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Predominantly localized in plant secondary cell walls, lignin is a highly cross-

linked, aromatic polymer that imparts structural support to plant vasculature, and renders 

biomass recalcitrant to pretreatment techniques impeding the economical production of 

biofuels. Lignin is synthesized via the phenylpropanoid pathway where the primary 

precursor phenylalanine (Phe) undergoes a series of functional modifications catalyzed by 

11 enzyme families to produce p-coumaryl, coniferyl, and sinapyl alcohol, which undergo 

random polymerization into lignin. Several metabolic engineering efforts have aimed to 

alter lignin content and composition, and make biofuel feedstock more amenable to 

pretreatment techniques. Despite significant advances, several questions pertaining to 

carbon flux distribution in the phenylpropanoid network remain unanswered. Furthermore, 

complexity of the metabolic pathway and a lack of sensitive analytical tools add to the 

challenges of mechanistically understanding lignin synthesis.  

In this work, I describe improvements in analytical techniques used to characterize 

phenylpropanoid metabolism that have been applied to obtain a comprehensive 

quantitative mass balance of the phenylpropanoid pathway. Finally, machine learning and 

artificial intelligence were utilized to make predictions about optimal lignin amount and 

composition for improving saccharification. In summary, the overarching goal of this thesis 
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was to further the understanding of lignin metabolism in the model system, Arabidopis 

thaliana, employing a combination of experimental and computational strategies. 

First, we developed comprehensive and sensitive analytical methods based on 

liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) to quantify 

intermediates of the phenylpropanoid pathway. Compared to existing targeted profiling 

techniques, the methods were capable of quantifying a wider range of phenylpropanoid 

intermediates, at lower concentrations, with minimal sample preparation. The technique 

was used to generate flux maps for wild type and mutant Arabidopsis stems that were fed 

exogenously 13C6-Phe. Flux maps computed in this work; (i) suggest the presence of a 

hitherto uncharacterized alternative route to caffeic acid and lignin synthesis, (ii) shed light 

on flux splits at key branch points of the network, and (iii) indicate presence of inactive 

pools for a number of metabolites. 

Finally, we present a machine learning based model that captures the non-linear 

relationship between lignin content and composition, and saccharification efficiency. A 

support vector machine (SVM) based regression technique was developed to predict 

saccharification efficiency and biomass yields as a function of lignin content, and 

composition of monomers that make up lignin, namely p-coumaryl (H), coniferyl (G), and 

sinapyl (S) alcohol derived lignin. The model was trained on data obtained from the 

literature and validated on Arabidopsis mutants that were excluded from the training data 

set. Functional forms obtained from SVM regression were further optimized using genetic 

algorithms (GA) to maximize total sugar yields. Our efforts resulted in two optimal 

solutions with lower lignin content and interestingly varying H:G:S composition that were 

conducive to saccharide extractability.  
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1. INTRODUCTION 

 Background 

 Biofuels from lignocellulosic feedstock – lignin recalcitrance 

One of the greatest challenges of the twenty first century is to provide clean and 

sustainable sources of fuels and chemicals to bridge the growing gap between energy 

consumption and dwindling fossil fuel reserves[1]. The skewed energy supply-demand 

balance is only exacerbated by uncertainty in petroleum supplies, and increasing green-

house gas emissions and global warming concerns associated with the use of fossil fuels. 

As a result, there has been a cognizant shift towards the use of renewable and alternative 

sources of energy such as hydroelectric, solar, wind, and biomass. Biomass derived energy 

in the form of biofuels (encompassing bioethanol, bio-oil, and biodiesel), is unique 

amongst all the available alternative energy sources in its direct compatibility with existing 

liquid transportation fuel[2,3]. Bioethanol is predominantly produced by fermentation of 

depolymerized sugars from plant material. Second generation biofuels from lignocellulosic 

feedstocks have gained significant attention as they offer benefits such as (i) abundance of 

raw material, (ii) consumption of inedible parts and agricultural waste residues, and (iii) 

growth on abandoned and marginal lands[4,5]. 

Lignocellulose is primarily made up of lignin, cellulose, hemicellulose, pectin, and 

proteins. Biofuel production from lignocellulosic feedstock requires depolymerization of 

cellulosic sugars by enzyme hydrolysis – a process known as saccharification – for further 

conversion to ethanol[6,7]. Lignin, a hetero-aromatic polymer predominantly localized in 

plant secondary cell walls renders biofuel feedstock recalcitrant to microbial and enzymatic 
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digestion as it crosslinks with cellulose and hemi-cellulose essentially entrapping useful 

cell-wall polysaccharides limiting their accessibility to cellulases[7,8]. In order to achieve 

effective hydrolysis, feedstock is subjected to necessary pretreatment techniques to loosen 

lignin’s ‘grip’ on cell wall polysaccharides in turn making biofuel production a cost 

intensive process. Pretreatment technologies span mechanical pretreatments, 

physicochemical pretreatments, chemical pretreatments, and biological pretreatments[9].  

 

Figure 1.1: Goal of pretreatment techniques on lignocellulosic material. 

Pretreatment costs alone account for almost 20% of the total cost of production of 

1 gallon of ethanol[9,10]. Reducing these pretreatment costs would go a long way in 

making lignocellulose derived biofuels an economically viable alternative to existing fossil 

fuels. There has been ample research focused on optimizing pretreatment technologies, 

hydrolysis, and fermentation of biomass[11–13]. But with increasing understanding of 

lignin biosynthesis and other cell wall components, genetic modifications of plant cell wall 

to obtain feedstock with improved saccharification efficiency has been made 
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possible[8,14–18]. An introduction to lignin biosynthesis and a description of some 

noteworthy lignin engineering efforts have been summarized in the following sections.  

 Lignin biosynthesis in plants 

Lignin is synthesized via the phenylpropanoid pathway – also referred to as the 

monolignol biosynthesis pathway – which owing to decades of biochemical and genetic 

investigations has been well characterized (Figure 1.2, [19]). In addition to the synthesis of 

monolignols: p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol, the fundamental 

building blocks of lignin, many phenylpropanoid intermediates serve as precursors to other 

useful biochemical such as flavonoids, coumarins, tannins, hydroxycinnamic acid 

derivatives and lignans[20]. The pathway begins with the deamination of Phe to cinnamic 

acid by Phe ammonia lyase (PAL), a reaction that essentially bridges primary metabolism 

to phenylpropanoid metabolism and is considered a limiting step in directing carbon flux 

towards lignin[21]. Cinnamic acid hydroxylation at the para position by C4H followed by 

CoA thioester formation by 4-coumarate:CoA ligase 1 (4CL1) – one of the four isoforms 

identified in Arabidopsis – results in the formation so p-coumaroyl CoA[22]. Apart from 

being an essential precursor leading to a diverse set of secondary metabolites like 

flavonoids, stilbenes and tannins, p-coumaroyl CoA is also the first key branch point in 

lignin synthesis where carbon is routed to G and S subunit production (Figure 1.2). 

Hydroxycinnamoyl CoA:shikimate hydroxycinnamoyl transferase (HCT) and p-

coumaroylshikimate 3′-hydroxylase (C3′H) catalyze the set of bridging reactions between 

H, and G&S subunits. HCT is a reversible enzyme that catalyzes conversion of p-

coumaroyl CoA to p-coumaryl shikimate and caffeoyl shikimate to caffeoyl CoA. Shikimic 
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acid is consumed in the former and released in the latter reaction[23,24]. It has been 

proposed that shikimic acid may be a putative regulatory link between phenylalanine 

synthesis (by the shikimate pathway) in the plastid and its utilization (by the 

phenylpropanoid pathway) in the cytosol. Hydrolysis of caffeoyl shikimate followed by 

CoA ligation provides an alternative route to the synthesis of caffeoyl CoA, that bypasses 

the second HCT reaction, making caffeoyl-shikimate the second key branch point in lignin 

synthesis[25].  

Caffeoyl CoA subsequently undergoes methylation by caffeoyl CoA 3-O-

methyltransferase (CCoAOMT) to produce feruloyl CoA, which is reduced to 

coniferaldehyde by cinnamoyl-CoA reductase (CCR), the third key branch point in lignin 

biosynthesis (Figure 1.2). Coniferaldehyde undergoes a series of reductions, 

hydroxylations and methylation reactions, catalyzed by cinnamyl alcohol dehydrogenase 

(CAD), ferulate 5-hydroxylase (F5H), caffeic acid/5-hydroxyferulic acid O-

methyltransferase (COMT) respectively, to form coniferyl and sinapyl alcohol[19]. 
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Figure 1.2: The phenylpropanoid pathway in Arabidopsis. PAL, phenylalanine ammonia-

lyase; C4H, cinnamic acid 4-hydroxylase; 4CL, 4-coumarate:CoA ligase; HCT, 

hydroxycinnamoyl-coenzyme A shikimate:quinate hydroxycinnamoyl-transferase; C3’H, 

p-coumaroyl shikimate 3’-hydroxylase; CCoAOMT, caffeoyl CoA 3-O-methyltransferase; 

CCR, cinnamoyl-CoA reductase; F5H, ferulate 5-hydroxylase; COMT, caffeic acid/5-

hydroxyferulic acid O-methyltransferase; CAD, cinnamyl alcohol dehydrogenase; 

HCALDH, hydroxycinnamaldehyde dehydrogenase. The reaction catalyzed by HCALDH 

leads to the synthesis of ferulic and sinapic acid. 

 Lignin engineering 

In the past two decades, several metabolic engineering efforts have targeted lignin 

synthesis by manipulating the expression of individual genes in the phenylpropanoid 

pathway[15,16,26,27]. From a lignocentric point of view, consequences of the host of 

engineering efforts across different plant systems can be broadly categorized into one or 

more of the following categories; (i) reduced lignin, (ii) altered lignin composition, and 
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(iii) incorporation of unconventional metabolites into lignin. In general downregulation of 

PAL, C4H, 4CL, HCT, C3H, CSE, CCoAOMT, CCR, and to some extent, CAD, have a 

significant effect on lignin content[6]. Drastic changes in lignin composition can be 

engineering with plants deficient in C3′H, HCT, and CSE are strikingly enriched in H 

lignin, which constitutes the minor component in wild-type plants[25,28,29]. 

Downregulation and overexpression of F5H results in lignin essentially composed of G 

and S lignin respectively. Unconventional intermediates such as 5-OH-coniferyl alcohol 

are incorporated into lignin in COMT downregulated lines, while CAD downregulated 

plants have significant incorporation of hydroxycinnamaldehydes in lignin[30–32].  

Most of the genetic engineering experiments previously discussed were predicated 

solely on the identity of a specific enzyme in the pathway, and its (at times assumed) role 

in lignin synthesis. The wide spectrum of phenotypes obtained as a result these experiments 

stems from a disparate and distributed flux control across enzymes of the network, inherent 

regulation in phenylpropanoid metabolism, and complex interactions with other metabolic 

networks, which still remains to be understood. Therefore, despite the commendable strides 

made in lignin manipulation, several questions regarding carbon flux control have been 

raised. 

From the point of view of saccharification, in general a reduced lignin phenotype 

resulted in increased biomass digestibility, but no reasonable correlations between lignin 

composition and saccharification efficiencies were observed[33]. It was previously 

reported that a high S/G ratio is conducive for improved saccharification[14,33], but there 

have been reports of transgenic lines that exhibited lower or an unchanged saccharification 

phenotype despite having a high S/G ratio[16,32]. In addition, lines with high H lignin 
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units were characterized by higher saccharification efficiencies[25,28]. All previous 

studies that analyzed the relation between these biological traits and saccharification 

employing one to one correlations and linearly mapping the relation between the 

variables[33–35]. It is evident that a multi-variate approach is necessary in understanding 

the non-linear dependence of biomass digestibility on lignin content and composition. 

 Motivation and Research Objectives 

The strikingly different phenotypes obtained as a result of downregulation of 

different enzymes of the phenylpropanoid pathway, clearly indicate a more distributed 

control of carbon flux to lignin. Furthermore, unanticipated pleiotropic effects, complexity 

of the metabolic pathway, lack of sensitive analytical tools to measure low metabolite 

concentrations, sub-cellular compartmentation of phenylpropanoid intermediates, and a 

rigid regulatory hierarchy add to the challenges of mechanistically understanding lignin 

synthesis. In addition, there is no thorough understanding of how a certain lignin phenotype 

contributes to the modification in biomass saccharifiability.  

Although a combination of systems biology and integrative ‘omics’ approaches to 

address all the issues listed above and to gain a more mechanistic understanding of lignin 

biosynthesis; in this work, we present experimental and computational strategies to 

investigate and further the understanding of (i) flux control in lignin metabolism; and (ii) 

relation between lignin content and composition, and biomass digestibility in the model 

system, Arabidopis thaliana. Research conducted in this work is aimed at addressing the 

following objectives: 
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Objective 1: To develop analytical techniques for extensively and accurately quantifying 

intermediates of the phenylpropanoid pathway. 

Objective 2: To estimate the relative sub-cellular distribution of metabolites in different 

plant cell organelles of Arabidopsis stems using non-aqueous fractionation (NAQF). 

Objective 3: To compute high resolution flux maps of the metabolic network across 

different Arabidopsis genetic backgrounds, using 13C-metabolic flux analysis (MFA).  

Objective 4: To evaluate the functional forms that relate lignin content and composition 

to saccharification efficiency and growth, and further estimate an optimal lignin 

phenotype that maximizes the total saccharification yields using a combination of 

machine learning and evolutionary computation. 

 Organization of Dissertation 

This dissertation is organized as follows. In chapters 2 and 3, details of analytical 

method development for quantifying phenylpropanoid pathway intermediates have been 

extensively covered. The methods presented in these chapters have been used to measure 

metabolite concentrations in all subsequent studies discussed in this work. In chapter 4, a 

modeling and experimental strategy to compute flux maps in Arabidopsis stems is 

presented using dynamic isotopic labeling measurement of phenylpropanoid metabolites 

after exogenously supplying 13C6-Phe. Chapter 5 establishes the application of the 

analytical tools developed in this study on different genetic background of Arabidopsis. A 

comparative analysis of soluble metabolite pools across different genotypes has been 

conducted using wild-type Arabidopsis plants as a reference. In chapter 6, non-aqueous 
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fractionation technique (NAQF) and its application to Arabidopsis stems has been 

described. NAQF has been used to estimate the relative distribution of key metabolites of 

the phenylpropanoid pathway across different sub-cellular compartments. Following this, 

Chapter 7 delineates a mathematical modeling strategy that is a combination of machine 

learning and evolutionary computation has been presented to map the relationship between 

lignin content and composition, and saccharification efficiency. Optimal lignin content and 

composition were estimated that would maximize the total sugar yields. Chapter 8, is the 

final chapter in which a brief summary of future research directions and recommendations 

have been summarized. 
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2. ANALYTICAL METHOD DEVELOPMENT (I): QUANTIFYING 

INTERMEDIATES OF THE PHENYLPROPANOID PATHWAY. 

 Abstract  

The phenylpropanoid pathway is a source of a diverse group of compounds derived 

from phenylalanine, many of which are involved in lignin biosynthesis and serve as 

precursors for the production of valuable compounds, such as coumarins, flavonoids, and 

lignans. Consequently, recent efforts have been invested in mechanistically understanding 

monolignol biosynthesis, making the quantification of these metabolites vital. The 

objective of this study was to develop an improved and comprehensive analytical method 

for (i) extensively profiling, and (ii) accurately quantifying intermediates of the monolignol 

biosynthetic network, using Arabidopsis thaliana as a model system. The method based on 

liquid chromatography coupled with tandem mass spectrometry was used to quantify 

phenylpropanoid metabolites in Arabidopsis wild-type lines. A pH of 5.3 and ammonium 

acetate buffer concentration of 2.5 mM resulted in an optimal analyte response across 

standards. Vortexing at high temperatures (65oC) enhanced release of phenylpropanoids, 

specifically the more hydrophobic compounds. Ion suppression was estimated using 

standard spike recovery studies for accurate quantitation. Compared to existing targeted 

profiling techniques, our method is capable of quantifying a wider range of intermediates 

(17 out of 22 in WT Arabidopsis stems) at low in vivo concentrations (~50 pmol/g-FW for 

certain compounds), while requiring minimal sample preparation. 
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 Introduction 

Lignin is an aromatic hetero-polymer synthesized by radical polymerization of 

hydroxycinnamyl alcohol monomers – also known as monolignols – the end products of 

the phenylpropanoid pathway (Figure 2.1)[6]. This three-dimensional polymer imparts 

rigidity and strength to plant cell walls, enabling upright growth, and provides mechanical 

support and hydrophobicity to plant vasculature, facilitating transport of water and 

nutrients. While essential to plant viability, lignin impedes degradation of plant cell wall 

polysaccharides into simple sugars during their fermentation, making biofuel production 

from lignocellulosic feedstock a cost intensive process[7,17,36]. Therefore, the past two 

decades have witnessed several genetic engineering efforts targeting the phenylpropanoid 

pathway, especially in Arabidopsis thaliana, to alter lignin amount and composition[26,37]. 

Despite the progress that has been made, several questions pertaining to control and 

regulation of carbon flux in this pathway remain unanswered. Recent research efforts have 

hence been directed towards gaining a mechanistic understanding of lignin synthesis[38–

41]. These systems biology driven studies call for accurate quantification of metabolites of 

the pathway[42,43]. In addition, many phenylpropanoids are industrially relevant products 

such as tannins, flavonoids, coumarins, and hydroxycinnamic acid conjugates[19], further 

justifying their quantitation. 

MS-based detection associated with various separation techniques (gas and liquid 

chromatography, capillary electrophoresis etc.) has been widely employed in quantitative 

metabolic profiling, specifically in analyzing plant metabolomes[44,45]. Reversed phase 

liquid chromatography (RP-HPLC) coupled to electrospray ionization mass spectrometry 

is known for achieving high selectivities and sensitivities[44,46,47].  
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Figure 2.1: Schematic of the phenylpropanoid pathway leading to monolignol synthesis. 

The highlighted part of the pathway is considered to be most predominant. Intermediates 

and enzymes currently known in lignin formation are indicated. 4CL, 4-

(hydroxy)cinnamoyl CoA ligase; C3′H, p-coumarate 3′-hydroxylase; C4H, cinnamate 4-

hydroxylase; CAD, cinnamyl alcohol dehydrogenase; CCoAOMT, caffeoyl CoA O-

methyltransferase; CCR, cinnamoyl CoA reductase; COMT, caffeic acid/5-hydroxyferulic 

acid O-methyltransferase; F5H, ferulate 5-hydroxylase; HCALDH, 

hydroxycinnamaldehyde dehydrogenase; HCT, hydroxycinnamoyl CoA:shikimate 

hydroxycinnamoyltransferase; PAL, phenylalanine ammonia-lyase. 

Furthermore, instruments equipped with a triple quadrupole (QqQ) allow for fast 

measurements, improved sensitivities and precise quantitations by multiple reaction 

monitoring (MRM) [48–50]. Although there is no dearth of analytical techniques in 

profiling intracellular intermediates, often the data reported is plagued with inaccuracies, 

which arise from sample handling starting from extract preparations to extract analysis on 

a detector. Accurate and reliable data can be obtained by addressing and improving various 
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avenues in LC-MS based analytical methods such as (i) chromatography, (ii) sample 

preparation and extraction protocols, and (iii) matrix effects. The last decade has seen many 

studies on profiling phenolics – particularly the ones associated with the phenylpropanoid 

pathway[51–65]. Although widely employed, these analytical methods have scope for 

improvement in one or more of the following: (i) simplifying sample preparation, (ii) 

shortening method run times without compromising compound separation, (iii) accounting 

for signal suppression because of matrix effects, (iv) canvassing a larger range of 

intermediates in the pathway.  

In an effort to address the aforementioned issues and taking into consideration the 

sources of error that occur during sample handling and analysis, we developed a rapid, 

sensitive, reproducible and an accessible analytical method for the accurate quantitation of 

the metabolites of the monolignol synthesis pathway in Arabidopsis. The effects of 

chromatographic conditions, such as optimal pH, buffer concentration, column temperature, 

etc. on analyte responses were investigated. Sample preparation and extraction protocols 

were tuned to efficiently extract soluble intermediates from A. thaliana stem tissue. Ion 

suppression caused by matrix effects was evaluated using spiking plant extracts with a 

known concentration of standards. Finally, the analytical method was applied to profile 

stems from A. thaliana CCR1 T-DNA insertional lines (ccr1) and wild-type (WT) plants. 

 Materials and Methods 

 Chemicals used 

L-phenylalanine (>99%), trans-cinnamic acid (>99%), p-coumaric acid (>98%), 

caffeic acid (>98%), ferulic acid (>99%), sinapic acid (>99%), shikimic acid (>99%), 
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coniferyl aldehyde (>98%), sinapaldehyde (98%), coniferyl alcohol (98%), sinapyl alcohol 

(80%), p-fluoro-DL-phenylalanine (>98%), ammonium acetate (>98%) and HPLC grade 

acetonitrile (ACN) were purchased from Sigma Aldrich (St. Louis, MO). p-

Coumaraldehyde, p-coumaryl alcohol, caffeoyl alcohol and caffealdehyde were 

synthesized at Discovery Park, Purdue University (West Lafayette, IN). p-Coumaroyl 

shikimate and caffeoyl shikimate esters were acquired from Prof. John Ralph at the 

University of Wisconsin-Madison (Madison, WI). Glacial acetic acid (>99.7%) was 

purchased from Mallinckrodt Chemicals (Phillipsburg, NJ) while HPLC-grade methanol 

was purchased at Macron Fine Chemicals (Center Valley, PA). Water used for making 

mobile phase solutions was purified using a Barnstead Nanopure Infinity ultrapure water 

system. All chemicals were used without further processing or purification. 

 Plant Material 

Columbia-0 and the ccr1 mutant Arabidopsis plants were grown in growth 

chambers (West Lafayette, IN) at 23oC under 16/8 hour day/night conditions and light 

intensity of 100 µE m-2 s-1. Stems used for analysis were harvested from 5-week old plants. 

The T-DNA mutant ccr1 (SALK_123689) was obtained from the Arabidopsis Biological 

Resource Center. Homozygous ccr1 mutant was isolated by PCR with primers cc2550 (5′-

GTG TCG TAG AGG CTT TGC TTG-3′), cc2551 (5′-TTG TGG AAA TAT TTC CGG 

TTG-3′), and cc2449 (5′-ATT TTG CCG ATT TCG GAA C-3′). 
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 Standard Solutions 

The core monolignol biosynthetic pathway has 22 compounds (Figure 2.1) of which 

standards for 17 of them were available and considered in the current study. Stock solutions 

of standards for calibration and determination of limits of detection (LODs) were prepared 

at a concentration of 0.5 mg/ml in methanol. In the case of shikimic acid, 50/50 (%v/v) 

methanol-water solution was used owing to its immiscibility in methanol at that 

concentration. Standard mixtures containing all 17 available compounds were prepared at 

six different concentrations, approximately ranging from 50 nM to 500 μM, for calibration. 

p-fluoro-DL-phenylalanine was used as an internal standard (IS). All extraction solvents 

used for the study were prepared with a known concentration of the IS. 

 Extraction and Concentration of Soluble Metabolites 

The basal 0-2 cm fragments of A. thaliana stems were harvested and frozen in 2 ml 

eppendorf tubes using liquid nitrogen. Each biological replicate contained four Arabidopsis 

stems, which allowed i) to obtain higher yields of the secondary metabolites and ii) to 

reduce biological variation. To determine the most suitable extraction solvent composition, 

different concentrations of methanol in water were employed keeping the sample 

preparation procedure the same.  

Stem tissue was pulverized using a pestle in a 2 ml eppendorf tube and 10 μl of 

solvent was added for every mg of fresh weight (FW) of tissue harvested. The extraction 

solvents were prepared with the IS at a concentration of 0.001 mg/ml to account for 

extraction recoveries. The samples were then vortexed for 30, 60 or 120 minutes, using a 

Midwest Scientific Benchmark Multi-Therm shaker (Valley Park, MO) followed by 
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centrifugation at 18,000 rpm for 15 minutes. The supernatants from each sample were dried 

under a vacuum at 30oC using a LABCONCO centrifugal evaporator (Kansas City, MO). 

The residues were re-dissolved in 60 μl of the extraction solvent and transferred to a 

standard HPLC vial. Subsequently, 10 μl was injected into the HPLC/MS/MS system for 

analysis. 

 Ion Suppression 

The extent of ion suppression was quantified using spike recovery method. The 

dried residues (obtained after extraction from biomass) were reconstituted in 60 μl of the 

extraction solvent and divided into two parts. One was spiked with 50% (v/v) methanol 

solution and the other was spiked with a stock solution containing a known concentration 

of available standards. The study was conducted at three different concentrations of 

standard compounds in the stock, namely 2, 3 and 5 fold of the concentrations observed in 

A. thaliana stem extracts before accounting for matrix effects. The sample spiked with the 

extractions solvent (S), sample spiked with the stock solution (SSt), and the standard stock 

solution (Std) were individually injected into the HPLC/MS/MS system for analysis. The 

recovery factor (fi) for each metabolite was computed using equation (Eq. 2.1), where ASSt 

is the integrated area of a compound in the samples spiked with the stock solution, AS is 

the area of a compound in the sample spiked with the extraction solvent, AStd is the area of 

a compound in the standard mixture, i indicates a specific intermediate and 2 is the dilution 

factor. The analysis was done in triplicate. It should be noted that the recovery factors were 

estimated after taking into account the recovery of the IS added prior to extraction.  
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𝑓𝑖 = 2 ×  
𝐴𝑆𝑆𝑡𝑖

− 𝐴𝑆𝑖

𝐴𝑆𝑡𝑑𝑖

        Eq 2.1 

 Metabolomics using LC-MS/MS. 

Chromatography was performed on an HPLC-20AD system from Shimadzu 

(Columbia, MD) comprising of a quaternary pump, an autosampler, a thermostat controlled 

column compartment, and a photo diode array detector. Chromatographic separations were 

performed on a Zorbax Eclipse C8 column (150 mm × 4.6 mm, 5 μm, Agilent Technologies, 

Santa Clara, CA) at a column temperature of 30oC and a flow rate of 1ml/min. The injection 

volume was set to 10 μl. A linear gradient of aqueous solvent A (2.5 mM ammonium 

acetate in water, adjusted to pH 5.3 using glacial acetic acid) and organic solvent B (98% 

acetonitrile, 2% water and 0.02% formic acid) was used as follows: 10% B (v/v) for 1 min, 

10-20% B over 3 min, 20-20.8% B over 9 minutes, 20.8-50% B over 1 min, 50-70% B 

over 1 min, hold at 70% B for 3 min, return to 10% B over 1 min, and equilibrate for 4 min 

at 10% B resulting in a total run time of 23 min per sample. The gradient was unchanged 

for all aqueous mobile phases considered for the study. 

Metabolite profiling was performed using a QTrap 5500 triple quadrupole mass 

spectrometer from AB Sciex (Redwood City, CA), operating in the negative ion mode. The 

mass spectrometer is equipped with an ESI-TurboIon-spray interface and all data analysis 

was conducted using Analyst 1.5.1 software. A low pressure of 1.5 x 10-5 torr was 

maintained in the QTrap 5500 vacuum manifold as indicated by the pressure gauge. The 

source parameters for the MS were set as follows: curtain gas flow rate, 25 l/h; collision 

gas, low; ion source voltage, -4.5 kV; desolvation temperature, 700 K; ion source gas 1, 60 
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l/h; ion source gas 2, 40 l/h. ESI parameters for every standard, such as declustering 

potential (DP), entrance potential (EP), collision energy (CE), and cell exit potential (CXP) 

were manually tuned (Appendix Table A1.1). Metabolite recoveries were recorded by 

subjecting standard mixtures to the extraction protocol (Appendix Table A1.2). 

 Linearity and Sensitivity 

Linearity of standard responses was expressed in terms of the correlation coefficient 

obtained as a result of a linear fit of the peak areas against the concentrations of the 

metabolites used for the study.  

The measure of sensitivity of the analytical technique was reported as limits of 

detection (LODs) and limits of quantification (LOQs). These are designated as the 

concentration of analyte injected that would result in a signal-to-noise (S/N) ratio of 3 and 

10 respectively[66]. The LOQs along with the correlation coefficients for all the 17 

standards are presented in Table 2.1. Other metabolites, such as the hydroxycinnamic acid 

derivatives were profiled using ESI parameters of the corresponding hydroxycinnamic acid 

as standards were not available. The putative retention times and confirmed mass 

transitions for these compounds have been reported in Table A1.1. 

 Statistical Analysis 

Data were analyzed by one-way ANOVA for independent samples using the online 

calculator on vassarstats.net/ (Vassar College, Poughkeepsie, NY, USA). A p-value < 0.05 

was considered as a significant difference. Tukey’s HSD test was employed as a post-hoc 

test to determine the differences between means. Standard Student’s t-test was applied to 
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analyze differences between individual metabolite concentrations of Arabidopsis ccr1 and 

WT stems. P-values of 0.003 have been used after applying the Bonferroni correction to 

establish a significant difference. 

Table 2.1: Retention time (RT), mass transition Q1/Q3 (m/z), and limits of quantification 

(LOQs) data for the phenylpropanoid pathway intermediatesa 

No
b
. Metabolite RT (min) Q1 [M-H]

- Q3[M-H]
- R2,c 

LOQ
d
 

(µM) 
1 Phenylalanine 2.53 164.0 147.0 0.99 0.04 
2 Cinnamic acid 16.2 147.0 103.0 0.98 26.5  
3 p-coumaric acid 7.13 163.0 119.1 0.99 0.10 
4 p-coumaroyl shikimate 7.64 319.2 163.1 0.99 0.05 
5 Caffeoyl shikimate 6.02 335.2 179.1 0.99 0.01 
6 Shikimic acid 1.54 173.0 93.0 0.99 0.18 
7 Caffeic acid 5.16 179.0 135.0 0.98 0.02 
8 Ferulic acid 7.87 193.1 178.1 0.99 0.26 
9 Sinapic acid 8.49 223.1 208.1 0.99 0.15 
10 p-coumaraldehyde 11.0 147.0 129.0 0.99 0.01 
11 Caffealdehyde 7.41 163.0 145.0 0.97 0.30 
12 Coniferaldehyde 12.1 177.1 162.0 0.99 0.12 
13 Sinapaldehyde 11.6 207.1 192.1 0.98 0.03 
14 p-coumaryl alcohol 6.87 149.1 131.0 0.99 2.66 
15 Caffeoyl alcohol 5.25 165.1 147.0 0.98 0.17 
16 Coniferyl alcohol 7.48 179.1 146.0 0.99 0.03 
17 Sinapyl alcohol 7.23 209.1 194.1 0.99 0.68 

a
 Analysis was performed using an AbSciex QTrap 5500 mass spectrometer coupled to Shimadzu RP-

HPLC system. 
b 
Metabolite annotation as represented in Figure 1. 

c Correlation coefficients from linear fits of standard calibration curves covering a concentrations range of 

~50 nM-500 μM. 
d
 The LOQs are reported as values at which a signal to noise ratio (S/N) of 10 was obtained. 

 Results and Discussion 

 Improving analyte responses by manipulating chromatography. 

Chromatographic conditions, such as mobile phases, buffer pH, buffer 

concentration, solvent flow rate, and column temperature in addition to achieving 
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metabolite separation also effect metabolite responses when associated with ESI-MS[67]. 

A flow rate of 1 ml/min is suggested given the column dimension used for the study and 

ACN was used as the organic buffer due to its high eluotropic nature and low viscosity[68]. 

As a result, in this study we focused on the effects of buffer pH and buffer concentration 

on analyte responses. The solvent gradient, as described in the methods section, was 

optimized for resolution enough to prevent co-elution of multiple compounds in order to 

minimize their contribution to ion suppression (Figure 2.2). Using MRM mode does not 

require strict baseline separation of standards as long as the m/z ratios of the parent (Q1) 

and fragment (Q3) ions are distinct. As a result, all the optimization strategies considered 

in the following sections were motivated to obtain higher analyte responses instead of 

improving resolution. Standard mixtures containing all 17 compounds at a concentration 

of 0.01 mg/ml – which is within the linear range of calibration – were used for the 

optimization studies.  

Effect of mobile phase pH. Mobile phase pH plays an essential role in the 

dissociation/deprotonation of analytes and also the ionization of the silanol groups of the 

column support[69], thereby altering the selectivity and retention on the column[70,71]. 

The buffers in this study were prepared at a pH of 5, 5.3 and 5.6, which fall within 1 unit 

of the pKa of acetate thus ensuring effective buffering capacity[72]. The largest change in 

retention times was observed for the hydroxycinnamic acids in the pathway when their pKa 

values (~4.5) were close to the buffer pH.  
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Figure 2.2: Chromatogram obtained by HPLC-MS/MS profiling of a standard mixture of 

17 phenylpropanoid metabolites (0.01 mg/ml each). Separation was performed on a 

Zorbax-Eclipse C8 column (150 mm × 4.6 mm, 5 μm) using 2.5 mM ammonium acetate 

in water (pH of 5.3) as solvent A and ACN/H2O/HCOOH (98/2/0.02% – v/v) as solvent B. 

Two different y-axes were used to accommodate metabolites with very high responses. 

Compound intensities are reported in counts per second (cps). Metabolites are marked 

according to Table 2.1 

Changing the buffer pH from 5 to 5.6 can cause a four-fold increase in the degree 

of ionization, as per the Henderson-Hasselbalch relation, thereby altering the retention time. 

As expected, no significant change in retention time was noted for the extremely polar 

(phenylalanine and shikimic acid) or hydrophobic compounds (hydroxycinnamyl 

aldehydes and alcohols). In other words, the pKa values for the former are too low and the 

latter are too high compared to the buffer pH such that they either are entirely ionized or 

neutral. Interestingly, higher responses were observed across all metabolites at the lower 

pH values of 5 and 5.3 (Figure A1.1). A buffer pH of 5.3 resulted in statistically higher 

intensities for 11 out of 17 standard compounds relative to pH 5.6 and 6 out of 17 

compounds relative to pH 5 (Figure A1.1). Such a relation between mobile phase pH and 

analyte response in the negative ion mode, termed as wrong-way-around[73], was 
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previously observed. An acidic mobile phase provides excess protons that are reduced to 

hydrogen gas during electrospray ionization. The excess negative charges thus accumulate 

and increase the local pH value eventually aiding in the deprotonation of analytes[74]. All 

further experiments were performed using a buffer of pH 5.3. 

Effect of buffer concentration. The competition between the analyte ion and the buffer 

anion has also been known to affect the retention factor[69] and sensitivity of the 

analyte[75].  In order to test the effect of electrolyte concentration on analyte response, 

standard mixtures were analyzed using buffer solutions consisting of 2.5, 5 and 10 mM 

ammonium acetate that were adjusted to a pH of 5.3. Higher salt concentration in the 

mobile phase led to a decrease in retention times and hence lowering the resolution of the 

analytes. Retention times were not significantly affected but a considerable signal 

enhancement was observed at buffer concentrations of 2.5 and 5 mM relative to 10 mM 

across all metabolites (Figure A1.2). A signal enhancement of at least 1.5 fold for all 

metabolites and up to 3 fold in the case of sinapic acid was obtained at a buffer 

concentration of 2.5 mM (Figure A1.3). The reduction in signal response at a higher 

concentration may be due to the competition between the analyte ions and the buffer 

counter anion during electrospray ionization[75,76]. Buffer concentrations below 2.5 mM 

were not considered due to a risk of lowering the effective buffering capacity[72] of the 

mobile phase and increasing the method run time. For all further studies, buffers with salt 

concentration of 2.5 mM and a pH 5.3 were employed. 

Effect of column temperature. A higher column temperature offers several advantages 

such as (i) faster method runs, (ii) reduced pressure drop, (iii) improved peak shapes[77], 

and (iv) increased resolution. We performed studies at column temperatures of 30oC and 
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40oC to observe the effects on analyte resolution and response. No statistical difference 

was observed in the signal response across all metabolites except sinapaldehyde (13, Figure 

A1.3). The 10oC temperature rise marginally reduced the retention times of most 

metabolites, while cinnamic acid still eluted at around 16 min (data not shown). Since no 

significant advantages were incurred using a higher column temperature, all experiments 

were performed at 300C. 

 Improving extraction of soluble phenylpropanoids from A. thaliana 

stem tissue. 

Efficient solid-liquid extraction of soluble metabolites is governed by many factors, 

such as extraction technique used, solid-to-liquid ratio, tissue size, solvent composition, 

temperature, extraction duration, number of repeated extractions[78–80]. This necessitates 

optimization of extraction conditions to achieve complete extraction of desired metabolites. 

As part of our preliminary studies, we tested several extraction techniques such as 

vortexing, bullet blending and ultrasonication on pulverized Arabidopsis stems at room 

temperature for a fixed duration and observed no statistical differences (data not shown). 

Vortexing has been used in all the previously discussed experiments as it is gentle on 

metabolites and ensures constant suspension (mixing) of plant tissue. A solvent-to-tissue 

ratio of 10 µl/mg was used for extraction, which is sufficient for standard sample 

preparation in targeted metabolomics[81]. As a result, we focused mainly on optimizing 

the extraction solvent composition, temperature, and duration of extraction. 

Effect of extraction solvent composition. Composition of an extraction solvent has an 

inevitable intrinsic bias towards certain metabolite classes given the vast chemical diversity 

of the plant metabolome[82]. Consequently, it is necessary to use a solvent system that 



24 

 

maximizes the number and amount of metabolites extracted. Previous studies have shown 

that methanol-water solutions best meet the demands of a chemically heterogeneous system 

such as the phenylpropanoid pathway[83–85]. We therefore investigated the effects of 

methanol concentration on metabolite extraction using 50% (v/v) MeOH in water (Control), 

75% MeOH in water (M75), or double extraction with pure methanol followed by a wash 

in 50% (v/v) MeOH in water (MD). Extraction was carried out for 60 minutes at room 

temperature (25oC). The one-way ANOVA analysis on 4 replicates in each case resulted 

in no significant effect of methanol concentration on the extraction of phenylpropanoid 

metabolites (Table S3). Only 9 metabolites were detected above their limits of quantitation 

as a result of the extraction (Figure A1.4). Although no statistical variations were observed, 

75% (v/v) MeOH in water was chosen as the solvent for all subsequent experiments to 

ensure deactivation of plant enzymes since fresh tissue is used for extraction. 

Effect of extraction temperature. Higher temperatures favor solute dissolution into the 

extraction solvent and increase solvent accessibility to plant tissue due to a reduced 

viscosity[79] but there is a trade-off due to certain metabolites being labile to high 

temperatures. Thus, to test the effect of temperature on metabolite extraction, samples were 

vortexed at 4, 25 and 65oC for 60 minutes. One-way ANOVA analysis indicated a 

significant effect of temperature on metabolite extraction (Table A1.3), with higher 

temperatures favoring metabolite extraction. Extraction at 65oC resulted in almost a 10-

fold improvement in coniferaldehyde and sinapaldehyde pool sizes, while coniferyl and 

sinapyl alcohols, sinapic acid and p-coumaraldehyde showed 2-4 fold improvements 

compared to that at room temperature (Figure 2.3, Figure A1.5). It should be noted that the 

more hydrophobic metabolites of the pathway showed the most improvement at higher 
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temperatures. The compounds being more hydrophobic may preferably partition into the 

cell membrane than into methanol-water solution. Higher temperatures may improve 

analyte solubilities in methanol-water mixture as well as disintegrate cellular membranes 

enhancing their release into the solvent. In light of these findings, extraction in all further 

experiments was carried out at 65oC. 

 

Figure 2.3: Heat map depicting metabolite fold changes as a result of extraction 

temperature. Data presented as log2(abundance in sample/abundances at 25 oC). Data are 

fold changes from (n=4 biological replicates). 

Effect of extraction duration. The amount of analyte released may also be a function of 

extraction time if its extraction is kinetically limited[86]. To investigate this, stem tissue 

was vortexed at 65oC for 30 min (ED30), 60 min (ED60), and 120 min (ED120). Our results 

revealed no statistical effect of duration of extraction on increasing metabolite yields 

(Figure A1.6, Table A1.3). This indicates that the extraction of phenylpropanoids is not 
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limited by its dissolution kinetics in the solvent and vortexing at a high temperature, as 30 

min suffices complete extraction of metabolites. Accordingly, all further sample 

preparations were conducted by vortexing tissue at 65oC for 30 min. It should be noted that 

there might be interaction effects considering the number of parameters optimized in this 

study. Capturing such interactions may lead to an improved response in the form of LODs 

and LOQs. These are the subjects of future work. 

 Ion Suppression due to matrix effects. 

Tandem mass spectrometry, albeit offering crucial advantages for compound 

quantitation like high selectivity, sensitivity and throughput, finds its Achilles heel in 

matrix effects[87]. The alteration in ionization efficiency of an analyte at the electrospray 

interface due to a co-eluted or co-extracted compound(s) is termed a matrix effect. This 

phenomenon causes analyte signal suppression leading to incorrect quantitation of 

compounds of interest. Although the exact mechanism of matrix effects is still debated, it 

is largely believed to originate because of a competition between analyte and co-eluting 

matrix components during electrospray ionization. These matrix components may be 

endogenous species (extracted from biomass) or mobile phase additives[88]. Various 

approaches have been proposed to minimize ion suppression or account for its effects[89]. 

One is reduction of injected sample volume or the dilution of the samples, but this hinders 

the ability to detect certain metabolites. Another approach is reduction of ion suppression 

by choosing an appropriate sample preparation procedure such as protein precipitation, 

solid phase extraction, liquid phase extraction etc. Often these methods lead to a decrease 

or an increase in matrix effects, loss of analytes during extraction and hinder high 
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throughput analysis of biological samples. Addition of an internal standard[90], either 

structurally similar to an analyte or labeled with stable isotope, that co-elutes with the 

analyte can account for losses due to signal suppression. However, this may fail or prove 

to be expensive when profiling multiple compounds spanning a wide range of chemical 

properties. Taking all factors into consideration we studied the matrix effects by a standard 

spike recovery method[91], also known as post extraction addition[92], as described in the 

methods section. The experiments were conducted with three different spike solution 

concentrations, namely x2, x3, and x5 fold of the endogenous concentrations of metabolites.  

The study was done in 4 replicates and recovery factors (fi) for all metabolites were 

determined accordingly. A lower fi value is indicative of a significant suppression in signal 

due to matrix effects, while a value close to 1 indicates almost complete recovery of the 

spiked metabolite. Data from Arabidopsis WT extracts showed no statistical trend of the 

recovery factors of phenylpropanoid metabolites across different concentrations of the 

spike solution (Figure 2.4). Shikimic acid suffered the highest signal suppression (fi = 0.2), 

while sinapic acid, caffealdehyde, and p-coumaryl alcohol resulted in recoveries between 

70-80% (Figure 2.4). Reliable recovery factors could not be estimated in case of cinnamic 

acid due to the spike solution concentrations being close to its LOD, and hence haven’t 

been reported. All the remaining pathway intermediates were almost fully recovered.  
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Figure 2.4: Ion-suppression recovery factors obtained by spiking the tissue extract with 

stock solution containing all standards at 2, 3 and 5 fold of their endogenous concentrations. 

Data are means ± s.d. (n=4 biological replicates). * = p < 0.05 and ** = p < 0.001 obtained 

by Tukey’s HSD post ANOVA test. 

Shikimic acid, due to its highly polar nature, elutes first from the column at 1.64 

minutes (Table 2.1), close to the residence time of un-retained metabolites. This causes it 

to elute with a host of other endogenous polar metabolites extracted from the plant that 

may compete for ionization at the electrospray interface. As a result, only 20% of the added 

shikimic acid was recovered from the spiked sample implying that the true shikimic acid 

concentrations may be 5 fold higher. Improved chromatographic conditions, individually 

optimized ESI parameters and use of negative ion mode[93,94] have been conducive in 

obtaining close to no signal suppression for a majority of the metabolites analyzed. 
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 Metabolite profiling of Arabidopsis WT and ccr1 lines. 

CCR (EC 1.2.1.44) catalyzes the NADPH-dependent conversion of 

hydroxycinnamoyl-CoA esters to their respective aldehydes, a crucial step in monolignol 

biosynthesis (Figure 2.1, [19]). Two Arabidopsis enzymes, CCR1 and CCR2, have been 

kinetically characterized showing high affinity to feruloyl-CoA and lower affinities for 

sinapoyl- and caffeoyl-CoA[95,96]. It has been previously shown that CCR1 has a greater 

catalytic efficiency in converting feruloyl-CoA to coniferaldehyde and is primarily 

involved in lignin synthesis due to its high expression in stem tissue. CCR2, on the other 

hand, is barely detectable under normal growth conditions and is hypothesized to be 

involved in pathogen induced lignification[95]. CCR1 knockout plants exhibit a dwarf 

phenotype, with collapsed xylem vessels, significant reduction in total lignin content and 

change in composition[97,98], and altered cell wall cohesion leading to improved 

saccharification efficiency[35]. Given the drastic phenotype invoked as a result of the T-

DNA insertion and that CCR1 is required for the production of monolignols, we proposed 

to profile ccr1 to visualize changes in the metabolite abundances within the 

phenylpropanoid pathway. The CCR1 deficient lines were analyzed using the optimized 

analytical technique and compared with WT Arabidopsis plants. 

Our analysis of stem tissue from ccr1 lines revealed a significant increase in pools 

of the hydroxycinnamic acids, p-coumaric acid (~35 fold), caffeic acid (~12 fold), sinapic 

acid (~2 fold), with the highest increase observed in ferulic acid (~200 fold, Figure 2.5, 

Table S4) with respect to the WT stems. Simultaneously, a marked reduction in pools of 

the hydroxycinnamyl aldehydes and alcohols was detected, with p-coumaraldehyde and p-

coumaryl alcohol approaching their LODs (Figure 2.5, Table A1.4). In addition, we saw 
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an increase in hydroxycinnamic acid derived esters, such as sinapoyl glucose and feruloyl 

glucose, in agreement with previous attempts in profiling ccr1 mutant lines[97,99]. 

Although ferulic and sinapic acid synthesis occurs via the action of aldehyde 

dehydrogenases on their respective aldehydes (Figure 2.1), it was interesting to see high 

levels of these acids when their aldehyde precursors have been depleted. This may be 

reconciled given that a large increase in the caffeic acid pool can invoke ferulic acid 

synthesis via COMT by outcompeting (Km = 24.2 µM[100]) the other substrates. In 

addition, the feruloyl-CoA esters, accumulated as a result of the knockout, can be 

hydrolyzed to ferulic acid by the action of putative thioesterases[97]. A part of the ferulic 

acid so formed can be further hydroxylated by F5H (Km = 1 mM[101]) to 5-hydroxyferulic 

acid followed by its methylation via COMT (Km = 31.6 µM[100]) to sinapic acid (Figure 

2.1). Given the concentration of ferulic acid observed (Table A1.4), it is likely that the 

synthesis of sinapic acid via the suggested route may occur in spite of ferulic acid’s low 

binding affinity to F5H.  

Apart from the hydroxycinnamic acid derived esters, other phenylpropanoid 

derivatives, such as certain kaempferol glucosides were also previously shown to 

accumulate in ccr1[97]. This is reasonable given the large accumulation of p-coumaric acid, 

a precursor to flavonoids. Overall, these results strongly suggest a shift away from lignin 

synthesis to that of hydroxycinnamic acid-esters and other secondary metabolite 

derivatives of the phenylpropanoid pathway, in stems of ccr1. 
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Figure 2.5: Pool sizes of phenylpropanoid pathway intermediates in WT and ccr1 lines of 

A. thaliana stem tissue. Data of metabolites presented as means ± s.d. (n=4 replicates). 

Analyte responses normalized to fresh weight of tissue. * indicates p<0.05, ** indicates 

p<0.001, *** indicates p<0.0001 obtained using the standard Student’s t-test. P-value 

established after the Bonferroni correction is 0.003, indicating that metabolites marked as 

** and *** are significantly different. Only metabolites with significant differences 

between the two lines have been reported in the figure. 
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 Conclusions 

To summarize, we developed a novel, comprehensive LC-MS/MS based analytical 

method for quantifying intermediates of the phenylpropanoid pathway. In this study, we 

presented a systematic strategy that optimized every unit operation starting from sample 

preparation to compound detection by MS. Manipulating chromatographic conditions 

resulted in a 1.5 to 5-fold increase in analyte responses across standards considered for the 

study with a buffer pH of 5.3 and buffer concentration of 2.5 mM being the optimal. 

Extraction studies showed that vortexing at high temperature results in higher yields of 

analytes. Although no significant effect of the solvent composition or the extraction 

duration have been observed, this is highly dependent on the metabolites of interest as well 

as the model system.  Quantifying signal suppression due to matrix effects indicate a 

considerable loss of the shikimate signal due to its co-elution with a host of other polar 

endogenous metabolites. Applicability of our method was corroborated by quantifying 

phenylpropanoid intermediates in WT and ccr1 lines of A. thaliana. Our findings were 

congruent with previous studies profiling WT stems, and to our knowledge, this is the first 

study presenting absolute concentrations of phenylpropanoid pathway metabolites in ccr1 

lines of Arabidopsis. Of the 17 metabolites in the core metabolite network that have been 

considered, this study reports accurate in vivo concentrations of 15 compounds in 

Arabidopsis stems, higher in comparison to previous reports of 7[60] and 8[63] metabolites 

quantified. In addition, this method is able to detect hydroxycinnamic acid derivatives like 

sinapoyl glucose, sinapoyl malate, feruloyl glucose, and feruloyl malate, and allows for 

conducting stable isotope labeling experiments demonstrating its potential application in 

detecting products of enzyme assays, hydrolysis of cell-wall bound phenolics, lignin 

degradation[58], and systems biology efforts in profiling genetically engineered plants.  
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3. ANALYTICAL METHOD DEVELOPMENT (II): QUANTIFYING 

HYDROXYCINNAMYL COENZYME-A THIOESTERS. 

 Abstract 

In plants, a significant proportion of carbon fixed by photosynthesis is directed 

toward the phenylpropanoid pathway for lignin synthesis. Hydroxycinnamoyl coenzyme 

A (CoA) esters are key intermediates and branch points of the phenylpropanoid network. 

Although CoA thioesters are ubiquitously found in all living systems, they are highly labile 

and generally accumulate to very low in vivo concentrations making their accurate 

measurement very challenging. In this study, we have developed a novel and facile 

analytical method based on reversed phase liquid chromatography (RPLC) coupled with 

tandem mass spectrometry (MS/MS) that has been applied to quantify hydroxycinnamoyl 

CoA esters in Arabidopsis thaliana. The method entails a simple extraction protocol, a 

short method run time (13 min/sample), and offers almost a 10 to 60-fold improvement in 

metabolite specific sensitivity compared to the most recent published technique. 

 Introduction 

 Material and Methods 

 Chemicals 

p-coumaroyl CoA, caffeoyl CoA, and feruloyl CoA were enzymatically 

synthesized by Prof. Chapple’s Lab (Purdue University, West Lafayette-IN). Benzoyl CoA 

(>90%) was from Sigma Aldrich (St. Louis, MO). Glacial acetic acid (>99.7%) was from 

Mallinckrodt Chemicals (Phillipsburg, NJ) while HPLC-grade methanol was from Macron 
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Fine Chemicals (Center Valley, PA). Water for the mobile phases was purified using a 

Barnstead Nanopure Infinity ultrapure water system. All chemicals were used without 

further processing or purification. 

 Plant Material 

Arabidopsis Columbia-0 ecotype plants were grown in growth chambers under a 

16/8 hour day/night cycle at 23oC and a light intensity of 100 µE m-2 s-1. The basal 0.5-2 

cm fragments from 5 week old inflorescence stems were used for the analysis. 

 Standard Solutions 

The hydroxycinnamoyl CoA thioesters were purified to a concentration of around 

1 mM by chromatography post enzymatic synthesis. Stock solutions for the CoA esters, 

including Benzoyl CoA, were prepared at a concentration of 500 µM. All stock solutions 

were stored at -80oC for long term use and -20oC for daily use to prevent degradation. For 

the purposes of this study, benzoyl CoA was used as the internal standard (IS) because (i) 

no detectable endogenous pools were found in Arabidopsis stems (data not shown); (ii) has 

degradation kinetics similar to the CoA thioester intermediates of the phenylpropanoid 

pathway (data not shown). Standard mixtures containing all 4 metabolites were prepared 

at six different concentrations ranging from 100 nM to 150 µM. 

 Stability Studies 

Standard mixtures at a concentration of 150 µM from stock solutions stored at -

80oC. Three sets of triplicates were prepared with one set at -20oC, one set at 4oC, and the 
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other left at room temperature (~25oC). Samples were analyzed 24 and 48 hours after 

incubation at the respective temperatures. The peak areas were recorded to determine 

analyte stability and to design an extraction protocol amenable to a more sensitive analysis 

of the CoA esters. 

 Extraction and Concentration of Soluble Metabolites 

The basal 0-2 cm segments of 5-week old A. thaliana inflorescence stems were 

harvested by cutting using liquid nitrogen. The stems were pulverized to fine powder in 

liquid nitrogen using a mortar-pestle. Each sample contained ~200 mg FW to extract 

detectable concentrations of the CoA esters. Extraction solvent (75% MeOH in water) 

containing the IS at a concentration of 0.001 mg/ml was added to the powdered tissue in 

the ratio of 10 µl to every mg-FW[102]. Samples were then vortexed at 4oC for 30 minutes 

in a Midwest Scientific Benchmark Multi-Therm shaker (Valley Park, MO). The samples 

were then spun down in a micro-centrifuge equilibrated at 4oC at 18000 g for 15 minutes. 

The supernatants were dried under a stream of nitrogen gas and the remaining pellet was 

re-dissolved in 60 µl of 50% MeOH in water. Samples were then transferred to an HPLC 

vial for subsequent analysis on the LC-MS. 

 Metabolomics using LC-MS/MS 

Analytes were separated on a Zorbax Eclipse C8 column (150 mm × 4.6 mm, 5 μm, 

Agilent Technologies, Santa Clara, CA) using an HPLC 20AD system from Shimadzu 

(Columbia, MD) at a column temperature of 30oC and a flow rate of 1ml/min. The injection 

volume was 10 μl. A linear gradient of aqueous solvent A (5 mM ammonium acetate in 
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water, adjusted to pH 6.2 using glacial acetic acid) and an organic solvent B (98% 

acetonitrile, 2% water and 0.02% formic acid) was used as presented in Table 3.1, resulting 

in a separation of the here hydroxycinnamoyl CoA ester and sample run time of 13 mins 

(including equilibration)  

Table 3.1: Mobile phase gradient for analyzing hydroxycinnamyl CoA esters. 

Time 

(min) 

Solvent 

A(%) 

Solvent 

B(%) 

1 90 10 

7 10 90 

10 10 90 

11 90 10 

13 90 10 

Metabolite profiling was performed on an AB Sciex QTrap 5500 triple quadrupole 

mass spectrometer (Redwood City, CA), operating in the negative ion mode. The mass 

spectrometer is equipped with an ESI-TurboIon-spray interface and all data analysis was 

conducted using Analyst 1.5.1 software. A low pressure of 1.5 x 10-5 torr was maintained 

in the QTrap 5500 vacuum manifold as indicated by the pressure gauge. The source 

parameters for the MS were set as follows: curtain gas flow rate, 20 l/h; collision gas, 

medium; ion source voltage, -4.5 kV; desolvation temperature, 700 K; ion source gas 1, 60 

l/h; ion source gas 2, 60 l/h. ESI parameters for every standard, such as declustering 

potential (DP), entrance potential (EP), collision energy (CE), and cell exit potential (CXP) 

were manually tuned to obtain high sensitivities (Table 3.2) 
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Table 3.2: Retention time (RT), ion transitions Q1/Q3 (m/z), and ESI parameters for the 

phenylpropanoid pathway intermediatesa 

Metabolite 
RT 

(min) 

Q1 

[M-H]
-
 

Q3 

[M-H]
-
 

LOQ 

(nM) 

DP 

(volts) 

EP 

(volts) 

CE 

(volts) 

CXP 

(volts) 

p-

coumaroyl 

CoA 

4.26 912.3 408.1 440 -260 -8 -48 -15 

Caffeoyl 

CoA 
4.04 928.3 408.1 1030 -260 -8 -50 -17 

Feruloyl 

CoA 
4.36 942.3 408.1 160 -260 -8 -50 -15 

Benzoyl 

CoA 
4.48 870.3 408.1  -254 -2 -56 -12 

CoA-SH 2.08 766.2 408.1  -200 -12 -43 -21 

a Analysis was performed using an AbSciex QTrap 5500 mass spectrometer coupled to Shimadzu RP-HPLC 

system. 

 Results and Discussion 

 Separation and MRM of CoA Esters 

Chromatographic conditions, such as mobile phases, buffer pH, buffer concentration, 

solvent flow rate, and column temperature are crucial to analyte separation, and sensitivity 

when analyzed using an ESI module [67]. A flow rate of 1 ml/min is suggested given the 

column dimension used for the study and ACN was used as the organic buffer due to its 

high eluotropic nature and low viscosity[68]. A buffer pH of 6.2 was chosen compared to 

the mobile phase (pH 5.3) used for profiling phenylpropanoids as (i) CoA esters are known 

to be relatively more stable in solutions close to a pH of 7[103,104] and (ii) it is within the 

range of the buffering capacity of acetic acid[72]. The solvent gradient (Table 3.1) was 

optimized for obtaining resolution enough to prevent co-elution of CoA esters (Figure 3.1).  
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Figure 3.1: Chromatograms of hydroxycinnamoyl CoA thioesters at a concentration of 100 

µM. Separation was performed on a Zorbax Eclipse C8 column (150 mm × 4.6 mm, 5 µm) 

using 5 mM NH4CH3CO2 buffer in water (pH 6.2) as solvent A and ACN/H2O/HCOOH 

(98/2/0.02 %v/v) as solvent B. Data for feruloyl CoA and benzoyl CoA have been plotted 

on the secondary axis (right). 

The multiple reaction monitoring (MRM) mode offers a unique advantage of 

monitoring ion transitions (parent, Q1; and fragment/daughter, Q3) making it a highly 

selective and sensitive technique without requiring a complete baseline separation of the 

analytes. The parent ion (Q1) for all CoA esters corresponded to the molecular weight after 

a loss of hydrogen ([M-H]-). However, the fragment ion (Q3→408.1) generated was 

common to all CoA esters. Loss of metaphosphoric acid and a water molecule from 

3’phosphoadenosine disphosphate moiety of Coenzyme A results in the formation of the 

fragment ion (Figure 3.2, [105]). Having a common fragment ion independent of the acyl 

moiety allows for ‘blind’ metabolite profiling of other similar CoA esters in plants (e.g. 

Sinapoyl CoA, Cinnamoyl CoA etc.). Standard mixtures at a concentration of 100 µM – 
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well within the linear response of the MS detector– were used for all MS optimization and 

tuning studies. Metabolite specific ESI parameters and source parameters were manually 

tuned to obtain higher sensitivities. Our developed chromatography method compounded 

with tailored tuning of MS parameters resulted in metabolite specific sensitivity gains of 

over 10 to 60 fold compared to a recent analytical method published on profiling 

hydroxycinnamoyl CoA esters[106]. 

 

Figure 3.2: Schematic of the ion transition for p-coumaroyl CoA (Molecular weight: 913.2 

g/mol).  

 Stability Studies on CoA Esters 

Thioesters are known to be very reactive and have a high negative Gibbs free energy 

of hydrolysis[107]. Certain acyl CoAs are known to degrade by almost 50% of their initial 

concentration in a few hours at room temperature[103]. To investigate such losses due to 
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degradation and to design an appropriate sample preparation protocol for extraction studies 

on actual plant tissue, stability studies were conducted by incubating 100 µM standard 

mixture of CoA esters at -20 oC, 4 oC, and 25oC (room temperature). Standard mixtures 

were analyzed 24 and 48 hours after incubation at the respective temperatures (Material 

and Methods). Almost all CoA esters in the study were stable at -20oC for the period of 

two days (Figure 3.3). No significant differences in analyte responses were observed after 

24 hours at 4oC but almost 70-80% of the analyte was degraded by the end of 48 hours. 

The CoA esters were very labile at room temperatures exhibiting significant losses within 

24 hours of their incubation at 25oC (Figure 3.1). Our findings strongly suggested (i) the 

use of a representative internal standard that accounts for analyte losses due to degradation, 

and (ii) to maintain the samples under cold conditions throughout the extraction process 

during extraction and sample processing right until the time of analysis. Benzoyl CoA was 

not detectable in WT Arabidopsis stem extracts and is relatively close to the 

hydroxycinnamoyl CoA esters in terms of its chemical structure. Isotopically labeled 

analogues of CoA esters would serve as ideal internal standards. To minimize losses due 

to degradation, all samples were vortexed and spun down at 4oC and were stored in a -20oC 

freezer maintained when not in use. Concentration under a stream of nitrogen was deemed 

amenable as sample temperatures would be significantly below room temperatures due to 

evaporative cooling. 
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Figure 3.3: Analyte responses from stability studies conducted on CoA ester standard 

mixtures at a concentration of 100 M. Data presented as means and standard deviations 

of intensities from n=3 replicates.  

 Analyzing Arabidopsis stem extracts 

Basal sections of Arabidopsis inflorescence stems were chosen for the study as they 

are highly lignifying, with increased expression of enzymes of the monolignol biosynthesis 

pathway[102]. Phenylpropanoid pathway intermediates are also more likely to accumulate 

in these basal fragments. The entire sample preparation procedure entailing extraction by 

vortexing (30 mins), centrifugation (15 mins), concentration using a nitrogen evaporator 

(90 mins), and dissolution of dried extracts (15 mins) was a total of ~3.5 hours, significantly 

shorter and simpler than some of the previous analytical methods[104,106,108]. HPLC 
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vials with the final samples were stored at -20oC until their injection on the LC-MS for 

analysis. All three CoA esters were observed above LOQs in the stem extracts (Figure 3.4). 

The high sensitivity of the analytical method allowed for quantification of CoA esters at 

low concentrations of ~0.05 nmol/g-FW. Internal standard recovery on average was found 

to be 76 ± 14 % of the total amount added during extraction. Accounting for the losses 

manifested in the precision of the reported metabolic concentrations with observed 

standard deviations being less than 25% of the mean values (Figure 3.4). 

 

Figure 3.4: Concentrations of hydroxycinnamoyl CoA thioesters in the basal section of 5 

week old Arabidopsis WT stems. Data are the means and standard deviations from n=3 

replicates. 

 Conclusions 

In this study, we developed a rapid, adaptable, sensitive, and facile method to 

quantify hydroxycinnamoyl CoA esters in plant extracts. The chromatographic parameters 

were conducive in achieving a separation of the four CoA thioesters used in the study. The 
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analytical technique was found to be over 10 to 60-fold more sensitive than the most 

recently reported method; for the first time allowing quantification of the hitherto 

undetectable hydroxycinnamoyl CoA esters in Arabidopsis stems. The ability to measure 

p-coumaroyl CoA, caffeoyl CoA, and feruloyl CoA opens up the study of carbon flux 

allocation towards lignin at key branch points and potential regulatory sites of the 

phenylpropanoid pathway. The application of the analytical method to other plant systems 

would provide new opportunities to investigate phenylpropanoid metabolism. 
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4. METABOLIC FLUX ANALAYSIS OF THE 

PHENYLPROPANOID PATHWAY IN ARABIDOPSIS 

MUTANTS 

 Abstract 

The phenylpropanoid pathway is highly interconnected with several branch points and is 

responsible for the synthesis of the three monolignols that constitute the predominant 

fundamental units of lignin. Consequently, knowledge of the relative contribution of the 

metabolic pathway fluxes involved in lignin synthesis is essential for rational metabolic 

engineering of the pathway. In this study, high resolution flux maps of the phenylpropanoid 

network was computed for in Arabidopsis WT and 4-coumarate ligase knockdown lines 

(4cl1) using 13C-metabolic flux analysis (13C-MFA). Isotopic labeling enrichments and 

total concentrations of 15 pathway intermediates were measured after exogenously 

supplying 13C6-phenylalanine to stems from both genotypes. Dynamic mass balances were 

formulated for each metabolite and network fluxes were estimated by fitting a model 

describing the labeling dynamics to the experimental data. Total acetyl bromide soluble 

lignin and labeled lignin measurements from DFRC analysis were used as constraints for 

flux estimation. A reduction in the total incoming flux into the pathway was observed in 

4cl1 lines in accordance with the reduced lignin phenotype in the 4cl1 mutant. Although a 

majority of the incoming flux is still shuttled via the traditional shikimate-ester route to 

lignin synthesis, flux estimations suggested a second route of caffeic acid synthesis from 

p-coumaric acid under fed conditions. The reaction catalyzed by caffeoyl-shikimate 

esterase (CSE) was also found to significantly contribute to caffeic acid synthesis. A higher 

flux towards sinapyl alcohol derived lignin (S) was observed in 4cl1 lines with the reaction 
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catalyzing the conversion of coniferaldehyde to sinapaldehyde is more active than the 

hydroxycinnamyl alcohol counterpart. 

 Introduction 

Plants normally channel around 20-30% of photosynthate towards synthesis of the 

amino acid phenylalanine (Phe) that is further converted to lignin, a hetero-aromatic 

polymer that imparts structural integrity to the plant vasculature and impedes efficient 

cellulosic biofuel production [7,109]. Lignin synthesis occurs via the phenylpropanoid 

pathway where the primary precursor Phe undergoes a series of functional modifications 

primarily deamination, hydroxylations, and methylations to form p-coumaryl, coniferyl, 

and sinapyl alcohol ([110]; Figure 4.1). These products, also known as monolignols, are 

transported to the secondary cell walls of plant cells to be polymerized into p-

hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin respectively. Now, with an 

increasing demand for alternative and renewable sources of energy in light of the rapidly 

depleting fossil fuels, several metabolic engineering efforts have targeted the 

phenylpropanoid pathway to investigate the possibility of engineering lignocellulosic 

feedstock and make them more amenable to pretreatment techniques employed during 

biofuel production [6,16,26,111–113]. 
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Figure 4.1. Most recent model of the phenylpropanoid pathway leading to lignin 

biosynthesis. Key reactions are indicated with black arrows. Enzymes are represented in 

blue and metabolites in black. 4CL, 4-(hydroxy)cinnamoyl CoA ligase; C3′H, p-coumarate 

3′-hydroxylase; C4H, cinnamate 4-hydroxylase; CAD, cinnamyl alcohol dehydrogenase; 

CCoAOMT, caffeoyl CoA O-methyltransferase; CCR, cinnamoyl CoA reductase; COMT, 

caffeic acid/5-hydroxyferulic acid O-methyltransferase; F5H, ferulate 5-hydroxylase; 

HCALDH, hydroxycinnamaldehyde dehydrogenase; HCT, hydroxycinnamoyl 

CoA:shikimate hydroxycinnamoyltransferase; PAL, phenylalanine ammonia-lyase. 

 

While some of these experiments successfully reduced lignin resulting in an 

improved biomass digestibility, several others exhibited a variety of phenotypes leading to 

dwarfism, plant sterility, slower growth rates, and drastic changes in lignin composition 

[23,114–117]. Despite significant advances in the technology to manipulate gene 

expression in higher eukaryotes, genetic engineering in plants often leads to such 

unanticipated pleiotropic effects due to the sheer complexity of the metabolic networks, 

sub-cellular compartmentation, and an unpliable regulatory hierarchy. The 

phenylpropanoid pathway is highly interconnected with many enzymes catalyzing multiple 

reactions (e.g. 4CL, CCR, CAD, COMT; HCT, Figure 4.1) and several enzymes having 

multiple isoforms. Moreover, the pathway is characterized by a number of branch points 
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(e.g. p-coumaroyl CoA, caffeoyl-shikimate, coniferaldehyde; Figure 4.1) around which the 

flux towards the three hydroxycinnamyl alcohols may be manipulated. 

In addition to its complexity, in the past three decades the phenylpropanoid pathway 

has been rewritten several times as seminal studies identified crucial enzymes in the 

network[118]. The long-standing model of lignin synthesis via the hydroxylation of p-

coumaric acid was reconsidered after concurrent efforts have established that p-coumarate 

3-hydroxylase (C3´H) – the enzyme responsible for hydroxylation – actively converts 5-

O-shikimate and 5-O-quinate esters of p-coumaric acid to the caffeoyl conjugates[115,119]. 

Furthermore, a recent study has identified the enzyme caffeoyl shikimate esterase (CSE) 

and established its role in lignin synthesis further amending the metabolic network to now 

include caffeic acid synthesis via CSE and its conversion to caffeoyl CoA via 4-coumarate 

ligase (4CL; [25]). What remains elusive is whether the metabolic routes considered in 

favor of the currently accepted predominant pathway (Figure 4.1) are (i) entirely dormant; 

(ii) have the ability to be compensatory in the event of downregulation of an enzyme(s) as 

purported in CCoAOMT downregulation in alfalfa plants where no severe reduction in 

lignin was observed[120], (iii) become active in transgenic plants leading to a change in 

the metabolite profiles as seen in CCR downregulated lines where sinapic acid and ferulic 

acid accumulate even under reduced concentrations of their hydroxycinnamaldehyde 

precursors[116]. Therefore, despite the vast developments in characterizing the metabolic 

network, there is a gap in our understanding of the regulation of in vivo carbon fluxes and 

contribution of different routes towards lignin synthesis, which is crucial for proposing 

rational metabolic engineering strategies. 
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13C metabolic flux analysis (13C-MFA) is a mathematical technique that quantifies in vivo 

fluxes utilizing isotopic labeling patterns of metabolites[121]. Traditionally applied to 

microbial systems, MFA is used to assess the effects of environmental and genetic 

modifications on in vivo fluxes, thereby becoming an essential tool in metabolic 

engineering and systems biology[122–124]. The past decade has witnessed several 

advances in MFA methodologies and its application to plants, some of them including 

rice[125], maize[126], soybean[127], Brassica napus[128], Arabidopsis[129–134], potato 

tubers[135,136], and Petunia hybrida[137]. Most of these efforts dealt with central carbon 

metabolism and very little information is available on secondary metabolic networks[135–

138].  

The main objective of this study is to obtain high resolution flux maps in lignifying 

stems of Arabidopsis using 13C-MFA and develop key insights into the qualitative and 

quantitative questions regarding Phe assimilation into lignin. Lines downregulated in 4CL1 

were chosen for their interesting phenotype characterized by almost a 30% reduction in 

total lignin, a higher S to G ratio, but no growth defects[22]. How and why reduced activity 

of an enzyme catalyzing an early step towards lignin synthesis results in altered lignin 

composition was an endearing question to further investigate. Isotope labeling experiments 

were conducted using ring labeled Phe (13C6-Phe) and its incorporation into 15 

phenylpropanoid pathway intermediates and lignin was quantified at multiple time points. 

Flux maps for WT and 4cl1 lines were compared to gain insight into flux splits at major 

branch points and major flux redistributions as a result of 4CL1 knockdown. 
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 Materials and Methods 

 Plant Material 

Columbia-0 and 4cl1 mutant Arabidopsis plants were grown in a growth chamber 

at 23oC under a light intensity of 150 µE/m2-s and a 16/8 hour day/night cycle. The TDNA 

mutant 4cl1 (WiscDsLox473B01) was obtained from the Arabidopsis Biological Resource 

Center and confirmed by genotyping PCR (Li et al., 2015). 

 Isotopic Labeling Study 

Primary inflorescence stems from 5-week-old plants were excised under water with 

a double edged blade and inserted into microcentrifuge tubes containing a solution of 1 

mM ring labeled 13C6-Phe in Murashige and Skoog (MS) medium. Basal 0.5-2 cm of the 

stems were harvested at 0 (unfed), 20, 40, 90, and 180 min post feeding, rinsed with water 

and quenched using liquid nitrogen. The study was done in triplicate using a total of 18 

stems for each replicate in order to allocate sufficient tissue for soluble metabolite analysis, 

total lignin analysis, and lignin composition analysis using derivatization followed by 

reductive cleavage (DFRC) procedure 

 Analysis of Soluble Metabolites using LC-MS/MS 

Sample preparation and extraction. Frozen stem tissue was ground to a fine 

powder using a mortar and pestle to which 10 µl of the extraction solvent was added for 

every mg fresh weight of the harvested tissue. The extraction solvent used for the study 

was 75% methanol in water with the internal standards benzoyl CoA and p-F-(DL)-

Phenylalanine at a concentration of 1 µg/ml and 0.1 µg/ml respectively. Benzoyl CoA was 
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selected as an internal standard for the hydroxycinnamyl CoA esters because, (i) the 

degradation kinetics are similar to the CoA esters (data not shown), and (ii) there were no 

detectable endogenous pools in Arabidopsis stem extracts (data not shown). The extraction 

of the phenylpropanoid metabolites was conducted sequentially in two steps. First, the 

samples were subjected to a cold extraction by vortexing in a Multi-therm incubated 

vortexer (Valley Park, MO) at 4oC for 30 min for analysis of the labile hydroxycinnamyl 

CoA esters. The samples were centrifuged at 15000 g for 15 min and the supernatants (S1) 

were dried under a stream of nitrogen gas. The second extraction was conducted by adding 

the same volume of extraction solvent to the remaining pellets followed by vortexing at a 

temperature of 65oC. The supernatants (S2) were concentrated under a stream of nitrogen 

gas. Concentrations of hydroxycinnamoyl CoA esters were reported by analyzing S1 

samples using LC-MS/MS, while the concentrations of the remaining intermediates of the 

phenylpropanoid pathway were reported as a combination of S1 and S2 samples. 

Analytical methods for metabolite profiling. Analytes were separated using a 

Shimadzu HPLC 20AD system on a Zorbax Eclipse C8 column (150 mm 4.6 mm, 5 m, 

Agilent Technologies, Santa Clara, CA) at a column temperature of 30oC and a flow rate 

of 1 ml/min. Metabolite detection was achieved using an AbSciex QTrap 5500 triple 

quadrupole system equipped with an electrospray ionization (ESI) probe in the negative 

ion mode. Peak areas corresponding to [M-H]- and [M+6-H]- ions were integrated to 

quantify unlabeled and labeled metabolites respectively. Chromatographic conditions and 

mass spectrometric parameters for phenylpropanoids (other than the hydroxycinnamoyl 

CoA esters) were set as described previously[102]. Mobile phases and chromatography 

gradient from Jaini et al., (2017) were altered and optimized for analysis of 
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hydroxycinnamoyl CoA esters (Table A2.1). The retention times, mass transitions, and 

optimized ESI parameters for CoA esters have been reported in the appendix (Table A2.2). 

 Total Lignin Content and Composition Analysis. 

Cell wall residue for lignin analysis was isolated as described previously[139]. 

Mature stems of Col-0 wild type, and 4cl1 plants were harvested and ground to a fine 

powder in liquid nitrogen. The pulverized tissue was first washed with 0.1 mM sodium 

phosphate buffer (pH 7.2) at 50 oC and then extracted with 70% ethanol five times at 65oC. 

The samples were washed once with acetone and then dried under room temperature. Total 

lignin content was measured using the acetyl bromide-soluble lignin method described 

previously[140,141]. For DFRC analysis, 8-15 mg of the dried CWR was dissolved 

overnight in 2.5 ml of solvent containing acetic acid/acetyl bromide (80/20 %v/v) with 0.2 

mg of 4,4’-ethylidenebisphenol as the internal standard (IS). The dissolved samples were 

dried and redissolved in 2 ml of dioxane/acetic acid/water (50/40/10, %v/v/v). This mixture 

was then reacted with Zinc dust and the products were acetylated using a pyridine/acetic 

anhydride mixture (40/60, %v/v). The acetylated lignin derivatives were quantified using 

gas chromatography FID and mass spectrometry after accounting for the response factors 

from the internal standard as previously described[142–144]. 

 Mathematical Modeling 

Metabolic network and model setup. The phenylpropanoid pathway from Figure 

1 was transformed to a network consisting of 15 metabolites and 26 fluxes (Figure 4.2). 

Cinnamic acid was lumped with p-coumarate and considered to be at a steady state as it 
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was below the limits of detection of the analytical method even after feeding for 3 hours. 

Reactions involving 5-OH-ferulic acid, 5-OH-conferaldehyde, and 5-OH-coniferyl alcohol 

were lumped as a single reaction due to lack of standards. 

 

 

Figure 4.2 Metabolic network for MFA of Arabidopsis. The network consists of 26 fluxes 

(v1-26). Fluxes to lignin (v6, v20, v23) and hydroxycinnamic acid derivatives (v18, v24, v26) 

constitute the exit fluxes of the pathway and are represented in blue. Metabolites for 

which inactive pools have been invoked are represented as M1-7. 

 

Feeding at a concentration of 1 mM 13C6-Phe resulted in a linear accumulation of 

all phenylpropanoid pathway metabolites. This allowed for expressing the total mass 

balances on metabolites using a linear equation (Equation 1) with the slope as the 

difference of incoming and outgoing fluxes (v) and the intercept (M(0)) representing the 

initial metabolite concentrations. Best fit values and confidence intervals for slopes and 

intercepts for every metabolite for both WT and 4cl1 lines were obtained using linear 

regression (Table A2.3).  
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𝑀 = (𝑣𝑖𝑛 − 𝑣𝑜𝑢𝑡) + 𝑀(0) = 𝑣𝑖 ∗ 𝑡 + 𝑀(0)                            Equation 1 

Component mass balances on labeled metabolites were expressed using ordinary 

differential equations according to Equation 2, where ML and MUL indicate labeled and 

unlabeled concentrations of a metabolite respectively, vin is the input flux from the 

precursor, vout is the output flux, and fi indicates the fractional label in a metabolite 

(Equation 3). 

𝑑𝑀𝐿𝑖

𝑑𝑡
= 𝑣𝑖𝑛𝑖

∗ 𝑓𝑖𝑛𝑖
− 𝑣𝑜𝑢𝑡𝑖

∗ 𝑓𝑖              Equation 2 

𝑓𝑖 =
𝑀𝐿

𝑀𝑈𝐿+𝑀𝐿
               Equation 3 

Framework of Flux Estimation. In summary, MFA entails identifying a set of 

fluxes that best captures the dynamics of the 13C labeling data. The fluxes were evaluated 

using non-linear weighted least squares regression where the objective function formulated 

as the difference between experimentally measured and simulated labeled metabolite 

concentrations was minimized (Figure 4.3). Inverse of standard deviations obtained from 

experimental measurements were used as weights for the regression routine. The model 

consisted a total of 33 parameters for WT and 34 parameters for 4cl1 lines, 26 of which 

corresponded to the fluxes in the pathways. One parameter was allocated for estimating the 

actual labeling concentration of Phe (CPhe). CPhe accounts for the dilution in label 

enrichment in Phe due to the plastidial pool. The remaining parameters represent 

concentration of inactive pools of p-coumaric acid, coniferaldehyde, sinapaldehyde, p-

coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol. In case of 4cl1, an inactive pool 

for p-coumaraldehyde was also included due to a lower measured label incorporation than 

p-coumaryl alcohol. 
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Figure 4.3: Overall framework of the modeling strategy. 

The FMINCON function from the Optimization toolbox of MATLAB R2017a was 

used for all simulations in the study. The rates of change of metabolite concentrations were 

estimated using linear regression and were used as equality constraints for the optimization 

routine. Fluxes towards H (v6), G (v20) and S (v23) lignin were constrained using labeled 

lignin accumulation data from DFRC analysis (Figures A2.1 & A2.2). Fluxes toward 

hydroxycinnamic acid derivatives (v18, v24, v25) were equated to the rate of difference in 

their concentrations before and after hydrolysis (Figure A2.3) for 4cl1 lines. In case of WT, 

the summation of fluxes towards the hydroxycinnamic acid derivatives was constrained to 

be less than 10% of the incoming flux based on measurements of sinapoyl derivatives from 

LC-MS and spectrophotometry analysis. 
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Estimation of Confidence Intervals on Fluxes. Intercepts and slopes for total 

metabolite concentrations were randomly sampled using the means and standard deviations 

estimated from linear regression as previously discussed (Table A2.3). The normrnd 

function was used to carry out the sampling 100 times resulting in a set of 100 metabolite 

accumulation rates and initial concentrations. The optimization routine was repeated for 

every sample. The final set of fluxes were reported as the mean and standard deviations 

from 100 samples. 

Hierarchical Clustering Analysis. Clustering analysis was conducted using 

dynamic isotopic label enrichment data obtained for all metabolites on JMP®, Version 9.2, 

(SAS Institute Inc., Cary, NC). The Ward’s minimum variance method was used to perform 

the clustering analysis. 

 Results and Discussion 

 Targeted Metabolomics Data across different genotypes. 

Stem tissue from both WT and 4cl1 plants were profiled for phenylpropanoid metabolites 

using LC-MS/MS (Materials and Methods; [102]). A total of 15 metabolites were profiled, 

of which caffeic acid and caffeoyl CoA were below the quantitation limits in WT and 4cl1 

stems respectively. Our analysis revealed a significant increase in the concentrations of 

hydroxycinnamic acids (Figure 4.4), p-coumaric acid (~120 fold), caffeic acid (~250 fold), 

ferulic acid (~12 fold), and sinapic acid (~2 fold) in 4cl1 lines relative to WT. 4CL1 isoform 

is known to preferably catalyze the conversion of p-coumaric acid and caffeic acid to their 

respective CoA thioesters. Therefore, high levels of accumulation of the major substrates 

is expected in 4cl1 plants that exhibit a 70% reduction in enzyme activity[22]. 
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Simultaneously, a significant reduction in the concentrations of p-coumaryl- and coniferyl- 

aldehydes and alcohols was observed (Figure 4.4).  
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Figure 4.4. Metabolite concentrations of phenylpropanoid intermediates in basal 0-2 cm 

stem sections of non-fed WT and 4cl1 lines of Arabidopsis. Data presented as mean  S.D. 

from n=3 replicates. *p < 0.05, **p < 0.01, and ***p < 0.001 were obtained using standard 

Student’s t-test. Data for sinapoyl glucose and sinapoyl malate were normalized to WT 

measurements for lack of standards. 
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3.4. Continued 

 

Although ferulate (KM = 200 µM; [145]) and sinapate (KM = n.d.; [145])have 

weaker affinities to 4CL1, an increase in their concentrations may be attributed to the 

conversion of caffeic acid via COMT and F5H enzymes. This alternative route was 

previously proposed in light of ferulic acid accumulation in 4cl1 plants with significantly 

reduced concentrations of its predominant precursor, coniferaldehyde[146]. A marked 

reduction in the concentrations of sinapoyl derivatives was also observed indicating a 

reduced flux towards their synthesis in 4cl1 lines (Figure 4.4). Despite the fact that a 

reduction in monolignols are in agreement with the reduced lignin levels observed in 4cl1 

lines, it is interesting to see a drastic reorganization of the metabolic profile of the 

phenylpropanoid pathway in plants that are phenotypically similar to WT lines. 

Nevertheless, it is well-known that metabolite concentrations solely are not informative 
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about the fluxes through a metabolic network. In order to obtain further insight into the 

effects of the genetic modification, metabolic flux analysis using 13C6-Phe as an isotopic 

tracer was performed. 

 Dynamic Labeling Experiments 

Isotopic labeling data was obtained for 15 metabolites using the analytical methods 

described previously. The M+6 isotopologue was successfully detected and quantified for 

all metabolites profiled over the course of the feeding study, except for Caffeoyl CoA in 

4cl1 lines. While upstream metabolites reached an isotopic steady state at the end of the 

feeding study, an increasing label enrichment was observed for most downstream 

metabolites, specifically the hydroxycinnamyl aldehydes and alcohols (Tables A2.4 & 

A2.5). Significant observations from the labeling experiments have been discussed case by 

case as follows. 

Sinapaldehyde and sinapyl alcohol pools in 4cl1 lines have higher 13C 

enrichments than WT. A label enrichment of ~20% and ~15% was observed for 

sinapaldehyde and sinapyl alcohol, respectively, in WT lines at the end of the feeding study, 

while the enrichments were in 4cl1 lines were ~35% and ~19%, respectively. A higher 

label incorporation in sinapyl alcohol without a change in the endogenous pools indicates 

a higher synthesis flux in accordance with the higher S lignin phenotype reported for 4cl1 

lines[22]. Simultaneously, a decrease in sinapic acid label enrichment from ~59% in WT 

lines to ~50% in 4cl1 lines was observed without a significant change in the endogenous 

concentrations. This is indicative of reduced incoming flux from sinapaldehyde, the 

predominant precursor of sinapic acid, which is in agreement with the reduced 
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concentrations of sinapic acid derived esters, such as sinapoyl glucose and sinapoyl malate 

(Figure 4.4; [22]). 

Higher fractional label incorporation in products compared to precursors 

suggests presence of inactive or compartmented pools. The general rule in isotopic 

labeling studies is that the label enrichment in a product metabolite is always less than or 

equal to the label enrichment of the precursor. This is a direct eventuality of mass balances 

on the labeled fraction for each metabolite. Any divergence from this rule essentially 

violates the law of conservation of mass. However, there are two scenarios where such a 

discrepancy is still valid, (i) when there exist multiple routes leading to the formation of 

the product, and (ii) when there exists an inactive pool that is localized either in another 

cellular compartment, or another cell entirely. For example, the former scenario can explain 

the higher labeled fraction of sinapyl alcohol in 4cl1 lines when compared to coniferyl 

alcohol. Sinapaldehyde with a higher labeled fraction than both monolignols is also a 

precursor to sinapyl alcohol. The latter scenario can be invoked to explain the lower label 

enrichment of Phe compared to p-coumaric acid in WT lines. There could be a significant 

plastidial pool or a vacuolar pool (Lynch et al., 2017, in press) of Phe that dilutes the labeled 

fraction of the metabolite when extracted. In case of coniferaldehyde, the inactive pool is 

suggested to be localized in cellular membranes[102]. Hydrophobic compounds such as 

hydroxycinnamyl aldehydes and alcohols, having high octanol-water partition coefficients, 

favorably partition into cellular membranes rendering them inaccessible to the cytosolic 

enzymes for further conversion[147]. Extraction at high temperatures using organic 

solvents would release the metabolite partitioned into the membrane thereby reducing the 

final percentage of labeled intermediate[102]. Thus, inactive pools were invoked for a 
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number of metabolites for both 4cl1 and WT lines when formulating the model for 

estimating fluxes in order to sustain the law of conservation of mass (Table A2.6). 

A CoA independent route to caffeic acid may be active under fed conditions. 

Hierarchical clustering of all metabolites measured was performed using dynamic 

fractional enrichment data for both genotypes. Hydroxycinnamic acids clustered together 

in both WT and 4cl1 plants indicating that they follow the same labeling dynamics (Figure 

4.5 (a)&(b)). The similarity of labeling dynamics is a function of the proximity of the 

metabolites to each other. In other words, a product should tend to cluster with its 

immediate precursor. This is evident from the two primary clusters obtained in both 

genotypes, one that is characterized mainly by upstream metabolites and the second by the 

more downstream hydroxycinnamoyl aldehydes and alcohols. Interestingly, caffeoyl 

shikimate – precursor to caffeic acid – clusters with the downstream metabolites. Moreover, 

the percentage of 13C label incorporation in caffeic acid, ferulic acid, and sinapic acid was 

found to be consistently higher than their precursors caffeoyl-shikimate, coniferaldehyde, 

and sinapaldehyde respectively in both WT and 4cl1 lines (Tables A2.4 & A2.5). The most 

plausible explanation for this would be an alternative route of synthesis for the 

hydroxycinnamic acid (Scenario 1 from previous section). It is possible, under fed 

conditions an accumulation in p-coumaric acid allows this alternate CoA independent route 

to caffeic acid. The caffeic acid so formed is in turn converted to ferulic and sinapic acid 

by the action of COMT and F5H enzymes. Ferulic acid synthesis at higher concentrations 

of caffeic acid is plausible given the turnover number (kcat/KM) of COMT for caffeic acid 

is of the same order of magnitude as the other 5-OH-feruloyl substrates[148]. 
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Figure 4.5: Dendrograms obtained from hierarchical clustering of dynamic label 

incorporation in phenylpropanoid metabolites in (a) WT, and (b) 4cl1 lines. Data from all 

five time points were included for the analysis. Blue box encloses all hydroxycinnamic 

acids and the precursor, Phe. 

What is interesting and seemingly unlikely is the in vivo hydroxylation of p-

coumaric acid to caffeic acid. In vitro enzyme assays expressing C3´H in yeast microsomes 
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suggested that kcat for p-coumaric acid (1.2 nmol/mg-protein/hr; [149]) is around 6000-fold 

lower compared to that of p-coumaryl-shikimate (7344 nmol/mg-protein/hr; [119]). 

Compounded with a higher KM of p-coumaric acid, the relative catalytic efficiency (kcat/KM) 

would be significantly higher than 6000. Despite this fact, caffeic acid formation is still 

observed in fed stems with p-coumaric acid accumulating to ~150 fold in WT stems and 

~8000 fold in 4cl1 lines. In other words, p-coumaric acid is able to compete with its 

shikimate ester counterpart at lower concentrations than expected from in vitro assays. This 

brings forth an interesting question as to whether C3´H is the primary enzyme 

hydroxylating p-coumaric acid, or there exists a P450 analog that may have lower 

expression but is more active towards the hydroxycinnamic acid. Another possibility is the 

existence of a membrane bound protein complex of P450s that directly converts cinnamic 

acid to caffeic acid, as was found in case of Poplar[150]. For all simulations conducted in 

this study, the hydroxycinnamic acid route (fluxes v2, v14, v15; Figure 4.2) was included in 

the model in light of the above findings. 

Monolignol labeling patterns alone are insufficient and inaccurate to estimate 

total flux to lignin Total AcBr lignin measurements indicated a ~17% reduction in total 

lignin in 4cl1 plants (Table A2.7), but no significant changes in lignin deposition during 

the course of the feeding study for both the genotypes (Figures A2.1 & A2.2). This is 

contrary to expectations as labeled monolignol units were deposited in lignin as quantified 

by DFRC analysis (Figures A2.1 & A2.2). The standard errors of measurement of total 

lignin are of the order of the total flux towards lignin, which makes a confident estimation 

of lignin deposition rate difficult. Linear interpolation of the DFRC data from fed WT and 

4cl1 lines suggests a total lignin (H, G, and S combined) deposition rate to be ~10.3 nmol/g-
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FW-min and ~9.9 nmol/g-FW-min respectively. It was interesting to see a similar label 

deposition rate in 4cl1 lines although it exhibits a reduced lignin phenotype[22]. To 

investigate this and to obtain constraints for MFA, total flux towards lignin was estimated 

by fitting parametric curves on label enrichment data of monolignols for both WT and 4cl1 

plants (Table 4.1). The total flux towards lignin was estimated to be ~64 nmol/g-FW-min 

in WT and ~60 nmol/g-FW-min in 4cl1 lines under fed conditions. If this were true, a 

concomitant increase in total lignin deposition rate should have been observed from the 

measurements of the AcBr method of quantifying lignin. Despite the fact that the total flux 

calculated is 2 to 3-fold higher than the variance of the AcBr technique, our measurements 

indicate no significant accumulation of lignin (Figures A2.1& A2.2). 

Table 4.1: Estimates and bounds of fluxes towards lignin. 

 Fluxes WT (nmol/gFW-min) Fluxes 4cl1 (nmol/gFW-min) 

 IEa LBb UBc IEa LBb UBc 

H 4.5 ± 0.8 1.6 ± 0.2 2.6 ± 0.7 4.5 ± 0.4 2.3 ± 0.4 4.3 ± 0.5  

G 45 ± 4.6 7.7 ± 0.9 19.3 ± 1.9 34 ± 5.7 5.4 ± 0.5 12.6 ± 1.6 

S 14 ± 2.1 0.9 ± 0.1 3.1 ± 0.3 19.6 ± 1.8 2.3 ± 0.3 5.4 ± 0.4 

Total 63.5 ± 7.5 10.2 ± 1.3 25 ± 2.9 58.2 ± 7.9 10 ± 1.2 22.3 ± 2.5 

aIE: initial flux estimates using measured label enrichments of monolignols 
bLB: lower bounds of fluxes equaling the rate of accumulate of labeled lignin 
cUB: upper bounds of fluxes estimated using measured label enrichments of nearest precursor 

 

The possible overestimation of the total flux towards lignin is a result of isotopic dilution 

due to monolignol pools in the apoplastic space at the time of feeding. In other words, the 

actual enrichment in the hydroxycinnamyl alcohols is higher than what is measured, which 
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would in turn reduce the estimates of the total flux towards lignin to a more physiological 

value. However, the fraction of the monolignol pools localized in the secondary cell walls 

is unknown, limiting a fixed estimation of the total flux towards lignin. Nevertheless, the 

labeling data can be used to set bounds on the total flux by eliciting two extremes cases of 

label enrichment in the hydroxycinnamyl alcohols. The lower bound for the total flux 

would equal to that of the labeled lignin deposition rate – a scenario where all three 

monolignol pools are completely turned over (label enrichment fraction = 1). The upper 

bound of the flux was estimated after equating the label enrichment of the monolignol pools 

to the nearest precursor for which an inactive pool has not been invoked (Table 4.1). In 

case of p-coumaryl alcohol, this nearest precursor is p-coumaryl CoA as there is still a 

possibility of p-coumaraldehyde partitioning into cell membranes. Similarly, feruloyl CoA 

serves as a common precursor for both coniferyl and sinapyl alcohol. 

 Metabolic Flux Analysis 

A non-stationary MFA technique was employed to calculate fluxes as the metabolites 

accumulated during the course of the feeding study. The main assumption for the model 

was that a step change in the precursor concentration (Phe) results in a step change in the 

flux values throughout the metabolic network[135,136,151]. This allows us to express 

mass balances on the metabolites – accumulating at a constant rate – as a difference of 

constant fluxes (Material and Methods). There have been alternative techniques where the 

time series data is divided into different metabolic regimes and estimating fluxes for each 
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Figure 4.6: Flux maps obtained for WT (a) and 4cl1 (b) lines under fed conditions. Fluxes 

were represented as mean  S.D. from (n=100) samples obtained by bootstrapping. The 

thickness of the arrows represents the relative value of the fluxes normalized to the 

incoming flux (v1). 
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regime to capture the temporal evolution in the fluxes[152,153]. More advanced techniques 

express fluxes as piecewise functions, both linear and non-linear, to describe the temporal 

profile of fluxes[154,155]. These techniques are very powerful when the flux evolution in 

a system are gradual, feeding study is conducted over long durations, or wide range of 

dynamics in metabolite concentrations are observed. Given the high concentration of the 

label precursor (1 mM) in our study accompanied with moderately sized metabolic network, 

it was surmised that the constant fluxes assumption would be sufficient to capture the 

isotopic labeling patterns observed.  

The base model for both WT and 4cl1 lines consisted of 26 reactions (fluxes) with inactive 

pools for p-coumaric acid and coniferaldehyde. The final flux maps obtained after feeding 

1 mM 13C6-Phe in WT and 4cl1 lines are presented in Figure 4.6. Standard deviations were 

obtained using the bootstrap sampling technique as described in the Materials and Methods 

section. The set of fluxes represented in Figure 4.6 best fit the experimentally measured 

labeled metabolite concentrations (Figures A2.4 & A2.5). 
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Table 4.2 Estimates of inactive pools from the model. 

 WT 4cl1 

 

Inactive Pool 

(nmol/g-FW-

min) 

% of total 

initial pool 

Inactive Pool 

(nmol/g-FW-

min) 

% of total initial 

pool 

 Mean S.D Mean S.D 

p-coumaric acid 0.15 0.05 84.4 11.5 5.1 53.4 

p-

coumaraldehyde 
   0.01 0.00 55.8 

p-coumaryl 

alcohol 
5.85 2.64 53.6 0.01 0.01 65.1 

Coniferaldehyde 0.67 0.12 90.1 0.11 0.02 86.8 

Coniferyl 

alcohol 
7.57 1.33 88.2 0.89 0.36 65.6 

Sinapaldehyde 0.28 0.05 89.4 0.13 0.04 76.0 

Sinapyl alcohol 30.7 1.85 89.2 18.5 6.37 82.8 

 Relative fluxes through the reactions catalyzed by 4CL1 are 

comparable in both genotypes. 

Despite a ~10% reduction in the total flux estimated in 4cl1 lines, the flux through 

the reactions (v3, v11) catalyzed by 4CL are still significant. Almost 75% of the total input 

flux passes through p-coumaric in both WT and 4cl1 lines, which is reasonable as its 

conversion to p-coumaryl CoA thioester is the first committed step to lignin biosynthesis. 

Interestingly, flux through caffeic acid was found to be a significant contributor to caffeoyl 

CoA synthesis constituting almost 45% of the input flux in WT and 37% of the input flux 

in 4cl1 lines. Such high fluxes in the 4cl1 lines are supported by over a 200-fold 

accumulation of both p-coumaric and caffeic acid (Figure 4.4). Increased concentrations 

of the substrates may compensate for the reduced activity of the 4CL. 
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 An alternative hydroxycinnamic acid route to Caffeoyl CoA synthesis 

is active under fed conditions in both WT and 4cl1 lines. 

Flux estimations of the hydroxycinnamoyl-shikimate ester route (v7, v8) conform 

with the accepted route (Figure 4.1) with almost 50% of the input flux being shuttled to G 

and S lignin synthesis in both genotypes. Our findings go hand in hand with the efforts by 

Bonawitz et al., (2014) where C3´H knockdown lines in the study exhibited dwarfism with 

lignin composed almost completely of p-coumaryl alcohol derived units – establishing the 

predominant role of the enzyme in lignin biosynthesis. Nevertheless, flux through the 

parallel route at the hydroxycinnamic acid level was estimated to be ~20% and ~22% of 

the total flux in WT and 4cl1 lines respectively, indicating the previously reconsidered 

route to caffeic acid synthesis may still be active[157]. Although this conclusion comes 

with a caveat that the estimated fluxes are valid when fed with 1 mM Phe and an argument 

can be made that the alternative route is active only at high concentrations of the substrate 

that may not be physiological. Indeed, 4cl1 mutant serves as the perfect counter to the 

aforementioned argument where p-coumaric acid accumulates to over ~200 fold in a line 

that shows no growth phenotype and grows to almost WT height presenting a 

physiologically valid scenario for alternate hydroxylation of p-coumarate to caffeic acid. 

In other words, although the CoA independent route is not the primary route to lignin 

synthesis in WT plants, it should be considered while designing genetic engineering 

experiments and/or analyzing the effects in engineered plants. 

 Significant flux towards caffeic acid synthesis via CSE. 

The phenylpropanoid pathway was recently updated after Vanholme et al., (2013) 

identified and established the important role of CSE in hydrolyzing caffeoyl-shikimate to 
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caffeic acid. The authors further went on to show that CSE knockout mutants had drastic 

phenotypes with almost a 35% reduction in lignin composed of almost evenly distributed 

H, G and S subunits. Fluxes estimated from our analysis indicate almost a 1:1 split of the 

reaction fluxes catalyzed by CSE and HCT in WT, and a 1:1.5 split in case of 4cl1 lines. 

No significant changes in fluxes via CSE and HCT under reduced concentration of caffeoyl 

shikimate in 4cl1 plants may suggest a change in enzyme levels. Taken together, caffeic 

acid synthesis from p-coumaric acid and caffeoyl-shikimate constitutes almost 40% of the 

total incoming flux into the phenylpropanoid pathway under fed conditions reiterating the 

fact that hydroxycinnamic acids other than p-coumaric acid are essential intermediates in 

lignin biosynthesis. 

 Higher flux towards S lignin in 4cl1 lines supported by estimated fluxes. 

Label deposition into S lignin was relatively higher in 4cl1 lines as observed from 

the DFRC data. This was supported by the estimates of flux to S lignin being ~10% of the 

total flux in WT and ~25% of the total flux in 4cl1 lines. In addition, flux to the 

hydroxycinnamaldehyde route was higher in WT consistent with the higher turnover 

number of F5H with respect to coniferaldehyde(5 pkat/mg-protein-µM; [101]) than 

coniferyl alcohol(2 pkat/mg-protein-µM; [101]). In case of 4cl1 lines, flux through the 

hydroxycinnamyl alcohol route was statistically the same as the flux through the 

hydroxycinnamaldehyde route. This may be due to a significant fraction of the 

coniferaldehyde pool (~87%) being inactive (Table 4.2, Figure 4.4) while only 65% of the 

coniferyl alcohol pool was estimated to be compartmented allowing it to compete for F5H. 

What is intriguing and counterintuitive is that the absolute fluxes in both these branches 
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are significantly higher in the 4cl1 lines when both coniferaldehyde and coniferyl alcohol 

pools were reduced by ~5fold (Figure 4.4). This may be indicative of a positive change in 

enzyme levels in the 4cl1 mutant. Indeed, this hypothesis is in accordance with microarray 

data of 4cl1 lines of Arabidopsis showing an increased transcript abundance of almost all 

genes (PAL to CCR) involved in monolignol synthesis[146]. 

 Conclusions 

Using 13C-labeling and flux analysis, high resolution flux maps of the phenylpropanoid 

pathway were obtained in WT and 4cl1 lines of Arabidopsis thaliana. Dynamic labeling 

experiments using 13C6-Phe as the substrate revealed the presence of inactive pools for p-

coumaric acid in 4cl1 lines, and coniferaldehyde in both WT and 4cl1 lines resulting in 

isotopic dilution in these metabolites compared to their products. Flux analysis in 

combination with the label enrichment data indicated the alternative route of hydroxylation 

of p-coumaric acid to caffeic acid is active in both genotypes under fed conditions. 

However, C3´H is unlikely to catalyze this conversion as p-coumaric acid fails to 

accumulate to a concentration high enough to compete with the predominant substrate p-

coumaroyl-shikimate, suggesting the presence of an alternative enzyme or a P450 analog 

responsible for the hydroxylation that remains elusive. Our flux estimates also revealed a 

significant contribution of CSE to lignin synthesis with almost an even flux split at the 

caffeoyl-shikimate branch point. Higher flux towards S lignin was observed in 4cl1 lines 

in accordance with the higher S lignin phenotype compared to WT plants. Flux resolution 

in the phenylpropanoid pathway could be further improved by profiling 5-OH-ferulic acid, 

5-OH-coniferaldehyde, and 5-OH-coniferyl alcohol. The modeling and experimental 

strategy presented in this study can be used to investigate flux maps in other transgenic 
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lines of Arabidopsis and other species that exhibit unique phenotypes; to gain insight into 

phenylpropanoid metabolism and design rational metabolic engineering experiments 

targeting lignin biosynthesis. 
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5. TARGETED METABOLOMICS OF THE PHENYLPROPANOID 

PATHWAY IN ARABIDOPSIS GENOTYPES 

 Abstract 

The phenylpropanoid pathway is a source of a diverse group of compounds derived 

from Phe, many of which are involved in lignin biosynthesis and serve as precursors for 

the production of valuable compounds such as coumarins, flavonoids, and lignans. 

Consequently, the metabolic network has been a target of many genetic engineering efforts 

that resulted in a wide range of phenotypes. Metabolite profiling has been widely applied 

to plants for diagnostic and phenotypic analyses, and with recent advances in analytical 

techniques it has great potential for directly elucidating plant metabolic processes. In this 

study, we quantify metabolites of the phenylpropanoid pathway in 5 week old stems of 

various Arabidopsis genotypes using an analytical technique based on liquid 

chromatography-tandem mass spectrometry. Multiple reaction monitoring (MRM) was 

employed to monitor precursor and product ions of metabolites enabling high sensitivity 

and specificity. A total of 15 intermediates of the phenylpropanoid were quantified across 

all genotypes. Comparative analyses were performed between genotypes showing 

significant reorganization in the metabolic profile of the phenylpropanoid pathway. 

 Introduction 

The phenylpropanoid pathway is a repository of essential plant metabolites derived 

from the carbon skeleton of the amino acid phenylalanine (Phe) [110]. Compounds of this 

pathway are referred to as “secondary metabolites” due to their role in plant defense, 

structural support, and survival[20]. Although the phenylpropanoid pathway is a source of 
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precursors to many valuable groups of chemicals like flavonoids, anthocyanins, coumarins 

and other phenylpropanoid derivatives, it is indispensable to plants for its role in the 

synthesis of hydroxycinnamyl alcohols, commonly known as monolignols. Monolignols 

constitute the fundamental units of the hetero-aromatic polymer lignin, that imparts 

structural support and vascular integrity to plants.[158] While crucial to plant sustenance, 

lignin is one of the major impediments to efficient biofuel production as it renders useful 

lignocellulosic feedstock recalcitrant to biochemical and mechanical pretreatment 

techniques, hence lowering the polysaccharide yields[26]. 

Consequently, several enzymes of the phenylpropanoid pathway are targets of 

genetic engineering attempts to reduce lignin content and alter its composition for 

improved forage digestibility[7,8,26,159,160]. Although some of these efforts resulted in 

lignin phenotypes favorable for saccharification, some resulted in severe to moderate 

phenotypes that had unchanged if not poorer saccharification efficiencies. Many of these 

studies have raised questions regarding carbon flux control and regulation in the lignin 

biosynthesis pathway. In this vein, systems biology approaches are increasingly being 

employed in mechanistically understanding metabolic networks and visualizing how 

individual pathways are interconnected[41,137,161–165]. Although integrative ‘omics’ 

approaches are favored, metabolomics is said to provide the most ‘functional’ information 

of amongst the ‘omics’ technologies as any genetic modification manifests in a change in 

the metabolome[44,166–168]. 

In this study, a targeted metabolomics approach was employed to quantify the 

metabolites of the phenylpropanoid pathway in three different Arabidopsis genotypes using 

an analytical technique based on reverse phased liquid chromatography couple with tandem 
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mass spectrometry. The three genotypes considered for the study were wild type (WT) 

plants, lines in which caffeoyl shikimate esterase (CSE) has been knocked out (cse2), and 

reduced epidermal fluorescence (ref) 8-1 lines in which the mediator complex subunits 

MED5a and MED5b have been disrupted (med5a/5b ref8-1). Both cse2 and med5a/5b ref8-

1 lines have altered lignin content and composition (high H lignin) and superior 

saccharification phenotypes presenting interesting cases for targeted metabolomics. 

Comparative analysis was performed for each mutant relative to WT plants to depict the 

metabolome reorganization in the phenylpropanoid pathway as a result of the mutations. 

 Materials and Methods 

 Plant material 

Whole stems from 5 week old Arabidopsis plants of Col-0 ecotype were harvested 

and quenched using liquid nitrogen. All plants included in the study were grown at a light 

intensity of 100 µE/m2-s under a 16/8 hour day/night cycle in growth chambers maintained 

at 23oC. A total of around 3 g FW of stem tissue was used for each replicate. Stem tissue 

was ground to a fine powder using a mortar-pestle and stored in -80oC until further use. 

 Extraction of soluble metabolites 

Frozen stem tissue was ground to a fine powder using a mortar and pestle to which 

10 µl of the extraction solvent was added for every mg fresh weight of the harvested tissue. 

The extraction solvent used was 75% methanol in water with the internal standards benzoyl 

CoA and p-F-(DL)-Phenylalanine at a concentration of 1 µg/ml and 0.1 µg/ml respectively. 

Soluble metabolite extraction was conducted sequentially in two steps. First, the samples 



76 

 

were subjected to a cold extraction on a MultiTherm vortexer (Valley Park, MO) at 4oC for 

30 min for analysis of the labile hydroxycinnamyl CoA esters. The samples were 

centrifuged at 18000 g for 15 min and the supernatants (S1) were dried under a stream of 

nitrogen gas. The procedure was repeated for a second time by adding the same volume of 

extraction solvent with the only change of extraction temperature. Samples were vortexed 

at 65oC. The supernatants (S2) collected after centrifugation were dried under a stream of 

nitrogen gas. Concentrations of hydroxycinnamoyl CoA esters were reported by analyzing 

S1 samples using LC-MS/MS, while the concentrations of the remaining intermediates of 

the phenylpropanoid pathway were reported as a combination of S1 and S2 samples. 

 Metabolite analysis using LC-MS/MS 

Analytes were separated using a Shimadzu HPLC 20AD system on a Zorbax 

Eclipse C8 column (150 mm 4.6 mm, 5 m, Agilent Technologies, Santa Clara, CA) at a 

column temperature of 30oC and a flow rate of 1 ml/min. Metabolite detection was 

performed using an AbSciex QTrap 5500 triple quadrupole system equipped with an 

electrospray ionization (ESI) probe in the negative ion mode. Multiple reaction monitoring 

(MRM) was employed to monitor parent-daughter ion transitions for increased specificity 

and sensitivity of quantification. Chromatographic conditions and mass spectrometric 

parameters for hydroxycinnamoyl CoA esters and other phenylpropanoids of the pathway 

are as described in Chapters 2 & 3. 
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 Statistical analysis 

All metabolite analyses were conducted in triplicate. Data were analyzed by one-way 

ANOVA for independent samples using the online calculator on vassarstats.net/ (Vassar 

College, Poughkeepsie, NY, USA). A p-value < 0.05 was considered as a significant 

difference. Standard Student’s t-test was applied to analyze differences between individual 

metabolite concentrations across different Arabidopsis genotypes. A modified p-value of 

0.003 after applying the Bonferroni correction was used to establish a significant difference. 

 Results and Discussion 

 Profiling CSE knockout lines 

Inflorescence stems from 5 weeks old Arabidopsis cse2 lines were profiled for 

metabolites in the phenylpropanoid pathway. Our analysis revealed a significant change in 

the metabolite concentrations of cse2 lines in comparison to wild-type Arabidopsis stems. 

Briefly, in cse2 lines (i) concentrations of hydroxycinnamic acids were significantly higher 

in p-coumaric acid (~4 fold), caffeic acid (~3000 fold), ferulic acid (~16 fold), and sinapic 

acid(~4 fold) exhibiting several fold increase over WT pool sizes (Figure 5.1 (a)) Also we 

observed that, (i) caffeoyl-shikimate – substrate of CSE – accumulated over 1500 fold 

compared to WT (Figure 5.1 (c)), and (ii) concentrations of intermediates leading to H-

lignin were significantly higher, while precursors of G and S lignin were drastically 

reduced (Figure 5.1 (d) & (e))  

Caffeoyl-shikimate esterase (CSE) catalyzes the conversion of caffeoyl-shikimate 

to caffeic acid, therefore an increase in the concentration of the primary substrate of the 

enzyme in knockout lines (cse2) is expected. The cse2 lines exhibited a reduced lignin 
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phenotype with significantly higher H-lignin compared to WT lines. Concurrently, we 

observed an accumulation in H lignin precursors specifically p-coumaraldehyde (~13 fold) 

and p-coumaryl alcohol (~6 fold) and a simultaneous reduction in G lignin precursors 

coniferaldehyde (~4 fold) and coniferyl alcohol (~12 fold) in cse2 plants (Figure 5.1 (c), 

(d), & (e)). Most of our findings corroborated previous experimental observations[25]. But 

the most interesting and unexpected observation was a ~3000-fold increase in the caffeic 

acid pool when the primary route of its synthesis (CSE) is eliminated. This suggests the 

presence of an alternative route to caffeic acid synthesis. One possibility is the 

hydroxylation of p-coumaric acid by C3’H, but dynamic isotopic labeling studies and MFA 

analysis (Chapter 4) have provided evidence for another pathway to caffeic acid synthesis. 

Moreover, both p-coumaric acid and p-coumaroyl shikimate accumulate to over 2 fold in 

cse2 lines, and the ratio of their concentrations are the same as in WT ([pCA]/[pCShK] = 

~7) making it highly unlikely for the hydroxycinnamic acid (Km > 300 µM) to compete 

with the shikimate ester (KM = 7 µM) to produce caffeic acid[119]. Metabolomics data 

from cse2 lines bolsters our hypothesis that there exists alternative enzyme(s) capable of 

hydroxylating p-coumaric acid to caffeic acid. Furthermore, an increase in ferulic and 

sinapic acids accompanied with a severe reduction in the pool sizes of their predominant 

precursors coniferaldehyde and sinapaldehyde respectively, indicates that caffeic acid is 

being converted by the action of COMT and F5H enzymes. 

Effects of knocking out CSE were observed in the aromatic amino acid pathway 

with a reduction in Phe (Figure 5.1(a)) and tryptophan (Figure A3.1) indicating a regulatory 

link between the pathways. From increased pools of sinapic acid derivatives, sinapoyl-

glucose and malate taken together with previous findings of increased caffeoyl and feruloyl 
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derivatives and lignin analysis, it can be concluded that there is a general shift of carbon 

flux towards H lignin and other phenylpropanoid derivatives. 

 

Figure 5.1: Metabolite concentrations of phenylpropanoid intermediates in 5 week old 

whole stems of Arabidopsis WT (blue), cse2 (yellow), med5a/5b ref8-1 (orange), and ccr1 

(green) lines. Data presented as mean  S.D. from n=3 replicates. *p < 0.05, **p < 0.01, 

and ***p < 0.001 were obtained using standard Student’s t-test.  

(a) 

(b) 



80 

 

Figure 5.1. continued 

 

  

(c) 
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Figure 5.1. continued 

 

  

(d) 

(e) 
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 Profiling med5a/5b ref8-1 lines 

Arabidopsis reduced epidermal fluorescence (ref) 8-1 lines exhibit a severely 

dwarfed phenotype accompanied with sterility due to a missense mutation in the gene 

encoding C3’H[156]. This growth phenotype is almost completely rescued on disrupting 

transcription regulating mediator complexes MED5a and MED5b while still retaining the 

high H lignin and reduced epidermal fluorescence phenotype as the ref8-1 lines providing 

an interesting background for conducting targeted metabolomics of the phenylpropanoid 

pathway. Soluble metabolite analysis of med5a/5b ref8-1 lines revealed (i) significant 

accumulation in p-coumaryl shikimate (~1200 fold), (ii) increased pool sizes in all the 

intermediates of H lignin synthesis, (iii) a significant depletion in pool sizes of the 

precursors of G and S lignin. 

Substrate accumulation in knockdown/knockout lines of an enzyme is expected as 

is the case of p-coumaryl shikimate in med5a/5b ref8-1 lines (Figure 5.1 (c)). In addition, 

a simultaneous increase in all p-coumaryl derivatives namely p-coumaric acid (~40 fold), 

p-coumaroyl CoA (~12 fold), p-coumaraldehyde (~90 fold), p-coumaryl alcohol (~50 fold) 

was observed in line with increased levels of H-lignin observed in the mutant lines. All 

metabolites downstream of C3’H such as coniferaldehyde (~2 fold), sinapaldehyde (~8 

fold), coniferyl alcohol (~40 fold), and sinapyl alcohol (~20 fold) were severely reduced 

(Figure 5.1 (d)&(e)). Decreased metabolite pools taken together with elevated transcripts 

of most of the phenylpropanoid pathway genes[156], suggests that the flux towards G and 

S lignin is reduced.  

Interestingly, higher pool sizes of caffeic, ferulic, and sinapic acid were also 

observed in med5a/5b ref8-1 lines (Figure 5.1 (a)). If C3’H were the predominant route to 

caffeic acid, a significant reduction in product pools would be expected. Taken together 
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with the increase in ferulic and sinapic acids when the corresponding hydroxycinnamyl 

aldehydes are significantly lower suggests an alternative synthesis route to be active as 

discussed previously for the cse2 lines. 

In addition, med5a/5b ref8-1 lines exhibited a 3-fold increase in shikimic acid 

pools. The total concentrations of shikimate combining free shikimate, p-coumaryl 

shikimate and caffeoyl shikimate pools is ~300 nmol/g-FW, almost 10-fold higher than 

WT levels indicating a general upregulation of the shikimic acid pathway, which is 

expected in mediator disrupted lines. Although, no significant differences were seen in Phe 

pools, reduced levels of tryptophan and increased levels of tyrosine were observed (Figure 

A3.1). 

 Conclusions 

In this study, we conducted targeted metabolomics in inflorescence stems of WT, cse2, 

and med5a/5b ref8-1 Arabidopsis genotypes. Accumulation of precursors of H-lignin and 

a significant reduction in the precursors to G and S lignin suggests a general shift of flux 

towards lignin derived from p-coumaroyl sub units. Increased pools of hydroxycinnamic 

acids while the respective predominant precursors are highly reduced, strongly suggests an 

alternative route of synthesis. Although, more definitive evidence can be obtained by 

conducting metabolic flux analysis using isotopic labeling studies. Effects of genetic 

modifications in the phenylpropanoid pathway are observed in the shikimic acid and 

aromatic amino acid pathways. Future targeted metabolomics studies extended to include 

the shikimate and aromatic amino acid pathway would go a long way in elucidating the 

regulatory links between the metabolic networks. 

  



84 

 

6. INVESTIGATION OF SUB-CELLULAR 

COMPARTMENTATION USING NON-AQUEOUS 

FRACTIONATION 

 Abstract 

 Introduction 

One of the unique features of eukaryotic cells is the compartmentalization of 

metabolism across several organelles. Despite the physical segregation, metabolism in 

every compartment, in a way, depends on other organelles of the cell for a supply of energy 

cofactors (ATP, NADP) or other metabolic precursors adding an additional layer of 

complexity and regulation to eukaryotic metabolism[44,169]. Consequently, to gain a 

fundamental understanding of how a eukaryotic cell functions, it is important to know how 

these processes are linked and connected across these compartments. Plant cells, 

specifically, are challenging to understand due to the presence of (i) large number of sub-

cellular compartments like the plastid, vacuole, and cell walls, and (ii) more diverse 

metabolic networks[170].  

An instance of such sub-cellular compartmentation – relevant to the current study 

– is the case of lignin biosynthesis via the phenylpropanoid pathway (Figure 6.1). Lignin 

engineering of feedstocks by genetically modifying enzymes of the phenylpropanoid 

pathway has garnered significant attention due to a focus on renewable and alternative 

sources of energy[6,17]. Phenylalanine, the precursor of the metabolic network undergoes 

deamination followed by a series of functional modifications catalyzed by 11 enzyme 

families to produce p-coumaryl, coniferyl, and sinapyl alcohols, the three fundamental 

units of lignin, also referred to as monolignols[171]. Rational engineering of lignin 
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biosynthesis necessitates a fundamental and mechanistic understanding of how carbon flux 

is regulated in the phenylpropanoid pathway. 

 

Figure 6.1: Lignin synthesis via the phenylpropanoid pathway. Solid arrows indicate single 

reactions catalyzed by enzymes as represented alongside each arrow. Dashed arrows 

indicate lumped reactions. 

While the entire phenylpropanoid pathway is localized in the cytosol, Phe and 

shikimate – two metabolites participating in lignin synthesis – are first produced in the 

plastid and then transported to the cytosol (Figure 6.1). As a result, the relative distribution 

of Phe and shikimate in the plastid and cytosol may play a regulatory role in carbon 

allocation to lignin. Precursors to a metabolic network usually tend to have large 

concentration control coefficients, and Phe being the point of origin for the monolignols 

may exert a large control on the input flux into the pathway. Phenylalanine ammonia lyase 

(PAL), the first enzyme of the metabolic network and the enzyme that catalyzes the 

deamination of Phe is located in the cytosol. Therefore, flux into the phenylpropanoid 
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pathway is a strong function of the cytosolic concentration of Phe. Shikimate, in addition 

to being a precursor to Phe synthesis in the plastid also participates in a three reaction series 

catalyzed by HCT and C3’H in the cytosol (Figure 6.1). the HCT-C3’H-HCT reaction trio 

forms the bridging link between the H-lignin and the G and S lignin precursors[172]. HCT 

is a reversible enzyme that catalyzes conversion of p-coumaroyl CoA to p-coumaryl 

shikimate and caffeoyl shikimate to caffeoyl CoA. Shikimic acid is consumed in the former 

and released in the latter reaction. Given that the other P450-dependent monooxygenase 

enzymes of the pathway – C4H and F5H – accept unconjugated acids, alcohols and 

aldehydes as their substrates, it is an unanswered question as to why C3’H prefers a 

shikimate conjugated hydroxycinnamic acid. This led to a speculation whether shikimic 

acid was a putative regulatory link between phenylalanine synthesis (by the shikimate 

pathway) and its utilization (in the phenylpropanoid pathway). Consequently, any further 

investigation into the regulation of carbon flux in the metabolic network requires 

measurement of concentrations of Phe and shikimate in three major subcellular 

compartments of the cell – plastid, cytosol, and the vacuole. 

Non aqueous fractionation (NAQF) has been widely used for resolving metabolite 

pools across different sub-cellular compartments in plants[173–179]. Unlike most cell 

fractionation procedures that are used to purify intact organelles, the NAQF method 

enriches disrupted pieces of compartments across a continuous non-aqueous density 

gradient. The use of non-aqueous solvents offers two main advantages over aqueous (i) 

quenches metabolism and prevents conversion of metabolites, and (ii) prevents reallocation 

of polar metabolites[178]. Removal of an aqueous environment prevents the metabolites 

from diffusing across the gradient, instead allowing them to co-migrate with the 
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compartments they were localized in. The continuous gradient is collected in 4 to 10 

fractions, and marker enzymes and metabolites are measured in each fraction. Sub-cellular 

distribution of metabolites can be inferred by solving a system of mathematical equations 

representing balances on the metabolites in each fraction[180].  

In this study, the NAQF technique was applied to Arabidopsis inflorescence stems 

to measure sub-cellular metabolite levels. Using this technique, relative distribution of 

Phe and shikimate pools in the cytosol, plastid and vacuole were determined. 

 Materials and Methods 

 Plant material 

Whole stems from 5 week old Arabidopsis plants of Col-0 ecotype were harvested 

and quenched using liquid nitrogen. All plants included in the study were grown at a light 

intensity of 100 µE/m2-s under a 16/8 hour day/night cycle in growth chambers maintained 

at 23oC. A total of around 3 g FW of stem tissue was used for one gradient. Stem tissue 

was ground to a fine powder using a mortar-pestle and stored in -80oC until further use. 

 Non-aqueous fractionation of Arabidopsis stem tissue 

The overall procedure for NAQF using n-heptane and tetrachloroethylene (C2Cl4) 

as the non-aqueous solvents was adapted from previously published methods on 

Arabidopsis leaves (Figure 6.2). The following sections provide a basic description of the 

entire method. A list of more detailed protocols and procedures, optimized and altered for 

Arabidopsis stem tissue, have been documented in the appendix (). 
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Figure 6.2: Schematic of overall procedure of NAQF adopted from Geingenberger et al, 

2011.  

Tissue lyophilization and homogenization. Frozen and pulverized Arabidopsis stem 

material was lyophilized in a Labconco freeze dryer over a period of 3 days in 45 ml 

Eppendorf tubes. Each tube had material enough to occupy only the conical section of the 

Eppendorf tube to prevent formation of a cake at the onset of freeze drying and impede 

sublimation of ice. Tubes were slightly inclined in the glass jars to increase surface area 

for efficient drying. After lyophilization, the dried tissue was placed in a dessicator with 

drierite until further use. A known amount of dried stem tissue (~300 mg-DW) was further 

homogenized in a Retsch ball mill in 6 ml of 34:66 %v/v solution (ρ = 1.33) of n-heptane 

(d = 0.684) and C2Cl4 (ρ = 1.62) in two cycles of 10 mins at a frequency of 30 s-1. The bead 

beating chambers were half filled with 1 mm stainless steel beads. Homogenization by 

bead beating was followed by ultrasonication using a Misonix XL-2000 sonicator 
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(Farmingdale, NY) with a CML-4 probe at setting 13 in 6 cycles of 15 s pulses followed 

by a 10 s rest between cycles. Sample was placed on ice during the rest cycle to prevent 

thermal damage of enzyme. The homogenized material was filtered through a nylon cloth 

(<22 µm) and centrifuged at 4000xg for 15 min at 4oC. The pellet was re-suspended in 5 

ml of 1.33 g.cm-3 solution of n-heptane and C2Cl4 to be deposited onto the gradient. 

 

Sample separation using a continuous non-aqueous density gradient. A 35 ml linear 

density gradient from 1.3 – 1.62 d.cm-3 was layered in a 50 ml centrifuge tube (Table A5.1). 

The re-suspended sample was inserted on top of the gradient and centrifuged using a 

Labconco floor centrifuge at 4oC for 90 min at 13000 rpm. Most of the sample material 

was focused in the top and middle fractions while the heaviest fraction of the biomass 

formed a pellet at the bottom of the centrifuge tube(Figure 6.3). The gradient was divided 

into 6 fractions (F1 to F6) of 5-7 ml each and the pellet re-suspended in 3 ml of C2Cl4 

constituted the seventh fraction (F7). Each fraction was further divided into three sub-

fractions for enzyme assays (F1-E1, F2-E2 etc.) and metabolite analyses (F1-M, F2-M, 

etc.) in the ratio 1:1:2. 
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Figure 6.3: Density gradient with homogenized Arabidopsis stem tissue after 

centrifugation. The entire gradient was divided into 6 fractions (F1-F6) and the pellet was 

resuspended in C2Cl4 for the seventh fraction (F7) 

Marker enzyme assays. Phosphoenolpyruvate carboxylase (PEP-C; E.C. 4.1.1.31), ADP-

glucose pyrophosphorylase (AGPase; E.C. 2.7.7.27), and α-mannosidase (E.C. 3.2.1.24) 

were chosen as marker enzymes for the cytosol, plastid, and vacuole respectively. All 

buffers for assays and protein extraction were prepared according to the procedures 

detailed in the Appendix B1 & B2. The sub-fractions separated for enzyme assays (F1-E1, 

F2-E2, etc.) were dried under a stream of nitrogen gas until complete removal of non-

aqueous solvent. The dried pellet was then suspended in 0.5 ml of enzyme extraction buffer 

by vortexing in a MultiTherm vortexer at 4oC for 15 min. The suspensions were centrifuged 

in a microcentrifuge equilibrated at 4oC. The supernatant was decanted and refrigerated 

until further use in the enzyme assays.  

(i) Cytosolic PEPc assay: The master mix(MM) for the assay was made of 

stocks solution of 110 mM Tris sulfate, adjusted to a pH 8.5 using NaOH, 300 mM 

MgSO4·7H2O, 6 mM β-NADH, 100 mM NaHCO3, 1,4-dioxane, 300 mM 
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dithioerythritol (DTE), 600 U/ml malic dehydrogenase (MDH). The volumes and 

final concentrations of each component are detailed in the appendix. 

Phosphoenolpyruvate (PEP) at a concentration of 30 mM was used as the substrate 

(S). 

To measure PEPc activity, 10 µl of the protein extracted from each of the 7 fractions 

was aliquoted in triplicate and added to 280 µl of MM in wells of a 96-well plate. 

Following this, 10 µl of the S solution was added to each well except the blank. The 

plate was mixed thoroughly for 1 min after the addition of the substrate. Enzyme 

activity was determined by measuring the disappearance of β-NADH at a 

wavelength of 340 nm and a temperature of 25oC over a period of 10 minutes using 

a Molecular Devices SpectraMax UV-Vis spectrophotometer. 

(ii) Plastidial AGPase assay: The master mix(MM) for the assay was made of 

stocks solution of 100 mM HEPES MgCl2 buffer, adjusted to a pH 8 using NaOH, 

300 mM phosphoglyceric acid (PGA), 300 mM dithiothreitol (DTT), 10 mM β-

NADP, 10 mM ADP glucose, 1 mM of glucose-1,6-diphosphate, 885 U/ml of 

phosphoglucomutase (PGM) from rabbit muscle, 250 U/ml of glucose-6-phosphate 

dehydrogenase. The volumes and final concentrations of each component are 

detailed in the appendix. Sodium pyrophosphate (NAPPi) at a concentration of 25 

mM was used as the substrate (S). 

To measure AGPase activity, 50 µl of the extracted enzyme from every 

fraction was aliquoted in triplicate and added to 200 µl of the MM in wells of a 96-

well plate. Following this, 30 µl of the substrate was added to each well except for 

the blank. The plate was mixed thoroughly for 1 minute after the addition of the 
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substrate. Enzyme activity was determined by measuring the appearance of β-

NADPH at a wavelength of 340 nm and a temperature of 25oC over a period of 10 

minutes using a UV-Vis spectrophotometer. 

(iii) Vacuolar α-mannosidase assay: Citrate buffer (CB) at a concentration of 

100 mM was adjusted to a pH of 4.5 using NaOH. Borate buffer at a concentration 

of 200 mM and pH adjusted to 9.8 by NaOH was used as a stopping buffer. 20 mM 

p-nitrophenyl-α-D-mannopyranoside was used as the substrate for the vacuolar 

assay. 

For the assay, 10 µl from each fraction was added to 48 µl of the citrate 

buffer in triplicate in wells of 96 well plate. Following this, 48 µl of the S was added 

to each well except for the blank, and the microplate was incubated at 37oC for 30 

minutes. The reaction was quenched by adding 194 µl of borate buffer. Enzyme 

activity was determined by measuring the absorbance at a wavelength of 405 nm 

and a temperature of 25oC. 

Metabolite analysis. All seven sub-fractions separated for metabolite analysis (F1-M, F2-

M etc.) were dried under a stream of nitrogen until complete removal of the non-aqueous 

solvents. To the dried pellet, 500 µl of 75% (v/v) methanol in water was added and vortexed 

on a Multitherm vortexer at a temperature of 65oC. The samples were centrifuged on a 

Beckman Coulter microcentrifuge at 15000xg for 15 min, after which 10 µl of the 

supernatant was injected on the LC-MS for analysis. Phe and shikimic acid were quantified 

using a previously published analytical method[102]. Metabolite abundances (number of 

moles in one fractions) in each fraction was normalized to the total metabolite abundance 

(total number of moles from all seven fractions) obtained from all the fraction. 
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Estimation of relative distribution of metabolites. Sub-cellular levels of metabolites 

were estimated by solving a system of linear equations that represent mass balances on the 

metabolites in each fraction as shown in Equation 6.1. 

 

𝑓𝑀𝑝
. 𝑓𝑝𝑖

+ 𝑓𝑀𝑐
. 𝑓𝑐𝑖

+ 𝑓𝑀𝑣
. 𝑓𝑣𝑖

= 𝑓𝑀𝑖
    i=1 to 7; Equation 6.1 

 

In the above equation, 𝑓𝑀𝑝
, 𝑓𝑀𝑐

, and 𝑓𝑀𝑣
 represent the fraction of the metabolite (M) in the 

plastid, cytosol, and the vacuole respectively. These variables – also the unknowns in our 

study – add up to one, due to the assumption that the metabolite is localized only in the 

three compartments considered in the study. The fraction of the plastid, cytosol, and the 

vacuole in fraction i are denoted by  𝑓𝑝𝑖
, 𝑓𝑐𝑖

, and 𝑓𝑣𝑖
, the values for which are obtained from 

the marker enzymes assays. The term on the right had side of the equation represents the 

fraction of metabolite in fraction i, the values for which are obtained from analyzing 

metabolite concentrations using LC-MS. Such an equation can be written for every fraction 

(F1 to F7) resulting in a system of 7 linear equations that were simultaneously solved to 

obtain the relative distributions of metabolites. 

Error propagation analysis. Means and standard deviations for the fractions of 

compartments were calculated using data measured in triplicates. Using the means and 

standard deviations, 1000 synthetic data sets representing the relative abundances of 

compartments in each fraction were generated using a normal distribution sampler 

(normrnd) in MATLAB. The system of linear equations was solved for each data set to 

obtain a set of 1000 solutions. The relative distribution of metabolites in the three 
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compartments and the error of estimation were reported as mean and standard deviations 

of the 1000 solutions. 

 Results and Discussion 

 Distribution of sub-cellular compartments across the gradient.  

Particles settle in different layers of the gradient as a function of their density 

thereby resulting in a partial enrichment of enzymes and metabolites of a sub-cellular 

compartment across the entire gradient. Less dense compartments, accompanied by the 

associated enzymes and metabolites, tend to settle in the top fractions of the gradient, while 

the denser compartments are increasingly enriched in the bottom fractions or the pellet 

fraction[180]. The relative abundance of a sub-cellular compartment in a fraction is 

obtained from normalized marker enzyme activities as previously described (Materials and 

Methods). Our analysis of marker enzyme assays on Arabidopsis stems subjected to 

NAQF, indicated a higher enrichment of plastid in the lighter (top) fractions and the 

vacuolar material in the heavier (bottom) fractions and the pellet (Figure 6.4). No 

significant trend was observed in case of the cytosolic marker because (i) the inherent error 

of measurement of the assay was relatively high, (ii) the cytosol is associated with both 

plastidial and vacuolar membranes in the cell thus can co-settle with either compartment 

(Figure 6.4). These findings are in accordance to previous studies in Arabidopsis leaves 

[175], barley seeds [173,181], spinach leaves [179], rose petals [176] which consistently 

placed the plastid in the lighter and vacuole in the heavier fractions of the gradient. 
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Figure 6.4: Relative distribution of the plastidial (magenta), cytosolic (blue), and the 

vacuolar (yellow) compartments across the density gradient. Numbers on the x-axis 

represent fractions with 1 being the lightest and 7 being the pellet or the heaviest fraction. 

Data presented as mean ± S.D from n=3 replicates. 

 Relative sub-cellular distribution of Phe and shikimate. 

Compartment enrichments and metabolite abundances in each fraction were used 

to solve for the relative sub-cellular distribution of metabolites. The majority of Phe was 

estimated to be localized in the cytosol and around 34% of the total Phe pool measured was 

found to be in the plastid (Table 6.1). Although, NAQF was never previously used on 

Arabidopsis stems, a similar compartmental distribution of Phe was observed in 

Arabidopsis leaves[175]. In the case of shikimic acid, almost an even cytosolic and 

plastidial distribution was observed with 40% of the total pool localized in each 

compartment. Although the cytosol seems to be the dominant compartment, the local 

concentration of the metabolites in the plastid is higher due to lower organelle volume 

maintaining a concentration gradient for transport to the cytosol. Vacuolar pools are for 
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both metabolites are around 15-18% of the total pool, but are accompanied with large errors 

of estimation making them statistically insignificant (Table 6.1). However, a recent study 

has shown that Phe hyperaccumulating plants sequester Phe into the vacuolar compartment 

(Lynch et al., 2017; submitted). In other words, even if significant pools of Phe may not be 

localized in the vacuole in wild-type plants, including the vacuolar compartment in future 

NAQF studies on Arabidopsis is imperative as such a vacuolar sequestration is possible in 

transgenic lines. 

Table 6.1: Partitioning of metabolites across different sub-cellular compartments.  

Metabolite Cytosol (%) Plastid (%) Vacuole (%) 

Phenylalanine 51.1 ± 28.5 34.1 ± 22.3 14.8 ± 18.9 

Shikimic acid 40.8 ± 21.2 40.9 ± 16.9 18.3 ± 16.8 

Confidence in relative distribution estimates of metabolites was evaluated by 

propagating errors of measurement from marker enzyme assays as described in the 

Materials and Methods section. The large deviations in estimated values of sub-cellular 

distribution of metabolites arises from the large deviations observed in cytosolic marker 

assays, specifically in fractions 1 and 7 most likely due to low amounts of cytosolic material 

(Figure 6.4). One solution for this would be to increase the amount of biomass that is 

inserted on the gradient to ensure significant biomass distribution across different fractions 

to obtain absorbances above limits of detection while performing enzyme assays. Another 

solution maybe to reduce the number of fractions into which the gradient is divided. 

Although this may ameliorate variances in enzyme assay measurements, it would reduce 

the degrees of freedom in estimating the compartmental distribution of metabolites[182]. 

There have been studies where NAQF was optimized for the number of fractions based on 
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the standard deviations of assay measurements and estimates of compartmental 

distribution, where between 6-10 fractions were suggested[180,182,183]. However, the 

optimal number of fractions would be tissue specific (leaf, stem, roots etc.) and should be 

evaluated anew when working with different systems.  

 Conclusions 

Knowledge of distribution of metabolite pools across different compartments is 

advantageous in designing rational metabolic engineering experiments, specifically when 

the metabolites involved may have a regulatory role as in the case of Phe and shikimate in 

lignin biosynthesis. We employed non-aqueous fractionation to Arabidopsis stems to 

estimate the relative sub-cellular distribution of Phe and shikimate. Given their synthesis 

in the plastid, it was expected to observe the metabolites localized in the plastid and the 

cytosol, although no significant vacuolar pools were estimated. Smaller sub-cellular 

volume of the plastid would result in a higher local concentration of metabolites compared 

to the cytosol, ensuring a gradient across the compartments for transport. Some 

applications for this technique could be (i) to estimate distribution – specifically in the 

vacuole – in transgenic lines that see significant accumulation of phenylpropanoid 

intermediates, (ii) estimate metabolite distribution in Arabidopsis stems fed with labeled 

precursors (such as 13C6-Phe) when estimating fluxes or developing a kinetic model for the 

phenylpropanoid pathway, (iii) to include metabolites of the shikimate and aromatic amino 

acid pathway in the plastid to gain insight into how they link with the phenylpropanoid 

pathway. 
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7. MACHINE LEARNING DRIVEN ESTIMATION OF AN 

OPTIMAL LIGNIN PHENOTYPE IN ARABIDOPSIS FOR 

IMPROVED SACCHARIFICATION 

 Abstract 

Recalcitrance of lignocellulosic biomass to saccharification is a major impediment to 

the economical production of biofuel. Consequently, the past two decades have witnessed 

several genetic engineering efforts targeting lignin biosynthesis in bioenergy crops to 

improve saccharification yields. Although several of these studies found an overall 

negative correlation between lignin content and saccharification efficiency, the relationship 

between the composition of lignin on sugar extractability is complex and not well 

understood. In this study, we implemented support vector machine (SVM) based regression 

to predict the saccharification efficiency and biomass yields (plant height) of Arabidopsis 

thaliana plants as a function of total lignin content, and the composition of the monomers 

that make up lignin, namely p-coumaryl (H), coniferyl (G), and sinapyl alcohol (S) derived 

lignin. The model was developed and validated on data acquired from 9 independent 

studies totaling 53 Arabidopsis lines encompassing several genotypes. Data was artificially 

generated using standard deviations reported in literature for the input and output variables 

in order to serve two purposes (i) generate a considerable data set for obtaining higher 

regression performance, and (ii) obtain a more even distribution of the input variables to 

ameliorate prediction bias. A total of 500 data sets were sampled using the empirical 

bootstrap technique. Predictions from the trained and cross-validated SVM models resulted 

in an acceptable agreement to experimental data for both saccharification efficiency 

(R2~0.92) and plant height (R2~0.73) on validation data sets. The SVR models also 
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successfully predicted the saccharification efficiency and plant height of Arabidopsis 

transgenic lines that were not included in the training data.  

In addition, functional forms obtained as a result of SVM regression were optimized 

using genetic algorithms (GA) to predict the optimal lignin content and composition that 

maximizes the product of saccharification efficiency and plant height, which is 

representative of the total sugar yield for conversion to biofuel. This effort produced two 

optimal solutions that both indicated a moderately lower lignin content to be conducive to 

sugar extractability, but interestingly with varying H:G:S composition. 

 Introduction 

Biofuel production utilizing sugars localized in the secondary cell walls of 

lignocellulosic feedstock is a potential and sustainable alternative to fossil fuels as a source 

of energy[2,3,184]. Localized in the plant cell walls, lignin has long been known as a major 

contributor to biomass recalcitrance as it entraps useful cell wall polysaccharides rendering 

them inaccessible for enzymatic hydrolysis – a process called saccharification – thereby 

making biofuel production a highly cost intensive process[6,7,26]. Lignin is primarily 

made from p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) units that are derived from 

the products of the phenylpropanoid pathway – a metabolic network that is well established 

and conserved in all vascular plants – namely p-coumaryl, coniferyl, and sinapyl 

alcohols[20,110].  

As a result, the past few decades have witnessed several genetic engineering efforts 

targeting lignin biosynthesis in various plant systems[8,15,17]. Although these efforts 

demonstrated an overall negative correlation of lignin with saccharification efficiency, the 

effect of lignin composition on saccharification efficiency is not well understood. Early 
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studies have suggested a high S/G ratio is conducive for improved saccharification[14,33], 

but there have been reports of transgenic lines that had a lower or an unchanged 

saccharification phenotype compared to wild type plants in spite of having a high S/G 

ratio[16,32]. In some cases, lines that had H lignin units exhibited superior saccharification 

efficiencies[25,185]. Furthermore, genetic engineering experiments often result in 

pleiotropic effects. For example, a line with reduced lignin can have an altered lignin 

composition, structural defects in plant vasculature resulting in growth defects and 

dwarfism, changes in cell wall structures and accumulation of cellulosic and hemi-

cellulosic sugars.  

In order to harness the above repository of information for rational engineering of 

biofuel crops with improved cell wall characteristics and higher biomass yields, a 

multivariate approach in understanding the highly non-linear relation between the 

biological traits and the target phenotypes is necessary. There have been previous studies 

that analyzed the relation between biological traits and saccharification[35,186–188]. 

Although detailed, these studies largely stressed on one to one correlations between 

variables or attempted to linearly map various structural and biological traits to digestibility.  

In the context of the aforementioned, the objectives of this study were: (i) to 

evaluate the empirical functional forms that relate total lignin content and composition to 

saccharification and growth phenotypes respectively using support vector machine (SVM) 

regression; (ii) to test and validate the regression model(s) on Arabidopsis mutant lines not 

included in training; (iii) to estimate optimal lignin content and composition that 

maximizes the total saccharification yield using genetic algorithms (GA). 
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Support vector machines (SVM) is a supervised machine learning algorithm that is 

generally used as a pattern recognition tool and a binary classifier, but can be modified for 

use as a regression technique[189,190]. SVM is well known for its ability to model non-

linear relationships and employs a quadratic programming problem based regression 

function, the solution to which is global and generally unique. SVM in combination with 

optimization techniques such as GA, finds applications in a wide array of disciplines[191].  

In this study, SVM based regression technique was used to obtain functional relationships 

between the explanatory variables (total lignin content, %H, %G, and %S lignin 

composition) and the response variables (%saccharification efficiency and plant height) in 

Arabidopsis thaliana. Data from 53 Arabidopsis lines were collected from the literature 

across 9 independent studies (Table 7.1). Training data sets – after data augmentation and 

pre-processing – were generated using empirical bootstrap sampling. The trained SVM 

models were successfully validated on mutant lines that were not included in the training 

data. The SVM models were further optimized using genetic algorithms (GA) to obtain the 

optimal values of the input variables that maximized the total saccharification yield. 
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Table 7.1: List of Arabidopsis plants considered for the study 

S. No Lines Reference 

1. 

WT Col-0, pal1-2, pal1-2, pal2-2, pal2-3, 4cl1-1, 4cl1-2, 4cl2-1, 

4cl2-3,ccoaomt1-3, ccoaomt1-5, ccr1-3, ccr1-6, f5h1-2, f5h1-4, 

comt-1, comt-4, cad6-1, cad6-4 

[35] 

2. WT Col-0, cse-1, cse-2 [25] 

3. 

WT Col-0, cse-2, cse-2 proVND7::CSE#1, cse-2 

proVND7::CSE#2, cse-2 proVND7::CSE#3, cse-2 

proVND7::CSE#4 

[185] 

4. WT Col-0, C4H-F5H, med5a/5b ref8-1, fah1-2, COMT1 [192] 

5. 
WT Col-0, C4H::qsuB-1, C4H::qsuB-3, C4H::qsuB-6, 

C4H::qsuB-7 
[63] 

6. WT Col-0, med5a/5b, med5a/5b ref8-1 [156] 

7. WT Col-0, lac4-2, lac17, lac4-1 lac17, lac4-2 lac17 [193] 

8. WT Col-0, ubiC-pobA-1, ubiC-pobA-2, ubiC-pobA-3  [194] 

9. WT Col-0, fpgs1-1 [132] 

 Materials and Methods 

 Data Collection and Processing 

The database for the study consisted a total of 53 Arabidopsis lines – including wild-type 

and transgenics – from 9 independent studies (D0, Table 7.1) that reported the variables of 

interest to this study. AcBr lignin (% CWR), lignin composition (%H, %G, %S lignin) 

constitute the input variables, and plant height (cm) and saccharification efficiency (% 

cellulose) from untreated biomass constitute the output variables. All instances of 
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unreported height for wild-type lines were valuated as an average of heights corresponding 

to wild-type lines in the remaining studies. Plant heights for transgenic lines that showed 

no growth phenotype were assigned an average height equal to the wild-type lines. In cases 

where saccharification efficiencies have been reported in different units of measurement, 

they have been either converted to the default units of % cellulose using information in the 

study, or have been scaled using wild-type lines from other studies as a reference. 

 Data Augmentation 

The database of 53 lines was augmented by randomly generating data assuming a 

normal distribution on the input variables. Standard deviations reported from the 

experimental measurements in the references were used for this procedure. For all the lines 

where plant height was not reported, the standard deviations were calculated using wild-

type lines from all the remaining studies. The lines corresponding to high %H and high %S 

lignin (Figure A4.1) were underrepresented making up only 12 data points out of the total 

of 55. In order to make the distribution of the input variables more uniform, 30 data points 

were generated for each underrepresented line and 15 for the other 43 lines bringing the 

total size of the database to 1060 data points. Of these, a subset of 335 data points was 

randomly selected for model validation. The remaining 725 data points were used for 

training and testing the SVR model. 

 Support Vector Regression 

SVM is a machine learning technique developed by Vapnik & co-workers in 1997 that 

largely finds application in binary classification, patter recognition and regression. SVM 
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implements structural risk minimization (SRM) inductive principle that allows it to achieve 

a generalized model by balancing the quality of fit to the training data against the 

complexity of the model. Support Vector Regression (SVR) is a version of SVM proposed 

by Vapnik et al. in 1997[195] as a nonparametric regression technique thereby obviating 

an a priori knowledge of the analytical relation between the input and target variables. 

Given a typical training dataset D = {(xi,yi)}
n ϵ Rd × R, where xi and yi are the ith pair 

of input and output variables respectively of a total set of n data points, SVR aims to find 

a function f(x) that has a deviation of no more than ε from the target value of yi  for the 

entire training data set. SVR achieves this by implementing the following estimation 

function: 

 

f(x) = w × Φ(x) + b, Φ: Rn → H, w ϵ H,            (1) 

 

where w and b are coefficient of regression, Φ(x) represents the high-dimensional feature 

space that the input space is non-linearly mapped using a kernel function: 

 

K(xi,xj) = exp(-γ║xi – xj║
2)              (2) 

 

where γ is the kernel parameter that governs the width of the Gaussian function. The 

coefficients of regression are estimated by optimizing the regularized risk function: 

minimize: 
1

2
║𝐰║2 + 𝐶 ∑ (𝜉𝑖 +  𝜉𝑖

∗𝑁
𝑖=1 )             (3) 
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subject to: {

𝑦𝑖 −  𝐰 . 𝛷(𝑥𝑖) −  𝑏 ≤  𝜀 +  𝜉𝑖

−𝑦𝑖 +  𝐰 . 𝛷(𝑥𝑖) +  𝑏 ≤  𝜀 +  𝜉𝑖
∗

 𝜉𝑖, 𝜉𝑖
∗  ≥ 0

            (4) 

 

where ║w║2/2 represents the Euclidean norm included in the objective function to ensure 

flatness of the function and avoid over-fitting. The slack variables 𝜉𝑖, 𝜉𝑖
∗ denote the distance 

between the actual values and the ε deviation. Parameter C, known as the box constraint or 

the cost parameter, governs the balance between tolerance for training errors and model 

generalizability. Together C, ε, and γ constitute the set of hyper-parameters that can either 

be user defined or optimized for further improvement in prediction performance of SVR. 

The default values of C, ε, and γ are iqr(Y)/1.349, iqr(Y)/13.49, and 1, respectively; where 

iqr(Y) denotes the interquartile range of the target variable (%saccharification efficiency 

or plant height). 

 In this study, SVR was applied to obtain the functional forms f1(x) and f2(x) that 

correlate saccharification efficiency and height to the input variables (%AcBr 

lignin, %H, %G, %S lignin) respectively. The radial basis function (RBF), also known as 

the Gaussian kernel was used for this study. All simulations were performed using the 

fitrsvm function in the Statistics and Machine Learning Toolbox offered in MATLAB 

R2017a package. The hyper-parameters were optimized using the bayesopt solver to 

minimize the k-fold cross-validation loss on the training data and improve SVR prediction 

performance. 
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 Genetic Algorithms 

GA are a widely-used technique of optimization that is inspired by the Darwinian 

principle of natural selection[196]. Employing a probabilistic searching method, GA 

creates a population of individual solutions and repeatedly modifies them to produce a new 

generation of solutions using specific rules for selection, crossover, and mutation[197,198]. 

With each generation, the population of solutions ‘evolves’ towards an optimal solution. 

GA has been known for its versatility in application, specifically when dealing with highly 

non-linear objective functions. 

 In this study, GA was used to optimize both saccharification efficiency and biomass 

yields (plant height) to obtain the highest net yields of sugar. This was achieved by 

formulating an objective function, alternatively known as fitness function, that is a product 

of SVM models representing saccharification efficiency and plant height for a given input 

x: 

 

maximize: 𝑓1(𝐱) ∗ 𝑓2(𝐱) 

 

subject to: {

𝑥2 + 𝑥3 + 𝑥4 =  100
6 ≤ 𝑥1 ≤ 35

 0 ≤ 𝑥1, 𝑥2, 𝑥3 ≤ 100
 

 

where 𝑥1, 𝑥2, 𝑥3, 𝑥4  denote the input variables %AcBr lignin, %H, %G, %S lignin 

respectively. The upper bound of 35% for lignin was chosen based on the maximum value 

reported for total lignin per dry weight of biomass[199]. Optimization was performed using 

the ga function under the Global Optimization Toolbox in MATLAB 2017a. Adaptive 



107 

 

mutation and intermediate crossover functions were used for their applicability to linearly 

constrained systems. 

 Empirical Bootstrap Sampling 

Popularized by Bradley Efron, the empirical bootstrap is one of many resampling 

methods that has been widely used in estimating properties of a statistic[200,201]. The 

fundamental idea behind empirical bootstrapping is to draw a large number of samples 

from a single original dataset with or without replacement. The statistic of interest is 

computed on each sample leading to a distribution that is close to the true population 

distribution, and can hence be used to estimate confidence intervals on that statistic.  

 In this study, empirical bootstrap sampling was employed on the training data set 

where 500 samples were randomly drawn with replacement from an original training data 

of 725 data points (D1,D2,..,D500). Each bootstrap was of the same size of the original 

training data set. This was achieved by using the datasample function under the Statistics 

and Machine Learning Toolbox in MATLAB 2017a. To ensure a more uniform distribution 

in every randomly drawn sample, lines with a saccharification efficiency higher than 40% 

and plant heights less than 30 cm were weighted 10-fold higher than the remaining data. 

 Overall SVR-GA Methodology 

The 500 data sets – consisting of 725 data points each – were formed by using 

empirical bootstrapping and trained using SVR resulting in 500 corresponding models for 

predicting %saccharification efficiency and plant height. Each concomitant model pair 

trained on a single data set was then used in the objective function formulated for GA 
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optimization (Figure 7.1). Each optimization cycle outputted a plausible global optimum 

resulting in a total of 500 solutions. The optimal solution(s) is reported as the mean of the 

distribution obtained as a result of this effort. 

 

 

Figure 7.1: Overall framework of the SVR-GA methodology to estimate the optimal lignin 

content and composition that maximizes the net saccharification yield. 

 Plant Material 

Arabidopsis (Arabidopsis thaliana) triple mutants 4cl1 4cl2 4cl3 and 4cl1 4cl3 4cl4 

plants were grown in growth chambers at 22oC under 16/8 hour day/night conditions and 

light intensity of 120 µE m-2 s-1. 
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 Total Lignin Analysis 

Cell wall residue was isolated and prepared as described previously[139]. Mature 

stems of Col-0 wild type, pal1pal2pal3pal4 and 4cl14cl24cl3 mutants were harvested and 

pulverized in liquid nitrogen. After addition of 30 mL of 50 mM NaCl, the pulverized tissue 

was refrigerated overnight at 4oC then centrifuged for 10 min at 4000 rpm. The pellet was 

then extracted with 80% ethanol and vortexed for 15 min at 65oC. The extraction procedure 

was repeated five times. The same procedure was repeated once using acetone as the 

solvent. Total lignin content was measured using the acetyl bromide-soluble lignin method 

as described previously[140,141]. An extinction coefficient of 17.2 was used to calculate 

the acetyl bromide-soluble lignin[139]. 

 Lignin Composition Analysis by DFRC 

Lignin composition was analyzed by performing DFRC analysis as previously 

described[142]. Briefly, the samples prepared for acetyl bromide-soluble lignin analysis 

were dried down using a nitrogen concentrator and dissolved in a solvent containing 

dioxane/acetic acid/water (50/40/10, %v/v/v). This mixture was then reacted with Zinc dust 

and the products acetylated with pyridine/acetic anhydride mixture (40/60, %v/v). The 

acetylated lignin derivatives were quantified using gas chromatography-mass spectrometry 

using standard calibration curves after accounting for the response factors from the internal 

standard. 

 Saccharification Assays 

The structural carbohydrates of untreated biomass were determined using Laboratory 

Analytical Procedures (LAP) established by National Renewable Energy Laboratory[202]. 
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Enzymatic hydrolysis experiments were performed in Prof. Nathan Mosier’s Lab (Purdue 

University, West Lafayette-IN). 

 Results 

 Support Vector Regression 

Effect of augmenting the training dataset. The values of the input variables from the 53 

lines present in the original database were the mean values reported in the references using 

anywhere between n = 6 to 18 lines. Ideally, having data on each of the individual lines 

would have allowed to incorporate natural biological variance into the regression model 

thereby enabling better predictive performance. In addition, validation performance of a 

regression model may also be affected by the size of the training data set. Smaller data sets 

may lead to overfitting for a highly-parameterized model, resulting in poor validation 

performance. In an effort to account for biological variance and prevent overfitting of the 

regression model, synthetic data was generated using the standard deviations reported in 

the references (Table 7.1). Validation performance of SVR models improved with 

increasing training data size (Figure A4.1) and showed no significant improvement over 

750 data points. For all further simulations, a training data set of 725 data points was 

employed. 

Improved performance by oversampling underrepresented data points. The initial 

data set constituting the 53 lines did not span the range of all the input variables, 

specifically %H and %S lignin (Figure A4.2). A total of 43 lines corresponded to a %H 

lignin of lower than 10%, while only 12 lines spanned the range from 20-100%. Similarly, 
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only one line had a %S lignin higher than 90% and none in the range of 50-80%. Such a 

skewed distribution of input variables in the training data set may result in a biased model 

that may lead to poor validation performance[203]. In classification problems, cases of 

imbalanced data sets have been addressed by (i) oversampling the minority class[204], (ii) 

undersampling the majority class[205], or (iii) by a modified SVM algorithm where the 

misclassification penalty (ξi) of the underrepresented class is larger[206]. The 

oversampling strategy was employed to ameliorate the imbalance in training data set and 

improve the regression performance. Twice the number of data points were generated for 

the 12 underrepresented lines when expanding the data set. Initial SVR models trained on 

weighted data sets resulted in a better validation performance over the data sets without 

weighting (Figure A4.3). 

SVR models of bootstrapped training data sets. SVR models for %saccharification 

efficiency and plant height were obtained for each of the 500 training data sets sampled 

using empirical bootstrapping (Materials and Methods). The SVR model framework was 

setup using the Gaussian kernel and was subjected to a k-fold (k=10) cross-validation 

procedure. Predictions from all 500 models were plotted against the original target 

variables to evaluate the regression performance on training data. SVR models for 

both %saccharification efficiency and plant height were in agreement with the measured 

data with high correlation coefficients (Figure 7.2 (a)&(b) and Table 7.2). The SVR models 

were then validated by evaluating their performance on an independent set of synthetic data 

that was not included in training. Predictions for both the target variables were highly 

correlated with the experimental measurements (Figure 7.3 (a)&(b) and Table 7.2). A 

significant reduction in validation performance (R~0.71) over training (R~0.96) was 
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observed for models predicting plant height. Model predictions saturated at plant heights 

of 45 cm and deviated at lower heights (Figure 7.3 (b)). Paucity of data at lower heights 

maybe a major cause for a reduction in performance. 
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Figure 7.2: Performance of the SVR models on the training data in 

predicting %Saccharification efficiency (a) and plant height (b). Predictions from 500 SVR 

models corresponding to the 500 training data sets sampled using empirical bootstrap were 

combined. 

 

Figure 7.3: Performance of SVR models on the validation data set in 

predicting %Saccharification efficiency (a) and plant height (b). Predictions from 500 SVR 

models were combined. 
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Table 7.2: Performance statistics of SVR models on training and validation data sets. 

 %Saccharification efficiency Plant height (cm) 

 msea Rb mse R 

Training 15.9 0.99 13.4 0.96 

Validation 31.3 0.92 38.4 0.72 

amean square error 
bcorrelation coefficient 

Hyperparameter optimization of SVR models resulted in a very poor validation 

performance. The SVR framework has three hyperparameters – also called meta-

parameters – namely box constraint (C), sensitivity window (ε), and kernel scale (γ) that 

can be optimized to obtain superior regression performance. This was achieved by using 

Bayesian optimization where the k-fold (k=10) cross validation loss of regression was 

minimized by varying C, ε, γ. Significant improvement in regression performances for 

both %saccharification efficiency (R~0.99) and plant height (R~0.99) was observed on the 

training data as a result of this effort (Figure A4.4(a), (b) and Table A4.1). Although the 

models were well trained, they performed poorly on the validation data set (Figure A4.5 

(a), (b) and Table A4.1) compared to the models with default values of the hyperparameters. 

Such poor performance maybe attributed largely to overfitting on the training data[207] 

and this was apparent in the prediction of plant height where a majority of models predicted 

a plant height of around 45 cm across the entire range of the experimental measurement 

(Figure A4.5(b)). A more uniform distribution of data would have ensured the presence of 

a significant number of support vectors for smaller plant heights leading to better regression 

performance. In the interest of retaining generalizability and accurate prediction 

capabilities, all SVR models considered for simulations hereafter had default 
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hyperparameter values assigned by the fitrsvm function in MATLAB (see Materials and 

Methods). 

 Validation of SVR Model Predictions 

The validation performance described in the previous section was on a subset of the 

augmented data set. The data set – though not trained on any SVR models – does not truly 

represent an independent set as it was generated by randomly sampling from a distribution 

on the original data set of 53 lines. The true test of validation for the SVR models would 

be to successfully predict %saccharification efficiency and plant height on lines that were 

not among the 53 lines in the original data set. To achieve this, two Arabidopsis mutant 

lines c4h-2 and c4h-3 from Van Acker et al., 2016[35] were set aside for validating the 

SVR models. These two lines represented a unique H:G:S composition with almost no H 

derived lignin, and a G:S composition close to 1:1 (Table A4.2). Deficient in cinnamate-4-

hydroxylase, c4h-2 line has a dwarfed phenotype and a high saccharification efficiency 

while the line with a mutation in c4h-3 grows to wild type height with a saccharification 

efficiency slightly higher compared to wild type plants. In addition to these lines, the SVR 

model was validated on 4cl1 4cl3 4cl4 and 4cl1 4cl2 4cl3 triple mutant lines[22]. Both 

mutant lines are deficient in three different isoforms of 4-coumarate ligase (4CL) 

catalyzing the conversion of p-coumaric acid to p-coumaroyl CoA in the phenylpropanoid 

pathway, a reaction common to all three monolignols, yet the resulting phenotypes are 

significantly different. Although both mutant lines are characterized by almost similar 

H:G:S composition, the 4cl1 4cl2 4cl3 triple mutant exhibits a dwarfed phenotype (Figure 

7.3Table A4.4). Taken together the validation set consisting of the four lines mentioned 
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above offered a wide variation in the input and target variables allowing for rigorously 

testing the trained SVR models. 

Table 7.3: Experimental measurement and SVR model prediction on wild-type and 

transgenic lines. 

Line 

%Saccharification Efficiency Height (cm) 

Reference 

Measureda Predictedb Measureda Predictedb 

c4h-2 50.5 ± 2.4 50.3 ± 0.4 35.4 ± 4.1 31.8 ± 0.5 [35] 

c4h-3 24.1 ± 2.1 23.8 ± 1.9 49.9 ± 2.6 48.5 ± 1.6 [35] 

4cl14cl34cl4
a

 42.0 ± 1.7 34.9 ± 9.6 38.9 ± 6.1 44.4 ± 2.4 [22] 

4cl24cl24cl3
a

 28.3 ± 0.8 25.6 ± 5.7 15.8 ± 2.4 45.0 ± 2.2 [22] 

a Data presented as mean ± S.D. over n=3 biological replicates 
b Data presented as mean ± S.D. from the distribution of solutions obtained from running 

500 SVR model pairs. 
c Saccharification efficiencies were scaled as described in Materials and Methods. 

The SVR models successfully predicted saccharification efficiency and plant 

heights for c4h-2 and c4h-3 lines. Although both lines had similar H:G:S composition [35], 

the model was able to predict the dwarfed phenotype due to significantly reduced lignin 

phenotype exhibited by c4h-2 lines [35,114]. Interestingly, in case of the triple mutants the 

SVR model was able to predict both the saccharification and growth phenotype for 4cl1 

4cl2 4cl4 lines, but failed to predict the dwarfed phenotype for 4cl1 4cl2 4cl3 line. Both 

triple mutants have the same total lignin content and %H lignin with a slight different in G 

and S composition. The failure of the model to predict the growth phenotype for the latter 

mutant line indicates lack of sensitivity to changes in G and S composition under dwarfed 

conditions, which in turn stems from a lack of data corresponding to dwarfed lines. Also, 
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recent studies have shown that dwarfism in lignin-deficient plants may be linked with 

sensing of reduction or hyperaccumulation of a metabolic intermediate, or due to changes 

in cell wall characteristics[156], factors that have not been incorporated into the SVR 

models. Expanding the set input variables would allow for more accurate predictions of 

saccharification and growth phenotypes. 

 Optimization of Total Saccharification Yields using Genetic 

Algorithms 

For lignocellulosic feedstock to be transferable to the field, in addition to a high 

saccharification efficiency the biomass yields ought to be higher. Hitherto genetic 

engineering experiments have focused on how altered lignin content and composition 

affects biomass digestibility, but the pleiotropic effects of such manipulations haven’t been 

well understood. Dwarfism, slower growth rates, sterility, collapsed xylem vessels are 

some phenotypes observed in certain transgenic lines. There is clearly a trade off in 

reducing the total lignin content in plants given its importance for supporting plant 

vasculature and upright growth. In this study, the optimum of this trade-off was 

investigated by formulating an objective function that considered the effect of biological 

modifications on both saccharification efficiency and plant height. Although plant weight 

would better represent the biomass yield, plant height was considered for the study due to 

the large variation in the measured weight reported across different studies.  

GA were used to estimate the optimal lignin content and composition in terms 

of %H, %G and %S lignin that maximizes the total saccharification yield. The objective 

function (fitness function) corresponding to the total yields was represented as a product 

of %saccharification efficiency and plant height. This can be envisioned as a product of the 
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functional forms obtained for %saccharification efficiency and plant height as a result of 

SVR (f1(x)×f2(x); see Materials and Methods). Each pair of the 500 pairs of SVR models 

generated using empirical bootstrapping was optimized using GA.  

This effort resulted in two optimal solutions (Table 7.4), each with a moderately 

reduced lignin content but a different H:G:S composition. Solution one indicated a 51% 

reduction in lignin compared to wild type lines and almost an even distribution of H, G and 

S derived lignin. The phenotype was predicted to have a high saccharification efficiency, 

although slightly dwarfed relative to wild type plants. Interestingly, phenotype 

corresponding to Solution 1 is similar to that of cse2 lines of Arabidopsis ([25], Table 7.4) 

that accumulate higher H lignin units and are reported to have very high saccharification 

efficiencies. Solution 2 presented a more moderate phenotype with only a 32% reduction 

in lignin and a higher S/G ratio (0.78). The line was predicted to grow to wild type height 

with over a 3-fold higher %saccharification efficiency. Although resembling the c4h-2 and 

c4h-3 lines in terms of the relative G and S derived lignin (Table 7.4), the higher total lignin 

content, absence of H derived units taken together with the high saccharification efficiency 

and near wild-type growth phenotype makes this solution a unique prediction of the SVR-

GA model. 



119 

 

Table 7.4: Optimization results obtained from the SVR-GA methodology 

Line/Solutiona %AcBr 

lignin 

%H 

lignin 

%G 

lignin 

%S 

lignin 

%Sacc. 

Eff. 

Height 

(cm) 

Fitness 

function 

value 

1. 
9.6 ± 

0.9 
30 ± 4 

39 ± 

3.5 
31 ± 2 

67 ± 

5.8 
38 ± 4 

2545 ± 

154 

2. 
13 ± 

0.2 

0.1 ± 

0.1 

56 ± 

0.6 

44 ± 

0.6 

58 ± 

2.8 

44 ± 

1.6 

2560 ± 

121 

Wild type b 
19 ± 

4.3 

1.5 ± 

1.4 

66 ± 

6.2 

32 ± 

5.8 

18 ± 

2.4 
46 ± 3 

844 ± 

123 

cse2c 11.3 ± 

0.4 

27 ± 

1.1 

39 ± 

0.7 

34 ± 

0.7 
78 ± 7 25 ± 3 

1950 ± 

290 

a Data presented as mean ± S.D. from the distribution of solutions obtained from running 

500 SVR model pairs. 
b Data presented as mean ± S.D. using all wild-type plants included in the original data 

set. 
c Data represented as mean ± S.D from biological replicates reported in [25] 

 Conclusions 

In this study, SVM based regression was used to predict saccharification efficiency 

and plant height of Arabidopsis as a function of total lignin content and lignin composition. 

Experimental data, constituting 53 lines from 9 across independent studies, was expanded 

to achieve improved performance of the regression scheme for more accurate predictions. 

This effort resulted in SVR models for saccharification efficiency (R~0.92) and plant 

height (R~0.73) that were in close agreement with the experimental data in the validation 

set. Confidence intervals for the predictions were obtained using an empirical bootstrap 

sampling technique where 500 data sets were generated and trained using SVM for both 

the response variables considered for the study. Optimization by GA of the trained SVR 

models resulted in two solutions that maximized the net saccharification yield. As expected, 
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both solutions resulted in phenotypes with reduced total lignin content. Interestingly, the 

solutions had strikingly different lignin compositions with one having an even distribution 

of the H, G, and S derived units while the other was made virtually of G and S lignin with 

an S/G ratio close to 0.78. Future models can be constructed with a more accurate indicator 

of biomass yields such as weight, biomass density, or stem diameter. Furthermore, 

incorporating additional biological traits such as %cellulose and hemi-cellulose in cell-

walls and matrix polysaccharide composition would improve prediction performance of 

the growth phenotype. 
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8. FUTURE WORK 

In this chapter, experiments and possible research directions for the future have been 

summarized based on the results and findings obtained from this work. 

 Alternative Route of Caffeic Acid Synthesis 

One of the major conclusions from our work on 13C-metabolic flux analysis (Chapter 

4) and targeted metabolomics (Chapter 5) studies on Arabidopsis stems is that an 

alternative route to caffeic acid synthesis exists. Flux estimates from 13C-MFA indicated 

~22% of the total input flux going to caffeic acid from p-coumaric acid through a route 

alternative to the traditional one via the shikimate esters of hydroxycinnamic acids. 

Although, this was observed under fed conditions (1 mM of 13C-Phe) where enzymes may 

see increased concentrations of the substrates, metabolomics data from 4cl1 mutants 

clearly indicated that phenylpropanoid intermediates can accumulate to high 

concentrations under physiological conditions (unfed). In addition, a ~3000-fold higher 

concentration of caffeic acid – a product of the enzyme that has been knocked out – in cse2 

plants only bolsters the hypothesis that there exists an alternative route to caffeic acid 

synthesis. To further this line of investigation, the following research directions were 

proposed. 

 13C-Metabolic flux analysis of med5a/5b ref8-1 and cse2 mutants 

Despite the fact that 13C-MFA on WT and 4cl1 plants provide both experimental 

and modeling evidence of a novel route to caffeic acid, the possibility of p-coumaric acid 

hydroxylation by C3’H in cells that are not primarily lignifying and in which the substrate 
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accumulates to a high concentration has not been ruled out. The mediator disrupted reduced 

epidermal fluorescence plants[156], med5a/5b ref8-1, provide the ideal background to test 

the hypothesis. The med5a/5b ref8-1 lines accumulate higher p-coumaryl-shikimate 

concentrations than p-coumaric acid (Chapter 5, Figure 5.1 (a) & (c)) and are characterized 

by reduced C3’H activity[156,208]. Therefore, with reduced C3’H enzyme activity and 

higher accumulation of the predominant substrate, it is highly unlikely to see higher 

isotopic label enrichment in caffeic acid over caffeoyl-shikimate when fed with 13C6-Phe, 

if C3’H is alone hydroxylating p-coumaric acid. Arabidopsis plants deficient in CSE (cse2, 

[25]) provide an interesting background for conducting 13C-MFA because cse2 mutants 

exhibit significant accumulation of caffeic acid (Figure 5.1), the product of the enzyme that 

has been knocked out.  

 Identifying genes that potentially catalyze p-coumaric acid 

hydroxylation in Arabidopsis thaliana 

Dynamic labeling experiments and MFA on med5a/5b ref8-1 lines would provide evidence 

of the presence of an enzyme other than C3’H that is capable of hydroxylating p-coumaric 

acid, or a lack there of. If the former is true, the next step would be to identify the gene that 

encodes such an enzyme. As a first, we employed in silico comparative gene expression 

analysis to shortlist a set of putative P450 enzymes using the Arabidopsis Information 

Resource database (TAIR; https://www.Arabidopsis.org). The CoExSearch tool was used 

to output a list of co-expressed genes in Arabidopsis using genes encoding every 

monolignol enzyme, including isoforms for PAL, 4CL and CAD, as a query. In addition, 

the set of all the genes involved in the phenylpropanoid pathway was used as a multi-gene 

query. The lists were filtered for genes encoding P450 type enzymes resulting in 31 

https://www.arabidopsis.org/
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putative candidates amongst which CYP98A3, the gene encoding C3’H enzyme also 

appeared. The 31 candidates were further reduced by excluding genes whose functions 

have been previously characterized (e.g. At2g40890 that encodes C3’H). The remaining 

candidates were arranged in decreasing order of their expression in whole stems and 

epidermal peels of internodes (basal 0-3 cm stem fragments) and the top 6 candidates have 

been presented in Table 8.1. The P450 expression system in yeast[209] can be used to 

investigate the genes listed in Table 8.1 for hydroxylase activity towards p-coumaric acid 

before further biochemical characterization. 

Table 8.1: Putative gene candidates obtained from co-expression analysis 

S.No Gene Id 

Expression in 

whole stems 

(counts)a 

Expression in stem 

epidermal peels 

(counts)a 

Alias 

1. At3g20100 510 260 CYP705A19 

2. At4g37310 500 350 CYP81H1 

3. At3g26290* 410 150 CYP71B26 

4. At1g13080 400 240 CYP71B2 

5. At4g27710 200 200 CYP709B3 

6. At4g39510 180 40 CYP96A12 

aTissue specific expression was obtained using ThaleMine tool on the Arabidopsis 

Information Portal ([210]). 

 Non-aqueous Fractionation of Arabidopsis Stems Fed with Phenylalanine 

A recent study has shown vacuolar Phe sequestration in plants as a response to Phe 

hyperaccumulation. (Lynch et al., 2017; in press). Similar hyper-accumulating conditions 
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are observed in Arabidopsis stems when fed with high concentrations of 13C6-Phe. 

Although, estimates of sub-cellular distribution of Phe from NAQF studies on stems 

indicated no significant vacuolar pool, increased concentrations of Phe and other 

phenylpropanoid intermediates under fed conditions can activate transport into the vacuole 

(Lynch et al., 2017). In such a scenario, knowledge of the metabolite pool sizes in the 

vacuole become important in obtaining more accurate flux maps or developing kinetic 

models of the phenylpropanoid pathway. Application of the NAQF technique to 

Arabidopsis stems fed with a high concentration of Phe (1 mM) would resolve the relative 

distribution of Phe and other phenylpropanoid intermediates in different sub-cellular 

compartments of the cell. 

 Identify Gene Deletion or Overexpression Strategies for Phenotypes Predicted 

by Machine Learning 

With genome-scale metabolic models being increasingly available for various 

organisms, the last decade has seen a spur of computational approaches to predict targets 

for genetic modifications in an attempt to guide experimental metabolic engineering 

strategies[211,212]. Optimization frameworks like OptKnock[213] and OptGene[214] 

predict gene knockouts and knockdowns to optimize the production of a biochemical. In 

addition to the above mathematical tools, OptReg[215] and EMILiO (Enhancing 

Metabolism with Iterative Linear Optimization, [216]) are frameworks that allow 

identification of genes to be up- or down-regulated in strain optimization. Although these 

tools have been largely applied to microbial systems for overproducing industrially 

valuable chemicals, they can be translated to higher eukaryotes. 
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The latest iteration of the genome-scale model for Arabidopsis includes several 

reactions pertaining to secondary metabolism, specifically reaction involved in 

phenylpropanoid metabolism and lignin biosynthesis[217]. The computational tools 

discussed above can be extended to Arabidopsis for identifying gene targets (deletions and 

overexpressions) that result in the high saccharification phenotype predicted by our work 

on machine learning (Table 7.4, Chapter 7). 
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APPENDIX A: SUPPLEMENTARY INFORMATION 

  Analytical Method Development (I): Supplementary Figures and Table  

 

Figure A1.1: Effect of buffer pH on metabolite response. Data presented as fold 

changes to analyte responses at pH 5.6. Data are means ± s.d. (n=4 replicates). * = p < 

0.05 and ** = p < 0.001 by Tukey’s HSD post ANOVA test. Metabolites annotated 

according to Figure 2.1.  
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Figure A1.2: Effect of buffer concentration on metabolite response. Data presented 

as fold changes to analyte responses at pH 5.3, 10 mM. Data are means ± s.d. (n=4 

replicates). * = p < 0.05 and ** = p < 0.001 by Tukey’s HSD post ANOVA test. Metabolites 

annotated according to Figure 2.1. 

 

 

 

Figure A1.3. Effect of column temperature on metabolite response. Data presented as 

fold changes of analyte responses relative to column temperature of 30 0C. Data are 

means ± s.d. (n=4 replicates). * = p < 0.05 and ** = p < 0.001 by paired two tailed Student’s 

t-test. Metabolites annotated according to Figure 2.1. 
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Figure A1.4. Effect of extraction solvent composition on pool sizes. Data presented in 

fold changes of analyte pools relative to extraction using 50% (v/v) MeOH in water. 

Data are means ± s.d. (n=4 biological replicates). M75 and MDE denote extraction by 

vortexing at 25 0C in 75% (v/v) MeOH in water and double extraction using pure MeOH 

followed by 50% (v/v) MeOH in water for 60 minutes. ANOVA analysis resulted in no 

significant differences. 

  

0.0

0.5

1.0

1.5

2.0

M75 MDE

F
o

ld
 C

h
a
n

g
e

Phenylalanine

0.0

0.5

1.0

1.5

2.0

M75 MDE

p-coumaric acid

0.0

0.5

1.0

1.5

2.0

2.5

M75 MDE

Ferulic acid

0.0

0.5

1.0

1.5

2.0

M75 MDE

F
o

ld
 C

h
a
n

g
e

Shikimic acid

0.0

0.5

1.0

1.5

2.0

M75 MDE

F
o

ld
 C

h
a
n

g
e

Coniferyl alcohol

0.0

1.0

2.0

3.0

M75 MDE

Sinapyl alcohol

0.0

0.5

1.0

1.5

2.0

M75 MDE

F
o

ld
 C

h
a
n

g
e

Sinapic acid

0.0

0.5

1.0

1.5

2.0

M75 MDE

Caffeoyl shikimate

0.0

0.5

1.0

1.5

2.0

M75 MDE

p-coumaryl alcohol



129 

 

 

 

 

 

Figure A1.5. Effect of duration of extraction on pool sizes. Data presented in fold 

changes of analyte pools relative to extraction at 60 minutes. Data are means ± s.d. (n=4 

biological replicates). ED30 and ED120 denote extraction by vortexing at 65 0C in 75% 

(v/v) MeOH in water for 30 and 120 minutes respectively. ANOVA analysis resulted in no 

significant differences. 

  

0.0

0.5

1.0

1.5

ED30 ED120

F
o

ld
 C

h
a
n

g
e

Phenylalanine

0.0

0.5

1.0

1.5

ED30 ED120

p-coumaric acid

0.0

0.5

1.0

1.5

ED30 ED120

Ferulic acid

0.0

0.5

1.0

1.5

2.0

ED30 ED120

F
o

ld
 C

h
a
n

g
e

Shikimic acid

0.0

0.5

1.0

1.5

2.0

2.5

ED30 ED120

Sinapic acid

0.0

0.5

1.0

1.5

2.0

ED30 ED120

Caffeoyl shikimate

0.0

0.5

1.0

1.5

2.0

ED30 ED120

F
o

ld
 C

h
a
n

g
e

Coniferyl alcohol

0.0

0.5

1.0

1.5

2.0

ED30 ED120

Sinapyl alcohol

0.0

0.5

1.0

1.5

2.0

ED30 ED120

p-coumaryl alcohol

0.0

0.5

1.0

1.5

ED30 ED120

F
o

ld
 C

h
a
n

g
e

Coniferaldehyde

0.0

1.0

2.0

3.0

ED30 ED120

Sinapaldehyde

0.0

1.0

2.0

3.0

ED30 ED120

p-coumaraldehyde



130 

 

 

 

 

 

Figure A1.6. Effect of extraction temperature on metabolite pool sizes. Data presented 

in fold changes of analyte pools relative to extraction at room temperature (T=25 0C). 

Data are means ± s.d. (n=4 biological replicates). T4 and T65 denote extraction by 

vortexing in 75% (v/v) MeOH in water at 4 and 65 0C respectively. 
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Table A1.1. Manually tuned QTrap 5500 mass spectrometer parameters for 

phenylpropanoid pathway intermediates. RT, Retention time; Q1/Q3, Parent Ion 

Mass/Fragment Ion Mass; DP, declustering potential; EP, entrance potential; CE, 

collision energy; CXP, cell exit potential. 

 

No. Metabolite RT 

(min) 

Q1/Q3 DP 

(volts) 

EP 

(volts) 

CE 

(volts) 

CXP 

(volts) 

1 Phenylalanine 2.53 164.0/147.0 -60 -10 -15 -6 

2 Cinnamic acid 16.2 147.0/103.0 -165 -11 -12 -12 

3 p-coumaric acid 7.13 163.0/119.1 -128 -7 -17 -10 

4 p-coumaroyl 

shikimate 

7.64 319.2/163.1 -204 -13 -17 -10 

5 Caffeoyl 

shikimate 

6.02 335.2/179.1 -212 -11 -18 -8 

6 Shikimic acid 1.54 173.0/93.0 -145 -12 -18 -10 

7 Caffeic acid 5.16 179.0/135.0 -160 -9 -15 -19 

8 Ferulic acid 7.87 193.1/178.1 -100 -8 -15 -8 

9 Sinapic acid 8.49 223.1/208.1 -188 -10 -16 -15 

10 p-

coumaraldehyde 

11.0 147.0/129.0 -100 -8 -15 -8 

11 Caffealdehyde 7.41 163.0/145.0 -260 -11 -23 -15 

12 Coniferaldehyde 12.1 177.1/162.0 -168 -9 -16 -11 

13 Sinapaldehyde 11.6 207.1/192.1 -125 -10 -19 -21 

14 p-coumaryl 

alcohol 

6.87 149.1/131.0 -170 -4 -13 -9 

15 Caffeoyl alcohol 5.25 165.1/147.0 -205 -7 -16 -12 

16 Coniferyl alcohol 7.48 179.1/146.0 -99 -7 -17 -8 

17 Sinapyl alcohol 7.23 209.1/194.1 -54 -10 -20 -12 

 Feruloyl glucosea 5.25 355.2/175.1 -100 -8 -15 -8 

 Feruloyl malatea 6.57 309.2/193.1 -100 -8 -15 -8 

 Sinapoyl glucosea 5.52 385.2/205.2 -188 -10 -16 -15 

 Sinapoyl malatea 7.05 339.2/223.2 -188 -10 -16 -15 
a Retention times are putative and haven’t been confirmed using standards. 
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Table A1.2. Recovery of metabolites after being subjected to sample preparation 

protocol using standard mixture at a concentration of 0.01 mg/ml. Data are means ± 

s.d. (n=4 replicates). * = p < 0.05, ** = p < 0.001 by applying standard Student’s t-test. 

    Fraction Recovered 

No. Metabolite Average SD 

1 Phenylalanine 0.85 0.26 

2 Cinnamic acid 0.88 0.16 

3 p-coumaric acid 1.06 0.04 

4 p-coumaroyl shikimate 1.09 0.11 

5 Caffeoyl shikimate 1.20 0.09 

6 Shikimic acid 1.16 0.08 

7 Caffeic acid 1.05 0.05 

8 Ferulic acid 1.04 0.03 

9 Sinapic acid 1.16 0.09 

10 p-coumaraldehyde 0.98 0.03 

11 Caffealdehyde 1.10 0.08 

12 Coniferaldehyde 1.05 0.07 

13 Sinapaldehyde 0.98 0.06 

14 p-coumaryl alcohol 0.86 0.08 

15 Caffeoyl alcohol 0.93 0.17 

16 Coniferyl alcohol 0.75 0.09** 

17 Sinapyl alcohol 0.59 0.05** 
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Table A1.3. Analysis of Variance (ANOVA) test on the results from the extraction 

studies. ‘p’ value indicates the significance of the effect of the independent variable on 

the population. Tukey’s Honest Significant Difference (HSD) was performed as a post-

hoc test to determine the significant differences between groups. 

   Extraction Study 

  

Extraction 

Solvent 

Concentration Temperature 

Extraction 

Duration 

No. Metabolite p 

M7

5 vs 

M5

0 

M7

5 vs 

MD p 

T25 

vs 

T4 

T25 

vs 

T65 p 

ED6

0 vs 

ED3

0 

ED60 

vs 

ED12

0 

1 Phenylalanine 

0.2

8 NS NS 

0.000

6 

<0.0

1 NS 

0.3

8 NS NS 

3 p-coumaric acid 

0.6

8 NS NS 

0.051

5 NS NS 

0.8

0 NS NS 

4 

p-coumaroyl 

shikimate 

0.6

6 NS NS 

0.191

1 NS NS 

0.7

5 NS NS 

5 

Caffeoyl 

shikimate 

0.3

6 NS NS 

0.000

5 

<0.0

1 NS 

0.5

4 NS NS 

6 Shikimic acid 

0.9

1 NS NS 

0.029

4 

<0.0

1 NS 

0.5

2 NS NS 

8 Ferulic acid 

0.2

3 NS NS 

0.128

5 NS NS 

0.4

0 NS NS 

9 Sinapic acid 

0.1

2 NS NS 

0.008

9 NS 

<0.0

5 

0.4

2 NS NS 

10 

p-

coumaraldehyde 

0.1

0 NS NS 

0.003

9 NS 

<0.0

5 

0.1

9 NS NS 

12 Coniferaldehyde 

0.1

2 NS NS 

0.000

2 NS 

<0.0

1 

0.7

8 NS NS 

13 Sinapaldehyde 

0.1

6 NS NS 

0.013

5 NS 

<0.0

5 

0.3

1 NS NS 

14 

p-coumaryl 

alcohol  NS NS     NS NS 

16 Coniferyl alcohol 

0.5

7 NS NS 

0.000

7 NS 

<0.0

1 

0.7

2 NS NS 

17 Sinapyl alcohol 

0.0

7 NS NS 

0.001

7 NS 

<0.0

5 

0.5

6 NS NS 
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Table A1.4. Pool sizes of phenylpropanoid pathway intermediates in WT and ccr1 A. 

thaliana stem tissue. Data of metabolites presented as means ± s.d. (n=4 replicates). 

Analyte responses normalized to fresh weight of tissue. * indicates p<0.05, ** indicates 

p<0.001, *** indicates p<0.0001 obtained using the standard Student’s t-test. P-value 

established after the Bonferroni correction is 0.003 indicating that metabolites marked as 

** and *** are significantly different. 

No
a
. Metabolite WT ccr1 

Content (nmol/g-FW) Content (nmol/g-FW) 
1 Phenylalanine 25.5 ± 4.73 14.1 ± 2.02* 

3 p-coumaric acid 0.29 ± 0.06 10.1 ± 1.20*** 

4 p-coumaroyl shikimate 0.07 ± 0.03   0.17 ± 0.03* 

5 Caffeoyl shikimate 0.05 ± 0.01 0.09 ± 0.01** 

6 Shikimic acid 2.97 ± 0.38 2.59 ± 1.21 

7 Caffeic acid 0.05 ± 0.02 0.60 ± 0.07*** 

8 Ferulic acid 0.14 ± 0.02 32.5 ± 8.17*** 

9 Sinapic acid 12.0 ± 3.65 24.5 ± 11.9 

10 p-coumaraldehyde 0.002 ± 0.001 -ND- 

12 Coniferaldehyde 0.30 ± 0.04 0.16 ± 0.05* 

13 Sinapaldehyde 0.06 ± 0.02 -ND- 

14 p-coumaryl alcohol 18.3 ± 6.13 -ND- 

15 Caffeoyl alcohol 2.53 ± 0.83 4.50 ± 1.62 

16 Coniferyl alcohol 3.12 ± 0.37 0.94 ± 0.18*** 

17 Sinapyl alcohol 23.8 ± 7.82 4.86 ± 2.38** 
a
Metabolite annotation as represented in Figure 2.1. 
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  Metabolic Flux Analysis of the Phenylpropanoid Pathway 

 

Figure A2.1. Total lignin content (a) and labeled lignin deposition (b) in WT. Marker 

represent means, and error bars represent standard deviations from n=3 replicates. Total 

lignin content was measured using the AcBr method and labeled sub-units of lignin were 

measured by the DFRC method. 
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Figure A2.2. Total lignin content (a) and labeled lignin deposition (b) in 4cl1 lines. 

Markers represent means, and error bars represent standard deviations from n=3 

replicates. Total lignin content was measured using the AcBr method and labeled sub-

units of lignin were measured by the DFRC method. 
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Figure A2.3. Hydroxycinnamic acid accumulation after hydrolysis of extracts from 

4cl1 lines. Markers indicate difference in metabolite concentrations before and after acid 

hydrolysis of extracts. Error bars indicate standard deviations from n=3 replicates. p-

coumaric acid has been plotted against the secondary axis (right) 
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Figure A2.4. Simulated and experimental data of total concentrations and labeled 

concentrations of metabolites from WT. Markers indicate mean values and error bars 

are standard deviations obtained from n=3 replicates. 
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Figure A2.4: Continued 
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Figure A2.4: Continued 
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Supplementary Figure 5. Simulated and experimental data of total concentrations 

and labeled concentrations of metabolites from 4cl1 lines. Markers indicate mean 

values and error bars are standard deviations obtained from n=3 replicates.
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Figure A2.4: Continued 

 
 



143 

 

Figure A2.4: Continued 
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Table A2.1. Mobile phase gradient for analyzing hydroxycinnamyl CoA esters.  

Time 

(min) 

Solvent 

Aa(%) 

Solvent 

Bb(%) 

1 90 10 

7 10 90 

10 10 90 

11 90 10 

15 90 10 

aSolvent A: 5 mM ammonium acetate solution buffered to a pH of 6.2 using glacial acetic acid. 
bSolvent B: 98/2/0.2 (%v/v) of acetonitrile/Millipore water/formic acid.  

Table A2.2. Retention time (RT), ion transitions Q1/Q3 (m/z), and ESI parameters 

for the phenylpropanoid pathway intermediatesa
 

Metabolite 
RT 

(min) 

Q1 

[M-H]
-
 

Q3 

[M-H]
-
 

DP 

(volts) 

EP 

(volts) 

CE 

(volts) 

CXP 

(volts) 

p-coumaroyl 

CoA 
4.26 912.3 408.1 -260 -8 -48 -15 

Caffeoyl CoA 4.04 928.3 408.1 -260 -8 -50 -17 

Feruloyl CoA 4.36 942.3 408.1 -260 -8 -50 -15 

Benzoyl CoA 4.15 870.3 408.1 -260 -8 -50 -12 

a Analysis was performed using an AbSciex QTrap 5500 mass spectrometer coupled to Shimadzu RP-

HPLC system. 
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Table A2.3. Rates of accumulation (slope) and initial metabolite concentrations 

(intercept) of intermediates from WT and 4cl1 lines. Data reported as means ± S.D of 

best fit parameters from linear regression.  

Metabolite 
WT 4cl1 

Mean S.D. Mean S.D. 

p-coumaric acid 0.18 0.06 21.45 2.07 

p-coumaroyl CoA 0.05 0.01 0.09 0.02 

p-coumaraldehyde 0.01 0.00 0.02 0.00 

p-coumaryl alcohol 11.12 1.06 0.22 0.07 

p-coumaryl-shikimate 0.02 0.01 0.01 0.00 

Caffeoyl-shikimate 0.04 0.00 0.01 0.00 

Caffeic acid 0.02 0.01 0.03 0.01 

Caffeoyl CoA 0.08 0.02 0.00 0.00 

Ferulic acid 0.07 0.02 0.54 0.16 

Feruloyl CoA 0.02 0.01 0.03 0.00 

Coniferaldehyde 0.74 0.04 0.13 0.01 

Sinapic acid 0.21 0.03 0.94 0.06 

Coniferyl alcohol 8.59 0.11 1.36 0.39 

Sinapaldehyde 0.32 0.01 0.17 0.06 

Sinapyl alcohol 34.46 2.22 22.30 5.01 
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Table A2.4. Dynamic label enrichment data in WT. Mean and standard deviations 

expressed as percentages from n=3 replicates.  

 

Metabolite 
Time (min) 

0 20 40 90 120 180 

Phenylalanine 
0.0 ± 

0.0 

57.6 ± 

1.0 

59.7 ± 

1.1 

62.3 ± 

4.6 

61.7 ± 

5.9 

63.5 ± 

1.5 

p-coumaric acid 
0.0 ± 

0.0 

17.1 ± 

15.9 

60.3 ± 

1.9 

78.2 ± 

3.8 

86.8 ± 

3.4 

90.7 ± 

2.3 

Caffeic acid 
0.0 ± 

0.0 

26.9 ± 

24.5 

75.2 ± 

1.5 

87.7 ± 

2.4 

92.9 ± 

2.0 

95.1 ± 

1.2 

Ferulic acid 
0.0 ± 

0.0 

47.9 ± 

6.3 

72.6 ± 

0.2 

74.7 ± 

5.9 

82.2 ± 

6.7 

85.4 ± 

1.9 

Coniferaldehyde 
0.0 ± 

0.0 
5.6 ± 1.2 8.3 ± 0.1 

11.8 ± 

3.6 

15.1 ± 

2.0 

19.1 ± 

0.3 

Sinapaldehyde 
0.0 ± 

0.0 
2.7 ± 1.0 5.0 ± 0.2 

12.1 ± 

1.4 

13.7 ± 

1.5 

15.7 ± 

0.8 

Coniferyl alcohol 
0.0 ± 

0.0 
4.8 ± 0.1 

12.5 ± 

1.0 

20.4 ± 

1.8 

26.1 ± 

1.7 

31.8 ± 

3.4 

Sinapyl alcohol 
0.0 ± 

0.0 
2.1 ± 0.4 5.3 ± 1.7 

10.0 ± 

2.0 

12.1 ± 

2.3 

14.6 ± 

2.3 

Sinapic acid 
0.0 ± 

0.0 

33.3 ± 

57.7 

22.3 ± 

4.8 

45.1 ± 

14.8 

46.7 ± 

10.5 

58.0 ± 

7.0 

p-coumaraldehyde 
0.0 ± 

0.0 
3.0 ± 5.2 

39.8 ± 

7.1 

54.6 ± 

1.3 

63.5 ± 

4.8 

76.3 ± 

1.2 

Caffeoyl-

shikimate 

0.0 ± 

0.0 
8.4 ± 8.4 

27.1 ± 

1.8 

27.7 ± 

2.4 

46.2 ± 

1.9 

45.1 ± 

4.8 

p-coumaryl-

shikimate 

0.0 ± 

0.0 
0.0 ± 0.0 

33.7 ± 

15.0 

49.6 ± 

5.0 

68.6 ± 

28.4 

54.7 ± 

7.5 

p-coumaryl 

alcohol 

0.0 ± 

0.0 
0.0 ± 0.0 0.0 ± 0.0 

22.9 ± 

20.0 

45.7 ± 

6.9 

53.8 ± 

12.9 
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Table A2.5. Dynamic label enrichment data in 4cl1 lines. Mean and standard 

deviations expressed as percentages from n=3 replicates. 
 

Metabolite 
Time (min) 

0 20 40 90 120 180 

Phenylalanine 
0.0 ± 

0.0 

77.5 ± 

1.8 

83.3 ± 

1.4 

80.9 ± 

1.5 

81.9 ± 

2.1 

85.7 ± 

0.9 

p-coumaric acid 
0.0 ± 

0.0 

40.6 ± 

1.5 

58.5 ± 

3.6 

58.7 ± 

1.5 

54.7 ± 

2.0 

57.7 ± 

1.2 

Caffeic acid 
0.0 ± 

0.0 

27.4 ± 

3.5 

45.1 ± 

2.7 

52.5 ± 

2.2 

49.9 ± 

3.4 

57.2 ± 

2.9 

Ferulic acid 
0.0 ± 

0.0 

24.6 ± 

2.6 

44.2 ± 

4.0 

53.4 ± 

0.9 

52.2 ± 

1.6 

55.8 ± 

1.9 

Coniferaldehyde 
0.0 ± 

0.0 
8.4 ± 0.3 

14.7 ± 

1.0 

16.4 ± 

5.2 

18.4 ± 

0.6 

20.4 ± 

3.0 

Sinapaldehyde 
0.0 ± 

0.0 
9.5 ± 0.9 

17.7 ± 

2.4 

23.3 ± 

7.5 

30.1 ± 

1.6 

34.7 ± 

1.1 

Coniferyl alcohol 
0.0 ± 

0.0 
5.2 ± 5.7 

13.8 ± 

3.4 

24.2 ± 

3.9 

23.1 ± 

4.5 

23.5 ± 

4.6 

Sinapyl alcohol 
0.0 ± 

0.0 
4.0 ± 1.9 8.8 ± 1.1 

16.7 ± 

1.6 

18.7 ± 

4.1 

18.9 ± 

1.8 

Sinapic acid 
0.0 ± 

0.0 
8.3 ± 2.9 

17.9 ± 

3.4 

26.5 ± 

9.9 

34.9 ± 

3.8 

49.0 ± 

3.2 

p-coumaraldehyde 
0.0 ± 

0.0 

39.3 ± 

31.6 

46.5 ± 

10.4 

57.0 ± 

4.5 

57.5 ± 

2.4 

60.1 ± 

2.8 

Caffeoyl-

shikimate 

0.0 ± 

0.0 

15.0 ± 

5.0 

27.8 ± 

8.3 

45.5 ± 

12.1 

32.9 ± 

2.0 

49.2 ± 

4.5 

p-coumaryl-

shikimate 

0.0 ± 

0.0 

32.0 ± 

28.4 

70.0 ± 

18.8 

51.3 ± 

9.5 

56.5 ± 

13.5 

54.7 ± 

8.7 

p-coumaryl 

alcohol 

0.0 ± 

0.0 

37.7 ± 

32.7 

42.6 ± 

36.8 

74.2 ± 

6.5 

68.1 ± 

0.9 

67.9 ± 

0.4 

p-coumaryl CoA 
0.0 ± 

0.0 

43.3 ± 

11.5 

60.8 ± 

14.7 

70.2 ± 

1.0 

59.5 ± 

0.6 

58.3 ± 

7.1 

Feruloyl CoA 
0.0 ± 

0.0 

37.3 ± 

6.3 

44.9 ± 

13.4 

48.4 ± 

2.4 

46.7 ± 

6.0 

52.1 ± 

1.3 
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Table A2.6. List of metabolites for which inactive pools have been invoked when 

estimating fluxes in WT and 4cl1 lines. 
 

Sdiofcnoin  

L.E. is label enrichment 

S.C.W is secondary cell wall  

 

  

WT 4cl1 

Metabolite Reason Metabolite Reason 

Phenylalanine Plastidial pool Phenylalanine Plastidial pool 

p-coumaric acid L.E than caffeic acid p-coumaric acid 
L.E than  p-coumaroyl 

CoA 

Coniferaldehyde 
L.E than coniferyl 

alcohol 
Coniferaldehyde L.E than sinapaldehyde  

p-

coumaraldehyde 
- 

p-

coumaraldehyde 

L.E than p-coumaryl 

alcohol 

Sinapaldehyde Partition to membrane Sinapaldehyde Partition to membrane 

p-coumaryl 

alcohol 
Pool in S.C.W 

p-coumaryl 

alcohol 
Pool in S.C.W 

Coniferyl 

alcohol 
Pool in S.C.W 

Coniferyl 

alcohol 
Pool in S.C.W 

Sinapyl alcohol Pool in S.C.W Sinapyl alcohol Pool in S.C.W 
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  Targeted Metabolomics of the Phenylpropanoid Pathway in Arabidopsis Mutants 

 

Figure A3.1: Relative abundances of phenylpropanoid intermediates and amino 

acids in 5 week old whole stems of Arabidopsis WT (blue), cse2 (yellow), med5a/5b 

ref8-1 (orange), and ccr1 (green) lines. Data presented as mean   S.D. from n=3 

replicates. *p < 0.05, **p < 0.01, and ***p < 0.001 were obtained using standard 

Student’s t-test. Peak areas were normalized to WT plants. 
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  Machine Learning Driven Estimation of Optimal Lignin Content and 

Composition 

 

Figure A4.1: Validation performance of SVR models as a function of the training data 

set size. SVR models were trained to predict the target variables %saccharification 

efficiency (circle) and plant height (square). 

  

0

10

20

30

40

50

60

70

0 150 300 450 600 750 900 1050

M
e

a
n

 s
q

u
a

re
 e

rr
o

r 
o

f 
V

a
li

d
a
ti

o
n

Size of Training Data Set

%Saccharification Efficiency Height



151 

 

 

Figure A4.2: Distribution of the input variables in the original data set of 53 lines. The 

numbers on the bars in the distribution histograms represent the counts. 
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Figure A4.3: Performance of the SVR models on validation data with and without 

oversampling of the underrepresented lines. 

  

Without Weighted Oversampling Without Weighted Oversampling 

With Weighted Oversampling With Weighted Oversampling 
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Figure A4.4: Performance of the SVR models on training data after optimizing the 

hyperparameters. 

 

Figure A4.5: Performance of the SVR models with optimized hyperparameters on 

validation data. 
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  Non-aqueous fractionation of Arabidopsis Stems 

Table A5.1: Linear density gradient used for the NAQF procedure on Arabidopsis 

stems. 

Fraction Density 

(g/cm3) 

ml 

required 

ml 

made 

ml of 

1.3 

ml of 

1.35 

ml of 

1.4 

ml of 

1.5 

ml of 

1.6 

top(sample) 1.3 5 5 (15) 5 (15)     

2 1.32 2 3 (9) 1.8 

(5.4) 

1.2 

(3.6) 

   

3 1.34 2 3 (9) 0.6 

(1.8) 

2.4 

(7.2) 

   

4 1.36 2 3 (9) 2.4 

(7.2) 

0.6 

(1.8) 

   

5 1.38 2 3 (9)  1.2 

(3.6) 

1.8 

(5.4) 

  

6 1.40 2 3 (9)  0 3 (9)   

7 1.42 2 3 (9)  2.4 

(7.2) 

0.6 

(1.8) 

  

8 1.44 2 3 (9)  1.8 

(5.4) 

1.2 

(3.6) 

  

9 1.46 2 3 (9)   1.2 

(3.6) 

1.8 

(5.4) 

 

10 1.48 2 3 (9)   0.6 

(1.8) 

2.4 

(7.2) 

 

11 1.50 2 3 (9)   0 3 (9)  

12 1.52 2 3 (9)   2.4 

(7.2) 

0.6 

(1.8) 

 

13 1.54 2 3 (9)   1.8 

(5.4) 

1.2 

(3.6) 

 

14 1.56 2 3 (9)   1.2 

(3.6) 

1.8 

(5.4) 

 

15 1.58 2 3 (9)    0.6 

(1.8) 

2.4 

(7.2) 

16 1.6 2 3 (9)    0 3 (9) 

bottom 1.62 5 5 (15)    TetraCE from 

bottle 

Total 

Volume 

(ml) 

 40  9.8 

(29.4) 

9.6 

(28.8) 

13.8 

(41.4) 

11.4 

(34.2) 

5.4 

(16.2) 
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APPENDIX B: PROTOCOLS 

B1. Buffer recipes for conducting NAQF 

The sections below show the recipes for enzyme extraction buffer (EB) and other 

buffers required for enzyme assays. The first four buffers are used either for master mixes 

(MM). If the buffers have been left in the fridge for several weeks, it is wise to verify that 

the buffer pH remains unchanged. 

 

B1.1 110 mM Tris-Sulfate Buffer (pH 8.5; 100 ml) 

 Add 1.332 g Trizma base to 91.5 ml ultra-pure H2O and mix until complete 

dissolution. 

 Add ~610.7 μl H2SO4. 

 Add 8.5 ml of 2M NaOH to the solution mixture. 

 Measure pH after mixing. Add NaOH to adjust pH if required. 

 Filter buffer solution using Millipore 0.22 μm filter into a 250ml autoclaved flask. 

 Label and store for future use at 2-8 0C. 

   

B1.2 100 mM HEPES-MgCl2 buffer (pH 7.8; 100 ml) 

 Add 2.383 g of HEPES and 203 mg of MgCl2.6H2O to 96.1ml of ultra-pure H2O 

and mix until complete dissolution. 

 Add 3.9 ml of 2M KOH and mix well. 

 Measure pH after mixing. Add KOH to adjust pH if required. 

 Filter buffer solution using Millipore 0.22 μm filter into a glass bottle. 

 Label and store at 2-8 0C. 

 

B1.3 100 mM Citric Acid Buffer (pH 4.5; 100 ml) 

 Add 1.92 g of citric acid to 91.25 ml of ultra-pure H2O and mix until complete 

dissolution. 

 Add 8.75 ml of 2M NaOH to the solutions. 

 Measure pH after mixing. Add NaOH to adjust pH if required. 
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 Filter buffer solution using Millipore 0.22 μm filter into a glass bottle. 

 Label and store for future use at 2-8 0C.  

 

B1.4 200 mM Borate Buffer (pH 9.8, 100 ml) 

 Add 1.24 g of boric acid to 92.75 ml of ultra-pure H2O and mix until complete 

dissolution. 

 Add 7.25 ml of 2M NaOH to the solutions. 

 Measure pH after mixing. Add NaOH to adjust pH if required. 

 Filter buffer solution using Millipore 0.22 μm filter into a glass bottle. 

 Label and store for future use at 2-8 0C.  

 

B1.5 Enzyme extraction buffer EB (pH 7.8, 100ml): 

 Dilute 50ml HEPES-MgCl2 buffer to 100ml using ultra-pure water, then add the 

ingredients according to the table below. 

 Mix well. Check for pH and filter the buffer using Millipore 0.22 μm filter into a 

glass bottle. 

 Label and store for future use at 2-8 0C. 
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Table B1.1: List of chemicals used for preparing the extraction buffer. 

Chemical 

Required 

Cocnentra

tion (mM) 

Molecular 

Weight 

(g/mol) 

Weight to 

be added 

(mg) 

Notes 
Location in 

FRNY 1190 

EDTA 1 292.4 29.24  Aisle 1 

PVPP (g/l) 2  200 

Add only 2-

3 days 

before 

experiment 

as it reduces 

shelf life of 

EB. 

Aisle 2 

DTT 1 154.3 15.43  
-20°C 

freezer 

e-

aminocaproic 

acid 

1 131.2 13.12  Aisle 2 

benzamidine 1 120.15 12.015  Aisle 2 

PMSF 1.5 174.2 26.13 

Has a half-

life of 30 

minutes at 

pH 8 in 

aqueous 

solutions. 

Add before 

being used. 

Aisle 2 

Triton X-100 

(%v/v) 
0.1  100 ul  Aisle 2 

EDTA, Ethylenediaminetetraacetic acid; PVPP, Polyvinylpolypyrrolidone; DTT, 

Dithiothreitol; PMSF, Phenylmethanesulfonyl fluoride. 
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B.2 Preparation of master mixes (MM) for marker enzyme assays. 

The three different assays conducted were; ADP-Glucose pyrophosphorylase 

(AGPase) assay as plastidial marker, Phosphoenolpyruvate (PEP) as a cytosolic marker, 

and ɑ-mannosidase as a vacuolar marker. MM preparation for each assay have been listed 

in the following tables. 

 

Table B2.1 AGPase (Plastidial Assay) 

Solution/Che

mical 
Full name 

Stock conc 

[mM] 

Vol added to 

MM [μL] 
Notes 

HEPES-

MgCl2 

4-(2-

hydroxyethyl)-1-

piperazineethan

esulfonic acid 

and Magnesium 

Chloride 

mixture (pH 7.8) 

100 4200 

Use HEPES 

buffer 

prepared 

earlier 

PGA 

(aliquots) 

D-(-)-3-

Phosphoglyce

ric acid 

disodium salt 

300 84 

Aliquoted to 

correct 

concentration 

DTT 
DL-

Dithiothreitol 
300 84 

Solution 

made on day 

of assay 

β-NADP 

(aliquots) 

β-

Nicotinamide 

adenine 

dinucleotide 

phosphate 

10 420 

Aliquoted to 

correct 

concentration 
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B2.1 continued 

ADP Glucose  

(aliquots) 

Adenosine-5′ 

diphosphoglu

cose 

disodium salt 

10 840 

Aliquoted to 

correct 

concentration 

G16 (aliquots) 
Glucose 1,6-

diphosphate 
1 84 

Aliquoted to 

correct 

concentration 

PGM 

Phosphogluco

mutase from 

rabbit muscle 

885 U/ml 15.12 

Add only the 

U/ml required. 

Found in-

20°C G6PDH 

Glucose-6-

Phosphate 

Dehydrogena

se 

250 U/ml 23.52 

UP H2O   2649.36  

Total   8400  

Substrate     

NAPPi 

Sodium 

Pyrophosphat

e 

25 Not in MM 
Found in 

Aisle 2. 
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Table B2.2 PEP-Carboxylase (Cytosolic Assay) 

Chemical/Sol

ition 
Full name 

Stock conc 

[mM] 

Vol added to 

MM[μL] 
Notes 

Tris-Sulfate 

buffer 
 110 6120 

Prepared 

before. 

MgSO4 
Magnesium 

Sulfate 
300 510  

β-NADH 

(aliquots) 

β-

Nicotinamide 

adenine 

dinucleotide, 

reduced 

dipotassium 

salt 

6 510  

NaHCO3 
Sodium 

Bicarbonate 
100 1530 

Prepared on 

day 

1,4-Dioxane -  1530 
Flammable 

cupboard 

DTE 
Dithioerythrito

l 
300 510 

Prepared on 

day 

MDH 

Malate 

dehydrogenas

e 

600U/mL 

protein 
51 

Found in-

20°C 

Substrate     

PEP 
Phosphoenol

pyruvate 
30 Not in MM 

Found in-

20°C 
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Table B2.3 α-mannosidase assay (Vacuolar Marker) 

 Full name 
Stock conc 

[mM] 

Per assay 

[μL] 
Notes 

Buffer     

Citrate Buffer - 100 44 
Made 

previously. 

Substrate     

4PNP 

4-Nitrophenyl 

α-D-

mannopyrano

side 

21.85 40 
Found in-

20°C 

Stopping 

Buffer 
    

Borate Buffer - 200 0 
Made 

previously. 

4PNP, p-nitrophenol pyrranoside 
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