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Executive Summary 

As hospitalizations and deaths due to cardiac arrhythmias constantly remain in several 

hundreds of thousands annually, it is crucial that the field of electrophysiology continues to 

advance. Cardiac mapping is an electrophysiology study that is critical for clinicians to diagnose 

irregular heart rhythms, such as arrhythmias, and treat these diseases. Abbott’s EnSite Precision 

cardiac mapping system serves as an industry leader worldwide for 3D advanced mapping to 

help diagnose a wide range of arrhythmias. The purpose of our thesis project was to develop a 

functioning wet lab in Cal Poly’s St. Jude research lab that would fully integrate with the EnSite 

Precision cardiac mapping system for the purpose of future experimentation and demonstration 

purposes. The EnSite Precision cardiac mapping system is an impedance based mapping system 

that utilizes a magnetic field to improve stability and allow for the use of Abbott’s Sensor 

Enabled tools. The goal of the project was to design a wet lab that would serve as a physiological 

representation of a patient undergoing an EP study using this mapping system. The wet lab 

contained a tank with a cubical working chamber and a rectangular attached off branch chamber 

that allowed for separation of the left leg patch and also as a way for users to guide catheters to 

the object of interest that sits in the main chamber. The final prototype passed all of the pressure 

and leak tests that were required prior to any integration with the system. Due to the lack of 

appropriate hardware, the study was performed by using the TactiCath SE ablation catheter 

rather than a diagnostic catheter with multielectrode splines that is designed for data collection. 

Using this catheter, three dimensional geometric models were created for the wall of a glass 

bowl, length and width of a rubber object, and the width of the tank’s left wall in the EnSite 

Precision system. The dimensions of the generated models were compared to the actual physical 

dimensions and resulted in an absolute error of 13.56 mm for the glass bowl, 20.73 and 5.58 mm 
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error for the rubber object, and a 31 mm error for the wall of the acrylic tank. Though these error 

values are not perfectly ideal for precise and accurate model creations, there are simple 

modifications that can be implemented into the wet lab to significantly reduce these values while 

expanding the functionality of the lab. These include increasing the workable area inside the 

tank, removing any objects that can insulate the current being emitted by the surface electrodes, 

and obtaining a catheter pin block for diagnostic catheters. This validation of the integration 

between the wet lab and the EnSite precision cardiac mapping system serves as a significant step 

towards developing a fully functional wet lab that future students, faculty, and industry 

representatives can use for academic and demonstrational purposes.  
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Project Background and Context 

Over the past 40 years, since the initial catheter ablation procedure was completed, 

cardiac mapping has become an essential part of electrophysiological procedures. Cardiac 

mapping is an electrophysiological study that allows physicians to analyze the electrical activity 

of the heart in order to diagnose and treat cardiovascular disease. Institutions like Cal Poly can 

utilize professional instrumentation systems with an appropriate wet lab to develop new devices 

and study various phenomena in an in-vitro physiological environment. Cardiac mapping 

systems used in tandem with catheter ablation procedures are essential to ensuring that the trend 

of deaths due to cardiovascular disease continues to decline. This project thesis will signify the 

importance of the development of a wet lab integrated with Abbott’s Ensite Precision Cardiac 

Mapping System for future product development and in-vitro studies.  

Clinical Relevance 

Cardiovascular disease is annually the leading cause of death in the United States for both 

men and women, even though the number of deaths per year has been steadily declining over the 

last 50 years (Weir, 2016). More specifically, cardiac arrhythmias continuously contribute to 

200,000-300,000 deaths per year, according to the UCLA School of Medicine (UCLA, 2020). 

Cardiac arrhythmias occur when there are abnormalities in electrical impulses that result in 

irregular heartbeats and conduction patterns. Cardiac arrhythmias are classified by their rate and 

location of origin. Tachycardia refers to a heart rhythm with a rate that exceeds 100 beats per 

minute and bradycardia refers to a rhythm with a rate below 60 beats per minute. 

Supraventricular (atrial origin), ventricular (ventricular origin), and bradyarrhythmia (SA node, 

AV node or His-Purkinje network) classifications are based on the origin of the electrical 

conduction where the arrhythmia stems from. Supraventricular (SVT) arrhythmias in the form of 
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atrial fibrillation and atrial flutter result in rapid heart rate caused by chaotic electrical impulses, 

though the impulses in atrial flutter may be more rhythmic. In both conditions, the irregular 

heartbeats cause weaker than normal contractions that slow down the blood flow in the atrium. 

When this happens, the blood pools are now susceptible to coagulation because the platelets of 

blood aren’t moving fast enough to prevent binding. Coagulation of blood in the atria due to 

atrial fibrillation and flutter can lead to serious complications such as stroke. There are currently 

33 million people in the world with AFib with 5 million new cases diagnosed each year leading 

it to be the most common type of arrhythmia (Morillo, 2017). Patients with AFib are five times 

more likely to have a stroke, have a five-fold increase in the likelihood of heart failure, and have-

twice the likelihood of cardiovascular mortality (Odutayo, 2016). There are four main treatment 

options for patients with AFib that include medication, lifestyle changes, cardioversion, and 

catheter ablation. Although medications and lifestyle changes are typical early intervention 

treatments to help manage symptoms and risk factors, 50% of patients do not tolerate or respond 

to medications [Baton, 2019]. Cardioversion by external defibrillator is often used to revert the 

heart rate back to normal sinus rhythm but 50% of patients often revert back to AFib after one 

year (Schnabel, 2018). Cardiac mapping and catheter ablation is a procedure used to identify and 

interrupt the pathways of conduction in the atria that are causing the fibrillation. Recent studies 

have demonstrated that treatment by this procedure has led to an 88% success rate at the 12-

month post-procedure mark (Natale, 2014). Other common SVTs that are treated by 

ablation/pharmacological management are reentrant tachycardias such as atrioventricular nodal 

(AVNRT), atrioventricular (AVRT) and focal tachycardias such as atrial tachycardia (Stanford, 

2019). Reentrant tachycardias are disorders of impulse transmissions that require at least two 

conduction pathways with different refractory periods and conduction velocities, both pathways 
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must connect be connected proximally and distally to the atrium and ventricle, and an 

appropriately timed premature atrial or ventricular contraction (PAC or PVC) that will travel 

down the accessory pathway since the normal pathway is in refractory (Ferry, 2007). Chronic 

management of these reentrant tachycardias include catheter ablation of the accessory (or slow) 

pathway which in most recent studies have demonstrated 90-95% success rates when three-

dimensional electroanatomical mapping (EAM) systems are used to help localize sites for 

ablation (Tedrow, 2020). All these mentioned conditions can be treated by various forms of 

therapy, but the more chronic and problematic cases have better success rates when treated by 

catheter ablation assisted by cardiac mapping (Viswanathan, 2016).   

One of the more significant benefits of using 3D EAM systems is the reduction of 

radiation exposure from fluoroscopy for patients and professional staff during electrophysiology 

procedures (Giaccardi, 2018). This type of imaging technique uses a fluoroscope that 

continuously passes an x-ray beam through the body to gather real-time moving images of 

internal structures. The resulting image is transmitted to a monitor so the movement of a 

structure or contrast agent can be seen in detail (FDA, n.d.). During these procedures, the 

exposure to personnel is caused by scatter radiation from the patient. Typically, fluoroscopy 

systems are designed to reflect the photons that enter the patient toward the x-ray tube located 

below the patient surface (backscatter) in an attempt to direct all scattered radiation toward the 

floor. For minimal radiation doses, this setup significantly reduces the risks involved with 

radiation exposure. However, certain interventional procedures require substantial amounts of 

radiation doses so personnel must wear protective lead aprons to minimize exposure and risk 

(Dave, 2016). In EP procedures, fluoroscopy has often been used for guiding catheters through 

vessels and chambers of the heart in an attempt to reach the desired area for examination and 
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treatment (Cho, 2015). An example of catheter placement for an EP study to diagnose an 

unknown arrhythmia can be seen below in Figure 1. 

 

 

Figure 1: Typical placement of cardiac catheters during an electrophysiology study as seen 

through fluoroscopy  

In general, when there is whole body exposure to radiation the threshold for acute 

hematopoietic syndrome (radiation sickness) is 500 mGy, acute gastrointestinal syndrome is 

3000 mGy which is fatal without major medical intervention, and the lethal dose for 50% of the 

population in 30 days threshold is around 5000 mGy (Johnson, 1997).  When adult patients are 

exposed to a 10 mSv dose, there is a 1 in 1000 risk that the patient will develop a solid tumor or 

leukemia and if the patient is exposed to fluoroscopy for more than an hour, the dosage absorbed 

can lead to skin damage (Wade, 1998). During radiofrequency catheter ablations, patients can 

have an average dose of 8.3 mSv for one hour of fluoroscopy (Vano, 1998). In recent years, the 

median effective dose over 3 years was 15.6 mSv with patients who repeat cardiac ablation 

procedures being exposed to more than 20-50 mSv (De Ponti, 2015).  In regard to the cardiac 

catheterization lab staff, studies showed that these personnel are exposed to at least 6 mSv of 
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radiation per case with electrophysiologists averaging 4.3 mSv which equates to a fatal cancer 

risk of 1 in 384 but lead protective gear severely minimizes actual exposure amount (Venneri, 

2009). Using 3D EAM systems to guide catheter ablation has proven to be a beneficial strategy 

for reducing radiation exposure. From 2015-2018, physicians analyzed ablation procedures at 

their institute performed under 3D EAM navigation between two groups with different frame 

rates of radiation. The first group had no restrictions on frame rate but had an average rate of 7.5 

frames per second (fps) while the second group was limited to using only 3.75 fps. Procedural 

outcomes for these evaluations were successful ablations in 98% or the first group and 96 % in 

the second group. This indicated not only were there significant reductions in procedural time, 

fluoroscopy time, and effective dose, but using 3D EAM combined with a decreased radiation 

exposure time did not adversely affect clinical outcomes (Ali, 2021). 

 

Catheters 

Cardiac linear catheters are used in catheterization labs for ablation and diagnostic 

(recording and pacing) purposes during electrophysiology mapping studies (Joseph, 2012). They 

are typically made up of insulated wires that run through the catheter to connect to the distal tip 

electrode that is exposed to the intracardiac surface. Catheters usually come in different sizes 

ranging from 2 to 10 French, have electrodes that are typically 1 to 4 mm in length with an 

interelectrode distance ranging from 1 to 10mm. The catheters have the ability to obtain 

recordings derived from the electrodes that are either unipolar or bipolar. Unipolar electrograms 

(EGM) are typically used in applications where the physician is trying to determine the location 

of the catheter relative to the arrhythmic focus. As a signal propagates towards the electrode, the 

EGM displays a positive deflection. When the electrode is near or on the arrhythmic focus, the 
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signal will conduct away from the electrode resulting in an EGM that manifests a negative 

deflection. Bipolar EGMs are utilized when mapping regions of abnormal tissue that tend to 

produce high frequency, low amplitude EGMs. Unipolar mapping cannot detect these areas of 

scar due to the far-field signals from the higher amplitude healthy tissue nearby. Bipolar voltage 

recorded when mapping is a measurement of conduction time between two electrodes rather than 

measuring voltage of the underlying tissue. The interelectrode distance, electrode size and 

number of electrodes are important factors when attempting to record local voltage data, 

especially in areas of scar that contain low voltage (substrate). Catheters with smaller electrodes 

that are more closely-spaced are generally more insensitive to far-field components such as 

environmental noise and signals from larger regions with higher amplitudes that are typically 

detected with wider-spaced electrodes. The closer the electrode spacing, the more the fidelity of 

near-field signals is improved (Choudhuri, 2016). 

 

 

Figure 2: Example of a bipolar electrogram read by 2mm and 10mm spaced electrodes.  

 

Figure 2 contains an example of how a more closely spaced bipole can accurately analyze and 

display the true local signal within the electrodes. Using the 10mm electrode spacing, the signal 

appears to have a larger amplitude which can be misinterpreted as a higher local voltage than 

actually exists. In this case, that signal is actually a combination of the local signal and far field 

signal acquired from another region of the heart with a high potential.  
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Figure 3: Voltage mapping of low-voltage substrate causing a reentrant tachycardia. Each 

voltage map represents differently spaced electrodes and how they interpret the local potential. It 

is evident that the 2mm spaced electrode acquires a more accurate representation of the low-

voltage making it easier for the physician to determine an appropriate line of ablation. 

 

The biggest concerns and limitations of linear and multi-electrode catheters in clinical 

settings are associated with bipolar blindness. During electroanatomic mapping, linear catheters 

only obtain bipolar recordings that document activation wavefronts that travel parallel to an 

electrode pair because the signal must be read by both the positive and negative electrode. When 

the wavefront travels perpendicular to the electrode spline, the catheter cannot read the signals so 

therefore the wavefront is ignored. This concept of bipolar blindness is crucial in cases where the 

patient has congenital heart disease that leads to low-voltage arrhythmia substrates and complex 

anatomies that linear catheters cannot record, possibly leading to failed ablation procedures 
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(Bryant. 2021). Companies such as Abbott, Biosense Webster, and Boston Scientific have 

designed multi-electrode basket, multi-spline and grid catheters that aim to overcome the issue of 

bipolar blindness. Multi-electrode catheters have the ability to acquire and interpret multiple 

voltage data points simultaneously in propagation directions that would be unseen by linear 

catheters therefore they acquire significantly more electrograms. However, Abbott’s HD Grid is 

the only high density (HD) mapping catheter on the market to address bipolar blindness with 

every beat (Abbott, n.d.). HD refers to having a significant amount of data collected in the areas 

the mapping catheter is roving. High density mapping with HD Grid compared with Biosense 

Webster’s Pentaray for cases where patients underwent VT ablation resulted in freedom from 

recurrent anti-tachycardia pacing at 1 year post-procedure in 97% and 64% of patients, 

respectively. This success is due to HD Grid’s design and ability to utilize Abbott’s best 

duplicate algorithm that allows for automatic comparison of bipolar and orthogonal electrograms 

to determine the better electrogram to be annotated for a given cathode (Abbott, n.d). These 

results demonstrate that using HD Grid along with complementary mapping strategies improve 

long-term clinical outcomes in complex arrhythmia ablations (Proietti, 2021). 

 

Figure 4: Abbott’s Advisor HD Grid cardiac mapping catheter 

Standard ablation catheters have several known limitations for substrate mapping and it's 

mainly due to the catheters being linear, average tip is 3.5mm, and interelectrode spacing 
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averages between 1-4mm. This results in center-to-center electrode spacing from the distal tip to 

the proximal electrode having an average distance of 3.25mm. At this separation, bipolar 

electrograms represent underlying tissue diameters ranging from 3.5 to 5.5mm (Leshem, 2017). 

Standard ablation catheters have the ability to differentiate between dense scar and healthy 

myocardium. However, due to the factors mentioned above as well as angle of incidence, vector 

of wave propagation, and filtering, they have insufficient sensitivity to characterize and 

accurately display myocardial bundles embedded in scar tissue. They can have difficulties 

interpreting these complex architectures of dense scar and geometry of cardiac anatomy. Multi-

electrode catheters having smaller electrodes and interelectrode spacing increase mapping 

resolution because each data point recorded by the system represents electrical activity from a 

smaller tissue size (Tschabrunn, 2016). 

 

 

Figure 5: Voltage maps of the right ventricle using a standard linear catheter and a 

multielectrode catheter. The multi electrode catheter has the capability to map the low-voltage 

areas with more precision compared to the linear catheter. 

 



16 

 

 

 When collecting data points to reconstruct the complex three-dimensional geometry of 

the heart using an EAM system, multielectrode catheters prove to be the better choice over 

standard ablation catheters. Ablation catheters containing a very minimal number of electrodes, 

often single-point sensors, are limited in terms of anatomical detail and accuracy that results in 

geometry with significant errors. Unlike standard ablation catheters, multi-electrode catheters are 

designed for acquisition of electrical and anatomical data from multiple electrodes 

simultaneously which allows for the rapid acquisition of chamber geometry. Early studies using 

linear multielectrode catheters combined with the Ensite NavX mapping system yielded models 

that were up to 94% accurate when dimensions measured were compared to MRI/CT scans of 

the modeled anatomy (Koruth, 2011). Like bipolar recordings for voltage mapping, collecting 

geometrical data from multi-electrode catheters has the best accuracy and yields the highest 

resolution when electrode spacing is 1-2mm and electrode size is less than 4mm (Bert, 2020). 

Abbott’s LiveWire decapolar and duadecapolar catheters are widely popular around the United 

due to their spacing as shown in Table 1 below. They these catheters offer the appropriate 

number of electrodes for common procedures while containing the ability to accurately interpret 

local voltage due to their small spacing. 

Regarding this project, the collection of geometric data points was recorded by Abbott’s 

TactiCath, Sensor Enabled ablation catheter. As seen below in Table 1, this catheter contains 4 

electrodes with a 2-2-2mm spacing and a contact force distal tip. This open-irrigated catheter 

consists of 6 irrigation holes with a 0.4mm diameter, a thermocouple for contact surface 

temperature measurement and a contact force (CF) sensor (Shenasa, 2019).  CF sensing 

technology provides the clinicians and physician with real-time feedback on the catheter-tissue 

interaction during RF ablation through white light Fabry-Perot interferometer (Abbott, n.d.). This 
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interferometry allows the Precision system to make an interference analysis to compute the 

magnitude and orientation of the contact force for tactile feedback so physicians can adjust. 

Contact force combined with Abbott’s algorithms for Lesion Size Index (LSI) and force-time 

integral (FTI) are found to reduce RF application time, reduce the quantity of ablation lesions, 

and shorten fluoroscopy and overall procedure times (Boles, 2017). Each physician has different 

target parameter values for these measurements during RF ablations to ensure effective lesions. 

By monitoring these values, physicians can also deliver safe lesions that minimize risk for 

complications such as acute vascular damage and steam pop (Alfonso-Almazan, 2019). Steam 

pops refer to the audible sound related to an intramyocardial explosion when the tissue being 

ablated using RF energy reaches 100 degrees Celsius. As mentioned above, mapping and 

collecting geometric data with ablation catheters will yield inaccurate and low-resolution models 

due to the larger size and spacing of the electrodes.  Our system setup did not contain a CathLink 

Module pin block which hindered our ability to use diagnostic multi-electrode catheters for our 

testing and validation that would have resulted in more accurate geometries. The pin block 

allows users to plug in the pins that correspond with each electrode so that the catheter itself can 

be visualized and used on the mapping system. Without the pin block, users cannot connect any 

diagnostic catheters to the Precision software. The TactiCath ablation catheter contains 

specialized connections through the TactiSys Quartz and Precision Link equipment which allows 

the system to utilize this ablation catheter without the need of a pin block. 
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Figure 6: Abbott’s TactiCath Sensor Enabled cardiac ablation catheter 

 

 

Table 1: Popular Abbott ablation and diagnostic catheters  

Model Electrodes Tip Electrode Size 

(mm) 

Spacing (center to 

center in mm) 

TactiCath, SE 

(ablation) 

4 3.5 2-2-2 

FlexAbility (ablation) 4 4 1-4-1 

HD Grid 16 (all electrodes 1mm)  3-3-3 

LiveWire Decapolar 10 2 2-5-2 

LiveWire 

DuaDecapolar 

20 2 2-5-2 

 

 

  



19 

 

 

Cardiac Mapping Systems 

 

Cardiac mapping is a term historically used to describe several conventions of recording 

and analyzing the electrical activity of the heart. These recordings may be a representation of the 

polarization cycles of the heart read by electrodes on the surface of the body by an 

electrocardiogram (EKG/ECG) or using an intracardiac electrogram (EGM) that displays local 

electrical signals recorded by electrodes from electrophysiological catheters that are strategically 

placed in anatomical locations within the heart. More commonly, cardiac mapping refers to an 

electrophysiology study that utilizes catheters that are introduced percutaneously into specific 

anatomical locations in the heart for the purpose of diagnosing complex arrhythmias by 

correlating local electrograms to cardiac anatomy. Newer cardiac mapping systems have 

revolutionized clinical electrophysiology by introducing three dimensional spatial localization 

through recorded mapping catheter locations and intracardiac electrograms that are used to create 

virtual three dimensional real-time model representations of the heart’s chambers with color-

coded electrophysiological information (Gupta, 2002).  

In 2002, Anoop Kumar Gupta published an article that explored some of the best cardiac 

mapping systems at the time to explore their features and discover their limitations. The 

Endocardial Solutions (ESI) system was a non-contact intracardiac system that was designed to 

obtain cavity potential data from electrodes sitting in a pool of blood within one of the cardiac 

chambers and reconstruct them into myocardial potentials that are processed and displayed using 

a multi-channel amplifier and computer. The electrical array produced an image that allowed the 

clinicians to see the earliest activation of an impulse and a ‘locator’ signal from the catheter 

allowed them to move it towards that activation location. One of the main advantages of this 

non-contact system was that it only required one beat to reconstruct a complete activation map. 
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This allowed clinicians the ability to map hemodynamically unstable arrhythmias. Issues that 

arise from non-contact systems such as the ESI system were in regard to increased distance 

between the electrode array and the endocardium, specifically at distances greater than 34mm. 

This became clinically significant when inaccurate maps were created when mapping complex 

arrhythmias and anatomies such as dilated LVs or complex reentrant circuits (Gupta, 2002). 

Contact mapping systems such as the electroanatomic mapping CARTO system eliminated the 

inaccuracy due to distance by creating a system that utilized a mapping catheter’s position and 

altitude in a low magnetic field produced from radiators positioned under the operating table. 

The main benefit of this system type was that it reduced the use of fluoroscopy, which exposed 

radiation to the patient and physician. This system determined the location and orientation of a 

reference and mapping/ablation 7-Fr catheter that were inserted into the coronary sinus and 

chamber of interest, respectively. The mapping catheter was dragged across the endocardium of 

the chamber and the electrogram from that contact allowed the system to generate a digital 

geometric figure. Systems similar to this CARTO system were of great value for guiding 

ablations because they provided information about the spatial location of the catheter in regard to 

the area of interest, but they were limited at the time because they were point-to-point mapping 

systems. PPM systems utilize single electrode catheters such as standard ablation catheters to 

gather data for maps one point at a time. However, this mapping technique was only suited for 

sustained arrhythmias or frequent recurrent premature contractions (Issa, 2009). These systems 

could only provide information about electrical potentials at the time of contact which means 

they could not account for non-sustained arrhythmias or physical movements and shifts.  

These limitations were overcome by the more expensive systems at the time that 

processed and displayed information in real-time. One of the systems explored was the Cardiac 
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Pathways EP system that utilized two reference catheters and one mapping/ablation catheter to 

obtain information. The 6-F fixed curve distal shaft reference catheters were placed in the 

coronary sinus and the right ventricular apex and the 7F mapping/ablation catheter was free to 

move along the tissue of the chamber of interest. This system used an ultrasound transmitter that 

sent a continuous cycle of pulses to the three catheters that allowed the system to determine time 

delay between departure and reception of pulses, thus calculating distances between catheters 

and creating a 3D reference frame. Since the pulses were continuous, the computer was able to 

continuously triangulate the position of catheters and update the object within the 3D reference 

space. This style of mapping was a major development in the EP field but still had limitations 

such as the failure of ultrasound transducers and the inability to produce a voltage map using 

only ultrasound technology. The systems made a significant impact for physicians guiding 

catheters during ablation procedures to treat unstable arrhythmias, but they could not fully rely 

on these systems to produce all of the images they needed because each system had its 

limitations on what maps and data it could display. Systems that were developed after these 

needed to incorporate all of the critical features of each of these systems while still keeping 

patient safety in mind. 

Both contact and non-invasive mapping systems developed rapidly by the time 

contemporary mapping techniques for identifying and modifying arrhythmogenic substrates were 

studied in the mid 2010’s (Koutalas, 2015). The contact systems used for these studies were 

Biosense Webster’s CARTO and St. Jude’s EnSite NavX Velocity electroanatomic mapping 

systems. Through the combination of active weak magnetic fields, magnetic catheter tips, and 

electrode patches located on the patient’s body, the CARTO system allows the clinician to 

produce a 3D matrix map that continuously measures the strength of the magnetic field and 
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calculates the catheter’s exact location (Romero, 2016). The EnSite NavX Velocity system used 

six skin electrodes to create a 3D coordinate system using high-frequency electric fields. 

Impedance based gradient-calculation systems like this localize catheters relative to their 

position from a reference pad and overcome the body’s non-linear impedance to create a three-

dimensional map that was more accurately representative of electrical activity and geometry of 

the chambers. Clinical research performed with contact-based systems demonstrated that 

implementing contact force, image integration, and hybridization are technologies necessary for 

progressing toward more effective mapping and ablation of complex arrhythmias. This research 

also showed that visualizations of low-voltage/scar surrogating fibrosis allow physicians to 

effectively eliminate arrhythmogenic substrates to change the prognosis of patients suffering 

from highly symptomatic ventricular and supraventricular arrhythmias. Areas of fibrotic 

substrate are difficult to image so physicians rely on low-voltage maps to inform them on the 

paths of electrical conduction between the substrate that are causing these arrhythmias. These 

systems show the significance of having real-time feedback on multi-electrode high-resolution 

mapping based on catheter-tissue interaction, but limitations still needed to be overcome to 

improve success and accuracy rates. Magnetic based systems use a location reference attached to 

the patient's back so any movement of the heart relative to the patch will cause the map to shift 

and become inaccurate and sometimes unusable. These magnetic systems have the ability to 

account for any movement of the patient during the procedure because the surface reference will 

move with the patient. With impedance based systems, system references are intracardiac 

electrodes, such as the electrodes of the CS catheters, so a physical movement of the heart will 

not affect the maps. However, using an intracardiac reference causes impedance based systems 

to be insensitive to potential patient movements. The hybridization of magnetic and impedance 
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field data developed by Abbott with their EnSite Precision cardiac mapping system alleviated the 

limitations that previous systems experienced individually (Koutalas, 2015).   

 

EnSite Precision 

The system we used to integrate with our wet lab was Abbott’s EnSite Precision cardiac 

mapping system. The Precision system provides highly detailed anatomical models and maps 

using a hybrid of impedance and magnetic field data to effectively diagnose and treat a large 

range of arrhythmias. To collect impedance data, 3 pairs of surface electrodes are placed along 

the 3 orthogonal axes (X-Y-Z) and a reference patch is placed on the patient’s abdomen to form 

a three-dimensional electrical field on the patient’s thorax. The first pair of patches are placed on 

the patient’s mid-chest and back, the next pair is placed on the right and left side of the thorax, 

and the final pair is placed on the back of the neck and left inner thigh which creates the Y, X, 

and Z axes, respectively. To create an impedance field, an 8 kHz signal is emitted alternately 

through each pair of surface electrodes which creates a voltage gradient along each axis (Abbott, 

n.d.). Conventional or Sensor Enabled EP catheters are connected to the Precision system and 

advanced into the transthoracic electrical field where they acquire the voltage emitted from the 

surface electrodes. These voltages, timed to the creation of the gradient along each of the axes, 

are processed by the Precision system and the three-dimensional position of all catheter 

electrodes are calculated simultaneously. This calculation allows for real-time visual navigation 

of all catheter electrodes that are within the transthoracic field. The catheter electrodes are 

displayed according to their respective catheter (ablation or diagnostic) and real-time motion of 

these catheters enables the system to create three-dimensional electroanatomic models of the 

cardiac anatomy. 
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Figure 7: Placement guide of surface electrode patches, system reference patch, patient 

reference sensors, defibrillator patch, and RF generator patch relative to the Precision Field 

Frame 

The addition of magnetic data has not only allowed the Precision system to be 

competitive with other magnetic-based mapping systems on the market, but it has also 

significantly improved the quality of maps generated by the system. The EnSite Precision Field 

Frame mounted underneath the patient bed generates a low-powered magnetic field that Sensor 

Enabled devices and tools can be detected in through a connection to the Ensite Precision Link, 

Sensor Enabled. Two patient reference sensors (PRS anterior and posterior) are placed near the 

front and back surface electrodes and function as sensors for patient movement and metal 

distortion. Using these sensors in conjunction with Sensor Enabled catheters, the NavX 

Navigation software utilizes its Sensor Enabled Field Scaling module to dynamically optimize 

the model and map. It does so by adjusting dimensions of the data points within the navigation 

field using known offsets between the position and orientation of the PRSs and surface 
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electrodes. The same is true for monitoring field stability for unexpected patient movements such 

as coughing or snoring. The EnSite Precision system has highly improved accuracy, resolution, 

and stability compared to its predecessors, the Ensite NavX and EnSite Velocity. This is due to 

the Precision’s ability to increase accuracy of less than 1mm with the addition of magnetic field-

based localization data that refines the impedance-based tracking in real-time (Shenasa, 2019). In 

various cases involving electrophysiology mapping and RF ablation, the EnSite Precision 

mapping system was associated with trends of low mapping times, high system stability, and 

high rates of acute procedural success (Issa, 2009).  

 

 

Figure 8: Sensor Enabled PrecisionLink (left) and Precision Field Frame (right)  

 

 

Figure 9: Voltage maps of the left atrium and pulmonary veins before RF ablation to isolate the 

pulmonary veins to treat atrial fibrillation. The image on the left represents impedance-field data 

points and the map on the right displays magnetic-field data points. 
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InVitro System 

A key component to successfully integrating the Ensite Precision to Cal Poly’s wet lab 

included designing an in-vitro tank. The main goal of our project, however, was to specifically 

design an in-vitro chamber that is compatible with Abbott’s (Ensite Precision) and allow cardiac 

mapping to be performed. Our end goal was to create a system where faculty, students, or 

companies can validate their projects, designs, and products. Another benefit of the in-vitro 

chamber is for educational purposes. With further development of the in-vitro chamber, 

physicians and faculty members will be able to perform experiments to demonstrate differences 

in lesion, formation dependent on tip-electrodes, sensor technology and ablation techniques, 

influence of blood flow and electrode-angle to the myocardium. Our aim for this project is to 

promote a Learn-By-Doing environment through our wet lab design. 

Before designing our chamber, research was conducted on existing wet labs and in-vitro 

chambers. The main goal of assessing these systems was to learn what instruments were required 

in a successful system. By researching the required instruments, we planned to order the 

equipment early in the quarter and make note of what to include in our design. Another reason 

for reviewing studies was to find more information on the specific design of in-vitro tanks that 

these studies were performed in.  

In a study done by Calzolari, an in vitro model was created to test two hypotheses: 1) 

lesion dimensions correlate with lesion size index and 2) LSI could predict lesion dimensions 

better than power, contact force, and force-time integral (Calzolari, 2017). The purpose of the 

study was to determine a reliable predictor of lesion quality when radiofrequency catheter 

ablation for cardiac arrhythmias were performed. Calzolari and his team created an in-vitro 
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chamber to test the validity of LSI, a multiparametric index incorporating time, power, contact 

force (CF), and impedance recorded during ablation shown in Figure 10.  

 

Figure 10. Cazolari’s In-Vitro Experimental Set-up: A) Contact force catheter interface, B) 

Ampere RF generator (St. Jude Medical, St. Paul, Minnesota) C) Coolpoint irrigation pump (St. 

Jude Medical), D) NavX electroanatomic mapping system (Endocardial Solutions, St. Jude 

Medical). (E) Saline bath. (F) Ground platform. (G) Porcine heart. (H) Non-pulsatile pump. 

(Arrow) TactiCath ablation catheter (St. Jude Medical). 

 

In Figure 10, the arrow is a TactiCath Quartz catheter that was mounted in a fixed 

standard 8-F, 11-cm sheath that manually maneuvered over a ground platform placed within a 

tank filled with circulating physiological saline solution at room temperature. Within the 

circulating bath, a pump is used to produce a non-pulsatile flow directed perpendicularly to the 

myocardium surface at a rate of 5 L/min. The animal tissue used in the experiment were fresh 

porcine heart muscle slabs (mid-myocardial layer of the left ventricle) with a thickness of 2 to 4 

cm. The Coolpoint roller pump by St. Jude was connected to the catheter and delivered a saline 

solution at 17ml/min during the RF delivery. The Ampere RF generator also from St. Jude 

Medical was connected to deliver 550 kHz unmodulated sine-wave RF energy pulses in a 



28 

 

 

temperature-controlled mode (Max 41°C). Lastly, contact force, temperature, impedance, FTI, 

and LSI values were monitored during RF delivery via Ensite mapping system. Cazolari’s study 

was beneficial to the design requirements of the project because Cazolari’s study involved some 

of St. Jude’s equipment that were also available in the lab for us to use. For ablation the flow 

rate, RF energy pulse temperature range and the unmodulated sine-wave frequency used in 

Cazolari’s study would be emulated.  

In another study performed by Deno, a controlled wet lab bench testing was designed to 

quantitatively explore correlations of electrical coupling index to applied force between the 

catheter and tissue, depth of penetration, and angle of contact between the catheter and tissue. 

Although the goal of the study does not align with the scope of our project, the study provided 

details on its bench testing set up. For this study, a ventricular tissue was sectioned in 1.5-2cm 

slabs to create a uniform tissue surface and was placed in a Pyrex chamber filled with a 20 C 

mixture of saline and water to a blood-like conductivity of 6.2–6.8 mS/cm (Deno, 2014).  

 

Figure 11. Setup for bench model experiments: Freshly excised beef heart tissue was 

submerged in 20 C saline. Force, vertical displacement, as well as complex impedance and ECI 

were measured as an ablation catheter tip approached and entered into heart tissue. The 90 ° 

angle of contact is shown (Deno, 2017). 
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Saline Solution 

  After review of Cazolari’s and Deno’s lab apparatuses, more questions regarding how 

saline solution affects ablation arose. More research was performed to help understand why 

Cazolari and Deno might have chosen the values they had for their saline solution. For regular 

ECG patches, a patient is advised to wipe off any dead cells on the skin with an alcohol wipe. 

Afterwards, a conductivity gel is applied to the patch to pick up the extremely tiny electrical 

impulses of the heart. Similarly, because Abbott’s patches do not come with conductive gels, we 

must create an environment for electrical impulses to pass through the medium. By adding salt to 

our solution, the impedance is lowered, which allows clearer signals to pass through and be read 

by Ensite Precision.  

Results from a first in-human early feasibility study using a saline enhanced 

radiofrequency thermal-ablation system to treat ventricular tachycardia suggests a highly feasible 

approach to treating patients with recurrent ventricular tachycardia that is resistant to “other 

treatments'' (Packer, 2020). More common treatments include implantable cardioverter 

defibrillators, medical therapy, and other forms of ablation therapy. This study was innovative 

for its time in that it was first to use a needle electrode to deliver heated, degassed saline and 

radiofrequency energy into the tissue. A five-month follow-up data of the 32 patients from the 

study showed that more than half of the patients had no recurrent ventricular tachycardia, and 

more than 60 percent of the patients had their disease reduced by 90 percent or more. Packer 

demonstrates the benefit of saline RF ablation through this study, and the importance of this 

practice is noted for when ablation will be performed in our tank. 

Another interesting study regarding saline ratio was done by Hong and Glover. The 

standard irrigated radiofrequency ablation is performed using normal saline 0.9%. However, the 
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study compares the effectiveness of ablation using half normal saline 0.45% to normal saline 

(Hong, 2019). Hong and Glover demonstrated that by decreasing ionic concentration in 

radiofrequency ablation, the frequency of recurrences of conduction was increased. The study 

does not directly relate to our tank as we do not plan to prioritize ablation but provides 

information that saline concentration does affect the effectiveness of ablation. In a different study 

performed by Pierre Jais, Biosense Webster’s catheter was used using a 0.9% saline and recorded 

successful data. Based on existing literature, we have decided that 0.9% saline is generally 

accepted for ablation procedures, but we would have to look at how different saline 

concentrations would affect our images.  

 

Cal Poly’s Wet Lab 
 

Cazolari’s and Deno’s models were the two wet lab systems we decided to adapt to our 

design. We decided to adapt their set-up to our model because our goal was to create a tank for 

mapping and hopefully be able to perform ablation procedures afterwards. Both studies 

documented key equipment necessary for RF ablation in our tank, material choice of the tank, 

importance of saline solution, and tissue specimen and size for ablation. 

The purpose of Cal Poly’s wet lab is to develop a functioning wet lab that will be 

integrated with Abbott’s EnSite Precision Mapping System. The system will then allow for 

industry to partner with Cal Poly to perform testing of products like catheters, sheaths, and etc. 

The tank will also open new avenues for student projects in clubs such as EMPOWER and 

Medical Design Club. Students will be able to utilize the lab to work on projects related to 

catheters, electrical mapping, and ablation. Another tool the wet lab can provide for Cal Poly is 

an environment to perform educational student labs. Dr. Porterfield or other faculty members are 
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able to demonstrate ablation procedures or instruments used in the surgery room in a more 

hands-on environment. Faculty members from both BMED and other departments are also able 

to incorporate the lab into their curriculum.  

There are steps that had to be accomplished for a successful wet lab. First, with the help 

of Sarah Griess, Abbott’s equipment and software was set up in Cal Poly’s ATL. In a span of 

two to three weeks, Sarah was able to install the software to the PC in the lab and made sure all 

the equipment worked properly. After all the equipment was set up and running, we moved on to 

designing our tank. We spent time researching After the tank was manufactured, a leak test and 

pressure test was performed to test the integrity of the tank. Once the tank was validated, 

integration of Abbott’s system to the tank followed. After successful integration, validation 

testing of the system was performed.  
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Specification Development 

 . The start of the project consisted of a few weeks of brainstorming ideas with the sponsor 

to define the scope and direction of the project. We proposed that we sought to be part of an 

applicable project in the field of electrophysiology. The sponsor, Dr. Porterfield, suggested a 

project involving the Ensite Precision Cardiac Mapping system donated by Abbott. This system 

is located in the ATL (Advanced Technologies Lab) at California Polytechnic University’s 

campus. After our discussions, we concluded to design a system for Dr. Porterfield to be able to 

demonstrate procedures he would perform in hospitals in a classroom setting for his students. 

The general goal of the project was to create a wet-lab that includes an in-vitro chamber 

to perform tests by integrating the Abbott device and produce images of whatever we are trying 

to map within our chamber. 

The scope of the project was defined in further detail as installment of the system in the 

ATL and testing its functionality. Once the system is functional, the next step is to build a tank 

that simulates an “in-vivo” environment that can be integrated with Abbott’s Ensite Precision 

Cardiac Mapping System. Once successfully integrated, the next goal is to obtain images in the 

tank using the system.  

This environment can serve as a space on campus that can be used for various situations. 

For one, Dr. Porterfield would use this space as intended to demonstrate procedures in detail for 

his class. This is beneficial in that Dr. Porterfield, or any other individual can offer a more 

detailed explanation of his procedure on a sample. This procedure can also be demonstrated to a 

larger number of students than his usual “shadowing experiences' ' offered at the French 

Hospital. Another benefit of this newly developed lab would be allowing future faculty or 

student projects involving medical devices such as catheter, stents, heart models, etc. to be tested 



33 

 

 

in our designed system. Once deemed accurate and precise, Cal Poly’s new cath lab can be used 

by medical device companies to test their products. 

 After a few weeks of defining the project and agreeing on a feasible scope of the project, 

our next goal was to create project success criteria: more detail of what is required for this 

project to be successful is shown in Figure 12. 

 

Figure 12. Required Components of a Successful System: Diagram to show components that 

make up a successful functioning wet lab for this project. 

 For the project to be successful, we must first have a basic understanding of the system. 

We are responsible for understanding the functions and capabilities of the device. We must also 

be aware of the safety and risk hazard the device imposes. By gathering basic information of the 

system before the integration, we hope that the gathered information will make the process of 

setting up the device and the integration smoother in the future. During the project, we are not 
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responsible for improvement on the software & hardware of the system provided by Abbott nor 

the maintenance of the device. The device will be initially installed by an Abbott Representative.  

A crucial part for the overall scope of the project is the wet lab design and the integration 

of the tank to the existing system. Our team must be able to prototype and manufacture a device 

that can be successfully integrated with Abbott’s Ensite Precision Mapping system. The device 

must be able to hold a large volume of saline solution, maintain temperature, and station six 

leads from Abbott, as well as allow a mapping catheter to be smoothly maneuvered. Once such a 

tank is designed, validation tests will be performed to measure the functionality of the tank. After 

validation of the tank and a successful integration, we plan to create a study to test for accuracy 

of the device and the system involving images generated from our tank. The study is designed to 

demonstrate accurate integration of the system. The manufacturing, integration, and testing 

processes of our project should also provide insight and limitations of wet lab testing.  

 Once the project success criteria were defined, the next step was to define our design 

specifications. We listed factors that would limit our design and made a list of parts of the project 

that were key factors. 

  Specifications we focused on early were: 

1. Dimensions of the chamber 

2. Material of the chamber 

3. Saline solution (concentration/volume) 

For dimensions of the chamber, several factors were considered. The max dimension for 

the tank is limited by the size of the table in the ATL (64 by 37.2 inches.). The tank must have a 

space that allows a sample to be placed. Another dimension limitation was the dimension of the 

magnet of the Ensite Precision system. The sample we plan to map needed to be placed within 
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the magnet with the dimension of 11 by 11 inches.  Therefore, we determined a cube with a side 

length of 6 to 8.5 inches would be a reasonable dimension for the samples we would be mapping.  

The length of the tank was determined by researching the average length of a human adult (18 to 

20.5 inches). Maximizing the space for our sample to 8.5 inches, would result in the remaining 

length of the tank to be 11.5 inches. It is important to note that increasing the dimension 

increases the amount of saline solution placed in the tank. Greater amount of saline solution 

increases the pressure the walls experience. 

 Regarding the material of the tank, the literature review showed that all of the table-top 

ablation models were built using acrylic. Acrylic is an acceptable material of choice due to 

several properties. Being clear, acrylic allows the model to be observed while being mapped. 

Acrylic is also a great material for manufacturing for us with the given tools and machines in Cal 

Poly’s machine shops. We used Matweb’s database to obtain more information on mechanical 

properties of commonly used acrylic shown in Appendix B. 

We looked at the hydrostatic forces the walls of the tank would experience once the tank 

was filled. In larger tanks, the pressure is greatly affected by the depth. The calculation of the 

max stress our tank would experience can be found in appendix A. The density of our medium 

(normal saline) is 1,045 kg/m^3 compared to that of water (1000 kg/m^3). The maximum 

hydrostatic force exerted was calculated to be 25.7 N. Using this force with the smallest area of 

the wall of the cube, the stress was calculated to be 20.44 Pa. It is important to note that our 

stress experienced is significantly smaller than the stress allowable by the three material choices 

from MatWeb, so we determined using any of these materials would not cause fracture and 

bending of the tank. We decided to use Optix Acrylic sheets as it met the required mechanical 

properties and was less expensive than other material choices,  
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Through literature review and discussion with Abbott Engineers we decided to use 

normal saline (0.9%). Instructions for making normal saline can be found in the appendix G in 

“saline manufacturing process.” The reason we decided to use normal saline was that modifying 

the concentration has an impact on ablation but a miniscule impact on mapping. Also, normal 

saline is the generally accepted solution used in many of the studies, so we believed it was best 

to emulate the standard solution. Keeping the specifications we defined above in mind, we 

moved on to concept generation. 
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Concept Generation and Evaluation 

 Throughout the year, the project’s concept generation followed the diagram shown in 

Figure 13. Once the specifications were defined, we created our first prototype (initial version) 

during fall quarter. During winter quarter, after performing validation testing on the tank and 

seeing flaws of our prototype, further development was made, and several intermediate versions 

were created. Input from engineers at Abbott, failures during testing, modifications for ease of 

use, and change in manufacturing process were all part of the development phase. As we 

discovered that our winter quarter’s final prototype was functional, we decided to create a final 

version of the prototype by making small modifications such as dimension changes. This section 

will outline the details of the various versions we went through and our reasoning for the small 

adjustments made throughout the year. 

 

Figure 13. Flowchart of Concept Iteration: The diagram outlines our methods of concept 

generation and design of various versions while performing validation testing. [14] 
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The original concept was generated through literature review. After reviewing three 

studies of existing in-vitro chambers used for training biomedical engineers or for RF ablation 

procedures, the designs of the chambers used in these studies were adapted in our concept 

generation. From these studies we came up with the idea to add a non-pulsatile pump, a 

CoolPoint roller irrigation pump by St. Jude, and a ground platform within our chamber. 

After talking to Sarah Griess, we realized that we needed to accommodate our tank for 

the magnet dimensions in our dimension for the chamber and were provided equipment from 

Abbott that we could use in our project. From this information, the dimensions of our chamber 

were slightly adjusted. The magnet required the tank to be 3 in. above the surface of the table, 

and a wooden fixture was built for the tank to sit on during testing. Another change that was 

made was the overall dimension of the tank. We initially thought that we needed a hexagonal 

shape for the placement of the patches and built the tank to have a length of 18.5 inches (the 

average length of an adult torso). After a series of validation testing on the tank, we learned that 

the tank can still be functional with a cube instead of a hexagonal prism. Also, the tank’s overall 

width, length, and height was reduced to decrease the volume of saline solution needed for the 

experiment. Once the tank was able to endure the volume of water placed in it for the required 

time, we moved on to the integration of the tank with Abbott’s system. 

During the integration, there were several issues that arose. A problem we faced was the 

Ensite Precision system not being able to identify our patch placements. Despite our expectation 

of being able to read electric signals through the acrylic panes, there were no signals being 

picked up. After several troubleshooting efforts, we decided to make square cuts on each pane 

and aluminum cut outs for the electrode patches to be placed; the patches were functional after 
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this adjustment. Once this final adjustment was made, our prototype was deemed functional with 

Abbott’s Ensite Precision Mapping System. 

For the final concept, the dimension was slightly adjusted: the height of length of the tank 

was brought down to touch the floor to reduce stress failure at the joint and also to lower the 

location of the electrode placement of the leg electrode. Another final adjustment to the tank was 

to make a “holder” on the insides of the tank for a lid to sit into the tank for the chest electrode to 

be in contact with the saline solution. 

To summarize our concept generation and evaluation, it began with outlining the goal of 

the project, defining specifications, and rapid prototyping to generate a model. Once the model 

was created, validation testing on the model and integration of the model to the system led to 

modifications on the existing design. The culmination of the minor changes on different versions 

have led to our final prototype, which is not only functional, but also with a more defined 

manufacturing process and easier to use during testing than the previous versions.   
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Conceptual Models and Analyses 

Throughout the year, our conceptual models changed through literature review, 

discussion with our sponsor and Abbott engineers, through manufacturing processes, and 

through test and validation. The three main concepts were: a box, a hexagon, an octagon. This 

section outlines our process leading up to different concepts as well as the analysis of the 

benefits each concept brings. 

 

The Box Model 

 
Figure 14: Concept Sketch of Box Model 

 

The box model was adapted from existing studies. The design consisted of a rectangular 

box that would contain saline solution and the tissue of interest while we used Abbott’s 

Instruments to create images. The box concept was considered because literature review 

demonstrated that this design was functional and seemingly easy to manufacture. The benefit of 

following through with this concept would be that we would be able to manufacture multiple 

prototypes easily and begin testing and collecting data as soon as possible.  
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Hexagon Model 

 

Figure 15. Sketch of Hexagon Model Concept 

 

As previously mentioned, Abbott’s system requires six total patches to be placed on the 

tank. Instead of having one patch placed on each face of a cube as in the box model, the 

hexagonal model allows five patches to be placed on the rectangular faces of the hexagonal 

prism and the reference patch on the base. A rectangular prism was added to serve as a pathway 

for the catheter to travel to the target sample. This concept is beneficial in that it fulfills the goal 

of education use. The rectangular part of the tank serves as a way for Dr. Porterfield to 

demonstrate procedures to students by guiding a catheter through the “torso” of the tank to the 

sample meant for mapping.  
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Octagon Model (Prototype I) 

  

Figure 16. Octagon Model: Physical model of octagon model drying after fabrication. 

 

After performing validation testing such as leak and pressure test and learning more 

about the integration process, we realized that our tank needed design modifications. We learned 

that the hexagonal model setup was not functional for the integration of Abbott’s system. The six 

patches needed to be in specific locations in relation to one another. The Octagonal model was 

proposed so that the chest patch is placed on the lid, the left and right-side patches placed on the 

parallel side panes, the neck patch is placed on the base of the octagonal prism, the leg patch is 

attached to end pane of the rectangular prism, and the reference patch placed on the base of the 

rectangular prism. After setting up the patches like so, we were able to get readings on the 

system that the patches were attached to. Because the system is designed to be placed on patients 

of different body sizes, the location of the patches, more so than the distances between the 

patches, was important. Another error we found during integration testing was patch signal 

errors. To increase the sensitivity of the signals, square cuts were made on the acrylic where the 

patches would be placed. On those square cuts, an aluminum sheet metal was cut to size and 

sealed with a marine sealant.  
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Prototype II 

 To address the issues with Prototype I, Prototype II was scaled down to a rectangular 

prism with a dimension of 6in. x 8.5 in. x 8.5 in. and a rectangular prism 4 in. x 10 in. x 6in. 

attached to the end. The patches were placed in a XYZ orientation as rectangular prisms were 

sufficient for patch locations. The dimension of the tank was reduced to decrease the hydrostatic 

force exerted by the volume of saline solution. While designing the new tank, we also decided to 

buy a thicker pane for our acrylic. The increased thickness provided more stability where the 

panes connected as well as endured more pressure applied vertically and horizontally.  

 

Figure 17: Prototype II model set for integration testing of the system 

 

Final Prototype 

 The final prototype was created towards the end of the spring quarter as integration 

testing was performed. The chances made to the final prototype were minor dimension 

adjustments to the tank and a dimensioned design for the lid for the chest electrode to be placed. 

The rectangular cut was enlarged to increase surface contact with the reference electrode. The 
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rectangular prism that was once elevated was brought down to be in contact with the wooden 

platform to reduce stress where the cube and the rectangular prism are joined. The dimensions 

and drawings for the model can be found in appendix C. 

 

 

Figure 18. Final Model Prototype: A) Final Prototype; B) Final Prototype under testing 
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Prototype Manufacturing 

 The manufacturing processes for our prototypes were adjusted as different versions were 

created. Ultimately, the process began with cutting the acrylic into pieces that build into the tank, 

apply epoxy and sealant to glue the pieces together, and let the tank rest and dry. 

 At first, most of our prototypes were manufactured through machining. The acrylic was 

measured out by a yardstick and machined using a table saw, a miter saw, and a band saw. The 

tools that we used were from both Mustang 60 and The Hangar on Cal Poly’s campus. The 

detailed manufacturing instructions for cutting acrylic and gluing acrylic can be found in the 

appendix F. 

 

Figure 19. Tools Used for Manufacturing: A) Table Saw; B) Miter Saw; C) Band Saw  
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Figure 20. Pieces of Acrylic cut in Mustang 60 

For our final prototype, we decided to laser cut the acrylic in Mustang 60. The benefits of 

laser cutting were improvement in accuracy of the cuts and decrease in manufacturing time. The 

disadvantage of laser cutting is that compared to the machines, laser printing in the shop requires 

appointments and setting up the drawing files for laser printing. However, once all the drawing 

files were prepared, the time for cutting was reduced from two to three hours of machining to 

thirty minutes of laser cutting. As previously mentioned before laser cutting, one must have 

SolidWorks parts for the dimensions that need to be laser cut. Once all the parts are designed, 

each part is saved as a drawing (dwg) file. The software that is used in Mustang 60 to interact 

with the laser-cutting printer is Adobe Illustrator. After the dwg file is opened in a template in 

Illustrator, it is positioned on the screen as it is desired to be cut. The specific instructions of 

using the software and the printer to laser-cut acrylic will be included in appendix F. 
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Figure 21. Process of Laser Cutting Acrylic: A) Laser cutting software that outlines cuts that 

will be made on the acrylic piece. B) Physical cuts on the acrylic sheet made in the printer. 

For the aluminum sheets, we used the foot sheet metal shear in the Aerospace Hangar to 

make cuts. After measuring out the dimensions on the aluminum sheet, we insert the sheets into 

the machine. Once inserted, a person can step on the lever, to make a shear cut on the sheet. 

 

Figure 22.  Final Prototype Assembly: Picture of parts of the final prototype as well as the 

process of assembling the acrylic pieces. 
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Prototype Assembly 

When assembling the tank, the square and the rectangular portion were built 

simultaneously but separately. First, we made sure to wipe the acrylic sheet with a wet-wipe to 

remove dirt and dust. Then, a sandpaper was used on the edges to increase the friction coefficient 

and increase the adhesiveness of the epoxy. The acrylic panes were held using right angle 

fixtures and let dry for approximately five to ten minutes.  

Once the square and rectangle of the tank dries, the extra panes to seal the two parts are 

glued using epoxy. Once all acrylic parts are pieced together, the aluminum sheets are glued to 

the acrylic. There are a total of five square aluminum cuts and one rectangular cut for the 

electrode placements. After the metal pieces were dried and set, two rectangular pieces of acrylic 

were placed on the insides of the square as a fixture for the square lid of the tank. The square lid 

was machined to be about 1cm shorter in width and length of the square base.  
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Test Protocol Development 

Tank Test Protocol 

When we began developing the manufacturing protocol for the tank design, we 

developed a few tests that we considered to be crucial to the stability and performance of the 

tank as a long-term fixture. These tests included a leak test, saline validation test, and a pressure 

validation test which can be found in appendix E.  The leak test was designed to ensure that 

throughout any length of experimentation, the tank would be able to contain the saline solution 

without leakage at any point. Using tap water, we initially determined that our choice of epoxy 

was correct along with our method for joining the panels of acrylic. However, during the 

integration tests we quickly realized that the saline solution was causing the epoxy to erode 

resulting in leakage from the tank. After changing the epoxy to a solution developed for marine 

applications, we ensured that further leak tests were performed with the saline solution rather 

than tap water. The data from the leak tests were recorded by location and number of leaks per 

iteration. We developed a saline validation test for individuals who require an exact impedance 

measurement when performing experiments with the EnSite system. Due to the requirements of 

our project set forth by our sponsor, we did not need to record impedance data while performing 

integration tests, but future research may require these data. After we demonstrated successful 

bonds between the epoxy and acrylic panels with zero leaks, we performed pressure tests on the 

first tank to determine a baseline for testing the integrity of future tanks. If the future tests could 

withstand the max pressure that caused failure of the first tank, there was a significant inclination 

that the new tank’s integrity would not fail. The pressure test was designed to ensure that the 

tank would be able to withstand the pressure from normal experimentation conditions and was 

performed after the epoxy was completely cured. For both pressure tests, we tested for max 
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weight for fracture and any flexion of the tank’s panels. The weight was increased by 1kg for 

both vertical and horizontal tests and any cracks or leaks were noted. For the horizontal pressure 

test, we placed the tank with one of the side panels faced down and applied a determined weight 

on the center of the panel that was directly above. Once all the weights were tested, the tank was 

returned to its normal position and a vertical pressure test was performed by placing cardboard 

across the top of the tank and centering the weights above the center of the main tank chamber. 

The data recorded from this test was a note of any flexion or fracture of epoxy bonds between 

acrylic panels that would suggest a possible leak.  

 

Integration Validation Protocol 

 The protocol we developed for validating the integration was modified throughout the 

project to account for the obstacles and limitations that occurred. Initially the protocol was based 

solely off of the instructions for use for the system and ensured that every necessary step was 

included. While these steps may be crucial to success in a clinical setting, they require adaptation 

for a laboratory setting. The initial protocol included all the system components and connections 

that would be required in a clinical setting but there were a few components that were not 

necessary such as those to record and store EKG data. The protocol we adapted starts with 

proper setup requirements for system components, the surface electrodes, the reference patch, 

necessary catheters, and the patient reference sensors. Once all these components are in place, 

the user can then perform the built-in validation action. Given our inability to utilize the 

CathLink Module pin block for diagnostic catheters, the protocol defines the necessary steps 

needed to collect geometry and map with the TactiCath SE ablation catheter. As mentioned 

previously, the TactiCath will have its limitations when collecting geometric data points 
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throughout the model creation process due to its limited number of electrodes. If the lab were to 

receive the pin block, the user could create these models using diagnostic catheters that contain 

more electrodes per spline using the same method of model creation once the specifications of 

the catheter have been added to the system.  

 We decided to include the EnSite NavX Navigation and Visualization Technology setup 

and model creation guide in this protocol because performing the system validation process is 

required each time a new study is performed. The visualization setup and model creation portion 

of the protocol became what we used for our final integration validation verification and the 

setup for the final study to demonstrate the capabilities of the integration. When we started the 

project, we had a goal of performing a series of tests that would validate the system integration 

and also conduct a study that would demonstrate the accuracy of the integration. The series of 

tests that we wanted to conduct for an accuracy demonstration included comparing collected 

geometry to actual measurements and a point of reference test with the catheter. The goal of the 

geometry test was to collect geometries of various materials at different impedance levels and 

temperatures and compare them to the actual measurements of the objects. For the point of 

reference tests, we wanted to establish a three-dimensional space within the NavX system, 

designate a reference point within that space, then measure the distance between the catheter tip 

location and the reference point. We would have also incorporated other distance tests such as 

measuring the distance between two objects and performed all these tests under the various 

environments set in the geometry collection tests. The final study we initially designed analyzed 

lesion depth and diameter from an ablation with a constant temperature and contact force when 

the sample is resting in the different environments that we established. Throughout the year we 
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adjusted these tests to account for the lack of equipment, assistance, and support that was a result 

of COVID-19 rules and restrictions.  

The final integration validation test protocol we developed became the final study that 

would be used to demonstrate the capabilities of the system. We used a TactiCath SE ablation 

catheter to perform these tests and since we only had 1 available catheter, we had to design the 

protocol to be done in a single trial. The tests we performed collected the geometry of a few 

items of different materials in a defined environment that represented the average normal 

impedance/salinity of the human heart. The materials we wanted to test with were wood, acrylic, 

rubber, and glass. After consulting Abbott personnel, we decided that running these tests under 

different salinity environments would not yield statistically significant differences because the 

system is designed to adapt to changes in impedance throughout the procedure. The geometry we 

collected was isolated and measured using the built-in tools within the NavX software and these 

measurements were compared to the actual measurements. We created the geometries of a glass 

bowl, a rubber toy, and the inside of the tank itself. During experimentation we discovered that 

we could not perform any tests with wood inside the testing area. We later learned that if we 

wanted to perform tests on wood, we would need to transform it into a conductor at a low 

voltage through means of complete water saturation. Wood is naturally resistive in the order of 

1017 ohm-ern at room temperature (Skaar, 1988). To use wood for modeling or testing, it would 

also require enough space in any cavity that the catheter is roving to allow enough of the saline 

solution to exist on all sides of the catheter. The testing apparatus we designed out of wood 

contained very small cavities, essentially the size of the catheter in use, therefore the system was 

not able to determine the location of the catheter. The wood being resistive and acting as an 

insulator for the 8 kHz signal being propagated from the patch electrodes resulted in signals 
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being dampened and mostly blocked from reaching the catheter electrodes. Another discovery 

we made during the experiment was that our range of working space was limited to essentially 

the area above the left/right and neck surface electrodes. We gathered as many points as possible 

on one side of the tank in an attempt to determine a measurable working area and the limitations 

of where data points can be collected. After consulting Abbott personnel, it was determined that 

the working motion box begins approximately 10cm above the magnetic field frame. This 

confirms the measurements we made when determining the workable area within our tank.  
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Testing Data and Analyses 

 

Table 3: First Prototype Leak Test  

Test Leak Locations 

1 4 

2 2 

3 0 

 

 

Table 4: First Prototype Pressure Tests 

Trials Weight Observations 

1 6.35 kg 

Horizontal: Minimal flex/ no 

cracks 

Vertical: No flex/cracks 

2 7.1 kg 

Horizontal: Flex, small cracks 

Vertical: No flex/cracks 

3 8.5 kg  

Horizontal: Flex, small cracks 

Vertical: Flex, epoxy failed 

 

Table 3 and 4 contains the results of the tests performed on our first prototype, which was 

the original octagonal design. The leak test was performed using tap water to fill the tank 

completely to determine if there were any areas of weakness within the bonding of panels. After 

10 minutes of water resting in the tank, each bond was assessed to identify any leaks. After the 

first trial, we discovered 4 leaks that required another application of epoxy. After the epoxy was 

completely cured, a second trial was run and resulted in 2 leaks in a different location. The leaks 
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occurring in a different location may be due to damage from moving the tank while pouring out 

the solution or simply because those bonds were weakened as the exposure time to water 

increased. Increased water exposure time continuously saturates the epoxy casing absorption that 

may lead to leaks if the bond between the epoxy and acrylic is insufficient or too thin.  After the 

2 areas of weakness were treated, a third test was run and resulted in zero leaks. This third test 

allowed us to determine the best methods of epoxy application that we would use for creating our 

next prototypes. We originally wanted to use minimal amounts of epoxy to join each of the 

acrylic panels for aesthetic purposes. To do so, we only applied epoxy along the thin width of the 

panel and used the application tool to wipe away excess epoxy that formed once the panels were 

joined with pressure. We determined after our failed attempts the aesthetics were relatively 

insignificant. Therefore, we decided to apply epoxy along each of the fused seams on the inside 

of the tank and used the application tool to ensure that the epoxy was evenly displaced and 

completely covered the seams. The first trial of the horizontal pressure test contained a weight of 

6.35 kg being placed which resulted in minimal flex in the panels. After allowing it to sit for 10 

minutes, the weight was removed, and the tank was inspected for any cracks in the panels or 

bonds. After confirming there was no damage, the tank was returned to its horizontal state and 

the next weight of 7.1 kg was placed on the panels. During this trial, the tank’s panels 

experienced flexion and small cracks of the epoxy-acrylic bond were audibly noticed. Once there 

was confirmation that there was not any significant damage, we proceeded with the 8.5 kg 

weight. Significant damage was characterized as any cracks or damage that would lead to saline 

leaks due to panel separation. During that trial, flexion was noticed during the horizontal 

pressure tests, but no additional cracks were observed. While performing the vertical pressure 

test, the epoxy-acrylic bond failed on the left side of the main chamber within seconds of placing 
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the weight, therefore determining our max load until failure. We used the results from these 

pressure tests along with the results from the final leak test to determine a baseline for testing 

future prototypes. Since we had zero leaks by the end of the testing trials for the first prototype, 

we needed to ensure that future tanks must be able to withstand at least a weight of 8.5 kg in both 

directions.  

 

Table 5: Second Prototype Leak Test 

Cups of Saline 

Solution Leak Locations 

18 0 

22 0 

26 0 

30 0 

34 0 

 

 

Table 6: Second Prototype Pressure Tests 

Trials Weight Observations 

1 6.35 kg 

Horizontal: No flex/cracks 

Vertical: No flex/cracks 

2 7.1 kg 

Horizontal: No flex/cracks 

Vertical: No flex/cracks 

3 8.5 kg 

Horizontal: Flex, no cracks 

Vertical: No flex/cracks 
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Table 5 and 6 contains the results of the tests performed on our second prototype, the new 

squared tank design with aluminum patches on each side where a surface electrode is placed. 

When we initially filled this tank with a saline solution to verify our epoxy application, we 

noticed that the solution was leaking through the epoxy bonds between panels. After doing some 

research, we discovered the epoxy we were using was not rated for marine applications therefore 

was being eroded by the salt. After sealing the tank with a marine epoxy, we ran leak tests with 

saline solution to determine any weaknesses in the bonds. The initial trial was run with 18 cups 

of the solution sitting in the tank for 10 minutes upon which the tank was examined for leaks. 

There were no visible leaks, so we added 4 more cups of the solution and observed after 10 

minutes. This process was repeated until 34 cups of saline solution were poured into the tank. 

After every trial, it was determined that there were no visible leaks at any location of the tank 

confirming that the application and epoxy type were correct. The pressure test performed on the 

horizontal axis resulted in no cracks at any weight but there was flexion noticed when applying 

the 8.5 kg weight. The vertical test resulted in no cracks or flexion throughout all 3 weights 

tested. This confirmed that the tank was able to withstand the maximum weights that caused the 

first prototype to fail. 
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Table 7: Final Prototype Leak Tests 

Cups of Saline 

Solution Leak Locations 

18 0 

22 0 

26 0 

32 0 

36 0 

 

 

Table 8: Final Prototype Pressure Tests 

Trials Weight Observations 

1 6.35 kg 

Horizontal: No flex/cracks 

Vertical: No flex/cracks 

2 7.1 kg 

Horizontal: No flex/cracks 

Vertical: No flex/cracks 

3 8.5 kg (MAX) 

Horizontal: No flex/cracks 

Vertical: No flex/cracks 

 

Table 7 and 8 contains the results of the tests performed on our final prototype which 

incorporated all the tank modifications that we developed from the previous designs. The leak 

tests were performed the same as with the second prototype but with an increased volume of 

saline solution per trial. After completing all trials of the leak test with the defined number of 

cups, it was determined that there were no visible leaks due to weakness in the bonding of the 
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panels. We then performed the pressure tests exactly as we did with the previous prototypes. 

After performing each trial with the defined weights, we determined that there were zero breaks 

and no noticeable deformations in the panels.  

 

 

Table 9: Integration Validation Attempts 

Integration Attempt Result Configuration/Setup 

1 Fail 

Tank, magnet, and necessary components placed 

on a metal table. Surface electrode patches were 

placed on acrylic walls as shown in Figure 23A. 

 

2 Fail 

Tank, magnet, and necessary components placed 

on a plastic table. Salinity of solution was 

increased from previous attempt. 

3 

 

Fail 

 

Tank, magnet, and necessary components placed 

on a plastic table. Surface electrode patches were 

placed on aluminum integrated into the walls and 

system reference patch placed on acrylic in new 

configuration as shown in Figure 23B. 

 

4 Success 

Tank, magnet, and necessary components placed 

on a plastic table. Surface electrode patches and 

system reference patch were placed on aluminum 

integrated into the walls and configured as shown 

in Figure 23B. 
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Figure 23: A) Configuration of surface electrode patches, PRS patches, and system reference 

patch used for integration attempts 1 and 2. B) Configuration of all patches used in integration 

attempts 3 and 4. 

 

After confirming that the tank was strong enough to withstand the forces of being 

completely filled with saline solution, we began our integration validation attempts. Table 9 

displays the results of all 4 attempts to validate the integration between the tank and the EnSite 

Precision mapping system. Once all the patches and sensors were placed according to the 

protocol, we used the NavX software built in validation tool to validate the integration. After 

failing attempt 1, we implemented some possible solutions which included increasing the salinity 

and replacing the metal table with a mainly plastic table. The swapping of the table was a result 

of the system detecting a significant amount of metal distortion causing disruption in signal 

acquisition.  Attempt 2 yielded the same failure so we were able to rule our salinity as the reason 
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for initial failure and focused on the patch placement. We reached out to a clinical specialist at 

Abbott who suggested we rearrange the patches to the configuration in Figure 23 B. It was also 

determined that the surface electrode patches were unable to emit the 8 kHz signal through the 

acrylic after reaching out to Dr. Hawkins, so we integrated aluminum squares in the area where 

each patch was located to use as a conductive medium between the surface electrodes and the 

saline solution. We attempted and failed to validate the integration during our 3rd attempt but 

realized through the generated system error messages that our issue was with the system 

reference patch not being placed on an aluminum patch like the surface electrodes were. After 

attaching the system reference patch to the conductive medium, we attempted a 4th trial which 

resulted in a successful system validation. The validation confirmed a successful integration 

between the wet lab and the Ensite Precision system. We kept all external components (patches, 

sensors) in the same location and performed the system validation process numerous times to 

ensure we did achieve a successful integration.  

 

We performed a study after successfully validating that tested the accuracy and 

limitations of the integration. This study used a TactiCath SE ablation catheter along with the 

NavX software to gather data points along the inner surface of various objects in an attempt to 

create a virtual model of those objects. The geometry generated by the system was measured 

using the built-in tool and compared to the actual measurements of the objects. For the glass 

bowl, one side of it was modeled and measured horizontally for analysis. This model yielded the 

most accurate results of all the objects tested with only a 11.70% error with a 13.56mm absolute 

error. Absolute error describes the difference between the actual and measured values in units of 

millimeters. Percentage error is the degree to which the measurements of the models differed as a 
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proportion to the actual measurement of the physical model. We believe the reason for this low 

error percentage is because this object contained thin walls, had an open end that allowed more 

current by saline solution to flow through, and the glass itself was not resistive to current. The 

second object used was a bone shaped rubber toy that was cut in half to create an open-ended 

side for the catheter. We noticed that collecting data points on this object was significantly more 

difficult than the glass bowl which was demonstrated by the 24.18% error with a 20.73 mm 

absolute error when measuring the length and a 19.52% error with a 5.58 mm absolute error 

when measuring the proximal width of the opening of the object. We were unable to achieve the 

shape of the bone at the due to the lack of data points gathered by the system. We believe 

interference and the physical properties of rubber are what prevented us from gathering an 

accurate geometric model. As we mentioned previously, we discovered that essentially the 

bottom half of the tank was unable to be used for testing since the software could not recognize it 

as a workable area. We needed to elevate the rubber object into the working area, and we believe 

that the objects used to hold up the object were causing significant interference blocking the 

signals sent out by surface electrodes. The interference combined with rubber’s natural tendency 

to resist conductivity and prevent electrons from moving freely are the reasons it was difficult for 

the system to collect data points at the distal end of the object. The final object we collected data 

points on was the acrylic tank itself. The reasons we chose this item were both to see how well 

the system detects the surface of an acrylic panel as well as to determine the limitations of the 

working zone. After creating geometry from the data points, the horizontal measurement from 

the system was 14.19% different from the actual measurement of the tank with a 31mm absolute 

error. This error percentage is not ideal in regard to accuracy, but it is what we expect to achieve 

based on the location of the where we were collecting data points. The wall of the acrylic tank 
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that we collected data points contains the left surface electrode patch. We theorized that we 

would not yield very accurate results on that wall because the catheter was too close to the 

aluminum patch that is emitting the 8 kHz current from the electrode. The system provides 

visualization of the catheter based on the location of the electrodes in the impedance field. When 

the catheter was on the same wall as the left patch, the system could not utilize that surface 

electrode to interpret where the catheter electrodes were within the field because there was 

virtually no distance of separation between the electrodes and the patch.  
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Table 10: Study Measurements 
 

Object 

System 

Measurement 

(mm) 

Average Sys. 

Measurement 

(mm) 

Physical 

Measurement 

(mm) 

Absolute Error 

(mm) 

Percent Error 

Glass Bowl 

103 

102.33 115.89 13.56 11.70 % 103 

101 

Rubber Toy 

Length: 61 

65 85.73 20.73 24.18 % Length: 70 

Length: 64 

Proximal Width: 

23 

23 28.58 5.58 19.52 % 

Proximal Width: 

22 

Proximal Width: 

24 

Acrylic 

Tank 

184 

183 214 31 14.49 % 

181 

181 

181 

188 

  



65 

 

 

Discussion and Future Directions 

 The objective of this thesis project was to develop a functioning wet lab that integrates 

with the EnSite Cardiac Mapping system that currently resides in the St. Jude research lab at Cal 

Poly for future students, faculty, and industry personnel to perform experiments and 

demonstrations for academic purposes. When we initially began designing our tank, we took the 

advice of clinical experts regarding the ideal shape of the tank. We started with a hexagonal and 

an octagonal shaped chamber with the intention of placing all of the surface electrode patches on 

each wall to completely surround the object resting in the testing chamber. After some research 

and advice from lab technicians that have experience with wet labs, specifically ones that are 

designed for this system, we identified that these shapes and placement of the patches were not 

going to work the way we needed to. We determined that a tank that contained a squared testing 

chamber and a long rectangular portion on the bottom end of the tank was necessary to ensure 

that all the patches could be placed with the appropriate amount of spacing relative to each other. 

While testing the integrity of our tanks through the leak and pressure tests, the most noteworthy 

change we made to the manufacturing of all our prototypes was to account for the salinity in the 

solution by how it affects the epoxy that bonds the panels together. We initially performed the 

leak tests with tap water and were able to determine the best application methods for the epoxy 

based on the locations of the leaks. However, when we filled the tank with the saline solution for 

integration attempts, we discovered that the longer we left the solution in the tank, the more leaks 

that would occur. After some examination and assistance from a local expert, we discovered that 

the epoxy we were using was eroding away due to long term contact with the saline solution. 

From that point on we ensured that any epoxy or sealant we used was rated for marine 

applications and that future leak tests would be done using saline rather than simply tap water.  
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 After completing the integrity tests on our second prototype, we began our integration 

validation attempts. When we failed our first attempt at a successful integration, we considered 

that the impedance from the saline solution was not high enough for the surface electrodes to 

pass current through and possibly an incorrect placement of the patches. We decided to restart 

the validation protocol with a higher concentration of saline while keeping the patches in the 

same place as a control but still did not achieve a successful integration. We tried moving the 

patches around and even ensured that the system was set up correctly by placing the patches on 

our body and simulating a patient in a clinical setting. Once we verified that the setup and the 

saline concentration were correct, we decided to reach out to Abbott specialists to see why the 

patches were not integrating with our wet lab. While consulting the specialist, we first 

determined that the placement of our patches was not correct because the patches needed to be 

placed in certain axes in order for the system to create a x-y-z impedance field in the workable 

area. After some discussion with trial and error with our third attempt, we concluded that each 

patch required a conductive medium that connects it to the saline solution directly, so we 

installed aluminum patches where each surface electrode and the system reference patch needed 

to be. The aluminum squares needed to be large enough, so it covers the entire surface electrode 

patch and most of the system reference patch surface. Once all the modifications were in place 

and the ideal saline concentration was achieved, the software successfully validated the 

integration between the wet lab and the mapping system.  

 The experimental study we conducted demonstrated that the integration allows users to 

create models by collecting geometric data points within a reasonable accuracy given our 

circumstances. Due to supply limitations and the inability to receive the proper hardware, we 

were limited to gathering geometries with the TactiCath SE ablation catheter only rather than the 
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appropriate diagnostic catheters designed for mapping. As previously mentioned, when using a 

linear multi electrode catheter with the EnSite Precision system, users can yield up to 94% 

accuracy when collecting geometric data points to create models. The TactiCath SE having only 

4 electrodes with 2-2-2 spacing allows the collection of geometric data but only 2 points can be 

captured at a time resulting in low density models. The density of models in this regard pertains 

to the amount of data points collected to build a geometric model and any kind of voltage map. 

Using diagnostic catheters that are manufactured to record several points at each save results in 

higher density maps, thus models and maps that are more accurate.  During the study we noticed 

that the more objects that were in the tank causing interference, the more difficult it was for the 

system to collect data points in the areas of higher obstruction. When only the glass bowl sat in 

the tank with the open end facing the front patch, we achieved our lowest error percentage 

(11.7%) when comparing the virtual model to the physical measurement. When we stacked 

objects in an attempt to hold the rubber object within the workable area, the comparison resulted 

in very high error percentages of 19.52% when measuring the width of the opening and 24.18% 

when measuring the entire length of the object. The objects we used to hold up our physical 

model were unsaturated wood blocks that acted as insulators in the order of 1017 ohm-ern at 

room temperature for the alternating current being emitted by the surface electrode patches. The 

wooden blocks were placed directly above the “back” surface electrode in an attempt to have our 

physical model centered in our workable area. As previously mentioned, the system gathers 

geometric data points by detecting the location of catheter electrode bipoles within its generated 

impedance field. By placing the wooden blocks in between the object and that posterior surface 

patch, the system was unable to detect the location of the electrodes on the catheter from that 

posterior patch resulting in a lack of data points gathered with respect to the Z axis between the 
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two patches. The data points more distal from the opening of the object were difficult to gather 

due to this interference so they were very scarce in the total amount of points collected which is 

demonstrated by the high error percentage when measuring the length. Rubber’s resistance to 

current by nature also played a significant role in the inability to gather accurate results. With the 

current setup and tank prototypes, users can collect the geometry of simple objects if there is 

minimal interference between the object and the surface electrodes. The best way to minimize 

the interference is to build a stand composed of non-insulating material, such as acrylic, that can 

serve as a permanent fixture for holding up objects of interest within the workable field. 

Based on our data and the literature that suggests very high levels of accuracy when creating 

geometric models with the appropriate catheters and minimal interference inside the tank, users 

can expect measurement differences with less than 15% error which should be acceptable for 

most immediate applications and experimental ideas for this wet lab. For more clinical purposes, 

this error percentage tolerance should be significantly lower to due to the small measurements of 

most anatomical structures within the heart. As mentioned previously, when using a mapping 

system for procedures such as slow pathway modification for AVNRT, physicians can have 90-

95% success rates from the system localizing the site for ablation. The location of the slow 

pathway is typically around 15mm away from the bundle of His. Having that 90-95% success 

means that not only is the slow pathway modified, but the bundle of His is not affected by the 

ablation. If the correct catheters are used in an environment with minimal interference for 

reasons previously discussed, users should expect the error percentages of their measurements to 

be very minimal. Professors or industry representatives can come in and perform academic 

demonstrations with the system that will allow them to explain the science and engineering 
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behind each of the components and demonstrate how the system generates models based on the 

built-in algorithms. 

 Going forward with the development and use of this Cath lab, prospective students, 

faculty, and industry personnel would focus on increasing the accuracy and workable area of the 

tank to perform more complex experiments and ablation procedures. As demonstrated with our 

testing data, we were able to collect data points using a TactiCath SE ablation catheter that the 

NavX software used to create geometric models. This is a significant step in the right direction 

when it comes to the future of this lab on Cal Poly’s campus. One of the first suggestions we 

have for prospective users is to build a taller tank or increase the height of the stand at least 3 

inches to increase the workable area to allow for testing and experimentation on larger objects. 

At the moment, the vertical workable area is approximately 3.9 inches from the top panel that 

contains the front surface electrode patch which leaves around 2.5 inches of a “dead zone” at the 

bottom of the tank. This significantly limits the size of objects that can be tested in our current 

tank prototypes because ideally the object will need to rest in the middle of the tank, not touching 

any panels. After reaching out to engineers at Abbott, we discovered that the workable area using 

magnetics in tandem with impedance is limited to a 35x35x30 cm three-dimensional motion box. 

This motion box has a 10cm “dead zone” that begins at the top of the Precision Field Frame 

magnet which is why we could not obtain any information or use the system to visualize our 

catheters when we were in that bottom portion of the tank.  By increasing the height of the stand 

or building a tank tall enough to encompass the full workable motion box, future users can study 

larger objects inside the tank. Another alternative, though not recommended, is to disable the 

collection and use of SE (magnetic) data points while creating models or mapping voltage. By 

disabling the magnetic field and collection of SE points, the user can eliminate that dead zone 
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and proceed with collecting only impedance data. The reason we suggest not turning off 

magnetics is that the PRS-anterior sensor placed near the chest surface electrode patch functions 

as a sensor for metal distortion. One of the biggest issues we faced when trying to yield accurate 

models was not using a diagnostic catheter to collect data points. Although the TactiCath SE has 

the ability to create a model through collecting points, it is not the primary tool used to map and 

collect geometry in a clinical setting. The TactiCath SE’s main function is to ablate areas of 

problematic electrical activity through contact force technology and serves as essentially a 

secondary tool when it comes to collecting data points. For future users to use diagnostic 

catheters to create models, the Cath lab will require the CathLink pin module from Abbott to 

plug in all the necessary pins. Using diagnostic catheters, especially the Advisor HD Grid 

Mapping Catheter, will yield the most accurate results under optimal conditions. With this 

catheter users can map more complex geometries along with gathering data that ablation 

catheters simply are not designed for.  

If the lab is to be used for a more academic/demonstration purpose, we suggest 

purchasing an artificial heart in the form of ballistic gel or another conductive material. Like 

Abbott’s educational labs, prospective students could build a tank that permanently houses the 

artificial heart with built-in tubes that guides catheters into the chambers of the heart from the 

rectangular portion of the tank. This will allow the demonstrator easy access each time they 

collect geometry on the model heart in the tank. One prospective idea to demonstrate the 

limitations of traditional bipolar catheters in comparison to the HD Grid or to simply study the 

propagations of different arrhythmias is to create a waveform generator. This generator can be 

composed of many smaller electrodes that are programmed to emit a signal at different times 

thus creating various patterns. This would be beneficial for prospective students who are 
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developing catheters or sheaths to test their product’s ability to read voltage patterns. With the 

current components in the lab, future users can study ablation techniques, compare ablation 

catheters, or even simply demonstrate how ablation procedures are performed in a clinical 

setting. The lab contains the Ampere equipment that generates radio frequency energy and a 

Cool Point pump that can be used for irrigated catheters. Users can perform ablations using 

irrigated and non-irrigated, contact force and standard catheters on meat or chicken to analyze 

lesion depth and effectiveness for studies or in-services.  The status and setup of the Cath lab we 

developed allows users to practice validation/tank/saline protocols, gather simple geometries, 

and perform ablation procedures. With a few more hardware components mentioned previously, 

users have the potential to build a fully functional wet lab capable of many academic and clinical 

purposes. We have demonstrated that the current integration between our tank design and the 

EnSite Precision cardiac mapping system is not only valid, but also of practical use for future 

students, faculty, and industry personnel. 
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Appendices 

Appendix A: Hydrostatic Force Calculation 

𝜌 = 1.045
𝑔

𝑚𝐿
= 1045

𝑘𝑔

𝑚3  

L= 8.5 in = 0.2159 m 

R= 6 in = 0.1524 m 

 

P= F/A ➔ F= P*A           𝑃 = 𝜌𝑔𝑦 

F= ∫ 𝑑𝐹= ∫ 𝑃𝑑𝐴 

 = ∫ 𝜌𝑔𝑦 𝐿𝑑𝑦 

 = 𝜌𝑔𝑦 ∫ 𝑦𝑑𝑦
𝑦=ℎ

𝑦=0
 ➔ F= 𝜌𝑔𝐿

𝑦2

2
|0

ℎ 

 = 𝜌𝑔𝐿
ℎ2

2
 ➔ (1045

𝑘𝑔

𝑚^3
) (9.8 

𝑚

𝑠2 ) (0.2159 m)(0.1524m)^2 * (1/2) 

 F= (1105.52)(0.1524)^2 

 = 25.677 N ➔ 25.7 N 

Stresses @ Different Area Walls of the Cube 

𝐴1 = 8.5 ∗ 6 = 51 𝑖𝑛 = 1.2954 𝑚2 

𝐴2 = 8.25 ∗ 6 = 49.5 𝑖𝑛 = 1.2573 𝑚2 (max 𝑠𝑡𝑟𝑒𝑠𝑠 𝑐𝑢𝑏𝑒 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑠) 

        𝑃1 =
𝐹

𝐴1
=

25.7𝑁

1.2954 𝑚2 = 19.84 𝑃𝑎 

        𝑃2 =
𝐹

𝐴2
=

25.7𝑁

1.2573𝑚2 = 20.44 𝑃𝑎 
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Appendix B: Table of Material Properties 

 

Table 2: Mechanical Properties of Materials: Acrylic molded, cast, optical sheet, and 

plexiglass. 

 Acrylic  

(General Purpose,  

Molded) 

Acrylic  

( Cast) 

Acrylic  

(optical sheet) 

Plexiglass 

(Arkema, V825) 

Tensile 

Strength, 

Ultimate (MPa) 

19.3-85   

(Avg: 64.9) 

62-83  

(Avg: 74.4) 

54-83 

(Avg: 69.1) 

70.3 

Tensile 

Strength, Yield 

(MPa) 

25- 85  

(Avg: 60.5) 

64.8- 83.4 

(Avg: 75.4) 

37.9-72 

(Avg: 55.7) 

N/A 

Modulus of 

Elasticity (GPa) 

0.950- 3.79  

(Avg: 2.94) 

2.76-3.30 

(Avg: 3.10) 

1.52-3.38 

(Avg: 2.62) 

3.10 

Flexural Yield 

Strength (MPa) 

33.1-143 

(Avg: 103) 

98-125 

(Avg: 109) 

57-120 

(Avg: 101) 

<=103 MPa 

Compressive 

Yield Strength 

(MPa) 

36.5- 117 

(Avg: 102)  

110-124 

(Avg: 120) 

117-124 

(Avg: 119) 

N/A 
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Appendix C: Detailed drawings and schematics 
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Appendix D: Test data 
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Appendix E: Operation Manuals 

Integration For Mapping Protocol 

System Components: 

● EnSite Amplifier 

● Fiber Optic Cables 

● EnSite Precision Link, Sensor Enabled, NavLink Module 

● TactiSys Quartz 

● EnSite Precision Field Frame and bracket 

● Field Frame cable  

● Display Workstation 

● Monitor Boom (Patient Monitors) 

 

External Components: 

● TactiCath SE ablation catheter 

● EnSite Precision or Velocity electrode kit 

● Patient Reference Sensors 

 

*Note: This protocol was designed to be used when collecting data points with TactiCath SE catheters in 

conjunction with the EnSite Precision Link, Sensor Enabled, NavLink Module. For mapping with the 

CathLink Module and diagnostic catheters, please refer to the Instructions for Use.  

 

1. Turn on the EnSite Amplifier and allow 30 minutes for it to warm up 

2. Connect the EnSite Precision Cardiac Mapping System component cables to the EnSite Amplifier 



96 

 

 

 

 

 

3. Place the system reference electrode on the tank (see figure below for positioning), then connect 

the electrode lead to the NavLink Module  

4. Place EnSite Precision surface electrodes on the tank (see below for positioning), then connect all 

electrode leads to the NavLink Module  

5. Turn on the Display Workstation 

6. Log into the EnSite Precision Cardiac Mapping System 

7. Start a new EnSite NavX Navigation and Visualization Technology Study 

a. Click New Study from the Clinical Menu 

b. Click New Patient 

c. Enter weight of the sample 

i. The rest of the information fields must be entered before study ends and can be 

filled in with user’s information  
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d. Click Next to display Study Setup screen 

e. Select EnSite NavX  

f. Enter study information 

g. Select appropriate Recording System 

h. Click Begin Study 

8. Connect EP catheters to the appropriate modules 

a. Ablation catheters connected to the TactiSys Quartz and the Precision Link 

b. Diagnostic catheters connected to the CathLink Module 

9. Perform an EnSite Precision Module Functional Check 

a. Ensure the Patient Reference Sensor (PRS) are connected to each of the two REF ports 

on the module 

b. Position each PRS at their appropriate location on the tank 

i. The indicators turn green to confirm that the PRS is inside the detection area of 

the Field Frame 

ii. Verify this in the NavX SE page of the setup tab 

10. Perform validation 

a. Insert the Data Module connection into the NavLink module 

i. The Data Module is incorporated in the EnSite Precision left leg surface 

electrode 

b. Click Amplifier drop down menu located at top left of the screen 

c. Click Validate at the bottom of the list to begin the validation process. When complete, a 

message appears in the lower right side of the screen 

d. If validation fails, check connections then revalidate from the menu bar by selecting 

Amplifier > Validate 
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11. Perform EnSite NavX Navigation and Visualization Technology setup 

a. Select the Setup tab 

i. Open up the Catheter Setup page 

ii. In between the two virtual CathLink modules, locate the GeoConnect terminals 

iii. Drag the pins to the appropriate pin ports on the module 

b. Select the model tab 

i. Open the model page and add  new model using the + button 

ii. Use the Name drop-down to select an existing name or type the desired name 

iii. Set the following parameters in the model control panel  

1. From: Active EnGuide 

2. Group: Left or Right 

3. Type: OneModel 

4. Fill: 35-100 (75 preferred)  

5. Leave Force Unchecked 

6. Points: None 

7. Field Scaling: select both Auto and Apply checkboxes 

8. Under the Field Scaling settings wheel on the bottom right, select NavX 

SE 

c. In the Filter Controls section in the Waveforms display area, adjust the bipolar and 

unipolar signals to reduce the amount of noise read by the system. 

 

12. Create a model 

a. Set the catheter inside the object of interest 

b. In the model control panel click Collect Points to begin collecting points.  
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c. Drag the catheter along the walls of the object and throughout the interior to create a 

surface, retouching each location multiple times 

d. Before removing the catheter, press Stop Collecting Points to stop collecting points 

e. Click Finish Model when the model creation is complete. Otherwise, repeat all steps in 

parts 11b, 11c and 12 for all additional surfaces 

13. End Study 

a. Select File > End Study 

b. Fill out any required fields 

 

 

Top image: Side View 

Bottom image: Top View 

Patch Placement: 
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PRS Patches (purple) 

EnSite System Reference Electrode (light blue) 

Neck (green) 

Chest (light grey) 

Back (brown) 

Right (red) 

Left (orange) 

Left Leg (blue) 

 

Protocol for adding  EP catheters with RecordConnect 

 

● Before adding catheters to the study ensure that the appropriate ReadyConnect has been 

specified for the study. 

○ To select a different CIM, from the menu bar select Amplifier > Settings > 

RecordConnect then click the appropriate checkbox for the recording system 

being used 

● Depending on the catheter you are using, add by one of the following methods 

 

Selecting a Catheter from the Catheter Catalog 

1. Click Catheter Catalog  

2. In the new window, choose the desired catheter from the catalog list 

3. Click Add New at the lower right of the catalog window 

4. Choose remaining catheters or close the catalog window with the Close button at 

the lower right corner of the window 
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  Defining a Catheter 

1. Click the + button beneath the Catheter List 

2. Enter catheter name 

3. Select a color for the catheter body. The color of the waveforms for the catheters 

defaults to the color selected for the catheter body 

4. Specify the catheter properties: number of electrodes, catheter diameter, distal 

length, electrode length, electrode spacing. When specifying the number of 

electrodes, the electrodes will be assigned to consecutive Input Channels starting 

with the distal electrode assigned to the first available channel 

5. From the Polarity drop-down menu, specific whether signals should be collected 

from paired bipoles, all possible bipoles, or all possible unipoles 

6. Select the filters using the filter controls 

7. If using for multiple sessions, click Add to Catalog 

 

Protocol for adding  EP catheters with RecordConnect 

 

● Before adding catheters to the study ensure that the appropriate ReadyConnect has been 

specified for the study. 

○ To select a different CIM, from the menu bar select Amplifier > Settings > 

RecordConnect then click the appropriate checkbox for the recording system 

being used 

● Depending on the catheter you are using, add by one of the following methods 

 

Selecting a Catheter from the Catheter Catalog 
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1. Click Catheter Catalog  

2. In the new window, choose the desired catheter from the catalog list 

3. Click Add New at the lower right of the catalog window 

4. Choose remaining catheters or close the catalog window with the Close button at 

the lower right corner of the window 

 

  Defining a Catheter 

1. Click the + button beneath the Catheter List 

2. Enter catheter name 

3. Select a color for the catheter body. The color of the waveforms for the catheters 

defaults to the color selected for the catheter body 

4. Specify the catheter properties: number of electrodes, catheter diameter, distal 

length, electrode length, electrode spacing. When specifying the number of 

electrodes, the electrodes will be assigned to consecutive Input Channels starting 

with the distal electrode assigned to the first available channel 

5. From the Polarity drop-down menu, specific whether signals should be collected 

from paired bipoles, all possible bipoles, or all possible unipoles 

6. Select the filters using the filter controls 

7. If using for multiple sessions, click Add to Catalog 
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Appendix F: Testing Protocol 

Leak Test Protocol 

1. Place the chamber inside the bathtub, make sure the base is parallel to the bathtub.  

2. Fill the tank with saline solution to the desired amount in cups (18, 22 , 26, 32,36) 

3. Let sit for 10 minutes. Observe for leaks or cracks 

4. Record location for leaks 

5. Remove water from chamber 

6. Let chamber dry naturally or wipe down all moisture with a towel 

7. Apply rubber sealant to specific locations 

8. Repeat for remaining sample amounts 

Pressure Test 

1. Horizontal Force test 

a. Place the tank on its side (one of the panes are on the ground) 

b. Place weight until sign of fracture in the epoxy/glue 

c. Record Weight 

2. Vertical Test 

a. Place a wide sheet of cardboard on top of the tank 

b. On top of the cardboard put weight until sign of fracture in the epoxy/glue 

3. Calculate Volumetric pressure/ Weight by water on tank 

Saline Validation test 

1. Pour saline solution in to the tank 

2. Place two electrodes on a stable surface in the saline solution 

3. Measure the impedance between the two electrodes  
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4. Add salt or water until the desired impedance of  131-180 ohms is achieved 

*Note: impedance is important if we decide to perform ablation for our spring 

experimental design 

 

1. Perform the validation portion of the Integration for Mapping protocol ensure that all 

equipment is setup properly and integration is established 

2. Using the saline solution protocol, create a batch with the desired salinity and pour into 

the tank 

a. If a certain solution temperature is required, place the heating element in the tank 

until the temperate is attained 

3. Place the object of interest in working area of tank on top of a material that is either 

conductive or not resistive to a passing current 

a. Acrylic or glass prefered 

4. Place the catheters in the long portion of the tank and rest them hanging off the ledge 

inside the solution ensuring there is no contact with the tips of the catheter 

5. Perform the EnSite NavX Navigation and Visualization Technology setup from the 

Integration for Mapping protocol 

6. Perform the Create a Model portion of the Integration for Mapping protocol to collect 

data points that will create the geometry of the item 

7. Using the trim tool, cut out any unnecessary data points that hinder the model 

8. Once the final model is created, use the measure tool to gather the dimensions of the 

model created by the system 

9. Compare the generated measurements to the physical measurements 
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10. Repeat 5-9 for all remaining objects 
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Appendix G: Manufacturing process instructions 

Cutting Acrylic 

1.  Measure out acrylic sheets to the dimensions of the design 

2.  Using the table saw miter saw 

a. Ask the Mustang 60 Tech Shop for assistance, rent out blades 

b. For straight cuts, keep the blade at 90 degrees 

c. Place the material that is needed to be cut in front of the blade with the correct 

measurement using the ruler on the table. 

d. Power on the device (the blade should be rotating) 

e. Push the material (acrylic) with your hand or a pusher slowly 

f. Once the cut is made power off the device 

 

Laser Cutting Acrylic 

  

a. Using the Solidworks drawings, create drawings from faces and export as drx 

files.  

b. Email the drx file or save the files on a flash drive 

c. Set up the laser cutting machine (Ask machine shop tech if help is needed) 

i. Set up z-axis height 

ii. Turn on air vent/ power 

 

d. Open Adobe illustrator on the PC connected to the laser cutting machine 

e. Open the drawing files and position onto the 18” x 32” file  
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f. Print the file, and send through the laser cutting machine and observe the process  

 

Assembly of Acrylic Panes 

a. Have the gorilla epoxy ready at hand 

b. Once the epoxy is opened, squeeze both liquid into a “tray” and stir for “20 

seconds” 

c. You would start to pick up a distinct smell once the chemical begins working and 

have about 5 mins to apply the solution on to the surfaces 

d. Apply the epoxy onto the sides of the acrylic panes and stick them close. 

e. While letting them dry, apply masking tape to help the pieces hold its place 

 

Saline Solution Manufacturing Process 

Materials: 

 Tap Water 

 Table salt or fine sea salt (iodine- free) 

 Pot or microwave-safe bowl with a lid 

 Clean Jar 

 Measuring cup 

 Teaspoon 

 Baking Soda (optional) 

 

Stovetop method  

1. Boil 2 cups of water covered for 15 minutes 



108 

 

 

2. Allow to cool to room temperature 

3. Add 1 teaspoon of salt 

4. Add 1 pinch of baking soda  

5. Stir until dissolved 

6. Refrigerate in airtight container for up to 24 hrs  

7. Add 2 cups of water to a microwave-safe container 

8. Mix in 1 teaspoon of salt’ 

9. Microwave, covered, for 1 to 2 minutes 

10.  Allow to cool. 

11. Place in a clean jar 

12. Refrigerate for up to 24hours 

 

For a more sterile and long-lasting version, we use distilled water. 

*Throw away if cloudy or dirty 

*Make sure to put 8 teaspoons of table salt to 1 gallon of distilled water 

*Can refrigerate for up to 1 month. 
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Appendix H: Core Customer Charts 

 

 

We will be developing a functioning wet lab that will be fully integrated with Abbott’s 

EnSite Precision Mapping System which will be utilized for future testing of products, validation 

of student projects, and performing student labs. This project and subsequent studies will cost 

approximately $500 and will be completed by June 2021. To successfully complete this project, 

all the main deliverables in the web above must be completed while achieving accurate napping 

geometry, and yielding accurate results from the experimental study. 
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At the beginning of the quarter we established that the scope of the project was the least 

flexible, the resources were the most flexible and the schedule was in-between those aspects. At 

the moment, the flexibility remains the same but if we endure more restrictions due to COVID, 

this chart may shift because our schedule will become more defined.  
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Appendix I: Penta Chart 

 

As mentioned above, the goal is to create a functioning wet lab that integrates with 

Abbott’s mapping system to yield accurate test results. There is not currently a wet lab available 

in the St. Jude lab that simulates physiological environments for testing so we will be 

incorporating that into our build. This will be done with a saline solution that represents the 
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environment in which the heart resides. After validating the functionality, we will be testing the 

setup with various experimental studies that will not only prove functionality, but will allow for 

other groups to test their products in the spring quarter. A functional and accurate integration 

between the wet lab and the mapping system will allow next generation students and faculty to 

test their products in a physiological accurate environment.  

 

 

 

Appendix J: Gantt Chart 
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Appendix K:Budget 

Proposed: 

 

Final: 
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