
© 2021 Ali Kheradmand

FOUNDATIONS FOR PRACTICAL NETWORK VERIFICATION

BY

ALI KHERADMAND

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2021

Urbana, Illinois

Doctoral Committee:

Professor Brighten Godfrey, Chair
Professor Grigore Rosu
Assistant Professor Tianyin Xu
Dr. Jitendra Padhye, Microsoft Research

Abstract

Computer networks are large and complex and the often manual process of configuring such
systems is error-prone, leading to network outages and breaches.This has ignited research into
network verification tools that given a set of operator intents, automatically check whether
the configured network satisfies the intents. In this dissertation, we argue that existing
works in this area have important limitations that prevent their widespread adoption in the
real world. We set to address these limitations by revisiting the main aspects of network
verification: verification framework, intent specification, and network modeling.

First, we develop #PEC, a symbolic packet header analysis framework that resolves the
tension between expressiveness and efficiency in previous works. We provide an extensible
library of efficient match-types that allows encoding and analyzing more types of forwarding
rules (e.g. Linux iptables) compared to most previous works. Similar to the state-of-the-
art, #PEC partitions the space of packet headers into a set of equivalence classes (PECs)
before the analysis. However, it uses a lattice-based approach to do so, refraining from
using computationally expensive negation and subtraction operations. Our experiments
with a broad range of real-world datasets show that #PEC is 10× faster than similarly
expressive state-of-the-art. We also demonstrate how empty PECs in previous works lead
to unsound/incomplete analysis and develop a counting-based method to eliminate empty
PECs from #PEC that outperforms baseline approaches by 10− 100×.
Next, we note that network verification requires formal specifications of the intents of

the network operator as a starting point, which are almost never available or even known
in a complete form. We mitigate this problem by providing a framework to utilize existing
low-level network behavior to infer the high-level intents. We design Anime, a system that
given observed packet forwarding behavior, mines a compact set of possible intents that
best describe the observations. Anime accomplishes this by applying optimized clustering
algorithms to a set of observed network paths, encoded using path features with hierarchical
values that yield a way to control the precision-recall tradeoff. The resulting inferred intents
can be used as input to verification/synthesis tools for continued maintenance. They can
also be viewed as a summary of network behavior, and as a way to find anomalous behavior.
Our experiments, including data from an operational network, demonstrate that Anime
produces higher quality (F-score) intents than past work, can generate compact summaries
with minimal loss of precision, is resilient to imperfect input and policy changes, scales to
large networks, and finds actionable anomalies in an operational network.

ii

Finally, we turn our attention to modeling networking devices. We envision basing data
plane analysis on P4 as the modeling language. Unlike most tools, we believe P4 analysis
must be based on a precise model of the language rather than its informal specification. To
this end, we develop a formal operational semantics of the P4 language during the process of
which we have identified numerous issues with the design of the language. We then provide a
suite of formal analysis tools derived directly from our semantics including an interpreter, a
symbolic model checker, a deductive program verifier, and a program equivalence checker.
Through a set of case studies, we demonstrate the use of our semantics beyond just a reference
model for the language. This includes applications for the detection of unportable code,
state-space exploration, search for bugs, full functional verification, and compiler translation
validation.

Thesis Statement: Existing network (data plane) verification tools have fundamental
shortcomings in their efficiency, expressiveness, fidelity, or ease of use that limit their real-world
practicality. It is possible to address these shortcomings by developing new foundations for
the main ingredients of network verification, namely system modeling, property specification,
and verification data structures and algorithms.

iii

Acknowledgments

As I approach the end of my long Ph.D. journey, I would like to thank a small subgroup of
many people that have helped me reach this point.

First and foremost, I want to express my sincere gratitude to my advisor, Professor Brighten
Godfrey, for his great support and guidance in the past four years of my journey. I have been
fortunate to work with and learn from Brighten both in academia at the University of Illinois
at Urbana-Champaign (UIUC) and in industry at Veriflow. Brighten is among a few people I
know that are both extremely smart and extremely humble. I have learned a lot from him
not only about high-quality scientific research and its transformation into industrial products,
but also about proper execution, communication, presentation, and leadership. Brighten’s
uninterrupted support and positive attitude have always helped me carry through the ups
and downs of my journey.
Next, I want to thank my co-advisor Professor Grigore Rosu for his support during the

first years of my graduate studies, while I was adjusting to my Ph.D. life. Grigore’s ability
to motivate others has been a source of inspiration and his vision of semantic-based formal
analysis is the basis for many works, including Chapter 4 in this dissertation.
I would also like to thank the other brilliant members of my Ph.D. committee: Professor

Tianyin Xu and Dr. Jitendra Padhye, for accepting to be on the committee and for providing
great feedback for this work.
Working at Fujitsu Laboratories of America introduced me to the world of network

verification. I thank its director of research, Dr. Mukul Prasad, and my great colleague and
friend, Dr. Alex Horn. I’ve learned a great deal about discipline from Alex and hours of
mind-stimulating discussions with him have led to many ideas. So far, we have published only
a small part of what we explored together including works inside and outside this dissertation.
Particularly Chapter 2 is joint work with Alex. Among other contributions, I particularly
thank him for his role in initiating the project. Also for identifying the problem of empty
PECs in related work and his neat idea of using model-counting to detect them.
A huge shout-out to Veriflow (acquired by VMware), especially the members of its core

team. It is rare to find opportunities to work on problems that are both interesting and
useful and I thank Veriflow’s leadership, especially Brighten, for providing me with such an
opportunity. I enjoyed every second of my time at the company, and the work I’ve done
there (a secret for now) is among the ones that I am most proud of. It helped me learn
the difference between scientific research that only looks good on paper and the ones that

iv

actually make a difference in the real world. I was lucky to be surrounded by such a smart
and fun group of colleagues including Brighten and Drs. Santhosh Prabhu, Wenxuan Zhou,
Mehedi Bakht, and Ahmed Khurshid. Particularly, I have worked closely with Santhosh both
inside and outside Veriflow. This includes works on scalable data plane and control plane
verification, which are not part of this dissertation. Santhosh is smart and a fast learner who
knows how to get things done, which has been very inspiring to me. I have also benefited
from his feedback on virtually all works in this dissertation, and I thank him for that.

Parts of the material in this dissertation are based upon works supported by the National
Science Foundation under grant numbers CCF-1421575 and CNS-1513906. Part of the work
in Chapter 2 was done while at Fujitsu Laboratories of America. I am also grateful for the
Ray Ozzie Fellowship for partly supporting the first year of my Ph.D. studies.
Although not included in this dissertation, I’d like to acknowledge and thank my other

great collaborators Professor Matthew Caesar, Kuan-Yen Chou, and Bingzhe Liu for works
on control plane verification and extending verification beyond the networking layer.
I would also like to thank the K development team including the members of Runtime

Verification Inc. and Formal Systems Laboratory for their help with the K framework. I also
appreciate the support of Nate Foster and other members of the P4 Language Consortium.

UIUC and its Computer Science Department have been a wonderful second home to me. I
appreciate the thriving atmosphere created by its faculty, staff, and students. Among many
great staff, I’d like to thank Kara MacGregor, Maggie Chappell, and Viveka Kudaligama.
Also many thanks to the awesome members of the networking group for numerous fun and
interesting meetings and gatherings and for their feedback on works in this dissertation.

Life in Urbana-Champaign could not be as much fun without many good friends that made
it feel like home. It would be impossible to name everybody here, but I want to particularly
thank my small and closed social bubble that helped me endure the ongoing pandemic:
Mohammad Amin, Rasoul, Happy, Sahand, Amin, and Hadi.
Above all, I want to thank my family. I am forever indebted to my amazing parents,

Bozorg and Pari, for their wisdom and sacrifices and for raising me in a peaceful environment
full of love that helped me grow into the person that I am today; my lovely sister and brother,
Parastoo and Mohsen, who have always been supportive of me; and my dearest grandparents,
who are the source of my energy. Finally, to my best friend and wonderful partner in crime,
Farnaz, who has changed me in many positive ways and has always encouraged me to get up
when I fell, I express my utmost love and gratitude. Looking forward to many more years of
joy together. I couldn’t have asked for a better family. These people are the most precious
belongings in my life and to whom I dedicate this dissertation.

v

Table of Contents

Chapter 1 Introduction . 1

Chapter 2 Verification Framework: Expressive and Efficient Formal Network Analysis [1] 6
2.1 Background and Motivation . 6
2.2 #PEC Framework . 13
2.3 Evaluation . 22
2.4 Conclusion . 30

Chapter 3 Specification: Mining High-Level Intents from Low-Level Behavior [2] . . 32
3.1 Motivation . 33
3.2 Anime Framework . 36
3.3 Evaluation . 45
3.4 Discussion . 54
3.5 Conclusion . 55

Chapter 4 Modeling: Formal Semantics of P4 and its Applications [3] 56
4.1 Background and Challenges . 58
4.2 P4K . 63
4.3 Evaluation . 71
4.4 Applications . 72
4.5 Conclusion . 80

Chapter 5 Related Work . 82
5.1 Network Verification . 82
5.2 Facilitating Specification . 82
5.3 Modeling and P4 Analysis . 83

Chapter 6 Conclusion . 86
6.1 Future Work . 86

References . 90

vi

Chapter 1: Introduction

Modern-day computer networks are increasingly large and complex. Correct configuration
and maintenance of such a complex system is an important concern for the organization
operating it. In a typical organization today, given an informal (i.e. communicated in human
language) high-level description of how the network should operate, a network administrator
configures the network devices to achieve the high-level goals. These descriptions implicitly
define what we refer to as intents. Intents are usually network-wide properties of the network
forwarding behavior, e.g., “the traffic received from the Internet destined to IP x must reach
node A”; “web traffic from node B to node C must go through a DPI device and be resilient
to any single link failure”; or “devices in the region X should not be able to communicate
with devices in the region Y ”.

The administrator converts these descriptions into low-level device configurations, often
manually. Consequently, there is a significant gap between the high-level intents and the
low-level configurations and subsequently the network behavior [4]. This gap is a source
of many misconfigurations and network problems, leading to catastrophic consequences
including network outages and breaches that often make news headlines [4].
These problems are the impetus behind, among other things, a significant academic and

industrial push towards applying formal verification to computer networks with the goal of
increasing network reliability (e.g., [5, 6, 7, 8, 9, 10, 11, 12]), a topic typically known in the
community as network verification and can roughly be divided into two major categories:
“Data plane verification” tools (e.g., [5, 7, 8, 13, 14]) analyze static snapshots of the data
plane, while “control plane verification” (e.g., [10, 11, 12]) proactively ensures a network is
free of latent bugs by analyzing the control logic under various environmental events1. In
this dissertation, we will be focusing on data plane verification, although our contributions
are useful for control plane verification as well.

As illustrated in Figure 1.1, formal verification of any system requires three main ingredients:
a model of the system under consideration, formal specifications of properties of interest,
and a verification method (algorithms and data structures) that can check if the model
satisfies the properties. Existing network verification tools have notable limitations in these
ingredients when it comes to the applicability of these tools in practice. In terms of verification
algorithms and data structures, existing works focus either on efficiency (e.g., [5, 6, 7, 14])
or expressiveness (e.g., [8, 15]), at the cost of the other. Efficiency (ability to analyze large
networks with modest time and memory overhead) and expressiveness (ability to support

1The boundary between the two categories is quite blurry especially in modern software-based networks.

1

Model of
System (S)

Verifier Does Ψ hold for S?

Property (Ψ)Intents

Network
model

Figure 1.1: Formal verification process

various types of networking technologies) are both necessary for scaling verification to today’s
large and complex networks. In terms of ease of use, none of the existing work facilitates
the process of intent specification for network operators. This is a particularly important
limitation given that in the real-world, formal specifications of the intended behavior are
rarely available or even known to the network operators. In terms of modeling, the majority
of works develop their fixed models of network elements in an ad-hoc fashion that not only
cannot be used with modern “programmable” network devices (e.g., [16]) but also does not
yield practical means to examine and trust their fidelity. Even the works that do consider
programmable networks (e.g., [17, 18, 19, 20, 21]) lack rigorous formal foundations or have
it only partially (ignoring the more complex aspects of such networks). These limitations
negatively affect the adoption of network verification technology in the real world.
The goal of this dissertation is to provide foundations for the three ingredients of formal

network verification, addressing the aforementioned shortcomings of existing work that limit
their practicality. Concretely, we make the following contributions:

• Verification algorithms and data structures (Chapter 2)

At its core, network (data plane) verification can be viewed as symbolic execution
over a specific domain in which network devices are viewed as functions that read and
transform variables of a specific type, namely packet headers. Thus, there is a need
for efficient and flexible data structures (and their associated algorithms) for symbolic
representation and manipulation of packet headers. Existing works have evolved from
using off-the-shelf SAT/SMT solvers (e.g., [15]) with poor scalability, to using domain-
specific geometric models (e.g., [7]), and recently into more efficient state-of-the-art
approaches (e.g., [5, 6, 8, 14]) that partition the space of packet headers into packet
equivalence classes (PEC) with identical forwarding behavior before the start of the
symbolic execution. While the idea of using PECs has generally increased the efficiency
of network analysis [8], the choice of data structures to encode the forwarding rules
and algorithm to perform the partitioning has notable implications on the efficiency
and expressiveness of the resulting tool.

The PEC-based approaches in existence today focus either on efficiency or expressiveness,

2

at the cost of the other. Specifically, APV [8] uses Binary Decision Diagrams (BDDs) to
encode forwarding rules and construct the PECs. While flexible, BDDs been shown to
incur significant overhead per packet header bit, performing poorly when analyzing large-
scale data centers. This has prompted recent works to use more efficient representations
to encode and manipulate packet sets, such as ranges (Delta-net [5], VeriFlow [6]) and
Ternary Bit Vectors (ddNF [14]). However, these representations, while more compact
and efficient, are strictly less expressive than BDDs, preventing them from encoding
and analyzing various types of forwarding rules such as the ones in Linux iptables.

Our work, #PEC, resolves this tension between expressiveness and efficiency through
a new PEC-construction approach. Instead of bounding ourselves to a specific rep-
resentation, we provide an extensible library of efficient match types that one can
mix and match to encode various parts of forwarding rules, allowing it to analyze
more types of devices. Moreover, #PEC employs an efficient algorithm to organize
rule match conditions in a Set Intersection Closed Lattice (SICL) and use it to define
PECs in a way that spares it from using negation/subtraction operations, which are
computationally more expensive. We also show that the existence of empty PECs can
lead to wrong analysis results, and experimentally demonstrate such problems with
ddNF on real-world datasets. Subsequently, we provide an efficient way to eliminate
empty PECs (a coNP-hard problem) using a counting-based method that is at least an
order of magnitude faster than naive SAT/BDD-based solutions.

Our experiments with a broad range of real-world datasets show that #PEC is 10×
faster than APV. By achieving precision, expressiveness, and performance, our work
answers a longstanding quest that has spanned multiple generations of formal network
analysis techniques.

• Property specification (Chapter 3)

Network verification tools require formal (i.e. defined in a precise language) specifications
of the intended behavior as a starting point, which are almost never available or even
known in a complete form. We discuss a novel approach to mitigate this problem
by providing a framework to utilize existing low-level network behavior to infer the
high-level intents. We design Anime, a system that given observed packet forwarding
behavior, mines a compact set of possible intents that best describe the observations.
The resulting inferred intents can be used as input to verification/synthesis tools for
continued maintenance. They can also be viewed as a summary of network behavior,
and as a way to find anomalous behavior.

3

We provide a setup to express both low-level behavior and high-level intents via their
associated features. Each feature corresponds to one aspect of the behavior, including
packet header information, devices along the path, and environmental conditions such
as time of path observation, device or link state, etc. We design our features to
have hierarchical values (like in CIDR), providing fine-grained control over the trade-
off between precision and recall. We then use this setup to formally define intent
inference as an NP-hard constrained cost optimization problem related to our quality
and compactness measures. We heuristically solve the problem by grouping relevant
behavior using clustering techniques with the cost function as a measure of dissimilarity
and finding the most specific intent that represents all behavior of each group. We also
develop a suite of highly effective optimizations, including indexing and parallelization,
that allows our approach to scale to large networks with millions of forwarding paths.

Our experiments, including data from an operational network, demonstrate that Anime
produces higher quality (F-score) intents than past work, can generate compact sum-
maries with minimal loss of precision, is resilient to imperfect input and policy changes,
scales to large networks, and finds actionable anomalies in an operational network.

• System modeling (Chapter 4)

P4 [22] is a popular language for programmable packet processors with a relatively high
expressive power. One could also view P4 as a standard modeling language for data
plane behavior, not only for the emerging programmable hardware but also for the
traditional fixed-function devices. We argue that formal analysis tools for any language,
including P4, must be based on a formal semantics of the language rather than its
informal specifications. To this end, we provide a formal operational semantics of the
P4 language in K [23], a programming language semantics engineering framework based
on term rewriting [24].

Our formalization gives precise meaning to P4 programs and networks in terms of
their operational behavior, which can serve as a reference model for verification tools.
We faithfully formalized all language features mentioned in the official P4 language
specification, with a few exceptions corresponding to features whose meaning was
ambiguous or incorrect, or under-specified and we did not find any satisfactory way
to correct it. We have reported some of these issues to the P4 language designers and
made suggestions for fixing the issues.

One of the important features of our semantics is its executability, i.e. we can test
our work by executing P4 programs directly based on the semantics. This feature

4

enabled us to validate our semantics by executing test cases from an official P4 compiler
front-end and an additional manually crafted test suite.

We also provide a suite of formal analysis tools derived directly from our formal semantics
including an interpreter, a symbolic model checker, a deductive program verifier, and
a program equivalence checker. Through a set of case studies, we demonstrate how
our semantics and the derived tools can be used beyond just a reference model for
the language. This includes applications for the detection of unportable code, state-
space exploration, search for bugs, full functional verification, and compiler translation
validation.

Chapters 2 to 4 are dedicated to the technical contributions. Chapter 5 overviews the related
work. We conclude and discuss future research directions in Chapter 6.

5

Chapter 2: Verification Framework: Expressive and Efficient Formal Network
Analysis [1]

This chapter overviews our verification framework. We first provide background on data
plane verification and PEC-based network analysis. We identify the challenges and previous
works’ shortcomings in addressing them (§ 2.1). We then review our technical approach
(#PEC) and the main insights in addressing the challenges (§ 2.2). Finally, § 2.3 details our
experiments and case studies with real-world datasets and compares the results with the
related work.

2.1 BACKGROUND AND MOTIVATION

Network data plane is comprised of networking devices (e.g., switches, routers, firewalls)
that process and carry out the network traffic in form of data packets. We abstractly view the
data plane as a set of match-action tables, connected to each other according to the network
topology. For simplicity and without loss of generality we assume each device contains a
single table, although the internal details of a packet processor are typically more complicated
(Chapter 4). Each table contains multiple forwarding rules each comprised of two parts:
a match part describing the conditions on the packet header for the rule to match on an
incoming packet, and an action part that describes the action that would be performed on
the packet in case the rule is matched. The possible actions include selecting output port,
dropping the packet, or rewriting parts of the header1. The rules in a table are ordered
according to their priority. When a packet arrives at a table, the highest priority rule that
matches the packet header would be selected and the action part of the rule is applied to
the packet. For instance, in the table shown in Figure 2.1b, the first rule matches on any
packet with the IP destination in 10.0.0.0/17 whose IP protocol number is not UDP (symbol
! indicates negation). Say, a packet with the IP 10.0.0.0 and protocol UDP arrives at the
device. The highest priority rule matching the packet header is rule 2. Therefore, the packet
will be forwarded to d2, according to the action of that rule.

The data plane is programmed (i.e., the tables are populated) by the control plane which
in turn is configured or programmed according to the user’s intents. Due to the scale and
complexity of computer networks, it is extremely challenging to know if the configured
network conforms to the user intents. This challenge is the source of many misconfigurations
resulting in network outages and security breaches. These problems have ignited research

1For simplicity of presentation, we assume tables do not modify the packet headers in this chapter, though
our framework does support packet modification using the same approach as described in [14].

6

into automated verification techniques that given a network and the property of interest
(specifications of user intents), can check whether the network conforms to the property. In
this work, we focus on network data plane verification, which deals with analyzing a single
snapshot of the data plane. However, the techniques introduced here are also applicable to
network control plane verification, which deals with analyzing the control plane logic and
configurations that program the data plane.
At its core, data plane verification can be viewed as a form of symbolic execution [25].

Symbolic execution is a well-known technique for finding problematic inputs for a program.
A symbolic execution engine interprets a given program with partially or fully symbolic
inputs. At each decision point, instead of taking a single branch, the engine takes all branches
and considers the conditions of each branch on the symbolic inputs. Along each path, it
accumulates all conditions and if it reaches an undesirable state, the engine would attempt
to resolve the constraints: find values for the symbolic variables that satisfy the constraints.
Software symbolic execution tools often use SAT/SMT [26] solvers for this purpose.

Data plane verification is essentially symbolic execution in a special domain. In this domain,
the program is the set of match-action tables (priority ordered list of forwarding rules) and
the topology that connects the tables. The input to this program is a packet header.

Consider the small network of Figure 2.1 consisting of two devices, d1 and d2. Say, we are
interested in knowing if there are any packets entering d1 that would experience a forwarding
loop. To do so, we start with a symbolic packet entering d1. For this packet to be forwarded
to d2 its header should not match the conditions of the first rule (otherwise it would be
consumed by d1), and it should match the conditions of the second rule. For d2 to forward the
packet back to d1, the packet should match the condition of the first rule in d2. Therefore, to
know which packets (if any) would cause a forwarding loop, we need to resolve the following
logical constraint Φ = ¬d1.rule1.match ∧ d1.rule2.match ∧ d2.rule1.match.
The question is how one can encode and resolve these symbolic constraints. Following

the standard practice in general software verification, early works in network verification
(e.g., [15]) encoded the constraints as propositional or first-order logic formulas and used
off-the-shelf SAT or SMT solvers to check their satisfiability. However, SAT/SMT-based
approaches are not a proper fit for the domain of network verification. These solvers are
optimized for finding a single satisfiable assignment. It will be easier for an operator to
pinpoint the root of a problem in device configurations if all packets violating the desired
property are provided to her. SAT/SMT solvers are not optimized for such purposes. More
importantly, even for a single satisfiable assignment, these tools are not efficient enough to be
used for analyzing large-scale networks with hundreds of thousands of devices and millions of
forwarding rules.

7

d1 d2

(a) Topology of the tables.

Rule Match ActionDestination Protocol
1 10.0.0.0/17 !UDP Receive
2 10.0.0.0/16 {TCP,UDP} Forward (d2)
3 Any Any Drop

(b) Match-action table of d1.

Rule Match ActionDestination Protocol
1 10.0.128.0/17 Any Forward (d1)
2 Any Any Drop

(c) Match-action table of d2.

Figure 2.1: A simple data plane used as the running example. The rules in the tables are
sorted from highest to lowest priority.

This has sparked research into designing domain-customized approaches for encoding and
handling constraints for symbolic packet headers, addressing the limitations of SAT/SMT
solvers especially with regards to efficiency. The state-of-the-art uses the idea of Packet
Equivalence Classes (PEC). By statically analyzing the rule tables, the PEC-based analysis
tools (e.g., [5, 6, 8, 14]) partition the space of packet headers into a set of equivalence classes
such that: (i) no two PECs overlap with each other, and (ii) all packets belonging to the same
PEC would experience the same forwarding behavior throughout the network. Subsequently,
such tools replace the complex forwarding rules on devices with significantly simpler ones
that only match on PECs which essentially are treated as labels.

In the example above, one way of partitioning is visualized in Figure 2.2. In the figure, the
horizontal and vertical axes correspond to the destination IP address and the IP protocol
number of the packets. For simplicity of visualization, we omit the other dimensions of the
packet header space corresponding to other header fields. Each numbered region in the figure
corresponds to one PEC. For example, PEC3 consists of UDP packets with destination IP in
the range [10.0.0.0, 10.0.128.0). Note that any two packets belonging to the same PEC, say
a UDP packet with destination 10.0.0.1 and another UDP packet with destination 10.0.0.2

(both belonging to PEC3), experience the same behavior throughout the network: both get
forwarded from d1 to d2, where they get dropped.

8

6

3
4

7

2

1 5

U
DP

TC
P

Re
st

10.0.0.0 10.1.0.010.0.128.0

Destination IP

IP
 P

ro
to

co
l

0.0.0.0

Figure 2.2: One way of defining PECs for the example in Figure 2.1.

Match Action
PEC1 Receive
PEC2 Receive
PEC3 Forward (d2)
PEC4 Forward (d2)
PEC5 Drop
PEC6 Drop
PEC7 Drop

(a) PEC-based equivalent of d1.

Match Action
PEC1 Drop
PEC2 Drop
PEC3 Drop
PEC4 Forward (d1)
PEC5 Forward (d1)
PEC6 Drop
PEC7 Drop

(b) PEC-based equivalent of d2.

Figure 2.3: PEC-based equivalent of tables in our running example according to the PEC
definition in Figure 2.2.

Given this particular partitioning, we can replace the tables in Figure 2.1 with the their
PEC-based equivalents in Figure 2.3. From this point, the analysis can be performed based
on these labels. For instance, to find out if there are any forwarding loops starting from d1,
we can simply intersect the set of PECs that are forwarded from d1 to d2 ({PEC3, PEC4})
with the set of PECs that are forwarded from d2 to d1. ({PEC4, PEC5}). Performing
this set intersection is significantly more efficient than encoding Φ (introduced above) as a
propositional or first-order logic formula and using SAT/SMT solvers to check its satisfiability.
Also note that in contrast to the SAT/SMT-based approach that produces a single packet,
the intersection result ({PEC4}) encompasses the set of all packets that experience the
forwarding loop.
We emphasize that Figure 2.2 illustrates just one among many possible ways to define

PECs for our example. For instance, PEC6 and PEC7 could be combined into a single PEC.

9

Expressiveness

Efficiency

Delta-net

APV

VeriFlow

ddNF

#PEC

Figure 2.4: Landscape of PEC-based analysis tools wrt. efficiency and expressiveness.

Source Destination
10.0.0.0/32 10.10.0.0/24

Figure 2.5: Example match table demonstrating the overhead of BDDs.

2.1.1 Challenge: Expressiveness and Efficiency

It has generally been shown [6, 8] that using PECs improves the efficiency of the analysis.
However, the specific data structure used to encode and reason about rule match conditions
as well as the algorithm to perform the partitioning have significant effects on the resulting
analysis tool. These factors impact (1) Expressiveness : the type of match conditions that can
be encoded and analyzed by the tool (2) Efficiency : the ability of the tool to generate the
PECs for large networks with a small time and memory footprint. In addition, the number
of generated PECs can impact the efficiency of the subsequent PEC-based analysis.
As shown in Figure 2.4 the PEC-based analysis tools in existence today focus only on

one of the two aspects. For example, Atomic Predicates Verifier [8] (APV), one of the
first PEC-based network verification tools, uses Binary Decision Diagrams [27] (BDDs) to
encode rule match conditions and to compute the PECs. BDDs are flexible DAG-based data
structures that can compactly represent Boolean functions. In this setting, each Boolean
variable corresponds to one bit in the packet header, and a Boolean function corresponds to
the set of packet headers for which the function evaluates to true.

BDDs can encode any Boolean function and support logical operations such as conjunction,
disjunction, negation, and overwrite over these functions. So BDD is a suitable choice of data
structure for encoding many types of match-action tables that are used in practice today.2.

2Although BDDs are not readily suitable for string-based match conditions such as URL matches in Web
Application Firewalls [28]

10

However, BDDs are known to incur significant performance overhead per each bit in the
packet header. For instance, consider the single match condition shown in Figure 2.5. To
encode this single match condition using a BDD, we would need at least (32 + 24) times the
overhead of each node in the BDD’s graph (per each non-wildcard bit in the match condition).
Each BDD node would at least require three machine words worth of data (pointers to the
left and write children, index of the variable the node corresponds to, etc.). So encoding
that match condition would require more than 160 machine words. The performance of
operations such as conjunctions is also proportional to the number of required machine words.
The significant overhead per packet header bit has made APV a performance bottleneck in
analyzing large real-world networks [14].
This has prompted recent PEC-based tools to use more efficient representations. For

example ddNF [14], uses Ternary Bit Vectors (TBVs) to encode match conditions. TBVs
are bit vectors with arbitrary wildcard bits. E.g., TBV 1x represents the set {11, 10}. Each
ternary bit would take two bits to encode, therefore the TBV encoding of the table in
Figure 2.5 would take only 2 machine words (assuming 64-bit words). The intersection of
such match conditions would take as low as 3 ALU operations for the table. As a result,
ddNF is nearly an order of magnitude more efficient than APV [14]. Similarly, VeriFlow [6]
and Delta-net [5] use ranges to encode match conditions, and achieve better performance
than APV.

However, the restricted encoding used in the more efficient approaches comes with a cost.
None of these approaches can (efficiently) encode rules such as the ones used in our example
(Figure 2.1), which are commonplace in networking (e.g., in Linux iptables rules). This
is because of the existence of fields containing certain match types such as ranges (e.g.,
ports 1-1000), or sets of values, including complemented sets. Such values usually cannot be
represented by a single, say, TBV 3. Consequently, the corresponding tools cannot be used to
(efficiently) analyze the more complicated types of match conditions.

A practical network analysis tool must be both efficient and expressive to handle the
large and complex networks that are deployed in the real world. So the question is can we
have a framework that achieves both? In this chapter, we answer this question positively
by providing a new PEC-based analysis framework, called #PEC that resolves the tension
between efficiency and expressiveness. #PEC can efficiently encode and reason about
match types that ddNF, VeriFlow, or Delta-net can not encode. In addition, our rigorous
experiments with real-world data-sets demonstrate that #PEC is at least 10× faster than
APV in constructing PECs.

3Unless we break each match condition containing such values into multiple match conditions, each fitting
into a single TBV, which can lead to exponential blowup in the number of match conditions.

11

Rule Match ActionDestination
1 10.0.0.0/17 Drop
2 10.0.128.0/17 Receive
3 10.0.0.0/16 Forward

Figure 2.6: Table of d3, an example to demonstrate the problem with empty PECs

Match Action
PECx Drop
PECy Receive
PECz Forward

Figure 2.7: PEC-based equivalent of d3.

2.1.2 Challenge: Empty PECs

There is a subtle challenge with certain PEC construction schemes. Specifically, #PEC
and ddNF may produce empty PECs. If not detected and eliminated, analysis based on the
resulting PECs may yield wrong results, including both false negatives and false positives.
Consider the table (d3) in Figure 2.6. Let us assume the table in connected to another

device (d4) that directs all traffic back to d3. Consider the following definition of PECs:
PECx = {packets in 10.0.0.0/17}, PECy = {packets in 10.0.128.0/17}, and PECz = {packets
in 10.0.0.0/16 not in PECx or PECy}.

This definition is similar to how ddNF and #PEC would define PECs (described in § 2.2.2).
The definition also satisfies the conditions mentioned in § 2.1 for PEC-based analysis.

Figure 2.7 shows the PEC-based equivalent of rules in d3 according to the PEC definitions
above. Packets in PECz get forwarded to d4 and sent back to d3. So a naive analysis based
on the defined PECs would report a forwarding loop. However, note that PECz is empty.
Therefore, in reality, no packet would experience a forwarding loop in the setup of Figure 2.6.
I.e., the reported loop is a false positive.
Moreover, it is common to analyze network tables to find dead forwarding rules: rules

that are overshadowed by higher priority rules and can not possibly match on any packet.
Say, one is interested in performing such an analysis for the table in Figure 2.6. A naive
analysis based on the PECs defined above would fail to detect that rule 3 is a dead rule, a
false negative. The reason is that the analysis would find PECz to be affected by that rule.
In reality, since that PEC is empty, no packet is affected.

These examples underline the importance of detecting and eliminating empty PECs. Our
case studies with real-world datasets also demonstrate the existence of false positives and

12

false negatives in tools that leave empty PECs unchecked, namely ddNF.
Detecting that PECz in the example above is easy. In general, however, doing so requires

reasoning about the multi-dimensional packet header space, a coNP-hard problem [29]. We
show that naive logical solutions based on SAT/SMT solvers or BDDs make PEC emptiness
checking a performance bottleneck (§ 3.3.7). #PEC employs a packet-counting-based method
(§ 2.2.3) to this problem that outperforms the naive solutions by 10 − 100×, effectively
eliminating the bottleneck. In addition, in § 2.2.4 we show that by removing the empty PECs,
#PEC achieves minimality in the number of generated PECs .

2.2 #PEC FRAMEWORK

This section overviews our insights and the technical approach for overcoming the challenges
mentioned in the previous section. We provide a PEC-based packet header analysis framework
that achieves both expressiveness and efficiency and does so without sacrificing the soundness
or completeness of the analysis. #PEC achieves expressiveness by providing an extensible
library of various efficient match types (§ 2.2.1). It achieves efficiency by using a lattice-
theoretical approach to define and compute PECs using only intersection and subset operation,
refraining it from using expensive negation/subtraction operations (§ 2.2.2). It also achieves
precision (lack of false positives/negatives) by providing an efficient approach for detecting
empty PECs based on model-counting that is orders of magnitude faster than baseline
approaches (§ 2.2.3). This also enables #PEC to produce the minimal number of PECs
(§ 2.2.4).

2.2.1 Flexible Match Types

Instead of bounding itself to a particular encoding, #PEC provides a library of efficient
types (called match types), that the user can mix and match to encode the match conditions
of the rules in match-action tables. The library includes TBVs, ranges, and other types
that can not be efficiently encoded with TBVs or ranges, including (possibly complemented)
sets. Table 2.1 illustrates some of the efficient match types in our library. The user can
encode match conditions of tables using a tuple of various types (tuple is a match type
itself). For example, the match conditions of Figure 2.1 can be encoded by the match type
tuple<ip_prefix, set<bv<8>>.
The PEC computation algorithm of #PEC imposes a few restrictions on the match

types: each type must provide efficient equality (=) and intersection (∩) operations. In
addition, the number of concrete headers a value of the type represents (its cardinality)

13

Match type Description Example values
ip_prefix IP prefix (v4 or v6) 10.0.0.0/24
exact<T> Wildcard or a value of type T TCP, Any
bv<N> Fixed-length bitvector 1001101
tbv<N> Fixed-length TBV 10xx0x1
range Half-closed interval [0 : 100)
disjoint_ranges List of disjoint ranges {[0,10), [20, 30)}
set<T> Finite (possibly complemented) value set {TCP, UDP}, !TCP
tuple<E1, . . . ,Ek> Tuple where Ej are element types <10.0.0.0/24, !UDP>

Table 2.1: Part of #PEC’s extensible match types library.

must be finite and efficiently computable. #PEC also depends on the subset (⊂) oper-
ation, but it can be computed indirectly using intersection and equality operations. In
practice, a match type may provide a direct implementation of subset for better perfor-
mance. Note that all types in our library satisfy all these requirements. For example,
the equality, intersection, and subset of type ip_prefix are trivially defined. In addi-
tion, the cardinality of a prefix is the number of IP addresses represented by it. E.g.,
cardinality(10.0.0.0/24) = 256. For the type tuple, the intersection is the point-wise inter-
section of elements; the equality and subset are the conjunction of point-wise equality and sub-
set of each element, respectively; and the cardinality is the product of the cardinality of each ele-
ment. E.g., <10.0.0.0/17,!UDP>∩<10.0.0.0/16, {TCP,UDP}> = <10.0.0.0/17, {TCP}>,
and cardinality(<10.0.0.0/24, {TCP,UDP}>) = 512. We provide efficient implementa-
tions of the match types in #PEC’s library. The details can be found in [29].
The library can also be extended with any other type that satisfies the requirements

mentioned above. For example, one could extend the library with a restricted form of regular
expressions on bounded length strings such as URLs. This way, #PEC can reason about,
say, Web Application Firewalls [28] rules that even APV cannot encode and analyze.
By decoupling the PEC construction algorithm from the encoding of match conditions

and supporting any type supporting a few basic operations, #PEC strictly generalizes the
expressiveness of other tools.

2.2.2 Implicit Subtractions

One of the main insights of this work is the observation that computing the result of
subset and intersection operations on our match types such as TBV, ranges, and prefixes
are often significantly more efficient than computing the result of negation/subtraction
operations. For example, computing the intersection of two 8-bit TBVs (tbv<8>) would

14

n0

<0.0.0.0/0,Any>

n1

<10.0.0.0/17,!UDP>
n2

<10.0.0.0/16,{TCP,UDP}>
n3

<10.0.128.0/17,Any>

n4

<10.0.0.0/17,{TCP}>
n5

<10.0.128.0/17,{TCP,UDP}>

⊥

Figure 2.8: The SICL for the running example in Figure 2.1.

require as low as only 2 ALU operations, and the result can be represented by a sin-
gle TBV fitting into a single machine word. However, merely representing the result of
a single subtraction of TBVs such as xxxxxxx − 000000 would require at least 8 TBVs:
{1xxxxxxx, x1xxxxxx, xx1xxxxx, xxx1xxxx, xxxx1xxx, xxxxx1xx, xxxxxx1x, xxxxxxx1}.
Note that this is for a single subtraction of only 8 bits of TBVs (corresponding to, say, a
single field in the packet header). Analyzing the tables of real networks require many more
subtractions/negations over many packet header fields because one has to subtract the match
conditions of higher priority rules from the ones in the lower priority rules to determine the
packets that are affected by the lower priority rules (§ 2.1).
Our idea is to define and compute our PECs without explicitly evaluating the result of

subtraction/negation operations. To do so, after encoding the match conditions of tables
with a user-defined match type, we use an efficient algorithm (see below) to compute the
closure of all match conditions under the intersection operation and organize the results in
form of a Set Intersection-Closed Lattice [30] (SICL). Essentially, we organize the values in a
DAG where each node represents a (unique) match condition or the intersection of two or
more conditions and there is an edge from x to y iff y is a maximal subset of x (i.e., y ⊂ x

and there is no superset of y that is a subset of x). This DAG is also referred to as the Hasse
diagram of the corresponding lattice4.

For instance, Figure 2.8 represents the generated SICL for our running example in Figure 2.1.
n1 and n2 correspond to the match conditions of rule 1 and 2 in d1, respectively, and n3

corresponds to rule 1 in d2. n0 is the universal set for the match type (also corresponds to
rule 3 in d1 and rule 2 in d2). n4 is the intersection of the match conditions in n1 and n2 and
n5 is the intersection of the match conditions in n2 and n3. ⊥ is the empty set and will be
ignored in our discussions.

4Throughout the chapter we refer to a SICL and its DAG/Hasse diagram representations interchangeably.

15

Note that the construction of the DAG mentioned above only requires supporting the
intersection, subset, and equality operations. Moreover, the structure of the DAG allows us
to define our PECs in a way that that does not require computing any negation/subtractions
explicitly, yet we can be sure that the resulting PECs satisfy the requirements of PEC-based
analysis.

Defining PECs based on SICL Recall from § 2.1 that the PECs used for formal network
analysis should satisfy two basic requirements: (1) The PECs must be disjoint from each
other, and (2) all packets belonging to the same PEC must experience the same forwarding
behavior throughout the network.
We use the DAG structure of the constructed SICL of match conditions as follows. We

define one PEC per node in our DAG. For any node n, let n.match be the value associated
with that node in the lattice (a match condition of a rule or the intersection of multiple
match conditions); let n.children be the direct children of n; and let n.descendants to be all
the descendants of n in the DAG. We define the PEC associated with node n (PECn) to
be the set consisting of all packet headers represented by n.match except the ones that are
represented by the PECs defined by n.descendants:

Packets(PECn) = n.match−
⋃
{Packets(PECd) : d ∈ n.descendants}

. It is easy to show that the definition above is equivalent to

Packets(PECn) = n.match−
⋃
{c.match : c ∈ n.children}

For example, PECn2 represents packets that are matched by <10.0.0.0/16,{TCP,UDP}>

but are NOT matched by <10.0.0.0/17,{TCP}> or <10.0.128.0/17,{TCP,UDP}>, essen-
tially UDP packets with destination IP in 10.0.0.0/17 (regions 3 in Figure 2.2).
Note that the formulae above define the semantics of each PEC (the set of packets

represented by a PEC). One does not need to evaluate the formulae for PEC-based analysis.
The PECs are simply labels that can be used during the analysis. The section below describes
how one can turn the match conditions or logical queries into sets of PECS. This way, the user
will only deal with sets of labels (PECs) rather than logical constraints. The only important
point is whether our definition of PECs satisfies the requirements of PEC-based network
analysis mentioned above. In § 2.2.4, we prove that it does.

With this approach, we refrain from using expensive logical negation/subtraction operations.
The negation is implicitly encoded in our definition of PECs based on our lattice structure

16

Algorithm 2.1: Converting logical queries to set operations over PECs
1 function Convert_to_PEC(query):
2 if query is a match value then
3 n← Find_Node(query);
4 return Subtree(n);
5 else if ∃ g : query = ¬g then
6 Universe ← Subtree(Root);
7 return Universe − Convert_to_PEC(g);
8 else if ∃ g, h : query = g ∧ h then
9 G← Convert_to_PEC(g);

10 H ← Convert_to_PEC(h);
11 return G ∩H;
12 else if ∃ g, h : query = g ∨ h then
13 G← Convert_to_PEC(g);
14 H ← Convert_to_PEC(h);
15 return G ∪H;

but is never evaluated.

PEC-based network analysis As shown in § 2.1, once the PECs are defined, the formal
network analysis can be based entirely on PECs. Abstractly, we show how to resolve any
logical query about packet headers using the constructed PECs in a network consisting of
tables for which we create the PECs. Intuitively, any logical query about packets consisting
of propositions about packet headers and Boolean operations can be turned into equivalent
sets of PECs and set operations. This process is described in Algorithm 2.1. The function
performs a structural recursion on the input query and returns the set of all PECs for the
packets of which the query evaluates to true. Particularly, predicates are converted into
sets of PECs, and negation, conjunction, and disjunction are converted into set complement,
intersection, and union, respectively. We show an example of this conversion in § 2.3.3.

The algorithm assumes that the logical query is a Boolean combination of logical predicates
that have the same match type as the nodes of the constructed SICL, and the predicates can
be found in the lattice. If a predicate does not exist, one can simply insert it into the SICL
before running the query. The correctness of the algorithm can easily be derived from our
definition of PECs in this section.

SICL construction algorithm We use an incremental algorithm for building the SICL
from the match conditions of forwarding rules. Initially, the lattice only contains the match
value corresponding to the universal set of the desired match type (T) – e.g., n0 in Figure 2.8.

17

Algorithm 2.2: Insert a match value into SICL and update its structure
1 function Insert(match):
2 n, new ← Find_Or_Create_Node(elem) ;
3 if new then
4 Modified_Nodes .insert(n) ;
5 Insert_Node(Root , n) ;
6 function Insert_Node(parent , n):
7 Γ← {} ;
8 for child ∈ parent .children do
9 if child .elem ⊆ n.elem then

10 Γ.insert(child) ;
11 else if n.elem ⊆ child .elem then
12 Insert_Node(child , n) ;
13 return;
14 else
15 e′ ← n.elem ∩ child .elem ;
16 if e′ is not empty then
17 n′, new ← Find_Or_Create_Node(e’) ;
18 Γ.insert(n′) ;
19 if new then
20 Modified_Nodes .insert(n′);
21 Insert_Node(child, n’) ;
22 parent .children.insert(n);
23 Modified_Nodes .insert(parent);
24 max_children ← {c ∈ Γ | ∀c′ ∈ Γ: (c.elem ⊆ c′.elem → c = c′)} ;
25 for max_child ∈ max_children do
26 parent .children.erase(max_child);
27 n.children.insert(max_child) ;

In each iteration, a new match condition (encoded in match type T), is inserted into the data
structure, and the lattice is incrementally updated to keep the set closed under set intersection
and to make the DAG structure retain the properties discussed above. After inserting all
match conditions from all tables, we use the resulting SICL to define the PECs. The order
of insertion of match conditions does not change the outcome as the DAGs constructed by
different orders of insertions are isomorphic to each other.
Algorithm 2.2 details the insertion process. The user would call Insert with a match

value. Initially, the procedure checks if the inserted match value already exists in the DAG,
either due to insertion of the same match value before or due to the closure of previous
match values under set intersection. If such a node does not exist, a new node is created
and passed to Insert_Node that would place it in a proper place in the SICL. Under the

18

n0

<0.0.0.0/0,Any>

n1

<10.0.0.0/17,!UDP>
n2

<10.0.0.0/16,{TCP,UDP}>

n4

<10.0.0.0/17,{TCP}>

⊥

Figure 2.9: The SICL for match conditions in in Figure 2.1b.

hood, Insert_Node(r, n) recursively places n in the proper place in the subgraph rooted at
r (initially the root of the DAG). The procedure analyzes the subset relation between n, r,
and the children of r. If n is a subset of any children c of r, n is inserted recursively under c
(Lines 12-13). Otherwise, n should be a child of r (Line 22). In that case, the non-empty
intersections of n with r’s children are computed and recursively placed in their proper places
under the corresponding children (Line 21). Moreover, all subsets of n among r.children or
their (non-empty) intersection with n are kept in Γ (Lines 10 and 18). For each maximal
value m in Γ (Line 24), the lattice is updated to reflect the fact that m should be a child of
n (Lines 26-27).
We illustrate the incremental insertion process with a simple example. Figure 2.9 shows

the resulting SICL from inserting the match conditions of d1 from our running exam-
ple in Figure 2.1. Suppose we insert the remaining match condition from d2. Call-
ing Insert(<10.0.128,0/17, Any>) would create n3 with that match value and call
Insert_Node to place n3 in a proper place under n0. n3 is not a subset of any of n0’s
children so it must be a direct child of n0. In addition, n3 has a non-empty intersection with
a child of n0, namely n2. Since the intersection is new, the function creates a new node (n5)
and insert it under n2. It also adds n5 to Γ. Since n5 is the only node in Γ, is it a maximal
children for n3. Therefore the algorithm add it as a direct child of n3. This results in the
SICL updated to the one depicted in Figure 2.8.
We found Algorithm 2.2 empirically more efficient than the alternatives discussed in

[14, 30]. The interested reader may refer to [30] for an overview of the alternative approaches
and the proof of correctness of Algorithm 2.2. We also extend the original algorithm to keep
track of the lattice nodes that are modified as a result of one or more calls to Insert. We
use this information for detecting empty PECs (§ 2.2.3). In the example above, the set of
modified nodes are {n0, n2, n3, n5}.

19

Algorithm 2.3: Compute/update the PEC packet count of modified nodes
1 function Compute_PacketCount(n):
2 queue ← [n] ;
3 visited ← {n} ;
4 n.packet_count ← cardinality(n.elem) ;
5 while queue is not empty do
6 n′ ← queue.dequeue() ;
7 for child ∈ n′.children do
8 if child 6∈ visited then
9 if child ∈ Modified_Nodes then

10 Compute_PacketCount(child);
11 visited .insert(child) ;
12 n.packet_count ← n.packet_count − child.packet_count ;
13 queue.enqueue(child) ;
14 Modified_Nodes .erase(n) ;

2.2.3 Detecting Empty PECs

#PEC represents negation/subtraction operations implicitly in the definition of PECs,
without explicitly evaluating the operations. This may result in cases where a number of the
defined PECs are empty.

In fact, ddNF, which shares the idea of implicit subtraction with our work, produces such
empty PECs. Our experiments with real-world datasets (§ 2.3.3) show that analysis with
ddNF can indeed lead to false positives in practice. Therefore, detecting empty PECs is
necessary.

The general problem of PEC emptiness check is coNP-hard [29]. Nevertheless, the specifics
of an empty PECs detection approach significantly affect its performance in practice.
A naive way of implementing PEC emptiness check is to check the satisfiability of the

definition of a PEC by using BDD or SAT/SMT-based approaches. However, doing so would
re-introduce the per-bit overhead, defeating the purpose of using more efficient encoding and
our PEC construction approach in general. We experimentally demonstrate that using BDD
or SAT-based solutions to the PEC-emptiness check problem is indeed inefficient § 2.3.4.
To mitigate this problem, our insight is that it would be enough to know the number of

packets represented by a PEC to check whether or not it is empty. One does not need to
explicitly compute the set of packets. Note that counting the number of packets in our PECs
is not trivial either (it is a #P-hard problem [29]).

We provide an efficient algorithm that uses the already available structure of our SICL to
count the number of packets in each PEC. The process is detailed in Algorithm 2.3. The

20

algorithm incrementally updates the packet counts of new/modified nodes since the last call
to Insert. The set is produced by our SICL construction algorithm (Algorithm 2.2) and
consumed by Compute_PacketCount. Intuitively, for each PECn (corresponding to SICL
node n) whose packet count need to be computed or updated, the algorithm recursively
computes/updates the packet count of the PECs among n’s descendants (only if needed) and
subtract the sum of these packet counts from cardinality(n.match). The function can be
called either after each update to the lattice, or once at the end, or anything in between,
depending on the application and type of analysis (offline vs. real-time verification). After
computing the packet counts of each PEC, one can simply look for PECs with the packet
count of 0 to detect the empty ones.
For instance, in the running example in Figure 2.1, the packet count of n5 is equal

to the cardinality of n5.match (= 215 × 2) since the node does not have any descen-
dants. Similarly n4.packet_count = cardinality(n4.match) = 215. n2 has n4 and n5

as its descendants, so its packet count is equal to the cardinality of its match value
minus the sum of packet counts of n4 and n5 (i.e., 217 − (215 + 216) = 215). Similarly
n1.packet_count = cardinality(n1.match)−n4.packet_count = 215×255−215 = 215×254

and n3.packet_count = 223 − 216. Finally, the packet count of n0 is the cardinality of the
universal set (232 × 28) minus (

∑5
i=1 ni.packet_count). In this example, none of PECs are

empty.
In the example corresponding to Figure 2.6, the resulting SICL would be a tree with three

nodes beside the root node (0.0.0.0/0): 10.0.0.0/16 (node z) as the only child of the root and
10.0.0.0/17 (node x) and 10.0.128.0/17 (node y) as the children of z. The packet count of
PECz is 216 − (215 + 215) = 0, so the PEC is empty. In § 2.3.3, we overview more complex
examples of empty PECs in real-world datasets.

Algorithm 2.3 is quadratic in the size of the DAG, which can be exponential in the number
of input match conditions [14]. However, as shown by our experiments (§ 2.3.6), this process
is fast in practice and outperforms the BDD and SAT/SMT-based solution by orders of
magnitude.

2.2.4 Minimality of PECs

In this section, we show that the number of non-empty PECs produced by #PEC is
minimal, in a certain sense of minimality defined by Yang and Lam [8]. More precisely, we
show that the set of non-empty PECs produced by #PEC form Atomic Predicates.

Definition 2.1 (Atomic Predicates [8]). Let M be a set of predicates, each representing a

21

match condition. Then atomic predicates of M are the set of predicates A(M) = {α1, . . . , αk},
satisfying the following properties:

1. for all i ∈ {1, . . . , k}, αi 6= false;

2. (
∨k
i=1 αi) = true;

3. αi ∧ αj = false for all i, j ∈ {1, . . . , k} such that i 6= j;

4. Each predicate p in M, where p 6= false, is equal to the disjunction of some subset of
atomic predicates:

p =
∨

i∈S(p)

αi where S(p) ⊆ {1, . . . , k};

5. k is the minimal value of k such that the set {α1, . . . , αk} satisfies the above four
conditions.

Yang and Lam show that the set of Atomic Predicates for a certain set of match-conditions is
unique [8]. The authors provide a BDD-based approach for computing the Atomic Predicates
from input match conditions. We show we can get the same through a fundamentally different
(and more efficient) algorithm:

Theorem 2.1 (Minimality of #PEC). Given as input a set of match conditions M, the
set of non-empty PECs constructed by #PEC forms atomic predicates A(M).

Proof. The proof can be found in [29]. QED.

In addition, it is easy to show that a set of PECs being Atomic Predicates is a sufficient
condition for it to be used for PEC-based analysis as described in § 2.1. However, it is not a
necessary condition. In fact, among the PEC-based analysis tools mentioned in this chapter,
only APV and #PEC produce Atomic Predicates. In addition, as demonstrated in the next
section, #PEC does so an order of magnitude faster than APV (§ 2.3.5).

2.3 EVALUATION

We experimentally evaluate #PEC and compare it with other PEC-based network verifica-
tion tools (namely APV, ddNF, and VeriFlow) in terms of performance and expressiveness.
In doing so, we use various real-world datasets including ones from campus networks, data
centers, and real-world firewall configurations,
Using ddNF, we also experimentally demonstrate that empty PECs can lead to wrong

analysis results while analyzing real-world networks, a problem that #PEC efficiently avoids.

22

We compare the performance of #PEC’s counting-based PEC-emptiness checking approach
with the baseline approaches based on SAT/SMT and BDD solvers.

Overall, our experiments show that #PEC achieves both expressiveness and efficiency,
making it a suitable framework for practical network verification.

2.3.1 Implementation

Here we outline our implementation of #PEC and the related frameworks, as well as the
implementation of PEC-emptiness checking approaches.

Implementation of APV, ddNF and #PEC To rigorously evaluate the performance of
our tool against others, we implement a version of APV and #PEC within the same framework:
we opted for Z3 [35]. Our re-implementation of APV applies the same optimizations as
proposed in [14]. We do not have to re-implement ddNF, since it is already available as an
open-source module in Z3. Similar to ddNF, our implementation of #PEC leverages Z3’s
highly optimized TBV implementation. We implement the other element types as a C++11
library, which we describe in more detail in [29].

PEC-emptiness checking approaches In addition to implementing #PEC’s counting
method, we want to evaluate the SAT/SMT and BDD-based solutions to the PEC-emptiness
problem that use propositional logic to precisely encode when a PEC is empty. Their symbolic
encoding works as follows.
Let n be a node in our SICL. To check the emptiness of Packets(PECn), we encode the

definition in § 2.2 as the propositional logic formula n.match ∧ ¬
(∨

c∈n.children c.match
)
. For

checking the formula’s satisfiability, we use an SAT/SMT solver or construct a BDD, as
detailed next.

Our BDD implementation uses the C++ BuDDy library. We set the initial node number

Dataset Summary
REANNZ-IP [31, 32] 1,159 distinct IP prefixes
REANNZ-Full [31, 32] 1,170 OpenFlow rules
Azure-DC [33] 2,942 ternary 128-bit vectors
Berkeley-IP [5, 34] 584,944 distinct IP prefixes
Stanford-IP [7] 197,828 distinct IP prefixes
Stanford-Full [7] 2,732 ternary 128-bit vectors
Diekmann [31] Thousands of 8-tuples

Figure 2.10: Summary of datasets

23

and cache size by manual tuning and choosing values that yield better results. In the case of
the SAT/SMT implementation, we call Z3 [35]. To avoid additional parsing overhead, we
use Z3’s C++ API to construct the Boolean formulas, rather than using the more standard
SMT-LIB [36] format for SAT solvers.
As part of the Boolean encoding of match types (recall § 2.2.1), we convert tbv<N>

elements into N Boolean variables, one for each non-wildcard ternary bit. For the conversion
of set<T>, which is implemented using bitsets, we encode the disjunction of the indexes of
the set bits using dlog2Ke Boolean variables where K is the length of the bitset. For the
tuple<E1, . . . ,Ek> encoding, we designate b = b1 + . . .+ bk Boolean variables where bj is the
number of Boolean variables needed to represent Ej . The final encoding is the conjunction of
the Boolean encoding of each tuple coordinate.

2.3.2 Datasets

To rigorously evaluate #PEC, we use 64 different datasets extracted from five independent
routing tables and firewall collections [5, 7, 31, 37]. Figure 2.10 summarizes the datasets.
Each dataset is encoded as a list of rule match conditions of a suitable match type (§ 2.2.1).
Since ddNF only supports TBVs, we encode the match conditions in our datasets as TBVs
whenever possible. This is not always possible though, particularly in the ‘Diekmann’ dataset,
as described below. We pre-process the match conditions to eliminate duplicates. We describe
each category of datasets in turn.
REANNZ: The REANNZ-Full dataset [37] contains more than a thousand OpenFlow

rules, extracted from a single routing table that was used in the Cardigan deployment [32].
The OpenFlow rules in the REANNZ dataset use the following header fields: source and
destination MAC addresses, ether-type, source and destination IP addresses, IP protocol
field, and source and destination TCP ports. We convert each match condition in the rules
to a 216 bit TBV. From the full dataset, we extract REANNZ-IP which contains only IP
prefixes, but also encoded as TBVs.
Berkeley-IP: The Berkeley-IP dataset originates from [5] where IPv4 prefixes from the

RouteViews project [34] were evaluated in the context of the UC Berkeley campus network
topology. Our dataset focuses only on the IPv4 prefixes, which we encode as 32-bit long
TBVs.

Azure-DC: The Azure-DC dataset [33] contains FIBs that simulate Azure-like data centers
as deployed by Microsoft at that time. It contains a total of nearly 3000 match conditions,
each of which is a 128-bit TBV.
Stanford: The Stanford dataset originates from Stanford’s backbone network [7], which

24

contains configurations of sixteen Cisco routers. For each router, we generate its transfer
function [7] which models the static behavior of the router (including forwarding and ACLs).
We then use the match conditions in the transfer function, encoded as 128-bit TBVs, to
produce a dataset for that router (e.g Stanford-Full/boza). To measure the effect of analyzing
a network containing all sixteen routers, we also combine all sixteen datasets into a single
one, Stanford-Full, which contains a total of 2,732 unique ternary 128-bit vectors. In our
Stanford-IP dataset, we extract the IP prefixes directly from the raw router configurations,
thereby avoiding the IP prefix compression feature in HSA’s transfer functions. As a result,
our Stanford-IP datasets are significantly larger than the datasets used in the evaluation of
HSA [7] and ddNF [14].
Diekmann: The Diekmann datasets contain match conditions from real-world Linux

iptables rule-sets [31]. We parse the following packet header matching fields: source and
destination IP prefix, source and destination port, protocol, connection state, input, and
output interface. We encode these as a mixture of TBVs and regular bitsets, which we
combine into 8-tuples. We ignore wildcard characters for interfaces. Since iptables does not
strictly follow the match-action abstraction introduced in § 2.1, we simplify each original
iptables rule-set through a pre-processor that propagates match conditions along iptables
chains in a depth-first manner. This essentially flattens a multi-chain iptables configuration
into a list of match conditions without jumps and returns, conforming to our assumptions.

2.3.3 Case Study: Empty PECs

To emphasize the importance of detecting empty PECs, we describe real-world cases of
imprecision in ddNF, all of which #PEC handles successfully. Due to space, we only illustrate
a few examples (in our full study, we encountered over three dozen cases of imprecision in
ddNF).
False negatives: Due to the existence of empty PECs, ddNF misses 35 dead rules (§ 2.1.2)

in the REANNZ dataset. We also identify four dead rules in the Stanford datasets that are
missed by ddNF, one in each of the ‘soza’, ‘sozb’, ‘yoza’, and ‘yozb’ Cisco routers.
False positives: In the Stanford dataset, we identified a case of false positive in answering

the query: “Would every packet with the destination IP address in 171.64.79.160/24 be
forwarded from router ‘yozb’ to router ‘yoza”?. For this query, ddNF wrongly reports that
some packets with such a destination IP address are dropped. The relevant rules of the ‘yozb’
router are shown in Figure 2.11 (slightly simplified for representation).
Here, ddNF produces this wrong result, because the union of IP prefixes that forward to

‘yoza‘ equals the IP prefix of the last rule that drops packets: the match condition of the last

25

Destination=171.64.79.160/28 => yoza
Destination=171.64.79.176/28 => yoza
Destination=171.64.79.128/27 => yoza
Destination=171.64.79.192/27 => yoza
Destination=171.64.79.224/27 => yoza
Destination=171.64.79.0/25 => yoza
Destination=171.64.79.0/24 => DROP

Figure 2.11: Part of ‘yozb’ router rules in the Stanford dataset.

Protocol=ICMP => Controller
Destination=210.4.214.0/24 => Port 1
Destination=210.4.215.0/24 => Port 1
Destination=210.4.214.0/23 => Port 2
Destination=ANY => DROP

Figure 2.12: Part of OpenFlow rules in REANNZ dataset.

rule, therefore, is encoded as a singleton set that contains an empty PEC — similar to the
case described in § 2.1.2.
For a more complicated example, consider the OpenFlow rules in Figure 2.12 obtained

from the REANNZ dataset (slightly simplified to help with readability), ordered from
highest to lowest priority. Suppose we encode these rules with the match type <ip_prefix,
exact<bv<8>>. The match values above induce the SICL illustrated in Figure 2.13. Say, a
network operator wants to verify the following intent:

“All packets destined to IP prefix 210.4.214.0/23, except the ICMP packets, must
be forwarded through Port 1.”

To check the intent, the analysis need to check the fate of PECs corresponding to the
formula 210.4.214.0/23, ANY ∧ ¬(0.0.0.0/0, ICMP). The first and second propositions
correspond to the match values of nb and nc in Figure 2.13, respectively. Algorithm 2.1 would
turn this query to Subtree(nb) ∩ (Subtree(na)− Subtree(nc)) = {PECnb

, PECnd
, PECne}.

Figure 2.14 shows the fate of packets for each PEC according to the rules. PECnd
and

PECne are indeed forwarded through Port 1, but PECnb
violates the intent. In such case,

ddNF reports a violation of the intent. However, looking at the rules above, it is easy to see
that the intent indeed holds. Therefore ddNF’s report is a false positive.

To find the crux of this false positive, let us take a closer look at PECnb
. The packet counts

of PECng , PECnh
, PECnd

, PECnc , and PECnf
(the descendants of nb) are 256, 256, 256×

255, 256 × 255, and 0, respectively (§ 2.2.3). The packet count of PECnb
, therefore, is

26

na
<0.0.0.0/0,Any>

nb
<210.4.214.0/23,Any>

nc
<0.0.0.0/0,ICMP>

nd
<210.4.214.0/24,Any>

ne
<210.4.215.0/24,Any>

nf
<210.4.214.0/23,ICMP>

ng
<210.4.214.0/24,ICMP>

nh
<210.4.215.0/24,ICMP>

⊥

Figure 2.13: The SICL for part of REANNZ dataset.

Match Action
PECna Drop
PECnb

Port 2
PECnc Controller
PECnd

Port 1
PECne Port 1
PECnf

Controller
PECng Controller
PECnh

Controller

Figure 2.14: PEC-based equivalent of the rules in Figure 2.12.

512× 256− 256(1 + 1 + 255 + 255) = 0. Thus, PECnb
is an empty PEC and the violation

reported by ddNF does not affect any packet. #PEC correctly verifies that the property
holds. For the sake of brevity, we omit the discussion of five other, but similar, examples of
false positives in the REANNZ dataset.

Remark 2.1. In general, the source of false positives can be characterized as follows: let
X and Y be two PECs where X is empty and Y is not, and let rX and rY be two rules
affecting X and Y , respectively. If rX and rY have different actions, and the verification
query includes both PECs, then ddNF’s result is wrong when the property is true about X
and false about Y .

27

Dataset Insertions PECs Empty
PECs

Atomic
Preds.

PEC-construction
time (s) PEC-emptiness check (s) APV (s) Memory (MB)

Z3 ddNF #PEC BDD SAT Card. BDD SAT Card. APV

REANNZ-IP 1,159 1,160 25 1,135 <1ms <1ms 0.016 0.414 <1ms 0.001 6 6 3 5
REANNZ-Full 1,170 12,783 275 12,508 0.112 0.009 2 9 0.018 3 14 26 9 10
Azure-DC 2,942 5,096,869 10,450 5,086,419 3301 121 20112 47829 30 25669 4,429 5,797 2,365 2,517
Berkeley-IP 584,944 584,945 29,813 Timeout Timeout 2709 1553 460 0.515 Timeout 302 701 227 Timeout
Stanford-IP/soza 184,682 184,682 4,841 179,841 471 347 7 82 0.119 4951 102 251 69 49
Stanford-IP/yoza 4,746 4,746 3 4,743 <1ms <1ms 0.076 2 0.002 2 8 9 4 6
Stanford-IP/All 197,828 197,828 4,874 192,954 266 199 19 89 0.156 5149 122 265 85 53
Stanford-Full/soza 524 16,764 81 16,683 0.056 <1ms 0.668 9 0.024 2 18 19 10 13
Stanford-Full/yoza 507 60,363 231 60,132 5 0.17 4 38 0.17 20 46 65 31 28
Stanford-Full/All 2,732 1,176,095 48,906 1,127,189 560 28 692 1958 4 2314 895 1,077 544 439

Diekmann/G 5,321 889,646 40 889,606 - 39 413 4729 10 2385 3,843 3,854 3,924 608
Diekmann/J 6,004 1,058,897 56 1,058,841 - 71 486 5654 13 2936 4,558 4,573 4,656 700
Diekmann/K 3,242 400,911 257 400,654 - 18 157 2084 3 732 1,997 2,006 2,031 233
Diekmann/P 578 492,378 4 492,374 - 47 168 1837 4 635 1,563 1,573 1,606 324
Diekmann/Q 307 4,626 38 4,588 - 0.087 0.763 17 0.016 0.94 21 29 18 7

Figure 2.15: Evaluation results for a subset of datasets. The full experimental results can be
found in our technical report [29].

2.3.4 Performance Evaluation

We evaluate #PEC’s performance along two dimensions, namely: (i) time and memory
usage to construct #PEC’s meet-semilattice; (ii) time and memory usage for detecting empty
PECs. We discuss our results in turn.5

2.3.5 PEC Construction

We compare #PEC to APV, and Z3’s implementation of ddNF. We ensure that every
implementation benefits from the same optimizations (§ 2.3.1). We find that #PEC consis-
tently outperforms APV and ddNF in Z3 where, on larger datasets, the speed-up is more
than 10×. For example, on the Azure-DC dataset, our re-implementation of #PEC in Z3 is
approximately 30× faster than ddNF. APV times out on the Berkeley-IP dataset after 10
hours, whereas #PEC completes the PEC construction in 45 minutes. We include in #PEC’s
total run-time including the time it takes to check PEC emptiness when comparing #PEC
and APV. For this comparison, we use the 39 datasets in which either APV or #PEC runs
for more than 100 ms , excluding the Berkeley-IP dataset where APV times out. In 95% of
these 39 cases, despite #PEC’s PEC-emptiness check, #PEC is at least 10× faster than
APV, and 25% of this time #PEC’s speed-up is at least 100×. On average, #PEC is at least
80× faster than APV. Finally, APV and #PEC’s memory usage averages out to be the same
across these datasets. Figure 2.15 shows parts our experimental results, see [29] for the full
details.

5All experiments are run on a Linux machine with an Intel Xenon CPU ES-1660 3.30GHz and 32GB
DDR3 1333MHz RAM.

28

The fact that #PEC outperforms APV is expected since #PEC eliminates the per-bit
overhead of BDDs. The performance difference between #PEC and Z3’s implementation of
ddNF, in turn, can be explained in terms of the number of intersection and subset operations
required to insert a new match condition into their respective data structure: their total
run-time is proportional to these operations. For example, in the Stanford-Full dataset,
#PEC requires 0.4 million whereas ddNF in Z3 takes 8 million such operations, a 20×
improvement. #PEC’s improvement over Z3’s implementation of ddNF is similar on the
other datasets.

2.3.6 PEC-emptiness Checks

We compare #PEC’s counting method to the SAT/SMT and BDD-based solutions to
checking PEC-emptiness. We evaluate the performance of PEC-emptiness checking using
the 24 datasets in which #PEC runs for more than 100 ms . We perform the PEC-emptiness
check after the PEC construction has been completed. We take extra precautions in our
implementations to ensure a fair comparison (§ 2.3.1). Figure 2.15 shows that #PEC’s
counting method significantly outperforms the SAT/SMT and BDD-based approaches: #PEC
achieves at least a 10× speed-up compared to the SAT/SMT and BDD-based approach in
over 95% of cases. On average, #PEC is at least 500× and 200× faster than the SAT/SMT
and BDD-based approaches, respectively.

To understand why #PEC’s counting-based approach outperforms the SAT/SMT and the
BDD-based approaches, reconsider the IP prefixes in § 2.1.2. Representing x, y, and z in
propositional logic requires 16, 15, and 15 variable assignments respectively, corresponding
to their non-wildcard bits. Just encoding z.match− (x.match ∪ y.match) in SAT requires
near 50 logic gates, excluding the task of checking satisfiability. Representing the predicates
using BDDs requires the same number of BDD nodes. Assuming logical BDD operations
are linear in their operand size, computing Packets(PECz) at least requires CPU cycles
proportional to the cumulative size of the three BDDs. On the other hand, the cardinality of
each predicate in the example fits into a single machine word. We need only 2 arithmetic
CPU operations to compute the packet count of PECz (i.e., |z| − |x| − |y|), and then check
if it is zero. While in theory there are still near 50 operations performed (at the bit level),
#PEC harnesses the computing power of ALUs to finish the operations in fewer CPU cycles.
For example, in the Stanford-Full dataset where each node in the DAG has 3 children and
12 nodes in its subtree on average, the BDD-based approach requires 3 × 128 low-level
BDD operations on average (each spanning tens of CPU instructions). By contrast, our
counting-based approach needs at most 3 ALU operations for each subtraction. So #PEC

29

should be at least (3× 128)/(12× 3) ≈ 10× faster than the BDD-based approach, and our
experiments show indeed at least a 127× speed-up.

2.3.7 Comparison with VeriFlow

We compare #PEC to the original implementation of VeriFlow [38]. Since that implemen-
tation of VeriFlow only supports a restricted form of OpenFlow rules where arbitrary per-field
bitmasks are disallowed [39], it cannot analyze the majority of our datasets. We, therefore,
restrict our experiments with VeriFlow to a simplified version of the Stanford-Full dataset.
We use the default packet header field ordering. We ask VeriFlow to only find ‘Equivalence
Classes’ (ECs), rather than each EC’s forwarding graph. In this restricted setting, VeriFlow
takes 41 s to create 3,778,324 ECs, using 1 GB of memory. Despite #PEC’s support for
arbitrary bitmasks, it is still more efficient than VeriFlow, in both time (30 s) and space
(0.5 GB): specifically, #PEC constructs only 1,066,645 PECs in 27 s, and finds 44,418 empty
PECs in 3s.

2.3.8 Discussion: Importance of Empty PECs

We showed that ddNF’s wrong analysis results are due to the existence of PECs that are
empty. In our case study (§ 2.3.3), we exemplified real-world cases where empty PECs lead
to wrong analysis results. We emphasize that we only gave illustrative examples; our list
is not exhaustive, and it includes cases where ddNF misses errors. In practice, therefore,
ddNF is only as fast as the slowest decision procedure needed to sanity-check its results, a
fundamental limitation. By contrast, #PEC’s analysis is correct by construction, and its
performance is not dependent on BDDs or SAT/SMT solvers, which are orders of magnitude
slower in finding empty PECs (§ 2.3.6).

2.4 CONCLUSION

While PEC-based analysis improves the scalability of network verification, our experiments
reveal the tension between expressiveness and efficiency in the PEC-base tools in existence.
Our work, #PEC, offers a new PEC construction approach that resolves this tension.
Expressiveness is achieved through using an extensible library of match types rather than
bounding the PEC computation algorithm to a certain encoding. Efficiency is achieved by
using the Set Intersection Closed Lattice of match conditions to define the PECs, eliminating
the need for expensive subtraction operations. We also identified the problem of empty

30

PECs and our case study demonstrated that such PECs lead to imprecise analysis results in
ddNF. We provided a counting-based solution to this problem that outperforms SAT/SMT
and BDD-based solutions by 10− 100×. In addition, #PEC constructs the unique minimal
number of PECs, and it does so 10× faster than APV’s atomic predicates.

31

Chapter 3: Specification: Mining High-Level Intents from Low-Level
Behavior [2]

There has been significant research progress towards network verification tools [1, 3, 5, 6,
10, 11, 12] that given a set of network-wide intents, check whether the configured network
satisfies the intents. There has also been progress towards network programming/configuration
synthesis [4, 40, 41, 42] tools that given the intents described in a domain-specific language,
synthesize data plane entries or control plane configurations that satisfy the intents. These
tools rely on the ability of an administrator to provide a formal (i.e. defined in a precise
language) specification of the desired behavior. However, in practice such specifications are
almost never available in a complete form. Intents typically begin as architectural design goals,
and formalizing them in even a moderately large network would be an additional onerous
burden for engineers. Moreover, administrators often inherit an already working legacy
network without proper documentation and are asked to maintain the network. Therefore,
administrators may not be fully aware of the how the network operates, even informally.
That is part of why in the real world, administrators hesitate to touch the network they
operate very often due to concerns over breaking the network [14].

The goal of this chapter is to mitigate the problem of unavailability of intent specifications.
Our idea is to utilize the existing network behavior to infer the high-level intents. The inferred
intents can subsequently be fed as input to verification and synthesis tools for continued
maintenance of the network. If compact enough for human comprehension, the intents can
also be viewed as a summary of network behavior which can assist the administrators in
management and debugging. To take this approach, one needs to overcome challenges related
to encoding behavior and intents, scalability, and imperfections in data collection.
We present Anime (Automatic Network Intent Miner), a framework and system to infer

high-level intents by mining the common patterns among the low-level forwarding behavior
in the network. We provide a setup to express both low-level behavior and the high-level
intents via their associated features. Each feature corresponds to one aspect of the behavior,
including packet header information, devices along the path, and environmental conditions
such as time of path observation, device or link state, etc. We design our features to have
hierarchical values (like in CIDR), providing fine-grained control over the trade-off between
precision and recall. We then use this setup to formally define intent inference as an NP-hard
constrained cost optimization problem related to our quality and compactness measures. We
heuristically solve the problem by grouping relevant behavior using clustering techniques
with the cost function as a measure of dissimilarity and finding the most specific intent that
represents all behavior of each group. We also develop a suite of highly effective optimizations,

32

including indexing and parallelization, that allows our approach to scale to large networks
with millions of forwarding paths.

Given observed forwarding behavior collected from one or more snapshots of the network,
and a limit k on the number of inferred intents, Anime produces up to k intents that
collectively describe all observations with high precision. The results also predict unobserved
but possible behavior, which can be used to alleviate imperfect observations. The system
can also be used to detect anomalous behavior.

We evaluate the effectiveness and performance of Anime on large synthetic and real-world
operational networks with hundreds of routers and millions of forwarding paths. In our
experiments we consider four use cases: (1) First, we consider a use case where the goal
is to only summarize observed network behavior for human comprehension. (2) We also
evaluate the tool in settings where not all possible behavior is observed and some needs to
be predicted. (3) Next, we consider settings where the system is used to analyze multiple
snapshots of network collected over time, with possibility of policy change over time. (4)
Finally we use Anime to flag anomalous behavior and investigate its results. As baselines, we
compare subsets of our results with the closely related work: Net2Text [43] which focuses
on the summarization use case only, and dynamic invariant detection based tools such as
Invar-net [44] and Config2Spec [45] which find properties that remain invariant over multiple
snapshots. Our results show that Anime scales quasi-linearly with the number of inputs and
can analyze large networks with an average runtime overhead of 3ms per input behavior. It
can infer compact summaries (1000× smaller than input) with a small (1%) loss of precision.
For imperfect observations, Anime can predict most of unobserved behavior with few false
positives. In our multi-snapshot analysis, Anime can distinguish policy changes from noise.
Moreover, Anime often generates significantly higher quality (higher F-score) results compared
to Net2Text (as much as 70x in our experiments), and invariant based methods (up to 5x).
Finally, our investigation of anomalous behavior flagged by Anime on a real-world operational
network has led to interesting observations, including finding bugs in our data collection
tools and in one case prompting actions by network operators.

3.1 MOTIVATION

A network operator needs to ensure that her network changes are safe. Network verification
tools like [6, 46] can help in this regard. Such tools can readily be used to check generic
properties (e.g. loop freedom). But for checking organization specific properties, such as
reachability, isolation, or fault tolerance policies, these tools require formal specifications of
correct behavior (intents), which are not available to the operators, and may not be even

33

U1 U2 U3

FW1 FW2

S1 S2

(a) Example 1

R1

R3 R4

R5

AS2
R2

AS1

(b) Example 2

Figure 3.1: Example network setups

known. The operator can manually investigate the network configurations or behavior to
learn more, but it would be a burdensome task, with configurations often involving multiple
people or teams, legacy configurations, and poorly-documented decisions by current and
departed employees. Thus having a tool that automates or at least facilitates this process
would be useful. This is where automatic intent inference comes into picture.

In this section, we first make the idea of intent inference more concrete via intuitive
examples. We then discuss how inferred intents can be utilized by other systems.

3.1.1 Illustrative Examples

We provide two examples illustrating how forwarding behavior can be used to infer possible
intents. The examples are inspired by the network verification literature [4, 5, 47]. In these
examples, the information from forwarding paths across various devices, packet headers, and
data plane snapshots are used to derive higher-level information about the collection of the
paths.

Example 1: Data center network

Consider the network in Figure 3.1a resembling part of a very simple data center network.
The network contains three user machines (U1, U2, U2), two firewalls (FW1, FW2), and two
servers (S1, S2). The green and red arrows in the figure denote the forwarding paths for
packets with destination IP addresses 10.0.1.2 and 10.0.1.3 respectively.

Out of the three green paths destined to 10.0.1.2, consider two: U1.FW1.S1 and U2.FW1.S1.
The only difference between these is their starting node (U1 vs. U2). Looking at these
paths we could say that the enforced intent is that all packets starting from a user node
destined to 10.0.1.2 go through firewall FW1 and reach server S1. We represent this guess as:
{dstIP : 10.0.1.2, start : User, waypoint : FW1, end : S1}.

Let us now consider the third green path, namely U3.FW2.S1, in addition to the previous

34

two. This path also starts from a user node and ends in S1, but it goes through FW2

instead of FW1. Note that FW2 is also a firewall. So we refine our initial guess of the intent
to {dstIP : 10.0.1.2, start : User, waypoint : Firewall, end : S1}, i.e. packets originating
from the user nodes destined to 10.0.1.2 should traverse any firewall and reach server
S1. If we repeat this process for the paths destined to 10.0.1.3 (the red arrows), we get
{dstIP : 10.0.1.3, start : User, waypoint : Firewall, end : S2}.
Our two guesses for the green and red paths only differ in the last hop (S1 vs. S2). Both

nodes are servers. So if we combine the information from all the paths, we can say that
for packets destined to the prefix 10.0.1.2/31 originated at a user node, the packet will
traverse a firewall and end up in a server node: {dstIP : 10.0.1.2/31, start : User, waypoint :

Firewall, end : Server}.

Example 2: ISP network

Figure 3.1b illustrates another example network that resembles part of a very simple ISP.
The routers in the blue cloud show the network of an Autonomous System (AS) under
our administration connected to two other ASes, namely AS1 and AS2. Say we observe
the behavior of packets destined to a specific IP prefix P for a period of one year (from
January to December). Our observations indicate that from January to June, the packets
destined to P received from AS1 usually take the path shown by the red arrows in the figure:
AS1.R1.R2.R5.AS2. We also observe that when there is a link failure in that path (e.g. when
R1 −R2 goes down), the packets destined to P take path indicated by the green arrows in
the figure: AS1.R1.R3.R4.R5.AS2. By combining these observations obtained from multiple
snapshots across time, we can say the common property held from January to June is that a
packet destined to P received from AS1 will hit R1, traverse some internal nodes and reach
AS2 through R5. This can be denoted as I1 = {date : [Jan., June], failures : {0, 1}, dstIP :

P, path : AS1.R1.Internal
+.R5.AS2} where + denotes ≥1 repetitions.

Let’s say starting from June, the operators decide to drop packets destined to P due
to suspicious activities. So from June to December we observed that packets destined
to P received from AS1 get dropped at R1. This can be represented by I2 = {date :

[June,Dec.], failures : Any, dstIP : P, path : AS1.R1.drop}. The set {I1, I2} captures all
observations from January to December.

3.1.2 Applications

Here we discuss some of the main applications of Anime.

35

Input for intent-based networking : The intents inferred from existing network behavior
can be subsequently fed into verification or synthesis tools for continued maintenance of the
network. More generally, the inferred intents can enable or streamline a suite of Intent-Based
Networking applications including automatic migration from legacy networks to SDN or
cloud paradigms, transparent network optimizations [48], automatic network repair [49], etc.
Network behavior summarization: When compact enough, the inferred intents can be

viewed as a summary of network behavior that can assist network operators in understanding
what is going on the in networks under their administration. This is particularly important
as current network management relies heavily on humans in the control loop. Consequently,
human insight is fundamental for network debugging [43] and management in general.
Behavioral anomaly analysis : The network from which the observed behavior is collected

may include misconfigurations. Network verification tools are supposed help in detecting
such misconfigurations, but in the absence of specifications of correctness, these tools cannot
help. We can use Anime to detect behavior that are significantly dissimilar to the rest of
the observed behavior (i.e. anomalies), and use that to detect possible network problems,
not requiring correctness specifications. In this work we use Anime for detecting “negative
anomalies” (behavior that should exist but does not). The framework can also be extended
to detect “positive anomalies” (behavior that exists but should not).

3.2 ANIME FRAMEWORK

In this section we overview Anime’s design. We first provide an abstract context for intent
inference and use it to define our quality measures (3.2.1). We then describe our formal
setup to express network behavior and intents via features with hierarchical values. We
use the setup to formulate intent inference as an NP-hard constrained cost optimization
problem (3.2.2). We provide a heuristic solution that groups similar behavior using clustering
techniques and produces an intent that represents all behavior per each group (3.2.4). Finally,
we describe optimizations that allow our technique to scale to large networks (3.2.4).

3.2.1 Problem Context

In our abstract view of the intent inference process (Fig. 3.2), there is a set of actual intents
that govern the network behavior. Applied to the target network, the intents allow a set of
possible forwarding behavior in the form of a set of forwarding paths in the network.1 Note

1Here, we assume a white-listing model meaning that any path not explicitly allowed by any intent in a
set of intents is disallowed by that set.

36

Collection Intent
Inference

Actual
Intents

Possible
Paths

Observed
Paths

Inferred
IntentsHigh-level

Low-level

Not known

Figure 3.2: An abstract view of intent inference process

Actual Inferred

TPFN FP

Behavior space

Figure 3.3: Quality setup

that the actual intents and the possible behavior are not known (otherwise we wouldn’t need
intent inference). Also for now, we assume that the actual intents are correct, i.e. the network
is not misconfigured (we will revisit this assumption in anomaly analysis). A collector collects
a subset of these paths by data plane or control plane configuration analysis [1, 5, 10, 12],
monitoring actual network traffic, or any other means. The collection mechanism is orthogonal
to our work but we emphasize that the collector may not be able to observe all possible
paths. For example, a traffic-based collector may miss behavior not exercised by the traffic,
or some possible behavior may only be visible during link failures (as in Example 2), etc.
The observed paths are then fed into an intent inference tool which consequently generates a
set of inferred intents.
We use this context to talk about quality of intent inference. The goal is to infer intents

that are equal or close to the actual intents (ground truth). We can objectively measure the
closeness by comparing the concrete behavior represented/allowed by the two sets of intents.
Given the sets of actual (A) and inferred (I) intents, and function σ that maps a set of
intents to the set of all concrete behavior represented/allowed by the intents, we define true
positives as TP ≡ |σ(I)

⋂
σ(A)|, false positives as FP ≡ |σ(I)− σ(A)|, and false negatives

as FN ≡ |σ(A)− σ(P)|. This is depicted in Figure 3.3,
This way we are able to objectively measure the quality through the classic notions of

Precision ≡ TP/(TP + FP) and Recall ≡ TP/(TP + FN) which respectively correspond to
the specifity (exclusion of incorrect behavior) and coverage (inclusion of correct behavior) of
the inferred intents.
Our goal is to provide an intent inference process that achieves high precision and recall

37

but there is generally a trade-off between the two. In this work, we set to infer intents that
represent all observed behavior with as much precision as possible. We note a special use
case of intent inference, called summarization, where the set of possible paths (ground truth)
is equal to the set of observed paths (perfect observation) and for human readability, the
number of inferred intents is limited by a compactness parameter (k). Without the limit k,
one can trivially list all observed paths as the inferred intents and achieve perfect precision
and recall. We also consider and evaluate our tool in cases of imperfect observations. In
that case, recall can be below 1 and k is interpreted as a hyperparameter to control model
complexity thus avoiding over-fitting (low recall) and under-fitting (low precision).

3.2.2 Formal Setup

In Anime, both low-level forwarding behavior and the high-level intents are expressed
through their associated features. Each feature captures one aspect of the forwarding
behavior. Examples include packet header information (e.g. source/destination IP address,
port, protocol), device information such as start and end points, waypoints, ingress, egress,
entire forwarding paths, the observation timestamp, device or topology state (e.g link status),
etc. In Example 1 we used a tuple of destination IP, start, waypoint, and end features. In
Example 2 we used a tuple of time of observation, number of link failures, IP destination
prefix, and entire forwarding path features.
Each feature can have a set of possible feature values or labels associated with it. One

of the main insights of this work is to capture the hierarchies among feature labels that
naturally fit networking environments. For example, 10.0.1.2 and 10.0.1.3 are both included
in 10.0.1.2/31 which itself is a subset of, say, 10.0.1.0/24. Also in Example 1, both FW1

and FW2 are Firewalls. By supporting hierarchical values, Anime allows for finer grained
precision-recall trade-off control, resulting in higher quality intents (Section 3.3).

To capture this, we define a feature type F as the tuple ((ΣF ,⊆), δF) where ΣF is the set
of possible labels for F and δF : ΣF → R is a cost associated with each label. We interpret
the labels in Σ as labeled sets of values which are partially ordered by the subset (⊆) relation.
F can essentially be represented by a DAG where nodes are labels in ΣF and edges are
(maximal) subset relation. Figures 3.4a and 3.4b show example feature types for the set of
devices used in Examples 1 (Ddc) and 2 (Disp)2, respectively. The number to the right of
each label shows the cost of that label. For example δDdc

(Firewall) = 2. Note how traversing
from the bottom of these hierarchies to the top, the labels get less specific (lower precision)

2In Example 2 we assumed Disp has a special node with label drop that is disjoint from the rest of the
hierarchy.

38

but cover more values (higher recall). We assign a higher cost to higher loss of precision (see
below).

Any label of ΣF that is not a superset of any other label is called a concrete label of F , i.e.
concrete labels are the leaves of the DAG representing F (denoted by σF). For label l, σF (l)

denotes the concrete labels under l (the subset of σF included in the set labeled by l) – e.g.,
σDdc

= {U1, U2, U3, FW1, FW2, S1, S2} = σDdc
(Any), σDdc

(Server) = {S1, S2}.
A feature is simply an instance of a feature type with a name.3 We provide a library of

features types (Section 3.2.3) that can be used to encode forwarding behavior. The library
can easily be extended with additional feature types according to the definition above. The
library includes a feature type for a tuple of multiple other feature types. We used the
feature Fdc = (dstIP, start, waypoint, end) as an instance of Tuple〈IPPrefix , Ddc, Ddc, Ddc〉
in Example 1.

Within this setup, for a feature F , a path is simply a value from σF and an intent is a value
from ΣF . For instance (10.0.1.2, U1, FW1, S1) is a path and (10.0.1.2, User, F irewall, S1)

is an intent of Fdc. We say an intent i represents a path p iff p is among the leaves
under i, i.e. p ∈ σF (i). For a set of intents I = {i1, ..., ik} and a set of paths P =

{p1, ..., pn} we say I represents P iff for each path p ∈ P , there is at least one intent
i ∈ I that represents p, i.e. P ⊆

⋃
i∈I σF (i). For instance (10.0.1.2, User, F irewall, S1)

represents{(10.0.1.2, U1, FW1, S1), (10.0.1.2, U3, FW2, S1)}.
We define the intent inference problem in this framework:

Definition 3.1 (Intent inference problem). For a given feature F , a set of paths P , and a
limit on the number of inferred intents (k), find the set of intents I∗ = {i1, ..., ik′} (k′ ≤ k)
(the inferred intents) that represents P and minimizes the sum of the cost of the intents, i.e.
δF (I∗) =

∑
i∈I∗ δF (i).

For example for feature Ddc, P = {U1, U3, S1}, for limits of 3, 2, and 1, it is easy to see
the set of inferred intents are {U1, U3, S1}, {User, S1}, and {Any} with the costs of 3, 4, and
7, respectively.

To understand the relation between this definition and the intuition provided in the last
section, note that if we set the cost of each label to the number of concrete values it represents
(as we mostly do in our feature library4), for any I in the set of all sets of intents representing
P (IP), δF (I) approximates the number of concrete paths that the intents in I collectively
represent, i.e. TP +FP 5. Also, note that TP is the same for any such I. So δF (I) is inversely

3When it is clear from the context, we use feature and feature type interchangeably.
4See Sec. 3.2.3. One can also alter the costs to guide the inference.
5The imprecision is due to over-counting overlapping intents. We penalize overlap to encourage inferring

disjoint intents.

39

Any:7

Server:2

S2:1S1:1

Firewall:2

FW2:1FW1:1

User:3

U3:1U2:1U1:1

(a) Ddc

Any:7

External:2

AS2:1AS1:1

Internal:5

R5:1R4:1R3:1R2:1R1:1

(b) Disp

Figure 3.4: Device labeling hierarchy used in our examples

related to the precision of I and minimizing δF (I) maximizes the precision. Also for any such
I, recall (on observed paths) is 1.
It is possible to show the problem defined above is NP-hard by a reduction from the set

cover problem. We provide a heuristic polynomial solution to the problem in Section 3.2.4.

3.2.3 Feature Types Library

Inspired by [1], we provide a library of various feature types. Depending on the type of
network, collection mechanism, intended application, domain-knowledge, etc, different type
templates in the library can be instantiated to encode the forwarding behavior. One can also
design additional feature types. The following are examples of templates supported in our
library. Interested readers can refer to [50] for more types.
DAG〈V,E〉 where V and E are nodes and edges of an arbitrary DAG, is a feature type

where any label v ∈ V is interpreted as the set of leaves reachable from v. Ddc is an example
of this type.

Flat〈S〉, where S is a set of concrete values, is a feature type defined by a DAG with a
single root (Any) connected to |S| leaves each corresponding to a member of S. An intent
can either be a concrete value or anything, with no hierarchy in between. Net2Text [43] only
supports this type of feature (Chapter 5).
TBV 〈n〉 is a feature defined over Ternary Bit Vectors (TBV) of length n. A TBV is a

generalization of bit-vectors where arbitrary bits can be wildcards. A TBV is interpreted
as the set of bit-vectors it represents, e.g. 0∗ ≡ {00, 01}. IPPrefix is a specialization of
TBV 〈32〉 where wildcards can only happen at the end of TBVs.
Range. Integer ranges form a feature type suitable for fields like IP and port ranges or

constraints like number of link failures.
HRE〈F, d〉 is a variant of regular expressions over hierarchical alphabet useful for repre-

senting entire forwarding paths (Sec. 3.2.3).
Tuple〈F1, ..., Fn〉 combines the hierarchies of multiple features to create a more complex

40

feature. Σ = ΣF1 × ... × ΣFn , and for any a, b ∈ Σ, a ⊆ b iff
∧
i∈[1,n] ai ⊆ bi. Finally

δ(a) =
∏

i∈[1,n] δFi
(ai).

For all of these features (except HRE) ∀l ∈ Σ : δ(l) = |σ(l)|. In other words, the cost of
each label l is defined as the number of concrete label represented by l.

Representing entire forwarding path

As an exemplar of a complex feature, we describe a feature type designed to represent
entire forwarding paths, such as the ones used in the ISP example.
Our idea is to use regular expressions to represents sets of such paths. Specifically, we

focus on a limited class of regular expressions that seems to be a proper fit for representing
network paths. The grammar of such regular expressions is shown in Figure 3.5. An HRE is
defined over another feature type F and its alphabet is ΣF . We slightly generalize the notion
of acceptance in our regular expressions to account for the hierarchy of labels we introduced.
We call these Hierarchical Reduced Regular Expressions (HRE) due to the restricted grammar
and the extended notion of acceptance,

Here, a path is a string over the concrete labels of F (σF). We say a path p is represented
by an HRE h iff there exists a string s obtained by replacing a subset of the labels in p with
another label from the set of ancestors of that label in ΣF and s is accepted by h interpreted
as a normal regex. We denote by AccdF (h) the set of all strings over σF of length ≤ d

represented by h. In the ISP example, the path p = AS1.R1.R3.R4.R5.AS2 is accepted by the
HRE h = AS1.R1.Internal

+.R5.AS2 because s = AS1.R1.Internal.Internal.R5.AS2 which
is obtained by replacing R3 and R4 in p by the label Internal (ancestor to both device names
in Disp), is accepted by interpreting h as a normal regex. For a feature type F , and a limit d
on length of strings, we define HRE〈F, d〉 as ((ΣH ,⊆), δH) where ΣH is the set of all HREs
over ΣF with length ≤ d. We interpret each h ∈ ΣH as the set AccdF (h) and the hierarchy is
formed according to the subset relation among these sets, e.g. h0 = AS1.R1.R2.R5.AS2 ⊂
h1 = AS1.R1.Internal.R5.AS2 ⊂ h2 = External.Internal+.External ⊂ h3 = Any+ (d ≥ 5).
By the argument in Sec. 3.2.2 we should set δH(h) = |σH(h)| = |AccdF (h)|. However,

computing |AccdF (h)| is expensive. Instead, we roughly approximate the value by mF (h)d

where mF (h) is the geometric mean of cost of labels of HRE h over field F (i.e. the average
number of concrete labels of F each label in h represents). In Example 2, δH for h0, ..., h3

are 1d, 1.38d, 2.71d, and 7d, respectively. Note how less precise intents received higher costs.
In this dissertation, we only use HREs over a labeling hierarchy for network devices, such

as Disp in the ISP example. One can imagine HREs over more complex feature types such as
tuples of the network device and packet header fields to track packet header changes along

41

HRE ::= l | l+ | HRE.HRE l ∈ ΣF

Figure 3.5: Grammar of Hierarchical Reduced Regular Expressions

the forwarding path.

3.2.4 Solving the Intent Inference Problem

Our heuristic solution to the intent inference problem divides it into two related sub-tasks:
single intent inference and path selection.

Single intent inference

This is a specialization of the intent inference problem with k = 1: find a single intent
that represents all input paths with the lowest cost. For a feature F , we define the function
tF : 2σF → ΣF (called the join function) as the answer to the single intent inference problem.
In other words, the join of a group of behavior is the most specific intent that represents
all behavior in that group. In practice (Sec. 3.2.4) we use join on two labels (rather than a
group of labels), i.e. tF : Σ2

F → ΣF where tF (a, b) = tF (σF (a) ∪ σF (b)).
For most of the feature types in our library, computing join of two labels is straight-

forward and efficient: tDAG(a, b) is their least cost common ancestor, tFlat(a, b) is a if
a = b else Any, tTBV (a, b) = c where ci = ai if ai = bi else ci = x. tRange([a, a′], [b, b′]) =

[min(a, b),max(a′, b′)], tTuple(a, b) = (tF1(a1, b1), ...,tFn(an, bn)). For example tDdc
(U1, U2) =

User, tDdc
(U1, FW2) = Any, tRange([1, 2], [2, 4]) = [1, 4], tTBV (001, 100) = x0x, and

tFdc
((10.0.1.2, U1, FW1, S1), (10.0.1.3, U1, FW1, S2)) = (10.0.1.2/31, U1, FW1, Server).

Computing join for HRE〈F, d〉 is more complex and requires dynamic programming
(O(d3|ΣF |2)). Here we discuss the high level idea and omit the details. Interested reader can
refer to [50] for more details. Given two paths v and w, for any 0 ≤ i ≤ |v|, 0 ≤ j ≤ |w|,
0 ≤ n ≤ min(|v|, |w|), c ∈ Σ, we define f(i, j, n, c,m) to be the cost of join of a prefix of v
with length i and a prefix of w with length j with an HRE of length n where the last label
used in the HRE is either c or c+. Boolean m indicates whether the label at the last position
has already been used to match any characters from v/w or not. It is easy to see that f
has optimal substructure. After computing f for all values of i, j, n, c,m (in O(d3|ΣF |2)) we
can find the t(u,w) and its cost from min1≤n≤min(|v|,|w|),c∈ΣF

f(|v|, |w|, n, c). For instance, the
join of the two paths in Example 2 is AS1.R1.Internal

+.R5.AS2. The idea can be similarly
extended for join of two general HREs rather than just paths.

42

Observation: Because of the way we defined label costs, we can use δ(t(P)) as a measure
of dissimilarity/unrelatedness of the paths in a set P . Higher cost means we have to lose more
precision to represent all paths together using a single intent, hence the paths are probably
not related to each other, i.e. do not come from the same intent. For example, by comparing
δ(tDdc

(U1, U2)) = δ(User) = 3 with δ(tDdc
(U1, FW2)) = δ(Any) = 7 we get that U1 is more

related to U2 than FW2, which matches our intuition.

Path selection

Having a solution for single intent inference, the next task is to decide which subset of
paths should be fed into the single intent inference problem. Following the observation above,
we treat the general intent inference problem roughly as a clustering problem where the goal
is to put the more similar paths into the same clusters and then feed these clusters as inputs
to the single intent inference problem to infer one intent per cluster. In our clustering, the
similarity measure mentioned above can be used to define the distance between paths and
clusters of paths.

Specifically our clustering approach is inspired by the Hierarchical Agglomerative Clustering
(HAC) technique [51]. In HAC, each object (i.e. path) is considered as a separate cluster
initially. The clusters are then iteratively merged with each other until a single cluster
remains. At each iteration, the clusters with the minimum distance are selected to be merged
with each other. In our approach we terminate the iteration once at most k clusters remain.
We define the distance d(ci, cj) between clusters ci and cj as the amount of increase in the
cost of representation by merging the clusters compared with the sum of cost of individual
clusters: d(ci, cj) ≡ δ(t(ci ∪ cj))− (δ(t(ci)) + δ(t(cj))). 6

Optimizations

A naive implementation of the solution described in the previous is not efficient and can
not scale. Here we discuss the optimizations that enables Anime to scale to large networks
with tens of millions of forwarding paths.
Approximation of join. As a first optimization we approximate t(ci∪cj) by t(t(ci),t(cj))

7.
t(ci) and t(cj) are approximated recursively during clustering. This way, the join function
is applied to only two labels at a time rather than to all labels in ci ∪ cj. This reduces the

6Although we refer to d as the distance between clusters throughout the chapter, it is not technically a
distance measure. It’s rather a measure of dissimilarity of clusters.

7In most feature types and experiments t(ci ∪ cj) = t(t(ci),t(cj)).

43

complexity of clustering from cubic to almost quadratic (see below).
Merging subsets. Each time a new cluster is formed by merging two other clusters, by

definition of join, the newly formed cluster may consume more that just those two clusters.
Other clusters may also be subsets of the newly formed cluster. We immediately merge all
such subsets into the newly formed clusters rather than waiting for the clustering process to
merge them one by one.
Parallelization. Before our clustering algorithm selects the first pair of clusters to merge,

it need to find the closest pair of clusters among the initial clusters (i.e. the original paths).
This involves a nearest neighbor lookup per each path. The set of clusters is fixed during this
phase, thus the lookup involves read-only operations. This allows us to easily parallelize the
lookup for this phase. Specifically, we use a thread pool of workers, each looking for the closest
cluster for a given initial cluster. Parallelization significantly enhances the performance of
the initial phase which roughly corresponds to half of the computation during clustering
(Sec. 3.3.7).
Indexing clusters. The complexity of a naive implementation of hierarchical clustering

in which the set of all clusters is linearly scanned to find the closest cluster (and subsets) per
each cluster is O(J ×N2logN) where N is the number of input paths and J is the complexity
of join (for two labels). An approach with quadratic complexity in the number of input paths
cannot scale to large networks. To alleviate this problem, we index the clusters to narrow
the search for nearest neighbours (and subsets).
Our index data structure is inspired by R-trees [52], balanced tree data structures often

used to index geometric multi-dimensional data. In a d-dimensional R-tree, similar data
objects are grouped together and represented by their d-dimensional Minimum Bounding
Rectangle (MBR). Each node of an R-tree corresponds to one MBR that bounds its children.
Data objects are stored at the leaf nodes. The key idea behind R-trees is that since all
children of a node are contained within the MBR of of that node, a query that does not
intersect with the MBR of a node, does not intersect with its children either. Insertion is
logarithmic in the number of inputs. Subset search (and remove) is logarithmic on average
(linear in the worst case). R-Trees for geometric rectangles with euclidean distance have
optimized logarithmic algorithms [53] for finding the (k) nearest neighbors of a query.

We adopt R-trees for our application. In our case the data objects are the clusters and the
MBRs are defined as the join of the children of a node (i.e. MBRs of children in internal
nodes and data objects in leaf nodes). The distance between clusters is the same measure
defined in Sec. 3.2.4. Although there is no (proven) theoretical guarantee that the optimized
nearest neighbor search algorithms mentioned above would correctly identify the actual
nearest neighbor of a cluster in our case, in our experiments we did not observer a visible

44

0k 20k 40k 60k 80k 100k 120k
Limit on number of inferred intents (k)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on
N2T Compass, R: 0.23)
Anime flat, R: 1

(a) ATT, 100% observation

0 25k 50k 75k 100k 125k
Limit on number of inferred intents (k)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

N2T Compass, R: 0.007
Anime flat, R: 1
Anime hierarchy, R: 1

(b) AC, 100% observation.

0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

N2T Compass
Anime flat

(c) ATT, 50% observation

0 20k 40k 60k
Limit on number of inferred intents (k)

0.2

0.4

0.6

0.8

1.0

F-
sc

or
e N2T Compass

Anime flat
Anime hierarchy

(d) AC, 50% observation.

0 20 40 60
Limit on number of inferred intents (k)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on
/R

ec
al

l/F
-s

co
re

F-score
Precision
Recall

(e) DC HRE, 10% observ.

0 5 10 15 20 25 30
Day

0.0

0.2

0.4

0.6

0.8

1.0

F-
sc

or
e Invariant

Anime day 1
Anime
Observed

(f) Multi-snapshot analysis

Figure 3.6: Anime experimental results. R stands for recall.

different between the quality of the inferred intents with the optimized algorithm and our
reference approach (a linear search through all clusters). Interested readers may refer to [50]
for the details of our implementation.
With the index, the average case complexity of our clustering becomes O(J ×Nlog2N).

Our experiments (Sec. 3.3.7) indeed show a significant speedup with the use of index that
scales quasi-linearly with the number of input behavior.

3.3 EVALUATION

We implemented two prototypes of our framework, one in 3K lines of C++17 code and
one in 1K lines of Python code. The Python implementation includes more features (e.g.
implementation of HRE) and is used for comparison with the related work (see below). The
C++ implementation is used for larger scale and performance sensitive experiments. As one
baseline, we re-implemented Compass, a heuristic algorithm for Net2Text’s [43] formulation
of the network behavior summarization problem (Chapter 5). Also as a baseline for our
multi-snapshot analysis, we implemented invariant detection over multiple snapshots, the
main idea behind Invar-net [44] and Config2Spec [45].
In our experiments, we first assess the quality of Anime’s inferred intents and compare it

45

with the related work. Particularly, we study the effect of the algorithm, limit on the number
of inferred intents, flat vs. hierarchical labeling, HREs, perfect observation (summarization)
vs. imperfect observation (prediction), and single-snapshot vs. multi-snapshot analysis.

Next, we study Anime on a large operational campus network with hundreds of devices and
millions of forwarding paths. We evaluate the quality of inferred intents for the summarization
use case only as we do not have the ground truth at hand. We also demonstrate the use of
Anime in finding anomalous behavior in that network. Finally, we evaluate the performance
of Anime on our largest dataset and show the effects of various factors on the performance.
The majority of the experiments ran with the C++ prototype on a machine with Intel

Xenon CPU ES-1660 3.30GH with 12 virtual cores and 32GB of DDR3 1333MHz RAM.
Unless otherwise noted, the C++ experiments ran with 12 threads in the initial phase of
clustering. A few experiments ran with the Python prototype on a Macbook Air, 1.6GHz
Intel Core i5, 8GB 1600MHz DDR3 RAM with a single thread.

3.3.1 Comparison with Net2Text

We reuse Net2Text’s own evaluation dataset used in [43]. The dataset uses real-world
topologies, IPv4 RIB, and AS-to-organization information. It simulates the forwarding state
in a simplified ISP network. Each dataset entry contains various information about a path
traversing through the ISP from an ingress to an egress. Because Net2Text can not effectively
deal with entire forwarding paths or hierarchical values (Chapter 5), we only focus on the
ingress device and egress devices and the destination organization of each path to have a fair
comparison. Specifically, we use the feature (organization, ingress, egress) as an instance
of Tuple〈Flat〈O〉,Flat〈D〉,Flat〈D〉〉〉 where D is the set of network devices and O is the set
of organizations. We experimented with various topologies with varying nodes, egresses, and
destinations. Figure 3.6a shows a representative result using the AT&T topology with 25
nodes, 5 egresses, and 10k destinations, resulting in more than 121k paths. The x and y axes
show the limit on the number of inferred intents (k) and the precision, respectively. Recall
rate (same for all k) is reported in the legend. Depending on the limit on the number of
inferred intents, Anime achieves better precision than Net2Text. Moreover, Anime’s precision
increases as we increase the limit. In any case, Anime’s recall is 100%. This is due to the
fundamental design decision of representing all observed behavior, which is encoded in our
problem definition and approach. Net2Text’s Compass algorithm has a fixed precision and
recall of near 23%. By increasing k, Compass produces new intents that are subsets of
previous intents, thus no increase in precision or recall. Compass tries to optimize Net2Text’s
scoring function which is designed according to Net2Text’s goals and assumptions (Chapter 5),

46

not directly the precision and recall, although the scoring function is related to these two
factors in an ad-hoc way.

3.3.2 Effect of Hierarchies

To show the effects of hierarchical values on the quality of inferred intents, we use a dataset
resembling resource access control policies. For a network with n endpoints (assuming each is
a server in a data-center), we generate random 3-level hierarchy of group names and randomly
partition the servers between theses groups as follows. The top of the hierarchy (layer 1)
contains one label (Any) that represents all servers. Layer 2 consists of of l2 labels, each
being a subset of Any and a superset of between min2 to max2 labels at layer 3. Similarly
layer 3 consists of l3 labels, each being a subset of a label in layer 2 and containing min3 to
max3 servers. Labels belonging to the same layer are disjoint from each other.
We then randomly generate m intents each of the form “server/group A can access

server/group B”. We generate the set of all server pairs represented by the intents as input
for our experiment.

We experiment with two types of features for Anime, namely Tuple〈Flat〈D〉,Flat〈D〉〉 and
Tuple〈Dac, Dac〉 where D is the set of servers and Dac is the feature type defined by the DAG
representing the hierarchy we described above. We also evaluate Net2Text’s Compass.

Figure 3.6b shows the result of a representative experiment with n = 2000, l2 = 5,min2 =

2,max2 = 10, l3 = 20,min3 = 10,max3 = 200,m = 15 resulting in more than 131k paths.
Anime with flat labeling starts with higher precision than Net2Text (50%) for large limits

on the number number of inferred intents (k). By decreasing the limit, Anime flat’s precision
proportionally decreases, dropping below Net2Text’s precision at relatively large values of k
(near 90k). On the other hand, hierarchical labeling guides Anime to achieve high precision
even for small values of k. The precision remains above 97% for k ≥ 15 and drops sharply
for limits below that (15 happens to be equal to the number of actual intents). In any case,
Anime has >140x better recall than Net2Text.

3.3.3 Imperfect Observations

We assess Anime’s effectiveness in the face of imperfect observations by repeating the
previous experiments with random subsets of the original input. We then compute the
precision and recall according to the original input. In this setting, the limit on the number
of inferred intents (k) is interpreted as parameter one can tune to avoid over/under-fitting.

47

Figure 3.6c shows the precision recall tradeoff for various values of k in the ATT experiment
where only half of the original paths are observed. As expected, an increase in k results in
higher precision and lower recall rates. Anime strikes a better balance between precision and
recall than Net2Text.

Figure 3.6d shows the results of similar experiments with the access control dataset. The
x-axis shows k and the y-axis shows the F-score of the result which is defined as the harmonic
average of precision and recall (= 2× Precision×Recall/(Precision+Recall)). For high
values of k Anime overfits the observations and while it has high precision, its recall rate and
thus F-score are low. As k gets smaller, hierarchical labeling achieves better recall without
scarifying precision, so it achieves better F-score. Higher recall for flat labeling significantly
sacrifices precision, thus its F-score declines. Hierarchical labeling reaches its peak F-score at
near k = 2400, from there the score remains above of 99.95% until k = 13. For values below
that, hierarchical labeling starts to underfit and its precision and F-score fall sharply. For
the optimal values of k, Anime with flat and hierarchical labeling achieve at least 4 and 6
better F-score than Net2Text, respectively

3.3.4 Experiment with HREs

To showcase the use of HREs we create a synthetic data center topology consisting of
c clusters, each containing f firewalls connected to p spine switches which are themselves
connected to l leaf switches. Each leaf connects r racks, each containing s servers. The
firewalls are connected to g gateway routers shared among the clusters. The gateways are
connected to i ISPs providing Internet connectivity8. We consider the following actual intents:
The servers within each cluster can talk to each other and to the internet. Internet can talk
to the servers in a special cluster called DMZ. DMZ cluster servers can talk to servers in
any other cluster. The set of possible paths are all shortest paths allowed by the described
intents. We take a subset of possible paths where only one random path among all allowed
paths between any two points is observed. We feed the observed paths to Anime with
feature HRE〈Dft , 8〉 where Dft is the hierarchy described above. We run an experiment with
c, f, p, s, g, i = 2; r = 1 resulting in 75 observed paths (750 possible paths). Below is an
example output for k = 9 achieving precision and recall of 20% and 100%, respectively.

1:Server.Leaf.Spine.Firewall.Gateway.Internet,
2:Internet.Gateway.DMZFirewall.DMZSpine.DMZLeaf.DMZServer,
3:DMZServer.DMZLeaf.DMZSpine.DMZFirewall.Gateway.Cl1Firewall.Cl1Spine.Cl1Leaf.Cl1Server,
4:Cl1Server.Cl1Leaf.Cl1Spine.Cl1Leaf.Cl1Server, 5:Cl1Server.Cl1Leaf.Cl1Server, 6:Cl1Server,
7:DMZServer.DMZLeaf.DMZSpine.DMZLeaf.DMZServer, 8:DMZServer.DMZLeaf.DMZServer, 9:DMZServer

8The full topology and hierarchy of device labels are available in [54].

48

The imprecision is due to intents partly representing non-optimal or impossible paths,
e.g. 4 includes paths between servers connected to the same leaf that go through a spine.
Figure 3.6e shows the precision, recall, and F-score of the results. For k<9, the repetition
operator appears in some intents (e.g. Server.Network.Any+ for k = 3, Any.Network.Any+
for k = 2, and Any+ for k = 1). Due to the complexity of computing precision in such cases,
we estimate it based on Anime’s cost (Sec. 3.2.2). F-score is near its peak value (0.75) for
k ∈ [20, 25], and falls as we move away from that range.

3.3.5 Multi-snapshot Analysis

We can use Anime to analyze behavior collected over multiple snapshots of the network.
For Anime, time of path observation is simply another feature of a path. To demonstrate
this, we reuse our setup for access control experiment and produce a time-series of multiple
snapshots that span over 30 days as follows. We first generate our 3-level label hierarchy and
initial intents. These intents slightly and randomly change once every 10 days, i.e. on days
11 and 21, r random intents get removed and a random new ones get added. The observed
behavior for each day is the set of all behavior represented/allowed by the intents that are in
effect on that day plus a small amount of “negative noise”: we randomly select a few servers
and assume they have failed (each server fails with probability p), so all behavior relating to
that server is removed from the set of observed behavior for that day.

We use Anime with feature (day, source device, destination device) as an instance of type
Tuple〈Range,Dac, Dac〉.

As a baseline we implement the dynamic invariant detection idea: we find the behavior
that remain invariant by intersecting the observed behavior among all snapshots. This is the
main idea behind Invar-net [44]. Config2Spec [45] can also be viewed as an instance of this
idea. Technically Config2Spec finds invariants over link failures, but the high-level idea is
still finding properties that do not change (are invariant) over one dimension (feature). As
a second baseline we also compare the results with using Anime on only a single snapshot
(from day 1).

Figure 3.6f depicts the F-score of the results per each day for a representative experiment
with n = 200, l2 = 5,min2 = 2,max2 = 10, l3 = 10,min3 = 5,max3 = 30,m = 20,
r = a = 3, p = 0.05, resulting in near 80k paths spread over 30 days. The results are also
compared with the observed behavior on each day. Anime achieves significantly higher F-score
than the invariant based method. The precision of the invariant based method is always
19 but its recall is low (<20%) as expected since it only considers behavior that exhibit

9Unless the observed behavior contains "positive noise", which we do not consider in this dissertation

49

in all snapshots. Moreover, the invariant based method is not resilient to policy changes
and “negative noise”. On the other hand Anime achieves both high precision and recall
(and thus F-score). Comparing the result of Anime with the observed behavior on each day
demonstrates again that Anime can tolerate "negative noise". Also contrasting the F-score
of Anime given all snapshots vs. a single snapshot shows that Anime can detect and handle
policy changes over time on time-series of snapshots, and can distinguish it from noise.

3.3.6 Campus Network Experiments

We demonstrate how Anime works in the wild by using our tool on an operational campus
network with hundreds of devices. We have access to snapshots of data plane and routers
configurations. Due to parsing limitations, we restrict our analysis to a subset of the network
consisting of Cisco devices and extract forwarding entries only. The subset consists of 15
core routers connecting 121 building routers with each other and with 12 other routers.
Cumulatively, these devices contain nearly 700K forwarding entries. As we do not have
access to the physical topology of the network, we use the configuration files to infer the L3
topology by looking at interfaces with overlapping subnets (which is not perfect; §3.3.6). We
created a simple symbolic execution tool to extract the end-to-end paths from the data plane
snapshots. The symbolic execution starts with a symbolic packet from each building router
and traces the packet throughout the network. It stops its exploration and reports a path
(along with packet header conditions on that path) when either the packet is delivered at a
device, exits the part of network under consideration, is dropped, or a forwarding loop is
detected. This results in nearly 12M paths for a single snapshot. As a prepossessing step, we
compress the IP addresses as much as possible, resulting in 7.3M paths that we use as input
to our tool. We extract the device hierarchy (Dcampus) from the name of the devices. E.g.
core8-2 is part of the core8 group which in turn is part of the core group. This results
in nearly 170 labels in 4 levels. We focus on the paths that go out of the network or are
received at a device and encode them by the tuple (destination IP prefix, source device,
egress/destination device) of the type Tuple〈IPPrefix , Dcampus , Dcampus〉.

Summarization

In the first experiment, we summarize the forwarding behavior using Anime. Figure 3.7a
shows the precision of results for various limits on the number of inferred intents (recall
is always 1). Anime significantly reduces the number of clusters by 3 orders of magnitude
with a small (1%) cost in terms of precision. As we shall see in Section 3.3.6, part of this

50

101 103 105 107

Limit on number of inferred intents (k)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on
 (l

ow
er

 b
ou

nd
)

(a) Precision, 100% observation

103 104 105 106 107

Number of inputs

10 1

100

101

102

103

104

Ov
er

al
l r

un
tim

e
(s

)

(b) Scale with #input paths

0.0 0.2 0.4 0.6 0.8 1.0
Limit on number of inferred intents 1e6

0

500

1000

1500

2000

Ov
er

al
l r

un
tim

e
(s

)

(c) Scale with k

2 4 6 8 10 12
Number of threads

200

400

600

800

1000

1200

1400

Ru
nt

im
e

of
 th

e
in

iti
al

 p
ha

se
 (s

)

(d) Scale with number of threads

103 104 105

Number of inputs

10 1

100

101

102

103

104

Ov
er

al
l r

un
tim

e
(s

)

Using index
Without index

(e) Scale with vs. without index

Figure 3.7: Anime results for the campus network experiment and performance experiments

imprecision is actually a result of interesting and anomalous behavior that has led us to
interesting observations.

For k ≈ 7M to k ≈ 4K, the precision remains very high (>0.97). From there the precision
drops almost linearly with decreasing k, reaching nearly 0.4 for k ≈ 150. From there, it drops
even more steeply to 0.1 for k ≈ 130, remains almost steady until k = 12 and falls again to
near 0 for k = 1.

The steady k ≈ 7M to k ≈ 4K phase corresponds to forming new clusters with few or zero
false positives. The zero false positive cases mostly correspond to putting multiple paths
to the same destination (as result of ECMP routing) together. The cases with a few false
(usually one or two) false positives correspond to exceptional behavior (Sec. 3.3.6) for a few
IP addresses. The drop in precision starting from around k ≈ 4K corresponds to putting
source devices together and the sharp drop starting from around k = 150 corresponds to
putting destination/egress devices together. From k = 12 to 1, clustering starts to merge
completely irrelevant behavior.

Anomaly analysis

We can use Anime to detect anomalies in the forwarding behavior as follows. During the
clustering process, whenever the precision of a cluster is below 1, it means that part of the

51

inferred behavior is not observed. This can be either due to grouping irrelevant behavior
together, or it can be a true indicator of a behavior that should exist but does not (assuming
perfect observation). So flagging the predicted but unobserved behavior, especially for large
values of k with high precision, may discover incorrect or interesting behavior.

To demonstrate this, we first summarize all behavior for packets starting from a specific
building. We then compute the precision of each cluster and for clusters that have below
100% precision, identify the set of behavior predicted by that cluster that is not observed in
the input. We only look at imprecise clusters created as a result of merging a pair of clusters
with 100% precision. We manually inspect these behaviors in the order of creation of their
respective clusters. During our experiments, we identified 4 general groups of such behavior,
all leading to interesting observations.

• The first group of such behavior are due to the existence of forwarding loops for some
IP addresses. Upon further investigation it turned out that the apparent loops are a
bi-product of imperfect topology inference – i.e. two interfaces in two routers having
overlapping interface subnets but not being actually connected physically.

• The second are the ones in which all but a few IPs end up going out of a certain
device and those few go out of another device. Investigating these behaviors revealed a
bug in the implementation of the symbolic execution code related to the semantics of
forwarding rules.

• The third are rules such as the example below in which the first IP address in a block
of IP addresses is dropped, the second IP address is received by the device, and the
rest are forwarded to another device.

Prefix Next hop Interface

x.y.z.128/25 Attached VlanA

x.y.z.128/32 Drop Null0

x.y.z.129/32 Receive sup-eth

Interestingly, there is no line in the configuration of these devices that directly corre-
sponds to "x.y.z.128/32". We followed up with the administrators and they were not
completely sure of the reason for this behavior. Our guess is that such behavior is
related to the convention of not using the first (and the last) IP addresses in a subnet.

• The last and the most interesting group are a few public /32 IP addresses that have
static Null0 (dropped) routes. We asked the network administrators about these rules.

52

They mentioned the rules were originally added due to a request from the security team.
They also said the rules were very old (12 years) and should have been removed if they
were unnecessary; This prompted the administrator to follow up with the security team.

The fact that we made these interesting observation merely through analysis of similar
behavior, without any prior knowledge about the network or even knowing what we were
after, demonstrates the effectiveness of our general approach.

3.3.7 Performance

Anime’s performance is significantly influenced the by number of input paths and the
complexity of its features. It is also slightly influenced by the limit on the number of inferred
intents (k). Here we evaluate these effects. We also show how our optimizations contribute
to the scalability of our tool.
Effect of input size. To show scalability with the number of inputs, we randomly sample

the input in the campus network experiment (Sec. 3.3.6) with various sample sizes and use
the results as input to Anime. Figure 3.7b shows the log-log plot of the overall runtime vs.
number of inputs for a complete run of our algorithm with k = 1. Thanks to our optimizations
(Sec. 3.2.4), the runtime has an log-linear relation with the number of inputs. Anime is able
to summarize the full dataset with >7.3M entries in near 6h, i.e. 3ms per input on average.
Effect of limit on the number of inferred intents (k). Figure 3.7c plots the runtime

with respect to the limit on the number of inferred intents (k) on a random sample of 1M
paths from the campus network. The runtime increases with the decrease of k, with a gentle
slope of 2ms per unit decrease of k. There is a constant 210s factor that corresponds to
indexing (40s) and the initial phase (Sec. 3.2.4) of clustering (170s). Note that the initial
phase runs in parallel with 12 threads, but the rest run sequentially.
Effect of feature complexity. The hierarchical feature causes a 2x slowdown in the

access control experiment. Also the data center HRE experiment is 1.2K times slower than
an experiment with the same input size for ATT as HRE join is relatively expensive.10

Effect of optimizations. We focus on the effect of non-trivial optimizations: indexing
and parallelization. Figure 3.7d shows the runtime of the initial phase with various numbers
of threads for a random sample of 1M paths from the campus network. The runtime decreases
significantly with the number of threads. E.g., the initial phase with a single thread takes
1400s, amounting to more than 40% of the overall runtime (for k = 1). On the other hand,
the initial phase with 12 threads takes only 120s, nearly 7% of the overall runtime.

10The Python implementation was used in this experiment.

53

Indexing significantly speeds up our algorithm. It effectively turns our quadratic algorithm
to a linear one (Sec. 3.2.4). To show the effect, we turn off indexing and resort to linear scan
over all clusters in the campus network data-set with various input sizes. In Figure 3.7e, the
orange plot shows the overall runtime (for k = 1) without using an index and the blue plot
corresponds to use of an index. Anime without index scales poorly (i.e. quadratically) with
the input size, taking roughly 105 minutes for 100K inputs while Anime with index would
take approximately 1 minute.

3.4 DISCUSSION

Expressiveness. Anime’s expressive power depends on the expressiveness of the feature
type that is used to encode the behavior. Abstractly, Anime can express and infer intents that
can be represented as a disjunction of clauses that could be encoded using the labels of that
feature type. For example, this formalism can express/infer important classes of functional
intents including reachability and waypointing under various (temporal, topological, header,
etc.) conditions. On the other hand, Anime is not designed to directly infer negative behavior
such as in isolation intents. This can be alleviated by encoding negative behavior as positive
behavior, e.g. packet drop as reachability to a special node, or using labels representing
complemented sets (e.g non-firewall or !{TCP, UDP}).
As mentioned in § 3.2.3, packet modification along a forwarding path can be expressed

and inferred with appropriate feature design. Say, by using 〈〈src device, src packet header〉,
〈dst device, dst packet header〉〉 as an instance of an appropriate feature type, given the input
behavior, Anime could infer intents such as 〈src:〈Internet, (130.5.0.0/16, HTTP,URL:"/a/*")〉,
dst:〈Server group X, (10.0.3.0/24, RPC, procedure:"A.Service.*")〉〉. By using or extending
our library of feature types, one could design more complex types capable of capturing even
more sophisticated modifications such as encapsulation.

While Anime’s approach is well suited and optimized for inferring network-wide intents, it
is not best suited for inferring arbitrary program logic. Inferring such is typically the target
of more classic inductive program synthesis research (e.g., [55]). The approaches proposed in
that line of work focus on synthesizing programs from a small set of input-output behavior
examples and can not scale to networks with millions of forwarding paths.
Feature engineering and parameter tuning. We do not necessarily expect the end-

user (network operator) to be in charge of these tasks. A front-end layer between Anime and
the end-user – designed for specific application, network type, collector, etc. – can abstract
the low-level details, though the user may be given direct/indirect (see below) control for
better results. The layer can also employ automatic techniques for feature selection/parameter

54

tuning – e.g. in summarization, it can suggest promising values for k using the elbow method;
for prediction, k can be tuned via cross-validation.

3.5 CONCLUSION

Anime enables a novel approach towards bridging the semantic gap between high-level
intents and low-level network behavior by inferring the former from the later. We provide a
formal setup that fits the hierarchical nature of networks and enables application of data
mining techniques to network behavior. We use the setup to define the intent inference
problem and provide a heuristic solution based on hierarchical clustering with a suite of
optimizations that allows our approach to scale. Our experiments with various synthetic
and real-world datasets demonstrate the scalability of our approach and its effectiveness in
inferring high-quality intents even in the face of imperfect observations and policy changes,
producing compact summaries, and flagging interesting anomalous behavior.

55

Chapter 4: Modeling: Formal Semantics of P4 and its Applications [3]

Traditionally, to handle the network scale, the networking hardware has been hard coded
with well-established network protocols needed to run and manage the network. However,
doing so has the downside of not being able to cope with the speed of innovation that is
necessary to satisfy the diverse and growing set of user demands, because the process of
modifying networking equipment tends to be slow and expensive. This has ignited a line of
research whose goal is to make networks more programmable.

One of the most recent developments in this line of research, P4 [22], is a high level declar-
ative programming language for programming packet processors. P4 allows the developers
to specify how a packet processor should process its incoming packets. A P4 compiler then
translates the P4 program into an instruction set understandable by the target hardware.
The examples of targets include software switches, high performance ASICs, FPGAs, and
programmable NICs.

Since its introduction in 2014, P4 has attracted significant interest because the flexibility
that it provides enables rapid development of a diverse set of applications that can potentially
work at line rate, such as In-Band Network Telemetry [56] and switch based implementation
of Paxos [57]. However, this flexibility, combined with the complexity of networks and
networking hardware, increases the chance of introducing subtle bugs that are very hard
to discover manually, yet can have catastrophic effects, from service disruptions to security
vulnerabilities.

Even without P4, answering the simplest questions about the correctness of a network
(e.g., what kind of packets can reach node B from node A) has become manually prohibitive
when the scale and complexity of networks is taken into account. Subsequently, a large body
of research has recently focused on automating the process of network verification [5, 6, 7, 9].
However, most of these works assume a simple fixed structure for the packet processors
and, as a result, may miss many details. P4 makes manual verification even harder, if not
impossible. Consequently, there is a big need for automated tools to analyze P4 programs or
networks of nodes programmed using P4.
We adhere to [58] that analysis tools for any programming language must be based on

the formal semantics of that language rather than on its informal specification. Informal
semantics are subject to interpretation by different tool developers and usually there is
no guarantee that these interpretations are consistent with the specification or with each
other. As shown in [58], state-of-the-art program analysis tools based on informal language
specifications “prove” incorrect properties or fail to prove correct properties of programs due to

56

their misinterpretation of the semantics of the target programming language. Moreover, the
informal language specification itself might have problems, such as ambiguities, inconsistencies,
or even parts of the language not defined at all. This is particularly relevant for new languages,
like P4, whose design has not matured yet.
It is therefore important to develop a formal semantics for P4. Furthermore, to build

confidence in the adequacy of a formal semantics, we believe it should be: (1) executable, so
it can be rigorously tested against potentially hundreds of programs; (2) compact and human
readable, so it can be easily inspected and ultimately trusted by everyone. Finally it must
be (3) modular, so new language features can be formalized without the need to change the
previously formalized features.
To this end, we have developed P4K, an executable formal semantics of P4 based on

the official P4 language specification [59]. P4K faithfully formalizes all of the language
features mentioned in the P4 specification, with a few exceptions corresponding to features
whose meaning was ambiguous or incorrect or under specified and we did not find any
satisfactory way to correct it. We have reported some of these issues to the P4 language
designers [60, 61, 62, 63, 64, 65, 66, 67, 68] and are working on a modified version of the
specification [69] addressing the issues. We validated P4K by executing 40 test cases provided
by one of the official compiler front-ends of P4 [70], a manually crafted test suite of 30 tests,
and by formally analyzing several programs.

We chose the K framework [23] for our P4 formalization effort. It has several advantages
that make it a suitable choice. First, a language defined in K enjoys all three properties
mentioned above. Second, once a programming language semantics is given, K automatically
provides various tools for the language, including an interpreter and a symbolic model
checker, at no additional effort. Finally, K has already been successfully used to formalize the
semantics of major programming languages such and C [71], Java [72], JavaScript [73], etc.
The focus of this work is the P4K formalization of P4, but we also show how P4K and

the tools provided by K can be used beyond just a reference model for the language. We
discuss several applications useful for P4 programmers, language designers, and compiler
developers, such as: detection of unportable code, state space exploration of P4 programs
and of networks, bug finding using symbolic execution, data plane verification, deductive
verification, and translation validation. Specifically, we make the following contributions:

• P4K: the most complete formal semantics of P4, based on the official specification of
P414 version 1.0.4.

• A collection of P4 formal analysis tools for the networking domain, derived directly
from our semantics.

57

The rest of the chapter is organized as follows. § 4.1 overviews P4 and K, as well as the
challenges in defining a semantics for P4. § 4.2 describes P4K, our K semantics of P4, and
discusses some of problems that we identified in the language specification. § 4.3 evaluates
our semantics. In § 4.4 some of the applications of the semantics are discussed.

4.1 BACKGROUND AND CHALLENGES

Here we give background on P4 and K. We also discuss some of the challenges that we
faced in formalizing P4.

4.1.1 Software Defined Networks

Control plane is the part of the network responsible for making packet forwarding decisions
by running computations (e.g. routing algorithms) based on the network state. Data plane
is the collection of forwarding devices (or packet processors) that actually carry the network
packets and execute the forwarding decisions. Traditionally, each device had its own vendor-
provided control plane hard-coded on the device. The need for rapid innovation has sparked
interest in Software Defined Networks (SDNs). SDN is a modern architecture in which the
control plane is physically separated from the data plane. In this architecture, one controller
can program a set of forwarding devices through open, vendor-agnostic interfaces such as
OpenFlow [74].

In OpenFlow, each device processes the packets according to the contents of one or more
flow tables. Each table will contain a set of flow entries. Abstractly, each entry is a (match,
action) tuple. Match provides values for specific fields in the packet header, and action
denotes the action to be performed if the packet header matches the respective values in
match. Possible actions include dropping, modifying, or forwarding the packet. The controller
programs the data plane through installation and modification of flow entries.
OpenFlow assumes a fixed structure for the forwarding devices. It explicitly specifies

the set of protocol headers on which it operates, the structure of the flow tables, the set
of possible actions, etc. Modification to any of these features requires an update to the
OpenFlow specification. Over the course of 4 years since the initial version of OpenFlow, the
number of supported header fields in its specification has been more than tripled [22].

4.1.2 P4

The limitations of OpenFlow and the need for expressiveness has lead to the introduction
of P4, a high level declarative programming language for expressing the behavior of packet

58

header_type h_t {
fields { f1 : 8; f2 : 8; }

}
header h_t h1;
parser start {

extract(h1);
return ingress;

}
action a(n) {

modify_field(h1.f2 , n);
modify_field(standard_metadata.egress_spec , 1);

}
action b() {

modify_field(standard_metadata.egress_spec , 2);
}
table t {

reads { h1.f1 : exact;}
actions { a; b; }

}
control ingress {

apply(t);
}

Figure 4.1: A very simple P4 program

processors. In P4, one can program a custom parser for their own protocol header, define
flow tables with customized structure, define the control flow between the tables, and define
custom actions. Hence, P4 allows the developers to specify how a packet processor should
process its incoming packets (note, however, that P4 does not provide a mechanism to
populate the flow table entries; this is done by the controller). A P4 compiler then translates
the P4 program into the instruction set of the hardware of the packet processor on which the
program is installed (the target).
We briefly describe the basic notions of the language here. § 4.2 discusses the language

construct in more details. A P4 program specifies at least the following components [59].
Header types: Each specifies the format (the set and size of fields) of a custom header within a
packet. Instances: Each is an instance of a header type. Parser: A state machine describing
how the input packet is parsed into header instances. Tables: Each specifies a set of fields
that the table entries can match on and a set of possible actions that can be taken. Actions:
Each (compound action) is composed of a set of primitive actions which can modify packets
and state. Control flow: Describes the custom conditional chaining of tables within the
packet processor’s pipeline.
For example, in Figure 4.1, h_t is a header type consisting of two 8 bit fields f1 and

f2. Header h1 is an instantiation of h_t. The parser consists of a single state start which

59

Figure 4.2: P414 Abstract Forwarding Model [59]

extracts h1 from the input packet. There are two compound actions a and b in the program.
The actions use the modify_field primitive action. The entries in table t match on field f1

in h1 and if applied, may call actions a or b. An entry calling a must provide a value for n.
The ingress pipeline in this program only consists of applying table t.

P4 programs operate according to the abstract forwarding model illustrated in Figure 4.2.
For each packet, the parser produces a parsed representation comprised of header instances
and sends it to the ingress match+action pipeline. Ingress, among other things, may set the
egress specification which determines the output port(s). Ingress then submits the packet to
the queuing mechanism the specification of which is out of the scope of P4. The packet may
also go through the optional egress pipeline which may make further modifications to the
packet. Finally (if not dropped) the parsed representation will be deparsed (i.e serialized)
into the packet which will be sent out. P4 also supports re-circulation (looping packets inside
the device) and cloning of packets.
The P4 Language Consortium (http://p4.org) provides the official specification of the

language, as well as various other tools including compiler front ends, software interpreters,
runtime and testing infrastructure, etc. There are two versions of P4 in current use, P414

and P416. P416 has been released by the consortium in May 2017 [75] and it is much simpler
and cleaner than P414, at the cost of deliberately breaking backwards compatibility with
P414. There are, however, important P414 program which have not been translated to
P416, and, indeed, the P414-to-P416 translator provided by the consortium is not semantics-
preserving [76]. Ideally, we would like to prove the translator correct, but for that we need
formal semantics of both P414 and P416. In this work we only discuss our formal semantics of
P414, leaving that of P416 and the correctness of the translator as future work. Throughout
the section, we refer to P414 simply as P4.

60

http://p4.org

4.1.3 Challenges in Formalizing P4

P4 has several characteristics that make it a challenging target for formalization. Here we
discuss some of this challenges and the way we dealt with them.
Unstable language: P4 is a relatively young language and it takes time for the community

to reach consensus on its design. When we started, the only publicly available version of
P4 was P414 v. 1.1.0. That version soon was deprecated and replaced with v. 1.0.3 which
we initially used to develop our semantics. In the middle of our formalization effort, P416

v. 1.0.0 as well as a minor revision of P414 (v. 1.0.4) were released. Thanks to K’s support
for modular definitions and reuse, we were able to rapidly adapt to changes and finalize our
semantics according to P414 v. 1.0.4. Through continuous discussions with the P4 designers,
we hope to help them reach more stable versions sooner.
Imprecise specification: Since P4 is a newly developed language its specification is not

free of problems. There are many inconsistencies and corner cases which are not discussed
(§ 4.2). One of the important contributions of this work is the identification of these problems
through rigorous formalization. We have reported some of the problems to the community.
We are also working on a modified version of the specification [69] addressing the issues we
found.
No comprehensive test suite: Similar formalization efforts for other languages (e.g. [71,

73, 77]) rely heavily on official test suites. Unfortunately, there is no official test suite for
P4. To alleviate this problem, in addition to testing our semantics against a test suite we
obtained from a P4 compiler, which only covers about half of our semantic rules (§ 4.3), we
hand-crafted a test suite that gives a complete coverage of our semantic rules.
Unconventional input: The input to a P4 program is different from that of conventional

programming languages. P4 has two sources of input. One is the stream of incoming packets
that the device running the P4 program needs to process. The other is the table entries and
configurations that are installed by the controller at runtime. The mechanism by which the
controller interacts with the target at runtime is device-specific and is therefore out of the
scope of the language specification. Still, to be able to execute and analyze P4 programs, for
the target-specific language features we tried to provide the most unrestricted executable
semantics; for example, if the order of some operations was unspecified then we chose a
non-deterministic semantics, so we can still explore the entire state-space of behaviors using
the K tools.

We also grouped most of the target specific semantic rules in a separate semantic module.
This way, the semantics is parametric on the target specific details. One can provide a new
target specific module to change the target specific behavior, without the need to touch the

61

rest of the semantics. We have already used this feature when we were testing our semantics
against the p4c test suit as it contained target specific features and assumptions (§ 4.3).

4.1.4 The K Framework

K [23] is a programming language semantics engineering framework based on term rewriting.
Its underlying philosophy is that tools for a language can and should be automatically derived
from the formal semantics of that language. Indeed, K provides an actively growing set of
language-independent tools, i.e., tools which are not specific to any language but apply to
any language which has a K formal semantics. These include a parser, an interpreter, a
symbolic model checker, a sound and (relatively) complete deductive program verifier, and,
more recently, a cross language program equivalence checker and a semantic-based compiler.
Some of the tools are useful during the formalization process itself, the most important of
which is the interpreter. Using the interpreter, the semantics can be tested against potentially
many programs to gain confidence in its correctness.

To define a programming language in K, one needs to define its syntax and its semantics.
Syntax is defined using BNF grammars annotated with semantic attributes. Semantics is
given using rewrite rules (also called semantic rules) over configurations. A configuration is a
set of potentially nested cells that hold the program and its context. Each cell contains a
piece of semantic information of the input program such as the its state, environment, storage,
etc. Semantic rules are transitions between configurations: if parts of the configuration match
its left hand side, rewrite those parts as specified by the right hand side. Figure 4.3 shows a
rule taken from P4K (modified for presentation) concerning reading the value of field F from
instance I as an example.〈

I .F

V
···

〉
k 〈〈I 〉 name 〈true〉 valid 〈··· F 7→ V ···〉 fieldVals ···〉 instance

Figure 4.3: A rewrite rule capturing the semantics of reading a field in P4

The contents inside each matching pair of angle braces constitutes a cell, with the cell
name as subscript. The k cell contains the list of computations to be executed. The fragment
of computation at the front of the list (the left most) is executed first. There are multiple
instance cells each corresponding to a header instance. name contains the name of the
instance and valid keeps its validity state. fieldVals is a map from each field name to
the value stored in the field in the given instance. The ellipsis are part of the syntax of
K and denote contents irrelevant to the rule. The horizontal line denotes a rewrite. If

62

the configuration matches the pattern, the part of the configuration above the line will be
replaced by the content below the line. The rest of the configuration remain intact. A rule
may contain multiple rewrites at different positions of the configuration. In that case, all
rewrites will be applied in one step.
This example illustrates two properties of K that makes it suitable for giving semantics

specially to evolving programming languages like P4. First, note that the actual configuration
contains many more cells and each cell may contain multiple elements, but the rule only
mentions the cells that are relevant. The configuration abstraction feature of K automatically
infers what the rest of cells should be. Second, note that rewrites are local. There is no
need to rewrite the whole configuration. These two features make K rules succinct and
human readable. More importantly, they enable modular development of the semantics: if
the language specification adds or modifies a language feature the rules irrelevant to that
feature do not need to be modified.

4.2 P4K

P4K is the most complete executable formal semantics of P414. It is based on the latest (at
the time) official language specification (v. 1.0.4 [59]) and on discussions with the language
designers. Our work is open source and is available online [3]. The formalization process
took 6 months to complete by a PhD student with some familiarity with the K framework.
Most of the time was spent learning K and understanding the details of the P4 specification,
including its problems. P4K contains more than 100 cells in the configuration, 400 semantic
rules, 200 syntax productions, and 2000 lines.

4.2.1 Syntax

The language specification provides a BNF grammar, whose conversion to K was straight-
forward. We mostly copy-pasted the grammar and made a few minor modifications to make
it compatible with K.

During this process, in addition to minor problems, we identified [60] an ambiguity in the
syntax between the minus sign in a constant value (for specifying negative constant values)
and the unary negation operator. This ambiguity has important semantic effects. In P4,
all the field values have a bit width associated with them. According to the specification
“For positive [constant] values the inferred width is the smallest number of bits required to
contain the value”. Also “For negative [constant] values the inferred width is one more than
the smallest number of bits required to contain the positive value” [59]. So for example −5

63

〈〈K〉 k 〈...〉 headers 〈...〉 actions 〈...〉 controlFlows 〈...〉 parserStates ··· 〈〈〈Id〉 name 〈SetFld〉 reads 〈SetAct〉 acts 〈ListEnt〉 entries 〉 table∗〉 tables

〈〈〈Id〉 name 〈Bool〉metadata 〈Bool〉 valid 〈Id 7→ V al〉 fieldVals 〉 instance∗〉 instances〈〈〈Id〉 name 〈Id 7→ V al〉 vals 〉 stateful∗〉 statefuls

〈〈ListMap〉 stackFrame 〉 ctx〈〈ListId〉 dporder 〈〈Int〉 index 〉 pctx〉 parser〈Pkt〉 packetin 〈Pkt〉 packetout 〈〈ListPkt〉 in〈ListPkt〉 out〉 buffer

〉
T

Figure 4.4: Part of the P4K configuration. The ellipsis symbols indicate omitted cells.

interpreted as a negative constant would yield a 4 bit value while if interpreted as negation
of a positive constant would yield a 3 bit result. Used in an expression with other operators,
this difference may affect whether the expression overflows or not, which subsequently may
affect the final result.

4.2.2 Configuration

The configuration contains more than 100 cells. Figure 4.4 shows part of it, featuring more
important cells. All of the language constructs including headers, instances, parser states,
actions, tables, control flows, etc have respective cells in the configuration containing their
static information and/or runtime state. For example the tables cell will contain a set of
table cells (“*” denotes multiple cells with the same name). Each of the table cells contains
a table’s static information such as its name, the fields to match (reads), and possible actions
(acts). It also contains runtime information such as the entries installed in the table.

Some cells contain the execution context. For example during the execution of an action,
the stackFrame cell holds a stack of maps from each formal parameter of the executing
action to the respective argument values passed to the action.
The cells in and out contain the input and output packet stream from/to all ports

respectively. packetin contains the current packet being processed and packout contains
the packet being serialized.
Cells are populated or modified by processing the input P4 program before execution,

during the initialization, or during the execution as discussed next.

4.2.3 Semantics

After parsing, the P4 program populates the k cell and is executed with the semantics
rules.

Execution Phases The rules describe the P4 program execution, in three phases.
Preprocessing: In this phase, P4K iterates over all the declarations in the input P4

program (in the k cell), creating and populating the corresponding cells and preparing the

64

configuration for execution. In some cases auxiliary information is pre-computed for the
execution phase. An important such computation is the inference of the order of packet
headers for deparsing. Details will be discussed in Section 4.2.3.
Initialization: There is an optional initialization phase after preprocessing. It is used

primarily to prepopulate the tables and packet buffers before the execution in certain analysis
such as symbolic execution. The tables and packet buffers can also be populated at runtime
in normal execution.
Runtime: The actual execution of a P4 program happens during this phase. It implements

the abstract forwarding model. Packets are taken from the input packet stream and processed
using the entries installed in the match+action tables by going through the ingress and
potentially the egress pipelines. The output packets are appended to the output packet
stream. This phase never terminates.

Language Constructs and Semantics We briefly describe the language constructs and
primarily focus on interesting findings and relevant semantics.
Header types: Each header type is a named declaration that includes an ordered list of

fields and their attributes (e.g. field width and signedness). P4 also allows declaration of
variable length headers. During our formalization, we found corner cases (e.g. [64]) in which
the semantics of such headers are not completely clear.
Instances: Instances may be referenced in various runtime stages including parsing, table

matching, and action execution. Some instances, called header instances (although the
naming is not consistent throughout the specification [65]), keep the parsed representation of
the respective packet headers (i.e., the packet header is extracted into the header instance).
Other instances, called metadata, keep arbitrary per packet state throughout the pipeline.
For example h1 in Figure 4.1 is a header instance and meta in Figure 4.10 is a metadata.
In our semantics, both types of instances are kept as instance cells, distinguished by their
metadata cells (Figure 4.4).
It is also possible to declare fixed size, one dimensional array instances (called header

stacks), as sequences of adjacent headers (e.g. to support MPLS [78]). We keep array elements
as separate header instances, with special names that include their index. Otherwise, the
elements are treated same as other instances.

Header instances are invalid (uninitialized) until validated in parsing or by specific primitive
actions in match+action processing. According to the specification, reading an invalid header
results in an undefined value, whose behavior is target dependent. We model this using a
special value @undef. Use of @undef in an expression or action call causes the execution to
get stuck by default. We use this feature to detect unportable code (Section 4.4.1).

65

Hash generators: The ability to calculate a hash value for a stream of bytes has various
uses in networking. P4 provides the ability to declare hash generators (called field list
calculations). The developer provides a list of values (declared using a field list struct) and
selects a hash generation algorithm. The hash generator computes the hash of the bitstream
generated from the list. In the example in Figure 4.5 ipv4_checksum is a hash generator for
the ipv4_checksum_list field list (declaration omitted) with the IPv4 checksum algorithm
(csum16).

field_list_calculation ipv4_checksum {
input { ipv4_checksum_list; }
algorithm : csum16;
output_width : 16;

}

Figure 4.5: A field list calculation example

The language specification identifies a set of well known hash generation algorithms (e.g.,
IPv4 checksum and CRC). In our semantics, we treat hash generation as a black box; K
allows us to “hook” library function calls that implement the desired functionality. It is
possible to also directly specify the algorithms using K rules inside the semantics, but we did
not find any compelling reason to do so.

We found a problem [67] with the specification during the formalization of field lists. Each
element of a field list can refer to a field in an instance, an instance itself (when all the fields
in that instance are used), another field list (when all the fields identified by that list are
used), a constant value, or the keyword payload. According to the specification “payload
indicates that the contents of the packet following the header of the previously mentioned
field is included in the field list” [59]. However, “previously mentioned field” is ambiguous.
For instance, in Figure 4.6 it is not clear if payload refers to f1 or f2.

field_list fl1 { h.f1; }
field_list fl2 { h.f2; fl1; payload; }

Figure 4.6: Ambiguity in the semantics of payload

Thus we do not provide semantics for payload. P416 has replaced field lists with a C-like
struct construct, disallowing the payload keyword.
Checksums: A field in a header instance can be declared to be a calculated field, indicating

that it carries a checksum. The developer provides a hash generator for verification of the
checksum at the end of parsing, and/or an update of the checksum during deparsing. For

66

example, in Figure 4.7, the field hdrChecksum in the header instance ipv4 is declared to be a
calculated field which uses the hash generator ipv4_checksum for its verification and update.

calculated_field ipv4.hdrChecksum {
verify ipv4_checksum;
update ipv4_checksum;

}

Figure 4.7: A calculated field example

The P4 specification leaves undefined the order in which the calculated fields must be
updated or verified. For verification, the order can matter depending on the target. For
update, the order can matter in cases where the field list calculation of a calculated field
includes another calculated field. After discussing [68] with the language designers, to obtain
the most general behavior, we decided to choose a non-deterministic order for update and
verify. K provides a search tool which one can use to explore all possible non-deterministic
outcomes to check whether they differ. (Section 4.4.2).
Parser: The user can define a parser to deserialize the input packet into header instances

(the parsed representation). The parser is defined as a state machine. In each state, it is
possible to extract header instances (i.e., copy the data from the packet at the current offset
into respective field values for the given instances) and to modify metadata. Then, it is
possible to conditionally transition to another state, to end the parsing, or to throw an
(explicit) exception. For example, in state parse_ethernet in Figure 4.9, after extracting
the ethernet header, based on the value of the etherType field, the parser may transition
to the parser state parse_ipv4 or end the parsing and start the ingress pipeline.
Exception Handlers: P4 allows us to declare exception handlers for implicit or explicit

parser exceptions. In case an exception occurs, parsing is terminated and the relevant handler
is invoked. Each handler can either modify metadata and continue to ingress or immediately
drop the packet. There is a default handler that drops the packet. For example in Figure 4.1
if a packet is too short for the extraction of h1, an implicit exception is thrown and the
default handler drops the packet.
Deparsing: This is the opposite of parsing. At egress, the (potentially modified) valid

header instances are serialized into a stream of bytes to be sent. An important question in
deparsing is the order in which the header instances should be serialized. The parsing order is
not enough to find the deparse order, since header instances might also be added (validated)
or removed (invalidated) in the match+action pipeline. According to the specification “[A]ny
format which should be generated on egress should be represented by the parser used on
ingress” [59] and the order of deparsing should be inferred from the parse graph.

67

If the parse graph is acyclic, a topological order can be used as the deparsing order.
However, in general the graph might be cyclic as there may be recursion in parsing. While in
simple cases an order can still be inferred (e.g., cases where recursion is only used for the
extraction of header stacks), there are cases in which a meaningful order can not be inferred.
This is a well known problem [79]. In our semantics, we support simple cases of cyclic parse
graphs. All of the practical examples we have seen so far can be handled by our semantics.
P416 has switched to an approach in which the deparse order is explicitly defined by the

programmer.
Stateful Elements: P4 supports stateful language constructs that can hold state for

longer than one packet, as opposed to per packet state in instances. Counters count packets
or bytes, meters measure data rates, and registers are general purpose stateful elements.
The declaration of each of these elements creates an array of memory units. The units may
be direct ly bound to the table entries. In that case, the (counter and meter) units will
automatically be updated when the corresponding entry is matched in match+action. The
units may alternatively be static; then they should explicitly be accessed or updated via
special primitive actions. For example, in Figure 4.10, reg is a static register with a single 8
bit memory cell.

In our definition we unified all these elements as instances of the stateful cell (Figure 4.4)
which can be accessed like registers. Other operations are defined as functions which read
and manipulate the registers. Each stateful cell in the configuration has a map from an
index to a value. The index is either a table entry id (for direct) or an array index (for static).
The mechanism of updating meters is target specific (not part of the language specification).
Subsequently we do not perform any action in case a meter is updated. If needed, one can
add a mechanism in our target specific module.

The specification does not specify [62] the initial value of the stateful elements. It is sensible
to assume that the initial value of counters is 0, and similarly for meters. For registers, by
default we initialize the registers to @undef. Moreover, the specification is inconsistent [63]
about whether direct meters are allowed to be explicitly updated by table actions. To be
consistent with counters and registers, we assume they are allowed.

Finally, if multiple counters/meters are directly bound to the same table, the specification
does not state [68] the order in which the elements must be updated when an entry in that
table is matched. The order can affect the outcome in multi-threaded packet processors
(Section 4.2.4) as there may be data races over stateful elements. Again, we choose a non-
deterministic order for updating the counters/meters, so we can systematically explore it
using K’s search.
Actions: Compound actions are user defined imperative functions that can take arguments

68

and if called, perform a sequence of calls to other compound actions or built-in primitive
actions. Primitive actions provide various functionality including arithmetic, addition/re-
moval/modification of instances and header stacks, access/modification of stateful elements,
cloning, re-circulation, dropping the packet, etc. Actions are executed as a result of table
matches.

We formalized all the primitive actions (see Section 4.2.5 for limitations on clone primitive
actions). The specification does not specify the behavior of some corner cases, such as shift
with negative shift amount. We intentionally do not provide semantics for such cases to
detect unportable code.
The previous version of the specification [80] stated that all primitive actions resulting

from a table match execute in parallel, making the semantics of the action in Figure 4.8
unclear.

action a() {
modify_field(h.f, 1);
modify_field(h.f, 2);

}

Figure 4.8: Unclear semantics of parallel action execution

modify_field(f,v) is a primitive action that updates field f with v. The latest revision
(1.0.4) switched to sequential semantics, so we do not have to deal with this case anymore.
Tables: Tables will be populated at runtime by the controller. Each entry provides values

for the fields that are specified in the declaration, an action that should be executed if the
entry is selected, and arguments to be passed to the action.

The interaction mechanism between the controller and P4 target is out of the scope of the
specification. Hence, the answer to questions such as what happens if a table is modified by
the controller while it is being applied on a packet is target dependent. We currently assume
that modification and application of the same table are mutually exclusive.
P4 provides various matching modes per each field. For example, exact matches exact

numbers and ternary matches ternary bit vectors. It is also possible to associate priorities
with table entries. In case more than one table entry is applicable, the rule with the highest
priority will be selected. Longest Prefix Match (LPM) is a special kind of ternary match
useful for IP prefixes. The specification specifies how the relative priority of an entry with
LPM match can be inferred bases on the corresponding match value of the entry. However,
it does not specify how the priority should be decided in cases where there are more than
one field with LPM match type [61]. We assume all entries have explicit (unique) priorities
regardless of their match types. We keep the entries sorted in their descending order of

69

priority. To apply a table on a packet, we iterate over the entries in order and select the first
matching entry.
Control Flow: User defines the order and the conditions under which various tables are

applied to a packet using control functions. The body of a control function is a control block
consisting of a sequence of control statements. A statement might apply a table, call a control
function, or conditionally select a control block. Ingress is a special control function that is
automatically called after (successful) parsing. Egress is another (optional) special control
function. If defined, it will automatically be called when the queuing mechanism takes the
packet to be sent out.
Other constructs: We omit the discussion of value sets, action profiles, and action

selectors as well as many details of the discussed constructs. Interested readers can refer to
the semantics [3] for more details.

4.2.4 Concurrency Model

Real world high performance packet processors have multiple threads of execution. The
specification is silent about the concurrency model. As a result, what constitutes a thread
depends on the target hardware. In our semantics, we support a multithreading model in
which each thread individually does all of what a single threaded program does by addition
of a few more cells and rules1 (similar to Section 4.2.6). The input/out packet streams, the
tables, and the stateful elements constitute the shared memory between the threads.

4.2.5 Limitations

P4 provides four primitive actions for cloning a packet under process from ingress/egress
to ingress/egress. The actions that clone a packet into the egress put the clones in the queue
between ingress and egress pipelines. Since we currently do not model the ingress and egress
pipelines as separate threads, we only support a single packet in the queue between the two.
Therefore, we do not directly support clone into egress. Instead, we treat such clones as new
incoming packets with auxiliary flags to skip the ingress pipeline.

4.2.6 Network Semantics

It is useful to be able to simulate or analyze a network of P4 programs rather than just
a single program (Sections 4.4.4 and 4.4.2). In order to do so, we need the semantics of

1In all of our experiments we used only a single thread for each P4 program. Throughout the section we
assume executions are single threaded.

70

the network. Thanks to the modularity of K, we easily modeled the semantics of a P4
network without changing the P4 language semantics. We only needed to add a few more
cells and preprocessing rules. We added a root nodes cell containing multiple node cells each
containing the configuration of a P4 program plus a nodeId cell. We also added a topology

cell which holds the connection between the nodes.
To model the network links, we added a single rule that takes a packet from the end of the

output stream of one node and puts it at the beginning of the input stream of the node it is
connected to. If needed, one can also model packet loss in the links by a single additional
rule. Note that here we have multiple threads of concurrent execution, whose interleaving is
non-deterministic. The thread interleaving space can be explored using the K search mode
(Section 4.4.2).

4.3 EVALUATION

K provides us with an interpreter derived automatically from the semantics, enabling us to
test our semantics. Official conformance test suits are an ideal target for testing executable
semantics. Unfortunately, P4 does not have such a test suite. A new official P4 compiler
front end (p4c [70]) has a limited set of tests for P414, which we used in our evaluation.

Generally, it is non-trivial to port tests across different implementations of P4, as its IO is
not specified (Section 4.1.3). Fortunately, the p4c tests were easy to adopt. Each test, along
with the P4 program under test, contains an STF file. The file describes table entries, input
packets, and the expected output packets. We systematically converted the STF files into
our test format.

The suite contains tests with minor issues including use of deprecated syntax, unspecified
constructs, or unspecified primitive actions. We fixed the issues by slightly modifying to the
corresponding P4 programs or test files, and implementing the primitive actions in a target
specific module for the tests. Moreover, the tests assume undefined2 egress specification leads
to packet drop. The specification does not specify the behavior in this case, so it is target
dependent. In our semantics, by default the execution gets stuck in such cases. In our target
dependent module for the tests, we added a rule to drop the packet in such cases.
The tests also helped us identify a few problems in P4K. For example, we found that we

had misunderstood the semantics of a primitive action (pop). Note that push and pop have
rather an unusual semantics in P4 [66].

2According to the specification egress specification is undefined unless set explicitly. We model this using
the @undef value.

71

After fixing the problems with the tests and our semantics, P4K passed 39 out of the
40 test. The failing test3 has multiple inferable deparsing orders. The order chosen in our
execution happens to be different from the order the test expects. We verified that both
orders are possible.
Inspired by [73], we measured the percentage of the semantics rules exercised by the

tests (the semantic coverage of the tests). The tests cover under 54% of the semantics and
miss many of the semantic features. We have also manually developed 30 tests during our
formalization process. Together, these 70 tests cover almost all the semantic rules.

Each test took 19.5s (± 3.2s) on average with the maximum of 125s.4 We note that approx.
10s out of this time is the startup time of K and is not related to execution. We also note
that K has multiple backends. We use an open source backend [58] which is relatively very
poor in terms of performance. We expect the runtime to improve by orders of magnitude on
performant commercial backends (e.g. [81]).

4.4 APPLICATIONS

Besides defining a formal semantics for P4 and thus helping make the P4 specification
more precise, a secondary objective of our effort was to make use of the various tools that K
provides. We demonstrate how the tools can be useful for the P4 developers and network
administrators, as well as for the P4 language designers and compiler developers.

4.4.1 Detecting Unportable Code

As seen above, in some cases the P4 specification does not provide the expected behavior of
the program. P4 programs exhibiting such unspecified behavior may not be portable among
different targets and compilers. It is not wise to solely rely on the expertise of P4 developers
in the low level details of the specification to check if their code is portable. It is desirable to
have tools that automate this check. For simple cases, such behavior may be detectable by
syntactic checks. In general, unspecified behavior may depend on the input.
By default, we do not provide semantics for cases which are not covered by the language

specification. If the execution of a program reaches a point with unspecified behavior, the
execution gets stuck. Avoiding over-specification therefore allows us to check for unspecified
behavior in P4 programs. This is done simply by running the program and checking whether

3Namely parser_dc_full.stf.
4All experiments are run on a machine with Intel Xenon CPU ES-1660 3.30GHz and 32GB DDR3 1333MHz

RAM.

72

it reaches a state in which it gets stuck or not. The check can be performed using either
concrete or symbolic inputs. We show a symbolic example in Section 4.4.3.
To tune the semantics for a specific target, one can provide custom semantics for cases

with unspecified behavior in the target specific module.

4.4.2 State Space Exploration

K provides a search execution mode which allows us to explore all possible execution traces
when non-determinism is present. In K, non-determinism occurs when more that one rewrite
rule is applicable, or the same rule is applicable at multiple positions in the configuration. In
normal execution mode, only one of the applicable rules is (non-deterministically) selected. In
the search mode, all the applicable rules are explored. Moreover, the user can explicitly control
the points in which non-determinism is explored. This allows one to focus on exploration of
one or more specific sources of non-determinism and ignore the rest.
There are two sources of non-determinism in P4K. The first is due to our approach to

model the most general behavior. Examples are order of deparsing, order of update and/or
verification of calculated fields, and order of update of direct stateful elements. The second is
due to the existence of multiple threads of execution. These include the threads of execution
inside a single P4 program, as well as the execution of multiple nodes in a P4 network.
Both sources can be explored using the search mode. We have already shown in § 4.3 how
exploration of the order of deparsing can be useful. The benefits of exhaustive analysis of
thread interleavings in concurrency analysis are well known.

4.4.3 Symbolic Execution

K allows the configuration to be symbolic – i.e., to contain mathematical variables and
logical constraints over them. During execution with a symbolic configuration, K accumulates
and checks (using Z3 [35]) all the logical constraints over the execution path – i.e the
conditions under which the rules are applicable to respective states. Under the hood, there is
no difference between symbolic and concrete execution. Symbolic execution powers some of
the other K tools such as the program verifier (Section 4.4.5) and the equivalence checker
(Section 4.4.6). It can also be useful on its own, say, to search for bugs in P4 programs and
data planes.

Search for Bugs To illustrate one application, we choose a community provided sample
P4 program which defines a very basic L3 router [82]. Using symbolic execution, we find input

73

packets for which the program fails to specify the egress specification, leading to unspecified
behavior.
To do so, we prepopulate the tables with entries from the unit test provided along with

the program. We then simply start the program with a single symbolic packet (P) from a
symbolic port in the input packet stream (the in cell). Our goal is to find an input packet that
leads the program to a state in which neither packet is dropped, nor its egress specification
is set. We run the program in the (symbolic) search mode. The search returns multiple
inputs which can lead to undefined egress specification. Here we only discuss one of the more
interesting ones: the search result suggests that if "P has ethernet as its first header and
ethernet.etherType != 0x0800", then the program will end up with an undefined egress.

...
parser start {

return parse_ethernet;
}
parser parse_ethernet {

extract(ethernet);
return select(latest.etherType) {

0x0800 : parse_ipv4;
default: ingress;

}
}
control ingress {

if (valid(ipv4)) {
...

}
}

Figure 4.9: Part of a basic L3 router [82]

Figure 4.9 shows the relevant snippet of the program. A simple manual inspection confirms
the finding. The parser extracts the ethernet header and checks etherType. If it is equal
to 0x0800 (i.e the IPv4 ether type), the parser then proceeds to extracting the ipv4 header
(not shown). Otherwise, instead of, say, dropping the packet, the program starts the ingress
pipeline. At the beginning of the ingress, the program checks the validity of the ipv4 header.
If valid, the pipeline applies a sequence of tables that may set the egress specification (not
shown). Otherwise the program does not apply any tables and the egress specification remains
undefined. Thus, under the given constraints, packet is not dropped, ipv4 is invalid, and the
egress specification is undefined.

4.4.4 Data Plane Verification

There is a growing interest towards data plane verification tools such as [5, 6, 7, 8, 9].
These tools analyze the table entries in a snapshot of the data plane and look for violation of

74

properties of interest. The verification of these properties usually requires answer to queries
of the following form: What kind of packets from node A will reach node B? While using
various smart ideas to achieve better performance, all these tool are based on the same basic
idea: symbolic reasoning over the space of packet headers.
Using our semantics, we can answer such queries by inserting a symbolic packet at, say,

node A and using symbolic execution to find the constraints on the packets that end up
at node B. The tools mentioned above use simplified hardcoded/adhoc models of packet
processors in their analysis and miss the internal details of such devices. They need to be
re-engineered to change their model of packet processors. There is no such need in our case.
Moreover, as will be shown in the next section, these tools can verify a very restricted class
of properties. We eliminate these limitations.

4.4.5 Program Verification

K features a language independent program verification infrastructure based on Reachability
Logic [58]. It can be instantiated with the semantics of a programming language such as P4
to automatically provide a sound and relatively complete program verifier for that language.
In this system, properties to be verified are given using a set of reachability assertions, where
each reachability assertion is written as a rewrite rule. A reachability assertion asserts that
starting from any configuration matching the left hand side of the assertion, by execution
using the input semantics, one will either eventually reach a configuration that matches the
right hand side of the assertion or never terminate.

The standard pre/post conditions and loop invariants used in Hoare style program verifica-
tion can be encoded as reachability assertions. Intuitively, a Hoare triple {P}C{Q} becomes
"C ∧ P rewrites to . ∧Q" where “.” is the empty program [77].

The Load Balancer Program To showcase the use of the program verifier, we provide a
simple P4 program and verify a simple property about it.
The program in Figure 4.10 is meant to balance its incoming packets (from any port)

between two output ports. This is done using a register whose value alternates between 0
and 1 across incoming packets. The program features a single register, a metadata instance,
and two tables. The parser starts ingress without extracting anything. We install a single
entry in read_reg_table to call action read_reg. The action copies the register value (at
index 0) into meta.reg_val 5. We install two rules in balance_table. One rule matches if
meta.reg_val = 1 and calls balance(1,0). The other rule matches if meta.reg_val = 0

5This is done because register values can not directly be matched in tables.

75

header_type meta_t {
fields { reg_val : 8; }

}
metadata meta_t meta;
parser start {

return ingress;
}
register reg {

width: 8;
instance_count: 1;

}
action read_reg () {

register_read(meta.reg_val ,reg ,0);
}
table read_reg_table {

reads{ meta.valid : exact; }
actions{ read_reg; }

}
action balance(port ,val) {

modify_field(standard_metadata.egress_spec ,port);
register_write(reg , 0, val);

}
table balance_table {

reads{ meta.reg_val : exact; }
actions{ balance; }

}
control ingress{

apply(read_reg_table);
apply(balance_table);

}

Figure 4.10: A simple load balancer

and calls balance(0,1). balance(p,v) modifies the register (at index 0) with value v and
effectively sends the packet to port p. Our goal is to prove that this program (along with its
table entries) correctly balances the load. Specifically, we want to prove the following:
Property : For any input stream of packets, after processing all the packets, no packet is

dropped and no new packet is added; all the packets in the output are either sent to port 0
or port 1; and the absolute difference between the number of packets sent to ports 0 and 1 is
less than or equal to 1. Albeit simple, none of the data plane verification tools mentioned
above are capable of proving it. They lack either support for stateful data plane elements or
support for reasoning over an unbounded (i.e symbolic) stream of packets.

In K, the property is captured by the reachability assertion in Figure 4.11. For presentation
purposes we have omitted the less relevant, mostly static parts of the specification which
hold the program and the table entries. The full specification can be found in [3].

76

〈
@execute

@end

〉
k

〈
〈reg〉 name

〈
0 7→ 0

_

〉
vals

〉
stateful

〈
I

.

〉
in

〈
.

?O

〉
out

ensures
|onPort(?O, 0)− onPort(?O, 1))| ≤ 1
∧onPort(?O, 0) + onPort(?O, 1)) = size(?O)
∧size(?O) = size(I)

Figure 4.11: A reachability assertion capturing the desired property

In the specification, @excute is the program state right before the execution starts. @end
is state after all the input packets are processed6. I is a (universal) symbolic variable
representing the input packet stream and ?O is an existential symbolic variable representing
the output stream. Symbol “ .” in both in and out cells represents an empty packet stream.
The rewrite in the vals cell says that the value of the register reg (at index 0) is 0 at
start7, and its value at the end is not relevant to the assertion. The keyword ensures adds
logical constraints on the right hand side of the assertion (i.e the post condition). Function
onPort(s,p) returns the the number of packets in stream s belonging to port p. Function
size(s) returns the length of stream s.
Our semantics of P4 contains a main loop over the stream of input packets. Since in our

property the input is a symbolic list with an unbounded length, similar to Hoare logic, we
need a loop invariant. To prove our property, we provide the loop invariant as the reachability
assertion in Figure 4.12.〈

@nextPacket

@end

〉
k

〈
〈reg〉 name

〈
0 7→ R

_

〉
vals

〉
stateful

〈
I

.

〉
in

〈
O1

?O2

〉
out

requires
(R = 1 ∧ onPort(O1, 0) = onPort(O1, 1)) + 1∨
R = 0 ∧ onPort(O1, 0) = onPort(O1, 1)))
∧onPort(O1, 0) + onPort(O1, 1) = size(O1)

ensures
‖onPort(?O2, 0)− onPort(?O2, 1))‖ ≤ 1
∧onPort(?O2, 0) + onPort(?O2, 1) = size(?O2)
∧size(I) + size(O1) = size(?O2)

Figure 4.12: The loop invariant

Here, @nextPacket is the head of the main loop over the input packet stream. Keyword
requires puts logical constraints on the left hand side of the assertion (i.e the precondition).
The assertion reads as: starting from the head of the main loop, given the constraints in

6This state is only added due to technical reasons for verification purposes, as actual P4 programs never
terminate. We add a rule causing the program to jump to this state once the input packet stream becomes
empty.

7We made the assumption that registers are initialized to 0.

77

requires are satisfied, if the program terminates, it will reach an @end state that satisfies
the constraints in ensures.

We gave the two assertions to the K’s program verifier instantiated with our P4 semantics.
The verifier successfully proved the loop invariant and the first reachability assertion (i.e.,
the desired property). The verification took about 80s.

In this example, we used concrete table entries as the entries are part of the functionality
that we aimed to verify. In general, depending on the property, the tables – as well as
anything else – can be symbolic. Weassumedn example in thinitializedtion.

4.4.6 Translation Validation

P4 programs eventually need to be compiled into the instruction set (i.e the language)
of the target hardware for execution. With any compilation, there is the question of
whether or not the semantics of the input program is preserved by the compiler. Currently
the compilers usually lack formal semantic preservation guarantees since providing such
guarantees requires a significant effort. The issue is even more pronounced when sophisticated
compiler optimizations are involved. A promising alternative approach is to verify each
instance of compilation instead of the whole compiler. This approach, known as tranlation
validation [83], aims to verify the semantic equivalence of a program and its compiled
counterpart, potentially using hints from the compiler.

Recently, K has introduced a prototype tool (named KEQ [84]) for cross language program
equivalence checking using a generalized notion of bisimulation. The notion enables us to
mask irrelevant intermediate states and consider only the relevant states in comparing two
program executions. KEQ takes the K semantics of the two programming languages, two
input programs written in the respective languages, and a set of synchronization points as
input, and checks whether or not the two programs are equivalent.
Each synchronization point is a pair of symbolic states (called cuts) in the two input

programs. The meaning of synchronization is defined by the user as a logical constraint
over the given pair of symbolic states. It usually consists of checking the equality of certain
relevant values. Each cut in the pair is essentially a pattern over the configurations of the
semantics of the respective languages (similar to the right or left hand side of rewrite rules).
The user labels one or more synchronization points as trusted. These points are assumed
to already be bisimilar. Usually one (and the only one) such point is the end of the two
programs and the constraint is the equality of the respective output values.

For the rest of the synchronization points, the equivalence checker checks whether the given
points are bisimilar. It basically means that starting from the two cuts in a synchronization

78

point, using the semantics of the respective languages, all reachable synchronization points
are respectively bisimilar. Normally one such point is the start of the two programs. The
constraint is the equality of the respective input values. Additional synchronization points
may be needed as well, such as the beginning of unbounded loops. We refer the interested
readers to [84] for more details on KEQ.

P4 → IMP+ Translation Validation We illustrate KEQ through a small example. We
check the equivalence of a simple P4 program with a program written in another language.
For this purpose, we developed a very simple imperative language called IMP+. The language
syntactically resembles C, although semantically it is much simpler. We also developed the
semantics of IMP+ in K. We provide a set of API functions for the language to send and
receive packets, read tables, etc. The name of these functions are prefixed with the “#”
symbol. For simplicity, we directly provide semantics to such functions in our semantics. We
chose the simple P4 program in Figure 4.1 for translation. Figure 4.13 shows our manual
translation of it into IMP+.8

The goal is to prove the equivalence of the two programs. Our notion of equivalence is
defined as follows: for any input stream of packets, and for any table entries in table t, at the
end of processing all the input packets, the two programs generate the same output stream of
packets. To do so, we manually provide a few synchronization points. We have annotated the
IMP+ program with the points. Next we informally describe the points and their constraints.
The full specification can be found in [3].
p0 is the start of the two programs. The condition associated with this points is the equality

of the respective input streams, table entries, and table default actions.
p1 is the main loop over the input packets. Its condition is same as p0’s condition plus the

equality of the respective current output packet streams.
p2 is the loop over table entries. The condition is p1’s condition plus the equality of the

field values in the parsed representation of the P4 program and the corresponding variables
in the IMP+ program, plus the equality of the index of iteration of the tables entries9, and
the equality of the current packet payloads.
p3 is the end of execution10. The condition is the equality of the respective output packet

streams. p3 is trusted.
Figure 4.14 illustrates the abstract transition relation between the points. Each arrow

represents multiple rewrite steps in each program, ignoring the irrelevant (possibly non-
8We assume packets with undefined egress specification will be dropped.
9Note that in our semantics of both P4 and IMP+, the table entries are sorted in the descending order of

their priority.
10For technical reasons we assume both programs terminate once the input packet stream becomes empty.

79

int h1_f1; int h1_f2; bool h1_valid;
int sm_egress_spec;
bool parse(){

return start();
}
bool start(){

if (! #has_next (8))
return false;

h1_f1 = #extract_next (8, false);
if (! #has_next (8))

return false;
h1_f2 = #extract_next (8, false);
h1_valid = true;
return true;

}
void a(int n){

h1_f2 = n;
sm_egress_spec = 1;

}
void b(){ sm_egress_spec = 2; }
void apply_t (){

//p2
while (# get_next_entry ()) {

if (# entry_matches(h1_f1)){
#call_entry_action ();
return;

}
}
if (# has_default_action ())

#call_default_action ();
}
bool process_packet (){

#reset();
sm_egress_spec = -1;
h1_valid = false;
if (! parse())

return false;
if (sm_egress_spec == -1)

return false;
return true;

}
void deparse (){

#emit(h1_f1);
#emit(h1_f2);
#add_payload ();

}
void main(){ //p0

//p1
while (# get_next_packet ()){

if (! process_packet ()){
#drop();

}else{
deparse ();
#output_packet ();

}
}

}
//p3 [trusted]

Figure 4.13: Manual translation of the P4 program in Figure 4.1 into IMP+

equivalent) intermediate states of the programs. Note how this abstraction enables us
to establish the equivalence even though the programs are written in two quite different
programming languages.
Given the synchronization points, KEQ was able to prove the equivalence. Although the

program is very simple, we believe it captures the essence of many of the programs that are
used in practice. In addition, note that we provided the synchronization points by hand. In
practice, the compiler can automatically provide this information as it has enough knowledge
during the translation.

4.5 CONCLUSION

We have presented P4K, the first complete semantics of P414. Through our formalization
process, we have identified many problems with the language specification. We provided a suite
of analysis tools derived directly from our semantics. We have discussed and demonstrated

80

p0 p1 p2

p3

Figure 4.14: Abstract transition relation between p0, p1, p2, and p3.

the applications of some of the tools for P4 developers and designers.
With the introduction of P416, P414 may sooner or later be deprecated, especially because

P416 addresses many of P414’s issues through backwards-incompatible changes. Nevertheless,
we think that formalizing P414 was a worthwhile effort. There are still important applications
written in P414 (e.g. [85]) that do not have a P416 equivalent. The language consortium
provides a translator from P414 to P416. However, without a clear semantics of P414, the
translation itself might be problematic. We are aware of at least one instance [76] in which
the translator’s P416 output is not equivalent to its P414 input. We also plan to formalize
P416 in near future. We believe transition to P416 will be straight forward. P416 has actually
a smaller core language compared to P414.

81

Chapter 5: Related Work

5.1 NETWORK VERIFICATION

Bugs happen frequently in networks and lead to performance problems, service disruptions,
security vulnerabilities, etc. Scale and complexity of networks make answering even the
simplest functional correctness queries prohibitively hard to answer manually. This has
ignited research into automating the process of network verification.
The literature in this field is vast and includes BGP configuration checking (e.g., [12, 86,

87, 88, 89, 90, 91, 92, 93]), ACL misconfiguration detection (e.g., [94, 95]), firewall checking
(e.g., [96, 97, 98, 99]), SDN verification (e.g., [13, 100, 101, 102]), testing (e.g., [103, 104, 105,
106, 107]), debugging (e.g., [108, 109]), differential analysis (e.g., [110]), concurrency analysis
(e.g [111, 112]), automatic repair (e.g., [113, 114, 115]), synthesis (e.g. [4, 116]), programming
languages (e.g. [3, 41, 117, 118]), safe network updates (e.g., [119, 120, 121, 122]), data
plane checking (e.g., [7, 15, 123, 124]), real-time checkers [5, 6, 9, 125], and more general
network analyses (e.g., [10, 46, 92, 126, 127, 128]) together with suitable levels of abstractions
(e.g., [129, 130]). The contributions of this dissertation have applications in virtually all of
the directions above.

Our analysis framework (#PEC) belongs to a class of methods that partition the space of
packet headers before starting the analysis. Other notable works in this class are ddNF [14],
APV [8], Delta-net [5] and VeriFlow [6], which are discussed in Chapter 2.

5.2 FACILITATING SPECIFICATION

Net2Text seeks to summarize network traffic “as much as possible” [43]. The formalized
version of this problem can be seen as a special case of Anime’s where the only allowed
feature type is of the form Tuple〈Flat〈S1〉, ...,Flat〈Sn〉〉. Net2Text assigns a score to each
summary (= set of inferred intents in Anime) that essentially awards representing more
paths/traffic and using labels other than Any. The score is proportional to precision and
recall in an ad-hoc way. The paper provides an approximate algorithm (Compass) that,
for a limit on the length of description, produces a summary with maximum score. Unlike
Anime, Net2Text cannot handle hierarchies, i.e. it can not choose any value in between a
concrete label and Any. For instance, between 10.0.1.2 and 10.0.1.3, Compass either chooses
one, hence miss the other, or chooses none (effectively Any = 0.0.0.0/0) which is too coarse,
whereas Anime can represent both together as 10.0.1.2/31. As demonstrated in § 3.3, this

82

limitation significantly affects the quality of inferred intents. Net2Text cannot handle entire
paths either. These limitations prevent Net2Text from effectively representing intents such
as the ones in our motivating examples.
Invar-net [44] (an extension of Delta-net [5]), detects networking reachability invariants

by observing the reachability relation among network devices for each header equivalence
class [5] and intersecting this relation over snapshots of the network obtained over time (or
after link failures). The same basic idea has also recently been used in Config2Spec [45].
These works are inspired by software specification mining literature, particularly dynamic
invariant inference tools like Daikon [131]. In some sense, Anime is a generalization of this
idea to multiple dimensions (e.g. devices, header fields, time) rather than just time or number
of link failures, and with the addition of hierarchical values. For instance [44, 45] cannot
infer any higher-level information from a single snapshot like in Example 1, while Anime can.
Also as shown by our experiments, unlike Anime, invariant based methods can not tolerate
negative noise or policy change.

5.3 MODELING AND P4 ANALYSIS

5.3.1 Semantics of Programming Languages in K

The K framework has been used to provide complete executable semantics for several
programming languages. Here we briefly overview the more relevant work.
KCC [71] formalizes the semantics of C11, passing 99.2% of GCC torture test suit,

more than what the GCC and Clang could pass. Later work [132] develops the "negative"
semantics of C11 and is able to identify programs with undefined behavior. In P4K, we
identify unspecified behavior by lack of semantics.
K-Java [72] formalizes Java 1.4 and follows a test-driven methodology to manually provide

a suite of 800+ tests.
KJS [73] provides semantics for JavaScript passing all 2700+ tests in a conformance test

suite [133]. The authors introduce the notion of semantic coverage for test suites which has
inspired our work.
In these works, the language design predates the formalization effort by several years.

Consequently, although more complex, these languages are quite stable. P4 is still at the early
stages of the language design process and is relatively unstable. This made the formalization
effort challenging.
KEVM [77] formalized the Etherium Virtual Machine [134], successfully passing a suite

of 40K official tests. Like P4K, KEVM targets a new language and reveals problems in its

83

specification.
These works (except K-Java) rely heavily on existing tests to provide semantics. In our

case, such a comprehensive test suite did not exist. The only test suite that we found (at the
time) covered less than 54% of our semantics.

5.3.2 Semantics and Analysis of P4

P4NOD [17] provides a big step operational semantics of a subset of the P4 language (on
paper). The authors use the semantics to provide a translator from P4 to Datalog. The result
is used in P4 data plane verification using a Datalog engine optimized for this purpose [124].
The authors also use the tool to catch a class of bugs, called well-formedness bugs, that are
unique to P4 networks. Finally, the authors show an example of P4 to P4 equivalence check.
Vera [18] translates P4 into SEFL, a language designed for network verification, and uses

symbolic execution (with SymNet [135]) to uncover bugs including parsing errors, invalid
memory accesses, and loops and tunneling errors. Vera focuses on the efficiency of verification
using specialized data structures. The authors of Vera provide big step operational semantics
of a small subset of the P4 language as well as the SEFL language (on paper) and use it to
prove the the correctness of their translation.
P4v [19] translates P4 into the Guarded Command Language (GCL), and enables deductive

verification by generating verification conditions from the resulting GCL program and a set
of user-provided pre-conditions and post-conditions capturing the property to be verified.
The formulas are then checked using Z3. In p4v, the assumptions about the control plane
are encoded as symbolic constraints provided via a domain specific language. The authors of
p4v do not provide explicit semantics for P4. The semantics is defined by the translation. In
order to gain confidence in the translation, the resulting GCL code is symbolically executed
to generate a suite of tests. The tests are then verified against the official P4 compiler and a
software simulator.
P4pktgen [20] takes an intermediate representation of a P4 program generated by the P4

compiler as input and uses symbolic execution to generate test cases for the given program.
The tool only supports a subset of the P4 language features.

P4-assert [21] provides a language for annotating P4 programs with assertions capturing
the desired properties. It then translates the intermediate representation of the given program
into a C-like program and uses symbolic execution (with KLEE [136]) to uncover assertion
failures.

In P4K, we focused on the modeling of the language itself and its problems. We provided
a modular small step operational semantics for all language features of P4. Using K tools,

84

among other things, we too are able to perform all the analysis that the other tools perform.
In addition, we have also shown an example of translation validation between P4 and an
arbitrary programming language formalized in K. Unlike the rest of these works, the analysis
is directly based on the formal semantics.

85

Chapter 6: Conclusion

In this dissertation, we argued that existing network (data plane) verification tools have
significant shortcomings in the main ingredient of formal verification (modeling, property
specification, and verification data structures and algorithms) that limit their practicality.
We then provided foundations for each of these ingredients, addressing the shortcoming
in previous works. Specifically, we provided a symbolic packet analysis framework that
resolves the tension between efficiency and expressiveness. We then provided a framework for
automatic inference of high-level intents from low-level network behavior which can facilitate
the process of property specification for network operators. Finally, we provided a rigorous
foundation for modeling of network data plane elements by defining a complete operational
semantics of the P4 language and deriving a set of formal tools directly based on the semantics.
We believe our contributions provide a solid foundation for practical network verification.

6.1 FUTURE WORK

"Now this is not the end. It is not even the beginning of the end. but it is, perhaps, the
end of the beginning" [137]. Here we briefly overview some of the interesting future directions
for our work.

6.1.1 Verification Framework

Data Structures for On-Demand Analysis. We argued that PEC-based symbolic
analysis significantly improves the efficiency of network verification and provided a practical
PEC-based framework. The downside of PEC-based analysis is the initial cost of computing
the PECs, which as shown in § 2.3.5 can be considerable. This makes PEC-based tools not
the best fit for use cases where the user wants to quickly check a light query (e.g. what
happens to packets with a particular destination IP address entering a particular switch) as
soon as she runs the tool on a snapshot of the network. Answering such a query requires
looking at a very small subset of the packet header space and devices. In such scenarios, the
benefits gained from using PECs will be shadowed by the initial cost of computing the PECs.
This is in contrast with heavier use cases (e.g. would any packet experience a forwarding loop
anywhere in the network), where the PEC-based tools shine. Through our interaction with
actual network operators, we realized that both use cases are common. We believe a more
traditional symbolic analysis approach in which the symbolic constraints are accumulated

86

and resolved online (during the analysis) by a BDD-like data structure would be a better fit
for such on-demand scenarios. However, as shown in Chapter 2, BDDs incur significant per
bit overhead. One promising future direction would be to use the domain properties to make
BDDs more efficient for network verification. For example, instead of using 64 graph nodes
to encode an IPv6 address, one can compress all these nodes (if there is no branching) into a
single node that contains a 64-bit value, requiring C + 1 instead of C × 64 machine words
of overhead where C (≥ 3 in a typical implementation) is the memory overhead of a single
node in a BDD.
Quantitative and Probabilistic Analysis. In this work, we discussed intents relating

to graph reachability in the data plane, such as loop freedom, isolation, path consistency, and
way-pointing. Our analysis excluded the so-called quantitative aspects of networks such as
load, latency, and bandwidth. Network operators are equally interested in checking properties
related to these aspects: E.g. “Is traffic belonging to certain QoS class guaranteed certain
bandwidth/latency” or “Would any of the links get overloaded under my traffic assumptions”.
Moreover, probabilities are inherent in some aspects of the network, such as link or device
failures. Future network verification should support reasoning about the quantitative and
probabilistic aspects. Early works in this direction [138, 139, 140, 141] are still in their
infancy and limited in what they can offer (§ 6.1.4). Improving the practicality of this space
is an interesting future direction.

6.1.2 Intent Inference

Interactive intent inference. An interesting future direction is to make the inference
process more interactive: the system proposes some intents, and the user selects intents that
make sense or marks the ones that do not seem correct. The system then infers new intents
that respect the user feedback for example by tuning label costs, etc.

We believe that the hierarchy of inferred intents created during the hierarchical clustering
process in Anime might be useful for such an interaction. The operator can inspect the
tree at the highest levels first, and if something does not seem right, she can inspect the
clusters below that node. She might either find a problem with the network behavior or
realize that the lower-level clusters are incorrectly grouped. In the latter case, she can mark
the incorrectly grouped clusters. The clustering algorithm can use this feedback for better
clustering.
Positive anomaly detection. We demonstrated the use of Anime to detect negative

anomalies: missing behavior that are expected to be present. We showed analyzing such
anomalies leads to interesting observations. A similarly interesting future work is to detect

87

positive anomalies: present behavior that are not expected to be present. We believe our
framework allows for the application of classic anomaly detection techniques for detecting
such behavior, which we leave as future work.
User study. Although we have devised objective measures of quality for intent inference,

the perceived quality is determined by the end-user. Therefore, another important direction
for future work is to perform user studies on the usefulness of Anime for network operators.

6.1.3 Modeling and P4 Analysis

Control and data plane co-verification. In addition to P4, the semantics of major
programming languages including C and Java have already been defined in the K framework.
This provides us with an opportunity to combine the semantics of controller programs written
in these languages with our P4 semantics of data plane and analyze a complete model of the
whole network. This would be particularly interesting since the current P4 analysis tools
solely focus on the data plane. If done, to the best of our knowledge, it would be the first
tool to provide the ability to co-verify control and data plane based on a precise model of
the two planes (not just simple abstraction of them).
Real-world compiler translation-validation In this dissertation, we showed the basics

of translation validation with a simple P4 program that is manually translated into a toy
language. We plan to provide tooling for translation validation of any P4 program using a
real-world compiler of P4. We would need to define the semantics of the target language in
K (in case it is not already defined) and also develop a method to automatically generate the
synchronization points. Our initial guess is that the 4 synchronization points described in
§ 4.4.6 would be enough for the equivalence-checker to establish the equivalence between a
P4 program and its compilation into any other language (if the compilation is correct).
Compiler conformance test suite generation Another interesting direction is to

automatically generate a suite of test cases that cover all of the semantic rules in P4K.
This would be particularly useful for the community since potentially many different P4
compilers will emerge in the future, each targeting a specific type of programmable device.
It is therefore important to have a conformance test suite that makes sure the compilers
adhere to the language specification. Currently, the K framework does not provide such a
functionality, but we believe it is possible to implement the functionality for the framework.

6.1.4 Vision: Verified Infrastructure

Our work touches only one (although important) part of the bigger picture in the reliability
of networked systems. In this dissertation, we have been mostly focusing on the data

88

plane. In addition, network control plane verification has received some attention in the
literature (e.g., [10, 11, 12, 142]). However, a modern service infrastructure typically consists
of multiple automated or semi-automated dynamic control components working at various
layers (including layers beyond networking) providing a broad spectrum of service- and
network-centric functions. For example, the scheduler in an orchestration system such
as Kubernetes [143] controls the placement of application containers according to server
resources, while a load-balancer (e.g., NGINX) manages the amount of traffic sent to each
application instance according to end-to-end request latency. In the meantime, various
routing and traffic engineering mechanisms (e.g., BGP, ECMP, MPLS-TE) manage network
connectivity and performance. Non-trivial effects emerge from such a diverse range of
control components interacting with each other and with the environment. This complexity
paves the way for a range of failures that may only manifest under a certain combination
of non-deterministic interactions, making them hard to detect before deployment. The
existing infrastructure verification and network verification tools are a poor fit for this
emerging space. They either solely focus on the networking layer, ignoring higher-level control
components like orchestration systems [1, 5, 11, 86, 100, 118, 138, 139, 140, 144, 145]; only
consider logical properties like network reachability rather than quantitative ones (e.g., load,
latency) [11, 100, 144, 145]; focus on static snapshots rather than dynamic control [138, 140];
target specific protocols (e.g., BGP, ECMP) [146]; or focus on low-level system details rather
than inter-component interactions (e.g. idempotency of provisioning scripts) [147]. In our
recent work [148] we call for attention to the need for a formal understanding of dynamic
infrastructure control. One interesting and challenging future direction would be to lay the
formal foundations for verification of systems in this emerging space. This calls for a revision
of our prior assumptions and approaches towards the three ingredients of verification.

89

References

[1] A. Horn, A. Kheradmand, and M. R. Prasad, “A precise and expressive lattice-theoretical
framework for efficient network verification,” in 27th IEEE International Conference on
Network Protocols, ICNP 2019, Chicago, IL, USA, October 8-10, 2019. IEEE, 2019,
pp. 1–12.

[2] A. Kheradmand, “Automatic inference of high-level network intents by mining forward-
ing patterns,” in SOSR ’20: Symposium on SDN Research, San Jose, CA, USA, March
3, 2020. ACM, 2020, pp. 27–33.

[3] A. Kheradmand and G. Rosu, “P4K: A formal semantics of P4 and applications,”
CoRR, vol. abs/1804.01468, 2018. [Online]. Available: http://arxiv.org/abs/1804.01468

[4] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker, “Don’t mind the
gap: Bridging network-wide objectives and device-level configurations,” in SIGCOMM.
ACM, 2016, pp. 328–341.

[5] A. Horn, A. Kheradmand, and M. R. Prasad, “Delta-net: Real-time network verification
using atoms,” in 14th USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI 2017, Boston, MA, USA, March 27-29, 2017. USENIX Association,
2017, pp. 735–749.

[6] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow: Verifying
network-wide invariants in real time,” in NSDI, 2013.

[7] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis: Static checking
for networks,” in NSDI, vol. 12, 2012, pp. 113–126.

[8] H. Yang and S. S. Lam, “Real-time verification of network properties using atomic
predicates,” in ICNP, 2013.

[9] P. Kazemian, M. Chan, H. Zeng, G. Varghese, N. McKeown, and S. Whyte, “Real time
network policy checking using header space analysis,” in NSDI, 2013, pp. 99–111.

[10] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “A general approach to network
configuration verification,” in Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM 2017, Los Angeles, CA, USA, August
21-25, 2017. ACM, 2017, pp. 155–168.

[11] S. Prabhu, K. Chou, A. Kheradmand, B. Godfrey, and M. Caesar, “Plankton: Scalable
network configuration verification through model checking,” in 17th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2020, Santa Clara, CA, USA,
February 25-27, 2020. USENIX Association, 2020, pp. 953–967.

90

http://arxiv.org/abs/1804.01468

[12] S. Prabhu, K. Y. Chou, A. Kheradmand, B. Godfrey, and M. Caesar, “Plankton:
Scalable network configuration verification through model checking,” in NSDI, 2020.

[13] T. Ball, N. Bjørner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sagiv, M. Schapira, and
A. Valadarsky, “VeriCon: Towards verifying controller programs in software-defined
networks,” in PLDI, 2014.

[14] N. Bjørner, G. Juniwal, R. Mahajan, S. A. Seshia, and G. Varghese, “ddnf: An efficient
data structure for header spaces,” in Haifa Verification Conference. Springer, 2016,
pp. 49–64.

[15] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, B. Godfrey, and S. T. King, “Debugging the
data plane with anteater,” in Proceedings of the ACM SIGCOMM 2011 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communications,
Toronto, ON, Canada, August 15-19, 2011. ACM, 2011, pp. 290–301.

[16] Barefoot Networks, “Tofino 2, second-generation of world’s fastest p4-programmable
ethernet switch asics,” https://www.barefootnetworks.com/products/brief-tofino-2/,
2020.

[17] N. Lopes, N. Bjørner, N. McKeown, A. Rybalchenko, D. Talayco, and G. Varghese,
“Automatically verifying reachability and well-formedness in p4 networks,” Microsoft
Research, Tech. Rep., 2016.

[18] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, and C. Raiciu, “Debugging p4
programs with vera,” in SIGCOMM, 2018.

[19] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé, H. Wang, C. Caşcaval,
N. McKeown, and N. Foster, “P4v: Practical verification for programmable data planes,”
in SIGCOMM, 2018.

[20] A. Nötzli, J. Khan, A. Fingerhut, C. Barrett, and P. Athanas, “P4pktgen: Automated
test case generation for p4 programs,” in SOSR, 2018.

[21] L. Freire, M. Neves, L. Leal, K. Levchenko, A. Schaeffer-Filho, and M. Barcellos,
“Uncovering bugs in p4 programs with assertion-based verification,” in SOSR, 2018.

[22] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese et al., “P4: Programming protocol-independent
packet processors,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 3,
pp. 87–95, 2014.

[23] G. Roşu and T. F. Şerbănuţă, “An overview of the K semantic framework,” Journal of
Logic and Algebraic Programming, vol. 79, no. 6, pp. 397–434, 2010, http://kframework.
org/.

[24] F. Baader and T. Nipkow, Term rewriting and all that. Cambridge university press,
1999.

91

https://www.barefootnetworks.com/products/brief-tofino-2/
http://kframework.org/
http://kframework.org/

[25] J. C. King, “Symbolic execution and program testing,” Communications of the ACM,
vol. 19, no. 7, pp. 385–394, 1976.

[26] L. De Moura and N. Bjørner, “Satisfiability modulo theories: introduction and applica-
tions,” Communications of the ACM, vol. 54, no. 9, pp. 69–77, 2011.

[27] S. B. Akers, “Binary decision diagrams,” IEEE Transactions on computers, vol. 27,
no. 06, pp. 509–516, 1978.

[28] Web Application Firewall example, https://www.wafcharm.com/en/blog/
how-to-block-a-request-that-contains-a-specific-string-in-uri-with-aws-waf/.

[29] A. Horn, A. Kheradmand, and M. R. Prasad, “A precise and expressive lattice-theoretical
framework for efficient network verification,” https://arxiv.org/abs/1908.09068, Tech.
Rep., August 2019.

[30] D. G. Kourie, S. Obiedkov, B. W. Watson, and D. van der Merwe, “An incremental
algorithm to construct a lattice of set intersections,” Science of Computer Programming,
vol. 74, no. 3, pp. 128–142, 2009.

[31] C. Diekmann, J. Michaelis, M. Haslbeck, and G. Carle, “Verified iptables firewall
analysis,” in 2016 IFIP Networking Conference (IFIP Networking) and Workshops.
IEEE, 2016, pp. 252–260.

[32] J. Stringer, D. Pemberton, Q. Fu, C. Lorier, R. Nelson, J. Bailey, C. N. Corrêa, and
C. E. Rothenberg, “Cardigan: Sdn distributed routing fabric going live at an internet
exchange,” in 2014 IEEE Symposium on Computers and Communications (ISCC).
IEEE, 2014, pp. 1–7.

[33] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese, “Checking
beliefs in dynamic networks,” in NSDI, 2015.

[34] Route Views, http://www.routeviews.org/.

[35] L. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in TACAS, 2008.

[36] C. Barrett, P. Fontaine, and C. Tinelli, “The SMT-LIB Standard: Version 2.6,” De-
partment of Computer Science, The University of Iowa, Tech. Rep., 2017, available at
www.SMT-LIB.org.

[37] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Cacheflow: Dependency-aware
rule-caching for software-defined networks,” in SOSR, 2016.

[38] A. Khurshid and B. Godfrey, personal communication, Jan. 2019.

[39] A. Khurshid, personal communication, Aug. 2019.

[40] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C. Schlesinger, and
D. Walker, “Netkat: Semantic foundations for networks,” in POPL, 2014, pp. 113–126.

92

https://www.wafcharm.com/en/blog/how-to-block-a-request-that-contains-a-specific-string-in-uri-with-aws-waf/
https://www.wafcharm.com/en/blog/how-to-block-a-request-that-contains-a-specific-string-in-uri-with-aws-waf/
https://arxiv.org/abs/1908.09068
http://www.routeviews.org/

[41] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story, and
D. Walker, “Frenetic: A network programming language,” ACM Sigplan Notices, vol. 46,
no. 9, pp. 279–291, 2011.

[42] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee, C. Clark, Y. Ma,
P. Sharma, and Y. Zhang, “Pga: Using graphs to express and automatically reconcile
network policies,” in ACM SIGCOMM Computer Communication Review, vol. 45, no. 4.
ACM, 2015, pp. 29–42.

[43] R. Birkner, D. Drachlser-Cohen, L. Vanbever, and M. Vechev, “Net2Text: Query-
Guided Summarization of Network Forwarding Behaviors,” in USENIX NSDI, Renton,
WA, USA, 2018.

[44] A. Horn and A. Kheradmand, “Network analysis, US patent 10,439,926 B2,” October
2019.

[45] R. Birkner, D. Drachsler-Cohen, L. Vanbever, and M. Vechev, “Config2spec: Mining
network specifications from network configurations,” in USENIX NSDI, 2020.

[46] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan, R. Mahajan, and
T. Millstein, “A general approach to network configuration analysis,” in NSDI, 2015.

[47] S. Saha, S. Prabhu, and P. Madhusudan, “Netgen: Synthesizing data-plane configura-
tions for network policies,” in SOSR. ACM, 2015, p. 17.

[48] S. Prabhu, M. Dong, T. Meng, P. Godfrey, and M. Caesar, “Let me rephrase that:
Transparent optimization in sdns,” in SOSR, 2017, pp. 41–47.

[49] W. Zhou, J. Croft, B. Liu, and M. Caesar, “Neat: Network error auto-correct,” in
SOSR, 2017, pp. 157–163.

[50] A. Kheradmand, “Anime github repository,” 2020. [Online]. Available: https:
//tinyurl.com/anime-supp-sosr20

[51] F. Murtagh and P. Legendre, “Ward’s hierarchical agglomerative clustering method:
which algorithms implement ward’s criterion?” Journal of classification, vol. 31, no. 3,
pp. 274–295, 2014.

[52] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in Proceedings
of the 1984 ACM SIGMOD international conference on Management of data, 1984, pp.
47–57.

[53] A. Papadopoulos and Y. Manolopoulos, “Performance of nearest neighbor queries in
r-trees,” in International Conference on Database Theory. Springer, 1997, pp. 394–408.

[54] A. Kheradmand, “Anime supplemental material,” 2020. [Online]. Available:
https://tinyurl.com/anime-supp-sosr20

93

https://tinyurl.com/anime-supp-sosr20
https://tinyurl.com/anime-supp-sosr20
https://tinyurl.com/anime-supp-sosr20

[55] S. Gulwani, J. Hernández-Orallo, E. Kitzelmann, S. H. Muggleton, U. Schmid, and
B. Zorn, “Inductive programming meets the real world,” Communications of the ACM,
vol. 58, no. 11, pp. 90–99, 2015.

[56] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker, “In-band network
telemetry via programmable dataplanes,” in ACM SIGCOMM, 2015.

[57] H. T. Dang, M. Canini, F. Pedone, and R. Soulé, “Paxos made switch-y,” ACM
SIGCOMM Computer Communication Review, vol. 46, no. 1, pp. 18–24, 2016.

[58] A. Ştefănescu, D. Park, S. Yuwen, Y. Li, and G. Roşu, “Semantics-based program
verifiers for all languages,” in OOPSLA. ACM, Nov 2016, pp. 74–91.

[59] P4 Language Consortium, “P414 language specification version 1.0.4,” https://p4lang.
github.io/p4-spec/p4-14/v1.0.4/tex/p4.pdf, May 2017.

[60] A. Kheradmand, “P4 languagee specification repository issue #398,” https://github.
com/p4lang/p4-spec/issues/398, 2017.

[61] A. Kheradmand, “P4 languagee specification repository issue #411,” https://github.
com/p4lang/p4-spec/issues/411, 2017.

[62] A. Kheradmand, “P4 languagee specification repository issue #412,” https://github.
com/p4lang/p4-spec/issues/412, 2017.

[63] A. Kheradmand, “P4 languagee specification repository issue #414,” https://github.
com/p4lang/p4-spec/issues/414, 2017.

[64] A. Kheradmand, “P4 languagee specification repository issue #429,” https://github.
com/p4lang/p4-spec/issues/429, 2017.

[65] A. Kheradmand, “P4 languagee specification repository issue #430,” https://github.
com/p4lang/p4-spec/issues/430, 2017.

[66] A. Kheradmand, “P4 languagee specification repository issue #431,” https://github.
com/p4lang/p4-spec/issues/431, 2017.

[67] A. Kheradmand, “P4 languagee specification repository issue #433,” https://github.
com/p4lang/p4-spec/issues/433, 2017.

[68] A. Kheradmand, “P4 languagee specification repository issue #442,” https://github.
com/p4lang/p4-spec/issues/442, 2017.

[69] A. Kheradmand, “Suggested revision for P414 language specification,” https://github.
com/kheradmand/p4-spec, 2017.

[70] P4 Language Consortium, “P4 reference compiler (p4c),” https://github.com/p4lang/
p4c, 2017.

94

 https://p4lang.github.io/p4-spec/p4-14/v1.0.4/tex/p4.pdf
 https://p4lang.github.io/p4-spec/p4-14/v1.0.4/tex/p4.pdf
https://github.com/p4lang/p4-spec/issues/398
https://github.com/p4lang/p4-spec/issues/398
https://github.com/p4lang/p4-spec/issues/411
https://github.com/p4lang/p4-spec/issues/411
https://github.com/p4lang/p4-spec/issues/412
https://github.com/p4lang/p4-spec/issues/412
https://github.com/p4lang/p4-spec/issues/414
https://github.com/p4lang/p4-spec/issues/414
https://github.com/p4lang/p4-spec/issues/429
https://github.com/p4lang/p4-spec/issues/429
https://github.com/p4lang/p4-spec/issues/430
https://github.com/p4lang/p4-spec/issues/430
https://github.com/p4lang/p4-spec/issues/431
https://github.com/p4lang/p4-spec/issues/431
https://github.com/p4lang/p4-spec/issues/433
https://github.com/p4lang/p4-spec/issues/433
https://github.com/p4lang/p4-spec/issues/442
https://github.com/p4lang/p4-spec/issues/442
https://github.com/kheradmand/p4-spec
https://github.com/kheradmand/p4-spec
https://github.com/p4lang/p4c
https://github.com/p4lang/p4c

[71] C. Ellison and G. Roşu, “An executable formal semantics of c with applications,” in
POPL. ACM, January 2012, pp. 533–544.

[72] D. Bogdănaş and G. Roşu, “K-Java: A Complete Semantics of Java,” in POPL. ACM,
January 2015, pp. 445–456.

[73] D. Park, A. Ştefănescu, and G. Roşu, “KJS: A complete formal semantics of JavaScript,”
in PLDI. ACM, June 2015, pp. 346–356.

[74] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “Openflow: enabling innovation in campus networks,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69–74, 2008.

[75] P4 Language Consortium, “P416 language specification version 1.0.0,” https://p4lang.
github.io/p4-spec/docs/P4-16-v1.0.0-spec.pdf, May 2017.

[76] A. Fingerhut, “Operations on header stacks in P414, P416, and bmv2,” https://github.
com/jafingerhut/p4-guide/blob/master/README-header-stacks.md, 2017.

[77] E. Hildenbrandt, M. Saxena, X. Zhu, N. Rodrigues, D. Guth, P. Daian, and G. Roşu,
“Kevm: A complete semantics of the ethereum virtual machine,” University of Illinois
at Urbana-Champaign, Tech. Rep., 2017.

[78] B. S. Davie and Y. Rekhter, MPLS: technology and applications. Morgan Kaufmann
Publishers Inc., 2000.

[79] P4 Language Consortium, “P414 language specification version 1.0.3,” https://p4lang.
github.io/p4-spec/p4-14/v1.1.0/tex/p4.pdf, January 2016.

[80] P4 Language Consortium, “P414 language specification version 1.0.3,” https://p4lang.
github.io/p4-spec/p4-14/v1.0.3/tex/p4.pdf, November 2016.

[81] D. Guth, C. Hathhorn, M. Saxena, and G. Roşu, “Rv-match: Practical semantics-based
program analysis,” in CAV, ser. LNCS, vol. 9779. Springer, July 2016, pp. 447–453.

[82] A. Bas, “Basic routing example,” https://github.com/p4lang/p4factory/tree/master/
targets/basic_routing, 2016.

[83] A. Pnueli, M. Siegel, and E. Singerman, “Translation validation,” in TACAS, 1998, pp.
151–166.

[84] K Framework Development Team, “Keq,” https://github.com/kframework/k/tree/keq,
2017.

[85] P4 Language Consortium, “switch.p4,” https://github.com/p4lang/switch, 2016.

[86] S. Prabhu, A. Kheradmand, B. Godfrey, and M. Caesar, “Predicting network futures
with plankton,” in Proceedings of the First Asia-Pacific Workshop on Networking,
APNet 2017, Hong Kong, China, August 3-4, 2017. ACM, 2017, pp. 92–98.

95

https://p4lang.github.io/p4-spec/docs/P4-16-v1.0.0-spec.pdf
https://p4lang.github.io/p4-spec/docs/P4-16-v1.0.0-spec.pdf
https://github.com/jafingerhut/p4-guide/blob/master/README-header-stacks.md
https://github.com/jafingerhut/p4-guide/blob/master/README-header-stacks.md
https://p4lang.github.io/p4-spec/p4-14/v1.1.0/tex/p4.pdf
https://p4lang.github.io/p4-spec/p4-14/v1.1.0/tex/p4.pdf
https://p4lang.github.io/p4-spec/p4-14/v1.0.3/tex/p4.pdf
https://p4lang.github.io/p4-spec/p4-14/v1.0.3/tex/p4.pdf
https://github.com/p4lang/p4factory/tree/master/targets/basic_routing
https://github.com/p4lang/p4factory/tree/master/targets/basic_routing
 https://github.com/kframework/k/tree/keq
https://github.com/p4lang/switch

[87] T. G. Griffin and G. Wilfong, “An analysis of BGP convergence properties,” in SIG-
COMM, 1999.

[88] N. Feamster and H. Balakrishnan, “Detecting bgp configuration faults with static
analysis,” in NSDI, 2005, pp. 43–56.

[89] B. Quoitin and S. Uhlig, “Modeling the routing of an autonomous system with C-BGP,”
IEEE Network, vol. 19, no. 6, Nov. 2005.

[90] A. Wang, L. Jia, W. Zhou, Y. Ren, B. T. Loo, J. Rexford, V. Nigam, A. Scedrov, and
C. Talcott, “FSR: Formal analysis and implementation toolkit for safe interdomain
routing,” IEEE/ACM Transactions on Networking, vol. 20, no. 6, Dec. 2012.

[91] K. Weitz, D. Woos, E. Torlak, M. D. Ernst, A. Krishnamurthy, and Z. Tatlock, “Formal
semantics and automated verification for the border gateway protocol,” in NetPL, 2016.

[92] S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. D. Millstein, V. Sekar, and G. Vargh-
ese, “Efficient network reachability analysis using a succinct control plane representation,”
in OSDI), 2016.

[93] A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan, “Fast control plane
analysis using an abstract representation,” in SIGCOMM, 2016, pp. 300–313.

[94] L. Bauer, S. Garriss, and M. K. Reiter, “Detecting and resolving policy misconfigurations
in access-control systems,” ACM Transactions on Information and System Security,
vol. 14, no. 1, June 2011.

[95] K. Jayaraman, V. Ganesh, M. Tripunitara, M. Rinard, and S. Chapin, “Automatic
error finding in access-control policies,” in CCS, 2011.

[96] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mohapatra, “FIREMAN: A
toolkit for firewall modeling and analysis,” in SP, 2006.

[97] A. Jeffrey and T. Samak, “Model checking firewall policy configurations,” in POLICY,
2009.

[98] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and S. Krishnamurthi, “The Margrave
tool for firewall analysis,” in LISA, 2010.

[99] S. Zhang, A. Mahmoud, S. Malik, and S. Narain, “Verification and synthesis of firewalls
using sat and qbf,” in ICNP, 2012.

[100] M. Canini, D. Venzano, P. Peresíni, D. Kostic, and J. Rexford, “A NICE way to test
openflow applications,” in Proceedings of the 9th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2012, San Jose, CA, USA, April 25-27,
2012. USENIX Association, 2012, pp. 127–140.

[101] S. Son, S. Shin, V. Yegneswaran, P. A. Porras, and G. Gu, “Model checking invariant
security properties in OpenFlow,” in ICC, 2013.

96

[102] L. Ryzhyk, N. Bjørner, M. Canini, J.-B. Jeannin, C. Schlesinger, D. B. Terry, and
G. Varghese, “Correct by construction networks using stepwise refinement.” in NSDI,
2017.

[103] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “Automatic test packet genera-
tion,” in CoNEXT, 2012.

[104] D. Lebrun, S. Vissicchio, and O. Bonaventure, “Towards test-driven software defined
networking,” in NOMS, 2014.

[105] M. A. Chang, B. Tschaen, T. Benson, and L. Vanbever, “Chaos monkey: Increasing
sdn reliability through systematic network destruction,” in SIGCOMM, 2015.

[106] S. K. Fayaz, T. Yu, Y. Tobioka, S. Chaki, and V. Sekar, “BUZZ: Testing context-
dependent policies in stateful networks,” in NSDI, 2016.

[107] H. H. Liu, Y. Zhu, J. Padhye, J. Cao, S. Tallapragada, N. P. Lopes, A. Rybalchenko,
G. Lu, and L. Yuan, “CrystalNet: Faithfully emulating large production networks,” in
SOSP, 2017.

[108] R. Beckett, X. K. Zou, S. Zhang, S. Malik, J. Rexford, and D. Walker, “An assertion
language for debugging SDN applications,” in HotSDN, 2014.

[109] C. Scott, A. Wundsam, B. Raghavan, A. Panda, A. Or, J. Lai, E. Huang, Z. Liu,
A. El-Hassany, S. Whitlock, H. Acharya, K. Zarifis, and S. Shenker, “Troubleshooting
blackbox SDN control software with minimal causal sequences,” in SIGCOMM, 2014.

[110] T. Nelson, A. D. Ferguson, and S. Krishnamurthi, “Static differential program analysis
for software-defined networks,” in FM, 2015.

[111] J. Miserez, P. Bielik, A. El-Hassany, L. Vanbever, and M. Vechev, “SDNRacer: Detecting
concurrency violations in software-defined networks,” in SOSR, 2015.

[112] R. May, A. El-Hassany, L. Vanbever, and M. Vechev, “BigBug: Practical concurrency
analysis for SDN,” in SOSR, 2017.

[113] H. Hojjat, P. Rümmer, J. McClurg, P. Černỳ, and N. Foster, “Optimizing Horn solvers
for network repair,” in FMCAD, 2016.

[114] A. Gember-Jacobson, A. Akella, R. Mahajan, and H. H. Liu, “Automatically repairing
network control planes using an abstract representation,” in SOSP, 2017.

[115] Y. Wu, A. Chen, A. Haeberlen, W. Zhou, and B. T. Loo, “Automated bug removal for
software-defined networks.” in NSDI, 2017.

[116] A. El-Hassany, P. Tsankov, L. Vanbever, and M. Vechev, “Network-wide configuration
synthesis,” in CAV, 2017.

[117] C. Schlesinger, M. Greenberg, and D. Walker, “Concurrent NetCore: From policies to
pipelines,” in ICFP, 2014.

97

[118] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and R. J. Clark, “Kinetic:
Verifiable dynamic network control,” in 12th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 15, Oakland, CA, USA, May 4-6, 2015. USENIX
Association, 2015, pp. 59–72.

[119] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker, “Abstractions for
network update,” in SIGCOMM, 2012.

[120] L. Vanbever, J. Reich, T. Benson, N. Foster, and J. Rexford, “HotSwap: Correct and
efficient controller upgrades for software-defined networks,” in HotSDN, 2013.

[121] S. Vissicchio, L. Vanbever, L. Cittadini, G. G. Xie, and O. Bonaventure, “Safe update
of hybrid SDN networks,” IEEE/ACM Transactions on Networking, vol. 25, no. 3, June
2017.

[122] T. D. Nguyen, M. Chiesa, and M. Canini, “Decentralized consistent updates in SDN,”
in SOSR, 2017.

[123] G. G. Xie, J. Zhanm, D. A. Maltz, H. Zhang, A. Greenberg, G. Hjalmtysson, and
J. Rexford, “On static reachability analysis of IP networks,” in INFOCOM, 2005.

[124] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese, “Checking
beliefs in dynamic networks,” in NSDI, 2015.

[125] H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju, J. Liu, N. McKeown, and A. Vahdat,
“Libra: Divide and conquer to verify forwarding tables in huge networks,” in NSDI,
2014.

[126] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. El-Badawi, “Network configuration in a
box: towards end-to-end verification of network reachability and security,” in ICNP,
2009.

[127] E. Al-Shaer and S. Al-Haj, “FlowChecker: Configuration analysis and verification of
federated OpenFlow infrastructures,” in SafeConfig, 2010.

[128] K. Jayaraman, N. Bjørner, G. Outhred, and C. Kaufman, “Automated analysis and
debugging of network connectivity policies,” Microsoft Research, Tech. Rep., 2014.

[129] G. D. Plotkin, N. Bjørner, N. P. Lopes, A. Rybalchenko, and G. Varghese, “Scaling
network verification using symmetry and surgery,” in POPL, 2016.

[130] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “Control plane compression,” in
SIGCOMM, 2018.

[131] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz, and
C. Xiao, “The daikon system for dynamic detection of likely invariants,” Science of
computer programming, vol. 69, no. 1-3, pp. 35–45, 2007.

98

[132] C. Hathhorn, C. Ellison, and G. Roşu, “Defining the undefinedness of c,” in PLDI.
ACM, June 2015, pp. 336–345.

[133] Ecma TC39, “Standard ECMA-262 ECMAScript Language Specification Edition 5.1,”
June 2011.

[134] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,” 2014.

[135] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu, “Symnet: Scalable symbolic
execution for modern networks,” in SIGCOMM, 2016.

[136] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs.” in OSDI, 2008.

[137] A quotation from a 1942 speech by Winston Churchill.

[138] Y. Zhang, W. Wu, S. Banerjee, J. Kang, and M. A. Sánchez, “Sla-verifier: Stateful and
quantitative verification for service chaining,” in 2017 IEEE Conference on Computer
Communications, INFOCOM 2017, Atlanta, GA, USA, May 1-4, 2017. IEEE, 2017,
pp. 1–9.

[139] A. Abhashkumar, J. Kang, S. Banerjee, A. Akella, Y. Zhang, and W. Wu, “Supporting
diverse dynamic intent-based policies using janus,” in Proceedings of the 13th Interna-
tional Conference on emerging Networking EXperiments and Technologies, CoNEXT
2017, Incheon, Republic of Korea, December 12 - 15, 2017. ACM, 2017, pp. 296–309.

[140] G. Juniwal, N. Bjorner, R. Mahajan, S. Seshia, and G. Varghese, “Quantitative network
analysis,” Technical report, 2016.

[141] S. Smolka, P. Kumar, N. Foster, D. Kozen, and A. Silva, “Cantor meets scott: semantic
foundations for probabilistic networks,” in Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017. ACM, 2017, pp. 557–571.

[142] A. Abhashkumar, A. Gember-Jacobson, and A. Akella, “Tiramisu: Fast multilayer
network verification,” in 17th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2020, Santa Clara, CA, USA, February 25-27, 2020. USENIX
Association, 2020, pp. 201–219.

[143] Kubernetes, “Kubernetes: Production-grade container orchestration,” https://
kubernetes.io/, June 2020.

[144] Y. Yuan, S. Moon, S. Uppal, L. Jia, and V. Sekar, “Netsmc: A custom symbolic model
checker for stateful network verification,” in 17th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2020, Santa Clara, CA, USA, February
25-27, 2020. USENIX Association, 2020, pp. 181–200.

99

https://kubernetes.io/
https://kubernetes.io/

[145] F. Yousefi, A. Abhashkumar, K. Subramanian, K. Hans, S. Ghorbani, and A. Akella,
“Liveness verification of stateful network functions,” in 17th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2020, Santa Clara, CA, USA,
February 25-27, 2020. USENIX Association, 2020, pp. 257–272.

[146] K. Subramanian, A. Abhashkumar, L. D’Antoni, and A. Akella, “Detecting network load
violations for distributed control planes,” in Proceedings of the 41st ACM SIGPLAN
International Conference on Programming Language Design and Implementation, PLDI
2020, London, UK, June 15-20, 2020. ACM, 2020, pp. 974–988.

[147] R. Shambaugh, A. Weiss, and A. Guha, “Rehearsal: a configuration verification tool
for puppet,” in Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June
13-17, 2016. ACM, 2016, pp. 416–430.

[148] B. Liu, A. Kheradmand, M. Caesar, and B. Godfrey, “Towards verified self-driving
infrastructure,” in HotNets, 2020.

100

	Chapter 1 Introduction
	Chapter 2 Verification Framework: Expressive and Efficient Formal Network Analysis pec
	Background and Motivation
	Challenge: Expressiveness and Efficiency
	Challenge: Empty PECs

	#PEC Framework
	Flexible Match Types
	Implicit Subtractions
	Detecting Empty PECs
	Minimality of PECs

	Evaluation
	Implementation
	Datasets
	Case Study: Empty PECs
	Performance Evaluation
	PEC Construction
	PEC-emptiness Checks
	Comparison with VeriFlow
	Discussion: Importance of Empty PECs

	Conclusion

	Chapter 3 Specification: Mining High-Level Intents from Low-Level Behavior anime-sosr
	Motivation
	Illustrative Examples
	Applications

	Anime Framework
	Problem Context
	Formal Setup
	Feature Types Library
	Solving the Intent Inference Problem

	Evaluation
	Comparison with Net2Text
	Effect of Hierarchies
	Imperfect Observations
	Experiment with HREs
	Multi-snapshot Analysis
	Campus Network Experiments
	Performance

	Discussion
	Conclusion

	Chapter 4 Modeling: Formal Semantics of P4 and its Applications p4k
	Background and Challenges
	Software Defined Networks
	P4
	Challenges in Formalizing P4
	The K Framework

	P4K
	Syntax
	Configuration
	Semantics
	Concurrency Model
	Limitations
	Network Semantics

	Evaluation
	Applications
	Detecting Unportable Code
	State Space Exploration
	Symbolic Execution
	Data Plane Verification
	Program Verification
	Translation Validation

	Conclusion

	Chapter 5 Related Work
	Network Verification
	Facilitating Specification
	Modeling and P4 Analysis
	Semantics of Programming Languages in K
	Semantics and Analysis of P4

	Chapter 6 Conclusion
	Future Work
	Verification Framework
	Intent Inference
	Modeling and P4 Analysis
	Vision: Verified Infrastructure

	References

