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ABSTRACT

The recent development of neural network-based automatic speech recogni-
tion (ASR) systems has greatly reduced the state-of-the-art phone error rates
in several languages. However, when an ASR system trained on one language
tries to recognize speech from another language, such a system usually fails,
even when the two languages come from the same language family. The above
scenario poses a problem for low-resource languages. Such languages usually
do not have enough paired data for training a moderately-sized ASR model
and thus require either cross-lingual adaptation or zero-shot recognition.

Due to the increasing interest in bringing ASR technology to low-resource
languages, the cross-lingual adaptation of end-to-end speech recognition sys-
tems has recently received more attention. However, little analysis has been
done to understand how the model learns a shared representation across
languages and how language-dependent representations can be fine-tuned to
improve the system’s performance. We compare a bi-lingual CTC model with
language-specific tuning at earlier LSTM layers to one without such tuning.
This is to understand if having language-independent pathways in the model
helps with multi-lingual learning and why. We first train the network on
Dutch and then transfer the system to English under the bi-lingual CTC
loss. After that, the representations from the two networks are visualized.
Results showed that the consonants of the two languages are learned very
well under a shared mapping but that vowels could benefit significantly when
further language-dependent transformations are applied before the last classi-
fication layer. These results can be used as a guide for designing multilingual
and cross-lingual end-to-end systems in the future.

However, creating specialized processing units in the neural network for
each training language could yield increasingly large networks as the number
of training languages increases. It is also unclear how to adapt such a system
to zero-shot recognition. The remaining work adapts two existing constraints

ii



to the realm of multi-lingual and cross-lingual ASR. The first constraint is
cycle-consistent training. This method defines a shared codebook of pho-
netic tokens for all training languages. Input speech first passes through the
speech encoder of the ASR system and gets quantized into discrete repre-
sentations from the codebook. The discrete sequence representation is then
passed through an auxiliary speech decoder to reconstruct the input speech.
The framework constrains the reconstructed speech to be close to the origi-
nal input speech. The second constraint is regret minimization training. It
separates an ASR encoder into two parts: a feature extractor and a predic-
tor. Regret minimization defines an additional regret term for each training
sample as the difference between the losses of an auxiliary language-specific
predictor with the real language I.D. and a fake language I.D. This constraint
enables the feature extractor to learn an invariant speech-to-phone mapping
across all languages and could potentially improve the model’s generalization
ability to new languages.
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CHAPTER 1

INTRODUCTION

Different languages have different phoneme inventories, and the relationship
between them is complicated. The first project compared how a language-
independent and a language-dependent ASR model process information dif-
ferently for two closely related languages. We analyzed the hidden represen-
tations of the consonant and vowel inventories from two languages at multiple
layer outputs. We found that our language-independent model did not work
as well as the language-dependent model with additional language-specific
tuning layers. This is partly because the layers in the language-independent
model are forced to share the representations from the two languages, and
deeper layers in the network are less effective.

Language-specific tuning layers do not generalize well as the number of
training languages increases. Therefore, we would like to solve the problem
differently. One way to do so is to enforce some constraints when optimizing
the recognition loss during multi-lingual training. We hope that constrain-
ing the search space during neural network optimization could guide the
optimization process to possibly better local optima. We also hope that
the constraints will help the model achieve lower error rates on unseen lan-
guages. In the following two projects, we experimented with two constraints
for multi-lingual training:

1. cycle consistency constraint, where we constrain another text-to-speech
model to correctly reconstruct the speech input into the ASR model,
conditioned on decoded text transcripts from the same ASR model;

2. regret minimization constraint, where we define a regret term as the
difference between the risk of an out-of-environment predictor and a
within-environment predictor and constrain the regret to be small.

In the following three sections, we will discuss the motivations for the
three projects individually and give a quick preview of the goals, methods,
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and results.

1.1 Analyzing the Effect of Language-specific Tuning
for a Bi-lingual CTC System

When a neural network-based automatic speech recognition (ASR) system
tries to learn more than one language, it will have to deal with the similarities
and differences between the phoneme inventories of those languages. One tra-
ditional approach is to create language-dependent softmax layers, where the
number of output layers equals the number of training languages [2, 3, 4]. For
example, a GMM-HMM system was trained on the bottleneck features from a
multilingual artificial neural network (ANN) phoneme classifier, with or with-
out language-dependent output mapping [4]. They found that the bottleneck
features learned through language-dependent output mapping give superior
performance over bottleneck features learned through a shared phone out-
put mapping. Other approaches involve finding a global phone set for all
the languages and using a shared phone output layer across the languages
[5, 6]. However, due to differences in language-dependent realizations [7]
of the phones and contextual information, systems that use a shared out-
put layer usually try to apply language adaptive training techniques, such
as the Language Feature Vector [5] and Learning Hidden Unit Contribution
[6]. More recently, a language-independent phone layer has been transformed
into language-dependent phonemes, with the result optimized using CTC [8].

However, except for the reported phone error rates, none of the work above
analyzed what their networks had learned about the phoneme inventories of
each language, or the relationships between languages. This may be due to
the large number of training languages within their systems. With many
languages, it is difficult to test for language independence of each layer: the
parameters of the models could easily grow out of control if more than one
or two layers are permitted to be language-dependent. In our work, we,
therefore, limited the number of training languages to two. By doing so, we
can analyze what the network has learned about the relationship between
the phoneme sets of the two languages and the degree to which each phone
benefits from language-dependent layers. We also hope to better characterize
changes in the representation of the first language (L1) after the acquisition
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of a second language (L2), a phenomenon that has been studied in human
beings but not in neural networks.

We created two models, illustrated in Figure 1.1, to investigate these ques-
tions. All layers in the single pathway are shared between L1 and L2 except
the softmax, while the dual-pathway model contains two language-dependent
LSTM layers. We first train a CTC network on Dutch and then inject English
utterances into the training loop to learn a bi-lingual model. We visualized
the phoneme categories at the last shared layer of the dual pathway model
(orange layer in Figure 1.1) and compared the learned representations with
those from the last non-shared layer (gray layers in the dual-pathway model).
By doing so, we hope to discover which speech sound representations require
further language-dependent tuning. Likewise, we compared the activations
from the last layer of the single pathway model with those from the last layer
of the dual pathway model. By doing so, we hope to further understand what
benefit, if any, language-specific tuning at layers before the softmax might
bring to a bi-lingual system and how the relationships between L1 and L2 of
a neural net resemble those of a human. In Chapter 3, we first present our
experiment set-up, including a brief introduction to the chosen English and
Dutch corpora and the phonetic differences of the two languages, our model
architecture, and the training stages. We then describe the three experi-
ments conducted to investigate language-specific tuning and propose several
hypotheses for each experiment. Finally, we prove or disprove our hypotheses
with either qualitative or quantitative results, such as visualization and error
rates.
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Figure 1.1: Model architecture; on the left: single pathway model; on the
right: dual pathway model.

1.2 Cycle Consistency For Speech

Humans produce speech by first organizing their thoughts in their brain
and then controlling their vocal organs to produce the message in linguistic
form. The linguistic form is then propagated through the media via acoustic
waves into the listener’s ear, and the sensory nerves of the listener transmit
the nerve impulses into the brain. The listener’s brain then recognizes the
message. The speaker also acts as a second listener via a feedback loop,
comparing the sound they produce with the sound they intend to produce
and adjusting if necessary. This entire process is denoted as the speech chain
[9]. Figure 1.2, which is extracted from a recent work on machine speech chain
[10], displays the above process and its connections to speech technology.
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Figure 1.2: Speech chain [9] and the machine speech chain [10]. The figure
is directly extracted from [10].

In speech technology, one could think of a text-to-speech (TTS) system
as the speaker and an automatic speech recognition (ASR) system as the
listener. In the neural network era, while ASR and TTS systems may borrow
the overall architecture and system designs from each other, they were largely
trained and evaluated independently. This relative “independence” is vastly
different from how humans learn to communicate.

In recent years, semi-supervised learning with unpaired speech and text
became increasingly popular, especially as the community generalizes neural
ASR and TTS systems to low-resource languages with limited paired data
[11, 12]. The unpaired speech and text data were utilized in multiple ways,
including

1. de-noising auto encoder (DAE) training by concatenating the signal
paths from the speech encoder (ASR) to the speech decoder (TTS),
and the text encoder (TTS) with the text decoder (ASR);

2. dual transformation, where the ASR system transcribed unpaired speech
into a pseudo-corpus for use by TTS, and the TTS system synthesized
speech from unpaired text for use by ASR;
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3. knowledge-distillation, where unpaired speech and text was used for
self-training.

While the DAE loss can be considered an application for enforcing cycle
consistency, it still solves a slightly different problem from speech recognition
or speech synthesis. Other work focused on more literal adaptations of the
speech chain, especially the feedback loop where the speaker serves as his
own listener. These works usually cascaded a TTS system on top of the ASR
decoder and backpropagated the gradient from the TTS system to the ASR
system as an end-to-end feedback loop [10, 13, 14].

We can view the formulation of cascaded ASR-TTS as a constrained min-
imization problem. Given a speech recognizer GASR with parameters θASR
and a speech synthesizer as GTTS with parameters θTTS, we could view the
recognition loss (such as the CTC loss [15]) as the main objective function.
If we denote the i-th speech input as Xi, and the reconstruction from the
cascaded ASR-TTS system as X̂i := GTTS (GASR (Xi)), we would like to solve
the following problem:

min
θASR

−
n∑
i=1

logPθASR
(zi | Xi)

s.t. ‖GTTS (GASR (Xi))−Xi‖ = 0 ∀i ∈ {1, . . . , N} (1.1)

where N is the number of training samples and zi’s are the target sequences.
This can be easily transformed into a Lagrangian optimization problem as:

min
θASR

n∑
i=1

[− logPθASR
(zi | Xi) + λ ‖GTTS (GASR (Xi))−Xi‖] (1.2)

The experiments in Chapter 4 differ from previous work in some aspects.
First, we would like to explore directly applying the cycle-consistency con-
straint to multi-lingual, multi-speaker speech recognition without additional
unpaired data. Second, the multi-lingual ASR corpora contain both speaker
and language modalities and are relatively small in size. There are three lan-
guages from the same language family, and each language only has around
20 to 30 hours of speech but around 60 to 80 training speakers. Therefore,
it can be challenging for a TTS system to model the language and speaker
modalities with limited data. We chose to condition the TTS system on both
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speaker and language embedding extracted from the input utterance, using
a pre-trained speaker encoder and a language encoder. We trained the two
encoders directly on the training set for the three languages, which could
increase the specificity of the speaker and language vectors. Third, we opt to
replace recurrent networks with Transformer architecture, which allows the
entire system to model additional complexities and train more quickly.

We defer a detailed explanation of the algorithms, including the architec-
ture and loss functions for all model components, the data, model and train-
ing settings, and the results, including some visualizations, to Chapter 4.
As a preview, the results in Chapter 4 did not demonstrate the ASR-TTS
feedback system as successful, as it failed to beat the baseline for all training
and test languages. We hypothesize the reasons for the inferior performance
and future directions in Section 6.2.

1.3 Tackling Language-dependent Phoneme
Inventories With Invariant Embedding

Speech production is a nonlinear process. Any given articulatory movement—
say, a shift of 1 cm in the position of the tongue tip—may cause a huge change
in the produced acoustic spectrum or a minuscule change in the spectrum,
depending on the articulatory position from which the movement started.
Let us use the words “unstable” vs. “stable,” respectively, to denote articula-
tions from which small deviations cause large vs. small acoustic consequences.
A learner imitating adult speech tends to have greater success in imitating
stable rather than unstable articulations because stability permits accurate
acoustic imitation despite it being imprecise. For this reason, phonemes
tend to correspond to stable articulations, and unstable articulations tend
to mark the boundaries between pairs of phonemes [16]. The number of
unstable configurations is larger than the number of phoneme distinctions
in any known language; therefore, each language chooses a subset to use as
phoneme boundaries, e.g., some languages treat the phones /T/ (as in “thin”)
and /s/ (as in “sin”) as distinct phonemes, while in other languages, they
are both considered to be acceptable pronunciations of the same phoneme.
A language-independent ASR is an automatic speech recognizer trained to
recognize all of the articulatory features that may be used to signal phoneme
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distinctions in any of the world’s languages.
The relationships among phoneme inventories of different languages are

complicated, however, by tremendous cross-lingual divergence in the use of
redundant features [17]. No language uses all of the available articulatory
features to define phonemes; hence, every language has some extra articula-
tory features that can be used to add redundancy to its phoneme code. In
modern English, for example, the feature of plosive voicing (/d/ vs. /t/) is
often enhanced by the feature of aspiration (/d/ vs. /th/), while the tense-lax
vowel distinction (/i/ vs. /I/) is often enhanced by the feature of lengthening
(/i:/ vs. /I/). In both of these cases, it is possible to identify one feature
as phonemic and another as redundant because, in each case, the redundant
feature can be modified without changing the meaning of the word (/bi:th/

and /bit/ are both “beat”). Redundant features add robustness to speech
in much the same way that an error-correcting code adds robustness to dig-
ital communication systems: imprecise production or noisy perception are
less likely to cause communication errors if every phoneme is redundantly
specified. Because redundant features improve the efficiency of speech com-
munication, they are ubiquitous.

Because redundant features are defined separately for every language,
however, they cause significant problems in training language-independent
ASR. A typical ASR training corpus is a set of labeled examples, D =

{(x1, y1), . . . , (xn, yn)}, where xi ∼ X is a speech waveform, and yi ∼ Y

is the corresponding text transcript (the notation xi ∼ X means that xi is
an instance of the random variable X). We can safely assume that certain
transformations are information-preserving, e.g., a waveform can be con-
verted to or from a spectrogram without loss of information [18]; therefore,
we can consider both to be equivalent representations of the random variable
X. Similarly, in any well-resourced language, a pronunciation lexicon can be
used to convert text transcripts to phoneme transcripts encoded using the
international phonetic alphabet (IPA [19]); therefore, we can consider text
transcripts and IPA phonemic transcripts to be equivalent representations of
the random variable Y . The key obstacle to language-independent ASR is
that phonemic transcripts are not the same as language-independent phonetic
transcripts. The English word “beat,” for example, has the same phonemic
transcript (yi =[bit]), regardless of whether or not the vowel is lengthened
(/bi:t/ vs. /bit/), and regardless of whether the final consonant is aspirated,
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unreleased, glottalized, or replaced by a glottal stop (/bith/, /bit^/, /bitĳ/,
or /biP/). The phonetic sequences /bi:th@t/ and /biP@t/ are different words
in Arabic (“home” and “environment,” respectively), but an ASR trained us-
ing English data would be unable to distinguish them. Similarly, a plosive
voicing detector trained on English fails to correctly recognize Spanish un-
voiced plosives, which are not aspirated [20], or Hindi voiced aspirated and
unvoiced unaspirated plosives [21]. A vowel classifier trained on English is
able to recognize the duration differences of some Japanese vowel pairs but
not others [22]. A Mandarin vowel classifier, applied to English vowels, finds
American English /u/ to be closer to the Mandarin central unrounded vowel
/1/ than to the Mandarin /u/ [23].
Apparently, what is needed is some intermediate representation capable

of compensating for language-dependent differences in the use of redun-
dant features. The work in Chapter 5 proposes the use of an invariant
embedding, z ∼ Z, defined to be a high-dimensional signal representa-
tion with no information about the language-dependent redundant articu-
latory features. The invariant embedding allows us to train a language-
independent ASR using a large number of language-dependent training cor-
pora. Each language-dependent training corpus contains a number of tu-
ples of the form D = {(x1, e1, y1), . . . , (xn, en, yn)}, where ei ∈ E specifies
the language and dialect being spoken, and the transcriptions are language-
dependent phonemic transcripts rather than language-independent phonetic
transcripts: yi = f(xi, ei). The invariant embedding is trained to ignore
language-dependent redundant features in X and encode only the features
that correspond to Y in a language-independent way. The resulting map-
ping w : Z → Y thus becomes language-independent ASR. This is shown in
Figure 1.3.
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Figure 1.3: The phonemic transcript, Y , captures a limited set of
information about the speech signal, X. The limits of the transcription
process are dependent on the language environment, E .
Language-independent ASR finds a feature embedding, Z = φ(X), such
that the relationship between Z and Y is independent of E .

For example, suppose that x1 and x2 are two different waveforms, each ex-
amples of the English word “beat,” meaning that they both have exactly the
same label sequence, y1 = y2 =[bit]. Suppose that fine phonetic transcrip-
tions of these two waveforms would detect some differences, e.g., perhaps
x1 sounds like /bi:th/, while x2 sounds like /biP/. The purpose of the in-
variant embedding is to eliminate these fine phonetic differences so that if
one were to convert the invariant embedding back into an acoustic signal,
the language-independent fine phonetic transcription of that acoustic signal
would be exactly the sequence /bit/. In this way, a language-independent
speech recognizer, capable of mapping f : X → Y , is decomposed into two
subsystems: (1) a feature extraction system computes features Z = φ(X)

such that (2) the mapping w : Z → Y is independent of the language envi-
ronment.
Recognition based on invariant features has a long history in machine learn-

ing. In ASR, speaker normalization of the acoustic features, or of an invariant
embedding, can be performed using methods such as cepstral mean and vari-
ance normalization [24], vocal tract length normalization [25], feature-based
maximum likelihood linear regression [26], or auxiliary networks [27]. In
computer vision, signal processing methods were developed that resulted in
features invariant to changes in an object’s scale, rotation, and illumination
[28]. Early proponents of 2D convolutional neural networks (CNNs) argued
that CNNs provide a degree of shift-invariance in computer vision [29] and
a degree of speaker-invariance in ASR [30]. Recent work has attempted to
characterize invariant representations in a more general way to make it pos-
sible to learn a representation that is invariant to any type of environment
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mismatch [31, 32]. The goal of domain invariance has recently been called
into question, however, by a line of research suggesting that machine learn-
ing algorithms trained using standard empirical risk minimization procedures
automatically learn domain-invariant embeddings, even when not explicitly
trained to do so [33].

To our knowledge, the tools of domain-invariant machine learning have
not yet been applied to the task of language-independent ASR. A sequence
of experiments were carried out to test the following hypotheses regarding
how well regret minimization [32], a particular domain invariance method,
works for multilingual and cross-lingual speech recognition. Not all of these
hypotheses were experimentally verified; the experimental truth or falsehood
of each hypothesis is noted briefly here and is supported by the evidence
presented in Chapter 5.

• H1: Regret minimization, a domain-invariant machine learning method
(RGM, [32]) can be used to optimize an end-to-end (E2E) neural net-
work ASR so that it more effectively generalizes from fifteen training
languages to five novel test languages, as compared to a baseline ASR
trained using a standard training criterion called empirical risk min-
imization (ERM). Experimental result: this hypothesis is demon-
strated to be false by the experiments presented in Chapter 5.

• H2: RGM, as compared to ERM, can be applied to optimize an E2E
ASR so that it more effectively generalizes from training languages in
one language family to test languages in a different language family.
Experimental result: partially true.

• H3: The optimal training regimen for phone token classification (given
known phone token boundary times) is different from the optimal train-
ing regimen for phone token recognition (with unknown boundary times).
Experimental result: true. Experiments described in Chapter 5 find
that empirical risk minimization (ERM) is superior to regret minimiza-
tion (RGM) for both multilingual recognition and classification, but
under certain scenarios and validation schemes, RGM can be superior
for cross-lingual recognition and classification.

As shown in Section 2.4.2, for a two-environment case, regret minimization
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can be formulated as the following constrained minimization problem:

fRGM = min
w,φ
R(w ◦ φ)

s.t. Re(w−e ◦ φ)−Re(we ◦ φ) = 0 ∀e (1.3)

where R(·) denotes the risk over all environments, φ is a feature extractor,
and w is an environment-independent classifier. w−e is the classifier trained
without access to environment e, we is trained on environment e only, and
Re(·) is the risk on environment e. This in turn can be transformed into the
following Lagrangian minimization problem:

fRGM = min
w,φ
R(w ◦ φ) + λ

∑
e

[Re(w−e ◦ φ)−Re(we ◦ φ)] (1.4)

We defer the algorithm modifications to suit multi-lingual ASR with more
than two training languages to Chapter 5. After that, we will also discuss
data and model settings for the experiments designed to prove or disprove
the above hypotheses.
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CHAPTER 2

BACKGROUND

In the background chapter, we will introduce end-to-end neural speech recog-
nition, focusing on relevant architectures and loss functions. This is relevant
throughout Chapter 3, 4, and 5. We will then give an introduction to end-
to-end neural speech synthesis, which is relevant to Chapter 4. We will then
talk about the concept of cycle consistency and its applications, focusing
on prior work in speech technology. Finally, we will discuss the theoretical
formulation of invariant risk minimization and regret minimization.

2.1 End-to-end Neural Speech Recognition

In this section, we will give a brief introduction to end-to-end neural speech
recognition. End-to-end neural speech recognition involves training a neural
network that takes unsegmented speech representations as input and directly
outputs text transcripts. These text transcripts can be either characters,
words, or phones. We will first review connectionist temporal classification,
which allows end-to-end training with unsegmented input sequences. We will
then review two architectures, Deep Speech 2 and transformer. These two
architectures are widely used in academics and industry alike and form the
backbone of the experiments in later chapters.

2.1.1 Connectionist Temporal Classification

Connectionist temporal classification (CTC) [15] allows end-to-end training
with unsegmented input sequences. Suppose we are given an input sequence
with T frames X := (x1,x2, . . . ,xT ), a target sequence of length U z :=

(z1, z2, . . . , zU), where U ≤ T , and a neural network Nw that outputs a
softmax probability over K+1 labels every time-step. K is the output token
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inventory size, and the additional label is for a special output token called
the blank label. Let Y := Nw (X) = (y1, . . . ,yk), where the output vector
at time t is defined as yt :=

(
y0
t , . . . y

K
t

)
. ykt is the output probabilities at

time step t for the k-th output token in the softmax layer. Suppose we are
given a frame-wise alignment π := (π1, π2, . . . , πT ), then assuming that the
per-frame output probability are independent, the joint probability of such
an alignment given input X can be defined as

P (π | X) =
T∏
t=1

yπtt (2.1)

Let L be the set of output labels in the target sequences z’s, and let
L
′
:= L∪ {blank}. The CTC algorithm first defines a many-to-one mapping

B : L
′T 7→ L≤T that simply removes all blanks and repeated tokens not

separated by blanks. With such a mapping, the conditional probability of
the target sequence z given input X can be calculated as:

p(z | X) =
∑

π∈B−1(z)

P(π | X) (2.2)

Similar to the forward-backward algorithm for hidden Markov models, the
CTC algorithm calculates a forward probability αt (s) and a backward prob-
ability βt (s) on the modified label sequence z

′ with length 2U + 1, which is
obtained from z by inserting blank tokens at the start and end, as well as
between every two non-blank tokens as:

αt(s) :=
∑
π∈L′

T

B(π1:t)=z
′
1:s

t∏
t′=1

y
π
t
′

t′
(2.3)

which is the total probability of the first s tokens of the target sequence being
z
′
1:s at time t, and

βt(s) :=
∑
π∈L′

T

B(πt:T )=z
′
s:U

T∏
t′=t

y
π
t
′

t′
(2.4)

which is the total probability of the last 2U − s + 2 tokens of the target
sequence being z

′
s:2U+1 at time t.
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To initialize αt(s), CTC allows all prefixes to start with either a blank (de-
noted by b onwards) or the first symbol in z. To initialize βt(s), CTC allows
all suffixes to end with either a blank or the last symbol in z. To recursively
update αt(s) and βt(s), the CTC algorithm defines valid transitions as those
between blank and non-blank tokens, as well as those between any pair of
distinct non-blank tokens. If we imagine the modified sequence z

′ as a state
machine, where every arc corresponds to advancing a time step, we would
have self loops on blank and non-blank tokens, advance-by-one arcs between
consecutive tokens, and advance-by-two arcs only between non-blank tokens
that are not the same. This leads to the following initialization and recursive
updates for αt(s) and βt(s):

α1(1) = yb1 (2.5)

α1(2) = yz11 (2.6)

α1(s) = 0,∀s > 2 (2.7)

αt(s) =

{
(αt−1(s) + αt−1(s− 1)) y

z′s
t if z′s = b or z′s−2 = z′s

(αt−1(s) + αt−1(s− 1) + αt−1(s− 2)) y
z′s
t otherwise

(2.8)

βT (2U + 1) = ybT (2.9)

βT (2U) = yzUT (2.10)

βT (s) = 0,∀s < 2U (2.11)

βt(s) =

{
(βt+1(s) + βt+1(s+ 1)) y

z′s
t if z′s = b or z′s+2 = z′s

(βt+1(s) + βt+1(s+ 1) + βt+1(s+ 2)) y
z′s
t otherwise

(2.12)

For back-propagation, it suffices to calculate ∂ ln(P(z|X))

∂ykt
. Note that

αt(s)βt(s)

y
z′s
t

=
∑

π∈B−1(z):
πt=z′s

P(π | X) (2.13)
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Comparing with Equation (2.2)

P(z | X) =
2U+1∑
s=1

αt(s)βt(s)

y
z′s
t

(2.14)

we would get

∂ ln(P(z | X))

∂yt
=

1

P(z | X)

∂P(z | X)

∂ykt
(2.15)

=

∑
s∈lab(z,k) αt(s)βt(s)

(αT (2U + 1) + αT (2U)) yk
2

t

(2.16)

where lab(z, k) = {s : z′s = k}.
After the model converges, we may simply apply greedy decoding with

π∗ = arg max
π∈L′T P(π | X) followed by z∗ = B (π∗). This might not give

the best possible labeling, so usually beam search [34, 35] is used.

2.1.2 Deep Speech 2

Deep Speech 2 [36] is one of the successful neural architectures for end-to-
end neural speech recognition. In general terms, the model applies several
convolutional layers on top of a spectrogram, followed by several recurrent
and fully connected layers. The entire network is optimized under the CTC
loss with character targets. In more details, let hl denote the output from the
l-th layer, where h0 denotes the input. The first several layers of convolution
operators can be expressed as:

hlt,i = f
(
wli ◦ hl−1

t−cl:t+cl

)
1D convolution (2.17)

hlt,r,i = f
(
wli ◦ hl−1

t−cl:t+cl,r−c
′
l :r+c

′
l

)
2D convolution (2.18)

where t is the time index and r is the generalized frequency index (as in
“image height” in 2D convolution). i denotes the i-th output channel, and f(·)
denotes the non-linearity. Note that the element-wise multiplication operator
◦ operates over all input channels of hl−1 within the respective receptive field
of the filters wli. The authors used convolutional layers to model translational
invariance in spectrograms and speaker variability. They experimented with
one to three layers of 1D or 2D convolutions under different strides.
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Following the convolutional layers are bidirectional recurrent layers. They
experimented with regular bidirectional RNN layers [37], which they define
as

−→
h l
t = f

(−→
W lhl−1

t +
−→
U l−→h l

t−1 +
−→
b l
)

(2.19)
←−
h l
t = f

(←−
W lhl−1

t +
←−
U l←−h l

t−1 +
←−
b l
)

(2.20)

hl =
−→
h l +

←−
h l (2.21)

as well as GRU layers [38], where the forward direction
−→
h l
t is calculated as

−→z l
t = σ

(−→
W l

zh
l−1
t +

−→
U l
z

−→
h l
t−1 +

−→
b lz

)
(2.22)

−→r lt = σ
(−→
W l

rh
l−1
t +

−→
U l
r

−→
h l
t−1 +

−→
b lr

)
(2.23)

−→̃
h l
t = f

(−→
W l

hh
l−1
t +−→r lt ◦

−→
U l
h

−→
h l
t−1 +

−→
b lh

)
(2.24)

−→
h l
t =

(
1−−→z l

t

)−→
h l
t−1 +−→z l

t

−→̃
h l
t (2.25)

and the backward direction is calculated in a similar fashion, with its indi-
vidual weight matrices and taking hlt+1 instead of hlt−1. σ(·) is the sigmoid
function. z and r represent the update and reset gates, respectively.
They also experimented with a unidirectional variant that uses a lookahead

operator with trainable weights W to incorporate some future information:

rlt,r =
τ+1∑
j=1

W l
r,jh

l
t+j−1,r (2.26)

where r denotes the row dimension, and hl denotes the output from a unidi-
rectional recurrent layer.
The recurrent layers they use incorporate sequence-wise Batch Normaliza-

tion [39]. This simply means that when calculating B(x) = γ x−E[x]

(Var[x]+ε)1/2
+ β,

the mean and variance statistics for x := hlt is calculated over all samples in
the current batch and over all valid time steps in each sample. The recur-
rent layers are followed by fully-connected layers with hlt = f

(
W lhl−1

t + bl
)

and then a softmax over the characters and a blank token P (zt = k | X) =
exp(wL

k ·h
L−1
t )∑

j exp(wL
j ·h

L−1
t )

.
During training, they incorporated SortaGrad, which simply means that
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in the first epoch, they sorted the utterances by length and iterated through
the training samples in increasing utterance lengths. This is a heuristic that
feeds utterances that are shorter and easier to align to the CTC loss before
longer and harder ones.

During inference, they find the most probable transcript y by maximizing
over

Q(y) = log (Pctc(y | x)) + α log (Plm(y)) + β word_count(y) (2.27)

under a fixed number of beams [35].

2.1.3 Transformer

The Transformer [40] architecture has been widely used in various sequence
modeling tasks since its proposal. The transformer encoder-decoder structure
is solely based on the attention mechanism. Compared to recurrent architec-
tures, transformers do not rely on obtaining the hidden state hlt−1 from the
previous time step before calculating the hidden state hlt for the current time
step. This enables better parallelism and makes the model less susceptible
to vanishing gradients. Compared to convolutional architectures, transform-
ers do not depend on stacking multiple layers or large dilation factors to
capture long-range dependencies. A detailed comparison of the computation
complexity between different architectures can be found in Table 1 of the
original proposal for the transformer architecture [40].
Transformers use a special type of attention called multi-head attention.

Multi-head attention extends the notion of scaled dot-product attention:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2.28)

whereQ is the query,K,V denotes a key-value pair and dk denotes the feature
dimension of Q and K (i.e., the dimension that the dot-product operates
on). Given this operation, the multi-head attention is simply defined as a
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concatenation of h different scaled dot-product attentions:

MultiHead(Q,K, V ) = Concat (head1, . . . , headh)W
O (2.29)

where headi = Attention
(
QWQ

i , KW
K
i , V W

V
i

)
(2.30)

where WQ
i ∈ Rdmodel ×dk ,WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv and WO ∈

Rhdv×dmodel . Usually dk = dv = dmodel/h.
Figure 2.1, which is extracted from the original proposal for the trans-

former architecture [40], shows the transformer encoder-decoder architecture
for sequence transduction tasks. First, the input and output are converted to
their respective representations. The output is shifted to the right to preserve
auto-regressive property and to prevent the model from “seeing the answer.”
Positional encoding is added to both input and output embeddings to infuse
relative or absolution positional information. The encoding is simply defined
by sine and cosine functions:

PE(pos,2i) = sin
(
pos/100002i/dmodel

)
(2.31)

PE(pos,2i+1) = cos
(
pos/100002i/dmodel

)
(2.32)

where i is the feature dimension and pos is the position in the time dimen-
sion. The encoder consists of self-attention layers, where queries, keys, and
values all come from the outputs of the previous encoder layer. For the first
layer, they correspond to the input embedding with positional encoding. The
decoder contains two types of attention, self-attention, and encoder-decoder
attention. Each self-attention layer in the decoder only allows each time step
in the decoder to attend to all previous time steps. This can be done by
masking the attention matrices QKT

√
dk

. Following every single decoder self-
attention module is an encoder-decoder cross-attention module, where the
keys and values come from the encoder outputs, and queries come from the
preceding self-attention layer. Queries, keys, and values for decoder self-
attention layers all come from the output of the previous decoder layer. For
the first layer, they are the output embedding (shifted to the right) with
positional encoding. Each encoder or decoder layer, in addition to their re-
spective attention modules, contains a position-wise feed-forward network
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(FFN), defined as

FFN(x) = max (0, xW1 + b1)W2 + b2 (2.33)

where x is from the last attention module of the current layer.

Figure 2.1: The transformer encoder-decoder architecture from the original
proposal for the transformer architecture [40].

The Speech-Transformer [41] was one of the first adaptations of transform-
ers to speech recognition. The model achieves similar performance to other
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seq2seq architectures but with much reduced computational requirements.
A faster and more accurate ASR system that combines the transformer ar-
chitecture and the advances in RNN-based ASR [42] added a CTC loss for
the transformer encoder for multi-task training with decoder cross-entropy
loss. They also implemented joint CTC + attention decoding with an ex-
ternal language model [43, 44]. A multi-lingual transformer network trained
on 13 languages achieved significantly improved phonetic token error rates
over the mono-lingual baselines [45]. The model was trained with a CTC loss
on the transformer encoder and a cross-entropy loss on the decoder. During
inference, joint CTC + attention decoding [42] was used. Transformers also
allow the development of powerful self-supervised models that learn from raw
speech directly [46]. The speech representations from such models are shown
to be better than traditional speech features such as MFCCs.

2.2 End-to-end Neural Speech Synthesis

This section will review two architectures for end-to-end neural speech syn-
thesis, Tacotron 2 and Transformer-TTS. Tacotron 2 is based on Long Short-
Term Memory (LSTM) networks and provides a general encoder-decoder
framework for predicting mel-spectrograms conditioned on text. Transformer-
TTS uses transformers instead of LSTMs. The discussion in this section is
necessary for understanding cycle consistency in speech, and the Transformer-
TTS architecture is used in Chapter 4 for building up the modified ASR-TTS
framework.

2.2.1 Tacotron 2

Tacotron 2 uses a sequence-to-sequence recurrent architecture to directly pre-
dict a mel-spectrogram given text. The mel-spectrogram then serves as input
into a modified WaveNet [47] to produce raw speech waveform. The over-
all architecture is shown in Figure 2.2, which is extracted from the original
proposal of Tacotron 2 [48].
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Figure 2.2: Tacotron 2 system architecture from the original proposal of
Tacotron 2 [48]..

The model takes an input text sequence and produces a sequence of learn-
able 512-dimensional character embeddings. The embeddings are then fed
into a stack of three 1D convolutional layers, each with a filter size of five
and 512 output channels. The convolutional layers are followed by Batch
Normalization and ReLU activations. The output of the convolutional layers
serves as input into a bidirectional LSTM layer, where each direction has a
dimension of 256, and the final encoder output is the concatenation of the
output from the two directions. A forward LSTM layer can be defined with
the following set of operations:

it = σ (Wiixt + bii +Whiht−1 + bhi) (2.34)

ft = σ (Wifxt + bif +Whfht−1 + bhf ) (2.35)

gt = tanh (Wigxt + big +Whght−1 + bhg) (2.36)

ot = σ (Wioxt + bio +Whoht−1 + bho) (2.37)

ct = ft � ct−1 + it � gt (2.38)

ht = ot � tanh (ct) (2.39)
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where it, ft, gt, ot are the input, forget, cell and output gates, respectively. ct
is the cell state and ht is the output hidden state of the current time step. xt
is either the input or the output of the previous layer, and ht−1 is replaced
by ht+1 for the backward direction.
The output from the bidirectional LSTM is used to calculate location-

sensitive attention [49]. Denote the encoder output as h := (h1, . . . , hL),
location-sensitive attention can be computed as:

αi = Attend (si−1, αi−1, h) (2.40)

gi =
L∑
j=1

αi,jhj (2.41)

where αi ∈ RL are the attention weights at time step i, si are the recur-
rent hidden states and gi is the attended representation. The Attend(·, ·, ·)
operation is calculated as:

fi = F ∗ αi−1 (2.42)

ei,j = w> tanh (Wsi−1 + V hj + Ufi,j + b) (2.43)

αi,j = exp (ei,j) /
L∑
j=1

exp (ei,j) (2.44)

where fi,j ∈ Rk are the results of convolving αi−1 with F ∈ Rk×r, w, b are
learnable vectors and W,V, U are learnable matrices. In Tacotron 2, the
attention dimension is chosen to be 128, and the convolution has 32 output
channels with a filter size of 31.
During training, each predicted frame ŷt is conditioned on the encoder out-

put h and yt−1 from the ground-truth mel-spectrogram. yt−1 goes through
two layers of a feedforward network with size 256 and ReLU activations,
which are denoted as prenet. The prenet output and the attended represen-
tation gt go through two layers of uni-directional LSTM with 1024 hidden
size, which serves as the decoder. The decoder output and gt are concate-
nated and projected to the mel-spectrogram dimension to predict the frame
at time t. The coarse spectrogram is fine-tuned with a residual, which is
calculated by feeding the coarse representation into five layers of 1D convo-
lution with batch normalization, each with 512 output channels, a filter size
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of 5, and tanh activations in between. The coarse and fine spectrogram rep-
resentations are both used to calculate a mean-squared error, and the error
terms are summed. The concatenation of decoder output and gt are also
projected down to a scalar to calculate the binary cross-entropy of the stop
token. Dropout with a rate of 0.5 is used to regularize convolutional layers,
and zoneout with a rate of 0.1 is used to regularize recurrent layers.

A modifiedWaveNet vocoder is trained for inference. TheWaveNet vocoder
contains 30 dilated convolutions, and the dilation factor at layer k is 2k( mod 10).
Two upsampling layers are used, and the parameters for the mixture of lo-
gistic distributions (MoL) are calculated by feeding the convolution stack
output through a ReLU and a linear projection. MoL generates the 16-
bit samples, and the network weights are updated via maximum likelihood.
During inference, the predicted frame ŷt−1 goes into the decoder prenet to
auto-regressively predict ŷt. The predicted mel-spectrogram then goes into
the trained WaveNet vocoder to produce the speech waveform. The synthetic
speech from Tacotron 2 achieves a mean opinion score (MOS) of 4.53, which
is very close to the ground-truth MOS of 4.58.

2.2.2 Transformer-TTS

The Transforer-TTS model [50] replaced the recurrent encoder-decoder struc-
tures in Tacotron 2 with a transformer encoder-decoder framework to improve
training efficiency and better capture long-term dependency. As shown in
Figure 2.3, which is directly extracted from the original proposal of Transformer-
TTS [50], the vanilla transformer architecture can be readily adapted for
synthesizing mel-spectrograms conditioned on text.

24



Figure 2.3: Transformer-TTS system architecture from the original
proposal of Transformer-TTS [50].
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Instead of character inputs as in Tacotron 2, Transformer-TTS first con-
verts text into phonemes and then phoneme embeddings of dimension 512.
The input goes through the same three-layer CNN as in Tacotron 2, ex-
cept for another linear layer after the final ReLU for zero-centering. The
CNN and the additional linear layer are denoted as encoder pre-net in Fig-
ure 2.3. The decoder pre-net has the same architecture as in Tacotron 2,
which projects the mel-spectrogram representation and phoneme representa-
tion to the same space. The author also found that the ReLU non-linearity
in the decoder pre-net is important for learning encoder-decoder attention
for Transformer-TTS. Increasing the dimension of the decoder pre-net fur-
ther does not improve performance. The decoder pre-net also contains an
additional linear layer for zero-centering. While they use the same positional
encoding representation as in Expression 2.1.3, they added a learnable scale
parameter α so that the encodings could better fit the source domain and
the target domain individually. The input for the transformer encoder layers
can be expressed as:

xi = encoder_prenet (phonemei) + αPE(i) (2.45)

The input for the decoder, constructed from mel-spectrogram, can be sim-
ilarly defined. The authors found that such scalable positional encoding is
necessary as the final scale for the decoder is indeed smaller than the scale
for the encoder.

The encoder and decoder layers are the same as the original transformer
architecture [40]. The self-attention modules allow efficient capturing of long-
term dependencies in text and spectrograms, and multi-head attention could
capture different perspectives between input and output. Transformer-TTS
also uses the decoder post-net from Tacotron 2 to calculate a residual for
fine-tuning the final mel-spectrogram. The MSE loss is similarly defined
as in Tacotron 2. A positive weight is used for the stop token loss when
calculating the binary cross-entropy, as there is only one positive stop token
per utterance.

While the Transformer-TTS and Tacotron 2 achieve the same MOS score
on their internal US English female dataset, there is still a preference for the
output from the transformer model shown by the comparison mean option
score test. The authors also found that their 6-layer Transformer-TTS re-
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constructed the details better than Tacotron 2 and their three-layer variant,
which blurred the texture in the high-frequency region.

2.3 Cycle Consistency for Speech

Cycle consistency relies on the following assumption: given a forward model
M that converts from X to Y and another reverse modelN that converts from
Y to X , the reconstruction N (M (x)) ∈ X should be close to the original
input x ∈ X (and M (N (y)) ∈ Y should be close to y ∈ Y). For speech, X
is the domain for speech representations, such as mel-spectrograms, and Y is
the domain for text, such as phones or characters. The model M is a speech
recognizer while the model N is a speech synthesizer.
Three works will be reviewed here, the comprehensive machine speech

chain model and two other variants. The first variant uses encoder states
as the output for a speech synthesizer, and the other variant combines a
speech encoder with CTC loss, a vector-quantized variational auto-encoder
(VQVAE), and a speech decoder from Tacotron 2.

2.3.1 Machine Speech Chain

As introduced in Section 1.2, a speaker produces sound waves for the listener,
who converts the auditory signals into information. The speaker also acts
as their own listener. This concept for the human speech chain [9] can be
adapted to speech recognition and speech synthesis, as shown in the proposal
for the machine speech chain [10]. Figure 2.4, which is extracted from the
proposal for the machine speech chain [10], explains the above concept as a
“chain” between an ASR system and a TTS system.
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Figure 2.4: Machine speech chain architecture from the proposal for the
machine speech chain [10].

The machine speech chain architecture consists of a seq2seq ASR system,
a seq2seq TTS system, and a loop connection that feeds the output of ASR
to TTS and the output of TTS to ASR. The entire system leverages three
types of data:

1. paired speech and text for training ASR and TTS under their regular
formulation;

2. unpaired speech, which serves as input to ASR, where the ASR text
prediction is fed into TTS for reconstruction;

3. unpaired text, which serves as input to TTS, where the TTS output is
fed into ASR for recognition.

Given a paired speech-text sample
(
xP ,yP

)
=
([
xP1 , . . . , x

P
SP

]
,
[
yP1 , . . . , y

P
TP

])
,

a text probability and a speech frame prediction can be calculated by the
ASR encoder-decoder network and the TTS encoder-decoder network (via
teacher-forcing) as:

pyt = P
(
yt | yP<t,xP ; θASR

)
,∀t ∈ [1..TP ] (2.46)

x̂Ps = argmaxP
(
z | xP<s,yP ; θTTS

)
;∀s ∈ [1..SP ] (2.47)
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upon which the paired ASR loss and TTS loss can be calculated as

`PASR = LASR
(
yP ,py; θASR

)
(2.48)

`PTTS = LTTS
(
xP , x̂P ; θTTS

)
(2.49)

Given an unpaired text yU =
[
yU1 , . . . , y

U
TU

]
, speech is generated by the

TTS model, and the synthetic speech is used as input into the ASR system
to calculate an ASR loss, with yU as the target sequence. The procedure can
be expressed as:

x̂U ∼ PTTS
(
· | yU ; θTTS

)
(2.50)

pyt = P
(
yt | yU<t, x̂U ; θASR

)
; ∀t ∈ [1..TU ] (2.51)

`UASR = LASR
(
yU ,pi; θASR

)
(2.52)

Given an unpaired speech xU =
[
xU1 , . . . , x

U
S

]
, text is generated by the

ASR model, and the pseudo text is used as input into the TTS system to
calculate a TTS loss, with xU as the target. The procedure can be expressed
as:

ŷU ∼ PASR
(
· | xU ; θASR

)
(2.53)

x̂Us = argmax
z

PTTS
(
z | xU<s, ŷU ; θTTS

)
; ∀s ∈ [1..S] (2.54)

`UTTS = LTTS
(
xU , x̂U ; θTTS

)
(2.55)

The final loss can be expressed as

`ALL = α ∗
(
`PTTS + `PASR

)
+ β ∗

(
`UTTS + `UASR

)
(2.56)

The gradient with respect to θTTS and θASR are calculated and back-propagated
through the respective systems.
The ASR encoder-decoder network consists of an encoder with fully con-

nected layers followed by stacked bidirectional LSTMs, and a decoder that
consists of a unidirectional LSTM with an attention mechanism. The ASR
loss is calculated as

LASR (y,py) = − 1

T

T∑
t=1

C∑
c=1

1 (yt = c) ∗ log pyt [c] (2.57)
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where C is the number of classes. The TTS model uses an older Tacotron
model architecture [51]. Different from Tacotron 2, Tacotron uses a fully-
connected + 1D Convolution Bank + Highway + bidirectional-GRU (CBHG)
structure for the encoder and a fully-connected + LSTM structure with
an attention mechanism for the decoder. The decoder reconstructs mel-
spectrograms first, and another CBHG structure reconstructs linear spectro-
grams from mel-spectrograms. The TTS loss is thus

LTTS(x, x̂) =
1

S

S∑
s=1

∥∥xMs − x̂Ms ∥∥2

2
+
∥∥xRs − x̂Rs ∥∥2

2

−
(
bs log

(
b̂s

)
+ (1− bs) log

(
1− b̂s

))
(2.58)

where xMs , x̂Ms are in the mel scale and xRs , x̂
R
s are in the linear (regular)

scale. The last term is the stop-token binary cross-entropy loss. During
inference, the predicted linear spectrogram is fed into the well-known Griffin-
Lim algorithm [52] to estimate the phase component and reconstruct the
speech waveform.

Speaker embeddings extracted from speech utterances are used as addi-
tional conditioning for the TTS decoder in their multi-speaker experiments.
The authors proposed a DeepSpeaker model, where the speech features first
go through several convolutional layers, followed by pooling over time and
L2 normalization. The final speaker embeddings z could be learned with a
speaker classification loss where

py = Softmax (zWz) (2.59)

`NLL = −
N∑
n=1

1(y = n) ∗ log py[n] (2.60)

or a triplet loss

`TRI =
∑
a,p,n

ya=yp 6=yn

max
(
‖za − zp‖2

2 + ‖za − zn‖2
2 , 0
)

(2.61)

where a, p are from the same speaker and n is from a different speaker.
The TTS loss is also modified to incorporate an additional term that min-

imizes the cosine distance between the speaker embeddings z and ẑ, which
are extracted from the ground-truth speech and the predicted speech, respec-
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tively:

`TTS =LTTS(x, x̂, z, ẑ)

=

(
S∑
s=1

γ1

(∥∥xMs − x̂Ms ∥∥2

2
+
∥∥xRs − x̂Rs ∥∥2

2

)
−γ2

(
bs log

(
b̂s

)
+ (1− bs) log

(
1− b̂s

)))
+ γ3

(
1− 〈ẑ, z〉
‖ẑ‖2‖z‖2

)
(2.62)

Note that for the machine speech chain model discussed earlier, the gradi-
ent is cut-off between the ASR module and the TTS module when unpaired
data is involved. The authors also proposed an end-to-end feedback loss for
improving an ASR system without paired data, with an additional TTS re-
construction loss `recTTS = LrecTTS(x, x̂) = 1

S

∑S
s=1

∥∥xMs − x̂Ms ∥∥2

2
added to `ASR.

However, as the intermediate text generation for calculating `recTTS is discrete,
back-propagating the term to θASR may pose a problem. The authors pro-
posed two strategies. The first strategy is the vanilla straight-through esti-

mation, with the forward pass (starting from pyt [c] =
exp(hdt [c]/τ)∑C
i=1 exp(hdt [i]/τ)

, where

hdt ’s are ASR decoder states) defined as:

z̃t = argmaxc pyt [c] (2.63)

ỹt = onehot (z̃t) (2.64)

and the backward pass defined as

∂ỹt
∂pyt

= 1 (2.65)

The second strategy is called straight-through Gumbel-softmax. This strat-
egy modifies pyt [c] from a regular softmax into

pyt [c] =
exp

((
hdt [c] + gc

)
/τ
)∑C

i=1 exp
((
hdt [i] + gi

)
/τ
) , ∀c ∈ [1..C] (2.66)

where τ is the temperature parameter and gi are i.i.d. random variables
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sampled with

ui ∼ Uniform(0, 1) (2.67)

gi = − log (− log (ui)) (2.68)

The strategy then continues the same forward and backward pass as the
vanilla straight-through estimator.

2.3.2 From ASR-TTE to ASR-TTS + TTS-ASR

The ASR-TTE model [13] is an end-to-end cycle-consistent ASR system
based on a seq2seq ASR encoder-decoder network with attention and a
Tacotron 2 trained with ASR encoder outputs as targets instead of mel-
spectrograms. The motivation for using ASR encoder outputs is that such
hidden states are relatively speaker-independent, and the reconstruction from
the Tacotron 2 would be less prone to mismatches caused by missing para-
linguistic information.

Let X denote input speech features and C denote output characters, the
ASR encoder-decoder goes through the following set of operations

hasr
t = Encoderasr(X), (2.69)

aasr
lt = Attentionasr

(
qasr
l−1,h

asr
t , aasr

l−1

)
, (2.70)

rasr
l = ΣT

t=1a
asr
lt h

asr
t , (2.71)

qasr
l = Decoderasr

(
rasr
l ,qasr

l−1, cl−1

)
, (2.72)

pasr (cl | c1:l−1,X) = Softmax (LinB (qasr
l )) , (2.73)

with the objective trained under teacher-forcing as

Lasr = − log pasr(C | X) (2.74)

= −ΣL
l=1 log pasr

(
casr
l | casr

1:l−1,X
)

(2.75)
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The TTE module takes input charactersC and reconstructs hasr
t , as follows

htte
l = Encoder tte(C) (2.76)

atte
tl = Attention tte

(
qtte
t−1,h

tte
l , a

tte
t−1

)
(2.77)

rtte
t = ΣL

l=1a
tte
tl h

tte
l (2.78)

vt−1 = Prenet
(
hasr
t−1

)
(2.79)

qtte
t = Decodertte

(
rtte
t ,q

tte
t−1,vt−1

)
(2.80)

ĥb, asr
t = tanh

(
LinB

(
qtte
t

))
(2.81)

dt = Postnet
(
qte
l

)
(2.82)

ĥa, asr
t = tanh

(
LinB

(
qtte
l

)
+ dt

)
(2.83)

ŝt = Sigmoid
(
LinB

(
qtte
t

))
(2.84)

where ŝt is for the stop-token. The TTE module is trained under a similar
objective as regular TTS:

Ltte = MSE( ĥa, asr
t ,hasr

t

)
+ MSE

(
ĥb, asr
t ,hasr

t

)
+ L1

(
ĥa, asr
t ,hasr

t

)
+ L1

(
ĥb, asr
t ,hasr

t

)
+

1

T
ΣT
t=1 (st ln ŝt + (1− st) ln (1− ŝt)) (2.85)

For end-to-end feedback training, the TTE module needs to take

Ĉ = argmax
C∈U+

log pasr (C | X)

as input. However, the argmax operator is non-differentiable. They intro-
duced the expected loss for Ltte , defined as

Lette = EĈ|X

[
Ltte

(
Ĥasr (Ĉ),Hasr (X)

)]
(2.86)

where Ĥasr (Ĉ) denotes the TTE model predictions given Ĉ, and Hasr (X)

denotes the ASR encoder state targets produced by input speech X. The
gradient of Lette with respect to the ASR model parameters is then estimated
over N samples of Cn from the ASR model, with the REINFORCE algorithm
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as

∇Lette ≈
1

N

∑
Cn∼pasr (·|X),

n=1,...,N

T (Cn,X)∇ log pasr (Cn | X) (2.87)

where

T (Cn,X) = Ltte

(
Ĥasr (Cn) ,Hasr(X)

)
−B (X,Cn) (2.88)

and B (X,Cn) is a baseline for reducing variance, which is simply chosen as
the mean value of Hasr (Cn) over N samples.
A later semi-supervised model derived from ASR-TTE proposed to com-

bine an end-to-end differentiable ASR→TTS loss and another non-end-to-
end TTS→ASR loss [14]. The first loss leverages unpaired speech, while the
second loss leverages unpaired text. For calculating ASR→TTS loss from
unpaired speech, the model proposes to additionally condition Tacotron 2 on
speaker vectors obtained from an x-vector network [53]. The motivation is
that the earlier TTE model could weaken the consistency constraint. The
ASR→TTS loss is still back-propagated to ASR model parameters via the
REINFORCE algorithm. To leverage unpaired text, the TTS→ASR is cal-
culated by first feeding the text sequence + a randomly sampled x-vector
into the TTS module under inference mode, and then feeding the generated
X̂ into the ASR module to calculate the ASR loss with the unpaired text
sequence as the target. Note that there is no need to backpropagate the
gradient into the TTS module. The above processes is shown in Figure 2.5,
which is directly extracted from the proposal for cycle-consistency training
with unpaired speech and text [14].
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Figure 2.5: Cycle-consistency training with unpaired speech and text [14].

2.3.3 Sequential Representation Quantization Auto Encoder

A Sequential Representation Quantization AutoEncoder (SeqRQ-AE) [54]
shares the intermediate representation between an ASR encoder and TTS
decoder with a VQVAE. The overall system is shown in Figure 2.6, which is
extracted directly from the original proposal for SeqRQ-AE [54].

Figure 2.6: The system architecture for SeqRQ-AE [54].

The frame-wise speech features X = (x1, x2, . . . , xT ) first go through an
ASR encoder with parameters θ to produce frame-synchronized hidden states
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H = Encoderθ (X) = (h1, h2, . . . , hT ). With a learnable codebook E =

{e1, e2, . . . , eV } of V different embeddings, the frame-synchronized quantiza-
tion h̄t can be calculated for each ht as

h̄t = ht + ev − sg (ht) , where v = arg min
k
‖ht − ek‖2 (2.89)

where sg(·) is the stop-gradient operator. The above expression allows straight-
through gradient back-propagation from h̄t to ht, as shown by the dashed red
line. The temporal segmentation module takes H̄ =

(
h̄1, h̄2, . . . , h̄T

)
, groups

consecutive h̄t with the same value together, and averages over each group to
produce a phoneme-synchronized quantization sequence Q = (q1, q2, . . . , qS).
The TTS decoder with parameters φ takesQ as input and reconstructs frame-
level speech features as X̃ = Decoderφ(Q).
The model is trained with both unpaired speech X and a limited amount

of paired speech and text (Xpair, Ypair). The codebook size V is set to the
number of phonemes plus an additional blank token so that the CTC loss
can be calculated over the paired data. The frame-wise phoneme posteriors
are defined as:

P (v | ht) =
exp (−‖ht − ev‖2)∑
k∈V exp (−‖ht − ek‖2)

(2.90)

The final loss function on both paired data and unpaired speech is thus

Ltotal = MSE(X̃,X)

− λ1 logP (Ypair | H)

+ λ2 MSE (Decφ (Qpair ) , Xpair ) (2.91)

The experiments were performed on a single-speaker corpus, LJSpeech
[55]. The model achieves competitive phoneme error rates for as little as
5-20 minutes of paired speech. With 20 minutes of paired data, synthetic
speech from the TTS module also outperformed the machine speech chain
[10].

36



2.4 Invariant Risk Minimization

This section reviews the original proposal for invariant risk minimization [31],
and a stronger version for enforcing invariance called regret minimization [32].
We will use the following notations throughout the two sections.

First, the random variable X is used to represent input data, and each
sample is denoted as x ∼ X. The random variable Y is used to represent
output data, and each sample is denoted as y ∼ Y . We use E to denote the
set of environments in the training data. We use f : X → Y to denote the
predictor Y ≈ f(X) that we aim to learn. The predictor f can be viewed
as a composition of two parts f := w ◦ φ, where φ : X → Z is the feature
extractor that maps input features X into a latent representation space Z,
and w : Z → Y is a classifier that maps the latent representation Z to the
output Y . We use R to denote the empirical risk over the entire dataset and
use Re to denote the empirical risk over the subset of data from environment
e.
Risk is defined to be the expected value of loss [56]. The loss we incur

when the the paired sample (xi, yi) is predicted as f(xi) is measurable using
a loss function L(f(xi), yi). Risk is therefore computed as the average over
all (x, y) ∼ (X, Y ):

R(f(X), Y ) = E[L(f(X), Y )]. (2.92)

Empirical risk minimization (ERM) minimizes the average loss on the
training set, with the goal of achieving high accuracy on an independent
and identically distributed test set. ERM is formulated as follows:

fERM = arg min
f
R(f(X), Y ) (2.93)

In the limit of infinite training data, ERM provably minimizes the expected
risk on the test corpus, provided that the test corpus and training corpus are
drawn from the same distribution [57]. In many practical settings, however,
the test corpus and training corpus are not drawn from the same distribution.
For the application of speech, input samples are sequences of raw acous-
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tic feature vectors and output samples are sequences of IPA symbols. Each
language is viewed as an environment, which determines the distributions
of acoustic features and phonemes. f : X → Y is then a speech recogni-
tion model that takes acoustic features as input and transcribes them into
phoneme transcriptions. Available ASR training corpora are heavily biased
in favor of a few well-resourced languages. During testing, the mixture of
languages may be quite different: some languages that were badly under-
represented during training may be somewhat more frequent during testing.
We can characterize the problems with ERM by separately measuring the
risk for each language, e ∈ E , as

Re(f(X), Y ) = Ee[L(f(X), Y )], (2.94)

where Ee[·] denotes expectation over data drawn from environment e. A
number of different approaches have been developed to address the problem
of ERM solutions with unacceptably high risk for one or more particular
environments.

2.4.1 Invariant Risk Minimization

Invariant risk minimization [31] seeks to find a better balance among the
many different languages in the training corpus, by computing an invariant
embedding Z = φ(X) such that the optimal speech recognizer, Y = w(Z), is
the same in all languages.
Invariant risk minimization finds an environment-dependent classifier f =

w ◦ φ that is the composition of a feature extractor, φ : X → Z, and a clas-
sifier, w : Z → Y . The feature extractor is judged to achieve invariant risk if
the minimum-risk classifier sets for all of the environments, arg minRe(w),
overlap by at least one element: there is at least one classifier that is simul-
taneously optimal in all environments. Invariant risk minimization finds a
(w, φ) that minimize the overall risk, subject to the constraint that φ achieves
invariant risk:
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fIRM = arg min
w,φ

∑
e∈E

Re(w ◦ φ(X), Y ),

s.t. w ∈ arg min
w̄

Re(w̄ ◦ φ(X), Y ) ∀e ∈ E . (2.95)

Equation (2.95) defines IRM, but is difficult to implement. The constrained
optimization in Equation (2.95) requires that, in order to update the feature
extractor, one must determine the update’s effect on the set of optimal clas-
sifiers in every environment. A more practical version of IRM [31] states
that finding w ∈ arg minRe is equivalent to minimizing the L2-norm of the
gradient, ‖∇wRe‖2, for every environment, which can be performed using a
multi-task learning framework with a weighting coefficient of λ:

fIRM = arg min
w,φ

∑
e∈E

Re(w(φ(X)), Y ) + λ‖∇wRe(w(φ(X)), Y )‖2
2. (2.96)

The division of f into two subsystems, φ and w, is somewhat arbitrary;
in an end-to-end neural network, any particular layer could be arbitrarily
chosen to be trained as the invariant embedding. The subsequent formula-
tion of IRM [31] takes inspiration from the observation that, when the loss
function is either mean squared error or cross entropy, the optimal classifier
is the conditional expectation of Y given φ(X) [58]. In this case, the feature
extractor φ is optimal across environments if and only if we have:

Eei [Y |φ(X) = z] = Eej [Y |φ(X) = z] ∀ei, ej ∈ E , (2.97)

The final form of IRM (IRMv1) [31] observes that Equation (2.97) is most
simply satisfied if φ(x) = z = y. In order to guarantee that φ(x) = y satisfies
the condition in Equation (2.96), they propose fixing w(z) = w ·z, and fixing
the coefficient to w = 1.0, thus:

fIRM = arg min
φ

∑
e∈E

Re(φ(X), Y ) + λ‖∇w:w=1.0Re(w · φ(X)), Y )‖2
2. (2.98)
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2.4.2 Regret Minimization

The framework of regret minimization was originally proposed in economics,
in order to explain the tendency of human actors to consistently make choices
that lead to suboptimal expected rewards [59]. The framework of regret min-
imization proposes that rational actors have reason to doubt their own esti-
mates of the probabilities of future events. One way to compensate for lack
of knowledge is by minimizing expected regret, where regret is an increasing
convex function of foregone income, such that potential events that lead to
a great deal of foregone income are overweighted relative to their estimated
probability. Recently, regret minimization was applied to the task of domain
adaptation in machine learning [32]. They proposed that the distribution of
environments in a test corpus is often badly matched to the distribution of
environments in a training corpus, and that it is therefore rational to learn a
classifier that minimizes the regret incurred by training on the wrong subset
of environments.

Denote Re(w◦φ) as the risk computed over environment e, and R−e(w◦φ)

as the risk computed over all environments other than environment e, i.e.,

R−e(w ◦ φ) = Ee′ 6=e[Le
′
(w ◦ φ)] (2.99)

Further, define we and w−e as the minimizers of the corresponding risks

we = arg min
h
Re(h ◦ φ), w−e = arg min

h
R−e(h ◦ φ) (2.100)

The regret minimization criterion [32] is then

fRGM = min
w,φ
R(w ◦ φ) + λ

∑
e

[Re(w−e ◦ φ)−Re(we ◦ φ)] (2.101)

The first term in Equation (2.101) is the empirical risk averaged over all
environments. The second term measures the sum, across all environments, of
the regret, Re(φ), that would be incurred by training and testing on different
environments:

Re(φ) = Re(w−e ◦ φ)−Re(we ◦ φ) (2.102)

Since w−e and we are minimizers, Re(φ) is a function of φ. Since we is
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the minimizer of Re(w ◦ φ), Re(φ) is guaranteed to be non-negative. The
minimizer of Re(φ), therefore, is a feature extractor that eliminates all infor-
mation about the environment, in the sense that the cross-environment clas-
sifier, w−e, performs exactly as well as the optimum environment-dependent
classifier, we.
IRM (Section 2.4.1) requires that the globally optimum classifier, w, must

also be a minimizer of the environment-dependent risk for every particular
environment: Re(w ◦ φ) = Re(we ◦ φ). If the constrained optimization of
Equation (2.95) is solved using a Lagrangian optimization technique, the
Lagrangian form is

fIRM = min
w,φ
R(w ◦ φ) + λ

∑
e

[Re(w ◦ φ)−Re(we ◦ φ)] (2.103)

The similarities and differences between IRM and RGM may be understood
by comparing Equation (2.101) and Equation (2.103). Like IRM, regret min-
imization uses a Lagrangian constraint term to enforce invariance. Unlike
IRM, the classifier w−e is trained without access to samples in environment
e, so that RGM in theory enforces a stronger invariance constraint on the fea-
ture extractor φ than IRM: in the terminology of a recent transformer-based
multi-lingual speech recognition system [45], IRM minimizes the difference
between multi-lingual and mono-lingual error rates, while RGM minimizes
the difference between cross-lingual and mono-lingual error rates.

The procedure for regret minimization is schematized in Figure 2.7. As
shown, even with only two distinct training environments (X1 and X2),
five distinct classifiers must be trained (the globally optimum classifier w,
the environment-dependent classifiers w1 and w2, and the cross-environment
classifiers w−1 and w−2).
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Figure 2.7: How to compute the risk for regret minimization in a
two-environment setting. In addition to the ERM risk calculated on inputs
from both environment under the shared feature extractor and classifier,
regret minimization inserts an additional regret term for each environment
into the total risk. The regret for environment 1, for example, can be
calculated by first feeding the inputs from environment 1 into the feature
extractor, and then into the classifier trained on environment 1, as well as
the classifier trained on environment 2. The difference calculated from the
corresponding loss term for the out-of-environment classifier and the
within-environment classifier is the regret. The same calculation can be
done to calculate the regret for environment 2.
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CHAPTER 3

ANALYZING THE EFFECT OF
LANGUAGE-SPECIFIC TUNING FOR A

BI-LINGUAL CTC SYSTEM

In this chapter, we present our experiment set-up for a bi-lingual CTC sys-
tem in 3.1. We will discuss the shared and non-shared phone inventories of
our English and Dutch corpora, data and model settings, as well as training
methods. In 3.2, we will then describe the three experiments designed for
visualizing and analyzing language-specific tuning. We focus on understand-
ing the differences of consonant and vowel spaces of the two languages, the
differences in the shared or non-shared layers in the two models, and the
differences between the two models. For each experiment, we proposed some
hypotheses following our intuition about L2 acquisition and model architec-
ture. We finally prove or disprove the hypotheses for each experiment in 3.3
with visualizations and classification tests.

3.1 Experimental Set-up

We used Dutch and English as the pair of languages to investigate the effect
of language-specific tuning, because these languages share many consonants
but few vowels. In the two corpora we used (see below), only four of the 23
consonants in Dutch (/V, x, ñ, 7/) do not exist in English, and only five of
the 24 consonants in English do not exist in Dutch. For vowels, 11 of 19 the
Dutch vowels (Ou, e:, i:, o:, œI, y:, 0, 6:, EI, ø:, a:) do not exist in the English
corpus, while 10 of the 17 English vowels (/aU, eI, oU, 2, æ, U, Ç, aI, OI, Ä/)
do not exist in the Dutch corpus. Therefore, we expected language-specific
tuning to behave differently when processing the consonants and the vowels
of the two languages.

For Dutch, we used 64 hours of read speech from the Spoken Dutch Corpus
(CGN; [60]), of which 80% was used for training, 10% for validation, and 10%
for the test set. For English, we used The Flickr Audio Caption Corpus [61],
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which consists of 40,000 spoken captions of 8,000 natural images from the
Flickr8k image-caption dataset. We selected 30 hours of English utterances
by discarding those that are too long/too short, as well as those with too
high/too low forced alignment score. We first trained a CTC phone recognizer
on Dutch only (L1 training stage), then used the obtained weights to initialize
the single pathway model and the dual pathway model. The two models
were then adapted on both English and Dutch (joint training stage). The
architecture is a modified Deep Speech 2 [36]. The model starts with two
layers of 2D convolution on the raw input spectrogram. The output from the
convolutional layers is fed into six layers of bidirectional LSTM, each with
200 hidden units. The model was optimized under phone CTC [15] loss, and
converged after 12 epochs of training.

In the joint training stage, the single pathway model was first initialized
as the baseline CTC phone recognizer. A new softmax for English phones is
created and appended to the last bLSTM layer. The dual pathway model was
created by splitting the two final bLSTM layers (one for each language) and
the final softmax (one for each language). New softmax units for the shared
phones in English were initialized as their counterparts in Dutch, while soft-
max units for unseen English phones were initialized as linear combinations
of several Dutch phones [62]. For the dual pathway model, the earlier shared
layers were initialized with weights from corresponding layers in the baseline
CTC recognizer. Both branches of bLSTM layers (for English and Dutch)
were initialized by copying the weights of the corresponding layers in the
baseline CTC recognizer as well. The two models have been illustrated in
Figure 1.1. Both the single pathway and dual pathway models were then
adapted using utterances from Flickr8k interleaved with those from the read
speech section of CGN, using a multi-task phone CTC loss that simply sums
up the individual loss from the two languages. Convergence was achieved in
12 epochs for each model.

3.2 Visualization and Analysis Methods

Three experiments were conducted to investigate language-specific tuning for
the (largely shared between languages) consonants and the (largely unshared)
vowels of the two languages. The first experiment investigated consonant rep-
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resentations learned by the dual pathway model. Theories of human second
language learning (PAM-L2 [63]; SLM [64]) suggest that, when L1 and L2
phonemes have similar articulatory or acoustic correlates, the learner may
treat them as identical. Since most consonants in English and Dutch share
the same IPA symbols, we hypothesize that the hidden layer activations of
those consonants in the two languages may be the same, and that therefore,
consonants may be well represented at the language-independent shared layer
of the dual pathway model (i.e., the fourth bLSTM layer, shaded in orange
in Figure 1.1). To that end, we jointly visualized the consonant represen-
tations in the two languages at the last shared layer. IPA symbols for each
consonant are visualized, as are their manners of articulation, since previous
research suggests that DNNs learn manner of articulation more easily than
place [65]. We propose two hypotheses regarding experiment 1:

Hypothesis 1 (H1): Consonants in Dutch and English with the same IPA
symbols share similar hidden layer activations in the shared layer (analogy
to the shared phonological space of human L2 learners [63]) and display a
clear grouping in terms of manner of articulation (as suggested by previous
experiments with DNNs), both within and between languages.

Hypothesis 2 (H2): Due to the large overlap between Dutch and English
consonants, a model can learn the consonants in both L1 and L2 very well,
even without the help of language-specific tuning.

In the second experiment, we analyzed whether the dual pathway model
has benefited from separate language-specific tuning at the later layers, by
comparing the learned representations at sixth LSTM layers of the dual path-
way model with those from the single pathway model. We focus on Dutch
because joint training on English and Dutch leads to a strong deterioration
on the recognition of Dutch, compared to the Dutch-only baseline, for the
single pathway model but not the dual pathway model. While L2 interference
on L1 is also observed for humans [64], the effect is usually minor and mostly
happens on the production level. Thus, we wish to see why the dual path-
way model better approximates human speech processing mechanisms than
the single pathway model in this regard. We also focused on vowels instead
of consonants in this experiment due to the large proportion of non-shared
vowels between the two languages. Experiment 2 addresses the following
hypothesis:
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Hypothesis 3 (H3): The L1 vowel space is poorly matched to the L2 with-
out language-specific tuning. Compared to representations learned by the
single pathway model, vowel representations of the dual pathway model are
greatly improved.

The third experiment further analyzed what the dual pathway model learns
at the shared and non-shared levels by comparing the learned representations
at the last shared layer (orange layer in Figure 1.1) with those at the last
non-shared layer (i.e., after separate pathways for language-specific tuning;
gray layers) separately for the two languages. Following our hypothesis for
the second experiment, we believe that it will again be the vowel space that
benefits from such further tuning, while following our hypotheses for the
first experiment, we expect to see only marginal benefits for consonants. We
calculated the average classification error rates (for consonants and vowels
separately) using the activation frames extracted from the fourth and sixth
layer of the dual pathway model (see dashed ovals in Figure 1.1). For com-
parison, we also included the classification error rates at the same layers for
the single pathway model (see dashed ovals in Figure 1.1). We proposed the
following hypothesis regarding experiment 3:

Hypothesis 4 (H4): Activations from the sixth layer of the dual pathway
model provide a better representation for the classifier, for English and Dutch
vowels, than the fourth layer. However, no significant improvement should
be observed by going deeper in the single pathway model.

Hypothesis 5 (H5): Consonants do not depend on language-dependent tun-
ing (sixth layer error rates are as high as fourth layer), and show much lower
error rates for both Dutch and English compared to vowels, due to the large
overlap between Dutch and English consonant categories.

All three experiments extract LSTM output activations from the corre-
sponding bLSTM layer of the corresponding model. Phone alignments of
the hidden activation frames for Dutch are obtained using a Kaldi [66] CGN
triphone model with a recipe found online1. English alignments were kindly
provided by the authors of a recent proposal that builds a low-resource lan-
guage ASR from a high-resource language ASR [62]. For experiment 1, 10%

1https://github.com/laurensw75/kaldi_egs_CGN
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of activation frames for each phone with the highest corresponding softmax
probabilities are selected, jointly standardized, reduced to a dimension of 50
using PCA, and then jointly visualized using t-sne [67]. Experiment 2 is sim-
ilar, but uses activations from a single language (Dutch) extracted from the
single pathway and the dual pathway models. For experiment 3, we trained
several MLP phone classifiers using the extracted activations at the fourth
and sixth layers from both the single and dual pathway models as input fea-
ture vectors, separately for the two languages. The MLP classifiers all consist
of one hidden layer of dimension 1024, followed by a softmax layer for phone
outputs.

3.3 Visualization and Analysis Results

L1 training achieves 12.1% PER on Dutch. After Dutch-English joint train-
ing, the single pathway model obtains Dutch PER of 19.9%, which is 7.8%
PER higher than the monolingual baseline, and English PER of 15.5%. The
dual pathway model suffers less degradation than the single-pathway model:
Dutch PER is 12.9% (only 0.8% higher than monolingual baseline), and En-
glish PER is also 12.9%.

Experiment 1 visualizes the space of consonants at the last shared bLSTM
layer of the dual pathway model. Figures 3.1 and 3.2 show the hidden space
of all consonants, where each symbol in the figure corresponds to an IPA sym-
bol, and each color corresponds to a manner of articulation. Hypothesis 1
is confirmed: except for a few cases, the English consonants, after learning,
get assimilated to almost the same location as their counterparts in Dutch.
Groups of consonants with the same manner of articulation across the two
languages also reside in roughly the same region of space. Hypothesis 2 is
also confirmed: new consonants in the L2 language (English) learn repre-
sentations close to phonetically similar neighbors. In Figures 3.1 and 3.2,
English affricates not present in Dutch (/Ã/, /Ù/ near [-40, 0] in Figure 3.2)
are placed between a group of plosives and a group of fricatives, crowding
the phonetic space [64] by leveraging language-invariant articulatory ges-
tures. Similarly, /T/ (near [-40, -20] in Figure 3.2) and /ð/ (near [0, 0] in
Figure 3.2) lie close to /t/ and /d/, with which they share a similar place of
articulation.
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Figure 3.1: Dutch consonants after joint training; dual pathway model,
fourth bLSTM.
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Figure 3.2: English consonants after joint training; dual pathway model,
fourth bLSTM.

Experiment 2 investigates the vowel space in the penultimate activations
from the dual pathway model for Dutch vowels (Figures 3.3 and 3.4: Fig-
ure 3.3 is for the single pathway model and Figure 3.4 is for the dual pathway
model). Dutch is visualized because Dutch vowels suffered a larger number
of errors than English vowels after joint training. Each color represents a dis-
tinct tongue height (low, low-mid, mid, high-mid or high). Hypothesis 3 is
confirmed: activations in Figure 3.2 but not Figure 3.3 are crowded together,
especially for the region of space that contains /e:,EI,ø:/. The dual pathway
model gives better clustering of individual vowels and of vowel height cate-
gories.
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Figure 3.3: Dutch vowels; single pathway model, sixth bLSTM.
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Figure 3.4: Dutch vowels; dual pathway model, sixth bLSTM.

Experiment 3 further investigates language-specific tuning in the dual
pathway model by training two separate classifiers that use the activations
before (fourth layer) and after (sixth layer) language-specific tuning. For
comparison, two additional classifiers use activations from the single path-
way model at the same layers. Figure 3.5 shows the average classification
error rates for English and Dutch consonants and vowels, in the single vs.
dual pathway models, as functions of the layer index. Hypothesis 4 is con-
firmed: vowel error rate decreases drastically for both Dutch and English if
activations from the sixth layer of the dual pathway model are used instead
of those from the fourth layer. On the other hand, going deeper into the
single pathway model does not reduce error rates. Language-specific tuning
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(the sixth layer of the dual-pathway model) is therefore demonstrated to give
better representations (lower classification error rates) of non-shared phones
(vowels), compared to an earlier layer of the same model (fourth layer), and
compared to an equally deep layer of a language-independent model (sixth
layer of the single pathway model).

Figure 3.5: Classification error rates for consonants and vowels: MLP
classification of the fourth vs. sixth layers of the single vs. dual pathway
models, for English and Dutch.

Hypothesis 5 is partially confirmed for Dutch, but not for English: Dutch
consonant error rates do not decrease much when moving from the fourth to
the sixth layer of the dual pathway model (increased language dependence),
but English consonant error rates decrease drastically. Apparently English
consonants, despite displaying well-learned representations in Experiment 1,
still benefit from language-specific tuning. Considering the fact that English
is effectively the second language for our system, it is not surprising that
English consonants benefit more from language-specific tuning than Dutch
consonants. Error rates from the single pathway model are layer-independent
for both Dutch and English, showing that the change in the dual pathway
model is not a simple effect of having more layers. Contrary to Hypothesis 5,
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consonant error rates are higher than vowels, possibly because there are more
consonants than vowels in both languages.
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CHAPTER 4

CYCLE-CONSISTENCY CONSTRAINT
FOR MULTI-LINGUAL SPEECH

RECOGNITION

In this chapter, we wish to apply the Sequential Representation Quantization
Au- toEncoder (SeqRQ-AE) [54] to multi-lingual speech recognition with
multiple speakers in each language. Under the current setting, we did not
assume the availability of unpaired data for each language. Rather, the
reconstruction loss calculated from the TTS module, conditioned on text
predictions from the ASR module, was treated as an additional regularization
term when training the ASR system. By doing so, we hope that the additional
reconstruction loss could more promptly correct the errors produced by the
ASR system.

This chapter is divided into three sections: algorithms, experiment set-
tings, and experiment results. In the first section, we will first describe how
the current model differs from the SeqRQ-AE model [54]. Specifically, we will
describe how we trained and extracted speaker and language embeddings as
conditional input for the TTS module and how we modified its architecture
to reflect the predominant use of transformer [40] modules for sequence-to-
sequence tasks. The second section will describe the specific corpora and
model parameters used in this set of experiments. In the third section, we
will start by validating our choice of speaker and language embedding through
visualization and compare our baseline multi-lingual system’s phonetic token
error rates without cycle-consistency constraint to our modified system with
such constraint.

4.1 Algorithm

The first subsection will describe how we trained a speaker encoder and a
language encoder to provide conditional input for the TTS module. In the
second subsection, we will describe our modified ASR system with the cycle-
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consistency constraint. Different from the SeqRQ-AE model [54], which used
convolutional layers and recurrent layers, we chose to use transformers as es-
sential building blocks for the ASR system, as they work well for multilingual
speech recognition [45]. Then speech reconstruction module is extended to a
complete auto-regressive TTS system, which is also transformer-based.

4.1.1 Speaker and Language Embedding

In this subsection, we will discuss the algorithm for training speaker and
language embeddings. The SeqRQ-AE model [54] was trained on a single-
language, single-speaker corpus, LJSpeech [55], for their experiments. In
our work, we would like to extend the method to a multi-lingual, multi-
speaker training setting. Therefore, we pre-trained two additional modules,
a language encoder, and a speaker encoder. The language encoder takes a
raw mel-spectrogram and generates a language embedding for the utterance.
The speaker encoder takes the same raw mel-spectrogram and generates a
speaker embedding. Note that we chose to use dynamic embeddings instead
of fixed embeddings for each language and each speaker. We also chose to
train the language and speaker encoder from scratch on the multi-lingual
corpora for better specificity.

For the language encoder, we used a simple four-layer convolutional neural
network that mimics the architectural designs of VGG16 [68]. To train the
language encoder, we fed the mel-spectrogram of the utterance into the net-
work, averaged the encoded representation across time, and calculated the
cross-entropy loss using its language id as the target:

Llid =
n∑
i=1

− log Softmax

 1

F
(i)
le

F
(i)
le∑
f=1

Language_Encoder
(
X(i)

)
l(i)

(4.1)

where the Softmax(·) layer projects the output from the language encoder
into logits and calculates a softmax distribution on top of the logits, X(i) :=

{x1,x2, . . . ,xT ′} denotes the input mel-spectrogram, F (i)
le denotes the number

of output frames for the language encoder, and l(i) ∈ [L] denotes the language
id label over L different languages. After the language encoder was trained,
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the language embedding w(i) of an input utterance X(i) was calculated as

w(i) =
1

F
(i)
le

F
(i)
le∑
f=1

Language_Encoder
(
X(i)

)
(4.2)

For the speaker encoder, while we could have directly extracted the x-
vectors [53], we would like to explore other methods of obtaining dynamic
speaker vectors. In particular, we trained a modified version of the self-
expressing autoencoder [69] to extract speaker embeddings. We used a
weighted combination of the triplet margin loss and the speaker classification
loss as the objective [10]. The modified architecture is shown in Figure 4.1.
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Figure 4.1: Self-expressing autoencoder for training speaker embeddings.

Denote the input as X(i). The model consists of two encoders, a label
encoder and a non-label encoder. Both encoders encode X(i) through several
blocks of residually-connected layers, followed by a final dense layer with non-
linearity. Different from the label encoder, the non-label encoder averages
the output across the time-dimension and obtains a single vector v(i). The
output Z(i) := {z1, z2, . . . , zT ′} from the label encoder is used to calculate a
self-expressed version Ẑ(i) := {ẑ1, ẑ2, . . . , ẑT ′}. By using two encoders instead
of one, we hope that we could separate out dynamic, phonetic information
from static, speaker information more effectively.
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The self-expressing module works as follows:

S
(k)
ij =

z
(k)
i

T
z

(k)
j∥∥∥z(k)

i

∥∥∥∥∥∥z(k)
j

∥∥∥ (4.3)

Ŝ(k) = S(k) − I (4.4)

D
(k)
ii = diag

(∑
j

Ŝ
(k)
ij

)
(4.5)

Ẑ(k) =
(
D(k)−1

Ŝ(k)
)
Z(k) (4.6)

where S(k) is the cosine similarity matrix calculated on the encoded sample
Z(k), and we subtract an identity matrix from S(k) to obtain Ŝ(k). This is
because the goal of the self-expressing module is to express a frame z(k)

i with
similar frames, such as those nearby that correspond to the same phoneme,
thereby pushing the representations of frames under the same phoneme class
closer to one another. Without subtracting the identity matrix, however, a
diagonal S(k)

ij could be learned without enforcing the self-expressing constraint
[69].
After obtaining the pooled vector vector v(i), the raw representation from

the encoder Z(i) and the self-expressed representation Ẑ(i), each frame of
Z(i) and Ẑ(i) are concatenated with v(i). A single decoder, consisting of sev-
eral residual blocks, calculates an output for the two types of representation
individually, leading to two reconstructed mel-spectrograms X̄(i) and ˆ̄X(i)

(respective to Z(i) and Ẑ(i)).
We believe that the speaker classification loss and the triplet margin loss

would force the non-label encoder branch to focus on speaker-discriminative
information. We thus denote the non-label encoder (right branch in Fig-
ure 4.1) as the speaker encoder, and v(i)’s as the speaker vectors. Note that
as we chose to train a joint speaker encoder model on all training languages,
we would like to avoid sampling two utterances from different languages when
calculating the triplet margin loss, as the underlying language information
would make it very easy to tell them apart. Therefore, we revised the batch-
ing scheme to contain at least four utterances from the same language: two
from one speaker and two from another speaker. We also calculated the
speaker classification loss in each language individually under similar con-
cerns. As shown in the oval modules in Figure 4.1, the loss function is a sum
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of three components:

1. the mean-squared error calculated on top of X̄(i) and ˆ̄X(i):

Lmse =
n∑
i=1

‖X(i) − X̄(i)‖2 +
n∑
i=1

‖X(i) − ˆ̄X(i)‖2; (4.7)

2. the speaker classification loss calculated from v(i):

Llid =
n∑
i=1

− log Softmaxlid(i)
(
v(i)
)
s
(i)

lid(i)

(4.8)

where Softmaxlid indexes the correct softmax projection layer to use
based on the sample’s language id, and s

(i)

lid(i)
is the speaker target of

that sample within the corresponding language;

3. the triplet margin loss calculated from v(i), v(j) and v(k), where v(j) is
calculated from a randomly sampled utterance of the same speaker as
v(i) (with i 6= j), while v(k) is a randomly sampled utterance from a
different speaker (but in the same language):

Lmargin =
n∑
i=1

max
(
sim

(
v(i),v(j)

)
+ λ− sim

(
v(i),v(k)

)
, 0
)

(4.9)

The loss enforces the speaker embedding from the same speaker to
be close, and at least a separation of λ for speaker embeddings from
different speakers.

4.1.2 ASR-TTS with VQVAE

In this subsection, we will describe the modified ASR-TTS model we use for
multilingual phonetic token recognition. The overall approach follows the
SeqRQ-AE model formulation [54]. The model starts with an ASR encoder
that takes a mel-spectrogram as input and predicts a sequence of hidden
states. A vector quantization module (with a codebook size equal to the
number of distinct phonetic tokens plus a blank token) takes the hidden
states from the ASR encoder and quantizes them into discrete codebook
vectors. Given the ASR encoder output and the set of codebook vectors,
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per-frame output probability is calculated based on the distance from the en-
coded states to each codebook vector, which is then used to calculate the CTC
loss [15]. The TTS encoder takes ground-truth phonetic transcripts as in-
put (during TTS pre-training) or the symbol-level quantized ASR encodings
(during ASR-TTS training; obtained by averaging over repeated frame-level
codebook vectors) as input and outputs a sequence of text embeddings. The
auto-regressive TTS decoder takes such embeddings to reconstruct speech,
conditioned on the ground-truth shifted mel-spectrogram, the speaker em-
bedding, and the language embedding (Section 4.1.1). The new multi-lingual,
multi-speaker model is displayed in Figure 4.2.

Figure 4.2: A multi-lingual, multi-speaker ASR-TTS model.

Before training the joint ASR-TTS model, we first pre-trained the TTS
module, as we would like the cascaded TTS system to provide stable gradi-
ents to the ASR encoder during subsequent ASR training. The TTS model
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adopts a recent transformer-based auto-regressive TTS model [50]. During
pre-training, a ground-truth phonetic token index sequence p := {p1, . . . , pL}
is used to index a codebook of embeddings as V(p) := {Vp1 , . . . ,VpL}. The
resulting V(p) is then fed into the Transformer-TTS encoder as

S := {s1, . . . , sL} = Projection (Concat (TTS-Encoder (V (p)) ,w,v))

where w denotes the language embedding, and v denotes the speaker em-
bedding. The concatenation and the re-projection are repeated over the
time-dimension. Conditioned on S, the decoder reconstructs the original mel-
spectrogram via teaching-forcing. More details of the generic transformer-
based encoder-decoder architecture can be found in Section 2.1.3, and more
details of the Transformer-TTS architecture can be found in Section 2.2.2.
The final TTS loss contains three loss functions:

1. A reconstruction loss (L1 loss + MSE loss) between ground-truth and
predicted mel-spectrograms, before and after the postnet in the decoder
(with output denoted as X̄(i) and ˆ̄X(i), respectvely):

Lrecon =
n∑
i=1

‖X(i) − X̄(i)‖2
2 +

n∑
i=1

‖X(i) − ˆ̄X(i)‖2
2

+
n∑
i=1

‖X(i) − X̄(i)‖1 +
n∑
i=1

‖X(i) − ˆ̄X(i)‖1 (4.10)

2. A guided attention loss [70] for the encoder-decoder attention matrix.
The guided attention loss enforces a diagonal constraint for some at-
tention matrix A:

Latt(A) =
∑
n

∑
t

AntWnt (4.11)

with
Wnt = 1− exp

{
−(n/L− t/T ′)2/2σ2

}
(4.12)

where for a specific attention matrix A (associated with a certain sam-
ple, decoder layer and attention head), n is the text position, t is the
frame position, L is the total text length, and T ′ is the total number of
frames. For a Transformer-TTS decoder, the constraint is only enforced
over a selected number of layers and heads.
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3. A frame-wise weighted binary cross-entropy loss, with a larger weight
for positive stop tokens:

Lbce =
n∑
i=1

T ′(i)∑
t=1

αoi,t logPi,t + (1− oi,t) log(1− Pi,t) (4.13)

where Pi,t is the probability that the output of the i-th sample should
stop at the t-th frame, oi,t is the stop token target for that frame,
and α is the weight for positive samples. Setting a large weight for the
positive samples alleviates the imbalance between positive and negative
samples.

After pre-training the TTS module, we trained the cascaded ASR-TTS
model. The signal path of the model is shown in Figure 4.2. Denote the
input mel-spectrogram asX := {x1,x2, . . . ,xT ′} and the intermediate hidden
states after the ASR encoder as H := {h1,h2, . . . ,hT} := Encoderθ(X). For
each time step t ∈ [T ], the quantized state vector h̄t is calculated from ht as

h̄t = ht + ev − sg(ht) (4.14)

where the codebook vector ev at time t is selected as

ev = arg min
ek∈V

‖ht − ek‖ (4.15)

Here, V is a codebook with size equal to the size of phone token inventory
plus an additional blank token, and sg(·) denotes the stop-gradient operator.
Note that the above calculation of h̄t allows straight-through gradient during
back-propagation, as shown in the dashed red path in Figure 4.2. If the input
speech X has paired transcription, the frame-wise logits used for calculating
CTC loss (Section 2.1.1) can be expressed as

P (v | ht) =
exp (−‖ht − ev‖2)∑

ek∈V exp (−‖ht − ek‖2)
(4.16)

To reconstruct the input speech, H :=
{
h̄1, . . . , h̄T

}
is first collapsed in the

time dimension by averaging over consecutive frames with the same codebook
vector index, leading to Q = {q1, . . . ,qS}. Finally, we feed Q into the TTS
module. The TTS loss is calculated in the same fashion as described above
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for pre-training. The only difference is that we use predicted sequences of
phonetic codebook vectors from the ASR module, instead of ground-truth
transcripts, as inputs to the TTS encoder. The final loss function for ASR-
TTS training is a weighted combination of the CTC loss and the TTS loss.

In this set of experiments, we do not use unpaired data and only wish to
evaluate cycle-consistency as a constraint for the multilingual system.

4.2 Experiment Settings

We use ESPnet [71] as our ASR framework, which offers a complete ASR
pipeline including data preprocessing, transformer [40] network implemen-
tation, network training and decoding. We choose Bulgarian, Czech, and
Polish for multilingual training and Croatian for zero-shot recognition. All
four languages come from the Slavic language family. The data for the lan-
guages come from GlobalPhone [72].

Using Kaldi [66], we extract 80-dim log Mel spectral coefficients with 25
ms frame size and 10 ms shift between frames, and augmented the frame
vectors with three extra dimensions for pitch features. The transcriptions
are converted to IPA symbols, or language-universal phonetic tokens [45],
using LanguageNet grapheme-to-phone (G2P) models [73]. We treat dia-
critics (such as palatalization [j]), suprasegmentals (such as length mark [:]
and primary stress mark ["]), and tones (such as high tone [Ă£] and low tone
[Ă£] symbols) as separate tokens. We also split diphthongs and affricates (if
any) into individual symbols. For example, the G2P output /d a m vj i k/
would be transcribed into seven individual tokens instead of six. The re-
sulting inventory size is 46, including four diacritics ([j], [fi], [”], [˜]) and two
suprasegmentals ([:], ["]). During evaluation, we measure the phonetic token
error rate (PTER) [45]. PTER is calculated by counting the insertion, sub-
stitution and deletion errors between reference phonetic token transcription
and the CTC prediction.
The speaker encoder, which is trained as a self-expressing autoencoder

with speaker classification loss and triplet margin loss, uses the same hy-
perparameters as in Figure 4.1. The label encoder, non-label encoder, and
decoder all consist of six fully-connected residual blocks. Each residual block
consists of three layers. The first and last layers are dense layers with size
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512, followed by ReLU activation, and the middle bottleneck layer is dense
with size 128. The input of the residual block is simply added to the final
output of the three dense layers. The corpus for each language consists of
around 60 to 80 speakers. The triplet loss margin is fixed to 0.1, and sim(·, ·)
is chosen as the cosine similarity. The speaker embeddings come from the
output of the non-label encoder after average-pooling of the time dimension.

The language encoder consists of four 2D convolutional layers. The num-
ber of channels for each layer is 64, 64, 128, and 128, respectively. All layers
have a kernel size of three by three. A max-pooling layer of stride two comes
after every two convolutions. The first max-pooling layer has a kernel size of
three by three while the second one has a kernel size of two by two. The fi-
nal tensor is reshaped into (Batch_Size, Frame_Size, Feature_Size). For
each utterance, the output is then averaged over the time dimension to obtain
the language embedding.

The baseline ASR encoder network, trained with vanilla CTC loss, starts
with four 2D convolutional layers. The four convolutional layers have exactly
the same hyperparameters as the language encoder. 12 self-attention encoder
layers follow the convolutional layers, each having four heads, an attention
dimension of 256, and a 2048-dim position-wise feed-forward layer. We use
fixed positional encoding for the transformers. The encoder output is followed
by a dense layer to compute frame-wise phonetic token posteriors and the
CTC loss. All dropout rates are set to 0.1.
The TTS encoder-decoder network is based on Transformer-TTS [50]. The

phonetic embedding layer has a dimension of 256, with 47 distinct codes (46

phonetic tokens and an additional blank token for use by the cascaded ASR-
TTS system). The transformer encoder contains four self-attention encoder
layers, each with four heads, an attention dimension of 384, and two layers
of 1536-dim 1D convolutions with a kernel size of 1 and ReLU activation in
between. The decoder pre-net contains two layers of 1D convolution and a
reduced feature dimension of 256, with ReLU activation in between. The
decoder also contains four layers. The self-attention modules of the decoder
and the encoder-decoder attention modules all use the same hyperparame-
ters as the encoder’s layers. For both the encoder and the decoder, scaled
positional encoding with a learnable scale parameter is used instead of fixed
encoding. All dropout rates are set to 0.1 except for the decoder prenet and
postnet, which are set to 0.5.
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The joint ASR-TTS concatenates the baseline ASR encoder network with
the TTS encoder-decoder network, as shown in Figure 4.2. The TTS module
is initialized with pre-trained weights on the same multilingual, multi-speaker
corpora. The codebookV is initialized to be the same as the phonetic embed-
ding layer of the TTS encoder-decoder network. The cascading of the ASR
system and the TTS system is achieved by feeding the symbol-level quantized
ASR encodings {q1, . . . ,qS} directly into the TTS encoder as a phonetic em-
bedding sequence. For the ASR encoder network, the only difference is that
the frame-wise phonetic token posterior is calculated via 4.16.

We run a total of ten epochs for the language encoder, 14 epochs for the
speaker encoder, 100 epochs for TTS pre-training, and 30 epochs for the
baseline ASR and the cascaded ASR-TTS system. All transformer models
were warmed up for 4000 steps.

4.3 Experiment Results

In this section, we first visualize the extracted speaker and language embed-
dings to validate our design choices. After that, we will display the main
results of this section, which is the phonetic token error rates of the baseline
ASR system and the cascaded ASR-TTS system.

4.3.1 Speaker and Language Embedding Visualization

The language encoder scores a 99.7% accuracy on the training set and a
94.9% accuracy on the validation set. The speaker encoder obtains a 99.75%
accuracy on the training set. The validation set contains a different set of
speakers, so the accuracy calculation is not applicable.

For each language, we randomly sampled 1000 utterances and extracted
language embeddings for those utterances. Figure 4.3 displays those lan-
guage embeddings after reducing the dimension to two via T-SNE [67]. The
plot shows well separation between embeddings from different languages and
relatively well clustering of embeddings from the same language.
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Figure 4.3: Language embeddings plotted via T-SNE.

To visualize the speaker embeddings, we chose five training speakers in
Bulgarian and another three unseen speakers. We fed all the utterances of the
chosen speaker into the speaker encoder and extracted speaker embeddings
for those utterances. Figures 4.4 and 4.5 show that the embeddings from
the same speakers are well cluster together and well separated from other
speakers, even for unseen ones (although to a lesser degree). The autoencoder
also achieved good reconstruction for both the vanilla reconstruction and
the self-expressed reconstruction (although to a lesser degree), as shown in
Figure 4.6.
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Figure 4.4: Speaker embeddings for five of the training speakers in
Bulgarian.
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Figure 4.5: Speaker embeddings for three of the unseen speakers in
Bulgarian.
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Figure 4.6: Reconstruction of the self-expressing autoencoder.

4.3.2 PTER Comparison

We trained three different models to understand if joint ASR-TTS train-
ing provides any benefit over a baseline CTC system. The first model is
the vanilla CTC encoder network, where the frame-wise phonetic token pos-
terior is calculated by projecting the encoder hidden states into phonetic
token logits. The second model is almost the same as the vanilla CTC net-
work. However, the frame-wise phonetic token posterior is calculated by first
projecting the encoder hidden states into the codebook dimension and then
invoking 4.16. The codebook in the second system is initialized with the
codebook from the pre-trained TTS system and fixed during ASR training.
The third system is the cascaded ASR-TTS system, where the codebook and
all other TTS modules are initialized with weights from the pre-trained TTS
system and fixed during ASR training. Table 4.1 displays the multi-lingual
PTER calculated over the evaluation set for Bulgarian, Czech, and Polish,
together with the zero-shot cross-lingual PTER calculated over the evalu-
ation set for Croatian. The first system is denoted as “Linear-CTC,” the
second system is denoted as “Codebook-CTC,” and the third is denoted as
“ASR-TTS.”

Surprisingly, the second system, intended to serve as an ablation study,
gives the best PTER for all training languages. The second system performs
better than the linear-CTC and the ASR-TTS systems on an unseen test
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Table 4.1: Phone token error rates (PTER, %) of the “Linear-CTC,”
“Codebook-CTC,” and “ASR-TTS” systems trained on three Slavic
languages (Czech, Bulgarian and Polish). Early-stopping and other
hyperparameters of each algorithm were selected based on development test
data in the three training languages. Numbers reported are from the
evaluation test data in each of the three training languages, and in the
unseen Slavic language (Croatian).

Training Languages Test Language
Algorithm Czech Bulgarian Polish Average Croatian
Linear-CTC 15.6 33.6 37.5 28.9 56.6
Codebook-CTC 14.8 32.8 35.9 27.8 55.9
ASR-TTS 16.2 34.0 37.9 29.4 57.8

language from the same language family. Comparing the first and second
systems, we conclude that the pre-trained codebook can guide the phonetic
token posterior much better than a randomly initialized logit projection layer.
In other words, while the first system needs to learn a phonetic representation
from scratch, the second system only needs to match such representations.
The proposed ASR-TTS system, unfortunately, lags behind both the linear-
CTC baseline and the codebook-CTC ablation study. This implies that the
straight-through gradient provided by the TTS system is not very useful to
the ASR system. A reason for the subpar performance is shown in Figure 4.7,
which plots the encoder-decoder attention map from the last layer of the
pre-trained TTS system for a training utterance. This attention map is far
from ideal as only a selected number of inputs (horizontal axis) are attended
by the decoder to produce speech (vertical axis). Training a multilingual,
multi-speaker TTS system on this ASR corpus is a relatively difficult task,
as there are a significantly large number of silence periods within most of the
utterances. This is further complicated by the fact that are only 100 to 150
utterances for the 60 to 80 speakers in each training language.
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Figure 4.7: The encoder-decoder attention map from the last layer of the
pre-trained TTS system for a training utterance.
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CHAPTER 5

REGRET MINIMIZATION FOR
MULTI-LINGUAL SPEECH

RECOGNITION

In this chapter, we first present a modification of the original regret mini-
mization method so that it is practical for multi-lingual ASR training (Sec-
tion 5.1). We modified the regret term by replacing the leave-one-out clas-
sifier with a language-specific classifier on a different language. We then
present our model, data, and training settings for phone token recognition
and classification experiments in Section 5.2. The ERM and RGM results of
the experiments on the 15-language training set and the Slavic training set
(Section 5.3 will be used to prove or disprove the hypotheses in Section 6.3.

5.1 Algorithms

Language-independent ASR was first trained using empirical risk minimiza-
tion (ERM). The regret minimization method proposed in Equation (2.101),
however, is computationally impractical for ASR, because it requires opti-
mizing an ASR separately for every leave-one-language-out subcorpus, w−e =

arg minhR−e(h ◦ φ); doing so is impractical when the subcorpus for each
training language contains many hours of labeled speech.
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Figure 5.1: The modified architecture for regret minimization (RGM)
versus the original architecture for empirical risk minimization (ERM).
Both methods train a language-agnostic phone token classifier; RGM also
trains language-specific phone token classifiers.

In order to make regret minimization practical for ASR, we modify Equa-
tion (2.101) into

min
w,φ
R(w ◦ φ) + λ

∑
e,e′:e 6=e′

[Re(we
′ ◦ φ)−Re(we ◦ φ)] (5.1)

which is essentially replacing the leave-one-out classifier with the single-
language classifier on a different language. This leaves us with one feature
extractor, φ(X), |E| different single-language phone token classifiers we(Z)

(each of which is obtained by conditioning a common model on a specific lan-
guage ID), and one language-agnostic phone token classifier w(Z), as shown
in Figure 5.1. Figure 5.1 compares empirical risk minimization (ERM), which
trains only the language-agnostic classifier, to the modified RGM of Equa-
tion (5.1), which also trains language-specific phone token classifiers for each
language in the training corpus. Each iteration of training consists of three
steps:

1. Feed {Xe} into the single-language classifier, and perform K steps of
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gradient descent to find we = arg minwRe(w ◦ φ).

2. Feed {X} into the language-agnostic classifier, and perform K steps of
gradient descent to find w = arg minwR(w ◦ φ).

3. Append a fake language label, e′ 6= e, to each utterance. Train φ by
performing one step of gradient descent on

R(w ◦ φ) + λ[Re(we
′ ◦ φ)−Re(we ◦ φ)] (5.2)

When the classifier f = w ◦ φ is used as a phone token recognizer, its
per-frame softmax outputs are scored using connectionist temporal classifi-
cation [15]; when used as a phone token classifier, its per-frame logits are
mean-pooled and then passed through a softmax nonlinearity, as stated in
Figure 5.1.

5.2 Experimental Methods

We perform end-to-end phone token recognition experiments with unseg-
mented speech and phone token classification experiments with short speech
segments. Sections 5.2.1 and 5.2.2 give details of our model parameters, data
settings, as well as training and evaluation methods for all the experiments.

5.2.1 Phone Token Recognition

We use ESPnet [71] as our ASR framework which offers a complete ASR
pipeline including data preprocessing, transformer network implementation
[40], network training and decoding. We choose 15 languages as the multi-
lingual set and an additional five languages as the cross-lingual set. Models
are trained, validated, and tested using languages in the multilingual set;
languages in the cross-lingual set are used only for testing. The details of
our dataset are listed in Table 5.1.
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Table 5.1: Sources of data used in our cross-lingual experiment. The upper
part is the multilingual set and the lower part is the cross-lingual set.
“Corpus” is GlobalPhone, corpus of spoken Dutch, or Babel. “Type” column
denotes whether the corpus contains spontaneous (Sp.) or read speech.
“Len” column shows the total duration of all utterances in hours. “Family”
column shows the language family.

Language Abbr Corpus Type Family Len

Portuguese por GP Read Romance 26
Turkish tur GP Read Turkic 17
German deu GP Read Germanic 18
Bulgarian bul GP Read South Slavic 21
Thai tha GP Read Tai 22
Mandarin cmn GP Read Sinitic 31
French fra GP Read Romance 25
Czech ces GP Read West Slavic 29
Dutch nld CGN Read Germanic 64
Georgian kat Babel Sp. Kartvelian 190
Javanese jav Babel Sp. Austronesian 204
Amharic amh Babel Sp. Ethiopic 204
Zulu zul Babel Sp. Bantu 211
Vietnamese vie Babel Sp. Vietic 215
Bengali ben Babel Sp. Indo-Aryan 215

Croatian hrv GP Read South Slavic 16
Polish pol GP Read West Slavic 24
Spanish spa GP Read Romance 22
Lao lao Babel Sp. Tai 207
Cantonese yue Babel Sp. Sinitic 215

Data are extracted from three publicly available corpora: GlobalPhone
[72], the corpus of spoken Dutch [60], and Babel [74]. The former two corpora
contain read speech, while Babel contains primarily spontaneous speech.

Due to the sampling rate differences among corpora, we first upsample
all audio signals to 16 kHz. Using Kaldi, we then extract 80-dimensional
log Mel spectral coefficients with 25 ms frame size and 10 ms shift between
frames, and augment the frame vectors with three extra dimensions for pitch
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features. The transcriptions are converted to IPA symbols using Langua-
geNet grapheme-to-phone (G2P) models [73]. Following the approach of a
recent transformer-based multilingual speech recognition system [45], ASR
is trained end-to-end with an output vocabulary consisting of phone tokens
instead of phones. A phone token is defined to be any single character in the
IPA transcription, including base phones, diacritics, and tone symbols; the
Cantonese syllable nucleus [a:Ě£], for example, is decomposed into four phone
tokens: /a/, /:/, /Ă£/, and /

Ă
£/. The resulting phone token inventory contains

the 95 distinct IPA characters present in phoneme transcriptions of the 15
training languages. IPA characters present in the test languages, but not in
the training languages, are each mapped to the closest token in the phone
token inventory.
The encoder part of our transformer network starts with two 2D convolu-

tional layers with a subsampling factor of four, followed by 12 self-attention
encoder layers, each having four heads, an attention dimension of 256 and
a 2048-dim position-wise feed-forward layer. The encoder output is passed
through a dense layer to compute frame-wise phone token posteriors, which
are scored using connectionist temporal classification (CTC, [15]).
For the experiments involving the Slavic subset, we chose the four Slavic

languages (Bulgarian, Czech, and Polish for multilingual training and Croat-
ian for cross-lingual testing) out of the 20-language set. The features used are
the same as those from the 20-language experiment, but the label set contains
only the phone tokens from the three multilingual training languages. This
results in a total of 46 phonetic tokens. For recognition scoring purposes,
OOV IPA characters in Croatian are each mapped to the closest token in the
phone token inventory. Two additional test languages, French and German,
are also used for further evaluation, but any OOV tokens are mapped to
UNK instead.
All transformer models were trained for 30 epochs, and warmed up for

25000 steps.

5.2.2 Phone Token Classification

In addition to recognition experiments, we also tested all training algorithms
in a phone token classification experiment, using training and test data from

76



only Polish, Bulgarian, Czech, Croatian, French and German. Grapheme-
to-phoneme transducers were first applied to the original text transcriptions
to obtain IPA transcriptions. IPA transcriptions were then split into indi-
vidual phone tokens. There are no lexical tones in these six languages, but
several of them use other diacritics: the IPA lengthening symbol (/:/) com-
posed 3.2% of all phone tokens, and other diacritics composed 2.3% of the
remaining phone tokens (0.3–0.6% each). Triphone hidden Markov models
(HMMs) were trained for each language individually, with phone tokens as
targets; for example, the triphone /a-:+p/ denotes the sound made by the
IPA lengthening symbol (/:/) when it follows the vowel /a/, and precedes
the consonant /p/. Kaldi was used to train and cluster the triphones, and to
force-align them to audio, in order to find physical segment boundaries for
each triphone. Based on the forced alignment, we then segmented variable-
length phone token utterances from the audio to construct a multilingual
phone token classification dataset. The training set was further subsampled
by a factor of three, leading to 688 k training pairs. We then trained a model
consisting of six transformer encoder layers (instead of 12 as in the previous
experiments; all other architectural details are the same when applicable)
and mean-pooled the time steps to obtain phone token logits, which are fed
forward to a single softmax nonlinearity for the entire phone token segment.
Phone tokens that appear in the test languages (Croatian, French and Ger-
man) but not in the training languages (Czech, Bulgarian and Polish) were
excluded from the evaluation corpus.

5.3 Results

Table 5.2 lists phone token error rates (PTER, %) of an ASR trained us-
ing fifteen languages, and tested on five additional languages. The fifteen
training languages were chosen to span ten language families; the five test
languages were chosen to be members of five of the same families. Parameters
of the ASR were trained using training data in the fifteen languages shown
in the left column. Each neural network was trained until PTER reached a
minimum on development test data in the fifteen training languages (a strat-
egy sometimes called early stopping [75]). Other hyperparameters, including
multi-task training weights for RGM, were also optimized for minimum error
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on development test data in the training languages. The results reported
in Table 5.2 were then measured using evaluation test data in both training
and test languages. As shown, ASR trained using empirical risk minimiza-
tion (ERM, Equation (2.93)) gave the best results on average, and for every
language individually.

Table 5.2: Phone token error rates (PTER, %) of an ASR trained on 15
languages, tested on five additional languages. Early-stopping epoch and
other hyperparameters of each algorithm were selected based on
development test data in the training languages. Numbers reported are
from the evaluation test data in each language.

Training Languages Test Languages
Language ERM RGM Language ERM RGM
Portuguese 18.4 22.1 Croatian 47.8 50.9
Turkish 21.3 25.0 Polish 62.5 65.5
German 26.1 29.4 Spanish 38.1 40.6
Bulgarian 27.0 30.2 Lao 78.2 78.8
Thai 26.1 34.5 Cantonese 77.0 77.7
Mandarin 30.0 46.3 - - -
French 13.7 16.8 - - -
Czech 11.0 13.7 - - -
Dutch 21.3 27.6 - - -
Georgian 38.0 41.5 - - -
Javanese 47.0 49.6 - - -
Amharic 44.7 49.7 - - -
Zulu 42.4 46.3 - - -
Vietnamese 52.3 58.5 - - -
Bengali 40.2 43.4 - - -
Average 30.6 35.6 Average 60.7 62.7

Table 5.3 lists PTER (%) of an ASR trained using three languages from
the Slavic language families. The ASR was also tested on one Slavic test lan-
guage (Croatian), and two non-slavic Indo-European languages (French and
German). Early stopping and hyperparameter optimization were performed
using development test data in the training languages. Table 5.3 reports
PTER measured using evaluation test data in all six languages. The results
are quite different from those shown in Table 5.2. ERM achieves the lowest
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error rates on the three training languages, and on the test language that
is drawn from the same language family (Croatian), but both French and
German achieve lower error rates using regret minimization.

Table 5.3: Phone token error rates (PTER, %) of an ASR trained on three
Slavic languages (Czech, Bulgarian and Polish). Early-stopping and other
hyperparameters of each algorithm were selected based on development test
data in the three training languages. Numbers reported are from the
evaluation test data in each of the three training languages, and in each of
three previously unseen test languages.

Training Languages
Algorithm Czech Bulgarian Polish Average
ERM 26.4 41.7 44.9 37.7
RGM 32.3 46.0 48.2 42.2

Test Languages
Algorithm Croatian French German Average
ERM 56.4 71.5 65.4 64.4
RGM 57.1 69.2 65.3 63.9

Table 5.4 lists phone token classification error rates (PTCER) for the same
six languages listed in Table 5.3. As described in Section 5.2.2, these exper-
iments were performed by segmenting each audio file using forced alignment
with a monolingual phone-token HMM ASR. The resulting phone token seg-
ments were then classified using a transformer-based phone token classifier,
whose parameters, hyperparameters, and early-stopping schedule were opti-
mized using training data and development test data from Bulgarian, Polish,
and Czech.
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Table 5.4: Phone token classification error rates (PTCER, %) of an ASR
trained on three Slavic languages (Czech, Bulgarian and Polish).
Early-stopping and other hyperparameters of each algorithm were selected
based on development test data in the three training languages. Numbers
reported are from the evaluation test data in each of the three training
languages, and in each of three previously unseen test languages.

Training Languages
Algorithm Czech Bulgarian Polish Average
ERM 29.7 46.2 42.9 39.6
RGM 32.0 49.0 45.7 42.2

Test Languages
Algorithm Croatian French German Average
ERM 48.3 56.6 59.3 54.7
RGM 48.8 57.3 64.3 56.8

Table 5.5 lists phone token classification error rates (PTCER) for transformer-
based phone classifiers trained exactly as in Table 5.4, except that training
is stopped in a different manner. In Table 5.4, training was stopped when
PTCER reached a minimum on development test data in the training lan-
guages. In Table 5.5, however, training was stopped when PTCER reached a
minimum on development test data in one of the test languages. Numbers in
boldface in Table 5.5 highlight the best results achieved when parameters are
trained in (three) training languages, early-stopping is timed using a (fourth)
development-test language, and then the system is evaluated in a (fifth)
evaluation-test language. As shown, early-stopping using a development-test
language outperforms early-stopping using a training language in all of the
three languages.
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Table 5.5: Phone token classification error rates (PTCER, %) of an ASR
trained on three Slavic languages (Czech, Bulgarian and Polish) and tested
on one Slavic language (Croatian) and two other Indo-European languages
(French and German). In this table, the epoch for early stopping was
chosen using development-test data from one of the three test languages:
Croatian in rows 1-2, French in rows 3-4, German in rows 5-6. PTCER was
then measured using evaluation-test data from each test language.
Numbers reported using early-stopping on the test language are considered
oracle; boldface shows the lowest non-oracle error rate.

Early-Stopping Eval Languages
Algorithm Language Croatian French German

ERM Croatian 46.6 59.4 63.4
RGM Croatian 44.9 56.2 57.2
ERM French 46.8 58.4 60.6
RGM French 47.5 56.0 60.5
ERM German 48.9 62.2 59.3
RGM German 44.9 56.2 57.2

Inspired by the success of the cross-evaluation method in Table 5.5, we re-
calculated the PTER for the recognition task performed for Table 5.3 using
the same process. For the transformer-based end-to-end phone recognizer
trained exactly as in Table 5.3, we stopped training when PTER reached a
minimum on development test data in one of the test languages instead of
in the training languages. The results are displayed in Table 5.6. Numbers
in boldface in Table 5.5 highlight the best results achieved when parame-
ters are trained in (three) training languages, early-stopping is timed using
a (fourth) development-test language, and then the system is evaluated in a
(fifth) evaluation-test language. Under this method, ERM was able to out-
perform RGM on two out of the three test languages. Compared to Table 5.3,
ERM was able to reduce its non-oracle error rates on all three test languages
significantly with cross-evaluation. At the same time, RGM could only re-
duce the non-oracle error rate on one test language. The average non-oracle
error rate for RGM on the three test languages is 63.6%, while the average
non-oracle error rate for ERM is 63.3%.
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Table 5.6: Phone token error rates (PTER, %) of an ASR trained on three
Slavic languages (Czech, Bulgarian and Polish) and tested on one Slavic
language (Croatian) and two other Indo-European languages (French and
German). In this table, the epoch for early stopping was chosen using
development-test data from one of the three test languages: Croatian in
rows 1-2, French in rows 3-4, German in rows 5-6. PTER was then
measured using evaluation-test data from each test language. Numbers
reported using early-stopping on the test language are considered oracle;
boldface shows the lowest non-oracle error rate.

Early-Stopping Eval Languages
Algorithm Language Croatian French German

ERM Croatian 55.7 69.1 65.1
RGM Croatian 54.7 68.4 65.9
ERM French 55.7 69.1 65.1
RGM French 56.7 68.4 65.8
ERM German 55.7 69.1 65.1
RGM German 57.1 69.1 65.3

Figures 5.2 and 5.3 displays the confusion matrices for ERM and RGM
calculated on the evaluation-test data from the unseen language Croatian.
The model for ERM is chosen as the one that gives a 46.8% PTCER in
the third row of Table 5.5, and the model for ERM is chosen as the one
that gives a 44.9% PTCER in the sixth row of 5.5. These correspond to
the best non-oracle models for ERM and RGM when evaluated on Croatian
using the evaluation scheme that generates Table 5.5. The <oov> entry in
the confusion matrix corresponds to all phone tokens in the inventory of the
training languages that do not exist in Croatian. The rest of the entries in
the matrix corresponds to a Croatian phone token. As shown, the confusion
matrix for RGM has a more diagonal structure and is less likely to output a
phone token that is not in Croatian.
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Figure 5.2: The confusion matrix for the ERM model that gives a 46.8%
PTCER on Croatian in the third row of Table 5.5. The rows are labeled
with ground-truth phone tokens, and the columns are labeled with
predicted phone tokens. Each entry in the confusion matrix is the output
probability of a phone token X in the inventory of the training languages
(Czech, Bulgarian and Polish), given that the speech segment has a
ground-truth label of Y. Brighter colors represent a higher probability and
darker ones represent a lower probability. Each entry in the <oov> column
aggregates the probabilities of all output phone tokens in the inventory that
do not exist in Croatian.
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Figure 5.3: The confusion matrix for the RGM model that gives a 44.9%
PTCER on Croatian in the sixth row of Table 5.5. The rows are labeled
with ground-truth phone tokens, and the columns are labeled with
predicted phone tokens. Each entry in the confusion matrix is the output
probability of a phone token X in the inventory of the training languages
(Czech, Bulgarian and Polish), given that the speech segment has a
ground-truth label of Y. Brighter colors represent a higher probability and
darker ones represent a lower probability. Each entry in the <oov> column
aggregates the probabilities of all output phone tokens in the inventory that
do not exist in Croatian.
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CHAPTER 6

DISCUSSION

In this chapter, some further thoughts are provided for the three individual
experiments. In the first section, we re-iterate some of the findings related
to language-specific tuning for a bi-lingual CTC network and discuss the
implications of designing a multi-lingual model. In the second section, we
discuss how our ASR-TTS model compares with previous models, why it
failed to improve the phonetic token error rates (PTERs) on multi-lingual
speech recognition, and how we could improve the model in the future. In
the third section, we revisit the hypotheses proposed at the end of Section 1.3
regarding the comparison between empirical risk minimization (ERM) and
regret minimization (RGM) in phone token classification and recognition.

6.1 Further Thoughts on Language-specific Tuning

The results in Chapter 3 show that, while a neural network respects the com-
monalities between some phonetic information among two related languages,
it may still benefit significantly from language-specific tuning modules to
learn better representations for the two languages individually. Visualiza-
tions at the shared layer of the dual pathway model show that consonant
representations are highly consistent and well-shared between the two lan-
guages. Visualizations of the single and dual pathway models at the last
bLSTM layer show that the dual pathway model learns a better representa-
tion of the vowel space. Experiment three summarizes our findings by using
the activations from the 4th and 6th layers of both models as input features
of a phone classifier. The results show that language-specific tuning layers
of our dual pathway model provide better features for both Dutch and En-
glish vowels and English consonants. Using this simplified model and on a
restricted set of two languages, we have unveiled some of the inner details
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of how a multi-lingual system deals with shared and non-shared phonetic
information across languages.

Our results suggest that even a multilingual system should incorporate
language-specific tuning. However, we have to note that simply creating dif-
ferent branches for language-dependent processing, as we did for Dutch and
English in the dual pathway model, may not work well for a typical multi-
lingual system that has a large set of training languages. As the number of
languages increases, so does the total number of parameters in those different
branches. Therefore, the language-dependent parameters will quickly over-
whelm the language-independent parameters at earlier layers, thus limiting
the system’s capability of extracting language-independent features, which
we have shown to be helpful for learning most of the consonants in English
and Dutch. In the future, we aim to design a new architecture that can
more efficiently separate language-independent information from language-
dependent information in layers deeper than the softmax and investigate how
much a multilingual system can benefit from such decoupling.

Another important insight from our result, in terms of designing a multi-
lingual system, is that some specific groups of phonemes may depend on
language-specific tuning more than other groups for the purpose of achieving
good cluster separation and low classification error rates. In our case, the
vowels in English and Dutch require language-specific tuning, apparently be-
cause few of them are shared. Most consonants are shared between the two
languages, and perhaps, for this reason, consonants receive far less benefit
from language-specific tuning. Both Dutch and English consonants achieve
good cluster separation without language-specific tuning (Experiment 1); En-
glish consonant error rates benefit from language-specific tuning, but Dutch
consonants do not (Experiment 3). End-to-end ASR has achieved tremen-
dous success because it can achieve low ASR monolingual error rates without
consideration of a language’s phone inventory [36], and low multilingual er-
ror rates without consideration of the similarity of the phone inventories [76].
However, our analysis suggests that better cluster separation and lower clas-
sification error rates can be achieved by incorporating model components
that specifically target the differences and similarities between the L1 and
L2 phone inventories.
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6.2 Lessons and Future Directions for
Cycle-consistency in Multilingual Speech
Recognition

In Chapter 4, we conducted an experiment to extend the Sequential Repre-
sentation Quantization AutoEncoder (SeqRQ-AE) [54] to multi-lingual and
multi-speaker speech recognition. While we incorporated the sequential rep-
resentation quantization module with a VQVAE, our model contains a full
TTS encoder-decoder instead of just a decoder. Like the end-to-end feedback
models in machine speech chain [10] and another cycle-consistency model
fine-tuned on unpaired speech and text [14], we conditioned the TTS module
on dynamic speaker embeddings. Unlike these two models, we modified a
self-expressing autoencoder [69] for learning speaker embeddings and addi-
tionally conditioned the TTS module on dynamic language embeddings. We
also did not use an ASR decoder as for the SeqRQ-AE model [54] and cal-
culated the CTC loss based on the distance of the hidden encoder states to
the codebook vectors.

As shown in Table 4.1, the end-to-end feedback ASR-TTS model did not
beat the baseline with a linear-layer CTC loss on top of Transformer encoders,
even when we pre-trained the TTS model. Interestingly, however, the abla-
tion study with a modified CTC loss calculated with phonetic token codebook
vectors (according to the frame-wise emission probability in Equation (4.16)
gave lower PTERs on all training and test languages. Note that for this
system, the codebook vectors were still initialized with the phonetic token
embeddings from the pre-trained TTS system, so in essence, ASR learning is
still guided with TTS pre-training. Unfortunately, the straight-through gra-
dients from the pre-trained TTS module failed to guide the learning of the
ASR systems further. Future work would explore different gradient back-
propagation schemes from TTS back to ASR, such as the policy-gradient
approach used to train the ASR-TTE model [13].

Another possible reason the TTS gradients did not help ASR learning is
that TTS pre-training did not converge with good encoder-decoder atten-
tion. Note that the TTS model was trained with teacher-forcing for both the
pre-training stage and the ASR-TTS joint training stage. Therefore, without
a good attention map to gain useful information for reconstructing speech,
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the decoder pre-net would instead pass through much information from the
ground-truth spectrogram to drive down the loss, even if the spectrogram is
right-shifted. Later work not directly related to the experiments in Chapter 4
shows that Tacotron 2 [48] and Transformer-TTS [50] still could suffer from
less-than-ideal convergence of encoder-decoder attention when trained on a
multi-lingual, single-speaker corpus. On the other hand, the work identified
that a simpler, fully-convolutional architecture [70] provided better conver-
gence and less erroneous inference on the same multi-lingual, single-speaker
corpus. Future work will focus on incorporating this fully-convolutional ar-
chitecture with both speaker and language embedding.

Unlike most previous work, we did not assume the availability of additional
unpaired data and directly used the end-to-end feedback loss on available
paired data. Our results indicated that the use of unpaired speech may have
indeed played a massive part in the success of previous ASR-TTS systems.
We want to utilize multi-lingual unpaired speech data for the end-to-end
ASR-TTS feedback system for future work. We could also utilize unpaired
text data, which are easier to collect, once we designed a good enough TTS
model for multi-lingual, multi-speaker scenarios.

Other directions for future exploration include trying out alternative ways
for extracting speaker and language embeddings. This includes trying out
pre-trained speaker vectors from large speaker recognition tasks [53]. Note
that while these speaker vectors may not provide the same specificity as
the speaker vectors obtained on the training set, they could allow few-shot
adaptation of the system to unseen speakers in a new language. Such few-
shot adaptation also requires training the dynamic language embedding on
raw speech from many more different languages, possibly spanning across
different language families as well.

6.3 Revisiting the Hypotheses for Regret
Minimization

Empirical risk minimization (ERM) is provably optimal, in the limit of infi-
nite training data, if the test data are drawn from the same distribution as
the training data, e.g., when training and test data are drawn from the same
set of languages. RGM seeks to compensate, during training, for possible
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differences between the training languages and the test languages. In more
detail, RGM seeks to enforce generalizability by minimizing the differences
between cross-lingual and monolingual error rates (termed the “regret”).

Three hypotheses were proposed in Section 1.3; this section discusses the
status and interpretation of those hypotheses, in light of the experimental
results in Section 5.3.

• H1: RGM can be used to optimize E2E ASR so that it generalizes from
fifteen training languages to five novel test languages more effectively
than if it were trained using ERM. Status: False.

Hypothesis H1 is falsified by the experimental results in Table 5.2. The
conclusion suggested by this result is that the training data and the test
data are drawn from the same distributions. For example, we might (spec-
ulatively) conclude that the distribution of speech sounds in these five test
languages is reasonably well represented by the set of fifteen training lan-
guages. We believe that our choice of output symbols as universal phonetic
tokens plays a small part in the result. Further, the language ID may have
provided too little information about the environment. For example, it could
not have provided much information about the sequence-level phonotactics
in the training languages.

• H2: RGM, as compared to ERM, can be applied to optimize an E2E
ASR so that it more effectively generalizes from training languages in
one language family to test languages in a different language family.
Status: Partially true.

Experimental results in Table 5.3 suggest that hypothesis H2 is true, but
the results in Table 5.6 are somewhat contradictory. In the experiment de-
scribed in Table 5.3, regret minimization (RGM) is used to minimize the
difference between cross-lingual and monolingual error rates of languages in
the same family (Slavic). The resulting trained parameters can be applied
to languages from other language families (French and German) with better
results than the results achieved using ERM. However, in Table 5.6, if we
could perform cross-evaluation with another unseen language, the error rates
for ERM would improve for all three test languages, while the error rates for
RGM would improve for only one. In this case, RGM only performed better
than ERM on French but not German.
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• H3: The optimal training regimen for phone token classification (given
known phone token boundary times) is different from the optimal train-
ing regimen for phone token recognition (with unknown boundary times).
Status: True.

Experimental results in Tables 5.3, 5.4, 5.5 and 5.6 suggest that hypothesis
H3 is true. First, note that for the training languages, no matter what the
task is, ERM always outperforms RGM. For the three test languages, the
recognition error rates shown in Table 5.3 are optimized by ERM if the
test language is in the same family as the training languages and by RGM
otherwise. The classification error rates in Table 5.4 for the test languages,
on the other hand, are optimized using ERM.

Note that the results in Tables 5.3 and 5.4 are obtained by applying early-
stopping on the development test data in the three training languages. In Ta-
bles 5.5 and 5.6, the early-stopping schedule was governed by a test language
rather than by the training languages. Test-based early-stopping improved
the performance of RGM in Table 5.5 relative to Table 5.4 for the classifi-
cation task, and was able to outperform ERM on all three test languages.
However, for the recognition task, test-based early-stopping improved the
performance of ERM more significantly than RGM, as shown by comparing
Tables 5.6 to Table 5.3. We note that the improvement achieved by RGM
over ERM in Table 5.5 is indeed significant, as shown by Figures 5.2 and 5.3,
which are the confusion matrices calculated on Croatian for the phone token
classification experiment.
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CHAPTER 7

CONCLUSION

Even for two closely related languages, English and Dutch, a language-
independent CTC network still lags behind a language-dependent CTC net-
work. Our study of the hidden representations from the two models suggests
that while the consonant hidden representations are well-shared across the
two languages, vowel representations aren’t and benefit significantly from
language-specific tuning. However, designing language-specific tuning layers
for a multi-lingual end-to-end system is difficult, especially when different
groups of the phoneme inventory react differently to representation sharing.

Therefore, we instead try to develop constraints to guide network training
to more suitable local optima. The first constraint is the cycle consistency
constraint. We first pre-trained a multi-lingual, multi-speaker TTS system.
We fed the TTS system with pseudo phone token sequences during ASR
training and constrained the TTS reconstruction to be close to the original
speech input. However, results showed that the cycle consistency constraint
was not useful in our setting, as the TTS system itself suffered from conver-
gence issues under overwhelming modalities. Surprisingly, simply initializing
the representations of the phone tokens in the ASR system with those from
the pre-trained TTS system offered a boost in performance.

The second constraint involves minimizing a regret term defined as the
difference in risk between an out-of-environment classifier and a within-
environment classifier. Both classifiers use the same feature extractor trained
on all environments. We hope that minimizing the regret could allow the sys-
tem to learn an intermediate invariant embedding for seen and unseen lan-
guages. Results show that regret minimization (RGM) failed to outperform
empirical risk minimization (ERM) in recognition tasks when the training
and test languages span across a large number of languages from different
families. However, under certain conditions and evaluation schemes, RGM
may outperform ERM on the test languages.
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