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Abstract

Much of modern condensed matter research tries to understand strongly correlated electron systems. These

materials exhibit a variety of interesting quantum phenomena that stem from strong electron interactions

and the emergent quasiparticles that define the system. Understanding the collective mode dynamics of these

particles is key to understanding the macroscopic behavior of these materials. One quantity that contains

fundamental information about the about these boson collective modes is the charge susceptibility χ(q, ω)

which contains information about the propagation of density fluctuations that are mediated by bosonic

excitations. Until recently though, it was not possible to measure χ(q, ω) at low energy (< 100 meV) and

with the momentum resolution and accuracy needed to see interesting phenomena. With the development of

momentum-resolved electron energy-loss spectroscopy (M-EELS) in the Abbamonte Group at UIUC, χ(q, ω)

can now be probed at low energy scales of interest. Here we use M-EELS to study the collective modes of

several strongly correlated materials with interesting low energy physics.

Bose condensed phases of excitons have the potential to realize macroscopic quantum phenomena at

unprecedented high temperatures [1, 2]. When excitons Bose condense in a real material, however, some

rearrangement of the charge density inevitably results, leading to a distortion of the crystal lattice [3–6].

This raises the question of whether there can ever be a distinction between a Bose condensate of excitons

and a conventional, structural phase transition that breaks the same symmetry. Here, we use inelastic

electron scattering (M-EELS) to study copper-intercalated TiSe2, in which exciton condensation can be

directly observed as a soft electronic mode at the exciton condensation temperature, TXC [7]. While the

lattice distortion in CuxTiSe2 persists to x > 0.10 [8], we find the exciton condensate is fully suppressed

by x = 0.014, which is short of the semimetal-metal transition we identify at x = 0.025. Our observations

indicate that the excitonic and lattice instabilities split as x is increased, showing that structural and excitonic

subsystems can exhibit separate transitions and may be distinct subsystems that break different symmetries.

In addition we found that although exciton condensation is suppressed, exciton fluctuations remain for most

of the doping phase diagram. These fluctuations have been theorized to aid in superconducting pairing in
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this system [9,10].

SrTi1−xNbxO3, is an electron doped ionic semiconductor that exhibits aborted ferroelectricity due to

quantum fluctuations [11], dilute (unconventional) superconductivity that survives even when the plasmon

energy (ωp) is lower than the Fermi energy (EF ) [12], and charge transport properties that suggests bad

metal behavior [13]. In general, the polar nature of ionic semiconductors leads to coupling of the longitu-

dinal optical (LO) phonons to collective charge modes, such as plasmons, due to long range polarization

fields. Understanding the dynamics of these collective modes, which have been implicated in supercon-

ducting pairing [14] [15] [16], can provide insight into the nature of these unusual properties. Here, we

use inelastic electron scattering (M-EELS) with a fracturing surface preparation technique to study the

doping, temperature, and momentum dependence of the charge collective modes in SrTi1−xNbxO3. We

measure propagating and diffusive acoustic phonons, Fuchs-Kliewer optical phonons and overtones that get

suppressed with doping due to metallic screening, a 93 meV phonon mode that becomes highly damped

and asymmetric at x=0.002, and a very broad plasmon that blue-shifts with decreasing temperature. We

find that the plasmon in SrTi1−xNbxO3 remains dispersion-less at all temperatures and dopings even with

other propagating collective modes (acoustic phonon), contrary to RPA predictions and dispersions in other

polar doped semiconductors [17]. The width of the plasmon deviates from RPA predictions by an order of

magnitude. In addition, the energy of the plasmon measured in M-EELS is less than that of other techniques

like infrared spectroscopy for samples of comparable carrier densities.
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Chapter 1

Introduction

In the field of condensed matter physics, systems can be classified based on the interaction strength between

the free particles that make up the material. In the case of weak interactions, the energy of the interactions

between particles (such as Coulomb energy for electrons) is a lot smaller than the energy of the particles

themselves (kinetic energy of electrons) so we can describe individual particles as non-interacting. This

is the case for most textbook metals and semiconductors, whose microscopic and macroscopic properties

can be explained using Fermi liquid theory. In strongly correlated systems, the energy between particles

is no longer negligible and this gives rise to interesting collective phenomenon such as superconductivity,

magnetism, and density waves. Measuring, quantifying and understanding these emergent phenomena and

their microscopic origins is the basis for almost all the research in the field, including this thesis.

1.1 Characterizing Materials with Scattering Techniques

In order to characterize a many-body system we need to understand both the single particle or quasipar-

ticle dynamics (i.e. fermions) as well as the dynamics associated with a collection of these particles or

quasiparticles (i.e. bosons). Examples of bosons in material systems include plasmons (collective mode of

electron oscillation), phonons (collective mode of lattice vibrations), and magnons (collective mode of spin

oscillation).

For the case of fermions, quasiparticles are characterized by the one-electron Green’s function,

G(r, r′, t− t′) = −i〈{ψ†(r, t), ψ(r′, t′)}〉θ(t− t
′)

~
(1.1)

which describes the probability that an electron at location, r, and time, t, will propagate to location
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r′ and time t′. G(r, r′, t − t′) contains information about the energy band structure and lifetimes of the

quasiparticles [18]. Examples of spectroscopic techniques that measure single particle excitations is angle-

resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM).

For the case of bosons, the collective excitations (also known as collective modes) are characterized by

the density Green’s functions that describe the density response due to a perturbation. These “dynamic

response functions” contain information about the interactions that drive collective behavior. In other words,

we can measure the disturbance in bosonic collective modes created by the probe particle interacting with

the material. Such techniques can use neutrons, photons, or electrons as the probe that interacts with the

system of interest.

Photons

Two common techniques using photons as the probe particle are infrared (IR) spectroscopy and inelastic

X-ray scattering (IXS). IR spectroscopy measures the reflectively from which one can extract the dielectric

response function, ε(ω). The dielectric response function is related to the dynamic susceptibility, χ(ω) [19].

IR spectroscopy is a great technique due to its high energy resolution however it is limited to just measuring

at q = 0 (i.e. Brillouin zone Γ point) in momentum space.

Inelastic X-ray scattering has the benefits of high energy resolution as well as measuring across the

Brillouin zone. However due to the fact that photons couple to the electron density as compared to the

charge density, this method is less sensitive to charge collective modes such as plasmons [20]. This is due to

the fact that the electron density is composed of electrons from the valence plus the core states. In many

highly correlated materials, the lattice is composed of elements that have a high Z number, so the majority

of the electrons in these system come from core states. This means that photon probe techniques are very

sensitive to lattice excitations, such as phonons, and have a weaker signal from valence electron excitations,

such as plasmons [21].

Neutrons

Neutrons are neutral particles and are not sensitive to the charged dynamics in the system. Inelastic neutron

scattering is an example of a technique that can measure the spin dynamic response function with meV energy

resolution across the Brillouin zone. Therefore this technique is used to measure spin collective excitations,

such as magnons, but can also be sensitive to lattice excitation’s through the displacement of the nucleus of

individual atoms on a crystal lattice [22].
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Electrons

Unlike neutrons, electrons are not neutral and are therefore sensitive to charged particles in materials. Unlike

photons, electrons are sensitive to all charge (electrons + protons). This means that the core electrons cancel

the positive charge in the nuclei of the atoms, so inelastic electron scattering primarily sees the valence

electrons and is sensitive to valence collective modes such as plasmons. In addition, since the nucleus of

atoms is coupled to electrons, if there is a lattice displacement, the electrons will feel the effects of that

too, making electron scattering also sensitive to lattice dynamics. Inelastic electron scattering (also known

as electron energy loss spectroscopy) can be used in a transmission geometry that has good momentum

resolution but poor energy resolution ( 100 milli-electron Volt (meV)) or it can be done in a reflection

geometry that has excellent energy resolution (on the order of several meV).

For this thesis, we focus on the dynamic response function that describes the charge collective excitations.

This is also known as the dynamic charge density response or the dynamic charge susceptibility and is

represented in Equation 1.2. Which describes the probability that a disturbance in the charge density at

location,r, and time, t will propagate to location, r′, and time, t′.

χ(r, r′, t− t′) = −i〈[ρ̂(r, t), ρ̂(r′, t′)]〉θ(t− t
′)

~
(1.2)

This is a similar statement to Equation 1.1 except that this describes the bosonic response as compared to

the fermionic response.

For decades there have been techniques to probe energy and momentum dependence (dispersions) of spin

collective excitations in materials however there lacked a probe to measure dispersions of charge collective

modes at low energies. This gap in knowledge led to the development of a technique that measures dispersions

of the dynamic charge density response function at meV scales known as momentum-resolved electron energy

loss spectroscopy (M-EELS). It is important to note that the quantity M-EELS aims to measure is the

dynamic charge response function, however experimentally the dynamic structure factor, also known as the

dynamic correlation function, S(q, ω), is what is measured [21]. The two quantities are directly related and

this will be discussed further in Chapter 2.

1.2 Collective Excitations in the Density Response Function of

Highly Correlated Systems

The development of M-EELS allows us to measure the energy and momentum dependence of the charge

response function in highly correlated systems with interesting emergent phenomena. This thesis will fo-
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cus on the collective excitations in two specific systems - CuxTiSe2 and SrTi1−xNbxO3. CuxTiSe2 and

SrTi1−xNbxO3 are both doped semiconductors that exhibit strongly correlated phenomena.

1.2.1 Strongly Correlated Phenomena in CuxTiSe2

CuxTiSe2 exhibits several interesting quantum phenomena such as charge density waves (CDW) and super-

conductivity [23]. In addition, it has recently been shown that undoped TiSe2 realizes exciton condensa-

tion [7].

A CDW is a periodic modulation of the electric charge with an accompanying periodic lattice distortion

(PLD) that occurs below a critical temperature, TC [24]. In CuxTiSe2 for dopings x < 0.05, the wave vector

of the CDW, q0, is a rational fraction of the reciprocal lattice vector making it commensurate with the

lattice. For dopings x > 0.05, the CDW wave vector is incommensurate [8].

Superconductivity is another example of a system that attributes its unique properties to electron interac-

tions. The superconducting phase is a low temperature phase that is characterized by perfect diamagnetism

(expulsion of magnetic fields from the solid) and perfect conductivity (zero resistivity). These properties

of superconductivity result from the fact that electrons in the system, which normally repel one another,

experience an attractive force that dominates at low temperature making it energetically favorable for these

electrons to pair into Cooper pairs.

In 1957, Bardeen, Cooper, and Schrieffer developed the first microscopic theory of superconductivity,

BCS theory [25], which was able to describe all known superconductors at the time. In these materials,

Cooper pairs form through the mediation of crystal lattice vibrations. As electrons pass through the lattice,

they are attracted to the positive ions of the lattice. This attraction creates a potential well that attracts

another electron forming a single Cooper pair, mediated by the phonon.

It was shown that undoped TiSe2 also exhibits exciton condensation [7], which can contribute to a PLD

and CDW formation. If cooled to low temperature, a collection of bosons will condense into a single quantum-

mechanical state known as a Bose condensate. Bose condensation is seen in many macroscopic quantum

phenomena, including superconductivity. In TiSe2 the bosons that condense are excitons, or electron-hole

pairs bound together by the Coulomb interactions. A condensate of excitons can also modulate the charge

density and can create a PLD. The origins of CDW formation - from a PLD or from exciton condensations

- was a long debated topic in condensed matter research.

An experimental signature that differentiates CDW formation due to exciton condensation from that of a

PLD is the observation of a soft electronic collective mode at T = TXC = TPLD and q = q0 as well as a q = 0

electronic mode that decreases in energy with decreasing temperature until it reaches T = TXC = TPLD. This
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key finding was experimentally proven by using M-EELS [7], which measures dispersions of charge collective

modes at low energies. However, the exciton condensate and PLD in TiSe2 share the same symmetry and

occur at the same temperature. Determining if these two phases are distinct from one another can give us

more insight into the nature of the electronic interactions in this system.

Intercalating TiSe2 with copper suppresses the PLD and induces a superconducting dome [23]. X-ray

scattering has shown that the PLD is suppressed in CuxTiSe2 [8, 26], but a separate measurement of the

exciton condensate as a function of x is still needed. In this work we use M-EELS to measure how the soft

electronic mode evolves with copper intercalation to investigate whether the exciton condensate and PLD

behave independently.

1.2.2 Strongly Correlated Phenomena in SrTi1−xNbxO3

SrTi1−xNbxO3 also exhibits several interesting quantum phenomena such as quantum paraelectric behavior

and unconventional superconductivity [27].

Unlike its periodic table neighbor BaTiO3, SrTiO3 never reaches the ferroelectric ordered phase. As

temperature decreases, the dielectric constant increases as if the system is about to transition into a ferro-

electric state, but then plateaus at around 20,000 times the vacuum permittivity [28] [11]. This deviation

from ferroelectricity is due to quantum fluctuations causing the system to remain in a quantum paraelectric

phase.

What makes SrTi1−xNbxO3 particularly interesting is that it is a dilute metal. Due to the proximity to

quantum fluctuations, this material exhibits strong screening of static Coulomb interactions. As a result of

this, unique charge transport properties emerge such as mobility that changes several orders of magnitude

with temperature [13], resistivity at high temperatures that goes as T-cubed and resistivity that surpasses

the Mott–Ioffe–Regel limit [29] (the limit in which the length between electron collisions is comparable to

the mean distance between the electrons).

In addition, SrTi1−xNbxO3 has a superconducting dome that exists at exceptionally low carrier densities

and therefore can no longer can be explained by the BCS theory of superconductivity. Since BCS theory

was developed, there have been many discoveries of materials that cannot be explained by BCS theory. Such

systems include high Tc superconductors, heavy fermion systems, ruthanates, dilute carrier systems, and

more. The condensed matter community is still trying to understand the microscopic pairing mechanism

that drives these “unconventional” superconductors.

In 1964, superconductivity was discovered in electron doped SrTiO3 with a critical temperature of 0.3

K [30]. This system was the first oxide perovskite superconductor found, decades before the cuprates (high
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Tc superconductor) [31]. In addition, this material exhibits a relationship between the critical temperature

and carrier density that is shaped like a dome. Many other systems with superconducting domes have since

been discovered and the dome’s proximity to other electronic phases is considered pertinent to understanding

the microscopic behavior in the system [32].

Electron doped SrTiO3, which includes SrTi1−xNbxO3, falls into the subclass of materials known as

dilute superconductors because it becomes superconducting at densities as low as 5.5× 1017 cm−3 [12]. Due

to the low carrier density, the screening of the Coulomb repulsion is weak and therefore BCS theory does

not apply. Understanding these dilute systems has become of increasing interest as more materials in this

category have been discovered including Bismuth, which has recently been discovered as the lowest density

superconductor [33].

Although SrTiO3 and SrTi1−xNbxO3 have been studied for over half a century, until recently there had

not been a technique that could measure the dispersions of charge collective modes at low energies. The

dilute-ness of SrTi1−xNbxO3 makes it particularly interesting to measure its collective excitations because

the energy of lattice excitations is comparable to that of electronic excitations. This prompted us to explore

how these collective modes behave.

1.3 Overview

My Ph.D. work has furthered our understanding of collective excitations in highly correlated materials. In

particular, I have explored the normal state properties of lattice and electronic collective modes for two

interesting systems - CuxTiSe2 and SrTi1−xNbxO3

In Chapter 2, I provide an overview of the theory behind the M-EELS experiment. I include calculations

of the scattering cross section as well as other quantities such as the density-density correlation function,

S(q,w), the density response function, χ(q, ω), and the dielectric loss function. I also address an unsolved

issue related to assumptions in the cross section calculation and provide one avenue for a potential solution.

In Chapter 3, I will present the M-EELS experimental implementation at UIUC. I give a brief description

of the M-EELS setup followed by an explanation of what makes M-EELS distinct from HR-EELS. Next I will

describe the electron optics of M-EELS as well as the new procedures I implemented for characterizing the

electron beam behaviour. The later is compared to theoretical calculations and will be useful for optimizing

the electron trajectory. Following that, I will discuss sample preparation, including a novel preparation

technique for non-2D layered materials that I established. Finally I will address several of the instrumentation

upgrades that I have designed and implemented over the course of my graduate degree.
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In Chapter 4, I discuss the results of the M-EELS study on CuxTiSe2. I first address the condensed

matter interest in understanding and observing exciton condensation in undoped TiSe2 - a system that

realizes exciton condensation at the same temperature and with the same symmetries as a lattice distortion.

This motivates the M-EELS experiment on CuxTiSe2. Can copper intercalation determine if the exciton

condensation and lattice distortion phases are distinct from one another? Measurements of the periodic

lattice distortion order parameter and calculations of effective doping on each sample are presented. Next

I present the momentum, doping, and temperature dependent results along with the fitting scheme used to

quantify this data. Finally, I end with a discussion and revised phase diagram showing that the effects of

copper doping quickly suppress the exciton condensate phase and that there exist excitonic fluctuations that

describe the unusual temperature dependence seen across the phase diagram.

In Chapter 5, I discuss the results of the M-EELS study on SrTi1−xNbxO3. I first discuss the inter-

esting properties exhibited by this unconventional material both in its undoped and electron doped states.

Specifically I will touch on the importance of the electronic collective modes in this material due to their

proximity in energy with the lattice collective modes. Next I will address how the novel wiresaw sample

preparation impacts the M-EELS measurements. I present the momentum, doping, and temperature de-

pendent results. These results show a lack of dispersion of the electronic collective mode, strong phonon

overtones, and unusual electronic mode temperature dependence. Finally, I end with a discussion about how

this data deviates from both RPA calculations and infrared spectroscopy measurements.

1.4 Summary of Accomplishments

Below is a summary of the work I have accomplished during the course of my Ph.D.

• Development of M-EELS hardware and sample prep techniques to increase M-EELS

measurements of more diverse materials. I have designed, implemented and tested several

ultra high vacuum (UHV) components to increase the classes of materials that M-EELS can study.

Previously, M-EELS could only measure samples that are 2D - layered materials that can easily be

cleaved in an UHV chamber. This severely limits the types of materials and physics that we can study

with M-EELS. To overcome this, I created a vacuum suitcase chamber that can attach to both the

M-EELS chamber as well as MBE and ARPES chambers and achieve UHV pressures. This allows for

the growth of thin films in MBE to be transported to M-EELS without ever being exposed to air and

in turn not requiring a way to clean the surface for scattering. I also developed an annealing stage that

can heat materials in UHV which can be used to evaporate dirt off sample surfaces as well as electron
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dope materials (by removing oxygen) and evaporate selenium caps on thin films. I introduced a UHV

fracturing technique as a way to cleave samples that are not 2D layered. The vacuum suitcase was

developed in collaboration with Guannan Chen (UIUC, Madhavan Group) and Waclaw Swiech (MRL

Research Scientist) who assisted with making the vacuum suitcase compatible with MBE instruments.

The final CAD design of the annealing stage was implemented by undergraduate student, Reka Manton,

under my guidance.

• New characterization tools for in-situ optimization of electron beam trajectory. I helped

develop methods to characterize the behavior of the electron beam at multiple points in the electron

trajectory. Originally electron throughput and resolution were only characterized and optimized by

varying a single parameter at a time. Due to the fact that the phase space of the electron optics

parameters is so large (40+ parameters), this approach often led to being stuck at a local minimum in

parameter space. An alternative approach is to vary a few parameters simultaneously to more accu-

rately determine the parameter space. This approach was previously implemented by characterizing

the phase space at the detector [34,35]. In this work, I extend on the phase space characterization by

looking at multiple points along the electron trajectory not just at the detector. These characterization

tools will be especially important for implementing next iterations of the M-EELS spectrometer. The

work of this characterization was a collaboration with labmates Cat Kengle, Jin Chen, Faren Hoveyda

Marashi, and Simon Bettler.

• Modifying M-EELS cross section calculation to include experimental momentum resolu-

tion. Calculating the M-EELS cross section uses assumptions that in the regime near-Bragg condi-

tions breaks down [34–36]. This is problematic when calculating physical quantities such as S(q, ω)

and χ′′(q, ω) which entails dividing out the cross section matrix elements and creates an artificial dis-

tortion of the spectral weight at near-Bragg momentum. One approach to solving this is to include the

experimental resolution of the spectrometer in the matrix element calculations. The derivations and

simulations of this approach, specifically for the material Bi2212, is work done by Christian Boyd and

Luke Yeo (UIUC, Phillips Group). The work presented in this thesis is a collaboration with Christian

and Luke using their calculations applied to materials of interest in this thesis, namely SrTiO3.

• Using M-EELS to determining if the exciton condensate and periodic lattice distortion

phases in TiSe2 are distinct from one another. This was done by measuring the soft plasmon (a

signature of exciton condensation) as a function of copper intercalation, CuxTiSe2, which introduces

coulomb screening of the valence electrons. Our results show that exciton condensation is quickly
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suppressed by the added coulomb screening while the periodic lattice distortion survives well beyond

the point where the exciton condensation is suppressed. In addition we found that although exci-

ton condensation is suppressed, exciton fluctuations remain for most of the doping phase diagram.

These fluctuations have been theorized to aid in superconducting pairing in this system [9, 10]. The

suppression of exciton condensation and introduction of excitonic fluctuations have never been shown

before this M-EELS study. This project is the culmination of work in Mindy Rak’s [35] PhD thesis.

I participated in this project by collecting all the data alongside Mindy, assisting in analysis, writing

and editing the manuscript and revising the phase diagram. The work presented in this chapter of my

thesis is taken from our manuscript to be submitted:

1cm M. S. Rak, S. I. Rubeck, A. A. Husain, M. Mitrano, et al., Distinct lattice and excitonic instabilities

in CuxTiSe2, (to be submitted)

• Using M-EELS to measure the behavior of electronic collective mode, identified as a plas-

mon, in systems that have dilute metallicity and that exhibits dilute superconductivity.

The dispersion of the electronic collective mode is important in SrTi1−xNbxO3 due to its proxim-

ity in energy to the lattice collective modes and its implication in mediating the superconducting

pairing [14–16]. Our results show a non-dispersive plasmon that deviates from RPA predictions and

infrared spectroscopy measurements. This study touches on several important features that have never

been measured before including the momentum dependence of the bulk plasmon, doping dependence

of the Fuchs-Kliewer phonon overtones, and an unidentified dispersive mode at 1 eV. I spearheaded

the data collection, data analysis, and manuscript (in progress) of this project. Labmates Cat Kengle,

Jin Chen, and Mindy Rak assisted in data collection. Cat Kengle also contributed to the analysis of

this project. The work presented in this chapter of my thesis is included in our upcoming manuscript:

1cm S. I. Rubeck, C. Kengle, M. S. Rak, J. Chen, et al., Probing Finite-Momentum Charge Collective

Modes in Electron Doped SrTiO3, (in preparation)
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Chapter 2

The Theory Behind M-EELS

2.1 Cross Section

The scattering cross section of the reflection M-EELS technique is calculated from the matrix element of the

Coulomb interaction from the probe electron interacting with the valence electrons in the sample. In the

derivation by Mills and others [37–41] several key assumptions are made:

1. In low-energy, reflection EELS geometry, the probe electron does not penetrate into the material.

2. Multiple scattering of electrons primarily occurs in the elastic channel.

The former is a statement of multiple scattering; that strong interactions with the sample surface causes

the electrons to scatter off the surface more than once. The latter is a statement of the type of multiple

scattering that occurs. Multiple scattering in the elastic channel means that electrons scatter more than

once elastically, but they only scatter inelastically once. From these approximations, the cross section can

by calculated using the distorted wave Born approximation (DWBA) [40].

In the work of the Abbamonte group [21,34–36], the scattering cross-section (using the same assumptions

as Mills) was calculated for a periodic system. In other words, this calculation takes into account elastic

Bragg scattering from a periodic structure instead of assuming a translationally invariant system. In the

following I will give a brief summary of the results shown in these previous works.

In the DWBA, the wave functions of the incident and scattered electron, model the reflectively from the

sample surface given by:

ψi = Ni

[
eiki·reik

z
i z +

∑
G1

RG1e
i(ki+G1)·re−iκiz

]
θ(z), (2.1)
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Figure 2.1: M-EELS Scattering Geometry
Diagram of the scattering geometry of M-EELS. This shows the incident electron momentum, ki, and
energy, Ei, the scattered electron momentum, ks = ki + q, and energy, Es = Ei −∆E, the scattering
angles θ and γ, the in-plane momentum transfer q‖, and out-of-plane momentum transfer q⊥. Figure

reproduced from [42].

ψs = Ns

[
eiks·reik

z
sz +

∑
G2

RG2
ei(ks+G2)·re−iκsz

]
θ(z), (2.2)

where ψi and ψs are the wave functions for the incident and scattered electron, respectively. Ni,s are the

normalization constants and the coordinate R = (r, z) consists of the in-plane coordinate, r, and the out-of-

plane coordinate, z, with respect to the surface. G is the reciprocal lattice wave vector. G is equal to zero

when an electron undergoes elastic specular reflection, G is equal to (2π/a, 0) when an electron undergoes

Bragg reflection in the next Brillouin zone. ki,s is the in-plane component of momentum and kzi,s is the

out-of-plane component of momentum before Bragg scattering. θ(z) is the step function defining the sample

surface. κi,s is the out of plane momenta of the electron after Bragg scattering and is given by,

κi,s = ±
√

(kzi,s)
2 −G2 − 2ki,s ·G. (2.3)

In order to maintain conservation of energy, if the in-plane momentum takes G into account, then the

out-of-pane momentum must also take the G wave vector into account.

The M-EELS cross section comes from calculating the matrix element for the Coulomb interaction of the
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probe electron with the valence electrons in the sample:

M = − ie
2

2~

∫
dR1dR2

〈n| ρ̂(R1) |m〉ψ∗s (R2)ψi(R2)

|R1 −R2|
(2.4)

where |n〉 and |m〉 denote the final and initial states of the sample, R1 is the location of the valence electron,

and R2 is the location of the probe electron.

Inserting the wave functions from Eqs. 2.1 and 2.2 into Eq. 2.4, we find that there are four different

terms:

ψ∗s (R2)ψi(R2) = NsNi

[
ei(ki−ks)·r2ei(k

z
i−k

z
s )z2

+
∑
G2

R∗G2
ei(ki−ks−G2)·r2ei(k

z
i +κs)z2

+
∑
G1

RG1
ei(ki−ks+G1)·r2e−i(κi+k

z
s )z2

+
∑

G1,G2

R∗G2
RG1

ei(ki−ks+G1−G2)·r2e−i(κi−κs)z2

]
θ2(z2).

(2.5)

Each term represents a scattering process that is illustrated in Fig 2.2. Since this calculation is taken in

the DWBA and we are only considering single scattering events, we can neglect all terms that contribute to

multiple scattering (e.g. terms that are not linear in R).

Plugging the matrix element with only the single scattering terms into Fermi’s golden rule, yields a

transition rate

ωn←m = 2π~|M |2. (2.6)

ωn←m =
π2N4

~
∑
G

|RG|2V 2
eff(q−G)

×
∫ 0

−∞
dz1dz2 〈m| ρ̂∗(q−G, z1) |n〉 〈n| ρ̂(q−G, z2) |m〉 e−|q−G||z1+z2| (2.7)

where q = ki − ks and V 2
eff(q−G) is a Coulomb matrix element given by

V 2
eff(q−G) =

V 2
2D(q−G)

2

×
[

4|q−G|2 + (kzs − kzi + κi − κs)2 + (kzi + kzs + κi + κs)
2(

|q−G|2 + (κi + kzs)(kzi + κs)
)2

+ |q−G|2(kzs − kzi + κi − κs)2

]
. (2.8)

Veff(q−G) describes the interaction between the probe electron and the electrons near the surface of the

sample and will be discussed in more depth in the following section.
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Figure 2.2: Electron Scattering Channels
Representation of the four different quantum mechanical processes shown in Mills’ theory of surface EELS
using the distorted wave Born approximation. Due to multiple scattering arguments, the cross section is

dominated by terms that are linear in R (b) and (c) while terms that are not-linear in R (a) and (d) can be
neglected. Figure reproduced from [21].

Using this transition rate from Fermi’s Golden Rule to calculate the double-differential cross section,

∂2σ

∂Ω∂E
=

1

Φ

∑
n,m

ωn←mPm
∂2N

∂Ω∂E
(2.9)

where Φ =
√

2Ei/m/V is the incident electron flux, Pm = e−Em/kBT /Z is the Boltzmann factor, and the

last term is the density of final states,

∂2N

∂Ω∂E
=

V

8π3

(
2m

~2

)3/2√
Ef (2.10)

where Ef = Ei − ~ω is the energy of the scattered electron.

Following the algebra and assumptions in [21,34,35], we arrive at the generalized M-EELS cross section

for scattering from a periodic surface,

∂2σ

∂Ω∂E
=
∑
G

σ0V
2
eff(q−G)

∫ 0

−∞
dz1dz2e

−|q−G||z1+z2|
∑
m,n

Pm

× 〈m| ρ̂∗(q−G, z1) |n〉 〈n| ρ̂(q−G, z2) |m〉 δ(E − En + Em) (2.11)
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where

σ0 =
m2V 2N4|RG|2

2π~4

√
Ef
Ei
. (2.12)

In the limit where G = 0 (i.e. q ∼ 0), the above equations reduce to

∂2σ

∂Ω∂E
= σ0V

2
eff(q)

∫ 0

−∞
dz1dz2e

−|q||z1+z2|
∑
m,n

Pm 〈m| ρ̂∗(q, z1) |n〉 〈n| ρ̂(q, z2) |m〉

× δ(E − En + Em) (2.13)

where

Veff(q) =
4πe2

q2 + (kzi + kzs)2
, (2.14)

which matches the result from [39].

There are several important implications that arise from these results.

1. The probe depth of M-EELS is 1/|q| when assuming we are in the limit where G = 0

term dominates. Charge fluctuations create a dipole electric field extending both into the vacuum

and into the material a distance 1/|q|. For the materials studied in this thesis, the probe depth is on

the order of hundreds of Å or less. This means, while generally considered a surface probe, M-EELS

is much more bulk sensitive than surface techniques like ARPES or STM.

2. Scattered electrons do not penetrate the material, they only interact with electrons near

the surface. The incident electrons probe the surface collective modes that couple to density fluctu-

ations below the surface. This coupling comes about from the probe electrons long-ranged coulomb

potentials. Therefore, M-EELS can see both surface and bulk excitations.

3. Even though M-EELS is a surface sensitive probe, it can still measure bulk phenomena.

The ability to couple to the bulk density fluctuations gives M-EELS its sensitivity to bulk modes. This

is different compared to other surface sensitive spectroscopy techniques such as ARPES and STM, that

only measure the top layer [41].

4. The Coulomb matrix element, V 2
eff(q−G), diverges when a Bragg condition is met, q = G).

The implications of this is an enhancement of intensity at the Bragg condition. The details of this will

be address in section 2.3.
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2.2 Physically Relevant Quantities Calculated From M-EELS Cross

Section

The cross section is what we measure as raw intensity in electrons per second from the M-EELS spectrometer.

However in order to compare to other spectroscopy techniques we need to convert the raw intensity to more

physically relevant quantities. This includes the density-density correlation function, S(q, ω), the surface

density response function, χS(q, ω), and the dielectric loss function.

2.2.1 Density-Density Correlation Function

As discussed in the introduction, M-EELS is unique because it allows us to measure the dynamic charge

response function of the surface, χ′′S(q, ω). More directly though, the M-EELS cross section is related to the

density-density correlation function, or the dynamic structure factor [43,44] written as

S(q, z1, z2, ω) =
∑
m,n

[
〈m| ρ̂(q, z1) |n〉 〈n| ρ̂(−q, z2) |m〉Pm

]
δ(E − En + Em). (2.15)

The density-density correlation function describes density fluctuations with in-plane wave vector q that

are correlated between the depths z1 and z2 below the surface of the material. Substituting Equation 2.15

into Equation 2.13 we can rewrite the cross section in terms of the density-density correlation function:

∂2σ

∂Ω∂E
=
∑
G

σ0V
2
eff(q−G)

∫ 0

−∞
dz1dz2e

|q−G||z1+z2|S(q, z1, z2, ω). (2.16)

Since the probe electrons are just interacting with electrons near the surface, we can write this as a

surface density-density correlation function,

SS(q, ω) =

∫ 0

−∞
dz1dz2e

−|q−G||z1+z2|S(q, z1, z2, ω) ≈ S(q, 0, 0, ω). (2.17)

This leaves the cross section in its final simplified form,

∂2σ

∂Ω∂E
=
∑
G

σ0V
2
eff(q−G)SS(q, ω). (2.18)

The above statements makes the assumption that the correlation function exhibits the same periodicity

as the lattice such that

S(q−G, z1, z2, ω) = αS(q, z1, z2, ω), (2.19)
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where α is the ratio of intensities at each Bragg reflection G, such that α = IG1/IG2 > 1 since the intensity

from lower order Bragg peaks is always larger than higher order Bragg peaks. This is important because it

means that the experimental spectra repeat in each Brillouin zone, only differing by a scale factor.

For M-EELS experiments at 50eV incident beam energy, measurements are usually restricted to the first

and second Brillouin zone. Therefore the cross-section becomes

∂2σ

∂Ω∂E
= [V 2

eff(q) + αV 2
eff(q− 1)]σ0SS(q, ω) (2.20)

where α = IG=0/IG=1, and V 2
eff(q− 1) can be calculated from Equation 2.8.

2.2.2 Density Response Function

Using the quantum mechanical fluctuation-dissipation theorem [18,41,43,44], we can relate SS(q, ω) to the

surface density response function, χ′′S(q, ω), which represents the perturbation in the charge density created

by the incident electrons interacting with the surface electrons.

SS(q, ω) = − 1

π

1

1− e−~ω/kBT
χ′′S(q, ω), (2.21)

where χ′′S(q, ω) is the imaginary part of the surface density propagator, χS(q, ω). The correlation function

and density response function are related by the Bose factor, (1− e−~ω/kBT )−1.

In order to calculate χ′′S(q, ω), the Bose factor needs to be extracted. This process is not as straight

forward as dividing the Bose factor out because it is singular at ω=0. Instead we antisymmeterize the

correlation function using a procedure analogous to the symmetrization procedure used in ARPES [45]. The

details of this process are outlined in Vig [21,36] and result in the following:

χ′′S(q, ω) = π[SS(q,−ω)− SS(q, ω)]. (2.22)

2.2.3 Dielectric Loss Function

The conventional 3D density response function χ(q, ω) is related to the inverse dielectric function, -Im[1/ε(q, ω)]

via the relationship [46]:

Im

(
1

ε(q, ω)

)
= V (q)χ′′(q, ω), (2.23)

where

V (q) =
4πe2

q2
. (2.24)

The inverse dielectric function can be measured by other techniques like optical spectroscopy for q = 0.
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Although M-EELS measures the surface density response function, if the in-plane surface response and the

in-plane bulk response do not differ dramatically, then it may be possible to relate the surface response

function to the bulk dielectric function. We can assess the similarity between the surface and bulk response

functions on an individual basis by comparing the M-EELS spectra at q = 0 for a particular material to the

dielectric loss function measured with infrared spectroscopy for that same material.

In the limit of 2D materials (i.e. materials that that have weak Van der Waal forces between its layer

making it easy to cleave such as TiSe2) it has been shown in [34] that(
∂2σ

∂Ω∂E

)
M−EELS

∝ Im

(
1

ε(q, ω)

)
. (2.25)

However, for semi-infinite homogeneous systems such as SrTiO3,(
∂2σ

∂Ω∂E

)
M−EELS

∝ Im

(
1

ε(q, ω) + 1

)
. (2.26)
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Figure 2.3: Collective Modes of Bulk versus Surface Techniques
Comparison of the electronic collective mode from IR spectroscopy (loss function calculated from optical
conductivity and reflectivity measurements) and the electronic collective mode seen in M-EELS for two
materials - TiSe2 and SrTi1−xNbxO3. TiSe2, a 2D layered transition metal dicalcagenide, shows good
agreement between IR loss function [47] and M-EELS data [7] at 17 K and q=0, demonstrating that the
surface response function is similar to the bulk dielectric function. SrTi1−xNbxO3,a 3D ionic material,
shows poorer agreement between IR loss function [48] and M-EELS data (this work) at 23 K and q=0. A
guide-by-eye is provided to show the by eye estimate of the plasmon in the SrTi1−xNbxO3 background.

Figure 2.3 shows a comparison of TiSe2 and SrTi1−xNbxO3 using both M-EELS and IR spectroscopy.

For TiSe2, the Im

(
1

ε(q,ω)

)
is calculated from IR data from [47] and the q=0 M-EELS data is taken from [7].
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Both data sets were taken at 17 K. The two techniques show comparable spectra for the electronic collective

mode at 50 meV. The M-EELS peak is broader than that from IR due to the fact that IR spectroscopy is

truly a q=0 technique, while for M-EELS, q=0 is an integrated measurement of all q within the momentum

resolution. Therefore, for the case of TiSe2, the in-plane surface response is similar to the in-plane bulk

response meaning that the surface response function is similar to the bulk dielectric function and Equation

2.25 holds.

Figure 2.3 also compares the response of bulk and surface probes for SrTi1−xNbxO3, both measured at

23 K. In this case, the bulk, IR spectroscopy response is calculated using Im

(
1

ε(q,ω)+1

)
with data taken

from [48] and compared to the M-EELS surface response in this work. Both techniques show a broad

electronic collective mode. The M-EELS plasmon mode is shown with a guide to the eye line for clarity. The

mode seen by M-EELS is at lower energy compared to that measured with IR spectroscopy. The discrepancy

between the in-plane surface response and the in-plane bulk response indicates that M-EELS is measuring

a superposition of bulk and surface effects most likely due to the polar nature of SrTi1−xNbxO3. This will

be discussed in more detail in Chapter 5.

2.3 Coulomb Matrix Element

An issue that arises from the scattering cross-section calculation is that the Coulomb matrix element, Veff ,

is strongly momentum dependent and diverges when the momentum coincides with a Bragg peak. This effect

has to do with the breakdown of the Born approximation and is known as “Bragg enhancement” due to the

fact that it amplifies inelastic scattering periodically with the lattice. It is interesting to note that although

M-EELS matrix elements are strongly momentum-dependent, they do not strongly depend on energy for

most momentum except for at low energy and low momentum where it does become largely dependent on

energy. This is in stark contrast to other techniques such as ARPES, whose matrix elements always depend

strongly on energy [49].

The Coulomb matrix element is written in its full form in Equation 2.8 however for this section let us

just look at the case where G = 0,

Veff(q) =
4πe2

q2 + (kzi + kzs)2
(2.27)

q is the in-plane momentum transfer referred to as q‖ in Figure 2.1.

q‖ can be rewritten as:

q‖ = k‖s − k
‖
i = ks cos(γ − θ)− ki cos(θ) (2.28)
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where ki,s =
√

2mEi,s/~, Ei is the energy of the incident electrons set to 50 eV for the experiments in this

work, Es = Ei − ω is the energy of the scattered electrons. The out-of-plane momentum transfer is q⊥ is

written as:

q⊥ = k⊥s − k⊥i = ks sin(γ − θ) + ki sin(θ). (2.29)

Its important to note that the Coulomb matrix element does not depend on q⊥ but instead on k⊥s + k⊥i .

This term is defined as:

k⊥s + k⊥i = ks sin(γ − θ)− ki sin(θ) (2.30)

The sign of k⊥i depends on how you define your coordinate system. For these calculations our coordinate

system is defined in Figure 2.1 where +z is normal to the same surface extending into vacuum, such that

k⊥s and k⊥i have opposite sign.

Figure 2.4: Effective Coulomb Matrix Components Calculated with M-EELS Experimental
Geometries
Using SrTiO3 geometries (θ and γ) from lattice parameters (a=b=c=3.905 Å), and fixed out-of-plane mo-
mentum, q⊥ = 4.02Å = 2.5r.l.u., we calculated the Coulomb matrix element, V 2

eff(q), and k⊥s + k⊥i . These
terms were calculated at different points in momentum space from q‖ = 0 Å−1 (first column) the center of

the Brillouin zone to q‖ = 0.8 Å−1 = 0.5 r.l.u (last column), the Brillouin zone boundary.

Figure 2.4 highlights the energy and momentum dependence of these terms. These were calculated using

the SrTiO3 lattice parameters (a=b=c=3.905 Å), fixed out-of-plane momentum, q⊥ = 4.02 Å = 2.5 r.l.u.

and variable θ, γ, and ω. Each column is a different point in momentum space from q‖ = 0, the center of

the Brillouin zone to q‖ = 0.8 Å−1 = 0.5 r.l.u, the Brillouin zone boundary.

There are several key features to note from Figure 2.4:

1. M-EELS is working in a fixed momentum transfer configuration. Comparatively, HR-EELS
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which works in a fixed angle configuration. By varying θ, γ, and ω, q⊥ and q‖ remain fixed in an

energy loss scan. This is demonstrated in the second and third row of Figure 2.4.

2. V 2
eff diverges at low transferred energy when q‖ = 0. Specifically, as q‖ and k⊥s + k⊥i go to

zero, the Coulomb matrix element diverges with ω−4 behavior. This comes about due to the fact that

k⊥s + k⊥i is not a fixed quantity in M-EELS.

3. V 2
eff depends on k⊥s + k⊥i which is linear in ω for fixed q⊥ and q‖. Due to conservation of

momentum and conservation of energy, k⊥s + k⊥i must go through zero as q‖ and ω go to zero.

Although the functional form of the Coulomb matrix element diverges, the experimental intensity does

not. Therefore the approximations in which the matrix elements were derived (DWBA) break-down near

Bragg conditions. The effect of V 2
eff becomes apparent when dividing the M-EELS intensity by Coulomb

matrix element to calculate S(q, ω) as defined in Section 2.2. Figure 2.5 shows the M-EELS intensity of

SrTiO3 at low momentum transfer compared to the calculated S(q, ω) for the same spectra.

There are two effects from the matrix elements. One being that in the raw intensity, the matrix elements

suppress high energy excitations which is why low energy excitations (i.e. phonons) are very strong compared

to other collective modes. This is a real effect that comes about due to Bragg enhancement. The second

effect is seen by dividing out the Coulomb matrix element and in doing so, increasing spectral weight at high

energies and suppressing spectral weight at low energies. This effect is artificial and comes from dividing by

a diverging V 2
eff at low momentum and not from multiple scattering in the elastic channel.

An imperfect solution to this problem would be to use an f-sum rule to correct for momentum scaling in

the majority of the Brillouin zone, assuming that the matrix elements are energy-independent in this region,

and exclude regions where the matrix elements show strong energy dependence near Bragg conditions.

Excluding this data in calculation of the dynamic structure factor and dynamic response function is not

ideal since q=0 measurements are how we can compare to bulk techniques like IR spectroscopy. There has

been a push in recent years to solve this problem by using a matrix elements that have been broadened to

account for the finite momentum resolution of the experiment and do not diverge at low q as discussed in

the next section.

2.3.1 Resolution-Broadened Coulomb Matrix Elements

There has been some effort to try to circumvent the matrix element issue for near-Bragg-peak momentum.

The cross section that we measure is actually a combination of physics from the material (e.g., widths of

excitations) plus effects of the instrument itself (momentum and energy resolution). The larger the resolution
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Figure 2.5: Dividing Out the Coulomb Matrix Element
Raw M-EELS intensity, I(q, ω), and calculated charge response, χ′′(q, ω), as a function of momentum along

(1,0) in SrTiO3. The response function is obtained by dividing out the Coulomb matrix element. For q
near the Bragg condition (q=0 r.l.u), dividing out the matrix element creates an artificial suppression of

spectral weight at low energy and an artificial enhancement of spectral weight at high energy. For momenta
not near the Bragg condition, the effect of dividing out the coulomb matrix element is negligible.

from the instrument, the broader the collective excitation peaks. Because we can not separate the instrument

effects from the intrinsic physics, we can instead determine a convolved prefactor in the cross section that

accounts for both effects. This method was briefly touched upon in [50] and has been developed further

by Christian Boyd and Luke Yeo in Phillips Philips group at UIUC. I have worked in collaboration with

Christian and Luke to implement this resolution-broadened cross section for M-EELS data. This is still a

work in progress, however I will provide a summary of what has been done thus far.

This modification takes a convolution of the original coulomb propagator with the energy and momentum
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resolution of the instrument as shown by:

∂2σ

∂Ω∂E
=

∫ ∞
−∞

∫ ∞
−∞

f(q′, ω′)σ0(ω − ω′)V2
eff(q− q′, ω − ω′)SS(q− q′, ω − ω′) dq′ dω′ (2.31)

where the momentum resolution, ∆q, and the energy resolution, ∆ω, are contained in the resolution function,

f(q, ω).

This can be rewritten in terms of the surface density response function using Equation 2.21

∂2σ

∂Ω∂E
=

∫ ∞
−∞

∫ ∞
−∞

f(q′, ω′)σ0(ω − ω′)V2
eff(q− q′, ω − ω′)η(ω − ω′)χ′′S(q− q′, ω − ω′) dq′ dω′ (2.32)

where η(ω) = 1/π(1− e−~ω/kBT ) is the Bose factor.

There are many assumptions we can make to simplify this statement. The first is that we can assume

that V 2
eff(q, ω) does not depend on energy, which is true for most of the Brillouin zone far from the Bragg

conditions. We also assume that the resolution function is separable, f(q, ω) = h(q)g(ω), i.e., that the

energy resolution is not dependent on the momentum resolution and vice versa.

To normalize χ′′S(q, ω) at all momenta, we use an f-sum rule. The charge response function f-sum rule is

defined as, ∫
dω ωχ′′(q, ω) = −~2q2N

m
(2.33)

where N is the electron number density and m is the mass of electrons. Or written another way,

∫
dω ω

χ′′(q, ω)

q2
=

∫
dω ωχ′′sumrule(q = 0, ω) = Constant (2.34)

In addition we can say that χ′′sumrule(q, ω) is not rapidly changing in q such that χ′′sumrule(q 6= 0, ω) ∼

χ′′sumrule(q = 0, ω) and can be factored out of the integral. Rewriting Equation 2.32 with these assumptions:

∂2σ

∂Ω∂E
=

∫ ∞
−∞

η(ω − ω′)σ0(ω − ω′)χ′′S,sumrule(ω − ω′)g(ω′) dω′
∫ ∞
−∞

V2
eff(q− q′)|q− q′|2h(q′) dq′ (2.35)

We can further simplify this by recognizing that ∆ω/ω << 1. On average, the energy resolution off

a sample is approximately 6 meV. However we measure features in χ′′S,sumrule(ω) that are larger than the

resolution and that do not radically change on the scale of 6 meV. Therefore the effect of convolving the

energy resolution with χ′′S,sumrule(ω) is negligible for the energy ranges of interest in experiments. For

momentum, this is not the case. At low momentum close to the Bragg condition, Veff(q, ω) does not vary

slowly and cannot be factored out the way χS,sumrule can. Therefore a convolution of the resolution with

the matrix elements is needed to take into account true experimental factors.
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Finally, we have the form,

∂2σ

∂Ω∂E
= η(ω)σ0(ω)χ′′S,sumrule(ω)

∫ ∞
−∞

V 2
eff(q− q′)|q− q′|2h(q′) dq′ (2.36)

where h(q) is the momentum resolution function given by a Lorentzian. This momentum resolution function

is measured off each sample surface along one direction (see Figure 2.7 ω = 0 momentum scan along (H,0)

momentum direction). It is assumed that the resolution is isotropic so we can use the same resolution

function along the (K,0) momentum direction. The FWHM of the Lorentzian represents the momentum

resolution of experiment since it incorporates the effect of the sample surface quality.

From this, we have defined a resolution-broadened Coulomb matrix element which is a convolution of

the DWBA Coulomb matrix element with a resolution function which smears the near-Bragg momentum

divergence.

V 2
broadened =

∫ ∞
−∞

V 2
eff(q− q′)|q− q′|2h(q′) dq′ (2.37)

Using SrTiO3 lattice parameters (a=b=c=3.905 Å), and fixed out-of-plane momentum, q⊥ = 4.02Å =

2.5r.l.u. and variable θ, γ, and ω, Figure 2.6 shows what happens to the Coulomb matrix element when

resolution effects are taken into account, specifically for the q = 0 case for a variety of ∆q.

The effect is significant at q=0, where the non-resolution-broadened Coulomb matrix element scales as

ω−4. When convolved with lortentzian resolution functions, this scaling deviates from a ω−4 power law

behavior to behavior that has a weaker dependence on energy and doesn’t diverge as ω approaches zero. For

finite q we expect this resolution broadening to have a smaller effect. This is because V 2
eff is a slower function

of ω at larger q, so broadening has less of an effect. For most sample surfaces, the momentum resolution

will range from 0.03-0.07 r.l.u (0.05-0.11 Å−1 for SrTiO3). As shown in Figure 2.6, this range of resolutions

correspond to a regime where V 2
broadened is weakly energy dependent.

Figure 2.7 is an example of SrTiO3 data both with the resolution-broadened and non-resolution-broadened

matrix elements divided out. From this it is evident that the resolution-broadened matrix elements dampen

the divergence at q=0. For small finite q, the resolution-broadened Coulomb matrix elements continues to

have a small energy dependence as compared to the non-resolution-broadened term. At large finite q, the

raw data, Coulomb matrix element, and resolution-broadened Coulomb matrix elements are all identical

which is expected.
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Figure 2.6: Resolution-Broadened Coulomb Matrix Elements
Resolution-broadened Coulomb matrix elements at q=0 for several values of momentum resolution (as
determined by the FWHM of the Bragg peak) plot on a log-log scale. The non-resolution-broadened

Coulomb matrix element is shown in black and diverges as ω goes to zero with ω−4 dependence. In most
experiments, the resolution off a sample has a FWHM in the range of 0.03-0.07 r.l.u. The

resolution-broadened Coulomb matrix elements is less energy dependent than the unbroadened case.
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Chapter 3

Experimental Setup

To test the concepts addressed in the introduction, we need a technique that can measure the momentum

dependence of the collective electronic modes with meV resolution. To do this, we employ the technique of

momentum-resolved electron energy loss spectroscopy (M-EELS). Unlike inelastic x-ray scattering or neutron

scattering, which are most sensitive to lattice excitations, inelastic electron scattering is highly sensitive to

valence charge excitations [21] and is therefore an ideal technique to study the electronic collective modes.

Using M-EELS, we aim to identify the role of electronic collective modes in a selection of

materials exhibiting strong electron-electron interaction by measuring their dispersions as a

function of temperature and carrier density.

In this chapter, I give a brief description of the M-EELS setup followed by an explanation of what makes

M-EELS distinct from HR-EELS. Next I will describe the electron optics setup as well as the new procedure

that I implemented for optimizing the electron beam. The electron optics discussion will also include a

detailed characterization of our in-lab instrument as compared to theoretical expectations. Following that,

I will discuss sample preparation, including a novel preparation technique for non-2D layered materials.

Finally I will address several of the instrumentation upgrades that I have designed and implemented over

the course of my graduate degree.
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Figure 3.1: M-EELS Laboratory Setup
Photograph of the M-EELS experimental setup circa 2017. The M-EELS setup consists of three ultra high
vacuum chambers: loadlock, LEED/prep chamber, and the main M-EELS chamber.

3.1 M-EELS Experimental Setup

3.1.1 Physical Setup

Our M-EELS system uses an Ibach-like electrostatic spectrometer that is commercially available (LK Tech-

nologies ELS5000) and is most commonly used for HR-EELS surface science measurements (3.2). By mating

this spectrometer to a multi-axis sample goniometer (Figure 3.2) and properly aligning all the rotation axes

with the sample orientation (as is done in other momentum resolved techniques such as inelastic x-ray

scattering and neutron scattering), we can achieve a true momentum-resolved inelastic electron scattering

measurement.

The left side of Figure 3.2 shows, the main components of the Ibach style spectrometer [51]: a LaB6

filament, double pass monochromator, single pass analyzer, and Channeltron point detector. When current

is passed through the filament, the LaB6 material heats up and emits electrons that then pass through a

double monochromator - setting the incident beam energy - before scattering off the sample. After scattering,

the electrons pass through an analyzer that selects the final energy to measure. The scattered electrons with

that final energy are then detected as pulses by a Channeltron point detector. The pulses are converted

into intensity (counts) for each energy loss value. Electrostatic lenses are used to focus the incident electron
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Figure 3.2: Spectrometer and Goniometer Cartoon
Cartoon representation of the M-EELS Spectrometer (on left) and the five-axis sample goniomenter (on
right). The EELS Spectrometer is composed of electrostatic lenses that steer the beam, set the energy of
the incident and scattered electrons, adjusts the energy and momentum resolution of the beam, and sets the
rotation of the analyzer (γ). The five-axis goniometer rotates the sample and defines the scattering angles
(θ,φ). θ, γ set the incident and scattered momenta (ki,s) and φ sets the scattering direction (H,K) of the
crystal. Figure from [36] [35].

beam on the sample and the scattered electrons on the detector. These lenses get tuned every day to account

for small drifts in the beam. The energy resolution of this instrument can be as low as 0.5 meV however for

the experiments in this thesis, the energy resolution at 50eV incident beam energy is around 5meV.

The HR-EELS system and goniometer have been modified to motorize the rotation of the analyzer (γ)

and the rotation of the sample (θ, φ). The motorization of γ, θ, and φ improve the reproducibility and

accuracy of the momentum transfer as compared to HR-EELS.

The entire spectrometer and goniometer setup operates inside an ultra-high vacuum (UHV) chamber

that is lined with double mu-metal shielding to reduce the magnitude of external magnetic fields in the

scattering chamber to less than 10 mG. In addition, the multi-axis goniometer is attached to a liquid-helium

cryostat currently allowing us to cool a sample to 22 K. For the data shown in this thesis, the UHV pressure

is on the order of 10−11 Torr.

Figure 3.1 is a photo of the M-EELS system at the University of Illinois. There are three vacuum sections

of this experimental apparatus:

Load lock

The load lock chamber is where we load the prepped samples into the instrument and pump down from

atmospheric pressure to high vacuum (on the order of 10−8 Torr). This chamber includes a sample magazine,

that I designed and implemented, which enables us to pump down five prepped samples at one time. In
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addition, the load lock has also been upgraded to transfer thin film samples using a vacuum suitcase that

attaches to a molecular beam epitaxy (MBE) chamber. More information on this hardware can be found in

Section 3.2

Sample Prep Chamber

Once the prepped samples are pumped down to 10−8 Torr in the loadlock, they can then be transferred to

the LEED/prep chamber using magnetic UHV grippers. This chamber is further pumped on to obtain an

UHV pressure of 5x10−10 Torr. In this chamber, prepped samples are cleaved to expose a clean surface.

The chamber also includes a Low-Energy Electron Diffraction (LEED) unit which is used to check the

crystallographic quality of the surface, informing us of the quality of the cleave.

One future upgrade to this chamber is an annealing stage which will allow us to prepare clean sample

surfaces without cleaving. The design for an annealing stage is discussed in Section 3.2.

M-EELS Chamber

After cleaving, the sample is transferred to the main experimental chamber that contains the M-EELS

spectrometer. The sample is placed in a copper seat that sits on a attocube peizo motor (for φ rotation)

at the bottom of the cryostat. This chamber is also equipped with a cyropump and titanium sublimation

pump achieving pressures of 8x10−11 Torr.

Electronics

The control electronics residing outside these vacuum chambers are used to scan the M-EELS lens voltages,

amplify and count the single electron pulses, and control the sample motions. For detailed description of

electronics see other theses from the Abbamonte Group [34,36].

3.1.2 Sphere of Confusion

What differentiates M-EELS from conventional HR-EELS instruments is its high momentum accuracy. In

order to achieve the most accurate momentum measurements, the incident electron beam, γ (detector), θ

(sample), and φ (the sample orientation) must all intersect at a single point. Deviations from this point,

map out a “sphere of confusion” whose volume sets the momentum accuracy of the instrument (see Figure

3.3). Common sample manipulators do not take into account whether the sample lies in the center of

rotation, therefore the sample moves in space as it rotates. This misalignment can be as large as several
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millimeters [34]. The motorized degrees of freedom allow us to minimize the volume of the sphere of confusion

distinguishing this technique from HR-EELS.
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Figure 3.3: Sphere of Confusion
If a sample is not located in the center of rotation of the goniometer (θ) and analyzer (γ), it will move in
space as it rotates, mapping out a “sphere of confusion”. (a) When the sphere of confusion is large, the
momentum inaccuracy is large meaning that it is difficult to know where you are in momentum space.
This is common in HR-EELS experiments. (b) As you reduce the size of the sphere of confusion, the

momentum transfer becomes more accurate. This momentum accuracy is unique to M-EELS and
differentiates it from HR-EELS techniques. Figure reproduced from [34]

The theoretical momentum resolution is 0.03 Å−1. Additionally, we identify two non-collinear Bragg

peaks (e.g. (1,0) and (0,1)) from a sample and construct an in situ orientation matrix that translates between

the motor angles and reciprocal space. This is what makes our M-EELS system “momentum-resolved”.

These motorized rotations and sample alignment method determine the momentum accuracy of the

instrument. However the momentum precision and resolution are determined by the electron optics. In the

next section, we will discuss the details that go into optimizing the electron optics in order to improve the

energy and momentum resolution of the device.

3.1.3 Electron Optics Characterization

The electron optics that steer and focus the electrons from the source to the detector consists of an emission

system, premonochromator, monochromator, focusing lens system, energy analyzer, and electron detector as

shown in Figure 3.4. Theoretical calculations and numerical simulations of the electron optics components

can be found in [52]. In addition to the theory associated with electron spectrometers, it is useful to have
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a detailed characterization of the electron optics configuration that is specific to our laboratory M-EELS

set-up. Characterizing the electron optics can help us systematically optimize our in-lab spectrometer to

improve electron throughput, energy resolution, and momentum resolution.

In this section, I will provide a detailed description of all the electron optics components. Specifically,

I will provide calculations and reference data to characterize the electron beam at various points along the

electron path. These characterization tools can be used in the future to optimize, document, and streamline

the beam tuning process.

Throughout this section, I include data from both an ideal electron optics configuration (which I refer to

as the “aligned” configuration) as well as data from a non-ideal electron optics configuration (which I refer

to as the “misaligned” configuration). In the aligned setup, the electron beam is focused on the entrance

slit of the pre-monochromator. In the misaligned setup, the electron beam focus is not positioned at the

entrance slit of the pre-monochromator. This is represented in Figure 3.4, which points out the different

paths the electron beam can take for the aligned and misaligned voltage configurations. In both of these

configurations, we optimize for current and energy resolution at the detector. However in the misaligned

configuration, electron throughput and energy resolution are negatively impacted by the non-ideal voltage

configuration. Although this section defines a non-ideal voltage configuration as misalignment of the focus

on the pre-monochromator slit, this is just one example of a non-ideal configuration. In reality there can be

many non-ideal voltage configurations that have different adverse effects on the electron behaviour.

In addition to discussing the general behavior of the electron optics system, I have included lens reference

scans for two different tuning optimizations. These figures can be found in Appendix A and provide a guide

to how the electrostatic lenses behave with the hope that they can be a useful reference for future M-EELS

spectrometers and lens tuning procedures.

Table 3.1 lists the currents obtained at various points along the electron path (relays) for three different

beam tuning configurations. The manufacturer settings used a beam energy of 100 eV, while the tune

configurations measured by our group in 2018 and 2020 were taken with a beam energy of 50 eV. All of the

tuning configurations in this table were taken with the filament power set to approximately 5 W (1.7 A, 3.0

V).

Emission System

The emission system consists of a LaB6 filament, repeller, and Einzel lens system. As shown in the electron

optics diagram of Figure 3.4, the Einzel lens have three, split lenses that are labeled as A1, A2, A3, and

that set the mean voltage on each lens. Each of those voltages also has a ∆ value that sets the spread of
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Figure 3.4: Electron Optics Cartoon
Cartoon of the electron trajectory for two different lens configuration. In the aligned configuration, the elec-
tron beam is focused on all the lens slits, starting from the A lenses focusing the beams on the entrance to the
premonochromator. The misaligned cartoon is an example of voltage configuration where the electron beam
is not focused on the lens slits. In this configuration, the A lenses do not focus on the premonochromator
entrance slit and this can lead to multiple beam profiles when rotating the analyzer (γ).

Table 3.1: Current Along Electron Path

Relay Manufacturer Settings (100eV) 2018 (50eV) 2020 (50eV)

Premonochromator entrance slit 10 µ A 6.6 µ A -
Premonochromator outer plate 500 nA 700 nA 390 nA

Monochromator outer plate 1 nA 1 nA 860 pA
Monochromator exit slit 0.98 nA 1 nA -
Analyzer entrance slit - - 164 pA
Analyzer outer plate 102 pA 400 pA 79 pA

Detector entrance 35 pA 40-80 pA 30 pA

voltages on the lens, which is used to steer the beam. The A lenses have delta voltages that steer the beam

vertically (∆A2) and horizontally (∆A1 and ∆A3).

When current is passed through the filament, the LaB6 material heats up and emits electrons. We can

characterize the temperature of the filament by measuring the energy distribution leaving the premonochro-

mator. Using the first sector of the monochromator, we can measure the kinetic energy spread of the electrons

emitted by the filament. Figure 3.5 shows the energy distribution leaving the first monochromator both for
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a beam energy of 100 eV and 7 eV, fit with a Maxwell Boltzman- equation. From this we determine the

filament temperature to be 1800K which is comparable to the manufacturer’s specifications.

1.5 2.0 2.5
M1 (V)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
rre

nt
 (n

A)

Electron Beam Voltage Distribution 
 Exiting First Monochromator

7 eV beam 
1630K
100 eV beam 
1750 K

1.0 1.5 2.0
Heating Current (A)

1000

1200

1400

1600

1800

Fi
la

m
en

t T
em

pe
ra

tu
re

 (K
)

Kimball LaB6 Filament 
Heating Curve

EELS Operating Current

Figure 3.5: Filament Emission
Energy distribution leaving the first monochromator (left figure) both for a beam energy of 100 eV and 7

eV, fit with a Maxwell-Boltzman equation. From the fits we determine the filament temperature to be
1750 K and 1630 K respectively. These fit values are comparable to the manufacturer’s specifications (right
figure) adapted from [53]. For a heating current of 1.75 A, the filament temperature is approximately 1665

K.

The electrons that are emitted from the filament get accelerated by the repeller lens and focused onto

the entrance slit of the premonochromator with the A lenses. These lenses play two major roles in the

electron optics system. Firstly they focus the electrons onto the entrance slit of the premonochromator

which effects the profile of the beam downstream. Secondly, the Einzel A lenses compensate for any tilt

or offset in filament placement. Throughout this section, the tilt/filament offset will be represented by the

angle in which electrons enter the premonochromator, α, shown in Figure 3.6.

The entrance angle of the beam is important in determining the energy resolution of the pre-monochromator

as determined from Equation 3.6. Minimizing this angle improves the resolution. This angle can be non-

zero due to the inaccuracy of the filament placement. The filament seat has slack to allow for an easier

installation however this can create difficulties due to electrostatic lenses needing to compensate for the

error in placement. The first Einzel lens, A1, can take on a large range of values from 0-70 V in order to

compensate for the tilt and offset. For reference, prior to a filament replacement, A1 = 31 V but after the

filament replacement A1 = 57 V. This demonstrates the large variability in voltages needed to compensate
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Figure 3.6: Monochromator Geometry
Cartoon of the cylindrical geometry of the monochromator. The angle in which electrons enter the
monochromator is defined as α, the inner and outer radius of the monochromator are R1 and R2

respectively, the entrance slit to the monochromator has a width, s, and the mean trajectory of the
electrons in the cylinder is at some radius, r0.

for filament placement.

Following Ibach’s theoretical simulations [52], the A Einzel lenses should have the following relation:

A1 < A2, and A3 << A2, A1. However, this does not account for the error in filament position as our setup

does. Therefore our spectrometer follows a different relation: A3 < A2 << A1.

Monochromator

The thermal energy distribution of s from the cathode gets fed into an antisymmetric toroidal pre-monochromator

which feeds into a second monochromator. The double pass monochromator setup is the most effective way

of achieving a highly monochromatic current. This has to do with the fact that the pre-monochromator

reduces the space charge between electrons as well as decreases the number of spurious electrons, deflected

off of the voltage plates, from going into the second monochromator.

Each monochromator consists of voltage lenses that set the pass energy (M1 for pre-monochromator, and

M2 for second monochromator), control the horizontal spread of energies (∆M1,∆M2), Steer the electrons

vertically (M1cover, M2cover), control the vertical spread of energies(∆M1cover,∆M2cover) and set the

entrance/exit slit voltages (M1slit,M1exit=M2slit,M2exit).

For the case of cylindrical deflectors [52], the electric field between two cylindrical metal plates with an

applied voltage is

εr =
∆V

ln(R2/R1)

1

r
(3.1)

where εr is the radial component of the electric field, ∆V is the voltage difference between the two plates,
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R2 is the radius of the outer cylindrical plate, and R1 is the radius of the inner cylindrical plate as defined

in Figure 3.6. Therefore an electron moving in the electric field produced by these cylindrical plates will

travel along a circular path with radius r as described by

mν2

r
=

2E0

r
= eεr (3.2)

where E0 is the pass energy of the electron and e is the elementary charge.

The above equations can be rearranged to get the pass energy of the electron as a function of the delta

voltage between the cylindrical plates:

E0 =
e∆V

2ln(R2/R1)
. (3.3)

The coefficient, 1
2ln(R2/R1) , is what we refer to as the geometric constant,Cgeom, and for the values in Ibach’s

calculations, Cgeom = 0.849.

The trajectory of electrons with angle, α, starting from a radial position, y1 (a small deviation from the

center path of the cylinder, r0), will arrive to a position y2 such that

y2 = −y1 + r0
δE

E0
− 4

3
r0α

2 (3.4)

where δE is the deviation from the pass energy and is directly related to the resolution of the monochromator.

The energy dispersion of electrons in a cylinder with a mean trajectory around the radius, r0 can be calculated

from

E0
dy

dE
= r0. (3.5)

Using the above equations and assumptions made in [52] we arrive at

∆E1/2

E0
=

s

r0
+

2

3
α2 (3.6)

where ∆E1/2 is the FWHM of the transmitted beam, s is the entrance/exit slit width, r0 is the radial

position of the entrance or exit slits, the pre-factor of 2
3 is due to the angular aberration due to space charge

in the cylindrical geometry, and α is the angle that electrons enter the monochromator slit. Equation 3.6

defines the resolution of the monochromator in terms of the pass energy and initial angle of the electrons.

Baseline resolution is determined from the geometry, s
r0

, but the resolution is worsened depending on the A

lenses which set α of the incoming beam.

For cylindrical deflectors, we can analytically calculate what the voltage field that the electrons experience

in their trajectory. Using Gauss’s law, the electric field inside a cylindrical geometry with height, h, is

35



E =
q

2πhε0r
r̂ =

R2
1σ1

2ε0r
r̂ (3.7)

where σ1 is the charge density on the inner voltage plate such that σ1 = q/πR2
1h. The voltage difference

between the inner and outer cylindrical plates is

∆V = V (R2)− V (R1) = −
∫ R2

R1

R2
1σ1

2ε0r′
dr′ = −R

2
1σ1

2ε0
ln
(R2

R1

)
(3.8)

In the M-EELS setup, the voltage lens are defined as ∆M = VM,in − VM,out = VR1
− VR2

. Therefore

∆M =
R2

1σ1

2ε0
ln
(R2

R1

)
(3.9)

For a radial distance, r, inside the two cylindrical plates,

V (r) = V (R1)−∆V = V (R1)− ∆Mln(r/R1)

ln(R2/R1)
(3.10)

For a toroid geometry, it is not analytically possible to calculate the voltage in the deflector. An alter-

native approach is to numerically solve the Laplace equation,

∇2V = 0 (3.11)

given that we know the voltages at the boundary conditions (i.e. M1slit, M1in, M1out, M2slit, M2in, M2out,

M2exit). Figure 3.7a and 3.8a are the numerical solutions to the Laplace equation for a cylindrical geometry

given boundary conditions from our M-EELS setup. The values we get from the numerical simulation are

similar to the values from the analytical solution.

We will use Equation 3.3 and Equation 3.6 and the solutions to Laplace’s equations to characterize the

monochromators in our M-EELS instrument. However, all the calculations above do not provide a direct

comparison to the in-lab instrument due to the fact that they were derived for a cylindrical geometry while

our M-EELS instrument has a toroid geometry. While analytically solving for V(r) for a toroid is not

feasible, we could solve this numerically. This is more complicated than the procedure for a cylinder and is

not covered in the scope of this work.

Even though it is not a direct comparison, we will still use the cylindrical equations above as a qualitative

guide in characterizing the monochromators of our in-lab M-EELS. In addition to the geometric discrepancy,

Ibach’s calculations for pass energy and resolution are derived only for the symmetric monochromator (slit

voltage = exit voltage). However, our lab instrument has both a symmetric monochromator and an asym-

metric (also refered to as retarding) monochromator (slit voltage 6= exit voltage), which is not accounted for

in the the following characterization.
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Simulating the monochromators is still a work in progress. The next steps entail numerically solving

the Laplace equation for a toroid geometry and using this to ray-trace trajectories of electrons for various

voltage configurations. In addition, deriving the pass energy and resolution functions for a toroid symmetric

deflector and a toroid asymmetric deflector.

Premonochromator

The first stage of the double pass monochromator is the premonochromator. The premonochromator is an

asymmetric deflector in that the entrance slit has a larger voltage than the exit slit. The effect of having a

higher potential at the entrance slit is to provide a higher target potential for the electrons from the cathode

emission system. By doing this, the amount of space charge is reduced so more current can pass through

the monochromator stages [52].

Figure 3.7a is a 2D map of the voltage field for an asymmetric cylindrical deflector using voltage values

used in experiments (M1slit = 0.873, M1 = 2.541, M1d = 2.998, M2slit = M1exit = -0.007). This was

calculated using the numerical simulator by solving the Laplace equation in a cylindrical geometry.

Figure 3.7b shows the relationship between the pass energy and energy distribution/spread of the elec-

trons passing through the asymmetric monochromator. The slope of which is the geometric constant as

defined in equation 3.3. These data were collected for both the aligned configuration and the misaligned

configuration. Fitting to a line, Cgeom = 0.457 ± 0.027 for when the electron beam is focused on the slits of

the monochromator and Cgeom = 0.560 ± 0.025 when the electron beam focus is not aligned with the slits.

The value of Cgeom deviates from Ibach’s calculation of 0.85 possibly due to the fact that we have

a toroidal deflector and because of the asymmetric entrance/exit slits. In addition, the value of Cgeom

changes when we change the alignment of the A lenses. This implies that the geometric constant is not

just dependent on the geometry of the monochromator but also on information about the incoming electron

beam. This deviates from Ibach’s calculations and should be explored further but most likely has to due

with the asymmetric aspect of the lenses not taken into account.

Figure 3.7c is a plot of the FWHM of the transmitted beam versus the energy distribution/spread of

the electrons passing through the asymmetric monochromator, the slope of which is s
r0

+ 2
3α

2 as defined in

equation 3.6. In theory one can solve for α to back track the incoming angle of the electron beam. Again,

equation 3.6 was derived for the case of the symmetric cylindrical deflector so calculating α using these

equations does not make sense. Below 2.6V in the energy distribution, we see that the slope reverses sign.

This is not understood and deviates from Ibach’s equations.
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Figure 3.7: Asymmetric Monochromator
In an asymmetric deflector, the entrance slit has a larger voltage than the exit slit. This helps to reduce

space. (A) 2D map of the voltage field for an asymmetric cylindrical deflector calculated using the
numerical simulator for solving the Laplace equation in a cylindrical geometry. The boundary conditions
used in this simulation are M1slit = 0.873, M1 = 2.541, M1d = 2.998, M2slit = M1exit = -0.007. (B) To
determine the geometric constant, we meausure the slope of the pass energy vs energy distribution/spread
of the electrons passing through the asymmetric monochromator (Equation 3.3). When the A lenses are

aligned, Cgeom = 0.457± 0.027. When the A lenses are misaligned, Cgeom = 0.560± 0.025. (C) Measured
FWHM of the transmitted beam versus the energy distribution of the electrons passing through the

asymmetric monochromator. This relationship can be compared to Equation 3.6 to determine the angle α.

Second Monochromator

The second stage of the double pass monochromator is a symmetric deflector meaning that the entrance slit

has the same voltage as the exit slit. Since the asymmetric pre-monochromator reduced the space charge,38



this is no longer an issue for the second monochromator. This monochromator therefore serves the sole

purpose of better refining the energy bandwidth and in turn improving the resolution.

Figure 3.8a is a 2D map of the voltage field for an symmetric cylindrical deflector using voltage values

used in experiments (M1slit = -0.007, M1 = 1.604, M1d = 1.500, M2slit = M1exit = -0.007).

Figure 3.8b shows the relationship between the pass energy and energy distribution/spread of the elec-

trons passing through a symmetric monochromator, the slope of which is the geometric constant as defined in

equation 3.3. These data were collected for both the aligned configuration and the misaligned configuration.

Fitting to a line, Cgeom = 0.367 ± 0.004 for when the electron beam is focused on the slits of the monochro-

mator and Cgeom = 0.392 ± 0.005 when the electron beam focus is not aligned with the slits. Cgeom does

not change much with energy distribution (or α), implying that this toroidal monochromator has a Cgeom

that is solely based on geometry as indicated in Ibach. This can be compared to the theoretical calculation

from Ibach’s Equation 3.3 using r0 and s taken from our geometry (red line). Our measured value of Cgeom

is different from theoretical value of 0.851 most likely due to the fact that we have a toroid geometry and

this theoretical line is for the cylindrical geometry. For the symmetric monochromator, the alignment of the

A lenses has a smaller effect on the value of Cgeom than it did for the asymmetric deflector. This could be

because the second monochromator is further down the electron path so the effect of misalignment is felt

less or corrected for by previous lenses.

Figure 3.7c is a plot of the FWHM of the transmitted beam versus the energy distribution/spread of

the electrons passing through the asymmetric monochromator the slope of which is s
r0

+ 2
3α

2 as defined in

equation 3.6. This is plotted against the theoretical expectation when assuming that α is very small for the

cylindrical geometry. The magnitude of ∆E1/2, matches the value from Ibach and is more comparable to

the theory than for the asymmetric deflector.

To summarize, the equations derived in a cylindrical goemetry are more consistent with a toroidal ge-

ometry in a symmetric monochromator. For the symmetric toroid monochromator, the resolution behaved

comparably to the expected behavior in Equation 3.6. In addition, the geometric constant remained inde-

pendent of geometry. These were not the case for the asymmetric toroid monochromator. This implies that

either the equations capture the symmetric case despite the geometry or that the order of the monochroma-

tors (asymetric first, symmetric second) matters (i.e. we can correct for these deviations along the electron

path).
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Figure 3.8: Symmetric Monochromator
In an symmetric deflector, the entrance slit voltage is equal to the exit slit voltage. (A) 2D map of the

voltage field for an symmetric cylindrical deflector calculated using the numerical simulator for solving the
Laplace equation in a cylindrical geometry. The boundary conditions used in this simulation are M1slit =
-0.007, M1 = 1.604, M1d = 1.500, M2slit = M1exit = -0.007. (B) To determine the geometric constant, we

measure the slope of the pass energy vs energy distribution/spread of the electrons passing through the
symmetric monochromator (Equation 3.3). When the A lenses are aligned, Cgeom = 0.367± 0.004. When

the A lenses are misaligned, Cgeom = 0.392± 0.005. These are compared to the theoretical value of
Cgeom = 0.851 [52]. (C) Measured FWHM of the transmitted beam versus the energy distribution of the
electrons passing through the symmetric monochromator. This relationship can be compared to Equation

3.6 to determine the angle α. This is compared to theory for the case where α = 0 [52].
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Focusing Lenses

The focusing lenses (i.e. zoom lenses) come in two sets: B1 and B2 which accelerate and focus the outgoing

monochromator beam onto the sample and B3 and B4 which decelerates the electrons and focuses the beam

on the entrance to the analyzer. For this work, the electrons are accelerated to reach a beam energy of 50

eV.

Figure 3.9 is a 2D mapping of the beam as γ is rotated for various configurations of the zoom lenses.

This measurement was taken for both the aligned and misaligned geometries with current measured at the

entrance to the analyzer. For the misaligned configuration, there are two beams paths in the γ profile. This

is expected behavior when an electron beam in not focused on the entrance/exit slits of various electron

optics components just as demonstrated by the cartoon Figure 3.4.

Tuning the focusing lenses can partially compensate for the poor imaging from the Einzel A lenses.

Decreasing B1(and B4) shifted the center of the two electron paths to become closer together in gamma

until they formed a very broad peak.

In an ideal imaging configuration with aligned A lenses, adjusting the focusing lenses can increase counts

and resolution without affecting the beam path. This is what is expected behavior of these lenses.

Energy Analyzer

The electron optics of the energy analyzer are identical to that of the second monochromator. The scattered

beam from the sample is dispersed and the exit slit sets the electron energy that will traverse the analyzer

and arrive at the detector.

The analyzer consists of voltage lenses that set the pass energy (An1), control the horizontal spread of

energies (∆An1), Steer the electrons vertically (An1cover), control the vertical spread of energies(∆An1cover)

and set the entrance/exit slit voltages (An1slit,An1exit).

As part of the daily tuning procedure, the beam current as a function of γ and energy loss is measured

that the entrance of the detector. The phase-space tuning method [34,35], dictates the true energy resolution

of the beam as compared to just measuring the resolution for a single value of γ.

Fig 3.10 is an example of these γ-eloss map for both the aligned and misaligned configurations. In the

aligned scenario the resolution of the beam is 6meV (taken from the integrated FWHM of the beam profile)

and does not have a large dependence on γ as is expected [34, 35]. In the misaligned case, the integrated

FWHM is 12meV (Figure 3.10) due to the large dependence of energy onγ. This behavior is described as a
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Figure 3.9: Beam Profile at the Analyzer
2D mapping of the beam profile as measured at the entrance to the analyzer. The profile is measured as a
function of analyzer angle, γ and zoom or B lenses. (A) In the misaligned configuration, the electron beam
forms two paths that enter the analyzer at different γ. The zoom lenses can slightly compensate for this by

changing the focus on the analyzer entrance. (B) In the aligned configuration, the electron beam only
enters the analyzer at one γ. The zoom lenses can increase or decrease the throughput of electrons here

but does not change the entrance angle.
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chirp and and is a product of aberrations of the electron beam. For example, if the electron beam entering

the monochromators has large value of tilt angle, α then we would expect aberrations of the beam due to

coupling between the energy and angle of the electrons. Ideally we can assume this coupling is negligible

but this is only the case if α is small [52].

Figure 3.10: Beam Profile at the Detector
2D mapping of the beam profile as measured at the detector. The profile is measured as a function of
analyzer angle, γ, and electron energy. The angle-integrated energy determines the energy resolution. (A)
In the misaligned configuration, the energy profile is chirped resulting in a large angle-integrated energy and
therefore bad energy resolution. (B) In the aligned configuration, the energy profile is not chirped resulting
in a smaller energy resolution (approximately 5 meV).

This once again highlights the importance of optimally tuning the A lenses as its effects can be seen

throughout the entire path of the electron optics.

Electron Detector

The final stage of the electron optics is another set of Einzel that reject any stray electrons due to aberrations,

etc. These Einzel lenses are labeled as C1, C2, C3 and each of these voltage lenses have a ∆ value that set

the spread of voltages on the lens used to steer the beam. The C lenses have delta voltages that steer the

beam vertically (∆C1 and ∆C3) and horizontally (∆C2).

The C lenses focus the beam onto the Channeltron electron multiplier. The pulses from the Channeltron

are counted outside the UHV system using an Ortec discriminator (Ortec model 9302) and amplifiers to
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produce TTL pulses to count. Figure 3.11 is what the expected amplified channeltron pulse and TTL signal

should look like after the going through the Ortec discriminator.

Figure 3.11: Detector Output
Oscilloscope measurement of the expected amplified Channeltron pulse and TTL signal after passing through
the Ortec discriminator.

The Channeltron electron multiplier is made of an insulating material that is coated with a high resistance

semi-metal. When high voltage is applied (2.5-3.0 kV), a voltage gradient induces an electric field. When

an electron strikes the detector this is registered as a current pulse. The current pulses get converted to

voltage pulses before entering a voltage discriminator. The voltage discriminator works by only passing

though pulses that are above the set lower voltage threshold. Therefore we can define the voltage threshold

to be just above the electronics/background noise but below the experimental signals from M-EELS (Figure

3.12).

As the Channeltron ages however, the gain on the multiplier decreases and the peak height gets shifted to

lower allowed voltages until it gets very close to the background noise (see Figure 3.12). If the lower voltage
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threshold on the discriminator is lowered further to allow for more data pulses to pass through, then we

start to see the noise background in our data. If we increase the lower voltage threshold then we are losing

pulses of data. One way to fix this is to increase the high voltage on the Channeltron which will increase

the gain on the multiplier and shift the pulse height distribution to higher voltage. This process is repeated

as the Channeltron continues to age until the Channeltron completely dies from the high voltage.

As part of this electron optics characterization process, it is also important to characterize the pulse

height distribution of the Channeltron detector as a way to gauge the state of the instrument.

The traditional way to measure a pulse height distribution from an electron detector using a multi-channel

analyzer (MCA), which can simultaneous bin the number of pulses at each voltage and therefore directly

measure the pulse height distribution. Unfortunately, the pulses from our Channeltron detector, which are

less than 10 ns in duration, are too fast to be counted by commercially available MCA instruments. As a

way to get around this, we use the high bias voltage (related to the gain) of the Channeltron to characterize

the state of the detector as outlined in Figure 3.12. When the discriminator voltage threshold optimized

between the electronics noise and Channeltron signal (blue curve in Figure 3.12c), the bias voltage curve

has a signature shoulder feature. In the optimized state, the Channeltron bias voltage should be set 50-

100 V above this shoulder [54]. As the discriminator voltage threshold moves to higher voltage values, the

shoulder feature in the bias voltage curves moves to higher bias voltage (green and yellow curves in Figure

3.12b). Therefore as the Channeltron ages and the pulse height distribution moves to lower voltages, the

once optimized discriminator threshold will look more like above the optimized voltage. Hence, if we measure

the Channeltron bias voltage curves over time, the shoulder will move to higher bias voltage in time. Each

time the Channeltron is replaced, a new set of bias voltage curves needs to be measured. This will be used

as a baseline comparison for how that detector behaves over time.

Tuning Best Practices

The following procedure has been developed to optimize the tuning process in direct beam configuration (not

off a sample). This procedure is a culmination of this work as well as building off of previous phase-space

tuning procedures [34,35]. Reference scans for individual voltage scans can be found in Appendix A.

1. Get current from the filament to the detector. As a first pass, get some current from the

filament all the way to the detector. This is done by tuning the pass energy and cover plate voltages

of monochromators and analyzer. If there is some current at each point (relay) along the path, then

move onto the next step to optimize the resolution. If there is no current at relay M1 or relay M2,
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Figure 3.12: Determining the State of the Channeltron Detector using a Voltage Discriminator
(A) Cartoon of a pulse height distribution from a Channeltron electron multiplier. As the detector ages,
the peak of the pulse height distribution merges with counts from the electronics noise. (B) and (C) The
lineshape of counts versus Channeltron bias voltage changes depending on where the discriminator lower
voltage threshold is set. This can be used to determine the state of the detector by such that the shoulder
in the bias voltage lineshape will move to higher voltage as the Channeltron ages.

the filament is probably off-center or tiled which can be compensated with the A lenses. Increase the

value of the A1 lens and steer the beam horizontally with ∆A1 and ∆A3.

2. Characterize what the beam looks like along its trajectory. As long as there is some current

at all points along the path, we can use the characterization tools described in the previous sections to

identify the best ways to improve throughput and resolution. The characterization tools are as follows:

• At the second monochromator, measure the resolution and pass energy of the pre-monochromator

as demonstrated in Figure 3.7.

• At the analyzer entrance, measure the resolution and pass energy of the second monochromator

as demonstrated in Figure 3.8.

• At the analyzer entrance, measure the profile of the beam path as a function of γ and the focus
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lenses (B lenses) as demonstrated in Figure 3.9.

• At the detector entrance, measure the energy and angle distribution of the beam as a function of

γ and eloss (voltage lens that selects the electron energy into the detector) as demonstrated in

Figure 3.10.

3. Use the characterizations to optimize the beam. The results of the above characterization will

determine the next steps to optimize the beam. For example, if the profile of the beam path at the

analyzer entrance has multiple electron paths and the energy/angle distribution is chirped, it is most

likely that the A lenses are not focused properly. However, if at the analyzer entrance, the beam passes

through at one value of γ but the energy/angle distribution is still chirped, then this might indicate

an issue of aberrations from the monochromator or analyzer. If this is the case, adjusting the pass

energy to resolution ratio (i.e. ∆/M1) would be a good place to start.

4. Iterate over this process multiple times. After characterizing the beam trajectory and adjusting

lenses accordingly, re-tune the other lenses in order while measuring current at the detector. The

goal here is just to increase the throughput in the adjusted tuning configuration. Next, redo the

characterization measurements to gauge the state of the tuning process. Repeat this process until

you achieve a good electron throughput and resolution (approximately 50 pA at the detector, 5 meV

integrated FWHM at the detector).

5. Characterize the Channeltron detector. Once the beam trajectory is optimized, it is useful to

characterize the state of the detector following the procedure above.

In addition we have found that there are two effective ways to increase counts to the detector (albeit in

lieu of resolution). One way to accomplish this is to increase the accepted spread of energies (delta voltages

on the monochromators, ∆M1 or ∆M2) and then adjusting the pass energy, M1 or M2, accordingly to

re-center the beam on the exit slit. However there is a physical upper limit to this. Another way to increase

counts is with the C lenses after the analyzer. Both of these methods allow more electrons through by

accepting electrons with higher angles from lens aberrations. Therefore it makes sense that increased counts

with these lenses would come at the cost of resolution. Measurements of these methods can be found in

Figure 3.13.

Previous methods of tuning involved comparing throughputs at each relay and voltage scans at each lens

to previous tuning files. This method isn’t ideal since the tuning phase space is so large that measurements

of individual voltages could get us stuck in a local minimum. Also, this previous method was solely based
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Figure 3.13: Increasing Electron Throughput
There are two effective ways to increase counts at the detector: increasing the energy spread of the first
monochromator (left figure) and increasing the acceptance angles into the final lenses before the detector
(right figure). Both methods increase the number of electrons to the detector at the cost of energy resolution.

on the throughput of electrons and did not account for aberations that effect energy and momentum reso-

lution. With this new method of tuning, we can systematically measure the phase-space of parameters at

several points along the electron trajectory. This enables us to measure several parameters of phase-space

simultaneously while also taking into account aberations of the beam.

3.2 Updates to Original M-EELS Setup

3.2.1 Load-Lock

This chamber includes a sample magazine, that I designed and implemented, which enables us to pump down

five prepped samples at one time. Previously, we were limited to two sample cleaves per day - constrained

by the time it takes to load samples into the load lock and pump down to high vacuum. However with

the implementation of the sample magazine, sample throughput has increased five-fold - up to ten sample

cleaves per day.

3.2.2 Annealing Stage

It is very important in UHV science to be able to have samples with clean surfaces that do not have absorbates

or other contaminates from the atmosphere. The current method of developing an in situ clean surface for

scattering is by cleaving 2-D layered materials. However this severely limits the types of materials that we

can study in the M-EELS system. There are alternative ways to create a clean surface such as annealing

which evaporates all the contamination off the surface. Implementing this will dramatically increase the
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Figure 3.14: Sample Magazine
This UHV sample holder allows for us to insert up to five samples into the vacuum chamber at a time.

Figure 3.15: Sample Annealing Stage
This UHV annealing stage has three sample spots - two for cleaving and one for annealing. The annealing

sample spot (at the top) consists of a Momentive disk heater that can heat to higher than 1500 degrees
Celsius. On the heater sits a molybdenum puck holder, molybdenum puck, and an inconel spring to hold

the puck in place.

49



types of materials that one can study with M-EELS. In addition, depending on the temperature that the

annealing stage can achieve, this method can also be used to electron-dope samples, such as oxygen reduced

SrTiO3, or to evaporate selenium caps off of thin films.

Figure 3.15 is the annealing stage to be installed in the prep chamber of Figure 3.1. It is composed of

a stainless steel body with two parking spots that holds copper sample pucks with a spring loaded plunger

set screw. These spots can be used to cleave samples in the conventional way.

At the top of the stainless steel body sits a Momentive disk heater (voltage 15 V, current 8 A, power

80 W) shown in Figure 3.15 and can achieve temperatures higher than 1500 degrees Celsius. On top of the

disk heater sits molybdenum holder for a molybdenum sample puck. In between the molybdenum holder

and puck is an inconel spring providing support and thermal conductivity to the puck. Inconel sheet metal

is used as the spring because of its high thermal conductivity, high melting point, and its ability to retain its

springy-ness over many temperature cycles. The inconel spring is held in with a screw on the molybdenum

holder. The remaining screw holes on the holder are to attach leads for a K-type thermocouple.

3.2.3 Vacuum Suitcase

Another avenue of interesting materials to study in M-EELS are thin films. Thin films are grown using

techniques such as molecular beam epitaxy in a UHV environment. Due to samples of films only being a

few layers thick, it is not feasible to cleave these materials. Annealing the surface is one option to expose

a clean scattering plane. Another option is to transport the film from one UHV chamber to another, never

exposing the film to air. To do this, I engineered a vacuum suitcase instrument to enable us to transfer

samples between labs without ever exposing them to air. This system is compatible with several UHV setups

at UIUC including molecular beam epitaxy, scanning tunneling microscopy, angle resolved photoemission

spectroscopy, and our M-EELS system. This will enable us to study thin film materials with a variety of

techniques without the surface being contaminated.

The vacuum suitcase is composed of a magnetic manipulator, dual ion-getter pump, ion gauge and gate

valve. The suitcase can achieve pressures in the 10−9 Torr. Inside the suitcase, and at the end of the

magnetic manipulator, there is a screw adapter that screws into a sample holder (Figure 3.16a).

Inside the vacuum suitcase chamber is a sample holder whose design is similar (Figure 3.16b) to the

annealing stage in the previous section. The sample holder is made of molybdenum and sits on top of a

Momentive disk heater (voltage 15 V, current 8 A, power 80 W) shown in Figure 3.16b and can achieve

temperatures higher than 1500 degrees Celsius. A molybdenum sample puck sits inside the sample holder,

held in by an inconel spring providing support and thermal conductivity to the puck.
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When attached to the MBE system in the Madhavan Group, the sample holder plugs into a banana plug

UHV feedthrough that connects to the heater power supply. The heater will heat the puck and holder to

get the substrate hot enough for material growth. A temperature calibration curve was measured for heater

power versus temperature of substrate as shown in Figure 3.16c. This temperature calibration curve was

measured using a pyrometer off of a SiC substrate screwed to the molybdenum sample puck over the course

of 4.5 hours.

On the M-EELS side, the suitcase attaches to the loadlock chamber. The sample is translated perpendic-

ular to the EELS UHV grippers. The samples are transferred in the same way as samples from the sample

magazine except there is no need to cleave the surface.
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Figure 3.16: Vacuum Suitcase
(A) Photo of the vacuum suitcase chamber composed of a magnetic manipulator, dual ion-getter pump, ion

gauge and gate valve. (B) Photo of the UHV sample holder that goes inside the vacuum suitcase and is
screwed into the magnetic manipulator. UHV feedthrough connect to the Momentive heater power supply
used for MBE material growth. On the heater sits a molybdenum puck holder, molybdenum puck, and an
inconel spring to hold the puck in place. (C) Calibration curve of the heater power versus temperature of

substrate measured using a pyrometer off of a SiC substrate screwed to the molybdenum sample puck over
the course of 4.5 hours.
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3.3 Sample Preparation

3.3.1 Laue

Samples are oriented using a Laue diffractometer. In Laue diffraction, an X-ray beam is backscattered off

a sample to produce a high-symmetry pattern that reflects the symmetry of the lattice. Laue patterns for

TiSe2 and SrTiO3 are shown in Figure 3.17. Once a high symmetry pattern is found, a line is then drawn on

the sample puck using a diamond scribe to mark the high symmetry directions of the crystal which will be

used to orient the sample once in the EELS scattering chamber. This process does not guarantee however

the sample will be along the exact crystalographic direction we need for experiments by the time the sample

makes it to the EELS spectrometer. The uncertainty of the orientation is both due to human uncertainty

in scribing the sample puck and uncertainty from the sample being cleaved and transferred multiple times

before making it to the EELS spectrometer. The error in orientation is not significant due to the fact that

we can correct for this by rotating φ (using an Attocube peizo motor) until we see a (1,0) Bragg peak. On

average, the sample orientation is within ±15 degrees, a range easily reached with our Attocube setup.

Figure 3.17: Laue Diffraction to Orient Sample for M-EELS Experiments
Laue diffraction pattern from CuxTiSe2 (left figure) with hexagonal crystal structure and SrTi1−xNbxO3

(right figure) with cubic crystal structure. ‘
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3.3.2 Hall

As introduced in intro physics classes, if an electric current flows in a conducting system in the presence of

a magnetic field, there will be a transverse force on the charge carriers due to the magnetic field. This will

produce a buildup of charge at the edge of the sample that can be measured as a voltage difference from

one edge to the opposite edge of the sample. By measuring the voltage difference as a function of applied

magnetic field, one can determine the number of carriers (and in turn the carrier density) in a sample. This

process is described by the following:

VH =
IB

nte
(3.12)

where I is the applied current, B is the magnetic field, n is the density of carriers, t is the sample thickness,

and e is the elementary charge of an electron.

R =
VH
I

=
B

nte
(3.13)

ne =
∆B

∆R
t−1 (3.14)

Therefore the carrier density of a sample can be determined by measuring the change in resistance for

some range of magnetic field perpendicular to the sample. These measurements were using a Quantum Design

Physical Properties Measurement System (PPMS). Carrier densities were determined at room temperature,

scanning a range of magnetic field from -8 to +8 Tesla. For SrTi1−xNbxO3, 4mm × 4mm × 1mm samples

were attached to the PPMS holder using double-sided tape. Copper leads are soldered to the PPMS holder

and then connected to the four corners with indium dots in a Van der Pauw configuration (Figure 3.18A). To

improve the connection of the copper wires with the sample, the indium dots were heated using a soldering

iron. Figure 3.18B and 3.18C show a prepped sample and example data, respectively. The slope of the curve

determines the carrier density of the sample.

3.3.3 Wiresaw

In systems that are not 2D layered, an alternative to annealing and in situ sample growth is to fracture a

3D crystal in order to acheive a clean sample surface. In order to do this, a fracturing weak point needs to

be made so that when force is applied, the sample will want to break along a certain direction. This sample

prep method is especially important in SrTiO3. SrTiO3 is cubic material that does not naturally cleave and

annealing this material introduces oxygen vacancies which alter its carrier density [55]. Therefore a new

method of exposing a fresh surface needed to be developed.
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Figure 3.18: Suitcase Sample Holder
(A) Cartoon of Van der Pauw Hall configuration. (B) Photo of SrTi1−xNbxO3 on the PPMS sample holder.
The Copper leads are connected to the sample with indium dots. (C) PPMS measurement of the sample

resistance for a range of applied magnetic field. From the slope of the measurement, the carrier density can
be calculated as given by Equation 3.14. For this measurement, the carrier density is 1.384 x 1020 1/cm3.

Figure 3.19: Diamond Wiresaw Sample Prep
Notches are created on four sides of a sample using a Wells diamond wire saw. The wire used is made of
tungsten embedded with diamond and has a diameter of 300 microns..

We developed a method of notching the sides of each sample as shown in Figure 3.19 with samples that are

1 mm thick. These notches are created using a Wells wire saw. The wire used is made of tungsten embedded

with diamond and has a diameter of 300 microns. By notching the sides of the sample, we introduce a point
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of weakness in the sample so that when force is applied (in vacuum) the sample will cleave at the notches.

This fracturing technique works would likely not work for ARPES or STM since those technique are more

surface sensitive then M-EELS.

This method can be extended to many other cubic structures and other materials that are not easily

cleaved. This has the potential to open the door for taking M-EELS measurements on a whole new class of

materials.
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Chapter 4

Distinct Lattice and Excitonic

Instabilities in CuxTiSe2

4.1 Exciton Condensation in 1T -TiSe2

If cooled to a sufficiently low temperature, a collection of bosons will condense into a single quantum-

mechanical state known as a Bose condensate. The physics of Bose condensation is crucial to understanding

a variety of macroscopic quantum phenomena, including superconductivity and superfluidity. Excitons are

bosons that consist of an electron and a hole bound together by the Coulomb interaction. The light mass

and high binding energy of excitons means they should Bose condense at higher temperatures than other

condensed phases [1], enabling fundamental studies of exciton condensates.

A system in which a thermally-equilibrated, 3D exciton condensate can form is a semimetal with a

small, indirect band gap [3–6]. As the band gap is tuned close to zero, the system becomes unstable to

the spontaneous formation of excitons once the carrier density is too low to sufficiently screen electron-hole

pairs [4, 6]. The nonzero center-of-mass momentum of the excitons modulates the charge density and a

lattice distortion occurs due to the movement of charge. Forming an exciton condensate breaks a spatial

symmetry, like in a conventional, structural phase transition. Can there ever be a distinction between an

exciton condensate in a material and a structural transition that breaks the same symmetry?

Consider, for example, the semimetal 1T -TiSe2, whose small, indirect gap is ideal for exciton condensation

[3–5, 56]. TiSe2 forms a periodic lattice distortion (PLD) below TPLD ∼ 200 K with a wave vector q0 that

connects the valence and conduction band extrema [56,57]. The signature of the PLD is a phonon that softens

to zero energy at T = TPLD and q = q0 [58,59]. We recently demonstrated that the PLD in TiSe2 coincides
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with an exciton condensate by observing a separate, soft electronic collective mode at T = TXC = TPLD

and q = q0 using momentum-resolved electron energy-loss spectroscopy (M-EELS) [8]. The precursor to

this soft mode at temperatures greater than TXC is an electronic, plasmon-like excitation, which decreases

toward zero energy at it approaches TXC. Kogar et al. demonstrated that there are two signatures of exciton

condensation - electronic mode that softens at T = TXC = TPLD and q = q0, and an electronic mode that

decreases in temperature for T > TXC = TPLD and q = 0. Since the exciton condensate and PLD in TiSe2

share the same symmetry and occur at the same temperature, can we determine if the two phases are distinct

from one another?

4.2 M-EELS Study of Copper Intercalated TiSe2

Intercalating TiSe2 with copper suppresses the PLD and induces superconductivity [23]. The copper inter-

calants introduce screening [60], add disorder, and expand the c-axis lattice parameter [23], but these changes

may affect the excitonic state and the PLD differently. For example, an increase in metallic screening likely

affects electron-hole pairing more than the PLD. X-ray scattering has already determined how the PLD is

suppressed in CuxTiSe2 [8, 26], but a separate measurement of the exciton condensate as a function of x is

still needed. Here we use M-EELS to measure how the soft electronic mode evolves with copper intercalation

to investigate whether the exciton condensate and PLD can act independently.

Previous studies of the lattice distortion in CuxTiSe2 show that the PLD survives far into the metallic

superconducting phase centered around x = 0.08, but that TPLD decreases as x increases [8, 23]. The

PLD exhibits a slight incommensuration away from the 2a × 2a × 2c superstructure for x > 0.05 [8]. The

incommensuration coincides with the onset of superconductivity, which has also been seen in TiSe2 by

applying pressure [61] or electrostatic gating [62]. While our recent M-EELS measurement of the soft

electronic mode at x = 0 showed that the exciton condensate and PLD coincide, we now study CuxTiSe2

with M-EELS to determine how the excitonic effect evolves for x > 0.

M-EELS measurements were taken with a conventional HR-EELS spectrometer, retrofitted with a custom

low-temperature seven-axis ultra-high vacuum compatible goniometer. The goniometer was aligned so that

the sample rotation axis intersected the spectrometer rotation axis at a single point. Sample orientation

was accomplished by identifying two Bragg peaks (e.g. (0,0) and (1,0)) to construct an in situ orientation

matrix translating between diffractometer angles and reciprocal space. Samples were cleaved in situ at room

temperature and then cooled to the desired temperature. Spectra were obtained at an incident beam energy

of 50 eV with an energy resolution between 4-6 meV and a momentum resolution of 0.03 inverse Angstroms.
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Electron energy-loss scans were accomplished by moving the sample rotation and detector positions to keep

the out of plane momentum transfer fixed while simultaneously scanning the voltage on the analyzer. The

out-of-plane momentum transfer was fixed to 3.65 reciprocal lattice units to enable the spectrometer to reach

the in-plane Brillouin zone boundary at 50 eV beam energy while maintaining an incident beam angle of at

least 30 degrees with respect to the sample surface. Further instrumentation-related specifics can be found

in Ref. [21].

4.3 Determining Effective Doping

A M-EELS study of CuxTiSe2 requires precise knowledge of the carrier density of each cleaved surface since

the electron carriers come from randomly-distributed copper intercalants [60] and an unknown number of

selenium vacancies that cause the carrier density to vary by tenths of a percent from cleave to cleave. The

plasma frequency, ωp, depends on the carrier density, n, according to,

ω2
p =

4πne2

m∗
, (4.1)

where m∗ is the effective mass of the charge carriers [63]. Knowing the plasma frequency of a surface allows

us to determine in situ the mean carrier density.

We determine the plasma frequency by fitting our M-EELS spectra at q = 0 and T = 300 K to the

dielectric loss function, -Im[1/ε(q, ω)], using the Drude expression for the dielectric constant [63],

ε(ω) = ε∞ −
ω2
p

ω2 + iω/τ
, (4.2)

where ε∞ = 18 is the background dielectric constant [64] and 1/τ is the relaxation rate.

If the carrier density of a surface is proportional to the effective doping of that surface, then the square

of the plasma frequency (ω2
p) should increase linearly with x according to equation (4.1). In Fig. 4.1, we

see that ω2
p does increase approximately linearly with nominal doping. A nonzero plasmon energy at x

= 0 indicates that the carrier density n is nonzero, with residual carriers from either selenium vacancies

or temperature. We do a linear fit to ω2
p versus nominal doping x for all cleaves and find the following

relationship between the effective doping xeff of a surface and the plasma frequency,

xeff(ωp) =
ω2
p − 205, 965.40 meV2

9, 436, 672.58 meV2 . (4.3)
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Table 4.1: Nominal doping, Drude fit parameters, and effective doping of CuxTiSe2 samples.
Nominal doping x of each surface, the Drude fit parameters for the plasma frequency ωp and relaxation

rate τ , and the effective doping xeff determined from ωp. The uncertainty in each parameter corresponds

to the standard deviation.

x ωp (meV) τ (meV−1) xeff

0 437.06 ± 0.79 0.00635 ± 0.00004 0 ± 0.001
0 471.52 ± 0.99 0.00620 ± 0.00005 0.002 ± 0.001

0.004 483.71 ± 1.10 0.00659 ± 0.00006 0.003 ± 0.001
0.004 490.67 ± 0.85 0.00635 ± 0.00004 0.004 ± 0.001
0.004 494.52 ± 1.14 0.00609 ± 0.00005 0.004 ± 0.001
0.004 496.29 ± 1.16 0.00642 ± 0.00006 0.004 ± 0.001
0.004 499.05 ± 1.31 0.00632 ± 0.00006 0.005 ± 0.001
0.01 550.71 ± 1.05 0.00658 ± 0.00005 0.010 ± 0.001
0.01 551.10 ± 1.29 0.00611 ± 0.00006 0.010 ± 0.001
0.01 583.14 ± 1.58 0.00593 ± 0.00006 0.014 ± 0.001
0.02 668.29 ± 1.05 0.00646 ± 0.00004 0.026 ± 0.001
0.04 690.41 ± 1.22 0.00634 ± 0.00004 0.029 ± 0.001
0.07 907.85 ± 2.76 0.00642 ± 0.00009 0.066 ± 0.001
0.07 932.21 ± 2.10 0.00608 ± 0.00006 0.070 ± 0.001
0.109 1133.90 ± 3.70 0.00514 ± 0.00008 0.114 ± 0.001

From this equation, we calculate the effective doping of all surfaces from the plasma frequency determined

from the Drude fit to the M-EELS spectra at q = 0 and T = 300 K. The effective doping values are recorded

in Table 4.1 and these are the values reported as x in the rest of the chapter.

We can check that our Drude model fit parameters are reasonable by computing the carrier density for

each effective doping and comparing to values from Hall effect measurements. We can compute the carrier

density from the plasma frequency using equation (4.1) if we have the effective mass m∗. We estimate the

value for the effective mass from ARPES spectra of the conduction band for x = 0.04 and x = 0.06 [60] using

a fit of the form E(k) = ~2k2/2m∗. The fit gives m∗ = 4.7me for x = 0.04 and m∗ = 4.1me for x = 0.06. We

average the two values together to give a final value for the effective mass of m∗ = 4.4me. Using equation

(4.1), we find a linear relationship between carrier density n and effective doping as seen in Fig. 4.2.

We can now compare the carrier densities found from our Drude fit parameters to carrier densities found

from measurements of the Hall coefficient [65]. The Hall coefficient RH is related to the carrier density

by the equation, RH = −1/ne. Table 4.2 compares the carrier density from our Drude fits to the carrier

densities from the Hall coefficient at 300 K for the dopings studied in the Hall experiment [65]. The carrier

densities are most consistent for the higher two dopings than for the lower two dopings. The differences

at the lower dopings may be due to the two types of carriers contributing to the carrier density. Since our

carrier densities differ from the Hall values by a factor of 3 or less, our Drude fit parameters do on the whole

seem to be reasonable.
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Figure 4.1: CuxTiSe2 Plasma Frequency versus Nominal Doping
Plot of plasma frequency squared versus nominal doping x for CuxTiSe2 samples. The linear fit is used to

calculate effective doping for each sample from the plasma frequency.
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Figure 4.2: Carrier Density vs Doping
Carrier density n as a function of effective doping calculated from equation (4.1) using the Drude fit

parameters and the effective doping from ARPES spectra [60]. The carrier density is linearly related to the
effective doping.

Table 4.2: Comparing carrier densities from our Drude fits and Hall data from [65].
xeff nMEELS (cm−3) nHall (cm−3)

0.014 1.09e21 3.95e20
0.026 1.43e21 7.33e20
0.066 2.64e21 1.14e21
0.109 4.12e21 2.96e21
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Copper intercalants electron-dope the Ti-3d conduction band [60] and increase the metallic screening,

which should strongly affect the exciton condensate [4,6]. We quantify the screening properties of the normal

state, out of which the condensate forms, by computing the real part of the dielectric constant, Re[ε(ω)],

using our Drude fit parameters. For a metal, Re[ε(ω)] exhibits a zero-crossing at ω =
√
ω2
p/ε∞ − 1/τ2. We

find that Re[ε(ω)] is always positive for x ≤ 0.014, but that a zero-crossing appears for x ≥ 0.026 (Fig.

4.3c). For the purposes of this study, we use the appearance of a zero-crossing to define a semimetal-metal

transition in CuxTiSe2, which we identify to be at x = 0.025 by interpolating Re[ε(0)] between x = 0.014

and x = 0.026.
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Figure 4.3: Characterizing Metallic Behavior in CuxTiSe2

a, Caption goes here. b, M-EELS spectra at q = 0 at T = 300 K, showing an electronic mode at ω = 83
meV at x = 0 that shifts to higher energies as the doping x increases. Spectra have been scaled to the elastic
line and offset vertically for clarity. Dashed-gray lines are fits to the dielectric loss function. c, The real
part of the dielectric constant as a function of energy computed from fits to the M-EELS spectra in b. A
zero-crossing appears near x = 0.026.

4.4 Measurements of the PLD Order Parameter

In elastic scattering (ω = 0) scans taken along the (H,0) direction with M-EELS, we see the development of

the PLD order parameter in CuxTiSe2 below the transition temperature, TPLD. The PLD order parameter

appears as a peak at the PLD wave vector, q0 = (0.5,0). Fig. 4.4 shows the PLD peak at q0 for samples with

effective dopings ranging from xeff = 0 to xeff = 0.114. Within our momentum resolution, the width of PLD

peak does not systematically increase with effective doping, indicating that the disorder introduced by the

copper atoms does not appreciably broaden the PLD reflections seen with M-EELS. If there were significant
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disorder from the copper atoms, our momentum-resolution would worsen and the PLD peak would broaden.
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Figure 4.4: PLD Order Parameter
a-f, Elastic scattering (ω = 0) data taken along the (H,0) direction showing the PLD order parameter at
q0 = (0.5,0). Each panel corresponds to a different effective doping. a-c were taken at T = 100 K and d-f

were taken at T = 30 K, which are all temperatures below TPLD for each doping.

4.5 Temperature Dependence of the Electronic Collective Mode

We investigate the evolution of the exciton condensate with doping by first measuring the temperature

dependence of the electronic mode at q = 0 (Fig. 4.5). As demonstrated in Ref. [8], the electronic mode in

TiSe2 decreases in energy from T = 300 K down to TPLD ∼ 200 K, but then shifts up in energy and sharpens

dramatically below TPLD (Fig. 4.5a). Here we observe that samples with x ≤ 0.014 exhibit similar behavior

to x = 0, although the sharpening of the electronic mode below TPLD is less dramatic (Fig. 4.5b-d). We also

find that the electronic mode energy reaches a minimum at T < TPLD for x > 0 (black arrows in Fig. 4.5i).

In the superconducting region of the phase diagram, such as x = 0.066 (Fig. 4.5g) and x = 0.114 (Fig.

4.5h), the electronic mode energy increases as the temperature decreases. This temperature dependence for

a plasmon was also seen in an optical study of Cu0.07TiSe2 [64]. Hall effect measurements show that the

carrier density is temperature-independent at these dopings [65], meaning the change in plasma frequency

must be due to a change in the effective mass below T = 300 K, based on equation (4.1). The change

in effective mass indicates significant renormalization of the bands in the normal state for materials in

which superconductivity emerges at low temperature. There is some evidence for such renormalization in

photoemission spectra on Cu0.065TiSe2 [66]. In addition, this temperature dependence has been seen in

materials such as Bi2Te3, Sb2Te3, and CuxBi2Se3 [67, 68], and has been associated with a temperature

dependence of the effective mass - suggesting that this behavior is the normal state for this system.

For x = 0.026 (Fig. 4.5e) and x = 0.029 (Fig. 4.5f), we discover that the electronic mode energy is

approximately independent of temperature suggesting a crossover from excitonic behavior at dopings x <
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0.026 to the normal behavior for x ≥ 0.066. These observations suggest that the excitonic effect disappears

by x = 0.026, which is far short of the PLD suppression that occurs at x > 0.10.
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Figure 4.5: Temperature Dependence of the Electronic Mode at q = 0.
a, M-EELS spectra at q = 0 for x = 0, showing an electronic mode at 83 meV that shifts and sharpens below
TPLD (spectra have been offset for clarity). This data has been reproduced from Ref. [8]. b-d, Spectra for
x = 0.002, 0.004, and 0.014, showing an electronic mode that shifts and sharpens slightly below TPLD. e-f,
Spectra for x = 0.026 and 0.029, showing an electronic mode that is largely temperature-independent. g-h,
Spectra for x = 0.066 and 0.114, showing an electronic mode that shifts to higher energy as the temperature
decreases. i, Temperature dependence of the electronic mode energy for different dopings, determined from
fits to the spectra in a-h. The error bars represent statistical and systematic contributions, the latter
determined by applying several fit models to the data (discussed in Section 4.7).
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4.6 Dispersions of the Electronic Collective Mode

We gain further insight into the suppression of the exciton condensate by measuring the full momentum

dependence of the electronic mode. In Ref. [8], we demonstrated that for x = 0 the electronic mode behaves

as an ordinary plasmon at T = 300 K, softens toward zero energy at T = 185 K ∼ TPLD, and hardens into

an amplitude mode of the condensed excitons with ω = 47 meV at T = 17 K (Fig. 4.6j). In Fig. 4.6a-c, we

present M-EELS data on a semimetallic sample with x = 0.002. At T = 300 K (Fig. 4.6a), the electronic

mode shifts up slightly in energy and broadens as q increases along the (1,0) direction. Upon cooling to T

= 160 K < TPLD (Fig. 4.6b), the electronic mode softens toward zero energy and cannot be distinguished

from the elastic line near q0 = (0.5, 0), as in x = 0. At T = 100 K (Fig. 4.6c), the mode hardens into an

amplitude mode at ω = 65 meV and its energy remains approximately constant for all momenta. We see

that the amplitude mode frequency actually increases as the exciton condensate is suppressed.

In Fig. 4.6d-f, we find that the dispersion of the electronic mode does not change with temperature for a

metallic sample with x = 0.026. The energy of the electronic mode is approximately independent of momen-

tum at all temperatures, including those above, near, and below TPLD ≈ 140 K. In a superconducting sample

with x = 0.070 and TPLD ≈ 70 K, the electronic mode again remains dispersion-less at all temperatures

(Fig. 4.6g-i). The lack of momentum-dependence and damping at T = 300 K is unusual when compared to

the bulk plasmon dispersion in a metal like aluminum [69]. The absence of a soft electronic mode in these

measurements validates that the full excitonic effect is absent by x = 0.026, where the PLD is still very

pronounced.

To compare the behavior of the electronic mode between different dopings, we quantify its behavior by

fitting the M-EELS spectra with a series of Gaussian and Lorentzian functions for the elastic peak, phonon

modes, and the electronic mode, including both Stokes and anti-Stokes (energy gain) features. A discussion

of this fitting scheme is addressed in the next section. In Fig. 4.6j-n , we see that the soft electronic mode,

which signals the formation of a finite population of excitons, only occurs in materials with x < 0.014. For

x ≥ 0.014, the electronic mode no longer exhibits soft mode behavior, indicating that the exciton condensate

disappears at x = 0.014, before the semimetal-metal transition at x = 0.025.
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Figure 4.6: Momentum Dependence of the Electronic Mode in CuxTiSe2.
a, Normal state M-EELS spectra for x = 0.002, showing a plasmon at ω = 90.5 meV that disperses to
higher energy and damps. b, x = 0.002 spectra at T = 160 K, showing the electronic mode reverse its
dispersion, softening toward 0 meV at q0 = (0.5,0). c, x = 0.002 spectra at T = 100 K, showing a hardened,
nondispersive electronic mode at ω = 65 meV. d-f, Spectra for x = 0.026, showing a nondispersive electronic
mode at T = 300 K, 130 K, and 30 K. g-i, Spectra for x = 0.070, showing a nondispersive electronic mode at
T = 300 K, 70 K, and 30 K. Arrowheads indicate the peak energy determined by our data fits (Section 4.7).
j-n, Dispersion curves along the (1,0) momentum direction for different dopings determined by fitting the
raw spectra in a-i. The errorbars represent statistical and systematic contributions, the latter determined by
fitting the spectra with several different fit models (Section 4.7). Thick, vertical bars denote spectra where
the electronic mode is not discernible from the elastic line. Data points in j are reproduced from Ref. [8].

4.7 Quantifying the Electronic Mode

This section outlines the method for obtaining the energy points and error bars in Fig. 4.6. The following

procedure was repeated at each momentum value and temperature for each xeff value.

There are several main sources of systematic error in the measurement. These include the shift of the

elastic line during the experiment due to drifts in the voltages of the M-EELS lens elements, ambiguity in
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Figure 4.7: 300 K Fits
Fits to the T = 300 K, q = (0,0) data for an xeff = 0.114 sample. Details of the three fit schemes are given

in the text. The plasmon energy for each model is defined to be the plasmon peak position from the fit
minus the elastic peak position from the fit. The plasmon energies from each of the three models are

averaged together to get the final result for the plasmon energy.

distinguishing the electronic mode from phonon modes (especially for samples with xeff < 0.01 and in the

vicinity of the phase transition), and distinguishing the electronic mode from the background continuum.

To estimate these errors, each spectrum was fit using the least squares method according to three different

schemes. Scheme A uses a Gaussian profile to fit the elastic peak, two Lorentzian profiles to fit what are

either the tails of the elastic peak or low energy phonons, a Lorentzian profile for the plasmon, and a constant

background. Scheme B uses a Gaussian profile for the elastic peak, a second Gaussian profile the elastic peak

tails, a Lorentzian profile for the plasmon, and a constant background. Scheme C uses a Gaussian profile

for the elastic peak, two Lorentzian profiles for the elastic peak tails, a Lorentzian profile for the plasmon,

and a second Lorentzian profile for the high-energy tail of the plasmon. If more phonons are visibly present

in a spectrum, additional Lorentzian profiles are added to the schemes for each phonon. An example of each

fit scheme is shown in Fig. 4.7 for xeff = 0.114 spectra at q = 0 and T = 300 K. For low effective dopings

(xeff < 0.01), the tail of the plasmon was not pronounced and only fit schemes A and B were used. Fig. 4.8

shows example fits for the q = (0.4,0) spectra at T = 200 K for an xeff = 0.002 sample.

In each fit scheme, the plasmon energy is defined as the difference between its fit value and the position

of the elastic peak from the fit,

EAp = EAfit − EA0

EBp = EBfit − EB0

ECp = ECfit − EC0

(4.4)
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Figure 4.8: 200 K Fits
Fits to the T = 200 K, q = (0.4,0) data for an xeff = 0.002 sample. Details of the two fit schemes are given
in the text. The plasmon energies from the two fit models are averaged together to get the final result for

the plasmon energy.

where Efit and E0 are the fit energies of the plasmon and elastic peak in each of the three fit schemes. The

plasmon energy is taken to be the average of these three values,

Ep =
EAp + EBp + ECp

3
. (4.5)

The statistical source of error for each scheme is calculated by adding the standard deviations of the plasmon

position and the elastic peak position in quadrature,

δA =
√

(δAfit)
2 + (δA0 )2

δB =
√

(δBfit)
2 + (δB0 )2

δC =
√

(δCfit)
2 + (δC0 )2

(4.6)

where δfit and δ0 are the errors in the plasmon energy and elastic peak energy, respectively, in each of the

three schemes. The systematic error is estimated as the deviation of the plasmon energy obtained in each

of the three fitting schemes from the average value:

σA = |EAp − ωp|

σB = |EBp − ωp|

σC = |ECp − ωp|.

(4.7)
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The final error bars come from adding the statistical and systematic errors in quadrature,

σ =
√
δ2
A + δ2

B + δ2
C + σ2

A + σ2
B + σ2

C . (4.8)

4.8 Exciton Fluctuations

Although the soft mode behavior disappears at x = 0.014, the electronic mode q=0 behavior suggests that

there are still excitonic effects at play up to x = 0.066 at which the system is in its normal state. There

has been recent work showing that TiSe2 exhibits excitonic fluctuations above T > TPLD = TXC [70,71]. To

quantify the excitonic fluctuations in this work we define a dimensionless parameter, A, such that

A =
ω(T )− ω(300K)

ω(300K)
(4.9)

and

δA = A(T, x)−A(T, x = 0.11) (4.10)

The fluctuating region comes from the temperature below which the plasmon energy starts to shift to

lower energies at q=0 as shown in Figure 4.5i. δA goes to zero at room temperature and high doping where

excitonic fluctuations no longer exist. In addition, these fluctuations are only meaningful once we have lost

the soft mode associated with the full exciton condensation state. Table 4.3 is the calculated δA values for

all the dopings at several temperatures.

Table 4.3: δA
x 30K 70K 100K 200K 300K

0 - - - - 0
0.002 - - - -2.855 0
0.004 - - - -0.1752 0
0.014 - -0.3664 -0.3142 -0.0936 0
0.026 -0.2230 -0.1653 -0.0593 -0.0348 0
0.029 -0.0874 -0.1245 -0.0737 -0.0118 0
0.066 0 0 0 0 0
0.114 0 0 0 0 0

4.9 Discussion

The overall behavior of the excitonic effect in CuxTiSe2 is summarized in the phase diagram in Fig. 4.9.

The phase diagram shows the superconducting dome and PLD phase boundary lines determined in previous

69



studies [8,23], the semimetal-metal transition defined as the appearance of a zero-crossing in Re[ε(ω)] using

our Drude fits, the excitonic phase boundary determined from the temperature at which the electronic mode

softens to zero energy at q0, and the excitonic fluctuation parameter, δA, determined from the temperature at

which the electronic mode energy starts to shift to lower energies at q=0. We see that the excitonic transition

departs from the PLD transition as x increases, falling to zero at x = 0.014. The exciton condensate is

suppressed even before the semimetal-metal transition at x = 0.025, indicating that the excitonic transition

is extremely sensitive to screening.

Figure 4.9: Phase diagram of CuxTiSe2.
The red diamonds indicate the temperature at which the electronic mode softens most completely toward
zero energy, as measured in this study with M-EELS. The black outlined circles are every point that has
M-EELS data, where the grey filled circles are M-EELS data will full dispersions. The purple gradient

represents the exciton fluctuations parameter and is a linear interpolation of the values found in 4.3. Filled
circles are the PLD transition temperature measured with x-ray diffraction, where blue circles indicate a
commensuarate PLD (C-PLD) and orange circles indicate an incommensurate PLD (IC-PLD), and are

taken from Ref. [8]. The pink squares are the temperature at which the resistivity anomaly associated with
the PLD occurs and the green squares are the superconducting transition temperature, both taken from

Ref. [23]. The black dashed line indicates the semimetal-metal transition found from Fig. 4.3c.

The separation of the excitonic transition from the commensurate PLD is unexpected. Since the pioneer-

ing theoretical work of Kohn and Sherrington [6], the belief has been that there is no distinction between
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a Bose condensate of excitons in a semi-metal and a conventional, structural phase transition. The two

orders are expected to always coincide in a material, since they break the same symmetries, making them

indistinguishable from a symmetry perspective. This is the reason for using the term “excitonic insulator”

to refer to this state of matter. Our results show that, at least for TiSe2, the excitonic and structural effects

are separate degrees of freedom that can exhibit distinct transitions.

Although the exciton condensate is suppressed at x = 0.014, there still exist excitonic fluctuations

for most of the phase diagram. These fluctuations compete against the normal state behavior resulting

in a temperature independent electronic mode for x = 0.026 and x = 0.029. The intermediate regime

between the excitonic and normal states feels the effects from both and these opposing q=0 behaviors cancel

each other. As the material becomes a better conductor, these fluctuations get completely screened out.

Experimentally realizing excitonic fluctuations in CuxTiSe2 is an important as it is has already theoretically

been demonstrated that excitonic fluctuations can mediate superconductivity [9, 10].

Our study reveals additional important conclusions about the exciton condensate and other properties of

CuxTiSe2. The first is that the excitonic transition is extremely sensitive to screening since it is suppressed

before the semimetal-metal transition at x = 0.025. The amplitude mode frequency increases with doping,

also indicating that the energy required to create another electron-hole pair increases as the system more

effectively screens the Coulomb interaction that binds the excitons. The second conclusion is that the normal

state out of which the superconductivity forms is an anomalous metal. For x = 0.029, the plasmon energy

is approximately independent of temperature, due to the fact that excitonic fluctuations exist in this region

and compete with the normal state behavior. However, for x > 0.065, the plasmon is strongly temperature-

dependent, suggesting the quasiparticle band structure is renormalizing in an unusual way even far above

TSC. The third conclusion is that the electronic mode is not strongly q-dependent at x > 0.014 and does not

follow the conventional dispersion for a plasmon in a Lindhard metal [44]. We checked that the nondispersive

behavior is not a consequence of disorder from copper intercalation by confirming that the PLD superlattice

peaks remain sharp at high dopings (Fig. 4.4). Since non-dispersive plasmons are a feature of beyond-RPA

effects in strongly interacting metals [72], future studies should consider whether such effects are relevant in

CuxTiSe2.
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Chapter 5

Probing Finite-Momentum Charge

Collective Modes in Nb-doped SrTiO3

Ionic semiconductors, are generically characterized by the interaction of longitudinal-optical (LO) phonons

and collective charge carrier modes. Due to their polar nature, long range polarization fields can couple

the longitudinal optical (LO) phonons to collective charge modes including plasmons. This is especially

important in degenerate systems where the plasmon frequency is comparable to the LO phonon frequencies.

One doped ionic semiconductor that stands out is electron doped SrTiO3, which exhibits aborted ferro-

electricity due to quantum fluctuations [11], dilute (unconventional) superconductivity at carrier densities

as low as 5.5×1017 cm−3 [12], and charge transport properties that implicate bad metal behavior [13].

Understanding the charge collective mode dynamics can provide insight into the nature of these unusual

properties.

In this work, we use momentum-resolved electron energy loss spectroscopy (M-EELS) to measure the

dispersion, temperature, and doping dependence of the collective modes in SrTi1−xNbxO3. Experimental

work with a fracturing technique for surface preparation, allows us to probe these collective modes in an

ultra-high vacuum (UHV) environment. This fracturing technique takes advantage of the fact that M-EELS,

while a surface technique, is bulk sensitive, while for other surface techniques (such as ARPES), this sample

preparation would not work. Using M-EELS in conjunction with the sample fracturing technique, we show

conservation of in-plane momentum achieved using this fracturing technique as demonstrated through the

observation of a dispersive acoustic phonon. In addition, we measure a non-dispersive plasmon whose energy

and dispersion deviate from infrared spectroscopy measurements and RPA predictions.
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5.1 Properties of SrTiO3

In its undoped state, SrTiO3 is an insulator with a 3.22 eV band gap [73]. It has a cubic perovskite structure

with a lattice parameter of a = 3.905 Å. The oxygen atoms form an octahedral cage around a titanium

atom as shown in Figure 1a. In addition, this material is a polar crystal so optical phonon vibrations can

produce a macroscopic polarization in the material, and in turn, a long range electric field. This results in

the well-known splitting of the longitudinal optical (LO) and transverse optical (TO) phonons [74] according

to the Lyddane-Sachs-Teller relation:

ωLO
ωTO

=

√
ε0
ε∞

(5.1)

Where ε0 is the permittivity of free space and ε∞ is the background dielectric constant.

X

Sr TiO Sr TiO Sr TiOSr TiOSr TiO Sr TiOSr TiO Sr TiO Sr TiOSr TiOSr TiO Sr TiO

A B C D

M

Γ

Figure 5.1: Cubic Perovskite Structure
(A) and (B) Ionic vibrations of the 58 meV and 93 meV optical phonons [75,76](C) Cubic lattice structure
undergoing an antiferrodistortive transition due to the rotation of the oxygen. (D)Cubic lattice Brillouin
zone where all data in this thesis is taken along the Γ-X direction.

At 105 K, the lattice undergoes a structural transition and becomes tetragonal (a = 5.507 Å, c = 7.796

Å) [77]. This transition, also known as the antiferrodistortive transition (AFD), comes about due to the

rotation of the octahedral oxygen cage around the c axis (Figure 5.1C) [78].

Unlike its periodic table neighbor BaTiO3, SrTiO3 never reaches the ferroelectric ordered phase. As

temperature is further decreased below the AFD transition, this system exhibits a ferroelectric instability.

The dielectric constant increases as if the system is about to transition into a ferroelectric state, but then

plateaus at around 20,000 times the vacuum permittivity [28] [11]. This deviation from ferroelectricity is

due to quantum fluctuations causing the system to remain in a quantum paraelectric phase. A signature of
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Figure 5.2: SrTiO3 Phase Diagram
(a) The superconducting transition temperature as a function of carrier concentration. Figure taken

from [80]. Two supercondonducing domes emerge from electron doping with niobium or oxygen reduction.
nc1 and nc2 are critical dopings at which a new band starts to fill. Overlayed on the figure are the dopings
measured in this work, with carrier densities that span the range of the Nb doped superconducting dome.

this instability is the incomplete softening of a 12 meV phonon mode at Γ, the center of the Brillouin zone.

This instability occurs below 40 K, when the system starts to deviate from Curie law behavior [11].

5.1.1 Electron Doped SrTiO3

Introducing electrons in a very polar material like SrTiO3 forms quasiparticles called polarons. A polaron is

a conduction electron that is bound to a lattice due to self-induced polarization from an ionic crystal. For

small amounts of electrons, the resulting polarons are localized due to the strong Coulomb nature of the LO

phonons. Above the mobility edge, measured as n = 2×1016 cm−3 [79], electrons fill the conduction band

and the strong Coulomb forces get screened making the polarons become mobile in the lattice. [16]

As this material is further doped with electrons, superconductivity emerges. Electrons can be added

to the system either by removing oxygen atoms or by replacing titanium atoms with niobium. As seen in

Figure 5.2, there are two superconducting domes, one from oxygen deficiency and one from niobium doping.

The oxygen deficient samples become superconducting at a lower carrier density than the niobium doped

material. In addition, it has been found that electron doped SrTiO3 is a multi-band superconductor [80].

74



For carrier densities below the critical doping, nc1, electrons fill a single band. As the carrier density is

increased, two bands start to fill with electrons (below critical doping nc2) and eventually electrons occupy

three bands (above nc2).

The superconductivity that forms in this system from electron doping fails to follow BCS-like phe-

nomenology. In BCS theory, the attraction between electrons only occurs as long as the electrons that are

participating are within a narrow range around the Fermi level [81]. In most superconductors, this is satisfied

by the fact that the Debye temperature (i.e. the energy scale of the phonons) is much smaller than the Fermi

energy. In electron doped SrTiO3, the Debye temperature, measured as 693 K (approximately 60 meV) for

undoped SrTiO3 [82], is an order of magnitude larger than the Fermi energy of the oxygen deficient dopings

and on the same order of magnitude as the niobium doped samples [83] [12]. Therefore, BCS theory does

not hold.

In addition to being a dilute superconductor, SrTi1−xNbxO3 exhibits unique charge transport properties

such as mobility that changes several orders of magnitude with temperature [13], resistivity at high temper-

atures that goes as T-cubed and resistivity that surpasses the Mott–Ioffe–Regel limit [29] (the limit in which

the length between electron collisions is comparable to the mean distance between of the electrons). These

findings can be explained by a changing carrier scattering rate and bad metal behavior or by a changing

effective mass of the polarons such that their mass increases with increasing temperature [84]. The nature

of these findings is still a highly debated topic [27].

Finally, it was discovered that heterostructures of SrTiO3 with other insulating materials such as LaAlO3

form a metallic two-dimensional electron gas (2DEG) at the interface [85] that exhibits superconductivity

[86]. This discovery in the early 2000s renewed interest in understanding the phenomena in this material 40

years after superconductivity was initially discovered. In addition it was found that the 2DEG forms at the

interface with vacuum (as vacuum is insulating) [87] for a wide range of dopings from below the mobility

edge n < 1013cm−3 to highly doped materials n > 1020cm−3. This is important for this work because it

allows for us to use inelastic electron scattering on insulating undoped SrTiO3 without the surface charging.

5.1.2 The Role of Plasmons in SrTi1−xNbxO3

Ionic semiconductors, are characterized by the interaction of LO phonons and collective charge carrier

modes. Due to their polar nature, long range polarization fields can couple the LO phonons to collective

charge modes including plasmons. This is especially significant in degenerate systems where the plasmon

frequency is comparable to the LO phonon frequencies.

The nature of these collective modes has motivated several theories of superconductivity in electron doped
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SrTiO3. Specifically these theories implicate a plasmon mediated superconducting pairing mechanism [14]

[15] [16]. In doped SrTiO3, superconductivity survives even when the Fermi temperature becomes an order

of magnitude lower or of the same magnitude as the Debye temperature. However, the plasmon energy (ωp)

in this system can be lower than the Fermi energy (EF ) especially in the very dilute samples. This motivated

theorists to consider a BCS-like model with plasmons mediating the Cooper pairs where ωp < EF [88].

The work in this thesis explores the dynamics of the collective modes in SrTi1−xNbxO3

in its normal state. Measurements of the lattice and electronic collective modes (phonons

and plasmons) provide insight on how these modes interact in the system. This motivates

the need for experiments to study the momentum dependence of the plasmons and phonons.

To do this, we need a technique that can measure the momentum dependence of low energy

electronic collective modes, also known as M-EELS.

5.2 Collective Modes of SrTi1−xNbxO3 Measured with M-EELS

Using the M-EELS setup described in Chapter 3, we aim to study the doping, temperature, and momentum

dependence of the electronic modes in SrTi1−xNbxO3. For these experiments we use the reciprocal lattice

units (H,K,L) to indicate the transferred momentum such that q = 2π(Ha x̂ + K
b ŷ + L

c ẑ) where a = b =

c = 3.905 Å. The SrTi1−xNbxO3 and SrTiO3 crystals were cleaved in ultra high vacuum (10−10) at room

temperature and all M-EELS data were collected using an incident beam energy of 50 eV with 6 meV energy

resolution, 0.03 Å1 momentum resolution, and about 40 pA of incident beam current. The samples were

cleaved using a fracturing technique discussed in Section 5.2.1. The out-of-plane momentum transfer was

fixed at 2.5 reciprocal lattice units (r.l.u.) in order to see the (1,0) Bragg peak while only changing θ and γ.

The samples were prepared so that the cleavage plane surface is oriented normal to the (100) plane.

Normalizing of the M-EELS charge susceptibility was done by applying the f-sum rule. The first moment,

f-sum rule on the density response relates the integrated intensity over energy to a function of momentum

and known physical constants. Using sum rules is common practice in other scattering techniques such as IR

spectroscopy and inelastic neutron scattering. The f-sum rule as written here applies to the bulk response

function however M-EELS measures the surface response function. For this work however we use the bulk

f-sum rule to normalize the data for plotting and comparing to other experiments.

In this work, the f-sum rule is used to scale the data in the following manner:∫ 0.4eV

0

ωχ′′(q, ω) dω = −πq
2N

2m
= Cq2 (5.2)
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where m is the mass of electron, N is the carrier density, and the bounds of integration go from 0 to the

maximum of the energy range of interest. Plugging in the equation for χ′′ derived in Chapter 2,∫ 0.4eV

0

ωπ[S(q,−ω)− S(q, ω)] dω = Cq2. (5.3)

Relating to dynamic structure factor to the M-EELS cross section,∫ 0.4eV

0

ωπ
[I(q,−ω)− I(q, ω)]

σ0V 2
eff

dω = Cq2 (5.4)

pulling out the terms that do not depend on energy, we end up with a constant at each q point that depends

on the integrated intensity and Coulomb matrix elements,

C =
π

q2σ0V 2
eff

∫ 0.4eV

0

ω[I(q,−ω)− I(q, ω)] dω. (5.5)

This constant is then used a scale factor to relate the finite momentum data to q=0 data such that,

S(q 6= 0, ω) =
I(q, ω)

σ0V 2
eff

Cq=0

Cq 6=0
(5.6)

Due to the Coulomb matrix element divergence at q = 0 (see Section 2.3), I will show the raw intensity,

I(q=0,ω), and for finite q, I show the dynamic structure factor, S(q,ω) scaled to the q=0 spectra.

The samples used in these experiments were all commercially grown from several suppliers. Table 5.1

outlines the samples and carrier density for each doping studied in this thesis. The carrier density is

calculated based on the at% stated by suppliers as well as the measured values from Hall data. The Hall

measurements were conducted using a Quantum Design Physical Properties Measurement System (PPMS)

at room temperature, scanning a range of magnetic field from -8 to +8 Tesla. Figure 5.3 is a summary of

the at% from manufacturers versus the Hall carrier density. The carrier density from the manufacturers and

that from Hall measurements are consistent within two standard deviations of the mean.

Each Hall measurement was scanned through the range of magnetic field three times. The average of the

slopes of these three measurements is taken as the Hall value in both Table 5.1 and Figure 5.3. The error

bars are one standard deviation from the mean of the slopes. Several large samples were measured in the

PPMS but then later cut to smaller samples for M-EELS measurements. These are indicated in Figure 5.3

legend as a range of sample numbers.

From these numbers we can calculate the expected plasma frequency based on these bulk carrier mea-

surements assuming Drude-like behavior given by,

ωp =

√
Ne2

ε0m∗
(5.7)
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Table 5.1: SrTi1−xNbxO3 Carrier Density

Atomic % of Nb Manufacturer At% Carrier Density ( 1
cm3 ) Hall Carrier Density ( 1

cm3 )

0% MTI Corporation - -
Slightly Doped MSE Supplies - < 1016

0.2% Biotain Crystal -3.36 ×1019 (-2.89±0.26)× 1019

1% Biotain Crystal -1.67 ×1020 (-1.49±0.14)× 1020

1.4% MTI Corporation -2.35 ×1020 (-2.13±0.07)× 1020
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Figure 5.3: Hall Carrier Density Summary
Summary of the at% from manufacturers versus the measured Hall carrier density with PPMS. Each data
point is the average of three magnetic field sweeps with the errorbars being one standard deviation from
the average. Several of these measurements were done on larger samples that were later cut into smaller

samples for M-EELS experiments.

where N is the carrier density, m∗ is the effective mass of the charge carriers, and ε0 is the permittivity of

free space. Due to the fact that the plasma frequency of free carriers is at a lower energy than the inter-band

transition (since this is a doped semiconductor), there is a background dielectric constant that the carriers

feel. Therefore the plasmon frequency measured in M-EELS is the screened plasma frequency,

ωp,screeened =
~ωp√
ε∞

(5.8)

where ε∞ is the background dielectric constant.

Calculations of the plasma energy and screened plasma energy are shown in Table 5.2. These values were

calculated using m∗ and ε∞ using the Hall carrier density values for N . For these calculations we use the

reported values for effective mass as m∗ = 0.81me and ε∞ = 5.44 [89] but these quantities have been shown

to be temperature dependent [48].
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Table 5.2: Drude Plasma Energy Calculated from Hall Carrier Density

Atomic % of Nb ωp (eV) ωp,screened (eV)

0.2% 0.222±0.067 0.092±0.028
1% 0.503±0.153 0.209±0.064

1.4% 0.603±0.110 0.250±0.046

Figure 5.4 clearly shows the physical change in these materials due to doping with niobium. The undoped,

insulating sample is transparent while the highly doped sample is black and shiny. The “slightly” doped

sample is less transparent than undoped by eye however there are still not enough carriers to be measured

by the Hall effect. Therefore the slightly doped material is presumed to have a carrier density that is below

the metal-to-insulator transition, which is experimentally measured as 1016 1
cm3 [79].

Figure 5.4: Photo of SrTiO3 and SrTi1−xNbxO3 Samples
The by eye comparison of the effect of niobium doping. The white transparent insulating samples turn black
and opaque with niobium doping.

5.2.1 Fracturing Cubic SrTiO3 in Ultra High Vacuum

M-EELS experiments must be carried out in an ultra-high vacuum (UHV) environment. The primary reason

for this is that the low-energy electrons (2-200 eV) used in M-EELS make it a surface-sensitive technique

that requires sample materials to have pristine, adsorbate-free surfaces. Clean sample surfaces are typically

prepared by cleaving the sample in our UHV environment (see Chapter 3). This means that most of the

materials we study are cleavable, layered materials. Since SrTiO3 is cubic, it does not naturally cleave and

annealing this material introduces oxygen vacancies which alter its carrier density [55]. Therefore a different

method of exposing a fresh surface needed to be developed.

We developed a method of notching the sides of each sample as shown in Figure 3.19 (cross section of a

sample 1 mm thick). These notches are created using a Wells wire saw. The wire used is made of tungsten

79



embedded with diamond and has a diameter of 300 microns. Notching the sides of the sample introduces

a point of weakness in the crystal so that when force is applied (in vacuum) the sample will fracture. This

in-situ fracture procedure was implemented by applying a rapid and strong force to the top-post.

Looking at the cleaved samples under an optical microscope shows that the surface is not globally flat

but instead has some curvature. This conchoidal fracturing of SrTiO3 has been seen in other perovskite

materials [90] and comes about due to the material being brittle with no cleavage plane. Although globally,

the surface of fractured SrTiO3 and SrTi1−xNbxO3 is not flat, locally, this is not the case. Scanning-tunneling

microscopy (STM) experiments have shown that the surface of fractured SrTiO3 exhibits atomically flat

terraces that are on the order of tens of nanometers wide [91,92]. These STM experiments also showed that

the atomic surfaces terraces are a mixture of both TiO2 and SrO surface terminations. The SrO terminations

which are prone to oxygen vacancies are wider than the TiO2 terminations [92]. The surface terminations

should not effect interpretations of M-EELS measurements since the electron beam is 0.5mm in diameter,

orders of magnitude larger than these terraces. Therefore the electron beam scatters off both TiO2 and SrO

terminated surfaces and the experiment cannot distinguish one from the other. In addition, the M-EELS

probe depth, which goes as 1/q, makes this technique not as sensitive to surface features as other techniques

like STM.

The globally conchoidal but atomically flat nature of these fractured surfaces are an important distinction

to make when using a momentum resolved surface sensitive technique like M-EELS, which requires an

atomically flat surface to obtain good momentum resolution. We can see that even though the cleaved

surfaces are not flat (Figure 5.2.1), we still see (0,0) and (1,0) Bragg peaks with widths 0.03 r.l.u. (Figure

5.2.1) demonstrating that the surface is crystallographically perfect, and momentum is conserved. This

suggests that momentum will be conserved in M-EELS experiments throughout the Brillouin zone.

5.2.2 Multiple Scattering

As discussed in the Chapter 2 the M-EELS cross section is usually described well by the distorted wave

born approximation due to the fact that the cross section for elastic scattering is much larger than that for

inelastic scattering. Therefore the only multiple scattering that we see acts through the elastic channel and

produces the “Bragg enhancement” effect discussed earlier.

However there can be scenarios where multiple scattering occurs during an inelastic scattering process.

When this happens, we are in the limit where the scattering cross section is so large we can see multiple

scattering events even in the inelastic channel. Therefore the probe electron is scattering multiple times

within the sample. This type of scattering is common in a transmission EELS configuration where the
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Figure 5.5: UHV Cleaved SrTi1−xNbxO3

Using the newly developed diamond wiresaw cutting technique, it made it possible to fracture these cubic
crystals. The top photos are of SrTi1−xNbxO3 samples that were cleaved in UHV at room temperature.

The cleaved surfaces are not globally flat however the surface termination has atomically flat terraces. The
bottom plots are zero energy momentum scans along the (H,0) momentum direction measured from the

above cleaved surfaces respectively. The (0,0) and (1,0) Bragg peaks have widths of about 0.03-0.05 r.l.u.
demonstrating that the surface is atomically flat, and momentum is conserved. The inset in the bottom

right figure is zoomed into the (1,0) Bragg peak.

multiple scattering is related to the thickness of the sample (i.e. density of scatterers). In the reflection

geometry, this multiple scattering is less relevant due to the fact that inelastic features have relatively small

spectral weight compared to the elastic spectral weight.

This is not the case for polar materials however such as SrTiO3. SrTiO3 is an ionic crystal that has

longitudinal optical phonons that are polarized along the c-axis due to large electric fields produced from

moving atoms. The probe electrons can strongly couple to the c-axis polarized optical phonons. In SrTiO3,

the optical phonon modes seen in Figure 5.6 at 58 and 93 meV take up a significantly larger percentage of

the spectral weight than they do in non-ionic materials such as Sr2RuO4 also shown in Figure 5.6. This may
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be because EELS measures the longitudinal response, and therefore is more sensitive to c-axis polarized LO

phonons than optics, which is more sensitive to the transverse response.
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Figure 5.6: Spectral Weight of Inelastic Features
The spectral weight of inelastic features varies from sample to sample. On average, the elastic line is orders
of magnitude larger than the spectral weight of the inelastic features as seen in the Sr2RuO4 data on the
left. The inset is zoomed out to show the full elastic line, in doing so, you can not see the inelastic features
by eye. There are materials though where the inelastic spectral weight is of comparable order of magnitude
to the elastic spectral weight as seen in the SrTiO3 data on the right. When zoomed out to show the full
elastic line, the inelastic features are still visible by eye (see inset). In M-EELS this is unique to polar, ionic
materials. Due to the strength of the oscillators, multiple scattering overtones are visible and can not be
neglected.

Because of the polar nature and strong phonons, overtones due to multiple inelastic scattering are seen

in the SrTiO3 M-EELS spectra. There are several mechanisms by which we can see overtones in the

inelastic features in M-EELS, as illustrated in Figure 5.7. Figure 5.7a is a representation of electron-phonon

interaction where a single electron scatters a single phonon. Figure 5.7b is a representation of multiple

scattering in which a single electron scatters multiple phonons (or the same phonon multiple times). In this

case, the overtones will be integer multiples of the phonon energies. Figure 5.7c is the case in which an

electron scatters and produces two phonons from a single scattering event that are coupled to each other.

This occurs if the Hamiltonian that describes the system is non-linear due to anharmonicity. In the scenario

where a scattered phonons produces another phonon, the scattered electron is not necessarily at integer

multiples of the phonon energy due to the coupling between the phonons.

For SrTiO3, the overtones (up to three harmonics) are clearly visible in the EELS data in this work

(Figure 5.8) and in others [93, 94] but are not present in other techniques like IR spectroscopy [48, 95, 96].

In addition, the overtones are integer multiples of the optical phonons such that for the phonons ω1 and ω2,

the second harmonic energies are ω1 + ω2 and 2ω2, the third harmonic energies are ω1 + 2ω2 and 3ω2, and
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Figure 5.7: Representations of Multiple Scattering of Electrons
Multiple scattering can occur via two different mechanisms. (A) Electron-phonon interaction where a single
electron scatters a single phonon. This is the dominant interaction for most materials in M-EELS where
overtones are not visible. (B) Representation of multiple scattering where a single electron scatters multiple
phonons (or the same phonon multiple times). In this case, the overtones will be integer multiples of the
phonon energies. (C) Representation of multiple scattering where an electron scatters and produces two
phonons from a single scattering event and these phonons are coupled to each other. In this case, the
overtones are not necessarily integer multiples of the phonon energy due to the phonon-phonon coupling.
This interaction occurs in systems with non-linear Hamiltonians due to anharmonicity.

the forth harmonic energies are ω1 + 3ω2 and 4ω2. We therefore conclude that the overtones of SrTiO3 are

due to multiple inelastic scattering of the sort shown in Figure 5.7b.

5.2.3 Collective Modes in SrTi1−xNbxO3 for a Range of Carrier Densities

This section will present an in-depth look at what the collective modes of the system look like at different

carrier densities. For each doping, first a zero energy momentum scan is presented compared to the dispersion

of the low energy acoustic phonon that is well established in this material [97–101]. An acoustic phonon

is a propagating collective mode that, in a perfect crystal, will exhibit a clear dispersion. However, this

dispersion could be suppressed in a crystal with defects or near a rough surface. The acoustic mode is

therefore a good first indication of whether momentum is conserved in the M-EELS measurement. Next

we present the momentum dependence of the acoustic phonon, optical phonons, and plasmons at 23K and

room temperature. These dispersions are along the (H,0) direction, are scaled by the sum rule as discussed

previously, and are offset for clarity. Black arrows indicate significant features such as the dispersing acoustic

phonon energy, LO phonon energy, and plasmon energy. Due to the nature of the plasmon being broad and
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Figure 5.8: 2D Momentum Map of the 2nd, 3rd, and 4th Harmonics in SrTiO3

Due to its very polar nature, overtones of optical phonons are very visible in M-EELS measurements of
SrTiO3, while not visible in other techniques [48,95,96]. The SrTiO3 spectrum shows strong optical

phonons at 58 meV and 93 meV (note log intensity scale), second harmonics of these phonons are seen at
151 meV and 186 meV, third harmonics at 244 and 279 meV, and forth harmonics at 337 and 372 meV.

These modes are constant throughout the Brillouin zone, as expected from optical phonons.

in the background of strong phonon excitations, a guide to the eye is provided to identify this mode. Finally

for each doping we present a q=0 temperature dependence compared to that from IR spectroscopy.

Undoped

At x=0, SrTi1−xNbxO3 is insulating, which for electron scattering can cause charging on the sample, im-

peding the M-EELS measurement. In SrTiO3 however, the interface of the surface with vacuum forms a

2DEG and has oxygen vacancies from the fracturing process (as discussed in sections above). The charge

that forms on the surface is enough to get scattering data from the collective modes at least for a short

amount of time before charging (i.e. on the order of a day or two as compared to a week of measurements

that can be done on non-insulating materials). The small amount of surface charge, measured in ARPES as

2× 1014cm2 [87] is not enough to see any discernible effect, such as formation of plasmons, in the M-EELS

spectra. Three different fractured surfaces were studied in this doping that all reproduced the same inelastic

behaviors. The data presented in this section is from one sample that was chosen based off the quality of the

zero energy (H,0) scan, the momentum resolution off the surface (FWHM of (0,0) Bragg peak), the number
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of temperature/momentum points measured, and the overall scattered intensity off the sample.

Figure 5.9 shows the zero energy momentum scan along the (H,0) direction from a fractured undoped

sample. The (0,0) and (1,0) Bragg peaks are visible although slightly broadened (0.13 r.l.u.). The dispersion

of the low energy acoustic phonon appears as a shoulder to the elastic scattering line that reaches its

maximum energy at the Brillouin zone boundary, q=0.5 r.l.u. This is a propagating mode and has a

lorentzian lineshape. We conclude that momentum is conserved when scattering off this surface at finite

momentum. In other words, if there is another dispersing collective mode, we should be able to measure its

dispersion.
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Figure 5.9: Undoped Fractured Surface
The left figure shows the zero energy momentum scan showing (0,0) and (1,0) Bragg peaks with 0.13 r.l.u.
momentum resolution (determined from the FWHM of (0,0)). We can measure a propagating low energy
acoustic phonon mode off this fractured surface (on right).

Figure 5.10 shows the S(q,ω) dispersions of all the collective modes in this material at 300k and 23K.

Again, we see the acoustic phonon disperse at both temperatures. Fits to the phonon with a lorentzian

function will be discussed in Section 5.3 however for clarity, a best fit of the dispersion of the lorentzian fits

is shown with black arrows. There are two Fuchs-Kliewer phonons at ω1 = 57 meV and ω2 = 93 meV that

are the surface manifestation of the bulk optical phonons and therefore do not disperse. In addition we see

overtones at 114 meV (2ω1), 151 meV (ω1+ω2), and 186 meV (2ω2) that do not disperse. The presence and

dispersions of even higher order overtones is shown in Figure 5.8.

Next we can compare what happens with temperature at q=0 and compare this to infrared spectroscopy

(Figure 5.11. The q=0 M-EELS data show nearly identical spectra at room temperature and low temper-

ature. At 300 K, there is a small amount of spectral weight around 30 meV which comes about due to

the Bose factor. This data is compared to HR-EELS q=0 data at 470K from [94] which was scaled to fit
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Figure 5.10: Undoped Dispersions
Dispersions along the (H,0) for different energy regions at 300 K and 23 K. All spectra are scaled with
sum rule and offset for clarity. The q=0 spectra are raw M-EELS intensities to avoid the Coulomb matrix
element divergence when calculating S(q,ω). Low energy region shows a propogating dispersing phonon,
black arrows are the best fit to the lorentzian fits as described in Section 5.3.3. In the region of 35-200 meV
we see two optical phonons and three overtones, black arrows are guide to the eye for each LO mode.
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on the same plot. The HR-EELS data is also in good agreement with all the collective mode energies and

lineshapes although our M-EELS data has more spectral weight in the phonons and overtones. Comparing

this to -Im[1/(ε(ω) + 1], where ε(ω) was determined from reflectivity and optical conductivity measurements

given to us by the authors of [48], we see a good agreement of the data. The phonon energy and lack of

temperature dependence are consistent between the two techniques. M-EELS measurements however have

broader modes due to a worse resolution than IR spectroscopy and M-EELS sees the presence of the multiple

scattering overtones that do not take place in IR measurements.
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Figure 5.11: Undoped Temperature Dependence
Temperature dependence of the optical phonons from M-EELS (top) at q=0 and IR spectroscopy

(bottom). Spectra are scaled to elastic line and are not offset. M-EELS data is compared to HR-EELS
data on undoped SrTiO3 from [94]
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x=0.002

For this composition, the zero energy momentum scan shows (0,0) and a weak (1,0) Bragg peaks (Figure

5.12). The momentum resolution off this sample is 0.037 r.l.u. as determined from the FWHM of the specular

peak. The low energy acoustic phonon is broad and does not take on a lorentzian lineshape. This shows

a diffusive behavior in momentum that increases in energy up to the Brillouin zone boundary. This means

that even though the collective excitation is not propagating on this sample surface we can still get some

momentum dependent information. If there is another dispersing collective mode, it should also exhibit this

dispersing behavior. Three different fractured surfaces were studied in this doping that all reproduced the

same inelastic behaviors including a diffusive acoustic phonon. The data presented in this section is from

one sample that was chosen based on the quality of the zero-energy (H,0) scan, the momentum resolution

off the surface (FWHM of (0,0) Bragg peak), the number of temperature/momentum points measured, and

the overall scattered intensity off the sample.
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Figure 5.12: x = 0.002 Fractured Surface
The left figure shows the zero energy momentum scan showing (0,0) and (1,0) Bragg peaks with 0.037
r.l.u. momentum resolution (determined from the FWHM of (0,0)). We can measure a diffusing low energy
acoustic phonon mode off this fractured surface (on right).

At, x=0.002, the carrier density is measured from Hall data as 2.89±0.26×1019cm−3. For this doping, we

observe the Fuchs-Kliewer phonons and overtones at comparable energies to the undoped material and find

that they do not disperse (5.13). The higher order overtones (3rd and 4th harmonics) are almost completely

screened, most likely because of the metallic character of this material, and the 93 meV mode has a broad

tail. Finally, we see a plasmon that emerges with the addition of carriers. The plasmon is the broad (on

the order of 100 meV) background weight that sits underneath the phonons around 100 meV. This energy
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agrees well with the calculated screened plasma frequency of 92± 28 meV (Table 5.2). Arrows and a guide

to the eye are shown to help identify the plasmon mode. At 300 K and 23 K the plasmon remains at a

fixed energy throughout the Brillouin zone and does not disperse, in contrast to the acoustic phonon. This

suggests the plasmon does not propagate as well as the lattice degrees of freedom.
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Figure 5.13: x = 0.002 Dispersions
Dispersions along the (H,0) for different energy regions at 300 K and 23 K. All spectra are scaled with
sum rule and offset for clarity. The q=0 spectra are raw M-EELS intensities to avoid the Coulomb matrix
element divergence when calculating S(q,ω). Low energy region shows a diffusive dispersing phonon, black
arrows are the best fit to the lorentzian fits as described in Section 5.3.3. In the region of 35-200 meV we see
two optical phonons and two overtones, black arrows are guide to the eye for each LO mode. In the energy
range out to 400 meV, we see a broad background under the phonons which is the plasmon mode. Dashed
lines and black arrows provide guide to the eye for this non-dispersing mode. The dashed lines are by-eye
fits using the Drude formulation.

Figure 5.14 shows that the M-EELS optical phonons are independent of temperature which contrasts

with the optical spectroscopy measurements that show an increase of approximately 10 meV when cooled

from room temperature to 23K. In addition, the IR data also seeing the broadening tail of the 93 meV LO

phonon just like in M-EELS, this suggests that the coupling between the 93 meV mode and the plasmon

is particularly strong at this composition. In M-EELS, the broad plasmon becomes slightly temperature

dependent however it is difficult to quantify this temperature dependence due to the fact that this mode is

very broad and weak compared to the Fuchs-Kliewer phonons that sit on top of it.
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Figure 5.14: x = 0.002 Temperature Dependence
Temperature dependence of the optical phonons and plasmon from M-EELS (top) at q=0 and IR spec-
troscopy (bottom). Spectra are scaled to elastic line and are offset for clarity. Dashed lines and black arrows
provide a guide to the eye for the temperature dependent plasmon mode. The dashed lines are by-eye fits
using the Drude formulation.

x=0.01

For this measurement, the zero energy momentum scan shows (0,0) and a weak (1,0) Bragg peaks (Figure

5.15). The momentum resolution off this sample is 0.032 r.l.u. as determined from the FWHM of the specular

peak. The dispersion of the low energy acoustic phonon looks comparable to the x=0.002 doped samples.

The low energy acoustic phonon is broad and does not take on a lorentzian lineshape. This shows a diffusive

behavior in momentum that increases in energy up to the Brillouin zone boundary and then decreases. The

diffuseness of this dispersion maintains information about the crystal lattice as seen by the fact that it

reaches its maximum in energy at the Brillouin zone boundary. This means that even though the collective

excitation is not propagating on this sample surface we can still get momentum dependent information. If
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there is another dispersing collective mode, it will also exhibit this dispersing behavior. Three different

fractured surfaces were studied in this doping that all reproduced the same inelastic behaviors including a

diffusive acoustic phonon. The data presented in this section is from one sample that was chosen based on

the quality of the zero-energy (H,0) scan, the momentum resolution off the surface (FWHM of (0,0) Bragg

peak), the number of temperature/momentum points measured, and the overall scattered intensity off the

sample.
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Figure 5.15: x = 0.01 Fractured Surface
The left figure shows the zero energy momentum scan showing (0,0) and (1,0) Bragg peaks with 0.032
r.l.u. momentum resolution (determined from the FWHM of (0,0)). We can measure a diffusing low energy
acoustic phonon mode off this fractured surface (on right).

At, x=0.01, the carrier density is measured from Hall data as 1.49± 0.14× 1020cm−3. For this doping,

we observe the Fuchs-Kliewer phonons and overtones at comparable energies to the x=0.002 doped material

and these do not disperse (5.16). The tail of the 93 meV LO phonon, as seen in the x=0.002 data, is no

longer present and there remains a sharp peak again. All phonons and overtones have weaker intensity than

the x=0.002 and undoped materials but the plasmon mode has increased in intensity and energy. This mode

remains very broad and doesn’t disperse throughout the Brillouin zone at any temperatures. The energy of

the plasmon starts to deviate from the expected value our calculation in Table 5.2, although is still within

the large error bars from the Hall measurement. The broad mode sits at around 150 meV (at 23 K ) and

100 meV ( at 300 K) while the calculated screened plasma energy is 209± 64 meV.

Next we look at the temperature dependence of these modes compared to infrared spectroscopy as shown

in Figure 5.17. Note that the optical data was measured from a x=0.009 Nb doped material. Once again,

M-EELS measurements do not show any LO phonon temperature dependence. The plasmon however does

become temperature dependent such that at room temperature there is a broad mode that sits under the
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Figure 5.16: x = 0.01 Dispersion
Dispersions along the (H,0) for different energy regions at 300 K and 23 K. All spectra are scaled with
sum rule and offset for clarity. The q=0 spectra are raw M-EELS intensities to avoid the Coulomb matrix
element divergence when calculating S(q,ω). Low energy region shows a diffusive dispersing phonon, black
arrows are the best fit to the lorentzian fits as described in Section 5.3.3. In the region of 35-200 meV we see
two optical phonons and two overtones, black arrows are guide to the eye for each LO mode. In the energy
range out to 400 meV, we see a broad background under the phonons which is the plasmon mode. Dashed
lines and black arrows provide guide to the eye for this non-dispersing mode. The dashed lines are by-eye
fits using the Drude formulation.

phonons around 100 meV and as temperature decreases, the mode becomes sharper and shifts to about 150

meV. In the optical data the same temperature dependent trend is seen - with cooling the plasmon blue-shifts

and its lineshape becomes sharper. The magnitude of the plasmon energy shift in IR is almost double to

what is seen in M-EELS where IR sees an energy shift from approximately 115 meV (at room temperature)

to 200 meV at low temperature. The calculated screened plasma energy (209 ± 64 meV) for this doping

agrees better with IR measurements than it does with M-EELS. This observation suggests that the fractured

SrTiO3O surfaces are more hole doped than the bulk. This is very surprising, since most well-known defects

in SrTiO3 (such as oxygen vacancies or electronic reconstruction) electron-dope the system. We will discuss

this more in a later section. In addition, with added carriers, IR spectroscopy sees a large screening of the

phonons such that the plasmon consumes the majority of the spectral weight. In M-EELS, we see a similar
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trend of decreased phonon spectral weight with doping however the phonons we see are still significantly

stronger than the plasmon mode. This may be because M-EELS measures the longitudinal response, so it

is actually the longitudinal phonons that we are seeing.
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Figure 5.17: x = 0.01 Temperature Dependence
Temperature dependence of the optical phonons and plasmon from M-EELS (top) at q=0 and IR spec-
troscopy (bottom). Spectra are scaled to elastic line and are offset for clarity. Dashed lines and black arrows
provide guide to the eye for the temperature dependent plasmon mode. The dashed lines are by-eye fits
using the Drude formulation.

x=0.014

The final doping that was studied is a x=0.014 Nb doped material. For this measurement, the zero energy

momentum scan shows (0,0) and a very strong (1,0) Bragg peak (Figure 5.18). The momentum resolution

off this sample is 0.037 r.l.u. as determined from the FWHM of the specular peak.

The low energy acoustic phonon has a lorentzian lineshape and disperses to 14 meV at the Brillouin
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zone boundary. This is strong evidence that momentum should is conserved in these measurements. Six

different fractured surfaces were studied at this doping that had varying cleave quality - several showed

a propagating acoustic phonon while others showed a broad diffusive phonon. All measurements however

reproduced the same inelastic behaviors at energies higher than the acoustic phonon regardless of cleave

quality. The data presented in this section were taken from a sample that was chosen based off the quality

of the zero energy (H,0) scan, the momentum resolution off the surface (FWHM of (0,0) Bragg peak), the

number of temperature/momentum points measured, and the overall scattered intensity off the sample.
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Figure 5.18: x = 0.014 Fractured Surface
The left figure shows the zero energy momentum scan showing (0,0) and (1,0) Bragg peaks with 0.037 r.l.u.
momentum resolution (determined from the FWHM of (0,0)). We can measure a propagating low energy
acoustic phonon mode off this fractured surface (on right).

For x=0.014, the carrier density as measured from Hall data is 2.13± 0.07× 1020cm−3. For this doping,

we observe the Fuchs-Kliewer phonons and overtones at comparable energies to the x=0.01 doped material

and these do not disperse Figure 5.16. The 93 meV LO phonon remains sharp. All phonons and overtones

have weaker intensity than the lighter dopings and the overtones are almost completely screened out, which

is consistent with the expectation that this most doped material exhibits the strongest metallic screening.

The plasmon mode is very comparable to that seen in x=0.01 in terms of its energy, linewidth, and non-

dispersive behavior throughout the Brillouin zone. The energy of the plasmon continues to deviate from

the expected value our calculation in Table 5.2. M-EELS measures the plasmon mode around 150 meV (at

23 K) and 100 meV (at 300 K) while the calculated screened plasma energy is 250 ± 46 meV. This again

suggests that the fractured surface region of this material is hole-doped compared to the bulk.

Figure 5.20 shows the temperature dependence of the optical phonons and plasmon compared to that

seen in IR spectroscopy. The optical phonons are temperature independent while the plasmon continues to
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Figure 5.19: x = 0.014 Dispersions
Dispersions along the (H,0) for different energy regions at 300 K and 23 K. All spectra are scaled with
sum rule and offset for clarity. The q=0 spectra are raw M-EELS intensities to avoid the Coulomb matrix
element divergence when calculating S(q,ω). Low energy region shows a diffusive disperssing phonon, black
arrows are the best fit to the lorentzian fits as described in Section 5.3.3. In the region of 35-200 meV we see
two optical phonons and two overtones, black arrows are guide to the eye for each LO mode. In the energy
range out to 400 meV, we see a broad background under the phonons which is the plasmon mode. Dashed
lines and black arrows provide guide to the eye for this non-dispersing mode. The dashed lines are by-eye
fits using the Drude formulation.

exhibit a large blue-shift with decreasing temperature. At room temperature there is a broad mode that sits

under the phonons around 100 meV and as temperature decreases, the mode becomes sharper and shifts to

about 150 meV. The optical data presented is an interpolation of the data at x=0.009 and x=0.02 from [48].

In the optical data the same temperature dependent trend is seen - with cooling the plasmon blue-shifts

and its lineshape becomes sharper. The magnitude of the plasmon energy shift in IR is double that seen

in M-EELS where IR sees an energy shift from approximately 150 meV (at room temperature) to 250 meV

at low temperature. The calculated screened plasma energy (250 ± 46 meV) for this doping agrees better

with IR measurements than it does with M-EELS.In addition, the optical phonons are completely screened

by the plasmon while in M-EELS, these modes still exist but with lower intensity than the lighter doped

samples. Once again, this may be because optics couples to the LO and TO phonon modes differently then

M-EELS.
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Figure 5.20: x = 0.014 Temperature Dependence
Temperature dependence of the optical phonons and plasmon from M-EELS (top) at q=0 and IR spec-
troscopy (bottom). Spectra are scaled to elastic line and are offset for clarity. Dashed lines and black arrows
provide guide to the eye for the temperature dependent plasmon mode. The dashed lines are by-eye fits
using the Drude formulation.

Unidentified Mode

In addition to phonons and plasmon, we see a broad mode at higher energies in the range of 0.8 - 1.2

eV (Figure 5.21). This mode appears in all dopings, its energy is doping independent and temperature

independent. This mode does exhibit a dispersion at low momentum. At very low momentum ( 0.02

r.l.u.) the mode decreases in energy by approximately 0.1 eV and its width sharpens. As we go to higher

momentum the mode disperses back to higher energy and broadens until it gets overly damped into a

particle-hole continuum.

This mode is not seen in other techniques such as optical spectroscopy but is highly reproducible in

M-EELS, appearing in all compositions studied. One possibility is that this is a d-d excitonic mode that
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Figure 5.21: Unidentified Mode
Unidentified mode seen in all dopings that exhibits a low momentum dispersion.

is not visible in IR spectroscopy [48] due to its even parity and not currently seen in Raman spectroscopy

literature which only has data at much lower energies [102–104].

5.3 Discussion

5.3.1 q=0 Doping Dependence

To summarize the doping effect from the above observations, Figure 5.22 shows the q=0, 23 K doping spectra

for both M-EELS measurements and optical measurements. The left column of Figure 5.22 is zoomed out

to show the effect of doping on the optical phonons, while the right column is zoomed in to show the effect
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of doping on the plasmon. Two additional dopings are included in this plot that were not discussed in

the previous section: x=0.02 in the IR plots from which the interpolated x=0.014 spectra were calculated,

and the “slightly” doped sample in M-EELS which was measured to have a carrier density less than the

metal-to-insulator transition (see above discussions).
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Figure 5.22: Doping Dependence at q=0, 23 K
Doping dependence of the optical phonons and plasmon from M-EELS (top) and IR spectroscopy (bottom).
Spectra are scaled to elastic line and are not offset. The data is zoomed out to show the optical phonons
(left) and zoomed in to show the plasmon (right).

Several important observations from this doping dependence are that

1. Introducing electrons screens the phonons,

2. In M-EELS, the optical phonons only shift by a few meV with added carriers,

3. A broad plasmon emerges with doping,

4. The 93 meV phonon mode becomes highly damped and asymmetric at x=0.002.

The first observation is exactly what is expected as a material becomes more metallic. In the M-EELS

data, the screening of the phonons is demonstrated by a decrease in spectral weight and lack of higher order,

3rd and 4th harmonic, overtones. In optical data, the screening is demonstrated by the complete suppression

of the strong phonons for carrier densities larger than x=0.002.

The second observation is quantified in Table 5.3. This phonon energy doping dependence is different

than what is measured in optical spectroscopy, possibly because M-EELS and IR are couple to the LO and
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TO phonons differently. In IR, the 93 meV phonon shifts on the order of 10 meV at the smallest doping

(x=0.002) before it gets completely screened out. In addition, the phonon energy shift has been simulated

in the supplement of [94] using a Lorentz model dielectric function with an added Drude term. In this EELS

simulation, there is large increase in energy (25 meV) of the optical phonons from undoped to x=0.015

doping. They explain this to be the result of coupling between the free-electron plasmon and the Fuchs-

Kliewer phonon. This theoretical prediction is not observed in the M-EELS data which only shift by several

meV across orders of magnitude change in carrier density.

The third observation is seen in both M-EELS and optical spectroscopy. At x=0.002, both techniques

show a phonon that has a broad tail due to mixing with the plasmon. As doping is further increased, the

plasmon shifts to higher energy and the phonons become more screened (completely disappearing in IR and

weakening in intensity in M-EELS). The plasmon in M-EELS is also at lower energies than that of IR data

for comparable carrier densities. This suggests that our samples might be more hole doped than what was

measured with optical data.

Table 5.3: Doping Dependence of LO Phonon Energies

Doping ω1 (meV) ω2 (meV) ωovertone,1 (meV) ωovertone,2 (meV)

undoped 58 93 150 185
0.2% 58 94 152 190
1% 58 96 157 191

1.4% 58 95 153 190

The overall doping dependence seen in M-EELS qualitatively has the same features that is seen in IR

(broad plasmon, screened phonons), however the results from the two techniques are quantitatively different.

One explanation for this could be that M-EELS is measuring a superposition of the surface and bulk effects

where as IR is only measuring the bulk effects. The Fuchs-Kliewer nature of the phonons remain even beyond

the point where the bulk phonon gets screened from the added carriers. This describes the situation where

the strong phonon modes remain in M-EELS for the higher doping but get completely screened in IR data.

Another explanation of the doping dependence could be that we are actually measuring a carrier density

that is in-between the x=0.002 and x=0.01 dopings of IR. Although the IR and M-EELS carrier densities

match from Hall measurements, the incomplete screening of the LO modes and the lower energy plasmon

seen in M-EELS suggest that we just have fewer carriers in the system. This is not the expected trend since

these materials are well known for developing oxygen vacancies at the surface, especially when fractured,

which would shift the plasmon energy to higher energy not lower.
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5.3.2 q=0 Temperature Dependence

The temperature dependence seen in the x=0.01 and x=0.014 doped materials both in M-EELS and IR is

unusual behavior for a plasmon. In most metals, the plasmon is temperature independent or slightly red-

shifted due to thermal effects. Assuming a drude-like plasmon as described in Equation 5.7 and 5.8, a blue-

shifted plasmon energy suggests that the carrier density, effective mass, or background dielectric constant

are changing with decreasing temperature. It has already been shown that carrier density remains mostly

independent of temperature [48,105,106]and the effective mass is very temperature dependent [107]. However

there still remain open questions about the origin of this behavior. Some suggest that the temperature

dependence is related to the scattering rate of carriers which exhibit bad metal properties [13]. Others

suggest that the effective mass of the polaronic carriers changes and becomes heavier with warming [84].

5.3.3 Acoustic Phonon Dispersion

In order to determine the effectiveness of the UHV fracturing surface preparation, it needs to be established

that momentum is conserved throughout the Brillouin zone. We determined this by quantifying a collective

mode whose dispersion is well known in the literature. For the case of SrTiO3 it is the low energy acoustic

phonon, which has been calculated with DFT and measured with neutron scattering, that disperses to

approximately 14 meV at the Brillouin zone boundary (q=0.5 r.l.u) [97–101]. We fit the low energy data

with a voigt function for the elastic line and a antisymmetric lorentzian for the low energy, acoustic phonon

weight as shown in Figure 5.23. A summary of these fits is also shown in Figure 5.23. For each doping in

the summary plot, the energy loss is the mean of the fit value for all the cleaves in that doping. The error

bars are the statistical errors from each fit that are added in quadrature for all the cleaves of that doping.

The fits from all the dopings were then fit with a sine function and compared to DFT calculations [97]. The

dispersion agreement between different dopings as well as compared to DFT, is within the error bars.

This procedure was done for all cleaves regardless of whether the acoustic mode was propagating (i.e.

lorentzian lineshape) or diffusive. The idea behind that was that fitting with a lorentzian, even if the

excitation is behaving more diffusively, will at least give an estimate to the shift in spectral weight in that

energy region. The fact that we get comparable dispersions for fits of propagating acoustic mode and diffusive

acoustic mode suggests that we can still obtain in-plane momentum conservation and information about the

q-dependence of collective modes regardless of the global quality of the surface fracture.
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Figure 5.23: Summary of Acoustic Phonon Dispersion at 300K
Fits used to quantify the acoustic phonon dispersion for both propagating and diffusive phonon behavior.
An example of the fitting scheme is shown on the left. Fits include a voigt function for the elastic line and
an antisymmetric lorentzian for the acoustic phonon. Summary of these fits are shown on the right. Each
point is an average of all fits (multiple cleaves) for each doping and error bars are the statistical errors from
each fit that are added in quadrature for all the cleaves of that doping. The fits from all the dopings were
then fit with a sine function and compared to DFT calculations [97]

5.3.4 Plasmon Dispersion

As shown above, the plasmon that emerges from electron doping is not observed to disperse for any doping at

any temperature. This finding is unexpected since plasmons in metallic materials are traditionally described

by Linhard theory which has a plasmon mode that increases in energy with increasing q and broadens due to

the increased Landau damping, rapidly damping away into the particle-hole continuum [44]. This behavior

has been theorized and measured in other doped, polar semiconducting materials such as GaAs [17,108]. An

RPA calculation of SrTi1−xNbxO3 done by Alex Edelman and Peter Littlewood (University of Chicago) find

that the plasmon in SrTi1−xNbxO3 should be sharp and exhibit q2 dispersion. A 2D calculation of -Im[1/ε]

dispersion using RPA and compared to M-EELS data is shown in figure 5.24. The RPA calculation shows

a plasmon width of 15 meV FWHM with a plasma frequency of 220 meV that sharply disperses into the

particle-hole continuum at q=0.115 r.l.u. and damps away. However in M-EELS and optics, the plasmon

that is an order of magnitude broader than the RPA calculation and that is momentum-independent. These

features suggest that we are in regime in which RPA is not valid. [72]
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Figure 5.24: RPA Dispersion of -Im[1/ε] for x=0.014
RPA calculation done by Alex Edelman and Peter Littlewood which shows a strongly dispersing plasmon

and three optical phonons. This is compared to the energy and non-dispersive behavior of the plasmon and
optical phonons that we see in M-EELS (black dashed lines).

5.4 Summary and Future work

The work in this chapter explores the dynamics of the collective modes in SrTi1−xNbxO3 in its normal state.

We used M-EELS to study the doping, temperature, and momentum dependence of the low energy lattice

and electronic collective modes. Our findings show that
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1. We measure an acoustic phonon that sometimes propagates and sometimes moves diffusively. This

depends on the quality of the fractured surface. Therefore, using the fracturing technique means that

we can still get in-plane momentum conservation and information about the momentum dependence

of the plasmon, even when the surface is not globally flat.

2. The 93 meV phonon mode becomes highly damped and asymmetric at x=0.002.

3. Metallic screening in doped samples suppresses phonons in the data (particularly the overtones), though

not as much as in optical data.

4. The plasmon energy blue-shifts with decreasing temperature which follows the same trend as seen in

other techniques like optical spectroscopy.

5. The M-EELS plasmon is seen at lower energy than that of IR for comparable carrier densities as

measured by the Hall effect. We explain this as a result of M-EELS measuring the surface response

rather than the bulk response function or that the samples are hole doped.

6. The plasmon width, as measured in M-EELS and optics, is an order of magnitude larger than predicted

by RPA.

7. The plasmon exhibits non-dispersive behavior even though there are other dispersive features that are

measured such as the acoustic phonon.

From these conclusions, there still remain several questions that need to be addressed such

as, why is the plasmon at lower energies compared to other techniques for the same carrier

density, what is making the plasmon so broad, and is the damping of the plasmon preventing

it from propagating?

In addition, obtaining quantitative values of the M-EELS plasmon energy, width, and phonon-plasmon

couplings can better inform how the modes are behaving. Preliminary work has not been able to provide a

consistent method of fitting that works for all temperatures, dopings, and momenta. This is due to the large

number of parameters, the proximity in energy of all the collective modes, and the non-drude-like shape of

the plasmon (which has prompted us to explore the double-damped extended drude model). Figure 5.25a is

an example of a fit that captures the low energy (acoustic phonon) and higher energy (optical phononss and

plasmons) behavior. This fit uses a voigt function for the elastic line, anti-symmetetric lorentzian for the

acoustic phonon and all the overtones, Fano function for the strong Fuchs-Kliewer phonons, and a double-

damped extended Drude for the plasmon. This fit works because the plasmon is at an energy larger than

the optical phonons (at 23 K) and the low energy excitations remain below 35 meV (q=0 so acoustic mode
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is at a minimum energy). Figure 5.25b is an example of a spectra with features that are not captured by

the model used in Figure 5.25a. In this spectra, the low energy diffusive behavior (q=0.5, maximum energy

of dispersion), the broad LO phonon tails, and the broad plasmon (at 200 k) all overlap in energy and are

ill-defined. Finding local minimums in converging fits for this spectra can lead to un-physical parameters.

A consistent fitting method for all temperature, dopings, and momentum is currently being developed to

quantitatively understand the collective modes in SrTi1−xNbxO3.
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Figure 5.25: Example Fit Scheme on x = 0.01
On the left is a fit to 23K, q=0 data where excitations don’t significantly overlap in energy. This fit uses a
voigt function for the elastic line, anti-symmetetric lorentzian for the acoustic phonon and all the overtones,
Fano function for the strong Fuchs-Kliewer phonons, and a double-damped extended Drude for the plasmon.
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Chapter 6

Conclusion

M-EELS is a versatile technique used to study the low energy collective modes in strongly correlated electron

systems. In this thesis, we summarized M-EELS cross section for a periodic system. From this derivation, we

related the cross section to the density-density correlation function, S(q, ω), the density response function,

χ(q, ω), and the dielectric loss function. The density response function contains information about the

propagation of density fluctuations near the surface that are mediated by bosonic excitations. The dielectric

loss function is a quantity that we can use to compare to infrared spectroscopy at q=0. We address a

limitation of the matrix elements in the near-Bragg condition regime that comes about from assumptions

made in deriving the M-EELS cross section and discuss a potential solution of including experimental

momentum resolution in the matrix element calculations.

We also addressed the experimental implementation of the M-EELS technique. Specifically we discussed

methods to improve electron throughput and energy/momentum resolution by phase-space tuning (i.e. mul-

tiple parameters simultaneously) of the electron trajectory and compared this to theoretical calculations [52].

In addition we developed multiple routes to studying materials beyond 2D Van der Waal layered materials.

This includes a vacuum suitcase, that can transport thin films without being exposed to air, an annealing

stage to clean samples surfaces and electron dope materials, and a UHV fracturing technique for 3D materials

using a diamond wiresaw.

Using M-EELS we investigated the low energy excitations of several highly correlated electron systems.

Our study of CuxTiSe2 addressed the question of whether there can ever be a distinction between a Bose

condensate of excitons and a conventional, structural phase transition that breaks the same symmetry. Using

inelastic electron scattering (M-EELS) to study copper-intercalated TiSe2, we can determine if the excitonic

phase is distinct from the structural phase by observing what happens to the soft electric collective mode
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with doping, a key signature of exciton condensation. We find that the excitonic transition is extremely

sensitive to screening since it is suppressed before the semimetal-metal transition at x = 0.025. Another

conclusion is that the normal state out of which the superconductivity forms is an anomalous metal. For x

= 0.029, the plasmon energy is approximately independent of temperature, due to the fact that excitonic

fluctuations exist in this region and compete with the normal state behavior. However, for x > 0.065, the

plasmon is strongly temperature-dependent, suggesting the quasiparticle band structure is renormalizing in

an unusual way even far above TSC. Lastly the electronic mode is not strongly q-dependent at x > 0.014

and does not follow the conventional dispersion for a plasmon in a Lindhard metal [44].

Our study of electron doped SrTiO3 explored the dynamics of the collective modes in SrTi1−xNbxO3

in its normal state. This material exhibits many interesting phenomena including quantum paraelectric

behavior and dilute (unconventional) superconductivity. In particular, the dilute nature of SrTi1−xNbxO3

means that the energy of lattice excitations is comparable to that of electronic excitations, leading to

coupling between these modes. Measuring the dynamics of the collective modes can provide insight on how

these modes interact in the system. Here, we use inelastic electron scattering (M-EELS) with a fracturing

surface preparation technique to study the doping, temperature, and momentum dependence of the charge

collective modes in SrTi1−xNbxO3. We measure propagating and diffusive acoustic phonons, Fuchs-Kliewer

optical phonons and overtones that get suppressed with doping due to metallic screening, a 93 meV phonon

mode that becomes highly damped and asymmetric at x=0.002, and a very broad plasmon that blue-shifts

with decreasing temperature. We find that the plasmon in SrTi1−xNbxO3 remains dispersion-less at all

temperatures and dopings even with other propagating collective modes (acoustic phonon), contrary to

RPA predictions and dispersions in other polar doped semiconductors [17]. The width of the plasmon

deviates from RPA predictions by an order of magnitude. In addition, the energy of the plasmon measured

in M-EELS is less than that of other techniques like infrared spectroscopy for samples of comparable carrier

densities.
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Appendix A

M-EELS Electron Optics Lens

Voltage Scans

In order to understand the general behavior of the electron optics system, it can be useful to have a reference

of how the electrostatic lenses behave in the current M-EELS experimental setup. This appendix includes

lens reference scans for two different tuning optimizations.

Figures A.1-A.6 are scans of each electrostatic lens measured at the closest relay to that lens. Therefore

the emissions (A) lens profiles were measured at the first monochromator (relay M1), the first monochromator

(M1) lens profiles were measured at the second monochromator (relay M2), the second monochromator (M2)

lens profiles were measured at the analyzer (relay An1), the focusing (B) lens profiles were measured at the

analyzer (relay An1), the analyzer (An1) lens profiles were measured at the detector (relay cone), and the

electron detector system (C) lens profiles were measured at the detector (relay cone). Each figure has lens

profiles from 2018 and 2020. The 2018 data was based on the phase-space tuning process as discussed in

Section 3.1.3. The 2020 data is taken off of the same spectrometer as the 2018 data but in a different voltage

configuration. The 2020 emission system lens profiles were measured in the “aligned” beam configuration

while the rest of the 2020 data were measured in a “misaligned” beam configuration also discussed in Section

3.1.3.

Finally, each figure includes the voltage value that optimized counts and resolution at the detector. The

voltage value for the respective lens is represented by a vertical dashed line. This demonstrates that in

an optimized lens tuning, the lens profile maximum and the optimized detector value vary significantly for

lenses that are furthest from the detector. For lenses close to the detector along the beam path, the peak

of the lens profile corresponds to the optimized voltage at the detector. This signifies that both of these
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tuning configurations are just optimized to some local minimum. If optimized at the global minimum in

phase space, then the optimized detector voltage should equal the maximum of the profile of each individual

lens.
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Figure A.1: Emission System Lens Voltage Profiles
Emission system (a1, a1d, a2, a2d, a3, a3d) lens profiles measured at the first monochromator (relay M1)
for two different optimized voltage configurations. The 2020 data is in an “aligned” beam configuration.
The dashed lines represent the voltage value of each respective lens that produces an optimized tuning at
the detector. The 2020 data is scaled to see on the same plot as the 2018 data and the scale factor is noted
next to each profile.
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Figure A.2: Premonochromator Lens Voltage Profiles
Premonochromator (M1, M1 cover, M1 cover delta) lens profiles measured at the second monochromator
(relay M2) for two different optimized voltage configurations. The 2020 data is in a “misaligned” beam
configuration. The dashed lines represent the voltage value of each respective lens that produces an optimized
tuning at the detector.
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Figure A.3: Second monochromator Lens Voltage Profiles
Second monochromator (M2, M2 cover, M2 cover delta) lens profiles measured at the energy analyzer
(relay An1) for two different optimized voltage configurations. The 2020 data is in a “misaligned” beam
configuration. The dashed lines represent the voltage value of each respective lens that produces an optimized
tuning at the detector.
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Figure A.4: Focusing Lens Voltage Profiles
Focusing (B1/B4, B2/B3, B1d, B4d) lens profiles measured at the energy analyzer (relay An1) for two
different optimized voltage configurations. The 2020 data is in a “misaligned” beam configuration. The
dashed lines represent the voltage value of each respective lens that produces an optimized tuning at the
detector.
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Figure A.5: Energy Analyzer Lens Voltage Profiles
Energy analyzer (An1, An1 cover, An1 cover delta) lens profiles measured at the detector (relay cone) for
two different optimized voltage configurations. The 2020 data is in a “misaligned” beam configuration. The
dashed lines represent the voltage value of each respective lens that produces an optimized tuning at the
detector. The 2020 data is scaled to see on the same plot as the 2018 data and the scale factor is noted next
to each profile.
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Figure A.6: Electron Detector System Voltage Profiles
Electron detector system (C1, C2, C3) lens profiles measured at the detector (relay cone) for two different
optimized voltage configurations. The 2020 data is in a “misaligned” beam configuration. The dashed lines
represent the voltage value of each respective lens that produces an optimized tuning at the detector.
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Appendix B

SrTi1−xNbxO3 Raw Data

The data sets in Section 5.2.3 of the main manuscript were measurements taken off of a single cleaved surface

and that were representative of the behaviors seen by other measurements of the same doping. This was

abbreviated to simplify the presentation of the data. Complete data sets for those dopings measured with

M-EELS are given here. Each of the following sections contains all the data measured off of each UHV

cleaved surface - the q=0 temperature dependence spectra and the q=0 sample reproducibility spectra were

all scaled to the elastic line, the momentum dispersions were all scaled based on the f-sum rule as described in

Section 5.2. The spectra are zoomed in to focus on the low energy acoustic phonon and plasmon, specifically,

and none of the data is offset from each other to emphasize spectral weight changes. Sample numbers are

used to compare to Hall data of figure 5.3.
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Undoped

Figure B.1: Undoped, q=0 Temperature Dependence and Reproducibility of All Datasets
(A) Temperature dependence of M-EELS spectra at q=0 r.l.u. for several temperatures on several cleaved

samples. Spectra are scaled to the elastic line and not offset. (B) Sample reproducibility of M-EELS
spectra at q=0 r.l.u. and T=300 K for several cleaved samples. Spectra are scaled to the elastic line and

not offset.
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Figure B.2: Undoped Dispersions of All Datasets at All Temperatures
Momentum dependence of M-EELS spectra at (A) 20 K, (B) 90 K, and (C) 300 K for several cleaved

samples. Spectra are scaled by the f-sum rule and not offset.
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Slightly Nb Doped

Figure B.3: Slightly doped, q=0 Temperature and Momentum Dependence of All Datasets
(A) Temperature dependence of M-EELS spectra at q=0 r.l.u. for several temperatures on several cleaved

samples. Spectra are scaled to the elastic line and not offset. (B) Momentum dependence of M-EELS
spectra at 300 K. Spectra are scaled by the f-sum rule and not offset.
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0.2% Nb doped

Figure B.4: 0.2% Doped, q=0 Temperature Dependence and Reproducibility of All Datasets
(A) Temperature dependence of M-EELS spectra at q=0 r.l.u. for several temperatures on several cleaved

samples. Spectra are scaled to the elastic line and not offset. (B) Sample reproducibility of M-EELS
spectra at q=0 r.l.u., T=300 K, and 20 K for several cleaved samples. Spectra are scaled to the elastic line

and not offset.
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1% Nb doped

Figure B.6: 1% Doped, q=0 Temperature Dependence and Reproducibility of All Datasets
(A) Temperature dependence of M-EELS spectra at q=0 r.l.u. for several temperatures on several cleaved

samples. Spectra are scaled to the elastic line and not offset. (B) Sample reproducibility of M-EELS
spectra at q=0 r.l.u., T=300 K, and 20 K for several cleaved samples. Spectra are scaled to the elastic line

and not offset.
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1.4% Nb doped

Figure B.8: 1.4% Doped, q=0 Temperature Dependence and Reproducibility of All Datasets
(A) Temperature dependence of M-EELS spectra at q=0 r.l.u. for several temperatures on several cleaved

samples. Spectra are scaled to the elastic line and not offset. (B) Sample reproducibility of M-EELS
spectra at q=0 r.l.u., T=300 K, and 20 K for several cleaved samples. Spectra are scaled to the elastic line

and not offset.
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Figure B.9: 1.4% Doped, 20 K Dispersions of All Datasets
M-EELS spectra at 20 K for several cleaved samples. Spectra are scaled by the f-sum rule and not offset.
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Figure B.10: 1.4% Doped, 80 K Dispersions of All Datasets
M-EELS spectra at 80 K for several cleaved samples. Spectra are scaled by the f-sum rule and not offset.
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Figure B.11: 1.4% Doped, 120 K Dispersions of All Datasets
M-EELS spectra at 120 K for several cleaved samples. Spectra are scaled by the f-sum rule and not offset.
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Figure B.12: 1.4% Doped, 200 K Dispersions of All Datasets
M-EELS spectra at 200 K for several cleaved samples. Spectra are scaled by the f-sum rule and not offset.
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Figure B.13: 1.4% Doped, 300 K Dispersions of All Datasets
M-EELS spectra at 300 K for several cleaved samples. Spectra are scaled by the f-sum rule and not offset.
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