
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Open Access Dissertations Theses and Dissertations 

12-2017 

Laser-assisted processing of multilayer films for inexpensive and Laser-assisted processing of multilayer films for inexpensive and 

flexible biomedical microsystems flexible biomedical microsystems 

Rahim Rahimi 
Purdue University 

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations 

Recommended Citation Recommended Citation 
Rahimi, Rahim, "Laser-assisted processing of multilayer films for inexpensive and flexible biomedical 
microsystems" (2017). Open Access Dissertations. 1623. 
https://docs.lib.purdue.edu/open_access_dissertations/1623 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/open_access_dissertations
https://docs.lib.purdue.edu/etd
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1623&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/1623?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1623&utm_medium=PDF&utm_campaign=PDFCoverPages


      

     

 

  

 

  

       

          

 

   

 

      

   

  

  

LASER-ASSISTED PROCESSING OF MULTILAYER FILMS FOR 

INEXPENSIVE AND FLEXIBLE BIOMEDICAL MICROSYSTEMS 

by 

Rahim Rahimi 

A Dissertation 

Submitted to the Faculty of Purdue University 

In Partial Fulfillment of the Requirements for the degree of 

Doctor of Philosophy 

School of Electrical & Computer Engineering 

West Lafayette, Indiana 

December 2017 



 
 

     

    

    

      

   

      

   

    

   

      

 

  

   

     
  

ii 

THE PURDUE UNIVERSITY GRADUATE SCHOOL 

STATEMENT OF COMMITTEE APPROVAL 

Dr. Babak Ziaie, Chair 

Department of Electrical & Computer Engineering 

Dr. Saeed Mohammadi 

Department of Electrical & Computer Engineering 

Dr. Çağri Savran 

Department of Mechanical Engineering 

Dr. Dimitrios Peroulis 

Department of Electrical & Computer Engineering 

Approved by: 

Dr. Venkataramanan Balakrishnan 

Head of the Graduate Program 



 
 

     

 

iii 

To my wife and parents. 



 
 

 

             

              

                

              

              

          

              

               

                   

               

             

                   

                 

             

            

               

                

             

              

   

             

                    

                

            

                

                 

                   

              

iv 

ACKNOWLEDGMENTS 

Throughout my graduate life, I have truly enjoyed working with many wonderful people. 

This dissertation could not have been completed without the advice, guidance, and support from 

many people. At first I would like to express my sincere gratitude towards my academic advisor 

and mentor, Prof. Babak Ziaie, for his invaluable guidance and support which made my 

dissertation possible. His enthusiasm and inspiration allowed me to accomplish more than I ever 

would have expected as a graduate student at Purdue. 

I would also like to express my sincere appreciation to my thesis committee members, 

Prof. Saeed Mohammadi, Prof. Çağri Savran, and Prof. Dimitrios Peroulis for their interest in my 

research, and for their time and inputs on my thesis. I am very appreciative of the staff and director 

of the Birck Nanotechnology Center Prof. Ali Shakouri for their constant help and assistance in 

my research and also creating a wonderful multicultural environment of enthusiasm and learning. 

It was a place where I spent most of my time at Purdue finding wonderful people and close lifelong 

friends. I would also express utmost appreciation to the wonderful people who I had the honor of 

collaborating during my graduate studies. In particular, the wonderful NSF EFRI team from 

Harvard Medical School and Tufts University, including Prof. Ali Khademhosseini, Prof. Sameer 

Sonkusale, Dr. Mehmet R. Dokmeci, Dr. Ali Tamayol, Dr. Pooria Mostafalu, Dr. Xin Zhao, Dr. 

Iman K. Yazdi, Dr. Alireza Hassani Najafabadi, and Dr. Nasim Annabi. I am also grateful to 

Prof. Sophie Lelièvre, Prof. Mukerrem Cakmak, Dr. Siamak Shams Es-haghi, Prof. Rodolfo Pinal, 

Dr. Rajiv Sood, and Dr. Michael Zieger for their continued support throughout various other 

interdisciplinary projects. 

My special thanks to my senior colleagues and friends from ZBML, beginning with 

Dr. Manuel Ochoa who was one of the first members of the group that I met when I joined ZBML 

and has always been a tremendous helpful friend and colleague. Many thanks also to my other 

senior colleagues Dr. Charilaos Mousoulis, Dr. Nithin Raghunathan, Dr. Seung Huyn Song, 

Dr. Jun Hyeong Park, Dr. Albert Kim, Mr. Marcus Brown, Mr. Zachariah Hughes, and Dr. Girish 

Chitnis who I collaborated with in the different projects and helped me learn various skills in the 

lab. I also want to thank current members of ZBML for being such a good company in conference 

travels and their invaluable assistance in different projects, including Mr. Wuyang Yu, Mr. Jiawei 



 
 

                 

   

             

                  

                 

                 

             

                

            

            

            

          

 

 

v 

Zhou, Chang K. Yoon, Mr. Tejasvi Parupudi, Mr. Hongjie Jiang, Ms. Tiffany L. Huang and all my 

other lab colleagues. 

Outside of the academic world, I most first acknowledge the tremendous sacrifices and 

constant support of my parents for my education. For this and much more, I am forever in their 

debt. Sincere thanks to all my friends at Purdue for making the graduate school a wonderful and 

enjoyable experience. Last, but certainly not least, I want to thank my loving wife, Tahereh for her 

understanding, patience, and encouragement, without her I would not have succeeded this far. 

I would also like to take this opportunity to thank those who provided financial support as 

I pursued this academic endeavor including: Purdue Department of Mathematics, and Electrical 

and Computer Engineering, for the teaching opportunities and financial support, National Science 

Foundation grant EFRI-BioFlex #1240443, Department of defense, NextFlex PC 1.0 Program, and 

the educational research grants from Eli Lilly, Indianapolis, Indiana, USA. 



 
 

   

     

   

    

    

    

      

     

     

        

     

     

        

       

        

         

      

     

     

      

      

     

      

         

       

      

      

       

     

       

vi 

TABLE OF CONTENTS 

LIST OF FIGURES ....................................................................................................................... ix 

ABSTRACT................................................................................................................................. xix 

1. INTRODUCTION ................................................................................................................... 1 

Research motivation............................................................................................................ 1 

Background ......................................................................................................................... 4 

Overview of thesis ............................................................................................................ 12 

2. LASER MATERIAL PROCESSING.................................................................................... 13 

Laser systems .................................................................................................................... 13 

2.1.1 Solid state lasers: Fiber laser ..................................................................................... 14 

2.1.2 Gas lasers ................................................................................................................... 15 

Laser-material interaction ................................................................................................. 15 

2.2.1 Physical material alterations via laser........................................................................ 16 

2.2.2 Laser activated chemical processes ........................................................................... 18 

3. LASER CARBONIZATION OF POLYMERIC FILMS...................................................... 19 

Laser-induced porous carbon from polyimide film .......................................................... 20 

3.1.1 Results and discussion ............................................................................................... 21 

Porous-carbon/silver nanocomposite ................................................................................ 24 

3.2.1 Fabrication process .................................................................................................... 25 

3.2.2 Results and Discussion .............................................................................................. 27 

Stretchable carbon−polyaniline composite ....................................................................... 31 

3.3.1 Fabrication process .................................................................................................... 32 

3.3.2 Results and discussion ............................................................................................... 34 

4. LASER ABLATION OF MULITLAYER POLYMERIC FILMS ....................................... 42 

Laser ablating hydrophobic paper..................................................................................... 42 

4.1.1 Materials and method ................................................................................................ 43 

4.1.2 Results and discussion ............................................................................................... 45 

4.1.2.1 Surface wettability and morphology..................................................................... 45 

4.1.2.2 Mechanical properties........................................................................................... 47 

4.1.2.3 Oxygen and medium permeability ....................................................................... 48 



 
 

       

      

      

       

      

     

       

       

     

         

     

      

      

        

      

     

           

       

      

         

          

     

     

       

      

     

      

     

      

          

       

vii 

Laser patterning ITO-coated PET..................................................................................... 50 

4.2.1 Materials and method ................................................................................................ 51 

4.2.2 Results and discussion ............................................................................................... 51 

Laser ablating metalized paper ......................................................................................... 57 

4.3.1 Materials and method ................................................................................................ 58 

4.3.2 Laser processing ........................................................................................................ 60 

4.3.3 Mechanical and surface characterization................................................................... 64 

5. LASER ENABLED DEVICE MANUFACTURING ........................................................... 68 

Mechanical sensors ........................................................................................................... 68 

5.1.1 Highly stretchable and sensitive strain sensor ........................................................... 68 

5.1.1.1 Fabrication process ............................................................................................... 69 

5.1.1.2 Results and discussion .......................................................................................... 70 

5.1.2 Wireless pressure sensor............................................................................................ 76 

5.1.2.1 Fabrication process and measurement technique ................................................. 76 

5.1.2.2 Results and discussion .......................................................................................... 77 

Electrochemical sensors.................................................................................................... 78 

5.2.1 Flexible and transparent pH sensor with NFC communication................................. 80 

5.2.1.1 Transparent pH sensor fabrication........................................................................ 81 

5.2.1.2 Electronic readout circuit...................................................................................... 83 

5.2.1.3 Characterization of the sensor and wireless module............................................. 85 

5.2.2 Highly stretchable pH sensor via direct laser-writing/machining ............................. 90 

5.2.2.1 Fabrication process ............................................................................................... 90 

5.2.2.2 Device Characterization ....................................................................................... 92 

5.2.2.3 In vitro biocompatibility assessment .................................................................... 94 

Paper-based environmental sensors .................................................................................. 96 

5.3.1 Humidity sensor......................................................................................................... 97 

5.3.1.1 Results and discussion .......................................................................................... 98 

5.3.2 Temperature sensor.................................................................................................. 102 

5.3.2.1 Results and discussion ........................................................................................ 104 

Paper based in-vitro model for respiratory system ......................................................... 105 

5.4.1 Paper-based microfluidic ALI platform................................................................... 107 



 
 

          

   

      

     

   

   

  

viii 

5.4.2 Airway epithelial cells on the paper platform.......................................................... 110 

6. CONCLUSION.................................................................................................................... 114 

Summary and Conclusions ............................................................................................. 114 

Future Directions ............................................................................................................ 116 

REFERENCES ........................................................................................................................... 118 

VITA........................................................................................................................................... 142 



 
 

   

                

              

             

           

             

           

             

             

            

            

         

               

              

             

          

            

            

          

          

          

         

               

             

                   

             

           

              

           

ix 

LIST OF FIGURES 

Figure 1.1. U.S. disposable medical sensors market by product, 2014 - 2025 (USD Million) ...... 1 

Figure 1.2. Laser processing market in China, 2014 - 2025 (USD Million) .................................. 3 

Figure 1.3.Next-generation flexible electronics systems and the key relevant sectors [9]............. 4 

Figure 1.4. Disposable devices fabricated by conventional photolithography processes. (a) Optical 

images of temporary transfer tattoo with built-in electronics for measuring ECG, EMG, and 

EEG in conformal skin-mounted modes with- out conductive gels or penetrating 

needles[16]. (b) Optical image of multiplexed array of electro tactile stimulators in a 

stretchable, mesh geometry on the inner surface of an elastomeric finger-tub for measuring 

pressure created by physical contact [17]. (c) Optical image of multifunctional inflatable 

balloon catheter with integrated sensors for measuring temperature, flow, tactile, optical and 

electrophysiological data, together with radiofrequency electrodes for controlled, local 

ablation of tissue [18]. (d) Optical image of the wearable sweat analysis patch with a sweat-

uptake layer and integrated flexible glucose, lactic acid, and pH sensors [19]. (e) Surgical 

sutures with built-in electronics for targeted wound monitoring and therapy [20].............. 5 

Figure 1.5. Long-term implantable devices fabricated by conventional photolithography processes. 

(a) Optical image of ultrathin and flexible silicon nanomembrane transistors into the 

electrode array for recording and stimulating the brain [21]. (b) Mechanically flexible 

silicon electronics for multiplexed measurement of cardiac electrophysiology[22]. (c) Fully 

implantable miniaturized optoelectronic systems for wireless optogenetics [23]................ 6 

Figure 1.6. Flexible electronic manufacturing approaches: (a) conventional photolithography, (b) 

printing and additive manufacturing, (c) laser processing. .................................................. 7 

Figure 1.7. (a) Transfer process of silicon nanomembrane in a ‘wavy’ herringbone layout, to an 

underlying piece of PDMS. (b) Photographs of a stretchable circuit with a non-coplanar 

mesh design transferred onto the tip of a finger on a plastic model of a human hand [5]. (c) 

Optical image of an array of interconnected photodetectors and junction diodes in a 

compressed, hemispherical geometry on an elastomeric transform element [29]. .............. 8 

Figure 1.8. Laser direct writing techniques: (a) laser ablation, (b) laser-driven micro transfer, (c) 

selective laser sintering of conductive nanoparticles, (d) laser carbonization. .................. 10 



 
 

             

               

          

              

             

             

           

        

            

           

             

                

               

              

        

            

              

              

               

     

                

          

              

             

            

      

            

             

            

            

x 

Figure 2.1. Schematic of laser components: 1) Gain medium capable of sustaining stimulated 

emission. 2) Energy source to pump the gain medium. 3) Total reflector to reflect energy. 

4) Partial reflector. 5) Laser beam output (https://www.ulsinc.com/learn)........................ 14 

Figure 2.2. Absorption of various metals at relevant wavelengths for industrial lasers ............... 16 

Figure 2.3. Interactions of laser with materials. (a) Physical interaction with thermoplastics causes 

material removal via melting and evaporation. Molten material can redeposit on the surface. 

High power results in through-hole features, but lower power allows controlled 

ablation/texturing. (b)Physical interaction with thermosets decomposes the material 

(pyrolysis) with redeposited debris. High power results in through-hole features, but lower 

power allows controlled ablation/texturing. (c) Very low power allows minimal material 

damage but alters the surface chemistry via interactions with atmospheric gasses ........... 17 

Figure 3.1. Porous carbon formed from commercial PI films using a CO2 laser at an optimum 

combination of laser power (6.75 W) and speed (1.3 m/s). (a) Schematic of the synthesis 

process of porous carbon from laser carbonized PI film. (b) Photograph of final fabricated 

array carbon pattern on PI tape........................................................................................... 21 

Figure 3.2. Electrical characterization of pyrolyzed carbon patterns. (a) Sheet conductivity of 

carbon trace on polyimide as a function of laser fabrication parameters (power and speed). 

(b) Power and speed required to achieve carbon traces with high sheet conductivity (low 

sheet resistance), (c) EDS spectra of the laser carbonized PI (d) Raman spectra before and 

after laser treatment. ........................................................................................................... 22 

Figure 3.3. SEM of highly porous conductive carbon patterns. (a-c) images of 1 mm wide patterns. 

(d-f) images of smallest features with 90µm width............................................................ 23 

Figure 3.4. Goniometric experiments with 10 µl DI water droplet for measuring the surface 

wettability, (a) water droplet before depositing on the surface, (b) water droplet on 

polyimide sheet, (c) water droplet wicking immediately into the laser carbonized surface 

upon contact (super hydrophilic)........................................................................................ 24 

Figure 3.5. (a-c) Fabrication process of carbon/silver nanocomposite using laser pyrolization and 

selective aqueous silver ionic solution trapping; (d) laser carbonized traces before and after 

decorating with silver nanoparticles: (i) silver ionic solution, (ii) pristine carbonized trace, 

(iii) carbon/silver nanocomposite; flexible laser carbonized traces (e) before and (f) after 

https://www.ulsinc.com/learn


 
 

             

      

             

              

   

              

            

            

             

          

              

                  

          

             

                 

            

                  

            

          

              

              

                 

             

           

          

             

             

                    

               

            

   

xi 

decorating with silver nanoparticles; (g) array of lit LEDs with flexible interconnect. All 

scale bars: 1 cm .................................................................................................................. 26 

Figure 3.6. Magnified optical image of (a) laser carbonized polyimide and (b) carbon-silver 

nanocomposite SEM image of (c, d) laser carbonized polyimide and (e, f) carbon-silver 

nanocomposite.................................................................................................................... 27 

Figure 3.7. (a) XRD pattern of carbonized polyimide and carbon-silver composite, (b, c) EDS 

spectra of the nanocomposite, (d) high magnification SEM of carbon-silver composite, (e, 

f), EDS color mapping of silver (red) and carbon (green). ................................................ 28 

Figure 3.8. (a) Electrical sheet resistance of carbon-silver composite after annealing at different 

temperatures, (b) carbonized polyimide and carbon-silver nanocomposite resistances as a 

function of line width, (c) change in the carbonized polyimide resistance of various trace 

widths ranging from 0.2 mm to 2 mm as a function of radii of curvature, (d) schematic for 

the behavior of carbonized polyimide and carbon-silver nanocomposite under mechanical 

flexion, (e) change in the resistance of carbon-silver nanocomposite of various trace widths 

ranging from 0.2 mm to 2 mm as a function of radii of curvature, (f) resistances of 

carbonized polyimide and carbon-silver nanocomposite as a function bending cycles of 180° 

at 5 mm of curvature radius, with breaks at the first five and last five cyclic.................... 31 

Figure 3.9. Schematic illustrations of the fabrication process and photographic images stretchable 

carbon−polyaniline composite interconnections: (a) polyimide sheet is silanized and placed 

on an air-plasma-treated Ecoflex substrate, (b) a CO2 laser is used to carbonize serpentine 

carbon traces on the polyimide sheet, (c) polyaniline is spray-coated onto the porous carbon, 

(d) the polyimide sheet is machined with the same CO2 laser at a higher power level, (e) 

excess polyimide is removed, (f) interconnects are insulated by another Ecoflex layer, (g) 

photograph of various stretchable PANI/C−PI interconnect designs, and (h) different trace 

widths. Scale bar in all images is 1cm................................................................................ 34 

Figure 3.10. Optical and SEM images of stretchable PANI/C−PI serpentine interconnects with the 

design parameters of one repetitive serpentine unit. Top views of serpentine structures with 

the widths of (a) 1.2 mm and (b) 0.3 mm. SEM top view of a single repetitive unit with 0.3 

mm width at (c) low and (d) high magnification. Side view SEM image of PANI/C−PI 

composite structure and polyimide film (e) before and (f) after encapsulation with Ecoflex. 

............................................................................................................................................ 35 



 
 

              

            

                 

             

           

                  

           

              

            

              

              

             

                

           

   

             

              

            

        

                

             

            

                

             

               

                

   

                  

             

              

            

xii 

Figure 3.11. Top view SEM image of (a) pristine porous laser-carbonized polyimide and (b) 

PANI/C−PI composite. (c) Raman spectra of pristine porous carbon, PANI, and PANI/C−PI. 

(d−f) Optical image of 5 × 25 mm PI and PANI/C−PI samples used for tensile testing. (g) 

Comparison of the tensile stress−strain curve of PI and PANI/C−PI. (h) Variation of 

resistance with line width before and after PANI deposition............................................. 37 

Figure 3.12. (a) Optical images of serpentine traces with 0.3 and 1 mm width at 0%, 60%, and 

120% elongation. (b) Relative change in electrical resistance of serpentine PANI/C−PI 

composites with difference widths as a function of strain. (c) Maximum elongation with less 

than 20% change in resistance versus trace width. (d) COMSOL simulation for 

displacement and stress distribution on serpentine traces with 0.3, 0.6, 0.8, and 1.2 mm 

width at 25% elongation; the stress concertation is in the crest of the serpentine 

interconnects. (e) Simulation results of maximum stress at the crest points of serpentine 

traces with different widths at various levels of strain. (f) Relative change in resistance of a 

0.3-mm-wide serpentine trace versus the number of stretching cycles for 20%−80% 

elongation. .......................................................................................................................... 40 

Figure 4.1. Basic structural characterization of different papers. (a-d) optical image of different 

papers: parchment paper, wax paper, filter paper, filter paper coated with PDMS, (e-l) low 

and high magnification SEM images of surface properties of different papers, (m-p) cross-

sectional SEM image of different papers. .......................................................................... 44 

Figure 4.2. (a) Water droplet on different surfaces (i) before and (ii) after laser ablation, (b) 

comparison of contact angle of various hydrophobic surface before and after laser treatment, 

(c) SEM top-view of selective laser treated and untreated parchment paper, cross-section 

SEM image of (d) before and (e) after laser treatment of parchment paper, (f) selective cell 

attachment to circular hydrophilic patterns with 2mm diameter, Scale: 2 mm.................. 46 

Figure 4.3. (a) Optical image of test setup used for characterizing mechicnal properties of paper. 

(b) Ultimate tensile strength for different papers as a function of wetting duration up to 7 

days..................................................................................................................................... 47 

Figure 4.4. Stress vs. strain of dry and wet paper films after 24 hours of PBS immersion (a) 

parchment paper, (b) wax paper, (c) paper-PDMS, and (d) filter paper ............................ 48 

Figure 4.5. (a) Schematic of setup used for characterizing diffusion of oxygen across various 

papers, (b) oxygen permeability and dissolution in water for different hydrophobic paper 



 
 

               

             

              

    

               

               

              

                

              

              

               

                

               

                

        

                    

                 

                

             

                

         

             

              

               

                

   

             

              

               

                

   

xiii 

membranes as function of time, the inset in (b) shows a schematic of the oxygen 

permeability test setup, (c) schematic of setup used for characterizing diffusion of media 

across various papers, (d) diffusion of media across various hydrophobic films as a function 

of time................................................................................................................................. 49 

Figure 4.6. (a) Schematic illustration of direct laser ablation of indium tin oxide thin using 

Nd:YAG laser. (b) Optical images laser ablated ITO film. (Inset shows the ablated trench at 

constant power of 10W and varying speed from 4 to 0.5 m/s............................................ 52 

Figure 4.7. Schematic illustration of indirect laser ablation of indium tin oxide thin using CO2 laser. 

Different lase settings can result in ether: (i) incomplete removal of conductive film, (ii) 

complete removal of conductive film, and (iii) cut through the PET substrate. ................ 53 

Figure 4.8. (a) Electrical resistance changes of ITO layers with different laser power and scanning 

speeds. Optical images of the laser ablated trench at a laser power 3W and scanning speed 

of (b) 1m/s, (c) 0.8 m/s, (d) 0.4 m/s, and (e) 0.2 m/s.......................................................... 54 

Figure 4.9. Optimal laser power and speed required for complete remove the ITO thin film with 

minimal damage to the PET substrate. ............................................................................... 55 

Figure 4.10. (a) EDX color mapping of Sn (red), In (green) and O (blue) on the ITO film after laser 

scrubbing with CO2 laser beam, all scale bars are 100 µm, (b) EDS spectra collected from 

the surface ITO film before and after laser ablation. (c) Optical image of laser ablated trench 

with different widths. (d) Cross-section profile of ablated trenches with different widths, (e) 

measurements of the resistances of laser ablated ITO electrodes with a length of 30 mm and 

widths from 0.5 mm to 4 mm. ............................................................................................ 56 

Figure 4.11. Process characterization of CO2 laser ablating MP. (a) Combinatorial study for 

optimum laser power vs. laser scanning speed. (b) Microscopic pictures of laser ablated MP 

using constant power of 4.5W and different scanning speeds ranging between 0.2 to 4 m/s. 

(c) Resistivity and (d) mass change of 1×1cm samples at various laser powers and scanning 

speeds. ................................................................................................................................ 62 

Figure 4.12. Process characterization of Nd:YAG laser ablating MP. (a) Combinatorial study for 

optimum laser power vs. laser scanning speed. (b) Microscopic pictures of laser ablated MP 

using constant power of 4.5W and different scanning speeds ranging between 0.2 to 4 m/s. 

(c) Resistivity and (d) mass change of 1×1cm samples at various laser powers and scanning 

speeds. ................................................................................................................................ 63 



 
 

             

            

      

               

               

             

              

                 

              

        

             

              

             

               

                 

                

   

              

                 

               

             

              

             

          

                

              

             

            

              

               

              

xiv 

Figure 4.13. Mechanical characterization of MP before and after different etching processes. (a) 

Dumbbell-shaped samples used for the tensile strength test. (b) Force versus displacement 

graph of different samples. ................................................................................................. 65 

Figure 4.14. (a) Photograph image of simple LED circuit using optimized CO2 laser ablation. (b) 

low and (c) high magnification SEM image of selective CO2 laser ablated MP . (d) 

Photograph image of simple LED circuit using optimized Nd:YAG laser ablation. (e) low 

and (d) high magnification SEM image of selective Nd:YAG laser ablated MP. ............. 66 

Figure 4.15. (a) Water droplet on different surfaces (i) pristine MP, (ii) CO2 laser ablated MP, and 

(iii) Nd:YAG laser ablated MP. (b) Time-dependent water contact angle stability test of CO2 

and Nd:YAG laser ablated MP.......................................................................................... 67 

Figure 5.1. (a) Schematic of the fabrication process for stretchable carbon nanocomposite using 

laser pyrolization of polyimide: (i) attach polyimide tape to a PET sheet; (ii) laser-carbonize 

patterns on the polyimide; (iii) pour and impregnate carbon traces with diluted uncured 

PDMS; (iv-v) peel off the PDMS sheet after crosslinking. (b) A carbon trace before and 

after transferring to the PDMS. (c) A twisted carbon trace. (d) A lit LED connected to carbon 

traces showing diminished brightness as a function of strain: (i) 0%, (ii) 2%, (iii) 4%, (iv) 

6%....................................................................................................................................... 71 

Figure 5.2. Surface and film architecture details. (a-b) Optical images of the carbonized polyimide 

before and after transfer to the PDMS. Scale bar 250 µm. (c) SEM image of the aligned 

particles in the traces with the arrow showing the direction of laser ablation. (d) High 

magnification SEM image showing nanoparticles and fibers. (e) Cross section image of the 

carbon traces showing the porosity of the carbonized material. (f-g) SEM images of the 

carbon particles after transfer to the PDMS at different magnifications. (h) Cross section 

SEM of stretchable carbon traces embedded in PDMS. .................................................... 72 

Figure 5.3. (a) Sheet conductivity of carbon trace on polyimide as a function of laser fabrication 

parameters (power and speed). (b) Sheet conductivity of carbon trace after transfer to the 

PDMS as a function of laser fabrication parameters (power and speed). .......................... 73 

Figure 5.4. Characterization of the stretchable carbon traces subjected to longitudinal and 

transverse strain. (a) Illustrations of carbon traces (i) in their relaxed state, (ii) under 

longitudinal strain, and (iii) under transverse strain. (b) Plot of the relative resistance change 

for different levels of longitudinal strain. (c) Plot of the relative resistance change for 



 
 

              

            

      

              

              

              

                

              

           

             

             

                

   

               

            

             

        

                  

                 

           

   

                    

            

         

              

            

                    

              

              

                 

xv 

different levels of transverse strain. (d) Gauge factor of the stretchable carbon traces versus 

longitudinal strain. (e) The dynamic stretch-and-release cycle response of the sensor for 

various strains 0–25 %. ...................................................................................................... 74 

Figure 5.5. Human finger motion detection with stretchable carbon traces. (a-b) Photograph of five 

stretchable strain sensors attached to the finger joints on the glove. (c) Relative resistance 

change of the strain sensors at different bending stages over time; the corresponding finger 

Figure 5.6. (a) Fabrication process of wireless LC passive pressure sensor, (b) experimental setup 

and readout apparatus used for sensor characterization, (c) impedance phase versus 

Figure 5.8. Fabrication process of (a) pH sensor on ITO film and (b) flexible battery-less NFC 

Figure 5.9. (a) Block diagram of the developed wireless NFC tag, black arrows represent data 

communication and red one represent power transfer, (d) photograph of completed wireless 

pH monitoring device and smartphone interface, images illustrating the flexibility of the (c) 

Figure 5.10. UV-Vis. Spectra of different layers of the pH sensor in the range of 300–900 nm. The 

obtained spectra were measured in buffer solutions of (a) pH 4 and (b) pH 10, insets show 

emeraldine salt (green) and emeraldine base state (blue) of the electro-polymerized 

Figure 5.11. (a) Dynamic response of the pH sensor from pH 4 to 10, (b) EMF response of the pH 

sensor to various mechanical bending, inset schematic illustrates the bending mode and 

Figure 5.12. (a) Measured reflection coefficient, and (b) output voltage power supply of the 

Figure 5.14. (a) Microfluidic test setup to emulated wound condition, (b) real-time recording of 

the pH changes in the hydrogel wound model, the corresponding color change of the 

configuration for each plot region (i-ix) is shown in the snapshots below the plot. .......... 75 

frequency at several different pressures, (d) sensor resonant frequency vs. pressure........ 78 

Figure 5.7. Flexible wireless wound pH monitoring system utilizing NFC communication. ...... 81 

module ................................................................................................................................ 83 

sensor and (d) wireless NFC module. ................................................................................ 84 

polyaniline. ......................................................................................................................... 86 

radius of curvature (r) in the experiment............................................................................ 87 

wireless module versus frequency at various degrees of mechanical bending. ................. 88 

Figure 5.13. Drift behavior of the pH sensors at pH 4, pH 6, pH 8 and pH 10. ........................... 89 

emulated wound model for each region i-iv is shown in the snapshots above the plot. .... 89 



 
 

             

            

                 

              

                

             

             

            

        

               

              

             

              

             

        

              

             

                

             

               

               

                   

              

               

            

       

             

   

              

             

             

xvi 

Figure 5.15. Schematic illustrations of the fabrication process and photographic images of the 

stretchable pH sensor with serpentine interconnects: (a) polyimide sheet is silanized and 

placed on an air plasma treated Ecoflex substrate, (b) a CO2 laser is used to carbonize 

serpentine carbon traces on the polyimide sheet, (c) polyaniline is spray coated onto the 

porous carbon, (d) the polyimide sheet is machined with the same CO2 laser at a higher 

power level, (e) excess polyimide is removed, (f) interconnects are insulated by another 

Ecoflex layer followed by the deposition of Ag/AgCl and solid electrolyte, (g) photograph 

of various stretchable PANI/C-PI interconnect designs, (h-j) images illustrating an array of 

pH sensors being stretched and indented. .......................................................................... 91 

Figure 5.16. (a) Dynamic potential response of the un-stretched pH sensor to unit decrease and 

increase of pH, (b) potentiometric responses of the un-stretched pH sensor to pH changes, 

(c) optical image before and after longitudinal strain, (d) potentiometric responses of pH 

sensor to various longitudinal strain in different pH buffer solutions, (e) optical image before 

and after transverse strain, (f) potentiometric responses of pH sensor to various transverse 

strain in different pH buffer solutions. ............................................................................... 93 

Figure 5.17. (a) Microfluidic test setup to emulated wound condition, (b) optical image of 

microfluidic test setup with attached stretchable pH sensor, (c) optical image of microfluidic 

test setup with and without applied strain to the sensor, (d) real-time recording of the pH 

changes in the hydrogel wound model under 0% and 100% strain.................................... 94 

Figure 5.18. Biocompatibility assessment of the materials used in the fabrication of the pH sensor 

using a culture of NIH 3T3 cells, a) micrographs demonstrating the live (green) and dead 

(red) cells cultured next to the samples, the majority of the cells are viable at day 4 of culture, 

b) metabolic activity of the cultured cells measured by PrestoBlue assay and compared to 

the control group. The results did not show immediate toxicity and the tested materials did 

not interfere with cellular growth as there were no statistically significant difference 

between the samples and controls. ..................................................................................... 96 

Figure 5.19. Schematic illustration of the fabrication procedure for the paper based humidity sensor 

............................................................................................................................................ 98 

Figure 5.20. (a) Optical images of fabricated humidity sensors using CO2 laser ablation, (b) 

capacitance variations versus relative humidity levels for the range 2–85%RH and (c) close 

up of capacitance variations versus relative humidity in range 2–50%RH. (a) Optical images 



 
 

           

              

         

              

              

             

              

              

           

              

             

   

             

            

           

             

              

     

            

              

           

              

                

                

              

             

                

            

             

                

            

xvii 

of fabricated humidity sensors using Nd:YAG laser ablation, (b) capacitance variations 

versus relative humidity levels for the range 2–85%RH and (c) close up of capacitance 

variations versus relative humidity in range 2–50%RH................................................... 100 

Figure 5.21. (a) Comparison of response time performance of different capacitive sensor deigns to 

RH between 2% to 40%. (b) Close up of capacitance variation during desorption procedure 

from 40% to 2%RH. (c) Repeatable capacitive responses of captive sensors during four 

cycles between 2% and 40% RH. (d) Comparison of response time performance of different 

capacitive sensor deigns to RH between 40% to 85%RH. (e) Close up of capacitance 

variation during desorption procedure from 85% to 40%RH. (f) Repeatable capacitive 

responses of captive sensors during four cycles between 40% and 85% RH. ................. 102 

Figure 5.22. Schematic illustration of the fabrication procedure for the paper based temperature 

sensor................................................................................................................................ 103 

Figure 5.23. (a) Fabricated temperature sensors on the paper substrate through Nd:YAG laser 

ablating MP.(b) Electrical resistance of the four design temperature sensors and room 

temperature condition 21C. (c) Resistance variation against temperature of four design 

RTDs sensors for temperature between -20°C to 80°C. (d) Sensitivity vs resistance curve. 

Stability test of four design RTDs continuously monitored at (e) 21°C and (f) 60°C 

conditions for 24h............................................................................................................. 105 

Figure 5.24. (a) Illustration of the respiratory epithelial tissue and paper-based microfabricated in-

vitro lung device, (b) selective attachment of aqueous red dye on laser treated parchment 

paper, (c) schematic of the paper-based air-liquid-interface (ALI) platform, (d) photograph 

of components, and (e) assembled final device. All scale bars: 10 mm........................... 108 

Figure 5.25. The procedure for airway cell culturing on the paper based platform; (a) cell seeding 

on the upper open chamber, (b) on day 3 the cells exhibit a confluent monolayer coverage 

on the laser ablated hydrophilic region on the parchment paper, (c) air-liquid interface is 

established by removing the medium from the top chamber while maintaining a constant 

flow of medium in the lower chamber for 7 days, (d) observation of ZO1 expression around 

the whole cell membrane that resembles the functional airway epithelium..................... 109 

Figure 5.26. Assessment of cell viability of airway epithelium (CALU3) grown on parchment 

paper at day1 (a) and Day3 (b) by live-dead staining. CALU3 are stained with Syto10 (Live 

staining- green) and Ethidium Bromide (Dead staining- red). The images were captured 



 
 

             

   

            

           

             

             

              

             

               

             

               

            

       

             

            

               

   

              

                 

              

        

 

 

 

  

xviii 

using Zeiss LSM710 confocal microscope under 20x objectives. (scale bar= 50 µm, 20x 

objective) .......................................................................................................................... 110 

Figure 5.27. Comparison of airway epithelium integrity between paper-based ALI platform and 

conventional Transwell ALI. Tight junctional marker - ZO1 expression was compared 

between ALI platform (a,b,e,f) under flow condition and Transwell (c,d,g,h) under stasis at 

Day5 and Day7. The first column represents the ZO1 expression (green) at 60x 

magnification (scale bar = 20µm) and the second column represents the overlaid images of 

ZO1 (green) with DAPI nuclear staining (blue) at 40x magnification (scale bar =50µm). 

The images were representative from 3 set of independent experiments. (i) Comparison of 

thickness of ZO1 expression between paper platform and Transwell at Day5 and Day7. 

Thickness of ZO1 was measured at 200% zoom of original image using Image J software. 

Mean was calculated from 100 random measurements from images of 3 independent 

experiments. ****p<0.0001 and ns=not significant......................................................... 111 

Figure 5.28. Comparison of airway epithelium integrity between with (B, D) and without 

fibronectin coating (A, C) on conventional Transwell ALI culture. Tight junctional marker 

- ZO1 expression (green colour) was compared at Day 5 and Day7. (Scale bar = 20µm). 

.......................................................................................................................................... 112 

Figure 5.29. Comparison of ZO1 expression on differentiated CALU3 cells at Air Liquid Interface 

under flow and static condition of new ALI platform for 5days (A,B) and for 7 days (C,D). 

The CALU3 cells were fixed and stained with tight junction marker ZO1 (Zona Occluden1 

–green) (scale bar = 20 um).............................................................................................. 113 



 
 

 

    
   

    
           

 
    

 

 

          

               

           

           

           

            

            

              

           

            

              

              

           

              

            

            

             

             

           

             

              

             

             

xix 

ABSTRACT 
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microsystems 
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Flexible/stretchable electronics offer ideal properties for emerging health monitoring devices 

that can seamlessly integrate with the soft, curvilinear, and dynamic surfaces of the human body. 

The resulting capabilities have allowed novel devices for monitoring physiological parameters, 

improving surgical procedures, and human-machine interfaces. While the attractiveness of these 

devices are indubitable, their fabrication by conventional cleanroom techniques makes them 

expensive and incompatible with rapid large-scale (e.g., roll-to-roll) production. The purpose of 

this research is to develop inexpensive fabrication technologies using low-cost commercial films 

such as polyimide, paper, and metalized paper that can be utilized for developing various 

flexible/stretchable physical and chemical sensors for wearable and lab-on-chip applications. The 

demonstrated techniques focus on an array of laser assisted surfaces modification and 

micromachining strategies with the two commonly used CO2 and Nd:YAG laser systems. The first 

section of this dissertation demonstrates the use of localized pulsed CO2 laser irradiation to 

selectively convert thermoset polymer films (e.g., polyimide) into electrically conductive highly 

porous carbon micro/nano structures. This process provides a unique and facile approach for direct 

writing of carbonized conductive patterns on flexible polyimide sheets in ambient conditions, 

eliminating complexities of current methods such as expensive CVD processes and complicated 

formulation/preparation of conductive carbon based inks used in inkjet printing. The highly porous 

laser carbonized layer can be transferred to stretchable elastomer or further functionalized with 

various chemical substances such as ionic solutions, nanoparticles, and chemically conductive 

polymers to create different mechanical and chemical sensors. The second section of this 

dissertation describes the use of laser ablation for selective removal of material from multilayer 

films such as ITO-coated PET, parchment paper, and metalized paper to create disposable 

diagnostic platforms and in-vitro models for lab-on-chip based studies. The ablated areas were 
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analyzed using electrical, mechanical, and surface analysis tools to understand change in physical 

structure and chemical properties of the laser ablated films. As proof-of-concept demonstrations 

of these technologies, four different devices are presented here: mechanical, electrochemical, and 

environmental sensors along with an in-vitro cell culture platform. All four devices are designed, 

fabricated, and characterized to highlight the capability of commercial laser processing systems in 

the production of the next generation, low-cost and flexible biomedical devices. 
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1. INTRODUCTION 

Research motivation 

Disposable biomedical devices are identified as the cost-effective but powerful medical 

tools intended for one-time or temporary usage that can be used in monitoring health and 

diagnosing diseases as well as vital human parameters. A primary reason for using these devices 

is to prevent transmission of infection among patients. Although cost is an important factor in the 

design and manufacturing of such devices, there should be a careful balance between the cost of 

production and reliability of the device over its intended time of usage. A paradigmatic example 

of the trade-off between performance and cost of manufacturing, is the single use glucose 

monitoring strips. Standard electrochemical glucose strips on average cost about $0.65 with a 

measurement accuracy of ±20% of the actual blood glucose level. Increasing the accuracy in such 

sensors will result in higher cost and inconvenient for daily users. In contrast, manufacturing less 

expensive sensors using the same technology will require the use of less material (such as enzymes) 

and result in lower accuracy with inadequate level of performance for monitoring blood glucose 

levels. Based on a report published by Grand Review Research, the total market for such 

disposable biomedical sensors in 2016 was valued at 5.1 billion USD and is predicted to reach 

12.3 billion USD by 2025 with a compound annual growth rate of 10.2%, Figure 1.1. 

Figure 1.1. U.S. disposable medical sensors market by product, 2014 - 2025 (USD Million) 
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The increasing demand in healthcare, pharmaceutical, and food packaging are projected to 

be the primary driving markets over the forecast period. A growing population, and prevalence of 

infectious diseases, as well as increasing government initiatives towards innovating cost-effective 

medical devices for endemic diseases (e.g., malaria) are some of the key drivers to propel the 

market of disposable medical devices. Other factors such as the aging population with an increase 

in long-term chronic diseases coupled with rising awareness among people regarding wearable 

electronics and self-monitoring are also anticipated to fuel the disposable medical device industry 

in the area of wearable technologies over the coming years. This growing market, has resulted in 

extensive endeavors in both industry and academia to adapt conventional hard microelectronic 

manufacturing methods onto flexible and disposable substrates that can potentially use in the 

production of flexible and wearable health monitoring devices. Some of these examples include 

different wearable and adhesive based sensor that can monitor various physiological conditions in 

sweat and wound environment. Although such devices have shown great level of performance, 

time consuming and costly photolithography processes used in the design of such devices are some 

of the factors projected to challenge their potential growth and commercialization. On the other 

hand, recent advancements in scalable manufacturing processes such as inkjet printing and 3D 

printing have proven unpresented opportunities in development and manufacturing low-cost 

sensors. While printing technologies have been primarily used in publishing and packaging 

industries, they have recently re-emerged as a possible technology in the manufacturing of low-

cost/disposable sensors and electronics. Development of different conductive and semiconducting 

inks in combination with high precision inkjet systems have demonstrated the possibility of 

printing a wide range of electronics with potential use in flexible and wearable applications 

including flexible displays, chemical and physical sensors. Despite the great advancements in the 

field of additive manufacturing, many challenges still remain, primarily with respect to the ink 

formulation. At the current technology status, silver, gold and CNT nano particles are the most 

practical materials in terms of both conductivity and printability; however, their performance is 

still insufficient and needs further improvements. Some of the major drawbacks of such inks 

include their high cost, limited shelf life, and need for multiple layers of printing (>12) to achieve 

acceptable levels of conductivity. One of the alternative approaches to inkjet printing technology 

is laser processing. Laser machining provides a unique set of capabilities beneficial to the 

development of low-cost and rapid manufacturing systems. Lasers provide a robust non-contact 
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method to selectively etch (ablate) materials, alter their surface morphology, and induce surface 

chemical changes, all of which can increase the functionality of the processed material. For 

example, lasers can be used to pyrolize thermoplastic polymers (e.g Polyimide) to create active 

carbon materials, or (with proper wavelength settings) it can be utilized for selectively etching 

layers from a multilayer structure. Furthermore, the availability of commercial, reliable, and 

precise laser systems allows them to become part of large-scale (e.g., roll-to-roll) production lines. 

Surging advancements in laser technology with lowering cost of ownership is expected to increase 

the use of the laser technology in many sectors of manufacturing at a significant rate over the 

coming years. For example, Figure 1.2 shows an example of the fast growing laser processing 

market in China in the coming years which will significantly influence the cost and rate of 

production in the coming years. The purpose of the work in this dissertation was to investigate 

new design strategies to fabricate inexpensive biomedical microsystems on commercial flexible 

polymeric substrates with the focus of using low-cost laser processing techniques with two of the 

most commonly used laser systems (CO2 and Nd:YAG) in industry. Systematical studies were 

performed on the laser interactions with different commercial film such as metalized paper, 

parchment paper and polyimide film using electrical, optical, and mechanical characterization 

methods as well as surface analysis with XPS, EDX and Raman spectroscopy. The laser 

characterization results were used in the development of different physical, and electrochemical 

sensors as well as in vitro models for cell culture applications. 

Figure 1.2. Laser processing market in China, 2014 - 2025 (USD Million) 
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Background 

Over the past 50 years the vast majority of the work in electronics technology was focused 

on developing smaller transistors, in which improved the performance and speed of today’s 

integrated circuit systems[1]. These electronic devices are fabricated on hard and brittle 

semiconductor substrates (e.g. silicon, glass, polysilicon) and are mounted on rigid printed circuit 

boards, both of which prevent intimate interaction with tissue or the human body[2]–[4]. Over the 

past few years with electronic systems becoming more personalized there has been an increasing 

demand to use future electronics in more human-friendly applications that requires flexibility and 

stretchability, which would be impossible with conventional rigid electronic systems[5]. This 

rising interest has evolved in the design and development of new forms of devices with novel 

mechanical and electrical characteristics that are capable of absorbing different mechanical 

deformations while maintaining their functionality, creating new classes of applications for food 

packaging[6][7], environmental/agriculture[8], displays[9] and inexpensive wearable/point-of-

care diagnostics systems[10], Figure 1.3. Among the different potential use of flexible and 

stretchable electronics, wearable healthcare devices with an estimated market of 20.6 billion by 

2019 has gained a considerable attention in both the scientific community and industry[11]. 

Figure 1.3.Next-generation flexible electronics systems and the key relevant sectors [9]. 
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Depending on the applications, these devices can be classified into disposable and long 

term devices. Disposable devices are often used for diagnostic applications with a working time 

ranging from a few seconds to a few days for applications such as smart wound dressings, sweat 

diagnostic devices, wearable electrodes, surgical sutures for targeted wound monitoring and 

glucose sensing patches[12], [13]. Figure 1.4 shows some examples of such disposable biomedical 

devices. Long-term devices are often deployed in implantable health monitoring systems to 

continuous monitor the function of an internal organ as well as the general health condition of the 

individuals[14], [15], Figure 1.5. These devices can continuously monitor vital health information 

from the patient and provide them to the healthcare provider, which can open new paradigms to 

tissue implantation and prosthetics devices. 

Figure 1.4. Disposable devices fabricated by conventional photolithography processes. (a) Optical 
images of temporary transfer tattoo with built-in electronics for measuring ECG, EMG, and EEG 
in conformal skin-mounted modes with- out conductive gels or penetrating needles[16]. (b) Optical 
image of multiplexed array of electro tactile stimulators in a stretchable, mesh geometry on the 
inner surface of an elastomeric finger-tub for measuring pressure created by physical contact [17]. 
(c) Optical image of multifunctional inflatable balloon catheter with integrated sensors for 
measuring temperature, flow, tactile, optical and electrophysiological data, together with 
radiofrequency electrodes for controlled, local ablation of tissue [18]. (d) Optical image of the 
wearable sweat analysis patch with a sweat-uptake layer and integrated flexible glucose, lactic 
acid, and pH sensors [19]. (e) Surgical sutures with built-in electronics for targeted wound 
monitoring and therapy [20]. 
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Figure 1.5. Long-term implantable devices fabricated by conventional photolithography processes. 
(a) Optical image of ultrathin and flexible silicon nanomembrane transistors into the electrode 
array for recording and stimulating the brain [21]. (b) Mechanically flexible silicon electronics for 
multiplexed measurement of cardiac electrophysiology[22]. (c) Fully implantable miniaturized 
optoelectronic systems for wireless optogenetics [23]. 

In either way, these devices hold considerable promise for more proactive response to 

patient’s healthcare, helping to resolve potential issues before they become more severe clinical 

complications and burden on the healthcare service resources. In order to have proper functionality, 

these devices are required to be fabricated on elastic and plastic substrates. Over the past two 

decade, different biocompatible substrates have been used for fabricating health monitoring 

devices including elastic materials such as Polydimethylsiloxane (PDMS) and Ecoflex, plastic 

substrates such as Polyethylene terephthalate (PET), Polyimide, Parylene, and porous materials 

such as paper, and fabric[24]. However, the limited thermal budget and chemical restrictions 

associated with different plastic substrates often impose a significant challenge to the fabrication 

of these devices[25]. Different approaches have been developed for fabricating flexible and 

stretchable device which in general can be classified into two main techniques: (1) process based 

on conventional micromachining technology, and (2) new scalable manufacturing including 

printing and laser processing. Figure 1.6 shows a schematic illustration that compares of the 

sequential fabrication steps used in each approach. 

Processes based on conventional microfabrication often require high temperate procedures 

(e.g. metal deposition, and thermal oxidation) and usage of harsh chemical reagents or etchants 

that can far exceed the tolerance of most plastic substrate. Therefore, the direct fabrication of 

devices onto flexible materials is often limited to a standard top-down photolithography techniques 

with low temperature metal deposition or lamination of very thin metal strips (~10 µm) on 

restricted plastic substrate (e.g. Parylene, Polyimide, and PDMS). 
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Figure 1.6. Flexible electronic manufacturing approaches: (a) conventional photolithography, (b) 
printing and additive manufacturing, (c) laser processing. 

Examples of flexible circuit boards using this approach can be nowadays be seen in most 

light weight electrical appliances. This technology has reduced the weight and size of circuit board 

and allows them to fold and fit into more compact spaces. Although these circuits are pliable they 

can’t be stretched, which limits there usage in wearable electronics that require to accommodate 

strain on arbitrary surfaces. The initial attempts in creating stretchable electronics with direct 

microfabrication process was pioneered by Whitesides and Hutchinson in 1998, where they 

investigated the effects of direct deposition thin films of gold onto the surface of pre-heated 

PDMS[26]. In later work by Wanger and Suo, stretchable interconnections were fabricated by thin 

films of gold deposited on pre-stretched PDMS[27], [28]. In the indirect approach, devices are first 

fabricated on rigid silicon wafers and finally transfer onto flexible/ stretchable substrates. In this 

process single-crystalline semiconducting materials can be prepared in the form of ribbons or plate 

with ultra-thin (< 1μm) profiles by selectively etching away the underlying sacrificial layer or by 

utilizing the anisotropic etching characteristics of wet chemicals. 
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Figure 1.7. (a) Transfer process of silicon nanomembrane in a ‘wavy’ herringbone layout, to an 
underlying piece of PDMS. (b) Photographs of a stretchable circuit with a non-coplanar mesh 
design transferred onto the tip of a finger on a plastic model of a human hand [5]. (c) Optical image 
of an array of interconnected photodetectors and junction diodes in a compressed, hemispherical 
geometry on an elastomeric transform element [29]. 

In this process thin membranes (e.g. ribbons or plates) can be transfer-printed onto foreign 

substrates, such as plastic, using elastomeric stamp (e.g. PDMS) as a carrier[30], [31], Figure 

1.7(a). Flexible electronics using this approach have reveal in high performance electronic devices 

with great mechanical flexibility. The use of thin films semiconductor in this approach allows the 

use of standard complementary metal-oxide semiconductor (CMOS) technology for creating 

multiple complex microsystems including transistors, logic gates, and oscillators in an amazing 

small footprint on flexible/stretchable substrates. The primary applications and driving forces for 
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such microsystems have been in the biomedical field, with the vison of developing a fully 

integrated wearable and implantable devices with various units including physical and chemical 

sensors with wireless communication that can conformably be mounted on the tissue or organs 

inside the body. The high flexibility and mechanical properties close to biological tissue provides 

less physical damage at the interface of the tissue and can enable a more conformable feeling for 

the user. The most sophisticated, and recent, examples involves the work by Rogers group where 

they took this method a step further by bonding thin strips of silicon ribbons to a pre-strained 

PDMS, thus creating buckled/wavy silicon ribbons, enabling full utilization of microfabrication 

capabilities offered by silicon processing to develop functional flexible and stretchable integrated 

systems. Using this method, various stretchable devices have been reported; these include fingertip 

electronics, medical balloon catheters and noninvasive electronics for brain, heart, skin and 

electronic eye[17], [32]–[35], Figure 1.7(b, c). Though these processes have shown great 

performance with highly compacted integrated circuits, there fabrication involves multiple 

complex, expensive, and time consuming processing steps, which may lead to higher cost and 

incompatibility with large scale manufacturing. This is an important consideration for many 

biomedical and sensing devices that are intended to be low-cost and disposable. More economical 

fabrication techniques with abundantly available and low cost materials (e.g. polymers, and paper) 

can significantly reduce the cost of production. Additionally, the manufacturing techniques should 

be economical, customizable, and adaptable for moderate-volume production (e.g., roll-to-roll). 

Among different approaches inkjet printing and laser-assisted processes are two of the two of the 

most particularly suited methods in the production of flexible electronic due to their scalability 

and ease of implementation. Inkjet printing provides a unique non-contact and mask-less 

patterning process that has been widely used for depositing an extensive number of materials in a 

solution form; these include, conductive polymers[36], ionic conductors [37], CNT[38], 

graphene[39], and various metallic nanoparticles[40]. Despite its promise, there are still important 

fabrication challenges associated with synthesis and printing of conductive inks. Currently, most 

such inks are based on the suspension of metallic nanoparticles that often exhibit good levels of 

conductivity only after multiple printing cycles accompanied by high sintering temperatures at 

200–350 °C [41], [42]. In addition, suspended nanoparticles tend to agglomerate over time, 

influencing the print quality and clogging of the equipment nozzle. 
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Figure 1.8. Laser direct writing techniques: (a) laser ablation, (b) laser-driven micro transfer, (c) 
selective laser sintering of conductive nanoparticles, (d) laser carbonization. 

Laser processing can be considered as a high intensity beam of photons that can be 

accurately deliver into confined regions of a material in order to achieve a desired response. This 

control is exercised through the proper selection of laser processing parameters including 

wavelength, power, speed and the processing materials absorptivity. Depending on the laser beam 

parameters (e.g. wavelength, power, and speed) and material characteristic (e.g. structure and 

absorptivity), portions of the laser beam can be reflected, absorbed, diffused or transmitted. The 

absorbed energy is utmost the important parameter that determines the thermal effects on the 

material induced by the laser. The ability to precisely control the rate and location of energy 

delivered to the materials has resulted in wide range of laser ablation and deposition methods. 

Figure 1.8 shows a schematic illustration of different method of laser assisted direct writing 

techniques. Laser ablation is the process of removing material from a solid surface in a controlled 

fashion with using a laser beam, Figure 1.8(a). The irradiated material is heated by the absorbed 

laser energy and evaporated from the bulk substrate. The ablated features on the material are 

strongly influenced by the laser scanning speed and power. Laser ablation can be used on different 

polymeric and metallic based materials for a wide range of application. This type of fabrication 

allows the rapid production of a variety micro patterns without the need time-consuming 

photomasks processing and use of hazardous chemical etchants. Hence, laser ablation offers the 
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possibility to create complex microstructures in materials ranging from polymers to metallic films 

using a rapid single step-process. Many researchers have used this ability to create different low-

cost devices for various applications such as microfluidics, microelectrodes and antennas. The 

second laser processing approach is for depositing different types of materials. This method can 

be further classified into laser-induced deposition (LID) and selective laser sintering (SLS). In LID 

processes, the substrate is placed in contact with a liquid or gas metalorganic precursor, and 

localized deposition is initiated with a focused laser beam at the precursor-substrate interface [43], 

[44]. The LID process has been used for the deposition of a wide range of metals such as Cu, Ni, 

Au, and Ag on several kinds of hard and flexible polymeric substrates such as polyimide (PI) [45]– 

[49]. However the high reactivity and toxicity of the precursors have made this processes 

impractical for scalable manufacturing. An alternative LID method, referred to as laser-induced 

forward transfer (LIFT) or laser driven release, uses laser imparted energy to transfer materials 

from a transparent supporting substrate onto an acceptor substrate[50], [51], Figure 1.8(b). The 

heat induced by the laser beam changes the phase of the film on the supporting substrate providing 

the propulsion required to drive the material from the holder onto the receiving substrate. This 

process faces challenges such as the preparation needed for transferring materials with the correct 

thermal matching, and oxidation or decomposition of materials during transfer[52], [53]. The 

selective laser sintering (SLS) process of conductive metal powder or nanoparticles (NP) has been 

explored as an alternative approach to inkjet printing [54], [55], Figure 1.8(c). The NP sintering 

for typical inkjet printing processes is usually implemented by exposing the whole printed 

substrate to elevated temperatures. SLS is often combined with inkjet printing to selectively 

localize the heat[56], thus enhancing the printing resolution and minimizing the substrate thermal 

exposure [57], [58]. Nonetheless, this method is associated with challenges regarding formulation 

of the binder materials and NP synthesis. 

In addition to the aforementioned laser processing techniques, one can utilize the localized 

high temperature induced by laser irradiation to selectively convert organic thermoset polymers 

into conductive carbon materials, Figure 1.8(d). This can generate unique conductive carbon 

micro-patterns with highly porous micro/nano structures [59], [60]. The overall aim of this doctoral 

research is to propose new design and fabrication strategies to construct flexible and stretchable 

electronics by using laser carbonization and selective ablation of commonly used polymeric films. 

The second goal for my doctoral research is to develop novel strategies to implement these laser 
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processing techniques to biomedical applications ranging from point of care wearable electro-

mechanical sensors to low cost in-vitro models for lab-on-chip based studies. 

Overview of thesis 

This thesis is organized into four main chapters. Chapter 2 briefly discusses laser 

technologies with an emphasis on commonly used laser systems for material processing in industry. 

Chapter 3 demonstrates the use of direct laser carbonization of thermoset polymers such as 

polyimide to create highly porous and conductive carbon traces. The localized heat induced by 

pulsed laser irradiation in ambient conditions rapidly converts the surface of polymer film into a 

highly porous and super hydrophilic structures of carbon. This chapter also includes the 

characterization of selective deposited silver nano particles and polyaniline into the laser induced 

porous carbon structures. Chapter 4 presents the selective laser ablation of multilayer films (e.g., 

parchment paper, ITO films) with two laser wavelengths (1.06µm (Nd:YAG), and 10.6µm (CO2)). 

Chapter 5 demonstrates the used of the laser carbonization and ablation strategies in the fabrication 

of low-cost mechanical and electrochemical sensors for healthcare monitoring applications as 

wells as in vitro models for on-chip investigation of the human respiratory system. 
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2. LASER MATERIAL PROCESSING 

Laser processing provides an attractive method for fabricating inexpensive micro-systems 

by delivering a confined controlled energy onto the surface of the material without altering the 

bulk. The absorbed energy can be used to alter the surface chemistry, etch the material, or change 

the chemical structure of the material, all on a wide range of soft and hard materials from paper to 

metal alloys. The specific effect on the material is dictated by the laser processing parameters, 

which are controllable to high specificity in modern systems. This section briefly discusses the 

principles of two commercial lasers systems and their interactions with various materials. 

Laser systems 

A laser consists of three major parts: an energy pumping source, a gain medium (or lasing 

medium), and an optical set up. The lasing process is initialized by pumping some energy 

(electrical, light or other forms) into the gain medium, resulting in excitation of atoms in gain 

medium. An optical set up is needed to make sure that the laser beam is produced only in the 

desired direction and guided to the work space. Figure 2.1 shows a configuration with two mirrors 

and a photon-based pumping source. Depending on the active medium used, lasers can be 

classified into semiconductor lasers, dye lasers, solid-state lasers, and gas lasers. The medium and 

resonator determine the wavelength of the laser beam and the power of the laser. In this section, 

we discuss the two most commonly used laser (solid-state, and gas) processing systems for the 

fabrication of flexible devices. Commercial laser engraving systems offer good resolution, control, 

and processing speed. These systems consist of a laser module connected to a machining enclosure 

that contains a working stage and a software-controlled lens. The substrate is placed on the stage 

and the lens module guides the laser beam on the surface of the substrate to cut or ablate regions 

as defined in a CAD drawing. Most commercial systems use either a 10.6 µm CO2 laser (typical 

powers of up to 150 W) suitable for cutting polymers and wood or a 1.06 µm fiber laser (typical 

powers of up to 40 W) that can mark metals and cut thin foils [61]–[63]. These systems have a 

linear scanning speed of a few meters per second and the output power and laser spot size/focus 

can be adjusted by software. 
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Figure 2.1. Schematic of laser components: 1) Gain medium capable of sustaining stimulated 
emission. 2) Energy source to pump the gain medium. 3) Total reflector to reflect energy. 4) Partial 
reflector. 5) Laser beam output (https://www.ulsinc.com/learn) 

2.1.1 Solid state lasers: Fiber laser 

The laser medium for Nd:YAG laser consist of Yttrium-Aluminium-Garnate cubic crystal 

(Y3AI5O12) where approximately 2% of the Y+ ions sites in the lattice are replaced by Nd3+ ions. 

The photonic emissions are generated by the transition between the excited and ground energy 

levels of the Nd ion. Commercial Nd:YAG laser systems typically operate at the wavelength of 

1.06 μm, which is sufficiently small for creating device features with micrometer resolution. 

Additionally, the wavelength is more easily absorbed by metallic materials, allowing for 

processing of metal films. The output beam of the Nd:YAG laser can be operated in continued, 

pulsed, or Q-switching mode. A typical commercial Nd:YAG system is the PLSMW from 

Universal Laser Systems, Inc., which offers pulsed frequencies of up to 100 kHz, powers of up to 

45 W, and scanning speeds of up to 4 m/s, with optics allowing for laser spot size as small as 12 μm. 

https://www.ulsinc.com/learn
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2.1.2 Gas lasers 

In gas lasers, the active medium consists of gas molecules, offering advantages such as 

lasing media homogenity, ease of cooling and replenishment, and low cost. The wavelength of 

the emitted light depends on the primary gas used; for instance, Xenon Chloride (XeCl) produces 

308 nm, Xenon Fluoride (XeF) produces 351 nm, Argon Fluoride (ArF) produces 191 nm, Argon 

produces 488 nm, and carbon dioxide (CO2) produces 10.6 µm. Of these, CO2 is the most common 

in industrial engraver systems. During the operation, the CO2 molecules are excited by vibrational 

excitation of nitrogen (intermixed with the CO2) using high voltage electrical discharge. The 

excited nitrogen molecules correspond to highly unstable (001) vibrational levels of CO2. The 

transition between (001) and the ground level of (100) results in a 10.6 µm laser radiation. The 

properties of CO2 laser is mainly determined by the gas flow in the discharge tube and can be 

operated in both pulsed as well as continuous wave (CW) mode. An example of a commercially 

available CO2 laser system is the Universal Laser System, Inc., Professional Series, with a 

maximum power of 120 watts, a maximum speed 4 m/s, wavelength of 10.6 μm, and continuous 

laser processing mode, with optics allowing for laser spot size as small as 30 μm. 

Laser-material interaction 

Nd:YAG and CO2 laser systems are routinely used for modifying materials in various ways, 

such as cutting, marking, welding, and chemical alteration. The specific result is determined by 

the interactions caused by the thermo-physical properties of the material and the electromagnetic 

radiation of the laser. During these interactions, a portion of the light is reflected, another 

transmitted, and the rest absorbed. The absorbed energy causes thermal effects (e.g., local heating, 

melting, vaporizing, or pyrolyzing). When laser-machining materials, the absorptivity, A, (or 

reflectivity, R=1-A) of the material is of utmost importance. The absorptivity of some common 

metallic materials at different wavelengths is shown in Figure 2.2. In general, metals have a higher 

reflectivity (less absorption) at larger wavelengths. For instance, copper has a very low light 

absorption of 0.005 at 10.6 µm (CO2 laser) and slightly higher absorptivity of 0.03 at 1.06 µm 

(Nd:YAG laser). Hence, Nd:YAG lasers are often used as the primarily laser processing tool for 

metallic materials. The resulting effect of laser absorption can be classified into two categories: 

physical and chemical, as described below. 
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Figure 2.2. Absorption of various metals at relevant wavelengths for industrial lasers 

2.2.1 Physical material alterations via laser 

Physical changes to the material include removal of material (i.e., for through-hole cutting 

or surface ablation) and texturing (e.g., surface roughness). Both processes result from thermal 

effects and are a function of the laser fluence [64]. The optical energy delivered by the laser per 

surface area of the material is known as the fluence. Ablation occurs at energy densities greater 

than the material’s fluence threshold, which is between 1 and 100 J/cm2 for metals and between 

0.1 and 10 J/cm2 for organic materials [65]. In thermoplastics, this process locally melts the 

material, causing some to evaporate away [66], Figure 2.3(a). The amount and rate of material 

removal can be precisely controlled by the laser scanning speed and its intensity. High intensity 

(or lower scanning speed) can result is deep material removal which is commonly used for cutting 

materials whereas lower intensity (or higher scanning speed) can be used for surface texturing. 

During this process, some of the molten material can re-deposit on the surface, creating local 

surface roughness. The power can be controlled to minimize ablation while still permitting re-
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deposition to occur. In thermosets, laser treatment above the fluence threshold result in material 

decomposition (e.g., pyrolysis, or carbonization in organic materials) which can be used for 

ablation. This process also results in surface roughness due to non-uniform surface pyrolization as 

well as re-deposition of pyrolyzed material. Such laser surface texturing has been widely used for 

several applications such as improving adhesion and increase the griping performance of steel 

sheets [67] [68]. In more recent developments, laser surface texturing has been use to create micro-

and nano-scale super-hydrophobic roughness on different materials for self-cleaning applications 

[69]. In other applications, exposure of thermoset polymers to high energy laser beams can cause 

thermal decomposition of the molecular chains in the material without melting, resulting in 

material pyrolysis, Figure 2.3(b). 

Figure 2.3. Interactions of laser with materials. (a) Physical interaction with thermoplastics causes 
material removal via melting and evaporation. Molten material can redeposit on the surface. High 
power results in through-hole features, but lower power allows controlled ablation/texturing. 
(b)Physical interaction with thermosets decomposes the material (pyrolysis) with redeposited 
debris. High power results in through-hole features, but lower power allows controlled 
ablation/texturing. (c) Very low power allows minimal material damage but alters the surface 
chemistry via interactions with atmospheric gasses 
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For example many molecular bonds such as C-N, C=O, C-O bonds in thermoset polymers 

can be dissociated with CO2 laser (releasing the O and N atoms). The remaining material with high 

content of carbon bonds (C-C, C=C) results in porous and electrically conductive traces. These 

effects can then be used to create porous and conductive regions on polymeric or paper substrates 

which form the basis for fabricating a variety of passive and active components used in flexible 

devices. 

2.2.2 Laser activated chemical processes 

In addition to physical surface modification, the laser process may also induce chemical 

modifications via a photo-thermal effect [70]. The high temperature generated by the laser can 

decompose the material and cause interactions with ambient gasses (e.g., oxygen, nitrogen) which 

can form additional functional groups, Figure 2.3(c). Often times, laser processing in such 

conditions results in the formation of hydrophilic functional groups, allowing laser to be used for 

controlling surface wettability[71], [72]. This technique is particularly useful when working with 

natively hydrophobic substrates such as parchment paper, and wax paper; processing techniques 

for these are described in the following chapters. 
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3. LASER CARBONIZATION OF POLYMERIC FILMS 

Nanoscale carbon (carbon nanotubes and graphene) has unique chemical and electrical 

properties which have garnered significant attention over the past two decades [73]. In addition to 

their use in nano-electronics, carbon nanoparticles printed onto flexible substrates or loaded onto 

various polymeric binders have been used to fabricate flexible and stretchable systems [74]. 

Examples of these include carbon-based pastes for screen printing conductive films [75], carbon 

inks for inkjet printing [76], carbon-PLA filaments for extrusion-based 3D printers [76], and 

carbon-loaded elastomers[77]. These manufacturing materials are suitable for creating medical 

microsystems which can interface conformably with the human body and living tissue using rapid 

prototyping technologies. Using carbon-based composites, researchers have been able to create a 

variety of electrical and mechanical sensors and actuators which are applicable for monitoring or 

treating cutaneous wounds. For example, carbon-based inks have been used to define electrically-

conductive traces on ceramic and polymeric substrates using screen printing techniques [78], 

[79]. The natural biocompatibility and chemical stability of carbon allows these traces to be used 

as electrical conduits on wearable devices/systems, including smart tattoos [80]. Meanwhile, 

materials comprising carbon nanoparticles embedded in stretchable binders (e.g. carbon-loaded 

PDMS or carbon-loaded PLA) have been used to create soft, elastomeric arrays strain/pressure 

sensors[81], [82]. Despite numerous reported carbon-based devices and sensors, few have been 

commercialized. This is primarily due to challenges with scaling the production of carbon-based 

nano-materials. For example, many of the nano/micro particles used in these systems are not 

economical to mass-produce for practical use in medical devices since they must typically be made 

into (possibly non-biocompatible) inks/pastes with general applicability (rather than specifically 

for medical applications) [83]. It would be more economical to create the carbon composites 

directly on the substrate without the use of additional binder materials (e.g., for inks) which may 

interfere with the biocompatible aspects of the material. One approach is to fabricate devices using 

carbonizable material. Many thermoset organic polymers can be pyrolyzed by raising their 

temperature to above 1000°C [84]. The result is pure carbon which is electrically conductive. 

Researchers have used this idea to create conductive carbon traces by pyrolizing photoresists using 

a high temperature furnace [85]. Such materials have been used to fabricate supercapacitors [86], 

batteries [87], electrodes and biosensors for biomedical applications[88]. While the process is 
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economical and straightforward, it does not allow precise patterning of the material in a 

straightforward process. Moreover, the various components of the device must be resistant to high 

temperatures, lest they too be thermally decomposed. An alternative approach is to selectively 

carbonize a thermoset polymeric substrate via lasers. In this technique, laser energy is imparted 

onto a substrate to locally heat the substrate to a sufficiently high temperature to induce 

carbonization. Unlike bulk pyrolization methods (e.g., furnaces), the laser-based technique offers 

unprecedented control over carbon nanoparticle deposition and patterning. In this section we will 

first demonstrate the process of laser carbonizing polyimide and discuss its functionalization with 

conductive fillers including silver and polyaniline. 

Laser-induced porous carbon from polyimide film 

In this section, we demonstrate the production of porous carbon produced from laser 

carbonizing polyimide and its use for different unique applications. In this process samples of 

polyimide tape and sheets were laser treated using a computer-controlled CO2 laser cutting and 

engraving system (PLS6MW, Universal Lasers, Inc., Scottsdale, AZ). The desired carbon patterns 

was generated using CorelDraw (Corel Corporation) and ablated onto the polymer by raster 

scanning the laser beam across the surface. The electrical resistance of carbon traces was measured 

using a digital multimeter (Agilent 34401A). Scanning electron microscopy (field-emission SEM, 

Hitachi S-4800) was used to assess the morphology and microstructures of the laser pyrolyzed 

traces before and after different surface modification. Chemical composition was determined with 

using X-ray diffraction (XRD) and electron diffraction spectroscopy (EDS) and analysis was 

carried out by D-8 Focus and Oxford INCA Energy 250 systems. A universal testing machine 

(eXpert 4000, Admet) was used to assess the electromechanical robustness of the conductive traces 

by subjecting them to different mechanical deformations. Surface properties of the laser 

carbonized polymer were analyzed using a gonimeter to determine the water contact angle. 

As shown in Figure 3.1 the laser irradiation of a commercial polyimide (PI) film by a CO2 

infrared laser under ambient conditions converts the film into porous graphene which is also 

referred to laser-induced graphene (LIG). The computer-controlled laser allows to easily create 

desired patterns into various geometries. Figure 3.1(b) shows an optical image of array of laser 

patterned porous carbon traces on the polyimide tape. 
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Figure 3.1. Porous carbon formed from commercial PI films using a CO2 laser at an optimum 
combination of laser power (6.75 W) and speed (1.3 m/s). (a) Schematic of the synthesis process 
of porous carbon from laser carbonized PI film. (b) Photograph of final fabricated array carbon 
pattern on PI tape. 

3.1.1 Results and discussion 

The electrical conductivity of the carbon patterns before and after transfer to the 

elastomeric matrix was measured by four-point-probe technique. Figure 3.2 demonstrates the sheet 

conductivity of the carbon patterns as a function of the fabrication parameters, i.e., speed and 

power of the laser. The plots show the strong dependence of the sheet conductivity on both power 

and speed of the laser. In practice, the polyimide can be carbonized with the laser once the polymer 

reaches the threshold energy needed to initiate the pyrolization process. As the plots show, the 

threshold energy can be achieved at different laser powers and speeds. For example, with lower 

laser speeds, carbonization occurs at low power levels, whereas with higher laser speeds, 

carbonization requires a higher power. We observed that when the thermal energy is too large 

(high laser power and low raster speed) the polymer turns into a white ash, but when the thermal 

energy is too low, the polymer does not carbonize, both phenomena resulting in a low conductivity. 

The Gaussian shape of the conductivity plots in Figure 3.1(a) reflects this behavior, showing that 

there is an optimum combination of laser power (4.5 W to 8.25 W) and speed (0.5 m/sec to 1.9 

m/sec) needed for producing high-quality, high-conductivity traces. The optimal setting 

corresponds to the maxima at each plot; these are plotted in Figure 3.2(b), showing a linear 
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relationship with speed and power (a maximum conductivity of 0.02 Mhos/ with 6.75 W and 

1.3 m/sec). The slope of the plot shows the optimal energy density (620 J/m2) needed to achieve 

low resistance carbon traces. Laser ablations with energy densities below or above this threshold 

will result in either insufficient energy for complete carbonization or burning of the polymer, 

respectively. The structural characteristics of the carbon nanomaterials were studied via EDS and 

Raman spectroscopy. The EDS spectra of the pristine carbonized polyimide shows a binding 

energy of 0.25 keV corresponding to high concentration of carbon material, Figure 3.2(c). 

Figure 3.2. Electrical characterization of pyrolyzed carbon patterns. (a) Sheet conductivity of 
carbon trace on polyimide as a function of laser fabrication parameters (power and speed). (b) 
Power and speed required to achieve carbon traces with high sheet conductivity (low sheet 
resistance), (c) EDS spectra of the laser carbonized PI (d) Raman spectra before and after laser 
treatment. 
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Figure 3.2(d) shows the Raman spectra recorded from the center of the carbon patterns in 

the range of 1000–3000 cm-1 using an excitation laser source at 532 nm. The data clearly show 

three distinctive Raman spectra peaks at 1350 cm-1 (D-band), 1580 cm-1 (G-band), and 2700 cm-1 

(2D-band) after laser carbonization, which suggest the presence of CNT and graphite in the 

carbonized material. The peak located at 1580 cm-1 (G-band) is the primary phonon arising from 

lattice stretching in the C−C bonding in the graphitic plane. The D-band observed at about 

1350 cm-1 corresponds to the disorder and defects in the graphitic lattice. The ratio of the peak 

intensity (ID/IG) of the D and G bands is a parameter used to quantify the amount of defects in the 

graphitic material. The ID/IG (~0.8) ratio analyzed form the Raman spectra shows a reasonable 

amount of defect in the graphitic materials. The 2D-band is due to a secondary phonon vibration 

of the C−C bonding. This band provides information about stacking layers in the carbonized 

material (such as CNT, graphene). The ratio between the 2D and G bands (I2D/IG ≈ 0.7) calculated 

for the Raman data indicates that the graphitic material is composed of mostly three carbon layers. 

Figure 3.3. SEM of highly porous conductive carbon patterns. (a-c) images of 1 mm wide patterns. 
(d-f) images of smallest features with 90µm width. 
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The morphology of the carbon patterns was investigated by scanning electron microscopy 

(SEM). The SEM images in Figure 3.3 (a-c) reveal a high degree of alignment and porosity as well 

as uniformity among the conductive carbon traces. Figure 3.3 (d-e) shows SEM images of the 

smallest features (width × pitch = 90 m × 120 µm) achievable with our laser system, which is 

limited to the beam size of the laser. Figure 3.3 (f) shows a high-magnification top view of the 

carbon nano particles intertwining. The pristine Kapton film has a high contact angle and water 

droplet slides off when tilted. However, the after carbonization the carbonized surface is super-

hydrophilic and the water droplet immediately is wicked into to the carbonized material upon 

contact. Therefore changes in surface wettability of the laser carbonized region allows the selective 

trapping of aqueous solution into the carbonized patterns, Figure 3.4. In the next section we will 

discuss permeating the porous carbon with different materials including silver nano particles and 

polyaniline. 

Figure 3.4. Goniometric experiments with 10 µl DI water droplet for measuring the surface 
wettability, (a) water droplet before depositing on the surface, (b) water droplet on polyimide sheet, 
(c) water droplet wicking immediately into the laser carbonized surface upon contact (super 
hydrophilic). 

Porous-carbon/silver nanocomposite 

Despite the low cost of fabrication and stability of the laser carbonization process, they have 

a high electrical sheet resistance (typically between 15 Ω/ to 1000 Ω/ ) [59], [96] and sensitivity 

to mechanical deformations[97], limiting its use in flexible electronics, which often require highly 
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conductive and robust interconnections. In order to further advance the direct-writing laser-

carbonization technique and overcome some of the shortcomings, we have developed a simple 

method that utilizes the super-hydrophilicity of the carbon traces to selectively synthesize and trap 

silver nanoparticles into the carbonized regions, significantly enhancing the electrical conductivity 

and robustness of the flexible interconnects. 

3.2.1 Fabrication process 

The presented patterning technique relies on the laser pyrolysis of a thermoset polymeric 

substrate serving as the flexible support to create highly porous network of conductive carbon 

traces. The traces are later selectively coated with an aqueous reactive silver ink, as shown in 

Figure 3.5(a-c). In this process commercially available polyimide (PI) sheets provided by DuPont 

(Kapton® HN, with a thickness of 60 µm) is used as the substrate for carbonization. Before the 

patterning process, the PI sheets are cleaned in an IPA solution for 30 min and rinsed with DI water 

and dried with nitrogen gun. The process begins by laser writing of highly porous carbon patterns 

into the surface of the PI sheet using a computer controlled CO2 laser cutting and engraving system 

(PLS6MW, Universal Lasers, Inc., Scottsdale, AZ). The laser system characteristics include: 

maximum power of 100 W, maximum speed of 2 m/s, wavelength of 10.6 μm, continuous wave 

(CW) mode, and beam spot size of 50 µm. To carbonize the polymer substrate the laser beam 

should provide the threshold energy required to initiate the pyrolysis process, which can be 

achieved at different powers and scanning speeds. It should be noted that high thermal energies 

(high laser power and lower scanning speeds) result in cutting through the substrate while low 

thermal energies (low laser power and fast scanning speeds) will not effectively carbonize the 

polymer. For maximum conductivity, the laser is operated at 6.75 W with a scanning speed of 

1.3 m/s. The laser ablates/carbonizes the surface of the polymer and creates porous super-

hydrophilic carbon patterns, Figure 3.5(a). The electrical conductivity and robustness of the porous 

carbon trace is enhanced by filling the porous carbon them with silver nanoparticles. This is done 

by selective trapping of a reactive silver ionic solution in the traces, followed by an annealing step 

at 90 °C for 10 min, Figure 3.5(b, c). The silver ionic solution is only trapped in the laser-ablated 

areas (due to its super-hydrophilicity) and rolls away from the non-patterned regions. The silver 

ionic ink solution is prepared by a modified Tollen’s process [98] in which 4 g of silver acetate 

(Alfa Aesar, 99 %) is mixed with 10 mL of ammonium hydroxide (Alfa Aesar, 28 %). To ensure 
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that the silver acetate powder is completely dissolved, the mixed solution is ultra-sonicated in a 

closed container for 30 min. Next, under continuous magnetic stirring, 1 ml of formic acid (Alfa 

Aesar, 97 %) is dropwise titrated into the mixture at room temperature (during the titration process 

the solutions change color from light yellow to light gray). The solution is stored at room 

temperature for 24 h to age, forming a clear solution. The final solution is composed of diammine 

silver (I) cations (Ag(NH3)2
+), acetate (CH3CO2

−) and formate anions (HCO2
−), containing 22 wt% 

silver[98]. Due to the rapid evaporation of the ammonia ligands and reactants, annealing at 90 °C 

results in silver nanoparticles formation in the porous carbon network. 

Figure 3.5. (a-c) Fabrication process of carbon/silver nanocomposite using laser pyrolization and 
selective aqueous silver ionic solution trapping; (d) laser carbonized traces before and after 
decorating with silver nanoparticles: (i) silver ionic solution, (ii) pristine carbonized trace, (iii) 
carbon/silver nanocomposite; flexible laser carbonized traces (e) before and (f) after decorating 
with silver nanoparticles; (g) array of lit LEDs with flexible interconnect. All scale bars: 1 cm 

Figure 3.5(d-f) shows examples of different carbon patterns before and after coating with 

silver nanoparticles. Figure 3.5g shows a simple circuit lighting a 3 × 3 array of LEDs using highly 

conductive Ag/C traces. The flexible substrate and LEDs can withstand mechanical bending and 

twisting while retaining the same illumination intensity. 
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3.2.2 Results and Discussion 

Optical and SEM images were used to evaluate the morphology of laser carbonized 

microstructures before and after silver deposition, Figure 3.6. Microscopic images show a clear 

change in the color from black to silver after the selective silver coating, Figure 3.6(a, b). The SEM 

images show the creation of a highly-porous network of carbon micro/nano structures generated 

by laser carbonization of the polyimide substrate, Figure 3.6(c, d). The alignment of the carbon 

network is due to the scanning motion of the laser across the sample. Figure 3.6(e) is the top SEM 

image of the carbon trace after the precipitation of silver. High magnification SEM images 

illustrate the deposition of highly conductive silver nanoparticles on the porous carbon network, 

Figure 3.6(f). This is due to the low viscosity of the silver ionic solution and the strong capillary 

force of the carbonized traces, resulting in an easy percolation of the solution into the carbon 

network. 

Figure 3.6. Magnified optical image of (a) laser carbonized polyimide and (b) carbon-silver 
nanocomposite SEM image of (c, d) laser carbonized polyimide and (e, f) carbon-silver 
nanocomposite. 

In order to confirm the presence of silver and carbon in the conductive composite, material 

analysis was carried out by XRD and EDS measurements, Figure 3.7. Figure 3.7(a), shows the 

XRD pattern of the carbonized polyimide before and after silver coating. The broad diffraction 

peaks at 26° and 43° observed before and after silver coating can be attributed to the (002) and 

(100) crystal planes of graphitic carbon, which is assigned to the presence of low-degree-of-
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graphitization and amorphous carbon [99], [100]. This was also confirmed by EDS measurements, 

which was performed before and after the laser carbonization of polyimide. The five distinct peaks 

observed after the ionic silver coating clearly reveal the formation of silver and the crystalline 

nature of the nanocomposite. The 2Ɵ peaks obtained at 38.1°, 44.1°, 64.4°, 77.4° and 81.5° 

correspond to the (111), (200), (220), (311) and (222) reflections of crystalline planes of the face-

centered structure of silver [101], [102]. The quantitative presence of silver and carbon in the laser-

carbonized composite before and after coating was further confirmed with EDS analysis, Figure 

3.7(b, c). 

Figure 3.7. (a) XRD pattern of carbonized polyimide and carbon-silver composite, (b, c) EDS 
spectra of the nanocomposite, (d) high magnification SEM of carbon-silver composite, (e, f), EDS 
color mapping of silver (red) and carbon (green). 

The EDS spectra of the pristine carbonized polyimide shows a binding energy of 0.25 keV 

corresponding to carbon, whereas the EDS spectra of the carbon-silver nanocomposite shows the 

addition of strong peaks at 3.0, 3.2 and 3.4 keV which correspond to the presence of the silver in 

the composite material. The percentage of carbon and silver in the composite is 17.41 % and 

https://abindingenergyof0.25
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82.59 %, respectively. To investigate the distribution of the elemental silver throughout the 

composite, the samples were further studied by EDS element mapping. The red and green colored 

areas shown in Figure 3.7(d-f) correspond to the existence of silver and carbon elements in the 

material. The uniform distribution of the red dots shows the homogenous deposition of silver on 

the surface of carbon network. 

Figure 3.8(a) shows the sheet resistance of the pristine carbonized polyimide and carbon-

silver nanocomposite as a function of the annealing temperatures for samples of 3 cm length and 

500 µm width (annealing time was fixed at 10 min). The pristine carbonized polyimide exhibits 

the maximum sheet resistance of 52 Ω/sq, which is consistent with previous laser carbonization 

reports[59], [96]. As anticipated, the resistance of the silver-coated carbon traces decreases with 

increasing annealing temperatures. After drying the Ag/C nanocomposite at room temperature, the 

sheet resistance decreases slightly to 40 Ω/sq. Increasing the annealing temperature up to 90 °C 

improves the conductivity with the sheet resistance decreasing to 0.02 Ω/sq. After 90 °C, the effect 

of annealing on the conductivity was not significant (reactive silver ink is completely converted to 

bulk silver at 90 °C). Figure 3.8(b), shows the change in the resistance of laser carbonized traces 

before and after silver coating as a function of traces widths ranging from 200 µm to 2 mm at fixed 

annealing temperatures and times of 90 °C and 10 min. As can be seen, the composites traces show 

a resistance approximately three orders of magnitude lower than that of the pristine carbonized 

polyimide traces. 

To assess the mechanical stability of the conductive traces upon bending, samples with 

different widths ranging between 200 µm to 2 mm were subjected to flexion at curvature radii (CR) 

of 50 mm to 2 mm. The mechanical stability of the conductive composite was characterized with 

samples undergone the optimal annealing temperature of 90 °C. Figure 3.8(c) shows the change in 

the carbonized polyimide resistance as a function of CR. As can be seen, for small traces (200 µm), 

the change in a resistance starts at 30 mm CR with a relatively linear sensitivity coefficient of 

0.35 (R/Ro) per degree radius of curvature. However, with increasing width, the starting threshold 

decreases. For instance carbon traces of 2 mm width exhibit a resistance change starting at 10 mm 

of CR with a sensitivity of 0.04 (R/Ro) per degree radius of curvature. This observation can be 

explained by the fact that the electrical conductivity between the two ends is provided by the 

connection between carbon particles throughout the material. Mechanical deformation separates 

the connection points in the material, resulting in an increase in resistance, Figure 3.8(d). However, 

https://improvestheconductivitywiththesheetresistancedecreasingto0.02
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wider carbonized traces have abundant connecting points throughout their wide carbon network, 

and are less likely to be disconnected with mechanical deformation. 

In addition to a significantly lower resistance, the carbon-silver nanocomposite shows 

greater robustness and lower sensitivity to mechanical deformation, Figure 3.8(e). For instance, 

after silver coating, a 200 µm-wide trace with an initial resistance of 7.5 Ω shows less than 33 % 

change in response to CR as small as 2 mm; this translates to an 8.7 folds decrease in sensitivity 

to mechanical deformation as compared to a similar carbonized polyimide trace. Furthermore, for 

traces wider than 400 µm carbon-silver nanocomposites have a high level of conductivity, with 

resistance smaller than 3 Ω and less than 9 % change in resistance at the maximum bending angles. 

This extreme level of conductivity and mechanical stability can be explained by the highly 

conductive Ag nanoparticles distributed throughout the carbon backbone structure. This structure 

provides multiple parallel electrical connections between particles, compensating for the change 

in the resistance of carbonized polyimide at high mechanical deformations, Figure 3.8d. Although 

Ag/C-P composite traces with short widths have much less sensitivity to mechanical defamation 

they are still composed of a sparse number of connections in the conductive carbon backbone 

network and can be disconnected at high levels of bending. In contrast, wider Ag/C-P composite 

can easily endure high degrees of mechanical bending with negligible change in the resistance due 

to the high degree of electrical pathways between the AgNP and carbon particles. 

For flexible electronic applications, it is essential to maintain the electrical connections 

after multiple cycles of bending and mechanical deformations. In order to assess the 

robustness/reliability of the nanocomposite, the traces were subjected to multiple mechanical 

bending cycles, Figure 3.8(f). The response to mechanical bending cycles at 5 mm of CR was 

compared between carbonized polyimide and carbon-silver nanocomposites of 0.6 mm width. The 

resistance of the traces was continuously recorded during the cyclic test. As shown in Figure f, the 

pristine C-PI has an initial resistance of 2.5 kΩ with a sinusoidal variation in resistance with a 

peak-to-peak amplitude of approximately 2 kΩ (with a relative change of 80%) through a full 

bending cycle (from 0° to 180°). The maximum change in resistance occurs at the maximum 

bending angle (180°) and reduces by removing the applied flexure (return to 0°), this change in 

resistance is explained by the disconnections of the carbon macro/nano particles with bending. In 

addition to the high sensitivity of the C-PI to mechanical bending, the carbonized polyimide 

exhibits a large drift of 350 Ω (~14% of initial 2.5 kΩ) after 15000 cycles. However, the carbon-
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silver nanocomposite shows significant retention of its initial conductivity (3 Ω) after 15000 

bending cycles with negligible drift. The Ag/C-PI shows less than 0.6 Ω (~20% of initial 3 Ω) 

variation in resistance through a complete bending cycle after 15000 bending cycles. The relative 

change of resistance (R/R0) of C-PI and Ag/C-PI. 

Figure 3.8. (a) Electrical sheet resistance of carbon-silver composite after annealing at different 
temperatures, (b) carbonized polyimide and carbon-silver nanocomposite resistances as a function 
of line width, (c) change in the carbonized polyimide resistance of various trace widths ranging 
from 0.2 mm to 2 mm as a function of radii of curvature, (d) schematic for the behavior of 
carbonized polyimide and carbon-silver nanocomposite under mechanical flexion, (e) change in 
the resistance of carbon-silver nanocomposite of various trace widths ranging from 0.2 mm to 2 
mm as a function of radii of curvature, (f) resistances of carbonized polyimide and carbon-silver 
nanocomposite as a function bending cycles of 180° at 5 mm of curvature radius, with breaks at 
the first five and last five cyclic. 

Stretchable carbon−polyaniline composite 

Among various conductive particles, carbon-based nanostructures (e.g., CNT, graphene) are 

excellent candidates for use in conductive composites due to their unique properties such as high 

carrier mobility (conductivity), thermal stability, chemical inertness, large surface area, and ease 
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of functionalization[103]–[106]. Hence, carbon-based nanomaterials have been used in various 

stretchable devices including batteries, supercapacitors, speakers, and motion sensors[107]–[109]. 

Although carbon-based conductive inks and composites have shown promising results for 

fabrication of stretchable electronics, they are still limited by their printing challenges (optimal ink 

preparation). In addition, costly and complicated synthesis process of CNT and graphene 

nanoparticles also can potentially increase the fabrication cost of the targeted device[83]. The 

applications of carbon-based stretchable electronics would be greatly expanded if the conductive 

nanoparticles could be fabricated with precise patterning and integration into the elastic material 

using a facile and low cost process. A simple alternative approach to the synthesis of carbon-based 

micro/nano materials is pyrolization of thermoset polymers using a photo-thermal process with 

laser irradiation[60], [110]–[112]. These porous carbon-based materials can be easily converted to 

functional composites by impregnating the pores with organic and inorganic materials that are 

sensitive to different stimuli/parameters. Such simple functionalized/conductive nano-composites 

can potentially be used in the development of new low-cost/scalable sensors for wearable and other 

applications. In this section we investigate the functionalization of laser carbonized polyimide 

traces with polyaniline (PANI) and its potential use for stretchable electronic devices. In 

section 5.2 we will demonstrate the utilization of this technology in wearable pH-sensitive 

electrodes for wound monitoring applications. 

3.3.1 Fabrication process 

The fabrication process is illustrated in Figure 3.9 (a-f). The process begins by placing a 

thin film of silanized PI on a plasma treated Ecoflex. The 1 mm thick elastic substrate (Ecoflex) 

was prepared by mixing the Ecoflex pre-polymer at 1:1 ratio and curing at room temperature for 

3 hours. The PI sheet surfaces were first cleaned with de-ionized (DI) water followed by isopropyl 

alcohol (IPA). Next, the APTES silanization process was used for irreversible bonding between 

the elastic substrate and PI (see supplementary material for detailed description). In this process, 

the PI sheet was treated with air plasma for 1 min followed by immersion in a 5 % APTES aqueous 

solution for 5 min. During the immersion process, the solution was placed on a hot plate set to 

80 °C. Next, the PI was removed from the solution and rinsed with DI water and dried with 

nitrogen gun. The surface of the silicone and silanized PI were activated by 1 min and 10 s air 

plasma treatment, followed by immediately bring them into contact. Using a CO2 laser engraver 
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at the optimal setting (6.75 W power, 1.3 ms-1 speed) that was previous reported by our group, 

highly porous conductive carbon patterns were directly pyrolyzed onto the polyimide side of the 

film. To enhance the mechanical stability and confer pH sensitivity to the electrodes, the porous 

carbon was coated with PANI. The coating was achieved by spraying a mist of PANI EB 

(polyaniline emeraldine base) dissolved in dimethyl sulfoxide (DMSO) onto the porous carbon 

traces, forming a PANI and carbon composite (PANI/C-PI). 

The PANI EB solution was prepared by dissolving 100 mg of PANI emeraldine base 

(Sigma Aldrich, Mw ~50,000) in 5 mL of DMSO and sonicating for 2 h. To remove any 

undissolved polymer and prevent clogging of the spray nozzle, the sonicated solution was 

maintained undisturbed for 1 hour and filtered through a syringe filter with pore size of 0.2 µm 

(Whatman Filters, Anotop 25) prior to being sprayed onto the carbonized traces. PANI was chosen 

because of its biocompatibility, good electrical conductivity, and stability in different electrolytes. 

The reversible protonation and deprotonation of PANI in acid/base condition makes it an ideal 

material for pH sensors. After the PANI coating process, the extra PI was removed by laser 

cutting/machining the peripheral of the serpentine traces using the same laser machine at higher 

power level (15 W power, 1.4 ms-1 speed). The extra PI was removed and the device was annealed 

at 80 °C for 30 min, for an irreversible strong Si-O-Si covalent bonds between the PI backing of 

the stretchable PANI/C-PI electrodes and Ecoflex substrate. 

The PANI EB was converted to polyaniline emeraldine salt (PANI ES) by immersing the 

carbon traces into an acidic solution (1 M HCl) solution for 15 min. PANI ES has a higher 

conductivity than PANI EB which improves the conductivity and stability of the serpentine 

composite to applied stress. The electrodes were then washed with DI water and dried in room 

temperature. Next, a thin passivation layer of diluted Ecoflex was casted onto the PANI/C-PI 

interconnection traces leaving the contact pads and sensing areas exposed. To enhance the 

diffusion of the pre-polymer into the porous PANI/C-PI patterns, the Ecoflex pre-polymer was 

diluted with 10 wt% n-heptane. The insulating Ecoflex layer firmly and uniformly adheres onto 

the porous and rough PANI/C-PI composite and Ecoflex substrate. As shown in Figure 3.9 (g, h), 

the described technology can be used to fabricate different stretchable patterns such as zigzag, 

sinusoidal, and serpentine traces with various widths. 
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Figure 3.9. Schematic illustrations of the fabrication process and photographic images stretchable 
carbon−polyaniline composite interconnections: (a) polyimide sheet is silanized and placed on an 
air-plasma-treated Ecoflex substrate, (b) a CO2 laser is used to carbonize serpentine carbon traces 
on the polyimide sheet, (c) polyaniline is spray-coated onto the porous carbon, (d) the polyimide 
sheet is machined with the same CO2 laser at a higher power level, (e) excess polyimide is removed, 
(f) interconnects are insulated by another Ecoflex layer, (g) photograph of various stretchable 
PANI/C−PI interconnect designs, and (h) different trace widths. Scale bar in all images is 1cm. 

3.3.2 Results and discussion 

Figure 3.10 (a) shows a repetitive unit of the serpentine patterns with the structural design 

parameters of radius (r), width (W), and angle (θ). Structures with different widths were 

characterized while the radius and angle of the traces were kept constant at 1 mm and 120o, 

respectively. Photographs of two serpentine traces with the widths of 300 µm and 1.2 mm are 

shown in Figure 3.10(a, b). Figure 3.10(c) shows the top scanning electron microscopy (SEM) 

image of single repetitive unit of the serpentine traces with the width of 300 µm. 
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Figure 3.10. Optical and SEM images of stretchable PANI/C−PI serpentine interconnects with the 
design parameters of one repetitive serpentine unit. Top views of serpentine structures with the 
widths of (a) 1.2 mm and (b) 0.3 mm. SEM top view of a single repetitive unit with 0.3 mm width 
at (c) low and (d) high magnification. Side view SEM image of PANI/C−PI composite structure 
and polyimide film (e) before and (f) after encapsulation with Ecoflex. 
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Figure 3.10 (d) shows a magnified SEM image of the PANI/C-PI composite, illustrating 

the porous nature of the material (the 60 µm trench visible around the perimeter of the carbonized 

traces is formed during the final cut through the PI sheet). This feature allows the liquid pre-

polymer of the insulating Ecoflex layer to penetrate into the material and form a strong mechanical 

bond. Figure 3.10(e, f) show the cross section SEM image of the patterns before and after 

encapsulating into the Ecoflex elastomer. Cross-section SEM images of fully encapsulated patterns 

show the diffusion of the top Ecoflex layer into the void spacing on the rough surface of PANI/C-

PI composite electrode, Figure 3.10(f). The thickness of the PANI/C-PI composite and the 

remaining PI material are 20 µm and 11 µm, respectively. It should be noted that laser heating the 

PI film will cause explosive phase change in the PI material, which results in an increase in the 

total thickness of the material from 25 µm to 31 µm after carbonization. The SEM images clearly 

shows that no interfacial void is observed at the bonding interface between the PI and Ecoflex 

substrate. 

Raman analysis at an excitation wavelength of 633 nm was used for further surface analysis 

of the laser carbonized PI before (Figure 3.11(a)) and after PANI deposition (Figure 3.11(b)). The 

laser carbonized polyimide (C-PI) spectra shows the three apparent 2D, D and G characteristic 

peaks attributed to graphitic materials with structure-derived G band and defect-derived D-band 

visible around 1590 cm-1 and 1350 cm-1 , respectively. The ratio intensity of the D and G band 

(ID/IG) represents a measure of crystallinity or defect in the carbon material[113]. The 2D band 

observed at 2800 cm-1 arises because of second-order zone boundary phonons. The ratio of G and 

2D band intensity (IG/I2D) is related to the number of layer of graphene in the material; a smaller 

ratio indicates an increased number of graphene layers[99], [114]. The pristine laser C-PI has ID/IG 

and IG/I2D ratio of 0.6 and 1, which indicates a multilayer graphene with good level of crystallinity. 

Compared to the pristine laser carbonized PI, the Raman spectrum of PANI and PANI/C-PI 

composite shows apparent new smaller peaks in the lower wave number regions with different 

intensities at 1167, 1350 and 1470 cm −1 . These bands are ascribed to C–H bending, C–N+ 

stretching, and C=N stretching vibration in PANI[115]. The Raman spectra confirms the 

deposition of PANI into the hybrid PANI/C-PI composite. 
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Figure 3.11. Top view SEM image of (a) pristine porous laser-carbonized polyimide and (b) 
PANI/C−PI composite. (c) Raman spectra of pristine porous carbon, PANI, and PANI/C−PI. (d−f) 
Optical image of 5 × 25 mm PI and PANI/C−PI samples used for tensile testing. (g) Comparison 
of the tensile stress−strain curve of PI and PANI/C−PI. (h) Variation of resistance with line width 
before and after PANI deposition. 
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The mechanical properties of the PANI/C-PI and pristine PI film were measured from the 

stress-strain curve. The test samples (5 mm × 25 mm) were stretched to their breaking limit at a 

speed of 50 mm/min, Figure 3.11(d-f). Using the results of the stress-strain curves presented in 

Figure 3.11(g), the modulus of elasticity (E) and tensile strength of the pristine PI film is estimated 

to be 1 GPa and 135 MPa, respectively. It can be seen that the PANI/C-PI composite 

simultaneously exhibits a decrease in modulus of elasticity (650 MPa) and tensile strength 

(105 MPa). Moreover, the PANI/C-PI composite showed a 34 % increase in elasticity before 

breaking. The electrical conductivity of PANI/C-PI composite was evaluated as a function of trace 

width before and after the deposition of the PANI filler, Figure 3.11(h). The plot shows a resistivity 

of 0.096 Ω.cm for the C-PI structures, which is close to previously reported values [116]. The 

PANI/C-PI composite after the protonation process of the PANI has an approximately 32 % lower 

resistivity (0.065 Ω.cm) as compared to the pristine C-PI. The electrical characterization further 

confirm the contribution of the PANI filler to the binding and enhancement of the electrical 

properties of the PANI/C-PI composite. 

The trace width is an important parameter that can strongly affect the performance of the 

stretchable interconnects. In order to assess the sensitivity of different laser carbonized traces to 

applied strain, we fabricated a range of serpentine interconnects with widths ranging from 200 µm 

to 1.2 mm and fixed radius (1 mm) and angle (30°). Figure 3.12(a) shows a sequence of in situ 

elongations from 0 up to 120 % for serpentine interconnect samples with 0.3 and 1 mm widths. 

The applied strain results in periodic out-of-plane deformation at the crest of the serpentine 

interconnects (more prominent for wider traces), resulting in higher stress and failure at smaller 

levels of strains (< 50 %). However, the 0.3 mm wide trace can tolerate extreme elongations 

(120 %) with smaller out-of-plane deformation while still remaining conductive. Using a two-point 

probe measurement, the resistance of the various carbon traces was continuously recorded at 

different levels of strain. Figure 3.12(b) represents the relative change in resistance of each 

interconnection with applied uniaxial strain. The electrical resistance was continuously recorded 

until rupture. The sharp change in resistance represents the breaking point and disconnection in 

the trace. Wider traces such as 1.2 mm showed a fast increase in resistance starting from 15 % 

strain with a complete disconnection at 52 % strain. However, traces with widths smaller than 

0.8 mm showed a near constant resistance for elongations up to 65 % with gradual increase 

thereafter. This resistance change can be explained by the presence of micro-cracks in the 
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conductive PANI/C-PI composite that are initiated by the stress applied at crest of the serpentine 

patterns. These micro-cracks proliferate at higher strains and ultimately result in complete rupture 

in the composite. 

Investigating the maximum stretchability of different interconnects showed that 300 µm 

wide traces have the most stable electrical resistance for elongation up to ~100 % (ultimate 

elongation of 135 %). This is comparable to similar serpentine metallic traces created by micro-

fabrication and photolithography[117]. Although narrower traces (~200 µm) did have a slightly 

higher ultimate elongation before rupture (~144 %), it showed a higher sensitivity to the applied 

strain. This phenomenon can be explained by the limited amount of conductive (PANI/C-PI) 

material in the narrower traces, which results in its increased sensitivity to the micro-cracks 

propagation at crest points. Figure 3.12(c), summarizes the ultimate elongation and the stable 

electrical resistance region (with less than 20% change of its initial resistance) for different trace 

widths. Narrower traces (~300 µm) had an ultimate elongation approximately 2.5 times that of the 

1.2 mm traces. The observed longitudinal tensile measurements was also verified with COMSOL 

simulation. Figure 3.12(d) shows the stress distribution FEM simulation along different serpentine 

traces under 25 % elongation, assuming a Young’s modulus and tensile strength of 650 MPa and 

105 MPa, respectively. The values chosen for the simulation were the results obtained from the 

stress-strain curves in the material characterization section. As expected, the applied strain results 

in a non-uniform stress distribution across the length of the serpentine traces with concentration at 

every crest along the traces. The simulation results further confirm the presence of higher stress in 

traces with wider widths, making them more likely to exceed the tensile strength of the PANI/C-

PI at higher levels of strain. Figure 3.12(e), shows the simulation results of the maximum stress at 

the crest point of different traces with strain levels up to 150 %. The plot shows an approximately 

linear increase in stress for all traces with the lowest and highest sensitivity for traces with widths 

of 300 µm and 1200 µm, respectively. The dashed line indicates the tensile strength (105 MPa) of 

the PANI/C-PI material. Tensile stresses that exceed this threshold will result in micro-crack 

formation and propagation in the conductive material. The simulation results for traces with width 

of 300 µm, 600 µm, 800 µm, and 1200 µm predicts micro-crack propagation and increased 

resistance at strain levels of 120 %, 80 %, 65 %, and 25 %, in good agreement with the 

experimental results. 
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Figure 3.12. (a) Optical images of serpentine traces with 0.3 and 1 mm width at 0%, 60%, and 
120% elongation. (b) Relative change in electrical resistance of serpentine PANI/C−PI composites 
with difference widths as a function of strain. (c) Maximum elongation with less than 20% change 
in resistance versus trace width. (d) COMSOL simulation for displacement and stress distribution 
on serpentine traces with 0.3, 0.6, 0.8, and 1.2 mm width at 25% elongation; the stress concertation 
is in the crest of the serpentine interconnects. (e) Simulation results of maximum stress at the crest 
points of serpentine traces with different widths at various levels of strain. (f) Relative change in 
resistance of a 0.3-mm-wide serpentine trace versus the number of stretching cycles for 20%−80% 
elongation. 
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The reliability of the serpentine traces with 300 µm width was measured over 12,000 stretch 

cycles under various tensile strains (from 20 % to 80 %). Figure 3.12(f) shows the normalized 

resistance under various strain cycles. Results show that the 300 µm PANI/C-PI serpentine trace 

could be stretched at 20 % strain over 12,000 cycles, without a notable change in the resistance. 

This level of stretchability and durability is comparable to several reported stretchable thin film 

metals, and conductive composites including metal NWs, CNT and graphene[117]–[121]. 

Interconnects that were subject to higher strain levels of 80 %, 60 % and 40 % withstood strain 

cycles above 1000, 3000, and 5000, receptively. 
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4. LASER ABLATION OF MULITLAYER POLYMERIC FILMS 

Among different rapid fabrication technologies, laser machining offers a unique set of 

capabilities directly beneficial for the development of flexible/stretchable low-cost systems. Laser 

machining provides the ability to cut materials, etch (ablate) them, alter their surface morphology, 

without the generating high volumes hazardous chemical wastes that are often associated with 

photolithography processes. For example, laser can be used to tune the hydrophilicity of 

hydrophobic films such as wax and parchment paper, or it can be used for selective material 

removal from a multilayer substrates. Furthermore, the availability of commercial, reliable, and 

precise laser systems allows them to become part of large-scale (e.g., roll-to-roll) production lines. 

This chapter highlights the utility of CO2 and Nd:YAG of laser systems in selective ablating and 

surface treating of commercial multilayer films including parchment paper, ITO-coated PET films 

and metalized papers. 

Laser ablating hydrophobic paper 

Paper is an attractive substrate for cell culture applications due to its naturally biocompatible 

3D cellulose fiber composition and its webbed architecture for efficient cell attachment[122], [123]. 

However, the inherent hydrophilic nature and low mechanical strength, when moistened, prevents 

its prolonged use in aqueous environments[124]. Nevertheless, impregnating the paper with 

hydrophobic materials (e.g., wax, silicone) can resolve some of the abovementioned shortcomings 

(i.e., improve mechanical strength in aqueous environments) [125]. Such hydrophobic films (e.g., 

wax and PDMS), printed using inkjet or screen printing, form water-repelling barriers on paper 

substrates; these patterns create hydrophobic-hydrophilic structures which can replace existing cell 

culture plates. For example, wax printing was used by Whitesides group to generate a 3D, 

multilayer, paper-based assay for monitoring molecular and genetic response of different cells to 

oxygen and nutrition gradients[126]. Wang et al. reported the use of PDMS-stamped multi-wells 

on paper as biomaterial scaffold for direct differentiation of human induced pluripotent stem cells 

(iPSCs) into functional beating cardiac tissues[127]. However, among different types of 

commercially available papers, parchment paper offers serval great advantages including wet and 

dry mechanical strength, high gas permeability, laser-process ability, and bio-compatibility 
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making it suitability substrate for different biomedical applications. This section demonstrates the 

key features of this paper before and after laser modification with a comparison to other common 

hydrophobic papers. 

4.1.1 Materials and method 

Characterization were performed on several common hydrophobic papers and films in 

terms of their change in surface properties after laser treatment, wet strength (standard tensile strain 

tests as a function of wetting duration), and nutrition/gas permeability. These films were parchment 

paper (PP), wax paper (WP), filer paper (FP), PDMS, and a paper-PDMS (P/PDMS) composite 

prepared by placing a sheet of filter paper on a thin layer (50 µm) of PDMS pre-polymer spin-

coated onto a silanized silicon wafer and cured at 80°C for 30 min. The performance of the papers 

were compared with the commercial polyethylene terephthalate (PET) transwell ALI culture 

membranes with 0.4 µm pore size (Corning®). The micro structural properties of the papers were 

compared by SEM imaging, Figure 4.1. Previous studies have shown that the change in surface 

wettability with plasma and laser treatment often affects cell growth on different substrates. This 

method has been widely studied with different cells on various materials such as silk and 

polymers[128]–[130]. Therefore, as the first step, the surface properties of the films were 

characterized before and after laser treatment (at 10 W power with a scanning speed of 35 mm/s). 

The adjusted laser parameters were sufficient to change the surface properties of the films without 

completely cutting through the material. The surface wettability of samples were evaluated by 

measuring the static contact angle of a 10 µl droplet of DI water before and after laser treatment 

using an optical contact angle measuring device (Rame-Hart goniometer, model 590). All 

experiments were conducted five times and the mean contact angle was calculated. High 

magnification surface and cross-sectional scanning electron microscopy (SEM) images were also 

obtained to assess the change in surface morphology before and after laser ablation. A standard 

tensile stress-strain test was used to characterize how well the fibers in different hydrophobic 

papers hold together when the paper is wetted/soaked for various times. In this test, the papers 

were submerged in buffer saline solution (PBS) for several durations (0-7 days), and the ultimate 

tensile strength (UTS) and Young’s modulus were subsequently measured using a universal testing 

machine (Admet®, model eXpert 1000). All specimens were laser cut to the same dimensions 
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(5 mm × 20 mm). The tensile strength measurements were performed by fixing the two ends of 

the film and stretching from 0 % to 12 % strain at a constant extension velocity of 10 mm/min. 

Figure 4.1. Basic structural characterization of different papers. (a-d) optical image of different 
papers: parchment paper, wax paper, filter paper, filter paper coated with PDMS, (e-l) low and 
high magnification SEM images of surface properties of different papers, (m-p) cross-sectional 
SEM image of different papers. 

A customized setup was used to measure the gas permeability and oxygenation of the liquid 

medium through different films. The structure consisted of a cylindrical chamber filled with 20 mL 

of deoxygenated DI water and covered by 20 mm-diameter circular sample of the film. For all 

tests, the dissolved oxygen was removed by purging the water for 8 h with nitrogen gas. The 

oxygen permeability was confirmed with real-time measurements of the dissolved oxygen using 
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an optical oxygen sensor (NeoFox, Ocean Optics, Dunedin, FL) positioned in the DI water 

chamber. All measurements were performed at room temperature and atmospheric pressure. We 

evaluated the oxygen permeability of different membranes via the rate of dissolved oxygen 

increase in the water. The permeability of cell culture media through different substrates was 

assessed using a conductivity measurement setup. The setup consisted of two chambers filled with 

20 mL of DI water and 20 mL of growth medium (Cell, P311-500) separated by the testing 

membrane. The conductivity of the chamber with DI water was measured using an LCR meter at 

1 kHz (GW Instek LCR-819) for 24 h. For all measurements the initial conductivity of the DI 

water was close to zero (1.25×10-6 S). The conductivity increased with time as a result of the 

diffusion of the ions from the medium to the DI water chamber. 

4.1.2 Results and discussion 

4.1.2.1 Surface wettability and morphology 

The initial contact angle (CA) of the four surfaces (PP, WP, P/PDMS and PDMS) were 

measured to be 121°, 108°, 112°, and 94°, respectively. The P/PDMS and PDMS showed an 

increase in the contact angle following laser-treatment (to 115° and 126°, respectively). This 

increase can be explained by the Wenzel theory, which predicts a higher CA for water droplets on 

rough hydrophobic surfaces in contrast to homogeneous surfaces (both P/PDMS and PDMS 

become rougher after laser treatment) [131]. In contrast, the commercial PP and WP papers showed 

a significant decrease in CA to 21° and 39°, respectively, Figure 4.2(a,b). This increase in surface 

wettability is due to the creation of exposed micro/nano cellulose fibers and addition of hydrophilic 

–OH, =O groups on the laser-ablated areas[72]. Figure 4.2(c) shows a high magnification SEM 

image of selective laser-ablated parchment paper. The image show a clear change in morphology 

with exposed micro/nano fibers on the surface of the paper after laser treatment. The thickness of 

the paper was measured by cross-sectional SEM images before and after laser ablation, Figure 

4.2(d, e). While the initial thickness of the paper is 60 µm, the laser-ablated region was protruded 

out of the plane by 15 µm over the original surface. This is due to the decomposition/re-deposition 

of the silicone coating in the paper upon laser exposure, leading to the generation of higher-volume 

porous micro/nano roughness. Figure 4.2(f) shows an example of how cells attach to hydrophilic 

regions (2 mm diameter circles) and proliferate over time. 
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Figure 4.2. (a) Water droplet on different surfaces (i) before and (ii) after laser ablation, (b) 
comparison of contact angle of various hydrophobic surface before and after laser treatment, (c) 
SEM top-view of selective laser treated and untreated parchment paper, cross-section SEM image 
of (d) before and (e) after laser treatment of parchment paper, (f) selective cell attachment to 
circular hydrophilic patterns with 2mm diameter, Scale: 2 mm. 
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4.1.2.2 Mechanical properties 

Figure 4.3 shows the change in UTS for filter paper and various other hydrophobic 

papers/films before and after submersion in PBS. All the samples in dry states showed a linear 

stress-strain profile with a small strain (2.5 %) before rupture, Figure 4.4. In dry state the 

commercial PET transwell membrane had the highest UTS with 187 MPa followed by the 

commercial parchment and wax papers with the UTSs of 124 MPa and 129 MPa, respectively. 

Filter paper impregnated with PDMS had a dry UTS of 21.4 MPa, which is three time higher than 

the pristine filter paper (7.6 MPa). This increase in mechanical strength was explained by the 

presence of the PDMS filler in the network fiber of the paper forming a stronger composite film. 

Wet tensile strength results, for all the paper-based specimens, showed an increase in the elasticity 

and a decrease in the mechanical strength. Unlike the PET membrane that retained a stable UTS, 

the wet papers showed a decrease in their mechanical strength. This was due to the diffusion and 

plasticizing effect of water molecules in the paper films. The results show that the hydrophobic 

papers retained some of their mechanical strength after 24 h submerging in PBS, whereas the wet 

filter paper UTS drastically decreased to 1.1 MPa and started to disintegrate in the solution. Among 

the investigated hydrophobic papers, parchment paper retained more than 48 % of its original dry 

UTS strength followed by PDMS/paper and wax paper with retentions of 31% and 14 %. The 

parchment and wax papers showed a stable retention of mechanical strength (UTS) of 58 MPa and 

11 MPa for 7 days. For filter paper and PDMS/paper, a longer wetting duration reduced the 

mechanical strength (UTS) down to 0.4 MPa and 5.4 MPa. 

Figure 4.3. (a) Optical image of test setup used for characterizing mechicnal properties of paper. 
(b) Ultimate tensile strength for different papers as a function of wetting duration up to 7 days 
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Figure 4.4. Stress vs. strain of dry and wet paper films after 24 hours of PBS immersion (a) 
parchment paper, (b) wax paper, (c) paper-PDMS, and (d) filter paper 

4.1.2.3 Oxygen and medium permeability 

Figure 4.5(a, b) show the gas permeability setup and results for different films using the 

aforementioned setup (inset). For all measurements the initial dissolved oxygen of the DI water 

was close to zero (~0.5 ppm) and increased with time up to the oxygen saturation level in the water 

(8 ppm). The increase was due to the diffusion of the oxygen gas in ambient condition through the 

membrane and its dissolution in the water. Without any membrane, the water equilibrates to its 

steady-state saturation level of about 8 ppm in less than 140 min. However, when the chamber was 

covered, the time required for oxygen saturation increases. The results showed the longest oxygen 

equilibration time occurred for a pristine 100 µm membrane of PDMS (720 min). The transwell 

membrane and PDMS/paper showed a similar oxygen permeability results with an average time 

of 650 min to oxygen equilibration. Parchment paper had a 3 fold larger oxygen permeability (time 
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to saturation of 210 min, with an average rate of 2.4 ppm/h) as compared to the commercial 

transwell membrane. No signs of water leakage were observed with the hydrophobic films during 

any of the measurements. The mechanical strength and gas permeability results showed the 

superior performance of the parchment paper, providing a suitable substrate for the proposed ALI 

platform. Furthermore, although in the described study the cell-culture was performed on only one 

side of the paper (with the basal surface of the cells attached to the paper and in contact with the 

liquid medium, and the apical expose to air), this platform is not limited to only such setups. A 

more complex pulmonary in-vitro system, for example, might feature a co-culture environment 

with epithelial cells and microvascular endothelial cells on the opposite sides of the cell culture 

membrane, which requires gas exchange with the cells in the basal lumen. Therefore the gas 

permeability characterization results further show that the presented system can also be easily used 

for co-culture in-vitro pulmonary studies. 

Figure 4.5. (a) Schematic of setup used for characterizing diffusion of oxygen across various 
papers, (b) oxygen permeability and dissolution in water for different hydrophobic paper 
membranes as function of time, the inset in (b) shows a schematic of the oxygen permeability test 
setup, (c) schematic of setup used for characterizing diffusion of media across various papers, (d) 
diffusion of media across various hydrophobic films as a function of time. 
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Figure 4.5(c, d) show the diffusion of medium across the different papers and change in 

electrolytic conductivity of the receptor media (starting with low conductivity DI water). The 

pristine hydrophilic filter paper showed the fastest change in electrolytic conductivity (1.75 S/m 

after 14 h). This sharp increase was due to immediate transmission of ions and media through the 

filter paper. The hydrophobic films (PDMS, P/PDMS, WP, PP) showed significantly smaller 

changes of 0.001 S/m, 0.075 S/m, 0.31 S/m, and 0.32 S/m, respectively. The low permeability of 

media through the hydrophobic films was due to the low permeability of wax and silicone to water 

and various ions present in the media17 . The commercial PET transwell membrane also showed 

relatively low permeability, 0.335 S/m after 14 h with a linear increase rate of 0.023S/mh. Laser-

treated PP showed a 75% increase in the permeability (0.55 S/m after 14 h, with an average rate 

of 0.04S/mh) as compared to an untreated sample, this was due to the porosity induced by the laser 

treatment. 

Laser patterning ITO-coated PET 

Transparent Indium tin oxide (ITO) film is one of the essential components in various 

optoelectronic devices, organic solar cells, touch screens, and digital displays such as organic light 

emitting devices and liquid crystal displays. ITO is typically deposited through large scale physical 

vapor deposition (PVD) and sputtering on different rigid and flexible films including glass and 

polymeric films such as Polyethylene terephthalate (PET). PVD deposited ITO films offers 

uninform high quality films with dense structures and benchmark electrical and optical properties 

(e.g. 4-60 Ω/sq and transparency > 85%). However device fabrication on these substrates requires 

the selective removal of the ITO layers to form the desired transparent and isolated electrodes. 

This process is generally carried out by photolithography and wet etching processes that consists 

of five steps of photoresist coating, optical lithography, photoresist developing, etching, and resist 

removing. However, these technique has several disadvantages, such as high cost, use of toxic and 

non-ecofriendly chemicals, large number of process stages which can be costly and time 

consuming. Therefore, alternative processes such as direct laser etching of desired conductive 

patterns into the ITO film would replace the challenges associated wet etching processes. 

Moreover, it provides a non-contact, high-speed, accuracy and flexibility in the production. Over 

the past few years different laser sources have been applied to various ITO coated substrates to 

investigate there ablation behavior and potential use in the fast growing market of flexible 
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electronics with the focus of optoelectronics and displays. More recently however, ITO electrodes 

have also found a great number of interest in the development of optically transparent 

bioengineering devices such as ion sensors and biosensors. Due to the fast growing market in 

flexible and wearable health monitoring devices the development of new cost-effective 

manufacturing processes is necessary. In this section we study the laser ablation of ITO thin film 

on flexible polyethylene terephthalate (PET) substrate two using CO2 and Nd:YAG lasers. 

4.2.1 Materials and method 

The laser patterning were all preformed on a commercial ITO coated flexible PET substrate 

(130 nm ITO on 120 µm PET) purchased from Sigma Aldrich. Two laser wavelengths (10.6 µm 

produced by CO2 lasers, and 1.06 µm produced by Nd:YAG fiber lasers) at different operating 

powers and speeds were used to find the optimum ablation quality of the ITO film. Electrical 

resistance was measured using a digital multimeter (Agilent 34401A). Scanning electron 

microscopy (field-emission SEM, Hitachi S-4800) was used to assess the morphology and 

microstructures of the laser ablated ITO films. Electron diffraction spectroscopy (EDS) elemental 

analysis was carried out using Oxford INCA Energy 250 systems to confirm the complete removal 

of the conductive ITO coating. The depth and width of the laser ablated regions were measured 

using a surface profilometer (Alpha-Step IQ). 

4.2.2 Results and discussion 

Previous reports have shown that ITO films are excellent absorbers of fiber laser energy 

(wavelength=1.06 μm). Due to low absorption of glass at low wavelength (~1.06 μm) this method 

of ablation has widely been used in ablating thin layer of ITO coating on glass substrates. In this 

process laser energy is selectively absorbed by the ITO film and rapidly converted into heat. The 

localized elevated temperature results in vaporizing the conductive coating from the surface of the 

substrate. Low heat affected zone and high heat tolerance of the substrate will allow a more 

selective removal of the ITO coating without damage substrate. Figure 4.6(a) demonstrate a 

schematic illustration of the direct ablation process of the ITO coating using a Nd:YAG laser. 
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Figure 4.6. (a) Schematic illustration of direct laser ablation of indium tin oxide thin using 
Nd:YAG laser. (b) Optical images laser ablated ITO film. (Inset shows the ablated trench at 
constant power of 10W and varying speed from 4 to 0.5 m/s. 

As shown in Figure 4.6(b) the laser processing results of the ITO coated PET was quite 

different than previous reported laser ablation processes of ITO film on glass substrates. In our 

laser ablated samples the PET substrate changed color to dark black with drastic reduction in 

optical transparency before complete electrical isolated ITO patterns was formed. This change in 

color is explained by the C-H, C-O and O-H groups being activated in the macromolecule chain 

can be activated in NIR radiation between 1000 and 2500nm. Which leads to chemical 

decomposition and color change in the polymer substrate. This is commonly used in laser marking 

PET plastics bottles in industry. Therefor the direct laser ablation of the ITO coating with our fiber 

laser (1.06 μm) wasn’t successful and we further investigated the indirect laser ablation process 

using a CO2 lasers with an operating wavelength of 10.6 μm. As illustrate Figure 4.7 the ITO film 

has a low absorption to the CO2 laser and therefore it is mostly absorbed by the PET substrate. The 

laser energy is absorbed by excitation of molecular chain within the polymer which is converted 
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to molecular vibrations and heat within the structure of the PET substrate. Sufficient levels of 

localized heat leads to removal of the polymer substrate in the form of vapor and fine particles. 

The level of ablation can be tuned from partial removal of ITO coating to complete cutting through 

the substrate. The delivered energy is controlled by the scanning speed and power of the laser. 

Figure 4.7. Schematic illustration of indirect laser ablation of indium tin oxide thin using CO2 laser. 
Different lase settings can result in ether: (i) incomplete removal of conductive film, (ii) complete 
removal of conductive film, and (iii) cut through the PET substrate. 

The first step with the CO2 laser ablation process was to characterize the laser setting 

required to completely remove the ITO layer with minimal ablation of the PET substrate. In this 

process we prepared 5 mm × 30 mm samples and laser ablated the center of the samples with a 
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single pass of laser. The optimal laser setting for minimal damage the plastic substrate were 

identified by microscopic imaging and electrical resistance measurement from the two ends of the 

laser ablated samples. Figure 4.8 shows electrical measurements with different laser ablation 

settings. Lower laser energies had higher risk of electrical interlinked path through the trench. As 

the energy increased, the ablation trench width and depth increased. The sharp increase in 

resistance reflects the optimum combination of laser power (0.75 to 3.75 W) and speed required 

for producing electrically isolated ITO electrodes with minimal damaging the PET substrate. As 

it’s shown in Figure 4.8(a), the threshold energy can be achieved at different laser powers and 

speeds. Lower laser power required lower speed and higher laser power required higher processing 

speed. The optimal laser settings show a linear relationship with speed and power. The slope of 

the plot reflects the minimal energy density (6 J/cm2) required to create electrical isolated ITO 

electrodes, Figure 4.9. Laser ablations with energy densities below or above this threshold will 

result in either insufficient energy for isolation or through-cut of the PET substrate, respectively. 

Figure 4.8. (a) Electrical resistance changes of ITO layers with different laser power and scanning 
speeds. Optical images of the laser ablated trench at a laser power 3W and scanning speed of 
(b) 1m/s, (c) 0.8 m/s, (d) 0.4 m/s, and (e) 0.2 m/s. 
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Figure 4.9. Optimal laser power and speed required for complete remove the ITO thin film with 
minimal damage to the PET substrate. 

Figure 4.10(a) shows SEM image of a single laser ablated trench into the ITO film with an 

average width of 90 µm using the optimized laser setting (6 J/cm2). To investigate the elemental 

distribution on the surface, the samples were further studied by EDX mapping. The red and green 

areas correspond to the existence of indium and tin elements in the material while the blue areas 

shows the presents of oxygen. The clear difference in the red and green color contrast shows the 

complete selective removal of the conductive ITO layer from the surface of the film. Although 

both ITO and PET contain oxygen, the PET has more oxygen atoms per molecule, hence the darker 

blue color after ablation is another indication of complete removal of the ITO film. Figure 4.10(b) 

shows the EDS spectra along the lines on the laser ablated surface and pristine ITO film. EDS 

spectrum of pristine ITO film exhibits a strong intensity peak at 3.28 keV, which is characteristic 

of indium and smaller peak at 3.44 keV associated with tin. The percentage of elements on the 

ITO the films is as follows: Sn: 4.54%, In: 4.15%, O: 37.85%, and C: 53.46%. The excess carbon 

and oxygen are from the polymeric PET substrate. The spectra shows complete removal of the 

indium and tin elemental peaks after the laser ablation. Figure 4.10(d) shows the cross-section 

profile of ablated areas with different widths (laser speed and power kept constant). The profiles 

show an approximately constant depth of a 7.5 µm for different ablated areas. By measuring the 

electrical resistance of laser ablated ITO electrodes with different widths, the estimated sheet 

resistance of ITO film was calculated to be ~ 100 Ω/sq., Figure 4.10(e). 
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Figure 4.10. (a) EDX color mapping of Sn (red), In (green) and O (blue) on the ITO film after laser 
scrubbing with CO2 laser beam, all scale bars are 100 µm, (b) EDS spectra collected from the 
surface ITO film before and after laser ablation. (c) Optical image of laser ablated trench with 
different widths. (d) Cross-section profile of ablated trenches with different widths, (e) 
measurements of the resistances of laser ablated ITO electrodes with a length of 30 mm and widths 
from 0.5 mm to 4 mm. 
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Laser ablating metalized paper 

Paper is by far one the most inexpensive and widely used materials found in our everyday 

lives due to its scalable processing capabilities (e.g., roll-to-roll[132]) as well as its ecological 

sustainability. While paper has been primarily used for printing and packaging, it has recently re-

emerged as a promising substrate for many low-cost/disposable sensors and electronics[133]– 

[136]. One of the inherit characteristics of paper is its highly porous and hydrophilic fibrous nature 

which allows it to be impregnated with many functional materials including chemicals for 

colorimetric assays[137] (e.g., litmus paper) and highly conductive nano/micro fillers for use as 

paper-based electrodes[138]. Recent improvements in printing technologies have introduced the 

ability to print different functional and conductive nano-materials, thus drastically changing the 

landscape of paper-based devices and their integration into various kinds of devices including 

healthcare diagnosis[139][140], environmental monitoring[141], [142], and food quality 

assessment [143]–[145]. Recent examples of these include mechanical pressure and force sensors 

that can detect diverse human motions[146], and also portable chemical sensors that can monitor 

bioassays in, urine, tears, saliva, and wound blood[136], [147]–[149]. Despite the many advances 

in paper devices technologies, many challenges remain, primarily with respect to the ink 

formulations. The most commonly used inks in the paper-based devices are silver, carbon, and 

liquid metal alloys[106], [150]–[152]. Although carbon-based inks have a lower cost they exhibit 

a high electrical resistivity and high sensitivity to mechanical deformation[38][153]. At the current 

technology status, silver nano particles are the most practical material in terms of both conductivity 

and printability; however, their performance is still insufficient and needs further improvement. 

Some of the major drawbacks of silver-based inks include their high cost, limited shelf life, and 

need for multiple layers of printing (>12)[152], [154], [155] to achieve acceptable levels of 

conductivity. As a more economical alternative, researchers have tried to replace silver and other 

noble metal-based inks with less expensive and more abundant metals such as aluminum and 

copper. However, the challenge associated with aluminum and copper nanoparticle inks is their 

rapid oxidation in ambient conditions[156], [157]. For example, aluminum rapidly forms a native 

oxide layer that prevents the electrical contact between the NP, thus making it challenging to 

produce conductive aluminum based inks[158]. 

Metalized paper (MP) is a commodity in which a thin layer of aluminum offers both a 

decorative appearance and protective/controlled gas permeation. The thin (~25nm) aluminium 
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coating in these products are performed by using large-scale vacuum metallization which involves 

depositing a thin layer of aluminium using physical vapor deposition. The thin aluminium coating 

is a few tens of nanometers (25nm), which produces its reflective metal sheen. Although the initial 

intention of this product was for electronic applications, the aluminium coating on these film has 

a satisfactory level of electrical conductivity for potential use in low cost and active paper based 

devices. In order to create active device/circuit, the conductive coating on the paper has to be 

patterned into desired shapes. Functional circuits can be fabricated by etching chosen patterns into 

the aluminium layer of the paper. One of the well know approaches is by conventional 

photolithography and wet etching. Although this process allows the creation of high resolution 

patterns, it involves the use of many chemicals and materials that can significantly increase the 

cost of production and hazardous wastes that are harmful to the environment[159], [160]. 

Furthermore, etching chemicals used in such process can be disruptive to the paper substrate 

and result in mechanical damage and deformation of the paper. An alternative noncontact approach 

to patterning MP is the use of laser ablation to selectively remove the undesired materials from the 

surface. The advent of affordable lasers systems for various material processing have open doors 

for many novel applications with larger dimensions and in greater production volumes[161]–[164]. 

Coupling such laser system with commonly available commodities can offer unprecedented 

opportunities in the development of large-scale low-cost paper devices which can be used to 

capture clinical point-of-care information or deployed on the field for agricultural and 

environmental studies[165], [166]. In this section we present the results of our investigations on 

laser ablating MP using CO2 and Nd:YAG lasers and their potential use in the production of low-

cost sensors. 

4.3.1 Materials and method 

Here we used Vacumet Corp. (Franklin, MA) metallized paper. This aluminum-coated 

paper consists of a cellulose-based substrate, a thin conductive aluminum coating, and a final 

polymeric passivation layer. The cellulose film with an average thickness of 56 µm provides a 

structural support for the ~25 nm vacuum-deposited aluminum coating. The polymeric layer 

protects the metalized layer from scraps, scratches, and other environmental/handling damages. 

Although the aluminum and polymeric coatings are good barriers to moisture and gas, the cellulose 

substrate is hygroscopic and can readily absorb moisture and aqueous liquids. Here, we 
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demonstrate the patterning of the conductive coating on the paper into desired conductive regions 

using a universal laser engraver system (PLS6MW, Universal Lasers, Inc., Scottsdale, AZ). The 

discrete conductive regions on the paper can serve either as sensing electrodes or as conductive 

traces for electrical connections to external electronics. The desired conductive patterns were all 

generated using Corel draw software. The designed patterns were transferred onto the MP by 

raster-scanning the laser across the surface of the metal-coated paper. The optical energy delivered 

by the laser at selected locations ablates/removes the unwanted metal from the surface of the paper. 

The paper substrate is highly sensitive to laser processing parameters (e.g., wavelength, power, 

and scanning speed), so these had to be carefully selected. Improper settings can result either in 

creating through-holes in the paper (if too much energy is imparted) substrate or in incomplete 

removal of the metalized coating (if insufficient energy is imparted). 

The efficacy of laser ablation in removing the conductive aluminum coating from the MP 

was evaluated using two of the most commonly used laser systems, CO2 and Nd:YAG. The CO2 

laser operates in the infrared region (10.6 µm) and although not easily absorbed by metallic 

materials (mostly reflected) it is suitable for processing many organic and polymeric substrates 

such as wood, acrylic, rubber, etc. In contrast, the Nd:YAG laser operates at 1.06 µm, which 

makes it ideally suited for absorption by most metals while its shorter wavelength inhibits its 

absorption by most organic and polymeric materials. The CO2 laser systems used in our 

experiments is a continuous wave (CW) mode with a maximum power of 75 W and a maximum 

scanning speed of 4 m/s. The Nd-YAG fiber laser operates in the pulsed mode with pulse duration 

and repetition frequency of 10 ns and 30 kHz, respectively. The maximum scanning speed is 4 

m/s and maximum average power is 40 W. CAD designed conductive patterns were ablated by 

raster scanning at proper laser setting (e.g., power and speed). The laser-treated/ablated samples 

using different laser systems were evaluated in various aspects before and after ablation, including 

optical, electrical, mechanical, water contact angle, and moisture absorption. The mechanical 

strength of the paper sample before and after laser ablation was compared with the wet etching 

process. Wet etched samples were prepared by removing the protective polymer and aluminum 

coating using an etching solution prepared by mixing a 10 ml of 0.1 M KOH with 10 ml acetone. 

The acetone dissolved the polymer coating while the aluminum coating was removed by the KOH 

solution. 
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4.3.2 Laser processing 

CO2 and Nd:YAG are two of the routinely used laser systems for modifying materials in 

various ways including ablating, drilling, cutting, and welding. Laser ablating of any material is 

determined by the interactions caused by the thermo-physical properties of the processed material 

and the photon energy of the well-defined laser. One of the utmost important parameters affecting 

laser-material interaction is the material’s ability to absorb electromagnetic radiation of the laser 

beam. When a laser beam strikes the material, a portion of the light is reflected, another transmitted 

and the rest is absorbed. The absorbed portion of energy is strongly dependent on the photon 

energy. In general photons with energy above the material’s band gap will be absorbed by the 

material. Such energies typically correspond to light frequencies below ultraviolet for 

polymers/insulator and below the infrared spectrum for metals/semiconductors. Aluminium 

typically has a relatively low absorbance (<0.03) at 10.6 µm (CO2 laser) and higher absorbance of 

(>0.3) at 1.6 µm smaller wavelength (fiber laser). Hence, Nd:YAG fiber lasers are often used as 

the primary laser tool for processing aluminium based materials. Although the CW CO2 laser in 

this process is not the ideal wavelength for processing the MP, it still was able to ablate the 

aluminium coating with properly adjusted power and scan speed settings. The thin aluminium 

coating on the paper allowed the CO2 beam to pass through the conductive coating and absorbed 

by the cellulose supporting substrate. The absorbed energy can increase the localized temperature 

of the paper substrate which can cause and explosive phase change leading to hydrodynamic 

explosion/vaporizing the cellulose fiber which ultimately causes the removal of the conductive 

aluminium coating. In other words the laser patterning of the materialized coating with the CO2 

laser was achieved through an indirect ablating of the paper substrate. In contrast, the laser ablation 

with Nd:YAG provided more defined and selective removal of the aluminum layer with minimized 

thermal effect to the paper substrate. Figure 4.11 shows the results of the combinatorial study of 

the laser power and laser scanning speed for successful laser ablating the metal coating on the MP 

substrate using CW CO2 laser. The optical images shows a high sensitivity to laser processing 

scanning speed and power with narrow effective settings that could completely remove the 

conductive coating and have minimal damage to the substrate. Higher powers and lower speeds 

resulted in burning the paper substrate and in most cases complete removal of the paper substrate. 

Conversely, with lower power and fast scanning speeds the aluminium coating was undisturbed. 

Figure 4.11(b) shows an example of six samples utilized to measure change in electrical 
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conductivity with different laser ablation setting. The pictures show the four conditions of intact, 

partially removed, optimally removal, and burnt substrate using constant power (4.5W) and 

scanning speeds ranging between 0.2 to 4 m/s. The electrical characterization plot shows the 

complete removal of aluminium coating with minimal electrical conductivity between the two 

electrodes once the paper received a threshold energy, Figure 4.11(c). 

This threshold energy was achievable at different laser powers and scanning speeds. For 

example, with lower laser speeds, complete removal occurs at low power levels, whereas with 

higher laser speeds, higher power was required. The optimal CO2 laser setting (speed and power) 

corresponded to the laser fluence of 174 mJ/cm2. Laser ablation settings with energy densities 

above or below this threshold resulted in either insufficient energy for complete removing the 

aluminium coating or burning the paper substrate, respectively. Figure 4.11(d) shows the change 

in mass of the metallized paper after laser ablating on 1 cm × 1 cm samples using different CO2 

laser parameters (power and scanning speed). 

The mass change measurements reflect an average decrease of 3.9 mg (~44.3%) in mass at 

the required threshold energy for complete electrical isolation between electrodes. Higher energies 

resulted in a more drastic decrease in mass (>90%). The measurements and optical images show 

minimal selectivity, color change (due to excess energy), and mass loss in the paper substrate. 

Successful metal patterning through laser ablation should satisfy both selective removal of 

conductive metal with minimal damage to the paper substrate. Figure 4.12 shows the combinatorial 

study of the laser power and scanning speed preformed using 10 ns pulsed Nd:YAD laser. As 

shown in Figure 4.12(a), significant difference in laser setting was required for ablating the 

metalized coating using pulsed laser ablation. Although aluminum has a higher absorption at 

wavelengths smaller wavelength (~1.06nm, Nd:YAG laser) it still required a critical laser energy 

to remove thin layers with minimized thermal effects to the paper substrate. As shown in the 

photograph, the ablation did not start until the average power was 3.6 W. Qualitative observation 

of also showed a much wider optimal setting of laser power and speed as compared to the CO2 

laser ablation. The ablation results showed a high laser scanning speed tolerance for powers 

between 4.4 to 10 W, i.e., it still was possible to regulate the delivered energy to the paper at high 

(>10W) and low (<4.4 W) laser powers. 
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Figure 4.11. Process characterization of CO2 laser ablating MP. (a) Combinatorial study for 
optimum laser power vs. laser scanning speed. (b) Microscopic pictures of laser ablated MP using 
constant power of 4.5W and different scanning speeds ranging between 0.2 to 4 m/s. (c) Resistivity 
and (d) mass change of 1×1cm samples at various laser powers and scanning speeds. 
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Figure 4.12. Process characterization of Nd:YAG laser ablating MP. (a) Combinatorial study for 
optimum laser power vs. laser scanning speed. (b) Microscopic pictures of laser ablated MP using 
constant power of 4.5W and different scanning speeds ranging between 0.2 to 4 m/s. (c) Resistivity 
and (d) mass change of 1×1cm samples at various laser powers and scanning speeds. 
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We observed that with high delivered energies (laser power >18 W and raster speed <1.0 

m/s) the paper substrate started to burn and changed color. In contrast, at lower energies (laser 

power <3.6 W and raster speed >1.6 m/s), the metal coating was not completely removed. Figure 

4.12(b) shows a close-up image of six laser ablated samples with 3.6 W power and scanning speeds 

ranging 0.2 to 4m/s. At high speed the energy was insufficient for complete removal of the metal 

coating. As shown in Figure 4.12(c), electrical isolation between two electrodes was achieved by 

a minimum power of 3.6 W and scanning speed of 0.8 m/s. At higher power setting (>10W) 

electrical isolation was always achieved, independent of the scanning speed of the laser. Weight 

lost measurements of the laser ablated samples showed a selective removal of the aluminum layer 

with minimal damage to the paper substrate at a weight loss of less than 0.1mg (1.15% of original 

weight). The optical setting with minimal weight lost is shown as the “Good” regimes. 

4.3.3 Mechanical and surface characterization 

Figure 4.13 shows a quantitative mechanical characterizations of structural damages to the 

paper substrates as a result of ablation with CO2 and Nd:YAG lasers. The mechicnal test and 

further fabrication of paper based devices were done with using the fastest optimized process 

settings (power, speed). The CO2 laser ablated samples were prepared using 9W of laser power 

and 4m/s raster speed while the Nd:YAG laser ablated samples were prepared with 7.2W laser 

power and 4m/s scanning speed. The Nd:YAG laser ablated samples showed a minimal change 

(<2.93%) in tensile strength of the paper, similar to the selective wet etched samples (<6.74%). 

However, the CO2 laser ablated samples showed a dramatic decrease (64%) in tensile strength 

which is due to the structural damage in the cellulose fibers of the paper substrate. 

Figure 4.14 shows a simple circuit lighting an LED using conductive aluminium traces 

prepared by optimal laser ablation setting with the CO2 and Nd:YAG laser. Low and high 

magnification SEM images at the boundary of CO2 laser ablated regions exhibit a clear destruction 

within natural microstructure of the paper. In contrast, the SEM images from the Nd:YAG laser 

ablated samples reveal successful metal removal and retention of highly porous fibrillary structure 

in the paper substrate. 

https://0.1mg(1.15
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Figure 4.13. Mechanical characterization of MP before and after different etching processes. (a) 
Dumbbell-shaped samples used for the tensile strength test. (b) Force versus displacement graph 
of different samples. 

The surface wetting characteristics of the laser ablated samples with the aforementioned 

optimized settings were evaluated with sessile droplet experiments. Figure 4.15 shows the results 

of the results water droplet contact angle (CA) measurements on pristine MP, CO2 laser ablated 

MP, and Nd:YAG laser ablated MP, respectively. On the pristine MP the CA was measured to be 

approximately 89.17±c0.05°, indicating a low surface energy due to the polymeric coating on the 

aluminum layer. The CA on the CO2 laser ablated MP was measured to be approximately 

https://approximately89.17�c0.05
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44.96±0.03°, whereas on Nd:YAG laser ablated MP the CA was less than 3°, indicating the super 

hydrophilic nature of the laser ablated samples. These experiments indicate that the optimized 

Nd:YAG laser ablation process can selectively remove the metal/polymer coating from the pristine 

MP without damaging the super hydrophilic and nature capillary wicking nature of the paper 

substrate. Although the CO2 laser ablated MP was expected to exposed the hydrophilic surface of 

the paper substrate, the contact angle measurements were significantly higher than the Nd:YAG 

laser ablated process. This can be attributed, to partially burning the paper substrate and distorting 

the natural wicking property within the micro porous structure of the cellulose substrate. Figure 

4.15 (c) shows the time-dependent stability of water contact angle measurements over the course 

of 7days. Regardless of the substrate type, the contact angle values were constant with negligible 

(< 8%) fluctuation throughout the measurement period. 

Figure 4.14. (a) Photograph image of simple LED circuit using optimized CO2 laser ablation. (b) 
low and (c) high magnification SEM image of selective CO2 laser ablated MP . (d) Photograph 
image of simple LED circuit using optimized Nd:YAG laser ablation. (e) low and (d) high 
magnification SEM image of selective Nd:YAG laser ablated MP. 

https://44.96�0.03
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Figure 4.15. (a) Water droplet on different surfaces (i) pristine MP, (ii) CO2 laser ablated MP, and 
(iii) Nd:YAG laser ablated MP. (b) Time-dependent water contact angle stability test of CO2 and 
Nd:YAG laser ablated MP. 
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5. LASER ENABLED DEVICE MANUFACTURING 

Mechanical sensors 

Mechanical sensors have an important role in wide range of applications such as motion 

sensing, blood pressure monitoring, and mechicnal vision in surgical robot arms. In this section 

we will demonstrate an inexpensive approach in fabricating a strain sensor and a wireless pressure 

sensor that can be potentially used in a variety of wearable biomedical applications. 

5.1.1 Highly stretchable and sensitive strain sensor 

Stretchable and flexible sensors have attracted considerable attention for their potential 

applications in wearable electronics [167], smart textiles [168], soft robotics, [169], [170] and 

structural health monitoring [171]. Among the various types of transducers available for these 

applications, piezoresistive strain sensors are among the most investigated ones. These are often 

used for human motion analysis in applications such as athletic assessments [172], kinesiology 

[107], and interactive entertainment systems[173]. Traditional metallic and semiconducting strain 

sensors are not suitable for stretchable applications since they can only withstand very limited 

strain (<5%) before fracture [174], [175]. Today’s most common approaches for fabrication of 

highly stretchable strain sensors are based on two main techniques: 1) conductive-liquid-filled 

elastomeric tubes or microchannels [176], and 2) polymeric blends or composites prepared by 

embedding conductive nanomaterials within an elastomeric network [177], [77]. The first method 

dates back to 1953 when Whitney used mercury-filled elastomeric tubes to measure blood volume 

in the limbs (mercury-in-rubber plethysmograph) [178]. When strained, the tube was stretched and 

narrowed, resulting in an increased resistance. More recently, several groups have reported on 

miniaturized variations of this technique using microchannels filled with eutectic gallium-indium 

[179], [180] or carbon grease [181]. Despite its attractive simplicity, this method suffers from 

various drawbacks, including small gauge factor, leakage of the liquid upon strain (mostly at the 

electrical connections ends), and technical challenges associated with filling a highly viscous fluid 

into microchannels. The second method relies on making elastomeric composites containing 

conductive nanomaterials (e.g., carbon nanotubes [107], graphene [182], [183], silver nanowires 

[184]) which are either embedded directly into the elastomeric material [185], [186] or deposited 

on the surface of a stretchable substrate using various methods such as contact transfer printing 
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[187], screen printing [188], and inkjet printing [189]–[191]. Recent examples of the latter method 

include screen printing of silver nanowire network onto a glass slide which are subsequently 

transferred to an elastic matrix [184] and mixing graphene with cellulose nanoparticles in a 

controlled ratio to create stretchable conductive nanopaper [192]. Although this method offers 

acceptable stretchability and sensitivity, the processes can be costly and do not always allow for 

precise patterning of the conductive traces. 

As an alternative approach addressing some of the abovementioned problems, we present 

a simple and low-cost technique to create highly stretchable (up to 100 % strain) and sensitive 

(gauge factor of up to 20,000) strain sensors using laser-carbonized nanomaterials. The stretchable 

strain sensors consist of PDMS embedded with patterns of partially-aligned mico/nano carbon 

particles. The carbon nanomaterials are created by direct laser-pyrolization of a polyimide tape, 

resulting in highly porous carbon traces. The carbon particles are subsequently transferred to and 

encapsulated within an elastomeric material, yielding highly stretchable and unidirectional strain 

sensors. 

5.1.1.1 Fabrication process 

Figure 5.1(a) illustrates the fabrication process of the stretchable carbon traces. First, a 

piece of polyimide tape is attached to a PET sheet to provide handling rigidity during the process. 

Next, a CO2 laser engraving system is used to inscribe highly-porous carbon patterns in the desired 

shape on the surface of the polyimide tape. This is achieved by locally carbonizing the surface of 

the polymer into carbon nanomaterials (e.g., CNTs, graphene). The traces are subsequently 

immersed in n-heptane for 20s; this improves the adhesion and increases the penetration of the 

elastomeric materials into the carbon network. In order to make stretchable sensors, the carbon 

patterns are then transferred to polydimethylsiloxane (PDMS). This is accomplished by pouring a 

diluted form of uncured PDMS (pre-polymer with 7 % n-heptane) over the carbon patterns, 

followed by degassing and crosslinking (at 70 °C for 2 hours). The use of diluted pre-polymer 

results in improved impregnation of the carbon patterns with PDMS during the vacuum degassing 

step. After crosslinking, the PDMS is peeled off the polyimide substrate. Figure 5.1(b-c) show 

photographs of the carbon patterns before and after transfer to the PDMS substrate. Figure 5.1(d-

e) show an LED attached to a power supply through two parallel carbon traces of 1 mm width and 

3 cm length. In an un-strained state, the LED is brightly lit, whereas at low strain levels (5 %) the 
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LED begins to dim. At higher strains (> 5 %), the conductivity of the traces decreases significantly 

until the LED is eventually turned off. 

5.1.1.2 Results and discussion 

The surface morphology of the carbon patterns, before and after embedment in the PDMS, 

was qualitatively investigated by scanning electron microscopy (SEM) (Figure 5.2). The top view 

of carbon traces clearly reveals highly-porous carbon micro- and nano-particles arranged in a 

parallel pattern. This phenomenon is related to the method by which the laser beam is scanned 

across the sample during the fabrication. Since the spot size (diameter) of the laser beam in our 

system is 60 µm, ablation of areas larger than 60 µm requires multiple sweeps of the laser beam 

over the targeted area; thus generating carbon particles in a parallel orientation to the direction of 

laser motion. Higher magnified pictures of the carbon particles in the pyrolyzed lines are shown 

in Figure 5.2(c-d). Partially-oriented carbon flakes and high aspect-ratio filaments (some of them 

as small as ~ 70 nm wide with lengths of up to ~2 µm) can be seen on the carbon traces. A cross-

sectional view of the carbon patterns shows that the entire thickness of the pyrolyzed carbon is 

comprised of highly porous nanomaterials. This enables the PDMS to penetrate deep into the 

carbon patterns (Figure 5.2(e)), resulting in a uniform transfer of carbon nanoparticles to the 

elastomeric matrix (Figure 5.2(f-g)). The thickness of the carbonized regions embedded in the 

PDMS is ~30 µm (Figure 5.2(h)), which is close to their original thickness on the polyimide 

(before transfer). The electrical conductivity of the carbon patterns before and after transfer to the 

elastomeric matrix was measured by four-point-probe technique. Figure 5.3 demonstrates the sheet 

conductivity of the carbon patterns as a function of the fabrication parameters, i.e., speed and 

power of the laser, before and after transfer to the PDMS. The carbon patterns exhibit a small dip 

in conductivity after transfer to the PDMS; this decrease can be attributed to an incomplete transfer 

where residual amounts of carbon particles remain on the polyimide surface (Figure 5.3(b)). 

The performance of several prototype strain sensors consisting of four traces each 2 mm 

wide and 30 mm long was evaluated at room temperature by continuously recording the change in 

the resistance while the device was stretched by a micromanipulator. To ensure reliable electrical 

connections, silver paste was applied on the two ends of the device. The base-line resistance of the 

device (un-strained) was ~1 kΩ, comparable to the reported piezoresistive strain sensors made 

with CNT (~100 Ω) and AgNW (~250 Ω) composites [184]. 
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Figure 5.1. (a) Schematic of the fabrication process for stretchable carbon nanocomposite using 
laser pyrolization of polyimide: (i) attach polyimide tape to a PET sheet; (ii) laser-carbonize 
patterns on the polyimide; (iii) pour and impregnate carbon traces with diluted uncured PDMS; 
(iv-v) peel off the PDMS sheet after crosslinking. (b) A carbon trace before and after transferring 
to the PDMS. (c) A twisted carbon trace. (d) A lit LED connected to carbon traces showing 
diminished brightness as a function of strain: (i) 0%, (ii) 2%, (iii) 4%, (iv) 6%. 
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Figure 5.2. Surface and film architecture details. (a-b) Optical images of the carbonized polyimide 
before and after transfer to the PDMS. Scale bar 250 µm. (c) SEM image of the aligned particles 
in the traces with the arrow showing the direction of laser ablation. (d) High magnification SEM 
image showing nanoparticles and fibers. (e) Cross section image of the carbon traces showing the 
porosity of the carbonized material. (f-g) SEM images of the carbon particles after transfer to the 
PDMS at different magnifications. (h) Cross section SEM of stretchable carbon traces embedded 
in PDMS. 
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Figure 5.3. (a) Sheet conductivity of carbon trace on polyimide as a function of laser fabrication 
parameters (power and speed). (b) Sheet conductivity of carbon trace after transfer to the PDMS 
as a function of laser fabrication parameters (power and speed). 

Figure 5.4(a) shows a series of pictures depicting the sensor under longitudinal (length) 

and transverse (width) strain. Unlike other composites in which the conductive nanoparticles are 

isotropically dispersed and oriented, the particles in our patterns possess an anisotropic orientation 

due to the abovementioned laser rastering process. This results in sensors with unidirectional 

sensitivity, i.e., conductivity is strongly affected by the longitudinal strain whereas remains 

essentially constant under transverse strain. The application of longitudinal strain increases the 

spacing between the conductive particles and lowers the number of contact points between the 

particles, resulting in an increased resistance. On the other hand, the number of contact points 

between the carbon particles does not change significantly when the device is stretched in the 

transverse direction. Figure 5.4(b-c) illustrates the relative change in resistance in response to the 

applied strain. The device exhibits a very large change in resistance (> 20 MΩ) for 100 % 

longitudinal strain, Figure 4b, but its resistance changes negligibly (~100 Ω) in response to 100 % 

transverse strain, Figure 4c. The smaller decrease in the resistance for strain levels of < 40 % 

(Figure 5.4(b)) can be attributed to the Poisson effect, which results in higher particle density in 

the middle of the trace (more contact points and increased conductivity). In both cases, the device 

showed no signs of failure for up to 100 % strain. Further stretchability is limited by the 

elastomeric properties of the PDMS substrate; however, this can be extended by using a more 

elastic material such as Ecoflex®. The uni-directionality of such sensors makes them suitable for 
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applications that require strain direction detection; for example, an orthogonal arrangement of 

three such sensors can form a coordinate system for measuring strain in three-dimensional space. 

Figure 5.4. Characterization of the stretchable carbon traces subjected to longitudinal and 
transverse strain. (a) Illustrations of carbon traces (i) in their relaxed state, (ii) under longitudinal 
strain, and (iii) under transverse strain. (b) Plot of the relative resistance change for different levels 
of longitudinal strain. (c) Plot of the relative resistance change for different levels of transverse 
strain. (d) Gauge factor of the stretchable carbon traces versus longitudinal strain. (e) The dynamic 
stretch-and-release cycle response of the sensor for various strains 0–25 %. 
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Figure 5.5. Human finger motion detection with stretchable carbon traces. (a-b) Photograph of five 
stretchable strain sensors attached to the finger joints on the glove. (c) Relative resistance change 
of the strain sensors at different bending stages over time; the corresponding finger configuration 
for each plot region (i-ix) is shown in the snapshots below the plot. 

For comparison to other reported stretchable strain sensors, we calculated the gauge factor 

�/��(� = ) of our device from the measured data for both longitudinal and transverse strains. 
��/� 

Figure 5.4(d) shows the longitudinal gauge factor (semi-log plot) as a function of strain. The 

exponential change in the gauge factor at higher strain levels is attributed to the drastic change in 

resistance at higher levels of longitudinal elongation (gauge factor of 50 at 5 % strain to a gauge 

factor of 20 000 at 100 % strain). This high gauge factor is significantly larger than those reported 

for conductive composites as well as metal strain gauges. The state-of-the-art graphene-based 

composites typically exhibit gauge factors within the range of 2–50, whereas CNTs and AgNWs 

sensors have an even smaller gauge factors 1–7 20, 28 . In order to assess the dynamic performance 

of the device, the sensor was subjected to different levels of strain while the resistance was 

continuously measured. Figure 5.4(e) shows the results of five stretch-and-release cycles for strain 

levels of 0–25 %. The sensor shows a fast response (< 1 s) to the applied strain as well as a full 

recovery upon release. To demonstrate the utility of our technique as related to the fabrication of 

human motion sensors, we attached five strain sensors to a latex glove to detect the joint bending 
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motion, Figure 5.5(a-b). The sensors were attached to the glove by bonding their ends to the glove 

using a cyanoacrylate adhesive (Loctite® 420). Glove was subsequently donned and the bending 

angle (0–145°) of each finger at middle phalangeal joint was monitored by measuring the relative 

change in the resistance of strain sensors. The tests were conducted performing a stepped bending 

sequence in which the fingers were bent and held for a few seconds at each position. As Figure 

5.5(c) shows the index finger at different bending angles and the time sequence of resistance 

change for two cycles (R/Ro ≈ 9 for a completely bent joint). 

5.1.2 Wireless pressure sensor 

The described direct writing technology of carbon and silver in section 4.3 can be used to 

fabricate low-cost flexible sensors and actuators that require high electrically conductive traces. 

Here we have designed and fabricated a flexible passive wireless pressure sensor that can be used 

for wearable and implantable applications. 

5.1.2.1 Fabrication process and measurement technique 

Figure 5.6(a,b) shows the fabrication process and working mechanism of the LC passive 

pressure sensor. The device consists of a pressure-sensitive capacitor with a variable spacing 

between its two electrodes that is connected in series with a planar spiral inductor. In this design, 

the coil provides an inductively-coupled link between the reader antenna and the LC passive 

pressure sensor, allowing wireless powering and information transfer. The resonant frequency of 

the sensor can be expressed as a function of the inductance (L) and capacitance (C) as follows[193], 

[194]: 

� = (5.1) 
√�� 

When pressure is applied to the LC resonant circuit the gap between the two electrodes of 

the capacitor decreases, leading to an increase in the capacitance of the circuit. This change results 

in a reduction in the resonant frequency of the LC circuit that can be detected wirelessly by an 

external readout coil. We used a network analyzer to determine the resonant frequency of the 

sensor at various levels of pressure by measuring the location of the phase-dip in the impedance 

of the external coil. Passive LC resonant sensors require highly conductive traces for making the 

inductor and capacitor. The direct laser writing of carbon-silver nanocomposite described in this 
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section is uniquely suited for their fabrication (carbonized polyimide traces have large resistance, 

degrading the circuit electrical quality factor and making the readout challenging and not accurate). 

Figure 5.6(a) shows the fabrication process using the presented conductive printing 

technique combined with a simple folding approach to make the inductor and capacitor used in the 

sensor. The inductor coil and the two capacitor electrode patterns were fabricated on a flexible 

polyimide substrate by using the aforementioned laser carbonized and silver deposition technique. 

Next, a 50 µm-thick film of PDMS (Dow Corning Sylgard® 184, 10:1 ratio) was cast onto the 

conductive patterns and allowed to crosslink at 60 ºC for 20 min. To fabricate the cavity needed 

for the pressure sensitive capacitor, a 300 µm-thick film of PDMS with predefined hole-punched 

openings was bounded to the PDMS coating. The bonding between the two layers of PDMS was 

achieved by a standard PDMS-to-PDMS bonding procedure using corona treatment (BD-10A 

High Frequency Generator, Electro-Technic Products, Inc.) followed by annealing on a hotplate 

at 90 ºC for 2 h. Finally, the substrate was folded in half and bonded to create the final wireless 

pressure sensor with the PDMS cavity between the two conductive patterns. For wireless 

measurements, the fabricated wireless sensor was coupled with a transceiver coil comprising a 

single 25 mm-diameter loop of wire that was used to detect the changes in the resonant frequency 

of the pressure sensor under different pressure levels, Figure 5.6(b). 

5.1.2.2 Results and discussion 

The transceiver coil was fixed mechanically in close proximity to the sensor coil using an 

acrylic support and connected to a network analyzer. The pressure sensitivity of the sensor was 

measured by placing the sensor in a sealed chamber and applying pressurized air via an external 

syringe pump. The change in the resonant frequency was characterized by measuring the dip in 

the impedance phase for gauge pressures ranging from 0 to 97 kPa, Figure 5.6(c). As can be seen, 

increasing the pressure results in shifting the position of the dip to lower frequencies. The resonant 

frequency of the sensor as a function of applied pressure is shown in Figure 5.6(d). As expected, 

the resonant frequency decreases linearly with pressures up to 97 kPa, with an average sensitivity 

of −26 kHz/kPa. 
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Figure 5.6. (a) Fabrication process of wireless LC passive pressure sensor, (b) experimental setup 
and readout apparatus used for sensor characterization, (c) impedance phase versus frequency at 
several different pressures, (d) sensor resonant frequency vs. pressure. 

Electrochemical sensors 

Normal acute wounds are cutaneous lesions that follow the four physiological healing phases 

of hemostasis, inflammation, proliferation, and remodeling in an appropriate length of time 

(usually a week or two) [195]. Pathological interferences with these pathways can results in non-

healing chronic wounds [196], [197]. Chronic wounds, such as diabetic foot and bed sores, affect 

an estimated 6 million individuals in the United States and cost an estimated $25 billion per year 

to treat and mange.[198] These numbers are expected to increase significantly with an aging 

population and recent epidemic of obesity and diabetes[199]. Current wound management is based 

on simple forms of intervention that require frequent change of the dressing with wound state 
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assessment relying on visual inspections that are often subjective and cannot provide correct 

insight into the status of the wound[200], [201]. Prompt detection of improper wound healing via 

sensor-embedded smart dressings can significantly improve the treatment efficacy[24]. 

The halt or slowdown in the healing processes can increase the likelihood of bacterial 

colonization, which in itself prohibits timely closure and result in added complexity to an already 

challenging clinical problem (in severe cases, bacterial infection can lead to amputations of the 

limb while unnecessary use of antibiotics can contribute to the spread of antibiotics resistant 

pathogens) [202], [203]. Infection can further delay the angiogenesis, collagen formation, and 

macrophage activity that are strongly dependent on the pH value of the wound-milieu. Under 

normal physiological conditions, the skin has a low pH value of 4-6 that is a result of the amino 

acids and fatty acids products secreted by the keratinocytes [204]. Most pathogenic 

microorganisms require a more alkaline environment to promote their growth and colonization 

[205]. In acute wounds, invading neutrophils reduce the pH to values that counteract the bacterial 

colonization, whereas chronic wounds are more alkaline (pH 7.15 to 8.9) and thus susceptible to 

infections [206]. In severe cases, increased pH is correlated to the formation of antibiotic-resistant 

biofilm on the wound, [207] requiring intensive antibiotic therapy and surgical intervention. 

Monitoring the wound pH can provide favorable insight into earlier identification of non-healing 

wounds and help the implementation of more effective treatment strategies. 

Most reported wound pH measurements conducted in clinical studies have used flat glass 

membrane pH probes that require the removal of the wound dressing; these are impractical for 

patient management and can cause further disruption to the tissue [205], [208]. In recent years, 

several platforms have been proposed as alternative methods for sensing the pH of the wound. 

These measure the pH based on optical, chemo-mechanical, and electrochemical transduction 

methods. The simplest forms of optical-based sensors are the pH test paper strip that provide an 

inexpensive method to measure the pH of the wound environment. These, however, lack accuracy 

and can only be used for a single measurement [209]. Optical fiber pH sensors provide adequate 

accuracy, flexibility, and stability for in-vivo pH sensing. In this technique, pH sensitive materials 

are immobilized onto silica optical fibers connected to a spectrophotometric device that can 

measure pH-dependent absorption spectra [210]–[212]. These sensors are however expensive and 

require bulky optical spectroscopy instruments. 
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Chemo-mechanical sensing methods use pH-sensitive hydrogels which shirk or swell with 

the change in pH of the environment. A recent work by Sridhar and Takahata featured a wireless 

hydrogel-based pH sensor that consisted of an inductive transducer fabricated by folding a 

coplanar dual spiral coil with the pH sensitive hydrogel sandwiched between the folded substrates 

[213]. The swell/shrink behavior of the pH sensitive hydrogel results in a change of the device 

inductance, hence varying the resonant frequency of the device that can be detected using an 

interrogating antenna. Although the device provides wireless measurements, several difficulties 

limits the performance and application of this sensor. These include a slow response time, costly 

fabrication, and complex measurement equipment (e.g. network analyzer). Resent progresses in 

the fabrication of flexible and miniaturized electrochemical sensors have provided a compelling 

rationale for the integration of such pH sensing devices into the wound dressings. These, however, 

still face limitations associated with the required use of high-cost clean-room processes for their 

fabrication and wired electrical connection to bulky potentiostatic readout systems [214], [215]. 

Although considerable efforts have been devoted to the fabrication of the low-cost electrochemical 

sensors using rapid large-scale technologies such as inkjet and screen-printing,[149], [216], [217] 

these devices still require hardwire electrical connections. The ability to make more economical, 

optically transparent sensors with simple wireless read-out utilizing today’s smartphone interface 

technology can significantly advance the care and management with chronic wounds [218]. 

In this section we present a practical, low-cost solution that consists of a disposable sensor 

module fabricated by laser ablating commercial indium tin oxide (ITO) films (for optical 

transparency) interfaced with a reusable flexible potentiostat circuit with wireless near field 

communication (NFC). In the next section we will demonstrate the use of laser carbonization and 

micromachining in fabricating stretchable pH sensors. 

5.2.1 Flexible and transparent pH sensor with NFC communication 

Figure 5.7 shows an illustration of the wireless pH monitoring devices that can easily be 

integrated into standard wound dressings. The device consist of two major components: a flexible 

transparent pH sensor that is disposable and a flexible wireless NFC interface circuit that is 

reusable. The conductive transparent electrodes are fabricated by direct laser scrubbing 

commercial ITO films on a PET substrate. The pH measurement are based on open circuit potential 

measurement between an Ag/AgCl reference electrode and a pH-sensitive electrodeposited 
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polyaniline electrode. The battery-less NFC interface operates at 13.56 MHz (ISO15693) radio-

frequency identification (RFID) band, compatible with Android smart phones. The data 

transmission between the pH sensing platform and the smart phone occurs by bringing the reader 

to within the 4 cm proximity of the NFC tag. The communication channel is based on the magnetic 

induction between two loop antennas located within the reader and the tag, effectively forming an 

air-core transformer. The reader emits a radio-frequency field that powers the NFC tag. The tag in 

turn uses the harvested energy to power the on-board chip, providing a rectified power supply for 

the pH sensing buffer circuit. 

Figure 5.7. Flexible wireless wound pH monitoring system utilizing NFC communication. 

5.2.1.1 Transparent pH sensor fabrication 

The sensing electrodes and their electrical interconnects were fabricated on a commercial 

ITO coated flexible PET substrate (130 nm ITO on 120 µm PET) purchased from Sigma Aldrich. 

The process of laser scribing/cutting and screen printing the potentiometric sensors are illustrated 

in Figure 5.8(a). The patterning of the ITO film was done by laser-scribing (Universal Laser 

Systems, Inc., Scottsdale, AZ) using an optimized energy density of 6 J/cm2, (Figure 5.8(a)i). The 
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ITO electrodes were separated from the ITO film by laser cutting the periphery of the sensor at 

higher energy density (14 J/cm2), Figure 5.8(a) i, ii. The controlled laser machining process ablated 

the conductive ITO coating on the PET substrate leaving behind an isolated array of transparent 

and flexible tracings. To prevent the shorting of and reduce crosstalk between the interconnections 

in the aqueous environment, a transparent UV-curable adhesive (Henkel Loctite® 3105) was 

screen printed onto the conductive traces to define the active area and contact pads, Figure 5.8(a).iii. 

The insulator was cured under UV light for 10 min. In order to define the reference electrode, a 

silver overlaid layer was screen printed on one of the ITO electrode, Figure 5.8(a)iv. The screen 

printing stencils for these processes were prepared by laser cutting adhesive tape (3 M® 

MagicTape™) at a power and speed of 15W and 0.2m/s. The tape stencil was attached to the ITO 

film and silver ink (118-09, CreativeMaterials, Ayer, MA) was screen printed. The ink was then 

allowed to cure at 70 °C for 15min. The silver electrode layer was then electrochemically 

chloridized in order to create the Ag/AgCl layer for the reference electrode. The chloridization 

process was performed using a constant current density of 4 mA/cm2 between the silver electrode 

and a Pt electrode in a solution of 1 M NaCl solution for 5min, forming a uniform dark grey layer 

of AgCl on the reference electrode. The electrode was then rinsed with DI water and blow-dried 

using nitrogen, Figure 5.8(a)v. 

The working electrode, the H+ ion-selective membrane, was prepared by electro-

polymerization of aniline on the pre-defined ITO areas Figure 5.8(a)vi using a three electrode 

system (BASi Epsilon Potentiostat, Bioanalytical System Inc.). In this system, Pt wire was used 

as a counter electrode, Ag/AgCl as the reference electrode, and the ITO as the working electrode. 

The polymerization was performed at a constant potential of 0.8 V versus Ag/AgCl in a solution 

of 0.1 M aniline with 1 M HCl for 2min, forming a translucent green coating of PANI on the ITO 

electrode. The thickness of the deposited polymer can be controlled by adjusting the electro-

polymerization time. After polymerization, the electrodes were rinsed with DI water and blow-

dried with nitrogen. The final step consisted of creating a solid-state reference membrane by 

mixing fine KCl powder with UV curable adhesive (Henkel Loctite® 3105), drop casting it onto 

the Ag/AgCl electrode, and curing under UV light for 10 min, (Figure 5.8(a)vii). During the UV 

exposure, the PANI film was protected with an aluminum film. After complete curing of the 

reference membrane, protective layer was removed and the sensor was ready to use. 
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Figure 5.8. Fabrication process of (a) pH sensor on ITO film and (b) flexible battery-less NFC 
module 

5.2.1.2 Electronic readout circuit 

The NFC interface circuit was fabricated on a flexible polyimide sheet (PI) with copper 

laminated on both sides, Figure 5.8(b). The circuit was patterned using photolithography and the 

exposed copper was wet etched (CE-200, Transene), Figure 5.8(b)i, ii. Next, the NFC transponder 

microchip (SL13 from AMS) and the surface mount buffer components were soldered onto the 

flexible PCB, Figure 5.8(b),iii. PDMS pre-polymer (Dow Corning Sylgard® 184, 10:1 ratio) was 

then prepared, degassed under vacuum, poured onto the circuit, and cured at 70 °C for 2 hours; 
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thus, forming a ~ 500 μm-thick layer of passivation, Figure 5.8(b)iv. The low power analog buffer 

circuit (AD8603, Analog Devices Inc.) was designed to form dual-operational amplifiers with 

ultra-low input bias current. 

Figure 5.9. (a) Block diagram of the developed wireless NFC tag, black arrows represent data 
communication and red one represent power transfer, (d) photograph of completed wireless pH 
monitoring device and smartphone interface, images illustrating the flexibility of the (c) sensor 
and (d) wireless NFC module. 

The pH sensors have high source impedances (10 MΩ to 1 GΩ) requiring low input current 

amplifiers. The SMD operational amplifiers with 0.1 pA input bias current and 40 µA supply 
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current was chosen for this application. The transponder has an integrated 10-bit A/D converter 

that can be multiplexed between its internal temperature sensor and the external flexible pH sensor. 

The NFC transponder allows wireless communication with either a smartphone (with Android 

operating NFC communication) or PC-based NFC reader (AS3911) by bringing the reader to close 

proximity of the tag (<4 cm). The Android app provides a simple user interface that allows wireless 

interrogation of temperature and pH in the wound bed. The block diagram of the wireless readout 

system is shown in Figure 5.9(a). Photographs of the disposable pH sensor (working areas of 2 

mm in diameter) and the wireless NFC readout module (25 mm× 35 mm) are shown in Figure 

5.9(b-d). 

The optical transmittance for different films in buffer solutions of pH 4 and 10 are shown 

in Figure 5.10. The UV spectra shows the optical transparently of the of the ITO film before and 

after laser ablation in different pH solutions. However, as shown in the inset picture, the 

electrodeposited PANI shows a clear color change in different pH buffers (green in pH 4 and blue 

in pH 10). In acidic solutions, the polyaniline film has the green color of its emeraldine salt phase 

(less absorption at ∼530 nm), while in an alkaline medium, it exhibits the blue color of its 

emeraldine base with a less abortion in the blue wavelength region of the spectra (∼440 nm). 

5.2.1.3 Characterization of the sensor and wireless module 

The sensitivity of the pH sensor was evaluated by measuring the potential difference 

between the PANI working and Ag/AgCl reference electrodes at physiologically-relevant pH 

values of 4-10. Figure 5.11(a) shows the temporal response of less than 28 sec for increasing and 

decreasing pH steps. Figure 5.11(b) shows the potential values obtained from the cyclic titration 

measurements. The sensors exhibit a linear Nernstian response of -55 mV/pH with a correlation 

coefficient r2=0.985 across the pH range of 4-10. 

For wound monitoring applications, it is essential that the sensor and the electronic 

interface maintains their performance under different mechanical deformations. The pH sensors 

performance was tested on a series of curved surfaces. The bending test showed less than ±4mV 

change in the output of the sensors and mechanical deformation had minimal affect the 

performance of the sensor, Figure 5.11(b). The working performance of the NFC module on 

different curved surfaces was also determined by measuring the RF reflection coefficient (S11). 

Figure 5.12(a) shows the S11 spectrum with the presence of NFC module on different curved 



 
 

                

               

                 

                

              

                

                 

           

 

                  
                 

            

86 

surfaces from flat to 2 mm radius of curvature. The unbent NFC modules display a resonate 

frequency of 13.45+0.05 MHz, where S11= 12.2 dB. Bending the tag shifts the minimum resonant 

frequency to higher values while at the same time decreasing and dip size (the dip was not 

noticeable at radius of curvatures smaller than 5 mm). The functionality of flexible circuit was also 

characterized by directly measuring the rectified output voltage on the NFC transponder. In flat 

and moderately bent conditions the RF signal on the receiver coil activated the tag providing a 

3.4 V power supply for the circuit. However, at radii of curvatures smaller than 5 mm, the 

transmitted power was insufficient to activate the tag, Figure 5.12(b). 

Figure 5.10. UV-Vis. Spectra of different layers of the pH sensor in the range of 300–900 nm. The 
obtained spectra were measured in buffer solutions of (a) pH 4 and (b) pH 10, insets show 
emeraldine salt (green) and emeraldine base state (blue) of the electro-polymerized polyaniline. 

https://13.45+0.05
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Figure 5.11. (a) Dynamic response of the pH sensor from pH 4 to 10, (b) EMF response of the pH 
sensor to various mechanical bending, inset schematic illustrates the bending mode and radius of 
curvature (r) in the experiment. 

Long-term stability is an important parameter for practical applications of electrochemical 

sensors since any significant drift require re-calibration which is not feasible in many situations. 

In order to evaluate the stability of the sensors, they were placed into standard pH buffer solutions 

and their output was monitored over a period of 24 h. Figure 5.13 shows continuous readings from 

the sensors in buffer solutions ranging from pH 4 to 10. As can be seen, the sensors had a noticeable 

but different drift characteristic in acidic and alkaline environments. In the alkaline solutions of 

pH 10 and 8 the sensors showed a drift of -0.63 mV/h and -0.7 mV/h, respectively (average drift 

of ~ 15 mV or 0.2 pH unit over 24 hours). However, in the acidic solutions of pH 4 and 6 a lower 

drift of -0.38 mV/h and -0.37 mV/h was observed (average drift of ~ 9 mV or 0.16 pH unit over 
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24 hours). In either conditions the sensors yielded an adequate level a stability suitable for 

application that require frequent (daily) replacement such as wound monitoring in which the sensor 

can be easily replaced during the daily change of the dressing. Figure 5.14(a) illustrates the 

microfluidic platform used to emulate the infected wound with the potentiometric-time trace 

measurements shown in Figure 5.14(b). The sharp change corresponds to the diffusion of ions into 

the gel which settles at 410 mV after approximately a 1 h, close to measurements observed in the 

buffer solution of pH 8. Furthermore, the inset in Figure 5.14(b) shows the optical transparency of 

the sensor and visible color change of the wound phantom (gel with pH indicator) from yellow to 

red over time sequences of 1h. This study demonstrates that presented sensor is able to detect pH 

fluctuations with in the physiologically relevant range of pH 5−8 as well as providing optical 

transparency for visual inspection of the wound. 

Figure 5.12. (a) Measured reflection coefficient, and (b) output voltage power supply of the 
wireless module versus frequency at various degrees of mechanical bending. 
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Figure 5.13. Drift behavior of the pH sensors at pH 4, pH 6, pH 8 and pH 10. 

Figure 5.14. (a) Microfluidic test setup to emulated wound condition, (b) real-time recording of 
the pH changes in the hydrogel wound model, the corresponding color change of the emulated 
wound model for each region i-iv is shown in the snapshots above the plot. 
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5.2.2 Highly stretchable pH sensor via direct laser-writing/machining 

Despite some effort towards the development of pH sensing devices for wound 

monitoring[219], [220] the majority of these sensors have several shortcomings such as structural 

weakness, limited stretchability (limiting their use over bending joints), and complicated 

fabrication processes. Herein, we report on a highly stretchable electrochemical pH sensor for 

wearable point-of-care applications that consists of a pH sensitive working and a liquid-junction-

free reference electrode, in which the stretchable conductive interconnections are fabricated by 

laser carbonizing and micromachining of a polyimide sheet bonded to an Ecoflex substrate. This 

method produces highly porous carbonized 2D serpentine traces that are subsequently permeated 

with polyaniline (PANI) as the conductive filler, binding material, and pH sensitive membrane. 

The described method is based on CO2 laser carbonization and functionalization with pH sensitive 

polymer (polyaniline) presented in section 3.3. Biocompatibility tests were also performed in order 

to evaluate the cytotoxicity of the materials utilized in the fabrication of the sensors and assess 

their safety for application that require direct contact with the wound tissue. The present process 

brings several major improvements to the production of stretchable electronic devices, including 

the combination of laser-induced generation of conductive carbon micro/nano material and 

substrate shaping into a single process. The described low-cost method eliminates the need for 

alignment and complications associated with printing conductive micro/nano material 

5.2.2.1 Fabrication process 

As illustrated in Figure 5.15 the fabrication process of the interconnection and working 

electrode of the sensor is similar to the process described in section 3.3. 

The reference electrodes used in this sensor was prepared by screen printing a layer of 

silver ink on one of the PANI/C-PI electrodes. The ink was cured in an oven at 80 °C for 15 min. 

The silver electrode was then chloridated by immersing the electrode in a 0.1 M FeCl3 solution for 

15 min, transforming it into an Ag/AgCl reference electrode. In order to provide a stable potential, 

the Ag/AgCl electrode was covered by a solid electrolyte made by mixing KCl with of 20 % v/v 

Ecoflex. The Ecoflex binder is used to impart stretchability to the solid electrolyte. 

Figure 5.15(h) shows an array of six pH working electrodes and two reference electrodes. 

The devices is robust and can withstand extreme mechanical deformations, Figure 5.15(i). The 

stretchability and pliability of the Ecoflex substrate enables the device to be conformably wrapped 
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around the complex non-planar surface of the human body, Figure 5.15(j). This allows the device 

to remain in contact with the skin even at joints with high degree of freedom such as elbows and 

knees. 

Figure 5.15. Schematic illustrations of the fabrication process and photographic images of the 
stretchable pH sensor with serpentine interconnects: (a) polyimide sheet is silanized and placed on 
an air plasma treated Ecoflex substrate, (b) a CO2 laser is used to carbonize serpentine carbon 
traces on the polyimide sheet, (c) polyaniline is spray coated onto the porous carbon, (d) the 
polyimide sheet is machined with the same CO2 laser at a higher power level, (e) excess polyimide 
is removed, (f) interconnects are insulated by another Ecoflex layer followed by the deposition of 
Ag/AgCl and solid electrolyte, (g) photograph of various stretchable PANI/C-PI interconnect 
designs, (h-j) images illustrating an array of pH sensors being stretched and indented. 
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5.2.2.2 Device Characterization 

The performance of the pH sensor was examined by using potentiometric measurements 

between the working and reference electrode as a function of applied strain. All potentiometric 

measurements were performed using a unity gain buffer. The performance of the sensor was first 

probed in a pH titrated cycle without applying external strain. Figure 5.16(a) demonstrates the 

output voltage of the sensor in buffer solutions of pH 4, pH 10, and back to pH 4. The sensor 

exhibit distinct potential change at each pH level with an average response time of 58 s. The sensor 

response as a function of pH is plotted in Figure 5.16(b), showing a sensitivity of -53 mV/pH with 

a correlation coefficient r2 = 0.976. Next, the sensor was tested under longitudinal strain in 

different pH buffer solutions (from pH 4 to 10), while the potential across the working and 

reference electrode was continuously recorded, Figure 5.16(c). Figure 5.16(d) illustrates the 

deviation in output of the sensor as a function of applied longitudinal strains up to 100 % in 

different buffer solution (pH 4 to 10). The output values stay relatively constant with a minimal 

deviation of less than ±4.2 mV at 100 % strain, which is significantly smaller than the 53 mV 

potential changes at distinct pH levels. Subsequently, the device performance was tested under 

different levels of transverse strain, Figure 5.16(e). As depicted in Figure 5.16(f), the sensor shows 

negligible change of ±5 mV in the output potential at different pH levels with applied transverse 

strain up to 100 %. We should mention that due to the potentiometric nature of the sensor, its stable 

output under high levels of strain is mainly the result of small changes in the resistance of the 

C/PANI interconnects (amperometric sensors will be more sensitive to the applied strain). 

The sensor performance on the wound phantom was evaluated with and without 100 % 

applied strain, Figure 5.17(a-c). Figure 5.17(d) shows the real-time potentiometric measurements 

from the pH sensors before and after applying 100 % strain. The sharp decrease and increase 

corresponds to the diffusion of ions into the gel and settling after approximately 15 min. The stable 

potentiometric readouts of 210 mV and 52 mV were close to the measurements observed in the 

buffer solution of pH 5 and pH 8, respectively. Moreover, the sensor shows identical 

potentiometric measurements in both, strained and unstrained conditions. This test demonstrates 

that the presented sensor is able to detect pH fluctuations in physiological relevant range of pH 5 

to pH8 over a time interval of 2 hours. 
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Figure 5.16. (a) Dynamic potential response of the un-stretched pH sensor to unit decrease and 
increase of pH, (b) potentiometric responses of the un-stretched pH sensor to pH changes, (c) 
optical image before and after longitudinal strain, (d) potentiometric responses of pH sensor to 
various longitudinal strain in different pH buffer solutions, (e) optical image before and after 
transverse strain, (f) potentiometric responses of pH sensor to various transverse strain in different 
pH buffer solutions. 



 
 

 

              
              

                 
         

 

      

                 

                 

                

               

             

                

                 

             

               

94 

Figure 5.17. (a) Microfluidic test setup to emulated wound condition, (b) optical image of 
microfluidic test setup with attached stretchable pH sensor, (c) optical image of microfluidic test 
setup with and without applied strain to the sensor, (d) real-time recording of the pH changes in 
the hydrogel wound model under 0% and 100% strain. 

5.2.2.3 In vitro biocompatibility assessment 

One of the intended applications of the described pH sensor is its use as a wearable platform 

for monitoring the variation of the wound pH. In addition, such pH sensors can be integrated with 

in vitro culture models to form the next generation models for drug discovery and disease modeling 

that allow close monitoring of cellular environment. In all of such applications, the used materials 

should be biocompatible and non-toxic. The potential toxicity of the utilized materials was 

assessed on a culture of NIH fibroblast cells. Samples were fabricated in circular shape with a 

diameter of 10 mm and were placed at the bottom of 12-well plates. Cells were grown in 

Dulbecco’s Modified Eagle Media (DMEM), supplemented with 10 % fetal bovine serum (Gibco) 

and 1 % penicillin–streptomycin (Gibco). At 70 % confluence cells were trypsinized and used for 
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toxicity assessment. 30,000 cells were seeded in each well and the viability and metabolic activity 

of cells were measured. For the cell viability tests, the cultures were washed with phosphate 

buffered saline (PBS) at specific time points and then calceinAM and ethidium homodimer were 

diluted into PBS as per manufacturer’s protocol. 300 µL of the solution was added to each well 

and the samples were incubated for 15 min. After 15 min the samples were washed and images 

were taken using an inverted fluorescence Zeiss microscope. In addition, to generate quantitative 

data from cellular viability and proliferation a PrestoBlue Assay (Invitrogen) was used to measure 

the metabolic activity of the cells. At each time point, cells were washed with PBS and PrestoBlue 

reagent was diluted in the culture media at a ratio of 1 to 9. The diluted reagent was added to each 

well and after 1hr the fluorescent intensity of the supernatant was measured using a BioTek 

multimode plate reader as per manufacturer guidelines. Two complementary assays were 

performed to assess the potential toxicity of the utilized materials. The Live Dead Assay (LDA) is 

commonly used for identifying the ratio of live to dead cells in a culture. In this assay, the live 

cells and dead cells uptake different colors and appear distinct under a fluorescent microscope. 

Representative micrographs of cells interfaced with different materials are shown in Figure 5.18(a). 

The results suggest that the majority of cells are viable as they appear in green. In addition, less 

than 10% of cells were dead, which is commonly observed in culture of cells. Another important 

aspect of cellular functionality is their metabolic activity, providing not only a measure of the 

number of viable cells, but also if performed over time it indicates cellular proliferation and growth. 

We used PrestoBlue Assay (Invitrogen), a fluorescence assay, to measure the metabolic activity 

of the cells. The reagents metabolized by healthy cells into a florescence byproduct, the intensity 

of which correlates with the number of healthy cells. An advantage of PrestoBlue assay over other 

assays is that it is non-toxic and can be performed on the same samples over the course of 

experiments to eliminate the sample to sample variability effect. The metabolic activity of the cells 

exposed to different compounds were measured at days 1 and 7 of culture using a PrestoBlue assay 

to assess acute toxicity of these compounds and their effects on cellular proliferation. The results 

were compared to values recorded for a control group which were not exposed to any material, 

Figure 5.18(b). As can be seen, none of the tested materials showed immediate toxicity as the 

recorded signal for all the compounds and control group are comparable. In addition, the materials 

did not interfere with cellular growth as there were no statistically significant difference between 

the values obtained for samples and controls on day 7. 
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Figure 5.18. Biocompatibility assessment of the materials used in the fabrication of the pH sensor 
using a culture of NIH 3T3 cells, a) micrographs demonstrating the live (green) and dead (red) 
cells cultured next to the samples, the majority of the cells are viable at day 4 of culture, b) 
metabolic activity of the cultured cells measured by PrestoBlue assay and compared to the control 
group. The results did not show immediate toxicity and the tested materials did not interfere with 
cellular growth as there were no statistically significant difference between the samples and 
controls. 

Paper-based environmental sensors 

In this section, we present an inexpensive rapid process for creating mask-free and low-

cost environmental sensors on paper substrates by laser ablating commercially available metallized 

paper. The process is based the optimized laser ablation with CO2 and Nd:YAG laser described in 

section 4.3. The facile laser patterning process of the metallized paper provides a simple, cost-

effective, and scalable alternative to conventional photolithography-based processes and printing 

technologies. 
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5.3.1 Humidity sensor 

The described humidity sensor exploits the hygroscopic characteristics of the cellulose 

paper substrate. The randomly distributed network of cellulose fibers are excellent low-cost and 

natural hygroscopic dielectric materials for sensing humidity. In general, papers have a low 

dielectric constant ranging between 2 to 4 which is often dependent on the structural properties 

and material used in its production. In contrast water has a much higher dielectric constant value 

of about 80. Therefore, absorption of moisture by the cellulose fibers can significantly change the 

effective dielectric constant of the paper substrate. At equilibrium conditions, the moisture content 

in the paper is proportional to the ambient relative humidity (RH). 

The highly porous and spongiform surface of the cellulose fibers not only provides a high 

surface area, but also induces capillary condensation in the porous cellulose network. Capillary 

condensation is a process by which water vapor can condense into liquid within small process 

medium at lower humidity levels. The condensation of water vapor can cause a greater change in 

effective dielectric of the paper substrate. Change in dielectric properties of the hygroscopic paper 

can be measured by a pair of electrodes. The capacitance of a typical parallel plate electrode type 

for capacitive humidity sensing can be expressed as: 

� = ɛ�ɛ��/� (5.2) 

where, � is the capacitance, ɛ� is dielectric constant of the material between the plates, ɛ� is 

permittivity of free space (8.854 ×10-12 F/m), � and � are the area of each plate and the separation 

distance the two plates. The parallel plate design has disadvantages of relatively long response 

time and manufacturing difficulty in assembling the layers. However, the interdigitated type 

electrodes have high sensitivity and relatively easier fabrication. Therefore, in this work, the 

change in dielectric property of the paper was measured by utilizing a single step laser ablating 

interdigitated aluminium electrodes (IDE) onto the MP substrate. 

The laser ablations were performed with two aforementioned laser systems (CO2, Nd:YAG) 

and sensing performance of sensors were compared. The sensors were designed in three IDE 

structures with different electrode widths (W). In all designs the spacing gap between the 

electrodes were targeted to smallest possible pitch, which is limited to the effective metal removal 

with a single laser pass of the laser beam (GCO2=103 µm for CO2 laser beam and GNd:YAG=64 µm 

for Fiber laser), Figure 5.19. By changing the electrode width the number of electrode covering 

the effective sensing area of 8×8 mm2 was changed (n= 2, 20, and 40) and denoted as IDE1, IDE2, 
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and IDE3, respectively. The sensors’ response to RH were characterized in humidity chamber at 

constant temperature of 21 °C and varying relative humidity level from 2% to 85%. The humidity 

level in the chamber was accurately measured with commercial humidity sensor (Fluke 971) and 

controlled by supplying dry and humidified N2 streams. The sample were place in the chamber 

with electrical feed-through. The change in electrical capacitance of the sensors were measured 

with a computer controlled LCR meter (GW Instek LCR-819) with 1VAC peak to peak excitation 

at 1 kHz. All humidity sensing measurements were carried out under normal atmospheric pressure. 

Figure 5.19. Schematic illustration of the fabrication procedure for the paper based humidity sensor 

5.3.1.1 Results and discussion 

Humidity sensing performance of three IDE designs (IDE1, IDE2, and IDE3) fabricated 

by both CO2 and Nd:YAG laser ablation process were measured and compared in the range of 

2%–85%RH. Figure 5.20(a) shows optical and close-up microscopic images of IDE1, IDE2, and 

IDE3 fabricated with optimized CO2 laser settings (9 W, 4 m/s). Despite the fact the CO2 laser 

beam used in the process was 60 µm the minimum width and gap achieved was 98 ± 5 µm and 

103 ± 6 µm. The low selectivity and high energy absorbing by the paper substrate resulted in 

imperfect laser ablation which created non-uniform electrodes with rough edges. The high 

temperature applied to the paper substrate at high density ablation (e.g. IDE3 sensor) resulted in 

deformation/warping of the final electrodes. As shown in Figure 5.20(b), the humidity sensitivity 

of the sensors were evaluated on the basis of two regions of RH ranges: Region I (2–75%RH); and 



 
 

                

               

            

                

               

                

               

 

        

              

            

                 

                

              

               

             

                

                    

              

                

              

             

                

                 

             

                  

              

                

              

                

                 

99 

Region II (75–85%RH). In region I, the sensors respond to the humidity changes are linear. As 

depicted in Figure 5.20(c) the three IDE designs had different sensitivities to changes in humidity: 

1.2fF/%R.H, 5.6fF/%R.H. and 18.9fF/%R.H. for IDE1, IDE2, and IDE3, respectively. Th result 

show that as the number of electrodes increases the capacitance value of sensor and its sensitivity 

to humidity increases. The larger capacitance and sensitivity in IDEs with more dense electrodes 

is mainly due to the increase in effective surface area (A) within the IDE capacitor. Therefore, 

under the same RH humidity conditions in either CO2 and Nd:YAG laser ablation we always 

observed: 

CIDE3> CIDE2> CIDE1 (5.3) 

The electrodes in the IDE capacitors generate an electric field beneath the paper substrate. 

The absorption/adsorption of water vapor changes its effective dielectric constant (ɛr), modifying 

the C value of the IDE sensor. Therefore, the change of the dielectric constant of the capacitive 

sensor is linearly proportional to the amount of absorbed water vapor. The large change in Region 

II reflects the region where capillary condensation occurs on the sensor. Figure 5.20(d) shows 

optical and close-up microscopic images of IDE1, IDE2, and IDE3 fabricated by optimized 

Nd:YAG laser settings (7.2W, 4m/s). The microscopic images exhibit more uniform and straight 

etched lines as compared to the CO2 laser ablation process. The smallest achievable ablation gap 

was 64 ± 2 µm and the minimum electrode width was 144 ± 2 µm. The capacitance of the IDE 

sensors were measured and compared in the range 2–85%RH, Figure 5.20(e). The results were 

evaluated basis of two regions of RH ranges: Region I (2-68%RH), and (68-85%RH). In region I, 

the sensors react to the humidity changes with a linear response (without any capillary 

condensation effect). Region II describes a region where capillary condensation occurs with a non-

linear response in all three sensors. As shown in Figure 5.20(d), the Nd:YAG laser process sensors 

show a higher linear response gain as compared to the CO2 laser processed sensor at low RH (2-

50%). The average linear sensitivity in Region I was 2.5fF/%RH, 45.7fF/%RH, and 83.2fF/%RH 

for IDE1, IDE2, and IDE3, respectively. With the change in RH from 40 to 85% the increase in 

capacitance of IDE1, IDE2, and IDE3 was respectively 471%, 1740%, 1804%. The abrupt onset 

of the capacitance response in Region II is caused by the capillary condensation inside the pores 

cellulose network of the paper. Porous structures facilitates condensation at a lower humidity level 

by increasing van der Waals interactions between the water vapor molecules and the surface of the 

porous material in a confined volume. The condensation of water vapor causes a big change in the 
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capacitive measurements from the IDE sensors due to the higher dielectric constant of water (ɛr = 

80). In general, IDE sensors prepared by Nd:YAG laser ablation showed a higher capacitance 

response throughout all the regions (2-85% RH). The discrepancy between the Nd:YAG and CO2 

laser processed IDEs is mainly caused by the absorbent characteristic of the micro/nano-pores 

between the fabricated IDEs. The Nd:YAG laser processed MP provides a greater permeability of 

the water molecules, so water vapor molecules can easily pass through the pore openings and 

capillary condensation occurs throughout the thickness of the capillary porous structure, which 

provides a greater change in capacitance measurements. The sensing performance of humidity 

sensors are also measured by their response and recovery time to changing humidity. The time that 

is taken by a sensor to achieve ~90% of the total capacitance change is defined as the response or 

recovery time. High responsive humidity sensors have very small response time. In addition to 

response time performance, viable sensors have to be repeatable. This section characterizes the 

response time and repeatability performance of the Nd:YAG laser processed IDE sensors in upper 

and lower RH. 

Figure 5.20. (a) Optical images of fabricated humidity sensors using CO2 laser ablation, (b) 
capacitance variations versus relative humidity levels for the range 2–85%RH and (c) close up of 
capacitance variations versus relative humidity in range 2–50%RH. (a) Optical images of 
fabricated humidity sensors using Nd:YAG laser ablation, (b) capacitance variations versus 
relative humidity levels for the range 2–85%RH and (c) close up of capacitance variations versus 
relative humidity in range 2–50%RH. 
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The Nd:YAG laser processed sensor were chosen as they had the highest sensitivity. In the 

first experiment, the dynamic response of the three IDE humidity sensors under a testing cycle of 

2% to 40% RH. Although the change in capacitance of the sensors were different (IDE1~0.07pF, 

IDE2 ~0.8pF, and IDE3 ~1.8pF), their response and recovery time were comparable in 

performance. According to the results Figure 5.21(a) in the humidity range of 2%–40%RH 

(without any capillary condensation effect), the average response and recovery time increased with 

more sensors sensitivity. 

The response time for the three designs IDE1, IDE2, and IDE3 was 45 s, 57 s, and 62 s, 

respectively. As shown in the Figure 5.21(b), all designs had a longer recovery process was than 

the adsorption process. The approximate recovery time for IDE1, IDE2, and IDE3 was 86 s, 94 s, 

and 126 s, respectively. Figure 5.21(c) shows reversible changes in the capacitances as the RH was 

varied by four cycles between 2%–40%. The sensors shows a high degree of repeatability with a 

capacitance variability of less than 4%. As for the second dynamic response test the sensors 

response and recovery behavior to capillary condensation were tested. In this test the RH in the 

chamber was abruptly changed from ∼40% to ∼85% by quickly supplying moisture, and the 

capacitance response was continuously recorded. The response and recovery curves for these tests 

are shown in Figure 5.21(d,e). For the IDE1 sensor, the response time was 215s when increasing 

from 40% to 85% RH. However, the recovery time was about 43 s, and it reached a plateau quickly, 

indicating the short desorption time. For the IDE2 sensor, the response time was about 288 s, and 

the recovery time was about 13s. With the high density electrodes in IDE3 the response time 

became 266 s, and the recovery time was about 10 s (Figure 5.21(e)). 

Based on the above results, it is reasonable to get the conclusion that the capillary condensation 

will cost more time than evaporation of the water from the porous substrate. In addition, the faster 

recovery time in IDEs with smaller ratios of electrode width to inter-electrode gap can be explained 

by their higher exposed area which allows the easier escape of the condensed water molecules 

from the absorbent substrate. Figure 5.21(f) shows reversible changes in the three sensors 

capacitance as the relative humidity is varied cyclically between 40%-85% RH. The sensors 

showed good repeatability/stability with maximum variations of less than 6% for all designs. 
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Figure 5.21. (a) Comparison of response time performance of different capacitive sensor deigns to 
RH between 2% to 40%. (b) Close up of capacitance variation during desorption procedure from 
40% to 2%RH. (c) Repeatable capacitive responses of captive sensors during four cycles between 
2% and 40% RH. (d) Comparison of response time performance of different capacitive sensor 
deigns to RH between 40% to 85%RH. (e) Close up of capacitance variation during desorption 
procedure from 85% to 40%RH. (f) Repeatable capacitive responses of captive sensors during four 
cycles between 40% and 85% RH. 

5.3.2 Temperature sensor 

Resistance Temperature Detectors (RTD) are contact based temperature sensors that 

change in resistance value as the environmental temperature changes. RTDs are often made of 

metallic materials (typically platinum, nickel, or copper). One of the significant characteristics of 

the metals used in RTDs is their approximate linear change in resistance versus temperature. This 

variation in resistance caused by the temperature change is used to detect the change in temperature 

which is calculated by the following equation: 

� = �����1 + ��� − ���� ! (5.4) 
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where R is the conductor resistance and temperature�, ���� is the conductor resistance at reference 

temperature����, � is the temperature coefficient of the material, (and symbolizes the resistance 

change factor per degree of temperature change). The sensitivity (") of the temperature sensor is 

calculated by 

" = #�⁄#� = α���� (5.5) 

Here, #� = � − ���� is the change resistance of the temperature sensor with respect to 

changes in temperature#� = � − ����. The equation shows that in ideal conditions, the RTDs 

sensitivity will be linearly dependence on the initial resistance (����) and temperature coefficient 

of the material (α). Using our proposed laser ablation technology (with optimized laser settings) 

aluminium based RTDs were devised with different sized meanders, Figure 5.22. Four different 

sized sensors were fabricated with same 1.5 mm widths and total lengths of 40, 80, 120, and 160 

mm and were labelled as RTD 1, RTD 2, RTD 3, and RTD 4, respectively. The electrical 

characteristics of the samples were measured by two-point measurements using a digital 

multimeter (Agilent 34401A). Temperature tests from 21°C to 100°C were performed in a 

controlled temperature oven with a precision of 1°C. For the lower temperature measurements 

(from 4 to -20°C), the sensors were placed in a refrigerator. 

Figure 5.22. Schematic illustration of the fabrication procedure for the paper based temperature 
sensor 
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5.3.2.1 Results and discussion 

RTD temperature sensors can play a double role in the developed low-cost sensing concept. 

The RTD sensor can provide information about the environment temperature, and also be used as 

a compensation sensor for other temperature depended sensors (e.g. humidity). Although this 

integrated design was not implemented, the compensation, calibration as well as proper interface 

wireless electronics can be integrated on a signal laser ablated MP substrate. 

The four fabricated Nd:YAG laser ablated temperature sensors with different length are shown in 

Figure 5.23(a). By measuring electrical resistance of the RTDs at room temperature, and assuming 

a resistivity of 2.65×10-8 Ω/m the estimated thickness of the evaporated aluminum was 25 nm, 

Figure 5.23(b). 

The change in resistance of all four RTDs were measured and compared in the range of -

20 to 80 °C. Figure 5.23(c) shows the linear resistance increases of the four RTDs as the 

temperature increases. The sensitivity extracted by the linear fit, showed a sensitivity of 0.102Ω/°C 

for RTD1, 0.186Ω/°C for RTD2, 0.29Ω/°C for RTD3, and 0.451Ω/°C for RTD4. As expected, the 

results showed a trend between the RTD sensitivity and length of the sensor: as the length increases, 

the linear sensitivity increases accordingly. Using eq. 5.4, the predicted sensitivity of the RTDs 

was a linear function of the initial resistance and equal to the temperature coefficient (0.0042K-1) 

of pure aluminum. However the measurements form the four designs estimated an average the 

temperature coefficient of 0.0036K-1 , Figure 5.23(d). The small difference (14%) between the 

measurements and predicted theoretical estimate can be explained mainly by two reasons: the 

impurities in the conductive evaporated coating and thermodynamic limitation induced by the 

porous paper substrate and the isolating polymer coating. 

To examine the stability of the sensors at temperatures above and below room temperature 

conditions we carried out continues readings from RTD sensors over the course of 24 hours at two 

temperatures of 21°C and 60°C. Figure 5.23(e) and f show the electrical resistance measurements 

from the four RTDs at 21°C and 60°C condition, respectively. The calculated maximum variations 

in resistance at both temperature condition for RTD1, RTD2, RTD3, and RTD4 were 6.5%, 4.4%, 

2% and 3.1%, respectively. The results show that the smaller sensors (RTD1 and RTD2) had less 

sensitivity and higher relative variability output with long-term stability tests. Longer sensors 

(RTD3, and RTD4) showed higher temperature sensitivity with adequate stability performance at 

different temperatures. 
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Figure 5.23. (a) Fabricated temperature sensors on the paper substrate through Nd:YAG laser 
ablating MP.(b) Electrical resistance of the four design temperature sensors and room temperature 
condition 21C. (c) Resistance variation against temperature of four design RTDs sensors for 
temperature between -20°C to 80°C. (d) Sensitivity vs resistance curve. Stability test of four design 
RTDs continuously monitored at (e) 21°C and (f) 60°C conditions for 24h. 

Paper based in-vitr  model for respiratory system 

Respiratory epithelium (e.g., the lining of the lungs) is a highly-specialized vital tissue in 

mammals, serving as the interface between air and internal milieu (blood)[221], [222], Figure 

5.24(a). Under normal conditions, this tissue exhibits remarkable multi-functional properties by 

providing a physical barrier to protect against pathogens and a medium for rapid (high flux) gas 

exchange, all while remaining strong and flexible. However, exposure to insults such as hazardous 

substances, allergens, pathogens, and smoking can alter the integrity of the epithelial cells, 

resulting in severely impaired respiratory function, which may lead to many life threatening 

respiratory diseases (e.g., viral respiratory tract infections, asthma, chronic obstructive pulmonary 

disease, and pneumonia)[223]. Treatment for these conditions is challenging, primarily due to an 

incomplete understanding of the disease etiologies and the fundamental underpinnings of epithelial 

tissue physiology[224]. Such scarcity of therapies urges the need for developing more clinically 
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relevant models of epithelial tissue that facilitate studying of the respiratory system and drug 

screening[225]. 

Current research relies on either animal models or in-vitro transwell plate setups which 

mimic epithelial tissue structure and function. The latter has the advantages of being more 

economical, easier to implement in many laboratories, and better experimental consistency 

(compared to animals, which introduce variations in many tissue parameters)[226],[227]. The most 

common in-vitro approach is the use of commercially available semipermeable hanging film for 

creating an air liquid interface (ALI) in transwell flasks[228],[229]. With this technique, the film 

is exposed to a liquid environment on one side and air on the other. The basal side provides 

moisture and growth medium, while the apical side provides exposure to air, thus mimicking 

airway epithelial tissue. The cell culture is then grown on the air side of the film, which still 

contains sufficient moisture (made available via diffusion from the liquid side) for supporting 

cellular growth. Despite mimicking the ALI condition, conventional transwell platforms have a 

number of limitations. These include their relative high cost, lack of proper distribution of 

nutrients and waste removal due to their static conditions, prolonged culture times (average 3 

weeks) required for full cell differentiation, and their inability to faithfully recapitulate the 

mechanics of epithelial tissue (i.e., most films are too brittle, impermeable to gases, and 

incompatible with microfluidic systems) [230], [231]. Thus, there is a need for more cost effective, 

easy to use, and physiologically relevant (e.g. highly permeable for gas exchange and yet robust 

enough to support cell culture in liquid environment) ALI platforms[232]. 

As a more cost-effective approach, many researchers have successfully demonstrated the 

use of paper as an alternative material for conventional cell culture substrates (e.g., polystyrene, 

and PDMS)[125], [233]–[235]. In this work, we further expand the capabilities of paper-based 

cell-culture platforms by taking advantage of silicone-coated commercial hydrophobic papers 

(parchment paper) as the starting material to generate desired hydrophilic patterns, amenable to 

controlled cell attachment, using a CO2 laser scrubbing process discussed in section 4.1, Figure 

5.24(b). The hydrophilic patterns also regulate the permeability of both oxygen and nutrition 

through the hydrophobic paper. 
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5.4.1 Paper-based microfluidic ALI platform 

A schematic of the in-vitro microfluidic airway system is shown in Figure 5.24(c). It 

consists of an upper and a lower laser-cut acrylic chamber (with 1.5 mm deep and 15 mm long 

channels) corresponding to the apical (airway lumen) and basal compartments of airway 

epithelium. The laser-treated paper provides support for cell attachment and diffusion of the fluid 

media to the cells. Figure 5.24(d, e) show the assembling process of the platform and the final 

device. The device can be easily disassembled and reloaded with a new paper/film membrane for 

multiple experiments. In order to develop the air liquid interface model for respiratory system, the 

CALU3 cells (American Type Culture Collection, HTB55), was used in our experiment, which 

has been extensively used in in-vitro studies focused on the functions of bronchial airway 

epithelium such as tight junction formation (Zona Occluden1), mucin secretion (MU5AC) and 

cilia formation (β tubulin)[230], [236]–[238]. 

Before assembling the ALI platform for in-vitro experiments, each component was 

ultraviolet (UV) sterilized at a distance of 8 cm for 15 min on each side. The appropriate length of 

inlet-outlet tubing was connected to the platform after sterilization with 70% ethanol. Upper and 

lower chambers were sterilized with 5x antibiotic/antimycotic solution (Sigma-Aldrich) overnight 

at room temperature inside the tissue culture hood. The sterilizing solution was removed and the 

chambers and tubing were washed with PBS. 

For cell culture, the paper substrates were coated with fibronectin (10 µg/ml) (Sigma) for 

1hr and then conditioned with cell culture media for 1hr before cell seeding to facilitate cell 

attachment. CALU-3 cells, were seeded in upper open chamber at a density of 2× 105 cell in 200 

µl of media and the whole assembly was incubated at 37 °C, 5% CO2 for 5hrs. The bottom chamber 

was then infused with media at a flow rate of 8 µl/min using a syringe pump (Harvard Apparatus). 

The amount of media in collecting reservoir was checked every day for ensuring constant flow 

rate through the platform. On Day3 the cells exhibit a confluent monolayer coverage on the 

hydrophilic regions on the paper (5 mm x 15 mm). Next, an air-liquid interface is established for 

further differentiation by removing some of the medium from the top chamber while maintain the 

same constant flow of medium in the lower chamber for 7 days. The schematic procedure used of 

the ALI cell culture process is shown in Figure 5.25. 
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Figure 5.24. (a) Illustration of the respiratory epithelial tissue and paper-based microfabricated in-
vitro lung device, (b) selective attachment of aqueous red dye on laser treated parchment paper, (c) 
schematic of the paper-based air-liquid-interface (ALI) platform, (d) photograph of components, 
and (e) assembled final device. All scale bars: 10 mm. 
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Figure 5.25. The procedure for airway cell culturing on the paper based platform; (a) cell seeding 
on the upper open chamber, (b) on day 3 the cells exhibit a confluent monolayer coverage on the 
laser ablated hydrophilic region on the parchment paper, (c) air-liquid interface is established by 
removing the medium from the top chamber while maintaining a constant flow of medium in the 
lower chamber for 7 days, (d) observation of ZO1 expression around the whole cell membrane that 
resembles the functional airway epithelium. 

Given the importance of barrier formation in epithelium integrity and its relevance to drug 

delivery, allergen exposure and respiratory infection, we assessed barrier formation at air liquid 

interface on the paper based platform by quantifying the expression of Zona Occluden1 (ZO1), a 

key tight junction protein, commonly used as a surrogate for quantifying for barrier 

formation[224], [236], [239]–[241]. All results were compared with conventional static ALI 

transwell flasks. For conventional transwell ALI cultures, 12 well format transwells from 

Corning® with 0.4 µm pore size were used as described before [224]. Same number of CALU-3 

cells (2 × 105 cells in 200 µl) were seeded in both systems. For immunostaining, cells were fixed 

with 4% paraformaldehyde and permeabilized with 0.5% Triton X-100. Then the samples were 

blocked with 10% goat serum (Sigma-Aldrich) for 30 min and incubated with primary antibody 

rabbit ZO1 (Invitrogen, UK) for 1 hour at room temperature in 1:50 dilution. Secondary antibody-

goat anti rabbit Alexa fluor 488 was allowed to conjugate for an hour at room temperature. Cell 
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nuclei were counterstained with DAPI for 15 minutes. All images are taken with Zeiss LSM710 

confocal under 40x oil objective (SLIM imaging, University of Nottingham, UK). 

5.4.2 Airway epithelial cells on the paper platform 

Figure 5.26 shows the cell viability on parchment paper stained by live-dead reduced 

biohazard cell viability assay (L7013-Life technologies) at Day1 and Day3 of cell seeding. The 

assay was performed according to the manufacturer’s instruction. After staining, ALI platform was 

disassembled and the cells on parchment paper were mounted for confocal microscopy. As seen 

in, Figure 5.26>90% of cells was viable on parchment paper at both Day1 and Day3 culture 

proving the compatibility of parchment paper to airway epithelium culture. 

Fig.5 compares the barrier formation of airway epithelium between paper-based ALI platform 

under flow condition and conventional ALI method under stasis condition. The cells were stained 

for one of the tight junction proteins called Zonula occludens (ZO1) which was expressed as 

chicken wire appearance on cell membrane [236], [242]. The comparison was made at two time 

points Day5 and Day7 of ALI culture. 

Figure 5.26. Assessment of cell viability of airway epithelium (CALU3) grown on parchment 
paper at day1 (a) and Day3 (b) by live-dead staining. CALU3 are stained with Syto10 (Live 
staining- green) and Ethidium Bromide (Dead staining- red). The images were captured using 
Zeiss LSM710 confocal microscope under 20x objectives. (scale bar= 50 µm, 20x objective) 
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Figure 5.27. Comparison of airway epithelium integrity between paper-based ALI platform and 
conventional Transwell ALI. Tight junctional marker - ZO1 expression was compared between 
ALI platform (a,b,e,f) under flow condition and Transwell (c,d,g,h) under stasis at Day5 and Day7. 
The first column represents the ZO1 expression (green) at 60x magnification (scale bar = 20µm) 
and the second column represents the overlaid images of ZO1 (green) with DAPI nuclear staining 
(blue) at 40x magnification (scale bar =50µm). The images were representative from 3 set of 
independent experiments. (i) Comparison of thickness of ZO1 expression between paper platform 
and Transwell at Day5 and Day7. Thickness of ZO1 was measured at 200% zoom of original 
image using Image J software. Mean was calculated from 100 random measurements from images 
of 3 independent experiments. ****p<0.0001 and ns=not significant. 

Unlike cells grown on transwell membranes that showed a patchy staining for ZO-1, we 

observed mature thick ZO1 expression (chicken wire appearance) around the whole cell membrane 

on day 7 ALI culture of epithelia cells grown on parchment paper under flow resembling the 

functional airway epithelium. On transwell system, it take about at least 3 weeks to one month to 

achieve the formation of mature ZO1 expression in chicken wire appearance[236], [237]. 

Regarding thickness of ZO1 expression, parchment paper ALI platform showed 1.19 µm ± 0.29 

thickness of ZO1 at Day7 of the ALI culture whereas transwell presented 0.7µm ± 0.17 thickness. 
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Moreover we excluded the potential influence of fibronectin coating on ZO1 formation by 

comparing ZO1 expression in fibronectin coated or un-coated membranes in transwell system. 

These experiments showed no additional effect of fibronectin on ZO1 expression at Day 5 and 

Day 7 of ALI culture (Figure 5.28). 

In addition, we also compared the ZO1 expression between flow and static condition of the 

paper platform after Days 5 and 7 of ALI culture. Only small number of cells express ZO1 in 

immature form in static condition compared to flow condition showing the importance of the flow 

in air liquid interface model (Figure 5.29). Collectively, paper based ALI platform induced airway 

epithelium to form more efficient tight junctions under flow condition. 

We suggest that the parchment paper ALI chip provides a valuable tool for cost and time 

efficient culture for respiratory system studies under physiologically relevant conditions. The 

relative small surface area, the speed in which cells can form tight junction, and the ability to 

perform experiments under flow are highly advantageous particularly when testing drugs uptake 

with different flow rates and working with small number of primary cells from patient groups (e.g. 

COPD and asthma) where typically very small amount of biological samples are available and 

testing the drug with different flow rates. 

Figure 5.28. Comparison of airway epithelium integrity between with (B, D) and without 
fibronectin coating (A, C) on conventional Transwell ALI culture. Tight junctional marker - ZO1 
expression (green colour) was compared at Day 5 and Day7. (Scale bar = 20µm). 

https://model(Figure5.29
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Paper Based Platform 

Figure 5.29. Comparison of ZO1 expression on differentiated CALU3 cells at Air Liquid Interface 
under flow and static condition of new ALI platform for 5days (A,B) and for 7 days (C,D). The 
CALU3 cells were fixed and stained with tight junction marker ZO1 (Zona Occluden1 –green) 
(scale bar = 20 um) 
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6. CONCLUSION 

This chapter brings together a summary of the presented laser processing techniques on 

multilayer films using CO2 and Nd:YAG laser systems and all the designed biomedical devices 

described in the previous chapters. The devices include three mechicnal, electrochemical, and 

environmental sensors along with an in-vitro cell culture platform for on-chip investigation of the 

human respiratory system. The first section covers the summary of all the achievements in this 

dissertation and following section provides a direction for future research. 

Summary and Conclusions 

Wearable health monitoring systems with integrated flexible sensing devices are considered 

to be the next generation of personal portable devices for remote health monitoring practices. The 

fabrication of such systems requires a deviation from traditional MEMS and transducer fabrication 

methods in order to create devices with satisfactory mechanical and electrical performances. 

Additionally, the techniques should be economical, adaptable for moderate-volume production, 

and preferably customizable (i.e., for a precision medicine approach). As a result, researchers have 

embraced the use of commercially available materials and rapid prototyping equipment for the 

development of low-cost, conformable, disposable devices for wound healing and other wearable 

applications. Processes such as inkjet printing, screen printing, micro-gravure coating, and laser 

machining are particularly suited for these applications due to their scalability and ease of 

implementation. Among these rapid fabrication technologies, laser machining offers a unique set 

of capabilities directly beneficial for the development of flexible/stretchable and low-cost systems. 

After describing the existing fabrication techniques in the introductory chapter, a brief overview 

of laser technologies with an emphasis on common types of laser systems CO2 and Nd:YAG for 

flexible device manufacturing is presented in the second chapter. Chapter 3 discusses the selective 

carbonization process of thermoset polymers (e.g. polyimide) via CO2 laser. In the process of 

carbonization, the polyimide is converted into a porous nano-scale carbonized layer with a very 

high surface area that can be used for creating functional carbon composite materials. Unlike bulk 

carbonization methods (e.g., furnaces), the laser-based technique offers unprecedented control 

over carbon nanoparticle deposition and patterning. The localized laser irradiation selectively 



 
 

            

           

              

            

               

              

               

               

          

            

              

                

               

               

               

              

               

           

             

              

              

                 

               

              

             

           

              

               

              

               

            

115 

converts the polyimide to a highly porous and conductive carbonized structures with 

superhydrophilic wettability. The resulting change in surface wettability allows for selective 

trapping of aqueous based solutions into the carbonized regions. This chapter also describes the 

various ways of functionalizing the laser carbonized traces with electrically conductive materials 

such as silver nano particles and polyaniline. These functional composites can be used to create 

various carbon based sensors. Chapters 4 describes the unique capability of laser ablation for 

selective removal of material from multilayer films such as ITO coated PET, parchment paper and 

metalized paper. The use of such precise and selective removal of material can eliminate costly 

and time consuming processes associated with conventional photolithography and etching. 

Electrical, optical, mechanical, and surface analysis techniques were used to characterize the 

selective removal efficacy of the laser ablated area. Chapters 5 introduces novel low cost 

biomedical devices made by using laser processing techniques presented in the chapter 3 and 4. In 

chapter 5.1, we demonstrated the use of laser carbonization of polyimide to create a highly 

sensitive strain sensor and a wireless pressure sensor. The strain sensor fabrication is based on 

carbonizing conductive carbon patterns on the surface of a polyimide film using a CO2 laser 

followed by its transfer to an elastomeric PDMS substrate. The carbonized material contain CNTs 

and multilayer graphene flakes that are aligned in the direction of the laser scanning, imparting 

anisotropy (directionality) to the sensors not achievable using reported conductive nanocomposite 

methods. The wireless pressure sensor uses a combination of CO2 laser-induced carbonization and 

selective silver deposition on a polyimide sheet to create flexible highly conductive traces. The 

device consists of a pressure-sensitive capacitor with a variable spacing between its two electrodes 

that is connected in series with a planar spiral inductor. Applied pressure induces a change in the 

resonant frequency of the assembled LC circuit which can be detected wirelessly by an external 

readout coil. Section 5.2 demonstrates two pH sensing devices for wound assessment that are 

fabricated by using laser ablation and carbonization processes. The first pH sensors combines low-

cost screen-printing with electro-polymerization of polyaniline on transparent electrodes that are 

fabricated by direct laser scribing of ITO films. The fabricated sensors are optically transparent, 

allowing visual inspection of the wound (a property highly desired by the caregivers) with an 

average sensitivity of −55 mV/pH within physiologically relevant range of pH 4–10. The second 

pH sensing device is fabricated by combining irreversible bonding of PI to an Ecoflex substrate, 

followed by laser carbonization and micromachining serpentine traces to create highly stretchable 
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electrodes. This method produces highly porous carbonized 2D serpentine traces that are 

subsequently permeated with polyaniline as the conductive filler, binding material, and pH-

sensitive membrane. The experimental and simulation results demonstrate that the stretchable 

serpentine PANI/C−PI interconnections with an optimal trace width of 0.3 mm can withstand 

elongations of up to 135% and are robust to more than 12000 stretch-and-release cycles at 20% 

strain without noticeable change in the resistance. The pH sensor displays a linear sensitivity in 

the physiological range of pH 4−10 with excellent stability to applied longitudinal and transverse 

strains up to 100% in different pH buffer solutions with a minimal deviation of less than ±4 mV. 

Section 5.3 describes a mask-free, and rapid process for creating low-cost humidity and 

temperature sensors on paper substrates by laser ablating commercially available metallized papers, 

a non-toxic and eco-friendly commodity often used for decorative and food packaging purposes. 

Humidity sensors show a linear sensitivity of about 45.7 fF/% RH at low moisture levels (2-

68%RH) and an abrupt change of 1800% at higher humidity levels (85%), while the meander-

pattern resistance temperature detector show an average sensitivity of 0.451 Ω/°C. Lastly in 

section 5.4, we demonstrate the use of direct-patterned laser-ablating hydrophobic parchment 

paper as an effective semi-permeable membrane, ideal for ALI cell culture application. The surface 

properties of the paper are modified through a selective CO2 laser-assisted treatment to create a 

unique porous substrate with hydrophilic regions that regulate fluid diffusion and cell attachment 

which can resemble the semi-permeable properties observed in the basement membrane of the 

human respiratory system. The final in vitro model, composed of parchment paper and acrylic 

microfluidics, was able to maintain long-term stability under a constant flow of media with faster 

barrier formation of airway epithelium than conventional transwell methods. 

Future Directions 

A key motivation for using laser processing is its ability to reduce the cost and time for 

fabricating inexpensive devices by processing commercially-available materials (e.g., polyimide, 

adhesive tape, paper, etc.). The effect of laser processing on any particular material depends on the 

physical and chemical properties of that material and the laser parameters (wavelength and energy). 

For instance, CO2 laser ablation of thermoplastics (e.g., acrylic) can result in the evaporation of 

the materials without carbonization and formation of conductive traces. Thermosets, on the other 

hand, tend to burn/carbonize with laser ablation and form carbonic substances; however, not all 
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such traces are conductive. Suggested future work includes investigating the effect of various laser 

systems on different polymers, with a strong focus on several particularly promising ones, i.e., 

polyurethane, rubber, polyimide, photoresist, parylene, and dried hydrogel (agar, gelatin, and 

alginate). Our Preliminary experiments have shown the ability to carbonize rubber, but the 

resulting patterns exhibit a very high resistance. Nevertheless, by adjusting the laser parameters, it 

may be possible to create high-quality (and more conductive) stretchable traces, eliminating the 

need for transferring the carbonized material onto a stretchable elastomer. Parylene is another 

attractive material which has been extensively used in the fabrication of BioMEMS devices. 

Parylene is also a thermoset polymer that can be selective carbonized using a CO2 laser. The 

implications of using parylene as the substrate include the unique opportunity to directly laser 

write conductive traces on 3D objects which are conformably coated with parylene, thus creating 

an easy method for imparting electrical conductivity on 3D surfaces. Parylene coating and 

carbonization can be performed sequentially on multiple layers to create a single 3D printed object 

with multiple layers of electronics. Furthermore, the electrical conductivity of the carbonized 

traces can enable electroplating highly conductivity traces that can be used in designing RF 

modules (e.g. antenna, and filters) on 3D printed objects. In this dissertation, we focused on 

carbonization and laser ablation with a CO2 and Nd:YAG pulsed laser in a standard atmospheric 

environment (21% O2 and 78% N2). Future work should include investigating the effect of various 

types of lasers and processing environments. It should also include investigating other commonly 

used lasers such as diode and UV lasers to understand their effects on material properties and their 

ability to generate conductive carbon nanoparticles. The quality of the carbonized film is also 

influenced by the atmosphere under which laser processing is performed. Previous research has 

shown that different gasses such as N2 and H2 can have effect on the quality and morphology of 

the pyrolyzed carbon. Another remaining task in the material laser processing area includes the 

characterization of laser carbonization process under controlled local micro-environments and 

investigating its effects on the carbonized material properties. Future investigations should study 

the effect of solvent treatment on carbonization process using various thermoset polymers and 

solvents. Polymers interact with solvents and can undergo dissolution, swelling, and sorption that 

could potentially influence the characteristic of the electrical and structural characteristic of the 

laser carbonized material. 
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