3 

The cross-spectrum for the z-component between two cells is Z Z 
hδp̃  ∗ 

i,z(ω
0)δp̃j,z(ω)i = d3xd3 x 0 

d3kd3k0 
cos θ cos θ0hδc̃  ∗ (~k0, ω0)δc̃(~k, ω)ie −i~k·(~xj +~x)e i

~k0·(~xi+~x
0) . 

V (2π)6 

(4.41) 

We can rewrite Eq. 4.41 by noting that only the relative locations of cell i and j are 

relevant for the cross-spectrum. Let ~rij = ~xi − ~xj and rij = |~rij |. Z Z 
∗ 0 d3kd3k0 hδp̃i,z(ω0)δp̃j,z(ω)i = d3xd3 x cos θ cos θ0 

(2π)6 
V (4.42) 
∗ (~ −i~k·~x i~k0·(~rij +~x

0)hδc̃  k0, ω0)δc̃(~k, ω)ie e 

Plugging in Eq. 4.16 for hδc̃∗(~k0, ω0)δc̃(~k, ω)i and writing cos θ in terms of spherical 

harmonic Y1
0(x̂) yields Z Z 

d3kd3k0 4π∗ 0 Y 0hδp̃i,z(ω0)δp̃j,z(ω)i = d3xd3 x 1 (x̂)Y1
0(x̂ 0) 2D 

V (2π)6 3Z 
2πδ(ω − ω0) 

d3 y~ ~k0¯ i~y·(~k−~k0) −i~k·~x i~k0·(~rij +~x
0)k · c(~y)e e e 

(Dk2 − iω)(Dk02 + iω0)Z Z 
4D 0)= 2πδ(ω − ω0) d3xd3 x 0 d3kd3k0d3 y Y1

0(x̂)Y1
0(x̂ 

3(2π)5 
V 

y) ~ ~k0 i~y·(~k−~k0)c̄(~ k · e −i~k·~x i~k0·(~rij +x~
0)e e 

(Dk2 − iω)(Dk02 + iω0) 
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Plugging in the above expression for hδp̃∗ (ω0)δp̃j,z(ω)i into Sij,z(0) (Eq. 4.36) andi,z 

using the specified mean concentration from Eq. 4.14: Z Z 
4 k · 

Sij,z(0) = d3xd3 x 0 d3kd3k0d3 y Y1
0(x̂)Y1

0(x̂ 0) 
~

k2k

~k 
02 

0 

3(2π)5D V (4.43) 
i~y(~k−~k0) −i~k·~x i~k0·(~rij +~x

0)(c0 + ~g · ~y) e e e . 

We can break up the expression for Sij,z(0) into two terms: one dependent on the 

background concentration, the other on the gradient. Z Z ~ ~k04 k · 0 −i~k·~xSij,z(0) = d3xd3 x d3kd3k0 Y1
0(x̂)Y1

0(x̂ 0) e 
3(2π)5D k2k02 

V � Z � (4.44) 
i~k0·(~rij +~x

0) ~ i~y(~k−~k0)e (2π)3δ3(~k − k0)c0 + d3 y ~g · ~y e 

Let Sij 
1 represent the background concentration term and Sij 

2 represent the gradient 

dependent term in the power spectrum such that Sij,z(0) = Sij 
1 + Sij 

2 . Z Z 
S1 4c0 0 d3k Y 0 x)Y 0 0)

1 −i~k·~x i~k·(~rij +~x
0)= d3xd3 x 1 (ˆ 1 (x̂ e e (4.45)ij 3(2π)2D V k2 Z Z ~ ~ 

S2 4c0 0 0) 
k · k0 

ij = d3xd3 x d3kd3k0d3 y Y1
0(x̂)Y1

0(x̂
k2k02 

~g · ~y
3(2π)5D V (4.46) 

i~y(~k−~k0) −i~k·~x i~k0·(~rij +~x
0)e e e 

The following expansions will prove useful: X 
−i~k·~r e = 4π (−i)ljl(kr)Ylm(k̂)Ylm∗ (r̂) , (4.47) 

l,m 

1X 
~a · ~b = 4πab Y1 

m(â)Y1 
m∗ (b̂) . (4.48)

3 
m=−1 

Starting with Eq. 4.45 we expand all the exponential terms, and we use these expan-

sions in order to evaluate the angular integrals in S1 
ij . Z Z 

25(2π)c0
S1 0 d3k Y 0∗ x)Y 0∗ 0)

1 
ij = d3xd3 x 1 (ˆ (x̂ 

3D V 
1 k2 ! !X X 

i−l1 jl1 (xk)Y m1 (x̂)Y m1∗ (k̂) il2 jl2 (rijk)Y m2 (k̂)Y m2∗ (r̂ij )l1 l1 l2 l2 (4.49) 
l1,m1 l2,m2 !X 

il3 jl3 (x 0k)Y m3 (k̂)Y m3∗ (x̂ 0)l3 l3 

l3,m3 
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The angular integrals over x̂ and x̂0 eliminate the summations over l1,m1 and l3,m3. Z a Z 
25(2π)c0 1 

S1 2 02 0k) Y 0∗ 
ij = dxdx0 d3k

k2 
x x j1(xk)j1(x 1 (k̂)Y1

0(k̂)
3D 0 ! (4.50)X 

il2 jl2 (rij k
0)Yl2 

m2 (k̂0)Y m2∗ (r̂ij )l2 

l2,m2 

The product of the two spherical harmonics is !√ 
1 2 5 

Y 0∗ (k̂)Y 0∗ (k̂) = √ Y 0(k̂) + Y 0(k̂) .1 1 0 2
4π 5 

Therefore when evaluating the k̂ integral in Eq. 4.50 only the l2 = 0,m2 = 0 and 

l2 = 2,m2 = 0 terms of the summation will be non-zero. Z Z 
S1 25(2π)c0 

a ∞ 
2 02 0k)= √ dxdx0 dk x x j1(xk)j1(xij 

3D 4π 0 0 !√ (4.51) 
j0(rij k)Y0

0(r̂ij ) − 
2 5 

j2(rij k)Y2
0(r̂ij )

5 

The integrals over x and x0 evaluate to: Z a 

dx x 2j1(kx) = 
1
(2 − 2 cos(ak) − ak sin(ak)) ≡ 

1 
h(ak) . 

k3 k3 
0 q 

√1 1 5Note that Y0
0(Θij , Φij ) = , and Y2

0(Θij , Φij ) = (3 cos2 Θij − 1). The angle
4π 2 4π 

Θij is the angle r̂ij makes relative to the gradient direction ĝ, cosΘij = r̂ij · ĝ. The 

expression for Sij 
1 reduces to Z ∞24c0 h2(ak) � � 

Sij 
1 = dk j0(rij k) − j2(rij k)(3 cos

2 Θij − 1) (4.52)
3D 0 k6 

We can make the integral dimensionless by making the variable substitutions u ≡ ak 

and nij ≡ rij /a. Z 
24c0a

5 ∞ h2(u) � � 
Sij 
1 = du 

6 
j0 (nij u) − j2 (niju) (3 cos

2 Θij − 1) (4.53)
3D u0 

We can break up Eq. 4.53 into two integrals and evaluate them individually. Note that 

the exact solution to either integral depends parametrically on nij and that nij is the 

number of cells radii separating two cells. If we are evaluating the cross-correlations 
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in one cell then i = j and nii = 0; on the other hand, if i =6 j then nij ≥ 2 in order to 

eliminate the possibility of overlapping cells. In either case the expression simplifies 

to: ⎧ ⎨ 5⎪4πc0a 
45D i = j 

S1 = . (4.54)ij ⎩−πc0a 1⎪ 5 

3 (3 cos2 Θij − 1) i =6 j, nij ≥ 2
18D nij 

Doing the same set of expansions for Sij 
2 in Eq. 4.46, and performing the same kind 

of analysis reveals that the gradient depedendent term is asymmetric under exchange 

of i and j. Therefore when calculating the cluster polarization variance all the Sij 
2 

terms will cancel. The variance contributions V and C are XN 
1 4πa5c0

VIC = Sii,z(0) = N , (4.55)
T 45DT 

i=1 

N 
1 πa5 N 

(3 cos2 Θij − 1)
CIC = 

X 
Sij,z(0) = − 

c0 
X 

3 , (4.56)
T 18DT niji=6 j i=6 j 

resulting in the IC collective total variance " #Xπa5c0 4 1 
N 
(3 cos2 Θij − 1)

Var[Pz] = N − 
3 , (4.57)

9DT 5 2 niji6=j 

as in Eqs. 6 and 7 in the main text. Next we will show how Eq. 4.57 scales for 

collectives in one, two and three dimensional configurations. 

One Dimensional Chain 

For a one-dimensional chain of IC cells each cell is aligned parallel to the gradient 

and the angular dependence of CIC (Eq. 4.56) vanishes, 

Xπa5c0 
N 

2 
CIC = − 

3 . (4.58)
18DT niji6=j 

We evaluate the sum: 

N N N−1X X X1 1 N − i 1 (3) (2)
= 2 = 2 = (NH − H ) ,

3 3 N−1 N−1 n n (2i)3 4ij iji=6 j i<j i=1 
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P(m) n 1with Hn = the generalized harmonic number. This results in a totalk=1 km 

variance of the form � ���πa5cc 4 1 (3) (2)
Var[Pz] = N − NH − H . (4.59)N−1 N−19DT 5 8 

For large N , HN 
(i) 
−1 approaches a constant for i ≥ 2. Therefore, we see that Var[Pz] 

scales with N for 1D IC collectives as in Table I of the main text. 

Two Dimensional Sheet 

For a two-dimensional sheet of IC cells, pairs of cells can now make a variety 

of angles with the gradient, and the angular dependence of CIC cannot be easily 

simplified. In order to find the N scaling for CIC we calculate the sum numerically. 

Since the covariances rapidly fall-off as 1/n3 
ij , we only track nearest neighbor pairs 

that are less than 3 cell radii apart. The resulting numerical solution to the sum in 

CIC is 

N NX 3 cos2 Θij − 1 X 3 cos2 Θij − 1 1 √ 
3 = 2 

3 = (1.70N − 2.67 N + 0.89) . 
n n 4ij iji6=j i<j 

Therefore the expression for CIC (Eq. 4.56) simplifies to 

πa5c0 √ 
CIC = − (0.43N − 0.67 N + 0.22) . (4.60)

18DT 

The covariance contribution, CIC, to leading order scales linearly with N . The total 

variance becomes � �πa5cc √ 
Var[Pz] = 0.59N + 0.33 N − 0.11 . (4.61)

9DT 

We see that for large N , Var[Pz] scales with N for 2D IC collectives as in Table I in 

the main text. 

Three Dimensional Cluster 

To obtain a scaling for CIC in a three dimensional cluster we assume that cluster is 

large, such that a � R and N � 1. For a given cell we can calculate its contribution 
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to CIC by considering the covariance contribution it makes with a set of cells a fixed 

distance away from it. The equidistant cells form a spherical shell with the principal 

cell in the center. Adapting Eq. 4.56 for a cell and its spherical shell of covariance 

pairs yields: Xπa5c0 1 
Ccell = − 

3 3 cos2 Θi − 1 , (4.62)
18DT nshell ishell 

with nshell the radius of the shell in terms of cell radii. Going to continuum we can 

calculate the contribution from the cell and all its pairs ZZ 2π ππa5c0
Ccell = − dφ dθ sin θ(3 cos2 θ − 1)

18DT n3shell 0Z 0 (4.63)
π2a5c0 

π 

= − dθ (3 cos2 sin θ − sin θ) = 0 . 
9DT n3 

shell 0 

In the last step, we see that the integral vanishes. Thus, the contribution from a single 

cell and its shell of pairs sum to zero. Repeating this argument for all cells in the 

cluster results in the total CIC = 0. Therefore for 3D clusters there is no covariance 

contribution to the total variance, and Var[Pz] = VIC ∼ N as in Table I of the main 

text. 

4.7.5 Emergent Chemotaxis Clusters 

For EC the variance in Pz is 

N XX 
Var[Pz] = Var[pi,z] + Cov[pi,z, pj,z] ≡ VEC + CEC . (4.64) 

i=1 i=6 j 

The Fourier-transformed fluctuations in IC cell polarization is Z Z 
d3k −i~ 

d3 c(~ k·(x~i+~x)δp̃i,z(~k, ω) = cosΘi x δ˜ k, ω)e , (4.65) 
V (2π)3 

with Θi the angle cell i makes with the gradient. The cross-spectrum for the z-

component between two cells is Z Z 
d3kd3k0 hδp̃  ∗ 

i (
~k0, ω0)δp̃j (~k, ω)i = cos Θi cos Θj d3xd3 x 0 

(2π)6 
V (4.66) 

∗ (~ −i~k·(~xj +~x) i~k·(~xi+~x
0)hδc̃  k0, ω0)δc̃(~k, ω)ie e . 
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Following the same procedure as in the case of IC, we get an expression for Sij 
1 for 

EC: 

S1 
ij = 

⎧⎪⎨ ⎪⎩ 
16πc0a5 

15D cos
2 Θi i = j 

8πc0a5 1 cos Θi cos Θj i =6 j, nij ≥ 2
9D nij 

. (4.67) 

Since again Sij 
2 = 0 by symmetry, the variance for any configuration of EC cells is 

Nedge 

= cos 
X16πa5c0 2 Θi ,VEC (4.68)

15DT 
i=1 

8πa5c0 
X cos Θi cos Θj

CEC (4.69)= ,
9DT nij

i6=j 

as in Eqs. 10 and 11 in the main text. The resulting total variance is 

NedgeX ⎡⎣ ⎤⎦X8πa5 2 1 cos Θi cos Θjc0 
cos 2 Θi +Var[Pz] = (4.70). 

3DT 5 3 nij
i6=ji=1 

One Dimensional Chain 

For a one-dimensional chain of cells only the two cells on the opposing ends are 

polarized. The cell variance contribution to the total variance therefore does not 

change with increasing cluster size, 

XNedge 

= cos 
16πa5 32πa5c0c0 2 ΘiVEC (4.71)= . 
15DT 15DT 

i=1 

Therefore VEC ∼ N0 for 1D collectives. For CEC the distance between the two edge 

cells increases by two cell radii for each cell added to the chain: 

8πa5c0 
X cos Θi cos Θj 8πa5c0 1 

CEC = = − . (4.72)
9DT nij 9DT 2(N − 1)

i6=j 

So CEC ∼ N−1 for 1D collectives. To leading order in N the total collective variance 

depends only on VEC: 
32πa5c0

Var[Pz] = , (4.73)
15DT 

and so Var[Pz] does not depend on collective size for 1D EC as in Table I of the main 

text. 
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Two Dimensional Sheet 

In order to evaluate the variance for a two-dimensional disc of cells we will approx-

imate the sums as integrals over the circumference of the disc as we did in evaluating 

the mean polarization. Assuming that a � R Eq. 4.68 can be written as an integral Z 2π16πa5c0 R 
VEC = dθ cos 2 θ . (4.74)

15DT 2a 0 

Using the relation N = (R/a)2 yields 

8π2 5 √a c0
VEC = N . (4.75)

15DT 
√ 

Hence for 2D EC, the variance contribution VEC scales as N . In order to determine 

how CEC scales with N we approximate the sums over i and j as a double integral, 

again assuming that a � R. � �Z 2π−Δ/2 Z 2π16πa5c0 R cos θ1 cos θ2
CEC = 

2 
dθ1 dθ2 (4.76)

9DT 2a n(θ1, θ2)Δ/2 θ1+Δ/2 

Here Δ = 2a/R is the anguler separation between two edge cells, and � � 
2R 1 

n(θ1, θ2) = sin (θ2 − θ1) 
a 2 

is the number of cell radii separating two edge cells. Using this expression for n(θ1, θ2) 

we evaluate the integral over θ2: � �Z Z2π−Δ/2 2πR cos θ1 cos θ2
dθ1 dθ2

2a2 n(θ1, θ2)Δ/2 θ1+Δ/2Z 2π−Δ/2R (4.77)= dθ1 cos θ1[−4 (cos(θ1/2) + cos(θ1 +Δ/2))
8a Δ/2 

−2 cos θ1 log (tan(Δ/4) tan(θ1/4))] 
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Breaking up the integral into four separate terms we find: Z 2π−Δ/2 

dθ1 cos θ1 cos(θ1/2) = 0 , 
Δ/2Z 2π−Δ/2 1 

dθ1 cos θ1 cos(θ1 +Δ/2) = − cos(Δ/2)(Δ + sinΔ − 2π) ,
2Δ/2Z 2π−Δ/2 1 

dθ1 cos θ1 log (tan(Δ/4)) = − (Δ + sinΔ − 2π) tan(Δ/4) ,
2Δ/2Z 2π−Δ/2 

dθ1 cos θ1 log (tan(θ1/4)) = 0 . 
Δ/2 

The first and last integrals are equal to zero since the integrands are odd functions 

over the range [0, 2π]. With these results, the whole expression simplifies to � �� �√16πa5c0 1 1 2 
CEC = N log N + log 2 − 2 π − √ (4.78)

9DT 4 2 N 

Keeping only the leading order terms in N yields 

√2πa5c0
CEC = N log N . (4.79)

9DT 

The resulting total variance is � �√8πa5c0 π 1 
Var[Pz] = N + log N , (4.80)

3DT 5 12 
√ 

which to to leading order scales as N log N as in Table I of the main text. 

Three Dimensional Cluster 

For the three-dimensional cluster, numerical methods must be used in order to 

find the scaling properties of the variance. We numerically evaluate the total variance 

(Eq. 4.70) on a cubic lattice and obtain the following results. 

∼ N2/3The numerical results [Fig. 4.4] show that V since the number of edge 

cells also scales as N2/3 . We also find that C ∼ N ; the covariance contribution to 

the total cluster polarization grows linearly with N . For large clusters the N scaling 

dominates the behavior of Var[Pz]. Therefore, in 3D the leading order scaling for the 

variance is Var[Pz] ∼ N as in Table I of the main text. 
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Fig. 4.4. Var[Pz] for a 3D cluster of EC cells. Cluster variance shown in 
red. Pink circles are the single cell variance contributions V , and pink 
diamonds are the cell-cell covariance contributions C. 
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5. DYNAMICS OF COLLECTIVE CHEMOTAXIS 

Parts of this chapter have been published as J. Varennes, B. Han, and A. Mu-

gler, “Collective chemotaxis through noisy multicellular gradient sensing,” Biophysical 

journal 111.3 (2016): 640-649. 

In this chapter we study the dynamics of a more detailed model of collective emer-

gent chemotaxis (EC) than that presented in Ch. 4. Here we further explore how 

intercellular interactions result in emergent chemotaxis of a cell collective. In Ch. 4 

it was assumed that collective edge cells polarize, whereas here we provide a simple, 

biologically motivated, physical model for how cell polarization emerges from inter-

actions within the collective. It was also assumed that cells in the collective rigidly 

adhere to one another, and here this assumption is relaxed. We explicitly model 

cell-cell contacts, intracellular molecule production due to chemoattractant sensing, 

intercellular communication, as well as stochastic fluctuations in individual cell shape 

and motility. This provides a more realistic application of the EC model presented 

in Ch. 4 with the addition of cell-cell communication in order to achieve adaptive 

gradient sensing across a whole collective of cells. 

In addition to providing a natural extension to the EC model introduced in Ch. 

4, this study also addresses the open question of how gradient sensing is connected to 

collective cell motion [82,92,93]. While mechanical models have successfully explained 

observed collective behaviors such as cell streaming, cell sorting, cell sheet migration, 

wound healing, and cell aggregation [39–42], these models fall short in explicitly 

including the effects of multicellular sensing in driving the mechanics at play. Cells are 

often capable of intercellular communication, so understanding how communicated 

information is translated into collective migration is of prime interest. 
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Recent studies by Camley et al. [45] and Malet-Engra et al. [83] have started 

to address this need for modeling collective sensing and migration. In the study of 

Camley et al. individual cell measurements act to polarize cells in a cluster outwards 

causing tension (similar to the EC model in Ch. 4), and when intercellular communi-

cation is incorporated in the model the tension on the cluster adapts to the chemical 

concentration. However, neither study takes into account the inherent stochasticity 

of cell sensing and intercellular communication. Individual cell measurements of the 

environment are error-prone, and propagation of single cell measurements via inter-

cellular communication also adds noise to the system. Accounting for these effects is 

crucial since collectives have been shown to operate near the limits of what is physi-

cally possible. Additionally, these studies also treat cells or clusters as perfect circles, 

neglecting natural geometric fluctuations in the size and shapes of cells that naturally 

occurs during collective migration. 

Here we focus our attention on stochastic processes governing collective gradient 

sensing and cell motility. First, we describe the multicellular implementation of the 

local excitation-global inhibition (LEGI) biochemical network [35] used for collective 

gradient sensing. Information gained from collective sensing is then used to direct cell 

motion. We develop a model which takes into account the fluctuating shape of cells 

while coupling cell motility to noisy collective gradient sensing. We model intercellular 

communication via the direct exchange of messenger molecules between cells. Can-

didate mediators of such intercellular communication have been recently identified in 

Drosophila development [94], and other studies suggest intercellular communication’s 

involvement in organoid branching, angiogenesis, and cancer [25,79,95,96]. We study 

cluster migration in shallow gradients where the change in concentration across a cell 

width is very small relative to the background concentration. This regime is of prime 

interest since experiments show that collectives can respond to these shallow gradients 

whereas single cells cannot [25,32,83]. By explicitly modeling the stochastic processes 

of sensing and migration this model places constraints on the collective behavior of 
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Fig. 5.1. Model implementation. (A) Cell polarization is biased by mul-
ticellular sensing. On average, the cells on the left and right edges will 
measure negative and positive values of R, respectively. This causes the 
left-edge (Cell 1) and right-edge (Cell 3) cells to polarize in the direc-
tion of the gradient, while cells in the middle (Cell 2) are on average not 

¯polarized since R ≈ 0. Polarization vectors p~ are red, repulsion vectors 
~q are black. (B) Simulations are implemented using the Cellular Potts 
Model (CPM). Cells comprise of simply connected lattice points. There 
are adhesion energies associated with different types of contact: cell-cell, 
α (blue-dashed line), and cell-ECM, β (yellow-dashed line). Cell motility 
is modeled by the addition/removal of lattice points (pink). Each cell has 
a center-of-mass (white dot), a polarization vector, p~ (red) and a repulsion 
vector, ~q (black). 

cells and predicts an optimal cluster size for fastest chemotaxis. We conclude by 

discussing our model’s implications for cell migration experiments. 

5.1 Model 

In order for collective chemotaxis to occur cells within the collective must sense 

the chemoattractant, polarize in response to their sensory network, and then move 

in the direction of polarization. First we describe the biochemical network used to 

detect the chemoattractant and communicate information about it throughout the 

collective. Next the connection between sensing and cell polarization is explained, 
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and then we describe our simulation implementation of the model used to study its 

dynamics. 

5.1.1 Multicellular LEGI Gradient Sensing 

Communication between cells and collective sensing can improve upon an individ-

ual cell’s ability to sense the environment [25], and in turn this information may be 

used to direct cell motion. In the LEGI model cells produce two chemical species, a 

“local” species X, and a “global” species Y , in response to the chemoattractant S. 

The local species X remains within an individual cell and represents that cell’s mea-

surement of its local chemical concentration. This species can be a molecule produced 

or activated in response to attractant-bound receptors, or the bound receptors them-

selves. The global species Y can diffuse at the rate γ between neighboring cells and 

therefore represents the average X population among neighboring cells. Y molecules 

may only be exchanged when two or more cells are in direct contact with one another. 

Recent experiments in epithelial cells identified this global species as either calcium 

or a small molecule involved in calcium signaling (such as IP3), and identified the 

intercell diffusion mechanism as mediated by gap junctions [25]. Finally, X activates 

a downstream reporter molecule R, while Y inhibits R as illustrated in Fig. 2.1C. 

Let xk, yk, and Rk represent the molecule populations in X, Y , and R in the kth 

cell. The chemical reactions in cell k are 
κ µ 

sk →− sk + xk xk −→ ∅ 
(5.1)

κ µ γk,j sk →− sk + yk yk − yk γj,k yj .→ ∅ 

The production and degradation rates for X and Y are κ and µ, respectively. The 

global reporter molecule exchange rate γ is dependent on the length of the interface 

C made between adjacent cells, and on the exchange rate per unit contact-length Γ, Z 
γj,k = Γdl . (5.2) 

C 

Therefore the exchange rate γ between pairs of cells is not constant, but will vary 

with time depending on the interface size between cells. 
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In the limit of shallow gradients, which are of primary interest in studying collec-

tive sensing, R effectively reports the difference in X and Y molecule populations [25] 

and so we will model the downstream readout as Rk = xk − yk. A negative (positive) 

difference indicates that the cell is below (above) the average measured concentration 

relative to nearby cells as shown by the reported average R values for each cell in Fig. 

5.1A. 

The chemical concentration is modeled as a space-dependent field E(r1, r2), and 

in this case has a constant gradient in the r1-direction, 

E(r1, r2) = c̄gr¯ 1. R 
The average signal in the kth cell’s local environment is s̄ k = 

Ak 
dr1dr2 E(r1, r2) where 

Ak is the area of the kth cell. Since diffusion is a Poisson process the variance in the 

measured signal sk is equal to the mean, σs 
2 
k 
= s̄ k. At each time step we sample sk for 

each cell from a Gaussian distribution with mean and variance s̄ k, which corresponds 

to instantaneous sensory readout [25]. The dynamics of the local reporter satisfy the 

stochastic differential equation 

ẋk = κsk − µxk + ηxk . (5.3) 

The first term in Eq. 5.3 is due to the production of X molecules due to the signal 

S, the second term represents molecule degradation, and the third term ηxk accounts 
√ 

for the noise inherent to these reactions. The noise term is equal to ηxk = κs̄ kξ1,k − 
√ 
µx̄ kξ2,k since both production and degradation are stochastic processes [97]. In 

Eq. 5.3 and subsequent stochastic equations ξi,k and χj,k are unit Gaussian random 

variables representing the noise in molecule populations. For the local reporter, the 

steady-state solution is simply 

x ss = (κ/µ) sk + (1/µ) ηxk (5.4)k . 

The dynamics of the global species can be modeled in similar fashion, X X 
ẏk = κsk − µyk − yk γj,k + yj γj,k + ηyk . (5.5) 

hj,ki hj,ki 
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The first summation term in Eq. 5.5 accounts for the loss of yk due to the diffusion 

out to neighboring cells, and similarly the second summation term accounts for the 

increase in yk due to diffusion into cell k from its neighbors. The notation hj, ki 

represents the set of all nearest neighbor pairs. The noise term ηyk in the molecule 

dynamics depends on the production, degradation and diffusion of Y molecules. In 

steady-state we can express the noise as 

N 

µȳ  kξ5 + χj,k γj,k 

X� �p √ ��√ √ √ 
ηyk = κs̄ kξ4 − ȳ  j − ȳ  k . 

j=1 

Similarly to ηxk , the noise in yk also depends on production and degradation while an 

extra term is required to account for the noise in Y molecule exchange. Eq. 5.5 can 

be simplified by noting that exchange rates between cells are symmetric γj,k = γk,j , 

γi,i = 0, and by defining the sum of all the exchange rates between cell k and all other PNcells as Gk = j=1 γj,k. The steady-state solution for the global reporter is more 

involved than the local reporter, and can be written as a matrix equation 

M~y ss = κ~s + ~ηy, (5.6) 

where M is a square, symmetric matrix that governs the degradation and exchange 

of Y molecules in all cells, 

M = 

⎡ ⎢⎢⎢⎢⎢⎢⎣ 
µ + G1 −γ1,2 · · · −γ1,N 

−γ2,1 µ + G2 · · · −γ2,N 

. . . 
. . . 

. . . 
. . . 

−γN,1 −γN,2 · · · µ + GN 

⎤ ⎥⎥⎥⎥⎥⎥⎦ . (5.7) 

The physical limits to LEGI gradient sensing, as mentioned in Ch. 2, are derived 

from those of individual cell gradient sensing. Recall that the relative error in single 

cell gradient sensing results from the cell taking the difference in molecule counts 

measured in two different regions on the cell surface. The relative error in each com-

partments concentration measurement is σc 
2/c̄  cDT ) with s the compartment 2 ∼ 1/(s¯ 

size, c̄  the mean concentration, D the diffusion coefficient, and T the integration time. 
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Taking the difference of the two measurements yields the lower limit to the relative 

error in the gradient, r 
σg 

ḡ 
∼ 

c̄ 
s(aḡ)2DT 

. (5.8) 

For the LEGI model, Eq. 5.8 can be generalized to the case of multicellular gradient 

sensing in the limit of strong communication (γ � µ) [33]. In this limit the relative 

error in LEGI gradient sensing scales as r 
σg c̄  ∼ , (5.9) 
ḡ a(n0aḡ)2DT 

with a the cell size and n0 being the number of cells over which LEGI can reliably 

transmit information about the chemoattractant. Communication improves when 

Y molecule diffusion increases and worsens with faster Y molecule degradation, so 

n0 ∝ γ/µ. As collectives grow larger than n0 cells the relative error ceases to improve, 

saturating to the limit set by Eq. 5.9. This is unlike the case where the effects of 

communication are ignored and the relative error decreases with collective size N 

without bound r 
σg c̄  ∼ . (5.10) 
ḡ a(Naḡ)2DT 

5.1.2 Connecting Gradient Sensing to Cell Motility 

To describe collective migration, we integrate the output of multicellular LEGI 

gradient sensing with cell motility. Cells in motion have a distinct front and are 

polarized along the direction of the front to back. Cells within the cluster have their 

polarization biased by a combination of the LEGI readout and intercellular repulsion 

due to contact inhibition of locomotion (CIL). CIL is the phenomenon where cells that 

come into contact cease to form protrusions in the direction of contact [46]. This is 

a very simple way for cells to translate the noisy, error-prone gradient measurements 

into collective cell motility [20, 45, 83]. 

In order to connect sensing to motility, we couple individual cell polarization p~ to 

both the LEGI downstream readout R and what we will call the cell’s repulsion vector 



 

81 

~q. The cell’s polarization vector represents the desired direction of motion [18] and 

modeling collective behavior using cell polarization has been done previously [40,45]. 

Information about the cell’s surroundings are naturally expressed by the repulsion 

vector ~q [45]. The repulsion vector is representative of contact inhibition of locomotion 

(CIL) [46]. CIL demonstrates that cells are aware of their immediate surroundings. 

The repulsion vector for cell k is a unit vector that points away from all of cell k’s 

neighbors. !X1 
~qk = P Lj,k (~xk − ~xj ) , (5.11)

Lj,k|~xk − ~xj |hj,ki hj,ki 

where Lj,k is the contact length made between cell k and its neighboring cell j. In our 

model cell polarization will change as a function of time depending on a combination 

of the repulsion vector and the LEGI downstream readout, � � 
d~pk 

dt 
= r 

Rk−~pk + � ~qk
σR 

. (5.12) 

The first term in Eq. 5.12 models the decay of cell polarization. In the absence of any 

stimulus an individual cell will undergo a persistent random walk with a timescale 

1/r [40]. The second term acts to align or anti-align the cells polarization vector 

with the repulsion vector, with alignment strength � based on the cell’s readout Rk. 

The magnitude of Rk is normalized by its standard deviation σR. The net effect is 

illustrated in Fig. 5.1A. 

In the presence of a gradient, cells on the edge near the lower-end of the chemical 

concentration will tend to be polarized into the cluster (Cell 1 in Fig. 5.1A), whereas 

cells on the higher concentration edge tend to be polarized outwards (Cell 3 in Fig. 

5.1A). Cells in the center of the cluster (Cell 2 in Fig. 5.1A) are on average unpolarized. 

The net effect is that the cells on the edges of the cluster will drive motion in the 

direction of increasing chemical concentration. It is important to note that in this 

model single cells are unable to chemotax since the multicellular LEGI mechanism 

requires more than one cell to detect a gradient, and similarly without neighboring 

cells there is no repulsion vector to bias the cell’s polarization. 



82 

5.1.3 Computational Implementation 

Computational simulations are conducted in order to understand the dynamics 

that evolve from the model of collective sensing and migration. The implementation 

chosen is the Cellular Potts Model (CPM) [49, 50] although other cellular automata 

models are possible as well [98–100]. The CPM is widely used for simulating cell-

centric systems. Despite its relative simplicity, this computational implementation 

can qualitatively reproduce diverse biological phenomena [51]. The CPM is a very 

good implementation for simulating systems wherein cell geometry is crucial to the 

dynamics of the system. Using CPM many studies, some involving cell polarization 

and mechanical-based coupling, successfully reproduce epithelial cell streaming, cell 

sorting, chemotaxis and collective migration [39, 40, 47]. 

In the CPM cells exist on a discrete lattice and are represented as groupings of 

lattice points. Simply-connected groups of lattice sites x with the same integer values 

Table 5.1.: Table of parameter values. Energy costs are in units of kB T , where kBT 

is the thermal energy of the CPM Monte Carlo scheme. 

Parameter Value Notes 

Concentration c̄ 

Gradient ḡ 

10nM 

0.04nM/µm 

Assumes c̄ � aḡ for shallow gradients [25, 83] 

Production Rate κ 

Degradation Rate µ 

19.72min−1 

19.72min−1 

Assumes {κ, µ} � r, i.e. biochemical 

signaling is faster than motility response 

Exchange Rate Γ 80(µm min)−1 Varied in Fig. 5.3 

Polarization Bias Strength � 0.8 Varied in Fig. 5.2 

Polarization Decay Rate r 3.94min−1 Sets polarization memory time, as used in [40] 

Relaxed Cell Area A0 
2315µm Assumes cell radius 10µm [9] 

Relaxed Cell Perimeter P0 
√ 

3.6 A0µm Assumes circular resting shape 

Cell-cell Contact Energy α 

Cell-ECM Contact Energy β 

1.0 

3.5 

Sets energy scale 

2β > α for cell adhesion [49] (Varied in Fig. 5.2) 

Area Energy Cost λA 

Perimeter Energy Cost λP 

1.5 

0.01 

Prevents “stringy” cell-shapes 
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for their lattice label σ(x) > 0 comprise a single cell. The extracellular matrix (ECM) 

is labeled with the lattice label σ(x) = 0. Cells have a desired size and perimeter 

from which they can fluctuate, and cells adhere to their neighboring environment 

with an associated adhesion energy. The energy of the whole system is the sum of 

contributions from adhesion Ji,j , area-restriction λA, and perimeter-restriction λP 

terms, 
NX X� � 

u = Jσ(x),σ(x0) + λA(δAi)
2 + λP (δPi)

2 , (5.13) 
hx,x0i i=1 ⎧ 

0 σ(x) = σ(x0) (within the same cell),⎪⎨ 
Jσ(x),σ(x0) = α σ(x)σ(x0) > 0 (cell-cell contact), (5.14) ⎪⎩β σ(x)σ(x0) = 0 (cell-ECM contact). 

The parameters α and β characterize intercellular adhesiveness, and in order to en-

sure that it is energetically favorable for cells to remain in contact with one another 

rather than the environment, we restrict β > 2α [40]. β represents the cell-ECM 

contact energy, a larger value corresponds to an ECM that is more difficult to tra-

verse. Heterogeneities in the microenvironment could be represented by a spatially 

dependent β; here we take β to be a constant. The area- and perimeter-restriction 

energy terms prevent cells from growing or shrinking to unphysical sizes as well as 

branching or stretching into unphysical shapes. Cells fluctuate in shape and size 

around the desired area A0 and perimeter P0 with δAi ≡ Ai − A0 (and similarly for 

δPi). The resulting dynamics evolve from the minimization of the system’s energy 

under thermal fluctuations. 

As summarized in Ch. 3, cell dynamics are a consequence of minimizing the energy 

of the whole system. This is a random process that is sensitive to thermal fluctuations 

and is modeled using a Monte Carlo process. During each time step many attempts 

are made to copy the lattice label of one randomly lattice site onto its neighbor. 

The new configuration resulting from the copy is accepted with probability P , which 
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depends on the change in the system’s energy accrued in copying over the lattice 

label, 

P = 

⎧⎪⎨ ⎪⎩ 
−(Δu−w)e Δu − w > 0, 

1 Δu − w ≤ 0. 
(5.15) 

The term Δu is the change in energy of the system due to the proposed lattice 

label copy. w is the bias term which acts to bias cell motion in the direction of 

polarization. The bias term in the CPM model is required in order for cell clusters 

to exhibit directed motion [40], X Δ~xk(a→b) · ~pk 
. (5.16)w = 

|Δ~xk(a→b)||Δ~xk(Δt)|
k=σ(a),σ(b) 

The summation in Eq. 5.16 is over the cells involved in the elementary time step: a 

is the lattice site being copied, and b is the lattice site being changed. The change 

in the cell’s center of mass position during the elementary time step is Δ~xk(a→b), 

whereas Δ~xk(Δt) is the cell’s change in the center of mass during a MC step. The cell 

polarization vector ~pk is updated at every MC step in accordance with Eq. 5.12. The 

dot product acts to bias cell motion since movement that is parallel to the polarization 

vector will result in a more positive w which in turn results in a higher acceptance 

probability (Eq. 5.15). 

In addition to calculating the energy of the system, at each MC step the X and 

Y molecule populations in each cell are sampled by solving Eq. 5.4 and 5.6. In doing 

so our model accounts for fluctuations in molecule numbers, cell shape, and cell-cell 

contact. With this computational implementation cells on the edges of the cluster 

are polarized in the direction of increasing chemical concentration, and cells near the 

center of the cluster have no net polarization, resulting in collective migration in the 

direction of increasing chemical concentration. The source code for the simulations 

can be found here [101]. 
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Fig. 5.2. Characterizing the emergent multicellular migration. (A) Snap-
shot from simulation. Individual cells are distinguished by color and white 
arrows represent their polarization vectors. The cluster centroid is initially 
located along the gray dashed line and must cross the black dashed line 
in order to record a first-passage time event. (B) A heat-map of MFPT 
in units of minutes as a function of cell-ECM adhesion energy, β and 
polarization bias strength, �. Warmer colors represent higher MFPT val-
ues (colorbar). Parameter values for the heat-map: N = 20, c̄  = 10nM, 
g = 0.004nM/µm, Γ = 80(µm min.)−1 . Illustrations in (C) represent 
cluster migratory behavior in their respective regimes of parameter space. 
Larger values of � correspond to larger cell polarization vectors (red ar-
rows), whereas larger values of β correspond to an ECM that is more 
difficult to traverse. (D) Mean cluster size hNsubi as a function of the to-
tal number of cells in the system N . Regime 1: β = 1.5, � = 1.0. Regime 
2: β = 3.5, � = 0.8 

5.2 Results 

We simulate clusters of various sizes migrating in response to shallow constant 

chemical gradients over a fixed distance (Fig. 5.2A, Movie S1). The simulation results 

were calibrated using the cluster migration data from Malet-Engra et al. [83] and 

assuming a typical cell radius a = 10µm. Similar to the experimental study, initial 

simulations were conducted with a gradient and background concentration equivalent 

to ḡ = 0.001nM/µm and c̄  = 1nM. We found that increasing the gradient and 

background concentration values to those reported in Table 5.1 (see pg. 11), which 

still maintain the limit aḡ � c̄, decreased computation cost while yielding the same 

qualitative results. Therefore all results presented here use the values of c̄  and ḡ in 
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Table 5.1. The simulation timescale was then calibrated such that clusters of cells 

migrate with velocities on the same order as those in the study by Malet-Engra et 

al. All simulation parameter values used are presented and motivated in Table 5.1 

unless specified otherwise. 

In order to quantify model behavior, statistics on the simulated mean first-passage 

time (MFPT) for migrating clusters are collected. The first-passage time is the time 

it takes for the center of mass of a cluster of cells to cross a threshold distance. First it 

is important to understand the effects of the various parameters in our model on sim-

ulations results. Across simulations, two crucial parameters emerge: β the cell-ECM 

adhesion energy, and � the polarization bias strength. When these two parameters 

are varied three distinct phases of collective cell migration are clear (regimes 1, 2, and 

3 in Fig. 5.2B). 

Fig. 5.2B shows that for sufficiently large β the mean first-passage time remains 

relatively constant as β and � grow in proportion to one another. In this phase, regime 

2 of Fig. 5.2B, cells migrate as a collective as illustrated in Fig. 5.2C. However if the 

adhesion energy is further increased while the bias strength remains fixed the MFPT 

starts to increase (regime 3 of Fig. 5.2B). This is due to the increased energy cost 

in cells making protrusions into the ECM. If β is increased further the cluster cells 

will eventually stop moving since protrusions become highly improbable as dictated 

by the CPM (Fig. 5.2C). The other large MFPT phase is due to increasing � while 

keeping β fixed (regime 1 of Fig. 5.2B). In this case the cell’s polarization becomes 

large enough to overcome the intercell adhesion energy causing the cluster of cells 

to scatter as illustrated in Fig. 5.2C. To further characterize whether a cluster will 

scatter or remain persistently connected, we track the mean subcluster size hNsubi, 

defined as the average cluster size weighted by the number of cells present in each 

constituent cluster (Fig. 5.2D). Although cells’ initial configuration is that of a single 

cluster, partial scattering may occur stochastically and reversibly, leading to a value 

of hNsubi that is less than the cluster size N . As seen in Fig. 5.2D, the persistence 

hNsubi/N is largely independent of N , and clusters in the parameter space of regime 
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2 are more persistent than those corresponding to regime 1 where cells are likely to 

scatter permanently. Overall, we see that there is a large region in parameter space 

which yields physically realistic behavior, and the model breaks down in the limits 

where we would expect it to. With this in mind we further examine simulations 

within regime 2 of parameter space. 

Fig. 5.3. Tradeoff between sensing and drag leads to a minimum mean 
first-passage time (MFPT) with cluster size. Γ0 = 0.80(µm min)−1 . (A) 
MFPT for various values of the exchange rate per unit contact-length Γ. 
(B) Relative error in gradient sensing for various values of Γ. (C) Area 
A and perimeter P scaling relationships with the number of cells N in 
a cluster. (D) MFPT results in A on a log-log scale, compared with the 
geometric prediction arising from C. All error bars represent standard 
deviation. 

Next we examine the MFPT as a function of cluster size (Fig. 5.3A). Starting from 

N = 2 we see that for sufficiently large Γ (red curve), as the number of cells increases 
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the MFPT decreases. This can be understood from our description of multicellular 

sensing (Eq. 5.10): before reaching the critical number of cells in a cluster, the error 

in gradient sensing decreases as σR/R̄ ∼ N−1 and so the cluster’s ability to more 

precisely measure the gradient increases. The decreased sensing error translates into 

more accurately directed cell polarization vectors causing the MFPT to decrease. Fig. 

5.3B shows the relative error vs. the number of cells in the cluster that are parallel 

to the gradient direction, Ng. In the small-cluster regime and for fast communication 

(yellow curve) there is a decrease in relative error with Ng, that is in close agreement 

with the theoretical prediction for the scaling of Ng 
−1 (Eq. 5.10). Since the global-

reporter exchange rate between cells is very large compared to the degradation rate 

(γ � µ) it is expected that the effects of communication can be neglected as was 

the case in deriving Eq. 5.10. However, as the cluster grows in size the effects of 

communication can no longer be neglected. As illustrated in Fig. 5.3B the relative 

error reaches a lower limit as predicted by Eq. 5.9 at which sensory precision will no 

longer increase with increased cluster size. 

As the number of cells increases the MFPT tends to saturate to a minimal value 

and may even begin to increase (Fig. 5.3A). The MFPT reaches a minimum around 

N ∼ 10−100 cells depending on the choice of Γ, the global molecule exchange rate per 

unit contact-length. Communication between cells improves as Γ increases since more 

Y molecules can be quickly transmitted between cells, pushing the point of saturation 

to larger cluster sizes. From these results we see that the model predicts an optimal 

cluster size for fastest migration. This prediction is in contrast with similar studies 

which in some cases predict a saturation in velocity and therefore constant MFPT as 

a function of cluster size [45,83]. The dependence of MFPT on cluster size is further 

explored in the Discussion. 

In the limit that Γa/µ . 1 (a being the cell radius) intercellular communication 

within the cluster is highly localized, and increasing the size of the cluster will not 

improve sensory precision. If this is the case then the cluster will have outgrown 

its optimal size for gradient detection. Instead of the cluster acting as one cohesive 
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gradient-sensing device the cluster will comprise several independent gradient sensors 

which cannot reliably share information with one another. Therefore, in the small 

Γ limit we expect the MFPT to monotonically increase with increasing N due to 

increased drag on the cluster. Indeed, simulation results confirm our expectations in 

the large N , small Γ limit (Fig. 5.3A, blue curve). 

Next we asked if the MFPT had any dependence on the geometrical properties of 

the migrating clusters [102]. The mean first-passage time should scale proportionally 

with the drag experienced on the cluster, whereas it should be inversely related to 

the force driving migration, 
draghτi ∼ . (5.17)
force 

The drag on the cluster should scale with the area of the cluster, drag ∝ A(N), 

and the driving force should scale with the perimeter of the cluster since we know 

that only cells on the edges of the cluster are polarized in the desired direction, 

force ∝ P (N). Although the size and shape of clusters will fluctuate we can obtain 

from many simulations how the average area hAi and perimeter hP i scale with N . 

Fig. 5.3C shows that both scale with powers of N , i.e. hAi ∼ Nd and hP i ∼ N f . 

We find d = 1.004 ± 0.001, which makes sense since the average area of the should 

scale linearly with the number of cells. We also find f = 0.700 ± 0.021, which is 

intriguing because for a circular cluster we would expect f = 1/2. The larger value 

of f reflects the elongated and amoebic shape of the cluster (Fig. 5.2A), which causes 

its perimeter-to-area ratio to be larger than that expected for a circle. 

Given these geometric scalings, Eq. 5.17 then makes a prediction: the MFPT 

= N0.304±0.021should scale as hτi ∼ Nd−f . We compare this prediction to the MFPT 

data, on a log-log scale, in Fig. 5.3D. We see that in the large N , small Γ limit, the 

prediction agrees well with the data (blue and green curves). This demonstrates that 

the slowdown of large, poorly communicating clusters is dominated by the geometrical 

aspects of cluster propulsion and drag. 

In summary, in the limit that communication between cells is strong (Γa/µ � 1), 

information can be reliably transferred over n0 � 1 cells. As long as cluster sizes N 
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remain smaller than n0 cells, there will be an improvement in the sensory capability 

of the cluster with size, and an associated decrease in the MFPT hτi. As the critical 

size n0 is reached, sensory ability will cease to improve with size, and hτi will reach 

a minimum. Further addition of cells will cause hτi to increase according to hτi ∼ 

drag/force, since the drag is proportional to the cluster area, whereas the force is 

proportional only to the cluster perimeter. 

5.3 Discussion 

We have developed a model in which collective sensing of noisy chemical gradients 

induces multicellular migration. The model includes the stochastic processes of lig-

and diffusion, intercellular communication and cell shape fluctuations. In the model 

cells are polarized based on collective gradient information and contact-mediated in-

teractions, leading to biased migration despite the fact that individual cells do not 

chemotax. We find that the antagonistic effects of sensing and drag result in a min-

imum mean first-passage time (MFPT) as a function of cluster size, i.e. an optimal 

size for fastest migration. The optimal size is governed by the strength of cell-cell 

communication, with stronger communication leading to both a larger optimal size 

and a decreased migration time (Fig. 5.3D). 

Whereas previous models have idealized cell or cluster geometries as perfect cir-

cles [45, 102], our use of the cellular Potts model has allowed us to capture natural 

fluctuations in cell and cluster shape. As a result, we have found that while migrat-

ing, clusters adopt a shape that is (i) elongated in the gradient direction and (ii) 

non-convex (see Fig. 5.2A). Both features lead to a cluster perimeter-to-area ratio 

that is significantly larger than that expected for a circle or other convex shape with 

aspect ratio near unity. Importantly, we have found that the area and perimeter scal-

ings remain predictive of MFPT in the communication-limited regime (Fig. 5.3D), 

even with the observed non-circular and fluctuating geometries. 



91 

To the extent possible, our model has been constructed and parameterized using 

current experiments on collective migration. Intercellular communication is modeled 

as a direct exchange of messenger molecules between cells since this type of commu-

nication has been implicated in development, organoid branching, angiogenesis, and 

cancer [25, 79, 94–96]. The chemical concentration and gradient values are selected 

to ensure that our simulations are in the shallow gradient regime, where experi-

ments show that collectives can respond whereas single cells cannot [25, 32, 83]. Cell 

size, chemical concentration, chemical gradient, cell-cell contact energy, and cell-ECM 

contact energy values are taken from previous experimental studies of collective cell 

behavior (Table 5.1). 

How do our model predictions compare to experiments? There have been many 

studies on collective migration [15,21,93,94] though only one (to our knowledge), by 

Malet-Engra et al. [83], measures migratory properties as a function of cluster size. 

The experiments conducted by Malet-Engra et al. reveal that beyond a minimum 

cluster size, the cluster velocity saturates to a maximal value and then remains con-

stant with increasing cluster size. In our study, we find that when communication 

is strong, the MFPT – which is inversely related to the mean velocity – also satu-

rates to a minimal value and remains constant for a large range of cluster sizes. As 

shown in Fig. 5.3A (red curve), as the cluster size increases from about 30 to 200 

cells the MFPT remains relatively constant, in qualitative agreement with the afore-

mentioned experimental results. This saturation regime occurs when communication 

is sufficiently strong to suppress, over a large range of cluster sizes, the drag-induced 

slowdown. Our findings thus suggest that sensory information is reliably transferred 

throughout the clusters of lymphocytes studied by Malet-Engra et al., and that com-

munication is strong enough that drag does not strongly constrain migration speed 

for the cluster sizes analyzed. 

Furthermore, our results suggest a simple experimental test that can distinguish 

whether cluster chemotaxis is purely collective or individually driven. Broadly speak-

ing, cluster migration (i) can emerge collectively from cells that communicate, either 
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Fig. 5.4. Prediction to distinguish collective from individual chemotaxis in 
experiments. (A) Expected MFPT behavior for cluster migration driven 
by collective sensing. (B) Expected MFPT behavior for cluster migration 
driven by local interactions. 

chemically or mechanically, but do not chemotax alone (as in our model), or (ii) it 

can result from many individual agents that take independent measurements of the 

environment and through physical coupling or local interactions produce collective 

migration [37,38] (a so-called “many wrongs” mechanism [44]). As illustrated in Fig. 

5.4A, our results suggest that in the former case, one would observe a minimum in the 

migration time as a function of the cluster size, with the optimal size determined by 

the length scale of collective information processing within the cluster. In contrast, 

as illustrated in Fig. 5.4B, in the latter case migration is driven by the integrated 

measurements of many effectively independent agents, and thus one would observe a 

monotonic decrease in the migration time as a function of the cluster size [44]. Distin-

guishing the dependence in Fig. 5.4A from that in Fig. 5.4B using microscopy would 

provide phenomenological evidence of purely collective chemotaxis without relying on 

molecular-level details. 

An important feature of our model and its analysis is that the timescale of sensing 

is faster than the timescale of cell response and motility (Table 5.1). However, in 

actuality the duration of cells’ sensing timescales relative to their response timescales 

is unknown [25]. If the motility timescale is shorter than that of sensing for a specific 

cell type than the MFPT dependence on cluster size may be more complicated than 

predicted. For short response timescales we expect migratory behavior to be more 
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strongly diffusive, but to still remain biased in the direction of the gradient over 

periods of time larger than the sensing timescale. 

In our model, the precision of multicellular migration is determined in part by noise 

arising from ligand diffusion at the initial sensory stage. As such, the model respects 

the fundamental limits to the precision of collective gradient sensing set by the physics 

of diffusion, which were recently tested in collectives of epithelial cells [25, 33]. It 

will be interesting to see how these and similar limits translate from the domain of 

sensing to that of migration, and whether they depend on the underlying migration 

mechanism (purely collective, individually driven, or a mixture thereof). 
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6. CONCLUSION 

Cell chemotaxis is crucial to many biological functions. As discussed in Ch. 2, it 

is critical to growth, nutrient search, development, wound healing, and in several 

instances, cancer metastasis. Chemotaxis can involve individual cells or collectives 

migrating in response to chemical concentration gradients. Recently, studies have 

shown the incredible precision of cell sensing. Detection of shallow gradients that are 

on the order of a 10 molecule difference across a cell body has been observed. Even 

more remarkable is that this precision is heightened in cell collectives. Examples from 

morphogenesis and cancer metastasis demonstrate that collectives can sense gradients 

an order of magnitude smaller than what’s possible for single cells. Although the 

physical constraints to gradient sensing are well understood and reviewed in Ch. 2, 

how sensing leads to coherent, directed migration remains poorly understood. With 

this problem in mind, we set out to understand and quantify how the physical limits 

of chemical sensing lead to constraints on chemotactic performance. 

We began by studying the individual chemotaxis of breast cancer cells in Ch. 3. 

In collaboration with Dr. Han’s research group we used experiments, simulations, and 

analytical models to place physical constraints on the cells’ chemotactic performance. 

From the simulations we identified the dependence of chemotaxis precision, persis-

tence and speed on crucial environmental parameters like background concentration, 

gradient, and ECM stiffness. From our analytical approach we found that a biased 

persistent random walk places bounds on the precision and persistence of the breast 

cancer cells. In Ch. 4, we turned our attention to collective chemotaxis. We developed 

a novel analytical model that predicts the physical limits of chemotactic precision for 

two generic classes of collective migration. We found that collective dimensionality is 

crucial to understanding how correlations between sensory cells cascades to the noise 

in the collective’s perceived gradient direction. Lastly, in Ch. 5 we studied an appli-
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cation of the EC class of migration from Ch. 6 where communication between cells 

is explicitly accounted for. Using simulations we test the chemotactic performance of 

cell collectives in gradients too shallow for single cell detection. Here we again find 

that chemotactic performance depends on the size of the collective, and it was also 

shown to depend on the efficacy of intercellular communication. 

The work in this thesis has quantitatively connected cell sensing to cell migra-

tion, made predictions that can be (and in certain cases were) tested in experiments, 

and laid the physical foundation for ubiquitous individual and collective migration 

processes in biology. 
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[87] B. Szabo, G. Szöllösi, B. Gönci, Z. Jurányi, D. Selmeczi, and T. Vicsek, “Phase 
transition in the collective migration of tissue cells: experiment and model,” 
Physical Review E, vol. 74, no. 6, p. 061908, 2006. 

[88] B. A. Camley, J. Zimmermann, H. Levine, and W.-J. Rappel, “Collective signal 
processing in cluster chemotaxis: Roles of adaptation, amplification, and co-
attraction in collective guidance,” PLoS computational biology, vol. 12, no. 7, 
p. e1005008, 2016. 

[89] See https://doi.org/10.5281/zenodo.401040 for collective cell polarization 
source code. 

[90] K. Takeda, D. Shao, M. Adler, P. G. Charest, W. F. Loomis, H. Levine, A. Gro-
isman, W.-J. Rappel, and R. A. Firtel, “Incoherent feedforward control governs 
adaptation of activated ras in a eukaryotic chemotaxis pathway,” Science sig-
naling, vol. 5, no. 205, p. ra2, 2012. 

[91] T. Smith, S. Fancher, A. Levchenko, I. Nemenman, and A. Mugler, “Role of 
spatial averaging in multicellular gradient sensing,” Physical biology, vol. 13, 
no. 3, pp. 35 004–35 013, 2016. 

[92] J. Varennes and A. Mugler, “Sense and sensitivity: physical limits to multicel-
lular sensing, migration and drug response,” Molecular pharmaceutics, vol. 13, 
no. 7, pp. 2224–2232, 2016. 

[93] B. H. Defranco, B. M. Nickel, C. J. Baty, J. S. Martinez, V. L. Gay, V. C. San-
dulache, D. J. Hackam, and S. A. Murray, “Migrating cells retain gap junction 
plaque structure and function,” Cell communication & adhesion, vol. 15, no. 3, 
pp. 273–288, 2008. 

[94] D. Ramel, X. Wang, C. Laflamme, D. J. Montell, and G. Emery, “Rab11 reg-
ulates cell–cell communication during collective cell movements,” Nature cell 
biology, vol. 15, no. 3, pp. 317–324, 2013. 

https://doi.org/10.5281/zenodo.401040


103 

[95] H. Gerhardt, M. Golding, M. Fruttiger, C. Ruhrberg, A. Lundkvist, A. Abrams-
son, M. Jeltsch, C. Mitchell, K. Alitalo, D. Shima et al., “Vegf guides angiogenic 
sprouting utilizing endothelial tip cell filopodia,” The Journal of cell biology, 
vol. 161, no. 6, pp. 1163–1177, 2003. 

[96] M. Hsu, T. Andl, G. Li, J. L. Meinkoth, and M. Herlyn, “Cadherin repertoire de-
termines partner-specific gap junctional communication during melanoma pro-
gression,” J cell Sci, vol. 113, no. 9, pp. 1535–1542, 2000. 

[97] D. T. Gillespie, “The chemical langevin equation,” The Journal of Chemical 
Physics, vol. 113, no. 1, pp. 297–306, 2000. 

[98] G. B. Ermentrout and L. Edelstein-Keshet, “Cellular automata approaches to 
biological modeling,” Journal of theoretical Biology, vol. 160, no. 1, pp. 97–133, 
1993. 

[99] T. Maire and H. Youk, “Molecular-level tuning of cellular autonomy controls 
the collective behaviors of cell populations,” Cell systems, vol. 1, no. 5, pp. 
349–360, 2015. 
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