
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

12-2017

Generalized Plot Matrices, Automatic Cognostics, and Efficient Generalized Plot Matrices, Automatic Cognostics, and Efficient

Data Exploration Data Exploration

Barret Schloerke
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Recommended Citation Recommended Citation
Schloerke, Barret, "Generalized Plot Matrices, Automatic Cognostics, and Efficient Data Exploration"
(2017). Open Access Dissertations. 1630.
https://docs.lib.purdue.edu/open_access_dissertations/1630

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/open_access_dissertations
https://docs.lib.purdue.edu/etd
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1630&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/1630?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1630&utm_medium=PDF&utm_campaign=PDFCoverPages

GENERALIZED PLOT MATRICES, AUTOMATIC COGNOSTICS, AND

EFFICIENT DATA EXPLORATION

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Barret Schloerke

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2017

Purdue University

West Lafayette, Indiana

ii

iii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. William Cleveland, Co-Chair

Shanti S. Gupta Distinguished Professor of Statistics

Dr. Ryan Hafen, Co-Chair

Adjunct Assistant Professor of Statistics

Dr. Bowei Xi

Associate Professor of Statistics

Dr. Vinayak Rao

Assistant Professor of Statistics

Approved by:

Dr. Hao Zhang

Department Head of Statistics

iv

ACKNOWLEDGMENTS

On the academic front, I would like to thank my co-chair advisors, Ryan Hafen

and Bill Cleveland. I am grateful for their consistent guidance and willingness to

take risks on new ideas. I would like to thank my long-time academic advisors: Di

Cook and Hadley Wickham. Without their encouragement and support over the past

decade, I would not be where I am today. If I have seen further, it is only by standing

on the shoulders of giants.

I am grateful to Purdue Statistics for providing an excellent environment for both

learning and research. Thank you Rebecca Doerge and Mark Ward for helping steer

my early stages at Purdue and always lending me an ear. Thank you Doug Crabill for

his willingness to share his deep technical knowledge at any moment. I am honored

to have been able to attend numerous Wednesday Night Probability Seminars.

To my parents, I can not thank you enough for your unconditional love and sup-

port. Whether it is your well timed advice or your nodding and smiles as I ramble

about a topic, I can not tell you how much I appreciate it.

And to Tracy, from traveling all across the globe to spending late nights in the

library, I am truly thankful for having you in my life. Your never ending patience,

encouragement, and love always makes me smile.

v

TABLE OF CONTENTS

Page

LIST OF FIGURES . viii

ABBREVIATIONS . xi

GLOSSARY . xii

ABSTRACT . xiii

1 INTRODUCTION . 1
1.1 ggduo : Generalized pairs plot for two-grouped data 2
1.2 autocogs: Metrics enabling detailed interactive data visualization . . . 3
1.3 gqlr: An R server GraphQL implementation 5
1.4 Thesis Organization . 7

2 GGDUO: GENERALIZED PAIRS PLOT FOR TWO-GROUPED DATA . . 11
2.1 ggplot2 . 11

2.1.1 Layered Grammar of Graphics 11
2.1.2 ggplot2 layers . 11
2.1.3 Plot creation . 13
2.1.4 Comparison . 14

2.2 Facets . 17
2.2.1 Facet wrap . 17
2.2.2 Facet grid . 20

2.3 Plot matrix . 22
2.3.1 Pairs plot . 23
2.3.2 ggmatrix . 29

2.4 ggduo : Plot matrix for two-grouped data 34
2.4.1 Column types . 36
2.4.2 User defined functions . 39

2.5 ggduo in practice . 40
2.5.1 Canonical correlation analysis 40
2.5.2 Multiple time series analysis . 42
2.5.3 Multiple regression diagnostics 44

2.6 Summary . 48

3 AUTOCOGS: METRICS ENABLING DETAILED INTERACTIVE DATA
VISUALIZATION . 49
3.1 trelliscopejs . 49

vi

Page
3.1.1 Data size . 49
3.1.2 Computation . 50
3.1.3 Summary statistics . 53

3.2 Cognostics . 57
3.3 Automatic cognostics for data visualization 59

3.3.1 Linear model example . 61
3.3.2 Framework . 62
3.3.3 Cognostic groups . 64

3.4 Cognostic groups . 65
3.4.1 Univariate . 65
3.4.2 Bivariate . 68
3.4.3 Counts . 73

3.5 ggplot2 layer matching . 75
3.5.1 Histogram . 75
3.5.2 Linear model and scatterplot 79

3.6 Summary . 83

4 GQLR: A GRAPHQL R SERVER IMPLEMENTATION 85
4.1 Application protocol interfaces . 85

4.1.1 Simple API . 86
4.1.2 REST and the Internet . 88
4.1.3 Custom response . 89
4.1.4 Balancing act . 90

4.2 Database storage . 91
4.3 GraphQL language . 92

4.3.1 Schema . 92
4.3.2 Argument and input type definitions 93
4.3.3 Schema type definition . 94
4.3.4 Scalar type definitions . 94
4.3.5 Enumeration type definitions 95
4.3.6 Interface type definition . 95
4.3.7 Union type definition . 96

4.4 Requests . 97
4.4.1 Queries . 98
4.4.2 Mutation . 102
4.4.3 Remaining GraphQL language 103

4.5 gqlr: A GraphQL R server implementation 103
4.5.1 R6 . 103
4.5.2 Execution . 107
4.5.3 Web service . 110

4.6 Summary . 110

5 SUMMARY . 111

vii

Page

5.1 Discussion and Future Work . 112
5.1.1 Interactive data exploration 112
5.1.2 Visualization syntax . 113

REFERENCES . 115

A R PACKAGE DESCRIPTIONS . 119

B DATA SETS . 123

C R PACKAGES . 127
C.1 GGally . 127
C.2 autocogs . 131
C.3 trelliscopejs . 132
C.4 gqlr . 132

VITA . 134

viii

LIST OF FIGURES

Figure Page

1.1 Model diagnostics are displayed in the plot matrix above using the GGally func-
tion ggnostic . 3

1.2 autocogs automatically produces four cognostic groups for a single layer
(histogram) plot . 5

1.3 “Friends of my friends” GraphQL communication graph 7

1.4 Thesis Organization . 9

2.1 Minimal coding for a scatterplot of tips data. 12

2.2 Scatterplot with a linear model line added using a different data source. . . 13

2.3 Empty ggplot2 plot with no layers displayed after extra calculations. . . . 14

2.4 Stock R scatterplot using the graphics package is printed immediately. . . 15

2.5 lattice scatterplot displaying using the grid framework. 16

2.6 Adding a ‘point’ layer to the base ggplot2 plot object created in an earlier
code chunk. 16

2.7 tip vs total bill with facets or conditioning variables. 18

2.8 tip vs total bill faceted by day. Each panel belongs to a given day in the
data. 19

2.9 tip vs total bill faceted by all existing day and time combinations. 20

2.10 tip vs total bill faceted in a grid pattern with time representing each row
and day representing each column. 21

2.11 tip vs total bill faceted in a grid pattern with sex and smoker combina-
tions representing each row and time and day combinations representing
each column. 22

2.12 Stock R graphics scatterplot matrix displaying the tips data set. 24

2.13 gpairs plot matrix from the gpairs R package displaying the tips data
set. 25

2.14 ggpairs plot matrix from the GGally R package displaying the tips
data set. 26

ix

Figure Page

2.15 Full ggplot2 plot object from the second row and first column of a ggmatrix
plot matrix. 27

2.16 Replacement plot displaying “Replacement Plot” in red. 28

2.17 The replacement plot is placed in the second row and first column. The
updated plot matrix is displayed. 29

2.18 Two fully displayed ggplot2 plot objects arranged using gridExtra. Du-
plicate axes and labels are present. The X axis does not align as the plots
are treated independently. It appears as two independent plots in one display.30

2.19 ggmatrix displaying a color legend on the right (default) side of the plot
matrix. 33

2.20 ggmatrix moving the legend to the bottom using ggplot2’s theme function.34

2.21 5th grade Australian student scholasitc scores vs their sex and hours of
weekly homework. 35

2.22 Altering the ggpairs upper and lower combo plot types. 37

2.23 two-grouped plot matrix using ggduo with no upper or lower triangle areas.38

2.24 Updating the combination types in a ggduo plot matrix. 39

2.25 Use a custom function to display a plot within a ggduo plot matrix. . . . 40

2.26 ggduo plot matrix displaying academic varaibles against psychological
varaibles. Continuous vs. continuous plots are displayed with a linear model.42

2.27 Stock stats R package time series plot. All variables are displayed on the
same axis. 43

2.28 Same elec_median data, but the data is displayed using the ggts func-

tion which calls ggduo . 44

2.29 Linear model diagnostics for a model predicting the maximal head with
in millimeters. 46

2.30 Each plot is colored according to species. Extra row diagnostics (head,
fitted, and sefit) are added to the dianostic plot matrix. 47

3.1 Each country’s maximum life expectancy value displayed as a histogram
with each color representing a continent. 52

3.2 Both higher life expectancy countries display linear model trends over time. 54

3.3 Lower life expectancy countries may not always display linear model trends
over time. 54

x

Figure Page

3.4 The sidebar on the left side of a trelliscopejs HTML widget can be
opened for panel layout control, displaying panel labels, filtering panels,
and sorting panels. 57

3.5 A cropped view of trelliscopejs filtering on countries whose maximum
life expectancy is lower than 70 years old. 58

3.6 A cropped view of trelliscopejs filtering on continent who matches the
regular expression “as”. 59

3.7 Theoretical framework of how multiple cognostic groups can be connected
to multiple plot layers. 63

3.8 Figure courtesy of [33]. There are three rules to tidy data: columns contain
variables, rows contain observations, and cells contain values. 65

3.9 Mapping of ggplot2 geoms to Univariate, Bivariate, and Count cognostic
groups . 76

3.10 The "Americas" histogram of life expectancy. 77

3.11 The "United States" life expectancy over time displayed as a linear
model and scatterplot combination. 80

3.12 A trelliscopejs widget of country life expectancy over time where the
panel ordering is displayed according to ascending R2 value of each panels
linear model. 83

xi

ABBREVIATIONS

API Application Protocol Interface

CCA Canonical Correlation Analysis

HTTP Hypertext Transfer Protocol

PDF Portable Document Format

REST Representational State Transfer

RESTful API that has REST qualities

URL Uniform Resource Locator

xii

GLOSSARY

Axes

Browser

Directed Graph

Host

Interface

All axis areas of a plot. Typically only X and Y.

Computer application that visits websites using the internet

A graph whose edges have a defined start and end

a web server with a unique URL

A point where two systems, subjects, organizations, etc., meet

and interact

Jittered

Overplotted

Points slightly altered from their original position to help over-

come overplotting

What occurs too many points are displayed to see the underlying

structure

Panel

Plot

Plotting area. This is not limited to the strips, axes, and plot

content. When used in the context of a plot matrix, it refers to a

single sub plot within the plot matrix.

A statistical graphic displaying the relationship between vari-

ables.

Plot content Plot area within the axes.

Server A machine that calculates, stores, retrieves, and communicates

information

Strip

Web Server

A panel label

A server that returns websites or data related to a website

URL, web address Uniform Resource Locator. Also the address of a World Wide

Web page

xiii

ABSTRACT

Schloerke, Barret Ph.D., Purdue University, December 2017. Generalized Plot Matri-
ces, Automatic Cognostics, and Efficient Data Exploration. Major Professors: Dr.
William Cleveland and Dr. Ryan Hafen.

Statistical visualization of large-scale data has become an increasingly essential

task in the era of big data. In particular, exploratory data analysis and visualization

is the first step towards any in-depth statistical modeling and analysis. Being able to

rapidly specify and generate visualizations regardless of data-scale is crucial. Trellis-

cope handles data visualization at scale by attaching cognostics (univariate metrics)

to each panel aiding in the organization of panels of interest. While Trelliscope pro-

vides a general framework for visualizing data at scale, there are several aspects that

can be improved to help users generate displays more rapidly (such as cognostics,

axis scales, etc.). When visually modeling complex data with Trelliscope, traditional

two-grouped plot matrices do not allow for a mixed-scale axis to display both con-

tinuous and discrete data natively. Web-based visualization systems like Trelliscope,

that retrieve information from a back-end service such as R, must maximize per-

formance for an engaging user experience. Addressing the mixed-scale plot matrix

axis, a generalized plot matrix is developed for two-grouped data which displays both

continuous and discrete data using appropriate visualization methods for each panel.

To compliment Trelliscope’s panel organization, automatic cognostic summaries are

established by mapping the context of what is visualized to classes of metrics that

are meaningful for each type of visualization layer at no additional user effort. Fi-

nally, communication from web-based visualization systems to back-end R services

is greatly improved by leveraging the GraphQL query language which minimizes the

number of required data queries needed to perform data extraction. Together, these

three contributions curtail the increasing complexity and scale of data visualization.

xiv

1

1. INTRODUCTION

Statistical visualizations of large-scale data has become an increasingly essential task

in the era of big data. In particular, exploratory data analysis and visualization is the

first step towards any in-depth statistical modeling and analysis. Since its release in

2000, the R programming language and environment [1] has becoming the top ranked

open source data analysis tool [2] [3] and has arose as a powerful and convenient

platform for performing data analysis and visualization with over 11,000 active, user

submitted packages (as of Sept. 2017 [4]) and a number of more packages are in

development on GitHub [5]. Various successful implementations have achieved in

building a scientific visualization library in R, including lattice [6], ggplot2 [7],

rbokeh [8], and plotly [9], to name a few. lattice implements trellis graphics for

R with powerful yet elegant high-level data visualization functions emphasizing on

multivariate displays. ggplot2 deconstructs higher level plots into a lower level of

data visualization grammar using layered graphics which facilitate publication-ready

data visualization. In this thesis, I develop

i) ggduo , an R function in GGally that produces generalized plot matrices for

two groups of variables,

ii) autocogs, an R package that automatically generates cognostics for a set of

plots, and

iii) gqlr, an R package which implements the GraphQL data query application

protocol interface.

2

1.1 ggduo : Generalized pairs plot for two-grouped data

ggplot2 offers a powerful graphics language for creating elegant and complex

plots, however it has certain limitations. For instance, it does not allow the dis-

playing of data sets with mixed scales (e.g., simultaneously display discrete and con-

tinuous scales) on the same axis. To incorporate this functionality, the R package

GGally provides several composite plots (i.e., multi-layered plots) that build on the

basic ggplot2 [7] plotting framework. GGally functions produce multivariate plots

such as generalized scatterplot matrices, and parallel coordinate plots are provided,

as well as network plots, survival models, and glyph maps for spatiotemporal data.

One important functionality in GGally is ggpairs . ggpairs an implementation

of the generalized pairs plot [10]. The generalized pairs plot displays a plot matrix

(all bivariate combinations of a single set of variables) that allows for a mixture of

both continuous and discrete variable types using the ggplot2 plotting framework.

Furthermore, ggpairs ’s plot matrix was generalized one step further to a general-

ized plot matrix which handles arbitrary ggplot2 plot objects in a variable number

of rows and columns.

In the first part of this thesis, I introduce a new function, ggduo that builds

on the structure of the ggmatrix function used to produce the generalized pairs

plot, ggpairs . Specifically, ggduo produces generalized plots for two groups of

variables (e.g. a matrix of X variables and a matrix of Y variables), as might be

modeled by multivariate regression diagnostics, canonical correlation analysis, or even

multivariate time series. For the case of multivariate regression diagnostics, I develop

ggnostic which displays common linear model diagnostic data against each of the

model’s explanatory variables. Figure 1.1 contains an example of ggnostic using

a linear model of flea data where each plot displays model diagnostic information

against each model explanatory variable. This plot would not have been possible in

either lattice or ggplot2 due to the mixture of axis scales and would have been

3

uninformative if rendered using ggpairs . I believe that the new function ggduo

will help analysts to look at their data to support better modeling.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●●●

●
●

●
●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●
●● ●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●●

●

● ●
●●

●
●

●
●

●

●
● ●

● ●

●

●

●

●●

●

●

●

●

●●●

●

●

●
●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●● ●●

●
●

●

●

●

●●

●●●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●
●

●●

●

● ●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●●●

●
●

●
●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●
●● ●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●●

●

●●
●●

●
●

●
●

●

●
● ●

●●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●
● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●● ●●

●
●

●

●

●

●●

●●●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●
●

●●

●

● ●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●● ●●

●
●

●
●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●
● ●●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●●

●

●●
●●

●
●

●
●

●

●
● ●

● ●

●

●

●

●●

●

●

●

●

●●●

●

●

●
● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
●
●

●
●

●

●

●
●

●

●●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

● ●●●

●
●

●

●

●

●●

●● ●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●
●

●●

●

● ●
●

●

●
●

●

● ●

●

●

●

species*** tars1*** tars2** aede1***

resid
sigm

a
hat

cooksd

Concinna Heikert. Heptapot. 120 150 180 210 240 110 120 130 140 120 130 140 150

−2

0

2

1.56

1.58

1.60

0.05

0.10

0.15

0.20

0.25

0.00

0.02

0.04

0.06

explanatory variables

di
ag

no
st

ic
s

lm(formula = head ~ species + tars1 + tars2 + aede1, data = GGally::flea)

Figure 1.1. Model diagnostics are displayed in the plot matrix above using
the GGally function ggnostic , which calls ggduo . Each panel of the
plot matrix displays the same original data with different combinations of
response and explanatory variables in each panel. Significance lines are
displayed as dashed lines while solid lines represent expected values.

1.2 autocogs: Metrics enabling detailed interactive data visualization

To examine the difference between independent subsets of the same data set, Ed-

ward Tufte introduced the notion of small multiples using trellis displays [11]. In

trellis displays, data are separated into independent subsets and a consistent visu-

alization method is applied to each subset. The result is a set of panels that are

displayed in a grid, resembling a garden trellis. These multi-panel display systems

have proven to be very effective tools for visualizing complex data sets in detail. How-

4

ever, when the count of data subsets becomes very large, it is often the case that there

are too many panels for the analyst to consume at one time. A simple idea put forth

by John Tukey [12] is to compute cognostics, metrics that help bring different, inter-

esting sets of panels in a display to the analyst’s attention and allow the analyst to

interactively sort and filter the panels. Cognostics can include statistical summaries,

descriptive variables, goodness-of-fit metrics, etc.

Groups of cognostics and ggplot2 layers are intimately connected. For instance,

a simple histogram in ggplot2 is created via a single histogram layer and is associ-

ated with four cognostic groups: univariate continuous cognostics, density cognostics,

histogram cognostics, and count cognostics. In the second part of this thesis, I de-

velop autocogs [13], an R package which automatically produces sets of standard

cognostic groups that would be commonly useful to the data analyst given their sup-

plied visualization objects. Figure 1.2 displays four groups of cognostics for the single

layer (histogram) plot in two side-by-side tables. Eighteen cognostics in total are

calculated. As an application, we demonstrate how autocogscan greatly enhance

the functionalities of trelliscopejs [14]. trelliscopejsis an HTML widget that

plot panels in an interactive trellis display which allows for sorting and filtering plot

panels according to supplied cognostics. While it is possible to manually specify all

the cognostics in trelliscopejs, autocogs greatly simplifies the user experience

by automatically providing default groups of cognostics complimentary to the panel

visualization.

5

group cog value group cog value

x

density x

min
max
mean
median
var

max density
max density location
unimodal p value
skew
kurt

37.58
80.65
64.66
67.05
87.33

0.05
70.14
0.99
-0.74
2.81

hist x

n

count min
count max
count mean
count median
count var
chisq

n
n na

0.00
18.00
6.82
6.00
25.78
0.00

300.00
0.00

Figure 1.2. autocogs automatically produces four cognostic groups for
a single layer (histogram) plot shown above. These cognostic groups are
shown in the two tables describing the cognostic group, name, and value.
All eighteen cognostics may be used within a trelliscopejs HTML wid-
get to aid in sorting and filtering plot panels.

1.3 gqlr: An R server GraphQL implementation

In 2012, Facebook began development of GraphQL, a backend agnostic data query

language and runtime. Data query API that allows data to be queried without re-

quiring knowledge how the data is stored. In doing so, GraphQL drastically reduces

the number of server requests created by the browser by using a dynamic and nested

query structure. For instance, when inspecting the names of a person’s friends of

6

their friends, it would normally require O(n2) query commands to finally realize the

full answer where n is the number of friends for each person. With GraphQL, the

dynamic query structure allows for the full request to be sent to the server and a

single, albeit, larger answer is returned. The submitted query command is separated

from the actual backend service, moving the implementation complexity to the data

backend service rather than the query submission process. Figure 1.3 displays the re-

duction in communication between a web browser client and the data server for both

a naive REST implementation and a GraphQL implementation. The naive REST im-

plementation requires O(n2) communications with the data server, while GraphQL

executes a single communication with a single return value. By decoupling the data

servers with web pages, the development cycles of both the web pages and data servers

are improved. However, there is no prior interface of GraphQL to R. Therefore, in

the third part of this thesis, I develop the gqlr R package, which implements a full

GraphQL server within R. gqlr allows R users to supply their own functions to sat-

isfy the data requirements of a submitted GraphQL query, thus enjoying the rapid

iteration time of R and production iteration time of GraphQL.

7

Figure 1.3. Time passes from top to bottom in this communication graph.
In “friends of my friends” example, the Naive REST implementation re-
quires O(n2) queries (where n is the number of friends for each person),
while the GraphQL implementation solves the example query in a single
communication to the data server.

1.4 Thesis Organization

The structure of this thesis is presented in Figure 1.4. The main contributions of

this thesis include:

i) ggduo , an R function in GGally that produces generalized plot matrices for

two groups of variables (Chapter 2),

ii) autocogs, an R package that automatically generates cognostics for a set of

plots (Chapter 3), and

iii) gqlr, an R package which implements the GraphQL data query application

protocol interface (Chapter 4).

All components of this thesis are developed within the R environment and relate

to the visualization and exploration of data.

8

Building on a grammar of graphics, ggplot2 is a layered plotting framework that

GGally utilizes for visualizing data. Each plot within the cell of a ggmatrix plot

matrix is a fully defined ggplot2 plot object. Using ggmatrix as a plot matrix

foundation, two main functions apply different variable combinations to produce dif-

ferent plot matrices: ggpairs , a generalized pairs plot, and ggduo , a generalized

plot matrix for two-grouped data. ggduo is further extended by ggnostic , a gen-

eralized plot matrix for model diagnostics, and ggts , a generalized plot matrix for

time series data. In Chapter 2, I develop the generalized plot matrix for two-grouped

data and its extensions.

In Chapter 3, I develop autocogs, an R package that inspects a plot’s data vi-

sualization layers to produce standard groups of cognostics. Currently, ggplot2 plot

objects are understood by autocogs; in future work, autocogs will be able to un-

derstand how to automatically produce cognostics for plot objects produced by the

popular R plotting libraries plotly, lattice, and rbokeh. Once the cognostic

groups are produced, they may be utilized within the interactive HTML widget

trelliscopejs to sort and filter visualization panels. The R package htmlwidgets [15]

generates HTML widgets which facilitate interactive web visualizations in R. trelliscopejs can

display data visualization panels from many R packages, of which include ggplot2,

plotly, lattice, and rbokeh.

In Chapter 4, I explore the GraphQL data query API and develop the R package

gqlr. GraphQL was originally built to provide a consistent communication link

between websites in the browser and data servers. The package gqlr implements a

GraphQL data server within the R environment. gqlr is built to handle GraphQL

data queries and expose statistical routines provided by R and its packages. While

gqlr was originally pursued to aid data extraction with trelliscopejs, it will be

integrated within trelliscopejs as development is continued.

9

Figure 1.4. Thesis Organization. Shaded regions represent different con-
texts within the R environment. Black bordered square boxes represent R
packages. GGally is built upon ggplot2, and ellipses within GGally rep-
resent package functions. Solid arrows represent functional dependencies
or R package interactions. Dashed arrows represent possible future in-
teractions. The bolded R packages and GGally functions correspond to
different chapters within this thesis. Summary descriptions of these pack-
ages are provided in Appendix A.

10

11

2. GGDUO: GENERALIZED PAIRS PLOT FOR TWO-GROUPED

DATA

2.1 ggplot2

2.1.1 Layered Grammar of Graphics

The R data visualization package ggplot2 is based on a Layered Grammar of

Graphics [16]. During consulting meetings with students and faculty in helping them

produce statistical visualizations of their data, the authors of the package noticed that

many clients had trouble producing plots quickly and have difficulties understanding

how the plots were generated. This motivated them to develop the ggplot2 package,

which is based on the foundations of The Grammar of Graphics [].

2.1.2 ggplot2 layers

Most of the standard statistical graphical displays take the form of single-layered

plots. For example, a scatterplot consists of a point layer while a boxplot contains

a boxplot layer. There is no formal name for the data graphic where horizontally

jittered points are displayed on top of a vertical boxplot. Each layer is understood as

a component to the plot, therefore the plot as a whole can be understood. Wickham

did state that while a layered grammar guides a well formed graphic [16], he analogizes

“good grammar is just the first step in creating a good sentence” [16].

Each plot consists of three components: the data, geom, and scales. Respectively,

each of the component defines what is being displayed, how it is displayed and where

it is being displayed. By inferring from the supplied data source and geom defaults,

many plots can be displayed without much coding.

12

p <- ggplot(tips, aes(total_bill, tip)) +
geom_point()

p

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ● ●

●

●

●

●●

●

●
●

●●
●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

2.5

5.0

7.5

10.0

10 20 30 40 50

total_bill

tip

Figure 2.1. Minimal coding for a scatterplot of tips data.

Typically, each layer of a plot uses the same data source to explore different aspects

of the data set. Multi-layered plots may use multiple data sources where it would

not be appropriate to combine into a single data source. Added data sources usually

display contextual information (such as a map) or summary statistics (such as a mean

or linear model). Figure 2.2 manually adds a linear model line on top of a scatterplot.

tip_lm <- broom::tidy(lm(tip ~ total_bill, data = tips))$estimate
(tip_lm_dt <- data.frame(
intercept = tip_lm[1],
slope = tip_lm[2]

))
intercept slope
1 0.9202696 0.1050245
p +
geom_abline(
data = tip_lm_dt,
aes(slope = slope, intercept = intercept)

)

13

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ● ●

●

●

●

●●

●

●
●

●●
●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

2.5

5.0

7.5

10.0

10 20 30 40 50

total_bill

tip

Figure 2.2. Scatterplot with a linear model line added using a different
data source.

2.1.3 Plot creation

All plot layers do not need to exist at the time of plot object inception. Each layer

of a ggplot2 plot may be added one by one to the original plot object at different

times of the code execution. The simplist of plot objects consists of a default data

set and a default set of aesthetics.

minimal_plot <- ggplot(data = tips, aes(total_bill, tip))
perform extra calculations
1 + 1
[1] 2
plot display delayed until print time
minimal_plot

14

2.5

5.0

7.5

10.0

10 20 30 40 50

total_bill

tip

Figure 2.3. Empty ggplot2 plot with no layers displayed after extra
calculations.

No layers are displayed as none have been provided. However, the scales have

been infered from the data aesthetics: X: total_bill and Y : tip .

2.1.4 Comparison

Building the plot up layer by layer and storing it as an R object until printed does

not follow the existing patterns in standard R graphics. In Figure 2.4, the R core

package graphics [1] displays information in a plot immediately upon function call.

There is no ability to delay the display of the plot after the initial plot function has

been called when using the graphics package.

g <- graphics::plot(tip ~ total_bill, data = tips)

15

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●●●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●
●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●● ●

●

●

●
●

●

●

● ● ●

●

●

●

●●

●

● ●
●●

●
●

●

●

●●

● ●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●●
●

●

● ●
●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
● ●

●

●
●

●

●

● ● ●

●

●

●●●

●

10 20 30 40 50

2
4

6
8

10

total_bill

tip

Figure 2.4. Stock R scatterplot using the graphics package is printed
immediately.

nothing is stored, as plot is already displayed
g
NULL

lattice graphics meets in between ggplot2 and graphics, as all layers must

be supplied at plot creation, but the plot is not displayed until print time. Two

prior ggplot2 examples, Figure 2.1 and Figure 2.3, both displayed the ability to

delay the printing of the ggplot2 plot object. lattice graphics can also delay the

display of the plot object as shown in Figure 2.5. At print time, both lattice and

ggplot2 convert their internal plot objects to be displayed using the grid package.

The grid package does not implement full statistical plots, but rather it implements

a R plotting framework to be used by other packages like ggplot2 and lattice.

l <- lattice::xyplot(tip ~ total_bill, data = tips)
display plot
l

16

total_bill

tip

2

4

6

8

10

10 20 30 40 50

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ● ●

●

●

●

●●

●

● ●
●●

●

●

●

●

●●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●
● ●

●

●

●●
●

●

Figure 2.5. lattice scatterplot displaying using the grid framework.

Finally, after executing the graphics and lattice examples, we can add a point

layer to the minimal ggplot2 plot example in Figure 2.6.

layer added after plot inception
minimal_points <- minimal_plot + geom_point()
displays plot
minimal_points

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ● ●

●

●

●

●●

●

●
●

●●
●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

2.5

5.0

7.5

10.0

10 20 30 40 50

total_bill

tip

Figure 2.6. Adding a ‘point’ layer to the base ggplot2 plot object created
in an earlier code chunk.

17

Modularization of the ggplot2 code allows for customization of each layer added

to the plot. This leads to a smaller, more consistent interface for each layer function.

2.2 Facets

Winston Chang, maintainer of ggplot2, explains facet’ing as “[ploting] subsets of

data into separate panels” [17]. This is achieved using existing conditioning variables

in the supplied data set. For each conditioning combination, a panel is produced.

This technique commonly refered to as small multiples [11]. The same style of plot

is displayed, but each plot is constructed from an independent subset of the data.

Typically, only one or two conditioning variables are used, but any number of variables

may be used when creating small multiples or faceting a ggplot2 plot.

Facets are useful when looking at the interaction of conditioning variables. Once

all existing combinations of the conditioning variables have been made, subsets of

the data are displayed in each of the panels with the strip (panel label) of the panel

displaying the conditioning variable information. Missing combinations can either

be dropped or display an empty panel. ggplot2’s wrapping facet will drop missing

combinations by default, and ggplot2’s faceted grid will display an empty panel for

missing combinations. In ggplot2, all variables are considered discrete when used as

conditioning variables.

2.2.1 Facet wrap

There are two types of faceting in ggplot2: facet wrap and facet grid. Facet

wrap displays each panel starting from the top row to the bottom row and left to

right within each row. The number of rows and / or columns can be specified to ease

the guessing work made by ggplot2. If no facet row or column counts are supplied,

ggplot2 uses grDevices [1] algorithm, n2mfrow(n) , to determine a sensible number

of rows and columns. Figure 2.7 contains no faceting variables, while Figure 2.8 and

Figure 2.9 condition on one and two variables respectively.

18

p <- ggplot(tips, aes(total_bill, tip)) + geom_point()
p +
labs(title = "No Facets")

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ● ●

●

●

●

●●

●

●
●

●●
●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

2.5

5.0

7.5

10.0

10 20 30 40 50

total_bill

tip

No Facets

Figure 2.7. tip vs total bill with facets or conditioning variables.

19

p +
facet_wrap(~ day, labeller = label_both) +
labs(title = "Facet Wrap (~ day)")

●

●● ●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●● ●

●

●

●
●

●

●

● ● ●

●

●

●

●●

●

● ●●●●

●

●
●

●

●
●

●

●●

●

●●
●

●

● ●

●
●

●
●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●●●

● ●

●

●

●

●
●

●
●

●

● ●
●●

●

●
●
●

●

● ●
●

●● ●

●

●

●

●

●

●

●●

●●● ●

●

●
●

●

●

● ● ●

●

●

●●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●
●

●
●●

● ●

●

●
●

●

●
●●

●
●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

day: Sat day: Sun

day: Thur day: Fri

10 20 30 40 50 10 20 30 40 50

2.5

5.0

7.5

10.0

2.5

5.0

7.5

10.0

total_bill

tip

Facet Wrap (~ day)

Figure 2.8. tip vs total bill faceted by day. Each panel belongs to a given
day in the data.

20

p +
facet_wrap(~ day + time, labeller = label_both) +
labs(title = "Facet Wrap (~ day + time)")

●

●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●
●● ●

●

●

●
●

●

●
● ●●

●
●

●

●●

●
● ●●●●

●

●
●

●

●
●

●

●●

●

●●
●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●
●●●

●

●

●

●
●

●
● ●

●

●
●

●

●
●

●●

●

●

●●

●

●
●

●

●

●●●

● ●

●

●

●

●
●

●
●

●

● ●
●●

●

●
●
●

●

● ●
●

●● ●

●

●

●

●

●

●

●●

●●● ●
●

●
●

●

●

●● ●

●

●

●●●

●

●

●

●

●
●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●
●

●
●●

● ●

●

●
●

●

●
●●

●
●

●

●
●

●
●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

day: Fri

time: Dinner

day: Sat

time: Dinner

day: Sun

time: Dinner

day: Thur

time: Lunch

day: Thur

time: Dinner

day: Fri

time: Lunch

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

2.5

5.0

7.5

10.0

2.5

5.0

7.5

10.0

total_bill

tip

Facet Wrap (~ day + time)

Figure 2.9. tip vs total bill faceted by all existing day and time combina-
tions.

2.2.2 Facet grid

Facet grid forces a two dimensional, matrix-like layout when faceting a plot. The

layout involves two sets of conditioning variables: the X conditioning variables and

the Y conditioning variables. These two sets of conditioning variables pre-determine

how many rows (Y) and columns (X) are presented.

21

p +
facet_grid(time ~ day, labeller = label_both) +
labs(title = "Facet Grid (time ~ day)")

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●
●● ●

●

●

●
●

●

●

●●●

●

●

●

●●

●

● ●
●●

●

●

●
●

●

●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●●●

● ●

●

●

●

●
●

●
●

●

● ●
●●

●

●
●
●

●

● ●
●

●● ●

●

●

●

●

●

●

●●

●●
● ●

●

●
●

●

●

●● ●

●

●

●●●

●
●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●
●

●

●●

● ●

●

●
●

●

●
●●

●
●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

day: Thur day: Fri day: Sat day: Sun

tim
e: Lunch

tim
e: D

inner

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

2.5

5.0

7.5

10.0

2.5

5.0

7.5

10.0

total_bill

tip

Facet Grid (time ~ day)

Figure 2.10. tip vs total bill faceted in a grid pattern with time repre-
senting each row and day representing each column.

Figure 2.10 displays time on the rows (Y) and day on the columns (X). The

facet_grid formula follows the R stats::lm linear model formula of y ~ x .

Multiple variables can be used in either the X position or the Y position. This allows

the user to display a column combination set against another column combination

set. Using multiple conditioning variables within facet grid in Figure 2.11, both Male

and Female smokers during Sunday Dinner tip value does not follow a positive linear

trend as the total bill increases.

22

p +
geom_smooth(method = lm, se = FALSE) +
facet_grid(sex + smoker ~ time + day, labeller = label_both)

●

●

●●

●

●

●

●

●●

●

●
●

●

●
● ●

●
●

●

●

● ●●

●

●

●●●
●
●

●

●●
●

●●

●

●

●
●●

●
●

●
●

●

●

●●
●

●

●

●
●

●

●

●●

●●

●

●

●
●

●●
●

● ●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●●

●

●
●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●
●

●●
●

●

●

●

●●
●

●●

●

●

●

●

●

●●

●

●

●

●

● ●

●

● ●
●

● ●

●

●

●●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●●

●

●●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

time: Lunch

day: Thur

time: Lunch

day: Fri

time: Dinner

day: Thur

time: Dinner

day: Fri

time: Dinner

day: Sat

time: Dinner

day: Sun

sm
oker: N

o

sex: F
em

ale

sm
oker: Yes

sex: F
em

ale

sm
oker: N

o

sex: M
ale

sm
oker: Yes

sex: M
ale

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

2.5

5.0

7.5

10.0

2.5

5.0

7.5

10.0

2.5

5.0

7.5

10.0

2.5

5.0

7.5

10.0

total_bill

tip

Figure 2.11. tip vs total bill faceted in a grid pattern with sex and smoker
combinations representing each row and time and day combinations rep-
resenting each column.

2.3 Plot matrix

ggduo is continuation of prior work in the GGally R package. In this section,

I will cover how a pairs plot is different than a small multiple, background on the

scatterplot matrix and generalized pairs plot matrix, and the ggmatrix object that

generalized the plot matrix used in ggduo .

23

2.3.1 Pairs plot

As mentioned earlier in the chapter, ggplot2 is designed to allow plots to be built

layer by layer and not rendered until a final print command is executed. ggplot2 plot

objects has some implementation rules it follows when faceting a plot:

1. Each faceted panel must share the same original X and Y columns.

2. Each faceted panel’s data must be independent of all other panels in the same

plot.

3. Each plot must be created with the same layers.

Following these rules allows for the implementation of small multiples. Small

multiples are repetitions of plots with identical layers, but each plot is comprised of

different data. Small multiples were popularized by Edward Tufte in his 1983 paper

Visual Display of Quantitative Information [18]. The facet_wrap and facet_grid

functions will produce a multi-panel output in the form of small multiples.

A pairs plot, originally referred to as a “draftsman’s plot” [19], violates all three

principles of a small multiple:

1. Each panel is comprised of a different X and Y combination.

2. Each panel shares the same underlying data.

3. Each panel may be created with different layers that better suited for the data

types.

The original scatterplot matrix was only displayed using a scatterplot for each

sub panel. The Generalized Pairs Plot by Emerson et. al., suggested that a pairs

plot should not be restricted to just continuous scatterplots. A pairs plot should

be generalized to allow for discrete data to be displayed as well as continuous data.

A scatterplot matrix is not appropriate for discrete data. In a discrete data versus

discrete data plot, all of the data points would be overplotted onto the unique discrete

24

combinations. This overplotting renders the discrete only pairs plot combinations

uninterpretable. The bottom right quadrant of the pairs plot in Figure 2.12 display

eight unique points between smoker and day, but do not convey that they really

contain 244 points.

graphics::pairs(tips[c("total_bill", "tip", "smoker", "day")])

total_bill

2 4 6 8 10

●

●

●
●● ●

●

●

● ●

●

●

●
●
●

●

●

●●
●

●
●

●

●

●
●

●●

●
●

●

●
●

●
●

●

● ●
●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●
● ●

●
●

●

●

●
●

●
● ●

● ●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●
●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●
●

●

● ●
●

●

●
●●
●

●

●

●●

●

●

●
●
●

●

●

●●
●
●
●

●

●

●
●

●●

●
●

●

●
●

●
●

●

●●
●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●
●●
●
●

●

●

●
●

●
●●

●●

●

●
●
●

●
●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●
●

●

●
●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●
●

●

●

●

●
●

●

●●

●

●
●

●
●

●
●

●

●●

1.0 1.5 2.0 2.5 3.0 3.5 4.0

10
30

50

●

●

●
●●
●

●

●

●●

●

●

●
●
●

●

●

●●
●
●
●

●

●

●
●

●●

●
●

●

●
●

●
●

●

●●
●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●
●●
●
●

●

●

●
●

●
●●

●●

●

●
●
●
●
●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●
●

●

●
●
●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●
●

●

●

●

●
●

●

●●

●

●
●

●
●

●
●

●

●●

2
4

6
8

10

●
●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●●

●

●

●●

●

●
●

●

●

●●●

● ●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●
●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●● ●

●

●

●
●

●

●

● ●●

●

●

●

●●

●

● ●●●●
●

●

●

●●

● ●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●●
●

●

● ●
●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●● ●

●

●
●

●

●

● ● ●

●

●

●●●

●

tip

●
●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●
●

●

●

●
●●

●

●

●

●
●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

● ●

●

●

●●

●

●
●
●

●

● ●●

● ●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●●
● ●

●

●

●

●

●
●

●

●
●

●
●
●

●
●
●

●

●
●●●
●

●

●
●

●

●

●● ●

●

●

●

●●

●

●●●
●●
●
●

●

●●

●●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●●
●

●

●●●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●● ●

●

●
●

●

●

● ●●

●

●

●●●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●
●

●

●

●
●●

●

●

●

●
●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●●

●

●

●●

●

●
●
●

●

●●●

●●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●●

●

●

●

●

●
●

●

●
●

●
●
●

●
●
●

●

●
●●●
●

●

●
●

●

●

●●●

●

●

●

●●

●

●●●
●●

●
●

●

●●

●●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●●
●

●

● ●
●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●●

●

●
●

●

●

●●●

●

●

●●●

●

●● ● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●●●●● ●●● ●● ●● ●●●● ●●●●● ●● ● ●●●●● ●● ●●

●

●

●

●

●●● ●

● ●●

●

●

●

● ●

●●

●●

●

●●●

●

●●

●

● ●● ● ●●

●

●

● ●

●

●●● ●

●

● ● ●●

●

● ● ●

●

●

●● ●●●● ●●● ●●●●●● ●● ●● ●●●●● ●●● ●

●

● ● ● ●●●● ●●●● ●● ● ●● ● ●●● ● ●● ●●

●

●● ●

●● ●●● ●● ●●●● ●●● ●● ●

●

● ●● ●● ● ●●●

●

● ●●● ●●● ● ●● ● ●●● ●●

●

● ●● ●●● ●●●●

●

● ●●

●●

●●●

●●

●

●

● ●

●●

●●

●● ● ● ●●● ●● ●● ●● ●● ●● ●● ●●● ●●● ●●●●● ●●● ● ●● ●●● ●● ●●● ●● ●● ● ●● ●●● ●● ●●

●

●

●

●

●●● ●

● ●●

●

●

●

● ●

● ●

●●

●

●●●

●

●●

●

● ●● ● ●●

●

●

● ●

●

●●● ●

●

● ●● ●

●

● ●●

●

●

●● ●● ●● ●●● ●●● ●● ● ●● ●●●● ●● ● ●● ●●

●

● ● ●●●●●●●●● ●● ●●● ●●●●● ●●●●

●

●● ●

● ● ●● ●● ●●●● ●●● ●● ●●

●

●● ● ●● ●●● ●

●

● ●●● ●●● ● ●●●●●●● ●

●

● ●● ●●● ●● ●●

●

● ●●

●●

●● ●

●●

●

●

●●

● ●

●●

● ●

smoker

1.
0

1.
4

1.
8

●●● ●●●●●●●●●●●●●●●

●

●

●

●

●●●●

●●●

●

●

●

●●

●●

●●

●

●●●

●

●●

●

●●●●●●

●

●

●●

●

●●●●

●

●● ●●

●

●●●

●

●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●● ●●●●●●●●●●●●●●

●

●●●

●●●● ●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●● ●●●●●●

●

●●●●●●●●●●

●

●●●

●●

●●●

●●

●

●

●●

●●

●●

●●

10 20 30 40 50

1.
0

2.
0

3.
0

4.
0

●● ● ●●●● ●●●● ●● ●● ●● ●●

●● ●● ●●●●● ●●● ●● ●● ●●●● ●●

●●● ●● ● ●●●●● ●● ●●

●●● ●●●● ●● ●●● ●●● ● ●●●● ●

●●● ●●● ●● ●● ● ●●

●●● ● ● ●●● ●●● ●

●●●● ● ●●●●●

●●●● ●

●● ●●●●●● ●● ●● ●●●●● ●●● ●●● ● ● ●●●● ●●●●

●● ● ●● ● ●●● ● ●● ●● ● ●● ●

●● ●●

● ●● ●●●● ●●● ●● ●●● ●● ●●

● ●●●● ● ●●● ●●● ● ●●

● ●●● ●● ●● ●● ●●● ●

●●● ●● ●●

●● ●●●●● ●● ● ● ●●●●●

●

● ● ●●● ●● ●● ●● ●● ●● ●● ●●

● ●●● ●●●●● ●●● ● ●● ●●● ●● ●●

● ●● ●● ● ●● ●●● ●● ●●

●●● ●●●● ●● ●●● ●●● ●● ●●● ●

●●●● ●● ●● ●● ● ●●

● ●● ●● ●●● ●● ● ●

● ● ●● ●●●●●●

●● ●● ●

●● ●●● ●● ● ●● ●●●● ●● ● ●● ●●● ● ● ●●●●●●●●●

●● ●●● ●●●●● ●●●● ● ●● ●

● ● ●●

●● ●●●● ●●● ●● ●● ●●● ● ●●

●●● ●● ● ●●● ●●● ● ●●

●●●●● ● ●● ●● ●●● ●

● ●● ●● ●●

●●●● ● ●● ●●●● ● ●●●●

●

1.0 1.2 1.4 1.6 1.8 2.0

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●● ●● ●●●●●●● ●● ●●● ●●●● ●

●●● ●●● ●●●●●●●

●● ●●● ●●●●● ●●

●●● ●●●● ●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●●●● ●●●●

●●●●

●●●●●●●●●●●●●● ●●●●●

●●●●● ●●●●●●●●●●

●●●●●●● ●●●●●●●

●●●● ●●●

●● ●●●●● ●● ●●●● ●●●

●

day

Figure 2.12. Stock R graphics scatterplot matrix displaying the tips
data set.

Emerson et.al. discussed using a generalized pairs plot to handle the mix of vari-

able types by providing different plotting layers for different data types. The general-

ized pairs plot displays the same collection of data using different axes but allows for a

mix of plotting methods with both continuous and discrete plot axes. This addresses

the issue of overplotting in discrete columns when displaying data in a scatterplot ma-

trix. Figure 2.13 and Figure 2.14 are two plotting methods to handle the discrete data

overplotting issue. The gpairs [20] R package is printed using lattice graphics (Fig-

ure 2.13), while the GGally R package prints using ggplot2 graphics (Figure 2.14).

25

gpairs::gpairs(tips[, c("total_bill", "tip", "smoker", "day")])

total_bill

2 4 6 8 10

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

10
20

30
40

50

S
un

S
at

F
ri

T
hu

r

2

4

6

8

10

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ● ●

●

●

●

●●

●

● ●
●●

●

●

●

●

●●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●

tip

●

● ●● ● ●●

●●●

●● ●● ● ●●
smoker

Ye
s

N
o

10 20 30 40 50

S
un

S
at

F
ri

T
hu

r

●●

●● ●●

●

●●● ●●

●● ●●●●

● ●

No Yes

day

Figure 2.13. gpairs plot matrix from the gpairs R package displaying

the tips data set.

26

pm <- ggpairs(tips, c("total_bill", "tip", "smoker", "day"))
pm

●
●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●●

●

●

●●

●

●
●

●

●

●●●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●
●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●● ●

●

●

●
●

●

●

● ●●

●

●

●

●●

●

● ●●●●
●

●

●

●●

● ●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●●
●

●

● ●
●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
● ●

●

●
●

●

●

● ● ●

●

●

●●●

●

Corr:

0.676

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●

●
●●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

N
o

Yes

total_bill tip smoker day

total_bill
tip

sm
oker

day

0 10 20 30 40 50 2.5 5.0 7.5 10.0 No Yes Thur Fri Sat Sun

0.00

0.02

0.04

2.5

5.0

7.5

10.0

0
5

10
15

0
5

10
15

0.02.55.07.510.0

0.02.55.07.510.0

0.02.55.07.510.0

0.02.55.07.510.0

Figure 2.14. ggpairs plot matrix from the GGally R package displaying

the tips data set.

gpairs::gpairs was originally built to handle the generalization of the pairs plot

to include discrete data. Unfortunately, this is written using lattice graphics and

does not utilize the ggplot2 framework. GGally::ggpairs was originally written

as an independent port of of gpairs to the ggplot2 framework but with portability

and modularization kept in mind.

GGally’s ggpairs addressed the portability and modularization by

1. making each sub plot an independently functioning ggplot2 plot. Figure 2.15

displays how a sub plot may be retrieved.

2. allowing each sub plot to be replaced after the initial plot matrix is created.

Figure 2.16 creates a new plot that is placed inside the matrix in Figure 2.17.

27

3. and not displaying the plot matrix until the print command is executed.

Similar to earlier ggplot2 examples, the displaying of a GGally plot matrix is

delayed until print time as in Figure 2.17.

retrieve the second row, first column sub plot
of the tips plot matrix
pm[2,1]

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ● ●

●

●

●

●●

●

●
●

●●
●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

2.5

5.0

7.5

10.0

10 20 30 40 50

total_bill

tip

Figure 2.15. Full ggplot2 plot object from the second row and first column
of a ggmatrix plot matrix.

28

replacement_plot <- ggally_text(
"Replacement\nPlot",
aes(color = "red"),
size = 6

)
replacement_plot

Replacement

Plot

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Figure 2.16. Replacement plot displaying “Replacement Plot” in red.

29

insert the new plot into the second row, first column
of the tips plot matrix
pm[2,1] <- replacement_plot
display the updated plot matrix
pm

Replacement

Plot

Corr:

0.676

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●

●
●●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

N
o

Yes

total_bill tip smoker day

total_bill
tip

sm
oker

day

0 10 20 30 40 50 2.5 5.0 7.5 10.0 No Yes Thur Fri Sat Sun

0.00

0.02

0.04

0.00

0.25

0.50

0.75

1.00

0
5

10
15

0
5

10
15

0.02.55.07.510.0

0.02.55.07.510.0

0.02.55.07.510.0

0.02.55.07.510.0

Figure 2.17. The replacement plot is placed in the second row and first
column. The updated plot matrix is displayed.

2.3.2 ggmatrix

The ggmatrix object is used to handle two main situations: handle mixed plot

scales and contain the necessary information for displaying a plot matrix.

30

Plot scales

ggplot2 prevents discrete scales from being mixed with continuous scales. Two

different scales for the same axis is not possible in a multi panel ggplot2 plot as

ggplot2 is built on the small multiple princple of displaying similar scales in every

faceted panel. Only one scale type is used per ggmatrix panel. This keeps the original

‘per panel’ logic intact.

Produce two related mixed-axes plots in the same graphic could only be achieved

using the gridExtra [21] or grid [1] R packages before ggmatrix . Both of these

existing methods behaved like a side by side, fully printed plots, rather than a native

plot matrix.

p1 <- pm[1,4]
p2 <- pm[2,4]
gridExtra::grid.arrange(p1, p2, ncol = 1)

●
●●

●
●

●

●

●

●
● ●

●

10

20

30

40

50

Thur Fri Sat Sun

day

to
ta

l_
bi

ll

●

●

●

●

●

●

●
●

2.5

5.0

7.5

10.0

Thur Fri Sat Sun

day

tip

Figure 2.18. Two fully displayed ggplot2 plot objects arranged using
gridExtra. Duplicate axes and labels are present. The X axis does not
align as the plots are treated independently. It appears as two independent
plots in one display.

31

ggmatrix allows for arbitrary scales per panel. When used properly, indepen-

dently produced sub plots deliver common axes within each row and column. This

displays a cohesive and interpretable plot matrix structure.

Display information

The necessary information includes the number of rows and columns, label in-

formation, ggplot2 display theme information, how plot strips should be displayed,

default plot data, and individual plot information.

str(pm)

Custom str.ggmatrix output:
To view original object use 'str(pm, raw = TRUE)'

List of 19
$ data :'data.frame': 244 obs. of 7 variables:
..$ total_bill: num [1:244] 17 10.3 21 23.7 24.6 ...
..$ tip : num [1:244] 1.01 1.66 3.5 3.31 3.61 4.71 2 3.12 1.96 3.23 ...
..$ sex : Factor w/ 2 levels "Female","Male": 1 2 2 2 1 2 2 2 2 2 ...
..$ smoker : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ...
..$ day : Factor w/ 4 levels "Thur","Fri","Sat",..: 4 4 4 4 4 4 4 4 4 4 ...
..$ time : Factor w/ 2 levels "Lunch","Dinner": 2 2 2 2 2 2 2 2 2 2 ...
..$ size : int [1:244] 2 3 3 2 4 4 2 4 2 2 ...
$ plots :List of 16
..$: chr "PM; aes: c(x = total_bill); fn: {wrap: 'ggally_densityDiag'}; gg: FALSE"
..$: chr "PM; aes: c(x = tip, y = total_bill); fn: {wrap: 'ggally_cor'}; gg: FALSE"
..$: chr "PM; aes: c(x = smoker, y = total_bill); fn: {wrap: 'ggally_box_no_facet'}; gg: FALSE"
..$: chr "PM; aes: c(x = day, y = total_bill); fn: {wrap: 'ggally_box_no_facet'}; gg: FALSE"
..$: chr "PM; ggplot2 object; mapping: c()"
..$: chr "PM; aes: c(x = tip); fn: {wrap: 'ggally_densityDiag'}; gg: FALSE"
..$: chr "PM; aes: c(x = smoker, y = tip); fn: {wrap: 'ggally_box_no_facet'}; gg: FALSE"
..$: chr "PM; aes: c(x = day, y = tip); fn: {wrap: 'ggally_box_no_facet'}; gg: FALSE"
..$: chr "PM; aes: c(x = total_bill, y = smoker); fn: {wrap: 'ggally_facethist'}; gg: FALSE"
..$: chr "PM; aes: c(x = tip, y = smoker); fn: {wrap: 'ggally_facethist'}; gg: FALSE"
..$: chr "PM; aes: c(x = smoker); fn: {wrap: 'ggally_barDiag'}; gg: FALSE"
..$: chr "PM; aes: c(x = day, y = smoker); fn: {wrap: 'ggally_facetbar'}; gg: FALSE"
..$: chr "PM; aes: c(x = total_bill, y = day); fn: {wrap: 'ggally_facethist'}; gg: FALSE"
..$: chr "PM; aes: c(x = tip, y = day); fn: {wrap: 'ggally_facethist'}; gg: FALSE"
..$: chr "PM; aes: c(x = smoker, y = day); fn: {wrap: 'ggally_facetbar'}; gg: FALSE"
..$: chr "PM; aes: c(x = day); fn: {wrap: 'ggally_barDiag'}; gg: FALSE"
$ title : NULL
$ xlab : NULL
$ ylab : NULL
$ showStrips : NULL
$ xAxisLabels : chr [1:4] "total_bill" "tip" "smoker" "day"
$ yAxisLabels : chr [1:4] "total_bill" "tip" "smoker" "day"
$ showXAxisPlotLabels: logi TRUE
$ showYAxisPlotLabels: logi TRUE
$ labeller : chr "label_value"
$ switch : NULL
$ xProportions : NULL
$ yProportions : NULL
$ legend : NULL
$ gg : NULL
$ nrow : int 4

32

$ ncol : int 4
$ byrow : logi TRUE
- attr(*, "_class")= chr [1:2] "gg" "ggmatrix"

For memory optimization, each plot is stored as a function that will produce the

ggplot2 plot at print time. To do so, the data set provided at a ggmatrix inception

sets a default data set to be used at print time. If a new sub plot is stored after

inception, the fully defined ggplot2 object is stored directly.

Similar to ggplot2’s function ggplot_gtable , ggmatrix_gtable produces dis-

play only information that the grid graphics framework uses to display the plot. To

retrieve all necessary display information, ggmatrix_gtable executes ggplot_gtable

for each sub plot individually, then extracts the required plotting display information

(plotting area and possibly the panel strips) from each sub plot. These sub plot panels

are then placed inside the final plot matrix.

The resulting plot matrix is displayed with the exact same styling as ggplot2’s

facet_grid . This returns all the display theme styling and display constraints

back onto ggplot2. By displaying the ggmatrix as a facet_grid in ggplot2,

titles, legends, and other common plot artifacts are able to be natively displayed.

Figure 2.19 displays a legend on the right side of the plot matrix using the legend

from the sub plot at position (3, 1). Figure 2.20 uses the ggplot2 theme functionality

to move the legend to beneath the plot matrix panels.

33

color the plots according to smoker
display legend from the 3rd row, 1st column plot
pm <- ggpairs(
tips, c("total_bill", "tip", "smoker", "day"),
mapping = aes(color = smoker),
legend = c(3,1)

)
pm

●
●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●●

●

●

●●

●

●
●

●

●

●●●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●
●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●● ●

●

●

●
●

●

●

● ●●

●

●

●

●●

●

● ●●●●
●

●

●

●●

● ●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●●
●

●

● ●
●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
● ●

●

●
●

●

●

● ● ●

●

●

●●●

●

Cor : 0.676

No: 0.822

Yes: 0.488

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
● ●

●

●●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

N
o

Yes

total_bill tip smoker day

total_bill
tip

sm
oker

day

0 10 20 30 40 50 2.5 5.0 7.5 10.0 No Yes Thur Fri Sat Sun

0.00

0.02

0.04

0.06

2.5

5.0

7.5

10.0

0
5

10
15

0
5

10
15

0.02.55.07.510.0

0.02.55.07.510.0

0.02.55.07.510.0

0.02.55.07.510.0

smoker

No

Yes

Figure 2.19. ggmatrix displaying a color legend on the right (default)
side of the plot matrix.

34

display legend on bottom using ggplot2 theme
pm + ggplot2::theme(legend.position = "bottom")

●
●

● ●●

●

●

●

●

●

●

●

●

●●

●

●

●● ●
●

●
●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●●

●

●

●●

●

●
●

●

●

●●●

● ●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

● ●
●●

●

●

●

●

●
●

●

●●

●
●

●

●
●

●

●

●
●● ●

●

●

●
●

●

●
● ●●

●
●

●

●●

●

● ●●●●
●

●
●

●●

● ●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●●
●

●

● ●
●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●● ●

●

●
●

●

●

● ● ●

●

●

●●●

●

Cor : 0.676

No: 0.822

Yes: 0.488

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●●

●●

●

●

●
● ●

●

●●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

N
o

Yes

total_bill tip smoker day

total_bill
tip

sm
oker

day

0 10 20 30 40 50 2.5 5.0 7.5 10.0 No Yes Thur Fri Sat Sun

0.00

0.02

0.04

0.06

2.5

5.0

7.5

10.0

0
5

10
15

0
5

10
15

0.02.55.07.510.0

0.02.55.07.510.0

0.02.55.07.510.0

0.02.55.07.510.0

smoker No Yes

Figure 2.20. ggmatrix moving the legend to the bottom using ggplot2’s

theme function.

2.4 ggduo : Plot matrix for two-grouped data

A pairs plot is defined as displaying every column of the data against every other

column in the data. This is effective in full data exploration. If a data set has columns

A, B, and C, 32 = 9 combinations produced in a corresponding pairs plot: A : A,

A : B, A : C, B : A, B : B, etc.. A pairs plot matrix can be generalized one step

further by pairing two column groups against each other.

For the example just described, column set {A, B, C} is paired against the column

set {A, B, C}. As expected, this produces a pairs plot. However, this generalization

allows us to produce a plot matrix of the combinations of {A, B, C} and {D, E}, or

35

any combination of two column sets. Using the same underlying ggmatrix function-

ality, ggduo produces plot combinations of two-grouped data.

As a quick example, let us look at the Australian students’ fifth grade Math,

Reading, and Science scores against their gender and how many hours of homework

each student completed each week in Figure 2.21.

ggduo(
australia_PISA2012,
c("gender", "homework"),
c("PV5MATH", "PV5READ", "PV5SCIE")

)

●

●

●●

●

●

●

●
●

●●●

●

●

●
●

●

●
●
●

●

●

●

●

●●●●
●
●

●●

●

●

●●

●

●

●

●
●
●●
●

●●●
●
●●

●
●
●
●●
●●

●

●● ●●●

●●●

●●●●●

●

●

●
●

●
●●
●●

●●●

●

●

●●

●

●
●
●

●

●●●●

●

●●●

●

●

●

●

●

●
●

●

●
●●
●●●●

●●

● ●
●
●

●

●
●

●●●●●
●

●

●●

●

●
●●

●●
●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●●
●

●
●●●

● ●

●

●

●

● ●●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●
● ● ●

●

●

●

●
●

●
●
●●●

●

●●
●

●

●●

●

●
●●

●

● ●
●

●
●

●
●

●

●

●
●

●

●

●
●

●●

●
●

● ●
●

● ●

●●

●
●

●

●

●

●

●
●

●

●
●

●●●
●

●

●
●

●
●

●
●

●

●

●

●

●
●

● ●
●

●

●

●

●●
●

●

●●
●●

●●

● ●
●

●

●
●

●

● ●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●
●

●
●

●
●●●●

●●
●

●

●
●

●

● ●

●
●

●

●

●
●

●

●

●

●
●

●● ●
●

●
●

●

●
●

●

● ●
● ●

● ●●
●

●

●

●

●
●

● ●
●

●
●●●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●
●
●

● ●
●

●

●
●

●
●

●

● ●

●
●

●
●

●

●
● ●● ●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●●
●

●

●

● ●
●●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●
●
● ●

●
●

●●

●

●

●●
●

● ● ●●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

● ● ●●● ●

● ●

●●

●

●

●

●

●

● ●

●

●● ●

●
●●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●●
●
●

●

●

●
●

●

●

●
●

● ●

●

●
●

●

● ●

●

●
●

●

●

●

●
●● ●

●

● ●● ●

●

●

●

●

●
●

●

●

●● ●
●
●

●●

●●

●

●●
●

●

●

●

●●

●

●
●

● ●

●
●

●
●

●

●

● ●

●

●

●

●

●

●●

● ●●
●

●
●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●

●
●

●
●

●
●

●
●

●●●
●

●

●

●

●●
●

●

●

●

●

●
●
● ●●●

●

●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●
●

●
●
●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●

● ●

●●

●

● ●
●

●

●

●
●

●
●

●

● ●

●
●

●

● ● ●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●
● ●

●●
●

●
●

●
●

●
●

●● ●

●
●

●

●

●

●
●

●●
●
●●

●

●● ●

●

●

●

●

●

●
●

●
●

●
●●

● ●

●

●

●
●

●
●

●
●

●

●
●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●
● ●

●

●

●

●●
●

● ●

●
●
●

●

●
●

●

●

●
●●

● ●
●

●

●

●
●● ●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●●
●

●●

●

●

●
●●

●●● ●
●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●● ●●

●
● ●

●

●
● ●

●

● ●

●●

●
●

●
●●

● ●●
●

●

●
● ●

●

●●

●

●

●

● ●

●

●
●

●

●●

●●

●
●●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
● ●●

●

●

●

● ●

●
●

●

●

● ●

●

●

● ●

●

●
●
●

●
●
●

●

●

●

●
●

●

●

●

●●

●
●

●

●●● ●

●

●

●

●
●

●
●

●●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

● ●

● ●
●

●

●

●

●

●

●

●

●
●

● ●

●●●

●

●
●

● ●● ● ●

●

●

●

● ●

●

●●

●

●
●

● ● ●●
●

●

●

●

●

●

●
●

●●

●●
●

●
●

●●

●●

●

●
●

●
●

●
●●

●
●
●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●
●

●

●●
●●●

●

●
●●

●

●

●

●
●

●

●

● ●

● ● ●
●

●
●

●

●●
●●

●
● ●

●●
●

●

●

●

●
●

● ●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●
●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

● ●

●

●

● ●●

●

●
●●

●
● ●

●
● ●

●

●●

●

●●
● ●●

●

●

●

● ●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
● ●
● ●

●

●
● ●

●

● ●●

●

●
●

●
●

●
●

●

●
●

●

● ●●
●

● ●
●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

● ●
●● ●

● ●
●●

●●

●

●

●

●●
●

●

●

●

●

●

●

● ●●

●

●●

●

●
●

●

●●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
● ●●

●

●
●

●

●●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

● ●
●

●●
●

●

●

●
●● ●

●

●
●

●

●

●
●

●

●

●

●
● ●

●

●
●●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●
● ●

●

●

●
●

●●●

●

●
●

●

● ● ●
●

●

●
●

● ●
●

●

●●
●

●

●

●
● ●

●
●

●

●
●

●
●

●

●●

●

●
●●

●

●

●●

● ●●

●●

● ●
●

●

●

●

●
●

●
●

●
●

●

● ●

●● ●

●
●
●

● ●

●

●

●●

●

●
●

●

●

●

●

●●

●
●

●
●

●
●

●

● ●●

●
●●
●

●

●

●
●

●
●

● ●

●

●
● ● ●

● ●

●

●
● ●

●
●

●
●

●

●
●

●

●
●●

●

●
●

●

●

●
●

●

●
●

● ●

●

●

●
●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●● ● ●
●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●
●

●

●● ●

●

●

●
●

●

●
●

●●

●
● ●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

● ●

●

●

● ●
●

●
●

●
●

●

●

●
●

●●
●

● ●

●
●

● ●

●
●

●●
●

●

●

●

●
●

●

●
●

●

●

● ●

●
●

●

●●

●
●

●●

●●
●

●

●
●

●

●
●●

● ●

●

●

● ●
●

●

●
●

●

●
●

● ●
●
●

●●

●●
● ●

●

●
●

●

●

●
●

●
●●●

●

●

●

●
●

●

●

●

●
●

●
●

●

● ●
●

●

●

●
●

●

●

●

●

●
●

●● ●
●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

● ●

●
●
●● ●●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●

●●

●

●

●

● ●●

●

●
● ● ●●

●

●

●
●●

●

●

●●

●
●

●
●●
●

●

●
●

●

●

●

●
●

●●

●●
● ●

●

●
●

●

●

●

●

●

●

●

●

●●
●●

●
●

●
●

●
●

●

●
●

●●

●

●●
●

●

●
●

●●

●

●

●
●

●●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●● ●

● ●● ●

●
●●

●

●●

● ●

●

●

●

●
●

●
●

●

●

●

●● ●

●
●

●●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●

●
●

●
●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●
●

● ●

●

●

● ●● ● ●

●

●

●
●●

●
●

●
●

●

●

●

●

●●

●●

●

●

●
●

●

●●

●

●●

●
●

●
●

●

●

●

●

●
●

●
● ●

●
● ●●

●

●
●

●

● ●

●

●
●

●
●

●
●●

●
●

●● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●
●

● ●

● ●

●

●
●

●

●

●● ●

●
●

●●
●

● ●

●
●

●●●

●

●
●

●

● ●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●●

●●
●

●
● ●

●

●

●
●

● ●

●

●

●
●

●
●

●●

●
●●

●

● ●

●

●

●

● ●

●
●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●●●

●

●

●

●

● ●●
● ●

●
●

●

●

●

●

●
●

●
● ●

●

●

● ●

●

●
●●

●
●●

●
●

●
●

● ●
●

●
●

●

●

●
●

●

● ●
●

●

●
● ●

● ●
●

●

●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●● ●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●
●

● ●

●

●

●

● ●

●●
●

●
●

● ●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●
●

● ●●
●

●

●

●
●

●
● ●

●● ●

●

●
●

●

●
●

● ●●

●
●

● ●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●
●
●
●●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●
● ●

●
●

●●

●●●

●
●●

● ●
●

●●●

●
●
●

● ●
●

●● ●

●●

●

●

●

●

● ●

●
●

●●●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●●

● ●
●●

●

●

● ●
●

●

● ●
●

●

●
●

● ●
●●

●
●

●●

● ● ●
●

●

●

●●

●

●

●
●

●
●

●

●

●

●● ●
●

●

●● ●●●
●

●
●
●

●

●

●

●
●

●

●

●●
●

●

●

● ●
● ●●

●

●

●

●

●

●

●●

●

●

●

● ●●

●

●

●
●

●

●

●
●●

●

●●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●● ●

●

●

●● ●

●

●
● ●●●

●

●

●●

●

●

●

●
●

●

● ●
●

● ●

●

●
●●
●

●

●

●●
●

● ●●● ●

● ●

● ●
●●

●
●

●

●

●

●●

●

●

●

●●

●●
●

●

●●
●

●

●
●
●

●
●

●
●

●
●

● ●

●

● ●

●

●
●

●

●

●

●

● ●

●

●

● ●
●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

● ● ●
●

●
●

●
●● ●●

●
●
●

●

● ●●

●

●

●
●

●● ●

●●

●
●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●●

●

●

●
● ●
●

●

●
●● ●●
●

●

●

●
●

●

●
●

●

●●
●●

●
●

●

●●

●

●

●

●
● ● ●

● ●
●

●
●

●

●

●

●
●

●

●
●

●

●
●●

●

● ●
●

●
● ●

●

●

●

●

●

●
● ●●

●
●

●

●●

●

●

●
●

●

●
●

● ●

●
●● ● ●

●
●

●

●●

●

●

●

●

●

●

●
● ●

●

●●
●

●

●

●
●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●
●

●

●●
●

●

●

●

● ●

●
●

●
●

●
●

●

●
●

●● ●

●

●

●
●

●

●
● ●●

●
●

●

●
●●

● ●

●

●

●

●

●

● ●
●

●
●

●
●

●

●

●●

● ●
●

●

●

●
●

●●

●

●
●

● ● ●
●●

●

●

●

●

●
●

●●
● ●

●

●

●

●

●

●

●●

●

●
●●●

●

●
●

●
●

●
●

● ●

●

●

● ●

●

●

●
●

●
●

●
● ●

●

●
●

●

●
●

●
●

●

●

●●

●
●

●

●
●

●
●

●
●

●
●

● ●

● ●

●

●●

●

● ●●
● ●● ●●

●
●

●●

●

●

●

●
●

●

● ●
●●

●
●

●●
●

●

●

●
●

● ● ●

●

●

●

● ●

●

●
●

●

●

●

●
●

● ●

●●
●●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●
●●●● ●●● ●

●

●
●

●● ●
●●

● ●●

●

●

●

●●

●

● ●

●

●

●

●
●

●

●
●

●●
●

●
●●

●
●
●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●●

●

●

●
●

●
● ●

●

● ●
●

●

●
● ●

●
●

●

●

●
● ●

●
●

●

●●
●

●

●
●

● ● ●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●

●

●
●

●●
●

●

●

●
●●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●

● ●

●

●

●

●

●●● ● ●●

●
● ●

●

●
●

●●

●

●

●

●

●
●

●

●●
●●

●

● ● ●
●

●

●
●

●

●
● ●

●

●

●
●

● ●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
●● ●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●● ●

●

●
●

●

● ●

●

●

●
●

●
●

●

●●

●

●

●
●

●●

●

●
●

●

● ● ●●

●

●

●

●

● ●

● ●●
●

●●
●
● ●

●

●

●

●
●

●●
●

●
●

●

●

●●
● ●

●

●
●
●●

●

●
●

●
●

●

● ●

●

●

●
●

●

●

●

●

● ●

●

●
●●

●

●

●
●

●

●

●

●

●
●

● ●
●● ●●

●

●● ●
●●

●

●

●

●
●

●
●●

●
●

●

●● ●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
● ●

●

●
●●●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●● ●●

●

● ●

●

●

● ●

●

● ●

●
● ●●●

● ●

● ●
●

● ●
●

●

●

●

●
●

●

●
●

●●

●

●
●

●● ●

●
● ●

●

●

●
●

●

●

●

●

●

●●

●●

●
●

●●
●

●

●

●
●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●
●

●●

●

●
●●

●
●

●
●

●

●
●

●

●
●

●

● ●
●

●

●

●

●
●● ●

●

●

●

● ●

●
●

●

●

●

●

●
● ●

●

●

●

●●●

●

●

●

● ●
●

●
●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●
●

●

●● ●

●
●

●

●
●

●
●

●

●

●

●
●

● ●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●
●

●●

●●

●●
●

●

●

●
●

●

●

●
●

●

●● ●

●

●

●

●

●
●

●
●

●

●

●

●

● ●
●

●
●

●

●
●

●

● ●
●

●

● ●●

●
●●

●

●
● ●

●

●●

●

●

●
●

● ●

●

●
●●

●

●

●

●

●●

●

●

●

●
●

●
●●

●
●

● ●

●

●

●

●

●

●●● ●

●
●

●

●

●●
●

●●

●
●
●

●

● ●

●

●

●
●

●
●●

● ●

●

●

●

●

● ●
●

●

●
●

●

●

● ●
●

●

●

●
●

●

●

●
● ●

●

●

●

●

● ●
●

●

●
●

●

●

● ●●
● ●

●
●

●

●
●●●

●●

●

●
●

●

●

● ●
●

●

●
●●

●●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●●
●

●●

●●

●

●

●

●

●
● ●●
●

●

●
●

●

●

●●●
●● ●● ●

●

●

●
●
●

●

●

●

●

●●
● ●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●●
●
● ●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●
●
●

●
●

●

●

●

● ● ●
●

●●
●

●
●

●

●
●

●●

●

●

●

●

●

●● ●

● ●

●

●

●

● ●

●

●●

●

● ●●

●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●

●● ●
●

●

●

●

●

●
● ●

●
●

●

●

●

● ●

●

●
●

●

●

●

● ●

●

●

● ●●
●

●

●
●

●
●

●

●

●
●

●
●●

●

●●●
●

●
●

●

●

●

●

●

●

●

● ●●
●

●

●●●
●

●

● ●

●● ●

● ●

●

●
●

●

● ●

●●●

●
●●
●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●
●

● ●

●

●
●

●
●●

●

●

●
●
●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●

●

● ●
●● ●

●

●

●

●

●
●

●
●●

●●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●● ●
●

●●
●

●
●

●
●●

●
●

●

● ● ●●

●

●

●

●

●
●

●
●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●●

● ●
●

●
●

●

●●

●
●

●
● ●

●
●

●

● ●

●
●

●

● ●

●

●●

●
●

●
●

●●

●

●

●

●

●

●●●
●

● ●

●
●

●

●

● ●
●

●
● ●

●

●
●

●

●

●

● ●

● ●●

●

●

●

● ●
●●

●

●

●

●

●

●
●

●

●
●●

●
●●

●
●
● ●

●

●

●

●
●

●
●

●
●●

●
●

●

●

●

●

●

●
●
●

●

● ●

●
●

●

●

● ●

●
●

●

●
●

●
●

●

●

●

●

●

●

●● ●●

●
●

●

●

●

●
●

●● ● ●

●

●

●

●
●

●●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●
● ●

●
●●

●

●

●●
●

●●

●
●

●

●

●
●

●●

●●
●

●

●

●

●

●

●
●

●●
●

●
●

●

●
●

●
●

●
●

●
● ●

●

●
●
●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●
●

●●
●

●
●

●

●

●
● ●

●●
● ●

●

● ●

●
●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●
●

●

●
●

●

●
●
●●

●

●

●●

●

●

●

●
●

●

●●

●
●●

●

●
●

●
● ●

●

●●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●●

●

●

● ●
●

● ●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●
●

●

●

●
●

●

●

●●
●●

●

●

●

●

●
●●

●

●
●

●
● ● ●

●
●

● ●●

●

●

●

●
●

●

●

●

●●● ●

●
●

●

●

●
●

●

●

●

●●

●

●●

● ●

●

●

●
● ●

●

●

●

●

●● ●

●

●●
●
●

●
● ●●●

●

●

●

●●● ●● ●●
●

●
●

● ● ●

●
●

●

●
●● ●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●
●

●

●
●●

●

●●
●

● ● ●

●
●

●

●
●

● ●● ●
●

●● ●●

●
●

●

●

●

●
● ● ●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●●
● ●

●

●

●
●

●●

●● ● ●

●

●

●

●

●

● ●

● ●

● ●

●

●

●

●
●

●

●●

●

●●

●●●
●

●●

●

●●
●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

● ●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●●

●
● ●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●
●

●

●

●

●

●

●
●

●
● ●

●

●

●

●●

●●●
●

●

●

● ● ●●●
●●

●
●

●

●

●

●
●

●

●

●

●●

● ●
●

●

●
●

●
●

●●

●

●
●●

●●
●

●

●

●

●
●

● ●

●

● ●●

●

●

●

●
●

●

● ● ●

●

●

● ●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●●

●

●

● ●
●

●

●

● ●

●●

●

●
●

●
●●●

●

● ●

●

●
●

●
● ●

●

●
●

●

●
●

● ●
●

●●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●●

●

●

● ●●
●●

●

● ●●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●
●

●●
●

●
●

●

●

●
●●● ●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●● ●

●

●
●●●●

●

● ●● ●

●
●● ●

●

●
●

●
●

●

●

●
●

●
● ●

●

●●

●

●

●

●

●

●
●

●

●
●
●

●

●

●●

● ●

●

●●

●

●

●

●

●

●● ●

●
●

●

●
●

●
●

●
●

●

●

●

●●
●

●●

●

●
●

●

●

●●
●

●
● ● ●●

●

●●
● ●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●
●

●●
●●●●

● ●

● ●

●

●
●●●

●

●

●●● ●
●

●

●

●●

●

●

●

● ●

●

●

● ●●
●

●

●
●

●
●

● ●● ●
●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●
● ●

●

●

●
●

●● ●
●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

● ●

●

●

●

●

●●
●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●●

●
●

●

●
●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

● ●
●

●
●●●

●
●

●
●

●

●
●

●

●

●
●●

●
● ●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●

● ●●
●

●●
●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●● ●

●
●●

●●

●

● ●

●

●
●

●
●●

●
●

●●
●

●

●

●
●

●

●
●

●
●

●
●

● ●

●
●

●

●
●
●●● ●

●

●● ●
●

●

● ●
●

●
●

●

●●

●

● ●

●●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●

●

● ●

●
●

●

●
●

●

● ●

●

●

●

●

●

● ●
●

● ●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●●
●

●

●

●●

●●

●●

●

●

●

● ●

●

●

● ●
●

●

●

●● ● ●
●

●
●

●

●
●●

●
●

●

●
●

●
●

●

●

●
●

●●●

● ●

●

●

●
●

●
●

● ●

●

● ●●

●
●

●●

●
●

●

●
●

●
●

●

●

●
●

● ●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●●

● ●

●
●

●

●
●●

●

●

●

●
●

●

●

●●
●

●

●
●

●
●

●

●
●

●
●

●

●

●●

●
●

●
●

●

● ●

●

●

●●

●

●

●●
●

●

●

●●
●

●

●
●

●

●

●
●

●

● ●
●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

● ●

●
●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●

● ●
●

●

●

●

● ●●
●●
●

●

●●

●

●

● ●

●

●

● ●●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●●

● ●
●

●●

● ●
●

●

●
●

●
●

●
●

●●

●● ●
●

●
●

●

●

●

●

●
●

●

●
● ●●

●
●

●

●

●

●
●

●● ● ●

●
●

●

●
●●

●

●

●

●
●

●

●

●
●

●●
● ●

●
●●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●
●●

● ●

●

●

●
●

● ●●

●

●
●

●

●

●
● ●●

● ●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●●

●

●

●

●●●

●
●

●

●

●

●●
●

● ●

●

●

●
●

●

●

●
●

●●●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●● ●

●

●
●
●

●
●

● ●

●

●

●

●

●
● ●

●

●
● ●●

● ●
●

●

●

●

●

●
●

●
●●

●

● ●● ●

●● ●

●

●

●

●
●

●

●●

●

●

●

●

●
●

● ● ●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●●

●
●

●●
●

●
●

●
●

●

● ●

●

●

●
● ●

●

●

●

●
●● ●

●

● ●●
●

●

● ●
●

●

● ●
●

● ●

●

●
●

●
●

●

●
●

●

●●

●

● ●
●

●

●

●

●

●

●
●

● ●

● ●

●
●

●

● ●●
●●

●
●

●●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

● ●
●

●
●

●

●
●

●

●
●

●

● ● ●●

●

●

●

●
●

●

●●

●●

●

● ●
●

●

●●●
●

●

●

●

●

●

●

●

●
●

● ●
●●●

●

● ●

●

●

●

●
●

●

●

●
●

●●
●

●

●
●

●
●

●
●

●

● ●

●
● ●

●

●
●

●
● ●

● ●●

●

●

●
●

●

● ●

●●

●●●

●
●

● ●

●

●●

●

● ●● ●

●

●
●

●
●●

●
●

● ●
●●

●

●

●

●

●
●

●●

●
●

●

●
●●

●
●

●●
●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●●
●●

●

●
●● ●●
●

●

●●

●

● ●
●

●

●

●

●

●
●

●●●

●
●

●

●

●

●

●

●

●
●●

● ●
●

●●●

●

●

● ● ●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●
● ● ●

●

●

●

●

●

●

●
●

●●
●●

●

●
●

●● ●

●

●

●

●●

●
●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●●

●
●

● ●

●

● ●

●
● ●●
●

●
●

●

●

●●
●

●

●

●
● ●

●

●

●●

●

●

●

●

●●
●

●●

●

●

●

●

● ●
●

●

●

● ●

●

●
●

●

●

●
●

●
●

● ● ●

●

● ●

●●
●

●

●
●●

●

●
●●

●

●

● ● ●

●
●

●
●●

●
●

●
●

●
●

●
●●●
●

● ●
● ●

●●
●

●●

●

●
● ●

●

●

●

●

●

●
●

●
●●●

●

●

●

●●

● ●

●

●

● ●

●●
●● ●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●
●
●

●●

●

●

●

●

●
●

●

●
●

●●●
●

●

●
●

●

●

● ●
●

●●

●

●●
●

●● ●●●

●
●

●

●
●

●

●

●

●

●
● ●●

●●● ●
●

●

●

● ●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

● ●

●

●
● ●●●

● ●

●

● ●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

● ●

●

●●

●

●●
●
●●

●

●●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

● ●
●

●●

●

● ●
●

●
●

●
●

●
●

● ●

●
●

●●

●

●

●●

●
●

●
●

●

●

●

●
●

● ●
●

●●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●●●

●
●

●
● ●

●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●●

●
●● ●

●

●

●

●

●●

● ●

●
●

●

●

●

●
●

●

●
● ●●

●●

●
●

●

●
● ● ●

●

●
●

●● ●
●

●

●

●

●

●
●

●

●
●

● ●●
●

●

●●
●

●

●
●

●

● ●

●

●

●
●
●

●●
●

●● ●
●

●

● ●

●

●

●
● ●

●

●

●●

●
●

●

●
●

●●
●

●

●

●

●
● ●●

●
●

●
●●

●

●

●●

●

●

●

●
●●

●
●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

● ●
●

●
●

●

●

●
●
●

●

● ●

●

● ●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●
●●

●
●

●

●

●●

●

●
●

●●

●

●

●
●

●

●

●
●

●● ●

●
●●

●

●●
●

●

●●
●

●
●

●
●

●
●●

●

● ●

●

●
●

●

●●
●

●
●

● ●
●

●
●

●
● ●●

●
●

●●●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

● ●
● ●

●

● ●

●

●

●

●

●

●
●●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●●

●

●

●

●

●
●

●

●

●●

●
●

●●

●

●
●

●

● ●

●

●●

●

●

●
● ●

●

●

●

●

●

●●

●
●●

●●

●

●
●

●

●●

●● ●●
●

●

●

●
●

●

●
●

●
●●

●

●

●
●

●

●
●●

●

●
●●

●
●

● ●●●

●

●●●

●

●

●

●

●

●

●

●

● ●
●● ●
●

●
●

●
● ●●

●

●
●

●
●●

●

●

● ● ●
●●

●

●
●

●

●● ●
●

●●

●
● ●

●

●

●
●

●

●

●

●

● ●●

●
●

●

●
●●●

● ●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●● ●

●

●
●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●
● ●

●

●

●

● ●

●

●
●

●●
● ●

●

●●

●
●

●
●

●

●
●

●●
●●

●●

●
●●

● ●

●
●

●● ●

●●●
●

●

●●
●

●

●
●

●

● ●●

●
●

●

●●●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●●

●

●

● ●
●

● ●

●

●

●
● ●

●

●
●

●
●

●
●

●●
●

●●

●

●●

●

●
●

●

●

●

●

●
●

●

● ●
●●

● ● ●

●
●

●
● ●

●

●●
●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

● ●

● ●

●

●

●
●

●
●

●

●

● ●●

●

●

●

●● ●
●

●

●

●

●
● ●

●
●

● ●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

● ●

●

●

●
●

●
●

●● ●
●

●
● ●

● ●

●

●
●

●

●

●

●
●

●

●

●●
●

●
●●

●
●

●

●

●
●

●

●

●

●

●

● ●
● ●

●
●● ●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
● ●

●

●
●

●

●
●

●
●

●

●●

●
●

●

●●
● ●

●

● ●

●

●●●
●

●

●

●

●

●

●

●
● ● ●

●

●

●●

●

●

●

●
●

●

●
●●

●

●●

●

●
●

●● ●●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●
● ●

●●

●

●

●

●

●

● ●
●

● ●
●

●

●
●

●

●

●

●

●
●● ●

●

●

●●

●

●

●●

●

●
●

●●
●

●
●

●

●

●
●
●

●

●

●

●
●

●
●

●
●

●

●

●●
●

●● ●
●

●

●●
●

●

●

● ●
●●

●

●

●●

●●
●

●
●

●

●

● ●

●

●●

●

●●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●
●

●

●● ●

●

●
●

●

●●

●

●

●

●

●
●●

●

●
●

●●

●
●

●

● ●
●

●
●

●

●

● ●●●
● ●

●

●

●
●

● ●
●

●
●●
●

●
● ●

●

●

●

●

●
●●

●

● ●
●

●●
●●

●

●

●

●

●
●●●

●●

●
●●

●

●

●
●

●
●

●

●●
● ●

●

●
●

●

●
● ●

●●
●

●
● ●● ●

● ●
● ●

●
●

●

●

●

●●
●

●

●
●

●
● ●

●●●● ●●
●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●
● ●

● ●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

● ●

●● ●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●
●

●

● ●

●

●

●
●

● ●
●

●

●

● ●●
●

●

●

●
●

● ●● ●

●

●
●
●

●
●

●

●

●

●

●
●
●
●●

●

●
●

●●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●●
●

●

●

● ●

●

● ●

● ●

●

●
●

●● ●

●

●
●

●

●

●

●

●

●

●
●

● ●●

●●
●

● ●

●
●

●●
●

●

●
● ●

●

●
●

●●

●

●

●

●
●

●
●

●
●

●
●

●●

●

●●

●

●
●

●
●

●

●

●

●

●●
● ●●

●

●

●

●

●● ●
●

●

●
●

●

●●

●

●

●
● ●

● ●
●

●
●

●

●

● ●
●

●●
●● ●

●●
●

●

●

●

●
● ●

●

●●
●

●
●●

●

●
●

● ●

●

●
●

●●

●
● ●

●

●
●

●●

●

●

●●●

●

●

●

● ●

●
●

●●
●

●

●

●●

●

● ●
●●

●
●

●

●

● ●● ●

●
●

●
●

●

●

●

●

● ●

●

●

●

●●
●●

●

●●

●
●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

● ●

●
●●

●

●●●

● ●●
●

● ●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

● ●

●

●

● ●●

●

●
●

●

●

● ●
● ●

●
●●

●
●

●
●

●●
●

●

●

●

●

●

●
● ●●●

●

●

●

●
●

●

●
●● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●
● ●

●●

●

●

●
●

●

●

●
●

●
●

●

●●

●
●

●
●

●
●

●
● ●●

●

●

●●
●

●
●●

●
●●

●

●

● ●
●
●

●●
●

●

●

●

●● ●
●

●

●

●

●●
●

●
●

●

●

●
●

●●● ●

●
●● ●

●
●●

●
●●

●

●
●

●
●

●●
●

●●●

●

●● ●● ●
●

●

●

●
●
●●

●
●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●●

●
●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●●
●

●●

●

●

●

●●

● ●

●
●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●● ● ● ●
●

●

●

●

●

●

● ●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●●

●
●

●●
●

●

●

●

●

●

● ●
●

●

● ●

●

●

●
●●
●

●

●

●
●

●

●

●

●

●
●● ●

● ●

●

● ●
●●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●
●

●●

●
●

●●● ●●●
● ●
●

●

●

●
●

●

●

●

●
●

● ●

●●

●●
●

●● ●●

●
●

●
●

●

●
●

●

● ●●

●

●
●

●
●●

● ●●
●

●

● ●
●

●

●●

●

●

●
●

●

●

●
●

●

●
●

●
●

●●●

●

●

●
● ●

●
● ●

● ●
●●

●

●

●
●

●● ●
● ●

●

●

●

●

●
●

●

●

●
●●

●

●

●
● ●

●● ●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

● ●

●

●

●

●

●

●
●●

●

●
●

●
●
●

●

●
●

●

●

●
●

●

●

●● ●
●

●
●

●

●

●
●

● ●● ● ●

●

●
●

●

●
●

●●

●

● ●
● ●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●● ●

●
●

●●

●

●●

●

●
●

●

●

●
●
●●

●

●
●

●

●

●
● ●

●

●

●

●●

● ●
●

●

●
●

●
●●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

● ●●
●

●

● ●

●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●● ●●

●●

●

●

●
●

●●
●

●

●

● ● ●

●

●●

●

●

●

●

●

●

●

●
●●

●

●
●

●

● ●

●

●

● ●
●

●

●

●●
●

● ●

●

● ●
●

●
●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●●

●

●
●

●●

●
●

●
●

●
●

●

●●●

●

●

●

●

●

●
●●

●
● ●●

●
● ●

● ●

●

● ●
●

●● ●
●

●
●●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
● ●

●
●

●●●
●

●

●

●

●●●

●

●●

●

●
●

●
●●

●

●
●

● ● ●
●

●

●

● ●

●●
●●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●
● ●

●

●

● ●

●

●

●
●

●

●

● ●
●

●
●● ●

●
●

●

●
●

●

●

●

●

●● ● ●

●

●

●

●
●

●
● ●●

●
●

●

●

●

●
●
●

●

●●
●

●

●
●
●

●

●●
●

●

●

●

●

●●

●
●● ●

●●
●

●

●

●●

● ●

● ●
●

●

●●

●

●

●

●
●

●

● ●
●

● ●● ●

●

●

●
● ●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●
●

● ●

●●
●

●

●

●
● ●

●
●

●

●●● ●

●

●●

●

●
●●

●

●

●
●

● ●
●

●
●

●

●
●

●

●●

● ●

●●

●

●
● ●

●

●● ●

●
●
●●

●
●

●

●●

●

●

●

●

●

●
●

●●

●
●

●
●●

●

●

● ●●

●●●
●

● ●
●

●

●●

● ●

●●●
●

● ● ●●

● ● ●●

●

●

●
●

●●

●

●
●
●●

●
●

●

●

●
● ●

●●

● ●

●

●

●

●

● ●

●
● ●

●
●

●

●

●
●● ●

●
●

●

● ● ●

●

●
●

●●
●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●●

●

● ●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●
● ●

●

●

●
●

●
●

●

●

●
●

●

● ●
●

●

●
● ●

●
●

● ●

●●

●
●●

●
●

● ●● ●
●●

●●
●

●

●

●

●

●

●

●● ●

● ●
●

●
●

●
●●

●

●●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

● ●
●

●

●

●
●

●

●
●●

●
●
●

●
●

●

●

●
●

●

●
●

●●

●● ●●
●●

●

●

●
●

●
●

●

●
● ●

●

●
●

● ●
●

●●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

● ● ●

●

●

●

●
●

●
●

●

● ●●

●
●

●

●

●

●

●
●

●
●
●

●
●

●

●● ●●

●
●●●

●

● ●

● ● ●
●● ●

●
●
●

●
●

●
●

●

●

●

●

● ●

●● ●
● ●

●

●
●●

●

●

●●

●
●

●●

●

● ●
●

●
●●

●
●

●
●

●
●

●
●

●●
●●
●● ● ●
●

●

●

●

●

●

● ●
●

●

● ●

●

●
●

●
●

●
●

●●

●

●●
●

●
● ●

●
●

●●

●

●
● ●●

●

●

● ●

●

●

● ●
●

●

● ●●
●

●

●
●●

● ●●

●

●

●●

●

●●

●

●

●

●
●

●● ●
●

●

●

●●

●

●●
●

●● ●

●
● ●

●
●● ●

●

●
●

●
●●

●
●

●

●

●

●

●

●● ●
●

●

●
●

●
●

●

●●
●

●
●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●
●

● ●

●●

●
●

● ●
●

●

●
●

●

●

●
●

●
●

●
●●

●

●

●
●

●●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●
●

●
●

●●

●
●

●
● ● ●

●

●

●
●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●
●

●● ●●

●

●●

●
●

●

●
●

●
●

●

●
●

●
●

●

●
● ●●

●

●
●

●

●
●

●

●
●

●●

● ●

●

● ●

●●

●

●
●

●●

●
●

●

●

●● ●

●
●

●

● ●●

●

●

●

●

●●

●
●

●
●

●
●

●
●

●

●

●
●

●

●●

● ●●

●

●●

●

●
●

●

●●
●

●
●

● ●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●●

●

●

●

●

●
●

●
●

●
● ●

● ●
●

●

●
●● ●

●●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●●

●

●

●

●

●

●
●
●

●

●

●●
● ●

●
● ●

●
●

●
●

●
●

●

●

●
● ●
●

●
●

●

●

●

●●
●

●●

●●

●
●●

●

● ●
●●

●
●

●

●

● ●
●

●

●
●

●

● ● ●
●

● ●

●

● ●

●

●

●

●

● ●
●

●

●

●

●●

●

●●

●

●

●

●
●

●● ●
●

●

●

●
●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●
● ● ●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
● ●

●
●

●

●

●

●

●
● ● ●

●●

●

●
●

●

●

●
●

●● ●
●

●●

●

●
● ●

●●

●

●

●

●

● ● ●

●●
●

●

●
●

●

●

●●
●●

● ●

●
●

●

●

●
●

●

●
●

●
●

●●

●
●

●

● ●●●●

●

●
●

●

●
●●

●
●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●●●

● ●●

●
●●

●●●

●●
●
● ●

●●● ●●
●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●
●●

●
●

●

● ●●

●

● ●
●

●
●
●

●

● ●
●

●
●

●
●

●
●

●●

●

●

●●

●

●

●●
●

● ●
●

● ●●
●

●●
●

●
●

●●● ●

●
●●

● ●●
●

●

●

●
●

●
●

●

● ●●
●●

●
●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●
●

●

●
●●

●

●● ●
●

●●

●
●

●● ●
●

●
●

●

●

●

●●

●

●

● ●● ●

●
●

●
●

●

●

●● ●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●●

●
●

●
●

●
●

●
● ●●●

●

●
●

●
●

●
●
● ●

●
● ●

●

●

●

●

●

●
● ●

●
●

●

●
● ●

●
●

●●●
●●
●

● ●●

●
●

●
●

●● ●

●

●

●
●

●
●

●

●●

●●
●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●
● ● ●

●
●

●

●
●

●
●●

●
●
●

●

● ●●
●

●
●

●
●●
●

●
●

●

●

●
●

●●

●●
●

●

●
● ●

●
●

●

●
●

●

●
● ● ●●

●

●
●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●
●●

●
●

●

●
●●

●

● ●
● ●●

● ●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●●

●

●

● ●

● ● ●
●

●

●

●
● ●

●

●

●

●

●

●
●

●

●●
●

●
● ●

●

●
●

●
●

●

●

●

●

●● ●●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●
●● ●

●

●●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ● ●
●

●●

● ●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●
●

●●

●

●
●

●

●

●

●

●

●
● ●

●
● ●●

●
●

●

●

●
●

●

●
● ●

●

●

●

● ●
●

● ●

●
●

●

●

●

●

● ●●

●

●

●

● ●

●

●

●
●

●
●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●

● ●● ●●

●
●●

●

●●
●

●

●●

●
●

●
●

●
●
●

●

●

●
●

●

● ●
●● ●

●

●
●

●

● ●
● ●

●
●● ●● ●●

●●

●

●

●

●

●

●
●

●● ●● ●●

●

●
●

●

●

●
●

●

●

●

●
●●● ●

●

●
●

●
●

●

●

●

●
●

●
●

● ●

● ●

●

●●●

●

●

●
●

●
●

●

●

●
●

●
●

●

●●
●
●

●●
●

● ●●

●

●

●

●
●●● ●

●

● ●●

●

●

●
●

● ●●● ●

●

●
●

●

●● ●

●
●

●

●

●

●

●
●

● ●

●
●

●

●

●
● ●

●
●
●

●

●

●

●●
●

●
●

●

●

●

●
●

●
●

●

●

●

● ●

●

●●

●
● ●

●

●
●

● ●

●

●
●●●

●

●

●● ●
●●

●

●●● ●

●

●

● ●
●

●

●

●

●
●

●

●

●●
●

●
● ●
●
●

●

●

●

●

●
●

●● ●

●

●

●
●●

●

●●
●●

●

●●●

● ●●
●
●

●

●
●

●

●
●

●

●

●
●

●

●
●● ● ●●

●● ●

●

●

●●●

●
●

●

●

●●

●

●●

●●
●

● ●
●

● ●

●
●

●

●

●
●

●
●

●●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●
● ●●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●● ●

●

● ●
●

●
●

●
●

●
●●●

●
●●

●

●

● ●
●

●

●

●
●

●

● ● ●
● ●●

●

●

●

●

●
●

●

●

●

●
●
●

●●●

●

●
●

●● ●

●●
●

● ●

●
●

●
●

●
●
●

●

●

●●

●
●●

●

●

●
●●

●

●

●

●

●

● ●

●

●
●

●
●

●●●

●

● ●●

●

●

●

●

●
● ●

●
●

●●
● ●●●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●●
●

●

●

●
●

●
●
●

●

●●
●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●
●

● ●
● ●

●

● ●●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●●

●●
●

●
●

●

●

●

● ●
●

● ●●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●●

●●
●

●
●●

●
●●

●
●

●

●
●

● ●
●

●

●

●

●

●●
●

●

●
●

● ●

● ●

● ● ●

●
●

●

●
●

●
●●

●
●

●
●

● ●

●●●

●

●●
●

●

●

●
●

● ●●

● ●

●

●

●●

●
●

●

●

●

● ●
●

●

●

●●
●

●

●

●

●
●

●

● ●●

● ● ●

●
● ●

●

●

●

●
●

●

● ●

●

●
●

●

●

●
● ●●

●
●

●

●
●
●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
● ●

●

●●
●●

●

●
●

●

●
●
●
●

●●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

● ● ●

●

●
●

●

●●
●

●
● ● ●

●

●
●

●

●

●

●
●

●

●

● ●●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●
●●
●

●

● ●

●
●

●●

●
●

●

●

●

●

●●

●

●

●

●
●

●●

●
●

●

●

●
●

●●

●
● ●

●

●

● ●

●

●

●
●

●

●

●

●

●
●●

●
●

●●

●

●
●

●
●

●

●

●

●

● ●
● ●●

●●
●

●

●●

●

●
●

● ●
●

●●●

●●

●

●

●
●

●

● ●
●

●

●
●●

●●

●
●

●
●

●
●

●
●
●
●

●

●

● ● ●
●

● ●●

●

●

●

●

●

●

●

●
●

● ●
●
●●
●

●
●

●
●

●

● ●● ●
●

●

●
●
●

●

●

●

●●

●● ●
●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
● ●●

●●
●

●
●

●
●
●

●
●

●

●

●

●

●

●●
●

●
●●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

● ●

●●

●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

● ●●
●

●

●
●●

●

●

●

●
●

●

●
●

●

●
●●

● ●
●

● ●

●
● ●

●

●

● ●
● ●

●

●
●
●

●

●

●
●

●
●

●
●

●

●
●●

●

●

●

●●●

●

●
●

●

● ●
●

●

●

●
● ●

●

●
●

●

●
●

● ●

●

●●

●

●

●

●
●

●
●
●

●
●

●

●●

●

●●

●

●
●●●

●

●● ●
●

●

●
● ●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

● ●●
●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●
●

● ●●

●

●
●

● ●
●
●

●

●

●

●

●● ●

● ●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

● ●

●
●

● ● ●●

●
● ●●

●

●

●

●
●●

●

●
●

●
●
●

●

●

● ●

●
●

●
●

●

●

●
●

●
●

●●

●

●
●

●

●
●●●

●

●

●

●●

●

●

●

●
●●

●
●

● ●
●●

●
●

●
● ●

●
●

●

●

●
●

●
●

● ●

●

●
● ●●

●

●
●●

●
●

●●
●

●
● ●

●
●
●

● ●● ● ●
●●

●
●

●
●

●

●

●

●
●●

●

●
●

●
●

●

●
● ●

● ●

●

●

●●

●

●
●

●

●

●

●

●
● ●●

●

●

●

●

●
●

● ●● ●
●

●

●
●

● ●

●●
●●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

● ●

●
● ●

●
●●

●
●

●
●

●

●●

●

●
● ●

●
●

●●

●
●

●

●

●

●

●

●

●
●●

●

●●

●● ●

●
●

●

●
● ●● ●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●
● ●

●

●
●

● ●●●
●

●

●

●

●
●

●

●

●
●

●

●
●

● ●●
●

●
●

● ●

●

●

●

●●

●

●

●
● ●●

●

● ●

●●

●
●● ●●

●

●

●

●
●

●
●●

●
●●

●

●

●
●

●

●
●●

●

●
●

●

● ●
●● ●

●

●●

● ● ●
●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●●

●

● ●

●

●
●

●

●
● ●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●
●

●

●

●

●

●
● ●

●

●

●
●●

● ●

●

●
●

●●
●

● ●
●

● ●
●●

●

●
●●

●
●

●
●

●

●

●

●

●●●
●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

● ●

●

●
● ●

● ●

●

●
●

●

●

●

●

●

●●

●
● ●●●

●

●

●

●●
●

●●
●●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

● ●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●
●

●

●
●

●

●

● ● ●
●

●
●

●

●
●

●

●

● ●

●● ●
●

●
●

●

●

●
●

● ● ●

●

●

● ●●

●●

●
● ●
●

●

●

●●

●

●
●

●
●

●●

●

●

●●

●
●●

●
●●

●

●
●

●●

●
●

● ●

●

●

●

●

●
● ●
● ●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●
● ●

●

●●

●

●

●

●
●

●

●

●
●
●

●
●

●

●
●

● ●

●
●

●●

●

●

●

●●

●
●●

●

●

●
●

●

●

●

●●

●

● ●

●
●

●

●
●

●
●

● ●●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●● ●
● ●

●

●

●

●

●
●●

●
● ●

●

●

● ●

●●
●

●
●

●
●

●

●
●

●

● ●●●

●

●

●●●

●

● ●

●
●

● ●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●●

●

●

●●●

●

●

● ●
●

●
●

●●
●

●
●

●

● ●

●
●

●
●

●●

●

●
●

●

●

●

●
●

●●
●

●
●

●●
● ●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●
●

●

● ●

●

●

● ●
●

●

●
●
●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●
●● ●

●
●

●
●

● ●●
●

●
● ●

●●

●
●●

●

●●● ●

●
●

●

●●

●

●
●

●
●

●

●

●
●● ●●

●

●

●

●●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●
●

●●
● ●

●

●

●● ●
●

●

●

●
●

● ●●

●

● ●
●●

●
●●

●● ●● ●

●

●

● ●●
● ●

● ●
●

● ●●
●

●

●
●

●

●

●
●●● ●

●

●

●

●

●

●●

●
●

●

●
●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

●
●

●●
●
●

●
●

●

●

●
● ●●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

● ●

●

●

●
●
●

●
●
●

● ●

●
●
●

●

●●

●

● ●●
●

●

●
●

●
●

●
●

● ●
●

●

●

●●
●

●

●●

●
●

●
●

●● ●

●
● ● ●
●

●

●
●

● ●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●
●

●
● ●●●

●

● ●

● ●

●

● ●●●

●

●
●

●● ●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●●

●
●●

●
●

●
●

●

●●
●

●

●

●
●

●

●
●●

●

● ●

●

●

●

●●

●
●

●
●

●

●
●
●

●
● ●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●●

●

●
● ●

●

●●

●

●

●

● ●
●

●

●
●

●

●
● ●

●

●

●●
●●

●
● ●

●

●

●

●

●●

●

●

●
● ● ●

●

●
●

●
●

●
●

●

●
●●

●
●●

●
●

●●
●

●●
●

●

●

● ●

●

●●
● ●●

●

● ●

●
●

●

●

●

●

●
●

●

● ●
●

●

●
●

●

● ●

● ●
●

●

●
●● ●

●

●
● ●● ●

●●●●

●
●

●
●

●
● ●●

●
●

●

●

●
●

● ●● ●
●●

●

●● ●●
●●

●
● ●

●
●
● ●

●●

●● ●

●

●

●

● ●
●

●
●

●

●
●

●

●

●

●●●●

●

● ●

●● ●
●

●

● ● ●

●

●
● ●●

●
● ●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●● ●
●

●
●

●
●●

●

● ●

●

● ●

● ●

●

●

●
●

●●
●

●●

●
●

●

● ●
●

●

●

●

● ●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●

● ●

●

● ●

●

●
●

●● ● ●●
●

●
●

●

●

●

●●

●

●
●

●
●

●

●
●

●
●

●
●

● ●

●

●

●●
●

●●
●●

●

●

●

● ●

●●

● ●

●

●
●

●●
●

●

●

●
●

●
●●●

●

●
●

●

●

●
●

●
●●

●

●
●

●

●

●

●

● ●

●
●

●

●

●●
●

●

●

●
●

●

●

●● ● ●

● ●

●
●

●

●●

●

●●

● ●
●

●

●

● ●

●

●
●

●
●

●●

●
●

●

● ●●

●

●● ●

●

●●

●

●●●

●

●

●●

●

●

●

●

●
●●

●
●● ●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●
●●

● ●

● ●●

●

●

●

●

●

●
●

●

●

●

●
●
●
●

●
●

● ●●
●

●

● ●

●

●

●

●●
●

●

●
●

●
●●

●
●

●

●
●

●
●

●

●
●

●
● ●

●

● ●●

●●

●

●

●●

●●●

●
●

●

●
●

●

●

●

●●

●
●●

●●

●
●

●

●

●

●

●

●

●
●

●●

●

●●
●

●
● ●

●

●

●
●

●

●
● ●

●
●

●
●

●

● ●●
●

●

●

●

●

● ●
●●
●

●
●

● ●

●

●

●
●

●

●

●
●

●

●
●

● ●●

●

●

●

●
●

● ●

●

●
●●

●
●

●

●

●

●● ●●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●●

●

●
●

●

●

● ● ●● ●
●

●

●

●

●
●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●●
●●●

●

●

●

●

●
●

●

● ●●
● ●

●
●

●
● ●

●

●

●

●

●

● ●

●

●

● ●

●

●
●

●● ●● ●●● ●
●

●
●●

●

●● ● ●
●
●

●

●●
●

●●
●

●

● ●
●●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●
●

●

●●
●

●

● ●●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

● ●
●

●

●

●

●

●

●
● ●

●

●
●

●
●
●

●
●

●

● ●
●

●
●

●●

●
●

●

●

●

●

●

●● ● ●

● ●

●●

●● ●●●●
●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●
●
●

●
●● ●

●
●●
●

●
●

●

● ● ●●

●
●

●
● ●

●
●

● ●

●

●

●
●

●●

●●
●

●
●

●

●

●
●

●

● ●

●
●

● ●●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●
●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●
●

●●●

●
●

● ●

●

●

●

●

●
●●

●
●

● ●

●
●●

●
●

● ●
●●

●

●

●

●●

●

●
●

● ●

●

●●

●

●

● ●
● ●

●
●

● ●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●●

●

●

●

●
●

●

●
●

●●●
●

●
●

●

● ●

● ●

●
●

●

●

●
●
●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●●●
●●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●●
●

●

●

●●

●

●

●

●

●
●

● ● ●
●

●

●

● ●

●

●
●

●●
●

●

●

● ●

●
●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●●
●

●
●● ● ●

●
●

●

● ●
●● ●

●●

●

●
● ●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●
● ●
●

●●

●

●

●
●

●
●

● ● ●

●●

●
●
●●●
●●● ●

● ●●

●

●

●
● ●

● ●

●●●

●

●
●

● ●
●●

●
●●

●
● ●●

●

●●
●

●●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●
●
●

● ●

●

●

●
●

●●
●● ●●

● ●
●

● ●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●● ●
●

● ●
●●

●
●

●
●

● ●●
●

●●
● ●

●

●

●

● ●

●
●

●
●●

●
●

●● ●

●

●

●
●

●●
●

●

● ●
●● ●

●
●

●
●

●

●
●● ●

●

●

●
● ●

●
●●

●

●

●
●

●

●
●

●

● ●

●
●

● ●
●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●●

●
●

●

●
●

●
●

● ●● ●

●

●

●
●●

●

● ●
●

●
●

●●

●

●
● ●

●
●
●

●●

●

●●

●
●

●
●
●

●
●
●

●

●

●●
●

●
●●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●●
●

●

●●
●●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

● ●
●●

●

●

●

●

●
●

●

●
●●

●
●

●●

●

●

●

●
●

●
●

●

●

●
●●

●
●

●
●

●

●
●

●

●●

● ●

●
●
●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

● ● ●●
●

●●●
●

●

●

●

●
●

● ●

●●

●

●
●

●●
●

●
● ●

●
●

●

●

●
●

●

●

●

●

●●
●

●●
●

●

●

●

●
●

●

●

●● ●

●
●

●
●

●●●

●●

●●
● ●

●

●

●
●

●

●●

●

●

●●
●

●

●●

●

●

● ● ●●

●
●

●
●

●
● ●

●

●

●

● ●

●

●

●

●

● ●

●

●●●

● ●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
● ● ●
●

●

●●

●

●

●

●
●

●

●●●
● ●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●
●

●
● ●
● ●● ●

●●
●

●

●
● ●

●
●

●

●

●
●

●●
●

●

●

● ●

●
●

●
● ●

●
●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●

●
●●

●

●
●
●

●● ●

●

●

●

●
●●

●

●

●

● ●
●

●

●
● ●

●
●

●
●

●

●

●

●●
●
●

●

●

●

●
● ●

●

●

●

●
●

●

●
●
●●

●●
●

●

●

●●

●

●

●

●
●

●

●
●
●

●

● ●

●

● ●
●

●

●

●

●

●
● ●● ●

●

●

●

●

●
●

●
● ●

●

● ●

●
●●●

●● ●
●●●

●
●●

● ●

●

●

●

●
●

●
● ●

●

●
●●

●

●
●

●

●
●

●
●●

●

●

●
●●

●

●

● ●
●

●

●

●

●

●

●●

● ●
●

●
●
●

●
● ●

●
●

●●●●
●

●

● ● ●
●

●

●

●

●

●● ●●
●

●
●

● ●

●
●

●
●

●
●

●

●
●

●●

● ●

●

●
●

●
●

●
● ●

●

●
●

●
●● ●

●● ●

●

●

●
●

●

●
●●●

● ●
●

●

●

●● ●

● ●

●

●

●

●

●

●
●●

●
●● ●

●

●

● ●

●
●●

●

●

●

●

●

●●
●

●

●

● ● ●●●
●

●

● ●

●

●

●

●

● ●

●

●

●●● ●
●

●
●
●

●

●

●●
●

●

● ●
● ●●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●
●

●●

●
●●● ●

● ●
●

●
●
●●

●
●

●
●

● ●
●

●●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●●
●

●●
●

●●

●
● ●

●●

●●

●
●●

●
●

●
●

●
●

●●●

●

●

●

●

●

● ●
●

●●
●

●

●

●

●●
●

●

●
●

●●

●

●
●● ●●

●

●

●

●

● ●

● ●

●

●
●●

●

●
●

●
●

●● ●

●

●
●

●

●
● ●

●

●

●● ●

● ●
● ●

●

● ●

●

●
●

●
●

●●

●

●

●

●
●

●
● ●

●

●

●●

●● ●
● ●

●
● ● ●

●
●

●

●

● ●

●

●

●●●

●

●
●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

● ●●
●

●●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●
●●

●

●

●

●
●●
●

●

●

●
●

●

●

●
●●

●

● ● ●

●

●●●

●
●

●

●

●
●

● ●

●
● ●

●

●
●●

●

●

●

●●
●
● ●
●

●

●●

● ●●

●●
●

●

●

●

●

●
●● ●●

●●
●

●●

●

●
●

●
● ●

●
●

●

●

●

●

●
●

●

●
●

●
●

● ●

●

●

●

●● ●●

●

●

●

●●

●

●

●●

●

●

● ●
● ●●

●

●

●
●

●●
● ●

●

●
●

●

●

●
●

●

●

●
● ●●●

●

●
●

●

● ● ●

●

● ●
●●

●
●

●●

●●
●

● ●

●

●

●

● ●

●●

●

●●

●

●

●●

●

●

●

●

●

●●

●
●
●

●

●

●

●●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

● ●
●

●

●

●

●

●
●

●●

● ●

●

●

●

●
●

●●
●●

●

●

●●
●

●

●
●

●
●

●
●

●

●
●

●

●
●●●

●

●

●

●

●

●●
●

●
●

● ●●
●

●
●

●
●●

● ●
●
● ●

●

● ●

●

●
● ●●

● ●●

●
●●
●

● ●●

●

●
●

●

●

●
●●
●

●● ●
●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

● ●

●● ●
●●

●

●
●
●

●
● ●

●

●

●
●

●

●

●

●

● ●

●

●

●
●●

●● ●

●

●
●

●

●

●

●

● ●

● ●● ●

●

●
●

●

●
●

●

●
●

●

●
●●
●●

●
●

●

●●

●
●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

● ●

●●
●

●

● ●
●

● ●●

●

●
●
●

●

●

● ●

● ●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●
● ●

●

●

● ●

●
●

●
●

●

●

●
●

●
●

●

●

●

●●
● ●

●●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
● ●

● ● ●●
●

●

●

●
●

●
●
● ●

● ●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●
●●

●

●

●

●
●

●
●

●
●

●

●

●●
●●

●

●

●
●●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

● ●● ●

●
●

●●

●

●

●

●

●

●
●

●

●

●● ●

●

●
●
●

●
●

●

●
●
● ●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●
●

●
●●

●

●●
●

●

●● ●

● ●
●

●

●
● ●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●●

●

●
●

●
●

●

●

● ●

●●
●

●
●

● ●

●
●

●●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●
●●

●

●
●

●●

●
●
●
●

●

● ●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●
●

●

●●

●

●●
● ●

●
● ●

●●
●

●
●

●

●

●

●
● ●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●●
●

●

●
●

●
●

●

●●
● ●●

●

●
●

●

● ●●●●●
●

●

●●
●

●

●

●
● ●●

●

●

●

●

●
●

● ●

●

●

●
●

●
●

●
●

●

●
● ●●

●●
● ●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

● ●●

●

●

●

●●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●
●

●
●

●

●
●

●●

● ●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

● ●● ● ●

●
●

●
●

●

●

●

●

●
● ●

● ●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●●

●
●

●

●

●●
●

●●●
●

●
●

●

●

●

●

●

●

●

●
●● ●

●
●

●
● ●

●
●

●
●

●●
●

●

●● ●

●

● ●
●

●

●
●

● ●●

● ●●

●

●

● ● ●

●

●
●

●

●

●

● ●

●

●

●

●
●
●

●●

●●
●

●

●

●

●
●

● ● ●

●
●●●

●

●

●

●

●●
●

● ●

●

●

●

●

●
●

●
●

● ●
●●

●

●
● ●

●●
●●●

●
●

●

●

●

●

●

● ●●

● ●

●

●
●●

●

●

●
●

●●

●
● ●

●●
●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

● ●
● ●●

●

●

●● ●
●

●

●
●

● ●

●●
●

●

●●
● ●

● ● ●

●

●

●

●

●
●

●●

●

● ●

● ●
●●

●

●

●

●

●

●

●
●

●
●

●●
●● ●

●● ●●
●

●
●

●

●

●
●

●

● ●
●●

●

●
● ●

●

●●
●

●

●

●

●
●

●
●

●

●

●
●

●
●●

●

● ●
●

●

●

●

●
●

●
●

● ●

●
● ●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●
●

●●
●

●

●
●

● ●

●

●●
●

●

●

●

●
●

●

●

●
●

●

● ●

●

●
●

●

●

●
●●

●

●
●●

●● ●

●
●

●

●

●●

●

●
●●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●
●

●
● ●●

●
● ●● ●

●

● ●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●● ●
●

●

●
●

●

●
●

●

● ●●

●

●

●

●

●

●
●
● ●

●

●

●
●

●

● ●
●

●
●
●

●
●

●
●

●

●●●

●

●●

●

●
●

● ●
●

●

●
●

●
● ●

●

●●

● ●

●
●
●●

●
●

●

●

●

●

●

●
●●●

●

●

●

●●●

●

●

●
●

●

●

●

● ●

●

●
●

●
●

●
●●

●
●

●

●

●●
●

●

●
●

●
●

● ●

●

●

●
●

●

●
●

●
● ●

●

●
●

●

●

●●

●

●
●

●

●

●
●
●

●
●●

●

●

●

●

●

●

●

●
●● ●●

● ●

●

●
●
● ● ●

●

●

●

●

●
●

●

●

●

●● ●

●

● ●
● ●●

●

●

●

●
● ●

●

●
●●

●
●

●

●
●

●

●
●

●

●

●

●
●

●●●

●

●●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

●
● ●

●
●

●

●●●
●

●

●
●

●

●

●
●

●

●
●●

● ●
●

●
●

●
●●

●

●

●

● ●
●●

●

●

● ●

●

●● ●
● ●●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●
●●

●

●

●
●●

●●●
●●
●

●
●

●
●

● ●

●

●
● ●

●
● ●●
●

●
●●

●

●

●
●

●●●

●
●
●

●

● ●●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●●●
● ● ●

●

●
●

●
● ●

●

●

●
●

●

●

●
●

●

●

●●●
●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●

●

●
●

●●

●●
●

●

●

●

●
●

●

●

●
●

●
● ●

●

●

● ●

●

●

●
●

●

●
●

●
●

● ●

●
● ●

●●●

●
●

●
●
●

●

●
●

● ●●
●

●●

●
●

●

●

●

●

● ●

●

●
● ●

●
●

●

●

●

●

●
●

●

●●●
●● ●

●

●

● ●

●

●
●

●
●

●

●
● ●●

●

●

●
●

● ●● ●

●
●●●

●●
●

●

●

●● ●
●

●
●

●●●
●

●

●

●

●●
●

●
●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●●
●

●●
●

●

●

●
●

●

●

●
● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●● ●

●
● ●●

●

●

● ●

●

●

●●● ●

●

●
●

●
●

●

●

●

●

●

●

● ●

●
● ●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

● ●

●
●

●●

●
●

●
●

●

●

● ●

●

●
●●
●

●
● ●

●

●

●

●

●

●●

●
●

●

● ●

●

●
●

●

●

●
●

●
●

●

●
● ●
●

● ●

●
●

●
●

●

●●
●

●

●

●
● ●

●
●
●

●
●

●

●
●●●

●
●●

●●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●●
●

●

●

●

●●

●

●
●

●
●●

●

●
● ●

●

●● ●

● ●
●
●

●●
● ●

●

●

●

●
●

●●
●

●

●

●

●
●

●
●

●

●●

●
●●

● ●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

● ●

●

● ●

●
●

●
●

●

●

●
●

●
●

●●

●

●
●●

●

●

●
●●●

●

● ●
●●

●

●

●

●
●

●

●
●

●
●
●●

●

●

●
●

●
● ●

●

●
●

●● ● ●

●

●

●
●

●

● ●

●

● ●

●

●

●

●●

●
●

●

●

●

●●

●
●

●

●●

●●

●
●

●
●

●

●

●
●

●

●
●

●
● ●

●

●

●

●
●

●
●

●

● ●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
● ●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

● ●

●

●

●
●

●

●
●

●

●
●●

●
●

●
●

●●
●●●

●

●●
●

●
●

● ●●

●

●

●

●

●
●

●
●

●●●

●

●●●
●

●

●

●
●

●
●

●●● ●● ●
●

●

●●

●
●

●
●

●
●

● ● ●●
●

●
●

●●

●

●

●

●

●
●

●
●

●
●

●●
●

●

●

●● ●
●●

●

●

●

● ●●●

●

●

●

●
● ●●

●
●

● ●

●

●

●

●

●
●

● ●
●

●

●

●
●

●

●

●●
● ●●

●
●

●

●
● ●
● ● ●

●

●

●
●

●

● ●●
●

●
●

●

●
● ●

●

●

●

●

● ●●

●

●●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●
● ●

●●

●

●●
●●

●
●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●
●

●
●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

● ●

●●
●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●●

●●
●

●

●●

●

●
● ●

●●

●

●

●
●

● ● ●

●● ●

●
●

●
●

●

●● ●
●

● ●

●
●

●

●

● ●

●

●
●

●

●

●
●

●
●

●
● ●

●

●
●

●

●

●
●

●
●●

●

●

●
●

●
●

●

●
●●

●
●

●

●

●

●

●

●
●

●
●●

●
●

●●●
● ●●

● ●●
●●●

●
●●
● ● ●

●● ●
●
●

●

●

●

●

● ●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

● ●
●●

●

●

● ●
●

●

●
●●

●
●

●
●

● ●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●
●

●

●

●
●

● ●●●

●
● ●●●●

●
●
●

●

●
●

●
●●

●

●●
●●
●

● ●●
●

●●
●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●
●

●

●

●
●●

●

●●
●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●●
●

●
●

●
● ●

●
●
● ●●
●

●
●

●●

●

●
●

●
●

●

●
●

●

● ●
● ●●●

●

●
●

●●

●
● ●

●
●

●

●
●

● ●

●●

●
●

●

●
●

●
●

●

●

●

●
●

●
●● ●

●
● ●

●
● ●●

●
●●
●

●

●
●

●

●

● ●

●
●

●

●

●

●
●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●●

●
●

● ●
●

●

●●
●

● ●● ●

●

● ● ●● ●
●●

●

●

●

●
●

●

●
●

●

●

●
● ●

●
●

●

●

●

●

● ●
● ●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●
●

●

●
●●

●

●

●● ●● ●
●

●

●
●

●

●●
● ●

●
●●

●

●

●

●●

●

●

●
●● ● ●

●
● ●●
● ●

●

●

●

●

●

●
●

●

●●
●

●

● ●●

●

● ●
●

●

●

●

●

●
●

●●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●●

● ●
● ●

●

●●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●
●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●
●

●

●
●

●

● ●
●

●
●

●

●

●

●

●

●● ●●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●●

● ●

●
●

●

●

●

●
● ●●

●

●
●

●
●

●
●

●
●

●
●

●

●
● ●

●

●● ●
●

●
●

● ●

●

● ●

●

●

●

●
●

●

●●●
● ●

● ●

●

●
●

●

●
●● ●

●
●

●

●
●

●
● ●

●
● ●

●

● ●

●

●
●

●●
●

●

●
●

●

●
●

●

●

●
●

● ●

●
●

●
●

● ●

●

●
●

●

●

●
●● ●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●●●

●●

●
●

●
●

●

●

●

●
● ●

●

●

●

● ●

●

●
●●

●

●

● ●

● ●

●

●●
●

●
●

●

●●
●

●

●●
●

●

●●

●

●

●

●
●

●
● ●
●

●
●

●

●

●

●●
● ●

●● ●●

●

●

●

●●
●

● ●

●

●

●

●

●
●

● ●
●

●
●

●

●

● ●

●●●

●

●
●

●
●
●● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●
● ●

●

● ●
● ●

●
●

●

●●

●

●

●●
● ●●

●

●●
● ●

●
●

●
●

●
●

●
●

●

●

●

●

●
●●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
● ●●

●

●●
●

●
●●

●

●

●

●●

●
●

● ●

●

●
●

●

●
●● ● ●●

●●
●

●

●
●●●

●
●

●

●

●
●

●

●
●

●●
●

● ●
●

●
●

●
●

●

●
●

●

●
●

●
●

● ●

●

● ●

●

●

●

●

●

●

●
● ●

●
● ●●

●
●

●

●

●

●
●

●

●●
●

●

●
●

●
●

●

●● ●

●

● ●

●

●
●

●

●

●
●

●

●● ●
●

●

● ●
●

●
●

●

●
●

●

● ● ●
●

●

●

●

●

● ●
●

●
●

●

●

●
●● ●

●
●

●

●
●

●
● ●

●●

●

●

●
●
●

● ●

●

●●
●
●

●
●

●●
●

● ●

● ●●
●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●

●

●

●

● ●
●● ●●
●

●● ●
●

●●

●●

●
●

●

●●
● ●

●

●
● ●

●

●● ●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

● ●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
● ●

●
●

●●
●

●

●

●

●

● ●

●

●

●
●

●

●
●
●

●

●
●

●
●

●
●

●●

●

●

●

●
●

●

●
●

●
● ●●●

●

●

● ●

●●
●

●

●

●

●

● ●

●

●

● ●●

●

●

●

●
●

●

●
● ●
●

●
●●

●

●

●

●
●

●
●

●●
●

●
●

● ●
●

●

● ●

●

●●

● ●
●

●

●

●

●

●

●

●

●

● ●

●
●

● ●

●
●

●

●

●

●

●●●

●●
●●

●

●● ●

●●
●

● ●●
●

●

●
●

●
●

●●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●●●

●

●
●

●

● ●

●
●●

● ●
●

●

● ●

●

●

●

●
●

●

●
●

●

●●
●

●
●

● ●
● ●

●

●●

●
● ●

●

●●

●

●

●

●

●

● ●

● ●
●

●

●
●

●

●

●
● ●

●

●
● ●

●
●

●
●

●

●

●●

●

●
●
●
●

●●

●

●

●●

●

●
●

●

●

●● ●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

● ●
●

●

● ●
●

●●●

●

● ●
●

●

●●

●

●

●

● ●
●

●

●
●
●

●

●

●

● ●●

●

●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●●
●

●
●

●

●

●
●

●

●

●●

●●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●● ●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●
● ●●

●

●

●
●●

●
● ●

●

● ●●●

●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●
●● ● ●

●
●

●
●

●

●

●
●

● ●●
●

●

●

●

●

●

●
●●

●
●

●●

●●

●
● ●●

●

●

●

●●
●●

●●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●
● ●●

●● ●

●

●

●
●●

●●

●

●

●

●

●

●● ●

●
●

●
●

●

● ●

●

●●

●

● ●
●

●

●
●

●

●

●

●
●

●

●●
●

●
●
●

●

●
●

●
●
●

●

●

●

●
●

●
●
●

●
●

●

●

● ●

●

●
●

●
●

●

● ●

●

●

● ●● ●
●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●
●

●
●

●
●

●
● ●

●

●

●
●
●

●

●

●

●
●

●

●

● ●

●
●

●
●

●

● ●●

●

●

●
●

●●

●
●
●

●

●
●●

●

● ●●

●
●

●
●

●

●● ● ●

●

●●

●

●

●

●
●

●●●

●
●

●

●●

●

●●

●

●

●●●

●

●
●

●
●

●

●
● ●●

●

●

●

●

●

●

●
●

●● ●

●

●

●
●

●● ●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●

●●
● ●

●

●

●

●

●
● ●●

● ●●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●
●

●

●

● ●

●

●

● ●

● ●

● ●
●

●
●

● ●
●

●

●

●●

●
●

●

●

●

●
●

●

●
●

● ●●

●
●

●

●
●

●
●

●
●

●●

●
●

●

●

●

●
●

●

●

●
●

●●

●
●

●
● ●

●
●

●

●

●
●●

●
●

●
● ●

●●
●

●
●

●
● ●● ●

●

●
●

●
●

●

●
●●

●

●
●● ●

●

●
●●●

●
● ●

● ●
●

●●
●

●

● ●

●

●

●

●
●
● ●

●

●
●

●

●

●
● ●

●
●●

●
●

●
●

●

●

●
●

●

●

●● ●●

●

●

●

●

● ●

● ●
● ●

●

●

●●

●
●

●●
●●

●
●

●

●
●●

●

●

●

●

●
●

●
●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

● ●

●
●

●● ●

●

●

●

●

●

● ●●
● ●● ●

● ●
●●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

● ●
●

●
●

●

●
●

●

●●

●
●

●

●●●

●

●

● ●

●

●

●
●● ●●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●●

●

●

●

●
●

● ●
● ●

●
●

●

●
●

●●●
●

●●
●

●

●

●
●●

●

●●

●

●●

●

●
●

●

●

●●

●
●

● ● ●
●●

●

●

●

●

●

●

●

●

● ●
●

●
● ●

●

●●

●

●

● ●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●
● ●

●
●

●

●●
●

●

●

● ●●
● ●

●

●

●
●●

●

● ●

●

● ●
●

●

●

●
●●

●
●

●
●

●

●

●

●

●●● ●

●
●

●
●

●

●

●

●

●

●●

●

●●

● ●
●

●

●

● ●

●

●

●

●
●●

●

●

●
●

●

●

●
● ●●

●

●

●

●

●●● ●●
●●

●

●
●

●

●
●

●
●

●

●
●●
●

●

●
●

●

●

●

●

●

● ●
●

●●
●
●
●

●

●

●●

●
●●

●

●
● ●

●
● ●

●

●
●

●

●
● ●

●
●

●
●

●
●

●

● ●●

● ● ●

●

●

●
●

●

●●

●

● ●
●

●

●

●

●

●

● ●●

●

●●

●

●

●
●

●
●

●
●

●
●

●

●●

●●

●●
● ●

●
●

●

●

●

●
●● ●●

●

●

●

●

●

● ●
●●

●

●
●

●
●● ●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●
●

●

●●

●●●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●

● ●
● ●

●

●●

●

●
●●

●

● ●

●

●

● ●

●

●
● ●●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
● ●

●●

● ●

●
●

●

●

● ●

●

●

●

●●
●

●

●

●
●●

●
●
●

●

●

●

●
●

●

●●
●●

●
●

●

●

●

●

●
●

●
●

●
●

● ● ●

●
●

● ●●
●

●

●

●
●
●

●●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●●●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●●
●

●
●

●
●

● ●●

●

●

● ●
●●

●
●

●

●

●●
●

●

●
●

●

●●

●

●

●

●●

●

●

●
●● ●

●
●

●

●

●

●

●

●

●

●

●
●●

●
● ●

●

●

●

●

●
●

●●●

●

●

●

●

● ●

●

●

●

●
●●

●
●

●

● ●

●
●

●

●
●

●● ●
● ●

●

●

● ●●
●

●

● ●
●

● ●

●

● ●

●●

●
●●

●●●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●
●

● ●

●●
●

●
●●

●
●
●

●

●

●
● ●

●
●

●

●

●

●
●

●
●

●

● ●

●

●
● ●

●
●●

●

●

●

●

●

● ●

●

●

●
●

●
●
●
●

● ●
●

●●
●

●●

●

● ●●
●

●
●

●

●

●● ●

● ●
●

●

●

●●

●

●●

●

●
●

●
●

●● ●

●●
● ●● ●

●
●

● ●

●

●
● ●

●
●

●

●

●
●

●

●
●

●
●●●

●
●

●
●
●

●

●

● ●

●

● ●
●●

●

●

●

●
● ●

●

●

●

●●

●
●

●

●
●

●

●●
●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

● ●
● ●

●

●

●
●

●
● ●

●

●
●

●

●

●

●
●
●

●
●

●

●
●

●

● ●

●
●

●● ●

●

●

●

●
●

●
●

●
●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
● ●

●
●

●●
●●

●
● ●●

●

●

●

●●

●

●

●

●

● ●
●●

●

● ●

●●

●

●

●
●

●
●

●

● ●●● ●
●●

●

●

●

● ●

●

●
●

●
●● ●

● ●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●
●

● ●● ●
●●●●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●
●

●
●

●●●

●
● ●

●
●

●
● ●

●●
●
● ●

●●

●
●

●

●●

●

● ●
● ●

●

●

● ●

●●

●

●●
●●

●
● ●

●● ●
●

●

● ● ●

● ● ●

●●

●
● ●

●

●

●
● ●

●

●

●

●
●

●

●
●

●

●
● ●

●

●

●
●

●

●

●

● ●

●

●
●

●

●
●

●

●

● ●●●
●

●

●
●

●

●
●

● ●

●

●

● ●

●

●
●

●

●

● ●

●

●●
●

●

●●

●
●

●●

●

●

●

●
●

●

●

● ●●

●

●

●
● ● ●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●●●

●
●

●

●

●●●

●● ●
●

●

●

●

● ●

●●

●
●

●

●
●

●
● ●

●

●

●
●

●●
●

●
●

●
●

●

●
●

●

●●●

●

● ●

●

●
●

●

● ●

●
●

●

● ●●● ●

●
●

●●

●

●●

●
●

●
●

●
●●

●
●

●
●

●
●

●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●●

●

●
● ●

●

●
●

●

●
●

●

●

●

●
●

● ●

●

●

● ●
●

●
●

● ●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●

● ●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●● ●
●

● ●●

●
●

●

●

●●

●

●

● ●
●●●

●●

●

●

●●

●

●
●

●
●
●

●

●

●

●

●

●

● ● ●●●

●
●● ●●

● ●
●

●

●●

●

●
● ●

●●
●●

●● ●● ●

●

●

●

●●

●

●
● ●●

●

● ●

●

●

●
●

●

●

●
●

●
●

●

● ●●

●
●

●

●

●
● ●

●●
●

●● ●

●

●
● ●●

●●

●

●
●

●

●

●

●

●

● ●
●

●

●
●

●
●

●● ●

●

●

● ●

●
●

●

●

●
●

●

●

● ●
●●

● ●●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●
●

●
●

●

●

●

●

●
●

●
●●

●

●

●
●
●

●

●

●
●

●
●

●

●
●

●● ●

●

●

●

●

●●

● ●

●

● ●

●
● ● ●● ●

● ●●● ●

●

●

●●

●

●● ● ●
●
●

●
●

● ●

●

● ●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

● ●

●

●

●

● ●
●●

●

●

●
●

●

●
●
●

●
●

●
●

●●
●

● ●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●
●

●

●

● ●
●

● ●

●●

● ●

●

●
●

●
●

●

●
●

●

●

●●●
● ●

●

●

●

●

●

●●
● ●

●
●

●●
●●

●
●●●

●

●

●●●

●

● ●

●

●

●

●
●

● ●●

●

●

● ●

● ●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

● ●
●

● ●

●

●
●

●
●●

●

● ● ●●

●
●

●
● ●

●

●●
●●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●

● ●

●● ●
●●

●
●

● ●

●

●

●

● ●

●

●

●●

●●
● ●

●

●

●
●
●

●●

●

●
●●

●

●

●
●

●
● ●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

● ●

● ●

●

●

●

●

●

●
●

●
●

● ●

●

●
●

●●

● ● ●
●

●
●

●

●

●
●
●

●

●
●

●

●
●

●

●

●
●● ●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●●
●

●

●
●

●

●
●●

●●

●
●

●
●

●

● ●
●

●

●
●

●

●
●

●●
●

●

●

●

●

●
●

●
●
●

●
●
● ●

●
●●

●

●●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●●

●
● ●

●

●

●●

●

●

●

●●

●
● ● ●

●

●

●

●
●

●

●
●

●●
●●

●

● ●

●● ●

●

●

●
●

●

●
●

●
● ●

●

●
●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

● ●
●

●

●

● ●

●● ●
●●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

●

●
●

●
●

●
●

●

●

● ●
●

●

● ● ●

●

● ●

●
●●

●

●
●
●

●

●

●

●

●

●
●

● ●

● ●

●

●●

●

● ●● ●●

●●●
● ●

● ●● ●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●
●

● ●

●
●

●

●

●

●
●

● ●

●
●

● ●

●
●

●
●

●● ●
●●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●

●
●●

●
●

● ● ●

●

●
●

●
●

● ●●

●

●●

●
●

●

●

●
● ●

● ●

●
●●

●

●

●● ●
●

● ●
●

●●●

●

●
● ●● ●●

●

●
●

●

●

●

●

● ●

●

●●
●●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●●
●

●

●

●

●
● ●

● ●
●

●
●

●
● ●

●
●

● ●

●

● ●

●

● ● ●
● ●

●
●

●

●
●

●
● ●

● ●

●

●●

●

●
●

●
●

●
●

●●

●

●
●

●

●
● ●

●
●

●●●

●

●
●

●
●

●●

●● ●

●

●
●

● ●

●
●●

●

●●
●●

●

●

●
●

●

●

●
●

●

●

●
● ●●

●

●
●
●

●

●

●

●●●

●
●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

● ●

●

● ●●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●● ●

●

●

●

●

●
●

●
●

●
●
●

●

●

●
●

●

●
● ●

●
●●

●

●

●

●

● ● ●● ●
●

●● ●

●

●

●

●

●

●

●

●
●

●

● ●●
●

●

●●

●

●

●
●

●

● ●

●

●

●

●●
●●

●●

●

●
●

●

●
●

●

●

●
●

●

●
●

●●

●●●

●●
●●

●
●

●

●

● ●
●

●●

●

●
●●●

●
●

●

●

●

●
● ●●

● ●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●
●

● ●

●●

●

●

●

●●

●

●
●●●

● ●●

●

●●

●

●

●

●
●●

●

●
●

●

●

●
● ●●

●

●
●●

●

●
●●

●
●●
●

●
●

●
●

●

●

●●

● ●

●

● ●

●●
●

●
●
●

● ●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

● ●●
●

●

●

●

●

●

●
●

●

● ●
●●

●
●

●

●

●
●● ●

●

●

●

●
●

●
●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●
●

●

● ●
●

●
●

●
●

●
●

●●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●●

●● ●●●●

●

●●
●

●
●

●

●
●

●

●
●

●
●

●
●●

●

●
●

●
●●

● ●
●●

●

●●●

●

●

●
●

●

●

●

●

●
●

●
●

● ●
●

● ●●
●●

●

●
●

●●●
●

●
●

● ●

●
●

●

●

●

●

●●
●● ●

●

●
●

●

●
●

●
●

●

●
●

● ●
●

●

● ●

●

● ●●
●● ●

●
●

●
● ●

●● ●

●
●

●

●

●

●

●

●

●
●●●

●
●

●
●

●

●● ●

● ●

●

●

●

●

●

●
●●

●

●●
●

●

●

● ●

●
●● ●

●

●

●

●

●
● ●

●
●

●
●

●

●
●

● ●

● ●

●
●

●

●

● ●

●

●
●

●●
● ●

●

●
●

●

●

●●

●

●

●
●● ●

●

●●

●

●

●

● ●

●●

●
●

●
●●

● ●

●

●● ●
●

● ●

●
●

●●
●

●
●

●
●●

●●

●
●

● ●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
● ●

●
●

●

● ●

● ●● ●

●
● ●

●
●

● ● ●●
●

●●

●

●●
●●

●

●
●

●

●●●

●
●

●

●
●

● ●
●

●●●
●

●

●

●
●●

●
●

●

●
●

●

●●

●
●●

●

●

●

●

●
●● ●

●

●

●
●

●

●
●●

● ●
●

●

●

●
●

●
●

● ●

●

●

●● ●

● ●

● ●
●

●
●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●●●
●●

●● ●
● ●●● ●

●● ●

●

●●
●

●

●

●●
●

●

●●

●

●●●
●

●●

●

●
●

●

●

●

●

●

●
●● ●

●●
●

●

●

●

●
●●

●

●

●
●●●

●

●

●

●

●

●
●●

●
●

●

●

●

● ●

●

●

●
●

●

●

●●●
●

●
● ●

● ●●
●

● ●

●

●●

●

● ●

●
● ●

●
●

●

●

●

●

●

●●

●

●
●●

●
●

●

● ●●

●● ●●

●

●

● ●●
● ●

●

●

●

●

●
●

●
●

●

●
● ●●

●

●

●

●

●

●
●●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●
● ●●

●●●

●

●

●

●
●

● ●

●

●

●

●
●

● ●

●

●

gender homework

P
V

5M
AT

H
P

V
5R

E
A

D
P

V
5S

C
IE

female male 0 5 10 15 20

200

400

600

800

0

200

400

600

800

0

200

400

600

800

5thFigure 2.21. grade Australian student scholasitc scores vs their sex
and hours of weekly homework.

Comparing these two groups if we are interested in knowing if there is any differ-

ence in any score output given a child’s sex and homework time. A ggpairs plot

would create within and identity combinations as well as the between combinations

of the ggduo plot, which is undesired in this situation.

36

2.4.1 Column types

ggduo inspects and displays the data columns according to their variable type:

continuous or discrete. There are three plot type groups that can be made from these

two options:

• continuous vs. continuous. A scatterplot is a continuous vs. continuous plot.

• continuous vs. discrete. A box plot or grouped box plots is a continuous vs.

discrete plot.

• and discrete vs. discrete. A ratio plot, or a plot that can display the tips ’s

smoker vs. day (eight combinations of 244 records) is a discrete vs. discrete

plot.

ggduo ’s default plotting behavior for continuous vs. continuous, or ‘continuous

plot’, is to produce a scatterplot with a loess smooth curve displayed on top of the

points. The default plotting behavior for discrete vs. discrete, or ‘discrete plot’, is

to summarize the data and display it as a ratio plot. A ratio plot displays rectangles

whose size is proportional to the counts of the value combination in both the X and

Y direction.

The third group, continuous vs. discrete, is refered to as a ‘combination plot’.

ggduo makes a distinction between the two possible combination plots: continu-

ous vs. discrete (vertical combination plot) and discrete vs. continuous (horizontal

combination plot). By default, ggduo displays grouped histograms for a horizontal

combination plot and grouped box plots for a vertical combination plot as in Fig-

ure 2.23. ggpairs is able to handle the combination plot differently for the upper

and lower triangle using the the upper and lower arguments as in Figure 2.22.

Unlike ggpairs , a distiction between a horizontal and vertical combination plot is

made as there are no upper and lower triangle plot matrix sections in a ggduo plot

as in Figure 2.24.

37

ggpairs(
tips,
c("total_bill", "smoker", "day", "tip"),
upper = list(combo = "denstrip"),
lower = list(combo = "facetdensity")

)

●
●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●●

●

●

●●

●

●
●

●

●

●●●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●
●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●● ●

●

●

●
●

●

●

● ●●

●

●

●

●●

●

● ●●●●
●

●

●

●●

● ●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●●
●

●

● ●
●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
● ●

●

●
●

●

●

● ● ●

●

●

●●●

●

No Yes Thur Fri Sat Sun

Corr:

0.676

N
o

Yes
T

hur
F

ri
S

at
S

un

total_bill smoker day tip

total_bill
sm

oker
day

tip

10 20 30 40 50 2.5 5.0 7.510.0 2.5 5.0 7.510.02.55.07.510.02.55.07.510.02.55.07.510.02.55.07.510.0 2.5 5.0 7.5 10.0

0.00

0.02

0.04

10
20
30
40
50

10
20
30
40
50

1020304050

1020304050

1020304050

1020304050

2.5

5.0

7.5

10.0

Figure 2.22. Altering the ggpairs upper and lower combo plot types.

38

ggduo(
tips,
c("total_bill", "smoker", "day"),
c("tip", "time")

)

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●●●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●
●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●● ●

●

●

●
●

●

●

● ●●

●

●

●

●●

●

● ●
●●

●
●

●

●

●●

● ●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●●
●

●

● ●
●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
● ●

●

●
●

●

●

●
● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

total_bill smoker day

tip
tim

e

0 10 20 30 40 50 No Yes Thur Fri Sat Sun

0.0

2.5

5.0

7.5

10.0

0

5

10

15

0

5

10

15

Figure 2.23. two-grouped plot matrix using ggduo with no upper or lower
triangle areas.

39

ggduo(
tips,
c("total_bill", "smoker", "day"),
c("tip", "time"),
types = list(
comboVertical = "denstrip",
comboHorizontal = "facetdensity"

)
)

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●●●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●
●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●● ●

●

●

●
●

●

●

● ●●

●

●

●

●●

●

● ●
●●

●
●

●

●

●●

● ●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●●
●

●

● ●
●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
● ●

●

●
●

●

●

●
● ●

●

●

●●
●

●

No Yes Thur Fri Sat Sun

total_bill smoker day

tip
tim

e

10 20 30 40 50 No Yes Thur Fri Sat Sun

0.0

2.5

5.0

7.5

10.0

10
20
30
40
50

10
20
30
40
50

Figure 2.24. Updating the combination types in a ggduo plot matrix.

2.4.2 User defined functions

There are many plotting functions are provided by the GGally package, how-

ever they are not all encompassing. The user may supply their own plotting func-

tions for each panel type. This allows for complete customization of every panel.

For example, a violin plot is a combination style plot that is not included by de-

fault. A user may create their own function that uses the function call API of

function(data, mapping, ...) { ... } . A sample custom function example is

provided below in Figure 2.25.

40

my_violin <- function(data, mapping, ...) {
ggplot(data = data, mapping = mapping) +
geom_violin(...)

}
ggduo(
tips,
c("total_bill", "smoker", "day"),
c("tip", "time"),
types = list(
comboVertical = my_violin

)
)

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●●●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●
●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●● ●

●

●

●
●

●

●

● ●●

●

●

●

●●

●

● ●
●●

●
●

●

●

●●

● ●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●●
●

●

● ●
●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
● ●

●

●
●

●

●

●
● ●

●

●

●●
●

●

total_bill smoker day

tip
tim

e

0 10 20 30 40 50 No Yes Thur Fri Sat Sun

0.0

2.5

5.0

7.5

10.0

0

5

10

15

0

5

10

15

Figure 2.25. Use a custom function to display a plot within a ggduo plot
matrix.

2.5 ggduo in practice

2.5.1 Canonical correlation analysis

Canonical correlation analysis (CCA) is a method to analyize the correlation be-

tween two matrices [22]. CCA can be directly displayed with ggduo . Before ggduo ,

canonical correlation analysis did not have a cohesive plotting mechanism to visu-

ally display the associations of two sets of mixed type variables. Examples used

41

ggpairs to display all pairs of columns when only a subset of combinations are

needed. ggpairs is a well suited candidate for within correlation for the explana-

tory variables and the response variables. Whereas ggduo can be used to check the

correlation between the explanatory and response variables.

Figure 2.26 is an altered example from the UCLA Intstitute for Digital Research

and Education [23]. The website provided an example using ggpairs to analyse the

within corrleation. Continuing their example, we can use ggduo to check the between

correlation. The psychademic data consists of 600 records of three psychological

variables, four academic variables, and each student’s gender. The psychological

variables are treated as the response while the academic variables and gender are

treated as explantory variables. Figure 2.26 uses ggduo to check the correlation

between the two sets of columns.

ggduo(
psychademic,
c("motivation", "locus_of_control", "self_concept"),
c("read", "write", "math", "science", "sex"),
showStrips = FALSE,
types = list(continuous = "smooth_lm")

) +
labs(
title = "Between Academic and Psychological Variable Correlation Analysis",
x = "Psychological",
y = "Academic"

)

42

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●
●

●

●

●
●

●

●
● ●

●●

●

●

●

●

●

●
●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●
● ●

●

●
●

●
●

●

●

●● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

● ●

●

●

●
●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

● ●
●

●
●

●

●

●

● ●

●

●

●

●
● ●

●

● ●

●●

●

●

●

●●

●●
●

●

● ●
●

●

●

●

●●

●
●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●
●

●

●

●
●

●

●

●

●●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

● ●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●
●

●
● ●

●
●

●

●

●●

●

●

●
●

●
●

●

●
● ●

●

●

●

●
●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●●●

● ●

●●

●

●

● ●

●

●●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●
●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
● ●

●

●

●

●

●
●

●

●
●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

● ●

●

●

●●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

● ●
●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●
●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●

●

●

●
● ●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●● ●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●

●
●

● ●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●●

●
●

●
●

●

●

●

●●
●

●

●

● ● ●
●

●

●

●

●
● ●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●●
●

●●

●

● ● ●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
● ●●●

●

●

●●

●

●●

●

●
●
●

● ●●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

● ●● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

● ●
● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●● ●

●●
●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

● ●
●●

●

●
●

●

●●

●
●

●

●

●
● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●●

●
●

●

●

●
●

●

●
●●

●●

●

●

●

●

●

●
●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●
● ●

●

●
●

●
●

●

●

● ● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●

●

●

●
●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

● ●
●

●
●

●

●

●

● ●

●

●

●

●
● ●

●

● ●

●●

●

●

●

●●

●●
●

●

● ●
●
●

●

●

● ●

●
●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●
●

●

●

●
●

●

●

●

●●
●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

● ●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●
●

●
●●

●
●

●

●

●●

●

●

●
●

●
●

●

●
● ●

●

●

●

●
●

●
●

●

●

●

●

●

● ● ●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

● ●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

● ●●

● ●

●●

●

●

●●

●

● ●

●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●
●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
● ●

●

●

●

●

●
●

●

●
●

●
●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

● ●

●

●

●●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

● ●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●
●

●
●
●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●

●

●

●
●● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●
●

● ● ●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●
●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●●

●
●

●
●

●

●

●

●●
●

●

●

● ●●
●

●

●

●

●
● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●

● ●
●

● ●

●

●● ●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●●● ●

●

●

● ●

●

●●

●

●
●

●
● ●●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

● ●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

● ●
● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

● ●●

●●
●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

● ●
●●

●

●
●

●

● ●

●
●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

motivation locus_of_control self_concept
read

w
rite

m
ath

science
sex

1 2 3 4 −2 −1 0 1 −2 −1 0 1

30
40
50
60
70

30

40

50

60

30

40

50

60

70

30
40
50
60
70

fe
m

al
e

m
al

e

Psychological

A
ca

de
m

ic

Between Academic and Psychological Variable Correlation Analysis

Figure 2.26. ggduo plot matrix displaying academic varaibles against
psychological varaibles. Continuous vs. continuous plots are displayed
with a linear model.

2.5.2 Multiple time series analysis

A multiple time series plot displays the time axis on the X axis with multiple

columns on the Y axis. The stats [1] package contains the ts.plot function that

allows for multiple time series to be printed in a single panel sharing the same axes.

Displaying the data on the same vertical axis does not make sense for most situations

as is shown in Figure 2.27. This is showcased when looking at the first 6 months of

half-hourly recorded elctricity demand for Victoria, Australia, in 2014. The electricity

demand and temperature should not be displayed on the same scales, as they do

not have similar units. Including the W orkDay boolean value does not add to the

understanding of the data in the plot.

43

stats::ts.plot(fpp2::elecdemand)

Time

2014.0 2014.2 2014.4 2014.6 2014.8 2015.0

0
10

20
30

40

Figure 2.27. Stock stats R package time series plot. All variables are
displayed on the same axis.

By splitting the multiple time series plot along the Y axis, we can display multiple

panels with different Y axes that share the same X axis using ggduo . This can be

done with the function ggts which wraps to ggduo . The X column label is turned

off by default and has an X label of ‘time’. An extra column of the counts of above

or below median demand has been added to display mixed Y axes in Figure 2.28.

ggts(
elec_median,
mapping = aes(color = WorkDay),
columnsX = "Time",
columnsY = c("Demand", "Temperature", "HighUsage"),
columnLabelsY = c(
"Demand",
"Temperature",
"Demand Counts\nAbove Median | Below Median"

),
legend = c(3,1),
showStrips = FALSE,
types = list(
comboHorizontal = wrap("facethist", binwidth = 1),
continuous = wrap("smooth_loess", alpha = 0.1)

44

)
)

D
em

and
Tem

perature
D

em
and C

ounts
A

bove M
edian | B

elow
 M

edian

Jan Feb Mar Apr

4

6

8

10

20

30

40

0
10
20
30
40
50

0
10
20
30
40
50

time

WorkDay

Yes

No

Figure 2.28. Same elec_median data, but the data is displayed using
the ggts function which calls ggduo .

2.5.3 Multiple regression diagnostics

With the basis of ggduo displaying each row of the data in every panel with

different functions, ggduo quickly extends to model diagnostics. There are many

readily available diagnostics that can be calculated for each row of explanatory data.

By default, ggnostic (a function that displays a ggduo plot matrix) looks at the

residuals, leave one out sigma value, leverage points, and Cook’s Distance against

all model predictor variables. Each piece of diagnostic information is plotted against

every explanatory variables used in the model.

45

Using the flea data set from the GGally package, we fit a model to determine the

size of the flea’s head. Using stats::step to determine a good fitting model, the

default model diagnostics are displayed against species, tars1, tars2, and aede. The

model diagnostics are displayed in Figure 2.29 below. Residual panels contain dashed

95% confidence interval lines and a solid line at the expect 0 value. Leave one out

sigma value panels display a solid line for the current model’s sigma value. Leverage

point (diagonal of the hat matrix) panels are centered around the solid, expected

line at p/n and have a dashed, significance line at 2 ∗ p/n [24]. Finally, the Cook’s

distance panel has a grey dashed, significance line at Fp,n−p(0.5) [24]. Each solid line

corresponds to the expected value and each dashed line corresponds to a signifigance

cuttoff value. The asterisks in the X axis strips correspond to the significance of an

anova F test.

46

flea_model <- step(lm(head ~ ., data = flea), trace = FALSE)
ggnostic(flea_model)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●●●

●
●

●
●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●
●● ●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●●

●

● ●
●●

●
●

●
●

●

●
● ●

● ●

●

●

●

●●

●

●

●

●

●●●

●

●

●
●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●● ●●

●
●

●

●

●

●●

●●●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●
●

●●

●

● ●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●●●

●
●

●
●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●
●● ●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●●

●

●●
●●

●
●

●
●

●

●
● ●

●●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●
● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●● ●●

●
●

●

●

●

●●

●●●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●
●

●●

●

● ●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●● ●●

●
●

●
●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●
● ●●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●●

●

●●
●●

●
●

●
●

●

●
● ●

● ●

●

●

●

●●

●

●

●

●

●●●

●

●

●
● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
●
●

●
●

●

●

●
●

●

●●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

● ●●●

●
●

●

●

●

●●

●● ●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●
●

●●

●

● ●
●

●

●
●

●

● ●

●

●

●

species*** tars1*** tars2** aede1***

resid
sigm

a
hat

cooksd

Concinna Heikert. Heptapot. 120 150 180 210 240 110 120 130 140 120 130 140 150

−2

0

2

1.56

1.58

1.60

0.05

0.10

0.15

0.20

0.25

0.00

0.02

0.04

0.06

explanatory variables

di
ag

no
st

ic
s

lm(formula = head ~ species + tars1 + tars2 + aede1, data = flea)

Figure 2.29. Linear model diagnostics for a model predicting the maximal
head with in millimeters.

The model diagnostics can be extended further by coloring and grouping according

to species and displaying the fitted values as in Figure 2.30.

47

ggnostic(
flea_model,
mapping = aes(color = species),
columnsY = c(
"head", ".fitted", ".se.fit", ".resid", ".std.resid", ".hat", ".cooksd"

),
continuous = list(
default = ggally_smooth_lm

),
combo = list(
default = wrap(ggally_box_no_facet, outlier.shape = 21),
.fitted = wrap(ggally_box_no_facet, outlier.shape = 21),
.se.fit = wrap(ggally_nostic_se_fit, outlier.shape = 21),
.resid = wrap(ggally_nostic_resid, outlier.shape = 21),
.std.resid = wrap(ggally_nostic_std_resid, outlier.shape = 21),
.hat = wrap(ggally_nostic_hat, outlier.shape = 21),
.cooksd = wrap(ggally_nostic_cooksd, outlier.shape = 21)

)
)

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●●
●

●
●

●

●
●

●●

●

●

●
●

●
●

●

●
●●

●
●

●

●

●

●● ●
●

● ●
●

●

●

●
●

●
●

●

● ●●●
●

●
●

●

●

●
●

●
●

●●

●

●

●
●
●●

●●
●

●●

●

●

●●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●●
●

●●

● ●
●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●
●

●
●

●
●

●

●

●

●

●● ●●

●

●

●
●
●

●

●●

●

●

●

●

●●●

●
●

● ●●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

● ●
●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●●

●

●

●

●
●

●
●

●
●

●

●
●

● ●

●●

●
●●

●

●

●

●

●

●
●

●

●

●●●

●

●

●
●

● ●●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

● ●●●

●●

●
●

●

●● ●

● ●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

● ●

●●

●
●●

●

●

●

●

●

●
●

●

●

●●●

●

●

●
●

● ●●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

● ●●●

●
●

●
●

●

●● ●

● ●

●
●

●

●●

●
●

●

●

●●●

●
●

● ●●

●

●

●●

●

●
●

●

●
●

●

●
●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

● ●
●

●
● ●

●

●
●● ●

●●
●

●
●●

●

●●

●

●
●●●

●

●

●
●●

●

●
●

●

●
● ●

●
●

●●
●

●● ●●

●
●

●

●

●

●●
●●●

●

●
●

● ● ●
●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

● ●●●
● ●

●●

●
● ●●●

●●

●

● ●

●

●
●

●

●
●

●
●
●

●

●
●

●

●
●

●
●

●●
●

●
●

●

●
●

● ●

●

●

●
●

●
●

●

●
●●

●
●

●

●

●

● ●●
●

● ●
●

●

●

●
●

●
●

●

●●●●
●

●
●

●

●

●
●

●
●

●●

●

●

●
●

● ●

● ●
●

●●

●

●

● ●

●

●
●

● ●

●
●

●

●

●

●

●

●

●
●

●

●
● ●

●
●●

●●
●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

● ●●●

●

●

●
●

●

●

● ●

●

●

●

●

●● ●

●
●

●● ●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

● ●
●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●●

●

●

●

●
●

●
●

●
●

●

●
●

●●

●●

●
●●

●

●

●

●

●

●
●

●

●

●●●

●

●

●
●

● ●●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●●●●

●●

●
●

●

●● ●

●●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●●

●●

●
●●

●

●

●

●

●

●
●

●

●

●●●

●

●

●
●

● ●●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●●●●

●
●

●
●

●

●● ●

●●

●
●

●

● ●

●
●

●

●

●● ●

●
●

●● ●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●
●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

● ●
●

●
● ●

●

●
● ●●

●●
●

●
●●

●

●●

●

●
●●●

●

●

●
●●

●

●
●

●

●
● ●

●
●

●●
●

●● ●●

●
●

●

●

●

●●
●●●

●

●
●

● ● ●
●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●●●●
●●

●●

●
● ●● ●

●●

●

●●

●

●
●

●

●
●
●

●
●

●

●
●

●

●
●

●
●

●●
●

●
●

●

●
●

●●

●

●

●
●

●
●

●

●
● ●

●
●

●

●

●

●●●
●

● ●
●

●

●

●
●

●
●

●

●●● ●
●
●

●
●

●

●
●

●
●

●●

●

●

●
●

● ●

●●
●

● ●

●

●

●●

●

●
●

● ●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●
●●

●●
●

●

●

● ●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●●
●

●
●
●

●
●

●

●

●

●●●●

●

●

●
●

●

●

●●

●

●

●

●

●●●

●
●

●● ●

●

●
● ●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

● ●
●

●

●
●
●

●
●

●

●
●

●

●

●●

●

●
●
●●

●

●

●

●
●

●
●

●
●

●

●
●

●●

●●

●
● ●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●
●

● ●●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●● ●●

●●

●
●

●

●● ●

● ●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●●

●●

●
● ●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●
●

● ●●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●● ●●

●
●

●
●

●

●● ●

● ●

●
●

●

●●

●
●

●

●

●●●

●
●

●● ●

●

●

● ●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●
●

●
●

●

●

●

● ●
●

●
● ●
●

●
● ●●

●●
●

●
●●

●

●●

●

●
●●●

●

●

●
●●

●

●
●

●

●
●●

●
●

●●
●

● ●●●

●
●

●

●

●

●●
●● ●

●

●
●

●● ●
●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●●● ●
●●

●●

●
● ●●●

●●

●

● ●

●

●
●

species*** tars1*** tars2** aede1***

head
fitted

se fit
resid

std resid
hat

cooksd

Concinna Heikert. Heptapot. 120 150 180 210 240 110 120 130 140 120 130 140 150

45

50

55

45
48
51
54

0.3
0.4
0.5
0.6
0.7
0.8

−2
0
2

−2
−1

0
1
2

0.05
0.10
0.15
0.20
0.25

0.00
0.02
0.04
0.06

explanatory variables

di
ag

no
st

ic
s

lm(formula = head ~ species + tars1 + tars2 + aede1, data = flea)

Figure 2.30. Each plot is colored according to species. Extra row diag-
nostics (head, fitted, and sefit) are added to the dianostic plot matrix.

48

2.6 Summary

ggduo generalizes the two group plot matrix by allowing multiple plot types

within each panel of the plot matrix. Similar to ggplot2, ggduo is programati-

cally extended with the ggts and ggnostic functions to produce plot matrices for

different contexts. ggnostic showcases ggduo ’s ability to accept user defined func-

tions to display data for each type of scale combination: continuous, discrete, and

combination. ggduo is built upon the modular ggmatrix allowing sub plots to be

retrieved and replaced on command. This modularity and ability to display complex

plots with ggduo enables users to explore the same data within different sub plots

in a cohesive matrix display.

49

3. AUTOCOGS: METRICS ENABLING DETAILED

INTERACTIVE DATA VISUALIZATION

3.1 trelliscopejs

trelliscopejs is an R package used to visualize data with many conditioning

combinations. trelliscopejs conditions on columns within the data set and dis-

plays a plot, image, or HTML object for each plot in an independent display panel.

However, trelliscopejsis built to more panels from conditioning combinations than

current plotting architectures.

trelliscopejs is built to handle more panels than the current plotting frame-

works in R. ggplot2’s facet_wrap can feasibly hold 10s - 100s of displays in one

plot. Since ggplot2 does not paginate (print over multiple pages), the size of the com-

puter screen limits how many panels may be displayed. A core feautre of lattice is

its ability to paginate panels of a plot. This allows the number of panels to scale

100-1000 times. lattice outputs can be saved to PDF and manually inspected page

by page. This method is efficient in detecting small visual differences between plots

due to the strucutre of small multiples. However, there is a limit to how many plots

a human can manually ingest. If 1000 pages were visually inspected at a rate of two

pages per second, it would take over 8 minutes to manually flip through each page.

Pagination does not scale with large data when there are millions of pages to flip

through.

3.1.1 Data size

“Big Data” is a great buzzword, but a poor definition. It is commonly used in

different contexts with different meanings. For this chapter, I will define the usage

50

of different sizes of data in this section. Will define three main sizes of data: Small

Data, Medium Data, and Large Data.

Small Data (Memory Data) consists of in memory data only. This includes

data.frames in R and Excel files. Small data excels at very fast response time

when retrieving information. The major disadvantage to Small Data is the size is

limited to the amount of memory on a machine. data.frames can only get as big as

memory can handle. Current machines configurations allow for hundreds of gigabytes

of memory.

Medium Data (Disk Data) extends the capabilities of the memory to the storage

capacity of the computer. Data is read to and from disk using memory as a buffer.

Hard drives today can store multiple terabytes of information. However, retrieving

data is much slower as data must be read into memory to be processed. The gain in

size comes at a cost of speed.

Finally, Large Data (Cluster Data) is data that is spread across multiple machines.

Many machines may be used in a cluster to house Large Data. Large data is the

slowest in response time, as data is communicated between machines for calculations.

How the data is stored on each machine is up to the data base architecture. Typically

each machine stores Medium Data locally, but functions as a cohesive unit globally.

Each class of data balances speed and size to achieve the final goal. These defi-

nitions allow for exponential advancement in computing power according to Moore’s

Law [25] as time advances.

3.1.2 Computation

The split-apply-combine [26] approach for data computation is applicable for all

three types of data. As the name states, there are three main steps: split the data,

apply a function to the data subsets, and combine the function results. These three

steps may be scaled as necessary given computational powers.

51

1. Split. Data is conditioned on some identifying, or conditioning, columns. This

can include the row number (each row is treated uniquely) or may include many

existing columns in the data set. Like faceting in ggplot2, all conditioning

values are considered discrete values. Once the conditioning columns have been

selected, the data is split into groups where the conditioning values match.

2. Apply. Once the data frame has been split into independent subsets, a function

is applied to each subset. The same function will be applied to all subsets and

a similar result will be returned from each functino execution.

3. Combine. With similarly shaped results from each subset, the results will be

combined into a final result for further analysis. The uniformity in the result

shape makes result combination easy to achieve.

The R package plyr [26] implemented the split-apply-combine approach for many

kinds of data shapes: array , list , vector , and data.frame . dplyr [27] has

many specific routines to interact with a data.frame . Examples in this chapter will

be using the dplyr package functions.

library(dplyr)
library(gapminder)
gapminder
A tibble: 1,704 x 6
country continent year lifeExp pop gdpPercap
<fctr> <fctr> <int> <dbl> <int> <dbl>
1 Afghanistan Asia 1952 28.801 8425333 779.4453
2 Afghanistan Asia 1957 30.332 9240934 820.8530
3 Afghanistan Asia 1962 31.997 10267083 853.1007
4 Afghanistan Asia 1967 34.020 11537966 836.1971
5 Afghanistan Asia 1972 36.088 13079460 739.9811
6 Afghanistan Asia 1977 38.438 14880372 786.1134
7 Afghanistan Asia 1982 39.854 12881816 978.0114
8 Afghanistan Asia 1987 40.822 13867957 852.3959
9 Afghanistan Asia 1992 41.674 16317921 649.3414
10 Afghanistan Asia 1997 41.763 22227415 635.3414
... with 1,694 more rows
gapminder %>%
group by unique country and continent combinations

52

group_by(country, continent) %>%
calculate the maximum lifeExp for each combination
summarise(
max_lifeExp = max(lifeExp)

) %>%
print the data.frame
print() %>%
display a histogram plot of the maximum life expectancies
ggplot(aes(max_lifeExp, fill = continent)) +
geom_histogram(binwidth = 1)

A tibble: 142 x 3
Groups: country [?]
country continent max_lifeExp
<fctr> <fctr> <dbl>
1 Afghanistan Asia 43.828
2 Albania Europe 76.423
3 Algeria Africa 72.301
4 Angola Africa 42.731
5 Argentina Americas 75.320
6 Australia Oceania 81.235
7 Austria Europe 79.829
8 Bahrain Asia 75.635
9 Bangladesh Asia 64.062
10 Belgium Europe 79.441
... with 132 more rows

0.0

2.5

5.0

7.5

10.0

50 60 70 80

max_lifeExp

co
un

t

continent

Africa

Americas

Asia

Europe

Oceania

Figure 3.1. Each country’s maximum life expectancy value displayed as a
histogram with each color representing a continent.

53

The split-apply-combine paradigm applies to each data size type.

1. Small, In Memory Data: Can use the plyr package for computation.

2. Medium, On Disk Data: The R package dplyr can be used to connect to

a MySQL database stored on disk. Results are executed within the MySQL

environment, but returned to the R execution environment. Many other data

bases can be connected to R to handle medium sized data.

3. Large, Distributed Data: The R package Rhipe [28] or sparklyr [29] can be

used to execute R commands across multiple compute nodes in a cluster.

Each package implements the split-apply-combine approach to data computation

using computational tools built for each scenario. Small data is processed using R.

Medium data is processed in a database that is built to handle information larger

than memory can hold and results are returned to R. Finally, Large data is executed

in the distributed environment and results are stored in the distributed environment.

If memory allows, distributed results may be returned to R.

3.1.3 Summary statistics

The gapminder data set is an “Excerpt of the Gapminder data on life expectancy,

GDP per capita, and population by country” [30]. The 142 countries have data from

1952 to 2007. Figure 3.1 finds the maximum life expectancy for the 142 countries.

They are then displayed in a plot colored according to the country’s continent. A

lot of information may be gleaned from the maximum life expectancy summary plot

in Figure 3.1, but a summary plot does not tell the full story of each country’s life

expectancy over time.

gapminder %>%
filter(country %in% c("Japan", "Switzerland")) %>%
ggplot(aes(year, lifeExp)) + geom_line() + facet_wrap(~ country) +
ylim(20, 85) + labs(title = "Two countries with a high life expectancy")

54

Japan Switzerland

1950 1960 1970 1980 1990 2000 1950 1960 1970 1980 1990 2000

20

40

60

80

year

lif
eE

xp

Two countries with a high life expectancy

Figure 3.2. Both higher life expectancy countries display linear model
trends over time.

gapminder %>%
filter(country %in% c("Afghanistan", "Rwanda")) %>%
ggplot(aes(year, lifeExp)) + geom_line() + facet_wrap(~ country) +
ylim(20, 85) + labs(title = "Two countries with lower life expectancy")

Afghanistan Rwanda

1950 1960 1970 1980 1990 2000 1950 1960 1970 1980 1990 2000

20

40

60

80

year

lif
eE

xp

Two countries with lower life expectancy

Figure 3.3. Lower life expectancy countries may not always display linear
model trends over time.

Figure 3.2 displays two longer living countries, Japan and Switzerland. Japan

has a higher maximum life expectancy, but Switzerland had a higher starting life

expectancy. Figure 3.3 displays two lower life expectancy countries, Afghanistan and

Rwanda. Afghanistan has a lower maximum life expectancy, but steadily increases

55

over time. Rwanda’s life expectancy steadily increased until the 1980’s when it dips

and recoveres by the 2000’s.

Summary statistics are great in interpreting information using less data. How-

ever, summary statistics, by their nature, do not convey the full data story and are

complimented by data visualization.

trelliscopejs allows users to plot full plot detail while allowing users to change

how many panels are displayed on the screen at one time, sort the panel ordering,

and filter to a smaller subset of panels. trelliscopejs achieves these actions by

obtaining a plot for every conditioning combination and suplimentary metrics for

each plot.

Using the gapminder data set in Figure ??, life expectancy is explored over time

with the supplimentary metrics of minimum and maximum life expectancy.

gapminder %>%
group_by(country, continent) %>%
condense the data
tidyr::nest() %>%
print() ->

gapminder_condensed
A tibble: 142 x 3
country continent data
<fctr> <fctr> <list>
1 Afghanistan Asia <tibble [12 x 4]>
2 Albania Europe <tibble [12 x 4]>
3 Algeria Africa <tibble [12 x 4]>
4 Angola Africa <tibble [12 x 4]>
5 Argentina Americas <tibble [12 x 4]>
6 Australia Oceania <tibble [12 x 4]>
7 Austria Europe <tibble [12 x 4]>
8 Bahrain Asia <tibble [12 x 4]>
9 Bangladesh Asia <tibble [12 x 4]>
10 Belgium Europe <tibble [12 x 4]>
... with 132 more rows
gapminder_condensed %>%
add metrics and plots for every conditioning combination
mutate(
min_lifeExp = purrr::map_dbl(data, function(dt) min(dt$lifeExp)),
max_lifeExp = purrr::map_dbl(data, function(dt) max(dt$lifeExp)),
panel = trelliscopejs::map_plot(data, function(dt) {
display a line plot of X:year, Y:life expectancy

56

ggplot(dt, aes(year, lifeExp)) + geom_line() + ylim(20, 85)
})

) %>%
remove the condensed data
select(-data) %>%
print() ->

gap_trellis
A tibble: 142 x 5
country continent min_lifeExp max_lifeExp panel
<fctr> <fctr> <dbl> <dbl> <list>
1 Afghanistan Asia 28.801 43.828 <S3: gg>
2 Albania Europe 55.230 76.423 <S3: gg>
3 Algeria Africa 43.077 72.301 <S3: gg>
4 Angola Africa 30.015 42.731 <S3: gg>
5 Argentina Americas 62.485 75.320 <S3: gg>
6 Australia Oceania 69.120 81.235 <S3: gg>
7 Austria Europe 66.800 79.829 <S3: gg>
8 Bahrain Asia 50.939 75.635 <S3: gg>
9 Bangladesh Asia 37.484 64.062 <S3: gg>
10 Belgium Europe 68.000 79.441 <S3: gg>
... with 132 more rows

57

display the plots and metrics in trelliscopejs
gap_trellis %>% trelljs("gapminder")
Error in file(con, "r"): cannot open the connection

The trelliscopejs HTML widget in Figure ?? displays three rows and five

columns of panels. There are 142 panels in total, making 10 pages of panels in total.

While this example does not display millions of panels, it does convey the capabilities

of the HTML widget. Icons on the left, as in Figure 3.1.3, open foldout displays for

panel layout control, turning panel labels on and off, filtering panels using metrics,

and panel sorting.

Figure 3.4. The sidebar on the left side of a trelliscopejs HTML widget
can be opened for panel layout control, displaying panel labels, filtering
panels, and sorting panels.

3.2 Cognostics

Displaying panels alone has already been solved with ggplot2 and lattice. Scal-

ing panels beyond lattice’s limits is still limited without the use of sorting and

filtering the panels. trelliscopejs’s power is leveraging subset metrics to organize

the panels. These subset metrics are called cognostics [12]. Cognostics are univariate

statistics calculated for every independent subset of the conditioned data.

Cognostics can be simple summary statistics such as mean or median , or can be

meta data information such as a URL or census information for a conditioned county.

58

Tukey and Tukey first proposed calculating univariate metrics for scatterplots called

scagnostics [12] as a way to describe a scatterplot. Wilkinson et. al. [31] implemented

Tukeys’ scagnostic definitions in the R package scagnostics [32]. Scagnostics can be

repurposed as cognostics when applied to every panel containing a scatterplot. These

cognostic groupings may then be shown, filtered, and sorted accross the different

subset panels.

In trelliscopejs, cognostics are displayed as two types of metrics: continuous

or discrete. Continuous valued cognostics are filtered using open or closed ranges.

Figure 3.2 shows an open range using the gapminder country panels that contain a

maximum life expectancy value less than or equal to 70 years of age. A closed range

example would have both a from and a to in the selection range, i.e. within 50 to

65 years of age. Currently, trelliscopejs does not support more than one range

selection for each cognostic variable.

Figure 3.5. A cropped view of trelliscopejs filtering on countries whose
maximum life expectancy is lower than 70 years old.

With trelliscopejs, discrete values are handled using regular expressions or

by manually selecting values. When using regular expressions, matching values are

displayed immediately. Figure 3.2 displays the immedate results of regular expression

on a continent. The immediate feedback confirms whether the regular expression was

successful or needs to be updated.

59

Figure 3.6. A cropped view of trelliscopejs filtering on continent who
matches the regular expression “as”.

Multiple filters are a part of the data analysis process and are embraced in

trelliscopejs. All of the cognostic filters are applied as a collective, logical and.

3.3 Automatic cognostics for data visualization

From a data plotting perspective, we should be able to utilize what is already

being displayed in the plot to sort and filter the panels of a trelliscopejs widget.

This plot information is not readily available as it is calculated within each plotting

mechanism.

Using the prior trelliscopejs example in Figure ??, the minimum and maximum

values for each country’s life expectancy were calculated manually. While the prior

example only retrieved the minimum and maximum life expectancy values for each

panel, the median and mean values may be of interest as well. These statistics are

only looking at the Y variable. There are many more statistics involving both the Y

variable and the X variable. In Figure ??, the X and Y covariance and correlation

are added. A linear model (geom_smooth(method = "lm")) is also added to visually

detect linear trend deviations.

60

gapminder_condensed %>%
mutate(
add metrics
min_lifeExp = purrr::map_dbl(data, function(dt) min(dt$lifeExp)),
mean_lifeExp = purrr::map_dbl(data, function(dt) mean(dt$lifeExp)),
median_lifeExp = purrr::map_dbl(data, function(dt) median(dt$lifeExp)),
max_lifeExp = purrr::map_dbl(data, function(dt) max(dt$lifeExp)),
cov = purrr::map_dbl(data, function(dt) cov(dt$year, dt$lifeExp)),
corr = purrr::map_dbl(data, function(dt) cor(dt$year, dt$lifeExp)),

add panel
panel = trelliscopejs::map_plot(data, function(dt) {
display a line plot of X:year, Y:life expectancy
ggplot(dt, aes(year, lifeExp)) +
geom_smooth(method = "lm") + # add a linear model
geom_line() +
ylim(20, 85)

})
) %>%
remove the condensed data
select(-data) %>%
print() ->

gap_trellis_plus
A tibble: 142 x 9
country continent min_lifeExp mean_lifeExp median_lifeExp
<fctr> <fctr> <dbl> <dbl> <dbl>
1 Afghanistan Asia 28.801 37.47883 39.1460
2 Albania Europe 55.230 68.43292 69.6750
3 Algeria Africa 43.077 59.03017 59.6910
4 Angola Africa 30.015 37.88350 39.6945
5 Argentina Americas 62.485 69.06042 69.2115
6 Australia Oceania 69.120 74.66292 74.1150
7 Austria Europe 66.800 73.10325 72.6750
8 Bahrain Asia 50.939 65.60567 67.3225
9 Bangladesh Asia 37.484 49.83408 48.4660
10 Belgium Europe 68.000 73.64175 73.3650
... with 132 more rows, and 4 more variables: max_lifeExp <dbl>,
cov <dbl>, corr <dbl>, panel <list>
gap_trellis_plus %>% trelljs("gapminder_plus")
Error in file(con, "r"): cannot open the connection

The amount of work to retrieve information that can be readily seen or calculated

from the visual display quickly increases. At first, there were two values used. Now

there are six values used to explain just the Y data and the {X, Y } combination. None

of the added metrics explain the linear model added to each panel. As the amount

61

of layers increase, the number of cognostics needed to explain the plot layer will also

increase. Given each plotting panel already contains many statistical cognostics, each

panel should be leveraged to generate cognostics automatically.

3.3.1 Linear model example

Using the panel column only, we will automatically derive many cognostics from

each panel using the autocogs R package.

gapminder %>%
group_by(country, continent) %>%
tidyr::nest() %>%
mutate(
panel = trelliscopejs::map_plot(data, function(dt) {
display a line plot of X:year, Y:life expectancy
ggplot(dt, aes(year, lifeExp)) +
geom_smooth(method = "lm") +
geom_line() +
ylim(20, 85)

})
) %>%
select(-data) %>% # remove the condensed data
print() ->

gap_panel
A tibble: 142 x 3
country continent panel
<fctr> <fctr> <list>
1 Afghanistan Asia <S3: gg>
2 Albania Europe <S3: gg>
3 Algeria Africa <S3: gg>
4 Angola Africa <S3: gg>
5 Argentina Americas <S3: gg>
6 Australia Oceania <S3: gg>
7 Austria Europe <S3: gg>
8 Bahrain Asia <S3: gg>
9 Bangladesh Asia <S3: gg>
10 Belgium Europe <S3: gg>
... with 132 more rows
autocogs::add_panel_cogs(gap_panel)
A tibble: 142 x 9
country continent panel `_smooth` `_lm`
<fctr> <fctr> <list> <list> <list>
1 Afghanistan Asia <S3: gg> <tibble [1 x 3]> <tibble [1 x 19]>

62

2 Albania Europe <S3: gg> <tibble [1 x 3]> <tibble [1 x 19]>
3 Algeria Africa <S3: gg> <tibble [1 x 3]> <tibble [1 x 19]>
4 Angola Africa <S3: gg> <tibble [1 x 3]> <tibble [1 x 19]>
5 Argentina Americas <S3: gg> <tibble [1 x 3]> <tibble [1 x 19]>
6 Australia Oceania <S3: gg> <tibble [1 x 3]> <tibble [1 x 19]>
7 Austria Europe <S3: gg> <tibble [1 x 3]> <tibble [1 x 19]>
8 Bahrain Asia <S3: gg> <tibble [1 x 3]> <tibble [1 x 19]>
9 Bangladesh Asia <S3: gg> <tibble [1 x 3]> <tibble [1 x 19]>
10 Belgium Europe <S3: gg> <tibble [1 x 3]> <tibble [1 x 19]>
... with 132 more rows, and 4 more variables: `_x` <list>,
`_y` <list>, `_bivar` <list>, `_n` <list>

For each panel, 2 + 19 + 5 + 5 + 2 + 5 = 38 cognostics were auto generated

to aid in exploration of the panels.

• Ten of the cognostics calculate information individual column information. (_x ,

_y)

• Two cognostics calculate continuous bivariate metrics. (_bivar)

• Five cognostics calculate metrics involving the number of points and their avail-

bility. (_n)

• Two cognostics calculate metrics for the smooth line added to each panel.

(_smooth)

• Nineteen cognostics are calculated for the linear model applied to the panel.

These metrics will be dicussed in greater detail later. (_lm)

Each univariate grouping is labeled to provide context as to what is calculated

and which variables were used.

3.3.2 Framework

autocogs package is built to provide a consistent framework for calculating cog-

nostics independent of the class of the plotting object supplied. Ideally, it should

work for all major layer-based visualization packages (such as ggplot2, rbokeh [8],

63

and plotly [9]) and produce the same result for similar plot displayed in the dif-

ferent plotting packages. Currently, only ggplot2 hooks have been installed, but

rbokeh and plotly can be added using the publically available functions in the

autocogs package.

By definition, each subset panel within a trelliscopejs widget will contain the

same plotting layers, but with different data. Addressing each layer will produce

the same group of output cognostics but with different values. There is a “one to

many” mapping from plot to plot layers and a “one to many” mapping from each

plot layer to the cognostic groups. The same final cognostics may be produced from

many different layers as shown in Figure 3.3.2.

Figure 3.7. Theoretical framework of how multiple cognostic groups can
be connected to multiple plot layers.

64

Once all the cognostics have been produced for a given plot, the cognostic groups

are reduced to keep only the unique cognostic name and value combinations. Using

Figure 3.3.2, the cognostic groups {A, B, ..., M} will only be returned once.

3.3.3 Cognostic groups

Each set of cognostics is returned in a cognostic group. This is similar to scagnos-

tics. All scagnostics pertain to scatterplots. Likewise, the number of non-NA X,

non-NA Y , and non-NA X and Y points pertain to non-NA counts of the displayed

data. These groups can be extended to each type of statistical display: box plot,

histogram, linear model, etc.

The cognostics produced in the autocogs gapminder linear model example in

subsection 3.3.1 were:

• _smooth : Two cognostics pertaining to a “smooth” line being added to the

panel.

• _lm : Nineteen cognostics pertaining to the linear model line added to the

panel.

• _x, _y Five cognostics pertaining only to the X and Y values respectively.

• _bivar Two cognostics pertaining only to both the X and Y values.

• _n Five cognostics pertaining only to counts of X and Y values.

Each cognostic group column contains a single row data.frame nested in each

cell. Nesting data structures as list-columns [33] is considered an advanced R tech-

nique, but by nesting the cognostic data.frame s in each cell, autocogs maintains

the tidy data input with tidy data cognostics. Tidy data is defined to have variables

in each column, observations for each row and each cell contains a value. The value

does not need to conform to atomic values which allows for complex structures as

long as the “tidy data” rules are maintained as shown in Figure 3.3.3.

65

Figure 3.8. Figure courtesy of [33]. There are three rules to tidy data:
columns contain variables, rows contain observations, and cells contain
values.

3.4 Cognostic groups

There are three main types of cognostic groups: Univariate, Bivariate, and Counts.

Each type of cognostic group will explain in detail their corresponding cognostic

groups in detail throughout this section.

3.4.1 Univariate

The univariate cognostic groups examples will use the same data set of the maxi-

mum life expectancy of the gapminder data set.

gapminder %>%
group_by(country, continent) %>%
summarise(lifeExp = max(lifeExp)) %>%
print() ->

gap_max
A tibble: 142 x 3
Groups: country [?]
country continent lifeExp
<fctr> <fctr> <dbl>
1 Afghanistan Asia 43.828
2 Albania Europe 76.423
3 Algeria Africa 72.301
4 Angola Africa 42.731
5 Argentina Americas 75.320
6 Australia Oceania 81.235
7 Austria Europe 79.829

66

8 Bahrain Asia 75.635
9 Bangladesh Asia 64.062
10 Belgium Europe 79.441
... with 132 more rows

Univariate Continuous Cognostics

Univariate continuous cognostics utilize the standard statistical calculations: min-

imum, maximum, mean, median, and variance. Each value is quickly interpretable

and provides a good starting point when filtering panels within a trelliscopejs wid-

get.

library(autocogs)
auto_cog("univariate_continuous", gap_max$lifeExp)
A tibble: 1 x 5
min max mean median var
<dbl> <dbl> <dbl> <dbl> <dbl>
1 42.568 82.603 68.03542 71.9355 116.3098

Univariate Discrete Cognostics

Univariate discrete values only have counts and names to determine the cognostics.

The minimum and maximum count values are reported, as well as the mean count

value. For both the minimum and maximum values, a corresponding name is reported

alongside the count. The example below shows that the continent "Africa" contains

the most countries at 52 and "Oceania" contains least amount of countries at 2

countries.

auto_cog("univariate_discrete", gap_max$continent)
A tibble: 1 x 5
min_name count_min count_mean count_max max_name
<chr> <int> <dbl> <int> <chr>
1 Oceania 2 28.4 52 Africa

67

Continuous Density Cognostics

Continuous density cognostics revolve around the shape of the density. The maxi-

mum density value and its corresponding location are returned for comparison across

cognostic calculations. Skew and kurtosis [34] are computed to help distinguish the

density shape. The p value of Hartigans’ dip test from diptest [35] for unimodality

is reported as well. To help locate where the maximum density occurs, the maximum

density value and location are provided. Finally, the number of clusters may be cal-

culated using the mclust [36] [37] R package. Cluster calculations are not included

by default due to their slower computational speed.

auto_cog("density_continuous", gap_max$lifeExp, clusters = TRUE)
A tibble: 1 x 6
max_density max_density_location clusters unimodal_p_value
<dbl> <dbl> <int> <dbl>
1 0.04425023 75.22066 3 0.2994391
... with 2 more variables: skew <dbl>, kurt <dbl>

Boxplot Cognostics

Boxplot metrics include lower whisker, Q1, median, Q3, and upper whisker lo-

cations. The number of outliers above the boxplot and below the boxplot are also

reported.

auto_cog("boxplot", gap_max$lifeExp)
A tibble: 1 x 7
n_outlier_lower lower_whisker q1 median q3
<int> <dbl> <dbl> <dbl> <dbl>
1 0 59.6945 69.71875 71.9355 74.15225
... with 2 more variables: upper_whisker <dbl>,
n_outlier_upper <int>

Quantile Quantile Cognostics

Quantile-Quantile plots display the theoretical distribution quantiles verses the

sample quantile points. Two variables to help determine skewness count how many

68

points are above and below a non robust quantile line. The non robust quantile line

is calculated using the 25th and 75th percentiles of sample points, rather than the a

robust linear model. This calculation replicates the base R function stats::qqline

behavior. A p value for the Kolmogorov-Smirnov test is added to the result to de-

termine how close the sample points come from the test distribution. The test dis-

tribution defaults to the normal distribution. Finally, a mean squared error from

the quantile line is reported for the Quantile-Quantile plot. This value should be

comparable to all of the independent samples as each sample should come from the

same distribution. Larger mean squared error values help discover outliers in the

distribution.

auto_cog("quantile_quantile", gap_max$lifeExp)
A tibble: 1 x 4
points_above points_below ks_test qq_mse
<int> <int> <dbl> <dbl>
1 87 55 0 13.78215

3.4.2 Bivariate

The cognostic groups below is calculated using the gapminder data set where con-

tinent equals "Americas" (americas) or where country equals "United States"

(usa).

americas <- gapminder %>% filter(continent == "Americas")
usa <- gapminder %>% filter(country == "United States")

Bivariate Continuous Cognostics

Similar to the Univariate Continuous cognostic group, the Bivariate Continuous

cognostic group calculates the two standard bivariate summary statistics: covariance

and correlation.

auto_cog("bivariate_continuous", usa$year, usa$lifeExp)

69

A tibble: 1 x 2
covariance correlation
<dbl> <dbl>
1 59.855 0.9929351

Scagnostics Cognostics

Scatterplot scagnostics are a pre-existing cognostic group for a continuous bivari-

ate plot. The following scagnostics are explained in more detail in [31].

• Outlying: the proportion of the total edge length due to extremely long edges

connected to points of single degree.

• Skewed: the distribution of edge lengths of a minimum spanning tree gives us

information about the relative density of points in a scattered configuration.

• Clumpy: the Hartigan and Mohanty RUNT statistic is most easily understood

in terms of the single-linkage hierarchical clustering tree called a dendrogram.

• Sparse, the 90% quantile of the edge lengths of the minimum spanning tree.

• Striated: the summation of angles over all adjacent edges of a MST.

• Convex: the ratio of the area of the alpha hull and the area of the convex hull.

• Skinny: the ratio of perimeter to area of a polygon measures.

• Stringy: the ratio of width to length of a network.

• Monotonic: squared Spearman correlation coefficient.

auto_cog("scagnostics", americas$year, americas$lifeExp)
A tibble: 1 x 9
Outlying Skewed Clumpy Sparse Striated Convex
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.01443262 0.7695572 0.07343219 0.0799376 0.5539216 0.8622428
... with 3 more variables: Skinny <dbl>, Stringy <dbl>,
Monotonic <dbl>

70

Continuous 2D Density Cognostics

The Continuous 2-Dimensional Density cognostic group reports the maximum

density. Similar to the Continuous Density cognostic group, the X and Y location are

returned. Cluster count calculations are turned off by default due to slow computation

speed.

auto_cog(
"density_2d_continuous",
americas$year, americas$lifeExp,
clusters = TRUE

)
A tibble: 1 x 4
max_density max_density_x max_density_y clusters
<dbl> <dbl> <dbl> <int>
1 0.00118169 1997.435 71.86533 9

Bivariate Step Cognostics

A stepwise plot displays a “stair case” like plot where the connecting line only

moves in parallel ot the X or Y axis. The Bivariate Step cognostic group returns

the number of steps completed, as well as calculating the Univariate Continuous

cognostics for the step width and step height.

auto_cog("bivariate_step", usa$year, usa$lifeExp)
A tibble: 1 x 11
steps min_step_width mean_step_width median_step_width
<dbl> <int> <dbl> <int>
1 11 5 5 5
... with 7 more variables: max_step_width <int>,
var_step_width <dbl>, min_step_height <dbl>,
mean_step_height <dbl>, median_step_height <dbl>,
max_step_height <dbl>, var_step_height <dbl>

Smooth Line Cognostics

The Smooth Line cognostic group is a baseline for all model based lines added to a

plot. The smooth line calculations pair well with the Linear Model and Loess Model

71

cognostic groups. A mean squared error and the max deviation with its corresponding

location are reported.

auto_cog("smooth_line", usa$year, usa$lifeExp)
A tibble: 1 x 3
mse max_deviation max_deviation_location
<dbl> <dbl> <int>
1 0.05389673 0.45948 1972

Linear Model Cognostics

Linear Model cognostics leverage many existing statistics. Knowing that the

model will only be a simple linear model allows autocogs to return slope and in-

tercept values and corresponding p values. Many cognostics can be generated about

the model fit using known diagnostic methods:

• R2: fraction of variance explained by the model

• σ: square root of the estimated residual variance

• F -statistic: the linear model’s F -statistic and corresponding p value.

• Degrees of freedom: how many degrees of freedom in the model and residuals

• Log-likelihood value: the log likelihood value of the model

• AIC, BIC: Akaike’s Information Criterion and Schwarz’s Bayesian Criterion

• Deviance: the quality-of-fit statistic of the model

There are a few extra diagnostics that perform extra calculations to conform to

the univariate requirement of a cognostic.

• Cook’s distance: a combination of each points leverage and residual value. Val-

ues larger than Fp,n−p(0.5) indicate influential data points in the model [24].

The number of influential data points is reported.

72

• Influence points: the diagonal of the Hat Matrix is how much influence a point
p 1

has on the model. Each point is expected to equal = , with influential
n n

2 ∗ p 2
points having a value larger than = [24]. The sum of all influential

n n
points is reported.

• Shapiro-Wilk test: when using a linear model, the residuals are assumed to

come from a normal distribution. The Shapiro-Wilk test tests the residuals

against the normal distribution [24]. The corresponding p value is reported.

• Box Cox power transformation: the lower and upper bounds of the 95% confi-

dence interval of the Box Cox power transformation are reported. This trans-

formation is used to stabilize the variance of a linear model. If the confidence

interval contains 0, a ln transformation may be used [24].

auto_cog("linear_model", usa$year, usa$lifeExp) %>% as.data.frame()
intercept intercept_p_value beta beta_p_value r2
1 -291.0845 1.254513e-09 0.1841692 1.369788e-10 0.9859202
sigma statistic p_value df log_lik aic
1 0.4161339 700.2351 1.369788e-10 1.369788e-10 -5.412356 16.82471
bic deviance df_residual n_sig_cooks n_sig_hat resid_shapiro
1 18.27943 1.731675 10 0 6 0.9843222
bc_lower bc_upper
1 -1.3 2

Loess Model Cognostics

Similar to the linear model, a simple loess model is calculated and the model

diagnostics are reported:

• Supplied parameters: the supplied parameters of span , the alpha parameter

which controls the degree of smoothing, and degree , the polynomial degree

used in the loess model, are returned.

• Calculated parameters: the effective number of parameters, enp , is returned

along with the trace of the hat matrix, trace.hat . Finally, the sigma value,

s , of the loess model variance is returned as a single cognostic.

73

• Iterations: The number of iterations needed to calculate the model are reported

as well.

auto_cog("loess_model", usa$year, usa$lifeExp)
A tibble: 1 x 6
enp s trace.hat span degree iterations
<dbl> <dbl> <dbl> <dbl> <int> <int>
1 4.540734 0.3147398 5.005914 0.75 2 1

3.4.3 Counts

The third cognostic type addresses counts of binned data.

Univariate and Bivariate Count Cognostics

Both the Univariate and Bivariate Count cognostics address how many values are

NA and not NA . Bivariate accounts for both the logical AND and OR of the X and

Y values being NA .

auto_cog("univariate_counts", americas$lifeExp)
A tibble: 1 x 2
n n_na
<int> <int>
1 300 0
auto_cog("bivariate_counts", americas$year, americas$lifeExp)
A tibble: 1 x 5
n n_both_na n_or_na n_x_na n_y_na
<int> <int> <int> <int> <int>
1 300 0 0 0 0

Pairwise Counts Cognostics

Pairwise Counts cognostics address how often pieces of information occur. Pair-

wise Counts look at the combinations of the X and Y variables. The Univariate

Continous cognostics are reported on the counts of the pairwise combinations.

74

auto_cog("pairwise_counts", americas$country, round(americas$lifeExp))
A tibble: 1 x 6
min max mean median var na_count
<int> <int> <dbl> <int> <dbl> <dbl>
1 1 4 1.083032 1 0.1198922 0

Count Testing Cognostics

There are three types of count testing cognostic groupings. In addition to the

Univariate Continuous cognostic information, each cognostic group tests whether or

not the variables involved in the plot have any effect on the number of counts. This

is calculated using a χ2 test where H0 = Y µ.

• Histogram Counts Cognostics

The univariate case calculates the counts of a histogram using a default binwidth

of 30 equal bin widths. The default width of 30 matches the default width in

ggplot2.

auto_cog("histogram_counts", americas$lifeExp)

A tibble: 1 x 6
count_min count_max count_mean count_median count_var chisq
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0 26 10 8 55.24138 4.240986e-20

• Square Counts Cognostics

The bivariate case of the histogram is a 2D square grid. The counts in each

of the grid spaces are calculated using a default binwidth of 30 equal intervals

along each axis. In the example below, six equally spaced bins along each axis

are used.

auto_cog(
"square_counts",
americas$year, americas$lifeExp,
bins = 6

)

75

A tibble: 1 x 6
count_min count_max count_mean count_median count_var chisq
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 29 9.375 6.5 53.79032 1.547182e-22

• Hexagon Counts Cognostics

The second bivariate histogram has a honeycomb like array of hexagons. Like

the Square Counts Cognostics, the Hexagon Counts Cognostics default to 30

equally spaced hexagons along each axis. The example below also uses six

hexagon shaped bins along each axis.

auto_cog("hex_counts", americas$year, americas$lifeExp, bins = 6)

A tibble: 1 x 6
count_min count_max count_mean count_median count_var chisq
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 25 7.894737 6 38.04267 2.131691e-20

3.5 ggplot2 layer matching

ggplot2 has already been integrated into the autocogs R package. This integra-

tion contains the mapping of each cognostic group to each ggplot2 geom layer. Each

plotting framework has its own data personality and may display cognostics how it

sees fit.

Figure 3.5 is a mapping of each ggplot2 geom layer to each of the univariate

cognostics. Geoms that do not map to any cognostic groups are considered building

block geoms and do not produce any cognostics when added as a layer.

In this section, I will explore a simple ggplot2 histogram and a more advanced

example involving a ggplot2 scatterplot and linear model.

3.5.1 Histogram

First, let us create the data set containing each of the panels. Each panel will dis-

play a histogram chart of the life expectancy over time for each continent. Figure 3.10

displays the panel where continent is equal to "Americas" .

76

Figure 3.9. Mapping of ggplot2 geoms to Univariate, Bivariate, and
Count cognostic groups

77

gapminder %>%
group_by(continent) %>%
do(
panel = ggplot(., aes(lifeExp)) + geom_histogram(binwidth = 1)

) %>%
print() ->

continent_hists
Source: local data frame [5 x 2]
Groups: <by row>

A tibble: 5 x 2
continent panel
* <fctr> <list>
1 Africa <S3: gg>
2 Americas <S3: gg>
3 Asia <S3: gg>
4 Europe <S3: gg>
5 Oceania <S3: gg>
americas_pos <- which(continent_hists$continent == "Americas")
continent_hists$panel[[americas_pos]]

0

5

10

15

40 50 60 70 80

lifeExp

co
un

t

Figure 3.10. The "Americas" histogram of life expectancy.

With a nested data.frame full of panels, we add the cognostics to the data.frame .

continent_hists_cogs <- autocogs::add_panel_cogs(continent_hists) %>%
print()

78

Source: local data frame [5 x 6]
Groups: <by row>

A tibble: 5 x 6
continent panel `_x` `_density_x`
<fctr> <list> <list> <list>
1 Africa <S3: gg> <tibble [1 x 5]> <tibble [1 x 6]>
2 Americas <S3: gg> <tibble [1 x 5]> <tibble [1 x 6]>
3 Asia <S3: gg> <tibble [1 x 5]> <tibble [1 x 6]>
4 Europe <S3: gg> <tibble [1 x 5]> <tibble [1 x 6]>
5 Oceania <S3: gg> <tibble [1 x 5]> <tibble [1 x 6]>
... with 2 more variables: `_hist_x` <list>, `_n` <list>
as.list(continent_hists_cogs[americas_pos, 3:6])
$`_x`
$`_x`[[1]]
A tibble: 1 x 5
min max mean median var
<dbl> <dbl> <dbl> <dbl> <dbl>
1 37.579 80.653 64.65874 67.048 87.33067

$`_density_x`
$`_density_x`[[1]]
A tibble: 1 x 6
max_density max_density_location clusters unimodal_p_value
<dbl> <dbl> <lgl> <dbl>
1 0.04992932 70.13661 NA 0.9927842
... with 2 more variables: skew <dbl>, kurt <dbl>

$`_hist_x`
$`_hist_x`[[1]]
A tibble: 1 x 6
count_min count_max count_mean count_median count_var chisq
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0 18 6.818182 6 25.78013 8.513837e-16

$`_n`
$`_n`[[1]]
A tibble: 1 x 2
n n_na
<int> <int>
1 300 0

79

The above R output contains all cognostic groups that apply to a univariate

histogram. For a ggplot2 histogram, autocogs creates:

• `_x` : univariate continuous cognostics using the X data,

• `_density_x` : continuous density cognostics using the X data,

• `_hist_x` : histogram counts cognostics using the X data,

• `_n` : and univariate count information using the X data.

While this amount of information is a little overwhelming, keep in mind the goal

of the autocogs R package is to provide as many ways to filter and sort data that

normally must be calculated manually. autocogs computes cognostics that are suited

to each type of visualization layer.

3.5.2 Linear model and scatterplot

In the next example, we will perform a similar workflow, but the panel will contain

two layers: points and a linear model line. Each layer is derived from the same original

data, but will help produce a different sets of cognostics.

gapminder %>%
group_by(country, continent) %>%
do(
panel = ggplot(., aes(year, lifeExp)) +
geom_point() +
geom_smooth(method = "lm")

) ->
country_model
usa_pos <- which(country_model$country == "United States")
country_model$panel[[usa_pos]]

80

●

●

●

●

●

●

●

●

●

●

●

●

67.5

70.0

72.5

75.0

77.5

1950 1960 1970 1980 1990 2000

year

lif
eE

xp

Figure 3.11. The "United States" life expectancy over time displayed
as a linear model and scatterplot combination.

The "United States" panel is displayed in Figure 3.11. The life expectancy

has a fairly linear trend that increases over time. Next, we add the cognostics to the

panel data.frame .

country_model_cogs <- autocogs::add_panel_cogs(country_model) %>% print()
Source: local data frame [142 x 10]
Groups: <by row>

A tibble: 142 x 10
country continent panel `_scagnostic` `_x`
<fctr> <fctr> <list> <list> <list>
1 Afghanistan Asia <S3: gg> <tibble [1 x 9]> <tibble [1 x 5]>
2 Albania Europe <S3: gg> <tibble [1 x 9]> <tibble [1 x 5]>
3 Algeria Africa <S3: gg> <tibble [1 x 9]> <tibble [1 x 5]>
4 Angola Africa <S3: gg> <tibble [1 x 9]> <tibble [1 x 5]>
5 Argentina Americas <S3: gg> <tibble [1 x 9]> <tibble [1 x 5]>
6 Australia Oceania <S3: gg> <tibble [1 x 9]> <tibble [1 x 5]>
7 Austria Europe <S3: gg> <tibble [1 x 9]> <tibble [1 x 5]>
8 Bahrain Asia <S3: gg> <tibble [1 x 9]> <tibble [1 x 5]>
9 Bangladesh Asia <S3: gg> <tibble [1 x 9]> <tibble [1 x 5]>
10 Belgium Europe <S3: gg> <tibble [1 x 9]> <tibble [1 x 5]>
... with 132 more rows, and 5 more variables: `_y` <list>,
`_bivar` <list>, `_smooth` <list>, `_lm` <list>, `_n` <list>
as.list(country_model_cogs[usa_pos, 4:10])
$`_scagnostic`

81

$`_scagnostic`[[1]]
A tibble: 1 x 9
Outlying Skewed Clumpy Sparse Striated Convex Skinny
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0 0.7430783 0.3112384 0.1636085 0.8181818 0 1
... with 2 more variables: Stringy <dbl>, Monotonic <dbl>

$`_x`
$`_x`[[1]]
A tibble: 1 x 5
min max mean median var
<int> <int> <dbl> <dbl> <dbl>
1 1952 2007 1979.5 1979.5 325

$`_y`
$`_y`[[1]]
A tibble: 1 x 5
min max mean median var
<dbl> <dbl> <dbl> <dbl> <dbl>
1 68.44 78.242 73.4785 74.015 11.18087

$`_bivar`
$`_bivar`[[1]]
A tibble: 1 x 2
covariance correlation
<dbl> <dbl>
1 59.855 0.9929351

$`_smooth`
$`_smooth`[[1]]
A tibble: 1 x 3
mse max_deviation max_deviation_location
<dbl> <dbl> <int>
1 0.1443062 0.7572308 1972

$`_lm`
$`_lm`[[1]]
A tibble: 1 x 19
intercept intercept_p_value beta beta_p_value r2
<dbl> <dbl> <dbl> <dbl> <dbl>
1 -291.0845 1.254513e-09 0.1841692 1.369788e-10 0.9859202

82

... with 14 more variables: sigma <dbl>, statistic <dbl>,
p_value <dbl>, df <dbl>, log_lik <dbl>, aic <dbl>, bic <dbl>,
deviance <dbl>, df_residual <int>, n_sig_cooks <int>,
n_sig_hat <int>, resid_shapiro <dbl>, bc_lower <dbl>,
bc_upper <dbl>

$`_n`
$`_n`[[1]]
A tibble: 1 x 5
n n_both_na n_or_na n_x_na n_y_na
<int> <int> <int> <int> <int>
1 12 0 0 0 0

As expected, many cognostics were added to the country panel data.frame :

• `_scagnostic` : scatterplot scagnostics cognostics,

• `_x` : univariate continuous cognostics using the X data,

• `_y` : univariate continuous cognostics using the Y data,

• `_bivar` : bivariate continuous cognostics,

• `_smooth` : smooth line cognostics,

• `_lm` : linear model cognostics,

• `_n` : and bivariate count information.

Revisiting the Linear Model Example 3.3.1, we have now exposed the linear

model metrics (as well as many other metrics) to be used as cognostics within the

trelliscopejs widget. trelliscopejs will process the nested data.frame s as

grouped cognostics and display them in the application. Each linear model’s R2 value

is now available for sorting. By opening the “Sort” tab in the widget and selecting

ascending r2 , all countries will be displayed in increasing order of the R2 value.

83

Figure 3.5.2 displays the countries whose life expectancy can not be not explained by

a linear model.

Figure 3.12. A trelliscopejs widget of country life expectancy over time
where the panel ordering is displayed according to ascending R2 value of
each panels linear model.

In less than ten lines of code we went from a single data set to a full fledge

visualization application with multiple cognostics explaining the plot used with each

conditioned subset.

3.6 Summary

Automatic cognostics with the autocogs R package allow users to enable common

univariate metrics that correspond to the plots displayed in a trelliscopejs HTML

widget. autocogs provides users with the ability to retrieve statistical metrics that

are displayed or utilized in a plot. Prior examples generated cognostics for simple

84

histograms to multiple layered, linear model and scatterplot plots. Maintaining a

common set of cognostics provides a cohesive cognostic framework to be used by any

plotting architecture.

85

4. GQLR: A GRAPHQL R SERVER IMPLEMENTATION

Since 2012, Facebook has developed GraphQL: “a query language for APIs and a

runtime” [38]. GraphQL drastically reduces the number of server requests created by

the browser by using a dynamic and nested query structure. Using the Working Draft

Specification for GraphQL [39] as guidance, gqlr [40] implements a full GraphQL

server within R. gqlr allows users to supply their own R functions to satisfy the data

requirements of a GraphQL query generated by the browser. gqlr was originally

built to communicate between trelliscopejs and an R server session. However,

trelliscopejs’s development direction has changed since the creation of gqlr.

4.1 Application protocol interfaces

Application Protocol Interfaces (APIs) are the fundamental backbone of commu-

nication between machines. They enable machines to communicate with each other

without needing to know how the responding machine arrives at its answer. There

are two conventions for a machine API: simple API and custom API. Each API style

has their own advantages and disadvantages. GraphQL was created to address the

disadvantages of simple API while keeping the advantages of a custom API at the

cost of typing the request.

There are two parts involved in each API communication: the request and re-

sponse. The request submits a query to the server, and the response returns an

answer that should be able to be understood by the requesting entity. The key point

to the communication transaction is the request does not need to know how the

response calculates the answer.

86

This layer of abstraction shields the request from knowing the nitty-gritty imple-

mentation details of the response. This allows the response to behave like a black

box that will only respond to particular requests or queries.

In this chapter, I will only address single response APIs as I am concerned with

the request, not the response. A single response API is an API that returns only one

response to one answer. I will not discuss streaming APIs in this chapter.

Throughout this section, I will use a calculator, ‘Calculator’, as my example server.

The calculator will be have four internal functions: add, subtract, multiply, and

divide. These four internal functions behave just like a regular calculator, but the

true implementation of the calculator is hidden.

4.1.1 Simple API

A simple API has a single end point, or place to send a request, for each style of

question it knows how to answer. A simple Calculator API would contain four end

points: add, subtract, multiply, and divide. Each query routine requires two numeric

values as inputs and responds with a single numeric value. To concisely define a

RESTful Calculator, we may state the following schema:

GraphQL; Schema
type Calculator {

add(A: Float, B: Float): Float
subtract(A: Float, B: Float): Float
multiply(A: Float, B: Float): Float
divide(A: Float, B: Float): Float

}

Advantages

Without abstracting the function name, the number of request end points match

the number of exposed functions. There are no dynamically created functions; ev-

erything is static. By fixing all request end points, software systems can be reliably

87

built against one another. Any software system can build their own logic as to how

they solve their particular problems, but each software system will request from the

same API.

The ease of use of a simple API has made it very popular with HTTP internet

websites with the RESTful API [41]. The four most common functions of HTTP’s

REST are “GET”, “PUT”, “POST”, and “DELETE”.

1. GET: Retrieve the supplied location data only.

2. PUT: Store supplied data the supplied location.

3. POST: Add new data at the supplied location.

4. DELETE: Remove data at the supplied location.

Disadvantages

As is common in practice, databases have many tables with built in relationships.

RESTful APIs usually only return information one layer deep.

When looking at the Calculator, it solves a single calculation for each query. To

solve a multiple calculation problem, it takes multiple requests to the Calculator API.

For example, solving 1 + 2 + 3 + 4 + 5 requires 4 requests to the Calculator API; one

query for each of the addition operations.

answer = Calculator::add(1, 2) # 3
answer = Calculator::add(answer, 3) # 6
answer = Calculator::add(answer, 4) # 10
answer = Calculator::add(answer, 5) # 15

No matter how the requests are altered, it will require 4 requests to the Calculator.

This can become a major disadvantage when required to make many, many requests

to the API. If we were to look at a person’s friends of their friends, we would need

the following Schema and data information:

88

GraphQL; Schema
type Person {

id: ID
name: String
age: Int
sex: String
friends: [ID]

}

Each person has an “id”, “name”, “age”, “sex”, and a list of person id’s for their

“friends”. While having all of this information is useful, it can bloat the amount

of information that is returned. While the current example isn’t too big, one could

imagine adding a Person ’s favorite song lyrics to the Person object. This would

greatly increase the total amount of information returned for each Person object.

4.1.2 REST and the Internet

In the case of the internet, however, two major constraints exist. The two major

constraints are the number of parallel requests that can be made at one time and the

amount of time it takes for your request to reach a responding server.

HTTP 1.1 specification states that “A single-user client SHOULD NOT maintain

more than 2 connections with any server or proxy” [42]. In practice, this is a little

larger, maxing out at 13 parallel connections to the same host [43]. Limiting the

number of server connections reduces the amount of simultaneous requests on the

network and improves overall response time.

Once a request is allowed to be made, there are physical limitations on how fast

the response can be received. On average, it takes over 200 ms for a request to make

a trip to the responding server and back to the user’s browser [44].

Using the “friends of my friends” example, let us define each person as having

200 different friends (the median number of friends on Facebook [45]. When using

a simple API, we can calculate how many requests are necessary to compute who

are the “friends of my friends”. It requires O(n2)(∼ 2002 = 40, 000) independent

89

requests to the simple API server. If the browser being used is limited to 10 parallel

connections, it requires 4000(= 40, 000/10) sets of parallel request groups. Each

parallel request group takes at least 200ms for a round trip to and from the server.

The total amount of time it would require to gather the names of a person’s friends
0.200 seconds

(200requests)2
request

of friends is approximately 131 minutes = ∗ .
3 60 seconds10requests

minute
The median loading time for a website is about 3 seconds with the average around

5 seconds [46]. Major websites today try to shave milliseconds where ever they can.

No major website would allow a load time that is 160 times slower than the average

website.

4.1.3 Custom response

A natural response to the “friends of my friends” situation is implement a custom

response which directly answers the specific query.

Advantages

Because custom APIs answer specific questions, only one request needs to be sent

to the server. The “friends of my friends” example is reduced to a single, 200 ms

request. The load time is now reduced from 800 seconds to 0.2 seconds. This answers

the “who are my friends of my friends” question in the minimal amount of queries to

the server. The custom API achieves the end goal answer with the minimal amount

of queries (1) to the server.

Disadvantages

The disadvantages come from the amount of engineering time that is required to

implement a custom response for every query need. With a simple query interface,

the logic is put on the user who is querying to figure out what to query next. With

90

a custom response interface, all custom responses must be made before the user can

utilize them.

Using the Calculator example, calculating the 1 + 2 + 3 + 4 + 5 example could

be done in a single custom request called “1add2add3add4add5”. It would solve

the answer in a single request, but the server would have to implement many, many

responses for full funtionality of a true Calculator.

With the internet, the custom API response is now tied directly to the requesting

website. This creates little separation between the website and the responding API

server. By coupling the data server with the requesting service, developments in

the requests are slower and more difficult than if a de-coupled, simple API is used.

Websites making the requests can not move ahead in development until a new custom

response has been enabled by the custom API server.

4.1.4 Balancing act

Let’s recap the advantages and disadvantages of the two different styles of APIs.

1. Simple API

(a) Advantages

i. Small API

ii. Easier to implement

(b) Disadvantages

i. Many queries are required to solve complex problems

ii. Many queries causes large time complexity

iii. Every piece of information is returned for every query

2. Custom Responses

(a) Advantages

i. One query, one answer

91

ii. Fast execution time

(b) Disadvantages

i. All custom API calls need to be implemented

ii. API server is tied to the requests made

Developers balance between minimal engineering time and minimal execution

time. Typically the final result falls somewhere in-between, using a custom API

for high execution time queries and using a simple API for smaller queries.

4.2 Database storage

Once a request is received by an API, the API must retrieve the data from a

database. Databases can store objects in one of two common paradigms: as a rela-

tional database or as a key-value database. Relational databases know exactly what

kind of object will be returned and can map one table to another with id values.

Key-value databases, on the other hand, do not inspect the values of the database.

The requirement for a key-value database is that each value is stored at a specific

key. Key-value databases are built for speed and scalability over structure and rela-

tionships.

While relational databases are already inherently typed (unless purposely stated

as an unknown type), well designed key-value databases inherently contain typed

values. Each value that is inserted into the database has a known shape and expected

response type. If data of an image is stored, audio data should never be returned

from that same position. Even if the image had different sizes and formats, it still

can be understood as an image.

There are many more comparisons and cost / benefits to every database, however

these implementation differences are not apart of the scope of this chapter.

92

4.3 GraphQL language

GraphQL is a data query language built to unify data APIs. It exists as a execution

layer between the requesting user and responding database. This abstraction layer

provides many benefits: uniform request and response shape, dynamic queries to

handle custom situations, and minimal server requests.

GraphQL is comprised of two main parts, the Request and the Schema.

4.3.1 Schema

GraphQL Schemas are defined using Scalars, Types, Enumerations, Lists, Non-

Null types, Interfaces, Unions, and Input types. Each definition is used to define

a type or type abstractions that can be used when querying. The Types represent

the expected return objects that the database already knows about from the Schema

definition. Like most objects, each Object Type will contain fields that point to

Scalars or more Types. These Object fields can be queried recursively until a Scalar

or Enumeration is reached.

Object type definition

For example, we can setup a Schema for a pet dog.

type Dog {
name: String
breed: String!
owners: [Person!]!

}

The type definition for a Dog is very readable, but has a lot going on.

1. Dog is a Object Type definition. It has four fields: name , breed , age , and

owners . These four fields are the only fields defined for retrieving information

from a Dog .

93

2. String is a predefined Scalar type definition. This contains the dog’s name,

i.e. “Clifford”. Scalar fields do not contain any sub fields and are considered

leafs in the Schema definition tree. Leafs do not contain sub fields for further

information retrieval.

3. String! represents a Non-null String value. This means that all Dog objects

will contain the breed field and the result will always be a String.

4. [Person] represents an array of Person objects that represent the owners of

the Dog. By adding the ! outside the array to form [Person]! , it will be

guaranteed to return an array for the field owners and never a NULL value.

By adding a ! to the Person ([Person!]!), the elements inside the position

array will never be NULL . A length 0 array is still allowed as the owners value

is not NULL and the missing Person values are not NULL .

4.3.2 Argument and input type definitions

Field definitions can include arguments. These arguments can be simple Scalar

definitions or Input Type definitions.

GraphQL; Schema
input ToyInput {

brand: String
name: String
condition: Condition

}
extend type Dog {

weight(unit: WeightUnit = POUNDS): Float
does_play_with_toy(toy: ToyInput): Boolean

}

Like the R language, all arguments are named arguments, all arguments may be

submitted in any order, and default values may be provided. Unlike R, all submitted

arguments must have a name and must comply with the argument type. Nothing is

94

inferred from the arugment’s position. Default values may be used in place of missing

arguments.

4.3.3 Schema type definition

There are two entry points to a Schema: schema query type and schema mutation

type. Every GraphQL Schema definition must have a schema query type and can

optionally have a schema mutation type. Both types refer to an object type definition.

GraphQL; Schema
schema {

query: Dog
mutation: DogUpdate

}

Query types are read only, while mutation types are understood that something

will update in the database. A request will have the same shape for both query types

and mutation types.

4.3.4 Scalar type definitions

Scalar Types are the leafs of the Schema. Unlike Object Types, Scalars do not

have fields to inspect. GraphQL defines the base scalars as a part of the language

definition:

1. Boolean : true or false

2. Integer : A signed 32-bit integer

3. Float : A signed double-precision floating point value

4. String : A UTF-8 character sequence

5. ID : ID performs the same as a String , but it is intended to be machine

readable only as a unique identifier

95

New scalars can be defined in a Schema as long as the server running the GraphQL

understands how to handle them. Three new Scalars are defined below.

GraphQL; Schema
scalar Date
scalar Binary
scalar Hexadecimal

4.3.5 Enumeration type definitions

GraphQL understands a finite category variable. This is similar to a factor in

R. There is a fixed set of values for every Enum definition. Internally in the GraphQL

server, Enum definitions may be stored as Integer values or as an object similar to a

Set, but in the GraphQL language, it will be represented as a string with all capitol

letters, such as POUNDS .

GraphQL; Schema
enum WeightUnit {

POUNDS
KILOS
OUNCES

}

Whenever a WeightUnit type is expected, only the values of POUNDS , KILOS ,

or OUNCES may be used. While R supports factor values, and full Enumeration

class is created in the gqlr R package.

4.3.6 Interface type definition

Interfaces are an integral part in abstracting pieces of types of objects. They

allow for common fields to be accessed on objects without knowing the true type of

the object. All Object Types that inherit an interface must implement all fields of

that interface. Any Object Type that implements Pet , must implement the two

fields name and owners and return String and [Person!]! respectively.

96

GraphQL; Schema
interface Pet {

name: String
owners: [Person!]!

}
type Dog implements Pet {

name: String
barkVolume: Int
owners: [Person!]!

}
type Cat implements Pet {

name: String
meowVolume: Int
owners: [Person!]!

}

An Object Type may implement extra fields, like meowVolume in Cat .

Interfaces are useful when queries are made on objects where the exact return

type is not known, but a finite set of types exist for the expected value.

GraphQL; Schema
extend type Person {

pet: [Pet!]! # returns an array of Cat or Dog types
}

Object definitions may interface with many Interface definitions.

4.3.7 Union type definition

Unions contain a finite set of Object Types but do not specify common fields.

Unions are not allowed to contain other unions or interfaces. NotAPlant results

being returned could either be a Person , Dog , or Cat type.

GraphQL; Schema
extend type Cat {

weight(unit: WeightUnit = KILOS): Float
}
union NotAPlant = Person | Dog | Cat

97

4.4 Requests

The following Schema will be used within the Requests section. Classic Disney

characters will be used as the data.

GraphQL; Schema
scalar Date
enum WeightUnit {

POUNDS
KILOS
OUNCES

}
type Person {

name: String!
weight(unit: WeightUnit = POUNDS): Float
friends: [Person!]!
pets: [Pet!]!

}

interface Pet {
name: String
born: Date
owners: [Person!]!

}
type Dog implements Pet {

name: String
barkVolume: String
born: Date
owners: [Person!]!

}
type Cat implements Pet {

name: String
born: Date
meowVolume: String
owners: [Person!]!

}
union SearchResult = Person | Dog | Cat

98

type QueryType {
search_name(name: String!): SearchResult
person(name: String! = "Mickey Mouse"): Person
dog(name: String! = "Pluto"): Dog
cat(name: String! = "Figaro"): Cat

}
type MutationType {

addToWealth(name: String!, amount: Float): Float
}
schema {

query: QueryType
mutation: MutationType

}

4.4.1 Queries

Every object in the Schema definition can be queried. A query on an object type

must include at least one field. Object Types are not considered leafs in the Schema

definition tree as they are guaranteed to have at least one field.

GraphQL; Query
{

person {
name

}
}

// JSON; GraphQL Response
{

"data":{
"person": {

"name": "Mickey Mouse"
}}}

Queries have the same shape has the result. The only difference occurs when a

result is an array of information. Using an name argument below, we can look at

Jim Dear’s pets from the movie “Lady and the Tramp” [47].

99

GraphQL; Query
{

person(name: "Jim Dear") {
name
pets {

name
}}}

// JSON; GraphQL Response
{

"data":{
"person": {

"name": "Jim Dear",
"pets": [

{ "name": "Lady" },
{ "name": "Tramp" }

]}}}

The whole query string is submitted to the GraphQL server. This allows for

complex and deeply nested queries in a single request. Using the query below, we can

query for all pets owned by the same owners as Duchess the cat [48].

GraphQL; Query
{

cat(name: "Duchess") {
owners {

name
pets {

name
}}}}

100

// JSON; GraphQL Response
{

"data": {
"cat": {

"owners": [{
"name": "Madame Adelaide Bonfamille",
"pets": [

{"name": "Duchess"},
{"name": "Marie"},
{"name": "Berlioz"},
{"name": "Toulouse"},
{"name": "Thomas O'Malley"}

]}]}}}

Normally the code above would require O(k ∗ n) requests in a simple API, with k

owners and n pets belonging to each owner. With GraphQL, this query is resolved in

one request and without the need for a custom API to be built. The single GraphQL

query needed for the “friends of my friends” example is shown below.

GraphQL; Query
{

person(name: "Barret") {
friends {

name
friends {

name
}}}}

Aliases

Aliases can be used to query the same object field multiple times.

101

GraphQL; Query
{

duchess: cat(name: "Duchess") {
name
meowVolume

}
rajah: cat(name: "Rajah") {

name
meowVolume

}}

// JSON; GraphQL Response
{

"data": {
"duchess": {

"name": "Duchess",
"meowVolume": 2

},
"rajah": {

"name": "Rajah",
"meowVolume": 9

}}}

Fragments

For conciseness, the multiple cat query can be made using Fragments. Fragments

can be used when repeated fields are called on similar objects.

The same result will occur using the Fragments below.

102

GraphQL; Query
{

duchess: cat(name: "Duchess") {
...catFields

}
rajah: cat(name: "Rajah") {

...catFields
}

}
fragment catFields on Cat {

name
meowVolume

}

// JSON; GraphQL Response
{

"data": {
"duchess": {

"name": "Duchess",
"meowVolume": 2

},
"rajah": {

"name": "Rajah",
"meowVolume": 9

}}}

Fragments are very useful in breaking down complex queries into smaller sections.

4.4.2 Mutation

Mutations are the “write” to a database. Mutations also return information to

avoid an immediate “read” afterwards. While there is no guarentee that a Query

does not alter the database, it is a good practice to distinguish which commands read

only and which commands write to the database. The mutation example below adds

to the wealth of Scrooge McDuck [49].

103

GraphQL; Schema
type MutationType {

returns total wealth after adding amount
addToWealth(name: String!, amount: Float): Float

}

GraphQL; Mutation
mutation {

addToWealth(name = "Scrooge", amount = 1000.0)
}

// JSON; GraphQL Response
{

"data": {
"addToWealth": 28800000

}}

4.4.3 Remaining GraphQL language

There are many more intricacies in the GraphQL language that are not in the

scope of this paper.

4.5 gqlr: A GraphQL R server implementation

gqlr is an R package that implements the GraphQL server specification. gqlr han-

dles Query and Mutation Requests and returns data in the proper format. It is built

upon the next evolution of class definitions in R, R6 [50].

4.5.1 R6

R6 is a lightweight R package that creates objects that do not follow the particular

conventions of R. R known for being “pass by value” language. This means that all

104

x

values are copied at the beginning of a function. Like many other languages, R does

not have dynamic values for a list object. Values placed in a list in R stay as the

same values.

my_list <- list(A = TRUE, B = FALSE)
my_list$A
[1] TRUE
update_A_to_false <- function(x) {
x$A <- FALSE

}
update_A_to_false(my_list)
$A
[1] FALSE

$B
[1] FALSE
my_list
$A
[1] TRUE

$B
[1] FALSE

This R example does not update the value of A to FALSE as the value my_list

was copied at the beginning of the function update_A_to_false .

R6 allows for objects to be altered inside functions that they have been passed to

without any changes in assignment method. This is similar to a “pass by reference”

coding paradigm. An R6 object is passed to a function and the function alters the

value. The same R6 object outside of the function is altered as well. This is not

expected R behavior.

R6 is built upon the use of Classes. R6 classes are similar to Javascript’s ES6

classes. There is a constructor, methods, and values for each class. The methods

and values can be both private (only able to be seen internally) and public (available

to anything). Like Javascript, there is a notion of the “this” value or an object

representing itself. R6 uses the self object in this case. Internal object values

are retrieved using value <- self\$key . The example below defines a new object

105

barret with the name of "Barret" . Unlike regular R behavior, the name is changed

globally to "Schloerke" by calling the function update_name_to_schloerke .

Minimal <- R6Class("Minimal",
public = list(
name = NULL,
initialize = function(name = NA) {
self$name <- name
self$greet()

},
greet = function() {
cat(paste0("Hello, my name is ", self$name, ".\n"))

}
)

)
barret <- Minimal$new("Barret")
Hello, my name is Barret.
barret$name
[1] "Barret"
update_name_to_schloerke <- function(x) {
x$name <- "Schloerke"
invisible(x)

}
update_name_to_schloerke(barret)
barret$name
[1] "Schloerke"

R6 also allows for dynamic queries. R6 calls these “active fields”. These fields

are actually function calls, but appear a regular keys in the object. The active key

function can handle a single argument. This argument represents the value of the

object being stored. If no value was supplied, then the active key was retrieved, not

set.

In the example below, a single active key of random will return a uniform value

when retrieved and will set the random seed if the random key is set. After the key

is set to 1234, as expected, the same random values are returned.

MinimalActive <- R6Class("MinimalActive",
active = list(
random = function(x) {
if (missing(x)) {
return(runif(1))

106

}
set.seed(x)
TRUE

}
)

)
min_active <- MinimalActive$new()
min_active$random
[1] 0.9829186
min_active$random
[1] 0.5822385
min_active$random <- 1234
min_active$random
[1] 0.1137034
min_active$random
[1] 0.6222994
min_active$random <- 1234
min_active$random # same value as the first random value with seed 1234
[1] 0.1137034

Finally, R6 allows for inheritance. In the GraphQL’s abstract syntax tree, many

objects inherit from one another in a directed, acyclic graph structure. R6’s class

inheritance extends nicely to the abstract syntax tree requirments of GraphQL.

ParentClass <- R6Class("ParentClass")
ChildClass <- R6Class("ChildClass", inherit = ParentClass)
child <- ChildClass$new()
class(child)
[1] "ChildClass" "ParentClass" "R6"
inherits(child, "ParentClass")
[1] TRUE

In gqlr, all active values must inherit the correct class to be allowed to set. An

Error will be thrown if a value does not contain the proper inheritance. The example

below shows the creation of a named type “Dog”. It also shows an attempt at setting

the name value to a character. This is not allowed as the name value only allows

objects that inherit the class “Name”.

(obj <- gqlr:::NamedType$new(name = gqlr:::Name$new(value = "Dog")))
<graphql definition>
| Dog
str(obj$name)
<Name>
. value: 'Dog'

107

obj$name <- "Dog"
Error in bad inherits(): Attempting to set NamedType.name.
Expected value with class of |Name|.
Received character

gqlr uses these active fields to accomplish typed language properties while exe-

cuting in a untyped language of R. While enforcing typing within R does not happen

often, it is required for GraphQL to be implemented.

4.5.2 Execution

At first glance, R and GraphQL seem like an unlikely combination. R is an

untyped (dynamically typed) language while GraphQL is a typed language. R is not

known for its raw speed and one of GraphQL’s goals is to reduce execution time.

However, R is known for its statistical models, statistical graphics, and its very

fast iteration speed [51]. gqlr is built to help small projects provide proof of concepts

and for developers to mock full backend systems locally. Being able to submit the

same style of request string for the production server and local development increases

the productivity of the web development cycle.

The example below creates a model schema that creates a linear model and a

loess model. Both models return the mean squared error (mse) for their respective

models. The linear model also returns a GGally’s ggnostic plot which is base64

encoded [52] for data portability. The loess model also returns the effective number

of parameters (enp).

"# GraphQL; Schema
scalar ImageBase64
type LinearModel { mse: Float!, ggnostic: ImageBase64! }
type LoessModel { mse: Float!, enp: Float! }
type Model {
linear(formula: String, data_name: String): LinearModel
loess(formula: String, data_name: String): LoessModel

}
schema { query: Model }
" %>%
gqlr::gqlr_schema(

108

ImageBase64 = function(p, schema) {
tmp_file <- tempfile(fileext = ".png")
on.exit(unlink(tmp_file))
ggplot2::ggsave(tmp_file, p)
knitr::image_uri(tmp_file) %>%
shorten for display purposes
substr(start = 1, stop = 40) %>%
paste0("...")

},
LinearModel = function(model, schema) {
list(
mse = mean(model$residuals ^ 2),
ggnostic = function(...) {
GGally::ggnostic(model)

})},
LoessModel = function(model, schema) {
list(
mse = mean(model$residuals ^ 2),
enp = model$enp

)},
Model = function(ignore, schema) {
model_ <- function(fn_) {
function(null, args, schema) {
formula_ <- as.formula(args$formula)
data_ <- eval(as.symbol(args$data_name))
fn_(formula_, data = data_)

}}
list(
linear = model_(stats::lm),
loess = model_(stats::loess)

)}) ->
model_schema

In about 40 lines of code, a schema definition and execution methods can be

implemented. To build a strong typed API and its corresponding implementation in

less than 100 lines is not an easy task. With gqlr, we are able to do it in less than

half the lines of code.

In the implementation, four major R packages are called.

1. stats is used for the linear model function and loess function.

2. GGally is used to call its model diagnostic plot matrix, ggnostic .

3. ggplot2 is used to save the plot objected created by GGally.

109

4. knitr is used for its ability to data64 encode images saved by ggplot2.

These packages are built upon many other R packages and displays the extensi-

bility of a schema execution.

To see the Model schema in action, we can execute a request using the classic R

data set “iris”.

'# GraphQL; Query
{
linear(
formula: "Petal.Length ~ Petal.Width",
data_name: "iris"

) {
mse,
ggnostic

}
loess(
formula: "Petal.Length ~ Petal.Width",
data_name: "iris"

) {
mse,
enp

}
}' %>%
gqlr::execute_request(schema = model_schema) ->

result

result
{
"data": {
"linear": {
"mse": 0.2256,
"ggnostic": "..."
},
"loess": {
"mse": 0.1444,
"enp": 4.0584
}
}
}

While R users might not find the query and output very compelling (as they can

be done in a regular R session), it is good to remember that any web service with

access to the R Model schema can execute a similar command and get an answer

110

that is executed by R. During the request execution, any R package can be used.

Being able to open the flood gates to R’s extensive package list is very powerful. This

allows Javascript in the browser and Python programs to retrieve full R plots and R

model outputs using the same GraphQL API.

This schema can also be executed in a local GraphQL server session or on a

production GraphQL server. Both the local and production servers have the same

schema, so each service will return the same shapes. Each querying programming

language will have the same query string and receive the same shaped response.

4.5.3 Web service

A simple web server is included in gqlr, but extending the web server to other

url routes and authentication services are not included. gqlr was built to handle

GraphQL requests and leave the url routing and authentication to better suited pack-

ages. While some may argue for a single, go-to R package, there are many existing

URL request handlers and authenticators existing for R.

4.6 Summary

gqlr leverages the GraphQL language to effectively and efficiently communicate

custom defined queries to and from the server. gqlr provides users the ability to

rapidly iterate in a local R environment to mock large production-scale data backends.

Combining R’s fast iteration speed with R’s ability to connect to many different

existing backend services saves developers time and effort while keeping the data API

communication consistent.

111

5. SUMMARY

In this thesis, I have described

i) ggduo , an R function that produces generalized plot matrices for two groups

of variables,

ii) autocogs, an R package that automatically generates cognostics for a set of

plots, and

iii) gqlr, an R package which implements the GraphQL data query application

protocol interface.

ggduo extended the application of the generalized pairs plot to a generalized

plot matrix for two-grouped data. This function has direct application to canonical

correlation analysis and was extended by ggnostic to produce a generalized plot

matrix for model diagnostics and ggts to produce a generalized plot matrix for time

series data. These ggplot2-style plot matrices are implemented using the ggmatrix

plot object in GGally.

autocogs implemented multiple standard cognostic groups to be automatically

produced given the different plot layers of a ggplot2 visualization. Each layer within

a plot is connected to multiple cognostic groups. These sets of cognostics are then

leveraged within a trelliscopejs HTML widget to aid in its data panel exploration.

These cognostics alleviate the user from creating each cognostic value manually in the

data set speeding up the data exploration process.

gqlr implemented the GraphQL server within the R environment. The GraphQL

query language minimized the number of incoming data requests. By decoupling the

websites and the stored data, iteration speed is increased in both web site development

and data storage development. gqlr enabled R users to make use of the GraphQL

query language for efficient data extraction and statistical modeling.

112

5.1 Discussion and Future Work

5.1.1 Interactive data exploration

The scale of data sets in practice is increasing at a rapid rate. htmlwidgets [15]

has opened a new form of interactive visualization tools for R by leveraging Javascript

in the web browser. There are two limitations that quickly occur: the amount of

memory provisioned for the widget and the amount of data that is transferred to the

web page. Both web browser limitations restrict web pages to host only small-sized

(in memory only) data. crosstalk [53] currently handles communication between

htmlwidgets that use small data.

To showcase the impact of memory limitations, let us consider a simple example

where we would like to plot two density curves and a scatterplot using the same data

set. If the data set is already considered small data, there should be little difficulty

calculating and displaying density curves within the web page and displaying all three

graphs. Selecting regions of any visualization panel could highlight the selected subset

of information in the remaining visualizations. However, if the data is not small data

and is too large to fit in memory, it requires an approach that must sacrifice either

data quantity or the ability to interact within the browser to produce similar results.

If the data must be kept in the browser, a sample of the population data could be

used. If all visualizations can be rendered outside of the web browser, the difficulty

of the data visualization can be outsourced to where the data is located. Neither of

these situations allow for native interactive data exploration within the browser on

the full, raw data set. An argument could be made for calculating histograms with

very small binwidths to generate the density curves and using very small square or

hexagonal bins for the scatterplot. While these summary statistics could be made

small enough to fit within memory, this solution does not operate directly on the

original data set.

113

5.1.2 Visualization syntax

Two of the latest interactive visualization systems within R have integrated with

existing, non-R visualization libraries: rbokeh and plotly. Both R packages execute

commands within the R session to produce a single JSON specification that is under-

stood by the visualization library. Unfortunately, each of the R packages reinvented

the wheel when it came to adding layers to their respective plots. ggplot2 has proved

itself to be an effective R package at creating visualizations. However, I would like to

see the generation of data visualization objects and the displaying of said visualization

objects have integratable plotting routines.

For example, a plot could be created using “ggplot2 syntax” and displayed using

the Bokeh [54] visualization library. The “ggplot2 syntax” package would calculate

• how data should be displayed,

• the range of each axes and where the breakpoints are,

• what is displayed within each legend, and

• any extra annotation material such as a title or caption.

This plot construction information would then be passed to a thin “display only”

data visualization library needed to reproduce the visualization within the respective

library. An example implementation is shown below using a theoretical “ggplot2 syn-

tax” R package ggsyntax and a theoretical “display only” packages display_bokeh

for Bokeh and display_plotly for Plotly.

create a plot object
add all x,y data as points
calculate and add a linear model on x,y data
p <- ggsyntax::setup(example_data, ggsyntax::aes(x, y)) +
ggsyntax::geom_point() +
ggsyntax::geom_smooth(method = "lm")

display using the Bokeh visualization library
display_bokeh::from_ggsyntax(p)

114

display using the Plotly visualization library
display_plotly::from_ggsyntax(p)

The same plot object could be utilized by many different data visualization pack-

ages within R. This allows users to ingrain a consistent coding behavior when using

any visualization library.
It could be argued that after a ggplot2 plot is built, not drawn,

after_built <- ggplot_build(p)

the plot object could then be transformed to be used in a different visualization

library. While this is not impossible, the currently built ggplot2 plot object does not

readily contain all necessary information to be displayed by another library. Some

internal routines are still needed to finalize the plot’s production information.

REFERENCES

115

REFERENCES

[1] R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2008.
ISBN 3-900051-07-0.

[2] Robert A. Muenchen. The popularity of data science software, Sep 2017.

[3] Nick Diakopoulos and Stephen Cass. Interactive: The top programming lan-
guages 2017, Sep 2017.

[4] R Development Core Team. Contributed packages, Sep 2017.

[5] GitHub.com. The world’s leading software development platform github, Sep
2017.

[6] Deepayan Sarkar. Lattice: Multivariate Data Visualization with R. Springer,
New York, 2008. ISBN 978-0-387-75968-5.

[7] Hadley Wickham. ggplot2: elegant graphics for data analysis. Springer Science
& Business Media, 2009.

[8] Ryan Hafen and Continuum Analytics, Inc. rbokeh: R Interface for Bokeh, 2016.
R package version 0.5.0.

[9] Carson Sievert, Chris Parmer, Toby Hocking, Scott Chamberlain, Karthik Ram,
Marianne Corvellec, and Pedro Despouy. plotly: Create Interactive Web Graphics
via ’plotly.js’, 2017. R package version 4.7.1.

[10] John W Emerson, Walton A Green, Barret Schloerke, Jason Crowley, Dianne
Cook, Heike Hofmann, and Hadley Wickham. The generalized pairs plot. Journal
of Computational and Graphical Statistics, 22(1):79–91, 2013.

[11] Edward Tufte. Envisioning Information. Graphics Press, Cheshire, CT, USA,
1990.

[12] J. W. Tukey and P. A. Tukey. Computer Graphics and Exploratory Data Anal-
ysis: An Introduction. In Proc. the Sixth Annual Conference and Exposition:
Computer Graphics ’85, Vol. III, Technical Sessions, pages 773–785. Nat. Com-
puter Graphics Association, 1985.

[13] Barret Schloerke. Automatic Cognostic Calculations, 2017.

[14] Ryan Hafen and Barret Schloerke. trelliscopejs: Create Interactive Trelliscope
Displays, 2017. R package version 0.1.9.

[15] Ramnath Vaidyanathan, Yihui Xie, JJ Allaire, Joe Cheng, and Kenton Russell.
htmlwidgets: HTML Widgets for R, 2017. R package version 0.9.

https://plotly.js
https://GitHub.com

116

[16] Hadley Wickham. A layered grammar of graphics. Journal of Computational
and Graphical Statistics, 19(1):3–28, Jan 2010.

[17] Winston Chang. R Graphics Cookbook. O’Reilly Media, Inc., 2013.

[18] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics
Press, 1986.

[19] John M. Chambers, William S. Cleveland, Paul A. Tukey, and Beat Kleiner.
Graphical Methods for Data Analysis. Duxbury Press, 1983.

[20] John W. Emerson and Walton A. Green. gpairs: gpairs: The Generalized Pairs
Plot, 2014. R package version 1.2.

[21] Baptiste Auguie. gridExtra: Miscellaneous Functions for ”Grid” Graphics, 2017.
R package version 2.3.

[22] Harold Hotelling. Relations Between Two Sets of Variates. Biometrika,
28(3/4):321–377, December 1936.

[23] UCLA: Institute for Digital Research and Education. CANONICAL CORRE-
LATION ANALYSIS — R DATA ANALYSIS EXAMPLES, Sep 2017.

[24] Michael H. Kutner, Christopher J. Nachtsheim, John Neter, and William Li.
Applied linear statistical models. The McGraw-Hill/Irwin series operations and
decision sciences. McGraw-Hill Irwin, 2005.

[25] G. E. Moore. Cramming More Components onto Integrated Circuits. Electronics,
38(8):114–117, Apr 1965.

[26] Hadley Wickham. The split-apply-combine strategy for data analysis. Journal
of Statistical Software, 40(1):129, 2011.

[27] Hadley Wickham, Romain Francois, Lionel Henry, and Kirill Mller. dplyr: A
Grammar of Data Manipulation, 2017. R package version 0.7.4.

[28] The DeltaRho Project. Analyze and Visualize Large Complex Data in R: Quick-
start, 2017.

[29] Javier Luraschi, Kevin Ushey, JJ Allaire, and The Apache Software Foundation.
sparklyr: R Interface to Apache Spark, 2017. R package version 0.6.3.

[30] Jennifer Bryan. gapminder: Data from Gapminder, 2015. R package version
0.2.0.

[31] L. Wilkinson, A. Anand, and R. Grossman. Graph-theoretic scagnostics. In
IEEE Symposium on Information Visualization, 2005. INFOVIS 2005., pages
157–164, Oct 2005.

[32] Lee Wilkinson and Anushka Anand. scagnostics: Compute scagnostics - scatter-
plot diagnostics, 2012. R package version 0.2-4.

[33] Hadley Wickham and Garrett Grolemund. R for Data Science: Import, Tidy,
Transform, Visualize, and Model Data. O’Reilly Media, 1 edition, Jan 2017.

117

[34] G. Casella and R.L. Berger. Statistical Inference. Duxbury advanced series in
statistics and decision sciences. Thomson Learning, 2002.

[35] Martin Maechler. diptest: Hartigan’s Dip Test Statistic for Unimodality - Cor-
rected, 2016. R package version 0.75-7.

[36] Chris Fraley, Adrian E. Raftery, Thomas Brendan Murphy, and Luca Scrucca.
mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering,
Classification, and Density Estimation, 2012.

[37] Chris Fraley and Adrian E. Raftery. Model-based clustering, discriminant anal-
ysis and density estimation. Journal of the American Statistical Association,
97:611–631, 2002.

[38] Facebook Open Source. A query language for your api, Sep 2017.

[39] Facebook. Graphql, Sep 2017.

[40] Barret Schloerke. gqlr: ’GraphQL’ Server in R, 2017. R package version 0.0.1.

[41] ServiceObjects: Insight On Demand. Why rest is so popular, Sep 2017.

[42] Fielding, et al. Connections, Sep 2017.

[43] Browserscope. Network: Top browsers, Sep 2017.

[44] dstrickler. Internet weather map, Sep 2017.

[45] Steven Mazie. Do You Have Too Many Facebook Friends?, Sep 2017.

[46] John Stevens. How Slow is Too Slow in 2016?, Sep 2017.

[47] Fandom. Jim Dear, Sep 2017.

[48] Fandom. Madame Adelaide Bonfamille, Sep 2017.

[49] Fandom. Scrooge McDuck, Sep 2017.

[50] Winston Chang. R6: Classes with Reference Semantics, 2017. R package version
2.2.2.

[51] R Development Core Team. What is R?, Sep 2017.

[52] Simon Josefsson. The base16, base32, and base64 data encodings. 2006.

[53] Joe Cheng. crosstalk: Inter-Widget Interactivity for HTML Widgets, 2016. R
package version 1.0.0.

[54] Anaconda. Welcome to Bokeh, 2017.

[55] Barret Schloerke, Jason Crowley, Di Cook, Francois Briatte, Moritz Marbach,
Edwin Thoen, Amos Elberg, and Joseph Larmarange. GGally: Extension to
’ggplot2’, 2017. R package version 1.3.2.

[56] Barret Schloerke, Jason Crowley, Di Cook, Francois Briatte, Moritz Marbach,
Edwin Thoen, Amos Elberg, and Joseph Larmarange. GGally: Extension to
’ggplot2’, 2017.

118

[57] Hadley Wickham and Chang Winston. ggplot2, 2017.

[58] Barret Schloerke. gqlr: ’GraphQL’ Server in R, 2017.

[59] Ramnath Vaidyanathan, Yihui Xie, JJ Allaire, Joe Cheng, and Kenton Russell.
htmlwidgets: HTML Widgets for R, 2017.

[60] Plotly. plotly: Visualize Data, Together, 2017.

[61] Carson Sievert, Chris Parmer, Toby Hocking, Scott Chamberlain, Karthik Ram,
Marianne Corvellec, and Pedro Despouy. plotly: Create Interactive Web Graphics
via ’plotly.js’, 2017.

[62] Ryan Hafen and Continuum Analytics, Inc. rbokeh: R Interface for Bokeh, 2017.

[63] Ryan Hafen and Barret Schloerke. trelliscopejs: Create interactive trelliscope
displays, 2017.

https://plotly.js

APPENDICES

119

A. R PACKAGE DESCRIPTIONS

The following alphabetically sorted package descriptions are excerpts from their DE-

SCRIPTION files.

autocogs: “Automatic Cognostic Summaries”

“Automatically calculates cognostic groups for plot objects and list column plot

objects. Results are returned in a nested data frame.” [13]

GGally: “Extension to ggplot2”

“The R package ggplot2 is a plotting system based on the grammar of graphics.

GGally extends ggplot2 by adding several functions to reduce the complexity of

combining geometric objects with transformed data. Some of these functions include

a pairwise plot matrix, a two group pairwise plot matrix, a parallel coordinates plot,

a survival plot, and several functions to plot networks.” [55] [56]

ggplot2: “Create elegant data visualisations using ‘The Grammar of Graph-

ics’ ”

“ggplot2 is a system for declaratively creating graphics, based on The Grammar

of Graphics. You provide the data, tell ggplot2 how to map variables to aesthetics,

what graphical primitives to use, and it takes care of the details.” [57] [7]

120

gqlr: “GraphQL server in R”

“Server implementation of ‘GraphQL’ [39], a query language created by Facebook

for describing data requirements on complex application data models. Visit http:

//graphql.org [38] to learn more about ‘GraphQL’.” [40] [58]

lattice: “Trellis graphics for R”

“A powerful and elegant high-level data visualization system inspired by Trellis

graphics, with an emphasis on multivariate data. Lattice is sufficient for typical graph-

ics needs, and is also flexible enough to handle most non-standard requirements.” [6]

htmlwidgets: “HTML Widgets for R”

“A framework for creating HTML widgets that render in various contexts includ-

ing the R console, ’R Markdown’ documents, and ’Shiny’ web applications.” [15] [59]

plotly: “Create Interactive Web Graphics via ‘plotly.js’ ”

“Easily translate ggplot2 graphs to an interactive web-based version and / or

create custom web-based visualizations directly from R. Once uploaded to a ‘plotly’

account [60], ‘plotly’ graphs (and the data behind them) can be viewed and modified

in a web browser.” [9] [61]

rbokeh: “R interface for Bokeh”

“A native R plotting library that provides a flexible declarative interface for

creating interactive web-based graphics, backed by the Bokeh visualization library

http://bokeh.pydata.org/.” [8] [62]

http://graphql.org
http://graphql.org
http://bokeh.pydata.org/
https://plotly.js

121

trelliscopejs: “Create interactive Trelliscope displays”

“Trelliscope is a scalable, flexible, interactive approach to visualizing data. This

package provides methods that make it easy to create a Trelliscope display speci-

fication for trelliscopejs. High-level functions are provided for creating displays

from within dplyr or ggplot2 workflows. Low-level functions are also provided for

creating new interfaces.” [63]

122

123

B. DATA SETS

Restaurant tips

reshape::tips %>% as_data_frame()

A tibble: 244 x 7
total_bill tip sex smoker day time size
* <dbl> <dbl> <fctr> <fctr> <fctr> <fctr> <int>
1 16.99 1.01 Female No Sun Dinner 2
2 10.34 1.66 Male No Sun Dinner 3
3 21.01 3.50 Male No Sun Dinner 3
4 23.68 3.31 Male No Sun Dinner 2
5 24.59 3.61 Female No Sun Dinner 4
6 25.29 4.71 Male No Sun Dinner 4
7 8.77 2.00 Male No Sun Dinner 2
8 26.88 3.12 Male No Sun Dinner 4
9 15.04 1.96 Male No Sun Dinner 2
10 14.78 3.23 Male No Sun Dinner 2
... with 234 more rows

Psychological and academic data

psychademic %>% as_data_frame()

A tibble: 600 x 8
locus_of_control self_concept motivation read write math
<dbl> <dbl> <chr> <dbl> <dbl> <dbl>
1 -0.84 -0.24 4 54.8 64.5 44.5
2 -0.38 -0.47 3 62.7 43.7 44.7
3 0.89 0.59 3 60.6 56.7 70.5
4 0.71 0.28 3 62.7 56.7 54.7
5 -0.64 0.03 4 41.6 46.3 38.4
6 1.11 0.90 2 62.7 64.5 61.4
7 0.06 0.03 3 41.6 39.1 56.3
8 -0.91 -0.59 3 44.2 39.1 46.3
9 0.45 0.03 4 62.7 51.5 54.4
10 0.00 0.03 3 62.7 64.5 38.3
... with 590 more rows, and 2 more variables: science <dbl>,
sex <chr>

124

Election demand

fpp2::elecdemand %>% head()

Time Series:
Start = c(2014, 1)
End = c(2014, 6)
Frequency = 17520
Demand WorkDay Temperature
2014 3.698171 0 16.1
2014 3.426123 0 16.0
2014 3.295835 0 15.6
2014 3.166052 0 15.4
2014 3.071107 0 15.4
2014 2.999543 0 15.5

fpp2::elecdemand %>%
as_data_frame() %>%
mutate(
WorkDay = factor(c("No", "Yes")[WorkDay + 1], levels = c("Yes", "No")),
Time = zoo::as.Date(zoo::as.Date(time(elecdemand)))
Year = 2014,
Day = rep(1:365, each = 48),
HighUsage = c("below", "above")[(Demand > median(Demand)) + 1]

) %>%
filter(Day <= 100) %>%
mutate(Time = as.Date(Day, origin = "2014-01-01")) ->

elec_median

elec_median

A tibble: 4,800 x 7
Demand WorkDay Temperature Year Day HighUsage Time
<dbl> <fctr> <dbl> <dbl> <int> <chr> <date>
1 3.698171 No 16.1 2014 1 below 2014-01-02
2 3.426123 No 16.0 2014 1 below 2014-01-02
3 3.295835 No 15.6 2014 1 below 2014-01-02
4 3.166052 No 15.4 2014 1 below 2014-01-02
5 3.071107 No 15.4 2014 1 below 2014-01-02
6 2.999543 No 15.5 2014 1 below 2014-01-02
7 2.955342 No 15.3 2014 1 below 2014-01-02
8 2.927419 No 15.1 2014 1 below 2014-01-02
9 2.934816 No 15.1 2014 1 below 2014-01-02
10 2.932894 No 15.1 2014 1 below 2014-01-02
... with 4,790 more rows

125

Flea

GGally::flea %>% as_data_frame()

A tibble: 74 x 7
species tars1 tars2 head aede1 aede2 aede3
<fctr> <int> <int> <int> <int> <int> <int>
1 Concinna 191 131 53 150 15 104
2 Concinna 185 134 50 147 13 105
3 Concinna 200 137 52 144 14 102
4 Concinna 173 127 50 144 16 97
5 Concinna 171 118 49 153 13 106
6 Concinna 160 118 47 140 15 99
7 Concinna 188 134 54 151 14 98
8 Concinna 186 129 51 143 14 110
9 Concinna 174 131 52 144 14 116
10 Concinna 163 115 47 142 15 95
... with 64 more rows

Gapminder

gapminder::gapminder %>% as_data_frame()

A tibble: 1,704 x 6
country continent year lifeExp pop gdpPercap
<fctr> <fctr> <int> <dbl> <int> <dbl>
1 Afghanistan Asia 1952 28.801 8425333 779.4453
2 Afghanistan Asia 1957 30.332 9240934 820.8530
3 Afghanistan Asia 1962 31.997 10267083 853.1007
4 Afghanistan Asia 1967 34.020 11537966 836.1971
5 Afghanistan Asia 1972 36.088 13079460 739.9811
6 Afghanistan Asia 1977 38.438 14880372 786.1134
7 Afghanistan Asia 1982 39.854 12881816 978.0114
8 Afghanistan Asia 1987 40.822 13867957 852.3959
9 Afghanistan Asia 1992 41.674 16317921 649.3414
10 Afghanistan Asia 1997 41.763 22227415 635.3414
... with 1,694 more rows

Iris flower

126

iris %>% as_data_frame()

A tibble: 150 x 5
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
<dbl> <dbl> <dbl> <dbl> <fctr>
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 4.6 3.4 1.4 0.3 setosa
8 5.0 3.4 1.5 0.2 setosa
9 4.4 2.9 1.4 0.2 setosa
10 4.9 3.1 1.5 0.1 setosa
... with 140 more rows

127

C. R PACKAGES

The following sections contain publically exported functions where I created or have

made significant contributions.

C.1 GGally

- +.gg : Modify a ggmatrix object by adding an ggplot2 object to all plots

This operator allows you to add ggplot2 objects to a ggmatrix object.

- broomify : Broomify a model

broom::augment a model and add broom::glance and broom::tidy output

as attributes. X and Y variables are also added.

- find_plot_type : Find Plot Types

Retrieves the type of plot for the specific columns.

- fn_switch : Function switch

Function that allows you to call different functions based upon an aesthetic

variable value.

- ggally_barDiag : Plots the Bar Plots Along the Diagonal

Plots the bar plots along the diagonal of a ggpairs plot.

- ggally_blank , ggally_blankDiag : Blank Plot

Draws nothing.

- ggally_box , ggally_box_no_facet : Box Plot

Make a box plot with a given data set. ggally_box_no_facet will be a single

panel plot, while ggally_box will be a faceted plot.

- ggally_cor : Correlation from the Scatterplot

Estimate the correlation from the provided data.

128

- ggally_density : Scatter Density Plot

Produce a scatter density plot from a provided data.

- ggally_densityDiag : Density Plot Along the Diagonal

Produce density plot along the diagonal.

- ggally_denstrip : Tile Plot with Facets

Facet a tile plot using the provided data.

- ggally_dot , ggally_dot_no_facet : Dot Plot with Facets

Facet a dot plot using the provided data.

- ggally_facetbar : Bar Plot with Facets

X variables are plotted using ggplot2::geom_bar

able.

- ggally_facetdensity : Density Plot with Facets

Facet a density plot using the provided data.

- ggally_facethist : Histogram Plot with Facets

Facet a histogram plot using the provided data.

- ggally_na , ggally_naDiag : NA plot

and faceted by the Y vari-

Draws a large NA in the middle of the plotting area. This plot is useful when

all X or Y data is NA .

- ggally_nostic_cooksd : ggnostic - Cooks Distance

A function to display stats::cooks.distance .

- ggally_nostic_hat : ggnostic - Leverage Points

A function to display stats::influence s hat information against a given ex-

planatory variable.

- ggally_nostic_line : ggnostic - Background Line with Geom

If a non-null linePosition value is given, a line will be drawn before the given

continuous_geom or combo_geom is added to the plot.

129

- ggally_nostic_resid : ggnostic - Residuals

If non-null p value and sigma values are given, confidence interval lines will be

added to the plot at the specified p value percentiles of a N(0, σ) distribution.

- ggally_nostic_se_fit : ggnostic - Fitted Value Standard Error

A function to display stats::predict s standard errors.

- ggally_nostic_sigma : ggnostic - Leave One Out Model Sigma

A function to display stats::influence s sigma value.

- ggally_nostic_std_resid : ggnostic - Standardized Residuals

If non-null p value and sigma values are given, confidence interval lines will be

added to the plot at the specified p value locations of a N(0, 1) distribution.

- ggally_points : Scatterplot

Produces a scatterplot using the provided data.

- ggally_ratio : Mosaic Plot

Produces a mosaic plot using fluctuation.

- ggally_smooth , ggally_smooth_loess , ggally_smooth_lm : Scatterplot with

Smoothing

Produces a smoothed line on top of a scatterplot.

- ggally_text : Text Plot

Display text in the middle of a plot while maintaining a background scales.

- ggduo : A ggplot2 Generalized Pairs Plot for Two Columns Sets of a data.frame

Make a matrix of plots with a given data set with two different column sets.

- ggfacet : Single ggplot2 Plot Matrix with facet_grid

Produce a single ggplot2 object using ggplot2::facet_grid .

- gglegend : Legend of Plot Function

Only display the legend of a plot. Use this function to retrieve the only legend.

- ggmatrix : Aggplot2Plot Matrix

Make a generic plot matrix of ggplot2 plots.

130

- ggmatrix_gtable : Compute the ggmatrix gtable

This functino builds all plots necessary for displaying the plot matrix and stores

them in a ggplot2 plot gtable .

- ggnostic : Statistical Model Diagnostics Plot Matrix

Display commonly known linear model diagnostics against model predictor vari-

ables in a ggmatrix .

- ggpairs : A ggplot2Generalized Pairs Plot

Produce plots of all variable combinations with different plot types for the upper

triangle, lower triangle, and diagonal of the plot matrix.

- ggts : Multiple Time Series

GGallyimplementation of ts.plot. Wraps around the ggduo function and removes

the column strips.

- grab_legend : Extract a ggplot2 Legend

Extract the legend of a ggplot2 object to be drawn at a later time.

- print.ggmatrix : Print a ggmatrix object

Print method altered from ggplot2:::print.ggplot to accomodate a ggma-

trix object

- v1_ggmatrix_theme : Original ggmatrix Layout theme

Modify a ggmatrix object by adding an ggplot2 object to all plots

- wrap , wrapp , wrap_fn_with_params , wrap_fn_with_param_arg : Wrap a

Function with Different Parameter Values

Wraps a function with the supplied parameters to force different default behav-

ior. This is useful for functions that are supplied to ggpairs . It allows you

to change the behavior of one function, rather than creating multiple functions

with different parameter settings.

131

C.2 autocogs

- add_cog_group : Add a Cognostic Group

Add a new cognostic to be used when calculating automatic cognostics.

- add_layer_cogs : Add Plot Layer Cognostics

Add a new set of cognostic groups for a given plot layer. If the plot layer is

found, the corresponding cognostic groups will be calculated.

- auto_cog : Cognostic Group Function

Calculate an automatic cognostic function given a cognostic group name.

- cog_desc : Cognostic and Description

Add a description to a cognostic.

- cog_group_df : Cognostic Group data.frame

Make a cognostics group data frame to be passed into add_layer_cogs

- field_info : Field Type Info

- layer_count : Number of Layers in Plot

Retrieve the number of layers in a given plot

- layer_info : Plot Layer Information List

Retrieve the data and parameter information for all layers of a plot.

- panel_cogs , add_panel_cogs : Calculate Panel Cognostics

Return or concatinate panel cognostics. For each panel (plot) in the panel col-

umn, cognostics will be calculated for each panel. The result will be returned in

a nested tibble::tibble .

- plot_class : Plot Class

First class of the plot object. Exception is ggplot2 as many objects are of class

gg.

132

C.3 trelliscopejs

- +.gg ggplot2Add Method

Add method for gg / facet_trelliscope .

- as_cognostics As Cognostics

Cast a data frame as a cognostics data.frame .

- facet_trelliscope trelliscopejs Faceting

Facet using a trelliscopejs wigit. This function uses ggplot2::facet_wrap

and ggplot2::facet_grid like syntax.

- print.facet_trelliscope Print a facet_trelliscope Object

Prints a trelliscopejs wigit by saving the necessary files to disk. Like ggplot2,

this allows for all plot alterations to be executed independently before print time.

- trelliscope Create a trelliscopejs Display

Creates a trelliscopejsdisplay by writing all necessary files to disk.

C.4 gqlr

- as_R6 : As R6

Debug method that strips all gqlr classes and assigns the class as ’R6’

- ErrorList : ErrorList

Handles all errors that occur during query validation. This object is returned

from execute request function (ans <- execute_request(query, schema))

under the field error_list (ans$error_list).

- execute_request : Execute GraphQL server response

Executes a GraphQL server request with the provided request.

- gqlr_schema : Create Schema definitions

Creates a Schema object from the defined GraphQL string and inserts the pro-

vided descriptions, resolve methods, and resolve_type methods into the ap-

propriate place.

133

- parse_ast : Parse AST

This is a helper function for Scalars. Given a particular kind and a resolve

function, it produces a function that will only parse values of a particular kind.

- Schema : GraphQL Schema object

Manages a GraphQL schema definition. A Schema can add more GraphQL type

definitions, assist in determining definition types, retrieve particular definitions,

and can combine with other schema definitions.

Typically, Schema class objects are created using gqlr_schema . Creating a

Schema$new() object should be reserved for when multiple Schema objects are

combined.

- Schema : Run basic GraphQL server

Run a basic GraphQL server with the jug package. This server is provided to

show basic interaction with GraphQL. The server will run until the function

execution is canceled.

VITA

134

VITA

Barret Schloerke was born in Ames, Iowa in 1988. He worked as a software en-

gineer for the small startup Metmarkets in between earning his Bachelor of Science

degree at Iowa State University in 2010, and a Master of Science degree in Mathe-

matical Statistics from Purdue University 2014. His academic interests include data

visualization, statistical computing, exploratory data analysis, large data, and com-

putational statistics.

	Generalized Plot Matrices, Automatic Cognostics, and Efficient Data Exploration
	Recommended Citation

	LIST OF FIGURES
	ABBREVIATIONS
	GLOSSARY
	ABSTRACT
	INTRODUCTION
	ggduo: Generalized pairs plot for two-grouped data
	autocogs: Metrics enabling detailed interactive data visualization
	gqlr: An R server GraphQL implementation
	Thesis Organization

	GGDUO: GENERALIZED PAIRS PLOT FOR TWO-GROUPED DATA
	ggplot2
	Layered Grammar of Graphics
	ggplot2 layers
	Plot creation
	Comparison

	Facets
	Facet wrap
	Facet grid

	Plot matrix
	Pairs plot
	ggmatrix

	ggduo: Plot matrix for two-grouped data
	Column types
	User defined functions

	ggduo in practice
	Canonical correlation analysis
	Multiple time series analysis
	Multiple regression diagnostics

	Summary

	AUTOCOGS: METRICS ENABLING DETAILED INTERACTIVE DATA VISUALIZATION
	trelliscopejs
	Data size
	Computation
	Summary statistics

	Cognostics
	Automatic cognostics for data visualization
	Linear model example
	Framework
	Cognostic groups

	Cognostic groups
	Univariate
	Bivariate
	Counts

	ggplot2 layer matching
	Histogram
	Linear model and scatterplot

	Summary
	GQLR: A GRAPHQL R SERVER IMPLEMENTATION
	Application protocol interfaces
	Simple API
	REST and the Internet
	Custom response
	Balancing act

	Database storage
	GraphQL language
	Schema
	Argument and input type definitions
	Schema type definition
	Scalar type definitions
	Enumeration type definitions
	Interface type definition
	Union type definition

	Requests
	Queries
	Mutation
	Remaining GraphQL language

	gqlr: A GraphQL R server implementation
	R6
	Execution
	Web service

	Summary

	SUMMARY
	Discussion and Future Work
	Interactive data exploration
	Visualization syntax

	REFERENCES
	R PACKAGE DESCRIPTIONS
	DATA SETS
	R PACKAGES
	GGally
	autocogs
	trelliscopejs
	gqlr
	VITA

