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ABSTRACT

The purpose of this research work is to study the applications of the instantaneous screw motion

(ISM) concept to unmanned aerial system (UAS) dynamics, control, and guidance problems. Due

to the potential use of this particular concept in dynamics and control problems, it is considered

an essential subject to study. The advantages of this concept are that the ISM invariants are inde-

pendent of the coordinate systems, and they can be expressed in terms of control parameters which

allows us to find the control input and guidance commands without solving the traditional control

problem. This research focuses on creating a framework for applications of the ISM concept in flight

dynamics, control, and guidance problems in unmanned aerial vehicles (UAVs) by establishing the

relationships between the ISM invariants and the dynamic and control parameters. A quadcopter

and fixed-wing UAV models have been considered as an example of UAS. The expressions for the

invariants have been derived using previous works. The motion of the instantaneous screw axis

(ISA) has been studied, and the equations of motion have been derived. The method of defining

the motion equations of the rigid body and the ISA as the functions of control parameters has

been shown. The transition from the invariants to the traditional parameters (translational and

rotational state parameters) has been represented. The profiles of the invariants and ISA have

been obtained for several maneuvers of the quadcopter. The PD controller was utilized to simulate

the results. The invariant description of a fixed-wing UAV motion on a vertical plane has been

studied and the expressions for the invariants have been derived. Using the integrals obtained for

this particular motion of a fixed-wing UAV, the invariants are found as the functions of the flight-

path angle. An implicit relationship between the invariants and the parameters of flight dynamics

(including the control parameters) has been established. The obtained results and expressions for

the ISM invariants, flight dynamics, and control parameters can be used in control, guidance, and

navigation problems.
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CHAPTER 1
INTRODUCTION

1.1 Problem Statement

Dynamic modeling, simplifications in the procedure, assumptions behind the simplifications, and

kinematics are important factors in controlling a dynamical system. One group of complicated

dynamical systems is unmanned aerial vehicles (UAV). When considering guidance, navigation,

and control problems in aircraft dynamics, in particular, the dynamics of an unmanned aerial

system (UAS), it is frequently useful to analyze the way of defining the kinematic and dynamic

parameters.

Unlike the traditional representation of a motion in terms of decoupled translation and rotation,

Gulio Mozzi proved in 1763 that any general rigid body motion can be described by an instantaneous

screw axis (ISA) [3, 4]. One of the applications of the ISM concept in rigid body kinematics is the

invariant description of rigid body motion that is presented by J. Schutter [2].

This research aims to analyze the instantaneous screw motion (ISM) concept in UAS dynamics,

control, guidance. Figure 1.1 shows the steps towards the implementation of this goal. First of

all, the ISM concept is analyzed by determining the expressions for the invariants and deriving

the equations of motion of the instantaneous screw axis (ISA). Second, the relationship between

the flight dynamics and the ISM invariants will be established. Third, the relationship between

the invariants and the control parameters will be studied. The proposed GNC algorithm with ISM

invariants is described in Figure 1.2. The future works will include creating novel explicit guidance

and navigation techniques based on the ISM invariants [5].

Figure 1.1: Conventional GNC Loop and ISM-based Approach

1



Figure 1.2: Proposed GNC system with ISM invariants

1.2 Literature Review

Over the course of the last two decades, the demand for unmanned aerial vehicles (UAVs) has

increased significantly. The main reason for that is their capability to carry out an impressive

range of tasks, ranging from taking photos to military operations. Today, we can find numerous

works devoted to the development of UAVs, and they can be primarily divided into three groups:

autonomy, path planning, and optimality.

One group of works is devoted to the quadcopter, its dynamics, and control. It has been

shown that the quadcopter dynamics can be defined mathematically by using Newton-Euler, Euler-

Lagrange equations and physical aspects of motion [6],[7]. Moreover, considerable simulation results

have been obtained by integrating control systems like PD controllers [6]-[8]. Mathematic and dy-

namic models of the quadcopter, control, and guidance problems for it have been studied and

considerable results are obtained [9].

The most common way of defining a rigid body motion is the traditional method of decoupled

translational and rotational motions. It is shown that when considering the UAV dynamics and

problems it is useful to consider the coordinate systems along with the way of defining the mo-

tion. One of the methods of describing the motion is the utility of a concept of an instantaneous

screw axis (ISA). Any rigid body motion can be defined via the concept of the ISA [3, 4, 10].

Utilizing the ISA is potentially useful to compute the control functions and/or decrease the error

in controlling. J. Angeles studied the problem of computing the screw parameters of rigid-body

motion for finitely-separated positions [11]. The second part of his work studies the same problem

for infinitesimally-separated positions [12]. Based on the survey of the existing studies, one can

conclude that the concept of the ISA is new in the analysis of the UAV guidance, navigation, and

control problems. In the following paragraphs, some of the works that addressed the UAVs are

described.

A large group of studies focuses on UAV autonomy. The importance of autonomous UAVs, the

2



current and future demand for them was explained in detail in Ref. [13],[14]. One example deals

with the problem of how to design and integrate autonomous systems into existing and new vehicles.

A modular system architecture was proposed that will enable the safe and trustworthy performance

of multiple-scenario missions [14]. Sense and Avoid (S&A) system has also been studied thoroughly,

and some future directions of development of autonomous S&A system were presented in Ref. [15].

Lee et. al described the tracking guidance for the autonomous UAV landing and vision-based de-

tection of the marker on the moving vehicle with the real-time image processing system [16]. The

problem of UAV navigation in a GPS denied environment was addressed by one research work [17].

G. Rudnick et. al described a concept for scalable autonomy of UAVs applicable to the field of

reconnaissance missions [18]. C. Rogers et. al presented a modular heterogeneous multi-agent con-

trol framework with payload integration, which provides a wireless network between agents without

relying on pre-existing communication infrastructure [19]. Moreover, a novel approach to estimate

the relative position of an aircraft that is connected to a fixed location on the ground through a

taut tether of varying length was presented [20]. Besides that, a novel decentralized task allocation

algorithm based on the Hungarian approach was proposed in one work [21].

A group of works presents path planning and guidance for UAVs [22, 23, 24, 25, 26]. For ex-

ample, for fixed-wing UAVs with a finite field of view, a cooperative track-before-detect algorithm

for multiple ground targets was described in one of these works [23]. P. Maini et. al defined a

two-step path planning algorithm for UAVs with kinematic constraints in the presence of polygo-

nal obstacles [24]. M. Beul et. al proposes a novel trajectory generation method that is able to

compute time and energy-optimal trajectories analytically for micro aerial vehicles [25]. A path

planning method for UAVs surveying a cluttered urban landscape was presented in Ref. [27]. In

addition, a pathfinding method for two UAVs with localization constraints was proposed using a

modified shortest path algorithm [28]. T. Andersen et. al proposes a quaternion-based guidance

law and addresses the problem of trajectory tracking for underactuated quadrotors [29]. E. Kawa-

mura showed the integration of targeting, guidance, control and navigation functions for real-time

implementation onboard UAVs [30]. For a vertical plane (fixed-wing UAV), an analytical model of

dynamics was obtained, and it is particularly very useful to develop guidance and control solutions

[31]. In addition, a nonlinear landing-guidance law was developed using the sliding-mode control

scheme for UAVs to land on carriers at sea [32]. An improved path-following performance for

fixed-wing UAVs, considering the wind velocity, was proposed [33]. D’Amato et. al studied this

problem in complex 3D environments, taking both mission and aircraft performance constraints

into account [34]. A decentralized method to generate collision-free 3D trajectories for UAVs flying

in a shared space was proposed in Ref.[35]. Ya Liu et. al analyzed cooperative transportation of

tethered multi-rotor UAVs, and proposed an optimized trajectory to accomplish the payload ma-

nipulation [36]. Moreover, a highly feasible trajectory planning method for control-oriented UAVs

was proposed in Ref [37]. Furthermore, various guidance laws and techniques have been developed

3



by employing the quartic polynomial, Lyapunov’s second method, the v-nulling method, the vision-

based and other numerical methods, approximate and analytical methods, regardless of the control

actuation devices [26], [23]-[36].

Another group of studies deals with the problems of optimality [38, 39]. A.A. Munishkin et.

al considers two nonholonomic vehicles, of which one has the goal to enter the ”tail” of the other.

Since the goal and navigation strategy of the second vehicle are unknown, the first vehicle uses

infinite horizon stochastic optimal control [38]. A. Matus-Vargas et. al studied the use of two

optimization techniques for coefficient tuning when the dynamic model is nonlinear [39].

1.3 Overview of Chapters and Appendices

Chapter 2 deals with UASs in the example of quadcopter and fixed-wing UAV. Dynamic models

and equations of motion of the quadcopter and fixed-wing UAVs are provided. Chapter 3 provides

a deep study of the ISM concept including the motion of the ISA. Analysis of the ISM invariant in

the motion of the quadcopter is discussed in Chapter 4. In Chapter 5, the invariants are studied

in the fixed-wing dynamics. Chapter 7 provides the conclusions and future works. Appendix A

provides the expression for the 6th invariant, while Appendix B includes the scalar forms of i4 and

i6 (invariant 4 and 6). Appendix C provides the list of journal papers and seminars.
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CHAPTER 2
UNMANNED AERIAL SYSTEMS

2.1 Quadcopter Dynamic Model

2.1.1 Kinematics

The general motion of a rigid body can be defined as the combination of the translational motion of

a point from the rigid body and the rigid body’s rotational motion about the coordinate axes. One

of the ways of defining the rotational motion is using the Euler angles which can be determined

using two frames: inertial and body frames. The inertial frame is fixed on the ground and defined

by x, y, z - axes, while the body frame is fixed on the rigid body and defined by xB, yB, zB - axes.

In order to define the quadcopter’s motion, we use these two frames. In this case, the center of

mass is considered to be the reference point and the body frame is fixed at this point [6].

Figure 2.1: Inertial and Body frames

The linear position and velocity vectors (denoted by ξ and η respectively) of the quadcopter in the

inertial frame can be defined as

ξ =

xy
z

 , ξ̇ =

ẋẏ
ż

 . (2.1)

The angular position and velocity vectors are defined through the Euler angles as

η =

φθ
ψ

 , ω = W−1η̇ =

1 0 −sin θ
0 cos φ cosθ sinφ

0 −sin φ cosθ cosφ


φ̇θ̇
ψ̇

 , (2.2)

5



where W is the transformation matrix for angular velocities from the inertial frame to the body

frame [40]. The rotation matrix for the position and other vectors from the body frame to the

inertial frame is given as [6]

R =

cosψcosθ cosψsinθsinφ− sinψcosφ cosψsinθcosφ+ sinψsinφ

sinψcosθ sinψsinθsinφ− cosψcosφ sinψsinθcosφ+ cosψsinφ

−sinθ cosθsinφ cosθcosφ

 . (2.3)

2.1.2 Forces and Torques

Forces

There are gravity G, thrust TB from the rotors, and aerodynamic drag D forces acting on the

quadcopter. The gravity in the inertial frame is given as

G =

 0

0

−mg

 , (2.4)

where m is the mass of the quadcopter, g is gravitational acceleration.

The thrust from the rotors can be defined in the body frame as

TB =

0

0

T

 , (2.5)

where T is the sum of the thrusts from four rotors, and it is given by

T = k
4∑
1

ω2
i , (2.6)

where k is the lift constant, ωi is the angular rate of ith rotor [7].

The thrust in the inertial frame is determined by

T I = RTB.

From the fluid dynamics, the drag force is given by the following equation

D =
1

2
ρCDAv

2, (2.7)

where ρ is the surrounding fluid density, v is the velocity of the surrounding fluid, A is the reference

area, and CD is drag constant [41]. The drag constant can be determined from the experiment, and

6



it depends on the shape of the object and Reynolds number. Figure 2.2 shows Reynolds numbers

for small UAVs [1]. At low Reynolds numbers, the drag coefficient is asymptotically proportional to

Figure 2.2: Reynolds number for Small UAVs [1]

R−1
e , which means that the drag is linearly proportional to the velocity. At high Reynolds numbers,

the drag would be proportional to the square of the velocity [42].

The linear model of the drag was proposed and considered in several studies on the quadcopter

[6, 7, 43, 44]. For example, Bouadi et. al and Derafa et. al considered the drag to be proportional

to the velocity with different coefficients in each direction [43, 44]. In another study, the linear drag

was modeled with the same coefficient in every direction [7]. For simplicity purposes, the linear

model of the drag is chosen and considered in this paper. Thus, it can be defined in the inertial

frame as

D = −kd

ẋẏ
ż

 , (2.8)

where kd - drag constant.

In this model, the drag force for the rotational motion is assumed to be negligible in the case of

relatively small angular velocities.

Torques

The total torques about the x and y axes in the body frame can be found as the functions of angular

rates of the rotors depending on the fixed state of the body frame. Assuming that the rotors 1 and

7



3 are located on the y axis of the body frame, we can write the roll and pitch torques as

τφ = lk(ω2
1 − ω2

3),

τθ = lk(ω2
2 − ω2

4), (2.9)

where l is the distance between the rotor and the center of the quadcopter.

Using the expression for the frictional force in the fluid dynamics, the torque about the z axis can

be written in the following form assuming the angular acceleration to be zero (or negligible):

τψ = bτ (ω2
1 − ω2

2 + ω2
3 − ω2

4), (2.10)

where bτ is torque drag coefficient [7].

So, the total torque in the body frame is given by

τB =

τφτθ
τψ

 =

 lk(ω2
1 − ω2

3)

lk(ω2
2 − ω2

4)

bτ (ω2
1 − ω2

2 + ω2
3 − ω2

4)

 . (2.11)

2.1.3 Equations of Motion

The equations of motion consist of two parts: the equations for the linear motion and the equations

for the rotational motion. The linear equations of motion can be derived using the Newton’s second

law as

mξ̈ = G+RTB +D (2.12)

The equations for the rotational motion can be derived from the Euler’s equation below

Iω̇ + ω × (Iω) = τ , (2.13)

where I is inertia matrix, ω is angular velocity vector, τ - total external torque vector [7]. It is

assumed that the quadcopter has a symmetric structure with two thin uniform rods crossed at the

center. Therefore, the inertia matrix can be written as a diagonal matrix as

I =

Ixx 0 0

0 Iyy 0

0 0 Izz

 . (2.14)
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Substituting the Eqs. (2.11) and (2.14) into Eq. (2.13), the following equation can be taken for

the rotational motion:Ixx 0 0

0 Iyy 0

0 0 Izz


ω̇xω̇y
ω̇z

+

ωxωy
ωz

×
Ixx 0 0

0 Iyy 0

0 0 Izz


ωxωy
ωz

 =

τφτθ
τψ

 , (2.15)

or ω̇xω̇y
ω̇z

 =

τφI
−1
xx

τθI
−1
yy

τψI
−1
zz

−

Iyy−Izz
Ixx

ωyωz
Izz−Ixx
Iyy

ωxωz
Ixx−Iyy
Izz

ωyωx

 . (2.16)

where ωx, ωy, ωz - angular velocity vector components.

2.2 Fixed-wing UAV Dynamic Model

2.2.1 Equations of Motion

Similar to the quadcopter’s kinematics, the equations of motion of a fixed-wing aircraft can be

defined using two frames: the inertial frame and the body frame. The inertial frame is fixed on the

ground at sea level and denoted as Exyh. The body frame is denoted Be1e2e3 and fixed on the

aircraft’s center of gravity (COG) with the velocity vector pointing in e1-direction. If the sideslip

angle is zero (i.e β = 0) and the bank angle is constant (i.e φ = φ0), then the atmospheric flight

equations can be obtained as

ẋ = v cos γ cos ψ,

ẏ = v cos γ sin ψ,

ḣ = v sin γ,

v̇ =
g0

m
(T cos α−D)− g0 sin γ, (2.17)

γ̇ =
g0

W v
(T sin α+ L)− g0

v
cos γ,

ψ̇ =
g0

W v cos γ
(T sin α+ L)sin φ0,

Ẇ = −CT,

where v - velocity magnitude, γ - flight path angle, ψ - heading angle, φ0 - bank angle, g0 -

magnitude of gravitational acceleration, T - thrust, L - lift, D - drag, W - weight, C - specific fuel

consumption [45].

The lift and drag forces are defined to be the components of the resultant aerodynamic force

9



perpendicular and parallel to the velocity vector:

L =
1

2
CLρSv

2, D =
1

2
CDρSv

2, (2.18)

where CL, CD - lift and drag coefficients, ρ - the density of the atmosphere at the altitude of the

aircraft, and S is the wing platform area [45].

Considering the following expressions constant allows calculating the propulsive thrust and angle

of attack as well as making the equations of motion integrable analytically

g0

W
(T cos α−D) = c1,

g0

W
(T sin α+ L) = c2, (2.19)

c1, c2 − const.

This assumption was validated by demonstrating that the values of the thrust and angle of attack

obtained for various values of lift, weight, and power settings are within the existing ranges for

certain types of aircrafts. It has also been proved that these assumptions can be valid for an

aircraft with high maneuverability [46, 31].

Assuming that the change of the weight is negligible, Eqs.(2.17) can be rewritten in the following

form [31, 46]

ẋ = v cos γ cos ψ,

ẏ = v cos γ sin ψ,

ḣ = v sin ψ,

v̇ = c1 − g0 sin γ, (2.20)

γ̇ =
1

v
(c2cosφ0 − g0) cos γ,

ψ̇ =
c2 sin φ0

v cos γ
.

10



The integrals of Eqs.(2.20) are obtained in terms of γ, assuming that γ is an independent variable:

x(γ) =

∫
v2(λ)sin λ cos ψdλ

a+ b sin λ
+ η1,

y(γ) =

∫
v2(λ)sin λ sin ψdλ

a+ b sin λ
+ η2,

h(γ) = Q(γ)exp

[
4A

d1
arctan

a tan λ̄+ b

d1

]
+ η3, (2.21)

v(γ) = η4(a+ b sin λ)−1exp

[
2A

d1
arctan

a tan λ̄+ b

d1

]
,

ψ(γ) = tan φ0 ln(tan λ̄) +
2g0

d1
tan φ0 arctan

(
a tan λ̄+ b

d1

)
+ η5,

where η1−5, A - integration constants, a = c2cos φ0, b = −g0, λ = γ + π
2 , λ̄ = λ/2, Q(γ) - function

of γ [46].

For simplicity purposes, the heading angle will be considered constant, i.e the motion is in a vertical

plane.

2.2.2 Control Parameters

Thrust and angle of attack are the control parameters, and they can be found from Eqs.(2.19). For

small angles of attack [31]

α1,2 =
1

2g1

(√
g2

2 − 4g1g3 − g2

)
, (2.22)

where

g1(h, v) =
1

2
kρSv2C2

Lα(2α0L + αT ),

g2(h, v) = mc1 +
1

2
ρSv2(CD0 +KC2

Lαα
2
0L + 2KC2

Lαα0LαT + CLα), (2.23)

g3(h, v) = m(c1αT − c2) +
1

2
ρSv2(CD0 +KC2

Lαα
2
0LαT + CLαα0L),

k - const, α0L - zero-lift angle of attack, αT - angle between thrust and body axis, CD0,K - coeffi-

cients of drag polar, m - mass, CLα - lift-curve slope of the wing.

If the air density is considered constant, then the expressions above can be simplified. By intro-
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ducing the following notations

q1 =
1

2
kρSC2

Lα(2α0L + αT ),

q2 = mc1,

q3 =
1

2
ρS(CD0 +KC2

Lαα
2
0L + 2KC2

Lαα0LαT + CLαcosφ), (2.24)

q4 = m(c1αT − c2),

q5 =
1

2
ρS(CD0 +KC2

Lαα
2
0LαT + CLαα0Lcosφ),

where qi - constants, Eqs.(2.23) can be rewritten as

g1(v) = q1v
2,

g2(v) = q2 + q3v
2, (2.25)

g3(v) = q4 + q5v
2.

After substituting these equations into Eq.(2.22) and solving for v, one can get

v(α) =

√
q1q2α− q1q4

q2
1α

2 + q1q3α− q1q5
, (2.26)

where v is always positive. The expression for thrust can be obtained as [31]

T =
√

(mc1 +D)2 + (mc2 − L)2, (2.27)

or

T (α) =

√
(mc1 +

1

2
CDραSv2

α)2 + (mc2 −
1

2
CLραSv2

α)2, (2.28)

where vα = v(α).
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CHAPTER 3
INSTANTANEOUS SCREW MOTION INVARIANTS

3.1 Description of Invariants

Using Schutter’s work on defining the rigid body motion instantaneously, in this section the invari-

ant description of rigid body motion will be represented [2]. The screw motion of the rigid body

is defined by two parameters: the rotational velocity of the rigid body about the screw axis, and

the translational velocity of the rigid body along the screw axis. In the case of general motion of

the rigid body, the translational and rotational velocity vectors cannot be considered as constants,

and therefore the state of the screw axis changes as these two vectors change. The rigid body

motion can be defined by six invariants. The first two invariants are the two parameters of the

instantaneous screw motion (ISM) of the rigid body. The other four invariants define the motion

of the screw axis.

Invariants:

i1 = ω1(t) - rotational velocity about the instantaneous screw axis (ISA);

i2 = v1(t) - translational velocity along the ISA;

i3 = ω2(t) - rotational velocity of the ISA about y(t−∆t)-axis;

i4 = v2(t) - translational velocity of the ISA along y(t−∆t)-axis;

i5 = ω3(t) - rotational velocity of the frame attached to the ISA

about x(t)-axis;

i6 = v3(t) - translational velocity of the frame attached to the ISA

along x(t)-axis.

3.2 Derivation of Invariants

If ω and v are the rotational and translational velocity vectors of the rigid body, then

ex =
ω

‖ω‖
, ω1 = ‖ω‖ = ω · ex, (3.1)

v1 = v · ex =
v · ω
‖ω‖

, (3.2)

where ex is the unit vector along the ISA. The following equations can be written from the Fig. 3.1a:

ω2(t) = lim
∆t→0

∆θ2(t)

∆t
, (3.3)
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(a) (b)

Figure 3.1: ISA in three consecutive time instants [2]

v2(t) = lim
∆t→0

∆d2(t)

∆t
, (3.4)

ω3(t) = lim
∆t→0

∆θ3(t)

∆t
, (3.5)

v3(t) = lim
∆t→0

∆d3(t)

∆t
. (3.6)

Since ω vector and the ISA are always parallel, the rotation of ω can be considered to find the

rotation of the ISA. It is known that (see Fig. 3.2b)

∆θ2 =
‖ω̇‖sinα ·∆t
‖ω‖ . (3.7)

Using

‖ω × ω̇‖ = ‖ω‖‖ω̇‖sinα, (3.8)

the Eq. (3.7) can be rewritten as

∆θ2 =
‖ω × ω̇‖ ·∆t
‖ω‖2

. (3.9)
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(a) (b) (c)

Figure 3.2: Screw parameters

By substituting Eq. (3.9) into Eq. (3.3), the following equation can be obtained

ω2 = lim
∆t→0

‖ω × ω̇‖ ·∆t
‖ω‖2 ·∆t

=
‖ω × ω̇‖
‖ω‖2

. (3.10)

In order to find v2, p - position vector, originating from the origin of {ref} and perpendicular to

the ISA, is used (Fig. 3.1b).

It is seen from Fig. 3.2a that the velocity vector v can be expressed as the geometric sum of vx

and vy vectors:

v = vx + vy, (3.11)

where

vx = v1 · ex =
ω

‖ω‖
v1, v = ω × r. (3.12)

The latter equation is for a rotational motion, it can be used to find vy:

vy = ω × (−p) = p× ω. (3.13)

Eq. (3.11) can be rewritten as

v =
ω

‖ω‖
v1 + p× ω, (3.14)
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hence

ω × v =
ω × ω
‖ω‖

v1 + ω × (p× ω), (3.15)

from which one can obtain

ω × v = ‖ω‖2p, p =
ω × v
‖ω‖2

. (3.16)

Now, one can calculate the time derivative of p as

ṗ =
(ω̇ × v + ω × v̇)·‖ω‖2 − 2(ω × v) · (ω · ω̇)

‖ω‖4
, (3.17)

and v2 is computed by projecting ṗ onto the y-axis:

v2 = ey · ṗ, (3.18)

where ey is the unit vector along the y-axis. Since the y-axis is perpendicular to ω and ω̇, the unit

vector ey is computed as

ey =
ω × ω̇
‖ω × ω̇‖ , (3.19)

and therefore Eq. (3.18) can be rewritten as

v2 =
ω × ω̇
‖ω × ω̇‖ ·ṗ . (3.20)

ω3 is found in a similar way as ω2 (see Eq. (3.10)). In this case ω2 · ey can be used instead of ω:

ω2 · ey =
ω × ω̇
‖ω‖2

, (3.21)

ω3 =
‖(ω2 · ey)× d

dt(ω2 · ey)‖
‖ω2 · ey‖2

=
‖(ω × ω̇)× (ω × ω̈)‖

‖ω × ω̇‖2 (3.22)

The derivation of v3 involves two steps.

1) The angular velocity of the ISA is directed perpendicular to xz-plane, and its value is equal to

ω2. From Eq. (3.14),

ṗz = (ω2 · ey)× (p2 · ex) (3.23)
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where ṗz = (ṗ · ez) · ez - the component of ṗ on z-axis, p2 - the distance between the central

point of the ISA and the intersection point of it with the position vector. From Eq.(3.23), it can

be found that

‖ṗz‖ = ‖ω2 · ey‖ · ‖p2 · ex‖ (3.24)

from which

p2 = − ṗ · ez
ω2

(3.25)

where

ez = ex × ey =
ω × (ω × ω̇)
‖ω‖ · ‖ω × ω̇‖ . (3.26)

2) Since the motion is instantaneous, the velocities should be considered rather than distances or

angles changed. From Fig. 3.2c it can be seen that

∆d3 = (ṗ · ex) ·∆t− ṗ2 ·∆t. (3.27)

Substituting Eq. (3.27) into Eq. (3.6) yields

v3 = lim
∆t→0

(ṗ · ex) ·∆t− ṗ2 ·∆t
∆t

= ṗ · ex − ṗ2. (3.28)

After calculation, an expression for v3 can be obtained as v3 = v3(ω, ω̇, ω̈, v, v̇, v̈). The resulting

expression for v3 is given in Appendix A.

In summary, the expressions for the invariants can be written as

i1 = i1(ω) = ω · ex = ‖ω‖,

i2 = i2(v, ω) = v · ex =
v · ω
‖ω‖

,

i3 = i3(ω, ω̇) =
ω × ω̇
‖ω‖2

· ey =
‖ω × ω̇‖
‖ω‖2

,

i4 = i4(ω, ω̇, v, v̇) = ey · ṗ =
ω × ω̇
‖ω × ω̇‖ ·

(ω̇ × v + ω × v̇)·‖ω‖2 − 2(ω × v) · (ω · ω̇)
‖ω‖4

,

i5 = i5(ω, ω̇, ω̈) =
‖(ω × ω̇)× (ω × ω̈)‖

‖ω × ω̇‖2 ,

i6 = i6(ω, ω̇, ω̈, v, v̇, v̈) = ṗ · ex − ṗ2.
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Fig. 3 represents the invariants for one instant of time, ωF and vF are the rotational and the

translational velocities of the frame attached to the ISA.

Figure 3.3: Illustrations of Invariants for an instant of time

3.3 Special Cases

3.3.1 Pure Translation

If the rigid body has a certain translation velocity and zero rotational velocity, then the position

of the ISA cannot be determined. In this case, the orientation of the ISA is defined to be the same

as the orientation of translational velocity. Since the location of the ISA is not defined, the i4 and

i6 are undetermined. Therefore, the expressions for the invariants are written as follows

i1 = ‖ω‖ = 0,

i2 = ‖v‖,

i3 =
‖v × v̇‖
‖v‖2

,

i4 − undetermined, (3.29)

i5 =
‖(v × v̇)× (v × v̈)‖

‖v × v̇‖2 ,

i6 − undetermined.
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3.3.2 Pure Rotation

If the reference point of the rigid body has zero translational velocity, then the expressions for the

invariants will take the following form

i1 = ‖ω‖,

i2 = 0,

i3 =
‖ω × ω̇‖
‖ω‖2

,

i4 = 0, (3.30)

i5 =
‖(ω × ω̇)× (ω × ω̈)‖

‖ω × ω̇‖2 ,

i6 = 0.

3.3.3 ISA with constant orientation: ω̇ = 0

In this case, i5 and i6 are not defined since the state of the frame attached to the ISA is not

uniquely determined. i4 is also undetermined since the ey unit vector is not defined. Consequently,

the invariants are expressed as

i1 = ‖ω‖,

i2 =
v · ω
‖ω‖

,

i3 = 0,

i4 − undetermined, (3.31)

i5 − undetermined,

i6 − undetermined.

3.4 Inverse Problem

In this section, the inverse problem of transition from the invariant description to the traditional

description of the rigid body motion will be discussed. The traditional parameters can be written

as the functions of the invariants. Depending on the reference point, the velocity vectors can be

found from the following equations:

ω = i1 · ex,

v = i2 · ex + p× (i1 · ex), (3.32)
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where p - the vector that starts from the reference point and perpendicular to the ISA. The radius

vector and the angular vector would be computed using

r(t) =

∫ t

t0

v(t)dt =

∫ t

t0

i1(t) · ex(t)dt

θ(t) =

∫ t

t0

ω(t)dt =

∫ t

t0

[i2(t) · ex(t) + p(t)× (i1(t) · ex(t))]dt. (3.33)

The variables in control functions can be expressed as the functions of the invariants using Eqs.

(3.33), and the control function would then be a function of the invariants.

3.5 Motion of Instantaneous Screw Axis

The position of the ISA can be determined by the position of a point from the ISA and the vector

ex. With no loss of generality, central point o was chosen (see Fig. 3.4), and its motion will be

discussed below. If position of the rigid body, Euler angles and velocity vectors are defined as

Figure 3.4: ISA in Cartesian coordinate system

ξ =

xy
z

 ,η =

φθ
ψ

 , ξ̇ = v =

ẋẏ
ż

 ,ω =

1 0 −sinθ
0 cosφ cosθsinφ

0 −sinφ cosθcosφ


φ̇θ̇
ψ̇

 , (3.34)
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where x, y, z - coordinates of a reference point from the rigid body, then the unit vectors ex and

ey will be determined as follows:

ex =
ω

‖ω‖
=

 (φ̇− ψ̇sinθ)/γ
(θ̇cosφ+ ψ̇cosθsinφ)/γ

(ψ̇cosθcosφ− θ̇sinφ)/γ

 , ey =
ω × ω̇
‖ω × ω̇‖

, (3.35)

where

γ = ‖ω‖ =

√
φ̇2 + θ̇2 + ψ̇2 − 2φ̇ψ̇sinθ,

ω̇ =

 φ̈− ψ̈sinθ − ψ̇θ̇cosθ
θ̈cosφ− θ̇φ̇sinφ+ ψ̈cosθsinφ− ψ̇θ̇sinθsinφ+ φ̇ψ̇cosθcosφ

ψ̈cosθcosφ− ψ̇θ̇sinθcosφ− ψ̇φ̇cosθsinφ− θ̈sinφ− θ̇φ̇cosφ

 .
The position of the central point o can be defined by ζ:

ζ =
[
x̂ ŷ ẑ

]T
, (3.36)

where x̂, ŷ, ẑ - coordinates of o.

The velocity vector of o consists of two component velocities: one is directed along ex and its value

is i6 (6th invariant), and another is along ey and its value is i4 (4th invariant). So, the following

expression can be written for the motion of o:

ζ̇ = i6 · ex + i4 · ey, (3.37)

where

i4 = ey · ṗ, (3.38)

i6 = ex · ṗ−
d

dt

(ex × ey) · ṗ · ‖ω‖2

‖ω × ω̇‖
. (3.39)

Eq. (3.37) is the equation of motion of the central point o. Eq. (3.35) and Eq. (3.37) are adequate

to define the motion of the ISA. Now, the expressions of i4 and i6 as the functions of the control

parameters are discussed below. According to Newton’s second law

mr̈ = F ,

Iθ̈ = τ , (3.40)
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where F is the total force, τ is the total torque, m is the mass of the rigid body, I is the inertia

matrix. It is known that

F =
dP

dt
, τ =

dL

dt
, (3.41)

where P and L are the linear and angular momentums respectively. Eq. (3.38) and (3.39) become

as

i4 = ey · ṗ =
(L̂× τ̂ )
‖L̂× τ̂‖

· (τ̂ × P + L̂× F )‖L̂‖2 − 2(L̂× P ) · (L̂ · τ̂ )
m‖L̂‖4

, (3.42)

i6 =
L̂ · (τ̂ × P )

m‖L̂‖2
−

− d

dt

[
(L̂× (L̂× τ̂ ))
‖L̂× τ̂‖2

· (τ̂ × P + L̂× F )‖L̂‖2 − 2(L̂× P ) · (L̂ · τ̂ )
m‖L̂‖3

]
, (3.43)

where L̂ = I−1L, τ̂ = I−1τ . If the rigid body is a quadcopter, then the inertia matrix can be

written as

I =

Ix 0 0

0 Iy 0

0 0 Iz

 . (3.44)

And, Eqs. (3.42) and (3.43) can be written in scalar forms. The scalar expressions for i4 and i6

are shown in Appendix B.
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CHAPTER 4
ISM INVARIANTS IN QUADCOPTER MOTION

4.1 Control Problem in Quadcopter

The dynamic model of the quadcopter shows that the angular rates of the four rotors can be

considered as the control parameters, and they can be found from the Eqs. (2.6) and (2.11) as

ω2
1 =

T

4k
− τθ

2kl
−
τψ
4b
,

ω2
2 =

T

4k
−

τφ
2kl

+
τψ
4b
,

ω2
3 =

T

4k
+

τθ
2kl
−
τψ
4b
, (4.1)

ω2
4 =

T

4k
+

τφ
2kl

+
τψ
4b
,

where τφ, τθ, τψ - torque components, k - lift constant, bτ - torque drag coefficient.

The quadcopter has six degrees of freedom and only four control parameters. Eqs. (4.1) show that

the control parameters can be found by calculating the thrust and torque. In most cases, linear

controllers such as the PID controller, are used to control the UAVs. Due to its simplicity, the PD

controller was chosen to control the quadcopter.

4.2 PD controller

The mathematical representation of the PD controller is given by the following equation:

e(t) = sd(t)− s(t),

u(t) = KP e(t) +KD
de(t)

dt
, (4.2)

where sd(t) - desired state, s(t) - current state, e(t) - difference between the desired state and the

current state, u(t) - control input, KP , KD - proportional and derivative control gains respectively

[47].

The state vector in the quadcopter dynamics is given as

s = [ξ v η ω] , (4.3)

where ξ, η - linear and angular position vectors, v, ω - linear and angular velocity vectors respec-

tively.
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Figure 4.1: Quadcopter Control Algorithm

In order to calculate the thrust and torque, the PD controller can be utilized in the following form:

T = [Kz
P (zd − z) +Kz

D(żd − ż) + g]
m

cosφcosθ
,

τφ =
[
Kφ
P (φd − φ) +Kφ

D(φ̇d − φ̇)
]
Ixx,

τθ =
[
Kθ
P (θd − θ) +Kθ

D(θ̇d − θ̇)
]
Iyy, (4.4)

τψ =
[
Kψ
P (ψd − ψ) +Kψ

D(ψ̇d − ψ̇)
]
Izz,

where g - gravitational acceleration, m - mass, φ, θ, ψ - Euler angles (subscript d indicates ”de-

sired”), Ixx, Iyy, Izz - inertia matrix components [48].

In this case, the x and y positions of the quadcopter are not controlled. To control them as well,

the algorithm that is shown in Figure 4.1 can be developed. In Plant 2, the desired angles are

determined from the current thrust vector and the linear position error vector (ξd − ξ).

To implement the simulation, the values for the parameters have been chosen similar to the values

given in [49], and are shown in Table 4.1. The PD controller parameters are given in Table 4.2.

4.3 Other Controllers in Invariant Calculations

Other controllers can also be used to calculate the invariants. However, depending on the structure

of the controller it can create a difficulty and additional errors in calculations. For example, let’s
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Parameter Value Unit

m 0.47 kg
g 9.81 m/s2

l 0.225 m
bτ 1.15 · 10−7

k 3 · 10−6

Parameter Value Unit

Ixx 4.86 · 10−3 kg ·m2

Iyy 4.86 · 10−3 kg ·m2

Izz 8.80 · 10−3 kg ·m2

kd 0.25 kg/s

Table 4.1: Parameter values

Parameter Value

Kx
P 0.5

Ky
P 0.5

Kz
P 1.5

Kφ
P 6

Kθ
P 6

Kψ
P 6

Parameter Value

Kx
D 0.5

Ky
D 0.5

Kz
D 2.5

Kφ
D 1.75

Kθ
D 1.75

Kψ
D 1.75

Table 4.2: Parameters for the PD controller.

consider the PID controller. The mathematical expression of the PID controller is given as

e(t) = sd(t)− s(t),

u(t) = KP e(t) +KI

∫ t

0
e(τ)dτ +KD

de(t)

dt
, (4.5)

where KI - integral gain.

The difference between the expressions for the PID and PD controllers is the integral term in the

PID controller, which requires integrating the error. In numerical integration of the equations of

motion, this term adds one more step of integration which can increase the systematic error in

determining the state vector components in this example. In this example, the current state vector

is calculated from the controller outputs (i.e thrust and torque). However, during the real flight

of the quadcopter, the current state vector components are determined from the sensors, and the

integration term wouldn’t really have an effect on the accuracy of the current state vector as well

as the invariants.

Studying the PID controller using the invariants and fractional derivatives is one of the future

works.

4.4 Alternative Control Laws

Using the linear controllers in nonlinear systems can create a systematic error. These types of

errors can be reduced by either linearizing the nonlinear dynamical system properly or developing
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nonlinear controllers.

Linearization of a nonlinear system can be implemented using linearization and approxima-

tion methods. These methods can include Lyapunov methods, analytical linearization, forward,

backward, and centered approximation methods, etc. [50], [51].

Nonlinear controllers can also be developed using analytical linearization and approximation

methods. In most cases, the nonlinear controllers change depending on the nonlinear dynamical

system. There are a lot of works devoted to the nonlinear control problem. For example, A. Matus-

Vargas et al. used gradient optimization strategies and Pontryagin’s maximum principle to control

nonlinear UAV models [39]. In another work, a nonlinear super-twisting controller was developed

based on Lyapunov methods to stabilize the quadcopter’s attitude [52].

4.5 Profiles of ISM Parameters

In this section, instantaneous screw motion (ISM) parameters will be calculated for particular cases

of the quadcopter’s motion. The goal is to see how each invariant changes depending on the state

vector. First of all, two similar maneuvers will be tested, and the profiles of the invariants and the

instantaneous screw axis (ISA) obtained for both cases will be contrasted.

4.5.1 Example A: Transfer of Quadcopter

This example considers the transfer of the quadcopter between two given configurations:

Example 1

Initial state: ξ0 = [0 0 2], η0 = [0.2 0.2 0.2];

Desired state: ξd = [0 0 0], ηd = [0 0 0];

with zero initial and final velocities.

Profiles of State vector

Utilizing the PD controller described in the previous section, the simulation results shown in Figure

4.2 can be obtained for the state vector. Figure 4.2 shows the coordinates of the center of mass of

the quadcopter (a), Euler angles (b), translational velocity (c), and rotational velocity (d).

Profiles of Invariants

The profiles of the invariants for this particular motion are presented in Figure 4.3. The units of

i1,3,5 are rad/sec since they are defining the rotational velocities. The units of i2,4,6 are m/sec as

they are defining the translational velocities. Since the ex unit vector has been chosen in the same

direction with the rotational velocity vector, the values of i1, i3, i5 become always positive.

Profiles of ISA

In Figure 4.4, the position of central point and the direction of ex unit vector are presented.
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Figure 4.2: State vector components

Example 2

Initial state: ξ0 = [0 0 0], η0 = [0.2 0.2 0.2];

Desired state: ξd = [2 3 10], ηd = [0 0 0];

with zero initial and final velocities.

Profiles of State vector

The profiles of the state vector components are given in Figure 4.5.

Profiles of Invariants

Figure 4.6 shows the profiles of the invariants for this example.
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Profiles of ISA

Figure 4.7 shows the trajectory of the central point o (a), the direction of ex (b), and their combi-

nation. By combining Figure 4.7a and 4.7b, we can create the state of the ISA, which is represented

in Figure 4.7c. To make this graph clearer, the number of ex has been reduced: there are some

points without ex. In Figure 4.7d, the ISA’s initial and final state are represented. Figure 4.7e

shows the ISA and the quadcopter frame at three consecutive moments.

One can see from the figures that the invariants have similar patterns in both examples. In addi-

tion, their profiles indicate that they might have a certain period in which they repeat the same (or

proportional) values. One reason for the similar profiles of the invariants might be the similarity in

the maneuvers (in both cases the initial and final velocities are zero). In the next example, a more

general motion of the quadcopter will be studied.
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Figure 4.3: Profiles of Invariants
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Figure 4.5: State vector
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Figure 4.6: Profiles of Invariants
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(a) Position of the central point (o) (b) Direction of ex

(c) State of the ISA (d) ISA at t=0 and t=10

(e) ISA at three consecutive time instants

Figure 4.7: Profiles of the ISA
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4.5.2 Example B: Trajectory Follow

Now, another example of the quadcopter’s motion will considered. In this example, the quadcopter

has to take the photos of the network of water tubes shown in Figure 4.8. The dash-dot (-.-.-) line

is the trajectory that the quadcopter should follow. In this case, the coordinates of the points are

as follows:

A(0 20 0), B(20 20 0), C (20 35 0), D(0 35 10), E(0 65 0).

The quadcopter, firstly, takes off the ground 10 meters, and then starts following the trajectory

taking photos of the tubes. After reaching the end of the tube, the quadcopter comes back at

the hight of 12 meters, and then, lands. The continues line in Figure 4.9e is the path that the

Figure 4.8: Network of tubes

quadcopter should follow, while the dashed line is the actual trajectory of the quadcopter. The

motion lasts about 43 seconds.

Figure 4.9 represents the position of the quadcopter (a), Euler angles (b), the coordinates of the

central point o (c), and the direction of ex (d).

In Figure 4.10 , one can see that Invariant 4 and Invariant 6 are unknown for a while at the

beginning of the motion. This is because of the special case where the angular velocity ω is equal

to zero.
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Figure 4.9: Simulation results
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Figure 4.10: Invariants
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CHAPTER 5
ISM INVARIANTS IN FIXED-WING UAV MOTION

5.1 Expressions of Invariants

The dynamic model of a fixed-wing unmanned aerial vehicle (UAV) has been represented in Section

2.2 where the aircraft was assumed to be in motion on a vertical plane. The following main

assumptions were made to obtain the particular equations of motion and the expressions for the

control parameters: a) bank angle is constant, b) sideslip angle is zero, and c) mass is constant.

The general form of the expressions for six invariants ik, (k = 1, ..., 6) are given as follows :

i1 = f1(ω),

i2 = f2(ω, v),

i3 = f3(ω, ω̇),

i4 = f4(ω, ω̇, v, v̇), (5.1)

i5 = f5(ω, ω̇, ω̈),

i6 = f6(ω, ω̇, ω̈, v, v̇, v̈),

where ω and v are the angular and translational velocity vectors respectively [2, 53].

If the bank angle is constant (assumption a), then the angular velocity vector can be derived in the

following form:

ω =
ṙ × r̈
‖ṙ‖2

, (5.2)

where r is the linear position vector of the aircraft [31].

The linear velocity can be written in terms of r as

v = ṙ. (5.3)
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Substitution of Eqs. 5.2 and 5.3 into the expressions for the invariants yields

i1 = ‖ω‖ =
‖ṙ × r̈‖
‖ṙ‖2

,

i2 =
v · ω
‖ω‖

= 0,

i3 =
‖ω × ω̇‖
‖ω‖2

=
‖(ṙ × r̈)× (ṙ × ...

r )‖
‖ṙ‖2‖ṙ × r̈‖

,

i4 =
(ṙ × r̈)× (ṙ × ...

r )

‖(ṙ × r̈)× (ṙ × ...
r )‖

(5.4)

·
[

(ṙ × ...
r )× ṙ + (ṙ × r̈)× r̈
‖ṙ × r̈‖

− 2‖ṙ‖4{(ṙ × r̈)× (ṙ × ...
r )} · {(ṙ × r̈)× ṙ}

‖ṙ × r̈‖4

]
,

i5 =
‖[(ṙ × r̈)× (ṙ × ...

r )]× [(ṙ × r̈)× (ṙ × ...
r + ṙ ×

(4)
r )]‖

‖ṙ‖4‖(ṙ × r̈)× (ṙ × ...
r )‖

,

i6 = ṗ · ex − ṗ2,

where

ṗ =
(ṙ × ...

r )× ṙ + (ṙ × r̈)× r̈
‖ṙ × r̈‖

− 2‖ṙ‖4{(ṙ × r̈)× (ṙ × ...
r )} · {(ṙ × r̈)× ṙ}

‖ṙ × r̈‖4
,

ex =
ṙ × r̈
‖ṙ × r̈‖

, ez =
[ṙ × r̈]× [(ṙ × r̈)× (ṙ × ...

r )]

‖ṙ × r̈‖ · ‖(ṙ × r̈)× (ṙ × ...
r )‖

,

p2 = −p · ez
ω2

, ω2 =
‖(ṙ × r̈)× (ṙ × ...

r )‖
‖ṙ × r̈‖2

.

From Eqs. 2.20, the derivatives of the position vector can be written in the following form for a

constant heading angle:

ṙ =

v · cosγcosψ0

v · cosγsinψ0

v · sinγ

 , (5.5)

r̈ =

v̇ · cosγcosψ0 − v · γ̇sinγcosψ0

v̇ · cosγsinψ0 − v · γ̇sinγsinψ0

v̇ · sinγ + v · γ̇cosγ

 =

(c1cosγ − c2cosφ0sinγ)cosψ0

(c1cosγ − c2cosφ0sinγ)sinψ0

c1sinγ + c2cosφ0cosγ − g0

 . (5.6)

Using the first integrals in Eqs. 2.21, these derivatives can be written in terms of γ (flight-path

angle) which allows us to get the invariants as the functions of the flight-path angle.
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5.2 Special Cases

In this section, some special cases of aircraft’s motion will be studies. The assumptions made above

are considered to be invalid for this section. The roll, pitch, and yaw angles are denoted by φ, θ,

and ψ respectively.

5.2.1 Rotational Motion

Roll maneuver: φ̇ 6= 0, θ̇ = 0, ψ̇ = 0

Consider the motion that the aircraft performs a roll maneuver. In this case, the first and the

second invariants can be written in terms of bank and sideslip angles. The other four invariants

would be zero:

i1 = ‖ω‖ = φ̇,

i2 = ‖ṙ‖ = v = η4(a+ b sin λ)−1exp

[
2A

d1
arctan

a tan λ̄+ b

d1

]
, (5.7)

i3 = i4 = i5 = i6 = 0.

Pitch maneuver: φ̇ = 0, θ̇ 6= 0, ψ̇ = 0

In this case, the aircraft performs a pitch maneuver, and the invariants will take the following form:

i1 = θ̇‖cos φ0 − sin φ0‖,

i2 = ẏ, (5.8)

i3 = i4 = i5 = i6 = 0,

where φ0 is a constant bank angle.

Yaw maneuver: φ̇ = 0, θ̇ = 0, ψ̇ 6= 0

For this case of aircraft’s motion, the rotational and the translational velocity vectors can be written

as [54]

ω = [0 0 (cosθ0cosφ0 + cosθ0sinφ0 − sinθ0)]T, v = [ẋ ẏ ż]T, (5.9)
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where θ0 is a constant pitch angle.

The invariants will be as follows

i1 = ψ̇‖cosθ0cosφ0 + cosθ0sinφ0 − sinθ0‖,

i2 = ż, (5.10)

i3 = i4 = i5 = i6 = 0.

5.2.2 Translational Motion

When the aircraft has only the translational velocity, the screw axis would be in the direction of

this velocity vector, and the only nonzero invariant would be the invariant 2. Depending on the

choice of the ex unit vector, it could be either positive or negative:

i1 = 0,

i2 = v = η4(a+ b sin λ)−1exp

[
2A

d1
arctan

a tan λ̄+ b

d1

]
, (5.11)

i3 = i4 = i5 = i6 = 0.

5.3 Simulation

5.3.1 Simulation Setup

Since the change in weight is considered negligible, c1 and c2 constants in Eq. (2.19) represent the

accelerations along the wind axis and the lift axis respectively. In most cases, the lift acceleration

is greater than the gravitational acceleration which means that (c2cosφ0)2 > g2
0. Without loss of

generality, the following values for the constants can be chosen to simulate the obtained results

[45]:

m = 40kg, g0 = 9.81m/sec2, S = 21.55, K = 0.073, Cd0 = 0.0223,

Ar = 5.1, α0L = 0.1, αT = 0.1, c1 = 1, c2 = 10, ψ0 = π/4, φ0 = 0.

5.3.2 Graphical Relationship Between Parameters

Due to the high nonlinearity in the equations for both invariants and flight-path angle, it is hard

to get an explicit relationship between these parameters. Thus, the author tried to establish an

implicit relationship through the graphs obtained in MATLAB. The profiles of the ISM invariants

with respect to flight-path angle and angle of attack are shown in Figure 5.1.

Figure 5.2 shows the diagrams for the angle of attack, velocity magnitude, and thrust.

The invariants were tested by changing the constant value of the bank angle. From the simulation
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results, the profiles of the invariants in Figure 5.3 show that the increase in the bank angle decreases

the rate of the invariants except for i2 and i6 (we cannot see a significant change in invariant 6).

The invariants have also been tested by changing the heading angle, and it turned out to be that

the invariants don’t depend on the heading angle if it is constant, i.e., the motion is on a vertical

plane.

5.3.3 Discussions of Simulation Results

Figure 5.1 represents the invariants with respect to the angle of attack and flight path angle con-

sidering the bank and heading angles constant. It can be seen that the first invariant (i1) is

proportional to the angle of attack, and increases parabolically as the flight-path angle increases.

The second invariant is zero for any values of γ and α under the assumptions considered. The third

invariant fluctuates in a small interval (nearly zero), and the interval becomes wider as γ increases.

The 4th invariant fluctuates in the interval [-1000,1000], and the interval shrinks as γ increases.

The fifth invariant changes between 0 and 1.5, and it is hard to evaluate the change of interval. The

invariant 6 changes dramatically with random fluctuations, and tends to infinity when ω goes to

zero. To provide a smooth transition through the special points where ω or its time derivative goes

to zero, the author is currently working on several methods. One of the methods that are being

considered is to set a critical interval for ω (angular velocity) and start changing the direction of

the ex unit vector towards the translational velocity when ω enters the critical interval. Finalizing

this study on these methods and applying them to the current system is one of the future works.

The relationship between Thrust, velocity magnitude, angle of attack, and flight path angles is

shown in Figure 5.2. In Figure 5.3, how the change in the bank angle affects the invariants and

other parameters is described. It can be seen that the increase in the bank angle decreases the

rate of invariants with respect to the flight path angle. In the result, the fluctuation ranges in the

diagrams of invariants 3-6 have decreased significantly.

5.4 Applications of the Study

The proposed approach to the control and guidance problems in UAVs can increase the efficiency

of autonomous UAVs and have potentially important contributions to the field of aerodynamics.

The results of the study can also be utilized in flight dynamics in addressing agricultural and

environmental problems where UAVs are used to collect imagery data and to monitor the fields

of interest. One example is the work done by the NASA-funded EPSCoR Project at the Kauai

Coffee field in 2018 where the plantation was monitored and high-resolution imagery data was

collected along with other applications [55]. These kinds of applications can help farmers increase

productivity and enhance agriculture. By integrating the obtained results to the GNC algorithm in

autonomous UAVs, they can be used to perform specific tasks such as searching in and monitoring
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flood zones in residential areas of Oahu and the other Hawaiian Islands. Moreover, the improved

GNC allows us to use the UAVs not only for monitoring the vegetation and coffee plantations in

the islands and developing the map of them but also for collecting other different types of data by

approaching the target more closely.

The relationships between the invariants and dynamic and control parameters obtained in this

study can be used to improve the performance of a dynamical system. For example, the explicit

and implicit relationships between the parameters allow us to evaluate the degrees of importance

of their impact in performing various maneuvers. It is expected that a control and guidance system

utilizing the ISM concept and the ISA may allow us to extend the areas of UAV applications to a

wide range of environmental and other societal problems where the autonomy of the UAV plays a

significant role.
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Figure 5.1: Invariants vs Angle of attack and Flight path angle
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(a) Thrust vs Angle of attack vs Velocity magnitude (b) Thrust vs Angle of attack vs Flight path angle

(c) Velocity vs Angle of attack vs Flight path angle

Figure 5.2: Control parameters and velocity
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CHAPTER 6
GUIDANCE VIA ISM INVARIANTS

The guidance methods have been developed by employing the general explicit guidance, quartic

polynomial, Lyapunov’s second method, the vision-based guidance, and other numerical, approxi-

mate, and analytical methods [5], [23]-[36]. The original and general concept of explicit guidance

was first obtained by George Cherry, an MIT staff member, and called E-guidance [56]. The

E-guidance is defined by the following equation

acom = c1(ξc, vc, ξd, vd,tc, td)p1(t) + c2(ξc, vc, ξd, vd,tc, td)p2(t)− g, (6.1)

where acom - commanded translational acceleration, ξc, vc, ξd, vd - position and velocity vectors

respectively (subscripts c and d indicate current and desired), g is gravitational acceleration, p1(t)

and p2(t) are arbitrary functions of time, c1 and c2 are dynamic coefficients [56], [26].

By adjusting this equation, Alan Klumpp, an Apollo engineer, obtained his quartic polynomial

lunar descend guidance formula, which was used for all Apollo missions [26]. One of the long-term

goals of this research is to modify the guidance concepts given by Cherry and Klumpp by utilizing

the ISM invariants. In the proposed method, the guidance commands will be computed using the

invariants’ current and desired states, and the expressions can be written in the following form:

acom = c1(ξc, vc, ξd, vd, tc, td)p1(ick, i
d
k) + c2(ξc, vc, ξd, vd, tc, td)p2(ick, i

d
k)− g,

εcom = c3(ξc, vc, ξd, vd, tc, td)p3(ick, i
d
k) + c4(ξc, vc, ξd, vd, tc, td)p4(ick, i

d
k)− ω × Iω −Gg, (6.2)

where ε is rotational acceleration command, ik - ISM invariants, k = 1 − 6, tc, td - current and

desired moment of time, ω - rotational velocity vector, I - inertia matrix, Gg is gravity gradient

vector [26]. For small and medium UAVs where the flight altitude ranges up to around 5000 m,

this gradient vector can be considered negligible since the change in the gravitational acceleration

is very small (look at Figure 6.1). p1−4(ic, id) are arbitrary functions, and they can be chosen based

on the dynamical model. The analysis of these functions is one of the future works.

The current (ic) and desired (id) states of the invariants can be found from the current and desired

velocity vectors and their derivatives

ick = fk(vc, v̇c, v̈c, ωc, ω̇c, ω̈c),

idk = fk(vd, v̇d, v̈d, ωd, ω̇d, ω̈d), (6.3)

where v and ω are linear and angular velocity vectors (subscripts c and d indicate current and

desired).

The proposed GNC algorithm with ISM invariants is described in Figure 6.2.
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Figure 6.2: Proposed GNC algorithm with ISM invariants
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CHAPTER 7
CONCLUSIONS

7.1 Conclusions of the Study

The expressions for the ISM invariants have been derived for the quadcopter and fixed-wing UAV

motion. The invariants have been determined in terms of control parameters. An implicit rela-

tionship between the invariants and the flight dynamic parameters was established. The graphical

representations of the implicit relationship were obtained and analyzed. The transfer methodology

from the invariants to the traditional parameters has been developed.

The results show that the invariants are very sensitive to even small changes in motion, which

can be useful in decreasing the error in control, guidance, and navigation problems. In addition,

the invariants are independent of the heading angle which means that for any constant heading

angle the invariants are found to be the same. It is also shown that the increase in the bank angle

decreases the rate of the invariants with respect to the flight-path angle.

The obtained results can be used to evaluate the parameters in control and guidance problems,

develop invariant-based control and guidance systems.

7.2 Future works

So far, the ISM invariants have been analyzed along with the kinematic and dynamic parameters,

UAV dynamic model, and control parameters. The future work includes the application of the

expressions obtained for the invariants in terms of dynamic parameters to guidance equations.

Second, the utilization of the invariant-based expressions for the control and guidance equations in

navigation problems can be useful to reduce systematic error. Third, analyze the invariants in the

optimal control problem, and see if they are useful to improve the performance index.
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APPENDIX A
EXPRESSION FOR V3

v3 =
[ω̇ × h2 + ω × h3] · [‖ω‖2 · (h4 + ω × v̇)− 2(ω · ω̇) · h1]

‖ω‖3 · ‖h2‖2

+
ω × h2 · [‖ω‖2 · (ω̈ × v + 2(ω̇ × v̇) + ω × v̈)− 2(‖ω‖2 + ω · ω̈)h1]

‖ω‖3 · ‖h2‖2

−
[
3(ω · ω̇)
‖ω‖

+
2‖ω‖h2 · h3

‖h2‖2

]
×
ω × h2 · [‖ω‖2 · (h4 − ω × v̇)− 2(ω · ω̇)h1]

‖ω‖4‖h2‖2
+
h4 · ω
‖ω‖3

(A.1)

where

h1 = ω × v, h2 = ω × ω̇, h3 = ω × ω̈, h4 = ω̇ × v.
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APPENDIX B
EXPRESSIONS FOR I4 AND I6

i4 =[ (‖L‖2(Pzτy/Iy − Pyτz/Iz + LyFz/Iy − LzFy/Iz)− 2q1(LyPz/Iy − PyLz/Iz))

× (Lyτz − Lzτy)/IyIz
+ (‖L‖2(Pxτz/Iz − Pzτx/Ix + LzFx/Iz − LxFz/Ix)− 2q1(LzPx/Iz − PzLx/Ix))

× (Lzτx − Lxτz)/IxIz
+ (‖L‖2(Pyτx/Ix − Pxτy/Iy + LxFy/Ix − LyFx/Iy)− 2q1(LxPy/Ix − PxLy/Ix))

× (Lxτy − Lyτx)/IxIy]

/mq2‖L‖4

(B.1)

i6 =[ Lx(Pzτy/IxIy − Pyτz/IxIz) + Ly(Pxτz/IyIz − Pzτx/IyIx)

+ Lz(Pyτx/IxIz − Pxτy/IyIz) ]/m‖L‖2

− d

dt
[ {(‖L‖2(Pzτy/Iy − Pyτz/Iz + LyFz/Iy − LzFy/Iz)− 2q1(LyPz/Iy − PyLz/Iz))

× (Ly(Lxτy − Lyτx)/IxI
2
y − Lz(Lzτx − Lxτz)/IxI2

z )

+ (‖L‖2(Pxτz/Iz − Pzτx/Ix + LzFx/Iz − LxFz/Ix)− 2q1(LzPx/Iz − PzLx/Ix))

× (Lz(Lyτz − Lzτy)/IyI2
z − Lx(Lxτy − Lyτx)/IyI

2
x)

+ (‖L‖2(Pyτx/Ix − Pxτy/Iy + LxFy/Ix − LyFx/Iy)− 2q1(LxPy/Ix − PxLy/Ix))

× (Lx(Lzτx − Lxτz)/IzI2
x − Ly(Lyτz − Lzτy)/IzI2

y )}

/mq2
2‖L‖3 ]

(B.2)

where

q1 = Lxτx/I
2
x + Lyτy/I

2
y + Lzτz/I

2
z ,

q2 =
√

(Lyτz − Lzτy)2/(IyIz)2 + (Lzτx − Lxτz)2/(IxIz)2 + (Lxτy − Lyτx)2/(IxIy)2,

Lx,y,z, Px,y,z, τx,y,z, Fx,y,z - components of vectors L, P, τ and F respectively.
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APPENDIX C
PUBLICATIONS AND SEMINARS

C.1 Journal papers

Ref Journal Status

[53] Aerospace Science and Technology Under Review

N/A Journal of Dynamic Systems, Measurement, and Control Ready for Submission

Table C.1: List of Journal Papers

C.2 Seminars

[ME 691 Seminar] Unmanned Aerial Systems Guidance and Control Utilizing Instanta-

neous Screw Motion Invariants, 11/03/2021.
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