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ABSTRACT

End-to-end trainable deep neural networks have become the state-of-the-

art architecture for automatic speech recognition (ASR), provided that the

network is trained with a sufficiently large dataset. However, many existing

languages are too sparsely resourced for deep learning networks to achieve

as high accuracy as their resource-abundant counterparts.

Multilingual recognition systems mitigate data sparsity issues by training

models on data from multiple language resources to learn a speech-to-text or

speech-to-phone model universal to all languages. The resulting multilingual

ASR models usually have better recognition accuracy than the models trained

on the individual dataset.

In this work, we propose that two limitations exist for multilingual sys-

tems, and resolving the two limitations could result in improved recognition

accuracy: (1) existing corpora are of the considerably varied form (spon-

taneous or read speech), corpus size, noise level, and phoneme distribution

and the ASR models trained on the joint multilingual dataset have large

performance disparities over different languages. We present an optimizable

loss function, equal accuracy ratio (EAR), that measures the sequence-level

performance disparity between different user groups and we show that ex-

plicitly optimizing this objective reduces the performance gap and improves

the multilingual recognition accuracy. (2) While having good accuracy on

the seen training language, the multilingual systems do not generalize well to

unseen testing languages, which we refer to as cross-lingual recognition accu-

racy. We introduce language embedding using external linguistic typologies

and show that such embedding can significantly increase both multilingual

and cross-lingual accuracy. We illustrate the effectiveness of the proposed

methods with experiments on multilingual and multi-user and multi-dialect

corpora.
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CHAPTER 1

INTRODUCTION

Modern end-to-end neural network based speech recognition systems (ASR)

have achieved great success in resource-rich languages such as English and

Mandarin. These networks can reduce the word error rate to as low as 2%

even in an open-vocabulary task [1, 2] when the networks are trained with a

sufficiently large amount of data.

However, there are thousands of languages with billions of speakers that are

resource-deficient [3]. These languages do not have large corpora of digitized

text and recorded speech, making it hard for neural networks to achieve

similar accuracy [4]. Multilingual speech recognition systems partially solve

the resource-deficient problem by combining data from multiple languages

so that an acoustic model universal to all languages is learned on the joint

data pool. The resulting models usually outperform the models trained on

an individual language dataset [5].

There have been a number of studies to further improve the performance

of the ASR systems trained on the joint dataset, including enlarging the

datasets for low-resource dialects [6], conducting language-dependent train-

ing [7] and language-dependent adaptation [8], and adding language/dialect

related information as additional features [9]. While improving the ASR

performance, these methods have addressed the performance disparity as a

provisional resource problem, rather than treating the disparity as a problem

equal in importance with the attainment of a low average word error rate.

On the other hand, research in data mining has demonstrated that artificial

intelligence (AI) trained in an unfair environment will learn the unfairness of

its teachers unless specifically instructed not to do so [10], [11], [12]. Inspired

by methods in the AI fairness literature such as demographic parity, equal

odds, and equal opportunity, that have been used to minimize discriminatory

predictions based on race or gender, we seek to design multilingual ASR that

works well for all languages and all users: a goal that has been described as

1



“inclusive speech technology” [13].

We attempt to reduce the performance disparity across different user groups.

For this purpose, we propose a new measure derived from published measures

of algorithmic fairness, which we call the equal accuracy ratio (EAR), and we

integrate this measure into a standard neural speech recognizer to reduce the

performance disparity in ASR systems. Experiments on multilingual, multi-

dialect, and multi-user datasets show the proposed EAR measure reduces the

performance disparity between different user groups without sacrificing the

recognition accuracy. In fact, the experiments show EAR helps the network

achieve higher average accuracy compared to the base model.

It is also desired that an ASR system trained on one set of languages

not only performs well on the seen language set but also generalizes well to

another set of unseen languages. For this purpose, we convert the language-

specific transcriptions to language-universal phone transcriptions, i.e., Inter-

national Phonetic Alphabet (IPA), and train a phone transcription model

instead of a text transcription model. The phonetic recognition model is

expected to capture acoustic information universal to all the languages and

therefore have a decent recognition accuracy when tested on unseen lan-

guages. We refer to this setting as cross-lingual speech recognition.

While existing multilingual systems have a good performance on the seen

training languages [14, 15, 16], they, unfortunately, do not have equally good

accuracy when testing on unseen languages [5]. This implies that acous-

tic models implicitly captured in these multilingual systems are language-

specific, and thus would not generalize to unseen languages unless additional

information about the unseen languages is supplied.

Motivated by this, we propose to improve the zero-shot cross-lingual recog-

nition accuracy by incorporating a language embedding that captures two

types of external knowledge that are easily obtainable in the real world –

phylogenetic similarity and phone inventory. For phylogenetic similarity,

we extract phylogenetic information from Glottolog [17], which is a large

graph specifying the belonging relations between nodes of dialects, languages,

and language families. Assuming the closeness of the two languages in the

graph captures the phylogenetic similarities between the languages, we use

node2vec [18] to extract vector representations for each node. For the phone

inventory information, we extract a binary vector to represent the phoneme

inventory for each language from Phoible [19]. The two vectors are combined
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and fed into a language encoder and produce the language embedding, on

which the multilingual phoneme classifier is conditioned. The phone inven-

tory information is also imposed by masking on the output logits with the

binary vector.

The experiments show that the proposed algorithm with language embed-

ding and masking improves the performance over the baselines on the unseen

languages in the zero-shot setting by a large margin (4%-8% absolute) with-

out any transcribed data from the unseen test set. Ablation study shows

that both the phylogenetic and phone inventory information are crucial for

performance improvement.
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CHAPTER 2

RELATED WORK

2.1 Speech Recognition

End-to-end neural network based speech recognition systems can achieve very

high performance given sufficient training data. State-of-the-art deep neural

architectures for speech recognition combine acoustic and linguistic encoders

with a mechanism for reducing the length of the sequence, from a larger

number of input frames to a smaller number of output symbols [20]. There is

currently active research comparing the capabilities of connectionist tempo-

ral classification (CTC) [21], attention-based encoder-decoder structures [1],

and hidden Markov models [20] for modifying the sequence length. CTC

modifies the sequence length by ignoring repeated or blank phone symbols,

thereby focusing the training procedure on a small number of conditionally

independent frame classifications. Baidu’s Deepspeech [22] is a recurrent

neural network (RNN)-CTC model that achieves high performance in both

English and Mandarin. Recent successful CTC-based models include LipNet

[23] and the DeepMind RNN-CTC model [24].

Denote the spectral features of the ith utterance as a set of frames x(i) =

[x
(i)
1 , x

(i)
2 , . . . , x

(i)
T ] where T is the number of frames. Denote the reference

transcription as y(i) = [y
(i)
1 , y

(i)
2 , . . . , y

(i)
Si
] ∈ Y+, and the ASR output hypoth-

esis as ŷ(i) = [ŷ
(i)
1 , ŷ

(i)
2 , . . . , ŷ

(i)

Ŝi
] ∈ Y+, where Si and Ŝi are the lengths of

the reference and hypothesis transcriptions of ith sample and Y is the set

of all transcription characters. The true conditional probability distribution

pY |X(y|x) is unknown; the ASR computes an estimated distribution pŶ |X(y|x)
in order to minimize the cross-entropy of the training corpus,

LCE = −
|S|∑
i=1

ln pŶ |X(y
(i)|x(i)), (2.1)

4



where S =
{
(x(1), y(1)), . . . , (x(|S|), y(|S|))

}
is a training corpus containing ut-

terances with known transcriptions.

In connectionist temporal classification (CTC [21]) framework, the network

performs time-scale modification by positing an alignment sequence, Π(i) =

[Π
(i)
1 , . . . ,Π

(i)
T ] whose instance value is π(i) = [π

(i)
1 , . . . , π

(i)
T ]. Each time-aligned

character π
(i)
t is either one of the transcription characters (πt = ys for some

s), or πt = ∅ where ∅ is a special “blank” character. For example, suppose

we have a five-character text “hello” (S = 5) encoded in a 14-frame speech

waveform (T = 14); the transcription and alignment might be

y = [h, e, l, l, o], π = [h, h, e, e, e,∅,∅, l, l, l,∅, l,∅, o].

Training data are often provided with only the transcriptions, and the align-

ment information is not given. If the alignments are known, it would be

easier to estimate the cross-entropy given in Eq. (2.1) by taking the sum of

the log probabilities of the correct alignment at each frame.

Since alignment is not known, CTC computes the cross-entropy by marginal-

izing over all the possible alignments that can be mapped to the true tran-

scription using a surjective time-compression function defined as:

B : (Y ∪ {∅})+ → Y+.

A commonly used B first removes repeated labels and then removes all

“blank” characters. For any valid alignment π, B(π) is a unique y. For

any valid y , B−1(y) is the set {π : B(π) = y}. The log-probability of a tran-

scription y(i) given the input frames x(i) can therefore be computed as

L(i)
CTC = − ln pŶ |X(y

(i)|x(i)),

= − ln
∑

π∈B−1(y)

T∏
t=1

exp(et(πt)),

= − logsumexp
π∈B−1(y)

T∑
t=1

et(πt),

where et(πt) is the log output of a softmax layer predicting the transcription

label at time t. The input of this softmax layer can be a bidirectional LSTM,

Transformer, or other neural network parameterized by θ and having access
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to the whole sequence x.

In the attention-based transducer framework [25], the log-probability is

estimated by modeling each character output y
(i)
s as a conditional distribution

given the previous characters y
(i)
1:s−1 and the input signal x(i). Using the chain

rule, the negative log-probability LATT is computed as

LATT (x
(i), y(i)) = − ln pŶ |X(y

(i)|x(i)),

= −
S∑

s=1

ln p(y(i)s |x(i), y
(i)
1:s−1). (2.2)

The two frameworks can be used individually [22, 25] or hybridly [26].

When the two framework are used together, the training loss is the weighted

summation over CTC loss LCTC and attention loss LATT of each speech

sample as

LCE =

|S|∑
i=1

αL(i)
CTC + (1− α)L(i)

ATT ,

where α ∈ [0, 1] is a hyperparamter to be tuned; alpha = 1 means only CTC

loss and alpha = 0 means only attention loss.

One concern with modern deep neural ASR models is that the model does

not have equal performances for different user groups, potentially creating

disparity of opportunity over region, age, gender, race, educational status,

disability, class, etc. Experiments on the Japanese Newspaper Article Sen-

tences corpus [27] show 10% higher word error rate for older voices than for

younger voices [28]. A study examining YouTube’s automatic captions re-

ports lower accuracy for female speakers [29]. Experiments on a neural ASR

system trained using seven different dialects of English from America, India,

Britain, South Africa, Australia, Nigeria & Ghana, and Kenya report large

disparities in word error rate ranging from 10.6% for American English to

33.4% for Ghana & Kenya English in dialect-dependent training [9]. Recog-

nition systems trained on different Arabic dialects (Egyptian, Gulf, Levantine

and Maghrebi) suffer similar error rate disparities [7], ranging from 26.3% for

Maghrebi Arabic to 34.0% for Egyptian Arabic. Recently, a study on state-

of-the-art ASR systems from Amazon, Apple, Google, IBM, and Microsoft

reports that all these systems have obvious racial disparities [6]. The average
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word error rate for the black speakers is twice as large as that of the white

speakers.

Methods proposed in improving these models include adding group-specific

features in the training [9], fine-tuning the model on data from each group of

users, switching models based on group information [30], etc. These methods

improve the accuracy for each user group and thus the overall accuracy of the

model. However, they do not emphasize the inclusiveness of the ASR model.

Our proposed method, the equal accuracy ratio, estimates the inclusiveness of

the ASR during the training of a CTC-based sequence-to-sequence transcrip-

tion model, and explicitly balances the relative importance of inclusiveness

against the average error rate over a given set of training corpora.

2.2 Fairness Measures

A classifier trained on a corpus can be unfair toward certain groups of users

due to historical bias or insufficient minority group training data. In one of

the earliest studies of AI fairness, credit prediction models decided whether

or not to accept a loan application [10]. Trained models were reported to be

age-discriminatory according to the criterion of demographic parity, which

requires that there be no difference between the average outcomes for different

user groups:

|pŶ |A(1|0)− pŶ |A(1|1)| = 0, (2.3)

where we define pŶ |A(y|a) to be the probability that the hypothesis result,

Ŷ , takes value y, given that the protected attribute (e.g., age) has a value

A = a. The demographic parity gap can be reduced by massaging dataset

labels or giving more weight to samples from disadvantaged groups [11]. A

recent paper [31] proposes that demographic parity can select data to create

a fair training set, instead of modifying the training labels in an existing

dataset.

Demographic parity is less useful when there is a desired or ground truth

result, Y , which is known, and which is correlated with the protected at-

tribute. If the desired result is correlated with A, then imposing Eq. (2.3)

reduces accuracy.

When the ground truth is known and desirable, the equal odds and equal
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opportunity criteria [12] are more desirable than demographic parity. The

equal odds criterion requires conditional independence between hypothesis

and attributes given ground truth, i.e.,

|pŶ |A,Y (ŷ|0, y)− pŶ |A,Y (ŷ|1, y)| = 0 ∀y, ŷ ∈ {0, 1} , (2.4)

where Y is the ground truth and Ŷ is the hypothesis. Equal odds requires

that any particular mistake is made with equal probability, regardless of the

setting of the protected attribute. “Equal opportunity” is a relaxation of

equal odds, which focuses only on the error rate of the classifier: Eq. (2.4)

is enforced only when the hypotheses match the ground truths (ŷ = y).

Predictive rate parity [32] takes a different perspective, arguing the pre-

diction should reflect the real performance of the group. The ground truth

should be conditionally independent of group attributes given the predictions:

|pY |A,Ŷ (y|0, ŷ)− pY |A,Ŷ (y|1, ŷ)| = 0 ∀y, ŷ ∈ {0, 1} . (2.5)

These fairness requirements can not all be simultaneously satisfied [33]; it

is necessary for the users of a particular AI technology to decide which of

these fairness criteria are the most desirable for their technology. Given such

a fairness specification, a model can be trained to be fairer by optimizing

the gap between predicted probabilities for each pair of groups. However, in

their original published forms (as shown above), all of these criteria assume

binary outcome variables (Ŷ ). Extensions to real-valued and real-vector out-

come variables have been published, but no previous study has published an

extension to variable-length sequential outcome variables.

2.3 Language Embeddings

There has been active research on multilingual recognition. A large number

of languages do not have enough parallel speech and text data and deep

learning models trained on these languages usually have high error rates [5].

Multilingual speech recognition mitigates the data sparsity by training the

network on a combined dataset from several languages. The network usually

has a common encoder that extracts acoustic information from audio features

and can either have a common decoder with a shared phoneme inventory [16]
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or language-specific decoders with private phone [15, 34, 35] or character

inventories [36, 37, 38]. Multilingual ASR can benefit from the use of self-

supervised pretraining algorithms such as contrastive predictive coding [39,

40, 41], which pretrains a model on large amounts of unlabeled raw audio

data to predict neighboring frame representations given the center frame.

Multilingual models generally have better accuracy and robustness compared

to monolingual models [5, 16, 15, 34, 35] as they benefit from increased

amount and diversity of data.

Language or dialect embedding has been shown to improve multilingual

ASR systems [42, 43, 44, 45]. The embedding can be a one-hot vector

specifying language ID [42, 44] or a vector learned from acoustic data under

a standard multilingual model [43, 45] and can be used as additional input

features to the network [42, 44], as adapter modules for language-specific

adjustments [44] or as interpolation weights for the encoder [43]. However,

the embeddings in all these previous works depend on the test language being

either one of the training languages (in the case of a one-hot embedding)

or recorded in a fashion that makes its acoustic embedding vector a useful

predictor of its phoneme-to-sound acoustic models.

Studies have found that multilingual models do not generalize well to un-

seen languages [5], without adapting to parallel data from that language.

While multilingual training can yield error rates 10–20% below monolingual

training, the leave-one-out cross-lingual error rate when applying the multi-

lingual model to an unseen language can be 70–90%. Because of the high

error rates of zero-shot cross-lingual ASR, most researchers studying cross-

lingual ASR have chosen pragmatically to define that term to mean few-shot

rather than zero-shot recognition, e.g., by fine-tuning using one hour [46, 47]

or a few hours [48] of transcribed data in the target language. Perhaps the

prior work most similar to the proposed language embedding is a set of ex-

periments using the Phoible [19] phoneme inventory of a language to define

an untrained, knowledge-based linear output layer called the “signature ma-

trix” [49, 16]; our phone token masking strategy is a simplification of the

signature matrix, and our proposed language encoding is an enrichment of

the same.
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CHAPTER 3

ALGORITHMS

3.1 Equal Accuracy Ratio

The proposed equal accuracy ratio is an adaptation, to sequence-learning

models, of the equal opportunity training criterion. Equal opportunity was

defined in [12] as:

|pŶ |A,Y (y|0, y)− pŶ |A,Y (y|1, y)| = 0 ∀y ∈ Y . (3.1)

There are three candidate definitions we can use for the purpose of adapting

the equal opportunity criterion to ASR:

1. Matched frames: pŶ |A,Y (y|a, y) could be measured using sets of frames,

with different values of the protected attribute A = a, for which the

recognizer should output character y. However, matched frames would

need a ground truth alignment, which are not required for CTC train-

ing, and are rare in practice.

2. Matched transcription: pŶ |A,Y (y|a, y) could be measured using sets of

waveforms, with different values of the protected attribute, that has

exactly the same transcription. Corpora that provide identical texts

spoken by members of different groups exist (e.g., UASPEECH [50]

and TIMIT [51]), but are rare and small.

3. Matched accuracy: The sentence accuracy of an ASR, for user group

a, is given by

pŶ |A(Y |a) =
∑
y

pY |A(y|a)pŶ |A,Y (y|a, y). (3.2)

Inclusiveness of an ASR might be reasonably defined to mean that
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accuracy is the same for different demographic groups, even if they do

not say exactly the same things. The equal-accuracy marginalization

of Eq. (3.1) is

|pŶ |A(Y |0)− pŶ |A(Y |1)| = 0. (3.3)

We will use definition 3 since it codifies the criterion that matters most

to users (the accuracy of the speech recognizer), without requiring any addi-

tional constraints.

Extending equal opportunity in Eq. (3.3) to the multi-group case, the

ASR provides equal opportunity if and only if

|pŶ |A(Y |a)− pŶ |A(Y |a′)| = 0 ∀a, a′, (3.4)

| ln pŶ |A(Y |a)− ln pŶ |A(Y |a′)| = 0 ∀a, a′. (3.5)

Taking the logarithm on both sides of Eq. (3.5) does not alter the equal-

ity, but provides computational benefits as we will show shortly. After the

manipulation, minimizing the gap on the left-hand side is actually forcing

the ratio of accuracies to be one. Therefore we call the objective “equal

accuracy ratio.”

In practice, equal accuracy is rarely achieved. An ASR can be explicitly

trained to minimize violations of equal accuracy, however, by training it

to minimize the equal accuracy ratio, LEAR, defined as the total absolute

difference between the cross-entropy rates of groups a and a′, summed over

all pairs of different groups:

LEAR =
1

2

∑
a,a′

∣∣ ln pŶ |A(Y |a)− ln pŶ |A(Y |a′)
∣∣+ C(θ, a, a′), (3.6)

where C(θ, a, a′) is an offset term to be described shortly.

We do not have pŶ |A(Y |a), but we can estimate it based on the portion of

the training data spoken by people from group a, thus

ln pŶ |A(Y |a) ≈ 1

|Sa|
∑

x(i),y(i)∈Sa

ln pŶ |X(y
(i)|x(i)), (3.7)

where |Sa| is the number of training utterances available from group a. The
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log-probability pŶ |X(y
(i)|x(i)) in Eq. (3.7) is no more than the negative cross-

entropy loss of the training pair (x(i), y(i)).

There are two possibilities to optimize LEAR, either increasing the perfor-

mance of the group with lower accuracy or decreasing the performance of

the one with higher accuracy. Apparently, the latter situation is not desir-

able. In order to avoid the latter, we can modify the equal accuracy ratio by

adding an offset term, equal to the average of the two group-dependent cross

entropies:

C(θ, a, a′) = −
ln pŶ |A(Y |a) + ln pŶ |A(Y |a′)

2
. (3.8)

With the offset constant defined in Eq. 3.8, the equal accuracy ratio becomes

a weighted average of the per-group cross-entropy losses:

LEAR =
∑
a,a′

max
{
− ln pŶ |A(Y |a),− ln pŶ |A(Y |a′)

}
,

= −
∑
a

N≤a ln pŶ |A(Y |a), (3.9)

where N≤a is the number of other groups that have lower cross-entropy loss

than group a. The resulting LEAR as a measure of inclusiveness is intuitive.

It is a weighted sum of cross-entropy loss over each dialect where the dialects

with larger loss are given larger weights during training.

The loss function LCE penalizes high average error rates, but ignores high

inter-group error rate disparities; LEAR penalizes high inter-group disparities,

but ignores the error rate of the best-performing system. Multi-task training

seeks to balance these two objectives by minimizing

LMT = LCE + λLEAR, (3.10)

where λ is a hyperparameter that can be tuned.

3.2 External Language Embedding

Previous works have shown that it is hard to achieve good performance on

zero-shot cross-lingual recognition without any knowledge about the testing

language. We therefore consider incorporating extra information about the
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Figure 3.1: Architecture overview

testing language. Figure 3.1 shows the overview of the proposed architecture.

The proposed system is a CTC+Attention system based on [5], with three

additions: (1) wav2vec-based feature extraction based on [40], (2) phoneme

inventory masking similar to [16], and (3) the proposed typology-based lan-

guage encoder.

Language Encoder The language encoder includes two sets of infor-

mation about the test language. The first is the language phylogenetic in-

formation extracted from Glottolog, which is a graph containing dialects,

languages, language families as nodes, and the belonging relationships as

edges. We use node2vec [18] to embed the nodes so that the languages that

are close in the graph have larger cosine similarities.

Similar to the multilingual allophone system in [16], we also include phone

inventory information from Phoible [19], a cross-linguistic phonological in-

ventory database for over 2000 distinct languages. We combine inventories

for all the languages to create a shared phoneme inventory and use a binary

vector to represent the phoneme set of each language.

The language node embedding and the binary phoneme inventory vector

are concatenated, forming a general representation applicable to at least

2,000 languages. The vector is then fed into the language encoder, producing

a language embedding as an additional input to the phoneme classifier.

Wav2vec Feature Extraction Considering the remarkable perfor-

mance boost brought by pretrained unsupervised acoustic representation,

we experiment on the feature extractor (referred to as feature encoder in

[41]) from wav2vec2.0 that is pretrained on 960 hours of LibriSpeech [52].1

1https://github.com/pytorch/fairseq/tree/master/examples/wav2vec
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Phone Inventory Masking In addition to feeding the phone inventory

asks as an input to the language encoder, we also directly use it to mask out

the non-existing phonetic tokens in the output layer, which has been shown

to be effective in reducing the error rate, especially for unseen languages.
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CHAPTER 4

EXPERIMENTS

4.1 Datasets

4.1.1 Multi-Dialect Dataset

In order to better study the proposed EAR measure, a new benchmark

dataset was created by combining existing datasets that cover seven racially,

ethnically, and geographically diverse dialects of English as listed in Table 4.1.

Most are retrieved from publicly available sources. Names for the American

dialects (Standard American and African American) are based on the dis-

cussion in [53]. The Afrikaans English and Xhosa English corpora are named

as in their source distribution [54]; the Latin American, UK Broadcast News

and Indian English corpora are each named for the country or countries in

which they were recorded.

The African American corpus is part of the Corpus of Regional African

American Language (CORAAL) [55], which provides recorded conversational

speech data from people who self-identify as African American, including au-

dio recordings, time-aligned orthographic transcription and speaker informa-

tion. We use the DCA version which focuses on African American Language

in the Washington DC region. We omit speech by the interviewers and re-

tain only speech segments by the self-identified speakers of African American

Language.

The Standard American English corpus is collected from the LibriSpeech

ASR corpus [52] of audiobook readings. Data from this corpus is not dialect-

homogeneous: all regional dialects of the United States are represented, as

are samples of dialects from outside the United States. Nevertheless, em-

pirical results reported later in this work suggest that this corpus is more

dialect-homogeneous than any of our other purportedly single-dialect cor-
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Table 4.1: Sources of data used in our multi-dialect dataset “Abbr” column
is the abbreviated dialect name used in performance tables. “#Utts”
column shows the number of utterances in the training set. “Len” column
shows the total duration of all utterances, in minutes.

Dialect Abbr Corpus #Utts Len

African American AA CORAAL 13908 491
Afrikaans Eng AF AST Afrikaans 3799 133
Standard American AM Librispeech 28533 6035
UK Broadcast News BR LDC95S24 10980 1221
Latin American LA LDC2014S05 281 28
Indian Eng IN MaheshChandra 358 16
Xhosa Eng XH AST Black 3323 116

pora, possibly because speakers modulate their speech, somewhat, to match

a standard audiobook reading style. The data contains audio waveforms and

their associated transcriptions. Librispeech is a very large corpus; we use

only the “train-clean-100” partition.

The Latin American English corpus is extracted from Hispanic-English

Database (LDC2014S05) [56] that contains a mixture of read speech and

conversational speech along with their transcriptions. Participants were adult

native speakers of Spanish as spoken in Central America and South America

who resided in the Palo Alto, California area, had lived in the United States

for at least one year and demonstrated a basic ability to understand, read

and speak English. We only include the read speech part of the corpus.

UK Broadcast News is extracted from WSJCAM0 Cambridge Read News

(LDC95S24) corpus [57]. The subjects in WSJCAM0 were native speakers of

British English, reading in a standardized dialect. The corpus provides stan-

dard orthographic transcripts as well as time alignment between waveform

and both word and phonetic transcriptions. The audio is originally in NIST

SPHERE format and we convert it to wav format for fast data loading.

The AST Afrikaans English corpus and AST Xhosa English [54] are col-

lected and published by African Speech Technology. AST Afrikaans English

corpus contains a mixture of spontaneous and read speech by native speak-

ers of Afrikaans, a language primarily spoken by white South Africans. AST

Xhosa English is collected in a similar form but is spoken by native speak-

ers of isiXhosa, a language primarily spoken by black South Africans. Both

corpora are distributed in 8 kHz alaw format, and were converted to 16-bit
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16 kHz wav files using FFmpeg.

The Indian English corpus is composed of three small corpora posted to

Voxforge by Mahesh Chandra. Unlike other dialects, this corpus contains

the speech of only one speaker, reading short sentences.

These corpora vary considerably in difficulty. The Indian English and

Latin American corpora are difficult to recognize because they are small, and

because the sampled dialects are quite different from the others in the list.

The African American corpus is difficult because it is composed exclusively of

spontaneous speech. The Afrikaans English and Xhosa English corpora each

contain a mixture of spontaneous and read speech; the Standard American

and UK Broadcast News corpora each contain exclusively read speech.

Transcriptions are cleaned by removing special characters and punctua-

tion except apostrophe. We retain audio files with a duration longer than 1

second. Short-time Fourier transform (STFT) is computed using a 16 kHz

sampling rate, and a Hamming window with a window size of 0.02 s and a

window stride of 0.01 s. ASR features consist of the natural logarithm of

one plus the magnitude of STFT, normalized by subtracting the mean and

dividing by standard deviation.

4.1.2 CORAAL Dataset

The CORAAL dataset is part of the multi-dialect dataset, and has been

described in Sec. 4.1.1 [55]. It contains complete and detailed information

about both interviewers and interviewees. We extract interviewee informa-

tion and identify four attributes, namely age, work, education, and gender,

that are complete and meaningful to be used as sensitive attributes to par-

tition the corpus. Details of the attributes are provided in Table 4.2. Addi-

tional experiments are performed on this dataset to verify the effectiveness

of the equal accuracy ratio.

17



Table 4.2: Partition of CORAAL dataset. “Abbr” column shows the
abbreviated group name used in performance tables. “#Utts” column
shows the number of utterance in the training set. “Len” column shows the
total duration in minutes of the utterances.

Attr Group Abbr #Utts Len

Age -19 7320 250
20-29 2776 104
30-50 2590 99
51+ 1122 37

Work Lower Working Class LW 3516 125
Upper Working Class UW 4359 146
Lower Middle Class LM 3647 131
Upper Middle Class UM 1159 46
Upper Class U 824 28
Unknown. Unk 403 13

Edu Elementary School ES 169 6
Student in Middle School StMS 3190 107
Student in High School StHS 3510 118
Some High School. SHS 1206 41
High School HS 3156 108
Student in College StCO 192 7
Some College SCO 1485 63
College CO 847 32
Graduate School GS 153 5

Gender Male M 9155 317
Female F 4753 174

4.1.3 Multilingual Dataset

The dataset used for multilingual and cross-lingual experiments is a corpus

that consists of 20 languages: 8 from IARPA Babel project corpora, 1 from

CGN (Spoken Dutch Corpus) [58] and 11 from Globalphone [59] (GP) as

summarized in Table 4.3. We only use the read speech part of CGN. We use

the default 8:1:1 train-dev-test partition provided by Babel corpora and split

CGN and Globalphone corpora into 8:1:1 partitions with non-overlapping

speakers.
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Table 4.3: Sources of data used in our cross-lingual experiment. The upper
part is the training languages and the lower part is the testing languages.
“Type” column denotes whether the corpus contains spontaneous (Sp.) or
read speech. “Len” column shows the total duration of all utterances in
hours. “Family” column shows the language family. “EAR” column shows
if the language is used in equal accuracy ratio experiment. “LE” column
shows if the language is used in external language embedding experiment.

Language Abbr Corpus Type Family Len EAR LE
Bengali 103 Babel Sp. Indo-Aryan 215 ✓ ✓

Vietnamese 107 Babel Sp. Vietic 215 ✓ ✓

Zulu 206 Babel Sp. Bantu 211 ✓ ✓

Amharic 307 Babel Sp. Ethiopic 204 ✓ ✓

Javanese 402 Babel Sp. Austronesian 204 ✓ ✓

Georgian 404 Babel Sp. Kartvelian 190 ✓ ✓

Dutch N CGN Read Germanic 64 ✓ ✓

Czech CZ GP Read West Slavic 29 ✓ ✓

French FR GP Read Romance 25 ✓ ✓

Mandarin CH GP Read Sinitic 31 ✓ ✓

Thai TH GP Read Tai 22 ✓ ✓

German GE GP Read Germanic 18 ✗ ✓

Portuguese PO GP Read Romance 26 ✗ ✓

Turkish TU GP Read Turkic 17 ✗ ✓

Bulgarian BG GP Read South Slavic 21 ✗ ✓

Cantonese 101 Babel Sp. Sinitic 215 ✓ ✓

Lao 203 Babel Sp. Tai 207 ✓ ✓

Croatian CR GP Read South Slavic 16 ✗ ✓

Spanish SP GP Read Romance 22 ✓ ✓

Polish PL GP Read West Slavic 24 ✗ ✓

4.2 Equal Accuracy Ratio Experiment Settings

4.2.1 Multi-Dialect Dataset Setttings

The multi-dialect dataset was split into train, dev, and test sub-corpora with

a ratio of 8:1:1. The training subcorpus was used to train a deepspeech

network [22].1 The deepspeech model has two convolutional layers, each

with batch normalization and tanh activation. The convolution kernel sizes

are 41×11 and 21×11 respectively. The convolution output is passed to five

batch-normalized bidirectional LSTM layers, whose output is fed into a fully

1https://github.com/SeanNaren/deepspeech.pytorch
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connected layer. The output is softmaxed to predict a label distribution at

each frame, which is then used to compute CTC loss LCTC and EAR loss

LEAR in Eq. (3.10).

Ideally, the average CTC loss for each dialect should be calculated within

a large batch containing all utterances. Due to GPU memory limitations,

our model can only be trained with a batch size of 16. The average CTC

loss of each dialect is calculated cumulatively with new incoming batches

within an epoch, so as the training proceeds, the estimated average CTC

loss and equal accuracy ratio become increasingly accurate. The model is

optimized using Adam optimizer with a learning rate of 0.001. Each model

is trained for 30 epochs and the model with the least validation cross-entropy

loss is used to calculate performance scores. Models are evaluated on both

the development dataset and test dataset with character error rate (CER)

as evaluation metrics.

4.2.2 CORAAL Dataset Setting

The CORAAL corpus is too small to train a complete deepspeech network;

initial experiments overfit the training dataset, producing unstable perfor-

mance on the development dataset. Since the equal accuracy ratio regular-

ization does not depend on any specific neural architecture, we turn to a much

simpler RNN-CTC architecture for a more stable performance measure. The

model is composed of four layers of bidirectional LSTM with 128-dimensional

hidden states, a batch normalization layer, and four fully connected layers,

each with tanh activation. The output of the last layer is softmaxed and is

used to compute CTC loss. Due to the simple RNN-CTC architecture, we

are able to increase the batch size to 32 in training. Other settings are the

same as those of dialect experiments.

The CORAAL corpus contains metadata about each interviewee, including

age, work, education, and gender (Table 4.2). We ran four sets of exper-

iments using this corpus, each of which used one of the metadata variables

as an attribute protected by the equal accuracy ratio training criterion.
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4.2.3 Multilingual Dataset Setting

We evaluate the EAR model on a subset of 14 languages (Bengali, Viet-

namese, Zulu, Amharic, Javanese, Georgian, Dutch, Czech, French, Man-

darin, Thai, Cantonese, Lao and Spanish) from the 20-language multilingual

corpus as shown in Table 4.3. We use ESPnet as our ASR framework [60],

which offers a complete ASR pipeline including data preprocessing, Trans-

former network implementation, network training and decoding. Due to the

sampling rate difference between different corpora, we first upsample all au-

dio signals to 16 kHz. Using Kaldi [61], we then extract 80-dim log Mel

spectral coefficients with 25 ms frame size and 10 ms shift between frames,

and augment the frame vectors with three extra dimensions for pitch fea-

tures. The transcriptions are converted to IPA symbols using LanguageNet

grapheme-to-phone (G2P) [62] models and the unique IPA symbols, including

base phones, diacritics and suprasegmentals, in all 14 languages are collected

as the shared phonetic token inventory. The resulting inventory size is 102.

The encoder of our model architecture is similar to the transformer archi-

tecture in [26], which starts with two 2D convolutional layers with a subsam-

pling factor of 4, followed by 12 self-attention encoder layers, each having

four heads, an attention dimension of 256 and a 2048-dim position-wise feed-

forward layer. The decoder has six layers, each having a four-head, 256-dim

self-attention layer to encode masked transcriptions, a four-head, 256-dim

attention layer to align the encoded spectral feature with encoded transcrip-

tions, and a 2048-dim position-wise feed-forward layer. The CTC loss weight

is set to α = 0.3.

The transformer model is trained on two GeForce RTX 2070 Graphics

Card with half precision using apex.2 We use dynamic batch size such that

each batch contains at most 4200k frames during training.

2https://github.com/NVIDIA/apex
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4.3 External Language Embedding Experiment

Settings

4.3.1 Multilingual Dataset Setting

The data processing of the multilingual dataset for external language em-

bedding experiments is almost the same as that for equal accuracy ratio

experiment in Sec 4.2.3. Since the external language embedding experiment

has a cross-lingual setting, the test languages contain phones that are not

present in any training languages, which causes an out-of-vocabulary (OOV)

problem as our network cannot predict a phone it has never seen. We there-

fore map each OOV phone to its closest in-vocabulary phone according to its

articulatory features defined by IPA. For example, /B/ in Spanish is mapped

to /v/.

We experiment with two types of transformations to generate the lan-

guage embedding, a three-layer fully connected transformation and a three-

layer graph-convolutional transformation3 on the language representations

extracted from Glottolog [17] and Phoible [19]. Each transformation layer

is followed by a ReLU activation and a dropout layer with a dropout rate

of 10%. The output of the transformation networks is used as language

embedding and as input to the self-attention based ASR network.

We experiment with two audio embedding modules. One consists of two

2D convolutional layers (randomly initialized) with a subsampling factor of

4 that takes the extracted 83-dim audio features as input, and the other

is the feature extractor of a pretrained wav2vec2.0 [41] model that directly

takes the 16 kHz waveform as input. We fix the weights of the wav2vec

feature extractor during training. The encoder of our model architecture is

similar to the one introduced in Sec 4.2.3. The only difference is that input

to each encoder layer is additionally concatenated with the correct language

embedding to provide language information to the transformer.

Our preliminary experiments indicate that the self-attention decoder frame-

work does not outperform a simple CTC decoder in cross-lingual recognition,

which is consistent with the findings in [48]. Therefore, we discard the self-

attention decoder in [26] and apply a dense layer to the encoder output to

3https://github.com/tkipf/gcn
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compute the frame-wise phoneme posteriors and the CTC loss.
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CHAPTER 5

RESULTS

5.1 Equal Accuracy Ratio Results

5.1.1 Multi-Dialect Results

Multi-dialect recognition experiments are tested with different λ values rang-

ing from 0 to 1 where λ = 0 is the baseline, and λ = 1 gives equal weight

to the cross-entropy and worst-cross-entropy loss terms. Resulting character

error rates (CER: percent) are listed in Table 5.1. Mean CER is the average

per-dialect character error rate, averaged uniformly over the seven dialect

groups. The standard deviation of CER over all dialect groups is a measure

of fairness. In general, we find that increased emphasis on the equal accuracy

ratio (higher λ) results in a lower standard deviation of the CER (increased

fairness).

Table 5.1: Multi-dialect experiments. Refer to Table 4.1 for the meanings
of the abbreviations.

Dialect λ=0 λ=0.001 λ=0.01 λ=0.1 λ=1 λ=10

AA 43.08 39.07 42.99 44.28 45.72 46.36
AF 20.88 18.18 23.70 22.26 24.81 20.98
AM 14.19 10.94 13.73 14.50 18.21 16.12
BR 14.56 12.21 17.36 17.09 19.23 16.98
IN 52.80 51.38 50.95 51.36 53.67 52.80
LA 38.41 30.00 41.70 36.28 32.14 36.46
XH 26.60 22.11 29.29 27.58 28.26 26.43

Mean 30.07 26.27 31.39 30.48 31.72 30.87
Std 14.97 14.85 14.11 13.97 13.39 14.61
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5.1.2 CORAAL Results

Table 5.2: Character error rate (CER: percent), measured as a function of
dialect and of the regularization weight λ, in experiments using CORAAL.
Refer to Table 4.2 for the meanings of the group abbreviations.

Multitask Regularization Weight λ

0 0.001 0.01 0.1 1 10

Age -19 55.59 56.60 53.96 56.23 55.94 56.72

20-30 55.56 55.99 53.73 55.82 56.60 57.13

30-50 56.31 56.99 54.94 56.24 56.61 57.04

50+ 59.31 59.97 58.59 58.53 59.33 59.79

Mean 56.69 57.39 55.30 56.70 57.12 57.67

Std 1.78 1.77 2.25 1.23 1.50 1.42

Work LM 56.16 54.97 58.03 55.64 57.05 56.90

LW 55.30 54.30 57.44 55.06 56.76 55.60

UW 56.03 54.68 58.32 55.55 56.96 56.81

UM 58.01 55.62 58.27 55.69 58.15 57.78

U 58.76 57.25 59.06 57.33 59.31 57.99

Unk 56.86 54.71 57.41 57.46 56.71 56.36

Mean 56.85 55.26 58.09 56.12 57.49 56.91

Std 1.31 1.07 0.62 1.01 1.04 0.89

Edu ES 61.94 61.00 61.54 62.35 59.24 60.19

StMS 55.54 54.86 55.95 57.03 57.28 56.93

StHS 55.40 54.55 56.48 57.31 56.71 55.83

SHS 55.20 55.25 56.70 57.73 56.87 55.57

HS 57.27 56.04 58.63 59.13 58.06 56.69

StCO 51.95 53.25 55.03 59.17 54.79 57.28

SCO 56.12 55.54 57.27 57.99 57.48 56.65

CO 54.18 53.79 55.70 55.62 55.28 55.04

GS 54.42 54.97 54.83 57.04 56.22 55.39

Mean 55.78 55.47 56.90 58.15 56.88 56.62

Std 2.74 2.24 2.09 1.92 1.36 1.54

Gender M 55.74 55.28 55.55 57.32 58.07 55.21

F 55.93 56.41 55.56 57.57 57.46 55.44

Mean 55.84 55.85 55.55 57.45 57.76 55.32

Std 0.13 0.80 0.01 0.17 0.43 0.16

Table 5.2 provides experimental results from the CORAAL corpus. Four sets

of experiments were conducted using this dataset, each treating a different

metavariable as the protected attribute: age, work, education, and gender.

The figures in the table are character error rates (CER: percent). Optimal
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Table 5.3: Multilingual Experiment Results. The numbers presented in the
table are PTER in percentage.

λctc=0 λctc=0.1 λctc=0.1
Language λatt=0 λatt=0 λatt=0.1
Amharic 43.5 41.7 41.0
Bengali 38.7 38.2 37.9
Cantonese 37.6 35.8 35.1
Javanese 49.1 51.6 52.2
Vietnamese 51.2 48.5 47.0
Zulu 45.2 41.8 40.7
Georgian 37.3 36.3 35.4
Lao 44.8 42.3 41.3
Dutch 18.2 18.4 18.4
Czech 10.9 10.8 10.6
French 13.1 13.4 13.3
Mandarin 21.8 21.8 22.3
Spanish 11.3 11.4 11.6
Thai 22.5 21.1 21.1
Mean 31.84 30.94 30.56
Std 14.32 13.72 13.42

inclusiveness (minimum inter-group standard deviation) is achieved for dif-

ferent values of λ, depending on the metavariable being protected. According

to the empirical results, variation across different educational groups is mini-

mized with λ = 1, variation across age groups is minimized with λ = 0.1, and

variation across work or gender is minimized with λ = 0.01. Similarly, op-

timal average accuracy (minimal inter-group average error rate) is achieved

for different values of λ, ranging from λ = 0.001 (age and education) to

λ = 10 (gender).

5.1.3 Multilingual Results

The phone token error rate is summarized in Table 5.3. We conduct three

sets of experiments with different settings of λctc and λatt. The leftmost result

is the baseline where λctc = 0 and λatt = 0 denote no regularization. The

middle column applies regularization only on CTC loss and the rightmost

column applies regularization on both CTC and attention loss. λ values

are set according to preliminary experiments on multi-dialect and multi-user
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corpora. EAR stands for “equal accuracy ratio” and is calculated using the

formula in Eq. (3.9).

From the table, we observe that fairness-loss regularization helps in in-

creasing the overall accuracy and fairness of the Transformer model. With

regularization on both CTC and attention loss, the model achieves the lowest

phonetic token error rate (PTER) and the lowest equal accuracy ratio gap at

the same time, with 1.25% absolute reduction in average PTER and 2.15%

absolute reduction in EAR gap.

The equal-accuracy ratio regularization formulated in Eq. (3.9) is a weighted

sum of losses over all languages with more weights assigned to the languages

having higher losses. Such regularization is expected to increase the recog-

nition accuracy for difficult languages, while sacrificing the accuracy in the

easier languages. This is exactly what we observe from Table 5.3. The

baseline model achieves slightly better accuracy on the languages that have

around 10% to 20% PTER, i.e., the languages with read speech data (Dutch,

French, Mandarin and Spanish). On the other hand, the regularized model

achieves better accuracy on the languages that have over 30% PTER, i.e.,

the languages with spontaneous speech data (Amharic, Bengali, Cantonese,

Vietnamese, Zulu, Geogian and Lao).

The PTER reduction on difficult languages brought by equal accuracy ratio

regularization is larger than the PTER increase on easy languages. Therefore

we obtain a model with better overall performance and fairness.

5.2 External Language Embedding Results

5.2.1 Multilingual and Cross-lingual Phonetic Recognition

We train and test on our 20-language dataset with seven different mod-

els, namely, “Base”, “W2V ”, “W2VM ”, “W2VL”, “W2VLM ”, “W2VG”,

“W2VGM ”. All the models have a self-attention encoder and a CTC de-

coder. “Base” model uses a randomly initialized 2D convolutional feature

extractor and the models with “W2V ” label instead use a pretrained wav2vec

feature extractor. The models with “L” and “G” labels have an additional

linear or graph-convolutional transformation network to compute the lan-

guage embeddings respectively. Models with “M ” apply phone inventory
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Table 5.4: Phonetic token error rates (PTER) in percentage. The columns
“103” to “BG” are PTER’s evaluated on the 15 seen languages and the
columns from “101” to “PL” are PTER’s evaluated on the 5 unseen
languages. The column “AvgS” is the average PTER over the 15 seen
languages and the column “AvgU” is the average PTER over the 5 unseen
languages.

Exp Base W2V W2VM W2VL W2VLM W2VG W2VGM
103 40.2 41.3 41.1 39 39 38.2 38.2
107 52.3 36.6 36.6 32.6 32.6 32.0 32.0
206 42.4 39 38.8 35.9 35.9 35.2 35.2
307 44.7 43.1 43.1 39.1 39.1 38.0 38.0
402 47 48.9 48.4 44.9 44.9 44.2 44.2
404 38.0 42.2 41.7 39.1 39.1 38.6 38.6
N 21.3 15.3 15.3 14 14 13.2 13.2
CZ 11 10.5 10.5 9.1 9.1 8.5 8.5
FR 13.7 14.8 14.8 12.9 12.9 12.1 12.1
CH 30 17.2 17.2 15.9 15.9 15.5 15.5
TH 26.1 22.2 22.2 19.9 19.9 18.9 18.9
GE 26.1 25.1 25.1 23.2 23.2 22.3 22.3
PO 18.4 18.7 18.7 16.3 16.3 16.0 16.0
TU 21.3 21 21 19.3 19.3 18.4 18.4
BG 27 30.2 30.2 28.2 28.2 26.9 26.9
101 77 77.9 76.5 74.6 73.1 76.1 73.1
203 78.2 79.3 76.8 76.3 72.8 72.4 69.3
CR 47.8 47.3 42.8 41.3 35.2 50.8 39.6
SP 38.1 39 36.8 37.3 34.4 37.5 35.3
PL 62.5 66.7 61.2 59.8 54.0 61.9 56.3

AvgS 30.6 28.4 28.3 26 26 25.2 25.2
AvgU 60.7 62 58.8 57.9 53.9 59.7 54.7

masking to the softmax output layer of the decoder.

The performance is shown in Table 5.4, where both proposed models

(“W2VLM ” and “W2VGM ”) outperform the “Base” model; “W2VGM ”

model achieves the lowest multilingual error rate, while “W2VLM ” model

achieves lowest cross-lingual error rate.

By comparing “Base” and “W2V ”, we see that a pretrained wav2vec fea-

ture extractor reduces the average multilingual recognition error rate. In

particular, the reduction is 15.7% on Vietnamese (107), 6% on Dutch (N)

and 12.8% on Mandarin (CH). Although it slightly increases the cross-lingual

error rate, we decide to build on “W2V ” model instead of “Base” model.
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Figure 5.1: PTER of “W2VLM ” model tested on Croatian with correct
and fake language labels.

By comparing the average test PTER (AvgU) of “W2V ”, “W2VL” and

“W2VG” with that of “W2VM ”, “W2VLM ” and “W2VGM ”, we see that

masking out the non-existing phonetic tokens in the test language greatly

improves the recognition accuracy, possibly due to the reduced prediction

space. The “W2VGM ” model, which places the most emphasis on language-

family structure, gains the largest improvement from phone masking, but

still does not outperform the “W2VLM ” model, suggesting that applying

the graph constraint a second time (GCN on top of node2vec embeddings)

provides no extra reduction of error rates.

5.2.2 Cross-lingual Phonetic Recognition with Fake Language
Labels

To better understand how language embedding affects the model’s perfor-

mance, we feed both true and fake language embeddings to the model and

plot the test PTERs across epochs. Figure 5.1 shows the PTER of “W2VLM ”

model tested on Croatian. The blue and orange triangle points are PTERs

of the “W2V ” and “W2VM ” models respectively. The blue solid line labeled

“CR CR” is the PTER curve with correct Croatian embedding and the dash-
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Figure 5.2: t-SNE plot of language embedding. The left side is the plot of
the embeddings from “W2VL” and the right side is from “W2VG”.

dotted lines or dotted lines are PTER’s of the model when provided with fake

language embeddings.

We observe that when provided with correct language embedding (CR CR),

the model outperforms the masked wav2vec baseline (“W2VM ”). The PTER

of the model, when provided with fake embedding, varies from 35% to 80%.

In particular, when provided with fake embeddings of languages from the

same language family, Slavic family in this example, the model generally

has a lower PTER compared to others, as shown by the curves of Polish

(CR PL), Bulgarian (CR BG) and Czech (CR CZ). This indicates that our

model is able to leverage the phylogenetic and phonetic similarities for better

accuracy.

5.2.3 Visualization of Language Embedding

We visualize the language embeddings of “W2VL” and “W2VG” using t-

SNE [63] in Figure 5.2. The small and light circles are the embeddings

from earlier epochs and large and solid circles are from later epochs. We

use small and light text to label the embeddings’ initial-epoch position and

large and solid text to label the final-epoch position. In the right plot, we
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Table 5.5: Phonetic token error rates (PTER) Ablation Study.

W2VLM 101 203 CR SP PL Avg

glotto+phoible 73.1 72.8 35.2 34.4 54.0 53.9
glotto 69.5 73.4 35.1 34.8 55.7 53.7
phoible 76.0 71.9 36.6 38.8 53.4 55.3

observe that graph convolutional transformation on language vectors largely

preserves the phylogenetic information; the languages that are close in the

initial epoch remain close in the final epoch. In contrast, the left plot shows

that linear transformation preserves the phylogenetic information only par-

tially. For example, while the Sinitic-language embeddings (CH and 101)

are close initially, Cantonese (101) moves away from Mandarin (CH) toward

the Slavic-languge embeddings (CR, CZ, PL and BG) as the training epoch

increases. This observation indicates the linear transformation has larger

flexibility to learn its embeddings; as shown in Table 5.4, this flexibility re-

duces the cross-lingual error rate.

5.2.4 Ablation Study on Language Representation

We conduct an ablation study to see the role of the Glottolog vector and

Phoible vector in error rate reduction by training “W2VL” model with only

Glottolog vector, with only Phoible vector, and with both. The results are

shown in Table 5.5. First, providing external information reduces error: all

three settings (“glotto”, “phoible”, “glotto+phoible”) beat the “W2VM ”

baseline. Second, using only Glottolog vectors reduces the Cantonese (101)

error rate to 69.5% but raises the Lao (203) error rate to 73.4%, which is close

to the performance of the “W2VGM ” model, while using only Phoible vectors

does the reverse, raising the Cantonese error rate but reducing the Lao error

rate. These results show both vectors improve the performance in different

ways; “W2VLM ” finds a good trade-off between relying on phylogenetic

information and phonetic information. Finally, we notice that using only

Glottolog vectors (“glotto”) has nearly the same performance as both vectors

(“glotto+phoible”). We hypothesize that phoneme masking is functioning as

a substitution, reducing the necessity of the phoible vector.
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CHAPTER 6

DISCUSSION

There are over 7000 languages [64] in the world and most of them lack a

sufficient amount of digitized speech-text data for the training of ASR. By

training multilingual ASR systems on data from different languages, we seek

to improve ASR’s performance on these low-resources languages. This idea

has been shown promising by several previous works on multilingual speech

recognition systems [5, 65].

However, simply putting together data from different languages without

any consideration of the varied recording quality, speech type (read vs. spon-

taneous) and the inherent difficulty of the languages can end up in an ASR

system having large performance disparity across different languages, as sug-

gested by our multilingual experiment result in Table 5.3. Such observations

apply not only to the multilingual dataset, but also to the multi-dialect

dataset in Table 5.1. We, therefore, develop the EAR loss that quantifies

the sequence-level performance disparity and show that explicitly optimiz-

ing the EAR loss as a regularization term together with the ASR loss can

reduce the performance gap across different linguistic and dialectical user

groups. We further test the EAR loss on the CORAAL dataset, a multi-

user-group dataset defined by age, work, education and gender, and obtain

similar results in Table 5.2.

Furthermore, the EAR experiments on the three datasets all indicate that

it is possible to reduce the performance gap while improving the average ASR

accuracy over all user groups provided we carefully tune the regularization

factor. The improvement in the overall ASR accuracy might be explained

by the fact we are assigning different weights to different user groups in

the datasets defined by languages, dialects and other user attributes, which

implicitly incorporate the group information into the model’s training.

The cross-lingual experiments in Sec 5.2.1 explicitly incorporate the group

information through external language embeddings. These external embed-
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dings are extracted from open linguistic resources, Glottolog and Phoible.

Node2vec and binary encoding ensure that phylogenetically and phonetically

similar languages are embedded closely in the latent space. Comparing the

PTERs of the models without language embedding (“W2V ”) with that of

the models with language embedding (“W2VL” and “W2VG”), we observe

that incorporating group (language) information improves the multilingual

recognition accuracy on the seen training languages.

The “W2VL” and the “W2VG” models outperform the “W2V ” not only

on the seen training language set but also on the unseen testing language

set. This result indicates that the language embeddings provide consistent

and meaningful group information for both seen and unseen language sets

and that the group information about the languages can improve the model’s

out-domain generalization even if the model is not trained on the out-domain

data.

The proposed language embedding using Glottolog [17] and Phoible [19]

works for thousands of existing languages as Glottolog tree contains around

8500 dialect, languages and languages families and Phoible contains phoneme

inventory for around 2000 languages. A large multilingual ASR system

with language embeddings could be trained using as many as the languages

recorded in the two databases. Considering the varied difficulty in the train-

ing languages, EAR could be used to further improve the multilingual ASR

system.
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CHAPTER 7

CONCLUSION

In this work, we improve the multilingual speech recognition systems by

proposing a novel inclusiveness loss, equal accuracy ratio, that can be seam-

lessly integrated into ASR neural architecture a regularizer to explicitly re-

duce the performance disparity of the system and by incorporating external

linguistic typological knowledge to guide the neural model during training

and testing.

We illustrate the effectiveness of the proposed EAR loss with experiments

on a multi-dialect corpus, a multi-user corpus, and a multilingual corpus. Our

results demonstrate that the models with fairness regularization generally

have a smaller performance gap among user groups, without increasing the

overall average error rate, as compared to the baseline.

We propose to use external phylogenetic and phonetic knowledge from lan-

guage typologies to improve the cross-lingual phoneme recognizer. We study

the performance of learning language embeddings using a linear transforma-

tion network and a graph convolutional network and show that both models

outperform the baseline. In particular, we show both phylogenetic and pho-

netic knowledge are necessary for good cross-lingual accuracy and that a

linear transformation network can flexibly leverage both types of informa-

tion to learn a better phonetic model compared to a graph convolutional

network.
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