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ABSTRACT 

Bowers, Matthew C. PhD, Purdue University, December 2017. Variability of Persis-
tent Temporal Correlation in Climate Data. Major Professor: Wen-wen Tung. 

This dissertation examines manifestations of persistent memory in climate data. 

Persistence is characterized by a slow power-law decay in the autocorrelations of a time 

series. Its existence implies that the influence of past values in a time series extend into 

the distant future. It has numerous theoretical implications, notably that it changes 

the asymptotic decay in the variance of sample means, which can substantially impact 

the uncertainty in climate mean states. Its intensity can vary over space, time, 

and other dimensions, e.g. tree species. Variation in its intensity can be used for 

practical applications such as discriminating between steady and intermittent rainfall 

and assessing the calibration period needed for paleoclimate proxy data. 

This work explores three major areas in which persistence can be leveraged to 

better understand the complexities of climate data. The first is in tree ring width 

data, which are among the best proxies for reconstructing paleoclimate records. The 

persistent correlations found in tree ring data suggest that the behavior of tree ring 

growth observed in a short calibration period may be similar to the general behavior 

of tree ring growth in a much longer period; therefore, the limited calibration period 

may be more useful than previously thought. The second area is in the quantification 

of uncertainty in the mean states of climate data. A framework for quantifying uncer-

tainty in climate means is presented which can account for both classical short-range 

correlations and long-term persistent correlations. The final area is in the detection 

of subtle changes in tropical rainfall patterns. Persistence is used to illuminate re-

cent changes in the temporal clustering patterns of rainfall in the tropical belt; the 
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detected changes could have critical implications for the water resource management 

of the affected regions. 
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1 LONG-RANGE CORRELATION IN TREE RING CHRONOLOGIES OF THE 

USA: VARIATION WITHIN AND ACROSS SPECIES 

1.1 Introduction 

Tree ring width data are abundant and have high temporal resolution. They 

respond well to environmental conditions such as solar radiation, air temperature, 

soil temperature, precipitation, soil moisture, and humidity [1,2]. Therefore, they are 

considered among the best proxies for reconstructing past climate records, and thus 

have been utilized for a wide variety of applications in paleoclimatology, including 

reconstruction of past temperature records [3–5] and past precipitation records [6,7]. 

It is well-known that different species of tree respond differently to certain envi-

ronmental conditions, e.g., some are more sensitive to temperature variation while 

others are more sensitive to moisture variation [1]. To study such sensitivities, one 

may examine how tree ring annual growth width or density correlates with various 

environmental factors over a certain calibration period [8]. Calibration periods are 

typically much shorter than the periods over which paleoclimate records are recon-

structed, which are often on the scale of 103 years [3, 9]. Will problems arise due to 

limited calibration periods? To gain insights into this issue, we focus on studying 

scaling and the correlation structure of tree ring time series. 

Noticing that temperature, rainfall, and river discharge time series may be recon-

structed from tree ring data through simple linear regressions, it may be expected that 

tree ring data also exhibit the long-range correlations observed in temperature [10], 

rainfall [11], and streamflow [12]. Indeed, long-range correlation has been found in 

the raw tree ring width time series of two species [13, 14]. This motivates us to sys-

tematically examine the long-range correlation properties of tree ring chronologies 
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that cannot be readily captured by low-order auto-regressive modeling. In particular, 

we will examine how these properties may vary within and across tree species. 

The long-range correlation properties of a time series can be conveniently char-

acterized by the Hurst exponent or Hurst parameter H [15]. The Hurst parameter 

quantifies the persistence of a correlation such that when 0 < H < 1/2, the sig-

nal has anti-persistent correlations; when H = 1/2, the signal is memoryless or has 

short-range correlations; when 1/2 < H < 1, the signal has persistent long-range 

correlations; and when H > 1 the signal may be non-stationary or have non-trivial 

trends. The Hurst parameter can be estimated by a variety of methods; however, 

few of these methods are capable of accurately estimating H when H > 1 [16, 17]. 

Therefore care must be taken when estimating H from tree ring data, since H can 

often be larger than 1 [14]. 

One of the few methods capable of accurately estimating H when H > 1 is  the  

popular detrended fluctuation analysis (DFA) [18]. The problem of estimating H 

when H > 1 can also be aptly dealt with by a more recent method called adaptive 

fractal analysis (AFA) [19], which performs comparably to DFA in many situations, 

but may be able to better deal with arbitrary trends in the signal [19]. Here these 

methods are used to characterize the long-range correlation properties of 10 different 

tree species represented in a database of 697 tree ring chronologies from sites across 

the continental United States. 

1.2 Data 

All of the tree ring site chronologies studied here were obtained from the NOAA 

Paleoclimatology Program’s International Tree Ring Data Bank (ITRDB) at http://www.ncdc.noaa. 

For consistency, we use only chronologies created from tree ring width samples, exclud-

ing those from maximum latewood density. The ITRDB has over 1000 site chronolo-

gies from the United States, but since our purpose is to make statistical comparisons 

among tree species, we narrow the database to species which have at least 25 site 

http://www.ncdc.noaa
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chronologies. This leaves representatives from 10 tree species at 697 sites; locations 

are mapped in Fig. 1.1, while the ITRDB tree species codes with their corresponding 

Latin and common names are listed in Table 1.1. 

Tree ring chronologies are derived as follows. Beginning with multiple core sam-

ples from multiple trees at a given site, raw ring width measurements are combined 

using a process described in [20]– for convenience, it is summarized in Sec. 1 of the 

supplementary material. This procedure is intended to remove the effects of factors 

other than the controlling environment, such as growth trends in individual trees and 

intra- and inter-tree variability. This leaves one time series of growth indices per site, 

intended to serve as a proxy environmental signal capable of reflecting local climatic 

conditions. 

1.3 Methodology 

As pointed out earlier, the Hurst parameter H characterizes the long-range corre-

lations in a time series. There are many effective ways to estimate H [16, 17]. Since 

H for tree ring width data may have H > 1 [14], while most of the methods available, 

such as fluctuation analysis and rescaled range (R/S) analysis, yield estimates of H 

that saturate at 1 [16, 17], care must be taken to choose the appropriate methods. 

Here, we choose detrended fluctuation analysis (DFA) [18], which is the most popular 

and is not hindered by the saturation problem. We also employ a newer method, 

adaptive fractal analysis (AFA) [19], which is comparable to DFA in many situations, 

but may better deal with arbitrary trends in the signals [19]. 

DFA works as follows: given a noise (or increment) time series, x1, x2, x3, · · · , with  

mean x, one first constructs a random walk process, 
i 

u(i) =  (xk − x), i = 1, 2, · · ·  , N  (1.1) 
k=1 

One then divides {u(i), i = 1, 2, · · ·  , N} into N/l non-overlapping segments (where 

N/l denotes the largest integer equal to or smaller than N/l), each containing l 

points, and defines the local trend in each segment to be the ordinate of a best 
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linear or polynomial fit of the time series in that segment. Finally, one computes the 

“detrended walk”, denoted by ul(n), as the difference between the original “walk” 

u(n) and the local trend. The fractal behavior is described by the following scaling 

law 
l 

Fd(l) =  ul(i)
2

1/2 
∼ lH (1.2) 

i=1 

where the  angle brackets denote ensemble averages of  all  the  segments.  The  so-called  

DFA-m denotes the use of an m-order polynomial for the segment fitting. For tree ring 

data, DFA-1 has been found to be consistent with its higher-order counterparts [14], 

so in this work, we focus on DFA-1. 

AFA first estimates a globally smooth trend signal v(i) for  the  random walk pro-

cess u(i), and thus eliminates the problem of abrupt jumps at the boundaries of 

neighboring segments in DFA. The residual, u(i) − v(i), characterizes fluctuations 

around the global trend, and its variance yields the Hurst parameter H according 

to [19] 
N

1
F (w) =  (u(i) − v(i))2

1/2 
∼ wH . (1.3)

N 
i=1 

1.4 Analysis and Results 

1.4.1 Estimation of Hurst parameter 

Based on the log-log plot of F (w) versus w for each tree ring chronology, linear 

fitting is used to estimate the slope across the power-law scaling region, providing an 

estimate of H. Examples of this procedure are shown for four site chronologies in Fig. 

1.2. The estimates of H are consistent between DFA-1 and AFA, thus the estimates 

obtained from AFA are used in further analysis. 

It is found that for some chronologies studied here, the scaling behavior may only 

be defined for time scales up to about 33 years, corresponding to the first 5 points of 

AFA (see Fig. 1.2d), while for other chronologies, the scaling behavior may be defined 

for a few hundred years (see Fig. 1.2a,b,c). For ring data with long scaling regions, 
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the Hurst parameter determined by 5 points in AFA is similar to that determined by 

the entire scaling region; thus, in the following analysis, we will only use the first 5 

points in AFA to estimate the Hurst parameter. 

Careful examination of the data with shorter scaling ranges reveals that the break 

in scaling is due to a large cutoff in low frequency variation in the ring data. This 

is confirmed by the power spectral densities shown in Fig. 1.3. In particular, note 

the scaling break in the Jack’s Fork chronology in Fig. 1.2d and the corresponding 

suppression of its low frequency variation in Fig. 1.3d. It is known that the processing 

of raw tree ring data can lead to loss of low frequency variation in the extracted 

chronologies [21,22]. This suggests that the limited scaling in some chronologies may 

not be intrinsic to the data, but due to excessive filtering. 

1.4.2 Variation of Hurst parameter within and across species 

We first checked the variation of H within species. This is best illustrated by 

estimating the distribution for H for each species using a kernal density estimation 

method. Four examples are shown in Fig. 1.4. Alternatively, we may use scatter 

plots as shown in Fig. 1.5. Based on these results, we can compute sample statistics 

for the groups, which are given in Table 1.2. The mean value of H for each species 

population satisfies 1/2 < H < 1, indicating long-memory and persistent behavior. 

From Table 2 and Fig. 1.5, we also note that there is considerable variation in the 

mean H value from species to species, suggesting variation in the typical strength of 

persistence. To quantitatively examine variations of H across species, two procedures 

are adopted here. One is ANOVA, which tests the hypothesis of equal group means 

against the alternative of non-equality. The test, which is detailed in the Appendix, 

yields a p-value .0001, rejecting the hypothesis of equal group means. This result 

prompts the use of a multiple comparison procedure, also detailed in the Appendix, 

to further clarify the variation among species. The results of this analysis, with 

significance level α = .05, are summarized in Table 1.2. 
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While it is desirable to find the connections between the long-range correlation 

properties of tree ring chronologies and climate variability, our exploratory analysis 

does not find any simple connections, as shown in Sec. 2 of the supplementary ma-

terial. Due to potentially large variations in H over short inter-site distances, the 

most appropriate use of chronology correlation properties may be in spatial aggrega-

tions of H to assist with continental-, hemispheric-, or global-scale climate variable 

reconstructions. 

1.5 Discussions and Conclusions 

A database of 697 tree ring chronologies from 10 different tree species across 

the United States is examined for long-range correlation properties using detrended 

fluctuation analysis and adaptive fractal analysis. The Hurst parameter H is used 

to quantify the strength of these correlations. The mean value of H for sites of each 

species lies in 1/2 < H < 1, indicating a tendency for persistent behavior. There is 

variation in the mean H across species within this interval, and analysis of variance 

and a multiple comparison procedure are used to detect differences in the mean H 

value among species. The difference in mean Hurst parameter value between certain 

species is found to be statistically significant. 

Our study has two interesting implications. One concerns the usefulness of a 

limited calibration period, which is often short compared to the time span over which 

paleoclimatic variables are to be reconstructed. Had tree ring data only exhibited 

short-range correlations, short calibration periods would indeed have very limited 

value; fortunately, this is not the case — the self-similarity and long-range correlations 

in tree ring data implies that the general behavior of tree ring growth would be similar 

to that observed in the calibration period. 

The second implication of our work concerns the reconstruction of paleoclimatic 

records. One critical question is: how may the tree ring data of different sites of 

the same species and different species be combined to best reconstruct paleoclimatic 
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records? An intelligent response might be to utilize the value of the Hurst parameters 

of each site to construct a suitable weighting scheme for sites of the same species, as 

well as for different species. Development of such a scheme would be an important 

task in future research. 

1.6 Appendix: ANOVA and Multiple 

Comparison Procedure 

ANOVA basically compares two types of variations – within groups and between 

groups, by assuming [23]: 

1. Observations are independent 

2. Group populations are normally distributed 

3. Group populations have the same variance 

To fix the idea, let us consider p groups, where the i-th group having observations 

yij , j  = 1, · · ·  , ni, and  mean  = ni Clearly, the global mean is y =yi j=1 yij /ni. 

1 p pniyi, where  n = ni. The total variation around the global mean may be 
n i=1 i=1 

written as 
p ni 

SSTotal = (yij − y)2 = SSWithin + SSBetween (1.4) 
i=1 j=1 

where 
p ni 

SSWithin = (yij − yi)
2 (1.5) 

i=1 j=1 

p 

SSBetween = ni(yi − y)2 (1.6) 
i=1 

The test statistic is obtained from the ratio 

SSBetween/(p − 1)
F = (1.7)

SSWithin/(n − p) 

which follows an F -distribution with p − 1 and  n − p degrees of freedom. When this 

null hypothesis is not true, the expectation of the ratio will be larger than it would 
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be if the null hypothesis were true. ANOVA gives a criterion for accepting/rejecting 

the null hypothesis for an observed F under the three basic assumptions. Note that 

in practice, assumptions (2) and (3) may be weakly violated. 

ANOVA is most conveniently carried out in the free software R. In the following 

examples, ‘>’ indicates a prompt for commands in the R environment. Begin by 

reading the data from a file H_species.dat. 

> rings <- read.table("H_species.dat",header=TRUE) 

Now the dataframe rings has two columns: H (observations) and species (groups). 

We can execute the ANOVA test and view the results. 

> aov.rings <- aov(H~species,data=rings) 

> summary(aov.rings) 

The results of this one-way ANOVA test for differences in group mean H are given 

in Table 1.3. The small p-value indicates that the hypothesis of equal group means 

is rejected at any reasonable significance level. 

Now that ANOVA has indicated differences among the groups, we need to de-

termine whether two tree chronologies have the same mean Hurst parameter or not. 

Intuitively, when the difference between the means of two groups of observations is 

large compared with the summation of the two standard deviations, the groups may 

be considered to have different means. When there are only two groups, taking into 

account the effect of sample size, this idea leads to the t-test. When there are more 

than two groups, a procedure, called Tukey HSD (honestly significant difference) mul-

tiple comparison, can fix the probability α of falsely identifying differences in group 

means, for the entire set of pairwise comparisons, rather than for each pair individu-

ally. This reduces the overall chance of incorrectly rejecting the null hypotheses, and 

therefore, Tukey HSD multiple comparison is more suitable than a simple sequence 

of pairwise t-tests. 

We can carry out the Tukey HSD procedure with α = .05 in R as follows. 
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Figure 1.1. Map showing locations of site chronologies used in the study. 

> tuk <- TukeyHSD(aov.rings) 

> print(tuk) 

The resulting R output gives a 95% confidence interval around the difference between 

each pair of group means. If the interval does not contain 0, then the true difference 

in group means is likely non-zero, and we consider the difference significant. For 

example, the first row of the output table is: 

diff lwr upr p adj 

PIED-QUDG 0.001274444 -0.056677522 0.05922641 1.0000000 

where diff is the difference between group means of PIED and QUDG, lwr and 

upr are respectively the lower and upper confidence limits for the difference in group 

means, and p adj is the p-value after adjustment for the multiple comparisons. Here 

we see that the confidence interval about the difference in means between groups 

PIED and QUDG contains 0. Thus, there is not a significant difference in the two 

group means. 
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Figure 1.2. Long-range correlation analysis of tree ring chronologies 
from (a) Kane Spring, Utah (PIED), (b) Walnut Canyon National 
Monument, Arizona (PIPO), (c) Spruce Canyon, Colorado (PSME), 
and (d) Jack’s Fork, Missouri (QUST). Circles indicate adaptive frac-
tal analysis (AFA), while triangles indicate detrended fluctuation 
analysis of order 1 (DFA-1). AFA and DFA-1 are in good agreement 
for each time series. 
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Figure 1.3. Power spectral density analysis of tree ring chronologies 
from (a) Kane Spring, Utah (PIED), (b) Walnut Canyon National 
Monument, Arizona (PIPO), (c) Spruce Canyon, Colorado (PSME), 
and (d) Jack’s Fork, Missouri (QUST). 
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Figure 1.4. Probability density functions (PDF) of Hurst parameter 
for tree ring chronologies of (a) Pinyon pine (PIED), (b) Ponderosa 
pine (PIPO), (c) Douglas fir (PSME), and (d) post oak (QUST). 
Densities are obtained from kernal PDF estimation. 

QUDG 

PIED 

QUST 

QUAL 

TADI 

PIFL 

PSME 

PIPO 

PSMA 

PCGL 

0.6 0.7 0.8 0.9 1.0 1.1 

H 

Figure 1.5. One-dimensional scatter plots of H by species 



12 

Table 1.1. 
Tree species information 

Species 

Code Latin Name Common Name 

PCGL Picea glauca Canadian spruce 

PIED Pinus edulis Colorado pinyon 

PIFL Pinus flexilis limber pine 

PIPO Pinus ponderosa ponderosa pine 

PSMA Pseudotsuga macrocarpa bigcone Douglas-fir 

PSME Pseudotsuga menziesii Douglas-fir 

QUAL Quercus alba American white oak 

QUDG Quercus douglasii blue oak 

QUST Quercus stellata American post oak 

TADI Taxodium distichum baldcypress 
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Table 1.2. 
Summary statistics of H for each species. “Similar to” indicates which 
group means are not significantly different 

Species Similar Standard Sample 

Code to Mean Deviation Size 

1QUDG 2,3,4,5 0.690 0.063 33 

2PIED 1,3,4,5 0.691 0.079 90 

3QUST 1,2,4,5,6 0.709 0.077 57 

4QUAL 1,2,3,5,6 0.711 0.105 35 

5TADI 1,2,3,4,6,7 0.721 0.096 30 

6PIFL 3,4,5,7,8,9 0.767 0.096 25 

7PSME 5,6,8,9 0.773 0.093 168 

8PIPO 6,7,9 0.800 0.096 207 

9PSMA 6,7,8,10 0.823 0.066 25 

10PCGL 9 0.892 0.085 27 

Table 1.3. 
One-way ANOVA test comparing mean values of H among the 10 
species. “Groups” indicates variation between groups, while “Error” 
indicates variation within groups. 

Sum of Mean 

Source Squares df Squares F Prob > F  

Groups 1.7880 9 0.1987 24.6836 .0001 

Error 5.5294 687 0.0080 

Total 7.3174 696 
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2 VARIABILITY AND CONFIDENCE INTERVALS FOR THE MEAN OF 

CLIMATE DATA WITH SHORT- AND LONG-RANGE DEPENDENCE 

2.1 Introduction 

A time average is perhaps the most fundamental way to characterize climate, but 

the average or mean of climate data during some time interval has limited utility 

without information about its variability. Useful constructs like error bars or confi-

dence intervals—which can facilitate comparison with other periods, other locations, 

other scenarios, or between model and observation—are based on estimates of mean 

state variability. The challenge in characterizing variability is that the underlying 

correlation structure, or serial dependence, of the climate data must be properly con-

sidered, lest the resulting variability estimate be biased. Recognition of this problem 

in climate science dates back to the insightful work of [24], [25], and [26]. Until very 

recently, approaches to account for serial dependence in estimates of climate mean 

state variability have focused exclusively on short-range dependence, or short memory, 

which implies an exponential decay in a process’s autocorrelation function [27–29]. 

However, another sort of temporal dependence structure called long-range depen-

dence or long memory has since been detected in numerous physical state variables, 

e.g., rainfall [30, 31], streamflow [32–34], tropical deep convection [35], general circu-

lation [36,37], surface temperature [37–42], and even climate proxies like ice cores [43] 

and tree rings [44]. The long memory implies a slow power-law decay in a process’s 

autocorrelation function, in contrast to the fast exponential decay of short-memory 

processes. 

Short- and long-range dependence each cause a distinct effect on the variability 

of time averages, and both must be considered to obtain reasonable estimates of that 

variability (Sec. 2.2). Thus, a procedure is needed that can incorporate both effects 
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in estimates of mean state variability. To meet this need, we propose an adaptive 

and computationally feasible procedure for estimating the variance of time averages 

of climate data with short- and long-range dependence (Sec. 2.3). The procedure 

is based on modeling the correlation structures in climate data with a parametric 

stochastic process, adaptively selecting among competing models, and estimating 

parameters using maximum likelihood estimation. The variance or standard error of 

mean states on a given time scale can then be computed analytically from the fitted 

model and used to construct confidence intervals. We illustrate the procedure by 

estimating variability and constructing confidence intervals for 30-year time averages 

of the surface temperature at Potsdam, Germany (Sec. 2.4). We provide evidence 

that interannual variability of the seasonal cycle is a source of long memory in the 

Potsdam temperature data (Sec. 2.5). Discussions and comparison with related work 

are in Sec. 2.6, and concluding remarks are given in Sec. 2.7. 

2.2 The effects of short and long memory on the variability of climate 

mean states 

In this section, we provide evidence to support the claim that both short and 

long memory should be considered in the estimation of climate mean state variabil-

ity. To do so, we first clarify the salient properties of short and long memories in 

terms of a process’s temporal autocorrelation function and spectral density in the fre-

quency domain. We then introduce the class of fractional autoregressive integrated 

moving-average (FARIMA) time series models, which can exhibit both short and long 

memories. Finally, we introduce the formula for the variance of time averages under 

short and long memories and use empirical simulation to establish intuition for the 

effects of the two distinct serial dependence structures. 
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2.2.1 Definition of short- and long-range dependence 

Characterizing the variability of climate mean states is based on the knowledge 

of the process’s correlation structure. For a climate process Xt with time index (t = 

0, . . . , N), mean μ, and  variance  σ2 , the correlation structure is naturally expressed 

by the autocorrelation function 

E[(Xt − μ)(Xt+k − μ)]
R(k) =  (2.1)

σ2 

where E is the expectation operator and k is a time-lag. The autocorrelation function 

R(k) expresses the correlation between values of the process Xt that are separated 

by k time units. Previous studies of climate mean state variability have focused 

predominantly on short-memory autoregressive processes wherein each new value of 

Xt is modeled as a linear combination of a finite number of past values and noise 

[24, 28, 29]. Such a stationary short-memory process exhibits exponential decay in 

its autocorrelation function R(k) ∼ exp(−ak) for some positive constant a. There  

is extensive evidence of short memory in numerous atmospheric state variables, e.g., 

sea-level pressure [27, 45], surface temperature [46], and geopotential height [47]. 

More recently, evidence of long memory in various meteorological variables has also 

begun to accumulate, e.g., precipitation [30,31], tropical deep convection [35], general 

circulation [36, 37], and especially surface temperature [37–42, 48–51]. A stationary 

long-memory process exhibits power-law decay in its autocorrelation function, i.e., 

R(k) ∼ k2d−1 (where 0 < d <  1/2 is the long-memory parameter), much slower 

than the exponential decay of a short-memory process. Furthermore, the summation 

over the autocorrelation function gives a measure of how quickly a perturbed process 

relaxes back toward its long-term mean state. Theoretically, for a short-memory 

process this summation is finite ( ∞ 
k=−∞ R(k) < ∞), whereas for a long-memory 

∞ process it diverges to infinity( k=−∞ R(k) =  ∞) [52]. This implies that a perturbed 

short-memory process returns toward its long-term mean state fairly rapidly, while a 

perturbed long-memory process may sustain the departure from its long-term mean 

for an extended time. This has the effect that the sequence of observed sample mean 
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states from period to period of a short-memory process cluster more tightly around 

the long-term mean equilibrium state, while those of a long-memory process have 

greater spread or variability. 

Another distinguishing characteristic of short- and long-memory processes mani-
√ 

fests in the spectral density f(λ) = (σ2/2π) ∞ 
k=−∞ R(k) exp(−ikλ) (where  i = −1 

and −π < λ < π is frequency). At low frequencies the spectral density takes the form 

f(λ) ∼ cf λ
−2d (λ→ 0) (2.2) 

where cf is a positive constant, d = 0 implies short-memory, and 0 < d < 1/2 implies 

long-memory with larger d indicating more intense long-memory. This means that 

the spectrum of a long-memory process has a singularity at the origin, while that of a 

short-memory process converges to a finite value. This also means the long-memory 

parameter d conveniently distinguishes between short- and long-memory processes. 

Note that when the process has finite variance, the long-memory parameter d is 

related to the well-known Hurst parameter H [32] by H = d+ 1/2. 

To illustrate these properties in meteorological data we analyze a long record of 

daily average surface temperatures. The measurements are taken from the meteo-

rological station at the Potsdam Institute for Climate Impact Research located in 

Germany at 52.38◦N, 13.07◦E at an elevation of 100 meters. The dataset, obtained 

from the German Weather Service Climate Data Center (personal communication), 

consists of N = 44, 924 observations of daily average surface temperature spanning 

the 123 years from 1 January 1893 to 31 December 2015. 

Figure 2.1 (left column) shows the time series of the raw Potsdam temperature 

data over the four 30-year periods: 1896–1925, 1926–1955, 1956-1985, 1986–2015. 

The data exhibit a prevalent seasonal cycle which dominates the dependence struc-

ture as seen in their autocorrelation function (Fig. 2.2a). Despite the prevalence of 

seasonality, there is considerable temperature variability about the seasonal cycle. 

To scrutinize the more subtle dependence structure of this variability we must first 

separate it from the seasonal cycle. 
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This implies a simple model for atmospheric variability within a particular 30-year 

time span similar to that in [28] in which observed data are considered as the superpo-

sition of a constant mean state, a seasonal cycle, potential non-stationary trends, and 

the remaining stochastic noise process. In addition to seasonality, if the data include 

significant non-stationary trends, they must also be removed prior to studying the 

dependence structure of the stationary stochastic process. For identification of trends 

in data with potential long memory, see [40, 53–55]. Adopting the methods of [40], 

we do not find significant trends in the Potsdam data and therefore do not detrend 

the data (see Sec. 2.4 for details). We remove the seasonal cycle by forward-backward 

notch filtering the annual and semiannual cycles, obtaining the temperature anomaly 

series shown in Fig. 2.1 (right column). 

The autocorrelation function of these temperature anomalies, shown in Fig. 2.2c, 

indeed exhibits decay much slower than exponential—consistent with the power-law 

decay expected of long-memory processes. In addition, the periodograms of the raw 

and anomalous temperature data (Figs. 2.2b and 2.2d, respectively) appear to exhibit 

power-law scaling at low frequencies, also consistent with long memory. Despite these 

indications of long memory, the temperature anomaly autocorrelations in the short-

range up to a two week lag (not shown) exhibit exponential decay, consistent with 

short-memory. With the fingerprints of both short and long memories in the daily 

average surface temperature data, in the following subsection we review a class of 

parametric models that can simultaneously capture both dependence structures. 

2.2.2 Fractional ARIMA models 

We now introduce the class of fractional autoregressive integrated moving-average 

(FARIMA) time series models, which can exhibit both short and long memories. This 

class is an extension of the classic short-memory ARMA models introduced by [56]. 

The ARMA class has been used in various meteorological and climatological applica-

tions including prediction of drought indices [57], modeling quasi-periodicity in zonal 
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circulation [58], modeling precipitation occurrence and magnitude [59], stochastic pa-

rameterization of atmospheric convective heating [60], and wind forecasting [61, 62]. 

The ARMA class models the values of a temporal process Xt sampled uniformly in 

time (t = 1, . . . , N) as a linear combination of past values plus the linear combination 

of current and previous stochastic noise innovations, i.e., 

p q 

Xt = φiXt−i + t + θj t−j , t = 1, . . . , N  (2.3) 
i=1 j=1 

where φ1, . . . , φp are parameters called the autoregressive coefficients, θ1, . . . , θq are 

parameters called the moving average coefficients, t (t = 1, . . . , n) is an uncorre-

lated Gaussian noise process with mean zero and variance σ2, and  Xt is called an 

ARMA(p, q) process. 

[56] also extended the ARMA class by introducing integrated autoregressive 

moving average (ARIMA) processes. For instance, the cumulative sum Yt of an 

ARMA(p, q) process Xt can be defined with Xt = Yt − Yt−1. To make the notation 

compact and allow for various differencing/integration orders, [56] used a backshift 

operator B which imparts a lag to a temporal process, i.e., BkXt = Xt−k for integer 

k. Then the cumulative sum Yt of Xt can be written as (1 − B)Yt = Xt, and  more  

generally the order-m integration can be written as (1 − B)mYt = Xt, where  Xt is 

ARMA(p, q) and  Yt is ARIMA(p,m, q). 

[63] and [64] realized that by allowing the integer differencing order (m) of  the  

ARIMA models to be fractional (d), a new process could be obtained that general-

izes both the stationary ARMA and non-stationary ARIMA processes. A fractional 

autoregressive integrated moving average, FARIMA(p, d, q), process Yt is defined re-

cursively by Y0 = 0  and  

(1 − B)dYt = Xt (2.4) 

where Xt is an ARMA(p, q) process as defined by Eq. (2.3) and the differencing 

order d is a real number, identical to the long-memory parameter d discussed in 

Sec. 2.22.2.1. Thus, the parameter d controls the long-memory intensity with 0 < d <  

1/2 corresponding to long memory and d = 0 corresponding to short memory. The 
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short-memory dependence structure is controlled by the q moving average coefficients 

θ1, θ2, . . . , θq and the p autoregressive coefficients φ1, φ2, . . . , φp (Eq. 2.3). 

The class of FARIMA(p, d, q) models is particularly useful because it encompasses 

processes with pure short memory, pure long memory, and simultaneous short and 

long memory. For instance when d = 0,  the  FARIMA(p, d, q) reduces to the short-

memory ARMA(p, q) model, and when q = 0 it further reduces to the autoregressive 

AR(p) model. Since they generalize ARMA models by including the possibility of 

long-memory, there is no surprise that FARIMA models have been used in numerous 

meteorological and climatological applications, e.g., characterizing properties of rain-

fall [65], describing deep ocean variability [66], modeling surface temperatures [40,49], 

and forecasting wind speed [67]. 

2.2.3 Variance of time averages under short and long memories 

We now support the claim that both short and long memories should be considered 

in the estimation of climate mean state variability. We first present a general formula 

for the variance of the sample mean of stationary processes in the FARIMA(p, d, q) 

class having short-, long-, or both short- and long-range dependence. We then clarify 

the interpretation of this formula empirically through a comparison of the Potsdam 

temperature anomalies and four simulated FARIMA processes, distinguishing the 

respective effects of short and long memories on the variance of time averages. 

Consider a stationary FARIMA(p, d, q) process Yt (t = 1, 2, . . . , N) with true  

underlying mean μ. Even under serial dependence, the sample mean of size n, 

Ȳn = t
n 
=1 Yt/n, n ≤ N , is an unbiased estimator of the true underlying process 

¯ ¯ mean μ, i.e., the expectation of Yn is equal to μ. Of course, for a given sample, Yn 

¯will not be exactly equal to μ; in  fact  Yn follows a Gaussian distribution with mean 

¯μ and variance Var[Ȳ 
n]. For large n, the general formula for the variance of Yn is [68] 

Var[Ȳ 
n] ∼ ν(d)f(n−1)n−1 ∼ ν(d)cf n

2d−1 , n  →∞ , (2.5) 
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where ⎧ ⎪2Γ(1−2d)sin(πd) ⎨ , d = 0  ,
d(2d+1)

ν(d) =  ⎪ ⎩2π ,  d = 0  . 

As n→∞, f(n−1) corresponds with the spectral density at low frequencies, which 

takes the form (cf., Eq. 2.2) 

2 
2σ 1 +  q

j=1 θj −2df(λ) ∼ · |λ| ∼ cf · |λ|−2d , λ→ 0 , (2.6)
2π 1 − p

i=1 φi 

so that cf is the pre-factor of the spectral density at low frequencies, containing the 

information about the short-memory autoregressive and moving average components 

of the process. We show in Appendix A that this formulation generalizes the large 

sample approximation for computing variances of time averages of short-memory 

processes used in previous climatological literature. 

To clarify the interpretation of Eq. (2.5), we compute the empirical variance-time 

relations [35] between various averaging sizes n and Var[Ȳ 
n] for the Potsdam temper-

ature anomalies and four different simulated FARIMA series. The empirical variance-

time relation is obtained by partitioning a length N series into non-overlapping blocks 

of length n N samples, computing the sample mean inside each block, and comput-

ing the sample variance among these block means. While the Potsdam temperature 

data have N = 44, 924 samples, the four simulated FARIMA time series have a length 

of N = 106 each and have the following dependence structures: 

1. uncorrelated white noise FARIMA(0, 0, 0) 

2. short-memory FARIMA(3, 0, 0), AR(3), with φ1 = 0.76, φ2 = −0.16, and φ3 = 

0.06 

3. long-memory FARIMA(0, d, 0) with d = 0.16 

4. simultaneous short- and long-memory FARIMA(3, d, 0) with d = 0.16, φ1 = 

0.76, φ2 = −0.16, and φ3 = 0.06. 
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The four simulated series are then normalized to have unit variance. 

Figure 2.3 shows the estimated variance-time curves for the Potsdam temperature 

anomalies and the four simulated FARIMA series. Since the series are normalized, the 

variance-time curves all originate with unit variance at n = 1; however they assume 

different shapes depending on their short- and long-range dependence structures. As 

expected from the classical Central Limit Theorem, the variance-time curve of the 

white noise series decays as n−1 for all n, appearing as a line with slope −1 in  the  

log-log scale. For short memory (d = 0), Eq. (2.5) indicates a variance-time curve of 

2πcf n
−1 as n →∞. Indeed, the empirical variance-time curve for the AR(3) decays 

asymptotically as n−1 . But, the short memory causes slower decay at small n, which  

effectively scales the asymptotic variances by the factor of 2πcf , manifesting as a 

vertical shift above the white-noise curve in log-log scale. 

According to Eq. (2.5), a long-memory process has an asymptotic variance-time 

relation of ν(d)cf n
2d−1 . This tendency to decay slower than n−1 is a fingerprint of 

long memory known as the Joseph effect or Hurst phenomenon [69]. Indeed, the 

= n2(0.16)−1pure long-memory FARIMA(0, d, 0) variance-time curve decays as n2d−1 = 

n−0.68 , appearing as a line with a slope of −0.68 in the log-log scale. The variance-time 

relation of the short- and long-memory FARIMA(3, d, 0) exhibits both dependence 

= n−0.68effects with a slow asymptotic decay rate of n2d−1 and scaling by the factor 

ν(d)cf which shifts it  above  the FARIMA(0, d, 0) curve. The variance-time curve of 

the Potsdam temperature anomalies coincides well with that of the FARIMA(3, d, 0), 

exhibiting both the slow asymptotic decay of long-memory and the vertical shift of 

short-memory. Neither a pure short-memory nor a pure long-memory model can 

mimic the variance-time relation of the Potsdam temperature anomalies, but a model 

combining both dependence structures can do so quite well. 

From Eq. (2.5) and these empirical variance-time relationships, we can see that at 

large averaging sample sizes, short-range dependence scales the variance by a constant 

factor (vertical shift in log-log scale), while long-range dependence actually changes 

the rate of decay (less steep slope in log-log scale). This means that if one uses 
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a pure short-memory model to represent the variance-time relation of climate data 

which actually have long memory, variances of mean states on large time scales will 

be underestimated. Thus, in order to reliably quantify the variability of climate mean 

states, one must detect and characterize both the short- and long-range correlation 

structures of the climate data. 

2.3 Characterizing the variability of climate mean states under short and 

long memories 

In this section, we describe an adaptive and computationally feasible procedure 

for estimating the variance and constructing confidence intervals for time averages 

of climate data with short- and long-range dependence. The procedure is based on 

modeling climate data as a FARIMA(p, d, q) process, estimating parameters using ap-

proximate maximum likelihood estimation, and adaptively selecting the model 

order using an information criterion. The variance or standard error of mean states 

on a given time scale can then be computed directly from the fitted model using 

Eq. (2.5). 

2.3.1 Preliminary steps 

Before applying the forthcoming variance estimation procedure, several prelimi-

nary steps should be taken to ensure its application to a particular dataset is appropri-

ate. First, any prevalent seasonality should be removed—e.g., the annual cycle and, 

if substantial, its first few harmonics. The forthcoming variance estimation procedure 

is formulated for stationary linear Gaussian processes, so after removing the seasonal 

cycle, data should be at least roughly consistent with these conditions. Nevertheless, 

as we discuss below, the procedure is expected to be robust against non-Gaussian 

data. 

Exploratory and heuristic methods can be applied to assess any evidence for short 

and/or long memories. Short memory can be assessed through plots of the autocor-
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relation function or the variance-time relation. The intensity of any possible long 

memory can be assessed using any of numerous heuristic methods, including the 

rescaled range method [32], the KPSS statistic [70], the rescaled variance 

(V/S) method [71], the detrended fluctuation analysis (DFA) [72], Haar 

wavelets [73], and the adaptive fractal analysis [74]. If heuristic methods are 

indicative of long memory, then a more complete characterization of the processes’ 

dependence structure may be obtained through the more rigorous technique of max-

imum likelihood estimation. 

2.3.2 Model estimation 

FARIMA time series models can be fit to data using maximum likelihood esti-

mation, which is a method for estimating the parameter values of a statistical model 

given data. The method works by searching for the parameter values that maximize 

the likelihood function, a measure of the degree to which the data support particular 

parameter values [75]. 

Fitting FARIMA models using maximum likelihood estimation has two major 

advantages in this context: it allows for the simultaneous estimation of both short-

and long-memory structures, and it allows the subsequent use of information-based 

criteria to select among competing models. However, exact maximum likelihood 

estimation is computationally infeasible due to numerous inversions of the n × n 

covariance matrix. Fortunately, numerous approximate likelihood methods have been 

developed, including both Frequentist [68] and Bayesian [76] approaches. Here, we 

employ the elegant and computationally efficient spectral domain approximation to 

the Gaussian likelihood proposed by [77]. The Whittle estimator is asymptotically 

equivalent in distribution to the exact maximum likelihood estimator for Gaussian 

data [78] and yields asymptotically consistent and normally distributed parameter 

estimates for non-Gaussian data [79]. Simulation studies have confirmed that the 
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Whittle estimator is indeed robust against non-Gaussian data and outperforms other 

popular methods under both short- and long-range dependence [80, 81]. 

The Whittle method is based on the periodogram of the process Yt (t = 0, 1, . . . , N), 

1
I(λ) =  

2πN 

N 

Yt exp(itλ) 
t=0 

2 

(2.7) 

√ 
where −π < λ < π  is frequency and i = −1. The method relies on minimizing the 

function 
π I(λ) π 

Q(η) =  dλ + log f(λ; η)dλ (2.8)
f(λ; η)−π −π 

where η is the vector of unknown parameters, which contains the long-memory param-

eter d as well as any autoregressive and moving average coefficients, q.v., Eq. (2.3), 

and f(λ; η) is the spectral density function given the parameters in η. The Whit-

tle estimator is defined as the value of η that minimizes Q(η); for computation, the 

integrals in Eq. (2.8) are replaced by the corresponding sums over Fourier frequencies. 

2.3.3 Model selection 

Maximum-likelihood-based methods like the Whittle estimation require specifi-

cation of the precise parametric form of the model, i.e., the value of p and q and 

whether or not  d = 0, which can invite bias under model misspecification [78]. Thus, 

it is advisable to use a model selection procedure to identify an appropriate order of 

the FARIMA(p, d, q) model.  

What constitutes an appropriate model depends on the aim of the investigation. 

Since our ultimate purpose is to quantify the variability in time averages of climate 

data, we are primarily concerned with satisfactorily representing the process’s depen-

dence structure. Thus, we use Occam’s razor or parameter parsimony as a guiding 

principle in model building. This proposition suggests that among adequate models, 

the one with the fewest parameters is preferable. 

To identify the preferred model, i.e., the preferred values of p and q, we  use  an  

information-based selection procedure. The idea is to begin with a pool of candidate 
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models, e.g., FARIMA(p, d, q) models  with  p ≤ pmax, q ≤ qmax, and  −1/2 < d <  1/2; 

since we seek a parsimonious model, we find pmax = qmax = 8 adequate. We make 

an information-based comparison among these candidate models to identify one that 

is best in terms of minimizing information loss [82]. We follow [83], who found that 

the Bayesian information criterion (BIC) of [84] performs well in the parsimonious 

selection of FARIMA models. The BIC may be interpreted as a measure of the 

information lost by the use of a fitted model rather than the data themselves [85]. 

The BIC is defined as 

BIC = −2 · log(L̃) + log(n) · r (2.9) 

where L̃ is the maximized value of the likelihood function, i.e., the likelihood of 

the Whittle method parameter estimates, n is the number of samples used in the 

estimation, and r is the number of parameters being estimated. The log(n) · r term 

encourages parsimony by acting as a penalty for adding additional terms to the model. 

We first narrow the candidate pool to those models for which Whittle’s parameter 

estimation procedure converges, and we identify the model minimizing BIC as the 

most preferred model in the candidate pool. 

2.3.4 Confidence intervals for climate mean states 

In this section we describe how the variability estimates presented in this paper 

may be used to construct a confidence interval for the mean of climate data. A 

confidence interval quantifies our knowledge about the true mean state by bracketing 

a set of plausible values, based on a sample sequence of data. Confidence intervals 

can therefore serve as a convenient error bar for estimated climate mean states. 

Suppose we are interested in the mean of a sequence of climate data Yt during some 

time span of length n. It is assumed that the sample mean Ȳ 
n has been estimated 

and subtracted from the data, that the seasonal cycle has been removed, and that 

the a FARIMA(p, d, q) model has been selected and fit to the anomalous data via the 

procedures in Secs. 2.32.3.2 and 2.3.3. A confidence interval for the mean μ of Yt is 
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essentially the sample mean plus or minus the appropriate quantile from a standard 

normal distribution times the square root of the variance of the sample mean. We 

estimate the variance of the sample mean with Eq. (2.5), replacing d and f with their 

estimates, d̂  and f̂ ; the latter is the spectral density in Eq. (2.6) given the estimated 

FARIMA(p, d, q) parameter values. 

Then, for large n, a  two-sided (1 − α) × 100% confidence interval for μ is 

Ȳ 
n ± z1−α/2 ν(d̂)f̂(n−1)n−1 (2.10) 

where z1−α/2 is the 1 − α/2 quantile of the standard normal distribution [68]. The 

one-sided upper (1 − α) × 100% confidence bound is 

Ȳn + z1−α ν(d̂)f̂(n−1)n−1, (2.11) 

and the lower (1 − α) × 100% confidence bound is 

Ȳn − z1−α ν(d̂)f̂(n−1)n−1. (2.12) 

In practice, since we are estimating f̂ , the normal approximation may not be very 

accurate at small sample sizes due to uncertainty in the estimated parameters. This is 

analogous to the more familiar situation for independent data in which a t-distribution 

is used when the variance is unknown and must be estimated. [68] uses Monte Carlo 

simulation to estimate the additional variability induced by parameter uncertainty. 

For a 95% confidence interval, the z1−α/2 factor should be inflated by about 5% 

when parameters are estimated from a sample size of 1000. Again, analogous to the 

situation with independent data, for very large sample sizes, such as the > 104 used 

in Sec. 2.4, this inflation is essentially negligible. 

2.4 Analysis procedure demonstrated with the Potsdam surface temper-

ature record 

In this section we demonstrate a procedure for the determination of error bars 

on the mean of climate data that may have both short- and long-range dependence. 
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We illustrate the procedure by determining error bars for mean states of the 123-

year record of observed daily average surface temperatures at Potsdam, Germany. 

Since an average over at least ten years of daily observations for most common state 

variables (thirty years for precipitation) is a classical climate definition by the World 

Meteorological Organization [86], we focus on mean states of the four 30-year periods 

1896–1925, 1926–1955, 1956–1985, and 1986–2015. Specifically, we estimate the time 

mean for each period along with its variance or standard error and construct a 95% 

confidence interval for the error bars of each period. 

The procedure for obtaining appropriate error bars for the mean of climate time 

series data is represented schematically in Fig. 2.4. The salient tasks are 

1. Remove the seasonal cycle and non-stationary trends. 

2. Assess the potential for long-memory with heuristic methods, e.g., DFA or the 

variance-time relation. 

3. Fit a set of candidate short-memory ARMA models and select the best one 

according to the BIC. 

4. Fit a set of candidate long-memory FARIMA models and select the best one 

according to the BIC. 

5. Choose between the best ARMA and best FARIMA models. 

6. Determine the error bars for the time mean based on the chosen model. 

We illustrate these tasks by independently applying them to each 30-year segment 

of data, beginning with the removal of the seasonality by forward-backward notch 

filtering the annual and semiannual cycles. 

The next task is to remove any non-stationary trends that exist in the data. The 

issue of trend removal should be treated with care, as even a stationary stochastic 

process can appear to have trend, especially if it has long memory [55, 87]. Remov-

ing arbitrary trend from data that are actually stationary is no safer than treating 
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non-stationary data as stationary, therefore we detrend data only given compelling 

evidence that a trend exists. 

To detect possible trends, we adopt the approach of [40]. For each segment, we 

first remove a linear trend, then choose a best FARIMA model by the methods in 

Sec. 2.32.3.3. We then simulate an ensemble of 1000 time series from the fitted model 

and estimate the magnitude of linear trend in each synthetic time series. Finally, 

we compare the magnitude of linear trend in the observed data with the distribution 

of trend magnitudes from the simulated data and compute p-values. None of these 

p-values are significant at α = 0.05, so we conclude there is no need to detrend any 

period of the Potsdam data. We return to the issue of arbitrary trend in the data 

and its relationship to estimation of long memory in Sec. 2.5. 

To assess the potential for long memory in the data, we check the variance-time 

relation in Fig. 2.5 and the first-order DFA [72] in Fig. 2.6. Since Var[Ȳ 
n] is expected 

to decay as n2d−1 (Sec. 2.32.2.3), the asymptotic slope of the variance-time relation 

admits a heuristic estimate of long-memory intensity d̂  
VT. The resulting estimates of 

the long-memory parameter, d̂  
VT and d̂  

DFA, are given in Table 2.1. Both DFA and 

the variance-time relations are consistent with long memory in the four time periods, 

with the exception of DFA for 1896–1925, which is more consistent with pure short 

memory. While they can be useful for exploring the potential for long memory in 

climate data, heuristic methods like DFA are known to be biased in the presence 

of short-range dependence [80]. For rigorous parametric modeling, we use instead 

a maximum likelihood-based approach, which can simultaneously characterize both 

short and long memories. 

To select the best ARMA and the best FARIMA models for the data, we first con-

sider a pool of candidate ARMA(p, q) models and a pool of candidate FARIMA(p, d, q) 

models all having p ≤ pmax and q ≤ qmax. With parsimony as the guiding principle 

of selection, we find pmax = qmax = 8 to yield a sufficiently wide pool of candidate 

models. For each 30-year period, we fit 81 candidate ARMA models and 81 candidate 

FARIMA models using the Whittle method (q.v., Sec. 2.32.3.2), and we select the 
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best model from each pool according to the BIC (q.v., Sec. 2.32.3.3). The parameter 

estimates for the selected ARMA and FARIMA models for each 30-year period are 

shown in Tables 2.2 and 2.3, respectively. 

Figure 2.7 shows the periodogram for each 30-year period of the Potsdam temper-

ature anomalies along with the spectra of the selected FARIMA and ARMA models. 

In each period the BIC selects low-order models with totals of at most four moving-

average and autoregressive parameters. Differences between the ARMA and FARIMA 

spectra are most evident at low-frequencies where the FARIMA spectra have greater 

amplitude associated with the presence of long memory. 

The next task is to choose between the best candidate ARMA and FARIMA mod-

els. For this task we adopt a visual diagnostic plot that provides a comprehensive view 

of model quality across various scales of atmospheric variability. Several summative 

approaches are also available, including the difference of BIC (ΔBIC), goodness-of-fit 

testing, the likelihood-ratio test, and the simulation-based selection strategy of [88] 

(see Appendix B). We use the visual diagnostic at this step because the summative 

approaches may favor a model for its overall better fit across time scales without 

generally revealing its scale- or range-dependent strengths or deficiencies. 

To create a diagnostic visualization capable of revealing model quality across 

various regimes of atmospheric variability, we employ the ATS (average-transform-

smooth) method described by [89]. The procedure illuminates the residuals be-

tween the raw periodogram, I(λ), of a time series and the spectrum, f(λ), of a 

fitted model. First, the periodogram and fitted spectrum are averaged within non-

¯ ¯overlapping blocks of 4 points, each yielding I(λ) and  f(λ), and the average values 

are assigned to the average frequency of the block. [89] found that a block size as 

small as 4 still provides excellent statistical properties. Next, a variance-stabilizing 

¯natural log transformation is applied to the quotient I(λ)/f̄(λ) to obtain the residu-

als ln[Ī(λ)] − ln[f̄(λ)]. These residuals represent discrepancies between the empirical 

spectrum of the data and the spectrum of the fitted model. 
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Figure 2.8 shows the diagnostic spectral residual plots for both ARMA and FARIMA 

models over the four 30-year periods of the Potsdam temperature data. The residuals 

are grouped into three frequency bands corresponding to distinct regimes of atmo-

spheric variability: two days to two weeks, two weeks to one year, and one year to 

thirty years. The high frequency band from two days to two weeks corresponds with 

mesoscale to synoptic variability, the middle band of two weeks to one year corre-

sponds with the subseasonal to seasonal scale as defined in [90], and the low frequency 

band corresponds with interannual to multidecadal scales. The distribution of resid-

uals in each frequency band are summarized by a box plot; residual distributions not 

centered at zero imply bias in the model in that frequency band. The four panels in-

dicate that both ARMA and FARIMA models perform reasonably well at time scales 

below one year. However, for the estimation of variance at long time scales, aptness at 

low frequencies is critical. Figure 2.8a shows that, in the 1896–1925 period, while the 

ARMA model performs well, the FARIMA model overestimates variability on time 

scales longer than one year, resulting in a negative residual distribution in that band. 

Figure 2.8b-d show that while the FARIMA performs well in all frequency bands, the 

ARMA model underestimates variability at low frequencies, resulting in positive bias 

in the residual distributions. These findings are consistent with the results of DFA 

shown in Fig. 2.6 which indicated long memory in the latter three periods. Based 

on these results, we conclude that the ARMA model is preferred for the 1896–1925 

period, while FARIMA models are preferred for the other three periods. 

Given the chosen models we can determine appropriate error bars for the time 

mean of each period by using Eq. (2.10) to compute 95% confidence intervals. We 

can contrast the FARIMA based confidence intervals with their status quo ARMA 

based counterparts to understand if the difference in uncertainty characterization 

is meaningful. Table 2.4 and Fig. 2.9 show the time mean of each 30-year period 

along with the 95% confidence intervals computed from both the selected ARMA and 

FARIMA models. Although the width of error bars varies across the four periods, 

those from the FARIMA models, which account for long-memory, are consistently 
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wider than those from the ARMA models, which do not. In fact the distinction is 

substantive, e.g., a comparison of the mean temperature states for periods 1956–1985 

and 1986–2015 informed by ARMA-based error bars indicates a significant differ-

ence (the two confidence intervals do not overlap), whereas a comparison informed 

by FARIMA-based error bars indicates no significant difference (the two confidence 

intervals overlap). Somewhat paradoxically, while the wider error bars decrease the 

apparent significance of changes in mean temperature from period to period, they also 

communicate greater uncertainty which means that the true difference in means could 

be much greater than previously thought. [87] and [55] reported similar findings in 

which increased uncertainty due to long memory simultaneously makes West Antarc-

tic warming trends less significant yet allows for much larger trends than previously 

thought. 

Comparing the periods 1926–1955 and 1986–2015 leads to the same contradiction 

between ARMA- and FARIMA- based inferences. Only comparison of periods 1896– 

1925 and 1986–2015 leads to a unanimous conclusion of change in mean temperature 

from both ARMA- and FARIMA-based error bars. Such substantive discrepancies 

between conclusions emphasize the necessity for a meticulous choice of the model on 

which confidence intervals are based. 

With the emergence of climate change as a major public policy issue, better char-

acterization of uncertainty has become increasingly critical. Improvements in uncer-

tainty characterization have emerged for both observational datasets [91] and climate 

model simulations [92]. The procedure presented here offers an improvement appli-

cable to both observational and model data by allowing for a more faithful represen-

tation of the variability and dependence structure of the data on which error bars are 

based. While the FARIMA-based confidence intervals are wider than their ARMA-

based counterparts and therefore communicate greater uncertainty in the time mean, 

they provide even stronger evidence of the increase in mean temperature in the most 

recent 30-year period. 
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2.5 Sources of long memory in the Potsdam temperature data 

In this section, we explore the source of long memory in the Potsdam temperature 

data. In particular, we focus on the potential role that nonstationarity, seasonality, 

and arbitrary trends in the time series data could play in estimating the intensity of 

long memory. 

To simultaneously identify the seasonal cycle and potential trends, we use STL 

(seasonal decomposition of time series using Loess [93]), a filtering procedure for 

decomposing a time series into trend, seasonal, and remainder components. Figure 

2.10 shows the STL decomposition of the Potsdam temperature data in the 30-year 

period from 1986–2015. For visibility, the components are plotted on different vertical 

scales, and rectangles spanning the same temperature range are provided on the right 

side of the plots for comparison. STL recovers an unambiguously increasing trend as 

well as an annual cycle that is allowed to vary from period to period, consistent with 

the interannual variation found in the seasonal cycle of climate data. After removing 

the trend and seasonality, we are left with a remainder series of correlated noise which 

is stationary in the mean. 

We repeat the analysis procedure described in Sec. 2.4 using the STL detrended 

and deseasoned data. After selecting a candidate FARIMA and ARMA model for 

each period, we consult the spectral residual diagnostic plots and find that FARIMA 

models are no longer superior to the ARMA models on time scales beyond one year. 

This implies that removal of the STL seasonal and trend components effectively re-

moved long memory from the Potsdam data. 

To further isolate the source of long memory, we add the STL trend components 

back into the stationary remainder components, effectively deseasoning but not de-

trending the data, and we repeat the analysis of Sec. 2.4. Again, we obtain similar 

results indicating that long-memory FARIMA models are not preferred over short-

memory ARMA models for the STL deseasoned Potsdam temperature data. This 
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implies that trend or nonstationarity in the mean temperature does not play a criti-

cal role in the intensity of long memory in the Potsdam data. 

In Sec. 2.4, we operated on data deseasoned via Fourier notch filtering of the an-

nual cycle and its first harmonic. This spectral filtering removes a seasonal cycle that 

is essentially constant from year to year; whereas, STL removes a seasonal cycle that 

may vary from year to year. Since the removal of the STL seasonal cycle essentially 

removes long memory from the data, we conclude that interannual variability of the 

seasonal cycle plays a critical role in the presence of long memory in the Potsdam 

temperature data. 

2.6 Discussions and relevance to earlier work 

In this section, we establish the relevant context and compare our approach with 

earlier work. Recognition of the effect of serial correlation on the variability of cli-

matic mean-state estimates dates back to [24], who derived the variance of a finite 

time average of a first-order continuous-time autoregressive process in terms of its 

autocorrelation function. [25] and [94] extended Leith’s results to discretely sampled 

red-noise climate processes and derived the variance of mean states in terms of the 

power spectral density. 

Emerging from these inspiring works is the notion that the variance of a time 

average of autoregressive data is proportional to the variance of the time average 

that would be expected if data were independent. This proportionality factor, which 

depends only on the autocorrelation structure, was interpreted as the time between 

effectively independent samples [24,94]. Dividing the sample size used to compute the 

time average by this quantity results in what has been termed “effective sample size,” 

intended to represent the number of independent pieces of information in the data 

sequence [95]. In the Appendix, we show that the approach presented in this paper 

generalizes this earlier approach to cases with both short- and long-range dependence. 
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With the ability to estimate the variability in time averages came the testing 

of hypotheses about differences in climate mean states. [25], [28], [95], [96], and [29] 

provided various sorts of statistical hypothesis tests for detecting differences in climate 

mean states. Recently, the use of statistical hypothesis testing as the gold standard 

in research has come into question [97, 98]. Hence, in this work we use confidence 

intervals rather than hypothesis tests—following the lead of [99], who argued that 

confidence intervals are more useful than a binary test result in the comparison of 

climate statistics. 

With the widespread detection of long memory in climate data comes the need to 

extend the existing research on climate mean state variability, which focused solely 

on short-memory processes, to processes with long memory. Recently, [100] (hereafter 

MK16) described an approach for creating confidence intervals for time averages of 

processes with long-range correlations. Their approach involves manual tuning of 

the parameters of a FARIMA(1, d, 0) model and a graphical procedure for estimating 

the variance of mean states. Our approach improves on their methodology by fit-

ting models with maximum likelihood, rather than manual tuning, and selecting the 

appropriate model order with an information criterion, rather than using only the 

FARIMA(1, d, 0) model. This is advantageous both in terms of reproducibility and 

computational feasibility, since maximum likelihood estimation and model selection 

can be automated, and in terms of accuracy, since underspecified FARIMA mod-

els can lead to biased parameter estimates [80]. In addition, we provide an explicit 

formula (Eq. 2.5) for the variance of time averages, which ameliorates the need to 

estimate variances graphically. 

To aid in comparison of our approach with that of MK16, we analyzed the same 

123-year dataset of daily average surface temperatures from Potsdam, Germany. 

MK16 used the entire 123-year record to calibrate their model and variance estimate, 

resulting in identical widths for the confidence intervals of the four 30-year periods 

considered. However, if comparison among mean states is desired, and there is the 

possibility of climate change impacts from one period to another, then the statistics 
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of each time period should be considered separately, not pooled together. While the 

graphical approach of MK16 may require an extensive sample size to obtain reliable 

variance estimates, the parametric approach described in this paper does not require 

data beyond the period of interest, which allows for the separate estimation of the 

statistics for each 30-year period in the Potsdam temperature record. The approach 

in this paper results in confidence intervals that are roughly consistent with those of 

MK16, although those in MK16 do not reflect the substantial increase in uncertainty 

during the most recent period: ±0.34◦C (1896–1925), ±0.48◦C (1926–1955), ±0.41◦C 

(1956–1985), and ±0.71◦C (1986–2015) (see Table 2.4) versus ±0.5◦C for all periods 

in MK16. 

2.7 Conclusions 

This paper presents an approach for estimating variability and constructing con-

fidence intervals for climate mean states, respecting both short- and long-range de-

pendence. In particular, we make the following contributions: 

• We demonstrate that both short- and long-range dependence structures in a 

temporal process must be considered to adequately characterize variability of 

mean states on a given time scale (Sec. 2.2). 

• We propose an adaptive and computationally feasible procedure for estimating 

the variability and constructing confidence intervals for the mean of climate data 

with both short- and long-range dependence (Secs. 2.3 and 2.4). The proce-

dure is based on parametric modeling, selection among competing models using 

the Bayesian information criterion followed by the average-transform-smooth 

diagnostic visualization, and direct variance estimation from fitted model pa-

rameters. 

• We use the proposed procedure and a dataset of 123 years of daily measure-

ments to estimate the variability and determine error bars (confidence intervals) 
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of each of four 30-year mean states for the surface temperature at Potsdam, Ger-

many (Sec. 2.4). These confidence intervals are roughly twice the width as those 

obtained using prevailing methods which disregard long-memory. While the pre-

vailing error bars assuming pure short memory indicate a significant increase in 

the mean temperature state in the most recent 30-year period (1986–2015) rela-

tive to any of the three preceding 30-year periods, the new error bars accounting 

for short and long memories indicate a significant change in mean temperature 

state only between the earliest (1896–1925) and the most recent period. 

These contributions emphasize the fact that the width of confidence intervals or 

error bars bracketing estimated climate mean states depend critically on the depen-

dence structure assumed for atmospheric variability. As evidence of long-memory 

in climate data accumulates [37–39, 41, 42] representations of uncertainty for climate 

mean states should account for both short- and long-memory and should certainly not 

assume pure short-memory a priori. Hence, we recommend more meticulous consid-

eration of the correlation structures of climate data—especially of their long-memory 

properties—in assessing the variability and determining confidence intervals for their 

mean states. 

2.8 Appendix A: Generalization of mean state variance for short-memory 

climate processes 

Here we show the formula for the variance of the mean of a short- and long-memory 

climate process in Eq. (2.5) generalizes that for a pure short-memory climate process 

given in Eq. (10) and (11) of [28]. Katz provides the variance for the sample mean 

X̄n of an AR(p) process as 

V (φα)
Var[X̄ 

n] ∼ (n →∞) (2.13) 
n 

where 

V (φα) =  
σ2 

. (2.14) 
[1 − k

p 
=1 φk]

2 
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Noting that the AR(p) process is FARIMA(p, 0, 0) and using Eq. (2.6) for f(n−1) 

we have 

Var[X̄ 
n] ∼ ν(d)f(n−1)n−1 

σ2 1 
n−1∼ 2π 

2π [1 − i
p 
=1 φi]

2 

σ2 

∼ 
n [1 − k

p 
=1 φk]

2 

which is consistent with Eq. 2.13 and 2.14. 

2.9 Appendix B: Summative Model Selection Strategies 

Several summative approaches for choosing between candidate ARMA and FARIMA 

models are available, including the difference of BIC (ΔBIC), goodness-of-fit testing, 

the likelihood-ratio test, and the simulation-based selection strategy of [88]. We have 

already used the BIC to select the best model from each candidate pool, so it is 

convenient to use it to compare the best ARMA with the best FARIMA model. This 

can be done by  considering  the ΔBIC  ≡ BICARMA − BICFARIMA [101, 102]. Since 

small BIC values are preferred, positive values of ΔBIC provide evidence supporting 

the FARIMA model, whereas negative values of ΔBIC support the ARMA model. 

Following the interpretation of [101], evidence is weak for 0 < |ΔBIC| < 2, positive 

for 2 < |ΔBIC| < 6, strong for 6 < |ΔBIC| < 10, and very strong for |ΔBIC| > 10. 

Another option is to use the goodness of fit (GOF) test of [103]. This procedure 

tests the  null  hypothesis that  some  sequence of time series data  is generated  by  a  

given model against the alternative hypothesis that it is not. For a given time series, 

we can apply the GOF test using the best ARMA as the null model and then again 

using the best FARIMA as the null model. If both models are rejected or both are 

not rejected, the outcome is ambiguous. One model being rejected while the other is 

not rejected can be interpreted as evidence against the rejected model. 

Another option is to compare the two models using a likelihood ratio test (LRT), 

which tests the null hypothesis that the simpler model (ARMA) is an admissible sim-
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plification of the more complex model (FARIMA) against the alternative hypothesis 

that it is not [104]. A notable limitation of this method is that the simpler model must 

be nested in the more complex model [102]. That is, it must be possible to obtain the 

simpler model by fixing the values of certain parameters in the more complex model, 

i.e., the ARMA(0, 1) is nested in the FARIMA(1, d, 1) because the ARMA(0, 1) can 

be obtained by fixing the FARIMA(1, d, 1) parameters d and φ to zero. 

Finally, [88] developed a simulation-based model selection strategy for discrim-

inating models in the FARIMA(p, d, q) class. Rust specifically uses this strategy 

to select between a candidate long-memory FARIMA model and a short-memory 

ARMA model. Given an observed sequence x consider the likelihood ratio lrobs = 

lf (Θ̂ |x) − lg(Ξ̂|x) where  lf (Θ̂ |x) is the log-likelihood of model f with parameter esti-

mate Θ andˆ lg(Ξ̂|x) is the log-likelihood of model g with parameter estimate Ξ.ˆ The 

idea is to compare lrobs with the distributions of lrf and lrg [105], which are obtained 

analogously to lrobs but from many realizations xf and xg simulated from models f 

and g respectively. If the distributions lrf and lrg are well-separated and lrobs falls as 

a typical value from one distribution but a very rare value from the other, then this 

provides support for one model or the other. If on the other hand, the distributions 

lrf and lrg are not well-separated then it may be difficult to distinguish them. 

We can use these methods as a supplement to the diagnostic plot described in the 

main text (Sec. 2.4) to choose between the best ARMA and best FARIMA models 

for each of the 30-year periods in the Potsdam temperature data (Table 2.5). For 

the period 1896–1925 the difference in BIC (ΔBIC) between the ARMA(1, 2) and 

FARIMA(1, d, 2) is −0.9 (weak evidence favoring the ARMA), and the goodness-of-fit 

test [106] fails to reject either model. However, a likelihood ratio test rejects the hy-

pothesis that the ARMA(1, 2) is an admissible simplification of the FARIMA(1, d, 2) 

(we use significance level α = 0.05 throughout). 

Figure 2.11 shows the empirical cumulative distribution functions of lrFARIMA and 

lrARMA along with lrobs for each 30-year period. For the periods 1896–1925 and 1926– 

1955, the distributions of lrFARIMA and lrARMA are well-separated with lrobs falling as 
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a typical value in the distribution of lrFARIMA and a rare  value  in lrARMA, indicating 

the FARIMA models to be superior. The outcome is essentially the same for the 

period 1926–1955, except ΔBIC = 15.5, providing very strong evidence in favor of 

the FARIMA(3, d, 0) over the ARMA(3, 0). Goodness-of-fit testing again fails to reject 

either model, and both the likelihood-ratio test and Rust’s selection strategy clearly 

favor the FARIMA(3, d, 0). 

For 1956–1985, ΔBIC = 3.9, positive evidence favoring the FARIMA(3, d, 0) over 

the ARMA(2, 2); the result for 1986–2015 is similar with ΔBIC = 3.3, positive ev-

idence favoring the FARIMA(3, d, 0) over the ARMA(2, 2). In both periods, the 

goodness-of-fit test again fails to reject either model. Rust’s selection strategy also 

results in ambiguity with distributions that are not well separated and neither model 

clearly preferred over the other. Since in both periods the two models are non-nested, 

we cannot use the likelihood-ratio test to inform a decision. Although in these two 

periods the testing procedures could not determine a preferred model, the ΔBIC does 

supply positive evidence for the FARIMA models. In this case we choose the FARIMA 

models over the ARMA models in both periods 1956–1985 and 1986–2015. Table 2.5 

summarizes the results of these methods for choosing between the FARIMA and 

ARMA models, and indicates that, based on these summative metrics, the FARIMA 

model is preferred over the ARMA model in all four 30-year periods of the Potsdam 

temperature data. 
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Table 2.1. 
Heuristic estimates of the long-memory parameter of the average daily 
surface temperature record in each 30-year period where d̂  

VT and 
d̂  
DFA are respectively obtained from the variance-time relation and the 

detrended fluctuation analysis. Standard deviations of the estimates 
based on linear regression are given in parentheses. 

Period d̂VT d̂DFA 

1896–1925 0.06 (0.02) −0.02 (0.03) 

1926–1955 0.10 (0.02) 0.15 (0.01) 

1956–1985 0.08 (0.02) 0.06 (0.02) 

1986–2015 0.15 (0.02) 0.07 (0.03) 

Table 2.2. 
Parameter estimates for the ARMA model (see Eq. 2.3) minimizing 
the BIC in each 30-year period. 

Period p q φ1 φ2 φ3 θ1 θ2 

1896-1925 

1926-1955 

1956-1985 

1986-2015 

1 

3 

2 

2 

2 

0 

2 

2 

0.759 

0.900 

1.451 

1.509 

-0.193 

-0.505 

-0.543 

0.077 

0.134 

-0.496 

-0.558 

-0.084 

-0.217 

-0.226 
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Table 2.3. 
Parameter estimates for the FARIMA (see Eqs. 2.3 and 2.4) model 
minimizing the BIC in each 30-year period. SE denotes the standard 
deviation of d̂, estimated based on the maximum likelihood. 

Period p q d̂ SE[ ̂d] φ1 φ2 φ3 θ1 θ2 

1896-1925 

1926-1955 

1956-1985 

1986-2015 

1 

3 

3 

3 

2 

0 

0 

0 

0.095 

0.143 

0.119 

0.193 

0.030 

0.029 

0.031 

0.029 

0.688 

0.753 

0.836 

0.759 

-0.145 

-0.200 

-0.173 

0.055 

0.068 

0.066 

0.110 -0.084 

Table 2.4. 
Mean daily surface temperature at Potsdam for each of four 30-year 
periods (Ȳ 

30yr) (
◦C) along with the variance of the mean (Var[Ȳ 

30yr]), 
the half-width of the 95% confidence interval (z0.975 ·Var[Ȳ 

30yr]
1/2), see 

Eq. (2.10), and lower/upper bounds of the 95% confidence interval 
(CI) estimated from the selected ARMA and FARIMA models. 

95% CI 95% CI 

¯Period Model Y30yr Var[Ȳ 
30yr] half-width lower upper 

ARMA(1,2) 0.009 0.190 8.229 8.610 
1896-1925 8.420 

FARIMA(1,d,2) 0.030 0.339 8.080 8.759 

1926-1955 
ARMA(3,0) 

FARIMA(3,d,0) 
8.763 

0.011 

0.061 

0.203 

0.484 

8.559 

8.278 

8.966 

9.247 

1956-1985 
ARMA(2,2) 

FARIMA(3,d,0) 
8.668 

0.012 

0.044 

0.219 

0.410 

8.449 

8.259 

8.887 

9.078 

1986-2015 
ARMA(2,2) 

FARIMA(3,d,0) 
9.534 

0.018 

0.131 

0.264 

0.710 

9.270 

8.824 

9.798 

10.244 
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Table 2.5. 
Outcomes of methods for choosing between the ARMA and FARIMA 
model for each 30-year period. In columns two through six, results 
supporting the FARIMA model are in bold, results supporting the 
ARMA model are in italic, and neutral results are in regular typeface. 

GOF p-value LRT Chosen 

Period ΔBIC ARMA FARIMA p-value Rust (2007) Model 

1896-1925 –0.9 0.20 0.18 0.004 FARIMA FARIMA 

1926-1955 15.5 0.94 0.97 <0.001 FARIMA FARIMA 

1956-1985 3.9 0.36 0.47 impartial FARIMA 

1986-2015 3.3 0.32 0.31 impartial FARIMA 
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Figure 2.1. (a–d) raw Potsdam temperature data from the four 30-
year periods: 1896–1925, 1926–1955, 1956–1985, and 1986–2015. (e– 
h) Potsdam temperature anomalies after removal of mean and sea-
sonal cycle for the same periods. 
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Figure 2.2. (a) Autocorrelation function and (b) periodogram of the 
raw Potsdam temperature data in the most recent period 1986–2015. 
(c) Autocorrelation function and (d) periodogram of the Potsdam 
temperature anomalies after removal of the seasonal cycle. Negative 
autocorrelation values (6% of the 3650 correlations computed) are not 
shown in the log scale of (c). No detrending or tapering is used in 
constructing the raw periodograms in (b) and (d). The smoothed 
periodogram in (d) is obtained via a modified Daniell smoother in the 
frequency domain. Frequencies are given in cycles per year. 
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Figure 2.3. Empirical variance-time relations between sample variance 
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FARIMA(0, d, 0), and both short- and long-memory FARIMA(3, d, 0). 
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Figure 2.4. Schematic diagram illustrating the procedure for obtain
ing appropriate error bars for the mean of climate time series data. 
Enumeration corresponds to the tasks numbered in the text. 
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Figure 2.5. Variance-time plot of the Potsdam temperature anomalies 
within each of the 30-year periods on record. The regression line is 
fitted to scales 25 ≤ m ≤ 210 (32–1024 days). The estimates d̂  

VT are 
based on the slope which corresponds to 2d − 1, and the standard 
deviations of the estimates are given in parentheses. 
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Figure 2.6. First-order detrended fluctuation analysis (DFA-1) of the 
Potsdam temperature anomalies within each of the 30-year periods on 
record. The regression line is fit to scales w ≥ 25 (32 days) yielding 
the estimates d̂  

DFA and their standard deviations (in parentheses). 
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Figure 2.7. Periodogram of the Potsdam temperature anomalies along 
with the spectra of the selected FARIMA and ARMA models for each 
30-year period on record. Estimates of the long-memory parameter d 
included in the FARIMA models are given along with their standard 
deviations in parentheses. 
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Figure 2.8. ATS-based spectral diagnostic visualization for the models 
fitted to the four 30-year periods of Potsdam temperature anomalies. 
The plots show the distribution of spectral residuals ln[Î(λ)]−ln[f̄(λ)] 
corresponding to both the selected ARMA and FARIMA models for 
each period. 
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Figure 2.10. STL decomposition of the Potsdam temperature data in 
the period 1986–2015 into trend, seasonal, and remainder components. 
Vertical scales are in units of ◦C. 
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3 RECENT CHANGES IN THE TEMPORAL CLUSTERING PATTERNS OF 

TROPICAL RAINFALL INFERRED FROM TRMM DATA 

3.1 Introduction 

Because precipitation controls the availability of water, changes in its established 

patterns have profound impacts on societies, economies, and ecosystems [107]. The 

increasing population living in water stressed conditions underscores the urgency 

for adaptation strategies based on scientific understanding of the changes in rainfall 

patterns [108,109]. 

Changes in the hydroclimates of tropical and extratropical regions around the 

globe have been observed over the past few decades. In particular, reduced rain-

fall and increased frequency of drought have been observed in Australia [110], the 

Mediterranean region [111], the southwestern United States [112], the South Ameri-

can Altiplano [113], northern China [114], and in Africa and southeast Asia [115,116]. 

Rainfall and drought exhibit natural variability on multiple space and time scales, 

driven by teleconnections with interannual modes of climate variability such as the El 

Niño Southern Oscillation (ENSO) [117]. The recent trends in rainfall and drought 

may also be driven in part by changes in atmospheric circulation due to anthropogenic 

climate change [115]. 

Observations suggest that the global tropical belt has expanded by several degrees 

since the late 1970s [118–121] and that this expansion is expected to contribute to 

increased frequency of drought in the extratropics [122]. A number of studies have 

investigated the roles of various possible mechanisms including increased subtropical 

static stability [123], increased moisture transport by the mean circulation [124], 

direct radiative effects due to greenhouse gases and stratospheric ozone depletion 

[125], poleward shifts in extratropical jets [126], changes in extratropical circulation 
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[127], atmospheric heating due to black carbon and tropospheric ozone [128], and 

teleconnection with the Pacific Decadal Oscillation (PDO) [129, 130]. 

A particularly challenging aspect of tropical expansion research is the rather neb-

ulous concept of the tropical edge, which resists precise definition due to its variability 

with season and geographic location. This nebulosity has lead to a number of edge 

definitions and thus a wide variety of estimated expansion rates [121, 131]. Discrep-

ancies among estimated expansion rates have also been attributed to differences in 

reanalysis data products [132, 133]. There is also a systematic difference between 

trends measured from observational and reanalysis data with those in general circu-

lation models [134, 135]. These discrepancies among reanalysis and model products 

highlights the need for tropical expansion studies based on observational data and 

constitutes a major motivation for the present work. 

Several previous studies have found evidence of tropical expansion in observational 

precipitation data [128, 132, 136]. These studies have all used monthly rainfall data 

products and have focused on changes in total or mean precipitation. While seasonal 

mean precipitation is critical for local water resource management, other more subtle 

changes that go beyond mean precipitation patterns, such as extreme events, are 

also important. [137] and [138] have found an increase in extreme tropical rainfall 

events over the past few decades, associated with an intensification of the tropical 

hydrological cycle. 

In addition to the magnitude of rainfall captured by its seasonal aggregate and its 

extreme tail behavior, the temporal correlation structure of precipitation also plays 

an important role in water resource management. Precipitation exhibits persistent 

temporal scaling [30, 31, 139], i.e. power-law decay in its autocorelation function, 

often called long-range dependence or long memory. Persistent temporal scaling 

is connected with extreme events and has even been used as a criterion for defining 

them [140–142]. Indeed, persistent temporal scaling has been observed in association 

with extreme tropical convective events [35]. A further feature implied by persistence 
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is temporal clustering of extreme events, in which weather and climate extremes tend 

to occur in intermittent clusters [143]. 

The focus of this study is to illuminate recent changes in observed tropical rainfall 

patterns that are more subtle but no less important than shifts in seasonal mean or 

in the frequency of extreme events. In particular we use observational precipitation 

data to study changes since the late 1990s in the subseasonal temporal clustering of 

tropical rainfall events. We discuss the precipitation dataset, the analytic method 

used to measure clustering, and the computational/statistical paradigm that drive 

the analysis in Sec. 3.2. We describe the results in Sec. 3.3, and we discuss the results 

and conclude in Sec. 3.4. 

3.2 Data and Methods 

3.2.1 TRMM Dataset 

The Tropical Rainfall Measuring Mission (TRMM) Version 7 3B42 Multisatel-

lite Precipitation Analysis (TMPA) data product combines calibrated precipitation 

estimates from multiple satellites and surface rain gauges where feasible [144]. The 

dataset has global spatial coverage from 50◦ S–50◦ N with  0.25◦ ×0.25◦ horizontal res-

olution, spanning the period from 1998 through early 2015 with 3-hourly resolution. 

At fine time scales, the TMPA successfully reproduces the surface observation-based 

distribution of precipitation as well as large daily events. However, in common with 

other fine-scale rainfall estimators, it has lower skill in correctly specifying low and 

moderate rainfall amounts on short time scales [144]. We remove data before Oc-

tober 1998 and poleward of 40◦ latitudes because of a nontrivial fraction of missing 

data. The small fraction of remaining missing data points are imputed by linear 

interpolation. 
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3.2.2 Detrended fluctuation analysis 

The persistent temporal scaling properties of a time series can be conveniently 

characterized by the Hurst exponent or Hurst parameter H [32]. The Hurst param-

eter quantifies the persistence of correlations such that when 0 < H <  1/2, the 

signal has anti-persistent correlations; when H = 1/2, the signal is memoryless or 

has short-range correlations; when 1/2 < H <  1, the signal has persistent long-range 

correlations; and when H >  1 the signal may be non-stationary or have non-trivial 

trends. While the Hurst parameter can be estimated by a variety of methods, few are 

capable of accurately estimating H when H >  1 [52, 145]. One of the few methods 

capable of accurate estimation in the presence of trends or non-stationarity is de-

trended fluctuation analysis (DFA) [72]. Because of the potential for non-stationarity 

associated with tropical expansion, we use DFA to estimate the strength of temporal 

scaling in the tropical rainfall data. 

DFA works as follows: given a noise (or increment) time series, x1, x2, x3, · · · , with  

mean x, one first constructs a random walk process, 

i 

u(i) =  (xk − x), i = 1, 2, · · ·  , N  (3.1) 
k=1 

then divides {u(i), i  = 1, 2, · · ·  , N} into N/m non-overlapping segments (where 

N/m denotes the largest integer equal to or smaller than N/m), each containing m 

points. The local trend in each segment is then computed, typically as the ordinate 

of a best linear or polynomial fit of the random walk in that segment. Finally, one 

computes the “detrended walk”, denoted by um(k), k  = 1, 2, ...,m, as the difference 

between the original segment (the“walk”), u(k), and the local trend. The fractal 

behavior is described by the following scaling law 

Fd(m) =  
m 

um(i)
2 

1/2 
H∼ m (3.2) 

i=1 

where the angle brackets denote ensemble averages of  all  the  segments.  

While it is common to use linear or polynomial regression to estimate the local 

trend in each segment, this leads to discontinuities or even large abrupt jumps at the 
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segment boundaries. By using a smooth trend instead of the discontinuous piecewise 

trend, DFA can better handle non-stationarity or arbitrary trends in the data [74]. 

Here, we use the Loess smoother [146] to compute a globally smooth trend vw(i), 

where w denotes the span (bandwidth) of the Loess smoother. The residual, u(i) − 

vw(i), characterizes fluctuations around the global trend, and its variance yields the 

Hurst parameter H according to 

F (w) =  
1 
N 

N 

(u(i) − vw(i))
2 

i=1 

1/2 
H∼ w . (3.3) 

To capture the clustering of rainfall events within each 6-month season, we es-

timate the fluctuation function F (w) on the time scales from 12 hours to 16 days, 

which correspond with mesoscale to synoptic scale atmospheric variability. To es-

timate H, we use the slope coefficient of a linear regression of log2 F (w) against  

log2 w [?, e.g.,]]bowers2013long. 

3.2.3 Divide and Recombine 

To scrutinize the temporal correlation structure in the TRMM precipitation data, 

we employ the analysis framework and computational tools of the DeltaRho Project 

(http://www.deltarho.org). The framework, called divide and recombine, involves  

dividing a large complex dataset into subsets and applying analytic or visualization 

methods to the subsets before statistical, analytical, or graphical recombination of 

the results [147, 148]. 

Our primary interest is in the temporal correlation structure of local precipitation. 

Since precipitation regimes can vary dramatically across locations and seasons, we 

divide the dataset into subsets, each consisting of a 6-month-long 3-hourly time series 

of precipitation rates for a particular location. We use the concept of “monsoon 

years [149]” starting with summer as May through October, followed by winter as 

November through the next April. For each of the 462240 locations, we have 17 

winter subsets (winter 1998 to winter 2014) and 16 summer subsets (summer 1999 

to summer 2014), ∼ 15 million subsets in total. We apply DFA to the time series 

http://www.deltarho.org
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data in each subset to estimate the persistence (as discussed in Sec. 3.3) yielding 

an estimate of H for each subset. We perform several statistical recombinations of 

the DFA results. After applying DFA, we perform a statistical recombination of the 

results for each location and season, e.g., taking an average, yielding a map of that 

statistic for both summer and winter seasons. This division, analysis, and statistical 

recombination are carried out in massive parallel on a Hadoop cluster running the 

DeltaRho software stack. 

3.3 Results and Discussions 

Figure 3.1 shows two example seasonal subset precipitation time series. Both 

subsets have a seasonal average precipitation rate of about 3 mm day−1; however, the 

distribution of rainfall throughout the season is markedly different. Whereas the top 

panel shows a somewhat homogenous distribution of rainfall throughout the season, 

the bottom panel shows a strong clustering of rainfall into a relatively short period 

of time. While the two subsets have the same seasonal average water availability, the 

subset in the bottom panel may be considered to experience drought, while that in 

the top panel does not. 

The difference in the temporal distribution of rainfall between the two subsets in 

Fig. 3.1 is echoed by the estimates of Hurst parameter. The top panel exhibits a 

homogenous temporal distribution or weak clustering and has H near 1/2, indicating 

a memoryless precipitation process. On the other hand, the bottom panel which 

exhibits strong clustering has H ≈ 0.9 which indicates persistence in the precipitation 

process. The persistent clustering exists on multiple scales; on a seasonal scale, the 

majority of rainfall is confined to the month from mid November to mid December, 

but on a weekly scale the rainfall within that month is also clustered into distinct 

events. This fractal behavior is consistent with other findings of self-similarity in 

rainfall [?, e.g.,]]lovejoy1985fractal. We note that while these two locations have 

equivalent seasonal average rainfall, the difference in temporal clustering patterns 
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echoed by the Hurst parameter has profoundly different implications for local water 

resource management. 

Having established that the Hurst parameter can distinguish various rainfall clus-

tering patterns we now examine the average spatial distribution of clustering patterns 

in the tropical belt. Figure 3.2 shows the average Hurst parameter for each location 

and season. Each pixel in the figure represents the average of the 17 winter or 16 

summer H values estimated at each location. In general, H values range between 1/2 

and 1 indicating that tropical precipitation is either memoryless or persistent on meso 

and synoptic time scales. There is a pronounced land-sea contrast with a tendency 

for marine rainfall to be persistent and land rainfall to be memoryless. Persistence 

tends to be enhanced in convectively active regions such as the Indian Pacific warm-

pool, the Intertropical Convergence Zone, the South Pacific Convergence Zone, the 

tropical Atlantic, and the Caribbean. Persistence also tends to be particularly strong 

in regions with sharp horizontal gradients  in mean precipitation, as  indicated by  the  

2 mm/day and 4 mm/day contours. 

It is possible that the scaling behavior measured on scales from 12 hours to 16 days 

is better defined in some locations than others. In particular, the scaling exponent 

H can actually take different values over different frequency bands; the transition 

point between scaling regimes is called a scaling break [74] or crossover [139]. 

To obtain a heuristic indication of possible scaling breaks we use the coefficient of 

determination R2 from the linear models used to estimate H. Low  R2 indicates that 

there is variability in log2 F (w) that is not accounted for by the single linear fit, i.e., 

a scaling break. 

Figure 3.3 shows the seasonal average maps of R2 . The seasonal average R2 are 

obtained analogously to the mean H in Fig. 3.2, i.e., they are the average R2 of 

either 17 winter subsets or 16 summer subsets for each location. In general, the fit 

quality indicated by R2 tends to be very high in regions with high seasonal average 

precipitation as well as over land, especially in the summer hemisphere. There is 

some tendency for regions with low mean precipitation to have lower quality fits. 
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This could be indicative of the presence of scaling breaks in the band from 12 hours 

to 16 days. It could also reflect increased sampling variability in the fluctuation 

function F (w) due to the smaller number of positive precipitation rate observations 

available in certain arid locations. Further diagnosis of the additional scaling regimes 

that could be present in locations with lower quality fits is an excellent subject for 

future investigations. 

In order to examine changes in the persistence and temporal clustering patterns of 

tropical rainfall, we measure the intensity of trends in the seasonal Hurst parameter 

at each location. This constitutes a statistical recombination in which the Hurst 

parameters estimated in the 17 winter subsets or 16 summer subsets are linearly 

regressed against time, yielding a slope estimate giving the average annual change 

in H for each season at each location. Figure 3.4 shows locations with substantial 

change (more than 0.02 per year) in seasonal H over the period of record. For 

reference, regions with less than 0.04 mm/hr average precipitation are shaded. 

We find locations with large changes in clustering patterns in arid coastal regions 

around the world, including the southwest US, the South American Altiplano, Africa, 

the Middle East, India, and southeast Asia. These regions have all been identified 

as water-stressed by either physical or economic water scarcity by the International 

Water Management Institute [150]. 

Such substantive changes of rainfall clustering in regions already experiencing 

water scarcity pose a major risk to inhabitants who’s water management practices 

are designed for established rainfall patterns. Indeed [151] found that long-term 

average water availability is not strongly correlated with child malnutrition, whereas 

volatility in water availability is the single most important factor. The reason that 

long-term average water availability is less important is that the regions tend to be well 

adapted to the established precipitation patterns, employing agricultural practices 

such as transhumant and pastoralist systems. However, shocks in availability, such 

as drought or extreme rainfall, tend to stymie these adaptive practices and lead to 

depletion of household resources [152]. 
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3.4 Conclusions 

Our study shows that changes in observed tropical rainfall patterns in recent 

decades transcend changes in seasonal average precipitation. In particular, we illumi-

nate the persistent temporal clustering patterns of rainfall through their correlation 

structure as quantified by the Hurst parameter H. These clustering patterns are of 

great practical importance for water resource management, since they control how 

the local seasonal water supply becomes available over time. We point out that while 

two regions may have very similar seasonal average precipitation, one may have very 

consistent rainfall while another has an envelope of extreme rainfall events followed 

by drought. We demonstrate that the Hurst parameter conveniently discriminates 

between these patterns and can therefore be used to characterize temporal clustering 

in rainfall. 

We show that the seasonal average clustering patterns feature a land-sea contrast 

with much stronger clustering over the oceans. High temporal clustering tends to 

occur in regions with strong horizontal gradient of the mean precipitation and near 

coastal boundaries. 

In light of the evidence that the tropical belt has expanded over recent decades, we 

also determine locations which have experienced large shifts in temporal clustering 

patterns from 1998–2014. While locations with both substantially increased and 

decreased clustering can be identified, the locations with greatest change in clustering 

predominantly fall in the water stressed regions of the world [150]. Even in cases where 

local mean precipitation is not shifting, the magnitude of the changes in clustering 

intensity constitute a substantial risk to local inhabitants whose water management 

practices are based on established patterns of rainfall. This underscores the need to 

go beyond basic summary statistics such as the mean when considering the potential 

impacts of widespread changes in the tropical hydroclimate. 
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Figure 3.1. Seasonal block precipitation time series for (top) summer 
2004 at 32.875◦E, 7.875◦N and (bottom) winter 2013 at 85.625◦E, 
14.625◦N. 
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Figure 3.2. Map of seasonal average H . Contours indicate 2 and 4 
mm/day average precipitation. White indicates locations where H is 
not defined. 
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Figure 3.3. Map of seasonal average R2 obtained in fitting H. Con
tours indicate 2 and 4 mm/day average precipitation. White indicates 
locations where His not defined. 
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