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ABSTRACT

To aid threat detection and investigation, enterprises are increasingly relying on commer-

cially available security solutions, such as Intrusion Detection Systems (IDS) and Endpoint

Detection and Response (EDR) tools. These security solutions first collect and analyze au-

dit logs throughout the enterprise and then generate threat alerts when suspicious activities

occur. Later, security analysts investigate those threat alerts to separate false alarms from

true attacks by extracting contextual history from the audit logs, i.e., the trail of events that

caused the threat alert.

Unfortunately, investigating threats in enterprises is a notoriously difficult task, even for

expert analysts, due to two main challenges. First, existing enterprise security solutions are

optimized to miss as few threats as possible – as a result, they generate an overwhelming

volume of false alerts, creating a backlog of investigation tasks. Second, modern comput-

ing systems are operationally complex that produce an enormous volume of audit logs per

day, making it difficult to correlate events for threats that span across multiple processes,

applications, and hosts.

In this dissertation, I propose leveraging data provenance analytics to address the chal-

lenges mentioned above. I present five provenance-based techniques that enable system

defenders to effectively and efficiently investigate malicious behaviors in enterprise settings.

First, I present NoDoze, an alert triage system that automatically prioritizes generated alerts

based on their anomalous contextual history. Following that, RapSheet brings benefits of

data provenance to commercial EDR tools and provides compact visualization of multi-stage

attacks to system defenders. Swift then realized a provenance graph database that generates

contextual history around generated alerts in real-time even when analyzing audit logs con-

taining tens of millions of events. Finally, OmegaLog and Zeek Agent introduced the vision of

universal provenance analysis, which unifies all forensically relevant provenance information

on the system regardless of their layer of origin, improving investigation capabilities.
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CHAPTER 1: INTRODUCTION

System intrusions are becoming progressively more subtle and sophisticated. Using an

approach exemplified by the “living-off-the-land” attack strategy of Advanced Persistent

Threats (APTs), attackers now lurk in target systems for extended periods to expand their

reach before initiating devastating attacks. By avoiding actions that would immediately

arouse suspicion, attackers can achieve dwell times that range from weeks to months, as

was the case in numerous high-profile data breaches, including Target [1], Equifax [2], and

SolarWinds [3].

To combat these threats, enterprises are deploying threat detection and investigation sys-

tems, such as Intrusion Detection System (IDS) and Endpoint Detection and Response

(EDR). These systems constantly monitor enterprise-wide activities and generate a threat

alert if a suspicious activity happens. Security analysts then manually sift through these

alerts to find a signal that indicates a true attack. Once a true attack is identified, analysts

perform an incident response and recovery process. Depending upon the volume of alerts

and the analysis tools available to the analyst, this threat investigation process can typically

range from hours to days for an individual threat alert [4].

While threat detection and investigation systems are vital for enterprise security, two

challenges undermine their usefulness in practice. The first challenge is that the rule-set

used to detect threats is optimized for recall, not precision; that is, rule-set curators attempt

to describe all procedures that have any possibility of being attack related, even if the same

procedures are widely employed for innocuous purposes. As a result, current enterprise

security solutions generate an overwhelming volume of false alerts [5, 6, 7, 8], creating a

backlog of investigation tasks. In fact, these systems are one of the key perpetrators of the

“threat alert fatigue” problem – a phenomenon in which analysts do not respond, or respond

inadequately, to alerts because they receive so many each day.

The second challenge comes dubious nature of generated threat alerts. After receiving an

alert, the first job of an analyst is to determine the alert’s veracity. For such validation,

analysts review the context around the triggered alert by leveraging audit logs. However,

modern computing systems are operationally complex that generate an enormous volume of

audit logs per day, making it difficult to recover and correlate events for threats span across

multiple processes, applications, hosts, and networks. Security Indicator & Event Manage-

ment (SIEM) products are often the interface through which this task is performed (e.g.,

Splunk [9]), allowing analysts to write long ad-hoc queries to join attack stages, provided

that they have the experience and expertise to do so.
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In this dissertation, I use principled approaches based on data provenance to solve the

above-mentioned challenges. Data provenance can be applied to audit logs to parse host

events into provenance graphs that describe the totality of system execution and facilitate

causal analysis of system activities. In recent years, significant advancements have been

made to improve the fidelity [10, 11, 12, 13, 14, 15, 16, 17] and efficiency [18, 19, 20, 21,

22, 23, 24, 25] of data provenance analysis and recent research indicate that provenance

analysis can even be used to network debugging [26, 27], access control [28], and intrusion

detection [29]. However, leveraging data provenance to aid the investigation of system

intrusions in enterprise settings remained an open research challenge.

1.1 DISSERTATION STATEMENT

My research builds practical solutions for securing complex networked computer systems

by leveraging data provenance analytics. In this dissertation, I will demonstrate that by

incorporating data provenance in enterprise security solutions, system defenders can generate

contextual history of system execution from enormous audit logs. This dissertation proposes

using this contextual history to identify the root cause and impact of system intrusions, triage

threat alerts, summarize long-lived attack campaigns, and correlate the audit logs collected

from the system, application, and network layers.

The central thesis of this dissertation is as follows: understanding of contextual history of

system execution from a diverse range of vantage points enables more effective and efficient

investigation of intrusions as compared to traditional solutions.

1.2 SUMMARY OF CONTRIBUTIONS

In this dissertation, I designed five scalable systems that bring benefits of data provenance

to the enterprise security ecosystem. Below I highlight key ideas and contributions of these

systems:

1.2.1 NoDoze

As I described earlier, in practice, there are more alerts than analysts can properly in-

vestigate, creating a “threat alert fatigue” where analysts miss true attack alerts in the

noise of false alarms. To address this limitation, I will present NoDoze [30], an alert triage

system that automatically prioritized generated alerts based on their anomalous contextual

history. My key insight was that each event’s suspiciousness in the provenance graph should

2



be adjusted based on the suspiciousness of neighboring events in the graph. To this end,

I assigned an anomaly score to each edge in the provenance graph based on the frequency

with which related events have happened before in the organization. After that, I used a

novel adaptation of network diffusion algorithm to propagate and aggregate those anomaly

scores along the neighboring edges of the provenance graph. Finally, I used those aggregate

anomaly scores to triage alerts. To show the merits of my approach, I deployed and evalu-

ated NoDoze at NEC Labs America using 364 alerts generated by NECs commercial threat

detector, and discovered that NoDoze consistently ranked the true alerts higher than the

false alerts. Notably, I found that my technique not only could prioritize alerts but could

also reduce false alarms by 84% and saved analysts more than 90 hours of investigation time

per week.

1.2.2 RapSheet

NoDoze showed the efficacy of triaging alerts based on anomalous contextual history;

however, NoDoze is only applicable if anomalous events exist in the provenance graph.

In stealthy attacks, the attackers often avoid using any anomalous activities. To detect

such attacks, organizations deploy Endpoint Detection and Response (EDR) systems, which

match audit logs against a knowledge base of adversarial behaviors. However, during my

investigation, I found that EDR systems not only generate a high number of false alarms but

also only keep audit logs for short periods due to the huge resource burden of log retention. In

practice, EDR systems often delete audit logs before an attack investigation is ever initiated.

To solve those limitations, I will present a provenance-based EDR called RapSheet [31].

RapSheet leveraged the notion of the tactical provenance graphs that, rather than encoding

low-level system event dependencies, reasoned about causal dependencies between alerts. I

designed a novel threat scoring scheme that assesses each alert’s severity based on its tactical

provenance graph, enabling effective triage of EDR-generated alerts. Moreover, to provide

long-term log retention, I demonstrated that instead of storing unwieldy low-level audit logs,

maintaining a “skeleton graph” is minimally sufficient for forensic analysis. This skeleton

graph retained just enough context to not only identify causal links between the existing

alerts but also any alerts that may be triggered in the future. In evaluating RapSheet, I

considered 55,000 alerts generated by Symantec Enterprise machines, and discovered that

my approach consistently ranked truly malicious alerts higher than false alarms. Moreover,

I found that my skeleton graph approach could reduce the long-term burden of log retention

by up to 87%.
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1.2.3 Swift

A notable unaddressed limitation of NoDoze and RapSheet was that provenance graph

construction took upwards of hours to respond to investigator queries, creating a greater

opportunity for attackers to extend their reach and dwell longer on the victims’ machine. To

limit the attacks exposure and allow for faster post-breach threat hunting, I will present a

high-throughput and low-latency provenance graph generation framework called Swift [32].

Swift consisted of an in-memory graph database that enabled space-efficient graph storage

and online causality tracking with minimal disk operations. I developed a hierarchical stor-

age system that only kept forensically relevant parts of the provenance graph in the main

memory and spilled the rest to the disk. To identify graph elements that were likely to be

relevant during forensic investigations, I designed an asynchronous cache eviction policy that

calculates the most suspicious part of the provenance graph and caches only that part in

the main memory. Through extensive evaluation, I demonstrated that Swift could generate

provenance graphs of 10 real-world APT attacks from a database of over 300 million events

in less than 2 minutes, 10,000x faster than state-of-the-art solutions.

1.2.4 OmegaLog

While Swift paved the path for scalable auditing, through further investigation, I realized

that existing auditing frameworks based on system-layer events (e.g., syscalls) often generate

inaccurate causal analysis results due to dependency explosion: a problem in which an

output of a long-running process is falsely assumed to be causally dependent on all the

preceding inputs. Dependency explosion happens in large part because of the semantic gap

between system-layer events and application-layer behaviors. To solve this limitation, I will

present OmegaLog [33]. I will show that application-layer semantics are usually found in

applications’ innate event logs, and through integrating such application logs into system

logs, we can solve the dependency explosion problem. To that end, I first modeled application

logging behaviors using static binary analysis. I demonstrated that those models could be

used to reconcile application-layer events with system-layer accesses and partition a long-

running process into semantically independent execution units. During the evaluation, I

undertook an expensive series of attack case studies and discovered that my approach enabled

semantically rich and accurate attack reconstructions with just 4% runtime overhead. Most

excitingly, I demonstrated that, unlike existing solutions, my approach did not require any

invasive instrumentation to solve the dependency explosion problem.
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1.2.5 Zeek Agent

Enterprise monitoring tools collect various types of logs, such as system logs and network

logs, to help analysts spot possible intrusions. However, the monitoring tools commonly

used today collect network and host logs in a siloed manner, making it extremely difficult for

security analysts to correlate events across boundaries of these logs when investigating system

intrusions. To address this challenge and enable cross-log causal analysis, we designed an

open source endpoint monitoring system called Zeek Agent [34]. Zeek Agent transparently

collects host monitoring logs and seamlessly correlates those host logs with the network

flows present in Zeek logs [35]. Moreover, Zeek Agent allows security analysts to construct a

unified provenance graph from the correlated host and network logs to accelerate the threat

investigation process. Evaluation results show that Zeek Agent is scalable, extensible, and

enables cross-log analysis between host and network logs, with low execution overhead.

This dissertation is organized as follows:

• Chapter 1 has introduced the challenges and benefits of using data provenance in the

enterprise security domain. I have highlighted my main contributions to this field of

research and discussed different tools that I developed over the course of my Ph.D. to

improve the threat investigation capabilities of enterprise security solutions.

• Chapter 2 discusses the challenge of “threat alert fatigue” problem. To tackle this

challenge, I will present NoDoze, an automatic alert triage and investigation system

based on provenance graph analysis. I will discuss my novel network diffusion algorithm

that assigns anomaly scores for triaging threat alerts. I will also discuss how I deployed

and evaluated NoDoze at NEC Labs America.

• Chapter 3 explains in detail the motivation, design, implementation, and evaluation of

RapSheet. First, I will describe the enterprise security solution landscape. Then I will

discuss how I incorporated data provenance in Symantec’s enterprise security solution

to make it more practical.

• Chapter 4 presents Swift, a threat investigation system that provides high-throughput

causality tracking and real-time causal graph generation capabilities. I will discuss

how we designed an in-memory graph database that enables online causality tracking

with minimal disk operations. I will also describe a hierarchical storage system that

keeps forensically-relevant part of the causal graph in the main memory while evicting

the rest to the disk.
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• Chapter 5 details OmegaLog, an end-to-end provenance tracker that merges application

event logs with the system log to generate a universal provenance graph. This graph

combines the causal reasoning strengths of whole-system logging with the rich semantic

context of application event logs, allowing investigators to reason more precisely about

the nature of attacks.

• Chapter 6 discusses the design and implementation of Zeek Agent framework that

transparently collects host monitoring logs and combines them with Zeek network

logs. I will discuss unique challenges in correlating these siloed log streams and Zeek

Agent’s technique to tackle those challenges.

• Chapter 7 outlines related work and their limitations which serves as a motivation for

this dissertation.

• Chapter 8 concludes this dissertation.
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CHAPTER 2: NODOZE: PROVENANCE-BASED THREAT ALERT
TRIAGE

Large enterprises are increasingly being targeted by Advanced Persistent Threats (APTs).

To combat these threats, enterprises are deploying threat detection softwares (TDS) such as

intrusion detection system and security information and event management (SIEM) tools.

These softwares constantly monitor the enterprise-wide activities and generate a threat alert

if a suspicious activity happens. Cyber analysts then manually sift through these alerts to

find a signal that indicates a true attack.

Unfortunately, these automated systems are notorious for generating high rates of false

alarms [5, 6, 7]. According to a recent study conducted by FireEye, most organizations

receive 17,000 alerts per week where more than 51% of the alerts are false positives and only

4% of the alerts get properly investigated [8]. Due to an enormous number of alerts, cyber

analyst face “threat alert fatigue”1 problem and important alerts get lost in the noise of

unimportant alerts, allowing attacks to breach the security of the enterprise. One example

of this is Target’s disastrous 2013 data breach [1], when 40 million card records were stolen.

Despite numerous alerts, the staff at Target did not react to this threat in time because

similar alerts were commonplace and the security team incorrectly classified them as false

positives. In Figure 2.1, we demonstrate the growth of alerts generated by a commercial

TDS [36] at NEC Labs America comprising 191 hosts.

The threat alert fatigue problem is, at least partially, caused by the fact that existing

academic [37, 38] and commercial [39, 40] TDS use heuristics or approaches based on single

event matching such as an anomalous process execution event to generate an alert. Unfor-

tunately, in many cases, a false alert may look very similar to true alert if the investigator

only checks a single event. For example, since both ransomware and ZIP programs read and

write many files in a short period of time, a simple ransomware detector that only checks

the behavior of a single process can easily classify ZIP as ransomware [41]. Even though

contextual alerting has proven to be most effective in the alert triage process [42], existing

TDS usually do not provide enough contextual information about alerts (e.g., entry point of

invasion) which also increases investigators’ mean-time-to-know.2

Data provenance analysis [10, 43] is one possible remedy for the threat alert fatigue prob-

lem. Data provenance can provide the contextual information about the generated alert

through reconstructing the chain of events that lead to an alert event (backward tracing)

1A phenomenon when cyber analysts do not respond to threat alerts because they receive so many each
day.

2Mean-time-to-know measures how fast cyber analysts can sort true threats from noise when they get
threat alerts.
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Figure 2.1: Growth of alerts in an enterprise during a given month.

and the ramifications of the alert event (forward tracing). Such knowledge can better sepa-

rate a benign system event from a malicious event even though they may look very similar

when viewed in isolation. For example, by considering the provenance of an alert event, it

is possible to distinguish ransomware from ZIP: the entry point of ransomware (e.g., email

attachment) is different from the ZIP program.

Although a provenance-based approach sounds promising, leveraging data provenance for

triaging alerts suffers from two critical limitations: 1) labor intensive – using existing tech-

niques still require a cyber analyst to manually evaluate provenance data of each alert in

order to eliminate false alarms, and 2) dependency explosion problem – due to the complexity

of modern system, current provenance tracking techniques will include false dependencies be-

cause an output event is assumed to be causally dependent on all preceding input events [13].

In our scenario, due to this problem, a dependency graph of a true attack alert will include

dependencies with benign events which might not be causally related to the attack. This

problem makes the graph very huge (with thousands or even millions of nodes). Such a huge

graph is very hard for security experts to understand [18], making the diagnosis of attacks

prohibitively difficult.

In this chapter, we propose NoDoze, an automatic alert triage and investigation system

based on provenance graph analysis. NoDoze leverages the historical context to automat-

ically reduce the false alert rate of existing TDS. NoDoze achieves this by addressing the

aforementioned two limitations of existing provenance analysis techniques: it is fully auto-

mated and can substantially reduce the size of the dependency graphs while keeping the

true attack scenarios. Such concise dependency graphs enable security experts to better

understand the attacks, discover vulnerabilities quickly, accelerating incident response.

Our approach is based on the insight that the suspiciousness of each event in the prove-

nance graph should be adjusted based on the suspiciousness of neighboring events in the

graph. A process created by another suspicious process is more suspicious than a process
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created by a benign process. To this end, our anomaly score assignment algorithm is an

unsupervised algorithm with no training phase. To assign anomaly scores to the events,

NoDoze builds an Event Frequency Database which stores the frequencies of all the events

that have happened before in the enterprise. After anomaly score assignment, NoDoze

uses a novel network diffusion algorithm to efficiently propagate and aggregate the scores

along the neighboring edges (events) of the alert dependency graph. Finally, it generates an

aggregate anomaly score for the candidate alert which is used for triaging.

To tackle the dependency explosion problem in the alert investigation process, we propose

the notion of behavioural execution partitioning. The idea is to partition a program execution

based on normal and anomalous behaviour and generate most anomalous dependency graph

of a true alert. This allows cyber analyst to focus on most anomalous events which are

causally related to the true alert which accelerates the alert investigation process.

2.1 MOTIVATION

In this section, we use an attack example to illustrate the effectiveness and utility of

NoDoze as an alert triage system with two aspects: 1) filtering out false alarms to reduce

alert fatigue, and 2) concise explanation of the true alerts using dependency graphs to

accelerate alert investigation process. We will use the example of a WannaCry ransomware

attack [44] in an enterprise environment. This attack was simulated as a live exercise at NEC

Labs America; we describe the experimental setup used for the simulation in Section 2.4.

2.1.1 Motivating Attack Example

WannaCry ransomware is a popular attack that affected around 0.2 million systems across

150 countries in May 2017 [45]. It is essentially a cryptoworm which targets computers run-

ning the Microsoft Windows OS with vulnerable EternalBlue [46]. It exploits this vulnera-

bility to gain access to the machines and encrypts data on those machines.

Scenario. Consider a front desk person in an enterprise who one day visits several websites

using Internet Explorer to search for pdf reader software. After visiting several links, the

front desk person accidentally downloads a malware (springs.7zip) from a malicious web-

site and then runs the malware thinking of it as pdf reader software. This malware opens

a backdoor to the attacker’s server and then searches for EternalBlue vulnerable machines

in the front desk’s enterprise network. Once vulnerable machines are found the attacker

downloads the file encryptor and starts to encrypt files on those vulnerable machines. After

some time the front desk person’s PC starts to run very slow so front desk person calls
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Figure 2.2: WannaCry attack scenario described in 2.1.1. (a) Part of the threat alerts’
dependency graph generated by prior approaches [10, 43]. Some edges have been omitted
for clarity. (b) Concise dependency graph generated by NoDoze.

technical support. The technical support person downloads and executes a diagnostic tool

(collect-info.ps1) on front desk person’s PC from an internal software repository, which

runs some diagnostic commands including Tasklist and Ipconfig. All of the output is copied

to a file sys-report.txt, which is then transferred to a remote machine for further investi-

gation. On the remote machine, the technical support person runs several bash commands

to check the file contents and figure out the issue with the front desk person’s computer.

Alerts Investigation. During the above attack scenario, two threat alerts were generated

by the underlying TDS while over 100 total threat alerts were generated over the course of

the day. The first alert event E1, was generated when malware made several connections to

remote machines in the enterprise. The second alert event E2 was generated when technical

support diagnostic tool initiated a remote connection to a secure machine. Note that, at a

single event level, both alert events E1 and E2 look very similar; both processes making an

unusual connection to a remote machine in the network.

To investigate the alerts and prepare a response, the cyber analyst performs a causality

analysis. Provenance-based tools [10, 43] process individual events between system objects

(e.g.,, files and network sockets) and subjects (e.g.,, processes) to construct a causal depen-

dency graph. Note that cyber analysts can use these graphs to understand the context of the

alert by using a backward tracing query which starts from the given symptom event (alert)

and then identifies all the subjects and objects that the symptom directly and indirectly

depends on. Using a forward tracing query, the analyst can then identifies all the effects
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induced by the root cause of the alert. Figure 2.2a shows the simplified dependency graph

generated by existing tools for alert events E1 and E2.

2.1.2 Existing Tools Limitations

Existing provenance trackers when combined with TDS for alert triage and investigation

process suffer from following limitations:

Alert Explosion & Manual Labor. Even if the TDS identifies an anomalous event

related to the attack, cyber analysts are barraged with alerts on a daily basis and face

the problem of finding a “needle in a haystack”. Existing automated TDS are notorious

for generating a high amount of false alarms [5, 6, 7, 47, 48]. Cyber analysts are in short

supply, so organizations face a key challenge in managing the enormous volume of alerts

they receive using the limited time of analysts [8]. Many heuristic- and rule-based static

approaches have been proposed to mitigate this problem [49, 50, 51, 52]. However, there

are still too many threat alerts for the analysts to manually investigate in sufficient depth

using alerts’ dependency graphs which are also usually very complex. During the day of

the attack, the TDS generated over 100 threat alerts with an average of 2K vertices in each

alert’s dependency graph; and only 1 threat alert was related to WannaCry attack while all

other were false alarms.

Dependency Explosion. Most existing provenance trackers suffer from the dependency

explosion problem, generating graphs similar to Figure 2.2a. The dependency inaccuracy is

mainly caused by long running processes that interact with many subjects/objects during

their lifetime. Existing approaches consider the entire process execution as a single node

so that all input/output interactions become edges to/from the process node. This results

in considerably large and inaccurate graphs. Consider the Internet Explorer IExplorer.exe

vertex in our example dependency graph which is shown in Figure 2.2a. When cyber analysts

try to find the ancestry of the downloaded malware file (springs.7zip) and diagnostic tool

file (collect-info.ps1), they will unable to determine which incoming IP/socket connection

vertex is related to the malware file and which one belongs to the diagnostic tool file.

Prior solutions to the dependency explosion problem [12, 13, 16, 21] propose to partition

the execution of a long running process into autonomous “units” in order to provide more

precise causal dependency between input and output events. However, these systems require

end-user involvement and system changes through source code instrumentation, training runs

of application with typical workloads, and modifying the kernel. Due to proprietary software

and licensing agreements, code instrumentation is not often possible in an enterprise. Fur-

11



System 
Log DB

O
S-

Le
ve

l L
og

s
Threat

 Detector

Threat
Alerts Dependency 

Graph 
Construction

 Event 
Freq. DB Ranked Subgraphs

Network Diffusion 
& Behavioral 
partitioning

NoDoze

Figure 2.3: Overview of NoDoze. Alerts generated by threat detector are provided to
NoDoze, which ranks the alerts based on their aggregate anomaly scores and produces
concise alert dependency graphs for investigation.

thermore, these systems are only implemented for Linux, and their designs are inapplicable

to commodity-off-the-shelf operating systems like Microsoft Windows. Finally, acquiring

typical application workloads in a heterogeneous large enterprise is not practically feasible.

2.2 DESIGN OVERVIEW

The overall workflow of NoDoze system to triage alerts based on anomaly scores is

shown in Figure 2.3. NoDoze acts as an add-on to an existing TDS in order to reduce

false alarms and provide contextual explanations of generated threat alerts. To triage alerts,

NoDoze first assigns an anomaly score to each event in the generated alerts provenance

graph. Anomaly scores are calculated using frequencies with which related events have

happened before in the enterprise. NoDoze then uses a novel network diffusion algorithm to

propagate and aggregate anomaly scores along the neighboring events. Finally, it generates

an aggregate anomaly score for the generated alert which is used for triaging – escalating

the most critical incidents for remediation and response.

As mentioned previously, existing execution partitioning techniques [12, 13, 16, 21] for

precise dependencies are not feasible in an enterprise. In the case of true alerts, NoDoze

solves this problem by leveraging the observation that the attack’s dependencies will be

readily apparent because the true path will have much higher anomaly score. We call this

approach as behavioural execution partitioning for alert investigation. In our attack example,

since IExplorer.exe has only two socket connections from anomalous websites (one of them

is a malicious website from which malware was downloaded) while all the other socket

connections were to websites common (normal) in the enterprise. Hence, we can get rid of

all the common IP connection vertices and partition the execution of IExplorer.exe based

on its abnormal behaviour.

Figure 2.2b shows the dependency graph generated by NoDoze for our motivating ex-

ample. It concisely captures the minimal causal path between the root cause (initial socket
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connection to IExplorer.exe) the threat alert (dropper.exe socket connection to another

host), and all other ramifications (encryptor.exe encrypting several files). Observe that in

Figure 2.2a there are two threat alert events annotated by E1 and E2 shown with dashed

arrows. Looking at these alert events in isolation, they look similar (both make socket con-

nection to important internal hosts). However, when we consider the ancestry and progeny

of each these alert events using backward and forward tracing, we can see that the behaviour

of each of them is markedly different.

In order to identify if a threat alert is a true attack or a false alarm, NoDoze uses anomaly

scores which quantify the “rareness”, or transition probability, of relevant events that have

happened in the past. For example, the progeny of alert event E1 i.e., dropper.exe →
y.y.y.y:445 consists of several events that are more rare i.e.,, have low transition probability.

For example, in the progeny of Spoolsv.exe (print service), spawning another process that

reads/writes several files happened 0 times in the organization earning this behaviour a high

anomaly score. Similarly, in the ancestry of E1, a chain of events in which an executable is

downloaded using Internet Explorer and then connects to a large number of hosts in a short

period is very rare and thus has a high anomaly score. As a result, when we combine the

ancestry and progeny behaviours of E1, we get a high aggregate anomaly score for the alert.

In contrast, when we consider the progeny of alert event E2 i.e., Powershell→ z.z.z.z:445,

we see a chain of events that are quite common in an enterprise because these behaviours

are exhibited by common Linux utilities (e.g. diff and cut). Moreover, the ancestry of

alert event E2 contains diagnostic events such as Tasklist and Ipconfig which are regularly

performed to check the health of computers in the enterprise. Therefore, the aggregate

anomaly score of E2 will be quite lower than the anomaly score of E2.

Once NoDoze has assigned an aggregate anomaly score to the alert event, it extracts the

subgraph from the dependency graph that has the highest anomaly score. The dependency

graph for true alert E1 is shown in Figure 2.2b. Observe that in Figure 2.2a, Spoolsv.exe has

created many other socket connections (total 130 sockets); however, the NoDoze generated

graph has only encrypt.exe process since this behaviour was more anomalous than the other

events. Similarly, while IExplorer.exe received several socket connections, NoDoze only

picked rare IP addresses a.a.a.a and b.b.b.b since these have higher anomaly scores than

the other normal socket connections.

2.3 ALGORITHM

In this section, we present a network diffusion algorithm to assign anomaly score to each

event in an alert dependency path using historical information.
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2.3.1 Definitions

Dependency Event. OS-level system logs refer to two kinds of entities: subjects and

objects. Subjects are processes, while objects correspond to files, socket connections, IPC

etc. A dependency (causal) event E is defined as a 3-tuple < SRC,DST,REL > where SRC

∈ {process} entity that initiates the information flow whereas DST ∈ {process, file, socket}
entities which receive information flow, while REL represents information flow relationship.

The various kinds of dependency event relationships we consider in this work are shown in

Table 2.1. For example, in Figure 2.2a a dependency event E1 is represented as<dropper.exe,

y.y.y.y:445, IP Write>.

Table 2.1: Dependency Event Relationships

SRC DST REL

Process

Process Pro Start; Pro End

File File Write; File Read; File Execute

Socket IP Write; IP Read

Dependency Path. A dependency path P of a dependency event Ea represents a chain

of events that led to Ea and chain of events induced by Ea. It is an ordered sequence

of dependency events and represented as P := {E1, Ei, ... , Ea, ... En } of length n.

Each dependency event can have multiple dependency paths where each path represents one

possible flow of information through Ea. Dependency path may contain overlapping events,

making it possible to represent any dependency graph as a set of dependency paths.

We further divide dependency paths into two categories:

– A control dependency path (CD) of an event ε is a dependency path PCD = {ε1, ε2, ..., εn}
such that ∀ REL ∈ {Pro Start, Pro End}.

– A data dependency path (DD) of an an event ε is a dependency path PDD = {ε1, ε2, ..., εn}
such that ∀ REL /∈ {Pro Start, Pro End}.

From the motivating attack example, two possible dependency paths {P1, P2} of length 5,

one control dependency path PCD1 and one data dependency path PDD1 for the alert event

E2 are shown in Figure 2.4.

Dependency Graph. All the dependency paths of an event when merged together

constitute one single dependency graph. For example, the dependency graph of alert events

E1 and E2 is shown in Figure 2.2a.

True Alert Dependency Graph. As we discussed in Section 2.1, due to long running

programs there are false dependency events in the dependency graph. Due to false depen-
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Figure 2.4: Example dependency paths of length 5 for alert event E2 from the motivating
example (Section 2.1).

dencies, there will be unrelated benign events in the dependency graph of a true alert event

which might not be causally related to the attack. So we partition the long running programs

based on their normal and anomalous behaviour. We call this technique as behavioural exe-

cution partitioning. This technique will generate a true alert dependency graph, which will

contain most anomalous dependency paths. True alert dependency graphs are concise as

compared to complete dependency graphs and accelerate the investigation process without

losing vital contextual information about the attack.

2.3.2 Roadmap

An anomaly score quantifies the degree of suspiciousness of an event in a dependency

path. A näıve way to assign anomaly score is to use frequency of the system events that

have happened in the past such that events that are rare in the organization are considered

more anomalous. However, sometimes this assumption may not hold since attacks may

involve events that happen a lot. From the motivating attack (Section 2.1), unzipping a file

(springs.7zip) is a common event in an organization; however, it was one of the events that

led to the attack. Thus, simple frequency-based approach to find anomaly cannot catch such

attacks. However, if we consider the chain of events that were informed by springs.7zip file,

such as initiating a large number of IP connections in a short period of time, we can find out

that this is not common behaviour after someone unzips the springs.7zip file. Therefore,

our objective is to define the anomaly score not just based on a single event in the dependency

path but based on the whole path. Next, we discuss how to calculate the anomaly scores for

each dependency path based on the whole path.

2.3.3 Anomaly Score Propagation

In order to calculate a dependency path’s anomaly score, we first need to find dependency

paths of an alert event. Given a complete dependency graph G of an alert event Eα, we find
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all the dependency paths of length τl for the Eα. To do so, we run depth-first traversal in

a backward and forward fashion from the alert event and then we combine those backward

and forward paths to generate unified paths such that each unified path contains both the

ancestry and progeny causal events of alert. In Algorithm 2.1, Lines 2 to Lines 6 show the de-

pendency path search algorithm. Function GetDependencyGraph generates a complete

dependency graph of an input event, functions GetSrcVertex and GetDstVertex re-

turn SRC and DST entities of input event respectively, functions DFSTraversalBackward

and DFSTraversalForward return backward and forward dependency paths for input

event respectively, and function CombinePaths combine backward and forward paths.

After generation of dependency paths for candidate alert event, NoDoze assigns anomaly

scores to each event in the dependency paths. In Algorithm 2.1, Lines 7 to Lines 10 show this

process. To calculate the anomaly scores, we first construct a N ×N transition probability

matrix M for the given dependency graph G of alert event, where N is the total number of

vertices in G. Each matrix entry Mε is computed by the following equation:

Mε = probability(ε) =
|Freq(ε)|

|Freqsrc rel(ε)|
(2.1)

Here, Freq(ε) represents how many times the causal event ε has happened in the historic

time window with all 3-tuple of ε exactly same, while Freqsrc rel(ε) represents how many

times event ε where only SRC and REL from 3-tuple are exactly same. Hence, Mε means the

happening probability of this specific event. If ε event never happened before in historical

information, then its value is 0. On the other hand, if ε is the only event between SRC and any

other entity with REL in our historical information then its value 1. Note that this anomaly

score assignment algorithm is an unsupervised algorithm with no training phase. To count

the frequency of events that have happened in the past we built an Event Frequency Database

that periodically stores and updates events frequency in the whole enterprise. A detailed

discussion regarding the construction of such database will be provided in Section 2.4.1.

Let’s consider an alert event E1 :=<dropper.exe, y.y.y.y:445, IP Write> from Fig-

ure 2.2a. We first calculate Freq(E1) by counting the number of events that have happened

in our frequency event database where SRC ∈ dropper.exe , DST ∈ y.y.y.y:445 and REL is

IP Write. Then, we will calculate Freqsrc rel(E1) by counting the number of events where SRC

∈ dropper.exe and REL is IP Write while DST could be any entity node. Details regarding

how these functions are implemented will be provided in Section 2.4.1.

Transition probability for a given event tells us the frequency with which a particular

source flows to a particular destination; however, we are ultimately going to propagate this

value through the graph, but when we do so we want to account for the total amount of

data flowing out of the source, and the total amount of data flowing into the destination.
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For this, we calculate IN and OUT score vectors for each entity in the dependency graph G.

The IN and OUT scores represent the importance of an entity as an information receiver and

sender respectively. In other words, IN and OUT scores measure the degree of fanout in either

direction for each entity in the graph. For example, in the motivating attack (Section 2.1),

the IExplorer.exe process entity has both high IN and OUT scores, as it frequently reads

and writes to socket connections. On the other hand, dropper.exe process entity has a high

OUT score as it frequently writes to socket connections but has low IN since it does not read

anything. We provide a detailed algorithm to calculate these vectors in Section 2.3.4.

Once the transition probability matrix and IN and OUT scores calculation are done, we

calculate the regularity (normal) score of each dependency path. Given a dependency path

P = (ε1, ..., εl) of length l, the regularity score RS(P ) is calculated as follows:

RS(P ) =

l∏
i=1

IN(SRCi)×M(εi)×OUT (DSTi) (2.2)

where IN and OUT are the sender and receiver vectors, and M is calculated by Equation

2.1. In Equation 2.2, IN(SRCi) × M(εi) × OUT (DSTi) measures the regularity of the

event ε that SRCi sends information to DSTi entities. After calculating regularity score, we

calculate the anomaly score as follows:

AS(P ) = 1−RS(P ) (2.3)

According to this equation, if any path that involves at least one abnormal event, it will be

assigned a high anomaly score as it will be propagated to the final score. In Algorithm 2.1,

function CalculateScore generates anomaly scores of given dependency paths.

2.3.4 IN and OUT Scores Calculation

As mentioned above, Equation 2.2 requires the IN and OUT score vectors for each entity

in the dependency graph. We populate IN and OUT score for each entity, based on its type

as follows:

Process Entity Type. To assign IN and OUT score to a candidate process entity we check

the historical behaviour of candidate process entity globally in the enterprise and calculate

its scores as follows: Let v be the candidate process entity in the dependency graph and

m is a fixed time window length. The period from the time v is added to the dependency

graph (T0) to the current timestamp (Tn) is partitioned into a sequence of time windows

T = {T0, T1, ..., Tn}, where Ti is a time window of length m. If there is no new edge from/to
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Algorithm 2.1: GetPathAnomalyScore
Inputs : Alert Event Eα;

Max Path Length Threshold τl
Output: List L<P,AS> of dependency path and score pairs.

1 Gα = GetDependencyGraph(Eα)
2 Vsrc ← GetSrcVertex(Eα)
3 Vdst ← GetDstVertex(Eα)
4 Lb ← DFSTraversalBackward(Gα,Vsrc,τl)
5 Lf ← DFSTraversalForward(Gα,Vdst,τl)

/* Combine Backward and Forward Dependency Paths */
6 Lp ← CombinePaths(Lb,Lf )

/* Generate a transition matrix of an input graph using Eq. 2.1 */
7 M = GetTransitionMatrix(G)
8 foreach P ∈ Lp do

/* Calculate Path anomaly score using Eq. 2.2 and Eq. 2.3 */
9 AS ← CalculateScore(P ,M)

/* Append path and its anomaly score to a list */
10 L<P,AS> ← L<P,AS> ∪ < P,AS >

11 end

12 return L<P,AS>

vertex v in window Ti, then Ti is defined as a stable window. The vertex v’s IN and OUT score

is calculated using Equation 2.4 and Equation 2.5 respectively where |T ′from| is the count of

stable windows in which no edge connects from v, |T ′to| is the count of stable windows in

which no edge connects to v, and |T | is the total number of windows.

IN(v) =
|T ′
to|
|T |

(2.4) OUT (v) =
|T ′
from|
|T |

(2.5)

To understand the intuition of these equations, consider an example where a process vertex

constantly have new edges going out from it while there is no edge going in. In such a case,

the vertex has very low IN score, its OUT score will be high. If there is suddenly an edge going

in the vertex, it is abnormal. The range of process entity IN and OUT score ∈ [0, 1], when a

node has no stable window, i.e.,, the node always has new edges in every window, its score is

0. If all the windows are stable, the node stability is 1. Through repeated experimentation,

we typically set the window length 24 hours. Hence the stability of a node is determined by

the days that the node has no new edges and the total number of days.

Data Entities. Data entity type consists of file and socket entities. Data entities cannot

be assigned global scores like Process entity as mentioned-above because the behaviour of

data entity various from host to host in the enterprise. We define local values in terms of

low and high IN and OUT scores for data entities. To assign IN and OUT scores for file entity
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vertices, we divide the file entities into three types and based on the type, we assign IN and

OUT scores. 1) Temporary Files: All the file entities which are only written and never read

in the dependency graph are considered as temporary files as suggested by [19]. We give

temporary files as high IN and OUT scores since they usually do not contribute much in attack

anomaly score. 2) Executable Files: Files which are executable (execute bit is 1) are given

low IN and OUT since they are usually used in the attack vector thus important sender and

receiver of information. 3) Known malicious extensions: We use an online database [53] of

known malicious file extensions to assign low IN and OUT to such files since they are highly

anomalous. All the other files are given IN and OUT score of 0.5. To assign IN and OUT

scores for socket connection entities, we use domain-knowledge. We use an online database

of malicious IP [54] address to assign low IN and OUT score.

2.3.5 Anomaly Score Normalization

For each alert causal path P , we calculate the anomaly score using Eq. 2.2 and Eq. 2.3.

However, it is easy to see that longer paths would tend to have higher anomaly scores than

the shorter paths. To eliminate the scoring bias from the path length, we normalize the

anomaly scores so that the scores of paths of different lengths have the same distribution.

We use a sampling-based approach to find the decay factor which will progressively de-

crease the score in Equation 2.2. To calculate decay factor α, we first take a large sample

of false alert events. Then, for each alert we generate the dependency paths of different

max lengths τl and generate anomaly score for those paths. Then we generate a map M

which contains average anomaly scores for each path length. Using this map, we calculate

the ratio at which the score increases with increasing length from the baseline length k and

use this ratio decay factor α. The complete algorithm to calculate the decay factor α using

the sampling method is shown in Algorithm 2.2. Once the decay factor is calculated, the

regularity score Equation 2.2 becomes as follows:

RS(P ) =

l∏
i=1

IN(SRCi)×M(εi)×OUT (DSTi)× α (2.6)

2.3.6 Paths Merge

As attacks are usually performed in multiple steps, it is not possible to capture the com-

plete causality of a true alert event by returning the single dependency path that is most

anomalous. Likewise, returning the full dependency graph (comprised of all paths) to cyber
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Algorithm 2.2: CalculateDecayFactor
Inputs : List of false alert causal events LE ;

Baseline length k;
Max. Path Length Threshold τl

Output: Decay Factor α

1 M = KeyValue Store of Path Length and Avg. Anomaly Score
2 foreach E ∈ LE do
3 for i← 0 to τl do

/* Use Algorithm 2.1 to generate anomaly score for given event and max path length */
4 L<P,AS> = GetPathAnomalyScore(E ,i)

/* Takes the average of anomaly scores for each path length and store in map */
5 M [i] ← AverageScore(L<P,AS>,M [i])

6 end

7 end
/* Returns the ratio at which score increases with length from the baseline */

8 α ← GetDecayFromBaseline(M ,k)

9 return α

analysts is inaccurate because it contains both anomalous paths as well as benign paths that

are unrelated to the true alert. To strike a balance between these two extremes, we introduce

a merging step that attempts to build an accurate true alert dependency graph by including

only dependency paths with high anomaly scores.

A näıve approach to this problem would be to return the top k paths when ranked by

anomaly score; this solution is not acceptable because not all attacks contain the same

number of steps, which could lead to the admission of benign paths or the exclusion of

truly anomalous paths. Instead, we present an algorithm that uses a best effort approach

to merge paths together in order to create an optimally anomalous subgraph. Through

experimentation with NoDoze, we found that there is an orders of magnitude difference

between the scores of benign paths and truly anomalous paths. Because of this, we are

able to introduce a merge threshold τm which quantifies the difference between the two.

Algorithm 2.3 shows how to merge dependency paths based on the merge threshold τm. At

a high level, this algorithm keeps merging high anomaly score paths until the difference is

greater than τm. In order to calculate an acceptable value for τm, we use a training phase to

calculate the average difference between anomalous and benign paths. While the availability

of labeled training data that features true attacks may seem prohibitive, recall that NoDoze

is designed for enterprise environments that already employ trained cyber analysts; thus, the

availability of training data is a natural artifact of their work. We also note that, based on

our experience, the τm threshold only needs to be calculated once per deployment.
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Algorithm 2.3: Dependency Paths Merge
Inputs : LPS List of dependency path P and score S pairs;

Merge Threshold τm
Output: Alert Dependency Graph G

/* Sort list by anomaly scores */
1 LPS = SortByScore(LPS)

2 for i← 0 to sizeof(LPS)− 1 do
/* Path and its anomaly score pair */

3 < P1, S1 > ← LPS [i]
4 < P2, S2 > ← LPS [i+ 1]
5 if S1 − S2 < τm then
6 G ← G ∪ P1

7 G ← G ∪ P2

8 end

9 end

10 return G

2.3.7 Decision

The main goal of NoDoze is to rank all the alerts in a given timeline. However, we can

also calculate a decision or a cut-off threshold τd, which can be used to decide if a candidate

threat alert is a true attack or a false alarm with high confidence. If anomaly score of a threat

alert is greater than the decision threshold than it is categorized as a true alert otherwise a

false alarm. To this end, calculating τd require training dataset with true attacks and false

alarms and its value depends on the current enterprise configuration such as the number of

hosts and system monitoring events.

2.3.8 Time Complexity of our Algorithm

The dependency paths search for an alert event is done using depth-first search (DFS)

traversal with bounded depth D. We execute DFS twice for each alert, once forward and

once backward to generate both forward tracing and backward tracing dependency paths.

So time complexity is O(|bD|) where b is the branching factor of the input dependency graph.

Equation 2.2 runs for each path so time complexity is O(|PD|) where P is the total number

of dependency paths for the alert event.

2.4 EVALUATION

In this section, we focus on evaluating the efficacy of NoDoze as an automatic threat

alert triage and investigation system in an enterprise setting. In particular, we investigated
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the following research questions (RQs):

RQ1 How accurate is NoDoze over existing TDS?

RQ2 How much can NoDoze reduce the dependency graph of a true alert without sacrificing

the vital information needed for investigation?

RQ3 How much of investigator’s time can NoDoze save when used in an enterprise setting?

RQ4 What is the runtime overhead of NoDoze?

2.4.1 Implementation

We implement NoDoze for an enterprise environment. We collected system event logs in

PostgreSQL database using Windows ETW [55] and Linux Auditd [56]. In order to calculate

the transition probability matrix M , IN score vector, and OUT score vector for Equation 2.2,

we implemented Event Frequency Database in 4K lines of Java code. For a given a time

period, this module counts the number of events that have happened in an enterprise network,

then stores these counts in an external database. During runtime, NoDoze queries this

database to calculate event frequencies. Users of NoDoze can periodically run this module

to update the enterprise-wide event frequencies. To remove non-deterministic and instance

specific information in each event’s SRC and DST entities such as timestamp and process

id, we abstract/remove such fields before storing these events. Our abstraction rules for

each of the entity types are similar to previous works [18, 20] with some changes to fit our

analysis:

– Process Entity. We remove all the information in the process entities except the process

path, commandline arguments and gid (group identification number).

– File Entity. We remove the inode and timestamps fields from the file entities while abstract

file paths by removing user specific details. For example, /home/user/mediaplayer will be

changed to /home/*/mediaplayer.

– Socket Entity. Each socket connection entity has two addresses i.e. source ip and desti-

nation ip each with port number. connection is outgoing we remove the source IP and

its port which is chosen randomly by the machine when initiating the connection. If the

connection is incoming we the remove destination IP and its port. The end result is that

external IP of the connection is preserved while the internal address is abstracted.
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The final equations to calculate the frequencies of an event Ei =< SRCi, DSTi, RELi >

which are used in transition probability matrix generation (Eq. 2.1) are as follows:

Freq(Ei) =

hosts∑
h

checkEvent(SRCi, DSTi, RELi, h, t) (2.7)

Freqsrc rel(Ei) =

hosts∑
h

checkEvent(SRCi, ∗, RELi, h, t) (2.8)

where hosts are hosts in the enterprise environment while checkEvent function returns

the number of times event Ei has occurred on the host. We only count event Ei once in time

window t for a host to prevent poisoning attacks [57]. Note that in our experiments t is set

to stable window size (discussed in Section 2.3.4) which is 1 day. Finally, in Eq. 2.8 “∗”
means any DST entity.

2.4.2 Experiment Setup

We monitored and collected OS-level system events and threat alerts at NEC Labs Amer-

ica. In total, we monitored 191 hosts (51 Linux and 140 Windows OS) for 5 days which

were used daily for product development, research and administration at NEC Labs Amer-

ica. During this time span, we also simulated 50 attacks which include 10 real-world APT

attacks and 40 recent malwares downloaded from VirusTotal [58]. A short description of

each APT attack with generated threat alert is shown in Table 2.2.

We deployed NoDoze on a server with Intel R©Core(TM) i7-6700 CPU @ 3.40GHz and 32

GB memory running Ubuntu 16.04 OS. We used the baseline TDS [36] to generate threat

alerts. In summary, our experiment contains 400 GB of system monitoring data with around

1 billion OS-level log events and 364 threat alerts. The Event Frequency Database in our

experiments was populated using 10 days of OS-level system events. Note that our evaluation

dataset of 364 labeled alert scenarios was generated after the event frequency database was

populated.

2.4.3 Baseline TDS

The baseline TDS we used to generate threat event alerts is a commercial tool [36]. Details

regarding anomaly detection models used in this tool can be found here [64]. At a very

high level, this TDS applies an embedding based technique to detect anomalies. It first

embeds security events as vectors. Then, it models the likelihood of each event based on the

embedding vectors. Finally, it detects the events with low likelihood as anomalies.
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Table 2.2: Real-world attack scenarios with short descriptions and generated threat alerts
by underlying TDS.

Attacks Short Description True Threat Alert

WannaCry [44] Motivating example discussed in Sec-
tion 2.1

See Section 2.1

Phishing Email [59] A malicious Trojan was downloaded as
an Outlook attachment and the enclosed
macro was triggered by Excel to create a
fake java.exe, and the malicious java.exe
further SQL exploited a vulnerable server
to start cmd.exe in order to create an
info-stealer

<Excel.exe, java.exe,
Pro Start>

Data Theft [20] An attacker downloaded a malicious bash
script on the data server and used it to
exfiltrate all the confidential documents
on the server.

<ftp, y.y.y.y:21, IP Write>

ShellShock [60] An attacker utilized an Apache server
to trigger the Shellshock vulnerability in
Bash multiple times.

<bash, nc.traditional,
Pro Start>

Netcat Backdoor [61] An attack downloaded the netcat utility
and used it to open a Backdoor, from
which a Persistent Netcat port scanner
was then downloaded and executed using
PowerShell

<nc.exe, cmd.exe, Pro Start>

Cheating Student [21] A student downloaded midterm scores
from Apache and uploaded a modified
version.

<Apache2, /www/newscores,
File Write>

Passing the Hash [62] An attack connected to Windows domain
Controller using PsExec and run creden-
tial dumper (e.g., gsecdump.exe).

<gsecdump.exe, g64-v2b5.exe,
Pro Start>

wget-gcc [22] Malicious source files were downloaded
and then compiled.

<wget, x.x.x.x:80, IP Read>

passwd-gzip-scp [22] An attack stole user account information
from passwd file, compressed it using gzip
and transferred the data to a remote ma-
chine

<scp, x.x.x.x:22, IP Write>

VPNFilter [63] An attacker used known vulnerabili-
ties [60] to penetrate into an IoT device
and overwrite system files for persistence.
It then connected to outside to connect to
C2 host and download attack modules.

</var/vpnfiler, x.x.x.x:80,
IP Read>
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Figure 2.5: ROC curve for our experiments using NoDoze along with TDS.

2.4.4 Improvement Over Existing TDS

The first research question of our evaluation is how much NoDoze improves the accuracy

of existing TDS [37, 38, 64, 65] which are based on heuristics and single event matching

rules. To answer this question, we used NoDoze along with the baseline TDS [36]. In our

experiment, we used the baseline TDS to monitor the system activities of the enterprise for

anomalies and generate threat alerts. We then manually labeled these alerts as true positives

and false positives and use them as the ground truth to evaluate NoDoze. Lastly, we used

NoDoze to automatically label the alerts and compared the results with the ground truth.

In our experiments, the baseline TDS generated a total of 364 alerts (50 true alerts and

314 false alarms). The detection accuracy of NoDoze is measured using true positive rate

(TPR) and false positive rate (FPR). Intuitively, the FPR measures the total number of false

alerts that were categorized as true attacks by NoDoze. By adjusting the decision threshold

τd, NoDoze can achieve different TPR and FPR as shown in the ROC graph in Figure 2.5.

When the threshold is set to detect 100% of true positives, NoDoze has a 16% FPR. In

other words, NoDoze can reduce the number of false alerts of the baseline TDS by more

than 84% while maintaining the same capability to detect real attacks. Figure 2.6 shows the

cumulative distribution function for ranked true and false alerts based on aggregate anomaly

scores. The decision threshold (shown with red line), when set to 100% of true positives,

removes the large portion of false alerts because the true positives are substantially ranked

higher than false alerts.

2.4.5 Accuracy of Capturing Attack Scenarios

To answer RQ2, we used NoDoze to capture the attack scenarios of 10 APT attacks from

their complex provenance graphs. We evaluate NoDoze on the APT attacks because we

know the precise ground truth dependency graphs of the attacks. The results are summarized
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Figure 2.6: CDF for ranked true and false alerts based on aggregate anomaly score.

in Table 2.3. The duration columns represent the time taken in seconds by underlying

provenance tracker to generate a complete dependency graph and time taken by NoDoze

to run its analysis and generate a concise graph.

Our experiment shows that our system accurately extracts the APT attack scenarios from

the complex provenance graphs generated by the underlying provenance tracker. NoDoze

can reduce the size of the provenance graph by two orders of magnitude. Such a reduction

may substantially reduce the work load of cyber analyst when investigating the threat alerts

and planning incident responses.

We also measured the completeness of the NoDoze generated dependency graph for each

attack. We measured completeness in terms of two metrics: control dependency (CD) and

data dependency (DD) (discussed in Section 2.3.1) with their true positive (TP) and false

positive (FP) rates. Intuitively, the TP means the number of truly attack related edges

present in the concise graph generated by NoDoze. For all 10 APT attacks, we were able

to recover the alert’s expected control dependency graph except for Netcat attack where

the expected length of control dependency path was larger than user-defined τl. Note, this

does not affect the correctness of causality analysis since cyber analysts can increase the

depth of the path by increasing τl during the alert investigation. In some cases, we were

not able to completely recover the data dependency graph because incorporating those data

dependencies required larger merge threshold τm than set in our experiments. However,

increasing the merge threshold also increases the number of FP in the data dependencies.

Thus, finding the best possible thresholds which strike a balance between TP and FP require

training run once before deployment in an enterprise.

Nevertheless, NoDoze decreases the size of original graph by two orders of magnitude

which accelerates the alert investigation without losing vital information about attack. To

further explain how well can NoDoze capture the attack scenarios, we will discuss two

attack cases from Table 2.2 in Section 2.5.
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Figure 2.7: CDF of query response times for all the 364 threat alerts in our dataset.

2.4.6 Time Saved Using NoDoze

Recent studies [5, 6] have shown that it takes around 10-40 mins to manually investigate

a single threat alert in an enterprise. This time spent on an investigation is also known as

Mean-Time-To-Know in industry. Note that these studies have also confirmed that cyber

analysts receive around 60-80% false alarms using existing TDS, which was also the false

alarm rate of the baseline TDS used in our experiments.

If we conservatively assume cyber analysts spend 20 mins on average on each false alarm

in our experiments they would have to waste around 104 employee-hours on investigating

those false alarms. However, NoDoze reduces false alarms of existing TDS by 84%, which

saves around 90 employee-hours in an enterprise setting.

2.4.7 Runtime Performance of NoDoze

To answer RQ4, we measured the runtime overhead of NoDoze for all the alerts in

our dataset. NoDoze’s response time for all the 364 alerts events is shown as a CDF

in Figure 2.7a. This response time includes running anomaly propagation algorithm and

generating a concise dependency graph for given alerts. Results show that 95% of all the

alerts are responded by NoDoze in less than 40 seconds. There are few cases where NoDoze

took a long time to respond. In these cases, most time was spent on constructing a large

transition probability matrix for a large input dependency graph.

To further understand why NoDoze has large response times in some cases, we also mea-

sured the dependency graph generation query response times for all 364 alerts in our dataset.

The results are shown in Figure 2.7b. Complete graph generation also has long response

times because of extra large dependency graph construction. For these large dependency

graphs, NoDoze also incurs larger overhead due to the reasons mentioned above. However,

because we rarely encountered this issue in our experiments and other provenance tracking
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techniques [20, 66] also suffer from this performance problem, we leave solving this problem

for future work. CDF for end-to-end response time starting from the time alert is received

until the alert is triaged is shown in Figure 2.7c. 95% of the threat alerts are responded in

less than 200 seconds. Note that right now NoDoze analysis framework runs on a single

machine using single thread; however, NoDoze can be parallelized easily using existing

distributed graph processing frameworks.

2.5 CASE STUDIES

2.5.1 Data Theft Attack

Scenario. In this attack, an employee of a mobile app development company stoles

app designs that were about to be released and posted them online. To perform this data

theft attack, employee downloads a malicious bash script (stealer.sh) to the data server

via HTTP. Bash script (stealer.sh) discovers and collects all the application designs on the

server. Then, the script compresses (tar) all the design files (design1.png and design2.png)

into a single tarball, transferred the tarball to a low-profile desktop computer via SSH, and

finally uploads it to an external FTP server under employee’s control. Since the employee is

aware of the company’s TDS, the bash script also creates a bunch of spurious processes to

create false alerts which buys the employee enough time to complete the attack and post

the designs online.

Threat Alerts. Once the bash script is executed many threat alerts are generated by

TDS in a short period of time, which are investigated by cyber analyst one by one. The

dependency graph of these threat alert is shown in Figure 2.8a where dashed edges show

threat alert events.

Alert Investigation. Without NoDoze, an investigator will generate a complete depen-

dency graph for each of the threat alerts generated by TDS and manually inspect them only

to see that just 1 of the 4 threat alerts was true attack. However, by the time investigator

has examined all the false alerts (∼1.6 hours), all the app designs may have already been

posted online.

On the other hand, NoDoze will ingest all these threat alerts and rank them based on

their anomaly score. In this scenario, all the false alerts intentionally created by the attacker

will be ranked lower while the true alert will be ranked higher. The threat alert events which

led to data theft will be ranked on the top because of various rare events in its progeny.

For example, using cp utility to copy data.tar to the ftp serving directory and using ftp to

29



High Anomaly 
Score Progeny 

bashstealer.sh

tar

rm

scp

cat

chromium

data.tartar

bash

 

 

 

 

   

 

design1.png

file2.txt file2.tar

ssh sshd

  

 

 

 

 

 

   

sshd

sshd

sshd

bash scp

data.tar

cp

/ftp/data.tar

sshd bash run-parts run-parts

  bash dpkg

ftp

 

 

 

   

 

 

 

 
bash

bash

java

python

bash

bash

   

bash g++

cut   

    

design2.png

g++   
   

vim     

bash .bash_history    

vim   

wget

grep

Low  Anomaly 
Score Progeny

(a)

bashstealer.sh
scp

chromium
data.tartar

 

design1.png

ssh sshd bash

scp

data.tar

cp

/ftp/data.tar

ftpdesign2.png

(b)

Figure 2.8: Data theft attack scenario discussed in Section 2.5.1. (a) Part of dependency
graph generated by traditional tools. (b) Concise true alert dependency graph generated by
NoDoze.

make a connection outside the organization. This chain of events has never happened in the

organization. Contrary to this, events in the progeny of all the false threat alerts were quite

common such as running g++ and Linux utilities.

NoDoze also generates a concise dependency graph with only data theft dependency

paths, while all the benign paths have been removed as shown in Figure 2.8b. Observe

that in Figure 2.8a, the progeny of the true threat alert event has various operations such

as run-parts and dpkg, which are removed in the NoDoze generated graph because their

anomaly score is lower than the data theft dependency path. Note that NoDoze generated

graph has some socket vertices connected to chromium and sshd which are unrelated to attack

but they are included in NoDoze’s graph because they were rare. Note that Table 2.3 shows

the FP rate higher than 0 due to these unrelated socket connections. Nevertheless, NoDoze

decreases the original graph size by 2 orders of magnitude.

2.5.2 ShellShock Attack

Scenario. In this attack scenario, attacker targets a ShellShock vulnerable Apache web-

server to open several reverse shells and steals sensitive files. The attacker launches the

attack in two phases. In the first phase, the attacker runs some Linux utilities (e.g.,ls,
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Figure 2.9: ShellShock attack scenario discussed in Section2.5.2. (a) Part of dependency
graph generated by traditional tools. (b) Concise true alert dependency graph generated by
NoDoze.

top) without doing serious damage. In the second phase, the attacker tries to discover sen-

sitive data on webserver using commands such as ‘/bin/cat /etc/passwd‘ and ‘/bin/cat

/var/log/access logs‘ . Once the sensitive files are found, the attacker archived (tar) and

compressed (bzip2) the sensitive files and transferred (cp) it to Apache hosting directory so

that attacker can download (wget) it from another machine. Once this phase is done, the

attacker erased the history of bash commands by removing .bash history. Later, noises

were introduced when a normal user opened new bash terminals. These terminals read the

modified .bash history creating a false causal link to the attack.

Threat Alerts. This attack scenario simulation generated various threat alerts events

because spawning a nc.traditional from bash process is considered as anomalous behaviour

by TDS. These threat alert events are indicated by dashed arrows in Figure 2.9a.

Alert Investigation. The forward dependency graph of all the threat alert events consists

of bash commands which are quite common in the enterprise such as ls and cat. However,

alert event E3 consist of other commands which are not common in an organization such as

‘/bin/cat /etc/passwd‘ and ‘cp data.tar.bz2 /var/www/‘. All the threat alert events will

be ranked lower than alert event E3 because the progeny graph of alert event E3 contains

most anomalous dependency paths as compared to other alert events.

Figure 2.9b shows the concise dependency graph generated by NoDoze. NoDoze’s graph

only has data exfiltration while all the common terminal commands are excluded from this

graph because of our behavioural execution partitioning technique. This technique chooses

alert dependency paths that have data exfiltration events over other dependency paths that

launched common terminal commands due to two reasons: 1) creation and transfer of new

files have low frequency in our event database since these do not happen very often as

compared to running Linux utilities; 2) the dependency path for data exfiltration also wget’s
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sensitive files on other machines while benign paths do not include any more anomalous

behaviour.

2.6 DISCUSSION & LIMITATIONS

We outline the limitations of NoDoze through a series of questions. We also discuss how

NoDoze can be extended under different scenarios.

What happens if an attacker uses benign process and file names for an attack? NoDoze is

resilient to changes in the file and process names. At first glance, it may seem surprising;

however, NoDoze inherits this from the use of data provenance, which captures true causal-

ity, not merely correlations. Even if the attacker starts a malware with a benign program

name such as Notepad, the causality of the program such as how it was spawned and what

changes it induced differentiates its behaviour from the normal behaviour of Notepad. Note

that this property sets our work apart from heuristics-based TDS (e.g., [49, 52]).

Can NoDoze be extended to incorporate distributed graph processing frameworks for im-

proved performance? NoDoze uses a novel network diffusion algorithm to propagate the

anomaly scores on the edges of a large dependency graph to generate an aggregate anomaly

score. One can potentially parallelize this algorithm using existing large-scale vertex-centric

graph processing frameworks [67]. In this work, we do not enable distributed graph process-

ing; however, we will explore this option in future work.

Can NoDoze run anomaly propagation algorithm while generating the dependency graph

from audit logs? Currently, NoDoze first generates a complete dependency graph and

then it propagates the anomaly score on that dependency graph. However, one can design

a framework which propagates the anomaly score while generating the large dependency

graph using iterative deepening depth first search and stop the analysis if anomaly scores do

not increase in next iteration. In this way additional step of generating a large dependency

graph first can be removed completely.

What is the role of underlying TDS in NoDoze’s effectiveness? NoDoze is essentially an

add-on to existing TDS for false alarm reduction. Thus, NoDoze can detect true attack

only if it was detected by the underlying TDS first. If underlying TDS misses true attack

and does not generate an alert, then NoDoze will not be helpful. Improving the true

detection rate of underlying TDS is orthogonal to our work; however, our findings suggest

that path-based context could be a powerful new primitive in the design of new TDS.

Does the choice of underlying TDS affect the accuracy of NoDoze? NoDoze is independent

to the choice of underlying TDS, we used this TDS [36] in particular because it was licensed
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by our enterprise; licensing additional TDS for our evaluation, which was conducted on hun-

dreds of hosts, was prohibitively costly. However, this tool is a state-of-the-art commercial

TDS that is based on a reputable peer-reviewed detection algorithm [64] and is similar to

existing commercial and academic TDS [37, 38, 39, 40, 48] in FPR.

33



CHAPTER 3: RAPSHEET: BRINGING DATA PROVENANCE TO
COMMERICAL SECURITY SOLUTIONS

The canonical enterprise solution for combatting APTs is known as Endpoint Detection

and Response (EDR). EDR tools constantly monitor activities on end hosts and raise threat

alerts if potentially-malicious behaviors are observed. In contrast to signature scanning or

anomaly detection techniques, EDR tools hunt threats by matching system events against a

knowledge base of adversarial Tactics, Techniques, and Procedures (TTPs) [68], which are

manually-crafted expert rules that describe low-level attack patterns. TTPs are hierarchical,

with tactics describing “why” an attacker performs a given action while techniques and

procedures describe “how” the action is performed. According to a recent survey, 61% of

organizations deploy EDR tools primarily to provide deep visibility into attacker TTPs and

facilitate threat investigation [69]. MITRE’s ATT&CK [70] is a publicly-available TTP

knowledge base which is curated by domain experts based on the analysis of real-world APT

attacks, and is one of the most widely used collections of TTPs [71, 72, 73]. In fact, all 10

of the top EDR tools surveyed by Gartner leverage the MITRE ATT&CK knowledge base

to detect adversary behavior [74].

While EDR tools are vital for enterprise security, three challenges undermine their useful-

ness in practice. The first challenge is that TTP knowledge bases are optimized for recall,

not precision; that is, TTP curators attempt to describe all procedures that have any possi-

bility of being attack related, even if the same procedures are widely employed for innocuous

purposes. An obvious example of this problem can be found in the “File Deletion” Tech-

nique [75] in MITRE ATT&CK – while file deletion may indicate the presence of evasive

APT tactics, it is also a necessary part of benign user activities. As a result, EDR tools

are prone to high volumes of false alarms [5, 6, 7, 8]. In fact, EDR tools are one of the key

perpetrators of the “threat alert fatigue” problem that is currently plaguing the industry. A

recent study found that the biggest challenge for 35% of security teams is keeping up with

the sheer volume of alerts [76]. Consequently, the true attacks detected by EDR tools are

at risk of being lost in the noise of false alerts.

The second challenge comes from the dubious nature of EDR-generated threat alerts. After

receiving an alert, the first job of a security analyst is to determine the alert’s veracity. For

validation, security analysts review the context around the triggered alert by querying the

EDR for system logs. Although EDR tools collect a variety of useful contextual information,

such as running processes and network connections, the onus is on the security analyst to

manually piece together the chain of system events. If the alert is deemed truly suspicious,

the security analyst then attempts to recover and correlate various stages of the attack
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through further review of enormous system logs. Security Indicator & Event Management

(SIEM) products are often the interface through which this task is performed (e.g., Splunk

[9]), allowing analysts to write long ad-hoc queries to join attack stages, provided that they

have the experience and expertise to do so.

Long-term log retention is the third challenge for existing EDR tools. It is still common-

place for EDR tools to delete system logs soon after their capture. Logs are commonly

stored in a small FIFO queue that buffers just a few days of audit data [77, 78], such that

system events are commonly unavailable when investigating a long-lived attack. Even worse,

unless an organization staffs a 24/7 security team, the audit data for an alert that fires over

the weekend may be destroyed by Monday. This indicates that despite advancements in

the efficiency of causal analysis, long-term retention of system log simply does not scale

in large enterprises. Not only does this mean that EDR tools cannot reap the benefits of

causal analysis during threat investigation, but it also means that current EDR tools lack

the necessary context to understand the interdependencies between related threat alerts.

Based on data provenance, we introduce a new concept in this chapter which we call

Tactical Provenance that can reason about the causal dependencies between EDR-generated

threat alerts. Those causal dependencies are then encoded into a tactical provenance graph

(TPG). The key benefit of TPG is that a TPG is more succinct than a classical whole-

system provenance graph because it abstracts away the low-level system events for security

analysts. Moreover, TPGs provide higher-level visualizations of multi-stage APT attacks to

the analysts, which help to accelerate the investigation process.

To tackle the threat alert fatigue problem, we present methods of triaging threat alerts

based on analysis of the associated TPGs. APT attacks usually conform to a “kill chain”

where attackers perform sequential actions to achieve their goals [79, 80]. For instance, if

the attacker wants to exfiltrate data, they must first establish a foothold on a host in the

enterprise, locate the data of interest (i.e., reconnaissance), collect it, and finally transmit

the data out of the enterprise. Our key idea is that these sequential attack stages seen in

APT campaigns can be leveraged to perform risk assessment. We instantiate this idea in a

threat score assignment algorithm that inspects the temporal and causal ordering of threat

alerts within the TPG to identify sequences of APT attack actions. Afterward, we assign

threat score to that TPG based on the identified sequences and use that threat score to

triage TPGs.

To better utilize the limited space available on hosts for long-term log storage, we present

a novel log reduction technique that, instead of storing all the system events present in

the logs, maintains a minimally-sufficient skeleton graph. This skeleton graph retains just

enough context (system events) to not only identify causal links between the existing alerts
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but also any alerts that may be triggered in the future. Even though skeleton graphs reduce

the fidelity of system logs, they still preserve all the information necessary to generate TPGs

for threat score assignment, risk assessment, and high-level attack visualization.

We integrate our prototype system, RapSheet, into the Symantec EDR tool. We evaluated

RapSheet with an enterprise dataset to show that RapSheet can rank truly malicious TPGs

higher than false alarm TPGs. Moreover, our skeleton graph reduces the storage overhead

of system logs by up to 87% during our experiments.

3.1 BACKGROUND & MOTIVATION

In this section, we first give background on the MITRE ATT&CK knowledge base and

EDR tools. Then, we use a real-world attack scenario to illustrate the limitations of EDR

tools and to motivate our work. Finally, we present our design goals and approach overview.

3.1.1 MITRE ATT&CK and EDR tools

MITRE ATT&CK is a publicly-available knowledge base of adversary tactics and tech-

niques based on real-world observations of cyber attacks. Each tactic contains an array of

techniques that have been observed in the wild by malware or threat actor groups. Tactics

explain what an attacker is trying to accomplish, while techniques1 and procedures2 repre-

sent how an adversary achieves these tactical objectives (e.g., How are attackers escalating

privileges? or How are adversaries exfiltrating data?) The MITRE ATT&CK Matrix [81]

visually arranges all known tactics and techniques into an easy-to-understand format. At-

tack tactics are shown at the top of the matrix. Individual techniques are listed down each

column. A completed attack sequence would be built by moving through the tactic columns

from left (Initial Access) to right (Impact) and performing one or more techniques from those

columns. Multiple techniques can be used for one tactic. For example, an attacker might

try both an attachment (T1193) and a link (T1192) in a spearphishing exploit to achieve

the Initial Access tactic. Also, some techniques are listed under multiple tactics since they

can be used to achieve different goals.

One common use of MITRE ATT&CK tactics and techniques is in malicious behavior

detection by Endpoint Detection and Response (EDR) tools. EDR tools serve four main

1 Techniques are referenced in ATT&CK as Txxxx such as Spearphishing link is T1192 and Remote Access
Tools is T1219. Description of these techniques is available at https://attack.mitre.org/techniques/

enterprise/
2 A procedure is a specific instantiation of a technique; in this paper we use the term “technique” to

describe both techniques and procedures.
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purposes in enterprises: 1) detection of potential security incidents, 2) scalable log inges-

tion and management, 3) investigation of security incidents, and 4) providing remediation

guidance. To implement those capabilities, EDR tools record detailed, low-level events on

each host including process launches and network connections. Typically, this data is stored

locally on end hosts. Events that are of potential interest may be pushed to a central

database for alerting and further analysis, during which additional events may be pulled

from the endpoint to provide forensic context. EDR tools provide a rule matching system

that processes the event stream and identifies events that should generate alerts. Major

EDR vendors [71, 72, 73] already provide matching rules to detect MITRE ATT&CK TTPs;

however, security analysts can also add new rules to detect additional TTPs at an enterprise

where the EDR tool is deployed.

3.1.2 Motivating Example

We now consider a live attack exercise that was conducted by the Symantec’s red team over

a period of several days; this exercise was designed to replicate the tactics and techniques of

the APT29 threat group. APT29 is one of the most sophisticated APT groups documented in

the cyber security community [82]. Thought to be a Russian state-sponsored group, APT29

has conducted numerous campaigns with different tactics that distribute advanced, custom

malware to targets located around the globe. Discovered attacks attributed to APT29

have been carefully analyzed by MITRE, yielding a known set of tactics and techniques

that APT29 commonly use to achieve their goals [83]. In this exercise, different techniques

were performed from that known set, ranging from Registry Run Keys (T1060) to Process

Injection (T1055). These techniques allowed us to observe different MITRE tactics including

persistence, privilege escalation, lateral movement, and defense evasion.

Limitations of EDR tools

Existing EDR tools excel at scalably identifying potentially malicious low-level behaviors

in real-time. They can monitor hundreds or thousands of hosts for signs of compromise

without event congestion. However, they suffer from some major usability and resource

issues which we list below.

False-positive Prone. Existing EDR tools are known to generate many false alarms [5,

6, 7] which lead to the threat alert fatigue problem. The main reason for this high false

alarm rate is that many MITRE ATT&CK behaviors are only sometimes malicious. For ex-

ample, MITRE ATT&CK lists a technique called “File Deletion” T1107 under the “Defense
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Figure 3.1: Top 10 techniques based on the number of times exploited by 93 MITRE-curated
APT groups. 6 of these 10 techniques are benign in isolation and occur frequently during
normal system execution.

Evasion” tactic. Finding this individual behavior and generating an alert is straightforward.

But how would the analyst discern whether this file deletion is the result of normal system

activity, or an attempt by an attacker to cover his tracks? Alerting on individual MITRE

techniques generates false alarms and requires a human in the loop for alert validation.

To further quantify how many techniques from the MITRE ATT&CK knowledge-base

can be benign in isolation, we took techniques used by 93 APT attack groups provided by

MITRE and identified the most used techniques from these attack groups. Figure 3.1 shows

the top ten most used techniques. After manual inspection, we found that 6 of 10 techniques

may be benign in isolation, and in fact occur frequently during typical use. For example, the

Powershell technique (T1086) can be triggered during a normal execution of applications like

Chrome or Firefox. During our attacks simulation period, the Symantec EDR generated a

total of 58,096 alerts on the 34 machines. We analyzed these alerts and found that only 1,104

were related to true attacks from the APT29 exercise and from other attack simulations we

describe later. The remaining 56,992 were raised during benign activity, yielding a precision

of only 1.9%.

Laborious Context Generation. To investigate and validate the triggered alerts, analyst

usually write ad hoc queries using the SIEM or EDR tool’s interface to generate context

around alerts or to correlate them with previous alerts. Such context generation requires a

lot of manual effort and time, which can delay investigation and recovery. Even after analysts

have generated the context around an alert, it is difficult to understand the progression of

the attack campaign by looking at system-level events. Depicting these events in a graph

helps to show the causal relationships, but the volume of information is still overwhelming.

Note that certain EDR tools, such as CrowdStrike Falcon [84] provide interfaces to only
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HKEY_USERS/
S-1-5-21-1603624627-40259

59035-3120021394-1103/
Software/Microsoft/Windows/

CurrentVersion/RunOnce/
ctfmon.exe

T1060
eRegistryRunKeys
persistence

Alert A Alert B

mstsc.exe

src: 10.0.10.21:57291
dst: 10.0.0.10:3389

T1076
eRemoteDesktopProtocol
lateral-movement

Figure 3.2: Part of the APT29 attack provenance graph. We zoomed-in on two threat alerts
from this attack, and excluded the network connections and registry operations from this
graph for presentation purposes. In the complete graph, there are total 2,342 edges and
1,541 vertices. In this graph, and the rest of the paper, we use boxes to represent processes
(count=79), diamonds to represent sockets (count=750), and oval nodes to represent files
(count=54), registries (count=132), kernel objects (count=30), and modules (count=496).
Edges represent casual relationships between the entity nodes, and red edges represent threat
alerts (count=26).

get the chain of process events that led to the triggered alert. These process chains do not

capture information flow through system objects (e.g., files, registries). As a result, such

EDR tools can not aggregate causally related alerts that are associated with system objects,

leading to incomplete contexts.

During our exercise, APT29 generated 2,342 system events such as process launches and

file creation events. Figure 3.2 shows a classical whole-system provenance graph for all the

events related to APT29. The unwieldy tangle of nodes and edges in the figure demonstrates

how daunting it can be for a security analyst to explore and validate a potential attack and

understand the relationship between alerts.

Storage Inefficiency. EDR tools constantly produce and collect system logs on the end

hosts. These system logs can quickly become enormous [20, 22]. In our evaluation dataset,

the EDR recorded 400K events per machine per day from total of 34 end hosts, resulting in

35GB worth of system logs with a total of 40M system events. Note that the database used

to store the events on hosts performs light compression, resulting in on-disk sizes roughly

half this size. Retaining those system logs can become costly and technically challenging

over longer periods. Further, for enterprises, it is important to clarify how long logs will be

stored for and plan for the resulting financial and operational impact. For example, keeping

log data for a week may be inexpensive, but if an attack campaign spans more than a week

(which is common [1, 2, 85]), then the company will lose critical log data necessary for

forensic investigation.
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Figure 3.3: Overview of RapSheet architecture (Section 3.1.3)

We surveyed the white papers and manuals of the top 5 EDR tools curated by Gartner [74].

In these white papers, we specifically looked for techniques used by these EDR tools for log

retention. We found that no EDR tool currently describes any meaningful log retention

techniques that can best utilize the limited storage for the investigation of long-lived APTs.

Instead, those EDR tools use a FIFO queue that depending on the EDR vendor’s retention

policies buffers only a few days of system logs. For example, by default, Symantec’s EDR

allocates 1GB of space on each host which is sufficient for a couple of days or perhaps a

week’s worth of logs. The oldest logs are purged when this limit is reached. Events that

are pushed to the server are also purged, with the oldest 10% of events deleted when used

storage capacity reaches 85% [77].

3.1.3 Our Approach

A high-level overview of our system, RapSheet, is shown in Figure 3.3. Full details will be

given in the next section, but we overview the approach here. First, RapSheet performs rule

matching on system logs to identify the events that match MITRE ATT&CK behaviors. In

our APT29 exercise, we were able to match techniques T1060, T1086, T1085, T1055, T1082,

T1078, T1076, T1040 against logs. Each rule match signifies an alert of a possible threat

behavior. Next, we generate a provenance graph database from the logs. During the graph

generation, we annotate the edges (events) that match the MITRE ATT&CK techniques in

the previous step. Figure 3.2 shows the provenance graph for the APT29 engagement.

Once the construction of the provenance graph with alert annotations is done, we generate

a tactical provenance graph (TPG) which is a graph derived from the provenance graph that

shows how causally related alerts are sequenced. To generate a TPG, we first identify the

initial infection point (IIP) vertex, i.e., the first vertex in the timeline that generated a threat

alert. Then we find all the alerts in the progeny of the IIP vertex using forward tracing.

Finally, extraneous system events are removed from this progeny graph, forming what we
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Figure 3.4: APT29 attack scenario. (a) IIP Vertex graph generated by RapSheet. Threat
alert edges are annotated with the MITRE technique ID, technique name, and tactic name.
“PS” stands for PowerShell. (b) Tactical Provenance Graph (TPG) for APT29 attack after
applying readability pass. RapSheet generated TPG is 2 orders of magnitude smaller than
the classical provenance graph shown in Figure 3.2

call the IIP graph. Figure 3.4a shows the IIP graph for the APT29 attack. After that, we

perform threat score assignment.

The key idea behind our threat score assignment algorithm is to use temporal ordering

between all the causally related alerts (i.e., all the alerts in the IIP graph) to rank the alerts

that conform to the MITRE ATT&CK kill chain higher than the alerts that appear in an

arbitrary order. However, ordering information for alerts on different paths is not immedi-

ately apparent in the IIP graph. To remedy this, we perform a happens-before analysis to

find temporal orderings between the different alerts present in the IIP graph which gives us

a TPG. Figure 3.4b shows the TPG for the APT29 attack scenario. After that our threat

score assignment algorithm finds ordered subsequences of alerts from the TPG that conform

to the MITRE kill chain and uses these to assign a severity score for alert prioritization.

3.2 TACTICAL PROVENANCE ANALYSIS & ALERT TRIAGE

3.2.1 Log Collection

EDR tools collect system logs on each host in the enterprise. For Linux hosts, our under-

lying EDR uses Linux Audit framework [56] while for Windows it uses ETW [55] as well as

custom system call hooking. This is standard for most EDR tools [86]. System logs contain
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low-level system events including process launches and file operations. Those system events

capture causal relationships between different system entities. For example, in Linux the

causal relationship between a parent process creating a child process is represented by an

event generated by capturing calls to sys clone(). Once those system logs are collected on

each host they are processed into a JSON format.

We note that we supplemented the events collected by our underlying EDR with logs

of Asynchronous Local Procedure Call (ALPC) messages which we collected separately on

Windows hosts. ALPC is the mechanism that Windows components use for inter-process

communication (IPC) [87]. After running real-world attack scenarios on Windows machines,

we realized that many of the attacks manifest in part through system activities that are

initiated using ALPC messages. Missing those causal links can undermine the forensic

investigation, as the provenance graph becomes disconnected without them. Note that

previous papers [11, 14, 30, 88, 89] on Windows provenance do not capture ALPC messages,

resulting in disconnected provenance chains.

3.2.2 Rule Matching

Generating alerts for individual MITRE techniques is a feature of most EDR tools, in-

cluding the one that we use in our experiments. Because of RapSheet’s novel use of TPGs

for grouping, scoring, and triaging alerts, we are able to include even the most false-positive-

prone MITRE techniques as alerts without overwhelming an analyst. In our experiments,

we use a default set of MITRE rules that was provided by the Symantec EDR tool, and

we supplemented these with additional rules for MITRE techniques that were not already

covered. Users can easily extend our system by adding new rules for additional TTPs. More-

over, our rule matching only relies on events that are commonly collected by EDR tools or

readily available from commodity auditing frameworks.

Listing 3.1: Example MITRE technique matching rule.

IF EXISTS E WHERE E.tgtType = ’network ’ AND

E.action = ’connect ’ AND E.dstPort = 3389

THEN ALERT(E.actorProc , ’T1076’)

As is described next, the low-level system events will form edges in a provenance graph. In

RapSheet, we annotate the edges that triggered an alert with the alert information (e.g., the

MITRE technique ID). Some rules provided by the EDR vendor generate alerts for behaviors

not covered by the MITRE ATT&CK, which we ignore these for the purposes of this work.

For our example attack scenario described in Section 3.1, the threat alert annotated as Alert

42



File

Launch,
Terminate,
Injection,

ALPC
Create, Rename,
Delete, Modify,
Set Security,
Set Attributes

Open

Module

Load

Socket
Accept

Connect

ProcessRegistry  
Key & Value Kernel 

ObjectCreate

Create
Delete,Set,

Rename Get, 
Open

Figure 3.5: Data model of our provenance graph database. Vertices represent the system
entities (actors and objects) while the edges represent the causal dependency. Edges are
annotated with the timestamp of event occurrence and event type.

B in Figure 3.2 matched the rule (syntax simplified for clarity) shown in Listing 3.1.

3.2.3 Provenance Graph Database

The system logs on each host are parsed into a graph structure called a provenance graph.

The provenance graph generated by RapSheet is similar to previous work on provenance

graphs [10, 11, 12, 16, 33] with some new additions to reason about MITRE ATT&CK tactics.

Our provenance graph data model is shown in Figure 3.5. We have two types of vertices:

process vertex type and object vertex type which includes files, registry, etc. The edges that

connect these vertices are labeled with an event type that describes the relationship between

the connected entities and the timestamp of event occurrence. Moreover, process vertices

are marked with start and terminate time which allows us to check if a process is still alive

during our analysis.

We also implemented a summarization technique from previous work, causality-preserved

reduction [20, 22] in our provenance graph database. This technique merges the edges be-

tween two vertices that have the same operation and keeps only one edge with the latest

timestamp. For example, most operating systems and many EDRs produce several system-

level events for a single file operation. RapSheet aggregates those events into a single edge in

the provenance graph. This technique has been shown to reduce the size of the provenance

graph while still preserving the correctness of causal analysis.

3.2.4 Tactical Provenance Analysis

Given a list of triggered alerts and host provenance graphs, we find all the initial infection

point (IIP) vertices in the graphs. We define an IIP to be a vertex that meets two conditions:

(i) it corresponds to a process that generated an alert event ea, and (ii) a backward trace

from ea in the provenance graph contains no other alert events. Note that there can be

multiple IIP vertices in a given provenance graph. Intuitively, we are finding the earliest
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point that potentially suspicious behavior occurred on a given provenance chain. The IIP

represents the process that exhibited this behavior. If it turns out that ea was the first step

in a multistage attack, then the remainder of the attack will be captured by future alerts

generated by this process and its progeny. This gives us an effective way to group correlated

alerts. For each IIP vertex, we generate a graph that is rooted at the IIP. We call this an

IIP graph and define it as follows:

Definition 3.1. IIP Graph Given a provenance graph G < V,E > and alert event ea

incident on IIP Vertex va, the IIP Graph G′ < V ′, E ′ > is a graph rooted at Va where e ∈ E ′

iff e is causally dependent on ea and e is either an alert event or an event that leads to an

alert event.

We generate the IIP graph by issuing a forward tracing query from the IIP vertex, pro-

ducing a progeny provenance graph containing only events which happened after that first

alert event incident on the IIP vertex. We then perform a pruning step on this subgraph,

removing all provenance paths originating from the IIP that do not traverse an alert edge.

Each path in the resulting, pruned graph contains at least one alert event. In Algorithm 3.1,

Lines 1-13 show the IIP graph generation process. For our attack scenario example from

Section 3.1, the pruned progeny graph rooted at the IIP is shown in Figure 3.4a.

This IIP graph based approach is a key differentiating factor that sets RapSheet apart

from the path-based approach to alert triage in NoDoze [30] and the full graph approach

in Holmes [89]. A path-based approach fails to correlate alerts that are causally related

but appear on different ancestry paths. For example, after initial compromise, an attacker

can launch several child processes, with each child generating its own, separate path. Even

though all child paths are causally related, the path-based approach will fail to correlate

alerts on the separate paths. On the other hand, Holmes’ full graph approach requires a

normal behavior database and other heuristics to reduce false alarms from benign activities

before threat score assignment. RapSheet does not require a normal behavior database,

rather we rely on extracting certain subgraphs (the IIP graphs) and assigning scores based

on well-known attacker behaviors, which alleviates the problem of false alarms (further

discussed in Section 3.3).

The IIP graph captures the temporal ordering between events on the same path. However,

when reasoning about the overall attack campaign, we are not concerned with, e.g., which

attacker-controlled process takes a given action. Instead, we want to capture the temporal

order of all alerts contained in the IIP graph, which better reflects attacker intent. Because

this graph may consist of multiple paths, we need a way to capture ordering between edges

on different paths. To achieve this goal, we transform the IIP graph into a new graph in
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which each vertex is an alert event and edges indicate the temporal ordering between alerts

based on a happens-before relationship [90]. We call these edges sequence edges, and they

are defined as follows:

Definition 3.2. Sequence Edge. A sequence edge (ea, eb) exists between two alerts ea

and eb iff any of the following hold:

(a) ea and eb are alerts on the same host and on the same provenance path and ea causally

preceded eb; or

(b) ea and eb are alerts on the same host and the vertex timestamp of ea is less than the

vertex timestamp of eb or

(c) ea had an outgoing Connect event edge on one host, while eb has the corresponding Accept

edge on the receiving host.

In other words, for events that happen on the same machine, we can use the event times-

tamps to generate sequence edges. For events on different machines, we can use communi-

cation between the machines to generate the happens-before relationship (events before a

packet was sent on one machine definitely happened before events that happened after the

packet was received on the other machine). In the end, we generate a graph (Algorithm 3.1

Lines 14-24) which we call a tactical provenance graph whose formal definition is as follows:

Definition 3.3. Tactical Provenance Graph. A tactical provenance graph TPG can be

defined as a pair (V,E), where V is a set of threat alert events and E is a set of sequence

edges between the vertices.

As defined above, the TPG is already useful for analysts to visualize multi-stage APT

campaigns because it shows temporally ordered and causally related stages of an attack

without getting bogged down in low-level system events. However, the tactical provenance

graph may not be as succinct as the analyst would like, since MITRE techniques may be

matched repeatedly on similar events, such as a process writing to multiple sensitive files

or a process sending network messages to multiple malicious IP addresses. This can add

redundant alert event vertices in the tactical provenance graph. To declutter the TPG, we

perform a post-processing step where we aggregate the alert vertices ascribing the same

technique if they were triggered by the same process. Note that for events on a single

host, without cross-machine links, the TPG is a single chain. An illustration of this post-

processing step is given in Figure 3.4a. While the IIP shows mstsc.exe triggering three

lateral movement alerts, the TPG in Figure 3.4b only has one lateral movement vertex.
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Algorithm 3.1: Tactical Provenance Analysis
Inputs : Raw provenance graph G(V,E); Alert Events AE
Output: List of Tactical Provenance Graphs ListTPG

1 AE′ ← {ae : time(ae)}, ae ∈ AE, sort by timestamp in asc. order
2 Seen← ∅, set of seen alert events
3 ListIIP ← ∅, List of IIP Vertex Graphs
4 for ae : AE′, ae /∈ Seen do
5 Seen← Seen ∪ {ae} /* return all forward tracing paths from input event using DFS */
6 Paths← ForwardPaths(ae)
7 IIPG← ∅ , IIP graph
8 for path : Paths do

/* return all alert events in the input provenance path */
9 alerts← GetAlertEvents(path)

/* keep only those paths in IIP graph with at least one alert */
10 if alerts 6= ∅ then
11 IIPG← IIPG ∪ path
12 Seen← Seen ∪ alerts
13 ListIIP ← ListIIP ∪ IIPG
14 ListTPG ← ∅, List of TPGs to return
15 for IIPG : ListIIP do
16 TPG← ∅ , tactical provenance graph
17 alerts← GetAlertEvents(IIPG)

/* sort alerts according to Happens Before rules */
18 alertshb ← {a : time(a)}, a ∈ alerts

/* Loop over sorted alerts, two at a time */
19 for ae1, ae2 : alertshb do
20 V ← ae1
21 V ′ ← ae2
22 TPG← TPG ∪ (V, V ′) /* add sequence edge */

/* Post process the TPG for readability */
23 TPG← ReadabilityPass(TPG)
24 ListTPG ← ListTPG ∪ TPG

25 return ListTPG

3.3 THREAT SCORE ASSIGNMENT

A key goal of RapSheet is to group alerts and assign them a threat score that can be

used to triage those contextualized alerts. Because some alerts are more suspicious than

others, we pursued a scoring mechanism that incorporated a risk score of the individual

alerts. Where available, we used information published by MITRE to assign those scores to

individual alerts.

Many of the MITRE ATT&CK technique descriptions include a metadata reference to

a pattern in the Common Attack Pattern Enumeration and Classification (CAPEC) [91]

knowledge base. The CAPEC pattern entries sometimes include two metrics for risk as-

sessment: “Likelihood of Attack” and “Typical Severity”. Each of these is rated on a five

category scale of Very Low, Low, Medium, High, Very High. The first metric captures how
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likely a particular attack pattern is to be successful, taking into account factors such as the

attack prerequisites, the required attacker resources, and the effectiveness of countermea-

sures that are likely to be implemented. The second metric aims to capture how severe the

consequences of a successful implementation of the attack would be. This information is

available on MITRE’s website, as well as in a repository of JSON files [92] from which we

programmatically extracted the scores.

For some MITRE techniques, no CAPEC reference is provided, or the provided CAPEC

reference has no likelihood and severity scores. In these cases, we fall back on a separate

severity score that was provided by the EDR vendor, normalized to our fifteen point scale.

We converted the descriptive values for each metric into a numeric scale of one to five,

and combined the two metrics together. We give the severity score a higher weight than

the likelihood score since we are defending against advanced adversaries that have many

resources at their disposal to effectively execute techniques that might be considered unlikely

due to their difficulty or cost. The resulting threat score for each individual alert is:

TS(technique) = (2 ∗ SeverityScore) + LikelihoodScore (3.1)

For example, the MITRE technique called Registry Run Keys / Startup Folder (T1060) [93]

refers to the attack pattern called Modification of Registry Run Keys (CAPEC-270) [94]

which assigns a likelihood of attack of “medium” and a severity of “medium”. Thus, we assign

an alert that detects technique T1060 a score of nine out of a possible fifteen (TS(T1060) =

2 ∗ 3 + 3 = 9).

Next, we explain different schemes that we used to combine individual alert scores into

an overall threat score.

3.3.1 Limitations of Path-Based Scoring Schemes

To aggregate scores, we first tried an approach based on grouping and scoring alerts using

a single, non-branching provenance path as was proposed by Hassan et al. in [30]. For each

alert, we generated the backward tracing path and then aggregated the scores that occurred

on that path. We tried different aggregation schemes such as adding the individual alert

scores or multiplying them, with and without technique or tactic deduplication. Unfortu-

nately, we realized during our experiments that the path-based approach was not capturing

the entire context of the attacks in some situations. This led us to explore another approach

to grouping and scoring alerts.
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3.3.2 Graph-Based Scoring Schemes

To capture the broader context of a candidate alert, we generate the TPG for the candidate

alert which is derived from the subgraph rooted at the shallowest alert in the candidate’s

backward tracing provenance path as described in Section 3.2.

The key insight behind our proposed scheme is that we would like to maximize the threat

score for TPGs where the alerts are consistent with an attacker proceeding through the

ordered phases of the tactical kill chain defined by MITRE. We formalize this intuition in

a scoring algorithm as follows. The sequence edges in the TPG form a temporally ordered

sequence of the graph’s constituent alerts. We find the longest (not necessarily consecutive)

subsequence of these ordered alerts that is consistent with the phase order of MITRE’s

tactical kill chain. We then multiply the scores of the individual alerts in this subsequence

to give an overall score to the TPG. If there are multiple longest subsequences, we choose

the one that yields the highest overall score. More formally:

TS(TPG) = max
Ti∈T

∏
T i
j∈Ti

TS(T ij ) (3.2)

In Equation 3.2, T is the set of all longest subsequences in TPG consistent with both

temporal and kill-chain phase ordering. Note that an attacker cannot evade detection by

introducing out-of-order actions from earlier, already completed stages of the attack. Rap-

Sheet’s scoring approach will simply ignore these actions as noise when finding the longest

subsequence of alerts from the TPG, which need not be consecutive.

3.4 LOG REDUCTION

System logs enable two key capabilities of EDR tools: 1) threat alert triage based on alert

correlation and 2) after-the-fact attack investigation using attack campaign visualization.

Thus, EDR tools need to retain these logs long enough to provide these capabilities. However,

system logs can become enormous quickly in large enterprises, making long-term retention

practically prohibitive. As mentioned in Section 3.1, most EDR tools store logs in a limited

FIFO buffer, destroying old logs to make space for new logs. Unfortunately, this naive log

retention strategy can lose critical information from older logs. So, it is important to use

this limited memory efficiently.

We propose a novel technique to reduce the fidelity of logs while still providing the two key

EDR capabilities. To provide these key capabilities, we need to ensure that we can generate

the TPG from the pruned graph. Once we have the TPG, we can derive correlations between
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Figure 3.6: Graph reduction example. After every configurable time interval, RapSheet
runs graph reduction and store only skeleton graph which preserves the linkability between
current and future tactics.

alerts, assign threat scores to correlated alerts and provide high-level visual summaries of

attacks to the security analyst.

For our graph reduction algorithm, we assume the properties of the provenance graph and

backward tracing graph described in Section 3.2.3. We also assume all the alert events in

the provenance graph are incident to at least one process vertex. Based on these properties,

we propose the following two rules to prune the provenance graph at any point in time while

preserving TPG-based alert correlation.

Rule#1: Remove object vertex O iff there are no alert events in the backward

tracing graph of O and there are no alert event edges directly connected to O.

This rule ensures that O is not currently part of any IIP graph derived from the current

provenance graph. If it were, then it either would be directly involved in an alert (i.e., there

would be an alert edge incident to O), or it would be on a path from some IIP vertex to

some alert edge, which entails that the alert incident to that IIP vertex would be in O’s

backward tracing graph. Note that even if there is a live process vertex in the ancestry of

object O, and that process generates an alert event E1 in the future, this new alert event

will have a timestamp later than the edges currently leading to O. Hence, O would not be

part of the IIP graph containing E1.

To explain our graph reduction algorithm we use an example provenance graph shown in

Figure 3.6(a). Vertices labeled with a P represent processes while those with an O represent

object vertices. The red edges indicate alerts, green vertices show live processes at the time

of reduction, and edges are marked with ordered timestamps t1 to t9. Gray vertices and

edges show candidates for removal according to Rule#1 and Rule#2.

The only candidate for object vertex reduction is O2 since it satisfies all the conditions of

Rule#1. The backward tracing graph of O2 consists of vertices {P2, P1} and the edges with

timestamps {t5, t1}, which do not have any alert events. Thus, we can safely remove O2 and
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the edge with timestamp t5 from the graph without losing any connectivity information for

current or future alerts. Note that the edge with timestamp t7 will not be included in the

backward tracing graph because it happened after t5. After graph reduction, if some process

vertex reads or writes to the object O2, then vertex O2 will reappear in the provenance

graph. Next, we discuss how to prune process vertices from the graph.

Rule#2: Remove process vertex P iff: i) there are no alert events in the backward

tracing graph of P , ii) there are no alert event edges directly connected to P and

iii) process P is terminated.

The first two conditions of Rule#2 have the same reasoning as Rule#1. In addition, we

have to ensure that process P is terminated so that it does not generate new alerts which

will become part of an IIP graph. In the example shown in Figure 3.6(a), process P3 is

terminated, has no alert event in its backward tracing graph, and does not have any incident

edges that are alert events. Thus, we can safely remove the process vertex P3 from the graph

along with the edges that have timestamp {t2, t3}.
By applying these two reduction rules to a given provenance graph, RapSheet generates

a space-efficient skeleton graph which can still identify all the causal dependencies between

alerts and can generate exactly the same set of TPGs (procedure described in Section 3.2.4)

as from the classical provenance graph. Figure 3.6(b) shows the skeleton graph for our

example graph.

Properties. A skeleton graph generated by RapSheet will not have any false positives,

that is, TPGs generated from the skeleton graph will not have alert correlations that were

not present in the original provenance graph. This is clear since RapSheet does not add any

new edges or vertices during the reduction process. Furthermore, a skeleton graph generated

by RapSheet will not have any false negatives, meaning it will capture all alert correlations

that were present in the original provenance graph. This follows from the properties of

provenance and our backward tracing graphs. The reduction rules ensure that, at the time

of reduction, the removed nodes and edges are not part of any IIP graph. And since our

backward traces include only events that happened before a given event, they would not be

part of any future IIP graph.

Retention Policy. To provide log reduction and prevent storage requirements from

growing indefinitely, enterprises can run the graph reduction algorithm at a configurable

retention time interval. This configuration value must be long enough for alert rule matching

to complete. The retention policy can be easily refined or replaced according to enterprise

needs. The configured retention interval controls how long we store high-fidelity log data (i.e.,

the unpruned graph). RapSheet’s backward tracing and forward tracing works seamlessly
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over the combined current high-fidelity graph and the skeleton graph that remains from prior

pruning intervals.

3.5 EVALUATION

In this section, we focus on evaluating the efficacy of RapSheet as a threat investigation

system in an enterprise setting. In particular, we investigated the following research questions

(RQs):

RQ1 How effective is RapSheet as an alert triage system?

RQ2 How fast can RapSheet generate TPGs and assign threat scores to TPGs?

RQ3 How much log reduction is possible when using skeleton graphs?

RQ4 How well does RapSheet perform against realistic attack campaigns?

3.5.1 Implementation

We used Apache Tinkerpop [95] graph computing framework for our provenance graph

database. Tinkerpop is an in-memory transactional graph database and provides robust

graph traversal capabilities. We implemented the three RapSheet components (tactical

graph generation, threat score assignment, and graph reduction) in 6K lines of Java code.

We use a single thread for all our analyses. We generate our provenance graphs in GraphViz

(dot) format which can be easily visualized in any browser. Our implementation interfaces

with Symantec EDR. Symantec EDR is capable of collecting system logs, matching events

against attack behaviors, and generating threat alerts.

3.5.2 Experiment Setup & Dataset

We collected system logs and threat alerts from 34 hosts running within Symantec. The

logs and alerts were generated by Symantec EDR which was configured with 67 alert gen-

erating rules that encode techniques from the MITRE ATT&CK knowledge-base. In our

experiments, we turned off other EDR rules that did not relate to MITRE ATT&CK. During

all experiments, RapSheet was run on a server with an 8-core AMD EPYC 7571 processor

and 64 GB memory running Ubuntu 18.04.2 LTS.

Our data was collected over the period of one week from hosts that were regularly used

by members of a product development team. Tasks performed on those hosts included web
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browsing, software coding and compilation, quality assurance testing, and other routine

business tasks. Due to variations in usage, some machines were used for only one day

while others logged events every day during data collection week. In total, 35GB worth of

(lightly compressed) logs with around 40M system events were collected. On average, each

host produced 400K events per machine per day. We describe further characteristics of our

dataset in the next subsection 3.5.3.

During the experimental period, we injected attack behaviors into three different hosts.

The attack behaviors correspond to three different attack campaigns, two based on real-

world APT threat groups (APT3 and APT29) and one custom-built data theft attack.

These simulated attacks were crafted by an expert security red-team. The underlying EDR

generated 58,096 alerts during the experiment period. We manually examined the alerts

from the machines which were targeted by the simulated attacks to determine that 1,104

alerts were related to simulated attacker activity. The remaining alerts were not associated

with any of the simulated attacks and we consider them to be false positives.

3.5.3 Dataset Characterization

In this section, we characterize dataset that we used in our evaluation. We collected 40M

system monitoring event from 34 hosts in a real-world enterprise environment. These host

machines were used by employees daily for web browsing, software coding and compilation,

quality assurance testing, project management, and other routine business tasks. We used 67

total alert rules to detect various MITRE ATT&CK techniques in our experiments. Of these

rules, some were written by us, while the other were included by default in the Symantec

EDR software.

First, we look at how often the various MITRE ATT&CK technique and tactic rules

caused alerts on the hosts in our experiment. Figure 3.7 shows which MITRE ATT&CK

techniques were matched, how many times, and what proportion of the alerts for each tech-

nique were related to a true attack. We can see from the figure that rules for techniques

like RunDLL32 (T1085) and Scripting (T1064) generated many alerts, but have very low

true positive rates since these techniques are commonly used for benign purposes. On the

other hand, techniques like “Change File Association” (T1042) and “System Service Dis-

covery” (T1007) were triggered many times and have high true positive rate because these

techniques usually only happen during malicious activity. Thus, these techniques can be

strong indication of an attack campaign.

Figure 3.8 shows the tactics to which the alerting techniques in our data belong. During

evaluation, we observed 10 out of the 12 tactics defined by MITRE ATT&CK. As is evident
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Figure 3.8: Number of matched MITRE ATT&CK tactics during our evaluation.

from the graph, there are certain tactics, such as “Exfiltration” and “Defense Evasion”, are

more false-positive prone. Others, such as “Discovery”, still have many false alarms, but

have a more balanced distribution.

Figure 3.9 shows the number of vertices and edges in provenance graph database for each

of 34 hosts in our evaluation. We see that all hosts have a similar number of edges and

vertices except for two hosts. From these two hosts, we had only few hours worth of logs.
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Figure 3.9: Number of vertices and edges in the provenance graph for each of 34 hosts in
our evaluation.

3.5.4 Effectiveness

The first research question of our evaluation is how effective RapSheet is as an alert triage

tool. In our experiment, we used the EDR tool to monitor hosts for MITRE ATT&CK

behaviors and generate alerts. We then manually labeled these alerts as true positives and

false positives based on whether the log events that generated the alert were related to

simulated attacker activity. This labeled set is used as the ground truth in our evaluation.

Then, we used RapSheet to automatically correlate these alerts, generate TPGs, and assign

threat scores to TPGs.

Of the 1,104 true alerts and 56,992 false alarms generated during our experiments, Rap-

Sheet correlated these alerts into 681 TPGs. Of these, 5 were comprised of true alerts and

676 contained only false alarms.3 We then calculated threat scores for these TPGs and sorted

them according to their score. We tried two different scoring schemes. For the first scheme,

we assigned scores to each TPG using a strawman approach of multiplying the threat scores

of all alerts present in the TPG. However, since TPGs may contain duplicate alerts, we

normalize the score by combining alerts which have the same MITRE technique, process,

and object vertex. For the second scheme, we used the scoring methodology described in

Section 3.3.

Different true positive rates (TPRs) and false positive rates (FPRs) for the scoring schemes

3Three out of five truly malicious TPGs were related to the APT29 simulation, which the red team
performed three times during the week with slight variations. The other two attack campaigns resulted in
one TPG each.
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Figure 3.10: ROC curve for our experiments. We tried two different schemes to rank TPGs.
TPG-Seq means sequence-based scoring while TPG-mult means strawman approach of score
multiplication.
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Figure 3.11: CDF of threat scores for false alarm and true attack TPGs.

above are shown in the ROC graph in Figure 3.10. Our sequence-based scoring scheme was

more effective than the other scheme. Figure 3.11 shows the cumulative distribution function

for ranked true attack and false alarm TPGs based on threat scores. When we set a threshold

(shown with a vertical red line) that captures 100% of true positives, we can remove 97.8%

of false TPGs since all true attack TPGs are scored significantly higher than most false alert

TPGs. At this threshold, RapSheet has a 2.2% FPR. Note that the goal of RapSheet is not to

eliminate false TPGs from consideration, but to prioritize TPG investigation based on their

threat score. The threshold is a configurable parameter and can be set more conservatively

or aggressively based on the goals of a particular enterprise security team.

Table 3.1 summarizes the ranking of top 16 threat scoring TPGs out of total 681 TPGs

in our evaluation. This list contains all the 5 truly malicious TPGs that are present in our

evaluation. In this table, the first column represents the root vertex ID given by RapSheet.

Recall that TPG is identified by the IIP root vertex. The second column shows where the

TPG was a false alarm or truly malicious. The third column shows the threat score given by
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Table 3.1: Top 16 threat scoring TPGs out of total 681 TPGs.

TPG ID Category Threat
Scores

Threat
Alerts

Longest Ordered Subsequence of Tactics

052c89 False Alarm 125000 54
execution, persistence, privilege-escalation,
defense-evasion, discovery, lateral-movement,
command-and-control

e431ac True Attack 116640 992
execution, persistence, privilege-escalation,
defense-evasion, credential-access, discovery

69f88c False Alarm 25000 30
execution, persistence, privilege-escalation,
defense-evasion, discovery, lateral-movement

2e91b2 False Alarm 15625 52403
execution, persistence, privilege-escalation,
defense-evasion, lateral-movement, exfiltration

c17d94 True Attack 14400 26
persistence, privilege-escalation,
defense-evasion, discovery, lateral-movement

9b1f4a False Alarm 7350 12
execution, persistence, privilege-escalation,
defense-evasion, discovery

3f3fa5 False Alarm 5250 26
persistence, privilege-escalation,
defense-evasion, discovery, exfiltration

08f25f False Alarm 4375 45
execution, persistence, privilege-escalation,
lateral-movement, exfiltration

ba6b01 False Alarm 3750 11
execution, persistence, privilege-escalation,
defense-evasion, discovery

b464e4 True Attack 3750 77
persistence, privilege-escalation,
defense-evasion, discovery, exfiltration

8d88e3 False Alarm 3125 127
execution, persistence, defense-evasion,
discovery, exfiltration

d68b64 False Alarm 3125 16
initial-access, execution, persistence,
defense-evasion, exfiltration

3fb85e False Alarm 1600 44
execution, persistence, lateral-movement,
exfiltration

ae5f39 False Alarm 1600 64
execution, persistence, lateral-movement,
command-and-control

e448f1 True Attack 1440 13
execution, defense-evasion, discovery,
lateral-movement

0c1d5e True Attack 1350 48
execution, defense-evasion, discovery,
lateral-movement

RapSheet to the TPG. The fourth column shows the number of threat alerts present in the

corresponding TPG. Finally, the fifth column represents the longest ordered sub-sequence

extracted by RapSheet from the TPG that gave the highest threat score.

3.5.5 Response Times

To answer RQ2, we measured the TPG generation query response (turn-around) time

for all the alerts in our evaluation dataset. We divided the response time of TPG genera-

tion queries into two parts. First, we measured how long RapSheet takes to generate the
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Figure 3.12: CDF of response times to run RapSheet analysis.

provenance graph for each alert in our 58,096 alerts dataset. These provenance graphs are

generated by performing backward and forward tracing queries for each alert, which reads

the provenance graph database from disk. Figure 3.12a shows the cumulative distribution

function (CDF) of response times for all the alerts. The results show that for 80% of alerts,

RapSheet generates the provenance graph in less than 10 secs. Note that most of this time

was spent in disk reads, which we can likely speed up using existing main-memory graph

databases [96, 97].

Second, we measured the response time for performing tactical provenance analysis, which

includes first extracting the IIP graph from the provenance graph of each alert, transforming

this IIP vertex graph into a TPG, and finally assigning threat score to the TPG. For this

response time, we assume that the provenance graph of the alert (from Figure 3.12a) is

already in the main memory. Figure 3.12b shows that RapSheet was able to perform tactical

provenance analysis and calculate threat scores on 95% of all the alerts in less than 1 ms.

3.5.6 Graph Reduction

To answer RQ3, we measured the graph size reduction from applying the technique dis-

cussed in Section 3.4. Figure 3.13 shows the percentage reduction in the number of edges

for the 34 hosts in our evaluation, one bar for each host. On average, RapSheet reduces

the graph size by 63%, increasing log buffer capacities by 2.7 times. Note that we saw a

similar reduction in the number of vertices. In other words, the same end host can store 2.7

times more data without affecting storage capacity provided by EDR and data processing

efficiency. This shows that skeleton graphs can effectively reduce log overhead.

Since currently RapSheet does not support cross-machine provenance tracking, our graph

reduction algorithm is limited to ensure the correctness of causality analysis. Recall that
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Figure 3.13: Percentage of edges removed from each host’s provenance graph after applying
our graph reduction algorithm.
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Figure 3.14: CDF of running graph reduction algorithm on each of the hosts’ provenance
graph.

our reduction algorithm does not remove a provenance path if it leads to some alert. So

in our implementation we conservatively assume all the network connections made to hosts

within our enterprise can lead to an alert and thus do not remove such network connections

during the reduction process. We expect to see a further reduction in graph size once we

incorporate cross-machine provenance analysis in the future work.

We also measured the cost of running our graph reduction algorithm on the full provenance

graphs for the full duration of our data collection for each machine. The results are shown

in Figure 3.14. As we can see, graph reduction finished in under 15 minutes on 80% of

the hosts. In the worst case, one host took around two hours to finish. Upon further

investigation, we found that this host has the highest number of edges in our dataset with

1.5M edges while the average is 370K edges. This overhead, which can be scheduled at times

when machines are not busy, is acceptable for enterprises since the benefit of extra storage

space from pruning graph while maintaining alert scoring and correlation outweighs the cost

of running the graph reduction algorithm.
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Figure 3.15: APT3 Attack Scenario. (a) IIP Vertex graph generated by RapSheet. (b)
Tactical Provenance Graph for APT3 attack after applying readability post-processing pass.
TPG is three orders of magnitude smaller than classical provenance graph. RapSheet will
choose the maximum ordered tactic sequence from this TPG for the final threat score as-
signment.

3.5.7 APT Attack Campaign Case Studies

For our evaluation, we analyzed APT attacks from two well-known threat groups (APT3

and APT29) and one custom-designed attack executed using the MITRE CALDERA frame-

work [98]. We already presented the APT29 attack scenario as a motivating example in

Section 3.1. We now describe the APT3 attack and an APT attack using CALDERA.

APT3 is a China-based threat group that researchers have attributed to China’s Min-

istry of State Security. This group is responsible for the campaigns known as Operation

Clandestine Fox, Operation Clandestine Wolf, and Operation Double Tap [99]. Similar to

APT29, APT3 has been well studied. ATP3’s goals have been modeled using MITRE tactics

and techniques. In our attack scenario, we performed various techniques from this known

set ranging from System Service Discovery (T1007) to Remote Desktop Protocol (T1076).

These techniques allowed us to achieve several of the MITRE tactics including execution,

lateral movement, and defense evasion on the victim host. Figure 3.15a shows the IIP graph

for the APT3 attack scenario, while Figure 3.15b shows the TPG extracted from this IIP

graph. Our threat scoring algorithm ranked this TPG at number 15 out of 681, higher

than the vast majority of the 676 false TPGs. To score this TPG, RapSheet found the

following temporally ordered sequence of tactics: execution, defense-evasion, discovery, and

lateral-movement.

In addition to the two simulations of actual advanced adversary groups that were per-
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Figure 3.16: Caldera attack scenario. (a) IIP Vertex graph generated by RapSheet. We
have omitted some of the edges and vertices from the graph for presentation. Complete
IIP graph consists of 49 edges and 50 vertices. (b) Tactical Provenance Graph for Caldera
attack after applying readability pass. RapSheet will choose the maximum ordered tactic
sequence from this TPG for the final threat score assignment.

formed by red teams, we performed our own third campaign using a configurable, auto-

mated attack emulation framework called CALDERA [98] which is maintained by MITRE.

CALDERA provides a client “malware” agent and a command-and-control server that agents

can communicate with to receive commands to execute on the infected machines.

As a first step, we manually installed the client agent on one machine. This is a realistic

scenario, since the initial infection stage is often missed by deployed defenses, either because

a zero-day vulnerability is exploited or because the agent is installed by an unsuspecting,

legitimate user. We then configured the command-and-control server to issue commands to

discover other machines on the network, attempt to log in to those machines using stolen

credential, copy the agent to any machines it successfully logged into, search for document

files on all infected machines, zip up any found files and exfiltrate the files by sending the

stolen file archives to the command and control server.

This covers a variety of ATT&CK techniques, from System User Discovery (T1033) to

Remote File Copy (T1105), and several tactics including credential access, lateral movement,

and exfiltration on the victim hosts. The IIP vertex graph and tactical provenance graph

for one of the victim machines are shown in Figure 3.16.
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CHAPTER 4: SWIFT: LIGHTNING-FAST DATA PROVENANCE
ANALYTICS

Modern organizational networks are sprawling and diverse, hosting data of tremendous

value to malicious actors. Unfortunately, due to the complexity of organizations and time-

consuming nature of threat investigations, attackers are able to dwell on the target system

for longer periods. In slow-moving targeted attacks (e.g., Equifax [2]), the amount of damage

wrought by the attacker grows exponentially as their dwell time in the system increases [8],

with a recent study reporting that it costs organizations $32,000 for each day an attacker

persists in the network [100]. This situation is made even worse when considering fast-

spreading attacks; the infamous Slammer worm [101] that infected more than 75,000 hosts

within the first ten minutes of its release, and recent ransomware attacks [44, 102, 103] exhibit

a similar replication factor. Regardless of the specific attack, delayed response times imply

significantly larger negative consequences. Thus, to minimize repercussions of intrusions,

cyber analysts require tools that facilitate fast and interactive threat hunting.

Given its vital importance, what are the key factors that determine the success of the

threat hunting process? The various steps involved in post-breach threat hunting [104]

are summarized in Figure 4.1. Effectiveness is usually measured using two metrics in in-

dustry [105]: 1) Mean-time-to-detect (MTTD), which measures the time required for the

organization’s Threat Detection Software (TDS) to detect suspicious activity and raise a

security alert; and 2) Mean-time-to-know (MTTK), which measures the time required for

cyber analysts to make sense of alert and unearth evidence that the alert is indicative of a

true attack. Depending upon the volume of threat alerts and the analysis tools available

to the analyst, this process can typically range from hours to days for an individual threat

alert [4, 8].

Recently, threat hunting has become a subject of renewed interest in the literature, pri-

marily due to advancements in causal analysis [10, 11, 12, 13, 14, 15, 16, 21, 33, 43, 106,

107, 108, 109, 110] that can can reduce MTTK during the post-breach threat hunting pro-

cess. Unfortunately, at present the performance of causal analysis is a limiting factor to

their widespread adoption – early attempts to deploy these techniques in practice reported

graph construction times ranging from hours to days and unwieldy audit logs that reached

terabytes in size over just a week (e.g., [20]). These existing tools fall under two categories:

1) disk-based offline approaches (e.g., [20, 30]) that incur significant I/O bottleneck and

takes hours to respond to each query, thereby increasing MTTK; and 2) memory-based

online approaches (e.g., [10, 11]) that require the whole causal graph to be stored in main-

memory for analysis, which cannot scale to even modestly-sized organizations. As neither
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Figure 4.1: Typical post-breach threat hunting in an enterprise. Both alert management
(e.g., triage) and investigation steps require causal graphs of generated alerts.

approach is a practical candidate for deployment, prior work has sought to improve the

performance of causal analysis through various forms of graph reduction and compression

(e.g., [18, 19, 22, 24, 25, 31, 111, 112]). By reducing the number of log events to process,

those techniques have indeed improved query latency and alleviated the burdens of long-

term storage. However, these approaches potentially affect the fidelity of logs for answering

key forensic queries. For example, LogGC removes subgraphs associated with closed sockets

and thus could obscure data exfiltration attempts [19], while Winnower may prevent at-

tack attribution by abstracting remote IP addresses [18]. Further, over longer periods those

techniques do not provide a scalable solution to log analysis and management.

4.0.1 Our Approach & Contributions

In this chapter, we propose a causal analysis and alert management framework that can

process logs and forensic queries as quickly as the system event stream. Unfortunately,

building a highly scalable real-time causality tracker is a daunting task. The challenge

comes from the volume and velocity of system events that are in large enterprises. Three key

challenges need to be answered before we can build this scalable mechanism:

C1 Scalable Ingest: How can we continuously ingest and process upwards of terabytes of

system events per day?

C2 Fast Graph Retrieval: How can we quickly recover causal graphs of recent alerts,

especially when alerts’ dependencies may extend back weeks into the past?

C3 Efficient Alert Management: How can we incorporate causality analysis into real-time

alert management to help cyber analysts cope with the deluge of alerts?

To address these challenges, we designed Swift1, a causality tracker for which scalability

1Swift is a recursive acronym for Swift investigator for threat alerts.
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Figure 4.2: Overview of Swift architecture.

and performance are first-class citizens. Figure 4.2 presents an overview of the Swift

architecture. Enterprise-wide audit logs are first collected into a Kafka broker [113] and then

fetched by the consumer threads of Swift. Each consumer thread buffers the events for a

certain configurable window, organizes the out-of-order events based on their timestamps,

and merges continuous events that have the same source and destination.2 Then, these audit

log events are fed into a novel hierarchical storage management (HSM) system.

The challenge of scalable ingestion (C1) is met by the first contribution of this paper, a

novel vertex-centric graph schema and database that is tailored for online causality analysis.

This in-memory causal graph database allows Swift to quickly identify the causal relation-

ships of streaming events with all causally-related events that occurred previously. We show

that our graph database is space-efficient and is an enabling factor in providing real-time

query results without significant disk I/O during our experiments.

The challenge of fast graph retrieval (C2) is resolved through the introduction of a causal

graph HSM that consists of a two-layered memory cache (the tracking cache and suspicious

cache, respectively), and a disk. This HSM automatically moves causal graph segments

between main-memory and disk to achieve high-throughput data ingestion and low-latency

query results. However, incorporating an HSM into an existing causal analysis framework

is non-trivial – a generic cache eviction strategy would regularly evict forensically-relevant

events, leading to increased disk access and high query latency.

Our solution to eviction is based on two distinct insights that motivate our two-layered

memory cache design. The first insight is that of temporal locality; recent events have

a high probability of dependence with upcoming events in the near future, Based on this

observation we formulated an Epochal Causality Hypothesis, described in Section 4.3.1, and

store recent events in the tracking cache. As events age out of the tracking cache, a decision

2Most of the operating systems introduce several system-level events for single file operation. Aggregating
these events together does not affect the correctness of causality analysis but saves substantial space.
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must be made as to which events are likely to be used in forensic queries and should thus

be retained in memory.

To identify forensically-relevant events, we formulated a Most Suspicious Causal Paths

Hypothesis which states that, given a suspicious influence score algorithm (e.g., [20, 30, 114,

115, 116]) that satisfies three key properties described in Section 4.3.2, we can calculate the

most suspicious causal paths in an online fashion (on time-evolving graphs); as these paths

are more likely to be associated with a true attack, they are also the most likely to be queried

and should thus be retained in the suspicious cache. Note that a causal graph consists of one

or more causal paths (further described in Section 4.1). Finally, to quickly identify top-k

most suspicious causal paths seen so far in the enterprise, Swift also maintains a Global

List that stores pointers to such paths.

The final contribution of this paper considers the matter of efficient alert management

(C3), which is a vital consideration to mitigating threat alert fatigue [8]. Swift includes

an alert management layer on top of its HSM. When alerts are fired by a connected TDS

(e.g., Splunk [9]), Swift automatically leverages its suspicious influence scores to perform

alert triage based on historical context,3 allowing the analyst to investigate the most likely

threats first. Further, during online causality tracking, Swift keeps track of all previously-

fired alerts. When an alert has a causal relation with a previously fired alert, Swift fuses

these events into a single causal graph to display to the analyst.

4.0.2 Summary of Results

We deployed and evaluated our system at NEC Labs America, comprised of 191 hosts. Our

case studies on this testbed confirm that Swift can retrieve the most critical parts of an APT

attack from a database of over 300 million events in just 20 ms. Swift successfully classified

140 security alerts and responded to forensic queries in less than 2 minutes, reducing the

latency of the state-of-the-art alert triage tools by 5 hours. With this result, we estimate that

Swift can scale to monitor upwards of 4,000 hosts on a single server. Further, Swift can

scale to support thousands of monitored hosts on a single machine using just 300 MB memory,

thus addressing a central limitation of existing causal analysis techniques. We clarify at

the outset that Swift does not improve or detract from the efficacy of its two modular

components, the underlying TDS (e.g., [9]) and suspicious influence scoring algorithm (e.g.,

[20, 30]); instead, Swift seeks to improve security by dramatically improving the speed and

scalability of causality-based threat hunting solutions.

3Prior work [30] has shown that incorporating historical context into alert triage may reduce the false
positives of a commercial TDS by up to 84%.
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4.1 PRELIMINARIES

4.1.1 Causal Path

A causal graph consists of one or more causal paths, which are defined as follows:

Definition 4.1. Causal Path. A causal path P of a event ea represents a chain of events

that led to ea and chain of events induced by ea in the future. It is a temporally ordered

sequence of events and represented as P := {e1, . . . , ea, . . . , en } of length n. Each event

can have multiple causal paths where each path represents one possible flow of information

through ea.

4.1.2 Suspicious Influence Score

When analyzing causal paths, it is desirable to understand how the suspiciousness of each

event relates to the whole. Here, our suspicion may relate purely to an event’s rarity, but

may also incorporate other knowledge sources besides frequency, such as IP blacklists or

antivirus signatures. To evaluate the suspiciousness of an entire path, we introduce the

notion of a suspicious influence score. We say that a path exerts “suspicious influence”

because it influences the level of suspicion that we have for future events, including alert

events.

Definition 4.2. Suspicious Influence Score. For a causal path P := {e1,. . . ,ei,. . . ,en }
where the suspiciousness score for event ei is given by AS(ei ), the suspicious influence score

AS(P ) is a function that combines the suspiciousness score of each event in the path P .

Many prior works satisfy this definition for a suspicious influence scoring algorithm, e.g.,

[20, 30, 114, 115, 116]. In our approach, we require the scoring algorithm to satisfy three

specific properties: Cumulativity, Temporality, and Monotonicity. Combined, these prop-

erties will allow Swift to track causality in an online fashion with a low time complexity

and minimal disk operations. To better explain these properties, we use Figure 4.3 as an

example.

The first property, Cumulativity, means that the suspicious influence score of a path can

be calculated from the suspicious influence score of its prefix and the suspiciousness score

of its last event. For example, in Figure 4.3, to calculate the suspicious influence score of

the causal path P1 = {B → A → D}, we only need to know the suspicious influence score

of P ′1 = {B → A} and the suspiciousness score of event A → D. This property guarantees
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Figure 4.3: Example of causal graph database updates over time.

that while adding new events to an existing path, Swift does not need to backtrack the

existing path to generate the suspicious influence score for the newly extended path.

The second property, Temporality, means that an event can only affect the suspicious

influence score of events that happen after it. For two events e1 = {V1 → V2} and e2 =

{V2 → V3}, event AS(e2) depends on AS(e1) only if e1 happens before e2. This is intuitive

from an information flow perspective, as V2 will not have been inform by V1 until after e1

occurs. For example, at time T2 in Figure 4.3, events A→ E and A→ D do not depend on

event F → A because this occurred at time T3. Therefore, we do not calculate the suspicious

influence scores AS(F → A→ E) or AS(F → A→ D).

The third property Monotonicity, means that when a new event is appended to two

existing paths it does not change the suspicious influence score of the existing paths. Let

P1 = {P ′1 → S → D} and P2 = {P ′2 → S → D}, where P ′1 and P ′2 are distinct causal paths

prefixes and {S → D} is a new event shared by P1 and P2. The monotonicity property

states that if AS(P ′1 → S) > AS(P ′2 → S) then it must also be true that AS(P1) > AS(P2).

For example in Figure 4.3, if AS(B → A) > AS(C → A) at time T1 then it must also be

true that AS(B → A→ E) > AS(C → A→ E) at time T2. This property helps ensure the

correctness of our online causality tracking.

4.2 VERTEX-CENTRIC CAUSAL GRAPH

In this section, we first explain different graph formats and describe their merits and

limitations for fast causal analysis. Then, we present the graph format used by Swift.

4.2.1 Graph Representation

There are two major data formats for graphs [117]. First, the Edge List format is a

collection of edges, each a pair of vertices, that captures the incoming data in their arrival

order. Second, the Adjacency List format manages the neighbors of each vertex in separate
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per-vertex edge arrays. In Edge Lists, the neighbors for each vertex are scattered across

the data structure, making it difficult to traverse the graph quickly. On the other hand, in

Adjacency Lists vertex neighbors are easy to reference, making them better suited for causal

graph traversal.

In our causal graph schema, each system subject and object is represented as a vertex

in the causal graph and stored as an entry in a key-value storage. In each key-value pair

〈Key, V al〉, Key is the unique identifier representing the vertex and V al is a list of three

entries. For a vertex K this list is as follows:

1. A list of K’s parent vertices’ unique identifiers, Lparents. Each parent identifier is

associated with a timestamp for the event’s creation and the edge relationship type.

2. A list of K’s child vertices’ unique identifiers Lchildren. Each child identifier is associated

with a timestamp for the event’s creation and the edge relationship type.

3. An ordered list PATHabnormal of the m most suspicious causal paths that end with

vertex K, sorted in order of each path’s suspicious influence score.

This graph representation is specifically tailored towards forensic analysis queries, i.e.,

backward and forward tracing queries. We use the same graph representation for both main-

memory and on-disk storage. Recall that a major goal of Swift is to provide hierarchical

storage that can quickly query the most suspicious causal graphs. Our graph schema supports

this through the PATHabnormal objects, which are sorted in a descending order of their

suspicious influence scores. Note that each vertex has a set of causal paths that end at it,

even though these may be sub-paths of other paths. For example, in Figure 4.3, vertex A

has two paths in its PATHabnormal, P1 = {B → A} and P2 = {C → A}. These two paths

are the sub-paths of P3 = {B → A→ D} and P4 = {C → A→ D}, respectively.

4.2.2 Suspicious Causal Paths

For a vertex K, each path in PATHabnormal is a tuple in the form of (P, S, t, Rel, Rank): P

is the unique identifier of the parent vertex of K in a given causal path; S is the suspicious

influence score of the path; t is the timestamp of the edge event P → K; Rel is edge

relationship between K and P ; and Rank is the relative score ranking of all the paths that

end at P → K. In the case when multiple edges with the same edge relationship Rel

exists between two vertices, we keep only the latest timestamp. This is because ignoring

the previous edges does not affect the correctness of forensic analysis, as shown by previous

works (e.g., [11, 19]).
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Algorithm 4.1: PathDiscover
Inputs : V , R, Seen
Output: PATH

1 Parent = GetParent(V ,R)
2 if Parent = Null then
3 return Null
4 if Parent ∈ Seen then
5 return Null
6 Seen← Parent
7 ParentRank = GetRank(V ,R)
8 PATH = PathDiscover(Parent,ParentRank, Seen)
9 Append(PATH,Parent)

10 return PATH

We use Figure 4.3 as an example to explain our design of PATHabnormal. Note that we

do not show edge relationships in this figure and rest of the paper for simplicity although

we do store edge relationships in our schema. In Figure 4.3 there are three paths ending

at the vertex D, which are P1 = {B → A → D}, P2 = {C → A → D}, and P3 = {B′ →
A′ → D}. Assume the suspicious influence score and the timestamps of P1, P2, and P3 are

S1, S2, and S3 and t1, t2, t3, respectively. If S1 > S2 > S3, then PATHabnormal of D is

[(A, S1, t1, Rel10), (A, S2, t2, Rel2, 1), (A′, S3, t3, Rel3, 0)]. For the tuple (A, S1, t1, Rel1, 0), it

means that the parent of the given causal path is A, its suspicious influence score is S1, the

event A→ D happens at time t1 with edge relationship Rel1 and its suspicious score ranks

the first among all paths which have the last edge as A→ D.

Limiting the Size of PATHabnormal The number of paths that end at each vertex is expo-

nential to the number of vertices. Maintaining a PATHabnormal that contains all paths is not

realistic. To address this limitation, in our design of Swift, the length of PATHabnormal is

limited to m. Limiting the size of PATHabnormal means that for each vertex in the causal

graph, Swift only keeps the top m most suspicious paths that end at that vertex in memory.

Note that this does not affect the completeness of the whole causal graph since the complete

parent and child list for each vertex is maintained on disk. It only affects the paths that can

be retrieved quickly from the main memory. Based on the Hypothesis H2, these suspicious

paths are more likely to represent attacks. Thus, it is reasonable for us to limit the size of

PATHabnormal for each vertex.

4.2.3 Graph Query

Our design of the causal graph schema and database allows fast recovery of a causal

path with the unique identifier of its last vertex and its index in PATHabnormal. The time
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complexity of the recovering process is O(n), where n is the length of the causal path. The

algorithm is outlined in Algorithm 4.1. The inputs are the vertex V , the relative ranking

R of the causal path in V , and Seen, which is a hashmap of the previously-visited vertices

during path discovery. This hashmap is used to halt recursion in the case of a cycle. The

output of Algorithm 4.1 is the discovered path.

We use Figure 4.3 as an example to explain the recovering process. Assume that Swift

wants to recover the highest scoring path P1 = {B → A→ D}. To do so, Swift only needs

to have the last vertex D and the relative ranking (index), which is 0. To recover the full

path, Swift refers to the first element in its PATHabnormal and recovers the parent in the

given path, which is A, and gets the relative ranking of the path in A, which is also 0. Then

this process is recursively repeated on A and its ranking until the whole path is recovered.

4.3 HIERARCHICAL STORAGE AND ALERT MANAGEMENT

4.3.1 Tracking Cache

Swift takes the stream of audit log events and identifies causal relationships between

each new event and past events in order to build a causal graph. The role of the tracking

cache is to ensure that the events most relevant to the graph building process are consistently

available in the main memory. Our approach to assuring fast access to causally-related past

events is based on the following hypothesis:

H1 Epochal Causality Hypothesis. Events which are recently accessed during causal

graph generation are accessed again in a short epoch of time (∆Tpromote), and thus

should not be evicted from the main memory in that epoch.

An empirical validation of hypothesis H1 is given in Figure 4.4 based on the audit stream

of a 191 host enterprise. This CDF shows that the immediate dependencies (i.e., parents) of

98% of newly created events were created within a short epoch prior (< 15 mins). In other

words, if we can design a cache that can store the most recent 15 minutes of events in the

main memory, we will eliminate 98% of disk accesses.

Tracking Algorithm & Eviction Policy. Algorithm 4.2 outlines the high level steps of

our online tracking algorithm. At the high level, it takes the causal graph database (GDB)

and an incoming event (E) as the input, and adds E’s subject and object to the causal

graph database as two vertices. At the same time, the algorithm calculates and updates

PATHabnormal, which represents the most suspicious paths that end with the object of E.

The time complexity of updating the PATHabnormal is O(1).
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Figure 4.4: CDF of the time difference between a newly generated event and the event’s
immediate dependencies (i.e., parents). 98% of events’ immediate dependencies occurred less
than 15 minutes ago, providing empirical evidence for the Epochal Causality Hypothesis.

The first step of the tracking algorithm is to check if the subject and the object of the

event exist in the GDB (lines 1-2). RetreiveOrCreate does this work. Given the system

entities (the subject or the object), RetreiveOrCreate tries to first fetch it from the main

memory. If the system entity does not exist in the main memory, RetreiveOrCreate

tries to fetch it from the disk. If the system entity still does not exist in the hard disk,

RetreiveOrCreate will create a new entry in the causal graph database.

Once the subject and object have been retrieved, Swift updates the parent and child

list for the subject and object based on edge relationship Rel (lines 4 - 5 and lines 12 -

13). Then it updates the PATHabnormal list of the children (lines 6 - 9 and lines 16 - 19).

To do so, Swift enumerates each element in the PATHabnormal of the subject (line 6),

calculates a score from each element in the subject’s PATHabnormal (line 7) and updates the

PATHabnormal of the object with the new score, the relative ranking the in subject (Index),

and the new time stamp of the event (line 8). Finally, Swift updates the GDB of the

subject and the object in the main memory.

The time complexity of Algorithm 4.2 is O(1). Since we have limited the size of the

PATHabnormal as a constant, the time complexity of the loop between line 5 and line 8 is

constant. Due to the same reason, the time complexity of AddToPath is also O(1). After

each epoch ∆Tpromote, Swift evicts system objects (vertices) from tracking cache to the

suspicious cache if they have not been accessed in the last epoch. Vertices that have been

accessed during the past epoch are retained in the tracking cache for the next epoch.

4.3.2 Suspicious Cache

After being evicted from the tracking cache, vertex entries are moved to the suspicious

cache. The goal of the second cache is to retain vertex entries for all vertices that fall on
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Algorithm 4.2: TrackObject

Inputs : GDB, E
1 Sub = RetreiveOrCreate(E.sub, GDB)
2 Obj = RetreiveOrCreate(E.obj, GDB)
3 if IsParent(Sub, E.Rel) then
4 Sub.AddChild(Obj)
5 Obj.AddParent(Sub)
6 for Index, (P, S, t, R) ∈ Sub.PATHabnormal do
7 ChildScore = CalculateScore(S,Sub, Obj, E)
8 Obj.AddToPath(Sub, ChildScore, E.t, Index)

9 else
10 Obj.AddChild(Sub)
11 Sub.AddParent(Obj)
12 for Index, (P, S, t, R) ∈ Obj.PATHabnormal do
13 ChildScore = CalculateScore(S,Sub, Obj, E)
14 Sub.AddToPath(Obj, ChildScore, E.t, Index)

15 GDB.Update(Sub)
16 GDB.Update(Obj)

17 return

the Top K most suspicious causal paths throughout the history of system execution. The

intuition behind the suspicious cache is based on the Hypothesis H2.

H2 Most Suspicious Causal Paths Hypothesis. If a path in the causal graph contains

multiple suspicious (anomalous) events, it is much more likely to be associated with a

true attack.

Recent studies provide evidence for this hypothesis, and in fact are the inspiration for

the present study – Hassan et al. [30] present an alert triage system that ranks alerts based

on the aggregate anomalousness of their causal paths, observing that this approach can

be used to eliminate 84% of false alerts from a commercial Threat Detection Softwares

(TDS). Liu et al. [20] present an optimization for forward trace queries that prioritizes the

search of anomalous paths in order to construct attack graphs more quickly. While these

results are encouraging, both of these systems rely on disk-based graph storage and are thus

subject to extremely high latencies when traversing causal graphs; our observation is that

this hypothesis can also inform the design of a forensic cache. Because true attacks are

likely to fall on the most suspicious (anomalous) causal paths, our system should prioritize

the retention of events associated with such paths. This will increase the likelihood that all

forensically-relevant information will exist in main memory at the time of the investigation.
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The specific goal of the suspicious cache is to retain vertices that appear in the Top K

most suspicious causal paths; we call this set of K paths the Global List (GL). Each element

in Global List is a pair (V,R), where V is a vertex in the causal graph database and R is

the index of the causal path in V ’s PATHabnormal list. As discussed in Section 4.2, we can

recover the full causal path efficiently with this pair.

For a causal path P to be in GL, P must meet three conditions: (1) the suspicious influence

score of P is among the top K most suspicious paths in history; (2) P is not a sub-path of

another causal path (e.g., the path {B → A} in Figure 4.3 could not be in GL because it

is a sub-path of {B → A → D}; and (3) P is in the PATHabnormal of at least one vertex.

The third condition alleviates a possible “spoofing attack” that spoils the cache of Swift,

which we discuss in Section 4.5.

Suspicious Cache Eviction Policy. Based on the Hypothesis H2, Swift maintains the

top-K most suspicious causal paths in the memory to support low-latency attack investi-

gation. To achieve this goal with our two-layer cache design, we introduce a time-window

∆Tevict to evict objects from suspicious cache and GL to the disk. At a pre-defined time

interval, ∆Tevict, Swift asynchronously runs an eviction algorithm to move the vertices that

are not contained in a GL path to the disk. Algorithm 4.3 outlines the high-level steps of

the eviction process from suspicious cache to the disk. Its inputs are GL and suspicious

cache. The algorithm first enumerates every tuple in GL, recovering the causal path from

the tuple using Algorithm 4.1. Then, for each vertex in the recovered path, it taints the

vertex as “TO KEEP” (lines 1 - 5). After the tainting process, Swift evicts the key-value

pairs in the SuspiciousCache that do not have the “TO KEEP” taint (lines 6 - 11). Note

that Algorithm 4.1 accounts for possible cycles in the graph.

Correctness. The equation we use for suspicious influence scoring in Swift’s implemen-

tation is given by Equation 4.1 in Section 4.4. Based on the Cumulativity this equation,

the time complexity of CalculateScore is also O(1). The correctness of Algorithm 4.2 is

guaranteed by the Monotonicity and the Temporality of Equation 4.1. Due to the Tempo-

rality of Equation 4.1, Algorithm 4.2 only needs to update the PATHabnormal for the object.

It does not need to further propagate the suspicious influence score to the successors. Due

to the Monotonicity, the new top m most suspicious paths of the object can only be from

the old PATHabnormal of the object or the new causal paths generated from the top m most

suspicious paths of the subject. Thus, to calculate the new PATHabnormal, it is safe to only

enumerate the items in PATHabnormal of the subject.

Time Complexity. Our eviction algorithm runs in O(N) time complexity, where N is the

total number of vertices present in the main-memory, since it has to taint all the vertices
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Algorithm 4.3: Eviction

Inputs : GL, SuspicousCache
1 for (V,R) ∈ GL do
2 PATH= PathDiscover(V,R)
3 for N ∈ PATH do
4 Taint(N)

5 for < K, V > ∈ SuspiciousCache do
6 if CheckNotTaint(< K, V >) then
7 EVICT(< K, V >)

8 return

which belong to the Global List path and evict the vertices that do not belong to the Global

List path.

4.3.3 Alert Management

The alert management layer provides three fundamental capabilities: context-based alert

triage, alert correlation, and suspicious causal graph generation. These capabilities are based

on Swift’s HSM which allows them to be real-time. Context-based alert triage is achieved

by the propagating and storing of suspicious influence scores along with each causal path in

the database. Note that the suspicious influence scores are calculated during online tracking

(Algorithm 4.2). As discussed previously, the greater the suspicious influence score of an

alert, the more suspicious that alert will be and should therefore be investigated first. As soon

as alerts are fired during threat hunting process (shown in Figure 4.1), Swift iteratively

sorts alerts based on suspicious influence scores. In the alert management stage, Swift

only needs to retrieve the previously-calculated suspicious influence scores from the HSM,

assuring that alert triage can occur in real-time.

Alert correlation and causal graph generation are realized automatically by our HSM.

Swift uses the suspicious cache to retain the causal paths of those previously triggered

alerts that have higher suspicious influence scores. To correlate two alerts, Swift only needs

to query the suspicious cache to figure out if the most recently triggered alert’s causal path

is associated with any alerts that were triggered in the past. To support graph generation,

Swift provides two types of queries to retrieve the graph of alerts: concise queries and

complete queries. The concise query returns the most suspicious causal subgraph related to

an alert, which is stored entirely in the suspicious cache. The complete query returns the

whole graph by fetching paths from both the suspicious cache and, if needed, the disk.
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4.4 EVALUATION

In this section, we focus on evaluating the efficacy, usefulness, and scalability of Swift

as a real-time forensic analysis in an enterprise. In particular, we investigated the following

research questions (RQs):

RQ1 How effective is Swift in threat alert investigation?

RQ2 What are the insights into the events that are cached vs spilled to disk by Swift?

RQ3 How scalable is Swift?

RQ4 Can the time saved using Swift help an enterprise to thwart an attack?

RQ5 How efficient is Swift at alert management?

4.4.1 Implementation

We implement Swift for an enterprise environment and collected system event logs gen-

erated by Windows ETW [55] and Linux Auditd [56] using Kafka producers. We wrote our

own consumer threads to fetch audit logs from Kafka producers. Swift uses the Guava

Cache by Google [118] to maintain the causal graph database in the main-memory. This

cache supports timed eviction and asynchronous batch writes. Swift uses RocksDB [119]

as the persistent key-value storage. The batch mode in RocksDB provides high rate for read

and write.

In our implementation, we use the method proposed by Hassan et al. [30] to calculate

the suspicious influence score because it satisfies all the three properties mentioned in Sec-

tion 4.1.2. Particularly, for a causal path P , we calculate its Suspicious Influence Score

SIS(P ) with Equation 4.1.

SIS(P ) = 1−
l∏

i=1

IN(SRCi)×M(εi)×OUT (DSTi)× α (4.1)

The details about the above-mentioned equation can be found in [30]. At a high-level,

IN and OUT are two vectors that quantify the likelihood that the vertex is a source or

destination of information flow, respectively. M is the transition probability from SRCi

vertex to DSTi vertex. α is a normalization factor. IN , OUT , M , and α are parameterized

based on observations of historic benign data from the enterprise deployment. This equation

satisfies all three properties mentioned in Section 4.1.2. Cumulativity is satisfied because this
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Table 4.1: APT attack scenarios used in our evaluation with short their descriptions.

Attacks Short Description

VPNFilter [63] An attacker used known vulnerabilities [60] to penetrate into an IoT device and
overwrite system files for persistence. It then connected to outside to connect
to C2 host and download attack modules.

Redis-Server Example case study in Section 4.4.2
wget-gcc [22] Malicious source files were downloaded and then compiled.

WannaCry [44] An attacker exploits EternalBlue [46] vulnerability in enterprise to gain access
to machines and then attacker encrypts data on those machines.

Data Theft [20] An attacker downloaded a malicious bash script on the data server and used
it to exfiltrate all the confidential documents on the server.

ShellShock [60] An attacker utilized an Apache server to trigger the Shellshock vulnerability
in Bash multiple times.

Netcat Backdoor [61] An attack downloaded the netcat utility and used it to open a Backdoor, from
which a Persistent Netcat port scanner was then downloaded and executed
using PowerShell

Cheating Student [21] A student downloaded midterm scores from Apache and uploaded a modified
version.

passwd-gzip-scp [22] An attack stole user account information from passwd file, compressed it using
gzip and transferred the data to a remote machine

Jeep-Cherokee [120] An attack remotely exploits in-car information system and gains control over
physical components (e.g., wheels, breaks, engines) by sending out commands
via CANBUS.

equation calculates score of each event by taking the product of all previous events’ aggregate

score and the new event’s score. Temporality is preserved because the product is taken over

a causal path, which is sorted temporally by definition. If a new event is added to two paths,

the subtraction of their SIS(P ) will be multiplied by the same factors, which will not change

their orders. Therefore, monotonicity is satisfied.

4.4.2 Experiment Setup

We collected system events and threat alerts at NEC Labs America. In total, we monitored

191 hosts (51 Linux and 140 Windows OS) for 10 days. We deployed Swift on a server with

Intel R© Xeon(R) CPU E5-2660 @ 2.20GHz and 64 GB memory running Ubuntu 16.04 OS. We

connected Swift to ASI [36], a commercial anomaly-based TDS, to generate alerts. During

the engagement, we injected 10 APT attacks over a period of 10 days. These APT attacks

were designed by expert analysts employed at NEC Labs America. A short description of

these attacks is shown in Table 4.1. On each day we injected one attack, except for 3 attacks

(Datatheft, ShellShock, and Netcat backdoor) which were ran on the same day.

We collected more than 1 TB worth of audit logs with around 1 billion system events from

191 hosts over period of 10 days. The APT attack traces constitute less than 0.0005% of
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the total audit logs collected from the enterprise. Meanwhile, we also monitored these logs

with a commercial TDS [36]. This underlying TDS generated 140 threat alerts over a period

of 10 days. Out of these 140 alerts, 12 were true alerts generated by our simulated APT

attacks, while the rest were false alerts.

To evaluate Swift against a baseline approach, we re-implement NoDoze based on its

description in [30]. We chose this as a baseline because it is one of the most recent offline

approach that can perform: 1) suspicious score assignment, 2) automated alert triage and 3)

causality graph generation. Further, our decision to implement Swift using NoDoze’s sus-

picious influence scoring algorithm permits an apples-to-apples comparison when evaluating

Swift’s HSM. We used 20 consumer threads to consume audit logs from Kafka produc-

ers and then we performed forensic analysis in real-time. Note that 20 threads is also the

maximum number of threads supported by the machine we use in our evaluation.

Parameters. We set ∆Tpromote = 800 seconds, GL size K = 3000, PATHabnormal size

m = K/3, and ∆Tevict = 1600 seconds in all experiments unless we explicitly note otherwise.

We chose these values because they generate the optimal throughput and can hold all the

suspicious data in our enterprise. However, we also discovered that it is flexible to choose

the parameters for Swift since the throughput is not heavily affected by the value of the

parameters.

RQ1: Effectiveness in Alert Investigation

To answer this question, we used Swift to generate the most suspicious causal graph for

all 140 threat alerts, measuring the response time for answering each causal graph query. We

issued each query at the end of the day, not immediately following the attack, which ensured:

1) all attack related events had been evicted from the tracking cache, and were thus either

in the suspicious cache or on disk; 2) a steady state for the HSM where all promotion and

eviction cycles were completed for that day. We manually verified the fidelity of Swift’s

causal graph for each alert against the graphs generated by the baseline approach, checking

that Swift returned all of the critical events necessary to explain the attack.

The results for Swift are shown in Figure 4.5; Swift was able to respond in less than one

second for 80% of the alerts because of our novel suspicion-based HSM. In total, Swift took

less than two minutes to generate the concise causal graphs for all alerts. We compare these

results to the baseline approach in Figure 4.6, noting that the scale on the x-axis has changed

from seconds to minutes. It took more than 1 hour for the baseline approach to process the

same set of alerts. Moreover, the baseline approach took more than three minutes for 40%

of the alerts and more than 20 minutes for 25% of the alerts, in the worst case taking more
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Figure 4.5: Response times in seconds to return concise causal graphs of threat alerts using
Swift.

than an hour to finish. Such a slow response time is problematic, especially considering

realistic scenarios in which the processing latency for one alert adds to the queuing latency

of hundreds of other alerts in the stack (discussed more in RQ3).

A breakdown of performance results for each attack are shown in Table 4.2. The rightmost

columns show the response time for the baseline method, Swift, and observed speedup. In

all cases, Swift generated the causal graph for the attack in less than 3 milliseconds, whereas

the baseline required nearly 5 minutes in the worst case. Comparing the two techniques, we

observe a speed up of up to 1.3 million times (Shellshock). In spite of the performance

increase, it may at first glance seem that the performance of the baseline approach is ac-

ceptable. One reason for this is that the underlying TDS used in our experiments itself

maintained a 15GB event cache that was able to store part of the attack provenance for

the baseline (compare this to the 300MB cache required by Swift, which we will show in

Section 4.4.2). More importantly, a limitation of our evaluation is that it does not capture

longitudinal attack patterns that are commonly observed in-the-wild, e.g., the 4.5 month

attack window of the Equifax breach [2]. In such circumstances, the TDS cache would be

useless and the baseline may take hours or days to process individual alerts.

Reasons for Milli-second Level Response Time. To further investigate the reason for the

time reduction, we also studied what was maintained in the memory for these attacks. In Ta-

ble 4.2, the column “All Events” represents all enterprise-wide system events collected while

“Critical Events” represents only attack-related events. “%Cached” shows the percentage

of events cached in the memory end of the day. Our experiment shows that Swift had a

much lower response time because it effectively cached most of the events that were related

to attacks in the main memory even if the size of the cache was small compared to the size

of total events. Particular, on average, by maintaining about 0.04% of total events of a day,

Swift can maintain on average 90% of attack-related events in its cache. In other words,
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Figure 4.6: Response times in minutes to return concise causal graphs of threat alerts using
Swift as compared to NoDoze (baseline). Note that the Swift CDF is the same as in
Figure 4.5 on a different scale.

Swift was able to significantly reduce disk IOs while generating causal graphs for attacks.

This result also validates our Hypothesis H2. Reasons for why Swift cannot maintain 100%

of the attack-related events in its cache will be discussed in RQ2.

RQ2: Insights into Cached vs Spilled Events

To further study how causal events are handled in the Swift HSM (i.e. which events

are cached, as opposed to being spilled to disk), we select a ransomware attack as a case

study from the 10 attacks in Table 4.2. In this attack, a misconfigured Redis server [121]

allows an attacker to log into the server via the ssh service as root [122]. The attacker first

connects directly to a misconfigured Redis server over its default port, executes the Flushall

command to erase the whole database, uploads their ssh key to the database, then obtains

root access to the server by using CONFIG to copy the database to the root’s .ssh directory

and renaming it to authorized keys. Once in the enterprise network, the attacker moves

laterally in their search for valuable data while simultaneously encrypting data by running

an encryptor that was downloaded from their remote server. Time is crucial in this scenario

– the earlier we investigate and respond to the attack, the more valuable data we can save.

This attack generated two alerts which are marked in red dashed arrows in Figure 4.7.

However, these true alerts are among a deluge of unrelated false alerts being generated

by TDS, making it critical to quickly identify the true alerts and take actions to prevent

damages. Fortunately, Swift assigns suspicious influence scores in real-time; when Alert 1

arrives, Swift automatically remembers its suspiciousness score and propagates this score

to its successors. When Alert 2 fires, Swift combines the suspiciousness influence scores

from Alert 1 in O(1) time. This means that as soon as Alert 2 is fired by TDS, Swift

can instantaneously generates the most suspicious causal graph and correlate the alerts.
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Figure 4.7: Simplified causal graph of the simulated ransomware attack. Swift keeps part
of the causal graph related to the ransomware attack in the main-memory (red vertices),
and part of that graph (yellow vertices) is spilled to the disk. Causal graph not related to
the attack (green vertices) is spilled to the disk.

Figure 4.7 shows the simplified causal graph of this attack. In this graph, we use diamonds

to represent sockets, oval nodes to represent files, and boxes to represent processes. In

Figure 4.7, the red vertices represent the most suspicious causal graph which is cached in

the main-memory. Yellow vertices are related to attack but spilled to disk while green

vertices are not related to attack (benign) which are also spilled to disk. Due to dependency

explosion problem (false dependency) [21] benign vertices become part of attack’s causal

graph. Swift shows the most suspicious graph (red vertices) to cyber analyst accelerate

investigation and assist cyber analyst to quickly identify the root cause (X.X.X.X connection

to process Redis-server) and ramification (Sensitive.tar read by process scp) of this attack

using this subgraph.

As can be seen in Table 4.2, 14% of attack-related vertices (yellow vertices) were spilled

to the disk. The main reason for this was our conservative Global List size (k = 3000); these

attack-related vertices fell outside of the top-k most suspicious paths, leading to their eviction

from the suspicious cache. We found in our experiments that increasing the Global list size

from k = 3000 to k = 5000 was sufficient to store 100% of attack-related vertices in the cache.

In considering the k = 3000 configuration, some temporary files created by the Redis-server

process, such as /redis-3.0.3/temp-18434.rdb, are assigned low suspicious scores because

redis regularly creates many such files. However, the temporary file ∼/.ssh/temp18434.rdb
was highly unusual because Redis-server never writes to the ∼/.ssh folder. As a result, it

had a high suspiciousness score and was retained in cache. Note that missing some temporary

files from the causal graph does not break causal analysis since we can still identify the root
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Figure 4.8: Throughput of Swift under different configuration values.
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Figure 4.9: Max. memory usage of Swift under different configuration values when ran for
one day. TC stands for tracking cache and SC stands for suspicious cache.

cause and ramifications using red vertices alone. Further, cyber analysts can still retrieve

these yellow vertices from disk later for further investigation.

RQ3: Scalability

Throughput. We define the throughput of Swift as the maximum number of events

that Swift can process under different configuration values of the global list size k, the

eviction time window ∆Tevict, the promotion epoch ∆Tpromote, and the number of threads.

To stress test Swift, we replayed the audit logs from our enterprise engagement at the

maximal speed. The results of our throughput experiment are shown in Figure 4.8. Since

our eviction algorithm is asynchronous, the throughput does not change under different

configurations except when we change the number of consumer threads. We can see that

Swift can process up to 100,000 events/sec when the number of threads is 20, which was

the max number of threads allowed by our machine. Note that, in our experiment, each

of the 191 hosts generated less than 5,000 events/sec on average, which is far less than

the maximal throughput of Swift. Assuming that this event generation rate holds, our

prototype implementation can scale to support up to 4,000 hosts with a single server.
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Memory Usage. Another aspect of scalability is memory usage. In our implementation of

Swift, memory is consumed by two components: the Kafka framework and the cache for

events. Since Kafka is only used as a black-box infrastructure in our implementation and

could have very different configurations in practice, we focus on the memory usage of the

cache. In our experiment, we first measured the maximum memory used by both tracking

cache and suspicious cache under different configuration values while monitoring all the 191

hosts for one day. The results are shown in Figure 4.9. Changing global list size and threads

does not affect the maximum usage of tracking cache and suspicious cache. Increasing the

∆Tpromote increases the size of tracking cache because events stay longer there. On the

other hand, increasing ∆Tevict window increases the suspicious cache usage since eviction

algorithm runs after long time. Our experiment shows that in general, Swift could process

the workload for 191 hosts in an enterprise with 300 MB memory. For a server with 64 GB

memory, as we have used in our experiment, it is possible to handle thousands of hosts at

the same time.

RQ4: Benefits of Time Saved

Using causal analysis in state-of-the-art alert triage systems [30], it takes on average 1 min

to respond to forensic queries, with a worst case performance of 2.5 hours; because response

time grows linearly with graph size, we can expect alerts related to sophisticated intruders

to fall closer to this worst-case because they employ a “low and slow” attack approach.

On the other hand, Swift responds to queries in just 0.1 sec on average, with worst case

performance of 1 minute. This effectively provides investigators with alert context (i.e.,

causal graphs) as soon as the alert is triggered.

Still, it could be argued that an average response time of 1 minute (as opposed to Swift’s

100 milliseconds) is suitably fast for cyber analysts. However, it is important to consider the

fact investigation latency compounds as the number of alerts increases. Recent studies [5,

6, 8] have shown that organizations receive around 10,000 alerts per week. For simplicity,

let us assume that all 10,000 alerts need to be investigated,4 and that a true attack falls

at each quartile (i.e., alerts 2500, 5000, etc.) of the stack. For the first quartile, NoDoze

[30] imposes at least 41 hours of latency due to causal analysis, while Swift will impose

just 4 minutes of latency. By the last quartile, NoDoze will have imposed 166 hours of

latency, while Swift introduces just 16 minutes. Further, we can assign a financial cost to

4In practice, alert triage systems may be used to condense or procedurally exclude some alerts so that
they need not be investigated; however, this exercise demonstrates the value of eliminating causal analysis
latency from the threat investigation process.
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this difference – studies have shown that it costs an organization $32,000 for every day an

attacker stays in the network [100]. Thus, for just the attack in the last quartile, Swift

could save the organization up to $221,244 as compared to the previous state-of-the-art.

RQ5: Effectiveness in Alert Management

To answer this research question, we measured the performance and accuracy of Swift

as an alert management system. We used HSM’s suspicious influence scores for all the alerts

and triaged alerts based on scores. After that we compared our accuracy and performance

with the baseline approach [30]. Since our suspicious influence scores were similar to the

baseline approach, Swift has the same accuracy (false and true positive rates) as the baseline

approach. However, the performance of Swift is magnitudes of times better than baseline.

The performance of Swift over the baseline approach is measured in terms of response

time. As we have already shown in the CDF in Figure 4.6 that it took total of 5 hours to rank

all the 140 alerts using baseline. The reason for this is that baseline as an offline approach

first generate the causal graph using disk storage for each alert. After that, it assigns

suspiciousness influence scores to each alert’s graph and then triage them based on these

scores. On the other hand it took Swift around 1 minute to rank all the 140 threat alerts

because it generates causal graph in an online fashion and assigns suspiciousness influence

scores as events arrive and keeps most suspicious causal graphs in the main-memory. Thus, as

soon as alerts are fired by underlying TDS, Swift already has its graph with suspiciousness

score and just need to lookup this score from the cache to triage which O(1) time. Since

Swift also keeps track of all the alerts fired on causal graph, it instantaneously correlates

new alert with all the previous alerts that are causally related.

4.5 DISCUSSION & LIMITATIONS

Design of suspicious influence scoring system. Swift is effective with an arbitrary sus-

picious influence scoring system that satisfies all three properties described in Section 4.1.2.

In Section 4.4.1, we implemented an anomaly-based scoring system as the reference in our

evaluation. Other scoring systems, such as rule-based or label-propagation-based systems,

can also be applied as long as they meet the three requirements.

Possible Attacks. One possible attack to spoil the cache of Swift is by exploiting Hypoth-

esis H1 – the adversary may conduct an attack in a longer time window so that the causal

paths of the attack in the cache are eventually replaced by causal paths of other attacks and
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suspicious activities. This attack can be alleviated by allocating large memory (Global List

size). As long as there is enough space, Swift will maintain the suspicious causal paths in

the cache. If there is not enough memory space, choosing which suspicious paths to keep in

the cache would be a trade-off. We leave this discussion for our future work. Adversaries

may also try to spoil the cache of Swift by generating anomalous events and causal paths in

provenance data. This can be solved by having more accurate underlying anomaly detection

techniques. In this paper, we apply one commercial tool [36] to detect anomalies. Although

it is important to improve the accuracy of anomaly detection, it is orthogonal to our study.

Nevertheless, even if the cache is spoiled, an investigator can still generate a complete causal

graph but with some delay due to disk IO.

Adversaries may try to spoil the cache system of Swift to degenerate its responsiveness

by having a “spoofing attack”. The adversary may conduct an attack that contains a vertex

that is involved in more than K most suspicious paths to occupy the whole global list (e.g.

unzipping more than K files from a .ZIP package). Under the “spoofing attack,” causal

paths of other vertices are evicted to the disk so the performance of Swift to investigate

other vertices is degraded to existing offline solutions. To address this attack, Swift only

selects candidates from the PATHabnormal of each vertex. Since the size of PATHabnormal of

each vertex is limited to m, each vertex will only occupy at most m slots in the global list.

Another type of spoofing attack is that the adversary may generate a lot of different

suspicious events to occupy the cache. Since we keep the longest path in the cache, the

adversary needs to generate a huge number of independent suspicious events, which do

not have causal dependencies, to spoil the cache. However, if an attacker tries to produce a lot

independent suspicious events then it defeats the “low and slow” strategy used by attackers

and generates a strong indication of an attack which a threat hunter can immediately spot.

Moreover, this problem is equivalent to the problem of having too many suspicious paths

that the cache cannot hold, which we leave for future work.

Applicability. The Swift approach is generic to provide broad support for fast and inter-

active threat hunting in enterprises provided that system-level audit logs are being collected

and there is an underlying threat detector which monitors enterprise-wide activities. The

two key hypotheses presented in Section 4.3, upon which Swift is built, are enterprise ag-

nostic. These hypotheses are derived from fundamental characteristics of system-level audit

logs [55, 56]. This ensures that our techniques can be applied in different enterprises without

sacrificing performance and accuracy.
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CHAPTER 5: OMEGALOG: GENERATING ACCURATE AND
SEMANTICS-AWARE PROVENANCE GRAPHS

Given the importance of threat investigation to system defense, it is perhaps surprising

that prior work on causality analysis has been oblivious to application-layer semantics. As

an example, consider the execution of the web service shown in Figure 5.1. Figure 5.1(a)

describes the event sequence of the example, in which the server responds to two HTTP

requests for index.html and form.html, respectively, yielding the system log shown in Fig-

ure 5.1(b). As a normal part of its execution, the server also maintains its own event logs

that contain additional information (e.g., user-agent strings) shown in Figure 5.1(c), that is

opaque to the system layer. State-of-the-art causality analysis engines, using system audit

logs, produce a provenance graph similar to Figure 5.1(d); however, the forensic evidence

disclosed by the application itself is not encoded in this graph. That is unfortunate, as

recent studies [123, 124, 125] have shown that developers explicitly disclose the occurrence

of important events through application logging. Further, we observe that the well-studied

problem of dependency explosion [13, 16, 21], which considers the difficulty of tracing depen-

dencies through high-fanout processes, is itself a result of unknown application semantics.

For example, the dependency graph in Figure 5.1 (d) is not aware that the NGINX vertex

can be subdivided into two autonomous units of work, marked by the two HTTP requests

found in the application event log.

Prior work on log analysis has not provided a generic and reliable (i.e., causality-based)

solution to cross-layer attack investigation. Techniques for execution partitioning mitigate

dependency explosion by identifying limited and coarse-grained application states, e.g., when

a program starts its main event-handling loop [13], but require invasive instrumentation

[13, 16] or error-prone training [13, 14, 21]. Past frameworks for layered provenance tracking

[10, 126, 127, 128] technically support application semantics, but rather than harness the

developer’s original event logs, instead call for costly (and redundant!) instrumentation

efforts.

Elsewhere in the literature, application event logs have been leveraged for program de-

bugging [129, 130, 131], profiling [132, 133], and runtime monitoring [134]; however, these

approaches are application-centric, considering only one application’s siloed event logs at a

time, and thus cannot reconstruct complex workflows between multiple processes. Attempts

to “stitch” application logs together to trace multi-application workflows [88, 132, 133] com-

monly ignore the system layer, but also use ad hoc rules and co-occurrence of log events to

assume a causal relationship; this assumption introduces error and could potentially under-

mine threat investigations.
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1. Socket_Read(“10.0.0.1”)
2. FRead(index.html)
3. Socket_Write(“10.0.0.1”)
4. FWrite(access.log)

5. Socket_Read(“10.0.8.1”)
6. FRead(form.html)
7. Socket_Write(“10.0.8.1”)
8. FWrite(access.log)

Nginx

index.html

/var/log/nginx/access.log

form.html

10.0.0.1

10.0.0.1

10.0.8.1

10.0.8.1

1. [16/Apr/2019:20:21:56 +0100] "GET /
index.html HTTP/1.1" 200 3804 "-" 
"Mozilla/5.0 (Windows NT 6.0; WOW64; 
rv:45.0) Gecko/20100101 Firefox/45.0"

2. [16/Apr/2019:20:21:56 +0100] "GET /
form.html HTTP/1.1" 200 3804 "-" 
"Mozilla/5.0 (Windows NT 6.0; WOW64; 
rv:45.0) Gecko/20100101 Firefox/45.0"

(a) Execution (b) System Log (c) Application Log (d) System Provenance Graph

Figure 5.1: NGINX application execution while two different HTTP requests are being
served. (a) Actual execution behavior of NGINX. (b) System logs generated by whole-
system provenance tracker. (c) Application event logs generated by NGINX. (d) Provenance
graph generated using system logs by traditional solutions.

In this chapter, we argue that attack investigation capabilities can be dramatically im-

proved through the unification of all forensically relevant events on the system in a single

holistic log. To achieve that vision transparently and effortlessly on today’s commodity sys-

tems, we present OmegaLog, an end-to-end provenance tracker that merges application event

logs with the system log to generate a universal provenance graph (UPG). This graph com-

bines the causal reasoning strengths of whole-system logging with the rich semantic context

of application event logs. To construct the UPG, OmegaLog automatically parses dispersed,

intertwined, and heterogeneous application event log messages at runtime and associates each

record with the appropriate abstractions in the whole-system provenance graph. Generating

UPG allows OmegaLog to transparently solve both the dependency explosion problem (by

identifying event-handling loops through the application event sequences) and the semantic

gap problem (by grafting application event logs onto the whole-system provenance graph).

Most excitingly, OmegaLog does not require any instrumentation on the applications or

underlying system.

Several challenges exist in the design of a universal provenance collection system. First,

the ecosystem of software logging frameworks is heterogeneous, and event logging is funda-

mentally similar to any other file I/O, making it difficult to automatically identify application

logging activity. Second, event logs are regularly multiplexed across multiple threads in an

application, making it difficult to differentiate concurrent units of work. Finally, each unit

of work in an application will generate log events whose occurrence and ordering vary based

on the dynamic control flow, requiring a deep understanding of the application’s logging

behavior to identify meaningful boundaries for execution unit partitioning.

To solve those challenges, OmegaLog performs static analysis on application binaries to

automatically identify log message writing procedures, using symbolic execution and emu-

lation to extract descriptive Log Message Strings (LMS) for each of the call sites. Then,
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OmegaLog performs control flow analysis on the binary to identify the temporal relation-

ships between LMSes, generating a set of all valid LMS control flow paths that may occur

during execution. At runtime, OmegaLog then uses a kernel module that intercepts write

syscall and catches all log events emitted by the application, associating each event with

the correct PID/TID and timestamp to detangle concurrent logging activity. Finally, those

augmented application event logs are merged with system-level logs into a unified universal

provenance log. Upon attack investigation, OmegaLog is able to use the LMS control flow

paths to parse the flattened stream of application events in the universal log, partition them

into execution units, and finally add them as vertices within the whole-system provenance

graph in causally correct manner.

5.1 MOTIVATING EXAMPLE

In this section, we explain the motivation for our approach by considering a data ex-

filtration and defacement attack on an online shopping website. We use this example to

illustrate the limitations of existing provenance tracking systems [10, 12, 15, 16, 21, 43, 108].

Consider a simple WordPress website hosted on a web server. Requests to the website are

first received by an HAProxy, which balances load across different Apache instances run-

ning on the web server, while customer transactions are recorded in a PostgreSQL database.

The administrator has turned on application event logging for Apache httpd, HAProxy, and

PostgreSQL. In addition, the server is performing system-level logging, e.g., through Linux

Audit (auditd) [56] or Linux Provenance Modules (LPM) [10], which continuously collect

system logs. One day, the administrator discovers that the online store has been defaced

and that some of the sensitive customer information has been posted to a public Pastebin

website. On average, the shopping website receives tens of thousands of requests per day;

among those, one request was malicious.

5.1.1 Investigating with Application Event Logs

To attribute the attack and prepare an appropriate response, the administrator initiates a

forensic inquiry by first inspecting the application event logs. The administrator finds that

the accounts database table must have been accessed and uses this as a symptom to initiate

attack investigations. The admin then runs a grep query on PostgreSQL event logs, which

returns the following query log message:

SELECT * FROM users WHERE user_id=123 UNION SELECT password FROM accounts;
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HAProxy

postgresql /var/log/postgresql/query.log

/var/log/httpd/access.log
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Bash

/usr/local/db/datafile

Figure 5.2: A whole-system provenance graph showing the SQL injection attack scenario.
Diamond, box, and oval vertices represent network connections, processes, and files, re-
spectively. This graph suffers from both dependency explosion and semantic gap problems,
frustrating attack investigation.

This log message strongly indicates that an attacker exploited a SQL injection vulnerability

in the website, and also suggests that the attacker was able to retrieve the login credentials

for admin.php which gave attacker privileged site access.

Limitations of Application Event Logs. At this point, the administrator is unable to

proceed in the investigation using application event logs alone. It is clear that the HAProxy

and Apache httpd logs contain important evidence such as the HTTP requests associated

with the SQL injection attack, but re-running of the same grep query on Apache’s logs did

not return any result. The reason is that the attacker used a POST command to send the

SQL query and that command was not contained in the URL captured in the Apache httpd

event log messages. The investigation has stalled with important questions left unanswered:

1) What was the IP address associated with the malicious HTTP request? 2) How were

the login credentials used to deface the website, and what additional damage was caused?

3) Which PHP file on the site is not properly sanitizing user inputs, exposing the SQL

injection vulnerability? Those questions reflect an inherent limitation of application event

logs: they cannot causally relate events across applications and thus cannot trace workflow

dependencies.

5.1.2 Investigating with System Logs

To proceed, the administrator attempts to perform causality analysis using a whole-system

provenance graph. At this layer, it is easy to trace dependencies across multiple coordinated

processes in a workflow. Because the malicious query shown above resulted in a read to

the PostgreSQL database, the administrator uses /usr/local/db/datafile.db as a symp-

tom event and issues a backtrace query, yielding the provenance graph shown in Figure 5.2.
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Table 5.1: Comparison of execution partitioning techniques to solve the dependency explo-
sion problem.

BEEP [13] MPI MCI WinLog
OmegaLog

ProTracer [21] [16] [12] [14]

Instrumentation Yes Yes No No No
Training Run

Yes No Yes No No
w/ Workloads
Space Overhead Yes Yes Yes Yes No
Granularity Coarse Fine Coarse Coarse Fine
App. Semantics No No No No Yes

Unfortunately, the administrator discovers that this technique does not advance the investi-

gation because of the inherent limitations of system logs.

Limitation of System Logs #1: Dependency Explosion. The administrator’s back-

trace identifies thousands of “root causes” for the SQL injection attack because of the de-

pendency explosion problem. The reason is that system-layer provenance trackers must

conservatively assume that the output of a process is causally dependent on all preceding

process inputs [12, 13, 16, 21]. Although the malicious query string is known, causal anal-

ysis does not allow the administrator to associate the query with a particular outbound

edge of /usr/local/db/datafile.db in the provenance graph. Even if the administrator

restricted most of the dependencies between Apache httpd and PostgreSQL (e.g., though

timing bounds), admin would again face the same problem when identifying which input

request from HAProxy to Apache httpd lies on the attack path.

Recent work [13, 14, 21] has introduced execution partitioning as a viable solution to

the dependency explosion problem. These systems decompose long-running processes into

autonomous “units”, each representing an iteration of event-handling loop, such that input-

output dependencies are traced only through their corresponding unit. Where event handling

loops do not encode work units, Kwon et al. propose an inference-based technique for iden-

tifying units from system log traces [12] while Ma et al. propose a framework for manually

annotating source code to disclose meaningful unit boundaries [16].

Unfortunately, prior approaches suffer from noteworthy limitations, which we summarize

in Table 5.1. Most execution partitioning systems rely on instrumentation to identify unit

boundaries, requiring either domain knowledge or manual effort and assuming the right to

modify program binaries, which is not always available [14]. The common requirement of

training runs exposes systems like BEEP and Protracer to the classic code-coverage problem

present in any dynamic analysis, and inference-based techniques (MCI) may also struggle

with out-of-order events due to the presence of concurrent or cooperating applications during

training runs. All past approaches introduce additional space overhead in order to track unit
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httpd

HAProxy

postgresql

x.x.x.x

user.php

Bash

haproxy[30291]: x.x.x.x:45292 [TIME REMOVED] app-http-
in~app-bd/nginx-2 10/0/30/69/109 200 2750 – – —- 
1/1/1/1/0 0/0 {} {} “POST /user.php HTTP/1.0"

 y.y.y.y POST /wordpress/user.php 200 - 
HTTP/1.1 200 1568 "-"

Statement: SELECT * FROM users WHERE 
user_id=123 UNION SELECT password FROM 
accounts;

(a) Investigating SQL injection attack using SQL
query that reads the accounts table.

httpd

HAProxy

x.x.x.x

Index.html

Bash

 y.y.y.y POST /wordpress/wp-admin/admin-ajax.php 
200 - http://shopping.com/wordpress/wp-admin/
admin.php?page=file-manager_settings

haproxy[30291]: x.x.x.x:45292 [TIME 
REMOVED] app-http-in~app-bd/httpd-2 
10/0/30/69/109 200 2750 POST /wordpress/
wp-admin/admin-ajax.php 200 …

(b) Investigating website defacement using a file
write event to index.html as a symptom.

Figure 5.3: Graphs generated by OmegaLog for the SQL injection attack. The parallelograms
represent the app log vertices. App log vertex is annotated with log messages which belong
to the corresponding execution unit of attached process vertex.

boundaries; fully automated identification of event loops (BEEP, Protracer) can generate

excessive units that can waste space and CPU cycles [16]. Most notably, prior approaches

do not consider the broader value of application semantics as forensic evidence outside of

the bare minimum required for the identification of work units.

Limitation of System Logs #2: Semantic Gap. Existing system-level provenance logs

are beneficial in that they offer a broad view of system activity, but unfortunately they lack

knowledge of application-specific behaviors that are pivotal for attack reconstruction. In our

motivating example, information such as failed login attempts, HTTP headers, WordPress

plugin behavior, and SQL queries cannot be extracted from system logs. Such information

is present in the siloed event logs of each application; PostgreSQL maintained a record of all

SQL queries, and HAProxy recorded the headers for all HTTP requests. However, it is not

possible to associate those event descriptions with the system records reliably in a post-hoc

manner, because of multi-threaded activity and ambiguous or incomplete information within

the application event logs.

Prior work has sought to address the semantic gap problem through instrumentation-based

techniques [126, 127, 135]. Those approaches either statically or dynamically instrument

function calls in the application to disclose function names, arguments, and return values.

However, such instrumentation-based systems suffer from several limitations: (1) developers

need to specify which functions to instrument, imposing a domain knowledge requirement;

(2) the logging information is captured on a per-application basis and thus cannot be used to

connect information flow between different applications; and (3) high-level semantic events

may not always be effectively captured at the function call level.
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5.1.3 OmegaLog Approach

Recent work in application logging [123, 124, 125, 132, 133] has shown the efficacy of appli-

cation logs in program understanding, debugging, and profiling. OmegaLog takes inspiration

from those efforts, with the goal of better leveraging event logs during attack investigation.

The key insight behind OmegaLog is that developers have already done the hard work of encod-

ing high-level application semantics in the form of event logging statements; these statements

not only contain the relevant forensic information that we require, but also mark the bound-

aries of execution units in the program. The insertion of event logging statements is an

organic byproduct of sound software engineering practices, permitting developers and users

to better understand programs’ runtime behavior. Thus, it is possible to enrich system logs

with application semantics without further instrumentation or profiling. Moreover, these

applications logs can be used to identify execution units.

Applying that intuition to our motivating example yields the provenance graph in Fig-

ure 5.3a, which was generated using OmegaLog. The administrator can associate the mali-

cious SQL query with a specific system call event (read). By performing execution partition-

ing on PostgreSQL using OmegaLog’s logging behavior analysis, the administrator is then

able to trace back to system calls issued and received by Apache httpd, which are also an-

notated with application events describing the vulnerable web form. Iteratively, OmegaLog

uses execution partitioning again to trace back to the correct unit of work within HAProxy

to identify the IP address of the attacker. After finding out how the user data and login cre-

dentials were stolen using SQL injection, the investigator tries to figure out how the website

was defaced by issuing a backward-tracing query on the index.html file. Using the Omega-

Log provenance graph shown in Figure 5.3b, the investigator deduces that the attacker used

a WordPress file manager plugin to change index.html.

5.2 BACKGROUND: APPLICATION LOGGING BEHAVIOUR

Our approach to partition long-running program into execution units and overcome the

dependence explosion problem depends on the pervasiveness of event-logging behavior in

those applications. Fortunately, the importance of logging in applications has been widely

established [136]. Practically, all open-source applications print event log messages, offering

four levels of verbosity: FATAL is for an error that is forcing a shutdown, ERROR is for any

error that is fatal to the operation, INFO is for generally useful information, and DEBUG is

for information that is diagnostically helpful. Note that logging levels are inclusive; higher

levels also print messages that belong to lower levels (i.e., FATAL ⊆ ERROR ⊆ INFO ⊆ DEBUG).
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Table 5.2: Logging behavior of long-running applications.

Category
Total Apps with Log Verbosity of
Apps IN+DE INFO DEBUG None

C
li

en
t-

S
er

ve
r

Web server 9 7 1 0 1
Database server 9 7 1 1 0
SSH server 5 5 0 0 0
FTP server 5 4 0 1 0
Mail server 4 3 1 0 0
Proxy server 4 3 1 0 0
DNS server 3 2 0 1 0
Version control server 2 0 1 1 0
Message broker 3 2 0 1 0
Print server 2 1 0 1 0
FTP client 6 0 1 4 1
Email client 3 1 0 1 1
Bittorrent client 4 3 1 0 0
NTP client 3 0 1 2 0

G
U

I Audio/Video player 8 1 0 3 4
PDF reader 4 0 0 0 4
Image tool 5 0 0 1 4

Total 79 39 8 17 15

However, to partition successful executions of an application into its units, we require log

messages with verbosity level of INFO or DEBUG to be present inside event-handling loops.

Unfortunately, such behavior in applications has not been investigated. In that regard, we

studied a large number of popular open-source applications.

We collected a list of 79 long-running Linux applications which belong to different cate-

gories. Those applications are written in the C/C++, Java, Python, and Erlang program-

ming languages. We investigated the source code and man pages of those applications to

identify the event-handling loops and understand if they print log messages for each mean-

ingful event. Lee et al. [13] conducted a similar study in 2013 but they only analyzed the

design patterns of open-source applications and the pervasiveness of event-handling loops as

drivers for execution. They did not however study the logging behavior of those applications

and the presence of log messages inside event-handling loops.

We summarize our results in Table 5.2. In the column “Apps with Log Verbosity of”, we

show how many of 79 profiled applications include log statements in their event-handling

loop at verbosity of INFO and DEBUG, and how many of 79 applications do not print meaningful

log messages for new events. We observe that 39 applications print log with both INFO and

DEBUG verbosity levels (IN+DE) inside the event-handling loops. While 8 applications only

log at INFO level and 17 applications only log at DEBUG level. For web servers such as lighttpd

and NGINX, we treat the Access Log as INFO level log. Moreover, for certain applications

92



that do not have DEBUG log level, we categorize the Trace Log as DEBUG level log. We show

the intra-event-handling loop logging behavior of some of the well-know applications in

Figure 5.4.

During our study, we found 15 applications that do not have any information about event

logs in their source code or in man pages. We categorized those applications as follows:

• Light-weight Applications: Certain client-server applications are designed to be light-

weight to keep a minimal resource footprint. Those applications – including thttpd (Web

server) and skod (FTP client) – do not print log messages for new events.

• GUI Applications: We observe that 12 out of 17 GUI applications either (1) do not

print log messages, or (2) they print log messages that do not match the expectations

of the forensic investigator. In other words, those log messages were not meaningful to

partition the execution. Ma et al. [16] also observed similar behavior for GUI applications

where event-handling loops do not correspond to the high-level logic tasks. For example,

we found that none of the PDF readers in our study printed log messages whenever a new

PDF file was opened. Such PDF file open event is forensically important event for threat

investigations [16].

Our study suggests that sufficient logging information is present inside the event-handling

loops of long-running applications. This behavior allows us to automatically identify the

unit boundaries of those programs. For further evaluation, we only consider the appli-

cations shown in Table 5.3. We picked those applications based on their popularity and

category. Note that we did not pick any subjects from the category of applications that do

not print meaningful log messages for new events. Moreover, GUI applications usually use

asynchronous I/O with call backs and such programming model is not currently handled by

OmegaLog (described more in Section 5.8).

5.3 DESIGN OVERVIEW

5.3.1 Properties of Causality Analysis

The provenance graph generated by OmegaLog should preserve the following three prop-

erties of causality analysis.

• Validity means that the provenance graph describes the correct execution of the system,

i.e., the provenance graph does not add an edge between entities that are not causally

related.
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/* /src/networking.c */
while(...) { //EVENT HANDLING LOOP
 /* Wait for TCP connection */
 cfd = anetTcpAccept(server.neterr, fd,     cip, sizeof(cip), &cport);
 serverLog(LL_VERBOSE,"Accepted %s:%d", cip, cport);
 ... /*Process request here*/
 serverLog(LL_VERBOSE, "Client closed connection");}

/* /src/backend/tcop/postgres.c */
static void exec_simple_query(const char *query_string){
   errmsg("statement: %s", query_string);
 ...
}
void PostgresMain(int argc, char *argv[],... ){
    ...
  for(;;) { //EVENT HANDLING LOOP
    ...
    exec_simple_query(query_string);
    ...} }

(a) Redis

(b) PostgreSQL

sshpam_err = pam_set_item(sshpam_handle, PAM_CONV,
    (const void *)&passwd_conv);
if (sshpam_err != PAM_SUCCESS)
  fatal("PAM: %s: failed to set PAM_CONV: %s", __func__,
          pam_strerror(sshpam_handle, sshpam_err));

sshpam_err = pam_authenticate(sshpam_handle, flags);
sshpam_password = NULL;
if (sshpam_err == PAM_SUCCESS && authctxt->valid) {
  debug("PAM: password authentication accepted for %.100s",
            authctxt->user);
  return 1;
} else {
  debug("PAM: password authentication failed for %.100s: %s",
        authctxt->valid ? authctxt->user : "an illegal user",
        pam_strerror(sshpam_handle, sshpam_err));
  return 0;
}

(c) OpenSSH

Figure 5.4: Logging behavior of different applications inside the event-handling loop. Un-
derlined code represent log printing statements.

• Soundness means that the provenance graph respects the happens-before relationship

during backward and forward tracing queries.
• Completeness means that the provenance graph is self-contained and fully explains the

relevant event.

5.3.2 Design Goals

The limitations mentioned in Section 5.1 on prior work motivated our identification of the

following high-level goals for OmegaLog:

• Semantics-Aware. Our threat investigation solution must be cognizant of the high-level

semantic events that occurred within the contexts of each attack-related application.
• Widely Applicable. Our solution must be immediately deployable on a broad set of

applications commonly found in enterprise environments. Therefore, the solution must not

depend on instrumentation or developer annotations. Moreover, our techniques should be

agnostic to applications’ system architecture and should apply to proprietary software, for

which source code is usually not available.
• Forensically Correct. Any modifications made to the whole-system provenance graph

by our solution must support existing causal analysis queries and preserve the properties

of validity, soundness, and completeness.

5.3.3 OmegaLog

Fig. 5.5 presents a high-level overview of the OmegaLog system, which requires that both

system-level logging and application event logging be enabled. OmegaLog’s functionality is
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Figure 5.5: OmegaLog architecture overview. During the offline phase, OmegaLog first gen-
erates control flow graph and extracts log message strings (LMSes) from application’s binary
and then contructs LMS control flow paths. During the runtime phase, OmegaLog combines
application event logs and audit logs together into universal provenance logs. Finally, during
the investigation phase, OmegaLog uses LMS control flow paths to parse universal prove-
nance log into universal provenance graphs.

divided into three phases: static binary analysis (Section 5.4), runtime (Section 5.5), and

investigation (Section 5.6). In the static analysis phase, ( 1 ) OmegaLog first analyzes all

application binaries to extract all log message strings (LMSes) that describe event-logging

statements in the code, and then uses control flow analysis to identify all possible temporal

paths of LMS in different executions of the program. ( 2 ) All those LMS control flow

paths are stored in a database that is input to a log parser to bootstrap interpretation of

application events. At runtime, ( 3 ) OmegaLog captures all the application events and

augments them with the application’s PID/TID and a timestamp of log event through

kernel module that intercepts write syscalls. Simultaneously, ( 4 ) OmegaLog collects system

logs from the underlying whole-system provenance tracker and associates them with the

appropriate application events by using the PID/TID as a disambiguator; and store them

into a unified log. Upon attack investigation, ( 5 ) OmegaLog passes that universal log and

the LMS control flow paths database to a log parser that partitions associated processes

in the whole-system graph by inserting a new app log vertex. This vertex is connected to

the corresponding partitioned process and annotated with log messages in that particular

execution unit of the process. The semantic-aware and execution-partitioned graph is called

universal provenance graph (UPG), which is presented to the investigator.

5.4 STATIC BINARY ANALYSIS PHASE

The static analysis routine profiles application binaries before their execution. During

static analysis, OmegaLog performs several passes over the binary’s control flow graph (CFG)
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to identify logging behaviors and generate all possible LMS paths that are possible during

execution of that binary. Specifically, we leverage the Angr [137] toolchain to build the

CFG, and then introduce new methods to automatically identify logging procedures in the

binary (§5.4.1). Next, we concretize LMS (§5.4.2) using the identified logging procedure,

and finally we generate all possible LMS control flow paths that can occur during execution

of the binary (§5.4.4). Those steps are also shown in Fig. 5.5.

As highlighted in earlier work [138], binary analysis imposes high costs, especially when

symbolic execution and emulation are necessary. In what follows, we describe how Omega-

Log avoids prohibitive analysis costs while profiling application-logging behaviors. Although,

OmegaLog works on application binaries, for convenience, we explain static analysis proce-

dures by using source code snippets. Algorithm 5.1 offers a high-level overview of our static

analysis routines.

5.4.1 Identifying Logging Procedures

The ecosystem of event-logging frameworks is diverse and heterogeneous; to overcome the

resulting issues, OmegaLog identifies logging procedures in a binary by using two heuris-

tics. 1) Applications use either well-known libraries (e.g., syslog [139], log4c [140]) or

functionally-similar custom routines to produce, store, and flush log messages to a log file.

The libraries leverage the I/O procedures of Libc, such as fprintf or snprintf, to write the

log messages to disk. OmegaLog can thus identify candidate logging procedures through a

backward traversal of the CFG from these procedures call sites. 2) Most applications that

create event logs store messages in the /var/log/ directory by default. Thus, OmegaLog can

differentiate log I/O from other I/O based on the file path and consider all the procedures

that write to /var/log/ directory as logging procedures. Combining these two heuristics was

sufficient to identify logging behaviors for applications in our evaluation dataset. Neverthe-

less, OmegaLog also provides an interface that sysadmins can use to add the names of their

logging procedures, if the binary does not follow the aforementioned conventions.

5.4.2 Extracting Log Message Strings (LMS)

Once we have identified all the logging procedure names in the previous step, we as-

sign a unique identifier for each logging procedure callsite. We need to generate an LMS

that describes the format specifier arguments (template) of the log message. This step

requires OmegaLog to extract the binary’s full control flow graph and perform symbolic

execution [141] to extract the values of such arguments. We henceforth refer to this process
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Algorithm 5.1: Static Binary Analysis
1 Func GetLMS(Binary B, Log functions F)

/* Overall process to build the LMS paths */
2 g ← AngrGetFastCFG(B)
3 C ← ExtractCallSites(g,F)

/* Concretization step */
4 V ← PeepholeConcretization(g, C)

/* Building the LMS paths step */
5 G ← BuildLMSPaths(g,V,F)

6 Func ExtractCallSites(cfg, F)
7 C ← Φ
8 foreach basic block b ∈ cfg do

/* Check if the basic block jumps into a logging function */
9 if b.jump target address ∈ F .addresses then

10 C ← C ∪ {b}
11 end

12 end
13 return C

14 Func PeepholeConcretization(cfg, call sites, maxBackTrace)
15 V ← Φ
16 V ← {(b, 0) for b ∈ call sites}
17 while V 6= Φ do
18 (b, backtrace)← V.pop()

/* L is of the form {(LMS `, call stack cs)} */
19 L← SymbolicExecution(g, v)
20 if L 6= Φ then
21 foreach (`, cs) ∈ L do

/* Taking care of context sensitivity */
22 topBlock ← cs.top()
23 if (`, topBlock) /∈ V then
24 V ← V ∪ {(`, topBlock)}
25 end

26 end

27 end
28 else if backtrace ≤ maxBackTrace then
29 V ← V ∪ {(v, backtrace+ 1) for v ∈ b.predecessors()}
30 end

31 end
32 return V

33 Func BuildLMSPaths(cfg,V,F)
/* E is the set of paths between LMS */

34 E ← Φ
35 foreach f ∈ cfg.functions()\{F} do

/* Extract the entry points and external returns */
36 entries ← f .entry points()
37 returns ← f .jumps()
38 E ← E ∪GetLocalPaths(V, f)
39 end

as concretization. However, performing a complete symbolic execution over the binary is a

computationally expensive operation that leads to the path explosion problem, especially for

applications with complex compile-time optimizations. In fact, while experimenting with the

applications listed in Table 5.3, we realized that most applications are compiled with at least

the -O2 compiler optimization level, which greatly complicated the task of CFG extraction
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and symbolic execution. For example, when we used the Angr toolset, extracting the CFG

and performing symbolic execution on the openssh server binary quickly exhausted 64 GB

of memory on our experimental machine and did not return a conclusive result, even after

running for several hours.

To overcome that problem, we first note that our exclusive purpose is to obtain the format

specifier arguments for logging function calls; any symbolic execution operation that does

not serve this purpose is unnecessary. Therefore, OmegaLog first references the CFG built

without symbolic execution (referred to as a FastCFG in Angr toolset), which is generated by

traversing the binary and using several heuristics to resolve indirect jumps; that approach

greatly reduces the CFG computational and memory requirements [137]. Using the FastCFG,

we identify the basic blocks that contain function calls or jumps to logging procedures, and

thus we can focus our attention solely on such blocks. Nevertheless, unlike the full CFG, the

FastCFG does not retain any state about the binary that would allow OmegaLog to concretize

the values of the logging procedures’ arguments.

To complete our analysis, we introduce an optimized concretization we refer to as peephole

concretization. While studying the code of the open-source programs shown in Table 5.3,

we observed that for the most part, format specifier arguments to logging procedures are

passed either (1) as direct constant strings or (2) through constant variables defined near the

procedure call. For example, consider the call to the debug logging procedure in the OpenSSH

application shown in Fig. 5.4. The LMS we are interested in extracting is the message

‘‘PAM: password authentication accepted for %.100s’’ passed directly as a constant to

the function call. At the machine instructions level, that observation reflects the fact that

LMSes are typically defined within the same basic block that ends with the call or jump

instruction to the address of a logging function, or in a nearby preceding block.

Using peephole concretization, we only need to perform local symbolic execution starting

from the basic blocks identified in the previous step, stopping directly after executing the

call instruction to the target logging procedure. We show the pseudocode for our peep-

hole concretization step in Algorithm 5.1. If the symbolic execution task of a given basic

block b fails to concretize LMS values, OmegaLog then launches new symbolic execution

tasks from each of b’s predecessors (referred to as b.predecessors() in Algorithm 5.1). We

refer to the operation of restarting symbolic execution from a basic block’s predecessors as

backtracing. OmegaLog bounds the computational resources employed for the concretiza-

tion step by halting symbolic execution after performing maxBackTrace backtrace operations

from a given block b. If symbolic execution fails to produce concretized LMS values after

maxBackTrace operations, OmegaLog marks the function as unresolved and produces incom-

plete LMS paths.
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Our algorithm may yield ambiguous LMS paths in the rare cases in which the function

call can have different format specifiers based on the sequence of basic blocks that lead to

it (i.e., context sensitivity). We address that challenge during the peephole concretization

step by recording the call stack that produced each LMS. If two different call stacks produce

different LMS for the logging function call, we create a new LMS for each call and then

associate it with the topmost basic block on each corresponding function call. That process

will guarantee that we do not miss any LMS and that we do not over-approximate the reach-

ability between LMSes when constructing the LMS control flow paths. We note, however,

that making format specifiers to logging procedures context-dependent is not a frequently

observed programming practice; in fact, we encountered this issue only when processing the

transmission and CUPSD applications.

5.4.3 Building LMS Regular Expressions

Finally, once an LMS has been concretized, we can extract a regex that can be used to

match event messages at runtime. The resulting regex describes the format specifiers in the

LMS that depend on runtime context (e.g., %s, %d, %%s). Each format specifier is replaced

with a suitable regex, e.g., “%d” with “[0-9]+” and “%s” with “.”. For example, one LMS

we encounter in OpenSSH is

PAM: password from user %.12s accepted.

After extraction, that yields the following regex:

PAM: password from user .* accepted.

5.4.4 Generating LMS Control Flow Paths

After concretizing LMS with selective symbolic execution, OmegaLog can continue to use

the FastCFG to enumerate the valid sequences of LMS that can appear in a typical lifecycle of

the application. Extraction of all the possible paths is not a direct application of depth-first

traversal (DFS); DFS renders an under-approximation of the possible paths for the following

reasons. (1) The same basic blocks can be called from different callees and thus must be

traversed multiple times. (2) Function calls (i.e., call instructions) must be matched with

their appropriate return or jump instructions. Finally, (3) the applications we study use an

abundance of loops and recursive functions that must be traversed multiple times in order to
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avoid skipping over loop paths. Instead, our approach addresses (1) and (2) by using caching

and temporary nodes, and (3) by using fixed-point iterations. Pseudo-code for OmegaLog’s

control flow path building algorithm (BuildLMSPaths) is given in Algorithm 5.1.

Instead of traversing the full binary’s CFG, OmegaLog subdivides the path identification

task into several function-local traversals that generate subgraphs for each function in the

binary. It then links these subgraphs by following call and return/jump instructions to

build the full LMS paths. For each function f in the binary’s functions (referred to as

cfg.functions() in Algorithm 5.1), OmegaLog identifies f ’s entry points, in which control

flow passes into the function, and its exit points, in which control flow crosses the f ’s local

body, creating dummy LMS nodes for these points. Then, OmegaLog performs a local

traversal of f ’s subgraph; starting from f ’s entry points, we traverse the control flow edges

between the basic blocks that do not leave f ’s address space.

Every time OmegaLog encounters a basic block containing an LMS, that block is added to

the path, and its outgoing edges are traversed. To accurately capture looping behavior, we

perform a fixed-point iteration over the loop edges until no further changes occur to the LMS

path being built. In other words, we keep traversing the same loop edge until no further

LMS paths are detected; we then consider the loop edge to be exhausted and move to the

next control flow edge. Finally, to speed up the traversal, OmegaLog caches processed basic

blocks so that it needs to only traverse them once if multiple paths coincide. Note that we

do not consider any loops that do not contain any syscalls because such loops do not produce

audit logs and thus cannot be used for execution partitioning.

After building the function-local subgraphs, OmegaLog resolves the call and jump in-

structions in each of them to complete the full LMS paths. For each function call that is

on an LMS path, OmegaLog injects the callee’s subgraph into the path by creating links

between the caller’s basic block and the callee’s entry points and between the callee’s exit

points (return blocks and jump instructions targeting the caller) and the callee’s return basic

block. Using that approach, OmegaLog completes the full LMS paths while also handling

recursive functions by creating self-cycles. Subsequently, OmegaLog compresses the graph

by removing the dummy nodes created by the BuildLMSPaths function and merging their

fan-in and fan-out edges. The resulting compressed graph will then contain all the detected

LMS paths. Fig. 5.6 shows an example of LMS control flow paths from a code snippet. The

code is shown on the left, and the corresponding LMS paths are shown on the right. The

backedge from log3 to log2 just shows that these logs are inside a loop and can appear more

than one time.

LMS control flow paths guide OmegaLog to partition universal provenance log into exe-

cution units; however, in some applications printed LMSes in the event-handling loop are
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log(“Server started”); // log1
while(...) {
 log(“Accepted Connection”); // log2
 ... /*Handle request here*/
 log(“Closed Connection”); // log3
}
log(“Server stopped”); // log4

log4

log1

log2

log3

log4

log1

Figure 5.6: On the right, LMS control flow paths representation is shown for the code snippet
on the left.

not precise enough to partition the loop. For example, Redis event-handling loop shown in

Figure 5.4 prints two LMSes in each iteration of the event-handling loop. The first LMS

is printed after the accept syscall and if we partition the event-handling loop based on the

both first and second LMSes, then we will miss that accept syscall in the execution unit and

only capture syscalls that happened in between two LMSes. However, if we partition the

event-handling loop only on the second LMS then we will generate correct execution units

because there is no syscall after second LMS in the event-handling loop.

Thus, during LMS control flow paths construction OmegaLog marks all the LMSes present

inside the loops that do not have any syscalls before or after in that loop. Such marking

helps OmegaLog to make correct execution partitioning of universal provenance log during

investigation phase. If there is no such LMS inside the loop then OmegaLog keeps track of

either all the syscalls present after the last LMS (loop-ending LMS) in the loop or all the

syscalls present before the first LMS (loop-starting LMS) in the loop whichever has least

number of syscalls. OmegaLog uses such syscall mappings during investigation phase to

make correct execution units.

5.4.5 Discussion of Static Analysis Limitations

Our approach is agnostic to the underlying binary analysis tool, but in this work, we used

Angr tool, which came with its own set of limitations. Below we discuss these limitations

and, in some cases, how we handled them to recover LMS paths.

False Positives & False Negatives. For more information on accuracy and completeness

of Angr’s recovered CFG, we refer the reader to [137]. In brief, if Angr mistakenly adds

an edge that should not be in the CFG of an application, OmegaLog will generate an

erroneous LMS path in the LMS path database. However, since that execution path will

never happen during runtime, OmegaLog will just ignore this false positive LMS path during

UPG construction. In case Angr misses an edge in a CFG, we have implemented Lookahead

and Lookback matching (described in Section 5.6), which handle this case.
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Runtime Performance. OmegaLog’s static analysis runtime performance was signifi-

cantly impacted by Angr’s performance of symbolic execution. We introduced PeepholeCon-

cretization to improve runtime while preserving the accuracy of LMS path recovery. Note

that static analysis is a one-time, offline cost: once a binary has been profiled, there is no

need to re-analyze it unless it has been changed. On modestly provisioned workstations,

that task could even be outsourced to more powerful machines.

Binary Restrictions. First, Angr tool can only work on binaries compiled from C/C++

code. Second, the format modifier argument to a logging procedure should not be built

dynamically at runtime as an element of a struct, i.e., it should be a constant string. Third,

our binary analysis can only recover logging functions that are not inlined. However, we did

not encounter inlined logging functions during our evaluation.

5.5 RUNTIME PHASE

At runtime, OmegaLog performs minimal maintenance of application and whole-system

logs; the LMS control flow path models are stored in a database ( 2 in Fig. 5.5) and are not

consulted until an investigation is initiated. The primary runtime challenge for OmegaLog is

that of reconciling logs from different layers, which is difficult when considering a flattened

event log of concurrent activities in multi-threaded applications. To address that, OmegaLog

intercepts all write syscalls on the host using a kernel module and identifies which write

syscalls belong to application event logging using heuristics discussed in Section 5.4. After

that it only appends the PID/TID of the process/thread that emitted the event and along with

the timestamp of the event’s occurrence to the identified log messages, generating enhanced

event log messages.1 Finally, OmegaLog uses Linux Audit API to add the enhanced event

log message to the whole-system provenance log file, which provides an ordering for both

application- and system-level events.

5.6 INVESTIGATION PHASE

Following an attack, an administrator can query OmegaLog’s log parser and graph genera-

tor modules ( 5 in Fig. 5.5) to construct a UPG chronicling the system- and application-layer

events related to the intrusion.

1Applications that make use of rsyslog facility [142] to write LMS is the one exception to the rule where
LMS writing process’s PID is not equal to the original application process that produced the LMS. However,
in such case we can easily extract the PID/TID of original application process because rsyslog use well-defined
message format [139] with PID added by default.
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5.6.1 Universal Provenance

Given application binaries, whole-system provenance logs, and application event logs, dur-

ing the investigation phase, we aim to generate a UPG while preserving the three properties

of causality analysis. Algorithm 5.2 describes how to construct the backward-tracing UPG

from the universal log file, specifically a backtrace query from an observable attack symptom

event; the approach to building forward-trace graph follows naturally from this algorithm

and is therefore omitted. When an application event log (an augmented LMS) is encountered

while parsing the universal log (Function IsAppEntry in Algorithm 5.2), it is necessary to

match the event to a known LMS for the application in our LMS paths. That matching is

performed by the MatchLMS function as described below.

5.6.2 LMS State Matching

This procedure entails matching of a given runtime application log entry to its associated

LMS in the LMS control flow paths DB. For each log entry in the universal log, the matcher

identifies all LMS regexes that are candidate matches. For example, if the event message is

02/15/19 sshd [PID]: PAM: password from user root accepted

the matcher will look for substring matches, and this will solve the issue of identifying the

actual application log entry from the preamble metadata, e.g., “02/15/19 sshd[PID]:”.

Ranking LMS. An application log entry may match to multiple LMS regexes in the LMS

path DB; this happens because of the prevalence of the %s format specifier in LMS, which

can match anything. Therefore, OmegaLog performs a ranking of all the possible candidate

matches. We use regex matching to identify the number of non-regex expressions (i.e.,

constants) in each match. Going back to the example, “PAM: password from user root

accepted” will match “PAM: password from user .* accepted” with a ranking of 5, which

is equal to the number of non-regex word matches. Finally, the matcher will return the LMS

that has the highest rank or the highest number of non-regex word matches that reflects the

true state among the candidate LMSes.

State Machine Matching. Once the candidate LMS (LMScand) has been identified for

an application log entry, OmegaLog attempts to match the LMScand to a valid LMS path

in the database. If this is the first event message, we use a set of heuristics to figure out

where we should start from. However, since the matching process can start anywhere in the

applications lifetime, usually we have to resort to an exhaustive search over all nodes in the

LMS control flow paths. Once we identified the starting node, we keep state in the parser
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Algorithm 5.2: UPG Construction
Inputs : Universal log file Luni;

Symptom event es;
LMS control flow paths Pathslms;

Output : Backward universal provenance graph G
Variables: LMSstate ← Current state of LMS;

eventUnit[Pid] ← events in current unit related to Pid;
endUnit ← flag to partition execution into unit;

1 endUnit ← false
2 foreach event e ∈ Luni happened before es do
3 if IsAppEntry(e) then
4 LMScand = GetLMSRegex(e)
5 endUnit = MatchLMS(LMScand, Pathslms, LMSstate, eventUnit[Pide], Luni)

6 end
7 if endUnit then
8 eventUnit[Pide].add(e)
9 Add all events from eventUnit[Pide] to G

10 endUnit ← false
11 eventUnit[Pide] ← null

12 end
13 else
14 eventUnit[Pide].add(e)
15 end

16 end

17 return G

that points to the possible transitions in the LMS paths graph. Upon the next log entry, we

search the neighbors of the previous LMS for possible candidate matches. We rank those

and return the one with the highest rank, and then advance the parser’s state pointer. If

OmegaLog cannot find a match in the neighboring LMS states, it advances to the lookahead

and lookback matching steps.

Lookahead Matching. When the previous state in the LMS path is known, we may not find

a match in a neighboring LMS state because for example (1) the application is running at a

different log level, (2) OmegaLog missed the LMS corresponding to the log message in the

static analysis phase (for example, the function might be inlined, or we could not concretize

its values), or (3) the log message is coming from a third-party library. We therefore start

looking deeper into the reachable states from the current parser state. If we find multiple

candidates, we again rank them and return the one with the highest rank. If we do not find

one, we then keep increasing the lookahead up until we hit a certain threshold that can be

set at runtime. If we find a match, we move the parser to that state and repeat until we

match a candidate LMS at the end of LMS control flow path. At that point, we set the

endUnit flag to true.
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As described in Section 5.4, in certain cases LMS may not be able to correctly partition the

execution because there are syscalls after the loop-ending LMS or syscalls before loop-starting

LMS. During offline analysis, OmegaLog marks such LMS and keep track of any syscalls that

we should expect during runtime. If we observe such case during state matching process, we

match those syscalls besides matching LMS and add those syscalls into the execution unit.

Function MatchLMS in Algorithm 5.2 also handles such cases and appropriately sets the

endUnit flag to true.

Lookback Matching. If the above lookahead step fails because we cannot find the end

state in the LMS path, we try to search the heads of loops that are of the form (while(1),

for(;;)) in the LMS control flow path. The intuition behind this identification is that we

might have hit the start of a new execution unit and thus we would need to restart from a

new stage. If this fails, we perform an exhaustive search of LMS that can happen before the

current state in the LMS paths using the same intuition mentioned before. If in either case,

we get a match we set the endUnit flag to true. Note that fallback matching allows us to

generate execution units even if we have only one log message at start or end of the loop,

because we use the next execution unit’s log message to partition the current execution unit.

5.7 EVALUATION

In this section, we evaluate OmegaLog to answer the following research questions (RQs):

RQ1 What is the cost of OmegaLog’s static analysis routines when extracting logging in-

formation from binaries?

RQ2 How complete is our binary analysis in terms of finding all the LMSes in an application?

RQ3 What time and space overheads does OmegaLog impose at runtime, relative to a typical

logging baseline?

RQ4 Is the universal provenance graph causally correct?

RQ5 How effective is OmegaLog at reconstructing attacks, relative to a typical causal anal-

ysis baseline?

Experimental Setup. We evaluated our approach against 18 real-world applications. We

selected these applications from our pool of applications discussed in Section 5.2 based on

popularity and category. Moreover, most of these applications were used in the evaluation

of prior work on provenance tracking [12, 13, 16, 21]. For each program, we profile two

105



verbosity levels, INFO and DEBUG, when considering the above research questions. Workloads

were generated for the applications in our dataset using the standard benchmarking tools

such as Apache Benchmark ab [143] and FTPbench [144].

All tests were conducted on a server-class machine with an Intel Core(TM) i7-6700 CPU @

3.40 GHz and 32 GB of memory, running Ubuntu 16.04. To collect whole-system provenance

logs we used Linux Audit Module2 with the following syscall ruleset: clone, close, creat,

dup, dup2, dup3, execve, exit, exit group, fork, open, openat, rename, renameat, unlink,

unlinkat, vfork, connect, accept, accept4, bind. OmegaLog’s offline algorithm accepts a

single configuration parameter, maxBackTrace, that sets the maximum depth of symbolic

execution operations. After experimenting with that parameter, we found that a value of

5 was enough to guarantee >95% coverage for 12 of the 18 applications we analyzed, as we

discuss in the following section. In fact, our experiments have shown that we did not need

to increase the symbolic execution depth beyond 3 basic blocks.

5.7.1 Static Analysis Performance

Table 5.3 shows how much time it takes to identify and concretize LMS from application

binaries and subsequently generate LMS path models (Algorithm 5.1). We first note that the

overhead of building the LMS paths (LMSPs) is reasonable for a one-time cost, taking 1–8

seconds for most applications, with a maximum of 3 minutes for PostgreSQL; the increase for

PostgreSQL is due to the larger number of LMS paths captured by OmegaLog. On the other

hand, average time to generate an LMS column shows the time to generate the FastCFG and

concretize the LMS dominates OmegaLog’s static analysis tasks, ranging from a minimum

of a minute and a half (Transmission) to a maximum of 1.2 hours (PostgreSQL). Those two

tasks are in fact highly dependent on Angr’s raw performance. As acknowledged by the

Angr tool developers [146], the static analyzer’s performance is handicapped because it is

written in the Python language with no official support for parallel execution.

Our results show no direct relationship between the size of the binary of the application

being analyzed and the overall analysis time. By inspecting the applications’ source code, we

found that OmegaLog’s performance is more informed by the structure of the code and the

logging procedures. We can see intuitively that as the number of found callsites increases, the

number of peephole symbolic execution steps needed also increases, thus increasing the total

concretization time. However, that does not generalize to all the applications; for example,

the analysis of NGINX (2044 KB binary) completed in 13 minutes concretizing 925 LMS while

2We make use of the Linux Audit framework in our implementation. However, our results are generalizable
to other system logs, such as Windows ETW [55] and FreeBSD DTrace [145].
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Lighttpd (1212 KB, almost half of NGINX’s binary size) required 32 minutes concretizing only

358 LMSes.

Upon closer investigation of Lighttpd’s source code, we found that format specifiers (and

thus LMS) were often passed as structure members rather than as constant strings (which

form the majority of LMS in the case of NGINX). That will trigger the backtracing behavior of

the PeepholeConcretization algorithm in an attempt to concretize the values of the struct

members, thus increasing the cost of the symbolic execution operations performed by Angr.

Sample code snippet from Lighttpd that triggers such behavior is shown in Listing 5.1.

Listing 5.1: Sample code snippet from Lighttpd codebase

/∗ log function signature : /src/log .c ∗/
int log error write ( server ∗srv , const char ∗filename , unsigned int line ,

const char ∗fmt /∗ our tool looks for fmt ∗/, ...)

/∗ format specifier passed as struct member: /src/config−glue.c ∗/
if (con−>conf.log condition handling) {

log error write (srv , FILE , LINE , ”dss”,

dc−>context ndx, /∗ the fmt argument ∗/
”(cached) result :”,

cond result to string (caches[dc−>context ndx].result)) ; }

The cases of Lighttpd and NGINX highlight the unpredictability of runtime of OmegaLog’s

static analysis when only the binary size or the number of identified callsites is considered.

Rather, the runtime depends on the structure of the code and the anatomy of the calls to

the log functions.

5.7.2 Static Analysis Completeness

We report on OmegaLog’s coverage ratio, which represents the percent of concretized

LMS relative to the count of identified callsites to logging procedures. As shown in the

last column of Table 5.3, OmegaLog’s coverage is >95% for all the applications except

PostgreSQL, Transmission, and wget. We disregard thttpd since it presents a small sample

size in terms of LMS where OmegaLog only missed 1 LMS during concretization. That

speaks to OmegaLog’s ability to consistently obtain most of the required LMSes and build

their corresponding LMS control flow paths. We show in our experiments, this coverage ratio

is sufficient to enable OmegaLog to perform execution partitioning and aid the investigation

process without loss of precision. In addition, when LMSes are missing, OmegaLog’s runtime

parser can handle missing log messages through lookahead and lookback techniques. If

OmegaLog fails to concretize an LMS, it is a reflection of the symbolic execution task’s

ability to resolve a format specifier for a logging procedure.
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Figure 5.7: Runtime overhead for each applications in our dataset that has logging statement
in the event-handling loop.

To better understand the conditions of OmegaLog’s performance, we analyzed the source

code of PostgreSQL, Transmission, and wget (64%, 78%, and 31% coverage, respectively).

Our analysis revealed that in all three cases, symbolic execution was failing for logging

procedures that use GNU’s gettext for internalization (called using the “ ” operator), as

shown in Listing 5.2 below:

Listing 5.2: Part of logging procedure that uses GNU’s gettext for internalization

/∗ Below code from Transmission: / libtransmission /rpc−server.c ∗/
tr logAddNamedError(MY NAME, (”Couldn’t find settings key \”%s\””), str);

/∗ Below code from wget: /src/convert .c ∗/
logprintf (LOG VERBOSE, (”Converting links in %s... ”), file ) ;

/∗ Below code from PostGreSQL: /src/backend/commands/tablecmds.c ∗/
default :

/∗ shouldn’ t get here , add all necessary cases above ∗/
msg = (”\”%s\” is of the wrong type”);

break; }

Since gettext is loaded dynamically as a shared library, Angr is not able to handle it

appropriately during symbolic execution and cannot extract its return value, thus causing

the failure of LMS extraction during the peephole concretization step. To confirm our

findings, we reran the static analysis for wget and Transmission with the calls to gettext

removed and were able to achieve coverage of 98.18% and 96.03%, respectively. One approach

to addressing that issue using Angr would be to add hooks for all of gettext’s methods

and return the arguments without changes. That would in turn provide Angr’s symbolic

execution engine with the arguments for concretization. We plan to address the issue in

future work.
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5.7.3 Runtime & Space Overhead

We measured the runtime overhead of OmegaLog compared to a baseline of application

event log collection at the INFO and DEBUG verbosity with Linux Audit running. We turn

on INFO and DEBUG level based on the application’s logging behaviour required for execution

partitioning. As shown in Figure 5.7, OmegaLog’s average runtime overhead was 4% for

all the applications that had logging inside the event-handling loop. Some applications,

such as Memcached and Proftpd, exhibit high overhead because they are write-intensive

applications; since OmegaLog intercepts every write syscall to disambiguate PID/TID, we

expect to see higher runtime costs here. However, we argue that the benefits of OmegaLog

for forensic analysis already justify the cost, and will consider alternative methods for process

disambiguation in future work.

OmegaLog incurs space overhead because it records the PID/TID and timestamp for each

application event message so that it can match the event to the appropriate system-layer

task. At most, that addition requires 12 bytes per LMS entry. Our experiments confirm that

the cost is negligible during typical use. For example, each unenhanced event message in

NGINX is approximately 8.6 kB. If an NGINX server received 1 million requests per day and

each request generated one event, the original event log would be 860 MB and OmegaLog

would add just 12 MB to that total, around 1% space overhead.

5.7.4 Correctness of Universal Provenance Graph

OmegaLog modifies the whole-system provenance graph by adding app log vertices to gen-

erate semantic-aware and execution-partitioned universal provenance graphs. We describe

three causal graph properties in Section 5.3 that the universal provenance graph needs to

preserve for correct forensic analysis. To ensure the Validity property, we augment LMS

with PID/TID information along with timestamps during the runtime phase so that we can

causally associate application log vertices with process vertices in the whole-system prove-

nance graph. To ensure the Soundness property, OmegaLog augments LMS with timestamps

from the same system clock as the whole-system provenance graph and uses this timestamp

as an annotation from process vertices to application log vertices. That edge annotation

allows OmegaLog to respect the happens-before relationships while doing backward and for-

ward tracing on the graph. Finally, since universal provenance graphs do not remove any

causally connected vertices (besides false provenance introduced by dependency explosion in

a manner consistent with previous work [13, 21]) we achieve the property of Completeness.
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 -FTP session opened
-“USER wlog" 331
-PASS (hidden)" 230
 -USER wlog: Login 
successful
- FTP session closed

(b)
Figure 5.8: Information theft attack scenario. (a) Provenance graph generated using a tradi-
tional solution, which led to a dependency explosion problem with no semantic information.
(b) Concise provenance graph generated using OmegaLog with semantic information.

5.7.5 Attack Investigation

We now evaluate OmegaLog’s ability to aid in a typical attack investigation. To do so,

we consider two additional scenarios as case studies. For each attack scenario, we manually

verified its UPG to check that it preserved the three causality analysis properties that we

discussed in Section 5.3. We note that the result that we presented in the motivating scenario

(Section 5.1) was also procedurally generated using OmegaLog.

Information Theft Attack

An administrator made a mistake when configuring an FTP server, allowing users to read

and transfer sensitive files from the server’s directories. The issue was identified after several

days, but the administrator now needs to identify which files were leaked, if any, to ensure

that company secrets are safe. Using the sensitive files as a symptom, the administrator runs

a backtrace query.

Figure 5.8(a) shows the attack investigation results using a traditional causal analysis

solution, which confirms that the sensitive file was accessed. However, because of dependency

explosion, it is impossible to determine who accessed the file and where it was transferred to.

In contrast, Figure 5.8(b) shows the universal provenance graph produced by OmegaLog.

OmegaLog was able to partition the server into individual units of work based on event

log analysis, removing the dependency explosion and identifying an IP address to which the

sensitive file was downloaded. However, that information may not prove precise enough to

attribute the attack to a particular employee or remote agent; fortunately, because Omega-

111



Postfix

Transmission

t2 t1 malware

         

Postfix Postfix Postfix Postfix Postfix Postfix Postfix

      

       
 

procmail procmail procmail procmail procmail procmail procmail

Mutt

malware.torrent

f2.torrent

f1.torrent
  

 

Postfix

procmail

Postfix

 

 

Malware.torrent

Transmission

malware

postfix/qmgr[6854]: C9A34520973: 
from=<abc@gmail.com>, size=748, nrcpt=1 (queue 
active)
Nov 28 11:17:01 localhost postfix/local[18162]: 
C9A34520973: to=<xyz@gmail.com>, orig_to=<root>, 
relay=local, delay=0.02, delays=0.01/0.01/0/0, dsn=2.0.0, 
status=sent (delivered to mailbox)

malware Queued for verification (verify.c:264)
malware Verifying torrent (verify.c:219)
…
malware Piece 733, which was just downloaded, failed its 
checksum test (torrent.c:3259)
…
malware State changed from "Incomplete" to 
"Complete" (torrent.c:2161)
malware Announcing to tracker (announcer.c:1552)

Mutt

 

 5< 235 2.7.0 Accepted
SASL protection strength: 0
SASL protection buffer size: 65536
 5> MAIL FROM:<abc@gmail.com>
 5< 250 2.1.0 OK b133sm5372063ioe.73 - gsmtp
5> RCPT TO:<xyz@gmail.com>
 5< 250 2.1.5 OK b133sm5372063ioe.73 - gsmtp
 5> DATA
[5< 354  Go ahead b133sm5372063ioe.73 - gsmtp
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Figure 5.9: Phishing email attack scenario. (a) Attack provenance graph generated by tradi-
tional solutions. (b) Semantic-aware and execution-partitioned provenance graph generated
by OmegaLog.

Log was able to associate the causal graph with event messages from the FTP server, the

administrator is able to attribute the theft to a specific set of user credentials.

Note that while existing execution-partitioning systems such as ProTracer [21] and BEEP [13]

could eliminate dependency explosion in this scenario, they would not enable user-level at-

tribution of the attack.

Phishing Email

An employee uses the Mutt email client to send and receive personal emails on a BYOD

workstation. One day, the employee receives a phishing email that offers a torrent for down-

loading a blockbuster movie. Employee opens the email, downloads the attached .torrent

file. After that employee, used Transmission application to download the purported movie

torrent file. Finally, employee opens the downloaded movie file but the file is actually mal-

ware that establishes a backdoor on the machine.

An administrator later notices that a suspicious program is running on the workstation

and initiates forensic analysis to identify its origin. Figure 5.9(a) shows the causal graph

that the investigation would yield based on simple auditd. As can be seen in the graph, the

employee has actually opened three .torrent files with transmission-daemon. It is impossible

to determine which .torrent input file led to the malware download. Even if out-of-band

knowledge is used to identify the malicious torrent, the administrator will still be unable to

trace back to the phishing email.

Figure 5.9(b) shows the UPG produced by OmegaLog. Because OmegaLog successfully
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partitioned the Postfix and Transmission processes, the graph does not exhibit dependency

explosion, making it easy to trace from the suspicious process back to the phishing email.

Further, the OmegaLog graph provides additional documentation of application semantics,

such as the email address of the sender, which may help the administrator correlate this

attack with other intrusions. Such evidence cannot be provided by existing provenance

trackers.

5.8 DISCUSSION

CFI Assumption. Control flow integrity (CFI) assumption is a limitation of OmegaLog; in

fact, this is a big problem for almost the entirety of recent work in provenance-based forensic

analysis space [10, 11, 12, 13, 14, 15, 16, 18, 21, 89, 106, 107, 108, 127]. OmegaLog assumes

CFI of program execution because violation of CFI makes it impossible to give assertions

about the trace logs of program execution. For example, execution units emitted from BEEP

system [13] can not be trusted because an attacker can hijack control flow of the running

application to emit misleading boundaries, confusing the investigator. Moreover, violations

of CFI assumption enables post-mortem tampering of audit logs or even runtime control flow

bending that causes misleading application event records to be emitted. Even though the

main focus of our study is improving forensic analysis and solving CFI problem is ultimately

an orthogonal problem to our study but we envision that future work on provenance will

cater CFI violation problem for accurate forensic analysis.

Results Generalization. Provided that an underlying binary analysis tool has generated a

reasonably accurate CFG, there are two considerations when one is evaluating the generality

of OmegaLog. The first is whether or not the application being profiled includes logging

events at key positions in the CFG such as the event handling loop. Our survey in Section 5.2

demonstrates that this is the case for mature open source client-server applications. The

second consideration is whether the event logging statements are correctly identified and

extracted by OmegaLog. Our evaluation (Section 5.7) demonstrated that we are able to

identify log statements in all the profiled applications based on our heuristics for event-

logging extraction.

OmegaLog assumes at least one log message printed in the event-handling loop to partition

execution. OmegaLog uses ordered log messages in the universal provenance logs as a way

to partition syscalls and make unit boundaries. Such an assumption only works for the

applications that use synchronous I/O programming model. For instance, if an application

is using asynchronous I/O and only prints one log message at the end of the event-handling
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loop then concurrent requests will generate multiple syscalls without immediately printing

log message at the end of each request. In such case, OmegaLog will not be able to correctly

partition each request. One approach to solve this problem is to generate complete syscall

mapping along with LMS paths model inside the event-handling loop during offline analysis

and use this mapping to divide execution. We leave that as our future work.

Malware Binaries. Malware binaries may not produce any of the application logs that

are required for execution partitioning. In that case, OmegaLog treats the whole malware

execution as one unit and does not provide execution partitioning. That is acceptable since

every output and input event from malware execution is important in forensic analysis.
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CHAPTER 6: ZEEK AGENT: CORRELATING HOST AND NETWORK
LOGS FOR BETTER FORENSICS

6.1 INTRODUCTION

In the previous chapters, we showed that host (system) logs are extremely useful during

threat alert investigations. Based on kernel-layer information, host logs lack comprehensive

network connection information, such as HTTP sessions with their requested URIs, key

headers, and server responses; DNS requests; SSL certificates; SMTP sessions and SSL

certificates. Such network-level information is often necessary to causally relate attacks that

span across multiple hosts in the enterprise and generate complete contextual history for

accurate investigations.

Even though correlating host and network logs can dramatically improve threat investiga-

tion capabilities, these two sources of logs are usually siloed in enterprises, making it difficult

for security analysts to correlate them. Security analysts usually write long ad-hoc queries

to correlate these logs, provided that they have the experience and expertise to do so. This

correlation problem is further exacerbated by the sheer volume of host and network logs as

analysts spend hundreds to thousands of employee hours manually stitching together these

enormous logs.

To address this challenge and enable cross-log causal analysis, we designed an open-source

endpoint monitoring tool called Zeek Agent [34]. Zeek Agent provides deeper visibility into

enterprise-wide activities through transparently observing endpoint activities and correlating

them with network logs in real-time. Zeek Agent consists of three components: 1) Zeek Agent

Daemon – a high-performance and low-footprint host monitoring daemon that captures host

logs using default auditing frameworks that come with the operating systems, 2) Zeek Agent

Manager – a collection of Zeek scripts that allows security analysts periodically fetch host

events across the entire enterprise and correlate those host events with the network flows

present in Zeek logs, and 3) Zeek Agent Visualizer – a web-based graph visualization tool

that allows analysts to construct, explore, and manipulate provenance graphs interactively.

Zeek Agent is inspired by the zeek-osquery system, which was proposed by Haas et

al. [147] to correlate host logs and Zeek network logs. However, zeek-osquery was difficult

to configure, manage, and extend [148] due to its dependence on OSQuery[149] to collect

host logs. OSQuery is a large project that provides many more functionalities, such as

profiling and API monitoring, than needed for endpoint security monitoring. To support

so many monitoring features, OSQuery depends on a lot of packages (e.g., RocksDB) and

requires setting up many configuration values. This made zeek-osquery project difficult to
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maintain for long-term development. To solve this issue and provide a standalone endpoint

security monitoring framework that is modular, extensible, and seamlessly integrates with

the Zeek ecosystem, we implemented Zeek Agent.

Zeek Agent Daemon captures host process, file, and socket events and stores them in tables

as a relational database similar to OSQuery [149], enabling security analysts to retrieve host

events from the enterprise using SQL queries. On Linux, host monitoring data is captured

using the Linux Audit framework [56]. On macOS, Zeek Agent leverages the Endpoint

Security Framework [150] to capture file and process events. To collect socket events on

macOS, Zeek Agent uses OpenBSM [151].

Security analysts can schedule SQL queries using Zeek Agent Manager to periodically fetch

host events and store them along with Zeek network logs. We extended Zeek’s conn.log file

that enables security analysts to attribute network flows present in the conn.log file to the

originating host processes.

Finally, we designed Zeek Agent Visualizer – a graphical user interface to aid the visu-

alization and exploration of a unified provenance graph generated from the correlated host

and network logs. This graph combines the causal reasoning strengths of the host log with

the rich network information from the network logs, fundamentally increasing the power

and applicability of either log types. Our tool features several new graph manipulation

functionalities, such as real-time filtering, collapsing, and merging of facts, which allow se-

curity analysts to quickly drill down to relevant details and provide a better visualization

experience. Note that our tool does not lose information so that the security analysts can

revert any changes made during the graph manipulation. Most notably, our tool does not

require security analysts to have any external skills, such as SQL and Cypher query language

proficiencies, to generate a provenance graph.

We evaluated Zeek Agent for performance, scalability, and efficacy. Our evaluation results

show that Zeek Agent exhibits a low runtime overhead on end hosts. To perform scalability

analysis, we deployed in Zeek Agent in a cluster setting with a varying number of hosts. Using

DARPA OpTC [152] attack dataset, we show that our graph visualization tool dramatically

improves the threat alert investigation capabilities.

6.2 DESIGN

6.2.1 Overview

zeekagent is a modular and dynamic endpoint monitoring framework that seamlessly in-

tegrates with Zeek. At a high level, it aims to correlate host and network logs in a large
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Figure 6.1: Zeek Agent workflow to collect hosts event logs and then correlate those logs
with the network flows present in the Zeek logs. Our provenance graph visualization tool
allows analysts to interactively manipulate and explore provenance graphs generated from
the correlated host and network log.

enterprise and generate a unified provenance graph to accelerate the threat investigation

process. The challenges mentioned in Section 6.1 motivate the following design goals of Zeek

Agent:

G1 Low Overhead. Zeek Agent should have low runtime overhead to provide continuous

(always on) security monitoring.

G2 Non-intrusive. Our system should not require any end system change or any kernel

instrumentation.

G3 Integrated. Our system must correlate host and network logs in a manner that en-

ables security analysts to perform cross-log causal analysis and generate a complete

explanation of enterprise-wide activities.

G4 Support Dynamic Monitoring. Security analysts should be able to dynamically collect

and filter host events without any downtime or reboots using Zeek Agent.

G5 Interactive Graph Visualization. Zeek Agent should provide an interface to interac-

tively explore large provenance graphs generated from the correlated host and network

logs, which will allow analysts to quickly drill down to relevant details during investi-

gations.

The general workflow of Zeek Agent is shown in Figure 6.1. First, Zeek Agent Daemon

collects syscall events on the end host and stores them into SQL virtual tables. After that,

Zeek Agent Manager connects with Zeek Agent Daemon to schedule SQL queries written by
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the analysts. Zeek Agent Manager retrieves host events, which are the results of SQL queries,

and correlates those host events with the network flows present in the Zeek logs. Finally,

Zeek Agent Visualizer displays a unified provenance graph generated from the correlated

host and network logs for threat alert investigation.

Why SQL. The reason behind using SQL to introspect the operating system (OS) state

of the hosts is as follows: SQL allows Zeek Agent to use a single query to collect host events

from the entire enterprise. It does not matter if different hosts are running different OSes

because the core OS concepts are common among different operating systems. For example,

processes, files, and sockets abstraction are similar among Linux, macOS, and Windows.

Not only that, but the attributes of those core concepts are also similar across operating

systems, such as pid and tid from process events. For instance, consider the following SQL

query:

select pid , exe name , s y s c a l l from p r o c e s s e v e n t s

where s y s c a l l != fo rk ;

In this example, Zeek Agent will be able to fetch pid, exe path, and syscall name from

process event tables from different hosts. In this example, we also have a constraint that

excludes all the fork syscall events. As we can see from this example, we do not have to

specify the underlying operating system type to fetch these events.

6.2.2 Zeek Agent Daemon

The main job of Zeek Agent Daemon is to efficiently collect and store host events for

threat investigation. It consists of four sub-components, which are described below:

Publishers. The role of the publisher is to leverage the syscall monitor that comes

default with the underlying operating system to collect events related to processes, files,

and sockets. This allows Zeek Agent to fetch OS events in a non-intrusive manner, avoiding

instrumentation or kernel modification on the end host. For the Linux platform, Zeek Agent

Daemon uses Linux Auditd [56], while for macOS, it uses Endpoint Security Framework [150]

and OpenBSM [151].

Consumers. The consumers’ job is to retrieve events from publishers’ queues. These

events are then stored in different in-memory virtual SQLite tables based on the event type

(e.g., file events). These virtual tables will allow Zeek Agent users to easily extend Zeek

Agent Daemon to collect new event types on the host. Events stored in those virtual tables

will be continuously pulled by Zeek using scheduled queries.
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The publisher-consumer model has two advantages. First, this model enables better scal-

ability by running multiple publishers and consumers in parallel and by caching messages.

For example, currently, Zeek Agent Daemon supports the Linux Auditd, Endpoint Security

and OpenBSM publishers and consumers. Second, this model allows users to extend Zeek

Agent with new publishers and consumers without changing existing publishers and con-

sumers. For example, new publishers and consumers can be added without making changes

to the existing ones.

Virtual Tables. As mentioned above, consumers’ job is to store host events in SQL

virtual tables. A virtual table is a logical database that is not physically stored on a disk

but allows users to run SQL queries without dealing with the complexities of tunning query

performance. Users of Zeek Agent can set the size of the virtual table in the configuration

file. During runtime, if the host events fill the whole virtual table before being pulled by

Zeek, then Zeek Agent Daemon will drop those events in a FIFO fashion.

Currently, Zeek Agent supports three kinds of host event tables, which are described

below:

• Host Process Event Table. To build process events table, Zeek Agent monitors clone,

fork, exec, exit, and exit group syscalls. From these syscalls, we extract pid, parent

pid, uid, image path of process executing, command-line arguments passed, and return

value of the syscall.

• Host File Event Table. To populate the file events table, Zeek Agent subscribes to

open, open at, create, write, and close syscalls. We extract pid, parent pid, uid,

image path, file path, and inode number from these file-related syscalls.

• Host Socket Event Table. Finally, to build the socket events table, Zeek Agent uses

connect and bind syscalls. From these socket-related syscalls, we extract pid, uid,

image path, file descriptor, protocol family, local IP address and port and remote IP

address and port.

Zeek Agent Daemon can be configured to exclude certain syscalls from being captured, at

will, by specifying those syscalls within the Zeek Agent Daemon configuration file.

Query Scheduler. The query scheduler receives SQL queries from Zeek Agent Manager

and executes them to extract the required fields from the required tables. An example SQL

query is shown in section 6.2.1. Once this query is received, the query scheduler decides

which table to extract records from, the fields of that table to include in all the records and

the particular records to extract from that table based upon the conditions specified in the
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SQL query. For example, in the example query shown, pid, exe path, and syscall name

from process event tables are being extracted, excluding all fork syscall records. These

records are then sent back to the Zeek Agent Manager.

There are two types of queries that the query scheduler deals with: one-shot queries and

scheduled queries. One-shot queries, as the name implies, are queries that are executed by

the scheduler only once, where as scheduled queries are executed repeatedly after the time

interval sepcified. For example, if the specified time interval for a scheduled query is two

seconds, that query will be executed repeatedly every two seconds, and the results of each

individual execution will be sent back to the Zeek Agent Manager.

6.2.3 Zeek Agent Manager

Zeek Agent Manager is a collection of Zeek scripts to expose API for security analysts to

write SQL queries, periodically fetch host events by running SQL queries, and correlate host

socket events with the network flows present in Zeek logs. In this paper, we use the term

network flow to describe an entry in Zeek’s conn.log, which is a 5-tuple of local IP address,

local port, remote IP address, remote port, and the protocol. We also denote the network

flow initiator host as originator and the other receiving host as responder.

In order to communicate with the hosts and retrieve events, we leverage Zeek publish-

subscribe library called Broker1. Similar to the zeek-osquery [147] system, Zeek Agent also

allows custom groups of hosts so that security analysts can run certain SQL queries for a

certain group of hosts. For example, suppose a security analyst wants to periodically fetch

file events from all the research servers. In that case, security analysts can create a group

of those research servers and then run SQL queries only on that group. Moreover, users

of Zeek Agent can set the interval between scheduled queries on the hosts by setting the

default query interval parameter in the configuration settings.

Attributing Network Flows to Host Socket Events. Once host events arrive at the

node running Zeek Agent Manager, we correlate host socket events with the network flows

present in Zeek’s conn.log. We try to attribute both the originator and the responder of a

network flow to their host socket events if both hosts are in our enterprise network.

In order to this attribution, we match 5-tuple from network flow with the 5-tuple present

in the host socket event. However, the event data obtained from auditing frameworks, such

as Linux Audit and OpenBSM, contain partial information, i.e., some elements are missing

from host socket event 5-tuple. For example, the host socket event generated from connect

1https://docs.zeek.org/projects/broker/en/current/
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syscall does not contain the local address and local port in the 5-tuple. Due to this partial

information, we will have ambiguity when we correlate host socket events with network flows

inside Zeek, i.e., one single network flow attributed to multiple host socket events.

One possible solution to this issue will be to use procfs and fetch that missing information.

However, such a solution can introduce race conditions while probing, leading to incorrect

results. Therefore, we currently do not use this solution.

To do this correlation or attribution inside Zeek script land, we use the methodology

described in zeek-osquery paper. We add a handler for connection state remove() event

in Zeek script land. Inside that handler, we perform the following three steps to attribute

network flows to host socket events.

• Given a network flow, we extract the local IP address and the remote IP address from

that flow. Using the local IP address and remote IP address, we try to figure out

if these IP addresses belong to hosts in our enterprise network where Zeek Agent is

deployed. This requires us to maintain a state of IP addresses of all hosts in our

enterprise. In Zeek script land, we use a table to store this state.

• Then, on the originator side, we match the remote IP addresses of network flow and

host socket event, while on the responding side, we match the local IP addresses from

network flow and host socket event.

• Finally, on the originator side, we match the local IP address of network flow with

the local IP address of the host socket event, while on the responding side, we match

the remote IP address of network flow with the remote IP address present in the host

socket event.

By performing all three steps in the above list, our correlation or attribution results will

be unambiguous, i.e., one network flow attributed to exactly one originator socket and one

responder socket event. However, the third step is only possible if we have all the information

in the host socket event 5-tuple. Since we currently do not have all the information, our

correlation results are vague. In the case of vague correlation, we list all possible host socket

events with the network flow under analysis. Note that if two hosts with a connect syscall

to the same remote IP address and port, our correlation will be unambiguous because of

Step one. But, our correlation will be ambiguous for the same host with multiple network

flows to the same remote IP and port (from different source ports).

Once we have correlated network flows with host socket events, we add orig seuid (a

socket identifier for originator) and resp seuid (a socket identifier for responder) columns
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1

Zeek’s conn.log
ts uid id.orig_h id.orig_p id.resp_h id.resp_p orig_seuids resp_seuids

1601852231.79125CcGSYqhgHTpUHMvU2 192.168.38.104 41530 192.168.38.105 5768 gELjKahcEQk bXxEXqet1M3

Host Socket Event Log
seuid ts syscall ppid pid uid exe local_


address
local_

port

remote_

address

remote_

port

gELjKahcEQk1601609204.57263 connect 489 7534 1000 test.py 0.0.0.0 0 192.168.38.
105 5768

Host Process Event Log
ts syscall ppid pid uid exe cmdline

1601109204.57263 clone 489 7534 1000 /usr/bin/python test.py

Host File Event Log
ts syscall ppid pid uid file_path inode

1601209204.57263 create 489 7534 1000 file.txt 451

Figure 6.2: Example of correlating host and network log event table entries.

in Zeek’s conn.log. These uids link network flows with the host socket event log as shown

in Figure 6.2. From the host socket event log file we can find out the process responsible

for this network flow. Using this process pid, parent pid, and uid, we can link it to the

host process events log to find out the command line arguments and other attributes of this

process. Finally, we can also look into the host file event log file to see if that process created

or opened any files.

Grouping functionality. In addition to scheduling queries for individual hosts, the Zeek

Agent Manager also allows us to assign a query to a group of Zeek Agent hosts. The groups

are made using a subnet mask. The user provides a subnet along with the query to be

scheduled. The Zeek Agent Manager then matches the subnet against the ip address of each

of the host and the ip addresses which falls under the subnet are added to the group. A

host can be a part of many different groups at the same time. All the hosts within a group

executes the same query periodically and send the results back to Zeek Agent Manager.

Scalability enhancements. Inorder to ensure that Zeek Agent Manager is scalable, a

number of functionalities were implemented. Firstly, all the socket events which have been

successfully attributed are removed from socket events table. This ensures that the table

size does not become too large as socket events come in. Secondly, the framework makes

sure that whenever a Zeek Agent sends an exit process syscall then the state for that process

is removed from the memory. This helps to ensure that Zeek Agent Manager uses memory
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efficently and its memory footprint scales linearly with the number of Zeek Agent hosts.

6.2.4 Zeek Agent Visualizer

Provenance graphs generated from host and network logs are usually enormous in size,

with thousands or even millions of vertices. Such large provenance graphs can overwhelm

the security analysis and undermine the whole threat investigation process. Although there

are several provenance graph visualization tools [10, 14, 20, 106] that exist in the literature,

they statically generate a provenance graph and lack graph manipulation features. Moreover,

these systems do not scale beyond several hundred vertices. Provenance Explorer [153] and

Prov Viewer [154] provide interactive provenance graph visualization capabilities; however,

these systems are not designed to construct provenance graphs from kernel-level audit logs.

To overcome this challenge, we designed and implemented a web-based graph visualization

tool that allows security analysts to construct, explore, and manipulate provenance graphs

interactively for better threat alert investigation. We implemented a web-based graphical

user interface using D3.js2 for our tool. By using a web-based interface, we removed any

dependence on external packages and avoided software update overheads. We have used

elasticsearch as our database. The reason why we chose elasticsearch as our database is

because it can execute complex queries really fast. Moreover, it can scale horizontally,

which is very important when dealing with a large dataset that can further increase in

size. Furthermore, it stores data as structured JSON documents, and since the log files

generated by Zeek Agent are already in JSON format, almost no preprocessing is required

on data from the logs. Our novel provenance graph visualization tool features several new

functionalities that not only accelerates the threat investigation process but also discovers

other compromises that analysts might not be aware of. Following are the main features of

our Visualizer (not in the order of importance).

Vertex, edge information, and exploration. Clicking on a vertex highlights it as an

active vertex and displays its children and parent vertices (if any), as well as display its

information. The edge connecting two vertices also has an edge label showing the relation

between the vertices. The graph is mostly explored in such a way that the parent vertex is

displayed on the left side of the clicked vertex, and the child vertex is displayed on the right

side of the clicked vertex. This helps to see the chain of events in time from left to right.

Filtering. Our visualization tool allows a security analyst to filter vertices from the

generated provenance graph based on labels (process, file, socket, zeek, network). This ability

2https://d3js.org/
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enables security analysts to remove irrelevant information for a given threat investigation

and focus on the most important parts of the provenance graph. Filtering hides the filtered

vertices which are still explored in the background in their ”hidden state” as the graph

exploration progresses. This helps the analysts to view all the hidden vertices in their new

state at any point in time if they choose to unhide them.

Merging similar file vertices. We merge similar file vertices into a single vertex. The

criteria for merging similar file vertices is that if all the properties of file vertices are the same

except the timestamp (the time at which a file operation was done on the file) we consider the

vertices to be similar and therefore merge them into one vertex. This significantly reduces

the size of the graph without affecting the correctness of the causal analysis. For example,

an attacker may write to an existing file several times, for an analyst even if the file has been

written once, it is flagged as a compromised file and therefore by merging such vertices into

one, we have significantly reduced the size of the graph.

Merging similar socket vertices. We provide a checkbox to interactively merge similar

socket vertices into a single vertex. We consider socket vertices similar if their remote IP

addresses are the same and they are connected to the same process vertex. This significantly

reduces the size of the graph without affecting the correctness of causal analysis, as shown

by previous studies [30, 31].

Layers of visualization. Our visualization tool uses the concept of layers of visualization,

which aims to put a spotlight on certain subgraphs rather than displaying the whole graph

during exploration. In this idea, if a user clicks a vertex, our tool will show its neighbors,

expanding new paths for further exploration. While if a vertex is not clicked, then that

vertex will slowly vanish as we progress in the exploration. The way this works is that every

time a vertex is clicked, it and its neighbouring vertices are marked as active vertices, and

the edges connecting them are marked as active edges. These active vertices and edges will

form layer 0 (the layer with the highest opacity). If a user then clicks on another vertex, the

vertices and edges in layer 0 will be shifted to the next layer i.e layer 1 and will become old

vertices and edges (if they are not the clicked vertex or the neighbours of the clicked vertex).

The clicked vertex and its neighbouring vertices will be marked as active vertices, and the

connecting edges as active edges and will become the new layer 0. The vertex will not be

shifted to the next layer if it is still a neighbouring vertex of the clicked vertex, or the clicked

vertex itself. When the user again clicks on some other vertex, the active vertices and edges

will be marked as old vertices and old edges, and will be shifted from layer 0 to layer 1 (if not

an active vertex) and the vertices and edges that were in layer 1 will be shifted from layer

1 to layer 2 and hence become older than before. The clicked vertex and its neighbouring
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vertices and connecting edges will become active vertices and active edges of layer 0. The

vertices and edges in a deeper layer will have a lower opacity than the layer preceding it.

For example, vertices and edges in layer 3 will be more transparent than vertices and edges

in layer 2.

Once the nth layer is reached, where n is the number of layers set by the user, the opacity

of vertices and edges will be decreased to a level where they vanish. If the vertices completely

vanish in the process, they can no longer be clicked, however, upon clicking a vertex that

is vanishing, it and its neighbours become active and therefore bright again. For example,

if a vertex that is in layer 2 is clicked, it and its neighbouring vertices and the connecting

edges will become active and therefore will form the layer 0, while the previous layer 0

now becomes layer 1 with increased transparency. A vanished vertex can come back to life

again in the same position it was vanished at, if any of its neighbour is clicked. Layering can

therefore help provide a precise, local view rather than a global one. Our tool also allows the

user to control how many new layers can be explored before vanishing old layers. Figure 6.3

illustrates this concept with seven layers.

Limit the number of vertices. Since provenance graphs of system logs have the potential

to generate millions of new vertices, it can overwhelm an analyst if displayed on an interface.

Therefore, an analyst can limit the number of entries that are displayed for each label as

well as limit the number of entries that are fetched from the database where the logs are

stored. Since, during merging, the size of the graph can be significantly reduced, therefore

an analyst will find it more convenient to have separate limits on fetched vertices as well as

displayed vertices.

Forward and backward tracking. The security analyst has the option to either only

forward track, backward track or both when exploring. In forward tracking, only the children

vertices will be explored and the graph will only move forward in time. In backward tracking

only the parent vertices will be explored and the graph will only move backward in time,

this is particularly useful when the user does not want exploration of children vertices and

is only interested to go back in time, for example, to view the initial infection point (IIP).

Since there may be many children vertices as compared to probably a single parent vertex,

this will help prevent the visualizer to display the many children vertices when clicking on a

vertex. At any point in time an analyst can enable forward tracking and click on the vertex

to observe its children vertices and vice versa.

Advanced search. An analyst can search on unique id of each vertex, file name and PID.

This will help provide the analyst a good reference point, for example a known compromised

file, from which the graph can be explored in either direction (forward or backward tracing).
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A search can be made on a specific label as well. Searching on files for example will display

up to n number of files, where n is the display limit.

Pinning vertices. Security analysts can also set checkpoints by pinning a certain vertex,

which disables a vertex from vanishing. This feature is extremely useful for investigating

multistage APT attacks as security analysts can pin each attack stage while exploring.

Freeze exploration. Our Visualizer allows users to ”freeze” the graph at any time. This

allows the analyst to click on the vertices and see its description without making it explore

and display its neighbouring vertices. This can help analysts to select relevant vertices for

exploration, without exploring every vertex to view its description, thereby reducing the size

of the graph significantly.

Dynamic positioning of vertices using d3.js. For the visualization, we took inspiration

from physical forces that can help visualize the interactions between bodies (vertices and

edges in our case), and therefore adopted d3’s force layout to visualize the graphs. d3s force

layout uses a physics-based simulator for positioning the visual elements of the graph. It

simulates forces that allows a security analyst to control the position of vertices in relation

to each other and the simulation. d3 forces allows vertices to attract or repel one another,

and vertices can be configured to attract to the center of gravity. d3 force can calculate the

velocity and position of incoming elements that are governed by rules mimicking the laws

of physics. We have carefully chosen the ideal parameters of physical forces and rules and

used a collision detection mechanism for the generated graph that can not only help find a

stable equilibrium for the vertices during the simulation, but also prevent the new vertices

from overlapping thereby visualizing stunning graphs. We also change the center of gravity

at each iteration in such a way that the children of a vertex can fan in and out according

to the parent vertex’s position to prevent crowding of nodes in a certain area. Since the

simulation is aimed at visualizing the new vertices (active vertices) that were not previously

part of the graph. In order to prevent overlapping of these new vertices with the old ones,

Zeek Agent Visualizer finds the closest positions for new vertices that have not been taken

by any older vertex along the x-axis.

6.3 SECURITY ANALYSIS

Our arguments for satisfying the design goals mentioned in Section 6.2 are as follows:

Low Overhead (G1). Zeek Agent Daemonis implemented using C++ language and fol-

lows publisher-consumer model, which keeps the runtime overhead minimal on the end host.

Moreover, we leverage SQLite virtual tables that are designed to provide faster execution of
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queries without excessive memory footprint.

Non-intrusive (G2). Zeek Agent Daemonleverages commodity auditing frameworks

(e.g., Linux Audit) that come default with the operating systems to collect monitoring data.

Moreover, our correlation methodology is oblivious to the underlying operating system.

Integrated (G3). In Zeek Agent we retrieve host events using Zeek’s Broker Library,

allowing us to process host events analogous to network events in Zeek. After that, we

correlate host and network layers using the 3-step procedure described in Section 6.2.3 and

extend Zeek’s conn.log with the identifiers that link network flows to the host socket events.

Thus, all layers share a common language to describe an activity.

Support Dynamic Monitoring (G4). Zeek Agent Manager enables security analysts

to retrieve host events using SQL queries. Using this feature, the security analysts can

dynamically select what to collect from the host based on their investigation needs.

Interactive Graph Visualization (G5). Given a threat alert event, Zeek Agent Visu-

alizer seamlessly fetches the correlated host and network logs and constructs a provenance

graph. Our web-based graphical interface enables security analysts to interactively explore

different parts of the graph without overwhelming them with irrelevant information.

6.4 EVALUATION

Our evaluation seeks to answer the following questions: (1) what is the resourse usage

of Zeek Agent? (2) How scalable is Zeek Agent Manager in large scale enterprises with

increasing number of Zeek Agent Daemon hosts? (3) How effective and accurate is Zeek

Agent as an investigation tool?

We conducted our evaluation on an Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz server

with 16 cores and 64 GB RAM. VMs were provisioned with VirtualBox using a common

deployment model of 2GB RAM and 2 vCPUs and ran Ubuntu 20.04.

In the first experiment the aim was to study how Zeek Agent Manager scales with in-

creasing number of Zeek Agent Daemon processes. For this a central logger VM was made

which ran Zeek Agent Manager and many host VMs were constructed running Zeek Agent

Daemon process. The host VMs were turned on in multiples of two and the resource usage

on logger machine was noted. The resource usage data included CPU and RAM utilization.

During the experimentation, Zeek Agent Manager was fetching logs from all the Zeek Agent

Daemon hosts in the cluster and performing correlation between host and network logs.

Furthermore, to generate activity on host VMs we simulated several real-world workloads
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Figure 6.4: CPU and memory utilization of Zeek Agent Daemon process over the period of
24 hours while running several benchmarks.

using standard benchmarks such as LMBench3 and Apache benchmark4. The benchmarks

generated activity to profile the CPU, RAM and file system of the host VMs. The Zeek

Agent Daemon was constantly collecting logs about these activities and was sending it to

the Zeek Agent Manager node.

The second experiment was conducted to check the resource utilization on a single node

running Zeek Agent Daemon process. For this CPU and RAM usage of Zeek Agent Daemon

process was collected over a period of 24 hours and the results were plotted. In all this time,

the benchmarks were also executing on the machine being tested.

6.4.1 Zeek Agent Daemon Resource Usage

After collecting the data for 24 hours, the results were plotted. Figure 6.4 shows our

resource usage experiment results. We can see that resource usage of Zeek Agent Daemon

was quite low. The max peak RAM utilization was just 120MB, and the average CPU

usage was below 20%. These results show that even with resource intensive benhcmarks,

the runtime overhead of Zeek Agent Daemon is low.

3Available at http://lmbench.sourceforge.net/
4Available at https://httpd.apache.org/docs/2.4/programs/ab.html
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Figure 6.5: CPU and memory utilization of Zeek Agent Managerwith varying number of
Zeek Agent Daemon hosts.

6.4.2 Zeek Agent Manager Scalability Analysis

The results for our scalability analysis are shown in Figure 6.5. We can see that the Zeek

Agent Manager process scales linearly with the increasing number of Zeek Agent Daemon

hosts. Both the RAM and CPU usage follows a linear trend with a gentle slope. This means

that the resource usage of Zeek Agent Daemon process increases very reasonably when the

workload from Zeek Agent Manager hosts increases.

6.4.3 Case Study: Malicious Upgrade

To show the effectiveness of correlating host and network logs and building a unified prove-

nance graph, we leveraged DARPA Operationally Transparent Cyber (OpTC) Datasets [152]

that includes both host events and Zeek network logs. This dataset contains more than 17

billion events collected from 500 host, running Windows 10 operating system. Beside be-

nign activities, this dataset also includes malicious events from three APT attacks that were

injected by red team over three day period in their 500 host network. We used day three

APT, also known as Malicious Upagrade in the dataset documentation, for evaluating Zeek

Agent correlation and graph visualization capabilities.

Attack Scenario. The day three APT attack begins by downloading Notepad plus soft-

ware on one of the hosts called Sysclient0051. This software was susceptible to a malicious

upgrade. When updated, the software contact a malicious server and downloaded a binary

called gup.exe, which was essentially a Meterpreter payload. Meterpreter is a Metasploit
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Figure 6.6: Screenshot of our interactive provenance graph visualization tool while investi-
gating Malicious Upgrade attack from DARPA dataset.

attack payload that provides an interactive shell to the attacker from which to explore the

target machine and execute code. This binary, gup.exe used CMD to figure out information

about local system and ran ARP scanner on 142.20.56.0/22. After that this binary used

Meterpreter “enum domain” modules to identify domain controller and “enum shares” to

identify any shares on host. After it migrated from process “cKfGW.exe” to “LSASS”. The

attacker then ran Mimikatz to collect clear-text passwords and established persistence via

Meterpreter. Finally, the attacker RDPed to the machine from attacker server.

Investigation The unified provenance graph generated by our visualization tool was able

to completely capture this multistage attack. A screenshot of our visualization tool with the

unified graph is shown in Figure 6.6. We have shown only part of the graph for readability.

The administrator can easily see in this unified provenance graph that how notepad++ process

spawned a malicious-looking process that made a connection to an outside server. The

security analysts can further click on the vertex labeled “Zeek” to see other details related

to this connection, such as HTTP responses and file hashes, which were impossible to extract

using traditional provenance graph techniques.

131



CHAPTER 7: RELATED WORK

7.1 INTRUSION DETECTION

Existing intrusion detection approaches can be classified as online and offline approaches.

Online detection approaches often look for a specific sequence of syscalls to detect malicious

programs in a running system [155, 156]. While offline approaches leverage forensic analysis

on audit log to find the root cause of intrusion. Due to performance and space constraints,

online approaches do not keep audit logs to support forensic analysis. On the other hand,

existing offline approaches are labor intensive which makes them prohibitively impractical

in an enterprise.

To improve syscall based methods, Tandon et al. [157] considered syscall arguments in ad-

dition to syscall sequences for malicious program detection. Sekar et al. [158] further added

more complex structures such as loops and branches in the syscall sequences. However, all

these syscall based systems suffer from a high false alarm rate due to the lack of contextual

information. NoDoze and RapSheet use historical contextual information of system activi-

ties with more domain information such as process names and commandline arguments to

achieve better accuracy. Researchers have also proposed to automatically detect attacks

using machine learning [159, 160]. However, these methods also have significant detection

error and suffer from generating too many false alerts [47, 161].

7.2 THREAT ALERT TRIAGE

Ben-Asher et al. [42] did a study to investigate the effects of knowledge in detecting true at-

tacks. They found that contextual knowledge about alert was more helpful in detection than

cyber analysts experience and prior knowledge. Zhong et al. [49] mined past analysts’ oper-

ation traces to generate a state machine for automated alert triage. Chyssler et al. [52] used

a static filter with aggregation to reduce false alarm in IP network with the help of end-user

involvement to adjust filter rules. There are many other proposed approaches to reduce the

number of alerts such as careful configuration and improved classification methods [50, 51];

however, there are still too many threat alerts for the analysts to properly investigate [52].

To the best of our knowledge, NoDoze is the first system to leverage data provenance to

automate the alert triage process in an enterprise without analysts involvement.

In the absence of provenance-based causality, alert correlation is another technique to

assist analysts by correlating similar alerts. Existing systems use statistical-, heuristic-,
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and probabilistic-based alert correlation [162, 163, 164, 165] to correlate alerts. Similar

approaches are used in industry for building SIEMs [39, 166]. These techniques are based

on feature correlations that do not establish causality. In contrast, RapSheet can establish

actual system-layer dependencies between events.

7.3 PROVENANCE ANALYSIS

A lot of work has been done to leverage data provenance for forensic analysis [10, 13,

167, 168], network debugging [26, 27], and access control [28]. Jiang et al. [169] used pro-

cess coloring approach to identify the intrusion entry point and then use taint propagation

approach to reduce log entries. Xie et al. [170] used high-level dependency information to

detect malicious behaviour. However, this system only considered one event at a time with-

out malicious behaviour propagation i.e., if ftp connects to some socket address which is not

in their normal event database they will mark it as malicious. However, NoDoze considered

the whole path i.e. the creation and ramification ftp-socket event for categorization by using

anomaly score propagation algorithm. PrioTracker [20] accelerates the forward tracing by

prioritizing abnormal events. Unlike PrioTracker, NoDoze focuses on triaging alerts and

generating a more precise provenance graph. Furthermore, Priotracker only considers the

abnormality of single events, it is not capable to distinguish similar events with different

contexts in the dependency graph.

Elsewhere in the literature, several provenance-based tools have been proposed for network

debugging and troubleshooting [26, 171, 172, 173, 174]. Chen et al. [172] introduced the

concept of differential provenance to perform precise root-cause analysis by reasoning about

differences between provenance trees. Zeno [171] proposed temporal provenance to diagnose

timing-related faults in networked systems. Using sequencing edges Zeno was able to explain

why the event occurred at a particular time. RapSheet also uses the sequencing edges but

to reason about dependencies between different attack tactics. Zhou et al. [175] designed

SNooPy a provenance-based forensic system for distributed systems that can work under

adversarial settings.

7.4 LOG REDUCTION

An important component of RapSheet is the log reduction algorithm, which is a topic

that is well-studied in recent literature [19, 22, 25]. In the early stages of this dissertation,

we realized that existing log reduction techniques were inapplicable to RapSheet design
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because they did not preserve the necessary connectivity between EDR generated alerts.

For example, LogGC [19] removes unreachable events, and thus would not be able to cor-

relate alerts that were related through garbage-collected paths. Similarly, Hossain et al.’s

dependence-preserving data compaction technique [25] does not consider that some edges

are alert events and must, therefore, be preserved. Similarly, several provenance graph com-

pression techniques [18, 24, 111] are proposed in the literature to reduce the space overhead

of provenance collection. Steven et al. [176] proposed a provenance visualization technique

which can facilitate investigator in data provenance analysis.

7.5 DISTRIBUTED SYSTEM TRACING

End-to-end tracing is required in distributed systems to enable comprehensive profiling.

Existing tools, such as Dtrace [177], Dapper [178], X-trace [179], MagPie [180], Fay [181],

and PivotTracing [182] instrument the underlying application to log key metrics at run time.

On the other hand, lprof [132] and Stitch [133] allow users to profile a single request without

instrumenting any distributed application. lprof uses static analysis to find identifiers that

can distinguish output logs of different requests. However, lprof only correlate logs from the

same distributed application. On the other hand, Stitch requires certain identifiers in the log

messages in order to correlate log messages across different distributed applications. Finally,

both systems capture mere correlations instead of true causality between application logs

and that can reduce the accuracy of attack reconstruction.
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CHAPTER 8: CONCLUSIONS

As the complexity of modern systems continues to increase and attack techniques continue

to evolve, I believe that the threat detection and investigation research will only grow in

relevance and applicability. This dissertation presents scalable solutions for securing com-

puter systems using principled approaches based on data provenance and program analysis.

I showed that data provenance in tandem with program analysis gives security analysts

the high ground – a capability that enables them to accurately perform causality analysis,

identify the root cause and impact of intrusions, and effectively prioritize and contextualize

threat alerts.

NoDoze features contextual information of generated alerts to automatically triage alerts.

It uses a novel network diffusion algorithm to propagate anomaly scores in the provenance

graphs of alerts and generates aggregate anomaly scores for each alert. NoDoze then uses

these aggregate anomaly scores to triage threat alerts. Evaluation results show that NoDoze

substantially reduces the slog of investigating false alarms.

RapSheet provides a viable solution for incorporating data provenance into commercial

Endpoint Detection and Response (EDR) tools. RapSheet uses the notion of tactical prove-

nance to reason about causally related threat alerts and then encodes those related alerts

into a tactical provenance graph. These tactical provenance graphs are later used for triaging

EDR-generated threat alerts and for system log reduction.

Provenance analysis can accelerate alert investigation, but only after a provenance graph

of the threat alert has been constructed. Unfortunately, before this dissertation, all the

provenance graph generation techniques were mainly offline and took hours or days to re-

spond to investigator queries. To address this limitation, I designed the Swift framework.

Swift provides high-throughput causality tracking and real-time provenance graph genera-

tion capabilities. Swift consists of an in-memory graph database that enables space-efficient

graph storage and a hierarchical storage system that keeps the forensically-relevant part

of the provenance graph in the main memory while evicting rest to disk. Swift is capable

of identifying in-progress threats and provides quick investigation capabilities to a security

analyst before serious damage is inflicted.

To solve the semantic gap and dependency explosion problems that currently exist in

causality analysis frameworks, I presented OmegaLog. Using static binary analysis tech-

niques, OmegaLog automatically parses dispersed and heterogeneous application event log

messages at runtime and associates each record with the appropriate abstractions in the

system-level provenance graph. This association allows OmegaLog to transparently solve
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both the dependency explosion problem (by identifying event-handling loops through the

application event sequences) and the semantic gap problem (by grafting application event

logs onto the whole-system provenance graph).

Finally, to further stimulate threat detection and investigation research, we designed an

open source and easy-to-deploy endpoint monitoring framework called Zeek Agent. Zeek

Agent transparently correlates endpoint events with the Zeek network logs to provide deeper

visibility into enterprise-wide activities. Moreover, Zeek Agent allows security analysts to

construct and visualize a unified provenance graph from the correlated endpoint and network

logs to accelerate the threat investigation process.
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