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ABSTRACT 

Schloerke, Barret Ph.D., Purdue University, December 2017. Generalized Plot Matri-
ces, Automatic Cognostics, and Efficient Data Exploration. Major Professors: Dr. 
William Cleveland and Dr. Ryan Hafen. 

Statistical visualization of large-scale data has become an increasingly essential 

task in the era of big data. In particular, exploratory data analysis and visualization 

is the first step towards any in-depth statistical modeling and analysis. Being able to 

rapidly specify and generate visualizations regardless of data-scale is crucial. Trellis-

cope handles data visualization at scale by attaching cognostics (univariate metrics) 

to each panel aiding in the organization of panels of interest. While Trelliscope pro-

vides a general framework for visualizing data at scale, there are several aspects that 

can be improved to help users generate displays more rapidly (such as cognostics, 

axis scales, etc.). When visually modeling complex data with Trelliscope, traditional 

two-grouped plot matrices do not allow for a mixed-scale axis to display both con-

tinuous and discrete data natively. Web-based visualization systems like Trelliscope, 

that retrieve information from a back-end service such as R, must maximize per-

formance for an engaging user experience. Addressing the mixed-scale plot matrix 

axis, a generalized plot matrix is developed for two-grouped data which displays both 

continuous and discrete data using appropriate visualization methods for each panel. 

To compliment Trelliscope’s panel organization, automatic cognostic summaries are 

established by mapping the context of what is visualized to classes of metrics that 

are meaningful for each type of visualization layer at no additional user effort. Fi-

nally, communication from web-based visualization systems to back-end R services 

is greatly improved by leveraging the GraphQL query language which minimizes the 

number of required data queries needed to perform data extraction. Together, these 

three contributions curtail the increasing complexity and scale of data visualization. 
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1. INTRODUCTION 

Statistical visualizations of large-scale data has become an increasingly essential task 

in the era of big data. In particular, exploratory data analysis and visualization is the 

first step towards any in-depth statistical modeling and analysis. Since its release in 

2000, the R programming language and environment [1] has becoming the top ranked 

open source data analysis tool [2] [3] and has arose as a powerful and convenient 

platform for performing data analysis and visualization with over 11,000 active, user 

submitted packages (as of Sept. 2017 [4]) and a number of more packages are in 

development on GitHub [5]. Various successful implementations have achieved in 

building a scientific visualization library in R, including lattice [6], ggplot2 [7], 

rbokeh [8], and plotly [9], to name a few. lattice implements trellis graphics for 

R with powerful yet elegant high-level data visualization functions emphasizing on 

multivariate displays. ggplot2 deconstructs higher level plots into a lower level of 

data visualization grammar using layered graphics which facilitate publication-ready 

data visualization. In this thesis, I develop 

i) ggduo , an R function in GGally that produces generalized plot matrices for 

two groups of variables, 

ii) autocogs, an R package that automatically generates cognostics for a set of 

plots, and 

iii) gqlr, an R package which implements the GraphQL data query application 

protocol interface. 
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1.1 ggduo : Generalized pairs plot for two-grouped data 

ggplot2 offers a powerful graphics language for creating elegant and complex 

plots, however it has certain limitations. For instance, it does not allow the dis-

playing of data sets with mixed scales (e.g., simultaneously display discrete and con-

tinuous scales) on the same axis. To incorporate this functionality, the R package 

GGally provides several composite plots (i.e., multi-layered plots) that build on the 

basic ggplot2 [7] plotting framework. GGally functions produce multivariate plots 

such as generalized scatterplot matrices, and parallel coordinate plots are provided, 

as well as network plots, survival models, and glyph maps for spatiotemporal data. 

One important functionality in GGally is ggpairs . ggpairs an implementation 

of the generalized pairs plot [10]. The generalized pairs plot displays a plot matrix 

(all bivariate combinations of a single set of variables) that allows for a mixture of 

both continuous and discrete variable types using the ggplot2 plotting framework. 

Furthermore, ggpairs ’s plot matrix was generalized one step further to a general-

ized plot matrix which handles arbitrary ggplot2 plot objects in a variable number 

of rows and columns. 

In the first part of this thesis, I introduce a new function, ggduo that builds 

on the structure of the ggmatrix function used to produce the generalized pairs 

plot, ggpairs . Specifically, ggduo produces generalized plots for two groups of 

variables (e.g. a matrix of X variables and a matrix of Y variables), as might be 

modeled by multivariate regression diagnostics, canonical correlation analysis, or even 

multivariate time series. For the case of multivariate regression diagnostics, I develop 

ggnostic which displays common linear model diagnostic data against each of the 

model’s explanatory variables. Figure 1.1 contains an example of ggnostic using 

a linear model of flea data where each plot displays model diagnostic information 

against each model explanatory variable. This plot would not have been possible in 

either lattice or ggplot2 due to the mixture of axis scales and would have been 
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uninformative if rendered using ggpairs . I believe that the new function ggduo 

will help analysts to look at their data to support better modeling. 
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Figure 1.1. Model diagnostics are displayed in the plot matrix above using 
the GGally function ggnostic , which calls ggduo . Each panel of the 
plot matrix displays the same original data with different combinations of 
response and explanatory variables in each panel. Significance lines are 
displayed as dashed lines while solid lines represent expected values. 

1.2 autocogs: Metrics enabling detailed interactive data visualization 

To examine the difference between independent subsets of the same data set, Ed-

ward Tufte introduced the notion of small multiples using trellis displays [11]. In 

trellis displays, data are separated into independent subsets and a consistent visu-

alization method is applied to each subset. The result is a set of panels that are 

displayed in a grid, resembling a garden trellis. These multi-panel display systems 

have proven to be very effective tools for visualizing complex data sets in detail. How-
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ever, when the count of data subsets becomes very large, it is often the case that there 

are too many panels for the analyst to consume at one time. A simple idea put forth 

by John Tukey [12] is to compute cognostics, metrics that help bring different, inter-

esting sets of panels in a display to the analyst’s attention and allow the analyst to 

interactively sort and filter the panels. Cognostics can include statistical summaries, 

descriptive variables, goodness-of-fit metrics, etc. 

Groups of cognostics and ggplot2 layers are intimately connected. For instance, 

a simple histogram in ggplot2 is created via a single histogram layer and is associ-

ated with four cognostic groups: univariate continuous cognostics, density cognostics, 

histogram cognostics, and count cognostics. In the second part of this thesis, I de-

velop autocogs [13], an R package which automatically produces sets of standard 

cognostic groups that would be commonly useful to the data analyst given their sup-

plied visualization objects. Figure 1.2 displays four groups of cognostics for the single 

layer (histogram) plot in two side-by-side tables. Eighteen cognostics in total are 

calculated. As an application, we demonstrate how autocogscan greatly enhance 

the functionalities of trelliscopejs [14]. trelliscopejsis an HTML widget that 

plot panels in an interactive trellis display which allows for sorting and filtering plot 

panels according to supplied cognostics. While it is possible to manually specify all 

the cognostics in trelliscopejs, autocogs greatly simplifies the user experience 

by automatically providing default groups of cognostics complimentary to the panel 

visualization. 
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group cog value group cog value 

x 

density x 

min 
max 
mean 
median 
var 

max density 
max density location 
unimodal p value 
skew 
kurt 

37.58 
80.65 
64.66 
67.05 
87.33 

0.05 
70.14 
0.99 
-0.74 
2.81 

hist x 

n 

count min 
count max 
count mean 
count median 
count var 
chisq 

n 
n na 

0.00 
18.00 
6.82 
6.00 
25.78 
0.00 

300.00 
0.00 

Figure 1.2. autocogs automatically produces four cognostic groups for 
a single layer (histogram) plot shown above. These cognostic groups are 
shown in the two tables describing the cognostic group, name, and value. 
All eighteen cognostics may be used within a trelliscopejs HTML wid-
get to aid in sorting and filtering plot panels. 

1.3 gqlr: An R server GraphQL implementation 

In 2012, Facebook began development of GraphQL, a backend agnostic data query 

language and runtime. Data query API that allows data to be queried without re-

quiring knowledge how the data is stored. In doing so, GraphQL drastically reduces 

the number of server requests created by the browser by using a dynamic and nested 

query structure. For instance, when inspecting the names of a person’s friends of 
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their friends, it would normally require O(n2) query commands to finally realize the 

full answer where n is the number of friends for each person. With GraphQL, the 

dynamic query structure allows for the full request to be sent to the server and a 

single, albeit, larger answer is returned. The submitted query command is separated 

from the actual backend service, moving the implementation complexity to the data 

backend service rather than the query submission process. Figure 1.3 displays the re-

duction in communication between a web browser client and the data server for both 

a naive REST implementation and a GraphQL implementation. The naive REST im-

plementation requires O(n2) communications with the data server, while GraphQL 

executes a single communication with a single return value. By decoupling the data 

servers with web pages, the development cycles of both the web pages and data servers 

are improved. However, there is no prior interface of GraphQL to R. Therefore, in 

the third part of this thesis, I develop the gqlr R package, which implements a full 

GraphQL server within R. gqlr allows R users to supply their own functions to sat-

isfy the data requirements of a submitted GraphQL query, thus enjoying the rapid 

iteration time of R and production iteration time of GraphQL. 
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Figure 1.3. Time passes from top to bottom in this communication graph. 
In “friends of my friends” example, the Naive REST implementation re-
quires O(n2) queries (where n is the number of friends for each person), 
while the GraphQL implementation solves the example query in a single 
communication to the data server. 

1.4 Thesis Organization 

The structure of this thesis is presented in Figure 1.4. The main contributions of 

this thesis include: 

i) ggduo , an R function in GGally that produces generalized plot matrices for 

two groups of variables (Chapter 2), 

ii) autocogs, an R package that automatically generates cognostics for a set of 

plots (Chapter 3), and 

iii) gqlr, an R package which implements the GraphQL data query application 

protocol interface (Chapter 4). 

All components of this thesis are developed within the R environment and relate 

to the visualization and exploration of data. 
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Building on a grammar of graphics, ggplot2 is a layered plotting framework that 

GGally utilizes for visualizing data. Each plot within the cell of a ggmatrix plot 

matrix is a fully defined ggplot2 plot object. Using ggmatrix as a plot matrix 

foundation, two main functions apply different variable combinations to produce dif-

ferent plot matrices: ggpairs , a generalized pairs plot, and ggduo , a generalized 

plot matrix for two-grouped data. ggduo is further extended by ggnostic , a gen-

eralized plot matrix for model diagnostics, and ggts , a generalized plot matrix for 

time series data. In Chapter 2, I develop the generalized plot matrix for two-grouped 

data and its extensions. 

In Chapter 3, I develop autocogs, an R package that inspects a plot’s data vi-

sualization layers to produce standard groups of cognostics. Currently, ggplot2 plot 

objects are understood by autocogs; in future work, autocogs will be able to un-

derstand how to automatically produce cognostics for plot objects produced by the 

popular R plotting libraries plotly, lattice, and rbokeh. Once the cognostic 

groups are produced, they may be utilized within the interactive HTML widget 

trelliscopejs to sort and filter visualization panels. The R package htmlwidgets [15] 

generates HTML widgets which facilitate interactive web visualizations in R. trelliscopejs can 

display data visualization panels from many R packages, of which include ggplot2, 

plotly, lattice, and rbokeh. 

In Chapter 4, I explore the GraphQL data query API and develop the R package 

gqlr. GraphQL was originally built to provide a consistent communication link 

between websites in the browser and data servers. The package gqlr implements a 

GraphQL data server within the R environment. gqlr is built to handle GraphQL 

data queries and expose statistical routines provided by R and its packages. While 

gqlr was originally pursued to aid data extraction with trelliscopejs, it will be 

integrated within trelliscopejs as development is continued. 
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Figure 1.4. Thesis Organization. Shaded regions represent different con-
texts within the R environment. Black bordered square boxes represent R 
packages. GGally is built upon ggplot2, and ellipses within GGally rep-
resent package functions. Solid arrows represent functional dependencies 
or R package interactions. Dashed arrows represent possible future in-
teractions. The bolded R packages and GGally functions correspond to 
different chapters within this thesis. Summary descriptions of these pack-
ages are provided in Appendix A. 



10 



11 

2. GGDUO: GENERALIZED PAIRS PLOT FOR TWO-GROUPED 

DATA 

2.1 ggplot2 

2.1.1 Layered Grammar of Graphics 

The R data visualization package ggplot2 is based on a Layered Grammar of 

Graphics [16]. During consulting meetings with students and faculty in helping them 

produce statistical visualizations of their data, the authors of the package noticed that 

many clients had trouble producing plots quickly and have difficulties understanding 

how the plots were generated. This motivated them to develop the ggplot2 package, 

which is based on the foundations of The Grammar of Graphics []. 

2.1.2 ggplot2 layers 

Most of the standard statistical graphical displays take the form of single-layered 

plots. For example, a scatterplot consists of a point layer while a boxplot contains 

a boxplot layer. There is no formal name for the data graphic where horizontally 

jittered points are displayed on top of a vertical boxplot. Each layer is understood as 

a component to the plot, therefore the plot as a whole can be understood. Wickham 

did state that while a layered grammar guides a well formed graphic [16], he analogizes 

“good grammar is just the first step in creating a good sentence” [16]. 

Each plot consists of three components: the data, geom, and scales. Respectively, 

each of the component defines what is being displayed, how it is displayed and where 

it is being displayed. By inferring from the supplied data source and geom defaults, 

many plots can be displayed without much coding. 
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p <- ggplot(tips, aes(total_bill, tip)) + 
geom_point() 

p 
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Figure 2.1. Minimal coding for a scatterplot of tips data. 

Typically, each layer of a plot uses the same data source to explore different aspects 

of the data set. Multi-layered plots may use multiple data sources where it would 

not be appropriate to combine into a single data source. Added data sources usually 

display contextual information (such as a map) or summary statistics (such as a mean 

or linear model). Figure 2.2 manually adds a linear model line on top of a scatterplot. 

tip_lm <- broom::tidy(lm(tip ~ total_bill, data = tips))$estimate 
(tip_lm_dt <- data.frame( 
intercept = tip_lm[1], 
slope = tip_lm[2] 

)) 
## intercept slope 
## 1 0.9202696 0.1050245 
p + 
geom_abline( 
data = tip_lm_dt, 
aes(slope = slope, intercept = intercept) 

) 
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Figure 2.2. Scatterplot with a linear model line added using a different 
data source. 

2.1.3 Plot creation 

All plot layers do not need to exist at the time of plot object inception. Each layer 

of a ggplot2 plot may be added one by one to the original plot object at different 

times of the code execution. The simplist of plot objects consists of a default data 

set and a default set of aesthetics. 

minimal_plot <- ggplot(data = tips, aes(total_bill, tip)) 
# perform extra calculations 
1 + 1 
## [1] 2 
# plot display delayed until print time 
minimal_plot 
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2.5
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total_bill
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Figure 2.3. Empty ggplot2 plot with no layers displayed after extra 
calculations. 

No layers are displayed as none have been provided. However, the scales have 

been infered from the data aesthetics: X: total_bill and Y : tip . 

2.1.4 Comparison 

Building the plot up layer by layer and storing it as an R object until printed does 

not follow the existing patterns in standard R graphics. In Figure 2.4, the R core 

package graphics [1] displays information in a plot immediately upon function call. 

There is no ability to delay the display of the plot after the initial plot function has 

been called when using the graphics package. 

g <- graphics::plot(tip ~ total_bill, data = tips) 
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Figure 2.4. Stock R scatterplot using the graphics package is printed 
immediately. 

# nothing is stored, as plot is already displayed 
g 
## NULL 

lattice graphics meets in between ggplot2 and graphics, as all layers must 

be supplied at plot creation, but the plot is not displayed until print time. Two 

prior ggplot2 examples, Figure 2.1 and Figure 2.3, both displayed the ability to 

delay the printing of the ggplot2 plot object. lattice graphics can also delay the 

display of the plot object as shown in Figure 2.5. At print time, both lattice and 

ggplot2 convert their internal plot objects to be displayed using the grid package. 

The grid package does not implement full statistical plots, but rather it implements 

a R plotting framework to be used by other packages like ggplot2 and lattice. 

l <- lattice::xyplot(tip ~ total_bill, data = tips) 
# display plot 
l 
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Figure 2.5. lattice scatterplot displaying using the grid framework. 

Finally, after executing the graphics and lattice examples, we can add a point 

layer to the minimal ggplot2 plot example in Figure 2.6. 

# layer added after plot inception 
minimal_points <- minimal_plot + geom_point() 
# displays plot 
minimal_points 
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Figure 2.6. Adding a ‘point’ layer to the base ggplot2 plot object created 
in an earlier code chunk. 
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Modularization of the ggplot2 code allows for customization of each layer added 

to the plot. This leads to a smaller, more consistent interface for each layer function. 

2.2 Facets 

Winston Chang, maintainer of ggplot2, explains facet’ing as “[ploting] subsets of 

data into separate panels” [17]. This is achieved using existing conditioning variables 

in the supplied data set. For each conditioning combination, a panel is produced. 

This technique commonly refered to as small multiples [11]. The same style of plot 

is displayed, but each plot is constructed from an independent subset of the data. 

Typically, only one or two conditioning variables are used, but any number of variables 

may be used when creating small multiples or faceting a ggplot2 plot. 

Facets are useful when looking at the interaction of conditioning variables. Once 

all existing combinations of the conditioning variables have been made, subsets of 

the data are displayed in each of the panels with the strip (panel label) of the panel 

displaying the conditioning variable information. Missing combinations can either 

be dropped or display an empty panel. ggplot2’s wrapping facet will drop missing 

combinations by default, and ggplot2’s faceted grid will display an empty panel for 

missing combinations. In ggplot2, all variables are considered discrete when used as 

conditioning variables. 

2.2.1 Facet wrap 

There are two types of faceting in ggplot2: facet wrap and facet grid. Facet 

wrap displays each panel starting from the top row to the bottom row and left to 

right within each row. The number of rows and / or columns can be specified to ease 

the guessing work made by ggplot2. If no facet row or column counts are supplied, 

ggplot2 uses grDevices [1] algorithm, n2mfrow(n) , to determine a sensible number 

of rows and columns. Figure 2.7 contains no faceting variables, while Figure 2.8 and 

Figure 2.9 condition on one and two variables respectively. 
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p <- ggplot(tips, aes(total_bill, tip)) + geom_point() 
p + 
labs(title = "No Facets") 
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Figure 2.7. tip vs total bill with facets or conditioning variables. 
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p + 
facet_wrap(~ day, labeller = label_both) + 
labs(title = "Facet Wrap (~ day)") 

●

●● ●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●● ●

●

●

●
●

●

●

● ● ●

●

●

●

●●

●

● ●●●●

●

●
●

●

●
●

●

●●

●

●●
●

●

● ●

●
●

●
●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●●●

● ●

●

●

●

●
●

●
●

●

● ●
●●

●

●
●
●

●

● ●
●

●● ●

●

●

●

●

●

●

●●

●●● ●

●

●
●

●

●

● ● ●

●

●

●●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●
●

●
●●

● ●

●

●
●

●

●
●●

●
●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

day: Sat day: Sun

day: Thur day: Fri

10 20 30 40 50 10 20 30 40 50

2.5

5.0

7.5

10.0

2.5

5.0

7.5

10.0

total_bill

tip

Facet Wrap (~ day)

Figure 2.8. tip vs total bill faceted by day. Each panel belongs to a given 
day in the data. 
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p + 
facet_wrap(~ day + time, labeller = label_both) + 
labs(title = "Facet Wrap (~ day + time)") 

●

●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●
●● ●

●

●

●
●

●

●
● ●●

●
●

●

●●

●
● ●●●●

●

●
●

●

●
●

●

●●

●

●●
●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●
●●●

●

●

●

●
●

●
● ●

●

●
●

●

●
●

●●

●

●

●●

●

●
●

●

●

●●●

● ●

●

●

●

●
●

●
●

●

● ●
●●

●

●
●
●

●

● ●
●

●● ●

●

●

●

●

●

●

●●

●●● ●
●

●
●

●

●

●● ●

●

●

●●●

●

●

●

●

●
●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●
●

●
●●

● ●

●

●
●

●

●
●●

●
●

●

●
●

●
●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

day: Fri

time: Dinner

day: Sat

time: Dinner

day: Sun

time: Dinner

day: Thur

time: Lunch

day: Thur

time: Dinner

day: Fri

time: Lunch

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

2.5

5.0

7.5

10.0

2.5

5.0

7.5

10.0

total_bill

tip

Facet Wrap (~ day + time)

Figure 2.9. tip vs total bill faceted by all existing day and time combina-
tions. 

2.2.2 Facet grid 

Facet grid forces a two dimensional, matrix-like layout when faceting a plot. The 

layout involves two sets of conditioning variables: the X conditioning variables and 

the Y conditioning variables. These two sets of conditioning variables pre-determine 

how many rows (Y) and columns (X) are presented. 
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p + 
facet_grid(time ~ day, labeller = label_both) + 
labs(title = "Facet Grid (time ~ day)") 
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Figure 2.10. tip vs total bill faceted in a grid pattern with time repre-
senting each row and day representing each column. 

Figure 2.10 displays time on the rows (Y ) and day on the columns (X). The 

facet_grid formula follows the R stats::lm linear model formula of y ~ x . 

Multiple variables can be used in either the X position or the Y position. This allows 

the user to display a column combination set against another column combination 

set. Using multiple conditioning variables within facet grid in Figure 2.11, both Male 

and Female smokers during Sunday Dinner tip value does not follow a positive linear 

trend as the total bill increases. 
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p + 
geom_smooth(method = lm, se = FALSE) + 
facet_grid(sex + smoker ~ time + day, labeller = label_both) 
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Figure 2.11. tip vs total bill faceted in a grid pattern with sex and smoker 
combinations representing each row and time and day combinations rep-
resenting each column. 

2.3 Plot matrix 

ggduo is continuation of prior work in the GGally R package. In this section, 

I will cover how a pairs plot is different than a small multiple, background on the 

scatterplot matrix and generalized pairs plot matrix, and the ggmatrix object that 

generalized the plot matrix used in ggduo . 
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2.3.1 Pairs plot 

As mentioned earlier in the chapter, ggplot2 is designed to allow plots to be built 

layer by layer and not rendered until a final print command is executed. ggplot2 plot 

objects has some implementation rules it follows when faceting a plot: 

1. Each faceted panel must share the same original X and Y columns. 

2. Each faceted panel’s data must be independent of all other panels in the same 

plot. 

3. Each plot must be created with the same layers. 

Following these rules allows for the implementation of small multiples. Small 

multiples are repetitions of plots with identical layers, but each plot is comprised of 

different data. Small multiples were popularized by Edward Tufte in his 1983 paper 

Visual Display of Quantitative Information [18]. The facet_wrap and facet_grid 

functions will produce a multi-panel output in the form of small multiples. 

A pairs plot, originally referred to as a “draftsman’s plot” [19], violates all three 

principles of a small multiple: 

1. Each panel is comprised of a different X and Y combination. 

2. Each panel shares the same underlying data. 

3. Each panel may be created with different layers that better suited for the data 

types. 

The original scatterplot matrix was only displayed using a scatterplot for each 

sub panel. The Generalized Pairs Plot by Emerson et. al., suggested that a pairs 

plot should not be restricted to just continuous scatterplots. A pairs plot should 

be generalized to allow for discrete data to be displayed as well as continuous data. 

A scatterplot matrix is not appropriate for discrete data. In a discrete data versus 

discrete data plot, all of the data points would be overplotted onto the unique discrete 
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combinations. This overplotting renders the discrete only pairs plot combinations 

uninterpretable. The bottom right quadrant of the pairs plot in Figure 2.12 display 

eight unique points between smoker and day, but do not convey that they really 

contain 244 points. 

graphics::pairs(tips[c("total_bill", "tip", "smoker", "day")]) 
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Figure 2.12. Stock R graphics scatterplot matrix displaying the tips 
data set. 

Emerson et.al. discussed using a generalized pairs plot to handle the mix of vari-

able types by providing different plotting layers for different data types. The general-

ized pairs plot displays the same collection of data using different axes but allows for a 

mix of plotting methods with both continuous and discrete plot axes. This addresses 

the issue of overplotting in discrete columns when displaying data in a scatterplot ma-

trix. Figure 2.13 and Figure 2.14 are two plotting methods to handle the discrete data 

overplotting issue. The gpairs [20] R package is printed using lattice graphics (Fig-

ure 2.13), while the GGally R package prints using ggplot2 graphics (Figure 2.14). 
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gpairs::gpairs(tips[, c("total_bill", "tip", "smoker", "day")]) 
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Figure 2.13. gpairs plot matrix from the gpairs R package displaying 

the tips data set. 
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pm <- ggpairs(tips, c("total_bill", "tip", "smoker", "day")) 
pm 
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Figure 2.14. ggpairs plot matrix from the GGally R package displaying 

the tips data set. 

gpairs::gpairs was originally built to handle the generalization of the pairs plot 

to include discrete data. Unfortunately, this is written using lattice graphics and 

does not utilize the ggplot2 framework. GGally::ggpairs was originally written 

as an independent port of of gpairs to the ggplot2 framework but with portability 

and modularization kept in mind. 

GGally’s ggpairs addressed the portability and modularization by 

1. making each sub plot an independently functioning ggplot2 plot. Figure 2.15 

displays how a sub plot may be retrieved. 

2. allowing each sub plot to be replaced after the initial plot matrix is created. 

Figure 2.16 creates a new plot that is placed inside the matrix in Figure 2.17. 
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3. and not displaying the plot matrix until the print command is executed. 

Similar to earlier ggplot2 examples, the displaying of a GGally plot matrix is 

delayed until print time as in Figure 2.17. 

# retrieve the second row, first column sub plot 
# of the tips plot matrix 
pm[2,1] 
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Figure 2.15. Full ggplot2 plot object from the second row and first column 
of a ggmatrix plot matrix. 
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replacement_plot <- ggally_text( 
"Replacement\nPlot", 
aes(color = "red"), 
size = 6 

) 
replacement_plot 

Replacement
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1.00

0.00 0.25 0.50 0.75 1.00

Figure 2.16. Replacement plot displaying “Replacement Plot” in red. 



29 

# insert the new plot into the second row, first column 
# of the tips plot matrix 
pm[2,1] <- replacement_plot 
# display the updated plot matrix 
pm 
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Figure 2.17. The replacement plot is placed in the second row and first 
column. The updated plot matrix is displayed. 

2.3.2 ggmatrix 

The ggmatrix object is used to handle two main situations: handle mixed plot 

scales and contain the necessary information for displaying a plot matrix. 



30 

Plot scales 

ggplot2 prevents discrete scales from being mixed with continuous scales. Two 

different scales for the same axis is not possible in a multi panel ggplot2 plot as 

ggplot2 is built on the small multiple princple of displaying similar scales in every 

faceted panel. Only one scale type is used per ggmatrix panel. This keeps the original 

‘per panel’ logic intact. 

Produce two related mixed-axes plots in the same graphic could only be achieved 

using the gridExtra [21] or grid [1] R packages before ggmatrix . Both of these 

existing methods behaved like a side by side, fully printed plots, rather than a native 

plot matrix. 

p1 <- pm[1,4] 
p2 <- pm[2,4] 
gridExtra::grid.arrange(p1, p2, ncol = 1) 
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Figure 2.18. Two fully displayed ggplot2 plot objects arranged using 
gridExtra. Duplicate axes and labels are present. The X axis does not 
align as the plots are treated independently. It appears as two independent 
plots in one display. 
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ggmatrix allows for arbitrary scales per panel. When used properly, indepen-

dently produced sub plots deliver common axes within each row and column. This 

displays a cohesive and interpretable plot matrix structure. 

Display information 

The necessary information includes the number of rows and columns, label in-

formation, ggplot2 display theme information, how plot strips should be displayed, 

default plot data, and individual plot information. 

str(pm) 
## 
## Custom str.ggmatrix output: 
## To view original object use 'str(pm, raw = TRUE)' 
## 
## List of 19 
## $ data :'data.frame': 244 obs. of 7 variables: 
## ..$ total_bill: num [1:244] 17 10.3 21 23.7 24.6 ... 
## ..$ tip : num [1:244] 1.01 1.66 3.5 3.31 3.61 4.71 2 3.12 1.96 3.23 ... 
## ..$ sex : Factor w/ 2 levels "Female","Male": 1 2 2 2 1 2 2 2 2 2 ... 
## ..$ smoker : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ... 
## ..$ day : Factor w/ 4 levels "Thur","Fri","Sat",..: 4 4 4 4 4 4 4 4 4 4 ... 
## ..$ time : Factor w/ 2 levels "Lunch","Dinner": 2 2 2 2 2 2 2 2 2 2 ... 
## ..$ size : int [1:244] 2 3 3 2 4 4 2 4 2 2 ... 
## $ plots :List of 16 
## ..$ : chr "PM; aes: c(x = total_bill); fn: {wrap: 'ggally_densityDiag'}; gg: FALSE" 
## ..$ : chr "PM; aes: c(x = tip, y = total_bill); fn: {wrap: 'ggally_cor'}; gg: FALSE" 
## ..$ : chr "PM; aes: c(x = smoker, y = total_bill); fn: {wrap: 'ggally_box_no_facet'}; gg: FALSE" 
## ..$ : chr "PM; aes: c(x = day, y = total_bill); fn: {wrap: 'ggally_box_no_facet'}; gg: FALSE" 
## ..$ : chr "PM; ggplot2 object; mapping: c()" 
## ..$ : chr "PM; aes: c(x = tip); fn: {wrap: 'ggally_densityDiag'}; gg: FALSE" 
## ..$ : chr "PM; aes: c(x = smoker, y = tip); fn: {wrap: 'ggally_box_no_facet'}; gg: FALSE" 
## ..$ : chr "PM; aes: c(x = day, y = tip); fn: {wrap: 'ggally_box_no_facet'}; gg: FALSE" 
## ..$ : chr "PM; aes: c(x = total_bill, y = smoker); fn: {wrap: 'ggally_facethist'}; gg: FALSE" 
## ..$ : chr "PM; aes: c(x = tip, y = smoker); fn: {wrap: 'ggally_facethist'}; gg: FALSE" 
## ..$ : chr "PM; aes: c(x = smoker); fn: {wrap: 'ggally_barDiag'}; gg: FALSE" 
## ..$ : chr "PM; aes: c(x = day, y = smoker); fn: {wrap: 'ggally_facetbar'}; gg: FALSE" 
## ..$ : chr "PM; aes: c(x = total_bill, y = day); fn: {wrap: 'ggally_facethist'}; gg: FALSE" 
## ..$ : chr "PM; aes: c(x = tip, y = day); fn: {wrap: 'ggally_facethist'}; gg: FALSE" 
## ..$ : chr "PM; aes: c(x = smoker, y = day); fn: {wrap: 'ggally_facetbar'}; gg: FALSE" 
## ..$ : chr "PM; aes: c(x = day); fn: {wrap: 'ggally_barDiag'}; gg: FALSE" 
## $ title : NULL 
## $ xlab : NULL 
## $ ylab : NULL 
## $ showStrips : NULL 
## $ xAxisLabels : chr [1:4] "total_bill" "tip" "smoker" "day" 
## $ yAxisLabels : chr [1:4] "total_bill" "tip" "smoker" "day" 
## $ showXAxisPlotLabels: logi TRUE 
## $ showYAxisPlotLabels: logi TRUE 
## $ labeller : chr "label_value" 
## $ switch : NULL 
## $ xProportions : NULL 
## $ yProportions : NULL 
## $ legend : NULL 
## $ gg : NULL 
## $ nrow : int 4 
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## $ ncol : int 4 
## $ byrow : logi TRUE 
## - attr(*, "_class")= chr [1:2] "gg" "ggmatrix" 

For memory optimization, each plot is stored as a function that will produce the 

ggplot2 plot at print time. To do so, the data set provided at a ggmatrix inception 

sets a default data set to be used at print time. If a new sub plot is stored after 

inception, the fully defined ggplot2 object is stored directly. 

Similar to ggplot2’s function ggplot_gtable , ggmatrix_gtable produces dis-

play only information that the grid graphics framework uses to display the plot. To 

retrieve all necessary display information, ggmatrix_gtable executes ggplot_gtable 

for each sub plot individually, then extracts the required plotting display information 

(plotting area and possibly the panel strips) from each sub plot. These sub plot panels 

are then placed inside the final plot matrix. 

The resulting plot matrix is displayed with the exact same styling as ggplot2’s 

facet_grid . This returns all the display theme styling and display constraints 

back onto ggplot2. By displaying the ggmatrix as a facet_grid in ggplot2, 

titles, legends, and other common plot artifacts are able to be natively displayed. 

Figure 2.19 displays a legend on the right side of the plot matrix using the legend 

from the sub plot at position (3, 1). Figure 2.20 uses the ggplot2 theme functionality 

to move the legend to beneath the plot matrix panels. 
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# color the plots according to smoker 
# display legend from the 3rd row, 1st column plot 
pm <- ggpairs( 
tips, c("total_bill", "tip", "smoker", "day"), 
mapping = aes(color = smoker), 
legend = c(3,1) 

) 
pm 
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Figure 2.19. ggmatrix displaying a color legend on the right (default) 
side of the plot matrix. 
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# display legend on bottom using ggplot2 theme 
pm + ggplot2::theme(legend.position = "bottom") 
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Figure 2.20. ggmatrix moving the legend to the bottom using ggplot2’s 

theme function. 

2.4 ggduo : Plot matrix for two-grouped data 

A pairs plot is defined as displaying every column of the data against every other 

column in the data. This is effective in full data exploration. If a data set has columns 

A, B, and C, 32 = 9 combinations produced in a corresponding pairs plot: A : A, 

A : B, A : C, B : A, B : B, etc.. A pairs plot matrix can be generalized one step 

further by pairing two column groups against each other. 

For the example just described, column set {A, B, C} is paired against the column 

set {A, B, C}. As expected, this produces a pairs plot. However, this generalization 

allows us to produce a plot matrix of the combinations of {A, B, C} and {D, E}, or 
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any combination of two column sets. Using the same underlying ggmatrix function-

ality, ggduo produces plot combinations of two-grouped data. 

As a quick example, let us look at the Australian students’ fifth grade Math, 

Reading, and Science scores against their gender and how many hours of homework 

each student completed each week in Figure 2.21. 

ggduo( 
australia_PISA2012, 
c("gender", "homework"), 
c("PV5MATH", "PV5READ", "PV5SCIE") 

) 
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5thFigure 2.21. grade Australian student scholasitc scores vs their sex 
and hours of weekly homework. 

Comparing these two groups if we are interested in knowing if there is any differ-

ence in any score output given a child’s sex and homework time. A ggpairs plot 

would create within and identity combinations as well as the between combinations 

of the ggduo plot, which is undesired in this situation. 
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2.4.1 Column types 

ggduo inspects and displays the data columns according to their variable type: 

continuous or discrete. There are three plot type groups that can be made from these 

two options: 

• continuous vs. continuous. A scatterplot is a continuous vs. continuous plot. 

• continuous vs. discrete. A box plot or grouped box plots is a continuous vs. 

discrete plot. 

• and discrete vs. discrete. A ratio plot, or a plot that can display the tips ’s 

smoker vs. day (eight combinations of 244 records) is a discrete vs. discrete 

plot. 

ggduo ’s default plotting behavior for continuous vs. continuous, or ‘continuous 

plot’, is to produce a scatterplot with a loess smooth curve displayed on top of the 

points. The default plotting behavior for discrete vs. discrete, or ‘discrete plot’, is 

to summarize the data and display it as a ratio plot. A ratio plot displays rectangles 

whose size is proportional to the counts of the value combination in both the X and 

Y direction. 

The third group, continuous vs. discrete, is refered to as a ‘combination plot’. 

ggduo makes a distinction between the two possible combination plots: continu-

ous vs. discrete (vertical combination plot) and discrete vs. continuous (horizontal 

combination plot). By default, ggduo displays grouped histograms for a horizontal 

combination plot and grouped box plots for a vertical combination plot as in Fig-

ure 2.23. ggpairs is able to handle the combination plot differently for the upper 

and lower triangle using the the upper and lower arguments as in Figure 2.22. 

Unlike ggpairs , a distiction between a horizontal and vertical combination plot is 

made as there are no upper and lower triangle plot matrix sections in a ggduo plot 

as in Figure 2.24. 
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ggpairs( 
tips, 
c("total_bill", "smoker", "day", "tip"), 
upper = list(combo = "denstrip"), 
lower = list(combo = "facetdensity") 

) 
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Figure 2.22. Altering the ggpairs upper and lower combo plot types. 
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ggduo( 
tips, 
c("total_bill", "smoker", "day"), 
c("tip", "time") 

) 
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Figure 2.23. two-grouped plot matrix using ggduo with no upper or lower 
triangle areas. 
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ggduo( 
tips, 
c("total_bill", "smoker", "day"), 
c("tip", "time"), 
types = list( 
comboVertical = "denstrip", 
comboHorizontal = "facetdensity" 

) 
) 
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Figure 2.24. Updating the combination types in a ggduo plot matrix. 

2.4.2 User defined functions 

There are many plotting functions are provided by the GGally package, how-

ever they are not all encompassing. The user may supply their own plotting func-

tions for each panel type. This allows for complete customization of every panel. 

For example, a violin plot is a combination style plot that is not included by de-

fault. A user may create their own function that uses the function call API of 

function(data, mapping, ...) { ... } . A sample custom function example is 

provided below in Figure 2.25. 
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my_violin <- function(data, mapping, ...) {
ggplot(data = data, mapping = mapping) + 
geom_violin(...) 

}
ggduo( 
tips, 
c("total_bill", "smoker", "day"), 
c("tip", "time"), 
types = list( 
comboVertical = my_violin 

) 
) 
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Figure 2.25. Use a custom function to display a plot within a ggduo plot 
matrix. 

2.5 ggduo in practice 

2.5.1 Canonical correlation analysis 

Canonical correlation analysis (CCA) is a method to analyize the correlation be-

tween two matrices [22]. CCA can be directly displayed with ggduo . Before ggduo , 

canonical correlation analysis did not have a cohesive plotting mechanism to visu-

ally display the associations of two sets of mixed type variables. Examples used 
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ggpairs to display all pairs of columns when only a subset of combinations are 

needed. ggpairs is a well suited candidate for within correlation for the explana-

tory variables and the response variables. Whereas ggduo can be used to check the 

correlation between the explanatory and response variables. 

Figure 2.26 is an altered example from the UCLA Intstitute for Digital Research 

and Education [23]. The website provided an example using ggpairs to analyse the 

within corrleation. Continuing their example, we can use ggduo to check the between 

correlation. The psychademic data consists of 600 records of three psychological 

variables, four academic variables, and each student’s gender. The psychological 

variables are treated as the response while the academic variables and gender are 

treated as explantory variables. Figure 2.26 uses ggduo to check the correlation 

between the two sets of columns. 

ggduo( 
psychademic, 
c("motivation", "locus_of_control", "self_concept"), 
c("read", "write", "math", "science", "sex"), 
showStrips = FALSE, 
types = list(continuous = "smooth_lm") 

) + 
labs( 
title = "Between Academic and Psychological Variable Correlation Analysis", 
x = "Psychological", 
y = "Academic" 

) 
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Figure 2.26. ggduo plot matrix displaying academic varaibles against 
psychological varaibles. Continuous vs. continuous plots are displayed 
with a linear model. 

2.5.2 Multiple time series analysis 

A multiple time series plot displays the time axis on the X axis with multiple 

columns on the Y axis. The stats [1] package contains the ts.plot function that 

allows for multiple time series to be printed in a single panel sharing the same axes. 

Displaying the data on the same vertical axis does not make sense for most situations 

as is shown in Figure 2.27. This is showcased when looking at the first 6 months of 

half-hourly recorded elctricity demand for Victoria, Australia, in 2014. The electricity 

demand and temperature should not be displayed on the same scales, as they do 

not have similar units. Including the W orkDay boolean value does not add to the 

understanding of the data in the plot. 



43 

stats::ts.plot(fpp2::elecdemand) 

Time

2014.0 2014.2 2014.4 2014.6 2014.8 2015.0

0
10

20
30

40

Figure 2.27. Stock stats R package time series plot. All variables are 
displayed on the same axis. 

By splitting the multiple time series plot along the Y axis, we can display multiple 

panels with different Y axes that share the same X axis using ggduo . This can be 

done with the function ggts which wraps to ggduo . The X column label is turned 

off by default and has an X label of ‘time’. An extra column of the counts of above 

or below median demand has been added to display mixed Y axes in Figure 2.28. 

ggts( 
elec_median, 
mapping = aes(color = WorkDay), 
columnsX = "Time", 
columnsY = c("Demand", "Temperature", "HighUsage"), 
columnLabelsY = c( 
"Demand", 
"Temperature", 
"Demand Counts\nAbove Median | Below Median" 

), 
legend = c(3,1), 
showStrips = FALSE, 
types = list( 
comboHorizontal = wrap("facethist", binwidth = 1), 
continuous = wrap("smooth_loess", alpha = 0.1) 
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Figure 2.28. Same elec_median data, but the data is displayed using 
the ggts function which calls ggduo . 

2.5.3 Multiple regression diagnostics 

With the basis of ggduo displaying each row of the data in every panel with 

different functions, ggduo quickly extends to model diagnostics. There are many 

readily available diagnostics that can be calculated for each row of explanatory data. 

By default, ggnostic (a function that displays a ggduo plot matrix) looks at the 

residuals, leave one out sigma value, leverage points, and Cook’s Distance against 

all model predictor variables. Each piece of diagnostic information is plotted against 

every explanatory variables used in the model. 
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Using the flea data set from the GGally package, we fit a model to determine the 

size of the flea’s head. Using stats::step to determine a good fitting model, the 

default model diagnostics are displayed against species, tars1, tars2, and aede. The 

model diagnostics are displayed in Figure 2.29 below. Residual panels contain dashed 

95% confidence interval lines and a solid line at the expect 0 value. Leave one out 

sigma value panels display a solid line for the current model’s sigma value. Leverage 

point (diagonal of the hat matrix) panels are centered around the solid, expected 

line at p/n and have a dashed, significance line at 2 ∗ p/n [24]. Finally, the Cook’s 

distance panel has a grey dashed, significance line at Fp,n−p(0.5) [24]. Each solid line 

corresponds to the expected value and each dashed line corresponds to a signifigance 

cuttoff value. The asterisks in the X axis strips correspond to the significance of an 

anova F test. 
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flea_model <- step(lm(head ~ ., data = flea), trace = FALSE) 
ggnostic(flea_model) 
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Figure 2.29. Linear model diagnostics for a model predicting the maximal 
head with in millimeters. 

The model diagnostics can be extended further by coloring and grouping according 

to species and displaying the fitted values as in Figure 2.30. 



47 

ggnostic( 
flea_model, 
mapping = aes(color = species), 
columnsY = c( 
"head", ".fitted", ".se.fit", ".resid", ".std.resid", ".hat", ".cooksd" 

), 
continuous = list( 
default = ggally_smooth_lm 

), 
combo = list( 
default = wrap(ggally_box_no_facet, outlier.shape = 21), 
.fitted = wrap(ggally_box_no_facet, outlier.shape = 21), 
.se.fit = wrap(ggally_nostic_se_fit, outlier.shape = 21), 
.resid = wrap(ggally_nostic_resid, outlier.shape = 21), 
.std.resid = wrap(ggally_nostic_std_resid, outlier.shape = 21), 
.hat = wrap(ggally_nostic_hat, outlier.shape = 21), 
.cooksd = wrap(ggally_nostic_cooksd, outlier.shape = 21) 

) 
) 
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2.6 Summary 

ggduo generalizes the two group plot matrix by allowing multiple plot types 

within each panel of the plot matrix. Similar to ggplot2, ggduo is programati-

cally extended with the ggts and ggnostic functions to produce plot matrices for 

different contexts. ggnostic showcases ggduo ’s ability to accept user defined func-

tions to display data for each type of scale combination: continuous, discrete, and 

combination. ggduo is built upon the modular ggmatrix allowing sub plots to be 

retrieved and replaced on command. This modularity and ability to display complex 

plots with ggduo enables users to explore the same data within different sub plots 

in a cohesive matrix display. 
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3. AUTOCOGS: METRICS ENABLING DETAILED 

INTERACTIVE DATA VISUALIZATION 

3.1 trelliscopejs 

trelliscopejs is an R package used to visualize data with many conditioning 

combinations. trelliscopejs conditions on columns within the data set and dis-

plays a plot, image, or HTML object for each plot in an independent display panel. 

However, trelliscopejsis built to more panels from conditioning combinations than 

current plotting architectures. 

trelliscopejs is built to handle more panels than the current plotting frame-

works in R. ggplot2’s facet_wrap can feasibly hold 10s - 100s of displays in one 

plot. Since ggplot2 does not paginate (print over multiple pages), the size of the com-

puter screen limits how many panels may be displayed. A core feautre of lattice is 

its ability to paginate panels of a plot. This allows the number of panels to scale 

100-1000 times. lattice outputs can be saved to PDF and manually inspected page 

by page. This method is efficient in detecting small visual differences between plots 

due to the strucutre of small multiples. However, there is a limit to how many plots 

a human can manually ingest. If 1000 pages were visually inspected at a rate of two 

pages per second, it would take over 8 minutes to manually flip through each page. 

Pagination does not scale with large data when there are millions of pages to flip 

through. 

3.1.1 Data size 

“Big Data” is a great buzzword, but a poor definition. It is commonly used in 

different contexts with different meanings. For this chapter, I will define the usage 
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of different sizes of data in this section. Will define three main sizes of data: Small 

Data, Medium Data, and Large Data. 

Small Data (Memory Data) consists of in memory data only. This includes 

data.frames in R and Excel files. Small data excels at very fast response time 

when retrieving information. The major disadvantage to Small Data is the size is 

limited to the amount of memory on a machine. data.frames can only get as big as 

memory can handle. Current machines configurations allow for hundreds of gigabytes 

of memory. 

Medium Data (Disk Data) extends the capabilities of the memory to the storage 

capacity of the computer. Data is read to and from disk using memory as a buffer. 

Hard drives today can store multiple terabytes of information. However, retrieving 

data is much slower as data must be read into memory to be processed. The gain in 

size comes at a cost of speed. 

Finally, Large Data (Cluster Data) is data that is spread across multiple machines. 

Many machines may be used in a cluster to house Large Data. Large data is the 

slowest in response time, as data is communicated between machines for calculations. 

How the data is stored on each machine is up to the data base architecture. Typically 

each machine stores Medium Data locally, but functions as a cohesive unit globally. 

Each class of data balances speed and size to achieve the final goal. These defi-

nitions allow for exponential advancement in computing power according to Moore’s 

Law [25] as time advances. 

3.1.2 Computation 

The split-apply-combine [26] approach for data computation is applicable for all 

three types of data. As the name states, there are three main steps: split the data, 

apply a function to the data subsets, and combine the function results. These three 

steps may be scaled as necessary given computational powers. 
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1. Split. Data is conditioned on some identifying, or conditioning, columns. This 

can include the row number (each row is treated uniquely) or may include many 

existing columns in the data set. Like faceting in ggplot2, all conditioning 

values are considered discrete values. Once the conditioning columns have been 

selected, the data is split into groups where the conditioning values match. 

2. Apply. Once the data frame has been split into independent subsets, a function 

is applied to each subset. The same function will be applied to all subsets and 

a similar result will be returned from each functino execution. 

3. Combine. With similarly shaped results from each subset, the results will be 

combined into a final result for further analysis. The uniformity in the result 

shape makes result combination easy to achieve. 

The R package plyr [26] implemented the split-apply-combine approach for many 

kinds of data shapes: array , list , vector , and data.frame . dplyr [27] has 

many specific routines to interact with a data.frame . Examples in this chapter will 

be using the dplyr package functions. 

library(dplyr) 
library(gapminder) 
gapminder 
## # A tibble: 1,704 x 6 
## country continent year lifeExp pop gdpPercap 
## <fctr> <fctr> <int> <dbl> <int> <dbl> 
## 1 Afghanistan Asia 1952 28.801 8425333 779.4453 
## 2 Afghanistan Asia 1957 30.332 9240934 820.8530 
## 3 Afghanistan Asia 1962 31.997 10267083 853.1007 
## 4 Afghanistan Asia 1967 34.020 11537966 836.1971 
## 5 Afghanistan Asia 1972 36.088 13079460 739.9811 
## 6 Afghanistan Asia 1977 38.438 14880372 786.1134 
## 7 Afghanistan Asia 1982 39.854 12881816 978.0114 
## 8 Afghanistan Asia 1987 40.822 13867957 852.3959 
## 9 Afghanistan Asia 1992 41.674 16317921 649.3414 
## 10 Afghanistan Asia 1997 41.763 22227415 635.3414 
## # ... with 1,694 more rows 
gapminder %>% 
# group by unique country and continent combinations 
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group_by(country, continent) %>% 
# calculate the maximum lifeExp for each combination 
summarise( 
max_lifeExp = max(lifeExp) 

) %>% 
# print the data.frame 
print() %>% 
# display a histogram plot of the maximum life expectancies 
ggplot(aes(max_lifeExp, fill = continent)) + 
geom_histogram(binwidth = 1) 

## # A tibble: 142 x 3 
## # Groups: country [?] 
## country continent max_lifeExp 
## <fctr> <fctr> <dbl> 
## 1 Afghanistan Asia 43.828 
## 2 Albania Europe 76.423 
## 3 Algeria Africa 72.301 
## 4 Angola Africa 42.731 
## 5 Argentina Americas 75.320 
## 6 Australia Oceania 81.235 
## 7 Austria Europe 79.829 
## 8 Bahrain Asia 75.635 
## 9 Bangladesh Asia 64.062 
## 10 Belgium Europe 79.441 
## # ... with 132 more rows 
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Figure 3.1. Each country’s maximum life expectancy value displayed as a 
histogram with each color representing a continent. 
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The split-apply-combine paradigm applies to each data size type. 

1. Small, In Memory Data: Can use the plyr package for computation. 

2. Medium, On Disk Data: The R package dplyr can be used to connect to 

a MySQL database stored on disk. Results are executed within the MySQL 

environment, but returned to the R execution environment. Many other data 

bases can be connected to R to handle medium sized data. 

3. Large, Distributed Data: The R package Rhipe [28] or sparklyr [29] can be 

used to execute R commands across multiple compute nodes in a cluster. 

Each package implements the split-apply-combine approach to data computation 

using computational tools built for each scenario. Small data is processed using R. 

Medium data is processed in a database that is built to handle information larger 

than memory can hold and results are returned to R. Finally, Large data is executed 

in the distributed environment and results are stored in the distributed environment. 

If memory allows, distributed results may be returned to R. 

3.1.3 Summary statistics 

The gapminder data set is an “Excerpt of the Gapminder data on life expectancy, 

GDP per capita, and population by country” [30]. The 142 countries have data from 

1952 to 2007. Figure 3.1 finds the maximum life expectancy for the 142 countries. 

They are then displayed in a plot colored according to the country’s continent. A 

lot of information may be gleaned from the maximum life expectancy summary plot 

in Figure 3.1, but a summary plot does not tell the full story of each country’s life 

expectancy over time. 

gapminder %>% 
filter(country %in% c("Japan", "Switzerland")) %>% 
ggplot(aes(year, lifeExp)) + geom_line() + facet_wrap(~ country) + 
ylim(20, 85) + labs(title = "Two countries with a high life expectancy") 
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Figure 3.2. Both higher life expectancy countries display linear model 
trends over time. 

gapminder %>% 
filter(country %in% c("Afghanistan", "Rwanda")) %>% 
ggplot(aes(year, lifeExp)) + geom_line() + facet_wrap(~ country) + 
ylim(20, 85) + labs(title = "Two countries with lower life expectancy") 
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Two countries with lower life expectancy

Figure 3.3. Lower life expectancy countries may not always display linear 
model trends over time. 

Figure 3.2 displays two longer living countries, Japan and Switzerland. Japan 

has a higher maximum life expectancy, but Switzerland had a higher starting life 

expectancy. Figure 3.3 displays two lower life expectancy countries, Afghanistan and 

Rwanda. Afghanistan has a lower maximum life expectancy, but steadily increases 
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over time. Rwanda’s life expectancy steadily increased until the 1980’s when it dips 

and recoveres by the 2000’s. 

Summary statistics are great in interpreting information using less data. How-

ever, summary statistics, by their nature, do not convey the full data story and are 

complimented by data visualization. 

trelliscopejs allows users to plot full plot detail while allowing users to change 

how many panels are displayed on the screen at one time, sort the panel ordering, 

and filter to a smaller subset of panels. trelliscopejs achieves these actions by 

obtaining a plot for every conditioning combination and suplimentary metrics for 

each plot. 

Using the gapminder data set in Figure ??, life expectancy is explored over time 

with the supplimentary metrics of minimum and maximum life expectancy. 

gapminder %>% 
group_by(country, continent) %>% 
# condense the data 
tidyr::nest() %>% 
print() -> 

gapminder_condensed 
## # A tibble: 142 x 3 
## country continent data 
## <fctr> <fctr> <list> 
## 1 Afghanistan Asia <tibble [12 x 4]> 
## 2 Albania Europe <tibble [12 x 4]> 
## 3 Algeria Africa <tibble [12 x 4]> 
## 4 Angola Africa <tibble [12 x 4]> 
## 5 Argentina Americas <tibble [12 x 4]> 
## 6 Australia Oceania <tibble [12 x 4]> 
## 7 Austria Europe <tibble [12 x 4]> 
## 8 Bahrain Asia <tibble [12 x 4]> 
## 9 Bangladesh Asia <tibble [12 x 4]> 
## 10 Belgium Europe <tibble [12 x 4]> 
## # ... with 132 more rows 
gapminder_condensed %>% 
# add metrics and plots for every conditioning combination 
mutate( 
min_lifeExp = purrr::map_dbl(data, function(dt) min(dt$lifeExp)), 
max_lifeExp = purrr::map_dbl(data, function(dt) max(dt$lifeExp)), 
panel = trelliscopejs::map_plot(data, function(dt) {
# display a line plot of X:year, Y:life expectancy 
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ggplot(dt, aes(year, lifeExp)) + geom_line() + ylim(20, 85) 
}) 

) %>% 
# remove the condensed data 
select(-data) %>% 
print() -> 

gap_trellis 
## # A tibble: 142 x 5 
## country continent min_lifeExp max_lifeExp panel 
## <fctr> <fctr> <dbl> <dbl> <list> 
## 1 Afghanistan Asia 28.801 43.828 <S3: gg> 
## 2 Albania Europe 55.230 76.423 <S3: gg> 
## 3 Algeria Africa 43.077 72.301 <S3: gg> 
## 4 Angola Africa 30.015 42.731 <S3: gg> 
## 5 Argentina Americas 62.485 75.320 <S3: gg> 
## 6 Australia Oceania 69.120 81.235 <S3: gg> 
## 7 Austria Europe 66.800 79.829 <S3: gg> 
## 8 Bahrain Asia 50.939 75.635 <S3: gg> 
## 9 Bangladesh Asia 37.484 64.062 <S3: gg> 
## 10 Belgium Europe 68.000 79.441 <S3: gg> 
## # ... with 132 more rows 



57 

# display the plots and metrics in trelliscopejs 
gap_trellis %>% trelljs("gapminder") 
## Error in file(con, "r"): cannot open the connection 

The trelliscopejs HTML widget in Figure ?? displays three rows and five 

columns of panels. There are 142 panels in total, making 10 pages of panels in total. 

While this example does not display millions of panels, it does convey the capabilities 

of the HTML widget. Icons on the left, as in Figure 3.1.3, open foldout displays for 

panel layout control, turning panel labels on and off, filtering panels using metrics, 

and panel sorting. 

Figure 3.4. The sidebar on the left side of a trelliscopejs HTML widget 
can be opened for panel layout control, displaying panel labels, filtering 
panels, and sorting panels. 

3.2 Cognostics 

Displaying panels alone has already been solved with ggplot2 and lattice. Scal-

ing panels beyond lattice’s limits is still limited without the use of sorting and 

filtering the panels. trelliscopejs’s power is leveraging subset metrics to organize 

the panels. These subset metrics are called cognostics [12]. Cognostics are univariate 

statistics calculated for every independent subset of the conditioned data. 

Cognostics can be simple summary statistics such as mean or median , or can be 

meta data information such as a URL or census information for a conditioned county. 
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Tukey and Tukey first proposed calculating univariate metrics for scatterplots called 

scagnostics [12] as a way to describe a scatterplot. Wilkinson et. al. [31] implemented 

Tukeys’ scagnostic definitions in the R package scagnostics [32]. Scagnostics can be 

repurposed as cognostics when applied to every panel containing a scatterplot. These 

cognostic groupings may then be shown, filtered, and sorted accross the different 

subset panels. 

In trelliscopejs, cognostics are displayed as two types of metrics: continuous 

or discrete. Continuous valued cognostics are filtered using open or closed ranges. 

Figure 3.2 shows an open range using the gapminder country panels that contain a 

maximum life expectancy value less than or equal to 70 years of age. A closed range 

example would have both a from and a to in the selection range, i.e. within 50 to 

65 years of age. Currently, trelliscopejs does not support more than one range 

selection for each cognostic variable. 

Figure 3.5. A cropped view of trelliscopejs filtering on countries whose 
maximum life expectancy is lower than 70 years old. 

With trelliscopejs, discrete values are handled using regular expressions or 

by manually selecting values. When using regular expressions, matching values are 

displayed immediately. Figure 3.2 displays the immedate results of regular expression 

on a continent. The immediate feedback confirms whether the regular expression was 

successful or needs to be updated. 
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Figure 3.6. A cropped view of trelliscopejs filtering on continent who 
matches the regular expression “as”. 

Multiple filters are a part of the data analysis process and are embraced in 

trelliscopejs. All of the cognostic filters are applied as a collective, logical and. 

3.3 Automatic cognostics for data visualization 

From a data plotting perspective, we should be able to utilize what is already 

being displayed in the plot to sort and filter the panels of a trelliscopejs widget. 

This plot information is not readily available as it is calculated within each plotting 

mechanism. 

Using the prior trelliscopejs example in Figure ??, the minimum and maximum 

values for each country’s life expectancy were calculated manually. While the prior 

example only retrieved the minimum and maximum life expectancy values for each 

panel, the median and mean values may be of interest as well. These statistics are 

only looking at the Y variable. There are many more statistics involving both the Y 

variable and the X variable. In Figure ??, the X and Y covariance and correlation 

are added. A linear model ( geom_smooth(method = "lm") ) is also added to visually 

detect linear trend deviations. 
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gapminder_condensed %>% 
mutate( 
# add metrics 
min_lifeExp = purrr::map_dbl(data, function(dt) min(dt$lifeExp)), 
mean_lifeExp = purrr::map_dbl(data, function(dt) mean(dt$lifeExp)), 
median_lifeExp = purrr::map_dbl(data, function(dt) median(dt$lifeExp)), 
max_lifeExp = purrr::map_dbl(data, function(dt) max(dt$lifeExp)), 
cov = purrr::map_dbl(data, function(dt) cov(dt$year, dt$lifeExp)), 
corr = purrr::map_dbl(data, function(dt) cor(dt$year, dt$lifeExp)), 

# add panel 
panel = trelliscopejs::map_plot(data, function(dt) {
# display a line plot of X:year, Y:life expectancy 
ggplot(dt, aes(year, lifeExp)) + 
geom_smooth(method = "lm") + # add a linear model 
geom_line() + 
ylim(20, 85) 

}) 
) %>% 
# remove the condensed data 
select(-data) %>% 
print() -> 

gap_trellis_plus 
## # A tibble: 142 x 9 
## country continent min_lifeExp mean_lifeExp median_lifeExp 
## <fctr> <fctr> <dbl> <dbl> <dbl> 
## 1 Afghanistan Asia 28.801 37.47883 39.1460 
## 2 Albania Europe 55.230 68.43292 69.6750 
## 3 Algeria Africa 43.077 59.03017 59.6910 
## 4 Angola Africa 30.015 37.88350 39.6945 
## 5 Argentina Americas 62.485 69.06042 69.2115 
## 6 Australia Oceania 69.120 74.66292 74.1150 
## 7 Austria Europe 66.800 73.10325 72.6750 
## 8 Bahrain Asia 50.939 65.60567 67.3225 
## 9 Bangladesh Asia 37.484 49.83408 48.4660 
## 10 Belgium Europe 68.000 73.64175 73.3650 
## # ... with 132 more rows, and 4 more variables: max_lifeExp <dbl>, 
## # cov <dbl>, corr <dbl>, panel <list> 
gap_trellis_plus %>% trelljs("gapminder_plus") 
## Error in file(con, "r"): cannot open the connection 

The amount of work to retrieve information that can be readily seen or calculated 

from the visual display quickly increases. At first, there were two values used. Now 

there are six values used to explain just the Y data and the {X, Y } combination. None 

of the added metrics explain the linear model added to each panel. As the amount 
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of layers increase, the number of cognostics needed to explain the plot layer will also 

increase. Given each plotting panel already contains many statistical cognostics, each 

panel should be leveraged to generate cognostics automatically. 

3.3.1 Linear model example 

Using the panel column only, we will automatically derive many cognostics from 

each panel using the autocogs R package. 

gapminder %>% 
group_by(country, continent) %>% 
tidyr::nest() %>% 
mutate( 
panel = trelliscopejs::map_plot(data, function(dt) {
# display a line plot of X:year, Y:life expectancy 
ggplot(dt, aes(year, lifeExp)) + 
geom_smooth(method = "lm") + 
geom_line() + 
ylim(20, 85) 

}) 
) %>% 
select(-data) %>% # remove the condensed data 
print() -> 

gap_panel 
## # A tibble: 142 x 3 
## country continent panel 
## <fctr> <fctr> <list> 
## 1 Afghanistan Asia <S3: gg> 
## 2 Albania Europe <S3: gg> 
## 3 Algeria Africa <S3: gg> 
## 4 Angola Africa <S3: gg> 
## 5 Argentina Americas <S3: gg> 
## 6 Australia Oceania <S3: gg> 
## 7 Austria Europe <S3: gg> 
## 8 Bahrain Asia <S3: gg> 
## 9 Bangladesh Asia <S3: gg> 
## 10 Belgium Europe <S3: gg> 
## # ... with 132 more rows 
autocogs::add_panel_cogs(gap_panel) 
## # A tibble: 142 x 9 
## country continent panel `_smooth` `_lm` 
## <fctr> <fctr> <list> <list> <list> 
## 1 Afghanistan Asia <S3: gg> <tibble [1 x 3]> <tibble [1 x 19]> 
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## 2 Albania Europe <S3: gg> <tibble [1 x 3]> <tibble [1 x 19]> 
## 3 Algeria Africa <S3: gg> <tibble [1 x 3]> <tibble [1 x 19]> 
## 4 Angola Africa <S3: gg> <tibble [1 x 3]> <tibble [1 x 19]> 
## 5 Argentina Americas <S3: gg> <tibble [1 x 3]> <tibble [1 x 19]> 
## 6 Australia Oceania <S3: gg> <tibble [1 x 3]> <tibble [1 x 19]> 
## 7 Austria Europe <S3: gg> <tibble [1 x 3]> <tibble [1 x 19]> 
## 8 Bahrain Asia <S3: gg> <tibble [1 x 3]> <tibble [1 x 19]> 
## 9 Bangladesh Asia <S3: gg> <tibble [1 x 3]> <tibble [1 x 19]> 
## 10 Belgium Europe <S3: gg> <tibble [1 x 3]> <tibble [1 x 19]> 
## # ... with 132 more rows, and 4 more variables: `_x` <list>, 
## # `_y` <list>, `_bivar` <list>, `_n` <list> 

For each panel, 2 + 19 + 5 + 5 + 2 + 5 = 38 cognostics were auto generated 

to aid in exploration of the panels. 

• Ten of the cognostics calculate information individual column information. ( _x , 

_y ) 

• Two cognostics calculate continuous bivariate metrics. ( _bivar ) 

• Five cognostics calculate metrics involving the number of points and their avail-

bility. ( _n ) 

• Two cognostics calculate metrics for the smooth line added to each panel. 

( _smooth ) 

• Nineteen cognostics are calculated for the linear model applied to the panel. 

These metrics will be dicussed in greater detail later. ( _lm ) 

Each univariate grouping is labeled to provide context as to what is calculated 

and which variables were used. 

3.3.2 Framework 

autocogs package is built to provide a consistent framework for calculating cog-

nostics independent of the class of the plotting object supplied. Ideally, it should 

work for all major layer-based visualization packages (such as ggplot2, rbokeh [8], 
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and plotly [9]) and produce the same result for similar plot displayed in the dif-

ferent plotting packages. Currently, only ggplot2 hooks have been installed, but 

rbokeh and plotly can be added using the publically available functions in the 

autocogs package. 

By definition, each subset panel within a trelliscopejs widget will contain the 

same plotting layers, but with different data. Addressing each layer will produce 

the same group of output cognostics but with different values. There is a “one to 

many” mapping from plot to plot layers and a “one to many” mapping from each 

plot layer to the cognostic groups. The same final cognostics may be produced from 

many different layers as shown in Figure 3.3.2. 

Figure 3.7. Theoretical framework of how multiple cognostic groups can 
be connected to multiple plot layers. 
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Once all the cognostics have been produced for a given plot, the cognostic groups 

are reduced to keep only the unique cognostic name and value combinations. Using 

Figure 3.3.2, the cognostic groups {A, B, ..., M} will only be returned once. 

3.3.3 Cognostic groups 

Each set of cognostics is returned in a cognostic group. This is similar to scagnos-

tics. All scagnostics pertain to scatterplots. Likewise, the number of non-NA X, 

non-NA Y , and non-NA X and Y points pertain to non-NA counts of the displayed 

data. These groups can be extended to each type of statistical display: box plot, 

histogram, linear model, etc. 

The cognostics produced in the autocogs gapminder linear model example in 

subsection 3.3.1 were: 

• _smooth : Two cognostics pertaining to a “smooth” line being added to the 

panel. 

• _lm : Nineteen cognostics pertaining to the linear model line added to the 

panel. 

• _x, _y Five cognostics pertaining only to the X and Y values respectively. 

• _bivar Two cognostics pertaining only to both the X and Y values. 

• _n Five cognostics pertaining only to counts of X and Y values. 

Each cognostic group column contains a single row data.frame nested in each 

cell. Nesting data structures as list-columns [33] is considered an advanced R tech-

nique, but by nesting the cognostic data.frame s in each cell, autocogs maintains 

the tidy data input with tidy data cognostics. Tidy data is defined to have variables 

in each column, observations for each row and each cell contains a value. The value 

does not need to conform to atomic values which allows for complex structures as 

long as the “tidy data” rules are maintained as shown in Figure 3.3.3. 
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Figure 3.8. Figure courtesy of [33]. There are three rules to tidy data: 
columns contain variables, rows contain observations, and cells contain 
values. 

3.4 Cognostic groups 

There are three main types of cognostic groups: Univariate, Bivariate, and Counts. 

Each type of cognostic group will explain in detail their corresponding cognostic 

groups in detail throughout this section. 

3.4.1 Univariate 

The univariate cognostic groups examples will use the same data set of the maxi-

mum life expectancy of the gapminder data set. 

gapminder %>% 
group_by(country, continent) %>% 
summarise(lifeExp = max(lifeExp)) %>% 
print() -> 

gap_max 
## # A tibble: 142 x 3 
## # Groups: country [?] 
## country continent lifeExp 
## <fctr> <fctr> <dbl> 
## 1 Afghanistan Asia 43.828 
## 2 Albania Europe 76.423 
## 3 Algeria Africa 72.301 
## 4 Angola Africa 42.731 
## 5 Argentina Americas 75.320 
## 6 Australia Oceania 81.235 
## 7 Austria Europe 79.829 



66 

## 8 Bahrain Asia 75.635 
## 9 Bangladesh Asia 64.062 
## 10 Belgium Europe 79.441 
## # ... with 132 more rows 

Univariate Continuous Cognostics 

Univariate continuous cognostics utilize the standard statistical calculations: min-

imum, maximum, mean, median, and variance. Each value is quickly interpretable 

and provides a good starting point when filtering panels within a trelliscopejs wid-

get. 

library(autocogs) 
auto_cog("univariate_continuous", gap_max$lifeExp) 
## # A tibble: 1 x 5 
## min max mean median var 
## <dbl> <dbl> <dbl> <dbl> <dbl> 
## 1 42.568 82.603 68.03542 71.9355 116.3098 

Univariate Discrete Cognostics 

Univariate discrete values only have counts and names to determine the cognostics. 

The minimum and maximum count values are reported, as well as the mean count 

value. For both the minimum and maximum values, a corresponding name is reported 

alongside the count. The example below shows that the continent "Africa" contains 

the most countries at 52 and "Oceania" contains least amount of countries at 2 

countries. 

auto_cog("univariate_discrete", gap_max$continent) 
## # A tibble: 1 x 5 
## min_name count_min count_mean count_max max_name 
## <chr> <int> <dbl> <int> <chr> 
## 1 Oceania 2 28.4 52 Africa 
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Continuous Density Cognostics 

Continuous density cognostics revolve around the shape of the density. The maxi-

mum density value and its corresponding location are returned for comparison across 

cognostic calculations. Skew and kurtosis [34] are computed to help distinguish the 

density shape. The p value of Hartigans’ dip test from diptest [35] for unimodality 

is reported as well. To help locate where the maximum density occurs, the maximum 

density value and location are provided. Finally, the number of clusters may be cal-

culated using the mclust [36] [37] R package. Cluster calculations are not included 

by default due to their slower computational speed. 

auto_cog("density_continuous", gap_max$lifeExp, clusters = TRUE) 
## # A tibble: 1 x 6 
## max_density max_density_location clusters unimodal_p_value 
## <dbl> <dbl> <int> <dbl> 
## 1 0.04425023 75.22066 3 0.2994391 
## # ... with 2 more variables: skew <dbl>, kurt <dbl> 

Boxplot Cognostics 

Boxplot metrics include lower whisker, Q1, median, Q3, and upper whisker lo-

cations. The number of outliers above the boxplot and below the boxplot are also 

reported. 

auto_cog("boxplot", gap_max$lifeExp) 
## # A tibble: 1 x 7 
## n_outlier_lower lower_whisker q1 median q3 
## <int> <dbl> <dbl> <dbl> <dbl> 
## 1 0 59.6945 69.71875 71.9355 74.15225 
## # ... with 2 more variables: upper_whisker <dbl>, 
## # n_outlier_upper <int> 

Quantile Quantile Cognostics 

Quantile-Quantile plots display the theoretical distribution quantiles verses the 

sample quantile points. Two variables to help determine skewness count how many 
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points are above and below a non robust quantile line. The non robust quantile line 

is calculated using the 25th and 75th percentiles of sample points, rather than the a 

robust linear model. This calculation replicates the base R function stats::qqline 

behavior. A p value for the Kolmogorov-Smirnov test is added to the result to de-

termine how close the sample points come from the test distribution. The test dis-

tribution defaults to the normal distribution. Finally, a mean squared error from 

the quantile line is reported for the Quantile-Quantile plot. This value should be 

comparable to all of the independent samples as each sample should come from the 

same distribution. Larger mean squared error values help discover outliers in the 

distribution. 

auto_cog("quantile_quantile", gap_max$lifeExp) 
## # A tibble: 1 x 4 
## points_above points_below ks_test qq_mse 
## <int> <int> <dbl> <dbl> 
## 1 87 55 0 13.78215 

3.4.2 Bivariate 

The cognostic groups below is calculated using the gapminder data set where con-

tinent equals "Americas" ( americas ) or where country equals "United States" 

( usa ). 

americas <- gapminder %>% filter(continent == "Americas") 
usa <- gapminder %>% filter(country == "United States") 

Bivariate Continuous Cognostics 

Similar to the Univariate Continuous cognostic group, the Bivariate Continuous 

cognostic group calculates the two standard bivariate summary statistics: covariance 

and correlation. 

auto_cog("bivariate_continuous", usa$year, usa$lifeExp) 
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## # A tibble: 1 x 2 
## covariance correlation 
## <dbl> <dbl> 
## 1 59.855 0.9929351 

Scagnostics Cognostics 

Scatterplot scagnostics are a pre-existing cognostic group for a continuous bivari-

ate plot. The following scagnostics are explained in more detail in [31]. 

• Outlying: the proportion of the total edge length due to extremely long edges 

connected to points of single degree. 

• Skewed: the distribution of edge lengths of a minimum spanning tree gives us 

information about the relative density of points in a scattered configuration. 

• Clumpy: the Hartigan and Mohanty RUNT statistic is most easily understood 

in terms of the single-linkage hierarchical clustering tree called a dendrogram. 

• Sparse, the 90% quantile of the edge lengths of the minimum spanning tree. 

• Striated: the summation of angles over all adjacent edges of a MST. 

• Convex: the ratio of the area of the alpha hull and the area of the convex hull. 

• Skinny: the ratio of perimeter to area of a polygon measures. 

• Stringy: the ratio of width to length of a network. 

• Monotonic: squared Spearman correlation coefficient. 

auto_cog("scagnostics", americas$year, americas$lifeExp) 
## # A tibble: 1 x 9 
## Outlying Skewed Clumpy Sparse Striated Convex 
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
## 1 0.01443262 0.7695572 0.07343219 0.0799376 0.5539216 0.8622428 
## # ... with 3 more variables: Skinny <dbl>, Stringy <dbl>, 
## # Monotonic <dbl> 
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Continuous 2D Density Cognostics 

The Continuous 2-Dimensional Density cognostic group reports the maximum 

density. Similar to the Continuous Density cognostic group, the X and Y location are 

returned. Cluster count calculations are turned off by default due to slow computation 

speed. 

auto_cog( 
"density_2d_continuous", 
americas$year, americas$lifeExp, 
clusters = TRUE 

) 
## # A tibble: 1 x 4 
## max_density max_density_x max_density_y clusters 
## <dbl> <dbl> <dbl> <int> 
## 1 0.00118169 1997.435 71.86533 9 

Bivariate Step Cognostics 

A stepwise plot displays a “stair case” like plot where the connecting line only 

moves in parallel ot the X or Y axis. The Bivariate Step cognostic group returns 

the number of steps completed, as well as calculating the Univariate Continuous 

cognostics for the step width and step height. 

auto_cog("bivariate_step", usa$year, usa$lifeExp) 
## # A tibble: 1 x 11 
## steps min_step_width mean_step_width median_step_width 
## <dbl> <int> <dbl> <int> 
## 1 11 5 5 5 
## # ... with 7 more variables: max_step_width <int>, 
## # var_step_width <dbl>, min_step_height <dbl>, 
## # mean_step_height <dbl>, median_step_height <dbl>, 
## # max_step_height <dbl>, var_step_height <dbl> 

Smooth Line Cognostics 

The Smooth Line cognostic group is a baseline for all model based lines added to a 

plot. The smooth line calculations pair well with the Linear Model and Loess Model 
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cognostic groups. A mean squared error and the max deviation with its corresponding 

location are reported. 

auto_cog("smooth_line", usa$year, usa$lifeExp) 
## # A tibble: 1 x 3 
## mse max_deviation max_deviation_location 
## <dbl> <dbl> <int> 
## 1 0.05389673 0.45948 1972 

Linear Model Cognostics 

Linear Model cognostics leverage many existing statistics. Knowing that the 

model will only be a simple linear model allows autocogs to return slope and in-

tercept values and corresponding p values. Many cognostics can be generated about 

the model fit using known diagnostic methods: 

• R2: fraction of variance explained by the model 

• σ: square root of the estimated residual variance 

• F -statistic: the linear model’s F -statistic and corresponding p value. 

• Degrees of freedom: how many degrees of freedom in the model and residuals 

• Log-likelihood value: the log likelihood value of the model 

• AIC, BIC: Akaike’s Information Criterion and Schwarz’s Bayesian Criterion 

• Deviance: the quality-of-fit statistic of the model 

There are a few extra diagnostics that perform extra calculations to conform to 

the univariate requirement of a cognostic. 

• Cook’s distance: a combination of each points leverage and residual value. Val-

ues larger than Fp,n−p(0.5) indicate influential data points in the model [24]. 

The number of influential data points is reported. 
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• Influence points: the diagonal of the Hat Matrix is how much influence a point 
p 1 

has on the model. Each point is expected to equal = , with influential 
n n 

2 ∗ p 2 
points having a value larger than = [24]. The sum of all influential 

n n 
points is reported. 

• Shapiro-Wilk test: when using a linear model, the residuals are assumed to 

come from a normal distribution. The Shapiro-Wilk test tests the residuals 

against the normal distribution [24]. The corresponding p value is reported. 

• Box Cox power transformation: the lower and upper bounds of the 95% confi-

dence interval of the Box Cox power transformation are reported. This trans-

formation is used to stabilize the variance of a linear model. If the confidence 

interval contains 0, a ln transformation may be used [24]. 

auto_cog("linear_model", usa$year, usa$lifeExp) %>% as.data.frame() 
## intercept intercept_p_value beta beta_p_value r2 
## 1 -291.0845 1.254513e-09 0.1841692 1.369788e-10 0.9859202 
## sigma statistic p_value df log_lik aic 
## 1 0.4161339 700.2351 1.369788e-10 1.369788e-10 -5.412356 16.82471 
## bic deviance df_residual n_sig_cooks n_sig_hat resid_shapiro 
## 1 18.27943 1.731675 10 0 6 0.9843222 
## bc_lower bc_upper 
## 1 -1.3 2 

Loess Model Cognostics 

Similar to the linear model, a simple loess model is calculated and the model 

diagnostics are reported: 

• Supplied parameters: the supplied parameters of span , the alpha parameter 

which controls the degree of smoothing, and degree , the polynomial degree 

used in the loess model, are returned. 

• Calculated parameters: the effective number of parameters, enp , is returned 

along with the trace of the hat matrix, trace.hat . Finally, the sigma value, 

s , of the loess model variance is returned as a single cognostic. 



73 

• Iterations: The number of iterations needed to calculate the model are reported 

as well. 

auto_cog("loess_model", usa$year, usa$lifeExp) 
## # A tibble: 1 x 6 
## enp s trace.hat span degree iterations 
## <dbl> <dbl> <dbl> <dbl> <int> <int> 
## 1 4.540734 0.3147398 5.005914 0.75 2 1 

3.4.3 Counts 

The third cognostic type addresses counts of binned data. 

Univariate and Bivariate Count Cognostics 

Both the Univariate and Bivariate Count cognostics address how many values are 

NA and not NA . Bivariate accounts for both the logical AND and OR of the X and 

Y values being NA . 

auto_cog("univariate_counts", americas$lifeExp) 
## # A tibble: 1 x 2 
## n n_na 
## <int> <int> 
## 1 300 0 
auto_cog("bivariate_counts", americas$year, americas$lifeExp) 
## # A tibble: 1 x 5 
## n n_both_na n_or_na n_x_na n_y_na 
## <int> <int> <int> <int> <int> 
## 1 300 0 0 0 0 

Pairwise Counts Cognostics 

Pairwise Counts cognostics address how often pieces of information occur. Pair-

wise Counts look at the combinations of the X and Y variables. The Univariate 

Continous cognostics are reported on the counts of the pairwise combinations. 
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auto_cog("pairwise_counts", americas$country, round(americas$lifeExp)) 
## # A tibble: 1 x 6 
## min max mean median var na_count 
## <int> <int> <dbl> <int> <dbl> <dbl> 
## 1 1 4 1.083032 1 0.1198922 0 

Count Testing Cognostics 

There are three types of count testing cognostic groupings. In addition to the 

Univariate Continuous cognostic information, each cognostic group tests whether or 

not the variables involved in the plot have any effect on the number of counts. This 

is calculated using a χ2 test where H0 = Y µ. 

• Histogram Counts Cognostics 

The univariate case calculates the counts of a histogram using a default binwidth 

of 30 equal bin widths. The default width of 30 matches the default width in 

ggplot2. 

auto_cog("histogram_counts", americas$lifeExp) 

## # A tibble: 1 x 6 
## count_min count_max count_mean count_median count_var chisq 
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
## 1 0 26 10 8 55.24138 4.240986e-20 

• Square Counts Cognostics 

The bivariate case of the histogram is a 2D square grid. The counts in each 

of the grid spaces are calculated using a default binwidth of 30 equal intervals 

along each axis. In the example below, six equally spaced bins along each axis 

are used. 

auto_cog( 
"square_counts", 
americas$year, americas$lifeExp, 
bins = 6 

) 
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## # A tibble: 1 x 6 
## count_min count_max count_mean count_median count_var chisq 
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
## 1 1 29 9.375 6.5 53.79032 1.547182e-22 

• Hexagon Counts Cognostics 

The second bivariate histogram has a honeycomb like array of hexagons. Like 

the Square Counts Cognostics, the Hexagon Counts Cognostics default to 30 

equally spaced hexagons along each axis. The example below also uses six 

hexagon shaped bins along each axis. 

auto_cog("hex_counts", americas$year, americas$lifeExp, bins = 6) 

## # A tibble: 1 x 6 
## count_min count_max count_mean count_median count_var chisq 
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
## 1 1 25 7.894737 6 38.04267 2.131691e-20 

3.5 ggplot2 layer matching 

ggplot2 has already been integrated into the autocogs R package. This integra-

tion contains the mapping of each cognostic group to each ggplot2 geom layer. Each 

plotting framework has its own data personality and may display cognostics how it 

sees fit. 

Figure 3.5 is a mapping of each ggplot2 geom layer to each of the univariate 

cognostics. Geoms that do not map to any cognostic groups are considered building 

block geoms and do not produce any cognostics when added as a layer. 

In this section, I will explore a simple ggplot2 histogram and a more advanced 

example involving a ggplot2 scatterplot and linear model. 

3.5.1 Histogram 

First, let us create the data set containing each of the panels. Each panel will dis-

play a histogram chart of the life expectancy over time for each continent. Figure 3.10 

displays the panel where continent is equal to "Americas" . 
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Figure 3.9. Mapping of ggplot2 geoms to Univariate, Bivariate, and 
Count cognostic groups 
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gapminder %>% 
group_by(continent) %>% 
do( 
panel = ggplot(., aes(lifeExp)) + geom_histogram(binwidth = 1) 

) %>% 
print() -> 

continent_hists 
## Source: local data frame [5 x 2] 
## Groups: <by row> 
## 
## # A tibble: 5 x 2 
## continent panel 
## * <fctr> <list> 
## 1 Africa <S3: gg> 
## 2 Americas <S3: gg> 
## 3 Asia <S3: gg> 
## 4 Europe <S3: gg> 
## 5 Oceania <S3: gg> 
americas_pos <- which(continent_hists$continent == "Americas") 
continent_hists$panel[[americas_pos]] 

0

5

10

15

40 50 60 70 80

lifeExp

co
un

t

Figure 3.10. The "Americas" histogram of life expectancy. 

With a nested data.frame full of panels, we add the cognostics to the data.frame . 

continent_hists_cogs <- autocogs::add_panel_cogs(continent_hists) %>% 
print() 
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## Source: local data frame [5 x 6] 
## Groups: <by row> 
## 
## # A tibble: 5 x 6 
## continent panel `_x` `_density_x` 
## <fctr> <list> <list> <list> 
## 1 Africa <S3: gg> <tibble [1 x 5]> <tibble [1 x 6]> 
## 2 Americas <S3: gg> <tibble [1 x 5]> <tibble [1 x 6]> 
## 3 Asia <S3: gg> <tibble [1 x 5]> <tibble [1 x 6]> 
## 4 Europe <S3: gg> <tibble [1 x 5]> <tibble [1 x 6]> 
## 5 Oceania <S3: gg> <tibble [1 x 5]> <tibble [1 x 6]> 
## # ... with 2 more variables: `_hist_x` <list>, `_n` <list> 
as.list(continent_hists_cogs[americas_pos, 3:6]) 
## $`_x` 
## $`_x`[[1]] 
## # A tibble: 1 x 5 
## min max mean median var 
## <dbl> <dbl> <dbl> <dbl> <dbl> 
## 1 37.579 80.653 64.65874 67.048 87.33067 
## 
## 
## $`_density_x` 
## $`_density_x`[[1]] 
## # A tibble: 1 x 6 
## max_density max_density_location clusters unimodal_p_value 
## <dbl> <dbl> <lgl> <dbl> 
## 1 0.04992932 70.13661 NA 0.9927842 
## # ... with 2 more variables: skew <dbl>, kurt <dbl> 
## 
## 
## $`_hist_x` 
## $`_hist_x`[[1]] 
## # A tibble: 1 x 6 
## count_min count_max count_mean count_median count_var chisq 
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
## 1 0 18 6.818182 6 25.78013 8.513837e-16 
## 
## 
## $`_n` 
## $`_n`[[1]] 
## # A tibble: 1 x 2 
## n n_na 
## <int> <int> 
## 1 300 0 



79 

The above R output contains all cognostic groups that apply to a univariate 

histogram. For a ggplot2 histogram, autocogs creates: 

• `_x` : univariate continuous cognostics using the X data, 

• `_density_x` : continuous density cognostics using the X data, 

• `_hist_x` : histogram counts cognostics using the X data, 

• `_n` : and univariate count information using the X data. 

While this amount of information is a little overwhelming, keep in mind the goal 

of the autocogs R package is to provide as many ways to filter and sort data that 

normally must be calculated manually. autocogs computes cognostics that are suited 

to each type of visualization layer. 

3.5.2 Linear model and scatterplot 

In the next example, we will perform a similar workflow, but the panel will contain 

two layers: points and a linear model line. Each layer is derived from the same original 

data, but will help produce a different sets of cognostics. 

gapminder %>% 
group_by(country, continent) %>% 
do( 
panel = ggplot(., aes(year, lifeExp)) + 
geom_point() + 
geom_smooth(method = "lm") 

) -> 
country_model 
usa_pos <- which(country_model$country == "United States") 
country_model$panel[[usa_pos]] 
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Figure 3.11. The "United States" life expectancy over time displayed 
as a linear model and scatterplot combination. 

The "United States" panel is displayed in Figure 3.11. The life expectancy 

has a fairly linear trend that increases over time. Next, we add the cognostics to the 

panel data.frame . 

country_model_cogs <- autocogs::add_panel_cogs(country_model) %>% print() 
## Source: local data frame [142 x 10] 
## Groups: <by row> 
## 
## # A tibble: 142 x 10 
## country continent panel `_scagnostic` `_x` 
## <fctr> <fctr> <list> <list> <list> 
## 1 Afghanistan Asia <S3: gg> <tibble [1 x 9]> <tibble [1 x 5]> 
## 2 Albania Europe <S3: gg> <tibble [1 x 9]> <tibble [1 x 5]> 
## 3 Algeria Africa <S3: gg> <tibble [1 x 9]> <tibble [1 x 5]> 
## 4 Angola Africa <S3: gg> <tibble [1 x 9]> <tibble [1 x 5]> 
## 5 Argentina Americas <S3: gg> <tibble [1 x 9]> <tibble [1 x 5]> 
## 6 Australia Oceania <S3: gg> <tibble [1 x 9]> <tibble [1 x 5]> 
## 7 Austria Europe <S3: gg> <tibble [1 x 9]> <tibble [1 x 5]> 
## 8 Bahrain Asia <S3: gg> <tibble [1 x 9]> <tibble [1 x 5]> 
## 9 Bangladesh Asia <S3: gg> <tibble [1 x 9]> <tibble [1 x 5]> 
## 10 Belgium Europe <S3: gg> <tibble [1 x 9]> <tibble [1 x 5]> 
## # ... with 132 more rows, and 5 more variables: `_y` <list>, 
## # `_bivar` <list>, `_smooth` <list>, `_lm` <list>, `_n` <list> 
as.list(country_model_cogs[usa_pos, 4:10]) 
## $`_scagnostic` 
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## $`_scagnostic`[[1]] 
## # A tibble: 1 x 9 
## Outlying Skewed Clumpy Sparse Striated Convex Skinny 
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
## 1 0 0.7430783 0.3112384 0.1636085 0.8181818 0 1 
## # ... with 2 more variables: Stringy <dbl>, Monotonic <dbl> 
## 
## 
## $`_x` 
## $`_x`[[1]] 
## # A tibble: 1 x 5 
## min max mean median var 
## <int> <int> <dbl> <dbl> <dbl> 
## 1 1952 2007 1979.5 1979.5 325 
## 
## 
## $`_y` 
## $`_y`[[1]] 
## # A tibble: 1 x 5 
## min max mean median var 
## <dbl> <dbl> <dbl> <dbl> <dbl> 
## 1 68.44 78.242 73.4785 74.015 11.18087 
## 
## 
## $`_bivar` 
## $`_bivar`[[1]] 
## # A tibble: 1 x 2 
## covariance correlation 
## <dbl> <dbl> 
## 1 59.855 0.9929351 
## 
## 
## $`_smooth` 
## $`_smooth`[[1]] 
## # A tibble: 1 x 3 
## mse max_deviation max_deviation_location 
## <dbl> <dbl> <int> 
## 1 0.1443062 0.7572308 1972 
## 
## 
## $`_lm` 
## $`_lm`[[1]] 
## # A tibble: 1 x 19 
## intercept intercept_p_value beta beta_p_value r2 
## <dbl> <dbl> <dbl> <dbl> <dbl> 
## 1 -291.0845 1.254513e-09 0.1841692 1.369788e-10 0.9859202 
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## # ... with 14 more variables: sigma <dbl>, statistic <dbl>, 
## # p_value <dbl>, df <dbl>, log_lik <dbl>, aic <dbl>, bic <dbl>, 
## # deviance <dbl>, df_residual <int>, n_sig_cooks <int>, 
## # n_sig_hat <int>, resid_shapiro <dbl>, bc_lower <dbl>, 
## # bc_upper <dbl> 
## 
## 
## $`_n` 
## $`_n`[[1]] 
## # A tibble: 1 x 5 
## n n_both_na n_or_na n_x_na n_y_na 
## <int> <int> <int> <int> <int> 
## 1 12 0 0 0 0 

As expected, many cognostics were added to the country panel data.frame : 

• `_scagnostic` : scatterplot scagnostics cognostics, 

• `_x` : univariate continuous cognostics using the X data, 

• `_y` : univariate continuous cognostics using the Y data, 

• `_bivar` : bivariate continuous cognostics, 

• `_smooth` : smooth line cognostics, 

• `_lm` : linear model cognostics, 

• `_n` : and bivariate count information. 

Revisiting the Linear Model Example 3.3.1, we have now exposed the linear 

model metrics (as well as many other metrics) to be used as cognostics within the 

trelliscopejs widget. trelliscopejs will process the nested data.frame s as 

grouped cognostics and display them in the application. Each linear model’s R2 value 

is now available for sorting. By opening the “Sort” tab in the widget and selecting 

ascending r2 , all countries will be displayed in increasing order of the R2 value. 
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Figure 3.5.2 displays the countries whose life expectancy can not be not explained by 

a linear model. 

Figure 3.12. A trelliscopejs widget of country life expectancy over time 
where the panel ordering is displayed according to ascending R2 value of 
each panels linear model. 

In less than ten lines of code we went from a single data set to a full fledge 

visualization application with multiple cognostics explaining the plot used with each 

conditioned subset. 

3.6 Summary 

Automatic cognostics with the autocogs R package allow users to enable common 

univariate metrics that correspond to the plots displayed in a trelliscopejs HTML 

widget. autocogs provides users with the ability to retrieve statistical metrics that 

are displayed or utilized in a plot. Prior examples generated cognostics for simple 
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histograms to multiple layered, linear model and scatterplot plots. Maintaining a 

common set of cognostics provides a cohesive cognostic framework to be used by any 

plotting architecture. 
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4. GQLR: A GRAPHQL R SERVER IMPLEMENTATION 

Since 2012, Facebook has developed GraphQL: “a query language for APIs and a 

runtime” [38]. GraphQL drastically reduces the number of server requests created by 

the browser by using a dynamic and nested query structure. Using the Working Draft 

Specification for GraphQL [39] as guidance, gqlr [40] implements a full GraphQL 

server within R. gqlr allows users to supply their own R functions to satisfy the data 

requirements of a GraphQL query generated by the browser. gqlr was originally 

built to communicate between trelliscopejs and an R server session. However, 

trelliscopejs’s development direction has changed since the creation of gqlr. 

4.1 Application protocol interfaces 

Application Protocol Interfaces (APIs) are the fundamental backbone of commu-

nication between machines. They enable machines to communicate with each other 

without needing to know how the responding machine arrives at its answer. There 

are two conventions for a machine API: simple API and custom API. Each API style 

has their own advantages and disadvantages. GraphQL was created to address the 

disadvantages of simple API while keeping the advantages of a custom API at the 

cost of typing the request. 

There are two parts involved in each API communication: the request and re-

sponse. The request submits a query to the server, and the response returns an 

answer that should be able to be understood by the requesting entity. The key point 

to the communication transaction is the request does not need to know how the 

response calculates the answer. 
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This layer of abstraction shields the request from knowing the nitty-gritty imple-

mentation details of the response. This allows the response to behave like a black 

box that will only respond to particular requests or queries. 

In this chapter, I will only address single response APIs as I am concerned with 

the request, not the response. A single response API is an API that returns only one 

response to one answer. I will not discuss streaming APIs in this chapter. 

Throughout this section, I will use a calculator, ‘Calculator’, as my example server. 

The calculator will be have four internal functions: add, subtract, multiply, and 

divide. These four internal functions behave just like a regular calculator, but the 

true implementation of the calculator is hidden. 

4.1.1 Simple API 

A simple API has a single end point, or place to send a request, for each style of 

question it knows how to answer. A simple Calculator API would contain four end 

points: add, subtract, multiply, and divide. Each query routine requires two numeric 

values as inputs and responds with a single numeric value. To concisely define a 

RESTful Calculator, we may state the following schema: 

# GraphQL; Schema 
type Calculator { 

add(A: Float, B: Float): Float 
subtract(A: Float, B: Float): Float 
multiply(A: Float, B: Float): Float 
divide(A: Float, B: Float): Float 

} 

Advantages 

Without abstracting the function name, the number of request end points match 

the number of exposed functions. There are no dynamically created functions; ev-

erything is static. By fixing all request end points, software systems can be reliably 
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built against one another. Any software system can build their own logic as to how 

they solve their particular problems, but each software system will request from the 

same API. 

The ease of use of a simple API has made it very popular with HTTP internet 

websites with the RESTful API [41]. The four most common functions of HTTP’s 

REST are “GET”, “PUT”, “POST”, and “DELETE”. 

1. GET: Retrieve the supplied location data only. 

2. PUT: Store supplied data the supplied location. 

3. POST: Add new data at the supplied location. 

4. DELETE: Remove data at the supplied location. 

Disadvantages 

As is common in practice, databases have many tables with built in relationships. 

RESTful APIs usually only return information one layer deep. 

When looking at the Calculator, it solves a single calculation for each query. To 

solve a multiple calculation problem, it takes multiple requests to the Calculator API. 

For example, solving 1 + 2 + 3 + 4 + 5 requires 4 requests to the Calculator API; one 

query for each of the addition operations. 

answer = Calculator::add(1, 2) # 3 
answer = Calculator::add(answer, 3) # 6 
answer = Calculator::add(answer, 4) # 10 
answer = Calculator::add(answer, 5) # 15 

No matter how the requests are altered, it will require 4 requests to the Calculator. 

This can become a major disadvantage when required to make many, many requests 

to the API. If we were to look at a person’s friends of their friends, we would need 

the following Schema and data information: 
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# GraphQL; Schema 
type Person { 

id: ID 
name: String 
age: Int 
sex: String 
friends: [ID] 

} 

Each person has an “id”, “name”, “age”, “sex”, and a list of person id’s for their 

“friends”. While having all of this information is useful, it can bloat the amount 

of information that is returned. While the current example isn’t too big, one could 

imagine adding a Person ’s favorite song lyrics to the Person object. This would 

greatly increase the total amount of information returned for each Person object. 

4.1.2 REST and the Internet 

In the case of the internet, however, two major constraints exist. The two major 

constraints are the number of parallel requests that can be made at one time and the 

amount of time it takes for your request to reach a responding server. 

HTTP 1.1 specification states that “A single-user client SHOULD NOT maintain 

more than 2 connections with any server or proxy” [42]. In practice, this is a little 

larger, maxing out at 13 parallel connections to the same host [43]. Limiting the 

number of server connections reduces the amount of simultaneous requests on the 

network and improves overall response time. 

Once a request is allowed to be made, there are physical limitations on how fast 

the response can be received. On average, it takes over 200 ms for a request to make 

a trip to the responding server and back to the user’s browser [44]. 

Using the “friends of my friends” example, let us define each person as having 

200 different friends (the median number of friends on Facebook [45]. When using 

a simple API, we can calculate how many requests are necessary to compute who 

are the “friends of my friends”. It requires O(n2)(∼ 2002 = 40, 000) independent 
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requests to the simple API server. If the browser being used is limited to 10 parallel 

connections, it requires 4000(= 40, 000/10) sets of parallel request groups. Each 

parallel request group takes at least 200ms for a round trip to and from the server. 

The total amount of time it would require to gather the names of a person’s friends 
0.200 seconds 

(200requests)2 
request 

of friends is approximately 131 minutes = ∗ .
3 60 seconds10requests 

minute 
The median loading time for a website is about 3 seconds with the average around 

5 seconds [46]. Major websites today try to shave milliseconds where ever they can. 

No major website would allow a load time that is 160 times slower than the average 

website. 

4.1.3 Custom response 

A natural response to the “friends of my friends” situation is implement a custom 

response which directly answers the specific query. 

Advantages 

Because custom APIs answer specific questions, only one request needs to be sent 

to the server. The “friends of my friends” example is reduced to a single, 200 ms 

request. The load time is now reduced from 800 seconds to 0.2 seconds. This answers 

the “who are my friends of my friends” question in the minimal amount of queries to 

the server. The custom API achieves the end goal answer with the minimal amount 

of queries (1) to the server. 

Disadvantages 

The disadvantages come from the amount of engineering time that is required to 

implement a custom response for every query need. With a simple query interface, 

the logic is put on the user who is querying to figure out what to query next. With 
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a custom response interface, all custom responses must be made before the user can 

utilize them. 

Using the Calculator example, calculating the 1 + 2 + 3 + 4 + 5 example could 

be done in a single custom request called “1add2add3add4add5”. It would solve 

the answer in a single request, but the server would have to implement many, many 

responses for full funtionality of a true Calculator. 

With the internet, the custom API response is now tied directly to the requesting 

website. This creates little separation between the website and the responding API 

server. By coupling the data server with the requesting service, developments in 

the requests are slower and more difficult than if a de-coupled, simple API is used. 

Websites making the requests can not move ahead in development until a new custom 

response has been enabled by the custom API server. 

4.1.4 Balancing act 

Let’s recap the advantages and disadvantages of the two different styles of APIs. 

1. Simple API 

(a) Advantages 

i. Small API 

ii. Easier to implement 

(b) Disadvantages 

i. Many queries are required to solve complex problems 

ii. Many queries causes large time complexity 

iii. Every piece of information is returned for every query 

2. Custom Responses 

(a) Advantages 

i. One query, one answer 
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ii. Fast execution time 

(b) Disadvantages 

i. All custom API calls need to be implemented 

ii. API server is tied to the requests made 

Developers balance between minimal engineering time and minimal execution 

time. Typically the final result falls somewhere in-between, using a custom API 

for high execution time queries and using a simple API for smaller queries. 

4.2 Database storage 

Once a request is received by an API, the API must retrieve the data from a 

database. Databases can store objects in one of two common paradigms: as a rela-

tional database or as a key-value database. Relational databases know exactly what 

kind of object will be returned and can map one table to another with id values. 

Key-value databases, on the other hand, do not inspect the values of the database. 

The requirement for a key-value database is that each value is stored at a specific 

key. Key-value databases are built for speed and scalability over structure and rela-

tionships. 

While relational databases are already inherently typed (unless purposely stated 

as an unknown type), well designed key-value databases inherently contain typed 

values. Each value that is inserted into the database has a known shape and expected 

response type. If data of an image is stored, audio data should never be returned 

from that same position. Even if the image had different sizes and formats, it still 

can be understood as an image. 

There are many more comparisons and cost / benefits to every database, however 

these implementation differences are not apart of the scope of this chapter. 
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4.3 GraphQL language 

GraphQL is a data query language built to unify data APIs. It exists as a execution 

layer between the requesting user and responding database. This abstraction layer 

provides many benefits: uniform request and response shape, dynamic queries to 

handle custom situations, and minimal server requests. 

GraphQL is comprised of two main parts, the Request and the Schema. 

4.3.1 Schema 

GraphQL Schemas are defined using Scalars, Types, Enumerations, Lists, Non-

Null types, Interfaces, Unions, and Input types. Each definition is used to define 

a type or type abstractions that can be used when querying. The Types represent 

the expected return objects that the database already knows about from the Schema 

definition. Like most objects, each Object Type will contain fields that point to 

Scalars or more Types. These Object fields can be queried recursively until a Scalar 

or Enumeration is reached. 

Object type definition 

For example, we can setup a Schema for a pet dog. 

type Dog { 
name: String 
breed: String! 
owners: [Person!]! 

} 

The type definition for a Dog is very readable, but has a lot going on. 

1. Dog is a Object Type definition. It has four fields: name , breed , age , and 

owners . These four fields are the only fields defined for retrieving information 

from a Dog . 
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2. String is a predefined Scalar type definition. This contains the dog’s name, 

i.e. “Clifford”. Scalar fields do not contain any sub fields and are considered 

leafs in the Schema definition tree. Leafs do not contain sub fields for further 

information retrieval. 

3. String! represents a Non-null String value. This means that all Dog objects 

will contain the breed field and the result will always be a String. 

4. [Person] represents an array of Person objects that represent the owners of 

the Dog. By adding the ! outside the array to form [Person]! , it will be 

guaranteed to return an array for the field owners and never a NULL value. 

By adding a ! to the Person ( [ Person!]! ), the elements inside the position 

array will never be NULL . A length 0 array is still allowed as the owners value 

is not NULL and the missing Person values are not NULL . 

4.3.2 Argument and input type definitions 

Field definitions can include arguments. These arguments can be simple Scalar 

definitions or Input Type definitions. 

# GraphQL; Schema 
input ToyInput { 

brand: String 
name: String 
condition: Condition 

} 
extend type Dog { 

weight(unit: WeightUnit = POUNDS): Float 
does_play_with_toy(toy: ToyInput): Boolean 

} 

Like the R language, all arguments are named arguments, all arguments may be 

submitted in any order, and default values may be provided. Unlike R, all submitted 

arguments must have a name and must comply with the argument type. Nothing is 
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inferred from the arugment’s position. Default values may be used in place of missing 

arguments. 

4.3.3 Schema type definition 

There are two entry points to a Schema: schema query type and schema mutation 

type. Every GraphQL Schema definition must have a schema query type and can 

optionally have a schema mutation type. Both types refer to an object type definition. 

# GraphQL; Schema 
schema { 

query: Dog 
mutation: DogUpdate 

} 

Query types are read only, while mutation types are understood that something 

will update in the database. A request will have the same shape for both query types 

and mutation types. 

4.3.4 Scalar type definitions 

Scalar Types are the leafs of the Schema. Unlike Object Types, Scalars do not 

have fields to inspect. GraphQL defines the base scalars as a part of the language 

definition: 

1. Boolean : true or false 

2. Integer : A signed 32-bit integer 

3. Float : A signed double-precision floating point value 

4. String : A UTF-8 character sequence 

5. ID : ID performs the same as a String , but it is intended to be machine 

readable only as a unique identifier 
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New scalars can be defined in a Schema as long as the server running the GraphQL 

understands how to handle them. Three new Scalars are defined below. 

# GraphQL; Schema 
scalar Date 
scalar Binary 
scalar Hexadecimal 

4.3.5 Enumeration type definitions 

GraphQL understands a finite category variable. This is similar to a factor in 

R. There is a fixed set of values for every Enum definition. Internally in the GraphQL 

server, Enum definitions may be stored as Integer values or as an object similar to a 

Set, but in the GraphQL language, it will be represented as a string with all capitol 

letters, such as POUNDS . 

# GraphQL; Schema 
enum WeightUnit { 

POUNDS 
KILOS 
OUNCES 

} 

Whenever a WeightUnit type is expected, only the values of POUNDS , KILOS , 

or OUNCES may be used. While R supports factor values, and full Enumeration 

class is created in the gqlr R package. 

4.3.6 Interface type definition 

Interfaces are an integral part in abstracting pieces of types of objects. They 

allow for common fields to be accessed on objects without knowing the true type of 

the object. All Object Types that inherit an interface must implement all fields of 

that interface. Any Object Type that implements Pet , must implement the two 

fields name and owners and return String and [Person!]! respectively. 
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# GraphQL; Schema 
interface Pet { 

name: String 
owners: [Person!]! 

} 
type Dog implements Pet { 

name: String 
barkVolume: Int 
owners: [Person!]! 

} 
type Cat implements Pet { 

name: String 
meowVolume: Int 
owners: [Person!]! 

} 

An Object Type may implement extra fields, like meowVolume in Cat . 

Interfaces are useful when queries are made on objects where the exact return 

type is not known, but a finite set of types exist for the expected value. 

# GraphQL; Schema 
extend type Person { 

pet: [Pet!]! # returns an array of Cat or Dog types 
} 

Object definitions may interface with many Interface definitions. 

4.3.7 Union type definition 

Unions contain a finite set of Object Types but do not specify common fields. 

Unions are not allowed to contain other unions or interfaces. NotAPlant results 

being returned could either be a Person , Dog , or Cat type. 

# GraphQL; Schema 
extend type Cat { 

weight(unit: WeightUnit = KILOS): Float 
} 
union NotAPlant = Person | Dog | Cat 
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4.4 Requests 

The following Schema will be used within the Requests section. Classic Disney 

characters will be used as the data. 

# GraphQL; Schema 
scalar Date 
enum WeightUnit { 

POUNDS 
KILOS 
OUNCES 

} 
type Person { 

name: String! 
weight(unit: WeightUnit = POUNDS): Float 
friends: [Person!]! 
pets: [Pet!]! 

} 

interface Pet { 
name: String 
born: Date 
owners: [Person!]! 

} 
type Dog implements Pet { 

name: String 
barkVolume: String 
born: Date 
owners: [Person!]! 

} 
type Cat implements Pet { 

name: String 
born: Date 
meowVolume: String 
owners: [Person!]! 

} 
union SearchResult = Person | Dog | Cat 
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type QueryType { 
search_name(name: String!): SearchResult 
person(name: String! = "Mickey Mouse"): Person 
dog(name: String! = "Pluto"): Dog 
cat(name: String! = "Figaro"): Cat 

} 
type MutationType { 

addToWealth(name: String!, amount: Float): Float 
} 
schema { 

query: QueryType 
mutation: MutationType 

} 

4.4.1 Queries 

Every object in the Schema definition can be queried. A query on an object type 

must include at least one field. Object Types are not considered leafs in the Schema 

definition tree as they are guaranteed to have at least one field. 

# GraphQL; Query 
{ 

person { 
name 

} 
} 

// JSON; GraphQL Response 
{ 

"data":{ 
"person": { 

"name": "Mickey Mouse" 
}}} 

Queries have the same shape has the result. The only difference occurs when a 

result is an array of information. Using an name argument below, we can look at 

Jim Dear’s pets from the movie “Lady and the Tramp” [47]. 
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# GraphQL; Query 
{ 

person(name: "Jim Dear") { 
name 
pets { 

name 
}}} 

// JSON; GraphQL Response 
{ 

"data":{ 
"person": { 

"name": "Jim Dear", 
"pets": [ 

{ "name": "Lady" }, 
{ "name": "Tramp" } 

]}}} 

The whole query string is submitted to the GraphQL server. This allows for 

complex and deeply nested queries in a single request. Using the query below, we can 

query for all pets owned by the same owners as Duchess the cat [48]. 

# GraphQL; Query 
{ 

cat(name: "Duchess") { 
owners { 

name 
pets { 

name 
}}}} 
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// JSON; GraphQL Response 
{ 

"data": { 
"cat": { 

"owners": [{ 
"name": "Madame Adelaide Bonfamille", 
"pets": [ 

{"name": "Duchess"}, 
{"name": "Marie"}, 
{"name": "Berlioz"}, 
{"name": "Toulouse"}, 
{"name": "Thomas O'Malley"} 

]}]}}} 

Normally the code above would require O(k ∗ n) requests in a simple API, with k 

owners and n pets belonging to each owner. With GraphQL, this query is resolved in 

one request and without the need for a custom API to be built. The single GraphQL 

query needed for the “friends of my friends” example is shown below. 

# GraphQL; Query 
{ 

person(name: "Barret") { 
friends { 

name 
friends { 

name 
}}}} 

Aliases 

Aliases can be used to query the same object field multiple times. 
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# GraphQL; Query 
{ 

duchess: cat(name: "Duchess") { 
name 
meowVolume 

} 
rajah: cat(name: "Rajah") { 

name 
meowVolume 

}} 

// JSON; GraphQL Response 
{ 

"data": { 
"duchess": { 

"name": "Duchess", 
"meowVolume": 2 

}, 
"rajah": { 

"name": "Rajah", 
"meowVolume": 9 

}}} 

Fragments 

For conciseness, the multiple cat query can be made using Fragments. Fragments 

can be used when repeated fields are called on similar objects. 

The same result will occur using the Fragments below. 
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# GraphQL; Query 
{ 

duchess: cat(name: "Duchess") { 
...catFields 

} 
rajah: cat(name: "Rajah") { 

...catFields 
} 

} 
fragment catFields on Cat { 

name 
meowVolume 

} 

// JSON; GraphQL Response 
{ 

"data": { 
"duchess": { 

"name": "Duchess", 
"meowVolume": 2 

}, 
"rajah": { 

"name": "Rajah", 
"meowVolume": 9 

}}} 

Fragments are very useful in breaking down complex queries into smaller sections. 

4.4.2 Mutation 

Mutations are the “write” to a database. Mutations also return information to 

avoid an immediate “read” afterwards. While there is no guarentee that a Query 

does not alter the database, it is a good practice to distinguish which commands read 

only and which commands write to the database. The mutation example below adds 

to the wealth of Scrooge McDuck [49]. 
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# GraphQL; Schema 
type MutationType { 

# returns total wealth after adding amount 
addToWealth(name: String!, amount: Float): Float 

} 

# GraphQL; Mutation 
mutation { 

addToWealth(name = "Scrooge", amount = 1000.0) 
} 

// JSON; GraphQL Response 
{ 

"data": { 
"addToWealth": 28800000 

}} 

4.4.3 Remaining GraphQL language 

There are many more intricacies in the GraphQL language that are not in the 

scope of this paper. 

4.5 gqlr: A GraphQL R server implementation 

gqlr is an R package that implements the GraphQL server specification. gqlr han-

dles Query and Mutation Requests and returns data in the proper format. It is built 

upon the next evolution of class definitions in R, R6 [50]. 

4.5.1 R6 

R6 is a lightweight R package that creates objects that do not follow the particular 

conventions of R. R known for being “pass by value” language. This means that all 
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x 

values are copied at the beginning of a function. Like many other languages, R does 

not have dynamic values for a list object. Values placed in a list in R stay as the 

same values. 

my_list <- list(A = TRUE, B = FALSE) 
my_list$A 
## [1] TRUE 
update_A_to_false <- function(x) {
x$A <- FALSE 

}
update_A_to_false(my_list) 
## $A 
## [1] FALSE 
## 
## $B 
## [1] FALSE 
my_list 
## $A 
## [1] TRUE 
## 
## $B 
## [1] FALSE 

This R example does not update the value of A to FALSE as the value my_list 

was copied at the beginning of the function update_A_to_false . 

R6 allows for objects to be altered inside functions that they have been passed to 

without any changes in assignment method. This is similar to a “pass by reference” 

coding paradigm. An R6 object is passed to a function and the function alters the 

value. The same R6 object outside of the function is altered as well. This is not 

expected R behavior. 

R6 is built upon the use of Classes. R6 classes are similar to Javascript’s ES6 

classes. There is a constructor, methods, and values for each class. The methods 

and values can be both private (only able to be seen internally) and public (available 

to anything). Like Javascript, there is a notion of the “this” value or an object 

representing itself. R6 uses the self object in this case. Internal object values 

are retrieved using value <- self\$key . The example below defines a new object 
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barret with the name of "Barret" . Unlike regular R behavior, the name is changed 

globally to "Schloerke" by calling the function update_name_to_schloerke . 

Minimal <- R6Class("Minimal", 
public = list( 
name = NULL, 
initialize = function(name = NA) {
self$name <- name 
self$greet() 

}, 
greet = function() {
cat(paste0("Hello, my name is ", self$name, ".\n")) 

}
) 

) 
barret <- Minimal$new("Barret") 
## Hello, my name is Barret. 
barret$name 
## [1] "Barret" 
update_name_to_schloerke <- function(x) {
x$name <- "Schloerke" 
invisible(x) 

}
update_name_to_schloerke(barret) 
barret$name 
## [1] "Schloerke" 

R6 also allows for dynamic queries. R6 calls these “active fields”. These fields 

are actually function calls, but appear a regular keys in the object. The active key 

function can handle a single argument. This argument represents the value of the 

object being stored. If no value was supplied, then the active key was retrieved, not 

set. 

In the example below, a single active key of random will return a uniform value 

when retrieved and will set the random seed if the random key is set. After the key 

is set to 1234, as expected, the same random values are returned. 

MinimalActive <- R6Class("MinimalActive", 
active = list( 
random = function(x) {
if (missing(x)) {
return(runif(1)) 
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}
set.seed(x) 
TRUE 

}
) 

) 
min_active <- MinimalActive$new() 
min_active$random 
## [1] 0.9829186 
min_active$random 
## [1] 0.5822385 
min_active$random <- 1234 
min_active$random 
## [1] 0.1137034 
min_active$random 
## [1] 0.6222994 
min_active$random <- 1234 
min_active$random # same value as the first random value with seed 1234 
## [1] 0.1137034 

Finally, R6 allows for inheritance. In the GraphQL’s abstract syntax tree, many 

objects inherit from one another in a directed, acyclic graph structure. R6’s class 

inheritance extends nicely to the abstract syntax tree requirments of GraphQL. 

ParentClass <- R6Class("ParentClass") 
ChildClass <- R6Class("ChildClass", inherit = ParentClass) 
child <- ChildClass$new() 
class(child) 
## [1] "ChildClass" "ParentClass" "R6" 
inherits(child, "ParentClass") 
## [1] TRUE 

In gqlr, all active values must inherit the correct class to be allowed to set. An 

Error will be thrown if a value does not contain the proper inheritance. The example 

below shows the creation of a named type “Dog”. It also shows an attempt at setting 

the name value to a character. This is not allowed as the name value only allows 

objects that inherit the class “Name”. 

(obj <- gqlr:::NamedType$new(name = gqlr:::Name$new(value = "Dog"))) 
## <graphql definition> 
## | Dog 
str(obj$name) 
## <Name> 
## . value: 'Dog' 
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obj$name <- "Dog" 
## Error in bad inherits(): Attempting to set NamedType.name. 
## Expected value with class of |Name|. 
## Received character 

gqlr uses these active fields to accomplish typed language properties while exe-

cuting in a untyped language of R. While enforcing typing within R does not happen 

often, it is required for GraphQL to be implemented. 

4.5.2 Execution 

At first glance, R and GraphQL seem like an unlikely combination. R is an 

untyped (dynamically typed) language while GraphQL is a typed language. R is not 

known for its raw speed and one of GraphQL’s goals is to reduce execution time. 

However, R is known for its statistical models, statistical graphics, and its very 

fast iteration speed [51]. gqlr is built to help small projects provide proof of concepts 

and for developers to mock full backend systems locally. Being able to submit the 

same style of request string for the production server and local development increases 

the productivity of the web development cycle. 

The example below creates a model schema that creates a linear model and a 

loess model. Both models return the mean squared error ( mse ) for their respective 

models. The linear model also returns a GGally’s ggnostic plot which is base64 

encoded [52] for data portability. The loess model also returns the effective number 

of parameters ( enp ). 

"# GraphQL; Schema 
scalar ImageBase64 
type LinearModel { mse: Float!, ggnostic: ImageBase64! }
type LoessModel { mse: Float!, enp: Float! }
type Model {
linear(formula: String, data_name: String): LinearModel 
loess(formula: String, data_name: String): LoessModel 

}
schema { query: Model }
" %>% 
gqlr::gqlr_schema( 
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ImageBase64 = function(p, schema) {
tmp_file <- tempfile(fileext = ".png") 
on.exit(unlink(tmp_file)) 
ggplot2::ggsave(tmp_file, p) 
knitr::image_uri(tmp_file) %>% 
# shorten for display purposes 
substr(start = 1, stop = 40) %>% 
paste0("...") 

}, 
LinearModel = function(model, schema) {
list( 
mse = mean(model$residuals ^ 2), 
ggnostic = function(...) {
GGally::ggnostic(model) 

})}, 
LoessModel = function(model, schema) {
list( 
mse = mean(model$residuals ^ 2), 
enp = model$enp 

)}, 
Model = function(ignore, schema) {
model_ <- function(fn_) {
function(null, args, schema) {
formula_ <- as.formula(args$formula) 
data_ <- eval(as.symbol(args$data_name)) 
fn_(formula_, data = data_) 

}}
list( 
linear = model_(stats::lm), 
loess = model_(stats::loess) 

)}) -> 
model_schema 

In about 40 lines of code, a schema definition and execution methods can be 

implemented. To build a strong typed API and its corresponding implementation in 

less than 100 lines is not an easy task. With gqlr, we are able to do it in less than 

half the lines of code. 

In the implementation, four major R packages are called. 

1. stats is used for the linear model function and loess function. 

2. GGally is used to call its model diagnostic plot matrix, ggnostic . 

3. ggplot2 is used to save the plot objected created by GGally. 
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4. knitr is used for its ability to data64 encode images saved by ggplot2. 

These packages are built upon many other R packages and displays the extensi-

bility of a schema execution. 

To see the Model schema in action, we can execute a request using the classic R 

data set “iris”. 

'# GraphQL; Query 
{ 
linear( 
formula: "Petal.Length ~ Petal.Width", 
data_name: "iris" 

) {
mse, 
ggnostic 

}
loess( 
formula: "Petal.Length ~ Petal.Width", 
data_name: "iris" 

) {
mse, 
enp 

}
}' %>% 
gqlr::execute_request(schema = model_schema) -> 

result 

result 
## { 
## "data": { 
## "linear": { 
## "mse": 0.2256, 
## "ggnostic": "data:image/png;base64,iVBORw0KGgoAAAANSU..." 
## }, 
## "loess": { 
## "mse": 0.1444, 
## "enp": 4.0584 
## } 
## } 
## } 

While R users might not find the query and output very compelling (as they can 

be done in a regular R session), it is good to remember that any web service with 

access to the R Model schema can execute a similar command and get an answer 
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that is executed by R. During the request execution, any R package can be used. 

Being able to open the flood gates to R’s extensive package list is very powerful. This 

allows Javascript in the browser and Python programs to retrieve full R plots and R 

model outputs using the same GraphQL API. 

This schema can also be executed in a local GraphQL server session or on a 

production GraphQL server. Both the local and production servers have the same 

schema, so each service will return the same shapes. Each querying programming 

language will have the same query string and receive the same shaped response. 

4.5.3 Web service 

A simple web server is included in gqlr, but extending the web server to other 

url routes and authentication services are not included. gqlr was built to handle 

GraphQL requests and leave the url routing and authentication to better suited pack-

ages. While some may argue for a single, go-to R package, there are many existing 

URL request handlers and authenticators existing for R. 

4.6 Summary 

gqlr leverages the GraphQL language to effectively and efficiently communicate 

custom defined queries to and from the server. gqlr provides users the ability to 

rapidly iterate in a local R environment to mock large production-scale data backends. 

Combining R’s fast iteration speed with R’s ability to connect to many different 

existing backend services saves developers time and effort while keeping the data API 

communication consistent. 
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5. SUMMARY 

In this thesis, I have described 

i) ggduo , an R function that produces generalized plot matrices for two groups 

of variables, 

ii) autocogs, an R package that automatically generates cognostics for a set of 

plots, and 

iii) gqlr, an R package which implements the GraphQL data query application 

protocol interface. 

ggduo extended the application of the generalized pairs plot to a generalized 

plot matrix for two-grouped data. This function has direct application to canonical 

correlation analysis and was extended by ggnostic to produce a generalized plot 

matrix for model diagnostics and ggts to produce a generalized plot matrix for time 

series data. These ggplot2-style plot matrices are implemented using the ggmatrix 

plot object in GGally. 

autocogs implemented multiple standard cognostic groups to be automatically 

produced given the different plot layers of a ggplot2 visualization. Each layer within 

a plot is connected to multiple cognostic groups. These sets of cognostics are then 

leveraged within a trelliscopejs HTML widget to aid in its data panel exploration. 

These cognostics alleviate the user from creating each cognostic value manually in the 

data set speeding up the data exploration process. 

gqlr implemented the GraphQL server within the R environment. The GraphQL 

query language minimized the number of incoming data requests. By decoupling the 

websites and the stored data, iteration speed is increased in both web site development 

and data storage development. gqlr enabled R users to make use of the GraphQL 

query language for efficient data extraction and statistical modeling. 
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5.1 Discussion and Future Work 

5.1.1 Interactive data exploration 

The scale of data sets in practice is increasing at a rapid rate. htmlwidgets [15] 

has opened a new form of interactive visualization tools for R by leveraging Javascript 

in the web browser. There are two limitations that quickly occur: the amount of 

memory provisioned for the widget and the amount of data that is transferred to the 

web page. Both web browser limitations restrict web pages to host only small-sized 

(in memory only) data. crosstalk [53] currently handles communication between 

htmlwidgets that use small data. 

To showcase the impact of memory limitations, let us consider a simple example 

where we would like to plot two density curves and a scatterplot using the same data 

set. If the data set is already considered small data, there should be little difficulty 

calculating and displaying density curves within the web page and displaying all three 

graphs. Selecting regions of any visualization panel could highlight the selected subset 

of information in the remaining visualizations. However, if the data is not small data 

and is too large to fit in memory, it requires an approach that must sacrifice either 

data quantity or the ability to interact within the browser to produce similar results. 

If the data must be kept in the browser, a sample of the population data could be 

used. If all visualizations can be rendered outside of the web browser, the difficulty 

of the data visualization can be outsourced to where the data is located. Neither of 

these situations allow for native interactive data exploration within the browser on 

the full, raw data set. An argument could be made for calculating histograms with 

very small binwidths to generate the density curves and using very small square or 

hexagonal bins for the scatterplot. While these summary statistics could be made 

small enough to fit within memory, this solution does not operate directly on the 

original data set. 
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5.1.2 Visualization syntax 

Two of the latest interactive visualization systems within R have integrated with 

existing, non-R visualization libraries: rbokeh and plotly. Both R packages execute 

commands within the R session to produce a single JSON specification that is under-

stood by the visualization library. Unfortunately, each of the R packages reinvented 

the wheel when it came to adding layers to their respective plots. ggplot2 has proved 

itself to be an effective R package at creating visualizations. However, I would like to 

see the generation of data visualization objects and the displaying of said visualization 

objects have integratable plotting routines. 

For example, a plot could be created using “ggplot2 syntax” and displayed using 

the Bokeh [54] visualization library. The “ggplot2 syntax” package would calculate 

• how data should be displayed, 

• the range of each axes and where the breakpoints are, 

• what is displayed within each legend, and 

• any extra annotation material such as a title or caption. 

This plot construction information would then be passed to a thin “display only” 

data visualization library needed to reproduce the visualization within the respective 

library. An example implementation is shown below using a theoretical “ggplot2 syn-

tax” R package ggsyntax and a theoretical “display only” packages display_bokeh 

for Bokeh and display_plotly for Plotly. 

# create a plot object 
# add all x,y data as points 
# calculate and add a linear model on x,y data 
p <- ggsyntax::setup(example_data, ggsyntax::aes(x, y)) + 
ggsyntax::geom_point() + 
ggsyntax::geom_smooth(method = "lm") 

# display using the Bokeh visualization library 
display_bokeh::from_ggsyntax(p) 
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# display using the Plotly visualization library 
display_plotly::from_ggsyntax(p) 

The same plot object could be utilized by many different data visualization pack-

ages within R. This allows users to ingrain a consistent coding behavior when using 

any visualization library. 
It could be argued that after a ggplot2 plot is built, not drawn, 

after_built <- ggplot_build(p) 

the plot object could then be transformed to be used in a different visualization 

library. While this is not impossible, the currently built ggplot2 plot object does not 

readily contain all necessary information to be displayed by another library. Some 

internal routines are still needed to finalize the plot’s production information. 
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A. R PACKAGE DESCRIPTIONS 

The following alphabetically sorted package descriptions are excerpts from their DE-

SCRIPTION files. 

autocogs: “Automatic Cognostic Summaries” 

“Automatically calculates cognostic groups for plot objects and list column plot 

objects. Results are returned in a nested data frame.” [13] 

GGally: “Extension to ggplot2” 

“The R package ggplot2 is a plotting system based on the grammar of graphics. 

GGally extends ggplot2 by adding several functions to reduce the complexity of 

combining geometric objects with transformed data. Some of these functions include 

a pairwise plot matrix, a two group pairwise plot matrix, a parallel coordinates plot, 

a survival plot, and several functions to plot networks.” [55] [56] 

ggplot2: “Create elegant data visualisations using ‘The Grammar of Graph-

ics’ ” 

“ggplot2 is a system for declaratively creating graphics, based on The Grammar 

of Graphics. You provide the data, tell ggplot2 how to map variables to aesthetics, 

what graphical primitives to use, and it takes care of the details.” [57] [7] 
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gqlr: “GraphQL server in R” 

“Server implementation of ‘GraphQL’ [39], a query language created by Facebook 

for describing data requirements on complex application data models. Visit http: 

//graphql.org [38] to learn more about ‘GraphQL’.” [40] [58] 

lattice: “Trellis graphics for R” 

“A powerful and elegant high-level data visualization system inspired by Trellis 

graphics, with an emphasis on multivariate data. Lattice is sufficient for typical graph-

ics needs, and is also flexible enough to handle most non-standard requirements.” [6] 

htmlwidgets: “HTML Widgets for R” 

“A framework for creating HTML widgets that render in various contexts includ-

ing the R console, ’R Markdown’ documents, and ’Shiny’ web applications.” [15] [59] 

plotly: “Create Interactive Web Graphics via ‘plotly.js’ ” 

“Easily translate ggplot2 graphs to an interactive web-based version and / or 

create custom web-based visualizations directly from R. Once uploaded to a ‘plotly’ 

account [60], ‘plotly’ graphs (and the data behind them) can be viewed and modified 

in a web browser.” [9] [61] 

rbokeh: “R interface for Bokeh” 

“A native R plotting library that provides a flexible declarative interface for 

creating interactive web-based graphics, backed by the Bokeh visualization library 

http://bokeh.pydata.org/.” [8] [62] 

http://graphql.org
http://graphql.org
http://bokeh.pydata.org/
https://plotly.js


121 

trelliscopejs: “Create interactive Trelliscope displays” 

“Trelliscope is a scalable, flexible, interactive approach to visualizing data. This 

package provides methods that make it easy to create a Trelliscope display speci-

fication for trelliscopejs. High-level functions are provided for creating displays 

from within dplyr or ggplot2 workflows. Low-level functions are also provided for 

creating new interfaces.” [63] 
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B. DATA SETS 

Restaurant tips 

reshape::tips %>% as_data_frame() 

## # A tibble: 244 x 7 
## total_bill tip sex smoker day time size 
## * <dbl> <dbl> <fctr> <fctr> <fctr> <fctr> <int> 
## 1 16.99 1.01 Female No Sun Dinner 2 
## 2 10.34 1.66 Male No Sun Dinner 3 
## 3 21.01 3.50 Male No Sun Dinner 3 
## 4 23.68 3.31 Male No Sun Dinner 2 
## 5 24.59 3.61 Female No Sun Dinner 4 
## 6 25.29 4.71 Male No Sun Dinner 4 
## 7 8.77 2.00 Male No Sun Dinner 2 
## 8 26.88 3.12 Male No Sun Dinner 4 
## 9 15.04 1.96 Male No Sun Dinner 2 
## 10 14.78 3.23 Male No Sun Dinner 2 
## # ... with 234 more rows 

Psychological and academic data 

psychademic %>% as_data_frame() 

## # A tibble: 600 x 8 
## locus_of_control self_concept motivation read write math 
## <dbl> <dbl> <chr> <dbl> <dbl> <dbl> 
## 1 -0.84 -0.24 4 54.8 64.5 44.5 
## 2 -0.38 -0.47 3 62.7 43.7 44.7 
## 3 0.89 0.59 3 60.6 56.7 70.5 
## 4 0.71 0.28 3 62.7 56.7 54.7 
## 5 -0.64 0.03 4 41.6 46.3 38.4 
## 6 1.11 0.90 2 62.7 64.5 61.4 
## 7 0.06 0.03 3 41.6 39.1 56.3 
## 8 -0.91 -0.59 3 44.2 39.1 46.3 
## 9 0.45 0.03 4 62.7 51.5 54.4 
## 10 0.00 0.03 3 62.7 64.5 38.3 
## # ... with 590 more rows, and 2 more variables: science <dbl>, 
## # sex <chr> 
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Election demand 

fpp2::elecdemand %>% head() 

## Time Series: 
## Start = c(2014, 1) 
## End = c(2014, 6) 
## Frequency = 17520 
## Demand WorkDay Temperature 
## 2014 3.698171 0 16.1 
## 2014 3.426123 0 16.0 
## 2014 3.295835 0 15.6 
## 2014 3.166052 0 15.4 
## 2014 3.071107 0 15.4 
## 2014 2.999543 0 15.5 

fpp2::elecdemand %>% 
as_data_frame() %>% 
mutate( 
WorkDay = factor(c("No", "Yes")[WorkDay + 1], levels = c("Yes", "No")), 
# Time = zoo::as.Date(zoo::as.Date(time(elecdemand))) 
Year = 2014, 
Day = rep(1:365, each = 48), 
HighUsage = c("below", "above")[(Demand > median(Demand)) + 1] 

) %>% 
filter(Day <= 100) %>% 
mutate(Time = as.Date(Day, origin = "2014-01-01")) -> 

elec_median 

elec_median 

## # A tibble: 4,800 x 7 
## Demand WorkDay Temperature Year Day HighUsage Time 
## <dbl> <fctr> <dbl> <dbl> <int> <chr> <date> 
## 1 3.698171 No 16.1 2014 1 below 2014-01-02 
## 2 3.426123 No 16.0 2014 1 below 2014-01-02 
## 3 3.295835 No 15.6 2014 1 below 2014-01-02 
## 4 3.166052 No 15.4 2014 1 below 2014-01-02 
## 5 3.071107 No 15.4 2014 1 below 2014-01-02 
## 6 2.999543 No 15.5 2014 1 below 2014-01-02 
## 7 2.955342 No 15.3 2014 1 below 2014-01-02 
## 8 2.927419 No 15.1 2014 1 below 2014-01-02 
## 9 2.934816 No 15.1 2014 1 below 2014-01-02 
## 10 2.932894 No 15.1 2014 1 below 2014-01-02 
## # ... with 4,790 more rows 
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Flea 

GGally::flea %>% as_data_frame() 

## # A tibble: 74 x 7 
## species tars1 tars2 head aede1 aede2 aede3 
## <fctr> <int> <int> <int> <int> <int> <int> 
## 1 Concinna 191 131 53 150 15 104 
## 2 Concinna 185 134 50 147 13 105 
## 3 Concinna 200 137 52 144 14 102 
## 4 Concinna 173 127 50 144 16 97 
## 5 Concinna 171 118 49 153 13 106 
## 6 Concinna 160 118 47 140 15 99 
## 7 Concinna 188 134 54 151 14 98 
## 8 Concinna 186 129 51 143 14 110 
## 9 Concinna 174 131 52 144 14 116 
## 10 Concinna 163 115 47 142 15 95 
## # ... with 64 more rows 

Gapminder 

gapminder::gapminder %>% as_data_frame() 

## # A tibble: 1,704 x 6 
## country continent year lifeExp pop gdpPercap 
## <fctr> <fctr> <int> <dbl> <int> <dbl> 
## 1 Afghanistan Asia 1952 28.801 8425333 779.4453 
## 2 Afghanistan Asia 1957 30.332 9240934 820.8530 
## 3 Afghanistan Asia 1962 31.997 10267083 853.1007 
## 4 Afghanistan Asia 1967 34.020 11537966 836.1971 
## 5 Afghanistan Asia 1972 36.088 13079460 739.9811 
## 6 Afghanistan Asia 1977 38.438 14880372 786.1134 
## 7 Afghanistan Asia 1982 39.854 12881816 978.0114 
## 8 Afghanistan Asia 1987 40.822 13867957 852.3959 
## 9 Afghanistan Asia 1992 41.674 16317921 649.3414 
## 10 Afghanistan Asia 1997 41.763 22227415 635.3414 
## # ... with 1,694 more rows 

Iris flower 
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iris %>% as_data_frame() 

## # A tibble: 150 x 5 
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species 
## <dbl> <dbl> <dbl> <dbl> <fctr> 
## 1 5.1 3.5 1.4 0.2 setosa 
## 2 4.9 3.0 1.4 0.2 setosa 
## 3 4.7 3.2 1.3 0.2 setosa 
## 4 4.6 3.1 1.5 0.2 setosa 
## 5 5.0 3.6 1.4 0.2 setosa 
## 6 5.4 3.9 1.7 0.4 setosa 
## 7 4.6 3.4 1.4 0.3 setosa 
## 8 5.0 3.4 1.5 0.2 setosa 
## 9 4.4 2.9 1.4 0.2 setosa 
## 10 4.9 3.1 1.5 0.1 setosa 
## # ... with 140 more rows 
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C. R PACKAGES 

The following sections contain publically exported functions where I created or have 

made significant contributions. 

C.1 GGally 

- +.gg : Modify a ggmatrix object by adding an ggplot2 object to all plots 

This operator allows you to add ggplot2 objects to a ggmatrix object. 

- broomify : Broomify a model 

broom::augment a model and add broom::glance and broom::tidy output 

as attributes. X and Y variables are also added. 

- find_plot_type : Find Plot Types 

Retrieves the type of plot for the specific columns. 

- fn_switch : Function switch 

Function that allows you to call different functions based upon an aesthetic 

variable value. 

- ggally_barDiag : Plots the Bar Plots Along the Diagonal 

Plots the bar plots along the diagonal of a ggpairs plot. 

- ggally_blank , ggally_blankDiag : Blank Plot 

Draws nothing. 

- ggally_box , ggally_box_no_facet : Box Plot 

Make a box plot with a given data set. ggally_box_no_facet will be a single 

panel plot, while ggally_box will be a faceted plot. 

- ggally_cor : Correlation from the Scatterplot 

Estimate the correlation from the provided data. 
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- ggally_density : Scatter Density Plot 

Produce a scatter density plot from a provided data. 

- ggally_densityDiag : Density Plot Along the Diagonal 

Produce density plot along the diagonal. 

- ggally_denstrip : Tile Plot with Facets 

Facet a tile plot using the provided data. 

- ggally_dot , ggally_dot_no_facet : Dot Plot with Facets 

Facet a dot plot using the provided data. 

- ggally_facetbar : Bar Plot with Facets 

X variables are plotted using ggplot2::geom_bar 

able. 

- ggally_facetdensity : Density Plot with Facets 

Facet a density plot using the provided data. 

- ggally_facethist : Histogram Plot with Facets 

Facet a histogram plot using the provided data. 

- ggally_na , ggally_naDiag : NA plot 

and faceted by the Y vari-

Draws a large NA in the middle of the plotting area. This plot is useful when 

all X or Y data is NA . 

- ggally_nostic_cooksd : ggnostic - Cooks Distance 

A function to display stats::cooks.distance . 

- ggally_nostic_hat : ggnostic - Leverage Points 

A function to display stats::influence s hat information against a given ex-

planatory variable. 

- ggally_nostic_line : ggnostic - Background Line with Geom 

If a non-null linePosition value is given, a line will be drawn before the given 

continuous_geom or combo_geom is added to the plot. 
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- ggally_nostic_resid : ggnostic - Residuals 

If non-null p value and sigma values are given, confidence interval lines will be 

added to the plot at the specified p value percentiles of a N(0, σ) distribution. 

- ggally_nostic_se_fit : ggnostic - Fitted Value Standard Error 

A function to display stats::predict s standard errors. 

- ggally_nostic_sigma : ggnostic - Leave One Out Model Sigma 

A function to display stats::influence s sigma value. 

- ggally_nostic_std_resid : ggnostic - Standardized Residuals 

If non-null p value and sigma values are given, confidence interval lines will be 

added to the plot at the specified p value locations of a N(0, 1) distribution. 

- ggally_points : Scatterplot 

Produces a scatterplot using the provided data. 

- ggally_ratio : Mosaic Plot 

Produces a mosaic plot using fluctuation. 

- ggally_smooth , ggally_smooth_loess , ggally_smooth_lm : Scatterplot with 

Smoothing 

Produces a smoothed line on top of a scatterplot. 

- ggally_text : Text Plot 

Display text in the middle of a plot while maintaining a background scales. 

- ggduo : A ggplot2 Generalized Pairs Plot for Two Columns Sets of a data.frame 

Make a matrix of plots with a given data set with two different column sets. 

- ggfacet : Single ggplot2 Plot Matrix with facet_grid 

Produce a single ggplot2 object using ggplot2::facet_grid . 

- gglegend : Legend of Plot Function 

Only display the legend of a plot. Use this function to retrieve the only legend. 

- ggmatrix : Aggplot2Plot Matrix 

Make a generic plot matrix of ggplot2 plots. 
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- ggmatrix_gtable : Compute the ggmatrix gtable 

This functino builds all plots necessary for displaying the plot matrix and stores 

them in a ggplot2 plot gtable . 

- ggnostic : Statistical Model Diagnostics Plot Matrix 

Display commonly known linear model diagnostics against model predictor vari-

ables in a ggmatrix . 

- ggpairs : A ggplot2Generalized Pairs Plot 

Produce plots of all variable combinations with different plot types for the upper 

triangle, lower triangle, and diagonal of the plot matrix. 

- ggts : Multiple Time Series 

GGallyimplementation of ts.plot. Wraps around the ggduo function and removes 

the column strips. 

- grab_legend : Extract a ggplot2 Legend 

Extract the legend of a ggplot2 object to be drawn at a later time. 

- print.ggmatrix : Print a ggmatrix object 

Print method altered from ggplot2:::print.ggplot to accomodate a ggma-

trix object 

- v1_ggmatrix_theme : Original ggmatrix Layout theme 

Modify a ggmatrix object by adding an ggplot2 object to all plots 

- wrap , wrapp , wrap_fn_with_params , wrap_fn_with_param_arg : Wrap a 

Function with Different Parameter Values 

Wraps a function with the supplied parameters to force different default behav-

ior. This is useful for functions that are supplied to ggpairs . It allows you 

to change the behavior of one function, rather than creating multiple functions 

with different parameter settings. 
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C.2 autocogs 

- add_cog_group : Add a Cognostic Group 

Add a new cognostic to be used when calculating automatic cognostics. 

- add_layer_cogs : Add Plot Layer Cognostics 

Add a new set of cognostic groups for a given plot layer. If the plot layer is 

found, the corresponding cognostic groups will be calculated. 

- auto_cog : Cognostic Group Function 

Calculate an automatic cognostic function given a cognostic group name. 

- cog_desc : Cognostic and Description 

Add a description to a cognostic. 

- cog_group_df : Cognostic Group data.frame 

Make a cognostics group data frame to be passed into add_layer_cogs 

- field_info : Field Type Info 

- layer_count : Number of Layers in Plot 

Retrieve the number of layers in a given plot 

- layer_info : Plot Layer Information List 

Retrieve the data and parameter information for all layers of a plot. 

- panel_cogs , add_panel_cogs : Calculate Panel Cognostics 

Return or concatinate panel cognostics. For each panel (plot) in the panel col-

umn, cognostics will be calculated for each panel. The result will be returned in 

a nested tibble::tibble . 

- plot_class : Plot Class 

First class of the plot object. Exception is ggplot2 as many objects are of class 

gg. 
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C.3 trelliscopejs 

- +.gg ggplot2Add Method 

Add method for gg / facet_trelliscope . 

- as_cognostics As Cognostics 

Cast a data frame as a cognostics data.frame . 

- facet_trelliscope trelliscopejs Faceting 

Facet using a trelliscopejs wigit. This function uses ggplot2::facet_wrap 

and ggplot2::facet_grid like syntax. 

- print.facet_trelliscope Print a facet_trelliscope Object 

Prints a trelliscopejs wigit by saving the necessary files to disk. Like ggplot2, 

this allows for all plot alterations to be executed independently before print time. 

- trelliscope Create a trelliscopejs Display 

Creates a trelliscopejsdisplay by writing all necessary files to disk. 

C.4 gqlr 

- as_R6 : As R6 

Debug method that strips all gqlr classes and assigns the class as ’R6’ 

- ErrorList : ErrorList 

Handles all errors that occur during query validation. This object is returned 

from execute request function ( ans <- execute_request(query, schema) ) 

under the field error_list ( ans$error_list ). 

- execute_request : Execute GraphQL server response 

Executes a GraphQL server request with the provided request. 

- gqlr_schema : Create Schema definitions 

Creates a Schema object from the defined GraphQL string and inserts the pro-

vided descriptions, resolve methods, and resolve_type methods into the ap-

propriate place. 
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- parse_ast : Parse AST 

This is a helper function for Scalars. Given a particular kind and a resolve 

function, it produces a function that will only parse values of a particular kind. 

- Schema : GraphQL Schema object 

Manages a GraphQL schema definition. A Schema can add more GraphQL type 

definitions, assist in determining definition types, retrieve particular definitions, 

and can combine with other schema definitions. 

Typically, Schema class objects are created using gqlr_schema . Creating a 

Schema$new() object should be reserved for when multiple Schema objects are 

combined. 

- Schema : Run basic GraphQL server 

Run a basic GraphQL server with the jug package. This server is provided to 

show basic interaction with GraphQL. The server will run until the function 

execution is canceled. 



VITA 
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