


Perfluoroalkyl Substances and Fish Consumption in the Great Lakes Fish Consumer Study

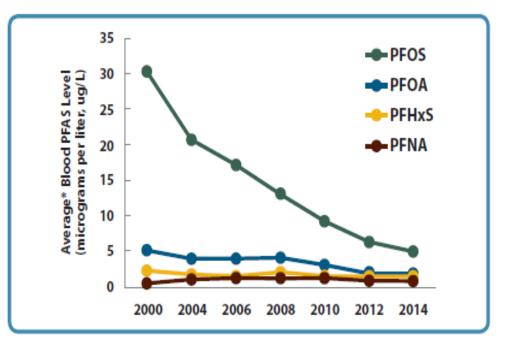
Meghan Cerpa<sup>1</sup>, Saria Awadalla<sup>1</sup>, Robert Sargis<sup>2</sup> and Mary E. Turyk<sup>1</sup>

Divisions of Epidemiology and Biostatistics<sup>1</sup> and Endocrinology, Diabetes and Metabolism<sup>2</sup>, University of Illinois at Chicago

### Disclosures/Acknowledgements



- ATSDR 75/ATH598322
- US EPA STAR Program Grant RD-83025401-1
- NIEHS R21 ES030792
- Wisconsin Dept. of Health Services Collaborators: Henry Anderson, Jon Meiman, Pamela Imm, Linda Knobleoch


### Background: Perfluoroalkyl Substances (PFAS)

- PFAS are a very large group of man-made chemicals
  - Do not occur naturally in the environment
- Many industrial applications due to PFAS properties:
  - Very stable chemicals with low volatility (due to the carbon-fluorine bond)
  - Hydrophobic & oleophobic
- Properties that make PFAS attractive for industry use are bad for the environment
  - The stability and long half-lives causes **PFAS to persist in the environment**
  - Bioaccumulative
- PFAS detected in every type of environmental media
  - Air, water, soil, food
- PFAS have been detected globally including the Arctic

# Background: Human Exposure to PFAS

- PFAS are frequently detected in serum samples identified in National Health And Nutrition Examination Survey (NHANES)
  - Studies have shown trends of decreasing PFAS (mainly PFOA and PFOS) levels detected in US serum samples
  - Other PFAS chemicals are increasing
  - Kato et al. 2011, Environ. Sci. Technol
- PFAS have a long half life in humans (ATSDR, 2021)
  - PFOA: 2-10 years
  - PFOS: 3.3-27 years
  - PFHxS: 4.7-35 years
- PFAS exposure linked to several adverse health effects including cancer and disruption of hormone and metabolic function

#### Blood Levels of the Most Common PFAS in People in the United States from 2000-2014



\* Average = geometric mean

**Data Source:** Centers for Disease Control and Prevention. Fourth Report on Human Exposure to Environmental Chemicals, Updated Tables, (January 2017). Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention.

# Background: PFAS Biomarkers in Fish Consumers

- Seafood consumption from contaminated waters may be a source of PFAS exposure
  - PFAS biomarkers have been associated with consumption of fin fish and shellfish
  - Christensen et al. 2017, Environ Res
  - Ruffle et al. 2020, Environ Res

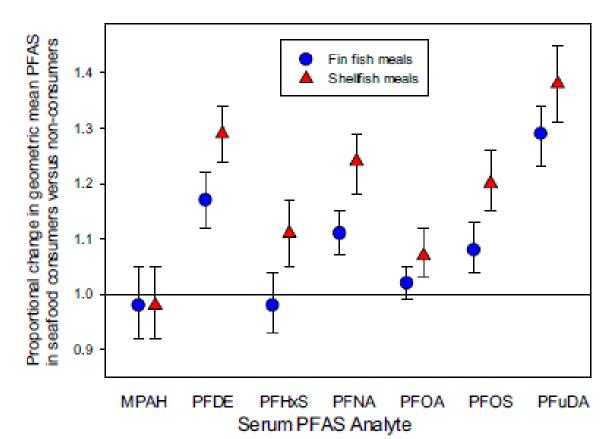
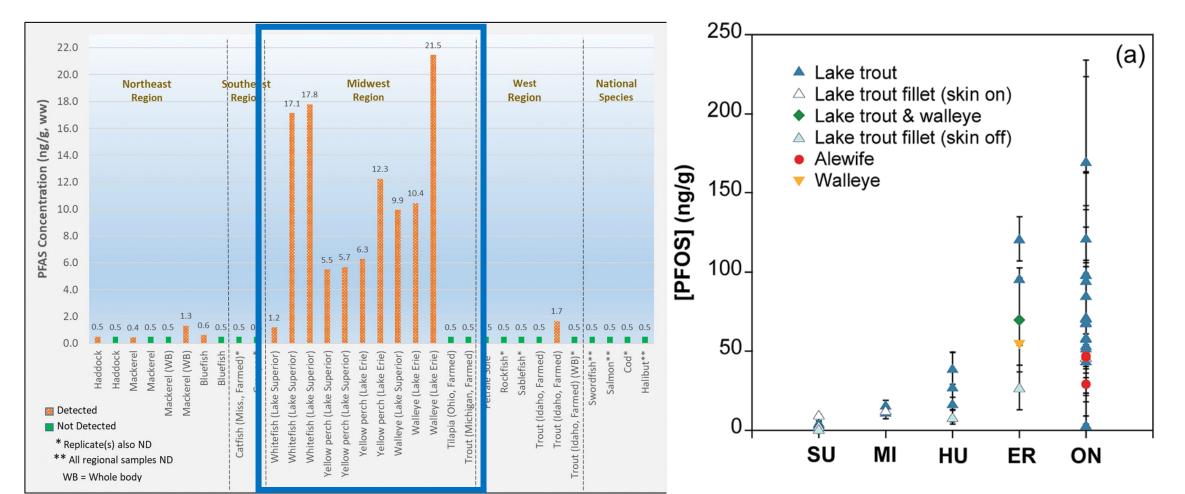




Fig. 1. Associations between seafood consumption in the last 30 days and PFAS concentrations, after adjusting for age, BMI, sex, race/ethnicity and survey cycle.

# Background: PFAS Contamination in GL Fish

- PFAS are ubiquitous in water, sediment and biota in the Great Lakes
  - PFAS levels were highest in purchased fish sourced from the GL (Ruffle et al, Environ Res 2020)
  - Contamination in lake trout is highest Lakes Erie and Ontario and lowest in Lake Superior (Remucal, Environ Sci Processes 2019)



### Background: Great Lakes Fish Consumption Study (GLFCS)



- In the US states bordering the Great Lakes, **about 4.2 million adults** consume Great Lakes fish
  - 500,000 consuming  $\geq$ 2 meals/month
- Five State Health Departments (WI, IL, IN, OH, MI), led by Dr. Henry Anderson, formed the **Great Lakes Consortium** in 1992 to look at critical pollutants in Great Lakes fish consumers
  - Participants were recruited from licensed Great Lake charter boat captains
  - Referent participants were recruited from people who lived in the same geographic areas and had little-to-none Great Lake fish consumption
  - Subgroup of Wisconsin anglers enrolled who fish other inland lakes (not Great Lakes)
  - Follow-up for exposure and health biomarkers through 2004
- Great Lakes fish consumption shown to be a significant exposure source of PCBs and DDE
  - Hanrahan et al. 1999, Environ Res



# Objective

Assess if serum PFAS levels are associated with self-reported fish meals in a cohort of frequent and infrequent Great Lakes sport fish consumers

# Methods: Study Population

- A cross-sectional analysis of the GLFCS cohort of frequent and infrequent Great Lakes sport fish consumers in 2004 (Anderson et al. 2008, Chemosphere)
- 474 stored blood serum samples were tested for 12 PFAS by the Centers for Disease Control
  - On-line solid phase extraction-HPLC-isotope dilution-MS/MS methods (Kato et al. 2018, Chemosphere 209:338)
  - Observations below the LOD were imputed as  $LOD/\sqrt{2}$
  - 6 observations removed missing covariates: Final N=468
- Participants completed detailed questionnaires on their fish consumption and health history
  - Fish meals consumed in the past year by fish species and source
    - Great Lakes sport caught, other inland bodies of water sport caught, commercially purchased



Methods: Study Variables Used in Linear Regression Models

PFAS Compounds (log<sub>2</sub> transformed for analysis):

- 2-(N-Ethyl-perfluorooctane sulfonamido) acetic acid (EtFOSAA)
- Perfluorooctane sulfonamide (FOSA)
- 2-(N-Methyl-perfluorooctane sulfonamido) acetic acid (MeFOSAA)
- n-Perfluorooctanoic acid (n\_PFOA)
- n-Perfluorooctane sulfonic acid (n\_PFOS)
- Perfluorodecanoic acid (PFDA)
- Perfluoroheptane sulfonic acid (PFHpS)
- Perfluorohexane sulfonic acid (PFHxS)
- Perfluorononanoic acid (PFNA)
- Perfluoroundecanoic acid (PFUnDA)
- Branched Perfluoromethylheptane sulfonic acid isomers (Sm\_PFOS)
- Branched isomers of perfluorooctanoate (Sb\_PFOA)

#### Predictors:

- Great Lake sport fish meals
- Commercial fish meals
- Sport fish meals from other inland bodies of water
- Age, Sex, Body Mass Index (BMI), and Education level

### **Results:** Demographics

| Variable                 | Total Cohort<br>(n=468) |
|--------------------------|-------------------------|
|                          | Median (IQR)            |
| Age (years)              | 58.0 (13.0)             |
| BMI (kg/m <sup>2</sup> ) | 28.9 (6.9)              |
| Sex                      | N (%)                   |
| Male                     | 326 (69.7)              |
| Female                   | 142 (30.3)              |
| Group                    | N (%)                   |
| Referent                 | 84 (18.0)               |
| Angler                   | 47 (10.0)               |
| Captain                  | 337 (72.0)              |
| Education                | N (%)                   |
| Highschool/GED           | 132 (28.2)              |
| Undergraduate College    | 195 (41.7)              |
| Graduate School          | 141 (30.1)              |



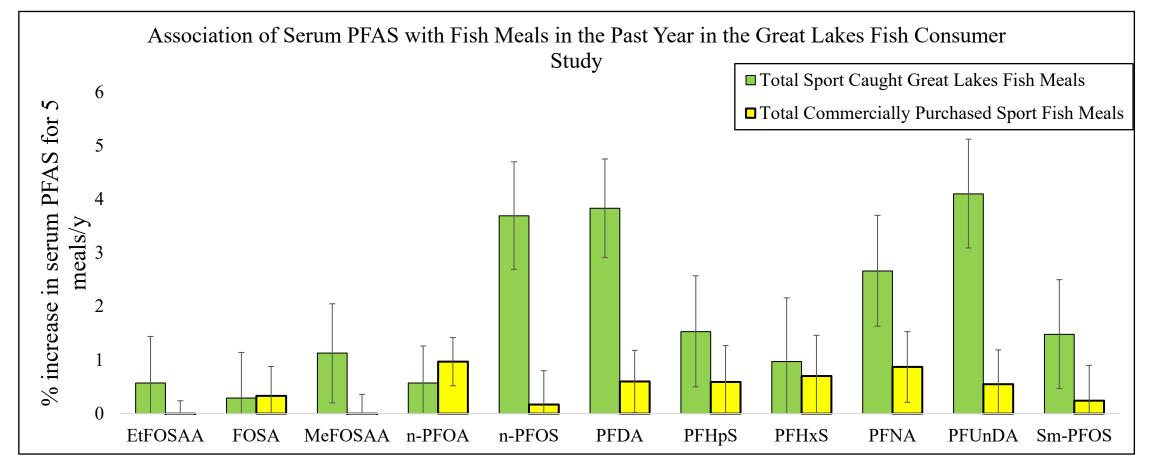
| Variable*                                        | Male           | Female         | р      |
|--------------------------------------------------|----------------|----------------|--------|
| Total Great<br>Lake Fish Meals                   | 12.0<br>(31.0) | 4.0<br>(25.0)  | <.0001 |
| Total<br>Commercially<br>Purchased Fish<br>Meals | 14.0<br>(48.0) | 15.0<br>(46.0) | 0.15   |
| Inland Fish<br>Meals (Not<br>Great Lakes)        | 0 (5.0)        | 0 (1.0)        | 0.057  |

\*Median (IQR)

Results: Geometric Means and Percentiles of Total Commercially Purchased Sport Fish Meals & Sport Caught Fish Meals from the Great Lakes

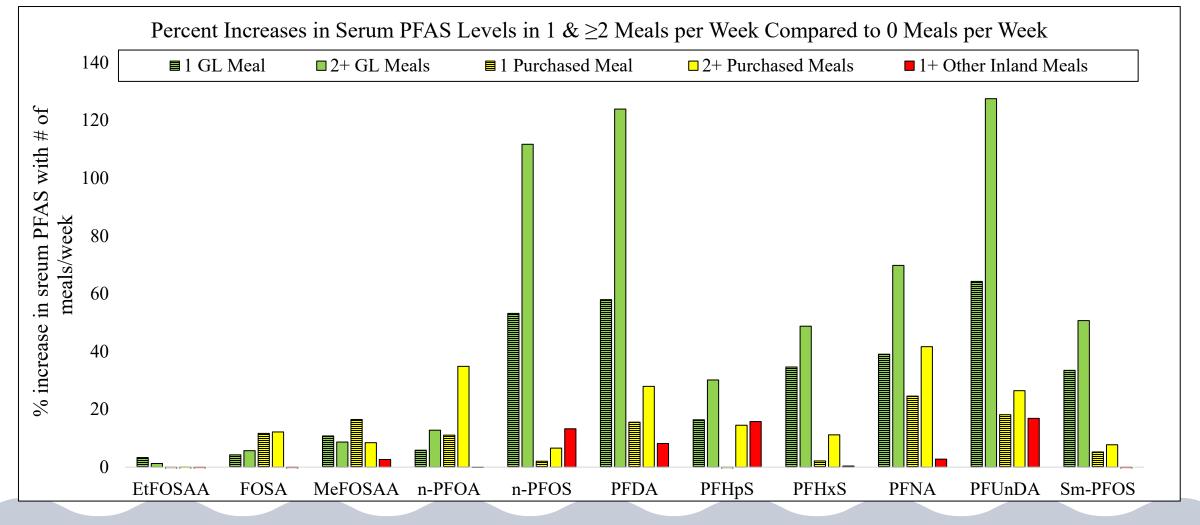
| Number of Sport Fish<br>Meals Consumed Over<br>the Past Year | Geometric<br>Mean<br>(COV%)* | 50 <sup>th</sup><br>Percentile | 75 <sup>th</sup><br>Percentile | 90 <sup>th</sup><br>Percentile | 95 <sup>th</sup><br>Percentile |
|--------------------------------------------------------------|------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Total Sport Fish Meals<br>from the Great Lakes               | 6.1 (5.6)                    | 10.0                           | 30.0                           | 53.0                           | 71.0                           |
| Total Commercial Fish<br>Meals                               | 12.0<br>(4.7)                | 15.0                           | 52.0                           | 103.0                          | 115.0                          |
| Other Inland Water<br>Bodies Fish Meals                      | NA                           | 0                              | 3.0                            | 22.0                           | 40.0                           |

\*COV=Coefficient of Variation


### Results: Geometric Means and Percentiles for PFAS Serum Concentration in the GLFCS Cohort

| Chemical | % Below<br>LOD | Geometric Mean<br>(COV%)* | 50 <sup>th</sup> Percentile | 75 <sup>th</sup> Percentile | 90 <sup>th</sup> Percentile | 95 <sup>th</sup> Percentile |
|----------|----------------|---------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| EtFOSAA  | 7.2            | 0.16 (61.4)               | 0.2                         | 0.2                         | 0.3                         | 0.4                         |
| FOSA     | 17.2           | 0.15 (59.5)               | 0.2                         | 0.2                         | 0.4                         | 0.6                         |
| MeFOSAA  | 0.0            | 0.54 (65.0)               | 0.5                         | 0.8                         | 1.2                         | 1.6                         |
| n-PFOA   | 0.0            | 4.45 (47.6)               | 4.6                         | 5.9                         | 7.7                         | 9.1                         |
| n-PFOS   | 0.0            | 20.72 (81.7)              | 20.9                        | 33.6                        | 52                          | 67.3                        |
| PFDA     | 0.0            | 0.47 (70.6)               | 0.4                         | 0.7                         | 1.1                         | 1.5                         |
| PFHpS    | 3.6            | 0.59 (78.2)               | 0.6                         | 0.9                         | 1.2                         | 1.5                         |
| PFHxS    | 0.0            | 2.84 (92.2)               | 2.7                         | 4.4                         | 7.5                         | 11.3                        |
| PFNA     | 1.5            | 0.90 (78.0)               | 0.9                         | 1.4                         | 2                           | 2.4                         |
| PFUnDA   | 2.1            | 0.30 (77.6)               | 0.3                         | 0.5                         | 0.7                         | 0.9                         |
| Sm-PFOS  | 0.0            | 7.98 (71.9)               | 8.2                         | 12.3                        | 17.9                        | 20.6                        |
| Sb-PFOA  | 100.0          | -                         | -                           | -                           | -                           | -                           |

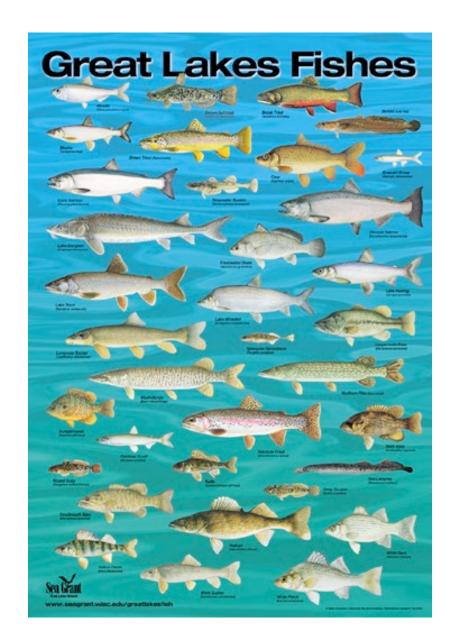
• Measurement units – ng/mL


\*COV=Coefficient of Variation

## Results: Percent Serum PFAS Levels for Increases in 5 Sport Fish Meals per Year



- Each linear regression model adjusted for Age, Education, BMI, and Sex
- Great Lakes and Commercial Fish meals modeled together as continuous variables


### Results: Percent Increases in Serum PFAS Levels for 1 & for ≥2 Meals per Week Compared to 0 Meals per Week



- Each model adjusted for Age, Education, BMI, and Sex
- Great Lakes (GL), Commercial Fish, and Other Inland meals modeled together as categorical variables

# Limitations

- Cross-sectional
- Data was collected in 2004
  - Unclear if there have been changes in PFAS levels in Great Lakes fish from Lakes Erie, Michigan and Huron
- Recall bias may be present as fish consumption was self-reported on questionnaires
- Potential residual confounding due to other unmeasured exposures
  - Occupation
  - Drinking Water
  - Proximity to industrial sites with PFAS emissions



## Conclusions

- Significant increases in serum concentrations of several PFAS were seen for increasing meals of both Great Lakes sport caught fish and commercially purchased fish
  - Larger increases for Great Lakes than commercial fish meals
- Future analyses will examine
  - Fish types and Great Lake of capture where sample size permits
  - Correlations of PFAS biomarkers with other measured contaminant biomarkers (PCBs, PBDEs, DDE, mercury) in study participants

### References

Agency for Toxic Substances and Disease Registry (ATSDR). (2021). *Toxicological Profile for Perfluoroalkyls*. https://www.atsdr.cdc.gov/toxprofiles/tp200.pdf

- Anderson, H. A., Imm, P., Knobeloch, L., Turyk, M., Mathew, J., Buelow, C., & Persky, V. (2008). Polybrominated diphenyl ethers (PBDE) in serum: Findings from a US cohort of consumers of sport-caught fish. *Chemosphere*, 73(2), 187–194. https://doi.org/10.1016/J.CHEMOSPHERE.2008.05.052
- Christensen, K. Y., Raymond, M., Blackowicz, M., Liu, Y., Thompson, B. A., Anderson, H. A., & Turyk, M. (2017). Perfluoroalkyl substances and fish consumption. *Environmental Research*, 154, 145–151. https://doi.org/10.1016/J.ENVRES.2016.12.032
- Hanrahan, L. P., Falk, C., Anderson, H. A., Draheim, L., Kanarek, M. S., Olson, J., Boddy, J., Budd, M., Burkett, M., Fiore, B., Humphrey, H., Johnson, B., Lee, G., Monaghan, S., Reed, D., Shelley, T., Sonzogni, W., Steele, G., Wright, D., & Steenport, D. (1999). Serum PCB and DDE levels of frequent Great Lakes sport fish consumers A first look. *Environmental Research*, 80(2 II). https://doi.org/10.1006/ENRS.1998.3914
- Kato, K., Kalathil, A. A., Patel, A. M., Ye, X., & Calafat, A. M. (2018). Per- and polyfluoroalkyl substances and fluorinated alternatives in urine and serum by on-line solid phase extraction–liquid chromatography–tandem mass spectrometry. *Chemosphere*, 209, 338–345. https://doi.org/10.1016/J.CHEMOSPHERE.2018.06.085
- Kato, K., Wong, L. Y., Jia, L. T., Kuklenyik, Z., & Calafat, A. M. (2011). Trends in exposure to polyfluoroalkyl chemicals in the U.S. population: 1999-2008. Environmental Science and Technology, 45(19), 8037–8045. https://doi.org/10.1021/ES1043613/SUPPL FILE/ES1043613 SI 001.PDF
- Remucal, C. K. (2019). Spatial and temporal variability of perfluoroalkyl substances in the Laurentian Great Lakes. *Environmental Science: Processes & Impacts*, 21(11), 1816–1834. https://doi.org/10.1039/C9EM00265K
- Ruffle, B., Vedagiri, U., Bogdan, D., Maier, M., Schwach, C., & Murphy-Hagan, C. (2020). Perfluoroalkyl Substances in U.S. market basket fish and shellfish. *Environmental Research*, 190, 109932. https://doi.org/10.1016/J.ENVRES.2020.109932

## Thank You!