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ABSTRACT 

Author: Deshmukh, Harsha, V.  MS 

Institution: Purdue University 

Degree Received: May 2018 

Title: Community Detection in Cyber Networks  

Major Professor: John Springer 

 

Community detection has been widely studied and implemented across various research 

domains such as social networks, biological networks, neuroscience, and cybersecurity.  In the 

context of cyber networks, it involves identifying the groups of network nodes such that the 

network connections are dense within the group and are sparser between the groups. Various 

community detection algorithms can be utilized to detect the underlying community structure of 

a given network. However, it is crucial to evaluate the quality of the detected communities as 

there are a number of ways that a particular network may be partitioned into communities, and 

thus, a quality evaluation metric needs to be used to determine the best partitioning. Modularity 

is one such measure, and when evaluating the modularity index, researchers have considered null 

models for graphs with specific structures or characteristics. However, most real-world complex 

networks as a whole do not exhibit one specific characteristic but instead consist of various 

identifiable subgraphs that do respectively exhibit particular characteristcs, and accordingly, 

formulating a null model for these individual subgraphs may improve the modularity value and 

thereby improve the quality of the partitioning otherwise known as the detected communities. 

This research investigates the extent to which the modularity value increases when a 

bipartite subgraph is taken into consideration while performing community detection. This is 

accomplished by designing and developing an empirical setting that first identifies the presence 

of a bipartite subgraph and then utilizes it to perform community detection. Our empirical study 



x 

 

and results suggest that the quality of the detected communities is enhanced by leveraging the 

presence of bipartite subnetwork in the given real world complex network. Furthermore, we 

present the applicability of this research in cybersecurity domain to alleviate the consequences of 

any worm attack. We can achieve this by employing our technique to obtain a better underlying 

community structure for identifying the most vulnerable set of nodes in the compromised 

network. 
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 CHAPTER 1. INTRODUCTION 

This chapter provides an overview of this thesis followed by an initial introduction to 

community detection as it relates to the cyber networks. Furthermore, this chapter highlights the 

research questions, significance of this study, and statement of purpose. It also briefs about the 

scope, assumptions, and limitations of this research. 

1.1. Thesis overview and organization 

The central topic of this thesis is community detection in real word cyber- networks. Our 

research addresses various important questions related to community detection: 

1. What is the extent to which the quality of the community structure increases when we 

leverage the presence of any subgraph and use its graph-specific null model while 

formulating the composite modularity? 

      Chapters 3 and 4 cover the research framework, methodology, empirical setting, and 

execution workflow towards addressing this question for bipartite subgraph. 

2. How does the bipartite subgraph size affect the overall quality of the detected community 

structure? 

        This question has been addressed in Chapter 4.    

      Chapter 1 provides the required background study and highlights the significance of our 

research. Relevant literature has been reviewed in Chapter 2. It summarizes the related previous 

work done in this field and presents a strong basis for reasoning and justification of the author’s 

work. Chapter 5 reports our research findings, discussion, conclusion, and directions for future 

work. 
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1.2. Structural and statistical properties of networks 

A network is comprised of vertices and links, and based on the application domain, the 

links can be weighted/unweighted and/or directed/undirected. Some popular examples are the 

World Wide Web, the food web, language networks, social networks, gene regularity networks, 

biological metabolic networks, collaboration networks, cyber networks, and call graph networks. 

The structural and statistical properties of any given network include (but are not limited to) size 

(e.g., number of vertices and number of links), network degree distribution (in/out), average 

clustering coefficient, community structure, network diameter, and average path length.  

1.3. Community detection 

With the continued explosion of cyber traffic across billions of IP addresses across the 

globe, it has become extremely challenging to analyze the networks due to its growing size and 

complexity. One promising solution is to identify the communities in the network structure and 

perform analysis at a community level rather than at a network node level.  

By taking this approach, one can thus achieve a substantial reduction in the number of 

nodes over which analysis is performed and thereby increase the efficiency and effectiveness of 

the analyses performed over any real-world complex network. A community is defined as “[t]he 

division of network nodes into groups within which the network connections are dense, but 

between which are sparser” (Newman & Girvan, 2004, p. 1). The process of identifying such 

communities in the network is referred to as community detection. Furthermore, Newman and 

Girvan (2004) derived a quality function that reflects the quality of community partitioning with 

reference to a null model. 
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1.4. Research questions 

1. Given a complex cyber network, how can one identify a bipartite subgraph and utilize 

it to perform community detection by formulating a composite modularity metric of the 

partitioned network?  

2.  What is the extent to which this modularity index increases in comparison to the 

modularity index generated by Clauset-Newman-Moore algorithm? 

 

1.5. Significance of this research 

Let us now systematically understand the significance of this research.  

We know that given a graph 𝐺 with 𝑛 vertices, the number of possible partitions in k 

clusters of 𝐺 is given by  𝑆 (𝑛, 𝑘) (Andrews, 1998). The total number of possible partitions is the 

nth Bell number given by Equation 1. 

           𝐵𝑛 =  ∑ 𝑆(𝑛, 𝑘)𝑛
𝑘=0                                                                                        (Eqn. 1)  

           𝐵𝑛 ~
1

√𝑛
 [λ(n)]

𝑛+1

2 𝑒λ(n)−n−1                                                                                    (Eqn. 2) 

          where 

           λ(n) =  𝑒W(n) =
𝑛

𝑊(𝑛)
                                                                                          (Eqn. 3) 

W(n) is the Lambert’s W function and λ(n) is given by the Equation 3. From the 

Equation 2, B(n) is observed to grow exponentially faster with respect to the graph size 

(Fortunato, 2010).  

This indicates that enumeration and evaluation of all the partitions of a graph is not 

feasible. Moreover, these partitions are not all equally good. This argument raises an important 

concern: how does one quantify “goodness” of the partition? 
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As previously mentioned, methods for quantifying the goodness of a particular partition 

is through the use of community detection, and substantial research has been done on various 

community detection methods and algorithms (Barber, 2007;  Xu, Wang, & Gu, 2014; Aiello, 

Kalmanek, McDaniel, Sen, Spatscheck, & Van der, 2005; Chen, Kuzmin, & Szymanski, 2014). 

Chapter 2 highlights some of the most popular community detection algorithms. However, they 

have not considered the possibility of the presence of more than one relevant substructure, which 

can potentially maximize the quality function. 

According to Newman (2006), a good community structure for a network is characterized 

by both the presence of fewer edges between the groups and cases when the total count of edges 

that exist between the groups is less than expected. This expected set of edges is defined by the 

Null model (Pij) and it would be inappropriate to use the same null model (usually it is Bernoulli 

random graph where Pij= p for all i, j) (Barber, 2007) for all the graphs. The null model in 

consideration should be the most appropriate one for that graph to formulate the quality function 

that yields the maximum modularity as naturally it is possible that different null models may 

yield their corresponding different values for the modularity metric. Therefore, this calls for a 

wise decision over the choice of the null model because, in any real-world network, one can 

potentially observe various types of networks in a single complex network. Therefore, the 

researcher must identify the subgraphs and formulate the subgraphs’ individual modularities; in 

other words, one must define a specific null model for each of the identified subgraphs and 

formulate a resulting composite quality function. Thus, this research will incorporate the 

presence of any specific subnetworks identifiable in the given network by utilizing it during the 

evaluation of composite modularity metric.  
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Let us consider a scenario in which worm impacts a computer node in a given network. 

This malware has the potential to harm its host network by consuming bandwidth and 

overloading the servers by propagating and affecting the other nodes present in the network. 

Without loss of generality, let us assume that if one identifies the communities within the 

network, then all the network nodes present in the community of the affected node are more 

vulnerable to worm propagation as compared to the other nodes present in the network. This can 

be justified using the nature of communities.  

Thus, if we are successful in identifying the nodes that are the most vulnerable, one can 

potentially reduce the number of nodes taken under consideration for initial investigation 

(instead of checking and investigating all the nodes of the network) and thus eventually prevent 

worm propagation efficiently. Therefore, a high modularity community structure can help one 

identify the most vulnerable set of nodes in the network. Furthermore, the modularity of a 

network viewed as communities can be maximized by identifying the relevant substructures and 

formulating a quality function that best represents the overall network as communities of 

respective substructures/characteristics. This approach may even have implications for dynamic 

networks where nodes “come and go” with high velocity. 

1.6. Statement of purpose 

The principal objective of this research is to investigate the extent to which the 

consideration of bipartite subgraph increases the value of modularity index in comparison to the 

Clauset-Newman-Moore modularity.  
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1.7. Scope 

A Community structure “is the division of network nodes into groups within which the 

network connections are dense, but between which they are sparser” (Newman & Girvan, 2004, 

p. 1). Some of the traditional methods of identifying the communities are graph partitioning, 

spectral clustering, partitional clustering, and hierarchical clustering (Fortunato, 2010). 

Moreover, the efficiency of the communities thus identified can be measured with the help of 

modularity metric (Q) and can be expressed as stated in Equation 4. 

 

 

We can observe that the modularity metric depends on the null reference model Pij, i.e., 

the expected number of edges between the vertex pairs 𝑖, 𝑗. Larger values of Q indicate stronger 

community structure. Thus, for a specific structure of a network (e.g., bipartite graph), the Pi, j 

would be defined by considering the edge specifications for that structure. Based on the literature 

review, only single structure networks (for e.g., Bernoulli random graph, bipartite network, and 

Cyclic structure) have been explored and examined. However, a real-world complex network 

may consist of more than one identifiable subnetworks. Thus, consideration of these subnetworks 

while performing community detection has the potential of maximizing the modularity metric.  

The scope of this research is: 

1. Identifying the presence of a bipartite subnetwork in a real-world cyber network. 

2. Formulating a composite modularity metric towards defining the quality function for the 

network that has a bipartite subgraph.  

 𝑄 =  
1

2𝑚
  ∑ (𝐴𝑖𝑗 − 𝑃𝑖𝑗  )𝛿(𝐶𝑖, 𝐶𝑗)𝑖,𝑗                                                  (Eqn. 4)  
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3. Evaluation of extent to which the new composite modularity metric is increased in 

comparison to the modularity value evaluated by Clauset-Newman- Moore algorithm 

alone.  

1.8.  Assumptions 

Following are the assumptions of this research:  

1. The execution environment would remain the same for both the algorithms 

considered for comparison.  

2. Every network node (IP Address) can be both a source node and destination node 

and the network will not be manipulated under any circumstances.  

3. The network sample (dataset) obtained from Center for Applied Internet Data 

Analysis (CAIDA) is representative of a real-world cyber network.  

4. The number and size of the communities are not known a priori. 

1.9.   Limitations 

The limitations of this research are:  

1. The only subgraph type taken into consideration is the bipartite graph. 

2.  This research focuses only on static community detection. 

3. The traffic flow captured is limited to CAIDA only. 

4. Only unweighted, undirected graphs are considered for this research. 

5. Multiple edges from the same source to the same destination will be eliminated. In 

other words, redundant links from one network node to another network node are 

discarded and considered as a single link. 
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6. Modularity is the only metric considered for evaluating the quality of the detected 

community structure. 

7. As the Clauset-Newman-Moore algorithm follows a greedy modularity 

optimization technique, it may fail to detect communities smaller than a scale 

(Fortunato & Barthelemy, 2006)  

1.10. Definitions of key terms 

Community – “The division of network nodes into groups within which the network connections 

are dense, but between which are sparser.” (Newman & Girvan, 2004, p. 1). 

Modularity – “The extent, relative to a null model network, to which edges are formed within the 

modules instead of between the modules.” (Barber, 2007, p. 1) 

1.11. Summary 

This chapter presented a brief introduction to the research conducted by the author. It also 

underlined the significance, scope, limitations, and assumptions. 
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CHAPTER 2. REVIEW OF RELEVANT LITERATURE 

This chapter provides an insight into the relevant literature the author reviewed for this 

research. It covers the approach utilized for literature review, various community detection 

algorithms, application of graph theory, and basis for evaluating the quality of the community 

structure.   

2.1  Introduction 

The examination and study of networks have become extremely popular and is indeed a 

ubiquitous topic across a plethora of branches in the broader fields of science and engineering 

(Francisco & Oliveira, 2011; Girvan & Newman, 2002; Pizzuti & Clara, 2008; Raghavan, 

Albert, & Kumara, 2007). This is because very often, systems of special interest can be 

represented in the form of network, e.g., Internet, food webs, neural networks, communication 

networks, social networks, etc. (Medus & Dorso, 2009). 

 Moreover, it is easy to imagine that certain elements of network interact with a specific 

group of network elements more frequently than other network components. This specificity of 

interaction of a network element with only certain network elements potentially hints toward 

some similarity of behavior, function, performance, and/or dependence. Thus, such subgroups of 

network elements that interact within the group more than they do with the rest of the network 

can be referred to as communities.   

The word “community” has a myriad of definitions varying based on the context. In the 

context of social networks, it refers to the “group of entities closer to each other in comparison to 

other entities of the dataset” (Bedi & Sharma, 2016, p. 116). In other words, “[a] community is 

formed by individuals such that those within a group interact with each other more frequently 

than with those outside the group” (Bedi & Sharma, 2016, p. 116). In biological context, 
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Barabási (2016) defines community as a group of molecules in a metabolic network that carries 

out a specific cellular function.  

As this research focuses on complex networks of computer nodes otherwise known as 

cyber networks, a community in this context can be defined as “[t]he division of network nodes 

into groups within which the network connections are dense, but between which are sparser” 

(Newman & Girvan, 2004, p. 1).  

2.2   Approach to this Literature Review 

This literature review primarily provides a holistic view of the entire process of 

community detection, significance, and its applicability in the field of cyber networks. 

Furthermore, graph theory is an extremely powerful mathematical theory and tool to understand, 

visualize, comprehend, and manipulate networks, and as community detection extensively 

utilizes graph theory in its approach, this manuscript will also provide a glimpse into the aspects 

of graph theory pertaining to cyber networks.  

To further appreciate the community detection techniques, the author has summarized 

limitations of various popular clustering and partition algorithms as it relates to community 

detection in cyber networks. Chapter 2 summarizes most widely employed community detection 

techniques, their classification, and algorithms.  

Furthermore, after having identified the possible community structures by using one or 

more algorithms, it is also crucial to evaluate the quality of the communities identified. Various 

metrics can be employed to evaluate the quality. Thus, this literature review also sheds light on 

the various metrics and established the most relevant approach in the context of cyber networks. 
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2.3  Introduction to community detection 

As discussed earlier in chapter 1, community detection is the process of identifying “[t]he 

division of network nodes into groups within which the network connections are dense, but 

between which are sparser” (Newman & Girvan, 2004, p. 1). Alternatively, it can be defined as 

“a locally dense connected subgraph in a network” (Barabási, 2016, p. 6), and moreover, 

communities can be classified as strong and weak communities (Barabási, 2016). Consider a 

subnetwork C of a large complex network and let 𝑘𝑖
𝑖𝑛𝑡 denote the internal degree of the node i, 

that is, the total number of links that connect node i to the other nodes present in C. Similarly,  

𝑘𝑖
𝑒𝑥𝑡 denotes the external degree of a node i representing the total number of links that connect 

node i to the other nodes (that do not belong to C) present in the network. 

A community C is a strong community if ∀ node i ∈ C, it satisfies Equation 5. A weak 

community can be expressed as Equation 6; that is, the total internal degree of all the nodes in C 

exceeds the total external degree of all the nodes present in the same C.  

 

 

Thus, detecting and characterizing such community structures in a network is referred to 

as community detection (Chen, Kuzmin, & Szymanski, 2014). Moreover, “[t]he ability to find 

and analyze such groups can provide invaluable help in understanding and visualizing the 

structure of network” (Newman & Girvan, 2004,  p. 1).  

 𝑘𝑖
𝑖𝑛𝑡(𝐶) > 𝑘𝑖

𝑒𝑥𝑡(𝐶)                                                                   (Eqn. 5)  

 ∑ 𝑘𝑖
𝑖𝑛𝑡(𝐶)i ∈ 𝐶 > ∑ 𝑘𝑖

𝑒𝑥𝑡(𝐶)i ∈ 𝐶                                                   (Eqn. 6)  
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2.4   Community detection techniques and algorithms 

Research over community structures in networks has a long and rich history (Newman & 

Girvan, 2004). It is based on similar “ideas of graph partitioning in graph theory and computer 

science, and hierarchical clustering in sociology” (Newman & Girvan, 2004, p. 1). This section 

summarizes various traditional partitioning and clustering algorithms. 

2.4.1   Graph partitioning 

Graph partitioning divides the vertices into c groups of a predetermined size such that 

edges lying between the group are minimized (Fortunato, 2010).  Graph Bisection is a special 

form of graph partitioning that involves partitioning the graph into just two subgraphs such that 

the number of edges between the two pieces is minimized (Boppana, 1987). In fact, the number 

of links between the nodes in the two subgroups is called the cut- size and an effective graph 

partitioning algorithm would be the one that is able to minimize the cut size to a large extent. 

Boppana (1987) provides an efficient algorithm that evaluates graph partitions based on the 

eigenvalues and eigenvectors associated the graphs. However, there is a major concern in using 

graph partitioning as a method for community detection. The number and size of the 

communities are predefined in case of graph partitioning; however, this is not the case in 

community detection where both the parameters (i.e., number and size) are unknown. Moreover, 

the number of possible bisections increases exponentially with the size of the cluster; this can be 

expressed as stated in Equation 7. 

 𝑒−(𝑁+1) ln 2−
1

2
 ln 𝑁 

                                                                                      (Eqn. 7) 
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where N is the number of vertices in a graph. Barabási (2016) provides an elegant proof 

for the above-represented count using the Stirling’s formula.  

To generalize from graph bisection to graph partitioning, Equation 8 provides the number 

of possible partitions of a network of N vertices.  

According to Barabási (2016), it is impossible to examine all the partitions of any large 

network because the number of possible ways a network can be partitioned grows exponentially 

or faster with the network size. Furthermore, according to Fortunato (2010), algorithms for graph 

partitioning are not suitable for community detection because the algorithms for community 

detection should be capable of revealing information about the community structure – such as the 

number of communities – instead of expecting these characteristics a priori as inputs.  

2.4.2   Partitional clustering 

This technique involves identifying clusters in a network. Here, the number of network 

clusters is predefined. The measure of dissimilarity is the distance between the pair of vertices 

where some of the possible considerations for the distances are Euclidian distance, sum of 

squared distance, or Manhattan distance. Essentially, it involves minimizing a loss function 

based on the distances between the points and/or seeds (alternatively, clusters) (Fortunato, 2010). 

Some of the classical algorithms utilizing this approach are minimum-k clustering, k-means 

clustering, and k-medoids to name a few. One major limitation of this technique is that it requires 

the number of clusters to be specified as an input, which may not be known a priori in the real 

world complex network applications. 

 𝐵𝑁 =  
1

𝑒
∑

𝑗𝑁

𝑗!

∞
𝑗=0                                                                             (Eqn. 8)  
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In the preceding, the author summarized various traditional methods for graph 

partitioning and clustering along with their respective concerns as it relates to their applicability 

for community detection. All the aforementioned methods have two common limitations: 1) the 

algorithms expect an a priori knowledge about the number and size of the clusters and 2) they 

fail to determine a metric that expresses the quality of the partitions obtained. To overcome these 

limitations, researchers developed a new class of algorithms, hierarchical clustering. This 

technique aims at identifying groups of nodes with high similarity present in a network 

(Fortunato, 2010). The two most popular classes of algorithms for hierarchical clustering are: 

a) Agglomerative algorithms- The subgroups are recursively merged if there exists a high 

similarity.   

b)  Divisive algorithms- The clusters are recursively split by removing the links that connect 

vertices with low similarity.  

This family of algorithms overcomes the first limitation. However, the second limitation 

was only overcome in a true sense when modularity based hierarchical clustering techniques 

were developed because a) the aforementioned common hierarchical clustering approaches yield 

more than one community structure (i.e., a hierarchy of community structures) and b) as a result, 

it is essential to determine a metric that expresses the quality of the partitions for obtaining the 

best community structure. Section 2.6 details the process of quantifying the quality of 

community structure. Before we dive deeper into our literature review, let us discuss how real-

world computer networks are modeled in terms of graphs as our research focuses on community 

detection in cyber networks.  In the next section, we shall see some key aspects of graph theory 

pertaining to computer networks.  
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2.5   Application of graph theory in computer networks 

A graph G is defined as an ordered pair of sets {V, E}, where V is a finite non-empty set 

of vertices in the network and E is the set of edges/links between the vertices. In set theory 

notation, 𝐸 can be represented as 𝐸 ⊆ {(𝑢, 𝑣)|𝑢, 𝑣 ∈ V} (Silva & Zhao, 2016). A network of 

computer nodes can be represented as a graph with vertices as the computer nodes and a link 

denotes an exchange of a data packet between any two incident nodes.  Next, we discuss 

different types of graphs. 

1. Bipartite graph: Figure 1 is an example of a bipartite graph. Silva and Zhao (2016) 

provide the definition of a bipartite graph as follows: 

A bipartite graph is a graph whose set of vertices V can be split into two disjoint 

non- empty subsets 𝑉1 and 𝑉2, 𝑉 = 𝑉1 ∪ 𝑉2, in such a way that (𝑢, 𝑣) ∈ E ⟹

u ∈ V1 , v ∈ V2. Therefore, no edge exists between pairs of vertices in the same 

subsets 𝑉1 & 𝑉2. 

 

  
 

Figure 1: Bipartite graph 
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2. Cyclic graph: Figure 2 is an example of a cyclic graph. Weisstein ( n.d.) defined a cyclic 

graph as a graph that contains at least one graph cycle.  

 

Figure 2: Cyclic graph 

 

In general, any network can be examined and analyzed by modeling it as a graph; this 

thesis focuses on examining the community structure of a cyber network. In the next section, we 

shall study various community structure quality indicators.  

2.6. Quantifying the quality of the community structure 

Newman and Girvan (2004) first introduced the concept of evaluation of the quality of 

the community structure. As mentioned earlier in Section 1.5, they coined the term modularity, 

which is a measure of goodness of the partitioned network. (Fortunato, 2010) refers to this 

measure as the quality function 𝑄. According to the researchers (Newman & Girvan, 2004),  Q 

can be using Equation 9.  

where,  

m: the total number of edges in the actual network  

𝐴𝑖𝑗 - adjacency matrix elements of the actual network  

𝑃𝑖𝑗- Expected number of edges between vertices i and j in the null model.  

v1

v2

v3v4

v5

 𝑄 =  
1

2𝑚
  ∑ (𝐴𝑖𝑗 − 𝑃𝑖𝑗  )𝛿(𝐶𝑖, 𝐶𝑗)𝑖,𝑗                                                                   (Eqn. 9)  

http://mathworld.wolfram.com/GraphCycle.html
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The indicator δ function yields one if vertices i and j belong to the same community and 

otherwise is zero. Also, considering that −1 ≤ 𝑄 ≤ 1, larger values of Q indicate strong 

community structure. Thus, this quality function gave rise to another class of algorithms referred 

to as modularity optimization-based algorithms. Algorithms under this category exploit the 

technique of modularity maximization to detect community structures. Fortunato (2010) and 

Barabási (2016) provided an exhaustive list and detailed explanation of modularity-based 

algorithms. 

Please recall that “[a] good division of a network into communities is not merely one in 

which the number of edges running between the groups is small. Rather, it is one, in which the 

number of edges between groups is smaller than expected” (Newman, 2006, p. 5). This expected 

set of edges is defined by the null model (𝑃𝑖𝑗) and it would be inappropriate to use the same null 

model (usually it is Bernoulli random graph where 𝑃𝑖𝑗= p for all i, j) for most real-world 

networks. The null model in consideration should be the most appropriate one for that graph to 

formulate the quality function that yields the maximum modularity as naturally it is possible that 

different null models may yield their corresponding different values for the modularity metric.   

Barber (2007) thus formulated a new 𝑃𝑖𝑗 for graphs that are inherently bipartite in nature. 

𝑃𝑖𝑗  for bipartite graph can be expressed as Equation 10 and the resulting quality function (Q) can 

be expressed as Equation 11. 

𝑃𝑖𝑗 =  
(𝑘𝑖𝑑𝑗)

2𝑚
                                                                                                  (Eqn. 10) 

𝑄′ =  
1

𝑚
  ∑ ∑ (𝐴𝑖𝑗 − 𝑃𝑖𝑗  )𝛿(𝐶𝑖, 𝐶𝑗)𝑞

𝑗=1
𝑝
𝑖=1                                                      (Eqn. 11) 

where,  

p and q are the counts of vertices belonging to the two disjoint sets respectively 

𝑘𝑖 =  ∑ 𝑃𝑖𝑗
𝑞
𝑖=1                                                                                              (Eqn. 12) 



18 

 

𝑑𝑗 =  ∑ 𝑃𝑖𝑗
𝑝
𝑗=1                                                                                              (Eqn. 13) 

Equations 12 and 13 provide an expression for ki and dj respectively. Thus, to formulate 

the quality function that yields maximum modularity, the null model in consideration should be 

the most appropriate one for that graph type as discussed in Section 1.5. 

Apart from modularity, Leskovec, Lang, and Mahoney (2010) elucidated a list of 

various criteria for measuring the quality of the community structure. They have categorized the 

quality/score functions as multi-criterion scores and single-criterion scores.  

• Multi-criterion: Conductance, expansion, internal density, cut ratio, normalized cut, 

maximum out-degree fraction, and average out-degree fraction. 

• Single-criterion: Modularity ratio, volume, and edges cut.  

2.7. Bipartite subgraph identification 

Mubayi and Turán (2010) proposed an algorithm that can identify a bipartite subgraph in 

the given bipartite graph/network. Following is the algorithm: 

Input: 𝐺 = {𝑉, 𝐸} with |𝑉| = 𝑛, |𝐸| = 𝑚 ; s and t are parameters 

if (0 < 𝑚 < 8𝑛
3

2) then return any ({𝑢}, {𝑣}) with (𝑢, 𝑣)  ∈  𝐸 

else 

𝑅: = s vertices having highest degree 

for all subsets 𝐶 ⊆ 𝑅 with |𝐶| = 𝑡 do 

 𝑫: = ∩{𝑁(𝑣) − 𝑅: 𝑣 ∈ 𝑪} 

           if |𝐷| ≥ 𝑡  then 𝐷′: =any set of t elements of 𝐷, return (𝐶, 𝐷′) 

 

Output: (𝐶, 𝐷′) Bipartite graph.  

The time complexity of this algorithm is 𝑂(𝑛2.42).  
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However, this algorithm requires a bipartite graph as an input for returning a dense bipartite 

subgraph. The focus of this research is to identify a bipartite subgraph from the given real-world 

network, irrespective of the underlying structure of the network.  Therefore, the author developed 

the following algorithm for obtaining a bipartite subgraph from any given network. 

Algorithm:  Find_Bipartite (𝑉, 𝐸) 

Input: 𝑮 = (𝑽, 𝑬), 𝒕  

Output: 𝑮𝑩 = (𝑹, 𝑺) 

Begin 

 repeat  

                   Initialize: 𝑅, 𝑆, 𝑒 ← ∅ ; 
                                     𝑡′ ← 𝑟𝑎𝑛𝑑𝑜𝑚(𝑡) ;              
                    for  𝑒 = 1 𝑡𝑜 𝑡′ do 

                            𝑅 ≔ 𝑅 ∪ 𝐸𝑒[1] ;  

                            𝑆 ≔ 𝑆 ∪ 𝐸𝑒[2] ;  

                  if    ∃ { (𝑝, 𝑞) ∈ 𝐸 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (𝑝, 𝑞) ∈ 𝑅 𝑜𝑟 (𝑝, 𝑞) ∈ 𝑆 }  then 

                          break; 

                          end if 

                    end for     

until 𝒆 = 𝒕 

            return (𝑹, 𝑺)  

End 

 

This algorithm takes as input the graph (𝐺) represented as a set of vertices (𝑉) and links 

(𝐸) and the bipartite subgraph size (𝑡) in terms of edges. We know that a bipartite graph is a set 

of two disjoint subsets such that there exists no link between the vertices belonging to the same 

subset. The same definition is used to generate a bipartite subgraph. First, vertices of a randomly 

selected link from the original graph are placed in the two disjoint subsets respectively. Next, 

another edge from the graph is selected and the two incident vertices are added respectively to 
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the two disjoint sets. During every subsequent addition of nodes in the disjoint sets, it is verified 

that there exists no link between the noes belonging to the same sub set. These two steps are 

repeated iteratively until the bipartite subgraph size limit (𝑡) is reached. The run time complexity 

of this algorithm is 𝑂(𝑛2). 

2.8. Community detection in bipartite graphs 

Pesantez-Cabrera and Kalyanaraman (2016) proposed an algorithm that performs 

community detection in bipartite networks to which they refer as biLouvain algorithm. This 

algorithm extends the Louvain algorithm proposed by Blondel, Guillaume, Lambiotte, and 

Lefebvre (2008). The general scheme of the algorithm is as follows: 

1. Given a bipartite graph, initialize a set of 𝑛1 + 𝑛2 communities, where 𝑛1 = |𝑉1| and 

𝑛2 = |𝑉2|. Here, each vertex is placed in its own community. 

2. At every iteration, both the set of vertices are scanned linearly. For each vertex 𝑖: 

a. Obtain a list of candidate communities to which 𝑖 can move. 

b. Evaluate the modularity increase resulted from moving 𝑖 from its current 

community to each of the candidate communities.  

c. Move vertex 𝑖 to the candidate community that maximizes the net modularity 

gain (condition on only if the gain is positive). 

3. A phase terminates when the modularity gain converges.  

4. A new graph is generated through a compaction step and this newly generated graph 

is given as an input to the next phase (step 1). The algorithm terminates when any two 

consecutive phases yield a negligible modularity gain. 
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2.9. Fast algorithm for community detection 

Newman-Girvan algorithm demands substantial amount of computational resources with 

a running time of 𝑂(𝑛3). For instance, in our experimental setup for 10, 48,575 nodes, the time 

we observed for successful execution of the algorithm with the resource characteristics 

mentioned in experiment evaluation (Section 4.4) was 138.31 hours. This clearly indicates that 

the Newman Girvan algorithm for community detection does not scale well for extremely large 

real-world networks. 

 Later,  Newman (2004) proposed a fast algorithm community detection that is an 

agglomerative hierarchical clustering method. Initially, each vertex is considered to be the only 

member of one of 𝑛 communities. The communities are iteratively merged in pairs while 

choosing at each step the group that yields the highest increase in Q (modularity). Newman 

observed that Q can never be increased by joining the pair of communities between which there 

exists no edges at all. Thus, Newman considered only those pairs between which edges were 

present. The change in Q when joining two communities is given by Equation 14 and can be 

calculated in a constant time.  

where, 𝑒𝑖𝑗 is the percentage of edges in the network connecting vertices in group 𝑖 to those in 

group 𝑗 (Eqn. 15) and 𝑎𝑖 represents the percentage of edge endpoints attached to vertices in 

community 𝑖 (Eqn. 16). 

 

This algorithm runs in 𝑂(𝑛2) time. 

 ∆𝑄 =  𝑒𝑖𝑗 + 𝑒𝑗𝑖 − 2𝑎𝑖𝑎𝑗                                                                                   (Eqn. 14)  

 𝑒𝑖𝑗 =  
1

2𝑚
∑ 𝐴𝑣𝑤𝑣,𝑤 𝛿(𝐶𝑣, 𝑖)𝛿(𝐶𝑤, 𝑗)                                                         (Eqn. 15)  

 𝑎𝑖 =  
1

2𝑚
∑ 𝑘𝑣𝑣 𝛿(𝐶𝑣, 𝑖)                                                                            (Eqn. 16)  
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2.10. Community detection in very large networks: Clauset- Newman- Moore 

algorithm 

Continuing with the discussion from Section 2.9, Newman (2004) performed community 

detection by maintaining an adjacency matrix 𝐴𝑣𝑤 and evaluating ∆𝑄𝑖𝑗 followed by finding the 

pair 𝑖, 𝑗 with the largest ∆𝑄𝑖𝑗 . Clauset, Newman, and Moore (2004) claimed that this calculation 

of ∆𝑄𝑖𝑗 and finding the pair 𝑖, 𝑗 possessing the largest ∆𝑄𝑖𝑗  is time consuming. Thus, they 

formulated an algorithm that focuses on maintaining and updating a matrix of value of 

∆𝑄𝑖𝑗, instead of tracking the adjacency matrix and calculating ∆𝑄𝑖𝑗 every time. In addition, they 

employ a max-heap that contains the largest element of each row of the ∆𝑄𝑖𝑗 matrix, and as a 

result, the running time of this algorithm is 𝑂(𝑛 𝑙𝑜𝑔2𝑛). The overall scheme of the algorithm 

proposed by Clauset et al. (2008) is as follows: 

1. Evaluate the initial values of ∆𝑄𝑖𝑗 and 𝑎𝑖 using Equations 17 and 18. Next, the max-

heap is populated with the largest element of each row of ∆𝑄𝑖𝑗 . 

2. The largest ∆𝑄𝑖𝑗 is selected from heap 𝐻, the corresponding communities are joined, 

and the matrix ∆𝑄 , 𝑎𝑖 , 𝑎𝑛𝑑 𝐻 are updated. Q is then incremented by ∆𝑄𝑖𝑗 . 

3. Repeat step 2 until only one community remains.  

 

 
∆𝑄𝑖𝑗 = {

1

2𝑚
− 

𝑘𝑖𝑘𝑗

(2𝑚)2                                𝑖𝑓 𝑖, 𝑗 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑,

       0                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         
                                (Eqn. 17)       

 

 𝑎𝑖 =
𝑘𝑖

2𝑚
                                                                                                                  (Eqn. 18)        
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2.11. Additional community detection algorithms 

Very often community detection algorithms can be devised as unsupervised learning 

based clustering/partitioning techniques (Leskovec, 2008). This section highlights some of the 

most popular community detection algorithms that are extensively used in numerous spheres of 

network science.   

2.11.1 Louvain algorithm 

The Louvain algorithm was formulated by Blondel et al. (2008). This algorithm is based 

on a heuristic technique constructed using modularity optimization. It can discover the high 

modularity clusters of very large networks and unrolls an entire hierarchical community structure 

of the network. Louvain algorithm works in two phases. The two phases are iteratively repeated 

until either only one node is left, or the modularity no longer increases. Following are the two 

steps: 

1. Every node in the network is assigned a different community, then the decision of 

movement of a node to its adjacent community is made based on largest modularity gain. 

The modularity change is evaluated using Equation 19.  

 𝛴𝑖𝑛 represents the summation of the weights of edges inside the community,  

 𝑘𝑖 is the total weight of edges incident to 𝑖,  

 𝛴𝑡𝑜𝑡 is the total weight of the edges incident to all the nodes in the community,  

m is sum of weights of all the edges present in the network, and 

𝑘𝑖,𝑖𝑛 is the addition of the weights of edges from node i to nodes in the community.                                         

 
∆𝑄 = [

∑ + 2 𝑘𝑖,𝑖𝑛𝑖𝑛

  2𝑚
− (

∑ + 2 𝑘𝑖,𝑖𝑛𝑖𝑛

2𝑚
)

2

] − [
𝛴𝑖𝑛

  2𝑚
− (

𝛴𝑡𝑜𝑡

2𝑚
)

2

− (
𝑘𝑖

2𝑚
)

2

]                (Eqn. 19) 

where the following hold: 

 



24 

 

2. Each of the communities obtained in step 1 is now considered as one node. 

The run time complexity of this algorithm is 𝑂(𝑛 𝑙𝑜𝑔𝑛). 

2.11.2 Walktrap algorithm 

The Walktrap algorithm was formulated by Pons and Latapy (2006). The basic intuition 

of this algorithm is that, the random walks on any graph tend to remain in the same cluster. It 

utilizes a hierarchical clustering approach. First, every vertex is considered as a partition, then 

distances between all neighboring vertices are computed. Next, two adjacent communities are 

chosen according to the distance-based criterion and are merged to form a single community. 

Finally, the distances between the communities are updated. This is repeated for (𝑛 − 1) times, 

where n denotes the number of nodes present in the network. The overall run time complexity of 

this algorithm is 𝑂(𝑛2𝑙𝑜𝑔𝑛). 

2.11.3 Infomap algorithm 

The Infomap algorithm was formulated by Rosvall and Bergstrom (2007). This algorithm 

is based on analysis of information flow through the network and employs random walks on the 

network to unroll its community structure. The basic intuition is that, the algorithm maximizes a 

minimum description length objective function and the communities are identified by obtaining 

an optimal compression of its network structure 

2.11.4 Label propagation algorithm 

The label propagation algorithm was formulated by Raghavan et al. (2007). The idea of 

this algorithm is that every node is assigned a unique label depicting the community to which it 

belongs and any given node determines its community based on the community labels of its 
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neighbors. Next, the vertices of the graph are arranged in a random order and later sequencially, 

each node chooses to be a part of the community to which a majority of its neighbors belong.  

2.12. Summary 

Literature review of this manuscript provided a strong basis and justification for 

addressing the proposed research questions. Various community detection techniques were 

discussed and the need for specifying an evaluation criterion was explained systematically.  
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CHAPTER 3. FRAMEWORK AND METHODOLOGY 

This chapter details about the overall research framework and the proposed methodology. 

We then discuss the experimental setup used for implementing the proposed technique. Lastly, 

the data sources, variables, and the execution environment have been provided for replicability. 

3.1. Research framework: an overview 

The final deliverable of this research is a technique that evaluates a composite modularity 

metric for the given network by considering the presence of any bipartite subgraph in the same 

network. Essentially, it addresses the following research questions.  

1) Given a complex cyber network, how can one identify a bipartite subgraph and 

utilize it to perform community detection by formulating a composite modularity 

metric of the partitioned network? 

2) What is the extent to which the modularity index increases in comparison to the 

modularity index generated by Clauset-Newman-Moore algorithm? 

In other words, this research investigates whether leveraging the presence of a bipartite 

subgraph in the given network helps us detect a better underlying community structure of the 

network. Here, the quality metric used to evaluate the community structure is modularity. In our 

research, we have used modularity as the quality indicator because the baseline algorithm that we 

use, Clauset-Newman-Moore, is a modularity based agglomerative algorithm.   

3.2. General methodology and empirical setting 

This section outlines the methodology used to address the research questions. Let us first 

review the variables used in this study. Table 1 provides a comprehensive list of variables used 

in our study.  
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Table 1: Variables 

 

 

 

 

 

 

Explanatory/Independent variables: 𝑒_𝑏𝑖𝑝𝑎𝑟𝑡𝑖𝑡𝑒,  𝑒_𝑡𝑜𝑡𝑎𝑙, 𝑛𝑜𝑑𝑒𝑠 

Dependent variables: 𝑄𝑑𝑖𝑓𝑓 ,  𝑄𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 , 𝑄𝐶𝑁𝑀,   𝑄𝐶𝑁𝑀:𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 , 𝑄𝐵    

Most important dependent variable for this study:  𝑄𝑑𝑖𝑓𝑓 

Variable Description 

𝒆_𝒃𝒊𝒑𝒂𝒓𝒕𝒊𝒕𝒆 The total number of edges/links in the bipartite graph. 

𝒆_𝒕𝒐𝒕𝒂𝒍 The total number of unique edges/links in the original graph.  

𝒏𝒐𝒅𝒆𝒔 The total number of unique nodes/vertices present in the graph.  

𝑸𝑪𝑵𝑴   The modularity value of the community structure of the entire 

network as evaluated by utilizing the Clauset-Newman-Moore 

algorithm. A detailed explanation of the working functionality of the 

algorithm can be found in the Section 2.10. 

𝑸𝑪𝑵𝑴:𝑹𝒆𝒎𝒂𝒊𝒏𝒅𝒆𝒓 The modularity value of the community structure of the remainder 

network as detected by utilizing the Clauset-Newman-Moore 

algorithm. Here, the remainder network is the original network, i.e., a 

bipartite network. Considering the original graph 𝐺 = (𝑉, 𝐸) and the 

identified bipartite network in the graph 𝐺𝐵 = (𝑉′, 𝐸′), the remainder 

graph is  𝐺𝑅 = (𝑉′′, 𝐸′′), where the following holds: 

𝑉′′ = 𝑉 − 𝑉′ and 𝐸′′ = 𝐸 − 𝐸′ 

𝑸𝑩 The modularity value of the community structure of the Bipartite 

subgraph as evaluated by utilizing the BiLouvain algorithm. A 

detailed explanation of the working functionality of this algorithm 

can be found in the Section 2.8 

𝑸𝑪𝒐𝒎𝒑𝒐𝒔𝒊𝒕𝒆 The composite modularity evaluated using Equation 20. 

𝑸𝒅𝒊𝒇𝒇 The magnitude of the extent to which the quality of the communities 

detected using the proposed empirical setting is greater than the one 

evaluated by 𝑄𝐶𝑁𝑀 alone. Essentially, 𝑄𝑑𝑖𝑓𝑓 =  𝑄𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 −  𝑄𝐶𝑁𝑀.  
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Figure 3 is a flowchart that delineates the overall procedure for performing the 

community detection and evaluation of the modularity index after having identified the bipartite 

subgraph. 

  

Figure 3: Workflow 

 

1. Obtain the cyber traffic between the IP addresses:  

a. Extract the source and destination IP addresses from the packet capture files. This 

step has been discussed comprehensively in the Section 4.2.  

2. Identification of bipartite subgraph in the network: 

a. Build an edge list file based on the source-destination pairs obtained from step 1. 

b. Build an adjacency matrix for the network. 

c. Identify a bipartite subgraph using the Find_ Bipartite algorithm proposed in this 

thesis. This algorithm was discussed in Section 2.7.  
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3. Perform bipartite community detection by using the biLouvain algorithm proposed by 

Pesantez-Cabrera and Kalyanaraman (2016) and evaluate 𝑄𝐵. This algorithm was 

discussed in Section 2.8.  Next, the overall modularity of the graph can be calculated by 

using Equation 19 (Liu, Liu, Murata, & Wakita, 2014). 

where 

𝐺 = 𝐺[1] ∪ 𝐺[2] ∪.  .  .  ∪ 𝐺[𝑠] 

            and it follows that 

𝑉 = 𝑉[1] ∪ 𝑉[2] ∪.  .  .  ∪ 𝑉[𝑠] 

𝐸 = 𝐸[1] ∪ 𝐸[2] ∪.  .  .  ∪ 𝐸[𝑠] 

𝑚 = ∑ 𝑚[𝑦]𝑠
𝑦=1  (total number of edges) 

𝑄[𝑦 ]: 𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦 𝑜𝑓  𝐺[𝑦]
 

In this research, we have the following two types of networks: 

a) Identified Bipartite subgraph and 

b) Remainder network.  

Based on the two types of networks we use, Equation 19 can now be expressed as 

Equation 20. 

  

∑
𝑚[𝑦]

𝑚

𝑠
𝑦=1 𝑄[𝑦](𝐿) =  (

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝐵𝑖𝑝𝑎𝑟𝑡𝑖𝑡𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘
× 𝑄𝐵) +  

 

       (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘
  × 𝑄𝐶𝑁𝑀:𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟  ) (Eqn. 20) 

4. Evaluate 𝑄𝐶𝑁𝑀  for the entire graph without considering the bipartite subgraph   

5. Evaluate 𝑄𝑑𝑖𝑓𝑓 =  𝑄𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 − 𝑄𝐶𝑁𝑀. 

 

 

 𝑄𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 = 𝑄(𝐿) = ∑
𝑚[𝑦]

𝑚

𝑠
𝑦=1 𝑄[𝑦](𝐿)                                      (Eqn. 19) 
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The aforementioned steps are summarized in Figure 4. 

 

Figure 4: Framework 

3.3. Threat to validity 

This research focuses on evaluating modularity metric for a static cyber network. The 

results thus obtained may not directly be generalized to any dynamic cyber network. Also, one 

needs to be wary about the resolution limit while performing modularity optimization. 

3.4. Summary 

This chapter outlined the overall research framework, empirical setting, and methodology 

used in this research. Next, chapter 4 will emphasize on the execution aspects of the proposed 

methodology.  
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CHAPTER 4. EXPERIMENT EVALUATION AND RESULTS 

This chapter provides an insight into the data source, variables, experimental setup, and 

parameter configuration. Furthermore, it highlights the research experiment execution workflow 

that will enable reproducibility and replicability of the results.  

4.1. Data source 

Our research focuses on community detection as it relates to the cyber networks, and thus 

we employ a data set consisting of IP addresses. Additionally, we know that a graph is defined 

by a set of unique vertices and the links connecting the vertices. In our case, the unique IP 

addresses represent the nodes/vertices of a network where the edges are characterized by the 

presence of a communication link between the two incident IP addresses. The IP addresses are 

extracted from the data packet information obtained from Center for Applied Internet Data 

Analysis (CAIDA). The original data set consisted traffic traces in the form of packet capture 

(pcap) files. The pcap files were read using the tcpdump packet analyzer tool.  

4.2. Data preprocessing  

The IP addresses were extracted from the data packet information obtained from 

tcpdump. The dot-decimal octet notation of the IP addresses was converted to an integer format 

for the ease of node representation in the graph. For example, let us consider the following IP 

address: 128.210.105.48. The IP address is broken down into a set of 4 octets with the following 

integer representation: 
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=  2563 ∗ 𝑓𝑖𝑟𝑠𝑡 𝑜𝑐𝑡𝑒𝑡 +  2562 ∗ 𝑠𝑒𝑐𝑜𝑛𝑑 𝑜𝑐𝑡𝑒𝑡 + 2561 ∗ 𝑡ℎ𝑖𝑟𝑑 𝑜𝑐𝑡𝑒𝑡 + 𝑓𝑜𝑢𝑟𝑡ℎ 𝑜𝑐𝑡𝑒𝑡        

=  2563 ∗ 128 +  2562 ∗ 210 + 2561 ∗ 105 + 48 

=  2161273136        

4.3. Experimental setup 

Figure 5 demonstrates the steps undertaken to realize and apply the research framework 

discussed in the previous section to a real world complex network. The complete code is 

provided in Appendix A. For the ease of demonstration, each step has been partitioned into four 

segments: functionality, description, input, and output. 

 

Figure 5: Experimental setup 
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The following section provides an insight into implementation aspect of the experimental 

setup. 

 

Modularity evaluation and comparison 

Input: 𝑮 = (𝑽, 𝑬)  

Output: 𝑸𝒅𝒊𝒇𝒇 

𝑒𝑡𝑜𝑡𝑎𝑙 ← 𝑢𝑛𝑖𝑞𝑢𝑒(𝐸);  

𝑛𝑜𝑑𝑒𝑠 ← 𝑢𝑛𝑖𝑞𝑢𝑒(𝑉);  

𝐺𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ← 𝑔𝑟𝑎𝑝ℎ(𝑒𝑡𝑜𝑡𝑎𝑙, 𝑛𝑜𝑑𝑒𝑠 ) 

𝑔𝑟𝑎𝑝ℎ 𝑒𝑑𝑔𝑒 𝑙𝑖𝑠𝑡 ← 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑒𝑛𝑡𝑖𝑟𝑒 𝑔𝑟𝑎𝑝ℎ  

𝑏𝑖𝑝𝑎𝑟𝑡𝑖𝑡𝑒 𝑒𝑑𝑔𝑒 𝑙𝑖𝑠𝑡 ← 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑏𝑖𝑝𝑎𝑟𝑡𝑖𝑡𝑒 𝑒𝑑𝑔𝑒𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑢𝑏 𝑔𝑟𝑎𝑝ℎ  

for  𝑒 = 1 𝑡𝑜 𝑙𝑒𝑛𝑔𝑡ℎ(𝑔𝑟𝑎𝑝ℎ 𝑒𝑑𝑔𝑒 𝑙𝑖𝑠𝑡) do 

       𝑒𝑑𝑔𝑒𝑠 ← 𝑔𝑟𝑎𝑝ℎ 𝑒𝑑𝑔𝑒 𝑙𝑖𝑠𝑡[𝑒]; 

         𝐺𝑒𝑛𝑡𝑖𝑟𝑒 ← 𝑔𝑟𝑎𝑝ℎ(𝑔𝑟𝑎𝑝ℎ 𝑒𝑑𝑔𝑒 𝑙𝑖𝑠𝑡[𝑒] ); 

        𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝑒𝑛𝑡𝑖𝑟𝑒 ← 𝐶𝑁𝑀(𝐺𝑒𝑛𝑡𝑖𝑟𝑒 ); 

         𝑄𝐶𝑁𝑀 ← 𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝑒𝑛𝑡𝑖𝑟𝑒 ); 

          for  𝑒′ = 1 𝑡𝑜 𝑙𝑒𝑛𝑔𝑡ℎ(𝑏𝑖𝑝𝑎𝑟𝑡𝑖𝑡𝑒 𝑒𝑑𝑔𝑒 𝑙𝑖𝑠𝑡) do 

    𝑒𝑏𝑖𝑝𝑎𝑟𝑡𝑖𝑡𝑒 ← 𝑒′[𝑏𝑖𝑝𝑎𝑟𝑡𝑖𝑡𝑒 𝑒𝑑𝑔𝑒 𝑙𝑖𝑠𝑡];  

                𝑒𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 ←   𝑒𝑑𝑔𝑒𝑠 − 𝑒𝑏𝑖𝑝𝑎𝑟𝑡𝑖𝑡𝑒;          

                  𝐺𝑏𝑖𝑝𝑎𝑟𝑡𝑖𝑡𝑒 ← 𝐹𝑖𝑛𝑑𝐵𝑖𝑝𝑎𝑟𝑡𝑖𝑡𝑒(𝐺𝑒𝑛𝑡𝑖𝑟𝑒, 𝑒𝑏𝑖𝑝𝑎𝑟𝑡𝑖𝑡𝑒 ); 

                𝐺𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 ← 𝑔𝑟𝑎𝑝ℎ(𝐺𝑒𝑛𝑡𝑖𝑟𝑒 − 𝐺𝑏𝑖𝑝𝑎𝑟𝑡𝑖𝑡𝑒 , 𝑒𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟); 

                𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝑏𝑖𝑝𝑎𝑟𝑡𝑖𝑡𝑒 ← 𝑏𝑖𝐿𝑜𝑢𝑣𝑎𝑖𝑛(𝐺𝑏𝑖𝑝𝑎𝑟𝑡𝑖𝑡𝑒 ); 

                 𝑸𝑩 ← 𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝑏𝑖𝑝𝑎𝑟𝑡𝑖𝑡𝑒 ); 

                𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 ← 𝐶𝑁𝑀(𝐺𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟); 

                 𝑸𝑪𝑵𝑴:𝑹𝒆𝒎𝒂𝒊𝒏𝒅𝒆𝒓 ← 𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟  ); 

               𝑄𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 ←  (
𝑒_𝑏𝑖𝑝𝑎𝑟𝑡𝑖𝑡𝑒

𝑒𝑑𝑔𝑒𝑠
× 𝑄𝐵)  +  (

𝑒𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟

𝑒𝑑𝑔𝑒𝑠
  × 𝑄𝐶𝑁𝑀:𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 ); 

                𝑸𝒅𝒊𝒇𝒇 ← (𝑄𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 − 𝑄𝐶𝑁𝑀); 

         end for 

end for 
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4.4. Execution workflow 

Figure 6 provides an insight into the execution workflow. All the programs were 

executed on Purdue Rice community cluster execution environment. Table 2 details the 

specifications of the Rice HPC community cluster.  

Table 2: Purdue Rice Community Cluster Specifications 

Operating System  Red Hat Enterprise Linux 6 

Workload manager Moab 

Resource manager TORQUE 

# of nodes 576 

Processors per node Two 10-Core Intel Xeon-E5 

Cores per node 20 

Memory per node 64GB 
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                                         Rice storage                                               Rice computation 

Figure 6: Execution Workflow 

 

Recall that the IP traces were obtained from the CAIDA data set. Jobs are submitted to Rice 

using. sub file. For example, networkviz.sub contains the instructions to execute Networkviz.R 

file that in turn yields the output in the modularity values file. Figure 6 is intended for illustrative 

purpose and does not accommodate the entire execution workflow. The exhaustive list of tasks 

performed were discussed in the Section 4.3.  

4.5. Parameter configuration 

The explanatory variables were tuned to observe the effect of the bipartite graph size on 

the composite modularity. For a small scale bipartite graph size of 10-100 vertices, our empirical 

setting was not advantageous because such relatively small bipartite subgraph did not contribute 

much to the bipartite modularity thereby decreasing the overall magnitude of the first term in 
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Equation 20. Thus, the expected bipartite subgraph size was tuned to 100 and above. Next, the 

total nodes in a graph were obtained from the original list of non-unique vertices ranging from 

40,000 to 100,000 nodes. In this research, we performed multiple experiments by varying the 

nodes count of the original graph.  

4.6. Results and analysis 

This chapter provides experimental observations and the results obtained. We also 

examine the effect of variation of some of the crucial parameters we discussed in Section 4.5 on 

the quality of the detected communities. Thus, this section demonstrates the applicability of our 

proposed research framework to the real world complex network.  

4.6.1.  Empirical observations and results 

This section presents the experimental observations. As discussed in the experimental 

setup in Section 4.3, we are primarily interested in the following variables: 

1. Size of the bipartite subgraph (𝑒_𝑏𝑖𝑝𝑎𝑟𝑡𝑖𝑡𝑒) 

2. Size of the original graph (𝑛𝑜𝑑𝑒𝑠/𝑒_𝑡𝑜𝑡𝑎𝑙) 

3.  Increase in the modularity value by employing our method (𝑄𝑑𝑖𝑓𝑓) 

Here, the 𝑄𝑑𝑖𝑓𝑓  values are averaged over four iterations. Table 3 presents the results 

obtained by performing experiments using the following values of the input variables: 

1. 𝑔𝑟𝑎𝑝ℎ_𝑒𝑑𝑔𝑒_𝑙𝑖𝑠𝑡 = {500000, 600000, 700000, 800000, 900000, 1000000} 

Here, the 𝑔𝑟𝑎𝑝ℎ_𝑒𝑑𝑔𝑒_𝑙𝑖𝑠𝑡 represents the set of number of edges considered from the 

original graph. For each count of the number of edges mentioned in the 

𝑔𝑟𝑎𝑝ℎ_𝑒𝑑𝑔𝑒_𝑙𝑖𝑠𝑡, we consider only unique edges while building a graph.   

2. 𝑏𝑖𝑝𝑎𝑟𝑡𝑖𝑡𝑒_𝑒𝑑𝑔𝑒_𝑙𝑖𝑠𝑡 = {100, 300, 500, 700, 900} 
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𝑏𝑖𝑝𝑎𝑟𝑡𝑖𝑡𝑒_𝑒𝑑𝑔𝑒_𝑙𝑖𝑠𝑡  represents the set of the bipartite subgraph edges.  

Please note that the variables 𝑒_𝐵 and 𝑄𝐶𝑁𝑀:𝑅  mentioned in Table 3 correspond to 

𝑒_𝑏𝑖𝑝𝑎𝑟𝑡𝑖𝑡𝑒 and  𝑄𝐶𝑁𝑀:𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟  variables specified in Table 1 respectively.   

Table 3: Experimental Observations 
𝒆_𝑩 𝑒_𝑡𝑜𝑡𝑎𝑙 𝑛𝑜𝑑𝑒𝑠 𝑄𝐶𝑁𝑀 𝑄𝐵 𝑄𝐶𝑁𝑀:𝑅 𝑄𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑸𝒅𝒊𝒇𝒇 

100 45835 53000 0.989022 0.994461 0.99113 0.991137 0.002115 

300 45835 53000 0.989022 0.997986 0.994358 0.994382 0.00536 

500 45835 53000 0.989022 0.992558 0.995469 0.995437 0.006415 

700 45835 53000 0.989022 0.995906 0.995796 0.995798 0.006776 

900 45835 53000 0.989022 0.987961 0.996762 0.996589 0.007567 

100 50377 58056 0.990038 0.994853 0.991556 0.991563 0.001524 

300 50377 58056 0.990038 0.997997 0.994131 0.994154 0.004116 

500 50377 58056 0.990038 0.996576 0.995761 0.995769 0.005731 

700 50377 58056 0.990038 0.990406 0.996131 0.996051 0.006013 

900 50377 58056 0.990038 0.994565 0.996546 0.996511 0.006472 

100 54972 63161 0.989859 0.994657 0.991111 0.991117 0.001259 

300 54972 63161 0.989859 0.998063 0.993637 0.993661 0.003802 

500 54972 63161 0.989859 0.998624 0.994691 0.994727 0.004869 

700 54972 63161 0.989859 0.99743 0.995521 0.995546 0.005687 

900 54972 63161 0.989859 0.998113 0.996366 0.996395 0.006536 

100 59556 68163 0.989938 0.99505 0.991372 0.991379 0.00144 

300 59556 68163 0.989938 0.99793 0.993332 0.993355 0.003417 

500 59556 68163 0.989938 0.998616 0.994708 0.994741 0.004802 

700 59556 68163 0.989938 0.999061 0.995476 0.995518 0.00558 

900 59556 68163 0.989938 0.993583 0.995901 0.995866 0.005928 

100 64210 73186 0.990027 0.994265 0.991048 0.991053 0.001026 

300 64210 73186 0.990027 0.998063 0.992651 0.992676 0.002649 

500 64210 73186 0.990027 0.998723 0.993695 0.993734 0.003708 

700 64210 73186 0.990027 0.999095 0.995121 0.995165 0.005138 

900 64210 73186 0.990027 0.992383 0.995883 0.995834 0.005807 

100 68637 77924 0.989764 0.994853 0.990833 0.990839 0.001075 

300 68637 77924 0.989764 0.998052 0.992563 0.992587 0.002824 

500 68637 77924 0.989764 0.994675 0.993594 0.993602 0.003838 

700 68637 77924 0.989764 0.994696 0.994045 0.994052 0.004288 

900 68637 77924 0.989764 0.994584 0.995342 0.995332 0.005568 
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Based on the observations, following are the key results: 

 We observe that the evaluated  𝑄𝑑𝑖𝑓𝑓 values are all positive. Furthermore, we know that  

𝑄𝑑𝑖𝑓𝑓 =  𝑄𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 −  𝑄𝐶𝑁𝑀. This indicates that our proposed technique of identifying and 

using the specific subgraph for community detection was advantageous. It is primarily due to the 

improvement of modularity value of the community structure associated with the real world 

graph under consideration.  

It can also be observed that 𝑄𝑑𝑖𝑓𝑓 has a positive relationship with the bipartite subgraph 

size (𝑒_𝐵). One plausible reasoning for this observation is that with the increase in bipartite 

subgraph size, we are essentially expecting an increase in the edges and/or nodes contributing 

towards the bipartite modularity. Moreover, as the bipartite modularity (𝑄𝐵) is evaluated by 

considering the null model specific to the bipartite graph, it yields a better community structure. 

In the next section, we will discuss the effect of bipartite subgraph size on 𝑄𝑑𝑖𝑓𝑓. 

4.6.2.  Effect of varying the size of bipartite subgraph 

As discussed earlier in the previous section, 𝑄𝑑𝑖𝑓𝑓 and 𝑒_𝐵 are positively related. Let us 

now visually inspect the variation of 𝑄𝑑𝑖𝑓𝑓 with respect to the bipartite subgraph size. Figure 7 is 

a line plot generated from the observations mentioned in Table 3 (Section 4.6.1) for the original 

graph size (in terms of 𝑒_𝑡𝑜𝑡𝑎𝑙) of 45835 unique edges. Here, we plot the 𝑄𝑑𝑖𝑓𝑓 values 

corresponding to the bipartite subgraph sizes ranging from 100 to 900 (with an increment of 

200).  
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Figure 7: Line plot for 𝑄𝑑𝑖𝑓𝑓 vs 𝑒_𝐵 for 𝑒_𝑡𝑜𝑡𝑎𝑙 = 45835 

 

We observe that  𝑄𝑑𝑖𝑓𝑓 increases with the increase in bipartite subgraph size (𝑒_𝐵). 

Recall from Section 3.2. that we had employed biLouvain algorithm to evaluate the bipartite 

modularity (i.e., modularity value of the bipartite subgraph community structure) and because 

biLouvain considers null model specific to the bipartite graph, we expect an increase in the 

overall composite modularity. Furthermore, with an increase in the bipartite subgraph size, we 

are essentially increasing the total number of edges contributing towards a graph where we 

utilize the specific (most appropriate) null model (e.g., our bipartite subgraph model) instead of a 

generic model (e.g., our remainder graph model).  
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Figure 8: Line plot for 𝑄𝑑𝑖𝑓𝑓 vs 𝑒𝐵 for 𝑒𝑡𝑜𝑡𝑎𝑙 = 50377 

 

Here; like the previous line plot (Figure 7), we observe that the 𝑄𝑑𝑖𝑓𝑓 values exhibit a 

positive relationship with the bipartite subgraph size (𝑒_𝐵).  

Similarly, we generate line plots based on the observations mentioned in Table 3 for all 

the remaining 𝑒_𝑡𝑜𝑡𝑎𝑙 values. Figures 9, 10, 11, and 12 illustrate the variation of 𝑄𝑑𝑖𝑓𝑓 with 

respect to the bipartite subgraph size for the original graphs consisting of 54972, 59556, 64210, 

and 68637 unique edges respectively.   
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Figure 9: Line plot for 𝑄𝑑𝑖𝑓𝑓 vs 𝑒_𝐵 for 𝑒_𝑡𝑜𝑡𝑎𝑙 = 54972 

 

 

Figure 10: Line plot for 𝑄𝑑𝑖𝑓𝑓 vs 𝑒_𝐵 for 𝑒_𝑡𝑜𝑡𝑎𝑙 = 59556 
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Figure 11: Line plot for 𝑄𝑑𝑖𝑓𝑓 vs 𝑒_𝐵 for 𝑒_𝑡𝑜𝑡𝑎𝑙 = 64210 

 

 

Figure 12: Line plot for 𝑄𝑑𝑖𝑓𝑓 vs 𝑒_𝐵 for 𝑒_𝑡𝑜𝑡𝑎𝑙 = 68637 
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It is evident from Figures 9, 10, 11, and 12 that 𝑄𝑑𝑖𝑓𝑓 increases with the increase in 

bipartite subgraph size. It follows the same argument stated earlier (Section 4.6.1.) that 

increasing the bipartite subgraph size subsequently increases the composite 

modularity 𝑄𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 ,  thereby enhancing the 𝑄𝑑𝑖𝑓𝑓 value. Figure 13 presents a comprehensive 

picture of the line plots we saw earlier in this section.  

 

Figure 13: Line plot for 𝑄𝑑𝑖𝑓𝑓 vs 𝑒_𝐵  

 

The next chapter highlights the research findings and describes how our results help 

address the research questions we posed in Section 1.4. 
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CHAPTER 5. CONCLUSION AND FUTURE DIRECTION 

This chapter presents the major research findings from this work. Next, conclusion and a 

vision for the future have been discussed. 

5.1. Research findings and contribution 

The principal goal of this thesis was to investigate whether considering the presence of a 

bipartite subgraph results in an increase in the overall composite modularity. However, along the 

way, various other interesting observations were made. First, we identified the need to develop 

an algorithm that identifies a bipartite subgraph in the given graph. This algorithm was discussed 

in Section 2.7. Recall that we referred to this algorithm as Find_Bipartite algorithm. The 

development of the Find_Bipartite algorithm addresses the first segment of our research question 

1, that is, obtaining a bipartite subgraph from the given network. Second, we proposed an 

empirical methodology to evaluate bipartite modularity, composite modularity and 𝑄𝑑𝑖𝑓𝑓 (please 

recall that 𝑄𝑑𝑖𝑓𝑓 =  𝑄𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 −  𝑄𝐶𝑁𝑀). This experimental setup was discussed in Chapter 3. 

Chapter 3 systematically explained how we can use the identified bipartite subgraph in 

community detection by formulating a composite modularity metric. It also highlighted the 

method to evaluate the extent to which this composite modularity increased in comparison to the 

modularity value obtained by employing just the Clauset-Newman-Moore algorithm; this 

addressed our second research question. Revisiting the applicability of our research in the 

cybersecurity domain (Section 1.5), we can potentially alleviate the consequence of worm attack 

by employing our empirical setting to the compromised network for identifying the most 

vulnerable (to worm infection) set of nodes in the network. For instance; given the first 

compromised node (say node X) in the network, the most vulnerable set of nodes is characterized 
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by the nodes belonging to node X’s community. Thus, it is essential to identify and exploit the 

underlying community structure that possesses a high modularity. Our results suggest that it is 

advantageous to identify the presence of a bipartite subgraph and incorporate the composite 

modularity for performing community detection to obtain a high modularity community 

structure. Third; for a relatively large network (50,000 or more nodes), the bipartite subgraph 

size and  𝑄𝑑𝑖𝑓𝑓 exhibit a positive relationship. The effect of variation of bipartite subgraph size 

on 𝑄𝑑𝑖𝑓𝑓 was discussed in Section 4.6.  

5.2. Discussion and conclusion 

This thesis primarily focuses on designing and developing an empirical setting that will 

enable us to investigate whether considering the presence of a bipartite subnetwork aids towards 

obtaining a better community structure of the network. As discussed in the previous section, we 

observe an overall enhancement in the quality of the detected communities when the presence of 

bipartite subgraph is considered while performing community detection. Furthermore, our results 

corroborate with the initial proposed idea that using an appropriate null model for the specific 

underlying subnetwork enhances the quality of the community structure. However, one 

limitation of using this approach is the overall increased time complexity. This is primarily due 

to the empirical setup (a five-fold process of identifying the bipartite graph, separating the 

remainder graph, computing the CNM modularity of the remainder graph and the original graph, 

evaluating composite modularity, and calculating the modularity difference). Here, we can notice 

a tradeoff between the quality of the detected community structure and computational 

complexity (considering both time and space hierarchy) required. Thus, this calls for a wise 

decision over the choice of one constraint over the other based on the underlying application 

specification and requirements.  



46 

 

5.3. Future work  

 One potential future direction would be generalization of the experimental setup 

presented in this research to weighted and/or directed networks. We wish that this initial effort of 

achieving a better community structure by using the appropriate null reference model for the 

bipartite subnetwork will provide an encouragement to explore and use other null reference 

models corresponding to any other identifiable subgraphs present in the network. To exemplify, 

it would be interesting to observe the results of incorporating null models for cyclic or k-partite 

subnetworks.  

Yet another direction for future research is to investigate the effect of accommodating 

more than two null models for a single network. This research emphasized on modularity as the 

quality criterion. Apart from modularity, it will be interesting to study the effect of employing 

our proposed methodology on various other quality metrics such as conductance, cut-ratio, etc. 
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APPENDIX A. CODE  

1.  Job submission file: This is the main file that invokes the R code written in the two R files 

described later and calls for execution of biLouvain algorithm.   

 

#!/bin/sh -l 
module load r/3.4.3 
cd /scratch/rice/h/hdeshmuk/Bipartite/ 
echo "Hello Harsha!!" 

 
#Declaring the graph edges list (Please refer Chapter 3 for notations) 
declare  links_set=(500000 600000 700000 800000 900000 1000000) 

#Declaring the bipartite edges list (Please refer Chapter 3 for notations) 
declare  bipartite_links_set=(100 300 500 700 900) 

 
for i in ${links_set[@]} 
do 
  echo "$i">>links_size5.csv 
  echo "$i" 
  for j in ${bipartite_links_set[@]} 
  do 
      echo "$j">>bipartite_size5.csv 
      echo "$j"    

      #Here BipartiteImplementation8ver13.R is the first R file               
      R --vanilla --no-save < BipartiteImplementation8ver13.R 
      echo "Done evaluating the Qcnm and Qcnm-remaining" 
      echo "Now evaluating Qbipartite" 
 
      ./biLouvain -i srcdestsampleBipartiteLinks$i$j.csv -d "," -ci 0.01 -cp 
0.00 -initial Harsha145 -o Harsha145 
 
      echo "Done  evaluating Qbipartite" 
      echo "$(grep "Murata+" Harsha145_ResultsModularity.txt | sed 's/.*://')
">>test2.csv 

     #Here BipartiteImplementation8ver13.R is the second R file 
      R --vanilla --no-save < BipartiteImplementation8ver14.R 
      echo "Done second R file" 
      echo "Number $i" 
 
  done 
 
done 
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2. First R file- This is the first R file mentioned in the job submission file 

library(network) 
library(igraph) 
library(dplyr) 
 
#Reading the csv file containing the list of source and destination IP addres
ses. This is without any modification to the links dataset. It contains dupli
cate edges.  
#Would be removed in subequent steps 
#Already cd'd to the location where srcedestsample1.csv is present. 
links <- read.csv("srcdestsample1.csv", header=T, as.is=T) 
 
#Obtaining the initial graph size in terms of edges from the links_size5.csv 
file. This file is written during the execution of .sub file 
size1<-read.csv("links_size5.csv",as.is=FALSE,header = FALSE) 
uu<-tail(size1,n=1) 
uu<-uu[[1]] 
 
 
#Declaring Modularity Matrix 
Modularity_matrix1<-matrix(nrow=1, ncol=8) 
 
#Converting it into a data frame to accomodate all the data types 
Modularity_matrix1 <- as.data.frame(Modularity_matrix1) 
 
#Specifying the column names, these are our variables of interest 
Column_names <- c("e_bipartite", "e_total", "nodes","Qcnm", "Qb", "RQcnm","Qc
omposite","Qdiff") 
colnames(Modularity_matrix1) <- Column_names 
 
#Specify counter for the matrix 
counter_for_matrix<-1 
 
#Print Modularity values- initially NA's 
Modularity_matrix1 
 
#Declaring and defining variable xx to provide unique file names for the bipa
rtite graph and remainder graph 
xx<-uu+108 
 
#Subsetting the data for only a specific number of links 
print("The total number links are: ") 
print(nrow(links)) 
 
#Creating a data frame of links and writing it to a csv file 
dfrm_all_links <- data.frame(links) 
 
dfrm_all_links<-dfrm_all_links[1:uu,] 
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filename_links <- paste('Har_links_',xx,'.csv',sep='') 
write.table(dfrm_all_links, file=filename_links, sep=",", row.names=FALSE, co
l.names=TRUE, append = FALSE) 
 
#Creating nodes list 
dfrm_all_links1 <- data.frame(source = dfrm_all_links[1:uu,1]) 
filename_nodes <- paste('Har_nodes_',xx,'.csv',sep='') 
write.table(dfrm_all_links1, file=filename_nodes, sep=",", row.names=FALSE, c
ol.names=TRUE, append = TRUE) 
 
dfrm_all_links2 <- data.frame(source = dfrm_all_links[1:uu,2]) 
#filename_nodes <- paste('Har_nodes_',uu,'.csv',sep='') 
write.table(dfrm_all_links2, file=filename_nodes, sep=",", row.names=FALSE, c
ol.names=TRUE, append = TRUE) 
 
 
#Reading the data frames intonodes and links 
nodes <- read.csv(filename_nodes, header=T, as.is=T) 
links <- read.csv(filename_links, header=T, as.is=T) 
 
# Prelimainary examination of the data: 
head(nodes) 
head(links) 
nrow(nodes)  
 
 
#Obtaining unique links : to remove multiple edges from the graph. Essentiall
y obtainig a simple graph 
links<-(unique(links[,c("source", "destination")])) 
#links<-(unique(links)) 
nodes<-(unique(nodes[,c("source")])) 
#Total number of unique nodes in the graph 
length(nodes) 
print("The total number of unique links are: ") 
print(nrow(links)) 
 
 
#Populating the e_total in the Final Comparison data frame i.e.: Modularity_m
atrix1 
Modularity_matrix1[counter_for_matrix,2]<- nrow(links) 
 
#Populating the nodes in the Final Comparison data frame i.e.: Modularity_mat
rix1 
Modularity_matrix1[counter_for_matrix,3]<- length(nodes) 
 
 
#Creating a data frame of links and writing it to a csv file 
dfrm_all_links <- data.frame(links) 
write.table(dfrm_all_links, file="srcdestsample22UniqueLinks.csv", sep=",", r
ow.names=FALSE, col.names=TRUE, append = FALSE) 
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#edge_matrix 
edge_matrix<-as.matrix(links) 
 
 
#Removing the duplicate edges 
edge_matrix<-edge_matrix[!duplicated(t(apply(edge_matrix, 1, sort))),] 
 
#Creating a graph data frame from the matrix 
net <- graph_from_data_frame(d=edge_matrix, vertices=nodes, directed=F)  
 
# Examine the resulting object: 
class(net) 
 
 
#Counting the total number of nodes 
Number_of_edges<-floor(nrow(links)) 
Number_of_edges 
 
# Function for generating Kt,t Bipartite graph from the given graph represent
ed by {nodes, links} 
# This function generates a bipartite graph from the given original graph. 
cnt<-1 
Find_Bipartite<-function(nodes, links, s,t){ 
   
   
  repeat{ 
    i<-0 
    random_links<-sample(1:nrow(links)) 
    edges_id<-random_links[1:t] 
    Bipartite_set1_final<-c() 
    Bipartite_set2_final<-c() 
    for(i in 1:t){ 
      first_random<-links[edges_id[i],1] 
      Bipartite_set1<-links[edges_id[i],1] 
      Bipartite_set1_final<-c(Bipartite_set1_final, Bipartite_set1) 
       
      second_random<-links[edges_id[i],2] 
      Bipartite_set2<-links[edges_id[i],2] 
      Bipartite_set2_final<-c(Bipartite_set2_final, Bipartite_set2) 
       
      Characterized_version_Bipartite_set1_final<-as.character( Bipartite_set
1_final) 
      Characterized_version_Bipartite_set2_final<-as.character( Bipartite_set
2_final) 
       
      Characterized_first_random<-as.character(first_random) 
      Characterized_second_random<-as.character(second_random) 
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      matrix_set1<-net[Characterized_first_random,Characterized_version_Bipar
tite_set1_final] 
      matrix_set2<-net[Characterized_second_random,Characterized_version_Bipa
rtite_set2_final] 
      # print(sum(matrix_set1)) 
      # print(sum(matrix_set2)) 
       
      confirmer<- as.integer(sum(matrix_set1)>0||sum(matrix_set2)>0) 
      
      if(confirmer==1){ 
        print("The graph is not a Bipartite graph") 
        break 
         
      } 
       
    } 
    print(Bipartite_set1_final) 
    print(Bipartite_set2_final) 
     
    if(i==t){ 
      print("Done generating a bipartite graph") 
      return(c(Bipartite_set1_final, Bipartite_set2_final)) 
      break 
    } 
  } 
   
   
   
} 
 
 
 
 
# Graph G is expressed as {V,E} where nodes=V, links=E, s: vertices having hi
ghest degree, t=user defined interger for Kt,t bipartite graph 
#Reading the input from the bipartite_size5.csv for the bipartite graph size 
 
bipartite_size1<-read.csv("bipartite_size5.csv",as.is=FALSE,header = FALSE) 
ww<-tail(bipartite_size1,n=1) 
ww<-ww[[1]] 
 
#Calling the Find_Bipartite function  
Bipartite_set1_final<-Find_Bipartite(nodes, links, 3,ww) 
 
#This is the first disjoint set of the biparite graph 
Bipartite_set1_final[1:ww] 
m<-ww+1 
n<-2*ww 
#This is the second disjoint set of the biparite graph 
Bipartite_set1_final[m:n] 
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#Populating the e_bipartite in the Final Comparison data frame ie: Modularity
_matrix1 
Modularity_matrix1[counter_for_matrix,1]<- ww 
 
#Creating a data frame for bipartite graph and writing in a csv file where so
urce is the first disjoint set and destination is the second disjoint set. 
dfrm_bipartite <- data.frame(source = Bipartite_set1_final[1:ww], destination 
= Bipartite_set1_final[m:n]) 
filename <- paste('srcdestsampleBipartiteLinks',uu,ww,'.csv',sep='') 
write.table(dfrm_bipartite, file=filename, sep=",", row.names=FALSE, col.name
s=TRUE, append = FALSE) 
 
 
#Evaluating the bipartite modularity 
#The job submission script will evaluate the ./biLouvain after this file is d
one executing 
 
#Creating a data frame for the remainining graph and writing in a csv file 
dfrm_remaining<-anti_join(dfrm_all_links, dfrm_bipartite, by=c("source","dest
ination")) 
dfrm_remaining<-dfrm_remaining[!(dfrm_remaining$source %in% dfrm_bipartite$so
urce),] 
dfrm_remaining<-dfrm_remaining[!(dfrm_remaining$destination %in% dfrm_biparti
te$destination),] 
write.table(dfrm_remaining, file="srcdestsample22RemainingLinks.csv", sep=","
, row.names=FALSE, col.names=TRUE, append = FALSE) 
 
 
 
#Evaluating Cluset-Newman-Moore modularity for the entire graph. This is eval
uated by considering just the unique links 
links <- read.csv(filename_links, header=T, as.is=T) 
links_entire<-(unique(links[,c("source", "destination")])) 
 
net_entire<-graph.data.frame(d=links_entire,directed=F)  
 
class(net_entire) 
simplify(net_entire, remove.multiple = TRUE, remove.loops = TRUE) 
is_simple(net_entire) 
 
#Community detection using Clauset-Newman-Moore Algorithm from igraph package 
ceb_fast_entire<-cluster_fast_greedy(net_entire) 
 
#Evaluting the modularity of the communities formed by the CNM algorithm 
print("The modularity for the entire graph is:") 
complete_graph_modularity<-modularity(ceb_fast_entire) 
print(complete_graph_modularity) 
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#Populating the Qcnm in the Final Comparison data frame ie: Modularity_matrix
1 
Modularity_matrix1[counter_for_matrix,4]<- complete_graph_modularity 
 
#Evaluating Cluset-Newman-Moore modularity for the remainder graph. This is e
valuated by considering by removing the edges that constituted the Bipartite 
graph.  
links <- read.csv("srcdestsample22RemainingLinks.csv", header=T, as.is=T) 
links_remaining<-(unique(links[,c("source", "destination")])) 
 
net_remaining<-graph.data.frame(d=links,directed=F)  
 
class(net_remaining) 
simplify(net_remaining, remove.multiple = TRUE, remove.loops = TRUE) 
is_simple(net_remaining) 
 
#Community detection using Clauset-Newman-Moore Algorithm from igraph package 
ceb_fast_remaining<-cluster_fast_greedy(net_remaining) 
 
#Evaluting the modularity of the communities formed by the CNM algorithm 
print("The modularity for the remaining graph is:") 
ceb_modularity<-modularity(ceb_fast_remaining) 
print(ceb_modularity) 
 
#Populating the Qcnm in the Final Comparison data frame ie: Modularity_matrix
1 
Modularity_matrix1[counter_for_matrix,6]<- modularity(ceb_fast_remaining) 
 
#Printing the MODULARITY MATRIX 
Modularity_matrix1 
 
#Writing the modularity matrix to the csv file. This file is read by the Bipa
rtiteImplementation8ver14.csv to evaluate the composite modularity. 
write.table(Modularity_matrix1, file="Modularity_matrix11.csv", sep=",", row.
names=FALSE, col.names=TRUE, append = FALSE) 

 

3. Second R file- This is the second R file mentioned in the job submission file 

library(network) 
library(igraph) 
library(dplyr) 
 
 
#Declaring Modularity Matrix 
Modularity_matrix2<-matrix(nrow=1, ncol=8) 
 
#Converting it into a data frame to accomodate all the data types 
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Modularity_matrix2 <- as.data.frame(Modularity_matrix2) 
 
#Specifying the column names 
Column_names <- c("e_bipartite", "e_total", "nodes","Qcnm", "Qb", "RQcnm","Qc
omposite","Qdiff") 
colnames(Modularity_matrix2) <- Column_names 
 
 
 
#Reading the partially poplulated data frame from the previous execution of B
ipartiteImplementation8ver13.R 
Modularity_matrix1 <- read.csv("Modularity_matrix11.csv", header=T, as.is=T) 
Modularity_matrix2 <- read.csv("Modularity_matrix11.csv", header=T, as.is=T) 
Modularity_matrix2 
 
#Reading the bipartite modularity from the test2.csv file. This file was writ
ten when the job submission file was executed 
 
aa<-read.csv("test2.csv",as.is=FALSE,header = FALSE) 
#Consider the last entry from the test1.csv file 
aa<-tail(aa,n=1) 
 
#Insert the bipartite modularity value in the Modularity_matrix2 
Modularity_matrix2$Qb<-aa[[1]] 
 
 
#Total number of unique edges in the graph 
e_total<-Modularity_matrix2$e_total 
 
#Total number of bipartite edges in the graph 
e_bipartite<-Modularity_matrix2$e_bipartite 
 
#Total number of unique edges in the remainder graph 
e_remaining<-e_total-e_bipartite 
 
Modularity_matrix2 
 
#Now evaluating the composite modularity  
 
#Modularity of the bipartite graph as obtained from Pesantez and Kalyanaraman
(2016) 
Q_b<-Modularity_matrix2$Qb 
 
 
#Modularity of the remaining graph using CNM algorithm 
Q_cnm_remaining<-Modularity_matrix2$RQcnm 
 
#Modularity of the complete graph using CNM algorithm 
Q_cnm<- Modularity_matrix2$Qcnm 
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#Composite modulrity first component 
Q_B<-(e_bipartite/e_total)*Q_b 
 
 
#Composite modulrity second component 
Q_R<-(e_remaining/e_total)*Q_cnm_remaining 
 
 
#Composite modularity  
Q_composite<-(Q_B+Q_R) 
Q_composite 
 
#Populating the Qcomposite in the final Comparison data frame i.e.: Modularit
y_matrix2 
Modularity_matrix2$Qcomposite<- Q_composite 
 
#Difference between composite modularity and complete CNM modularity for the 
entire graph 
Q_diff<-Q_composite-Q_cnm 
print("The difference in the modularity is:") 
Q_diff 
 
#Populating the Qdiff in the final Comparison data frame ie: Modularity_matri
x2 
Modularity_matrix2$Qdiff<- Q_diff 
 
Modularity_matrix2 
 
#Writing the Modularity_matrix2 to the file. This is the final results file! 
write.table(Modularity_matrix2, file="Modularity_matrix21.csv", sep=",", row.
names=FALSE, col.names=!file.exists("Modularity_matrix21.csv"), append = TRUE
) 
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