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ABSTRACT

Chen, Chao-Ying M.S.M.E., Purdue University, May 2018. Droplet Spreading on
a Substrate. =~ Major Professors: Arezoo Ardekani and Sadegh Dabiri, School of
Mechanical Engineering.

The present work focuses on spreading dynamics of thin viscous droplets on a
planar and smooth substrate in a small Reynolds number regime. The droplets are
affected by gravity, surface tension and viscous forces. For triple-phase zone, the
moving contact-line models are provided to remove the singularity at the edge of
the droplet. Our aim of this study is to predict the experimental results and extend
the analysis to spreading on a porous substrate. Besides, we quantify the role of
rheological parameters, for example, exponent for power-law liquids, on the spreading
dynamics.

The mathematical models for a Newtonian droplet and power-law droplet spread-
ing over different substrates are derived using the lubrication theory. The flow inside
the saturated porous media is described by the Darcy’s law for Newtonian liquids
or modified Darcy’s law for power-law fluids, assuming a discontinuous wetting front
separating the saturated from the unsaturated domain. In the cases for spreading
over porous media, we use the Beavers and Joseph boundary condition for tangential
velocity on the surface of the substrate. In the end of the theoretical derivation, we
have a fourth order nonlinear diffusion partial differential equation for the profile of
droplet and a second order nonlinear diffusion partial differential equation for the
wetting front for the case of porous substrate.

The governing equations are solved numerically using a finite difference formula-
tion, augmented by the use of Newton-Raphson iteration scheme to treat the non-
linearity. We choose a backward-Euler method for the time advancement algorithm.

Finally, numerical results are presented to demonstrate the dependence of spreading



exponent on rheological properties of fluids and the results are validated by the Tan-
ner’s law when the liquid is Newtonian. The dependence well matches the analytical
relation (Starov et al. [1]) despite different choices of contact-line conditions. For
the case of shear-thinning droplet spreading on a solid substrate, the numerical re-
sults are compared with the experimental data for xanthane droplet (Rafai, Bonn, &
Boudaoud [2]). Our analysis for spreading over an impermeable substrate can capture
the behavior of the Tanner’s law when the permeability number is zero. For cases
of spreading over a porous substrate, the evolution of the contact radius and central
height of the droplet follows the Tanner’s law during the initial spreading period. The
dependence of the evolution of radius and central height on the permeability number
is reported in this study. Finally, we compare the evolution of contact radius of a
PDMS droplet against the experimental results reported in Denesuk et al. [3] and the

numerical results from Alleborn & Raszillier [4].



1. INTRODUCTION

The spreading of a droplet on a smooth solid surface is not only an interest-
ing phenomenon but also a difficult moving-boundary problem in fluid mechanics.
Besides its difficulty associated with the moving interface, the motion of a fluid in
the neighborhood of the contact line presents an additional complexity. The no-slip
condition, which is normally used at the boundary between a solid and a liquid, intro-
duces a force singularity at the contact line (Huh & Scriven [5]; Dussan & Davis [6];
and Gennes [7]). This condition is replaced with the Navier slip boundary condition
to relax the singularity at the contact line (Dussan & Davis [6]; Huh & Mason [§];
Hocking [9]; Davis [10]; and Haley & Miksis [11]). Many experiments found that the
behavior of the contact angle is a complicated function of contact-line speed. The
relation between contact angle and contact-line speed has been experimentally deter-
mined (e.g. Hoffman [12]; Johnson, Dettre & Brandeth [13]; Dussan [14]; Chen [15]).
Tanner’s law is observed in these experiments. The competition between capillary
and viscous forces determines the speed of the contact line, leading to Tanner's law,
R ~ tY1° (Tanner [16]). In this study, we use the experimental fitting relation from
Chen et al. [15] and the molecular kinematic theory from Blake et al. [17] to represent
the contact-line dynamics for cases of the spreading on a smooth, solid substrate.

There are many studies investigating the spreading of a small droplet on a surface.
For instance, Greenspan [18] and Lopez, Miller, & Ruckenstein |19] constructed a
model for the movement of a small viscous droplet on a surface that is based on
the lubrication equations and uses the dynamic contact angle to describe the forces
acting on the fluid at the contact line. Haley & Miksis [11] investigated how different
relations between the contact angle and contact-line speed affect the spreading of a
droplet. They found that the spreading rates strongly depend on the form of these

relationships but the qualitative features of the droplet motion are similar in all



cases. More comparisons against the experiments should be carried out to study the
accuracies of different contact-line descriptions.

The spreading of non-Newtonian liquids is more complicated than the spreading
of Newtonian liquids. The main difficulty of studying the spreading dynamics of
non-Newtonian fluids is that many constitutive models are nonlinear. It is difficult
to analytically include the complex constitutive models and to form the lubrication
equations. However, it is still possible to numerically solve the Navier-Stoke’s equation
coupled with the constitutive equation (Izbassarov & Muradoglu [20]; Tome et al.
[21]). Many theoretical studies and experiments use power-law fluids to focus on the
shear-thinning behavior (King [22]; Starov et al. [1]; Rafal, Bonn, & Boudaoud [2]).
In the present study, we consider a power-law fluid in our mathematical formulation.
The detailed derivation is shown in Section 2.3.

Capillary and gravitational spreading of particulate thin films or droplets coupled
with absorption into substrate is an important industrial process for applications
like coating-flow and ink-jet printing. For cases of a Newtonian droplet spreading
on a porous substrate, there are two ways to study the dynamics of the spreading
and the absorption of a droplet. We can numerically solve the Navier-Stoke’s equa-
tions coupled with the movement of the free surface (Reis, Griffiths, & Santos [23)]).
This method requires an interface capturing technique, for example, volume of fluid
or level-set method, to capture the movement of the free surface (Nichols, Hirt, &
Hotchkiss [24]; Zheng & Zhang [25]; Reis, Griffiths, & Santos [23]). During the numer-
ical implementation, special attention should be given to the effects of surface tension
and capillary forces, the movement of the wetting front inside the porous substrate,
and the link between the flow outside and inside the porous medium. The advantage
of this method is that the governing equations don’t require the droplet to be thin
and are not limited to a low Reynolds number regime. Therefore, we can study the
impact, spreading, impingement of a spherical droplet on the substrate. However,
this method requires more efforts on numerical programing and implementation. Be-

sides, it demands more computational resources than solving the one-dimensional



lubrication equation to achieve the same level of the accuracy. Another approach
is to construct two coupled lubrication-type equations (Eq. 2.176 and Eq. 2.187 in
chapter 2) based on the thin film approximation (Alleborn & Raszillier |4]; Zadrazil,
Stepanek, & Matar [26]; Espin & Kumar [27]). Small ratio of the characteristic height
to the characteristic radius and low Reynolds number are required. Despite these lim-
itations, this method requires less effort on the numerical implementation. Several
authors conducted the experiments to quantify the competition of the spreading and
absorption (Daniel & Berg [2§]; Denesuk et al. [3]). Two simple models under two
limiting cases are proposed to model the kinetic behavior of the droplet: constant-
drawing-area model and decreasing-drawing-area model. In decreasing-drawing-area
model, the contact angle of the droplet remains constant as the liquid penetrates
into the porous substrate. The radius of the droplet decreases as the penetration
proceeds. In constant-drawing-area model, the position of the contact line remains
constant through the absorption process, with an associated contact-line hysteresis.
A schematic representation (Fig. 1.1) is provided below to demonstrate the ideas
mentioned above. Although these two limiting cases can not represent the entire
experiments, they can indicate the upper and lower limits on the liquid depletion
time (Denesuk et al. [3]). The competition between the viscous spreading of liquid
on a substrate and the absorption by the substrate is analytically studied by Davis &
Hocking [29], [30] for a pure Newtonian droplet spreading on a porous substrate for
some limiting cases, for instance, cases of small porosities and case of zero porosity
(i.e., spreading over an impermeable medium).

The required information for the mathematical formulation is given in section 1.1,

1.2 and 1.3.

1.1 Lubrication Theory (Thin Film Approximation)

The lubrication theory, or thin film approximation, describes the flow of fluids in a

geometry in which one dimension is significantly smaller than the others. Mathemat-



ically, thin film approximation can be seen as exploiting the large difference between
two main spatial scales. In the free film lubrication theory, the position of the surface
is unknown. The lubrication theory can be used to find the equation describing the
position of the free surface. Surface tension plays an essential role. For an extremely
thin film, Van der waals forces or disjoining pressure may play a crucial role when
the film thickness is small. However, in this work, we don’t include the disjoining
pressure.

In the present study, the vertical length scale H is the original height of the
droplet and the horizontal length L is the initial radius of the droplet. The key
requirement is that the ratio e = H/L < 1 or ¢ — 0. A second requirement is that
the Reynolds number must be small. In this work, the Reynolds number of the flow
inside the droplet is around 1 x 1075 to 0.1. The inertial terms are negligible in
the lubrication limit compared to pressure gradient, body forces, and viscous terms.
Moreover, the transverse pressure gradient is negligible while longitudinal pressure
gradient is important. In sections 2.3 and 2.4, the details of simplification of the

governing equations are described.

1.2 The Slip Boundary Condition

The no-slip boundary condition between a fluid and a solid can cause a non-
physical issue in systems with a moving contact line. Several authors (Huh & Scriven
[5]; and Dussan & Davis [6]) have shown that the issue of stress singularity occurring
at the contact-line is resulted from the application of no slip boundary condition at
solid boundaries. The normal way to alleviate the singularity is to allow the liquid
near contact line slip on the solid surface (Dussan & Davis [6]; Huh & Mason [§];
Hocking [9]; Davis |10]; and Haley & Miksis |11]). Therefore, in the present study,
the slip effect is only implemented near the contact line using the Navier’s slip given
as follows:

—

Ulemo = A(h)ii - E-T#0 . (1.1)



Here, i and ¢ are the unit normal and tangential vectors at the fluid solid interface.
L is the rate-of-deformation tensor. The slip model, A(h), is a function of droplet

height defined as follows (Haley & Miksis [11]):

() =

Ba

)\o(h) = Bo, )\1<h) = ﬁ ) (1-2)

where [y, f1, and [y are the slip coefficients corresponding to different slip models,

Ao, A1(h), and Ay(h), respectively.

1.3 Beavers and Joseph Boundary Condition

The continuity of normal velocity and pressure holds for the droplet on a porous
substrate. However, the no slip condition for the tangential velocity is not accurate.
The condition for the flow over a porous medium has been investigated by Beavers &
Joseph [31]. They proposed that the tangential velocity rapidly changes from Darcian

velocity to the fluid velocity at the surface of the medium as shown in Fig. 1.2 :

du 15}

dZ‘Z:O_\/E( |z:0_up)v

(1.3)

where (3 is the slip coefficient,  is the permeability of the porous medium, and wu,, is
the volume-average velocity inside the porous substrate. The boundary condition is

experimentally validated by Beavers & Joseph [31].



/N

(a) Decreasing drawing area model (b) Constant drawing area model

Figure 1.1. Schematic representation of (a) the decreasing drawing area and
(b) constant drawing area models.

A

Impermeable wall

AN

Figure 1.2. Schematic of Beavers and Joseph boundary condition.



2. MATHEMATICAL FORMULATION

2.1 Problem Description and Physical Model

Consider an axisymmetric thin droplet of incompressible viscous liquid placed
on a smooth, solid substrate as shown in Fig. 2.1. The droplet spreads under the
effect of gravity and the unbalanced surface forces. The spreading is affected by
the properties of the fluid and the interaction in three phase zone. The nature of
spreading dynamics is characterized by the movement of the contact point, flow near
the edge, and surface properties of the solid. The spreading rate strongly depends on
the contact line motion. The effect of Navier’s slip condition will only be included in
the case of Newtonian fluid spreading over a solid surface to resolve the issue of stress
singularity at the contact point. For the case of power-law droplet spreading over a
solid, Navier’s slip condition won’t be implemented in the formulation and discussion

will be made regarding the decision.

— L~

R(t)

-— W

Figure 2.1. Schematic of droplet spreading over a solid surface.



Let r be the horizontal spatial variable and z be the vertical spatial variable. Due
to the axisymmetry of the problem, we choose cylindrical coordinate to present the
independent variables. Besides, the velocity in 6-direction and the partial derivative
with respect to 6 are zero. The fluids flow inside the drop can be modeled by the

mass conservation equation and Navier-Stoke’s equation in dimensional form:

10 ow

ou ou Ou,  Op

ow ow ow,  Jp
gy +ug - +wo-) ===+ plw = pg (2.3)

Here, u(r, z,t) and w(r, z,t) denote the tangential and vertical velocity, respectively,
inside the droplet. No slip boundary condition at the surface of substrate is

written as
Ulszo = wlzo =0, (2.4)
where ' = z — h(r,t) and 7 = VF/|VF|. The kinematic boundary condition at

the liquid-gas interface is written as

R 1 OF
w-n= VF| o (2.5)

After applying the gradient operator to F', we can write
VF =1-¢,—Vh. (2.6)

The normal vector 7 to a three-dimensional surface G(x,y, z) = 0 has the form

o VG
SV (AR AR A =0

where subscripts x, y and z, indicates the partial derivatives with respective to x, vy,
and z. In our case, the normal vector can be expressed as follows
e, —Vh

V1+|VR]2'

n=

(2.8)



where

Oh_  Oh
Vh = 567 + &

Substituting Eq. (2.6) and Eq. (2.8) into Eq. (2.5), we can find the free surface

€. . (2.9)

boundary condition in the vector form:

1 Vh

u-n = (ue, +wey) - €, — 2.10
( ) 1+ [Vh]? 1+|Vh|2) (2.10)
Oh
v Y (2.11)
V1+|VR?2 /14 |Vh]?
L or (2.12)

VIV Ot
Equating Eq. (2.11) and Eq. (2.12), the final form of kinematic boundary condition

at z = h becomes
oh oh

o T —w=0. (2.13)

Normal stress balance condition at z = h can be written as
P—P,—2uE-n-n)=0(V- i), (2.14)

where the rate-of-strain tensor is

1
E = 5(Vﬁ+ Vi) (2.15)
o 0 3(5:+%2)
= 0 o 0 (2.16)
(Gt 0
and the normal vector
_0h 1
=2 —f + ———¢, . (2.17)
1+ (%)2 14 (%)2

We, thus, have
Oou Oh 1/0u ow
—aror T3(5 T %)

E il ——— 0 , (2.18)
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I 1 ou ,0h oh ,Ou Ow ow

g'n'n_ljt(a—h)Q{@T(@r) 87“(8Z+87")+8z} (2.19)
or

1 -

[ er+0 €9+—€Z] (2.20)
1+ (§2)?
@
:_laﬁ e +aﬁ S ] . (2.21)
PO+ (82 L1+ (2

Substituting Eq. (2.19) and Eq. (2.21) into Eq. (2.14), we can have the final form of

normal stress balance condition as

P_p — 2/ ) [8u Oh., Oh Ou Ow aw]

r@elorer) "ol o) T as

10 rot 0
toy m oo =+ 5
ror 1_}_(5)2 z

#%)J }  (2.22)

The shear stress balance condition at z = h can be written as
2u(E -7 - 1;) — (Vs0) - b = Tear (2.23)

where 7.,; stands for the externally applied shear stress and the surface gradient is
defined as
V). (2.24)

St

Vs=V =1

In the present work, there is no externally applied shear stress. We treat surface ten-
sion coefficient as a constant, neglecting Marangoni effects in the problem. Therefore,
Eq. (2.23) becomes

2uE -ii-t;=0. (2.25)

Let tangential vector have the form

P A S —T— (2.26)
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Substituting Eq. (2.17) and Eq. (2.26) into Eq. (2.25), we can find that

.—; _%@4_} %_f_a_w _1 @+8_w % 2+8_w@ —0
L 1+(@)2 oror 2\ 0z Or 2\ 0z Or or oz or|

or
(2.27)

!

~

i

i

Eq. (2.1), Eq. (2.2), and Eq. (2.3) together with boundary conditions Eq. (2.4), Eq.
(2.13), Eq. (2.22), and Eq. (2.27) present the case for a Newtonian droplet spreading

over a solid surface.
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2.2 Mathematical Formulation (Newtonian Droplet)

A Newtonian droplet spreading either over a solid or porous substrate have already
been widely studied. However, there still exist some issues regarding the physical
representation of contact line motion over a solid or porous substrate. For cases of
spreading over a smooth and solid substrate, the Navier slip model is applied in our
analytical derivation and numerical computation to alleviate the stress singularity at
the contact line. Because the radius of the droplet is time dependent, we need the
contact-line boundary condition to govern the behavior of spreading. In the present
study, we apply two different contact line models in our simulation and provide a
comprehensive comparison of numerical results against experiments.

Moreover, the case of spreading over a porous substrate is investigated using
Beavers and Joseph conditions instead of no slip boundary conditions at the interface
of fluid-porous medium. The contact-line boundary condition on porous medium is
not completely known yet. Thus, we circumvent the inclusion of contact-line bound-
ary condition in numerical computation by using the idea of fixed-domain computa-
tion. The details of numerical implementation for stretched-grid method and fixed-
domain computation are described in chapter 3. The results and comparisons are

reported in chapter 3 as well.

2.2.1 Spreading Over a Solid Substrate

To analyze the system described in the previous section, Navier-Stokes equations
as well as the boundary condition from Section 2.1 are made dimensionless by the

following relations:

u=u.-u,h=H-b,r=L-vp=p.-p

L
w=w.-w,z=H- -2 t= (—)t'

Ue
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Note that the variables with primes denotes the dimensionless ones. Substituting
above relations, we can rewrite Eq. (2.1)) as
1 o(L-7"u.-u)  Ow.-w)
=0 2.28
L-r Lor' + Hoz ’ (2:28)
ue 1 0(r'u')  w, ow'
e —_< = 2.2
Lr or H 0z (2:29)
From the continuity condition, we have
Ue W,
- = — 2.30
e _ e (2.30)
H w,
=—=— 1. 2.31
‘ L u < ( )
For r-direction momentum equation, Eq. (2.2) becomes
ou ou ou dp
— — — | =—= A 2.32
p(@t+u3r w8z> 8T+M v (2:32)
U, Ou' U Ou’ U Ou
— t Ut ——— +euw' —— | =
P\T/u. ot L or H 0z
pe Op' u. 0 10 ,,, u. 0%
L R Bl e 2.33
L(‘?T’+M{L2(")r’[r(‘9r’(ru> +H262’2 o )
w?ou'  u? 0 n u? o pe Op' n u. 0 [1 0 ()| + u, 0%u'
St 2t —F v — | === —— | ==—(r"u
PNrar "o " 1" a2 Lo M 12ar | or H?20922 |7
(2.34)
o', 0u ,ou’ p. Op)  pL (u. 010, ,, ue 0%u’
IO & & - Pe 9P BE e 92 9 . (2,35
ar " ar 0z pu? or' — pu? | L?Or' | r' Or' ()| + H? 0z (2:35)
For z-direction momentum equation, Eq. (2.3) becomes
ow ow ow dp
( eu. Ow'  eu? 0w N e2u? ,aw’)
u w =
P L/u.ot L  Or H 07
pe Op' eu. 1 0 , 1 ow' eue O*w'
e — —— | Lr'—= — | = 2.37
H@z’—i_M{L?r’ar’ "Tor) THE o] T (2:37)
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(eug ow' eu? ,0u N eu? ,8w’)
u w =
oo "1 LY 9y
pe Op' eu. 1 0 [ 00 eu,. 0*w'
g S e X
H oz L2 ' Or or’ H? 02"

}—pg, (2.38)

8w’+ ,au/+ 0w’
Plae "o ")~

Lp. 0p) uL [eu.1 0 [ ,0u0 eu,. 0*w' L
- o By + —g- (2.39)
epu?H 02" epu? | L2 v Or' \ ' Or' H? 02" eu?
We, thus, have
Lo(r'y')  ouw'
——— 4+ — =0 2.40
o or * 0z ’ (2.40)

ou' ,o0u ou pe oy pLfuo 010, ,, u, 0%/
ot or’ w@z’_ pu2 or'  pu? | L? or' r’@r’( ) +H2 022 |’ (2.41)

ot’ T or' v 07
Lp. Op/ ul [eu. 1 0 ( 00 eu. 0%’ L
- £ ——(r _ (2.42)
epu?H 02" epu? | L2 v Or'\ ' Or' H? 02" eu?

Then, we choose p. = £/ and substitute it into Eq. (2.41) and Eq. (2.42)

For r-direction momentum equation:
o’ o/ o’ op' o109 0%/

2 ! / o 2 /o

For z-direction momentum equation:

64_R6<8w’ , 0w’ ,8w’) _ {412< ,8w’) 28211)’} _ pgl*e ‘

ot’ T or' v 0z 02 AT € 9. [
(2.44)

where the Reynolds number, ratio of inertia forces to viscous forces, is defined as

oL
Re = Py ,
1
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which is in the range of 107! ~ 10~* for the spreading of a thin and small droplet

102 x 1073 x 10 ¢
Re ~ ~ 107 ~ 107 .
¢ 1~1x103

Therefore, Eq. (2.43) and Eq. (2.44), up to leading order approximation, can be

written in much simpler form (after dropping primes):

op 02 0
—a—f+a—;+W:o, (2.45)

0

23
9p , pgl7e +Wzo, (2.46)
0z JT»

10(ru) Ow

S =0 (2.47)

The boundary conditions (Eq. (2.4)), Eq. (2.13), Eq. (2.22), and Eq. (2.27))) in the

dimensionless form are written as follows. The no slip boundary condition at

z = 0 can be written as

uu’ = ww' =0, (2.48)

or (after dropping primes)

u=w=0. (2.49)

The kinematic boundary condition at the free surface (z = h) can be written as

oh oh
H/00  wu, on'
/74— T e’ =0, 2.51
Jue O + L Y or’ St ( )
or (after dropping primes)
oh oh

The normal stress balance condition at free surface (z = h) can be written as

Cpo_ 2 [Ou(OnNT Ok (Ou  Ow\  Ow
Prtem iy @elor\or) “ar\o: " or) " oz

10 rot 0
MR BTl ey revd B
1+ (57

#%)2] } (2.53)
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pc'p/_pc'P;
21 uc-Hza_u’ 8_h’ 2_58_]7/ uc-au’_i_%(?w’ €l - OW'
Tz H2(9y2 [ L3 o \or Lor\H-02 L or H -0z
1 H .o
—U{L ’Li? L or ]}, (2.54)
- T r! 1+ (Bh/)
pc'p/_pc'PC/L
241 u. Ou' (O \? O [, Ou U, Ow'’ U, Ow'
=L@t (D) - et + =2
1+e2(%)2 L or' \ or or' \ L 0z L or' L 0z
10 1O
_a{i_,? |1 2
ror 1+ ¢ (8h’>

After neglecting the term e*(2% )2, Eq. can be written as

DPe 'p, — Pe - P;
-9 EQUCau a_h, 2_@_h/ %a_u,_‘_ Qucaw _{_%aw,
- o L or' \ or or'\ L 0% L or L 02

E%%G%Q](%@

We divide both sides by p. and replaced p. with <

1
2

,_P,_2L-e 2 uc Ou' (O 2_8_h’ %a_u’_'_QUCOw +%0w’
P @y, L or \ or or' \ L 0z L or' L 0
10 oh’'
— 2.
,uuc[r 87"( 87")}’ (2.57)
or

, Lou (0NN O [ ,ou 0w 0w’
Vo= 2{ or' (W) _87"’( 0z e 8r’)+6 az’}
10 on’
— ). (2
e L‘ 67“( 87“’)} (2.58)

The dimensionless normal stress balance condition to the leading order approximation

19 (01
" { ar( a_)} | (2.59)

can be rewritten as:

p =P ==
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Let capillary number Ca = pu./(c€®), Eq. (2.59) becomes (after dropping primes)

110 /[ oh
p—Fu= —a[;a@ﬁ)} ' (2.60)

The shear stress balance boundary condition at the free surface (z = h) is

L[ oudn 1 (ou ow 1w ow (90 owan] o
14 (22 oror 2\ 0z Or 2\ 0z Or or 82 or )
or

After replacing all dimensional variables with dimensionless variables and character-

istic scales, we can rewrite Eq. (2.61)) as

_ L QWO 1 fucdu | eu, Ow
6L ar’ or’ H 0z L or
1/ u.0u  eu.ow OWN?  €u. 0w oK
_‘<E$+ L a)(a_) i ovor 0 (262

8u6h’+1 8_u’+ 0w\ 1 8_u’+ ow’ 8h’ —I— 5 oW’ ah’_o (2.63)
I W wE A R vl It i e | Crow 02 o 0 \&

10u
53 M 0. (2.64)

Eq. (2.64) to the leading order approximation becomes (after dropping primes)

or

ou

z=h

We summarize the dimensionless governing equations:

19(ru)  Ow
Z i 2.
r or + 0z 0, (2.66)
op Pu
— 5457 =0, (2.67)
op  pgl*e
5ot =0 (2.68)

with boundary conditions

u‘z:O = w’z:O =0 s (269)
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En + ’z:ha — W= =0, (2.70)
110 ( Oh
P|Z:h—Pa—a;E(TE) y (271)
ou
- = 2.72

In the next step, we need to solve Eq. ([2.68]) with boundary condition Eq. ([2.69)

to find the pressure p. Once we have the expression for pressure, we can find the

tangential velocity using Eq. (2.67). By integrating Eq (2.68) over z, we can find the

pressure with one unknown coefficient C(r, t)

L2
p=— ngz + O (rt) . (2.73)
We apply Eq. 2.75 to Eq. 2.77 to find Cy(r, )
L2 pg 1 [10 /[ oh
— L, . h + 01(7’, t) = Pa — a [;E (T’E)] s (274)
e$L2pg 1 {10 [ oh
=P, +—>-h——|-——(r=— | . 2.
i) o Lt h Ca {7’ or <r 87")1 (2.75)
Therefore,
e$L?pg 1 [10 [ oh
p(?”, t) = Pa + L : (h - Z) — a [;5 <TE>:| . (276)

The pressure gradient in the r-direction is

op €&L%*pg Oh 1 010 ([ oh
hut P iy ey S (2.77)
or U or Calr|rdr\ Or
We integrate Eq. (2.68) twice over z,
10
u= 58_5")22 + Co(r,t) - 2+ C3(r,t) . (2.78)
Due to the no slip condition (Eq. (2.69))), we can immediately recognize that
From shear stress balance condition, we have one condition for Cy(r, )
0 0
S = oyt =0, (2.80)

0z L, or
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9
or

The tangential velocity can be expressed as

Co(r,t) = h (2.81)

_19p , Op
u_28rz or

After substituting Eq. (2.77) into Eq. (2.82)), we have the final expression for the

hez. (2.82)

tangential velocity

e3L2pg Oh 1 010 /([ Oh 1,
t) = A e s L ey 2.83
u(r, 1) { pu. Or  Cadr [T@T (Tﬁr)]} (22 ?) (2:83)
We integrate the continuity equation (Eq. (2.67))) with respect to z,
h z=h
10
- d =0. 2.84
/0 L 8r(ru)} z+w » (2.84)
Due to no penetration condition at the interface (z = 0), we can recognize that
w __,=0and Eq. 1) becomes
h
10
- d =0. 2.85
/0 Lar(ru)l z 4w . (2.85)
Then, we substitute Eq. (2.85)) into kinematic boundary condition (Eq. (2.70)),
oh oh "110
— p—h— - dz=0. 2.86
8t+u| h8r+/0 [T(‘?r(mo] : (2.86)

According to the Leibniz’s integral rule, we have

1o ([ [P 10h ("1 0
;E</o ru'dz) =r-u .;E—i_/o {;E(ru)]dz (2.87)
z=h

—u i /Oh [%%(m)} dz . (2.88)

L Or

Therefore, we can replace the second and third terms in Eq. (2.86) with left hand

side of the Eq. (2.87):
oh 10 ( (M
— + - -dz | =0. 2.89
ot * rOr (/0 ru Z) (2:89)

The vertically averaged horizontal velocity is found to be

_ 1 1op( 1,
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Then, Eq. (2.89)) can expressed as

oh 10 (1 .,0p
23 =0 2.91
ot ror (ST 87") ’ (2.91)
where the pressure is given by
L% pg 110 ( oh
=P h—z)——-——|(r—| . 2.92
P ot e (h = 2) Car@r(T&’) (2.92)
and the capillary number is defined as
He
= ) 2.
Ca 3 (2.93)

The no slip boundary condition is enforced at points away from the contact line. For
points near the contact line, we need to incorporate the Navier slip model into our
governing equation to avoid the force-singularity issue. Therefore, Eq. can be
expressed as

Ou aw] . (2.94)

u :A(h){$+5

z=0
After following the same derivation in this subsection, we can arrive at the similar

lubrication equation for the droplet profile with the above mentioned slip models
(Haley & Miksis [11]) :
g_? - %% <7‘ Bfﬁ + A(h) - hZ] %) =0. (2.95)
There are two regimes of spreading in this problem: gravitational spreading and
capillary spreading. Gravitational spreading occurs when gravitational effects domi-
nate
pgL?

Bo = >1. (2.96)
g

The spreading is due to the action of gravity, or, more accurately, due to the gradient
in hydrostatic pressure which is caused by nonuniform depth of the droplet. Therefore,
we can neglect the capillary pressure as well as the Marangoni effect (Marangoni effect
has already been ruled out due to constant surface tension coefficient: V,o = 0 in
Eq. ) and replace u. with oe®/u. The pressure p can be written as (setting

ambient pressure to be zero for simplicity)

p=DBo-h. (2.97)
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The equation governing shape function of droplet h becomes

Oh 10 ,Oh
5~ Bo: r&< h&)_o. (2.98)

It was originally investigated by Huppert & Simpson [32], and subsequently a relevant
analysis has been performed by Leal [33] to answer the question regarding to spreading
rate and the shape as a function time. For capillary spreading, the spreading is driven
by capillary effect. It is required that

pgL?

Bo = < 1. (2.99)
o
The pressure p can then be written as
110 /[ oh
iy it 2.100
b Caror (r 8r) ( )

The equation governing shape function of droplet h becomes

oh 110 o100 [ oh
o aza{ thm(%)”“ (2.101)

One can think of the internal motion which leads to the deformation of shape as being
caused by the internal pressure gradients that are determined by the local gradients
of surface curvature along the interface.

The methodology to solve Eq. and Eq. is discussed in Chapter
3. We can use analytical method or numerical simulations to obtain the solution to
gravitational spreading and verify against the experiments while we can only resort
to numerics to have the solution of the capillary spreading. However, some scaling
argument has been purposed by Warren [34] to accurately predict the rate of spreading

which can be verified by the Tanner’s spreading law for the Newtonian case.
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2.2.2 Spreading Over a Porous Substrate with the Beavers and Joseph

Condition

In this section, the case of a Newtonian droplet spreading over a homogeneous
porous medium (Fig. 2.2) has been investigated. The surface of the porous substrate
is assumed to be ideally smooth which avoids implementation for surface topology.
Therefore, the contact-line hysteresis doesn’t occur in our theoretical investigation
and numerical results. The no slip boundary condition is replaced with the Beavers

and Joseph condition to describe the problem more accurately and realistically.

Figure 2.2. Schematic of a droplet spreading over a porous media.

For fluid flow above the surface of substrate, we start from the dimensionless gov-
erning equations and the boundary conditions we’ve derived in the previous section.
Note that the variables with subscript “p” denote the variables in porous-media and
the variables with primes denotes the dimensionless variables.

Lo(r'v')  ouw'

— = 1

r’ or' * 0z 0, (2.102)
op' | o
or’ 027

-0, (2.103)
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o' L2 3
8_];’ + piu ~ =0, (2.104)
with the dimensionless boundary conditions
du’ 5-H
— == (zz0 — up|s=0) , (2.105)
dz' ,_, VE P
on' on'
8t/ +u |Z hW - w/|z’:h =0 5 (2106)
110 [, 0K
lomn = Po=——- 2.107
Pl = B C’a[r@r( 87“)} ( )
a !/
o =0 (2.108)
=R

We have the continuity of the normal velocity and the pressure at the surface of
substrate,

w =l , (2.109)

Y=, . (2.110)
z=0 z=0

From Eq. (2.103)), we know that the horizontal velocity can be written as

10p
u = op. 2

297" + C(r' ) - 2+ Co(r ) (2.111)

Given the expression for u' is known, the tangential velocity and the shear rate at
the surface of the porous substrate (z = 0) can be written in terms of the unknown

coefficients, C and Cy

o = Cy(r',t') (2.112)
2'=0
8u’ 6p
ou’
— = " . 114
e Ci(r',t") (2.114)

After applying Eq. (2.108)) to the tangential velocity, we can have one more equation
for the unknown coefficient

ou/ oy

il —h+0C =0, 2.115
02 ., o + 0 ( )
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Cy=———-h. (2.116)

The unknown coefficients C5 can be determined by applying the Eq. and Eq.
into Eq. . The tangential velocity inside the porous medium is needed
in Eq. and, therefore, should be determined from the governing equations
inside the porous medium.

We assume the flow inside the porous substrate is governed by the Darcy’s law,
and the Darcian velocities u, and w, are volume-averaged velocities. The Darcy’s law

in horizontal and vertical directions can be written as

K Opy

uy = —=22 (2.117)
W or
__k Ipy
w, = u(_ﬁz +pg> . (2.118)

In fact, u, and w, are not the velocities which the fluid traveling through the pores
is experiencing. However, they can still be calculated knowing the porosity of the

substrate :
Up
5

Besides, the Darcy velocity still satisfies the continuity equation :

V- <%> -0, (2.120)

V= (2.119)

or

V.i,=0. (2.121)

Therefore, the dimensional continuity equation in the cylindrical coordinate system

still holds
1 0(ru,) N ow,

=0. 2.122
r o Or 0z ( )
The boundary conditions at the wetting front (2 = —h,,) are
Pplz=—n, = Po — Pea (2.123)
oh,, oh,,
-, - =0 2.124
ot + Up =y or + Wp =ty ’ ( )
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where P,, is the capillary pressure representing the pressure jump between saturated

and unsaturated domain. The capillary pressure is defined as

Pca = pnon—wetting phase — pwetting phase » (2125)

and can be calculated by the most commonly used variation of capillary pressure

equation

2
Peo = oCost : (2.126)

Te

where 6 is the the wetting angle of the liquid on the surface of the capillary, r. is the

effective pore radius.

Substituting Eq. (2.117) and Eq. (2.118) into Eq. (2.122)), we can find that the

continuity equation is transformed to a Laplace equation for pressure.

10 K Opy 0 K [ Opp
S (A O [ = 2.12
7“87’( T/L 8r>+82{ ,u(@z TP 0 (2.127)

Non-wetting phase

Wetting phase

Figure 2.3. Schematic of capillary pressure in a thin tube.
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10 ( op 9*p
;E(ra—:) + 82’; =0 (2.128)

By using the following relations, we are able to write Eq. (2.128) in the dimensionless
form,

u=u.-u, h=H -, r=L-v, p=p.-p,
/ / L /
w=w.-w, z=H -2, andt = — |,
Ue
Thus, Eq. (2.128) can be written as

1 a /ap/ 82p/
EQFW(T 57’1’)) + 82’5 =0. (2.129)

We calculate the flow field and profile of a thin droplet. We can further simplify Eq.
(2.129]) because the ratio of height to radius of a thin droplet is around or below 0.1.
Therefore, Eq. (2.129) to the leading order approximation is given by

%! 0
B orry=0. (2.130)

After integrating Eq. (2.130)) twice with respect to z, we can have the expression for

pressure field of flow inside the porous medium.
P, = Cs(r,t) - 2+ Cy(r,t) . (2.131)

Eq. (2.110) and Eq. (2.123)) are made dimensionless first and rewritten in terms of
the unknown coefficients C3 and C, by applying Eq. (2.131]) to them,

j28 =Cy(r',t")y =7 : (2.132)

z'=0 z'=0

Cs(r,t) - (=hy) + Cu(r,t) = P, — P, . (2.133)

Then, the horizontal velocity inside the medium u;, can be written as

’ K Pca 803 804
= —— 2.134
p ,uucL<8rZ+ or )’ (2.134)
/ R Pca 804
= —— . 2.1
U S0 puL Or' (2.135)
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After substituting Eq. (2.112)), Eq. (2.114), and Eq. (2.135) into Eq. (2.105)), the

Beavers and Joseph condition can be written in terms unknown coefficients,

6'H Iy KPc 00}
\/E (CQ(T7t> ,LLUCL ar/) :

The goal here is to find the expression for C, Cy, C3, and Cy. The solution steps can
be described as follows : (i) Using Eq. and Eq. to find pressure p,
(ii) determining Cy(r',¢'), C5(r',¢'), and Cy(r',t') from Eq. (2.116)), Eq. (2.132), and
Eq. (2:133)), respectively, (iii) substituting Cy(r',t'), C3(r’,t'), and Cy(r’,¢') into Eq.
to determine Cy(r',1'), (iv) then expressing tangential velocity v’ and uj, in
terms of C, Cy, C3, and Cy.

01(7”/, t/) =

(2.136)

We start our derivation from step (i). The pressure can be determine by integrat-

ing Eq. (2.104]

o / LQ 3
a—i/:—pg < (2.137)
e
L2 3
=L LK) . (2.138)
e

After applying Eq. (2.107) to Eq. (2.138)), we can determine the integration coeffi-

cient, K1, and obtain the final form of pressure

H* 10 [ ow L2
o ( ):—pg—gh’—l—Kl(r,t), (2.139)

© pL3ugr' Or' "o Htte
ng2€3 cH?> 1 0 oh'
Ki(r,t) = p, W - - (v 2.140
1) =pa+ [, puL3u, v’ Or' "o ) ( )
L2e3 cH® 1 0 oh'
f_prPILE oy oHT 1 O (O 2.141
p o L, ( ?) L3, r’ or' "o ( )

After substituting Eq. (2.141)) into Eq. (2.116]), we can obtain the expression for the

unknown coefficient Cy(r/,t')

/ / 8/ /
Cl(r,t):—a—f/-h

3172 ! 3 /
_ ) prse L 8_h — ﬂi ii T’a_h R (2_142)
pue  Or' pL3u,Or' v or' \ ' Or!

After substituting Eq. (2.141)) into Eq. (2.132]), we can obtain the expression for the

unknown coefficient Cy(r',t')

P, =Cy(r',t") =9 : (2.143)
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3712 3 /
pge’ L ocH”> 1 0 oh
NGRAED ¥ h — —— = 2.144

a(r 1) ot [ wL3u. r’ Or! " or’ ( )

After substituting Eq. (2.141]) and Eq. (2.144)) into Eq. (2.133)), we can obtain the

expression for the unknown coefficient Cs(r', ')

03(7’, t) : (—h;) + 04(7’, t) = P, Pcla s (2145)
Oty P DIy AT L0 (O (2.146)
3\ P @ e wL3u. r Or' " or) @ Fear '
SL2 W cH? 110 oh' P
C / t/ pge R - /_ ca 2147
s(r,t) = pue  hh pL3uc by r Or' "o hy, ( )

Plugging Eq. (2.142)), Eq. (2.144)) into Eq. (2.136)), we then have the equation to

determine the final unknown coefficient Cy (7', t")
pge’L*On'  oH® 0 10 ,a_h’ Y
LU ar' ,uL?’uC or' | ror\ or

_ bH KPc P963L2 on B ocH3 0O 1 0 /ah/
— \/E [02 + ,l,LUcL( Ul 87”/ /’LLBUC 87”/ r 87” 87“’ s (2148)

or
o BH kpe Op'
“h = Cs + — 2.149
-~ or N { 2 pueL Or! ( )
oy’ . H
P (h’+ﬁ€ﬁp ) _ b (2.150)
o e VE
' (VE c
Co(r' t) = —— - n+—. 2.151
0 = =50 (Y4 ) (2151)
Thus, we have the tangential velocity in terms of 7’ and A’
1op
= _éa_fz O+ Oy (2.152)
16]7 2 ap \/_ KPc
_ o Y 9P (VE 2.153
20" +( or' i BH +pucL ( )
I 1 \/_ % KPc ap
= =2 - - AL | e 2.154
[22 Iz BH L puL ) | or' (2.154)
We integrate the continuity equation (Eq. (2.102))) with respect to z,
/h/ li(7”u') dz' +w o =0 (2.155)
o Lr'or 2/=0 o .
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or
— ' :/ {1 0 (r 'u')] dz' —w : (2.156)
2=k 0 r or’ 2/'=0
We, then, substitute Eq. into Eq. (2.106} , and rewrite the kinematic boundary
condition. y
g—}tl,/—l—u| /h/g—g—i—/ [18(2‘ (ru)}dz’—w' 2,20:0. (2.157)

According to the Leibniz integral rule, we have

10 W) 10K 10
uodd ) = aidad / 21
o 8r’(/0 r'u dz) r . r’ar/+/0 L arl(ru)}dz , (2.158)
on' Mr1oo
= gewi —i—/o L 157 —(r ’u’)] dz' . (2.159)
Z'=h!

Thus, we replace the second and third terms in Eq. (2.157]) with left hand side of the
Eq. (2.158)). The kinematic boundary condition can be written as

ah/ 1 8 (/h’ r! t’) , , )
—+ = r'u’ - dZ ) — ' =0, 2.160
ot 1 or 0 Y0 ( )
or
o 1 0 ( ,
o 19 rh’.g’) W =0, (2.161)
ot r'or 20

The vertically averaged horizontal velocity @ can be determined by integrating Eq.

2.152),

1"
u = w u'dz (2.162)
10p M 9 \/_ KPe
e N -y . K dz' 2.163
W or /0 [22 = \pE" T L))" (2.163)
1op'[ 1 c
_ ﬁa_ff { o g;lh"" M’Z’Lh'} . (2.164)

The absorption velocity w'|,.—g can be calculated from the continuity condition for

the normal velocity (Eq. (2.109))

w/ — :_E< pe_Opp +@) (2.165)

Hw, 0z ,_, w.
L
( o) e

PN oHP 119 ( 00\
[’)96 -2 (r’?) +p%a] + @} . (2.167)
r hs, We

pue  hy, pJL?)uC h’ ror

C
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After substituting Eq. (2.162) and Eq. (2.165) into Eq. (2.161)), we can obtain the
equation that governs the profile of the droplet ;

a_h 4= 10 8p 1h/3 \/_h/2 KPe h/ _
ar o | o 3 BH pe L

SL2H oHP 11 /
_g{ Pe {pge Ko __‘9( ah)+b}+@}. (2.168)

p | Hwe | pue by, pL3uchlyror' \ 0 Or' h! W,
Then, we let
U 1

Pe = “L S - (2.169)
The factors can be rewritten as

Pe poo 1

Ho, & T2 (2.170)
pe _p 1

After plugging above two relations into Eq. (2.168)), we can rewrite the final form of
the droplet profile evolution equation :

ah/ 10 ap 1 3 \/_ 2 K , .
5’t’+ra7‘{ 8T< 3h BHh €2 L2h>}—

— Pm|Bo h/—Lli O
or’

Car 9 ) —l—pca} /hp — Pm-Bo, (2.172)

or (after dropping primes)

Ooh 101 0p 1 o VE o K
8t+7“87“{8r< 3h ﬁHh 62-L2h

h 1110/ 00\ p
Pm|Bo- |14+ — ) ——=——- — 2| = 2.1
* m[ ¢ ( +hp) Cah, 7“87“( 87’) * hp] 0, (217

where (3 is the slip coefficient and the dimensionless groups are defined as follows:

_ k- L* o pge’L? e , _ PuL?
Pm= F, Bo = L, s Ca _, and Pea oH .

To find out the evolution equation for the wetting front, we start our derivation
from dimensionless form of the continuity equation inside the porous substrate (Eq.

@2.129)),
10(r'u,) — Ow,
i (2.174)
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We integrate Eq. (2.174) with respect to z,

/0 L0 iy ar vw, =0 (2.175)
——(r'u)) dZ' +w = :
—h, r or! P b —hy, 7
or
w! = /0 li(7“’1/) dz' +w (2.176)
L O P .

After substituting Eq. (2.176)) into dimensionless form of kinematic boundary condi-
tion for the wetting front, we rewrite Eq. (2.124]),

¢

o T Up B T,%(r'u;) dz' + w, . =0. (2.177)
D

Ooh! Oh! 019
P / p_'_/ -

Similarly, after applying the Leibniz integral rule, we have

oh, 1
L 0 r'ul dz' + w) =0. (2.178)

¢8t’ T ' or! P P

The tangential velocity inside the porous medium is given by

’ KRDe 603 ’ 804
= — 2.179
U pueL ( ar * or’ ( )
Then, we can write the vertically averaged horizontal velocity by integrating Eq.
(2.179))
0 0 Kp. 0Cs oCy
/i d /: / - Cc . d !/ 21
/h;,r% - /h; ( MUCL> (57"’ o ) ’ (2180
KPec 1 803 /2 804 ,
= — 2.181
pu L (2 ar I or' _h ( )
K/pc / ]- an / 2 8C’4 !
=— . - = h,, h,, 2.182
pueL " < 2 0r 8 ! (2.182)

After substituting Eq. (2.165) and Eq. (2.180) into Eq. (2.177), we determine the

evolution equation of the wetting front

on; kK 10 19C;,,»  0Cy
P L Y ' _
ot L?-exr' or {T< 2 or' ly or’ )}

. SL2h H3 1190 ﬁh’
Hwe | pue b, pL3uchlr ar' 87“ W,

¢
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or (after dropping primes)

2
Oh, Pm-e 12{7“( laCShPQ—l—@hp)} _

ot o) ror 2 0r or
Pm h 1 110 /[ 0h P
MBo (14 L) - =2 () p Pea] (2,184
) [ ¢ ( +hp) Cahpr8r<r87")+hp]’ (2.184)
where
_ Pea h 1110/ 0h
Cs(r,t) = h, + Bo b " Calyror (rﬁr : (2.185)
110 /[ Oh
C4(7”,t> —Pa+BO'h— E;E(TE) . (2186)

Eq. (2.173)) and Eq. (2.184) are two coupled lubrication equations describing both
the droplet profile and wetting front.
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2.3 Mathematical Formulation (Power-Law Droplet)

An important type of non-Newtonian fluids is the so-called power-law fluids fol-
lowing the Ostwaldde Waele relation. The power-law dependence of viscosity u on

the deformation rate  is given by

w() = pol¥|" ", (2.187)

Tij = 1S (2.188)

Here, 1o is the zero-shear-rate viscosity, and n is the power-law exponent (n = 1
corresponds to a Newtonian liquid). The shear rate 4 in Eq. (2.187)) is defined using

this the rate-of-deformation tensor é

S=vVi+ Vi, (2.189)

7=\/%(§:§) : (2.190)

The components of rate-of-deformation tensor are give by

ou U
=2— = 2— 2.191
Srr 87"7 509 r 5 ( 9 )
ow Ou ow
Sy, = Sy = (W + $>, 8. =2 . (2.192)

In this section, steps of the derivation for the evolution equations are similar to those

in the previous section except using the rate-dependent viscosity in the derivation.

2.3.1 Spreading Over a Solid Substrate

We start from the continuity and Cauchy momentum equations in a cylindrical

coordinate:

ror e 0z
p(@u ou 8u) B @ {1 0 0 Too

—0, (2.193)

E + UE + w& = _87" + __(TTTT‘) + aTzr - T ) (2194)

ror
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ow ow owy 8p 10 0
(E + UW + w%) = 8,2 + |:7" or (TTrz) + @Tzz] —Pg - (2195)

After substituting Eq. (2.187)), Eq. (2.191), and Eq. (2.192)) into the momentum

equations, we can write the r-direction momentum equation as

Ou Ou Ou\  Op [10 ou, 0 ow Ou o
P(a ar—i_ 0z )_ 87’+L8r( 2”87’) 82{”(87”—‘_82')}_27”2}’<2'196)

or

a“+ ou . ou
ot " Yor Tz

Op 2udu _Oupdu 0%u 8u ow Ou Pw  Pu Qo
=+ R i+ | (ot gu) okt
+ * * + aor + 0z i oroz * 022 r?

(2.197)

Similarly, we can write the z-direction momentum equation as

ow  OJw ow\ 8p 1 8 Jw Ou 0 ow

or

ot or 0z
B ap Iz Oow Ou\ Ou 0w OJu 0w *u ou Ow 0*w
~o- (8r+8z>+87’( >+ (8r2+8r82 2029, T P

(811) ow 8w)
— tu——F+w—

or * 0z
(2.199)

At surface of the substrate, the no-slip and no-penetration boundary conditions are

given by

U =w =0. (2.200)

z=0 z=0
At the liquid-gas surface (z = h), the kinematic and traction boundary conditions

(normal and shear stress balance conditions) are applied to enforce no mass transfer
across the free surface h(r,t). The kinematic boundary condition is given by

S 1 OF

The normal stress balance condition is given by

P—P,—2u(S i) = o(V-il) . (2.202)
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The shear stress balance condition is given by
2u(S -7 -t;) — (Vo) - £; =0 . (2.203)

The definition of F' and the steps of simplification are documented in section 2.1. The

kinematic boundary condition in terms of the profile of a droplet is written as

on u on _ w =0. (2.204)
ot Lo Or 0

After substituting expressions for normal vector 7 and tangential vector ¢; and fol-

lowing the same idea, we can rewrite Eq. (2.202) and Eq. (2.203])
24 ou (Oh\> Oh(Ou Ow\ Ow
p-p—— |20 (Z2) ()
“ 1—}—(%)2{37“(87“) 3T(az+8r>+az}
h
:0{_182 "o ]ﬂ‘)ﬁ L H (2.205)
UL+ (52 L/ + (52
oudh 1(0u Ow\ 1[/0u Oow\ [Oh\> Owdh
[‘55*5(&*5)‘5(@*5)(5)+§5}—0' (2.206)

The continuity equation, the Cauchy momentum equations and all boundary condi-

tions are made dimensionless by the following relations
u=u.-vw,h=H -W,r=L-v',p=p.-p

L
w=w, w,z2=H- -2 t= (—)t'
U
Here, the variables with primes denotes the dimensionless ones. The dimensionless

form of Eq. (2.193) is
1 oL u.-u) N O(w, - w')

=0 2.207
L7 Lor' HOz ’ ( )
ue 1 o(r'e) — w. 0w
e —c = 2.208
L or H 02 ( )
From the continuity condition, we should enforce
Yo _ We (2.209)
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or
H w,

—=—<K1. 2.210
T < (2.210)

€

The r-direction momentum equation is written as

u. ou U, Ou’ U, Ou’

ol —— = +ut = —— +waw' ——

L/u. ot L or' H oz
peOp  pouc2p 0w’ poue Op' Ou'poue 0% poue p'u’

L or L2 ¢ Or L2 Or' Or' L2 H or’? L2 2

@8_Nl %674/ %8_“1 o we 2w’ &@
+ H 07 |:<L or' + H@y)} + pop LH—aT”aZ’ + 7297 ) (2.211)

or

o’ N ,ou/ n ,o0u/
ot or' 0z
_ pe O o Ho (u’ ou'  ou' o 0% ,u’u)

pu? or " pu.L Tzl

mor o or  Harm T e

o' [ po Ow' oL O o po OPw' o opel 0P

oz |\ pu.L Or"  pu.H? 0z pu.L Or'dz  pu.H? 022 )
(2.212)

The z-direction momentum equation is written as

we oW uwaw. 0w w? 0w
P L/u. ot i L o +Ew 0z
POV o (e O e W o O (1we O e O

Hoz L\ L or HOoZ Lor\ L or HOoZ
S we P w0 pow, Op' Ow' powe ,0%w
Ze 9 adl 9 _

T Hopt (L2 o2 " THoroz ) T HE 07 07 m e P

(2.213)

or

ow' N ,ou’ n ,ou’
ar o TV oy
pL Opf u’( po Ow'  po 8u’) 8#’( po Ow' | po 8U’>

_puzeH% I pu.L Or' puceHﬁ ar' pu.L Or' + puceHw

or'
o o Pu po 0% pol Op' Ow'’ pol ,0%w gL
+ pu.L Or? * pu.He Or'0z' 2 2 a

pu.H? 02 92 + puCHQM 922 eu?’
(2.214)
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After defining Re = pu.L/p and p. = pou./(Le?), we can rewrite Eq. (2.212)) and
Eq. (2.214) as
ou' ,o0u/ ,ou’

T R
119y N 2 (,u' o' o ou 0% u’u)

Ree20r' =

vor Tarar Mol
+Ll@_,u' 5 Ou'’ +6_u’ L 11 ,/, 0% N 0*u
Ree? 02 ¢ or 0 Re 62'u 87"’82 022 )"’

(2.215)

ot or’ 0z
L 1oy 1 1p [ ,00 ou L 1oy [ 0w o
—m—@+m—zﬁ( o7 +w> @?aw( o +@)
11 ,/,00 0% 2 1opow 21 ,02w gL
T Re ! (6 o7+ W) Ree 07 02 | Re eQ'M 022 eu?

(2.216)

We multiply Eq. (2.215) by Re - € and Eq. (2.216) by Re - ¢*

R 0w O w2
. ot b or’ v 0z

op/ 2 <&/ ou'  ouou 0% p/u)

T8_+8r or' “aw 72
/ / 2,/ 2,,/
+a—”K 200 +a—“>}+u’<e“’aw +a“) (2.217)

2 or' 07 or'oz' = 02?2

Re . A 8w’+ ,8w'+ ,ou’
o T TV oz

oy ow'  ou o' [ 0w ou
=5t <8r+a>+€W€W+$
Ly (62 82w’ 0*u/ ) L, O’ Ow' 2 ,Pw  pgL?e’

or'? * or'oz'

¢ 02 02 # 072 o Ue

(2.218)

We can write down Eq. (2.197) and Eq. (2.218]) to the leading order approximation

opf o ou 0% 0
~5 taags tH gm0 €) (2.:219)
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op  pge’L? W
R . 2.22
0 5 ot + O(R € €e) ( 0)
10 ow’
L2ty + 2 =, (2.221)
where
W= 3 (2.222)

In the next step, we substitute Eq. (2.191) and Eq. (2.192) into Eq. (2.190)), then
into Eq. (2.187) to find the dominant rate-of-deformation term in viscosity:

2u, Ou’ 2u,
Srr = T e S0 L (2:223)
w. 0w u.ou 2w, Ow’
Srz == Szr =\ 5 - y Dy — -, 2.224
(L 87”+H82’) H 07 ( )

.1 4uz ou' 2+4wf ow’ 2+4ug u'\?
T 2| or’ H2\ 07 L2\ 1/
+2ug ou’ 2+4ucw68u'8w’+2wg ow' \ 1) *
H2\ 0z LH 0z or L2\ or' ’
1 u? o'\ ow'\? u\’
~Gr(ae) +1(5) +a(5)

2 /ou'\? ou' ow’ ow'\ 1) 2
== 4— 2¢2 . (2.22
+62(8z’> * 0z" Or' e (87"/) ]} (2225)

Eq. (2.225) to the leading order approximation is given by

_ 1u2 [2 (o' \? 0] /?
Y= {iﬁ L—Q (@) + 0T 1 } (2.226)
e Ou’
~ s (2.227)
Therefore,
, ou \"!

Here, the characteristic deformation rate m is defined by

3
Il

(2.229)

=&
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Thus, we summarize the dimensionless forms of the boundary conditions :

(i)The no slip and no penetration at the surface of the substrate (z = 0)

u =w' =0 (2.230)

2'=0 2/=0

(ii)The kinematic boundary condition at the liquid-gas interface (z = h)

on' on' ,

- - _ =0 2.231
at, “ 2 =h 87"/ v 2 =h! ( )

(iii)The normal stress balance condition at the liquid-gas interface (z = h)

H?* 1 0 [ 00
Y - N N 2,232
b “ poucL? 1’ Or! [7‘ 37“’] (2.232)
(iv)The shear stress balance condition at the liquid-gas interface (z = h)
o’
'— = 2.233
W (2.233)

The system of dimensionless governing equations is rewritten as (after dropping

primes),

Op Oudu 0?u

T el — =0 2.234
8r+8262+uaz2 ’ ( )
dp | pge’L?
et 4 =0 2.235
R 7 (2.235)
10 ow
with boundary conditions
U =w =0, (2.237)
z=0 z2=0
oh oh
il - _ = 2.2
T +u o w » 0, (2.238)
ocH? 10 [ Oh
— P, =— - |r=1, 2.2
p —n ot L3 T Or [T 87“} (2239)
ou
—_— =0. 2.240
Has (2.240)

The derivation for pressure p is exactly the same as that in section 2.4.1. One can

follow the steps described there to obtain the expression for p

e$L%pg cH® [10 ([ Oh
_ (B — ) — LA PO I 241
p(r,z,t) = P, + . (h—2) PWE {r o (r 87’)] (2.241)
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Eq. (2.234) can be rewritten as

dp 0 ( Ou
- E + & (M&) =0. (2.242)
We integrate Eq. (2.242) over z,
ou  Op
— == . 2.24
Hy, = 5,7 T9(r) (2.243)

After applying the boundary condition (Eq. (2.237)), we can determine the unknown

coefficient,
ou dp
_ 9

By substituting Eq. (2.245)) and Eq. (2.228]) into Eq. (2.243]), we can compute the z

derivative of the horizontal velocity,

ou \"""ou op
or 1 1/n—1
Ou _ (1IN\""0p " 0p o

Therefore, tangential velocity u(r, z,t) can be obtained by integrating Eq. (2.247)

over z:

(h — 2)Y" 1 foug(r,t) (2.248)

u(r, z,t) =

n ( 1 )n—l ap l/n—l@ ‘

1+n\m or or

After applying no slip boundary condition to Eq. (2.248), we can determine the

integration constant,

n 1 n—1 ap 1/n—1 ap .
_ 1 op oD pintl 2.24
(7 ?) 1+n (m) or or h (2.249)

Thus, the tangential velocity is given by

1 n—1 1/n—1
n ( ) ap 817 . |:(h o Z)l/n+1 _ hl/n+1 (2250)

u:1~|—n E E 5
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The vertically averaged horizontal velocity @ is determined by integrating Eq. (2.250)

1 h
u= 7 </ u dz) (2.251)
0
1 n 1\"" op 1/n-1 op " n n
e N 3 A (ST
14 2n\m or or ’ '

After following the same steps as those in section 2.4.1 from Eq. (2.87) to Eq. (2.92),

we can obtain the lubrication equation,

oh 10 ( (M
— 4+ —= cdz | =0 2.254
ot * ror (/0 m Z) ’ ( )
or
oh 10
—+-——|rh-u|=0. 2.2
at—l—rar(r u) 0 (2.255)
By substituting Eq. (2.251]) into Eq. (2.255)), we can have the final form of lubrication
equation,
oh no (1IN"'10 /[ op " op iim
o _ I P L. h = | =0 2.256
ot 142n (m) ror (T or or ) ’ ( )
where
9 _ g, Oh_ 1 0110 [ Oh
or or  Caor|ror\ or)|
372
_ Ue _ Jolc _ pgeL
m= o Ca= o and Bo = ot

By substituting n = 1 into Eq. (2.256)), we can verify Eq. (2.256) is the same as Eq.

2.95 in section 2.4.1 for the Newtonian case.
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2.3.2 Spreading Over a Porous Substrate with the Beavers and Joseph

Condition

The mathematical model for a power-law droplet spreading over a porous substrate
is investigated in this section. The surface of porous substrate is assumed to be
perfectly smooth. The Beavers and Joseph boundary condition has been implemented
in our derivation to have a more realistic and accurate model.

For flow above the surface of substrate, we start from dimensionless governing
equations and boundary conditions we obtained in section 2.3.1. Note that the vari-
ables with subscript “p” denote the variables in the porous media and the variables

with primes denote the dimensionless variables.

ap | opou o

o + 07 07 + 922 0, (2.257)
ap' | pge’L?
e — 2.2
5ot e =0 (2.258)
10 ow’
F%(T/U,) + 82’ = O s (2259)

with the boundary conditions at the liquid-gas interface

o, on

- - =0 2.260
at/ u Z/:h/ 87"/ w Zl:hl ’ ( )

/ cH® 1 0 ,Oh/
p, I=h' B Pa - _/JOUch F% r W ’ (2261)
ou’
/
oy =0 (2.262)
0z _p

The continuity conditions connecting flow above the surface and inside the substrate

are given by

w = w, : (2.263)
2'=0 2'=0
vooo=p, (2.264)
2'=0 2'=0
du’ -H
LA (U |2r=0 — | 2r=0) (2.265)
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where 3 is the slip coefficient and x is the permeability of the porous substrate.
By recognizing that there is a wetting front separating the saturated domain from
unsaturated porous medium, we can write down a pressure-jump boundary condition

at that boundary (z = —h,),
Pplo=—n, = Pa — Prea (2.266)

For a power-law liquid inside the porous substrate, we assume that the flow is governed

by the continuity equation and the modified Darcy’s law,

10 ow,
1/n 1/n—1

K Opp Opp
_ _ ([~ p ZFp 2.268
U (Mo) <8r or ’ ( )

1/n 1/n—1
(& Op, Opy

wy, = (No) (82 o +pg | . (2.269)

After substituting Eq. (2.268) and Eq. (2.269) into Eq. (2.267), we make Eq.
(2.267)) dimensionless by using the following relations,

u=u.-u, h=H-N, r=L-v, p=p.-p, p. = pouc/(Le?),

L
w=w,-w, zr=H- -2, and t = (—)t’.

U

Thus, the continuity equation in dimensionless form is given by

op,, dp), /" op, op), /"
€1+1/nli</ Pp OPp >_|_ 0 < Pp 9Pp >:0_ (2.270)

T or' " or’ or' 02\ 02 0%

Eq. (2.270) to the leading order approximation is written as

on. O 1/n—1 0
0 ( B T )+M:o. (2.271)

02\ 82 0
We integrate Eq. (2.271)) over z,
/ 1/n—1

dp, Op,,
0z 0z

= Oy (1) . (2.272)
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Therefore, the z derivative of the pressure for flow inside the porous substrate is given

by

ap/ n—1
P __ ! 4/ ! 4!
W—Cl(r,t) Cl(r,t) . (2273)
We compute the pressure pj, by integrating Eq (2.273) over z,
n—1
p, = Ci(r, 1) CL(r' 1) -2 Co(rt) (2.274)

The unknown coefficient Cy(7/,¢’) can be determined by applying the continuity equa-

tion for the pressure (Eq. (2.264))),

Co(r', ') = pf (2.275)
2=0
L2 3 H3 1 !
_pgbie,,  ofT 10 [ 0N (2.276)
T poLPu. 1 Or' \© Or!

where the ambient pressure P, is set to be zero. The unknown coefficient Cy(r',t') is
computed by applying the pressure-jump boundary condition at the wetting front.

n—1

Ci(r',t) CL(r', ) (—h;)

pgL?e® cH® 1 0 ( oW , ,
T Ho e " pio L3 Or' "or ] T Po— P (2:277)
n—1 2.3 71/ 3 / /
pgL<e’ h cH> 11 0 ( 0Oh P
C / t/ O / t/ — -_— _ ca . 2278
(. 8) G, 1) pote N, poLPucr’ by Or' "o )t h) ( )

After substituting Eq. (2.275) and Eq. (2.278)) into Eq. (2.274]), we obtain the

expression for pressure,

) pgl*¢¢ ' oH® 11 0 [ oN P!,
b, = T% + h; ©Z

2.3 3 /
Lpbie, ot 10 (r%) . (2.279)
T

pote i, poLiu, Fh_;W

poue  poLPucr’ o'
Because we already had the dimensionless expression for the pressure field inside the
substrate p,, the tangential and vertical velocities inside the medium, u, and w,, can

be computed by applying the pressure to the modified Darcy’s law,

1/n o O 1/n—1
/ KDc DPp ODp
S 2.2
U <,u0uc”L) <8r’ or’ > ’ (2.280)
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L (e N (O, O, T L pgLnel (2.281)
P w, ,UOH oz Oz M(l)/nutlz/n : .
The pressure gradient in the r-direction at surface of the substrate is given by
3p;) 0C,

_p — 2.282

or' ,_, o ( )
L?e3 On' H® 010 [ oW

_pgreon o 9L 9 (90 (2.283)
Lot Or'  poL3u.Or' | Or' \© Or'

The pressure gradient in the z-direction at surface of the substrate is given by

a / n—1
Do oty o 1) (2.284)

27 . _,

z'=

_pgl?ew’ oH® 11 0 ( 8h/) +p’ca

P  poLBucr! hy, Or'
Thus, we have the tangential and the normal velocities at the surface of the porous

medium,

v (e N el on  oH® 0 [1 9 ( ON\]]
P N tou L tote O poL3u.Or' | Or' \© Or'

- 1263 OB/ J2E 1 ! 1/n—1
pgl*e on' o 8{ 8<8h>} },(2.286)

Lole  OT' u0L3uc% r or' TW

, KPe L/n pgL*e3 I/ cH3 11 0 [ oK N P, "
w =——= — = — = ailras |+
P oo Low™ H pue b, pL3ucr” by Or' \© Or hy,
pgL?e3 '’ oH3 11 0 < 8h’) ptmmt o pgL/ned/n

A S 9 () f L PI=" € L (2,987
pue  hh pL3uer' bl Or' "o * hy, * N(l)/"ui/” } ( )

We can follow the same steps as those in section 2.2 to obtain the expression for p,

3L2 H3 /
J ) = L9 gy oy O ['a<'8h)] (2.285)

LhoUe B pote L3 " or' ’ or'

To find out the flow field inside the droplet, we start from Eq. (2.257))

op’ o ( ,0u
——+— (=] =0. 2.289
or' * 0z (,u 0 > ( )
We integrate Eq. (2.289) over z,
ou” _op'

- 7 /
Wor = 5% +g(r') . (2.290)
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After applying boundary condition (Eq. (2.262))) to Eq. (2.290), we determine the

unknown coefficient,

,ou’ ap' ,
PR— = —_— P— 2.2 1
K 0z Z'=h' 8T'h —i—g(r) 0 ’ ( ) )
oy
N =_—=—2pn". 2.292
g(r') ar'h (2.292)

By substituting expression for viscosity (Eq. (2.228))) and Eq. (2.292) into Eq.
(2.290)), we rewrite Eq. (2.290)),

r\Nn—1q /
( 8“) O _ O (2.293)

m — - = =
0z 0z or!
Thus, we compute the z derivative of the horizontal velocity,

0z or’ or’

m

(W — 2\ (2.294)

The tangential velocity u(r, z,t) is determined by integrating Eq. (2.294) over z,

n 1\""ap VT ray 1/n+1
u'(r', 2 ) = l+n <E> ar' or (B =2V fug (e t) . (2.295)

The shear rate and horizontal velocity at the surface of the substrate are determined

based on Eq. ([2.295))

o’ 1 n—1 ap/ 1/n—1 ap/ Un
07 .y _(E) o e M (2.296)
1 n—1 8 / 1/’”718 /
) e . e
z'=0

The unknown coefficient ug(r’,¢’) is determined by the Beavers and Joseph boundary

conditions at the fluid-porous medium interface. By substituting Eq. (2.286]), Eq.
(2.296)), and Eq. (2.297)) into Eq. (2.265)), the equation is written as

(LYW e B H] 0 (AN
1+n\m or’ or'

m aor' or! VE

1/n / ; 1/n—1
' KDe op’ Op
+ug(r', t') + (uouc”L) {—ar, g ” . (2.298)
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Thus, the unknown coefficient is given by

uo(r’, )

:_8_]7/ 8_pl1/n71 n l nilh’l/n+1+£ l nilh’l/"+ Kk o
or' or' 14+n\m B-H\m H2qy, 1 '

(2.299)

By substituting Eq. (2.299) into Eq. (2.295]), we obtain the horizontal velocity,

op oy 1/n—1 n 1\"!
" S ) = — . - (W — S 1/n+1
w28 = =50 5 Tra\m) )

n 1 n—1 \/E 1 n—1 K 1/n
— pmet g Y2 pm — . (2.300
1+n(m) +B-H m * H2y -t ( )

To form the lubrication equation, we need to determine the vertical velocity w'|,.—p

at the free surface in Eq. (2.260)). By integrating the continuity equation over z, the
vertical velocity is determined,
h/
10
— ' = / [—,—(r'u’)] dz' —w : (2.301)
2/=h' 0 ' or' 2/=0
After substituting the vertical velocity into the kinematic boundary condition and

applying Leibniz integral rule to the kinematic boundary condition, we can rewrite

Eq. ([2:260),
)% 10 (/h/(r’,t’) , )
— 4 = r'u - d | — =0, (2.302)
at' ' or'\_J, =0

or

o 10 .
¥ + i (r'h%’) —w' /_0 =0. (2.303)
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Here, the vertically averaged horizontal velocity is given by

1 h/(,,.,/7t/)
u=— u' - d (2.304)
0

h/
— _l@_p’ (9_]7’ et /hl(r v l " . (h/ _ z/>1/n+1
W Or or 1+
+ n 1 n_lhll/’n-i-l_'_ \/E 1 " lhll/n+ K l/n d !/
— — _— z
14+n\m 6-H e2L2u 1
__Ltov oy e _ n? 1 " B /2
WO O (I+n)(1+2n)

1
n 1\"™" nta | VE (1 n 1/n+1 K v
) e g () s () ) e

After substituting Eq. (2.305) and Eq. (2.287) into Eq. (2.303), we have the final

form of lubrication equation,
o 19 [ o0 o Hn
= += - W
ot 1 or 87“ or'
B K Y (T pgL2e3 b oH? 11 0 ah’ N pca
N ent3[2yn—1 poue hy, o poLPucr by, or' (97’

pgL*e3 B cH® 11 0 ([ ,00 Pea et pgL?/medm 5 306
r P Ko Ue

pote h, u0L3uCFh_]’D(9T’
or (after dropping primes)
oh 10 | ap op ! ) ho_ 1110(0n\ v
- ——pPmY/"! |Bo— — — - — [ ,=22 Pea
ot +r(9r{ aor or W " th Car hy,Or “or * hy
0

ho 111 oh M
% Bolt _ __h_6r< _) H% +BoP} . (2.307)
P P

n—1 n—1 1/n
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dp dp 1 9 O [ Oh
P _ g, P~ (. 2.309
or ° or Caar{ or (Tar)} ’ ( )
. L2e3 L2/n 3/n
sz%, Ca="" , Bo=PI2¢ , BOPEpg—€,
enti L g oe’ Hole #é/nui/n
P, L2
d p,=-—"2—.
and p, = —

We can quickly verify that Eq. (2.307), Eq. (2.308]), and Eq. (2.309) are exactly the
same as Eq. (2.173) for the Newtonian fluid (n = 1).

For the evolution equation of wetting front, we follow the same steps as those
in Section 2.2.2 from Eq (2.174) to Eq. (2.178) to rewrite the kinematic boundary
condition for the wetting front,

oh, 1
8t/ _/

ai(’h’—’) +w, =0 (2.310)

z'=0

¢

To find the expression for the vertically averaged tangential velocity w,’, we need to
determine the pressure gradient inside the porous medium first. The pressure is given

by

h 111 0 oh' P 110 on
Bot — — 2= 9 (w20 ) | Pea Bo-h————(r=—| (2311
[ h! Car’ h’ 87"’( 87"’) + h;] 2+ Bo-h Car' Or ( 87"’) (2.311)

p

Thus, the pressure gradient in r-direction is given by

6/ / / /
9l AILD ()

or' or Oh_]’g B @Fh_;ar' " or’ h!
oh’/ 1 010 [ oW
T B0% ~ Caor [‘a— (a—)} (2:312)
The vertically averaged tangential velocity u,’ is given by substituting Eq. (2.313))
1 /0
u, = o u, d?’ (2.313)
p /
B 1 KDe 1/n /() 3pp ap/ 1/n— ld /
B hi, \ pouc™ L “h, or' or' :
_ _61+n p 1/n n K2 1/n+1 B KQ B h;Kl 1/n+1
by, \ etn L2yt 1+n K,

1/n+1 , 1/n+1
1 K — Kby —h K
- —h—/Pml/"eHn{lZ 2 K2 p } (2.314)
n 1
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The integration has been computed by doing symbolic evaluation in Mathematica and

the results are verified by Maple. Here, the components for the pressure gradient are

given by
O W 111 0/(,00\ p.,
B t) =55 {Boh—;,—@ m ar< a_> *z?;,} (2:315)
o 1 0[10 [ on
o(r',t) = Bo o' Caor {r ror! ( 87")} (2:316)

After substituting Eq. (2.314) and Eq. (2.287)) into Eq. (2.310)), we obtain the final

form of lubrication equation (after dropping primes):

oh, n  Pm'/met"1 0 KM - K - hy - Ky s
— ——3r
ot  14n o ror Ky

_Pmtrpre h 1119 0hY
T °h,  Carn,or\'or) " h,

a;h r
Ao 1110/ 0n\ p. !
X Bo— — ———— -2 BoP 2.317
W Carh@(@r)+hp +BoP g (2:317)
where
. 1263 L2/n 3/n
szﬁ, Oazuu?),BOEpg E,BOPEpgl/n—f/n,
€ Uy, o€ Hole o' Ue
P, L?
dp =-*=
and p., i

Eq. (2.307) and Eq. (2.317)) are two coupled lubrication equations. We will numer-

ically solve them to obtain the droplet profile and wetting front inside the porous

medium.
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2.4 Boundary Conditions for Lubrication Equation

In this section, we will discuss the boundary conditions for the governing equa-
tions derived in the previous four subsections. The order of the partial differential
equation mainly depends on the order of the pressure term. To form a well-posed
boundary value problem, the number of required boundary conditions should be equal
to the order of the highest derivative in the equation. Besides, the radius of droplet
remains unknown during the computation. Therefore, we need one more condition to
determine the moving boundary. For capillary spreading over a solid substrate (Eq.

(2.97))), we have zero-slope and axisymmetric conditions at r = 0,

oh
an 2.31
o 0, (2.318)
Ph

—0. 2.31
el 0 (2.319)

At the edge of droplet, we enforce the height of contact point to be zero,
h(R(t),t) =0 . (2.320)
The volume constraint is applied to enforce the volume of drop to be constant:
R
V= 27T/ rh(r,t) - dr . (2.321)
0

One common way to provide the contact-line condition is to use the relationship

between the contact angle and the slip velocity reported by Haley and Miksis [11] :

dR oh

= Caf(6p) . (2.323)

Here, the function f can be assumed to be linear, quadratic or cubic function of
“Op — 057 . Os is the static contact angle for a given liquid-solid system and 6p is the

dynamic contact angle which is composed of unknown height profile at the rim of the

Op = —tan1<ah > : (2.324)

or _p

droplet:
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Another model is based on the molecular kinematic theory. The driving force for
the wetting line is resulted from the unbalanced surface tension force that arises in

the non-equilibrium situation. This model (Blake [17]) can be reduced to

C;—}: - %(005(65) — Cos(6p)) , (2.325)

where ¢ = kgT'/(k°A?) is the coefficient of wetting-line friction and kp is the Boltz-

mann constant. «°

is the equilibrium frequency of the random molecular displace-
ments occurring within the three-phase zone and A is the average distance of each
displacement. The detailed discussion of these molecular-related parameters can be
found in Blake [17]. The contact-line friction for specific liquid-solid system can be
found from the tables provided by Blake [17] as well.

Two ways described above are based on numerical simulations. If we are given
the initial geometries of a droplet as well as the experimental data like contact angle
versus time (Chen [15]), we are able to carry out the simulation by treating these data

as the boundary conditions to solve the system of equations. This so-called “hybrid

model” can be used as a check on the accuracy of numerical scheme.
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3. METHODOLOGY AND RESULTS

In this chapter, scaling arguments for spreading exponent (Warren [34]) and an-
alytical method (Leal [33]) to simpler problem will be provided to support the com-
putational results reported in the present study. The governing equations that were
developed in the previous chapter were discretized and solved using the boundary
conditions described therein by following the classical finite difference method. De-
tailed algorithms, discretization and formulation of linear system of equations are
discussed in the following subsections. Finally, the numerical results for a Newtonian
and non-Newtonian droplet spreading over a solid and porous substrate are reported

and compared.

3.1 Scaling Argument and Analytical Investigation

Let us consider (Warren [34]) a liquid meniscus being drawn into a tube with
internal diameter d. After the fluid reaches a sufficient distance from the initial
position L > d, the velocity can be described well by the Poiseuille’s flow:

2
s %% (3.1)
Consider a thin droplet spreading over a solid and smooth substrate for complete wet-
ting case. Let R and H to be the characteristic radius and height of a droplet. When

R > H, the lubrication approximation can be performed using this key condition.

The spreading velocity can be scaled using the above relation:

dR H?AP
iy V) — (3.2)
dt w L
The scale for pressure drop AP can be obtained from Eq. (2.93))
H
AP~ 22 (3.3)

R2
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Thus,
dR H3o
dat - R

The volume constraint condition in a cylindrical coordinate is given by
R
V=27 / rh - dr
0

~ H - R? (3.5)

(3.4)

and hence,

dR o V3
:EZ'”V ;;}§§ (3.6)

We integrate Eq. (3.6)), thus, we have

3 1/10
R~ (‘ﬂ; t) (3.7)

~ VO3 (3.8)

We can observe that the scaling follows the Tanner’s law (Chen [15]) for capillary
dominant spreading. For the gravity dominant spreading, the scale for pressure drop
AP is given by

AP ~ pgH (3.9)

Substituting Eq. (3.9)) into Eq. (3.2]) and integrating it, the result becomes

R <PQV3t) 1/8 (3.10)
m :
~ V38418 (3.11)

The scaling relation for gravitational spreading is well reported and verified by Lopez,
Miller & Ruckenstein |19] and Cazabat & Cohen Stuart [35]. The results for above
two cases can also be derived by using the similarity method. The detailed derivation
won’t be presented here. The formal procedures for the mathematical investigation
are reported in Leal [33]. For case of gravitational spreading, the governing equation

is given by Eq. (2.97) with Bo = 1. The final solution to the droplet profile is given

b
| PR . e
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fn) =@ —=n)"*, (3.13)

3/8
0 = (9/16)Y5(r /%) / [q:;z/?’;ﬂ . (3.14)

Here, g, a characteristic volume of the droplet, is equal to HR?. In this case, the

1/4

height of the droplet decreases as t~/* and the radius increases as t'/8. For the case

of capillary spreading, the governing equation is given by Eq. (2.100) with Ca = 1

for simplicity. The final ordinary differential equation we obtain is

dlld/ dG 0.3
2
— == (=) == 1
“an [ndn (n dn)} apt! (319)
which is third-order and non-linear ODE for the unknown function G(n). The profile

of the droplet and the similarity variable are given by
h(r,t) = At=*G(n) , (3.16)

n= Br/t’. (3.17)

The constant A can be determined by enforcing G(0) = 1. The constant B can be

chosen by transforming
2 /OOO G(n)ndn = gq , (3.18)
into
/OOO G(m)ndn=1. (3.19)

Because Eq. (3.15) is highly nonlinear and complex, and we can’t solve it analytically,
we are enforced to numerically integrate it. The original form of governing equation
(Eq. (2.100])) for capillary spreading will be numerically solved and reported in the

following subsections.
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3.2 Numerical Method

The governing equations and boundary conditions we derived in previous chapters
are discretized by using the finite difference method. We mainly utilize a second
order central difference scheme for spatial discretization. The resulting non-linear
equations are solved using a Newton-Raphson iteration procedure to handle non-
linearity. An implicit time advancement scheme is employed to improve the stability
of the program. Let’s take Eq. as our first example. The discretized form of
Eq. using an implicit scheme can be written as

(hz)n-‘rlA; (hz)n _ Fn—i—l(hz‘a h;, h;’, hg//7 hgiv)) (320)
11 1 (Pi+2)nt1 — (Piv2)nt
= — . h 3
6 (ri)n—f—l drn-f—l (rz+1>n+1( z+1) ern+1
_ (ri—l)n—f—l(hi—l)?’(pi)nJrl — (Pi—2)nt1 (3.21)

2dry, 41
Here, the variables marked with subscript i denote the variable at i-th grid point.
The variables marked with subscript n and n + 1, denote the variables at time step
n and n + 1, respectively. Because the radius of the droplet is changing with time,
and we use the stretched grid to capture the moving contact line dynamics. r; =
R-i/(N —1) and dr = R/(N — 1) are functions of time and N is the total number of
points. To implement the Newton-Raphson’s method, we should define the residuals

for governing equations and boundary conditions as follow:

At 1 1
Res; = (hi)ni1 — (hi)n — G mt Fﬂ

|:(Ti+1)n+1(hi+1)3(pi+2)n+1 — (Piv2)nt1 _ (ri_l)n+1(hi_1)3<pi)n+l — (pi—2)n+1

2dry, 41 2dr, 41
(3.22)
11 3 1
Rbcl = ( — Ehl + 3h2 - §h3 + §h4) /d?” —0.0 (323)
5 3 ;
RbCQ = — §h1 + 9h2 - 12h3 + 7h4 — §h5 dr® — 0.0 (324)

Roi — R

Rbes = 7 = —Ca [C’os(@s) — C’OS(QD)] (3.25)
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n—1

RUCEV[)—ZWZ <n~hi—|—4

i=1

dr

it Vi bt i mlhm) il (3.26)

2 2

6

Here, Rbc; and Rbcs present zero slope and axisymmetriy at the center of the droplet.
Rbes stands for moving contact-line description and can be replaced with other options
discussed in chapter 2.6. The integration in volume constraint condition is performed
numerically by the Simpson’s rule. The height of profile at the edge of droplet is

enforced to be zero :

ho =0 (3.27)

The pressure term can be discretized as

. €3L2pgh. _ o€ (l hi+1 — h;_1 n h/L’Jrl — 2h; + hll)

~p, = 3.28
P P 7 2dr dr? ( )

r=i-dr He Hic
At boundary points, we should use forward or backward difference schemes to rep-
resent the derivatives at the boundary. Especially, at r = 0, the indeterminate con-
dition 0/0 (“zero slope at the center of droplet”/“position of the first point”) will

occur. L’Hopital’s rule is performed to evaluate the derivative as we approach r = 0.

Oh/or 0 (Oh or 0?h
"0 or <6T>/<8r> orr (3:29)
Hence, discretized pressure at » = 0 is given by
32 3 (2hg — 5hy +4hy — h
P mpy=- pgho—‘z“( 0=t A, 3) (3.30)
r—0 MU AT dr

and the discretized pressure at r = R is given by

B 63L2pgh0 o€

p ~Po=
r=R HUe HUe
1 3hy —2hn 1+ thy o 2hy — BShy_1 +4hy_o — hn_
o (L2 N-1 2N2+ N N—1t+4hn_2 N-3 (3.31)
TN dr dr?
In the above discretized equations, the unknowns are “..., (hit1)n+1, (Ri)nt1s (Riv1)ns1, -

We need to the take partial derivatives of the residuals above with respect to each un-

known to form the Jacobian matrix. The detail arrangement will be provided below.
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The resulting system of non-linear algebraic equations is mathematically expressed

as :
J - (hgy1 — hy) = —Res(hy) (3.32)
or
J - Ah, = —Res(hy) (3.33)
More specifically,
Tt e g gpe R | (e — (R (Rbe1 )k
ey oty oty ottt | )| (e
s G g o B () — (ha)i| | (Resa)s
e i M s Sl |- ()| | (esi)
|G G e G o ) | Ben—BRe | [(Rooj

Note that, the subscripts stand for the number of iterations inside the Newton-
Raphson’s method in a given time step. Generally, the Jacobian matrix has the

arrow-shape :

1 0 100 150 20
1 [T T T T 7]
50 |- 450
100 |- J100
150 {150
201 ; 20
50 100 150 201

Figure 3.1. Plot of Jacobian matrix with 201 points.
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For the case of spreading over a porous substrate, the discretized form of governing

equations (Eq. (2.173) and Eq. (2.184])) can be expressed as

(hi>n+1 - (hi)n
At

(hp)ns1 = (Bp)n
At
The residuals for above two equations can be defined as

(Ri)ns1 — (hi)n
At

(hpi)nﬂ B (hpz')n
At
Four discretized boundary conditions for Eq. (3.34]) are given by

= Fsa (i W, B 1 ()

1) 'Y TP 0 T

- Gn+1(hia hl’ h/'/ hpia hp/? hpi//)

77 77

— Frppa (ha, W, YR RS

(R A A A )

Resh; =

Reshpl. =

- Gn—i—l(hi; h/ h/, hPi’ h’Pi/’ hpi”>

(2

11 3 1
RbCl = ( — Ehl + 3h2 — 5]13 + §h4) /d?” —0.0

) 3
Rng = ( — §h1 + 9h2 - 12h3 + 7h4 - §h5> /d’l“3 —0.0

3 1
Rb03 = (EhN — QhN_l + 5hN_2> —0.0

Rbes = h —0.0

r=R
Two discretized boundary conditions for Eq. (3.35]) are given by

11 3 1
RbC5 = ( — Ehpl + 3hp2 — §hp3 + ghp4> /dT —0.0

Rbcg=h, —0.0

r=l

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)
(3.40)

(3.41)

(3.42)

(3.43)

Because the radius of droplet may not be the same as that of the wetting area inside

the porous medium, the positions where zero height and zero depth are enforced can

be different (Eq. (3.39) and Eq. (3.40))). The computations are performed for one-

dimensional axisymmetric configurations within fixed rectangular domain. The figure

to illustrate stretched grids or fixed domain is provided below.

To avoid encountering an issue due to the singularity of the governing equations

for h, — 0, a layer of precursor film (=~ 107® ~ 107°) covers the area which has
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Air phase Air phase
h(r.t)

Precursor film

Z=0

Porous domain Porous domain

Figure 3.2. Schematic of problem with stretched grids (left) and fixed domain (right).

not been occupied by the droplet. Here, the thickness has already been scaled by
the characteristic length (=~ 1073) and the dimensional value is around 1075 ~ 107%.
Besides, the permeability number is set to be zero for positions not covered by the
droplet to prevent the film being absorbed into the porous substrate.

The Jacobian matrix for system of non-linear algebraic equations is expressed as

follows
[ 9Rbe, dRbey dRbey dRbey dRbey dRbey ORbe;
Oh1 Ohz Ohs T Ohyp Ohyp, Ohpg T O(hp)N-1
ORbco ORbco ORbco ORbco ORbco ORbco ORbco
Oh1 Ohsa Ohs to Ohp, Ohp, Ohps T O(hp)N—1
ORessg ORess ORess ORess ORess ORess ORess
Oh1 Ohso Ohg e 6hp1 6hp2 6hp3 e a(hp)N,l
ORbcs ORbcs ORbcs ORbcs ORbcs ORbcs ORbcs
Oh1 Ohso Ohg T ahpl ahp2 ahp3 T 8(hp)N_1
OReshp, OReshp, OReshp, OReshp, OReshp, OReshp, OReshp,
Oh1 Oha Ohz T Ohyp, Ohypy Ohpg T O(hp)N-1
OReshypq OReshypq OReshypq OReshp, OReshpq OReshypq OReshypq
Oh1 Ohsa Ohs T Ohp, Ohp, Ohps T O(hp)N—1
OReshypy_, OReshpy_;  OReshpy_ OReshpy_,; OReshpy_;  OReshpy_ OReshyp 4
L Ohy Oha Ohs3 to Ohp, Ohp, Ohpg T O(hp)N-1
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The vector for unknowns and residuals are arranged as follows

(h1)k (Rbey)r,
(hg)k (RbCQ)k
(hg)k (Reshg)k
h = (hpl)k ,Res — (R@Shp3)k
(h/p2)k (Reshp4)k
(hpg)k (Re'Sh;%)k
| [(hp)n], ] | [(Reshy)n-1], |

The resulting Jacobian matrix has the following form

100 200 300 400 500

[T T T T T T4
100 100
200 o —200
200 —200
400 -400
':3:] e L 1 L 1 L F:IS

100 200 200 200 500

Figure 3.3. Plot of Jacobian matrix with 251 points.

251 grid points in the computational domain results in 500 unknown variables (for
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both h and h, except hy_; and (h,)y_1). Therefore, the resulting dimension of
matrix is 500 x 500. Along the main diagonal, the bandwidth of above matrix is 7
for entries corresponding to h and 5 for entries corresponding to h,. Along the upper
sub-diagonal, there is only one non-zero entry because terms for absorption don’t
contain derivatives with respect to h,. Along the lower sub-diagonal, the bandwidth
of this diagonal is 7 because it involves a fourth-order partial derivative of Resh, with
respect to variable h.

The constraint for total volume including liquid in the droplet and inside porous
substrate is not used in the simulation. However, it still can be used as a check for the
accuracy of spatial and temporal discretization scheme. The lower order discretiza-
tion schemes with coarse grid points could possibly decrease the total volume. Note
that the decrease in total volume can not be avoided if we don’t enforce total volume
constraint in the calculation. In order to make total volume change as small as pos-
sible, it is required to choose a finer grid so that higher order terms, O(Axz?), remain
small. Generally, the number of grid points depends on the length of computational
domain and is in the rage of 300 to 1000.

The discontinuity of permeability number near the edge of the droplet maybe one
of the reasons causing a numerical issue and oscillation in the droplet profile. There-
fore, to reduce the difference of permeability number for adjacent grid points near
the moving-contact-line, the permeability number, Pm, is multiplied by a thickness-

dependent prefactor (Alleborn & Raszillier [4]):

Pm-——t " h>h
Pm(h) = HH/IC(=hg)l ! (3.44)

0 h < hy
Here, C' is a constant to control the effect of prefactor and h, is the thickness of the
precursor film.
For the case of power-law droplet spreading over a solid substrate, because the
governing equations involves computation with a non-integer exponent (Eq. [2.256)),

we need to evaluate the absolute value of pressure gradient to make sure that the
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viscosity is always positive. The discretized form of Eq. (2.256) is very similar to Eq.
(13.45) :
(hi)nt1 — (hi)n n 1\""' 1 1 .
= — —— S (ris)nr1 (higr) /2
At 1+2n\m (7i)ns1 drps1 (rist)nsr(hiva)

1/n—1
(pi+2)n+1 - (pi+2)n+1 / (pi+2)n+1 - (pi+2)n+1
2d7“n+1 2drn+1

X

— (Tic1)n1(hi1)

1nte (Pi)nt1 — (Pi—2)nt Y (0)ss — (Piea)nm
2drp41 2dry 41

(3.45)

After using the same geometry boundary conditions and contact-line description with
different parameter setup for different liquids and forming a Jacobian matrix with the
same arrangement as in Eq. , one can have the same shape of Jacobian matrix
as that in Figure 3.1.

For the case of power-law droplet spreading over a porous substrate, the gov-
erning equations become even more complicated. The numerical setup requires all
the procedures and functions mentioned in this chapter including the discretization,
Jacobian matrix formulation. Besides, the contact-line dynamics for non-Newtonian
liquids spreading over a porous substrate is poorly understood. Therefore, the way to
circumvent this issue is to implement fixed grid points over the entire computational
domain applying geometry boundary conditions at the center of droplet and right
end of the precursor film : Eq. to Eq. . Instead of using stretched grids
to present moving-contact-line, we compute the unknowns within the entire domain
(the right plot in Fig 3.2.) and define the distance to the points closet to the left end

of precursor film as the current radius of droplet.
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3.3 Numerical Results, Validation, and Discussion

The numerical results presented in this chapter are obtained by solving governing
equations for four cases we introduced in chapter 2: those of Newtonian and power-
law droplets spreading over a solid, smooth substrate and those of Newtonian and
power-law droplets spreading over a homogeneous porous medium. Four models are
presented in the cylindrical coordinate and the computations are performed in an
one-dimensional axisymmetric configuration. For cases of spreading over a solid sub-
strate, the computational domain is changing with time due to the implementation
of stretched grid methods while for cases of spreading and absorption, the domain is

fixed with a prescribed length of domain.

3.3.1 Newtonian Droplet Spreading over a Solid Substrate

In this subsection, the pressure p only includes the capillary effect in order to cap-
ture the Tanner’s law which applies to cases when the capillary pressure dominates.
The numerical results reported here are effectively independent of the sizes of time
step and grid size. The test cases include the simulations based on experimental data
and molecular kinematic theory for Runs 5 and 9 from Chen et al. Runs 5 and 9
represent different experimental setups. Here, we use experimental data for contact
angle versus time as the contact-line boundary condition. Another way to provide
the contact-line boundary conditions is using velocity-dependent contact angle de-
rived from the molecular kinematic theory. Fig 3.4 presents the numerical results of
apparent radius versus time for Run 5 and Run 9 based on experimental contact-
line boundary condition and molecular kinematic theory. Fig 3.5 demonstrates the
numerical results of center height of droplet versus time for Runs 5 and 9 based on
experimental contact-line boundary condition and molecular kinematic theory. The
choices for numbers of total grid points are 100, 200, and 500, respectively, presented
by blue circles, orange triangles, and green squares. The difference for using differ-

ent numbers of grid points is discernible but acceptable for each case ((a) and (b)
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Ca =0.22, Bo = 0.0; (c) and (d) Ca = 0.1, Bo = 0.0). The time step size of 0.1 is

used. The results are reported in dimensional form.
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(a) Run 5: Using experimental data as contact-
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(c) Run 9: Using experimental data as contact-
line boundary condition.
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(b) Run 5: Contact-line boundary condition
based on molecular kinematic theory.
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(d) Run 9: Contact-line boundary condition
based on molecular kinematic theory.

Figure 3.4. Demonstration of grid independency test of numerical results for temporal
evolution of radius, (a) and (b) Ca = 0.22, Bo = 0.0; (c) and (d) C'a = 0.1, Bo = 0.0.
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line boundary condition.
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(d) Run 9: Contact-line boundary condition
based on molecular kinematic theory.

Figure 3.5. Demonstration of grid independency test of numerical results for temporal
evolution of center height, (a) and (b) Ca = 0.22, Bo = 0.0; (c¢) and (d) Ca = 0.1,
Bo = 0.0.

The Bond number is set to be zero to focus on capturing the Tanner’s law for

capillary spreading, where the gravitational effects are neglected.
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The tabular experimental results for Runs 5 and 9 are given as follow

Table 3.1. Data of Run 5 from Chen [15].

t (sec) R (cm) H (cm) 0p (deg) C x10* V x 10* (em?)
5.50 0.1135  0.0150 14.75 2.2 3.05
10.50  0.1230 0.0128 12.08 1.2 3.0
20.50 0.1325 0.0111 9.46 0.67 3.07
30.50  0.1380 0.0103 8.54 0.47 3.09
40.50  0.1425  0.0096 7.71 0,37 3.07
50.50  0.1455  0.0090 7.08 0,30 3.00

Table 3.2. Data of Run 9 from Chen [15]

t (sec) R (ecm) H (ecm) 0p (deg) C x10* V x 10* (em?)
3.25 0.0980 0.0112 12.17 3.1 1.70
13.25 0.1095 0.0087 8.34 0.88 1.64
18.25  0.1130  0.0081 7.50 0.66 1.63
33.25 0.1195 0.0073 6.03 0.39 1.64
73.25 0.1315  0.0059 4.60 0.19 1.60
93.25 0.1455 0.0054 3.91 0.16 1.59
148.25 0.1370  0.0045 3.16 0.10 1.47

In the table, C' indicates the real time capillary number calculated by C' = pu./o.
In our simulation, the capillary number, Ca, is obtained by dividing the initial cap-
illary number, C', reported in Tables and by the cubic ratio, €. Here, € is
defined as the ratio of the initial center hight to the initial radius of the droplet. The
unit for length is in millimeter while the unit for contact angle, 6p, is in degree. The

semi-numerical-experimental results well capture the exponent of Tanner’s law, i.e.,
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Figure 3.6. Comparison for semi-numerical-experimental results and Run 9 from
Chen’s paper.

0.1 for spreading, —0.2 for decrease in center height, and —0.3 for decrease in contact
angle (Fig 3.6). The deviation in h(0,t) and #p from experimental data becomes
obvious at larger times. The possible reason for noticeable differences in Fig. [3.6] is
that the evaporation effect becomes more effective than that in the initial stage due
to increase in free surface area. Fig. [3.§ demonstrates the noticeable difference in
volume between numerical results and experimental data. The evaporation rate is
nonuniform across the droplet (Fig [3.7; Deegan et al. [36]): the liquid evaporating
from edge is replenished by the liquid from the interior which could lower the center
height more rapidly than that in simulation where the volume conservation condition
is used as a global constraint to make sure that the total volume is not changing over
time. The snapshots of a droplet spreading at different time steps are given in Fig.

2.9



Evaporation flux

<

Figure 3.7. Schematic for the nonuniform evaporation rate.
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Figure 3.8. The comparison of volume history for numerical and

experimental results. In simulation, the total volume is kept constant

throughout the spreading process while volume decreases with time
in experiments.
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Figure 3.9. Droplet profile at different times.
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The next set of numerical results for Run 9 uses contact-line boundary condition

based on the molecular kinematic theory (Eq. [2.325)).

10 — ,
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Figure 3.10. Comparison for numerical results and Run 9 from Chen [15].

It is obvious that the use experimental contact line boundary condition and molec-
ular kinematic models can lead to different results. As shown in Fig. [3.10] the spread-
ing exponent is around 1/7 for R, —2/7 for h(0,t), and —3/7 for p. However, these

results can still match the predictions from Blake [17] written as follow:
R~ Y7 (3.46)

Op ~ t=3/7 (3.47)

The individual temporal evolution of variables (R and h(0,t)) are reported below
to further demonstrate the difference between them.  Although the results using

molecular kinematic model matches experimental data quite well for initial stage in
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Figure 3.11. Comparison of R using experimental contact line boundary
condition and molecular kinematic model.
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Figure 3.12. Comparison of h(0,?) using experimental contact line
boundary condition and molecular kinematic model.

Fig. |3.11] they predict a faster spreading than experiments, resulting in different
spreading exponent: 0.1 in Tanner’s law and 0.13 in simulation. In, Fig|3.12] there
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is an obvious difference in h(0,¢) plot due to evaporation effect at larger times. The

snapshots of droplet profile at various times are given below:
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Figure 3.13. Droplet profile at different times.
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The results and discussion for Run 5 are quite similar to those in Run 9. However,
as shown in Table [3.3] the volume is kept constant during the experiment. Fig.
shows the temporal evolution of volume both for numerical results and experimental
data reported from Run 5. One can observe that the maximum difference between two
lines doesn’t even exceed 2% with respect to original volume. Fig. demonstrates
the comparison of semi-numerical-experimental results with data from Table As
shown in Fig. [3.15] the numerical values for these three variables match experimental
data reported in Run 5 very well. Besides, the Tanner’s law which applies only to

capillary spreading is captured in Fig. |3.15] Snapshots of droplet profile are provided

in Fig [3.16]
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0.5¢
% 04
S
1 0.3 [ ] | ! - m— —m
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0.1t — Simulation
-m Experimental results from from Run 5.
0.0t ! ! ‘ ‘ -
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Figure 3.14. Plot of the temporal evolution of total volume against exper-
imental data.
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Figure 3.15. Plot of R, h(0,t), and 6p as functions of time ¢ compared with experi-

mental data.
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3.3.2 Power-Law Droplet Spreading over a Solid Substrate

Eq. (2.256) is solved subjected to the following boundary conditions: Eq. (2.318]),
Eq. (2.319), Eq. (2.320), and Eq. (2.321)). Here, the length scales of droplet is

small enough for us to only involve capillary effects in the pressure. Typically, the
horizontal length scale is smaller than the capillary length scale/o/pg ~ 2.7mm.

The system of equations with zero slope boundary condition at the rim of droplet

(% ._p) has been analytically solved in Starov et al. [1]. The spreading exponent o
is given by
" (3.48)
a = .
7+ 3n

The plot of spreading exponent is shown below to demonstrate how rheological expo-

nent affects the behavior of spreading. In the present study, the contact-line boundary

0a-Q

0.3 1

0.2-
0.1
|
I
1
i
0.0 ——rr + —
0.01 0.1 1 10 100

Figure 3.17. Plot of spreading exponent versus power-law
exponent.

condition implemented in the simulation is based on the molecular kinematic theory

(Eq. (2.325])) instead of using zero slope condition at the edge of droplet. The plots
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of values of R as a function of time and logarithm of radius have been shown here to

illustrate the spreading exponent.
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Figure 3.18. Plot of radius as a function of time.
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Figure 3.19. Logarithm of radius as a function of time.
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The snapshots of droplet profile for spreading of shear-thinning and shear-thickening

droplets are reported below.
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Figure 3.20. Profile of shear-thickening droplet (n = 1.3).

0.12

0.10--
Z0.08
£0.06.
-~

0.04

0.02:

..... Initial profile

— Current profile |

0000 05 10 15 20

7 (mm)

Figure 3.21. Profile of shear-thinning droplet (n = 0.2).
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Comparisons against Eq. (3.48) for different power-law exponents from 0.1 to 2.0
are reported in the table and Fig.

Table 3.3. Table of comparison for the spreading exponents ob-
tained from simulations against the ones obtained using Eq.

(3.48) for different power-law exponents.

Power-law exponents | 2 T PR | hom smautasons
n=0.1 0.0137 0.0123
n=0.2 0.0263 0.0292
n=0.3 0.0380 0.0401
n=0.4 0.0488 0.0484
n=0.5 0.0588 0.0556
n=0.6 0.0682 0.0642
n=0.7 0.0769 0.0780
n=0.38 0.0851 0.0851
n=0.9 0.0928 0.0911
n=10 0.1 0.1
n=11 0.1068 0.1142
n=12 0.1132 0.1134
n=13 0.1193 0.1192
n=14 0.1250 0.1254
n=15 0.1304 0.1311
n=16 0.1356 0.1352
n=17 0.1405 0.1401
n=18 0.1452 0.1442
n=19 0.1496 0.1484
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As Shown in Fig and Fig[3.19 increase in the the power-law exponent results
in a larger spreading exponent which means that a shear-thickening droplet spreads
faster than Newtonian and shear-thinning droplets. Because shear rate increases upon
approaching the contact-line, the liquid closer to the rim moves faster than interior
liquid causing more advancement of contact line and decrease in the apparent contact
angle. Therefore, a shear-thinning droplet has a larger spreading rate than a shear-
thickening droplet at the initial stage. Besides, the feature of reverse-curve tail for
shear-thinning droplet (Fig results from the increase in the shear rate near the
contact line. The force that drives the moving-contact line in a given direction is
equal to the out-of-balance surface-tension force arising from the deviation of current
contact angle from the static angle. In other words, the spreading velocity varies
with the difference of current contact angle from the static contact angle: the smaller

difference between current state and static state, the smaller the driving force for
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spreading and the slower contact-line moves. Therefore, the shear-thinning droplet
has the lower spreading rate than Newtonian and shear-thickening droplets after a
long time.

The following results are for a Xanthane droplet spreading over a solid substrate.
The surface tension for the air/Xanthane solution is 72 + 2mNm™! at 20°C inde-
pendent of various concentrations used in the experiments from Rafai, Bonn, &
Boudaoud [2] and in our simulation. The shear-thinning behavior is described by
a shear rate dependent viscosity as = poy" !, where g is the zero shear rate vis-
cosity and n is the power-law factor reflecting the shear-thinning property of liquids.
The plot of viscosity versus shear rate describing shear-thinning behavior of xanthane
solutions is provided in Rafal et al. [2]. The simulations for polymer concentration of

125, 1000, 2500, and 5000 p.p.m are carried out and reported below.

2
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Figure 3.23. Radius of xanthane droplets versus time from measurements and
simulations.
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The zero-shear-rate viscosities o for polymer concentrations of 125, 1000, 2500,
and 5000 p.p.m. are 21.115, 34.191, 4666.593, and 21602.000 mPa, respectively. The
power-law exponent are 0.7173, 0.3918, 0.3025, and 0.1777, respectively. Though we
can not match the experimental data exactly, we still capture the trend of spreading
for each case. The evaporation effect and the contact-line boundary condition may
lead to the some deviation from experimental results. However, the evaporation effect
can be ruled out due to high averaged molecular weight of xanthane solution for
relatively short time experiments. The contact-line condition (Eq. ) could be
replaced with a more advanced and complicated boundary condition including energy
dissipation not only due to the wetting-line friction but also due to viscous losses in
the thin wedge adjacent to the moving-contact line. Besides, the energy dissipation
due to viscous losses can be generalized based on the shear rate dependent viscosity.
This portion of total energy dissipation can possibly bring the numerical results closer

to the measured data.
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3.3.3 Newtonian Droplet Spreading over a Porous Substrate

For the case of the spreading over an impermeable medium, i.e., ¢ = 0 and
Pm = 0, the evolution of the contact radius R(t) and the center height h(0,t) shows
the Tanner law behavior in Figs. and and approaches its equilibrium shape
for ¢t > 1.

R~ t1° and h(0,t) ~ t=2/10 (3.49)

When the spreading is coupled with the absorption effect (Figs. and , the
evolution of the center height, h(0,t), and contact radius, R(t), follows the Tanner’s
law behavior during the initial phase of spreading and absorption, since the liquid
withdrawn from the droplet during this comparatively short period is small (about 1 %
of the total absorption time). At around t = 1.99, the advancement of contact radius
is greatly delayed after the radius reaches its maximum value. Then the absorption
effect starts to become dominant due to the increase in the contact radius, R(t). The
central height of the droplet starts to drastically decrease. Hence, the contact line
recedes until the droplet has been completely absorbed. The entire absorption process
is considered complete when the center height approaches the thickness of thin film.
The competition between the spreading and the absorption is measured at r = 0 and
plotted in Fig. [3.32] Figs. and show the evolution of the center height,
h(0,t), and contact radius, R(t), of the droplet on a porous substrate (Pm = 5x 107°
and ¢ = 0.25). The snapshot of profiles of the free surface and the wetting front is
plotted in Fig. [3.29. The flat wetting profile inside the porous medium near the
center of the droplet results from the uniform absorption rate near the center. We
can observe that the terms governing the evolution equation of the wetting front (Eq.
(2.184])) are the suction number and the pressure at the free surface of the droplet. If
we neglect the gravitational effect for a small droplet, the pressure at the free surface

is related to the droplet shape by the Young-Laplace equation.

p(r,t) = Pa+2Ho , (3.50)
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where Pa is the atmosphere pressure, ¢ is the surface tension of the fluid and H is

the mean curvature. For thin film, H is given by

H~ 2%%% (r%) | (3.51)
Under the effect of thin film approximation, the curvature, H, near the center of the
droplet, r = 0, stays constant during the entire process of spreading and absorption.
The suction number, only affected by the characteristic lengths and the capillary
pressure jump inside the porous medium, can be considered a constant throughout
the computational domain. Therefore, the uniform propagation of wetting profile
near the center of the droplet results in a flat penetration front. The similar profile
near the center of the droplet can be found in Alleborn & Raszillier [4]; Zadrazil,
Stepanek & Matar [26]. Another feature is that when the contact radius recedes, the
wetting front ahead of the contact point barely propagates. The absorption velocity
is zero for the points located at the right-hand-side of the contact point because there
is no mass withdrawn from above, i.e., r > 0.87 in Fig. [3.29] Another possible cause
of propagation is the radial velocity, u,, inside the porous medium as shown in Fig.
3.33] However, the scale of this radial velocity (Eq. (2.171)) is much smaller than
that of the vertical velocity (Eq. ) inside the porous medium as shown in Eq.
(13-52)): ,
Z_Z ~ 11//22 = (3.52)

Therefore, the combination of the above effects leads to a nearly zero propagation of

the wetting front.

The evolutions of the contact radius and the central height for different permeabil-
ity numbers are plotted in Figs. and We observe that a larger permeability
number enhances the absorption effect and decreases the maximum contact radius.
Thus, the droplet spreading follows the Tanner’s law for a shorter time as permeabil-
ity number increases. The total time for the droplet to be completely absorbed into
the porous substrate gets shorter as well. For cases with stronger absorption effects,

the contact radius of the droplet can even decrease in the beginning without showing
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the spreading behavior as shown in Fig [3.29, The absorption effect dominates the
governing equations during the entire simulation causing a monotonic decrease in the
radius and the central height as time goes by.

Finally, in Fig [3.25, we compare the evolution of contact radius against the ex-

perimental results reported in Denesuk et al. [3] using the new model (Eq. (2.173))
and Eq. (2.184))) we proposed in chapter 2.

R (mm)

- Experiments from Denesuk et al. [28]

- __ Alleborn & Raszillier [24]

0.0-— Present simulation | | 7
0 5 10 15 20 25 30
t (sec)

Figure 3.24. The contact radius, R.(t), of a droplet versus ¢. The green line
indicates the experimental values of Denesuk et al. [3] for a PDMS droplet on
a porous soda-lime-silicate substrate. The blue line indicates the numerical
results from Alleborn & Raszillier [4]. The red line is the current numerical
study. (Pm = 2.076 x 107%, Su = 680, and ¢ = 0.64)
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Figure 3.25. Plot of the radius as a function of time. (Pm =0
and ¢ = 0.25)
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Figure 3.26. Plot of the center height as a function of time.
(Pm =0 and ¢ = 0.25)
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Figure 3.27. Spreading and absorption of a droplet: contact ra-
dius R(t) as a function of time. (Pm =5 x 107%, Su = 10°, and
¢ =0.25)
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Figure 3.28. Spreading and absorption of a droplet: center
droplet height h(0,t) as a function of time. (Pm =5 x 107¢,
Su = 10°, and ¢ = 0.25)
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Figure 3.29. Dimensionless profiles of the free sur-
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Figure 3.30. The contact radius, R(t), versus ¢ for Su = 10° and ¢ = 0.25.
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Figure 3.31. The central height, h(0,t), versus ¢ for Su = 10° and ¢ = 0.25.
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4. RECOMMENDATIONS FOR FUTURE WORK
4.1 Better Physical Representation of Contact Line

The physics at the contact line is complicated. The boundary condition based
on the molecular kinematic theory only accounts for the part of rate of the energy
dissipation due to wetting-line friction. According to the review by Blake |17], the
rate of energy dissipation per unit length of the wetting line is the product of the flux
U and the out-of-balance surface tension force J(COSQS — cos@D). The total energy is
assumed to be composed of the energy losses due to viscous bending of the liquid-gas
interface near the moving contact line, i.e., the viscous dissipation, plus the losses due
to wetting-line friction. The above statement can be written in the following equation

L
o (cosfs — cosbp)U = 65—Uln<L—) U+ CU?, (4.1)
D m

i.e.

= U(COSOGS — COLSHD) . (1.2)
C+gan(zz)

Here, the length scale L is the characteristic size of the droplet and L,, is the appro-

priate chosen microscopic length scale. ( is the coefficient of the wetting-line friction.

4.2 Higher Order Model for Flow inside the Substrate: The Brinkman

Equation

In chapter 2., we assume the flow inside the porous substrate is governed by the
Darcy’s law for the Newtonian liquids and the modified Darcy’s law for the power-
law fluids. In Darcy’s law, the flow inside the porous medium is only affected by the

pressure gradient as shown in Eq. (4.3).

u=—"vp. (4.3)
W
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In a low Reynolds number regime, we can still neglect the inertial effect. Never-
theless, neglecting the viscous effect may result in large deviation from the actual
phenomenon. Therefore, we need an equation that can better describe the flow inside
the porous media. The Brinkman equation (Brinkman [37]), neglecting the inertial

effects and considering the viscous and pressure terms, is given by
Ko
—u=-Vp+Au. (4.4)
K

Here, u = (u,v,w) is the averaged velocity, p is the dynamic viscosity, and « is the
permeability of the porous media. The relevant analysis of the Brinkman equation

can be found in Durlofsky & Brady [38].
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