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ABSTRACT 

Patil, Adarsh MS, Purdue University, December 2017. Simplified Model for Persistent 
Sliding Contact. Major Professor: Dr. Arun Prakash. . 

Numerous engineering applications involve one or more mechanical components 

that come into contact with each other during operation. Repetitive motions under 

contact can lead to fatigue and wear problems in the components. When designing 

such components, it is important to characterize and quantify the stresses and strains 

in the contacting elements. This can be achieved by numerical simulation of the 

process and by using one of the several contact formulations available in most finite 

element software programs. However, contact is an inherently non-linear problem 

which is rather challenging even for the best commercial software programs currently 

available. Often contact simulations are plagued by issues of high computational 

cost and non-convergence that are highly problem dependent. Further, modeling 

approaches that work for one scenario do not generalize easily for other problems. 

In several applications, one encounters sliding contact that is persistent. In such 

cases, components always stay in contact during operation but slide with respect to 

one another within a small range of motion. An example of such an application is 

the interlock hose where thin strips of sheet metal are coiled together in a way that 

adjacent coils lock with each other to form a flexible hose. This flexible hose allows a 

limited amount of motion between adjacent coils by letting the coils slide with respect 

to each other while always remaining in locked contact. 

In this study, a simplified model is developed for applications with persistent slid-

ing contact. The simplified model utilizes slender spring and membrane elements that 

are stiff in the direction of their orientation but flexible in the transverse direction. 

The stiff response is used to simulate persistent contact and to prevent gaps or pen-



xi 

etration between contacting components and the flexible response is used to create 

a bi-stable mechanism that mimics sliding between the components. The primary 

benefit of this approach is that it is far more computationally efficient than conven-

tional approaches for modeling contact with high fidelity. However, given that it is 

a simplified model, one loses some accuracy in the solution, especially in regions of 

the model that are actually in contact. Nevertheless, this simplified approach and 

conventional high-fidelity contact models produce deformations and stresses that are 

very similar in parts of the model that are away from the immediate region of con-

tact. Several numerical examples are presented to illustrate the simplified model and 

to compare its performance, both in terms of solution accuracy and computational 

cost, to conventional high-fidelity contact models. 
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1. INTRODUCTION 

1.1 A brief history of contact mechanics 

Contact mechanics is the branch of engineering mechanics which deals with the 

study of deformation of solids that touch each other at one or more points (see John-

son [1]). Principles of contact mechanics can be applied in areas such as braking 

systems, tires, bearings, metal-working, electrical contacts, interlocks (discussed in 

this document) and in many more engineering applications. Applications of contact 

mechanics further extend into micro and nano-technology as well. Stresses and deflec-

tions arising from contact between two bodies have practical applications in hardness 

testing, wear and impact damage. Hence it is important to understand the effect of 

contact pressure and tangential tractions on the durability of the components and 

systems. 

The history of contact mechanics dates back to 1882 with Hertz providing his 

paper on frictionless contact of two elastic bodies of ellipsoidal profile. Important 

aspects in contact mechanics are the pressures acting perpendicular to the surfaces 

of the bodies in contact and the frictional stresses acting tangentially between the 

surfaces. The forces perpendicular(normal) to the interface can be divided into com-

pressive and adhesive forces. In the tangential direction, we usually have frictional 

forces. Frictional contact mechanics is the study of deformation of bodies in the pres-

ence of frictional effects whereas frictionless contact mechanics assumes the absence 

of such effects. 

In this document, we focus on persistent sliding contact between two bodies. 

Sliding contact is a special type of contact which allows displacement tangential to 

the contact surface but no relative movement along the normal direction. If there is a 

difference in the components of the linear velocities of the two points in contact, then 
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the two surfaces are said to be sliding [2]. In persistent sliding contact problems, the 

constraints must enforce traction continuity between the two bodies. 

1.2 Problems associated with contact mechanics 

From a computational point of view, contact problems are challenging. Contact 

problems are inherently nonlinear since, prior to contact, boundary conditions are 

given by traction conditions whereas during contact kinematic constraints must be 

imposed to prevent penetration of one boundary through the other. Physically, all 

contact surfaces have some roughness associated with them. Thus, when two bodies 

come into contact, the regions of contact cannot be determined a priori. Usually, 

contact occurs at the peaks of the surface roughness and so the actual area of contact 

is much smaller than the apparent area of contact between two surfaces. So far, it 

has proved difficult both, to experimentally measure this real area of contact, and 

also to theoretically predict it. [3]. 

In contact simulations, the most important aspects of the solution usually are 

resolving the area of actual contact and the stress distribution in the contact regions. 

Depending on the loads, material, boundary conditions, and other factors, surfaces 

can come into and go out of contact with each other in a largely unpredictable and 

abrupt manner [4]. Contact problems must also account for friction, and almost 

all friction models and laws are nonlinear. Even the simple case of non-adhesive, 

frictionless normal contact problem between two linear elastics solids with randomly 

rough surfaces is still a controversial scientific issue [5]. This makes convergence 

in contact simulations very difficult. Furthermore, contact simulations usually are 

computationally very intensive and often can take hours or days even for relatively 

small problems. 
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1.3 Motivation 

Interlocks are used in the manufacturing of flexible hoses which are designed for 

use in post-treatment systems to transfer treated exhaust to the exhaust stack (see 

Fig. 1.1). Applications of flexible hoses include on and off highway commercial vehicle 

exhaust systems and use post-treatment system for buses, trucks, tractors, military, 

construction, forestry, marine, power generation. 

Figure 1.1.: A failed interlock hose 

As seen in Figure 1.2, the cross section of the interlock is made of two S-shaped 

rings attached to each other forming a lock. These cross-sections are revolved and 

constructed spirally to form a hose as shown in Figure 1.1. Contact arises between 

the surfaces of the interlock due to the imperfections in the manufacturing process. 

It is practically impossible to manufacture a completely well polished surface. Hence 

contact arises due to the surface roughness. As marked in Figure 1.3, 2-ring interlock 

has four contact surfaces in total. Contact surface 3 and 4 are active in the fully 

extended and compressed configurations. During the play between the two extreme 
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positions, contact surfaces 1 and 2 are always active. Due to the presence of contact, 

there will be high stress concentrations at the region of contact. Analysis of contact 

stresses becomes a important part in predicting the durability, type of failure of 

interlocks. 

Figure 1.2.: Sectional view of strips of sheet metal forming an interlock 

Contact simulations of these interlocks, even for a much simplified geometry of a 

2-ring interlock with only one active contact surface, prove to be computationally very 

expensive. Convergence with two active contact surfaces even for a 2-ring interlock has 

been found to be very difficult. The non-linearities and computational cost of solving 

a full multi-ring interlock with all active contact surfaces is practically impossible. 

Hence there is a strong need to develop a simplified model(without contact) which 

predicts the approximate contact stresses. 
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(a) Interlock play (b) Extended state (c) Compressed state 

Figure 1.3.: Contact pairs in interlock 

1.4 Problem statement 

The primary objective of this research is to formulate a simplified model for per-

sistent sliding contact to achieve fast convergence and reduce simulation run time 

for problems involving sliding contact. The simplified models replace the problem of 

searching and resolving contact along sliding surfaces with flexible bi-stable mecha-

nisms that mimic the underlying behavior. The parameters of the simplified models 

are calibrated to reproduce deformation and stresses obtained from pure contact mod-

els. Finally, the performance of these simplified models is compared to conventional 

high-fidelity contact models, both in terms of solution accuracy and computational 

cost using several numerical examples. 
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1.5 Approach 

Two approaches have been proposed to develop the simplified contact model. 

The first uses spring elements in a cross pattern and is suitable for primarily two-

dimensional problems. The other approach uses membrane elements between surfaces 

in three-dimensions. Both the approaches use the concept of bi-stable configurations 

of the spring and membrane elements to mimic the limits of sliding motion. The 

orientation of the springs in the cross pattern and the membrane elements is chosen 

such that these simplified contact devices are very stiff in the direction of normal 

contact and very flexible in the direction of tangential contact. 

The stiffness, geometrical dimensions, and the material properties of the spring 

and membrane elements affect the accuracy of the simplified contact models. For both 

approaches, multiple combinations of these parameters were run to find their optimal 

values. Benchmark problems in persistent sliding contact are used to understand the 

behavior of these simplified models which approximately depict the interlock behavior. 

Results from the simplified models are compared to those from pure contact models. 

Simplified contact models for a 2-ring interlock hose were developed compared to pure 

contact models. 
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2. BACKGROUND 

2.1 Mathematical Formulation 

As stated in Chapter 1, Hertz was the first to provide solutions to contact problems 

and hence traditional mechanics of contact problems is affiliated with Hertz. Mainly 

Hertz produced simple solutions for elastic contact problems without adhesive forces. 

Hertzian contact stress describes the stress near the contact area of the two bodies in 

contact. 

Non-adhesive contact assumes that there is no tension force within the contact 

area, i.e., no adhesive force is required to separate the contacting bodies. When two 

elastic bodies are in contact, the area of contact between the two bodies and depth of 

indentation are calculated using this theory of contact mechanics. The contact theory 

developed by Hertz is used in numerous practical situations of which main five cases 

are listed below. 

1. Case where a spherical body is in contact with an elastic half space. 

2. Two spherical bodies in contact 

3. Case where two cylindrical bodies with parallel axis are in contact 

4. Case where a rigid cylinder is in contact with an elastic half-space 

5. Case of a rigid conical indenter in contact with an elastic half space 

The contact pressure profile p(r), as described by Hertzian theory, is given by p 
p(r) = p0 1 − (r/a)2 , r < a (2.1) 

where p0 is the peak contact pressure, r is measured from the mid point of contact 

area, and a is the distance between the mid point and end point of contact area as 



p(r) 

/ p 

0Pressure Profile 

r -a 

8 

shown in Figure 2.1. Equation 2.1 describes the depression produced on the surface 

of one of the bodies in contact as a parabola. The basic equations in Hertz contact 

theory are provided below along with the self explanatory diagrams. 

Figure 2.1.: Hertz contact (Source - [6]) 

Depth at center δ is given by 

(1 − ν2)π 
δ = poa (2.2)

2E 

where ν indicates Poisson’s ratio and E indicates Young’s modulus. Curvature 
R 
1 is 

given by 
1 (1 − ν2)πpo 
= (2.3)

R 2Ea 

Resultant force P is given by Z 
P = 

a 

p(r)2πrdr =
2 
πa2 po (2.4)
30 

Later, multi-asperity models were developed. [7]. The basic assumptions made in 

developing these models include neglecting bulk deformation, considering the defor-

mations produced in the contacting bodies to be linearly elastic and isotropic. One 

such important model is Greenwood and Williamson model. As per this this model, 

when the asperity heights are distributed as per Gaussian theory,the area of contact 
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is approximated to be varying linearly in the normal force, elastic deformation is 

consistent with the Coulomb friction. Figure 2.2 describes the variation of mean real 

pressure with load. The real pressure changes by a only a factor of 2 when the load 

undergoes a change by a factor of 105 . 

Figure 2.2.: Greenwood and Williamson model (Source - [6]) 

Several modifications were made to Greenwood and Williamson model importantly 

incorporating plastic deformation and adhesion. When adhesion is considered, Van 

der Waals forces play an important role. These forces are characterized by surface 

energy (γ) and the work of adhesion (4γ). The work of adhesion (4γ) when two 

bodies A and B are in contact is given by 

4γ = γA + γB − γAB (2.5) 

where γA is the surface energy of body A, γB is the surface energy of body B and γAB 

is the surface energy at the interface between bodies A and B. 

Several models were proposed for adhesive contact. A brief note on the models is 

included in this paper. 
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2.1.1 Bradley model of rigid contact 

When two bodies are in contact, the attractive interaction forces between the bod-

ies produces some elastic deformations. These deformations are neglected in Bradley’s 

model of rigid contact. It is a pure Vander Waals model. [8]. It is considered between 

two rigid spheres as shown in Figure 2.3. 

Figure 2.3.: Bradley model (Source - [6]) 

The force Ppull−off required to overcome the adhesion is given by 

1 1 1 
= + , Ppull−off = 2π4γR (2.6)

R R1 R2 

the radius of sphere 1 is given by R1 and the radius of sphere 2 is given by R2 and 

the work of adhesion between the two bodies is given by 4γ. 

2.1.2 Johnson-Kendall-Roberts (JKR) model of elastic contact 

JKR model includes the effect of elastic deformation. Unlike the Bradley model, 

the JKR model includes the effect due to the forces arising due to the inter facial 

attraction between the bodies. In fact the area of contact, the forces due to inter facial 
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attraction and the elastic material properties of the bodies in contact are correlated 

by this theory. The effect due to adhesive forces which are only assumed in the region 

of contact is considered as surface energy only but the adhesive stresses are neglected 

in the separation zone. Stresses tend to infinity around the contact area and within 

the region of contact, the stresses become compressive in nature at the center and 

tensile in nature at the ends. 

(a) Graph (b) Physical arrangement 

Figure 2.4.: JKR model (Source - [6]) 

The force Ppull−off required to overcome the adhesion is given by 

Ppull−off = 1.5π4γR (2.7) 

2.1.3 Derjaguin-Muller-Toporov (DMT) model of elastic contact. 

The DMT model assumes The forces due to attractive interaction between the two 

contacting bodies are considered in DMT model. In addition to JKR model, DMT 

model also considers the effect of these forces outside the area of contact in addition 

to the contact profile as in Hertzian contact. Therefore the stresses remain tensile 

even outside the region of contact but inside they still follow Hertzian profile. [9] 
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Figure 2.5.: DMT model (Source - [6]) 

The force Ppull−off required to overcome the adhesion is given by 

Ppull−off = 2π4γR (2.8) 

2.1.4 Maugis-Dugdale model of elastic contact 

This model modifies the limitations of JKR and DMT model. In 1977, Tabor 

introduced the non-dimensional parameter called as Tabor parameter. This theory 

is developed by including the attraction forces due to interaction as described by 

Lennard-Jones between the two contacting bodies outside the region of contact and 

a modified JKR theory inside the contact region. Thus, the resulting MaugisDugdale 

model spans the ranges between the JKR and DMT regions over the range of Tabor 

parameter. [10]. 

With the development and need to solve contact problems regularly in engineering 

practice, achieving contact solutions using boundary value problems came into use. 

As mentioned in [1], two conditions must be satisfied for using this method. The 

significant dimensions of the area of contact between the contacting bodies must be 

small in comparison with 

1. The dimensions of the bodies in contact 

2. The relative curvature radius of the contacting surfaces 
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Over the last two decades, a major development towards solving contact problems 

by mathematical programming has been introduced. There has been much research 

in using Finite Element techniques in solving contact problems. In these techniques, 

the potential energy is minimized with constraints applied to solve contact prob-

lems. Mathematical programming (linear/quadratic methods) is used to formulate 

this minimization problem. 

2.2 Governing equations and constraints in contact mechanics 

The important factor in contact problems is there is the two contacting bodies 

do not undergo penetration with respect to each other. Not all the points on the 

contacting surfaces will be in contact. Any point on the contact surface will either 

be in contact or not in contact. Therefore the gap(gN , where ’N ’ indicates the 

normal direction) between points on the two bodies becomes an important factor. 

The formulation of these constraint equations is done at the region of contact Another 

important factor is the contact pressure(pN ). Contact pressure is present only if there 

is contact between the points on the two bodies. The condition of no contact between 

the bodies is given by 

gN > 0, pN = 0 (2.9) 

and the condition of contact between the two bodies is given by 

gN = 0, pN > 0 (2.10) 

gN pN = 0 (2.11) 

Combining Equation 2.9, Equation 2.10 and Equation 2.11 forms the basis for treating 

contact with frictionless condition. This set of equations is called as Hertz–Signorini-

Moreau condition. 

When the contacting bodies have linearly elastic material properties, a unique 

solution can be obtained including these inequalities. Fichera (1964, 1972) [11]. Since 

then there has been much advancement for the other categories of contact problems. 
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[12]. Also, it should be noted that these inequalities show the tendency of contact 

stresses towards zero as we move to the end of contact region. Johnson observed this 

while studying the asymptotic fields at the region where the contact is ending. 

Additional conditions will be introduced if there is friction between the contacting 

bodies. Friction adds to the nonlinearity of the problem and complicates the proof 

of existence and uniqueness. Any point in contact can either be in stick or slip 

conditions. Stick is a state where there is no tangential movement of the points in 

contact and slip is a state where a point in contact moves in the tangential direction. 

Therefore the relative displacement between the two points in contact(gT ), where 

’T ’ indicates the tangential direction defines the stick or slip states. Stick state is 

represented by 

gT = 0 (2.12) 

Slip state is represented by 

gT 6= 0 (2.13) 

These are the basic relations representing contact. More complex functions can be 

derived to represent contact and different parameters but those are not discussed 

here. Further equations related to sliding contact are discussed briefly in the following 

sections. 

As quoted in [13] the Coulomb law states that “The contacting surfaces start to 

move relative to each other once the tangential forces (tT ) exceed a minimum thresh-

old.” The case where there is relative tangential movement between the contacting 

surfaces is known as sliding. This can be expressed mathematically as 

tT = −µ | pN | 
ġT 

if k tT k> µ | pN | (2.14)
k ġT k 

where µ denotes the sliding friction coefficient, ġT denotes the relative sliding velocity, 

pN is the normal component of contact pressure. The calculated frictional stress 

(fs) in sliding using Coulomb’s law is very high and hence there some limitations. 

Therefore, a threshold value is developed in most practical cases to limit this frictional 

stress. 
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fs(tT ) =k tT k −h ≤ 0, h = min(µ | pN |, Yo) (2.15) 

Or, 
Ar

h = βYo, β = (2.16)
Aa 

where, material elastic limit is described a constitutive parameter Yo Ar and Aa are 

the real and nominal area of contact of the contact surface. The amount of flatten of 

the asperities according to the normal component of contact pressure is given by the 

factor β. Equation 2.14, Equation 2.15and Equation 2.16 are collectively taken from 

Coulomb-Orowan law [14] and Shaw law. But the Shaw law is more convenient for 

numerical purposes as it provides a smooth relation between tangential stress and nor-

mal component of contact pressure. In addition to these depending on the tangential 

stress and the normal component of contact pressure, there are few more non-linear 

relations which provide a smoother transition. The set of equations performing this 

can be obtained from [15], [16] or [17]. Furthermore, in several practical cases, the 

variation of coefficient of friction µ with the changing contact area is considered. 

µ = µ(J) (2.17) 

where, J is the Jacobian in transforming the area elements. As mentioned in [18], 

Coulomb’s friction law can be described by the relation 

da = J dA, tT = −µ(J) | pN | 
ġT 

(2.18)
k ġT k 

where, ġT is the time derivative of gT 

∂gT 
ġT = (X, t) (2.19)

∂t 

The slip function can be explained by developing a super ellipse to simplify the 

notations. This was developed by Mroz and Stupkiewicz. 

tTx tTyfs(pN , tTx , tTy ) = (| |n + | |n)n 
1 
− pN ≤ 0 (2.20) 

µx µy 
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where the tangential stress in the x-direction is given by tTx and by tTy in the 

y-direction. The elliptical form is characterized by a parameter n. which can found 

in [19]. Another technique of developing contact equations is computational homog-

enization which is achieved through numerical simulation. A Representative Volume 

Element (RVE) is developed to include the real area of contact. It involves several 

computational simulations to achieve a statistically representative equation. 

A major advancement in the recent decades in solving contact problems is by 

formulating boundary value problems. The resulting boundary value problems which 

are non-linear in nature are analyzed and solved by a technique known as Finite 

Element method. Since these non-linearities bring complexity into the problem, weak 

forms have to be developed to solve them. 

Derivation of equations is in itself is a whole chapter. So, a brief note on the 

important equations is discussed in this paper. 

The equations used in linear elasticity are as follows., the state of equilibrium is 

described by 

Div σ + f = 0, �(u) = 
1
(ru + r T u), σ(u) = C�(u) (2.21)
2 

where σ denotes stress tensor, f the body forces, � the strain field, u is the 

displacement field, C is used to denote the elasticity tensor. The Dirichlet conditions 

which are the boundary conditions imposed on the displacement are given by 

u = 0 on τu (2.22) 

The Neumann conditions which are the boundary conditions imposed on tractions 

are given by 

σn = t on τσ (2.23) 

where n is the outward normal from the surface and t is the imposed traction on τσ. 

When contact is present, the following conditions apply, 

uN − g ≤ 0, pN ≤ 0 on τc, (uN − g)pN = 0 (2.24) 
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where uN is the normal component of the displacement field and pN is the contact 

pressure. This is Signorini’s problem which can be found in [11]. 

uN = u.n and pN = t.n (2.25) 

In a space V, where V denotes the vector valued real functions [20], the virtual 

displacement v satisfies the condition 

v = 0 on τu (2.26) 

The contact condition 

vN − g ≤ 0 ∀ v ∈ V with vN = v.n (2.27) 

Assuming u to be the solution for Signorini’s problem, weak form to Equation 2.27 

can be stated as Z Z Z Z 
σ.�(u−v)dV = f .(u−v)dV + t.(u−v)dτ + pN (u)(uN −vN )dτ (2.28) 

B B τσ τc 

where σ = σ(u) as stated in Equation 2.21, f indicates the body forces and t indicates 

the boundary tractions. The last term of Equation 2.28 can be written as 

pN (uN − vN ) = pN (uN − vN + g − g) = pN (vN − g) ≥ 0 (2.29) 

The solution thus defined collectively by Equations 2.25, 2.26, and 2.27 has to fulfill 

the inequality 

Z Z Z 
σ.�(u − v)dV ≥ f .(u − v).dV + t.(u − v)dτ (2.30) 

B B τσ 

Thus a variational inequality is attained due to the presence of contact constraints 

which provides the solution to Signorini’s problem. Hence the problems involving 

contact are nonlinear. This is due to the inequality constraint imposed on the dis-

placement field. Therefore to solve Equation 2.30, complicated algorithms have to 

be developed. This can also be reformed in a more abstract way which is usually 

used in theoretical and mathematical steps used in solving contact problems. The 
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inequality stated in Equation 2.30 is for frictionless contact. When there is friction, 

the problem becomes even more complicated. There are constraints in the tangen-

tial direction in addition to the inequality constraints in the normal direction in case 

of friction. It is characterized by sudden change of from stick slip. Thisstate to 

leads mathematical difficulties. A detailed information variational to even more on 

inequalities mentioned be found in [12], [21], [22] [20].can or 

2.3 Discretization 

There certain methods in which the discretization of the surfacecontact are a 

be achieved. But discretization of the surface using isoparametrization contact can

is discussed here. The involves isoparametric mapping. This theconnectsprocess 

1 2surfaces ∂B and ∂B the region.at contact 

II 

Isoparametric interpolation is used to discretize the gap function gN . I is used to 

denote the nodes present on the surface of the isoparametric elements. 

X 
gN = NI (ξ, η)gNI , X 

I 

NI (ξ, η)(η
2 − η1 1δgN ) · n (2.31)= 

XI 

2 1 1ΔgN = NI (ξ, η)(Δu − Δu ) · n ,I I 
I 

where ξ and η are the coordinates. 

The discretized surface of body B1 has a normal vector (n1) which is given by 

G1
1 × G1 

n 1 = 2 (2.32)
k G1

1 × G1
2 k 

1where Gα 

1Gα 

sition vector (X,ξ 
1 ) partially with respect to the undeformed (initial) configuration, 

are the tangential vectors. These are calculated by differentiating po-

= X1 i.e. with coordinates ξ and η. Therefore the contact normal becomes ,ξ 

1 X,ξ 
1 × X,η 

1 

n = (2.33)
k X1 × X1 k,ξ ,η 
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The position vector X1 is approximated by 

mX 
X1 = NI (ξ, η)XI 

1 , (2.34) 
I=1 

The derivatives (X1 ),i,α 

mX 
X1 = NI (ξ, η),αXi 

1 
I , (2.35)i,α 

I=1 

Evaluating Equation 2.33 leads to ⎧ ⎫ 
X1 X1 X1⎪ 3,η − X1

2,η⎪ 

N 1(ξ, η) = X1 = X1 X1 − X1 X1 . (2.36) 
⎨ 2,ξ 3,ξ ⎬ 

,ξ × X,η 
1

3,ξ 1,η 1,ξ 3,η ⎪ ⎪⎩ ⎭X1 X1 X1 
1,ξ 2,η − X2

1 
,ξ 1,η 

Introducing the vectors ⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎨η2⎬ ⎨ 2⎬ ⎨ N 1 ⎬ΔuI I Iˆηc I = Δuc I = and N = (2.37)⎩ ⎭ 
, ⎩ 1⎭ ⎩ ⎭η1 Δu −N 1 

I I I 

Gap function variation and linearization are obtained X 
δgN = ηc

T 
I [NI (ξ, η)N̂ (ξ, η)/ k N 1 k] 

I 

, X 
ΔgN = [ NI (ξ, η)N̂ (ξ, η)T / k N 1 k]Δuc I (2.38) 

I 

In addition to Equation 2.38, discretization for Lagrange multipliers and its vari-

ation are obtained. NI and MK are the shape functions. X X 
λN = MK (ξ, η)λNK and δλN = MK (ξ, η)δλNK (2.39) 

K K 

Equation 2.36 contributes to the contact part of the weak form. The weak form 

in equilibrium condition is obtained as Z nX 
λδN gN dΓ ≈ ηc

T 
I G

u
c I (2.40) 

Γ e 
c I=1 
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where, Z +1 Z +1 

Gu
c I = λN (ξ, η)NI (ξ, η)N̂ (ξ, η)dξdη. (2.41) 

−1 −1 

The area element dΓ = k X,ξ 
1 × X,η 

1 k dξdη = k N 1 k dξdη. Γc
e is the contact 

surface. Further the weak form is developed as Z nX 
δλN gN dΓ ≈ δλN K Gc

λ 
K (2.42) 

Γe
c I=1 

where, ZZ +1 +1 

Gλ
c K = MK (ξ, η)gN (ξ, η) k N 1 k dξdη. (2.43) 

−1 −1 

In matrix form, Equation 2.40 can be expressed as ⎧ ⎫ 
GuZ ⎪ c1 ⎪⎨ ⎬ 
.

λN δgN dΓ ≈ hηc
T 
1, · · · , ηc

T 
1i .. , (2.44) 

Γe
c ⎪ ⎪⎩ ⎭Gu 

cn 

and Equation 2.42 can be expressed as ⎧ ⎫ 
GuZ ⎪ c1 ⎪⎨ ⎬ 
. .δλN gN dΓ ≈ hδλN1, · · · , δλNmi . , (2.45) 

Γe
c ⎪ ⎪⎩ ⎭Gu 

cm 

Linearization of Equation 2.40 and Equation 2.42 Z n mXX 
λN δgN dΓ ≈ ηcI

T CIK ΔλNK (2.46) 
Γe
c I=1 K=1 

where, ZZ +1 +1 

CIK = MK (ξ, η)NI (ξ, η)N̂ (ξ, η)dξdη. (2.47) 
−1 −1 

and 

Z n mXX 
δλN gN dΓ ≈ δλNK CKI ΔuI (2.48) 

Γe
c I=1 K=1 
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with CKI = CT The full matrix form of linearization for one contact element,IK . ⎫⎧ 
Δu1 

. . . 

Δun 
⎪⎬⎪⎨ 

hηT · · · , ηT , δλN1, · · · , δλNmiKLM 
c1, e , (2.49) 

ΔλN1 

. . . 

ΔλNm 
⎪⎭⎪⎩ 

with stiffness matrix of element (Ke
LM ) 

⎤⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

C11 · · · C1m 

. . . . . .0 . . . 

C11 · · · C1m 

CT CT· · · 11 n1 
. . . . . . . . . 0 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

KLM 
e = (2.50) 

CT · · · CT 
1m nm 

where m denotes the total nodes used for interpolation, n varies with shape func-

tions. 

2.4 Verification 

The commercial software program, ANSYS, is used for contact simulations in 

this study. Two simple problems are analyzed first for understanding the contact 

capabilities in ANSYS. 

2.4.1 Sliding contact between two cubes 

In this example, two cubes of different sizes are taken with the smaller cube sliding 

on top of the larger cube as shown in Figure 2.6. The bottom face (A) of lower cube 

is fixed, the top face (B) of upper cube is pushed down to bring both the cubes in 

contact and then the top cube is pushed back and forth to allow sliding between the 
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cubes. The properties of the cubes, boundary conditions, mesh details and the results 

are given in Table 2.1. The deformed shapes and equivalent stress plot of the cubes 

are shown in Figure 2.7. 

Figure 2.6.: Two cubes in persistent sliding contact 

(a) Cube - Deformed shape (b) Cube - Equivalent stress 

Figure 2.7.: Cube results 
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Table 2.1.: Properties of two-cube contact model 

Properties 

Lower cube Upper cube 

Length X 10 in. 8 in. 

Length Y 10 in. 8 in. 

Length Z 10 in. 10 in. 

Volume 1000 in3 640 in3 

Contact Frictional with friction coefficient 0.1 

Mesh 

Method Tetrahedrons 

Element Size 1 in. 

Relevance center Coarse 

Behavior Soft 

Algorithm Patch confirming 

Nodes 21906 

Elements 14661 

Analysis settings 

Number of steps 2 

Initial sub steps 10 

Minimum sub steps 10 

Maximum sub steps 20 

Boundary 

conditions 

Lower Cube- Bottom 

face is fixed 

Upper Cube-Top face displacement 

Steps Time(s) X(in) Y(in) Z(in) 

1 0 0 0 0 

1 1 0 -0.06 0 

2 2 3 -0.06 0 

Results 

Total Deformation (in) 
Minimum Maximum 

0 0.77 

Equivalent(Von-Mises) 

stress(psi) 

Minimum Maximum 

696.01 29697 

Directional deformation 

(X-axis)(in) 

Minimum Maximum 

-7.15E-5 3 

Directional deformation 

(Y-axis)(in) 

Minimum Maximum 

-0.06 0 

Shear stress(psi) 
Minimum Maximum 

-3699.6 12416 
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2.4.2 Cantilever beams in contact 

Contact conditions in interlock hoses resembles that of contact between two can-

tilever beams sliding with respect to each other. The resemblance of two cantilever 

beam model to interlock is shown in Figure 2.8 and Figure 2.9. Considering the encir-

cled part and activating the contact surface 1, the corresponding boundary conditions 

are applied to the two cantilever beams. The physical problem and the setup of the 

models are described in the following sections. 

This model consists of two cantilever beams, one on top of other with initial overlap 

as shown in Figure 2.9. Vertical and horizontal displacements are given to the far 

end faces of the beams. The displacements are provided in opposite ’y’ directions as 

shown in Figure 2.9 to the faces ’A’ and ’B’. The details of the model are provided 

in Table 2.2. The deformation and equivalent stress plots are shown in Figure 2.10. 

Figure 2.8.: Verification of contact capabilities in ANSYS 
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Table 2.2.: Properties of two-cantilever beam contact model 

Properties 

Lower beam Upper beam 

Length X 120 in. 120 in. 

Length Y 10 in. 10 in. 

Length Z 10 in. 10 in. 

Material Structural steel 

Contact Frictionless 

Mesh 

Method Tetrahedrons 

Element Size 4 in. 

Relevance center Coarse 

Behavior Soft 

Algorithm Patch confirming 

Nodes 5562 

Elements 3266 

Analysis settings 

Number of steps 60 

Initial sub steps Were varied for different steps 

Minimum sub steps Were varied for different steps 

Maximum sub steps Were varied for different steps 

Boundary 

conditions 

Displacement(in) X Y Z 

Upper beam 0 -59.5 0 

Lower beam 0 59.5 0 

Results 

Equivalent(Von-Mises) 

stress(psi) 

Minimum Maximum 

3771.8 2.045E+6 

Directional deformation 

(X-axis)(in) 

Minimum Maximum 

-24.326 24.33 

Directional deformation 

(Y-axis)(in) 

Minimum Maximum 

-0.5 0.5 

Shear stress(psi) 
Minimum Maximum 

-5.356E+5 5.356E+5 

Figure 2.9.: Two cantilever beams in sliding contact: boundary conditions 
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Figure 2.10.: Two cantilever beams in sliding contact: Von-mises Stress and defor-

mation results 

Having verified certain basic contact capabilities in ANSYS using the simple ex-

amples described in this section, we focus next on developing simplified models for 

persistent sliding contact in the next chapter. 
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3. SIMPLIFIED MODELS FOR PERSISTENT SLIDING 

CONTACT 

Since sliding contact is a highly non-linear problem, it is difficult to simulate such 

problems even the best available software programs, such as ANSYS. In this research, 

we come up with a simplified model for persistent sliding contact by avoiding the 

searching and resolution of contact (as is done in conventional contact formulations), 

and instead simulating the effect of contact using flexible bi-stable devices. Two dif-

ferent approaches are proposed (for 2D and 3D problems) to develop these reduced 

simplified models to eliminate contact and speed up the computation. The basic 

idea is to avoid penetration (or gaps) between two sliding bodies (without explicitly 

modeling contact), but to allow relative movement between them. Comparisons be-

tween the actual contact and simplified contact models are made using stress and 

deformation plots and quantitative stress profiles. 

3.1 Bi-stable spring mechanism for 2D persistent sliding contact 

For two-dimensional problems, spring elements are used in a cross-pattern to con-

struct a ‘fictitious contact device’ that has two stable configurations. When two 

springs are arranged as shown in Figure 3.1, there is high resistance to the vertical 

motion of node A, but very small resistance to its horizontal motion. When a hori-

zontal load is applied at point A as shown in Figure 3.1, the springs flip with relative 

ease and reach the other stable configuration. 
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Figure 3.1.: Bi-stable spring mechanism 

3.1.1 Behavior of the bi-stable spring mechanism 

Consider Figure 3.1, the springs are arranged in such manner as to achieve an ob-

tuse angle θ between them. When a horizontal force is applied at point A, the springs 

follow a minimum energy path and flip to reach the other stable (stress free) config-

uration. The maximum stress state of the springs is reached when the springs are at 

the middle of the path i.e. when the angle between the springs is 180◦ . Therefore 

this mechanism of two stress free states is called as bi-stable spring mechanism. 

This concept is used to replicate the behavior of persistent sliding contact between 

two bodies. Consider a situation where there is persistent sliding between two bodies 

in the horizontal direction and resistance to vertical penetration due to presence of 

contact. The arrangement of springs as in Figure 3.1 allows movement in the hor-

izontal direction and provides resistance to the vertical motion. This is explained 
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through graphs by plotting force-deformation curves for forces in the x and y direc-

tions. Between the two stress free states, we need relatively much smaller forces in the 

x-direction and obtain comparatively higher forces in the y-direction. A simulation 

was run by creating a physical model as in Figure 3.1. Initially point A was pulled 

in the positive x-direction and pushed towards other flipped state and further. 

(a) Force in x-direction 

(b) Force in y-direction 

Figure 3.2.: Spring Force-deformation plot 
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Consider Figure 3.2(a), the two stable configurations are achieved at point A and 

point B. It is evident that there is lesser horizontal force needed to move between 

points A and B and this can be used to model any frictional resistance to sliding 

contact, while the resistance to move beyond points A and B increases rapidly which 

represents the limits of the sliding movement. Therefore the distance between the 

points A and B is the amount of sliding allowed. The amount of force needed and 

the amount of sliding permitted can be altered by varying the geometry and stiffness 

of the springs as needed. From Figure 3.2(b), between points A and B, one may 

also note that the vertical force is four times higher which represents resistance to 

penetration in normal contact. Beyond points A and B the direction of force changes 

but that is not our area of interest. This mechanism is used to develop a simplified 

contact model for two-dimensional problems as discussed next. 

3.1.2 Sliding contact between two cantilever beams in 2D 

In this section, the bi-stable spring mechanism is used to construct a simplified 

contact device for the benchmark problem of two cantilever beams in sliding contact. 

As shown in Figure 3.3, this system has two cantilever beams with an initial gap of 

0.001 in. This system was tested by providing vertical displacements to the far end 

faces (points A and B) in Figure 3.3 of the beams so that they slide against each 

other and separate. The objective of this test was to understand the range of vertical 

displacements the simplified model can model. 

Figure 3.3.: Cantilever beams in sliding contact: boundary conditions 
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The simplified contact model consists of two cross elements which form the sup-

porting structures for two sets of the bi-stable spring mechanism as shown in Figure 

3.4. The cross elements are assigned very stiff material properties to restrict their 

deformation. Springs are connected to the cross elements in way to make them very 

stiff in the y-direction and allow sliding in the x-direction. The arrangement of cross 

elements and springs is similar to the one explained earlier in section 3.1. 

(a) Single cross element (b) Two cross elements (c) Cross elements with 

bi-stable springs 

Figure 3.4.: Simplified contact device: cross elements and bi-stable spring mechanism 

The attachment of the simplified contact device to the cantilever beams is shown 

in Figure 3.5. The horizontal bar of one of the cross elements is attached to the 

contacting surface of one of the beams to replicate stresses due to contact with the 

other beam in that region. The horizontal bar of the other cross element is attached 

to the opposite contacting surface of the other beam. Note that there is a small offset 

in the vertical position of the two horizontal legs of the cross elements. This offset 
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enables the attachment of the lower cross element to the bottom (contacting) surface 

of the top beam and the attachment of the upper cross element to top (contacting) 

surface of the bottom beam. This type of arrangement achieves the desired sliding 

contact behavior (while not having to model contact explicitly). The cantilever beams 

can slide with respect to each other relatively easily in the horizontal direction, while 

their relative vertical motion is resisted by the bi-stable springs in the cross pattern. 

Note also, that since the device has two sets of bi-stable springs, there are actually four 

stress-free stable configurations of the system. Details of the geometry and material 

properties for the pure contact model are provided in Table 3.1. 

(a) Cross element attached to one beam 

(b) Complete arrangement of the simplified contact device 

Figure 3.5.: Simplified contact device attached to two cantilever beams 
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Table 3.1.: Geometric and material properties of sliding cantilever beams model 

Boundary 

conditions 

Lower 

beam 

Upper 

beam 

Length 

X 

0.48 in 0.458 in 

Length 

Y 

0.011 in. 0.011 in. 

Length 

Z 

0.011 in. 0.011 in. 

Material 

properties 

Material Structural steel 

Youngs modulus 2.9E+07 psi 

Poissons ratio 0.3 

Behavior Isotropic elastic 

Contact Frictionless 

Mesh 

Method Quadrilateral 

dominant 

Element size 0.00275 in 

Nodes 4938 

Elements 1406 

Analysis 

settings 

Number of steps 38 

Initial sub steps 20-200 

Minimum sub steps 20-200 

Maximum sub steps 500 

Boundary 

conditions 

Displacement X Y Z 

Case i 
Edge A 0 in -0.06 in 0 

Edge B 0 in 0.06 in 0 

Case ii 
Edge A 0 in -0.1in 0 

Edge B 0 in 0.1 in 0 

Case iii 
Edge A 0 in -0.24 in 0 

Edge B 0 in 0.24 in 0 

For the simplified contact model, different values for the properties of the spring 

elements were considered. These are listed in Table 3.2. 
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Table 3.2.: Cantilever beams 2D - cases considered 

Case no. Spring 

stiffness 

(lbf/in) 

Stiffness of 

cross ele-

ments/beams 

Mesh 

size(in) 

Dimensions of cross ele-

ments(in), Horizontal x 

vertical 

1 20 101 0.00275 0.0715 x 0.3575 

2 20 102 0.00275 0.0715 x 0.3575 

3 20 103 0.00275 0.0715 x 0.3575 

4 100 101 0.00275 0.0715 x 0.3575 

5 100 102 0.00275 0.0715 x 0.3575 

The results obtained from the five cases above were compared to those from the 

pure contact model and it was found that values in case 3 matched very well to 

the pure contact solution. Deformation and Von-Mises stress plots obtained from 

case 3 of the simplified contact model and the pure contact model are presented in 

Figure 3.6. It is evident that the deformation and stress response of the simplified 

contact model is very similar to that of the pure contact model at a fraction of the 

computational cost. The beams undergo bending in an expected manner and the 

springs flip facilitating the sliding between the beams. The simple cantilever beam 

2D pure contact model with 4938 nodes consumed about 8-hours to simulate whereas 

the simplified model with even more number of elements due to the addition of cross 

elements consumed about 30 minutes to converge. 



~

J.5237,5 
2,1407,5 
2.349,5 
l.566t5 
U 724e5 
97883 
65255 
32628 
0 

?.41~Qp~Mn 
2.4068e5 
2.0629e5 
1.891,5 
1.7191, 5 
l.5472e5 
l.3753e5 
l.2034e5 
l.0315e5 
85956 
68764 
51573 
34382 
17191 
0.038386 Min 
0 

5.122le5 
4.6983,5 
4.3068,5 
3.9152e5 
3.5237e5 
2.7407e5 
2.3491,5 
l.5661e5 
L1746e5 
97883 
78307 
58730 
39153 
19577 
0 

2A159e5 
2 4C68e5 
2.2217e5 
2.0365e5 
1.8514e5 
1.S662e5 
1.4811e5 

1.296e5 
1.1108e5 
92569 

74055 ------55542 
37028 
18514 
0.0081 795 

5.1221e5 
4.6983e5 
4.3C68e5 
3.9152e5 
3.5237e5 
2.7407e5 
2.349e5 
1.566e5 
1.2724e5 
97883 

65255 
32628 

35 

(a) contact - early state (b) simplified - early state 

(c) contact - midway (d) simplified - midway (partial flipping) 

(e) contact - final (f) simplified - final (total flipped) 

Figure 3.6.: Two sliding cantilever beams in 2D: Comparison of deformed shapes for 

pure contact method and simplified contact method at different stages of loading 

A closer comparison of the results from the two models was conducted by devel-

oping the contact stress profile along a line of nodes shown in Figure 3.7. Nodes are 

selected starting from point ’O’ and going left by 0.16 in. up to point ’P’. Considering 

point ’O’ as the origin, the minimum principal stress is plot at each of the selected 
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nodes in Figure 3.8. The stress profile along the contact edge is found to be very 

similar for the pure contact and case 3 of the simplified contact models. 

Figure 3.7.: Line of nodes chosen for comparing contact stresses on the upper can-

tilever beam 
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(a) At y-displacement 0.06 in 

(b) At y-displacement 0.1 in 

Figure 3.8.: Comparison of stress profiles along the contact surface 

3.2 Bi-stable membrane mechanism for 3D persistent sliding contact 

The concept of bi-stable spring mechanism is extended to three-dimensional prob-

lems using membrane elements as shown in Figure 3.9. The simplified contact model 
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in this case consists of devices made from a membrane that serves the same purpose 

as that of the spring in 2D, and a wall that, similar to the cross elements in 2D, pro-

vides the supporting structure for the membrane. The membrane is a thin sheet-like 

structure which is stiff in tension, but has no resistance to compression. The bistable 

configuration of the membrane beam is used to achieve the desired sliding contact 

behavior in 3D models. 

3.2.1 Behavior of the bi-stable wall-membrane model 

This model consists of two parallel walls connected by a thin membrane as shown 

in Figure 3.9. Shell elements are selected for membrane and solid elements for walls. 

Along the edge where the membrane meets the wall, only translational degrees of 

freedom are coupled so that the connection acts as a hinge and allows flipping of the 

membrane. As shown in Figure 3.9, the top and bottom faces of the left wall are fixed 

and a vertical displacement is provided to the top and bottom faces of the right wall. 

Figure 3.9.: Parallel wall model 
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As expected, the membrane exhibits bi-stable configurations similar to the bi-

stable spring elements. It is in a stress-free in the initial and final flipped configu-

rations and has the maximum stress when the membrane is horizontal. Figure 3.10 

show the three positions of the membrane thus validating the concept. The force 

deformation plots for this mechanism are shown in Figure 3.11 and are obtained from 

reaction forces in the x, y and z directions at the fixed support and displacement 

ends of the walls. Figure 3.11(h) shows that only a small vertical force is needed to 

flip the membrane between its two stable stress-free configurations A and B. Beyond 

points A and B, there is resistance to the movement in the y-direction as the mem-

brane comes into tension and this corresponds to the limits of the sliding movement 

between the contacting surfaces. Figure 3.11(g) shows that forces in the x-direction 

are much larger so as to resist movement in the x-direction 
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(a) initial state (b) maximum stress position 

(c) final flipped state 

Figure 3.10.: Bi-stable configurations of the wall and membrane device 
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(a) Parallel wall-forces in x-direction 

(b) Parallel wall-forces in y-direction 

Figure 3.11.: Force-deformation plots for the bi-stable wall and membrane device 

3.2.2 Sliding contact of two cantilever beams in 3D 

The two cantilever beams 2D model explained earlier is developed in 3D. The 

geometry is as shown in Figure 3.12. The vertical (y) displacement is provided to the 
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far end faces of the cantilever beams in opposite directions as shown in Figure 3.12. 

The cantilever beams slide and separate from each other. This model is tested to 

know the range of vertical displacement the simplified model can bear. The details 

of the model are provided in Table 3.3. 

Figure 3.12.: Cantilever 3D model 

The wall-membrane device is used to develop the simplified contact model instead 

of spring-cross element device. The arrangement of wall-membrane device is shown 

in 3.13(i). The full simplified model is shown in Figure 3.13(j). Wall ’A’ is attached 

to the upper cantilever beam to reproduce contact stresses and wall ’B’ to the lower 

beam. A membrane ’C’ is connected to the two walls as a hinge hence facilitating 

flipping of the membrane which in turn allows sliding and avoids penetration. 
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(a) wall-beam (b) wall-membrane 

(c) wall-membrane attached to beams 

Figure 3.13.: Simplified contact model in 3D using a wall-membrane device 
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Table 3.3.: Properties of cantilever beam 3D model 

Geometrical 

dimensions 

Lower beam Upper beam 

Length X 0.485 in. 0.485 in. 

Length Y 0.011 in. 0.011 in. 

Length Z 0.011 in. 0.011 in. 

Material 

properties 

(Cantilever 

Beams) 

Material Structural steel 

Youngs modulus 2.9E+07 psi 

Poissons ratio 0.3 

Behavior Isotropic elastic 

Contact Frictionless 

Mesh 

Method Hex dominant 

Element Size 0.00275 in 

Nodes 8900 

Elements 5664 

Boundary 

conditions 

Displacement(in) X Y Z 

Edge A 0 -0.1 in 0 

Edge B 0 0.1 in 0 

Minimum principal stress graphs are plotted for both the models to calibrate the 

simplified model to the contact model. The top view of lower cantilever beam is shown 

in Figure 3.14. Three lines of nodes are considered marked as 1, 2 and 3 in Figure 

3.14. The nodes start from point ’O’ and end at point ’P’. The length is measured 

from point ’O’ to ’P’. 

Figure 3.14.: Top view of lower cantilever beam 
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The stress is calculated at each node and plotted on y-axis with length on x-

axis. For each model, three stress plots are developed corresponding to three lines of 

nodes. Different cases are considered as shown in Figure 3.4 by varying the stiffness 

of walls, membrane, angle between the walls and membrane, geometrical dimensions 

of walls and membrane. Figure 3.15, Figure 3.16, Figure 3.17 show the comparison of 

variation of stress along the considered nodal lines(L1, L2, L3) between the contact 

and the simplified model. The comparison of the deformed shapes of the cantilever 

beams is shown in Figure 3.18 and Figure 3.19 . The 3D cantilever beam pure contact 

model was converged in 12 - 13 hours whereas the corresponding simplified model in 

about 2 hours. 

Table 3.4.: cases considered 

Case no. Stiffness of mem-

brane(psi) 

Stiffness of walls / 

stiffness of beams 

Mesh 

size(in) 

1 2.90E+05 101 0.00275 

2 2.90E+07 101 0.00275 

3 2.90E+05 102 0.00275 

4 2.90E+06 101 0.00275 

5 2.90E+04 103 0.00275 
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(a) Along Line 1 at 0.05 in 

(b) Along Line 2 at 0.05 in 

(c) Along Line 3 at 0.05 in 

Figure 3.15.: Cantilever 3D comparison plots at 0.05 in 
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(a) Along Line 1 at 0.08 in 

(b) Along Line 2 at 0.08 in 

(c) Along Line 3 at 0.08 in 

Figure 3.16.: Cantilever 3D comparison plots at 0.08 in 
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(a) Along Line 1 at 0.1 in 

(b) Along Line 2 at 0.1 in 

(c) Along Line 3 at 0.1 in 

Figure 3.17.: Cantilever 3D comparison plots at 0.1 in 
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(a) contact model at initial state (b) simplified model at initial state 

Figure 3.18.: Deformed shapes at initial state 

(a) contact model at final state (b) simplified model at final state 

Figure 3.19.: Deformed shapes at flipped state 

As mentioned, the calibration of the simplified model depends on stiffness of walls, 

membrane, angle between the walls and membrane, geometrical dimensions of walls 

and membrane. Higher accuracy can be obtained by simulating more trials by devel-

oping further combination of the parameters mentioned. 

3.3 Sliding contact between two concentric rings 

Concentric ring model is a simpler version of two ring interlock model. As men-

tioned earlier the cross-section of the interlock consists of two S-shaped rings arranged 

to form a lock. The concentric ring model consists of two circular cross-sections over-

lapping by a certain amount. These cross-sections are revolved to form 3D concentric 
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rings. The geometrical dimensions of the concentric rings is similar to the interlock 

rings. The amount of play between the interlock rings is the overlap in the concentric 

rings. Figure 3.20 shows the geometry of the concentric rings. For comparison of the 

pure contact model and the simplified contact model, pure shear mode is simulated. 

Both the contact and simplified model are developed and compared. Each of the 

models are explained below. 

Figure 3.20.: Concentric ring 

The wall-membrane approach is used to develop the simplified model. Since it is 

a circular body and contact is present between the two concentric rings in a circular 

pattern, we need the wall-membrane devices also to be circular. The parallel wall 

model is revolved to form a circular wall model. Boundary conditions similar to 

the parallel wall model are applied. As expected, the membrane achieves bi-stable 

configuration in circular models as well. The amount of flip the membrane undergoes 

is equal to the play between the interlocks or the overlap between the concentric ring 

models. 
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3.3.1 Simple shear of two concentric rings 

The contact model is shown in Figure 3.21. Contact is present between the faces 

marked red and blue. The bottom face ’A’ of the bottom ring is fixed. The dis-

placement is provided to the top face ’B’ of the top ring as shown in Figure 3.22. 

The properties of the contact model are provided in Table 3.5. The contact status 

provided by ANSYS is shown in 3.23. 

Figure 3.21.: Contact in concentric ring 

Figure 3.22.: Boundary conditions 
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Table 3.5.: Properties of concentric ring contact model. 

Outer ring Inner ring 

Outer radius 1.75 in Outer radius 1.738 in 

thickness 0.011 in thickness 0.011 in 

height 0.485 in height 0.485 in 

Material In-Mac AISI 

NL 

321 Material In-Mac AISI 321 

NL 

Youngs modulus 2.8E+07 psi Youngs modulus 2.8E+07 psi 

Contact length 0.1 in 

Initial gap 0.001 in 

Figure 3.23.: Contact status 

3.3.2 Concentric ring simplified model 

The simplified concentric ring model is developed as explained earlier using wall-

membrane device. The arrangement of circular walls-membrane and the concentric 
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rings is shown in Figure 3.24. The boundary conditions are similar to the contact 

model. The properties of the model are provided in Table 3.6. 

(a) circular wall 

(b) Simplified concentric ring 

Figure 3.24.: Concentric ring simplified contact model geometry 
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Table 3.6.: Properties of simplified concentric ring model 

Geometry 

Inner ring Outer ring 

Outer radius 1.738 in. 1.75 in. 

Height 0.485 in. 0.485 in. 

Thickness 0.011 in. 0.011 in. 

Material properties 

(concentric rings) 

Material In-Mac AISI 321 NL 

Youngs modulus 2.9E+07 psi 

Poissons ratio 0.3 

Material properties 

(wall elements) 

Material In-Mac AISI 321 NL 2 

Youngs modulus 2.9E+08 psi 

Poissons ratio 0.3 

Material properties 

(membrane) 

Material In-Mac AISI 321 NL 3 

Youngs modulus 2.9E+05 psi 

Poissons ratio 0.3 

Mesh 

Method Multi zone 

Element size 0.011 in 

Elements 52000 

Boundary conditions Displacement 
X Y Z 

0.007 in 0 in 0 

Simplified models for concentric ring and two ring interlock models are developed 

using SHELL181 elements in ANSYS. SHELL181 is a four node element with six de-

grees of freedom at each node: translations in and about x, y and z directions. This 

element type can be used in analyzing thin to moderately thick structures, more ap-

plicable for linear, large rotation and large strain nonlinear problems. [sharcnet.com] 

The thickness of the element is assumed to vary smoothly over the area of the ele-

ment. Figure 3.25 shows the geometry, node locations, and the element coordinate 

system for this element. The element is defined by shell section information and by 

four nodes (I, J, K, and L). 

https://sharcnet.com
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Figure 3.25.: SHELL181 (Source - ANSYS Manual) 

Equivalent stress, minimum principal stress and maximum principal stress plots 

developed by ANSYS are considered directly for comparison between contact and 

simplified model. Different cases are simulated by varying the stiffness, geometrical 

dimensions of the wall-membrane device. The included stress plots are only for that 

particular case whose properties are given in Table 3.6 which was more accurate than 

the others. Figure 3.26 shows the comparison of Von-Mises stress plots between the 

concentric ring contact and simplified models. Figure 3.27 shows the normal stress 

plots. The concentric ring pure contact model with 32000 elements was converged in 

about 22-23 hours whereas the corresponding simplified model with 52000 elements 

in about 5-6 hours. 
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(a) Equivalent stress - concentric ring contact 

(b) Equivalent stress - concentric ring simplified 

Figure 3.26.: Comparison of contact and simplified model for concentric rings - Equiv-

alent Stress 
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(a) Normal stress - concentric ring contact 

(b) Normal stress - concentric ring simplified 

Figure 3.27.: Comparison of contact and simplified model for concentric rings - Nor-

mal Stress 

The accuracy of the simplified model depends on the geometrical properties and 

stiffness of the wall-membrane device. Once the simplified model for concentric rings 



■ Fixed Support 
[!I Displacement 

y 

1 

58 

was developed and validated, the concept was extended to the interlock two ring 

model as explained in the following sections. 

3.4 Sliding contact in a two-ring 3D interlock model 

The interlock two ring 3D model is developed by rotating the cross section of 

interlock as explained in section 1.3. The physical set up of concentric ring model 

is developed using interlock two ring 3D model. The boundary conditions remain 

the same. The geometry and boundary conditions of the model are show in Figure 

3.28. Similar to earlier, pure shear mode is considered to compare the contact and 

simplified models. 

Figure 3.28.: Interlock Boundary conditions 
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3.4.1 Contact model 

Frictionless contact is considered between the interlock ring surfaces. As explained 

in section 1.3, only contact surface 1 is activated. In the 3D model, the contact 

area is in a circular pattern as shown in Figure 3.29. SOLID186 elements are used 

for interlock and concentric ring contact models. It is a 3D 20 node element that 

exhibits quadratic displacement behavior. It has three degrees of freedom per node: 

translations in x, y and z directions. 

Figure 3.29.: Interlock contact 

The contact status provided by ANSYS is shown in Figure 3.30 
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Figure 3.30.: Interlock contact status 

Table 3.7.: Properties of interlock contact model 

Material properties 

Lower ring Upper ring 

Material In-Mac AISI 321 NL 

Youngs modulus 2.8E+07 psi 

Poissons ratio 0.3 

Contact Frictionless 

Mesh 

Method Hex dominant 

Element size 0.011 in 

Elements 50400 

Boundary conditions Displacement 
X Y Z 

0.009 in 0 in. 0 

3.4.2 Simplified model 

The simplified contact model for interlocks is developed in a similar fashion as 

in concentric ring model. Initially, the wall-membrane device is modeled and then 
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attached to the two ring interlocks at the considered contact surface. The properties 

of the simplified model are given in Table 3.8. 

Table 3.8.: Properties of simplified interlock two ring model 

Geometry 

Inner ring Outer ring 

Outer radius 1.738 in. 1.75 in. 

Height 0.485 in. 0.485 in. 

Thickness 0.011 in. 0.011 in. 

Material properties 

(interlock rings) 

Material In-Mac AISI 321 NL 

Youngs modulus 2.9E+07 psi 

Poissons ratio 0.3 

Material properties 

(wall elements) 

Material In-Mac AISI 321 NL 2 

Youngs modulus 2.9E+09 psi 

Poissons ratio 0.3 

Material properties 

(membrane) 

Material In-Mac AISI 321 NL 3 

Youngs modulus 2.9E+06 psi 

Poissons ratio 0.3 

Mesh 

Method Multizone 

Element size 0.011 in 

Elements 63800 

Boundary conditions Displacement 
X Y Z 

0.009 in 0 in 0 
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(a) Equivalent stress - interlock contact 

(b) Equivalent stress - interlock simplified 

Figure 3.31.: Comparison of contact and simplified model for interlock two ring model 

- Equivalent stress 



Maximurr Principal Stress 
Type: Maximum Principal Stress 
Unit: psi 

72:11.8 Max 
2000 
120· 
401.92 
-397.12 
-1193.2 
-1995.2 
·2794.2 
•3[i33.3 
-4392.3 
-5191.4 
-5990.4 
-6789.4 
-7583.5 
-8387.5 Min 

7230 
5486.7 
3743.3 
2000 
1201 
400 
-400 
-1196 
-2794 
-4000 
-5000 
·6000 
-7000 
·8387.5 

63 

(a) Maximum principal stress - interlock contact 

(b) Maximum principal stress - interlock simplified 

Figure 3.32.: Comparison of contact and simplified model for interlock two ring model 

- Maximum principal stress 
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3.4.3 Results and Comparison 

Comparison between the pure contact and simplified contact models is done by 

plotting equivalent stress plots as shown Figure 3.31, maximum principal stress plots 

as shown in Figure 3.32. The time taken to converge by the contact model with 50400 

elements was approximately 25 hours whereas the time taken by the simplified model 

with 63800 elements was around 7-8 hours. The simulation time has reduced drasti-

cally which reduces the computational expenditure however it’s difficult to reproduce 

the exact amount and location of stresses similar to the pure contact model. Given 

that it’s a simplified approach, it loses some accuracy in the solution. 
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4. CONCLUSIONS AND FINDINGS 

Contact problems are very difficult to solve even using the state of the art commer-

cial software programs. Depending upon loading and boundary conditions, contact 

regions are constantly evolving between bodies and this makes it a highly non-linear 

problem. Due to this, contact problems solved in this research were computationally 

very expensive and often consumed hours or days for the bigger models to simulate. 

Despite making all the contact models in this document frictionless, there were lot of 

convergence issues with these models. Over the course of the research, it was observed 

that the simplified contact models reduced the simulation time of contact problems 

drastically while providing results that matched well in comparison to pure contact 

models. This is a significant computational advantage of the simplified contact mod-

els. 

While the overall response of the contacting bodies was represented well by simpli-

fied contact models, some differences were observed in the region of actual contact and 

the precise value of the contact stresses. Accuracy of the simplified models depends 

on geometrical dimensions, material properties, stiffness of the simplified devices such 

as wall-membrane, cross elements, and the spring elements. Greater accuracy in the 

results can be achieved by further exploring these parameters. 

4.1 Recommendations for future studies 

Performance of the simplified contact models developed in this research mainly 

depends on the geometrical dimensions and the material properties of the various 

elements. In future, studies may be undertaken to improve the contact stress profile 

obtained in the simplified models. This may be accomplished potentially by adap-

tively modifying the geometry and material properties of the supporting structures 
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(cross elements and wall elements) and the spring or membrane elements. Adapt-

ing these simplified contact devices to contact problems that involve different types 

elements, such as continuum and/or structural elements may also be worth exploring. 
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