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ABSTRACT 

Du, Haodong MSAA, Purdue University, May 2018. Simulating composite delamina-
tion with a damage-type cohesive zone model. Major Professor: Wenbin Yu. 

Interlaminar damage (delamination) is one of the predominant forms of failure in 

laminated composites, which is broadly used in aerospace, astronautical and automo-

bile industry and many other fields. Engineering problems about damage tolerance 

and structure durability requires the ability to simulate mixed mode delamination in 

laminated composites. 

The objective of the research is to develop an implicit scheme for a recently de-

veloped damage-type cohesive zone model (CZM) with an associated systematic cali-

bration method. The CZM is formulated based on thermodynamics, and the damage 

evolution is derived with the principle of maximum dissipation. 

A stable implicit scheme using the Newton–Raphson method is developed to solve 

the model iteratively. A finite element framework consisting of double-cantilever 

beam (DCB) , end-notched flexure (ENF) and mixed-mode beam (MMB) models 

and properly chosen mesh density is built to incorporate the present CZM. A system-

atic calibration method is then established to calibrate the damage parameters from 

experimental results of interfacial parameters and flexural tests. 

The present model is found to yield consistent and accurate results in finite element 

simulations. Specifically, it’s shown to be able to reproduce the critical energy release 

rates and maximum loads that the structure can endure. The maximum loads are 

found to be also affected by the interfacial strenghth. Conclusively, the present model 

could be used in engineering practice because of its superior accuracy and stability. 
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1. INTRODUCTION 

1.1 Motivation 

Laminated composites are broadly used in aerospace and automobile industry 

and other fields because of its superior properties like large strength-weight ratio and 

long fatigue life. It’s crucial to study the failure mechanism of laminated composites, 

among which delamination is one of the predominant forms of failure. The existence 

of delamination could affect mechanical properties such as stiffness and strength of 

the structures. The traditional way to solve these problems is to use finite element 

method in conjunction with linear elastic fracture mechanics (LEFM), which requires 

that the fracture process zone (FPZ) is small compared with any characteristic length. 

However, in the case of composite delamination the FPZ could be comparable to 

characteristic length. The cohesive zone model (CZM) is able to handle large FPZ 

and has been intensively researched for the simulation of composite delamination. In 

spite that various CZMs have been proposed, there are some challenges that need to 

be further addressed: 

1. The CZM should be able to simulate delamination along complex separation 

paths reliably and consistently; 

2. The critical energy release rates and maximum loads should be reproduced to 

high accuracy for an arbitrarily mixed mode. 

1.2 Literature Review 

In experimental studies, delamination is characterized within the framework of 

fracture mechanics, in which the energy releas rates Gc is a commonly used property. 

Test methods have been proposed to study Gc in different delamination modes, such 



2 

as double cantilever beam (DCB) for mode I, end-notch flexure (ENF) for mode II 

and mixed-mode bending (MMB) for mixed mode I and mode II. These methods have 

been standardized in ASTM standards [1–3]. The models are depicted in Figure 1.1. 

The specimen is a composite laminate with a pre-crack between two layers in the 

middle. In the DCB model, two vertical forces in opposite directions are applied 

to the free ends of cantilever beams; in the ENF model, a vertical force is applied 

at the center of a simply supported beam; in the MMB model, an upward force 

at the free end and a downward force at the center are applied to the specimen, 

and the mode mix ratio is adjusted by the force ratio, which is realized using a 

lever with adjustable length. Once the delamination parameters are determined from 

experiments, numerical approach is then utilized to study sophisticated delamination 

behaviors. 

P 
6 

Specimen ?h
6

� a -

? 
P 

(a) DCB. (b) ENF. 

� -P 

Base 

Specimen 

a -� 

? 

P 
L -� 

? 

Base 

Specimen 

c 

a -� 

-� L 
Lever 

-� 

(c) MMB. 

Figure 1.1. Schematics of DCB, ENF and MMB models. 
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The CZM has been shown to perform well in predicting crack growth in compos-

ites [4–6], which consists of a FPZ comparable to the characteristic length. Dugdale [7] 

and Barenblatt [8] first introduced the concept of CZM by limiting the material non-

linearity in a thin sheet ahead of the crack tip. A cohesive element could be a brick 

element in 3D or a quad element in 2D. Theoretically, the element has a zero thickness 

while in Abaqus a very small geometric thickness could be assigned and the nominal 

strains would be calculated by relative separation displacements [9]. The structures 

of cohesive elements are illustrated in Figure 1.2. In real models, the cohesive ele-

ments usually have a much smaller thickness than the elements shown in Figure 1.2. 

Thereafter, a cohesive law is constructed to relate the interfacial traction and the inte-

laminar separation. One of the most-known and simplest traction–separation relation 

is the bilinear model by Camanho and Dávila [10], which includes a linear increasing 

portion and a linear softening portion and eventually breaks when the traction is 

very low. Various advanced CZMs have more complex traction–separation relation 

but they share the similar trend of increasing traction and subsequent softening. 

Current CZMs are categorized into potential-based CZMs and damage-type CZMs. 

For a potential-based CZM, the cohesive relation is obtained from a potential func-

tion, which is properly designed to characterize the traction–separation relationship 

(see Park and Paulino’s paper [5] for a review). CZMs with predetermined traction-

separation profiles are also mostly categorized into potential-based CZMs. The related 

cohesive laws include polynomial [11], exponential [12, 13], bilinear [14], trapezoidal 

functions [15]. As an example, Xu and Needleman proposed a potential function with 

exponential functions. This CZM has some advantages: the normal compression con-

trol is automatically achieved; the tractions and their derivatives are continuous [16]. 

However, the irreversibility and path dependence are not accounted for. Since they 

developed this CZM, numerous attempts have been made to extend it. Ortiz and 

Pandolfi incorporated irreversibility into exponential cohesive law by introducing an 

effective separation [13]. Bosch et al. took into account the path dependence based 

on the CZM [16] by considering potential functions for the tangential direction and 
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(a) 3D 

(b) 2D 

Figure 1.2. Schematics of cohesive elements. 
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the normal direction separately, which leads to more model parameters. These im-

provements have their own limitations: 

1. Ad hoc assumptions other than the cohesive potential functions are needed; 

2. The critical energy release rates cannot be recovered precisely for mixed mode 

delamination. 

As a matter of fact, delamination is a damage process. To extend the potential-based 

CZMs, some concepts of damage is introduced to consider the irreversibility. The 

thesis would be focused on damage-type CZMs which are directly rooted in principles 

of thermodynamics. A damage-type CZM generally involves a properly developed 

damage criteria and the corresponding damage evolution law. Most damage-type 

CZMs have a damage evolution law constructed phenomenologically and have few 

restrictions on the damage criteria [17–19]. It turns out the damage evolution rule 

could be derived from the damage criteria following the principle of maximum dissi-

pation [20]. Specifically, we want a generalized standard damage model [21], which 

possesses the following features: 

1. The relation between each pair of state variable and its conjugated thermody-

namic driving force (e.g., the damage factor and the damage conjugate force) 

is specified by a potential function; 

2. The damage initiation is specified by a damage criterion; 

3. The material obeys the principle of maximum disspation. 

Several attempts have been made to make a damage-type CZM generalized standard. 

Turon et al. [22] developed a damage-type CZM similar to a generalized standard one 

except that an effective separation took the place of a damage conjugate force in the 

damage evolution law. Mosler and Scheider proposed another class of damage-type 

CZMs by requiring the element following the so-called principle of minimum stress 

power. Despite improvements, the CZMs are still not generalized standard. For more 
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detailed discussions about a generalized standard damage model, see Zhang and Gao’s 

paper [21]. 

Numerical methods for time-dependent nonlinear problems are classified into im-

plicit and explicit methods. The explicit method estimates the state at the next time 

step from the current state. Many CZM papers utilized explicit methods in solving 

the CZM equations [23, 24]. Despite its simplicity, the explicit method has intrinsic 

error and numerical oscilation [20,25,26]. Therefore, the implicit method is needed to 

improve accuracy and stability. The implicit methods involve the state equations at 

both the current and the next time step. The simultaneous equations would be non-

linear equations and could be solved iteratively with the Newton–Raphson method. 

Mathematically, the implicit method is more accurate, but it encounters convergence 

difficulties. The implicit method has been used in models with determined traction 

separation curves. Camanho used the implicit method for the bilinear model [10]; Gao 

and Bower used the implicit method for the exponential-shaped traction–separation 

law and they added viscous dissipation to deal with convergence difficulty [27]. It 

is straightforward to derive an implicit scheme for models with determined traction 

separation curves as it is just finding the tangent line on the hyper-surface made up 

of the traction separation curves. For a model with determined traction separation, 

the discrepancy between damage-type representation and potential-based representa-

tion is not essential. As an example, the bilinear model was present in the damage 

formulation [10], while it could also be integrated and present with a potential func-

tion [5]. However, the present model involves complex separation path and thus the 

traction separation curves depend on the loading history. To the best knowledge of 

the author, this is the first implicit model to deal with path dependence behavior. 

The present model could be solved with the Newton–Raphson method effectively. It 

yields convergent and consistent results and no artificial viscous dissipation is needed 

so accuracy and efficiency are balanced. 

Calibration is critical to get results in accordance with experimental data. For 

simple models such as the bilinear model, the critical energy release rates and the 
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interfacial strength obtained from experiments are directly incorporated in the models 

[10, 24]. Some criteria are proposed to recover the critical energy release rates in 

mixed mode delamination. The most popular ones are the power law criterion [28] 

and the B-K criterion [29]. Some potential-based CZMs includes artificial parameters 

[30]. While they succeeded in reproducing complex behaviors like path dependence 

phenomenon, some parameters don’t have clear physical meanings and are artificially 

chosen. Moreover, the critical energy release rate can not be precisely determined 

with experiments. There have been some concerns about the ASTM standards [1–3]: 

1. Linear elastic behavior is assumed. Therefore, the FPZ has to be smaller than 

any characteristic length, which does not apply as we will show numerically. 

2. Modified beam theory is used to establish the relationship between level length 

and mode mix ratio. The relationship is shown to be not precise with the angle 

of inclination. 

3. ASTM standard is good for engineering purposes since it recommends the most 

conservative theory for calculating the critical energy release rate. The value 

might not be suitable for obtaining precise results numerically. 

Some of the concerns are also discussed in previous papers [31]. 

Beyond the ASTM standards, improvements have been made for the analytical 

solutions [32–34]. By taking into account the nonlinear cohesive law and finite thick-

ness, the models give a reasonable estimate of the FPZ length and can serve as a tool 

to justify the numerical solutions. However, it is hard to solve CZM with complicated 

cohesive laws analytically, and path dependence cannot be dealt with conveniently. 

In other words, the state does not rely on the loading history. In the present model, 

we try to keep the fundamental formulations straightforward and introduce some 

parameters with specific physical meanings to incorporate the complexity of the de-

lamination behavior. The critical energy release rate is not directly included in the 

model, but it is used for calibration. A set of calibration procedures are also estab-

lished and implemented in programs. The model with the calibrated parameters is 
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able to reproduce the experimental data to higher accuracy and we believe it to be 

more generally applicable. 

1.3 Objectives 

The objective of the research is to develop an implicit scheme for a recently de-

veloped damage-type cohesive zone model with an associated systematic calibration 

method. The formulation and derivation of the CZM together with the principle 

of maximum dissipation are briefly introduced. Subsequently an implicit scheme of 

the CZM is proposed based on the Newton–Raphson method, and implemented in a 

UMAT subroutine for Abaqus/Standard. A finite element framework is constructed 

to incorporate the CZM. A systematic calibration method is established to calibrate 

the damage parameters from interfacial parameters and flexural test results. The 

present CZM with parameters calibrated by the aforementioned systematic calibra-

tion method is found to be able to simulate complex separation path and reproduce 

the maximum loads. The interfacial strength is also found to have an effect on the 

delamination process. 
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2. COHESIVE ZONE MODEL 

2.1 String-based CZM 

In this section, the fundamentals of a string-based CZM together with the damage 

model will be introduced. Figure 2.1 depicts the crazing ahead of a crack tip during 

the delamination of a polymer interface. During a crazing process, it’s observed that: 

1. The interface become crazing once it cannot sustain higher imposed traction; 

2. More and more crazes nucleate, grow perpendicular to the adherends, and form 

into an array of main fibrils, connected by cross-tie fibrils; 

3. Once main fibrils fail, delamination occurs. 

Accordingly, the cohesive zone can be idealized as a fibrillated region where each 

cohesive element represent a fibril (or a fibril bundle). Each fibril can further be 

idealized as a deformable string such that: 

1. It can only sustain uniaxial stress in its longitudinal direction [35]; 

2. Its damage behavior is path-dependent due to some micromechanisms (e.g., the 

existence of cross-tie fibrils). 

According to the first point, each cohesive element should have initial elasticity tensor 

˜ ˜K = KI, (2.1) 

˜where K denotes its initial elastic stiffness, and I denotes the second-order identity 

tensor. 

Figure 2.2 depicts a cohesive element and its associated local corotational material 

coordinate system, x = (x1, x2, x3). The x1-, the x2-, and the x3-directions are chosen 
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Cohesive zone 
Interface 

R ? � Crack 

? 

� 

� 

-Main fibril 

Drawing zone 

Cross-tie fibril 

Figure 2.1. Crazing ahead of a crack tip (amended from [36]). 
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-
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(a) Deformed cohesive element. (b) Local coordinate system. 

Figure 2.2. Schematic of a deformed cohesive element. 
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such that they are associated with mode I, mode II, and mode III fracture, respectively 

(see Appendix A for more details). 

According to the thermodynamics of continuum, the Helmholtz free energy per 

unit area of the element, say Ψ, can treated as a function of a suitable set of inde-

pendent state variables, e.g., 

Ψ = Ψ(γ, d, α) , (2.2) 

where γ denotes the separation vector, d is a scalar measuring the degradation of the 

element, namely the damage factor, and α is a scalar describing damage accumulation. 

Hereafter set j kT 
γ = hγ1i γ2 γ3 (2.3) 

unless otherwise specified, where h·i denotes the Macaulay bracket, i.e., 

hxi = 

⎧⎨ ⎩ 0 x < 0, 
(2.4) 

x x ≥ 0. 

This implies that a negative γ1 does not promote damage or delamination. Assume 

that Ψ can be decomposed into its elastic and damage accumulation parts as 

Ψ(γ, d, α) = Ψe (γ, d) + Ψd (α) . (2.5) 

By definition, the thermodynamic forces conjugate to γ, d, and α are given by 

∂Ψ ∂Ψe ∂Ψ ∂Ψe ∂Ψ dΨd
τ = = , y = − = − , A = = , (2.6)

∂γ ∂γ ∂d ∂d ∂α dα 

where τ denotes the traction vector, y denotes the damage conjugate force, and A 

denotes the damage accumulation conjugate force. For an isothermal process, the 

Clausius–Duhem inequality can be expressed as 

Φ = τ · γ̇ − Ψ̇ ≥ 0, (2.7) 

where Φ denotes the dissipation per unit area, and the overdot denotes the time 

derivative of a quantity. Combining Eqs. (2.5)–(2.7) gives 

Φ = yḋ − Aα̇ ≥ 0. (2.8) 
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Following Simo [37], assume that each element obeys the following principle of maxi-

mum dissipation: for fixed but otherwise arbitrary ḋ and α̇ , the actual y and A should 

maximize Φ subject to constraint f ≤ 0, or mathematically speaking, should make 

Lagrange functional � � 
L y, A, λ̇; d,̇ α̇ = yḋ − Aα̇ − λf˙ (2.9) 

˙attain its extremum, where λ is a positive Lagrange multiplier, and f = f (y, A) 

is referred to as the damage function. In other words, one could obtain associated 

damage evolution laws 
∂f ∂f 

ḋ = λ̇ and α̇ = −λ̇ (2.10)
∂y ∂A 

subject to loading/unloading conditions 

˙ ˙f ≤ 0, λ ≥ 0, λf = 0. (2.11) 

The concepts of effective space and energy equivalence can facilitate the deriva-

tion. The effective space is where a fictitious, undamaged cohesive element is obtained 

from a real, damaged one by removing all damages so that a set of so-called effec-

tive quantities can be defined [38]. Following Cordebois and Sidoroff [39], let the 

energy equivalence hypothesis follow the definition of the effective traction vector: 

the effective traction vector should be applied to an undamaged element such that 

it produces the same elastic Helmholtz free energy as those observed on a damaged 

element subject to the apparent traction vector, i.e., 

1 1 ˜Ψe = Kγ · γ = Kγ̃ · γ̃, (2.12)
2 2 

where K denotes the apparent elastic stiffness, and the overtilde denotes an effective 

quantity (e.g., the initial elastic stiffness, K̃ , remains constant throughout separation). 

Following Betten [40], let τ̃ be related to τ by 

τ 
τ̃ = or τ = (1 − d) τ̃ . (2.13)

1 − d 

Hooke’s law can be expressed as 

˜τ = Kγ and τ̃ = Kγ̃ (2.14) 
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in the apparent and the effective spaces, respectively. Combining Eqs. (2.12), (2.13), 

and (2.14) gives 
2 ˜K = (1 − d) K. (2.15) 

The damage model describes the element behavior under mixed-mode I/II/III 

delamination. Its associated parameters ought to be calibrated via a series of flexural 

tests, which include but are not limited to standard DCB, ENF, and MMB tests. 

Assume that the element obeys damage criterion 

f = J (γ̂) y − k − A (α) ≤ 0, (2.16) 

where J is referred to as the path dependence function, 

γ γ 
γ̂ = √ ≡ (2.17)

γ · γ γ 

denotes the unit vector in the direction of γ with γ denoting the magnitude of γ, and k 

denotes the initial damage threshold. The principle of maximum dissipation requires 

the damage surface to be convex (see Simo and Hughes [37] for more details). This 

imposes no restrictions on J (γ̂). More details about J are introduced in Appendix B. 

Substituting Eq. (2.12) into the second equation of Eq. (2.6) gives 

∂Ψe 
y = − = (1 − d) K̃ γ · γ. (2.18)

∂d 

Let y0 denote the value of y at damage initiatio and let e1 represent the unit 

vector in the x1 direction. Set J (e1) = 1 so that: 

1. For a test producing mode I delamination, k = y0| ;γ̂=e1 

2. For a test during which γ̂ = γ̂i (where (·) denotes the value of a quantity for.� � i 

the ith test), J (γ̂i) = k y0|ˆ .γ=γ̂i 

Suppose that a set of n data points (γ̂i, Ji) have been calibrated via a series of flexural 

tests during which γ̂i’s remained constant. J (γ̂) is then a multivariate Lagrange 

polynomials constructed from these data points (see Appendix A and B for more 
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details). The damage accumulation law, A = A (α), must be an increasing function. 

Numerical experiments indicate that 

A = Q [exp (bα) − 1] (2.19) 

serves the purpose well, where Q and b are two positive damage accumulation pa-

rameters to be calibrated. Last but not least, substituting Eq. (2.16) into Eq. (2.10) 

gives 

˙ ˙ḋ = λJ and α̇ = λ. (2.20) 

Till now, the damage model has been full specified, and its associated parameters, 

such as k, Q, b, and Ji’s, are to be calibrated. 

2.2 Implicit Integration Scheme 

Nowadays, a CZM can be easily implemented in the commercial finite element 

code Abaqus/Standard via user subroutine UMAT for structural analysis. UMAT 

can: 1. define the traction–separation relation for a cohesive element; 2. use and 

update any state variables, either passed in or stored elsewhere [9]. Let (·)n denote 

a quantity at a given instant of time, tn, and let Δ(·) denotes the increment in a 

quantity over time interval [tn, tn+1]. When calling UMAT at an integration point, 

Abaqus/Standard passes in τ n, γn and Δγ and gets back τ n+1 and the consistent 

Jacobian, ∂Δτ /∂Δγ. Suppose that all the variables at tn, as well as Δγ, are known. 

The implicit integration scheme should update the other variables and return the 

consistent Jacobian. 

For notational convenience, omit the subscript n+1 on each quantity at tn+1. Note 

that Eqs. (2.16) and (2.18) should be satisfied at each instant of time. Substituting 

Eq. (2.18) into Eq. (2.16) gives 

f = J (γ̂) · (1 − d) K̃ γ · γ − k − A (α) ≤ 0. (2.21) 

By definition, 

d = dn +Δd and α = αn +Δα. (2.22) 
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Eq. (2.20) can be rewritten as 

Δd = J (γ̂)Δλ = J (γ̂)Δα. (2.23) 

It turns out that, once Eq. (2.11) is met, the integration scheme can be formulated 

as solving the following equation for Δα: � � 
f (Δα) = JK̃ γ · γ (1 − dn − JΔα) − k − A (Δα) = 0. (2.24) 

Here the Newton–Raphson method is used for problem solving. Require 

f (Δαold + dΔα) = f (Δαold) + f 0 (Δα) dΔα = 0, (2.25) 

where 

f 0 (Δα) = −J2K̃ γ · γ − A0 (Δα) . (2.26) 

Substituting Eq. (2.26) into Eq. (2.25) and solving for dΔα give 

f (Δαold)
dΔα = . (2.27)

J2K̃ γ · γ + A0 (Δα) 

The corrections can then be computed and added to the solutions, i.e., 

Δαnew = Δαold + dΔα. (2.28) 

Once the process is iterated to convergence, the variables are updated as 

2 ˜α = αn +Δα, d = dn + J (γ̂)Δα, τ = (1 − d) Kγ. (2.29) 

In Eq. (2.29), d is explicitly updated because J (γ̂) may vary with time. Accordingly, 

the implicit integration scheme is only semi-implicit and conditionally stable. In other 

words, it may be unstable when the time increment size is too large. Fortunately, 

Abaqus/Standard automatically adjusts the time increment size using so-called au-

tomatic incrementation control [9]. 

The consistent Jacobian awaits determination. Note that hereafter γ is no longer 

held fixed. Accordingly, f in Eq. (2.24) becomes a function of Δα and γ, i.e., h i 
f (Δα, γ) = J (γ̂) K̃ γ · γ [1 − dn − J (γ̂)Δα] − k − A (Δα) = 0. (2.30) 



16 

It is beneficial to relate dγ̂ to dγ. Totally differentiating both sides of Eq. (2.17) 

gives 
dγ dγ 

dγ̂ = − γ. (2.31)
γ γ2 

Following Benzerga and Besson [41], express dγ as 

dγ2 d (γ · γ) γ · dγ 
dγ = = = . (2.32)

2γ 2γ γ 

Substituting Eq. (2.32) into Eq. (2.31) gives 

dγ γ · dγ (γ · γ) I − γ ⊗ γ 
dγ̂ = − γ = · dγ ≡ A · dγ. (2.33)

γ γ3 γ3 

On one hand, totally differentiating both sides of Eq. (2.30) with respect to Δα and 

γ gives 
∂f ∂f 

df = dΔα + · dγ = 0, (2.34)
∂Δα ∂γ 

where 

∂f 
= −J2K̃ γ · γ − A0 (Δα) , (2.35)

∂Δα� �∂f ∂J 
= (1 − dn − 2JΔα) K̃ γ · γ · A + 2 (1 − dn − JΔα) JK̃ γ. (2.350)

∂γ ∂γ̂ 

Solving Eq. (2.34) for dΔα gives 

∂f 

dΔα = − ∂

∂f 
γ · dγ ≡ B · γ (2.36) 

∂Δα 

On the other hand, totally differentiating both sides of the first equation of Eq. (2.14) 

with respect to Δd and γ gives 

dτ = dKγ + Kdγ. (2.37) 

Totally differentiating both sides of Eq. (2.15) gives 

dK = −2 (1 − d) K̃ dΔd. (2.38) 

It is beneficial to relate dΔd to dΔα. Totally differentiating both sides of Eq. (2.23) 

gives 
∂J 

dΔd = JdΔα +Δα · A · dγ. (2.39)
∂γ̂ 
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Substituting Eq. (2.36) into Eq. (2.39) gives �� 
∂J 

dΔd = JB +Δα · A · dγ. (2.40)
∂γ̂ 

Combining Eqs. (2.37), (2.38), and (2.40) gives ���� 
dτ = −2 (1 − d) K̃ γ ⊗ JB +Δα

∂J · A + KI · dγ ≡ L · dγ. (2.41)
∂γ̂ 

Last but not least, the definition of γ (Eq. (2.3)) indicates that, when γ1 < 0, 

the relationship between τ1 and γ1 is unspecified. To prevent crack face penetration, 

set each cohesive element to have a small thickness so that a negative γ1 is therefore 

˜admissible. Let Kc denote the penalty contact stiffness such that 

˜ ˜τ1 = Kcγ1 or dτ1 = Kcdγ1 (2.42) 

when γ1 < 0. Numerical experiments indicate that K̃ 
c = 1000K̃ serves the purpose 

well. Let 

I+ = 

⎡ ⎢⎢⎢⎣ 
H (γ1) 0 0 

0 1 0 

⎤ ⎥⎥⎥⎦ , (2.43) 

0 0 1 

where H (x) denotes the Heaviside step function, i.e., ⎧⎨ ⎩ 0 x < 0, 
(2.44) 

1 x ≥ 0. 
H (x) = 

Combining Eqs. (2.41)–(2.43) gives ⎧ ⎪⎨ ⎫ ⎪⎬ h ⎧ ⎪⎨ ⎧ ⎪⎨ ⎫ ⎪⎬ ⎫ ⎪⎬dτ1 dγ1 dγ1�i 
I+ · L + K̃ 

c ≡ L ∗ I − I+ (2.45)dτ2 dγ2 dγ2 = , ⎪⎭⎪⎩⎪⎭⎪⎩⎪⎭⎪⎩ dτ3 dγ3 dγ3 

where L ∗ turns out to be the consistent Jacobian. It can be verified that: 

1. When γ1 ≥ 0, L ∗ = L; 

2. Otherwise, the relationship between dτ1 and dγ1 obeys Eq. (2.42). 

https://2.41)�(2.43
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3. FINITE ELEMENT FRAMEWORK 

In this chapter, discussions are made on experimental setups and finite element models 

of DCB, ENF, and MMB specimens. The way to determine the finite element solver 

(i.e. time integration scheme) and mesh density to get stable and convergent results 

is also presented. The actual models and parameters are presented more detailedly 

in Chapter 5. 

3.1 Experimental Apparatus 

The test methods for determination of interlaminar fracture toughness Gc (equiv-

alently, critical energy release rate) of continuous fiber-reinforced composite materials 

at various mode I to mode II mix ratio have been standardized [1–3]. It would be 

helpful to illustrate the setup of the MMB test first as the DCB and ENF tests can 

be considered as a simplified version of the MMB test. 

The MMB test apparatus shown in Fig. 1.1 is used to to measure Gc at various 

mix ratio for a laminated composite. The test specimen is made up of a rectangular 

unidirectional laminated composite with a non-adhesive insert at the mid-plane to 

serve as a pre-crack. Loads are applied through a lever connected to a tab applied near 

the ends of the pre-crack and a roller placed at the middle in the non-delamination 

region. The roller acts as a fulcrum so the tab is pulled up when the lever is pushed 

down at one end. The forces at the tab and the roller are opposite in directions and 

the ratio between them could be adjusted with the lever length c. The applied load 

is recorded versus the load point displacement and the critical energy release rate 

Gc could be calculated thereafter. As is pointed out in the Chapter 1 and would be 

further illustrated in Chapter 5, the theoretical foundation of ASTM standards is not 
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perfect. Despite this fact, the experimental apparatus is still useful and the Gc values 

calibrated by the ASTM standard would serve as an initial guess. 

The lever length c should be determined by the desired mode mix ratio prior 

to experiments. Using the simple beam theory, an analytical relation is derived by 

Camanho and Dávila [10]: s � � 
1 1 − κ 

3 + 1 
2 κ 

c = L s (3.1)� � , 
1 1 − κ 

3 − 3 
2 κ 

where 
GII 

κ = (3.2)
GI + GII 

denotes the mode mix ratio. Detailed discussion about energy release rate GI and 

GII could be found in Appendix A. The ASTM standard made corrections to the 

result by adopting the modified beam theory, which introduced a virtual crack length 

χh to account for the deflection and rotation at the crack tip [42]. The corrected 

lever length is given by √ 
12β2 + 3α + 8β 3α 

c = L, (3.3)
36β2 − 3α 

where 
1 − κ GI

α = = ,
κ GII (3.4)
a + χh 

β = , 
a + 0.42χh 

and a denotes the delamination length. 

The DCB and ENF tests share the same test specimen except that the lever 

is removed. For DCB, the loads are applied at the bottom and top beam in the 

delamination region. For ENF, the load is applied with a roller at the center in the 

nondelamination region. 
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3.2 Finite Element Models 

The test specimen could be modeled with a 3D solid model or a 2D plane stress 

model. Both models have been built and the UMAT subroutine is designed and 

tested to work in either case. The model consists of a two layer composite plate 

with a cohesive layer between them. The laminate is modeled with brick elements 

for 3D or quad elements for 2D while the cohesive layer is modeled with the built-in 

cohesive element in Abaqus. A schematic 2D finite element model of MMB is shown 

in Figure 3.1. 

Figure 3.1. Schematic of a MMB finite element model. 

The lever is modeled as a rigid body. One end of the lever is tied to a beam in 

the delamination region. Meanwhile, a small region of the lever near the center of 

the laminate serves as the fulcrum since it is constrained to slide freely on the surface 

of the laminate and other parts of the lever are set to have no interaction with the 

laminate. The load is applied at the far end of the lever as shown in the figure. 

By prescribing that the cohesive elements have the same size in the longitudinal 

direction as the adjacent laminate elements, it is straightforward to bond the cohesive 

elements to laminate elements. In the thickness direction, a fairly small element size 

is assigned for the cohesive elements (less than 1/1000 of the laminate element thick-

ness). The fictitious geometric thickness has no effect on the final result according to 

the implementation of cohesive elements in Abaqus [9]. 
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3.3 Time Integration Scheme 

An implicit solving process is preferred but not commonly used. As a summary, 

finite element solvers are classified into implicit solvers and explicit solvers by their 

time integration scheme. There are some major differences between them: 

1. Implicit solvers apply to static problems while explicit solvers apply to dynamics 

problems. However, quasi-static problems could be handled with either solver. 

2. Theoretically, implicit solvers are more accurate since it tries to find the exact 

solution by iterations. It is tricky to deal with kinetic energy and artificial 

viscosity when explicit solvers are used to solve a quasi-static problem. 

Numerous efforts have been made in simulating CZM with explicit methods. Os-

cillation is a common problem because of the dynamic nature of the explicit solver 

[20, 25,26]. The reasons people prefer explicit solvers might be: 

1. The implicit solver often experiences convergence difficulties. The computation 

is most likely to fail when a cohesive element reaches the critical energy release 

rate. 

2. The implicit solver requires an implicit material model to make it truly implicit. 

The process often involves iteration and is not as straightforward as solving the 

material model using Euler method explicitly. 

Efforts are made to ensure the convergence of internal material model iteration. 

The Newton method with line search is used to solve the material model [43]. A very 

strict convergence criterion is enforced when possible and it is relaxed a little when 

the element reaches the critical point of breakage. Finite element calculations are 

also conducted with the Newton method in Abaqus/Standard. The Riks method [43] 

which theoretically has better convergence performance proves to be unnecessary in 

the specific problem of CZMs. 
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3.4 Mesh Study 

The CZM simulation is very sensitive to mesh density. Coarse mesh could lead to 

solving failure or an unconvergent result. Considerations when meshing the structures 

include: 

1. There are supposed to be enough elements in the thickness direction of the 

beam. Meanwhile, the reduced integration could be used. 

2. The FPZ of the cohesive layer needs to be adequately resolved. This could be 

achieved by estimating the FPZ size analytically and insert enough elements in 

this region. 

Last but not least, the result could be justified through a mesh refinement study. 

Refine the mesh, and compare the result until a convergent result is achieved. 
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4. SYSTEMATIC CALIBRATION METHOD 

ASTM standard DCB, ENF, and MMB tests are among the most widely used tests 

for measuring mode I, mode II, and mixed-mode I/II interface properties. Although 

the present CZM can handle mixed-mode I/II/III delamination, there is still a lack 

of standard flexural tests capable of producing such delamination. Hereafter assume 

that a cohesive element has the same properties in all directions in the x2x3 plane. 

In this case, J (γ̂) reduces to a univariate Lagrange polynomial (see Appendix A 

for more details). Figure 4.1 depicts a systematic method for calibrating interface 

parameters via ASTM standard flexural tests. It consists of three major steps: 

1. Create an initial guess for the CZM; 

2. Implement the initial guess in Abaqus/Standard for structural analysis; 

3. Calibrate the interface parameters through trial and error. 

In the remaining of this chapter, these three steps will be described in detail. 

4.1 Initial Guess 

An initial guess can be created based on: 

1. An estimate of the Gc –β2 relationship, e.g., that predicted by the Euler–Bernoulli 

beam theory along with the Griffith theory of brittle fracture; 

2. For the DCB test, estimates of the interface strength and the corresponding 

separation, say τI max and γI max, either observed during experiments or obtained 

through numerical experiments. 

Following Zhang et al. [21], assume that a cohesive element exhibits softening right 

after damage initiation. This assumption, together with Eq. (2.14), implies that 
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Figure 4.1. Systematic calibration method. 
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˜ ˜K ≈ τI max/γI max. K is a thermodynamic quantity here rather than a penalty stiffness 

proposed by Camanho [10]. Its value should be properly chosen to produce realistic 

damage evolution. Otherwise, the element may undergo a sudden decrease in d (from 

0 to almost 1) right after damage initiation. Let γIc denote the critical separation at 

the onset of delamination, during the DCB test. For a bilinear CZM, GIc = 1
2 τI maxγIc. 

For the present CZM, although GIc, τI max, and γIc are implicitly linked, for fixed GIc, 

τI max still increases with decreasing γIc. Also for fixed GIc, an extremely high τI max 

corresponds to a stiff but brittle interface, while an extremely low τI max a flexible but 

ductile interface. A former interface often causes unstable delamination during the 

ENF and some MMB tests, while a latter interface often causes considerable specimen 

degradation even before the visually observed onset of delamination. Although the 

load–displacement curves are found to be insensitive to the interface strength (see 

Chapter 5 for more details), the assumed interface strengths should at least have the 

same order of magnitude as the real one, to avoid unrealistic predictions. 

Given GIc, τI max, and γI max, k can be determined as shown in Section 2.1 and Q 

and b in Eq. (2.19) await calibration. Here the present implicit integration scheme 

is implemented in an incremental–iterative procedure for time integration, and the 

method of nonlinear least squares is used for calibration. The latter method is not 

guaranteed to converge to the global optimum and often gets “lost” if started far from 

the solution. Setting the starting values close to the solution can greatly improve the 

convergence. Here such starting values are obtained through a series of Monte Carlo 

experiments. The inputs to the incremental–iterative procedure are then τI max, γI max, 

k, Q, and b. To facilitate the calibration, invoke the following assumption only at 

this step: during each test, each element is deformed along the same proportional 

separation path. This is the equivalent of setting γ̂ to be constant everywhere. With 

this assumption, A in Eq. (2.41) vanishes, and performing the incremental–iterative 

procedure along γ̂ = e1 gives the DCB traction–separation curve, which suggests 

GIc and τI max different from the estimated ones. Q and b can then be calibrated 

by iteratively adjusting their values till they make the predicted GIc and τI max have 
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the best fit to the estimated ones. After this, Ji’s (expect J1) await calibration. 

Performing the incremental–iterative procedure along γ̂ = γ̂i gives the ith traction– 

separation curve, which is the ENF or an MMB curve. Since the ith curve depends 

on Ji rather than its neighborhood, Ji’s can then be calibrated one by one, from the 

estimated Gc –β2 relationship. The calibration process here is similar to the above 

one expect that Ji is the fitted parameter each time. After this, the initial guess for 

the CZM is ready to use. 

4.2 Structural Analysis 

The present CZM is implemented in Abaqus/Standard via UMAT, for struc-

tural analysis. The implementation has been briefly described in Chapter 2, and 

more details can be found in Appendix C. Different chosen options on the finite 

element models of test specimens lead to different predictions. The most rigorous 

option is to choose 3D models. Several authors [20, 22, 25, 26, 44, 45] used explicit 

finite element analyzers along with such models but obtained some oscillatory load– 

displacement curves. Numerical experiments indicate that it is very time consuming 

for Abaqus/Standard, along with a bilinear CZM, to simulate the DCB test, not to 

mention more complex MMB tests. One major reason is that a complex finite ele-

ment model is often accompanied with a low convergence rate and low accuracy. This 

leads one to choose simplified models. Noting that the laminate thickness is much 

smaller than the span length, the second option becomes idealizing each laminate as 

a plate [10,46,47]. Despite improved efficiency, a plate theory oversimplifies the stress 

distribution over the thickness direction of each laminate. As mentioned above, even 

though the laminate thickness is small, it is still comparable to the FPZ length and 

therefore non-negligible. Noting that each laminate has a small width and is uncon-

strained in its width direction, the third option becomes idealizing each laminate as 

a 2D beam and assuming that plane stress conditions prevail [4, 45, 48]. Numerical 

results indicate that the stress fields produced by such models are more sophisticated 
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than those predicted by the Euler–Bernoulli beam theory, especially around inter-

face crack tips. Therefore, the third option is chosen throughout structural analysis. 

With the initial guess and the chosen option, Abaqus/Standard can predict a series 

of load–displacement curves. These curves, however, most likely deviate from the 

experimental data, indicating that the initial guess needs to be tuned. 

4.3 Trial and Error 

Let (Pi max, ui max) denote the peak point of the ith load–displacement curve, where 

Pi max and ui max denote the peak load and the corresponding displacement, respec-

¯tively. Further let Pi max = Pi max/P1 max and ū i max = ui max/u1 max. Step 3 can 

then be reformulated as finding the values of some interface parameters making the � �
¯predicted Pi max, ū i max have the best fit to the experimental ones. The predicted 

load–displacement curves provide some valuable insights into the problem. Numerical 

results indicate that: 

1. During the DCB or the ENF test, each element is deformed along the same 

proportional separation path (i.e., γ̂ = e1 during the DCB test and γ̂ = e2 

during the ENF test); 

2. During each MMB test, each element is deformed along its respective nonpro-

portional separation path. 

This allows one to accomplish the task as follows: 

¯ ˜1. For the DCB test, hold τI max, Q = Q/k, and b fixed, and iteratively adjust K 

till the predicted (P1 max, u1 max) have the best fit to the experimental one; 

2. For all other tests, calibrate Ji’s from the estimated Gc –β2 relationship, as 

described above; 

3. From the second to the nth test, in turn adjust each Ji using interpolation and 

extrapolation, and iterate this process till the predicted (Pi max, ui max)’s have 

the best fit to the experimental ones. 
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˜At Step 1, the reasons for adjusting K rather than the other parameters include: 

1. As mentioned above, τI max is properly chosen to avoid unrealistic predictions, 

and it is therefore preferable to hold τI max fixed; 

¯2. Numerical experiments indicate that holding γI max/γIc fixed makes Q and b a 

¯kind of eigenvalues (i.e., given Q and b, all traction–separation curves exhibit 

similar trends regardless the values of Ji’s); 

3. On one hand, K̃ turns out to be the most flexible parameter; on the other hand, 

˜a good initial guess of the CZM makes an adjusted K always acceptable. 

Step 2 is necessary because: 

˜1. A change in K suggests a change in GIc and therefore changes in Ji’s (i 6= 1, 

because J1 must equal 1); 

2. Step 2 ensures that the current Ji’s are still good initial guesses. 

On one hand, since γ̂ remains constant throughout the DCB test, the DCB load– 

displacement curve remain unchanged at Step 3. On the other hand, since each 

element’s γ̂ keeps varying during an MMB test, adjusting one Ji (i 6= 1) inevitably 

affects all predicted (Pi max, ui max)’s (i =6 1). Fortunately, the task is formulated such 

that there exists a unique set of Ji’s whose corresponding (Pi max, ui max)’s are the best 

fits. 
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5. RESULTS AND DISCUSSION 

Reeder and Crews [49] performed a series of DCB, ENF, and MMB tests on a type of 

unidirectional APC-2 PEEK composite beams, measured the applied load–load point 

displacement curve during each test, and computed the critical energy release rate– 

mode mixture ratio relationship using the the Euler–Bernoulli beam theory along 

with the Griffith theory of brittle fracture. In this chapter, the interface parameters 

associated with the present CZM will be calibrated from the experimental data, using 

the systematic calibration method presented in Chapter 4. For comparison purposes, 

the predictions by the present CZM will be compared with those by a bilinear CZM. 

Meanwhile, the separation path during each test will be investigated, and the effect 

of the interfacial strength on a load–displacement curve will be evaluated. 

5.1 Initial Guess 

In this section, the initial guess of model parameters is obtained following the 

aforementioned systematic calibration process. Table 5.1 lists experimental values 

including critical traction at damage initiation τI0 and combinations of mode mix 

ratios (β2) and the corresponding critical energy release rates (Gc). Interfacial stiffness 

K̃ and initial damage threshold k also listed in Table 5.1 are determined through 

simple calculations as described in Section 4.1. A reasonable value of 3.3 × 104 N/mm3 

is chosen while the value recommended by Camanho and Dávila [10] is 106 N/mm3 . 

˜A smoother transition into damage period is observed with the chosen K value. 

The damage parameters Q, b and the path dependence function J calibrated from 

interfacial strength τI0 and critical energy release rates Gc through nonlinear least 

square are listed in Table 5.2. 
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Table 5.1. Predetermined interface parameters. 

(a) Estimated Gc –β2 relationship 

DCB 20% MMB 50% MMB 80% MMB ENF 

β2 0.0 0.2 0.5 0.8 1.0 

Gc (J/m
2) 969 1103 1131 1376 1719 

(b) Other parameters. � �3K̃ N/mm τI0 (MPa) k (J/m2) τImax (MPa) dc 

3.30237 × 104 80.0 193.8 81.2 0.95 

Table 5.2. Fitted interface parameters. 

(a) Fitted values of Q and b. 

Q (J/m2) b 

332.86 2.15227 

(b) Fitted values of J 

DCB 20% MMB 50% MMB 80% MMB ENF 

J 1.0 0.951839 0.942956 0.877952 0.812779 
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It is beneficial to investigate the traction separation curves and compare the results 

with the results of the bilinear model. The results are shown in Figure 5.2. There 

are two major differences between the present CZM and the bilinear model. First, 

the present model fails at higher strain, which means the element is more ductile. 

Second, the bilinear model fails to distinguish the DCB specimen and the 20% MMB 

specimen while they are distinct in the present model. The defect of the bilinear 

model is due to the limitation of B-K criterion. The reason is better illustrated in 

Figure 5.2, in which the bilinear model cannot reproduce the critical energy release 

rates and has the largest discrepancy for 20% MMB. 

M
Pa

mm

Present, DCB
Present, 20% MMB
Present, ENF
Bilinear, DCB
Bilinear, 20% MMB
Bilinear, ENF

Figure 5.1. Estimated traction–separation curves. 

5.2 Structural Analysis 

Structural analysis is conducted to test the chosen model parameters. The ex-

perimental setup in Reeder and Crews’s experiments are modeled with the present 

model [49]. The experimental setups are shown in Figure 1.1. Each laminate has s 
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Analytical
Present
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Figure 5.2. Estimated critical energy release rate–mode mix ratio curves. 
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span length (L) of 102 mm, a width (b) of 25.4 mm, and a thickness (h) of 1.56 mm. 

Table 5.3 lists the elastic constants, initial delamination lengths (a0) and experimental 

lever lengths (c) of the test specimens. Abaqus/Standard with a UMAT subroutine is 

then used to simulate the delamination problem. Plane stress is assumed as discussed 

previously. Each beam of the laminate is meshed with 510 × 6 4-node quadrilateral 

elements (CPS4). The cohesive layer is meshed with 510 4-node quadrilateral ele-

ments (COH2D4). An illustrative finite element model with coarse mesh is shown in 

Figure 3.1. In order to justify the mesh, the FPZ is estimated to be [50] � �1/4GIc
ls,I = M E1 h3 . (5.1)

τ 2 
I0 

The scaling factor M is theoretically close to unity but a value of 0.5 is suggested 

by Harper and Hallett [26] to better estimate the actual ls,I. A conservative estimate 

of the FPZ length is 1.45 mm, which is about than 7 times of the cohesive elements 

length. According to Turon et al. [51], the element density should be adequate to 

resolve the FPZ. The suggestion is also verified by mesh convergence study. 

Table 5.3. Experimental parameters. 

(a) Elastic constants of each laminate. 

E1 (GPa) E2 = E3 (GPa) G12 = G13 (GPa) G23 (GPa) ν12 = ν13 ν23 

122.7 10.1 5.5 3.7 0.25 0.45 

(b) Initial delamination lengths and lever lengths. 

DCB 20% MMB 50% MMB 80% MMB ENF 

a0 (mm) 

c (mm) 

32.9 

– 

33.7 

97.4 

34.1 

42.2 

31.4 

27.6 

39.3 

– 

The load–displacement curves are shown in Figure 5.3, including the experimental 

results, simulation results based on the present model, and simulation results based 

on the bilinear model reported by Camanho and Dávila [10]. The curve for the DCB 

specimen is actually two times the displacement of a single beam. As shown in the 
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figure, the results from the present model is no worse than the bilinear model for now. 

One noteworthy imperfection is the 80% MMB specimen curve. The model fails even 

in the linear part. The discrepancy is also reported by Balzani and Wagner [46] 

for the same group of experimental data. A possible explanation is defects in the 

experimental data, such as inaccurate initial delamination length. The present model 

is superior in that: 

1. The present model is more robust. It yields convergent results for any speci-

men while the bilinear model has convergence difficulty in simulating the MMB 

specimens with the implicit time integration scheme; 

2. The present model has a solid thermodynamic foundation and it is able to 

reproduce the designated critical energy release rates. 

MMB

MMB

MMB

ENF

A
pp

lie
d 

lo
ad

 (N
)

Load point displacment (mm)

Experimental
Present
Bilinear

DCB

Figure 5.3. Estimated applied load–load point displacement curves. 
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5.3 Trial and Error 

Due to the aforementioned imperfections of ASTM standards, the recommended 

values of the critical energy release rate is not an accurate measure. In structural 

design, the load carrying capability is the ultimate goal. Therefore, the path depen-

dence function J is calibrated accordingly. In this section, the calibrated interfacial 

values and the modified flexural simulation results are presented. 

˜The calibrated parameters are listed in Table 5.4. The stiffness constant K is 

adjusted to be softer than the predetermined value. Changes in Ji’s lead to changes 

in the theoretical critical energy release rate Gc’s. Table 5.5 lists the estimated values 

together with the calibrated values of Gc, which is obtained with the adjusted J and 

by assuming a proportional separation path. The critical energy release rate Gc’s by 

different methods are also shown in Figure 5.4. Despite the capability of recovering 

Gc, the path dependence function J is a preferred damage parameter in the present 

model. Eventually, the load–displacement curves are shown in Figure 5.5. Apparently, 

the present model agrees better than the bilinear model. The experimental values 

of maximum loads and predicted values by different models are listed in Table 5.6. 

The data for the bilinear model are reported by Camanho and Dávila [10]. It can be 

observed that the present model with implicit integration scheme is able to predict 

the maximum loads to high accuracy. 

Table 5.4. Further tuned interface parameters. 

(a) Fitted values of J 

DCB 20% MMB 50% MMB 80% MMB ENF 

J 1.0 0.98557 1.0780 0.90683 0.82618 

(b) Values of other parameters. 

Q (J/m2) b K̃ (N/mm3) k (J/m2) 

393.66 2.15226 27923.2 229.2 
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Table 5.5. Estimated and calibrated Gc’s (J/m2). 

DCB 20% MMB 50% MMB 80% MMB ENF 

Estimated 0.969 1.103 1.131 1.376 1.719 

Calibrated 1.146 1.190 0.948 1.487 1.937 

G
c
J
m

Analytical
Present
Bilinear

Figure 5.4. Calibrated critical energy release rate–mode mixture ratio curve. 

Table 5.6. Peak applied loads (N) predicted by different CZMs. 

Experimental Present Bilinear 

Load Error Load Error Load Error 

DCB 147.11 – 147.07 −0.02% 153.27 −4.2% 

20% MMB 108.09 – 106.80 −1.2% 86.95 19.6% 

50% MMB 275.35 – 281.70 2.3% 236.60 14.1% 

80% MMB 518.66 – 510.52 −1.57% 479.86 7.5% 

ENF 733.96 – 734.08 0.017% 695.94 5.2% 



37 

MMB

MMB

MMB

ENF

A
pp

lie
d 

lo
ad

 (N
)

Load point displacment (mm)

Experimental
Present
Bilinear

DCB

Figure 5.5. Fitted applied load–load point displacement curves. 
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5.4 Separation Paths 

As mentioned before, Turon reported that the mode mix ratio of a MMB specimen 

varies as the damage grows [4]. Equivalently speaking, the separation path of a MMB 

specimen cannot be fixed. Therefore, it’s beneficial to look into the separation path 

variation. Let θ = tan−1(γ2/γ1) denotes the angle of inclination of a cohesive element, 

which is the angle between the direction of the element and the x1 axis. The separation 

path is constant if θ remains unchanged throughout the delamination. 
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MMB

MMB

MMB
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Figure 5.6. Angle of inclination for the rightmost elements. 

Figure 5.6 shows the variation of orientation for the rightmost element in each 

test. The predicted curves for MMB lie above the recommended angle by the beam 

model and drop during the nonlinear region. The curves for DCB and ENF follow the 

expected value strictly. This explains the difficulty in modeling mixed mode specimen. 

On one hand, the varying mode mix ratio requires the model to capture the varying 

critical energy release rates. On the other hand, the phenomenon of separation path 

variation is not well considered in the current experimental standard. Therefore, the 
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critical energy release rates obtained from experiments are not strictly corresponding 

to the specified mode mix ratio. In order to compensate for the difficulty, we choose to 

use the parameters based on beam model as an initial guess and then adjust them to 

better fit to the critical loads. The procedure is detailed in Chapter 4. The adjusted 

parameters are listed in Table 5.4. From these values, the critical energy release rate 

Gc could be determined (see Table 5.5), which we believe better reflect the properties 

of each presumptive fixed separation path. 

5.5 Parametric Study 

The critical energy release rate Gc is the most common control parameter in 

fracture mechanics. However, several papers show that the interfacial strength also 

affects the delamination process [4, 48, 52, 53]. In this section, the effect of interfacial 

strength on load-displacement curves is studied by numerical experiments. 

Three sets of material properties with different interfacial strength are considered. 

As described in Chapter 4, some parameters are predetermined from the assumed in-

terfacial strength, while others are calibrated using the adjusted fracture toughness 

listed in Table 5.5. Apparently, the fitted parameters don’t depend on the inter-

facial strength. Figure 5.7 shows mode I traction–separation for different values of 

interfacial strength. As the interfacial strength becomes higher, the element becomes 

stronger (higher maximum traction) but less ductile (larger final separation). The 

result is as expected since we constrain the critical energy release rates to be the 

same. Flexural tests for DCB, ENF, and 50% MMB are conducted numerically. The 

load-displacement curves are shown in Figure 5.8. The maximum loads are close 

but not the same with varying interfacial strengths. Specifically, the maximum load 

increase a little with increasing interfacial strength, especially for ENF specimen. 

The results indicate the limitation of linear elastic fracture mechanics, in which the 

cohesive zone size must be much smaller than all characteristic length of the structure 

so that the stress field at regions other than the small FPZ could be calculated 
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with the theory of elasticity. On one hand, the cohesive zone size of an adhesive 

layer exists in reality and is primarily determined by the adhesive properties and 

deformation. On the other hand, during a DCB, an ENF, or an MMB test, the 

laminate thickness must be much smaller than the span length to keep geometric 

nonlinear effects small [2]. There is no guarantee that the cohesive zone size is much 

smaller than the small laminate thickness. Apart from Gc commonly used in LEFM, 

we also need the interfacial strength as a interfacial parameter, which is considered 

in calibration process as you can see in Section 4. 

Table 5.7. Interface parameters in three cases. 

(a) Predetermined parameters. � 3� K̃ N/mm τI0 (MPa) k (J/m2) τI max (MPa) dc 

1 13961.6 56.57 229.2 57.42 0.95 

2 27923.2 80.00 229.2 81.2 0.95 

3 40209.4 96.00 229.2 97.44 0.95 

(b) Fitted values of Q and b. 

Q (J/m2) b 

1 393.66 2.15226 

2 393.66 2.15226 

DCB 

3 393.66 2.15227 

(c) Fitted values of J 

20% MMB 50% MMB 80% MMB ENF 

1 1.0 0.98557 1.0780 0.90683 0.82618 

2 1.0 0.98557 1.0780 0.90683 0.82618 

3 1.0 0.98557 1.0780 0.90683 0.82618 
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Figure 5.7. Mode I traction–separation curves for different interfacial strengths. 
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Figure 5.8. Load–displacement curves for different interfacial strengths. 
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(b) 50% MMB. 

Figure 5.8. Load–displacement curves for different interfacial strengths (continued). 
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Figure 5.8. Load–displacement curves for different interfacial strengths. 
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6. CONCLUSIONS 

The research presents an implicit scheme for a damage-type CZM with an associ-

ated systematic calibration method. The damage-type CZM takes into account the 

path dependence and is derived with the principle of maximum dissipation. The im-

plicit scheme is constructed based on the Newton–Raphson method. The calibration 

method is established such that flexural test results could be precisely reproduced. 

The following findings are discovered: 

1. The present CZM is able to yield consistent and reliable results for flexural tests 

with complex separation path; 

2. The systematic calibration method is found to provide reasonable parameters 

for the CZM to yield accurate results; 

3. The implicit scheme is found to be stable enough in complex separation path 

delamination. 

The following conclusions could be drawn from the findings: 

1. The present CZM together with the implicit scheme and calibration method 

could be applicable in real applications; 

2. The systematic calibration method could be adjusted to provide parameters for 

other similar damage models. 
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A. ENERGY RELEASE RATE 

Following Borg et al. [54], the energy release rates are defined by Z t Z t 1 
G = τ · γ̇dt − Ψe = τ · γ̇dt − τ · γ (A.1)

20 0 

The energy release rate could be generalized to the energy release vector Z t 1 
G = [GI , GII , GIII ]

T = τ · I · γ̇dt − τ · I · γ, (A.2)
20 

where 
3X 

I = ei ⊗ ei ⊗ ei. (A.3) 
i=1 

G could be related to G as 

G = GI + GII + GIII . (A.4) 

It’s common to assume delamination occurs when the damage variable d reach a 

specific value. In this CZM, d has a maximum of unity and delamination is assumed 

to happen when d = dc < 1. dc is a value very close to unity because d would approach 

but never reach unity in the generalized CZM. With the delamination criterion, the 

instant of delamination initiation tc could be determined. Notice that the elastic part 

Ψe vanishes at complete delamination, and hence the critical energy release rate and 

critical energy release rate vector are obtained as Z tc 
Z tc 

Gc = τ · γ̇ dt and Gc = τ · I · γ̇ dt. (A.5) 
0 0 

The critical energy release rate are used to characterize the ability to resist fracture. 

So it’s also called fracture toughness. 

Define the mode mix vector 
G 

β = . (A.6)
G 
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As discussed previously, proportional separation paths are assumed in most CZMs, 

but non-proportional separation paths are observed even in a simple MMB specimen 

(see Figure 1.1 for MMB specimen setting, and Sarrado et al. [53] for more details). It 

is beneficial to find a intuitive form of the mode mix ratio, which is hard to obtain for 

general case but possible for a proportional separation path. Specifically, set γ̇̂ = 0. 

Substituting Eq. (2.14) into Eq. (A.1) gives Z t 
G = Kγγ̇dt − 

1 
Kγ2 . (A.7)
20 

Similarly, Z t 1 
G = Kγ · I · γ̇dt − Kγ · I · γ 

20 !�Z � 3 (A.8)t X 
= Kγγ̇dt − 

1 
Kγ2 γ̂ · I · γ̂ = G γ̂i 

2 ei . 
20 i=1 

Substituting Eqs. (A.7) and (A.8) into Eq. (A.6) gives 

3X 
γ2β = ˆi ei. (A.9) 

i=1 

From the above Eq. (A.9), we notice that γ̇̂ = 0 is a sufficient condition of β̇ = 0, 

i.e. proportional separation path leads to constant mode mix ratio. 
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B. PATH DEPENDENCE FUNCTION 

Following Zhang et al. [21], the Lagrange basis polynomials and normalized Lagrange 

basis polynomials are introduced as � � � � � � � � n n� � Y γ̂◦2 − γ̂◦2 · γ̂◦2 − γ̂◦2 Y γ̂◦2 − γ̂◦2 · γ̂◦2 − γ̂◦2 
j i j j i j

γ◦2li ˆ = � 
γ◦2
� � � ≡ 

γ◦2
2 (B.1)

γ̂◦2 − ˆ · γ̂◦2 − γ̂◦2 
γ◦2 

j=1;j=6 i i j i j j=1;j 6=i ˆ i − ˆj� � � � 
γ◦2 γ◦2� � li ˆ li ˆ 

γ◦2l̂i ˆ = n ≡ � � , (B.2)P � � γ◦2 
γ◦2 l ˆli ˆ 

j=1 

where (·)◦2 denote the Hadamard power of a vector, e.g. 

3X 
γ̂◦2 = γ̂i 

2 ei. (B.3) 
i=1 

Finally, J (γ̂) are obtained through interpolation, 

nX � �
ˆ γ◦2J (γ̂) = li ˆ Ji. (B.4) 

i=1 

It could be verified that Eq. (B.4) reproduces the value of experimental data (Ji, γ̂i). 

Generally speaking, material is most likely to posses a specific symmetry, among 

which transverse isotropy is a rather common one. That means the material exhibits 

the same property in all direction within a plane. Specifically, J is a function of 

γ̂1 only in many real delamination configurations. Similarly, we introduce Lagrange 

basis polynomials of one variable 

n 2� � Y γ̂1
2 − (γ̂1)j

li γ̂1
2 = 2 2 , (B.5)

(γ̂1) − (γ̂1)j=1;j=6 i i j 

and J (γ̂1) could be obtained through interpolation as 

nX � � 
γ2J (γ̂1) = ˆ (B.6)li 1 Ji. 

i=1 
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Furthermore, the derivative of J is needed: !X∂J ∂J 
n 

∂li 
= e1 = 2γ̂1 Ji e1, (B.7)

∂γ̂ ∂ˆ ∂γ̂2γ1 1i=1 

where " #X Y γ2∂li
n n 

ˆ − (γ̂1)
2 1 

= 1 k . (B.8)2 2 2 2γ2∂ˆ1 (γ̂1) − (γ̂1) (γ̂1) − (γ̂1)j=1;j=6 i k=1;k 6=i,j i k i j 
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C. UMAT ALGORITHM 

Let (·) denote the value of a quantity at a given instant of time, tn, and let (·)old new 

denote that at tn+1 = tn +Δt, where Δ (·) denotes the increment in a quantity over 

this time interval. When calling UMAT at a cohesive element, Abaqus/Standard 

passes in γold, and Δγ and gets back τ new and the consistent tangent stiffness matrix. 

The UMAT algorithm is described as follows (see Figure C.1 for a flowchart of the 

algorithm): 

1. Read γold, and Δγ, which are passed in by Abaqus/Standard, and also read αold 

and dold, which are saved as state variables for each element; 

2. Check whether the loading/unloading conditions (Eq. (2.11)) are met; 

3. If yes, first compute αnew with Eqs. (2.27) (2.28), then update dnew and τ new 

with Eqs.(2.29), finally compute the tangent stiffness matrix with Eq. (2.45); 

4. Otherwise, first update γnew, then set dnew = dold, and finally compute τ new with 

Eq. (2.29); 

5. Save αnew and dnew for the present element, and return τ new and the consistent 

tangent stiffness matrix to Abaqus/Standard. 

Once the delamination criterion is met, UMAT will mark the present element as 

failed and set its stiffness to zero hereafter. Interested readers can refer to Abaqus 

manual [9] for more details on Abaqus/Standard and UMAT. 

https://Eqs.(2.29
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Start 

Read γold, Δγ, αold and dold 

LoadingTrue False 

Compute tangent stiffness 

Update dnew and τ new 

Compute αnew Set dnew = dold 

condition met 

Compute τ new 

Save αnew and dnew, 
& return τ new 

End 

Figure C.1. UMAT algorithm. 
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The FORTRAN codes of the UMAT is attched: 

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,& 

RPL,DDSDDT,DRPLDE,DRPLDT,& 

STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,& 

NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,& 

CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,JSTEP,KINC) 

INCLUDE ’ABA_PARAM.INC’ 

CHARACTER*80 CMNAME 

DIMENSION STRESS(NTENS),STATEV(NSTATV),& 

DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS),& 

STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1),& 

PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3),& 

JSTEP(4) 

PARAMETER (ONE=1.0D0,TWO=2.0D0,THREE=3.0D0) 

INTEGER::K1,K2,ENDD 

INTEGER,PARAMETER::DBL=SELECTED_REAL_KIND(15) 

INTEGER,PARAMETER::ntest=5 

REAL(DBL),PARAMETER::TOLERANCE=1.0D-15 

!Self defined parameters 

REAL(DBL)::s_gp(NTENS),e_gp(NTENS),hard_F(2) 

REAL(DBL)::scale,s01,G1c,emax,e01,K_const,k0_const,esq 

REAL(DBL)::beta1i(ntest),Ji(ntest),L_gp(NTENS,NTENS) 

REAL(DBL)::pJpe(1,NTENS),J0,I2(NTENS,NTENS),K_compress 

LOGICAL::Compress 

!Initialize 

e_gp=STRAN+DSTRAN 
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Compress=.FALSE. 

s_gp=0.d0 

DDSDDE=0.d0 

K_compress=1.d0 

ENDD=2+NTENS 

!SET UP NECESSARY PARAMETERS 

!G1c values and J values subject to change 

!depending on the calibration results 

scale = SQRT(1.0d0) 

s01 = scale*80.0d0 

G1c = 1.146d0 

emax = TWO*G1c/s01 

e01 = 0.1d0*emax 

K_const = s01/e01 

k0_const = K_const*e01*e01 

Q_const = 1.7175515678826703d0*k0_const 

b_const = 2.1522633821928245d0 

beta1i(1)=1.0d0 

beta1i(2)=0.8d0 

beta1i(3)=0.5d0 

beta1i(4)=0.2d0 

beta1i(5)=0.0d0 

Ji(1)=1.0d0 

Ji(2)=0.9855707482949242d0 

Ji(3)=1.078d0 

https://K_compress=1.d0
https://DDSDDE=0.d0
https://s_gp=0.d0
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Ji(4)=0.9330861131488021d0 

Ji(5)=0.8261750152328744d0 

I2=0.0d0 

DO K1=1,NTENS 

I2(K1,K1)=1.0d0 

ENDDO 

!After failure 

hard_F=STATEV(1:2) 

IF (hard_F(2) >= 0.95d0) THEN 

IF (e_gp(1) < 0.d0) THEN 

s_gp(1)=K_compress*K_const*e_gp(1) 

DDSDDE(1,1)=K_compress*K_const 

WRITE(*,*) K_compress 

ENDIF 

STRESS=STRESS+s_gp-STATEV(3:5) 

STATEV(3:ENDD)=s_gp 

RETURN 

ENDIF 

!UPDATE STRESS 

esq=DOT_PRODUCT(e_gp,e_gp) 

IF ((KINC .EQ. 1) .OR. (esq .LT. TOLERANCE)) THEN 

J0=1.0d0 

ELSE 

CALL IntJ(e_gp,J0,pJpe) 

ENDIF 

IF (DOT_PRODUCT(e_gp,e_gp) .LT. k0_const/J0/K_const) THEN 
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s_gp=K_const*e_gp 

DDSDDE=0.0d0 

DDSDDE=K_const*I2 

IF (e_gp(1) < 0.d0) THEN 

s_gp(1)=K_compress*K_const*e_gp(1) 

DDSDDE(1,1)=DDSDDE(1,1)*K_compress 

ENDIF 

STRESS=STRESS+s_gp-STATEV(3:ENDD) 

STATEV(3:ENDD)=s_gp 

RETURN 

END IF 

CALL NewtonRaphsonMethod(hard_F) 

IF (hard_F(2)>0.955) THEN 

PNEWDT=0.5 

RETURN 

ENDIF 

IF (e_gp(1) <0.d0) THEN 

s_gp(1)=K_compress*K_const*e_gp(1) 

Compress=.TRUE. 

ENDIF 

STRESS=STRESS+s_gp-STATEV(3:ENDD) 

!UPDATE JACOBIAN 

DDSDDE=0.0d0 

CALL Ddmg(e_gp,hard_F(2),hard_F(1),L_gp) 

DDSDDE=L_gp 
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!UPDATE STATEV 

STATEV(1:2)=hard_F 

STATEV(3:ENDD)=s_gp 

CONTAINS 

SUBROUTINE IntJ(e_gp,J0,pJpe) 

REAL(DBL),INTENT(IN):: e_gp(:) 

REAL(DBL),INTENT(OUT):: J0 

REAL(DBL),INTENT(OUT):: pJpe(:,:) 

REAL(DBL)::beta(NTENS),sum,beta1,l(ntest),plpb(ntest) 

REAL(DBL)::denominator,numerator 

INTEGER:: i,j,k 

sum=0.0d0 

DO i=1,NTENS 

beta(i)=e_gp(i)*e_gp(i) 

sum=sum+beta(i) 

ENDDO 

beta=beta/sum 

beta1=beta(1) 

DO i=1,ntest 

l(i)=1.0d0 

plpb(i)=1.0d0 

sum=0.0d0 

denominator=1.0d0 
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DO j=1,ntest 

IF (j /= i) THEN 

l(i)=l(i)*(beta1-beta1i(j))/(beta1i(i)-beta1i(j)) 

denominator=denominator*(beta1i(i)-beta1i(j)) 

numerator=1.0d0 

DO k=1,ntest 

IF (k /= i .and. k /= j) numerator=numerator*(beta1-beta1i(k)) 

ENDDO 

sum=sum+numerator 

ENDIF 

ENDDO 

plpb(i)=sum/denominator 

ENDDO 

J0=DOT_PRODUCT(l,Ji) 

pJpe=0.0d0 

pJpe(1,1)=2.0d0*e_gp(1)*DOT_PRODUCT(plpb,Ji) 

END SUBROUTINE IntJ 

SUBROUTINE Ddmg(e_gp,d_gp,alpha_gp,Ddmg2) 

REAL(DBL),INTENT(IN):: e_gp(:) 

REAL(DBL),INTENT(IN):: d_gp 

REAL(DBL),INTENT(IN):: alpha_gp 

REAL(DBL),INTENT(OUT):: Ddmg2(:,:) 

REAL(DBL):: e_total(1,NTENS),y_total,e_eq2,e_eq,k_gp 

REAL(DBL):: M0,K0,A2(NTENS,NTENS),dAda,S0,pJpe(1,NTENS) 
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REAL(DBL):: R1(1,NTENS),pype(1,NTENS) 

REAL(DBL):: pypd,E1(1,NTENS),J0 

e_total(1,:)=e_gp(1:NTENS) 

k_gp = k0_const + Q_const*(EXP(b_const*alpha_gp)-1) 

M0=1.0d0-d_gp 

K0=M0*M0*K_const 

e_eq2=DOT_PRODUCT(e_total(1,:),e_total(1,:)) 

e_eq=SQRT(e_eq2) 

A2=(e_eq2*I2-MATMUL(TRANSPOSE(e_total),e_total))/(e_eq2*e_eq) 

CALL IntJ(e_total(1,:),J0,pJpe) 

IF (Compress) Then 

e_total(1,1)=0.d0 

e_eq2=DOT_PRODUCT(e_total(1,:),e_total(1,:)) 

e_eq=SQRT(e_eq2) 

I2(1,1)=0.d0 

ELSE 

I2(1,1)=1.d0 

ENDIF 

y_total=M0*K_const*e_eq2 

E1=0.0d0 

Ddmg2=0.d0 

IF(J0*y_total-k_gp>=-TOLERANCE*1.0d5 .OR. Compress) THEN 

!Stresses are on the yield surface 

https://Ddmg2=0.d0
https://I2(1,1)=1.d0
https://I2(1,1)=0.d0
https://e_total(1,1)=0.d0
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dAda=b_const*Q_const*EXP(b_const*alpha_gp) 

S0=J0*J0/dAda 

R1=J0*y_total*MATMUL(pJpe,A2)/dAda 

pype=2.0d0*M0*K_const*e_total 

pypd=-K_const*e_eq2 

E1=(S0*pype+R1)/(1.0d0-S0*pypd) 

ELSE 

WRITE(*,*) "Warning: NOT ON YIELD SURFACE" 

WRITE(*,*) J0*y_total-k_gp 

ENDIF 

Ddmg2=-2.0d0*M0*K_const*MATMUL(TRANSPOSE(e_total),E1)+K0*I2 

IF (Compress) Ddmg2(1,1)=Ddmg2(1,1)+K_compress*K_const 

END SUBROUTINE Ddmg 

FUNCTION YieldFunc(d,alpha,J0) 

REAL(DBL)::YieldFunc 

REAL(DBL)::d,alpha,J0,y,A 

A = Q_const*(EXP(b_const*alpha)-1) 

y = (1-d)*K_const*DOT_PRODUCT(e_gp,e_gp) 

YieldFunc = J0*y - k0_const -A 

RETURN 

END FUNCTION YieldFunc 
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SUBROUTINE NewtonRaphsonMethod(hard_F) 

REAL(DBL),INTENT(INOUT)::hard_F(2) 

REAL(DBL)::pJpe(1,NTENS),J0 

!damage parameter 

REAL(DBL)::k_gp,alpha_gp,d_gp,A,delta_alpha,y,delta_d 

REAL(DBL)::alpha_gp_tmp,d_gp_tmp,f_crit,dAda 

!Variable for line search algorithm 

REAL(DBL)::lam,lam_prev,lam_prev2,yield_new,yield_old 

REAL(DBL)::yield_prev,yield_prev2,d_g,aa,b 

REAL(DBL)::D_f,f_new,f_old,f_prev,f_prev2,diff,counter 

!solution control parameter 

REAL(DBL),PARAMETER::a_crit = 1.0d-4,MAXITER = 20 

!Initialize damage parameter from last step 

alpha_gp_tmp = hard_F(1) 

d_gp_tmp = hard_F(2) 

CALL IntJ(e_gp,J0,pJpe) 

!count number of iterations 

counter = 0 

DO 

A=Q_const*(EXP(b_const*alpha_gp_tmp)-1) 

dAda=b_const*Q_const*EXP(b_const*alpha_gp_tmp) 

y=(1-d_gp_tmp)*K_const*DOT_PRODUCT(e_gp,e_gp) 

f_crit = J0*y-k0_const-A 
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IF (ABS(f_crit) .LE. TOLERANCE) EXIT 

IF (counter .EQ. MAXITER) THEN 

WRITE(*,*) "Warning: MAXITER achieved,& 

&not converged. f_dmg=",f_crit 

EXIT 

ENDIF 

counter = counter + 1 

delta_d=(J0**2*y-J0*k0_const-J0*A)/& 

&(dAda+J0**2*K_const*DOT_PRODUCT(e_gp,e_gp)) 

delta_alpha=delta_d/J0 

IF (ABS(delta_d) .LE. TOLERANCE) THEN 

WRITE(*,*) "Warning: f_crit accuracy not converged.& 

&But delta_d too small. f_dmg=",f_crit 

EXIT 

ENDIF 

!Line search method 

lam = 1.0d0 

yield_old=YieldFunc(d_gp_tmp,alpha_gp_tmp,J0) 

D_f = (-J0*K_const*DOT_PRODUCT(e_gp,e_gp) - dAda/J0)*yield_old 

DO 

yield_new=YieldFunc(d_gp_tmp+lam*delta_d,& 

&alpha_gp_tmp+lam*delta_alpha,J0) 

f_new = yield_new**2 

f_old = yield_old**2 

diff = f_new-f_old 

IF (ABS(delta_d) .LT. TOLERANCE) THEN 
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diff = (yield_new+yield_old)*& 

&(-K_const*J0*DOT_PRODUCT(e_gp,e_gp)*delta_d-dAda*delta_alpha) 

ENDIF 

IF (diff .LE. 2.0d0*a_crit*(D_f*lam*delta_d)) EXIT 

d_g = D_f*delta_d 

IF (lam == 1.0d0) THEN 

lam_prev2 = lam_prev 

lam_prev = lam 

f_prev2 =f_prev 

f_prev = f_new 

lam = -d_g/(2.0d0*(f_new-f_old-d_g)) 

IF (lam>0.5*lam_prev) lam = 0.5*lam_prev 

IF (lam<0.1*lam_prev) lam = 0.1*lam_prev 

ELSE 

lam_prev2 = lam_prev 

lam_prev = lam 

f_prev2 = f_prev 

f_prev = f_new 

aa = 1/lam_prev**2*(f_prev-d_g*lam_prev-f_old)-1/& 

&lam_prev2**2*(f_prev2-d_g*lam_prev2-f_old) 

b = -lam_prev2/lam_prev**2*(f_prev-d_g*lam_prev-f_old)+& 

&lam_prev/lam_prev2**2*(f_prev2-d_g*lam_prev2-f_old) 

aa = aa/(lam_prev-lam_prev2) 

b = b/(lam_prev-lam_prev2) 

lam = (-b+SQRT(b**2-3*aa*d_g))/(3*aa) 

IF (lam>0.5*lam_prev) lam = 0.5*lam_prev 

IF (lam<0.1*lam_prev) lam = 0.1*lam_prev 

ENDIF 
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ENDDO 

!update varibale 

alpha_gp_tmp = alpha_gp_tmp + lam*delta_alpha 

d_gp_tmp = d_gp_tmp + lam*delta_d 

ENDDO 

hard_F(1) = alpha_gp_tmp 

hard_F(2) = d_gp_tmp 

s_gp = K_const*(1-d_gp_tmp)**2*e_gp 

RETURN 

END SUBROUTINE NewtonRaphsonMethod 

END SUBROUTINE UMAT 
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