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ABSTRACT 

Dixon Hamil, K. PhD, Purdue University, December 2017. Analysis of Data of Dif-
ferent Spatial Support: A Multivariate Process Approach. Major Professor: Hao 
Zhang. 

Inherent to a spatial variable is the unit of support at which it is measured. In 

many studies, variables are observed at different support. For example, disease rates 

might be measured at an aggregated level while temperature is usually measured at 

specific points. It is still an interesting problem to study the relationship of variables 

having different support. However, it may be a different problem to statistically model 

the relationship of variables of different support, particularly when the supports do 

not have a hierarchical structure. 

Currently, cokriging, the use of one or more spatial variables to predict another 

variable, is applied to variables of the same support. In this work, I extend cokriging 

for use with variables of different support by constructing a nonparametric cross-

covariance matrix. This method is flexible as it applies to any marginal spatial model 

and is suited to large datasets because it uses latent variables which can assist with 

dimension reduction. 

The proposed nonparametric method is demonstrated with two correlated vari-

ables which are measured at different spatial units. In addition, the method is imple-

mented using two algorithms; one which yields an optimized matrix (Wang, 2011) and 

the other which produces an approximately optimized matrix but is computationally 

more efficient (Hu 2013). The results show that the method is appropriate for predict-

ing data of different support and that it outperforms some competing methods with 

respect to predictive performance. Furthermore, as expected, the approximately op-

timized matrix does not perform as well as the alternative algorithm, but it performs 

better than the comparative methods. 
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1. INTRODUCTION 

1.1 Motivation 

The spatial unit, or support, at which data gathering occurs is typically chosen 

based on the physical and financial constraints of collection balanced by the infor-

mation needed for analysis. This therefore means that data collected for different 

variables and/or by different agencies may not have the same spatial unit despite 

having been collected in the same spatial field. Additionally, over time, these units 

may change due to advancement in technology and/or changes in the boundaries of 

the region being studied. Moreover, due to limited resources, data are now being 

shared in larger quantities. As a result, data gathered from more than one source 

may not be compatible. Health outcomes, for example, are known to be related to 

socio-economic and climatic variables, but these may all be measured at different 

spatial units. Health outcomes may be measured at the county level, while socio-

economic variables may be reported by enumeration districts, and the measurements 

of climatic variables are taken at specific points. For effective policies and proper 

planning at the local, regional and global scales, this disparity must be accounted for 

in any analysis. 

In cases where the spatial units are the same but the variables are different, 

cokriging is used to improve the accuracy of predictions (Stein et al., 1988; Stein 

& Corsten, 1991; Knotters et al., 1995; Wu et al., 2009). This is especially true 

in situations where the related variables are measured at more locations than the 

variable to be predicted (Zhang & Cai, 2015). However, it is not immediately clear 

how cokriging can be applied to data of different support. 

Typically, methods such as Bayesian Hierarchical models (BHMs) (Le & Zidek, 

1992) and area-to-point (ATP) kriging methods (Kyriakidis, 2004) have been used to 
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solve this issue, but they are not always ideal. For example, when using BHMs, the 

covariance matrix is constructed by conditioning the process with the smaller spatial 

units (e.g. points) on the process with the larger support (e.g. areas) (Wikle & 

Berliner, 2005). However, this may not have a scientific interpretation if the process 

with the smaller spatial unit in not driven by the process with the larger one. This 

suggests that other methods are needed to handle this and other situations where 

existing methods may present challenges. As a consequence, I propose an alternative 

method. 

1.2 Proposed Solution 

Due to the multivariate nature of the problem, there is the need to model the 

cross-correlation between the processes. In this dissertation, I advance a method for 

constructing cross-covariance matrices for data of different support which uses the 

marginal covariance matrices for each process. Given any two stochastic processes 

and/or random fields (indexed by i), each of the covariance matrices may be written 

as Σi = AiA
0 
i. It is from this spectral decomposition of the covariance matrices that 

the cross-covariance matrix can be created. 

From Wang (2011), it is known that the cross-covariance between the partial 

realisation of any 2 spatial processes, Yi and Yj i 6= j is Cov(Yi, Yj ) = AiJij Yj 

where Jij represents the correlation between the set of latent variables from each 

univariate process and Ai is from the spectral decomposition outlined above. In order 

to construct the cross-covariance matrices presented in this dissertation, I assume that 

the correlation is nonparametric. This method is an alternative to other methods as 

it is flexible enough to be used with many types of marginal covariance functions. 

Therefore it is suitable for use with data which are measured at different levels of 

support and it does not require the variables being used in the analysis to have a 

hierarchical structure. 
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The method to create the proposed nonparametric cross-covariance matrices is 

relatively easy to implement. It is an optimization problem and the compromise 

is that once the dataset is large, the algorithm may be computationally expensive, 

especially as it relates to time. One advantage of using latent variables is that they 

assist with dimension reduction (e.g Cressie and Johannesson (2008)), thus reducing 

the potential computational issues. Additionally, the algorithm is implemented in 

parallel. 

By employing this method to real data, I show that prediction using the nonpara-

metric method to construct cross-covariance matrices yields improved results when 

compared to (i) the method using only the marginal model and (ii) the hierarchical 

model. 

1.3 Background 

Geostatistical data are spatial data that are measured at a specific point on a 

continuous physical plane and are usually referenced using a set of coordinates (e.g. 

longitude and latitude). It is also sometimes referred to as point-level data (e.g. 

temperature measured at weather stations). Conversely, lattice or areal data are 

spatial data which represent an area or can be considered as regionally aggregated 

data (e.g. disease prevalence for counties). The final type of spatial data are called 

point process data which, unlike the previously mentioned types, occur at locations 

which are random variables. An example of this is the epicentre of earthquakes. 

For the purposes of this dissertation, only the first two types of spatial data will be 

considered and the terms point and area will be used to refer to point-level data 

and lattice data respectively. These two terms will also refer to the spatial unit at 

which the data are collected. Alternatively, these may also be called the level of 

support for the data, or just support for simplicity. Due to the difference in what 

each measurement represents, an area or a point, using these data together can be 

problematic. This is issue of support has two main parts. One is the change of support 
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problem (CoSP) which focusses on relating the spatial variation of one variable with 

a given support to that of another variable with different support (Gotway & Young, 

2002). The second aspect is how to use data with different support in the same model 

(e.g. Qu, Li, Zhang, and Wang (2012), Zhu, Carlin, and Gelfand (2003), Smith and 

Cowles (2007), Zacarias and Andersson (2011)). This last part is the focus of this 

dissertation. 

1.3.1 Covariance Functions for Spatial Data 

Typically one of the main goals of the analysis of spatial data is prediction of a 

value at an unknown location. To accomplish this, researchers use kriging, a technique 

that yields an unbiased, linear predictor which also minimizes the mean square error. 

This is known as the best linear unbiased estimator (BLUP) (see Cressie (1990) for 

further details). Central to using this method of estimation, is the estimation of the 

marginal covariance function or covariogram, C(·), which measures the covariance 

between the observations of the process being examined. For C(·) to corresponds to 

a valid covariance matrix, it needs to satisfy the following properties: 

1. |C(h)| ≤ C(0) where h is the distance between two points 

2. C(·) must be positive definite. That is, for any set of locations s1, s2, . . . , sn and PP 
constants a1, a2, . . . , an then aiaj C(si − sj ) ≥ 0 

i j 

3. C(·) must be symmetric. That is, C(Y (0), Y (h)) = C(Y (h), Y (0)) for any h 

In some instances, there is a measurement error associated with infinitesimally 

small separation distances. This is referred to as the nugget effect (τ 2). In such cases, 

the covariance function becomes: 

⎧ ⎨ C(h; θ, σ2), h > 0 
C(h; θ, σ2, τ 2) = (1.1)⎩ C(0; θ, σ2) + τ 2 , h = 0 

where C(h; θ, σ2) is continuous at h = 0. 
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Covariance Functions for Geostatistical Data 

Suppose Y (s) = µ(s) + X(s) + �(s) is a Gaussian random process where µ(s) 

is the mean function which may depend on one or more covariates, X(s) measures 

the spatial dependence and �(s) is an independent normally distributed error term 

which does not have any spatial correlation. From this, let the correlation function 

between two locations s and t be defined as C(s, t) = Cov(Y (s), Y (t)). Additionally, 

let h be equal to the distance between any two locations s and t. The process is 

considered second-order stationary if the mean is a constant (i.e. E(Y (s)) = µ) and 

the covariance function only depends on the difference between the two locations (i.e. 

Cov(Y (x), (Y s) = Cov(Y (0), Y (s−x)). Furthermore, the process is called isotropic if 

the covariance function of the process only depends on the absolute distance between 

the two points. 

One popular and flexible family of covariance functions is called the Matèrn co-

variance function which is only dependent on the distance between two locations (h). 

This covariance function is given by 

� �ν � � 
σ2 khk khk 

C(h; σ2, φ, ν) = Kν , h ∈ Rd, ν > 0 (1.2)
2ν−1Γ(ν) φ φ 

where ν is the parameter which controls the smoothness of the process, φ is the range 

parameter which measures the distance at which the data are no longer correlated, 

σ2 is the variance of the process, Γ is the gamma function and Kν is the modified 

Bessel function of the second kind. Special cases of this family are: 

• ν = 0.5 - Exponential - C(h) = σ2 exp −(h/φ) 

• ν = 1.5 - C(h) = σ2(1 + h) exp −(h/φ) 

• ν →∞ - Gaussian - C(h) = σ2 exp −(h2/φ) 

Other families of covariance functions include the Powered Exponential family and 

the Spherical family; the latter being a covariogram family with compact support. 
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Covariance Functions for Lattice Data 

In contrast, when spatial data are measured in aggregate over fixed discrete di-

visions (areas), models for Gaussian Markov Random Fields (GMRF) are most ap-

propriate (Haran, 2011). Two of the most frequently used models are the conditional 

autoregressive (CAR) and the simultaneous autoregressive (SAR) models (Held & 

Rue, 2010). 

The SAR model assumes that Y ∼ N(0, σ2(I − ρW )−1(I − ρW 0)−1) where W is 

the proximity matrix with wij denoting the proximity of location i to location j, ρ 

captures the spatial correlation, σ2 is the variance of the process and Y is the vector 

of partial realisations. In this case, it is assumed that the value for any given area is 

dependent on its immediate neighbours. On the other hand, the CAR model assumes 

that the value for a given area is conditional on all the other areas in the region 

being studied. As a result, Y ∼ N(0, σ2(I − ρW )−1D), where all the parameters are 

defined as above, and D is a diagonal matrix with dii = σ2 
and wi+ is the number wi+ 

of neighbours of area i. Researchers tend to use the CAR model more frequently 

because its dependency structure is applicable to many situations (Banerjee et al., 

2015a). 

The proximity matrix may be chosen using methods which utilize neighbours or 

distances. In either case, the matrix is generally binary with wij = 1 if i and j are 

neighbours (denoted by i ∼ j) and 0 otherwise and this relationship is symmetric. 

Typically for a CAR model, the proximity matrix is created based on neighbours, 

while the SAR model may use either method. There are three common ways of 

determining whether i is a neighbour of j. The rook, bishop and queen (king) methods 

are based on whether the neighbouring areas share a non-zero edge, a vertex (point) or 

both (Figure 1.1). Alternatively, if the distance between the centre of area i and area 

j is less than some threshold d, then i and j are considered neighbours. An extension 

of this is the k-nearest neighbour option, which ranks the centroid distances and the 
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first k are labelled as neighbours. It should be noted that area i is not a neighbour 

of itself using any of the above-mentioned methods. 

Figure 1.1. Proximity Options for Contiguous Areas 

Multivariate Covariance Functions 

In the case of cokriging, the BLUP is given by 

Ŷ 
1(s ∗ ) = E(Y1(s ∗ )) + k0ΣY 

−1(Y − E(Y)) (1.3) 

where E(Y1(s ∗)) is the mean of Y1 at location s ∗ , k0 is the spatial covariance of the 

multivariate process at the location to be predicted and the locations that are ob-

served. Σ− 
Y 
1 is the precision matrix, which is the inverse of the multivariate covariance 

function and Y is the partial realization of the process. 

This covariance matrix, Σ− 
Y 
1 , has two main components - the direct (marginal) 

covariance functions for each of the processes and the cross-covariance function which 

describes the covariance structure between different processes. The estimation of 

this cross-covariance function is one of the main concerns when cokriging is used 

(Guhaniyogi et al., 2013). Although the cross-covariance function may not necessarily 

be symmetric, and therefore not positive definite, one property which must be satisfied 

is that Cii(0)Cjj (0) ≥ Cij 
2 (h) for any two processes i and j. 
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In the case of geostatistical data, there are three main methods used to model 

the cross-covariance matrix. Given a variance function V , the Proportional Model, 

Cij = Vij ρ(h) assumes that the direct and cross-covariance functions are all pro-

portional to the same basic spatial correlation function (Wackernagel, 2003). A 

more flexible model, is the Linear Model of Coregionalization (LMC). In this case, 
KP 

C(h) = Vkρk(h) (Goulard & Voltz, 1992; Gelfand et al., 2004). The third method 
k=1 

is the Multivariate Matèrn (Gneiting et al., 2010) which assumes that the direct and 

cross-covariance functions are all in the Matèrn family (see 1.2). 

The Multivariate CAR model (MCAR) is typically used to model cross-covariance 

functions for lattice data. As with the univariate model, the full conditional distri-

butions are used to determine the joint distribution. Another method, Smoothed 

ANOVA (SANOVA) (Zhang et al., 2009) is sometimes used as the complex covari-

ance structures needed for MCAR, may be difficult to determine based on the given 

dataset (Banerjee et al., 2015b). Despite this, the flexibility of MCAR, including 

its diverse class of models, is more attractive and is therefore usually the method of 

choice. 

1.3.2 Nonparametric Cross-Covariance Functions 

Due to the complexities involved in modelling cross-covariance functions, one ap-

proach that has been used in recent times is the semiparametric method (Wang, 

2011). The main idea is to create a multivariate covariogram model using a given set 

of marginal models. The technique first assumes that each individual process, Yi(s), 

is Gaussian having zero mean and a covariogram which belongs to a parametric fam-

ily. Once the appropriate univariate model is determined and the estimates for each 

are obtained, a set of latent variables for each process is created. Finally, the non-

parametric cross-covariogram is constructed using the correlation between the latent 

variables from each of the univariate processes. One of the key underlying assump-

tions of this method is that the multivariate spatial process can be approximated by 
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a finite weight sum of independent and identically distributed (i.i.d.) N(0, 1) random 

variables and that there is either no correlation or perfect correlation between the 

random variables related to each process. While this method can be computationally 

expensive when the dataset is large, the main advantages is that the joint covariance 

matrix is positive definite and that it can be used with a wide range of marginal 

covariance functions. 

1.3.3 Change of Support (CoSP) 

Innate to spatial measurements is the support, which is the spatial unit at which 

data are measured. This support, may be points or polygons/areas. The choice of 

these spatial units is solely determined by the researcher or organisation collecting the 

data. As a result, there are a myriad of options. For example, temperature is typically 

measured at specific points, while disease incidence is reported by area. There are 

many choices for the definition of areas and these are usually defined by convenience. 

As an illustration, administrative units are defined by the main agency which uses 

them. Therefore units such as postal codes, census tracts, police divisions, electoral 

divisions, and counties may not have the same boundaries and they may or may 

not overlap. Additionally, over time, some boundaries change based on population 

distribution and/or other factors. Furthermore, in some industries (e.g. mining, 

Matheron (1963)) data can only be measured at specific points, but conclusions are 

needed based on predictions of a given area. This, coupled with the difference in 

spatial units, require the use of methods to make predictions at different levels of 

support. 

The CoSP phenomenon occurs across many disciplines and sub disciplines, includ-

ing economics, ecology, sociology, public health and epidemiology. This has resulted 

in many names being used to refer to this concept (Gotway & Young, 2002). These 

include, but are not limited to, multiscale modelling, spatial data transformations, 

spatially misaligned data, ecological inference, Openshaw and Taylor’s (1979) modi-
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fiable area unit problem (MAUP), spatial data transformations and multiresolution 

modelling (Gotway & Young, 2002). 

One of the main methods used to handle this type of mismatched data is to use 

Monte Carlo Markov Chain (MCMC) along with Kriging (Gelfand & Carlin, 2001). 

In this situation, the spatial process Y (s) is assumed to be normally distributed and 

MCMC methods are used to obtain the parameter estimates for the covariogram. 

This technique therefore assumes that the spatial process at the point or area being 

predicted is conditional normal given Y (s). The method has been applied to point-to-

point, point-to-area, area-to-point and area-to-area predictions, even when the area, 

sometimes referred to as blocks, are not all of the same size and/or of irregular shape. 

Some of the advantages of this approach include its flexibility for isotropic and ge-

ometrically anisotropic forms and it does not require the process to be stationary. 

Finally, it can easily be extended to spatio-temporal models. Despite this, one con-

straint is that the technique requires that all locations are measured at the same set 

of times for spatio-temporal models. 

1.4 Structure of the Dissertation 

This dissertation is divided into four main parts. Chapter 2 gives a review of the 

change of support problem, its solutions and the methodology that has been developed 

to handle models which use data of different support. The third chapter, which is 

the main contribution of this paper, outlines the methodology used to develop the 

nonparametric cross-covariance matrices for data of different support, while Chapter 

4 looks at the application of the methodology that I developed to forestry data. 

Here, the performance of the proposed method will also be compared to already 

existing techniques. The final chapter summarizes the advantages and limitations of 

the presented approach and discusses the direction of future work in this area. 
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2. CHANGE OF SUPPORT METHODOLOGY AND 

APPLICATIONS TO VARIABLES OF DIFFERENT SUPPORT 

2.1 Introduction 

The term scale has various interpretations in different arenas (Turner, 1989; Dun-

gan et al., 2002; Wu, 2004) and is sometimes used ambiguously (Atkinson & Tate, 

2000). One key meaning of scale is spatial extent, which refers to the area where data 

are collected (e.g. 1 hectare plots versus 50 hectare plots). This type of differences 

in scales is directly related to the modifiable area unit problem (MAUP) which often 

occurs in ecology (Openshaw, 1983; Jelinski & Wu, 1996; Dark & Bram, 2007). An-

other key meaning, and the focus of this study, is spatial support which refers to the 

shape, size/geometry (eg. volume) and orientation of measurements in a given space 

(Gotway & Young, 2002; Gelfand, 2010). 

Issues of support can be divided into two main areas. The first aspect looks at the 

estimation of values for one support given that measurements are available at another 

level of support. An example of this is using point-level temperature data obtained 

from weather stations within a defined area to estimate the temperature for that area 

as a whole. This is referred to as the change of support problem (CoSP), which is 

concerned with making conclusions at one spatial scale given that the observations for 

the process of interest are made at another spatial scale. Despite this problem being 

applicable in many disciplines, it originated in mining where there is the need to iden-

tify profitable areas (blocks) to mine but due to physical and economic constraints, 

data is only available at specific points (Matheron, 1963; Cressie, 1990). 

The second, but less studied, issue is how different variables of different support 

may be used to make predictions for one variable. An example is the use of climatic 

measures (point-level data) to assist in the prediction of health outcomes (area data). 
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This chapter outlines the solutions and applications for each of these two areas. 

2.2 Change of Support Methodology 

Change of Support (CoS) methodology looks at solutions to one of three types 

of predictions for different data levels. The first is aggregation, otherwise called 

upscaling, which deals with using finer level data to obtain values for a course area. 

This could include manipulating point-level to predict area values, or using small areas 

to predict the values for a larger area. In this case, all the small areas are contained 

in the larger area being predicted. Conversely, disaggregation or downscaling, is 

concerned with using area data to make predictions at the point level, or for smaller 

areas. Finally, side scaling, which is also called the overlapping units problem, focusses 

on obtaining predictions for one area given another in cases where the boundaries for 

the areas overlap. 

The methods used to solve these CoSPs fall into five main categories. Some 

methods are able to produce results for all three types of data changes, while others 

are designed to only solve a subset of these issues. When considering solutions to the 

CoSP, the following 10 criteria should be taken into consideration (Gotway Crawford 

& Young, 2005). The methods should: 

1. Explicitly account for different levels of spatial support; 

2. Be able to be utilised for different requirements such as upscaling (aggregation), 

downscaling (disaggregation) or side-scaling (overlapping units); 

3. Result in smooth predicted surfaces across the boundaries for the units being 

predicted; 

4. Produce accurate estimates of the standard error of the predictions; 

5. Be able to incorporate covariates to improve predictions; 
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6. Be able to be used with different types of data - continuous or discrete (e.g. 

counts, averages, binary data); 

7. Produce predictions which lie in the parameter space. That is, the resulting 

predictions should not be negative if the values should only be positive; 

8. Be consistent across scales. Specifically they should satisfy the mean balance 

property (Huang et al., 2002) or the pycnophylactic property (Tobler, 1979), 

depending on whether the data is being aggregated or disaggregated. For ex-

ample, given a series of areas, the predictions for a given area should sum to the 

observed point data observed within that area (the mean balance property); 

9. Be based on the distributional assumptions and the paucity of the model; 

10. Be reasonable from a computational perspective. 

It should be noted though, that solutions may not be able to achieve all the afore-

mentioned criteria, but they should aim to attain as many as possible. 

Additionally, it is also important to note that the shape of the sampling distribu-

tion density curve for point data and area data are different (Matheron & Kleingeld, 

1987) therefore aggregation, smoothing and/or averaging of data increases spatial ho-

mogeneity which can modify the size and/or direction of associations (Cressie, 1996; 

Wang et al., 2016; Shafran-Nathan et al., 2017). 

There have been a wide range of techniques that have been proposed as solutions 

to the CoSP. Some can be grouped into categories, while others are stand alone 

methods. The review that follows, examines five of these methods. 

2.2.1 Trivial Solutions 

According to (Gelfand, 2010), there are two main methods that fall into this 

category. The first is what has been termed block averages, where the average of 

the values for all of the data at given points, Y (si), which are located in a given 
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block, Bi, are averaged to represent the block value. Although this method is both 

computationally efficient and easy to implement, it requires that at least there is one 

point in each block. Additionally, it ignores the spatial process of the observations in 

and outside of the block of interest. 

Another method is to use the point data, Y (si), within a given block, Bi, to 

predict the value at the centre of the block. This is then used to represent the block 

value. While this method uses spatial correlation to predict the centroid and is still 

computationally efficient, the value obtained may not only be biased for the block 

average, but it has a larger variability. 

2.2.2 Smoothing 

Spatial smoothing, also called surface methods (Fisher & Langford, 1995), are 

concerned with area-to-point predictions, where given block values, Y (Bi), predictions 

for points, Y (si), can be obtained. This is typically used with socio-economic and 

population variables, as individual point information is not always available due to 

privacy laws. Despite some of the constraints outlined below, these methods are 

generally easy to implement and to obtain measures of uncertainty, while also being 

constrained to be aggregate consistent. Additionally, they explicitly consider support 

and some allow for the inclusion of covariates (Brillinger, 1990; Müller et al., 1997). 

It should be noted that one of the disadvantages of all these methods, is that it is not 

suitable for upscaling or side-scaling. 

Choropleth map 

The choropleth map is the simplest method for addressing area-to-point change 

of support, as it is typically implemented in geographical information systems (GIS). 

The method is ideal if the the spatial distribution of the point values is unknown. 

Despite this and the use of spatial correlation at the area level, failure to assume the 

dependence of point values is problematic (Kyriakidis, 2004). 
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Support adjusted locally weighted regression 

Support adjusted locally weighted regression is a strategy which explicitly ac-

counts for the differences between areal and point support. The main assumption 

is that there is spatial areal independence but there is spatial correlation between 

predicted points within a given block (Brillinger, 1990, 1994; Müller et al., 1997), 

while also assuming that the process varies smoothly across blocks. Due to the areal 

independence but point dependence assumption, this method may not yield aggregate 

consistent predictions (Kyriakidis, 2004). 

Kernel smoothing 

A related technique to support adjusted locally weighted regression is kernel 

smoothing, which uses intercentroid analysis and is typically applied to the prediction 

of population estimates (Bracken & Martin, 1989; Martin, 1996). One criticism of 

this technique is the main assumption that, for a given area, the value can be col-

lapsed into point data, which is typically located at the centre of the area (Kyriakidis, 

2004). 

Pycnophylactic Interpolation 

Laplacian smooth pycnophylactic interpolation (Tobler, 1979) is a method of area-

to-point spatial interpolation where the estimated point values are determined by 

Laplace’s partial differential equations and some predetermined boundary conditions. 

The general method is to superimpose a fine grid of equally spaced points over the 

area of interest and the values of the density at each point are calculated. Once these 

are obtained, Dirichlet’s integral is used as the smoothing function. This integral 

imposes the pycnophylactic and non-negativity constraint. 

Although this method ensures that the predictions are aggregate consistent, this 

property makes it difficult to adjust for covariates and to obtain valid measures of 
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uncertainty. It should be noted though that the Brillinger version of this method may 

not satisfy the pycnophylactic property. Additionally, the method uses a regular grid 

of predicted locations but this has been relaxed by (Rase, 2001). Finally, pycnophy-

lactic interpolation is effective when it is reasonable to assume that the variable is 

smooth over space but is not appropriate when the variable is abruptly discontinuous 

in spatial distributions, as often occurs with social and economic data (Flowerdew & 

Green, 1992). 

2.2.3 Regression Methods 

This technique is typically used when data are collected on one areal unit, called 

source zones, but predictions are required at another areal unit, referred to as target 

zones, which are not necessarily aligned with the source units. The boundaries of both 

sets of zones therefore do not necessarily meet, for example postcodes and wards in 

Preston, Lancashire, UK (Flowerdew & Green, 1992) and counties and hydrologic 

basins (Goodchild et al., 1993). 

The method assumes a regression model for ancillary variables and the variable of 

interest, so as to obtain better estimates from areal interpolation, while treating data 

for the variable that is to be predicted as missing variables (Flowerdew & Green, 

1989, 1992). These predicted values are obtained using an iterative process. In 

order to reasonably estimate the relationship between the ancillary variables and the 

one to be predicted, an appropriate probability distribution must be selected for the 

target variable. Additionally, the pycnophylactic constraint must be satisfied. This 

procedure has been applied to count data (Flowerdew & Green, 1989, 1994), binomial 

data (Flowerdew et al., 1991; Green, 1990) and continuous variables (Flowerdew & 

Green, 1992). This last application can require the use of the EM algorithm to obtain 

the predicted values, as in the case of housing prices (Flowerdew & Green, 1992) 

and may require the identification of one or more acceptable underlying continuous 

surfaces (Goodchild et al., 1993). 
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This method has the advantage of being able to accommodate covariates and 

different types of variables, whether they be discrete (count or binomial) or con-

tinuous. Moreover, the technique is computationally efficient and relatively easy to 

implement. However, due to the pycnophylactic constraint and the iterative pro-

cess, accurate measures of uncertainty are not produced (Gotway Crawford & Young, 

2005). Additionally, neither the support of the units nor the correlation between the 

areas within a zone are considered. 

2.2.4 Multi-Scale Tree Models 

Multi-scale tree models, classed as hierarchical models, views different resolutions 

as nested, where one resolution, or level of support (a parent) is associated with several 

children which are at smaller levels of support (Wikle, 2003). Therefore each level of 

this system, called a tree, corresponds to a different resolution or spatial scale. The 

algorithm is based on dynamic models defined on a hidden multivariate Gaussian 

tree-structured process (Chou et al., 1994) which is a suitable alternative to other 

hierarchical models when the volume of the density of the spatial data and/or the size 

of the target zone is so large that standard techniques are not suitable (Wikle, 2003). 

The technique is based on the Kalman filtering algorithm (also called linear quadratic 

estimation (LQE)) which uses time series observations that have statistical noise and 

other inaccuracies to obtain estimates of unknown variables. The adaptation of this 

technique to spatial problems has been termed change-of-resolution Kalman filtering 

(Chou et al., 1994) and can sometimes be referred to as multi-resolution spatial models 

(MRSM) (Johannesson et al., 2007). 

The tree structure (Figure 2.1) is defined based on the centroid of a resolution 

where each parent node has children. If a node has no children, then it is called 

a leaf, while if no children spawned a node, then it is called the root. Based on 

these definitions, the algorithm has two steps (Chou et al., 1994). The first is the 

uptree (leaves to root) filtering step where the optimal predictor of a specific node is 



18 

computed recursively based on the data observed both at that node and any of its 

descendants. It therefore results in the root being estimated based on all available 

data. The second step is the downtree (root to leaves) smoothing. This part of the 

method recursively computes the optimal predictor for each node from the root to 

leaves based on all of the data. 

Figure 2.1. Spatial Tree Structure (Source: Gotway & Young, 2002) 

The main idea is to assume that the observed data, Z(s), are related to the vector 

to be predicted, X(s), also called the state vector, by (2.1). 

Z(s) = K(s)X(s) + �(s) (2.1) 

where K(s) is a n × m deterministic selection matrix that relates the observed mea-

surements to those to be predicted, while �(s) is white noise independent of X(s). 

The state vector, X(s), is then assumed to be related to its parent through another 

deterministic function Φ(s) (2.2) 

X(s) = Φ(s)X(ps) + η(s) (2.2) 

where X(ps) is the parent node of X(s) and η(s) is white noise that is independent 

of X(ps). 

The method has been extended to satisfy the mass balance property and accommo-

date nonstationary spatial dependence (Huang et al., 2002) and to include temporal 

components at a course resolution(Johannesson et al., 2007). Areas of application 
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include modelling of ocean surface height (Fieguth et al., 1995), image restoration 

(Banham & Katsaggelos, 1996) and remote sensing (Huang et al., 2002; Simone et 

al., 2002). 

The main appeal of spatial tree models is its computational efficiency due to the 

recursive nature of the Kalman filter which means that the order of computation is 

proportional to the number of nodes at the finest level (Gotway & Young, 2002; Huang 

et al., 2002). Furthermore it incorporates spatial dependence while also providing 

measures of uncertainty associated with the predictions. Despite its attractiveness, 

it does not explicitly account for changes in support that may occur with changes 

in resolutions (Gotway & Young, 2002) and statistical parameter estimation may be 

difficult (Gotway Crawford & Young, 2005). Finally, there has been no extension to 

cases where the spatial scales may overlap. 

2.2.5 Geostatistical Methods 

Overall, Geostatistical methods have proven to be quite helpful especially when 

profitability is of key importance (Cressie, 1991) (e.g. the mining industry). These 

methods are so named because they focus on modelling the covariance function for 

the support of interest. 

Block Kriging 

Block kriging is one of the most used methods for point-to-area predictions (Burgess 

& Webster, 1980; Carroll et al., 1995; Kern & Coyle, 2000; Cressie, 2006; Young et 

al., 2008; Keshavarzi et al., 2011; Ross et al., 2013; Wang et al., 2014; Kang et al., 

2017). The procedure uses data which have been observed at specific points to predict 

the average of the process at the area level while accounting for shape, size and the 

orientation of the blocks (Journel & Huijbregts, 2003; Chilès & Delfiner, 2012). 

Assume that data are available for a specific variable Y (s) at a set of known 

locations, where s varies continuously over a given spatial domain D. Also assume 
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that Y (s) has mean µ(s) and covariance Cov(Y (si), Y (sj )) = C(si, sj ) and that there 

is an area B which has a given volume which is also a subset of the domain D. Y (B) 

can then be written in terms of point data such that Z 
1 

Y (B) = Y (s)ds (2.3)
|B| 

B 

and Z Z 
1 1 

Cov(Y (Bi), Y (Bj )) = Cov(u, v)dudv (2.4)
|Bi| |Bj | 

Bi Bj 

The point-to-area covariance is therefore given by Z 
1 

Cov(Y (Bi), Y (sj )) = Cov(u, v)du (2.5)
|Bi| 

Bi 

with universal block kriging predictor equal to 

nX 
Ŷ (Bi) = λjY (sj ) (2.6) 

j 

where λj are the optimal weights which minimise the prediction mean square error 

and sj ∈ Bi for j = 1, . . . , n. 

Overall this method is flexible as it can accommodate different covariance models 

and different methods of parameter estimation. Furthermore, it can be extended 

to area-to-area kriging. Despite these advantages, it can become computationally 

expensive as the technique involves the inversion of large matrices which is of O(n3). 

It is also is only applicable for upscaling. 

Disjunctive Kriging (DK) 

Although other change of support models exist (eg. affine correction and log-

normal models (Journel & Huijbregts, 1978; Matheron, 1978; Journel, 1980; Isaaks 

& Srivastava, 1989 in Machuca-Mory, Babak, and Deutsch (2008))), the disjunctive 

kriging (DK) model is the most frequently used. Disjunctive kriging is a technique 
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which uses a bivariate probability model to estimate a given function (Ortiz et al., 

2005). If a specific bivariate assumption is used, this can be achieved through the use 

of isofactorial models which are constructed using factorial decompositions of trans-

formed distributions into polynomials with an orthonormal base (Machuca-Mory et 

al., 2008). Due to the fact that the resulting random variable are uncorrelated, the 

optimal estimate is obtained by simple kriging each component (Ortiz et al., 2005). 

This is a distinct advantage of this technique. This method is typically used to solve 

the point-to-block and the block-to-block change of support scenarios and can be used 

for different types of variables (discrete and continuous). 

Isofactorial models, as presented in (Wackernagel, 2003) model the bivariate dis-

tribution of any two points which lie in the domain of a stationary random function. 

Although they were developed in Quantum Mechanics, they have been used by statis-

ticians for Markov processes and specifically in the field of Geostatistics since 1973 

(Matheron, 1984). The model is given by (2.7) 

∞X 
F (dyx, dyx+h) = F (dyx)F (dyx+h) Tk(h)χk(Yx)χk(Yx+h) (2.7) 

k=0 

where Tk(h) is the correlation function between a pair of points; χk are the orthonor-

mal polynomials; F (du, dv) is the symmetric bivariate distribution; and F (du) is the R 
marginal distribution given by F (du, dv). 

v 
There are three types of isofactorial models - two extreme models and one interme-

diate model. The extreme models are the diffusion type, which are used for processes 

which gradually change from one location to another, and the mosaic type, which 

are used in situations where within a given block the process is relatively constant 

but exhibits sudden changes between blocks. There are also two intermediate mod-

els which allow for both diffusion and mosaic type conditions in one model. These 

are the Barycentric and Beta models. The Barycentric model includes a measure of 

dissemination (β ∈ (0, 1)), where 0 is the diffusion model and 1 is the mosaic model. 

The general method has five main steps (Machuca-Mory et al., 2008; Ortiz et al., 

2005): 
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1. Transform the original data using the appropriate score transformation (e.g. if 

transforming to Gaussian, use the normal score transformation); 

2. Fit the variogram model for the original data and calculate the variance of the 

block support, γ̄(v, v), which is the average of the variogram within the block; 

3. Fit the distribution of the transformed data using the relevant polynomials 

(Table 2.1 (Wackernagel, 2003)); 

4. Calculate the new distribution for the block support in terms of the relevant 

polynomials; 

5. Transform the polynomial-expanded distribution for the block support back to 

the original units. 

In the case of the Barycentric model, the estimate of β, the effective measure of 

dissemination (βeff ), is calculated between Steps 1 and 2. 

Table 2.1. 
Isofactorial Models and Related Polynomials 

Type of Model Transformation Related Polynomials 

Diffusion 

Gaussian 

Gamma 

Beta 

Hermite 

Laguerre 

Jacobi 

Mosaic 

(infinite # of states) 

Poisson 

Negative Binomial 

Charlier 

Meixner 

Mosaic 

(finite # of states) 

Binomial 

Jacobi 

Anti-Jacobi 

Krawtchouk 

Discrete Jacobi 

Anti-Jacobi 

Unfortunately, due to the complexity of the technique and difficulty of the related 

literature (Ortiz et al., 2005; Verly, 1983), disjunctive kriging is not used as often as 
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other methods. Additionally, these methods assume a fixed-size unit of prediction, 

which is not practical. Also, using the orthonormal expansion is known to have related 

convergence issues (Verly, 1983). Conversely, this method allows for the prediction of 

non-linear functions and reduces the computational requirement because predictions 

of each polynomial are executed using separate kriging systems. Moreover, measures 

of uncertainty are also generated by this technique (Gotway & Young, 2002). 

Other Non-Linear Geostatistical Methods 

Along with disjunctive kriging, there are other non-linear methods which assist 

in solving the change of the support problem. Although opting to look for the best 

estimator (minimum variance estimator) within both the linear and non-linear fam-

ilies will result in a gain in accuracy, it should be noted that the use of non-linear 

estimators is accompanied with more complex execution and stronger requirements 

(Journel & Huijbregts, 2003). Most of the methods in this category focus on obtaining 

the required estimates by modelling the conditional cumulative distribution function 

(ccdf) using either a parametric or nonparametric approach (Goovaerts, 2001). 

The first of these methods is the multi-Gaussian approach where point data is 

transformed into Gaussian data and then the attractive properties of the conditional 

normal distribution are used to obtain estimates. In this procedure, the blocks to be 

predicted are discretized into points, uj 
0 , and the block value is approximated using 

N1 P 0Z(B) ≈ Z(uj ). The point data values are then transformed into Gaussian 
N j=1 

variables using the relationship Z(s) = φY (s), where φ is based on the normal score 

transformation. Then the ccdf is estimated using simulation and the fact that 

NX1 
FB(z|Z) ≈ P ( Z(u 0 ) < z)|Z(s1), . . . , Z(sn) (2.8) jN 

j=1 

NX 
≈ P ( φ(Y (u 0 )) < Nz|Y (s1), . . . , Y (sn) (2.9)j 

j=1 
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NP 
where FB (z|Z) is estimated as the proportion of vectors satisfying φ(Y (uj 

0 )) < Nz. 
j=1 

Once these are obtained, the ccdf is back-transformed to obtain the ccdf of the original 

variable (Goovaerts, 2001; Gotway & Young, 2002). The multi-Gaussian approach 

is appealing because it is easier to execute than disjunctive kriging while providing 

consistent solutions. Furthermore, in a simulation of ore deposits, it provided slightly 

better precision than other non-linear methods (Verly, 1983). Alternatively, despite 

the non-linear nature of estimation, the values are averaged linearly in space, which 

may not be a reasonable transformation for some variables (e.g. hydraulic conduc-

tivity). Additionally the Gaussian assumption may not be valid for all variables (e.g. 

variables in soil science). Finally, there may be the need to allow for spatial depen-

dence at very small or very large values (e.g. soil pollution (Goovaerts, 1999) which 

is not accommodated by this technique. All these limitations are discussed in further 

detail by (Goovaerts, 2001). 

Another non-linear approach has been called indicator kriging, which builds on 

the methodology from the multi-Gaussian method but instead focusses on character-

ising the spatial variability of indicator functions. First, the block is discretized and 

Z(u0 j ) is simulated at each node. The simulated block values are then approximated 

using the same aggregation technique utilised in the multi-Gaussian approach. Each 

observation is then transformed into a set of K indicator variables which correspond 

to K threshold values such that I(Z(B1) ≤ z), . . . , I(Z(Bn) ≤ z) where ⎧ ⎪⎨1 if Z(B) ≤ z 
I(Z(B) ≤ z) = (2.10)⎪⎩0 otherwise 

The K ccdf values are then estimated by kriging the indicator data and the final result 

is calculated by interpolating or extrapolating the estimated probabilities (Journel, 

1983; Goovaerts, 2001; Gotway & Young, 2002). This technique has been used in 

estimating the spatiotemporal distribution of hydrogen-ion deposits (Bilonick, 1988) 

and developing map classification schemes (Solow, 1986). 
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One advantage of this method is that there is no assumption about the underlying 

distribution of the data. However, the technique tends to yield worse approximations 

to the conditional expectation than its disjunctive kringing counterpart and the sys-

tem of kriging equations can be large (Cressie, 1991). 

Area-to-Point (AtP) Kriging 

Kyriakidis (2004) developed a statistical smoothing method called Area-to-Point 

(AtP) kriging. It has been applied to soil science (Goovaerts, 2010; Schirrmann et al., 

2012; Kerry et al., 2012), medical geography (Goovaerts, 2010), crime data (Kerry et 

al., 2010) and hedonic pricing models (Yoo & Kyriakidis, 2009). 

AtP kriging is the counterpart of block kriging where area data are assumed to 

be a linear combination of point measurements within the areas. In AtP kriging, the 

system of normal equations uses the average between-block semivariances and the 

block-to-point semivariances which are calculated from the discretized points. To do 

this, the point semivariogram needs to be estimated using an iterative semivariogram 

deconvolution (Journel & Huijbregts, 2003; Goovaerts, 2008) since only the variogram 

for the area data is known. The deconvoluted point semivariogram is then regularized 

and used to obtain the AtP kriging. This method maintains pycnophylatic property 

while also allowing for the inclusion of covariates. Despite these properties, model ac-

curacy decreases when the subsamples are not regularly distributed over the sampling 

areas (Schirrmann et al., 2012). 

Bayesian Hierarchical Models (BHMs) 

A Bayesian alternative to kriging was first introduced by Le and Zidek (1992) 

where analysis was restricted to linear interpolation because, in this case, the approach 

depends on the prior distributions only through the first and second moments. The 

proposed method followed the basic structure of Bayesian analysis, where in the 

first level of the hierarchy, the spatial covariance function is left unspecified and the 
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uncertainty about this function is accounted for in the second level through the priors. 

If necessary, additional levels can be incorporated into the analysis. This approach 

though, did not account for differences in support and focussed on the use of Gaussian 

variables, therefore resulting in a Gaussian joint distribution. 

Due to the proliferation of ecological research and GIS information being recorded 

using different regional boundaries, there is a demand for methods which allow re-

searchers to use information from misaligned sources with non-Gaussian data. The 

Bayesian hierarchical approach lends to such situations due to its flexibility espe-

cially as it relates to the choice of likelihoods and priors. The technique has therefore 

been applied to population interpolation over misaligned regions (Mugglin & Carlin, 

1998) and the prediction of surface wind fields using simulated data and geographic 

models (Berliner et al., 2003). It has also been extended to include a temporal com-

ponent (Wikle et al., 2001; Gelfand & Carlin, 2001) which can also incorporate point 

referenced and areal data types of mismatches (Wikle & Berliner, 2005). 

According to (Gelfand & Carlin, 2001), if YS 
0 = (Y (s1), . . . , Y (sn)) in a contin-

uous spatial process, S ∈ D, observed at locations si, i = 1, . . . , n then YS 
0 |β, θ ∼ 

N(µs(β), Hs(θ)), where β is the mean trend and θ is the parameters for the station-

ary covariance function. Given that predictions, Y (B), are needed at the areal level 

B ∈ D but not necessarily a subset of S, then YB |YS , β, θ ∼ N (µ ∗ (β), H∗ (θ)) whereB B 

µ ∗ (β) = µB (β) + H 0 (θ)H−1(θ) (Ys − µs(β)) (2.11)B s,B s 

H ∗ (θ) = HB(θ) − H 0 (θ)H−1 (2.12)B s,B s (θ)Hs,B (θ) 

A set of locations, l = 1, . . . , Lk are then selected uniformly and independently for 

each block Bk to predicted. Once priors are selected for β and θ, f̂(YB |Ys, β, θ) is 

calculated using Monte Carlo integration and samples taken from this distribution. 
1 P 

Finally, Ŷ (Bk) = Y (skl). This can also be extended to the spatiotemporal case. 
Lk l 

This method is attractive because it uses solid statistical theory while being able 

to accommodate more complex models which account for different levels of support. 

It is also easily extended to spatio-temporal models. Additionally, it is flexible for 
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isotropic and geometrically anisotropic forms and it does not require the process to 

be stationary. Furthermore, it has the advantage of the resulting posterior predictive 

distribution being able to produce a complete description of uncertainty. Alterna-

tively, the BHM technique can be computationally intensive and most applications 

examine solving one change of support problem at any given time (exception - Wikle 

and Berliner (2005)). Additionally, the priors for the parameters need to be carefully 

chosen. It should also be noted that this technique requires that all locations are 

measured at the same set of times for spatio-temporal models. 

2.3 Combining Data of Different Support 

Although variables are correlated, they may not be measured using the same 

spatial units due either to the type of data or the organization collecting the data. 

In such cases, it is necessary to use methods which take account of these differences 

so as to obtain more accurate predictions. 

The AtP krging methodology outlined in Section 2.2.5 has also been used to obtain 

predictions when the support of the variable to be predicted and the covariates differ. 

One example is the prediction of soil nitrogen (point-level data) using land use (area 

data) (Qu, Li, Zhang, Wang, M, et al., 2012). 

BHMs (Section 2.2.5) and Bayesian hierarchical regression have been used to ob-

tain predictions from models which have data of different support. The BHMs follow 

the same method outlined in Section 2.2.7 and has been used in the prediction of 

uranium measurements at the point level using areal uranium measurements and 

point-level radon measurements (Smith & Cowles, 2007). 

Bayesian hierarchical regression has especially been used in studies where health 

outcomes (usually area data) are correlated with climatic or environmental measures 

(usually point data). Examples of this include the incidence of malaria in Mozambique 

(Zacarias & Andersson, 2011), pædiatric emergency room visits for asthma (Zhu et 

al., 2003) and mortality (Fuentes et al., 2006). Using the example from Zhu et al., 
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the ozone data, measured at points, are realigned to the zip code blocks (the ER 

visits data) using BHMs and then Bayesian hierarchical regression is used to obtain 

predictions for ER visits with ozone values as a covariate. 

2.4 Summary 

In summary, based on the criteria suggested by (Gotway Crawford & Young, 2005), 

not all methods posses all the requirements. In reality, this may not be possible and so 

the trade-off is to use the best method for the data given, as each method is suitable 

once certain conditions are met and therefore are still of merit. For example, BHMs 

and disjunctive kriging are elegant solutions to the CoSP but their complexity and 

dependence on many precise assumptions may reduce their attractiveness once those 

assumption cannot be justified (Gotway Crawford & Young, 2005). 

Additionally, BMHs and Bayesian hierarchical regression have been used to solve 

the problem covariates with different spatial units from the one to be predicted. 

Despite the attractiveness of these methods, the careful choice of priors is required 

and the models may also suffer from convergence issues. 

It is believed that while adding to the methodology available for combining data 

of different support, the proposed semiparametric solution could be an attractive 

Geostatistical method as it could reduce the complexity of implementation, produce 

measures of uncertainty, while still taking account of the spatial correlation and the 

levels of support between two or more related variables. 
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3. NONPARAMETRIC CROSS-COVARIANCE FUNCTIONS 

Cross-covariance functions, which measure the relationship between two or more spa-

tial processes, are generally hard to construct due to the fact that the correspond-

ing covariance matrix needs to be symmetric and positive definite. To guarantee 

these properties, researchers gravitate towards using parametric covariance functions 

to model the cross-covariance matrices. Examples of these models include linear 

model of coregionalization (Goulard & Voltz, 1992; Gelfand et al., 2004), separable 

cross-covariance function (Mardia & Goodall, 1993), kernel convolution (Ver Hoef 

& Barry, 1998) and covariance convolution (Gaspari & Cohn, 1999; Majumdar & 

Gelfand, 2007). Typically, these models have been applied to data with the same 

support. For data of different support, hierarchical models have been used to create 

cross-covariance matrices for data of different support (Le & Zidek, 1992; Mugglin & 

Carlin, 1998; Gelfand & Carlin, 2001; Wikle et al., 2001; Zhu et al., 2003; Zacarias & 

Andersson, 2011). Although these models are useful, they make restrictive assump-

tions and are therefore not suitable in all cases. 

As an alternative, I propose building a nonparametric cross-covariance function 

which is potentially more attractive as it does not depend on the hierarchical structure 

of the data. More specifically, the boundaries for one process do not need to be 

aligned with the boundaries for the other process being examined. Additionally, with 

the proposed model, the continuous process does not have to be conditioned on the 

areal process as required by hierarchical models. This is especially useful in cases 

where the scientific interpretation is based on the areal process being conditioned 

on the continuous process. The value of the proposed method also increases when 

the relative flexibility and computational ease is taken into consideration since only 

the marginal covariance functions are used in the construction of the cross-covariance 

matrices. 
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In this chapter, the method for constructing nonparametric cross-covariance ma-

trices is outlined, along with an example. The formulas for prediction and cross-

validation are also discussed. 

3.1 Construction of Nonparametric Cross-Covariance Matrices for Spa-

tial Models 

To facilitate the construction of cross-covariance matrices for spatial models, it 

is necessary to first obtain the marginal covariance matrix for each process being 

studied. From these matrices, the cross-covariance matrix is constructed. 

3.1.1 Marginal Models 

Once marginal covariance matrices are created, cross-covariance functions may 

be constructed for a combination of two or more stochastic processes and/or random 

fields. Irrespective of the type of process, the covariance matrix of the marginal model 

is always symmetric and positive definite. Given these properties, any covariance 

matrix, Σ, can be expressed as (3.1). 

11 
Σ = QΛQ0 = QΛ Q0 (3.1)Λ2 2 

where Q is an orthonormal matrix and Λ is a diagonal matrix of eigenvalues. The 

covariance matrix can therefore be expressed as (3.2). 

Σ = AA0 (3.2) 

where A = QΛ 
1 
2 . From this, the partial realisation of a spatial process Y with zero 

mean and covariance Σ may be written in terms of A and vector of latent N(0, 1) 

variables Z. The spatial process can therefore be written as (3.3) 

Y = AZ (3.3) 

where A is a n ×n matrix, Z is a n× 1 matrix and n is the number of observations for 

the given process. One of the advantages of expressing the covariance of the process 
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in this form is that if n is very large, then the first q latent variables and their columns 

of A can be used for computational ease, where q is chosen to be much less than n. 

The first q are chosen since they relate to the first q ordered eigenvalues. In that case, 

(3.3) is an approximation which improves with larger values of q. 

The Truncated Karhunen-Loéve Expansion 

For continuous processes, 

∞X 
Y (s) = µ(s) + aj (s)Zj + e(s) (3.4) 

j=1 

and given n observations, 

qX 
Y = aj Zj + e. (3.5) 

i=j 

The aj (s) and Zj components in (3.4) may be constructed using different methods 

including the convolution method (Hidgon, 1998), fixed rank kriging (Cressie & Jo-

hannesson, 2008), and Predictive Processes (Banerjee et al., 2008). However, the 

Karhunen-Loéve expansion (Karhunen, 1946; Loève, 1955), which is based on latent 

dimensions, produces optimal results when compared to the aforementioned methods 

(Hu, 2013). The method is sometimes referred to using different names such as Prin-

cipal Component Analysis (Hotelling, 1933), Empirical Component Analysis (Lorenz, 

1956), Empirical Eigenfunction Decomposition (Sirovich, 1987) and Singular Value 

Decomposition (Golub & Loan, 1996). 

Using the Karhunen-Loéve expansion, the process Y (s) is 

Y (s) = A(s)Z (3.6) 
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where Zi is a vector of q i.i.d. N(0, 1) random variables and Ai is an n×q matrix with p
the terms in the ith row and jth column equation to λj fj (si). More specifically, the 

A is ⎡ ⎢⎢⎢⎢⎢⎢⎣ 

⎤√ √ 
λ1f1(s1) λ2f2(s1)

p
λqfq(s1)· · · ⎥⎥⎥⎥⎥⎥⎦ 

√ √ 
λ1f1(s2) λ2f2(s2)

p
λqfq(s2)· · · 

A = (3.7). . . . . . . . . . . . 
√ √ 
λ1f1(sn) λ2f2(sn)

p
λqfq(sn)· · · 

As mentioned previously, this ability to represent the spatial process using a set of q 

latent variables, where q � n, is advantageous as it allows for the analysis of large 

datasets because if inversion is required, the order of operations and memory are 

reduced from O(n3) and O(n2) respectively. 

3.1.2 Nonparametric Cross-Covariance Functions 

Nonparametric cross-covariance functions have been successfully developed and 

used to improve prediction for data with the same support by (Wang, 2011; Hu, 

2013). The idea is that once the covariance functions for each univariate process are 

obtained and the process expressed in the form of (3.3), the cross-covariance function 

is constructed using the correlation between the latent variables from each of the 

univariate processes. 

Suppose we have an observation vector Y = (Y0 1, Y
0 
2, . . . , Y

0 ) where Yip is the 

vector of observations for the ith variable and 

Yi = AiZi (3.8) 

where A and Z are determined as outlined in Section 3.1.2. Of note, if Yi is a 

stochastic process, then a nugget effect needs to be added to avoid singularity of 

the overall cross-covariance matrix. Therefore for a continuous process, Yi in (3.8) 

becomes 

Yi = AiZi + τi1. (3.9) 
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It can be shown that the cross-covariance between the partial realisation of any 

two spatial processes, Yi and Yj i 6= j, is 

Cov(Yi, Yj ) = AiCov(Zi, Zj)A
0 
j 

= AiJij A
0 
j (3.10) 

Consequently, there are pC2 Jij matrices. In implementations by Wang (2011) and Hu 

(2013), it is assumed that Jij is a q × q matrix, where q is the length of the Zi vector, 

which is the same length for each process. It is also assumed that the relationship 

between any two pairs of latent variables from the two different processes is perfectly 

correlated or not correlated at all. As a result, Jij is a matrix of 1’s and 0’s. The log 

likelihood function for the joint process is used to determine whether which pairs are 

perfectly correlated. That is, find Jij such that 

Jij = arg max l(J) (3.11) 
Jij 

where l is the log likelihood function for the joint process. However, for greater 

flexibility, in the method proposed here, Jij is no longer assumed to be square, but a 

qi × qj , where qi is assumed to be the length of Zi and qj is assumed to be the length 

of Zj . 

The progressive search algorithm was found to give the best predictive perfor-

mance when used to identify which pairs are perfectly correlated (Wang, 2011). The 

procedure begins with a q1 ×q2 zero matrix and searches the entire matrix for the pair 

that maximises the log likelihood function in (3.11). Once the pair which satisfies 

this condition is identified, a 1 is placed in the cell and the corresponding column 

and row are removed from the search space. The algorithm then repeats the process 

for each iteration until all the correlated pairs are found. It should be noted that 

there can only be one 1 in any given row or column and the maximum number of 1s 

is the min(qi, qj ). Therefore,the total number of iterations is c = min(qi, qj ). In this 
c−1P 

case, a total of (qi × qj ) − (qi + qj )(k − 1) cells are searched and k is the number 
k=0 

of 1’s already allocated. In order to improve this, the search for each correlated pair 
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which maximises the likelihood within each iteration is computed in parallel. An al-

ternate algorithm searches each row successively for the pair which maximises (3.11). 

This greatly reduces the search space since in any given iteration, only one row is 

searched and not all the possible positions for a 1 in the entire matrix (Hu, 2013). 

This alternate algorithm yields an approximately maximised Jij . 

3.1.3 Example with Data of Different Support 

Without loss of generality, assume that there are two processes that are known to 

be correlated, but each is measured at a different level of support. Also assume that 

both processes have zero mean. Let Y1 = (Y11, Y12, . . . , Y1m)
0 be the realisation of 

a areal/block Gaussian Markov Random Field (GMRF) at m different areas. If the 

marginal covariance matrix, Σ11 is written as in (3.2), then 

Y1 = A1Z1 (3.12) 

Also, let Y2 = (Y21, Y22, . . . , Y2n)
0 n 6= m be the realisation of a zero mean point-level 

Gaussian process. The model is therefore written as in (3.9) to give 

Y2 = A2Z2 + τ21 (3.13) 

Resulting from the fact that each process is Gaussian, the joint model Y = 

(Y1, Y2)
0 is bivariate normal with zero mean and variance-covariance matrix ⎛ ⎞ ⎛ ⎞ ⎝ 

Σ11 Σ12 A1A1 
0 Cov(Y1, Y2)

Σ = ⎠ = ⎝ ⎠ (3.14) 
Σ0 Cov(Y1, Y2)

0 A2A2 
0 + τ 2 

12 Σ22 2 Iq2 

Given (3.10) the covariance between the areal and point-level process is 

Cov(Y1, Y2) = A1Cov(Z1, Z2)A
0 
2 (3.15) 

where J is still a q1 × q2 correlation matrix between Cov(Z1k, Z2l) with k = 1, . . . , q1 

and l = 1, . . . , q2. Therefore, the variance-covariance matrix in (3.14) becomes ⎛ ⎞ 
A1A

0 
1 A1JA2 

0 ⎝ ⎠Σ = (3.16) 
A2J

0A0 A2A
0 
2 + τ 2 

1 2 Iq2 
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where Cov(Z1k, Z2,l) = 0 or Cov(Z1k, Z2,l) = 1 and 

1 1 1 
l(J) = − log2π − |Σ| − Y0Σ−1Y. (3.17)

2 2 2 

Once this is established, the construction of the J matrix is as outlined above in 

Section 3.1.2 with the maximum number of 1’s being c = min(m, n). 

3.2 Prediction 

The main aim of obtaining estimates for the covariances matrices for each process 

is to make reasonable predictions for at least one of the processes being studied. Given 

the two process model with realisation vector Y, it can be shown that the simple 

cokriging predictor given the representation as in (3.3) (Wang, 2011; Hu, 2013) is 

Ŷ 
i = E(Ŷ 

i) + K0Σ−1 (Y − E(Y)) (3.18) 

ˆwhere Yi is a set of locations related to process i, whether areas or points, where 

predictions are required. The corresponding variance is 

σ2 
sck = V ar(Ŷ 

i) − KK0Σ−1K (3.19) 

where ⎛ ⎞ 
ˆ ⎝ 

Cov(Y1, Yi)
0 

ˆ ⎠K = Cov(Y, Yi) = (3.20) 
Cov(Y2, Ŷ 

i)
0 

and Σ−1 is the inverse of the joint covariance matrix. More specifically, the elements 

in (3.20) are defined as 

Cov(Yj , Ŷ 
i) = AjJai if i 6= j (3.21) 

Cov(Yj , Ŷ 
i) = Ajai if i = j (3.22) 

where Aj is the A matrix from (3.2) related to process j and ai represents the subset 

of rows in the Ai matrix corresponding to the unobserved locations. Therefore 

0 0 0
A0 A0K = (ai 1, ai 2) (3.23) 
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3.3 Cross-Validation 

Criteria such as goodness of fit and predictive performance are used to choose 

between the results of competing statistical methods, since the main aim of using 

nonparametric cross-covariance matrices as outlined above is to make predictions at 

specific locations irrespective of whether they are for areas, Cartesian points or both. 

As a result, determining the best model should be based on predictive performance. 

Cross-validation, the method used for evaluating this type of performance, is where 

the resulting model which was built using a training dataset is used to do predic-

tions on a test dataset. One option is to use the drop-one prediction method. This 

technique which is sometimes referred to as leave-out-one cross-validation, calculates 

the best linear prediction at a specific location using all the other observations in 

the dataset. It therefore means that information from the location being predicted 

is not being used to build the model for prediction at that point. Although this is a 

more efficient use of the available data when compared to other cross-validation meth-

ods, the technique can be time-consuming. Notwithstanding, (Zhang & Wang, 2010) 

developed a computationally efficient algorithm for this procedure and its related 

measures. 

Assuming a zero-mean process and Y is a realisation of that process, then the 

drop-one prediction is (3.24) X qij Yj
Ŷ−i = − (3.24) 

qii
j 6=i 

where qij is the (i, j)th element of the precision matrix, V, which is the inverse of the 

variance-covariance matrix V = Σ−1 . The corresponding drop-one variance is 

σ̂− 
2 
i = Λ−1 = E(Yi − Ŷ −i)

2 

1 
= (3.25) 

qii 
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3.3.1 Prediction Scores 

For the purpose of this dissertation, four predictive scores will be used to evaluate 

the performance of the proposed method. In each case, smaller values indicate better 

predictive performance. 

Mean Squared Error and Root Mean Squared Error 

The Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) are 

frequently used measures for determining predictive performance. The MSE is the 

average of the squared difference between the observed value and the predicted value 

at a specific location. The MSE is calculated as 

X �2 
MSE =

1 
n � 

Yi − Ŷ −i 
n 

i=1 

1 
= ||Λ−1VY||2 (3.26) 

n 

where n is the total number of observations and the RMSE is simply the square root 

of the MSE. 

Logarithmic Score 

One shortcoming of the MSE and RMSE is that they do not consider the pre-

dictive distribution of the process being studied. Conversely, the Logarithmic Score 

(LogS) (Gneiting et al., 2007) takes account of both the drop-one predicted value 

and the drop-one predicted variance. The LogS, assuming a Gaussian distribution, is 

calculating using (3.27). 

n � �X1 1 1 
LogS = log(2πσ̂− 

2 
i + zi 

2) (3.27) 
n 2 2 

i=1 
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where 

Yi − Ŷ −i 
zi = 

σ̂−i 

= Λ− 1 
2 VY (3.28) 

Continuous Ranked Probability Score 

LogS, despite having many attractive properties (Roulston & Smith, 2002), lacks 

robustness (Gneiting & Raftery, 2007). The Continuous Ranked Probability Score 

(CPRS) accounts for this limitation while still using the predictive distribution (Gneiting 

et al., 2007; Gneiting & Raftery, 2007). Let Fi(y) be the predictive cumulative dis-

tribution function of Y where 

Fi(y) = P (Y (ri) ≤ y|Y (rj ), j 6= i) (3.29) 

and r represents the location, whether it be an area (B) or a point (s). Furthermore, 

an indicator function is defined such that ⎧ ⎪⎨1 if Y (ri) ≤ y 
1{Y (ri)≤y} = ⎪⎩0 otherwise (3.30) 

Then the CPRS is 

∞
1 X� �2 

CPRS = Fi(y) − 1{Y (ri)≤y} (3.31) 
n 
−∞ 

where Fi(y) and 1{Y (ri)≤y} are defined as in (3.29) and (3.30) respectively. If y is 

Gaussian, then the CPRS can be written in terms of the zis defined in (3.28) � �X1 n 
1 

CPRS = σ̂−i zi (2Φ(zi) − 1) + 2Φ(zi) − √ (3.32) 
n π 

1 
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4. MODELLING DATA OF DIFFERENT SUPPORT 

Related variables are often used to help improve the accuracy of predicted data. 

In many cases, due to agencies using different measurements and boundaries, these 

correlated variables are not necessarily of the same support, nor cover the same areas. 

Many of the methods outlined in Chapter 2 do not allow for the use of different 

variables measured at different levels of support to be combined for use in spatial 

modelling. Furthermore, hierarchical methods applied to data of different support 

are not appropriate if the supports of the data lack a hierarchical structure where 

the boundaries of one scale overlap with, or are not subsumed within the boundaries 

of another scale. The proposed nonparametric cross-covariance matrix is a suitable 

alternative, as it is not only applicable in situations where measurement areas do 

not overlap, but also particularly useful in cases where the variables of interest are 

measured at different levels of support and/or the implementation of extant methods 

is intricate, because of the absence of alternative methods. 

The usefulness and flexibility of the proposed method is demonstrated using two 

correlated variables which are of different support. Once the marginal models for 

each variable are obtained, the nonparametric method will be used to construct the 

cross-covariance matrix and its predictive performance evaluated. The motivating 

dataset, Native Biomass and its correlated variable, Temperature, illustrates that the 

method is appropriate for predicting data of different support and outperforms an 

alternative method. 
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4.1 The Data and Marginal Models 

4.1.1 Native Biomass 

Biomass is organic material derived from living or recently living organisms. Na-

tive Biomass is therefore just organic material obtained from flora that are native to 

the forests and other areas in which they are located. This organic matter is of impor-

tance because it has implications for major industries, such as transportation where 

approximately 10% of Biomass energy is used for transportation fuels, and rural areas 

as Biomass helps to bolster these economies through the lumber, paper and pulp in-

dustries. Biomass also has important implications for the environment as it can assist 

in mitigating against climate change while reducing the risk of fires (Bartuska, 2006; 

Schoene & Killmann, 2007). Biomass and its prediction therefore have implications 

for local, regional and global policies. For ease of reference, the term Biomass will be 

used to refer to Native Biomass for the remainder of this dissertation. 

The United States is divided into two main ecological regions called Domains. The 

area of interest is the Eastern Humid Domain, which is just over 3, 500, 000 km2 and 

can be further divided into 91 units, called Sections (Cleland et al., 2007). Biomass 

was collected from Forest Inventory and Analysis Program (FIA) plots (Oswalt et 

al., 2015) and the average Biomass is available for each Section. Biomass is spatially 

clustered (Figure 4.1), which is supported by the Moran’s I (Moran, 1950) statistic 

being -0.654 (p < 2.2e-16) when the queen weighting method is used. 

The distribution of Biomass is fairly normally distributed as seen from the his-

togram (Figure 4.2). Therefore the Gaussian conditional autoregressive (CAR) model 

is used as the joint probability model for Biomass. Let Y1 denote the Biomass ob-

served at n1 = 91 Sections. Then Y1 has a multivariate normal distribution with a 

constant mean and a precision matrix (i.e., the inverse of the covariance matrix) 

1 
Σ−1 = (Mw − ρW ) (4.1)11 τ ∗ 
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Figure 4.1. Ecological Sections - Average Biomass 

where τ ∗ is the variance parameter, ρ is the parameter which controls spatial depen-

dency, Mw is a diagonal matrix with the number of neighbours for each Section and 

W is the proximity matrix with wij = 1 if j is a neighbour of i and 0 otherwise. 

The parameters were estimated by maximizing the Gaussian likelihood function. 

The resulting estimates are ρ̂ = 0.991 and τ̂ ∗ = 193.2632. 

4.1.2 Temperature 

Temperature is known to be correlated with Biomass (Bartuska, 2006; Schoene & 

Killmann, 2007). The 30-year Normal Annual Temperature data was collected from 

the National Oceanic and Atmospheric Administration (NOAA) who hosts the Na-

tional Climatic Data Center’s (NCDC) three-decade (1981-2010) averages for Tem-

perature (oF ), among other variables. 30-year Normals are “period averages com-
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Figure 4.2. Average Biomass 

puted for a uniform and relatively long period comprising at least three consecutive 

ten-year periods” (World Meteorological Organization, 1989). These calculations are 

required by all members of the World Meteorological Organization (WMO). These 

30-year normals are sometimes referred to as climatological data and is the average of 

the Annual Maximum Temperature Normal and the Annual Minimum Temperature 

Normal (World Meteorological Organization, 1989; Arguez, Applequist, et al., 2012; 

Arguez, Durre, et al., 2012). 

The following variables were observed at n2 = 3, 617 weather stations which fall 

within the study area: Temperature, latitude, longitude and altitude at each weather 

station. It should be noted that the number of weather stations within each Section 

(Figure 4.3) is not related to the size of the Section, as the placement of stations is 

independently decided by NOAA. 

The temperature exhibits a clear spatial trend (Figure 4.4), which is assumed 

to depend on longitude, latitude and elevation. Let Y2(s) denote the temperature at 

location s. Y2(s) is modelled by a Gaussian process with mean µ(s) and an exponential 
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Figure 4.3. Weather Stations in the Eastern Domain 

covariance function with partial variance σ2 , a nugget effect τ 2 and a range parameter 

φ: ⎧ ⎨ σ2 exp(−h/φ) h > 0 
C(h) = (4.2)⎩ σ2 exp(−h/φ) + τ 2 h = 0 

where h denotes the distance between two spatial locations. The mean function is 

assumed to have the following parametric form (4.3) 

µ(s) = β0 + Lat(s)β1 + Long(s)β2 + Ele(s)β3 + Lat(s)2β4 
(4.3) 

+ Long(s)2β5 + Lat(s) × Long(s)β6 

where Lat(s), Long(s) and Ele(s) are latitude, longitude, and elevation at location 

s, β0, . . . , β6 are unknown parameters to be estimated. The least squares estimate 

for these parameters are β0 = 186.3, β1 = −1.808, β2 = 1.563, β3 = −0.00916, β4 = 

−0.01307, β5 = 0.006254, β6 = −0.01426. The detrended observed data Y2 therefore 
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Figure 4.4. Weather Stations in the Eastern Domain 

has a multivariate normal distribution with the mean m and covariance matrix Σ22, 

where m = (µ(s1), . . . , µ(sn))0 and Σ22 has the (i, j)th element being C(||si−sj ||) that 

depends on parameters σ2, φ and τ 2 . The parameters are estimated by maximizing 

the following log-likelihood 

−(1/2) log(|Σ22|) − (1/2)(Y2 − m)0Σ−1 (4.4)22 (Y2 − m). 

The maximum likelihood estimates for the parameters were: σ̂2 = 0.4188, φ̂ = 

143.8055 km and τ̂ 2 = 0.7399. 
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Figure 4.5. Upper Panel: Original Temperature Data and Lower 
Panel: De-Trended Temperature Data 

4.2 Joint Models 

Once the marginal models are fitted, the joint model can be constructed using the 

non-parametric cross-covariance matrices, as described in the previous chapter. For 

the purpose of comparison, a hierarchical model is also considered. The following two 

subsections describe the two models, respectively. 

4.2.1 Semiparametric Model 

In this subsection, for simplicity let Y1 and Y2 denote the detrended Biomass and 

Temperature, respectively. Since Y1 has a normal distribution, it can be written 

Y1 = A1Z1. (4.5) 

where Z1 has i.i.d. standard normal elements. 

Similarly, Y2 can be written as 

Y2 = A2Z2 + τZ0 (4.6) 
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where Z0 and Z2 are independent of each other, and each have i.i.d. standard normal 

elements. 

Then the joint distribution of Y = (Y1, Y2)
0 is multivariate normal with covari-

ance matrix ⎛ ⎞ 
A1A

0 
1 A1JA2 

0 

Σ = ⎝ ⎠ (4.7) 
A2J

0A0 1 A2A
0 
2 + τ 2I 

where A1 is a n1 × n1 matrix, A2 is n2 × n2 and J is n1 × n2, with Cov(Z1k, Z2,l) = 0 

or Cov(Z1k, Z2,l) = 1. As outlined in Chapter 3, the J matrix can only have at most 

c = min(q1, q2) perfectly correlated pairs. In this case c = n1 = 91. Two latent 

variables, Z1k and Z2l are determined to have a correlation of 1 if it maximises (4.8). 

1 1 
l(J) = − log |Σ| − Y0Σ−1Y (4.8)

2 2 

Since the dimension of Z1 is large (n2 = 3617), we made an assumption to simplify 

the computation to maximize (4.8). We assume that Z1 is possibly dependent with 

only the first 100 elements of Z2, and is independent with all other elements of Z2. 

This assumption effectively reduces the dimension of J to n1 ×100. The corresponding 

eigenvalues for the first 100 elements in Z2 explain approximately 64% of the variation 

in temperature. 

4.2.2 Hierarchical Model 

Since the locations of Temperature are nested within the sections of Biomass, the 

hierarchical model can be easily formulated through the conditional distribution of 

Y2 on Y1. Again, both Y2 and Y1 are detrended and therefore have mean 0. 

More specifically, 

Y2|Y1 ∼ MV N(µT , VT ) (4.9) 

where VT is assumed to be the exponential covariance function with a nugget effect. 
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In (4.9), µT = Xβ where the design matrix X is ⎞⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

. . . . . . 

1 Y12 

. . . . . . 

. . . . . . 

1 Y1 91 

1 Y11 

1 Y11 

. . . . . . 

1 Y11 

1 Y12 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

(4.10)X = 

and Y1i is the Biomass in Section i and is constant for all weather stations within a 

given section. Also ⎛ 

β = ⎝ 
a 
⎞⎠ (4.11) 

b 

The following estimates were obtained after maximising the conditional log likelihood 

(4.12) 

1 1 0 V−1log(l) ∝ − log |VT | − (Y2 − Xβ) (Y2 − Xβ) (4.12)T2 2 

ˆ σ2φ = 140.2045, τ̂ = 0.7406, ˆ = 0.4049, a = 0.045366, b = 0.000498. 

Using the laws of covariances, expectation and total variance, the joint distribution 

is ⎞⎛ ⎞⎞⎛⎞⎛⎛ ⎝ 
Y1 ⎠ ∼ MV N 

0 ⎝ 
Σ11 Σ12 ⎠⎠⎝⎝ ⎠Y = (4.13), 
Σ0Y2 M 11 Σ22 

where Σ11 is the inverse of the precision matrix in (4.1) and Σ12 = BΣ11 with B 

being a n2 × n1 matrix 
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⎞⎛ 

B = 

⎜⎜⎜⎜⎜⎜⎝ 

b11 0 · · · 0 

0 b12 · · · 0 
. . . . . . . . . . . . 

0 0 · · · b191 

⎟⎟⎟⎟⎟⎟⎠ 

(4.14) 

where the length of 1i is the number of weather stations in Section i. Also, Σ22 = 

VT + BΣ11B
0 . For the mean vector, 0 has length = n1 and A has length = n2 with 

M = a1 where a is from (4.11). 

4.3 Predictive Performance and Cross-Validation 

The predictive performance of the marginal, hierarchical and proposed semipara-

metric models were evaluated using four predictive scores, namely, Mean Squared Er-

ror (MSE), Root Mean Squared Error (RMSE), Logarithmic Score (LogS) and Contin-

uous Ranked Probability Score (CPRS). Additionally, the drop-one predicted values 

were also obtained. The predictive performance of the semi-parametric methodology 

using both the fully optimised J (Joint - SP Long) and the approximately optimized 

J (Joint - SP Short), the baseline marginal model (Marginal) and the hierarchical 

model (Joint - HM) was assessed for Biomass and Temperature separately. 

4.3.1 Algorithm Performance 

As outlined in Chapter 3, there are two algorithms used to construct the J matrix 

and both begin with a n1 × 100 matrix of zeros. The first algorithm (Joint - SP Long) 

searches the entire J matrix to find the pair which maximises the likelihood in (4.8). 

Once this pair is found, a 1 is placed in the related cell and the corresponding row 

and column are removed from the search area. This process is repeated 90 times until 

all correlated pairs are found. 

The second algorithm (Joint - SP Short) begins by searching the first row for the 

perfectly correlated latent variables in J that maximises the likelihood. Once that 
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pair is identified, the column is removed from any subsequent searches. Irrespective 

of whether a perfectly correlated pair was found, the row is never searched again. 

Note that it is possible for no pair to maximise the likelihood in a given iteration. 

Therefore, in the case of the Joint - SP Short algorithm, no column is removed from 

the search area, while for the Joint - SP Long, no column or row is removed. This 

means that there may be less than n1 perfectly correlated pairs. Additionally, to 

reduce computational time, the search within each iteration is run in parallel. 

The function to construct the J matrix was executed using R-3.4.1 on a server 

running Ubuntu 16.04 OS with 1 TB RAM and 12 CPU cores. The computational 

results are presented in Table 4.1. 

Table 4.1. 
Overall Computational Performance 

Algorithm # of Pairs 
Time 

Elapsed Relative 

Short 85 2022.86 1.000 

Long 86 90526.33 44.752 

Of the pairs identified, only 12 were the same in both algorithms. Additionally, 

only Row 81 was not selected to have any perfectly correlated pairs in both algorithms. 

4.3.2 Predictive Scores 

The predictive scores for Biomass show that both proposed Joint-SP models out-

perform the Marginal and the Joint-HM models (Table 4.2). This is shown by the 

markedly lower values for both Joint-SP models. This noticeable improvement in the 

predictive performance for Biomass may be as a result of the dense distribution of 

the Temperature weather stations (3617) compared with only 91 measurements on 

Biomass. Additionally, in this case, the Joint-HM model does slightly worse than the 
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Marginal model. Of note, although the Joint-SP Short model is a marked improve-

ment over the Joint-HM and Marginal models, it performs slightly worse than the 

Joint-SP Long model. 

Table 4.2. 
Predictive Performance - Biomass 

Model 

Marginal 

Joint-HM 

Joint-SP Short 

Joint-SP Long 

MSE RMSE LogS CPRS 

35.625 5.969 3.204 5.753 

35.696 5.974 3.203 5.758 

1.701 1.304 1.784 1.386 

0.452 0.672 1.511 0.949 

Conversely for Temperature, the difference between the predictive scores for the 

models is not as stark. Despite that, the results showed that the Joint-SP models 

perform slightly better than the Marginal and Joint-HM models (Table 4.3). This is 

not surprising since the Temperature data is quite dense over the region being studied 

and the inclusion of Biomass does not add much more information to the models. Also, 

the performance of the Marginal and Joint-HM models were approximately the same 

for all criteria. Again, the difference between the Joint-SP Long and the Joint-SP 

Short is very small, even though the Joint-SP Long still gives better results. 

Table 4.3. 
Predictive Performance - Temperature 

Model 

Marginal 

Joint-HM 

Joint-SP Short 

Joint-SP Long 

MSE 

0.868 

0.868 

0.831 

0.826 

RMSE LogS CPRS 

0.932 1.349 0.903 

0.932 1.385 0.902 

0.911 1.327 0.897 

0.909 1.325 0.886 
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4.3.3 Prediction Error 

The drop-one prediction scores were obtained and the prediction errors, that is 

the difference between the observed and the drop-one predicted values, for each model 

calculated. The prediction error for the Joint-SP Long model is superimposed on the 

graphs with errors for the comparison models. 

The plots for both Biomass and Temperature both corroborate the results obtained 

in Tables 4.2 and 4.3. The prediction errors for the Joint-SP models are relatively 

small (between ±4) when compared to the other two models where the errors lie 

between -15 and +20 (Figure 4.6). 

Figure 4.6. Prediction Error for Biomass - Joint Semiparametric Mod-
els Compared with Joint Hierarchical and Marginal Models 
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Finally, in contrast to the results for Biomass, but not unexpectedly, the four plots 

for Temperature are all similar, ranging from -6 to +4.5. (Figure 4.7). 

Figure 4.7. Prediction Error for Temperature - Joint Semiparametric 
Models Compared with Joint Hierarchical and Marginal Models 
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5. SUMMARY AND CONCLUSION 

The aim of this dissertation was to build a nonparametric cross-covariance matrix to 

improve the accuracy of predicted data when related variables of different support are 

available. The proposed semiparametric covariance method, which uses the marginal 

covariance matrices to create the cross-covariance matrix, yielded more accurate pre-

dictions than the comparative marginal and hierarchical models. 

Since the marginal covariance functions are used in the construction of the non-

parametric cross-covariance matrix, the method is attractive because of its flexibility 

for use in many different circumstances. For example, there is no need to make adjust-

ments for the difference in the support at which the data is measured, or to consider 

the effect of misaligned boundaries. 

For practitioners this method is appealing because the estimation of the marginal 

covariance function does not require advanced statistical knowledge since this esti-

mation has been implemented for many spatial covariance functions in menu driven 

applications (eg ARGIS (ESRI, 2011)) and R (R Development Core Team, 2006) 

packages such as geoR (Ribeiro Jr. & Diggle, 2001) and fields (Nychka et al., 2015). 

Therefore the method is attractive since it does not require hierarchical analysis 

which requires more in depth statistical knowledge. Also, the calculation of the 

cross-covariance matrix is really an optimization problem which can also be executed 

in already established programmes such as R (R Development Core Team, 2006). 

One limitation of the proposed method, is that the computational cost increases 

in O(n2) especially when a large number of latent variables are needed to reasonable 

explain the variability within the process. The joint semiparametric method using 

the short algorithm performed better than the marginal and hierarchical models, but 

marginally worse than the algorithm using the fully optimised likelihood. Notwith-

standing, the long version of the algorithm took approximately 45 times longer than 
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the short algorithm. In practice, it is therefore recommended that the short algorithm 

be used when computational resources are limited and datasets are large. 

In light of the fact that the proposed method does not require any adjustments 

for data that do not use the same levels of support or administrative boundaries, 

the contribution of this work enhances decision and policy-making abilities in an age 

where vast amounts of data are collected and there is increased data-sharing among 

different agencies. 

5.1 Future Work 

In this work, nonparametric cross-covariance matrices are applied to data that 

is assumed to have a normal distribution. By extension, this method needs to be 

applied to data from other distributions, such as count and binary data, especially 

because non-Gaussian data play an important part in research (eg the prediction 

disease incidence which typically has a Poisson distribution, is often related to cli-

matic variables). Additionally, the next logical movement is to extend the method to 

prediction in the spatiotemporal case, as time indexed variables are an increasingly 

important area in spatial statistics. Finally, there is scope for further development of 

an algorithm which is more computationally efficient. 
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