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ABSTRACT

Image Restoration (IR) is a task of reconstructing the latent image from its

degraded observations. It has become an important research area in com-

puter vision and image processing, and has wide applications in the imaging

industry. Conventional methods apply inverse filtering or optimization-based

approaches to restore images corrupted in ideal cases. The limited restoration

performance on ill-posed problems and the low-efficient iterative optimization

processes prevents such algorithms from being deployed to more complicated

industry applications. Recently, the advanced deep Convolutional Neural

Networks (CNNs) begin to model the image restoration as learning and infer-

ring the posterior probability in a regression model, and successfully achieved

remarkable performance. However, due to the data-driven nature, the models

trained with simple synthetic paired data (e.g, bicubic interpolation or Gaus-

sian noises) cannot be well adapted to more complicated inputs from real

data domains. Besides, acquiring real paired data for training such models is

also very challenging.

In this dissertation, we discuss the data manipulation and model adaptabil-

ity of the deep learning based image restoration tasks. Specifically, we study

improving the model adaptability by understanding the domain difference

between its training data and its expected testing data. We argue that the

cause of image degradation can be various due to multiple imaging and trans-

mission pipelines. Though complicated to analyze, for some specific imaging

problems, we can still improve the performance of deep restoration models

on unseen testing data by resolving the data domain differences implied in

the image acquisition and formation pipeline. Our analysis focuses on digital

image denoising, image restoration from more complicated degradation types

beyond denoising and multi-image inpainting. For all tasks, the proposed

training or adaptation strategies, based on the physical principle of the degra-

dation formation or based on geometric assumption of the image, achieve a
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reasonable improvement on the restoration performance.

For image denoising, we discuss the influence of the Bayer pattern of the

Camera Filter Array (CFA) and the image demosaicing process on the adapt-

ability of the deep denoising models. Specifically, for the task of denoising

RAW sensor observations, we find that unifying and augmenting the data

Bayer pattern during training and testing is an efficient strategy to make

the well-trained denoising model Bayer-invariant. Additionally, for the RGB

image denoising, demosaicing the noisy RAW images with Bayer patterns

will result in the spatial-correlation of pixel noises. Therefore, we propose the

pixel-shuffle down-sampling approach to break down this spatial correlation,

and make the Gaussian-trained denoiser more adaptive to real RGB noisy

images.

Beyond denoising, we explain a more complicated degradation process

involving diffraction when there are some occlusions on the imaging lens.

One example is a novel imaging model called Under-Display Camera (UDC).

From the perspective of optical analysis, we study the physics-based imaging

processing method by deriving the forward model of the degradation, and

synthesize the paired data for both conventional and deep denoising pipeline.

Experiments demonstrate the effectiveness of the forward model and the

deep restoration model trained with synthetic data achieves visually similar

performance to the one trained with real paired images.

Last, we further discuss reference-based image inpainting to restore the

missing regions in the target image by reusing contents from the source

image. Due to the color and spatial misalignment between the two images,

we first initialize the warping by using multi-homography registration, and

then propose a content-preserving Color and Spatial Transformer (CST) to

refine the misalignment and color difference. We designed the CST to be

scale-robust, so it mitigates the warping problems when the model is applied

to testing images with different resolution. We synthesize realistic data while

training the CST, and it suggests the inpainting pipeline achieves a more

robust restoration performance with the proposed CST.
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CHAPTER 1

INTRODUCTION

The image restoration problem has been well studied for decades, and is

becoming a more important research area in low-level and physics-based

vision. Common image restoration tasks include image denoising, deblurring,

super-resolution, and inpainting, etc. Suppose we model the degradation

process as

y = Hx+ n, (1.1)

where x is the latent clean image, y is the corrupted image with degradation,

H is the degradation matrix, and n is the additive noise function. For

example, in an image denoising task, H is an identity matrix, and n is the

real complicated noise model in practice. For a more complicated degradation

model, H becomes the matrix representing the degradation operator. For

image inpainting tasks, H is the occlusion mask removing pixels from the

images. The goal of the image restoration task is to estimate the latent clean

or complete image by observing the corrupted input. Due to its ill-posed

nature, image restoration becomes challenging, especially when the image

degradation is severe and complicated.

Conventionally, image restoration tasks can be addressed by image filtering,

or modeled by a Maximum Likelihood (ML) or a Maximum a Posteriori (MAP)

problem. Recently, embracing the large-scale training data and powerful

representation of Deep Neural Networks (DNNs), deep learning-based image

restoration models have achieved very competitive performance on most

image restoration applications such as de-noising [1, 2, 3, 4, 5, 6], de-blurring

[7, 8], de-raining [9, 10], de-hazing [11, 12], super-resolution [13, 14], light-

enhancement [15] , and inpainting. A well-trained deep model forcibly learns

the mapping from a specific set of the corrupted images y to the degradation-

free or complete image x. The advantages of these methods are fast during

inference without iterative optimization steps, and high performance resulting
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from flexible non-linear transformation of the deep network layers. However,

they also suffer from poor adaptation and generalization ability issues and

data hungry bottleneck. Specifically, most existing deep models are trained

on paired data with the degraded images corrupted by simple Gaussian

noise, bi-cubic down-sampling, or manually-defined blur kernels. Such models

cannot be successfully applied to real inputs with complicated or combined

degradation factors. Models trained with paired data (ŷ, x) can not be easily

used to test on inputs y from another domain relatively different from the

training domain.

In this thesis, we focus on addressing three problems deep image restoration

models face while being applied to practical real-world problems: training-

testing domain shift, real complicated training data insufficiency, and training-

testing image scale difference. Specifically, we present three types of image

restoration tasks: RAW and RGB image denoising, image restoration with

complicated degradation beyond denoising, and reference-based image in-

painting with real color and spatial difference between the target and source

images.

The contributions of this thesis focus on the specific strategies designed for

specific tasks:

• First, for RAW image denoising, we study the influence of Bayer patterns

of the Camera Filter Array (CFA) on the model adaptability. For a

real-collected dataset containing RAW images with a single or different

Bayer pattern, we propose Bayer Unification (BayerUnify) and Bayer

Augmentation (BayerAug) strategies to train the network. Applying

the adaptor greatly improves the denoising performance on unseen noisy

data.

• Second, for real RGB image denoising, we analyze demosaicing and

argue that the demosaicing process interpolates the pixels to make the

image noisy patterns spatially-correlated. Therefore, we propose to

break down the spatial correlation using a pixel-shuffle down-sampling

method. Experiments show the effectiveness of the strategy by verifying

the performance improvement of a model trained with pixel-independent

Gaussian noises.

• Third, for a more complicated degradation type related to diffraction
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effects caused by the occlusions on the imaging lens, we propose a physics-

based image formation approach based on optical analysis to synthesize

training data. The synthesized Point Spread Function (PSF) yields

reasonable restoration performance using a traditional deconvolution

pipeline. The model trained with paired synthesized data also achieves

comparable visual restoration to the model trained with real paired

data.

• Fourth, for another type of image restoration task named image inpaint-

ing, we introduce a reference-based image inpainting problem. Given a

target image and a source image capturing a similar scene, we restore

and complete the target image by reusing the contents from the source

image. To address the real spatial and color differences between them,

we propose a pipeline consisting of multi-homography registration and

a deep Color-Spatial Transformation (CST) module. To adapt the CST

to practical inputs with multiple scales, complicated color differences

and spatial misalignment, we design the deep models to be scale-robust,

and synthesize the training dataset with a diversity of color and spatial

differences. The model then works well on real user images.

In this thesis, we organize the contents in the following ways. In chapter

2, we present the RAW image denoising networks and the proposed Bayer

pattern-related adaptation methods. In chapter 3, the pixel-shuffle down-

sampling method is introduced to adapt an AWGN-trained denoiser to real

RGB noises. In chapter 4, a physics-based image processing approach is

presented for more complidated degradation related to diffraction caused by

lens occlusions. In chapter 5, we present Transfill, a reference-based image

inpainting model addressing real color and spatial difference between the

source and target images. Finally, conclusions are drawn in chapter 7. We

will discuss the limitations of the current methods and future work of each

task.
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CHAPTER 2

BAYER PATTERN MANIPULATION FOR
REAL RAW IMAGE DENOISING

In this chapter, we mainly discuss the training-testing data domain mismatch-

ing problem related to Bayer patterns for real RAW image denoising tasks. We

present Bayer Unification (BayerUnify) and Bayer-preserving Augmentation

(BayerAug) strategies to train the networks adaptive to testing images with

arbitrary Bayer patterns.

2.1 Introduction

Image denoising is one of the fundamental problems in image processing and

computer vision, and restoring high quality images from extremely noisy

ones remains challenging. This can be even worse when it comes to images

taken from mobile devices. Due to the use of relatively low-cost sensors and

lenses, images captured by mobile cameras can be severely corrupted by high

level noise, especially in low-light scenarios. Many denoising methods have

been proposed to address this problem, including traditional methods such as

NLM [16] and BM3D [17] as well as more recent deep neural network (DNN)

based denoising models [18, 19, 2, 20, 21, 22, 23], but their performances are

still far from satisfactory on mobile devices.

Recently, thanks to public noisy image datasets [24, 15, 25], denoising

RAW image data and real sRGB data has received more and more attention

and has shown promising results [15, 26, 27]. Specifically, RAW images

are direct readings from images sensors, with camera filter arrays (CFAs)

arranged in specific patterns such as the Bayer pattern [28]. These digital

signals are further post-processed to obtain RGB images through a complex

pipeline including lens shading correction, white balancing, demosaicing,

gamma correction, etc. [29]. Therefore, original noise properties that exist

in RAW images are often distorted in RGB images, making the noise harder
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Figure 2.1: Demonstration of the proposed Bayer pattern unification (a) and
Bayer preserving augmentation (b). The shown method converts and
augments the Bayer RAW images without affecting the content, while
improper unification or augmentation would disturb the spatial relationship
of the RAW images and therefore result in artifacts.

to remove afterwards. This means that there are potentially better denoising

methods that can be developed on the RAW image data [15], compared with

many works done in the RGB domain.

In this chapter, we mainly study the problem of RAW image denoising using

Deep Neural Networks (DNNs). We propose to use a UNet-based structure

and review and explore the performance of DNNs on image denoising task.

For RAW image denoising, we introduce a novel data unification and data

augmentation method to efficiently train the network.
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2.2 Bayer Pattern Unification and Augmentation

Background In this section, we introduce the intuitive idea and methods

of Bayer pattern unification and augmentation specifically designed for RAW

image denoising networks. To perform RAW image denoising with DNNs, it is

a common practice to pack a Bayer raw image into a 4-channel RGGB image,

and feed it into neural networks [15]. With data collected from cameras with

different Bayer patterns, a simple solution is to train one model for each

pattern. However, this decreases the size of the effective training set and

thereby hurts the performance. To fully utilize all training data to achieve

better performance, we introduce a Bayer pattern unification (BayerUnify)

technique to eliminate the differences among Bayer patterns. Flipping and

cropping operations are employed to turn a specific CFA pattern into another

one, with which I can convert all training images into the same pattern. As a

result, all the training data can be used together to optimize a single model

to achieve the best possible result.

Data augmentation is also a common approach in deep learning to improve

model performance by increasing the diversity of a training dataset. However,

data augmentation of RAW images is not as straightforward as that of RGB

images. An example is shown in Fig. 2.1 (b). Simply flipping the packed

4-channel RAW images is erroneous because it results in an image that is

impossible in real world. This phenomenon can also be found in other types

of augmentation operations such as cropping, transposition, . To tackle this

problem, we introduce a Bayer preserving augmentation (BayerAug) technique

that allows proper augmentation for raw images. As shown in Fig. 2.1 (b),

extra operations are required to correctly flip a raw image.

Both BayerUnify and BayerAug techniques are simple, yet effective ways

for increasing the training data size and diversity for raw image denoising.

We apply these techniques to train models based on our modified U-Net [30].

Bayer Pattern Unification (BayerUnify) The Bayer patterns of RAW

images fall into different categories. To apply a single CNN to denoise raw

images with different Bayer patterns, it is essential to align the order of the

channels since different channels capture different regions of wavelength. In

the meantime, the structural information laid in adjacent pixels from different

channels has to be maintained. Based on these principles, we utilize multiple
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Figure 2.2: Unify Bayer pattern via cropping in the training phase.

Figure 2.3: Unify Bayer pattern via padding and de-unify via cropping in the
testing phase.

ways to convert a RAW image from one Bayer pattern to another, which are

applicable to different scenarios.

In the training stage, we unify raw images with different Bayer patterns

via cropping. By scarifying a minor number of pixels, it enables us to use

RAW images from different cameras to train a single denoising model, and

thereby increases the number of available training samples.

Suppose we represent each pattern by the sequence of its channels within

each 2× 2 block, in the order of top-left, top-right, bottom-left, and bottom-

right. Typically, there are four possible formats, namely RGGB, BGGR,

GRBG, and GBRG. For clarity, I use BGGR as the target format to illustrate

the method.

Cropping an odd number of rows or columns creates offsets which alter

the Bayer pattern. As shown in Fig. 2.2, cropping the first row and the last

row changes an C1C2C3C4 image into a C3C4C1C2 image (e.g. GRBG to

BGGR). Likewise, cropping the first and the last column alters C1C2C3C4 into

C2C1C4C3 (e.g. GBRG to BGGR). These two operations together convert

C1C2C3C4 into C4C3C2C1 (e.g. RGGB to BGGR). Hence, one can convert

any Bayer pattern to another by cropping.

It has shown that one can train a Bayer-pattern-specific network with RAW

images of different patterns. Moreover, it is possible to denoise images of

different patterns with the trained network. Due to the fact that every pixel

of the input images needs to be processed, instead of cropping some pixels
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from the input images, we unify their Bayer patterns via padding some pixels.

After network denoising, we simply remove these extra pixels to convert the

output images. This process is illustrated in Fig. 2.3.

Padding alters the Bayer pattern in a similar way to cropping. Padding

one row of pixels to the top and the bottom changes an C1C2C3C4 image

into a C3C4C1C2 image (e.g. GRBG to BGGR); padding one column to the

left and to the right turns C1C2C3C4 into C2C1C4C3 (e.g. GBRG to BGGR);

padding to all four edges converts C1C2C3C4 into C4C3C2C1 (e.g. RGGB to

BGGR).

Hence, we can apply padding to unify any pattern to the desired one. As

a straightforward de-unification, removing the padded pixels reverses the

conversion. Note that I apply reflection padding to make sure the additional

pixels come from the correct channel.

Bayer Preserving Augmentation (BayerAug) When training a neural

network for vision and graphic tasks on RGB images, it is common to apply

flipping and cropping as data augmentation methods. Flipping and cropping

increase the effective number of samples dramatically while being very concise.

However, for Bayer raw images, flipping operations may affect the Bayer

pattern. As illustrated in Fig. 2.4 (a) and (b), a horizontal flip switches the

Bayer pattern from C1C2C3C4 to C2C1C4C3, and a vertical one switches the

pattern from C1C2C3C4 to C3C4C1C2.

Therefore, we combine both flipping and cropping to perform data aug-

mentation while preserving the Bayer pattern of the image. After flipping

an image, we apply cropping to reverse the change of Bayer pattern. We

illustrate this process in Fig. 2.4 (c).

As another type of flipping, a transposition has different effects on different

patterns, depending on the channels of the diagonal components. Generally,

the transpose of an C1C2C3C4 image would be in the pattern of C1C3C2C4.

For a RGrGbB input, its transpose would be in RGbGrB, which is roughly

the same format (assuming the different between Gr channel and Gb channel

is subtle). However, for a GRBG input, its transpose would be in GBRG, a

totally different pattern. For this reason, we can safely perform transposition

to augment RGGB and BGGR images, but not in GRBG or GBRG.

Training with patches instead of the entire images is another common trick

used in model training. Different from the cropping operations in BayerUnify,
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Figure 2.4: An example of Bayer preserving augmentation. Since flipping
RAW image may affect its Bayer pattern, we first perform a horizontal
flipping (BGGR→GBRG), and then crop its first and last column
(GBRG→BGGR) to obtain a horizontally flipped BGGR image from a
BGGR image.

Set Scene # GRBG # BGGR # RGGB Total
Train 2-10 40 126 98 264
Test 1 30 16 10 56

Table 2.1: The train/test split of the SIDD dataset.

to correctly obtain patches from the entire Bayer raw image without changing

its Bayer pattern, we need to avoid any offset. This could be done by simply

cropping even numbers of rows (columns).

With combinations of the discussed three flipping methods and one cropping

method, one will be able to perform data augmentation on Bayer RAW images

without any flaw. Note that they can be applied on both homogeneous datasets

[15] and heterogeneous datasets [24], enhancing the generalizability of the

obtained model.

2.3 Experiments on RAW Image Denoising

The method is evaluated on the Smartphone Image Denoising Dataset (SIDD)

[24]. The statistics of the Bayer pattern and scene number are shown in

Table 2.1. Its training set contains 320 pairs of noise-free images and noisy

images, which cover three different Bayer patterns and 10 different scenes. Its
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validation set and testing set consist of 40 pairs of image from eight different

scenes. Both RAW images and sRGB images are available.

A modified U-Net [30] architecture is used in the experiments. The U-Net

structure contains four-level downsampling layer blocks, and for each block,

there are two convolutional layers. As proposed by [15], we packed the raw

images into four channels as the network input. Differently, we trained the

networks to produce four-channel outputs, and unpacked them to obtain

denoised raw images. In the experiments, all the networks were trained with

L1 loss and AdamW optimizer [31] with initial learning rate of 2e − 4 and

weight decay of 2e− 5. Patch size and mini-batch size were set to 512 and 4

respectively. Each model is trained for 200, 000 iterations, and the learning

rate is divided by 10 on plateaus. We detected the plateaus and selected

the best models using the PSNR scores on the scene 1 patches of the official

validation set. For testing, the entire images are fed into the network.

Ablation Study The ablation study on the proposed strategy in terms of

PSNR is illustrated in Table 2.2. As the baseline, we trained one network

for each Bayer pattern. Since the number of samples available for training

each model is insufficient, this method resulted in a limited performance.

We also compared it with NäıveNorm method, which is directly permuting

the order of the packed 4-channel input. To evaluate, we ran a model with

training and testing data converted (to BGGR) with this method. Compared

to BayerUnify, this method obtains a lower performance, which shows the

importance of our valid raw data unification method. Besides, in the NäıveAug

method, it is plausible to flip the packed 4-channel images as I do to 3-channel

RGB images. However, flpping a 4-channel image disarrays the spatial signal

and generates images that are very different from the original dataset. We

validated this augmentation method based on the correctly unified dataset

(BayerUnify).

Another network was trained with the proposed Bayer pattern unification.

In the training phase, we applied cropping to unify all 264 training pairs to

BGGR format. In the testing phase, we employed padding to unifying and

cropping to convert the test cases. Thanks to the increase of training samples,

the method outperforms the previous baselines.

We further trained a network with both Bayer pattern unification and Bayer

preserving augmentation. In the training phase, after pattern unification, we
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augmented the data via flipping and cropping. The result shows that the

data augmentation boosted the generalization of the obtained model, and

consequently improved its performance on the unseen scene.

Table 2.2: PSNR of different unification and augmentation methods. As
shown, normalizing and augmenting raw images in problematic methods
(NäıveUnify and NäıveAug) result in degradation of the network
performance.

Method GRBG BGGR RGGB

GRBG Only 43.46 - -
BGGR Only - 49.50 -
RGGB Only - - 51.59
NäıveUnify 42.78 49.74 51.83
BayerUnify 43.92 49.88 51.85
BayerUnify+NäıveAug 43.83 49.76 51.81
BayerUnify+BayerAug 44.02 49.92 51.95

2.4 Conclusions

In this chapter, we present the influence of Bayer pattern on the training of

RAW image denoising models. We proposed effective data pre-processing and

augmentation methods specifically designed for Bayer RAW images, namely

BayerUnify and BayerAug. By applying them, the model trained with images

belonging to the unified Bayer patterns is adapted to testing inputs with

arbitrary Bayer patterns, and the model itself is better generalized to unseen

testing data by training on more data of different Bayer patterns.
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CHAPTER 3

PIXEL-SHUFFLE DOWNSAMPLING:
APPLYING AWGN-TRAINED DENOISER

TO REAL RGB DENOISING

In this chapter, we mainly discuss the real RGB image blind denoising. We

analyze the influence of demosaicing on spatial-correlated patterns in the RGB

noisy images and propose an adapter to break down the spatial correlation.

Specifically, we propose a pixel-shuffle down-sampling adaptation strategy for

a well-trained Gaussian Denoiser to be applied to spatial-correlated real RGB

noises.

3.1 Introduction

Figure 3.1: Basic idea of the proposed adaptation method: Pixel-shuffle
Down-sampling (PD). Spatially-correlated real noise (left) is broken into
spatially-variant pixel-independent noise (middle) to approximate
spatially-variant Gaussian noise (right). Then an AWGN-based denoiser can
be applied to such real noise accordingly.

As a fundamental task in image processing and computer vision, image

denoising has been extensively explored in the past several decades even for

downstream applications [32, 33]. Traditional methods including the ones

12



based on image filtering [34], low rank approximation [35, 36], sparse coding

[37], and image prior [38] have achieved satisfactory results on synthetic noise

such as Additive White Gaussian Noise (AWGN). Recently, deep CNN has

been applied to this task, and discriminative-learning-based methods such as

DnCNN [1] outperform most traditional methods on AWGN denoising.

Unfortunately, while these learning-based methods work well on the same

type of synthetic noise that they are trained on, their performance degrades

rapidly on real images, showing poor generalization ability in real world

applications. This indicates that these data-driven denoising models are

highly domain-specific and non-flexible to transfer to other noise types beyond

AWGN. To improve model flexibility, the recently-proposed FFDNet [5] trains

a conditional non-blind denoiser with a manually adjusted noise-level map. By

giving high-valued uniform maps to FFDNet, only over-smoothed results can

be obtained in real image denoising. Therefore, blind denoising of real images

is still very challenging due to the lack of accurate modeling of real noise

distribution. These unknown real-world noises are much more complex than

pixel-independent AWGN. They can be spatially-variant, spatially-correlated,

signal-dependent, and even device-dependent.

To better address the problem of real image denoising, current attempts can

be roughly divided into the following categories: (1) realistic noise modeling

[39, 40, 6], (2) noise profiling such as multi-scale [41, 36], multi-channel [35]

and regional based [42] settings, and (3) data augmentation techniques such

as the adversarial-learning-based ones [43]. Among them, CBDNet [39]

achieves good performance by modeling the realistic noise using the in-camera

pipeline model proposed in [44]. It also trains an explicit noise estimator and

sets a larger penalty for under-estimated noise. The network is trained on

both synthetic and real noises, but it still cannot fully characterize real noises.

Brooks et al. [40] used prior statistics stored in the RAW data of DND to

augment the synthetic RGB data, but it does not prove the generalization of

the model on other real noises.

In this chapter, from a novel viewpoint of real image blind denoising,

we seek to adapt a learning-based denoiser trained on pixel-independent

synthetic noises to unknown real noises. As shown in Figure 3.1, we assume

that real noises differ from pixel-independent synthetic noises dominantly

in spatial/channel-variance and correlation [45]. This difference results from

in-camera pipeline like demosaicing [3]. Based on this assumption, we first
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propose to train a basis denoising network using mixed AWGN and RVIN. Our

flexible basis net consists of an explicit noise estimator folloId by a conditional

denoiser. We demonstrate that these fully-convolutional nets are actually

efficient in coping with pixel-independent spatially/channel-variant noises.

Second, we propose a simple yet effective adaptation strategy, Pixel-shuffle

Down-sampling (PD), which employs the divide-and-conquer idea to handle

real noises by breaking down the spatial correlation.

In summary, the main contributions include:

• We propose a new flexible deep denoising model (trained with AWGN

and RVIN) for both blind and non-blind image denoising. We also

demonstrate that such fully convolutional models trained on spatially-

invariant noises can handle spatially-variant noises.

• We adapt the AWGN-RVIN-trained deep denoiser to real noises by

applying a novel strategy called Pixel-shuffle Down-sampling (PD).

Spatially-correlated noises are broken down to pixel-wise independent

noises. We examine and overcome the proposed domain gap to boost

real denoising performance.

• The proposed method achieves state-of-the-art performance on DND

benchmark and other real noisy RGB images among models trained only

with synthetic noises. Note that our model does not use any images or

prior meta-data from real noise datasets. We also show that with the

proposed PD strategy, the performance of some other existing denoising

models can also be boosted.

3.2 Related Work

3.2.1 Deep Learning Based Image Restoration Model

Adopting deep-CNNs for image restoration has shown evident improvements

by embracing their representative power. In the early work, Vincent et al [46]

proposed to use stacked auto-encoder for image denoising. Later, ARCNN was

introduced by Dong et al. [47] for compression artifacts reduction. Zhang et

al. [1] proposed DnCNN for image denosing, which uses advanced techniques
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like residual learning and batch normalization to boost performance. In

IRCNN [48], a learned set of CNNs are used as denoising prior for other

image restoration tasks. For image super resolution, extensive efforts have

been spent into designing advanced architectures and learning methods, such

as progressive super resolution [49], residual [13] and dense connection [50],

back-projection [51], scale-invariant convolution, [52] and channel attention

[53]. Recently, most state-of-the-art approaches [54, 55, 56] incorporate non-

local attention into networks to further boost representation ability. Although

extensive efforts have been made in architectural engineering, existing methods

relying on convolution and non-local operation can only exploit information

at a same scale.

3.2.2 Real Data Acquisition and Realistic Data Synthesis

Real-world restoration[6, 57] is becoming a new concept in low-level vision.

In the past decades, low-level vision works on synthetic data (denoising on

AWGN and SR on Bicubic), but the models are not efficient for images with

real degradation such as real noises or arbitrary blur kernels. Making models

perform better on real-world inputs usually requires new problem analysis and

a more challenging data collection. In the previous literature, there have been

two common ways to prepare adaptive training data for real-world problems:

real data collection and near-realistic data synthesis.

Recently, more real noise datasets such as DND [58], SIDD [59, 8], and

RENOIR [25], have been proposed to address practical denoising problems.

Abdelrahman et al. [6] proposed to estimate ground truth from captured

smartphone noise images, and utilized the paired data to train and evaluate the

real denoising algorithms. In addition to noises, Chen et al. first proposed the

SID dataset [15] to resolve extreme low-light imaging. In the area of Single

Image Super Resolution (SISR), researchers considered collecting optical

zoom data [57, 60] to learn better computational zoom. Other restoration

problems including reflection removal [61, 62] also follow the trend of real

data acquisition. Collecting real data suffers from limitation of scene variety

since most previous models acquire images of postcards, static objects, or

color boards.

A realistic dataset can be synthesized if the degradation model is fully
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Figure 3.2: Noise Level Function (NLFs) (noise variance as a function of
image intensity) before (first row) and after (second row) Gamma transform
and demosaicing. Gamma factor is 0.39, 1.38, and 2.31 from the left to right
column.

understood and resolved. One good practice of data synthesis is generating

real noises on raw sensors or RGB images. CBDNet [63] and Tim et al. [40]

synthesized real noises by unfolding the in-camera pipeline, and Abdelhamed

et al. [64] better fitted the real noise distribution with flow-based generative

models. Other physics-based synthesis was also explored in blur [65] or hazing

[66]. In this chapter, we adapt the AWGN-RVIN noises into real RGB noises

by analyzing the demosacing process.

3.3 Baseline Model and Structures

Basis Noise Model The basis noise model is mixed AWGN-RVIN. Noises

in sRGB images are no longer approximated Gaussian-Poisson Noises as

in the raw sensor data mainly due to gamma transform, demosaicing, and

other interpolations etc. In Figure 3.2, we follow [44] pipeline to synthesize

noisy images, and plot the Noise Level Functions (NLFs) (noise variance

as a function of image intensity) before (first row) and after (second row)

the Gamma Correction transform and demosaicing. From left to right, the

Gamma factor increases. It shows that in RGB images, clipping effects,

and other non-linear transforms will greatly influence the originally linear
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Figure 3.3: Structure of the proposed blind denoising model. It consists of a
noise estimator E and a follow-up non-blind denoiser R. The model aims to
jointly learn the image residual.

noise variance-intensity relationship in raw sensor data, even changing the

noise mean. Though complicated, for a more general case than Gaussian-

Poisson noises of modeling different nonlinear transforms, real noises in RGB

can still be locally approximated as AWGN [5, 67, 68]. In this chapter, we

thus assume the RGB noises to be approximated as spatially-variant and

spatially-correlated AWGN.

Adding RVIN for training aims at explicitly resolving the defective pixels

caused by dead pixels of camera hardware or long exposure frequently ap-

pearing in most night-shot images. We generate AWGN, RVIN, and mixed

AWGN-RVIN following PGB[69].

Basis Model Structure The architecture of the proposed basis model is

illustrated in Figure 3.3. The proposed blind denoising model G consists of

a noise estimator E and a follow-up non-blind denoiser R. Given a noisy

observation yi = F(xi), where F is the noise synthetic process, and xi is the

noise-free image, the model aims to jointly learn the residual G(yi) ≈ vi =

yi − xi, and it is trained on paired synthetic data (yi, vi). Specifically, the

noise estimator outputs E(yi) consisting of six pixel-wise noise-level maps that

correspond to two noise types, i.e., AWGN and RVIN, across three channels

(R, G, B). Then yi is concatenated with the estimated noise level maps E(yi)
and fed into the non-blind denoiser R. The denoiser then outputs the noise

residual G(yi) = R(yi, E(yi)). Three objectives are proposed to supervise

the network training, including the noise estimation (Le), blind (Lb), and

non-blind (Lnb) image denoising objectives, defined as,

Le =
1

2N

N∑
i=1

||E(yi; ΘE)− ei||2F , (3.1)
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Lb =
1

2N

N∑
i=1

||R(yi, E(yi; ΘE); ΘR)− vi||2F , (3.2)

Lnb =
1

2N

N∑
i=1

||R(yi, ei; ΘR)− vi||2F , (3.3)

where ΘE and ΘR are the trainable parameters of E and R. ei is the ground

truth noise level maps for yi, consisting of eiAWGN and eiRV IN . For AWGN,

eiAWGN is represented as the even maps filled with the same standard deviation

values ranging from 0 to 75 across R,G,B channels. For RVIN, eiRV IN is

represented as the maps valued with the corrupted pixels ratio with upper-

bound set to 0.3. I further normalize ei to range [0,1]. Then the full objective

can be represented as a weighted sum of the above three losses,

L = αLe + βLb + γLnb, (3.4)

in which α, β and γ are hyper-parameters to balance the losses, and I set

them to be equal for simplicity.

The proposed model structure can perform both blind and non-blind de-

noising simultaneously, and the model is more flexible in interactive denoising

and result adjustment. Explicit noise estimation also benefits noise modeling

and disentanglement.

3.4 Pixel-shuffle Down-sampling (PD) Adaptation

Pixel-shuffle Down-sampling. Pixel-shuffle [70] down-sampling is defined

to create the mosaic by sampling the images with stride s. Compared to other

down-sampling methods like linear interpolation, bi-cubic interpolation, and

pixel area relation, the pixel-shuffle, and nearest-neighbour down-sampling

on noisy image would not influence the real noise distribution. Besides, pixel-

shuffle also benefits image recovery by preserving the original pixels from the

images compared to others. These two advantages yield the two stages of PD

strategy: adaptation and refinement.

Adaptation. A Learning-based denoiser trained on AWGN is not robust

enough to real noises because of domain-dependent differences in the local

noise co-variance. To adapt the noise model to real noise, here we briefly
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(a) As the stride increases, left: Estimated noise level on AWGN-corrupted image.
right: Estimated noise level on real noisy images.

(b) left: Changing factor rs on AWGN-corrupted images of CBSD68 and right: on
real noisy images of DND. Different color lines represent different image samples.

Figure 3.4: Influence of Pixel-shuffle on noise patterns and noise estimation
algorithms.

analyze and justify our assumption on the difference between real noises and

Gaussian noise: spatial/channel variance and correlation.

Suppose a noise estimator is robust, which means it can accurately estimate

the exact noise level, for a single AWGN-corrupted image, pixel-shuffle down-

sampling will neither influence the AWGN variance nor the estimation values,

when the sample stride is small enough to preserve the textural structures.

When extending it to the real noise case, we have an interesting hypothesis: as

we increase the sample stride of pixel-shuffle, the estimation values of specific

noise estimators will first fluctuate and then keep steady for a couple of stride

increment. This assumption is feasible because pixel-shuffle will break down

the spatial-correlated noise patterns to pixel-independent ones, which can be

approximated as spatial-variant AWGN and adapted to those estimators.

We justify this hypothesis on both [71] and our proposed pixel-wise estima-

tor. As shown in Figure 3.1, I randomly cropped a patch of size 200×200 from

a random noisy image y in SIDD[59]. We add AWGN with std = 35 to its

noise-free ground truth x. After pixel-shuffling both y and AWGN-corrupted

x, starting from stride s = 2, the noise pattern of y demonstrates expected

pixel independence. Using [71], the estimation result for x is unchanged in

Figure 3.4 (a) (left), but the one for y in Figure 3.4 (a) (right) first increases
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and begins to keep steady after stride s = 2. It is consistent with the visual

pattern and our hypothesis.

One assumption of [71] is that the noise is additive and evenly distributed

across the image. For spatial-variant signal-dependent real noises, our pixel-

wise estimator has its superiority. To make statistics of spatial-variant

noise estimation values, we extract the three AWGN channels of noise map

EAWGN(yi) ∈ RW×H×3, where W and H are width and height of the input

image, and compute the normalized 10-bin histograms hs ∈ R10×3 across each

channel when the stride is s. We introduce the changing factor rs to monitor

the noise map distribution changes as the stride s increases,

rs = Ec||hsc − h(s+1)c||22, (3.5)

where c is the channel index. I then investigate the difference of rs sequence

between AWGN and realistic noises. Specifically, we randomly select 50 images

from CBSD68 [72] and add random-level AWGN to them. For comparison,

we randomly pick up 50 image patches of 512× 512 from DND benchmark.

In Figure 3.4 (b), rs sequence remains closed to zero for all AWGN-currupted

images (Left figure), while for real noises rα demonstrates an abrupt drop

when s = 2. It indicates that the spatial-correlation has been broken from

s = 2.

The above analysis inspires the proposed adaptation strategy based on

pixel-shuffle. Intuitively, we aim at finding the smallest stride s to make the

down-sampled spatial-correlated noises match the pixel-independent AWGN.

Thus we keep increasing the stride s until rs drops under a threshold τ . We

run the above experiments on CBSD68 for 100 iterations to select the proper

generalized threshold τ . After averaging the maximum r of each iteration,

we empirically set τ = 0.008.

PD Refinement. Figure 3.5 shows the proposed Pixel-shuffle Down-sampling

(PD) refinement strategy: (1) Compute the smallest stride s, which is 2 in

this example and more digital camera image cases, to match AWGN follow-

ing the adaptation process, and pixel-shuffle the image into mosaic ys; (2)

Denoise ys using G; (3) Refill each sub-image with noisy blocks separately

and pixel-shuffle upsample them; (4) Denoise each refilled image again using

G and average them to obtain the ”texture details” T ; (5) Combine the
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Figure 3.5: Pixel-shuffle Down-sampling (PD) refinement strategy with s = 2.

over-smoothed ”flat regions” F to refine the final result.

As summarized in [44], the goals of noise removal include preserving texture

details and boundaries, smoothing flat regions, and avoiding generating

artifacts. Therefore, in the above step-(5), we propose to further refine the

denoised image with the combination of ”texture details” T and ”flat regions”

F . ”Flat regions” can be obtained from over-smoothed denoising results

generated by lifting the noise estimation levels. In this work, given a noisy

observation y, the refined noise maps are defined as,

ˆE(PD(y))(i, j) = max
i,j

E(PD(y))(i, j), i ∈ [1,W ], j ∈ [1, H], (3.6)

Consequently, the ”flat region” is defined as F = PU(R(PD(y), ˆE(PD(y)))),

where PD and PU are pixel-shuffle downsampling and upsampling. The final

result is obtained by kF + (1− k)T .

3.5 Experiments

Implementation Details In this work, the structures of the sub-network

E and R follow DnCNN [1] of 5 layers and 20 layers. For grayscale image

experiments, we also follow DnCNN to crop 50× 50 patches from 400 images

of size 180× 180. For color image model, we crop 50× 50 patches with stride

10 from 432 color images in the Berkeley segmentation dataset (BSD) [72].
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(a) Noisy Image (b) BM3D (29.3dB) (c) WNNM(29.8dB) (d) NI (32.3dB)

(e) NC (32.3dB) (f) FFD (34.5dB) (g) CBD (34.5dB) (h) Ours (36.1dB)

Figure 3.6: Denoising results on DND Benchmark. Red box indicates texture
details while the green box background or edge.

The training data ratio of single-type noises (either AWGN or RVIN) and

mixed noises (AWGN and RVIN) is 1:1. During training, Adam optimizer is

utilized and the learning rate is set to 10−3, and batch size is 128. After 30

epochs, the learning rate drops to 10−4 and the training stops at epoch 50.

To evaluate the algorithm on synthetic noise (AWGN, mixed AWGN-RVIN

and spatially-variant Gaussian), we utilize the benchmark data from BSD68,

Set20 [69] and CBSD68 [72]. For realistic noise, we test it on RNI15 [73], DND

benchmark [58], and self-captured night photos. We evaluate the performance

of the algorithm in terms of PSNR and SSIM. Qualitative performance

for denoising is also presented, with comparison to other state-of-the-art

algorithms.

3.5.1 Evaluation with Synthetic Noise

Table 3.1: Comparison of PSNR results on mixture of Gaussian noise
(AWGN) and Impulse noise (RVIN) removal performance on Set20.

(σ, r) BM3D WNNM PGB DnCNN-B Ours-NB Ours-B
(10, 0.15) 25.18 25.41 27.17 32.09 32.43 32.37
(10, 0.30) 21.80 21.40 22.17 29.97 30.47 30.32
(20, 0.15) 25.13 23.57 26.12 29.52 29.82 29.76
(20, 0.30) 21.73 21.40 21.89 27.90 28.41 28.16

Mixed AWGN and RVIN. The model follows similar structure of DnCNN

and FFDNet [5], so its performance on single-type AWGN removal is also
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Table 3.2: Comparison of PSNR results on Signal-dependent Noises on
CBSD68.

(σs, σc) BM3D FFDNet DnCNN-B CBDNet Ours-B
(20, 10) 29.09 28.54 34.38 33.04 34.75
(20, 20) 29.08 28.70 31.72 29.77 31.32
(40, 10) 23.21 28.67 32.08 30.89 32.12
(40, 20) 23.21 28.80 30.32 28.76 30.33

similar to them. We thus evaluate our model on eliminating mixed AWGN and

RVIN on Set20 as in [69]. We also compare our method with other baselines,

including BM3D [74] and WNNM [75] which are non-blind Gaussian denoisers

anchored with a specific noise level estimated by the approach provided in [71].

Besides, we include the PGB [69] denoiser that is designed for mixed AWGN

and RVIN. The result of the blind version of DnCNN-B, trained by the same

strategy as our model, is also presented for reference. The comparison results

are shown in Table 3.1, from which we can see the proposed method achieves

the best performance. Compared to DnCNN-B, for complicated mixed noises,

our model explicitly disentangles different noises. It benefits the conditional

denoiser to differentiate mixed noises from other types.

Signal-dependent Spatially-variant Noise. We conduct experiments

to examine the generalization ability of the fully convolutional model on

signal-dependent noise [39, 76, 77]. Given a clean image x, the noises in the

noisy observation y contain both signal-dependent components with variance

xσ2
s and independent components with variance σ2

c . Table 3.2 shows that for

non-blind models like BM3D and FFDNet, only a scalar noise estimator [71]

is applied, thus they cannot well cope with the spatially-variant cases. In

this experiment, DnCNN-B is the original blind model trained on AWGN

with σ ranged between 0 and 55. It shows that spatially-variant Gaussian

noises can still be handled by fully convolutional models trained with spatially-

invariant AWGN [5]. Compared to DnCNN-B, the proposed network explicitly

estimates the pixel-wise map to make the model more flexible and possible

for real noise adaptation.
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3.5.2 Evaluation with Real RGB Noise

In this section, we introduce the evaluation results on real RGB noiay images.

We present the qualitative and quantitative comparisons with state-of-the-arts.

Qualitative Comparisons. Some qualitative denoising results on DND

are shown in Figure 3.6. The compared results of DND are all directly

obtained online from the original submissions of the authors. The methods we

include for the comparison cover blind real denoisers (CBDNet, NI [78] and

NC [79]), blind Gaussian denoisers (CDnCNN-B) and non-blind Gaussian

denoisers (CBM3D, WNNM [75], and FFDNet). From these example denoised

results, we can observe that some of them are either noisy (as in DnCNN and

WNNM), or spatially-invariantly over-smoothed (as in FFDNet). CBDNet

performs better than others but it still suffers from blur edges and uncleaned

background. Our proposed method (PD) achieves a better spatially-variant

denoising performance by smoothing the background while preserving the

textural details in a full blind setting.

Quantitative Results on DND Benchmark. The images in the DND

benchmark are captured by digital camera and demosaiced from raw sensor

data, so we simply set the stride number s = 2. We follow the submission

guideline of the DND dataset to evaluate our algorithm. Recently, many

learning-based methods like Path-Restore [80], RIDNet [81], WDnCNN [82],

and CBDNet, achieved promising performance on DND, but they are all

finetuned on real noisy images, or use prior knowledge in the meta-data of

DND [40]. For fair comparison, we select some representative conventional

methods(MCWNNM, EPLL, TWSC, CBM3D), and learning-based methods

trained only with synthetic noises. The results are shown in Table 3.3. Models

trained on AWGN (DnCNN, TNRD, MLP) perform poorly on real RGB

noises mainly due to the large gap between AWGN and real noise. CBDNet

improves the results significantly by training the deep networks with artificial

realistic noise model. Our AWGN-RVIN-trained model with PD refinement

achieves much better results (+0.83dB) than CBDNet trained only with

synthetic noises, and also boosts the performance of other AWGN-based

methods (+PD). Compared to the base model, the proposed adaptation

methods improve the performance on real noises by 5.8 dB. Note that our
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Table 3.3: Comparison of PSNR and SSIM on DND Benchmark. PD:
Pixel-suffle Down-sampling Strategy. Among all models trained only with
synthetic data.

Method Category Type PSNR SSIM
WNNM[75] Low Rank Non-blind 34.67 0.8646

MCWNNM[35] Low Rank Non-blind 37.38 0.929
KSVD[37] Sparse Coding Non-blind 36.49 0.8978
TWSC[68] Sparse Coding Non-blind 37.93 0.940
NCSR[83] Sparse Coding Non-blind 34.05 0.8351
MLP[84] Deep Learning Non-blind 34.23 0.833

TNRD[19] Deep Learning Non-blind 33.65 0.830
CBDNet(Syn)[39] Deep Learning Blind 37.57 0.936

CBM3D[34] Filter Non-blind 34.51 0.850
CBM3D(+PD) Filter Non-blind 35.02 0.873
CDnCNN-B[1] Deep Learning Blind 32.43 0.790

CDnCNN-B(+PD) Deep Learning Blind 35.44 0.876
FFDNet[5] Deep Learning Non-blind 34.40 0.847

FFDNet(+PD) Deep Learning Non-blind 37.56 0.931
Our Base Model Deep Learning Blind 32.60 0.788

Ours(+PD) Deep Learning Blind 38.40 0.945

model is only trained on synthetic noises, and does not utilize any prior data

of DND.

3.5.3 Ablation Study on Real RGB Noise

In this section, we show the extensive ablation study to evaluate the compo-

nents of the proposed pipeline.

Adding RVIN. Training models with mixed AWGN and RVIN noises

will benefit the removal of dead or over-exposure pixels in real images. For

comparison, we train another model only with AWGN, and test it on real noisy

night photos. An example utilizing the full pipeline is shown in Figure 3.7, in

which it demonstrates the superiority of the existence of RVIN in the training

data. Even though model trained with AWGN can also achieve promising

denoising performance, it is not effective on dead pixels.

Stride Selection. I apply different stride numbers while refining the de-

noised results, and compare the visual quality in Figure 3.8 (a)(b). For
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(a) Noisy image (b) AWGN only (c) AWGN-RVIN

Figure 3.7: Denoised performance of models trained with AWGN in (b) and
mixed AWGN-RVIN in (c). During testing, k = 0 and s = 2.

(a) Noisy image (b) Denoised. (c) Noisy Image (d) Denoised.

Figure 3.8: (a)(b): Denoised performance of different stride s when k = 0,
and (c)(d): Ablation study on refinement. s = 2 and k = 0.

arbitrary given RGB images, the stride number can be computed using our

adaptation algorithm with the assistance of noise estimator. In our experi-

ments, the selected stride is the smallest s that rs < τ . Small stride number

will treat large noise patterns as textures to preserve, as shown in Figure 3.8

(b). While using large stride number tends to break the textural structures

and details. Interestingly, as shown in Figure 3.8 (b), the texture of the fabric

is invisible while applying s > 2.

Image Refinement Process. The ablation on the refinement steps is

shown in Figure 3.8 (c)(d) and Table 3.4, in which we compare the denoised

results of I (i.e. directly pixel-shuffling upsampling after step (2)), DI (i.e,

denoising I using G), and Full (i.e, the current whole pipeline). It shows that

both I and DI will form additional visible artifacts, while the whole pipeline

smooths out those artifacts and has the best visual quality.
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(a) Noisy (b) 0 (c) 0.3 (d) 0.5 (e) 0.8 (f) 1

Figure 3.9: Ablation study on merging factor k, and s = 2.

Table 3.4: Ablation study on refinement steps.

Model (s=1) (s=3, Full) (s=2,I) (s=2,DI) (s=2,Full)
PSNR 32.60 37.90 37.00 37.20 38.40
SSIM 0.7882 0.9349 0.9339 0.9361 0.9452

Blending Factor k. Due to the ambiguous nature of fine texture and

mid-frequency noises, interactions between human perception and denoising

effectiveness are inevitable. k is this parameter introduced as a ”linear”

adjustment of denoising level for a more flexible and interactive user operation.

Using blending factor k is more stable and safe to preserve the spatially-variant

details than directly adjusting the estimated noise level like CBDNet. In

Figure 3.9, as k increases, the denoised results tend to be over-smoothed.

This is suitable for images with more background patterns. However, smaller

k will preserve more fine details which are applicable for images with more

foreground objects. In most cases, users can simply set k to 0 to obtain the

most detailed textures recovery and visually plausible results.

3.6 Conclusions

In this chapter, we revisit the real image blind denoising from a new view-

point. Due to the demosaicing process, we assumed the realistic noises are

spatially/channel -variant and correlated, and addressed adaptation from

AWGN-RVIN noises to real RGB noises. Specifically, we proposed an image

blind and non-blind denoising network trained on AWGN-RVIN noise model.

The network consists of an explicit multi-type multi-channel noise estimator
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and an adaptive conditional denoiser. To generalize the network to real RGB

noises, we investigated Pixel-shuffle Down-sampling (PD) refinement strategy.

The PD adaptor was applied to the testing RGB images, and we showed

qualitatively that PD behaves better in both spatially-variant denoising and

details preservation. Results on DND benchmark and other realistic noisy

images demonstrated the newly proposed model with the strategy are efficient

in processing spatial/channel variance and correlation of real noises without

explicit modeling.
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CHAPTER 4

PHYSICS-BASED DATA SYNTHESIS ON
REAL COMBINED RESTORATION

In this chapter, we study a physics-based training data synthesis for a more

complicated degradation problem called Under-Display Camera imaging. We

study the performance of deep networks trained on the data synthesized by

the newly-proposed degradation model.

4.1 Introduction
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Figure 4.1: Under-Display Camera (UDC), a new imaging system that
mounts display screen on top of a traditional digital camera lens.

Under-display Camera (UDC) is a new imaging system that mounts display

screen on top of a traditional digital camera lens, as shown in Fig. 4.1. Such

a system has mainly two advantages. First, it follows a new product trend of

full-screen devices [85] with larger screen-to-body ratio, which can provide

better user perception and intelligent experience [86]. Without seeing the

bezel and extra buttons, users can easily access more functions by directly

touching the screen. Second, it provides better human computer interaction.

By putting the camera in the center of the display, it enhances teleconferencing

experiences with perfect gaze tracking, and it is increasingly relevant for larger

display devices such as laptops and TVs.

Unlike pressure or fingerprint sensors which can be more easily integrated
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into a display, it is relatively hard to maintain the function of an imaging

sensor after being mounted behind a display. The imaging quality of a camera

will be severely degraded due to lower light transmission rate and diffraction

effects. As a result, images captured will be noisy and blurry. Therefore,

while bringing better user experience and interaction, UDC may sacrifice the

quality of photography, face processing and other downstream vision tasks.

As discussed in the previous chapters, enhancing the degraded images can

be better addressed by learning-based image restoration approaches. However,

since they are only trained on synthesis data with a single degradation type,

existing state-of-the-art models can be hardly utilized to enhance real-world

low-quality images with complicated and combined degradation types. To

address complicated real degradation using learning-based methods, collecting

real paired data or synthesizing near-realistic data by fully understanding the

degradation model is necessary.

In this chapter, we define and present a novel Under-Display Camera image

restoration problem. UDC restoration task is a combination of tasks such as

low-light enhancement, de-blurring, and de-noising. Without loss of generality,

the analysis focuses on two types of displays, a 4K Transparent Organic

Light-Emitting Diode (T-OLED) and a phone Pentile OLED (P-OLED),

and a single camera type, a 2K FLIR RGB Point Grey research camera.

We acquire the training data by either collecting real data with a newly

proposed data acquisition system, or synthesizing near-realistic data with a

model-based pipeline.

4.2 Formulation

In this section, we introduce the formulation of the UDC imaging process. We

first analyze the optical system, and derive the physics-based forward model

for data synthesis. Given the display pattern and related measurements, our

method synthesizes degraded data from degradation-free images.

4.2.1 Optical System Analysis

In this work, we focus on OLED displays as it has superior optical properties

compared to traditional LCDs (Liquid Crystal Display). Due to confidentiality
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Figure 4.2: Optics characteristics of UDC. From left to right: Micrography of
display patterns, PSFs (red light only) and MTFs (all red, green, and blue
lights).

Table 4.1: Comparison of two displays

Metrics T-OLED P-OLED
Pixel Layout Type Stripe Pentile
Open Area 21% 23%
Transmission Rate 20% 2.9%
Major Degradation Blur, Noise Low-light, Color Shift, Noise

reasons it is often difficult to obtain the sample materials used for demos

from commercial companies. In this case, we select the displays with different

transparencies to improve the generalization. Note that all the displays are

nonactive in our paper, since in real scenario, the display can be turned off

locally when the camera is in operation to (1) reduce unnecessary difficulty

from display contents while not affecting user experience and (2) provide

users with the status of the device and thus ensure privacy.

Owing to transparent materials being used in OLED display panels, visible

light can be better transmitted through the OLEDs than LCDs. In the

meantime, pixels are also arranged such that open area is maximized. In

particular, we focus on 4k Transparent organic light-emitting diode (T-OLED)

and a phone Pentile OLED (P-OLED). Fig. 4.2 is a micrograph illustration of

the pixel layout in the two types of OLED displays. The structure of the 4K

T-OLED has a grating-like pixel layout. P-OLED differs from T-OLED in sub-

pixel design. It follows the basic structure of RGBG matrix. In this section,

we analyze the two types of displays according to their light transmission

rate, point spread function (PSF), and modulation transfer function (MTF).
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Light Transmission Rate We measure the transmission efficiency of the

OLEDs by using a spectrophotometer and white light source. Table 4.1

compares the light transmission rate of the two displays. For T-OLED, the

open area occupies about 21%, and the light transmission rate is around

20%. For P-OLED, although the open area can be as large as 23%, the

light transmission rate is only 2.9%. P-OLED is a flexible/bendable display,

which has a poly-amide substrate on which the OLED is formed. Such a

substrate may appear yellow in transmission. Thus, images captured through

a polyamide-containing display panel by a UDC may also appear yellow. As

a result, imaging through a P-OLED results in lower signal-to-noise ratio

(SNR) comparing to using a T-OLED, and has a color shift issue.

Diffraction Pattern and Point Spread Function (PSF) Light diffracts

as it propagates through obstacles with sizes that are similar to its wavelength.

Unfortunately, the size of the openings in the pixel layout is on the order

of wavelength of visible light, and images formed will be degraded due to

diffraction. Here we characterize the system by measuring the point spread

function (PSF). We do so by pointing a collimated red laser beam (λ =

650 nm) at the display panel and recording the image formed on the sensor,

as demonstrated in Fig. 4.1. Fig. 4.2 shows the PSFs. An ideal PSF shall

resemble a delta function, which then forms a perfect image of the scene.

However, light greatly spreads out in UDC. For T-OLED, light spreads mostly

across the horizontal direction due to its nearly one dimensional structure

in the pixel layout, while for P-OLED, light is more equally distributed as

the pixel layout is complex. Therefore, images captured by UDC are either

blurry (T-OLED) or hazy (P-OLED).

Modulation Transfer Function (MTF) Modulation Transfer Function

(MTF) is another important metric for an imaging system, as it considers

the effect of finite lens aperture, lens performance, finite pixel size, noise,

non-linearities, quantization (spatial and bit depth), and diffraction in our

systems. We characterize the MTF of our systems by recording sinusoidal

patterns with increasing frequency in both lateral dimensions, and we report

them in Fig. 4.2. For T-OLED, contrasts along the horizontal direction are

mostly lost in the mid-band frequency due to diffraction. This phenomenon is

due to the one-dimensional pixel layout of the T-OLED. Fig. 4.4 shows severe
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smearing horizontally when putting T-OLED in front of the camera. While

for P-OLED, the MTF is almost identical to that of display-free camera,

except with severe contrast loss. Fortunately, however, nulls have not been

observed in any particular frequencies.

4.2.2 Image Formation Model

In this section, we derive the image formation process of UDC. In other words,

given a calibrated pixel layout and measurements using a specific camera,

degraded images can be simulated from a scene. From the forward model, we

can synthesize datasets from ground truth images.

Given an object in the scene x, the degraded observation y can be modeled

by a convolution process,

y = (γx)⊗ k+ n, (4.1)

where γ is the intensity scaling factor under the current gain setting and

display type, k is the PSF, and n is the zero-mean signal-dependent noise.

Notice that this is a simple noise model that approximately resembles the

combination of shot noise and readout noise of the camera sensor, and it will

be discussed in a later section.

Intensity Scaling Factor (γ) The intensity scaling factor measures the

changing ratio of the average pixel values after covering the camera with a

display. It simultaneously relates to the physical light transmission rate of the

display, as well as the digital gain setting of the camera. γ can be computed

from the ratio of δ-gain amplified average intensity values Id(δ, s) at position

s captured by UDC, to the 0-gain average intensity values Ind(0, s) by naked

camera within an enclosed region S. It is represented by,

γ =

∫
S
Id(δ, s)ds∫

S
Ind(0, s)ds

(4.2)

Diffraction Model We approximate the blur kernel k, which is the Point

Spread Function (PSF) of the UDC. As shown in Fig 4.1, in our model,

we assume the display panel is at the principle plane of the lens. We also
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assume the input light is a monochromatic plane wave with wavelength λ

(i.e. perfectly coherent), or equivalently light from a distance object with unit

amplitude. Let the display pattern represented by transparency with complex

amplitude transmittance be g(m,n) at the Cartesian co-ordinate (m,n), and

let the camera aperture/pupil function p(m,n) be 1 if (m,n) lies inside the

lens aperture region and 0 otherwise, then the display pattern inside the

aperture range gp(m,n) becomes,

gp(m,n) = g(m,n)p(m,n). (4.3)

At the focal plane of the lens (i.e, 1 focal length away from the principle

plane), the image measured is the intensity distribution of the complex field,

which is proportional to the Fourier transform of the electric field at the

principle plane [87]:

I(u, v) ∝
∣∣∣∣∫∫ ∞

−∞
gp(m,n) exp

[
−j

2π

λf
(mu+ nv)

]
dmdn

∣∣∣∣2 . (4.4)

Suppose Gp(vm, vn) = F (gp(m,n)), where F (·) is the Fourier transform

operator, then

I(u, v) ∝ |Gp(vm, vn)|2 =
∣∣∣∣Gp(

u

λf
,
v

λf
)

∣∣∣∣2 , (4.5)

which performs proper scaling on the Fourier transform of the display pattern

on the focal plane.

Therefore, to compute the PSF k for image x, we start from computing

the Discrete Fourier Transform (DFT) with squared magnitude M(a, b) =

|Ĝp(a, b)|2 of the N × N microscope transmission images ĝp of the display

pattern and re-scaling it. Then, the spatial down-sampling factor r becomes,

r =
1

λf
· δNN · ρ, (4.6)

where δN is the pixel size of the ĝp images, and ρ is the pixel size of the sensor.

Finally, k can be represented as

k(i, j) =
M↓r(i, j)∑
(̂i,ĵ) M↓r (̂i, ĵ)

. (4.7)
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Figure 4.3: Monitor-Camera Imaging System (MCIS).

k is a normalized form since we want to guarantee that it represents the

density distribution of the intensity with diffraction effect. Note that only

PSF for a single wavelength is computed for simplicity. However, scenes

in the real-world are by no means monochromatic. Therefore, in order to

calculate an accurate color image from such UDC systems, PSF for multiple

wavelengths shall be computed.

Adding Noises We follow the commonly used shot-read noise model [40,

88, 89] to represent the real noises on the imaging sensor. Given the dark

and blur signal w = (γx)⊗ k, the shot and readout noises can be modeled by

a heteroscedastic Gaussian,

n ∼ N (µ = 0, σ2 = λread + λshotw), (4.8)

where the variance σ is signal-dependent, and λread , λshot are determined by

camera sensor and gain values.

4.3 Data Acquisition and Synthesis

In this section, we describe the proposed imaging system for data collection

and the practical process of synthesizing paired data.

4.3.1 Monitor-Camera Imaging System (MCIS)

To collect real paired data for training, we propose a novel image acquisition

system called Monitor-Camera Imaging System (MCIS). In particular, we

display natural images with rich textures on high-resolution monitor and
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(a) Display-free (b) TOLED (c) POLED

Figure 4.4: Real samples collected by the proposed MCIS.

capture them with a static camera. The method is more controllable, efficient,

and automatic to capture a variety of scene contents than using mobile set-ups

to capture limited static objects or real scenes.

The system architecture is shown in Fig. 4.3. MCIS consists of a 4K LCD

monitor, the 2K FLIR RGB Point-Grey research camera, and a panel that is

either T-OLED, P-OLED or Glass (i.e, no display). The camera is mounted

on the center line of the 4K monitor, and adjusted to cover the full monitor

range. We calibrate the camera gain by measuring a 256× 256 white square

shown on the monitor and matching the RGB histogram. For fair comparison

and simplicity, we adjust the focus and fix the aperture to f/1.8. It guarantees

a reasonable pixel intensity range avoiding saturation while collecting data

with zero gain. Suppose we develop a real-time video system, the frame rate

has to be higher than 8 fps. So the lowest shutter speed is 125 ms for the

better image quality and the higher Signal-to-Noise Ratio (SNR).

We split 300 images from DIV2K dataset [90], and take turns displaying

them on a 4K LCD in full screen mode. We either rotate or resize the images

to maintain the Aspect Ratio. For training purposes, we capture two sets

of images, which are the degraded images {yi}, and the degradation-free set

{xi}.
To capture {xi}, we first cover the camera with a thin glass panel which

has the same thickness as a display panel. This process allows us to avoid

the pixel misalignment issues caused by light refraction inside the panel. To

eliminate the image noises in {xi}, we average the 16 repeated captured

frames. Then we replace the glass with a display panel (T-OLED or P-

OLED), calibrate the specific gain value avoiding saturation, and capture
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Table 4.2: Camera Settings for different set of collected data

Parameteres No-Display T-OLED P-OLED
Aperture f/1.8

FPS/Shutter 8/125ms
Brightness 0
Gamma 1
Gain 0 6 25(Full)

White-balance Yes None None

Table 4.3: Measured parameters for data synthesis

Parameteres T-OLED P-OLED
R G B R G B

γ 0.97 0.97 0.97 0.34 0.34 0.20
λ (nm) 640 520 450 640 520 450
r 2.41 2.98 3.44 2.41 2.98 3.44

{yi}. For each set, we record both the 16-bit 1-channel linear RAW CMOS

sensor data as well as the 8-bit 3-channel linear RGB data after in-camera

pipeline that includes demosaicing. The collected pairs are naturally well

spatially-aligned in pixel-level. They can be directly used for training without

further transformations.

Due to the yellow substrate inside the P-OLED, certain light colors, es-

pecially blue, are filtered out , and this filtering changes the white balance

significantly. We therefore did not further alter the white balance. The light

transmission ratio of P-OLED is extremely low, so we set up the gain value

to be the maximum (25) for higher signal values. All the detailed camera

settings for the two display types are shown in Table 4.2. One real data

sample is shown in Fig. 4.4

4.3.2 Realistic Data Synthesis Pipeline

We follow the image formation pipeline to simulate the degradation on the

collected {xi}. A model-based data synthesis method will benefit concept

understanding and further generalization. Note that all the camera settings

are the same as the one while collecting real data. We first transform the

16-bit raw sensor data {xi} into four bayer channels xr, xgr, xgl, and xb. Then,

we multiply the measured intensity scaling factor γ, compute the normalized
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and scaled PSF k, and add noises to the synthesize degraded data.

Measuring γ : To measure γ for each channel using the MCIS, we select

the region of interest S to be a square region of size 256× 256, and display

the intensity value input from 0 to 255 with stride 10 on the monitor. We

then record the average intensity both with and without the display for each

discrete intensity value, and plot the relationship between display-covered

values and no-display-covered ones. Using linear regression, we obtain the

ratios of lines for different RGGB channel. For T-OLED, the measured γ is

0.97, same for all the channels. For P-OLED, γ = 0.20 for the blue channel,

and γ = 0.34 for the other three channels.

Computing PSF : Following equation 4.3, we acquire the transmission

microscope images of the display pattern and crop them with the approximated

circular aperture shape with diameter 3333µm, the size of the camera aperture.

In equation 4.6, the δNN is 3333µm. ρ equals to 1.55µm/pixel in Sony sensor.

However, after re-arranging the raw image into four RGGB channels, ρ

becomes 3.1 for each channel. The focal length for the lens is f = 6000µm.

λ = (640, 520, 450) for R, G, B channel, which are the approximated center

peaks of the R, G, B filters respectively on the sensor. It yields the down-

sampling ratio r = (2.41, 2.98, 3.44) for the R, G and B channels.

Adding Noises : Finally, we measure λread and λshot to estimate the noise

statistics. We display random patterns within the 256 × 256 window on

the monitor, collect the paired noisy and noise-free RAW sensor data, and

compute their differences. For each of the RGGB channel, we linearly regress

the function of noise variance to the intensity value, and obtain the ratio as

the shot noise variance, and the y-intersection as the readout noise variance.

We then repeat the process for 100 times and collected pairs of data points.

Finally, we estimate the distribution and randomly sample λread and λshot

from it. All the measurements are listed in Table 4.3.
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Figure 4.5: Network structure. It takes a 4-channel RAW sensor data
observation y, and outputs the restored 3-channel RGB image x.

4.4 Image Restoration Baselines

We use the collected real paired data, synthetic paired data, simulated PSF,

and all the necessary measurements to perform image restoration. We split

the 300 pairs of images in the UDC dataset into 200 for training, 40 for

validation and 60 images in the testing partition. All the images have a

resolution of 1024× 2048.

4.4.1 Deconvolution Pipeline (DeP)

The DeP is a general-purpose conventional pipeline concatenating denoising

and deconvolution (Wiener Filter), which is an inverse process of the analyzed

image formation. To better utilize the unsupervised Wiener Filter (WF) [91],

we first apply the BM3D denoiser to each RAW channel separately, afterwards

we linearly divide the measured γ with the outputs for intensity scaling. After

that, WF is applied to each channel given the pre-computed PSF k. Finally,

RAW images with bayer pattern are demosaiced by linear interpolation. The

restored results are evaluated on the testing partition of the UDC dataset.

4.4.2 Learning-based Methods

UNet. We propose a learning-based restoration network baseline as shown

in Figure 4.5. The proposed model takes a 4-channel RAW sensor data

observation y, and outputs the restored 3-channel RGB image x. The model

conducts denoising, debluring, white-balancing, intensity scaling, and demo-

saicing in a single network, whose structure is basically a UNet. We split the
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encoder into two sub-encoders, one of which is for computing residual details

to add, and the other one learns content encoding from degraded images. By

splitting the encoder, compared with doubling the width of each layer, we will

have feIr parameters, and make the inference and learning more efficient. To

train the model from paired images, we apply the L1 loss, which will at large

guarantee the temporal stability compared with adversarial loss [92]. Besides,

we also apply SSIM and Perception Loss (VGG Loss) for ablation study.

We crop patches of 256× 256, and augment the training data using the raw

image augmentation [4] while preserving the RGGB bayer pattern. We train

the model for 400 epochs using Adam optimizer (β1 = 0.9, β2 = 0.999 and ϵ =

10−8) with learning rate 10−4 and decay factor 0.5 after 200 epoches. We also

train the same structure using the synthetic data (denoted as UNet(Syn))

generated by the pipeline proposed in section 4.2.2.

ResNet. Additionally, a data-driven ResNet trained with the same data is

utilized for evaluation. UNet and ResNet-based structures are two widely-used

deep models for image restoration. The ResNet used 16 residual blocks with

64 feature width from EDSR [13]. The model also takes 4-channel RAW data,

and outputs 3-channel RGB images. The above mentioned baselines represent

a conventional image processing pipeline and a ResNet-based deep model.

Other model variants can be further explored in future work.

4.5 Experimental Results

In this section, the details of the our experiments and the results are shown.

We qualitatively and quantitatively compare the proposed two pipelines with

other state-of-the-arts. We also conduct ablations study to show the functions

of different components.

4.5.1 Qualitative and Quantitative Comparisons

The qualitative restoration results are shown in Figure 4.6 and 4.7. As shown,

image Deconvolution Pipeline (DeP) successfully recovers image details but

still introduces some artifacts, and suffers from the inaccuracy of the computed

ideal PSF. The UNet-based model achieves better visual quality and denoising
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(a) T-OLED (b) DeP[91] (c) UNet(Syn) (d) UNet(Real) (e) GT

Figure 4.6: Restoration Results Comparison for T-OLED. GT: Ground
Truth.

(a) P-OLED (b) DeP[91] (c) UNet(Syn) (d) UNet(Real) (e) GT

Figure 4.7: Restoration Results Comparison for P-OLED. GT: Ground
Truth.

performance. The results of UNet trained with the synthetic data are visually

better than the ones of DeP.

The quantitative results are listed in Table 4.4. We report the perfor-

mance in PSNR, SSIM, a perceptual metric LPIPS [93], inference time T

(ms/MPixels) and GFLOPs. The inference time is tested with one single

Titan X, and the GFLOPs is computed by input size of 512×1024×4. ResNet

achieves a comparable performance to UNet, but it requires more computation

operations and longer inference time. The proposed UNet-based structure is

efficient and effective, which can therefore be deployed for real-time inference

for high-resolution inputs with a single GPU. In Table 4.4, we demonstrate

that synthetic data still has gaps with the real data, though it has already
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Table 4.4: Pipeline Comparison

.
4K T-OLED P-OLED

Pipeline Structure #P ↓ GFLOPs ↓ T ↓ PSNR/SSIM ↑ LPIPS ↓ PSNR/SSIM ↑ LPIPS ↓
DeP - - - 28.50/0.9117 0.4219 16.97/0.7084 0.6306
ResNet 1.37M 721.76 92.92 36.26/0.9703 0.1214 27.42/0.9176 0.2500
UNet(Syn) 8.93M 124.36 21.37 32.42/0.9343 0.1739 25.88/0.9006 0.3089
UNet 8.93M 124.36 21.37 36.71/0.9713 0.1209 30.45/0.9427 0.2219

Table 4.5: Ablation Study on UNet alternatives.

Alternatives 4K T-OLED P-OLED
#P ↓ GFLOPs ↓ T ↓ PSNR/SSIM ↑ LPIPS ↓ PSNR/SSIM ↑ LPIPS ↓

UNet Basseline 8.93M 124.36 21.37 36.71/0.9713 0.1209 30.45/0.9427 0.2219
Double Width 31.03M 386.37 40.42 37.00/0.9730 0.1171 30.37/0.9425 0.2044
Single Encoder 7.76M 97.09 15.85 36.47/0.9704 0.1288 30.26/0.9387 0.2318
L1 → L1 + SSIM 8.93M 124.36 21.37 36.69/0.9714 0.1246 30.37/0.9403 0.2131
L1 → L1 + V GG 8.93M 124.36 21.37 36.31/0.9711 0.1130 30.37/0.9403 0.2130

greatly out-performed the DeP for the two display types. The domain gap

mainly comes from the following aspects. First, due to the existing distances

between display and lens, in real data there appears visible patterns of the

display on the image plane. We recall in the assumption of the diffraction

model, the display panel is exactly at the principle plane of the lens system.

The cause of the visible bands are illustrated in the supplementary material.

Second, the approximated light transmission rate may not be accurate, the

measured values may be influenced by other environment light sources. Third,

impulse noises caused by dead pixels or over-exposure in the camera sensors

widely exist in the real dataset. Those factors provide more improvement

space for the proposed data synthesis model.

4.5.2 Ablation Study

For the best-performed UNet structure, we compare different UNet alterna-

tives in Table 4.5. We increase the parameter size by splitting the original

encoders into two sub-encoders, so the performance is also increased. The

increment parameter size and inference time is far less than doubling the

width of each layer of UNet, but the performance improvement is compara-

ble (T-OLED), even better (P-OLED). We claim that the proposed UNet

structure will both maintain a small number of parameters and operations,

and achieves a real-time high-quality inference. For more training loss, we

add SSIM or V GG loss in additional to L1 loss with 1:1 ratio. However,

the performance gains on either SSIM or perceptual metric LPIPS are not

significant enough, and are not visually distinctive. Adversarial loss is not
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Figure 4.8: Face detection performance before and after applying restoration.
Without display, the original face recall rate is 60%. Covering the camera
with T-OLED or P-OLED will decrease the recall rate to 8% and 0%. After
image restoration, the recall rates recovered back to 56% and 39%.

implemented due to its temporal instability compared to GAN-based training.

For complicated problems like UDC, training the model solely with L1 loss is

effective enough for good quantitative and qualitative performance.

4.5.3 Downstream Applications

The proposed image restoration also enhances the performance of downstream

applications including face detection. Figure 4.8 shows an example of detecting

faces using MTCNN [94]. Without display, the original face recall rate is 60%.

Covering the camera with T-OLED or P-OLED will decrease the recall rate

to 8% and 0%. After image restoration, the recall rates are recovered to 56%

and 39%.

4.6 Ethics Statement

Ethics issues aroused from device cameras are mainly the privacy concerns

caused by the recording function and the notification of recording. First,

there is no current law that requires companies to tell a user when the user
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is being recorded. Because of the lack of any supervisory law, Apple iOS14

introduced a “camera-on” indicator, to tell users when their camera is on;

Android does not have any standard camera-on indicator, but users can

download third-party apps that will act as camera-on indicators. For camera

on the laptop, users can purchase a privacy screen to ensure there is not

hidden recording.

The proposed UDC may also have similar concerns, but the hidden-camera

design may cause some unique problems. Users may not know where the

camera is, and people who do not own the device might not even know that

the camera exists. The under-display location makes it more difficult to hide

the camera using privacy protection screens, because the same display surface

may contain information that the user needs to see. Since there is not a

specific law, users should be educated to behave properly and morally with

the device. Besides, while designing the device, we should design auxiliary

software, indication LED or cell phone cases that are mutually compatible

with privacy screens. More efforts should be paid on resolving ethical concerns

if the UDC technology can be successfully embedded into devices.

4.7 Conclusion

In this chapter, we defined and presented a novel imaging system named

Under-Display-Camera (UDC). Deploying UDC to full-screen devices im-

proves the user interaction as well as teleconferencing experience, but does

harm to imaging quality and other downstream vision applications. We

systematically analyzed the optical systems and modelled the image forma-

tion pipeline of UDC, and both collected real data using a novel acquisition

system and synthesized realistic data and the PSF of the system using optical

model. We then proposed to address the image restoration of UDC using a

Deconvolution-based Pipeline (DeP) and data-driven learning-based methods.

The experiments showed that the former achieved basic restoration and the

latter demonstrated an efficient real-time high-quality restoration. The model

trained with synthetic data also achieved a remarkable performance indicating

the potential generalization ability.

UDC problem has its promising research values in complicated degradation

analysis. Future work can be exploring UDC-specific restoration models
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and working with aperture and display researchers to analyze the influential

factors of image degradation. It will make the restoration model generalized

for mass production, as an ultimate goal.
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CHAPTER 5

COLOR AND SPATIAL
TRANSFORMATION FOR

REFERENCE-BASED IMAGE INPAINTING

In this chapter, we will extend the topic to real-world image inpainting, as a

more challenging task for image restoration due to the more extreme ill-posed

issues. We will discuss a reference-based image inpaiting pipeline which

aligns and harmonizes two given images, and utilizes the contents from one

of them to fill the missing regions of the other. We will demonstrate a robust

color-spatial transformation module and pixel-wise merging modules which

are adaptive to real-world inputs with different resolution and color-spatial

misalignment.

5.1 Introduction

Image inpainting is an image restoration task where the goal is to fill in

specific regions of the image while making the entire image visually realistic.

The regions to be filled are called hole regions, and could contain undesired

foreground objects or small distracting elements, or corrupted regions of the

image. Much research has been devoted to improving image inpainting either

by image self-similarity (e.g. [95]) or deep generative models (e.g. [96, 97, 98]).

Such methods synthesize realistic semantics and textures by reusing similar

patches from non-hole regions or learning from large collections of images,

respectively. However, those methods still struggle in cases when holes are

large, or the expected contents inside hole regions have complicated semantic

layout, texture, or depth.

These problems can be addressed if there happens to be a second reference

image of the same scene that exposes some desired image content that can

be copied to the hole. This task is referred to as reference-guided image

inpainting in the literature [99], but this topic is less explored. In our paper,

we call the image with the hole indicated for removal the target image. In
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Figure 5.1: Results of our reference-guided inpainting for user-provided
images. We show multiple practical applications like replacing and removing
foreground people and objects. Each triad shows the target image with the
hole, the source image used as a reference, and the inpainting result. Our
method has strong performance and addresses challenging real-world issues
such as parallax, 90 degree image rotations, and lighting inconsistency
between the source and target images.

general, there could be multiple other source images used as references. These

could be taken by the photographer for the same scene after objects have

moved or the photographer moved the camera to a different viewpoint to

expose the background. Alternatively, a source image could be collected from

the Internet [100]. If one such source image contains new desired appearance

for the target hole region, then we can copy the pixels from the source to fill

in the target hole regions. In this paper we assume that the user has identified

a particular source image with the new desired appearance, so we refer to

this as the source image. We imagine that dedicated apps might be created

for aiding the photographer in this process, or for automatically retrieving

suitable such source images from the Internet.

Although the reference source image makes the inpainting task easier,

reference-guided inpainting is still quite challenging for several reasons. First,

the hole regions could be very large, which makes the task of guessing the pixel

colors in the hole region less well-posed. Second, we wish for our task to be

as general as possible, so we allow an uncalibrated camera to freely translate

to different 3D positions for the source and target image, because this can

allow the photographer to intentionally reveal regions behind a foreground

object to be removed. Such translations, however, can induce large parallax,

which cannot be modeled in image space by a simple 2D warp such as a global

homography. Unlike video inpainting or multi-view Structure-from-Motion

(SfM), we assume the system will not have access to more than two photos.

Thus, it is harder in our setting to reliably estimate 3D structures, depth, and
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point correspondences. Third, depending on the camera and photography

setup, the photographs may have substantially different exposure, white

balance, or lighting environment, and if one photograph comes from the

Internet, then it will have different camera response curves. Existing methods

based purely on warping cannot resolve the resulting complex issues of color

matching. Finally, there may exist regions in the source image that do not

exist after warping due to pixels being out of the image or occluded.

To address these challenges, we propose a multi-homography fusion pipeline

combined with deep warping, color harmonization, and single image inpainting.

We address the issue of parallax by assuming that there may be multiple

depth planes inside the hole. Loosely inspired by recent work on multiplane

images [101, 102, 103, 104], we propose multiple homographic registrations

of the source image to the target, each corresponding to an assumption that

the scene geometry lies on a different 3D plane. Given a target and a source

image, we first estimate the matched feature points between the two images,

cluster the inliers according to their estimated depths in the target image,

and for each cluster estimate a single homography to perform an initial image

registration. We call each of these candidate alignment images a proposal.

For each proposal, we then tackle the challenge of color matching by using a

deep bilateral color transformation, and we address parallax issues by refining

the warp using a learned per-pixel spatial transformation. We then merge

all the transformed source image proposals by learning a set of fusion masks.

Finally, we address the last challenge regarding regions which do not exist in

the source image by using a state-of-the-art single image inpainting method

to complete missing regions, and learn to merge it as well.

In summary, the main contributions of our method are: (1) We propose

TransFill, a multi-homography estimation pipeline to obtain multiple trans-

formations of the source image, where each aligns a specific region to the

target image; (2) We propose to learn a color and spatial transformer to

simultaneously perform a color matching and make a per-pixel spatial trans-

formation to address any residual differences after the initial alignment; (3)

We learn weights suitable for combining all final proposals with a single image

inpainting result.
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5.2 Related Work

Image inpainting. Inpainting research can be divided into two categories:

traditional methods that work by propagating colors or matching patches,

and deep methods that learn semantics and texture from large image datasets.

Some traditional methods propagate pixel colors by anisotropic diffu-

sion [105] or solving PDEs [106]. Such methods work well for thin hole

regions but as the hole regions grow larger they tend to result in over-blurring.

Patch-based image inpainting methods work by finding similar matches else-

where in the image and copying the resulting texture [107, 95]. Those methods

tend to result in high-quality texture but may give implausible structure and

semantics.

Our work is more closely related to deep models for inpainting that use a

single image. Context encoders analyze the surroundings of the hole [108],

local and global discriminators [109] can improve local texture and overall

image layout, and partial [110] and gated convolutions [96] can reduce artifacts

from filter responses at the hole boundary.

More recently, some deep methods have focused on inferring other in-

formation first: these can be roughly categorized into using edges [111],

segmentation masks [112], low-frequency structures [113, 114], and other

possible maps like depth. The ill-posed nature [115] of single-image inpainting

makes it challenging to complete larger holes and higher-resolution images.

Recent works demonstrate neural networks can generate high-resolution im-

ages [116, 117, 118], but for large holes these methods can still generate results

that appear semantically implausible or have artifacts in the fine-scale tex-

ture. Since our method has a source reference image, we can better establish

consistency with the ground truth image by learning appropriate spatial and

color transformations for a source image patch.

Video inpainting. A few classical works in this area are Wexler [107]

and Granados [119], which globally optimize patch-based energies, and

Newson [120], which estimates multiple homographies using a piecewise

planar assumption for the scene. Xu [121] estimates the optical flow to

learn the pixel warping field. Recently, the Onion-Peel Network (OPN) [99]

leverages non-local designs inside the network, making it feasible to apply

multi-source inpainting for a larger temporal range. Lee [122] proposed a

Copy-and-Paste Network to learn the alignment of consecutive frames for
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video inpainting. Zhao [123] reuse contents from an unrelated image for a

reference-based inpainting. Their method is based on only a single affine

transform, which we show is not enough in our experiments, and exhibits

residual color and geometric incompatibilities that are problematic in our

multi-view scenario. Xue [124] is a specialized method designed to remove

reflective or occluding elements near the camera such as fences.

Image harmonization. Image harmonization refers to matching the

color distribution and appearance when compositing a foreground from one

image on a background from another image. Traditional methods transfer

color statistics locally and globally [125, 126, 127] and use gradient-domain

based blending [128, 129, 130]. Digital photomontage [131] also demonstrated

copy-and-paste workflows that can change the appearance of a foreground

subject. Unlike our method, photomontage required user input and assumes

the photographs have been aligned. Recently, CNN-based harmonization

models [132, 133] have emerged, including methods involving segmentation

masks [134] for region selection, and discriminators for domain verification

[135]. Deep bilateral filtering has also been used to better preserve edges and

details while transforming image color space [136, 137]. Our work is the

first to integrate harmonization with a neural network for reference-guided

inpainting. We apply a deep bilateral color transformation to address color

inconsistencies while preserving edges.

Image alignment. Image alignment or registration involves placing

multiple images in the same coordinate system. It is widely used for video

stabilization [138], image stitching [139, 140], and serves as an important

pre-processing step for many video and image applications like face analysis.

Homography warping is a widely used global parametric method. Sparse

local features like SIFT [141] can be matched either using nearest neighbour,

or deep models like OANet [142] and SuperGlue [143], and the resulting

correspondences can be used to estimate warping models. Recently, deep

models have been explored to directly learn homography parameters [144, 145,

146], demonstrating their advantages on low-light and low-texture images.

Issues of parallax due to content at different depths can be better ad-

dressed by mesh-based warping [138, 147, 148] or pixel-wise dense optical flow

[149, 150, 151, 152, 153, 154]. Liu proposed the Content Preserving Warp

(CPW) [148] to maintain the rigidity of motions. Recently, Ye proposed deep

meshflow [155] to make mesh estimation more robust on different scenes. Due
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Figure 5.2: System pipeline. Given the target image IMt masked by an
associated binary hole image M , and a single source image Is, we first
propose multiple global homographies using the multi-homography proposal
module, and locally adjust color and spatial misalignments in each proposal
using our Color-Spatial Transformer (CST). Then we merge each proposal
with the output Ig from a single-image inpainting model using
Single-Proposal Fusion (SPF), and finally selectively blend all the proposals.

to the sparsity of the mesh, image contents can be better retained while warp-

ing. However, optical-flow based methods can provide greater flexibility in

permitted motions. Our pipeline uses multiple global homographies followed

by per-pixel warping fields to combine the advantages of various alignment

methods.

5.3 Method

We will first give an overview of our pipeline. Suppose we are given a target

image It ∈ IRW×H×3, an associated mask M ∈ IRW×H×1, and a single source

image Is ∈ IRWs×Hs×3. Note that M indicates the hole regions with value

one, and elsewhere with zero. The masked target image is then denoted by

IMt = (1−M)⊙ It. We assume there is sufficient overlap in content between

the two images especially nearby (but not necessarily within) the masked

regions. Our task is to generate contents inside the masked regions of It by

effectively reusing contents of Is. More specifically, we wish to geometrically

align Is with It in the vicinity of the hole region globally and locally, and

adjust any color inconsistency. We fill any regions that are occluded or outside

the image using a state-of-the-art single image inpainting method.

Our pipeline follows four steps as shown in Figure 5.2. It includes an initial

registration using multiple homography proposals, per-pixel color and spatial

transformations for each proposal, single-proposal and multi-proposal fusion.
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Figure 5.3: Multi-homography Proposal Module. We compute the monocular
depth Dt of the non-hole region IMt , and cluster the feature matching points
into N sub-groups using the depth values. Each estimated homography Hi

will align different regions within the hole. ∗H6 indicates a homography
estimated using all the points.

5.3.1 Multi-homography Proposals

In this stage, we first globally warp the source image Is to align it with the

masked target image IMt . Provided the contents inside the hole region occur

at multiple depth planes, or the camera motion is not a simple rotation, a

single homography is not sufficient to perfectly align the source and target

image [156]. Therefore, we propose to estimate multiple homography matrices

to transform Is. Ideally, each homography-transformed Is can align with It

within a specific image depth level range or local spatial area, as shown in

Figure 5.3.

To obtain different transformation matrices, we first extract SIFT [157]

features from IMt and Is, and feed all the extracted feature points and

their descriptors into a pre-trained OANet [142] for outlier rejection. The

lightweight OANet efficiently establishes the correspondences between IMt
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and Is by considering the order of the points in the global and local context.

OANet outputs the inliers forming a point set Pt in IMt , and its corresponding

matched point set Ps in Is. To consider different possible depth planes within

and nearby the hole region, we are inspired by the Multi-Plane Image (MPI)

[102] idea for scene synthesis. We estimate the depth map Dt from IMt using

a deep learning based monocular depth estimator [158] , and record the depth

value for each point in Pt. We then cluster those points into a partition

of N subsets {P j
t }, j ∈ [1, N ] by their depth values using an agglomerative

clustering method [159], where Pt = ∪N
j=1P

j
t . The corresponding matched

points in Ps are used to form the subsets Ps = ∪N
j=1P

j
s accordingly.

For each subset’s pairs of points (P j
t , P

j
s ), we estimate a single homography

using RANSAC [160]. By further including the homography estimated from

the full set of points (Pt, Ps), we obtain N + 1 homography matrices overall.

We denote them by Hi, i ∈ [1, N + 1]. Finally, we transform the source image

Is using the estimated Hi, and obtain a set of warped source images {I is},
where I is ∈ IRW×H×3, i ∈ [1, N + 1]. We set N = 5 in our experiments.

5.3.2 Color-Spatial Transformation (CST) Module

The global homography-warped source image sets {I is} are regarded as the

initialization of the warping of Is. However, as shown in Figure 5.3 and 5.4,

while directly compositing I is and IMt using I is ⊙M + IMt , due to the possibly

inaccurate homography estimation or challenges of large parallax, there may

be small misalignments inside and near the hole region, especially along the

hole boundary. Additionally, the composite image may suffer from color and

exposure differences. Therefore, we propose another refinement step that

we call a Color-Spatial Transformer (CST). This simultaneously adjusts the

color and alignment for each I is. The structure of CST is illustrated in Figure

5.4. I is will first go through a Color Transformer (CT), and then a Spatial

Transformer (ST) to obtain a refined source image Î is.

In our design of the color and spatial transformers, we would like to retain

the texture details and the rigidity of the source image contents. Additionally,

we prefer the color transformation and warping operations to be decoupled

and not have to use auxiliary losses for each component. Inspired by deep

bilateral filtering [136] and Spatial-Transformer Network (STN) [161], we
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Figure 5.4: Structure of the Color-Spatial Transformer Module. I is will first
go through a Color Transformer (CT), and then a Spatial Transformer (ST)

to obtain a refined source image Î is. The bottom row shows examples of the
refinement stages. Blocks with blue color indicate there are learned
parameters, otherwise they are parameter-free.

propose to learn the transformations in a lower resolution, and obtain the

full-resolution coefficients using up-sampling. Specifically, given I is, I
M
t and

M , we down-sample them to 256× 256 to obtain I is ↓, IMt ↓ and M ↓. Then
we compute the high-level features ui

s = B(I is ↓, IMt ↓,M ↓) using a shared

network B. After that, the color and spatial transformation coefficients will

be learned by the CT and ST sub-networks.

Color Transformation (CT). To transform the color in RGB space of

I is to I isc, we learn an affine transformation with parameters Ai
c = [Ki

c bic] ∈
IRW×H×3×4. Formally, for each pixel at location p, I isc(p) = Ki

c(p)I
i
s(p)+ bic(p),

where Ki
c(p) ∈ IR3×3 and bc(p) ∈ IR1×3. To better preserve the edges and

textual details, we adopt deep bilateral filtering [136]. Specifically, we learn a

bilateral grid Āi
c = Bc(u

i
s) ∈ IRs×s×d×3×4 in a lower resolution, and a single-

channel guidance map gic = Gc(I
i
s) ∈ IRW×H×1 in full-resolution. We fix s = 8

and d = 8 in our experiments. Bc and Gc are the trainable networks for

estimating the grid and guidance map. Finally, Ai
c is tri-linearly sampled
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Figure 5.5: Single-Proposal Fusion (SPF) module. This takes IMt , M , a

single Î is and Ig as inputs, where Ig is the result of a single image inpainting

method. SPF outputs a confidence map ci, the merged Ĩ is, and the packed
features f i

s.

from Āi
c using the normalized triplet (x, y, gic(p)).

Spatial Transformation (ST). We learn the spatial warping offset Ai
s =

[Ai
sx Ai

sy] ∈ IRW×H×2 along the horizontal and vertical axes. To better

preserve the rigidity of the image contents inside hole region, we propose

to learn the warping field Āi
s = Bs(u

i
s) ∈ IRs×s×2 in a lower resolution, and

up-sample it to Ai
s using bi-linear interpolation. Finally, Î is = Warp(I isc;A

i
s).

The objective loss to learn the CST module is defined by,

Li
CS = ||Mv ⊙M ⊙ (It − Î is)||1, (5.1)

where Mv = 1(I is > 0) is the valid mask indicating the pixel regions after

initial homography warping.

5.3.3 Single-Proposal Fusion (SPF) Module

The Single-Proposal Fusion (SPF) module learns to estimate a confidence

map and other features for the refined results Î is from the CST module by

merging it with the outputs of a well-trained single image inpainting model

called ProFill [117]. The inpainting results from ProFill often generate good

structures, so the intuition for the SPF module is that we independently

do an image comparison of each proposal against this ProFill reference, to

better constrain the overall learning task and learn confidence and difference

features that can help the harder downstream multi-proposal fusion task. As

shown in Figure 5.5, the module takes IMt , M , a single Î is and Ig as inputs,

where Ig is the output from a single image inpainting method. In this paper,
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we use a pre-trained ProFill [117] model and freeze its weights while training

the whole pipeline. The module outputs a confidence map of Î is denoted by

ci of the same spatial size as IMt . The output Ĩ is of merging is

Ĩ is = ci ⊙ Î is + (1− ci)⊙ Ig, (5.2)

The values in the confidence map range from zero to one, and higher-

valued regions should contain more informative and realistic pixels. The

composited result of merging IMt +M ⊙ Ĩ is can also be displayed to the user

as an intermediate result demonstrating the performance of a single proposal.

In our experiments, we will show that compared to learning to merge multiple

Î is directly, it is better to condition on the outputs from a well-learned SPF

module.

Additionally, we utilize a shallow convolutional module to concatenate the

learned confidence map ci and the output of the CST module Î is, and output

a three-channel feature map f i
s to be fed into the final multi-proposal fusion

module in section 5.3.4. Similarly, when we input Ig to the SPF, we obtain

the feature fg. The objective function for learning the SPF is defined as,

Li
E = ||M ⊙ (It − Ĩ is)||1, (5.3)

and an additional Total Variance loss is imposed on ci to enforce the smooth-

ness of the map.

Li
c = LTV(ci),LTV(u) =

∥∥∥∥∂u∂x
∥∥∥∥
1

+

∥∥∥∥∂u∂y
∥∥∥∥
1

(5.4)

5.3.4 Multi-Proposal Fusion (MPF) Module

The Multi-Proposal Fusion (MPF) module merges the N + 1 proposals of the

refined source images Î is and the single-image inpainting results Ig together.

The module is fed with the packed features f i
s and fg from the SPF module.

Pixel-wise merging weights ci, i ∈ [1, N + 1] and cg are learned through a

UNet [30] with softmax (cg +
∑N+1

i=1 ci = 1) by merging different portions of
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Figure 5.6: Structure of the Multi-Proposal Fusion (MPF) Module. We feed
the UNet with packed features f i

s and fg from the SPF module, and learn a
spatially-varying merging mask for all the proposals.

proposals as Im,

Im = cg ⊙ Ig +
N+1∑
i=1

ci ⊙ Î is, (5.5)

Then the final result Io = IMt +M⊙Im is learned by the objective functions,

Lo = ||M ⊙ (It − Io)||1 + V GG(M ⊙ It,M ⊙ Io), (5.6)

where the VGG loss matches features of the pool5 layer of a pre-trained

VGG19 [162]. Similarly, total variance losses are imposed to the weighting

maps ci and cg, so we have the losses Li
c = LTV(c) and Lg

c = LTV(cg).

Therefore, the overall loss function with λ1 = 1, λ2 = 1 becomes

Lall = Lo + λ1Lg
c +

∑N+1
i=1 (Li

CS + Li
E + λ2(Li

c + Li
c)). (5.7)

5.4 Experimental Results

In this section, we present our dataset, implementation details, and quantita-

tive and qualitative results.

5.4.1 Datasets and Implementation

Datasets. We trained the model on the RealEstate10K dataset [102]. This

was collected from YouTube videos labelled as real estate footage. In total

it consists of more than 8000 video clips with length from 1 to 10 seconds.

For each clip, we randomly sampled pairs of images with a displacement of
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10, 20, and 30 frames apart. We call this “Frame Displacement” (FD). This

resulted in 188184 frame pairs for training, and 20290 pairs for testing. We

generated random free-form brush-and-stroke holes like in DeepFillv2 [96].

We also collected 3K more pairs of real user-provided image pairs to serve as

practical user cases for testing.

For training the Color-Spatial Transformer (CST), although RealEstate10K

contains sufficient samples with real multi-view data and different exposures

across image pairs, it lacks image pairs with large color inconsistency. There-

fore, we synthesized misaligned color-different images from the MIT-Adobe5K

dataset [163], and uniformly mixed these data with RealEstate10K for train-

ing. Adobe5K contains 5000 images, and for each image it provides five

additional expert-retouched images to form 5000 sets in total. We regard

the original samples as target images and synthesized the misaligned source

images using the method in [144]. We make two binary variables for whether

there is a color difference (C) and whether there is spatial misalignment (S),

and synthesized pairs with CS, CS̄, C̄S and C̄S̄ with equal probability from

4000 sets to form a balanced training set, leaving 1000 sets for validation.

Implementations. We obtained a pre-trained OANet 1 model for image

feature matching and outlier rejection. We applied the pretrained model2

of Hu [158] to estimate the depth map from a single target image. We also

obtained a pre-trained ProFill [117] from the authors. All the above-mentioned

model weights were frozen during training. Additionally, we pre-trained the

CST module using the mixed dataset in advance for 400 epochs, and froze its

weights afterwards. Finally, the whole pipeline was trained end-to-end for 400

more epochs. We used a patch size of 256× 256 for training and arbitrary

size for inference, and a learning rate of 10−4 with decay rate 0.5 after 200

epochs. We used the Adam optimizer [164] with betas (0.9, 0.999). The code

is implemented in PyTorch [165].

5.4.2 Baseline Models

We chose baselines that are similar to, but may not exactly the same as

our task, including approaches addressing image stitching [166], optical flow-

guided video inpainting [121], non-local patch matching for multiple photo

1OANet: https://github.com/zjhthu/OANet
2Hu et al.: https://github.com/JunjH/Revisiting Single Depth Estimation
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Figure 5.7: Comparison with baselines on challenging user-provided image
pairs. For better visualization, we only crop the regions of interest from the
whole target and source images. Please zoom in to see the details.

inpainting [99], and a state-of-the-art single image inpainting method [117]

with the reference image concatenated so the method has access to the same

inputs as the rest.

APAP [166]: As-Projective-As-Possible is a baseline image stitching algo-

rithm that resolves depth parallax. We used the official Matlab 3 implemen-

tation for testing.

DFG [121]: Deep Flow-Guided Video Inpainting treats video inpainting

as pixel propagation. It fills the holes by completing the optical flow field

estimated by FlowNet2.0 [154]. We used their official4 pre-trained model for

testing.

OPN [99]: Onion-Peel Network is a recent work addressing video and group

photo inpainting using non-local attention blocks. We used their official

PyTorch code5.

ProFill [117]: ProFill is a state-of-the-art single-image inpainting method

that also contains a contextual attention module [98]. We used the official

3APAP: https://cs.adelaide.edu.au/∼tjchin/apap/
4DFG: https://github.com/nbei/Deep-Flow-Guided-Video-Inpainting
5OPN: https://github.com/seoungwugoh/opn-demo
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pre-trained model 6 from the authors. When testing, we fed in the target

with the homography-warped source image. Before testing on RealEstate10K,

we also fine-tuned OPN and ProFill on RealEstate10K training frames for

fairness.

5.4.3 Qualitative Comparison

Visual Results on User-Provided Images. In Figure 5.7, we show visual

results of testing on real user-provided images. We indicate the hole region on

the target image, and crop only the region of interest due to the space limits.

More results can be found in the appendix. APAP and DFG well-preserve the

source image contents due to the global homography warping, but they still

suffer from color inconsistencies and alignment issues. We also experimented

with combining Poisson blending with APAP but found it gives color bleeding

artifacts: see the appendix for details. OPN usually works well when there

are multiple reference frames which have similar scales and color distributions

within the same video clips. However, if only one source reference image exists,

the non-local attention module struggles to search for similar local patches

and fails. ProFill with the contextual attention module usually does well in

searching for textures, but the estimated intermediate coarse results cannot be

matched with specific image contents. Thus the reference-based ProFill can

only achieve texture or object removal but not background contents recovery.

Compared to them, ours better reuses the background patterns and achieves

a content-aware alignment and composition. The generated results are more

faithful to and compatible with the target image. The multi-homography

proposal approach provides more options for warping initialization when the

matched features are too complex for a single homography. It helps to resolve

challenging cases when the hole regions do not belong to the dominant plane

in the image as shown in row four. Additional higher-resolution results can

be found at the following link: Additional Results.

6ProFill: https://zengxianyu.github.io/iic/
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Target Source APAP DFG OPN ProFill TransFill

Figure 5.8: Visual results comparison on the RealEstate10K dataset with
FD=10. These have been cropped. Please zoom in so that there are
about 3-4 images across the width of the screen to reveal the
significant differences in fine details. Compared with the baselines, our
proposed TransFill achieves better spatial alignment and faithfulness to the
source image content.
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Visual Results on RealEstate10K We present more visual results in

Figure 5.8 on the RealEstate10K dataset. Compared with the baselines, our

proposed TransFill achieves better spatial alignment and content faithfulness.

Visual Results on Synthetic Adobe-5K In Figure 5.9, we show more

results on the synthetic Adobe-5K dataset to evaluate the performance of our

color transformation. As stated in the paper, we synthesize misaligned and

color inconsistent images from Adobe-5K dataset. The spatial transformation

is a simple homography-based warping, so the CST module works well to align

the images and match the color. More challenging cases can be visualized in

user-provided images.

Unfolding the Model: Intermediate Results In Figure 5.10 and 5.11,

we unfold the whole pipeline of TransFill to visualize the intermediate results

of each proposed module. We demonstrate the process of image completion in

a more intuitive way. After proposing different homography-warped images,

the CST effectively adjusts the misalignment and color mismatching. Then

the proposed TransFill fills in the holes by selectively merging the well-aligned

and color-consistent regions from different proposals. Imperfect regions are

finally filled with the output from ProFill.
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Figure 5.9: Visual results on the synthetic Adobe-5K dataset. For each
group of photos, the left one is the composition of IMt and Is. We transform
the color and warp Is to make it consistent with IMt and composite them as
the right image. Our CST module resolves the color mismatches and spatial
misalignment problems.
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Figure 5.10: Unfolding the whole pipeline to visualize the intermediate
results of each module.
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Figure 5.11: Unfolding the whole pipeline to visualize the intermediate
results of each module. For some challenging cases when the line alignment
is hard, our model can also leverage the outstanding performance of line
generation of ProFill to synthesize the door frame.
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5.4.4 Quantitative Comparison

Results on RealEstate10K. The quantitative comparison on RealEstate10K

is shown in Table 5.1. OPN and ProFill are more suitable for large batch

testing. We tested them on the entire testing set. Results on cropped image

pairs with Frame Displacement (FD) 10, 20 and 30 are reported in terms of

PSNR, SSIM and LPIPS scores [167] based on AlexNet [168]. APAP and

DFG are not suitable for large batch testing and their performance may be

influenced by non-existing regions, so we sampled a 300-image subset from

FD=10 as Small Set to test. Results showed that contextual-attention based

ProFill failed to faithfully reconstruct the source contents. Optical-flow based

DFG achieved better results by smoothly completing the flow field. OPN

with atomic patch matching was not better than our warping-based approach.

The TransFill thus demonstrated its superiority in faithful reconstruction.

User Study on User-Provided Images.To better evaluate the perfor-

mance on our user-provided images, we conducted a user study via Amazon

Mechanical Turk (AMT). We compared our method with each baseline sepa-

rately and presented users with binary choice questions. We requested the

users to choose one fill result which looks more realistic and faithful. To

guarantee the reliability of the users’ feedback, we require the users to take a

qualification test before they evaluate. The test presents users with the 10

trivial pairs It and IMt and users who answer correctly more than 8 questions

are approved to take the official test. We also mix 10 random sanity check

questions with the real questions. No users had to be disqualified due to

failing the initial test, and only very few users (4 users) got check questions

later in the study wrong (5.7% of total opinions), so we conclude that the

user responses are reliable.

For each method pair, we randomly sampled 80 examples, and each example

was evaluated by seven independent users. For each sample, one method was

regarded as “preferred” if at least five users selected it. Samples voted by

three or four users are considered confusing samples and filtered out. We

reported TransFill’s Preference Rate (PR) in Table 5.1. The high preference

rate demonstrates the effectiveness of TransFill. We also conducted a one-

sample permutation t-test with 106 samples by assuming a null hypothesis

that on average 3.5 users prefer one method. The p-values are all sufficiently

small so the preference for our method was statistically significant.
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Table 5.1: Quantitative Comparisons FD: Frame Displacement. The three
rows of each cell show the numbers of PSNR, SSIM and LPIPS score.

RealEstate10K: PSNR ↑/ SSIM ↑ / LPIPS ↓
Model FD=10 FD=20 FD=30 All Small Set

APAP [166] - - - - 31.94
- - - - 0.9738
- - - - 0.0251

DFG [121] - - - - 36.17
- - - - 0.9873
- - - - 0.0155

OPN [99] 33.45 32.47 31.32 32.43 33.40
0.9765 0.9734 0.9699 0.9734 0.9771
0.0201 0.0258 0.0320 0.0261 0.0207

ProFill [117] 31.18 31.14 30.83 31.05 30.95
0.9689 0.9687 0.9683 0.9687 0.9690
0.0423 0.0425 0.0440 0.0429 0.0419

TransFill (Ours) 39.59 37.39 35.62 37.58 38.83
0.9919 0.9877 0.9839 0.9879 0.9914
0.0116 0.0162 0.0213 0.0164 0.0126

5.4.5 Ablation Study

Type and Number of Multi-Homography Proposals. This ablation

study was conducted on the testing set of the RealEstate10K. For each

alternative, we re-trained the model. We compared the proposed depth-

based points clustering methods with other alternatives including random and

spatial clustering in Table 5.3. When we proposed five homography matrices,

depth-based clustering works best. The results were fairly close when we set

N to either 3 or 5, but N = 5 was slightly better in PSNR. However, these

are much better than using just one global homography.

Color-Spatial Transformation Module.

Table 5.4 shows that the order of the Color-Spatial Transformer did not

make too much difference. However, according to our experiments, adjusting

the color first made the training converge faster since the guidance map was

computed from a fixed I is. Table 4.4 also demonstrated that both the Color

and Spatial Transformer were necessary.

Recall that while introducing the Color-Spatial Transformer, we intend to

preserve the texture details and the rigidity of the source image contents.
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Table 5.2: User Study. PR: Preference Rate

User-provided Images: User Study
Model PR p-value

APAP [166] 90.76% p < 10−6

DFG [121] 87.50% p < 10−6

OPN [99] 95.65% p < 10−6

ProFill [117] 81.67% p < 10−6

TransFill (Ours) - -

Table 5.3: Ablation Study on Multi-Homography Proposals.

Clustering N Outlier Rejection PSNR↑ SSIM↑ LPIPS↓
Depth N=5 OANet 37.576 0.9879 0.0164
Depth N=5 Ratio Test [157] 37.444 0.9876 0.0168

Random N=5 OANet 37.499 0.9873 0.0166
Spatial N=5 OANet 37.384 0.9876 0.0169
Depth N=3 OANet 37.537 0.9878 0.0162
None N=1 OANet 37.092 0.9868 0.0172

Therefore, given Ai
c = [Ki

c bic] ∈ IRW×H×3×4, and Āi
s = Bs(u

i
s) ∈ IRs×s×2,

we fix s = 8 and d = 8 in our experiments. We find d does not influence

the performance a lot, and the guidance map is automatically learned to

uniformly span the necessary bins like in the HDRNet[136]. Figure 5.12 shows

the comparison when we set different s values. It suggests that increasing

s gives more degrees of freedom to the learned warping field Ai
s. However,

while encountering larger holes like in Figure 5.12, better flexibility does not

better align the contents as expected, but distorts the contents inside the

hole. The transformed color field also becomes less smooth as s increases. In

an extreme case, suppose we replace the deep bilateral grid and directly learn

a full-resolution pixel-wise color-warping field with total variance constraints

as in the last column, the model struggles to infer a reasonable color-warping

operation within a large hole.

We conclude that CST with smaller s value like s = 8 generalizes better

to inference images with varying spatial resolutions. It is mainly due to the

ill-posedness of image completion. Unlike conventional image registration

tasks where all the pixels of the matched regions are available, hole regions

are missing in the inpainting task. Less freedom in the hole area preserves

better content integrity and semantics.
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Table 5.4: Color-Spatial Transformation. C: Color, S: Spatial

Order PSNR↑ SSIM↑ LPIPS↓
C → S 37.576 0.9879 0.0164
S → C 37.566 0.9879 0.0163
Only S 36.717 0.9866 0.0182
Only C 36.228 0.9849 0.0179

Figure 5.12: Ablation study on the resolution setting in the Color-Spatial
Transformer. First row, direct composition of target image IMt and one of the
single-homography transformed source images I is. Second row, the learned
pixel-wise warping field Ai

s visualized using color wheel in [169]. Third row,

the color-spatial transformed image Î is. Last row, the final merging result Io.

Pipeline Components. Table 5.5 indicates that refining the source image

with CST outperforms directly merging the initialized homography-warped

images. SPF and its output confidence ci effectively guided the learning of

MPF. The proposed full pipeline achieved the best performance.

Importance of Single-Proposal Fusion (SPF) Our experiments exhibit

that the proposed Single-Proposal Fusion (SPF) module before the Multi-

Proposal Fusion (MPF) is necessary for effectively learning the final merging

weights of all the proposals. We find directly learning the weights to fuse

all the proposals is very challenging. The learned weights have a hard time

becoming sparse even though the same total variance loss is imposed. A

comparison of the merging mask c̄i between the model with and without SPF
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Table 5.5: Ablation Study on Pipeline Components. CST: Color-Spatial
Transformer, SPF: Single-Proposal Fusion.

CST SPF PSNR↑ SSIM↑ LPIPS↓
✓ ✓ 37.576 0.9879 0.0164

✓ 35.579 0.9838 0.0183
✓ 36.710 0.9861 0.0188

33.484 0.9782 0.0249

Figure 5.13: Final fusion masks c̄i learned by the model with or without the
Single-Proposal Fusion (SPF) module. By using SPF outputs as guidance to
learn the MPF, the final weights learned tend to be more sparse.

is shown in Figure 5.13. Using SPF outputs ci as a structure guidance for

learning the fusion of multiple proposals works better in practice.

Correlation between ci and c̄i In our experiments, the learned single-

proposal fusion mask ci and multi-proposal fusion mask c̄i demonstrate strong

correlation. Specifically, by zeroing out one of the ci, the values in c̄i will also

vanish. This shows the MPF constructs the correspondence to make c̄i be

conditioned on ci. This provides more flexibility for our model to incorporate

user interactions. Suppose users want to eliminate the elements in some

proposals, one can simply zero them out and the final results will only be

merged from other selected proposals. Such a process is demonstrated in

Figure 5.14.

APAP with Poisson Blending We experimented with using Poisson

blending [128] combined with APAP. The testing result on the Small Set

of images with only few non-existing regions is increased from 31.94dB /

0.9738 to 32.56dB / 0.9754 in terms of PSNR / SSIM. However, we did

not incorporate Poisson blending in the baseline because we found in some

cases there could be significant color bleeding artifacts due to strong color

mismatches and non-existing regions especially along the boundary of the

hole. Some visual comparisons are shown in Figure 5.15.
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Figure 5.14: One example of user-involved interactive editing. For the given
target and source images on the left, we generate seven proposals including
one Ig from ProFill. For the upper group of images, we visualize the regions
selected by our model to synthesize the final results. The image with red
bounding box yields an unexpected artifacts of stairs. By zeroing out its
corresponding c2, we can correspondingly obtain zero-valued c̄2 as shown in
the lower image group. Other maps are also correspondingly redistributed.
The final result on the lower-right position is then generated by merging the
other selected proposals with nonzero weighted masks. As we can see, the
artifact disappears.

Using ProFill with Partial Masks As we stated that single image

techniques don’t work well for larger holes, while in our work, the single-

image inpainting is computed over the full mask area. We also thought about

using ProFill or other single-image inpainting method with partial mask, but

could not find a principled and an end-to-end way to do this. However, we

analyzed an approximation of this approach where we used the confidence

map cg estimated by our method, and binarized it to do a post-hoc fill (with

ProFill) of each hole region of the target that corresponds to single image

inpainting (where the content is not visible in the source image or not well

reused). Comparisons are shown in Figure 5.16. This reveals that since the

mask was learned for merging purposes, a post-hoc filling using the mask

may introduce other artifacts like broken door frames. The average testing

results on RealEstate10K decreased from 37.58 dB / 0.9879 / 0.0164 to 37.13
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Target Source APAP APAP+Poisson TransFill

Figure 5.15: Ablation study on APAP with Poisson blending post-processing.
The color bleeding artifacts are significant in some cases when there are
strong color mismatches or non-existing regions. APAP does not include
image inpainting, so regions that are outside the source image appear as
black.

dB / 0.9871 / 0.0173 in terms of PSNR / SSIM / LPIPS. However, using

partial masks to fill only non-existing regions might work better for images

with larger non-existing regions, and become more robust if another approach

of learning is taken.

5.5 Failure Cases

Figure 5.17 shows some examples of failure cases when the viewing angle

changes are large. The color matching module may struggle if there are

extreme lighting differences. We may also encounter outpainting artifact

issues caused by ProFill.

5.6 Ethics Statement

The goal of image inpainting research is to generate realistic image contents

while removing or changing some original contents of the photos. Our model

achieves a high preference rate in the user study due to its high performance
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Target Source TransFill TransFill + Post Binary Mask

Figure 5.16: Post-hoc refilling results using ProFill. The TransFill columns
show a zoom of the original output, the post-hoc filling result (TransFill +
Post), and the region to be refilled from the confidence cg (Binary Mask).
The re-filling with a partial mask may introduce additional artifacts like
broken door frames.

of reusing existing contents from another image. However, we believe that

there are scenarios where our model can be used in a wrong way. First, users

may remove some objects from the image to make fake contents, and our

generator based on ProFill may also generate biased contents.

countermeasures against the falsification or bias of images may include both

technical measures and legal measures. Technical measures may include:

first, associated with our generator, we also train an adversarial discriminative

detector to differentiate fake generated images with real photos. We can also

add watermarks in original photographs that could be decoded to determine

whether or not the image has been modified. Second, though we did not

find explicit bias issues in the model results, in a future development, we

will consider building up a more balanced training dataset to better avoid

similar issues. Legal measures include the draft U.S. bill H.R. 3230 [170],

which would require any visual display that modifies an image of a person,

if the user knows that the image will be distributed over the internet, to

prominently display a notification stating that the image has been digitally

modified. Given the importance of those ethical problems, we encourage more

explorations towards this direction in the future.
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Figure 5.17: Failure cases. These demonstrate limitations with large changes
in viewing angle, outpainting artifacts from the off-the-shelf single image
inpainting module ProFill, and challenges in handling dramatically different
lighting environments.

5.7 Limitations, Discussion and Conclusions

The proposed method has limitations in certain situations. First, the pipeline

may not work well on extreme low-light or texture inputs containing very

few SIFT feature points. Second, our homography-based transformation

is not suited for image pairs with extreme viewpoint changes. Third, the

current model may struggle to transfer color if the lighting environment is

very different, such as day to night. This is because we use an effective

bilateral grid color matching, but do not incorporate any specialized models

that reason further about lighting (e.g, [171]). Additionally, we utilize the

pre-trained ProFill to fill the missing pixels so the final generation quality

highly depends on the performance of the single image inpainting module

ProFill. That module could be replaced by other state-of-the-art models, and

could potentially be optimized with the multi-fusion pipeline together. We

leave that for future work.

In conclusion, we contribute a multi-source image inpainting model based

on multiple homography, deep warping and color harmonization. The results

outperform state-of-the-art single image and multi-source inpainting methods,

especially when the hole contains complicated depth.
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CHAPTER 6

DISCUSSION

In this chapter, we discuss the philosophy about practical image restoration

and related tasks, and build up the connections among different chapters. We

mainly present the goals of making deep restoration models practical and the

ways of deploying those models for large-scale applications, and discuss the

current exploration in this paper towards the goals. The limitations will be

analyzed and future work for more innovative methods and applications are

anticipated.

6.1 Practical Deep Image Restoration

In practical applications, image restoration is supposed to have two main

characteristics: First, models should be responsive and effective enough when

the testing data contains complicated degradation factors, even unknown

degradation types and levels. Second, models should have high efficiency

with short inference time. Compared with conventional optimization-based

methods or inverse filtering algorithms, deep learning-based restoration models,

as a new trend, learn a forward pass for inference, bringing in faster estimation

speed and much better performance within specific training data domains

whose images can be distorted by arbitrary degradation factors.

However, two drawbacks are also very obvious. First, due to the data-driven

nature of deep learning-based methods, a convolution neural network model

is domain specific. The performance of the model is constrained by the

quality and size of the training dataset, and the domain difference between

the traniing and the testing data. Given any unseen testing data whose

domain is slightly different from the one of the training data, the model will

experience a severe performance drop. It brings a problem of limited model

scalability and adaptability. Suppose the industrial applications require a
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de-blurring model which can handle testing images with arbitrary and diverse

blur kernels, or a de-noising model which can successfully enhance the quality

of noisy user photos shot from unknown cameras, it will be infeasible to

customize a deep model for a specific testing input. Second, for deep models,

larger parameter size and deeper network structures usually yield better

performance, but it is actually not necessary. Performance and efficiency of

using smaller models can be still improved by model compression, neural

architecture search, network design, convolutional kernel design or any other

advanced methodology. Balancing the performance and efficiency of deep

models are constantly an open problem and emerging research area. The

related knowledge from other vision tasks can be shared with image restoration

models.

In this dissertation, towards more practical deep image restoration models,

we claim the key to resolving the drawbacks of the models are the data itself

along with task-specific knowledge, and domain-adaptive deep model design.

In our experiments, the training and testing data may have domain difference

like different Bayer patterns in Chapter 2 or distinctive spatial and channel

noise distribution in Chapter 3. Besides, the restoration task can be too novel

and no training data is available and it requires us to synthesize realistic

data in Chapter 4. Furthermore, testing and training data may have different

spatial size while näıve CNN fails to estimate resolution-sensitive information

like warping offset, regional color transformation or degradation kernel etc.

We found that simply training a näıve CNN using the prepared training

data from a specific domain results in degraded model performance during

testing. However, inputting the common knowledge from respective tasks,

which is mostly ignored by deep learning researchers and engineers, could

greatly boost the model performance. Besides, simple model design can

improve the adaptability by narrowing down the gap between training and

testing. The exploration among the above mentioned methodology finally

forms this dissertation.

6.2 Exploration

In this dissertation, towards more practical deep image restoration models,

we mainly explored and discussed the methodology of real data acquisition
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(Chapter 4), realistic data synthesis (Chapter2 and 4), testing data domain

adaptation (Chapter 2 and 3), and deep model design (Chapter 3 and 5).

Specifically, for RAW image processing task in Chapter 2, unifying the

Bayer pattern of the RAW images was found to be a highly useful trick while

previous researchers just directly feed data with mixed patterns into the deep

models. Our proposed training strategy is proven to be effective while coping

with RAW data and can easily improve the robustness of deep models.

Similarly, in Chapter 3, we found the major domain difference between

Gaussian-corrupted images and most real RGB noisy images captured by

users sources from the spatial and channel correlation of the noise patterns,

which are generated by interpolation process of demosaicing algorithms with

in camera ISP. However, before that, very few research works of deep image

denoising studied real RGB noises or tried to discuss the domain difference by

unfolding the camera pipeline. They simply use toy examples like Gaussian

or Impulse noise model and study network designs. Though they obtain

fairly high quantitative performance on synthetic data, the models can not

be deployed for practical applications because most user images are not

Gaussian-corrupted. Our proposed method greatly boost other previous deep

learning models which are trained on Gaussian noises by a large margin, and

the simple adaptation module makes previous models much more practical.

When encountering complicated degradation type like diffraction from lens

occlusion in Chapter 4, we either collect real paired data or synthesize the

realistic data by analyzing the image formation optical pipeline to resolve

the training and benchmark data insufficiency problem of such challenging

restoration tasks. For a specific Under-Display Camera imaging task, our

physics-based data synthesis model can convert a occlusion display panel and

related optical measurements into a set of parameters of image degradation

including point spread function (blur kernel) and image intensity scaling

factors etc. The model is potentially practical for the analysis of similar

tasks, like designing and optimizing a better display panel for UDC [172], or

resolving lens flare problems [173].

Finally, we revisited deep model design in Chapter 5 to specifically address

the resolution adaptability of image registration and harmonization modules

for reference-based image inpainting task [174]. We found that a deep edge-

preserving bilateral filtering could make the model predict spatial and color

transformation parameters using a fixed-size input in the low-resolution branch

77



during training and testing, while using a learned high-resolution guidance

map for a flexible sampling during inference. Therefore, we can maintain the

domain of the deep models while extending it to multiple input sizes. The

entire inpainting pipeline thus become more practical while being tested on

real user photo pairs of arbitrary exposure difference, spatial misalignment

and resolution difference.

The exploration in this dissertation is focusing on utilizing the information

and knowledge which is always ignored and under-explored in previous research

works to boost the performance of deep image restoration or enhancement

models. The methodology introduced in difference sections is proven to be

effective for a variety of image restoration tasks by extensive experiments,

and can be potentially generalized to other similar tasks.

6.3 Limitations

In this dissertation, we mostly utilized heuristic methods to resolve training-

testing domain misalignment. Those methods mainly have two disadvantages.

First, the design of the domain adaptation methods can not be easily extended

and generalized to universal image restoration tasks. For example, the Pixel-

shuffle Downsampling method introduced in Chapter 3 can only be applied

to adapting testing domain from AWGN to spatially-correlated RGB noises.

Similarly, the realistic data synthesis methods introduced in Chapter 4 are

specifically designed for Under-Display Camera imaging or diffraction-related

restoration tasks. The success of those methods highly depends on the

understanding of the imaging pipeline of different tasks, due to the diversity

and distinction among image restoration tasks, it is infeasible to apply the

same rules to all of them. Second, those methods can still result in some

remaining domain misalignment while failing to consider some factors in the

practical pipeline. For example, in Chapter 3, the assumption of the real

RGB images is based on the fact that there is a demosaicing process in the

camera ISP, and the demosaicing is interpolating between neighbour pixels.

Some more advanced pipeline designs like tone mapping or other non-linear

transformation inside the ISP may also greatly influence the imaging results.

We may never be able to consider all the influential factors due to their

diversity. In Chapter 4, while synthesizing realistic noises for training, we did
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not consider the factors like camera vignette, lens distortion, the non-zero

distance between the display and the camera lens, and noises sourcing from

the dead pixels etc. Those factors result in the gap between the model trained

with real data and the one trained our synthetic data both quantitatively and

qualitatively.

Besides, we did not discuss the efficiency and complexity in a deeper level.

The models are mostly UNet-based structures in this dissertation. Limited

network structures do not consider the deployment efficiency on different

devices and inference speed in a live stream with high frame rates. The

balancing between the inference time and network complexity is partially

discussed in Chapter 4, but not sufficient enough for more general cases.

6.4 Future Work

Given the above mentioned limitations of this dissertation, towards a more

practical deep image restoration models, efforts should be put more on the

following aspects.

First, unsupervised image restoration models or degradation data synthesis

using generative models can be further explored. With advanced generative

model like Generative Adversarial Networks (GANs) [175], Variational Au-

toEncoder (VAE) [176], Normalizing Flow [177], or diffusion-based methods

[178], we can study how to learn the data domain distribution from unpaired

data. Besides, few-shot learning can be studied given the consumption of data

collection for training. However, the performance of those model may not be

easily comparable with fully-supervised models, so improving its performance

will be worth exploring. Generative models are also used to improve the

perceptual quality, which can be continuously explored in the future.

Second, given the task-specific knowledge like optical system formulation or

some real measurements of imaging hardware, we should study the methodol-

ogy to include them into the deep network design. Domain knowledge inputs

will be sure to improve the restoration performance if being properly learned

by the network. Some good ideas include simulating the camera ISP [40, 179]

within the network.

Third, while designing deep models, utilizing and embedding more tra-

ditional signal processing methods into the networks will greatly help the
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model learn the utilize image information. Some good examples include the

novel Fourier Convolution (FC) [180] and our super-resolution work named

cross-scale self-attention [181] etc.

Last but not the least, improving the model inference speed and reducing

the capacity while preserving the restoration performance is important to

explore. Our work, hasing-based self-attention [182], is another good example

for this direction.
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CHAPTER 7

CONCLUSION

In this dissertation, we aim at addressing training data insufficiency and

training-testing domain shift issues of deep image restoration models. With

the proposed learning, testing and data synthesis strategies, deep models

trained on realistic synthetic data can still be well-deployed for testing on

real collected data from a different testing domain. To demonstrate each

strategy, we present four specific image restoration tasks, including real RAW

image denoising, real RGB denoising, combined diffraction restoration of

Under-Display Camera, and hole-filling in reference-based image inpainting.

We first presented the Bayer pattern manipulation methods for real RAW

image denoising task. We demonstrated that unifying the Bayer (BayerUnif)

patterns of the training paired images benefits the generalization ability of

the image restoration network while testing on unseen noisy inputs. The

proposed Bayer-preserving data augmentation (BayerAug) for RAW images

also improves the robustness of the network. The two strategies can be

regarded as plug-and-play adaptation modules for networks trained with

RAW sensor images.

By considering the Bayer pattern and demosaicing algorithm in the in-

camera pipeline, we then presented a Pixel-Shuffle Downsampling (PSD)

adaptation strategy to apply AWGN-trained denoiser to real RGB image

denoising. Due to the complicated signal transformation within the in-camera

pipeline, the noise distribution of RGB images cannot be simply represented

in an analytical form. However, from a novel view point, we showed that the

proposed PSD can break down the spatial correlation of RGB noises into

approximated spatial-variant Gaussian noises, which can be better processed

by deep denoising models trained with AWGN. Experiments demonstrated

that PSD adaptation can boost the performance of existing AWGN-trained

models on real RGB noisy image benchmark.

We then discussed a physics-based image formation pipeline to synthesize
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corrupted images with combined degradation factors. Specifically, we studied

the diffraction effect caused by lens occlusion in Under-Display Camera

(UDC). We showed that the model trained with synthetic image pairs achieved

visually similar performance to the model trained with real pairs. Extensive

experiments demonstrated the superior performance of our restoration model

on UDC problems.

Finally, we extended our discussion to reference-based image inpainting.

To complete the missing regions in the target image, we registered the source

image using multiple homography, and trained deep models to further refine

the color and spatial difference. Our scale-robust and content-preserving Color-

Spatial Transformer (CST) works well on adjusting real image difference,

though the model is trained on synthetic data and the testing image scale can

be diverse. Along with the image blending modules, the proposed pipeline

demonstrated state-of-the-art performance on the challenging multi-image

inpainting task.

This dissertation showed that realistic training data synthesis, data domain

adaptation and scale-robust model design efficiently improve the performance

of deep restoration model while being tested on real inputs, if we could

understand and formulate the image formation process. In the future, more

efforts can be put on learning-based domain adaptation and data augmentation

methods using adversarial training or flow-based generative models etc..
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