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ABSTRACT 

Fruhnert, Michael Ph.D., Purdue University, December 2017. Consensus Algorithms 
for Networks of Systems with Second- and Higher-Order Dynamics. Major Professor: 
Martin J. Corless. 

This thesis considers homogeneous networks of linear systems. We consider linear 

feedback controllers and require that the directed graph associated with the network 

contains a spanning tree and systems are stabilizable. We show that, in continuous-

time, consensus with a guaranteed rate of convergence can always be achieved using 

linear state feedback. 

For networks of continuous-time second-order systems, we provide a new and 

simple derivation of the conditions for a second-order polynomials with complex co-

efficients to be Hurwitz. We apply this result to obtain necessary and sufficient 

conditions to achieve consensus with networks whose graph Laplacian matrix may 

have complex eigenvalues. Based on the conditions found, methods to compute feed-

back gains are proposed. We show that gains can be chosen such that consensus is 

achieved robustly over a variety of communication structures and system dynamics. 

We also consider the use of static output feedback. 

For networks of discrete-time second-order systems, we provide a new and simple 

derivation of the conditions for a second-order polynomials with complex coefficients 

to be Schur. We apply this result to obtain necessary and sufficient conditions to 

achieve consensus with networks whose graph Laplacian matrix may have complex 

eigenvalues. We show that consensus can always be achieved for marginally stable 

systems and discretized systems. Simple conditions for consensus achieving controllers 

are obtained when the Laplacian eigenvalues are all real. 



x 

For networks of continuous-time time-variant higher-order systems, we show that 

uniform consensus can always be achieved if systems are quadratically stabilizable. 

In this case, we provide a simple condition to obtain a linear feedback control. 

For networks of discrete-time higher-order systems, we show that constant gains 

can be chosen such that consensus is achieved for a variety of network topologies. 

First, we develop simple results for networks of time-invariant systems and networks 

of time-variant systems that are given in controllable canonical form. Second, we 

formulate the problem in terms of Linear Matrix Inequalities (LMIs). The condition 

found simplifies the design process and avoids the parallel solution of multiple LMIs. 

The result yields a modified Algebraic Riccati Equation (ARE) for which we present 

an equivalent LMI condition. 
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1. INTRODUCTION 

Consensus algorithms have been the focus of research over decades. Motivated by 

animal scientists that studied flocking behavior in schools of fish since the 1950s, [1] 

proposed an algorithm to model this flocking behavior with local interactions only. 

This work became very popular and boosted the research on consensus algorithms. 

These algorithms have in common that there is a group of individuals that try to agree 

on a common value, that is, to achieve consensus. Like the school of fish that moves 

as a flock where each fish keeps a certain distance to their neighbor - not too close 

and not too far - forming a structure, the flock. Another key element of consensus 

algorithms is their distributed communication. Their is no leading fish telling every-

body else where to swim. Moreover each fish communicates to its closest neighbors 

only. A similar behavior can be observed in social groups forming a certain opinion 

or defining the next fashion trend. 

Some of the early work by [2–4] and [5] motivated applications in different fields. The 

area of control in particular is driven by applications in synchronization, distributed 

averaging, autonomous formation flight, and the cooperative control of unmanned 

vehicles, to name a few (see [6–12] and the references therein). Their distributed na-

ture, the development of parallel computing, and the advancement in communication 

technologies made consensus algorithms popular in many fields. The work in [13] 

for example presents a new approach to solve the resource allocation problem in a 

distributed fashion. 

Consensus for networks of second-order systems 

Many systems can be approximated by linear second-order dynamics. In the initial 

work, individual systems were modeled by double integrators in continuous-time, e.g. 
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[7, 14–18] and discrete-time where individual systems are given as double-integrators 

and the results were proven by applying a bilinear transformation (see [19–25]). In 

this thesis and in [26], we present a more general form of system dynamics and the 

direct use of Schur conditions. 

Modifying each system to act like a double integrator neglects the natural dynamics 

and changes the steady-state behavior. Synchronization of oscillators or the tracking 

of a system with a significant drag component are examples of cases where more 

general second-order dynamics must be considered. The general second-order case is 

also important for digital control (see [11, 27]). 

To achieve consensus for a homogenous network of linear systems applying linear 

control, it is necessary and sufficient to ensure the stability of a bunch of polynomials 

associated with the closed-loop network (see [28–30]). The coefficients of these poly-

nomials can be complex since they depend on the possibly complex eigenvalues of 

the Laplacian matrix associated with the graph. Hence, in continuous-time, we need 

conditions which guarantee that a polynomial with complex coefficients is Hurwitz, 

that is, its roots have negative real part, and for the discrete-time case, we need con-

ditions which guarantee that a polynomial with complex coefficients is Schur, that is, 

its roots have magnitude less than one. 

For the continuous-time case, [31], [32] and [33] presented necessary and sufficient 

conditions for consensus, where [31] for example limits the control analysis to sys-

tems with a sufficiently large and stable open-loop pole. In this thesis, we shift the 

focus of the control design and obtain simple controllers for the general case of ho-

mogeneous networks of linear second-order systems to achieve consensus by adjusting 

two gains only. The Laplacian eigenvalues can be complex, and we only require that 

the associated graph contains a spanning tree and systems are stabilizable. Further, 

conditions to achieve consensus with a guaranteed rate of convergence are derived. 

These conditions generalize some of the existing results in [34], and they are useful 

for networks of double integrators as well. They are also important for many other 

applications, e.g. clock synchronization, power grid control, etc. [35]. 



3 

[36], [37], [38] and [39] already established necessary and sufficient conditions for 

Schur polynomials, which are required to obtain necessary and sufficient conditions 

for consensus in the discrete-time case. 

In this thesis, we present new and simple conditions for second-order polyno-

mial with complex coefficients to be Hurwitz or Schur. Our proofs are independent 

of Routh-Hurwitz and Schur-Cohn criteria. We apply the new results to develop 

necessary and sufficient conditions to achieve consensus with guaranteed rate of con-

vergence for the continuous- and the discrete-time case. 

For the continuous-time case, we show results for static output feedback and 

present simple controllers that are capable of robustly achieving consensus over chang-

ing communication structures and system dynamics. The result is useful if systems 

frequently enter or leave the network (changing the graph), parts of the network are 

unknown, or system dynamics change, e.g. if non-linear systems are approximated 

and the point of linearization changes. 

For the discrete-time case, we show that linear control is always sufficient to 

achieve consensus if systems are marginally stable. This is important if we wish to 

synchronize networks of oscillators or try to achieve consensus using digital control. 

The double-integrator model is a special case of marginally stable systems. Therefore, 

our results extend previous findings and model a broader class of systems. The 

general result is also useful to guarantee a desired rate of convergence for e.g. double-

integrators. 

Consensus for networks of higher-order systems 

Modeling the dynamics of the individual systems by double integrators is only a 

first approximation. The linearized model of a satellite in an orbit around the earth 

is an example of a system with at least third-order dynamics (a high-fidelity model as 

introduced in [40] is already of sixth-order). A more accurate linearization of aircraft 

dynamics leads to a system with fourth-order dynamics. 
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Consensus algorithms for systems with dynamics of order n > 2 have been studied 

for systems modeled by n integrators. Early work allowed the communication of the 

full state (e.g. [7], [41] or [42]), afterwards the more complicated problem of using 

the system output information only was discussed (e.g. [43] or [44]) or switching 

topologies, time-delays and other non-linearities were introduced (e.g. [16], [45] or 

[46]). 

Another approach considered the use of Linear Matrix Inequalities (LMIs) to pro-

vide sufficient conditions to achieve consensus. [28] requires the solution of N LMIs in 

parallel where N is the number of systems. The results in [47] are rather complicated 

and specifically trimmed to time-delays. [30] provided necessary and sufficient condi-

tions for linear controllers to exist so that the network achieves consensus. However, 

no specific controller design was given. 

A fundamental result is the existence of a spanning tree, which is a necessary 

condition to achieve consensus if systems are not asymptotically stable (see [48]). In 

continuous time, it can be shown that this condition is also sufficient if individual 

systems are stabilizable. Then, a control can always be found using a Riccati desgin 

for the feedback gain (e.g. [49], [50]). In discrete-time however, the interplay between 

the communication structure, the individual systems, and the control is more complex. 

It can be shown that communication structures containing a spanning tree cannot 

always achieve consensus using linear control only (see [51], [26]). This phenomena 

is related to the concept of the synchronizing region (e.g. [52]), and it is necessary 

to formulate conditions with respect to this interplay. A result for undirected graphs 

and single input systems was presented in [51]. An extension to directed graphs and 

multivariate systems is given in [53]. Both works were inspired by earlier work on 

mean square stabilization for quantized control (see [54]). 

In this thesis, we obtain LMI conditions that give rise to a modified type of 

Algebraic Riccati Equation (ARE). Similar types of AREs were observed by several 

other researchers (e.g. [54], [55] [51] and [53]). However, obtaining solutions for these 

modified AREs is challenging. 
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The LMI approach proposed by [54] solves a slightly different problem, which 

introduces a non-zero weighting parameter. In our case, this parameter has to be 

zero, which yields a singularity. The LMI propsed by [55] obtains a solution by 

solving a related problem. In this thesis, we propose a small modification to the LMI 

propsed by [55] in order to yield a control for the discrete-time consensus problem 

with a specific rate of convergence. 

Nonlinear, adaptive, and robust consensus control 

Consensus algorithms are not limited to linear systems and controllers. Moreover, 

nonlinear consensus algorithms play an important practical role, for example, as ac-

tuators saturate. Previous results in the literature like [56], [57], [58] and [59] focused 

on nonlinear controllers and/or nonlinear system dynamics and provide a sound foun-

dation for Lyapunov function candidates. Different nonlinear effects can be studied 

and lay the ground for future research in this area. 

Switching systems are commonly studied nonlinearities and were already mentioned 

above. Another field of research analyzes heterogeneous, possibly uncertain, network 

structures (e.g. [17] or [60]) or heterogeneous and possibly unknown system dynam-

ics which are mostly approached with an adaptive control design (e.g. [61], [62], [59] 

or [58]). 

Thesis organization 

The thesis is organized as follows. In Chapter 2, we provide preliminary results on 

graph theory and formulate the general problem in continuous-time and in discrete-

time. Then, we identify a transformation in Chapter 3 that reduces the consensus 

problem to the simultaneous stabilization of a bunch of systems. This will be the 

basis for all other results in this thesis. Next, we present our work for linear second-

order continuous-time systems ( [63] and [64]) in Chapter 4. A brief outlook to the 
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higher-order continuous-time case is given in Chapter 5. In Chapter 6, we present our 

work for linear second-order discrete-time systems ( [26] and [65]), which we extend 

to the hgiher-order case in Chapter 7. 
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2. PROBLEM FORMULATION 

2.1 Continuous-time systems 

Consider a homogeneous network of linear continuous-time systems described by 

ẋ i(t) = A(t) xi(t) + B(t) ui(t) + u0(t) (2.1) 

where xi(t) ∈ Rn is the state of system i at time t ∈ R for i = 1, · · · , N . Systems are 

of order n, and matrices A(t) ∈ Rn×n and B(t) ∈ Rn×q are time-varying. The control 

input ui(t) ∈ Rq is applied to system i only, and input u0(t) ∈ Rn is common to all 

systems. The control input ui provides feedback and can be used to achieve consen-

sus while input u0 can be used to provide the systems with an arbitrary, nominal 

trajectory (feedforward control). 

The communication structure of the network is described by a weighted, directed 

graph G = (V, E, W ). The set V = {1, 2, · · · , N} is called a vertex set, and we have 

a one-to-one correspondence between the vertices (elements of V ) and the systems in 

the network. The edge set E is a subset of V × V . An edge (j, i) is in E if system 

j can send information to system i; in this case, we say that j is an in-neighbor of i. 

We let Ni = {j | (j, i) ∈ E} be the set of all in-neighbors of i. Each system i assigns 

a weight wij > 0 to each of its in-neighbors j. Letting wij = 0 when j is not an 

in-neighbor of i yields the weighting matrix W = {wij}. 

Input ui can only depend on the information available to system i. Initially we 

assume that each system has access to its own state; hence ui can only be based on 

the state of system i and its in-neighbors. We want to obtain feedback controllers for 

each ui so that the closed-loop network achieves global uniform asymptotic consensus 

(GUAC) according to the following definition. 
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2.1.1 Consensus definitions 

Definition 2.1.1 A network of N systems (2.1) achieves global uniform asymptotic 

consensus (GUAC) if 

(a) For each � > 0, there exists δ > 0 such that, for any initial time t0, if 

kxi(t0) − xj (t0)k < δ, i, j = 1, · · · , N 

then 

kxi(t) − xj (t)k < �, i, j = 1, · · · , N t ≥ t0 . 

(b) For each initial state x10, · · · , xN0 there exists a bound β such that, for any 

initial time t0, if 

xi(t0) = xi0, i = 1, · · · , N 

then 

kxi(t) − xj (t)k ≤ β i, j = 1, · · · , N t ≥ t0 . 

(c) For each � > 0 and each initial state x10, · · · , xN0 there exists a time T > 0 

such that, for any initial time t0, if 

xi(t0) = xi0, i = 1, . . . , N 

then 

kxi(t) − xj (t)k < �, i, j = 1, . . . , N t ≥ t0 + T . 

√ 
where kxk = xT x. 

Definition 2.1.2 A network of N systems (2.1) achieved consensus if 

xi − xj = 0 , i, j = 1, · · · , N 
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Sometimes we are interested not only in convergence, but convergence with a 

specified exponential rate, which is defined as follows. 

Definition 2.1.3 A network of N systems (2.1) achieves global uniform exponential 

consensus with convergence rate α0 > 0 (GUEC with rate α0 > 0) if there exists 

a c ≥ 0 such that for any initial time t0, every initial state x1(t0), · · · , xN (t0), all 

i, j = 1, · · · , N , and all t ≥ t0, 

−α0 (t−t0)kxj (t) − xi(t)k ≤ c kxj (t0) − xi(t0)k e 

√ 
where kxk = xT x. 

For each system i, we consider the following linear controller X � � 
(2.2)ui(t) = K(t) wij xj (t) − xi(t) 

j∈Ni 

where the gain matrix K(t) ∈ Rq×n is common to all systems. We will call (2.1)-(2.2) 

the closed-loop network. 

Remark 2.1.1 If the network achieved consensus, then ui(t) = 0 for all i, and the 

behavior of each system is identical and governed by 

ẋ i(t) = A(t) xi(t) + u0(t) . 

2.1.2 The network of transformed systems 

We can use the conditions for GUAC to achieve GUEC with rate α0. To illustrate 

this, we use the following transformed systems 

˙ ˜x̃i(t) = A(t) x̃i(t) + B(t) ũi(t) + ũ0(t) (2.3) 

α0t α0twith inputs ũi(t) = e ui(t) and ũ0(t) = e u0(t), and Ã(t) given by 

Ã(t) := A(t) + α0 I . (2.4) 
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First, we present the following result. 

Lemma 2.1.1 Network (2.1) achieves GUEC with rate α0 if the associated trans-

formed network (2.3) achieves GUAC. 

α0t −α0tProof Let x̃i(t) := e xi(t) for all i. Then xi(t) = x̃i(t)e and 

kxj (t) − xi(t)k = kx̃j (t) − x̃i(t)k e −α0t . 

Hence, xj (t)−xi(t) exponentially converges to zero with guaranteed rate α0 if x̃j (t)− 

x̃i(t) converges to zero. The result is obtained by noting that when the behavior of 

xi is governed by (2.1), the behavior of x̃i is described by (2.3). 

Remark 2.1.2 Lemma 2.1.1 holds for any type of controller. Here we consider linear 

controllers similar to (2.2) for network (2.3), that is, X � � 
ũi(t) = K(t) wij x̃j (t) − x̃i(t) . 

j∈Ni 

α0t α0tSince ũi(t) = e ui(t) and x̃i(t) = e xi(t) this is equivalent to controller (2.2). 

2.2 Discrete-time systems 

Consider a homogeneous network of linear discrete-time systems described by 

xi(k + 1) = A(k) xi(k) + B(k) ui(k) + u0(k) (2.5) 

where xi(k) ∈ Rn is the state of system i at step k for i = 1, · · · , N . Systems are of 

order n and matrices A(k) ∈ Rn×n and B(k) ∈ Rn×q are time-varying. The control 

input ui(k) ∈ Rq is applied to system i only, and input u0(k) ∈ Rn is common to 

all systems. The control input ui provides feedback and can be used to achieve con-

sensus while input u0 can be used to provide the systems with an arbitrary, nominal 

trajectory (feedforward control). 

Analog to Section 2.1, the communication structure of the network is described 

by a weighted, directed graph G = (V, E, W ), and we have the following definitions. 
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2.2.1 Consensus definitions 

Definition 2.2.1 A network of N systems (2.5) achieves global uniform asymptotic 

consensus (GUAC) if 

(a) For each � > 0, there exists δ > 0 such that, for any initial time k0, if 

kxi(k0) − xj (k0)k < δ, i, j = 1, · · · , N 

then 

kxi(k) − xj (k)k < �, i, j = 1, · · · , N k ≥ k0 . 

(b) For each initial state x10, · · · , xN0 there exists a bound β such that, for any 

initial time k0, if 

xi(k0) = xi0, i = 1, · · · , N 

then 

kxi(k) − xj (k)k ≤ β i, j = 1, · · · , N k ≥ k0 . 

(c) For each � > 0 and each initial state x10, · · · , xN0 there exists a time T > 0 

such that, for any initial time k0, if 

xi(k0) = xi0, i = 1, . . . , N 

then 

kxi(k) − xj (k)k < �, i, j = 1, . . . , N k ≥ k0 + T . 

√ 
where kxk = xT x. 

Definition 2.2.2 A network of N systems (2.5) achieved consensus if 

xi − xj = 0 , i, j = 1, · · · , N 
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Definition 2.2.3 A network of N systems (2.5) achieves global uniform exponential 

consensus with convergence rate 0 < ρ < 1 (GUEC with rate 0 < ρ < 1) if there exists 

a c ≥ 0 such that for any initial time k0, every initial state x1(k0), · · · , xN (k0), all 

i, j = 1, · · · , N , and all k ≥ k0, 

kxj(k) − xi(k)k ≤ c kxj (k0) − xi(k0)k ρk−k0 

√ 
where kxk = xT x. 

For each system i, we consider the following linear controller X � � 
(2.6)ui(k) = K(k) wij xj (k) − xi(k) 

j∈Ni 

where the gain matrix K(k) ∈ Rq×n is common to all systems. We will call (2.5)-(2.6) 

the closed-loop network. 

Remark 2.2.1 If the network achieved consensus, then ui(k) = 0 for all i, and the 

behavior of each system is identical and governed by 

xi(k + 1) = A(k) xi(k) + u0(k) . 

2.2.2 The network of transformed systems 

We can use the conditions for GUAC to achieve GUEC with rate α0. To illustrate 

this, we use the following transformed systems 

x̃i(k + 1) = Ã(k) x̃i(k) + B̃(k) ũi(k) + ũ0(k) (2.7) 

with inputs ũi(k) = ui(k)/ρk and ũ0(k) = u0(k)/ρk+1 , and Ã(k), B̃(k) given by 

Ã(k) := ρ−1 A(k) , B̃(k) := ρ−1 B(k) (2.8) 

First, we present the following result. 

Lemma 2.2.1 Network (2.5) achieves GUEC with rate ρ if the associated trans-

formed network (2.7) achieves GUAC. 
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Figure 2.1.. A graph with (left) and without (right) a spanning tree 

Proof Consider any 0 < ρ < 1. Let x̃i(k) := ρ−kxi(k) for all i. Then xi(k) = 

x̃i(k) ρk and 

kxj (k) − xi(k)k = kx̃j (k) − x̃i(k)k ρk . 

Hence, xj (k)−xi(k) exponentially converges to zero with guaranteed rate ρ if x̃j (k)− 

x̃i(k) converges to zero. The result is obtained by noting that when the behavior of 

xi(k) is governed by 2.5, the behavior of x̃i(k) is described by 2.7. 

Remark 2.2.2 Lemma 2.2.1 holds for any type of controller. Here we consider linear 

controllers similar to (2.6) for network (2.7), that is, X � � 
ũi(k) = K(k) wij x̃j (k) − x̃i(k) . 

j∈Ni 

Since ũi(k) = ρ−k ui(k) and x̃i(k) = ρ−kxi(t) this is equivalent to controller (2.2). 

2.3 Graph theory 

To present the results in this thesis, we require some concepts and results from 

graph theory. 

Associated with a weighted graph G = (V, E, W ) is its Laplacian matrix L = {lij }, 

defined by X 
lii = wij and lij = −wij for i =6 j . 

j 6=i 

Note that, in terms of the Laplacian, control (2.2) or (2.6) can be expressed as 

NX 
ui = −K lij xj . 

j=1 

A directed path in G from a vertex j to a vertex i is a sequence (i1, i2, · · · , im) in 

V with i1 = j, im = i, and (ik, ik+1) ∈ E for k = 1, · · · ,m − 1. A graph G is said 
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to contain a spanning tree if at least one vertex j∗ in V has the following property: 

for every i in V there is a directed path from j∗ to i. An example for a graph that 

contains a spanning tree and one that does not is given in Figure 2.1. One can show 

that, if the systems are not asymptotically stable, then a spanning tree is always 

necessary for consensus [48]. 

If 1 is the vector of all ones, then any nonzero multiple of this vector is an eigen-

vector of L corresponding to eigenvalue zero. If the graph G has a spanning tree, 

then there are no other eigenvectors corresponding to zero. 

Fact 2.3.1 ( [48]) A graph G contains a spanning tree if and only if the associated 

Laplacian matrix has one zero eigenvalue and all its other eigenvalues have a positive 

real part. 

If the systems are asymptotically stable, then consensus can be trivially achieved with 

K = 0. Therefore, throughout this thesis it is assumed that 

G contains a spanning tree. 

Next, we identify bounds on the real parts of the non-zero Laplacian eigenvalues: 

αm = min{<(µ) | µ ∈ ΛL} , αM = max{<(µ) | µ ∈ ΛL} (2.9) 

where ΛL is the set of all non-zero eigenvalues of the graph Laplacian. We note that 

αm, αM > 0 since G contains a spanning tree. 

If the graph contains a vertex with no in-neighbors, then the behavior of the 

system associated with this vertex is unaffected by the other systems. We will call 

this system a leader and when consensus is achieved, then the states of all the systems 

will equal that of the leader. 

2.4 Complex valued state variables and system matrices 

Remark 2.4.1 Systems (2.1) and (2.5) are introduced for real valued state vectors 

xi and real valued system matrices A and B only. However, results for the closed-loop 
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networks (2.1)-(2.2) and (2.5)-(2.6) can easily be extended to complex valued xi, A, 

B, and K. 

2.5 Matrix inequalities 

To present results for networks of higher-order systems, we will make use of matrix 

inequalities and the following definitions. 

Definition 2.5.1 A matrix Q ∈ Cn×n is hermitian if and only if Q = Q0 where ()0 

denotes the conjugate transpose of a matrix. 

Definition 2.5.2 A matrix Q ∈ Cn×n is skew-hermitian if and only if Q = −Q0 . 

Definition 2.5.3 A hermitian matrix Q is positive definite (Q > 0) if and only if 

z0 Qz > 0 for all z =6 0 where Q ∈ Cn×n and z ∈ Cn . 

Definition 2.5.4 A hermitian matrix Q is positive semi-definite (Q ≥ 0) if and only 

if z0 Qz ≥ 0 for all z =6 0 where Q ∈ Cn×n and z ∈ Cn . 

Definition 2.5.5 A hermitian matrix Q is negative definite (Q < 0) if and only if 

−Q is positive definite. 

Definition 2.5.6 A hermitian matrix Q is negative semi-definite (Q ≤ 0) if and only 

if −Q is positive semi-definite. 
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3. THE CLOSED-LOOP NETWORK 

The closed-loop networks (2.1)-(2.2) and (2.5)-(2.6) are linear systems. If graph G 

is fixed, then the dynamics due to the networks’ communication structure can be 

decomposed into the different modes. [29] illustrated this strategy for time-invariant 

higher-order continuous-time systems. The technique extends to the time-invariant 

discrete-time case (see [30]), and we will review it here to present results for time-

variant systems in the presence of a time-invariant communication structure. 

3.1 Separation of the closed-loop dynamics 

3.1.1 Transforming the graph Laplacian into Jordan normal form 

First, we apply a similarity transformation to L, which preserves the eigenvalues of 

the Laplacian. For any matrix, we can always identify a transformation such that the 

transformed matrix is in Jordan normal form. Let T be such that L̂ = T−1 LT is in 

Jordan normal form. From the definition of the graph Laplacian, 1 is an eigenvector 

of L corresponding to eigenvalue zero. Therefore, we can choose T so that each 

element of the first column of T is one. 

Lemma 3.1.1 Suppose T is a transformation matrix such that L̂ = T−1 LT is in 

Jordan normal form and each element of the first column of T is one. Then, 

XN 

k=1 

sik = 

⎧⎪⎨ ⎪⎩ 1 if i = 1 

0 otherwise 
(3.1) 

XXN N 

sik lkj = l̂ik skj , i, j = 1, · · · , N (3.2) 
k=1 k=1 
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where S = T−1 , and a new set of variables given by 

N 

zi = sij xj , i = 1, · · · , N (3.3) 
j=1 

will have properties 

X 

N 

zi = sij (xj − xi) , i = 2, · · · , N (3.4) 
j=1 

and 

X 

N 

xi − xj = (tik − tjk) zk , i, j = 1, · · · , N . (3.5) 
k=2 

Proof Let T be a transformation matrix such that L̂ = T−1 LT is in Jordan normal 

form and each element of the first column of T is one. The algebraic multiplicity of 

zero as an eigenvalue of L associated with eigenvector 1 is one (Fact 2.3.1). Hence, 

X 

L̂ = 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

0 0 0 · · · 0 

0 µ2 0 · · · 0 

0 ∗ . . . 0 
. .. .. . . .. .. . 

0 · · · · · · ∗ µN 

where µ2, · · · , µN are the non-zero eigenvalues of L and ∗ = 0 or ∗ = 1. Let S = T−1; 

then for i, j = 1, · · · , N : ⎧⎪⎨ ⎪⎩ 
XXN N 

k=1 k=1 

1 if i = j 
tik skj = sik tkj = δij = 

0 if i 6= j 

In particular, (3.1) is obtained by noting that ti1 = 1 for i = 1, · · · , N . Thus, 

XXN N 

sik = sik tk1 = δi1 . 
k=1 k=1 

ˆWe also have SL = LS since L̂ = T−1 LT and S = T−1 . Hence, (3.2) holds. PNNote that, as a consequence of (3.1), we have j=1 sij xi = δi1 xi, which is 0 for i > 1. 
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If we introduce new state variables (3.3), then we can add this 0 to (3.3) and obtain 

(3.4) for i > 1. Also, for i = 1, · · · , N : 

N N N NX XX X 
tij zj = tij sjk xk = δik xk = xi 

j=1 k=1 j=1 k=1 

Thus, since ti1 = 1, 

XN NX 
xi = tij zj = z1 + tij zj , i = 1, · · · , N 

j=1 j=2 

and (3.5) is recovered. 

Clearly, if consensus is achieved, then zi → 0 for all i > 1 from (3.4). 

Remark 3.1.1 Since graph G contains a spanning tree, the Laplacian matrix has 

one zero eigenvalue (Fact 2.3.1). The dynamics associated with this eigenvalue are 

the consensus dynamics of the closed-loop network. Therefore, if we are interested in 

consensus, then we are looking at the dynamics of zi for i = 2, · · · , N only. 

3.1.2 Transforming the system dynamics 

Next, we apply the transformation to the closed-loop network. The approach ap-

plies to continuous-time and discrete-time systems, and we will make use of functions 

fi to keep the approach generic. 

Lemma 3.1.2 Suppose we are given N functions fi and N vectors xi such that 

NX 
fi(t, x) = A(t) xi − B(t) K(t) lij xj + u0(t) (3.6) 

j=1 

T−1for all i = 1, · · · , N where x is the stacked vector of all xi. Let T and S = be 

matrices that satisfy the conditions in Lemma 3.1.1, and functions f̂  
i be given by 

NX 
f̂  
i(t, z) = sij fi(t, x) (3.7) 

j=1 



  

■ 

19 

where z is the stacked vector of all zi given by (3.3). Then, L̂ = T−1 LT has H 

Jordan blocks of length l1, · · · , lH and we obtain 

f̂  
1(t, z) = A(t) z1 + u0(t) (3.8) 

and the blocks of all the non-zero eigenvalues µh of the graph Laplacian yield cascades 

f̂  
i(t, z) = [A(t) − µh B(t) K(t)] zi , i = jh (3.9) 

f̂  
i(t, z) = [A(t) − µh B(t) K(t)] zi − B(t) K(t) zi−1 , jh < i < jh+1 (3.10) 

where h = 2, · · · , H, jh = jh−1 + lh−1, j1 = l1 = 1, and jH + lH = N . 

Proof Let the conditions of the lemma be satisfied. Then, 

NX 
f̂  
i(t, z) = sij fi(t, x) (3.11) 

j=1 

N N N NX XX X 
= A(t) sij xj − B(t) K(t) sij ljk xk + sij u0(t) (3.12) 

j=1 j=1 k=1 j=1 

for i = 1, · · · , N . It follows from (3.2) and (3.3) that ! !XN N N N N NX X X X X 
sij ljk xk = sij ljk xk = l̂ij sij xk 

j=1 k=1 k=1 j=1 k=1 j=1 

N N NX X X 
= l̂ij sij xk = l̂ij zj . (3.13) 

j=1 k=1 j=1 

It follows from (3.1) that 
NX 
sij u0(t) = δ1i u0(t) (3.14) 

j=1 

Now, substituting (3.3), (3.13), and (3.14) into (3.12) yields 

NX ̂
f̂  
i(t, z) = A(t) zi − B(t) K(t) lij zj + δ1i u0(t) 

j=1 

where L̂ = T−1 LT is in Jordan normal form. Thus, we can identify H Jordan blocks 

of length lh to obtain (3.8)-(3.10). 
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3.1.3 Stability concepts 

The Laplacian matrix L is constant. Thus, the similarity transformation L → L̂ 

stays constant, and we can apply Lemma 3.1.2 and Remark 3.1.1 to reduce consensus 

to the stability of a bunch of systems where we define stability as follows. 

Definition 3.1.1 System ẋ(t) = A(t) x(t) is globally uniformly asymptotically stable 

(GUAS) if 

(a) For each � > 0, there exists δ > 0 such that, for any initial time t0, if kx(t0)k < 

δ, then kx(t)k < � for all t ≥ t0. 

(b) For each initial state x0 there exists a bound β such that, for any initial time 

t0, if x(t0) = x0, then kx(t)k ≤ β for all t ≥ t0. 

(c) For each � > 0 and each initial state x0 there exists a time T > 0 such that, for 

any initial time t0, if x(t0) = x0, then kx(t)k < � for all t ≥ t0 + T . 

√ 
where kxk = xT x. 

Definition 3.1.2 System ẋ(t) = A(t) x(t) is globally uniformly exponentially stable 

with convergence rate α0 > 0 (GUES with rate α0 > 0) if there exists a c ≥ 0 

such that for any initial time t0, every initial state x(t0), and all t ≥ t0, kx(t)k ≤ 
√ 

c kx(t0)k e−α0 (t−t0) where kxk = xT x. 

Definition 3.1.3 System x(k + 1) = A(k) x(k) is globally uniformly asymptotically 

stable (GUAS) if 

(a) For each � > 0, there exists δ > 0 such that, for any initial time k0, if kx(k0)k < 

δ, then kx(k)k < � for all k ≥ k0. 

(b) For each initial state x0 there exists a bound β such that, for any initial time 

k0, if x(k0) = x0, then kx(k)k ≤ β for all k ≥ k0. 

(c) For each � > 0 and each initial state x0 there exists a time T > 0 such that, for 

any initial time k0, if x(k0) = x0, then kx(k)k < � for all k ≥ k0 + T . 
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√ 
where kxk = xT x . 

Definition 3.1.4 System x(k + 1) = A(k) x(k) is globally uniformly exponentially 

stable with convergence rate 0 < ρ < 1 (GUES with rate 0 < ρ < 1) if there exists 

a c ≥ 0 such that for any initial time k0, every initial state x(k0), and all k ≥ k0, 
√ 

kx(k)k ≤ c kx(k0)k ρk−k0 where kxk = xT x. 

3.1.4 Formulating consensus as a stabilization problem 

From Lemma 3.1.2 and Remark 3.1.1, we immediately obtain the following two 

results. 

Corollary 3.1.1 The closed-loop network (2.1)-(2.2) achieves GUAS (GUEC with 

rate α0 > 0) if and only if the cascaded systems 

ż 1 = [A(t) − µ B(t) K(t)] z1 , (3.15) 

żi = [A(t) − µ B(t) K(t)] zi − B(t) K(t) zi−1 , i > 1 (3.16) 

are GUAS (GUES with rate α0 > 0) for each non-zero eigenvalue µ of the graph 

Laplacian where i ≤ lMµ and lMµ is the maximum length of a Jordan block associated 

with eigenvalue µ. 

Corollary 3.1.2 The closed-loop network (2.5)-(2.6) achieves GUAS (GUEC with 

rate 0 < ρ < 1) if and only if the cascaded systems 

z1(k + 1) = [A(k) − µ B(k) K(k)] z1(k) , (3.17) 

zi(k + 1) = [A(k) − µ B(k) K(k)] zi(k) − B(k) K(k) zi−1(k) , i > 1 (3.18) 

are GUAS (GUES with rate 0 < ρ < 1) for each non-zero eigenvalue µ of the graph 

Laplacian where i ≤ lMµ and lMµ is the maximum length of a Jordan block associated 

with eigenvalue µ. 

One can show that under certain assumptions on the system matrices A, B, and 

K, the stability properties of the cascade systems (3.15)-(3.16) or (3.17)-(3.18) are 

determined by the stability property of systems (3.15) or (3.17) [66–70]. 
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Lemma 3.1.3 ( [70]) Consider a cascade system ⎛⎝ż1(t) ⎞⎠ = 

⎡⎣ Acl(t) 0 
⎛⎝ ⎤⎦ z1(t) 

⎞⎠ (3.19) 
ż2(t) Acouple(t) Acl(t) z2(t) 

where Acl(·) and Acouple(·) are piece-wise continuous and bounded. Then, system 

(3.19) is GUES if and only if ż1(t) = Acl(t) z1(t) is GUES. 

Lemma 3.1.4 Suppose A(·) and B(·)K(·) are piece-wise continuous and bounded. 

Then, the closed-loop network (2.1)-(2.2) achieves GUAC if and only if systems 

ż = [A(t) − µ B(t)K(t)] z (3.20) 

are GUAS for all non-zero eigenvalues µ of the graph Laplacian. 

Proof From Corollary 3.1.1, we have to show stability of (3.15)-(3.16) for all µ =6 0. 

In our case (bounded linear systems), it is well known that the notion of GUAS 

and GUES are equivalent [77, 78]. Thus, we conclude from repeated application of 

Lemma 3.1.3 that systems (3.15)-(3.16) are GUAS if and only if (3.20) is GUAS. 

Lemma 3.1.5 ( [69]) Consider a cascade system ⎛⎝z1(k + 1) 
⎞⎠ = 

⎡⎣ Acl(k) 0 
⎛⎝ ⎤⎦ z1(k) 

⎞⎠ (3.21) 
z2(k + 1) Acouple(k) Acl(k) z2(k) 

where Acl(·) and Acouple(·) are bounded. Then, system (3.21) is GUAS if and only if 

z1(k + 1) = Acl(k) z1(k) is GUAS. 

Lemma 3.1.6 Suppose A(·) and B(·)K(·) are bounded. Then, the closed-loop net-

work (2.5)-(2.6) achieves GUAC if and only if systems 

z(k + 1) = [A(k) − µ B(k)K(k)] z(k) (3.22) 

are GUAS for all non-zero eigenvalues µ of the graph Laplacian. 

Proof From Corollary 3.1.2, we have to show stability of (3.17)-(3.18) for all µ = 0. 

Systems are bounded and we conclude from repeated application of Lemma 3.1.5 that 

the cascade (3.17)-(3.18) is GUAS if and only if (3.22) is GUAS. 

6
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3.1.5 First-order systems 

We will see later that GUEC can always be achieved for a homogeneous network of 

continuous-time systems. For discrete-time systems, GUAC can always be achieved 

if systems are at least marginally stable. However, GUAC cannot always be achieved 

for networks of discrete-time systems. We will illustrate this limitation for a network 

of first-order systems. We present conditions which are necessary and sufficient for 

time-invariant systems. 

A closed-loop network of first order contintuous-time or discrete-time systems achieves 

GUAC if the systems 

żi(t) = (a − µK) zi(t) or zi(k + 1) = (a − µK) zi(k) 

respectively, are GUAS for all µ ∈ ΛL and ΛL is the set of all non-zero Laplacian 

eigenvalues. We wish to identify K ∈ R such that the closed-loop network achieves 

GUAC. 

In continuous-time, GUAC is achieved if Re(a − µK) < 0 for all µ ∈ ΛL. Since 

α > 0 for all µ ∈ ΛL (Fact 2.3.1), it is clear that such a K always exists and, recalling 

αm from (2.9), K will be given by 

K ≥ 0 , K > a/αm . 

In discrete-time, GUAC is achieved if |a − µK|2 < 1 for all µ ∈ ΛL where � �2 �� 
2α a α2 ω2 a |a − µK|2 = a 2 − 2 α aK + |µ|2 K2 = |µ|2 K − + a 2 1 − ≥ . 

|µ|2 |µ|2 |µ|2 

Thus, if GUAC is achieved, then a2ω2/|µ|2 < 1, that is, 

(a 2 − 1) ω2 < α2 . 

Suppose systems are unstable, that is |a| > 1, then GUAC cannot be achieved if �ω �2 1 ≥ 
α a2 − 1 

for some µ ∈ ΛL. 

Remark 3.1.2 The simple first-order example already shows that there are some A, 

B, and µ ∈ C for which A − µ BK cannot be stabilized with a real valued K. 
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3.2 Linear time-invariant systems 

In this section, we will present pre-liminary results for networks of linear time-

invariant systems where we make use of the following definitions. 

Definition 3.2.1 A polynomial is Hurwitz (continuous-time) or Schur (discrete-time) 

if and only if all its roots have negative real part (Hurwitz) or magnitude less than 

one (Schur), respectively. 

Definition 3.2.2 A matrix is Hurwitz (continuous-time) or Schur (discrete-time) if 

and only if all its eigenvalues have negative real part (Hurwitz) or magnitude less than 

one (Schur), respectively. 

Definition 3.2.3 In the time-invariant case, a polynomial is asymptotically stable if 

and only if it is Hurwitz (continuous-time) or Schur (discrete-time), respectively. 

Definition 3.2.4 In the time-invariant case, a matrix is asymptotically stable if and 

only if it is Hurwitz (continuous-time) or Schur (discrete-time), respectively. 

Corollary 3.2.1 If systems are time-invariant, then the closed-loop network (2.1)-

(2.2) or (2.5)-(2.6) achieves GUAC if and only if for each non-zero eigenvalue µ of 

the graph Laplacian, 

• Continuous-time: A − µ BK is Hurwitz [29]. 

• Discrete-time: A − µ BK is Schur [30]. 

3.2.1 Stabilizable linear time-invariant systems 

Suppose (A, B) is not controllable but stabilizable. Then, there is a nonsingular 

matrix T such that 

Â := T−1 AT = 

⎡⎣Ac Acu 

⎤⎦ B̂ := T−1 B = 

⎡⎣Bc 

⎤⎦and . 
0 Au 0 
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The pair (Ac, Bc) is controllable and Au is asymptotically stable. Let ih 
ˆ ˆK = KT−1 where K = Kc 0 . (3.23) 

Then �� 
A − µ BK = T Â − µ B̂ K̂ T−1 

and 

ˆ B̂ ˆA − µ K = 

⎡⎣Ac − µ BcKc Acu 

⎤⎦ . 
0 Au 

Since A − µ BK and Â − µ B̂ K̂ are similar, they have the same characteristic poly-

nomial; hence 

det(sI − A + µ BK) = det(sI − Â+ µ B̂ K̂) 

= det(sI − Ac + µ BcKc) cu(s) (3.24) 

where cu(s) = det(sI − Au) is asymptotically stable. One can now use the results on 

controllable systems to obtain a matrix Kc such that Ac − µ BcKc is asymptotically 

stable for all µ. Then, with K given by (3.23) the matrix A − µ BK is asymptotically 

stable for all µ. 

3.2.2 Single-input linear time-invariant systems 

For GUAC, it is necessary and sufficient that A − µ BK be asymptotically stable 

for all non-zero eigenvalues µ of the graph Laplacian. This is equivalent to the require-

ment that, for each non-zero eigenvalue µ of the graph Laplacian, the characteristic 

polynomial of A − µ BK, 

dµ(s) = det(sI − A + µ BK) 

is Hurwitz (continuous-time) or Schur (discrete-time). 

Our first result tells us that, in the single-input case, dµ depends in a linear affine 

fashion on µ. 
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Lemma 3.2.1 Suppose A ∈ Cn×n , B ∈ Cn×1 , and K ∈ C1×n . Then 

det(sI − A + µ BK) = c(s) + µ γ(s) (3.25) 

where c(s) = det(sI − A) and γ is a polynomial whose degree is less than n. 

Proof When s is not an eigenvalue of A, we use Sylvester’s determinant identity to 

obtain that 

� � 
det (sI − A + µBK) = det (sI − A) det I + µ (sI − A)−1BK � � 

= det (sI − A) det 1 + µ K (sI − A)−1B � � 
= det (sI − A) 1 + µ K(sI − A)−1B 

Hence (3.25) holds with 

γ(s) = det(sI − A) K (sI − A)−1 B . (3.26) 

It follows from (3.26) that γ is a polynomial whose degree is at most n − 1. 

From the above result, we see that it may be possible to reduce the problem of 

obtaining K such that A − µ BK is Hurwitz or Schur for every non-zero µ to the 

problem of obtaining a polynomial γ of degree less than n such that c+µ γ is Hurwitz 

or Schur, respectively, for every non-zero µ. Having found such a polynomial how 

does one obtain K? It follows from (3.25) that 

det(sI − A + BK) = c(s) + γ(s) . 

If (A, B) is controllable, then one could use pole placement techniques to obtain K 

given c and γ. First, we identify the relation between the parameters. 
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Lemma 3.2.2 Suppose A ∈ Cn×n , B ∈ Cn×1 , and K ∈ C1×n . Then 

det(sI − A + BK) = c(s) + γ(s) (3.27) 

where 

nX 
c(s) = det(sI − A) = ci s 

i , cn = 1 (3.28) 
i=0 

and " # 
n−1 nX X 

cj A
j−i−1γ(s) = γi s 

i , γi = K B . (3.29) 
i=0 j=i+1 

Proof From (3.26), 

γ(s) = det(sI − A) K (sI − A)−1 B . 

The matrix (sI − A)−1 can be expressed by the power series 

∞X 
−(k+1) Ak(sI − A)−1 = s 

k=0 

and recalling that det (sI − A) is given by (3.28) yields ! 
n ∞X X 

j−k−1 Ak Bγ(s) = K cj s . 
j=0 k=0 

Comparing the coefficients of si , for i = 0, · · · , n − 1, on both sides of the above 

equation yields " # 
nX 

cj A
j−i−1γi = K B . 

j=i+1 

Remark 3.2.1 The open-loop dynamics of the transformed network (2.3) are given 

by the characteristic polynomial of A + α0I, that is, � � 
c̃(s) = det (sI − A − α0I) = det (s − α0)I − A = c(s − α0) 

Hence, c̃(s) can be obtained by replacing s in (3.28) by s − α0. 
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Remark 3.2.2 The open-loop dynamics of the transformed network (2.7) are given 

by the characteristic polynomial of ρ−1A, that is, ��� 
sI − ρ−1A = ρ−n = ρ−ndet sρ I − Ac̃(s) = det c (sρ) . 

Hence, c̃(s) can be obtained by replacing s in (3.28) by sρ and multiplying the resulting 

polynomial by ρ−n . 

Now, if c and γ are given, then the following corollary provides an explicit expression 

for K. 

Corollary 3.2.2 Suppose (A, B) is controllable with A ∈ Cn×n , B ∈ Cn×1 . Then, 

K ∈ C1×n satisfies (3.27) if and only if, recalling c and γ from (3.28)-(3.29), i 
K = γ0 γ1 · · · γn−1 (Qc )

−1 
h 

(3.30) 

where the invertible matrix   is given by 

  = 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

c1 c2 · · · cn−2 cn−1 1 

c2 c3 · · · cn−1 1 0 

c3 

. . . 

c4 

. . . 

· · · 1 
. . . 

0 
. . . 

0 
. . . 

cn−1 1 · · · 0 0 0 

1 0 . . . 0 0 0 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
(3.31) 

and Qc is the controllability matrix associated with (A, B), that is, ih 
Qc = B AB · · · An−1B . 

Proof From (3.29), we note that ihih 
KB KAB · · · KAn−1B   = γ0 γ1 · · · γn−1 (3.32) 

which is equivalent to h 
KQc  = γ0 γ1 · · · γn−1 

i 
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where   is the invertible matrix given in (3.31) and Qc is the controllability matrix 

for (A, B) that is invertible since the pair (A, B) is controllable. This readily implies 

that the gain matrix K is uniquely given by (3.30). 

If systems are in controllable canonical form, then one can easily show that γi = Ki. 
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4. CONSENSUS FOR CONTINUOUS-TIME 

SECOND-ORDER SYSTEMS 

Here we consider a homogeneous network of linear time-invariant second-order sys-

tems. In this case, (2.1) is given by 

ẋ i(t) = Axi(t) + B ui(t) + u0(t) (4.1) 

where xi(t) ∈ R2 , A ∈ R2×2 , B ∈ R2×1 , a linear control ui(t) ∈ R is given by X � � 
ui(t) = K wij xj (t) − xi(t) (4.2) 

j∈Ni 

and the special system parameter (3.28)-(3.29) reduce to 

c(s) = det (s I − A) = s 2 + c1 s + c0 (4.3) 

and 

[γ0 γ1] = K [(A + c1 I) B B] . (4.4) 

If (A, B) is in controllable canonical form, then one can easily show that [γ0 γ1] = K. 

4.1 Necessary and sufficient conditions for consensus 

4.1.1 Conditions for consensus 

The following lemma provides conditions that are necessary and sufficient for the 

closed-loop network (4.1)-(4.2) to achieve GUAC. 

Lemma 4.1.1 The closed-loop network (4.1)-(4.2) achieves GUAC if and only if, 

for each non-zero eigenvalue µl = αl + j ωl of the graph Laplacian matrix, 

δl := c1 + αl γ1 > 0 (4.5) 

γ2(c0 αl + |µl|2 γ0) δ
2 − c1 ω

2 γ0 δl − αl ω
2 > 0 (4.6)l l l 0 
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where c0, c1, γ0, and γ1 are given by (4.3)-(4.4). 

[31] developed a similar result. Here we treat c0, c1 as fixed parameters. A simple 

and new proof of Lemma 4.1.1 is given in Section 4.4. 

Remark 4.1.1 If a Laplacian eigenvalue µl is real, then µl = αl, ωl = 0, and condi-

tions (4.5)-(4.6) in Lemma 4.1.1 simplify to 

c1 + µl γ1 > 0 and c0 + µl γ0 > 0 . (4.7) 

Lemma 4.1.1 provides conditions on the gains γ0 and γ1. If (A, B) is controllable, 

then the matrix [(A + c1 I) B B] is invertible and K is given by 

K = [(A + c1 I) B B]−1 [γ0 γ1] . 

Section 4.2.3 will show that for stabilizable systems, provided the graph has a span-

ning tree, the inequalities in Lemma 4.1.1 can always be satisfied, regardless of the 

network under consideration, by choosing K appropriately. In particular, the results 

are not restricted to undirected networks. 

4.1.2 Guaranteed convergence rate 

Recalling Lemma 2.1.1, we can use Lemma 4.1.1 above to obtain a guaranteed 

convergence rate α0. From Remark 3.2.1, the characteristic polynomial of Ã = A + 

α0 I is given by c̃(s) = s2 + c̃1 s + c̃0 where 

c̃0 = α0
2 − c1 α0 + c0, c̃1 = c1 − 2 α0 . (4.8) 

Recalling Remark 2.1.2 and noting that Ã + c̃1I = A + (c1 − α0) I, we proceed as in 

(4.4) and define �� � � 
[γ̃0 γ̃1] = K A + (c1 − α0) I B B . (4.9) 
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Now, Lemmas 2.1.1 and 4.1.1 yield the following corollary. 

Corollary 4.1.1 The closed-loop network (4.1)-(4.2) achieves GUEC with rate 

α0 > 0 if for each non-zero eigenvalue µl = αl + j ωl of the graph Laplacian, 

δ̃l := c̃1 + αl γ̃1 > 0 (4.10) 

δ2 ˜ γ2(c̃0 αl +|µl|2γ̃0) ˜ − c̃1ω
2 δl − αlω

2 > 0 (4.11)l l γ̃0 l ˜0 

where c̃0, c̃1, γ̃0, and γ̃1 are given by (4.8)-(4.9). 

If (A, B) is controllable, then, provided the graph has a spanning tree, any guar-

anteed rate of convergence α0 can be achieved by appropriate choice of K. This will 

be shown in Section 4.2. 

Remark 4.1.2 If (A, B) is in controllable canonical form, then one can easily show 

that 

K = [γ̃0 + γ̃1 α0 γ̃1] . 

4.1.3 Networks of double integrators 

A network of double integrators is a special case of (4.1) with c0 = c1 = 0. In this 

case, conditions (4.5)-(4.6) in Lemma 4.1.1 simplify to 

α2 γ2and |µl|2 γ0 γ
2 − αl ω

2 > 0 .αl γ1 > 0 l 1 l 0 

For non-zero µl, we have αl > 0 from Fact 2.3.1. In this case, γ0 > 0 from the second 

inequality; and in addition to a spanning tree, 

γ2 ω2 
1 

γ0 

l> 
αl |µl|2 

and γ1 > 0 

for all non-zero µl provide necessary and sufficient conditions to achieve GUAC. [28] 

and [15] obtained a similar result but assumed that γ0, γ1 > 0. Here we did not 

assume γ0, γ1 > 0. However, we showed that it is necessary. 
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Remark 4.1.3 If we wish to achieve GUEC with α0 > 0, then K should be chosen 

according to (4.9) where γ̃0 and γ̃1 satisfy (4.10)-(4.11) with 

c̃0 = α0
2 and c̃1 = −2α0 . 

4.2 Obtaining gains 

Lemma 4.1.1 provides necessary and sufficient conditions on the gains γ0, γ1 for 

a closed-loop network (4.1)-(4.2) to achieve GUAC. Satisfying inequalities (4.5)-(4.6) 

for all µl 6= 0 is equivalent to simultaneously stabilizing N − 1 polynomials, where 

inequality (4.6) is nonlinear in γ0, γ1 and needs to be analyzed numerically, especially 

if the number of systems N is large. 

This motivates different methods for choosing gains. We start with a high-gain 

approach, which is easy to implement. Next, we develop lower bounds on the gains, 

which guarantee that all N − 1 polynomials are stable. Then, we show that GUAC 

can always be achieved if the pair (A, B) is stabilizable. Finally, we consider output 

feedback. 

In the following, sufficient conditions to achieve GUAC are established by sim-

plifying conditions (4.5)-(4.6) in Lemma 4.1.1. All eigenvalues µl = αl + j ωl of the 

Laplacian L are labeled so that µ1 = 0 and αl > 0 for l > 1, which can be done since 

it is assumed that G contains a spanning tree (Fact 2.3.1). 

4.2.1 High gain 

A very simple method to choose gains is to fix their relationship and make them 

large. 

Corollary 4.2.1 Consider the closed-loop network (4.1)-(4.2) where, for some κ > 0, 

the gains in (4.4) are given by 

γ1 = κ γ0 . 

The network achieves GUAC if γ0 is sufficiently large. 
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Proof Suppose gains are related by γ1 = κ γ0 for any fixed κ > 0; then the choice 

of gains reduces to a single design variable γ0. Condition (4.5) is rearranged to 

γ0 > −c1/(καl) 

for all l > 1 and is satisfied for large γ0. Furthermore, the left-hand side of inequality 

(4.6) becomes cubic in γ0 where the coefficient of γ3 is |µl|2α2κ2 , which is positive. 

Hence, condition (4.6) is satisfied for large γ0 

that GUAC is achieved when γ0 is sufficiently 

0 

as well. 

large. 

It 

l 

follows from Lemma 4.1.1 

4.2.2 Simpler gain conditions 

The next method simplifies the process of choosing gains by providing explicit 

lower bounds on γ0 and γ1. 

Theorem 4.2.1 The closed-loop network (4.1)-(4.2) achieves GUAC if gains γ0, γ1 

given by (4.4) satisfy 
αl c0

γ0 > − ,
|µl|2 

γ1 > gl − 
c1 

αl 
(4.12) 

for all l > 1 where 

gl = 
c1 γ0 τl 
2 αl 

+ 

s� �2 
c1 γ0 τl 
2 αl 

+ 
τl γ2 

0 

αl 
(4.13) 

ω2 

τl = l 

c0 αl + |µl|2 γ0 
. (4.14) 

Proof The first inequality in (4.12) implies that 

c0 αl + |µl|2 γ0 > 0 . (4.15) 

ω2 

Now, with τl := l ≥ 0, inequality (4.6) of Lemma 4.1.1 is equivalent to 
c0 αl+|µl|2 γ0 

fl(δl) := δl 
2 − (c1 γ0 τl) δl − αl τl γ0

2 > 0 . 

The second-order polynomial fl has two real roots; the biggest root being r� �2c1 γ0 τl c1 γ0 τl 
rl := + + αl τl γ0

2 ≥ 0 . 
2 2 
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Since limδl→∞ fl(δl) = ∞, we have fl(δl) > 0 for δl > rl. Thus, (4.5) and (4.6) hold 

provided δl > rl, that is γ1 > gl − c1/αl. 

[31] presented Theorem 4.2.1 for the special case of c1 ≥ 0 and γ0 ≥ 0. In this 

case, the conditions in Theorem 4.2.1 are not only sufficient but also necessary to 

achieve GUAC. We will show in Section 4.5 that the necessity of the conditions in 

Theorem 4.2.1 is actually very common. Some of the cases are indicated in the remark 

below. 

Remark 4.2.1 The conditions in Theorem 4.2.1 are necessary if 

1. all µl are real. If ωl = 0, then τl and gl are 0, and Remark 4.1.1 is recovered. 

l2. c0 = c1 = 0. This case reduces to the double-integrator, that is, γ1
2 > 

αl 

ω 
|µ 

2 

l|2 γ0. 

3. c0 ≥ 0 and c1 < 0. If c1 < 0, then from (4.6), either γ0 > 0 or (4.15) has to 

hold. γ0 > 0 and c0 ≥ 0 imply (4.15). Hence, (4.15) holds regardless. 

4.2.3 Stabilizable systems 

Corollary 4.2.1 demonstrates the sufficiency of a simple linear controller to achieve 

GUAC. However, in order to obtain K for arbitrary γ0 and γ1, relation (4.4) has to be 

invertible, which is the case if (A, B) is controllable. Here we will show that GUAC 

can always be achieved if the systems are only stabilizable and the graph G contains 

a spanning tree. 

Remark 4.2.2 If (A, B) is uncontrollable, then rank [AB B] < 2. Hence, either 

B = 0 or B is an eigenvector of A. If B = 0, then GUAC is achieved if and only if 

A is stable, that is, (A, B) is stabilizable. If B is an eigenvector of A and λc is the 

controllable eigenvalue, then AB = λc B. Since the matrices A and B are real, λc 

and therefore the uncontrollable eigenvalue λu are real. Furthermore, c1 = −(λu + λc) 

and (4.4) reduces to 

γ0 = −λu KB , γ1 = KB . (4.16) 
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If (A, B) is stabilizable, then λu < 0 and (4.16) reduces to γ1 = κ γ0 where κ = 

−1/λu > 0. From Corollary 4.2.1, GUAC is achieved if γ0 is sufficiently large. K is 

chosen such that KB = γ1. 

Remark 4.2.3 Applying the reasoning of Remark 4.2.2 to (4.9) yields 

γ̃1 = κγ̃0 , κ = −1/(λu + α0) . 

Then, GUEC with rate α0 can be achieved if λu < −α0. 

4.2.4 Output feedback 

Controllers of the form (4.2) with no restrictions on the structure of K assume 

that each agent has knowledge of the full state of all its neighbors. Sometimes we 

wish to reduce the amount of data transmitted over the network, or only a part of the 

state of each agent is available. So we consider the situation in which the information 

available from each agent i is an output 

yi = Cxi (4.17) 

where C ∈ R2×1 . Considering static output feedback, control ui is given by X � � 
ui = k wij yj − yi (4.18) 

j∈Ni 

where k ∈ R. These controllers are in the form of (4.2) with 

K = k C . (4.19) 

Let 

b1 s + b0
G(s) = (4.20) 

s2 + c1 s + c0 

be the transfer function associated with each agent. Let (A, B, C) be a realization 

of G with (A, B) in controllable canonical form; thus G(s) = C (sI − A)−1B. Then 

C = [b0 b1] and K = [γ0 γ1]. Hence, 

γ0 = k b0 and γ1 = k b1 . (4.21) 
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If b1 =6 0, then the transfer function has a single zero at z = −b0/b1. Otherwise it 

has no zeros. We need to consider the following cases: 

1. (z < 0) Here γ1 = κ γ0 where κ = b1/b0 > 0, and a controller can be obtained 

by using Corollary 4.2.1 to obtain γ0; then k is given by k = γ0/b0. 

2. (z = 0, b1 =6 0) Here b0 = 0; hence γ0 = 0 and conditions (4.5)-(4.6) reduce to 

c0 > 0 and γ1 > −c1/αl 

Hence, provided c0 > 0, one can obtain γ1 to satisfy (4.5)-(4.6); then k = γ1/b1. 

3. (z > 0) Here one needs to substitute the expressions for γ0 and γ1 into (4.5)-

(4.6) to obtain two set of inequalites in k; a controller exists if these inequalities 

have a solution for k. 

4. (b1 = 0, b0 > 0) Here γ1 = 0 and conditions (4.5)-(4.6) reduce to 

2 − ω2 k2b2 c1 > 0 and 1 0 > 0 (4.22)(c0 + αl b0 k) c l 

Let Λ be the set of all non-zero Laplacian eigenvalues and for each µ ∈ Λ with 

ω =6 0 let ν = α/ω where µ = α + j ω. Then, the second inequality in (4.22) is 

satisfied for all l > 1 if and only if 

ν2 ≥ −4 c0 / c1
2 for all µ ∈ Λ with ω > 0 and k < k (4.23) 

where rn� c0 
� c2 o 

k = inf ν + ν2 +4 
2

1 µ ∈ Λ, ω > 0 , (4.24) 
c1 2 ω b0 on−c0

k = max {k1, k2} , k1 = sup µ ∈ Λ, ω = 0 , (4.25)
α b0n� r � 2 o 

1 = sup ν − ν2 +4 
c0 c

µ ∈ Λ, ω > 0 . (4.26)k2 2c1 2 ω b0 

The control gains yielding desired behavior are given by k where 

k < k < k . (4.27) 
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5. (b1 = 0, b0 < 0) Here we can use the design for b1 = 0, b0 > 0 if we multiply b0 

and k by −1. 

Remark 4.2.4 If GUAC cannot be achieved via static output feedback control, then 

assuming that (C, A) is detectable, it is always possible to use an observer based design. 

Each agent i employs an observer to obtain an estimate x̂i of its state xi and supplies 

this to its neighbors. Then, ui is given by X � � 
ui = K wij x̂j − x̂i (4.28) 

j∈Ni 

where K is designed as before for state feedback. The error dynamics of the observers 

decouple from the overall system dynamics, and GUAC is achieved with dynamic 

output feedback controllers. 

4.3 Robust consensus control 

Necessary and sufficient conditions for the closed-loop network (4.1)-(4.2) to achieve 

GUAC are given by (4.5)-(4.6). These conditions are based on the eigenvalues of the 

Laplacian matrix associated with the network graph. In practice it is possible that 

the communication structure changes, e.g. when systems enter or leave the network, 

that is, vertices get added or removed from the graph. Further, the system matrices 

A and B could be approximated, their true value may be unknown, or we may wish 

that the controller work for a range of A and B matrices. Then, GUAC must be 

achieved in a robust way. 

4.3.1 Robustness with respect to changes in graph 

First, we assume that the system matrices A and B are known and that the only 

uncertainty lies in the communication structure, which is fixed. For a fixed αm > 0, 

we consider the set of weighted graphs G whose Laplacians L satisfy 

µ1 = 0 and 0 < αm ≤ αl (4.29) 
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for all l > 1, i.e., the Laplacian has one zero eigenvalue and the real part of all its other 

eigenvalues are bounded below by αm. One can estimate αm without global knowledge 

of the directed and weighted graph G using a distributed algorithm, e.g. [71]. 

Then, conditions to robustly control a network of second-order systems are as 

follows. 

Theorem 4.3.1 The closed-loop network (4.1)-(4.2) achieves GUAC for any graph 

satisfying (4.29) if and only if 

γ0, γ1 ≥ 0 (4.30) 

γ0 > −c0/αm (4.31) 
√ 

−c1+ c2+4 αm γ0
γ1 ≥ 

2 α 
1 

m 
if γ0 > 0 

(4.32) 
γ1 > −c1/αm if γ0 = 0 

where c0, c1, γ0 and γ1 are given by (4.3)-(4.4). 

Proof We prove this theorem using Lemma 4.1.1. First, we note that (4.29) requires 

that µ1 = 0 and 0 < αl for all l > 1. This is equivalent to requiring that the graph 

G contains a spanning tree (Fact 2.3.1). From Lemma 4.1.1, we see that GUAC is 

achieved for all graphs satisfying (4.29) if and only if conditions (4.5)-(4.6) hold for 

all ωl ∈ R and αl ≥ αm. Using the definition of δl in (4.5) and αl > 0, condition (4.6) 

is equivalent to 

γ0 (δl γ1 − γ0) ωl 
2 + (c0 + αl γ0) δl 

2 > 0 . (4.33) 

With δl > 0, condition (4.33) holds for all ωl if and only if 

c0 + αl γ0 > 0 (4.34) 

γ0 (δl γ1 − γ0) ≥ 0 . (4.35) 

Conditions (4.5) and (4.34) hold for all αl ≥ αm if and only if 

γ0 ≥ 0 and γ0 > −c0/αm (4.36) 

γ1 ≥ 0 and γ1 > −c1/αm . (4.37) 
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With γ0 ≥ 0, inequality (4.35) holds for all α ≥ αm if and only if 

γ2γ0(αm 1 + c1 γ1 − γ0) ≥ 0 , 

that is, γ0 = 0 or γ0 > 0 and 

αm γ1
2 + c1 γ1 − γ0 ≥ 0 . (4.38) 

With γ1 ≥ 0, this last condition is equivalent to 

−c1 + c γ0 

Note that (4.39) implies (4.37) when γ0 > 0. 

p 

4.3.2 Robustness with respect to changes in graph and model uncertain-

ties 

Theorem 4.3.1 provides necessary and sufficient conditions on gains γ0, γ1 to 

achieve GUAC over a range of uncertain, but fixed graphs. The controller gain matrix 

K is obtained from (4.4), which is possible if (A, B) is controllable and is fixed. Now 

we consider a range of systems described by 

2 
1 + 4 αm

γ1 ≥ . (4.39)
2 αm 

A = 

⎡⎣a11 a12 

⎤⎦ , B = 

⎡⎣ 0 ⎤⎦ where a12 > 0, b2 > 0 . (4.40) 
a21 a22 b2 

Uncertain systems satisfying (4.40) are said to satisfy generalized matching conditions 

[72]. Suppose there exist β0, · · · , β3 such that 

b2 a11 a22 a12a21 − a11a22≥ β0, ≤ β1, ≤ β2 and ≤ β3 (4.41) 
a12 a12 a12 a12 b2 

holds, which is the case if (A, B) lie in a compact set. 
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Then, we obtain the following result. 

Theorem 4.3.2 Consider any network of systems (4.1) satisfying (4.40)-(4.41) and 

whose graph satisfies (4.29). Then, there exists k1, k2 satisfying p
β1 +β2 + (β1 +β2)2 + max {0, 4 β0 β3}

k2 > (4.42)
2 αm β0 

k1 > β1 k2 + max {0, β3/αm } (4.43) 

k1 ≤ −β2 k2 + αmβ0 k2
2 (4.44) 

� � 
and, with K = k1 k2 , the closed-loop network (4.1)-(4.2) achieves GUAC. 

Proof The existence of k1 and k2 satisfying (4.43)-(4.44) is equivalent to the exis-

tence of k2 satisfying 

β0 k
2 − (β1 + β2) k2 − max {0, β3/αm } > 0αm 2 

which is guaranteed by k2 satisfying (4.42). Hence, there exists k1, k2 satisfying 

(4.42)-(4.44). 

We now use Theorem 4.3.1 to show that if k1, k2 satisfy (4.42)-(4.44), then K = � � 
k1 k2 results in GUAC for any network of systems (4.1) satisfying (4.40)-(4.41) 

and whose graph satisfies (4.29). When B has the structure given in (4.40) equality 

(4.4) reduces to 

γ0 = b2 (a12 k1 − a11 k2) and γ1 = b2 k2 . (4.45) 

Also, with A given by (4.40) we have 

c0 = a11 a22 − a12 a21 and c1 = −(a11 + a22) . 

Recalling the proof of Theorem 4.3.1 and (4.38), we see that the hypotheses of 

that theorem are satisfied if 

γ1 ≥ 0 (4.46) 

γ0 > max{0, −c0/αm} (4.47) 

αmγ1
2 + c1γ1 − γ0 ≥ 0 (4.48) 
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Substituting for c0, c1, γ0 and γ1 yields 

b2 k2 ≥ 0 � � 
a12 a21 −a11 a22 

a12 b2 k1 − a11 b2 k2 > max 0, 
αm 

b2αm 2 k
2 
2 − a22 b2 k2 − a12 b2 k1 ≥ 0 

Since a12, b2 > 0, the above inequalities are equivalent to 

k2 ≥ 0 � 
a11

k1 > k2 + max 0, 
a12 

� 
a12 a21 −a11 a22 

a12 b2 αm 

(4.49) 

(4.50) 

a22 αm b2
k1 ≤ − k2 + k2

2 (4.51) 
a12 a12 

and these inequalities are guaranteed by (4.42)-(4.44). 

Remark 4.3.1 If a11 = 0 (e.g. if systems are in controllable canonical form), then 

γ0 is independent of k2 and (4.42)-(4.44) are equivalent to � � p
β3 β2 + β2

2 + 4 αm β0 k1
k1 > max 0, and k2 > . 

αm 2 αm β0 

Remark 4.3.2 In this section, systems are assumed to be uncertain, but fixed and 

homogeneous. Thus, all systems have to change at the same time and the results do 

not extend to a heterogeneous network of systems. Higher-order systems can be con-

sidered, but applying Routh-Hurwitz to the resulting higher-order polynomials yields 

more nonlinear inequalities to solve. The methodology presented here can be used. 

However, it is not guaranteed that the nonlinear inequalities simplify to nice and ex-

plicit conditions on the gains. An alternative control design based on LMIs results in 

sufficient, but not always necessary conditions. 

Networks of marginally stable systems 

If systems (4.1) are stable, then c0, c1 > 0 and GUAC is achieved if K = 0. 
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If these systems are marginally stable, then either c0 = 0 or c1 = 0. If c0 ≥ 0, 

then β3 ≤ 0 and conditions (4.42)-(4.44) in Theorem 4.3.2 are satisfied if 

β4 +|β4|
k2 > and β1 k2 < k1 ≤ αm β0 k2

2 − β2 k2 (4.52)
2 αm β0 

where β4 := β1 + β2. 

If, in addition, β4 ≤ 0, then the first condition in (4.52) reduces to k2 > 0. In this 

case, stabilizing gains k1, k2 can be chosen arbitrary small. 

If β3 ≤ 0 and β1, β2 ≤ 0, then (4.52) is satisfied if 

p
k1 > 0 and k2 ≥ k1/(αm β0) . (4.53) 

[73] investigated special types of networks for which a11 = a21 = 0, a22 ≤ 0, 

a12 = b2 = 1 and k1 = 1. Their Theorem 4.3rstates that GUAC is achieved if theh � �i−1 
graph G contains a spanning tree and k2 > 2 |µl| cos π − tan−1 αl for all

2 ωl 

l > 1. If the angular relations among αl, ωl, and |µl| are analyzed in the complex p
plane, then it can be shown that this is equivalent to k2 > 2/αl. Their result p 
can be strengthened by using (4.53), which yields k2 ≥ 1/αm for k1 = β0 = 1. 

Furthermore, (4.53) also applies to systems for which c0 > 0 and c1 = 0. Therefore, 

it extends to the class of undamped oscillators, which are important for applications 

like clock synchronization, power grid control and others [35]. 

4.3.3 Robust consensus with rate α0 > 0 

To achieve GUEC with rate α0 we suppose there exists β̃  
0, . . . , β̃  

3 such that, similar 

to (4.41), 

b2 a11 +α0 a22 +α0 a12 a21 − (a11 +α0)(a22 +α0)≥ β̃  
0 , ≤ β̃  

1 , ≤ β̃  
2 and ≤ β̃  

3 
a12 a12 a12 a12 b2 

(4.54) 
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and we obtain the following corollary. 

Corollary 4.3.1 Consider any network of systems (4.1) satisfying (4.40), (4.54), 

and whose graph satisfies (4.29). Then, there exists k1, k2 satisfying q 
β̃  
1 +β̃  

2 + (β̃  
1 +β̃  

2)2 + max {0, 4 β̃  
0 β̃  

3}
k2 > (4.55)

˜2 αm β0 n o 
k1 > β̃  

1 k2 + max 0, β̃  
3/αm (4.56) 

k1 ≤ −β̃  
2 k2 + αm β̃  

0 k2
2 (4.57) 

� � 
and, with K = k1 k2 , the closed-loop network (4.1)-(4.2) achieves GUEC with 

rate α0 > 0. 

Proof This follows from Lemma 2.1.1 and Theorem 4.3.2. 

Remark 4.3.3 The results presented in this section assume uncertain, but fixed 

graphs and system dynamics. Therefore, they cannot be applied to switching topolo-

gies that are continuously changing. Instead, we consider networks that vary slowly 

relative to the rate α0 > 0 at which GUEC is achieved. If for example a large sen-

sor array is deployed underwater, then communication links might break over time, 

changing the communication structure. If the control is robust, then the system re-

converges after any type of disruption, which avoids immediate repair. 

Alternatively, a customer might want to use devices in different setups. However, it 

is not desired to reprogram the devices all the time. Then, the control chosen has to 

work for alternating scenarios. 

4.3.4 Robust consensus using output feedback 

Similar to Section 4.2.4, we consider output feedback controllers described by 

(4.18). If the uncertain system transfer functions are given by (4.20) then, γ0 and γ1 

are given by (4.21). Suppose b0, b1, c0 and c1 are unknown but lie in a compact set. 

We consider the following cases: 
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1. (b0, b1 > 0) It follows from Theorem 4.3.1 that controller (4.18) yields GUAC if � � p
−c0 −c1 + c1

2 + 4 αm b0 k 
b0 k > max 0, and b1 k > . (4.58)

αm 2 αm 

Rearranging, squaring, and dividing the second condition in (4.58) by b1 k shows 

that this condition is equivalent to αm b1 k + c1 > b0/b1 and 2 αm b1 k + c1 > 0. 

Since αm, b0, b1, k > 0 these conditions are equivalent to αm b1 k + c1 > b0/b1. 

Now, (4.58) is equivalent to � � 
β5 β6 c0 b0 − b1 c1

k > max 0, , where − ≤ β5 and ≤ β6 . (4.59)
b2αm αm b0 1 

2. (b0 = 0, b1 > 0) Here γ0 = 0 and, using Theorem 4.3.1, controller (4.18) yields 

GUAC if k ≥ 0 and 

c1 
c0 > 0 and k > − 

b0 αm 

3. (b0 > 0, b1 = 0) Here γ1 = 0 and from (4.22) we see that we have to restrict ωl 

if γ0 6= 0. Thus, we assume µ ∈ Λ, where Λ is a compact set, and a controller 

(4.27) exists if and only if (4.23)-(4.24) are satisfied for all eigenvalues and 

parameters. 

4. (b0, b1 ≤ 0) Here we can use the design for b0, b1 ≥ 0 if we multiply b0, b1 and 

k by −1. 

If a static output controller does not exist, then an observer based controller can be 

used when the graph is unknown but the system parameters are known. 

4.3.5 Laplacian eigenvalues in a disc 

Theorem 4.3.1 and following provide conditions such that (4.5)-(4.6) hold for all 

Laplacian eigenvalues contained inside the half-plane given by 0 < αm ≤ αl. In this 

section, we investigate wether or not we can indentify conditions on γ0, γ1 that are 

less conservative if the Laplacian eigenvalues are not just restricted to a half-plane 
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but also to a disc, that is, the eigenvalues of the Laplacian L satisfy (4.29) and there 

exists Rc ∈ R such that 

(4.60)lii ≤ Rc 

for all i = 1, · · · , N . Hence, the range of graphs G will be characterized by constants 

αm and Rc. From the proof of Theorem 4.3.1, bound αm is necessary to obtain gains 

that are finite. Constant Rc on the other hand is a restriction that we place on the 

graphs to obtain controllers that are less conservative. Rc is motivated by the idea 

of limited communication bandwidth and the fact that systems should impact their 

neighbors equally. If lii is large for some i only, then these systems receive a lot of 

information from their neighbors, while others do not. Placing a limit on Rc will force 

the graph to be more distributive in that manner. If lii is large in general, then the 

graph could be rescaled to decrease Rc. Though, αm will be scaled as well and the 

overall control ui will not be impacted. 

Theorem 4.3.3 The closed-loop network (4.1)-(4.2) achieves GUAC for any graph 

satisfying (4.29) and (4.60) if 

γ0 > r0 (4.61) q 
γ1 > r1 + r2 + r2

2 + γ0
2 η (4.62) 

where � � 
ci ci c1 η 

ri = max − , − , i = 0, 1 , r2 = γ0 ,
2Rc αm 2� � 

1 2 Rc
η = − 1 . 

c0 + 2 Rc γ0 αm 

Remark 4.3.4 Conditions in Theorem 4.3.3 are given in terms of constant Rc, which 

depends on the structure of graph G. Mainly, an upper limit is placed on the weighted 

in-degree lii of each vertex i. It is reasonable to assume that such information is 

globally available. However, if for some reason this information cannot be obtained, 

then results of the previous sections will be obtained if we take the limit R →∞. 
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Figure 4.1.. Location of the non-zero eigenvalues for a graph G containing 
a spanning tree. 

Proof of Theorem 4.3.3 

Theorem 4.3.3 is a result of Theorem 4.2.1 and the following lemmas. First, we 

identify bounds on the Laplacian eigenvalues. 

Lemma 4.3.1 Suppose G contains a spanning tree. Then all non-zero Laplacian 

eigenvalues µ = α + j ω satisfy 

1 α 1 ≤ ≤ 
2Rc |µ|2 αm 

where 0 < αm ≤ α and lii ≤ Rc for all i. 

Proof If we apply the Gershgorin disc theorem to the special structure of L, then 

eigenvalues will be restricted to a disc and they can be parametrized by 

α = Rc + r cos θ , ω = r sin θ (4.63) 

where 0 ≤ r ≤ Rc. Figure 4.1 illustrates this relation. Now, the upper bound is 

obtained by noting that 

α>0 α 1 
α2 ≤ α2 + ω2 = |µ|2 ⇒ ≤ 

|µ|2 αm 

where α > 0 from Fact 2.3.1. Similarly, the lower bound is obtained by observing 

that for any given α, 1/|µ|2 is minimized for r = Rc (maximum ω2), that is, 

α Rc (1 + cos θ) 1 ≥ = 
|µ|2 2 R2 (1 + cos θ) 2 Rcc 
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where Rc is the radius of the largest Gershgorin disc. 

Next, we obtain a bound on an expressions that is similar to (4.13) p
Lemma 4.3.2 If f(η) = a η + a2 η2 + γ0

2 η , then f 0(η) ≥ 0 for all η ≥ 0 

Proof First, we note that f 0(η) ≥ 0 if q 
a a2 η2 + γ0

2 η ≥ −a 2 η − 0.5 γ0
2 . 

The right-hand side is always strictly negative and the inequality clearly holds for 

a ≥ 0. Suppose a < 0, then q 
a2 η2 + γ0

2 η ≤ −a η − 0.5 γ0
2/a 

has to hold. Now, the right-hand side is strictly positive and both sides can be 

squared. This yields 0 ≤ 0.25 γ0
2/a2 . Therefore, f 0(η) ≥ 0 for all η ≥ 0. 

Finally, we prove Theorem 4.3.3 by applying Theorem 4.2.1. From Lemma 4.3.1, if 

condition (4.61) holds, then the first inequality in Theorem 4.2.1 is satisfied. Further, 

c0 + α γ0 > 0 and 
dω
d 
2 τ(ω

2) > 0. Therefore, if α is fixed, then τ is largest if ω is 

largest, that is, r = Rc in (4.63). We define η := τ/α ≥ 0 and obtain 

1 sin2 θ 
η = (4.64) 

c0 + 2Rc γ0 (1 + cos θ)2 

where θ ∈ [0, π). From Lemma 4.3.2, we want to maximize η. Taking the first 

derivative with respect to θ yields � �0 � �0
sin2 θ 1 − cos θ 2 sin θ 

= = > 0 . 
(1 + cos θ)2 1 + cos θ (1 + cos θ)2 

Therefore, η is largest if cos θ is smallest. From (4.63), 

αm
α = Rc (1 + cos θ) ≥ αm ⇒ cos θ ≥ − 1 . 

Rc 

Substituting the expression back into η and yields 

2 Rc − αm
η = . 

c0 αm + 2 Rc αm γ0 

Finally, r1 is obtained by maximizing −c1/α over all α. 
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Estimating the conservatism of the bound on γ1 

In the proof of Theorem 4.3.3, the maximum over g and − c
α 
1 is taken indepen-

dently. This approach is accurate if c1 ≤ 0. However, if c1 > 0, then − c
α 
1 will not 

reach its maximum for αm. Therefore a smaller lower bound on γ1 will be given 

for some α that is in between αm and 2Rc. Let γ be this smaller lower bound, 
1,best 

γ the lower bound given by (4.62). Then, 
1,approx �⎧⎪⎨ ⎪ 

� 
c1

1 − 1 , c1 > 0
αm 2RcΔγ := γ − γ ≤ 

1 1,approx 1,best ⎩0 , c1 ≤ 0 

where Δγ describes the conservatism of conditions in Theorem 4.3.3 with respect 
1 

to the conditions in Theorem 4.2.1, which themselves are sufficient only. However, it 

can be shown that we have necessity for Theorem 4.2.1 and 4.3.3 if c0 ≥ 0 and c1 ≤ 0. 

4.4 Proof of main result 

4.4.1 The characteristic polynomial of the closed-loop network 

To prove Lemma 4.1.1, we apply Corollary 3.2.1, which we restate here for con-

venience. 

Lemma 4.4.1 ( [29]) The closed-loop network (4.1)-(4.2) achieves GUAC if and 

only if for each non-zero eigenvalue µl of the graph Laplacian L, A−µlBK is Hurwitz. 

A matrix is Hurwitz if and only if its characteristic polynomial is Hurwitz. From 

Lemma 3.2.2, the characteristic polynomial of matrix A − µlBK is given by 

pl(s) = s 2 + (c1 + γ1 µl) s + (c0 + γ0 µl) 

where c0, c1, γ0, and γ1 are given by (4.3)-(4.4). The coefficients of polynomials pl are 

not necessarily real, as the eigenvalues of the Laplacian can be complex. 
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4.4.2 A simple characterization of second-order Hurwitz polynomials 

The conditions for second-order Hurwitz polynomials are a direct consequence 

of the work in [74] (see also [75]). [31] redeveloped and applied these conditions to 

consensus algorithms. Here we provide a simple new proof, which does not depend 

on the Routh-Hurwitz criterion. Re(z) and Im(z) refer to the real and imaginary 

part of a complex number z. 

Lemma 4.4.2 A polynomial p(λ) = λ2 + d1 λ + d0 with d0, d1 ∈ C is Hurwitz if and 

only if 

u1 > 0 and u0 u 21 + u1w0 w1 − w0
2 > 0 

where d1 := u1 + j w1 and d0 := u0 + j w0. 

Proof First, we note that p is Hurwitz if and only if p̃  is Hurwitz where p̃(λ̃) := 

p(λ̃+ λ0) for any imaginary number λ0, that is Re(λ0) = 0. With λ0 := −j w1/2, 

p̃(λ̃) = λ̃2 + d̃  
1 λ̃+ d̃  

0 (4.65) 

where 

˜ ˜d1 = u1 , d0 = ũ0 + j w̃0 (4.66) 

ũ0 := u0 + w1
2/4, w̃0 := w0 − u1w1/2 . (4.67) 

If z1 and z2 are the roots of p̃, then 

p̃(λ̃) = λ̃2 − (z1 + z2) λ̃+ z1z2 . (4.68) 

Comparing (4.65) and (4.68), we see that z1 + z2 = −d̃  
1 = −u1; hence z1 + z2 is real. 

This implies that Im(z1) = −Im(z2) := b. Therefore, the roots can be expressed as 

z1 := a1 + j b and z2 := a2 − j b where a1, a2 and b are real. Equating coefficients in 

(4.65) and (4.68) while using (4.66)-(4.67) results in 

u1 = −(a1 + a2) (4.69) 

ũ0 = a1a2 + b2 (4.70) 

w̃0 = b (a2 − a1) . (4.71) 
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The polynomial p̃  is Hurwitz if and only if its roots have negative real parts, that is 

a1, a2 < 0, which is equivalent to 

a1 + a2 <0 (4.72) 

a1a2 >0 . (4.73) 

It follows from (4.69) that inequality (4.72) is equivalent to 

u1 > 0 . (4.74) 

From (4.69) and (4.71), we obtain 

4b2 = b2 2 2 a1a2 u1 − w̃0 . 

Substituting b2 = ũ0 −a1a2 from (4.70) into the above equation and rearranging yields 

2 2 2(4b2 + u1) a1a2 = ũ0u1 − w̃0 . 

u1 > 0 from (4.74). Hence, 4b2 + u1
2 > 0 and 

a1a2 > 0 ⇔ ũ0u1
2 − w̃0

2 > 0 . 

The proof is completed by substituting the expressions in (4.67) for ũ0 and w̃0. 

4.4.3 Proof of Lemma 4.1.1 

Recalling Lemma 4.4.1, we see that we can prove Lemma 4.1.1 by showing that 

inequalities (4.5)-(4.6) are equivalent to the polynomial 

pl(s) = s 2 + (c1 + γ1 µl) s + (c0 + γ0 µl) 

being Hurwitz. Applying Lemma 4.4.2 to pl, we have 

u0 = c0 + γ0 αl, u1 = c1 + γ1 αl, w0 = γ0 ωl, w1 = γ1 ωl . 

and pl is Hurwitz if and only if 

δl := u1 = c1 + γ1 αl > 0, � � 
δl (c0 + γ0 αl) δl + γ0 γ1 ωl 

2 − ωl 
2 γ0

2 > 0 . 
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Multiplying the second inequality by αl > 0 (Fact 2.3.1) and utilizing αl γ1 = δl − c1 

and |µl|2 = α2 + ωl 
2 , we obtainl 

γ2(αl c0 + |µl|2 γ0) δ
2 − c1 ωl 

2 γ0 δl − αl ω
2
0 > 0l l 

that is, inequality (4.6). 

4.5 Necessity of Theorem 4.2.1 conditions 

The conditions in Lemma 4.1.1 yield a larger set of feasible gains than those 

of Theorem 4.2.1. However, the conditions in Lemma 4.1.1 and Theorem 4.2.1 are 

equivalent if the additional constraint 

c0 αl + |µl|2 γ0 > 0 (4.75) 

is satisfied for all l > 1 (see proof of Theorem 4.2.1). This section presents cases in 

which (4.75) has to hold. The first two cases involve the system parameters and are 

discussed in Remark 4.2.1. The third case focuses on the properties of the graph. 

Case I: c1 = 0 

Since αl > 0 from Fact 2.3.1, inequality (4.75) must hold to guarantee (4.6). 

Case II: c0 ≥ 0, c1 < 0 

If c1 < 0, then from (4.6), either γ0 > 0 or (4.15) has to hold. γ0 > 0 and c0 ≥ 0 

imply (4.15). Hence, (4.15) holds regardless. 

Case III: Conditions on the non-zero Laplacian eigenvalues 

Here we show that satisfaction of one of the following two conditions implies that 

(4.75) will hold. 

Condition 4.5.1 c0 ≥ 0 and the Laplacian has a real eigenvalue µl∗ for which 

µl∗ = αl∗ ≥ |µl|2/αl 

for all l > 1. 
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Condition 4.5.2 c0 ≤ 0 and the Laplacian has a real eigenvalue µl∗ =6 0 for which 

µl∗ = αl∗ ≤ |µl|2/αl 

for all l > 1. 

To prove that satisfaction of Condition 4.5.1 or Condition 4.5.2 implies that (4.75) 

holds for all l > 1, we first note that, since µl 6= 0, inequality (4.75) is equivalent to 

γ0 > −c0 αl/|µl|2 . (4.76) 

When µl is real, inequality (4.6) of Lemma 4.1.1 is equivalent to the second inequality 

in (4.7) which, since αl > 0, is equivalent to 

γ0 > −c0/αl = −c0 αl/|µl|2 . (4.77) 

Thus, when inequality (4.6) and Condition 4.5.1 or 4.5.2 hold, 

γ0 > −c0/αl∗ ≥ −c0 αl/|µl|2 

and (4.76) holds for all l > 1 . 

Remark 4.5.1 The conditions in Theorem 4.2.1 are necessary if networks of double 

integrators are considered. In such a network, if we wish to achieve GUAC or GUEC 

with rate α0 > 0, then the constants c̃0 = α0
2 and c̃1 = −2 α0 of the transformed 

systems result in either Case I or II. 

Statistical analysis of Conditions 4.5.1 and 4.5.2 

Conditions 4.5.1 and 4.5.2 seem to hold for many Laplacians as demonstrated by the 

statistical analysis below. It should be noted that the system parameter c0 is ignored 

in order to study the properties of the graph independently. A summary of the results 

is presented in Table 4.1. 

We analyzed 10, 000 networks with varying size N where N ranges from 5 to 50. 
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Figure 4.2.. Laplacian eigenvalue properties of 1, 000 randomly generated 
graphs containing a spanning tree 

Table 4.1.. Laplacian eigenvalue properties of 10, 000 randomly generated 
graphs containing a spanning tree 

All eigenvalues are real 9 % 

Some eigenvalues are complex 91 % 

Condition 4.5.1 holds 83 % 

Condition 4.5.2 holds 97 % 

Condition 4.5.1 and 4.5.2 holds 80 % 

Condition 4.5.1 holds, 4.5.2 does not 2.5 % 

Condition 4.5.2 holds, 4.5.1 does not 17 % 

% of the cases 

Each graph G was generated by starting out with N unconnected systems. Edges 

with positive, uniformly distributed weights were randomly added in an iterative 

process. The iteration was stopped once G contained a spanning tree. 

Table 4.1 shows that the Laplacian matrices of most graphs have at least one complex 

eigenvalue. About 80 % of the generated graphs have eigenvalues that satisfy both 

Conditions 4.5.1 and 4.5.2. These conditions are always satisfied if all eigenvalues 

are real, which is about 9 % of the cases. Condition 4.5.2 is more likely to hold 
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k 
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m 

di l0 

xi 

Figure 4.3.. Example: distributed platforms 

than Condition 4.5.1, and there are cases where only one or neither of them holds. 

However, overall Table 4.1 illustrates that Condition 4.5.1 or 4.5.2 are likely to hold. 

4.6 Simulations 

In this section, we illustrate the effectiveness of our results by different simula-

tions. First, we show the process of selecting gains that achieve GUEC with different 

rates of convergence. Then, we show how to select gains that achieve GUAC for a 

range of system parameters and communication structures. Finally, we illustrate the 

conservatism of the robust control result. 

4.6.1 Example: Distributed platforms - oscillator synchronization 

We apply our results to a network of distributed platforms (Figure 4.3) whose 

motions are described by 

mẍ i + c ẋi + k xi = k di . 

Here di, the displacement of the actuator, is the physical input to the system. The 

parameters m, c and k are the common mass, damping coefficient, and spring con-

stant, respectively. With c0 = k/m and c1 = c/m, we note that these systems are 

described by (4.1) where ui := 
m
k di and u0 = 0. Controller (4.2) is used to close the 

loop so that GUAC on xi and ẋi is achieved. This control structure emphasizes the 

importance of system alignment rather than an individual position xi. This could be 



56 

Figure 4.4.. communication network 

important if, for example, heavy weights are lifted in a distributed fashion. The same 

considerations apply to any other type of active damping or suspension system, e.g. 

building control. 

We consider a communication structure as given by the graph in Figure 4.4. In 

this network, System 1 is a leader, and when GUAC is achieved, the positions of the 

other systems will equal that of System 1. Systems 2-6 assign a weighting of 1 to 

their in-neighbors, except 2, which assigns a higher weighting of 3 to the leader. The 

Laplacian matrix for the weighted graph is 

L = 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

0 0 0 0 0 0 

−3 4 0 0 0 −1 

0 −1 1 0 0 0 

0 0 −1 1 0 0 

0 0 0 −1 1 0 

0 0 0 0 −1 1 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
which has the following eigenvalues 

µ1 = 0, µ2 = 0.28, µ3/4 = 0.95 ± .75j, µ5 = 1.82, µ6 = 3.99 . 

For purposes of simulation, we considered c0 = 4 and c1 = 0.1. We chose gains γ0, γ1 

so that GUEC was achieved with rate α0 and the quantity γ0
2 + γ1

2 was minimized. 

Three different desired convergence rates for GUEC were considered and the resulting 

parameters are presented in Table 4.2. 
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Table 4.2.. Gains γ0, γ1 to achieve GUEC - c0 = 4, c1 = 0.1 

α0 γ0 γ1 c̃0 c̃1 

case I 0.25 0.00 1.43 4.04 −0.40 

case II 0.50 0.56 3.21 4.20 −0.90 

case III 1.00 5.56 6.79 4.90 −1.90 

Figure 4.5.. Gains γ0, γ1 satisfying necessary and sufficient conditions to 
achieve GUEC with rate α0 where c0 = 4, c1 = 0.1. 

The individual systems were stable without control. With γ0 = 0, GUAC can 

be achieved for Case I. Figure 4.5 shows the regions of feasible gains corresponding 

to the three desired convergence rates. It should be noted that the eigenvalues of 

the Laplacian satisfy Condition 4.5.1. Hence, the conditions in Theorem 4.2.1 are 

necessary and sufficient to achieve GUAC. This is further justified by the fact that 

all cases presented in Table 4.2 satisfy c̃0 ≥ 0 and c̃1 < 0. 
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(a) Case I - GUEC with rate α0 = 0.25 

(b) Case II - GUEC with rate α0 = 0.50 

(c) Case III - GUEC with rate α0 = 1.00 

Figure 4.6.. Synchronization of systems with c0 = 4, c1 = 0.1 and different 
convergence rates 
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Figure 4.7.. Inputs ui for different convergence rates 

Figure 4.8.. Communication network with assigned edge weights for time 
t < 5 (left) and t ≥ 5 (right). 

All three cases were simulated with the same randomly generated, uniformly dis-

tributed initial conditions. The gains γ0, γ1 were set to the values shown in Table 4.2. 

The plots in Figure 4.6 show the time history of the position and velocity of each os-

cillator on the left. Though all systems were initially unsynchronized, they achieved 

GUEC over time. The right-hand side of Figure 4.6 shows the error that each oscil-

lator possesses relative to the leader, which is indicated by the blue line. Clearly, as 

expected, synchronization was achieved more quickly with a larger α0. 

A faster rate of convergence results in larger inputs ui. Figure 4.7 shows the inputs 

that must be applied to each oscillator in order to achieve GUEC as illustrated in 

Figure 4.6. 
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Figure 4.9.. Gains γ0, γ1 satisfying necessary and sufficient conditions to 
achieve GUEC with rate α0 = 0.5, c0 = 4. 

4.6.2 Example: Robust consensus 

The chosen example demonstrates how gains γ0, γ1 are designed robustly such that 

the closed-loop network achieves GUEC with rate α0 = 0.5 over different communi-

cation structures and system dynamics. 

First, we simulated the synchronization of four undamped oscillators wth u0 = 0. 

The matrices in (4.40) had values a11 = 0, a12 = 1, a21 = −4, a22 = 0 and b2 = 1. 

At time t = 5, System 5 was added to the network, some damping a22 = 0.1 was 

introduced, and systems were externally driven by u0(t) = cos 5t. 

The communication structure for t < 5 was described by the graph on the left in 
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Figure 4.10.. Simulation of five linear second-order systems achieving 
GUEC on System 1 (blue line) 
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Figure 4.8. The graph on the right shows the communication structure for t ≥ 5. 

The associated Laplacian matrices 

L1 = 

⎡ ⎢⎢⎢⎢⎢⎢⎣ 
0 0 0 0 

−2 3 0 −1 

0 −1 1 0 

⎤ ⎥⎥⎥⎥⎥⎥⎦ , L2 = 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

0 0 0 0 0 

−2 3 0 −1 0 

0 0 2 0 −2 

−2 0 −1 3 0 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦−2 0 −1 3 
0 −2 0 0 2 

have eigenvalues 

µl for L1 : µ1 = 0, µ2 = 0.80, µ3/4 = 3.1 ± .67j , 
√ 

µl for L2 : µ1 = 0, µ2 = 1, µ3/4 = 2.5 ± j 7/2, µ5 = 4 . 

In these networks, System 1 is a leader, and when GUAC is achieved, the positions 

of the other systems will equal that of System 1. 

Considering a rate of convergence α0 = 0.5, we applied Corollary 4.1.1 to both 

setups and noted that c̃0 ≥ 4.25 and −1.1 ≤ c̃1 ≤ −1.0. Therefore, conditions 

in Theorem 4.2.1 are necessary and sufficient based on Remark 4.2.1. Figure 4.9 

illustrates the regions of feasible gains γ0, γ1 to achieve GUEC with rate α0 = 0.5. 

System dynamics and communication structures were very similar, and we observed 

plenty of overlap. Additionally, Figure 4.9 shows gains γ0, γ1 satisfying Corollary 4.3.1 

(αm = 0.80) and therefore ensuring GUEC with rate α0 = 0.5 robustly. Finally, we 

chose gains γ0 = k1 = 0.69 and γ1 = k2 = 1.39, such that k1
2 + k2

2 is minimal and 

Corollary 4.3.1 is satisfied. 

The network achieved GUEC as shown in Figure 4.10. qi is the position of os-

cillator i, and q̇i is its velocity. States were initialized randomly over a uniform 

distribution. For each system, we introduced a position error ei = qi − q1 and a 

velocity error ėi = q̇i − q̇1. GUEC was achieved, and the steady state dynamics were 

governed by oscillations according to the initial conditions of System 1 (blue line) as 

seen on the left side of Figure 4.10. The process of achieving GUEC is illustrated on 

the right side of Figure 4.10 where position and velocity errors are plotted. All errors 
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decayed and every root λl of pl satisfied Re(λl) ≤ −0.55 for t < 5 and Re(λl) ≤ −0.64 

for t ≥ 5. Therefore, GUEC was achieved with rate α0 ≥ 0.55. 

4.6.3 Example: Formation control with veloctiy tracking 

Here we analyze a network of double-integrators, e.g. trucks on a highway, that 

want to stay in formation, but also track a desired velocity v0. The dynamics are 

given by X 
q̈  i = −kd (q̇i − v0) + wij [γ0 (qj − qi) + γ1(q̇j − q̇i)] 

j∈Ni 

where kd, γ0 and γ1 are control gains to be designed, and qi is describing system i’s 

position relative to the formation. It should be noted that we only introduce v0 and 

no q0. Therefore, a structure with a virtual leader or reference model will not suffice. 

However, we can rewrite the problem as 

q̈  i + c1 q̇i = ui + u0 

where c1 = kd, u0 = kd v0 and ui is given by (4.2). If we want to track v0, then we 

choose kd > 0. The tracking performance will improve if kd is larger. Gains γ0 and γ1 

are chosen once kd is fixed. Mainly, achieving GUAC and tracking v0 are competing 

goals, and if it is desired to change kd based on the current network state, then gains 

γ0, γ1 have to be chosen for a range of c1 = kd. 

As an example, we tracked v0 = 0.1 and systems achieved GUEC with rate α0 = 1. 

We used the same changing communication structure as in the previous example (see 

Figure 4.8) and chose kd = 0.5. 

Figure 4.11 illustrates the regions of feasible gains γ0, γ1 that are necessary and 

sufficient to achieve GUEC with rate α0 = 1 for both system setups. System dynamics 

and communication structures were very similar, and we observed plenty of overlap. 

Additionally, Figure 4.11 shows gains γ0, γ1 that were obtained using Theorem 4.3.3 

and a network of transformed systems where c̃0 = 0, c̃1 = −0.5, αm = 0.80, and 

Rc = 3 (robustdisc). Results are also compared to gains that were obtained using 
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Figure 4.11.. Gains γ0, γ1 to achieve GUEC with rate α0 = 1. 

Figure 4.12.. Simulation of five double integrators achieving GUEC on 
System 1 (blue line) 
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Corollary 4.3.1 (robustplane). Finally, we chose gains γ0 = 1.90 and γ1 = 1.89 such 

that γ0
2 + γ1

2 is minimal and Theorem 4.3.3 is satisfied for the transformed network. 

The network achieved GUEC as shown in Figure 4.12. qi is the position of system 

i, and q̇i is its velocity. States were initialized randomly over a uniform distribution. 

For each system, we introduced a position error ei = qi − q1 and a velocity error 

ėi = q̇i − q̇1. GUEC was achieved and the steady state dynamics were governed by 

the behavior of System 1 (blue line) as seen on the left side of Figure 4.12. The process 

of achieving GUEC is illustrated on the right side of Figure 4.12 where position and 

velocity errors are plotted. All errors decayed, and the objective of achieving GUEC 

with a guaranteed rate of convergence while tracking velocity v0 was achieved. 

From Figure 4.11, we notice that the feasible regions for γ0, γ1 that are covered 

by robustdisc (Theorem 4.3.3) and robustplane (Theorem 4.3.1) are almost identical. 

Especially for small γ0
2 + γ1

2 , the difference is very small. Both robust results however 

are very conservative compared to the gains that would be obtained if graphs L1 

and L2 are considered only. Therefore, we conclude that αm is the main driver for 

the conservatism of the robust results. If the non-zero Laplacian eigenvalues are 

restricted to a half-plane and a disc, then we slightly increase the feasible region. 

However, we require knowledge of Rc. Hence, from a practical perspective, adding 

the additional restriction in terms of a disc is not improving the results for robust 

GUAC in continuous-time. 
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5. CONSENSUS FOR CONTINUOUS-TIME 

HIGHER-ORDER SYSTEMS 

The description of the closed-loop network (2.1)-(2.2) is not restricted to second-order 

systems, and some of the ideas presented in Chapter 4, e.g. the use of a network of 

transformed systems, apply to the higher-order case as well. Here we summarize 

the approach for linear higher-order systems that other researchers observed as well 

(e.g. [49], [32], or [76]). 

Conceptionally, the closed-loop network is transformed such that the Laplacian 

matrix appears in Jordan normal form (see Section 3.1). Then, controllers can be 

indentified for systems under full state feedback [49]. The transition to an observer 

based control [32], [76] is the result of the fact that the convergence of the observer 

states are independent of the consensus state. Therefore, the separation principle can 

be applied, and controllers and observers can be designed indepently. 

In this thesis, we extend the work to a homogeneous network of time-varying 

systems X � � 
ẋ i(t) = A(t) xi(t) + B(t) K(t) wij xj (t) − xi(t) + u0(t) (5.1) 

j∈Ni 

where we assume that 

A(·) and B(·) K(·) are piece-wise continuous and bounded. 

First, we present a simple result for linear time-invariant single-input systems. 
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5.1 Linear time-invariant single-input systems 

Here we show that GUAC can be achieved for any homogeneous network of linear 

time-invariant single-input stabilizable sytems described by X 
ẋ i = Axi + BK wij (xi − xj ) + u0, i = 1, . . . , N . 

j∈Ni 

We will derive the consensus properties of the closed-loop network from the char-

acteristic polynomial dµ where we recall from (3.24) that if systems are stabilizable, 

then there exists a controllable subspace of systems (Ac, Bc) and control Kc such that 

dµ(s) = det(sI − A + µ BK) 

= det(sI − Ac + µ BcKc) cu(s) 

= [cc(s) + µ γc(s)] cu(s) (5.2) 

where cu is Hurwitz. If systems (A, B) are controllable, then cu = 1. 

5.1.1 Achieving GUAC 

For GUAC, it is necessary and sufficient that dµ be Hurwitz for all non-zero 

eigenvalues µ of the graph Laplacian. From Lemma 3.2.2, we conclude that 

dµ(s) = c(s) + µ γ(s) (5.3) 

where 

c(s) = det(sI − A) and γ(s) = det(sI − A) K (sI − A)−1 B . 

Polynomial c is of degree n and γ is a polynomial whose degree is at most n − 1. If 

(A, B) is stabilizable, then either c is Hurwitz and GUAC is achieved with K = 0 or 

there exists a K such that γ is Hurwitz. One can use pole-placement techniques to 

obtain a Kc such that γc and therefore γ(s) = γc(s) cu(s) are Hurwitz. Then, GUAC 

will be achieved if the associated K is multiplied by a sufficiently large scalar κ. 
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Lemma 5.1.1 Suppose c and m0 are monic polynomials of degree n and n − 1 respec-

tively and m0 is Hurwitz. Then, c + µκm0 is Hurwitz for every non-zero eigenvalue 

of the graph Laplacian if κ is sufficiently large. 

Proof Since c and m0 are monic polynomials of degree n and n − 1 respectively, 

c(s) = sm0(s) + r(s) 

where r is a polynomial whose degree is at most n − 1. Hence, 

dµ(s) := c(s) + µκm0(s) = (s + µκ) m0(s) + r(s) . 

Since m0 is Hurwitz, m0(s) 6= 0 when Re(s) ≥ 0. Since, in addition, r/m0 is a proper 

rational function, there exists β such that 

r(s) ≥ β for Re(s) ≥ 0 . 
m0(s) 

Recall αm from (2.9) and consider any κ satisfying 

β 
κ > . 

αm 

Now consider any s ∈ C with Re(s) ≥ 0. Then, 

dµ(s) r(s) 
= s + µκ + 

m0(s) m0(s) 

Hence, � � � � 
dµ(s) r(s)

Re = Re(s) + ακ + Re ≥ αm κ + β > 0 . 
m0(s) m0(s) 

This implies that dµ(s)/m0(s) is non-zero; hence dµ(s) is non-zero. Since dµ(s) is 

non-zero for all s with Re(s) ≥ 0, dµ is Hurwitz. 

5.1.2 Achieving GUEC 

For GUEC with rate α0 > 0, it is sufficient that d̃  
µ(s) = dµ(s − α0) be Hurwitz 

for all non-zero eigenvalues µ of the graph Laplacian. From (5.2), it is necessary that 

c̃u(s) = cu(s − α0) is Hurwitz. 
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Corollary 5.1.1 Suppose c and m0 are monic polynomials of degree n and n − 1 

respectively and m̃ 0 = m0(s − α0) is Hurwitz. Then, d̃  
µ = c̃ + µκ m̃ 0 is Hurwitz 

for every non-zero eigenvalue of the graph Laplacian if κ is sufficiently large where 

c̃(s) = c(s − α0). 

Proof The result is a consequence of Lemma 5.1.1. 

Remark 5.1.1 A Hurwitz polynomial m̃ 0 can be obtained if c̃u(s) = cu(s − α0) is 

Hurwitz. Then, one can use pole-placement techniques to obtain a Kc such that 

γ̃c(s) = γc(s − α0) and therefore γ̃(s) = γ(s − α0) are Hurwitz. 

5.2 Sufficient conditions for consensus - Quadratic stability 

For time-invariant systems, Qu [29] developed necessary and sufficient conditions 

for the closed-loop network (2.1)-(2.2) to achieve GUAC. The result extends to the 

time-variant case, which we will show next. 

We wish to identify a control K(t) that can stabilize (3.20) for a variety of complex 

valued µ. 

Remark 5.2.1 Lemma 3.1.4 reduced the consensus problem to the simultaneous sta-

bilization of a bunch of systems, which is similar to solving a robust control problem. 

There are different techniques to obtain controllers that simultaneously stabilize 

a bunch of (single) uncertain systems. It should be noted though that we have to 

stabilize (3.20) for different µ ∈ C at the same time. Therefore, adaptive control 

techniques that adjust an estimate of µ will not be applicable in this case. 

We now focus on control designs that make use of quadratic stability. If the 

systems are quadratically stable, then they are GUES and therefore GUAS. 

Definition 5.2.1 The system ẋ = A(t) x is quadratically stable with common Lya-

punov matrix P = P0 > 0 if and only if there exists an � > 0 such that for all t: 

PA(t) + A0(t) P + � P ≤ 0 . 
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Next, we will present results where either B(t) is known and we can use a time-

varying K(t) (e.g. a network of switching systems where the switching patterns are 

known), or K is fixed and B(t) can be bounded (e.g. a network of uncertain systems). 

Both results are based on the LMI condition developed for the general case where 

K(t) is time-varying. 

5.2.1 Time-varying K(t) - general case 

First, we have the following preliminary result, which allows us to formulate LMI 

conditions such that all matrix entries are real. 

Lemma 5.2.1 Suppose Qreal ∈ Rn×n is hermitian and Qimg ∈ Rn×n is skew-hermitian. 

Then, Qreal + j Qimg ≤ 0 if and only if ⎡⎣ Q0Qreal img 

⎤⎦ ≤ 0 . (5.4) 
Qimg Qreal 

Proof We recall that Qreal + j Qimg ≤ 0 if and only if for all x, y ∈ Rn , 

(x − j y)T [Qreal + j Qimg] (x + j y) ≤ 0 

which is equivalent to 

x 0 Qreal x − x 0 Qimg y + y 0 Qimg x + y 0 Qreal y ≤ 0 . (5.5) 

This can be seen by noting that Qreal is hermitian and Qimg is skew-hermitian. Thus, 

for all x, y ∈ Rn: x0 Qreal y = y0 Qreal x, x0 Qimg y = −y0 Qimg x, and x0 Qimg x = 0. 

Finally, writing (5.5) in matrix form and noting that Qimg = −Qimg 
0 yields (5.4). 
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Now applying Lemma 3.1.4 yields the following result. 

Theorem 5.2.1 The closed-loop network (5.1) achieves GUAC if there exists a 

matrix S = S0 > 0, an � > 0, and for each t, there is a matrix X(t) such that, for 

all eigenvalues α j ω of the graph Laplacian, +non-zero µ = ⎤⎦ 
0 0 0−ω [X ( ) B ( ) B( ) X( )] Y( ) + Y ( ) + � St t t t t t 

−where Y( ) A( ) S α B( ) X( ) andt t t t= 

Y(t) + Y0(t) + � S ω [B(t) X(t) − X0(t) B0(t)] 
≤ 0 , (5.6) 

K(t) = X(t) S−1 . (5.7) 

⎡⎣ 

Proof From Lemma 3.1.4, we prove Theorem 5.2.1 by showing that systems 

ż = Acl(t) z , Acl(t) = A(t) − µ B(t)K(t) (5.8) 

are GUAS for all µ =6 0. From Definition 5.2.1, system (5.8) is quadratically stable 

(and therefore GUAS) if there exists a P = P0 > 0 and an � > 0 such that for all t: 

PAcl(t) + A0 cl(t) P + � P ≤ 0 . 

Let S = P−1 , then pre- and post-multiplying by S yields 

Acl(t) S + SA0 cl(t) + � S ≤ 0 . (5.9) 

Substituting for Acl(t) and K(t), we note that (5.9) is equivalent to 

A(t) S + SA0(t) − µ B(t) X(t) − µ̄ X0(t) B0(t) + � S ≤ 0 (5.10) 

Since µ = α + j ω, (5.10) can be written as Q(t) = Qreal(t) + j Qimg(t) ≤ 0 where 

Qreal(t) = Y(t) + Y0(t) + � S , Qimg(t) = ω [X0(t) B0(t) − B(t) X(t)] 

and Y(t) = A(t) S − α B(t) X(t). From Lemma 5.2.1, Q(t) ≤ 0 is equivalent to (5.6) 

and guarantees that systems (5.8) are GUAS for all µ 6= 0. 
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Remark 5.2.2 If a Laplacian eigenvalue µ is real, then µ = α, ω = 0, and condition 

(5.6) simplifies to 

Y(t) + Y0(t) + � S ≤ 0 . 

Remark 5.2.3 We note the symmetry of (5.6) with respect to ω. Thus, if (5.6) 

holds for some ω, then it also holds for ω̃ = −ω. If (5.6) has to hold for all ω, then 

from (5.5) we require that for all ω and all x, y ∈ Rn , 

ω [x 0 (BX − X0 B0) y + y 0 (X0 B0 − BX) x] ≤ 0 

which can only be satisfied if BX = X0 B0 since ω can be positive or negative. 

LMI (5.6) was formed such that all matrix entries can be chosen to be real. How-

ever, this form is less compact. 

Remark 5.2.4 From the proof of Theorem 5.2.1, LMI (5.6) is equivalent to 

A(t) S + SA0(t) − µ B(t) X(t) − µ̄ X0(t) B0(t) + � S ≤ 0 . (5.11) 

From Lemma 2.1.1, we can achieve GUAC for a network of time-varying trans-

formed systems (Ã(t), B(t)). Recalling (2.4), we note that 

˜A(t) = A(t) − α0 I (5.12) 

and from Remark 2.1.2 we know that the gain matrix K(t) for the original and the 

transformed network are equivalent. 

Lemma 5.2.2 The closed-loop network (5.1) achieves GUEC with rate α0 > 0 if 

conditions in Theorem 5.2.1 hold for some � > 2 α0. 

Proof From Remark 5.2.4, LMI (5.6) is equivalent to (5.11). If (5.11) holds for 

some � > 2 α0, then �̃ := � − 2 α0 > 0 and substituting A(t) from (5.12) yields 

Ã(t) S + S Ã 0(t) − µ B(t) X(t) − µ̄ X0(t) B0(t) + �̃ S ≤ 0 . 

Hence, the network of transformed systems (Ã(t), B(t)) achieves GUAC with K(t) = 

X(t) S−1 , and the closed-loop network (5.1) achieves GUEC with rate α0. 
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5.2.2 Time-varying K(t) - B(t) known 

We note that condition (5.6) simplifies for X(t) = B0(t), which was observed by 

Tuna [49] for the case of time-invariant systems. 

Theorem 5.2.2 The closed-loop network (5.1) achieves GUEC with rate α0 > 0 if 

there exists a matrix S = S0 > 0 and an � > 2 α0 such that for all t, 

A(t) S + SA0(t) − B(t) B0(t) + � S ≤ 0 . (5.13) 

and 

K(t) = 
1 
B0(t) S−1 (5.14)

2 αm 

where αm is given by (2.9). 

Proof Suppose (5.13) is satisfied for some S = S0 > 0. If (5.13) is multiplied by 

2 αm and S̃ := 2 αm S is substituted, then this yields 

A(t) ˜ SA0(t) − 2 αm B(t) B
0(t) + � S̃ ≤ 0 .S + ˜ 

We observe that B(t) B0(t) ≥ 0. Thus, 

A(t) S̃+ ˜ S ≤ 0SA0(t) − 2 α B(t) B0(t) + � ˜ 

for all α ≥ αm, or equivalently 

A(t) S̃+ ˜ µ) B(t) B0(t) + � ˜SA0(t) − (µ + ¯ S ≤ 0 

for all non-zero eigenvalues µ = α+j ω of the graph Laplacian. The proof is completed 

S−1by identifying X(t) = B0(t) in (5.11), choosing K(t) = X(t) ˜ from (5.7), and 

applying Lemma 5.2.2 and Remark 5.2.4. 

In principle, conditions (5.6) and (5.13) should only be applied to a finite num-

ber of systems, e.g. a network of switching systems with known switching pattern. 

Otherwise, unless restrictions on A(t) and B(t) are made, applying Theorem 5.2.1 

or Theorem 5.2.2 will yield an infinite number of LMIs and a solution will not be 
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feasible. An infinite number of LMIs can be avoided if the set of A(t) and B(t) lies 

inside a polytope for example. Then, we wish to identify a time-invariant X such 

that the conditions hold for all vertices of this polytope. Alternatively, one could use 

results for quadratically stabilizable systems, which are discussed next. 

5.2.3 Quadratically stabilizable systems - fixed K 

Here we assume that we do not know the exact value of B(t) at time t, and we 

wish to identify a static gain matrix K such that the time-varying closed-loop network 

achieves GUEC. 

Theorem 5.2.3 Let B(t) be given by B(t) = Δ(t) B0 where Δ(t) ≥ βm I > 0 and 

B(t) B0 is symmetric. Then, the closed-loop network (5.1) achieves GUEC with rate 

α0 > 0 if there exists a matrix S = S0 > 0 and an � > 2 α0 such that for all t, 

A(t) S + SA0(t) − B0 B
0 
0 + � S ≤ 0 (5.15) 

and 

K =
1 

B0 0 S
−1 (5.16)

2 αm βm 

where αm is given by (2.9). 

Proof Suppose (5.15) is satisfied for some S = S0 > 0 and � > 0. If (5.15) is 

multiplied by 2 αm βm and S̃ := 2 αm βm S is substituted, then this yields 

A(t) ˜ SA0(t) − 2 αm βm 0 + � S̃ ≤ 0 .S + ˜ B0 B
0 

We observe that Δ(t) B0 B
0 = B(t) B0 ≥ βm B0 B

0 ≥ 0. Thus, 0 0 0 

A(t) S̃+ ˜ 0 + � ˜ (5.17)SA0(t) − 2 α B(t) B0 S ≤ 0 

for all α ≥ αm, or equivalently 

A(t) S̃+ ˜ µ) B(t) B0 S ≤ 0 (5.18)SA0(t) − (µ + ¯ 0 + � ˜ 
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for all µ = α + j ω. Since (5.17) holds for all α ≥ αm, (5.18) holds for all non-zero 

eigenvalues of the graph Laplacian. Matrix B(t) B0 0 is symmetric. Thus, the proof 

is completed by identifying X = B0 
0 in (5.11), choosing K = XS̃−1 from (5.7), and 

applying Lemma 5.2.2 and Remark 5.2.4. 

Remark 5.2.5 If systems (A, B) are controllable, then (5.13) or (5.15) can be sat-

isfied for any � > 0. Thus, the rate α0 > 0 can be chosen arbitrarily large. 

Remark 5.2.6 In Theorem 5.2.1, the number of LMIs that have to be satisfied de-

pends on the number of non-zero Laplacian eigenvalues. The LMI condition in The-

orems 5.2.2 and 5.2.3 is independent of the number of eigenvalues. 

Remark 5.2.7 Theorem 5.2.3 is based on (5.11) where B(t) and K(t) always ap-

pear as a product. Therefore, scaling B(t) is equivalent to scaling K(t). Since The-

orem 5.2.3 requires a lower bound on B(t) only, we conclude that the closed-loop 

network (5.1) achieves GUEC with rate α0 for any control K̃ = κ K where κ ≥ 1 and 

K is given by (5.16). 

To strengthen Theorem 5.2.3, we make the following observation. 

Lemma 5.2.3 There exist a P = P0 > 0, an �̃  > 0, and a K0 such that for all t, 

PA(t) + A0(t) P − PB0 K0 − K0 
0 B0 

0 P + �̃ P ≤ 0 . (5.19) 

if and only if there exists a S = S0 > 0 and an � > 0 such that (5.15) holds for all t, 

where S = δ P−1 for some δ > 0. 

Proof To show that (5.15) implies (5.19), we choose P = S−1 , �̃ = �, and K0 = B0 0 P. 

Now, suppose that (5.19) holds for some P = P0 > 0 and some K0. First, we note 

that δ−1 (a − δ b)2 ≥ 0 ⇔ 2 a b ≤ δ−1 a2 + δ b2 . Therefore, for all x 6= 0 and δ > 0, 

0 K0 0 K02 x 0 PB0 K0 x = 2 x 0 B
0 
0 Px ≤ δ−1 x 0 PB0 B0 

0 Px + δ x 0 K0 x . 
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Thus, 

−PB0 K0 − K0 0 B
0 
0 P ≥ −δ−1PB0 B

0 
0 P − δ K0 0 K0 (5.20) 

for any δ > 0. Substituting P = δ S−1 in (5.19), using (5.20), and re-arranging yields 

A(t) S + SA0(t) − B0 B
0 
0 − δ2 SK0 0 K0 S + �̃ S ≤ 0 (5.21) 

for any δ > 0. Since δ can be arbitrarily small and �̃  > 0, we can always choose an 

� > 0 and δ > 0 such that �̃S − δ2 SK0 0 K0 S ≥ � S, which if substituted into (5.21) 

yields (5.18). 

Identifying matrices P = P0 > 0 and K such that (5.19) holds for all t is a 

well studied problem and its (numerical) solution simplifies for special cases of A(t) 

[79–84]. Once P is obtained, then it is only a matter of adjusting the scalar parameter 

δ to obtain an S = δ P−1 that satisfies (5.15). In principle, if P is known, then a 

control will be given by K = κ B0 
0 P where κ > 0 is a single, linear, and scalar 

parameter that has to be tuned. Thus, Theorem 5.2.3 and Lemma 5.2.3 yield the 

following remark. 

Remark 5.2.8 If systems are quadratically stabilizable, that is, (5.19) can be satis-

fied, then there exists a linear control such that the closed-loop network (5.1) achieves 

GUEC. 

5.3 Necessary conditions to achieve consensus for time-invariant (A, B) 

The conditions above are sufficient only since we identify a single matrix S = S0 > 

0 that guarantees stability for a bunch of systems. If systems are time-invariant and 

quadratically stabilizable, then they are always stabilizable with a linear control, and 

we recover the following corollary from Theorem 5.2.3. 

Corollary 5.3.1 ( [30]) If systems are time-invariant, then there exists a matrix K 

for which the closed-loop network (2.1)-(2.2) achieves GUAC if and only if the pair 

(A, B) is stabilizable. 
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5.4 Simulation 

The chosen example demonstrates how gain matrix K is designed robustly such 

that the closed-loop network achieves GUEC with rate α0 = 0.1 for a network of 

arbitrary switching systems (A1, B) and (A2, B) in controllable canonical form where 

A1 = 

⎡ ⎢⎢⎢⎢⎢⎢⎣ 
0 1 0 0 

0 0 1 0 

0 0 0 1 

⎤ ⎥⎥⎥⎥⎥⎥⎦ , A2 = 

⎡ ⎢⎢⎢⎢⎢⎢⎣ 
0 1 0 0 

0 0 1 0 

0 0 0 1 

⎤ ⎥⎥⎥⎥⎥⎥⎦ , B = 

⎡ ⎢⎢⎢⎢⎢⎢⎣ 
0 

0 

0 

⎤ ⎥⎥⎥⎥⎥⎥⎦ 
−4.04 −0.8 −5.01 −0.2 −9 0 −10 0 1 

and the open-loop poles of A1 and A2 were given by 

A1 : −0.1 ± 1j, ±2j and A2 : ±1j, ±3j . 

The communication structure was described by the graph shown in Figure 5.1. The 

associated Laplacian matrix 

L1 = 

⎡ ⎢⎢⎢⎢⎢⎢⎣ 
0 0 0 0 

−2 3 0 −1 

0 −1 1 0 

⎤ ⎥⎥⎥⎥⎥⎥⎦ , L2 = 

⎡ ⎢⎢⎢⎢⎢⎢⎣ 

⎤ ⎥⎥⎥⎥⎥⎥⎦ 
1 0 0 −1 

−1 3 −2 0 

0 0 0 0 

−2 0 −1 3 0 −1 −2 3 

had eigenvalues µ1 = 0, µ2 = 0.80, and µ3/4 = 3.1 ± .67j. In this network, System 1 

is a leader, and when GUEC is achieved, the positions of the other systems will equal 

that of System 1. 

Considering a rate of convergence α0 = 0.1 and the fact that B was constant, we 

applied Theorem 5.2.2 (αm = 0.8) and obtained the constant gain matrix ih 
K = 5.48 11.3 5.82 3.86 . 

The network achieved GUEC as shown in Figure 5.2. Systems were given in control-

lable canonical form. Therefore, the figure shows the trajectory of the last element of 

each state vector xi(t) only. States were initialized randomly over a uniform distribu-

tion, and we switched between the two configurations every second. For each system, 
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Figure 5.1.. Communication network with assigned edge weights. 

Figure 5.2.. Simulation of four time-variant switching systems achieving 
GUEC. Note that only xi,4(t) and ei,4(t) are shown since systems are in 
controllable canonical form. 

we introduced an error ei(t) = xi(t) − x1(t). GUEC was achieved and the steady 

state dynamics were determined by the initial conditions of System 1 (blue line) as 

seen on the left side of Figure 5.2. The process of achieving GUEC is illustrated on 

the right side of Figure 5.2 where the last element of each error ei(t) is plotted. 



79 

6. CONSENSUS FOR DISCRETE-TIME 

SECOND-ORDER SYSTEMS 

Here we consider a homogeneous network of linear time-invariant second-order sys-

tems. In this case, (2.5) is given by 

xi(k + 1) = Axi(k) + B ui(k) + u0(k) (6.1) 

where xi(k) ∈ R2 , A ∈ R2×2 , B ∈ R2×1 , a linear control ui(k) ∈ R is given by X � � 
ui(k) = K wij xj (k) − xi(k) (6.2) 

j∈Ni 

and the special system parameter (3.28)-(3.29) reduce to 

c(s) = det (s I − A) = s 2 + c1 s + c0 (6.3) 

and 

[γ0 γ1] = K [(A + c1 I) B B] . (6.4) 

If (A, B) is in controllable canonical form, then one can easily show that [γ0 γ1] = K. 

Throughout this chapter, it is assumed that 

(A, B) is controllable. 

6.1 Necessary and sufficient conditions for consensus 

6.1.1 Conditions for consensus 

The following theorem summarizes the necessary and sufficient conditions for the 

closed-loop network (6.1)-(6.2) to achieve GUAC. 
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Theorem 6.1.1 The closed-loop network (6.1)-(6.2) achieves GUAC if and only if 

for each non-zero eigenvalue µ of the graph Laplacian matrix, 

¯|d0|2 + |d1 − d0 d1| < 1 (6.5) 

where 

d0 = c0 + µ γ0 , d1 = c1 + µ γ1 (6.6) 

and c0, c1 and γ0, γ1 are given by (6.3) and (6.4). 

Proof A proof of Theorem 6.1.1 is provided in Section 6.4. 

For a real Laplacian eigenvalue, condition (6.5) simplifies as described in the fol-

lowing remark. 

Remark 6.1.1 If µ is real, then condition (6.5) simplifies to 

d0 < 1 and |d1| < 1 + d0 . (6.7) 

Theorem 6.1.1 provides a necessary and sufficient condition on the gains γ0 and γ1 

for GUAC, namely (6.5). When (6.5) is satisfied, a consensus achieving gain matrix 

K is given by (3.30). We now discuss condition (6.5). 

6.1.2 Condition (6.5) 

Inequality (6.5) is equivalent to 

¯|d2| < 1 − |d0|2 where d2 := d1 − d0 d1 . (6.8) 

For this to be satisfied, we must have 

|d0| < 1 . (6.9) 

If we let 

µ = α + j ω (6.10) 
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where α and ω are real, then one may readily compute that 

d2 = (1 − c0) c1 − (|µ|2γ0 + 2 c0 α) γ1 + µ γ2 (6.11) 

where γ2 = (1 + c0) γ1 − c1 γ0. 

If c0 6= −1, then 

c1 δ ã 
d2 = + γ2 + j ω γ2 (6.12)

1 + c0 1 + c0 
c1 γ0 + γ2

γ1 = (6.13)
1 + c0 

where 

ã = (1 − c0) α − |µ|2 γ0 , δ = 1 − |d0|2 > 0 . (6.14) 

If c0 = −1, then γ2 = −c1 γ0 and 

d2 = (2 − α γ0) c1 + (2 α − |µ|2γ0) γ1 − j ω c1 γ0 (6.15) 

δ = (2 α − |µ|2γ0) γ0 (6.16) 

Remark 6.1.2 Inequalities (6.8) and (6.9) are of the form 

|c + η γ| < b , η = a + j v (6.17) 

which is equivalent to b > 0 and 

2 − b2|η|2 γ2 + 2 a c γ + c < 0 (6.18) 

or p(γ) < 0, where p(γ) = |η|2 γ2 + 2 a c γ + c2 − b2 . 

Since lim|γ|→∞ p(γ) = ∞, p must have two distinct real roots γ < γ̄ for p(γ) < 0 to 

be satisfiable; these roots are p
−a c ± a2 b2 + (b2 − c2) v2 

γ, γ̄ = . (6.19)
|η|2 

Thus, a necessary condition for the existence of a γ satisfying inequality (6.17) is 

2 b2(c 2 − b2) v 2 < a , (6.20) 
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and inequality (6.17) holds if and only if 

γ < γ < γ̄ . (6.21) 

Special case: η real. If η is real, then η = a and v = 0; hence 

γ, γ̄ = (−c ± b)/η , b > 0 . (6.22) 

Remark 6.1.3 If |c| < b, then (6.17) holds with γ small. If |c| = b, then 

−a c ± |a c|
γ, γ̄ = . (6.23)

|η|2 

Hence, either γ = 0 or γ̄ = 0 and inequality (6.17) can be satisfied by an arbitrarily 

small non-zero γ whose sign is opposite to the sign of ac. Thus, if one has a collection 

of inequalities of the form (6.17) for which each ac has the same sign, then these 

inequalities can be simultaneously satisfied by an arbitrarily small non-zero γ whose 

sign is the opposite of the sign of the ac’s. 

Remark 6.1.4 Based on Remark 6.1.2, we note that, in order for (6.9) to hold, we 

must have 

ω2 

(c 20 − 1) < 1 and γ < γ0 < γ̄ 0 (6.24)
α2 0 

where p
−c0 α ± α2 + (1 − c0

2) ω2 

γ , γ̄ 0 = . (6.25)
0 |µ|2 

If µ is real, then µ = α > 0 and 

γ , γ̄ 0 = (−c0 ± 1)/µ . (6.26)
0 

If |c0| < 1, then Remark 6.1.3 tells us that (6.21) holds for all non-zero µ if γ0 = 0. If 

|c0| = 1, then it follows from Remark 6.1.3 that (6.21) can be satisfied by all non-zero 

µ if γ0 is sufficiently small and its sign equals that of −c0. 
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Remark 6.1.5 Based on Remark 6.1.2, when c0 6= −1, then in order for (6.8) to 

hold, we must have 

� � 
2 ω2 2 c1 − (1+c0)

2 < ã and γ < γ2 < γ̄ 2 (6.27)
2 

where p
−c1 ã ± (1+c0) ã2 + [(1+c0)2 − c1

2)] ω2 

γ , γ̄ 2 = δ (6.28)
2 ã2 + (1 + c0)2 ω2 

If µ is real, then γ , γ̄ 2 = [−c1 ± (1 + c0)] δ/ã, that is,2 

γ , ̄  = [−c1 ± (1 + c0)] (1 + c0 + µ γ0)/µ2 
γ2 

Hence 

γ < γ1 < γ̄ 11 

where 

γ , γ̄ 1 = [−c1 ± (1 + c0 + µ γ0)] /µ . (6.29)
1 

If |c1| < |1 + c0|, then Remark 6.1.3 tells us that (6.27) holds for all non-zero µ if γ2 

is sufficiently small. If |c1| = |1+ c0| and ã has the same sign for all µ, then it follows 

from Remark 6.1.3 that (6.27) can be satisfied by all non-zero µ if γ2 is sufficiently 

small and its sign equals that of −c1ã. If |c0| ≤ 1, then γ0 can be chosen arbitrarily 

small; hence it can be chosen so that the sign of ã is the same as that of 1 − c0 for 

all non-zero µ. In this case γ1 can be chosen arbitrarily small. 

Remark 6.1.6 If c0 = −1, then recalling (6.16), inequality (6.9) is equivalent to 

g γ0 > 0 where g = 2 α − |µ|2 γ0 . (6.30) 

Using arguments similar to Remark 6.1.2, one can show that when c0 = −1, (6.8) is 

equivalent to 

ω2 2 2 c1 < g and γ < γ1 < γ̄ 1 (6.31)
1 
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where p
(α γ0 − 2) c1 ± γ0 g2 − ω2 c2 

γ , γ̄ 1 = 1 . 
1 g 

If µ is real, then g = α (2 − α γ0) and 

γ , γ̄ 1 = −c1/µ ± γ0 . (6.32)
1 

If c1 = 0, then 

γ , γ̄ 1 = ±γ0 . (6.33)
1 

With γ0 6= 0 this can be satisfied by sufficiently small γ1. 

Remark 6.1.7 If systems (6.1) are asymptotically stable, then GUAC will be achieved 

even if no feedback is applied. For γ0 = γ1 = 0, condition (6.5) reduces to 

c0 < 1 and |c1| < 1 + c0 , (6.34) 

which are the conditions for open-loop stability. 

6.1.3 Limitations 

In the continuous-time analog of the problem considered here, which we presented 

in Chapter 4, GUAC can always be achieved by appropriate choice of K. However, 

that is not the case in discrete-time. We have already seen limitations on the imagi-

nary parts of µ in (6.21), (6.27) and (6.30). The next result puts limitations on the 

real parts of µ. 

Lemma 6.1.1 If there exists a matrix K such that the closed-loop network (6.1)-

(6.2) achieves GUAC, then 

κ |c0| < 1 and κ |c1| < 2 (6.35) 

where, recalling αm and αM from (2.9), 

κ = 
αM − αm 

αM + αm 
. (6.36) 
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Proof A proof of this result is given in Section 6.4. 

In the next section, we look at some important classes of networked systems and 

provide easilly verifiable conditions for consensus. 

6.2 Special cases 

Identifying gains that satisfy (6.5) for all µ 6= 0 can be challenging. Here we 

consider some special cases and obtain simpler conditions for the existence of feasible 

parameters γ0 and γ1. 

6.2.1 Marginally stable systems 

Here we claim that GUAC can always be achieved for networks of marginally 

stable systems. If the systems are marginally stable, then c0 ≤ 1 and |c1| ≤ 1 + c0 

and equality holds for at least one of the inequalities. This is a special case of 

|c0| ≤ 1 and |c1| ≤ |1 + c0| . (6.37) 

Lemma 6.2.1 If (6.37) holds, then GUAC for the closed-loop network (6.1)-(6.2) 

can always be achieved with arbitrarily small γ0 and γ1. 

Proof If c0 =6 −1, then the result follows from comments made in Remarks 6.1.4 and 

6.1.5. If c0 = −1, then we must have c1 = 0, and the result follows from comments 

made in Remarks 6.1.4 and 6.1.6. 

6.2.2 Laplacian eigenvalues in a disc 

From Lemma 6.1.1 we see that if either |c0| > 1 or |c1| > 2, then the range of 

the eigenvalues of the Laplacian matrix L must be restricted to achieve GUAC. Here 

we consider the non-zero eigenvalues of the Laplacian to be constrained to a disc 

of radius R with center C > 0. First, we have the following result, which provides 

simpler sufficient conditions for achieving GUAC; Section 6.4 contains a proof. 
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Lemma 6.2.2 The closed-loop network (6.1)-(6.2) achieves GUAC if, for each non-

zero eigenvalue µ of the graph Laplacian matrix, 

|c0 + µ γ0| + |c1 + µ γ1| < 1 . (6.38) 

Lemma 6.2.3 Suppose that 

|µ − C| ≤ R (6.39) 

for all non-zero eigenvalues µ of the Laplacian. Then, the closed-loop network (6.1)-

(6.2) achieves GUAC if 

|c0 +γ0 C| + |c1 +γ1 C| + (|γ0| + |γ1|) R < 1 . (6.40) 

There exist γ0, γ1 satisfying (6.40) if and only if: 

1) R/C ≥ 1: 

|c0| + |c1| < 1 . (6.41) 

In this case, (6.40) holds with γ0 = γ1 = 0. 

2) R/C < 1: 

(|c0| + |c1|) R/C < 1 . (6.42) 

In this case, (6.40) holds with 

γ0 = −c0/C and γ1 = −c1/C . (6.43) 

Proof From Lemma 6.2.2, GUAC is achieved if, for each non-zero eigenvalue µ of 

the Laplacian, 

|d0| + |d1| < 1 (6.44) 

where di = ci + µ γi for i = 0, 1. If |µ − C| ≤ R, then µ = C + r (cos ψ + j sin ψ) 

where 0 ≤ r ≤ R and ψ ∈ R. Thus, 

|di|2 = (ci + γi C)
2 + 2 (ci + γi C) γi r cos ψ + γi 

2 r 2 
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and 

max |di|2 = (ci +γi C)
2 + 2 |ci +γi C||γi|R + γ2R2 

i |µ−C|≤R 

= (|ci + γi C| + |γi| R)2 . 

Hence, 

max |di| = |ci + γi C| + |γi| R 
|µ−C|≤R 

and (6.40) implies (6.44). 

We note that fi(γi) := |ci +C γi|+|γi| R is continuous and piecewise linear. Therefore, 

its minimum will occur at one of the two switching points γi = 0 and γi = −ci/C; 

hence the minimum is the smallest of 

fi(0) = |ci| and fi(−ci/C) = |ci| R/C . 

If R/C ≥ 1, then the minimum is |ci| and (6.40) can be satisfied if and only if (6.41) 

holds. If R/C < 1, then γi = −ci/C is the minimizer of fi, and (6.40) can be satisfied 

if and only if (6.42) holds. 

Remark 6.2.1 (Robustness) The conditions in Lemma 6.2.3 can be used to guar-

antee robustness with respect to changes in the graph; the only knowledge needed about 

the graph is that the non-zero eigenvalues of the graph Lapacian lie within a disc of 

radius R and center C. To obtain robustness with respect to plant parameters suppose 

that, for some c̄  0, c̄  1 and Δc, parameters satisfy 

|c0 − c̄  0| + |c1 − c̄  1| ≤ Δc . (6.45) 

If R/C ≥ 1, then (6.40) holds with γ0 = γ1 = 0 for all c0 and c1 satisfying (6.45) if 

and only if 

|c̄  0| + |c̄  1| +Δc < 1 . 

If R/C < 1, then (6.40) holds with 

γ0 = −c̄  0/C and γ1 = −c̄  1/C 

for all c0 and c1 satisfying (6.45) if and only if 

(|c̄  0| + |c̄  1|) R/C +Δc < 1 . 
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6.2.3 Real Laplacian eigenvalues 

Here we consider weighted graphs whose Laplacian eigenvalues are all real. This 

occurs, for example, if the graph is undirected and the weighting matrix is symmetric 

or if the graph is a string. For this important special case, we can obtain easily 

verifiable necessary and sufficient conditions for consensus control as outlined in the 

following result. 

Lemma 6.2.4 If all the eigenvalues of the Laplacian matrix are real, then there 

exists a matrix K such that the closed-loop network (6.1)-(6.2) achieves GUAC if 

and only if 

κ |c0| < 1 and κ (|1 − c0| + |c1|) < 2 (6.46) 

where κ is given by (6.36). Such K will be given by (3.30) where γ0 and γ1 satisfy 

γ0m < γ0 < γ0M (6.47) 

−γ0 + γ1m < γ1 < γ0 + γ1M (6.48) 

with 

γ0m = (γ1m − γ1M )/ 2 (6.49) 

γ0M = β1 (1 − c0) − β2 |1 − c0| (6.50) 

γ1m = −β1 (1 + c0 + c1) + β2 |1 + c0 + c1| (6.51) 

γ1M = β1 (1 + c0 − c1) − β2 |1 + c0 − c1| (6.52) 

and 
αM + αm αM − αm

β1 = , β2 = (6.53)
2 αM αm 2 αM αm 

where αm and αM are defined in (2.9). 
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Proof Using Theorem 6.1.1 and recalling Remarks 6.1.4, 6.1.5, and 6.1.6 we see 

that GUAC is achieved if and only if 

(−c0 − 1)/µ <γ0 < (−c0 + 1)/µ (6.54) 

(−c1 −1−c0)/µ − γ0 <γ1 < (−c1 +1+c0)/µ + γ0 (6.55) 

for all non-zero eigenvalues µ of the graph Laplacian. Noting that β1 + β2 = 1/αm 

and β1 − β2 = 1/αM we see that, for any real number c, 

min c/µ = β1 c − β2 |c| , max c/µ = β1 c + β2 |c|
µ>0 µ>0 

Hence, (6.54) holds for all non-zero µ if and only if γ0m,2 < γ0 < γ0M where 

−1−c0
γ0m,2 = max = −β1 (1 + c0) + β2 |1 + c0| (6.56) 

µ>0 µ 
1−c0

γ0M = min = β1 (1 − c0) − β2 |1 − c0| (6.57) 
µ>0 µ 

Similarly, (6.55) holds for all non-zero µ if and only if (6.48) holds. Now, there exists 

γ1 satisfying (6.48) if and only if 2 γ0 > γ1m − γ1M = 2 γ0m, that is, γ0 > γ0m. For 

any two real numbers a and b, 

|a + b| + |a − b| = 2 max{|a|, |b|} . (6.58) 

Hence, 

γ0m = (γ1m −γ1M )/2 

= −β1(1+c0) + β2 (|1+c0 +c1| + |1+c0 −c1|) /2 

= −β1(1+c0) + β2 max{|1+c0|, |c1|} . (6.59) 

Recalling (6.56), we see that γ0m ≥ γ0m,2. Hence, (6.7) holds for all non-zero µ if and 

only if (6.47) and (6.48) hold. 

Finally, there exists γ0 satisfying (6.47) if and only if γ0m − γ0M < 0, that is, 

� � 
−2 β1 + β2 max{|1 − c0|, |c1|} + |1 + c0| < 0 
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or, noting that κ = β2/β1, � � 
κ |1 − c0| + max{|1 + c0|, |c1|} < 2 . (6.60) 

It follows from (6.58) that |1 − c0| + |1 + c0| = 2 max{|c0|, 1}. Since κ < 1, inequality 

(6.60) is equivalent to (6.46). 

Remark 6.2.2 From the proof of the above lemma, we see that if γ0 satisfies (6.47), 

then there exists γ1 satisfying (6.48). Thus, provided (6.46) holds, one can simply 

obtain a controller K by first choosing γ0 to satisfy (6.47), then choosing γ1 to satisfy 

(6.48), and letting K be given by (3.30). 

6.2.4 Discretized systems 

From Chapter 4, GUAC can always be achieved by appropriate choice of gains if 

linear control is applied to a similar setup in continuous-time where ẋ c,i = Ac xc,i + 

Bc uc,i. On the other hand, Lemma 6.1.1 shows that this is not always the case in 

discrete-time. If systems (Ac, Bc) are discretized with time constant h > 0, then Z h 

A = e Ach and B = e Acτ dτ Bc. (6.61) 
0 

Lemma 6.2.5 The closed-loop network (6.1)-(6.2) of discretized systems (6.61) can 

always achieve GUAC if (Ac, Bc) is controllable, the graph contains a spanning tree, 

the discretization time constant h > 0 is chosen small enough, and gains are chosen 

appropriately. 

Proof If h → 0, then A → I. Thus, in the limit, systems are marginally stable 

where c0 = 1 and c1 = −2, and from Theorem 6.2.1, we can always choose gains 

γ0, γ1 satisfying (6.5). Inequality (6.5) is continuous in c0 and c1. Therefore, if (6.5) 

holds in the limit, then it holds in a neighborhood of c0 and c1. 

If h → 0, then (A, B) is controllable if (Ac, Bc) is controllable. If (A, B) is controllable, 

then K can be obtained from (3.30), and GUAC can always be achieved. 
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6.3 Guaranteed rate of convergence 

From Lemma 2.2.1, Theorem 6.1.1 can be used to guarantee GUEC with rate ρ. 

From Remark 3.2.2, the characteristic polynomial of Ã = ρ−1A is given by c̃(s) = 

s2 + c̃1 s + c̃0 where 

c̃0 = c0/ρ
2 , c̃1 = c1/ρ . (6.62) 

Recalling Remark 2.2.2 and B̃ = ρ−1B, and noting that Ã + c̃1 I = ρ−1(A + c1I), we 

proceed as in (6.4) and define 

� � � � 
ρ−2 ρ−1 Bγ̃0 γ̃1 = K (A + c1 I) B . (6.63) 

Now, Theorem 6.1.1 and Lemma 2.2.1 yield the following result. 

Theorem 6.3.1 The closed-loop network (6.1)-(6.2) achieves GUEC with rate 0 < 

ρ < 1 if for each non-zero eigenvalue µ of the graph Laplacian, 

¯ |d̃  
0|2 + |d̃  

1 − d̃  
0 d̃  
1| < 1 

where d̃  
0 = c̃0 +µ γ̃0, d̃  

1 = c̃1 +µ γ̃1, and c̃0, c̃1, γ̃0, and γ̃1 are given by (6.62)-(6.63). 

Remark 6.3.1 If systems (6.1) are in controllable canonical form, then one can 

easily show that � � 
K = ρ2 γ̃0 ρ γ̃1 . 

Remark 6.3.2 One cannot achieve GUEC with arbitrary small rate ρ using linear 

controller (6.2) except in the trivial case in which all the non-zero eigenvalues of L 

are the same. To see this, suppose convergence with an arbitrary small rate ρ can be 

achieved and recall (6.62); then remark (6.1.4) implies that ω = 0 for every eigenvalue 

of L; Lemma 6.1.1 implies that αm = αM . Thus all the non-zero eigenvalues of L are 

the same. 
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6.4 Proof of main results 

6.4.1 The characteristic polynomial of the closed-loop network 

Corollary 3.2.1 provides a useful condition for consensus of the closed-loop sytem, 

and we restate it here for convenience. 

Lemma 6.4.1 ( [30]) The closed-loop network (6.1)-(6.2) achieves GUAC if for 

each non-zero eigenvalue µ of graph Laplacian, the matrix A − µBK is Schur. 

Lemma 6.4.2 The matrix A − µBK is Schur if and only if 

p(s) = s 2 + (c1 + γ1 µ) s + (c0 + γ0 µ) (6.64) 

is Schur, where c0, c1, γ0, and γ1 are given by (6.3)-(6.4). 

Proof A matrix is Schur if and only if its characteristic polynomial is Schur. From 

Lemma 3.2.2, the characteristic polynomial of matrix A − µBK is given by (6.64). 

The coefficients of p in (6.64) are not necessarily real, since µ can be complex. Thus 

we need conditions which guarantee that a second order polynomial with complex 

coefficients is Schur. 

6.4.2 A simple characterization of second-order Schur polynomials 

This section develops necessary and sufficient conditions for a second-order poly-

nomial with complex coefficients to be Schur. It should be noted that this thesis 

provides a new result and a simple new proof for second-order Schur polynomials. 

Lemma 6.4.3 Suppose p(λ) = λ2 + d1 λ + d0 where d0, d1 ∈ C. Then p is Schur if 

and only if 

|d0|2 + |d1 − d0 d̄  
1| < 1 . (6.65) 
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Proof First, we express d0 and d1 in polar form, that is, 

j δ0 j δ1d0 = |d0| e , d1 = |d1| e . (6.66) 

where δ0 and δ1 are real. The polynomial p is Schur if and only if p̃  is Schur where 

p̃(λ) = e−j δ0 p(λ ej δ0/2). Note that 

p̃(λ) = λ2 + |d1| ejφ λ + |d0| (6.67) 

where 

φ = δ1 − δ0/2 . (6.68) 

If z1 and z2 are the roots of p̃, then 

p̃(λ) = λ2 − (z1 + z2) λ + z1z2 . (6.69) 

Comparing (6.67) and (6.69), we see that 

z1z2 = |d0| and z1 + z2 = −|d1| ejφ . (6.70) 

jθ1 jθ2 j(θ1+θ2)If z1 = r1 e and z2 = r2 e , then it now follows that r1r2 e = |d0|. Hence , 

θ1 = −θ2 := θ and (6.70) results in 

r1 r2 = |d0| (6.71) 

(r1 + r2) cos θ = −|d1| cos φ (6.72) 

(r1 − r2) sin θ = −|d1| sin φ . (6.73) 

The polynomial p̃  is Schur if and only if the magnitudes of its roots are less than one, 

that is, r1, r2 < 1, which is equivalent to (assuming w.l.o.g. r1 ≥ r2 ≥ 0) 

r1 r2 < 1 (6.74) 

(r1 − 1)(r2 − 1) > 0 or (r1 − 1)(−r2 − 1) > 0 . (6.75) 

It follows from (6.71) that inequality (6.74) is equivalent to 

|d0| < 1 . (6.76) 
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With r1r2 < 1, (6.75) is equivalent to 

r1 + r2 r1 − r2 
< 1 or < 1 . (6.77)

1 + r1 r2 1 − r1 r2 

Since 1 = cos2 θ + sin2 θ, r1r2 < 1, and r1 ≥ r2, inequality (6.77) holds if and only if � �2 � �2 
r1 + r2 r1 − r2 

cos 2 θ + sin2 θ < 1 
1 + r1 r2 1 − r1 r2 

which, recalling (6.71)-(6.73), is the same as � �2 � �2|d1| |d1|
cos 2 φ + sin2 φ < 1 

1 + |d0| 1 − |d0| 

or � � � �2 
1 + |d0|2 |d1|2 − 2 |d0| |d1|2 cos 2φ < 1 − |d0|2 . 

¯It follows from (6.66) and (6.68) that d0 d
2 = |d0| |d1|2 ej2φ; hence the above inequality 1 

can be rewritten as � � � 
d̄21 + |d0|2 |d1|2 − d̄  

0 d
2 − d0 1 < 1 − |d0|2 

�2 
. (6.78)1 

Noting that 

d̄2(1 + |d0|2) |d1|2 − d̄  
0 d
2 − d01 1 

¯ ¯ ¯ = d1d1 − d̄  
1(d0 d1) − (d̄  

0 d1) d1 + (d̄  
0 d1)(d0 d1) 

¯ ¯ = (d̄  
1 − d̄  

0 d1)(d1 − d0 d1) = |d1 − d0 d1|2 

(6.78) can be written as 

¯|d1 − d0 d1|2 < (1 − |d0|2)2 . 

The above inequality and (6.76) are equivalent to 

¯|d1 − d0 d1| < 1 − |d0|2 

which is equivalent to (6.65). 

Corollary 6.4.1 Suppose p(λ) = λ2 + d1 λ + d0 where d0, d1 ∈ R. Then p is Schur if 

and only if 

d0 < 1 and |d1| < 1 + d0 . (6.79) 
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Proof When d0 and d1 are real, (6.65) can be expressed as d20 + |1 − d0||d1| < 1, 

that is, 

|1 − d0||d1| < (1 − d0)(1 + d0) . 

which is equivalent to (6.79). 

Corollary 6.4.2 Suppose p(λ) = λ2 + d1 λ + d0 where d0, d1 ∈ C. Then p is Schur if 

|d0| + |d1| < 1 . (6.80) 

Also, if p is Schur, then we must have 

|d0| < 1 and |d1| < 1 + |d0| . (6.81) 

Proof Note that (6.80) implies that 

¯|d1 − d0 d1| < (1 + |d0|)(1 − |d0|) (6.82) 

where 

¯|d1| (1 − |d0|) ≤ |d1 − d0 d1| ≤ |d1| (1 + |d0|) . (6.83) 

Thus, if (6.80) holds, then (6.82) holds and p is Schur. 

Now suppose p is Schur. Then, it follows from (6.82) and (6.83) that |d0| < 1 and 

|d1| (1 − |d0|) < (1 + |d0|)(1 − |d0|). This yields (6.81). 

6.4.3 Proof of Theorem 6.1.1, Lemma 6.1.1, and Lemma 6.2.2 

Theorem 6.1.1 is a consequence of Lemmas 6.4.1, 6.4.2, and 6.4.3. Lemma 6.2.2 is 

a consequence of Corollary 6.4.1. To prove Lemma 6.1.1, we introduce the following 

result. 

Lemma 6.4.4 There exists a γ satisfying 

|c + µ γ| < ξ (6.84) 
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for some c ∈ R, some ξ > 0, and all eigenvalues µ = α + j ω satisfying 0 < αm ≤ 

α ≤ αM for some αm, αM ∈ R if 

αM − αm
κ |c| < ξ where κ = . 

αM + αm 

Proof First, we note that condition (6.84) holds if and only if |c0 + µ γ0| < 1 where 

c0 = c/ξ and γ0 = γ/ξ. Second, we note that condition (6.84) holds for some ω > 0 

if and only if it holds for ω = 0 since |c + µ γ|2 = |c + α γ|2 + ω2 γ2 . From the 

proof of Lemma 6.2.4, |c0 + µ γ0| < 1 holds for a range of real valued µ if and only 

if γ0m,2 < γ0M where γ0m,2 and γ0M are given by (6.56)-(6.57). Applying (6.58) and 

recalling that κ = β2/β1 yields 

2 β2 max {|1|, |c0|} < 2 β1 ⇔ κ max {|1|, |c0|} < 1 

Thus, κ |c0| < 1 is a necessary condition, which recalling c0 = c/ξ, is equivalent to 

κ |c| < ξ. 

Now, Lemma 6.1.1 is a consequence of Corollary 6.4.2 and Lemma 6.4.4. From 

Lemma 6.4.4, κ |c0| < 1 is a necessary condition. Corollary 6.4.2 implies that |d0| < 1 

and |d1| < 1 + |d0|; hence |d1| < 2. Applying Lemma 6.4.4 again yields κ |c1| < 2 as 

another necessary condition. 

6.5 Simulations 

6.5.1 Example I 

We illustrate our results by considering a network of discretized double integrators 

that are described by 

qi(k + 1) = qi(k) + Tk vi(k) (6.85) 

vi(k + 1) = vi
k + ui(k) + u0(k) (6.86) 

where Tk > 0 is the period between two samples, qi(k) describes the position and vi(k) 

describes the velocity of system i at step k. An application of this model would be the 
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0 0 0 0 0 

−2 3 0 0 −1 

−2 −1 3 0 0 

0 0 −2 2 0 

0 0 0 −2 2 

⇒ L = 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
Figure 6.1.. Example I: Communication network with assigned edge 
weights 

⎤⎦ ⎡⎣ 

impulsive control of satellites, whose continuous-time dynamics can be approximated 

⎤⎦ 
by (6.85)-(6.86). 

Let Tk = 1, then system dynamics are given by c0 = 1, c1 = −2, and ⎡⎣1 1 0 
A = , B = . 

0 1 1 

The systems can communicate over the graph shown in Figure 6.1. In this network, 

system 1 is a leader and when consensus is achieved, the positions of the other systems 

will equal that of the leader. Weights wij correspond to the numbers on the edges in 

Figure 6.1, e.g. w31 = 2. The Laplacian matrix is shown on the right in Figure 6.1 and 
√ 

has eigenvalues µ1 = 0, µ2 = 1, µ3/4 = 2.5 ± j, µ5 = 7/2, and µ6 = 4. A common 

input u0(k) = 0.04 cos(0.2 k) B is assumed. We chose gains γ0, γ1 so that GUEC 

was achieved with rate ρ and the quantity γ0
2 + γ1

2 was minimized. Three different 

desired convergence rates for GUEC were considered, and the resulting parameters 

are summarized in Table 6.1. 

Figure 6.2 shows the regions of feasible gains corresponding to the three desired 

convergence rates. Gains within these regions satisfy the conditions of Theorem 6.3.1. 

All three cases were simulated with the same randomly generated, uniformly dis-

tributed initial conditions. The initial velocity of the leader was set to zero, that is 

v1(0) = 0. The gains γ0, γ1 were set to the values shown in Table 4.2. The plots in 

Figure 6.4 show the time history of the position and velocity of each system on the 

https://u0(k)=0.04
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Figure 6.2.. Gains γ0, γ1 satisfying necessary and sufficient conditions to 
achieve GUEC with rate ρ with c0 = 1 and c1 = −2. 

Figure 6.3.. Inputs ui(k) for different convergence rates - common input 
u0(k) = 0.04 cos(0.2 k) B not shown. 
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(a) Case I - GUEC with rate ρ = 0.95 

(b) Case II - GUEC with rate ρ = 0.90 

(c) Case III - GUEC with rate ρ = 0.85 

Figure 6.4.. Synchronization of systems with c0 = 1, c1 = −2 and different 
convergence rates. 
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Table 6.1.. Gains γ0, γ1 to achieve GUEC - c0 = 1, c1 = −2 

ρ γ0 γ1 γ0 + γ1 c̃0 c̃1 

case I 0.95 −0.098 0.104 0.052 1.108 −2.105 

case II 0.90 −0.190 0.209 0.018 1.235 −2.222 

case III 0.85 −0.278 0.321 0.043 1.384 −2.353 

⇒ L = 

⎡ ⎢⎢⎢⎣ 
1 0 

⎤ ⎥⎥⎥⎦ 
−1 

−1 1 0 

0 −1 1 

Figure 6.5.. Example II: Communication network with assigned edge 
weights 

left. Though all systems were initially unsynchronized, they achieved GUEC over 

time. For each system, we introduced a position error qi − q1 and a velocity error 

vi −v1, which are relative to the leader. The right-hand side of Figure 6.4 shows these 

errors (leader - blue line). Clearly, as expected, synchronization was achieved more 

quickly with smaller ρ. 

A faster rate of convergence results in larger inputs ui. Figure 6.3 shows the in-

puts ui that must be applied to each system in order to achieve GUEC as illus-

trated in Figure 6.4. It should be noted that the additional, commonly applied input 

u0(k) = 0.04 cos(0.2 k) B is not shown in these plots. 

https://u0(k)=0.04
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6.5.2 Example II 

Consider a network of three systems with 

A = 

⎡⎣ 0 1 
⎤⎦ , B = 

⎡⎣0 ⎤⎦ 
−0.16 1 1 

and common input u0(k) = 0.5 cos k. Figure 6.5 describes the communication network 
√ 

and shows its associated Laplacian matrix L with non-zero eigenvalues 1.5 ± j 3/2. 

Since A has eigenvalues 0.2 and 0.8, the open loop systems are stable and GUEC 

with rate 0.8 can be achieved with ui = 0. To achieve GUEC with rate smaller than 

0.8 we use our consensus controllers. Controller gains satisfying the conditions in 

Theorem 6.3.1 are shown in Figure 6.6. We failed to identify gains for ρ < 0.29, and 

we picked γ0 = −0.1 and γ1 = 0.5 to guarantee convergence with at least ρ ≤ 0.6. 

Figure 6.7 compares the behaviour of the open loop systems to the closed loop systems. 

The initial states are the same in each case and were chosen randomly with uniform 

distribution. We observe that GUEC was achieved more quickly for the closed loop 

systems. 
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Figure 6.6.. Regions of gains achieving GUEC with guaranteed rate of 
convergence. 

Figure 6.7.. Simulation of three systems achieving consensus with (left) 
and without (right) control ui. Note that only xi,1(k) is shown since 
xi,2(k) = xi,1(k + 1). 
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7. CONSENSUS FOR DISCRETE-TIME HIGHER-ORDER 

SYSTEMS 

In this chapter, we present conditions for higher-order discrete-time systems. First, we 

present simple results that are easily verifiable. Then, we develop and solve conditions 

that apply to the more general case. 

7.1 A simple result for single-input time-invariant systems 

Here we present conditions that depend on the system parameters (3.28). They 

apply directly to higher-order single-input systems given in controllable canonical 

form. If systems are not in controllable canonical form, then we can use the results of 

this section and apply relation (3.29), or we formulate the problem as a linear matrix 

inequality (see Section 7.4). 

The following results are a generalization of the results presented in Section 6.2.2. 

7.1.1 Conditions for consensus 

We will present sufficient conditions for the closed-loop network (2.5)-(2.6) to 

achieve GUAC. Similar to Section 6.4, we will have to show that matrices A − µBK 

are Schur. A matrix is Schur if and only if its characteristic polynomial is Schur. A 

polynomial is said to be Schur if all its roots have a magnitude less than one. From 

Lemma 3.2.2, the characteristic polynomial of matrix A − µBK is given by 

n−1X 
p(s) = s n + di s 

i , di := ci + µ γi (7.1) 
i=0 

where ci and γi are given by (3.28)-(3.29). 

First, we present the following preliminary result for a polynomial to be Schur. 
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P n−1 iLemma 7.1.1 Suppose p(s) = sn + i=0 di s where di ∈ C and 

n−1X 
|di| < 1 . (7.2) 

i=0 

Then p is Schur. 

Proof We prove the result by contradiction. Suppose that λ is a root of p and 

|λ| ≥ 1. Then, 

n−1X 
λn + di λ

i = 0 . 
i=0 

Multiplying the equation by λ1−n and rearranging yields 

n−1X 
di λ

−(n−1−i)λ = − . 
i=0 

Since |λ| ≥ 1, we obtain that |λ−(n−1−i)| ≤ 1 for 0 ≤ i ≤ n − 1; hence 

n−1 n−1X X 
|λ| ≤ |di| |λ−(n−1−i)| ≤ |di| . 

i=0 i=0 

Applying (7.2), we obtain the contradiction that 1 ≤ |λ| < 1. Hence, every root of p 

has magnitude less than one, that is, p is Schur. 

Now the following corollary is a consequence of Lemma (7.1.1) and ensures that 

polynomials (7.1) are Schur. 

Corollary 7.1.1 The closed-loop network (2.5)-(2.6) achieves GUAC if, for each 

non-zero eigenvalue µ of the graph Laplacian matrix, 

n−1X 
|ci + µ γi| < 1 (7.3) 

i=0 

where ci and γi are given by (3.28)-(3.29). 

When (7.3) is satisfied and (A, B) is controllable, then a GUAC achieving gain 

matrix K is given by (3.30). 
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Remark 7.1.1 The coefficients of polynomials (7.1) are not necessarily real, since 

the non-zero eigenvalues µ of the graph Laplacian can be complex. Corollary 7.1.1 

is based on a conservative but simple result for such polynomials to be Schur. More 

complex but necessary and sufficient conditions for Schur polynomials can be obtained 

by applying the methods in [38]. 

Next, we show that for some combinations of systems and graphs GUAC cannot 

be achieved. To state this result we need the binomial coefficient ⎛⎝n 
⎞⎠ 
i 

b 

where the factorial is defined by 

n! 
= 
i! (n − i)! 

n! = 

⎧⎪⎨ ⎪⎩ 1 , n = 0 

(n − 1)! · n , n > 0 

and the following preliminary result. 

P 
Lemma 7.1.2 Suppose p(s) = sn + n−1 

i=0 di s
i where di ∈ C. If p is Schur, then ⎛⎝n 

⎞⎠|di| < , i = 0, · · · , n − 1 . (7.4) 
i 

b 

Proof The lemma is proven by recursion, where the base case is given by n = 1. 

If n = 1, then the polynomial p is Schur if and only if |d0| < 1. Hence, (7.4) holds for 

n = 1. Now, suppose zn is the n-th root of the Schur polynomial pn. Then, X−1n nX 
˜pn(s) = di s 

i = (s − zn) di s 
i = (s − zn) pn−1(s) 

i=0 i=0 

where dn = 1 and d̃  
n−1 = 1. Comparing coefficients on both sides yields 

˜ ˜ ˜d0 = −zn d0 and di = di−1 − zn di , i = 1, · · · , n − 1 . 

The polynomial pn is Schur. Thus, |zn| < 1, 

|d0| < |d̃  
0| and |di| < |d̃  

i−1| + |d̃  
i| , i = 1, · · · , n − 1 . 
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The binomial coefficient can be defined recursively: ⎛⎝n 
⎞⎠ = 

⎛⎝n − 1 
⎞⎠ ⎛⎝n − 1 

⎞⎠+ . 
i i − 1 i 

b b b 

Therefore, if coefficients d̃  
i satisfy (7.4), then so do coefficients di. 

Now we have the following result. 

Lemma 7.1.3 If the graph contains a spanning tree and the closed-loop network 

(2.5)-(2.6) achieves GUAC, then 0 < αm ≤ αM and 

n 
κ |ci| < , i = 0, · · · , n − 1 (7.5) 

i 

⎞⎠ 
b 

where κ is defined in terms of αm, αM given by (2.9): 

⎛⎝ 

αM − αm
κ = (7.6)

αM + αm 

Proof From Corollary 3.2.1, if the closed-loop network (2.5)-(2.6) achieves GUAC, 

then matrices A − µBK are Schur, that is, polynomials (7.1) are Schur and ⎛⎝n 
⎞⎠|ci + µ γi| < , i = 0, · · · , n − 1 (7.7) 
i 

b 

from Lemma 7.1.2. Finally, we obtain (7.5) from (7.7) by applying Lemma 6.4.4. 

7.1.2 Control design - Laplacian eigenvalues in a disc 

From Lemma 7.1.3, we see that if any of the |ci| is large, then the range of the 

eigenvalues of the Laplacian matrix L must be restricted to achieve GUAC. Here 

we consider the non-zero eigenvalues of the Laplacian to be constrained to a disc of 

radius R with center C > 0. 

Lemma 7.1.4 Suppose that 

|µ − C| ≤ R (7.8) 
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for all non-zero eigenvalues µ of the Laplacian. Then, the closed-loop network (2.5)-

(2.6) achieves GUAC if 

n−1X 
|ci +γi C| + |γi| R < 1 . (7.9) 

i=0 

There exist gains γi satisfying (7.9) if and only if: 1) R/C ≥ 1: 

n−1X 
|ci| < 1 . (7.10) 

i=0 

In this case, (7.9) holds with 

γi = 0 , i = 0, · · · , n − 1 . 

2) R/C < 1: 

n−1XR |ci| < 1 . (7.11)
C 

i=0 

In this case, (7.9) holds with 

γi = −ci/C , i = 0, · · · , n − 1 . 

Proof From Corollary 7.1.1, GUAC is achieved if, for each nonzero eigenvalue µ of 

the Laplacian, 
n−1X 

|di| < 1 where di = ci + µ γi . (7.12) 
i=0 

The rest of the proof is equivalent to the proof of Lemma 6.2.3. 

Remark 7.1.2 (Robustness with respect to plant parameters) The conditions 

in Lemma 7.1.4 can be used to guarantee robustness with respect to changes in the 

graph; the only knowledge needed about the graph is that the non-zero eigenvalues of 

the graph Lapacian lie within a disc of radius R and center C. 

To obtain robustness with respect to plant parameters suppose that, for some c̄  0, · · · , c̄  n−1, 

and Δc, the plant parameters c0, · · · , cn−1 satisfy 

n−1X 
|ci − c̄  i| ≤ Δc . (7.13) 

i=0 
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If R/C ≥ 1, then fi is minimized for γi = 0, and (7.9) holds with γi = 0 for all ci 

satisfying (7.13) if and only if 

n−1X 
Δc + |c̄  i| < 1 . 

i=0 

If R/C < 1, then (7.9) holds with 

γi = −c̄  i/C , i = 0, · · · , n − 1 

for all ci satisfying (7.13) if and only if ! 
n−1XR |c̄  i| +Δc < 1 . 

C 
i=0 

7.1.3 Guaranteed rate of convergence 

Using Remarks 2.2.2 and 3.2.2, we generalize the results presented in Section 6.3, 

which yields 1) the characteristic polynomial for the transformed systems as c̃(s) = P n i 
i=0 c̃i s where 

c̃i = ci ρ
i−n (7.14) 

and 2) the transformed control " # 
nX 

γ̃i = ρi−n K cj A
j−i−1 B = ρi−n γi 

j=i+1 

where i = 0, · · · , n − 1. According to Corollary 7.1.1 the network of transformed 

systems achieves GUAC if, 
n−1X 

|c̃i + µ γ̃i| < 1 
i=0 

for every non-zero eigenvalue µ of the graph Laplacian; this condition is equivalent to 

n−1X 
ρi−n |ci + µ γi| < 1 . 

i=0 
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Hence, Corollary 7.1.1 and Lemma 2.2.1 yield the following result. 

Theorem 7.1.1 The closed-loop network (2.5)-(2.6) achieves GUEC with rate ρ if 

for each non-zero eigenvalue µ of the graph Laplacian matrix, 

n−1X 
ρi |ci + µ γi| < ρn 

i=0 

where ci and γi are given by (3.28)-(3.29). 

Remark 7.1.3 From (7.14) and Lemma 7.1.3, we see that GUEC with an arbi-

trary small rate ρ cannot usually be achieved by network (2.5) subject to linear con-

troller (2.6). In particular, ρ must satisfy the lower bound )(� � 1 

i! (n − i)! |ci| n−i 

ρ > max · . 
0≤i≤n−1 n! κ 

This bound is non-zero, except in the trivial case of ci = 0 for i = 1, · · · , n. 

7.2 Stability conditions for multi-input time-varying systems 

Next, we consider a homogeneous network of higher-order, time-varying, discrete-

time systems X � � 
xi(k + 1) = A(k) xi(k) + B(k) K(k) wij xj (k) − xi(k) + u0(k) (7.15) 

j∈Ni 

where we assume that 

A(·) and B(·) K(·) are bounded. 

Remark 7.2.1 Lemma 3.1.6 reduced the consensus problem to the simultaneous sta-

bilization of a bunch of systems, which is similar to solving a robust control problem. 

From Lemma 2.2.1, the closed-loop network (7.15) achieves GUEC with rate 0 < 

˜ρ < 1 if the network of transformed systems (Ã(k), B(k)) achieves GUAC. From 
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Remark 2.2.2, we know that the gain matrix for the original and the transformed 

network are equivalent, we recall from (2.8) that 

Ã(k) = ρ−1 A(k) and B̃(k) = ρ−1 B(k) 

and we immediately obtain the following corollary from Lemma 3.1.6. 

Corollary 7.2.1 The closed-loop network (7.15) achieves GUEC with rate 0 < ρ < 1 

if systems 

z̃(k + 1) = ρ−1 [A(k) − µ B(k)K(k)] z̃(k) (7.16) 

are GUAS for all non-zero eigenvalues µ of the graph Laplacian. 

Now, we use this result in the following two sections. 

7.3 A simple result for single-input time-varying systems in controllable 

canonical form 

Here we consider the closed-loop network (7.15) where systems (A, B) are given 

in controllable canonical form, that is, 

A(k) = 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
B = 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

0 

0 
. . . 

0 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
(7.17) 

0 1 0 0 

0 0 1 · · · 0 
. ... . . . . . 

0 0 0 · · · 1 

−c0(k) −c1(k) −c2(k) −cn−1(k) 1 

and ih 
K(k) = γ0(k) γ1(k) · · · γn−1(k) . (7.18) 

Systems are of order n ∈ N and parameters ci(k) ∈ R can vary with k. Input matrix 

B is fixed but the input gain matrix K(k) can vary with time. The graph Laplacian 

associated with the network is fixed and does not vary with k. 



	

111 

The following result summarizes sufficient conditions for the closed-loop network 

(7.15) to achieve GUEC. 

Theorem 7.3.1 If systems are given by (7.17) and (7.18), then the closed-loop 

network (7.15) achieves GUEC with rate 0 < ρ < 1 if there exists a 0 < ρ̃ < ρ such 

that for each non-zero eigenvalue µ of the graph Laplacian matrix and all steps k, 

n−1X 
ρnρ̃i |ci(k) + µ γi(k)| ≤ ˜ . (7.19) 

i=0 

Proof From Corollary 7.2.1, we prove Theorem 7.3.1 by showing that systems (7.16) 

are GUAS for all µ 6= 0. Since A(k) and B are given by (7.17), (7.16) reduces to 

zi(k+1) = ρ−1 zi+1(k) , i = 1, · · · , n − 1 (7.20) 

n−1X 
zn(k+1) = − ρ−1 di(k) zi+1(k) (7.21) 

i=0 

where di(k) = ci(k) + µ γi(k), and inequality (7.19) implies that 

n−1X 
ρnρ̃i |di(k)| ≤ ˜ < 1 (7.22) 

i=0 

for all k and non-zero µ. Let 

� := ρ̃−1 (7.23) 

and consider the candidate Lyapunov function V given by � 
V (z) = max � |z1|, �2 |z2|, · · · , �n |zn| . (7.24) 

Then, �ρ > 1 and it follows from (7.20) that, for all k and i = 1, · · · , n − 1, 

�i |zi(k + 1)| = (�ρ)−1 �i+1 |zi+1(k)| ≤ (�ρ)−1 V (z(k)) . (7.25) 

From (7.21), we obtain that 

n−1 n−1X X 
�n |zn(k+1)| ≤ �nρ−1 |di(k)| |zi+1(k)| ≤ (�ρ)−1 �n−i |di(k)| �i+1 |zi+1(k)|

i=0 i=0 

n−1X 
≤ (�ρ)−1 V (z(k)) �n−i |di(k)|

i=0 
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It follows from (7.22) and (7.23) that 

n−1 n−1 

�n−i |di(k)| = �n ρ̃i|di(k)| ≤ �n ρ̃n = 1 . 
i=0 i=0 

Hence, recalling �ρ > 1, 

�n |zn(k + 1)| ≤ (�ρ)−1 V (z(k)) . (7.26) 

It now follows from (7.25)-(7.26) and the definition of V that for all k and non-zero µ 

V (z(k + 1)) ≤ (�ρ)−1 V (z(k)) . (7.27) 

Since (�ρ)−1 < 1, it follows that systems (7.16) are GUAS for all µ 6= 0. 

X 

7.4 An LMI approach 

X 

Control designs that satisfy (7.19) for range of , γ and given in Section 7.1.2a c µ are .i i 

In this section, will make of the following Schur complement result towe use 

simplify matrix inequalities. Consider a hermitian 2 × 2 block matrix ⎡⎣Q11 Q12 

⎤⎦Q = 
Q21 Q22 

where Q22 < 0. Then, 

Q ≤ 0 ⇔ Q11 − Q12 Q
−1 
22 Q21 ≤ 0 . (7.28) 

This can be seen by noting that ⎡⎣Q11 Q12 

⎤⎦ = 

⎡⎣ I 0 
⎤⎦ 0 ⎡⎣Q11 − Q12 Q

−1 
22 Q21 0 

⎡⎣ ⎤⎦ I 0 
⎤⎦ . 

Q−1 Q−1Q21 Q22 22 Q21 I 0 Q22 22 Q21 

7.4.1 Sufficient conditions for consensus 

We now focus on control designs that make use of quadratic stability. 

I 
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Definition 7.4.1 The system x(k +1) = A(k) x(k) is quadratically stable with com-

mon Lyapunov matrix P = P0 > 0 if and only if there exists an �2 < 1 such that for 

all k: 

A0(k) PA(k) − �2 P ≤ 0 . (7.29) 

If the systems are quadratically stable, then they are GUES and therefore GUAS. 

Applying this fact and Lemma 3.1.6 yields the following result. 

Theorem 7.4.1 The closed-loop network (7.15) achieves GUAC if there exists a 

matrix S = S0 > 0, an �2 < 1, and for each k, there is a matrix X(k) such that, for 

all non-zero eigenvalues µ = α + j ω of the graph Laplacian, ⎡ ⎢⎢⎢⎢⎢⎢⎣ 
−� S 

Y(k) 

0 

Y0(k) 

−� S 

ω X0(k) B0(k) 

0 

ω B(k) X(k) 

−� S 

⎤ ⎥⎥⎥⎥⎥⎥⎦ 
−ω X0(k) B0(k) 

0 
≤ 0 

Y0(k) 
(7.30) 

−ω B(k) X(k) 0 Y(k) −� S 

where Y(k) = A(k) S − α B(k) X(k) and 

K(k) = X(k) S−1 . (7.31) 

Proof From Lemma 3.1.6, we prove Theorem 7.4.1 by showing that the systems 

z(k + 1) = Acl(k) z(k) , Acl(k) = A(k) − µ B(k)K(k) (7.32) 

are GUAS for all µ 6= 0. From Definition 7.4.1, system (7.32) is quadratically stable 

(and therefore GUAS) if there exists a P = P0 > 0 and an �2 < 1 such that 

A0 cl(k) PAcl(k) − �2 P ≤ 0 . (7.33) 

Let S = P−1 , then pre- and post-multiplying by S yields 

SA0 cl(k) S
−1 Acl(k) S − �2 S ≤ 0 . (7.34) 
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Substituting for Acl(k) and K(k), we note that (7.34) is equivalent to 

[A(k) S − µ B(k) X(k)]0 S−1 [A(k) S − µ B(k) X(k)] − �2 S ≤ 0 (7.35) 

and w.l.o.g. � > 0. Dividing by � > 0 and applying the Schur complement (7.28) 

yields that (7.35) is equivalent to ⎤⎦ 
A(k) S − µ B(k) X(k) −� S 

Since µ = α + j ω, (7.36) can be written as Q(k) = Qreal(k) + j Qimg(k) ≤ 0 where 

⎡⎣ −� S SA0(k) − µ̄ X0(k) B0(k) 
≤ 0 . (7.36) 

⎡⎣−� S Y0(k) 
⎤⎦ ⎡⎣ 0 ω X0(k) B0(k) 

⎤⎦Qreal(k) = , Qimg(k) = 
Y(k) −� S −ω B(k) X(k) 0 

and Y(k) = A(k) S − α B(k) X(k). From Lemma 5.2.1, Q(k) ≤ 0 is equivalent to 

(7.30) and guarantees that systems (7.32) are GUAS for all µ 6= 0. 

Remark 7.4.1 If a Laplacian eigenvalue µ is real, then µ = α, ω = 0, and condition 

(7.30) simplifies to ⎡⎣ −� S SA0(k) − α X0(k)B0(k) 
⎤⎦ ≤ 0 . 

A(k) S − α B(k)X(k) −� S 

Remark 7.4.2 In principle, condition (7.30) should only be applied to a finite num-

ber of systems (A(k), B(k)). Otherwise, unless restrictions on A(k) and B(k) are 

made, applying Theorem 7.4.1 will yield an infinite number of LMIs and a solution 

will not be feasible. An infinite number of LMIs can be avoided if the set of A(k) and 

B(k) lie inside a polytope for example. Then, we wish to identify a time-invariant X 

such that the conditions hold for all vertices of this polytope [85]. 

7.4.2 Guaranteed rate of convergence 

To achieve GUEC with rate ρ, we recall Corollary 7.2.1. 
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Lemma 7.4.1 The closed-loop network (7.15) achieves GUEC with rate 0 < ρ if 

conditions in Theorem 7.4.1 hold for some 0 < � < ρ. 

Proof From the proof of Theorem 7.4.1, LMI (7.30) is equivalent to (7.35). If (7.35) 

holds for some 0 < � < ρ, then �̃ := �/ρ < 1, and dividing (7.35) by ρ2 > 0 and using 

(2.8) yields h i0 ih 
˜ ˜ S−1 ˜ ˜ �2 S ≤ 0 .A(k) S − µ B(k) X(k) A(k) S − µ B(k) X(k) − ˜ 

Hence, the network of transformed systems (Ã(k), B̃(k)) achieves GUAC with K(k) = 

X(k) S−1 , and the closed-loop network (7.15) achieves GUEC with rate ρ. 

Remark 7.4.3 Lemma 7.4.1 relates the rate of convergence ρ to �. Clearly, we can 

guarantee a small ρ if � can be small, which yields the following optimization problem 

�m = inf � s.t. (7.30) for all k and µ ∈ ΛL 
S=S0>0,X(k) 

where ΛL is the set of all non-zero eigenvalues of the graph Laplacian. It is easy to 

see that LMI constraint (7.30) can be rearranged to ⎡ ⎢⎢⎢⎢⎢⎢⎣ 
0 Y0(k) 0 −ω X0(k) B0(k) 

Y(k) 0 ω B(k) X(k) 0 

0 ω X0(k) B0(k) 0 Y0(k) 

⎤ ⎥⎥⎥⎥⎥⎥⎦ ≤ � 

⎡ ⎢⎢⎢⎢⎢⎢⎣ 
S 0 0 0 

0 S 0 0 

0 0 S 0 

⎤ ⎥⎥⎥⎥⎥⎥⎦ 
−ω B(k) X(k) 0 Y(k) 0 0 0 0 S 

where Y(k) = A(k) S − α B(k) X(k). Hence, we are given a general eigenvalue 

minimization problem in standard form where the �-dependent side is positive definite. 

Thus, a solution �m ≥ 0 always exists. However, we can only achieve GUEC if �m < 1. 

It should be noted that S = S0 > 0. Hence, solutions � ≤ 0 are not feasible. 

7.4.3 Robust conditions for consensus - B(k) bounded 

LMI (7.30) depends in a linear affine fashion on the eigenvalues µ = α + j ω. 

Therefore, (7.30) will hold for all eigenvalues contained inside a polytope if it holds 
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for all vertices describing this polytope. In the following, we will describe a convex 

polytope ( 
M M 

)X X 
P = µ : µ = φi µi , φi = 1 , φi ≥ 0 

i=1 i=1 

by its M vertices that are contained in the set E = {µ1, µ2, · · · , µM }. 

Corollary 7.4.1 Suppose all non-zero eigenvalues µ of the graph Laplacian lie in-

side the polytope P with vertex set E = {µ1, µ2, · · · , µM }. Then, the closed-loop 

network (7.15) achieves GUEC with rate 0 < ρ < 1 and gain matrix (7.31) if there 

exists a matrix S = S0 > 0, an �2 < ρ2 , and for each k, there is a matrix X(k) such 

that (7.30) holds for all µ ∈ E. 

A simple polytope P is given by 

αm ≤ α ≤ αM and ωm ≤ ω ≤ ωM 

where αm, αM , ωm, ωM ∈ R. In this case, E is given by 

E = {αm + j ωm, αm + j ωM , αM + j ωm, αM + j ωM } . 

Noting the special structure of (7.30), we conclude ωm ≥ 0 from the following remark. 

Remark 7.4.4 By design, LMI (7.30) holds for some ω = ω̃ if and only if it holds 

for ω = −ω̃. 

For LMI (7.30), matrices X(k) and B(k) are multiplied by α and ω, which imme-

diately yields the following result. 

Remark 7.4.5 Suppose B(k) = b B0 for some B0 and, for all b and µ =6 0, bµ lies 

inside the polytope P with vertex set E. Then, LMI (7.30) holds for all B(k) and all 

µ 6= 0 if, replacing B(k) with B0 and µ with bµ, it holds for all bµ ∈ E. 
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7.4.4 Robust conditions for consensus - B(k) known 

Next, we present a robust result to achieve GUEC for a variety of communication 

structures where we assume that B(k) is known for all k. Related results for time-

invariant systems and quantized feedback control are presented in [53] and [55]. First, 

we have the following result. 

Lemma 7.4.2 Suppose A ∈ Rn×n , B ∈ Rn×q has rank q, P, Q ∈ Rn×n are symmetric 

with P positive definite, and µ = α + j ω 6= 0. 

(a) The following statements are equivalent 

1. There exists K ∈ Rq×n such that 

(A − µ BK)0 P (A − µ BK) − Q ≤ 0 (7.37) 

2. For ξ = α2/|µ|2 , 

A0PA − ξ A0PB (B0PB)−1 B0PA − Q ≤ 0 . (7.38) 

If, in addition, Q = �2P for some � > 0, then the above statements are also 

equivalent to the existence of K, X ∈ Rq×n such that for S = P−1 , ⎡ ⎢⎢⎢⎣ 
−� S SA0 − α X0B0 ω X0B0 

AS − α BX −� S 0 

ω BX 0 −� S 

⎤ ⎥⎥⎥⎦ ≤ 0 . (7.39) 

(b) Suppose (7.38) holds with ξ ≤ α2/|µ|2 and 

K = κ (B0PB)−1 B0PA (7.40) 

Then, (7.37) holds if 

κm ≤ κ ≤ κM (7.41) 

where p p 
κm = 

α − α2 − ξ |µ|2 

|µ|2 
and κM = 

α + α2 − ξ |µ|2 

|µ|2 
. 



118 

Proof Let 

Y = (A − µ BK)0 P (A − µ BK) − Q (7.42) 

Since B has full column rank and P is positive definite, R := B0PB is positive 

definite; hence invertible. Introducing 

K0 = R−1 B0PA, A0 = A − BK0 (7.43) 

we have 

A = A0 + BK0 (7.44) 

and 

B0PA0 = 0 . (7.45) 

Substituting (7.44) into (7.42) and using (7.45) yields 

Y = A0 0PA0 + (K0 − µ K)0 R (K0 − µ K) − Q . (7.46) 

Now, 

(K0 − µK)0 R (K0 − µK) = [K0 − (α+j ω)K]0 R [K0 − (α+j ω)K] 

= (K0 − αK)0 R (K0 − αK) + ω2 K0RK 

+ j ω[K0R(K0 −αK) − (K0 −αK)0RK] (7.47) 

and 

(K0 −αK)0R(K0 −αK) + ω2 K0RK = K0 0RK0 −αK0 0RK −αK0RK0 + |µ|2 K0RK � �0 � � 
α α 

= K0 − |µ|K R K0 − |µ|K 
|µ| |µ|� � 

α2 

K0+ 1 − RK0 . (7.48)
|µ|2 0 

Note that 

A0 0PA0 = A0PA − K0 
0 RK0 . (7.49) 

It now follows from (7.46)-(7.49) that � �0 � � 
α2 α α 
K0Y = A0PA − 0RK0 − Q + K0 − |µ|K R K0 − |µ|K 

|µ|2 |µ| |µ| 

+ j ω [K0R(K0 − αK) − (K0 − αK)0RK] . (7.50) 
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To prove part (a), we first observe that (7.37) and (7.38) are equivalent to Y ≤ 0 

and Y0 ≤ 0, respectively where 

α2 

Y0 := A0PA − K0 
0 RK0 − Q (7.51)

|µ|2 

If Y ≤ 0, then Re(Y) ≤ 0 and, since Re(Y) ≥ Y0 , we obtain that Y0 ≤ 0. If 

Y0 ≤ 0, then letting K = α/|µ|2 K0 we obtain that Y = Re(Y) = Y0 ≤ 0. 

To prove the equivalence of the third statement, we note from above that the 

existence of K such that Re(Y) ≤ 0 is equivalent to statements 1) and 2); also 

Re(Y) = (A − α BK)0 P (A − α BK) + ω2 K0B0PBK − Q . 

P−1Let S = and K = XS−1 , then pre- and post-multiplying Re(Y) ≤ 0 by S, 

dividing by � > 0 and applying the Schur complement (7.28) twice yields (7.39). 

For part (b), we substitute K = κ K0 into (7.50) and obtain 

Y = A0PA − ξ̃K0 
0 RK0 − Q 

where ξ̃ = −κ2 |µ|2 + 2 ακ. If (7.38) holds, then Y ≤ 0 for all ξ̃  ≥ ξ, that is, 

κ2 |µ|2 − 2 ακ + ξ ≤ 0 . 

This inequality is satisfied by any κ satisfying (7.41). 

Lemma 7.4.3 Suppose B(k) has full column rank for all k and there exists a µs = 

αs + j ωs such that the following conditiond hold. 

(a) κm ≤ κM where ( p ) 
α − α2 − ξ |µ|2 

κm = max 
µ∈ΛL |µ|2 

( p ) 
α + α2 − ξ |µ|2 

κM = min 
µ∈ΛL |µ|2 

(7.52) 

with 

α2 α2 

ξ := s ≤ min , α = Re(µ)
|µs|2 µ∈ΛL |µ|2 

and ΛL is the set of all non-zero eigenvalues of the graph Laplacian. 



■ 

120 

(b) There exists a matrix S = S0 > 0, an � ∈ [0, 1), and for each k there exists an 

X(k) such that ⎡ ⎢⎢⎢⎣ 
−� S SA0(k) − αs X

0(k)B0(k) ωs X
0(k)B0(k) 

A(k)S − αs B(k)X(k) −� S 0 

ωs B(k)X(k) 0 −� S 

⎤ ⎥⎥⎥⎦ ≤ 0 

(7.53) 

Then, for any κ ∈ [κm, κM ] and with 

K(k) = κ [B(k)0PB(k)]−1 
B(k)0PA(k) (7.54) 

the closed-loop network (7.15) achieves GUEC for any rate satisfying � < ρ < 1 where 

P = S−1 . 

Proof From Lemma 7.4.1 and the proof of Theorem 7.4.1, we have to show that 

[A(k) − µ B(k)K(k)]0 P [A(k) − µ B(k)K(k)] − �2 P ≤ 0 (7.55) 

for all µ ∈ ΛL and all k. The result follows from Lemma 7.4.2. If (7.53) holds, then 

(7.38) is satisfied for ξ = α2/|µs|2 and all k. If (7.38) holds, then (7.55) is satisfied s 

for all κ ∈ [κm, κM ] where K(k) is given by (7.54). 

Remark 7.4.6 In Theorem 7.4.1, the number of LMIs that have to be satisfied 

depends on the number of non-zero Laplacian eigenvalues. The LMI condition in 

Lemma 7.4.3 is independent of the number of eigenvalues. 

Remark 7.4.7 Similar to Theorem 7.4.1, condition (7.53) can yield an infinite num-

ber of LMIs. However, it is similar to (7.30) and can be solved for special cases 

(Remark 7.4.2). 

Remark 7.4.8 Similar to Theorem 7.4.1, we can state the problem as a linear min-

imization of � (Remark 7.4.3), and GUEC can be achieved with rate ρ > �m if �m < 1 

and κm ≤ κM where κm and κM are given by (7.52). 
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Remark 7.4.9 Lemma 7.4.3 separates the problem of identifying the gain matrix 

K(k) into determining a µs such that 1) κm ≤ κM , and 2) an LMI can be satisfied. 

Note that the solution X(k) is not utilized to determine K(k). Only P = S−1 is used. 

Remark 7.4.10 One can show that κm ≤ κM is equivalent to the existence of a κ 

such that |1 − κµ|2 ≤ 1 − ξ for all µ ∈ ΛL. It is desired to minimize ξ in order to 

support a large range of µ. 

Generally, we have to increase ξ = αs 
2/|µs|2 in order to obtain smaller � > 0, that is, 

smaller ρ. However, Remark 7.4.10 shows that we want ξ to be small. Thus, for a 

fixed network, arbitrary rates of convergence are not possible. This is similar to an 

observation made in Section 6.3 and 7.1.3, where it was already shown that we cannot 

always identify K(k) such that the closed-loop network (2.5)-(2.6) achieves GUAC. 

However, if systems are time-invariant, marginally stable, and stabilizable, then we 

have the following results. 

Lemma 7.4.4 ( [53]) If systems are time-invariant, marginally stable, and stabiliz-

able and B has full column rank, then for all r2 < 1 there exists a P = P0 > 0 and 

an �2 < 1 such that (7.38) is satisfied where ξ = 1 − r2 . 

Corollary 7.4.2 If systems are time-invariant, marginally stable, and stabilizable 

and B has full column rank, then GUAC can always be achieved using linear control. 

Proof From Lemma 7.4.4, for all ξ > 0 there exists a P = P0 > 0 and an �2 < 1 

such that (7.38) holds. If ξ → 0, then from (7.52), 

2 α 
0 < κ < 

|µ|2 

and we can always choose κ > 0 small enough such that κ < 2 α for all µ =6 0.|µ|2 

Clearly, if (7.38) holds for ξ̂, then it holds for all ξ ≥ ξ̂. Since we are only interested in 

solutions ξ ∈ [0, 1], we could check the bounds and apply a bisectioning procedure to 

determine ξinf for which LMI condition (7.53) has a solution. If ξ = 0, then solutions 
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exists if and only if A is stable. If ξ = 1, then the problem reduces to the standard 

DARE. 

In this thesis, since we also require κm ≤ κM , we determine an upper bound on ξ 

based on the Laplacian eigenvalues first. This is shown in the next remark. 

Remark 7.4.11 A bisectioning scheme can be used to find ξmax for which κm ≤ κM 

where κm and κM are given by (7.52). Then, Lemma (7.4.3) and Remark 7.4.8 can be 

used to check if there is a feasible K(k), which in addition would guarantee a specific 

rate of convergence. 

7.5 Simulations 

We illustrate our results with two examples. First, we illustrate the LMI approach 

presented in Lemma 7.4.3 for linear time-invariant systems. Then, we compare results 

for linear time-variant systems using the simple control design and the LMI approach. 

7.5.1 Linear time-invariant systems 

The control design presented in Lemma 7.4.3 separates the dependencies between 

the individual system dynamics and the graph associated with the network into con-

dition (7.53) and, recalling κm and κM from (7.52), κm ≤ κM respectively. There-

fore, first we solve condition (7.53) without specifying a particular network structure. 

Then, we add a communication network and show the effectiveness of the control. 

As an example, we considered time-invariant systems with dynamics 

A = 

⎡⎣0 1 
⎤⎦ , B = 

⎡⎣0 ⎤⎦ 
1 −0.5 1 

and open-loop poles −1.281, 0.781. From Lemma 7.4.3 and Remark 7.4.8, we obtained 

the unscaled control gain, h 
K0 = (B

0PB)−1B0PA = 1.000 −1.281 
i 
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⇒ L = 

⎡ ⎢⎢⎢⎢⎢⎢⎣ 
0 0 0 0 

−2 3 0 −1 

0 −1 1 0 

−2 0 −1 3 

⎤ ⎥⎥⎥⎥⎥⎥⎦ 
Figure 7.1.. Communication network with assigned edge weights 

Figure 7.2.. Simulation of four linear second-order systems achieving 
GUEC on System 1 (blue line). Note that only xi,1(k) is shown since 
xi,2(k) = xi,1(k + 1). 
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where K = κ K0 and ξinf = 0.39. [53] reported an exact bound on ξinf for single input 

time-invariant systems. Using the bisectioning scheme on the LMIs from Lemma 7.4.3, 

we approximated ξinf with an absolute error of about 1e − 5. 

The network graph and its associated Laplacian matrix are given in Figure 7.1. 

The Laplacian eigenvalues are given by µ1 = 0, µ2 = 0.80, and µ3/4 = 3.1 ± .67j. 

In this network, System 1 is a leader, and when GUEC is achieved, then the states 

of all the systems will equal that of System 1. 

For ξ = 0.39, we obtain κm = 0.276 and κM = 0.545 from (7.52). If we use the scheme 

from Remark 7.4.11, then we obtain κopt = 0.489 and ξmax = 0.626. The associated 

gain matrix K is given by (7.40), ih 
K = 0.489 −0.626 = 0.489 K0 

and guarantees a convergence rate of ρ = 0.783. 

The simulation results for random initial conditions are shown in Figure 7.2. The 

results illustrate that GUEC is achieved. For each system, we introduced an error 

ei = xi − x1 where System 1 (blue line) was the leader and its initial conditions 

governed the steady state dynamics as seen on the left side of Figure 7.2. The process 

of achieving GUEC is illustrated on the right side of Figure 7.2 where all errors decay. 

⎡ ⎢⎢⎢⎢⎢⎢⎣ 

7.5.2 Linear time-variant systems 

Here, we illustrate our results for linear time-variant systems. As an example, we 

recalled the communication network and associated Laplacian matrix L with non-
√ 

zero eigenvalues 1.5 ± j 3/2 shown in Figure 6.5. We wished to achieve GUEC for a 

network of arbitrary switching systems (A1, B) and (A2, B) in controllable canonical 

form where ⎤ ⎥⎥⎥⎥⎥⎥⎦ 

⎡ ⎢⎢⎢⎢⎢⎢⎣ 

⎤ ⎥⎥⎥⎥⎥⎥⎦ 

⎡ ⎢⎢⎢⎢⎢⎢⎣ 

⎤ ⎥⎥⎥⎥⎥⎥⎦ 
0 1 0 0 0 1 0 0 

0 0 1 0 0 0 1 0 
A1 A2 B == =, , 

0 0 0 1 0 0 0 1 

−.0075 .01 .76 −1 .022 .046 −.06 1.1 

0 

0 

0 

1 
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and the open-loop poles of A1 and A2 were given by 

A1 : −1.5, −1, 0.5, 1 and A2 : −0.2, 0.1 ± 0.3j, 1.1 

Simple control design 

Although we had a fixed set of Laplacian eigenvalues, we made use of Lemma 7.1.4. 

First, we determined an appropriate R and C such that |µ − C| ≤ R for all µ ∈ ΛL 

where ΛL is the set of all non-zero Laplacian eigenvalues. From (7.11), it is desired 

that R/C is small. Thus, we wanted to find 

Ropt µ 
= min max − 1 . 

Copt C∈R µ∈ΛL C 

For a complex conjugate pair or single µ, it is easy to show that Copt = |µ|2/α. Hence, 

min |µ|2/α ≤ Copt ≤ max |µ|2/α 
µ∈ΛL µ∈ΛL 

and even a brute-force optimization algorithm will yield sufficiently accurate results 

quickly. In our case, only one complex conjugate pair of µ was given, and we obtained 

Copt = 2 and Ropt = 1 . 

Now, we chose control K(k) such that γi(k) = −ci(k)/C, that is, h i 
K1,simple = −0.00375 0.00500 0.380 −0.500 h i 
K2,simple = 0.0110 0.0230 −0.0300 0.550 

From Theorem 7.1.1, we obtained the smallest rate of convergence for each system 

configuration (ρ1 = 0.923 and ρ2 = 0.679) by applying a bi-sectioning procedure. 

Thus, from Theorem 7.3.1, the closed-loop network of switching systems achieves 

GUEC with guaranteed rate ρ = 0.923. 
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LMI approach 

We applied Lemma 7.4.3 and Remark 7.4.8 to obtain gain matrices h i 
K1,LMI = −0.00372 0.00813 0.380 −0.701 h i 
K2,LMI = 0.0110 0.0260 −0.0312 0.350 

that guarantee GUEC with rate ρ = 0.777. 

Simulation 

We simulated the closed-loop network for different switching patterns and random 

initial conditions. First, we switched between systems for each step k (Figure 7.3) and 

observed that the frequent switching results in a stable behaviour and GUAC could be 

achieved with K = 0. Then, we simulated switching at every other step (Figure 7.4). 

GUEC is achieved in either case. The control obtained with the simple control design 

and the control obtained with the LMI approach show similar performance, which 

indicates that the simple control design is very conservative since it only guaranteed 

a rate of ρ = 0.923 but achieved GUEC much quicker. Finally, we note that systems 

were given in controllable canonical form. Therefore, the figures show the trajectory 

of the last element of each state vector xi(k) only. 
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Figure 7.3.. Simulation of three time-variant switching systems achieving 
GUEC using the simple control design (left) and the LMI approach (right) 
while switching each step. Note that only xi,4(k) is shown since systems 
are in controllable canonical form. 

Figure 7.4.. Simulation of three time-variant switching systems achieving 
GUEC using the simple control design (left) and the LMI approach (right) 
while switching every other step. Note that only xi,4(k) is shown since 
systems are in controllable canonical form. 
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