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ABSTRACT 

 

The COVID-19 disease has shown remarkable diversity in its manifestation. Precise 

anticipation of these manifestations is important to enable earlier intervention for high-risk 

patients and efficient deployment of medical resources. In this thesis, a multi-stage prognostic 

framework is developed for assessing COVID-19 patients at hospital admission and during 

disease progression. The analysis is conducted upon 10,123 COVID-19 patients treated at Rush 

University Medical Center at Chicago between 03/17/2020 and 08/07/2020. In order to 

characterize the patients with different severity, a stratification scheme is first established to 

assign patients to different stages of disease severity based on discrete clinical events (i.e., 

admission to hospital, admission to ICU, mechanical ventilation, and death). Then two 

prognostic frameworks were developed to predict the progression of COVID-19 through these 

stages: 1) a baseline model which uses the measurements collected at hospital admission to 

predict disease escalation to severe stages; 2) a progressive model which uses the measurements 

collected at the patient’s latest stage to predict further escalation. It is found that future clinical 

stages can be predicted using baseline measurements with clinically significant accuracy. 

Finally, key risk factors are identified using Least Absolute Shrinkage and Selection Operator 

(LASSO) and decision tree algorithms. The developed multi-stage framework can be used to 

anticipate COVID-19 disease progression, allowing earlier interventions as well as better 

management of hospital resources. 
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CHAPTER 1 

INTRODUCTION 

 

Since the emergence of COVID-19, first identified in Wuhan, China [1], a global 

pandemic has ensued [2]. Sustained transmission has been observed worldwide. As of July 17th, 

2021, the virus has infected 84.5 million people and caused over 1.83 million deaths worldwide, 

including over 20.4 million cases and over 350,000 deaths in the United States. 

Studies have been published on the clinical characteristics and treatment outcomes of 

COVID-19 in Chinese cities such as Wuhan [3], Shanghai [4], and Chongqing [5], as well as in 

New York City [6], [7]. These studies suggest that acute respiratory distress syndrome (ARDS) 

is a major driver of elevated mortality rates in critically ill patients. Several potentially impactful 

interventions have been found to reduce the severity of the illness and improve outcomes among 

this cohort: 1) early prone positioning (before intubation), which improves oxygenation and 

reduces the need for mechanical ventilation [8]–[10]; 2) Remdesivir therapy, which, when given 

to those requiring supplemental oxygen, can reduce recovery time [11]; and 3) dexamethasone, a 

corticosteroid and frequent adjunctive therapy for ARDS and sepsis, which has been found to 

reduce mortality among those with COVID-19 and respiratory compromise [12]. These findings 

suggest the importance of early identification of severe disease progressions, such as ARDS, as 

part of an overall strategy for treating COVID-19. Therefore, there is a critical need for a tool 

that can identify patients who should receive earlier interventions. 
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In this single-center study conducted at the highest-volume clinical center for COVID-19 

in the state of Illinois, we characterized the evolution of infections, risk factors for infection, and 

predictors of severe illness (i.e., ARDS) in a multi-stage perspective. A multi-stage prognostic 

framework is then developed for identifying those at high risk. The framework consists of 1) 

triage models based on baseline laboratory measurements, vital signs, and demographics 

collected at hospital admission to predict the escalation to ICU admission, ventilation, and 

mortality, respectively; 2) progressive triage model which uses the measurements collected at the 

patient’s current stage to predict further escalation (e.g., for the patients admitted into ICU, the 

model predicts the escalation to ventilation or mortality stages).  

Several other previously published modeling approaches have attempted to evaluate 

predictors for clinical deterioration, mechanical ventilation, and death. Factors associated with 

disease progression include lower platelet and lymphocyte counts; increased markers of DIC, 

such as fibrinogen and d-dimer; increased LDH, AST, and CK, and abnormal CT scans [13]; 

clinical comorbidities, CRP, respiratory rate, and LDH [14], [15]; and higher SOFA score, age, 

and d-dimer levels [16]. One non-peer-reviewed study found similar factors and developed a 

nomogram for prediction [17]. In a peer-reviewed study, clinical comorbidities were the most 

predictive for severe disease progression [18]. However, the hospitals in different regions have 

different underlying populations, and thus the specificity of patients needs to be considered in the 

risk factor extraction. Our work has identified three critical indicators of the deterioration of 

COVID-19 patients, namely low albumin level, diminished SpO2, and elevated white blood 

count, which are readily measurable in a clinical setting.  

Although several studies have looked at COVID-19 disease progression, our study is 

unique as it involves a large urban population in a midwestern city in the United States and the 
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proposed multi-stage framework features a much finer granularity in terms of disease 

progression scenarios. The large patient sample in this study features diverse racial and ethnic 

groups in the Chicago area. Compared with New York and Los Angeles, the Chicago population 

has the largest percentage of African Americans and the youngest average age [19], [20].  

Previous studies in other urban areas of the United States (i.e., New York and Los Angeles) have 

found strong differences in severe illness onset and outcomes across racial and ethnic groups 

[21]–[30]. These differences encourage a customized model to best characterize the patients in a 

certain area. In this context, our research characterizes the unique patient population in Chicago, 

Illinois.  

Despite the distribution of the COVID-19 vaccine, it is still crucial to study COVID-19 

disease since the vaccination coverage is far less than adequate. As of July 16th, 2021, only 

25.9% of the world population and only 1% of the people in low-income countries have been 

vaccinated [31]. Furthermore, even those vaccinated people can still be infected by COVID-19 

[32]. Such an infection after vaccination, clinically called a breakthrough infection, is observed 

more often in the cases caused by the Delta variant. It was reported that the Pfizer-BioNTech and 

Oxford-AstraZeneca were only 33% effective against the Delta variant three weeks after the first 

dose [33]. Due to imperfect vaccine protection, those vaccine receivers are still at risk of 

COVID-19 infection. According to a survey conducted by Nature, almost 90% of scientist 

respondents expect the SARS-CoV-2 virus to become endemic [34]. In their vision, people will 

be facing COVID-19 disease for a long time and therefore the prediction for COVID-19 disease 

progression will continue being crucial. 

The overall flow of our analysis is illustrated in Figure 1. Demographics and symptoms 

are presented for a total of 10,123 COVID-19 patients. Then a clinical event-based stratification 
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is provided, based on which the temporal trend of lab measurements, comorbidities, and 

radiological findings are presented in a multi-stage perspective. To identify the patients who are 

likely to enter severe stages, both initial triaging and progressive triage models are developed 

using logistic regression. Finally, key risk factors are identified using LASSO regression and 

decision tree algorithms. Compared with deep-learning models, the LASSO regression and 

decision tree are more data-efficient and can converge on a handful of patient records. In 

addition, these models offer higher interpretability to clinicians, which makes them more likely 

to be adopted in clinical practice [35].  

 

Figure 1 Overarching framework of analyzing COVID-19 patients treated by a large urban hospital at 

Chicago. 
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

 

Diverse disease manifestations have been observed among the COVID-19 patients, 

progressing from asymptomatic presentation to critical illness such as severe acute respiratory 

syndrome and organ failures [36]. It is of paramount importance to characterize and predict the 

progression of COVID-19, which not only reveals the disease dynamics but also facilitates 

earlier intervention for high-risk patients. 

In this chapter, we will first present background knowledge on COVID-19 disease 

progression. Then we will review prevalent models for predicting the disease progression. To 

systematically review them, these models are categorized into three types: 1) nomogram, a 

pictorial representation of mathematical formulas commonly used in current clinical practice; 2) 

traditional statistical learning models such as SVM, decision tree, random forest, and XGBoost; 

and 3) deep-learning approaches such as convolutional neural network (CNN) and recurrent 

neural networks (RNN). These methods provide diverse toolsets to predict COVID-19 disease 

progression, and some of them achieve high prediction accuracy. However, these methods only 

predict a single outcome (e.g., mortality), as shown in Table 1. In contrast, our multi-stage 

predictive model is able to output different levels of severity in terms of ICU admission, 

ventilation, and mortality. Built upon logistic regression, this predictive model is readily 

interpretable: the trained coefficients of logistic regression reflect the contribution of each factor 

to the outcome. Specifically, the signs of coefficients denote the positive or negative effects on 

the outcome, while the magnitudes of coefficients quantify the strength of these effects. Finally, 



6 
 

the model is developed using patient data in a large Chicago urban hospital containing diverse 

race and ethnicity groups.  

2.1 Progression of COVID-19 Disease 

The study of COVID-19 disease progression has attracted great interest due to its clinical 

value. It is found that the progression of COVID-19 disease involves multiple stages. For 

example, after studying a wide spectrum of clinical features including lab measures, vital signs, 

symptoms, and radiological findings, Siddiqi and Mehra [37] characterized the COVID-19 

progression with the following phases:  

1. Early Infection: This stage features mild constitutional symptoms. Lymphopenia can be 

observed in patients’ lab findings but without other significant abnormalities. Treatment 

at this stage should mainly focus on symptom relief. 

2. Pulmonary Involvement with and without Hypoxia: Patients in this stage typically have 

pulmonary disease, viral multiplication, and localized inflammation in their lungs. 

Radiological imaging may show bilateral infiltrates or ground-glass opacities in their 

lungs. 

3. Systemic Hyperinflammation: This stage features the occurrence of extra-pulmonary 

systemic hyper-inflammation, which is also called a cytokine storm. Elevation of IL-2, 

IL6, CRP, Ferritin, and D-dimer can be observed among patients at this stage. 

Because the above three-phase staging schema requires a substantial collection of clinical 

measurements which are not always accessible, an alternative staging approach is to monitor the 

transitions of patients in the hospital (e.g., the transition from ICU to ventilation) and directly use 

these clinical events for staging. Mody et al. stratified the patients based on the clinical units they 
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stay at, including 1) emergency department, 2) inpatient floor, 3) intensive care unit (ICU), 4) 

invasive mechanical ventilation (IMV), and 5) non-invasive ventilation (NIV) [38]. Then,  they 

presented the statistics of patients among these stages. Their study showed that older male 

patients were more likely to be admitted to ICU, NIV, and IMV. They also found that compared 

to the patients with mild outcomes, those eventually intubated patients have more abnormal 

laboratory measurements at their baseline. Although no prediction model is proposed in this 

study, their findings indicate the predictive values of baseline features in anticipating disease 

progression.  

2.2 Existing Models to Predict COVID-19 Disease Progression 

With the COVID-19 disease progression characterized, clinicians and researchers would 

want to further predict which patients will develop severe progression. In the clinical setting, the 

identification of high-risk patients helps clinicians to deploy medical interventions.  

Various models have been proposed to predict COVID-19 disease progression. They take 

subsets of clinical features as model input, including 1) demographic characteristics, namely age, 

sex, and race; 2) exposure history; 3) symptoms; 4) comorbidities; 5) laboratory findings; 6) vital 

signs; 7) radiological findings (including CT images); and 8) treatments.  Most models have 

mortality as their output, others focus on ICU admission or a certain severe stage they define. 

These methods can be categorized into three types, and their details are presented in Table 1.              
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Table 1 Existing models to predict COVID-19 disease progression 

Type Model Output Label Cohort Size Features  Used 
Refe-

rence 

Nomogram 
Parallel-scale 

nomogram 

Severe outcome 372 
Age, laboratory measurements (including LDH, CRP, RDW, 

DBIL, BUN, and ALB) 
[39] 

Mortality 709 Age, dyspnea, SpO2, HCT, CRP, AST, and Ferritin [40] 

ICU admission 1087 
Age, respiratory rate, systolic blood pressure, smoking status, 

fever, and chronic kidney disease 
[41] 

Traditional 

statistical 

learning 

SVM, 

KNN, 

decision tree, 

random forest, and 

logistic regression 

Mortality 53 

Age, temperature, exposure history, clinical symptoms, 

laboratory findings, comorbidity, hospitalization, and 

treatment 

[42] 

LASSO regression 

and logistic 

regression 

Severe outcome 1590 

Age, sex, comorbidities, laboratory measurements (neutrophil-

to-lymphocyte ratio, lactate dehydrogenase, direct bilirubin), 

and chest radiography 

[43] 

Multivariable 

logistic regression 
Mortality 299 Age, lymphocyte count, lactate dehydrogenase and SpO2 [44] 

Random forest 

boosted by 

AdaBoost algorithm 

Mortality NA 
Geographical location, travel history, symptoms, and 

demographics 
[45] 

XGBoost Mortality 485 LDH, lymphocyte, and high-sensitivity C-reactive protein [46] 

Deep 

learning 

CNN Mortality 366 CT images, sex, age, severity grade, and chronic disease [47] 

RNN (with gated 

recurrent units) 
Severe outcome 2374 Age, sex, comorbidities, and other unspecified EHR records [48] 

CNN   and   RNN 
Severity of lung 

pathologies 
42  

A series of X-ray images, collected throughout the 

hospitalization period 
[49] 
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2.2.1 Clinical nomograms 

As is widely used in clinical practice, nomogram is a pictorial calculating instrument that 

applies a straightedge across the plot through the points on scales representing independent 

variables [50]. Then the straightedge crosses the corresponding datum point for dependent 

variables [51]. Those independent variables are the risk factors selected by experienced clinicians 

or from the multivariate risk-factor analysis.  

The development of nomograms can be divided into two steps: 1) decide key risk factors and 

their coefficients; 2) project mathematical relationships into the diagram. Among 372 COVID-19 

patients in Wuhan and Guangdong, Gong et al. found that more advanced age and higher levels 

of LDH, CRP, RDW, DBIL, BUN, and ALB on admission contribute to higher odds of severe 

COVID-19 [39]. These seven factors were then used to construct a nomogram, which resulted in 

AUC = 0.912 in the training cohort and AUC = 0.853 in the validation cohort. Acar et al. 

performed multivariable logistic regression on 709 patients and identified the higher age, 

comorbidity, dyspnea, low SpO2, HCT, CRP, AST, and Ferritin as key risk factors for mortality, 

using which features a nomogram was constructed [40]. Similarly, Zhou et al. developed a 

nomogram based on age, respiratory rate, systolic blood pressure, smoking status, fever, and 

chronic kidney disease [41].  

In summary, these nomograms visually represent the relationship between input risk factors 

and output risk score. One advantage of nomograms lies in their interpretability: the significance 

of each feature is reflected by its scale, and the relationship of these features is represented by a 

straightedge. However, nomogram methods have limited feature and function space: 1) while the 

risk factors for COVID-19 progression can be enormous, only a limited number of features can 
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be represented on a physical graph; 2) because the prediction equation has to be convertible to a 

straightedge in the nomogram, it cannot be arbitrarily complex.  

2.2.2 Traditional statistical learning models 

Statistical learning models overcome the limitation of nomogram methods by enlarging 

feature and function spaces. Jiang et al. experimented with prevalent machine learning methods 

including logistic regression, K-nearest neighbor (KNN), decision tree, random forest, and SVM 

in a COVID-19 patient cohort from China [52]. Their results showed the superiority of KNN and 

SVM for predicting ARDS. However,  only 53 hospitalized patients were involved in their model 

development and validation. To obtain statistical significance a larger sample size is desired. 

Liang et al. used LASSO and logistic regression to develop a predictive risk scoring system 

called COVID-GRAM [43] based on 1590 patients. LASSO regression is used to extract 10 key 

risk factors out of 72 features, and the logistic regression was employed because of its 

interpretability. This model was able to predict a “severe” COVID-19 progression (defined by a 

composite of ICU admission, ventilation, and death), but did not have differentiation on which 

specific stage will the disease escalate to. Similar to Liang’s work, Xie et al. performed 

multivariable logistic regression to predict mortality among patients [44]. These works 

demonstrate the capability of logistic regression in COVID-19 prognosis, which inspires us to 

integrate the logistic regression into our prediction pipeline. 

Besides logistic regression, tree-based decision models have also been used to predict 

severe COVID-19 disease progression. Iwendi et al. applied random forest boosted by AdaBoost 

algorithm to predict the mortality of patients [45]. The model used the information collected by 

questionnaires but failed to leverage direct measurements like laboratory, vital, or radiological 
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findings. Similar to the AdaBoost approach, Yan et al. used XGBoost classifier to identify risk 

factors [46]. The importance of features in XGBoost is reflected by its cumulated use, meaning 

those more discriminative features tend to be used more often for splits (XGBoost continuously 

splits its internal nodes into sub-nodes until the sub-nodes are clean).  

In summary, these statistical learning methods are more sophisticated than nomograms in 

terms of model complexity. However, in practice, these traditional statistical learning models 

demand much domain knowledge (e.g., for the SVM algorithm, the kernel function needs to be 

customized to fit non-linear patterns). Considering a novel disease like COVID-19, where 

existing knowledge is not as adequate, deep-learning models provide a purely data-driven 

alternative to fit complex patterns. 

2.2.3 Deep-learning models 

According to the Universal Approximation Theorem, a neural network can potentially 

approximate any continuous function [53]. This promise has drawn great enthusiasm in applying 

neural networks to different research areas, including COVID-19 prognosis. There are multiple 

deep-learning models developed for predicting COVID-19 progression. These models are 

especially useful in handling image-type input like CT and X-ray, where existing network 

architectures in computer vision can be adopted [49].  

Meng et al. developed a model called De-COVID19-Net, a 3D densely connected 

convolutional neural network for predicting the survival of patients within a 14-day time window 

[47]. The CT images, together with sex, age, severity grade, and chronic disease were input into 

the 121-layer 3D-CNN network. Lee et al. adopted the recursive neural network (RNN) to 

predict severe outcomes of patients based on their historical electronic health records (EHR) 
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prior to hospital admission [48]. A novelty of this model is that instead of using the 

measurements taken after diagnosis, the proposed RNN model leverages the historical data prior 

to hospital admission. However, a resulting drawback is that a coming COVID-19 patient does 

not necessarily have their EHR records established, and thus does not have sufficient data for 

prediction.  

Fakhfakh et al. proposed ProgNet, a combination of CNN and RNN to predict the 

severity of lung pathologies due to Covid-19 [49]. The network structure is nested, where each 

RNN unit contains a full CNN (i.e., for each time step, an RNN unit takes in the output of CNN). 

Although this model achieves decent accuracy, its feature space is confined to only radiology 

data: it did not use other clinical features which may complement the X-ray images. 

Furthermore, the RNN model requires an extensive number of x-ray images in time series, which 

is not accessible for most patients since they do not frequently take CT scans. In general, deep 

learning-based prognostic models tend to have high accuracy when training data are sufficient, 

but their performance can quickly degrade as the data become insufficient.  

2.3 Research Gaps Addressed by This Thesis 

As discussed above, a variety of methods have been developed to identify high-risk 

patients, providing an early alarm for severe disease progression. However, it is worth noting that 

these existing methods are coarse-grained in terms of model output: they predict either a single-

stage outcome or the composition of multiple stages, without separated risk evaluations for each 

stage. There remains a critical need to develop a model predicting disease escalation in a fine-

grained, to facilitate targeted therapy for patients at different risk levels. 
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To enable a fine-granularity prediction, this thesis integrates a multi-stage scheme into 

the prediction pipeline. The risks are evaluated upon a sequence of clinical events including ICU 

admission, mechanical ventilation, and mortality. Aligned with the multi-stage scheme, 

prediction is performed progressively, allowing model outputs to be updated whenever a new 

event is observed.  

Compared with the existing deep-learning models, our model places more emphasis on 

interpretability: from the trained coefficients, clinicians can tell from the logistic regression 

model the contribution of each risk factor to final outcome. Such emphasis would be appreciable 

in clinical practice because an interpretable model is found more likely to be adopted by 

clinicians [35]. Besides, among the methods listed in Table 1, the use of deep learning did not 

bring significant improvement in accuracy but largely increased model complexity. For example, 

the De-COVID19-Net proposed by Meng et al. has up to 121 layers [47], and its 3-D 

convolutional structure further enhances the complexity. Such “black-box” models appear hard 

for clinicians to verify and rationalize, resulting in a slow model adopting rate. According to 

Nisha et al., if clinicians find a model understandable, they are more inclined to accept the 

outputs of a model [54]. In this sense, the traditional statistical learning approaches, such as 

multivariate logistical regression, are competitive in the clinical context due to their 

interpretability. Therefore, our multi-stage predictive model adopts logistic regression in its 

pipeline. The superiority of logistic regression is also verified by an experiment presented in 

Chapter 5, which compares the effectiveness of logistic regression with other prevalent methods. 

Another uniqueness of this thesis is its focus on the greater Chicago area, which is not yet 

explored by the aforementioned studies. It is crucial to customize models for different 

geographic regions, supported by a study showing that the patients in different regions have 
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distinct characteristics [55]. For example, the patterns found from Chinese patients may not fit 

the patients in the United States. Moreover, even in the United States, different cities have a 

substantial difference in their population, considering the diverse race and ethnicity composition 

[56]. Therefore, although a number of models have been published for COVID-19 patients 

worldwide, it is still essential to developed models oriented at the Chicago population.  

To address these research gaps, this thesis presents a multi-stage prognostic model for a 

diverse patient population in Chicago. This multi-stage model stratifies the patients into different 

risk levels, allowing healthcare providers to tailor therapy and prepare medical resources in 

advance. Practically, these patients are stratified in terms of clinical events, i.e., hospital 

admission, ICU admission, mechanical ventilation, and death. Then the laboratory measurements 

are presented in a multi-stage perspective and the triage models are subsequently built. Logistic 

regression is used to build the predictive model because this interpretable model can facilitate 

rapid clinical translation. Finally, the risk factors are extracted using two interpretable machine 

learning algorithms: 1) LASSO regression and 2) decision tree. When these two algorithms reach 

a consensus, the importance of risk factors is consolidated. 
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CHAPTER 3 

PATIENT CHARACTERISTICS 

 

Our analysis included 10123 COVID-19 patients for whom information on demographics 

and initial symptoms (e.g., cough, fever, muscle pain) was available. Of these patients, 1788 

were admitted to the hospital; for these hospitalized patients, additional longitudinal information, 

such as lab test results and vital signs, was available. Among the hospitalized patients, 1076 had 

most of their lab measures and vitals collected on the day of admission. These patients’ records 

were used to develop and validate a multi-stage prognostic framework and to identify top risk 

factors for severe disease progression. 

Data Sources  

 Data was collected at Rush University Medical Center in Chicago, Illinois, and includes 

COVID-19 patients evaluated between 03/17/2020 and 08/07/2020. Patient and treatment 

information was obtained from queries against data warehouses populated from regular exports 

of clinical data stored in Rush’s Epic electronic medical record (EMR) system. The study 

population included 10,123 patients with COVID-19, and their EMRs were retrospectively 

accessed to extract the patients’ demographics (Table 2), laboratory findings, vitals (Table 3 and 

4), and comorbidities (Table 5). The age of each patient was typically documented as a 

numerical value, but for 41 patients whose ages were documented by the text “90+”, we assigned 

an age of 90 in our analysis.  
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Variables 

Variables investigated in our study include patient demographics, laboratory findings, 

vital signs, and comorbidities as documented in the EMR. Demographic variables include 

patients’ age, sex, race, and smoking status. Laboratory findings include white blood count, 

absolute neutrophil count, absolute lymphocyte count, absolute monocyte count, neutrophils 

percentage, lymphocyte percentage, monocyte percentage, albumin, aspartate transaminase, 

alanine transaminase, d-dimer, red blood count, blood urea nitrogen, creatinine, hemoglobin, 

ferritin, C-reactive protein, lactate dehydrogenase, blood glucose, platelet count, and creatine 

phosphokinase. Vitals include oxygen saturation (SpO2), body temperature, respiration rate, 

blood pressure, and pulse. Comorbidities included hypertension, type 2 diabetes, chronic kidney 

disease, pulmonary disease, and chronic ischemic heart disease. 

3.1 Overall Demographic and Symptomatic Characteristics 

The demographic information, symptoms, and smoking status of infected patients are 

presented in Table 2. With a median age of 40 (75th %ile 54), the patients were younger than 

those reported from China [1] and New York [6]. There were more infected females (53.55%) 

than males (46.45%). In terms of race, African Americans (32.92%) and Whites (27.27%) 

constituted the largest percentage of infected patients. Cough (70.14%), fever (46.86%), and 

shortness of breath (41.32%) were the most common symptoms. In terms of ethnicity, marginally 

more Hispanics or Latinos (50.88%) were infected than Non-Hispanics or Latinos (49.12%). 

People who had never smoked (76.42%) and former smokers (16.18%) accounted for most of the 

infected patients; Current smokers accounted for only 7.4%.  
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Table 2 Demographics, symptoms, and smoking status of infected patients 

Patient Characteristics Overall 

Age, median (IQR) 40 (28–54) 

Sex, N (%) (out of 10,120 patients whose sex was reported)  

  Female  5,419 (53.55%) 

  Male 4,701 (46.45%) 

First Race, N (%) (out of 8,208 patients whose first race was reported)  

  African American  2,702 (32.92%) 

  White  2,238 (27.27%) 

  Asian  140 (1.71%) 

  Native Hawaiian or Other Pacific Islander  14 (0.17%) 

  American Indian or Alaska Native  15 (0.18%)  

 Other 3,099 (37.76%) 

Ethnicity, N (%) (out of 9,379 patients whose first race was reported)  

  Hispanic or Latino 4,772 (50.88%) 

  Not Hispanic or Latino 4,607 (49.12%) 

Symptoms, N (%) (out of 5,499 patients who had symptom records)   

  Cough 3,857 (70.14%) 

  Fever 2,577 (46.86%) 

  Shortness of Breath 2,272 (41.32%) 

  Muscle Pain 1,609 (29.26%) 
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Patient Characteristics Overall 

  Sore Throat 1,239 (22.53%) 

  Loss of Smell 1,079 (19.62%) 

Smoking Status, N (%) (out of 6,074 patients whose smoking status was within 

the following categories) 

 

  Never Smoker 4642 (76.42%) 

  Former Smoker 983 (16.18%) 

  Current Every-day Smoker 295 (4.86%) 

  Current Some-days Smoker 154 (2.54%) 

 

The ages of the infected patients are presented in Figure 2(a), which represents data from 

03/17/2020 and after. The interquartile range (IQR) of age is represented by the shaded region. 

The median age decreased from 46 (in week 0) to 37 (in week 20), indicating the spread of 

disease to a younger population. The number of clinical events, including hospital admissions, 

ICU admissions, and mortalities, are presented in Figure 2(b). The peak of hospital admissions 

was reached at week 5; however, the peak of ICU admissions was reached at week 1. The peak 

of mortality was reached at week 7. Week 7 (which ended on 05/05/2020) was a turning point in 

the number of hospital admissions, indicating a reduction in transmission of COVID-19 in the 

Chicago area. Then, the second wave of infections is suggested by the increase in hospital 

admissions from week 14 to week 19. 

Table 2 Continued 
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(a)                                                                                          (b) 

Figure 2 Time-series plot on weekly granularity (data from 03/17/2020 onwards): (a) Age of 

infected population (the interquartile range (IQR) of age is marked with the shaded region), 

(b) Number of hospital admissions, ICU admissions, and deaths. 

3.2 Laboratory Measures and Vital Signs of Hospitalized Patients 

Table 3 presents the laboratory measures and vitals of hospitalized patients on the day of 

admission. Among all the investigated laboratory measures, the lymphocyte percentage (median 

16.3, IQR 10.6–23.2) and albumin (median 3.3, IQR 3.0–3.7) were lower than the normal range, 

while ferritin (median 766.2, IQR 325.9–1643.0), d-dimer (median 0.9, IQR 0.5–2.5), C-reactive 

protein (median 112.1, IQR 54.5–192.8), lactate dehydrogenase (median 404.0, IQR 304.0–

544.0), and blood glucose (median 122.0, IQR 103.0–175.0) were higher than the normal range. 

Among vital signs, the respiratory rate (median 20.6, IQR 18.6–24.0)) was slightly higher than 

the normal range.  
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Table 3 Laboratory measures and vital signs of hospitalized patients on their dates of 

admission 

Measures Median (IQR) 

Laboratory tests  

  White Blood Count (K/Ul, Low: 4.00, High: 10.00) 7.3 (5.4–10.0) 

  Neutrophil Absolute Count (K/Ul, Low: 1.84, High: 7.80) 5.2 (3.6–7.7) 

  Lymphocyte Number (K/Ul, Low: 0.72, High: 5.20) 1.1 (0.8–1.5) 

  Monocyte Number (K/Ul, Low: 0.12, High: 1.00) 0.5 (0.3–0.7) 

  Neutrophils Percent (%, Low: 46.0, High: 78.0) 74.6 (65.9–81.7) 

  Lymphocyte Percent (%, Low: 18.0, High: 52.0) 16.3 (10.6–23.2) 

  Monocyte % (%, Low: 3.0, High: 10.0) 7.0 (4.9–9.2) 

  Albumin (G/Dl, Low: 3.5, High: 5.0) 3.3 (3.0–3.7) 

  Sgot (U/L, Low: 3, High: 44) 38.0 (25.0–59.0) 

  Sgpt (U/L, Low: 0, High: 40) 30.0 (18.0–49.0) 

  Red Blood Count (M/Ul, Low: 4.00, High: 5.20) 4.4 (3.9–4.9) 

  Urea Nitrogen (Mg/Dl, Low: 8, High: 21) 14.0 (10.0–24.0) 

  Creatinine (Mg/Dl, Low: 0.65, High: 1.00) 1.0 (0.8–1.4) 

  Hemoglobin (G/Dl, Low: 12.0, High: 16.0) 12.9 (11.1–14.2) 

  Ferritin (Ng/Ml, Low: 12, High: 260) 766.2 (325.9–1643.0) 

  D-Dimer (Mg/L Feu, Low: 0.00, High: 0.60) 0.9 (0.5–2.5) 

  C-Reactive Protein (Mg/L, Low: 0.0, High: 8.0) 112.1 (54.5–192.8) 
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Measures Median (IQR) 

  Lactate Dehydrogenase (U/L, Low: 110, High: 240) 404.0 (304.0–544.0) 

  Glucose, Blood (Mg/Dl, Low: 60, High: 99) 122.0 (103.0–175.0) 

  Platelet Count (K/Ul, Low: 150, High: 399) 218.0 (170.0–281.0) 

  Creatine Phosphokinase (U/L, Low: 10, High: 205) 128.0 (66.0–332.5) 

Vitals  

  SpO2 (%, normal range 95–100) 95.8 (94.2–97.4)  

  Temperature (°F, normal range 97–99) 98.8 (98.0–99.8) 

  Respiration Rate (Breaths per minute, normal range 12–20) 20.6 (18.6-24.0) 

  Pulse (Beats per minute, normal range 60–100) 90.1 (80.0–101.7) 

 

  

Table 3 Continued 
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CHAPTER 4 

A MULTI-STAGE SCHEME TO MODEL DISEASE 

PROGRESSION 

 

4.1 An Event-Based Multi-Stage Stratification Scheme 

In order to discretize the disease progression continuum, we defined the stages of disease 

progression according to the occurrence of clinical events requiring increasing levels of medical 

resources. We defined (1) hospitalization, (2) admission to ICU, and (3) mechanical ventilation 

as advancing stages of disease progression, and (4) death as the terminal stage of COVID-19 

disease. Figure 3 presents the transition of COVID-19-infected individuals across those stages.  

 

Figure 3 Transitions of patients among clinical stages. 

As shown in Figure 3, a total of 10,123 individuals were tested positive for COVID-19. 

Among them, 1,788 required hospitalizations. The patients who suffered severe disease 

progression were treated in the ICU; some also received ventilatory support, depending on the 

severity of their disease. Over 38% (684) of the patients admitted to the hospital were treated in 
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the ICU, and of those in the ICU, over 55% (380) received ventilatory support. Finally, over 40% 

(155) of the patients who received ventilation died. 

4.2 Laboratory, Comorbidity, and Radiographic Findings Under the Multi-

Stage Scheme 

With the staging scheme defined, Table 4 presents the laboratory measures at different 

stages. From the hospitalization stage to ICU stage to the ventilation stage, all laboratory 

measures have their median values change monotonically except for Monocyte percentage and 

Lymphocyte percentage.   

Figure 4 presents the temporal changes in laboratory features, covering 15 days after 

hospital admission. To reduce the appearance of the same patients in multiple groups, we 

classified the patients into four groups: hospitalized but not in the ICU; in the ICU but not 

ventilated; ventilated but not deceased; and deceased. The albumin level of all patient groups 

decreased from day 0 to day 7, indicating a general catabolic state, not uncommon in 

hospitalized patients in general. During that time, the albumin levels of the ventilated patients 

who ultimately survived behaved much like those patients who subsequently died. However, the 

albumin levels of the eventual survivors then began to increase, while the albumin levels of those 

who subsequently died continued to decrease until day 11. The blood urea nitrogen level of the 

patients who eventually died kept increasing until death and was generally higher than the level 

found in other groups of patients. The lymphocyte percentages of ICU-but-never-ventilated 

patients tended to move from the abnormal range (<18%) to the normal range, while the 

lymphocyte percentages of patients who eventually died tended to worsen. This correlation 

means that the lymphocyte percentage can be used as an indicator of a patient’s condition. A 

rising lymphocyte percentage indicates a recovery trend in a COVID-19 patient, while a 
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decreasing lymphocyte percentage indicates a worsening condition. As for the red blood count, 

the initial values for patients who later died were in roughly the same range as those of survivor 

groups, but the value for patients who died showed a sharper decrease later compared with the 

survivors. Thus, the initial value for the red blood count may not be a risk factor for mortality 

prediction, but its downward trend can be used to forecast deterioration. 

We investigated five comorbidities for COVID-19 patients. Ranked by their rates of 

appearance among the hospitalized patients, they include hypertension (60.29% among the 

hospitalization patients), overweight or obese condition (57.1%), type 2 diabetes (43.12%), 

chronic kidney disease (23.04%), and chronic ischemic heart disease (18.06%), as shown in 

Table 5. As COVID-19 progressed from the hospitalization stage to the ICU stage to eventual 

death, the percentage of patients who had chronic kidney disease or chronic ischemic heart 

disease constantly increased, indicating that these two comorbidities are significant risk factors 

for severe disease progression. In addition, the rates of hypertension and type 2 diabetes were 

also higher among deceased patients than among the total hospitalized population. The patients 

who had none of these five comorbidities and presented as relatively healthy accounted for very 

few (14.65%) of the hospitalized patients and even fewer of the deceased patients (10.71%), 

meaning that an originally healthy individual is far less likely to suffer serious effects due to 

COVID-19. These findings indicate that the studied comorbidities are risk factors for mortality. 
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Table 4 Initial laboratory measures of the patients at different stages 

Measures Hospitalization Period ICU Period Ventilation Period 

  White Blood Count (K/Ul, 

Low: 4.00, High: 10.00) 

7.6 (5.8-10.4) 10.1 (7.2-13.3) 12.6 (9.8-15.2) 

  Neutrophils Percent (%, 

Low: 46.0, High: 78.0) 

70.9 (63.7-77.7) 76.2 (69.4-82.0) 80.2 (74.8-84.2) 

  Lymphocyte Percent (%, 

Low: 18.0, High: 52.0) 

18.0 (12.2-24.4) 12.9 (8.9-18.4) 9.7 (7.1-13.2) 

  Monocyte % (%, Low: 3.0, 

High: 10.0) 

7.7 (5.8-9.7) 6.6 (5.0-8.4) 5.7 (4.1-7.4) 

  Albumin (G/Dl, Low: 3.5, 

High: 5.0) 

2.9 (2.5-3.4) 2.4 (2.0-2.9) 2.0 (1.7-2.4) 

  Sgot (U/L, Low: 3, High: 44) 39.0 (25.0-60.4) 49.7 (32.0-79.4) 62.4 (39.7-98.5) 

  Sgpt (U/L, Low: 0, High: 40) 33.8 (19.2-58.7) 40.6 (22.5-69.0) 48.0 (28.9-81.0) 

  Red Blood Count (M/Ul, 

Low: 4.00, High: 5.20) 

4.2 (3.7-4.6) 3.9 (3.3-4.4) 3.6 (3.1-4.0) 

  Urea Nitrogen (Mg/Dl, 

Low: 8, High: 21) 

15.4 (10.6-26.0) 23.7 (14.4-41.4) 32.7 (21.6-48.3) 

  Creatinine (Mg/Dl, Low: 

0.65, High: 1.00) 

0.9 (0.7-1.3) 1.1 (0.8-2.2) 1.4 (0.8-2.8) 
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Measures Hospitalization Period ICU Period Ventilation Period 

  Hemoglobin (G/Dl, Low: 

12.0, High: 16.0) 

12.1 (10.4-13.4) 11.2 (9.3-12.7) 10.4 (8.8-11.7) 

  Ferritin (Ng/Ml, Low: 12, 

High: 260) 

776.7 (368.1-1702.3) 1212.8 (556.2-

2334.4) 

1555.1 (895.8-

2466.9) 

  D-Dimer (Mg/L Feu, Low: 

0.00, High: 0.60) 

1.1 (0.6-3.4) 3.0 (1.0-6.4) 4.6 (2.3-10.4) 

  C-Reactive Protein (Mg/L, 

Low: 0.0, High: 8.0) 

102.3 (52.5-164.8) 153.5 (94.9-224.3) 200.8 (129.6-261.3) 

  Lactate Dehydrogenase 

(U/L, Low: 110, High: 240) 

390.0 (291.2-525.2) 506.9 (384.0-657.5) 576.1 (442.9-722.2) 

  Glucose, Blood (Mg/Dl, 

Low: 60, High: 99) 

120.8 (101.0-166.9) 143.8 (112.3-194.3) 169.7 (132.0-215.0) 

  Platelet Count (K/Ul, Low: 

150, High: 399) 

242.5 (186.4-311.4) 246.7 (184.1-319.6) 247.6 (182.0-322.4) 

  Creatine Phosphokinase 

(U/L, Low: 10, High: 205) 

151.0 (66.0-360.0) 223.1 (100.2-594.8) 342.5 (160.2-991.5) 

 

 

 

Table 4 Continued 
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Figure 4 Temporal changes of laboratory features from the day of hospital admission to 15 

days in hospital: (a) albumin level, (b) blood urea nitrogen level, (c) lymphocyte percentage, 

(d) neutrophil percentage, (e) monocyte percentage, (f) red blood count. 
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Table 5 Comorbidities among the COVID-19 patients 

Comorb
idity 

COVID-
19-
Positive 

Hospitali
zed 

p-value 
(Hospita
lized - 
Entering 
ICU) 

Entering 
ICU 

p-value 
(Enterin
g ICU- 
Ventilat
ed) 

Ventilated p-value 
(Ventil
ated - 
Deceas
ed) 

Dead 

Hyperte
nsion 

2,225 
(21.99%) 

1,078 
(60.29%) 

<0.001 468 
(68.42%) 

0.1621 282 
(72.49%) 

0.0763 139 
(70.92%
) 

Overwei
ght or 
obese 

2,033 
(20.09%) 

1,021 
(57.1%) 

0.0135 428 
(62.57%) 

0.024 270 
(69.41%) 

<0.001 105 
(53.57%
) 

Type 2 
diabetes 

1,422 
(14.05%) 

771 
(43.12%) 

<0.001 351 
(51.32%) 

0.5498 207 
(53.21%) 

0.1124 100 
(51.02%
) 

Chronic 
kidney 
disease 

515 
(5.09%) 

412 
(23.04%) 

0.003 197 
(28.8%) 

0.9974 112 
(28.79%) 

0.7198 67 
(34.18%
) 

Chronic 
ischemic 
heart 
disease 

437 
(4.32%) 

323 
(18.06%) 

0.0152 153 
(22.37%) 

0.7687 84  

(21.59%) 

0.826 46 
(23.47%
) 

Without 
any of 
the 
above 5 
comorbi
dities 

6,693 
(66.14%)  

262 
(14.65%)  

<0.001 62 
(9.06%)  

0.289 28 (7.2%)  0.325 21 
(10.71%
)  
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A total of 989 patients received X-Ray or CT scanning on hospital admission day. Key 

findings from radiological reports were presented in Figure 5. “Lung Opacity” was the most 

prevalent findings, with over 70% occurrence rate among hospitalized patients. “Lung Opacity” 

was most widely observed among those who ultimately deceased. The appearing rate of 

“Enlarged Cardiomediastinum” and “Atelectasis” steadily increased as the outcome worsens, 

indicating their positive correlations with severe disease progressions. Finally, “Edema” (3.1%)  

and “Pneumothorax” (0.4%) have comparatively low occurrence rates at hospital admission. 

 

Figure 5 Appearance rate of radiological findings among the patients with different outcomes. 

(The radiological findings were extracted from the radiological reports obtained at hospital 

admission day, using the labeling tool described in [57].) 
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CHAPTER 5 

MODEL DEVELOPMENT AND EVALUATION 

 

5.1 Classifiers for Initial and Progressive Triages 

5.1.1 Variables Used in the Triaging Scheme 

We used a subset of the aforementioned variables to develop our triaging schemes. Those 

variables were selected using a two-step procedure: 1) First, we selected a number of variables 

used in previous COVID-19 triaging studies from China and other states in the United States, 

such as neutrophil-to-lymphocyte ratio [58], [59], albumin level [60], and creatinine level [61]. 

2) Second, we selected a subset among those variables that was highly represented (measured in 

over 65% of the patients at their hospital admission day) in the Rush University Medical Center 

dataset. The selected variables include age, race, sex, neutrophil-to-lymphocyte ratio; neutrophil, 

lymphocyte, and monocyte percentages; white blood, red blood, and platelet counts; and the 

levels of blood glucose, blood urea nitrogen, creatinine, albumin, aspartate transaminase, alanine 

transaminase, hemoglobin, and SpO2. 

5.1.2 Triaging Schemes 

In this study, we developed two different triaging schemes using the variables and disease 

stages described previously. We utilized variables measured at both hospital admission (referred 

to as baseline triage) and current disease stage (referred to as progressive triage) for the two 

scenarios, as shown in Figure 6.  
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Figure 6 Illustration of using baseline measurements and conditional measurements for multi-

stage prognosis. 

Baseline triage: Baseline triaging scheme consists of a set of binary classifiers predicting 

the likelihood of reaching each disease progression stage from baseline, i.e., whether a patient 

will be admitted to the ICU, be ventilated, or die, respectively.  

Progressive triage: The progressive scheme considers the current stage of the disease 

and predicts escalation to advanced stages. This scheme performs triaging in three steps: a) when 

a patient is admitted to the hospital, a binary classifier predicts whether the patient will recover 

or progress to a more critical stage (i.e., ICU, mechanical ventilation, or death); b) when a patient 

is admitted to the ICU, a binary classifier predicts whether the patient will recover or progress to 

a more critical stage (i.e., mechanical ventilation or death); and c) when a patient is treated using 

a mechanical ventilator, a binary classifier predicts whether the patient will recover or progress 

to death. In other words, given the current event (hospital admission, ICU admission, or 

mechanical ventilation), the system predicts whether the disease will diminish or progress.  
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5.2 Classifiers Training and Evaluation 

5.2.1 Classifier Training and Evaluation 

We chose logistic regression as the classifier in both scenarios because an easily 

interpretable model can help facilitate rapid clinical translation [62]. The logistic regression 

classifiers were trained and validated using a standard 10-fold cross-validation approach [63]. 

The accuracy of prediction was evaluated using the area under the receiver-operator 

characteristic curve (AUC). We selected a cutpoint by fixing the sensitivity higher than 0.7 (to 

guarantee the detection of positive patients) and meanwhile maximizing the specificity. The 

processes of cross-validation and cutpoint selection are visualized in Figure 7. 

 

Figure 7 Training and evaluation of the classifier. 

5.2.2 Preliminary Experiment 

To verify the effectiveness of logistic regression for predicting severe COVID-19 

outcomes, a preliminary experiment is conducted to compare logistic regression to other 
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prevalent machine learning methods, including decision tree, random forest, SVM, and neural 

network. The task is to predict the ventilation demands among hospitalized patients, and the 

model performance is evaluated using 10-fold cross-validation specified above. The experiment 

results are summarized in Table 6. In comparison, logistic regression yields the highest AUC, 

accuracy, and F-1 Score, which demonstrates the superiority of using logistic regression to 

predict severe COVID-19 outcomes.  

Table 6 Comparison of machine learning models for predicting ventilation demand 

Model AUC Accuracy F-1 Score 

Logistic Regression 0.819 0.784 0.620 

Decision Tree 0.744 0.771 0.592 

Random Forest 0.780 0.777 0.617 

Support Vector Machine 0.751 0.684 0.02 

Neural Network 0.728 0.757 0.503 

 

5.2.3 Baseline triage 

Table 7 summarizes the results of baseline triage. In comparison, a more severe outcome 

was more predictable (resulting in a higher AUC) at the baseline. The prediction for mortality 

has the highest AUC of 0.803 (95% CI: 0.752 -  0.853). With a cutpoint at 0.095, the model was 

able to identify 71.0% of eventually deceased patients at their hospital admission, meanwhile 

correctly predicting 73.9% of those finally survived. 
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Table 7 Results of Initial triage for ICU admission, ventilation admission, and mortality 

Output classes 
Whether admitted into 

ICU 
Whether ventilated 

Whether eventually 
die 

AUC (95% CI) 0.736 (0.718 - 0.754) 0.767 (0.727 -  0.807) 0.803 (0.752 -  0.853) 

Optimal Cutpoint 0.365 0.19 0.095 

Confusion Matrix  
[392 231  
133 320] 

[542 290  
70 174] 

[716 253  
31  76] 

Sensitivity 0.706 0.713 0.710 

specificity 0.629 0.651 0.739 

 

5.2.4 Progressive triage 

Table 8 shows the results of progressive prediction using conditional features (i.e., 

classification was performed using the features gathered during the current event), which 

resulted in AUC values of  0.738 (95 %CI: 0.703 – 0.773)  for the ICU admission prediction, 

0.710 (95 %CI: 0.667 – 0.753) for the ventilation admission prediction, and 0.642 (95 %CI: 

0.550 - 0.733) for mortality prediction. In comparison, the baseline triage above achieves higher 

accuracy, especially for mortality prediction, where the baseline triage has an AUC value 25.1% 

higher than that obtained using conditional features. 
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Table 8 Results of progressive prediction using conditional features 

Output classes 

(Recover at the 
hospital) vs (Be 

admitted into ICU or 
beyond) 

(Recover at ICU) vs (Be 
ventilated or beyond) 

(Recover at ventilators) vs 
(Decease) 

AUC (95% CI) 0.738 (0.703 – 0.773) 0.710 (0.667 – 0.753) 0.642 (0.550 - 0.733) 

Optimal Cutpoint 0.37 0.59 0.335 

Confusion Matrix 
[382 238 
134 322] 

[111  69 
79 186] 

[52 61 
26 62] 

Sensitivity 0.706 0.702 0.705 

specificity 0.616 0.617 0.460 

 

5.3 Converting Model Outputs to Predict the Most Severe Stage 

Next, we sought to identify the most severe clinical stage a patient is likely to reach using 

baseline features. Here we discuss a simple strategy to convert the results of the baseline 

prognostic model for identifying the most severe stage. 

By outputting the individual probability of entering each stage, the baseline triage model 

provides an opportunity to anticipate the ultimate stage of escalation. We discuss here two simple 

strategies to convert the results of baseline triage for predicting the severest stage. 

The first strategy is to take the stage with the largest probability (normalized by the prior 

probability of that stage) to be the severest one, expressed as the following equation: 

𝑠𝑒𝑣𝑒𝑟𝑒𝑠𝑡 =  argmax
𝑆∈{𝐻𝑜𝑠𝑝,𝐼𝐶𝑈,𝑉𝑒𝑛𝑡,𝐷𝑒𝑎𝑡ℎ}

(
1 − 𝑝𝐼𝐶𝑈

𝜋𝐻𝑜𝑠𝑝
,
𝑝𝐼𝐶𝑈

𝜋𝐼𝐶𝑈
,
𝑝𝑉𝑒𝑛𝑡

𝜋𝑉𝑒𝑛𝑡
,
𝑝𝐷𝑒𝑎𝑡ℎ

𝜋𝐷𝑒𝑎𝑡ℎ
) 
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where 𝑝𝐼𝐶𝑈,  𝑝𝑉𝑒𝑛𝑡, and 𝑝𝐷𝑒𝑎𝑡ℎ are the output probabilities for ICU, ventilation, and mortality, 

respectively. Because the output probabilities of logistic regression are not equally distributed 

among these three classifiers, to make these output probabilities comparable, we equalized them 

by removing the tails and stretching the remainders to cover from 0 to 1. The result is presented 

in Table 9, where the model was able to detect those ultimately ventilated patients with a 

sensitivity of 0.619 and those ultimately deceased patients with a sensitivity of 0.636.     

Table 9 Conversion to the severest stage using the argmax of probabilities (normalized by 

prior probability of that stage) 

Severest stage Hospitalization ICU Ventilation Mortality 

Confusion Matrix  
[419  37  
464 156] 

[840  34  
186  16] 

[559 370   
56  91] 

[665 304   
39  68] 

Sensitivity 0.252 0.079 0.619 0.636 

specificity 0.919 0.961 0.602 0.686 

 

 The second strategy is to progressively convert the output probabilities to the stages, by 

comparing the output probability to the cutpoint and deciding the escalation to the next stages. 

Such a decision process is visualized in Figure 8. For example, given a patient’s ICU probability 

is higher than the cutpoint, he will be considered for ventilation and the output probability of the 

ventilation classifier will be compared with the cutpoint for ventilation. If the probability is not 

higher than the cutpoint, he will be considered not escalating to the ventilation stage, thus his 

severest stage remains at ICU admission. The flexibility of this strategy lies in the tunable 

cutpoints. When using the optimal cutpoints specified in the Table 7, the model is able to detect 

those merely hospitalized patients with a sensitivity of 0.629 and eventually deceased patients 



37 
 

with a sensitivity of  0.635, but the intermediate stages are not as differentiable, as shown in 

Table 10.  

Table 10 Conversion to the severest stage using the forward translation logic without tuning 

cutpoints 

Severest stage Hospitalization ICU Ventilation Mortality 

Confusion Matrix  
[322 134  
230 390] 

[783  91  
174  28] 

[803 126  
109  38] 

[768 201   
39  68] 

Sensitivity 0.629 0.138 0.258 0.635 

specificity 0.706 0.896 0.864 0.792 

 

Then we tuned the cutpoints to allow more ICU and ventilated patients to be correctly 

detected, which improves the sensitivity by 0.248 for ICU prediction and by 0.102 for ventilation 

prediction, as shown in Table 11. 

Table 11 Conversion to the severest stage using the forward translation logic without tuning 

cutpoints 

Severest stage Hospitalization ICU Ventilation Mortality 

Confusion Matrix  
[322 134  
230 390] 

[783  91  
174  28] 

[803 126  
109  38] 

[768 201   
39  68] 

Sensitivity 0.629 0.138 0.258 0.635 

specificity 0.706 0.896 0.864 0.792 
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It is observed that tuning cutpoints can favor the prediction for those target stages, but at 

the cost of the prediction performance for other stages. In reality, such conversion will be done at 

clinicians’ discretion. The involvement of clinicians not only helps in the selection of cutpoints, 

but also provides a more sophisticated decision process using their expert knowledge. The initial 

triage models proposed in this thesis provide references for their decision.  

 

Figure 8 Progressively convert the output probabilities to the stages by comparing the output 

probabilities to thresholds and deciding the escalation to the next stages. 
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CHAPTER 6 

RISK FACTOR ANALYSIS 

 

In this chapter, two prevalent machine learning models, LASSO regression and decision 

tree, are used to identify the key risk factors for severe disease progression. 

6.1 Risk Factor Analysis Using LASSO Regression 

LASSO regression [64] was used to select the most discriminative variables for 

predicting the demand for mechanical ventilation. The “glmnet” packet in R was used to 

compute the results [65]. A total of 18 variables were entered in an L1-norm LASSO regression. 

They include age, neutrophil-to-lymphocyte ratio; neutrophil, lymphocyte, and monocyte 

percentages; white blood, red blood, and platelet counts; and the levels of lactate dehydrogenase, 

C-reactive protein, blood glucose, blood urea nitrogen, creatinine, albumin, aspartate 

transaminase, alanine transaminase, hemoglobin, and SpO2. As the regularization term (typically 

denoted as λ) grows large, only the most important features are left with nonzero coefficients. 

Figure 9 (a) shows the trace of coefficients as the λ grows large. The coefficients of 

investigated features turn to 0 sequentially. Among all the features, albumin is the last one that 

turns to 0, meaning that albumin is the most discriminative feature selected by LASSO, followed 

by SpO2 and white blood count. The significance of albumin is also indicated by the magnitudes 

of coefficients; the coefficient of albumin is consistently larger than that of any other feature.  

Albumin can be considered a general measure of an individual’s overall health. Figure 9(b) 

shows the trace of binomial deviance, a type of misclassification error [66]. As the regularization 
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parameter λ becomes large, the binomial deviance first decreases and then increases. The axis 

above the figure shows the number of nonzero coefficients at a particular λ value. The minimal 

deviance is achieved with 12 features. They include age, platelet count, white blood count, 

neutrophil-to-lymphocyte ratio, lymphocyte percentage, and the levels of lactate dehydrogenase, 

C-reactive protein, blood glucose, blood urea nitrogen, albumin, hemoglobin, and SpO2. 

 

    (a) 

 

       (b) 

Figure 9 LASSO regression for feature selection. (a) Trace of coefficients of the 18 baseline 

features. (b) Binomial deviance using 10-fold cross-validation, indicating the variation in 

misclassification error with different levels of regularization. 
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6.2 Risk Factor Analysis Using Decision Tree Algorithm 

In addition to performing a LASSO regression, we also constructed a decision tree [67] 

for the investigated variables, which provides another perspective that can be used to identify 

key risk factors. Using the Gini index as the impurity metric [68], the decision tree iteratively 

splits the current data into two branches. By definition, the variable used for splitting the root 

node is the most discriminative factor. Furthermore, the key risk factors tend to gather at the 

high-layer nodes near the root. The key risk factors selected by the LASSO regression and 

decision tree algorithms were further compared and entered in the logistic regression model for 

predicting ventilator demands.  

To identify the most discriminative features, we used the decision tree algorithm with the 

Gini index. Figure 10 shows the result of the decision tree with max layer = 3. The first split is 

made on albumin = 2.65 g/dl. For the patients with albumin lower than 2.65 g/dl, the second split 

is made on the white blood count = 6.835 k/ul, indicating that the patients with low albumin and 

high white blood count are more likely to require mechanical ventilation. In contrast, for the 

patients with albumin higher than 2.65 g/dl, the second split is made on SpO2 = 92.739%, 

indicating that the patients with high albumin and high SpO2 values are less likely to need 

ventilatory support. The top three features selected by the decision tree algorithm exactly match 

those selected by LASSO regression, highlighting the significance of these features. In clinical 

practice, this compact set of features may be used to efficiently triage COVID-19 patients. 
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Figure 10 Decision tree for distinguishing between patients who did and did not require 

ventilation. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

 

This thesis presents a novel multi-stage prognostic scheme for predicting COVID-19 

disease progression. We characterized the stratification of COVID-19 patients in terms of 

clinical events and presented laboratory measures specific to each stratum, thereby making it 

easier to understand and track disease progression. Based on the stratification, we developed a 

multi-stage prognostic framework for predicting the probabilities of different outcomes of 

COVID-19 patients at both initial and progressive triage. We then used LASSO regression and 

decision tree models to identify several risk factors for the deterioration of patient health. This 

research and the resulting model establish the feasibility of an early triage tool that can predict 

the clinical course of COVID-19 at a subject-specific level, thus allowing precise allocation of 

medical resources for those in need. 

In comparison, using baseline triage achieves higher accuracy than using conditional 

features, especially for mortality prediction. To ensure that it is the feature collection time that 

makes a difference (instead of distinct participants in those two cohorts), we select 159 patients 

who have lab tests on both hospital admission day and intubation day to build classifiers. The 

prediction results of these classifiers are presented in Table 12. The AUC using baseline features 

is 23.6% higher than that using conditional features. Besides the AUC metric, the prediction with 

baseline features has all PPV, NPV, sensitivity, and specificity metrics higher than the prediction 

with conditional features. 

 



44 
 

Table 12 A comparison between using baseline features and conditional features among the 

patients who have both types of features documented 

Participants Prediction for Ventilated patients 

# 159 (who have both baseline and conditional features) 

Output classes Recovery vs (Decease) Recovery vs (Decease) 

AUC 0.763    0.617 

Confusion Matrix 

Cutoff = 0.5 

[[58. 24.]  
[24. 53.]] 

[[52. 30.]  
[38. 39.]] 

PPV 0.688  0.565 

NPV 0.707 0.577 

Sensitivity 0.688  0.506 

specificity 0.707  0.634 

 

To further investigate the superiority of baseline features, we plot in Figure 11 the death 

probability predicted by logistic regression. Using baseline features, the logistic regression tends 

to predict a distinguishably higher death probability for those who indeed decease at the end. 

Regarding the distribution of underlying features, the distribution of SpO2 is presented in Figure 

12. The distinct laboratory measurements (between survivors and non-survivors) contribute to a 

high prognostic performance using baseline features.  
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(a)                                                                               (b) 

Figure 11 Predicted death probability on ventilated patients: (a) using baseline features, (b) 

using conditional features. 

 

(a)                                                                               (b) 

Figure 12 Distributions of: (a) baseline SpO2 value, (b) conditional SpO2 value for ventilated 

patients grouping by their final outcomes. 

Our results indicate that the baseline measurements provide a high predictive value. For 

instance, when predicting mortality using baseline features resulted in a more accurate prediction 

as opposed to using the features collected during the time of ventilation. We observed that when 

the patients are ventilated their lab features have universally deteriorated. We surmise that the 
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patients with extremely abnormal baseline lab measures have already endured severe disease 

manifestation before the medical intervention, and therefore they are more likely to suffer from 

irreversible organ damage. As a result, these patients present with a higher risk of mortality. 

Besides emphasizing the predictive values of baseline features, this finding advocates early 

hospitalization before symptoms worsen. 

Future work with this model includes implementing an early warning system for human-

in-the-loop decision making [69]. With the insights gleaned from emerging clinical data, the use 

of optimized prone positions, medical therapy with antivirals, and anti-inflammatory medication 

may alleviate the inflammatory response, improve oxygenation, reduce the risk of intubation, 

and reduce mortality in patients with COVID-19. An approach like the one introduced here can 

also identify patients for whom early discharge is safe. A triage tool for sorting high- vs. low-risk 

individuals with COVID-19 would be highly useful in resource-constrained situations in which 

bed capacity must be tightly managed. Furthermore, our analyses did not include radiological 

data, which can provide further information regarding the actual extent of the disease. We will 

investigate the potential of including radiological and natural language features in the prognostic 

model. Last but not the least, there is a potential to apply multi-task learning techniques [70] to 

jointly learn at different hospitals, so as to enhance the generality of learned models and 

incorporate more data into the training process. 
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