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ABSTRACT 

The tropical cyclone is one of the most destructive natural disasters in Hawai’i. Tropical cyclones 

have caused a great number of damages on human lives and economies. The return periods of 

tropical cyclones in the vicinity of Hawai’i can give the important climate information to the 

government, insurance companies, engineers, and publics. This thesis developed a statistical model 

to estimate the return period of tropical cyclones in the vicinity. It contains the Poisson regression, 

the Gaussian-kernel density estimate, the extreme value distribution, and statistical resampling 

methods. Comparing the results in this model with the previous research based on the dataset from 

1970 to 1995, high intensity of tropical cyclones’ return periods becomes much shorter indicating 

a higher risk from tropical cyclone induced winds in Hawai’i. 
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CHAPTER 1. INTRODUCTION 

Tropical cyclones (TCs) can cause major disasters for human lives and economies. For the 

Hawaiian Islands, a few TCs have struck or were very close to the islands and some of them 

resulted in great damage. In the past, 39 TCs were found in the vicinity of Hawai’i from 1966 to 

2019 (Fig. 1a). Here we only consider TCs reaching at least tropical storm intensity (≥34 knots or 

named storms) in their lifespans. The definition of the vicinity of Hawai’i is the circular area with 

a radius of 250 n mi from Honolulu (Fig. 1b). TC season of Hawai’i mainly runs from July to 

October, with 95% of the total TCs occurring in these four months (Fig. 1c).   

 

(a) 

 
 

(b) (c) 

Fig.1 (a) Time series of TCs passing through the vicinity of Hawai’i. The blue rectangular represents the real 

number of TCs in each year from 1966 to 2019. The red line shows average the number of TC per year. (b) A 

cycle indicates the vicinity of Hawai’i. The red star denotes the location of Honolulu. (c) The seasonality of 

TCs in the vicinity of Hawai’i from June to November. 

Hurricane Iniki (September, 6-13 September 1992) is the most destructive hurricane directly 

striking Hawai’i which caused over a hundred casualties and the total economic damages about 

$3.19 billion in 1992. The damage brought by Iniki was widely spread around Kauai and western 

Oahu. Over 50 percent of the electric and telephone lines on Kauai were destroyed (National 
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Weather Service, 1993). Hurricane Lane (August 15-29 August 2018) is another intense storm that 

was very close to Oahu. The maximum wind speeds reached 140 knots and reduced to 105 knots 

when the storm passed through the cycle. It is the wettest TC in record in Hawai’i, simultaneously 

leading to flooding and landslides with heavy rainfall on the Island of Hawai’i (Nugent et. al, 2020). 

Return period is one information for TC risks which is important for a variety of fields. To 

reduce losses by TC striking, engineers and managers involved in the coastal building programs 

need to know the TC risk information. Insurance companies can adjust premiums based on TC risk 

information. Governments can also make the natural disaster policy using this information.  

In general, return period is defined as  

𝑅(𝑥) =
1

𝜔(1 − 𝐹(𝑥))
, (1.1) 

where 𝜔 means the average sampling frequency, and F(x) is the cumulative distribution function 

(CDF) evaluated at x. R(x) is explained as the average waiting time between occurrences of events 

that reach the specific magnitude x (e.g., 80 knots) or over this value (Wilks, 2011). For TCs, 

return period of a specific wind speed TC is one of the TC risk information which is defined as the 

average waiting time of this fixed intensity TC that would recur once in how many years (Chu and 

Wang, 2008). 

 Previous research has developed many methods on estimating the return periods of TCs. 

The Gumbel distribution and the Weibull distribution were frequently applied in the early estimate 

methods (Rupp and Lander, 1996, Jagger et al., 2001). Jagger and Elsner (2006) used the 

Generalized Pareto Distribution (GPD) to estimate the return period of the maximum wind speeds 

associated with TCs near the U. S. coasts conditional on the North Atlantic Oscillation, El Niño, 

Atlantic Multidecadal Oscillation, and global temperature separately.  Based on synthetic storm 

events, an empirical approach was developed by Emanuel and Jagger (2010) to estimate hurricanes 

return periods. For Hawai’i, Chu and 11Wang (1998) estimated the return periods of relative 

intensity and maximum wind speeds associated with TCs using the lognormal and Gumbel 

distributions and the Monte Carlo simulation.  

 The motivation of this these is to update the return periods of TCs in the vicinity of Hawai’i 

(Chu and Wang, 1998) using a modern statistical model advocated by Parisi and Lund (2008). In 

this research, the return period of Hawaii’s TCs is estimated using the historical data introduced 
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in Chapter 2 and the statistical model described in Chapter 3. The results and analysis procedure 

are detailed in Chapter 4. Finally, the summary is given in Chapter 5. 

CHAPTER 2. DATA  

2.1 Tropical cyclone data 

The revised Northeast and North Central Pacific hurricane database (HURDAT2) from the 

National Hurricane Center (NHC) and the Central Pacific Hurricane Center (CPHC) are used in 

the study. The data cover an area from the west coast of North and Central America westward to 

180 °W over the North Pacific Ocean, including Hawai’i. Considering the accuracy of the data, 

only the dataset from satellite observation from 1966 is used.   

Table 1 lists the TCs passing through the defined circle (Fig. 1b) during Hawai’i TC season 

from 1966 to 2019. Historically, seven TCs, Fico (9 July to 28 July 1978), Iniki (6 September to 

13 September 1992), Emilia (16 July to 25 July 1994), Ana (13 October to 26 October 2014), 

Ignacio (23 August to 8 September 2015), Lester (24 August to 8 September 2016), and Lane (15 

August to 29 August 2018), reached the hurricane intensity (wind speeds over 64 knots and denotes 

in the red color).  Note that the magnitude of these wind speeds is the maximum value detected in 

the defined circle, and the maximum wind speeds of each TC could be larger outside the circle but 

is reduced when passing through the defined area. 

Table 1. List of Hawai’i Tropical Cyclones 

name lifetime Max Wind speeds (knots) 

Maggie 8/20-8/27/1970 45 

Diana 8/11-8/20/1972 60 

Fernanda 8/20-9/1/1972 45 

Gwen 8/5-8/18/1976 25 

Fico 7/9-7/28/1978 100 

Kay 9/16-9/30/1980 30 

Jova 9/14-9/21/1981 35 

Daniel 7/7-7/22/1982 25 



4 

 

Table 1. (continued) 

Gilma 7/26-8/2/1982 30 

Gil 7/23-8/5/1983 40 

Raymond 10/8-10/20/1983 30 

Gilma 7/28-8/3/1988 20 

Dalilia 7/11-7/21/1989 55 

Fefa 7/29-8/8/1991 25 

Georgette 7/14-7/26/1992 30 

Orlene 9/2-9/14/1992 25 

Iniki 9/6-9/13/1992 125 

Eugene 7/15-7/25/1993 30 

Emilia 7/16-7/25/1994 85 

No name 8/9-8/14/1994 30 

Daniel 7/23-8/5/2000 60 

Jova 9/12-9/25/2005 20 

Kenneth 9/14-9/30/2005 25 

Flossie 8/8-8/16/2007 50 

Felicia 8/3-8/11/2009 30 

Flossie 7/25-7/30/2013 35 

Iselle 7/30-8/10/2014 60 

Ana 10/13-10/26/2014 75 

Ela 7/7-7/12/2015 20 

Guillermo 7/27-8/8/2015 35 

Ignacio 8/23-9/8/2015 65 

Jimena 8/25-9/10/2015 30 

Celia 7/6-7/21/2016 40 
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Table 1. (continued) 

Darby 7/11-7/26/2016 40 

Howard 7/31-8/7/2016 25 

Lester 8/24-9/8/2016 70 

Lane 8/15-8/29/2018 105 

Olivia 9/1-9/14/2018 45 

Flossie 7/28-8/7/2019 30 

 

2.2 Climate indices 

There are six climate indices running from 1966 to 2019 from National Oceanic and 

Atmospheric Administration (NOAA) in this study:  

(1) The Pacific Meridional Model (PMM) describes the meridional variability in the tropical-

subtropical eastern Pacific Ocean, defined by the maximum covariance analysis to the 

sea surface temperature (SST) and the zonal and meridional components of the 10m wind 

field over the time period 1950-2005 using the NCEP/NCAR Reanalysis datasets. 

(2) The North Atlantic Oscillation (NAO) is a teleconnection pattern in the North Atlantic, 

Europe, and North America.  It reflects fluctuations in the surface pressure between the 

Icelandic low and the Azore high, and the NAO index is usually defined through changes 

in atmospheric pressures between the center of these two weather systems.  

(3) The Southern Oscillation Index (SOI) represents the difference in average air pressure 

between Tahiti and Darwin. The term El Niño Southern Oscillation (ENSO) describes 

the ocean-atmosphere interaction and the relationship between oceanic El Niño and the 

atmospheric Southern Oscillation phenomenon.  

(4) The Pacific Decadal Oscillation (PDO) is the leading principal component of monthly 

SST anomalies in the North Pacific (20 °N to 70 °N). The PDO signals wax and wane 

approximately every 20 to 30 years from one polarity to another. 

(5) The Quasi-Biennial Oscillation (QBO) index is obtained from the zonal average of the 

30hPa zonal wind at the equator. 
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(6) The Atlantic Multidecadal Oscillation (AMO) is defined from the SST patterns in the 

North Atlantic after removing linear trend in the data.  The linear trend is intended to 

represent the externally forced, greenhouse gas induced global warming trend. 

For each monthly climate indices, we use the concurrent period with Hawai’i TC season, 

which means the average value of July to October climate indices.  

2.3 Reanalysis data 

Monthly mean horizontal wind, SST, and relative humidity (RH) from the National Centers 

for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) 

reanalysis 1 dataset are used in this study. The resolution of grid is 2.5° longitude × 2.5° latitude. 

The preprocessing method of the NCEP/NCAR dataset is the same as other climate indices. 

CHAPTER 3.  STATISITCAL METHODs 

In this study, a statistical model developed by Parisi and Lund (2008) is applied and 

modified to fit for the Hawai’i TC records. It contains three parts: 

(1) A Poisson regression method is used to estimate the number of TCs in a given year. 

(2) A Kernel density estimate is used to model the arrival dates of TCs in that year. 

(3) The extreme value distribution is used to model the maximum wind speeds of each 

TC. 

3.1 Poisson process 

The Poisson distribution is a common statistical method to describe the occurrences of 

discrete events and the counts are non-negative integer values. The Poisson distribution could be 

understood as a limiting case of the binomial distribution with trials approaching infinity and the 

probability of the occurrence of the event of success on any one trial approaches zero (i.e., rare 

event).  

The Poisson process is a proper method to describe the TC frequency.  TCs’ characters are 

satisfied to be a Poisson process because: 1) TC occurrences are discrete events. 2) TC occurrences 

are independent with each other. 3) TC events are rare enough that the probability of more than 

one TCs striking simultaneously in a limited region is very small. The probability density function 

(PDF) of y TCs occurring in one year is: 
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𝑃(𝑦) =
𝜆𝑦exp⁡(−𝜆)

𝑦!
,⁡⁡⁡𝑦 = 1, 2, 3, … , (3.1) 

where 𝜆 is the Poisson parameter or the Poisson mean value, representing the average TC 

occurrence per year, and y is the TC counts in the specific year. 

3.2 Poisson regression 

3.2.1 Poisson regression with climate indices as covariate factors 

TC occurrence is inhomogeneous in time. The time-homogeneous Poisson process, which 

means the average TC occurrence rate is fixed, as shown in Eq. (3.1), is suboptimal. An 

improvement can be made by varying the annual Poisson mean value, 𝜆.  A Poisson regression 

method is involved to model the annual Poisson parameter. Specifically, the Poisson mean rate 

varies with time and the concurrent climate indices (average value of each index during the period 

of JASO) are considered as the covariates.  

We first calculate the Pearson correlation coefficient between each climate index and TC 

frequency to find proper regression parameters. Figures 2a, 2b, 2c show that there is no obvious 

correlation between TC frequency and QBO, NAO, and AMO. The PDO and PMM are positively 

correlated with TC frequency (Figs. 2d, 2e), while the SOI is negatively correlated with TC 

frequency (Fig. 2f). To test whether these correlation coefficients are significant, the Z-statistic is 

used. The Z-statistic is built by Fisher Z transformation which is an approach to test the 

significance of correlation coefficient. A Z-statistic follows the Gaussian distribution with mean 

value 𝜇 = 0 and variance 𝜎 = (𝑡 − 3)
1

2, where t is the number of sample size and the Z-statistic is 

𝑍 =
1

2
ln (

1 + 𝑅

1 − 𝑅
).⁡⁡⁡⁡⁡⁡ (3.2) 

where R is the Pearson correlation coefficient. 

 For t=54 (years), the critical value of the 95% confidence level is ±0.27. Only the SOI is 

significantly correlated with the TC occurrence. In El Niño years, the SOI is large and negative 

and there is a relatively large probability for TCs striking Hawai’i (Chu and Wang, 1997). In 

contrast, when SOI is large and positive, referring to as the La Niña year, the probability of TC 

striking Hawai’i is relatively low. 

Taking the average values of JASO SOI as the regression parameter, the Poisson mean value 

is estimated by the Poisson regression method, as 
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𝜆𝑖 = 𝑒𝑥𝑝𝛽0+𝑆𝑂𝐼𝑖𝛽1 .⁡⁡⁡⁡⁡⁡(3.3) 

All data points are fitted to a Poisson regression. Referring to the t-ratio and the p-value shown in 

Table 2, 𝛽0⁡and⁡𝛽1  are statistically significant at the 95% confidence level in this Poisson 

regression fitting. Thus, the SOI is first considered as a significant regression parameter in this 

model. The other five climate indices are not taken as regression parameters. 

 To train the regression model, a leave one out cross validation (LOOCV) is used to test 

the regression result. Cross validation simulates prediction by repeating the entire fitting 

procedure on data subsets, and then examining the predictions made for the data portions left out 

of each subset. The LOOCV is to leave only one data out during the fitting procedure and to 

make the sample size of each subset as n-1. By repeating the procedure, the results are n different 

prediction equations. The n predicted Poisson parameters are estimated separately by these n 

equations. Figure 3 shows the time series of the observed TC counts and the series of estimated 

Poisson parameters using the LOOCV, suggesting that the Poisson regression model does not 

catch the annual TC frequency accurately. The Pearson correlation coefficient between the 

observed and predicted TC counts is only 0.28. The Poisson regression (3.3) with only the SOI 

as regression parameter is not good enough to represent Hawai’i TCs on interannual time scales. 

Table 2. The fitting result of Poisson regression using SOI as the parameter 
 

Estimate SE t-statistic p-value 

𝛽0 -0.42 0.18 -2.38 0.02 

𝛽1 0.13 0.06 2.16 0.03 

3.2.2 Poisson regression with SOI and circulation factors as covariate factors 

To improve the regression model, other regression parameters should be introduced. Adding 

circulation factors to the regression parameters with SOI might be a scheme to improve the model 

prediction skill. The possible factors are 850hPa relative vorticity (𝜉), 700hPa relative humidity 

(RH), vertical wind shear (VWS), and sea surface temperature (SST) (Chu, 2002). The 850hPa 

relative vorticity is computed as 

𝜉 =
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
+
𝑢

𝑎
𝑡𝑔(𝜑).⁡⁡⁡⁡⁡(3.4) 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig. 2 The scatter plot of each climate indices an TC occurrence.  

(a) QBO, (b) AMO, (c) NAO, (d) PDO, (e) PMM, (f) SOI. 
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Fig. 3 The time series of historical TC numbers (blue rectangle) and hindcasts (red line). 

To find out the critical region of each factor, we will compute the Pearson correlation coefficients 

between TC counts and each of the circulation factors during JASO over the central North Pacific. 

Over the southeast of the Hawaiian Islands, an area shows large positive correlation coefficients 

(0.59) between TC counts and 850hPa relative vorticities (Fig. 4). Considering the resolution of 

the dataset and the significance of the correlation coefficients, the average value of the relative 

vorticity in the red box is taken to form the critical region (Fig. 4a). The scatter plot in Figure 4b 

independently confirms the strong and positive relationship between 850hPa relative vorticity and 

TC counts. When low-level vorticity is large and positive (i.e., cyclonic vorticity), the circulation 

is more likely to strengthen the spin-up process, and therefore favor TC development. On the 

opposite, the TC counts would be lower when the low-level vorticity is largely negative. 

There are two steps to do before adding 850hPa vorticity into the regression model. The 

first one is to clarify whether 𝜉 is independent with the SOI. The Pearson correlation coefficient 

between 𝜉 and SOI is about zero. The scatter plot of these two factors also shows that they are 

independent with each other (Fig. 5b). The second one is to ensure the computed relative vorticity 

is reliable. A climatology map of 850hPa relative vorticity and the wind field during Hawai’i 

hurricane season is drawn as a reference (Fig. 5a). In the midlatitude, the large anticyclone 
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circulation is shown, and the subtropical high is spread over the eastern and central North Pacific 

so the computed values are deemed reliable. 

The 850 hPa relative vorticity is introduced in this regression model based on the above 

tests. 

 
 

(a) (b) 

Fig. 4 (a) The correlation map of low-level vorticity and TC numbers. The blue line shows the boundary of 

significant correlation. Red box shows the domain area. (b) The scatter plot of TC numbers and low-level 

vorticity. 

 
 

(a) (b) 

Fig. 5 (a) The climatology map of low-level vorticity. The blue shows the negative value indicating the 

cyclone circulation and the red area is on the opposite. (b) The scatter plot of SOI and low-level vorticity. 

The second circulation factor is the vertical wind shear (VWS) calculated as 

𝑉𝑊𝑆 = √(𝑢200 − 𝑢850)
2 + (𝑣200 − 𝑣850)

2, (3.5) 
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where, u and v are the standard horizontal wind speed components and the subscripts in (3.5) 

represent the pressure levels. In this correlation map (Fig.6a), to the south of Hawai’i, largely 

negative correlation is shown, and to the north of Hawai’i, there is an area showing largely positive 

correlation. Large VWS tends to destroy the development of TCs because of the ventilation effect. 

The negative correlated area is preferred to be the critical region shown in the red box. The average 

value in this area is negatively correlated (-0.46) with TC counts (Fig. 6b).  

 

 

(a) (b) 

Fig. 6 The same as Fig. 4 but for vertical wind shear. 

To avoid overfitting, the independence of VWS and other regression parameters is tested. 

VWS is positively correlated with SOI (𝑅 = 0.33) and negatively correlated with 850hPa relative 

vorticity (𝑅 = −0.54) shown in Fig. 7. The VWS is this not introduced because of its dependency 

with the SOI and 850hPa relative vorticity.  

The relative humidity (RH) is in a similar condition as the VWS. A large and positive 

correlation coefficient is found over Hawai’i, and the red box is the critical region (Fig. 8a). The 

scatter plot also confirms this relationship (Fig. 8b). However, RH is not independent from the 

SOI and 850hPa vorticity (Fig. 9). For this reason, the RH is not added into the existing two-

parameter regression model. 

The sea surface temperature (SST) does not show the large correlation with TC counts (Fig. 

10) and the SST is not considered as the regression parameter. 

3.2.3 Regression result 
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Only the 850hPa relative vorticity (𝜉) is added to the initial Poisson regression model, and 

the Poisson regression parameters include both the SOI and 𝜉.  The new regression function is 

𝜆𝑖 = 𝑒𝑥𝑝𝛽0+𝛽1𝑆𝑂𝐼𝑖+𝛽2𝜉𝑖 ⁡, (3.6) 

Using 54-year data to fit this regression, the result shows that both SOI and 𝜉 are statistically 

significant (Table 3). 

 
(a) 

 
(b) 

Fig. 7 The correlation of vertical wind shear with (a) SOI, (b) low-level vorticity. 
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(a) (b) 

Fig. 8 The same as Fig. 4 but for relative humidity. 

 
(a) 

 
(b) 

Fig. 9 The same as Fig. 7 but for relative humidity. 
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Fig. 10 The same as Fig. 4a but for SST. 

The LOOCV is used to train this model. The training result suggests that the new regression 

model is improved by adding 𝜉 into the Poisson regression model with only SOI (Fig. 11). Most 

peaks are captured by this regression model. The estimated Poisson mean value is highly correlated 

with the observed TC numbers and the Pearson correlation coefficient is raised from 0.28 (Fig. 3) 

to 0.66. 

 

Fig. 11 The time series of historical TC numbers (blue rectangle) and hindcasts (red line). 
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Table 3. The fitting result of Poisson regression using SOI and low-level vorticity as the parameters 
 

Estimate SE t-statistic p-value 

𝛽0 -0.63 0.20 -3.17 0.0015 

𝛽1 -0.42 0.20 -2.17 0.03 

𝛽2 0.45 0.10 4.47 7.85e-06 

3.3 Model regression parameters 

After we have selected the parameters, it is necessary to know the theoretical distribution of 

these parameters so they can be properly represented in the statistical model (to be explained in 

Chapter 3.6).  For the Gaussian distribution, its PDF is 

𝑓(𝑥) =
1

√2𝜋𝜎
exp (−

(𝑥 − 𝜇)2

2𝜎2
) , (3.7) 

where 𝜇 is the mean value of each series and 𝜎 is the standard deviation. Here for the SOI, 𝜇 =

0.06, and 𝜎 = 0.79, and for vorticity, 𝜇 = 0.09 and 𝜎 = 1.33. The goodness of fit is shown 

through a comparison of the data histogram and the theoretical Gaussian distribution (Fig. 12a) 

and the quantile-quantile diagram (Fig. 12b). Both the SOI and low-level vorticity follow the 

Gaussian PDF well. The two Q-Q plots show that most SOI and low-level vorticity points align 

along the perfect 45°  lines. For low-level vorticity, when the value is extremely positive or 

negative, the theoretical Gaussian distribution is slightly less optimal. 

3.4 Kernel density estimate 

The kernel density estimate is a nonparametric estimator. It can be applied to the empirical 

frequency distribution of a data set. The advantage of a kernel density estimate is to avoid the 

subjective error of the histogram center choices. A kernel density smoothing is achieved by 

stacking kernel shapes. Given a value x, the probability of x is the summation of heights of all the 

kernel functions at this point. The PDF of kernel density is 

𝑓(𝑥) =
1

𝑛ℎ
∑ 𝐾(

𝑥 − 𝑥𝑖
ℎ

)
𝑛

𝑖=1
, 𝑖 = 1, 2, 3,… , 𝑛.⁡⁡⁡⁡⁡⁡⁡⁡(3.8) 

where n is the sample size and h is the smoothing parameter, expressed as  
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ℎ =
min⁡{0.9𝑠,

2
3 𝐼𝑄𝑅}

𝑛
1
5

.⁡⁡⁡⁡⁡⁡⁡⁡(3.9) 

where s is sample variance and IQR is the Interquartile Range, and it equals to the difference 

between the upper and lower quartiles. When h increase, the PDF becomes more smoothed.  A 

Gaussian kernel function K is  

𝐾(𝑡) = (2𝜋)−
1
2 𝑒𝑥𝑝 [−

𝑡2

2
] ,  −∞ < 𝑡 <∞⁡⁡⁡⁡⁡⁡⁡⁡⁡(3.10) 

where, 𝑡 =
𝑥0−𝑥𝑖

ℎ
 when plug it into the kernel density PDF. 𝑥𝑖 is the center of each kernel.  

  

(a) (b) 

 
 

(c) (d) 

Fig. 12 The goodness of fit for Gaussian distribution. (a) and (c) The Probability density function (red line) 

plot with the observed data (blue rectangle) and (a) for SOI, (c) for low-level relative vorticity. (b) and (d) 

Quantile-Quantile (Q-Q) plot, x axis indicates the theoretical value and y axis represents the observed value. 

(b) is for SOI and (d) is for low-level vorticity.  
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A Poisson regression can model the number of TCs striking in a particular year conditional 

on climate factors. To compliment the Poisson regression model, a kernel density estimate is used 

to model these TCs striking dates in that year. The striking date is defined as the date of the TCs 

when the highest wind speed occurs in the defined circle in Fig. 1b. The PDF of kernel density 

estimate using TC data is 

𝑓(𝑑) =
1

39
ℎ
∑ 𝐾 (

𝑑 − 𝑑𝑖
ℎ )39

𝑖=1

,   0 ≤ 𝑑 < 365, (3.11) 

where the smoothing parameter h=13.72. There are 39 TCs in the target region so n=39 (Table 1).  

The kernel density estimate of TC occurrences shows the peak value in around late July and early 

August, which agrees well with the observed TC peak season in July and August (Fig. 13). 

3.5 Extreme value distributions 

The next part of this study is to model the striking intensity of TCs. Here, the intensity 

refers to the maximum wind speed in the defined circle (Fig.1b).  The extreme value 

distributions (EVDs) can be fitted for the TC intensities because the extreme wind intensities are 

positively skewed and nonnegative. There are two types of EVDs involved: the generalized 

Pareto distribution and the generalized extreme value distribution. 

 

Fig. 13 The PDF of the kernel density estimate (black curve) plot with the observed TC numbers (blue 

rectangle). 

3.5.1 Generalized Pareto distribution (GPD)  
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In the original model developed by Parisi and Lund (2008), the generalized Pareto 

distribution (GPD) is fitted to estimate the U.S. landfalling hurricane intensities. The GPD is an 

extreme value analysis using the peaks-over-threshold (POT) sampling. The PDF of the GPD is 

𝑓(𝑥) =
1

𝜎 ∗
[1 +

𝜅(𝑥 − 𝜇)

𝜎∗
]

−
1
𝜅
−1

, (3.12) 

and its CDF is  

𝐹(𝑥) = 1 − [1 +
𝜅(𝑥 − 𝜇)

𝜎∗
]

−
1
𝜅

.⁡⁡⁡⁡⁡⁡⁡⁡(3.13) 

Here 𝜇 is the threshold for the POT sampling, which should be a relatively high value. 𝜅  the shape 

parameter, and 𝜎∗  the scale parameter. These parameters could be estimated using the method of 

maximum likelihood. The threshold in this case is the minimum of the maximum TC wind speed 

in the defined circle which is 20 knots.  

The fitted result is shown in Fig. 14. The estimated three parameters are 𝜇 = 20, 𝑘 =

−0.47, 𝑎𝑛𝑑⁡𝜎 = 63.90. Both PDF and Quantile-Quantile (Q-Q) plot suggest that the GPD did not 

fit well for Hawai’i’s TC intensities. Only low intensity and super high intensity TCs could be 

estimated well, and the rest of TCs’ intensities are overestimated. The GPD model is not a good 

extreme value distribution method for Hawai’i TCs.  

  

(a) (d) 

Fig. 14 The goodness of fit for the GPD. (a) The probability density function (red line) plot with the observed 

maximum wind speeds (blue rectangle). (b) The Quantile-Quantile (Q-Q) plot. The x axis indicates the 

theoretical value and y axis represents the corresponding observed value.  
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3.5.2 Generalized extreme value (GEV) distribution 

Because the GPD is not fitted well for Hawai’i TC data, another extreme value distribution 

method should be explored. The generalized extreme value distribution (GEV) is applied to 

estimate the TC intensities. The GEV is the distribution with the characteristic of convergence at 

the largest of m values. If daily data in a year is used, then m=365 so that the highest value in a 

year is used. The PDF of the GEV is  

𝑓(𝑥) =
1

𝛽
[1 +

𝜅(𝑥 − 𝜇)

𝜎∗
]

1−
1
𝜅

exp {−[1 +
𝜅(𝑥 − 𝜇)

𝜎∗
]

−
1
𝜅

} , 1 +
𝜅(𝑥 − 𝜇)

𝜎∗
> 0.⁡⁡⁡⁡⁡(3.14) 

The CDF of the GEV is  

𝐹(𝑥) = exp {−[1 +
𝜅(𝑥 − 𝜇)

𝜎∗
]

−
1
𝜅

} , (3.15) 

Here 𝜇 is the location parameter, and the other two parameters have the same meaning as the GPD 

parameters. 

The fitting result is shown in Fig. 15. The three parameters are 𝜇 = 31.23, 𝜅 =

0.47, 𝑎𝑛𝑑⁡𝜎 = 11.51. Both PDF and Q-Q plot show that the GEV fitting is better than the GPD. 

Most estimate results are close to the observed data except the largest one. The GEV is taken to 

estimate the TC intensity in this study. 

  

(a) (d) 

Fig. 15.  Same as Fig. 14 but for the GEV. 
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3.6 A Statistical model 

Utilizing the aforementioned methods, a statistical model is developed 

. The return period of the TC with a striking wind speed of w knots in this model is the 

average waiting time from 1 January of a given year until a TC appears with a speed of w knots or 

above this magnitude. Each run of simulation generates a draw of a ‘level w’ return period. By 

repeating a large number of simulations, the average value of these simulation results is calculated 

as the ‘level w’ return period. The flow chart of this statistical model is shown in Fig. 16.  

To run this model, we first set the number of year t=1 and generate the Poisson regression 

parameters 𝑆𝑂𝐼𝑡 and 𝜉𝑡 via function (3.7). Substitute these two parameters into (3.6) and simulate 

the number of TCs striking Hawai’i n for the given year t. The arrival date 𝑑𝑖 (i=1, 2, …, n) of 

each TC in this year is simulated through (3.11) independently and the maximum wind speeds 𝑤𝑖 

(i=1, 2, …, n) of each TC in this year is modeled by (3.14) separately. If these wind speeds 𝑤𝑖 do 

not reach the magnitude of ‘level w’, go on to the next year (t=t+1) and continue the loop. Until 

the first TC maximum wind speeds reach the ‘level w’ (𝑤𝑖 ≥ 𝑤), the single simulated ‘level w’ 

return period would be generated which is  

𝑅𝑤 = (𝑡 − 1)𝑦𝑒𝑎𝑟𝑠 + (𝑑𝑖)𝑑𝑎𝑦𝑠.⁡⁡⁡⁡⁡⁡⁡(3.16) 

 Repeat this sequence over many independent simulations (10,000 times), the expected 

‘level w’ return period would be calculated through averaging these separate results. 

CHAPTER 4. RESULT AND UNCERTAINTY ANALYSIS 

4.1 Simulation results 

The estimated return periods of various maximum wind speeds of TCs are listed in Table 4. 

Additionally, the previous estimated results by Chu and Wang in 1998 using data up to 1995 are 

also listed for comparison in the third column.  

For small intensity storms, the new results are slightly different from the previous research. 

For example, the estimated return periods of ‘level 64 knots’ TCs is raised from 6.6 years to 9.9 

years. This change results from the differences of models used and the data used. The GEV is used 

to generate the wind speeds in the current study while the lognormal and Gumbel distributions 

were applied in Chu and Wang (1998). Moreover, the data used in Chu and Wang’s study covered 
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the period from 1966 to 1995. Since 1995, many more TCs with stronger intensity were observed 

in the vicinity of Hawai’i. For example, Hurricane Lane in 2018 reached 105 knots. For storms 

over 100 knots (Table 4), the return periods are substantially shortened from Chu and Wang (1998). 

For example, the ‘level 100 knots’ return period is decreased from 42 years to 26.4 years and the 

‘level 125 knots’ return period is reduced substantially from 202 years to 40.9 years.  

 

Fig. 16 The flow chart of the statistical model 

Table. 4 Simulation result 

Wind speed level (kt) 1966-2019 Return period (yr) 1970-95 (Chu and Wang, 1998) 

34 3.0 3.2 

50 6.0 4 

64 9.9 6.6 

80 16.2 13 

100 26.4 42 

110 31.7 81 

125 40.9 202 
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4.2 Uncertainty analysis 

The estimated results for each level TC in Table 4 are the exact value. This value may 

fluctuate from time to time. An uncertainty analysis is needed to calculate the confidence interval 

of the return periods. To establish a confidence interval of the deterministic value from our 

statistical model, a bootstrap method is advocated. The bootstrap is a resampling method by 

constructing the artificial data batches with replacements from the original data of size n with 

resampling data. By repeating a large number of S times, S bootstrap samples of size n can be 

constructed. For this research, the original data set is the observed maximum wind speeds of TCs 

with sample size (n=39). We construct the first sample that contain 39 draws from the original 

dataset and put them in the statistical model and run the flow explained in Chapter 3.6. The first 

resampling result is generated. Repeat the above steps for 10,000 times and we get (S=10,000) 

estimated results. The 95% confidence interval (Table 5) is the range of the central 9500 samples. 

For example, for the strongest intensity (125kt) TC, its return period is estimated as 40.9 years and 

the 95% confidence interval of that level lies between 30.1 and 55.6 years. 

Table. 5 Confidence interval 

Wind speed level (kt) 1966-2019 Return period (yr) Confidence interval (yr) 

34 3.0 1.9-3.6 

50 6.0 3.4-8.0 

64 9.9 6.5-14.1 

80 16.2 13.2-22.8 

100 26.4 20.4-35.6 

110 31.7 28.4-40.7 

125 40.9 30.1-55.6 

CHAPTER 5. SUMMARY 

A statistical model is developed to estimate the return period of Hawai’i TCs. It contains 

three parts, the Poisson regression, the kernel density estimate and the generalized extreme value 
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distribution. In Hawai’i’s TC season, which is from July to October, two concurrent factors, the 

SOI and 850hPa relative vorticity, can approximately describe the annual TC frequency by using 

the Poisson regression (3.6). These two factors approximately follow the Gaussian distribution. 

Through the LOOCV, the correlation of the Poisson regression hindcasts and the observed TC 

numbers is 0.66 and the model catches most of peak values. 

The kernel density estimate is introduced to get a higher resolution of TC arrival date on 

daily time scale. The GEV model is a reasonable fit except the most intense TC, while the GPD 

deviates from the data histograms. The GEV is a better model than the GPD in Hawai’i area to 

estimate the intensity of TCs. 

The return period of high intensity TCs greater than 100 knots become much shorter than 

the previous estimate (Chu and Wang, 1998). The major hurricane with at least 125 knots wind 

speed in the past was considered as a 202-year event. Using more TC data, together with the 

modern statistical method, this event is shortened considerably to a return period of 40.9 years 

with the 95% confidence interval between 30.1 and 55.6 years. This result indicates that there is a 

higher risk for Hawai’i area to be struck by intense TCs. This is consistent with the available data, 

in which more TCs striking Hawai’i after 2013 (Fig. 1a).  

One limitation of this study is that the model accuracy is highly dependent on the three 

distribution models. The correlation of Poisson regression and the historical data is 0.66 (not 

perfect) and the GEV slightly overestimates the most intense TCs. These issues could bias the 

model’s accuracy. However, given the current scientific data and statistical methods, we believe 

that the statistical model developed in this study is perhaps the best tool one can come up for 

estimating return periods of hurricane wind intensities.    
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