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ABSTRACT

Deep Neural Networks (DNNs) have become ubiquitous, achieving state-of-the-art results

across a wide range of tasks. While GPUs and domain specific accelerators are emerging,

general-purpose CPUs hold a firm position in the DNN market due to their high flexibility,

high availability, high memory capacity, and low latency.

Various working sets in DNN workloads can be sparse, i.e., contain zeros. Depending on

the source of the sparsity, the level of the sparsity varies. First, when the level is low enough,

traditional sparse algorithms are not competitive against dense algorithms. In such cases,

the common practice is to apply dense algorithms on uncompressed sparse inputs. However,

this implies that a fraction of the computations are ineffectual because they operate on zero-

valued inputs. Second, when the level is high, one may apply traditional sparse algorithms on

compressed sparse inputs. Although such approach does not induce ineffectual computations,

the indirection in a compressed format often causes irregular memory accesses, hampering the

performance. This thesis studies how to improve DNN training and inference performance

on CPUs by both discovering work-skipping opportunity in the first case and coping with

the irregularity in the second case.

To tackle the first case, this thesis proposes both a pure software approach and a software-

transparent hardware approach. The software approach is called SparseTrain. It leverages

the moderately sparse activations in Convolutional Neural Networks (CNNs) to speed up

their training and inference. Such sparsity changes dynamically and is unstructured, i.e. it

has no discernible patterns. SparseTrain detects the zeros inside a dense representation and

dynamically skips over useless computations at run-time.

The hardware approach is called the Sparsity Aware Vector Engine (SAVE). SAVE exploits

the unstructured sparsity in both the activations and the weights. Similar to SparseTrain,

SAVE also dynamically detects zeros in a dense representation and then skips ineffectual

work. SAVE augments a CPU’s vector processing pipeline. It assembles denser vector

operands by combining effectual vector lanes from multiple vector instructions that contain

ineffectual lanes. SAVE is general purpose. It accelerates any vector workload that has zeros

in the inputs. Nonetheless, it contains optimizations targeting matrix multiplication based

DNN models. Both SparseTrain and SAVE accelerate DNN training and inference on CPUs

significantly.

For the second case, this thesis focuses on a type of DNN that is severely impacted

by the irregularity from sparsity — Graph Neural Networks (GNNs). GNNs take graphs
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as the input, and graphs often contain highly sparse connections. This thesis proposes

software optimizations that (i) overlap the irregular memory accesses with the compute, (ii)

compress and decompress the features dynamically, and (iii) improve the temporal reuse

of the features. The optimized implementation significantly outperforms a state-of-the-art

GNN implementation. In addition, this thesis discusses the idea of offloading a GNN’s

irregular memory access phase to an augmented Direct Memory Access (DMA) engine, as a

future work.
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CHAPTER 1: INTRODUCTION

1.1 DEEP NEURAL NETWORKS (DNNS) ON CPUS

Deep Neural Networks (DNNs) have attained state-of-the-art results in a variety of tasks

such as image recognition [1], speech recognition [2], scene generation [3], and game play-

ing [4]. General-purpose CPUs are widely deployed in datacenter, client, and edge devices.

Therefore, utilizing CPUs for DNN workloads lowers the Total Cost of Ownership (TCO)

for the DNN market [5, 6, 7, 8]. For DNN inference, CPUs are generally favored due to

their flexibility, high availability, and low latency, especially when tight integration between

DNN and non-DNN tasks is desired [9]. For DNN training, GPUs and accelerators provide

higher raw compute power. However, the high memory capacity on CPU platforms (e.g.,

up to 4.5TB per socket with the 3rd-gen Intel Xeon Scalable processors) makes training

with large datasets and/or models easier [7]. Also, the high availability of datacenter CPUs

encourages companies to distributedly train DNNs on CPUs during off-peak periods [6].

For example, Facebook trains their Sigma and Facer frameworks either entirely or par-

tially on CPUs [9]. Other examples of training on CPUs include Intel’s assembly and test

factory [10], deepsense.ai’s reinforcement learning [11], Kyoto University’s drug design [12],

Clemson University’s natural language processing [13], GE Healthcare’s medical imaging [14],

and more [8]. Further, CPU makers have recently introduced features to accelerate training,

such as BFloat-16 [7] and Intel Advanced Matrix Extensions [15]. Therefore, accelerating

both DNN training and inference on CPUs is an important yet undervalued area.

1.2 SPARSITY IN DNN DATA STRUCTURES

Sparsity stands for the zeros inside a data structure such as a vector or a matrix. Various

DNN data structures can be sparse due to different reasons.

1.2.1 Sparse Activations

Activations, a.k.a features, are the outputs of a DNN layer. In a DNN, each output value

is usually passed through an activation function to introduce non-linearity. One ubiquitous

activation function is the Rectified Linear Unit (ReLU). It has the form:

f(x) = max(0, x) (1.1)
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and its derivative is:

f ′(x) =

{
1, if x > 0

0, otherwise
(1.2)

Note that, the derivative at x = 0 is undefined but usually set to 0.

By definition, ReLU and its derivative produce 50% sparsity when the distribution of x

is centered at 0. When ReLU-activated layers are cascaded, the sparse output activations

of a layer become the inputs to the next layer. During training, the sparsity from ReLU

often begins at approximately 50% but increases rapidly in the first several epoches, and then

slowly decreases. Also, later conv layers generally have higher sparsity then earlier layers [16].

Figure 1.1 presents the sparsity of each ReLU’s output during end-to-end training of VGG16.

In this example, the average sparsity of each layer typically ranges from 50% to 90%.
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Figure 1.1: Activation sparsity during the training of VGG16. Each x-axis segment shows
the outputs from a ReLU-activated layer. Within a segment, from left to right shows the
sparsity from the first epoch to the last.

Besides ReLU, dropout can also sparsify the activations. Dropout is a widely adopted

technique to reduce overfitting [17]. During training, a predefined fraction, often 50%, of the

hidden features, i.e., the output activations of the non-output layers, are randomly selected

and set to zero.

Both ReLU and dropout produce a moderate level of sparsity, and the sparsity pattern has

no discernible structure. Moreover, the sparsity constantly changes over time. Therefore,

we call it unstructured dynamic sparsity.

1.2.2 Sparse Weights

The weights in DNNs can be sparse thanks to weight pruning, which is a popular technique

to reduce the size of the DNN models to lower the cost of inference [18, 19, 20]. During

training, the weights are initially dense. As the training progresses, a pruning algorithm

gradually fixes a portion of the weights to zero according to a certain criteria until the

sparsity in the weights reaches a predetermined level. The training often continues for a
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while to fine tune the pruned model in order to achieve better network accuracy. Figure 1.2

shows an example schedule to prune the weights in ResNet-50 during end-to-end training.

Initially, the weights are dense. After the pruning starts round epoch 33, the sparsity level

gradually rises until around epoch 57. The rest of the training epochs fine-tune the pruned

model.
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Figure 1.2: An example schedule to prune the weights in ResNet-50 during training.

Arguably the simplest yet most effective pruning method is the magnitude-based prun-

ing [18], where a percentage of the weights with the lowest absolute values are pruned after

each pruning iteration. It has been shown that this method can prune the weights to 95%

sparse with low network accuracy loss [21].

The magnitude-based method is easy to implement and results in both high compression

rate and low accuracy loss. However, it creates unstructured sparsity, which is unfriendly

to conventional parallel hardware such as Single Instruction Multiple Data (SIMD) CPUs

and GPUs. To align the sparsity pattern with the underlying hardware, structured pruning

emerges [22, 23, 24]. These methods typically prune a continuous chunk of weights at a time

so that parallel hardware may skip computing with the block. However, they often lower

the accuracy of the model more than unstructured pruning does at the same pruning rate.

In inference, the weights do not change, so one may store the highly pruned weights in a

compressed format without worrying about frequent compression. However, during training,

weight sparsity evolves over time, so the common practice is to store the sparse weights in

an uncompressed format and use masks to mark the pruned locations.

1.2.3 Sparse Graph Connections

Both weights and activations are common working sets shared by all types of DNNs.

On the other hand, some DNN models operate on additional working sets. Graph Neural

Networks (GNNs) are some of them. GNNs have gathered much attention recently due to

their ability to process non-Euclidean data, which other types of DNNs struggle with [25, 26].

The input data to GNNs are graphs, so GNN workloads share similarities with traditional
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graph algorithms. In particularly, the input graphs often have highly sparse connections, i.e.,

each vertex is connected to a small subset of all vertices. When expressing the connections

in an adjacency matrix, A, the matrix is usually over 99% sparse. For example, the Amazon

product co-purchasing network graph [27] has 2.4M vertices and 62M undirected edges,

suggesting that A is 99.998% sparse. When uncompressed, the footprint of A is O(|V|2),

where V is the set of all vertices. On the contrary, the space requirement of a typical

compressed format such as Compressed Sparse Row (CSR) is only approximatelyO(|E|+|V|),
where E is the set of all edges. In addition, the graph structure is fixed, so one only needs

to compress A once. Hence, the adjacency matrix is often encoded in a compressed format.

1.3 CHALLENGES FROM SPARSITY

Sparsity poses challenges to both the compute and the memory performance of DNN

workloads. We first look at the compute performance. When one or more operands are zero,

some computations become ineffectual, meaning that they do not affect the end results.

Among them, the Multiply-Accumulate (MAC) operation is arguably the most important

one since it is employed in many high-performance software, including DNN kernels. A MAC

has the form c = c + a · b, when either a or b is zero, c does not change. Therefore, such a

MAC is ineffectual. When the input working sets are sparse, many computations become

ineffectual.

Naturally, we do not want to perform these ineffectual computations. However, depending

on the level of sparsity in the inputs, efficiently skipping ineffectual work can be challenging.

On the software side, traditional sparse methods such as sparse-dense matrix multiplication

(SpMM) operate on compressed sparse inputs. Well-adopted compressed formats such as

CSR introduce storage overhead that increases as the number of non-zero values rises. When

the sparsity level is low enough, the compressed data can take more space than the original

uncompressed data. This is often the case in DNNs, where the working sets can sometimes

contain less than 50% zeros. This can happen, for example, from the use of ReLU or dropout.

Besides the storage overhead, there is another reason that renders the compressed format

undesired. As discussed earlier, in DNN data structures, the pattern of the zeros and the level

of the sparsity often change dynamically. As a result, if a compressed format is employed,

one needs to frequently perform new compression, which is a significant time overhead.

Finally, modern processors are optimized for regular and dense compute. Conventional

wisdom tells us that traditional sparse methods require the inputs to be highly sparse (e.g.

over 95%) in order to outperform optimized dense methods. Consequently, in many cases,

using traditional sparse methods in DNNs is ineffective. Instead, people usually ignore the
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sparsity and opt to use dense methods. Many DNN workloads are compute intensive because

their major computations are matrix multiplication and/or convolution. Therefore, although

using dense methods is a reasonable choice, performing the ineffectual computations hinders

the performance.

We then look at the memory performance. There exists scenarios in DNNs that fit the

requirements for using compressed formats and sparse methods. GNNs are some of the more

pronounced ones. The input graphs to GNNs often contain compressed sparse adjacency

matrices. As a result, applying sparse methods avoids performing ineffectual computations.

However, the extra indirection in the compressed formats as well as the irregular memory

accesses in the sparse method can cause the computation to stray away from the peak

performance of the system.

On the hardware side, to tackle these challenges, the community has proposed domain-

specific accelerators that skip ineffectual computations in compute-intensive models [28,

29, 30, 31] or more efficiently execute the memory-intensive GNN workloads [32, 33, 34].

Nevertheless, few works have been done to add hardware support for exploiting DNN sparsity

on general-purpose CPUs. Proposing hardware supports on CPUs is challenging because the

hardware addition needs to be general-purpose enough to fit the design philosophy of CPUs.

1.4 THESIS CONTRIBUTIONS

Given the challenges discussed above, this thesis proposes both software and hardware

methods that exploit the sparsity in DNN data structures to accelerate DNN workloads on

CPUs. This thesis makes the following contributions.

SparseTrain : Leveraging Dynamic Sparsity in Software for Training DNNs on

General-Purpose SIMD Processors SparseTrain is the first software-only CPU algo-

rithm that leverages the dynamic sparsity in the activations [35]. It dynamically checks

for zero in the inputs in a regular (uncompressed) representation and skips a batch of in-

effectual computations upon detecting a zero. It employs various optimizations to mitigate

the overhead from exploiting sparsity. SparseTrain outperforms a highly-optimized dense

implementation when the inputs are on average 20% sparse. At realistic sparsity levels,

SparseTrain can speedup both training and inference significantly.

SAVE: Sparsity-Aware Vector Engine for Accelerating DNN Training and In-

ference on CPUs SAVE is the first sparsity aware vector engine for CPUs [36]. SAVE

exploits the unstructured sparsity in both the activations and the weights. it combines
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effectual vector lanes from multiple ready instructions to assemble a set of temporary vec-

tor operands. It then issues a SIMD computation with the temporary operands. SAVE is

enhanced with techniques that increase the rate of compaction, and it only adds limited

additional hardware to the existing CPU vector pipeline. SAVE is transparent to software

and can accelerate legacy code. It is general-purpose and is not limited to accelerating DNN

workloads. Instead, it benefits any vector workload with zeros in its inputs. When the inputs

are dense, SAVE does not introduce perceptible time overhead. At realistic sparsity levels,

SAVE can notably accelerate both training and inference.

Optimizing Graph Neural Networks on CPUs: Reducing Memory Bandwidth

Needs In this contribution, we devise software optimizations to speed up GNN workloads

on CPUs. We first characterize GNN workloads on CPUs and identify that DRAM band-

width is a major bottleneck. We then propose optimizations to relieve the DRAM bandwidth

pressure. The optimizations include both mitigating the irregularity from the sparse graph

connections and reducing unnecessary memory accesses to the sparse features. Finally, we

validate our approach on popular GNN models with medium to large scale graphs, on a

server CPU. Our implementation outperforms a state-of-the-art GNN layer implementation

significantly for both training and inference.

1.5 THESIS ORGANIZATION

The thesis is organized as follows. Chapter 2 and 3 tackle the compute performance issue.

Chapter 2 presents the software approach: SparseTrain, and Chapter 3 presents the hardware

approach: SAVE. Chapter 4 and 5 address the memory performance issue. Chapter 4

describes our GNN software optimizations, and Chapter 5 discusses a future work that aims

to offload a GNN’s irregular memory access phase to an augmented Direct Memory Access

(DMA) engine. Chapter 6 concludes the thesis. In addition to the above contributions, this

thesis also includes my other works that assess compilers’ ability to optimize loop nests, in

Appendix A.
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CHAPTER 2: SPARSETRAIN: LEVERAGING DYNAMIC SPARSITY IN
SOFTWARE FOR TRAINING DNNS ON GENERAL-PURPOSE SIMD

PROCESSORS

2.1 INTRODUCTION

As discussed in Section 1.3, an effective approach to accelerating compute-intensive DNN

workloads is to remove useless computations on zero values in the data. Prior efforts spanning

hardware to software and algorithms have exploited sparsity to eliminate computation or

data transfers at different points in DNN computations. Most of these efforts, though,

require hardware changes [16, 28, 29, 30, 31, 37, 38] and/or apply only to inference [24, 28,

29, 30, 31, 37, 39, 40, 41]. This is not ideal, since most of real-world DNN computations are

performed on conventional CPUs and GPUs, and significant time goes into training.

In this chapter, we present SparseTrain, a software only effort that addresses these short-

comings and speeds up both DNN training and inference on CPUs. SparseTrain skips the

ineffectual computations induced by sparsity, on unmodified general-purpose CPUs. It tar-

gets the sparsity in the activations from ReLU and/or dropout, which is moderate (typically

40-90% sparse), unstructured (no discernible patterns), and dynamic (changes with each

input). SparseTrain has the following properties:

• It checks for zeros dynamically in runtime and skips a batch of ineffectual compu-

tations upon detecting each zero. It applies optimizations to mitigate the branch

mispredictions from the dynamic predications.

• It loads/stores data in a regular (dense) representation so that there is no overhead

associated with (de)compressing data. Also, it avoids the irregular memory accesses

from using a compressed (sparse) representation.

• It generates parallelized and vectorized kernels with a just-in-time (JIT) assembler. For

each DNN layer, it specializes the code only according to the layer shape; therefore, it

only generates the kernel once for a given layer so that the overhead is negligible.

• It is applicable to both inference and all phases of DNN training, namely the forward

propagation (same as inference), the backward input propagation, and the backward

weight propagation.

The amount of computation skipped due to a zero input depends on the number of reuse of

the input. High reuse helps amortize the overheads incurred while detecting and exploiting
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sparsity. Among different types of DNNs, CNNs have the highest reuse of their neurons.

Therefore, while the approach is generally applicable to any DNN employing ReLU and/or

dropout, we focus on CNNs in this chapter.

Our experiments on a 6-core Intel Skylake-X server show that SparseTrain is very effective.

In end-to-end training of VGG16 [42], ResNet-34, and ResNet-50 [43] with the ImageNet

dataset [44], SparseTrain outperforms a highly-optimized direct convolution on the non-

initial convolutional layers by 2.19x, 1.37x, and 1.31x, respectively. SparseTrain also benefits

inference. It accelerates the non-initial convolutional layers of the aforementioned models

by 1.88x, 1.64x, and 1.44x respectively.

2.2 BACKGROUND

2.2.1 Training Convolutional Neural Networks

A CNN is a type of DNN that is effective for analyzing images. Within a CNN, the

convolutional layers are the most time consuming components; thus, reducing the amount

of computation in them can greatly boost performance. In the following discussion, we use

the symbols listed in Table 2.1.

Table 2.1: List of the symbols and their dimensions & iterators.

Description Iterator Description Dimension Iterator

N minibatch size i D input tensor NCWH i, c, x, y
C input channels c Y output tensor NKW ′H ′ i, k, x′, y′

K output channels k G weight tensor KCRS k, c, u, v
W input width x L loss function
H input height y V vector length
R filter width u T # of skippable ops
S filter height v M minibatch tile size
O horizontal stride Q output channel tile
P vertical stride size

The convolution on a minibatch of N images with C channels and size H ×W correlates

a set of K filters with C channels and size S × R on the images, producing a minibatch of

N images with K channels and size H/P ×W/O, where P and O are the strides of the two

dimensions, respectively. We denote filter elements as Gk,c,u,v and image elements as Di,c,x,y.

The forward convolution for output Yi,k,x′,y′ is:

Yi,k,x′,y′ =
C−1∑
c=0

R−1∑
u=0

S−1∑
v=0

Di,c,x′×O+u,y′×P+v ×Gk,c,u,v (2.1)
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In the backward propagation of a convolutional layer, the gradient of the loss function L

with respect to the weights G is calculated by applying the chain rule:

∂L

∂G
=
∂L

∂Y

∂Y

∂G
(2.2)

We need ∂L/∂Y from the next layer, and compute ∂L/∂D for the previous layer if needed.

∂L/∂D is a convolution of ∂L/∂Y with the layer’s filters transposed. The gradient with

respect to the weights is a convolution of D with ∂L/∂Y , producing S ×R outputs for each

input/output channel combination.

2.2.2 Baseline Platform

We consider a shared-memory server comprising general-purpose processors with multiple

cores and SIMD support. While we tune and evaluate on a specific platform described in Sec-

tion 2.4, our approach is applicable to most modern shared-memory nodes with processors

supporting SIMD. Further, our approach is fully compatible with multi-node implementa-

tions; it will simply accelerate the work done on each node.

In this chapter, We study a system with Intel Skylake cores. In each cycle, each core can

execute two AVX-512 arithmetic instructions (e.g., vector fused multiply-add, or VFMA),

read two cache lines (64B) and write one cache line from/to the L1 data cache, and retire

four instructions. Each core has 32 vector registers, a 32KB L1 data cache, a 1MB L2 cache

and a 1.375MB non-inclusive shared L3 cache.

We implement our work as new convolution kernels in MKL-DNN [45], a highly tuned

DNN library. We specialize the kernels according to the size of the convolution and the hard-

ware parameters via JIT compilation. Prior works also demonstrated that JIT-ing achieves

higher performance than statically-tuned BLAS-calls for convolution [46, 47]. Because for a

given convolutional layer, we only JIT the kernels once during the whole training process,

the kernel generation overhead is virtually non-existent. Being low-level software, our imple-

mentation can be incorporated to DNN frameworks like TensorFlow [48] or PyTorch [49].

2.3 SPARSETRAIN ALGORITHM

2.3.1 Näıve Forward Propagation

SparseTrain is based on direct convolution. Algorithm 2.1 describes a näıve vectorized

approach that skips computation in the forward propagation upon detecting a zero input.
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Line 2 and Line 5 represent collapsed loop nests. For simplicity, the algorithm assumes

unit stride, but can be easily expanded for strided convolution. In the rest of the chapter,

we assume unit stride unless otherwise specified. The sparse algorithm for the backward

input propagation is similar to that of the forward propagation, and we will talk about the

backward weight propagation separately.

The main idea is as follows. Since an input element is reused R × S × K times, by

making the input stationary in the computation loop nest, we may skip at most R× S ×K
operations when we detect a zero. We parallelize along the minibatch dimension (N) and

vectorize along the output channel dimension (K). The statement in Line 6 represents a

vector fused multiply-add (VFMA) instruction with SIMD width V . A VFMA computes

a vector MAC operation. When we detect a zero in Line 3, we skip all of the following

R×S×K/V ineffectual VFMAs. We denote the number of skippable VFMAs per check as

T , which is usually large because K is often on the order of hundreds.

Algorithm 2.1: Näıve Vectorized Sparse FWD.
input : input D, filters G
output : output Y

1 for i = 0 to N − 1 in parallel do
2 for c = 0, y = 0, x = 0 to C − 1, H − 1,W − 1 do
3 if Di,c,x,y 6= 0 then
4 for k = 0 to K − V step V do
5 for u = 0, v = 0 to R− 1, S − 1 do
6 Yi,[k:k+V−1],x−u,y−v = Yi,[k:k+V−1],x−u,y−v +Di,c,x,y ×G[k:k+V−1],c,u,v

The näıve algorithm has several downsides. First, it naturally has input parallelism: it

compares each D element to zero and then updates multiple Y elements. Input paral-

lelization requires atomic updates of Y , which drastically reduces performance. Output

parallelization is generally faster. The simplest such approach is to let each core work on

different images in the minibatch. However, common practice on training on CPU clusters

is to assign, to each multicore, only a small minibatch. As a result, it is likely that different

cores will get a different number of images, resulting in load imbalance.

The second downside is that a CPU has a limited amount of logical vector registers; this

is 32 in the CPU we target. If T = R × S × K/V is greater than the number of logical

registers, we must spill registers during computation, inducing overhead. Therefore, we want

to confine T within the register budget.

Finally, D has an unpredictable sparsity pattern, triggering frequent branch mispredictions

in the zero-checking. Limiting T to the register budget (∼32) reduces our chance to amortize
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the misprediction penalty.

2.3.2 Optimized Forward Propagation

To improve the näıve forward propagation, we introduce the following optimizations whose

high-level ideas are presented in Algorithm 2.2.

Algorithm 2.2: Parallel Vectorized Sparse FWD.
input : input D, filters G
output : output Y

1 for i = 0 to N −M step M in parallel do
2 for y = 0 to H − 1 in parallel do
3 for v = 0 to S − 1 do
4 for k = 0 to K −Q step Q in parallel do
5 for c = 0 to C − V step V do
6 for i′ = i to i+M − 1 in parallel do
7 for x = 0 to W − 1 do
8 m[0:V−1] = [d 6= 0 for d in Di,[c:c+V−1],x,y+v]

9 for c′ = 0 to V − 1 do
10 if mc′ is true then
11 for k′ = k to k +Q− V step V do
12 for u = 0 to R− 1 do
13 Yi′,[k′:k′+V−1],x−u,y = Yi′,[k′:k′+V−1],x−u,y +

Di′,c+c′,x,y+v ×G[k′:k′+V−1],c+c′,u,v

Vectorized Zero-Checking

The näıve algorithm compares D elements to zero one at a time. To improve it, we vector-

ize this check along the input channel dimension (C). Specifically, Line 8 in Algorithm 2.2

does a vector comparison to zero to generate a vector boolean mask m[0:V−1]; each mask bit

is set if the corresponding input element is not zero. We then use the mask to determine

whether to skip computation.

Increasing Output Parallelism

In a convolution, a D element affects a set of spatially-grouped Y elements. Similarly, a

Y element is calculated from a limited set of spatially-grouped D elements. This allows us
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to increase output parallelism by reducing T .

We parallelize at an output row granularity. When a core works on an output row, it

processes the D elements from S corresponding input rows, one row at a time. This approach

lowers T from R×S×K/V to R×K/V . Moreover, if R×K/V is still larger than the number

of ISA registers, we further reduce T to avoid register spilling. We accomplish this by tiling

the output channel dimension (K) and decrease T to R × Q/V , where Q is a factor of K

and a multiple of V . We will discuss how we choose Q in the next section. We can process

the same output row at different output channel tiles in parallel. With T = R × Q/V , the

number of parallel tasks rises from N in the näıve algorithm to N ×H ×K/Q.

Since an input row corresponds to S output rows, multiple cores may read a given input

row. In a shared memory system, such reuse may be captured in a shared cache.

Efficient Vector Register Usage

A VFMA has three operands: one accumulator vector and two multiplicand vectors. In the

target ISA, one multiplicand vector can be a memory operand. In modern Intel and AMD

microarchitectures such as Skylake and Zen, the L1 read bandwidth matches the VFMA

throughput (2 per cycle per core) [50]; thus, utilizing the memory operand does not slow

down the computation.

When we translate Line 13 of Algorithm 2.2 to a VFMA instruction, we use the mul-

tiplicand vector G[k′:k′+V−1],c+c′,u,v as a memory operand. We broadcast Di′,c+c′,x,y+v to all

lanes of a vector register and use the register as the other multiplicand vector. Note that

all T = R × Q/V VFMAs in the loop from Lines 11-13 share this broadcasted D ele-

ment. Finally, each VFMA needs a dedicated vector register to hold the accumulator vector

Yi′,[k′:k′+V−1],x−u,y. Therefore, we need T + 1 vector registers for a given T .

The target ISA has 32 zmm vector registers. Algorithm 2.2 keeps a vector of zeros for the

vector compare instruction in Line 8. Hence, there are 31 vector registers available. Because

we need T + 1 vector registers, we limit T to 30 in order not to spill the registers.

Besides avoiding register spilling, we further reduce memory operations. As shown in

Lines 7-13, we scan through an input row and update the affected Y elements accordingly.

We call such a scan a Row Sweep. Figure 2.1 illustrates examples of how we optimize both

memory access and register usage during a row sweep.

Due to a convolution’s spatial nature, adjacent D elements may contribute to overlapping

Y elements, depending on the filter width R and the horizontal stride O. Consider the

example in Figure 2.1a. When R = 3 and O = 1, Di,c,x,y contributes to Yi,[k:k+V−1],[x−2:x],y.

The next element Di,c,x+1,y contributes to Yi,[k:k+V−1],[x−1:x+1],y. Thus, both D elements
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Yi,[k:k+V-1],x-2,y Yi,[k:k+V-1],x-1,y Yi,[k:k+V-1],x,y

zmm0 zmm1 zmm2

contributes to
Di,c,x,y

Yi,[k:k+V-1],x-1,y Yi,[k:k+V-1],x,y Yi,[k:k+V-1],x+1,y

zmm0 zmm1 zmm2

contributes to
Di,c,x+1,y

x+1 during a 
row sweep

Load from memory

Store to memory

Transfer Transfer

(a) When proceeding to the next D element during a row sweep, we do not store and then reload the
output Y vectors affected by both the current and the next inputs. However, a näıve implementation
requires transferring data between registers.

Yi,[k:k+V-1],x-2,y Yi,[k:k+V-1],x-1,y Yi,[k:k+V-1],x,y

zmm0 zmm1 zmm2

contributes to
Di,c,x,y

Yi,[k:k+V-1],x-1,y Yi,[k:k+V-1],x,y Yi,[k:k+V-1],x+1,y

zmm1 zmm2 zmm0

contributes to
Di,c,x+1,y

x+1 during a 
row sweep

Load from memory

Store to memory

Remain in the same registers

(b) Cyclic register renaming further avoids transferring data between registers.

Figure 2.1: Examples of how SparseTrain minimizes both memory access and moving data
between registers during a row sweep when R = 3 and O = 1.

contribute to Yi,[k:k+V−1],[x−1:x],y. As a result, as x increments, we can keep Yi,[k:k+V−1],[x−1:x],y

in the registers. We only need to save Yi,[k:k+V−1],x−2,y to memory and load Yi,[k:k+V−1],x+1,y

from memory. Consequently, each Y vector is only read and written once during a row

sweep.

However, although the shared Y vectors can stay in the registers as x advances, a näıve

implementation that statically uses registers according to the spatial order of the convo-

lution still requires transferring the Y vectors from one register to another. For example,

in Figure 2.1a, zmm[0:2] hold the Y vectors affected by a D element in the order from

left (lower index in the W dimension) to right (higher index in the W dimension). As x

increments, the Y vector in zmm[1:2] needs to be transferred to zmm[0:1]. Modern mi-

croarchitectures typically eliminate such register-to-register moves at the register allocation

stage to bypass executing them in the back-end [50]. Nevertheless, the move instructions

still consume front-end resources.

To avoid the move instructions, we devise a software scheme that simulates register re-

naming. As illustrated in Figure 2.1b, we use zmm[0:2] to hold the Y vectors. When
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working on Di,c,x,y, zmm0 holds Yi,[k:k+V−1],x−2,y, zmm1 holds Yi,[k:k+V−1],x−1,y, and zmm2 holds

Yi,[k:k+V−1],x,y. After moving on to Di,c,x+1,y, zmm0 proceeds to load Yi,[k:k+V−1],x+1,y while

Yi,[k:k+V−1],x−1,y and Yi,[k:k+V−1],x,y are kept in their previous registers.

This scheme requires unrolling the row sweep loop, starting on Line 7. For large W , fully

unrolling can lead to kernels larger than the instruction cache. Since the cyclic renaming

repeats every R iterations, we instead unroll by a factor of R to limit code size.

The number of registers used, how they are cyclically renamed, and the unrolling factor all

depend on the parameters R and O. As a result, statically compiled code cannot implement

this scheme. Hence, it is crucial to use JIT compilation.

Because R and V are fixed by the convolution configuration and the hardware, respectively,

the only tunable parameter in T = R ×Q/V is Q. As a result, the register budget is often

underutilized. To see why, assume that we want Q to be a factor of the number of output

channels K, so blocks have the same size. When R = 5, V = 16, and K = 256, which is a

typical number of channels, a reasonable maximum value of Q is 64. As a result, T = 20.

Recall that we have 32 vector registers in total, and we use 2 vector registers for other

uses: one to hold an all-zero vector and the other to hold the broadcasted input D element.

Therefore, 10 registers are unused.

In such cases, we use the spare registers to pipeline the load of the Y vector affected by the

next D element. Consider the registers in Figure 2.2 that hold Y vectors when processing

Di,c,x,y. Figure 2.2a is the case without pipelining. With R = 3 and O = 1, we need 3

registers along the W dimension. Because we vectorize along the K dimension, with Q = 32

and V = 16, we need Q/V = 2 registers along the K dimension. Therefore, we allocate

6 registers in total. In this case, we load Yi,[k:k+V−1],x,y and Yi,[k+V :k+2V−1],x,y from memory.

Di,c,x,y contributes to both of them.

Figure 2.2b is the case with pipelining. Because Q/V is unchanged in the example, we also

need 2 registers along the K dimension. If we have 2 spare registers, we use them to preload

Y vectors along the W dimension, i.e., we preload Yi,[k:k+V−1],x+1,y and Yi,[k+V :k+2V−1],x+1,y.

The next Di,c,x+1,y contributes to them, but the current Di,c,x,y does not. In this way, the

VFMAs depend on loads from an earlier iteration so that the out-of-order hardware can

dispatch the VFMAs sooner. Note that, with pipelining, the unroll factor of the row sweep

loop becomes R + 1 instead of R.

We need (R + 1)×Q/V registers as output buffers with pipelining or R ×Q/V without

it. Therefore, we want the number of output buffer registers to be maximized but no higher

than the budget, which is 30 as discussed. At K = 256 and V = 16, the optimal values of Q

for common values of the filter width R are shown in Table 2.2. The values of Q are 128 for

R = 1 with pipelining, 128 for R = 3 without pipelining, and 64 for R = 5 with pipelining.
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Yi,[k+V:k+2V-1],x-1,y Yi,[k+V:k+2V-1],x,y
zmm4 zmm5

Yi,[k:k+V-1],x-1,y Yi,[k:k+V-1],x,y
zmm1 zmm2

Load from memory

Yi,[k+V:k+2V-1],x-2,y
zmm3

Yi,[k:k+V-1],x-2,y
zmm0

(a) Without pipelining, 6 registers are used.

Yi,[k+V:k+2V-1],x-1,y Yi,[k+V:k+2V-1],x,y Yi,[k+V:k+2V-1],x+1,y
zmm5 zmm6 zmm7

Yi,[k:k+V-1],x-1,y Yi,[k:k+V-1],x,y Yi,[k:k+V-1],x+1,y
zmm1 zmm2 zmm3

Load from memory

Yi,[k+V:k+2V-1],x-2,y
zmm4

Yi,[k:k+V-1],x-2,y
zmm0

(b) With pipelining, 8 registers are used. The pipelined loads are marked with gray background.

Figure 2.2: Example allocations of the output buffer registers that hold Y vectors affected
by Di,c,x,y when R = 3, O = 1, Q = 32, and V = 16.

Table 2.2: Optimal value of Q for K = 256 and V = 16 at different R.

R Q Pipelined? # of output buffer registers T

1 128 Yes 16 = (R+ 1)Q/V 8 = RQ/V
3 128 No 24 = RQ/V 24 = RQ/V
5 64 Yes 24 = (R+ 1)Q/V 20 = RQ/V

For R = 1, we found that the alternative of Q = 256 without pipelining is slower. This

is because when processing each D element in a row sweep, we compute R ×Q/V VFMAs

and load Q/V number of Y vectors from memory. Thus, the compute to load ratio is R.

When R = 1, the ratio is so low that pipelining provides substantial benefit by hiding the

load latency.

Reducing Branch Mispredictions

As discussed, the optimal T is ≤ 30 on the target CPU. Under this constraint, the zero

checking and skipping method in Lines 8-13 of Algorithm 2.2 may induce so many branch

mispredictions that the code actually slows down. To address the issue, we transform a

series of branches to a single loop and reduce the number of branches by a factor of V . With

many fewer branches, we drastically reduce the overall misprediction penalty.

Algorithm 2.3 shows the method that can replace Lines 8-13 in Algorithm 2.2. First, we

compare the input vector to zeros to generate a mask (Line 1, which maps to Line 8 in
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Algorithm 2.2). This is done with the vcmpps instruction on the target CPU. Then, we use

popcnt (Line 2) to count the number of 1s in the mask, which represents the number of

non-zero elements in the input vector. After that, the code loops this number of times as

shown in Lines 3-10, where each loop iteration processes a non-zero element from the input

vector.

Algorithm 2.3: Zero Checking for Branch Performance.
input : input pointer D, filter pointer G
output : register array Y

constant: filter offset B
1 m[0:V-1] = vect cmp neq zero(D[0:V-1]);
2 o = population cnt(m[0:V-1]);
3 for i = 0 to o− 1 do
4 z = trailing zero cnt(m);
5 D += z; G += z * B;
6 for j = 0 to Q/V fully unrolled do
7 for k = 0 to R fully unrolled do
8 Y[j][k][0:V-1]+=broadcast(D[0])*G[j][k][0:V-1]

9 m = shift right(m, z+1);
10 D += 1; G += B;

In each iteration, we first count the number of trailing zeros (z) in the mask with the

tzcnt instruction (Line 4). Then, we advance the input pointer by z, to reach the next

non-zero element in the input vector. We also advance the filter pointer such that it points

to the filter elements corresponding to the given non-zero input element. Finally, we do the

VFMAs.

We fully unroll the loop nest in Lines 6-8. The Y[j][k][0:V-1] vectors shown in the

loop body are actually in the output buffer registers, which are allocated though the cyclic

renaming scheme discussed earlier. Finally, we shift the mask to the right by z+1 to reflect

that we have finished processing the rightmost non-zero input element (Line 9), and also

adjust the input and filter pointers accordingly (Line 10).

For readability, we omit some low-level optimizations in Algorithm 2.3. Specifically, we

pipeline the vector compare instruction such that the vector mask for the next iteration is

generated during the current iteration. In this way, we can overlap the compute from the

current D element with the load of the next D element. We also manually schedule and

pipeline the integer instructions in the loop body to minimize dependence stalls. Moreover,

we use shifts and load effective address (lea) instructions to reduce the strength of the integer

multiplications and the number of integer instructions. In the end, each loop iteration of
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Lines 3-10 only contains 8 cheap integer instructions plus the VFMAs.

Memory Access Optimization

We structured both the working sets and the loop nest carefully for high memory perfor-

mance. First, we set the lowest dimension of the datasets to a channel tile of size V . On

the target CPU, this is the zmm vector register size and the cache line size. Recall that we

vectorize the computation along channels. Therefore, when the channel tile is aligned to a

cache line boundary, vector instructions operate efficiently on a vector of channel data.

We have 3 working sets, with different behaviors: the input D, the filters G, and the

output Y . D and Y have spatial locality in a row sweep. Each row element from them

is loaded/stored only once per row sweep, and adjacent elements in a row are accessed

consecutively. Such a streaming pattern benefits from hardware prefetching when we assign

the second lowest dimension to the row dimension. We may also strategically software-

prefetch the elements of the next row to the L2 cache when the line fill buffers (LFB) are

not saturated.

In contrast, G has temporal locality in a row sweep. Since we compute partial results for

W×Q output elements from W×V input elements in a row sweep, we access Q×V ×R filter

elements repeatedly. With the R and Q values listed in Table 2.2, when R = {3, 5}, 24KB or

20KB of G elements are used per row sweep. Thus, on a machine with a 32KB L1-D cache,

the next set of G elements needs to be loaded from the L2 or below when the input/output

channels of focus change. To counter the issue, we block the minibatch dimension (N) with

a tile size of M to reuse each G element M times, as in Lines 1 and 6 in Algorithm 2.2.

The heuristic is that M = 16 is appropriate for most convolution configurations.

Layers such as ReLU, pooling, LRN, normalization, and batch concatenation can be ef-

ficiently implemented on the same layout that the convolutional layers use [46], so in most

cases we do not need to transpose the activations between layers.

2.3.3 Backward Propagation by Input (BWI)

For a unit-stride convolution, BWI is virtually the same as FWD, with the exception that

the filters are flipped. However, non-unit strides introduce some differences. Specifically,

when applying the register usage optimization described earlier with horizontal stride O > 1,

in FWD, we load Q/V new Y vectors into the accumulator registers after we finish processing

O vectors of D. However, in BWI, we load O×Q/V new ∂L/∂D vectors into the accumulator

registers after we finish processing one ∂L/∂Y vector.
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Also, in a FWD row sweep, some D elements may contribute to a number of Y vectors

that is less than T due to the horizontal stride; however, in a BWI row sweep, except for the

image boundaries, an ∂L/∂Y element always contributes to T ∂L/∂D vectors. We generate

the appropriate number of skippable VFMAs through JIT.

Finally, the unroll factor of the row sweep loop in FWD is W ×O; it is the least common

multiple of W and O in BWI.

2.3.4 Backward Propagation by Weights (BWW)

Algorithm 2.4 is a näıve sparse algorithm for BWW. It checks for zeros in D. We can

easily modify the algorithm to check for zeros in ∂L/∂Y instead, if we expect more sparsity

in ∂L/∂Y of the target layer. In Algorithm 2.5, we improve on Algorithm 2.4 by applying

output-parallelization and similar optimizations used in FWD and BWI, with some changes.

Algorithm 2.4: Näıve Vectorized Sparse BWW.
input : input D, output gradients dY
output : filter gradients dG

1 for i = 0, c = 0, y = 0, x = 0 to N − 1, C − 1, H − 1,W − 1 do
2 if Di,c,x,y 6= 0 then
3 for k = 0 to K − V step V do
4 for u = 0, v = 0 to R− 1, S − 1 do
5 dG[k:k+V−1],c,u,v = dG[k:k+V−1],c,u,v +Di,c,x,y × dYi,[k:k+V−1],x−u,y−v

In Algorithm 2.5, we vectorize the zero-checking along the minibatch dimension (N) in-

stead of the channel dimension as in FWD and BWI, reflected in Line 7. This is because

in BWW, the destination of the VFMA operation, dG[k:k+V−1],c,u,v, changes as the input

channel c changes. As a result, if we vectorize the zero-checking along the input channel

dimension (C), we need to store the previous group of dG[k:k+V−1],c,u,v vectors to memory

and load a new group before entering the loop starting at Line 10, and this frequent register

spilling may harm performance significantly. Luckily, because dG[k:k+V−1],c,u,v is minibatch-

invariant, all input elements from the vector D[i:i+V−1],c,x,y+v contribute to the same group

of dG[k:k+V−1],c,u,v vectors. Therefore, vectorizing the zero-checking along the minibatch

dimension avoids spilling the registers.

Due to the change in vectorization scheme, we transpose D such that the lowest dimension

is a minibatch tile of size V . This allows us to load D vectors directly as opposed to gathering

from locations apart.
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Algorithm 2.5: Parallel Vectorized Sparse BWW.
input : input D, output gradients dY
output : filter gradients dG

1 for i = 0 to N − V step V do
2 for y = 0 to H − 1 do
3 for v = 0 to S − 1 in parallel do
4 for k = 0 to K −Q step Q in parallel do
5 for c = 0 to C − 1 in parallel do
6 for x = 0 to W − 1 do
7 m[0:V−1] = [d 6= 0 for d in D[i:i+V−1],c,x,y+v]

8 for i′ = 0 to V − 1 do
9 if mi′ is true then

10 for k′ = k to k +Q− V step V do
11 for u = 0 to R− 1 do
12 dG[k′:k′+V−1],c,u,v = dG[k′:k′+V−1],c,u,v +

Di+i′,c,x,y+v × dYi+i′,[k′:k′+V−1],x−u,y

In a row sweep, a core works on R×Q filter gradients. Because the total number of filter

gradients is R× S ×K × C, the maximum parallelism becomes S × C ×K/Q.

Since the set of filter gradient elements is constant during a row sweep, if we limit the

number of filter gradient vectors being worked on, which is T = R × Q/V , to the register

budget, they can stay in the registers during the entire row sweep. Consequently, we do not

apply the cyclic register load/store and renaming scheme described in Section 13. This also

lifts the restriction on the unrolling factor for the row sweep loop so that it can be chosen

freely.

Instead of loading the previous partial results of the ∂G vectors at the beginning of a row

sweep, and storing the new partial results to memory at the end, we clear the accumulator

registers at the beginning and store the VFMA results in them during a row sweep. At the

end, we load the previous partial results and add them to the accumulator registers as the

new partial results, and we immediately store them back to memory afterwards. Therefore,

the filter gradient elements are only accessed twice in succession at the end. We also prefetch

the filter gradient elements in software at the beginning. With this optimization, we do not

need to tile the minibatch dimension to reuse the filter elements.

The two multiplicand vectors of the VFMA instructions in BWW are the broadcasted

input element Di+i′,c,x,y+v in a vector register and the ∂L/∂Y vector dYi+i′,[k′:k′+V−1],x−u,y as

a memory operand.
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2.3.5 Generalization to Other Hardware

We implement SparseTrain with AVX-512’s vector FMA and vector comparison instruc-

tions. Other ISAs beyond x86, such as ARM Neon [51], also support them. Nevertheless, the

techniques are generalizable to ISAs without them. Without vector comparison, we may fall

back to comparing each scalar element to zero. Note that we still need to compare a batch of

scalar elements at once and then apply Algorithm 2.3 to combat branch misprediction. On

machines without vector FMA, SparseTrain is actually more effective. This is because with

scalar FMAs, the number of skippable instructions per zero input is much higher, which can

more easily hide the branch misprediction penalty.

Our general idea is also applicable to GPUs. On CPUs, the main challenge is to reduce

branch misprediction. On the other hand, on GPUs we need to minimize control divergence,

which happens when threads in the same SIMD group, or warp in CUDA terms, take dif-

ferent paths in a control sequence. One possible solution is to let threads in a given warp

compare the same input with zero simultaneously; therefore, all threads in the same warp

may either issue or skip the computation. However, the method only works with general

MAC computations, and not with hardware accelerated GEMM instructions such as Nvidia’s

Tensor Core MMA instructions, which compute a GEMM tile directly [52]. As a result, it

may be hard for a GPU SparseTrain implementation to beat the Tensor Core accelerated

GEMM. Nevertheless, the method can be useful on GPUs without a hardware GEMM ac-

celerator (e.g., the integrated GPUs used for inference on edge devices [53]), or when we

desire higher precision than the one supported by the accelerator.

2.4 EXPERIMENTAL SETUP

We build SparseTrain as new kernels in MKL-DNN [45]. We use the xbyak JIT assem-

bler [54] to generate the code. Because TensorFlow [48] uses MKL-DNN as the backend

library on CPUs, we also integrate our new kernels into TensorFlow. We evaluate full net-

work training/inference using TensorFlow with the SparseTrain-augmented MKL-DNN.

We use MKL-DNN ’s direct convolution as the baseline, which we refer to as direct. MKL-

DNN has three other implementations of convolution: (1) a method that first flattens the

inputs with im2col and then applies a GEMM, (2) a vectorized Winograd convolution [55] for

unit-stride 3×3 convolutions only, and (3) a special kernel that optimizes 1×1 convolutions.

We compare SparseTrain to them when applicable.

We run our experiments on an Intel Skylake-X server with 6 cores. Each core has two

AVX-512 vector units, 32KB L1 I- and D-caches, and a 1MB L2 cache. There is a non-
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inclusive 8.25MB shared L3 cache. We disable hyperthreading as well as dynamic frequency

scaling. We run 6 threads in parallel.

We evaluate SparseTrain with VGG16 [42], ResNet-34, and ResNet-50 [43]. Batch Nor-

malization (BatchNorm) [56] affects SparseTrain’s effectiveness because when the conv-

BatchNorm-ReLU structure is present, ∂L/∂Y becomes dense. Since VGG16 does not

employ the structure, SparseTrain benefits all of its FWD, BWI, and BWW. However, the

two ResNet variants have the structure. Therefore, SparseTrain does not accelerate their

BWI. Zhang et al. [57, 58] demonstrated that, with proper initialization and data augmenta-

tion, one can train ResNet without BatchNorm with marginal accuracy loss. Therefore, we

also experiment with the BatchNorm-free ResNet-50, called Fixup ResNet-50. To preserve

the activation sparsity in both the forward pass and the backward pass, we use a variant of

the Fixup ResNet that does not contain a scalar bias between each ReLU and its subsequent

conv layer.

We first examine SparseTrain’s training performance with CIFAR-10 [59] as a proof of

concept, and then evaluate with the larger ImageNet-1K [44] data set. Because CIFAR-10

is small, we train ResNet-34 with SparseTrain from end to end, and time all conv layers to

obtain the training performance. However, training multiple DNNs with ImageNet on a small

CPU server takes an unreasonable amount of time, so we adopt the following sampling-based

method:

1. We train a network from scratch on GPUs. During training, we checkpoint models at

each epoch.

2. For each epoch, we randomly sample 5 mini-batches. For each mini-batch, we run a

training iteration with SparseTrain using the checkpoint model. We record the average

execution time from the 5 samples as SparseTrain’s mean performance at the given

epoch.

3. We take the average sampled run time across all epochs as SparseTrain’s mean training

performance.

We observe that the sparsity progression between adjacent epochs is smooth, and that the

randomly-sampled mini-batches have low sparsity variations. Therefore, we are confident

that the sampled performance faithfully approximates the overall training performance.

Since SparseTrain also benefits inference, we use the trained models to evaluate Sparse-

Train’s inference performance.

Besides whole-network performance, we also assess SparseTrain’s performance on individ-

ual layers at various sparsity levels. For this, we generate synthetic inputs with random
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Table 2.3: Evaluated layer configurations from VGG and ResNet v1.5.

Name C K H W R S O P

vgg1 2 64 64 224 224 3 3 1 1
vgg2 1 64 128 112 112 3 3 1 1
vgg2 2 128 128 112 112 3 3 1 1
vgg3 1 128 256 56 56 3 3 1 1
vgg3 2 256 256 56 56 3 3 1 1
vgg4 1 256 512 28 28 3 3 1 1
vgg4 2 512 512 28 28 3 3 1 1
vgg5 1 512 512 14 14 3 3 1 1
resnet2 1a 64 64 56 56 1 1 1 1
resnet2 1b 256 64 56 56 1 1 1 1
resnet2 2 64 64 56 56 3 3 1 1
resnet2 3 64 256 56 56 1 1 1 1
resnet3 1a 256 128 56 56 1 1 1 1
resnet3 1b 512 128 28 28 1 1 1 1
resnet3 2 128 128 28 28 3 3 1 1
resnet3 2/r 128 128 56 56 3 3 2 2
resnet3 3 128 512 28 28 1 1 1 1
resnet4 1a 512 256 28 28 1 1 1 1
resnet4 1b 1024 256 14 14 1 1 1 1
resnet4 2 256 256 14 14 3 3 1 1
resnet4 2/r 256 256 28 28 3 3 2 2
resnet4 3 256 1024 14 14 1 1 1 1
resnet5 1a 1024 512 14 14 1 1 1 1
resnet5 1b 2048 512 7 7 1 1 1 1
resnet5 2 512 512 7 7 3 3 1 1
resnet5 2/r 512 512 14 14 3 3 2 2
resnet5 3 512 2048 7 7 1 1 1 1

sparse patterns and experiment on all but the first conv layers of VGG and ResNet. We use

a batch size of 16 during the experiments. Table 2.3 lists the layer configurations used.

2.5 EVALUATION

2.5.1 Activation Sparsity in Training

Figure 2.3 presents the ReLU output sparsity at each epoch in the end-to-end training

of VGG16, ResNet-34, ResNet-50, and Fixup ResNet-50 with the ImageNet dataset. Each

plot shows numbered segments. Each segment is the output from a conv-ReLU cluster in

VGG16/Fixup ResNet-50, or a conv-BatchNorm-ReLU cluster in ResNet-34/50. Within a

segment, from left (in darker color) to right (in lighter color) shows the sparsity from the

first epoch to the last.

The figure shows that the average sparsity of a layer typically ranges from 20% to 90%.
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(b) ResNet-34.
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(c) ResNet-50.
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(d) Fixup ResNet-50.

Figure 2.3: Measured activation sparsity during training with ImageNet. Each numbered
segment of the x-axis corresponds to a ReLU-activated convolutional layer in the network.
Within a segment, from left to right shows the sparsity from the first epoch to the last.

Later layers generally have higher sparsity then earlier ones [16]. In addition, we also discover

that, in the ResNet variants, the sparsity of adjacent layers fluctuates periodically. This is

caused by the shortcut in each residual block, which adds positive biases before ReLU and,

therefore, lowers the sparsity.

The conv-ReLU cluster and the conv-BatchNorm-ReLU cluster result in different sparse
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inputs to each training component. We list them in Table 2.4. Note that D of a convolutional

layer is from the cluster before the layer, while ∂L/∂Y of a convolutional layer is from the

cluster that contains the layer.

Table 2.4: The sparse input to different training components of conv layers.

FWD BWI BWW

VGG16 D ∂L/∂Y D and ∂L/∂Y
ResNet-34 D N/A D
ResNet-50 D N/A D
Fixup ResNet-50 D ∂L/∂Y D and ∂L/∂Y

The table shows that, in vanilla ResNet-34/50, BWI has no sparse input at all due to

BatchNorm, making SparseTrain ineffective. In this case, one may prefer to use a dense

kernel instead. When we evaluate whole-network training, we substitute SparseTrain with

direct for ResNet-34/50’s BWI.

On the other hand, when BatchNorm is absent such as in VGG16 and Fixup ResNet-

50, BWW’s both inputs (D and ∂L/∂Y ) are sparse. Therefore, with heuristics or online

profiling, one can configure SparseTrain to take advantage of the input that has a higher

sparsity.

2.5.2 Whole-Network Performance

We now present SparseTrain’s whole-network performance. Figure 2.4 shows the end-to-

end training (a) and inference (b) time of the convolutional layers with different networks

and algorithms. For each network and algorithm, the execution time is normalized to that of

direct. For training, we break the time into FWD, BWI, and BWW. Because SparseTrain is

not applicable to the first layer in the network due to the input images often being zero-free,

we show the first layer as a separate component.

In the figure, the SparseTrain bars correspond to using only SparseTrain, or in the case

of the ResNet-34/50, using SparseTrain for FWD and BWW and direct for BWI. The

win/1x1 bars correspond to using the Winograd convolution or the optimized 1x1 kernel

when possible; otherwise, we use direct. The combined bars combine the fastest algorithm of

each layer. Finally, we find that the method using im2col plus GEMM is consistently over

2x slower than direct, so we omit it in the figure.

In general, the CIFAR-10 and the ImageNet results are similar. SparseTrain achieves

notable speedups on all networks. In contrast, Winograd performs well on VGG16 but worse

on ResNet. Further, its performance with CIFAR-10 is much lower because it performs badly
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Figure 2.4: Breakdown of the execution time of all convolutional layers from different net-
works, normalized to the dense direct convolution.

with small input width and height. Since CIFAR-10 has small input images (32 × 32), the

input width and height are as low as 4 in the later layers.

Table 2.5 lists the speedups of the different algorithms over direct, both including and

excluding the first layer. The first layer contributes 1-3% of the execution time of CIFAR-

10 ResNet-34 and VGG16, but rises to 9-12% for the ImageNet ResNet variants. This is
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because the ImageNet ResNet variants have costly 7× 7 first layers.

Table 2.5: Speedup of the different algorithms over the dense direct convolution on all of
the evaluated networks’ convolutional layers at realistic sparsity levels.

Including the first layer Excluding the first layer
SparseTrain win/1x1 combined SparseTrain win/1x1 combined

Training

CIFAR-10 ResNet-34 1.35x 0.71x 1.47x 1.36x 0.70x 1.48x

ImageNet

VGG16 2.15x 1.66x 2.35x 2.19x 1.68x 2.40x
ResNet-34 1.31x 0.99x 1.48x 1.37x 0.98x 1.58x
ResNet-50 1.28x 1.08x 1.39x 1.31x 1.09x 1.44x
Fixup ResNet-50 1.45x 1.08x 1.53x 1.51x 1.09x 1.62x

Inference

CIFAR-10 ResNet-34 1.50x 0.91x 1.55x 1.51x 0.91x 1.57x

ImageNet

VGG16 1.83x 1.60x 2.09x 1.88x 1.63x 2.15x
ResNet-34 1.48x 1.10x 1.61x 1.64x 1.12x 1.83x
ResNet-50 1.36x 1.08x 1.41x 1.44x 1.09x 1.50x
Fixup ResNet-50 1.36x 1.08x 1.43x 1.44x 1.09x 1.52x

We can see that, when including the first layer, SparseTrain speeds up the training of the

convolutional layers in the studied networks by 1.28-2.15x. By choosing the best algorithm

for each layer, we can speed up training by 1.39-2.35x. The speedup on VGG16 is notably

higher than that on the ResNet variants because: (1) VGG16 has higher dynamic sparsity,

and (2) VGG16 does not have BatchNorm, so SparseTrain is applicable to its BWI. Note that

SparseTrain speeds up Fixup ResNet-50 by 1.45x instead of 1.28x on the original ResNet-50.

The reason is also the absence of BatchNorm. Without including the first layer, the speedups

of SparseTrain are 2.19x, 1.37x, 1.31x, and 1.51x for VGG16, ResNet-34, ResNet-50, and

Fixup ResNet-50, respectively, with ImageNet.

For inference, when including the first layer, SparseTrain speeds up the conv layers in

the studied networks by 1.36-1.83x. The numbers increase to 1.41-2.09x after choosing the

best algorithm for each layer. Without including the first layer, the speedups of SparseTrain

are 1.88x, 1.64x, 1.44x, and 1.44x for VGG16, ResNet-34, ResNet-50, and Fixup ResNet-50,

respectively, with ImageNet. Overall, SparseTrain delivers good speedups over the state-of-

the-art across networks for end-to-end training and inference.

2.5.3 3× 3 Convolutional Layers

We now consider SparseTrain’s performance on individual convolutional layers with differ-

ent filter sizes. We first discuss 3× 3 (R = S = 3) filters, which have become more popular

than larger filter sizes in recent years.
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Figure 2.5 shows the speedup of SparseTrain at 0-90% sparsity, of im2col, and of Winograd

over direct, for FWD, BWI, and BWW on the 3 × 3 layers from the evaluated networks.

Table 2.6 lists the mean speedup at various levels of sparsity.
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Figure 2.5: Speedup of the different algorithms over the dense direct convolution on the
individual 3× 3 layers at different sparsity levels.

The table shows that, at 0% sparsity (i.e., a dense input), SparseTrain reaches 92-95%

of direct ’s performance on average, depending on the component. This indicates that the

overhead to check for and exploit sparsity is low, and the loop order, as well as the tiling

strategy of SparseTrain are effective.

Table 2.6: Mean speedup at various sparsity for 3× 3 layers.

SparseTrain
im2c. win.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

FWD 0.92 0.96 1.04 1.13 1.24 1.38 1.56 1.79 2.11 2.48 0.33 1.45
BWI 0.93 0.98 1.06 1.15 1.26 1.40 1.58 1.81 2.10 2.45 0.31 1.48
BWW 0.95 0.98 1.03 1.10 1.18 1.30 1.48 1.76 2.23 3.15 0.37 1.44

The speedups of SparseTrain increase with the sparsity. On average, the sparsity cross-

over point for SparseTrain to outperform direct is between 10-20%, which is lower than

the observed sparsity during training. At 50% sparsity, which is the expected value at the

beginning of the training when the distribution of the weights is centered at 0, SparseTrain

on average delivers a 1.30-1.40x speedup. Typically, the later layers in a network have higher

sparsity than the earlier layers. For the later layers, the sparsity reaches over 90% for VGG16

and ResNet-34, and over 80% for ResNet-50. At such levels, SparseTrain is on average over

2x faster than direct.
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im2col is always significantly slower than direct. Although GEMM on CPU is highly opti-

mized, the flattening of the inputs through im2col incurs severe time and memory overhead.

Winograd is only applicable to unit-stride layers. For these layers, Winograd is on average

1.44-1.48x faster than direct. However, because the Winograd algorithm transforms the

problem to the “Winograd space,” it has two drawbacks. First, the transformation introduces

numerical instability as the filter size increases, so its application is usually limited to 3× 3

layers [60]. Second, it requires additional workspace memory.

SparseTrain performs better at later layers (e.g., vgg5 1 ), while Winograd dominates at

earlier layers (e.g., vgg1 2 ). This is partly due to the increased sparsity at later layers; on

average, it takes at least 50-60% sparsity for SparseTrain to surpass Winograd. The other

reason is that early layers have a smaller number of channels, which limits the number of

skippable VFMAs per input element, and thus reduces the efficiency of SparseTrain. For

example, both vgg1 2 and resnet2 2 have C and K of 64, giving us only 12 skippable VFMAs

in SparseTrain. Overall, since SparseTrain and Winograd have different specialties, they can

supplement each other.

SparseTrain for BWI delivers similar performance as for FWD with unit-stride. However,

for stride-2 layers (layers with the /r suffix in Figure 2.5), BWI is slower than FWD. As

discussed in Section 2.3.3, ∂L/∂D needs to be loaded O2 times more rapidly during a row

sweep in BWI than Y being loaded in FWD. Therefore, BWI suffers from cache bandwidth

limitations.

2.5.4 1× 1 Convolutional Layers

1 × 1 layers (R = S = 1) are widely used in ResNet-50’s bottleneck blocks. They are

unique amongst convolutions in that the spatial reuse of R× S is absent.

Figure 2.6 shows the speedup of SparseTrain at 0-90% sparsity, of im2col, and of the

specialized 1x1 kernel over direct, for FWD, BWI, and BWW on the 1 × 1 layers from the

evaluated networks. Table 2.7 lists the mean speedup at various levels of sparsity.

SparseTrain exploits a convolution’s high compute-to-memory ratio. However, the ratio

for 1 × 1 layers is 9x lower than that for 3 × 3 layers with the same input/output/channel

sizes. Thus, as we eliminate useless VFMAs, 1 × 1 layers may become bandwidth-bound

sooner than 3 × 3 layers. Therefore, at high sparsity, SparseTrain is less effective on 1 × 1

layers than on 3× 3 layers, only reaching 1.66-2.04x speedups on average at 80% sparsity.

We also notice that BWW behaves differently than the other two components. At 0%

sparsity, SparseTrain’s performance is on par with the direct for FWD and BWI. For BWW,

though, SparseTrain only attains 71% of direct. However, at high sparsity, SparseTrain’s
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Figure 2.6: Speedup of the different algorithms over the dense direct convolution on the
individual 1× 1 layers at different sparsity levels.

Table 2.7: Mean speedup at various sparsity for 1×1 layers.

SparseTrain
im2c. 1x1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

FWD 0.97 0.98 1.03 1.09 1.17 1.27 1.39 1.51 1.66 1.78 0.62 1.06
BWI 1.03 1.03 1.08 1.15 1.22 1.33 1.43 1.53 1.66 1.76 0.91 1.08
BWW 0.71 0.76 0.83 0.92 1.05 1.20 1.39 1.66 2.04 2.61 0.87 1.23

speedup is higher for BWW than for FWD and BWI.

The difference between BWW and FWD stems from two competing factors, both related

to how BWW accesses ∂L/∂Y against how FWD accesses Y . First, BWW uses a different

loop order, and in a row sweep touches V times more elements from ∂L/∂Y than FWD

touches Y at 0% sparsity. Second, BWW reads ∂L/∂Y elements as a memory operand of a

VFMA. When we skip a group of VFMAs, we also skip the access to the ∂L/∂Y elements.

At high sparsity, we eliminate many such accesses. In contrast, FWD loads and stores Y

elements using the cyclic register allocation scheme. Therefore, the Y elements are loaded

and stored regardless of sparsity pattern. As a result, at low sparsity, BWW performs many

more memory accesses, and at high sparsity, performs many fewer. This effect is less visible

at 3× 3 layers due to their higher compute-to-memory ratio; however, it is very obvious at

1× 1 layers.

The fewer channels in earlier 1× 1 layers hurts SparseTrain more than they do in earlier

3×3 layers due to the absence of spatial reuse. For example, resnet2 1a has 64 for C and K,

resulting in only 4 VFMAs being skippable per zero-checking. Consequently, we can hardly

see any speedup from SparseTrain on earlier 1×1 layers. Nonetheless, we can still efficiently

leverage the dynamic sparsity in later 1× 1 layers.
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As shown in Table 2.7, on average, the cross-point sparsity for SparseTrain to surpass the

specialized 1x1 kernel is around 20% for FWD, at 0% for BWI, and around 40% for BWW.

In addition to 1× 1 and 3× 3 layers, we also experimented with several 5× 5 layers from

AlexNet [1] and GoogLeNet [61] and got even higher speedups. We omit the results due to

lack of popularity of the 5 × 5 layers. Finally, we confirmed that SparseTrain’s execution

time scales linearly with minibatch size N by experimenting with N = {32, 64}.

2.5.5 Mitigating Branch Misprediction Penalty

The unpredictable loop branch in Line 3 of Algorithm 2.3 accounts for most of the branches

in SparseTrain because it is in the innermost loop. Moreover, the rest of the branches are

all predictable. Therefore, it is crucial for Algorithm 2.3 to hide the branch misprediction

penalty. To evaluate the performance of Algorithm 2.3, we design a study that quantifies the

performance headroom that SparseTrain has if the branch in Line 3 was instead predictable.

In Algorithm 2.3, branch mispredictions stem from an unpredictable number of non-zero

elements in an input channel vector (o in Line 2). In our study, we eliminate the mispre-

diction at steady state by using special input data that has a fixed number n of non-zero

elements per input channel vector. With this input, a local history predictor can easily

predict the loop branch. In the experiments, we vary n from 1 to 15 (which is the value of

V − 1). As a result, the sparsity of the input is 1− n/V for a given n.

Figure 2.7 shows the speedup from eliminating branch mispredictions at steady state in

Algorithm 2.3, at selected sparsity levels. The 3 × 3 layers are on the top, and the 1 × 1

layers are at the bottom. Each bar shows SparseTrain’s FWD execution time with a random

input (with branch misprediction) over SparseTrain’s FWD execution time with the special

input (without branch mispredictions), at different sparsity levels.

In most 3 × 3 layers (Figure 2.7a), SparseTrain sets the number of skippable VFMAs

(T ) to 24. As a result, the misprediction penalty is well hidden. Consequently, eliminating

misprediction generally provides only up to 5% speedup.

There are, however, some exceptions. First, vgg1 2 and resnet2 2 both have a small

output channel of K = 64. Therefore, SparseTrain can only set T to 12, which is insufficient

to fully hide the misprediction penalty. Second, the stride-2 layers (layers with the /r suffix)

have a variable T that is on average less than 24, exposing some of the penalty. As a result,

eliminating misprediction speeds up these layers as sparsity increases, reaching up to 35%

for resnet2 2 at 87.5% sparsity.

The 1× 1 layers (Figure 2.7b) have a lower T of ≤ 16 due to a lack of spatial reuse. The

worst case is resnet2 1a and resnet2 1b, whose T is only 4. For these layers, eliminating
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Figure 2.7: Speedup over SparseTrain FWD when branch mispredictions in Algorithm 2.3
are eliminated.

misprediction can yield over 50% speedup at high sparsity. Nonetheless, Algorithm 2.3

performs relatively well on other 1× 1 layers, leaving only a small room for improvement.

In conclusion, while Algorithm 2.3 is less effective as T decreases, it performs well and

close to the upper bound on most of the studied layers. Further reducing mispredictions in

software may be hard. However, previous hardware proposals [62] could help: since the loop

trip count is generated outside of the loop body, the count could be communicated to the

branch predictor in hardware, completely eliminating branch mispredictions.

2.6 RELATED WORKS

With the pursuit for higher accuracy, DNN models become larger with more layers. These

computation and memory intensive DNN models bring heavy burden for memory system

and processors. Fortunately, the DNN models are always over-parameterized to approxi-

mate the target function. Various works compress DNN models by eliminating redundant

weights [20, 41]. Weight quantization [63, 64] sacrifices numerical precision to reduce model

size. Structured sparsity [24] is more hardware-friendly, but it is inapplicable to training

and does not exploit dynamic sparsity in the activation.

PruneTrain [23] prunes entire channels and reconfigures the model to a smaller dense

form during training. SparseTrain is orthogonal to it. SparseTrain can further leverage the

activation sparsity after PruneTrain reconfigures the model.

meProp [65] sparsifies the back propagation of LSTMs and MLPs by only propagating a
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small number of gradients in each pass. This reduces back propagation time. Yet, it does

not affect the forward propagation, nor has it been tested on CNNs. Our work is orthogonal

to it and can be applied in conjunction with it.

Several DNN accelerators exploit the sparsity in weights and/or activations. Cnvlutin [31]

leverages activation sparsity to skip ineffectual computations. Eyeriss [37] clock-gates the

hardware when there are zeros in the activation. It saves energy but not cycles. Cambricon-

X [30] skips multiplications associated with pruned weights. EIE [29] exploits sparsity in

both weights and activations of fully connected layers. SCNN [28] leverages sparsity in both

weights and activations of conv layers. These accelerators are application specific, while our

work targets general-purpose processors.

SparCE [38] skips ineffectual code blocks based on a sparse input. It annotates skippable

code blocks in software and tests conditions in hardware. Therefore, it requires hardware-

software co-design. Also, it mainly works on scalar code. We target high-performance SIMD

CPUs and use software only.

ZCOMP [5] adds new instructions to load/store vectors from/to memory in a compressed

form. It perfectly synergizes with SparseTrain because its reduction in memory traffic is

proportional to SparseTrain’s reduction in compute intensity.

Apart from sparsity, algorithmic transformations are developed to speed-up convolution.

Georganas et al. [46] and Zhang et al. [66] demonstrate that on CPUs, well-tuned direct

convolution is much faster than the conventional im2col -based convolution. For larger filter

sizes, the FFT-based convolution [67] accelerates the computation by operating in the fre-

quency space. For smaller 3 × 3 layers, the Winograd algorithm [55] reduces computation

by incorporating the Chinese Remainder theorem. However, the transformation introduces

numerical instability with larger filter sizes and erases the dynamic sparsity in the activation.

Liu et al. [68] restore the activation sparsity with the Winograd convolution by applying

ReLU to the activation after transforming to the Winograd space. However, their approach

changes the network structure. In addition, their focus is to reduce the operation count for

running DNN inference on mobile devices, and they do not target training or an efficient

vectorized implementation.

2.7 CONCLUSION

This chapter tackles the challenges posed by the moderate and dynamic sparsity in DNN

activations with software methods. We present SparseTrain — the first approach that ex-

ploits dynamic sparsity in software for accelerating DNNs on general-purpose CPUs. Sparse-

Train identifies zeros in a dense data representation and performs vectorized computation.
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It is applicable to inference and all major components of training: forward propagation,

backward propagation by inputs, and backward propagation by weights.

We evaluate SparseTrain on a 6-core Intel Skylake-X server. In end-to-end training of

VGG16, ResNet-34, and ResNet-50 with ImageNet, SparseTrain outperforms a highly-

optimized direct convolution on the non-initial convolutional layers by 2.19x, 1.37x, and

1.31x, respectively. In inference, it accelerates the non-initial convolutional layers of the

aforementioned models by 1.88x, 1.64x, and 1.44x, respectively. Overall, SparseTrain is

effective and opens up new research directions in speeding-up computations with modest

sparsity.
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CHAPTER 3: SAVE: SPARSITY-AWARE VECTOR ENGINE FOR
ACCELERATING DNN TRAINING AND INFERENCE ON CPUS

3.1 INTRODUCTION

Although SparseTrain significantly accelerates DNN training and inference on CPUs, it

requires intensive software efforts and only leverages the sparsity in the activations. In order

to speedup legacy DNN software and to also exploit the sparsity in the weights, we further

propose hardware changes to the CPU architecture.

Exploiting unstructured sparsity on SIMD CPUs is challenging. DNN workloads on CPUs

consist of General Matrix Multiplications (GEMMs) that, for high performance, are vector-

ized. The goal is to maximize the utilization of the Vector Processing Units (VPUs) that

perform vector MAC, a.k.a Vector Fused Multiply-Add (VFMA) operations. To exploit un-

structured sparsity, consider a näıve scheme that dynamically checks if vector lane operands

are zero and, if so, skips the corresponding multiplications for those lanes. This approach

can seldom improve performance because the vector instruction still has to wait for the other

lanes to compute their results.

To address this challenge, we observe that VPUs are typically under-provisioned relative

to other features in the core, to meet the needs of common-case applications. For example,

Intel’s Sunny Cove and AMD’s Zen micro-architectures both support 2 VPUs (for 2 VFMA

ops per cycle), yet have allocation/dispatch bandwidths of up to 5 and 6 micro-ops per cycle,

respectively [50, 69]. This implies that in DNN codes, which are dominated by VFMAs, the

VPU reservation stations fill quickly, and are bottlenecked waiting for the VPUs.

Based on this, our key idea is to add hardware that searches through the operands pending

in the Reservation Stations (RS), to find and dynamically schedule effectual operations from

different instructions to available VPU lanes. This chapter presents our new vector pipeline

— the Sparsity-Aware Vector Engine (SAVE). If a VFMA lane can be skipped because it is

ineffectual, SAVE tries to find a pending lane from another VFMA to schedule there. The

result is fewer VPU operations, leading to speedup. SAVE is the first VPU pipeline that

exploits sparsity and has the following properties.

• It exploits unstructured sparsity in both vector multiplicands in a VFMA. It poses no

perceptible performance overhead when the inputs are fully dense.

• It is transparent to software and can accelerate legacy software without any modifica-

tion.
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• It is general-purpose that it does not only benefit DNN workloads; instead, it can

speedup any vector workload that utilizes VFMAs and has zeros in the inputs.

• It requires minor hardware modifications to the existing vector pipeline. Aside from a

basic compaction technique, it also incorporates various optimizations to increase the

efficiency of the compression with small additional hardware cost.

• It leverages the spatial locality in the broadcasts that are common in GEMMs to

prevent the L1-D read bandwidth from becoming a new bottleneck once the compute

is significantly reduced by skipping ineffectual work.

• It supports mixed-precision computations.

To the best of our knowledge, SAVE is the first CPU vector pipeline that exploits un-

structured sparsity. We evaluate SAVE using simulations of a 28-core machine. At realistic

sparsity, SAVE speeds up the convolutional layers and LSTM cells in inference with dense

VGG16, dense ResNet-50, pruned ResNet-50, and pruned GNMT by 1.68x, 1.37x, 1.59x,

and 1.39x, respectively. Further, SAVE accelerates their end-to-end training by 1.64x, 1.29x,

1.42x, and 1.28x, respectively.

3.2 BACKGROUND

3.2.1 Matrix Multiplication

GEMM is the core operation in DNNs. LSTMs[70] and batched MLPs use GEMM as a

building block. Convolution can be computed either through (un)folding a big GEMM[71]

or directly with a series of small GEMMs[46].

Figure 3.1 illustrates a vectorized GEMM on a 2 × 2 tile with 2-lane vectors. In each

step, the vector operation is shown at the top-left. The first step broadcasts the scalar A1,1

to a vector, then element-wise multiplies the vector by B1,[1:2] and finally accumulates the

product into C1,[1:2]. The next three steps similarly multiply different broadcasted scalars

from A and vectors from B, and accumulate into vectors from C.

The GEMM reuses registers to reduce memory traffic. C1,[1:2] and C2,[1:2] are kept in

accumulator registers throughout the computation. Further, (a) and (b) reuse B1,[1:2], while

(c) and (d) reuse B2,[1:2]. Although the broadcasted scalars from A are not reused in the

example, accesses to A exploit spatial locality, e.g., (c) reads A1,2 after (a) reads A1,1. For

larger matrices, tiling may create reuse of A.
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Figure 3.1: Vectorized GEMM with two lanes on a 2× 2 tile.

3.2.2 Instruction Set Architecture for GEMM

We evaluate our ideas in an x86 environment with AVX-512 extensions [72]. However, the

ideas we present are generalizable to other ISAs.

The core of GEMM is multiply-accumulate (MAC). Modern SIMD ISAs, such as ARM

SVE [73] and Intel AVX-512 [72], include VFMA instructions. With AVX-512, a VFMA

takes three operands of up to 512 bits in length each. A single VFMA can operate on 16

single-precision floating-point (FP32) lanes, where each lane i computes:

C ′i = Ci + AiBi (3.1)

The accumulator and the two multiplicands can all be vector registers, or one multiplicand

can be from memory. The memory operand can be a full vector or a scalar broadcasted to

all vector lanes, supporting the use case in Figure 3.1.

When a broadcasted scalar has high reuse, the software may use an explicit broadcast

instruction to fill a vector register with the broadcasted scalar, and then reuse the register

to reduce memory traffic. We call this the explicit broadcast pattern. On the other hand, if

a broadcasted scalar has low reuse, the software may employ VFMA memory operands to

minimize register pressure and increase code density. We call this the embedded broadcast

pattern.

Reduced precision[74] and quantization[75] improve DNN performance. One can use lower

precision multiplicands, but the accumulator often keeps a higher precision [76]. Ven-

dors are adding mixed-precision MACs, such as Intel’s AVX512VNNI (fixed-point) and

AVX512 BF16 (Bfloat-16, or BF16), and ARM’s BF16 extensions[77]. BF16 is a 16-bit

FP format. BF16 and FP32 have the same dynamic range. Training in BF16 yields an

accuracy comparable to that of using FP32, without tuning hyperparameters [7, 74].

A BF16/FP32 mixed-precision VFMA instruction, such as Intel’s VDPBF16PS and ARM’s
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BFDOT, operates on two multiplicand vectors with BF16 elements, and an accumulator

vector with half as many FP32 elements. Two adjacent BF16 lanes map to one FP32 lane,

forming a group. In each group, the instruction computes the dot product of the two-lane

BF16 sub-vectors and then accumulates onto the FP32 accumulator:

C ′i = Ci + A[2i:2i+1] •B[2i:2i+1] (3.2)

We use • to denote vector dot product. VDPBF16PS computes the dot product in hardware

by performing two consecutive MAC operations [72], shown in Figure 3.2.

A2i A2i+1 B2i B2i+iCi

*
*

FP32 BF16 BF16 BF16 BF16

+
+

C ′i = Ci + A2iB2i

C ′′i = C ′i + A2i+1B2i+1

Figure 3.2: Mixed-precision operation in VDPBF16PS.

3.2.3 Performance Bottleneck of DNN Kernels

For compute-bound DNN operations such as convolution, the main bottleneck is the

throughput of the VPU. For example, Intel’s Sunny Cove micro-architecture has 5-wide allo-

cation but only 2 VPUs[69]. Similarly, AMD’s Zen has 6-wide dispatch but only 2 VPUs [50].

As a result, their front-end bandwidth is heavily underutilized in DNN computations.

3.3 SPARSITY-AWARE VECTOR ENGINE

We propose SAVE, a sparsity-aware vector engine for CPUs that skips ineffectual MAC

operations. SAVE is transparent to software and speeds up DNN training and inference by

exploiting unstructured sparsity in weights and activation.

Sparsity in a VFMA is either non-broadcasted (NBS) or broadcasted (BS). NBS occurs

when some elements of a vector are zero; BS occurs when a zero scalar is broadcasted to a

vector. For NBS, SAVE combines the non-zero lanes from multiple VFMAs before issuing

the VPU operation. This is feasible because the front-end bandwidth of server CPUs is

higher than the VFMA throughput. Hence, DNN kernels quickly fill up the reservation

stations (RS) with VFMAs. For BS, SAVE skips the entire VFMA, since it is ineffectual.
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Figure 3.3 shows the execution back-end and memory subsystem of a processor with SAVE.

We show the added logic blocks in gray and the storage in black. In the rest of this section,

we describe the basic SAVE architecture that skips ineffectual computation. In Section 3.4,

we present advanced techniques that increase SAVE’s performance. Finally, Section 3.5

introduces additional SAVE support for mixed-precision VFMAs.
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Figure 3.3: SAVE adds logic units (gray) and storage units (black) to the execution backend
and the memory subsystem. Each block is discussed in the section in the parentheses.

To exploit NBS, we combine effectual lanes from multiple ready VFMAs. We call the set

of ready VFMAs at a given time the Combination Window (CW). Since modern CPUs have

deep RS and ROB, we can have large CWs. However, VFMAs with the same accumulator

have a true dependence, and only the oldest can be ready for execution. Hence, the number

of VFMAs in the CW cannot exceed the number of accumulator registers. We observe that,

for a large enough GEMM, with 32 ISA vector registers, the CW is often 24-28.

A VFMA’s lane i is effectual when both multiplicands at lane i are non-zero. However,

AVX-512 VFMAs can use write masks (WM) for predication, e.g., for dropped weights when

pruning DNNs. The masked-out lanes are ineffectual.

SAVE generates an Effectual Lane Mask (ELM) for each VFMA, with one bit per lane.

We allocate the ELMs from the AVX-512 mask physical register file (RF) to avoid additional

storage cost [72]. In the studied GEMM kernels, one multiplicand is non-broadcasted while

the other is broadcasted; however, we support NBS in both multiplicands A and B for

generality. When A and B (and the WM, if used) of a VFMA are ready, SAVE schedules

them to a Mask Generation Unit (MGU). For each lane, the MGU checks the corresponding

elements from A and B. If both are non-zero and the lane’s WM bit (if present) is set, the

hardware sets the lane’s ELM bit. Figure 3.4 shows this simple logic.

Because the MGU is simple, SAVE replicates it to process instructions in parallel. By

matching the number of MGUs to the issue-width, the MGU throughput is never a bottle-
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Figure 3.4: Multiple Mask Generation Units (MGUs) producing the Effectual Lane Masks
(ELMs) of multiple VFMAs in parallel. The RS shows a single VFMA being worked on.

neck. We do not need the accumulator C of a VFMA to be ready before generating the ELM

for the VFMA. A VFMA enters the CW once all of its operands and its ELM are available.

SAVE merges effectual lanes from multiple VFMAs in the CW into a temporary accu-

mulator and two temporary multiplicands, collectively referred to as temp. To simplify the

logic, SAVE keeps all the elements in their original vector lanes — an approach we refer to

as Vertical Coalescing. Then, it computes a vector MAC in the VPU with the temp.

Algorithm 3.1 describes the scheduling algorithm of vertical coalescing. In each cycle, the

scheduler first clears the temp (Line 1). Then, for each lane position (Line 2), it tests all

entries in the RS simultaneously and finds the first VFMA with an unscheduled effectual lane

in the corresponding position. (Lines 3-9). This is done in a single cycle with conventional

priority-based select logic[78]. If an effectual lane is found, it assigns the input operands to

the temp (Lines 5-6) and records the source VFMA of the lane (Line 7) so that, after the

computation, it can write the lane’s result back to its proper destination. The ELM bit of

a lane is cleared when the lane is assigned to the temp. After that, the scheduler issues a

VPU operation if the temp contains effectual lane(s) (Lines 10-11) and removes from the RS

any VFMA without unscheduled effectual lanes (Lines 12-14).

For simplicity, the algorithm describes scheduling to a single VPU. With N VPUs, each

VPU has a temp. For a given lane position in the temps (Line 2), the algorithm selects

up to N effectual lanes from ready VFMAs and assigns them to the N temps. This is a

common practice when scheduling to multiple functional units [78]. Finally, for any VPU

with a nonempty temp, we issue the compacted computation.

The algorithm can also handle BS because BS resembles a special case of NBS where all

lanes are ineffectual. For BS, since all ELM bits are zero initially, the ineffectual µop is

directly removed from the RS (Lines 12-14).

SAVE uses a VPU’s existing input latch to hold the temp and thus avoids additional

storage. However, SAVE needs to keep track of the source VFMA of each temp lane. The

39



Algorithm 3.1: Scheduling of vertical coalescing
definition: temp operands T , reservation stations RS, vector processing unit V PU ,

effectual lane mask ELM , µop identifier ID, vector length V
1 clear(T);
2 for lane in V in parallel do
3 for µop in RS do
4 if isVFMA(µop) AND ready(µop) AND µop.ELM[lane] then
5 T.accum base[lane] = µop.accum base[lane];
6 T.multiplicands[lane] = µop.multiplicands[lane];
7 T.ID[lane] = µop.ID;
8 µop.ELM[lane] = 0;
9 break

10 if NOT empty(T.ID) then
11 VPU.issue(T);

12 for µop in RS in parallel do
13 if isVFMA(µop) AND empty(µop.ELM) then
14 RS.remove(µop);

bookkeeping overhead is V P log2(NRS) bits per VPU, where V is the vector length, P is the

number of VPU pipeline stages, and NRS is the number of RS entries.

Figure 3.5a illustrates a single compaction via vertical coalescing with four quad-lane

VFMA instructions, I1-I4, in program order. Each accumulator is shown both as an input

(C) and as an output (C ′), which are renamed to separate physical registers. a0-a3 are scalars

broadcasted to all vector lanes. The three right-hand-side (RHS) inputs of the instructions’

effectual lanes are combined into the temp T shown below them. The VPU then produces the

result Res from T . Finally, each lane in Res is written back to the corresponding positions

in the instructions’ destinations. Because T is assembled from only the RHS inputs, in the

rest of this chapter’s figures, we may omit the accumulation outputs for simplicity.

In the example, T gets I1’s lane 0, I4’s lane 1, and I1’s lane 2. Since all of I1’s effectual

lanes are issued, we remove it from the RS. I2 has BS, so it is entirely ineffectual and removed

from the RS directly. No instruction has an effectual lane 3, so T ’s lane 3 is unused. Since

vertical coalescing does not move elements across vector lanes, I3’s lane 0 and I4’s lane 2

cannot fill the hole in lane 3, and must wait. Lane conflicts like this can cause load imbalance

when NBS in the CW is unevenly distributed among lanes.

When an exception occurs, if there are unscheduled effectual lanes from VFMAs that are

before the faulting instruction in program order, the scheduling algorithm keeps executing

until all those lanes complete. On the other hand, completed lanes from VFMAs that are
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a0 a3 a0 /a0 a3 a0 / B0[0] B3[1] B0[2] /B0[0] B3[1] B0[2] /C0[0] C3[1] C0[2] /

I1

I2

I3

T

+ *

+ *

+ *

+ *

a3 a3 a3 a3a3 a3 a3 a3 0 B3[1] B3[2] 00 B3[1] B3[2] 0C3[0] C3[1] C3[2] C3[3]I4 + *

C2'[0] C2'[1] C2'[2] C2'[3]

C1'[0] C1'[1] C1'[2] C1'[3]C1'[0] C1'[1] C1'[2] C1'[3]

C0'[0] C0'[1] C0'[2] C0'[3] =

=

=
C3'[0] C3'[1] C3'[2] C3'[3] =

Res C0'[0] C3'[1] C0'[2] / VPU Compute

(a) A single compaction via vertical coalescing. The data from a VFMA’s effectual lane are assigned
to the same lane in T .

a2 a2 a2 a2a2 a2 a2 a2 B2[0] 0 0 0B2[0] 0 0 0C2[0] C2[1] C2[2] C2[3]

0 0 0 00 0 0 0 B1[0] B1[1] 0 0B1[0] B1[1] 0 0C1[0] C1[1] C1[2] C1[3]C1[0] C1[1] C1[2] C1[3]

a0 a0 a0 a0a0 a0 a0 a0 B0[0] 0 B0[2] 0B0[0] 0 B0[2] 0C0[0] C0[1] C0[2] C0[3]

a0 a0 a2 a3a0 a0 a2 a3 B0[0] B0[2] B2[0] B3[1]B0[0] B0[2] B2[0] B3[1]C0[0] C0[2] C2[0] C3[1]

I1

I2

I3

T

+ *

+ *

+ *

+ *

a3 a3 a3 a3a3 a3 a3 a3 0 B3[1] B3[2] 00 B3[1] B3[2] 0C3[0] C3[1] C3[2] C3[3]I4 + *

C2'[0] C2'[1] C2'[2] C2'[3]

C1'[0] C1'[1] C1'[2] C1'[3]C1'[0] C1'[1] C1'[2] C1'[3]

C0'[0] C0'[1] C0'[2] C0'[3] =

=

=
C3'[0] C3'[1] C3'[2] C3'[3] =

Res C0'[0] C0'[2] C2'[0] C3'[1] VPU Compute

(b) A single compaction via horizontal compression. The data from a VFMA’s effectual lane can
be assigned to any lane in T .

Figure 3.5: Comparison of compaction methods. a0-a3 are scalars broadcasted to all vector
lanes; B0-B3 are vectors that contain non-broadcasted sparsity. Gray lanes are effectual and
assigned to T ; black lanes are effectual but will be scheduled later due to resource limitation;
white lanes are ineffectual lanes. Lanes with “/” in T are unfilled. Arrows show the transfer
of data.

after the faulting instruction are discarded when those VFMAs are squashed. Hence, the

coalescing scheme does not jeopardize precise exceptions.

Another scheme for exploiting NBS is Horizontal Compression. This technique first

bubble-collapses the ineffectual lanes of a VFMA. Then, it concatenates multiple VFMAs’

effectual lanes into the temp. After the computation, it bubble-expands the results. Fig-

ure 3.5b illustrates a single compaction via horizontal compression. In the example, T gets

lanes 0 and 1 from I1’s lanes 0 and 2, lane 2 from I3’s lane 0, and lane 3 from I4’s lane 1.

After issuing the VPU operation, I1-I3 are removed from the RS. Only I4’s lane 2 is left to

be scheduled later.

Horizontal compression does not suffer from lane conflicts. However, bubble-expanding

and collapsing add non-trivial latency and require expensive crossbars. Previous works

have used horizontal compression to reduce the memory traffic in DNN workloads [5, 16].

Using it to reduce memory traffic is acceptable because (de)compression is only performed

when loading from or storing to memory, so using existing permutation hardware in the

VPU is sufficient. However, here we would need to bubble collapse and expand for each
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VFMA instruction, needing additional highly-expensive crossbars to keep up with the VFMA

throughput. Hence, SAVE eschews horizontal compression but embraces vertical coalescing

with additional optimizations to combat load imbalance.

With compaction, the scheduler may fill T with operands from multiple instructions. As

a result, in each cycle, it may read more than the usual number of entries from the vector

register file (RF). We could add read ports to the vector RF for this, but another option

is available. Specifically, for each vector lane, we read only a single set of input elements

(i.e., A, B, and C). Therefore, SAVE adopts a vector RF design where each lane of a vector

register can be accessed independently. With this design, a vector RF with V lanes per

vector register functions analogously to V independent scalar RFs.

3.4 ADVANCED FEATURES

SAVE is enhanced with additional features to improve performance. First, because GEMM

frequently issues vector broadcasts, we add a small high-bandwidth Broadcast Cache to

exploit locality and improve broadcast throughput. Second, to load-balance VPU lanes, we

introduce the Rotate-Vertical Coalescing Scheme and the Lane-Wise Dependence Scheme.

Finally, we disable one VPU when it is idle due to high sparsity, and boost the core frequency.

We now consider each technique.

3.4.1 Broadcast Cache

The basic SAVE design speeds up computation when VFMA throughput is the only bot-

tleneck, such as in the explicit broadcast pattern (Section 3.2.2), when broadcasted inputs

are reused. However, the embedded broadcast pattern is limited by both VFMA throughput

and L1-D cache read bandwidth. For example, in modern architectures such as Intel Skylake

or AMD Zen, the number of L1-D read ports matches VFMA throughput [50]. Since the

design so far does not reduce L1-D traffic, it hardly benefits embedded broadcast.

SAVE is enhanced to reduce memory pressure by exploiting spatial locality in the broad-

casted values. In GEMM, different scalar values in the same cache line are broadcasted

nearby in time. Hence, we capture this locality with a small, read-only cache, called the

Broadcast Cache (B$), that exclusively serves the broadcast load requests.

We propose two B$ designs: one where a line contains the values from the L1-D line that

are broadcasted, and one where a line contains a mask indicating if each element in the L1-D

line is zero. The designs are shown in the left and the right sides, respectively, of Figure 3.6.

In the figure, cache lines hold four vector elements.
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Broadcast Cache

... ...... ...

TAG DATATAG DATA

... ...... ...

77777 7777 ... ...... ...

TAG DATATAG DATA

... ...... ...

... ...

TAG DATA

... ...

... ...

TAG DATA

... ...

L1-D Cache

Load buffer
DATA

0 7 0 90 7 0 9

0 7 0 90 7 0 9

(a) With data, B-cache miss.

Broadcast Cache

... ...... ...

TAG DATATAG DATA

... ...... ...

77777 7777 ... ...... ...

TAG DATATAG DATA

... ...... ...

... ...

TAG DATA

... ...

... ...

TAG DATA

... ...

L1-D Cache

Load buffer
DATA

1 0 1 01 0 1 0

0 7 0 90 7 0 9

=0?=0?=0?=0?=0?=0?=0?=0?

(b) With masks, B-cache miss.

Broadcast Cache

... ...... ...

TAG DATATAG DATA

... ...... ...

00000 0000 ... ...... ...

TAG DATATAG DATA

... ...... ...

... ...

TAG DATA

... ...

... ...

TAG DATA

... ...

L1-D Cache

Load buffer
DATA

0 7 0 90 7 0 9

0 7 0 90 7 0 9

(c) With data, B-cache hit, load from B-cache
without accessing L1-D.

Broadcast Cache

... ...... ...

TAG DATATAG DATA

... ...... ...

00000 0000 ... ...... ...

TAG DATATAG DATA

... ...... ...

... ...

TAG DATA

... ...

... ...

TAG DATA

... ...

L1-D Cache

Load buffer
DATA

1 0 1 01 0 1 0

0 7 0 90 7 0 9

(d) With masks, B-cache hit, broadcast zero
without accessing L1-D.

Broadcast Cache

... ...... ...

TAG DATATAG DATA

... ...... ...

99999 9999 ... ...... ...

TAG DATATAG DATA

... ...... ...

... ...

TAG DATA

... ...

... ...

TAG DATA

... ...

L1-D Cache

Load buffer
DATA

0 7 0 90 7 0 9

0 7 0 90 7 0 9

(e) With data, B-cache hit, load from B-cache
without accessing L1-D.

Broadcast Cache

... ...... ...

TAG DATATAG DATA

... ...... ...

99999 9999 ... ...... ...

TAG DATATAG DATA

... ...... ...

... ...

TAG DATA

... ...

... ...

TAG DATA

... ...

L1-D Cache

Load buffer
DATA

1 0 1 01 0 1 0

0 7 0 90 7 0 9

(f) With masks, B-cache hit, broadcast non-
zero, load from L1-D.

Figure 3.6: Broadcast Cache with data (left) or with masks (right).

In the first B$ design, a broadcast µop checks the B$. On a miss (Figure 3.6a), SAVE

fetches the corresponding line from L1-D, stores it in the B$, and broadcasts the requested

value to the load buffer. Future broadcast µops may hit in the B$, directly obtaining the

broadcasted element from the B$, regardless of whether the element is zero (Figure 3.6c) or

not (Figure 3.6e).

The second B$ design is shown on the right side of the figure. B$ only needs 16 bits

per line, if we assume that the L1-D has 64B lines and 4B elements. When a broadcast

µop misses in the B$, SAVE fetches the requested line from the L1-D and compares each
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element to zero, to generate the mask for the B$ (Figure 3.6b). In addition, it broadcasts

the requested element into the load buffer.

When a broadcast µop hits in the B$, SAVE checks the corresponding mask bit. If set

(Figure 3.6d), SAVE populates the load buffer with zeros and does not read the data from

the L1-D. Otherwise (Figure 3.6f), SAVE fetches the data from the L1-D. Overall, this B$
design needs less storage, but it only skips an L1-D access when broadcasting zeros.

B$’s ideal size depends on how GEMM is register-tiled. We need one B$ line per accumu-

lation buffer for C. The example in Figure 3.1 uses 2 such buffers; therefore, we only need

2 entries in the B$ to capture the locality in A. More generally, the maximum number of

B$ entries needed is the total number of architectural vector registers; the number of accu-

mulation buffers cannot exceed this. In the context of AVX-512 with 32 vector registers, we

give the B$ 32 entries. With a direct-mapped B$, we see > 90% hit rates for all tested DNN

kernels.

This small B$ size allows more ports at a low cost. For our modeled core, 4 read ports are

sufficient. We add additional address generation logic to support the ports. We keep the B$
coherent with the L1-D. Since the broadcasted inputs are read-only in GEMM, we do not

expect B$ invalidations from other cores.

3.4.2 The Rotate-Vertical Coalescing Scheme

Vertical coalescing is sensitive to imbalanced load across lanes. Such imbalance is inherent

when we reuse a register holding non-broadcasted data. Figure 3.7a shows this case. All 3

instructions use register B0. Thus, their sparsity patterns are the same. Therefore, vertical

coalescing cannot assign any effectual lanes from I2 and I3 to T due to conflicts. When

we have such reuse, the effective CW shrinks significantly — the CW size is divided by the

average number of reuses per register.

SAVE improves vertical coalescing by assigning a Rotational State (R-state) to each

VFMA. Depending on the state, we rotate a VFMA’s operands to the left or right by one

lane, or do not rotate them at all. In this way, we limit the rotations and thus the hardware

cost. Rotation eases the imbalance triggered by register reuse. We call this Rotate-Vertical

Coalescing.

Figure 3.7b shows an example. Figure 3.7b is like Figure 3.7a except that the operands

of I2 and I3 are rotated right and left, respectively, both by one lane. After the rotations,

the effectual lanes from the 3 instructions no longer conflict. The 3 R-states increase the

effective CW by up to 3x.

Keeping copies of differently rotated operands consumes more physical registers; there-
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a2 a2 a2 a2a2 a2 a2 a2 B0[0] 0 0 0B0[0] 0 0 0C2[0] C2[1] C2[2] C2[3]

a1 a1 a1 a1a1 a1 a1 a1 B0[0] 0 0 0B0[0] 0 0 0C1[0] C1[1] C1[2] C1[3]C1[0] C1[1] C1[2] C1[3]

a0 a0 a0 a0a0 a0 a0 a0 B0[0] 0 0 0B0[0] 0 0 0C0[0] C0[1] C0[2] C0[3]

a0 / / /a0 / / / B0[0] / / /B0[0] / / /C0[0] / / /

+ *

+ *

+ *

+ *

I1

I2

I3

T

(a) Vertical coalescing cannot combine lanes from instructions sharing a
non-broadcasted multiplicand.

a2 a2 a2 a2a2 a2 a2 a2 0 0 0 B0[0]0 0 0 B0[0]C2[1] C2[2] C2[3] C2[0]

a1 a1 a1 a1a1 a1 a1 a1 0 B0[0] 0 00 B0[0] 0 0C1[3] C1[0] C1[1] C1[2]C1[3] C1[0] C1[1] C1[2]

a0 a0 a0 a0a0 a0 a0 a0 B0[0] 0 0 0B0[0] 0 0 0C0[0] C0[1] C0[2] C0[3]

a0 a1 / a2a0 a1 / a2 B0[0] B0[0] / B0[0]B0[0] B0[0] / B0[0]C0[0] C1[0] / C2[0]

+ *

+ *

+ *

+ *

I1

I2

I3

T

Accumulator IS 
rotated

Broadcasted multiplicand 
is NOT rotated

Non-broadcasted 
multiplicand IS rotated

(b) Rotate-vertical coalescing. The operands from instruction I2 are ro-
tated right one lane; those from I3 are rotated left one lane.

Figure 3.7: Operand rotation combats load imbalance in vertical coalescing.

fore, SAVE applies two optimizations to minimize the additional registers needed. First,

because all scalar elements in the broadcasted multiplicand is the same, rotating it makes no

difference. Hence, SAVE uses a single copy of the broadcasted multiplicand for all rotations.

This is also reflected in Figure 3.7b.

Second, SAVE assigns the same R-state to instructions with the same logical register

as their accumulator; this ensures that a VFMA producing an accumulator and a VFMA

consuming it are rotated the same way. Consequently, SAVE can keep a single copy of

each accumulator. To implement it, SAVE determines an instruction’s R-state by taking

the logical register number for the accumulator, and performing a modulo operation with

the total number of rotational states, which is 3. This also relieves SAVE from bookkeeping

each instruction’s R-state since it can be easily inquired through a table lookup.

With the two optimizations, SAVE only needs to store up to 3 copies of each non-

broadcasted multiplicand (one for each R-state). Since the multiplicands are highly reused

in GEMM kernels, the actual number of additional registers needed is low. We observe that,

when running a typical explicit broadcast kernel, rotation consumes less than 25% addi-

tional registers. The number is much lower, less than 5%, when running a typical embedded

broadcast kernel. We found that the size of the physical vector register file in the baseline

micro-architecture does not become a bottleneck with such additional consumption. As a

result, we do not expand the register file.
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3.4.3 The Lane-Wise Dependence Scheme

Current SIMD processors track data dependences at the vector register granularity. A

dependent VFMA is ready when all lanes in the source VFMA complete. We call this a

Vector-Wise Dependence, which may create false dependences between VFMAs when vertical

coalesing is employed.

We say that a dependent VFMA’s lane i falsely depends on a source VFMA when, 1)

lane i in the source is ineffectual or completed, and 2) some lanes in the source are not

completed. Under these conditions, the inputs for the dependent’s lane i are available, but

we cannot schedule the lane. When the distances of true (RAW) dependences are short,

false dependences frequently block otherwise issueable lanes.

Figure 3.8a is an example of a false dependence. For simplicity, we consider two-lane

vectors. Since I1’s lane 1 is ineffectual, we want to issue I2’s lane 1 simultaneously with

I1’s lane 0. However, since both instructions accumulate into C0, a vector-wise dependence

requires I2 to wait.

a1 a1a1 a1 B1[0] B1[1]B1[0] B1[1]C0[0] C0[1]C0[0] C0[1]

a0 a0a0 a0 B0[0] 0B0[0] 0C0[0] C0[1]C0[0] C0[1]

a0 /a0 / B0[0] /B0[0] /C0[0] /C0[0] /

I1

I2

T

+ *

+ *

+ *

(a) Vector-wise dependence.

a1 a1a1 a1 B1[0] B1[1]B1[0] B1[1]C0[0] C0[1]C0[0] C0[1]

a0 a0a0 a0 B0[0] 0B0[0] 0C0[0] C0[1]C0[0] C0[1]

a0 a1a0 a1 B0[0] B1[1]B0[0] B1[1]C0[0] C0[1]C0[0] C0[1]

I1

I2

T

+ *

+ *

+ *

(b) Lane-wise dependence.

Figure 3.8: Vector-wise dependence prevents I2’s lane 1 from issuing with I1’s lane 0. Lane-
wise dependence does not.

SAVE eliminates false dependences by enforcing dependences at the lane level, called Lane-

Wise Dependence. In this case, a dependent VFMA’s lane i is ready as soon as the source

VFMA’s lane i completes. Figure 3.8b illustrates that the scheme allows I2’s lane 1 to be

issued along with I1’s lane 0. This is compatible with rotate-vertical coalescing because, as

discussed, instructions with the same accumulator have the same R-state; thus, their lanes

are still aligned after the rotation.

The näıve way to implement lane-wise dependence is to replicate the dependence logic for

each lane. SAVE circumvents this by recognizing that the execution of VFMAs with the

same accumulator respects true dependences. We honor dependences by scheduling effectual
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lanes in program order.

First, SAVE does not stall a VFMA if its only unresolved dependence is its accumulator’s

true dependence on a prior VFMA’s accumulator. For example, in Figure 3.8b, as soon as

a0, B0, and C0 are available for I1, and a1 and B1 are available for I2, SAVE marks both I1

and I2 ready, despite the fact that I2’s accumulator C0 still depends on I1’s C0. Then, when

SAVE schedules with Algorithm 3.1, for each lane, it selects the pending effectual lane from

the earliest ready VFMA in program order in Lines 3-9. For example, SAVE schedules I1’s

lane 0 before I2’s lane 0 because I1 is earlier in program order. Prioritizing by program order

is a well-known heuristic in conventional select logic and has mature implementations [78].

3.5 MIXED-PRECISION TECHNIQUES

Recently, manufacturers started to support mixed-precision VFMAs [76, 77], mostly for

DNNs. The x86 implementation was described in Section 3.2.2. We now extend SAVE to

apply the techniques in Section 3.3 and 3.4 to mixed-precision VFMAs.

For mixed-precision VFMAs, SAVE uses rotate-vertical coalescing to skip ineffectual FP32

Accumulator Lanes (ALs) in the C vector. However, because two BF16 Multiplicand Lanes

(MLs) map to one FP32 AL, an AL is ineffectual only if both MLs are ineffectual. Conse-

quently, sparsity in the multiplicands is typically not fully exploited.

Consider the example in Figure 3.9, which omits rotation for simplicity. It shows 2 ALs,

each mapped to 2 MLs. The dot product (denoted with •) of MLs [0 : 1] accumulates into

AL 0, and that of MLs [2 : 3] accumulates into AL 1. In the figure, I1’s ML 1 is ineffectual.

However, one cannot skip I1’s ML 1 because I1’s AL 0 needs to be scheduled due to I1’s

ML 0 being effectual. Consequently, we cannot schedule I2’s AL 0 in this cycle. On the

other hand, we can skip I1’s AL 1 and schedule I2’s AL 1 because ML 2 and 3 for I1 are

both ineffectual. Hence, T receives I1’s AL 0 and I2’s AL 1. However, MLs 1 and 3 in T

are ineffectual. In general, if the multiplicands have random sparsity patterns, the level of

exploitable sparsity is the square of the actual sparsity. e.g., when the multiplicands are

50% sparse, we only leverage 0.52 = 0.25 or 25% sparsity.

3.5.1 Horizontal Compression on Multiplicands

To address the above problem, SAVE combines effectual MLs from multiple VFMAs with

the same accumulator. For example, assume that two instructions, I1 and I2, both accumu-

late to C0. Their ML [2i:2i+ 1] map to AL i. Suppose that the ML 2i+ 1 of I1 and the ML
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C0[0] C1[1]C0[0] C1[1]

C1[0] C1[1]C1[0] C1[1]

C0[0] C0[1]C0[0] C0[1]

a1 a1 a1 a1a1 a1 a1 a1 0 B1[1] B1[2] 00 B1[1] B1[2] 0

a0 a0 a0 a0a0 a0 a0 a0 B0[0] 0 0 0B0[0] 0 0 0

a0 a0 a1 a1a0 a0 a1 a1 B0[0] 0 B1[2] 0B0[0] 0 B1[2] 0

+ • 
+ • 

+ • 

FP32 Accumulator lanes BF16 Multiplicand lanes
I1

I2

T

Figure 3.9: Vertical coalescing is inefficient for mixed-precision. An accumulator lane can be
skipped only when both multiplicand lane pairs mapped to it are ineffectual. The operator
• stands for the dot product of two-lane multiplicand sub-vectors.

2i of I2 are both ineffectual. Their computation for AL i becomes:

I1 : C0i = C0i + A02iB02i + 0

I2 : C0i = C0i + 0 + A12i+1B12i+1

(3.3)

We can combine the two operations into a single one as:

C0i = C0i + A02iB02i + A12i+1B12i+1 (3.4)

We may combine the MLs via either horizontal compression or vertical coalescing, and

both methods are correct with real number arithmetic. However, horizontal compression

maintains the accumulation order, while vertical coalescing does not. Preserving the order

is crucial to produce deterministic results with floating-point arithmetic.

For example, Figure 3.10a vertically combines I1’s ML 0 and I2’s ML 1. I2’s ML 1 is

accumulated into C0 before I2’s ML 0. This changes the accumulation order. In contrast,

Figure 3.10b horizontally schedules I1’s ML 0 and then I2’s ML 0, therefore preserving the

accumulation order. The figures show the accumulated results in both cases, in Res.

For this reason, SAVE uses horizontal compression to combine MLs from mixed-precision

VFMAs with the same accumulator. In Section 3.3, we claimed that SAVE forsakes hor-

izontal compression on the 16-lane vector due to hardware complexity. However, in the

mixed-precision case, it is acceptable to perform horizontal compression. This is because

the complexity of the crossbar needed to perform horizontal compression is quadratic to the

number of lanes. For the mixed-precision VFMAs, we permute MLs only within the 2 pos-

sible positions that map to the same AL; for the 16-lane vector, we would need to permute

within 16 possible positions.

SAVE implements horizontal compression within each AL with two cheap 32-bit 4-to-

1 multiplexers, as shown in Figure 3.10c. Each multiplexer selects a pair of A and B

multiplicands from 4 candidates. Furthermore, it only needs bubble-collapsing to compact
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Cbase + a0 * B0[0] + a1 * B1[1]

a0 a0 B0[0] 0Y0C0 = Cbase

Res

C0 a1 a1 B1[0] B1[1]

Cbase a0 a1 B0[0] B1[1]

I1

I2

T

+ • 
+ • 

+ • 

(a) Vertically coalescing multiplicand lanes.

Cbase + a0 * B0[0] + a1 * B1[0]

a0 a0 B0[0] 0Y0C0 = Cbase

Res

C0 a1 a1 B1[0] B1[1]

Cbase a0 a1 B0[0] B1[0]

I1

I2

T

+ • 
+ • 

+ • 

(b) Horizontally compressing multiplicand lanes.

I2

T

a1 a1

a0 a1a0 a1

B1[0] B1[1]

B0[0] B1[0]B0[0] B1[0]

Scheduler

Individual A or B value, 16-bitA and B pair, 32-bit

I1 a0 a0 B0[0] 0

(c) Hardware of horizontal compression for mixed-precision VFMAs. Data pass through the thick
lines in the case of the example in (b).

Figure 3.10: Horizontal compression on multiplicand lanes preserves accumulation order
while vertical coalescing does not.

the inputs into T ; it does not need to bubble-expand the data out of the VPU after the

computation.

3.5.2 Properly Writing Back Results

The above technique produces the correct result for the last instruction in a chain of

VFMAs with the same accumulator. We define any VFMA before the last one in the chain

as an intermediate VFMA. Although all instructions in the chain write to the same ISA

register, with register renaming, their actual destinations are different physical registers.

To be transparent to software and to support precise exceptions, SAVE also needs to write

the correct results of all intermediate VFMAs to the destination physical registers. Taking

Figure 3.10b as an example, the result for I1 should be Cbase + a0×B0[0], and the result for

I2 should be Cbase + a0×B0[0] + a1×B1[0] + a1×B1[1]. However, the intermediate result

computed with the temp is R = Cbase + a0×B0[0] + a1×B1[0], which is the proper result

for neither I1 nor I2. The next step of the computation will issue I2’s ML1 and produce the

correct final result for I2.

By design, a mixed-precision VFMA performs two consecutive accumulations for each

AL. The VPU uses the result from the first accumulation as the base of the second one. To

produce correct values for the destination registers of intermediate VFMAs, we utilize both
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accumulation results.

When either result is available for an AL, we mark the ML that produces the result as

completed. However, we do not write the result to the AL’s destination until both of the

MLs of the AL are completed. Otherwise, if a VPU operation’s second result is not the

final result of an AL for any VFMA, we define it as a partial result. A partial result is

transient in nature and only useful as the base for a future accumulation. Hence, it should

not update the architectural state of any instruction. Furthermore, if an exception happens,

we discard the partial result and recompute it after serving the exception. In SAVE, we

avoid storing the partial result by immediately scheduling the next VPU operation in the

chain, and forwarding the partial result to the VPU as the accumulation base.

3.5.3 Example of a Mixed-Precision VFMA

For simplicity, we show an example instead of listing the complete algorithm. Figure 3.11

illustrates how SAVE generates proper results for a single AL from 3 instructions with the

same accumulator C0. The figure also illustrates the register renaming for the accumulator.

In the following, we assume that a VFMA takes two cycles to finish, and that the first result

is out after one cycle. The instructions have RAW dependence on C0, so the example does

not pipeline the VPU operations.

Figure 3.11a shows the initial state, before any operation occurs. No effectual lane has

been scheduled, and T is empty. In each instruction, C0 is renamed to two physical registers:

one as the accumulation base (e.g., R0 in I1), and the other as the accumulation destination

(e.g., R1 in I1). A subsequent instruction’s accumulation base is renamed to the same

physical register as the previous instruction’s destination (e.g. R1 in both I1 and I2). SAVE

fills T with the accumulation base and the multiplicands. After the computation, SAVE

takes the output result (Res in the figure) and updates the instruction’s destination register

accordingly. The rest of the examples replace C0 with the actual physical registers: R1 to

R3.

In cycle 1 (Figure 3.11b), the initial value of C0 is Cbase, held in R0. We issue the first

VPU operation with ML 0 from both I1 and I2, and use Cbase as the accumulation base.

The ineffectual lanes are marked as completed with a slashed pattern.

In cycle 2 (Figure 3.11c), the first result (Res0) of the first VPU operation is available.

I1’s ML 0 completes. Because both MLs of I1 are completed, we update I1’s destination R1

with Res0.

In cycle 3 (Figure 3.11d), there are two operations. First, the second result (Res1) of the

first VPU operation is produced. We mark I2’s ML 0 as completed. However, since I2’s ML
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Figure 3.11: Example of using mixed-precision VPU operation to properly update the des-
tination registers in a set of instructions using the same accumulator. The completed lanes
of each VFMA are shown in a slashed pattern.
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1 is unprocessed, Res1 is not the result for I2, so we do not write it to I2’s destination R2.

The second operation is scheduling the next VPU operation on accumulator C0. Because

Res1 is the accumulation base, we forward Res1 to the VPU input directly (see forward

arrow to T ). We schedule ML 1 of both I2 and I3 for the next VPU operation.

In cycle 4 (Figure 3.11e), the first result of the second VPU operation (Res2) is out. We

mark I2’s ML 1 complete. Since both MLs of I2 are complete, we update I2’s destination

R2 with Res2. Finally, in cycle 5 (Figure 3.11f), the second VPU operation finishes. The

result Res3 is written back to I3’s destination R3.

Because this design updates every destination register with the correct result, SAVE guar-

antees correct architectural state when completing any mixed-precision VFMA. Hence, SAVE

supports precise exceptions.

3.6 EXPERIMENTAL SETUP

We implement SAVE in the Sniper multicore simulator [79]. Table 3.1 lists the modeled

processor, which resembles the 28-core Intel Skylake Xeon 8180 CPU, with the exception

that we widen the issue-width to 5 µop/cycle, up from 4. This reflects a change in the

newer Sunny Cove architecture. We model the latency and execution ports of common

instructions [80]. We set the latency of a FP32 VFMA to 4 cycles, as in the Skylake; we

set the unknown latency of a mixed-precision VFMA to 6 cycles, since it needs simpler

multipliers but an additional accumulation.

Table 3.1: Architecture configuration.

Core 28 cores, no SMT, 97 RS entries, 224 ROB entries, 5-issue, 1 VPU at 2.1GHz or 2 VPUs at
1.7GHz

B-cache 32 lines direct-mapped, with data or with masks
L1-D/I 32KB/core private, 8-way, LRU
L2 1MB/core private, inclusive, 16-way, LRU
L3 1.375MB/core, shared, non-inclusive, 11-way, SRRIP, NUCA
NoC 2D-mesh, XY routing, 2-cycle hop
Memory 119.2GB/s BW, 6 channels, 50ns latency

In each cycle, the Xeon 8180 can execute up to two 256-bit AVX2 instructions at 2.1GHz

or up to two AVX-512 instructions at 1.7GHz [81]. Because one 512-bit VPU is broken

down into two 256-bit units when executing AVX2 code [50], executing one 512-bit VFMA

draws power comparable to executing two 256-bit VFMAs. Therefore, we evaluate SAVE at

1.7GHz with two 512-bit VPUs and at 2.1GHz with one 512-bit VPU. The baseline has two

512-bit VPUs at 1.7GHz. The core frequency affects L1 and L2 but not L3.
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With the above configurations, we list SAVE’s storage overhead in Table 3.2. We also

model the leakage power and access energy of the broadcast cache (B$) configurations using

CACTI 7.0 [82] at the 22nm process.

Table 3.2: Storage structures in SAVE modeled at 22nm.

Only supports FP32 FP32 and mixed-precision
Size Pleak Eaccess Size Pleak Eaccess

T per VPU 56B N/A N/A 168B N/A N/A
B$ w/ mask 276B 0.24mW 2.9E-4nJ 340B 0.29mW 3.8E-4nJ
B$ w/ data 2260B 3.2mW 1.6E-2nJ 2260B 3.2mW 1.6E-2nJ

We evaluate the training and inference of popular CNNs and LSTMs. To compute the

convolutional (conv) layers and the LSTM cells, we use the kernels from Intel DNNL [83]

(formerly MKL-DNN), a state-of-the-art AVX-512 DNN library.

For CNNs, we choose ResNet-50 [43] and VGG16 [42] on ImageNet-1K [44]. Because

VGG16’s activation sparsity is high [16], evaluating a pruned version would not provide

additional insights. Therefore, we evaluate VGG16 with dense weights. In ResNet-50, the

residual connections lower the activation sparsity by adding positive bias before ReLU. Its

use of batch normalization (BatchNorm) [56] further eliminates the sparsity in the output

gradient during training. Therefore, we evaluate ResNet-50 with both dense and pruned

weights.

For LSTMs, we choose GNMT [84] on WMT’16 EN-DE. Since GNMT does not employ

ReLU, the activation sparsity is from dropout with a constant rate of 20%. The activa-

tion sparsity further diminishes when the input is concatenated with the previous output.

Therefore, we only evaluate GNMT with pruned weights because the activation sparsity is

low.

Table 3.3 lists the types of sparsity (Broadcasted Sparsity or Non-Broadcasted Sparsity)

that are present in inference and in different phases of training. For CNNs, DNNL has two

phases in the backward propagation: propagation of input and propagation of weights. For

LSTMs, the two phases are merged. Note that when training ResNet-50 without pruning,

the backward propagation of input has no sparsity.

Because full training in a simulator is infeasible, we use a sampling method to estimate

SAVE’s performance. First, we need the realistic weight and activation sparsity during full

training runs. For VGG16, we use the sparsity progression reported by Rhu et al. [16]. For

ResNet-50, we profile the sparsity during training with and without pruning. The 90-epoch

dense training gives a 76.7% top-1 accuracy. We prune using a magnitude based method [18]

with the hyperparameters from [21] that yields a 75.4% top-1 accuracy. We start pruning at
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Table 3.3: Types of sparsity in the evaluated networks.

CNN
forward/inference backward input backward weights

BS NBS BS NBS BS NBS

dense VGG16 X X X X
dense ResNet-50 X X
pruned ResNet-50 X X X X

LSTM
forward/inference backward

BS NBS BS NBS

pruned GNMT X X X X

epoch 32 and stop at 80% target sparsity in epoch 60. The training stops at epoch 102. The

weights in each layer are pruned at the same rate. We do not compress the pruned model.

For GNMT, we start pruning at iteration 40K and stop at 90% target sparsity at iteration

190K. The training stops at iteration 340K. The final BLEU score is 28.4 [85].

Figure 3.12 presents the progression of activation sparsity during training. We omit GNMT

since its activation sparsity is constantly 20%. Figure 3.13 shows the schedule of weight

pruning. We assume that, without pruning, the weights are fully dense.

Next, for each layer, we simulate SAVE with both weight and activation sparsity of 0%-

90% at 10% intervals, using a uniform random distribution. The result is a 2D surface of

execution times with 100 different combinations of weight and activation sparsity. We warm

up L3 with the output from the previous DNN operation: for forward propagation, it is the

input activation; for backward propagation, it is the output gradient. The weights and the

layer’s results are cold.

Finally, we calculate SAVE’s mean performance on end-to-end training. For each epoch

and layer, we linearly map the profiled weight and activation sparsity to the 2D surface of

execution times computed above, and obtain the execution time of the layer at the epoch. We

sum all the layers’ execution times at an epoch to get the run time of the whole network at

the epoch. At last, we take the average of all the epochs as SAVE’s mean network execution

time during training.

3.7 EVALUATION

3.7.1 Whole Neural Network Performance

We assess SAVE’s whole-network training and inference performance with all SAVE fea-

tures. We configure the broadcast cache to store the data. Figure 3.14 shows the normalized
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(a) Dense VGG16 training.
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(b) Dense ResNet-50 training.

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

A
ct

. S
p

ar
si

ty

Convolutional layer number

(c) ResNet-50 training with pruning.

Figure 3.12: Activation sparsity during training. Each x-axis segment shows a layer. Within
a segment, from left to right shows the sparsity from the first epoch to the last.

execution time of all conv layers or LSTM cells in the studied networks. For each network,

we show bars for the baseline and for several configurations of SAVE: 1) using two VPUs, 2)

using one VPU at higher frequency, 3) for each training epoch, statically using the better of

one or two VPUs (static bars), and 4) for each DNN kernel, dynamically using the better of

one or two VPUs (dynamic bars). Configuration 3 does not apply to inference because the

switching interval is much coarser than an inference. Configuration 4 neglects any overhead

for enabling/disabling a VPU and changing the frequency. The reason is that the switching

overhead of a typical DVFS manager is around ten microseconds, while our configuration

switches at tens of milliseconds. In addition, a VPU’s warm-up period is even smaller. Each

bar is labeled with the speedup of the configuration over the baseline.

Figure 3.14a and Figure 3.14b are for CNN inference and training respectively. They show

times for dense VGG16, dense ResNet-50, and pruned ResNet-50 at realistic sparsity, each
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Figure 3.13: Schedule of weight pruning.

with FP32 and with mixed precision (MP). The bars are broken down into two or more

categories. For inference and training, we separate the first layer because 1) it does not have

sparse input activations, and 2) it does not compute the back-propagation of input. For

training, we also distinguish between forward propagation and backward input and weight

propagation.

The figures show that SAVE delivers substantial speedups over the baseline. Configuration

4 performs the best: SAVE with mixed precision speeds-ups dense VGG16, dense ResNet-50,

and pruned ResNet-50 by 1.68x, 1.37x, and 1.59x, for inference, and by 1.64x, 1.29x, and

1.42x, for training. The speedups are slightly lower for FP32 and for other configurations.

When SAVE uses a fixed number of VPUs, most workloads perform better with two

VPUs. This is because, while many kernels have high sparsity and can benefit from using

one VPU at higher frequency, some kernels have dense inputs, and thus prefer two VPUs.

For example, the first layer in a CNN has no activation sparsity, and for training the dense

ResNet-50, back-propagation of input has sparsity in neither weights nor activations due to

Batch Normalization [56].

Configuration 3 performs better than using a fixed number of VPUs since the sparsity

level changes during training. Configuration 4 further speeds-ups both training and inference

because each kernel’s input has different sparsity levels.

SAVE achieves higher speed-up on VGG16 than on ResNet-50. One reason is that, in

VGG16, the first layer (which has no activation sparsity) contributes a smaller portion of

the total execution time than in ResNet-50. Also, VGG16 does not incorporate Batch Nor-
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(a) CNN inference.
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(b) CNN end-to-end training.
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Figure 3.14: Execution time of all conv layers or LSTM cells in the studied networks at
realistic sparsity, normalized to the baseline.

malization, so its back-propagation of input has sparsity in the activation gradient. Finally,

VGG16’s activation sparsity is on average higher than ResNet-50’s.

Figure 3.14c and Figure 3.14d are for GNMT inference and training respectively. In
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inference, the bars are not broken down; in training, they are broken down into forward and

backward. We see that SAVE delivers sizeable speedups over the baseline. For the dynamic

configuration, SAVE with mixed precision attains a speedup of 1.39x for inference and 1.28x

for training.

Because LSTM have lower compute-to-memory ratios than CNN, it becomes memory

bound more easily as SAVE reduces computation. Hence, the speedups are on average lower

than on the CNNs. It can be shown that, with two VPUs, the speedup is capped when the

weights are 20% pruned; with one VPU, we continue to see speedup until the weights are

60% pruned.

3.7.2 Boosting Frequency with Fewer VPUs

We study the effect of using one or two VPUs at different core frequencies. Figure 3.15

shows SAVE’s speedup on the ResNet2 2 kernel with two VPUs (a) or one VPU (b) at

different sparsity levels. Each bar group corresponds to a different NBS level. Within a

group, each bar corresponds to a different BS level. At 0% total sparsity, using two VPUs

matches the baseline performance, while using one VPU gives a 29% slowdown. As sparsity

increases, SAVE’s benefit increases. With two VPUs, SAVE’s benefit is capped at 1.49x,

when either the BS or NBS level reaches around 60%. Then, the execution is no longer

throttled by VPU throughput. With one VPU, we benefit from higher sparsity, up to at

least 90% of either type, and reach a maximum speedup of 1.96x. When either type of

sparsity exceeds 70%, one VPU outperforms two.

At high sparsity, the speedup reaches a ceiling because the execution becomes memory,

frontend, or latency bound, depending on the kernel. Unless the execution is L3 or DRAM

bound, higher core frequency usually helps. The speedup caps of the 93 studied kernels are

considered in Figure 3.16, for FP32 and mixed precision (MP), and 2 and 1 VPUs. The

figure counts the number of kernels whose speedup caps are within a range, for conv layers

and LSTM cells. We see that using 1 VPU and boosting the frequency effectively lifts the

caps. For FP32, the geometric mean of the speedup cap is 1.39x with two VPUs and 1.62x

with one VPU. For mixed precision, it is 1.48x with two VPUs and 1.77x with one VPU.

3.7.3 Broadcast Cache Designs

To address the L1-D read bandwidth limitation under an embedded broadcast pattern,

SAVE introduces the B$. We proposed two designs of the B$: one holds data and the other

holds masks. The second design saves storage. However, the requested non-zero elements

58



0.0
0.5
1.0
1.5
2.0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Sp
ee

d
u

p

Non-broadcasted sparsity level

0% BS 10% 20% 30% 40% 50% 60% 70% 80% 90%

(a) Two VPUs at 1.7GHz core frequency.

0.0
0.5
1.0
1.5
2.0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Sp
e

e
d

u
p

Non-broadcasted sparsity level

(b) One VPU at 2.1GHz core frequency.

Figure 3.15: SAVE speedups on the mixed-precision forward propagation of ResNet2 2 with
1 or 2 VPUs.

are always fetched from L1-D. If a workload with embedded broadcast only has BS, this

is not a problem because the reduction in L1-D read requests from sparsity matches the

reduction in VFMA operations. However, if the workload also has NBS, the reduction in

VPU operations may make L1-D bandwidth a bottleneck again.

Figure 3.17 shows the speedups from SAVE with the two B$ designs running a kernel

with an embedded broadcast pattern. It also shows the speedups without a B$. The figure

shows BS levels of 0% and 40%, and different NBS levels. Without a B$, we do not get

speedup at any level of NBS or BS. Without NBS, as BS increases, both types of B$ designs

deliver speedups. However, as NBS increases, B$ with data typically delivers additional
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Figure 3.16: Histograms of the speedup caps. Each bar counts the number of kernels whose
speedup caps are within a range.
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Figure 3.17: SAVE speedups with different B$ designs on the FP32 back-propagation of
weights of ResNet3 2 with two VPUs.

speedup, while B$ with masks does not due to the L1-D bandwidth bottleneck discussed

earlier. Consequently, a B$ is essential to speeding up the embedded broadcast pattern, and

a B$ with data performs much better than a B$ with masks.

3.7.4 Techniques for Load-Balancing VPU Lanes

We now compare vertical coalescing (VC), rotate-vertical coalescing (RVC), lane-wise

dependence (LWD), and combinations of them in an environment with only NBS. We also

include the impractical horizontal compression (HC) for comparison. For HC, we use the

3-cycle latency of AVX-512 vector permutation (i.e., VPERMPS) [80] as the cost of bubble

collapsing/expanding, so we add 6 cycles to VFMA’s latency.

Figure 3.18 shows, for two kernels, the speedups of these techniques over the two-VPU

baseline. We use NBS levels of 0%-90%, 0% BS, and one VPU. We choose two kernels of

back-propagation of input in pruned ResNet-50 because this is the only case when NBS is

present while BS is not (Table 3.3). To correlate the speedups with realistic sparsity, we

list, above the bars, the percentage of training iterations where the NBS of the layer is

±5% of the sparsity written below the bars. Therefore, bars with higher numbers are more

representative.

Recall that adding rotation to VC increases the effective combination window (CW), so

RVC benefits more when the CW is small. On the other hand, LWD tackles the severe false

dependences when the dependence distance is short.

Figure 3.18a shows a kernel that uses 28 accumulators. Both the dependence distance and

the CW size are 28. However, each non-broadcasted multiplicand is reused 28 times, so the

effective CW size is around 1. This is a common situation among kernels with the embedded
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(b) ResNet5 1a FP32 back-propagation of input, effective CW ≈ 3.

Figure 3.18: SAVE speedups with combinations of different techniques for load balancing
VPU lanes.

broadcast pattern. In the figure, we see that VC suffers from severe load imbalance and has

low performance. RVC mitigates the load imbalance and performs well. VC+LWD provides

less benefit than RVC because the effective CW is extremely small while the dependence

distance is long. RVC+LWD performs the best, which indicates that the two optimizations

are synergistic. We also see that RVC+LWD performs close to HC at medium sparsity.

However, HC is slower than RVC+LWD at high sparsity, where the kernel becomes latency

sensitive, and HC’s 6 additional cycles harm performance.

Figure 3.18b shows a kernel that uses 21 accumulators. The dependence distance is 21.

Each non-broadcasted multiplicand is reused 7 times, so the effective CW size is approxi-

mately 3. For this kernel, VC+LWD is more beneficial than RVC. This is because, compared

with the other kernel, the effective CW is larger while the dependence distance is shorter.

Moreover, HC is less effective, since the shorter dependence distance makes the kernel more

sensitive to HC’s additional latency.

Overall, combining the RVC and LWD optimizations gives the best performance across

different kernel behaviors.
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3.7.5 Mixed-Precision Technique

We now consider the impact of SAVE’s optimization on mixed-precision VFMAs. The

technique exploits the sparsity when only some of the MLs mapping to an AL are ineffectual.

Figure 3.19 shows the speedups of a mixed-precision kernel with the one-VPU SAVE, either

with or without SAVE’s mixed-precision (MP) optimization, over the two-VPU baseline.

The experiments are at 0% BS and various NBS levels. As before, we list the percentage

of pruned ResNet-50 training iterations where the NBS of the layer is ±5% of the sparsity

written below the bars. We see that the mixed-precision technique improves speedups at all

sparsity levels, sometimes substantially.
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Figure 3.19: SAVE speedups on the mixed-precision ResNet4 1a back-propagation of input
with SAVE, either with or without SAVE’s mixed-precision (MP) technique.

3.8 RELATED WORKS

The industry has embraced mixed-precision FMA for DNN workloads. Google’s TPU,

NVIDIA’s Tensor Core, and Intel’s Cooper Lake all support mixed-precision DNN train-

ing. Henry et al. [76] suggest that BF16/FP16 systolic arrays may provide 8-32x more

compute potential than a FP32 vector engine. Micikevicius et al. [86] demonstrate that

mixed-precision DNN workloads on Volta GPU see a 2-6x speedup over FP32.

Model pruning [18, 19, 20] sparsifies the weights. Gale et al. [21] pruned weights to

95% with low accuracy loss. However, their unstructured-pruned models can perform badly

on conventional parallel hardware. Structured pruning [22, 24] is hardware-friendly for

inference, but it usually prunes to a lesser degree and results in worse accuracy. It is also

very difficult to exploit structured pruning during training.

PruneTrain [23] prunes entire channels and reconfigures the model to a smaller dense form

during training. Our work is orthogonal to it and both techniques can work together.
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Several accelerators exploit sparsity during inference. Cnvlutin [31] uses activation sparsity

to skip ineffectual computations. Eyeriss [37] clock-gates hardware units when a zero is

detected. It saves energy but not time. Cambricon-X [30] skips multiplications with pruned

weights. EIE [29] exploits weight/activation sparsity with a compressed representation,

but it is limited to matrix-vector multiplication. SCNN [28] accelerates convolutions with

weight/activation sparsity. Proposals targeting CPUs and/or training are scarce.

SparCE [87] saves front-end bandwidth of light-weight CPUs by annotating skippable

code blocks in software and checking for sparse inputs in hardware. It requires co-design

and mainly works on scalar code. SAVE targets high-performance SIMD CPUs with spare

front-end bandwidth and software transparent.

Prior works on reducing memory traffic based on sparsity are complementary to SAVE.

In particular, ZCOMP [5] introduces instructions to load/store compressed vectors. It syn-

ergizes with SAVE since its memory reduction is proportional to SAVE’s computation re-

duction, and SAVE can directly use the vector loaded by ZCOMP for VFMA. Rhu et al.[16]

also use a similar compression method to reduce the PCIe traffic between GPUs and the

CPU.

Control divergence induces ineffectual lanes in GPU SIMT hardware. Fung et al. [88]

dynamically create warps from threads with the same next PC, and they identify the issue

of aligned divergence, similar to the lane imbalance that we face. Rhu et al. [89] tackle

the aligned divergence by statically permuting the thread-to-lane mapping. Their method

is suitable for the coarse-grained control divergence but not the fine-grained lane imbalance

discussed in this work.

Finally, this work is related to works exploring masked execution of conditional operations

in vector code [90].

3.9 CONCLUSION

This chapter presents SAVE, the first sparsity-aware CPU vector engine. SAVE skips

operations on zero values, and combines non-zero operations from multiple VFMA instruc-

tions. It is also transparent to software. SAVE includes optimizations to mitigate VPU

lane imbalance, to alleviate the cache bandwidth bottleneck, and also to exploit mixed-

precision computations. Using simulations of a 28-core machine running DNN workloads at

realistic sparsity, we showed that SAVE accelerates inference by on average 1.37x-1.68x and

end-to-end training by on average 1.28x-1.64x.
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CHAPTER 4: OPTIMIZING GRAPH NEURAL NETWORKS ON CPUS:
REDUCING MEMORY BANDWIDTH NEEDS

4.1 INTRODUCTION

In this chapter, we tackle the memory performance issues caused by sparsity with software

efforts. Traditional DNNs such as CNNs are only applicable to Euclidean data, e.g., an image

represented as a grid of pixels. They lack the power to process non-Euclidean data, such as

graphs [26]. Graphs model a set of objects in the form of vertices and their relationships in

the form of edges. Many important types of data are represented as graphs. For example,

a network of e-commerce products that are purchased together, the biologically meaningful

associations between proteins, a citation network between papers, etc [27]. Graphs are often

irregular. They can have a variable number of unordered vertices, and each vertex may link

to a different number of neighbors. Consequently, operations like convolutions are difficult to

apply in the graph domain [26]. Therefore, there is an increasing demand for a deep learning

model that can operate on graphs. Graph Neural Networks (GNNs) have been proposed to

fill this need. They are proven effective in social science [91, 92], physical systems [93],

knowledge graphs [94], and other domains [95, 96].

CPUs are favorable platforms for GNNs. CPUs’ memory capacity is orders of magnitude

larger than GPUs’. While GPUs have tens of gigabytes of memory, CPUs can be equipped

with terabytes of memory [7]. While larger memory benefits all types of DNNs, it is especially

important for GNNs because real-world graphs often have millions to billions of vertices and

edges, and each vertex and/or edge can attach hundreds to thousands of features. As a result,

a multi-layer GNN may need hundreds of gigabytes of memory to operate on graphs of such

a scale. Although techniques such as neighborhood sampling and vertex mini-batching have

been proposed to cope with GPUs’ limited memory capacity [91], these workarounds often

reduce the accuracy of the network and introduce additional costly operations. Hence, a CPU

has the advantage of being able to work with full-batches. This chapter aims to improve the

performance of full-batch training and inference of GNNs on multi-core CPUs.

While traditional DNN workloads are usually regular and compute-intensive, GNNs are

irregular and often memory-intensive, which is a result of the sparse connections in graphs.

Therefore, GNNs pose distinct performance challenges compared with other DNNs. We

profiled GNN workloads with a state-of-the-art GNN implementation [97] and found that the

executions are heavily DRAM bandwidth bound. Therefore, alleviating DRAM bandwidth

pressure is key to improving performance of GNN workloads on CPUs.

We propose techniques to tackle the DRAM bandwidth problem. A GNN layer is com-
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posed of a memory-intensive aggregation phase, where each vertex collects information from

its neighbors, and a compute-intensive update phase, where a deep learning operator such

as a fully-connected layer processes the collected information [98]. Our first step is to im-

plement an efficient parallel vectorized aggregation primitive. Then, we overlap the memory

movement and the compute by fusing the two phases. The next optimization is based on

the observation that the vertex features in the hidden GNN layers often contain a moder-

ate amount of zeros due to the use of ReLU and dropout. We reduce memory traffic by

(de)compressing the sparse features before writing to and reading from memory. Finally,

we devise a simple yet effective algorithm to improve temporal locality by rearranging the

processing order of the vertices.

We make the following contributions. First, we characterize GNN workloads on CPUs and

identify that DRAM bandwidth is a major bottleneck. Second, we propose optimizations

to relieve the DRAM bandwidth pressure, which are proven effective. We apply the opti-

mizations to both inference and training. Third, we validate our approach with full-batch

computation on medium to large scale graphs up to 111 million vertices and 1.6 billion edges,

on a 22-core server CPU. Our implementation outperforms a state-of-the-art GNN imple-

mentation on layers from popular GNN models by 1.72-1.94x on inference and 1.60-2.63x on

training .

4.2 BACKGROUND AND MOTIVATION

4.2.1 Graph Neural Networks

GNNs have become popular tools to process non-Euclidean data such as graphs, which

has proven to be a hard task for other types of DNNs [26]. We first present the general

formulation of GNNs. Table 4.1 describes the notations used in this chapter.

Table 4.1: List of the symbols.

Description Description

G graph G = (V, E) V vertices of G
E edges of G Dv degree of vertex v
N (v) all neighbors of vertex v S(v) sampled subset of N(v)
eu,v edge between vertex u and v A adjacency matrix
K number of layers H vertex feature vector length
h feature matrix hv feature vector of vertex v
a aggregation feature matrix av aggregation feature vector of vertex v
W update weight matrix b update bias vector
ψ feature processing function
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A deep GNN typically consists of K layers. Each layer contains an aggregation phase and

an update phase [98]. In the aggregation phase of layer k, for each vertex v, we first gather

the feature vector of its neighbors N (v) from layer k − 1. Then, we reduce the gathered

feature vectors and v’s own feature vector from layer k− 1 to create the aggregation feature

vector ak
v through an aggregation function.

ak
v = AGGREGATE(h(k−1)

u | ∀u ∈ N (v) ∪ {v}) (4.1)

In the subsequent update phase, we apply an update function to transform each ak
v to an

output feature vector hk
v for this layer.

hk
v = UPDATE(ak

v) (4.2)

After K layers, each vertex’s feature vector is a function of its neighbors up to K hops

away.

Furthermore, in order to reduce both the computational complexity and the memory

footprint, some networks sample a subset of each vertex’s neighbors before the aggregation

phase. In sampling, we randomly select up to some pre-determined number of neighbors for

each vertex.

S(v) = SAMPLEk(N (v)) (4.3)

The sampling step is essential for executing GNNs with large input graphs on memory-

limited devices such as GPUs and accelerators [91, 99]. In order to fit the footprint in

device memory, one may first divide the graph into mini-batches of vertices. Then, one

may perform a breadth-first search (BFS) to find the K-hop neighborhood of each vertex

in a mini-batch. Finally, only the input feature vectors of the neighborhoods need to be

transferred to the device memory. With a fixed sample size, the upper bound of the working

set of each mini-batch is predetermined.

Different GNN models may adopt various aggregation and update functions. Table 4.2

presents two popular GNN models — the Graph Convolutional Network (GCN) [92] and

GraphSage with the mean aggregator [91].

Table 4.2: Example GNN models

Model Aggregation Update

GCN
∑

h
(k−1)
u /

√
Dv ·Du | ∀u ∈ N (v) ∪ {v} ReLU(Wkakv + bk)

GraphSAGE
∑

h
(k−1)
u /(Dv + 1) | ∀u ∈ N (v) ∪ {v} ReLU(Wkakv + bk)
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Both models use the same update function: a fully-connected (FC) layer activated with

ReLU. Their difference lies in the aggregation function. In GCN, each vertex first normalizes

each neighbor’s and its own feature vectors. It then sums the normalized feature vectors.

In GraphSAGE, each vertex takes the element-wise average of its neighbors’ and its own

feature vectors. Despite the difference, the aggregation functions of the two models both

gather each vertex’s neighbors’ feature vectors, process each gathered feature vector with a

function ψ, and finally perform a reduction. Both models can adopt sampling by replacing

N (v) with S(v) in aggregation.

Training GNNs follows the same principles as training any other type of DNN. The train-

ing process iteratively updates the trainable parameters (e.g. W and b in the two example

models) with a loop of the forward pass and the backward pass. The forward pass computes

the outputs with the current parameters, compares them with the ground truth, and pro-

duces errors. The backward pass propagates error gradients with the chain rule and updates

the parameters accordingly.

Many popular GNN models are relatively shallow. Deeper GNNs suffer from the vanishing

gradient problem, where back-propagating through the network causes over-smoothing that

converges the features of the vertices to the same value. Fortunately, recent works tackle

the problem by applying various techniques such as residual connections to deep GNNs and

prove that deeper networks can outperform shallow ones [100, 101, 102].

As discussed in Section 1.2.3, the adjacency matrices of the input graphs are often stored

in a compressed format due to the connections being highly sparse. In addition, the feature

vectors may be moderately sparse from the use of ReLU and/or dropout. However, the

feature sparsity does not justify using a compressed format, so the feature vectors are kept

in a dense representation.

As GNNs have gained popularity, the community has developed GNN-specific frameworks

on top of general DNN frameworks such as Tensorflow [48] and PyTorch [49]. Widely adopted

GNN frameworks include PyTorch Geometric (PyG) [103] and the Deep Graph Library

(DGL) [104].

4.2.2 GNN on CPUs

Advantages

Although the community has started using GPUs [105] and has proposed several acceler-

ators [32, 33, 106] for GNNs, CPUs are often used for reasons listed in Section 1.1. Among

CPUs’ advantages, the crucial one for GNNs is CPUs’ high memory capacity. Real-world
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graphs can have millions to billions of vertices [107, 108], so the footprint of their feature ma-

trices may occupy tens to hundreds of gigabytes, which far exceeds GPUs and accelerators’

memory capacity. In order to run large input graphs those devices, one may use sampling

and mini-batching described in Section 4.2.1 to confine the working sets. However, sam-

pling and mini-batching have drawbacks. First, the size of the K-hop neighborhood grows

exponentially with the number of layers K. With enough layers, the sub-graph used by a

mini-batch can span all connected components that contain the vertices in the mini-batch.

Under the circumstance, GPU users may be forced to use a tiny mini-batch size to fit the

working sets in the device memory, which vastly under-utilizes the compute capacity [100].

Second, sampling may degrade the network accuracy [91, 105]. Third, both sampling and

the additional BFS introduced by mini-batching induce significant overhead. We profiled

the training of a sampled GraphSAGE on a GPU with different mini-batch sizes. Figure 4.1

shows the breakdown of the training epoch time. The numbers labeled in the figure are the

time spent on sampling plus BFS and the GNN layer computation respectively. The figure

reveals that the sampling and BFS astoundingly contribute to over 90% of the total training

time, and the training time increases significantly as the mini-batch size shrinks.
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Figure 4.1: Training epoch time breakdown of a sampled GraphSAGE on a GPU with
different mini-batch sizes.

While GPUs and accelerators are equipped with tens of gigabytes of memory, CPUs’

memory capacity has reached the order of terabytes [7, 8]. This enables full-batch training

without sampling for large graphs as well as facilitates wider and deeper network structure.

Challenges

GNN computations on CPUs have room for improvement. We profiled GNN trainings on a

CPU with DGL and discovered that the aggregation phase typically constitutes over 80% of
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the execution time. Since the aggregation performs a simple reduction for each vertex after

gathering its neighbors’ feature vectors, it is memory-intensive. Figure 4.2 is a breakdown

of the pipeline slots either doing useful work or wasted on different bottlenecks during a

full-batch training of GraphSAGE on a CPU. The breakdown shows that only 10.1% of the

pipeline slots attribute to useful work. The memory sub-system is a severe bottleneck. 61.7%

of the pipeline slots are stalled due to demanded memory load and stores. 53% of the clock

cycles are stalled due to approaching DRAM bandwidth limit. Furthermore, the profiling

reveals that the L1 data cache (L1D) fill buffer is full almost 100% of the time, hinting

that L1 misses are often satisfied from deep in the memory hierarchy, such as from DRAM.

Therefore, reducing DRAM bandwidth pressure is a key task to optimize GNN workloads.
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Figure 4.2: Breakdown of the pipeline slots spent on retiring micro-ops or stalled by different
bottlenecks during a full-batch training of GraphSAGE on a CPU.

This chapter aims to improve the performance of full-batch training and inference on

multi-core single instruction multiple data (SIMD) CPUs without sampling. For simplicity,

we focus on GCN and GraphSAGE.

4.3 OPTIMIZATION TECHNIQUES

In this section, we present our techniques to optimize GNN execution on multi-core CPUs.

The optimizations in Sections 4.3.1-4.3.3 benefit both training and inference. Compared

with inference, training has distinct characteristics. Sections 4.3.4 discusses techniques that

further optimize training.

4.3.1 Parallel Vectorized Aggregation

Section 4.2.2 discusses that the aggregation phase dominates the execution time of a GNN

layer. Therefore, we first focus on the implementation of an efficient aggregation primitive.
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In aggregation, each vertex, v, first gathers the feature vectors from u ∈ N (v) ∪ {v}, then

performs an element-wise reduction, and finally writes to its aggregation feature vector, av.

This means that, during aggregation, all working sets but ak, are read-only. Therefore,

we output-parallelize the aggregation by letting threads compute different partitions of ak.

Output-parallelization avoids race conditions and thus requires no synchronization among

cores.

Algorithm 4.1 shows our parallel vectorized aggregation. In Line 1, we divide V into chunks

of T vertices. Each parallel task computes the aggregation feature vectors of a chunk. The

processing time of each parallel task correlates with the degrees of the vertices in the chunk.

Because real-world graphs often follow a power law distribution [97], the degrees can vary

significantly. Consequently, each parallel task may take notably different time to finish. To

balance the load among threads, we schedule the parallel tasks with OpenMP’s dynamic

scheduler.

Algorithm 4.1: Parallel vectorized aggregation.

input : graph G = (V, E), input feature matrix hk−1, task size T , vector length V ,
prefetch distance D, reduction operator ⊕, feature processor ψ

output : aggregation feature matrix ak

1 for i = 0 to |V| − 1 step T in parallel do
2 for j = 0 to T do
3 v = Vi+j

4 ak
v = {0}

5 for u ∈ N (v) ∪ {v} do
6 for m = 0 to |ak

v | step V do

7 av[m:m+V−1] = av[m:m+V−1] ⊕ ψ(hk−1
u[m:m+V−1])

8 v′ = Vi+j+D

9 PREFETCH(h
(k−1)
u′ | ∀u′ ∈ N (v′) ∪ {v′})

Each parallel task iterates through the vertices in the assigned chunk and performs ag-

gregation on each one. Lines 4-7 perform aggregation on a vertex, v. Because the feature

vector of each vertex in GNN workloads often has hundreds to thousands of elements, we

vectorize the feature gathering, processing, and reduction (Line 7).

After the aggregation of each vertex, we prefetch the features needed by a later aggregation

with a distance, D (Line 9). Since the execution is mainly DRAM bandwidth bound, the

L1D fill buffer is often full of pending misses. In such cases, adding excessive software

prefetch can actually degrade the performance. Through experiments, we determine that

prefetching the first cache line of each feature vector yields optimal results.
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We use a JIT assembler to generate the aggregation kernel. Dynamically generated DNN

kernels often outperform statically compiled ones. By tailoring the kernel to the layer speci-

fication, the former can use registers more efficiently by using layer-specific constants. It can

also avoid overhead such as unnecessary boundary checking. Moreover, one only needs to

generate the code once during the entire training/inference session because the code is only

specified with the model but not the data. Hence, the overhead of dynamic code generation

is fully amortized [35, 46].

4.3.2 Layer Fusion

As discussed in Section 4.2.2, the two phases in a GNN layer express opposite character-

istics: the aggregation phase is irregular and memory-intensive; the update phase is regular

and compute-intensive. Conventionally, a GNN layer first aggregates all vertices, placing lit-

tle pressure on dense compute hardware but lots on the memory hierarchy, and then updates

the vertices, flipping the hardware utilization.

Layer fusion is a known technique to optimize DNN executions. Common fusion schemes

include fusing the compute layer (e.g., a convolutional layer) and its subsequent element-wise

activation function (e.g., ReLU) in order to avoid redundant read-write of the compute layer’s

output. We propose to apply layer fusion to overlap the memory movement in aggregation

with the compute in update.

Algorithm 4.2 describes our layer fusion scheme. Like in Algorithm 4.1, we parallelize the

fusion algorithm by partitioning the output working sets, which are both the aggregation

feature matrix, ak, and the output feature matrix, hk. Each parallel task performs a fused

aggregation-update on a chunk of T · B vertices in Lines 2-10. It iterates through the

assigned vertices with a block size, B (Line 2). In each tiled iteration, it aggregates a block

of T vertices in Lines 3-7 and then update them in Lines 8-10. The AGGREGATE function

is equivalent to Lines 4-7 in Algorithm 4.1.

The block size, B, controls how finely we interleave aggregation and update operations.

For sufficiently small B, we can rely on the out-of-order hardware to “unroll” the j loop

for us, and overlap a current vertex’s compute-heavy update with loads for later vertex’s

aggregations. In practice, small B implies less reuse of the weight matrix in update, so the

execution can suffer from L1 cache thrashing if the weights does not fit in the L1 cache.

Therefore, we focus on coarser-grained interleaving with larger B.

For coarse-grained interleavings, we still overlap memory and compute operations, in two

ways. First, within a single thread, the prefetch operations in the tiled loop iteration j may,

depending on the prefetch distance, D, prefetch for the next loop iteration j+ 1. Therefore,
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Algorithm 4.2: Fused aggregation and update.

input : graph G = (V, E), input feature matrix hk−1, task size T , block size B,
prefetch distance D

output : output feature matrix hk

1 for i = 0 to |V| − 1 step T ·B in parallel do
2 for j = 0 to T ·B − 1 step B do
3 for m = 0 to B − 1 do
4 v = Vi+j+m

5 ak
v = AGGREGATE(h

(k−1)
u | ∀u ∈ N (v) ∪ {v})

6 v′ = Vi+j+m+D

7 PREFETCH(h
(k−1)
u′ | ∀u′ ∈ N (v′) ∪ {v′})

8 for m = 0 to B − 1 do
9 v = Vi+j+m

10 hk
v = UPDATE(ak

v)

during an update phase, the hardware prefetches features needed by the next aggregation

phase. Second, when we consider all of the threads, aggregation and update operations may

happen simultaneously for disjoint subsets of threads.

Figure 4.3 illustrates how the two phases on three cores overlap. Critically, we do not

synchronize threads within the parallel loop; thus, we do not force or encourage threads to

be out of phase with respect to each other, but expect this to happen naturally. In the figure,

the aggregation phases on different cores take varied latency, so the subsequent updates start

at different times and can overlap with the aggregation phases on other cores.

P0
P1
P2

overlap overlapoverlapoverlap

aggregation update
time

Figure 4.3: Aggregation and update on different cores can overlap without synchronizations.

Besides compute-memory overlap, layer fusion also reduces DRAM traffic and/or foot-

print, as shown in Figure 4.4. Without fusion, when ak is much larger than the cache, the

aggregation phase writes the entire ak to DRAM, and the subsequent update phase fetches

ak from DRAM again (Figure 4.4a). In contrast, the fused implementation produces less

DRAM traffic in both training and inference. In each tiled loop iteration j, the aggregation

phase produces a block of ak, which is then consumed by the subsequent update phase. With

a proper B, the ak block resides in cache between the two phases (Figure 4.4b). Additionally,
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k-1h ka ka kh

in DRAM

read write read write

updateaggregation

(a) The basic implementation writes the whole
ak to DRAM in the aggregation and reads it
back in the update.

read write
k-1h ka ka kh

read write

in cache

updateaggregation

(b) The fused training kernel keeps the ak

working set in the cache between an aggrega-
tion and the subsequent update iteration.

read write
k-1h buffer

update
kh

read writebuffer

in cache

aggregation

(c) The fused inference kernel uses a single buffer to hold the ak block used by an aggregation and
the subsequent update iteration.

Figure 4.4: Layer fusion produces less main memory traffic and/or footprint than the basic
implementation.

in inference, the fused implementation does not need to keep the entire ak for all vertices.

Instead, we only need a reusable buffer to hold the block of ak. We can discard the buffer’s

content after an update phase, and use it for the next ak block (Figure 4.4c). In training,

the entire ak is needed for back-propagation, so this footprint reduction is inapplicable.

4.3.3 Feature Compression

The feature matrix, h, may be moderately sparse because of ReLU and/or dropout. Since

the aggregation draws so much DRAM bandwidth, we can improve performance by avoiding

transferring zero-valued elements in the feature vectors. However, as discussed in Section 1.3,

using a traditional compressed format such as CSR would be counterproductive for h, so we

need a more space/time-efficient compression technique for the purpose.

Modern CPU vector extensions such as x86’s AVX-512 provide mask-based (de)compression

instructions. The compression instruction takes a vector and a bit mask as input. It uses

the set-bits in the mask to select the active elements from the source vector to compress

into a contiguous destination vector. The decompression instruction uses a mask to expand

elements from a contiguous input vector to a sparse destination vector. Figure 4.5 shows how

we can utilize the above instructions to compress a sparse vector into contiguous memory

and later restore it back to the sparse vector. The example assumes the hardware vector

73



length V = 8.

1 1 0 1 0 0 0 1bit mask 1 1 0 1 0 0 0 1bit mask

10 7 0 43 0 0 0 22input vector 10 7 0 43 0 0 0 22input vector

0 0 0 0 0 0 0 0zero vector 0 0 0 0 0 0 0 0zero vector
≠ ≠ ≠ ≠  ≠ ≠ ≠ ≠ ≠ ≠ ≠ ≠  ≠ ≠ ≠ ≠ 

(a) Compression step 1: produce a bit mask to
mark non-zero elements using vector compari-
son.

10 7 43 22compressed vector

10 7 0 43 0 0 0 22input vector 10 7 0 43 0 0 0 22input vector

1 1 0 1 0 0 0 1bit mask 1 1 0 1 0 0 0 1bit mask
bubble-collapse 

(b) Compression step 2: bubble-collapse the
input vector according to the set-bits in the
mask.

10 7 43 22compressed vector

10 7 0 43 0 0 0 22decompressed vector 10 7 0 43 0 0 0 22decompressed vector

1 1 0 1 0 0 0 1bit mask 1 1 0 1 0 0 0 1bit mask
bubble-expand 

(c) Decompression: bubble-expand the compressed vector according to the bit mask.

Figure 4.5: Examples of a mask based (de)compression.

To compress a sparse vector, the first step is to compare it with a vector of zeros, using

a vector compare instruction, to produce a mask (Figure 4.5a). Each of the set bits in the

mask indicates the position of a non-zero element in the sparse vector. The second step

executes the compression instruction with the mask (Figure 4.5b). It collapses all bubbles

in the original vector and compacts it to a dense vector. We need to store both the mask

and the compacted vector for later decompression. To restore the sparse vector from the

compacted form, we execute the decompression instruction with the mask generated during

compression (Figure 4.5c). This expands the dense vector back to the sparse vector by

inserting zeros at the positions indicated by the mask.

The only meta data of the compression scheme is the mask. Each feature element requires

one bit, so for example, if each feature has 32 bits, the space overhead is 1/32 = 3.125% of

the uncompressed feature matrix, regardless of the sparsity level. For moderate sparsity, as

we expect, this overhead is small. For example, when 32-bit features are 50% sparse, the

traffic from reading/writing the features is efficiently reduced by 50%− 3.125% = 46.875%.

While one could reduce the memory footprint of h via compression, we do not do this.

Fast random accesses to vectors are critical, and variable-sized vectors would harm this.

Therefore, we maintain a constant-sized storage for each vector, and simply use only a

fraction of it, depending on its sparsity. Our purpose in compressing feature vectors is

purely to save DRAM bandwidth when reading and writing them, which is achieved with

this scheme.

Figure 4.6 shows examples of uncompressed and compressed storage. Each example con-

tains two feature vectors stored in row-major order. Figure 4.6a shows the uncompressed
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data layout. In the example, each vector is just under 8 cache lines in length. For higher

access performance, we align each feature vector to a cache line boundary; this may leave

some unoccupied space in the last cache line of each feature vector.

1 cache line

h0

h1

8 cache lines

data

unoccupied

(a) Uncompressed.

1 cache line
mask

non-zero data

unoccupied

h0

h1

9 cache lines

(b) Compressed.

Figure 4.6: Example data layouts of the feature vectors before and after the compression.

Figure 4.6b shows the compressed data layout. Each vector starts with its mask. We

allocate enough space to hold the mask and the uncompressed features for each feature

vector, to ensure dense vectors will fit. In the example, this is 9 cache lines. Combining the

masks and the compressed features into the same working set is superior to storing them

separately. During decompression, the masks are loaded first; thus, with combined storage,

hardware prefetchers can help stream the features as the masks are being loaded.

We confirm that compressing the features at a realistic sparsity level can successfully

reduce the DRAM bandwidth pressure. With compression, we have more free L1D fill buffer

entries during the execution. Consequently, we are able to increase the amount of software

prefetch to further improve the performance.

4.3.4 Temporal Locality Improvement

We can also reduce DRAM bandwidth pressure by reducing the reuse distance of each

feature vector. In aggregation, each vertex gathers its neighbors’ feature vectors. If we

process two vertices with a common neighbor close together in time, that common neighbor’s

feature vector will have a small reuse distance, and is thus likely to be cached for the second

access. Thus, the processing order of vertices influences the temporal locality in GNN

workloads.

We access a given vertex’s feature vector a number of times equal to the degree of the

vertex. Thus, to minimize overall reuse distance, we choose to prioritize the ordering of

accesses to high-degree vertices. Algorithm 4.3 describes a method to do this. In the

algorithm, L is a collection of |V| sets. Each set Lv is intended to contain vertices that read

vertex v’s feature vector during aggregation. By building up the sets of high degree vertices

at the expense of low degree vertices, we decrease reuse distance of high degree vertices. Each
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set is initially empty (Lines 1). We populate the sets using a greedy algorithm (Lines 2-7).

For each vertex v, we assign it to Lu′ , where u′ is the vertex with the highest degree among

N (v)∪ {v}. After all vertices are assigned, we generate a processing order M in Lines 8-12.

During aggregation, vertex Mi+1 is processed after Mi.

Algorithm 4.3: Compute a processing order of vertices to improve the temporal
locality in aggregation.

input : graph G = (V, E)
output : processing order M

1 Lv = ∅ | ∀v ∈ V
2 for v ∈ V do
3 u′ = v
4 for u ∈ N (v) do
5 if Du > Du′ then
6 u′ = u

7 Lu′ = Lu′ ∪ {v}
8 i = 0
9 for v ∈ V do

10 for u ∈ Lv do
11 Mi = u
12 i = i+ 1

The time complexity of the algorithm is O(|E| + |V|). For inference, the overhead can

exceed the benefit. However, for training, we reuse graphs, so the cost of the algorithm is

easily amortized.

4.4 EXPERIMENTAL SETUP

We implement our aggregation kernel with the xbyak JIT assembler [54]. We use GEMM

libraries to execute the update phase. We use Intel MKL for the implementation without

layer fusion. With layer fusion, because the matrix multiplication in each update phase has

a small size, we use libxsmm [109], which is optimized for small matrix multiplications.

Our baseline uses the state-of-the-art DistGNN [97] for the aggregation and MKL’s GEMM

for the update. DistGNN employs optimizations such as cache blocking and vectorization.

It has recently been incorporated in DGL. We refer to this baseline as DistGNN. Because

the aggregation can be computed with sparse-dense matrix multiplication (SpMM), we also

compare our approach with an implementation that uses MKL’s SpMM for the aggregation

and MKL’s GEMM for the update. We call this implementation MKL.
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The platform for the evaluation is a 28-core Intel Cascade Lake server CPU with AVX-512

vector extensions. Each core has a 32KB L1 data cache, a 1MB private L2 cache, and a

1.375MB slice of a non-inclusive shared L3 cache. The CPU is clocked at 2.7GHz without

dynamic frequency scaling. The maximum DRAM bandwidth is 140.8GB/s. We disable

simultaneous multithreading (SMT) and run 28 threads.

We evaluate our approach with the full-batch, non-sampled training and inference of the

GNN layers from GCN and GraphSAGE. We experiment with 4 input graphs from medium

to large size. Table 4.3 lists the detailed sizes of the graphs.

Table 4.3: List of dataset configurations

Name |V| |E| Hinput Hhidden

ogbn-products [27] 2, 449, 029 123, 718, 280 100 256
wikipedia [110] 3, 566, 907 45, 030, 389 128 256
ogbn-papers [27] 111, 059, 956 1, 615, 685, 872 256 256
twitter [108] 61, 578, 415 1, 468, 364, 884 256 256

All graphs except ogbn-products are directed. For ogbn-products, the number of edges

in the table is twice its number of undirected edges. ogbn-products and ogbn-papers have

predefined input feature vector lengths, Hinput. However, wikipedia and twitter do not attach

vertex features. We synthetically set their Hinput to 256. For each dataset, we set the hidden

features vector length, Hhidden, to 256.

4.5 EVALUATION

4.5.1 Performance

We evaluate the performance of our implementations with different techniques enabled.

Figure 4.7 shows the speedup from our implementations and MKL over the DistGNN base-

line. In the figure, besides MKL, basic is our algorithm from Section 4.3.1 for aggregation and

the MKL’s GEMM for update. fusion is the layer-fused implementation from Section 4.3.2.

compression is basic plus feature vector compression from Section 4.3.3. combined incorpo-

rates both fusion and compression. For training only, locality is the performance of combined

on the input graphs that have been optimized for locality from Section 4.3.4.

compression, combined, and locality all incorporate feature compression. In Figure 4.7, we

report their performance when operating on 50% sparse features. This is conservative. We

profiled a 20-epoch training of a 3-layer GraphSAGE on ogbn-products. Figure 4.8 presents

the level of sparsity in the features as the training progresses. We see that ReLU sparsifies
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Figure 4.7: The speedup from MKL and our implementations with different techniques over
the DGL-DistGNN baseline.

the input features to the second layer by over 60%, and dropout further sparsifies them to

over 80%. The sparsity of the input features to the third layer is even higher, reaching over

90%. Therefore, feature compression may improve the performance more than reported.

Our implementations outperform both the baseline and MKL significantly. Figure 4.7a

shows the speedup in inference. Performance here is determined primarily by memory be-

havior, which is the same for the two GNNs, so we see similar performance results on the

two models. MKL is slightly slower than the baseline. basic already outperforms the base-

line on all datasets. The other variations of our implementation are faster than basic on

all datasets. wikipedia benefits more from layer fusion than from feature compression, while

the other datasets benefit more from feature compression than from layer fusion. We will

explain why layer fusion accelerates wikipedia more in Section 4.5.3. The combination of the

techniques always performs the best. Compared with the baseline implementation of GCN

(GraphSAGE), combined is 1.72-1.90x (1.74-1.94x) faster.

Figure 4.7b presents the speedup in training. The execution time of each implementation

includes both forward and the backward propagation. Forward propagation is similar to

inference, except when layer fusion is applied, we do not reduce the footprint of ak as

discussed in Section 4.3.2. Backward propagation computes the gradients of hk−1, ak, Wk,

and bk. It has one more GEMM than the forward propagation. In training, MKL is again

slightly slower than the baseline. basic outperforms the baseline on all datasets. Layer
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Figure 4.8: Feature sparsity during the training of GraphSAGE.

fusion is less effective in training than in inference because in training, it does not shrink

the memory footprint of the aggregation feature vectors, and therefore being less effective in

reducing the memory traffic. Nevertheless, both fusion and compression perform better than

basic in all cases. By combining layer fusion and feature compression, combined outperforms

the baseline in GCN (GraphSAGE) training by 1.50x-1.58x (1.53x-1.62x).

The locality optimization further improves training performance. locality uses the same

kernel as combined but with pre-processed inputs, where the order of vertices is changed to

improve cache hit rates. The speedup from locality over the baseline in GCN (GraphSAGE)

training reaches 1.60x-2.57x (1.63x-2.64x).

Since the performance of GCN and GraphSAGE are similar, we focus on GCN in the rest

of the evaluation for simplicity.

4.5.2 Memory Performance Characterization

GNN workloads are often memory bound. We achieve speedup mainly by improving

memory performance. Table 4.4 quantitatively demonstrates the memory performance en-

hancement from our techniques. The table lists key metrics collected with the Intel VTune

Profiler that contribute to the performance difference among the DistGNN baseline, MKL,

combined, and locality, in GCN training. The characteristics in inference are similar.

In the table, Retiring is the fraction of pipeline slots utilized by useful work. Increasing it

results in higher instructions-per-cycle (IPC). Mem. Bound is the fraction of pipeline slots

stalled due to incomplete memory requests. For our workloads, this is primarily from stalls

on loads that miss in cache. L2, L3, DRAM BW, and DRAM Lat. are the fraction of cycles

where execution is impacted by L1 miss/L2 hit, L2 miss/L3 hit, DRAM bandwidth limit,
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Table 4.4: Memory performance characterization of GCN training. combined and locality
are profiled with 50% feature sparsity.

Input Graph Implementation
Pipeline Slots On Cycles Bound By Cycles When

Retiring Mem. Bound L2 L3 DRAM BW DRAM Lat. L1 FB Full

ogbn-products
DistGNN 9.8% 75.2% 1.5% 2.4% 78.8% 5.3% 100%

MKL 11.2% 71.8% 0.0% 0.5% 74.4% 5.2% 100%
combined 18.8% 58.1% 0.8% 1.9% 62.8% 13.4% 100%
locality 28.7% 39.3% 2.7% 4.7% 40.8% 19.1% 31.3%

wikipedia
DistGNN 23.2% 49.0% 2.4% 3.5% 47.9% 8.5% 100%

MKL 23.1% 47.7% 0.1% 1.2% 45.4% 10.0% 100%
combined 33.9% 30.6% 1.5% 2.9% 29.8% 12.6% 42.7%
locality 34.1% 30.3% 1.5% 1.9% 28.3% 9.6% 39.1%

ogbn-papers
DistGNN 13.5% 75.7% 1.5% 3.5% 77.1% 7.2% 100%

MKL 13.4% 76.7% 0.0% 0.8% 77.1% 7.0% 100%
combined 24.5% 58.9% 1.0% 1.8% 60.6% 13.1% 100%
locality 28.9% 52.0% 1.3% 3.2% 53.4% 15.3% 93.6%

twitter
DistGNN 12.4% 77.2% 2.4% 3.9% 79.1% 7.5% 100%

MKL 12.3% 78.8% 0.0% 0.9% 79.2% 8.5% 100%
combined 19.2% 64.3% 1.1% 2.7% 67.3% 16.7% 100%
locality 22.6% 60.1% 1.4% 3.4% 62.4% 14.9% 100%

and DRAM latency, respectively. L1 FB Full is an estimate of how often the L1D fill buffers,

a.k.a. the miss status holding registers (MSHR), are fully occupied. This scenario prevents

additional L1D miss memory access requests from being issued. A high value is a symptom

that the core is starved for data from memory.

DistGNN and MKL exhibit similar traits in most metrics. The two implementations are

both heavily memory bound on ogbn-products, ogbn-papers, and twitter. On these datasets,

they are memory bound in over 70% of the pipeline slots, and only 9.8-13.5% of the pipeline

slots are doing useful work. They suffer mainly from the DRAM bandwidth limit. The

executions are DRAM bandwidth bound in over 75% of the cycles. On wikipedia, the stress

on the memory subsystem is lessened, and 23.1-23.2% of the pipeline slots are doing useful

work. Nonetheless, L1 fill buffers are always full on all datasets. The difference between the

two implementations is that DistGNN has more L2 and L3 bound cycles than MKL. This

implies that the baseline captures more locality in the cache than MKL does, which explains

why the baseline performs slightly better than MKL.

combined incorporates both layer-fusion and feature compression. It is much less memory

bound than DistGNN and MKL on all datasets. The fraction of memory bound pipeline

slots are reduced to 30.6-64.3%, and the fraction of useful pipeline slots increases to 18.8-

33.9%. Overall, combined is less DRAM bandwidth bound than DistGNN and MKL but

more DRAM latency bound than them.

locality further optimizes the memory performance. It lowers the fraction of memory

bound pipeline slots to 30.3-60.1% and raises the fraction of retiring pipeline slots to 22.6-
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34.1%. Compared with combined, generally more data reuse is captured in the cache, and

fewer cycles are stalled by DRAM bandwidth.

As discussed in Section 4.3.1 and 4.3.3, we use software prefetches to exploit the spare

L1D fill buffer entries. The approach in general can leverage all the fill buffers on the large

scale graphs. However, the fill buffers are underutilized on the medium scale graphs, where

the the memory access characteristics are significantly improved such that our current soft-

ware prefetches do not saturate DRAM bandwidth. Although locality has already achieved

impressive performance, free fill buffer entries suggest that adding more aggressive software

prefetches may yield additional speedup.

In summary, our techniques are effective and significantly improve the memory perfor-

mance of GNN workloads.

4.5.3 Layer Fusion

We now take a closer look at the effectiveness of layer fusion. Figure 4.9 compares basic

and fusion on GCN’s hidden layers in inference and the forward propagation in training.

Hidden layers have the same input and output feature vector length, which is important for

this evaluation. The execution time in the figure is normalized to basic. The execution time

of basic is broken down into aggregation and update times.
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Figure 4.9: The execution time breakdown of basic and fusion on GCN’s hidden layers in
inference, normalized to basic.

Layer fusion provides more benefit when a larger fraction of basic’s execution time is

spent on update. Since update is 31% of basic’s execution time on wikipedia, fusion is able

to accelerate it by 1.40x in inference. In contrast, basic on ogbn-products only spends 7% of

the time on update, so fusion merely outperforms it by 1.15x in inference.

81



The amount of DRAM traffic for fusion in inference and basic’s aggregation is similar —

they have the same input and output sizes in our evaluation, and although fusion accesses

additional data for update, those data are expected to be cache-resident. This gives us the

opportunity to assess the effectiveness of the compute-memory overlap by comparing the

execution time of fusion in inference and basic’s aggregation. We see that on all datasets,

fusion in inference takes similar time as basic’s aggregation. This implies that for fusion,

the compute in update is almost fully hidden.

The only difference between fusion in inference and in the training forward propagation

is that the latter has to keep ak. This suggests that the performance difference between the

two is from the additional traffic of writing to ak.

4.5.4 Feature Compression

We perform a sensitivity study on the performance of feature compression with different

levels of feature sparsity. Figure 4.10 shows the speedup from compression over basic in

GCN inference at feature sparsity levels ranging from 10% to 90%. The behavior in training

is similar.
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Figure 4.10: The speedup from compression over basic at different feature sparsity levels on
GCN inference.

At 10% sparsity, compression is marginally slower than basic. At low sparsity, compression

can generate more memory traffic than basic, even if the number of accessed bytes is no larger.

This is because the granularity of the memory traffic is a cache line. Consider the example

in Figure 4.11. When uncompressed, reading the two feature vectors accesses 16 cache lines

(Figure 4.11a). At low sparsity, Figure 4.11b illustrates a case where the masks and non-zero

data take less space than the uncompressed data, reading them accesses 17 cache lines.

At 30% sparsity, compression on all datasets surpasses the performance of basic. At

90% sparsity, which is realistic as shown in Figure 4.8, compression outperforms basic by

1.63x-2.95x. Thus, feature compression can be a major source of performance improvement.
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Figure 4.11: Examples of compression accesses more cache lines than basic at low sparsity.

4.6 RELATED WORKS

The alternating update and aggregation phases in GNN processing are challenging to both

DNN libraries and graph processing frameworks [111, 112]. DNN libraries target regular

computations, like the update phase, but perform poorly on the aggregation phase. Graph

processing frameworks, on the other hand, manage irregular memory accesses well but lack

support for optimized heavy compute operations in updates.

GNN-specific software frameworks and accelerators are emerging. Deep Graph Library

(DGL) [104] and PyTorch Geometric (PyG) [113] are two of the prevailing libraries used by

researchers. Other frameworks include Neugraph [114] and AliGraph [115]. Our single socket

software optimizations can be incorporated into the compute kernels in these frameworks.

Software algorithms have been proposed to optimize GNNs on CPUs. FusedMM [116] fuses

the sampled dense-dense matrix multiplication (SDDMM) for computing edge messages with

the SpMM for computing vertex messages into a single operation. Their SpMM part performs

comparably to MKL. DistGNN [97] is the state-of-the-art in full-batch GNN training on

CPU clusters. It also provides single socket optimizations, which we use as our baseline.

Dorylus [117] and FlexGraph [118] also focus on distributed training on CPUs, but they do

not include single-socket optimizations. Works about distributed training on GPUs include

ROC [105], P 3 [119], and DGCL [120].

Besides software, the community also explored custom hardware for GNN workloads.

HyGCN [32] is built based on the insight that GNN’s two alternating phases show signifi-

cantly different computation needs and thus uses separate engines for the aggregation and

update stages. Additionally, HyGCN manages the pipelined execution of aggregation and

update with an inter-phase coordinator. The combination (a.k.a. update) engine utilizes a

conventional systolic array to accommodate the huge computation demand, and the aggre-

gation engine has an architecture to handle the irregular accesses with window sliding and

shrinking. HyGCN is limited to GCN, and is not generalized to other types of GNN. EnGN

[106], inspired by CNN accelerators, treats a GNN as a concatenated matrix multiplication
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of feature vectors, adjacency matrices, and weights. With a single dataflow, EnGN is gener-

alizable to many GNN variants. AWB-GCN[33] is motivated by the power-law distribution

of most graphs, which means that some parts of the computation are dense and some are

extremely sparse, which leads to the imbalance among process engines (PEs). AWB-GCN

alleviates the workload imbalance via three balancing algorithms: distribution smoothing,

remote switching and evil row remapping. The balancing algorithm is chosen at run-time

based on the sparsity and PE’s status. GRIP [34] leverages the abstraction of GReTA

[121] to develop a general accelerator for any GNN variant. The hardware implementation

in GRIP is similar to HyGCN, with specific hardware for vertex-centric and edge-centric

computation.

Prior works that reduce memory traffic by compressing DNN sparse activations (features)

include cDMA [16], which compresses the PCIe traffic between the GPU and the CPU, and

ZCOMP, which compresses sparse features on CPUs by introducing dedicated instructions.

4.7 CONCLUSION

CPUs are good platforms for GNN workloads because of their high availability and high

memory capacity. With potentially terabytes of memory, one can perform full-batch GNN

computation on real-world large graphs on CPUs, which is impossible on memory-limited

devices such as GPUs. However, GNN workloads on CPUs are often highly memory bound,

which limits their performance.

In this chapter, we discuss our optimizations of full-batch GNN training and inference on

multi-core SIMD CPUs. We mainly focus on the DRAM bandwidth problem that is partially

caused by the irregularity from the sparse graph connections. Our proposed techniques

include a layer fusion scheme that overlaps the memory-intensive aggregation phase and the

compute-intensive updaye phase in a GNN layer, a feature compression scheme that reduces

memory traffic by exploiting the sparsity in the vertex feature vectors, and an algorithm

that changes the processing order of vertices to improve the temporal locality.

We evaluate our approach with GCN and GraphSAGE on large graphs up to 111 million

vertices and 1.6 billion edges. Our techniques are effective. Our implementation outperforms

a state-of-the-art GNN layer implementation by 1.72-1.94x on inference computations and

1.60-2.63x on training computations.
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CHAPTER 5: FUTURE WORKS: AUGMENTED DMA ENGINE FOR
OFFLOADING GNN AGGREGATIONS

5.1 INTRODUCTION

As discussed in Chapter 4, the aggregation phase of GNNs consists of each vertex gath-

ering its neighbors’ feature vectors and performing a simple reduction. Currently, machines

execute this phase very inefficiently: processors spend substantial time fetching data from

the lower levels of the cache hierarchy, then perform a simple computation, and then are

unlikely to reuse the data from their caches because the data has poor locality.

One direction to improve efficiency is to offload the aggregation to a near-memory proces-

sor. However, these processors add significant hardware overhead and do not currently exist

in commercial systems. On the other hand, we notice that Direct Memory Access (DMA)

engines, such as various FPGA IPs [122, 123], do exist in current systems and are light

weight. However, they support minimal functionality like a scatter-gather function. Conse-

quently, there is an opportunity to augment DMA engines to implement hardware-assisted

aggregation with relatively low cost and minimal intrusiveness.

Existing DMA engines usually employ a descriptor-based programming interface. A de-

scriptor encodes the source and destination addresses as well as the size of the data block

to be transferred. Scatter/gather operations are essentially batched data transfers. To de-

scribe a gather operation, the software needs to supply a chain of descriptors, where each

one encodes the movement of a contiguous data block. The chain can be in the form of a

linked list (e.g., Xilinx AXI [122] in Fig. 5.1a) or an array (e.g., Intel DSA [124] in Fig 5.1b).

next desc.

other fields

next desc.

other fields

desc. 0 desc. 1

(a) Linked-list based.

desc. 0

desc. 1

desc. 2

ad
d

ress

(b) Array based.

Figure 5.1: Scatter-gather DMA descriptor chain.

5.2 ENHANCED DMA ENGINE FOR GNN AGGREGATIONS

While the software techniques from Chapter 4 are effective at speeding-up GNN workloads,

they still leave performance on the table: processor cores are often stalled waiting for data
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during aggregation. To address this problem, we propose to offload aggregations from the

cores to DMA engines.

In our design, we augment DMA engines that already include gather functionality. Fig. 5.2

shows a block diagram of the enhanced DMA engine. Fig. 5.2a is the top level diagram. It

shows that each core is equipped with a DMA engine attached to its L2 cache. The engine

takes commands from the core and shares the port to the network on chip (NoC) with L2.

DMA
L2$

L1-D$

core

STLB

NoC
L3$ slice
directory

(a) Top level.

desc. queue

index buff

output buff vect. unit
addr. unit

L2$

STLB

core

NoC

control

input buff factor buff

memory 
request 

tracking table

(b) The DMA engine.

Figure 5.2: Our enhanced DMA engine.

Fig. 5.2b shows the components in the DMA engine, with storage components shaded.

The engine works as follows. The core issues a command by enqueuing a descriptor through

a dedicated instruction. When performing an aggregation, the control unit first fetches the

indices of the inputs from memory to the index buffer. It then fetches the input data blocks

to the input buffer, accordingly. It may also optionally fetch an array of factors to the factor

buffer, as will be discussed later. It tracks all memory requests in a table. Next, it computes

the reduction in a 4-lane vector unit, holding intermediate results in the output buffer. We

choose the width of the vector unit such that the compute does not become a bottleneck.

After all inputs are processed, the engine flushes the output buffer to the L2 cache. During

the process, the engine performs address translation by looking up the second-level TLB.

We opt not to implement the feature compression in the DMA engine. This is because

the compression hardware is expensive. Since models using neither ReLU nor dropout do

not benefit from feature compression, the use case does not justify the hardware cost. Next,

we will discuss the descriptor and the aggregation operation in detail.

5.2.1 The Aggregation Descriptor

Existing DMA designs use a chain of descriptors to encode a gather operation. Each

descriptor in the chain describes a continuous block of data being gathered. This approach

is suboptimal for typical GNN aggregations since the data blocks (in this case, the feature
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vectors) are relatively small. For example, a 256-element single precision feature vector is

only 1KB. Furthermore, rather than describing a set of arbitrarily-sized blocks, we need to

only describe a set of fixed-size blocks. Thus, we encode the entire aggregation operation

with a single, new descriptor.

Fig. 5.3 shows our proposed 64-byte descriptor and its fields. In the descriptor, red op

encodes the reduction operator. bin op encodes the optional binary operator applied on the

gathered feature vectors and the elements from a factor array. This is to support the feature

processing function ψ described in Sec. 4.2.1. idx t and val t describe the data types of the

index array elements and of the input/output, respectively.

byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0 bytes
0
8

16
24
32
40
48
56

# of values in each data block (E)red_op bin_op idx_t val_t
# of input data blocks (N)padded size of each data block (S)

index start address (IDX)
input base address (IN)

output start address (OUT)
factor start address (FACTOR)

completion record start address (STATUS)
reserved

Figure 5.3: Proposed descriptor for the aggregation operation.

Field E contains the number of elements in each gathered data block. To enable a user to

align data blocks, e.g., to cache line boundaries, the descriptor includes the S field, which

encodes the padded size of each data block. Field N has the number of data blocks being

gathered. IDX is the starting address of the index array. IN is the base address of the

memory that contains all the data blocks being gathered. OUT is the starting address

where the aggregation results are written to. FACTOR points to the optional factor array

when performing a binary operation. Finally, the DMA engine writes the completion status

of each operation to the completion record array STATUS.

Fig. 5.4a shows how the fields are set in an example aggregation. The example is for a

graph with 4 vertices. Hence, the adjacency matrix A has a dimension of 4 × 4, and the

input feature and the aggregation feature matrices each has 4 rows. Assume that each vertex

has 3 features. Since we want to align each feature vector to 4-word cache lines, each feature

vector is padded with one additional element. Fig. 5.4a shows the input feature matrix and

the aggregation feature matrix before the operation is performed. We see the values of E

and S.

Figure 5.4b shows the adjacency matrix A in both regular (left) and CSR (right) formats.

It also shows that we are performing the aggregation operation for the second row. In this

case, the number of data blocks is N = 3, which is the number of non-zeros in the second
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Figure 5.4: Descriptor fields of an example aggregation.

row. N is easily derived from the CSR row pointers. IDX is set to the starting index of

the second row in the CSR column indices. If the elements in A are the factors, FACTOR

points to the starting index of the second row in the CSR value array. Finally, as shown in

Fig. 5.4a, IN points to the starting address of the input feature matrix and OUT points to

the second row of the aggregation matrix, where the results will be written to.

5.2.2 The Aggregation Operation

Algorithm 5.1 describes the DMA-aggregation algorithm. In the algorithm, B is the

output buffer. For each of the N inputs, the algorithm calculates the address of each of its

E elements (Line 4). Then, it optionally applies the binary operator to the input element

and the corresponding factor element (Line 5). Finally, it applies the reduction operator to

the processed input element and the corresponding buffer element (Line 6). After an input

data block is processed, it writes the completion status to the completion record (Line 7).

If the status indicates a failure, the remaining operations are aborted. The algorithm omits

this case for simplicity. After all input data blocks are processed in the loop in Lines 2-7,

the algorithm flushes the buffer to the output in Lines 8-9. Note that, when red op is “sum”

while bin op is “multiply”, the algorithm essentially performs a dense-matrix sparse-vector

multiplication.

The DMA engine fetches the indices, inputs, and optionally the factors from memory. For

each address, it sends a request to the home directory of the address. That directory finds

the data and replies to the engine. These fetches are parallelized. The number of entries in

the index buffer, input buffer, factor buffer, and memory request tracking table determine

the maximum number of fetch requests in flight. Besides structural limits, requests also obey

dependences. Specifically, we need the indices first, to calculate the addresses of the inputs.

Fig. 5.5 is an example that illustrates how the DMA hardware performs concurrent fetches,
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Algorithm 5.1: DMA-aggregation algorithm.
input : aggregation descriptor d
output : output feature vector OUT

1 Bi = 0 | i ∈ [0..d.E)
2 for i = 0 to d.N − 1 do
3 for j = 0 to d.E − 1 do
4 u = d.S · d.IDXi + j
5 k = d.bin op(d.INu, d.FACTORi)
6 Bj = d.red op(Bj , k)

7 d.STATUSi = GET STATUS()

8 for i = 0 to d.E − 1 do
9 d.OUTi = Bi

interleaves index and input data fetches, and gives priority to indices to make progress. The

figure shows a timeline of the occupancy of a 2-entry Index buffer (top) and a 4-entry

Tracking table (bottom). Each entry in the Tracking table is an outstanding request: when

an address is first placed in an entry, the engine issues a request to memory, and when the

data returns, the entry is freed. The entries in the Index buffer contain fetched indices, and

can be reserved in advance. The figure assumes that each requested line contains either

two index elements or half of a data block. The other buffers in the DMA engine are not a

bottleneck. Also, idx k is required for calculating the address of input k.

idx [4:5]
idx [2:3]

idx [0:1]
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Figure 5.5: Example timeline of DMA requests.

At time t0, the DMA engine allocates Tracking table entries 0 and 1 to fetch indices

idx[0:1] and idx[2:3], and reserves Index buffer entries 0 and 1 for when they are received.

As idx[0:1] is received at t1, the Tracking table allocates entries for and fetches line 0 and

1 of input 0, and line 0 of input 1. There is no space for line 1 of input 1 until idx[2:3]

arrives at t2. At that time, the Tracking table allocates an entry for and fetches line 1 of

input 1, and the Index buffer frees-up idx[0:1] and reserves an entry for idx[4:5]. As soon as
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a Tracking table entry is freed-up at t3, the table gives priority to allocate an entry for and

fetch idx[4:5] over input data. The rest of the timeline proceeds as described.

It is possible that, because of dependences, some Tracking table entries are temporarily

unused. Rather than underutilizing the memory bandwidth, the DMA engine simultaneously

processes a second descriptor.

The output buffer that holds the intermediate results has a limited size. If the size of

a feature vector is higher than this limit, the software can break down the aggregation to

fit. For example, if the output buffer can fit 256 elements while each feature vector is 400

elements, the software first issues a DMA-aggregation to produce the first 256 elements and

then a second one to compute the remaining 144 elements.

The aggregation feature vectors produced by this DMA operation are the input to the

next phase: update. To facilitate the pipelining of the two phases, we opt to write the

results of the aggregation to L2. When an aggregation begins, the DMA engine prefetches

the output lines to L2 in Exclusive mode. After the aggregation results are produced, the

engine writes to these lines. If they have not been evicted from L2, we save the latency of

the writes missing in L2.

5.2.3 Software Algorithm Running on the Processor Core

DMA-aggregation is incompatible with feature compression. However, it is synergistic

with layer fusion and orthogonal to the locality optimization. Importantly, during a DMA-

aggregation, the processor core can work on the update phase, creating a perfect overlap.

Algorithm 5.2 shows the fused DMA-aggregation and update that runs on the processor

core. It offloads the aggregation to the DMA engine and performs the update itself. The

structure of the algorithm is like the software fusion in Algorithm 4.2. We use ping-pong

buffers to pipeline the DMA-aggregation and the update. Qt/Q′t are the current/previous

ping-pong states on thread t respectively. Rt records the previous vertex tile number on

thread t. We bookkeep the previous states for pipelining because we parallelize the main

loop with OpenMP’s dynamic scheduler (Line 2). Dynamic scheduling prevents us from

calculating the previous states statically.

The algorithm tiles the computation in the same way as in Algorithm 4.2. Each thread

alternates between sending the aggregation descriptors to the DMA engine for B vertices

and updating B vertices. Each thread keeps 2 ·B descriptors. The aggregation phase builds

and issues B descriptors (Line 7). The update phase first waits for the DMA-aggregations

on the other B descriptors to finish (Line 10). It then performs updates on the aggregation

feature vectors produced from those aggregations. After the two phases finish, we update
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Algorithm 5.2: Pipelined fused DMA-aggregation and update running on the
processor core.

input : graph G = (V, E), input feature matrix hk−1

constant: task size T , block size B, number of threads P
output : output feature matrix hk

1 Qt = 0,Q′t = ∅,Rt = ∅ | t ∈ [0..P )
2 for i = 0 to |V| − 1 step T ·B in parallel do
3 t = ThreadID()
4 for j = 0 to T ·B − 1 step B do
5 for m = 0 to B − 1 do
6 v = Vi+j+m

7 BUILD AND ISSUE(Dt,Qt,m, v)

8 if Q′t 6= ∅ then
9 for m = 0 to B − 1 do

10 WAIT(Dt,Q′
t,m

)

11 for m = 0 to B − 1 do
12 v = VRt+m

13 hk
v = UPDATE(ak

v)

14 Rt = i+ j, Q′t = Qt, Qt = (Qt + 1) mod 2

15 for t = 0 to P − 1 in parallel do
16 for m = 0 to B − 1 do
17 WAIT(Dt,Q′

t,m
)

18 for m = 0 to B − 1 do
19 v = VRt+m

20 hk
v = UPDATE(ak

v)

the ping-pong states (Line 14). After the main loop finishes, we perform the trailing update

(Lines 15-20).

5.3 SUMMARY

This chapter presents our future work on tackling the sparsity-induced memory perfor-

mance issues in hardware. We observe that performing GNN aggregations in the processor

core negatively impacts the performance and energy consumption of the private cache. To

address this issue, we propose to augment the existing gather function in the DMA engines

to execute the aggregations. With this approach, the low locality feature vectors gathered

in the aggregation do not pollute the private cache. In addition, the processor core can

compute the update while offloading the aggregation to the DMA engine.
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CHAPTER 6: CONCLUSION

DNNs are some of the most popular workloads in recent years. DNN data structures

are often sparse due to various reasons. State-of-the-art DNN implementations on CPUs

either ignore the sparsity or suffer from performance degradation caused by the sparsity.

This thesis studies ways to accelerate DNN workloads on CPUs by exploiting the sparsity

as well as by mitigating the negative performance impact from the sparsity. Different types

of sparsity in DNN workloads have distinctive characteristics. This thesis investigates their

properties and proposes both software and hardware approaches to leverage them.

In the thesis, we explore two directions: to boost the compute performance and to improve

the memory performance. In the first direction, we focus on compute-intensive DNN models

that have moderately sparse working sets. The modest level of sparsity does not justify using

a compressed representation to store the working sets. Our key idea is to skip ineffectual

computations when operating on uncompressed data. An operation is ineffectual when

it does not affect the end result. This can happen when a computation has zero-valued

operand(s).

The thesis makes two contributions based on the idea. The first contribution is Sparse-

Train, which is the first software-only CPU algorithm that speeds up both DNN training and

inference by exploiting the dynamic and unstructured sparsity in the activations. Sparse-

Train dynamically checks for zeros at run-time and branches over ineffectual computations

when a zero is detected.

The second contribution is SAVE, the first sparsity-aware vector engine for CPUs. In a

vector compute instruction, some input vector lanes can contain zeros and therefore render

the computations on these lanes ineffectual. SAVE combines effectual vector lanes from

multiple ready instructions and then issues a compacted vector computation. It is transpar-

ent to software and can accelerate legacy code. Although SAVE includes optimizations that

targets GEMM-like workloads, it is general-purpose enough to benefit any vector workload

that contains sparsity.

In the second direction, we focus on the memory-intensive GNNs. The input graphs to

GNNs often have highly sparse connections. The adjacency matrices of these graphs are

stored in a compressed format. The indirection required to operate on the compressed for-

mat induces irregular memory accesses, hampering the performance. To tackle the issue,

we devise software methods to overlap the memory intensive phase and the compute inten-

sive phase in each GNN layer, to reduce unnecessary accesses to the sparse features, and to

improve the locality of the irregular memory accesses. In addition to the software optimiza-
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tions, this thesis also discusses our future hardware work that aims to offload a GNN layer’s

memory intensive phase to an augmented DMA engine.

The thesis includes the evaluations of all the aforementioned contributions. The results

prove that our techniques are effective. All contributions significantly outperform the state-

of-the-art implementations in their respective areas.
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APPENDIX A: AN EMPIRICAL STUDY OF THE EFFECT OF
SOURCE-LEVEL LOOP TRANSFORMATIONS ON COMPILER

STABILITY

A.1 INTRODUCTION

Two of the most important outcomes after sixty years of compiler research are powerful

methods for program analysis and an extensive catalog of program transformations. Al-

though there is room for improvement in these areas, we can say that today’s compiler

analysis and transformation technology rest on solid ground and are well understood. On

the other hand, the process of program optimization, which guides the application of trans-

formations to achieve good performance, is not well understood. This is why the standard

way of selecting the best compiler command options is to use empirical methods [125, 126].

In addition, because of the lack of understanding of the optimization process, there is much

room for improvement even under the best compiler command settings as testified by the

numerous projects that apply source-to-source pre-passes to improve the quality of the target

code [127, 128, 129, 130].

The benefits derived from tuning compiler options and applying source-to-source transfor-

mations are the results of sub-optimal compilers. A hypothetically “perfect” compiler would

incorporate the best settings and transformation sequences in its optimization passes and

would not need switch selection nor pre-passes. Such a “perfect” compiler would be “sta-

ble” in the sense that it would generate the same optimal target code for all semantically-

equivalent versions of a loop nest. With near-optimal, stable compilers, programmers could

focus on algorithm selection and program readability instead of having to twist the code

with what often are obfuscating transformations to improve performance. The undecidabil-

ity of program equivalence makes it impossible to develop compiler algorithms that generate

the same code for all semantically-equivalent code sequences. However, there is no reason

why they cannot generate target code that performs quite close to the optimum within a

comfortable stability margin.

Although the compiler community is aware of the existence of instability, its magnitude has

never been measured. In this appendix, we present the first quantitative study on compiler

stability. Because instability implies that there is often a performance headroom of the

target code, we also study this headroom and estimate the performance improvement that

could result from manipulating the source code. Since the majority of the work is usually

performed in loops for compute-intensive applications, we choose to investigate the stability

and performance headroom of the loop optimization passes of three popular compilers: GNU
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Compiler Collection (GCC), Intel C++ Compiler (ICC), and LLVM C Compiler (Clang).

The focus is on the compilation of for loops because it is among the language constructs

whose analyses and transformations are best understood.

In order to make our empirical study as representative as possible, we built an extensive

collection of loop nests extracted from 13 benchmarks suites and other sources, such as

software libraries and machine learning kernels. The source code of these loop nests as well

as their performance results are available in the LORE repository [131] developed to serve

as a resource for the evaluation of compilers. We implemented an extractor to separate

for loop nests from the original applications and build standalone codelets that executes

independently. The codelets contain operations that measure execution time and read a

number of performance counters. Only loop nests consuming more than 1,000 processor

cycles were included in the quantitative study of stability and performance headroom. As a

result, out of 3,197 loops that we have extracted, between 1,175 and 1,266 loop nests were

investigated, depending on the compiler.

Our methodology for estimating compiler stability and performance headroom is to apply

source-to-source transformations to obtain numerous semantically-equivalent versions of each

loop nest, called mutations in this appendix, and measure the variation in their execution

time. Unlike the work mentioned above, our goal is not to improve the quality of the

target code, but to study the effectiveness of today’s compilers; therefore, we traverse the

transformation space to create various loop structures without any performance target.

To generate the mutations, we developed an automated mutator that applies source-to-

source transformations to the loop nests. These transformation sequences are combinations

of five basic yet highly effective loop transformations: interchange, tiling, unrolling, unroll-

and-jam, and distribution [132]. Before applying any transformation, the mutator computes

the dependences and determines whether or not the transformation can be applied; hence,

any transformation sequence applied are semantic-preserving. From the loop nests that we

studied, a total of 64,928∼66,392 mutations, depending on the targeted compiler, were gener-

ated. The mutations were compiled by the three evaluated compilers. Because vectorization

support is ubiquitous in modern processors and can have a significant impact on perfor-

mance, the quality of a compiler’s auto-vectorizer plays a significant role in the compiler’s

stability. Therefore, we also assessed the compilers’ vectorization process by experimenting

with different vectorization settings.

We quantified the stability of each compiler with an intra-compiler stability score. We

found that the evaluated compilers are far from being stable and hence far from optimal.

We also devised an inter-compiler stability score to measure the stability across multiple

compilers, and we used it to confirm that source-level transformations, by moving the per-
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formance closer to the optimum, narrow the performance gap between compilers.

Because the mutations are obtained by applying transformations that are widely used and

can be easily implemented by any compiler, their effect is a good indication of the room

for improvement. Our results show that even though these transformations are likely imple-

mented by the investigated compilers, their availability is not enough, and that the decision

on whether or not to apply the transformation and the selection of the right parameters can

significantly impact the performance of the resulting code. Although we can only obtain a

lower bound of the performance headroom by trying limited combination of transformations,

we expect this result, together with a figure of merit for stability, to be a useful indication

of the distance from optimality. And, by repeating the measurements along the years, these

values could give us a measure of progress.

Our results indicate a significant performance headroom for each of the three compilers

evaluated. The application of source-to-source transformations as a pre-pass alone results

in 25.9∼36.6% of the loops studied seeing a performance improvement of 15% or more. By

further tuning vectorization settings, the numbers rise to 35.7∼46.5%, and a loop nest can

expect a 1.61x∼1.65x speedup on average if we manage to find a beneficial mutation and/or

better vectorization setting for it.

We also analyzed how each of the five individual transformations applied by the mutator

affects performance in order to find the deficiencies in the compilers that cause the instabil-

ity. We used hardware performance counters and manual inspection for each transformation

to establish a correlation between the transformation and execution behavior in terms of

locality, number of instructions executed, and vectorization. To attenuate the cost of access-

ing the performance counters though system calls, we chose to consider only loops with an

execution time longer than 10,000 cycles, reducing the number of loops considered in this

part of the study to 768∼817 depending on the compiler. We discuss the effect of trans-

formations on specific loops to illustrate the complex ways in which they affect compiler

output and the magnitude of the challenge faced by compiler writers in developing stable

optimization strategies. For two of the transformations, we also propose ideas that may

help compilers increase stability against them. The capability of the compilers’ vectorizers

is further evaluated by measuring the accuracy of their profitability model and investigating

how source-level transformations affect the success rate and effectiveness of vectorization.

The rest of the appendix is organized as follows. Section A.2 describes how we extract

loop nests and generate mutations from them. Sections A.3 and A.4 present the experi-

mental settings and quantitative results, respectively. Section A.5 analyzes how different

transformations affect performance. Section A.6 explores how vectorization settings impact

performance. Section A.7 discusses related work, and Section A.8 presents our conclusions.
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A.2 LOOP EXTRACTION AND MUTATION

To study compiler stability and performance headroom, we apply a variety of source-to-

source transformations to each for loop nest from an extensive collection. To carry out the

transformations, the for loop in each of these nests is required to be able to transform into

the canonical form:

for(i=lb;i<=ub;i+=step) (A.1)

We refer to such canonical form as “for loop” or simply “loop” in the rest of the appendix

unless specified otherwise. To build the collection of loops, an extractor outlines all qualified

for loop nests from a variety of C language benchmark suites and libraries. Then, each loop

nest is transformed by a mutator to generate various mutations. Finally, the execution time

of each loop nest and of its mutations is measured, and the variation across mutations of

each loop nest is computed.

We developed both the extractor and the mutator based on the ROSE source-to-source

compiler infrastructure [133]. This section presents a short description of these two compo-

nents. For more information, the reader is referred to [131].

A.2.1 The Extractor

The extractor encapsulates each for loop nest from an original program into a separate

standalone program called a codelet. The extractor starts with finding all for loops in the

original program by scanning the abstract syntax tree (AST). A for loop is skipped if it

contains function call(s) other than standard math functions. If multiple for loops resemble

a loop nest, the extractor identifies the outermost loop and generates a codelet for the entire

loop nest only. Other types of loop such as while loops can be included as parts of a for

loop’s body, but our system does not processes them as the outermost loops of loop nests

nor apply any transformation to them.

We choose to feed the codelets with the same data used in the original program to make

both programs behave similarly as much as possible. To achieve that, the extractor instru-

ments each loop nest to save the values of all read-only or write-after-read (WAR) variables

in the loop right before executing the loop. Input data from global/static variables, heap,

and stack are handled separately and will be restored to their corresponding locations when

later executing the codelet. The loop bounds are recorded at run-time if their values are not

constants. Finally, the instrumented original program is executed to create an input data

file for each loop nest.

If a loop nest has multiple execution instances (e.g. inside a function that is invoked
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multiple times), the extractor saves the data captured from one of the executions chosen

using the reservoir sampling algorithm, which grants each execution equal chance to be

selected [134].

To create the codelet, the extractor copies the source code of the loop nest from the

original program and surrounds it with the following collection of operations:

1. Read the input data file and initialize variables and memory regions with the values

they had during the execution of the loop nest in the original program.

2. Record time using the RDTSCP instruction, which allows accurate timing measurements

with a resolution of just two instructions [135].

3. Read hardware performance counter values.

4. Use all the data that the loop nest produces to generate reduced values that are

output to I/O so that the compilers do not remove operations as dead code. For a

scalar variable, the codelet writes the variable value; for an integer array, the codelet

writes the MD5 hash of the array; and for a floating point array, the codelet writes its

sum reduction.

5. Repeatedly execute the loop nest 100 times and record the median of the execution

time. Variables and memory regions are reinitialized before each re-execution.

The codelets are thus completely self-contained and ready for transformation by the mu-

tator, compilation, and execution.

Although the source code and input for an extracted loop are replicated from the original

program, the loop’s behavior during the codelet execution may vary from its behavior during

the original program execution because (I) the cache state will typically differ from the state

during the execution of the original program. On the other hand, it will be consistent

across re-executions of the loop in the codelet (except for the first execution); (II) some

of the compiler’s inter-procedural and/or inter-loop analysis may lead to changes in the

optimization process. For example, the extractor outlines neighboring outermost loops into

separate codelets and therefore disables any interaction between them, but a compiler may

fuse them when compiling the original program. However, these differences are acceptable

since our study focuses on how performance varies between the original codelet and its

mutations. Thus, replicating the exact cache state and the optimizations applied on the

original program is not essential because our goal is not to optimize the original program.
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A.2.2 The Mutator

The extracted loop nests in the form of codelets are processed using the mutator to create

semantically equivalent mutations. The mutator applies sequences of source-to-source loop

transformations that are constructed from interchange, tiling, unrolling, unroll-and-jam, and

distribution. These relatively easy to implement transformations are among the best-known

loop transformations, so they can be effortlessly added to any compiler if they are not

currently present.

We imposed limitations on the transformation sequences because the number of mutations

of a single loop nest may grow exponentially with the number of transformations and the

number of possible parameters to each transformation [128]. These limitations ensured the

number of mutations generated remained reasonable.

First, the mutator does not explore the transformation space exhaustively. Instead, it

applies sub-sequences of transformations of the following sequences:

interchange→ unroll-and-jam→ distribution→ unrolling

interchange→ tiling → distribution→ unrolling

A sub-sequence can skip transformation(s) in the above sequences. For example, interchange→
distribution is a valid sub-sequence. However, the order of transformation needs to be pre-

served. For instance, distribution→ interchange is never applied. We chose this ordering to

ensure that transformations that only operate on perfectly nested loops (i.e. all assignment

statements are in the innermost loop) due to the limitation of our tool, namely interchange,

tiling, and unroll-and-jam are not applied after any transformation that may render loop

nests imperfect, namely distribution, unrolling, and unroll-and-jam. The maximum length

of transformation sequence is 4.

Second, we limit the parameters to each transformation as shown in Table A.1. For

interchange, we explore every possible permutation, and the parameter for it is a number

denoting the permutation in lexicographical order. For tiling, we tile a single dimension

only, and the parameters are the size used for strip mining plus the loop level that is strip-

mined. For unrolling, we only unroll the innermost loop(s). If there are multiple loops at

the innermost level, the mutator will unroll all of them the same number of times. For

unroll-and-jam, we apply it at each non-innermost level, and the parameters are the loop

level to be unrolled and the unroll factor. For distribution, we distribute statements in the

innermost loop as much as possible based on dependence information; hence, distribution

does not take any parameter. As presented in column 2, we only use selected tile sizes/unroll

factors for tiling, unrolling, and unroll-and-jam. If the loop level being transformed has a

99



static trip count that is smaller than one of the tile sizes/unroll factors, the transformation

with the corresponding parameter is skipped. For example, the mutator does not apply

unroll by 8 times on the loop for(i=0;i<=5;i+=1){...}, which has a static trip count of 6.

Table A.1: Transformations and their parameters

Transformation Parameters Maximum # of variation

Interchange Lexicographical permutation number depth!− 1
Tiling Loop level, tile size ∈ {8, 16, 32} depth × 3
Unrolling Unroll factor ∈ {2, 4, 8} 3
Unroll-and-jam Loop level, unroll factor ∈ {2, 4} (depth − 1)× 2
Distribution N/A 1

Although these limitations confine the search space of transformation sequences to a man-

ageable size for each loop nest, they also decrease the chance of finding the optimal trans-

formation sequence for a loop nest. Therefore, in this study, we only aim at finding lower

bounds for performance headroom and instability of the investigated compilers.

In addition to the imposed restrictions, the number of mutations is also limited by data de-

pendence. Unrolling is the only employed transformation that is guaranteed to be semantics-

preserving (although additional care needs to be taken when continue, break, and/or goto

is present in the loop body). To ensure the legality of the other four transformations, the

mutator analyzes dependence through PolyOptC [136], which provides an interface between

ROSE and the polyhedral model based dependence analyzer Candl [137]. If a loop nest is

incompatible with the polyhedral model, e.g. because of having non-affine array subscripts,

the mutator applies only unrolling to it because Candl cannot analyze it. Therefore, all gen-

erated mutations are guaranteed to preserve the original semantics in theory. In practice,

to counteract any potential bug in the mutator or the compilers, we also added a second

layer sanity check. As described in Section A.2.1, a codelet writes the reduction of all of the

loop’s output to I/O. We compare the original loop nest and its mutations’ outputs to verify

semantic equivalence. Although this method may produce false positives or false negatives,

we found it sufficient during our experiments.

The nesting depth and the dependence graph of a loop nest determine how many mutations

are produced from it. Among the loops that we studied, up to 1,680 mutations and on average

60 mutations were created from a single loop nest.

A.2.3 Collection of Loop Nests and Their Mutations

We extracted 3,197 loop nests from various sources for this study, such as: benchmarks,

audio/video codecs, and machine learning kernels. The first column in Table A.2 lists the
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sources that we extracted the loop nests from. For the benchmarks, we used the default

dataset during extraction except for SPEC and NPB. We used the “ref” dataset for SPEC

and the “CLASS=B” dataset for NPB. For the libraries, we used the test data that they

provided. In total, we produced 100,219 mutations from the 3,197 codelets; however, we

only study the results from loops whose execution time exceeded 1,000 cycles. The final

number of loops and mutations is presented in Table A.2 and discussed in Section A.4.

Table A.2: The numbers of loop nests and their mutations included in the study

Benchmark
# of loops (# of mutations)

GCC ICC Clang

ALPBench [138] 24 (72) 22 (66) 31 (129)
ASC Sequoia [139] 22 (350) 21 (347) 22 (350)
Cortexsuite [140] 60 (1060) 57 (791) 62 (1042)
FreeBench [141] 38 (242) 31 (141) 39 (245)
Parallel Research Kernels (PRK) [142] 36 (286) 23 (189) 34 (261)
Livermore Loops [143] 53 (1443) 51 (1436) 57 (1612)
MediaBench II [144] 152 (773) 120 (532) 183 (1279)
Netlib [145] 25 (207) 21 (195) 24 (204)
NAS Parallel Bench. (NPB) [146] 196 (52259) 195 (52244) 198 (52350)
Polybench [147] 90 (3574) 91 (3589) 91 (3589)
SPEC 2000 [148] 122 (1263) 125 (1272) 129 (1337)
SPEC 2006 [149] 102 (421) 103 (425) 129 (907)
Extended TSVC [150] 149 (1955) 149 (1955) 149 (1943)
Machine learning kernels [151] 27 (177) 27 (177) 21 (123)
Libraries [152, 153, 154, 155, 156] 145 (1735) 139 (1569) 97 (1023)

Subtotal 1241 (65817) 1175 (64928) 1266 (66392)
Execute for over 1,000 cycles for all 3 compilers 1061 (63902)

Different benchmark applications may have similar loops (e.g. matrix multiplication ker-

nel). We did not attempt to group similar loops and pick one to represent the group, so the

results may bias towards larger clusters of similar loops. However, we believe it is acceptable

because it applies a natural weight on the loop types that are more common and thus need

more attention.

A.3 EXPERIMENTAL SETUP

We used the loop nests and their mutations to evaluate recent versions of three widely

used compilers: GNU Compiler Collection (GCC) 6.2.0, Intel C++ Compiler (ICC) 17.0.1,

and LLVM C Compiler (Clang) 4.0.0.

The experiments were conducted on an Intel Xeon E5-1630 v3 processor (Haswell microar-

chitecture, 32KB/32KB private L1 data/instruction cache, 256KB private L2 cache, 10MB
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shared L3 cache) with 32GB DDR4 2133 RAM. The CPU is equipped with an invariant time

stamp counter (TSC) so that the readout from RDTSCP is accurate regardless of ACPI P-,

C-, and T-states [157]. To achieve stable results, all executions were assigned to the same

core with dynamic frequency scaling, Intel Hyper-Threading, C-State higher then one, and

TurboBoost technologies disabled. The experimental results from a single machine setup are

sufficient to provide an estimation of compiler stability and performance headroom since we

believe similar traits may exist on other systems. However, doing experiments on a single

hardware setup tends to add measurement bias towards certain compiler(s) [158]. As a re-

sult, the difference in the tested compilers’ stability and performance headroom reported by

our results should not be considered as a conclusive comparison of the compilers’ quality

because such difference may vary on other systems. In the future, conducting further ex-

periments on additional machine setups may reduce the measurement bias, providing more

comprehensive conclusions.

When compiling the loop nests and their mutations, we turned on the following switches

in addition to -O3:

• GCC : -ffast-math allows breaking strict IEEE compliance so that floating point op-

erations can be reordered; -funsafe-loop-optimizations tells the loop optimizer to

assume that loop indices do not overflow, and that loops with nontrivial exit condi-

tion are not infinite; -ftree-loop-if-convert-stores allows if-converting conditional

jumps containing memory writes;

• ICC : -restrict and -ipo help with inter-procedural alias analysis;

• Clang : -ffast-math has similar effects as in GCC; -fslp-vectorize-aggressive en-

ables a second basic block vectorization phase.

We instructed all three compilers to optimize for the native architecture, which supports

vector extensions up to AVX2, and let the compilers’ default vectorization profitability

models determine when to vectorize loops.

A.4 RESULTS

This section presents the main results of our study. In Section A.4.1, we report the per-

formance of the code generated by the evaluated compilers from the original loop nests. We

discuss the overall effect of the source-to-source transformations applied by the mutator on

performance in Section A.4.2, discuss the performance impact from the length of transfor-

mation sequence in Section A.4.3, evaluate the effect of each transformation in Section A.4.4,
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discuss the performance headroom of the loops from different benchmarks in Section A.4.5,

and finally propose metrics to measure compiler stability and performance convergence in

Sections A.4.6 and A.4.7, respectively.

A.4.1 Baseline Performance

Table A.2 lists, for each of the three compilers considered, the number of loops and and

the number of mutations used for the part of the study presented in this section. Recall

that we require the execution time of a loop nest to be at least 1,000 cycles; therefore, only

between 1,175 and 1,266 loop nests are used for evaluating each of the three compilers.

To compare the effect of the compilers on the baseline loops, we only consider the 1,061

loops whose execution time is longer than 1,000 cycles for all three compilers. On average,

the code generated by GCC and Clang is 1.06x and 1.27x slower respectively than that by

ICC; however, they generate code that outperforms ICC’s by at least 15% in 174 and 114

cases, respectively. Therefore, the optimal compiler for each loop varies. We chose a 15%

threshold because it is a meaningful difference, even with experimental timing noise [150].

A.4.2 Overall Impact of Our Collection of Mutations on Performance

We calculate the speedup of a loop nest l’s fastest mutation over its baseline by

speedup(l) =
min(t

(l)
mutation[0], ..., t

(l)

mutation[n(l)−1]
)

t
(l)
baseline

(A.2)

In the formula, t
(l)
baseline and t

(l)
mutation[i] are the execution times of a compiler’s outputs of

baseline loop l and its mutation i ∈ [0, n(l) − 1] respectively, and n(l) is the number of

mutations generated from baseline loop l, which varies depending on the loop. We see that,

on average, the fastest mutation of a loop is 1.11x, 1.05x, and 1.16x faster than the baseline

for GCC, ICC, and Clang respectively, as shown in Table A.3 row 2. Also, the standard

deviations of speedup are 1.02∼1.04, suggesting that the range of speedup is significant.

We report the average lower bound of performance headroom by applying source-to-source

transformations in row 3, which is calculated by

headroom ≥ ((
L∏
l=1

t
(l)
baseline

min(t
(l)
baseline, t

(l)
mutation[0], ..., t

(l)

mutation[n(l)−1]
)
)

1
L − 1)× 100% (A.3)

When computing the lower bound of headroom, if all mutations are slower than the baseline,
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Table A.3: General statistics of mutations’ performance impact

GCC ICC Clang

1 # of loops studied (L) 1241 1175 1266
2 µg (σg) of the fastest mutation to baseline speedup 1.11 (1.02) 1.05 (1.04) 1.16 (1.03)
3 average lower bound of performance headroom 16.7% 13.8% 20.9%
4 # (%) in L that have beneficial mutation(s) 402 (32.4%) 304 (25.9%) 463 (36.6%)
5 # (%) in L that have all mutations unfavorable 89 (7.2%) 188 (16.0%) 73 (5.8%)

we consider it to be 0%. On average, the performance of a loop nest has a headroom of at

least 13.8%∼20.9%, depending on the compiler.

We assign categories to each mutation based on its impact on performance. We consider

mutations that generate code 15% faster than the baseline to be beneficial and those that

generate code that is 15% slower than the baseline to be unfavorable, the rest are considered

to be neutral. As shown in row 4, the percentage of loops with at least one beneficial mutation

ranges from 25.9% (ICC) to 36.6% (Clang). This suggests that Clang benefits more from

source-level transformations than ICC, with GCC sitting somewhere between the two. On

the other hand, as shown in the last row, the percentage of loops that only have unfavorable

mutations is much higher for ICC at 16.0% vs. Clang at 5.8% and GCC at 7.2%.

Focusing on loops with beneficial mutations, we get the distribution of speedups shown

in Figure A.1. The plot reveals that for all three compilers, although the majority of the

speedups are below 2x, a number of loops receive an over 2x speedup. In fact, there are

loops with speedups as high as 20x; however, we found that most speedups over 6x are due

to pathological scalar optimization after unrolling. For example, after the mutator unrolls a

loop from TSVC 8 times, Clang decides to further fully unroll the loop and pre-calculates

most of the scalar operations at compile time, accelerating the loop by 20x. Nevertheless,

there is a case where interchange facilitates better locality and vectorization to help a loop

nest from TSVC gain 15x performance with Clang.

While ICC has fewer loops that are sped up by the source-to-source transformations,

the number of loops that have an over 3x speedup is comparable to Clang’s and is much

greater than GCC’s. Furthermore, both ICC and Clang on average obtain a 1.54x maximum

speedup for the loops with beneficial mutation(s) whereas GCC on average can only attain

a 1.46x maximum speedup for loops in that category.

Next, we consider loops where all mutations are unfavorable. Figure A.2 shows the distri-

bution of loops at various slowdown ranges. The average slowdown for these cases are 1.56x,

1.54x, and 1.49x for ICC, GCC, and Clang, respectively. It turns out that most slowdown

factors are less than 2x, but for several loops, slowdowns are greater than 4x and can be up
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Figure A.1: Distribution of loops with beneficial mutation(s) and their speedup

to 14x in extreme cases. Considering that every loop has a mutation as simple as unrolling

by two, these results are surprising. After examining the extreme cases, we learned that

large slowdowns are often tied to a sharp increase in instruction count, implying that the

compilers generate inefficient code when faced with harmful mutations.
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Figure A.2: Distribution of loops with all mutations unfavorable in different slowdown range

A.4.3 Performance Impact from Different Transformation Sequence Lengths

Table A.4 shows the statistics of the performance impact from different transformation

sequence lengths. If a given loop nest has mutation(s) that are transformed by s number

of transformations, the performance of the fasted mutation among them is used in the

calculation of the statistics for sequence length s.

The first set of columns lists the average speedup per sequence length for each compiler.

It reveals that for sequence length of 1∼3, on average there is at least one mutation that
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Table A.4: Statistics of the performance impact of the length of transformation sequence

Seq. µg of speedup % of loops benefited (B) µg of speedup in B
length GCC ICC Clang GCC ICC Clang GCC ICC Clang

1 1.07 1.02 1.11 29.2% 22.0% 32.0% 1.45 1.55 1.51
2 0.99 0.95 1.06 26.5% 21.1% 35.1% 1.46 1.47 1.55
3 1.01 0.98 1.10 26.6% 22.8% 31.9% 1.54 1.52 1.79
4 0.53 0.59 0.61 2.2% 0.0% 6.4% 1.18 N/A 2.06

performs on par with the baseline for each affected loop nest. However, for sequence length

of 4, the fastest mutation is expected to only have 0.53x∼0.61x of the baseline’s performance

depending on the compiler, as highlighted in the table. This is because as the number of

transformations applied increases, the structure of the loop nest becomes more complicated,

therefore making the compilers hard to analyze and optimize. The second set of columns lists

the percentage of loops affected by a given sequence length that have beneficial mutation(s)

of that sequence length. When the sequence length is lower than 4, the percentages are

relatively stable for all three compilers, but for sequence length of 4, as highlighted, none of

the mutations are beneficial for ICC, and the percentages for GCC and Clang are also very

low at 2.2% and 6.4% respectively. The last set of columns lists the average speedup that

the loops with beneficial mutations of a given sequence length get from the fastest mutation

of that sequence length. When the sequence length is lower than 4, the expected speedup

is around 1.5x for all three compilers except when the sequence length is 3, Clang obtains

a notably higher speedup of 1.79x. When the sequence length is 4, GCC on average only

receives a 1.18x speedup, but surprisingly for Clang, the expected speedup is as high as

2.06x.

The results suggest that (I) by applying a single transformation to a loop nest, we can

already expect comparable speedup with applying multiple transformations; (II) Clang may

receive more benefit from longer transformation sequences than ICC and GCC do; (III)

increasing the sequence length beyond 4 is unlikely to yield better results.

A.4.4 Performance Impact from Each Transformation

Table A.5 shows the statistics of the performance impact from each loop transformation.

If a transformation T is legal for a given loop nest, the performance of the mutation that

is the result of applying only T with the parameters that produce the highest performance

is used in the calculation of the statistics for T . Note that the fastest variant of a trans-

formation may still be slower than the baseline. The table reports the geometric mean and
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standard deviation of speedup as well as the percentage of the loop nests that have at least

a beneficial variant of the transformation. In general, all three compilers react to the same

transformation similarly with some exceptions that are highlighted in the table, which are:

(I) while GCC and Clang on average show a speedup from unrolling, ICC shows a slowdown;

(II) distribution is able to help ICC much more than it can help the other two compilers;

(III) unroll-and-jam and tiling can speed up significantly more loops for Clang than for

ICC and GCC; (IV) compared with GCC and Clang, ICC has less loops that benefit from

interchange, unrolling, and unroll-and-jam, but more loops that benefit from distribution.

Table A.5: Statistics of speedup from different transformations

Transformation µg of speedup σg of speedup % of loops benefited
GCC ICC Clang GCC ICC Clang GCC ICC Clang

Interchange 0.66 0.69 0.63 1.06 1.05 1.07 9.0% 6.4% 9.0%
Tiling 0.83 0.91 0.94 1.03 1.03 1.05 9.5% 9.2% 16.2%
Unrolling 1.06 0.97 1.09 1.03 1.04 1.05 25.8% 18.0% 29.6%
Unroll & jam 1.01 1.02 1.10 1.02 1.06 1.04 22.7% 16.2% 32.4%
Distribution 1.12 1.25 1.05 1.06 1.11 1.04 27.9% 34.0% 27.0%

While unrolling, unroll-and-jam, and distribution increase performance on average, the

other two transformations, interchange and tiling, produce a slowdown on average. The

intuitive reason is that most loops are already written with good locality, so altering the loop

shape may lead to sub-par results from unstable compilers. Nonetheless, 6.4%∼9.0% of the

interchanged mutations and 9.2%∼16.2% of the tiled mutations were beneficial, depending

on the compiler.

A.4.5 Performance Headroom of the Loops from Each Benchmark

Figure A.3 shows that loops from different benchmarks have varied performance headroom

from applying source-level transformations. Among the benchmarks, loops from polybench

and the libraries have over 20% headroom with all three studied compilers. Source-to-source

transformations can accelerate loops from polybench with ease because this benchmark is

designed for polyhedral compilers, which often are also source-to-source, to optimize the

loop nests inside them. Loops from the libraries, on the other hand, have higher headroom

because their loop types may be different than those in well-known benchmarks that are

intensively studied by the compiler developers.

Among the studied compilers, ICC has the lowest headroom while Clang has the highest

headroom for most of the benchmarks. This is mainly because ICC is more aggressive in

optimization compared with GCC and especially with Clang. It affects the results in two
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Figure A.3: Average performance headroom available from applying simple source-level
transformations

ways: (I) heavy optimization may leave less room for improvement; (II) ICC may sometimes

undo source-level transformations. There are cases where it re-rolls or permutates the loop

back after we apply unrolling or interchange on a loop. Nevertheless, there are notable

exceptions: for the libraries, ICC’s headroom (34%) is significantly higher than Clang’s

(22%); for netlib, GCC’s headroom (38%) is much higher than ICC’s (13%) and Clang’s

(20%); for polybench, GCC also has a headroom (42%) noticeably higher than ICC’s (26%)

and Clang’s (34%).

A.4.6 Intra-compiler Stability

We expect a perfect compiler to undo unfavorable transformations and apply beneficial

transformations to any mutation of a loop. We call such a compiler stable since it would

produce the same performance for any mutation of a given loop. We do not expect a perfectly

stable compiler to be built in the near future, and perhaps it will never be built. However,

we hope that it will be possible to get very close to the perfect compiler, and the first step

towards it is to quantitatively measure the stability of compilers. Therefore, we devised the

following intra-compiler stability score Sintra:

S
(l)
intra = Cv(t

(l)) =
σ(t

(l)
baseline, t

(l)
mutation[0], . . . , t

(l)

mutation[n(l)−1]
)

µ(t
(l)
baselinel

, t
(l)
mutation[0], . . . , t

(l)

mutation[n(l)−1]
)

Sintra =
1

L

L∑
l=1

S
(l)
intra

(A.4)
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We compute S
(l)
intra, the intra-compiler stability of a loop l, as the coefficient of variation

of the execution time of its n mutations and its baseline. The coefficient of variation is

calculated by scaling the standard deviation of execution time with the average execution

time; thus, it approaches 0 if a compiler produces perfectly stable performance for a given

loop semantics. We further calculate the intra-compiler stability score of a set of L loops

by taking the mean of S
(l)
intra for all l ∈ L. The stability score has no absolute meaning by

itself. Instead, it can be used to compare the stability of different compilers or to track the

change in stability between different versions of a given compiler.

The intra-compiler stability score reflects a compiler’s ability to recognize optimization

opportunities. For example, a stable compiler would interchange back a loop that was in-

terchanged by the mutator if this reversal improves memory access patterns and/or creates

vectorization opportunities, a trait that we did occasionally observe from the studied com-

pilers. Table A.6 presents the Sintra and the highest S
(l)
intra calculated from all transformation

sequences as well as from individual transformations. Because all transformations are not

valid for all loops, the table lists the number of loops included for calculating the stability

score for each transformation. In each row, the compiler that produces the highest Sintra

is highlighted. When considering all transformation sequences, the scores are 0.195, 0.182,

and 0.169 for ICC, GCC, and Clang respectively. By definition, a higher stability score re-

flects greater instability; therefore, among the compilers we tested, ICC is the most unstable

overall and Clang is the most stable, with GCC somewhere in between them.

Although the stability score suggests that Clang is more stable than the other two compil-

ers, earlier in Section A.4.2 we showed that source-to-source transformations are, on average,

more beneficial to Clang than to ICC and to GCC. Intuitively, this may be because Clang

is younger than the other two compilers, so it has a less aggressive yet also less brittle op-

timization process. This means that it is more stable for the limited set of transformations

that we applied in general; however, it benefits more from better structured source code

because of its relatively näıve optimization process. Consequently, the mutations compiled

by Clang may have a lower performance variation but skew more towards speeding up the

original loop.

More interesting observations are made from the stability scores of individual transfor-

mations. For interchange, the scores from all three compilers are much higher than their

overall scores, indicating that interchange produces significant performance variations. Also,

Clang is the least stable toward interchanged loop nests, and ICC is the most stable one

against interchange. We believe it is due to ICC having a higher tendency to permute the

loop nests, as mentioned in Section A.4.5. For tiling, the stability scores for ICC and GCC

are comparable, but the score for Clang is noticeably lower. For unrolling, unroll-and-jam,
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Table A.6: Stability scores for different transformations with the most unstable compiler
being highlighted

Transformation # of loops Sintra (highest S
(l)
intra)

included GCC ICC Clang

All possible sequences 1061 0.182 (1.189) 0.195 (1.243) 0.169 (1.105)

Interchange 169 0.355 (0.866) 0.348 (0.879) 0.385 (0.881)
Tiling 430 0.209 (1.036) 0.208 (1.169) 0.190 (1.176)
Unrolling 1061 0.097 (1.175) 0.123 (0.893) 0.099 (0.788)
Unroll & jam 177 0.112 (0.511) 0.107 (0.524) 0.137 (0.571)
Distribution 106 0.111 (0.508) 0.140 (0.681) 0.099 (0.523)

and distribution, the stability scores for all three compilers are significantly lower than their

overall scores; thus, these three transformations cause less performance variations than the

other two. Nevertheless, ICC appears to be less stable than the other two compilers against

unrolling and distribution, and Clang is less stable when dealing with unroll-and-jam. The

per-transformation results suggest that different compilers may have strengths and weak-

nesses in terms of stability when facing different source-level transformations.

To demonstrate the instability, we plot in log scale the ratio of the execution time of each

loop’s fastest mutation and its slowest one (Figure A.4). The performance differences are

taken from the 1,061 loops that are shared by all three compilers and then sorted for each

compiler separately; thus, the data points at the same x-axis location do not necessarily

represent the same loop. The plot clearly shows that ICC typically has the highest perfor-

mance difference while Clang has the lowest when taking all transformation sequences into

consideration.
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Figure A.4: Performance difference between each loop’s best-to-worst mutations
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Our results show that all three compilers have significant best-to-worst performance dif-

ference for the mutations of most loops, and the difference can be as high as 29x. Therefore,

the compilers still have a long way to go before being stable.

A.4.7 Inter-compiler Stability

In Section A.4.1, we mentioned that the performance of the code generated by the three

compilers from the same loop may vary, meaning that apart from the intra-compiler stability

that we discussed earlier, there is an additional inter-compiler stability to be concerned

about. To quantify it, we propose an inter-compiler stability score Sinter to measure how

close the effectiveness of the optimization processes of a set of compilers is, as given by,

Sinter =
1

L

L∑
l=1

σ(t
(l)
C )

µ(t
(l)
C )

C ∈ {GCC, ICC,Clang} (A.5)

In the formula, t
(l)
C is the execution time of baseline loop l compiled by compiler C. Like

the Sintra, Sinter is an average of coefficient of variation. S
(l)
inter of an individual loop l is

computed by first taking the standard deviation of the execution time of the code generated

by each compiler and then scaling it using their average execution time, so it measures how

close the performances of a set of compilers’ generated code are. Sinter of a set of loops L is

the average of S
(l)
inter where l ∈ L. The score is meaningful only when used in comparison,

and a lower Sinter means closer performance. By comparing Sinter of different generations

of the same set of compilers, one can track the progression of compiler stability in a bigger

picture. However, here we study only a single version of each compiler, so we use the score for

another purpose: to investigate how source-to-source transformations impact inter-compiler

stability. We define the post-transformation inter-compiler stability score S ′inter as:

t
′(l)
C = minC(t

(l)
baseline, t

(l)
mutation[0], . . . , t

(l)

mutation[n(l)−1]
)

S ′inter =
1

L

L∑
l=1

σ(t
′(l)
C )

µ(t
′(l)
C )

C ∈ {GCC, ICC,Clang}
(A.6)

When calculating S ′(l)inter for a single loop, instead of using the execution time of the

baseline loop, we use the execution time of the fastest mutation if it is faster than the

baseline. Note that the fastest mutation of a given loop can vary when compiled by different

compilers. For example, while interchange helps GCC to achieve the best performance for a
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given loop, unroll-and-jam can be the key performance enhancer for ICC for the same loop.

Therefore, S ′inter calculates the inter-compiler stability as if the compilers have incorporated

the proper transformation.

From our results, the baseline Sinter is 1.39, and the post-transformation S ′inter is 0.96.

The lower S ′inter tells that by applying simple source-to-source transformations, the perfor-

mance gap among the code generated by various compilers is narrowed; hence, source-level

transformations can help the compilers that lag behind catch up. We call this phenomenon

the convergence effect.

A.5 EFFECT OF TRANSFORMATIONS

To aid compiler developers in the design of more stable compilers, we studied the effects

of source-level transformations on the studied compilers. In this section, we investigate

how each of the five source-to-source transformations impacts performance by computing

the correlation coefficient between performance change and each of a number of hardware

performance counter readouts. If a strong correlation between performance and a metric is

discovered for a transformation, we can derive the dominant effect produced by the trans-

formation and therefore pinpoint the deficiency in the compilers that causes the instability.

In addition, we also present a few case studies illustrating the complexity of the interac-

tion between the transformations applied by the mutator and the compilers. We focused

on the individual transformations because performing correlation analysis on all possible

transformation sequences that the mutator generates is impractical.

A.5.1 Computing Correlation Coefficients

We compute the correlation coefficient between (a) the change in value of a performance

metric and (b) the change in execution time, where “change” refers to the difference between

the original loop and the transformed loop. Each performance metric is obtained by reading

a hardware performance counter or by computing from multiple hardware counters, as is the

case for cache miss rate. Specifically, the correlation coefficient for a transformation T is

computed as follows: (I) For each loop nest l, we determine the fastest mutation, m, that is

an application of T . Recall that transformations can produce multiple mutations since they

are controlled by parameters (Table A.1). (II) Compute the ratio of the execution time of

the original loop nest and the execution time of the mutation m: 1/S = tm/toriginal. This is

the inverse of the speedup of m over the original loop. (III) Compute the ratio of the values

for a performance metric P for the original loops and the mutation m: R = Poriginal/Pm.
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(IV) Calculate the Pearson correlation coefficient between the performance ratio 1/S and

the metric ratio R, denoted as ρ1/S,R for all loop nests that can be transformed by T . The

values obtained from the metric are inaccurate for loops with short execution time since the

hardware counter reading process, which involves system calls, is also partially included in

the measurement. Hence, to attenuate the inaccuracy, we only include loops with baseline

execution time higher than 10,000 cycles. As a result, depending on the compiler, 768∼817

loops are included in this part of the study. Because the general performance statistics and

the counter correlation analysis are decoupled, it is acceptable to use a subset of the loops

for the latter.

Note that ρ1/S,R ∈ [−1, 1], and -1, 1, and 0 represent a perfect negative correlation, a

perfect positive correlation, and no correlation, respectively. When the absolute value |ρ1/S,R|
is high for a metric P , we may expect transformation T to affect performance mainly in a way

that relates to the factors measured by P . On the other hand, if |ρ1/S,R| is insignificant for

any of the performance metrics, either the transformation has multiple reasons that impact

performance, or the reason is not captured by the limited set of performance metrics that

we gather, so its effects are less clear.

Figure A.5 illustrate these ideas. It plots the ratio of performance factor values R (y-axis)

against speedup S (x-axis) in logarithmic scale. For a perfect correlation (i.e. ρ1/S,R ∈
{−1, 1}), all points on the plot are expected to be on a R = kS, k 6= 0 line. Figure A.5 (a)

is a plot with high negative ρ1/S,R value (-0.79), and the points resemble a line R = kS with

k < 0 with a few noises. Figure A.5 (b), on the other hand, presents a mid-range positive

correlation ρ1/S,R = 0.27. We can still see a R = kS with k > 0, but the points are more

scattered. Finally, Figure A.5 (c) plots a S −R relationship with a close to 0 ρ1/S,R. In this

case, the figure does not manifest a visual correlation. In the rest of the section, we consider

|ρ1/S,R| ∈ [0.2, 0.5) as moderate correlation, and |ρ1/S,R| ∈ [0.5, 1] as high correlation.

The full list of performance metrics used in our study contains 59 entries. For clarity, we

only present the descriptions of performance metrics that show interesting correlations in

the following sections in Table A.7, where derived metrics are highlighted.

A.5.2 Interchange

Loop interchange can convert non-unit-stride array access to unit-stride, which improves

spatial locality. In addition, such a conversion may remove the need of gather-scatter in-

structions when vectorizing the loop.

The correlation values indicate that interchange is correlated with cache performance met-

rics for all three compilers. For ICC and Clang, we found high negative correlations (ρ1/S,R <
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Figure A.5: Example visualization of different ρ1/S,R range

−0.9) with performance metrics that reflect change in L1 cache behavior (l1d.replacement,

l1d pend miss.pending, l1d pend miss.pending cycles), as well as in L2 cache behavior

(l2 trans.l2 wb, l2 lines in.all,l2 demand rqsts.wb). Besides, for ICC there is a high

negative correlation with L3 performance metric %l3 miss. For GCC, we also see moderate
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Table A.7: Top performance metrics that correlate to execution time

Metric Description

inst retired.any Counts the number of instructions retired from execution.
l1d.replacement Counts when new data lines are brought into the L1 Data cache,

which cause other lines to be evicted from the cache.
l1d pend miss.pending Increments the number of outstanding L1D misses every cycle.
l1d pend miss.pending cycles Cycles with L1D load Misses outstanding.
mem load uops retired .l1 miss ps Counts retired load uops in which data sources missed in the L1

cache.
l2 demand rqsts.wb hit Not rejected writebacks that hit L2 cache.
l2 trans.l2 wb L2 writebacks that access L2 cache.
l2 lines in.all Counts the number of L2 cache lines brought into the L2 cache.
l2 rqsts.miss All requests that missed L2.
dtlb load misses .miss causes a walk Misses in all TLB levels that cause a page walk of any page size.
dtlb load misses.stlb hit Number of cache load STLB hits. No page walk.
%l1/l2/l3 hit/miss L1/L2/L3 hit/miss rate
inst rate Instruction rate that measures instruction level parallelism (ILP)
l2 rw rate L2 read/write rate calculated by dividing the total number of L2

requests by the cycle count

to high negative correlations (-0.7∼-0.4) with these cache related metrics. Moreover, inter-

change also affects TLB performance indicated by the -0.7∼-0.6 negative correlations with

TLB related metrics ( dtlb load misses.miss causes a walk, dtlb load misses.stlb hit).

The locality improvements subsequently contribute to an increase in instruction execution

rate suggested by moderate positive correlations (0.2∼0.5) with inst rate.

In addition, the performance of both GCC and Clang appears to be influenced by the

change in dynamic instruction count (inst retired.any) with |ρ1/S,R| ranging from 0.4 ∼ 0.6.

This phenomenon implies that interchange can help these two compilers accomplish the

same amount of work with fewer instructions. For ICC, we also found that performance

change is often accompanied by change in instruction count in the opposite direction. By

hand analyzing the instruction mix of affected loops, we corroborated that vectorization

contributes to the reduction of instruction count.

Listing A.1 is a case from the Livermore Loops that demonstrates how interchange affects

instruction count differently for each of the three compilers. ICC gives the best performance

for the original loop nest; Clang and GCC’s outputs are respectively 1.13x and 1.45x slower

than ICC. Based on manual inspection, we conclude that neither GCC nor Clang vector-

ize the loop due to a non-unit stride access. However, Clang manages to generate a more

efficient address calculation than GCC, so Clang’s scalar code executes 268K instructions

while GCC’s executes 384K instructions. On the other hand, ICC vectorizes the loop us-

ing gather-scatter and its output executes 288K instructions. However, the speedup from
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for(k = 0; k < 25; k++) {
for(i = 0; i < 25; i++) {

for(j = 0; j < Inner_loops; j++) {
Px[j][i] += Vy[k][i] * Cx[j][k];

}}}
/* interchanged */
for(j = 0; j < Inner_loops; j++) {

for(k = 0; k < 25; k++) {
for(i = 0; i < 25; i++) {

Px[j][i] += Vy[k][i] * Cx[j][k];
}}}

Listing A.1: Original and interchanged Livermore Loops code

vectorization is modest due to the gather scatter operations.

After the mutator interchanges the loop nest as shown in Listing A.1, the accesses to

Px and Vy become unit-stride, and Cx becomes a loop constant of the innermost loop. As

a result, all three compilers vectorize the mutation without gather-scatter. ICC’s output

now executes only 62K instruction, and is 2.8x faster than its baseline; GCC’s numbers are

153K/2.4x, and Clang’s are 33K/4.7x. Hence, apart from affecting locality, interchange can

enable and/or increase the effectiveness of vectorization. Additionally, after interchange,

Clang’s mutation takes the lead and becomes 1.46x faster than ICC’s output and 2.39x

faster than GCC’s.

We confirmed that the compilers perform loop interchange in some cases by scrutinizing

the assembly. However, the high correlations with locality related metrics suggest that

overall they rarely apply it, implying that these compilers fail to do interchange properly

is due to inaccurate profitability models and/or not seeking interchange opportunities most

of the time. In fact, some extracted loops have embarrassingly bad permutations that

can be manually spotted instantly. For example, the loop nest in Listing A.2 from NPB

has an obviously problematic memory access pattern, and it does not contain loop carried

dependence. However, none of the three compilers interchanges it to a better shape, and

the properly interchanged mutation becomes 2.6x∼3.2x faster depending on the compiler.

Such scenario is common in real world when the programmer does not pay attention to

performance, or when the source code is generated by tools such as f2c [159]. Hence, it

would be helpful if compilers prioritize the analysis for interchange opportunities.

A.5.3 Unrolling

Loop unrolling is a technique traditionally used to obtain better performance at the ex-

pense of program size. Unrolling may improve performance by reducing control overhead

(e.g. advancing the iterator and testing exit conditions), exposing more instruction level
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double dt, rhs [65][65][65][5];

for(j = 1; j <= y - 2; j += 1)
for(k = 1; k <= z - 2; k += 1)

for(m = 0; m < 5; m += 1)
for(i = 1; i <= x - 2; i++)

rhs[i][j][k][m] = rhs[i][j][k][m] * dt;

/* interchanged */
for(i = 1; i <= x - 2; i++)

for(j = 1; j <= y - 2; j += 1)
for(k = 1; k <= z - 2; k += 1)

for(m = 0; m < 5; m += 1)
rhs[i][j][k][m] = rhs[i][j][k][m] * dt;

Listing A.2: Original and interchanged NPB BT code

parallelism (ILP), and/or by enabling scalar optimizations (e.g. common sub-expression

elimination, constant folding, etc). Compilers may undo a source level unrolling by applying

loop re-rolling.

The correlation results demonstrate that unrolling does reduce dynamic instruction counts.

All three compilers show moderate to high negative correlations (-0.7∼-0.3) with the metric

inst retired.any. We also see moderate positive correlations (0.3∼0.4) with l2 rw rate,

suggesting that although unrolling does not effectively reduce L1 miss rate, its ability to

reduce instruction count and increase ILP can better utilize L2 throughput when the locality

is captured at the L2 level.

By further examining the assembly code, we observed that the compilers apply unrolling

in some cases. Sometimes they may even fully unroll a loop when the trip count is relatively

low, potentially exploding the code size. Yet, the compilers fails to apply unrolling in many

cases in which it would be beneficial. In particular, compilers may not unroll all loops

with small bodies. Unrolling is particularly effective for these loops because they have high

overhead due to loop bookkeeping. In addition, since the operation counts are low for a

small loop body, unrolling does not excessively inflate the code size. It is surprising that the

compilers decide not to unroll these loops, so there is a clear need to improve the profitability

model for unrolling by significantly bias towards loops with small bodies.

Unrolling occasionally facilitates vectorization; however, in some cases it can also prevent

vectorization. Vectorization is traditionally done by strip-mining the inner loop by the length

of the vector registers and then replacing the original loop body with a vector equivalent.

This means that fully unrolled loops cannot be vectorized and that partially unrolled loops

could lead to inefficient vectorization. For example, ICC and Clang are both able to vectorize

a loop from SPEC 2006 by default, but unrolling the loop twice causes the compilers to
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produce scalar code, which leads to 12x and 14x slowdown respectively. In fact, compilers

sometimes re-roll a source-level unrolled loop in order to vectorize it [150]. However, the

newer basic block vectorization techniques benefit from unrolling. This technique first unroll

the loop by a certain factor and then try to assemble isomorphic statements (statements

that contain the same operations in the same order) in the unrolled loop body into vector

instructions. Such vectorization is also referred to as superword-level parallelism (SLP) [160].

for (i = 0; i < 32000; i++) {
x = a[32000 - i - 1] + b[i] * c[i];
a[i] = x - 1.0;
b[i] = x;

}
/* unrolled 8 times */
for (i = 0; i < 32000; i += 8) {

x = a[32000 - i - 1] + b[i] * c[i];
a[i] = x - 1.0;
b[i] = x;
/* iteration 2~7 are omitted */
x = a[32000 - (i + 7) - 1] + b[i+7] * c[i+7];
a[i+7] = x - 1.0;
b[i+7] = x;

}

Listing A.3: Original and unrolled TSVC s281 code

Compared with strip-mining based vectorization, basic block vectorization can partially

vectorize a loop more easily. Although we witnessed numerous cases where unrolling helps the

compiler to fully vectorize the loop, we present the case of loop s281 from TSVC, as shown in

Listing A.3, because it exhibits the interesting trait of partial vectorization. The original loop

is not well-optimized by any of the the three compilers that we evaluated. After unrolling the

loop 8 times, Clang creates two temporary vectors, denoted as tmp[0:7] and x[0:7]. The

former vector holds the intermediate results from 8 instances of sub-expression b[i]*c[i]

while the latter vector is an extension of scalar x. Then, tmp[0:7]=b[i:i+7]*c[i:i+7] and

b[i:i+7]=x[0:7] are vectorized because they do not have loop carried dependences. Since

operations on a[] have loop carried dependences, they remain scalar. By partially vector-

izing this loop, Clang gains a 1.7x speedup. While compilers have implemented basic block

vectorization, this case demonstrates that they may miss vectorization opportunities until

the loops are manually unrolled.

Because unrolling can impact vectorization both negatively and positively, it is difficult

for programmers and source-to-source optimizers to predict its effect on performance. To

avoid this inconsistency, we propose that compilers could first determine whether or not

the source code of the loop is unrolled and then choose the appropriate vectorization pass.

118



Alternatively, compilers could apply an unrolling or a re-rolling pass before the basic block

based or strip-mining based vectorization pass respectively, and if the vectorization pass does

not succeed, discard the re-rolled/unrolled results (if they are not profitable by themselves).

A.5.4 Unroll-and-Jam

Unroll-and-jam is primarily employed to facilitate data reuse by improving register usage,

which decreases the number of memory accesses. In addition, it may enable vectorization

on the outer loop without performing interchange [161]. Finally, while not as important,

unroll-and-jam may reduce control overhead and/or increase ILP similarly to unrolling.

Compilers may reverse a source level unroll-and-jam by applying an interchange→ re-rolling

→ interchange sequence accordingly.

The correlation results for unroll-and-jam are rather interesting. ICC has a high nega-

tive correlation (-0.9) with l1d.replacement and has a moderate positive correlation (0.4)

with %l1 hit, indicating that an improvement in L1 hit rate is a major factor for the per-

formance gain. GCC and Clang, on the other hand, have lower negative correlations (-

0.6∼-0.5) with l1d.replacement; however, they also have negative correlations (-0.6∼-0.5)

with inst retired.any. The main difference between ICC and GCC/Clang is the correla-

tions with l2 rw rate. For this metric, ICC exhibits a high negative correlation (-0.7) while

GCC and Clang both have moderate positive correlation (0.3). These values imply that

unroll-and-jam has a different effect on ICC compared to GCC/Clang.

Figure A.6 contains plots of speedup (x-axis) vs. change in l2 rw rate (y-axis) for all

three compilers under the influence of unroll-and-jam. From the figure, we see that at

low speedup/slowdown, all three compilers show positive correlations with the metric. In

fact, 75% of ICC’s data points land in quadrant 1 and 3, suggesting a positive correlation.

However, for high speedup cases, ICC shows decrease in l2 rw rate, represented by the

points in quadrant 4. Since the Pearson correlation biases towards data points with higher

values, the correlation coefficient becomes negative. In order to understand ICC’s opposite

correlation with l2 rw rate at different speedup ranges, we inspected other metrics and

found that:

1. At high speedup range, l1d.replacement is significantly reduced, which means that

the speedup is achieved from better data reuse and thus fewer L1 eviction.

2. At low speedup/slowdown range, the performance change is due to other factors such

as lower control overhead and/or higher ILP.
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Figure A.6: Speedup vs. change in l2 rw rate due to unroll-and-jam

On the contrary, GCC and Clang have fewer points in quadrant 4 and more points showing

positive correlation. More notably, Clang is able to obtain high speedup with a positive

correlation with l2 rw rate. By digging into other metrics, we learned that a majority of

the speedup corresponds to the negative correlation with inst retired.any, and the source
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of the reduction in dynamic instruction count is largely related to vectorization. For GCC, in

the 42 cases where unroll-and-jam is beneficial (> 1.15x speedup), 12 loops are not vectorized

initially, and 4 of them become vectorized after unroll-and-jam. To further analyze how

vectorization is affected, we define dynamic vectorization rate as:

dynamic vectorization rate =
dynamic vector instruction count

dynamic instruction count
(A.7)

We see a general increase in vectorization rate. From the 30 loops that are already vectorized

at the beginning, 21 loops receive at least a 15% vectorization rate increase. For Clang, in

the 55 cases where unroll-and-jam is beneficial, 9 loops are not vectorized initially, and 4 of

them become vectorized afterwards. Note that these 4 loops contain the top 2 speedup that

Clang attains through unroll-and-jam, achieving 4.1x and 3.6x respectively. Unroll-and-jam

also improves the vectorization rate for 8 loops.

While unroll-and-jam helps ICC’s performance, we also observed that it seemingly reduces

the effectiveness of vectorization. Of the 28 loops where unroll-and-jam is beneficial, 4 loops

are not vectorized initially, and the transformation does not help ICC succeed in vectorizing

any of them. Instead, there are 5 loops that are vectorized initially but become not vectorized

after unroll-and-jam. Nonetheless, unroll-and-jam manages to speedup these loops by 2.2x

to 3.3x. Furthermore, unroll-and-jam reduces the vectorization rate of 7 loops by at least

15%. Two major factors contribute to this situation. First, the benefit from vectorization

is overshadowed by a worse memory access pattern. For the cases where scalar mutations

outperform vectorized baselines, we always see sharp reduction in L1 miss rate after unroll-

and-jam. Second, unroll-and-jam may eliminate performance unfriendly patterns from the

vectorized baseline, such as gather-scatter, and generate more efficient vector code, despite

having lower vectorization rates.

Listing A.4 contains a loop nest from Polybench’s linear algebra workload gemver that

illustrates how unroll-and-jam helps ICC’s vectorizer with a deceiving reduction in vector-

ization rate. ICC manages to vectorize the original loop nest, yet in an inefficient manner.

It first unrolls the inner loop by 32 times. It then transforms the unrolled iterations into

8 vector operation sessions. In each session, 4 elements of A are gathered from far apart

addresses to assemble a vector, and another vector of 4 y elements are directly loaded from

consecutive y. Then, the two vectors together with a third vector of copies of beta are mul-

tiplied together. The result vectors from all 8 session are later added together and reduced

to a single value that is stored to x[i] afterwards. This vectorization is very inefficient in

terms of both gather-scatter overhead and locality.

Fortunately, unroll-and-jam provides a better vectorization approach. ICC is able to
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for(i = 0; i < n; i++) {
for(j = 0; j < n; j++) {

x[i] = x[i] + beta * A[j][i] * y[j];
}

}
/* unroll -and -jammed 4 times*/
for(i = 0; i < n - fringe; i += 4) {

for(j = 0; j < n; j++) {
x[i] = x[i] + beta * A[j][i] * y[j];
x[i+1] = x[i+1] + beta * A[j][i + 1] * y[j];
x[i+2] = x[i+2] + beta * A[j][i + 2] * y[j];
x[i+3] = x[i+3] + beta * A[j][i + 3] * y[j];

}
/* residue loop is omitted */

}

Listing A.4: Original and unroll-and-jammed Polybench linear-algebra-blas-gemver code

vectorize the inner loop body with the basic block vectorization technique after the trans-

formation. It first broadcasts y[j] to a 256-bit vector register. Then, it loads another vector

register with A[j][i:i+3] from consecutive addresses. Afterwards, it multiplies the two vec-

tors with a vector of beta. Each iteration the result of the multiplication is accumulated

onto that from the previous iteration, and after the inner loop exits, the results are written

to x[i:i+3] with a vector store instruction. Clearly, the new approach is superior since it

completely eliminates gather-scatter and has improved locality. In the end, the mutation

is 3.7x faster than the baseline. However, the mutation contains 46% vector instructions,

whereas the baseline contains 64%, so in this case the vectorization rate is misleading.

A.5.5 Tiling

Tiling is applied to a loop nest primarily when the workset is reused multiple times but

is too large to fit in cache. By tiling the loop nest with appropriate block size, blocks of the

original workset can be reused without re-fetching from the lower memory, which improves

performance. Unlike the other transformations, it is harder for general purpose compilers to

un-tile a loop nest.

Due to the limitations described in Section A.2.2, we are only able to examine the effects

of 1-D tiling. The correlation results confirm that tiling mainly affects locality. All three

compilers exhibit different amount of correlations (0.3 ∼ 0.6) with metrics related to various

cache levels, such as L1 (l1d pend miss.pending cycles, %l1 hit, l1d pend miss.pending,

l1d.replacement), L2 (l2 rqsts.miss, l2 lines in.all), L3 (%l3 hit), as well as L1 DTLB

(dtlb load misses.stlb hit).
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The hardware counter values also suggest that tiling often increases dynamic instruction

count, which stems from the additional address calculations and iterator operations added

by the new loop nest level. Therefore, tiling can cause slowdowns if the access patterns do

not benefit from tiling or the benefits do not outweigh the overhead.

Furthermore, we found rare cases where tiling enables vectorization for loops with variable

bounds. After tiling or strip-mining, the tiled innermost loop no longer has variable bounds.

This helps the compilers whose vectorization model is confused by the original variable

bounds.

A.5.6 Distribution

Loop distribution separates data streams, which may improve locality and/or prefetching

behavior. Compilers may reverse a source level distribution by applying loop fusion. The

correlation results confirm its utility. All three compilers have high positive correlations

(0.7 ∼ 0.9) with l2 rw rate, indicating that distributed code may utilize L2 throughput

better, likely because of better prefetching behavior. We also see moderate positive correla-

tions (0.3 ∼ 0.5) with inst rate, which implies that higher L2 access throughput also helps

increasing the overall instruction throughput.

A.6 VECTORIZATION

In Section A.5, we have already discussed that vectorization plays a major role in the

performance variation. If a loop is not originally vectorizable but, after undergoing a trans-

formation sequence, becomes vectorized, it may receive a sizable performance boost. On

the other hand, a loop’s performance may suffer greatly if a transformation sequence dis-

ables vectorization. We also noticed that there are scenarios where scalar code outperforms

vector code due to the overhead introduced during the vectorization process and/or locality

difference. Such performance variation caused by vectorization contributes to compilers’

instability significantly. Therefore, we took one step further to investigate how different

vectorization settings may influence the performance of loops.

We compiled and profiled the loop nests and their mutations with 4 more vectorization

settings. We refer to the compiler settings described in Section A.3 as the reference settings,

and the additional settings are the reference settings with added switches. They are: gener-

ating scalar code only, using only SSE, using SSE and AVX, and using up to AVX2. For the

three vector configurations, we disabled the compilers’ vectorization profitability analysis

if possible so that the compilers vectorize a loop with the corresponding vector extension
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whenever possible, regardless of the predicted profitability. Note that Clang 4.0.0 does not

provide switches to turn off its profitability analysis.

Because vectorization does not guarantee speedup, instead of looking at a compiler’s vec-

torization report to determine whether a loop is vectorized, we define that a loop has effective

vectorization if the vector code is at least 15% faster than the scalar code [150]; specifically,

we claim that a vectorization attempt is effective if tscalar/min(tSSE, tAVX, tAVX2) > 1.15

where ts is the execution time of setting s. Since the compiler flags for SSE, AVX, and

AVX2 are identical to those for scalar, except for enabling various vector extensions, the

performance difference is expected to be mainly from vectorization. Furthermore, a muta-

tion’s scalar performance may be significantly lower than that of the baseline. If so, the

mutation might not be beneficial overall even if it has effective vectorization. Therefore, for

this study, we are only interested in mutations that are both beneficial to the baseline while

being vectorized effectively.

A.6.1 Effect of Transformations on Vectorization

Let’s first investigate how source-level transformations affect vectorization. The first row of

Table A.8 lists the total number of loops that we studied for each compiler, denoted as L. The

second row has the number and percentage of loops in L whose baseline are not effectively

vectorized, denoted as N . It shows that ICC’s vectorizer is the most effective among the

three because it fails to vectorize the least percentage of L (59.6%). On the contrary,

Clang’s vectorizer is the least effective in the sense that it only manages to vectorize 21.1%

of L effectively. The next row presents the number and percentage of loops in N that have

beneficial mutations, denoted as B. Note that the percentages in this row (39.6%∼47.5%)

are much higher than the percentages of loops with beneficial mutation in L, which are

25.9%∼36.6% (second row in Table A.3). This phenomenon indicates that loops that are not

originally vectorized have higher chance to receive speedup from source-level transformations.

Finally, the last row contains the number and percentage of loops in B whose beneficial

mutations are effectively vectorized. It demonstrates that 36.1%∼38.1% of the beneficial

mutations are vectorized effectively while their baselines are not; thus, applying the correct

source-level transformations can boost compilers’ vectorization success rate.

A.6.2 Vectorization Settings

We compiled each mutation with various vectorization settings to assess compilers’ effec-

tiveness in (I) deciding whether to vectorize a vectorizable loop and (II) choosing the best
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Table A.8: Statistics of effective vectorization

GCC ICC Clang

1 # of loops studied (L) 1241 1175 1266

2 # (%) in L without effective vectorized baseline (N) 866 (69.8%) 700 (59.6%) 999 (78.9%)
3 # (%) in N that has beneficial mutation (B) 373 (43.1%) 277 (39.6%) 475 (47.5%)
4 # (%) in B whose baseline is not vectorized but has

vectorized beneficial mutation(s)
141 (37.8%) 100 (36.1%) 181 (38.1%)

vector extension for the task. Table A.9 contains the number of loops that are improved by

at least 15% via changing vectorization settings. Row 2 to 4 focus on the benefit by bypass-

ing the profitability model. Row 2 shows that 6.0%∼8.1% of the loops can be sped up over

15% by forcing the compilers to yield scalar code. This situation occurs when the overhead

introduced by vectorization (e.g. gather/scatter) is higher than the benefit of vectorization

yet the profitability model fails to assess it. Row 3 is for the opposite scenario when the

loop is vectorizable and profitable, but the profitability model deems otherwise. Because

we were not able to turn off Clang’s vectorization profitability model, only GCC and ICC

produce this situation, and 2.6%∼3.1% of the loops fall in this category for them. Row 4

is the subtotal of the above two situations. Row 5 counts the loops whose performances

increase when vectorized with an older vector extension, i.e. SSE or AVX. In this cate-

gory, vectorization profitability model is disabled for GCC and ICC but enabled for Clang.

This time, 10.0%∼12.1% additional loops receive benefit. Finally as shown in the last row,

18.1%∼21.5% of the loops can receive a sizable performance boost by changing vectoriza-

tion settings only and without undergoing any transformation. Note that although Clang

has the lowest value in the last row, its vectorization profitability model is not necessarily

better than those of the other two compilers; in fact, Clang having the highest value in row

2 suggests otherwise. We believe Clang’s low percentage in the last row heavily attributes

to the inability to disable its profitability model.

Table A.9: Statistics of loops having speedup by changing vectorization settings

GCC ICC Clang

1 # of loops studied (L) 1241 1175 1266

2 # (%) in L best improved with forced scalar 85 (6.8%) 71 (6.0%) 102 (8.1%)
3 # (%) in L best improved with forced vectorization 32 (2.6%) 36 (3.1%) N/A
4 Subtotal 117 (9.4%) 107 (9.1%) 102 (8.1%)

5 # (%) in L best improved with older vector ext. 150 (12.1%) 138 (11.7%) 127 (10.0%)

6 Total 267 (21.5%) 245 (20.9%) 229 (18.1%)
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Figure A.7 plots the speedup distribution of loops that are sped up by only changing

the vectorization setting during compilation. While most speedups are below 2x, a number

of loops gain speedups of 3x or above. Hence, a more accurate vectorization profitability

model and a better understanding on the characteristics of different vector extensions can

potentially help compilers to generate much faster results.
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Figure A.7: Distribution of loops that are improved by changing vectorization settings when
compiling the original loop

By combining the efforts of applying sequences of source-to-source transformations and

searching for the best vectorization setting, we are able to accelerate 579 (46.7%), 420

(35.7%), and 589 (46.5%) loops by over 15% for GCC, ICC, and Clang respectively, and the

average speedup of these beneficial cases is 1.61x∼1.65x depending on the compiler. The

average lower bound of performance headroom by applying source-to-source transformations

as well as searching for the best vectorization setting is 23.7% for GCC, 18.1% for ICC, and

26.4% for Clang.

A.6.3 Vectorization Profitability Case Study

In order to gain insight into the complex factors that affect the profitability of vector-

ization, we study the case in Listing A.5, which is taken from NPB LU benchmark and

whose scalar version outperforms its vectorized counterparts. ICC’s vectorized reference

compilation of the codelet is 2.2x slower than the scalar compilation. After investigating

the assembly code, we discovered that the anomaly may be attributed to the following two

reasons.

First, the reference code is vectorized at a length of 2. Instead of packing consecutive

elements in the array ce to a vector register, the compiler unrolls the loop by a factor of 2

and then picks two adjacent elements in a column, e.g. ce[0][0] and ce[1][0] to form the
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double ce[5][13] , rsd [64][65][65][5];

for(i = 0; i < nx; i++) {
iglob = i;
xi = iglob /(nx0 - 1);
for(j = 0; j < ny; j++) {

jglob = j;
eta = jglob /(ny0 - 1);
for(k = 0; k < nz; k++) {

zeta = k /(nz - 1);
for(m = 0; m < 5; m++) {

rsd[i][j][k][m] = ce[m][0] + ce[m][1] * xi + ce[m][2] * eta + ce[m
][3] * zeta + ce[m][4] * xi2 + ce[m][5] * eta2 + ce[m][6] *
zeta2 + ce[m][7] * xi3 + ce[m][8] * eta3 + ce[m][9] * zeta3 +
ce[m][10] * xi4 + ce[m][11] * eta4 + ce[m][12] * zeta4;

}}}}

Listing A.5: NPB LU code

vector. Since one vector instruction can process operations from multiple loop iterations in

the source code, one would expect the vector code’s assembly loop trip count to be less than

that of the scalar one. However, the trip count of the scalar loop is instead half of that of

the vectorized loop. By scrutinizing the assembly, we learned that the compiler fully unrolls

the scalar code’s innermost loop. It turns into fewer iterations and improves performance by

eliminating the end-of-loop test. Meanwhile, the compiler aggressively schedules instructions

for the scalar code after unrolling as there is no data dependence. This enhances instruction

pipelining with the help of better ILP.

Second, this loop nest tends to have many write cache misses since the rsd array does

not fit into L1 and even L2 cache. Vector code is usually supposed to stress memory more

than scalar code since it is more likely to complete computations faster. But it turns out

that The scalar code surprisingly manages to keep the memory much busier in this case. For

example, we found that the scalar code is able to fetch two cache lines concurrently for rsd

over 14% of the execution time while the vector code is essentially fetching one cache line

at a time. Moreover, the scalar code keeps fetching at least one cache line over 70% of the

execution time while the vector code keeps the memory busy for only 31% of the execution

time. Since the most expensive factor is write cache misses, and the scalar version manages

to process it more aggressively, it runs faster than the vector code. We observe that the

vector code has more L1 hitting loads from ce in between write missing stores to rsd. These

loads fill up the load buffer, causing the processor to stalls and prevent the processor from

executing the stores more aggressively.

Consequently, the fact that compilers may fail to accurately predict the outcome of vec-
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torization due to complex factors interfering with each other reduces the compilers’ stability.

A.7 RELATED WORK

[150] studied the effectiveness of vectorization in compilers as well as how transformations

aid vectorization. Their study demonstrated, for vectorization, some of the instability effects

discussed in this appendix. They applied transformations on a smaller collection of loop

nests by hand and focused only on vectorization. In comparison, we conducted our study

on a large number of programmatically generated mutations from an extensive collection

of loop nests, and we also investigate other components of the optimization process besides

vectorization. Most importantly, the main perspective that this appendix studies: stability,

is not explicitly considered by them.

Exploring the space of program variants as a mechanism to test for correctness of compilers

has been studied extensively. A variant is Equivalence Modulo Inputs (EMI) [162], which

transforms source programs to generate versions that are semantically-equivalent not for all

inputs but for a specific set of program inputs. A compiler defect is detected when the target

code from two different versions produce different outputs. The GLFuzz technique [163]

is similar to our approach in that it applies semantic-preserving transformations to check

the correctness of GLSL compilers. Other similar techniques to find performance bugs is

discussed by [164]. They call the strategy Performance Metamorphic Testing. The work

reported in this appendix can be considered as a member of this class of performance testers.

[165] used the performance counter values gathered from executing a loop as the input

to a machine learning model that predicts the best polyhedral transformations for the loop.

We instead use the correlation between performance counters and performance to investigate

the effect of source-level transformation.

Source-to-source transformations have been used as a compiler pre-pass in prior researches

in order to improve code performance. [128, 129, 130] adopted the technique in iterative

compilation. [128] used the CHiLL framework [166] to perform source-level transformations,

and they pointed out that the transformation search space grows exponential in size as the

number of tuning parameters increases. [129] searched the transformation space that consists

of three transformations: array padding, loop unrolling, and loop tiling. [130] searched poly-

hedral transformation space in their iterative optimization approach. Polyhedral compilers

such as PLUTO [167] and [168] also work as a source-to-source pre-pass to the back-end

compiler. The polyhedral transformations that they apply can be viewed as sequences to

loop transformations. However, both iterative compilation and polyhedral compilation only

aim to find a good shape of a given loop nest within reasonable time. Therefore, iterative
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compilation uses search algorithms to converge to high performance within limited number

of steps, and polyhedral compilation applies a single compound transformation based on

the polyhedral model. On the other hand, our work purposefully cover a large transforma-

tion space in order to evaluate the stability of compilers and to understand the effect of

source-level transformations.

Aimed at accelerating performance evaluation of programs, a few prior works also proposed

to extract the hotspots from applications and save them as stand-alone codelets. [169]

isolated code at the Intermediate Representation (IR) level using LLVM framework. In

contrast, our extractor is implemented as a separate component of the ROSE compiler

to isolate loop nests at the source level. [128, 170] also employed ROSE to develop their

extractor. While they mainly focused on outlining the kernels of the target application at the

function level for automatic kernel tuning and specialization, our extractor concentrates on

isolating for loops. In addition, the goal of our extractor is to provide stand-alone codelets

for loop transformation.

A.8 CONCLUSION

This appendix presents the first quantitative study on compiler stability – the measure of

the variation in performance of the target code generated by a compiler from semantically

equivalent yet differently structured source code. In this study, we investigated the stability

of GCC, ICC, and Clang’s compilation processes of C language for loop nests. In addition,

we also estimated the performance headroom of the said processes.

We measured the compilers’ stability and performance headroom by profiling an extensive

collection of loop nests extracted from benchmarks and libraries along with their semanti-

cally equivalent mutations generated by applying sequences of semantic-preserving transfor-

mations.

We quantified compiler stability by introducing a pair of stability scores. The intra-

compiler stability score measures the average variation in performance of semantically equiv-

alent mutations compiled by a given compiler. The score indicates that the three studied

compilers are far from being stable. The inter-compiler stability score measures the average

variation in performance of the target code generated by multiple compilers from the same

loop semantics. The score reveals a noticeable performance gap among the compilers. We

also used the score to confirm that source-to-source transformations are able to narrow the

gap. We believe that the two stability scores are useful tools for compiler developers to

evaluate the stability of their compilers as well as for the community to track the progress

to compiler stability over time.
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To understand the reasons that cause the instability in the compilation process, we ana-

lyzed the major effects of the transformations on performance by correlating the performance

variation with the change in performance counter readings and derived metrics. Using the

correlation and by manually inspecting the assembly code of interesting cases, we were able

to suggest improvements on compiler design that may increase the compilers’ stability. We

also found that the effect of source-level transformations is sometimes difficult to predict.

For example, unrolling may either help or harm vectorization depending on the vectorization

technique employed. Because different compilers may react to the same transformation in

different ways, it is even harder for a programmer to write a loop structure that can be

optimized well by multiple compilers.

Because vectorization has a significant impact on performance and stability, we also in-

vestigated how different loop structures affect vectorization as well as how effective the

compilers’ vectorization profitability models are. We observed that when the vectorization

profitability model fails, the performance of a loop can be severely harmed. Also, the newest

vector extension, despite having longer vector length and more features than the older ones,

can be outperformed by the older ones.

With the combined effort of applying source-to-source transformations and tuning vector-

ization settings, 35.7∼46.5% of the loops, depending on the compiler, exhibit a performance

headroom of over 15%. Depending on the compiler, the average performance headroom of

these significantly improved loops is 61.4%∼65.3%, and the average performance headroom

of all studied loops is 18.1%∼26.4%. The results are the lower bound of potential perfor-

mance improvement. We believe that the actual headroom may be significantly higher. By

expanding the experiment with more loops and transformations in the future, we can grad-

ually raise the lower bound and eventually get a sense of the actual performance headroom

and instability of the compilers.
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