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ABSTRACT

The ultimate objective of brain tumor imaging is to distill patient-specific

knowledge that guides therapy planning and medical care. Magnetic reso-

nance imaging (MRI) is a prevailing technique to visualize tumors due to its

excellent contrast of soft tissue and non-invasiveness. Decades of research

have helped brain tumor segmentation performance dramatically. However,

precise segmentation is still considered hard partly due to the limitation in

resolution, signal-to-noise ratio, and possible artifacts. While some tumors

are easier to delineate, more infiltrating ones like gliomas have ragged and ob-

scure boundaries that are harder to define. In recognition of this hardship,

researchers have started exploring the use of Proton Magnetic Resonance

Spectroscopic Imaging (MRSI) for better tumor prognosis, diagnosis, and

characterization.

MRSI investigates the spatial distribution of metabolic changes by lever-

aging its unique temporal information. The wealth of this spectroscopic

information is beneficial in classifying tumor subregions and aiding ongoing

research investigations in tumor heterogeneity and related topics. Several

studies have reported an increase in choline-containing compounds level and

a reduced N-acetyl-aspartate level in brain tumors. Spectroscopic techniques

can pick up these metabolic changes, and they might be the missing pieces

of better MRI-based tumor segmentation solutions.

This study shows a successful application of deep learning and MRSI to

identify tumor and edema regions of human brains with glioblastomas. The

deep learning framework of choice is nnU-Net. Most specialized solutions in

applying deep neural models in the medical image domain depend on dataset

properties and hardware constraints. nnU-Net is a framework that automat-

ically adapts itself to various medical image segmentation tasks. Therefore,

it ensures a fair comparison of experiments. This work shows an improved

segmentation result after incorporating high-resolution metabolite maps de-
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rived from MRSI data acquired by the SPICE sequence. The high resolution,

rapidness, and near whole-brain performance of SPICE should assist radiolo-

gists and oncologists in delimiting the pathological area better and providing

more appropriate medical help.
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CHAPTER 1

INTRODUCTION

1.1 Motivations

In conventional MRI, finding the precise boundary of gliomas is challenging

due to the heterogeneous structure of the affected areas [1]. This heteroge-

neous nature confuses the automatic methods to overestimate or underesti-

mate the presence of active tumor [2], and such a lousy outcome can lead

to undesired treatment planning and prognosis consequences. Proton mag-

netic resonance spectroscopic imaging (1H-MRSI) can potentially remedy

this challenging situation because it visualizes the metabolites distribution

in human bodies. MRSI marks a fundamental paradigm shift from struc-

tural to metabolic imaging. Several studies have reported increased choline

(Cho)-containing compounds level and the reduced presence of N-acetyl-

aspartate (NAA) in brain tumors. Choline-containing compounds include

choline, phosphocholine, and glycerophosphocholine. They increase as the

level of membrane synthesis in rapidly dividing tumor cells elevates. NAA

is regarded as a neuronal marker mainly contained within neurons, not in

tumors. Therefore, it decreases in these abnormal regions. In principle,

metabolic maps of NAA and Cho provide rich information differentiating

necrosis, solid tumor, and varying degrees of tumor infiltration and tissue

edema. In this thesis, we investigate the potential of metabolite maps for

more precise brain tumor segmentation.

1.2 Problem Formulation

Brain tumor segmentation requires the separation of tumor and edema from

normal brain tissues (gray matter, white matter, and cerebrospinal fluid).
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In this study, we compare structural scans only and a combination of struc-

tural scans and metabolite maps derived from MRSI in their effectiveness of

segmenting brain tumors and edema.

Figure 1.1: Left: a coronal view of a 3D MRI scan of a human brain with
glioblastomas. MPRAGE isa type of MRI sequence that emphasizes the
contrast between gray and white tissues. Right: sagittal view.

Figure 1.2: Horizontal view. Red is edema. Green is tumor.

1.3 Summary of Contributions

This thesis provides an overview of brain tumor segmentation, emphasizing

machine learning and MRSI. Then, an experiment with eight glioblastoma

scans demonstrates the effectiveness of MRSI in identifying brain tumor and

edema regions, featuring an automated machine learning pipeline nnU-Net.

A novel MRSI technique, SPICE, obtains all metabolite maps, which gener-

ates an ultra-high spatiotemporal resolution dataset in a short 7-min scan.

This study is unique in analyzing brain tumor sub-regions with this level of

detail and richness of information.

2



1.4 Organization of the Thesis

Chapter 2 presents an introduction to background material and explains

the motivation for this study. This section focuses on a literature review of

brain tumor segmentation based on MR structural images. It first introduces

brain tumors and the important role of automated segmentation techniques.

It then presents different paradigms in current segmentation techniques with

their pros and cons.

Chapter 3 provides more content on the problem of interest and the pro-

posed solution. It first identifies the integration of the MRSI technique as one

of the exciting directions in determining the extent of brain tumors. Then, it

elaborates on the dataset, mask generation, scan registration, and the deep

convolutional neural network model of choice. It also reviews works on us-

ing MR spectroscopy and spectroscopic imaging for brain tumors and draws

connections between this thesis and other works.

Chapter 4 presents the experiment results. It evaluates the segmentation

quality and discusses the potential for further improvement.

Chapter 5 summarizes the results and provides insight into future MRSI

studies for brain tumor sub-region segmentation.
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CHAPTER 2

BRAIN TUMOR SEGMENTATION BASED
ON MR STRUCTURAL IMAGES

This chapter starts by introducing the significance of automatic brain tumor

segmentation on MRI images. MRI stands for magnetic resonance imaging,

and it is a non-invasive medical imaging technique that can form 2D and

3D representations of internal human bodies. The visualization helps under-

stand body development and various diseases in research and clinical settings.

Next, this chapter reviews different paradigms of solutions, including man-

ual labeling, semi-automatic and fully automated methods, unsupervised and

supervised learning.

2.1 MRI Brain Tumor Segmentation

Brain and other nervous system tumors are among the leading causes of death

in the United States. Cancer causes the second most deaths in 2019, while

the brain and other nervous system tumors cause the most cancer deaths

for men aged <40 years and women aged <20 years [3, 4]. For this devas-

tating disease, MR imaging remains the gold standard for neuroimaging due

to noninvasiveness, excellent soft-tissue contrast, and versatility in sequence

design to identify different key components of tumor physiology [5]. Take the

three most common brain tumors as examples, the central nervous system

metastases, meningiomas, and glioblastomas; all require MR imaging in the

early detection, monitoring, and diagnosis. MR imaging of the brain with

and without contrast is the gold standard for diagnosing brain metastases,

which cover most diagnosed cases of brain tumors. The same technique helps

to diagnose meningiomas, which comprise 35% of all primary brain tumors

[6], with additional biopsy or resection sometimes required. It is also the

first choice in visualizing glioblastomas, which account for 45% of malig-

nant primary brain tumors [6], while the final diagnosis requires pathological
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confirmation by taking a biopsy from the patient [5]. Structural scans are

essential in brain tumor treatment, so are diffusion tensor imaging (DTI)

tractography and MRSI. Preoperative DTI tractography can help neuronav-

igation, and MRSI can guide targeted biopsy in heterogeneous tumors.

Treatment of brain tumors requires a balance between minimizing the risk

of perioperative morbidity and maximizing the extent of tumor resection.

The most common practice is to perform surgical removal. Other therapies

include radiation therapy, radiosurgery, chemotherapy, targeted drug surgery,

and others. Knowing the extent of tumors is critical in therapy planning.

Automatic segmentation also facilitates prognosis. Building an automated

pipeline robust to pseudo-response and pseudo-progression is a crucial task.

Although humans can distinguish between healthy brain regions, tumors,

and edema, automatic brain segmentation remains hard. First of all, the

boundary of low-grade gliomas is blurred or nearly indistinguishable. Low-

grade tumors are those with grades 1 and 2 as defined in table 2.1. Secondly,

HGGs usually have ragged boundaries. Some tumors are easier to segment,

like meningiomas, which have a smooth border and are space-occupying. Ma-

lignant gliomas are much harder. They infiltrate normal brain tissue and of-

ten cause edema, making the edge less distinguishable and uneven. Thirdly,

automatic tumor segmentation requires different modalities, but they are

usually in different orientations and require registration. Fourthly, obtain-

ing high-resolution multi-modalities scans requires a long scan time. Lastly,

the automatic tumor segmentation methods need to be robust enough to

generalize well because MRI scanners and sequence choices (field-of-view,

voxel resolution, gradient strength, field strength, etc.) can differ and cause

different contrast.

Table 2.1: Tumor grade.

Grade Description

x grade isn’t known

1 well differentiated, low grade

2 moderately differentiated, intermediate grade

3 poorly differentiated, high grade

4 undifferentiated, high grade

In the case of segmenting gliomas, there are even more challenges. Gliomas

might be confused with a stroke. Also, it can take place at every location
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of the brain, with very different shapes and sizes. Plus, gliomas change the

surrounding brain tissue instead of moving them, blurring the boundaries.

MRI has a long history of being used for brain tumor segmentation. Tremen-

dous progress has been made, and there are many review papers available

considering different aspects of the process. Some review papers are focusing

on the broad field [7, 8, 9, 10], and some on more specialized sub-areas like de-

noising [11], data argumentation [12], and others on the use of deep learning

techniques [13]. Numerous methods are available to choose from, and open-

source labeled data sets are available for researchers to benchmark. The most

used data set is Brain Tumor Segmentation (BraTS) challenge. Many tech-

niques mentioned in the thesis are past participants in this famous challenge.

Table 2.2: Tissue Intensity [14, 9].

Modality Edema Tumor Region

FLAIR Hyper-intense Hyper-intense non-enhanced tumor

T1 Hyper-intense Hyper-intense

T1C Iso/Hyper-intense Hyper-intense tumor boundary

T2 Hyper-intense Hyper-intense non-enhanced tumor

Table 2.3: Tumor subregion and corresponding contrast in different
modalities.

Enhancing tumor T1c-w hyperintense

Edema T2w, T1w

FLAIR

Hyperintense

Edema is dark, CSF is bright

Necrotic T1c-w

T2w

T1w

Not enhance

Hyperintense

Hypointense

Non-enhancing tumor T1c-w

T2w

T1w

Not enhance

Lower intensity than necrotic

Hypointense

The Medical Image Computing and Computer Assisted Intervention Soci-

ety (MICCAI) has been holding BraTS challenges since 2012. MICCAI will

release a labeled training data set for researchers to develop and train their

machine learning-based classifiers every year. The focus of BraTS challenges

is to foster better segmentation of sub-regions of gliomas in multi-modality
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MR scans. These scans involve T1, post-contrast T1-weighted (T1Gd), T2-

weighted, and T2 Fluid Attenuated Inversion Recovery (T2-FLAIR) volumes.

The early challenges involve synthetic data sets and semi-automated labels,

but the recent data sets are all manually labeled or approved by experi-

enced neuro-radiologists. Four labels are available: GD-enhancing tumor,

the peritumoral edematous or invaded tissue, the necrotic tumor core, and

others. Such open-source databases have given rise to the development of

deep data-driven approaches.

Figure 2.1: An example of a BraTs data. Whole tumor: a union of green,
red, and blue. Tumor core: a union of blue and red. Enhanced tumor core:
red.

2.2 Manual Annotation

Manual segmentation involves manual delineation of tissue boundaries and

close examination of every slice. This process is time-consuming and error-

prone even with the help of a specialized and thoughtfully designed graphical

user interface. A trained expert has to go through the region of interest slice

by slice, and the view is limited. Given the increasingly mature technique

nowadays, more than eight 512x512 images might need to be examined and

labeled. The process is also error-prone because of potential artifacts and

noise. Quantitative evaluations also reveal high disagreement between human

raters with the DICE score range between 74% and 85% [15]. Labeling slice

by slice in one direction can produce jaggy labels judging from a different

direction. The inter and intraoperator variability is also another issue in brain

tumor segmentation [16] and other tissues [17, 18]. However, the manual

segmentation from experts remains the ground truth in most cases.

7



2.3 Semi-automatic Methods

On the other hand, semi-automatic segmentation methods can alleviate the

pressure on human annotators. This type of method does not require train-

ing examples. Still, it needs some human-labeled prior information about

the segmentation task, i.e., a few example labels, region of interest (ROI),

initialization seed, etc.

MRI Brain tumor segmentation is hard to tackle without training data be-

cause intensity information alone is unreliable. For instance, in T1-weighted

image, tumor, gray matter, CSF might share very similar voxel intensities

[19]. To make things worse, due to the heterogeneous nature of some can-

cerous tumors, the voxels inside the tumor region might have very differ-

ent intensities. Therefore, simple thresholding cannot perform well. Semi-

automatic methods involve human intervention to ensure good results.

Lim et al. [14] classify semi-automatic segmentation methods as region-

based, clustering-based, and a mixture of both. The region-based methods

consider the spatial characteristics of images, and therefore usually produce

connected areas. Some example algorithms include random walker, water-

shed, region growth. The clustering-based methods cluster pixels according

to their feature space values. K nearest neighbors (KNN), Gaussian mix-

ture model (GMM) are examples of this type. Note that K nearest neighbor

can also be supervised methods, depending on how the labeled data are ob-

tained. GMM is an automatic method, but it is often combined with other

components requiring human input. In the same paper, a mixture of both ap-

proaches is used. The proposed segmentation scheme comprises three parts:

information modeling, information fusion, and visual object extraction. A

region-based approach, random walk modified by adding homogeneity- and

object feature-based components, is the main workhorse of the first part.

In the second part, the weighted averaging method fuses information from

different modalities. Finally, information-theoretic rough sets determine the

boundary in transition areas.

As an example of requiring tumor seed points, Zhang et al. devised

a two-step method to semi-automatically segment the brain tumor region

[19], which they denoted as the multi-scale Otsu-based segmentation. The

first step is automatic. The procedure starts with an edge-aware filter that

smooths the MRI image. Then, multi-scale Otsu-based thresholding seg-
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ments both the original and the smoothed images. K-nearest neighbor is

used to fusing the two results. The second step requires human intervention.

Human-labeled tumor seed points needed to be ready before the bi-directional

region growing algorithm could work. Fig. 2.2 shows the overall workflow.

Figure 2.2: The general workflow of multi-scale Otsu based segmentation.

Another example of requiring operators’ initial seed is the Snake model.

Yezzi et al. proposed a Snake model for segmentation of medical imagery [20]

in 1997. This method uses a hand-crafted feature and requires the user to

provide initial seeds to start optimizing. Snake is widely accepted but usually

serves as the first step of labeling. While making accurate classification for

most voxels, it tends to fail at the boundary and is sensitive to noise, and

therefore, manual adjustments follow.

Zhao et al. used the medical image analog to optical flow, structural tra-

jectory, to generalize one annotated slide to the 3D volume. Their method

requires human annotation on an automatically selected slice. The proposed

method determines the first slice by evaluating the degree of asymmetry. Be-

cause consecutive areas should share similar label distribution, labels prop-

agate through each slice from the nearest to furthest. Optimal flow estima-

tion helps to find the structural correspondence between neighboring pieces.

Markov random field optimizes each prediction with hard constraints on those

labeled pixels identified by the optimal flow estimation.

Zhu et al. [21] built a graphic user interface for semi-automatically seg-

menting brain tumors using existing open-source software. The first stage

makes use of voxel-based segmentation provided by the Functional MRI of

the Brain (FMRIB) Software Library (FSL) and the FMRIB’s Automated

Segmentation Tool (FAST) [22, 23]. The next stage involves a level set-based

segmentation that uses ITK-SNAP [24]. The general workflow looks like Fig.

2.3.
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Figure 2.3: AFINITI pipeline: a graphic user interface design for
semi-automatic brain tumor segmentation by utilizing existing softwares
like FAST, FSL, and ITK-SNAP.

2.4 Fully Automated Methods

Fully automated methods refer to methods that require no human interven-

tion. While some of them require data prior, this section will focus on strate-

gies without training data. Those methods require a training step will be

further divided their dependency on labels. Section 2.5 discusses automatic

techniques with unlabeled training data, and section 2.6 reviews data-driven

solutions that require labels.

Early work [25] uses spatial probabilistic brain atlas as prior information.

This approach is prevalent in healthy brain tissue segmentation. The prob-

abilistic atlas is often an average of many brain tissue masks from different

people. The atlas serves two purposes. Not only it provides spatial prior

probabilities, but it also helps estimate the intensity distribution of each

healthy tissue class. Tumor prior probability is calculated using T1 post-

contrast and preconstrast images. Because edema appears most often in the

white matter region, the spatial prior for edema is 20% of the voxel’s white

matter probability. These prior probabilities for all normal and abnormal

tissues become inputs to the expectation-maximization (EM) segmentation.

In this work of Prastawa et al., the EM algorithm iteratively optimizes the
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following tasks:

• classify voxel using the current tissue distribution and bias field esti-

mates

• updates the bias field estimate using the current prediction classes

• re-estimate the probability distribution

Unlike the atlas-based approach, another approach in automating the

segmentation process requires multiple modalities. Diaz et al. [10] pro-

pose ABTS, a four-staged automatic brain tumor segmentation tool us-

ing automatic histogram multi-thresholding and morphological operations.

This method requires four types of modalities: T1-weighted spin echo, T1-

weighted spin echo with gadolinium contrast agent, T2-weighted spin echo,

and Fluid Attenuated Inversion Recovery. Having multiple scans with dif-

ferent contrast is extremely helpful because it avoids making false-positive

predictions to the tissue boundaries due to the poor contrast. A voxel in-

tensity prior is used to help with the thresholding method. The author also

used a Savitzky-Golay FIR filter to separate background, skull, and brain

parenchyma. The contrast difference in different modalities helps separate

edema because it shows a low-intensity value in T1 and T1C and a high-

intensity value in T2 and FLAIR. Gadolinium-enhanced lesions like tumors

appear with low intensity in T1 and high intensity in T1C and T2.

2.5 Unsupervised Methods

Unsupervised methods learn from untagged data, and clustering is one of the

most popular categories. This section will cover both k-means clustering and

fuzzy c-means (FCM) clustering. Afterward, a brief review of recent works

is presented.

2.5.1 K-means clustering

Lloyd’s algorithm for k-means clustering is an iterative clustering method

that guarantees convergence. The user needs to define the number of clusters,

K, and a distance metric. The algorithm initializes by first picking K random
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points as cluster centers. The iteration starts with assigning data points x(i)

to the closest cluster center. The most intuitive and widely adopted distance

metric is the L-2 distance. Then, choose the centroids of each cluster as the

new cluster centers. These two steps keep iterating until no point assign-

ment changes. To formally describe this process, we say k-means clustering

optimizes the following cost function:

min
µ

min
r

∑
i∈D

K∑
k=1

1

2
rik||x(i) − µk||22 s.t.

rik ∈ 0, 1 ∀i, k∑K
k=1 rik = 1 ∀i

(2.1)

Lloyd’s algorithm for k-means guarantees to find a local optimum in a finite

number of iterations. The downside of this algorithm is its sensitivity to

initialization. K-means++ [26] specifies a way to initialize the k-means and

makes it more robust. Researchers also use kernel tricks to make k-means

clustering more expressive. K-means is a prevalent building block of the

brain tumor segmentation pipeline.

Sasibhusana Rao et al. [27] compares both k-means and FCM methods in

their performance on brain tumor segmentation. According to their compar-

ative study, FCM has a better performance in terms of mean-squared error,

peak signal-to-noise ratio, and processing time.

2.5.2 Fuzzy C-means Clustering

Fuzzy c-means clustering [28, 29] is a soft version of k-means clustering. In

FCM, each data has a non-hard assignment to a class. A point can have

a positive coefficient of being in one cluster and another positive coefficient

of being in another. Therefore, it makes more intuitive sense in the case of

MRI brain tumor segmentation. The partial volume effect describes the loss

of contrast when a voxel contains multiple tissue types. We can express this

idea mathematically by having one data point belonging to multiple classes.

To perform FCM clustering on a new dataset, the user needs to define the

number of clusters, K, a hyper-parameter that controls the fuzziness, m, and a

distance metric to start. Again, some popular choices for the distance metrics

include Euclidean distance, cosine distance, and kernel-based distances. The

first step is to randomly assign coefficients to each data point for being in

the K clusters. Then, the algorithm computes the centroid of each cluster.
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Next, the fuzzy membership of each point is re-calculated as

uij =
1∑c

k=1(
dijdik

)

2
m−1

(2.2)

where dij is the distance between current data point xi and the centroid

vj, m is the fuzziness index with m ∈ [1,∞]. Iterate these two steps until

convergence.

2.5.3 Recent Works

Sauwen et al. [30] have compared the performance of several unsupervised

classification methods for HGG segmentation using multiple modalities. The

two main classes of choice are Non-negative matrix factorization (NMF) and

clustering. Non-negative matrix factorization finds a low-rank matrix ap-

proximation of the original data, such that this approximation is a product of

two non-negative matrices. K-means clustering then converts the decompo-

sition matrices to hard segmentation. In this paper, hierarchical alternating

least-squares NMF, convex NMF, and hierarchical NMF are the candidates

for comparison. The clustering methods of their choice are FCM and the

GMM. GMM is popular because the tissue intensity distribution closely fol-

lows the Gaussian distribution. Although in practice, the number of Gaussian

distributions is usually larger than the number of tissues to achieve better

performance. The last candidate is spectral clustering, a graph-based ap-

proach. The author uses two private datasets and finds that hNMF performs

the best on the tumor, edema, and core region, while spectral clustering

segments necrosis the best.

Just like in semi-automatic brain tumor segmentation, atlas prior is es-

sential to the success of many automatic methods. Many research centers

have made public their versions of the brain atlas. However, capturing the

distribution of tumors is often impossible because of the different extents,

shapes, and locations among different instances. Researchers managed to

overcome this missing tumor prior issue with creative solutions. Prastawa et

al. [25] perform segmentation using an expectation-maximization approach

with spatial prior derived from the ICBM digital brain atlas.
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2.6 Supervised Methods

Supervised methods refer to computational methods with parameters tuned

by labeled training data. Recent years have witnessed the success of such

computational models in brain segmentation. Different types of models have

contributed to the field, including Artificial Neural Network (ANN), random

forest (RF), support vector machine (SVM), k-nearest neighbor, convolu-

tional neural network (CNN), etc. Deep neural networks started to gain

popularity due to the increasing computation power and availability of large

labeled datasets like BraTS. BraTS have just begun in the recent decade, and

it shows a shift in attention from feature engineering to network topology

engineering. Based on a study carried out by Ghaffari et al. [31], the CNN-

based approach only appeared in BraTS after 2014. In 2012 and 2013, most

participants were using the random forest classifier-based approach. Since

2015, most of the submissions have been using CNN. U-Net was proposed in

2015 and started to strive in BraTS from 2016 and onwards. Forty-two of

more than 50 papers are variants of U-net or DeepMedic in BraTS 2017, and

more than half of the submissions are U-net based in the 2018 competition.

2.6.1 Random Forest

Random forest, as the name suggests, comprises many decision trees. A

decision tree is a tree structure where each inference starts at the root and

follows the decision, and the leaf node reveals the prediction. To construct

such a tree, there are multiple specific learning algorithms, including iterative

dichotomiser 3 (ID3) [32], C4.5 [33], and CART (classification and regression

trees) [34]. The general flow is to choose a variable that best splits the data

items according to a chosen criteria at a node. Then split the data according

to the chosen rule, append two nodes, and repeat the first process. Stop when

a node has a reasonably small amount of data and compute the statistics of

this leaf node. Some criteria commonly used are Gini impurity, entropy,

classification error, and information gain.

Random forest [35] is a parallel ensemble of multiple decision trees. Each

input vector is fed to each tree when computing an inference from a random

tree implementation. The class with the most votes becomes the final pre-

diction. During training, each tree is grown by randomly sampling N cases
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with replacements from the training set, where N is the number of cases. A

much smaller set of features is allowed at each node. This number is held

constant across nodes and trees as a hyper-parameter. Each tree grows with

no constraints and no pruning. The performance of random forests depends

on the correlation among trees and the strength of each tree.

According to [31], the best performing models of BraTS 2012 are using ran-

dom forest. Four out of the ten participants in BraTS 2013 are RF-based,

and three out of four RF-based approaches ranked top. RF remains popu-

lar and keeps appearing in BraTS competition, although deep convolutional

neural networks now achieve the best performances.

2.6.2 Neural Network

A general workflow of many machine learning-based approaches includes

data preprocessing, choosing the desired network architecture, choosing a

loss function and optimizing it, and running inference and post-processing

the prediction. This section reviews some essential training techniques and

methodologies like back-propagation and stochastic gradient descent. This

section is by no means a comprehensive review; readers are redirected to

more readings here [36, 37, 38, 39].

A neural network is a composite function with vector input and output. In

the case of brain tumor segmentation, the input is often some array represen-

tations of brain MR images with different acquisition schemes. The output

is obtained by the forward propagation, which describes applying the com-

posite function defined by the network architecture on the input array. The

ideal output should be the same as the target image, also called ground truth

images, usually multi-channel, with each channel representing a sub-region.

Back-propagation is used to find better parameters at each iteration. The

goal of tuning parameters is to reduce the loss defined by the cost function

using the current data batch. Let us consider the parameter’s current value as

a point in the parameter space. In each iteration, we calculate the gradient at

the current location. Gradients always point in the greatest ascend. We want

to take a small step in the greatest descent direction to find the minimum.

Adding the product of gradient and a small negative value called step size,

also known as the learning rate, can direct us to a local minimum. There
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are many schemes in determining the learning rate. Back-propagation refers

to an implementation of the gradient finding process. Of course, there are

many ways of finding minima in a continuous space. The implementation of

those optimization methods is called optimizers. But the back-propagation

and stochastic gradient descent are widely chosen for their empirically good

performance. They are more likely to find the global minimum and take less

computation time and resources to find it.

A deep neural network has many layers, and therefore, a large number of

parameters. As a result, the model is nearly always data-hungry. Medical

images are usually scarce due to poor accessibility to the general popula-

tion, time-consuming labeling process, and privacy concerns. Therefore, re-

searchers have developed ways to expand the number of training data from

the limited labeled scans, like rotation, flipping, and more complicated oper-

ation. This process is called data augmentation. Another vital trick to over-

come the data scarcity problem is to use the training data multiple times.

Every time the whole dataset is trained on the network is called an epoch.

If the model has seen the entire training dataset twice, the epoch number is

two.

Unlike other machine learning tasks, brain tumor segmentation is unique in

its colossal data size. With increasingly mature techniques, the MR scanner

can produce 1 mm3 or even finer resolution. The large size of input data

and the deep structure of neural networks lead to a significant amount of

calculation. The computational device has to have a considerable memory

such that each layer can hold the calculated floating-point values. As a

workaround, researchers use patches instead of the whole image. Image patch

size, batch size, and network size are critical trade-offs in experiment design.

A bigger size indicates richer spatial features possible to be learned, but the

training might take much longer, and more training data might be required.

In nowadays, machine learning society, stochastic gradient descent is the most

popular training scheme. In each iteration, only a batch of training data is

used to tune the parameters instead of using the whole training corpus at a

time. By having less training data at a time, we allow more complex models.

Different combinations of them have been explored extensively throughout

the years. Such representation learning methods usually learn the input

distribution quite well but have difficulties generalizing, i.e., they are often

limited to the image modalities of the training set.
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To dive into the building components of neural network models, let us

start with fully connected layer. A fully connected layer can be seen as a

matrix multiplication operation. The user needs to decide the input size and

output size of a fully connected layer, and the number of parameters will be

(n + 1) ∗m. Let us denote x as the input vector with size 1 ∗ n, the weight

matrix will become (n + 1) ∗m. The output derives from x̂w = y where[
1

x

]
= x̂ (2.3)

and the output is y with size m ∗ 1. The fully connected layer was used

heavily in artificial neural networks before the rise of convolutional neural

networks [40]. The fully connected layer can easily change sizes at different

layers, capturing global features. However, it does not scale well if we want

deeper and wider networks. To deal with the scaling issue, the researchers

have to make use of the convolution operation. A convolutional layer has a

trainable parameter w, called filters, and bias b. The user needs to define

the width, height, depth, and number of filters. An operation that plays an

opposite role is transposed convolution, where the input matrix is expanded

using convolution. A detailed discussion can be found at [41]

The maximum pooling does not have a training parameter. To define a

maximum pooling layer, the researcher needs to determine the size of the

receptive field and the step size. The maximum pooling layer reduces the

size from layer to layer while preserving essential signals.

Until here, all layers described above produces linear transformation of the

input vector. To add more nonlinearity, researchers have come up with acti-

vation functions like ReLU and tanh. A ReLU is an element-wise operation

performed on the input array. The output of each value is

y =

0, if x < 0

x, otherwise
(2.4)

There is also a modification of ReLU called leaky ReLU [42], which is

y =

ax, if x < 0

x, otherwise
(2.5)
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where a is a small constant.

Softmax is another way of introducing non-linearities, often used in the

last layer of model in a classification task. It takes in a vector and produces

another vector. The input is often the scores for each class, and the output

is the class possibilities.

σ(z)i =
ezi∑K
j=1 e

zj
for i = 1, ..., K and z = (z1, ..., zK) ∈ RK (2.6)

Batch normalization [43], instance normalization [44], and layer normaliza-

tion [45] are ways to solve covariate shift and to mitigate training instability.

All normalization methods require shifting and scaling the input signals by

mean and standard deviation respectively.

x̂ =
x− µ

σ
(2.7)

Batch normalization calculates the two statistics per channel. In each chan-

nel, it uses all samples and all spatial dimensions. Instance normalization

calculates per channel per sample, with all spatial dimensions included in the

calculation. Layer normalization calculates per layer. It uses all individual

samples across all channels and all spatial dimensions.

There are many loss functions used in the machine learning community.

And the design of the loss function is task-dependent. In brain tumor segmen-

tation, people use cross-entropy and DICE loss. The cross-entropy between

two probability distributions measures the average number of bits needed to

identify an event in information theory. Its calculation is

H(p, q) = −
∑
x∈χ

p(x)logq(x) (2.8)

where p and q are two distributions, and χ is its event space. In the context

of machine learning, p and q are vectors, and χ is each dimension.

Dice loss, as explained in section 3.5 is calculated as

S =
2|X + Y |
|X| + |Y |

(2.9)
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and Dice loss is

DiceLoss = 1 − 2|X + Y |
|X| + |Y |

(2.10)

where

|X ∩ Y | =

[
a b

c d

]
∗

[
0 0

1 1

]
=

[
0 0

c d

]
(2.11)
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CHAPTER 3

IMPROVED BRAIN TUMOR
SEGMENTATION WITH METABOLIC

INFORMATION

3.1 Magnetic Resonance Spectroscopic Imaging

Magnetic Resonance Spectroscopic Imaging is the spectroscopic variant of

Magnetic Resonance Imaging. It produces spatially localized spectra and

delivers metabolic information about voxels in the region of interest. Each

voxel contains a spectrum with multiple peaks due to the chemical shift effect.

Chemical shift refers to the resonant frequency of the hydrogen proton in

most MRI sequences. The surrounding chemical environments determine it.

To provide some more quantitative understanding, let us first recall Larmor

frequency

ωL = γB0 (3.1)

where ωL is the Larmor frequency, which describes the precessional fre-

quency of a proton spin. γ is the gyromagnetic ratio, and B0 is the back-

ground magnetic field. However, the shielding effect causes each proton to

experience a slightly different background magnetic field. The shielding ef-

fect refers to the reduction in effective nuclear charge due to the attraction

between electrons and nuclei. The effective magnetic field is

Beff = (1 − σ)B0 (3.2)

where σ is the shielding constant. Because every proton group experiences

a different field, they resonate at different frequencies. This chemical phe-

nomenon makes resonant frequencies of proton groups shift away from one

common frequency. Thus, the name, chemical shift.

Let us take one subject as an example. Visualization of some spectrum

shows the distribution of different resonant frequencies. Because spectra are
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complex, we will draw both the magnitude and the real part. The average

signals of pure edema, tumor, contralateral normal, and tissue surrounding

the affected regions are attached below.

Figure 3.1: The average of spectrum magnitude with water and lipid signal
removal. From top to bottom, and left to right: tumor, pure edema,
contralateral normal, and neighbor voxels.
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Figure 3.2: The average of spectrum real part with water and lipid signal
removal. From top to bottom, and left to right: tumor, pure edema,
contralateral normal, and neighbor voxels.

Fig. 3.3 and 3.5 shows some example spectra. The horizontal axis unit is

ppm, which stands for parts per million, and it is measured relative to a refer-

ence compound. Tetramethylsilane is the most common reference compound.

The equation to calculate the chemical shift in ppm is

υ − υref
υref

∗ 106 (3.3)

where υ is the Larmor frequency. This representation is popular because

of its field strength independence. For example, no matter the field strength

an MRI scanner provides, the water peak is always at around 4.7 ppm.
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Figure 3.3: Randomly chosen edema spectrum.

Figure 3.4: Randomly chosen tumor spectrum.

Because resonance frequency depends on the chemical environment, we

can identify and measure different chemical compounds. The area under

a peak has a linear relationship with the absorption intensity. Therefore

it is proportional to the nucleus concentration. This relationship is valid

for comparisons between molecules. Also, because MRSI provides spatial

coordinates of the signals, we can map metabolites. With the help of these
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two properties, we can obtain spatial distributions of various metabolites.

MRSI becomes promising because metabolic changes can reflect and even

may proceed anatomic changes.

MRSI and MRS are methods to understand tumors because they reflect

the metabolic profile of molecules. As early as 1996, researchers have found

MRSI powerful in diagnosing brain tumor type [46]. Also, MRSI is non-

invasive in identifying the heterogeneity structure of brain tumors to guide

biopsy planning, such that clinicians can have a better chance of knowing

the actual grade of the tumor [47]. MR spectroscopy can also help identify

IDH-mutated gliomas [48]. IDH stands for isocitrate dehydrogenase, and it

is an enzyme that moderates the rate of the Krebs cycle and is part of the

energy metabolism. Patients with IDH wild type often carry a worse progno-

sis than those with IDH mutant. Also, another MR spectroscopy-detectable

metabolite, glycine, is proposed to be a marker of glioma aggressiveness. Al-

though still under investigation, this could be another metabolite potent in

brain tumor research and clinical use cases [49].

3.2 Useful MRSI-Detectable Metabolites

MR spectroscopy and spectroscopic imaging are common tools in studying

brain tumors because they give us a glimpse into the neurochemical state of

the brain. They can help to diagnose and differentiate various brain diseases.

As introduced in this section, researchers have found several critical MRSI-

detectable metabolites that respond to malignant tissue proliferation.

3.2.1 NAA

N-Acetylaspartic acid, or N-acetylaspartate or NAA, is a derivative of aspar-

tic acid. The chemical formula of NAA is C6H9NO5. The molecular graph

is
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Figure 3.5: NAA molecular graph. Figure adapted from Wikipedia.

NAA presents in neurons, oligodendrocytes, and myelin in the adult brain,

and it is a marker of neuronal density and viability. Some most widely-

accepted primary functions of NAA include precursing neurotransmitter N-

Acetylaspartylglutamic acid (NAAG), participating in myelin lipids forma-

tion, and regulating osmosis. A decrease in NAA indicates a loss or injury of

neurons when tumors replace neurons. On the MRSI spectrum, NAA’s peak

is at around 2 ppm.

Figure 3.6: Up: MPRAGE of a patient. Down: the NAA distribution of
this patient.

3.2.2 Choline

Choline refers to several soluble components of brain myelin and indicates

fluid-cell membranes and integrity. Choline is an essential nutrient for brain

development, and it is part of the S-adenosylmethionine synthesis, which reg-

ulates gene expression and changes brain function. Pathological alterations

to choline appear in membrane turnover, for example, tumors. Choline’s

peak is at 3.2 ppm.
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Figure 3.7: Choline molecular graph. Figure adapted from Wikipedia.

Figure 3.8: Up: MPRAGE of a patient. Down: the choline distribution of
this patient.

3.2.3 Creatine

MRSI can detect total creatine, including creatine (Cr) and phosphocreatine

(PCr). Both compounds appear to have peaks at 3 ppm and 3.9 ppm in

MRSI. Total creatine plays an integral role in energy metabolism. They

serve as a reservoir for adenosine triphosphate (ATP). PCr donates phosphate

groups to adenosine diphosphate (ADP) such that it converts back to ATP.

Total creatine usually stays constant in most diseases and with age, with

one known exception of astrocytomas where it diminishes. Therefore, it is

considered an excellent internal standard.

Figure 3.9: Creatine molecular graph. Creatine has the nominal formula
(H2N)(HN)CN(CH3)CH2CO2H. Figure adapted from Wikipedia.
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Figure 3.10: Up: MPRAGE of a patient. Down: the creatine distribution of
this patient.

3.2.4 Lipid

Lipid can be produced in tissue breakdown processes, which stores energy,

signals as in the lipid signaling process, and serves as structural components

of cell membranes. The Lipid MAPS consortium has eight categories: fatty

acids, glycerolipids, glycerophospholipids, sphingolipids, sterols, prenols, sac-

charolipids, and polyketides. An abnormal presence of lipid indicates brain

tumor necrosis and myelin destruction, with possible contamination by sub-

cutaneous fat from the skull. The peak can appear between 0.8 to 1.5 ppm

and 2 ppm.

27



Figure 3.11: Molecule graphs of some common lipids. Figure adapted from
Wikipedia.

3.2.5 myo-Inositol

myo-Inositol (MI) is a carbocyclic sugar, which mediates cell signal transduc-

tion and acts in osmoregulation. It is considered an inflammatory marker.

MI appears to be low in high-grade tumors and high in low-grade tumors.

Its peak is at 3.5-3.6 ppm.

Figure 3.12: Molecule graph of myo-Inositol. Figure adapted from
Wikipedia.
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3.2.6 Lactate

Lactate (Lac) arises from anaerobic metabolism. It is the conjugate base

of lactic acid, with the molecular formula CH3CH(OH)CO−
2 . Lactate is

proposed in a few reports to be the preferential energy source by human brain

neurons. According to the lactate-shuttle hypothesis, glial cells transform

glucose into lactate and provide it to the neurons. Lactate shows up in

tumors containing zones of necrosis. On MRSI, it has doublet at 1.3 ppm.

3.3 Study Participants and Data Acquisition

Procedures

A retrospective analysis of data from eight patients with histopathologic

diagnosis of glioblastomas was performed, as approved by the Institutional

Review Board of the Fifth People’s Hospital of Shanghai, China.

The MRSI data were obtained using the SPICE sequence. More details

about SPICE will be presented in this chapter later. As part of the exper-

imental protocol, brain structural images were obtained using 3D contrast-

enhanced MPRAGE (1.0 x 1.0 x 1.0 mm3, FOV = 256 mm, TR/TE =

2400/2.13 ms). FLAIR, T1-weighted, and T2-weighted are also acquired.

3.4 Implementation

MRSI acquisition is slowed due to the curse of dimensionality. The long

acquisition time and low SNR ratio are the main blocking barriers to the full

utilization of the richness of MRSI signals. Researchers have proposed many

ways to accelerate the acquisition process. Main approaches include reducing

repetition time (TR), reducing the required samples, and increasing k-space

coverage per echo.

SPectroscopic Imaging by exploiting spatiospectral CorrElation (SPICE)

[50, 51] is a rapid, high-resolution, near whole-brain 3D proton MR spec-

troscopic imaging technique. In a 5-minute scan, the MRSI data were ac-

quired at a nominal resolution of 2.0 x 2.4 x 3.0 mm3 with whole-brain cov-

erage (FOV = 230 x 230 x 72 mm3). The relative amount of NAA, lactate,

choline, and other commonly used metabolites can be inferred by applying
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peak integration on SPICE scans. Variation of SPICE sequences can gen-

erate fMRI [52], macromolecule mapping, quantitative susceptibility maps

(QSM) [53, 54], myelin water imaging [55], and MRSI with high resolution

and SNR. There are also high-field versions [56, 57], phosphorus, carbon, and

fluorine MRI [58, 59, 60], and J-resolved MRSI [61].

The power of SPICE comes from the many innovations in its data acqui-

sition and preprocessing techniques. One winning strategy of SPICE is its

advanced data processing methods for water and lipid removal [62]. By ex-

cluding the water and lipid suppression sequence, SPICE shortens the acqui-

sition time and produces richer information. Sequence-wise, SPICE is unique

in utilizing ultrashort echo time (1.6 ms) [58] and short repetition time (160

ms). It has extended MRSI-based readout with a large echo-space (1.76 ms).

Sparse sampling further accelerates the process. Because speed, resolution,

and SNR are interdependent in imaging, denoising and motion correction in-

novations also boost the overall performance. In addition, SPICE uses FID

instead of spin echoes to encode spatiospectral information to reduce the

amount of energy absorbed by the human body, making the process safer for

imaged subjects.

SPICE reconstruction uses a union-of-subspaces model [63], which incor-

porates pre-learned spectral basis functions [64, 65, 66]. An improved LC

model-based algorithm employs spatial and spectral priors to accomplish

spectral quantification.

3.4.1 Mask Annotation

The neoplastic mass and edema masks were obtained using a level set-based

semi-automatic segmentation method. The MPRAGE and SPICE images

were co-registered using linear affine transformation using FLIRT.

3.4.2 Metabolite Maps Generation

The metabolite maps are generated using peak integration. It estimates

each metabolite by calculating the area under their respective peaks in the

frequency domain.
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3.4.3 Registration

Due to patient motion in between scans, there might be misalignment be-

tween structural scans and MRSI sequence acquisition. Plus, the field of

view (FOV) is different in different sequences. And because the ground

truth labels can be made more precisely using the high spatial resolution

structural data, registration between the high-resolution modalities and the

low-resolution modality become crucial. In this experiment, after obtaining

high spatial resolution masks from structural scans, we translate them to the

same spatial dimension and orientation as the spectroscopic imaging space.

The process is carried out by using FLIRT.

FLIRT (FMRIB’s Linear Image Registration Tool) is available on the

FreeSurfer software application. FLIRT uses a hybrid global-local optimiza-

tion for registering multiple MRI modalities [67]. In FreeSurfer implementa-

tion, the user needs to decide the reference image, degree of freedom (DOF)

for the affine transformation, and the cost function for the global optimiza-

tion. Affine transformation is a type of geometric transformation, which

transforms the original data to the same space bijectively. It preserves lines

and parallelism, but not distance and angles. For 3D images, the value of

DOF can be 6, 7, 9, or 12; each number assumes a different type of transfor-

mation. For DOF of 6, a rigid body transformation is assumed. In this type

of transformation, the original object is considered a rigid body, and no dis-

tortion of it can be made. Instead, only rotation and translation are allowed.

This is a valid assumption when two images are of the exact nominal and

real resolution. For DOF of 7, a global scale is enabled. Now, the two im-

ages can be of different sizes, but no distortion of the field should be present

(which distorts the size of each voxel). A DOF of 9 assumes rigid body trans-

formation and independent scaling in each direction, and this accounts for

some field inhomogeneity and motion effect that might happen during the

acquisition. With full 12 DOF, rigid body, scale, and skews correction are

all enabled [68].

3.4.4 nnU-Net

nnU-Net won the second prize on BraTs 2018, and the first prize in BraTS

2020 [69]. It is a framework that automatically adapts itself to any given med-
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ical image segmentation task, and it shows top performance in 13 datasets

[70, 71]. The self-configuration includes all the design choices in preprocess-

ing, network architecture, training, and post-processing. Preprocessing steps

include image and annotation resampling and intensity normalization. There

are three network architectures, 2D U-net [72], 3D U-net [73], and cascaded

3D U-net. For each architecture, training parameters include choosing a suit-

able set of batch size and patch size. The author suggests that although a

larger batch size leads to a more accurate gradient estimate, actually to get

robust training, any batch size larger than one usually works. Therefore, the

author opts for a larger patch size to increase the receptive field while main-

taining sufficient depth in the network. The post-processing is tailored to the

preprocessing and model design. Besides these dataset-specific parameters,

other fixed design choices are essential to building a high-performance model.

These are the learning rate, loss function, optimizer, data augmentation

workflow, training procedure like the number of epochs and mini-batches,

inference procedure, and architecture template, including the choice of in-

stance normalization, leaky ReLU, and deep supervision. The idea of deep

supervision [74] is to have multiple segmentation maps generated at different

resolution levels, and all participate in the computation of loss function. The

decision dependency of these network design choices is thoroughly explained

in the paper, and a table is reproduced in Table 3.1 and Table 3.2.

The nnU-Net paper also provides insight into the importance of the train-

ing scheme. The author suggests method configuration is more influential

on the quality of the model than introducing architectural modifications.

According to their observation about the Kidney Tumor Segmentation 2019

challenge hosted by the Medical Image Computing and Computer Assisted

Intervention (MICCAI) society, no commonly found variations to u-net can

guarantee good performance. Modifications include residual connections

[75, 76], dense connections [77], attention mechanisms [78, 79], dilated con-

volutions [80], and others. The author points out that the same model can

perform drastically differently in ranking in the same task. In the same pa-

per, a thorough experiment is carried out, emphasizing the importance of

method configuration.

U-net is a fully convolutional neural network that can take input of arbi-

trary sizes and produce correspondingly-sized output. A fully convolutional

neural network avoids using fully connected layers to prevent a rigid struc-

32



ture. Instead, convolution with kernels that cover the entire input regions

can be a good substitute [81].

U-net has a contracting path and a symmetric expanding path with skip

connection [72]. Skip connection feeds the output of one layer as the input

to another layer and skips the layers in between. A reproduced drawing of

the original U-Net architecture can be found in Figure 3.13.

Figure 3.13: The original U-net original architecture. Adapted from source
[72].

There is also a 3D counterpart [73]. Figure 3.14 shows its architecture.

Figure 3.14: The original 3D U-net architecture. Adapted from source [73].
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Table 3.1: nnU-Net proposed automated method configuration for deep
learning-based biomedical image segmentation (continued in the next
table). Adapted from source [70].

Design choice Required input Automated (fixed, rule-based or empirical

configuration) derived by distilling expert knowledge

Learning rate - Poly learning rate schedule (initial, 0.01)

Loss function - Dice and cross-entropy

Architecture

template

- Encoder-decoder with skip-connection (‘U-Net-like’) and

instance normalization, leaky ReLU, deep supervision

(topology-adapted in inferred parameters)

Optimizer - SGD with Nesterov momentum (µ = 0.99)

Data

augmentation

- Rotations, scaling, Gaussian noise, Gaussian

blur, brightness, contrast, simulation of low

resolution, gamma correction and mirroring

Training

procedure

- 1,000 epochs x 250 minibatches, foreground

oversampling

Inference

procedure

- Sliding window with half-patch size overlap,

Gaussian patch center weighting

Intensity

normalization

Modality,

intensity

distribution

If CT, global dataset percentile clipping and z

score with global foreground mean and s.d.

Otherwise, z score with per image mean and s.d.

Image

resampling

strategy

Distribution

of spacings

If anisotropic, in-plane with third-order spline, out-

of-plane with nearest neighbor.

Otherwise, third-order spline

Annotation

resampling

strategy

Distribution

of spacings

Convert to one-hot encoding →
If anisotropic, in-plane with linear interpolation,

out-of-plane with nearest neighbor.

Otherwise, linear interpolation

Image target

spacing

Distribution

of spacings

If anisotropic, lowest resolution axis tenth percentile,

other axes median.

Otherwise, median spacing for each axis.

(computed based on spacings found in training cases)
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Table 3.2: nnU-Net proposed automated method configuration for deep
learning-based biomedical image segmentation (continued). Adapted from
source [70].

Network

topology,

patch size,

batch size

Median

resampled

shape, target

spacing, GPU

memory limit

Initialize the patch size to median image shape and

iteratively reduce it while adapting the network

topology accordingly until the network can be trained

with a batch size of at least 2 given GPU memory

constraints. for details see online methods.

Trigger of 3D

U-Net

cascade

Median

resampled

image size,

patch size

Yes, if patch size of the 3D full resolution U-Net

covers less than 12.5% of the median resampled

image shape

Configuration

of low-

resolution 3D

U-Net

Median

Low-res target

spacing or image

shapes, GPU

memory limit

Iteratively increase target spacing while reconfiguring

patch size, network topology and batch size (as

described above) until the configured patch size

covers 25% of the median image shape

Configuration

of post-

processing

Full set of

training data

and

annotation

Treating all foreground classes as one; does all-but-

largest-component-suppression increase cross-

validation performance?

Yes, apply; reiterate for individual classes

No, do not apply; reiterate for individual foreground

classes

Ensemble

selection

Full set of

training data

and

annotation

From 2D U-Net, 3D U-Net or 3D cascade, choose the

best model (or combination of two) according to cross-

validation performance

The developers of nnU-Net retain the general model topology with some

modifications. nnU-Net includes instance normalization and uses leaky non-

linearities (leaky ReLU) instead of ReLu. They use two computational

blocks, each containing conv → instance normalization → leaky ReLU, per

resolution stage in both contracting and expanding paths. Variations in

downsampling and upsampling do not play a vital role in performance. For

example, max pooling, bi/trilinear upsampling, convolutions transposed, etc.

The u-net variant used by nnU-Net is reproduced in Figure 3.15 and Fig 3.16.

35



Figure 3.15: The 2D U-net variant used by nnU-Net. Adapted from source
[70].

Figure 3.16: The 3D U-net variant used by nnU-Net. Adapted from source
[70].

As for the training scheme, an empirical number of 1000 epochs, with

each epoch comprising 250 training iterations, is recommended. The best-

performing optimizer is stochastic gradient descent with a high initial learn-

ing rate and a large Nesterov momentum. They use the ‘polyLR’ schedule

to reduce it. Data augmentation is also shown to be necessary for guarantee-

ing state-of-the-art performance. Training efficiency is improved by having
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data augmented simultaneously as the forward and backward propagation

happens, such that GPU and CPU can work concurrently.

Oversampling of rare positive classes approach is taken to mitigate the class

imbalance issue. The loss function combines Dice loss and cross-entropy loss

because Dice loss alone is a bad approximation of the real Dice value due to

patch-based training and over-sampling.

3.5 Evaluation

To show the potential benefits of including MRSI for brain tumor segmen-

tation, we experiment and compare both with and without it. Both set-

tings make use of structural MRI scans and use the same machine learning

pipeline, nnU-Net. The first experiment contains structural MRI scans only,

including MPRAGE, FLAIR, T1-weighted imaging, and T2-weighted imag-

ing. The second one includes the structural MRI scans mentioned above

and the metabolites density maps derived from the MRSI, including crea-

tine, choline, and NAA. Among the eight subjects, one is the testing data.

Five-fold cross-validation is performed on the seven training subjects.

During inference, each patch results from an ensemble of five-fold valida-

tion. Gaussian importance weighting for softmax aggregation with the patch

distance being half of the patch size is selected as recommended by nnU-Net

original paper and implementation.

To get a quantitative evaluation of the results, researchers in this field often

use Dice, sensitivity (true positive rate), specificity (true negative rate), and

accuracy. They are calculated as below

DICE =
2TP

2TP + FP + FN
(3.4)

sensitivity =
TP

TP + FN
(3.5)

specificity =
TN

TN + FP
(3.6)

accuracy =
TP + TN

TP + TN + FP + FN
(3.7)

where
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Table 3.3: TP, TN, FP, FN Table.

Predict as True Predict as False

Ground truth is true True Positive (TP) False Negative (FN)

Ground truth is false False Positive (FP) True Negative (TN)

During the evaluation, subject 118 was excluded because the ground truth

mask mismatches with the actual edema region. Subject 108 is excluded be-

cause the field of view for structural scans and metabolite maps are different.

The five cross-validations are split according to the following table:

Table 3.4: Cross Validation Splits.

Fold Train Set Validation Set

0 8, 18, 103, 105, 108 104, 118

1 18, 103, 104, 108, 1118, 8, 105

2 8, 103, 104, 105, 108, 118 18

3 8, 18, 103, 104, 105, 118 108

4 8, 18, 104, 105, 108, 118 103

To get a better visual understanding of the model performance, MPRAGE,

FLAIR, T2-weighted, along with ground truth and 4 experiment output over-

laying T2-weighted scans, are drawn and compared for each subject. The

next chapter covers the discussion about each patient. Network predictions

are also overlaid to creatine, choline, and NAA maps for each subject. These

visualizations help draw takeaways on whether the model finds metabolite

maps useful.

3.6 Comparison to Other Works

Most of the works on brain tumor segmentation focus on the architectural

search of the best-performing model on the BraTS dataset. Therefore, only

structural scans are concerned. There are some works on using MRSI for

brain tumor segmentation.

Simi et al. [82] suggest MRSI and MRS can show the spectral changes of

different tissue types. But structural scans can fail in providing sufficient ev-

idence for differentiating white matter and edema, necrosis and gray matter,

edema and glioblastoma (GBM).
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Different nosologic imaging methods have been proposed to identify brain

tumors using MRI and MRSI. Luts et al. [83] explored the combination of

registered brain atlas, a subject-specific abnormal tissue prior, and super-

vised pattern recognition methods. It uses a cascade of data-driven and non-

data-driven optimization tasks. For example, k-means clustering for edema

detection, LS-SVM for creating the nosologic image, canonical correlation

analysis for exploiting spatial information, and kernel logistic regression for

providing class probabilities.

Unsupervised methods like convex non-negative matrix factorization (Convex-

NMF) is popular in delimitating brain tumor from MRSI data. Ortega-

Martorell et al. [84] showcase a successful application of it on seven brain

tumor-bearing mice. Li et al. [2] uses NMF on MRSI and fused with MRSI

using a wavelet-based approach. This data fusion scheme works well on seven

patients with low-grade glioma.

Also using non-negative matrix factorization, Ortega-Martorell et al. [85]

propose a Semi-Supervised Source Extraction (SSSE), which outperforms

unsupervised methods. The experiment is conducted on mice, and the tech-

nique requires a user-defined rough delineation of the tumor region. As the

first of the three steps, SSSE uses fisher information and a multi-layer per-

ceptron (MLP) classifier to learn the conditional probabilities of class mem-

bership. Next, multi-dimensional scaling approximates the empirical data

distribution. Lastly, Convex-NFM constructs the nosologic image.

Works reviewed above mainly use NMF, neural networks that are not

convolutional, and optimization of novel cost functions. To the best of my

knowledge, there are not many works on using end-to-end convolutional neu-

ral networks on MRSI metabolite maps to segment brain tumor subregions.

In this work, a state-of-the-art deep convolutional neural network is applied

on both the structural scans and the metabolite maps derived from the MRSI

to compare their performance.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Metrics

The following tables show the DICE value and accuracy of the model pre-

diction for each subject.

Table 4.1: Edema DICE.

Data U-Net Sub 8 Sub 018 Sub 103 Sub 104 Sub 105

Struct 2D 0.620 0.663 0.644 0.331 0.593

Both 2D 0.600 0.625 0.670 0.433 0.606

Struct 3D 0.632 0.668 0.694 0.607 0.541

Both 3D 0.584 0.628 0.745 0.563 0.500

Table 4.2: Edema Accuracy.

Data U-Net Sub 8 Sub 018 Sub 103 Sub 104 Sub 105

Struct 2D 0.992 0.992 0.996 0.997 0.981

Both 2D 0.992 0.990 0.997 0.996 0.980

Struct 3D 0.991 0.991 0.996 0.998 0.979

Both 3D 0.992 0.990 0.997 0.997 0.978

Table 4.3: Tumor DICE.

Data U-Net Sub 8 Sub 018 Sub 103 Sub 104 Sub 105

Struct 2D 0.142 0.790 0.512 0.318 0.576

Both 2D 0.356 0.678 0.669 0.147 0.649

Struct 3D 0.160 0.706 0.639 0.593 0.534

Both 3D 0.453 0.638 0.598 0.618 0.573
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Table 4.4: Tumor accuracy.

Data U-Net Sub 8 Sub 018 Sub 103 Sub 104 Sub 105

Struct 2D 0.995 0.996 1.000 0.996 0.990

Both 2D 0.993 0.995 1.000 0.995 0.990

Struct 3D 0.994 0.995 0.999 0.997 0.991

Both 3D 0.995 0.994 1.000 0.997 0.991

For each subject, the experiment with the highest DICE value is high-

lighted. For edema prediction, 3 out of 5 best methods only use structural

scans. For subjects 8, 18, 104, and 105, the two approaches, using structural

scans only and using both structural scans and metabolite maps, do not differ

much. The difference in performance is within 0.05. For subject 103, using

metabolite maps significantly increase the performance.

For tumor prediction, 4 out of 5 best performances are using a combina-

tion of structural scans and metabolite maps. Both approaches yield much

better results than the structural only approach when making predictions

on subjects 8 and 105. These observations indicate the potential benefits

of incorporating MRSI scans in the brain tumor segmentation pipeline. It

gives a better view of tumor boundary and therefore be important in tumor

treatment and prognosis.

Note that the evaluation here favors structural scans. All ground truth

maps are obtained from structural scans, but the definition of tumor and

edema boundary is still under investigation. With the ever-advancing MR

techniques, researchers are gradually learning about the brain pathological

pathways. A better definition of tumor and edema might be raised and

accepted in the future.
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4.2 Visualizing Each Subject

Subject 8

Row 4 represents the ground truth, where dark red represents the edema re-

gion and bright red represents the tumor region. Because the gold standard

mask is labeled in a higher nominal spatial resolution space, the mask be-

comes ragged and discontinued after registration and re-sampling to a lower-

dimensional space. For the four predictions shown, metabolite results tend

to be smoother. The 2D structural result has holes that are not very bio-

logically plausible. 3D structural scans even show edema prediction on slice

28. This is probably because, in some structural scans, these voxels have

high intensity due to noise in the scan. The model is biased, and it will

misclassify in such cases. Metabolite pipeline, on the other hand, shows a

more consistent performance. It is less affected by such noises because the

metabolite maps are quantitative.
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Figure 4.1: Axial view of subject 8. From top to bottom: MPRAGE,
FLAIR, T2-weighted, Ground Truth, 2D structural pipeline prediction, 2D
metabolic pipeline prediction, 3D structural pipeline prediction, 3D
metabolic pipeline prediction.
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Subject 18

Again, row 4 is the ground truth, which is incorrect due to the loss of in-

formation during registration and compression. A tumor almost constitutes

the entire abnormal mask. It is very distinctive on FLAIR and T2-weighted

images in human eyes. All four pipelines are doing an excellent job in iden-

tifying the tumor region. I think the 2D metabolite pipeline does a pretty

solid job. Note that on slice 8, 2D metabolite prediction matches the bright

area in FLAIR. Again, the 2D structural prediction has an unnatural cavity

in slice 18.
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Figure 4.2: Axial view of subject 18. From top to bottom: MPRAGE,
FLAIR, T2-weighted, Ground Truth, 2D structural pipeline prediction, 2D
metabolic pipeline prediction, 3D structural pipeline prediction, 3D
metabolic pipeline prediction.
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Subject 103

This subject has a significant lesion with a small purely edema region. The

damaged part matches with the high-intensity area in FLAIR. Both 3D

pipeline results compare with the ground truth well in both shape and loca-

tion. 2D metabolic pipeline produces a low score for all voxels. 2D struc-

tural scans mistakenly predict them as edema regions instead of a tumor. 3D

metabolic predictions are smoother than the structural one, which is desir-

able in this task. In slice 8, the structural pipeline produces a false positive

prediction in the CSF region in the middle of the brain.
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Figure 4.3: Axial view of subject 103. From top to bottom: MPRAGE,
FLAIR, T2-weighted, Ground Truth, 2D structural pipeline prediction, 2D
metabolic pipeline prediction, 3D structural pipeline prediction, 3D
metabolic pipeline prediction.
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Subject 104

Subject 104 has a large lesion area and tiny pure edema region. 2D networks

are doing better. Especially the metabolic pipeline.
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Figure 4.4: Axial view of subject 104. From top to bottom: MPRAGE,
FLAIR, T2-weighted, Ground Truth, 2d structural pipeline prediction, 2d
metabolic pipeline prediction, 3d structural pipeline prediction, 3d
metabolic pipeline prediction.
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Subject 105

We have a large tumor mask with a tiny pure edema region identified for this

subject. 3D networks seem to underestimate the affected area. There might

be fewer data in the training data set to have such a large tumor region. 2D

metabolic prediction makes a more accurate prediction on slices 3 and 18.
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Figure 4.5: Axial view of subject 105. From top to bottom: MPRAGE,
FLAIR, T2-weighted, Ground Truth, 2D structural pipeline prediction, 2D
metabolic pipeline prediction, 3D structural pipeline prediction, 3D
metabolic pipeline prediction.
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Subject 128

Subject 128 is the testing data that does not have ground truth.

Figure 4.6: Axial view of subject 128. From top to bottom: MPRAGE,
FLAIR, T2-weighted, 2d structural pipeline prediction, 2d metabolic
pipeline prediction, 3d structural pipeline prediction, 3d metabolic pipeline
prediction.
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4.2.1 Visualizing prediction and compare with metabolite
maps

This section shows the network overlaying metabolite maps. These visualiza-

tions are intended to provide intuition on how network prediction correlates

with changes in metabolite concentration.

Figure 4.7: 3D metabolic prediction overlays metabolite maps for subject 8.
From top to bottom: Creatine, Choline, NAA.

Figure 4.8: 2D metabolic prediction overlays metabolite maps for subject
18. From top to bottom: Creatine, Choline, NAA.
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Figure 4.9: 3D metabolic prediction overlays metabolite maps for subject
103. From top to bottom: Creatine, Choline, NAA.

Figure 4.10: 3D metabolic prediction overlays metabolite maps for subject
104. From top to bottom: Creatine, Choline, NAA.
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Figure 4.11: 2D metabolic prediction overlays metabolite maps for subject
105. From top to bottom: Creatine, Choline, NAA.

For all predictions, choline level elevates, and NAA concentration decreases

in the tumor region. It is most evident in subject 105, as the prediction shape

closely follows the metabolite maps.

4.3 Discussion

One of the challenges that conventional MRI scan faces in identifying brain

tumor are the contrast. Although MRI is preferred over other imaging tech-

niques due to its fine contrast among different brain tissues, different tissues

can still have voxels with the same intensity. A human can separate them

because we can identify boundaries quickly, and we have a large receptive

field. However, due to the limited view of a neural network, it can get con-

fused. On the other hand, Metabolite maps are helpful because they are

quantitative. It is less affected by field inhomogeneity and therefore behaves

more consistently. They are more sensitive and specific to brain tumors.

This proof-of-concept study strikes a fair comparison between having and
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not having metabolite maps in segmenting tumor sub-region in the brain.

nnU-Net has a provenly highly optimized way of identifying hyper-parameters

and deciding data processing steps. I find that with metabolite maps, the

model can learn a smoother and more accurate way of identifying abnormal

regions. Metric-wise, both having and not having metabolite maps produce

the same level of performance on the edema region. Having metabolite maps

helps tumor region segmentation.

However, this is still an underestimate of the use of metabolic maps. The

metabolite maps are not denoised yet. There are evident background noises,

which might confuse the model. Secondly, all ground truth labels are derived

from the structural scans. Some ongoing research challenges this definition of

edema and tumor. Diffusion imaging, perfusion imaging, and spectroscopic

imaging can reflect key indicators about these regions, and they disagree with

the conventional structural scans like MPRAGE, FLAIR, and T2-weighted

images. The differences in the range of abnormal tissue reflect the different

pathological states in tumor growth. Therefore, the gold standard in the

current study favors the structural approach.

Lastly, the research community has identified more metabolites than choline,

creatine, and NAA being useful. More metabolites or even the original spec-

tra should become network input in the future.

To conclude, MRSI is a promising technique for better understanding tu-

mors and developing better automated clinical tools.
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CHAPTER 5

CONCLUSION AND FUTURE WORKS

5.1 Summary of Findings

This thesis has given an overview of brain tumor segmentation and proposed

using MRSI to improve performance. Brain tumor has become an increas-

ingly important health issue worldwide. MR imaging is the first choice of

its neuroimaging. Segmentation of MR images becomes an essential step in

the therapy planning and prognosis of brain tumor treatment. The com-

mon paradigms include manual segmentation, semi-automatic and fully au-

tomated methods, unsupervised methods, and supervised methods. After

2014-2015, the focus of brain tumor research has shifted to deep convolu-

tional neural network methods. The second chapter also reviews research

works in each category.

This work also explains the reasoning and shows a proof-of-concept ex-

periment on how MRSI’s metabolite density maps can help segment brain

tumors better. By including creatine, choline, and NAA metabolite density

maps derived from the MRSI data, the model of choice can increase its DICE

value in identifying tumors. The close examination of results implies that the

neural network relies heavily on metabolites density information to identify

the tumor region.

5.2 Future Work

More metabolite maps should be incorporated in future research because

metabolites are essential in determining brain tumor regions. According to

the literature, lactate, lipid and MI are related to brain tumor pathology and

are detectable by MRSI. More data is desirable to maximize the performance
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so that the model can generalize better.

On the model side, other network architecture and modifications should

be tested with robust hyper-parameters tuning.
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M. Pumarola, M. Julià-Sapé, and C. Arús, “Convex non-negative matrix
factorization for brain tumor delimitation from mrsi data,” 2012.

[85] S. Ortega-Martorell, A. P. Candiota, R. Thomson, P. Riley, M. Julia-
Sape, and I. Olier, “Embedding mri information into mrsi data source
extraction improves brain tumour delineation in animal models,” PloS
one, vol. 14, no. 8, p. e0220809, 2019.

66


