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ABSTRACT 

Author: Bozell, Jessica, M. MS 
Institution: Purdue University 
Degree Received: May 2018 
Title: Comparing Disdrometer-measured Raindrop Size Distributions from VORTEX-SE with 

Distributions from Polarimetric Radar Retrievals Using the Constrained Gamma Method 
Major Professor: Daniel T. Dawson II 

Many aspects of microphysical variations within supercells are not well understood, even 

though they play a key role in storm dynamics and evolution. Raindrop size distributions (DSDs) 

provide a lot of insight into a storms microphysics, however, DSDs vary significantly throughout 

storms. Unfortunately, current radars do not have the capability to directly observe DSDs, making 

retrieval algorithms based on advanced microphysical models and in-situ disdrometer observations 

necessary. If these small-scale variations can be better characterized, and differences between 

convective regimes quantified, it will lead to improved algorithms for retrieving DSD parameters 

from radars as well as improved microphysical parameterizations within numerical weather 

prediction models. With better modeling of supercells, tornado predictions and warnings can be 

improved. 

While disdrometers can directly measure DSDs, they are severely limited in spatial 

coverage. In order to improve our understanding of the spatial variation of DSDs across supercells, 

radar retrieval methods, such as the constrained-gamma method, can be used to retrieve DSD 

parameters at high spatial resolution across an entire storm. The constrained-gamma method works 

by finding a relationship between the shape parameter µ and the slope parameter Λ of the 

underlying gamma distribution. In this study, the constrained gamma method is applied to radar 

data collected during the 2016 and 2017 VORTEX-SE field program in order to retrieve gamma 

distributions from polarimetric radar variables. Specifically, new µ-Λ relations will be derived 

from VORTEX-SE disdrometer data and will be compared to µ-Λ relations found in other studies. 

The utility of retrievals will then be evaluated using the different relations for characterizing the 

spatiotemporal variation of DSDs for VORTEX-SE storms. To further improve the µ-Λ relation, 

the effects of measurement errors will be minimized by using a sorting and averaging technique to 

group DSDs with similar microphysical properties together. 
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1. INTRODUCTION 

Knowledge of raindrop size distributions (DSDs) is critical to understanding the 

microphysics of convective storms, and the information they provide can have many useful 

applications. DSDs can vary widely both within storms and between storms in different 

environments. Within storms, microphysical processes such as collision, coalescence, drop 

breakup, and evaporation can lead to varying DSD shapes (Kalina et al. 2014). Changes in DSD 

shape and size influence properties and processes of storms such as the structure and behavior of 

downdrafts, precipitation rates, and the development of the cold pool (e.g., Gilmore et al. 2004; 

Snook and Xue 2008; Dawson et al. 2010, 2015, 2016; Dawson and Romine 2011; Friedrich et al. 

2013; Kumjian et al. 2015). These processes are critical when assessing the tornado potential of 

severe storms (Snook and Xue 2008; Dawson et al. 2015, 2016). Unfortunately, they occur below 

radar measurement levels, making it very difficult to observe these microphysical changes within 

storms. Because of this, radar retrievals based on in-situ DSD observations are necessary to 

investigate these small scale variations (Haddad et al. 1997; Bringi et al. 2002, 2003; Gorgucci et 

al. 2002; Brandes et al. 2004a, b; Vivekanandan et al. 2004; Zhang et al. 2001, 2006; Cao et al. 

2008). Better understanding of microphysical properties of storms will enhance storm modeling, 

which in turn will improve tornado predictions and warnings. 

The Southeastern United States experiences a disproportionately large number of cold 

season and nocturnal tornadoes as compared to the rest of the country (Ashley 2007; Guyer and 

Dean 2010). This is thought to be related to the fact that tornadoes in the Southeast are more likely 

to occur in low cape, high shear environments (Schneider et al. 2006; Sherburn and Parker 2014; 

Davis and Parker 2014). Nocturnal tornadoes are more likely to result in deaths, as they are more 

difficult to spot and most people are asleep at this time. Cold season tornadoes are also more likely 

to be deadly because they occur at a time of the year when the public is not prepared for severe 

weather (Ashley 2007; Ashley et al. 2008). These uncommon tornado environments combined 

with the complex terrain of the Southeast have resulted in the southeast having a higher number 

of deadly tornadoes. Because of these factors, researchers believe that there are important 

differences in Southeast thermodynamic environments, as compared to those of more well studied 

regions such as the Great Plains, which impact tornado potential. As previously mentioned, 

thermodynamic differences can arise from microphysical variations, thus creating a need to 
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investigate the microphysical differences between Southeast tornado environments and Great 

Plains environments. The Verification of the Origins of Rotation in Tornadoes Experiment-

Southeast (VORTEX-SE) is focused on studying the factors that affect the formation, intensity, 

structure, and path of tornadoes in the Southeast (Rasmussen et al. 2015). Understanding how 

potentially tornadic deep convection in the southeast may differ microphysically from other storm 

environments is another overarching goal of the project. High quality in-situ observations of DSDs 

in the Southeast combined with polarimetric radar data will aid in the understanding of 

microphysical variability impacts on storm dynamics and tornado potential in the region. 

In this paper, a previously established DSD retrieval method will be used to estimate 

microphysical parameters across entire storms during VORTEX-SE cases from polarimetric radar 

data, and the results will be compared to in-situ disdrometer observations. In Chapter 2, a 

comprehensive background on DSD fitting, parameter estimation, and retrieval methods is 

provided. The disdrometer and radar data used for the analyses are then described in Chapter 3. 

Chapter 4 provides the details of the methodology used in this research. The results are presented 

in Chapter 5, detailing both the overall results from the entire data set and the results from three 

specific case studies during VORTEX-SE. Finally, Chapter 6 summarizes the findings of the 

paper. 
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2. BACKGROUND 

a. DSD Fitting 

In order to retrieve DSDs from polarimetric radar data, a fitting procedure must first be 

selected to model the observed DSD. DSDs were originally thought to be described by the 

exponential distribution, expressed by the parameters N0 and Λ (Marshall and Palmer 1948; Laws 

and Parsons 1943). The distribution parameters could then be derived from Z and ZDR or 

attenuation (Seliga and Bringi 1976; Ulbrich 1983). While DSDs do tend towards the exponential 

distribution over long periods of time, it has been found that over shorter sampling periods, the 

exponential distribution does not sufficiently describe the observed DSD shape. Over short periods 

of time, the exponential distribution tends to overestimate the number of very small and very large 

drops (Vivekanandan et al. 2004). Ulbrich (1983) thus suggested using the gamma distribution of 

the form 

� � = �%�& exp −�� , (1) 

where N(D) (mm-1 m-3) is the drop size distribution, N0 (mm-1-µ m-3) is an intercept parameter, µ is 

a distribution shape parameter, Λ (mm-1) is a slope parameter, and D (mm) is the sphere-equivalent 

volume diameter. Because the gamma distribution has three parameters, it can model a wider range 

of DSDs, better describing the natural variations in DSD shape (Ulbrich 1983). 

b. DSD Parameter Estimation 

Once a functional form has been chosen to model the observed DSD, a method for 

estimating the parameters needs to be selected. Estimation methods include the method of 

moments (Ulbrich 1983), maximum-likelihood, and L-moment estimators (Kliche et al. 2008). 

Thurai et al. (2014) found that all three methods performed similarly for estimates of µ and Λ, 

while Cao and Zhang (2009) found that the maximum-likelihood and L-moment methods 

performed poorly when the observed DSD deviated from the gamma fit. Because of this, the 

method of moments is the estimator most widely used to retrieve DSD parameters. 
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i. Method of Moments 

The method of moments uses the observed DSD to estimate the statistical moments through 

the following equation from Ulbrich (1983): 

0 

�. = �.� � �� = �%�1 &2.23 � � + � + 1 (2) 
% 

where Mn is the nth moment of the DSD. The other parameters follow as those described in Eq. 

(1). Three moments are then used to create a system of equations to solve for the three unknown 

DSD parameters. Following the equations of Ulbrich and Atlas (1998), the second, fourth, and 

sixth moments can be used to form a ratio of the moments, η, to eliminate N0 and Λ: 

�:
; (3 + �)(4 + �) 

� = = (3)
�;�< (5 + �)(6 + �). 

This moment ratio can now be solved for µ: 
3/;7 − 11� − 7 − 11� ; − 4 � − 1 30� − 12

� = . (4)
2(� − 1) 

Λ is then found from 

�; 3 + � 4 + � 
3/; 

� = (5)
�: 

and finally, N0 can be found by plugging µ from Eq. (4) and Λ from Eq. (5) back into any of the 

moment equations. N0 is calculated from the sixth moment in the following equation: 

�:�H2& 

�% = (6)
�(5 + �). 

Once the three gamma DSD parameters are estimated, the rest of the physical parameters can be 

calculated. 
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ii. Truncated Method of Moments 

The method of moments presented above assumes that the moment integrals extend over 

all possible diameters, from 0 to ∞, but this assumption can lead to significant errors in parameter 

estimations (Ulbrich and Atlas 1998). In reality, drops are being observed over a finite interval, 

from Dmin (mm) to Dmax (mm), and a truncated method of moments can be used to integrate over 

only the observed drop size range (Cao et al. 2008; Vivekanandan et al. 2004). Effects of truncation 

at small diameters are typically negligible, but at large diameters, ignoring the effects of truncation 

can result in overestimations of µ, which will then lead to the overestimation of the other 

parameters. Truncation at large diameters can occur because of things such as instrumental 

truncation or systematic drop size sorting (Ulbrich and Atlas 1998). 

The truncated method of moments (TMF) follows a similar process to the untruncated 

method of moments, but now the integral extends from Dmin to Dmax, requiring the use of the 

incomplete gamma function, γ(…). The below TMF procedure follows that of Vivekanandan et 

al. (2004): 

�IJK,. = 
LMNO

�.� � �� 
LMPQ (7) 

= �%�1(&2.23)[�(� + � + 1, ��TUV − � � + � + 1, ��TW. ]. 

The truncated moment ratio, ηTMF, is used to eliminate N0 from the expression, with the second, 

fourth, and sixth moments again being used as an example. As seen below, it is now much more 

difficult to separate the dependence of µTMF and ΛTMF (Thurai et al. 2014): 

� 5 + �IJK, �IJK�YZ[ − � 5 + �IJK, �IJK�TW. 
; 

= 
� 3 + �IJK, �IJK�TUV � 7 + �IJK, �IJK�TUV − �(3 + �IJK, �IJK�TW.)�(7 + �IJK, �IJK�TW. 

�IJK . (8) 

Because of this, an iterative approach has to be used to adjust µTMF and ΛTMF until the truncated 

moment ratio converges to the observed moment ratio. The method of moments µ and Λ are used 

to initialize the µTMF and ΛTMF values, and then Λ is solved by 

�IJK,; � 5 + �IJK , �IJK �TUV − � 5 + �IJK, �IJK�TW. 
3/; 

�IJK = . (9) 
�IJK,: � 3 + �IJK , �IJK �TUV − � 3 + �IJK, �IJK�TW. 
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N0,TMF can then be solved in the same way as the untruncated method of moments, by plugging 

µTMF and ΛTMF into any of the truncated moment expressions (Ulbrich 1985; Vivekanandan et al. 

2004; Thurai et al. 2014). 

iii. Moment Selection 

When using the method of moments, it is important to consider which three moments will 

be most beneficial to use in the DSD parameter estimations. Common combinations include M246 

(Ulbrich and Atlas 1998; Zhang et al. 2001, 2003; Brandes et al. 2004a, b; Vivekanandan et al. 

2004) and M346 (Kozu and Nakamura 1991; Tokay and Short 1996; Tokay et al. 2001). Some of 

the first studies done analyzing the errors associated with the estimated moments found that the 

higher order DSD moments have higher errors (Gertzman and Atlas 1977; Wong and 

Chidambaram 1985). This is because large drops weigh more heavily in the calculation of higher-

order moments (Cao et al. 2008), and since large drop sizes are likely to have larger sampling 

errors (Chapter 3a), it results in larger errors for the estimated moments. However, the higher-

order moments are better correlated with radar measurements, making them still useful in radar 

retrievals (Cao and Zhang 2009). Middle-order moments, such as moments two and three, tend to 

have the lowest errors (Cao et al. 2008). Looking at sampling error correlations between DSD 

moments, it was found that the further apart two moments are, the smaller their error correlation 

(Zhang et al. 2003; Cao et al. 2008). Overall, the various moment estimator sets perform similarly, 

with the M234 estimator resulting in the smallest errors, but only if the observed DSD follows the 

gamma distribution fit closely (Smith et al. 2005; Cao and Zhang 2009). However, if the observed 

DSD deviates from the gamma fit, the M234 estimator performs more poorly. Therefore, it is 

suggested that the selection of moments is based on which estimated parameters are of most 

relevance to the research. In DSD retrieval methods, higher-order parameters such as ZH and ZDR 

are of great interest, making the M246 estimator set a popular choice (Cao and Zhang 2009). 
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c. DSD Parameter Radar Retrievals 

Because there are three governing parameters of the gamma DSD, three remote 

measurements or relations are needed to retrieve the gamma DSD parameters from radar data. It 

has been shown that the three parameters of the gamma DSD are mutually dependent (Ulbrich 

1983; Chandrasekar and Bringi 1987; Haddad et al. 1997; Kozu and Nakaura 1991). This mutual 

dependence makes it more difficult to separate true physical correlations from those arising from 

statistical error (Haddad et al. 1997). However, if physical correlations can be proven, a relation 

between two parameters could then be used to reduce the number of unknowns in the DSD 

retrieval, making retrievals possible from a pair of remote measurements (Zhang et al. 2003; 

Brandes et al. 2004a). As discussed in Zhang et al. (2003) and Cao et al. (2008), Ulbrich (1983) 

first attempted to use a N0-µ relation to retrieve the DSD parameters from radar reflectivity and 

attenuation. This relationship was then determined to be a result of statistical error by 

Chandrasekar and Bringi (1987). Bringi et al. (2002) and Gorgucci et al. (2002) then attempted to 

use radar measurements of ZH, ZDR, and KDP to retrieve the DSD parameters. However, KDP is 

often noisy and can result in large variations in retrieved parameters (Brandes et al. 2004a). 

High correlations have been found between µ and Λ, leading to the development of the µ-

Λ relation and the so-called constrained-gamma method (Zhang et al. 2001; Brandes et al. 2004a; 

Cao et al. 2008). An empirical, constraining relation between µ and Λ can be used along with radar 

measured ZH and ZDR to retrieve the DSD parameters (Zhang et al. 2001; Brandes et al. 2004a). 

Chandrasekar and Bringi (1987) expressed concerns about whether the relation was caused by 

sampling errors or if it was an actual physical relation, but Zhang et al. (2003) demonstrated that 

the µ-Λ relation was separate from the linear relation of the sampling errors and therefore was 

uninfluenced by statistical error. The existence of a µ-Λ relation would suggest that there is also a 

relationship between mean mass weighted diameter (Dm) and mass spectrum width (σm), as both 

of these parameters are uniquely determined from µ and Λ (Brandes et al. 2004b). Because σm and 

Dm are physical parameters that can be directly calculated from the observed DSD, they can be 

used to test the validity of the µ-Λ relation. If the µ-Λ relation accurately describes rain physics, 

then the observed σm-Dm relation should match the σm-Dm relation derived from the µ-Λ relation 

(Cao et al. 2008). 
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It is thought that the µ-Λ relation may depend on the climate type, storm type, and state of 

the storm (Zhang et al. 2003; Atlas and Ulbrich 2006; Cao et al. 2008). Previous studies in the 

Great Plains and subtropics have derived slightly different µ-Λ relations, signifying that the µ-Λ 

relation may be impacted by changes in precipitation mechanisms (Zhang et al. 2001; Brandes et 

al. 2004a, b). It is possible that creating specific µ-Λ relations for different climatic regions will 

improve the overall accuracy of radar retrievals. In an attempt to customize the µ-Λ relation based 

on storm type and state, Cao et al. (2008) used an adjustment term in the µ-Λ relation based on 

radar reflectivity to improve their retrieval results in high ZDR, low ZH regions. Brandes et al. (2003) 

used the truncated moment fit to derive their µ-Λ relation to improve retrievals in areas of high 

rain rate. 

i. DSD Sorting and Averaging based on Two Parameters 

When trying to validate the existence of a µ-Λ relation, it can be difficult to separate the 

sampling errors from the real physical variation, especially when the DSDs are being measured by 

a single disdrometer (Cao et al. 2008). Because of this, attempts have been made to create 

averaging techniques that would average together DSDs that had similar physical properties, to 

reduce the DSD variability and sampling errors. The first attempt at this was done by Lee and 

Zawadzki (2005). They created the sequential intensity filtering technique (SIFT) which would 

sort DSDs during a certain event by reflectivity, and then average neighboring DSDs together. 

While this did help to reduce the sampling error, it also reduced the physical relations between 

parameters. Two DSDs can have similar reflectivities while also representing very different DSD 

shapes and underlying DSD properties. Cao et al. (2008) then introduced the sorting and averaging 

method based on two parameters (SATP) in an effort to preserve the shape and slope of DSDs, 

while still being able to reduce the sampling error. The SATP method introduced the ability to sort 

the DSDs by two parameters instead of one, and was also applicable to an entire dataset, rather 

than just one specific timeframe. It was suggested that R (rain rate) and D0 (median volume 

diameter) be used to sort the DSDs, as these represent the middle moments, which are most 

accurately measured by disdrometers. A finely scaled 2-D grid is created, and DSDs with similar 

R and D0 values are averaged together to create new DSDs, from which a µ-Λ relation less biased 

by sampling error can be created. 



 
 

  

  

  

       

     

       

    

       

           

       

       

         

       

           

          

        

       

  

 

 
   

  

9 

3. DATA 

a. Disdrometer Data 

i. Data Collection 

For this study, four Portable In-situ Precipitation Stations (PIPS), pictured in Figure 1, were 

utilized during the 2016 and 2017 VORTEX-SE field campaigns. Each PIPS consists of an OTT 

Parsivel2 (Particle Size and Velocity) laser disdrometer (Löffler-Mang and Joss 2000; Tokay et al. 

2014), along with sensors to measure temperature, relative humidity, pressure, and wind. The 

Parsivel disdrometer can detect diameters between 0.25 and 25 mm and velocities of up to 20 ms-

1. The lowest two diameter bins are left empty due to a low signal-to-noise ratio, resulting in drops 

with diameters of less than 0.25 mm being ignored by the disdrometer (Tokay et al. 2013). The 

disdrometer produces a horizontal sheet of infrared light (160 mm x 30 mm), and when particles 

pass through the beam, there is a reduction of voltage which is measured by the instrument. The 

reduction signal is then inverted, amplified, and smoothed. The maximum amplitude of the signal 

reduction is used to measure the particle diameter, while the length of time that the signal is 

reduced is used to measure the velocity. The Parsivel software then uses 32 non-equidistant size 

and fall-speed bins to sort each particle, as shown in Figure 2. The particle is assigned the diameter 

and velocity that corresponds to the bin center (Löffler-Mang and Joss 2000). It is assumed that 

only one particle is passing through the beam at a time (Raupach and Berne 2015). 

Figure 1. A photograph of two PIPS, complete with disdrometers and weather sensors. The 
Parsivel2 disdrometers are circled in red. 
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One of the advantages of the Parsivel2 disdrometer is that it is low cost, robust, and easy to 

handle, making it ideal for rapidly deploying multiple instruments in the path of a storm (Löffler-

Mang and Joss 2000; Friedrich et al. 2013). However, Parsivel disdrometers are prone to 

measurement errors of small and large drop concentrations (Raupach and Berne 2015; Tokay et 

al. 2013; Park et al. 2017). Between the 5-10 mm diameter range, bin widths are 1 mm, leading to 

larger uncertainty at these diameters. Overestimations of large drop number concentrations can 

occur during heavy rainfall, as it is more likely that multiple particles fall through the beam at one 

time and are misclassified as large drops (Thurai et al. 2011; Tokay et al. 2013). Parsivel 

disdrometers struggle with accurate small drop number concentrations because of instrument 

resolution and reduced sensitivity (Thurai et al. 2014). Despite these disadvantages though, Thurai 

et al. (2011) found that the Parsivel2 disdrometer has comparable performance to the higher 

resolution 2D-video disdrometers when R < 20 mm h-1 . For higher rain rates, they found that the 

Parsivel disdrometer tends to measure higher rain parameter values, although the times of largest 

disagreement corresponded with times where hail or graupel were observed. 

The 2016 and 2017 VORTEX-SE field campaigns occurred from 25 March-1 May each 

year. In 2017, PIPS 2A was collocated with the U-Mass FMCW (PIPS FMCW) for the duration 

of the project. PIPS FMCW was positioned approximately 27.5 km southeast of the Huntsville, 

AL (KHTX) WSR-88D radar, with the radar beam scanning 0.28 km above the instrument. To 

distinguish between days with and without rainfall, data were discarded if the disdrometer 

measured Z never exceeded 20 dBZ, as this is the approximate threshold between drizzle and light 

rain (Rinehart 2004). Methods for deriving polarimetric variables from the disdrometer data are 

discussed in Chapter 4c. Overall, 15 rainy days were observed by the PIPS FMCW and are used 

in the data analysis. A majority of these systems were quasi-linear convective systems (QLCS), 

with only four of the events being cellular in nature. In addition to the PIPS FMCW data, three 

intensive operating periods (IOPs) from 2016 and six IOPs from 2017 are used. The details for 

each IOP used in the analysis are listed in Table 1. As seen from the table, five of the IOPs were 

conducted during QLCS events, while the other four IOPs observed multicellular clusters. 

Tornadoes or tornado warnings were associated with IOPs 3, 4C-2016, and 4C-2017. In Chapter 

5, IOPs 4B, 4C-2016, and 4C-2017 are used for individual case studies. The overall data set 

consists of 4215 1-min DSDs. Previous studies have used as few as 1341 1-min samples 

(Vivekanandan et al. 2004) or as many as 14200 1-min DSD samples (Cao et al. 2008). 
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Table 1. Descriptions of the VORTEX-SE IOPs used in the analysis. 
Date Time 

(UTC) 
PIPS Storm Type Radar Distance 

and Height 
IOP 3 31-May-2016 2156-2356 PIPS 1A, 1B, 2A, 2B Supercell clusters d = 138.7 km 

h = 2.34 km 
IOP 4B 29-Apr-2016 2124-2357 PIPS 1B, 2A, 2B QLCS d = 63.8 km 

h = 0.80 km 
IOP 4C 30-Apr-2016 1933-2139 PIPS 1B, 2A, 2B Supercell clusters d = 111.9 km 

h = 1.71 km 
IOP 1A 25-Mar-2017 1711-1856 PIPS 1A, 1B, 2B QLCS d = 115.8 km 

h = 1.80 km 
IOP 1B 27-Mar-2017 1951-2222 PIPS 1A Supercell clusters d = 133.2 km 

h = 2.21 km 
IOP 1B-2 28-Mar-2017 0121-0330 PIPS 1A, 1B, 2B QLCS d = 130.4 km 

h = 2.14 km 
IOP 3B 15-Apr-2017 2303-0031 PIPS 1B Supercell clusters d = 48.2 km 

h = 0.56 km 
IOP 4A 27-Apr-2017 0455-0743 PIPS 1A, 1B Dissipating QLCS d = 139.4 km 

h = 2.36 km 
IOP 4C 30-Apr-2017 1829-2009 PIPS 1A, 1B, 2B QLCS d = 120.0 km 

h = 1.90 km 

ii. Data Filtering 

In order to perform high-quality retrievals with the disdrometer observations, the data first 

need to be filtered to classify and remove suspicious particles. Following the procedures of Kalina 

et al. (2014) and Friedrich et al. (2013), a hydrometeor classification scheme is used to distinguish 

rain particles from graupel, hail, and ice particles. The classification scheme is pictured in Figure 

2. Because rain drops are assumed to have D < 8 mm, all drops larger than this can be removed 

(Friedrich et al. 2013). The hydrometeor classification, which is based on disdrometer diameter 

ranges and fall speed-diameter relations, is then used to remove any remaining hail or graupel 

particles. Once all non-rain particles are removed, the data is filtered to eliminate DSDs that were 

likely contaminated by strong winds, splashing drops, and margin falling drops. All of these 

scenarios result in drops with unrealistic fall speeds and diameters (Friedrich et al. 2013). Strong 

winds of over 20 ms-1 have been found to result in large drops (D > 5 mm) being recorded at fall 

speeds of less than 1 ms-1 . Since those are unrealistically low fall speeds for drops of that size, all 

time steps where this occurs are removed. Splashing drops occur when particles hit the surface of 

the PIPS instrument and break into smaller drops before then falling back through the disdrometer 

beam, resulting in small drops with very low fall speeds. “Margin fallers” occur when drops fall 
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through the edge of the beam, and result in small drops with very high fall speeds. To remove 

splashing drops and margin fallers, all drops with a fall speed 60% faster or slower than the fall-

speed diameter relationship would suggest are removed (Gunn and Kinzer 1949; Atlas et al. 1973; 

Friedrich et al. 2013). 

Figure 2. A visual representation of the hydrometeor classification scheme used to separate rain 
drops from other particles, based on fall-speed and diameter. Regions that are filtered out due to 

various sampling errors are also highlighted. Originally Figure 5a in Friedrich et al. 2013. 

b. Radar Data 

S-band radar data is used for comparison with PIPS observations during the VORTEX-SE 

deployments. Level 2 radar data is collected from either the KHTX (Huntsville, AL) or the KGWX 

(Columbus Air Force Base, MS) WSR-88D radars, depending on which was closest to the PIPS. 

The lowest elevation angle of 0.5° is used for radar analysis. When processing the radar 

observations for comparison with the disdrometer observations, the closest radar gate to the 

disdrometer is located by finding the shortest Euclidean distance from the disdrometer location to 

the center of the radar gate. The Cressman (1959) scheme then uses a non-zero weighting function 

to smooth radar gates within 1 km of the disdrometer location. The radar observations are then re-

indexed by interpolation in order to create an array of estimated radar measurements that occurred 

at the same time as the disdrometer measurements for comparison. All radar measurements with 

ρHV < 0.9 are removed, to eliminate non-rain precipitation echoes from the radar data. 
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Even with the quality controls set into place, measurement differences between the 

disdrometer and radar are still certain to occur, limiting the overall accuracy of radar retrievals. 

Growth and evaporation of raindrops is one potential source of disagreement between the radar 

and disdrometer. As the raindrops fall from the radar beam to the disdrometer beam, it is likely 

that the DSD is changing, as drops can grow in size, break-up into smaller drops, or evaporate 

completely, resulting in different DSDs being observed by the two instruments. The strength of 

the low-level winds can also play an important role, as strong low-level winds can advect the drops 

downstream of the disdrometer, again causing the two instruments to observe different DSDs. 

Related to both of these issues is radar beam height. The higher the radar beam is scanning above 

the disdrometer, the greater the distance over which the DSDs have time to change (Kalina et al. 

2014). The temporal and spatial scales of both instruments can also produce disagreement between 

the results. It typically takes a radar 5-8 minutes to complete one full volume scan, while the 

disdrometer is measuring distributions every 10 s. Radar sampling volumes can also be 107 times 

greater than a disdrometer’s sampling volume (Cao et al. 2008). 
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4. METHODS 

The disdrometer and corresponding radar data were analyzed using the Python 

programming language. Disdrometer measured reflectivity time series that do not reach above 20 

dBZ are discarded as non-rain days. The disdrometer data is processed, and the strong wind DSDs 

and drops that are suspected of being splashing drops or margin fallers are masked out. DSD 

observations are then resampled from 10 s to 1 min. Afterwards, any DSD bins where no rain drops 

are recorded are masked out. 

Next, the observed DSDs are fit with the exponential and gamma distributions using the 

method of moments. Moments zero through six are estimated using the equation 

�. = �.� � �� (10) 

to sum across all of the bins of the observed DSD. In the equation, D (mm) is the average drop 

size of the bin, N(D) (mm-1 m-3) is the observed DSD, and ΔD (mm) is the width of the bin. The 

observed physical parameters are then calculated. Rain rate [R, mm hr-1] is calculated using the 

Brandes et al. (2002) equations: 

� = 6� ∗ 101: �` ��` � � � �13 � � �1`��13 �� �� (11) 

where 

� � = −0.1021 + 4.932� − 0.9551�; + 0.07934�` − 0.002362�:. (12) 

Equations for the remaining physical parameters are taken from Brandes et al. (2004a). Liquid 

water content [W, g m-3] is given by the expression 

� 
� = 6 ∗ �` ∗ 1000, (13) 
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total number concentration [NT, m-3] is equal to the zeroth-moment 

�I = � � ��, (14) 

and median volume diameter [D0, mm], the diameter for which half of the liquid water content is 

above and below it, is defined as 

Lf LMNO 

�`� � �� = �`� � ��. (15)
% Lf 

a. Exponential and Gamma Distribution Fitting 

Based on Zhang et al. (2008), the exponential distribution parameters are calculated using 

the third and sixth moments of the DSD. The slope parameter [Λ, mm-1] is first calculated by the 

equation 

3/(h1V) �V� � + 1 
� = (16) 

�h� � + 1 

where x is equal to three and y is equal to six, for the third and sixth moments. Once Λ is calculated, 

the intercept parameter [N0, m-3 mm-1] can be found by the equation 

�V�V23 

�% = (17) 
� � + 1 

. 

The intercept and slope parameters are then used to calculate the exponential distribution fit to the 

observed DSD 

� � jVk = �% exp −�� . (18) 
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The gamma distribution parameters (N0, µ, and Λ) are then calculated using the second, 

fourth, and sixth moments, as described in Chapter 2b Section i. The µ and Λ are then used to 

initialize the truncated moment fit. Dmax is found from the observed DSD as the midpoint of the 

largest bin where a raindrop is recorded. The truncated moment fit is performed using Eqs. (7) -

(9) and is coded following the Fortran code provided by Guifu Zhang (Personal communication, 

February 11, 2018). If initially the TMF moment ratio, ηTMF, is less than the observed moment 

ratio, η, ηTMF is reduced through an iterative process by subtracting 0.01 from µTMF until ηTMF is 

greater than η. Once ηTMF has converged to η, ΛTMF is found using Eq. (9) and N0,TMF is found 

using Eq. (6), substituting in µTMF and ΛTMF. The untruncated and truncated gamma distribution 

fits can be found by plugging the corresponding DSD parameter set into Eq. (1). The other rain 

parameters (NT, W, R, and D0) are then calculated for both the untruncated and truncated gamma 

fits (Vivekanandan et al. 2004; Thurai et al. 2014). 

b. µ-Λ Relation 

A new µ-Λ relation for southeast U.S. storms is computed by using all of the IOP and PIPS 

FMCW data. An initial relation is formed based on the unfiltered dataset using a second-order 

polynomial least-square fit, with 4215 individual 1-min DSDs being included in the fit. The results 

are shown in Figure 3a. The data are then filtered aggressively by masking all data points with R 

< 5 mm hr-1 and NT < 1000 counts (Figure 3c) in an effort to decrease the effects of sampling errors 

on the relation. This reduces much of the scatter observed in the µ-Λ pairs, leaving only 437 points, 

and increases the correlation of the relation (Zhang et al. 2003; Vivekanandan et al. 2004). To 

improve the accuracy of the µ-Λ relation without filtering out a large majority of the data, the 

SATP method and truncated moment fit are used to derive a third µ-Λ relation (Cao et al. 2008). 

A two-dimensional grid is built from R and D0, with the R grid boxes starting at 0.1 mm 

hr-1 and then incrementally increasing by 10%, and the D0 grid boxes starting at 0 mm and 

increasing by intervals of 0.05 mm. All of the observed DSDs are placed into grid boxes based on 

their observed physical properties, and then all DSDs in each grid box are averaged (Figure 4). 

This creates a new set of DSDs with reduced sampling errors that still represent the natural DSD 

variations. The averaged DSDs are then fit with gamma distributions using the truncated moment 

fit, and the DSD parameters are calculated. A new mean µ-Λ relation is then derived. The original 

µ-Λ relation is dominated by the low rain rate values, leading to a higher slope in the unfiltered 
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relation, as lower rain rates coincide with large µ and Λ values. The SATP derived relation gives 

equal weight to each R-D0 set, giving this relation the added advantage of not being largely 

influenced by any particular rain rate and median volume diameter. 

c. Polarimetric Parameter Estimation 

Using the process outlined in Zhang et al. (2001), polarimetric variables are calculated 

from the disdrometer observations and also from each of the distribution fits. The T-matrix 

technique (Watermann 1969; Ishimari 1991; Vivekanandan et al. 1991; Jung et al. 2008, 2010) is 

used to look up the scattering amplitudes, which are then used to calculate the rain backscattering 

amplitudes. The backscattering amplitudes are used in conjunction with each of the N(D) 

distributions to calculate the polarimetric variables. As described in Brandes et al. (2004a), ZH,V 

(mm6 m-3) can be determined from the distribution using 

4�: LMNO 

�m,n = �mm,nn � 
;� � ��, (19);�: �q LMPQ 

where fHH,VV(D) are the backscattering amplitudes of a drop at horizontal and vertical polarizations, 

respectively, Kw is the dielectric factor of water, and λ (mm) is the radar wavelength. Once ZH and 

ZV have been determined from the distribution, ZDR (dB) can be calculated as 

�m�Ls = 10 log . (20) �n 

The correlation coefficient, ρHV, is solved by 

�mn�mn = . (21)
�m�n 
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d. Radar Retrievals 

Before performing the radar retrieval, non-precipitation echoes are removed from the radar 

observations by masking times where ρHV < 0.9. The interpolation and re-indexing method from 

Chapter 3b is then applied to the radar observed Z and ZDR. Another mask is then applied to both 

the radar observed and disdrometer estimated Z and ZDR, masking all times where either set of ZDR 

rose above 4 dB, as retrievals can become unreliable in high ZDR regions. High ZDR regions often 

correspond with “big drop” DSDs, which are poorly fit by gamma distributions due to their 

irregular shape (Brandes et al. 2004a). The retrieval is first performed with the disdrometer 

estimated Z and ZDR to verify that the retrieval methods produce reasonable results. The radar 

observations are then used to perform the retrieval. 

The retrieval method begins by verifying that the Z and ZDR values are greater than zero. 

Following the suggestion of Brandes et al. (2004a), empirical relations from Cao et al. (2008) are 

used to estimate the rain parameters when ZDR < 0.1 dB. Following the retrieval method outlined 

in a Matlab code by Guifu Zhang, the retrieval utilizes an iterative method to run through possible 

Λ values between 0.1-30 for ZDR between 0.1-4 dB. For each Λ value, µ is estimated from the 

selected µ-Λ relation. The µ-Λ pair is then used to derive an estimated ZDR value, and the iteration 

continues until the estimated ZDR converges with the observed ZDR value. Once the best fitting µ-

Λ pair has been found, the definition of ZH can then be used to estimate N0. The estimated 

distribution and other rain parameters are then calculated. All retrieved parameters are then masked 

for Λ values greater than 20, as these values are likely due to measurement errors (Zhang et al. 

2003). 
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5. RESULTS 

a. Overall Results 

i. Deriving a new µ-Λ relation 

Before radar retrievals are performed on the data set, a µ-Λ relation is derived from the 

observations. Initially, a relation is derived using the entire data set, with no filtering based on rain 

rate or total drop count (Fig. 3a). Another relation is then formed using the same data, but with the 

µTMF and ΛTMF (Fig. 3b). Without data filtering, both distributions exhibit large amounts of spread 

in the observed µ and Λ values, although the TMF does result in less scatter than the untruncated 

fit. Reductions in average µ and Λ values are observed when using TMF. This trend was also 

observed by Vivekanandan et al. (2004). This suggests that the TMF is fitting broader distributions 

for DSDs of low rain rate, reducing the number of large µ and Λ values. The data set is then filtered 

to remove all points R < 5 mm h-1 and total counts < 1000, as this is expected to reduce the effects 

of sampling errors on the relation (Vivekanandan et al. 2004; Zhang et al. 2003; Brandes et al. 

2003). The results, displayed in Figures 3c and 3d, show that the amount of scatter in the points is 

significantly reduced. The number of points used to derive the relation drops from 4,215 to 437. 

The average µ and Λ values are greatly reduced, now that the high rain rates dominate the relation. 

The relations derived from Cao et al. (2008) and Zhang et al. (2001) are plotted alongside the new 

relations in each plot (hereafter the “Cao” and “Zhang” relations, respectively). The Cao relation 

was derived from observed rainfall in Oklahoma, and therefore represents continental precipitation 

and is dominated by cold rain processes. The Zhang relation was derived from Florida rainfall, 

which represents maritime precipitation with potentially a greater role for warm rain processes. 

Warm rain processes tend to result in distributions characterized by larger numbers of small drops 

as compared to cold rain processes. As is seen in Figure 3, the Zhang relation has a greater slope 

than the Cao relation, because the large numbers of small drops result in larger magnitudes µ and 

Λ. In all four cases observed in Fig. 3, the new relation derived from the VORTEX-SE data falls 

between the continental and maritime rain relations. This suggests that the southeast U.S. is a 

region that experiences rain DSD characteristics intermediate between the two regimes, being 

situated near the Gulf of Mexico as well as the Great Plains. 
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Figure 3. The µ-Λ relations derived from (a) the unfiltered and untruncated data, (b) the 
unfiltered and truncated data, (c) the filtered and untruncated data, and (d) the filtered and 

truncated data. The observed µ-Λ pairs are plotted in black with the fitted relation represented by 
the blue line. The Cao relation (orange) represents cold rain processes and the Zhang relation 

(green) represents warm rain processes. 



 
 

 
  

 
 

 

 

  

 

 

 

 

 

 

.0 1.0 

=t 14 
(b) 

3.5 

/ 12 

10 n - 8 0 
C: 

.._ 
- 6 ~ f .L 1/1 

4 

0.6 

0.4 I- 2 
'- 0 

0.2 
4 

3 ~ 
2 --§' 

0 

1 <;)~ 

50 
100 150 200 

0.0 

Ra;,., Rate (mm h -1) 250 . Rate (mm h·l) Ram 

21 

4 

Figure 4. The frequency of DSDs observed in each R (mm h-1) -D0 (mm) grid box after 
performing the SATP method on the unfiltered data set. A two-dimensional view is provided in 

(a) while a three-dimensional view is provided in (b). 

To further improve the µ-Λ relation, the SATP method is used to average similar DSDs 

together, in order to reduce the effects of sampling errors on the µ-Λ relation. The entire unfiltered 

data set is utilized for the SATP method. Figure 4a gives a two-dimensional view of the sorting of 

the DSDs, while Figure 4b provides a three-dimensional view. From these figures, it is clear that 

most of the DSDs within the data set are observed at rain rates of less than 10 mm h-1 and have 

median volume diameters of between 0.5 and 1.5 mm. As one would expect, increases in rain rate 

coincide with increases in median volume diameter, as broader distributions with longer tails are 

often observed with higher rain rates. To validate the use of binning and averaging DSDs with 

similar physical properties, example DSDs are shown in Figure 5. In both examples, each of the 

observed DSDs in the bin (gray lines) are well represented by the averaged DSD (black line). This 

result suggests that by using two parameters to sort and average DSDs, the overall shape and slope 

of the observations are preserved, thereby also preserving the underlying physical properties 

associated with the DSDs. 
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Figure 5. Example DSDs from the SATP method, with the light gray lines representing the 
observed DSDs from the R-D0 grid box and the black line representing the new, averaged DSD 

for the grid. The median R and D0 of the grid box are displayed in the top right corner. 

Once the group of averaged DSDs is calculated, they are fit with gamma distributions using 

the method of moments and the truncated moment fit. New µ-Λ relations are then found from both 

methods. The results are shown in Figure 6. Each method results in about 1100 points, one for 

each grid box where an averaged DSD is found and is able to be fit with a gamma distribution. 

The average µ and Λ values for each are comparable to what was found with the R < 5 mm h-1 and 

counts < 1000 filter. These new SATP µ-Λ scatterplots also exhibit a relatively low amount of 

spread, with most of the points concentrated towards lower µ and Λ values. The biggest difference 

observed when using the SATP method is that the overall slope of the relation is lower than what 

is observed in the Figure 3 relations, with the SATP relations following more closely to the Cao 

relation. Because lower µ values are being produced for the same values of Λ, this implies that 

southeastern DSDs are broader than the maritime Florida DSDs. Overall, all of the µ-Λ relations 

displayed in Figures 3 and 6 produce similar results, with the southeastern relation lying between 

the Florida and Oklahoma relations. 
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Figure 6. The same as Figure 3, but with the µ-Λ relations produced from the SATP method 
where (a) represents the untruncated results and (b) represents the truncated results. 

The σm -Dm relation is used to validate the µ-Λ relation by comparing the retrieved σm and 

Dm values to the disdrometer observations. Both σm and Dm are calculated directly from DSD 

observations, remaining unaffected by sorting and fitting procedures performed on the data (Cao 

et al. 2008). In Figure 7, the observed σm and Dm values are plotted in black, with the retrieved 

values overlaid in blue. The retrieved σm -Dm relation closely matches the observations, especially 

for σm < 2 mm, suggesting that the µ-Λ relation is valid and represents rain physics (Zhang et al. 

2003). Beyond this point, the retrieval relation seems to be slightly overestimating spectrum width 

and there is larger scatter in the observations, as these points are likely from DSDs with long tails 

(Cao et al. 2008). Table 2 displays the σm and Dm results from the disdrometer-based retrieval. 

Comparing the bias and correlation coefficients between our results and those obtained by Cao et 

al. (2008), the results are consistent between the two data sets and it is seen that the retrieval results 

agree well with the observations, further validating the µ-Λ relation. 

Table 2. Disdrometer-based retrieval results for σm -Dm from VORTEX-SE and Cao data sets. 
Our Dm Cao Dm Our σm Cao σm 

Bias (%) -5.53 -2.18 2.74 -1.15 

Corr. Coeff. 0.929 0.915 0.991 0.985 
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Figure 7. A scatterplot of Dm versus σm, where the observed values are the black dots and the 
radar retrieved values are the blue dots. 

ii. Retrieved Rain Parameters 

With the µ-Λ relation derived from the SATP truncated moment fit method (Fig. 6b), radar 

retrievals can be performed with the entire data set. The four main rain parameters focused on in 

this analysis are rain rate, water content, total number concentration, and median volume diameter 

(R, W, NT, and D0). Figure 8 contains scatterplots of all four variables, comparing the radar 

retrieved parameters with the disdrometer observed parameters. Each of the scatterplots is color-

coded by rain rate, to examine at which rain rates the retrievals perform the worst. All four 

scatterplots exhibit a wide amount of scatter, with the points that deviate the most from the one-

to-one line occurring at the lower rain rates. At low rain rates, measurements can be unreliable due 

to the smaller samples and the corresponding DSDs are not represented well by a gamma fit. 

Because of this, measurements with R < 1 mm h-1 and counts < 50 min-1 are filtered out for the 

remainder of the analysis. The gap in data points in each plot is due to the use of empirical relations 

for ZDR < 0.1 dB. Creating empirical relations based on the VORTEX-SE data set would likely 

reduce or eliminate this artifact. 
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Figure 8. Disdrometer observed rain parameters versus radar retrieved parameters for the entire 
data set: (a) R/ZH, (b) W/ZH, (c) NT/ZH, and (d) D0. The points are sorted by observed rain rate. 

Figure 9 contains the radar retrieval results with the new filter applied (R < 1 mm h-1, counts 

< 50 min-1). With 2941 1-min DSDs remaining, the scatter is reduced, suggesting the retrieval 

performs better for moderate rainfall. During moderate rainfall, the DSD is likely to be broad and 

follow a gamma distribution more closely, resulting in better retrieval results. The further the 

observed DSD deviates from a gamma distribution, the worse the retrieval results will be. Table 3 

displays the disdrometer based retrieval results for the four rain parameters using this filtered data 

set, and compares the results to what was found by Cao et al. (2008). Overall, similar performance 

is seen between the two, and good agreement is seen between the disdrometer-based retrievals and 

the observations. R, W, and NT all show positive biases, with NT exhibiting the worst bias. This 

result suggests that the radar retrieval is overestimating NT relative to the disdrometer. With the 

disdrometer not observing drops in the lowest two diameter bins, it is reasonable to suspect that 

this would lead to the underestimations in the observed NT. 
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Figure 9. The same as Figure 8, but now with data points where R < 1 mm h-1 and counts < 50 
filtered out. 

Table 3. Disdrometer-based retrieval results for the VORTEX-SE and Cao data sets for the four 
physical parameters R, W, NT, and D0. 

Our R Cao R Our W Cao W Our NT Cao NT Our D0 Cao D0 

Bias (%) 5.41 3.37 10.18 2.52 110.46 14.16 -0.71 8.73 

Corr. Coeff. 0.984 0.986 0.970 0.967 0.713 0.763 0.867 0.819 
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10 

b. Case Studies 

i. IOP 4B – 2016 

On April 29, 2016, a strong QLCS with a large region of trailing stratiform rain passed 

through the VORTEX-SE domain in western Alabama. The position of the PIPS relative to the 

approaching QLCS is provided in Figure 10a. The storm passed over the PIPS from 2124-2357 

UTC. Strong circulation was observed within the QLCS in Mississippi, but the circulation 

weakened upon approaching the PIPS. The closest WSR-88D radar was the Columbus AFB, MS 

KGWX, which was 63.8 km away and scanned 0.80 km above the PIPS. In Figure 10b, time series 

of the relative humidity, dew point and temperature, and wind speed and wind direction are shown. 

At 2158 UTC, there was an increase in relative humidity to about 95% and a 5° decrease in 

temperature, indicating the passage of a gust front shortly before the leading edge of the storm 

reached the PIPS. The strong convective region of the QLCS passed over the disdrometer until 

2218 UTC, and then the precipitation transitioned into stratiform rain, which remained over the 

disdrometers until they were picked up at 2357 UTC. 

Figure 10. An overview of IOP 4B is presented. (a) Radar PPI plot of KGWX reflectivity (dBZ) 
as the leading edge of the storm began to pass over the PIPS. The PIPS locations are overlaid, 
with the KGWX observed reflectivity at each instrument. (b) Time series of relative humidity 
(%, top), temperature and dew point (°C, middle), and wind speed (m s-1, red dots) and wind 

direction (black dots, bottom) from PIPS 2B. 
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A comparison of observed DSDs in the leading edge of the QLCS versus in the reflectivity 

core of the storm over PIPS 2B is presented in Figure 11. In the leading edge (Fig. 11a), the 

observed DSD is poorly fit by a gamma distribution, as there are more large drops and fewer small 

drops than a gamma distribution fit would expect. It is observed that none of the distributions used 

fit this type of DSD well, as the TMF and retrieval fits are also underestimating the number of 

small drops. The radar observed Z and disdrometer calculated Z values are very different, with the 

disdrometer seeing a reflectivity that is 9 dBZ higher than the radar observations. Due to the 

unusual shape of the leading edge DSD and the large difference in radar and disdrometer Z values, 

the radar retrieved D0 value is 1 mm smaller than what the disdrometer observed. In the reflectivity 

core (Fig. 11b), the observed DSD follows a gamma distribution much more closely than in the 

leading edge of the storm. This results in the various fitting procedures fitting the observed DSD 

more closely. The radar retrieved fit is underestimating the overall DSD, but still results in a D0 

value within 0.05 mm of the disdrometer observation. It is most likely that the radar retrieved DSD 

is consistently underestimated due to the lower Z that the radar is seeing at this time, as compared 

to the disdrometer. 

Figure 11. Plots of observed DSDs from PIPS 2B in the leading edge (a) and reflectivity core (b) 
of the QLCS. Overlaid are the radar retrieved (orange), disdrometer retrieved (green), TMF 

(red), gamma (purple), and exponential (brown) fits. 
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Time series of reflectivity Z and differential reflectivity ZDR over PIPS 2A are presented in 

Figure 12. Plotted underneath each polarimetric variable is the time series of the 1-min number 

concentrations observed by PIPS 2A. Maximum reflectivity (50 dBZ) and differential reflectivity 

(2 dB) were observed at 2201UTC, as the strongest convection passed over the disdrometer. The 

broadest DSDs were also observed during this period of strong convection. Z and ZDR then 

decreased, and during the transition period from 2225-2250 UTC, Z remained below 30 dBZ while 

ZDR remained below 0.5 dB. Both variables then increased slightly as the stratiform rain passed 

over. Throughout the entire time period, the disdrometer consistently reported larger Z and ZDR 

values than the radar, especially for ZDR during the stratiform rain. A lot of the differences observed 

could be due to the time scale differences, with the disdrometer values being derived every minute, 

while the radar scanned over the disdrometer every 5-8 minutes, failing to capture much of the 

temporal variability that the disdrometer observed. It is possible that there is also a systematic bias 

in either the radar or disdrometer measurements that is not currently being taken into account. 

Figure 12. Time series of reflectivity (top) and differential reflectivity (bottom) over PIPS 2A 
during IOP 4B. The polarimetric variables estimated by PIPS 2A are plotted in blue, while the 

radar observed variables are plotted in purple. The blue dashed line is the disdrometer measured 
median volume diameter. Plotted underneath the polarimetric variables are the 1-min number 

concentrations from the TMF fit to the disdrometer observations. 
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Figure 13. Time series of (a) rain rate, (b) water content, (c) total number concentration, and (d) 
median volume diameter over PIPS 2A during IOP 4B in 2016. Each time series compares the 
disdrometer observations (black) with the disdrometer Z, ZDR retrieval (blue) and radar Z, ZDR 

retrieval (green). 

Time series of the four rain parameters are shown in Figure 13, with the observation plotted 

in black, the disdrometer retrieval in blue, and the radar retrieval in green. Peak values of all four 

rain parameters were observed as the QLCS leading edge passed over PIPS 2A. W, R, and NT 

values decreased after the main convection passed, while D0 reached similar values during both 

the convective and stratiform rain periods. This shows that similar magnitudes of D0 can be 

observed in very different rain rates, exemplifying the importance of using two parameters to sort 

similar DSDs, rather than one. The radar retrieval consistently overestimates NT and 

underestimates D0. It also struggles to reproduce the peaks in R and W observed by the disdrometer. 

Overall though, very good agreement is observed between the retrieved and the observed values. 

The radar retrieval method can be used to derive rain parameters across an entire storm. In 

Figures 14-16, radar PPI (plan position indicator) of some of the retrieved parameters are pictured 

for three locations in the storm. Figure 14 displays the results across the storm at 2159 UTC as the 

leading edge passed, and the radar was dominated by convective precipitation. Figure 15 displays 

the storm 32 minutes later at 2231 UTC, as the transition zone moved through the area. Finally, 

Figure 16 displays the storm at 2238 UTC, as the large region of stratiform rain began to move out 
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of the domain. The top left and right panels for Figures 14-16 plot the radar observed Z and ZDR 

respectively. The middle-left panel pictures the retrieved R while the middle-right panel shows the 

retrieved D0. Finally, the bottom row displays the radar-retrieved µ and Λ values, which represent 

the overall shape and slope of each underlying DSD. 

In Figure 14, multiple reflectivity cores with maximum Z above 45 dBZ are observed, each 

corresponding with pockets of ZDR > 1.5 dB, indicating larger drops. Looking at the rain rate PPI, 

the areas of highest rain rate correspond with the reflectivity cores, and there is a sharp increase in 

rain rate from the front edge to the reflectivity cores. As expected, in these areas of local maxima, 

D0 also experiences a slight increase, owing to the presence of a larger range of drop diameters 

being observed in this area. Finally, local minimums of µ and Λ values are observed in the 

reflectivity cores, as these high rain rate DSDs are broad and gentle in slope. At the very front edge 

of the storm, an area of very low Z and high ZDR is observed. This is likely the “big drop” region 

of the storm, where sparse amounts of large drops fell ahead of the reflectivity core. As discussed 

in Cao et al. (2008), the radar retrieval tends to perform poorly in this region of the storm, as the 

retrieval method “expects” these Z and ZDR values to correspond with large numbers of small drops 

instead of small numbers of large drops. Because of this, the retrieval is calculating lower values 

of D0 and larger values of µ and Λ, as it fits a tall and narrow distribution centered at the lowest 

rain diameters. 

In the transition region between convective and stratiform rain shown in Figure 15, there 

is a large decrease in reflectivity, with most Z values between 15-30 dBZ, and very low ZDR values 

of below 0.5 dB are observed. These low Z and ZDR values result in patchy radar retrievals, as the 

retrieval struggles to fit distributions at low ZDR values, due to their irregular shape. R remains 

below 5 mm h-1 throughout the region and and D0 values remain below 1.5 mm. Very high µ and 

Λ values are found throughout this region, with both parameters frequently reaching above 15, 

corresponding with very narrow distributions dominated by small drops. 

The end portion of the large trailing stratiform region is shown in Figure 16. The area 

exhibits reflectivity values that are in-between what was observed in the convective and transition 

regions, with Z values ranging mainly between 30 and 40 dBZ. ZDR values range between 0.5 and 

1.5 dB, about 1 dB lower than what is observed in the regions of strong convection. Rain rate 

remains very low in this region (R < 5 mm h-1), as in the transition region. D0 values range from 

between 1.5 and 2 mm, comparable to D0 values that would be found in areas of weaker convection 
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with higher rain rates. Low µ and Λ values, similar to those found in the convective precipitation, 

are seen throughout the stratiform region, indicating broad distributions. The broad distributions 

observed with the lower rain rates suggests that this area contains low concentrations of large drops 

combined with concentrations of small drops that are lower than what is observed in the convective 

region. This result is consistent with earlier studies such as Tokay and Short (1996), Waldvogel 

(1974) and Bringi et al. (2003). 
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Figure 14. Radar PPI plots from 2159 UTC on 29-Apr-2016 of radar observed reflectivity (Z) 
and differential reflectivity (ZDR) along with radar retrieved values of rain rate (R), median 

volume diameter (D0), DSD shape parameter (µ), and DSD slope parameter (Λ) as the QLCS 
leading edge passes through the domain. 



 
 

 

  

6.0 
75 ZoR 5.5 
70 ' 10 10 

\ ", 5.0 
65 
60 .!:'IPS 2A 4.5 

55 
0.4 cJB 4.0 

0 p so 0 .!:'IPS 1 B 
3.5 7. I 0.3 cJB 

45 
3.0 •,, 40 

-10 
• I 35 -10 2.5 

30 2.0 
ii 25 1.5 28' -20 dBZ 20 -20 

15 
1.0 

10 0.5 

-30 5 -30 0.0 
40 so 60 70 80 40 so 60 70 80 

200.0 
150.0 
100.0 3.5 
75.0 

10 50.0 10 
30.0 3.0 

20.0 
15.0 2 .5 

0 10.0 0 

5.0 2.0 

3.0 
-10 -10 

1.5 

1.0 
1.0 

-20 -20 

0.5 

-30 0.1 -30 0.0 
40 so 60 70 80 2 X lQO 40 so 60 70 80 

18 18 

16 16 
10 10 

14 
14 

12 
u 12 

10 
10 

8 

-10 -10 8 
6 

4 
6 

·20 2 -20 4 

0 2 

-30 - 2 -30 0 
40 so 60 70 80 40 so 60 70 80 

34 

Figure 15. The same as Figure 14, but for 2231 UTC, as the transition between convective and 
stratiform precipitation occurs. 
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Figure 16. The same as Figure 14, but for 2338 UTC, as the trailing stratiform precipitation 
covers the entire domain. 
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ii. IOP 4C – 2016 

A supercell cluster passed through the VORTEX-SE domain in north central Alabama on 

April 30, 2016. The cells exhibited weak rotation as they passed over the PIPS, however, a tornado-

warned storm was reported later in association with the supercell cluster. Precipitation passed 

through the area between 2015 UTC and 2145 UTC; however, the disdrometers were only 

deployed during part of this period. An example radar PPI of Z is shown in Figure 17, along with 

time series of relative humidity, temperature, and wind speed and direction. Radar observations 

for this case were taken from KGWX, which was located 111.9 km away and scanned 1.71 km 

above the PIPS. The cells began as small, scattered cells, but eventually the cells grew in size, 

increased in strength, and began to merge around 2041 UTC. As shown in Figure 17b, a brief 

increase in wind speed was observed around 2120 UTC, as the temperature decreased and relative 

humidity began to level off at ~95%. Comparing this timing to the time series of Z and ZDR over 

PIPS 2B in Figure 18, this increase in wind coincides with the passing of the strongest reflectivity 

core over the disdrometers. 

Figure 17. The same as Figure 10, but for IOP 4C-2016 PIPS 2B. 
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Figure 18. The same as Figure 12, except for PIPS 2B during IOP 4C-2016. 

PIPS 2B collected data as the strongest reflectivity core passed through the area, from 2121 

UTC to 2131 UTC. The time series in Figure 18 shows that peak Z and ZDR values were observed 

at 2124 UTC, with Z reaching a maximum of 45 dBZ and ZDR reaching a maximum of 1.5 dB. The 

maximum D0 values were also observed at this time, peaking at approximately 2 mm. As observed 

during IOP 4B, the broadest DSDs occurred with the strongest reflectivities. Overall, it is seen that 

the disdrometer-estimated Z and ZDR are usually both higher than the radar observed values. The 

largest disagreements occurred in the disdrometer-estimated ZDR while the reflectivity core passed. 

A similar trend was found in the IOP 4B data, as mentioned in the previous section. The best 

agreement between the radar and disdrometer measured polarimetric variables was found after the 

reflectivity core passed. 
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Figure 19. The same as Figure 13, but for PIPS 2B during IOP 4C-2016. 

Figure 19 displays time series of the four main rain parameters over PIPS 2B. All four 

parameters reach maximum values as the reflectivity core passes. The radar-retrieved rain 

parameters again struggle to match the peak values that the disdrometer is observing. Before the 

passing of the reflectivity core, the radar retrieved parameters are larger than what the disdrometer 

was observing. This observation matches the trend of the radar observing larger Z and ZDR than 

the disdrometer before the core, but the disdrometer then estimating larger Z and ZDR than the radar 

as the reflectivity core passes. This leads to the implication that the performance of the radar 

retrievals is dependent on how closely the radar observed and the disdrometer estimated 

polarimetric variables agree. In large part, the differences between radar and disdrometer 

measurements can again be related to the differences in observation frequency. The radar is not 

able to capture the natural variations in the rain physics, while the disdrometer is able to observe 

the rapid fluctuations occurring in the Z and ZDR fields. 
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Figure 20. (a) and (b) Two example bimodal DSDs observed by PIPS 1B during IOP 4C-2016. 
Overlaid are the various fits to the distribution, as in Figure 11. (c) Observed versus retrieved D0. 

(d) Same as (c), but with bimodal distributions removed. 

Figures 20a and b display two bimodal distributions observed by PIPS 1B in an area of 

relatively high Z and very high ZDR. Bimodal distributions might arise from overlapping rain 

shafts in different regions of the storm or at different heights in the same cell (Marshall 1953; 

McFarquhar et al. 1996; Sauvageot and Koffi 2000) Gamma distributions do not represent bimodal 

distributions, as gamma distributions assume a continuous distribution. This results in the gamma 

fits estimating drops in the empty bins between ~2-4 mm. Because of this, the retrieved D0 is more 

than double the disdrometer observed value. To remove bimodal distributions, DSDs where a bin 

is 25% larger than the preceding and proceeding bins for D>2.25 mm are removed. Figure 20c 

shows the D0 results with bimodal DSDs and Fig. 20d shows results with bimodal DSDs removed. 

In Fig. 20d, the largest outliers are removed and the correlation coefficients greatly improve. The 

radar retrieved bias also increases, as the outliers above the line are no longer balancing the 

underestimated values. 
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iii. IOP 4C-2017 

On April 30, 2017, a mature QLCS with several bowed features entered the VORTEX-SE 

domain. The PIPS were deployed near an embedded mesocyclone that was tornado-warned. The 

leading edge of strong convection was followed by a large region of patchy stratiform rain. 

Precipitation was measured by the disdrometers from 1831-2009 UTC. The nearest radar was 

KGWX, which was located 120.0 km from the PIPS, and scanned 1.90 km above the instruments. 

An example PPI plot of reflectivity is presented in Figure 21, along with time series of relative 

humidity, temperature, and wind speed and direction. At 1831 UTC, the leading edge of the QLCS 

first began to pass over the PIPS. This passage is reflected in the time series, as there is a very 

sharp increase in relative humidity and sharp decrease in temperature at this time, as well as a rapid 

change in wind direction. Around 1847 UTC, the precipitation transitioned to stratiform rain, 

which continued to pass over the PIPS until they were picked up at 2009 UTC. 

Figure 21. The same as Figure 10, but for PIPS 1B during IOP 4C-2017. 
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Figure 22 displays the reflectivity, differential reflectivity, and correlation coefficient time 

series over PIPS 1B. Similar trends from the previous IOPs are also found in these time series. 

Reflectivity quickly reaches a maximum value of 50 dBZ, and ZDR reaches a maximum of 1.5 dB, 

as the leading edge passes over PIPS 1B. During the transition period, the data are masked out due 

to the low rain rates observed in portions of the patchy stratiform rain. In the stratiform rain, lower 

NT are observed at all diameters, but D0 reached values similar to those observed during the 

convective rain. Similar to the two other case studies analyzed, the disdrometer-estimated Z and 

ZDR are consistently higher than the values observed by the radar. In this particular storm, the 

disdrometer-estimated ZDR is almost twice as large as what the radar is observing across the entire 

time series. It is expected that this will result in larger disagreements between the radar retrieved 

parameters and disdrometer observed values for this case. 

Figure 22. The same as Figure 12, but for PIPS 1B during IOP 4C-2017. 
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Figure 23 displays the time series of R, W, NT, and D0 for PIPS 1B. Besides D0, all 

parameters reach their maximum values during the convective rain. As mentioned earlier, D0 

reaches similar ranges of values in both the convective and stratiform rain. The radar retrieved R, 

W, and D0 continue to be lower than what the disdrometer observes during periods of strong 

convection. However, the supercell analysis (IOP 4C-2016) showed a greater tendency for the 

radar retrieved parameters to be lower than the disdrometer observations in convective 

precipitation. In stratiform rain, the radar retrieved values of NT, R, and W are larger than what the 

disdrometer is observing, which is similar to what the stratiform region of IOP 4B showed, 

although in IOP 4B the overestimations do not appear to be as large as the discrepancies observed 

in this case. 

As all three cases showed disdrometer estimated Z and ZDR to be consistently higher than 

what the radar observed, it is necessary to look for other possibilities to explain why sometimes 

the radar retrieval results in a majority of under or overestimated rain parameters. When looking 

at all three cases, it is seen that underestimations of radar retrieved R, W, and NT values tend to 

occur during periods of convective rain, while overestimations tend to occur during stratiform rain. 

This might signify a need to create different µ-Λ relations or a slightly different retrieval method 

based on the precipitation mode. 

Figure 23. Same as Figure 13, but for PIPS 1B during IOP 4C–2017. 
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6. CONCLUSION 

In this study, disdrometer data from the 2016 and 2017 VORTEX-SE field programs were 

analyzed and compared with nearby radar observations. Retrievals of DSD parameters from 

polarimetric radar measurements were performed using the constrained-gamma retrieval method. 

In order to perform the radar retrievals, the VORTEX-SE disdrometer observations were used to 

derive a new µ-Λ relation that is specific to the southeastern United States climatology. The new 

relation is compared to previous relations found by Zhang et al. (2001) and Cao et al. (2008). These 

existing relations were derived from rainfall measurements in Florida and Oklahoma, which both 

represent different climatic regimes. Even when using different processing and filtering 

techniques, the Southeast U.S. µ-Λ relation consistently fell between the Florida and Oklahoma 

relations, suggesting that storms in the Southeast U.S. occur in environments that are influenced 

by both the continental, cold rain processes (as in the Great Plains) and maritime, warm rain 

processes (as in Florida). 

The final µ-Λ relation was derived using the SATP method, which sorts DSDs into bins 

that represent DSDs of similar physical properties. Two parameters were used to sort the DSDs: 

rain rate and median volume diameter. These parameters were chosen because they are derived 

from the middle moments of the DSD, which are the moments that are most accurately estimated. 

By averaging similar DSDs together, the effects of sampling errors are assumed to be reduced. The 

truncated moment fit was then used to fit the averaged DSDs with gamma distributions. The 

truncated moment fit resulted in better-fitting gamma distributions, as the method is predicated on 

the assumption that DSDs are observed within a finite range, rather than an infinite range. The µ-

Λ relation was then derived from the averaged DSD of each bin, which helped prevent the relation 

from being dominated by low rain rate DSDs. 

The retrieval method was then performed with this µ-Λ relation. Disdrometer-measured Z 

and ZDR were used to perform initial retrievals in order to validate the methods and accuracy of the 

retrieval method. The disdrometer observations and disdrometer based retrievals of rain 

parameters showed very good agreement, validating the utility of the retrieval method. The µ-Λ 

relation was then used to perform radar retrievals for the entire VORTEX-SE data set. The results 

showed a large amount of scatter, with the largest outliers occurring at lower rain rates. This 

suggests that retrieval methods do not perform as well at lower rain rates, likely because sampling 
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errors are higher and these DSD shapes can differ greatly from the shape of the gamma distribution. 

As rain rate increases, the DSD becomes broader, better matching the shape of the gamma 

distribution. 

Three specific cases (two QLCS cases and one supercell cluster case) are used to further 

investigate the results of the radar retrievals. Time series comparisons of the observed and radar 

retrieved rain parameters show relatively good agreement. Overall, the radar retrieval 

underestimates most rain parameters (relative to the disdrometer observations) during convective 

periods of rainfall, while the opposite is the case during stratiform rain. This suggests that there is 

a need to treat the retrieval differently based on the type of rainfall. Finally, the radar retrieval 

methods can be applied to entire radar sweeps, estimating microphysical parameters at high spatial 

resolutions yet over a much larger-scale than disdrometers are capable of measuring. The ability 

to retrieve microphysical parameters across entire radar sweeps is a valuable application that can 

provide a much more detailed look into the evolution of tornadic storms than what is currently 

available from limited in-situ measurements. 

In the future, larger data sets are needed to increase statistical robustness of the retrieval of 

the µ-Λ relation and to increase the statistical significance of any derived relations. Targeted X-

band radar measurements to compare with disdrometer observations would also be very beneficial 

in future work. X-band radars are able to gather radar data at much higher spatial and temporal 

resolutions, giving them the ability to observe data that would likely be more closely matched with 

disdrometer observations. Continued investigations into the various factors that may impact the 

accuracy of radar retrievals are also needed. Climatic regime, storm type, and storm phase may all 

play an important role in the ability of a retrieval method to accurately estimate microphysical 

parameters across large spatial scales, and methods will need to continue to be fine-tuned based 

on these factors. 
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