
 
CIVIL ENGINEERING STUDIES 

Illinois Center for Transportation Series No. 22-006 
UILU-ENG-2022-2006 

ISSN: 0197-9191 
 

Analyzing the Impacts of a Successful 
Diffusion of Shared E-Scooters and 
Other Micromobility Devices and 

Efficient Management Strategies for 
Successful Operations in Illinois 

 
Prepared By 

Abolfazl Mohammadian, PhD 
Ehsan Rahimi, PhD 

Mohammadjavad Javadinasr 
Ali Shamshiripour, PhD 

Amir Davatgari 
Afshin Allahyari 

Talon Brown 
University of Illinois Chicago  

 
Research Report No. FHWA-ICT-22-006 

A report of the findings of 

ICT PROJECT R27-215 
Analyzing the Impacts of a Successful Diffusion of Shared  
E-Scooters and Other Micromobility Devices and Efficient 

Management Strategies for Successful Operations in Illinois 
 

https://doi.org/10.36501/0197-9191/22-006 
 
 

Illinois Center for Transportation 

May 2022 



 



 

TECHNICAL REPORT DOCUMENTATION PAGE 
1. Report No. 
FHWA-ICT-22-006 

2. Government Accession No. 
N/A 

3. Recipient’s Catalog No. 
N/A 

4. Title and Subtitle 
Analyzing the Impacts of a Successful Diffusion of Shared E-Scooters and Other 
Micromobility Devices and Efficient Management Strategies for Successful 
Operations in Illinois 

5. Report Date 
May 2022 
6. Performing Organization Code  
N/A 

7. Authors 
Abolfazl Mohammadian, http://orcid.org/0000-0003-3595-3664  
Ehsan Rahimi, https://orcid.org/0000-0002-8649-7542  
Mohammadjavad Javadinasr, https://orcid.org/0000-0003-2065-0468   
Ali Shamshiripour, https://orcid.org/0000-0002-6358-5144  
Amir Davatgari, https://orcid.org/0000-0003-0913-9706   
Afshin Allahyari, https://orcid.org/0000-0002-3197-337X   
Talon Brown, https://orcid.org/0000-0003-1985-9854 

8. Performing Organization Report No.  
ICT-22-006 
UILU-2022-2006 

9. Performing Organization Name and Address 
Illinois Center for Transportation 
Department of Civil and Environmental Engineering 
University of Illinois at Urbana-Champaign 
205 North Mathews Avenue, MC-250 
Urbana, IL 61801 

10. Work Unit No. 
N/A 
11. Contract or Grant No. 
R27-215 

12. Sponsoring Agency Name and Address 
Illinois Department of Transportation (SPR) 
Bureau of Research 
126 East Ash Street 
Springfield, IL 60607 

13. Type of Report and Period Covered 
Final Report 5/16/20–5/15/22 
14. Sponsoring Agency Code 
 

15. Supplementary Notes 
Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration. 
https://doi.org/10.36501/0197-9191/22-006 

16. Abstract 
Active transportation can play an important role in promoting more physically active and positive public health outcomes. While 
walking and biking provide significant physical health benefits, their modal share remains low. As a new form of micromobility 
service, shared e-scooters can enhance the suite of options available in cities to promote active transportation and fill in the gaps 
when walking or biking are not preferred. Although e-scooters show potential as a mode of transportation, it is unclear whether 
people will adopt the technology for everyday use. Furthermore, shared micromobility (e.g., electric scooters) is gaining 
attention as a complementary mode to public transit and is expected to offer a solution to access/egress for public transit. 
However, few studies have analyzed integrated usage of shared e-scooters and public transit systems while using panel data to 
measure spatial and temporal characteristics. This study aims to examine the adoption and frequency of shared e-scooter usage 
and provide policy implementation. To do so, the researchers launched a survey in the Chicago region in late 2020 and collected 
a rich data set that includes residents’ sociodemographic details and frequency of shared e-scooter use. To characterize the 
frequency, the researchers used an ordered probit structure. The findings show that respondents who are male, low income, 
Millennials and Generation Z, or do not have a vehicle are associated with a higher frequency of shared e-scooter use. 
Furthermore, this study utilizes shared e-scooter trips for a 35-day measurement period from 10 shared e-scooter operators in 
Chicago, where the researchers used a random-parameter negative binomial modeling approach to analyze panel effects. The 
findings highlight the critical role of spatial and temporal characteristics in the integration of shared e-scooters with transit. 

17. Key Words 
Transportation, Micromobility, Shared E-Scooter, Public Transit, 
Survey 

18. Distribution Statement 
No restrictions. This document is available through the 
National Technical Information Service, Springfield, VA 
22161. 

19. Security Classif. (of this report) 
Unclassified  

20. Security Classif. (of this page) 
Unclassified 

21. No. of Pages 
53 

22. Price 
N/A 

Form DOT F 1700.7 (8-72)                 Reproduction of completed page authorized 

http://orcid.org/0000-0003-3595-3664
https://orcid.org/0000-0002-8649-7542
https://orcid.org/0000-0003-2065-0468
https://orcid.org/0000-0002-6358-5144
https://orcid.org/0000-0003-0913-9706
https://orcid.org/0000-0002-3197-337X
https://orcid.org/0000-0003-1985-9854




i 

ACKNOWLEDGMENT, DISCLAIMER, MANUFACTURERS’ NAMES 
This publication is based on the results of ICT-R27-215: Analyzing the Impacts of a Successful 
Diffusion of Shared E-Scooters and Other Micromobility Devices and Efficient Management 
Strategies for Successful Operations in Illinois. ICT-R27-215 was conducted in cooperation with the 
Illinois Center for Transportation; the Illinois Department of Transportation; and the U.S. Department 
of Transportation, Federal Highway Administration.  

We would like to thank Mr. Mark Bennett and Mr. Sean Wiedel from the Chicago Department of 
Transportation for their valuable contributions to this study. We would like to acknowledge Lime, 
Spin, and Bird as e-scooter vendors and for distributing the questionnaire among their registered 
users. In addition, we wish to thank Chicago’s Regional Transportation Authority (RTA) and the Illinois 
Department of Transportation (IDOT), who reviewed the survey questionnaire during the planning 
stage. 

Members of the Technical Review Panel (TRP) were the following: 

• Charles Abraham, TRP Chair, IDOT 

• Ken Runkle, TRP Co-chair, IDOT 

• James Garner, Pace Suburban Bus 

• Kim Koy, Pace Suburban Bus  

• Martin Menning, Chicago Metropolitan Agency for Planning 

• Dean Mentjes, U.S. Department of Transportation 

• LeeAnn Prather, IDOT 

• Kevin Stanciel, RTA 

• Megan Swanson, IDOT 

• David Tomzik, Pace Suburban Bus  

• Jessica Hector-Hsu, RTA 

The contents of this report reflect the view of the authors, who are responsible for the facts and the 
accuracy of the data presented herein. The contents do not necessarily reflect the official views or 
policies of the Illinois Center for Transportation, the Illinois Department of Transportation, or the 
Federal Highway Administration. This report does not constitute a standard, specification, or 
regulation.  

  



ii 

EXECUTIVE SUMMARY 
Dockless electric scooters (e-scooters) are one of the latest micromobility options to appear on our 
streets. As a burgeoning field, micromobility companies have had varied success as they began to 
operate in cities across the world—predominantly originating in China. E-scooters join other 
micromobility modes, such as dockless, nonelectric bikes as well as docked and dockless electric bikes 
(e-bikes). This shared body of research on the impact of micromobility modes and user travel 
behavior has primarily focused on bikes and e-bikes because they were the first modes to begin 
operation. They have shared characteristics with e-scooters, however, that allow much of the 
foundational work on micromobility to guide further research on e-scooters. This report aims to 
further the body of work specific to e-scooter usage. The researchers consider existing micromobility 
literature and apply it to understanding usage patterns and travel behavior within data collected over 
the course of two trial periods in Chicago. 

Pilot programs for e-scooters have been conducted in cities around the United States, such as 
programs in Austin (Texas) and Portland (Oregon), or the pilot program that the researchers assisted 
with in Chicago. The purpose of these programs is to understand usage patterns of potential users 
and optimal deployment strategies for fleet operators to maintain accessibility for travelers while 
remaining financially sustainable.  

Micromobility modes are a promising feeder mode for public transportation, supplementing city 
transit and increasing its accessibility to all riders—that is, the greater the adoption of these new 
modes, the more accessible and efficient any public transit system could become. Usage patterns and 
individual characteristics of early adopters are used to understanding the adoption and diffusion of 
this mode. Widespread adoption is generally city-dependent, relying on characteristics of a city’s 
public transit and distributions of travelers performing commute versus non-commute trips. To 
understand the temporal characteristics of e-scooter usage (peak travel times), the literature 
indicates that researchers must understand how the development of the built environment affects 
travelers as well the role of educational campaigns and incentive-based programs initiated by city 
planners and e-scooter operators. 

Collaboration between service operators and local transit authorities is highlighted as a means for 
planners to ensure that policy goals surrounding equity are met and for operators to ensure both 
their development and finances are sustainable. Collaboration allows standardized data collection 
among operators, such as trip origins and destinations, trip durations, and travel times. This planning 
is necessary to ensure that vehicle fleets are adequately distributed and that designated priority 
areas of each city maintain a minimum level of accessibility. Intelligent fleet distribution will 
distribute vehicles where and when they are needed. The literature demonstrates that intelligent 
fleet distribution has improved ridership, increased accessibility, and ensured the walkability and 
safety of the pedestrian environment. 

The research team designed a survey to understand the characteristics of shared e-scooter users in 
Chicago and the benefits of promoting shared e-scooters in the region. They collaborated with the 
Chicago Department of Transportation to email a survey to e-scooter users within the Chicago 
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metropolitan area. They also asked e-scooter operators to distribute the survey. Over the course of 
two collection periods in which the researchers piloted e-scooters in the city, they received 2,400 
responses from users representing three regional operators: Bird, Lime, and Spin. The survey was 
structured to collect sociodemographic information, e-scooter usage behavior, and attitudes and 
preferences toward the mode. The researchers identified several equity groups within the population 
and then used this data to understand their behaviors and preferences. The groups included riders 
who were black or African American, low income, had lower education levels, and who lived within an 
Equity Priority Area (a designated region of Chicago that was identified as being underserved by 
transit). 

The groups that constituted the largest portion of responses were young adults (aged 25 to 34), white 
riders, riders with higher education levels, and medium- to high-income riders. This report includes all 
respondents in the overall response rate for comparison between each identified equity group. 
Generally, these equity groups reported proportionally more frequent e-scooter usage and 
interaction with mass transit. Conversely, they also reported having to travel longer distances more 
frequently to pick up an e-scooter. The results of this data highlight the importance of cooperation 
with operators and enforcement by regional planning agencies to ensure equity goals are met. 

With the ongoing COVID-19 pandemic, people are increasingly leading sedentary lifestyles and relying 
more on personal vehicles than previously used active modes or mass transit. The adoption and 
diffusion of e-scooters and other active modes presents an opportunity to promote modal shifts from 
car-based travelling. This study is an analysis of users’ travel behavior during the second pilot period 
for e-scooters in Chicago, between November and December 2020. The researchers used an ordered 
probit model to characterize the individual, socioeconomic, and environmental factors that affect the 
ranked usage frequency responses of travelers.  

Regarding individual characteristics, the researchers found that respondents who identified as white, 
low income, male, or younger than 34 were more likely to use e-scooters. The researchers inferred 
from this, in agreement with existing literature, that white people generally have higher access to e-
scooters based on operators’ fleet distribution. Low-income households having higher e-scooter 
usage can be understood by a higher reliance on mass transit, as there is a strong relationship 
between lower household income and lower vehicle ownership. The impact of gender on active 
mode choice was studied in the literature, and the research team’s findings agreed that respondents 
who identify as male are more likely to use e-scooters than those who identify as female, which is 
likely related to differences in the perception of safety of this travel mode. The increased likelihood of 
younger respondents to use e-scooters over older respondents can be explained by the generational 
likelihood of adapting new technologies, as these active modes generally require associated 
applications and integration with smartphones. Additional findings included that respondents who 
were a part of reduced transit fare programs and those who lived in areas with high transit density 
were more likely to take e-scooters. These findings are in good agreement with existing literature on 
micromobility integration with public transit, as both respondent groups are also more likely to take 
public transit. 
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Modelling the frequency of micromobility integration with public transit is a current challenge for 
researchers, as there are issues with the type and quality of collected data as well as with data 
collection standards between operators. Promoting e-scooters as a feeder mode for transit faces 
these same challenges, where researchers must consider the spatial and temporal characteristics of 
traveler behavior and fleet distribution throughout a city. Data collection is reported on a set time 
interval through a GPS unit on each e-scooter, where collection is paused while a vehicle is rented by 
a traveler. The research team gathered trip data for over 100,000 e-scooter trips and analyzed trip 
start and end times as well as locations relative to public transit stations in the city of Chicago. A 
buffer region was defined around transit stations, where e-scooter trips that ended within the region 
were classified as access trips and e-scooter trips that began within the region were counted as 
egress trips. 

Weather, development and land use, and perceptions of safety were the largest considerations that 
affected e-scooter integration with transit. Due to the time of year, weather that was deemed too 
cold or too humid negatively impacted both the use of the mode and transit integration. Multimodal 
links, such as bikeways, and a high density of office land use in areas around transit stations had a 
large, positive impact on integration. Conversely, the total number of vehicle accidents near a transit 
station negatively affected transit integration; the researchers understood this as a proxy for road 
safety and how it related to riders’ perception of safety on a road, such as while using a dedicated 
bike lane. Some characteristics that describe e-scooter integration with transit are more intertwined, 
such as the positive impact that higher activity density has during peak travel times.  
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CHAPTER 1: INTRODUCTION 
Promoting micromobility is key to reducing the modal share of car-based trips. Empirical evidence 
shows that most car-based trips in the United States are short enough that people can alternatively 
perform them using micromobility options, if the barriers to switching from a transportation mode as 
comfortable as private cars are resolved (Zarif et al., 2019). As a practical solution, the literature 
suggests integrating various micromobility options, including docked bike-sharing programs such as 
Divvy bikes in the city of Chicago (Fu & Farber, 2017; Gu et al., 2019; Li et al., 2019). 

Walking and biking, as the two most active micromobility options, provide noticeable health benefits; 
yet, their modal share remains understandably low, partially given people’s various physical 
limitations. As a new form of micromobility service, the shared electric scooter (e-scooter) service 
couples ease of use for performing short- to medium- distance trips with many of the advantages of 
walking and biking. Unlike docked shared bikes and other micromobility options, the shared e-scooter 
system has given its riders flexible pick-up and drop-off locations. Although e-scooter service shows 
potential, it is not clear yet whether individuals will adopt it for everyday use.  

Public perceptions of micromobility usage are a topic for many cities. A survey in Austin, Texas, 
reached over 9,500 people and queried their usage of e-bikes and e-scooters as well as their 
perceptions of the technologies as riders and non-riders (City of Austin, 2019). Of the participants in 
the Austin survey, 35% indicated they had never used micromobility services and did not plan to do 
so, but approximately 37% indicated having used e-scooters specifically at some point (City of Austin, 
2019). E-scooters were consistently ranked higher than e-bikes on all surveyed feedback topics, 
including comfort, pricing, availability, convenience, and responsiveness (City of Austin, 2019). For 
riders in Austin, 96% of respondents indicated they have used a micromobility service at least once 
for recreation and 25% indicated they have used a micromobility service to travel to or from school at 
least once (City of Austin, 2019). However, 9.6% of respondents (922 people) indicated that 
commuting was their most frequent trip purpose, which is a respondent group that should be 
targeted (City of Austin, 2019). 

There are prospects of future studies, such as in Des Moines, Iowa and Portland, Oregon. The regional 
transit authority and metropolitan planning organization in the Des Moines area (DART and MPO, 
respectively) are collaborating with various e-scooter operators to survey, plan, and develop the 
micromobility service in the region (Des Moines City Council, 2019). The MPO has enacted a plan by 
which they will develop pilot programs, but more fact finding and surveying is needed before 
recommendations can be made. 

The pilot program enacted by the Portland Bureau of Transportation (2018) heavily involved 
collaboration between e-scooter companies and the bureau to ensure policy goals relating to 
accessibility, equity, and data gathering were met. All participating companies were required to 
standardize trip data, available real-time along with origin-destination (O-D) and route data. For the 
duration of the pilot, over 700,000 trips were made and most Portlanders viewed the services 
positively; 62% overall, 71% from residents under 35, 74% from people of color, and 66% from 
residents who identified as low income (Portland Bureau of Transportation, 2018). Though there was 
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a large initiative for education and public engagement during the pilot program, there were 
difficulties with instructing riders on safety and legal guidelines as well as requiring e-scooter 
companies to meet equity and accessibility targets (Portland Bureau of Transportation, 2018).  

Motor-driven cycles, also known as mopeds, are another form of shared micromobility that is gaining 
growing attention in the literature and cities worldwide. The District Department of Transportation 
launched a pilot program in Washington, D.C. to allow providers to offer shared moped services, 
provided they follow the required conditions. Those conditions required moped riders to follow 
current laws related to the operation of mopeds such as wearing a helmet, possessing a valid driver’s 
license, and never riding on sidewalks and bike lanes (District Department of Transportation, 2021). 
Aguilera-García et al. (2021) showed that males, young adults, people with a high education level, 
and people in inner urban areas are prone to using shared mopeds more frequently. Moreover, age, 
occupation, and income are among influential factors affecting the future adoption of shared mopeds 
in urban areas. The authors also found that the availability of shared moped services may reduce the 
use of personal vehicles, resulting in less congestion in urban areas. However, they highlighted that e-
mopeds may also capture demand from public transit systems and other forms of active modes. 
Accordingly, the net impact of e-mopeds on urban sustainability should be investigated. 
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CHAPTER 2: LITERATURE REVIEW 

LESSONS FROM THE LITERATURE ON SHARED E-SCOOTER MOBILITY 
A limited but growing number of studies have analyzed travel behavior using a shared electric 
scooter. Reviewing the existing transportation studies, Degele et al. (2018) grouped shared e-scooter 
customers into four clusters based on a dataset of e-scooter providers in Germany. The first cluster, 
“power users,” were highly active and inclined to use shared e-scooters on weekdays. The second 
and third clusters were casual users who were Generation X+ (40 years old or more) and Generation Y 
(approximately 28 years old), respectively. Both customer clusters used shared e-scooters 
presumably for leisure activities, because they rented scooters irregularly, but mostly on weekends. 
The last cluster, “one-time users,” adopted shared e-scooters once and had longer travel times and 
distances than the other clusters. 

McKenzie (2019) investigated the similarities and differences between existing docked bike-sharing 
and a new dockless e-scooter service in Washington, D.C. They found that riders used these two 
services for different purposes. Riders usually used member bike sharing rather than dockless e-
scooters in Washington, D.C. to get to and from work. Zhou et al. (2018) found that dockless bike-
sharing services had caused a modal shift, decreasing metro ridership in Shanghai, China. Mooney et 
al. (2019) found that although the shared dockless bike program in Seattle had promising spatial 
equity characteristics in the region, neighborhoods with more educated residents had slightly more 
bikes.  

Smith and Schwieterman (2019) used information downloaded via real-time data streams made 
available via operator-specific application programming interfaces (APIs) to analyze one day of 
Chicago’s e-scooter pilot program. The City of Chicago conducted this pilot program between June 15, 
2019, and October 15, 2019. They observed that shared e-scooter trips were widely spread 
throughout the pilot region with an average trip distance of two miles. Commuters used shared e-
scooters for transit access and egress since shared e-scooter usage reached its peak near the start of 
the morning rush and toward the end of the evening rush. Following this study, Smith (2020) used the 
same data and suggested that the shared e-scooter program can potentially decrease people’s travel 
times in Chicago. According to Smith (2020), between 24% and 29% of considered trips were quicker 
given shared e-scooter availability compared to trips involving walking and public transit alone in 
most neighborhoods within the e-scooter pilot area.  

LESSONS FROM THE LITERATURE ON SHARED MICROMOBILITY 
Because the current literature on shared e-scooter mobility is minimal, the research team focused on 
the literature of other shared micromobility options available in the transportation network. This 
helped the researchers evaluate to what extent other shared micromobility options successfully 
achieved their goals. The researchers may then incorporate these successful strategies into this 
study’s policy implementation. 
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The research team categorized the research stream on travel-behavior aspects of shared 
micromobility into three groups (please refer to Figure 1): 

• Studies focusing on shared micromobility usage patterns. These studies seek to identify and 
compare the spatial and temporal shared micromobility usage patterns in cities using 
micromobility trip records for a specific period. This group of studies will help the research 
team extract the method used for analyzing spatial and temporal differences in the 
distribution of micromobility trips. The research team shall also analyze factors that may 
affect shared e-scooter usage. 

• Studies focusing on integrating micromobility with the transit system. The newly prevailing 
shared e-scooter system provides a viable solution to the first- and last-mile problem and 
connects trip O-D to the transit station. These studies use micromobility trip records to 
measure the amount of integration between the micromobility and transit systems, as well as 
explore how built environment attributes impact the integrated use of these systems in 
different conditions.  

• Studies focusing on the adoption and diffusion behavior of micromobility options. These 
studies seek to characterize the behavior of adopting micromobility options in urban areas as 
an essential step in planning a more sustainable transportation system. The research team 
shall use this research stream to design a robust and comprehensive survey instrument 
covering various travel-behavior aspects of shared e-scooter users.  

 
Figure 1. Diagram. Research stream on the travel-behavior aspects of shared micromobility. 

Usage Pattern Analysis 
Gathering usage data for shared micromobility options presents new challenges in data cleaning 
while offering new insights to trip O-D specification and travel behavior analysis. There is a wealth of 
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research on dockless, electric motor-assisted, shared bike (e-bike) programs, which can guide study 
on the same areas for e-scooter usage analysis. Collected data on e-bike programs contain 
nonuniformities that prevent cleaning with traditional methods in which O-D data can be directly 
obtained (Li, 2019). Li (2019) explained that O-D data may not reflect the actual behavior of travelers 
because of the speeds e-bikes travel combined with a weak or inconsistent GPS signal (either due to 
depleted batteries or the frequency of data collection) and a lack of ride status. McKenzie (2019) 
addressed these issues by using information such as average trip duration and maximum speed to 
determine if a trip is genuine, whether the scooter is being charged, redistributed, or relocated by a 
non-rider. 

The main factors for spatial and temporal differences, found in McKenzie (2019), were mixed land use 
along the route of the trip, the O-D traffic analysis zone, and program membership. Over 60% of trips 
in the McKenzie (2019) study originated and terminated in the same land-use type (e.g., residential to 
residential, commercial to commercial) and most trips originated from either commercial or public 
land-use types, with about 23% of all trips originating in a residential land-use type. Program 
membership (compared to casual riders) was also shown to have a striking difference in temporal 
use; essentially, riders with program memberships used the service around commute times far more 
frequently than casual riders (McKenzie, 2019). 

Integration with Transit 
The ability of micromobility options to integrate with transit in addressing the first-and-last-mile 
problem is well studied. Fong et al. (2019) shows that e-bikes and e-scooters greatly increase the 
range for all transit users and those with mixed modes, increasing the distance travelers are willing to 
travel between a parked car and transit or the distance to or between bus stops and train stations. 
Though, there are still challenges in promoting micromobility integration, especially for commuting. 
Micromobility integration with transit will likely be a necessary development as cities begin banning 
vehicles, such as some city centers, which are almost entirely pedestrianized. Micromobility options 
are vital for travelers, especially in cities with subpar transit options, but there is also potential for 
businesses to benefit from their development, as last-mile delivery comprises, on average, 28% of 
total shipping costs (Fong, 2019). 

Adoption and Diffusion Behavior 
The adoption of micromobility options faces many challenges in terms of development and 
deployment of vehicle fleets as well as spreading the use of these modes as a popular travel option. 
One hurdle to increasing the popularity of micromobility might be a matter of culture, where 
micromobility options have not existed for a long enough time to capture the attention of travelers as 
a legitimate mode (McKenzie, 2019).  

For service operators, it will be necessary to identify the regions and time periods the vehicle fleet 
needs to be distributed, such as places in residential and commercial zones, within the catchment 
area of large transit hubs, and during peak travel hours (Guo & He, 2021). However, there needs to 
be direction to the fleet redistribution, as overcrowding busy metro areas with unused vehicles 
creates unwalkable environments (Guo & He, 2021; Gu, 2019).  
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The operation of dockless e-bikes and e-scooters is generally private and largely capital-driven; this 
creates challenges with regulatory governing bodies and problems with sustainable development, as 
the potential for fast growth can create problems with overcrowding and financial instability (Gu, 
2019). For operators, Gu (2019) shows that being solvent is more determined by the expansion and 
availability of fleet supply, rather than by meeting user demand or regulatory policy. This can create 
situations where rapid expansion leads to harsh regulation, such as with the development of e-
scooters in San Francisco (Fong, 2019). The solution to this supply-driven expansion will have to 
create alternate sustainable income for operators and will require future study (Gu, 2019). 
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CHAPTER 3: DATA REPORT 
The researchers designed a survey to understand the characteristics of shared e-scooter users in 
Chicago and the benefits of promoting shared e-scooters in the region. Because the modal share of e-
scooter users is meager, the researchers collaborated with the Chicago Department of Transportation 
to send the survey link to shared e-scooter users in the Chicago metro area. As part of this 
collaboration, the researchers asked shared e-scooter vendors (i.e., Lime, Spin, and Bird) to distribute 
the questionnaire among their registered users. After three weeks of data collection (between 
November 20 and December 15, 2020), the research team received 2,400 completed responses, 
representing users of all three e-scooter vendors.  

The survey was structured to collect a rich set of information in the following areas: 1) 
sociodemographics such as residential location, age, gender, ethnicity, as well as economic factors 
such as job status and household income; 2) the frequency of using shared e-scooters in both phases 
of the program in Chicago; 3) users’ attitudes and preferences toward using shared e-scooters, while 
accounting for individuals’ transportation needs; 4) the impacts of shared e-scooters on individuals’ 
health and well-being; and 4) the effect of shared e-scooters on individuals’ mode-choice decision, 
especially for getting to/from transit stations. The researchers also asked several attitudinal questions 
to better understand what underlying factors form the intention of using shared e-scooters and how 
such factors contribute to the individuals’ intentions to continue using this mode in the future. 
Moreover, the research team incorporated Google Maps API to collect respondents’ approximate 
residential locations (i.e., the nearest intersection to their home address) in the questionnaire. 

This study aims to explore how people perceive and use shared e-scooters. The results of this 
research are intended to not only evaluate the second e-scooter pilot program run in Chicago, but 
also help improve the benefits of shared e-scooters for users in the future. 

USER SOCIODEMOGRAPHICS 
Age, gender, and race are important characteristics of a population, and when completing the survey, 
users could record those characteristics and many others that may help describe the population of 
this study as a whole. Figure 2 presents the distribution of ages. The data show that most e-scooter 
users are young adults (i.e., 34 years or younger). The largest age bracket was that of 25 to 34 years 
of age, with 54% of users falling in that bracket. Around 18% of users reported their age between 18 
and 24. Very few respondents were older than 45 years old. 

The survey also asked for the user’s gender, with the options being male, female, other, and prefer 
not to answer. Less than 3% of users marked their genders as “other” or “prefer not to answer.” 
Figure 3 presents the proportion of male and female respondents among the remaining users. Nearly 
two-thirds (63%) of those who answered reported as male and 37.4% of respondents reported they 
were female. 

Information on the respondents’ races was also collected; the distribution is shown in Figure 4. Users 
had the option to choose white, black or African American, American Indian, Asian, Native Hawaiian 
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or Pacific Islander, or other, where a race could be described. Three-quarters of the respondents 
selected that they were of Caucasian heritage, and only 11% selected black or African American. A 
very small amount (1%) of respondents reported they were American Indian or Native Hawaiian or 
Pacific Islander. Respondents could also indicate if they were of Hispanic or Latino heritage, and the 
results are shown in Figure 5. A small proportion (16%) of respondents were of Hispanic or Latino 
heritage, so overall, the respondents were not very diverse. 

 
Figure 2. Bar plot. Distribution of respondents’ age. 

 
Figure 3. Bar plot. Distribution of respondents’ gender. 
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Figure 4. Bar plot. Distribution of respondents’ race. 

 
Figure 5. Bar plot. Distribution of respondents with Hispanic or Latino heritage. 

Data on the education and household income of respondents were also collected (Figures 6 and 7, 
respectively). Nearly all respondents (around 93%) had completed high school and at least attended 
college in some capacity, and only 5.5% have a high school diploma or less. Overall, half of the 
respondents indicated that they have graduated with a bachelor’s degree. The education levels can 
be related to the income of the respondents. One-third of respondents indicated that their entire 
household made between $50,000 and $100,000, while 32% indicated that their income was above 
$100,000. Income, however, is not the greatest indicator of the wealth of a respondent, because 
household size is also an important factor. Looking at the data, one can see that the typical e-scooter 
user tends to be well educated and fairly wealthy. 
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Figure 6. Bar plot. Distribution of respondents’ education level. 

 
Figure 7. Bar plot. Distribution of respondents’ income. 

In addition, the survey asked respondents about the number of vehicles in their household, if they 
had a bike-share membership, and if they qualified for reduced transit fares. Figure 8 presents the 
responses for the number of vehicles per household. More than two-thirds (69%) of respondents 
have at least one vehicle in their household, while the remaining 31% do not have a vehicle. Although 
some respondents may not have any vehicles in their household, nearly all (90.3%) respondents have 
their driver’s license, as seen in Figure 9.  
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Figure 8. Bar plot. Distribution of respondents’ household vehicle ownership. 

 
Figure 9. Bar plot. Distribution of respondents’ driver’s license status. 

Some people may not need to drive to get to their desired location, as there are numerous different 
commuting options in the city. An oftentimes viable commuting mode is the use of shared bicycles 
provided by the bike-share company Divvy. The company offers single ride and daily passes or 
monthly memberships, and Figure 10 shows the popularity of the bike-share membership among the 
respondents. Around 23% of the respondents indicated they currently have a Divvy membership. 
While this statistic does not include those who purchase single ride or day passes as opposed to the 
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membership, it still indicates considerable levels of micromobility diffusion into e-scooter users’ 
lifestyles in the region. 

 
Figure 10. Bar plot. Distribution of respondents’ bike-share membership. 

Certain groups of transit users in Chicago are eligible for reduced or free transit fare (Figure 11). 
Young children as well as elementary and high school students are eligible for reduced fares, whereas 
active military personnel, disabled veterans, seniors, Medicare cardholders, and people with 
disabilities can be eligible for free transit. Of the respondents, only 9.1% qualified for this assistance. 
This is likely because not many respondents had disabilities, only 7.07% (Figure 12), and the typical 
user was older than 18 years old and younger than 45 years old.  

 
Figure 11. Bar plot. Distribution of respondents that qualify for reduced transit fare. 
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Figure 12. Bar plot. Distribution of respondents with disabilities. 

Figure 13 shows the different exercise frequencies among respondents. Nearly three-quarters (71%) 
of respondents indicated they exercised at least two days per week. The frequency of exercise is 
distributed fairly evenly, with the frequency of two to three times per week being the exception at 
36%. Other frequencies fell between 13% and 20% of the sample.  

 
Figure 13. Bar plot. Distribution of respondents’ exercise frequency. 
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E-SCOOTER USAGE PATTERN 
The first e-scooter pilot program took place from June to October in 2019. This study not only looked 
at e-scooter use during October and November 2020, but also e-scooter use during the first pilot 
program. This report defines various respondent group categories for comparison; the study 
considers respondents who indicated that they were black or African American, low-income 
respondents who indicated that their household income is less than 200% of the poverty level in 
Illinois, those who live within the Equity Priority Area shown in Figure 14, and those who indicated 
that they held less than a bachelor’s degree. These groups were defined in order to compare patterns 
of travel behavior and accessibility between interested population groups. 

 
Figure 14. Map. Equity priority area (blue line) defined in City of Chicago (2020). 

There were 793 respondents who reported that they participated in the first pilot, and none reported 
not using an e-scooter. This group included 698 respondents who would then also participate in the 
second pilot (Figure 15). With 2,166 total response records, 63.4% of respondents did not participate 
in the first pilot. Where respondents indicated less frequent usage in Figure 15, such as less than five 
times or only once, response rates among some respondent groups were less than the overall 
response for that pilot. Fewer respondents living in the priority area (7.1%) and respondents with 
lower education levels (5.1%) reported they tried e-scooters once compared to the overall response 
rate (10.5%). Black respondents had lower response rates for usage in the two to five trips range 
(22.9% compared to 40.5%). While black respondents reported less frequent low-usage or trial usage, 
they, along with respondents with lower education levels and those living in the priority area, 
constituted the largest groups that reported daily or almost daily usage (more than 10 trips).  
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Of the 2,070 respondents that participated in the second pilot, 22.8% of all respondents indicated 
they did not use an e-scooter during this period (Figure 16). However, there was a larger number of 
people, in both relative and absolute terms, who tried the e-scooter one or two to three times (45.4% 
in the second pilot compared to 30.8% in the first pilot). Though there was a lower proportion of 
respondents who indicated very frequent usage (more than 10 times) compared to the first pilot, 
interested respondent groups generally reported more frequent usage when compared with all 
respondents in this usage pattern. 

 
Figure 15. Clustered bar plot. E-scooter usage frequency in the first pilot. 

 
Figure 16. Clustered bar plot. E-scooter usage frequency in the second pilot. 



16 

A great benefit of e-scooters is the ability to use them in conjunction with other modes of 
transportation, specifically Chicago Transit Authority (CTA) buses and rails and Metra trains (Figure 
17). Some respondents reported they took advantage of this benefit, but around two-thirds (64%) 
reported they did not. This lack of transit integration could be explained by the diminished ridership 
of transit during the COVID-19 pandemic, which could also explain the more frequent usage pattern 
from the second pilot (above in Figure 16). However, all groups of interest reported higher transit 
integration than the overall population, with the highest share of integration among respondents 
living in the priority area. 

 
Figure 17. Clustered bar plot. How respondents integrated e-scooters with transit. 

E-scooters also can be used to replace different modes of transportation throughout the city (Figure 
18). More than one-third of respondents (39.5%) reported they would have walked to their 
destination if an e-scooter had not been available, while 29.5% would have traveled in a car (via ride-
hailing, taxis, or personal vehicles). Substantially fewer respondents (11.6%) would have used mass 
transit (CTA buses and trains, Pace buses, or Metra trains). Respondent groups all reported a lower 
mode-replacement rate for ride-hailing and shared bike programs (Divvy) than the overall population 
and a higher mode-replacement rate for mass transit. Additionally, the presence of e-scooters 
facilitated some trips, specifically for black (7.0%) and less educated (5.8%) respondents compared to 
the overall population (4.5%), who would not have taken the trip at all. 
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Figure 18. Clustered bar plot. Mode shift among respondents due to e-scooter usage. 

TRANSPORT STYLES 
Since this study occurred during the COVID-19 pandemic, many respondents may have altered their 
transportation habits. As a result, the use of some forms of transportation may be lower than normal. 
Therefore, to get a good understanding of how e-scooters are used, it is important to analyze the 
usage of transportation options before the pandemic (Table 1). Before the pandemic, around 88% of 
respondents would frequently walk to their destination. Mass transit was also common before the 
pandemic, with almost 70% of respondents using trains frequently and over half using the bus 
(compared to 49% reporting to frequently using a personal vehicle). E-scooters were not used as 
frequently as other transit and passenger vehicle options, with around 38% of respondents reporting 
that they used them sometimes or often, which is about as frequent as the respondents chose to take 
a personal bike. 

Table 1. Frequency of Respondents’ Use of Transport Options for Daily Travel during the First Pilot 

Transport option Never (%) Seldom (%) Frequently (%) 
Personal vehicle 36.17 14.73 49.10 
CTA bus 22.03 25.17 52.80 
CTA rail 11.64 18.61 69.74 
Metra rail 54.32 32.15 13.53 
Pace bus 84.48 10.85 4.66 
Ride-hailing (Uber and Lyft) 7.07 21.80 71.13 
Carpool 69.56 17.92 12.52 
Taxi 71.04 22.22 6.75 
Walk 4.34 7.85 87.81 
Personal bike 50.90 14.27 34.83 
Shared bike (Divvy) 46.74 26.74 26.52 
Shared e-scooter 30.53 31.92 37.55 
Skateboard 92.42 4.62 2.96 
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The researchers can investigate pre-pandemic trip purposes, broken down by the response frequency 
of respondent groups in which the researchers are interested (Table 2). Responses indicating 
frequent use of mass transit are generally high, though each respondent group reports more frequent 
usage of CTA bus, Metra, and Pace than the overall response rate. Additionally, each of the groups 
reported more frequent usage of e-scooters than the overall group (43.9% for low income and 52.9% 
for less educated compared to 37.6% overall). 

Table 2. Percentage of Respondents Who Indicated Frequently Using Transport Options for  
Daily Travel during the First Pilot 

Transport Option All (%) Black (%) Low Income (%) Priority (%) Less Education (%) 
Personal vehicle 49.10 56.96 47.35 60.42 53.66 
CTA bus 52.79 63.91 58.33 56.18 57.04 
CTA rail 69.75 60.00 70.55 63.96 63.60 
Metra rail 13.53 16.52 14.68 16.61 14.45 
Pace bus 4.67 12.61 6.91 11.66 10.88 
Ride-hailing (Uber and Lyft) 71.13 70.43 67.33 64.66 62.48 
Carpool 12.52 24.35 15.53 18.02 18.20 
Taxi 6.74 12.17 6.63 9.19 8.07 
Walk 87.81 79.13 86.74 82.69 83.86 
Personal bike 34.83 33.91 33.81 42.05 36.21 
Shared bike (Divvy) 26.51 23.04 25.19 22.26 21.58 
Shared e-scooter 37.55 49.57 43.94 48.06 52.91 
Skateboard 2.96 5.65 4.45 5.65 6.94 

The respondents were also asked about their transportation habits to connect to bus, train, and 
subway stations before e-scooters were introduced to Chicago (Table 3). Walking had the highest 
frequency of users, with 85% of respondents reporting they would frequently walk to connect to 
different transportation modes. Respondents also used ride-hailing services frequently (45.6%). 
Overall, active transportation methods had more frequent users, which is expected because many 
stations are short distances away from each other.  

Table 3. How Frequently Respondents Used Various Transport Options to Travel to or from  
Mass Transit Before Shared E-Scooters Became Available 

Transport Option  Never (%) Seldom (%) Frequently (%) 
Personal vehicle 58.01 11.22 28.91 
Ride-hailing (Uber and Lyft) 31.13 21.39 45.64 
Carpool 75.06 12.38 10.72 
Taxi 78.24 14.41 5.50 
Walk 6.70 6.42 85.03 
Personal bike 62.82 11.55 23.79 
Shared bike (Divvy) 58.80 17.37 21.99 
Skateboard 91.87 3.37 2.91 
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The researchers can investigate the breakdown by respondent group to determine how the presence 
of e-scooters could affect their respective travel behaviors (Table 4). Using a personal vehicle to 
connect to or from mass transit, for instance, was used more frequently among all respondent 
groups. The largest percentage was for black respondents: 47.0% compared to the 29.0% overall 
response rate. There is a similar trend for carpooling, where black respondents are twice as likely to 
have taken that mode frequently.  

Table 4. Percentage of Respondents Who Indicated Frequently Using the Following Transport 
Options for Daily Travel during the First Pilot 

Transport Option  All (%) Black (%) Low Income (%) Priority (%) Less Education (%) 
Personal vehicle 28.91 46.96 32.10 42.05 40.53 
Ride-hailing (Uber and Lyft) 45.64 52.61 49.05 47.00 46.72 
Carpool 10.72 21.74 13.83 16.96 16.70 
Taxi 5.50 13.04 5.87 9.54 7.32 
Walk 85.03 73.04 84.28 77.39 77.67 
Personal bike 23.79 28.26 26.70 34.63 28.33 
Shared bike (Divvy) 21.99 20.00 23.01 19.43 20.26 
Skateboard 2.91 5.22 4.45 6.71 6.75 

 

Since there have been two pilot periods for shared e-scooters in Chicago, the purposes for using e-
scooters may have changed (Table 5). During the first pilot, June to October 2019, respondents 
frequently reported using e-scooters for leisure and other activities. Another frequent use of e-
scooters in the first pilot was transit. Around 59% of respondents frequently used e-scooters to avoid 
other transit options, and another 38% used them to connect to other transportation methods during 
transit. Despite frequent use by young people, not many respondents used e-scooters to get to 
school or class (10.7%).  

Table 5. Respondent Frequency of Trip Purpose during the First Pilot 

Purpose  Never (%) Once (%) Frequently (%) 
Riding around and having fun 16.90 23.96 59.14 
Avoiding using transit 26.36 14.63 59.01 
Attending recreational activities (bar, theater, etc.) 22.70 14.88 62.42 
Getting exercise 79.70 6.68 13.62 
Visiting friends/relatives 33.04 15.89 51.07 
Doing household errands 55.49 12.11 32.41 
Eating meals outside of home 43.25 15.13 41.61 
Getting to or from my parked vehicle 76.29 8.58 15.13 
Getting to or from transit 48.80 13.11 38.08 
Going to the workplace 64.44 8.70 26.86 
Getting back from the workplace to home 64.56 7.31 28.12 
Getting to or from school/class 85.37 3.91 10.72 
Doing routine shopping (e.g., groceries) 62.30 11.60 26.11 
All other shopping activities 61.16 9.96 28.87 
Healthcare appointments 78.06 9.33 12.61 
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Separating the respondents by group and showing their response rate for the purpose of e-scooter 
trips during the first pilot (Table 6) will aid in understanding the role broader e-scooter programs 
might play in the travel behavior of these interested groups. Black and less educated respondents 
indicated more frequent e-scooter trips with the following purposes: having fun, avoiding transit, 
exercising, doing errands, connecting to or from transit, commuting to or from both work and school, 
all shopping activities, and attending healthcare appointments. This could indicate that e-scooters 
had the largest impact on improved mobility for these groups and facilitated trips to happen that 
otherwise would not have, given that black and less educated respondents were the largest groups to 
indicate “no trip” above in Figure 18. 

Table 6. Percentage of Respondents Who Indicated Frequently Having a  
Given Trip Purpose during the First Pilot 

Purpose  All 
(%) 

Black 
(%) 

Low Income 
(%) 

Priority 
(%) 

Less Education 
(%) 

Riding around and having fun 59.14 73.33 62.57 58.49 72.41 
Avoiding using transit 59.02 70.00 60.29 64.15 67.24 
Attending recreational activities (bar, 
theater, etc.) 62.42 61.67 56.57 56.60 56.90 

Getting exercise 13.62 31.67 16.57 18.87 30.46 
Visiting friends/relatives 51.07 58.33 51.71 45.28 58.05 
Doing household errands 32.41 51.67 37.43 34.91 45.98 
Eating meals outside of home 41.61 50.00 40.57 36.79 45.98 
Getting to or from my parked vehicle 15.13 31.67 18.57 21.70 28.16 
Getting to or from transit 38.08 53.33 44.57 47.17 53.45 
Going to the workplace 26.86 48.33 34.29 36.79 41.38 
Getting back from the workplace to 
home 

28.12 41.67 34.00 38.68 41.38 

Getting to or from school/class 10.72 23.33 16.86 11.32 21.26 
Doing routine shopping (e.g., groceries) 26.10 43.33 31.14 27.36 41.38 
All other shopping activities 28.88 50.00 32.57 30.19 44.83 
Healthcare appointments 12.61 26.67 16.57 13.21 20.11 

 

Since this study took place during the COVID-19 pandemic, many purposes may have lower responses 
than usual (Table 7). For example, the number of respondents who reported that they frequently use 
e-scooters to attend recreational activities dropped by more than 31%. Nearly all trip purposes have 
at least 50% of respondents answering “never,” and only five have 30% or more of respondents 
answering “frequently.” Overall, the pandemic greatly limited the use of e-scooters for recreation and 
travel.  

The second pilot period serves as an opportunity to gauge how lockdowns impact overall travel 
behavior, and separating respondents by interested groups allows us to measure disparity in this 
impact (Table 8). Even with overall decreased travel, black and less educated respondents still 
reported the same trip purposes more frequently than the overall response rate when compared to 
the first pilot (Table 6).  



21 

Table 7. Respondent Frequency of Trip Purpose during the Second Pilot 

Purpose  Never (%) Once (%) Frequently (%) 
Riding around and having fun 44.83 21.98 33.18 
Avoiding transit because of concerns about COVID-19 45.65 10.97 43.38 
Avoiding using transit for other reasons 57.54 9.32 33.14 
Attending recreational activities (bar, theater, etc.) 56.09 13.33 30.58 
Getting exercise 80.82 5.65 13.53 
Visiting friends/relatives 52.17 13.91 33.92 
Doing household errands 57.54 12.90 29.56 
Eating meals outside of home 64.15 11.55 24.30 
Getting to or from my parked vehicle 83.91 5.41 10.68 
Getting to or from transit 72.71 10.00 17.30 
Going to the workplace 78.26 5.65 16.09 
Getting back from the workplace to home 78.16 5.75 16.09 
Going to school 91.88 2.32 5.80 
Getting back from school to home 91.79 2.37 5.85 
Doing routine shopping (e.g., groceries) 65.41 11.59 22.99 
All other shopping activities 65.27 11.11 23.62 
Healthcare appointments 80.72 8.79 10.48 

Table 8. Percentage of Respondents Who Indicated Frequently Having a  
Given Trip Purpose during the Second Pilot 

Purpose  All 
(%) 

Black 
(%) 

Low Income 
(%) 

Priority 
(%) 

Less Education 
(%) 

Riding around and having fun 33.19 47.71 39.52 39.46 47.69 
Avoiding transit because of concerns 
about COVID-19 43.38 48.62 47.70 39.85 49.30 

Avoiding using transit for other reasons 33.14 46.33 37.03 39.46 42.66 
Attending recreational activities (bar, 
theater, etc.) 30.58 33.03 32.53 29.89 31.59 

Getting exercise 13.53 31.65 17.27 25.67 25.55 
Visiting friends/relatives 33.91 40.83 37.92 37.16 38.63 
Doing household errands 29.57 43.12 32.34 32.57 38.83 
Eating meals outside of home 24.30 33.49 25.95 30.27 30.38 
Getting to or from my parked vehicle 10.68 23.39 14.27 18.39 19.72 
Getting to or from transit 17.29 30.73 23.05 27.97 31.19 
Going to the workplace 16.09 28.44 22.65 24.52 30.99 
Getting back from the workplace to home 16.09 26.61 22.65 25.67 30.38 
Going to school 5.80 15.14 8.58 9.20 13.08 
Getting back from school to home 5.85 13.76 8.58 10.34 12.68 
Doing routine shopping (e.g., groceries) 23.00 33.94 27.15 24.90 31.59 
All other shopping activities 23.62 33.94 26.85 25.67 32.80 
Healthcare appointments 10.48 17.43 13.17 11.49 14.49 
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Respondents were also able to report their experiences with the distances the nearest available e-
scooter was to them during this study (Table 9). Respondents reported they typically did not have to 
walk for more than 5 minutes to pick up an e-scooter; however, around 13% of respondents had at 
least one occurrence of having to walk more than 10 minutes to find an e-scooter. The most frequent 
length of time a respondent would have to walk is 2 minutes or less, with 55.3% reporting that time 
as occurring frequently.  

Table 9. How Frequently Respondents Faced the Following Situations during the Second Pilot 

Situation Never (%) Once (%) Frequently (%) 
Walk for less than 2 minutes to pick it up 26.43 18.31 55.27 
Walk for 2 to 5 minutes to pick it up 37.73 17.92 44.35 
Walk for 5 to 7 minutes to pick it up 64.30 13.33 22.37 
Walk for 7 to 10 minutes to pick it up 80.63 7.83 11.55 
Walk for more than 10 minutes to pick it up 86.86 5.31 7.82 

Breaking these accessibility situations down by respondent group shows an even distribution of 
respondents who indicated frequently having to walk less than 5 minutes (Table 10). For short walk 
durations, the respondent groups are generally equal to or report slightly higher frequency than the 
overall response rate. However, for walk durations greater than 5 minutes, each respondent group 
reports longer walks more frequently than the overall response rate (close to twice as frequently in 
some instances). This result indicates there are larger proportions of these respondent groups that 
have lower accessibility to e-scooter services. 

Table 10. Percentage of Respondents That Faced the Following Situations during the Second Pilot 

Situation All (%) Black (%) Low Income (%) Priority (%) Less Education (%) 
Walk for less than 2 minutes 55.27 55.96 55.89 51.34 56.34 
Walk for 2 to 5 minutes 44.35 47.71 47.01 45.59 50.91 
Walk for 5 to 7 minutes 22.37 30.73 25.75 29.89 30.99 
Walk for 7 to 10 minutes 11.55 21.10 15.37 16.86 19.32 
Walk for more than 10 minutes 7.83 14.68 10.68 12.64 12.68 

ATTITUDINAL FACTORS 

Personal Experience 
Respondents were also asked to rate their strength of agreement with certain statements that relate 
to the overall e-scooter experience (Table 11). Most respondents found using an e-scooter to be 
enjoyable and fun with 88.2% and 89.2% agreeing or strongly agreeing, respectively, with those 
statements. Many respondents also believe that e-scooters have potential in the city. Sixty-eight 
percent of respondents thought e-scooters made their transit more convenient, 64.8% thought e-
scooters make transit more efficient, and 61.6% thought e-scooters can help solve different 
transportation-related issues in Chicago. Regarding the safety of e-scooters, 38.9% of respondents 
felt safe while 56.3% were in the middle of somewhat agreeing and somewhat disagreeing. Very few, 
however, felt it was unsafe. Overall, respondents tended to report that e-scooters are easy to use. 
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Nearly three-quarters felt the smartphone apps were easy to use, 63.4% said that e-scooters do not 
require a lot of mental effort, and 69.4% felt that e-scooters do not require a lot of physical effort. 
Respondents, however, felt a little mixed about the accessibility and effectiveness of customer 
service of the shared e-scooter companies, with 62.3% falling between somewhat agree and 
somewhat disagree. 

Table 11. How Respondents Rated the Overall Experience of Using E-Scooters 

Statement  Strongly 
agree 

(%) 

Agree 
(%) 

Somewhat 
agree (%) 

Neutral 
(%) 

Somewhat 
disagree 

(%) 

Disagree 
(%) 

Strongly 
disagree 

(%) 
Using shared e-scooters is 
enjoyable. 57.46 30.72 5.45 1.8 1.48 0.74 2.36 

Using shared e-scooters is fun. 59.17 29.98 5.54 1.85 0.92 0.74 1.8 
Using shared e-scooters is safe. 13.81 25.13 32.29 13.58 10.39 2.73 2.08 
Shared e-scooters are only useful 
for traveling to recreational 
activities (bar, theater, etc.). 

11.87 10.12 11.82 13.21 12.98 25.22 14.78 

Shared e-scooters are only useful 
for the sake of enjoyment and 
having a fun time. 

10.35 9.05 8.64 11.32 12.24 28.82 19.58 

Using shared e-scooters makes 
my travel more convenient. 33.44 34.55 19.03 8.5 2.03 1.06 1.39 

Using shared e-scooters makes 
my travel more efficient. 31.78 33.03 19.72 10.25 2.68 0.97 1.57 

Shared e-scooters are useful in 
meeting my daily transportation 
needs. 

22.08 19.95 17.92 19.72 6.93 8.45 4.94 

Shared e-scooters have the 
potential to be part of solving 
transportation-related issues in 
Chicago. 

33.67 27.94 20.09 11.27 2.86 1.94 2.22 

The e-scooter smartphone apps 
are, overall, easy to use and easy 
to understand. 

30.81 39.4 17.14 5.5 4.11 1.57 1.48 

Using shared e-scooters does not 
require a lot of my mental effort. 25.91 37.51 17.64 6.28 7.02 3.93 1.71 

Using shared e-scooters does not 
require a lot of my physical 
effort. 

29.7 39.68 16.07 5.68 5.4 2.12 1.34 

If I have a problem with the 
cellphone-applications and 
shared e-scooters, I can easily get 
the support I need from the 
operators to resolve the issue. 

11.59 16.44 11.87 43.28 7.16 5.68 3.97 

Future Usage 
E-scooters seem to be seen in a positive lens by respondents (Table 12). More than 78% of 
respondents would like to continue using shared e-scooters in the city, and over three-quarters of 
respondents would recommend using shared e-scooters to others. As seen earlier, many feel that 
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shared e-scooters have a future in Chicago’s transportation infrastructure. Around 77% of 
respondents think that e-scooters make traveling easier and believe they should be a part of the 
transportation system in Chicago. 

Table 12. How Respondents Perceive Their Future Use 

Statement Strongly 
agree 

(%) 

Agree 
(%) 

Somewhat 
agree (%) 

Neutral 
(%) 

Somewhat 
disagree (%) 

 Disagree 
(%) 

Strongly 
disagree 

(%) 
I intend to continue 
using shared e-scooters 
in the future. 

49.52 29.47 11.69 4.34 1.89 1.25 1.85 

I will recommend 
others to use shared e-
scooters. 

46 30.39 12.98 5.87 1.71 1.25 1.8 

I believe shared e-
scooters should be a 
part of Chicago’s 
transportation system. 

48.82 28.5 10.9 7.16 1.57 1.11 1.94 

An e-scooter makes it 
easier to reach a 
destination and/or 
complete a trip. 

46.28 31.09 13.58 5.31 1.57 0.83 1.34 

E-Scooter Features 
A main draw toward e-scooters is the ability to avoid traffic congestion (see Table 13). More than 
61% of respondents believed using e-scooters helps avoid congestion, and another 47.6% believed 
that e-scooters are more convenient than other modes of transportation. 

Because shared e-scooters are provided by independent companies, the standard of service may 
vary. Table 14 presents the respondents’ opinions. Around 60% of respondents believe that the 
companies providing the services deliver what they promise. There are many factors that may affect 
this. Dependability, availability, and affordability are all important factors to the users. More than half 
of respondents feel that e-scooters are dependable, but the majority of respondents do not agree on 
availability and affordability. Regarding the availability of e-scooters, 49.1% had mixed feelings 
(answered somewhat agree, neutral, or somewhat disagree to the question) compared to the 44.1% 
that reported they typically found available e-scooters when and where they wanted them. 
Affordability, however, had the largest number of respondents report they had mixed feelings, with 
around half falling between somewhat agree and somewhat disagree. 
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Table 13. Reasons Respondents Indicated They Chose to Use Shared E-Scooters 

Statement Strongly 
agree (%) 

Agree 
(%) 

Somewhat 
agree (%) 

Neutral 
(%) 

Somewhat 
disagree (%) 

Disagree 
(%) 

Strongly 
disagree 

(%) 
By using shared e-
scooters, I can avoid 
traffic congestion. 

29.24 32.66 26.74 7.67 0 2.12 1.57 

By using shared e-
scooters, I can 
improve my health. 

8.96 10.9 25.91 28.04 0 20.46 5.73 

Riding a shared e-
scooter is more 
convenient than 
other travel modes. 

19.82 27.81 34.92 12.42 0 3.6 1.43 

Table 14. Perceived Level of Service Provided by E-Scooter Operators 

Statement Strongly 
agree (%) 

Agree 
(%) 

Somewhat 
agree (%) 

Neutral 
(%) 

Somewhat 
disagree (%) 

Disagree 
(%) 

Strongly 
disagree 

(%) 
I believe that shared 
e-scooter companies 
deliver what they 
promise to users. 

19.03 41.85 20.97 12.66 2.59 1.85 1.06 

I believe that there 
are enough e-scooter 
vendors in Chicago. 

21.8 38.43 14.32 13.9 5.45 3.83 2.26 

I believe that shared 
e-scooters are 
dependable. 

16.81 40.23 24.94 10.02 4.94 1.85 1.2 

I believe that shared 
e-scooters are usually 
available wherever 
and whenever I want. 

13.26 30.81 28.59 8.96 11.59 4.71 2.08 

I believe that shared 
e-scooters are 
affordable. 

10.85 22.03 23.23 11.09 16.49 8.78 7.53 

Technical 
Respondents were also asked about their feelings on the safety and convenience of e-scooters 
around the city (Table 15). Many respondents feel that e-scooters did not pose an inconvenience or 
threat to them while walking on the sidewalk, riding bikes, or waiting at a bus stop or train station. 
Nearly 70% of respondents felt that, when parked on the sidewalk, e-scooters did not cause any 
inconveniences or danger to them, and another 72.5% felt that e-scooters did not impede their ability 
to access bus stops or train stations. Slightly more respondents felt that there were more e-scooters 
riding on the sidewalk during this trial period compared to the 2019 pilot, but 52.0% did not notice a 
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significant difference. In order to improve the convenience of e-scooters, around 60% of respondents 
felt that e-scooters should be able to be parked on residential streets, as this would likely reduce the 
number of e-scooters parked on sidewalks. 

Table 15. How Respondents Perceive the Technical Aspects of Shared E-Scooter Services 

Statement Strongly 
agree 

(%) 

Agree 
(%) 

Somewhat 
agree (%) 

Neutral 
(%) 

Somewhat 
disagree 

(%) 

Disagree 
(%) 

Strongly 
disagree 

(%) 
The placement of e-
scooters on the sidewalk 
has been a source of 
inconvenience or danger 
to me 

2.77 3.46 7.99 9.7 10.07 37.46 28.55 

Requiring e-scooters to 
be locked to a fixed 
object when parked 
reduce inconvenience or 
danger to me 

17.55 22.12 11.69 14.64 6.33 15.2 12.47 

The presence of e-
scooters parked on 
sidewalks make it more 
difficult for me to find 
bike parking 

2.86 3.23 6.51 22.31 8.22 32.15 24.71 

The presence of e-
scooters parked on 
sidewalks make it more 
difficult for me to access 
a bus stop or train 
station 

1.43 1.34 3.19 13.58 7.94 39.91 32.61 

I believe e-scooters 
should be parked in 
designated racks, like 
Divvy bikes. 

7.16 7.94 13.39 16.86 10.62 23.05 20.97 

I believe e-scooters 
should be allowed to 
park on residential 
streets. 

26.65 32.24 14.23 13.63 3.74 5.54 3.97 

Compared to the 2019 
scooter pilot, there were 
more e-scooters riding 
on the sidewalk. 

10.21 13.9 8.22 35.2 8.59 16.3 7.58 

IMPROVEMENT IN FUTURE SERVICES 
Since shared e-scooter programs are new in Chicago, a portion of the survey was dedicated to 
collecting the respondents’ opinions on various ways that the service can improve in the future. Two 
important areas of improvement are accessibility and safety. Nearly all respondents reported that 
they had used a smartphone as well as a credit card to complete their e-scooter trip, and three-



27 

quarters of the respondents reported that they did not frequently wear a helmet while riding the e-
scooter (Table 16). Around 60% of the respondents would like the city to integrate e-scooter payment 
with Ventra to make payments easier and to add dedicated e-scooter lanes on streets in Chicago to 
make riding on them safer for both riders and pedestrians. Because the e-scooters are still in their 
trial phase, the area of operation does not cover the entire city. Some, around 40%, would like if e-
scooters could be used on the Lakefront trail, and 45% would like if e-scooters could be used 
downtown (Figure 19). 

Table 16. Respondent Opinions on Possible Improvements to E-Scooter Services 

Statement No or almost 
never (%) 

 Yes, 
sometimes (%) 

 Yes, 
often (%) 

Did the presence of e-scooters parked on sidewalks make it 
more difficult for you to find bike parking? 86.74 10.62 2.63 

Did you complete an e-scooter trip without using 
smartphone? 94.78 2.73 2.49 

Did you complete an e-scooter trip without using a credit 
or debit card? 85.08 7.53 7.39 

Do you usually wear a helmet during your ride with e-
scooter? 74.97 15.61 9.42 

 

 
Figure 19. Bar plot. How respondents think the shared e-scooter program can be improved. 

RESPONDENT DISTRIBUTION 
In the survey, the researchers asked respondents to specify their home locations approximately, and 
researchers scattered the locations on Chicago’s network. As seen in Figure 20, most users reside in 
the northern part of the pilot program.  
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Figure 20. Map. Where survey respondents live in Chicago. 
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CHAPTER 4: SHARED E-SCOOTER USAGE FREQUENCY 

INTRODUCTION 
Promoting micromobility options in cities presents a key opportunity to reduce car-based trips and 
support multimodal, sustainable, and more physically active modes of transportation. Empirical 
evidence shows that most car-based trips in the United States are short enough that people can 
perform them using micromobility options if the barriers to switching from a transportation mode as 
comfortable as private cars are resolved (Zarif et al., 2019). According to the 2017 National 
Household Travel Survey, 20% of all driving trips are 1 mile or less, 33% are 2 miles or less, and 43% 
are 3 miles or less (U.S. Department of Transportation, 2017). Not only does this point to the role that 
micromobility options—such as e-scooters and e-bikes—can play in curbing the usage of cars, but 
also the significant health implications that such modal shifts can have from sedentary vehicle-based 
trips to more active modes of transportation. As a practical way to encourage people to undergo 
modal shifts from private vehicles, the literature suggests the integration of various micromobility 
options, such as docked bike-sharing programs (e.g., Divvy bikes in the city of Chicago) or dockless 
bike and e-scooters into cities (Fu & Farber, 2017; Gu et al., 2019; Li et al., 2019).  

Nonmotorized transportation—such as walking or biking to destinations—can play an important role 
in promoting more physically active and positive public health outcomes. While walking and biking—
as the two most active micromobility options—provide notable physical health benefits, their modal 
share remains low. Sixty percent of all trips that are 1 mile or less are driven, while 35% of those trips 
are walked, and only 2.25% of those trips are biked (U.S. Department of Transportation, 2017). As a 
new form of micromobility service, the shared electric scooter (e-scooter) can enhance the suite of 
options available in cities to promote nonmotorized transportation and fill in the gaps when walking 
or biking are not preferred. For example, a study conducted in Tempe, Arizona, showed that the 
overwhelming reason that e-scooters were used by university staff was because it was more 
convenient and easier than walking in the heat (Sanders et al., 2020). The addition of e-scooters to 
cities may help to create environments that are more conducive to cycling and walking, as cities that 
accommodate e-scooters have also improved their infrastructures (Schmitt, 2019). Some e-scooter 
companies have touted the health benefits of e-scooters as offering low-intensity workouts that can 
help with core strength and serve as a medium to gain further physical activity (“Pure Electric”). 
While more direct links between e-scooters and physical health have yet to be determined, the 
potential e-scooters hold to encourage travel through non-sedentary motorized transportation and 
cities to invest more in active transportation-friendly infrastructures may be instrumental to leading 
to more physically active lifestyles.  

Furthermore, shared e-scooters couple the versatility of performing short- to medium-distance trips 
with the flexibility of not being docked at particular locations. Unlike docked shared bikes and other 
micromobility options, the shared e-scooter system has given its riders flexible pick-up and drop-off 
locations. Although e-scooters show potential as a mode of transportation, it is not clear yet whether 
individuals will adopt them for everyday use, especially in the COVID-19 pandemic era.  
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The COVID-19 pandemic has been perhaps the most significant disruption incident in modern human 
history, and it forced people to modify their habits to adjust to the pandemic (Salon et al., 2021; 
Shamshiripour et al., 2020a). More importantly, the pandemic overlapped with the widespread 
availability of new micromobility options in Chicago such as the shared e-scooter system. Early 
evidence in the United States shows that biking and walking increased during the COVID-19 pandemic 
(Shamshiripour et al., 2020b), which positively affects public health and transport sustainability. 
According to a new panel survey recently conducted in the United States, 30% of U.S. residents plan 
to take walks more frequently than they did before the pandemic, and nearly 15% plan to bike more 
in the post-pandemic era (Chauhan et al., 2021; Salon et al., 2021). To support these pandemic-
induced modal shifts toward active mobility, it is imperative to characterize the influential factors 
affecting the usage frequency of active transport modes. While walking and biking are the two 
popular non-auto modes of transport studied in the literature, the role of shared e-scooters has been 
overlooked as a newer form of micromobility that can enhance the micromobility options that cities 
can offer.  

This chapter aims to analyze the usage frequency of shared e-scooters in Chicago during the COVID-
19 pandemic. To do so, the research team designed a survey to understand the characteristics of 
shared e-scooter users in Chicago and the benefits of promoting shared e-scooters in the region. This 
online survey launched in the Chicago region from October to December 2020 and collected a rich set 
of data regarding the residents’ sociodemographic details and usage behavior regarding the shared e-
scooter system. Consistent with the scope of this study, one question was designed to inquire about 
individuals’ usage frequency associated with shared e-scooters during the COVID-19 pandemic. To 
characterize the usage frequency of shared e-scooters, the researchers utilized an ordered probit 
model that characterizes influential factors affecting the usage frequency of shared e-scooters while 
indirectly including the impacts of the COVID-19 pandemic.  

SURVEY DESIGN AND DATA ANALYSIS  
The final dataset for this model comprises 2,126 respondents after rejecting observations with either 
missing, invalid, or inaccurate information. Figure 22 shows the spatial distribution of respondents 
across the City of Chicago that the research team collected using Google Maps API, as shown in Figure 
21. The e-scooter riders’ data shows 60.1% of riders are male while 37.41% are female. The data 
suggests that more than 70% of shared e-scooter riders are less than 34 years old, indicating most e-
scooter riders in Chicago are Millennials and Gen Zers. Regarding education, around 75% of shared e-
scooter riders in Chicago have at least a bachelor’s degree. Moreover, more than 90% of shared e-
scooter riders have indicated that they have a driver’s license. Table 17 presents summary statistics 
of shared e-scooter riders’ key demographic attributes in the collected sample. 
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Figure 21. Screenshot. Online survey (using Google Maps API to specify residential location). 

 
Figure 22. Map. Where the survey respondents live in the City of Chicago. 
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Table 17. Summary Statistics of Shared E-Scooter Users’ Key Characteristics (N = 2,126) 

Variable  Category Share (%) 

Vehicle ownership 

    0 30.80 
    1 44.57 
    2 18.47 
    3 or more 6.14 

Household income 

    Under $20K 9.00 
    $20K–$50K 17.64 
    $50K–$100K 33.07 
    $100K–$150K 15.05 
    $150K or more 17.18 
    Prefer not to answer 8.03 

Gender 

    Male 60.10 
    Female 37.41 
    Other 0.92 
    Prefer not to answer 1.57 

Age 

    18–24 17.85 
    25–34 53.50 
    35–44 20.28 
    45–54 6.30 
    55–64 1.77 
    65 or more 0.28 

Race 

    White, not Hispanic or Latino 58.90 
    Black or African American 11.10 
    Hispanic/Latino 16.17 
    Asian 8.0 
    Hawaiian or Pacific Island 0.80 
    Native American 0.75 
    Other 3.55 

Education 

    High school or less 5.49 
    Some college or Associate 
degree 

19.12 

    Bachelor’s degree 50.02 
    Graduate degree  23.69 
    Prefer not to answer 1.66 

Have a driver’s license  
    No 9.7 
    Yes 90.3 

Note: The sum of the percentages may not equal 100 due to observations with missing values. 



33 

In this chapter, the dependent variable is derived from a question focusing on the frequency of riding 
shared e-scooters in Chicago. More specifically, the research team asked respondents to indicate how 
frequently they used shared e-scooters in the past month. Figure 23 shows the distribution of 
responses in the sample. According to this figure, most shared e-scooter riders indicated they took 
zero to three trips, including 17.1% of riders who took only one trip. More than 6% of riders said they 
took more than 10 trips in the last month, and the figure indicates that this relatively small group of 
riders took more than one-third of all trips (City of Chicago, 2021). Table 18 also defines explanatory 
variables that turned out to be significant in the final model. 

 

 
Figure 23. Bar chart. Frequency of using a shared e-scooter in the past month  

(between Oct.–Nov. 2020). 
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Table 18. Definition of Explanatory Variables Turned Out to Be Significant in the Model (N = 2,126) 

Explanatory variable Definition Mean Std. 
Dev. 

Frequency 
(%) 

Sociodemographic: White 1: If the respondent’s ethnicity is White/ 
0: Otherwise 

  69.65 

Sociodemographic: LowIncome 1: If the respondent is less than $50K/ 0: 
Otherwise 

  26.65 

Sociodemographic: Female 1: If the respondent’s gender is female/ 
0: Otherwise 

  37.41 

Sociodemographic: Senior 1: If the respondent’s age is 64 years old 
or more/ 0: Otherwise 

  0.28 

Sociodemographic: GenZ 1: If the respondent’s age is between 18 
and 23 years old / 0: Otherwise 

  17.85 

Sociodemographic: Millennials  1: If the respondent’s age is between 24 
and 34 years old / 0: Otherwise 

  53.50 

Sociodemographic: Vehicle0 1: If the respondent’s household has no 
personal vehicle/ 0: Otherwise 

  30.80 

Sociodemographic: Vehicle1 1: If the respondent’s household has only 
one personal vehicle/ 0: Otherwise 

  44.57 

Sociodemographic: Dlicense  1: If the respondent has a driver license / 
0: Otherwise 

  90.25 

Sociodemographic: Student 1: If the respondent is a student / 0: 
Otherwise 

  16.90 

Travel Behavior: ReducedFeeTransit 1: If the respondent has a discounted-
rate transit card / 0: Otherwise 

  9.10 

Travel Behavior: OnlineShopper 1: If the respondent has more than 10 
incidents of online shopping in the past 
month / 0: Otherwise 

  19.58 

Travel Behavior: DIVVY 1: If the respondent has bike-share 
membership / 0: Otherwise 

  22.72 

Built environment: 
SLD_D3amm_M6 

1: If network density in terms of facility 
miles of multi-modal links per square 
mile is more than 6 / 0: Otherwise 
 

  28.49 

Built environment: SLD _D4c_L50 Aggregate frequency of transit service 
within 0.25 miles of CBG boundary per 
hour during evening peak period if this 
value is less than 50/ 0: Otherwise  
 

0.82 5.44  

Built environment: SLD _D4dei_M3 1: If Regional Centrality Index – Transit is 
more than 3 / 0: Otherwise 
   

  70.71 

METHOD 
Because the dependent variables in this study are ordinal, the researchers utilized an ordered probit 
model to characterize the factors affecting usage frequency of shared e-scooters. An ordered probit 
structure assumes a normal distribution for error terms and prevents the estimation difficulties 
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related to the logit structure; thus, an ordered probit model is more utilized than an ordered logit 
model in the literature (Washington et al., 2010).   

The order probit is an underlying random utility model or latent regression model, in which the 
probabilities of ordinal outcomes in the model are driven by considering a continuous latent utility, 
𝑦𝑦∗(Greene, 2003; Greene & Hensher, 2010; Washington et al., 2010). This variable is typically 
specified as a linear function for each observation (Greene, 2003; Washington et al., 2010), as in 
Equation (1) where, 𝐗𝐗 is a vector of explanatory variables, 𝜷𝜷′ is a vector of parameters to be 
estimated, and 𝜀𝜀~𝑁𝑁(0,1) is the error term which is normally distributed across observations. 

𝑦𝑦∗ = 𝐗𝐗𝜷𝜷′ + 𝜀𝜀 Equation (1) 

The outcome variable (𝑦𝑦) that is observed in discrete form through a censoring structure as in Eq. (2) 
(Greene, 2003; Greene & Hensher, 2010; Washington et al., 2010), where 𝜇𝜇1, … , 𝜇𝜇𝐽𝐽−1 are threshold 
parameters which are estimated jointly with 𝜷𝜷′( Equation [2]). In this study, the categories of shared 
e-scooter usage frequency (shown in Figure 3) are assumed as 0: zero trip, 1: one trip, 2: two to four 
trips, 3: five to twelve trips, and 4: more than twelve trips.  

𝑦𝑦 = 0       𝑖𝑖𝑖𝑖    𝑦𝑦∗ ≤ 0   
𝑦𝑦 = 1       𝑖𝑖𝑖𝑖    0 ≤ 𝑦𝑦∗ ≤ 𝜇𝜇1    
𝑦𝑦 = 2       𝑖𝑖𝑖𝑖    𝜇𝜇1 ≤ 𝑦𝑦∗ ≤ 𝜇𝜇2 
… 
𝑦𝑦 = 𝐽𝐽       𝑖𝑖𝑖𝑖    𝜇𝜇𝐽𝐽−1 ≤ 𝑦𝑦∗ 

Equation (2) 

The observed variable (𝑦𝑦) corresponds to an integer ordering, and 𝐽𝐽 is the highest ordered integer. 
Assuming 𝜀𝜀~𝑁𝑁(0, 1), the estimation problem is to determine the probability of 𝐽𝐽 for each 
observation (Greene, 2003; Washington et al., 2010), as shown in Equation (3). Where Φ(. ) is the 
standard normal cumulative density function. 

𝑃𝑃(𝑦𝑦 = 0|𝐗𝐗) = Φ(−𝐗𝐗𝜷𝜷′)   
𝑃𝑃(𝑦𝑦 = 1|𝐗𝐗) = Φ(𝜇𝜇1 − 𝐗𝐗𝜷𝜷′) −Φ(−𝐗𝐗𝜷𝜷′)   
𝑃𝑃(𝑦𝑦 = 2|𝐗𝐗) = Φ(𝜇𝜇2 − 𝐗𝐗𝜷𝜷′) −Φ(𝜇𝜇1 − 𝐗𝐗𝜷𝜷′)   
… 
𝑃𝑃(𝑦𝑦 = 𝑖𝑖|𝐗𝐗) = Φ(𝜇𝜇𝑖𝑖 − 𝐗𝐗𝜷𝜷′) −Φ(𝜇𝜇𝑖𝑖−1 − 𝐗𝐗𝜷𝜷′)   
… 
𝑃𝑃(𝑦𝑦 = 𝐽𝐽|𝐗𝐗) = 1 −Φ�𝜇𝜇𝐽𝐽−1 − 𝐗𝐗𝜷𝜷′�.   
 

Equation (3) 

Having the choice probabilities from Equation (3), the log-likelihood function is given in Equation (4) 
(Washington et al., 2010). Where, 𝛿𝛿𝑖𝑖𝑖𝑖 = 1 if the observed ordinal outcome for observation 𝑛𝑛 is 𝑖𝑖; 
otherwise, it would be equal to 0. 

𝐿𝐿𝐿𝐿 = ��𝛿𝛿𝑖𝑖𝑖𝑖. 𝐿𝐿𝑛𝑛[Φ(𝜇𝜇𝑖𝑖 − 𝐱𝐱′𝑖𝑖𝜷𝜷) −Φ(𝜇𝜇𝑖𝑖+1 − 𝐱𝐱′𝑖𝑖𝜷𝜷)]
𝐽𝐽

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

 
Equation (4) 

The joint probability for 𝑦𝑦1 = 𝐽𝐽 and 𝑦𝑦2 = 𝐾𝐾 are presented in Equation (4), where Φ(. ) is the standard 
normal cumulative density function. 
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RESULTS 
Table 19 presents the estimation results for the ordered probit model, characterizing the usage 
frequency of shared e-scooters in Chicago. The results include the estimated parameters, t-statistics, 
and the log-likelihood values at both convergence and zero. The coefficients in the model are 
statistically significant within a 90 percent confidence interval.  

Table 19. Estimation Result of Ordered Probit Model 

Parameters 
Shared E-Scooter  
Usage Frequency Model 
Coefficient t-stat 

Explanatory variables    
Sociodemographic: White 0.065* 1.60 
Sociodemographic: LowIncome 0.184*** 3.17 
Sociodemographic: Female −0.323*** −6.57 
Sociodemographic: Senior −0.977** −2.07 
Sociodemographic: GenZ 0.181** 2.28 
Sociodemographic: Millennials  0.106** 1.91 
Sociodemographic: Vehicle0 0.348*** 5.32 
Sociodemographic: Vehicle1 0.101** 1.69 
Sociodemographic: Dlicense  0.329*** −3.84 
Sociodemographic: Student −0.142** −2.00 
Travel Behavior: ReducedFeeTransit 0.226*** 2.59 
Travel Behavior: OnlineShopper 0.144** 2.44 
Travel Behavior: DIVVY 0.090* 1.61 
Built environment: SLD_D3amm_M6 0.073* 1.64 
Built environment: SLD _D4c_L50 −0.008** −1.83 
Built environment: SLD _D4dei_M3 0.117** 2.09 
Thresholds   
𝜇𝜇1 −0.61  
𝜇𝜇2 −0.122  
𝜇𝜇3 0.79  
𝜇𝜇4 1.72  
Model Statistics    
Number of observations 2126 
Log-likelihood at zero −3172.66 
Log-likelihood at convergence  −2442.89 
*, **, and *** mean 90%, 95%, and 99% level of confidence, respectively.  

Sociodemographic Factors 
As shown in Table 19, the model indicates that race and ethnicity might be important factors 
influencing the usage frequency of shared e-scooters in Chicago. Per the results, white people are 
more likely than other racial groups to use shared e-scooters during the COVID-19 pandemic. This 
finding is in line with a study by Sanders et al. (2020), who suggested the significant impact of race 
and ethnicity on shared e-scooter usage in Tempe, Arizona. As suggested by Sanders et al. (2020), one 
possible reason for this finding is that the white population has more accessibility to shared e-
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scooters than other segments of the population, including African American, Latino/Hispanic, and 
black.   

Also, annual household income is found to be significant in the frequency associated with the usage 
of shared e-scooters. Based on the model, individuals living in low-income households (i.e., 
household earning less than $50K per year) are more likely to use shared e-scooters than others.  

Concerning gender, the results indicate that women are less likely than males to ride with shared e-
scooters during the COVID-19 pandemic. Similarly, Sanders et al. (2020) highlighted the lower usage 
frequency of shared e-scooters by women. One possible reason is that women are less likely to 
perceive e-scooters as a “very safe” mode of transport and are more worried of getting hit, hitting 
others, falling, or losing control (Sanders et al., 2020).  

According to Table 19, the age of respondents is found to affect the usage frequency of shared e-
scooters. More specifically, seniors are less likely to use this micromobility option. Several possible 
reasons might explain this finding. In contrast, the results suggest that Millennials and Gen Zers are 
more likely to use shared e-scooters in Chicago during the COVID-19 pandemic. One possible reason 
for this finding is that Millennials and Gen Zers are more tech-savvy than older groups (Clayton et al., 
2017; Lyons et al., 2016), which leads them to be adept at finding information on new mobility and 
micromobility services such as e-scooters. Younger generations are also physically and mentally more 
open to switching to active modes such as shared e-scooters. 

Moreover, the research team found that having limited access to personal vehicles in households 
might positively affect the usage frequency of shared e-scooters during the pandemic. According to 
the model presented in Table 19, individuals living in households with zero or one vehicle are more 
likely to use shared e-scooters more frequently than others.  

The usage frequency of shared e-scooters varies by variable and indicates whether a respondent is a 
student. More specifically, the results show that students are less likely to use shared e-scooters 
frequently during the COVID-19 pandemic. One possible reason is that most schools only offer virtual 
classes, and then students are less likely to perform trips during the COVID-19 pandemic.  

Travel Behavior Factors 
Shared e-scooters have the potential to interact with both transit and bike-sharing systems in two 
ways: 1) complementary and 2) substitution (City of Chicago, 2021). The study’s findings indirectly 
add to the literature that such interaction might be complementary in Chicago. Per the results, those 
individuals who have access to reduced-fare transit cards are more likely to use shared e-scooters 
more frequently. Similarly, individuals who have Divvy (the only bike-share program operating in the 
City of Chicago) bike-share membership are more likely to use shared e-scooters more frequently.   

Another variable that turned out to be significant in the model is respondents’ online shopping 
behaviors in the past month (of the survey). As can be seen in Table 19, frequent online shoppers are 
more likely to perform trips utilizing shared e-scooters than others. One possible reason is that those 
individuals are more familiar with technologies, especially phone applications, leading them to try 
shared e-scooters more frequently. Also, those individuals might care more about the environment, 
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encouraging them to use greener and safer (with respect to COVID-19) transport options such as 
shared e-scooters (Nazari et al., 2019). 

Built Environment Factors 
The study’s results show that living in a block group, where the network density in terms of facility 
miles of multimodal links per square mile is higher, might lead people to become more frequent users 
of shared e-scooters during the COVID-19 pandemic. In line with the literature highlighting the effect 
of the built environment on shaping individuals’ modality styles (i.e., the lifestyle associated with 
long-term mode choice decisions) (Shamshiripour et al., 2020b), this finding might be because people 
living in those areas are more prone toward using active modes.  

Transit-related built environment variables have also turned out to be significant in the model. More 
specifically, where the aggregate frequency of transit service within 0.25 miles of a block group 
boundary (where a respondent resides) per hour during evening peak period is lower, people are less 
likely to use shared e-scooters frequently. This finding is in good agreement with the research team’s 
previous results, highlighting the potential integration (complementary or substitution) of public 
transit with shared e-scooters. Furthermore, living in transit-oriented areas leads people to be more 
inclined to substitute public transit with active transport modes such as walking and biking as a safer 
transport option during the COVID-19 pandemic (Bucsky, 2020).   

CONCLUSIONS 
This study is one of the first to evaluate the frequency and trends of e-scooter usage during the 
COVID-19 pandemic, providing insight into how this mode was used during a major disruption. Prior 
to the COVID-19 pandemic, there had already been a major health crisis due to high levels of physical 
inactivity and sedentary behavior (Kohl et al., 2012; Ozemek et al., 2019; Pratt et al., 2020). The 
World Health Organization (2020) reports that 31% of individuals 15 years or older are physically 
inactive, and around 3.2 million deaths per year are attributable to physically inactive lifestyles. The 
unique context that the onset of the pandemic has brought about—notably, social distancing—
means that many previously held activities have been suspended (such as physical education or 
athletic programs) (Shamshiripour et al., 2020a). Thus, the importance of promoting more physically 
active societies and enabling that through appropriate multimodalities and infrastructures is 
paramount.  

A prime area of opportunity lies within modal shifts from sedentary and car-based travel to more 
active modes of transportation. Data reported by the National Household Travel Survey shows how 
most short trips that are less than a mile are driven, showing the potential that micromobility and 
active transportation can play in promoting a modal shift (U.S. Department of Transportation, 2017). 
As a newer form of micromobility, shared e-scooters can enhance the micromobility options available 
in a city and help modal shift from cars. This study set out to analyze the frequency of shared e-
scooter usage in Chicago during the pandemic, thus providing insight into how the service is being 
used and where disparities lie.  
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In collaboration with the Chicago Department of Transportation, survey data was collected from 
registered e-scooter users in Chicago between November 20 and December 15, 2020. The data 
showed that 60.1% of e-scooter riders are male, while 37.41% are female. More than 70% are less 
than 34 years old, and more than 90% have a driver’s license. The disproportionate nature of e-
scooter riders shows the importance of equitable e-scooter distribution and how there should be 
more efforts toward provision of e-scooters in various neighborhoods across income ranges to 
promote accessibility to e-scooters. This is especially important given how this study’s results showed 
that the annual household income is significantly associated with the usage of shared e-scooters, and 
that low-income households are more likely to use shared e-scooters.  

Furthermore, this study suggests the significance of the interconnected nature of multimodal options 
within cities and the importance of appropriate infrastructures supporting these modes of travel. 
Results showed that individuals with Divvy membership (the sole bike-share program in Chicago) and 
those with reduced-fare transit cards were more likely to use shared e-scooters. Furthermore, results 
showed that density and transit-related built environment variables are also significant to more 
frequent use of shared e-scooters during the pandemic. Providing supportive environments suited for 
micromobility and the appropriate level of multimodal infrastructures such as wider bike lanes that 
not only support bikes, but also e-scooters can be instrumental in promoting a more comprehensive 
range of people—such as women and those above the age of 34—to also shift to higher frequencies 
of e-scooter use. The very presence and addition of e-scooters to cities has shown to lead cities to 
promote environments more conducive to active transportation (such as walking and cycling) 
(Schmitt, 2019), suggesting that cities that implement e-scooters will also become more supportive of 
active transportation infrastructures, in turn supporting e-bikes or other modes that better meet the 
needs of older adults. 

E-scooters have been shown to play a critical role in diversifying the suite of multimodal options 
available in cities with dense networks and promoting infrastructures more supportive of active 
transportation. Given the devastating consequences of sedentary and physically inactive lifestyles, e-
scooters can help promote modal shifts from sedentary, vehicle-based trips. Areas of exploration for 
future research are to analyze the direct physical health benefits of e-scooters and determine 
whether they lead users to live more physically active lifestyles. Another area for exploration is the 
relationship between e-scooter use and other active transportation modes to gain a fuller 
understanding of whether e-scooters promote shifts to active transportation modes of travel and 
how that decreases the overall mode shift driving. 
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CHAPTER 5: INTEGRATING SHARED E-SCOOTERS WITH PUBLIC 
TRANSIT 

INTRODUCTION 
Dockless micromobility (e.g., shared e-scooters) is rising as a complementary mode to mass transit. 
Fan and Zheng (2020) showed that dockless bike programs can complement transit ridership, 
diminishing congestion around subway stations due to access and egress. These effects have spatial 
and temporal characteristics, having increased effects during commute times and in urban areas with 
limited transit access (Fan & Zheng, 2020); this points to micromobility as a commuter mode that can 
aid in the creation of a sustainable transportation system. Moreover, the performance of 
micromobility can be highly dependent on characteristics of the built environment, as shown in Xu et 
al. (2019), where they found that density of development and road intersection density have the 
largest positive effect on dockless bike usage patterns.  

The body of work regarding the integration of micromobility with transit is built on the foundation of 
the previous topics of sustainable development, cooperation with regional regulating bodies, and the 
adoption of the mode among travelers. Ni and Chen (2020) compare dockless bike programs to taxis 
as a complementary feeder mode with mass transit. They found that dockless bike programs better 
serve communities that are more residential, with lower housing prices, and poor development of 
mass transit. They consider built environment effects and conclude that dedicated road space, 
especially in regions with a high density of signaled intersections, have a large, positive impact on 
dockless bike program ridership whereas areas that prohibit bike use (such as parks and trails) have a 
negative impact on usage (Ni & Chen, 2020). Fleet availability is a major consideration for program 
operators, given that vehicles need to be in the right place at the right time (such as near metro areas 
during peak travel times) if program operators wish to avoid consequences related to overcrowding 
sidewalks due to lack of parking (Guo & He, 2021; Ni & Chen, 2020).  

A current challenge for e-scooter researchers to address is modeling the frequency of transit 
integration and accounting for characteristics of travelers and of the built environment. It is vital that 
operators can identify the regions and time periods that vehicles need to be redistributed (Guo & He, 
2021). To address this issue, the research team utilized a 35-day measurement period from 10 shared 
e-scooter operators in Chicago. This study aligns with the research needs for measuring the 
integrated usage of shared e-scooter and public transit by exploring the impacts of the built 
environment, temporal characteristics, and road safety attributes. This integrated usage in different 
conditions was studied by using a random-parameter negative binomial modeling approach. In 
contrast to prior behavioral studies focused on dockless electric bikes (e-bikes) and rail transit 
systems, which utilized limited data and relied on single-level count models (Guo & He, 2021; Wu et 
al., 2019), this study introduces the random-parameter modeling framework to better account for 
panel effect (multi-period ridership). This study is focused on shared e-scooters as an emerging 
micromobility mode in the United States and its integration with all mass transit systems rather than 
just rail transit systems.   
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This chapter answers the following four questions: 

1) What are the characteristics of integrated usage regarding distance and duration of shared e-
scooter feeder trips? 

2) Do the characteristics vary in different conditions (e.g., access versus egress or morning peak 
versus evening peak)? 

3) How do researchers measure the feeder-related built environment? 

4) What are the effects that the built environment, temporal characteristics, and road safety 
attributes have on shared e-scooter feeder trips?  

DATA 
This section discusses different sources that jointly have constructed the dataset. Regarding e-scooter 
trips, the research team exploited the data streams of Chicago’s E-Scooter Pilot Program 
implemented in 2019, including 10 application programming interface (API) feeds of the following 
companies: Wheels, Lime, VeoRide, Jump (Uber), Bird, Lyft, Sherpa, Bolt, Spin, and Clevr Mobility. 
These open API feeds were designed according to the general bike-share feed specification, which 
provided the opportunity to access the real-time location of shared e-scooters available for rent. The 
extracted data included 90-second snapshots of e-scooter locations throughout the 35-day 
measurement period from September 7 to October 11, 2019, in which every e-scooter can be 
identified using a unique ID. If a user unlocks the e-scooter, the data stream for its corresponding ID 
would be paused until it is parked again and ready to be used by the next customer. In other words, 
while the e-scooter is not being used, its ID and associated location are available in 90-second 
snapshots, whereas if it has been rented, its ID and associated location are unavailable. This pause in 
the data stream can be utilized to detect a reasonable “trip.” Using time and distance as two 
measures, the research team introduce an algorithm to identify valid trips by incorporating the 
following points: 

• If a pause is longer than a lower threshold, it is considered a potential trip. 

• If a pause is longer than a higher threshold, it is not considered a valid trip. This is to avoid 
data originated problems as well as outlier removal. 

• Trips including origin and destination closer than a distance threshold are treated based on 
the duration of the trip. 

Algorithmic Steps 
• Step 1. Initialization. Define 𝑇𝑇𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡, 𝑇𝑇𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙, 𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝑐𝑐𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖𝑐𝑐𝑐𝑐𝑙𝑙, and organize the data based on the e-

scooter’s unique ID in ascending order.  

• Step 2. Potential trip detection. For data points corresponding to each e-scooter’s unique ID, 
do the following: If the time difference between two consecutive data points is more than 



42 

Ttrip, consider that time as a potential trip with the corresponding start time as well as the 
origin/destination. 

• Step 3. Error detection. For each potential trip, do the following: 

o Step 3-1. Put 𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡/𝑑𝑑𝑖𝑖𝑑𝑑𝑡𝑡 = 𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝐿𝐿𝑙𝑙𝑖𝑖𝑙𝑙 = 𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑 = 0. 

o Step 3-2. If the distance between the origin and destination of the trip is less than 
𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝑐𝑐𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖𝑐𝑐𝑐𝑐𝑙𝑙and the duration of the trip is less than 10 min., put 𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡/𝑑𝑑𝑖𝑖𝑑𝑑𝑡𝑡 = 1. 

o Step 3-3. If the duration of the trip is more than 𝑇𝑇𝐿𝐿𝑙𝑙𝑖𝑖𝑙𝑙, put 𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝐿𝐿𝑙𝑙𝑖𝑖𝑙𝑙 = 1. 

o Step 3-4. If the speed of the trip is more than 15 mph (i.e., maximum velocity of e-
scooters), put 𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑 = 1. 

• Step 4. Trip validation. For each potential trip, check the following: 

𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡/𝑑𝑑𝑖𝑖𝑑𝑑𝑡𝑡 + 𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝐿𝐿𝑙𝑙𝑖𝑖𝑙𝑙 + 𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑 = � 0              𝑇𝑇𝑇𝑇𝑖𝑖𝑇𝑇 𝑖𝑖𝐷𝐷 𝑣𝑣𝑓𝑓𝑓𝑓𝑖𝑖𝑣𝑣.
𝑂𝑂𝐷𝐷ℎ𝑒𝑒𝑇𝑇𝑒𝑒𝑖𝑖𝐷𝐷𝑒𝑒,   𝑇𝑇𝑇𝑇𝑖𝑖𝑇𝑇 𝑖𝑖𝐷𝐷 𝑛𝑛𝑛𝑛𝐷𝐷 𝑣𝑣𝑓𝑓𝑓𝑓𝑖𝑖𝑣𝑣.   

The research team considered 𝑇𝑇𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡, 𝑇𝑇𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙, 𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝑐𝑐𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖𝑐𝑐𝑐𝑐𝑙𝑙 equal to 120 seconds, 3,600 seconds, and 50 
m, respectively. Please note that although the snapshot was planned to be extracted every 90 
seconds, several APIs stemming from different companies required accounting for the computer 
program running time for an extra 20 seconds. To be on the safe side, the researchers considered the 
120-second threshold as the lower threshold for detecting a trip. The researchers implemented this 
proposed algorithm with the raw API data and extracted 102,312 validated trips distributed over the 
35-day period with a mean duration of 837 seconds. 

Deriving Dependent Variables 
Next, the research team geo-coded each CTA bus stop, CTA rail station, and Metra station in the 
shared e-scooter pilot area and generated a 50 m buffer for each station. The use of e-scooters was 
then measured by counting the number of valid trips with origins and/or destinations within that 50 
m buffer. To calibrate the radius of the buffer, this study utilized the results of a survey conducted by 
the research team (Rahimi et al., 2021). This survey showed that 35.8% of respondents use an e-
scooter to get to/from CTA bus stops, CTA rail stations, and Metra stations. The researchers 
calibrated the radius of the buffer so that the number of origins and destinations for valid trips 
located within the buffer matched the findings of the survey questionnaire. The researchers 
discovered that by using a 50 m buffer, 37% of valid trip origins and destinations are within this 
buffer, corresponding to the survey findings. Furthermore, the researchers removed overlapping 
station buffers to avoid counting trips twice.  

The research team used the origin and destination locations of valid trips to differentiate access and 
egress for integrated usage. Origins and destinations within the 50 m buffer are considered access 
and egress trips for integrated usage, respectively. To do so, the researchers assumed that e-scooter 
users who dropped off or picked up their e-scooter within the 50 m buffer intend to use CTA bus 
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stops, CTA rail stations, or Metra stations. This assumption was also made by Wu et al. (2019) and 
Guo et al. (2021). Figure 24 presents the process of extracting the integrated access and egress usage. 
The researchers then derived the dependent variables: (1) access integration at the morning peak 
(i.e., 6:00 a.m.–10:00 a.m.), (2) access integration at the evening peak (i.e., 4:00 p.m.–8:00 p.m.), (3) 
egress integration at the morning peak, and (4) egress integration at the evening peak. 

 
Figure 24. Graph. Identifying e-scooter and transit integration usage. 

The built environment attributes (e.g., job density) of feeder trips to/from CTA bus stops, CTA rail 
stations, and Metra stations might have an impact on e-scooter integration, as shown in Figure 25. 
Because the average line distance of all valid trips is 600 m, the area within a 600 m radius of CTA bus 
stops, CTA rail stations, and Metra stations is the most appealing urban space, generating a large 
potential demand for integrated e-scooter usage. As a result, the built environment within 600 m is 
regarded as the contextual background. The impacts of built environment features may vary across 
access or egress mode and time of day. Moreover, the research team also incorporated the weather 
condition data into the final dataset. Figure 26 summarizes the complete data preparation process 
and the identification of e-scooter / transit integrated usage. Table 20 provides a statistical summary 
of key variables, which were found to be significant in the final models. 

 
Figure 25. graph. Feeder process of connecting to CTA bus stops, CTA rail stations, or  

Metra stations by e-scooter. 
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Figure 26. Flowchart. Process of data preparation and identifying integrated usage. 
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Table 20. Definition of Explanatory Variables That Turned Out to Be Significant in the Model  
(N = 100,345) 

Variables Definition Mean Std. 
Dev. Max Min 

Dependent       
ME Egress integrated usage of the transit 

station at the 
morning peak within the 50 m buffer 

0.08 0.97 132 0 

EE Egress integrated usage of the transit 
station at the 
evening peak within the 50 m buffer 

0.105 0.62 24 0 

MA Access integrated usage of the transit 
station at the 
morning peak within the 50 m buffer 

0.07 0.94 129 0 

EA Access integrated usage of the transit 
station at the 
evening peak within the 50 m buffer 

0.09 0.53 23 0 

Independent       
Temp_avg Average temperature on the trip day 67.4 7.81 81 46.2 
Humid_avg Average humidity on the trip day 72.50 11.87 92.4 48.3 
Pct_AO0_1 Percent of zero-car and one-car 

households within the 600 m buffer 
0.79 0.21 1.70 0.25 

E8_off10 Office jobs within an 8-tier 
employment1 classification 
scheme within the 600 m buffer 

47.07 138.28 2619.92 0 

Residential_density Gross residential density within the 
600 m buffer 

10.65 5.53 37.26 0.58 

Activity_density Gross activity density within the 600 m 
buffer 

18.77 14.32 181.29 2.95 

Ped_net_density Network density in terms of facility 
miles of pedestrian-oriented links per 
square mile within the 600 m buffer 

18.77 4.77 38.60 4.83 

Multimodal_net_density Network density in terms of facility 
miles of multi-modal links per square 
mile within the 600 m buffer 

3.49 2.52 15.72 0 

Transit_serv_freq Aggregate frequency of transit service 
per square mile within the 600 m 
buffer 

2099.65 930.38 6582.63 196.87 

Transit_centrality_index Regional Centrality Index – Transit 
within the 600 m buffer  

0.29 0.10 0.77 0.13 

Street_intersection_density Street intersection density within the 
600 m buffer 

101.19 68.90 480.25 19.44 

R_HiWageWk Count of workers earning 
$3333/month or more within the 600 
m buffer 

0.31 0.14 0.75 0 

Tot_accidents Total number of accidents within the 
600 m buffer 

0.23 0.37 2.77 0 

Tot_Crimes Total number of crimes within the 600 
m buffer 

544.68 206.04 1431.93 154.05 

1 Based on Smart Location Dataset  
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METHOD 
Because the dependent variables are count, the researchers utilized a negative binomial count 
modeling approach to characterize the factors affecting the integration frequency of shared e-scooter 
with public transit. To account for correlation among observations because data were collected over 
time (panel data), the researchers used a random effects version of the negative binomial count 
model. The following paragraphs discuss this modeling approach. 

Negative binomial regression uses a Poisson-gamma mixture distribution to permit variables that are 
non-negative integers. The probability mass function, 𝑃𝑃(𝑦𝑦𝑖𝑖|𝜔𝜔𝑖𝑖), which is given in Equation (5), is 
associated with the basic Poisson model, 

𝑃𝑃(𝑦𝑦𝑖𝑖|𝜔𝜔𝑖𝑖) =
𝐸𝐸𝐸𝐸𝑃𝑃(−𝜆𝜆𝑖𝑖|𝜔𝜔𝑖𝑖)(𝜆𝜆𝑖𝑖|𝜔𝜔𝑖𝑖)𝑦𝑦𝑛𝑛

𝑦𝑦𝑖𝑖!
 

 

Equation (5)  
 

where, 𝑦𝑦𝑖𝑖 is the discrete observations associated with observation 𝑛𝑛, 𝜔𝜔𝑖𝑖 is the random effect on 
observation 𝑛𝑛, and 𝜆𝜆𝑖𝑖|𝜔𝜔𝑖𝑖 is the Poisson parameter, which assumes a gamma-distributed error term 
for negative binomial regression and has the form given in Equation (6). 

𝜆𝜆_𝑛𝑛|𝜔𝜔𝑖𝑖 = 𝐸𝐸𝐸𝐸𝑃𝑃(𝛽𝛽𝑖𝑖𝐸𝐸𝑖𝑖 + 𝜀𝜀𝑖𝑖) 
Equation (6)  

 
𝛽𝛽𝑖𝑖 is an observation specific parameter vector incorporating random effect, 𝜔𝜔𝑖𝑖, 𝐸𝐸𝑖𝑖 is a vector of 
explanatory variables, and 𝐸𝐸𝐸𝐸𝑃𝑃(𝜀𝜀𝑖𝑖) is the gamma-distributed error term. From this, the log-
likelihood used for simulating model estimation is given in Equation (7).  

𝐿𝐿𝐿𝐿 = � ln ��𝑓𝑓(𝜔𝜔𝑖𝑖)𝑃𝑃(𝑦𝑦𝑖𝑖|𝜔𝜔𝑖𝑖)𝑣𝑣𝜔𝜔𝑖𝑖�
∀𝑖𝑖

 Equation (7)  
 

𝑓𝑓(𝜔𝜔𝑖𝑖) is the probability density function of the random effect term, 𝜔𝜔𝑖𝑖.  

RESULTS 
Table 21 presents the estimation results for the random-parameter negative binomial count models, 
characterizing the frequency of shared e-scooter trips as access or egress to public transit in Chicago. 
The results include the estimated parameters, t-statistics, and the log-likelihood values at both 
convergence and zero. The researchers assumed that the coefficients in the model are statistically 
significant when within a 90% confidence interval. In the Table 21, MA, EA, ME, and EE stand for 
morning access, evening access, morning egress and evening egress, respectively.  
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Table 21. Estimation Result of Random-Parameter Negative Binomial Count Models 

Parameters MA EA ME EE 
Coefficient t-stat Coefficient t-stat Coefficient t-stat Coefficient t-stat 

Explanatory variables          
People         

Pct_AO0_1 1.103*** 6.97 0.630** 2.54 0.803** 1.90 1.539*** 5.93 
R_HiWageWk   −0.730** −2.07 0.891** 1.81 0.934** 2.46 

Temporal         
Temp_avg 0.065*** 17.37 0.004** 1.79 0.056*** 15.38 0.003** 1.81 
Humid_avg −0.024*** −9.57 −0.005*** −3.41  −0.018*** −7.56 −0.005*** −3.71 

Urban space (land use)         
E8_off10 0.0009*** 5.23 0.0003*** 4.36 0.0009*** 5.11 0.0003*** 3.09 
Residential_density 0.0512*** 8.62 0.060*** 16.43 0.092*** 14.76 0.058*** 14.65 
Activity_density 0.004** 2.27   0.008*** 3.87 0.003** 1.93 
Ped_net_density     −0.044*** −5.43   
Multimodal_net_density 0.063*** 5.64 0.041*** 6.56   0.033*** 5.01 
Transit_serv_freq 0.0002*** 6.96 0.0002*** 9.77 0.0002*** 6.86 0.0002*** 11.39 
Transit_centrality_index 3.78*** 13.51 2.397*** 7.66   2.415*** 7.42 
Street_intersection_density 0.003*** 8.99 0.002*** 11.89 0.005*** 9.26 0.002*** 9.13 

Safety and security         
Tot_accidents     −0.285*** 3.07 −0.104** 1.73 
Tot_Crimes   0.0007*** 4.43   0.0006*** 3.80 

Constant (mean) −12.49*** −32.7 −7.05*** −18.6 −10.54*** −16.2 −8.40*** −20.9 
Constant (var) 6.024 3.12  5.93 3.45 
Ln(α) 0.947 −1.007  1.279 −0.321 
Model Statistics          
Number of observations 100,345 100,345 100,345 100,345 
Log-likelihood at zero −24815.87 −29762.046 −26876.40 −32379.39 
Log-likelihood at convergence  −15754.95 −26612.53 −17180.92 −27993.84 
*, **, and *** mean 90%, 95%, and 99% level of confidence, respectively.  

People 
The percentage of households with zero or one personal vehicle positively affects the integration of 
shared e-scooters and transit for both access and egress trips in morning and evening rush hours. 
Moreover, the count of workers earning $3,333/month or more (i.e., high-income workers) is 
positively correlated with integrated usage in ME and EE models. 

Temporal 
This study’s findings also revealed the critical role of temporal characteristics, especially in Chicago, 
on the integration of shared e-scooters and public transit. According to Table 21, people are less 
inclined to integrate shared e-scooters with public transit when the temperature is low or humidity is 
high. 
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Urban Space (Land Use) 
Many land-use variables turned out to be significant in the models. As seen in Table 21, the density of 
office land use adjacent to transit stations is positively associated with integrated usage in all four 
models. This finding is in line with a study by Guo and He (2021), in which they reported similar 
findings. The results of the current study also show the positive effect of residential density on 
integrating shared e-scooters with public transit in all four models.  

This study’s results found that activity density is positively correlated with the joint use of shared e-
scooters and public transit in all models, excluding egress trips in morning rush hours. One possible 
reason is that the density of mixed land use is higher in those areas; people in those areas are more 
eager to use shared e-scooters as a feeder mode of public transit (Lin et al., 2018; Tu et al., 2019). The 
findings further revealed when and what type of feeder trips are affected by activity density. 

As indicated by the literature, a bikeway is vital for using active modes because it makes riders feel 
comfortable and safe (Griffin & Sener, 2016; Martens, 2007). In this study, the researchers found that 
a higher density of multimodal links adjacent to transit stations significantly affects the integration of 
all access trips as well as egress trips in evening rush hours. The results showed a positive correlation 
between the density of intersections and the frequency of e-scooter trips as a feeder mode. 

Moreover, the findings highlighted the significant effect that access to public transit has on 
integrating transit with shared e-scooters. Per all four models, a higher frequency of transit services 
within the 600 m buffer of the stations might encourage people to integrate shared e-scooters with 
public transit more frequently. A similar finding has also been reported by Guo and He (2021).   

Safety and Security 
The total number of accidents within the 600 m buffer area of transit stations is found to be 
significant in ME and EE models. Having access to safe roads for walking and biking might be more 
attractive for urban travelers who walk or bike than crowded, dangerous, and costly streets used by 
private vehicles (Moeinaddini et al., 2015). Thus, it is plausible that the total number of accidents, as 
a proxy variable for road safety, negatively affects the integration of shared e-scooters with public 
transit for egress trips. 

According to Table 21, the total number of crimes is positively correlated with the frequency of using 
shared e-scooters as a feeder mode of public transit. Accordingly, one possible explanation for this 
study’s finding is that when people feel less safe walking, they might switch to another available 
option, which can be shared e-scooters. The literature suggests that the higher crime rate in a 
neighborhood, the fewer people who walk (Shamshiripour et al., 2019). In addition, a recent survey 
of shared e-scooter users in Chicago revealed that people usually substitute the shared e-scooter 
mode with walking (City of Chicago, 2021). 

CONCLUSIONS 
This chapter investigated the impacts that the built environment, temporal characteristics, and road 
safety have on integrated usage during peak hours. To do so, the research team utilized a 35-day 
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measurement period from 10 shared e-scooter operators in Chicago. Next, the researchers used a 
random-parameter negative binomial count model to measure the impacts of the built environment, 
temporal characteristics, and road safety attributes on the integrated usage of shared e-scooters with 
public transit. According to the conditions of e-scooter usage as an access or egress mode for a given 
time of day, the research team seperated the integrated usage into four scenarios: (1) access 
integration at the morning peak, (2) access integration at the evening peak, (3) egress integration at 
the morning peak, and (4) egress integration at the evening peak. The researchers then estimated 
four models for these scenarios. The finding of this study revealed the critical role of temporal 
characteristics, which showed that people are less inclined to integrate shared e-scooters with public 
transit when the temperature is low or humidity is high. The study also indicated that the total 
number of accidents, as a proxy variable for road safety, negatively affects the integration of shared 
e-scooters with public transit for egress trip and the total number of crimes is positively correlated 
with the frequency of using shared e-scooters as a feeder mode for public transit. Moreover, the 
findings highlighted the importance that the number of vehicles per household, income, and many 
land-use factors have on e-scooter usage patterns, as discussed in previous studies. 
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