
© 2021 Si Zhang

NETWORK ALIGNMENT ON BIG NETWORKS

BY

SI ZHANG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2021

Urbana, Illinois

Doctoral Committee:

Associate Professor Hanghang Tong, Chair
Professor Jiawei Han
Associate Professor Danai Koutra, University of Michigan
Assistant Professor Edgar Solomonik

ABSTRACT

In the age of big data, multiple networks naturally appear in a variety of domains, such

as social network analysis, bioinformatics, finance, infrastructure and so on. Network align-

ment, which aims to find the node correspondences across different networks, can integrate

multiple networks from different sources into a world-view network. By mining such a

world-view network, one may gain considerable insights that are invisible if mining different

networks separably. Networks as one common data type, share the well-known 4Vs charac-

teristics of big data, including variety, veracity, velocity and volume, each of which brings

unique challenges to the big network alignment task.

Specifically, the variety characteristic of big networks depicts the rich information as-

sociated with multiple networks. Many prior network alignment methods find the node

correspondences merely based on network structures while inevitably ignoring the rich node

and/or edge attributes of networks. In the meanwhile, conventional methods often assume

the alignment consistency among the neighboring node pairs, which could be easily violated

due to the disparity among various networks.

Despite the emergence of the sites and tools that enable to link entities, there still exist the

bottlenecks of collecting the networked data, such as the privacy issues in social networks.

Thus, real-world networks are often noisy and incomplete with missing edges. However,

it still remains a daunting task on how to deal with the incompleteness and analyze the

robustness of network alignment owing to the veracity characteristic.

The velocity of big networks indicates that real-world networks are often dynamically

changing. The dynamics behind multiple networks may benefit network alignment from the

temporal information of nodes and edges in addition to the static structural information of

networks. Yet, how to design the dynamic alignment model still remains an open problem.

Given the sheer volume of large-scale networks but relatively limited computational re-

sources, the at least quadratic complexity of many prior network alignment methods is not

scalable especially when aligning networks with a large number of nodes and edges. In this

way, the efficiency issue has become a fundamental challenge of big network alignment.

The theme of my Ph.D. research is to address the above challenges associated with the 4Vs

characteristics and align big networks. Note that we consider volume as an overarching goal

so we can align big networks efficiently. First (for variety), to leverage attribute information

of networks, we develop a family of algorithms FINAL that optimize the alignment consis-

tency in terms of network structures and attributes and achieve an up to 30% improvement

ii

in terms of the alignment accuracy over the comparison methods without attributes. We

also develop a novel alignment method that displace node representations to be more compa-

rable through non-rigid point set registration. Moreover, to address network disparity issue,

we design an encoder-decoder architecture NetTrans that learns network transformation

functions in a hierarchical manner. Besides, we design a relational graph convolutional net-

work based model with an adaptive negative sampling strategy to strike a balance between

alignment consistency and disparity. This developed method named NeXtAlign achieves

an at least 3% performance improvement over the best competitor. Second (for veracity),

we hypothesize that network alignment and network completion mutually benefit each other

and develop an effective algorithm based on multiplicative update that outperforms baseline

methods on incomplete networks. In addition, we provide a robustness analysis of network

alignment against structural noise. Last (for velocity), we design a representation learning

model on dynamic network of networks which can leverage temporal information underlying

networks and is applied for dynamic network alignment task.

iii

ACKNOWLEDGMENTS

First and foremost I am extremely grateful to my advisor Dr. Hanghang Tong for his

adequate guidance, invaluable advice, continuous support, and patience that cannot be un-

derestimated during my Ph.D. study. Inspired by his sharp insights and broad visions, my

first research work which has been mostly done during my master study was accepted by

KDD’16. Up to now, my friends still joke on me that my debut is the pinnacle. Nourished

by his tremendous help and advice, I learned a lot how to conduct research: from discovering

research problems to figuring out novel solutions, from writing well-polished research papers

to giving well-prepared presentations. Dr. Tong also provided me great opportunities to

empower me from full potential including leading a 4-year research project, writing grant

proposals, attending PI meetings, giving guest lectures in graduate-level courses and men-

toring students. Besides all his constructive suggestions and unwavering guidance on my

research, I have benefited a lot and will constantly benefit in the future from what he said -

doctoral studies train one’s research abilities and more importantly the endurance capability

of facing obstacles. This together with all his encouragement helped me to get through the

hard time, when the experiments did not go well, when my submissions got rejected. His

optimism and his principle of ‘Be Kind’ that he introduced in CS 591 Ph.D. Orientation

class, made my entire Ph.D. study much less stressful.

I would also like to say thank you to all the other thesis committee members, Dr. Jiawei

Han, Dr. Danai Koutra and Dr. Edgar Solomonik for giving me valuable feedback and

asking insightful questions during my thesis proposal and defense. Specifically, I am grateful

to Dr. Han for sharing his deep and broad knowledge in the field of data mining and text

mining in his CS 512 Data Mining Principles. I would like to thank Dr. Koutra for her

great works on network alignment, which not only brought me into this research area but

also inspired me a lot. I would like to express my sincere gratitude to Dr. Solomonik for all

his constructive comments and suggestions on my research.

I have had a great journey of internship in Facebook AI, working on applied research

problems. I would like to extend my sincere thanks to my mentor Long Jin and all the

collaborators Yan Shang, Kai Wang, Yinglong Xia, Liang Xiong and Yunsong Guo. The

diversity of the group has given me a great chance to learn from the experts in different

domains and discover inspirational ideas. Their generous support and guidance helped me a

lot to get used to the new industrial work environment, become familiar with the code base

and accomplish industrial projects with nice outcomes.

iv

As a member of Intelligent Data Engineering and Analytics Lab (iDEA) and iSchool

Statistical Machine Learning And Artificial Intelligence Lab (iSAIL), I am grateful for the

consistent support and encouragement from all other members: Liangyue Li, Chen Chen,

Boxin Du, Qinghai Zhou, Jian Kang, Zhe Xu, Lihui Liu, Yuchen Yan, Baoyu Jing, Yuheng

Zhang, Shengyu Feng, Derek Wang, Yian Wang, Zhichen Zeng, Zongyu Lin, Shweta Jain,

Scott Freitas, Haichao Yu, Ruiyue Peng, Rongyu Lin, Xiaoyu Zhang, Dawei Zhou, Yao Zhou,

Arun Reddy, Xu Liu, Jun Wu, Lecheng Zheng, Xue Hu, Pei Yang, Dongqi Fu, Yikun Ban,

Yunzhe Qi, Haonan Wang, Ziwei Wu, Wenxuan Bao, Tianxin Wei. In addition, I would like

to thank all my friends at and outside of Arizona State University and University of Illinois

at Urbana-Champaign, who are all imperative parts in this amazing journey.

Last but not least, I am deeply indebted to the most amazing parents, who have been

extremely supportive during my graduate study in the United States. They have always been

there ready to chat with me, provide encouragement and advice, celebrate my successes, help

me recover fast after failures, and cheer me up. I would like to thank my wife Ms. Liya

Chen for standing by me and her conjugial love.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Motivations . 1
1.2 Research Challenges . 1
1.3 Tasks Overview . 4
1.4 Organization . 6

CHAPTER 2 LITERATURE REVIEW . 7
2.1 Big Network Alignment - Variety . 7
2.2 Big Network Alignment - Veracity . 8
2.3 Big Network Alignment - Velocity . 9
2.4 Big Network Alignment - Volume . 10
2.5 Network Alignment Applications . 11

CHAPTER 3 VARIETY IN BIG NETWORK ALIGNMENT 13
3.1 Attributed Network Alignment . 13
3.2 Non-Rigid Network Alignment . 40
3.3 Neural Cross-Network Transformation . 58
3.4 Balancing Consistency and Disparity in Network Alignment 79

CHAPTER 4 VERACITY IN BIG NETWORK ALIGNMENT 100
4.1 Incomplete Network Alignment . 100
4.2 Robustness Analysis of Network Alignment 120

CHAPTER 5 VELOCITY IN BIG NETWORK ALIGNMENT 128
5.1 Motivations . 128
5.2 Problem Definition . 130
5.3 The Designed DraNoN Model . 133
5.4 Experimental Evaluations . 139

CHAPTER 6 CONCLUSION AND FUTURE DIRECTIONS 144
6.1 Conclusion . 144
6.2 Future Directions . 145

REFERENCES . 149

vi

CHAPTER 1: INTRODUCTION

1.1 MOTIVATIONS

Multiple networks emerge in numerous domains ranging from social networks of vari-

ous social platforms (e.g., Facebook, Twitter, etc.) and protein-protein interaction (PPI)

networks of different species (e.g., yeast and human) to transaction networks at different

financial institutes (e.g., PayPal and Zelle, etc.) and knowledge graphs constructed by mul-

tiple knowledge bases (e.g., DBPedia and FreeBase). These networks exhibit their inherent

patterns and describe distinctive information which empowers numerous graph mining tasks

on each single network. However, by merely mining each individual network separately, one

may overlook the insights that are discoverable only by jointly mining multiple networks.

In fact, networks are often inter-linked with each other at both macro level (e.g., graph

similarities among graphs) and micro level (i.e., node level). Examples of being inter-linked

at node level include social networks which share a set of common users, PPI networks with

a set of overlapped proteins for certain functionalities and transaction networks with users

that simultaneously involve in multiple financial institutes. From this perspective, it is often

a key step to link nodes across different networks in many applications.

Network alignment aims to find the node correspondences across multi-sourced networks,

which can be used to bridge networks at node level and integrate them into a world-view

network. One example of social network alignment is illustrated in Figure 1.1 where the

correspondence between two nodes across networks indicates these two nodes represent the

same physical person. By finding the alignments among users, one can study how news

and posts propagate within each social network and across different social networks [1].

Moreover, by aligning proteins across different PPI networks, knowledge can be transferred

from well-studied species to less-studied species so that the evolutionary relationships among

different species can be discovered [2, 3]. In addition, money launderers may conduct less

suspicious transactions in each transaction network separately to camouflage themselves.

With the help of network alignment, the merged transaction network from different financial

institutions is more reliable to indicate fraud suspiciousness [4].

1.2 RESEARCH CHALLENGES

Despite the extraordinary importance, network alignment faces unique challenges brought

from the characteristics of big networks (in a similar notion as big data), including the classic

1

Figure 1.1: An illustration of network alignment between two social networks. Red dashed
lines indicate the unique persons that participate in both social platforms.

variety, veracity, velocity and volume.

1.2.1 Variety Challenge

Despite the extensive research on network alignment, many of the alignment methods are

solely based on the topology underlying networks [3, 5, 6]. However, the alignment achieved

only by network structures might be sub-optimal or even incorrect, for example, when nodes

are indistinguishable by topological information. In the era of big data, networks are often

accompanied with rich contextual information, such as node and edge attributes, which could

provide extra clues of node alignments. For example, user’s profile (e.g., gender) may be used

as categorical attributes that help remove the misleading alignment candidates. However,

it is not clear how to assimilate node/edge attribute information into the alignment process

and further mitigate both computational and analytical issues.

On the other hand, most of the prior approaches are either based on the typical con-

sistency assumption that neighboring node pairs tend to have consistent alignment scores

[3, 7], or based on the hypothesis that node embeddings of different networks lie in the same

embedding space [8]. However, due to the different sources of networks, the disparity among

networks may easily violate the consistency assumption of the classic optimization-based

methods, and lead to the space disparity issue of the embedding-based methods. Scenarios

that encounter such network disparity challenges include: (1) same user may behave dra-

matically differently in different social networks (e.g., being active in Facebook but quiet in

Twitter due to his/her usage preferences), and (2) networks to be aligned capture different

perspectives of users’ social demands (e.g., career-oriented LinkedIn vs. friendship-oriented

2

Facebook). In this way, it is crucial to consider both the alignment consistency and disparity

in the alignment algorithms.

1.2.2 Veracity Challenge

Prior network alignment methods predominantly assume that the network structure is

perfectly known a priori. The veracity characteristic of big networks indicates that real-

world networks are often incomplete (e.g., with missing nodes/edges and missing attributes,

etc.) due to the limited accessibility in data collections. In particular, when collecting the

relationships among users in social networks, the protection of user’s privacy may hide some

friendships of certain users such that the obtained social networks are incomplete. Directly

aligning incomplete networks may result in the misleading node alignments. It is also worth

mentioning that network completion, as a separate task of network alignment, may introduce

noisy edges to the input networks and hence even hurt the alignment performance. In this

way, how can we align input networks when one or both of them are incomplete (e.g.,

with missing entries in the corresponding adjacency matrices of the input networks)? In the

meanwhile, veracity also means the uncertainty and noise underlying networks and even small

changes in the network structure may significantly change the node alignments. Therefore,

it is of great theoretical values to analyze the robustness and reliability of network alignment

methods against the noise in network structures.

1.2.3 Velocity Challenge

Most, if not all, of the prior network alignment methods deal with static networks. That

is, there exists no temporal information of networks incorporated in the alignment process.

Nevertheless, many real-world networks such as social networks and transaction networks are

intrinsically dynamic with nodes/edges changing over time. Such dynamics could provide

more information in the additional temporal dimension to avoid misleading node alignments

and thus further advance the accuracy of the node alignments. However, it remains a

daunting task on how to leverage the temporal information in network alignment.

1.2.4 Volume Challenge

In the era of big data, one common challenge for most data mining tasks is the scalability

issue due to the very large scale of real-world data. For example, Facebook has roughly

2.9 billions of monthly active users in 2021 and Twitter has about 209 millions of daily

3

Variety

Veracity

Volume

Big Networks

KDD’16
Attributed network alignment

BigData’19
Nonrigid network alignment

KDD’20
Cross-Network Transformation

ICDM’17 / TKDD’20
Incomplete network alignment

TKDE’18
Robustness of attributed

network alignment

Big Network Alignment

Knowledge
Completion

Social Analysis

Bioinformatics

Fraud Detection

Velocity

Applications

A systematic view of network alignment on big networks

Networks

4Vs

WWW’19
Multilevel Network Alignment

KDD’21
Balanced Network Alignment

WWW’22 (in submission)
Dynamic network alignment

Figure 1.2: Theme of big network alignment with the scope of this research in the box.

active users. The substantial amount of users makes the computations of aligning the real-

world social networks a huge challenge, especially considering that most network alignment

methods have an at least quadratic computational complexity with respect to the number

of nodes. To this end, the volume characteristic of big networks makes the complexity of

alignment methods a fundamental challenge.

1.3 TASKS OVERVIEW

The overall goal of the thesis is to develop novel algorithms to align big networks that

exist in numerous domains. Aligning big networks can facilitate the integration of multi-

sourced networks into a world-view network which is further valuable to many high-impact

applications. As shown in Figure 1.2, we systematically study the big network alignment

problem while addressing the aforementioned challenges associated with the following three

aspects (i.e., variety, veracity and velocity) with the volume as an overarching component.

Note that to address the volume challenge, in addition to the developed methods that already

have comparable computational complexity with prior methods, we also utilize the low-rank

approximation [9, 10] and multi-resolution matrix factorization [11] to further scale up the

algorithms.

Task 1 - Addressing Variety. As aforementioned, variety can be used to describe not only

the various contextual information of nodes/edges, but also networks that serve different

demands. To leverage node and edge attributes, we generalize the topological consistency

4

assumption by assimilating the attribute-based consistency and formulate it into an opti-

mization problem. We develop a family of algorithms FINAL that achieve an up to 30%

improvement in terms of the alignment accuracy [9, 12]. In addition, another task related

to variety is to handle the network disparity, such as intrinsically different embedding space

of different networks and different users’ behavior patterns. It could mitigate the false pos-

itive alignment issues by addressing this task. Specifically, we design an embedding based

method armed with non-rigid point set registration to handle the embedding space dispar-

ity challenge [13]. To resolve the network disparity issue, we alternatively address a more

generic cross-network transformation problem and design an encoder-decoder architecture

NetTrans that learns both the cross-network transformation functions and cross-network

node associations. The NetTrans model achieves an up to 6.5% improvement in terms of

Hits@30 compared with the comparison methods [14]. Moreover, we also want to balance

the alignment consistency and disparity such that some false positive alignments can be

avoided while not violating the overall alignment consistency. To this end, we develop a

novel graph convolutional network based model to preserve alignment consistency and an

adaptive negative sampling to incorporate alignment disparity [15].

Task 2 - Addressing Veracity. In this task, we first address the incomplete network align-

ment problem where the input networks have missing edges. Specifically, based on the hy-

pothesis that network alignment and network completion can mutually benefit each other,

we formulate it into an optimization problem and develop a multiplicative update to solve it

with a linear time complexity [10, 16]. Empirically, this approach named iNeat achieves a

better performance in both network alignment and network completion. Furthermore, given

the nature that many networks are often noisy, we introduce a theoretical analysis on the

robustness of the network alignment method [9], i.e., how robust the node alignments are

against the noisy perturbations on network structures [12]. The key idea of this robustness

analysis is the stability analysis of linear systems.

Task 3 - Addressing Velocity. Many real-world networks naturally change over time such

as node and/or edge deletions/insertions. To exploit the temporal information underlying

dynamic networks to provide extra clues how nodes should be aligned, we first reformulate

the alignment problem into a node representation learning problem on network of networks.

Then we develop a graph neural network model DraNoN armed with a gated recurrent

unit and temporal attention mechanism to learn node representations on dynamic network

of networks. As a result, the learned dynamic node representations are used to infer node

alignments across dynamic networks. Experimental results demonstrate that DraNoN

outperforms the prior static alignment methods.

5

1.4 ORGANIZATION

The remainder of the thesis is organized as follow. In Chapter 2, we will review the related

literature on the variety, veracity, velocity and volume aspects of network alignment, as well

as the applications of network alignment. In Chapter 3, we will introduce our works that

resolve the alignment challenges associated with the variety characteristic. In Chapter 4, we

will present our works on handling the veracity aspect of big network alignment. In Chapter

5, we will introduce how we deal with the velocity characteristic and leverage temporal

information for dynamic network alignment. At last, we conclude and discuss the future

research directions in Chapter 6.

6

CHAPTER 2: LITERATURE REVIEW

In this chapter, we review the related research on network alignment into the following

parts: (1) variety in network alignment, (2) veracity in network alignment, (3) velocity in

network alignment, (4) volume in network alignment, and (5) network alignment application.

2.1 BIG NETWORK ALIGNMENT - VARIETY

Most traditional network alignment methods are solely based on network structures [3, 5,

6, 17, 18, 19, 20]. These methods often explicitly or implicitly assume topological consistency

in terms of alignment. That is, nodes are likely to be aligned if their corresponding neighbors

are aligned. For example, Singh et al. proposed a classic alignment method that iteratively

propagates the pairwise node similarity in a random walk fashion in the Kronecker product

graph so that the similarities of neighboring node pairs are smooth [3]. Bayati et al. pro-

posed a belief propagation based method to solve the constrained optimization problem that

maximizes the number of neighboring alignment pairs according to both network structures

and prior alignment matrix [5]. In addition, graph matching algorithms [21, 22, 23] are

potentially applicable to compute node alignments. To be specific, Zhang et al. proposed to

formulate multiple network alignment as a graph matching problem with transitivity con-

straints and solve for the permutation matrix with a sparsity relaxation [6]. More recently,

many network embedding based methods have been proposed which aim to encode node

structural information into low-dimensional node embeddings and use node embeddings to

infer node alignments [8, 24, 25, 26, 27, 28]. For example, Liu et al. proposed to maximize

the likelihood of observing the existing edges and known node alignment pairs across two

networks calculated by node embeddings [8].

In the age of big data, real-world networks often have diversified node/edge attributes,

which could facilitate network alignment. To leverage the rich contextual information asso-

ciated with networks (e.g., node and edge attributes), many attributed network alignment

methods have been proposed [7, 29, 30, 31, 32]. To incorporate attributes, Zhang et al.

formulated both global structural consistency and local attribute consistency into an energy

function [7]. In a closely related thread, most attributed graph matching methods can nat-

urally use both graph structure and node/edge attributes by integrating them to an affinity

matrix [33, 34, 35], but these methods do not scale well to large-scale networks. Further-

more, node attributes as well as the network structure can be used to jointly learn node

embeddings which can subsequently infer node alignments. Heimann et al. proposed to

7

factorize a cross-network node similarity matrix that combines both structural and attribute

similarities to obtain low-dimensional node embeddings, based on which node alignments

can be inferred [29]. Zhang et al. proposed to learn both attribute embedding based on

different views of node attributes and structural embedding by applying convolutional neu-

ral networks on new networks constructed upon the alignment rankings [30]. Note that the

structure embeddings can capture the topological alignment consistency. With the advances

of graph convolutional networks, node attributes can be naturally incorporated to learn node

embeddings which can distinguish labelled alignment pairs and negative node pairs [31, 32].

On the other hand, networks from different sources exhibit disparity in structural pat-

terns so that even aligned nodes may behave differently across networks. In this way, node

embeddings of different networks may lie in totally different embedding space. To address

this issue, Zhou et al. proposed to use multilayer perceptrons (MLP) to transform em-

bedding space from one network to another network [25]. From another angle, Chu et

al. proposed to disentangle node embedding vectors into network-specific node embeddings

and network embedding shared by the nodes in the same network so node embeddings can

capture network-specific structural patterns [27].

2.2 BIG NETWORK ALIGNMENT - VERACITY

To address the veracity challenges when aligning incomplete networks, the most straight-

forward way is to first complete the missing information in networks, followed by the typical

network alignment process. There exist many network completion methods, which aim to

reconstruct networks by inferring both unobserved nodes and edges [36, 37, 38, 39]. Specif-

ically, under the assumption that the incomplete network follows Kronecker graph model,

Kim and Leskovec proposed to use an EM algorithm to fit the observed network and estimate

the missing part [36]. Without assuming specific graph model, Masrour et al. proposed to

leverage node similarities to aid network completion with a theoretical guarantee [37]. More-

over, if only edges are missing, the classic matrix completion methods such as [40, 41, 42, 43]

upon adjacency matrix can be also applied. In addition, link prediction can be also con-

sidered as a relevant topic to network completion which can be categorized into supervised

methods [44, 45, 46], semi-supervised methods [47, 48] and unsupervised methods [49, 50].

Then, after network completion, networks are supposed to have a higher quality which fur-

ther benefits the accuracy of network alignment. However, network completion itself may

introduce some noisy edges which could even hurt the subsequent alignment process. In

this way, a better way might be to conduct network completion and network alignment

simultaneously. In particular, Du et al. proposed an iterative approach that alternatively

8

learns node embeddings based on the current network structures and infer node alignments

based on which new edges can be imputed [51]. Phuc et al. proposed to simultaneously

solve link prediction based on network embedding and the network alignment problem by

optimal transport [52]. In a reverse direction, Zhang et al. used low-rank matrix completion

technique to do link prediction across multiple networks that are already aligned [53].

In the meanwhile, real-world networks are often uncertain, noisy and vulnerable to the

attacks, which makes it imperative to improve the robustness of the network alignment

approaches. In terms of the uncertainty of networks, Zhou et al. proposed to learn node

embeddings as Gaussian distributions rather than the typical point vectors in the embed-

ding space, followed by an adversarial learning to infer node alignments [54]. Note that

there also exist several works on single network embedding that captures the uncertainty

by Gaussian embedding [55, 56]. If noisy networks are provided, directly conducting align-

ment algorithms may lead to misleading node alignments. One possible solution is to first

reduce the structural noise behind each of the networks [57, 58], followed by any standard

alignment methods. But this thread has not been systematically studied yet. Moreover, the

vulnerability of networks to the adversarial attacks inspires two thrusts of research in the

task of network alignment. The first thrust is to conduct adversarial attacks on networks

to maximize the misalignment rate. Zhou et al. proposed to use the derivative over edges

as the influence function upon Sylvester equation, based on which network structures are

manipulated to degrade the alignment performance [59]. Zhang et al. proposed a kernel

density estimation approach and a meta-learning based projected gradient descent method

to perturb network structures to deceive the alignment model [60]. Another thrust is to

improve the robustness of alignment methods against adversarial attacks. Specifically, Zhou

et al. proposed an adversarial perturbation elimination model by combining Dirac delta

approximation and adversarial perturbation elimination [61]. Ren at al. proposed a sim-

plex detection technique to tackle the inter-graph dispersion attacks [62]. Other network

alignment methods that are built upon adversarial learning include [63, 64, 65].

2.3 BIG NETWORK ALIGNMENT - VELOCITY

Despite the fact that many networks are intrinsically dynamic (e.g., social networks), most

of the prior methods consider networks to be static. To align dynamic networks, one solution

is to naturally extend the prior static alignment methods by adding temporal consistency

measures, such as dynamic conservation measure [66] upon the static counterpart [20] and

graph-orbit transition measures [67] upon the static version [68]. These heuristic methods

depend on the specific kinds of networks (e.g., PPI networks) and thus lack flexibility of

9

applying to other scenarios (e.g., social networks). Sun et al. proposed an embedding based

method that feeds node sequences to a LSTM based autoencoder with global consistency,

and then learns node embedding vectors such that the aligned nodes coincide in the pro-

jected subspace [69]. However, this method assumes the node embedding vectors of different

networks can be linearly transformed which might be sub-optimal to capture the complex

alignments. Thanks to the temporal information, additional confidence can be provided to

infer more accurate node alignments. Note that other dynamic network embedding methods

could be applicable to be extended for dynamic network alignment. The options of dynamic

network embedding include [70, 71, 72, 73, 74, 75]. For example, Zhou et al. proposed

to use triadic closure to capture the evolution patterns [70]. Du et al. proposed to quan-

tify the dynamic changes and update the embedding of nodes that are most effected [71].

Pareja et al. proposed an evolving graph convolutional network (GCN) model such that the

weight parameter matrix in static GCN is updated by either LSTM or GRU [73]. Sankar

et al. proposed a self-attention based method to learn the attention weights for embedding

aggregation across the temporal axis [75].

Another thread of dynamic alignment is to efficiently update node alignments when dy-

namic changes occur, rather than computing node alignment from scratch. Yan et al. pro-

posed a local updating strategy that utilizes the parameters of the base static model and

updates a small part affected nodes’ embeddings with a little accuracy loss efficiently [76]. In

a related topic on dynamic graph kernel tracking, Li et al. proposed to leverage the low-rank

characteristic of dynamic changes to incrementally update the eigen-decomposition of the

adjacency matrices such that the graph kernel scores can be updated efficiently [77].

2.4 BIG NETWORK ALIGNMENT - VOLUME

To address the scalability challenges of network alignment, many approximation algo-

rithms have been proposed. For example, Kollias et al. proposed to use rank-r singular

value decomposition (SVD) to approximate the prior alignment matrix in IsoRank [3], which

reduces the time complexity of each update iteration from O(mn) to O(n2r) where m,n de-

note the number of edges and nodes, respectively [78]. In addition, Nassar et al. identify

the low-rank structure of the alignment matrix in EigenAlign [79], achieving a super-linear

alignment algorithm [80]. Chen et al. proposed to leverage the community structures un-

derlying real-world networks to reduce the time complexity to sub-quadratic [81]. As many

graph mining methods may be viewed as solving a Sylvester equation [9, 82], it is beneficial

to efficiently solve the Sylvester equation. Du et al. proposed to project the original linear

system into a Kronecker Krylov subspace, which with additional optimization techniques

10

achieves a linear computational complexity [83]. Yasar et al. proposed to apply divide-and-

conquer and partition nodes into several buckets so that nodes of different networks in the

same bucket are compared to decide node alignments [84]. In addition, Qin et al. proposed

a two-level network alignment approach with the coarse-level networks constructed by graph

compression [85].

2.5 NETWORK ALIGNMENT APPLICATIONS

Network alignment has been widely applied to diversified applications, such as social anal-

ysis, bioinformatics, knowledge completion and fraud detection. Specifically, user identity

linkage is a natural application that find identical users across multiple social networks. In

addition to many of the alignment methods that have been reviewed, Zafarani et al. pro-

posed to identify users by modeling user behavior patterns based on human limitations,

exogenous and endogenous factors [86]. Liu et al. proposed a method to identify same

users by behavior modeling, structure consistency modeling and learning by multi-objective

optimization [87]. Kong et al. utilized user’s social, spatial, temporal and text information

to infer the identical users [88]. A more comprehensive review on this application can be

referred to [89]. In addition, by aligning social networks, knowledge of users’ preferences can

be transferred so that one can better recommend friends and products. For example, Yan et

al. proposed to leverage random walks to integrate different aspects of information in one

social platform for cold-start friend recommendation in another platform [90]. Cross-site link

prediction can be also used for friend recommendation, including [91, 92, 93]. Similarly, by

finding the alignments among users, items (e.g., products, news, posts, etc.) can be better

recommended to different users. Cao et al. proposed a probabilistic graphical model for

joint user modeling over aligned sites [94]. Zhu et al. proposed a topic model across multiple

aligned networks to understand users topic preferences [95]. Moreover, Zhan et al. proposed

to extend traditional linear threshold to the partially aligned networks to select a set of users

who can maximize the spread of information [1].

In bioinformatics, network alignment is often a more powerful approach than sequence

alignment to identify functional orthologs. Network alignment methods on PPI networks

include but are not limited to [3, 17, 20, 96]. In addition, by aligning proteins across PPI

networks, knowledge can be transferred from one species to another to reveal the evolutionary

relationships across species and reveal new knowledge about human aging [2].

In many real-world scenarios, fraudsters often camouflage themselves such that their be-

havior just look normal [4]. By integrating the patterns of multi-sourced networks, the lack

of sufficient fraud features of nodes can be somewhat complemented. Sun et al. proposed to

11

transfer features from one network to another based on node alignments such that abnormal

subgraph can be detected [97]. Bindu et al. proposed to detect suspicious patterns in a

multilayered network with different layers representing different social platforms [98].

A related application is knowledge completion by aligning entities across different knowl-

edge graphs. The idea of completing relations is that the missing relation between two

entities in one knowledge graph can be imputed if the aligned entities have relations in the

other knowledge graph. Similarly, missing entities can be also completed. In general, recent

knowledge graph alignment methods can be categorized into the embedding based methods

[99, 100] and graph convolutional networks based methods [101, 102].

12

CHAPTER 3: VARIETY IN BIG NETWORK ALIGNMENT

Real-world networks are often accompanied with rich node and/or edge attributes. In

addition, networks from different sources often serve for different demands, and hence exhibit

disparities. In this chapter, we introduce our works on addressing the challenges resulted

from the variety characteristic, including (1) attributed network alignment to assimilate

attributes [9, 12], (2) non-rigid network alignment to address the space disparity issue of

node embeddings [13], and (3) cross-network transformation to deal with network disparity

[14]. In addition, we also study how to strike a balance between alignment consistency and

alignment disparity in [15].

3.1 ATTRIBUTED NETWORK ALIGNMENT

Networks in many areas such as finance and social analysis, are often collected from

multiple sources, leading to numerous emerging high-impact applications. However, an

immense amount of these applications often require the knowledge of the relationships across

multiple networks. Network alignment, on the other hand, is a powerful tool to explore the

node correspondence amongst different networks, and has become the very first step to

many applications. Finding the virtual identical twins across social networks, for instance,

enables to measure the node proximity at a finer granularity [103]. Moreover, identification

of the same customers in different transaction networks contributes to more comprehensive

understandings of transaction behaviors and therefore helps detect financial fraud [104].

Meanwhile, many real-world networks are accompanied by rich numerical and categorical

attribute information, including node attributes (e.g., user demographic information) and/or

edge attributes (e.g., interaction information between users). Therefore, the fusion of both

the topology consistency and attribute consistency might be a good cure to tackle these

limitations. Researchers have been studying how to leverage the node attribute informa-

tion and/or network structure to identify the unique users across different social networks

[7, 86, 88]. For example, [88] extracts some structural features of each node from the net-

works and trains a binary classifier using the structural features and other node attribute

information, to identify the unique users across multiple networks. More recently, CosNet

models both local consistency based on the node attributes and global consistency based on

the network structures into an energy-based model to predict the anchor links [7]. These

identity matching based methods only endorse the attributes on nodes and require some

identified nodes in advance to train the model with network structures and node attributes.

13

On the other side, the traditional graph matching approaches can encode both node and

edge attributes together with the adjacency matrices into an affinity matrix [33, 34]. The

nodes one-to-one mapping can be obtained by solving a nonconvex quadratic maximization

problem. However, these methods are not scalable to the large-scale networks.

Alternatively, in this work, we shift our attention to the network alignment method that

can not only use the topological information of the networks, but can also take advantages

of both node and edge attributes. Yet, it still remains to be a daunting task to align at-

tributed networks due to the following three challenges. First (Q1. Formulation), it is not

clear how to assimilate both the node and edge attribute information into the topology-

based network alignment and formulate it as a single optimization problem. Second (Q2.

Algorithms), the optimization problem behind the topology-based network alignment is of-

ten non-convex or even NP-hard (e.g., maximum common subgraph optimization problem

[5, 105]). Introducing attributes into the alignment process could further perplex the cor-

responding optimization problem. Third (Q3. Computations), while the scalability of the

alignment algorithms is much desirable, it remains unknown how to accelerate and scale

up the algorithms by taking advantage of some intrinsic properties (e.g., low-rank) of real

networks.

To address these challenges, in this study, we propose a family of effective and efficient

algorithms to solve the attributed network alignment problem. The key idea behind our

algorithms is to generalize the topology consistency to alignment consistency and leverage

attribute information to guide the topology-based alignment process. The algorithms can

handle multiple numerical/categorical attributes. However, the computational challenges

lie in the matrix multiplication between sparse adjacency matrix and the alignment ma-

trix. Thanks to the low-rank structure of many real-world networks, we further propose an

approximation algorithm for speed-up.

In some applications, we might be interested in finding similar nodes across different

networks (e.g., to find similar users on LinkedIn for a given user on Facebook). We define

this problem as the on-query attributed network alignment problem and develop a linear

approximation algorithm without solving the full alignment problem.

The main contributions are summarized as follows.

1. Formulations. We define the attributed network alignment problem and formulate

it as a convex quadratic optimization problem. As a side product, our formulation

helps reveal the quantitative relationships between the (attributed) network alignment

problem and several other network mining problems.

2. Algorithms and Analysis. We propose a family of algorithms FINAL to efficiently

14

Table 3.1: Symbols and notations.

Symbols Definition
G = {A,X,Y} an attributed network

A the adjacency matrix of the network
X the node attribute matrix of the network
Y the edge attribute matrix of the network

n1, n2 # of nodes in G1 and G2

m1, m2 # of edges in G1 and G2

K,L # of the node and edge attributes
a, b node/edge indices of G1

x, y node/edge indices of G2

v, w node-pair indices of the vectorized alignment s = vec(S)
k(k′), l node/edge label indices

I,1 an identity matrix and a vector of 1s, respectively
L n1 × n2 prior alignment preference matrix
S n1 × n2 alignment matrix
r, p reduced ranks
α the parameter, 0 < α < 1

a = vec(A) vectorize a matrix A in column order
Q = mat(q, n1, n2) reshape vector q into a n1 × n2 matrix in column order

Ã symmetrically normalize matrix A
D = diag(d) diagonalize a vector

⊗ Kronecker product
� element-wise matrix product

solve the attributed network alignment problem. To speed up, we further develop an

approximation algorithm to solve full alignment problem. We also develop a linear

online algorithm for on-query alignment problem. We then analyze the optimality,

convergence, complexity and stability.

3. Evaluations. We perform extensive experiments to validate the efficacy of the proposed

algorithms.

3.1.1 Problem Definition

Table 3.1 summarizes the main symbols and notations used throughout this work. We use

bold uppercase letters for matrices (e.g., A), bold lowercase letters for vectors (e.g., s), and

lowercase letters (e.g., α) for scalars. We use A(i, j) to denote the entry at the intersection

of the i-th row and j-th column of matrix A, A(i, :) to denote the i-th row of A and A(:, j)

to denote the j-th column of A. We denote the transpose of a matrix by the superscript

15

(a) Input Attributed Networks. (b) Matrix Representation. (c) Alignment Output.

Figure 3.1: An illustrative example of the attributed network alignment problem. (a) Two
input attributed networks. (b) The matrix representation for attributed networks, where
two upper matrices represent the adjacency matrices, and the bottom matrices represent
the node attribute and edge attribute matrices of G1 by using one hot encoding. (c) The
desired alignment output (denoted by the red dashed lines).

prime (e.g., A′ is the transpose of A). We use˜on top to denote the symmetric normalization

of a matrix (e.g., Ã = D−1/2AD−1/2, where D is the degree matrix of A). The vectorization

of a matrix (in the column order) is denoted by vec(·), and the resulting vector is denoted

by the corresponding bold lowercase letter (e.g., a = vec(A)).

We represent an attributed network by a triplet: G = {A,X,Y}, where (1) A is the

adjacency matrix, and (2) X and Y are the node attribute and edge attribute matrices,

respectively. The attributes of node-a corresponds to the vector of X(a, :), and Y(a,b) de-

scribes the edge attribute vector of the edge between node-a and node-b. Note that for both

node and edge categorical attribute values, they can be transformed into vectors by one

hot encoding. Figure 3.1 presents an illustrative example. We can see from Figure 3.1(a),

the set of nodes (2, 3, 4 and 5) from the first network share the exact same topology with

another set of nodes (2′, 3′, 4′ and 5′) in the second network. The topology alone would

be inadequate to differentiate these two sets. On the other hand, we can see that (1) 2,

2′, 5 and 5′ share the same node categorical attribute value; (2) 3, 3′, 4 and 4′ share the

same node categorical attribute value; and (3) the two edges incident to 3 share the same

edge categorical attribute value with those incident to 4′. These node/edge attributes could

provide vital information to establish the accurate node-level alignment (i.e., 2 aligns to 5′,

5 aligns to 2′, etc.). This is exactly what this work aims to address. Formally, the attributed

network alignment problem is defined as follows.

Problem 3.1. Attributed Network Alignment.

Given: (1) two undirected attributed networks G1 = {A1,X1,Y1} and G2 = {A2,X2,Y2}
with n1 and n2 nodes respectively, (2 - optional) a prior alignment preference L.

16

Output: the n1×n2 soft alignment/similarity matrix S, where S(a, x) represents to what

extent node-a in G1 is aligned with node-x in G2.

In the above definition, we have an optional input, to encode the prior knowledge of

pairwise alignment preference L, which is an n1 × n2 matrix. An entry in L reflects our

prior knowledge of the likelihood to align two corresponding nodes across the two input

networks. For example, in the semi-supervised setting where some labeled node alignments

(e.g., node-a aligned with node-x) are given, then we can construct the matrix L by setting

L(a, x) = 1. If no prior knowledge is provided, one can compute L by heuristics (e.g., degree

similarities). Without loss of generality, we assume that A1 and A2 share a comparable size,

i.e., O(n1) = O(n2) = O(n) and O(m1) = O(m2) = O(m). This will also help simplify our

complexity analyses.

Notice that the alignment matrix S in Problem 3.1 is essentially a cross-network node

similarity matrix, which naturally measures how similar nodes in G1 are with nodes in

network G2. In some applications, we might be interested in finding a small number of

similar nodes in one network w.r.t a query node from the other network. For instance,

we might want to find the top-10 most similar LinkedIn users for a given Facebook user.

We could first solve Problem 3.1 and then return the corresponding row or column in the

alignment matrix S, which might be computationally too costly as well as unnecessary.

Having this in mind, we further define the on-query attributed network alignment problem

as follows:

Problem 3.2. On-Query Attributed Alignment.

Given: (1) two undirected attributed networks G1 = {A1,X1,Y1} and G2 = {A2,X2,Y2},
(2 -optional) a prior alignment preference L, (3) a query node-a in G1.

Output: an 1× n2 vector sa measuring similarities between the query node-a in G1 and

all the nodes in G2 efficiently.

3.1.2 Topology Meets Attributes

We present our solutions for Problem 3.1. We start by formulating Problem 3.1 as a

regularized optimization problem, and then develop effective algorithms to solve it, followed

by some theoretic analysis.

FINAL: Optimization Formulation. The key idea behind our proposed formulation

lies in the alignment consistency principle, which basically says that the alignments between

two pairs of nodes across two input networks should be consistent if these two pairs of nodes

17

Figure 3.2: An illustration of alignment consistency.

themselves are similar/consistent with each other. Let us elaborate this using the following

example. In Figure 3.2, we are given two pairs of nodes: (1) node-a in G1 and node-x in

G2; and (2) node-b in G1 and node-y in G2. By the alignment consistency principle, we

require the alignment between a and x, and that between b and y to be consistent (i.e.,

small ‖S(a, x)− S(b, y)‖), if the following conditions hold:

C1 Topology Consistency. Node a and b are close neighbors in G1 (i.e., large A1(a, b)), and

x, y are also close neighbors in G2 (i.e., large A2(x, y));

C2 Node Attribute Consistency. Node a and x share the same or similar node attributes,

and so do b and y;

C3 Edge Attribute Consistency. Edge (a, b) and (x, y) share the same or similar edge

attributes.

The intuition behind the alignment consistency principle is as follows. If we already know

that node-a is aligned to node-x (i.e., large S(a, x)), then their close neighbors (e.g., b and y)

with same or similar node attributes should have a high chance to be aligned with each other

(i.e., large S(b, y)), where we say that b and y are close neighbors of a and x respectively

if they are connected by the same or similar edge attributes, with large edge weights (i.e.,

large A1(a, b) and A2(x, y)). This naturally leads to the following objective function which

we wish to minimize in terms of the alignment matrix S:

J1(S) =
∑
a,b,x,y

[
S(a, x)√
f(a, x)

− S(b, y)√
f(b, y)

]2

A1(a, b)A2(x, y)︸ ︷︷ ︸
C1: Topology Consistency

× Ψ(a, x)Ψ(b, y)︸ ︷︷ ︸
C2: Node Attribute Consistency

× ϕ((a, b), (x, y))︸ ︷︷ ︸
C3: Edge Attribute Consistency

(3.1)

where (1) a, b = 1, ..., n1, and x, y = 1, ..., n2; (2) Ψ(·) is the function that measures the

node attribute similarities between two nodes across networks; and (3) ϕ(·) measures the

18

edge attribute similarities between two edges in two networks. Besides, the function f(·) is

a node-pair normalization function. For instance, we use the following function as f(a, x)

f(x, a) =
∑
b,y

A1(a, b)A2(x, y)Ψ(a, x)Ψ(b, y)ϕ((a, b), (x, y)) (3.2)

which measures how many (weighted) neighbor-pairs a and x have that (1) share the same

or similar node attributes between themselves (e.g., b and y), and (2) connect to a and x via

the same or similar edge attributes, respectively. Note that the functions Ψ(·) and ϕ(·) can

be any existing similarity function. In this study, we use the cosine similarity to measure

the similarity between node/edge attributes, i.e.,

Ψ(a, x) =

(
X1(a, :)

‖X1(a, :)‖2

)(
X2(x, :)

‖X2(x, :)‖2

)′
(3.3)

ϕ((a, b), (x, y)) =

(
Y1(a,b)

‖Y1(a,b)‖2

)(
Y2(x,y)

‖Y2(x,y)‖2

)′
(3.4)

where ‖·‖2 is the vector L2 norm, X1,X2 represent the node attribute matrices, and therefore

X1(a, :) is the feature vector of node-a. Besides, Y1(a,b),Y2(x,y) are the feature vectors of

edge (a, b) in G1 and (x, y) in G2. To ease the computation, we denote N1,N2 as the

normalized node attribute matrices where, for example, N1(a, :) = X1(a,:)
‖X1(a,:)‖2 . Next, we

denote the edge feature vectors into a set of matrices. For edges in G1, we denote Yl
1(a, b)

as the l-th normalized attribute value of the edge (a, b) and Y1 is of same size as A1, i.e.,

El
1(a, b) =

Y1(a,b)(l)

‖Y1(a,b)‖2
. Similarly, we denote El

2(x, y) as the l-th normalized attribute value of

edge (x, y). The cosine similarity functions Ψ(·) and ϕ(·) can be re-written as below.

Ψ(a, x) =
K∑
k=1

N1(a, k)N2(x, k) (3.5)

ϕ((a, b), (x, y)) =
L∑
l=1

El
1(a, b)El

2(x, y) (3.6)

Therefore, the objective function Eq. (3.1) can be written as

J1(S) =
∑
a,b,x,y

[
S(a, x)√
f(a, x)

− S(b, y)√
f(b, y)

]2 A1(a, b)A2(x, y)︸ ︷︷ ︸
C1: Topology Consistency

×
K∑
k=1

N1(a, k)N2(x, k)
K∑
k′=1

N1(b, k′)N2(y, k′)︸ ︷︷ ︸
C2: Node Attribute Consistency

×
L∑
l=1

El
1(a, b)El

2(x, y)︸ ︷︷ ︸
C3: Edge Attribute Consistency

(3.7)

19

where

f(a, x) =
∑
b,y

K∑
k,k′=1

L∑
l=1

A1(a, b)A2(x, y)N1(a, k)N2(x, k)N1(b, k′)N2(y, k′)El
1(a, b)El

2(x, y)

(3.8)

Next, we present an equivalent matrix form of J1, which is more convenient for the fol-

lowing algorithm description and the theoretical proof. By vectorizing the matrix S (i.e.,

s = vec(S)), and with the notation of element-wise product and Kronecker product, Eq.

(3.7) can be re-written as

J1(s) =
∑
v,w

[
s(v)√
D(v, v)

− s(w)√
D(w,w)

]2

W(v, w)

=s′(I− W̃)s

(3.9)

where v = n1(x−1)+a, w = n1(y−1)+b, W = N[E�(A2⊗A1)]N and N = diag(
∑K

k=1 N2(:

, k) ⊗N1(:, k)), E =
∑L

l=1 El
2 ⊗ El

1. W̃ = D−
1
2 WD−

1
2 is the symmetric normalized matrix

of W. The diagonal degree matrix D of W is directly derived from f(a, x) and defined as

D = Ndiag(
K∑
k=1

L∑
l=1

((El
2 �A2)N2(:, k))⊗ ((El

1 �A1)N1(:, k))) (3.10)

Note that some diagonal elements in D could be zero (e.g., D(v, v) = 0). For such elements,

we define the corresponding D(v, v)−1/2 , 0.

In some cases where we want to encode the prior alignment preference matrix L into the

alignment result (e.g., in semi-supervised setting), we add a regularization term ‖s − l‖2
2

where l = vec(L). When no such prior information is given, we compute l by heuristics

(e.g., degree similarities). From the optimization perspective, this additional regularization

term would also help prevent the trivial solutions, such as a zero alignment matrix S or the

alignment matrix S where S(a, x) =
√
f(a, x).

Putting everything together, our proposed optimization problem can be stated as follows.

argmins J(s) = αs′(I− W̃)s + (1− α) ‖ s− l ‖2
2 (3.11)

where α is the regularization parameter.

We remark that when the node attributes are categorical attributes [9], we can one-hot

encoding to transform categorical attributes into vector representations. To be specific,

we briefly show that the indicator function on categorical attributes [9] is a special case of

20

cosine similarity. For example, consider countries as node attributes including {China, USA,

Canada, Germany} and three nodes from USA, USA, Canada, respectively. The one-hot

encoding of attribute value USA is represented as vector (0, 1, 0, 0), and that of attribute

value Canada is (0, 0, 1, 0). Apparently, only when two nodes are both from USA, the cosine

similarity of their node attributes is equal to 1 and otherwise 0, which is equivalent to the

indicator function.

FINAL: Optimization Algorithms. The objective function in Eq. (3.11) is essentially

a quadratic function w.r.t. s. We seek to find its fixed-point solution by setting its derivative

to be zero
∂J(s)

∂s
= 2(I− αW̃)s + 2(α− 1)l = 0 (3.12)

which leads to the following equation

s = αW̃s + (1− α)l

= αD−
1
2 N(E� (A2 ⊗A1))ND−

1
2 s + (1− α)l (3.13)

We could directly develop an iterative algorithm based on Eq. (3.13). However, such an

iterative procedure involves the Kronecker product between A1 and A2 whose time com-

plexity is O(m2). Although the Kronecker product can be pre-computed, the O(m2) space

complexity due to the memory cost and the O(m2) time complexity in each iteration due to

the matrix-vector multiplication are still impractical for large networks.

In order to develop a more efficient algorithm, thanks to a key Kronecker product property

(i.e., vec(ABC) = (C′ ⊗A)vec(B)), we re-write Eq. (3.13) as

s = αD−
1
2 Nvec(

L∑
l=1

(El
1 �A1)Q(El

2 �A2)) + (1− α)l (3.14)

where Q is an n1 × n2 matrix reshaped by q = ND−
1
2 s in column order, i.e., Q =

mat(q, n1, n2). We can show that Eq. (3.13) and Eq. (3.14) are equivalent with each

other. The advantage of Eq. (3.14) is that it avoids the expensive Kronecker product, which

leads to a more efficient iterative algorithm FINAL-NE (summarized in Algorithm 3.1).

Variants of FINAL-NE. Our proposed FINAL-NE algorithm assumes that the input

networks have both node and edge attributes. It is worth pointing out that it also works

when the node and/or the edge attribute information is missing.

First, when only node attributes are available, we can set all entries in the edge attribute

matrices El to 1 where an edge indeed exists. The intuition is that we treat all the edges in

21

Algorithm 3.1: FINAL-NE: Attributed Network Alignment.

Input : (1) G1 = {A1,X1,Y1} and G2 = {A2,X2,Y2}, (2) optional prior
alignment matrix L, (3) regularization parameter α, and (4) maximum
iteration number tmax.

Output: the n1 × n2 alignment matrix S between G1 and G2.
Construct normalized node attribute matrices N1, N2;
Construct normalized edge attribute matrices El

1, El
2, l = 1, · · · , L;

Compute the node attribute matrix N and degree matrix D;
Initiate the alignment s as a uniform vector, and t = 1;
while t ≤ tmax do

Compute vector q = ND−
1
2 s;

Reshape q as Q = mat(q, n1, n2);
Initiate an n1 × n2 zero matrix T;
for l = 1→ L do

Update T← T + (El
1 �A1)Q(El

2 �A2);
end

Update s← αD−
1
2 Nvec(T) + (1− α)h;

Set t← t+ 1;

end
Reshape s to S = mat(s, n1, n2).

the networks to share a common edge attribute value. In this case, the fixed-point solution

in Eq. (3.13) becomes

s = αD
− 1

2
n N(A2 ⊗A1)ND

− 1
2

n s + (1− α)l (3.15)

where Dn = Ndiag(
∑K

k=1(A2N2(:, k)) ⊗ (A1N1(:, k))) denotes the degree matrix of Wn.

Similar to Eq. (3.14), we can use the vectorization operator to accelerate the computation.

We refer to this variant as FINAL-N, and omit the detailed algorithm description.

Second, when only edge attributes are available, we treat all nodes to share one common

node attribute value by setting N to be an identity matrix. In this case, the fixed-point

solution in Eq. (3.13) becomes

s = αD
− 1

2
e (E� (A2 ⊗A1))D

− 1
2

e s + (1− α)l (3.16)

where De = diag(
∑L

l=1[(E
l
2 �A2)1] ⊗ [(El1 �A1)1]). Again, we omit the detailed algorithm

description, and refer to this variant as FINAL-E.

Finally, if neither the node attributes nor the edge attributes are available, Eq. (3.13)

22

degenerates to

s = αD
− 1

2
u (A2 ⊗A1)D

− 1
2

u s + (1− α)l (3.17)

where Du = D2 ⊗ D1, D1 and D2 are the degree matrix of A1 and A2. This variant is

referred to as FINAL-P.

Proofs and Analysis. We first analyze the convergence, optimality and complexity of our

FINAL algorithms. Due to the space limit, we only present the results for the most general

case (i.e., FINAL-NE). Then we analyze the relationships between FINAL and several

classic graph mining problems.

We start with Lemma 3.1, which says the FINAL-NE algorithm converges to the global

optimal solution of Eq. (3.9).

Lemma 3.1. Convergence and Optimality of FINAL-NE. Algorithm 3.1 converges

to the closed-form global minimal solution of J(s): s = (1− α)(I− αW̃)−1l.

Proof. Since W̃ is similar to the stochastic matrix WD−1 = D
1
2 W̃D−

1
2 , the eigenvalues of

W̃ are within [−1, 1]. Given 0 < α < 1, the eigenvalues of αW̃ are in (−1, 1).

We denote the alignment vector s in the t-th iteration as s(t). We have that

s(t) = αtW̃tl + (1− α)
t−1∑
i=0

αiW̃il (3.18)

Since the eigenvalues of αW̃ are in (−1, 1), we have that lim
t→+∞

∑t−1
i=0 α

iW̃i = (I−αW̃)−1.

Putting these together, we have that

s = lim
t→+∞

s(t) = (1− α)(I− αW̃)−1l (3.19)

Next, we prove that the above result is indeed the global minimal solution of the objective

function defined in Eq. (3.9). We prove this by showing that J(s) in Eq. (3.9) is convex.

To see this, we have that the Hessian matrix of Eq. (3.9) is O2J = 2(I − αW̃) with all

eigenvalues of 2(I − αW̃) greater than 0. In other words, we have that O2J is positive

definite. Therefore, the objective function defined in Eq. (3.9) is convex, and its fixed-point

solution by Algorithm 3.1 corresponds to its global minimal solution, which completes the

proof. QED.

The time and space complexity of Algorithm 3.1 are summarized in Lemma 3.2. Notice

that such a complexity is comparable to the complexity of topology-alone network alignment

methods, such as IsoRank [3]. In the next section, we will introduce an even faster algorithm.

23

Lemma 3.2. Complexity of FINAL-NE. The time complexity of Algorithm 3.1 is

O(Lmntmax + LKn2), and its space complexity is O(n2). Here, n and m are the orders

of the number of nodes and edges of the input networks, respectively; K,L denote the di-

mension of node and edge feature vectors respectively, and tmax is the maximum iteration

number.

Proof. It requires O(nK + mL) time and space complexity for line 1-2. To compute N,

it takes O(Kn2) time complexity and O(n2) space complexity. Then based on Eq. (3.10),

constructing D requires O(2m+ n2)KL time complexity and O(n2) space complexity. Line

9-11 takes O(Lmn) time complexity and O(n2) space complexity. Thus, line 5-14 with

tmax iterations takes O(Lmntmax) time complexity and O(n2) space complexity. In total,

the FINAL-NE algorithm takes O(Lmntmax + LKn2) time complexity and O(n2) space

complexity. This completes the proof. QED.

Finally, we analyze the relationships between the proposed FINAL algorithms and several

classic graph mining problems. For the sake of conciseness, we omit the detailed proofs and

summarize the major findings as follows.

A - FINAL vs. Node Proximity. An important (single) network mining task is the node

proximity, i.e., to measure the proximity/similarity between two nodes on the same network.

By ignoring the node/edge attributes and setting A1 = A2, our FINAL algorithms, up to a

scaling operation D1/2, degenerate to SimRank [106] - a prevalent choice for node proximity.

Our FINAL algorithms are also closely related to another popular node proximity method,

random walk with restart [107]. That is, Eq. (3.13) can be viewed as random walk with

restart on the attributed Kronecker graph with l being the starting vector. Note that neither

the standard SimRank nor random walk with restart considers the node or edge attribute

information.

B - FINAL vs. Graph Kernel. The alignment result s by our FINAL algorithms is closely

related to the random walk based graph kernel [82]. To be specific, if k(G1,G2) is the random

walk graph kernel between the two input graphs and p is the stopping vector, we can show

that k(G1,G2) = p′s. This intuitively makes sense, as we can view the graph kernel/similarity

as the weighted aggregation (by the stopping vector p) over the pairwise cross-network node

similarities (encoded by the alignment vector s). We also remark that in the original random

walk graph kernel [82], it mainly focuses on the node attribute information.

C - FINAL vs. Prior Network Alignment Methods. If we ignore all the node and edge

attribute information, our FINAL-P algorithm is equivalent to IsoRank [3] by scaling the

alignment result and alignment preference by D1/2. We would like to point out that such a

scaling operation is important to ensure the convergence of the iterative procedure. Recall

24

that the key idea behind our optimization formulation is the alignment consistency. When

the attribute information is absent, the alignment consistency principle is closely related

to the concept of “squares” behind NetAlign algorithm [5]. Like most, if not all of the,

prior network alignment algorithms, the node or the edge attribute information is ignored

in IsoRank and NetAlign.

We remark that these findings are important in the following two aspects. First, they

help establish a quantitative relationship between several, seemingly unrelated graph mining

problems, which might in turn help better understand these existing graph mining problems.

Second, these findings also have an important algorithmic implication. Take SimRank as

an example, it was originally designed for plain graphs (i.e., without attributes), and was

formulated from random walk perspective and it is not clear what the algorithm tries to

optimize. By setting G1 = G2 and ignoring the attribute information, our objective function

in Eq. (3.9) provides a natural way to interpret SimRank from an optimization perspective.

By setting G1 = G2 alone, our FINAL algorithms can be directly used to measure node

proximity on an attributed network. Finally, our upcoming FINAL On-Query algorithm

also naturally provides an efficient way (i.e., with a linear time complexity) for on-query

SimRank with or without attribute information (i.e., finding the similarity between a given

query node and all the remaining nodes in the same network).

3.1.3 Speed-up Computations

In this part, we address the computational issue to handle the volume characteristic of

big networks. To be specific, we focus on two scenarios. First, to solve Problem 3.1, our

proposed FINAL algorithms have a time complexity of O(mn), where we have dropped the

lower order terms. We develop an effective approximate algorithm that reduces the time

complexity to O(n2). Second, for Problem 3.2, solving the full alignment problem not only

still requires O(n2) time, but also is unnecessary, as we essentially only need a column or a

row from the alignment matrix S. To address this issue, we present an effective algorithm for

Problem 3.2 with a linear time complexity. For presentation clarity, we restrict ourselves to

the case where there is only node attribute information, although our proposed strategies can

be naturally applied to the more general case where we have both node and edge attributes.

Moreover, in the scenario that networks have no attributes, we propose a multilevel network

alignment method using the coarsen-align-interpolate strategy to approximate FINAL-P into

a linear algorithm Moana [11].

25

Speed-up FINAL-N. According to Lemma 3.1, the alignment vector s in FINAL-N

converges to its closed-form solution as follows.

s = (1− α)(I− αW̃N)−1l

= (1− α)(I− αD
− 1

2
N N(A2 ⊗A1)ND

− 1
2

N)−1l
(3.20)

The key idea to speed up FINAL-N is to efficiently approximate such a closed-form

solution. To be specific, we first approximate the two adjacency matrices by top-r eigenvalue

decomposition: A1 = U1Λ1U
′
1 and A2 = U2Λ2U

′
2. Then the rank-r approximation of WN

can be defined as follows

ŴN = N[(U2Λ2U
′
2)⊗ (U1Λ1U

′
1)]N

= N(U2 ⊗U1)(Λ2 ⊗Λ1)(U′2 ⊗U′1)N
(3.21)

By substituting Eq. (3.21) into Eq. (3.20), we can approximate the alignment vector s as

s ≈(1− α)[I− αD
− 1

2
N NU(Λ2 ⊗Λ1)U′ND

− 1
2

N]−1l

=(1− α)(I + αD
− 1

2
N NUΛU′ND

− 1
2

N)l
(3.22)

where U = U2 ⊗U1, and Λ is an r2 × r2 matrix computed by Woodbury matrix identity

[108]: Λ = [(Λ2 ⊗Λ1)−1 − α(U′2 ⊗U′1)ND−1
N N(U2 ⊗U1)]−1.

Based on Eq. (3.22), our proposed FINAL-N+ algorithm is summarized in Algorithm

3.2. The time complexity of FINAL-N+ is summarized in Lemma 3.3. Notice that we

often have r � n, m� n2 and K � n. Therefore, compared with FINAL-N, FINAL-N+

is much more efficient in time complexity.

Lemma 3.3. Time Complexity of FINAL-N+. FINAL-N+ takes O(n2r4 + Kn2) in

time where n is the order of the number of nodes, r is the rank of eigenvalue decomposition

and K is the number of node attributes.

Proof. Omitted for space. QED.

Proposed Solution for Problem 3.2. In Problem 3.2, we want to find an 1× n2 vector

sa which measures the similarities between the query node-a in G1 and all the n2 nodes in

G2 (i.e., cross-network similarity search). It is easy to see that sa is essentially the a-th row

of the alignment matrix S, or equivalently a certain portion of the alignment vector s, i.e.,

sa = S(a, :) = s(I) where I = {(i− 1)n1 + a|i = 1, · · · , n2}.

26

Algorithm 3.2: FINAL-N+: Low-Rank Approximation of FINAL-N.

Input : (1) G1 = {A1,X1} and G2 = {A2,X2}, (2) optional prior alignment
preference L, (3) the regularization parameter α, and (4) the rank of
eigenvalue decomposition r.

Output: approximate alignment matrix S between G1 and G2.
Construct degree matrix DN and node attribute matrix N;
Construct alignment preference vector l = vec(L);
Eigenvalue decomposition U1Λ1U

′
1 ← A1, U2Λ2U

′
2 ← A2;

Compute U = U2 ⊗U1;
Compute Λ = [(Λ2 ⊗Λ1)−1 − αU′ND−1

N NU]−1;
Compute s by Eq. (3.22);
Reshape vector s to S = mat(s, n1, n2).

However, if we call FINAL-N or FINAL-N+ to find S (or s) and then return the ranking

vector sa, it would take at least O(n2) time. Next, we develop an approximate algorithm

(FINAL On-Query) which directly finds the ranking vector sa in linear time, without

solving the full alignment matrix S.

We first relax the degree matrix DN to its upper-bound D̂N = D2 ⊗ D1. There are

two reasons for taking such a relaxation. First, it would take O(n2) time to compute the

DN matrix directly. On the other hand, D̂N can be indirectly expressed by the Kronecker

product between D1 and D2, each of which only takes O(m) time. Second, since D̂N is

an upper-bound of the DN matrix, such a relaxation will not affect the convergence of

FINAL-N. By relaxation, the fixed-point solution in Eq. (3.13) can be approximated as

s = αND̂
− 1

2
N (A2 ⊗A1)D̂

− 1
2

N Ns + (1− α)l (3.23)

where D̂N = D2 ⊗D1. By a similar procedure in FINAL-N+, the low-rank approximate

solution for s is

s ≈ (1− α)l + α(1− α)D̂
− 1

2
N NUΛ̂U′ND̂

− 1
2

N l (3.24)

where Λ̂ = [(Λ2 ⊗Λ1)−1 − αU′ND̂−1
N U]−1.

Since both D̂N and N are diagonal matrices, the ranking vector for node-a is

sa =(1− α)[l(I) + α[D̂
− 1

2
N NUΛ̂U′ND̂

− 1
2

N l](I)]

=(1− α)[L(a, :) + α[(D1(a, a)D2)−
1
2 (

K∑
k=1

Nk
1(a, a)Nk

2)]

×[(U2 ⊗U1(a, :))︸ ︷︷ ︸
O(nr2)

Λ̂︸︷︷︸
O(n2r4+r6)

U′ND̂
− 1

2
N l︸ ︷︷ ︸

O(n2r2)

]

(3.25)

27

Notice that Eq. (3.25) still needs O(n2) time due to the last two terms. We reduce the

time cost for computing g = U′ND̂
− 1

2
N l as follows. First, we take a rank-p singular value

decomposition (SVD) on L, i.e., L =
∑p

i=1 σiuiv
′
i. Then, by the vectorization operator, we

have that

g =

p∑
i=1

K∑
k=1

σi(

O(nr)︷ ︸︸ ︷
U′2N

k
2D
− 1

2
2 vi)⊗ (

O(nr)︷ ︸︸ ︷
U′1N

k
1D
− 1

2
1 ui)︸ ︷︷ ︸

O(nr+r2)=O(nr)

(3.26)

We can see that the time cost for Eq. (3.26) is reduced to O(pKrn), which is linear w.r.t

the number of nodes n.

We reduce the time cost for computing Λ̂ by reformulating as follows, whose time com-

plexity is O(Knr2 +Kr4 + r6)

Λ̂ = [(Λ2 ⊗Λ1)−1︸ ︷︷ ︸
O(r2)

−α
K∑
k=1

(

O(nr2)︷ ︸︸ ︷
U′2N

k
2D
−1
2 U2)⊗ (

O(nr2)︷ ︸︸ ︷
U′1N

k
1D
−1
1 U1)︸ ︷︷ ︸

O(nr2+r4)

]−1 (3.27)

Putting everything together, the ranking vector of node-a now becomes

sa =(1− α)L(a, :) + α(1− α)[

O(n)︷ ︸︸ ︷
(D1(a, a)D2)−

1
2

O(Kn)︷ ︸︸ ︷
K∑
k=1

Nk
1(a, a)Nk

2]

×[(U2 ⊗U1(a, :))︸ ︷︷ ︸
O(nr2)

Λ̂︸︷︷︸
O(Knr2+Kr4+r6)

g︸︷︷︸
O(pKnr)

]

(3.28)

Based on Eq. (3.28), our proposed FINAL On-Query algorithm is summarized in

Algorithm 3.3. The time complexity of FINAL On-Query is summarized in Lemma 3.4.

Notice that we often have r, p � n, mL � m � n2 and K � n. FINAL On-Query has

a linear time complexity w.r.t the size of the input network, which is much more scalable

than both FINAL-N and FINAL-N+.

Lemma 3.4. Time complexity of FINAL On-Query. The time complexity of FINAL

On-Query is O(r6 +mr+nr2 +mLp+np2 +Knr2 +Kr4 +pKnr) where n,m are the orders

of the number of nodes and edges respectively, r, p is the rank of eigenvalue decomposition

and SVD, respectively, K is the number of node attributes and mL is the number of non-zero

elements in L.

Proof. Omitted for brevity. QED.

28

Algorithm 3.3: FINAL On-Query: Approximate On-Query Algorithm for Node
Attributed Networks.

Input : (1) G1 = {A1,N1} and G2 = {A2,N2}, (2) optional prior alignment
preference H, (3) the regularization parameter α, (4) the rank of
eigenvalue decomposition r, and (5) the rank of SVD for L p.

Output: approximate ranking vector sa between node-a in G1 and all nodes in G2.
Pre-Compute:
Compute degree matrices D1 and D2;

Compute Da = D1(a, a)D2, and Na =
∑K

k=1 Nk
1(a, a)Nk

2;
Rank r eigenvalue decomposition U1Λ1U

′
1 ← A1;

Rank r eigenvalue decomposition U2Λ2U
′
2 ← A2;

Rank p singular value decomposition
∑p

i=1 σiuiv
′
i ← L;

Compute g by Eq. (3.26);

Compute Λ̂ by Eq. (3.27);
Online-Query:
Compute sa by Eq. (3.28).

Speed-up FINAL-P. In this work, we aim to leverage the hierarchical cluster-within-

clusters characteristics of many real-world networks to not only align at the finest node

level, but also align clusters at different coarse levels. The key idea is to coarsen-align-then-

interpolate where (1) the first step coarsens the input networks into several smaller networks

which depict the supernodes/clusters connections at the coarse level, (2) in the second step

we compute the alignment matrix SL efficiently at the coarsest level, and then (3) we use the

interpolation matrices to efficiently estimate the alignment matrix at the finer level (e.g.,

Sl at the l-th level) from that at the next coarser level (e.g., Sl+1). Note that since the

alignment matrices hinge on two networks, different from the interpolations underlying a

single network, the bilinear interpolations are required.

Multilevel Optimization Formulation. To derive the optimization formulation for our mul-

tilevel network alignment problem, without loss of generality, we focus on the first two

levels for now. Denote two interpolation matrices P1 ∈ Rp1×n1 and Q1 ∈ Rq1×n2 where

p1 ≤ n1, q1 ≤ n2 such that we can approximate the node-level alignment matrix S1 by

S1 = P′1S2Q1 where S2 ∈ Rp1×q1 is the alignment matrix at the second level. By de-

vectorization on s1, l1, Eq. (3.11) without attributes is equivalent to

min
S1

α[Tr(S′1S1)− Tr(S′1Ã
(1)
1 S1Ã

(1)
2)] + (1− α)‖S1 − L1‖2

F (3.29)

where Ã
(1)
1 , Ã

(1)
2 represent the symmetrically normalized adjacency matrices of G1,G2 at the

first level and L1 = L denotes the prior alignment matrix at the first level. Plugging in

29

S1 = P′1S2Q1, we have the objective function w.r.t. S2.

J(S2) = α[Tr(Q′1S
′
2P1P

′
1S2Q1)− Tr(S′2P1Ã

(1)
1 P′1S2Q1Ã

(1)
2 Q′1)] + (1− α)‖P′1S2Q1 − L1‖2

F

(3.30)

Notice that if the (semi-) orthogonality satisfies, i.e., P1P
′
1 = I and Q1Q

′
1 = I, we can obtain

the objective function at the second level which is of exactly the same form as Eq. (3.29),

J(S2) = α[Tr(S′2S2)− Tr(S′2Ã
(2)
1 S2Ã

(2)
2)] + (1− α)‖S2 − L2‖2

F (3.31)

where Ã
(2)
1 = P1Ã

(1)
1 P′1, Ã

(2)
2 = Q1Ã

(1)
2 Q′1 and L2 = P1L1Q

′
1. Equivalently, this can

be viewed as coarsening Ã
(1)
1 , Ã

(1)
2 into Ã

(2)
1 , Ã

(2)
2 to be aligned at the second level by the

interpolation matrices P1 and Q1, with the corresponding prior node similarity matrix L2.

Perfect Interpolation. In this work, instead of exploring the semi-orthogonal interpolation

matrices, we seek to find a set of orthogonal matrices, i.e., PlP
′
l = P′lPl = I. Indeed, by

the following lemma, we show that the orthogonal interpolation matrices guarantee that the

interpolation of the optimal alignment matrix from the coarser level is exactly the same as

the optimal alignment matrix at the finer level.

Lemma 3.5. Perfect Interpolation. The global optimal solution to the optimization

problem at the finer level (e.g., Eq. (3.29) for level-1), denoted by Sl, is exactly same as the

interpolation of the optimal solution at the next coarser level (denoted by Sl+1). That is,

Sl = P′lSl+1Ql if Pl and Ql are orthogonal, where l = 1, · · · , L− 1.

Proof. Without loss of generality, we prove S1 = P′1S2Q1. The optimal closed-form solution

to Eq. (3.11) without attributes (and equivalently Eq. (3.29)) is s1 = (1 − α)(I − αÃ
(1)
2 ⊗

Ã
(1)
1)−1l1. Similarly, the alignment matrix between Ã

(2)
1 , Ã

(2)
2 at the second level is computed

by

s2 = (1− α)[I− α(Q1Ã
(1)
2 Q′1)⊗ (P1Ã

(1)
1 P′1)]−1l2 (3.32)

The difference between S1 and the interpolated alignment from S2 in the Frobenius norm is

‖P′1S2Q1 − S1‖F = ‖(Q′1 ⊗P′1)s2 − s1‖2

= (1− α)
∥∥(Q′1 ⊗P′1)[I− α(Q1Ã

(1)
2 Q′1)⊗ (P1Ã

(1)
1 P′1)]−1l2 − (I− αÃ

(1)
2 ⊗ Ã

(1)
1)−1l1

∥∥
2

= (1− α)
∥∥ ∞∑
k=0

αk(Q′1 ⊗P′1)[(Q1Ã
(1)
2 Q′1)k ⊗ (P1Ã

(1)
1 P′1)k](Q1 ⊗P1)l1

−
∞∑
k=0

αk[(Ã
(1)
2)k ⊗ (Ã

(1)
1)k]l1

∥∥
2

(3.33)

30

where the second equation is by Neumann series due to the fact that (1) the eigenvalues of

Ã
(1)
1 , Ã

(1)
2 are in the range of (−1, 1), and (2) P1Ã

(1)
1 P′1,Q1Ã

(1)
2 Q′1 share the same eigenvalues

as Ã
(1)
1 , Ã

(1)
2 respectively given that P1 and Q1 are orthogonal [108].

Due to the orthogonality of P1,Q1, the following equations hold.

(Ã
(1)
1)k = P′1(P1Ã

(1)
1 P′1)kP1, (Ã

(1)
2)k = Q′1(Q1Ã

(1)
2 Q′1)kQ1 (3.34)

Thus, we have that

‖S1 −P′1S2Q1‖2
F = (1− α)

∥∥ ∞∑
k=0

αk[(Ã
(1)
2)k ⊗ (Ã

(1)
1)k − (Ã

(1)
2)k ⊗ (Ã

(1)
1)k]l1

∥∥
2

= 0 (3.35)

which completes the proof. QED.

Multilevel Alignment Algorithm. We seek to find a set of orthogonal interpolation matrices

Pl and Ql such that (1) they are sufficiently sparse, and (2) they are able to uncover the

hierarchical cluster-within-clusters structure of the input networks. In this work, we leverage

the multiresolution matrix factorization (MMF) algorithm that satisfies these requirements

[109]. Specifically, for each input network, we use the parallel second order MMF algorithm

to find a set of rotation matrices Pl,Ql such that at the l-th level (l ≥ 2),

Ã
(l)
1 =Pl−1 · · ·P1Ã

(1)
1 P′1 · · ·P′l−1 (3.36)

Ã(l) =Ql−1 · · ·Q1Ã
(1)
2 Q′1 · · ·Q′l−1 (3.37)

where the active indices of Ã
(l)
1 , Ã

(l)
2 are denoted as S

A
(l)
1

of size λl and S
A

(l)
2

of size µl,

respectively. Specifically, at the coarsest level, the rotated matrices are denoted as Ã
(L)
1 , Ã

(L)
2 .

Then we form the core-diagonal matrices Ā
(L)
1 and Ā

(L)
2 as in [109].

After the coarsening step, the symmetrically normalized adjacency matrices of the input

networks are transformed into the corresponding core-diagonal matrices, i.e.,

Ā
(L)
1 = ΠA1

[
Ā

(L1)
1 0

0 Ā
(L2)
1

]
Π′A1

, Ā
(L)
2 = ΠA2

[
Ā

(L1)
2 0

0 Ā
(L2)
2

]
Π′A2

(3.38)

where Ā
(L1)
1 = Ā

(L)
1 (S

A
(L)
1
,S

A
(L)
1

) and Ā
(L1)
2 = Ā

(L)
2 (S

A
(L)
2
,S

A
(L)
2

) are the core matrices of

Ā
(L)
1 and Ā

(L)
2 respectively. ΠA1 ,ΠA2 are the orthogonal permutation matrices to reorder

the active indices of the matrices Ā
(L)
1 , Ā

(L)
2 to be in the upper left part for the illustration

purpose. Denote the inactive indices as S
A

(L)
1

= {1, · · · , n1}\SA(L)
1

and S
A

(L)
2

= {1, · · · , n2}\

31

S
A

(L)
2

. Accordingly, Ā
(L2)
1 = Ā

(L)
1 (S

A
(L)
1
,S

A
(L)
1

) and Ā
(L2)
2 = Ā

(L)
2 (S

A
(L)
2
,S

A
(L)
2

). Note that

our algorithm does not need to explicitly compute such permutation matrices.

We compute the alignment between Ā
(L)
1 and Ā

(L)
2 at the coarsest level iteratively as

SL = αĀ
(L)
1 SLĀ

(L)
2 + (1− α)LL (3.39)

where LL = PL−1 · · ·P1L1Q
′
1 · · ·Q′L−1 is the corresponding prior similarity matrix at the

coarsest level. By using the permutation matrices ΠA1 ,ΠA2 , Eq. (3.39) can be rewritten as

Π′A1
SLΠA2 = α(Π′A1

Ā
(L)
1 ΠA1)(Π

′
A1

SLΠA2)(Π
′
A2

Ā
(L)
2 Π′A2

) + (1− α)Π′A1
LLΠA2 (3.40)

By denoting S̄L = Π′A1
SLΠA2 and L̄L = Π′A1

LLΠA2 , the computation can be simplified to

S̄L = α

[
Ā

(L1)
1 0

0 Ā
(L2)
2

][
S̄L1 S̄L2

S̄L3 S̄L4

][
Ā

(L1)
2 0

0 Ā
(L2)
2

]
+ (1− α)

[
L̄L1 L̄L2

L̄L3 L̄L4

]
(3.41)

which allows the computation to be block-wise as follows.

S̄L1 =αĀ
(L1)
1 S̄L1Ā

(L1)
2 + (1− α)L̄L1 (3.42)

S̄L2 =αĀ
(L1)
1 S̄L2Ā

(L2)
2 + (1− α)L̄L2 (3.43)

S̄L3 =αĀ
(L2)
1 S̄L3Ā

(L1)
2 + (1− α)L̄L3 (3.44)

S̄L4 =αĀ
(L2)
1 S̄L4Ā

(L2)
2 + (1− α)L̄L4 (3.45)

Armed with the iterative fixed-point algorithm, the global optimal solutions to Eq. (3.42),

Eq. (3.43) and Eq. (3.44) can be achieved and are denoted as S̄∗L1
, S̄∗L2

, S̄∗L3
respectively.

Furthermore, since both Ā
(L2)
1 and Ā

(L2

2 are sparse diagonal matrices, the closed-form optimal

solution of Eq. (3.45) can be easily computed by

s̄∗L4
= (1− α)(I− αĀ

(L2)
2 ⊗ Ā

(L2)
1)−1l̄L4 (3.46)

where s̄∗L4
= vec(S̄∗L4

), l̄L4 = vec(L̄L4) and the operator ⊗ represents the Kronecker prod-

uct. In this way, the optimal solution to the alignment problem at the coarsest level S∗L is

composed of S∗L(S
A

(L)
1
,S

A
(L)
2

), S∗L(S
A

(L)
1
,S

A
(L)
2

), S∗L(S
A

(L)
1
,S

A
(L)
2

) and S∗L(S
A

(L)
1
,S

A
(L)
2

) where

S∗L(S
A

(L)
1
,S

A
(L)
2

) = S̄∗L1
, S∗L(S

A
(L)
1
,S

A
(L)
2

) = S̄∗L2

S∗L(S
A

(L)
1
,S

A
(L)
2

) = S̄∗L3
, S∗L(S

A
(L)
1
,S

A
(L)
2

) = S̄∗L4
(3.47)

32

Algorithm 3.4: Multilevel Network Alignment (Moana).

Input : (1) the adjacency matrices A,A2 of G1, G2, (2) the sparse prior alignment
preference L, (3) the number of levels L, (4) the parameters α, K.

Output: the alignment matrices S∗l , l = 1, · · · , L between G1,G2.
Compute Ã1, Ã2 by symmetrically normalizing A1,A2;
Network coarsening:
P1, · · · ,PL−1 and Ā

(L)
1 ← MMF(Ã1);

Q1, · · · ,QL−1 and Ā
(L)
2 ← MMF(Ã2);

Compute the coarsest level LL = PL−1 · · ·P1LQ′1 · · ·Q′L−1;
Alignment at the coarsest level:
while not converged do

Update S̄L1 , S̄L2 , S̄L3 by Eq. (3.42)-(3.44);
end
Compute s̄∗L4

by Eq. (3.46) and S̄∗L4
= mat(s̄∗L4

);
Compose S∗L by Eq. (3.47);
Alignment interpolation:
Preserve top-K elements in each row/column of S∗L;
for l = L− 1→ 1 do

Compute S∗l = P′lS
∗
l+1Ql;

end

After the optimal alignment matrix S∗L at the coarsest level is achieved, the alignment at

each level S∗l can be computed by the interpolation, i.e., S∗l = P′lS
∗
l+1Ql, l = 1, · · · , L − 1.

The overall algorithm is summarized in Algorithm 3.4. The complexity analysis of the

algorithm is presented in Lemma 3.6, which implies the linear time complexity w.r.t. the

number of edges in the networks.

Lemma 3.6. Complexity analysis. The time complexity of Algorithm 3.4 is O(mL +

nd2
Ltmax + L2mL + LKn) and its space complexity is O(L2mL + L2Kn + ndL). Here, m,n

are the number of edges and nodes in the networks, dL = max(λL, µL) is the size of core

matrix. tmax is the number of iterations until convergence in the alignment phase and K is

used for top-K preservation of S∗L. mL is the number of nonzero elements in the matrix L

and L is the number of levels.

Proof. Omitted for brevity. Proofs can be referred to [11]. QED.

3.1.4 Experimental Evaluations

In this part, we present the experimental results and analysis of our proposed algorithms

FINAL and Moana. The experiments are designed to evaluate the following aspects:

33

• Effectiveness: How accurate are our algorithms for aligning attributed networks?

• Efficiency: How fast are our proposed algorithms?

Experimental Setup. We first introduce the experimental setups as follows.

Datasets.

We evaluate our proposed algorithms on eight real-world attributed networks.

• Co-Authorship Network: This dataset contains 42,252 nodes and 210,320 edges [110].

Each author has a feature vector which represents the number of publications of the

author in each of 29 major conferences.

• Douban: This Douban dataset was collected in 2010 and contains 50k users and 5M

edges [111]. Each user has rich information, such as the location and offline event

participation. Each edge has an attribute representing whether two users are contacts

or friends.

• Flickr: This dataset was collected in 2014 and consists of 215,495 users and 9,114,557

friend relationships. Users have detailed profile information, such as gender, hometown

and occupation, each of which can be treated as the node attributes [7].

• Lastfm: This dataset was collected in 2013 and contains 136,420 users and 1,685,524

following relationships [7]. A detailed profile of some users is also provided, including

gender, age and location, etc.

• Myspace: This dataset contains 854,498 users and 6,489,736 relationships. The profile

of users includes gender, hometown and religion, etc. [7].

• ACM Citation: This dataset was collected in 2016 and it contains 2,381,688 papers.

Each paper has a list of authors as well as the venue of the paper [7].

• DBLP Citation: This dataset was collected in 2016 and it contains 3,272,991 papers.

Each paper has a list of authors as well as its venue [7].

• ArnetMiner: ArnetMiner dataset consists of the information up to year 2013. The

whole dataset has 1,053,188 nodes and 3,916,907 undirected edges [7].

• Gr-Qc network: This collaboration network contains 5,241 nodes and 11,923 edges.

Each node represents an author, and there exists an edge if two authors have coau-

thored together [112].

34

Based on these datasets, we construct the following six alignment scenarios for evaluations.

S1. Co-Authorship vs. Co-Authorship. We extract a subgraph with 9,143 users/nodes

from the original dataset, together with their publications in each conference. We randomly

permute this subgraph with noisy edge weights and treat it as the second network. We choose

the most active conference of a given author as the node attribute, i.e., the conference with

the most publications. We construct the prior alignment preference L based on the node

degree similarity. For this scenario, the prior alignment matrix L alone leads to a very poor

alignment result, with only 0.6% one-to-one alignment accuracy.

S2. Douban Online vs. Douban Offline. We construct an alignment scenario for Douban

dataset in the same way as [111]. We construct the offline network according to users’

co-occurrence in social gatherings. We treat people as (1) ‘contacts’ of each other if they

participate in the same offline events more than ten times but less than twenty times, and

(2) ‘friends’ if they co-participate in more than twenty social gatherings. The constructed

offline network has 1,118 users and we extract a subgraph with 3,906 nodes from the provided

online network that contains all these offline users. We treat the location of a user as the

node attribute, and ‘contacts’/‘friends’ as the edge attribute. We use the degree similarity to

construct the prior alignment preference L which itself leads to 7.07% one-to-one alignment

accuracy.

S3. Flickr vs. Lastfm. We have the partial ground-truth alignment for these two datasets

[7]. We extract the subgraphs from them that contain the given ground-truth nodes. The

two subgraphs have 12,974 nodes and 15,436 nodes, respectively. We consider the gender

of a user as node attribute. For those users with the missing information of gender, we

treat them as ‘unknown’. Same as [7], we sort nodes by their pagerank scores and label

1% highest nodes as ‘opinion leaders’, the next 10% nodes as ‘middle class’ and remaining

nodes as ‘ordinary users’. Edges are attributed by the level of people they connect to (e.g.,

leader with leader). We use the username similarity as the prior alignment preference by

the Jaro-Winkler distance [113]. The username similarity alone can correctly align 61.50%

users.

S4. Flickr-Myspace. We have the partial ground-truth alignment for these two datasets.

We extract two subnetworks that contain these ground-truth nodes. The subgraph of Flickr

has 6,714 nodes and the subgraph of Myspace has 10,733 nodes. We use the same way as

S3 for node attributes, edge attributes and the prior alignment preference. The username

similarity achieves 61.80% accuracy.

S5. ACM-DBLP Co-authorship. We extract from both datasets the papers that are pub-

lished in four areas, including data mining, machine learning, database and information

retrieval/web mining. We construct the co-authorship networks based on each paper’s co-

35

author relationship. That is, if two authors co-author a paper in above areas, then we link

this two authors in the co-authorship network. Then, we extract from the two constructed

co-authorship networks the subgraphs that contain 9,872 nodes and 39,561 edges in ACM

co-authorship network and 9,916 nodes and 44,808 edges in DBLP co-authorship network,

respectively. Besides, we consider both numerical and categorical attributes. For numerical

node attributes, we treat the number of papers of an author in each of the 17 venues as

an attribute, which leads to a 17 dimensional feature vector. We use the four areas as the

node categorical attributes. That is, for example, if an author published the most papers

in data mining area, then we label this node as ’data mining’. We consider categorical edge

attributes, and similarly, we use the area where two authors mostly collaborate with each

other. We use the degree similarity matrix as the prior alignment preference which alone

can only correctly align 20.76% users.

S5. ArnetMiner-ArnetMiner. We use the same method as S1 to construct the alignment sce-

nario as well as the prior alignment preference. This scenario contains the largest networks,

and therefore is used for scalability evaluations.

S6. Gr-Qc vs. Gr-Qc. We use the same method as S1 to construct the alignment scenario as

well as the prior alignment preference. We evaluate the efficacy of Moana on this dataset.

Comparison Methods. For the proposed FINAL algorithms, we test the following variants,

including (1) FINAL-NE with categorical node and edge attributes; (2) FINAL-NE(N)

with numerical node and edge attributes; (3) FINAL-N with categorical node attributes;

(4) FINAL-N(N) with numerical node attributes; (5) FINAL-E with categorical edge

attributes; (6) FINAL-N+, a low-rank approximation of FINAL-N. We compare them

with the following prior network alignment algorithms including (1) IsoRank [3], (2) NetAlign

[5], (3) UniAlign [18], (4) Klau’s Algorithm [105], (5) HubAlign [114] and (6) RRWM [115].

Machines and Repeatability. Experiments are performed on a Windows machine with four

3.6GHz Intel Cores and 32G RAM. The algorithms are programmed with MATLAB1.

Effectiveness Analysis of FINAL. We first evaluate the impact of the permutation

noise on the alignment accuracy. We use a heuristic greedy matching algorithm [116] as

a post-processing step on the similarity matrix to obtain the one-to-one alignments be-

tween the two input networks, and then compute the alignment accuracy with respect to the

ground-truth. The results are summarized in Figure 3.3. We have the following observations.

First, all of our proposed methods outperform the prior alignment methods. Specifically,

our FINAL algorithms achieve an up to 30% improvement in terms of the alignment accu-

1The source code of our algorithms can be downloaded here: https://github.com/sizhang92/

FINAL-KDD16.

36

0 0.05 0.1 0.15 0.2
Noise on Weight

0

0.2

0.4

0.6

0.8

1

A
c
c
u
ra

c
y

FINAL-N
FINAL-E
FINAL-NE

FINAL-N+
IsoRank
NetAlign

UniAlign
Klau
HubAlign

(a) DBLP co-author.

0 0.05 0.1 0.15 0.2
Noise on Weight

0

0.2

0.4

0.6

A
c
c
u
ra

c
y

FINAL-N
FINAL-E
FINAL-NE

FINAL-N+
IsoRank
NetAlign

UniAlign
Klau
HubAlign

(b) Douban.

0 0.05 0.1 0.15 0.2
Noise on Weight

0

0.1

0.2

0.3

0.4

0.5

A
c
c
u
ra

c
y

FINAL-NE(N)
FINAL-N(N)
FINAL-NE

IsoRank
NetAlign
UniAlign

Klau
HubAlign

(c) ACM-DBLP.

Figure 3.3: (Higher is better.) Alignment accuracy vs. the noise level in networks.

Table 3.2: Alignment with different alignment prior matrices.

FINAL-NE FINAL-N RRWM
IsoRank NetAlign Klau HubAlign

-O -N -H -O -N -H -O -N -H -O -N -H
DBLP-Coauthor 0.901 0.819 0.873 0.728 0.810 0.557 0.725 0.712 0.818 0.696 0.480 0.507 0.620 0.631 0.612

Douban 0.411 0.327 0.042 0.055 0.140 0.305 0.015 0.207 0.024 0.063 0.230 0.056 0.010 0.021 0.053
ACM-DBLP 0.389 0.357 0.330 0.190 0.178 0.311 0.252 0.288 0.337 0.255 0.199 0.258 0.187 0.133 0.261
Flickr-Lastfm 0.711 0.681 0.642 0.403 0.299 0.635 0.456 0.235 0.538 0.352 0.283 0.516 0.588 0.310 0.622

Flickr-Myspace 0.699 0.663 0.678 0.360 0.251 0.543 0.449 0.206 0.371 0.375 0.202 0.408 0.5506 0.157 0.431

racy over the comparison methods. Second, FINAL-N and FINAL-E both outperform the

prior methods in most scenarios, yet are not as good as FINAL-NE, suggesting that node

attributes and edge attributes might be complementary in terms of improving the alignment

accuracy. Third, the alignment accuracy of FINAL-N+ is very close to its exact counter-

part FINAL-N (i.e., with a 95% accuracy compared with FINAL-N). Fourth, by jointly

considering the attributes and the topology of networks, our methods are more resilient to

the permutation noise. Moreover, for the two networks whose topologies are dramatically

different from each other (e.g., Douban online-offline networks), the accuracy gap between

FINAL-N+ and the prior methods is even bigger (Figure 3.3 (b)). This is because in

this case, the topology information alone (IsoRank, NetAlign, Klau and HubAlign) could

actually mislead the alignment process. Finally, as Figure 3.3 (c) shows, using numerical

attributes (i.e., FINAL-NE(N) and FINAL-N(N)) could further improve the performance

of FINAL-NE with categorical attributes.

Second, we evaluate the impact of the noise in the prior alignment preference (i.e., L) on

the alignment results, which is summarized in Figure 3.4. As expected, a higher noise in L

has more negative impacts on the alignment accuracy for most of the methods. Nonetheless,

our FINAL algorithms still consistently outperform all other four prior methods across

different noise levels.

37

0 0.05 0.1 0.15 0.2
Noise on Alignment Preference

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

FINAL-N
FINAL-E
FINAL-NE

FINAL-N+
IsoRank
NetAlign

UniAlign
Klau
HubAlign

(a) Flickr-Lastfm.

0 0.05 0.1 0.15 0.2
Noise on Alignment Preference

0

0.2

0.4

0.6

0.8

1

A
c
c
u
ra

c
y

FINAL-N
FINAL-E
FINAL-NE

FINAL-N+
IsoRank
NetAlign

UniAlign
Klau
HubAlign

(b) Flickr-Myspace.

Figure 3.4: (Higher is better.) Alignment accuracy vs. the noise level in L.

In addition, we conduct the comparisons between the proposed FINAL algorithm and

other baseline methods to show the alignment performance by using various information. For

RRWM, we compute the cosine similarity matrix of the node attributes and edge attributes

respectively, then combine them with the Kronecker product of the adjacency matrices to

form the affinity matrix [33]. For the rest of comparison scenarios, we calculate the cosine

similarity values among node attributes as the node similarities across networks, which

will then be used as the prior alignment matrix L of the baseline methods (named as -

N). Similarly, the average between the node attribute similarity matrix and the originally

designed prior matrix (used in Figure 3.3 and Figure 3.4), is considered as the prior matrix

(named as -H). Note that the baseline methods using the provided prior alignment matrix

L as aforementioned are named as -O. The results are summarized in Table 3.2. First, we

observe that given the exact same set of information, the proposed FINAL-NE outperforms

the RRWM algorithm in terms of the alignment accuracy. This indicates even with the

more rigorous constraints of the optimization problem in RRWM, the intricacy of solving

the problem itself might mislead the alignment solution. Second, we observe that given the

node attributes and prior alignment matrix, our proposed FINAL-N method outperforms

other baseline methods. This indicates although the additive combination of attributes and

the prior knowledge could lead to an improvement within the baseline methods themselves,

our algorithms still achieve a better performance due to the alignment consistency.

Efficiency Analysis of FINAL. We first evaluate how different methods balance the

alignment accuracy and the running time for the full network alignment problem (i.e., Prob-

38

20 200 500 1000 1500
Running Time (second)

0

0.2

0.4

0.6

0.8

1
A

c
c
u
ra

c
y FINAL-N

FINAL-E

FINAL-NE

FINAL-N+

IsoRank

NetAlign

UniAlign

HubAlign

(a) DBLP co-author.

200500 2000 3000
Running Time (second)

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

FINAL-N

FINAL-E

FINAL-NE

FINAL-N+

IsoRank

NetAlign

UniAlign

HubAlign

(b) Flickr-Lastfm.

0 50 100 150 200 250 300 350
Running Time (second)

0

0.1

0.2

0.3

0.4

0.5

A
c
c
u
ra

c
y

FINAL-NE(N)

FINAL-N(N)

FINAL-NE

NetAlign

IsoRank

Klau

UniAlign

HubAlign

(c) ACM-DBLP co-author.

Figure 3.5: Balance between the accuracy and the speed.

lem 3.1). The results are summarized in Figure 3.5. Note that the results of RRWM are not

included here because it takes days to finish the computation, which is not even comparable

with other methods. As we can see, the running time of our proposed exact methods is only

slightly higher than its topology-alone counterpart (i.e., IsoRank), and in the meanwhile,

they all achieve a 10%-20% accuracy improvement. FINAL-NE(N) and FINAL-N(N) are

faster than FINAL-NE in Figure 3.5 (c) because using numerical attributes could lead to

a faster convergence. Besides, FINAL-N+ and UniAlign are the fastest, yet the proposed

FINAL-N+ produces a much higher alignment accuracy. We do not show the balance of

Klau’s Algorithm in Figure 3.5 (a) and (b), because the running time is usually several

hours which is not comparable with other methods. For NetAlign and Klau’s Algorithm, we

observe that they take much longer running time when the input prior alignment preference

matrix L is not sparse enough, as it involves a time-consuming Hungarian step during each

iteration.

Second, we evaluate the quality-speed trade-off for on-query alignment problem. Here, we

treat the top-10 ranking results by FINAL-N as the ground-truth, and compare the average

ranking accuracy of 500 random nodes with two proposed approximate algorithms (FINAL-

N+ and FINAL On-Query). The results are summarized in Figure 3.6. We observe that

(1) FINAL-N+ preserves a 95% ranking accuracy, with a more than 10× speedup over

FINAL-N, (2) FINAL On-Query preserves an about 90% ranking accuracy, and it is

100× faster than the exact FINAL-N.

Scalability of FINAL. We first evaluate the scalability of FINAL-N+, which is sum-

marized in Figure 3.7. We can see that the running time is quadratic w.r.t the number of

nodes of the input networks, which is consistent with the time complexity results in Lemma

3.3. Second, we evaluate the scalability of FINAL On-Query, for both its pre-compute

39

Log of Time (second)
10

0
10

1
10

2
10

3

R
e
la

ti
v
e
 A

c
c
u
ra

c
y

0

0.2

0.4

0.6

0.8

1

Flickr-Myspace

Flickr-Lastfm

FINAL On-Query

FINAL-N+ Exact FINAL-N

Figure 3.6: Balance of on-query alignment.

Number of Nodes
×10

4

0 0.5 1 1.5 2 2.5 3

R
u

n
n

in
g

 T
im

e
 (

s
e

c
o

n
d

)

0

200

400

600

800
r=1

r=2

r=5

r=10

r=15

Figure 3.7: Scalability of FINAL-N+.

phase and online-query phase. As we can see from Figure 3.7, the running time is linear

w.r.t the number of nodes in both stages, which is consistent with Lemma 3.4. In addition,

the actual online-query time on the entire ArnetMiner data set (with r = 10) is less than

1 second, suggesting that the proposed FINAL On-Query method might be well suitable

for the real-time query response.

Effectiveness and Efficiency of Moana. We only show some experimental results of the

proposed method Moana, compared with other baseline methods, including (1) FINAL-P

[9], (2) Umeyama’s method [21], (3) HubAlign [114], (4) ModuleAlign [117], and (5) iNeat

[10]. Detailed results can be referred to [11]. Figure 3.9 shows the results of Moana

and baseline methods on Gr-Qc networks. Specifically, as observed in Figure 3.9 (a), the

alignment accuracy of the proposed algorithm Moana is very close to its single node-level

alignment counterpart FINAL-P, while outperforming other baseline methods. In addition,

Figure 3.9 (b) shows that Moana obtains an up to 10× speedup compared with its single-

level counterpart FINAL-P with a little loss in terms of the node-level alignment accuracy.

3.2 NON-RIGID NETWORK ALIGNMENT

Multiple networks naturally appear in many areas, ranging from social networks on vari-

ous platforms, protein-protein interaction networks of different species, transaction networks

at different financial institutes to the knowledge graphs constructed by different knowledge

bases and the sensored networks derived from multimodal sensors (e.g., Lidar). Network

40

Number of Nodes in Networks
×10

5

0 2 4 6 8 10

R
u
n
n
in

g
 T

im
e
 (

s
e
c
o
n
d
)

0

10

20

30

40

50

60
rank=1

rank=2

rank=5

rank=10

rank=15

(a) Pre-compute phase.

Number of Nodes in Networks ×10
5

0 2 4 6 8 10

O
n
lin

e
 Q

u
e
ry

 T
im

e
 (

s
e
c
o
n
d
)

0

0.5

1

1.5

2

2.5
rank=1

rank=2

rank=5

rank=10

rank=15

(b) Online-query phase.

Figure 3.8: Scalability of FINAL On-Query.

alignment which aims to find the node correspondence across multiple networks is a funda-

mental task to integrate multiple networks into a worldview of what the input data repre-

sents. Consequently, it has drawn much attention in numerous applications. For example, by

identifying the overlapping entities across multiple incomplete knowledge graphs, a unified

knowledge graph can be constructed to aid knowledge completion [118]. Since many adver-

sarial activities (e.g., smuggling) in different contexts are often covert in multiple domains,

they are not quite detectable in each of the input networks alone. Network alignment can

integrate these isolated networks and amplify the deceptive adversarial activities, so that

they are more detectable in the composite network [4].

Despite the extensive works on network alignment, many of them explicitly or implic-

itly consider the alignment matrix as a linear transformation matrix. For example, many

traditional graph matching based methods attempt to solve the Koopmans-Beckmann’s

quadratic assignment problem [119] or its relaxations, i.e., to maximize Tr(S′A1SA2) +

Tr(L′S) where S,L are the alignment matrix and prior cross-network node similarity ma-

trix respectively, and A1,A2 are the adjacency matrices. Prior works following this path

include Umeyama [21], BigAlign [18], NetAlign [5] and FINAL [9]. Since Tr(S′A1SA2) =∑
i,j(S

′A1)i,j(A2S
′)i,j, it can be alternatively viewed as first generating node feature vectors

by linear transformations based on the adjacency matrices themselves (i.e., by S′A1 and

A2S
′ respectively) and then maximizing the inner product similarities between the gener-

ated feature vectors (e.g., the i-th row of S′A1 and A2S
′). However, these methods bear

some fundamental limitations, including (1) the alignment matrix S is leveraged as a linear

transformation matrix and thus might oversimplify the complicated alignment relationships

across networks; and (2) the generated feature vectors of nodes are high-dimensional and

41

0 0.1 0.2 0.3 0.4 0.5

noise on weight

0

0.2

0.4

0.6

0.8

1

a
lig

n
m

e
n

t
a

c
c
u

ra
c
y

Moana

FINAL

AMG-F

HubAlign

Umeyama

ModuleAlign

PriorSim

iNeat

(a) Alignment accuracy vs. edge weight
noise.

10
0

10
1

10
2

10
3

10
4

running time (seconds)

0

0.2

0.4

0.6

0.8

1

a
lig

n
m

e
n

t
a

c
c
u

ra
c
y

Moana

FINAL

AMG-F

HubAlign

Umeyama

ModuleAlign

iNeat

(b) Balance between the accuracy and
running time.

Figure 3.9: Effectiveness and efficiency of Moana.

may fall short in their representation power. To mitigate these issues, instead of directly

solving for the alignment matrix, IONE [8] and PALE [24] learn the low-dimensional node

embedding vectors in different networks, based on which the alignment can be further in-

ferred. Nevertheless, these methods ignore the node attributes that are often accompanied

in real-world networks. Besides, these approaches suffer from the obstacle that node rep-

resentations could be arbitrarily and imperfectly rotated and/or translated across different

networks so that they might not be directly comparable.

To tackle these limitations, we go beyond the linear transformation assumption, and hy-

pothesize that network alignment and node representation learning are mutually beneficial

with each other due to the following reasons. First, network alignment helps node rep-

resentation learning. Intuitively, if nodes are aligned across networks, the structural and

attribute information of the nodes in one network can be integrated with the nodes in the

other network as the auxiliary information, leading to a far-reaching representation learning

strategy. Second, node representation learning helps network alignment. With the premise

that node representations are of high qualities, finding node alignment in the non-Euclidean

space (i.e., directly across networks) can be translated to the point set alignment problem2

in the Euclidean space. This naturally renders the possibility of unveiling the alignment

of nodes by inferring the non-rigid transformations which are expected to lead to the more

accurate alignment.

Armed with these hypotheses, we solve the non-rigid network alignment problem by si-

multaneously learning node representations across multiple networks. The key ideas are

2We consider node representations as the point sets in the Euclidean space.

42

two-fold. First, to learn node representations of multiple networks, we design a new convo-

lutional operator that can aggregate the multi-sourced information. Second, in order to align

node representations, we design a semi-supervised multi-view non-rigid point set alignment

algorithm that first learns the point set transformation function and then infers the alignment

based on the transformed node representations. The main contributions are summarized as

follows.

• Problem Definition. To our best knowledge, we are the first to address the non-rigid

network alignment problem.

• Model and Algorithms. We develop a semi-supervised model ORIGIN which is able

to simultaneously (1) learn node representations of different networks by multi-graph

convolutional networks (Multi-GCN) and (2) unveil the non-rigid network alignment

across multiple networks.

• Evaluations. Extensive experiments on real-world networks demonstrate that our pro-

posed alignment approach (1) outperforms both the prior linear transformation based

methods and node representation based methods, and (2) is efficient for node repre-

sentation learning with a comparable computational time between the proposed Multi-

GCN and its single-network counterpart.

3.2.1 Problem Definition

Table 3.3 summarizes the main symbols and notations used throughout the work. We use

the bold uppercase letters to denote matrices (e.g., X), bold lowercase letters (e.g., x) for

vectors and letters not in bold for scalars (e.g., α). We use X(i, j) to denote the entry at the

intersection of the i-th row and j-th column of the matrix X. Besides, we express xi = X(i, :)

as the i-th row of X and X(:, j) as the j-th column of X. We denote the transpose of matrix

X as X′ and the trace of matrix X as Tr(X).

Non-Rigid Network Alignment Problem. The concept of non-rigid transformation

is rooted in the point set alignment problem to align the 2D or 3D point sets such that

one point set can be maximally overlapped with another point set [120]. Unlike the linear

or affine transformations which are restricted to some explicitly expressed transformation

functions, non-rigid transformation has more flexibility to unveil the complicated alignment

among point sets as it does not require any specific form of the transformation functions.

Inspired by this, we translate the network alignment problem to the point set alignment

43

Table 3.3: Symbols and notations.

Symbols Definitions
G1, G2 the input undirected networks
A1,A2 the adjacency matrices of G1 and G2

X1,X2 the node attributes of G1 and G2

L an optional n1 × n2 prior node similarity matrix
I an identity matrix
S the output n1 × n2 alignment matrix

S1,S2 sampled alignment matrices
d the dimension of the output node representations

X̃1, X̃2 the node representation matrices by Inter-GCNs
X̄1, X̄2 the node representation matrices by Multi-GCN

f the non-rigid transformation function on X̄1

Xo
1 the transformed node representation matrix of G1 by f

κ1, κ2 the kernel function for the point view and graph view
κ,K the combined kernel function and its kernel matrix
L+ the labeled node pairs which are aligned a priori

n1, n2 # of nodes in G1,G2

α, α1, α2, λ the regularization parameters

problem. That is, given the input networks that are known to be the non-Euclidean data

[121], we aim to (1) represent the nodes in the Euclidean space so that they can be naturally

viewed as point sets, and (2) align nodes in different networks (i.e., different point sets)

by inferring the non-rigid transformation among them. Formally, the non-rigid network

alignment problem is defined as below.

Problem 3.3. Non-Rigid Network Alignment.

Given: (1) undirected networks G1 = {V1,A1,X1} and G2 = {V2,A2,X2} with V1,V2

as the node sets where |V1| = n1, |V2| = n2, A1,A2 as the adjacency matrices and X1,X2

as the input node attribute matrices of G1,G2 respectively, (2) a set of labeled node pairs

L+ = {(uli , vli)|i = 1, · · · , L} where node uli in G1 is aligned with node vli in G2 a priori, (3)

an optional prior cross-network node similarity matrix L.

Find: an n1 × n2 soft alignment matrix S where S(u, v) represents to what extent node

u in G1 is aligned with node v in G2.

Remarks. If there is no prior knowledge of the cross-network node similarity matrix, we

can alternatively construct L by some heuristics, such as node degree similarity. Though

we consider network alignment problem between two input networks in this work, it is

straightforward to generalize our proposed model to handle multiple network alignment.

44

Specifically, after computing the pair-wise alignment between each pair of networks, we can

post-process (e.g., by [3]) to find the alignment among more than two input networks.

Preliminary: Graph Convolutional Networks. Graph neural networks have attracted

lots of research interests in the recent years. Among others, graph convolutional networks

have achieved great success in node representation learning [122, 123]. The main idea of

graph convolutional networks lies in generalizing the traditional convolution operators on

the Euclidean data (e.g., images) to graphs such that node information can be aggregated

based on the graph structure. Here, we briefly review a spatial-based graph convolutional

network (namely GraphSage [123]) that will be used as a building block in our ORIGIN

model to learn node representations for a single network. Given a graph G1, each node-u ∈ V1

aggregates hidden representations from its neighborhood Nu and combines the aggregated

representation with its current representation. Formally, it is formulated as

x̃t1,Nu
= AGGREGATEt({x̃t−1

1,u′ , ∀u
′ ∈ Nu}) (3.48)

x̃t1,u = σ
(
[x̃t−1

1,u ‖x̃t1,Nu
]Wt

)
(3.49)

where [·‖·] represents the concatenation of two vectors and σ(·) is the non-linear activation

function. x̃t1,u is the representation of node-u in G1 and Wt denotes the weight matrix at

the t-th layer. Note that when t = 0, x̃0
1,u is initialized by the input attributes of node u,

i.e., x̃0
1,u = X1(u, :). Moreover, according to [123], the GraphSage model can be instantiated

by Mean, LSTM and Pooling aggregators. In this work, we choose the Mean aggregator due

to its high representation power and simplicity. It is notable that GraphSage is capable of

mini-batch training by uniformly sampling with replacement a fixed size of the neighboring

nodes. For an input network G1, the unsupervised GraphSage minimizes the following loss

function based on the SkipGram with negative sampling [124].

JG1(X̃1) =
∑
u∈V1

∑
u′∈Cu

− log
(
σ(x̃′1,ux̃1,u′)

)
−N · Eu′n∼Pn(u′) log

(
σ(−x̃′1,ux̃1,u′n)

)
(3.50)

where u′ ∈ Cu represents that node u′ co-occurs with u on a fixed-length random walk, N

defines the number of negative samples and Pn(u′) is the negative sampling distribution.

3.2.2 The ORIGIN Model

In this part, we present ORIGIN, a deep semi-supervised model that can simultaneously

learn the node representations and find the non-rigid alignment across the input networks

45

Intra-
GCN𝟏

Intra-
GCN𝟐

Inter-
GCN

Multi
-Nets
Loss

Point Set
Alignment

Multi-GCN

𝒙1,𝑢 ∀𝑢 ∈ 𝒢1

𝒙2,𝑣 ∀𝑣 ∈ 𝒢2

𝓖𝟏

𝓖𝟐

ഥ𝒙1,𝑢

ഥ𝒙2,𝑣

node representations

node alignment

Sampling &
Normalization

Multi-View Point Set Alignment

(a) (b)

Pseudo-Labeling

𝑢 𝑢′
𝑣

𝑣′

Figure 3.10: Illustration of the proposed ORIGIN model. (a) The Multi-GCN module
that learns node representations of the input networks by intra-network and cross-network
aggregations and combinations. (b) The point set alignment process that first displaces the
node representations of G1 to those of G2, and then infers node alignment which will be fed
back to Multi-GCN.

in a symbiotic way. We start by proposing a graph convolutional network model for multi-

ple networks (Multi-GCN) to learn far-reaching node representations of the input networks.

Next, we introduce a multi-view approach to unveiling the non-rigid alignment among the

nodes which are represented by the point sets in the Euclidean space, followed by the op-

timization algorithm to effectively and efficiently learn both node representations and node

alignment. The overall framework of ORIGIN is shown in Figure 3.10.

Node Representation Learning for Multiple Networks. We first present the pro-

posed Multi-GCN model to learn node representations of multiple networks.

A - Aggregation and Combination. Many prior spatial-based graph convolutional networks

(e.g., GraphSage [123]) essentially define two operators: (1) Intra-Aggregation that aggre-

gates node hidden representations (or node attribute information at the first layer) from the

neighboring nodes (e.g., Eq. (3.48)) underlying a single network and (2) Intra-Combination

that combines the current hidden representation with the resultant aggregated representa-

tion of the node as the updated node representation (e.g., Eq. (3.49)). However, this might

not be able to provide sufficiently informative node representations in the multiple networks

scenario given that multiple networks might contain some complementary information for

each other. To remedy this restrictive situation, in addition to the separate graph con-

volutional networks for single networks (named as Intra-GCNs), we design an Inter-GCN

component that integrates node representations across different networks. The intuition is

46

to view the node alignment as the probabilistic cross-network node similarity and bridge

different networks such that nodes in one network can be considered as the virtual neighbors

of the nodes in the other network if they are likely to be aligned. For example, if node u in G1

is similar to node v in G2 (i.e., likely to be aligned), we can view node v as a virtual neighbor

of node u. In this way, the representation of node v can be used to aggregate the neighbor-

ing node representations for node u, and vice versa. Thus, given two separate Intra-GCNs

that aggregate node information in the same network and output the node representations

x̃1,u, x̃2,v ∈ Rd, ∀u ∈ V1, v ∈ V2, we define the cross-network aggregation as

x̂1,u = AGGREGATEcross(x̃1,u) =
∑
v∈V2

S(u, v)x̃2,v (3.51)

x̂2,v = AGGREGATEcross(x̃2,v) =
∑
u∈V1

S(u, v)x̃2,u. (3.52)

It is crucial to properly leverage the alignment matrix S in Eq. (3.51) and Eq. (3.52) from

the following two perspectives. First (aggregation efficiency), the node alignment matrix

is often quite dense, leading to an O(nd) time complexity to compute the cross-network

aggregation for each node (e.g., x̂1,u) which is prohibitive especially for large-scale networks.

Second (aggregation localization), when S is dense, Eq. (3.51) and Eq. (3.52) aggregate

the representations of most or even all of the nodes from one network for the other, i.e.,

smoothing globally over the networks. This will further make the aggregated representations

of different nodes less distinguishable. To overcome these issues, since we are given the

labeled node pairs L+ = {(uli , vli)|i = 1, · · · , L} that indicates which nodes are aligned, we

set S(uli , v) = S(u, vli) = 0 for all u ∈ V1 and v ∈ V2 except that S(uli , vli) = 1. Besides,

for all the other nodes whose alignment are unknown (e.g., u /∈ {uli , ∀i = 1, · · · , L}, v /∈
{vli ,∀i = 1, · · · , L}), we downsample the alignment matrix S as follows. For each node u /∈
{uli , ∀i = 1, · · · , L}, we only preserve the K largest values S(u, vqk), k = 1, · · · , K column-

wise from S(u, :) for Eq. (3.51) and denote the sampled matrix as S1. We then normalize

it such that
∑K

k=1 S1(u, vqk) = 1. Similarly, we sample K values S(upk , v) for each node

v /∈ {vli ,∀i = 1, · · · , L} row-wise from S(:, v) and denote it as S2 where
∑K

k=1 S2(upk , v) = 1

after normalization. This sampling and normalization process is summarized in Algorithm

3.5. The cross-network aggregation is re-written as

x̂1,u = AGGREGATEcross(x̃1,u) =
K∑
k=1

S1(u, vqk)x̃2,vqk

x̂2,v = AGGREGATEcross(x̃2,v) =
K∑
k=1

S2(upk , v)x̃1,upk

(3.53)

47

Algorithm 3.5: Sample(S, K).

Input : (1) the current alignment matrix S, (2) the labeled node pairs L+ and (3)
the sample size K.

Output: sampled alignment matrix S1,S2.
Initialize S1 = S2 = S;
for i = 1→ L do

Set S1(uli , vli) = S2(uli , vli) = 1;
Set S1(u, vli) = S2(uli , v) = 0, ∀u 6= uli , v 6= vli ;

end
Preserve top-K nonzero elements in S1(u, :), ∀u /∈ {uli ,∀i = 1, · · · , L};
Preserve top-K nonzero elements in S2(:, v), ∀v /∈ {vli ,∀i = 1, · · · , L};
Normalize S1(u, :), ∀u = 1, · · · , n1;
Normalize S2(:, v), ∀v = 1, · · · , n2;
Output S1, S2.Aggregation Example

Here, we use top-2 cross-net aggregation. Benefits:
(1) linear complexity,
(2) only using parts of nodes in 𝐺2 so that the aggregation is not smoothed
over all nodes in 𝐺2

𝒢1

𝒢2

: Edges

: Intra-network
aggregation

: Cross-network
aggregation

𝑣𝑞2
𝑣𝑞1

𝑺1(𝑢, 𝑣𝑞2)

𝑺1(𝑢, 𝑣𝑞1)

𝑢

Figure 3.11: An illustrative example of the aggregations in the multi-GCN model (K = 2).
Red solid lines represent the aggregations from node neighborhood within a single network in
Intra-GCN while green dashed lines represent the cross-network aggregations in Inter-GCN.

We show an illustrative example in Figure 3.11 where K = 2 and nodes vq1 , vq2 are

sampled for cross-network aggregation for x̃u through S1(u, vq1) and S1(u, vq2) respectively.

For cross-network combination, we use

x̄1,u = COMBINEcross(x̃1,u, x̂1,u) = [x̃1,u‖x̂1,u]Wcross + b1

x̄2,v = COMBINEcross(x̃2,v, x̂2,v) = [x̃2,v‖x̂2,v]Wcross + b2

(3.54)

where x̄1,u, x̄2,v ∈ Rd are the output node representations by the proposed Multi-GCN model.

The weight matrix Wcross ∈ R2d×d is shared in both equations as it basically measures how

to combine the representations learned by Intra-GCNs and by Inter-GCN for cross-network

combinations.

48

B - Loss Functions. To learn the far-reaching node representations that can simultaneously

maintain the local structural information within a single network and the cross-network

representation consistency, we aim to minimize the loss function

JGCN = JG1(X̄1) + JG2(X̄2) + λJcross(X̄1, X̄2) (3.55)

where JG1(X̄1),JG2(X̄2) have the same formula as Eq. (3.50), but are minimized over X̄1, X̄2

respectively instead of X̃1, X̃2. Minimizing JG1(X̄1), JG2(X̄2) encourages the representations

of the nearby nodes to be similar and the representations of disparate nodes to be dissimilar.

Besides, to impose the consistency of the node representations between different networks,

we minimize the distance between the node representations of one network and those com-

puted by the aggregations from the other network via alignment. Specifically, given node

representations x̄1,u and x̄2,v, we aim to minimize the following disagreement loss.

Jcross(X̄1, X̄2) =
∑
u∈V1

‖x̄1,u−
K∑
k=1

S1(u, vqk)x̄2,vqk
‖2

2 +
∑
v∈V2

‖x̄2,v−
K∑
k=1

S2(upk , v)x̄1,upk
‖2

2 (3.56)

Note that for (uli , vli) ∈ L+, since S1(uli , vli) = 1 is the only nonzero entry in the row of uli ,

the first term in Eq. (3.56) is equivalent to ‖x̄1,uli
− x̄2,vli

‖2
2, enforcing the representation of

node uli in G1 to be close to that of its aligned node vli in G2. However, one computational

issue that resides in the Eq. (3.56) is that the node representations of all the other unlabeled

nodes are nested with each other. For example, the first term needs the node representations

x̄2,vqk
, ∀k = 1, · · · , K which requires to explicitly calculate all node representations of G2

(i.e., X̄2) in each iteration in the worst case. This is impractical especially when one wants

to use stochastic training methods. Thus, we further simplify the terms in Eq. (3.56). For

brevity, we only take
∑K

k=1 S1(u, vqk)x̄2,vqk
as an example, and rewrite it as below.

K∑
k=1

S1(u, vqk)x̄2,vqk
=

K∑
k=1

S1(u, vqk)
(
[x̃2,vqk

‖x̂2,vqk
]Wcross + b2

)
=

K∑
k=1

[
K∑
k′=1

S1(u, vqk)S2(upk′ , vqk)x̃1,upk′
Wc2 + S1(u, vqk)

(
x̃2,vqk

Wc1 + b2

)]

=
K∑
k=1

S1(u, vqk)(x̃2,vqk
Wc1 + b2) +

∑
k′=1

(S1S
′
2)(u, upk′)x̃1,upk′

Wc2

=

[
K∑
k=1

S1(u, vqk)x̃2,vqk
‖
∑
k′=1

(S1S
′
2)(u, upk′)x̃1,upk′

]
Wcross + b2 (3.57)

49

where Wc1 and Wc2 are the first and second d rows of Wcross respectively. Based on the

above equations, we can rethink of the computation for the aggregated representation of x̄1,u

(i.e.,
∑K

k=1 S1(u, vqk)x̄2,vqk
) as two steps. First, we concatenate (1) the result of the cross-

network aggregation x̂1,u and (2) the result (denoted by ȳ1,u) of the aggregation among the

nodes upk′ from the same network G1 weighted by (S1S
′
2)(u, upk′). Then, it is equivalent to

K∑
k=1

S1(u, vqk)x̄2,vqk
= [x̂1,u‖ȳ1,u]Wcross + b2 (3.58)

Nevertheless, as S1S
′
2 is likely to be a dense matrix, the aggregations for ȳ1,u gather the infor-

mation globally from most of the other nodes, leading to a less emblematic ȳ1,u and a higher

computational cost. To address this issue, we only preserve the nonzero (S1S
′
2)(u, upk′), ∀upk′ ∈

Cu. In this way, the extra node representations that are needed only include x̃1,upk′
which can

be efficiently calculated by feeding node upk′ ∈ Cu to the Intra-GCN1 module. Accordingly,

we can simplify the second term in Eq. (3.56) similarly.

Multi-View Point Set Alignment. After we obtain the node representations learned

by the proposed Multi-GCN model, it seems that we can simply learn whether node u in G1

is aligned with node v in G2 based on their node representations x̄1,u and x̄2,v. However, as

the Multi-GCN model only preserves the structural consistency within the same networks

(i.e., Eq. (3.50)) and the consistency between node representations and their aggregated

representations from the other network (i.e., Eq. (3.56)), node representations x̄1,u and x̄2,v

are still likely not to be close with each other in the Euclidean space even if node u and

node v are supposed to be aligned. This limitation could result in a sub-optimal alignment

or even totally mislead the alignment. To mitigate this limitation, we translate the network

alignment problem over the nodes to a non-rigid point set alignment (PSA) problem where

each point is represented by the representation of the corresponding node in the Euclidean

space. Specifically, given a set of labeled node alignment L+ = {(uli , vli)|i = 1, · · · , L}, we

want to displace each point x̄1,uli
towards its aligned point x̄2,vli

by some non-rigid vector-

valued transformation function f ∈ Rd such that the maximum point-to-point overlaps can

be achieved. Mathematically, this can be formulated as a functional minimization problem.

min
f

L∑
i=1

‖x̄1,uli
+

1

2
f(x̄1,uli

)− x̄2,vli
‖2

2 (3.59)

However, Eq. (3.59) is an ill-posed problem without any constraints imposed on f . Instead,

we model the above optimization problem by requiring the non-rigid function f to lie within

50

a specific functional space, namely a reproducing kernel Hilbert space (RKHS) denoted by

H. Then we have

min
f

L∑
i=1

‖x̄1,uli
+

1

2
f(x̄1,uli

)− x̄2,vli
‖2

2 + α‖f‖2
H (3.60)

where ‖f‖2
H is the RKHS norm of f in H and α is the regularization parameter. In addition,

since each point (e.g., x̄1,uli
) intrinsically has two interpretations (or views): points in the

Euclidean space (i.e., node representations) and the corresponding nodes of the networks in

the non-Euclidean graph space, we further consider to divide H into two RKHS H1,H2 by

H = H1 ⊕H2 such that

H =
{
f |f(x) = f1(x) + f2(x), f1 ∈ H1, f2 ∈ H2

}
(3.61)

and the RKHS norm ‖f‖2
H can be re-written as

‖f‖2
H = min

f=f1+f2

f1∈H1

f2∈H2

α1‖f1‖2
H1 + α2‖f2‖2

H2 + µ

n1−L∑
j=1

[
f1(x̄1,urj

)− f2(x̄1,urj
)
]2

(3.62)

where f1(x̄1), f2(x̄1) are two transformation functions in the RKHS H1,H2 corresponding to

the point view and graph view, respectively. Besides, U = {urj |j = 1, · · · , n1−L} represents

the unlabeled nodes in G1 whose alignment with the nodes in G2 are not labeled. Intuitively,

the term
[
f1(x̄1,urj

)− f2(x̄1,urj
)
]2

regularizes the transformation functions f1, f2 over the

unlabeled node urj to be consistent in two different views (i.e., moving x̄1,urj
coherently in

two views). According to [125], let H1,H2 be with the reproducing kernels κ1, κ2, then the

RKHS H is with the reproducing kernel

κ(u, u′) = φ(u, u′)− µauΨa′u′ . (3.63)

Here, φ(u, u′) = α−1
1 κ1(u, u′) + α−1

2 κ2(u, u′) and au = α−1
1 k1

uU − α−1
2 k2

uU where ksuU =

[κs(u, urj), urj ∈ U], ∀s = 1, 2 is a row vector measuring the kernel values between u and

all the other unlabeled nodes in U . Besides, Ψ is a positive definite matrix computed by

Ψ = (I + µΦ)−1 where Φ denotes the kernel matrix of φ(u, u′) over all the unlabeled nodes.

Furthermore, by the Representer Theorem [126], the solution to Eq. (3.62) is a function that

f(x̄1,u) = K(u, I)Γ (3.64)

51

where I = {uli |i = 1, · · · , L} includes the indices of the labeled nodes in G1, K represents

the kernel matrix corresponding to the kernel κ and Γ includes the coefficients to be solved.

By substituting Eq. (3.64) to Eq. (3.60), we have

min
Γ
JPSA =

L∑
i=1

‖xuli +
1

2
K(uli , I)Γ− yvli‖

2
2 + αTr(Γ′KIΓ) (3.65)

where KI = K(I, I).

To construct the kernel κ based on Eq. (3.63), we use the Gaussian RBF kernel κ1(u, u′) =

exp(−‖x̄1,u − x̄1,u′‖2
2) for the point view. In terms of the graph view, many graph kernels

have been proposed, such as diffusion kernel [127], p-step random walk kernel [128]. In

this work, we choose the 1-step random walk kernel due to its computational simplicity. In

particular, the kernel matrix corresponding to the kernel κ2 is formulated as K2 = 2I −
L̃ = I + D

− 1
2

1 A1D
− 1

2
1 where D1 is the diagonal degree matrix of A1. By optimizing Eq.

(3.65), we can solve for Γ and compute the transformed node representations of G1 by

xo1,u = x̄1,u + 1
2
K(u, I)Γ. Such transformed node representations will then be compared

with X̄2 to infer the alignment with the nodes in G2. Specifically, we calculate the cross-

network node similarity between node u in G1 and node v in G2 as the alignment matrix by

S(u, v) = exp(−‖x0
1,u − xo2,v‖2

2) where xo2,v = x̄2,v.

Optimization Algorithm. The overall loss function of the proposed model is

J = JG1(X̄1) + JG2(X̄2) + λJcross(X̄1, X̄2)︸ ︷︷ ︸
Multi-GCN

+ JPSA︸ ︷︷ ︸
point set alignment

(3.66)

To minimize the above loss function, it is straightforward to simultaneously learn all the

parameters in an alternating manner. However, the main drawbacks of this approach include:

(1) if the node representations of G1 and G2 are not representative enough, the inferred

alignment could be suboptimal or even misleading, and (2) at the initial stages, as the

alignment matrix S is expected to be imprecise, the learning of node representations is very

likely to be misled (e.g., in Eq. (3.53)).

Instead, we develop the optimization algorithm, where each training cycle is divided into

two stages. In the first stage, we train the proposed Multi-GCN model to learn node repre-

sentations with the current alignment matrix S. In this work, we use GraphSage model with

Mean aggregators [123] for Intra-GCN1 and Intra-GCN2 and hence the Multi-GCN model

can be optimized by mini-batched stochastic gradient descent (SGD). We note that other

GCN models can also be also used as the Intra-GCNs (e.g., [129]). In the second stage,

52

Algorithm 3.6: Non-rigid Network Alignment (ORIGIN).

Input : (1) undirected networks G1 = {V1,A1,X1} and G2 = {V2,A2,X2}, (2) a
set of labeled cross-network node pairs L+ that are aligned, (3) the prior
node similarity matrix L, (4) the parameters α, α1, α2, λ,K, ρ, (5) the
total number of iterations itermax.

Output: (1) the alignment matrix S between G1,G2.
Initialize the alignment matrix S by L;

Compute the kernel matrix K2 = I + D
− 1

2
1 A1D

− 1
2

1 ;
for iter = 1→ itermax do

Compute S1,S2 by Sample(S, K);
Generate mini-batches B1 = {B1

1, · · · ,B1
B},B2 = {B2

1, · · · ,B2
B} for G1,G2 by

GraphSage models;
for b = 1→ B do

Generate x̃1,u, x̃2,v for u ∈ B1
b , v ∈ B2

b by GraphSage;
Compute x̂1,u, x̂2,v for u ∈ B1

b , v ∈ B2
b by Eq. (3.53);

Compute x̄1,u, x̄2,v for u ∈ B1
b , v ∈ B2

b by Eq. (3.54);
Update hidden layer parameters by optimizing JGCN;

end
Compute X̄1, X̄2 by hidden layer parameters;
Compute K1 by K1(u, u′) = exp(−‖x̄1,u − x̄1,u′‖2

2);
Compute K by Eq. (3.63);
Compute Γ by Eq. (3.68);
Compute Xo

1 = X̄1 + 1
2
K(:, I)Γ for G1 and Xo

2 = X̄2;
Update alignment S by S(u, v) = exp(−‖xo1,u − xo2,v‖2

2);

Generate pseudo labels based on S;
Anneal K ← K/ρ;

end
Output the alignment matrix S.

we learn the parameter Γ by solving the optimization problem Eq. (3.65). Specifically, we

compute the gradient of Eq. (3.65) w.r.t. Γ as

∂JPSA

∂Γ
=

1

2
K′IKIΓ + K′I(X̄1(I, :)− X̄2(I, :)) + 2αKIΓ (3.67)

Then we can obtain the solution of Γ by gradient descent.

Γ = Γ− η∂JPSA

∂Γ
(3.68)

where η is the learning rate. Note that the time complexity of Eq. (3.68) in each iteration

is O(|L+|2d) which is sub-quadratic w.r.t. the number of nodes n. After that, we calculate

53

the displaced node representations of G1 by Xo
1 = X̄1 + 1

2
K(:, I)Γ, followed by computing

the cross-network node similarity matrix as the alignment matrix S. Next, the alignment

matrix S will be fed back to Multi-GCN after the pseudo-labeling and sampling steps. To

generate the pseudo-labels indicating which node in G1 is aligned with which node in G2,

we first conduct a greedy matching process on S to obtain all one-to-one node alignment

[3], and then leverage the alignment consistency proposed in [9] to select the confident

alignment as the pseudo labels. To be specific, note that the alignment consistency assumes

if two nodes are aligned, their corresponding close neighbors are likely to be aligned. In this

way, we heuristically select the alignment between node u and node v obtained by greedy

matching as the pseudo alignment label, if nodes (u, v) are the respective neighbors of nodes

(uli , vli) ∈ L+. The overall optimization algorithm is summarized in Algorithm 3.6. Note

that as the model is trained, matrix S should indicate more accurate node alignment. For

this reason, we reduce the sample size K used in Algorithm 3.5 by ρ (Line 3.6).

3.2.3 Experimental Evaluations

In this part, we present experimental results of the proposed model ORIGIN. We evaluate

in the following aspects:

• Effectiveness: How accurate is our algorithm to align networks and how robust is our

algorithm to the parameters?

• Efficiency: How fast is our algorithm?

Experimental Setup. We first introduce the experimental setups as follows.

Datasets. We evaluate the proposed model on four real-world networks. The statistics of

all datasets are summarized in Table 3.4.

• Citation networks: We consider two citation networks: Cora and Citeseer3. Each node

represents a document and each edge indicates a citation link between two documents.

We use the bag-of-words representations of the documents as the node attributes. For

both networks, we convert the originally directional edges to undirected to make the

networks undirected.

• Social networks: We consider two social networks including Foursquare and Twitter

[130]. Each node in the networks represents a user and each edge represents the friend-

ship between two users. For each node in the networks, we compute the degree, the

3https://linqs.soe.ucsc.edu/data

54

Table 3.4: Data statistics.

Category Network # of Nodes # of Edges # of Attributes
Citation Cora 2,708 5,429 1,433
Citation Citeseer 3,327 4,732 3,703
Social Foursquare 5,313 54,233 5
Social Twitter 5,120 130,575 5

number of edges in the egonet, PageRank score, betweenness and closeness centralities

and use them as node attributes. We then convert them to undirected networks.

We build the following three scenarios to evaluate the alignment performance. In each

scenario, we randomly select 50%, 30% and 20% cross-network node pairs from the ground-

truth as labeled alignment L+.

• Cora-1 vs. Cora-2. Given the Cora network (denoted by G1 = {V1,A1,X1}), we first

generate a random permutation matrix P which is used as the ground-truth alignment.

We treat the permutated matrix A2 = P′A1P and X2 = P′X1 as the adjacency matrix

and node attributes of the second network G2. We also randomly remove 5%, 15% edges

from two networks and add 10%, 15% noise on the node attributes of two networks,

respectively. We compute node degree similarity for L.

• Citeseer-1 vs. Citeseer-2. This scenario is built similarly.

• Foursquare vs. Twitter. In this scenario, we aim to align nodes in Foursquare and

Twitter networks. There are 1,609 common nodes between two networks which are

used as the ground-truth to evaluate the alignment. Besides, we compute the degree

similarity matrix as L.

Baseline Methods. We compare our method ORIGIN with the following network alignment

algorithms, including (1) SageAlign that learns node representations by two separate Graph-

Sage models [123], followed by the proposed point set alignment algorithm, (2) FINAL-N

[9, 12], (3) FINAL-P which is a non-attributed variant of FINAL-N, (4) REGAL [29], (5)

IONE [8], and (6) PriorSim which aligns the nodes directly based on the prior node sim-

ilarity matrix L. To make a fair comparisons, we set L(uli , :) = L(:, vli) = 0 except that

L(uli , vli) = 1, ∀i = 1, · · · , L for FINAL-N, FINAL-P and PriorSim to incorporate the la-

bel information. For REGAL, we slightly modify the original released code by setting the

constructed node similarity matrix to be factorized by LREGAL(uli , vli) = 1, ∀i = 1, · · · , L .

55

Cora-Cora Citeseer-Citeseer Foursquare-Twitter
0

0.2

0.4

0.6

0.8

1

A
lig

n
m

e
n
t
a
c
c
u
ra

c
y

Origin

SageAlign

FINAL-N

FINAL-P

REGAL

IONE

PriorSim

(a) 50% labeled alignment.

Cora-Cora Citeseer-Citeseer Foursquare-Twitter
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
lig

n
m

e
n
t
a
c
c
u
ra

c
y

Origin

SageAlign

FINAL-N

FINAL-P

REGAL

IONE

PriorSim

(b) 30% labeled alignment.

Cora-Cora Citeseer-Citeseer Foursquare-Twitter
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
lig

n
m

e
n
t
a
c
c
u
ra

c
y

Origin

SageAlign

FINAL-N

FINAL-P

REGAL

IONE

PriorSim

(c) 20% labeled alignment.

Figure 3.12: Alignment accuracy with different amount of labeled alignment.

Cora-Cora Citeseer-Citeseer Foursquare-Twitter
0

0.2

0.4

0.6

0.8

1

P
re

c
is

o
n
@

3
0

Origin

SageAlign

FINAL-N

FINAL-P

REGAL

IONE

PriorSim

(a) 50% labeled alignment.

Cora-Cora Citeseer-Citeseer Foursquare-Twitter
0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n
@

3
0

Origin

SageAlign

FINAL-N

FINAL-P

REGAL

IONE

PriorSim

(b) 30% labeled alignment.

Cora-Cora Citeseer-Citeseer Foursquare-Twitter
0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n
@

3
0

Origin

SageAlign

FINAL-N

FINAL-P

REGAL

IONE

PriorSim

(c) 20% labeled alignment.

Figure 3.13: Precision@30 with different amount of labeled alignment.

Hyperparameters. For all the effectiveness evaluations, we set λ = 0.1, K = 20, α = 0.1,

α1 = 0.01, α2 = 1, ρ = 1.2. We use 0.001 as the learning rate. We keep the default values

for all the hyperparameters used in the baseline methods.

Machines. The proposed method ORIGIN is implemented in Tensorflow [131] with Adam

optimizer. We use one Nvidia Titan X with 12G RAM as GPU. The CPU-based methods

are performed with four 3.6GHz Intel Cores and 32G RAM.

Effectiveness Results. We first evaluate the alignment accuracy of the proposed ORI-

GIN compared with the baseline methods. To compute the alignment accuracy, we conduct

a greedy matching [3] as the post-processing step to obtain the one-to-one node mapping be-

tween two networks, followed by calculating the percentage of all ground-truths that can be

correctly aligned as the alignment accuracy. The results are summarized in Figure 3.12. We

have the following observations. First, our proposed method ORIGIN outperforms all the

baseline methods. Specifically, our method can achieve an up to 5% improvement in terms of

the alignment accuracy compared with FINAL-N, a strong baseline for attributed network

alignment. Recall that FINAL-N can be viewed as a method based on the linear transforma-

tion to maximize a variant of Koopmans-Beckmann’s QAP. This demonstrates the benefits

of the non-rigid network alignment. Besides, our method can achieve better alignment re-

sults than other node representation-based methods, namely REGAL and IONE. Second,

56

(a) Cora-1 node embeddings. (b) Displaced cora-1. (c) Cora-2 node embeddings.

Figure 3.14: 2-D t-SNE visualization of node representations of networks cora-1 and cora-2.

our method achieves an at least 15% accuracy improvement compared with SageAlign, a

variant of ORIGIN. This shows that the node representations of multiple networks jointly

learned with the proposed Multi-GCN are more powerful for the specific alignment task.

Besides, SageAlign itself also demonstrates the effectiveness of the proposed point set align-

ment algorithm to align node representations in the Euclidean space. Finally, as the amount

of labeled alignment decreases, our method consistently outperforms other baseline methods.

To further verify if our method can correctly align unlabeled nodes, we compare the

precision@30 score with the baseline methods. We define the precision@30 as follows. For

any unlabeled node u in G1, if the correct alignment (say node v in G2) belongs to the

top-30 most similar nodes to node u, we say there is a hit. We calculate the precision@30

by precision@30=(# of hits)/(# of unlabeled nodes). As Figure 3.13 shows, our method

achieves higher precision@30 scores than baseline methods in most cases (i.e., our method

is slightly lower than FINAL-N only in a few cases).

We also visualize in Figure 3.14 the node representations of networks cora-1 and cora-2

in 2-D space by t-SNE and demonstrate the benefits of point set alignment. Here, we use

different colors as different node classes, which are known a priori as additional information,

to help indicate the node correspondence. For example, nodes in purple in network cora-1

are expected to be aligned with the purple nodes in network cora-2. By comparing Figure

3.14 (a) (i.e., X̄1) and Figure 3.14 (c) (i.e., X̄2), we observe that despite minimizing the

distances among node representations across networks by Eq. (3.56), nodes that ought to

be aligned may still be far away from each other in the Euclidean space, such as the nodes

in purple of two networks. This incomparability among node representations could further

mislead the node alignment. In contrast, by our proposed non-rigid point set alignment,

node representations of network cora-1 can be moved towards those of network cora-2. Con-

sequently, the displaced node representations Xo
1 shown in Figure 3.14 (b) are closer to the

representations Xo
2 of their aligned counterparts in network cora-2.

57

Moreover, we conduct a parameter study on cora-1 and cora-2 dataset about how the im-

portance of different views used for point set alignment (i.e., α1, α2) influences the alignment

accuracy. As Figure 3.15 shows, the alignment accuracy is stable over a wide range of α1, α2

(0.01 ≤ α1, α2 ≤ 10). Meanwhile, we observe that when α2 > α1, the proposed method

achieves higher alignment accuracies than those when α2 ≤ α1. This indicates the graph

view indeed benefits point set alignment by calibrating the alignment based on a single view.

0.2

100

0.4

0.6

1001

A
lig

n
m

e
n
t
a
c
c
u
ra

c
y

0.8

2

1

1

1

0.001 0.001

0.4

0.5

0.6

0.7

0.8

Figure 3.15: Parameter study on α1, α2.

Cora-Cora Citeseer-Citeseer Foursquare-Twitter
0

0.1

0.2

0.3

0.4

0.5

T
im

e
 p

e
r

m
in

i-
b
a
tc

h
 /
 s

e
c
o
n
d
s

Origin

2GraphSage

Figure 3.16: Running time per mini-batch.

Efficiency Results. We evaluate the efficiency of our proposed Multi-GCN for three align-

ment scenarios in terms of the running time per mini-batch. We fix each mini-batch with

size 200 and compare our method (Multi-GCN) with its single-network counterpart (Graph-

Sage). In particular, we measure the time cost of Multi-GCN minimizing Eq. (3.55) and

the cost of GraphSage on two networks minimizing the loss Eq. (3.50). As shown in Figure

3.16, the time cost of the proposed Multi-GCN is very close to the GraphSage counterpart.

This suggests that the extra computational cost for Inter-GCN, which brings the alignment

improvement as shown above, is actually quite light.

3.3 NEURAL CROSS-NETWORK TRANSFORMATION

In the era of big data, networks are often multi-sourced. Finding the node associations

across different networks is a key stepping stone to explore deep insights from such multi-

sourced networks. If nodes in different networks represent the same type of entities, find-

ing the cross-network node associations is essentially the (soft) network alignment problem

[9]. For example, aligning suspects across different transaction networks helps integrate the

transaction histories of the suspects at different financial institutes, which in turn facilitates

58

to uncover the complex financial fraud schema. On the other hand, if nodes in different

networks represent different types of entities, finding the cross-network node associations is

often referred to as the cross-layer dependency inference problem [132]. It indicates how

entities of different types from different networks interact with each other. For instance,

the user-product interactions across a social network and a product similarity network can

be used for social recommendations [133]. In a biological system, the protein-protein inter-

action (PPI) networks are often coupled with the disease networks, and the cross-network

node associations may indicate how diseases are related to different genes [134].

Traditional methods for cross-network node associations are often, explicitly or implicitly,

built upon the linearity and/or consistency assumptions. For example, classic graph match-

ing based network alignment methods often assume networks are noisy permutations of each

other and minimize ‖A2−S′A1S‖2
F where A1,A2 are the adjacency matrices of two networks

and S is the permutation matrix [6, 18]. This formulation together with many of its variants

(e.g., [9]) implicitly embraces a linear operation4. As for cross-layer dependency inference,

a typical approach is based on network-regularized matrix factorization [132, 135, 136] un-

der the consistency/homophily assumption. For example, in social recommendation, these

methods typically assume similar users tend to share similar latent representations.

More recent efforts aim to approach the cross-network node association problem by learn-

ing node embedding vectors of different networks [27, 137]. These methods can potentially go

beyond the linearity and/or the consistency assumptions behind the complex cross-network

node associations by learning node embedding vectors through nonlinear functions. How-

ever, the node embedding vectors of different networks often lie in the disparate vector spaces

which might be incomparable with each other. For instance, if we shift, rotate or scale the

node embeddings of one network, it could significantly impair alignment results [138].

In this work, we address the above limitations and tackle cross-network node associations

from a new angle, i.e., cross-network transformation. We ask a generic question: Given two

different networks, how can we transform one network to another? We design an end-to-end

model NetTrans that bears three key advantages. First (composite transformation), in-

stead of learning a single linear transformation function underpinning graph matching based

methods, the proposed model learns a composition of nonlinear functions to transform both

network structures and node attributes, and in the meanwhile unveils the cross-network as-

sociations. Second (representation power), by exploiting the multi-resolution characteristics

4To see this, the objective function of graph matching based network alignment is equivalent to minimizing
‖ vec(A2) − S̃ vec(A1)‖22 where vec(A1), vec(A2) denote the vectors of node pairs and S̃ = S′ ⊗ S′ is the
Kronecker product of the permutation matrix. S̃ is used as a single linear transformation across the node
pairs of two networks.

59

underlying the networks, the proposed pooling layer TransPool can learn the hierarchical

representations of the networks and the unpooling layer TransUnPool learns the transfor-

mations at different resolutions. Third (generality), the proposed model is generic and it

can be easily applied to numerous tasks, such as network alignment, social recommendation,

cross-layer dependence inference. The main contributions can be summarized as follows.

• Problem Definition. To our best knowledge, we are the first to address the cross-

network transformation problem.

• End-to-End Model. We design an end-to-end model NetTrans which composes of

the novel pooling and unpooling operations to learn the transformation functions and

find the node associations across different networks.

• Experimental Results. We perform extensive experiments in network alignment and

social recommendation, which demonstrate the effectiveness of the proposed model to

find the cross-network node associations.

3.3.1 Problem Definition

Table 3.5 summarizes the main symbols and notations used throughout this study. We use

bold uppercase letters for matrices (e.g., A), bold lowercase letters for vectors (e.g., a), and

lowercase letters (e.g., α) for scalars. We use A(i, j) to denote the entry at the intersection

of the i-th row and j-th column of the matrix A, A(i, :) to denote the i-th row of A and

A(:, j) to denote the j-th column of A. We denote the transpose of a matrix by a superscript

prime (e.g., A′ is the transpose of A). Furthermore, we use subscripts to index the matrices

in different layers. For example, we use A
(0)
1 = A1 to denote the input adjacency matrix of

G1 and A
(l)
1 as the adjacency matrix of the coarsened network in the l-th layer. In addition,

we use u, v to index the nodes of two input networks and use u′, v′ to index the supernodes

of the coarsened networks in each layer. Note that the supernode-u′ of the output coarsened

network obtained in the (l− 1)-th layer is equivalent to the node-u′ of the input network in

the l-th layer. In this work, we use ‘graphs’ and ‘networks’ interchangeably.

Multi-sourced networks are often associated with each other, in terms of the network

structures, node attributes and cross-network node associations. In other words, there exist

some functions that link the multi-sourced networks together. In this work, we consider

to learn a transformation function denoted by g(·) such that the source network G1 can

be transformed to the target network G2, i.e., g(G1) ' G2. Figure 3.17 (a) presents an

illustrative example in the network alignment scenario. As we can see, the source network G1

60

Table 3.5: Symbols and notations.

Symbols Definition
G1, G2 input source and target networks
V1, V2 the sets of nodes of G1 and G2

A1,A2 input adjacency matrices of G1 and G2

X1,X2 input node attribute matrices of G1 and G2

n1, n2 # of nodes in G1 and G2

A
(l)
1 ,A

(l)
2 adjacency matrices of G1 and G2 in the l-th layer

X
(l)
1 ,X

(l)
2 node feature matrices in the l-th layer

Pl node-supernode assignment matrix in the l-th layer

n
(l)
1 , n

(l)
2 # of nodes in A

(l)
1 and A

(l)
2 in the l-th layer

L # of layers of both encoder and decoder
α, β, γ parameters controlling the importance of loss terms
[·‖·] concatenation operator of two vectors

and target network G2 have different network structures as well as node attributes, and more

importantly, the cross-network node associations (i.e., node correspondences) are unknown.

Our goal is to learn the transformation functions on both network structures and node

attributes while identifying the cross-network associations.

To be specific, we use the following major notations to describe the cross-network trans-

formation. First, we denote the input source network G1 and target network G2 by triplets,

i.e., G1 = {V1,A1,X1} and G2 = {V2,A2,X2}5 where V1,A1,X1 denote the set of nodes,

adjacency matrix and node attributes of G1, respectively and similarly for G2. Second, we

denote the transformation function on network structures and node attributes by g such

that (A2,X2) ' g(A1,X1). Lastly, the transformation function induces the node associa-

tions across different networks and is denoted by gnode. Figure 3.17 (b) shows an example of

the corresponding transformation in terms of network structure and node attributes, as well

as the node associations. Given the above notations, we formally define the cross-network

transformation problem as follows.

Problem 3.4. Cross-Network Transformation.

Given: (1) input source network G1 = {V1,A1,X1} and target network G2 = {V2,A2,X2}
where V1,V2 denote the nodes of G1,G2, A1,A2 are the adjacency matrices and X1,X2 are

the node attribute matrices of G1,G2, and (2) prior knowledge of the cross-network node

associations L where L(u, v) indicates whether node-u in G1 associates with node-v in G2.

Output: (1) the cross-network transformation function g = F ◦ H where F denotes a

5If the attributes are not available, one can simply set X1,X2 as identity matrices or manually extract
structure-dependent attributes.

61

Male, 40 (age), Beijing
Female, 25 (age), New York

Male, 35 (age), Seattle

Male, 30 (age), Beijing

Source network 𝓖𝟏
Male, Professor, China

Female, Student, USA

Male, Engineer, USA

Male, Engineer, China Female, Student, Korea

Target network 𝓖𝟐

Cross-Network
Transformation

Structure transformation

M 40 Beijing

F 25 NYC

M 35 Seattle

M 30 Beijing

M Prof. China

F Stud. USA

M Eng. USA

F Stud. Korea

M Eng. China

𝑔𝑔

Attribute transformation

𝑔𝑛𝑜𝑑𝑒

Node associations

(a)

(b)

Figure 3.17: An illustration of cross-network transformation in the network alignment sce-
nario. (a) shows the entire transformation across networks. (b) shows the transformations
on network structure, node attributes and cross-network node associations.

set of encoding functions and H denotes the decoding functions such that g(G1) ' G2, and

(2) the cross-network association function gnode where gnode(u, v) measures to what extent

node-u in G1 is associated with node-v in G2.

Let us take the graph matching based methods as an example to further illustrate the

functions g and gnode, given two networks G1 = {V1,A1,X1} and G2 = {V2,A2,X2} with the

same type of nodes, graph matching based methods aim to learn a permutation matrix S ∈
Rn1×n2 , indicating the node correspondence between V1,V2 (i.e., gnode). In the meanwhile,

the matrix S is also used as a single transformation function such that vec(A2) ' S̃ vec(A1)

and X2 ' S′X1 where S̃ = S′ ⊗ S′. Thus, the transformation function g can be written

as g(vec(A1),X1) = (S̃ vec(A1),S′X1). And the cross-network node association function

gnode(u, v) = S(v, u). Despite its elegant mathematical formulation, such a single linear

transformation might over-simplify the complex associations across networks.

Remarks. Note that the cross-network transformation problem is similar to but bears sub-

tle differences from the graph-to-graph translation problem [139, 140]. For the latter, it

implicitly assumes that nodes in different networks are of the same type and all node cor-

respondences are perfectly known a priori. In contrast, the cross-network transformation

problem that we study in this work aims to learn such node associations from the networks

(i.e., the function gnode), in addition to learning the transformation function g.

We envision that the learned transformation functions from Problem 3.4 can be applied in

a variety of data mining tasks. In this work, we focus on two such tasks, including (Task 1)

network alignment and (Task 2) social recommendation. In Task 1, we consider two networks

62

𝑿1 𝑨1

GCN

TransPool

𝑨1
1
, 𝑿1

1

𝑨1
2
, 𝑿1

2

𝒍 = 𝟏

𝒍 = 𝟐

𝒍 = 𝟑Encoder

𝑨2
1
, 𝑿2

1

𝑨2
2
, 𝑿2

2

Decoder

𝑨1
1
, ෩𝑿1

1

𝒌 = 𝟏

𝒌 = 𝟐

𝒌 = 𝟑

TransUnPool

𝑨2 𝑿2𝓖𝟏

𝑨1
3

𝑿1
3 𝑨2

3
𝑿2

3
𝑿2

3
= MLP 𝑿1

3

𝑨2
3
= 𝑨1

3

𝑨1
3
, 𝑿1

3
𝑨2

3
, 𝑿2

3

෩𝑨2
0
, ෩𝑿2

0

skip connections

𝓖𝟐

Figure 3.18: Overall architecture of the model NetTrans (L = 3).

with the same type of nodes and the transformation function gnode measures to what extent

that two nodes are aligned with each other. In Task 2, we consider a social network and a

product similarity network, and gnode predicts whether a user likes/buys a product.

3.3.2 The NetTrans Model

In this part, we present the proposed model NetTrans, an end-to-end semi-supervised

model to solve Problem 3.4. We start by giving an overview of our model, and then detail

the components of the model, followed by the discussions on the potential generalizations.

NetTrans Model Overview. The core challenge of cross-network transformation lies in

how to design a model that can jointly learn the transformation function g and the cross-

network node associations gnode. In this study, we design an encoder-decoder architecture

that decomposes the transformation function g into two parts, including the encoder F and

the decoder H. We exploit the multi-resolution characteristics of real-world networks in

both the encoder and the decoder. The overall architecture of the proposed NetTrans

model is shown in Figure 3.18. The encoder F aims to coarsen the source network and learn

the network structure and node representations at different resolutions. On the other hand,

the decoder H reconstructs the structure and node representations of the target network at

different resolutions. To make the source network and target network at different resolutions

comparable to each other, we design the encoder and decoder to have the same number of

63

Self-attention

Message
passing

𝑿1
𝑙

𝑷𝑙
𝑇

𝑺1
𝑙 𝑿1

𝑙
𝑾1

𝑙−1

Max Aggregation

𝑿1
𝑙

Top-k
selection

Gumbel
softmax

𝑨1
𝑙

𝑨1
𝑙

1
2

3

4

5

67

8
9

(𝑨1
𝑙−1

, ෩𝑿1
𝑙
)

10
11

𝑨1
𝑙−1

(𝐼, 𝐼) 1’

2’

1

5

Re-index

Figure 3.19: Description of the pooling layer (TransPool) in the l-th encoder layer.

layers (i.e., L). To learn gnode, we need to simultaneously learn the node assignments across

two adjacent resolutions indicating which nodes at the finer resolution are merged into which

node(s) in the next coarser resolution. To this end, we develop a pooling layer TransPool in

the encoder and an unpooling layer TransUnPool in the decoder.

The intuition behind such a design is that we could simplify the cross-network transforma-

tion at the coarser resolutions, since the coarsened networks are likely to become more similar

with each other. For instance, given a social network and a product similarity network, the

nodes at the coarse resolutions might share similar latent meanings (e.g., a group of users

who like to buy computers vs. a group of computer-related products). Moreover, the associ-

ation between a group of users and a group of similar products will provide critical auxiliary

information to infer the associations between the users and products in these groups. With

this hierarchical learning, the proposed TransUnPool layers naturally learns to model how

network structures and node representations are transformed at different resolutions.

NetTrans Encoder. Denote F = {fl} as the functions in the encoder where fl, l =

1, · · · , L represents the encoding function in the l-th encoder layer. In the l-th encoder layer,

the function fl(·, ·) on the network can be decomposed into learning the adjacency matrix

and node attributes of the coarsened network. Denote A
(l)
1 ∈ Rn

(l)
1 ×n

(l)
1 and X

(l)
1 ∈ Rn

(l)
1 ×dl as

the output adjacency matrix and node representations of the coarsened network in the l-th

layer. Given the inputs A
(l−1)
1 ∈ Rn

(l−1)
1 ×n(l−1)

1 (n
(l)
1 ≤ n

(l−1)
1) and X

(l−1)
1 ∈ Rn

(l−1)
1 ×dl−1 which

is the output coarsened network in the (l− 1)-th layer, we can denote the encoding function

by (A
(l)
1 ,X

(l)
1) = fl(A

(l−1)
1 ,X

(l−1)
1). For example, the outputs of the first encoder layer can

be computed by (A
(1)
1 ,X

(1)
1) = f1(A

(0)
1 ,X

(0)
1).

To learn the structure of the coarsened networks, one prevalent choice is to coarsen the

network with an assignment matrix, e.g., A
(l)
1 = PlA

(l−1)
1 P′l where Pl ∈ Rn

(l)
1 ×n

(l−1)
1 and

64

Pl−1(u′, u) measures the strength of node-u in A
(l−1)
1 being merged into the supernode-u′.

Prior methods to compute Pl include the classic methods that calculate it deterministically

(e.g., [141]) and graph neural networks based methods [142]. One advantage is that all nodes

are assigned to certain supernodes based on the dense assignment matrix. However, these

methods might lead to costly computations and the densely connected network structure

[142]. We also remark in Proposition 3.1 that this coarsening process is built upon linear

operations which might insufficiently capture the underlying hierarchical structures.

Proposition 3.1. Given an assignment matrix Pl, the coarsening process A
(l)
1 = PlA

(l−1)
1 P′l

constructs edges by linear operations.

Proof. By eigenvalue decomposition on A
(l−1)
1 , A

(l−1)
1 = U1Λ1U

′
1, we have

A
(l)
1 (u′1, u

′
2) = (PlU1Λ1U

′
1P
′
l)(u1, u2) = [Pl(u

′
1, :)U1]Λ1[Pl(u

′
2, :)U1]′ (3.69)

where U1 ∈ Rn
(l−1)
1 ×r and r < nl−1 only if A

(l−1)
1 is low-rank. In this way, by considering U1

as node representations, the existence of an edge and its weight between supernode u′1 and

supernode u′2 is determined equivalently by first computing supernodes’ representations by

linear aggregations based upon assignment matrix Pl, and then a weighted inner product

between the representations of supernodes u′1, u
′
2. Both steps only involve linear operations

on node representations. QED.

Another way to coarsen networks is the learnable importance-based pooling operations

[143, 144]. These methods basically select the top-k important nodes as supernodes, and

preserve the original connections among the selected nodes as the edges among the corre-

sponding supernodes. The advantages of these methods include the efficient computations

and the sparse structure of the coarsened networks. Note that keeping the original connec-

tions can be viewed as a special case of assignment matrix based methods. Specifically, the

assignment matrix Pl(u
′, u) = 1 if and only if node-u is selected and re-indexed to supernode-

u′. Thus, according to Proposition 3.1, the informativeness of the coarsened structure by

these methods is also hindered by the underlying linear operations. In addition, it is un-

known how those unselected nodes are assigned to the supernodes (i.e., Pl(:, u) = 0 for all

u that are not selected). To this end, we design TransPool (shown in Figure 3.19) that can

balance between the above two strategies and learn the assignments for all nodes.

Following [143, 144], in the l-th encoder layer, we first feed the inputs (A
(l−1)
1 ,X

(l−1)
1)

to a graph convolutional layer (e.g., [122]) before the pooling layer. By denoting X̃
(l)
1 =

GCN(A
(l−1)
1 ,X

(l−1)
1), we compute the self-attention scores zl ∈ Rn

(l−1)
1 by a graph convolu-

65

tional layer [122] to measure the node importance [144]. This is formulated by

zl = σ
(
D̃
− 1

2
l−1Ã

(l−1)
1 D̃

− 1
2

l−1X̃
(l)
1 Wself

l

)
(3.70)

where σ(·) denotes the nonlinear activation function (e.g., tanh), Ã
(l−1)
1 = A

(l−1)
1 +I, A

(l−1)
1 ∈

Rn
(l−1)
1 ×n(l−1)

1 is the input adjacency matrix in the l-th encoder layer, D̃l−1 = diag(Ã
(l−1)
1 1) is

the diagonal degree matrix of Ã
(l−1)
1 , X̃

(l)
1 ∈ Rn

(l−1)
1 ×dl is the input node feature matrix, and

Wself
l ∈ Rdl contains the parameters to compute the self-attention scores. By using these

self-attention scores to measure node importance, both network structure and node features

are naturally encoded. Thus, nodes of the top-n
(l)
1 scores are likely to be more important to

capture the structural and feature information. In [143, 144], these selected top-n
(l)
1 nodes

are then used as masks to construct the adjacency matrix and node features of the coarsened

network. Specifically, by denoting the indices of the selected nodes as I = top-rank(zl, n
(l)
1),

[143, 144] compute A
(l)
1 = A

(l−1)
1 (I, I) = PlA

(l−1)
1 P′l where Iu′ is the u′-th element of I and

Pl(u
′, Iu′) = 1, ∀u′ = 1, · · · , n(l)

1 are the only nonzero elements in Pl. The coarsened node

features are computed by X
(l)
1 (u′, :) = X̃

(l)
1 (Iu′ , :)� zl(u

′) where � is element-wise product.

However, this simple masking-based pooling operation has two potential limitations. First,

the computation of output feature matrix X
(l)
1 in [143, 144] insufficiently leverages the rep-

resentations of the unselected nodes by simply re-scaling X̃
(l)
1 based on zl. Second, as men-

tioned before, edges in the coarsened adjacency matrix are constructed by linear operations.

Besides, the coarsened network empirically may contain isolated nodes. For example, an

isolated node-u′ can occur when A
(l−1)
1 (Iu′ , I \ Iu′) = 0 for some u′ (e.g., node-1 and node-5

in red in Figure 3.19). Note that the isolated nodes cannot be completely avoided by Eq.

(3.70). Such an issue could further lead to the inability of the information propagation

to the isolated nodes in the next encoder layer, making the network structure and node

representation learning at the coarser resolutions even worse.

To address the first issue, instead of directly rescaling the representation vectors, we allow

message passing from n
(l−1)
1 nodes to the selected n

(l)
1 supernodes. In particular, we use

attention-based message passing [145] formulated as below.

X̂
(l)
1 (u′, :) = σ

X̃
(l)
1 (Iu′ , :)W1

l +
∑
u∈Nu′

αu′uX̃
(l)
1 (u, :)W1

l

 (3.71)

αu′u =
exp

(
a′l

[
X̃

(l)
1 (Iu′ , :)W1

l ‖X̃
(l)
1 (u, :)W1

l

])
∑

u1∈Nu′
exp

(
a′l

[
X̃

(l)
1 (Iu′ , :)W1

l ‖X̃
(l)
1 (u1, :)W1

l

]) (3.72)

66

where Nu′ denotes the 1-hop neighborhood of supernode-u′ in the bipartite graph Gb formed

by A
(l−1)
1 (:, I), al ∈ R2dl and W1

l ∈ Rdl×dl are the parameters to be learned. However, Eq.

(3.71) cannot aggregate the features from the nodes that are multi-hop away from the selected

nodes (e.g., from node-10 to node-5). As a remedy, we additionally aggregate the node

features based on the assignment matrix Pl. To efficiently learn Pl, we propose the following

mechanism to select supernode candidates. First, for a node-u that have some supernodes as

their 1-hop neighbors in Gb, they can be assigned only to their 1-hop neighboring supernodes,

i.e., C(u) = {u′|A(l−1)
1 (u, Iu′) = 1, u′ = 1, · · · , n(l)

1 }. For example, in Figure 3.19, node-

6 can be assigned to either node-1 or node-5. Second, for some node-u that connects to

supernodes exactly in 2 hops (e.g., node-10 in Figure 3.19), we select the candidates of

supernodes by C(u) = {u′|A(l−1)
1 (u, :)A

(l−1)
1 (:, Iu′) = 1,A

(l−1)
1 (u, Iu′) = 0, u′ = 1, · · · , n(l)

1 }.
For the rest of nodes (e.g., node-11), we simply set C(u) = {u′|u′ = 1, · · · , n(l)

1 }. In addition,

a hard assignment matrix Pl often requires each column of Pl to be a one-hot vector, i.e.,

Pl(u
′, u) = 1 if and only if node u is merged into supernode u′. However, it is very difficult

to directly learn those one-hot vectors as they essentially involve discrete variables, making

the computations non-differentiable. In this work, we use the continuous Gumbel softmax

[146] functions to approximate them which computes Pl by

Pl(u
′, u) =

exp
([

log
(
X̂

(l)
1 (u′, :)Wg

l (X̃
(l)
1)′
)

+ gu′u

]
/τ
)

∑
c∈C(u)

exp
([

log
(
X̂

(l)
1 (c, :)Wg

l (X̃
(l)
1)′
)

+ gcu

]
/τ
) (3.73)

where u′ ∈ C(u), gu′u is drawn from Gumbel(0, 1) distribution, Wg
l ∈ Rdl×dl is the parameter

matrix and τ is the softmax temperature. According to the Gumbel softmax distribution

[146], as τ → +∞, Pl(:, u) becomes a uniform distribution. In contrast, as τ → 0, Pl(:, u) is

close to a one-hot vector but the variance of the gradients is large. Thus, we learn the param-

eters by starting with a large temperature and annealing to a small temperature τ . We then

aggregate the information from distant nodes into the supernodes by PlX̃
(l)
1 W1

l , which can

aid the representation learning of supernodes to better summarize the local neighborhoods.

The output representations of the supernodes are computed by

X
(l)
1 = Aggregate(X̂

(l)
1 ,PlX̃

(l)
1 W1

l) (3.74)

where Aggregate(·, ·) is a layer-wise aggregation. In this work, we use the max aggregation

which simply takes the element-wise max.

To go beyond the linearity behind the coarsening process and address the issue of isolated

67

supernodes, our key idea is to leverage the representations of supernodes to add auxiliary

weighted edges. Specifically, we add weights to the existing edges among the supernodes

in A
(l−1)
1 (I, I) to measure the edge strengths. For isolated supernodes, we compensate the

edges by adding weighted edges only between isolated supernodes and the rest of supernodes.

Note that the isolated supernodes Isl can be simply detected by whether there exist edges

connecting to them in A
(l−1)
1 (I, I) [147]. Then, under the classic assumption that nodes

with similar representations are likely to be connected, the auxiliary edges to be added are

computed by a sigmoid function, i.e., A
(l)
1 = 1

2
(A

(l)
1 (I, I) + Â

(l)
1) where

Â
(l)
1 (u′1, u

′
2) =

2σs

(
X

(l)
1 (u′1, :)X

(l)
1 (u′2, :)

′
)

if u′1 ∈ Isl or u′2 ∈ Isl
σs

(
X

(l)
1 (u′1, :)X

(l)
1 (u′2, :)

′
)

if u′1 /∈ Isl and u′2 /∈ Isl
0 otherwise

(3.75)

and σs(x) = 1
1+e−x is the sigmoid function. In summary, we have the encoding function on

adjacency matrices and node features as

(A
(l)
1 ,X

(l)
1) = fl(A

(l−1)
1 ,X

(l−1)
1) = TransPool

(
GCN(A

(l−1)
1 ,X

(l−1)
1)

)
(3.76)

NetTrans Decoder. Our goal of the decoder is to learn node representations and the edges

among the nodes in the context of the target network G2. We denote the decoder by a set of

functions H = {hk}, k = 1, · · · , L where hk(·, ·) represents the decoding function at the k-th

decoder layer. At the k-th decoder layer, the decoding function takes A
(L−k+1)
2 ,X

(L−k+1)
2 as

inputs and outputs A
(L−k)
2 ,X

(L−k)
2 as the adjacency matrix and node representations of the

target network at the next finer resolution. Note that we have X
(L−k+1)
2 ∈ Rn

(L−k+1)
2 ×dL−k+1

and X
(L−k)
2 ∈ Rn

(L−k)
2 ×dL−k where n

(L−k)
2 , n

(L−k+1)
2 (n

(L−k)
2 ≥ n

(L−k+1)
2) denote the numbers

of nodes. Similar to the encoder, we denote the k-th decoder layer as (A
(L−k)
2 ,X

(L−k)
2) =

hk(A
(L−k+1)
2 ,X

(L−k+1)
2).

Prior unpooling operator includes gUnPool [143] for a single network that restores the

structure and node hidden representations of the input network G1 obtained in different

encoder layers. However, it is restricted to a single network and cannot be applied to the

cross-network scenario due to the following reasons. First (node associations), nodes in

different networks can have different types. And even for the networks of the same node

type, the cross-network node correspondences are unknown. Thus, without the knowledge

of the cross-network node associations, it is inappropriate to use the node ordering of the

source network as the reference of the target network. Second (network structure), networks

from different sources might have different structural patterns. In this way, it might mislead

68

⋯1 2 3 4 5 6

1’ 2’

Bipartite messages

Unipartite messages

Figure 3.20: Illustrations of the message passing in TransUnPool layer corresponding to the
pooling layer in Figure 3.19.

learning the structures of the target network at different resolutions. Third (node represen-

tations), nodes in different networks, either of the same type or of different types, can carry

different structural and attribute information.

In this work, instead of copying the structure and node representations of source network,

we design a novel unpooling layer (TransUnPool) to decode the target network at different

resolutions. To address the first issue, since learning the cross-network node associations

in different layers is nested together leading to a sophisticated learning process and costly

computations, we simplify it by assuming the supernodes in the encoder layers represent

the same set of latent entities as those in the corresponding decoder layers. For example,

suppose a supernode-u′ of the source social network in an encoder layer represents a group of

users who like computers, then this supernode in its symmetric decoder layer may represent

a set of products related to computers. That is, the supernode-u′ in both encoder and

decoder layers represents the same latent entity ‘computer’. By doing this, the supernodes

in the encoders and decoders are naturally one-to-one mapped and the assignment matrix

Pl (l ≥ 2) can be shared with the k-th (k = L− l + 1) decoder layer.

To address other issues, we hypothesize that two networks are close to each other at the

coarsest resolution such that they share the same network structure and the node represen-

tations X
(L)
2 can be transformed from X

(L)
1 via a multilayer perceptron (MLP), i.e.,

A
(L)
2 = A

(L)
1 , X

(L)
2 = MLP1(X

(L)
1). (3.77)

69

Then, given the input supernode representations X
(L−k+1)
2 (k < L) in the k-th decoder layer,

to learn the structure and node representations of the target network at the corresponding

resolution, we design the following message passing module (shown in Figure 3.20) as a

building block. Specifically, we define two types of messages that propagate to the nodes.

The first type of messages are those that propagate from supernodes to nodes via the

bipartite edges PL−k+1 (denoted by black dashed lines in Figure 3.20). Mathematically,

these bipartite messages are formulated by

mk
v′→v = PL−k+1(v′, v)� (X

(L−k+1)
2 (v′, :)W2

k) (3.78)

where W2
k ∈ RdL−k+1×dL−k is the parameter matrix and PL−k+1(v′, v) is used to weigh the

importance of the message based on to what extent that the node-v is merged into supernode-

v′ in the (L−k+1)-th encoder layer. Another type of messages are passed among the nodes

in the unipartite graph. Our intuition is that the structures and node representations of the

coarsened source networks in the encoder layers can provide some initial information, based

on which we aim to calibrate the structure and node representations to fit the target network

G2. Specifically, we first transfer the adjacency matrix A
(L−k)
1 and node representations

X
(L−k)
1 through the skip connections (denoted by the black dash dotted lines in Figure 3.18).

Then, we define the messages along the edges in the unipartite graph by

mk
v1→v =

1√
|Nv|

√
|Nv1|

X
(L−k)
1 (v1, :)W

3
k (3.79)

where W3
k ∈ RdL−k+1×dL−k is the parameter matrix and |Nv| denotes the number of neighbors

of node-v according to A
(L−k)
1 . In this way, the representations of nodes in the k-th decoder

layer can be computed by combining both types of messages as

X
(L−k)
2 (v, :) =

∑
v′, s.t.

PL−k+1(v′,v)>0

mk
v′→v +

∑
v1∈Nv

A
(L−k)
1 (v1, v)�mk

v1→v (3.80)

where A
(L−k)
1 (v1, v) denotes the weight of the edge (v1, v).

To calibrate network structure to learn the structural pattern of G2 at different resolutions,

we use X
(L−k)
2 to compute to what extent we need to add/delete edges upon A

(L−k)
1 by

A
(L−k)
2 (v, v1) =

1

2
max{0,A(L−k)

1 (v, v1) + σt(X
(L−k)
2 (v, :)(X

(L−k)
2 (v1, :))

′)} (3.81)

where σt(x) ∈ (−1, 1) denotes the tanh activation function and we use a ReLU function to

70

make A
(L−k)
2 only contain non-negative entries. However, Eq. (3.81) calculates O(n

(L−k)
2 ×

n
(L−k)
2) number of values, which is computationally costly. To make it more efficient, we only

compute σt(X
(L−k)
2 (v, :)(X

(L−k)
2 (v1, :))

′) for the (v, v1) such that A
(L−k)
2 (v, v1) 6= 0, which in

practice performs well in the experiments.

In the last decoder layer (i.e., k = L), we cannot directly use P1 as in Eq. (3.78) given

the fact that nodes in G1 might either (1) have a different type from nodes in G2 or (2)

have the same type but the correspondences to nodes in G2 are unknown. Fortunately, we

have a partial knowledge of the cross-network node associations across G1 and G2 based

on L(u, v) indicating whether node-u in G1 associates with node-v in G2 a priori. Note

that (P1L)(v′, v) =
∑n1

i=1 P1(v′, ui)L(ui, v) measures the strength of the assignment between

node-v in G2 and the supernode-v′ based on how many nodes in G1 that are associated with

node-v in G2 a priori and also assigned to supernode-v′. In this way, we can use Q1 = P1L as

the partially existing edges for bipartite message passing (i.e., dashed lines in Figure 3.20).

In addition, we can construct bipartite messages at the last decoder layer from the nodes in

G1 to nodes in G2 at the finest resolution through the prior knowledge L similarly as

mL
v′→v = Q1(v′, v)� (X

(1)
2 (v′, :)W2

L)

mL
v1→v =

1√
|Nv|

√
|Nv1|

X2(v1, :)W
3
L

mL
u→v = L(u, v)� (X̃

(1)
1 (u, :)W4

L)

(3.82)

where Nv denotes the neighborhood of node-v and the node-v itself in the original target

network G2. The final node representations of G2 can be computed by aggregating the

messages in Eq. (3.82) as

X̃
(0)
2 (v, :) =

∑
v′, s.t.

Q1(v′,v)>0

mL
v′→v +

∑
v1∈Nv

A2(v1, v)�mL
v1→v +

∑
u, s.t.

L(u,v)>0

mL
u→v (3.83)

In summary, the k-th decoder layer can be computed by Eq. (3.80) and Eq. (3.81) (as

well as Eq. (3.83) in the L-th decoder layer) and

hk = TransUnPool
(
X

(L−k+1)
2 ,A

(L−k)
1 ,X

(L−k)
1 ,PL−k+1

)
(3.84)

NetTrans Model Training. With L encoder layers and L decoder layers, we can write

the transformation function g of network structure and node attributes as

g = hL ◦ · · · ◦ h1 ◦ fL ◦ · · · ◦ f1. (3.85)

71

To learn the model parameters, our objectives are to reconstruct the target network G2 in

terms of both structure and node attributes, while reflecting the observed cross-network node

associations L. To reconstruct the structure of G2, we minimize the binary cross-entropy

loss over edges written as follows.

Ladj = − 1

|E|
∑

(v,v1)∈E

[yv,v1 log pv,v1 + (1− yv,v1) log (1− pv,v1)] (3.86)

where pv,v1 = σs(X̃
(0)
2 (v, :)X̃

(0)
2 (v1, :)

′), E = E2 ∪ Ē2 denotes the set of existing edges and

samples of non-existent edges of G2 respectively, and yv,v1 = 1 if (v, v1) ∈ E2 otherwise 0.

To reconstruct node attributes X2 of G2, we further feed the output node representations

X̃
(0)
2 to an MLP and minimize the mean squared error with the input node attributes X2.

Lattr =
1

n2

‖X2 −MLP2(X̃
(0)
2)‖2

F (3.87)

In addition, we minimize the error of the known cross-network node associations by a

margin ranking loss in the network alignment task and by a Bayesian personalized ranking

loss [148] in social recommendation. Specifically in network alignment, given a set of triplets

O = {(u, v, v1)|(u, v) ∈ R+, (u, v1) ∈ R−} where R+ = {(u, v)|L(u, v) = 1} denotes the

observed node associations, and R− = {(u, v1)|L(u, v1) = 0,∃v, s.t. L(u, v) = 1} denotes a

set of sampled negative associations, the margin ranking loss is

Lrank =
1

|O|
∑

(u,v,v1)∈O

max{0, λ− (gnode(u, v)− gnode(u, v1))} (3.88)

where λ is the margin size and gnode(u, v) is computed by

gnode(u, v) =
[
P′1X

(1)
2 (X̃

(0)
2)′)

]
(u, v) =

∑
u′

P1(u′, u)
(
X

(1)
2 (X̃

(0)
2)′
)

(u′, v). (3.89)

The overall loss function can be now formulated as below.

L = αLadj + βLattr + γLrank (3.90)

NetTrans: Variants and Generalizations. The proposed NetTrans is flexible and

can be generalized in multiple aspects. Here, we give a few examples.

• Bi-directional cross-network transformation. NetTrans can be generalized

to a bi-directional transformation model. That is, in addition to transforming from

72

the source network to the target network, the bi-directional model also learns the

transformation functions in the reverse direction.

• Graph-to-subgraph transformation. When input source network is a large data

graph and the target network is a small query graph, NetTrans can be tailored

to learn the transformation from the data graph to the query graph and the node

associations may indicate the subgraph matching.

• Dynamic network transformation. When we have a dynamic network G, we can

consider G ′ at timestamp t as the source network and Gt+1 as the target network. In

this case, we can generalize our transformation model to handle dynamic networks and

learn how networks evolve over time.

• Single network auto-encoder. When the source network and target network are the

same network in which case the node associations are naturally known, the proposed

NetTrans model degenerates to an auto-encoder which captures the hierarchical

structure of the network.

3.3.3 Experimental Evaluations

We apply the proposed model to network alignment and one-class social recommendation.

We evaluate it in the following aspects:

• How accurate is our proposed transformation model for network alignment and rec-

ommendation?

• How does our model benefit from the proposed TransPool and TransUnPool layers?

Experimental Setup. We introduce the experimental setups as follows6.

Datasets. The statistics of datasets are summarized in Table 3.6. The details of the datasets

are as follows:

• Cora citation network: This dataset contains a citation network where nodes represent

documents and edges represent the citations among documents. Each document has a

binary feature vector represented by bag-of-words [149].

• ACM co-author network: This dataset was collected in 2016 including 2,381,688 papers

with the author and venue information of each paper [150]. A co-author network was

6The code can be found at https://github.com/sizhang92/NetTrans-KDD20.

73

then extracted based on the papers published in four areas (DM, ML, DB and IR)

in [12]. Nodes in the co-author network represent authors and edges indicate the co-

authorship. The numbers of papers published by an author in 17 venues are used as

the node attributes.

• DBLP co-author network: This dataset was collected in 2016 and it contains 3,272,991

papers. A co-author network was extracted in [12] similarly to the ACM dataset.

• Foursquare: This dataset contains a social network with nodes as users and edges as

the friendships [130].

• Twitter: This contains a social network where nodes represent users and edges represent

the friendships [130].

• Ciao: This dataset contains a social network whose edges indicate the trust relation-

ships among users and a set of user-product ratings with rich attribute information

of product [151]. We extract 3,719 users who like more than 10 products and 4,612

products that are liked by these users. We use the product categories as the attributes.

We consider ratings greater than or equal to 3 as interactions (i.e., likes) and obtain

105,900 user-product interactions.

With these datasets, we construct the scenarios of network alignment S1-S3 and the recom-

mendation scenario S4 for evaluations:

• S1. Cora-1 vs. Cora-2: Given the cora citation network, we generate two permuted

networks G1,G2 and add noises by first inserting 10% edges to G1 and remove 15%

edges from G2, and then adding 10% noises to X1,X2 (i.e., by randomly changing

0.1× 1′X01 entries from 0 to 1). In this scenario, we aim to align the nodes in G1,G2.

The permutation matrix is used as the ground-truth node correspondences.

• S2. ACM vs. DBLP: We aim to find the node correspondences across two co-author

networks. There exist 6,325 common authors across two networks used as the ground-

truth.

• S3. Foursquare vs. Twitter: In this scenario, we aim to align nodes in Foursquare and

Twitter networks. There are 1,609 common users which are used as the ground-truth.

• S4. Ciao users vs. product: Different from the above scenarios, here we aim to predict

the node associations between users and products indicating whether a user likes a

product. To construct the product similarity network, similar to [133], we compute

74

Table 3.6: Data statistics.

Tasks Networks # of nodes # of edges # of attributes

Network
Alignment

Cora-1 2,708 5,806 1,433
Cora-2 2,708 4,547 1,433
ACM 9,872 39,561 17
DBLP 9,916 44,808 17

Foursquare 5,313 54,233 0
Twitter 5,120 130,575 0

Recommendation
Ciao-user 3,719 65,213 0

Ciao-product 4,612 49,136 28

the similarities based on the embedding vectors of product reviews. The embedding

vectors are learned by doc2vec [152]. Then we consider there exists an edge between

two products if their similarity is larger than 0.5.

Besides, in S1-S3, we use 20% of the ground-truth as the training data (i.e., L) and test

on the rest of the ground-truth. In S4, we evaluate the performance in three sub-scenarios

Ciao-r (r ∈ {0.2, 0.3, 0.5}) with different training ratios 20%, 30% and 50%, respectively.

Baseline methods. For network alignment, the baseline methods include: (1) FINAL-N

[12], (2) FINAL-P [9], (3) REGAL [29] which is an embedding-based method for attributed

networks, (4) IONE [8] and (5) CrossMNA [27] that are embedding-based methods without

attributes. For fair comparisons, we modify FINAL-N and FINAL-P to semi-supervised

setting using L as the prior alignment matrices. For one-class social recommendation, the

baseline methods include (1) NGCF [153], (2) GraphRec [154] in which we use the BPR

loss instead of the default mean square loss, (3) SamWalker [155], (4) wpZAN [149] that

factorizes the node association matrix regularized by social network and product similarity

network, and (5) BPR which is based on Bayesian personalized ranking loss [148].

Machine. The proposed model is implemented in Pytorch. We use one Nvidia GTX 1080

with 8G RAM as GPU.

Hyperparameters settings. We use Adam optimizer with a learning rate 0.005 to train the

model. For network alignment, we set the margin size λ = 0.1, α = β = 1, γ = 10 and the

dimension of hidden representations in all layers to 256. As for the model architecture, in

S1, we use L = 2, n1 = 2000 and n2 = 1000. In S2, due to the GPU memory limit, we

use L = 1 and n1 = 5000. In S3, we use L = 2, n1 = 5000 and n2 = 2500. For one-class

social recommendation, we use the classic Bayesian personalized ranking loss to replace Eq.

(3.88) and set α = β = 1, γ = 100 and the dimensions of the representations to 128. The

model architecture that we use is L = 2, n1 = 3000 and n2 = 1500. In both tasks, we set the

negative sample size in Eq. (3.86) to 5 and that in the ranking loss Eq. (3.88) to 100. We

75

use the same embedding dimensions for embedding-based methods, and other parameters in

the baseline methods are set to default.

Table 3.7: (Higher is better.) Effectiveness results on network alignment.

Cora1-Cora2 ACM-DBLP Foursquare-Twitter
Hits@10 Hits@30 Accuracy Hits@10 Hits@30 Accuracy Hits@10 Hits@30 Accuracy

NetTrans 90.98% 97.51% 89.89% 84.09% 94.52% 58.21% 24.68% 34.58% 9.17%
FINAL-N 88.73% 90.77% 87.58% 82.91% 90.71% 54.39% 24.09% 33.80% 8.47%
FINAL-P 62.28% 80.01% 54.34% 69.70% 83.12% 36.34% 24.09% 33.80% 8.47%
REGAL 60.90% 69.20% 46.26% 63.68% 71.80% 41.78% 0.15% 2.20% 0.11%
IONE 73.03% 79.92% 42.29% 58.93% 84.19% 33.00% 13.44% 28.17% 4.13%

CrossMNA 59.06% 68.62% 33.26% 42.54% 49.69% 21.04% 3.37% 14.79% 2.48%

Performance on Network Alignment. In this part, we compare our method Net-

Trans with the baseline methods in the scenarios S1-S3. We evaluate the effectiveness in

terms of Hits@K and alignment accuracy. Given the testing node correspondence (e.g., u, v)

across two networks, if gnode(u, v) is among the highest top-K values within all the nodes in

G2, then we say there is a hit. We count the number of hits, divided by the total number of

testing node correspondences. Besides, the alignment accuracy measures the accuracy of the

node one-to-one mappings obtained by using a greedy matching as a postprocess [9]. The

results are summarized in Table 3.7. We have the following observations. First, our proposed

method NetTrans outperforms both FINAL-N and FINAL-P. Specifically, it achieves an

up to 6.5% improvement in Hits@30 and an up to 3% improvement in alignment accuracy,

compared to FINAL-N. Note that both FINAL-N and FINAL-P can be viewed as the vari-

ants of the graph matching-based methods which, as mentioned before, are built upon the

linearity/consistency assumptions. Second, our method achieves a better performance than

other embedding-based network alignment methods (i.e., REGAL, IONE and CrossMNA).

In particular, our method can achieve an at least 20% improvement in alignment accuracy

on attributed networks (i.e., scenarios S1, S2). This demonstrates the improvements of our

method compared to the embedding-based methods that suffer from the embedding space

disparity. Third, we observe that even on the networks without node attributes, our pro-

posed model still outperforms the baseline methods. Note that FINAL-N and FINAL-P

have the same performance in S3 because they are essentially equivalent without attributes.

Ablation study on the TransPool layer. To show the effectiveness of the proposed TransPool

layer in identifying cross-network associations, we compare with two variants by replacing

TransPool with the other pooling layers UNetPool [143] and SAGPool [144]. Since these

two pooling layers originally do not learn the assignment matrices Pl, we calculate the inner

products between the node representations and the supernode representations in the l-th

76

Cora1-Cora2 ACM-DBLP Foursquare-Twitter
0

0.2

0.4

0.6

0.8

1

H
it
s
@

3
0

SAGPool

Graph UNetPool

TransPool

Cora1-Cora2 ACM-DBLP Foursquare-Twitter
0

0.2

0.4

0.6

0.8

1

A
lig

n
m

e
n

t
a

c
c
u

ra
c
y

SAGPool

Graph UNetPool

TransPool

Figure 3.21: Ablation study on the pooling layer.

Cora1-Cora2 ACM-DBLP Foursquare-Twitter
0

0.2

0.4

0.6

0.8

1

H
it
s
@

3
0

NetTrans-Skip

NetTrans-w/o-Attr

NetTrans-w/o-Adj

NetTrans

Cora1-Cora2 ACM-DBLP Foursquare-Twitter
0

0.2

0.4

0.6

0.8

1

A
lig

n
m

e
n

t
a

c
c
u

ra
c
y

NetTrans-Skip

NetTrans-w/o-Attr

NetTrans-w/o-Adj

NetTrans

Figure 3.22: Ablation study on the unpooling layer.

pooling layer, followed by a softmax as Pl. From Figure 3.21 we can see that using Trans-

Pool as the pooling layer significantly outperforms the other two variants. This implies the

TransPool layer can learn better node representations and assignment matrices at different

resolutions to help identify the cross-network node associations.

Ablation study on the TransUnPool layer. To show the effectiveness of the proposed un-

pooling layer, we compare with the different variants in learning the structure and node

representations of the target network at different resolutions. These variants include: (1)

NetTransSkip that directly uses the coarsened source network at the same resolution (i.e.,

A
(L−k)
1 = A

(L−k)
2 and X

(L−k)
1 = X

(L−k)
2), (2) NetTransw/o-Attr that only calibrates the

structure (i.e., without calculating Eq. (3.80)), and (3) NetTransw/o-Adj that in con-

trast only calibrates the node representations (i.e., without calculating Eq. (3.81)). From

Figure 3.22 we can see TransUnPool significantly outperforms other variants indicating the

importance of the calibrations to earn the transformation across different networks.

77

Table 3.8: (Higher is better.) Effectiveness results on social recommendation.

Ciao-0.2 Ciao-0.3 Ciao-0.5
Prec@10 Rec@10 Rec@50 Prec@10 Rec@10 Rec@50 Prec@10 Rec@10 Rec@50

NetTrans 13.87% 11.08% 29.90% 11.01% 13.23% 28.15% 10.87% 12.43% 39.02%
BPR 1.37% 0.6% 20.25% 1.38% 0.62% 20.18% 1.00% 0.37% 14.97%

wpZAN 11.99% 9.19% 20.77% 9.88% 10.33% 23.22% 9.85% 11.64% 26.04%
GraphRec 8.65% 6.62% 17.56% 8.42% 6.60% 18.07% 6.94% 6.63% 18.08%
SamWalker 4.94% 1.97% 5.98% 4.39% 2.07% 5.67% 2.48% 1.58% 4.05%

NGCF 2.77% 1.21% 3.26% 2.77% 1.48% 3.61% 3.17% 1.99% 4.77%

10
2

0.06

0.08

10
2

P
re

c
@

1
0

0.1

10
0

0.12

10
0

10
-2

10
-2

(a) Sensitivity of α and β.

Prec@10 Rec@10 Rec@50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

L=1

L=2

L=3

L=4

(b) Sensitivity of L.

Figure 3.23: Sensitivity study on hyperparameters.

Performance on Recommendation. In addition to network alignment, we apply our

proposed model to one-class social recommendation to predict whether users interact with

certain products. In our experiments, we evaluate the performance by precision@K and

recall@K. The results are summarized in Table 3.8. We have the following observations.

First, our proposed method outperforms all the baseline methods. Specifically, our method

achieves an at least 1% improvement in Precision@10 and an at least 5% improvement in

Recall@50 compared to the best baseline method. Second, our method and wpZAN that is

dual-regularized by both social and product networks outperform other baseline methods,

which implies leveraging network structure, especially the product network, is indeed helpful.

Hyperparamter sensitivity study. We conduct the hyperparameter sensitivity studies for

recommendation on the loss coefficients α, β and on the number of layers. From Figure 3.23

(a) we can see that our model is robust to different choices of α, β ranging from 0.01 to

100. In addition, from Figure 3.23 (b), we can observe that our model achieves the best

performance with 3 encoder layers and 3 decoder layers. This demonstrates that learning

hierarchical representations at different resolutions can lead to a better performance.

78

3.4 BALANCING CONSISTENCY AND DISPARITY IN NETWORK ALIGNMENT

In the age of big data, multiple networks emerge in many influential domains, such as social

networks of different online social platforms and protein-protein interaction (PPI) networks

of different species. Network alignment, which aims to uncover the node correspondences

across networks (e.g., dashed lines in Figure 3.24 (a)), plays a crucial role in distilling values

from multiple networks. Specifically, with the node correspondences, multiple networks can

be integrated into a world-view network which may exhibit the patterns that are invisible if

mining networks separately. For example, aligning proteins across PPI networks of different

species facilitates to transfer knowledge from well-studied species to less-studied species and

explore the evolutionary relationships [2]. In addition, by integrating multiple transaction

networks, the complex fraud behaviors (e.g., money laundering) that are covert in each

individual network can be brought to light.

a b

cd

e

y

g

x

f

h

𝒢1

𝒢2

y

cd

e

g f

h

x

: Anchor nodes
: Anchor links

: Edges in 𝒢1
: Edges in 𝒢2

𝒢

(a) (b)

Figure 3.24: The world-view network.

Despite extensive research on network

alignment, many traditional methods explic-

itly or implicitly assume the alignment con-

sistency [3, 6, 9]. That is, the alignments

of neighboring node pairs tend to be con-

sistent with each other. For example, FI-

NAL [9] explicitly formulates the alignment

consistency as minimizing the differences be-

tween the alignment of two nodes and those

of their corresponding neighbors. Alterna-

tively, the objective can be interpreted as di-

rectly generating positive alignment pairs by

all neighboring node pairs (e.g., (c, f) from

the anchor link (b, y)) and minimizing the differences among them. However, optimizing this

alignment consistency might result in the over-smoothness issue of the alignments within a

local neighborhood and fail to distinguish correct alignments from misleading alignments.

On the other hand, embedding based methods, which infer node alignments by node

embeddings, can to some extent incorporate the alignment disparity and ameliorate the

over-smoothness issue by bringing in the negative alignment pairs. For example, some align-

ment methods (such as [8, 27]) sample negative alignment pairs by a degree-based sampling

distribution and learn node embeddings that classify the sampled alignment pairs into the

negative class. Others apply a uniform distribution to randomly sample negative alignment

pairs used in the ranking loss [100, 101]. With negative sampling, the learned node embed-

79

dings can potentially make the alignments within the local neighborhood more separable (i.e.,

alignment disparity). More recently, negative sampling for single network embedding has

been riveted and various sampling strategies are proposed under different or even compet-

ing design principles. For example, [156] advocates a positive correlation between negative

and positive sampling distributions. That is, nodes with similar embeddings are more likely

to be sampled such that hard negative samples are encouraged. Others exclusively favor a

negative correlation to better preserve local proximity [157, 158].

Despite various negative sampling strategies, it still remains opaque how negative sam-

pling should be designed to benefit network alignment. In other words, a more fundamental

question is what makes a ‘good’ negative pair in the context of network alignment? Intu-

itively, good negative samples should distinguish the anchor links and the close node pairs

that may mislead the alignment, while not violating the overall alignment consistency. In

addition, these negative samples should inform the model to learn meaningful embeddings

for network alignment. However, the aforementioned negative sampling strategies have their

own limitations. To be specific, owing to its root in single network embedding, positive cor-

relation based sampling [156] may lead to the false negative alignment pairs (e.g., (c, f) as

the negative alignment pair of anchor link (b, y) in Figure 3.24 (a)) which results in incorrect

alignments violating the alignment consistency. On the other side, using the pre-defined

distributions [8, 100] and those that are negatively correlated to the positive sampling dis-

tribution [157, 158] may sample distant or dissimilar node pairs (e.g., (e, h)) that may not

contribute much to learning meaningful node embeddings.

In this work, we strive to demystify the intrinsic relationships behind different competing

designs for network alignment (i.e., alignment consistency vs. disparity, negative correlation

vs. positive or neutral correlation), so that we can strike a good trade-off between them. We

address this from both the model architecture and model training perspectives. First (model

design), we theoretically prove that the alignments inferred by graph convolutional networks

resemble the semi-supervised variant of the consistency based alignment method FINAL

[9]. This inspires a specific graph convolutional network model that can preserve alignment

consistency. Second (model training), we provide a lemma that implies the mean square error

between the inner products of node embeddings learned by expected loss and empirical loss

can be quantified by different sampling distributions. To reduce the error while making the

aforementioned competing designs compatible with each other, we design a novel alignment

scoring function which paves the way to the proposed sampling strategies. Armed with these

components, we develop a novel semi-supervised method that accommodates both alignment

consistency and alignment disparity. The main contributions are summarized as below.

80

• Problem Definition. To our best knowledge, we are the first to study the trade-off

between the consistency and disparity in network alignment.

• Method and Analysis. We theoretically reveal the close connections between graph

convolutional networks and consistency based alignment method and the intrinsic re-

lationships behind the competing principles of sampling designs. Based on them, we

develop a new semi-supervised network alignment method NeXtAlign.

• Empirical Evaluations. Extensive experiments validate significant improvements com-

pared to the state-of-the-arts.

3.4.1 Problem Definition

Table 3.9 summarizes the main notations used in this work. We use bold uppercase letters

for matrices (e.g., L), bold lowercase letters for vectors (e.g., a), lowercase letters (e.g., α)

for scalars and uppercase calligraphic letters (e.g., L) for sets. We denote the transpose by

a superscript prime (e.g., L′ as the transpose of L).

Semi-Supervised Network Alignment. We denote input networks by G1 = {V1,A1,X1}
and G2 = {V2,A2,X2} where V1,V2 represent the node sets, A1,A2 represent the adjacency

matrices and X1,X2 represent the input node attributes of G1,G2 respectively. And we de-

note n1 = |V1|, n2 = |V2| as the number of nodes in two networks and the input attribute

matrices are of sizes X1 ∈ Rd0×n1 ,X2 ∈ Rd0×n2 . In addition, anchor links are defined as the

node pairs that are one-to-one mapped a priori. For example, given a set of anchor links

L = {(a, x)|a ∈ V1, x ∈ V2}, it indicates that node-a in G1 is aligned with node-x in G2 a

priori. In this way, node-a is called as an anchor node in G1 and node-x is an anchor node

in G2. We also define L1 = {a|∃x ∈ V2, s.t., (a, x) ∈ L} as the set of anchor nodes in G1 and

similarly L2 for G2. Accordingly, the sets of non-anchor nodes are denoted by L̄1 = V1 −L1

and L̄2 = V2 −L2. As for indexing nodes, we use b, y as the general indices to index all the

nodes in V1 and V2. In addition, we use a, x to specifically index the anchor nodes in L1,L2,

and use u, v to index non-anchor nodes.

Given the above notation definitions, our goal is to learn node embeddings and infer the

alignment matrix S ∈ Rn1×n2 . Formally, we define the semi-supervised network alignment.

Problem 3.5. Semi-Supervised Network Alignment.

Given: (1) undirected networks G1 = {V1,A1,X1} and G2 = {V2,A2,X2}, and (2) a set

of anchor links L.

Output: alignment matrix S which indicates how likely nodes are aligned.

81

Table 3.9: Symbols and notations.

Symbols Definition
G1, G2 input networks
L the set of anchor links across G1,G2

L1,L2 the sets of corresponding anchor nodes in G1 and G2

L̄1, L̄2 the sets of non-anchor nodes in G1 and G2

a, x indices of anchor nodes in G1 and G2

u, v indices of non-anchor nodes in G1 and G2

b, y indices of all nodes in G1 and G2

a,x column embedding vectors of node-a and node-x
[·‖·] vertical concatenation of two column vectors
� Hadamard product

Note that for networks without node attributes, we use the one-hot encoding of a node as

its input node attributes. Given the fact that the nodes of an anchor link essentially represent

the same entity, we can integrate the input networks G1,G2 into a world-view network G by

merging two anchor nodes into a single node. As a result, the world-view network G has (1)

non-anchor nodes in G1,G2 and unique anchor nodes as the nodes of G, and (2) all edges of

G1,G2 co-exist in G (shown in Figure 3.24 (b)). By learning node embeddings in this world-

view network G, we can naturally share the unique embedding across two corresponding

anchor nodes, i.e., a = x, ∀(a, x) ∈ L. In this study, we use a and x interchangeably.

Preliminaries. In many prior network alignment methods, a widely used assumption is

the alignment consistency assumption that neighboring node pairs tend to have consistent

alignments [3, 5, 9]. The prior method FINAL [9] formulates this assumption as

min
S

∑
a,b,x,y

[
S(a, x)√

|N1(a)||N2(x)|
− S(b, y)√

|N1(b)||N2(y)|

]2

A1(a, b)A2(x, y) (3.91)

where N1(a),N2(x) denote the neighbors of node-a in G1 and node-x in G2. Besides, we

have A1 = A′1,A2 = A′2. Here, Eq. (3.91) encourages a small difference between S(a, x)

and S(b, y) if node-b and node-y are close neighbors of node-a and node-x. We can interpret

Eq. (3.91) from another angle. That is, given an anchor link (a, x) with a large S(a, x), it

encourages S(b, y) to be consistent with S(a, x) (i.e., large S(b, y)), which means Eq. (3.91)

naturally considers all the neighboring node pairs as the positive alignment pairs of (a, x).

To solve Eq. (3.91), a fixed-point update in the t-th iteration is computed as

St = Ã1S
t−1Ã′2 (3.92)

82

where Ã1, Ã2 are the symmetric normalization of A1,A2.

In the semi-supervised setting, the supervision (i.e., anchor links) can be used as a regu-

larization upon Eq. (3.92), which leads to

St = αÃ1S
t−1Ã′2 + (1− α)L (3.93)

where α controls the importance of the alignment consistency. L(a, :) = 0 and L(:, x) = 0

except L(a, x) = 1 if and only if (a, x) ∈ L.

3.4.2 The NextAlign Model

In this part, we present NeXtAlign, a semi-supervised network alignment method. We

start by giving a model overview. Then, we introduce the model design for embedding

learning, followed by the proposed negative sampling for model training.

Model Overview and Key Ideas. The core challenge that we aim to address is to design

and train the model to strike a balance between the alignment consistency and disparity.

To design the model that learns node embeddings while encouraging alignment consistency,

we first prove that the alignments inferred by the node embeddings by a specific message

passing without parameters (Eq. (3.96)) resemble the semi-supervised FINAL [9]. The key

idea of the proof is to conduct a rank-|L| decomposition on matrix L used in Eq. (3.93)

and use the decomposed matrices as the input node embeddings. Intuitively, by viewing

the anchor nodes as the landmarks in the |L|-dimensional Euclidean space, this message

passing can be interpreted as to determine the relative positions for all nodes w.r.t. the

anchor nodes. Next, based on its capability of capturing alignment consistency, we propose

the parameterized counterpart of this message passing in Eq. (3.103). We name it as the

RelGCN layer which is then used to calibrate the relative positions of nodes calculated by

Eq. (3.96). The final node embeddings are obtained by applying a linear layer on these

position vectors. The overall architecture is shown in Figure 3.25.

In terms of model training, the key idea of achieving the trade-off is by different sampling

distributions. The intuitions behind it are as follows. Given an anchor link (a, x) ∈ L, if (b, y)

is sampled as the positive alignment pair, it encourages the consistency between node pairs

(b, y) and (a, x). In contrast, if (b, y) is sampled as the negative alignment pair, the alignment

disparity is favored between them. Besides, to preserve the local proximity within the same

network, we also sample positive context pairs and negative context pairs. To design these

sampling distributions, we first quantify the mean square error between the inner products

83

of node embeddings learned by minimizing the expected loss and empirical loss. Based on

this, to make the inner products of the high-probability node pairs to be estimated more

accurately while satisfying different and even competing design principles, we compose a

novel alignment scoring function that reflects multiple aspects of node embeddings.

Model Design. We first connect the fixed-point update of FINAL (i.e., Eq. (3.91)) to the

vanilla GCN [122]. Suppose the alignment is computed by S(a, x) = a′x, then we have

(at)′xt = St(a, x) = Ã1(a, :)St−1Ã2(:, x)

=
∑

b∈N1(a)

∑
y∈N2(x)

(bt−1)′yt−1√
|N1(a)||N1(b)||N2(x)||N2(y)|

=
∑

b∈N1(a)

(bt−1)′√
|N1(a)||N1(b)|

∑
y∈N2(x)

yt−1√
|N2(x)||N2(y)|

(3.94)

where bt−1 represents the node embedding of node-b in the (t− 1)-th iteration/layer. As we

can see, the t-th iteration of computing the alignment St(a, x) is equivalent to updating the

node embeddings by applying the vanilla GCN without parameters

at =
∑

b∈N1(a)

bt−1√
|N1(a)||N1(b)|

, xt =
∑

y∈N2(x)

yt−1√
|N2(x)||N2(y)|

(3.95)

followed by the inner product. In addition, due to the over-smoothness issue of GCNs

[159], the node alignments inferred by the node embeddings above could also suffer from

over-smoothness, which might hamper the performance.

In the semi-supervised setting where anchor links are available, we design the following

message passing without parameters

ut =
√
α
∑

b∈N1(u)

bt−1√
|N1(u)||N1(b)|

+
√

1− αut−1

vt =
√
α
∑

y∈N2(v)

yt−1√
|N2(v)||N2(y)|

+
√

1− αvt−1

at = xt =
√
α
∑

b∈N1(a)

bt−1√
|N1(a)||N1(b)|

+
√

1− αxt−1

+
√
α
∑

y∈N2(x)

yt−1√
|N2(x)||N2(y)|

(3.96)

84

where node-u, node-v are non-anchor nodes and a, x are anchor nodes. As shown in Lemma

3.7, the alignments inferred by embeddings in Eq. (3.96) resemble Eq. (3.93).

Lemma 3.7. Suppose the initial non-anchor node embeddings are u0 = v0 = 0 and those

of the anchor nodes are a0 = x0 = ei ∈ R|L| where (a, x) is the i-th anchor link, ei(i) = 1

and ei(j) = 0, ∀j 6= i. Then by updating Eq. (3.96) once, the alignments computations are

equivalent to Eq. (3.93) up to additional intra-network proximity and scaling terms.

Proof. Given |L| = L anchor links, we can conduct a rank-L decomposition upon L without

errors into L = L′1L2. Since L(a, x) = 1 if (a, x) ∈ L, we have L1(:, a) = a0 = ei and

L2(:, x) = x0 = ei. For non-anchor nodes, we have L1(:, u) = u0 = 0, L2(:, v) = v0 = 0.

After initializing embeddings as L1,L2, the alignments are computed by the inner products

among the updated embeddings with Eq. (3.96).

S(u, v) = α
∑

b∈N1(u)

(b0)′√
|N1(u)||N1(b)|

∑
y∈N2(v)

y0√
|N2(v)||N2(y)|

(3.97)

S(u, x) = α
∑

b∈N1(u)

(b0)′√
|N1(u)||N1(b)|

∑
y∈N2(x)

y0√
|N2(x)||N2(y)|

(3.98)

+ α
∑

b∈N1(u)

(b0)′√
|N1(u)||N1(b)|

∑
c∈N1(a)

c0√
|N1(a)||N1(c)|

+
√
α(1− α)

∑
b∈N1(u)

(b0)′√
|N1(u)||N1(b)|

x0

S(a, x) = 2α
∑

b∈N1(a)

(b0)′√
|N1(a)||N1(b)|

∑
y∈N2(x)

y0√
|N2(x)||N2(y)|

(3.99)

+
α

|N1(a)|
∑

b∈{N1(a)∩L1}

1

|N1(b)|
+

α

|N2(x)|
∑

y∈{N2(x)∩L2}

1

|N2(x)|
+ (1− α)

Note S(a, v) is omitted as it is similar to S(u, x). We denote

S1(u, a) =

 ∑
b∈N1(u)

b0√
|N1(u)||N1(b)|

′ ∑
c∈N1(a)

c0√
|N1(a)||N1(c)|

 (3.100)

S2(x, v) =

 ∑
y∈N2(x)

y0√
|N2(y)||N2(x)|

′ ∑
z∈N2(v)

z0√
|N2(z)||N1(v)|

 (3.101)

which measure the weighted number of common neighboring anchor nodes. Recall Eq.

85

Pre-positioning

x
y
c

d
e
g

f
h

x y

RelGCN

x
y
c

d
e
g

f
h

x y

Attention

⊙

𝒢

x
y
c

d
e
g

f
h

RelGCN-U Linear
Layer

Figure 3.25: Overall architecture of NeXtAlign.

(3.94), L(u, v) = L(u, x) = 0 and L(a, x) = 1, then we have

S(u, v) = αÃ1(u, :)LÃ2(:, v) + (1− α)L(u, v)

S(u, x) = αÃ1(u, :)LÃ2(:, x) + (1− α)L(u, x) + αS1(u, a)

+
√
α(1− α)

A1(u, a)√
|N1(u)||N1(a)|

S(a, x) = 2αÃ1(a, :)LÃ2(:, x) + α(S1(a, a) + S2(x, x)) + (1− α)L(a, x)

(3.102)

As we can see, the alignments based on the embeddings learned by Eq. (3.96) in the first

iteration are equivalent to the semi-supervised FINAL (i.e., Eq. (3.93)) with S0 = L except

the additional intra-network proximity (e.g., S1,S2) and scaling terms. QED.

This lemma implies that we can design a special relational graph convolutional network

(RelGCN) to encode the alignment consistency. We formulate the t-th RelGCN layer as

ut =
√
α
∑

b∈N1(u)

Wt
1b

t−1√
|N1(u)||N1(b)|

+
√

1− αWt
0u

t−1

vt =
√
α
∑

y∈N2(v)

Wt
2y

t−1√
|N2(v)||N2(y)|

+
√

1− αWt
0v

t−1

at = xt =
√
α
∑

b∈N1(a)

Wt
1b

t−1√
|N1(a)||N1(b)|

+
√

1− αWt
0x

t−1

+
√
α
∑

y∈N2(x)

Wt
2y

t−1√
|N2(x)||N2(y)|

(3.103)

where Wt
0,W

t
1,W

t
2 ∈ Rdt×dt−1 and dt denotes the embedding dimension in the t-th layer of

RelGCN. We name the RelGCN layer without parameters (i.e., Eq. (3.96)) as RelGCN-U.

We then design the whole model architecture shown in Figure 3.25. The key idea is to

86

leverage RelGCNs to learn node embeddings that describe the relative ‘positions’ of the nodes

w.r.t. the anchor nodes [32], followed by a linear layer to learn the final output embeddings.

In particular, given the prior alignment matrix L, we first decompose it into two rank-L

matrices by L = L′1L2 as the initial embeddings. Then we feed them into RelGCN-U to

incorporate the alignment consistency. For the nodes that are not adjacent to any anchor

nodes, we apply random walk with restart [107] to measure the proximities of non-anchor

nodes w.r.t. the anchor nodes as the initial relative positions

ri1 = (1− p)Â1ri1 + pêi1, ri2 = (1− p)Â2ri2 + pêi2 (3.104)

where the restart probability p is set to 0.85 following the classic choice, and Â1, Â2 are

the normalized matrices of A1,A2. The restart vectors êi1 ∈ Rn1 , êi2 ∈ Rn2 only have one

nonzero value at êi1(a) = 1 and êi2(x) = 1. After achieving the stationary distributions,

we set u0 = [r11(u), r21(u), · · · , rL1(u)]′ for non-anchor node-u in G1, and similarly for non-

anchor nodes v in G2. We denote the output embeddings by RelGCN-U by, say, a1,x1,u1,v1.

However, the alignment scores among the close neighborhood might not distinguish the

precise node alignments due to the over-smoothness. To mitigate the issue, we additionally

leverage attention coefficients to rescale the relative positions computed by

û =
√
α
∑

b∈N1(u)

W1X1(:, b)√
|N1(u)||N1(b)|

+
√

1− αW0X1(:, u)

â = x̂ =
√
α
∑

b∈N1(a)

W1X1(:, b)√
|N1(a)||N1(b)|

+
√

1− αW0X1(:, a)

+
√
α
∑

y∈N2(x)

W2X2(:, y)√
|N2(x)||N2(y)|

cua =
exp (w′c[û‖â])∑
b∈L1 exp (w′c[û‖b̂])

(3.105)

and similarly for cvx where wc is a parameter vector. We scale the relative positions by

ũ = û� cu, ṽ = v̂ � cv, ã = x̃ = x̂� cx (3.106)

where cu(i) = cua, cv(i) = cvx. To learn the embeddings, we apply a simple linear layer

u = Wũ, v = Wṽ, a = x = Wx̃ (3.107)

where W ∈ Rd×|L| is the corresponding weight parameter matrix.

87

Model Training. We first consider the following loss functions on anchor links that cap-

ture both intra-network information by Ja, Jx and inter-network information by Jax.

Ja = −
∑
b

[pd(b|a) log σ(b′a) + kpn(b|a) log σ(−b′a)] (3.108)

Jx = −
∑
y

[pd(y|x) log σ(y′x) + kpn(y|x) log σ(−y′x)] (3.109)

Jax = −
∑
b

[pdc(b|x) log σ(b′x) + kpnc(b|x) log σ(−b′x)] (3.110)

−
∑
y

[pdc(y|a) log σ(y′a) + kpnc(y|a) log σ(−y′a)]

J =
∑

(a,x)∈L

J(a,x) =
∑

(a,x)∈L

Ja + Jx + Jax (3.111)

where σ(·) is the sigmoid function. The probability distributions pd, pn sample the positive

and negative context node pairs within the same network respectively, while pdc, pnc sample

positive and negative alignment pairs across different networks. Note that in the above loss

functions, we assume for simplicity that the probabilities for the same goal are calculated

by the same function (e.g., pd(·|a) in G1 vs. pd(·|x) in G2 using the same function but

different inputs) and the numbers of negative samples by pn, pnc are same (i.e., k). Since

a = x, ∀(a, x) ∈ L, we can rewrite the loss related to the anchor link (a, x) as below.

J(a,x) = −
∑
b

[[pd(b|a) + pdc(b|x)] log σ(b′x) + k[pn(b|a) + pnc(b|x)] log σ(−b′x)] (3.112)

−
∑
y

[[pd(y|x) + pdc(y|a)] log σ(y′x) + k[pn(y|x) + pnc(y|a)] log σ(−y′x)] (3.113)

For the anchor link (a, x), we derive the conditions of the optimal node embeddings [156].

Lemma 3.8. Given an anchor link (a, x), the optimal embeddings that minimize J(a,x)

satisfy for non-anchor nodes b ∈ L̄1, y ∈ L̄2,

b′x = − log
kpn(b|a) + kpnc(b|x)

pd(b|a) + pdc(b|x)
(3.114)

y′x = − log
kpn(y|x) + kpnc(y|a)

pd(y|x) + pdc(y|a)
(3.115)

and for anchor nodes such that (b, y) ∈ L,

b′x = y′x = − log
k[pn(b|a) + pnc(b|x) + pn(y|x) + pnc(y|a)]

pd(b|a) + pdc(b|x) + pd(y|x) + pnc(y|a)
(3.116)

88

Proof. For node-b in G1 and node-y in G2 such that (b, y) /∈ L, the main idea is to first prove

that the loss functions Eq. (3.112) and Eq. (3.113) can be minimized separately by satisfying

the conditions Eq. (3.114) and Eq. (3.115), and then prove these two conditions can co-occur.

We first define two Bernoulli distributions Pb,(a,x)(z = 1) = pd(b|a)+pdc(b|x)
pd(b|a)+pdc(b|x)+kpn(b|a)+kpnc(b|x)

and

Qb,(a,x)(z = 1) = σ(b′a) = σ(b′x). Then the term of node-b in Eq. (3.112) is

Ob = [pd(b|a) + pdc(b|x) + kpn(b|a) + kpnc(b|x)]H(Pb,(a,x), Qb,(a,x)) (3.117)

where H(·, ·) is the cross-entropy between two distributions. According to Gibbs Inequality,

the minimum can be achieved when Pb,(a,x) = Qb,(a,x), ∀b ∈ V1−{b|(b, y) /∈ L}. This implies

b′x = − log
kpn(b|a) + kpnc(b|x)

pd(b|a) + pdc(b|x)
(3.118)

Similarly, we can show the loss Eq. (3.113) is minimized when

y′x = − log
kpn(y|x) + kpnc(y|a)

pd(y|x) + pdc(y|a)
(3.119)

Since (b, y) /∈ L, it is easy to see that at least one of b and y could be an arbitrary vector

as long as it satisfies the above condition. Next, for two nodes such that (b, y) ∈ L and

consequently b = y, the corresponding term in Eq. (3.112) is equivalent to

Ob = − [pd(b|a) + pdc(b|x) + pd(y|x) + pdc(y|a)] log σ(b′x)

− [pn(b|a) + pnc(b|x) + pn(y|x) + pnc(y|a)] log σ(−b′x)
(3.120)

Similarly, we can derive the condition for (b, y) ∈ L as

b′x = y′x = − log
k[pn(b|a) + pnc(b|x) + pn(y|x) + pnc(b|a)]

pd(b|a) + pdc(b|x) + pd(y|x) + pnc(y|a)
(3.121)

This completes the proof of Lemma 3.8. QED.

However, the above lemma requires sufficient (probably infinite) sampled node pairs. In

this way, we further consider to minimize the empirical risk for an anchor link (a, x) as

JB(a,x) = − 1

B

∑
i1,i2,j1,j2

log σ(b′i1x) + log σ(b′i2x) + log σ(y′j1x) + log σ(y′j2x)

− 1

B

∑
i3,i4,j3,j4

[
log σ(−b′i3x) + log σ(−b′i4x) + log σ(−y′j3x) + log σ(−y′j4x)]

] (3.122)

89

where B is the number of positive samples and accordingly kB is the size of negative sam-

ples. In addition, (1) bi1 , yj1 are sampled from pd(·|a), pd(·|x), (2) bi2 , yj2 are sampled from

pdc(·|x), pdc(·|a), (3) bi3 , yj3 are sampled from pn(·|a), pn(·|x), and (4) bi4 , yj4 are sampled from

pnc(·|x), pnc(·|a) respectively. Furthermore, by defining θ = [b′1x, · · · ,b′n1
x,y′1x, · · · ,y′n2

x],

we denote θ∗ as the optimal solution to J(a,x) and θB similarly for the empirical risk JB(a,x).

Then we can derive the mean square error in the following lemma.

Lemma 3.9. Denote ∆θb = θBb −θ∗b and ∆θy = θBy −θ∗y. The mean square errors for nodes

b ∈ L̄1 and y ∈ L̄2 can be formulated by

E
[
∆θ2

b

]
=

1

B

[
1

pd(b|a) + pdc(b|x)
+

1

kpn(b|a) + kpnc(b|x)
− C

]
E[∆θ2

y] =
1

B

[
1

pd(y|x) + pdc(y|a)
+

1

kpn(y|x) + kpnc(y|a)
− C

] (3.123)

For nodes b ∈ L1 and y ∈ L2, by denoting C = 1 + 1
k
, the mean square error is computed by

E
[
∆θ2

b

]
= E[∆θ2

y] =
1

B

[
1

p1

+
1

kp2

− C
]

(3.124)

where p1 = pd(b|a)+pdc(b|x)+pd(y|x)+pdc(y|a) and p2 = pn(b|a)+pnc(b|x)+pn(y|x)+pnc(y|a).

Proof. The optimal solution θB implies the gradient OJB(a,x)(θ
B) = 0, which gives

OJB(a,x)(θ
B) = OJB(a,x)(θ

∗) + O2JB(a,x)(θ
∗)(θB − θ∗) +O(‖θB − θ∗‖2) = 0. (3.125)

Thus, up to terms of order O(‖θB − θ∗‖2), we have

√
B(θB − θ∗) = −

(
O2JB(a,x)(θ

∗)
)−1√

BOJB(a,x)(θ
∗) (3.126)

Next we analyze −
(
O2JB(a,x)(θ

∗)
)−1

and
√
BOJB(a,x)(θ

∗).

For
(
O2JB(a,x)(θ

∗)
)−1

: The gradient and Hessian of JB(a,x) can be computed as

OJB(a,x)(θ) =
1

B

[∑
i1

(σ(θbi1)− 1)e(bi1) +
∑
i2

(σ(θbi2)− 1)e(bi2) +
∑
i3

σ(θbi3)e(bi3) +
∑
i4

σ(θbi4)e(bi4)

]

+
1

B

[∑
j1

(σ(θyj1)− 1)e(yj1) +
∑
j2

(σ(θyj2)− 1)e(yj2) +
∑
j3

σ(θyi3)e(yj3) +
∑
j4

σ(θyj4)e(yj4)

]
O2JB(a,x)(θ) = f(b, i1) + f(b, i2) + f(b, i3) + f(b, i4)f(y, j1) + f(y, j2) + f(y, j3) + f(y, j4)

(3.127)

90

where for example f(b, i1) = 1
B

∑
i1
σ(θbi1)

(
1− σ(θbi1)

)
e(bi1)e

′
(bi1) and e(bi1) is a one-hot

vector which has only a 1 on the corresponding dimension. According to Lemma 3.8, by

denoting H(a,x) = limB→+∞O2JB(a,x)(θ
∗) we have at θ = θ∗

H(a,x)
P−→
∑
b

σ(θ∗b)(1− σ(θ∗b))e(b)e
′
(b)[pd(b|a) + pdc(b|x) + pn(b|a) + pnc(b|x)]

+
∑
y

σ(θ∗y)(1− σ(θ∗y))e(y)e
′
(y)[pd(y|x) + pdc(y|a) + pn(y|x) + pnc(y|a)]

=
∑
b∈L̄1

k[pd(b|a) + pdc(b|x)][pn(b|a) + pnc(b|x)]

pd(b|a) + pdc(b|x) + pn(b|a) + pnc(b|x)
e(b)e

′
(b) +

∑
b∈L1

kp1p2

p1 + p2

e(b)e
′
(b)

+
∑
y∈L̄2

k[pd(y|x) + pdc(y|a)][pn(y|x) + pnc(y|a)]

pd(y|x) + pdc(y|a) + pn(y|x) + pnc(y|a)
e(y)e

′
(y) +

∑
y∈L2

kp1p2

p1 + p2

e(y)e
′
(y)

= diag(m)

(3.128)

where p1 = pd(b|a)+pdc(b|x)+pd(y|x)+pdc(y|a) and p2 = pn(b|a)+pnc(b|x)+pn(y|x)+pnc(y|a).

We analyze OJB(a,x)(θ
∗) expectation and variance as follows.

E[OJB(a,x)(θ
∗)] =

∑
b∈L̄1

[
pd(b|a) + pdc(b|x)](σ(θ∗b)− 1)e(b) + k[pn(b|a) + pnc(b|x)]σ(θ∗b)e(b)

]
+
∑
y∈L̄2

[
pd(y|x) + pdc(y|a)](σ(θ∗y)− 1)e(y) + k[pn(y|x) + pnc(y|a)]σ(θ∗y)e(y)

]
+
∑
b∈L1

p1(σ(θ∗b)− 1)e(b) + kp2σ(θb)e(b)

+
∑
y∈L2

p1(σ(θ∗y)− 1)e(y) + kp2σ(θy)e(y)

= 0 (3.129)

Cov[OJB(a,x)(θ
∗)] = E

[
OJB(a,x)(θ

∗)(OJB(a,x)(θ
∗))′
]

=
1

B

(
diag(m)− (1 +

1

k
)mm′

)
(3.130)

Then, with H(a,x) and Cov[OJB(a,x)(θ
∗)], we can derive the covariance of

√
B(θB − θ∗) as

Cov
[√

B(θB − θ∗)
]

= E
[√

B(θB − θ∗)
√
B(θB − θ∗)′

]
≈ Bdiag(m)−1Var

[
OJB(a,x)(θ

∗)
]

(diag(m)−1)′

= diag(m)−1 − (1 +
1

k
)11′

(3.131)

This implies that the mean square errors for non-anchor nodes b ∈ L̄1 and y ∈ L̄2 can be

91

computed by

E
[
∆θ2

b

]
=

1

B

[
1

pd(b|a) + pdc(b|x)
+

1

kpn(b|a) + kpnc(b|x)
− C

]
E[∆θ2

y] =
1

B

[
1

pd(y|x) + pdc(y|a)
+

1

kpn(y|x) + kpnc(y|a)
− C

] (3.132)

For anchor nodes b ∈ L1 and y ∈ L2, the mean square error is computed by

E
[
∆θ2

b

]
= E[∆θ2

y] =
1

B

[
1

p1

+
1

kp2

− C
]

(3.133)

where ∆θb = θBb − θ∗b ,∆θy = θBy − θ∗y. This completes the proof. QED.

Given the above Lemma 3.9, the question now comes to how to design these distributions.

For a single network where only pd and pn are considered, [156] proposes that pn is positively

correlated to pd. And if node-b has a high embedding similarity with node-a, it is likely

to be a negative sample. This can be considered as a hard negative sample which in the

task of recommendation could separate the negative items from positive ones for a certain

user. However, in pairwise network alignment where we have two input networks, different

sampling distributions serve different purposes, which as we show in the following may lead

to the competing designs. First (for pd), a typical goal of pd is to sample nodes that are

similar to the center nodes such that the sampled nodes are likely to co-occur with the

center nodes in some manually extracted contexts [160, 161]. Second (for pn), we follow the

intuition in unsupervised network embedding that close neighbors should be similar while

distant nodes should be dissimilar in terms of embedding vectors [158]. This implies that

distant/dissimilar nodes are more likely to be sampled by pn. Third (for pdc), we use it

to sample positive alignment pairs across networks that are likely to form the alignments

and preserve the alignment consistency similar to Eq. (3.91). This implies pdc should be

positively correlated to the embedding similarities. Fourth (for pnc), we first note that

network alignment can be considered as a special recommendation task where the anchor

link of two nodes is analogized as the only positive item for a user. In this way, we would

like to use pnc to provide hard negative alignment pairs as in recommendation [156, 162].

That is, nodes in G1 that currently have high embedding similarities with anchor node-x

are likely to be the hard negative samples. By doing so, we could attain the alignment

disparity. That is, the embeddings of the nodes that are likely to mislead the alignments are

encouraged to be more separable from node-x. We remark that while selecting nodes as the

negative alignment pairs, they are supposed not to violate the overall alignment consistency.

92

anchor nodes
𝑎 and 𝑥

node 𝑏
in 𝒢1

Dot product Dot product Dot product Dot product

𝒃(1)
′ 𝒙(1) 𝒃(1)

′ 𝒙(2) 𝒃(2)
′ 𝒙(1) 𝒃(2)

′ 𝒙(2)

Fully connected layer

Loss function

Figure 3.26: Illustration of embedding interactions.

In addition, given Lemma 3.9 and the design principles of pd, pn, pdc, in order to estimate

high-probability node pairs (i.e., high pd, pdc and low pn) more accurately, we need pnc to be

large which coincides with the designed positive correlation.

But with these designs, nodes that have high embedding similarities to anchor nodes are

likely to be sampled as both positive context/alignment pairs and negative alignment pairs.

In other words, suppose node-b is sampled to form a positive context pair with anchor node-a

and a negative alignment pair with the anchor node-x simultaneously. Then according to Eq.

(3.112), it means that the node pair (b, x) should be classified into both the positive class and

the negative class, i.e., two competing objectives. To address this issue, instead of simply

using b′x to compute pd, pn, pdc, pnc, we divide the node embedding vectors to two parts, i.e.,

b = [b(1)‖b(2)] and x = [x(1)‖x(2)] where b(1),b(2),x(1),x(2) ∈ Rd/2. Each part of the vector

aims to capture different information. For example, b(1) captures the local neighborhood

information of node-b in G1 while b(2) encodes how node-b posits in the context of G2. Then

we can design a new alignment scoring function that allows the interactions among different

parts of embeddings as shown in Figure 3.26. Specifically, we define

b ? x = w1b
′
(1)x(1) + w2b

′
(1)x(2) + w3b

′
(2)x(1) + w4b

′
(2)x(2) (3.134)

where [w1, w2, w3, w4] is a vector of parameters to be learned that measure the importance

93

of different terms. By replacing the original inner products in JB(a,x) with Eq. (3.134), the

embedding similarities are determined by different aspects. In particular, since a = x, the

first term b′(1)x(1) = b′(1)a(1) implies the intra-network proximity between node-b in G1 and

anchor node-x and hence can be used in the sampling probabilities pd(b|a) and pn(b|a).

Second, the last term b′(2)x(2) describes how likely, in the context of G2, node-b interacts

with anchor node-x, and thus can be used to measure to what extent they are aligned. In

this way, this term can be used in the sampling distribution pdc(b|x). Lastly, the middle

two terms capture how likely that two nodes b and x are interacted in a way similar as

in recommendation. For example, the term b′(1)x(2) can be considered as the way we do

inner products in social recommendation as b(1) and x(2) are the embeddings of two nodes

in the context of their own networks. This allows us to use this two terms to formulate

the cross-network negative sampling distribution pnc(b|x) to provide hard negative samples.

Consequently, the probability distributions for G1 can be formulated as

pd(b|a) =
σ(b′(1)x(1))∑
c∈V1 σ(c′(1)x(1))

, pn(b|a) =
σ(−b′(1)x(1))∑
c∈V1 σ(−c′(1)x(1))

pdc(b|x) =
σ(b′(2)x(2))∑
c∈V1 σ(c′(2)x(2))

, pnc(b|x) =
σ(b′(1)x(2) + b′(2)x(1))∑
c∈V1 σ(c′(1)x(2) + c′(2)x(1))

(3.135)

and for G2 they can be computed similarly. In this way, we can encode different aspects

of the sampling design principles simultaneously and strike a balance among them through

the learning process. Since the real pd is often unknown and we define its approximation by

node2vec [161] to explicitly provide positive context pairs. In addition, as aforementioned,

the true positive alignment pair for an anchor node is the anchor link itself. Thus the nodes

sampled by pdc(b|x) can only be considered to form the intermediate positive alignment pairs.

In this way, we add another loss term in JB(a,x) to encode the differences between the anchor

links and intermediate positive alignment pairs, which gives the final loss

JB(a,x) =
1

B

[∑
i1,i2

log σ(bi1 ? x) + log σ(bi2 ? x) + max{0, σ(bi2 ? x)− σ(x ? x) + λ}

]

+
1

B

[∑
j1,j2

log σ(yj1 ? x) + log σ(yj2 ? x) + max(0, σ(yj2 ? x)− σ(x ? x) + λ)

]

+
1

B

[∑
i3,i4

log σ(−bi3 ? x) + log σ(−bi4 ? x) +
∑
j3,j4

log σ(−yj3 ? x) + log σ(−yj4 ? x)

]
.

(3.136)

94

Table 3.10: Data statistics.

Scenarios Networks # of nodes # of edges # of attributes

S1
ACM 9,872 39,561 17
DBLP 9,916 44,808 17

S2
Foursquare 5,313 54,233 0

Twitter 5,120 130,575 0

S3
Phone 1,000 41,191 0
Email 1,003 4,627 0

3.4.3 Experimental Evaluations

We evaluate the proposed NeXtAlign in the following aspects:

• Q1. How accurate is NeXtAlign for the task of network alignment?

• Q2. To what extent does NeXtAlign benefit from different components of the model?

Experimental Setup. We introduce the experimental setups as follows7.

Datasets. The statistics of the datasets are summarized in Table 3.10. We evaluate the

performance of network alignment in three different scenarios, and the datasets that we use

to construct them are described as below.

• S1 - ACM vs. DBLP. In this scenario, we want to align two undirected co-author

networks ACM and DBLP that are extracted from the papers in four areas (DM, ML,

DB and IR) and their corresponding citation information [150]. In these co-author

networks, nodes represent authors and there exists an edge between two nodes if they

are co-authors of at least one paper. Specifically, the ACM co-author network has 9,872

nodes and 39,561 edges. The DBLP co-author network has 9,916 nodes and 44,808

edges. The attributes of each node indicate the number of papers that are published

in different venues by that author. There exist 6,325 common authors across two

networks used as the ground-truth alignments [12].

• S2 - Foursquare-Twitter. In this scenario, we want to align two social networks of

Foursquare and Twitter. Each node represent a user and edges indicate the friendships

among users. There are 5,313 nodes and 5,120 edges in the Foursquare network. And

the Twitter network has 5,120 nodes and 130,575 edges. Node attributes are not

available in these two networks. In addition, there are 1,609 common users which are

used as the ground-truth alignments [130].

7The code can be found at https://github.com/sizhang92/NextAlign-KDD21.

95

Table 3.11: Results with 20% training data.

ACM-DBLP Foursquare-Twitter Phone-Email
Hits@10 Hits@30 Hits@10 Hits@30 Hits@10 Hits@30

NeXtAlign 0.842±0.003 0.901±0.008 0.296±0.010 0.417±0.007 0.393±0.017 0.675±0.011
Bright 0.790±0.004 0.867±0.004 0.250±0.015 0.321±0.010 0.257±0.009 0.534±0.009

NetTrans 0.793±0.007 0.836±0.008 0.247±0.004 0.346±0.010 0.265±0.003 0.533±0.008
FINAL 0.677±0.008 0.824±0.010 0.236±0.009 0.346±0.009 0.220±0.015 0.459±0.018
IONE 0.748±0.013 0.845±0.010 0.162±0.011 0.292±0.021 0.378±0.013 0.644±0.008

CrossMNA 0.653±0.004 0.790±0.004 0.024±0.017 0.075±0.038 0.154±0.004 0.405±0.012

• S3 - Phone-Email. In this scenario, we aim to align the communication networks

through different channels. In particular, the Phone network corresponds to the com-

munications among people via phone, while the Email network describes the commu-

nications by emails. More specifically, there exist 1,000 nodes and 41,191 edges in the

Phone network while the Email network is sparser with 1,003 nodes and 4,627 edges.

In addition, there are 1,000 common people that are involved in both communication

networks used as the ground-truth alignments [16].

Besides, in S1-S3, we evaluate with different training ratios (i.e., 10% and 20%). For exam-

ple, with the training ratio as 10%, we randomly select 10% of the ground-truth alignments

as the training data (i.e., anchor links) and test on the rest of the ground-truth alignments.

We randomly generate 10 sets of training data for each alignment scenario. We evaluate the

performance of all methods, and report the mean values and standard deviations.

Baseline methods. We compare the proposed method NeXtAlign with the following

semi-supervised network alignment methods: (1) Bright [32], (2) NetTrans [14], (3) semi-

supervised FINAL [9], (4) IONE [8], and (5) CrossMNA [27].

Machine. The model is implemented in Pytorch with one Nvidia GTX 1080 as GPU.

Hyperparameters settings. We use Adam optimizer with a learning rate 0.05 to train the

model. We use the same hyperparameter setting in all the three alignment scenarios. Specif-

ically, we set α = 0.5, λ = 0.1. In addition, we set the batch size as 300 and the number

of negative samples as k = 20. We train the model in 50 epochs. For all embedding based

methods, we learn node embeddings with the dimension d = 128. The parameters in all

baseline methods are set to their defaults.

Metrics. We evaluate the effectiveness of network alignment in terms of Hits@K. Given a

test pair (u, v), if node-v in G2 is among the top-K most similar nodes to node-u in G1, we

view it as a hit. Then Hits@K is computed by Hits@K = # of hits
of testing alignments

.

Effectiveness Results. We evaluate the performance with and without node attributes.

96

Table 3.12: Results with 10% training data.

ACM-DBLP Foursquare-Twitter Phone-Email
Hits@10 Hits@30 Hits@10 Hits@30 Hits@10 Hits@30

NeXtAlign 0.724±0.004 0.816±0.002 0.195±0.012 0.297±0.015 0.279±0.017 0.545±0.019
Bright 0.702±0.007 0.764±0.007 0.171±0.003 0.245±0.010 0.203±0.013 0.453±0.010

NetTrans 0.639±0.008 0.740±0.010 0.158±0.002 0.241±0.008 0.177±0.009 0.409±0.011
FINAL 0.460±0.010 0.649±0.007 0.139±0.009 0.237±0.012 0.175±0.012 0.386±0.016
IONE 0.477±0.018 0.611±0.017 0.069±0.014 0.167±0.022 0.180±0.009 0.444±0.009

CrossMNA 0.369±0.007 0.506±0.007 0.024±0.004 0.078±0.009 0.114±0.009 0.351±0.013

Table 3.13: Alignment on ACM-DBLP with attributes.

10% training data 20% training data
Hits@10 Hits@30 Hits@10 Hits@30

NeXtAlign 0.785±0.010 0.871±0.009 0.872±0.016 0.942±0.003
Bright 0.781±0.004 0.862±0.003 0.797±0.004 0.870±0.006

NetTrans 0.708±0.004 0.846±0.009 0.841±0.010 0.916±0.013
FINAL 0.651±0.013 0.817±0.009 0.825±0.008 0.916±0.006

Alignment without node attributes. We first evaluate the alignment performance without us-

ing node attributes under different training ratios. The results of the experiments using 20%

and 10% training data are summarized in Table 3.11 and Table 3.12 respectively. We have

the following observations. First, by comparing with the consistency-based semi-supervised

FINAL, our proposed method achieves an up to 20% improvement in both Hits@30 and

Hits@10, which indicates that despite their close relationships in capturing the alignment

consistency, our proposed method benefits from encompassing alignment disparity. Second,

our proposed method consistently outperforms all the other embedding based alignment

methods (i.e., Bright, NetTrans, IONE and CrossMNA). In particular, our method achieves

an at least 3% improvement in Hits@30 compared to the best competitor. This demonstrates

that our method can learn more meaningful node embeddings for the task of network align-

ment. Third, in the scenarios S2 and S3 where networks to be aligned are disparate with

each other in terms network structure (e.g., significant differences in edge density), our pro-

posed method achieves more improvements over the baseline methods than in the scenario

S1. This implies that our method can perform better to align networks where alignment

consistency might not be much helpful. Lastly, even with fewer training data (i.e., 10%

training data), our method still outperforms other baseline methods.

Alignment with node attributes. Moreover, we evaluate the performance of node attributed

network alignment in S1. The results are shown in Table 3.13. As we can see, all the methods

benefit a lot from leveraging node attributes to infer more accurate node alignments. In the

meanwhile, our method still outperforms all baseline methods under different training ratios.

97

Table 3.14: Ablations study on sampling strategies by Hits@30.

ACM-DBLP Foursquare-Twitter Phone-Email
NeXtAlign 0.9277 0.4103 0.6813
Uniform 0.8975 0.3924 0.6525
Degree 0.9093 0.3923 0.6637
Positive 0.9097 0.4040 0.6650

Ablation Studies. We also want to validate different components of the proposed method.

Ablation study on model design. We compare our proposed method with the following

variants: (1) RWR, which uses initial embeddings with pre-positioning by random walk

with restart (e.g., u0,v0), (2) RelGCN-U, which uses the output embedding by RelGCN-U

layer as the output node embeddings, and (3) RelGCN-C, which uses the re-scaled relative

positions as the final embeddings (e.g., ũ). The results are shown in Figure 3.27. As we can

see, the proposed method NeXtAlign performs the best, validating the necessities of all

components in the whole model.

ACM-DBLP Foursquare-Twitter Phone-Email
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

H
it
s
@

3
0

RWR

RelGCN-U

RelGCN-C

NeXtAlign

(a) 10% training data.

ACM-DBLP Foursquare-Twitter Phone-Email
0

0.2

0.4

0.6

0.8

1

H
it
s
@

3
0

RWR

RelGCN-U

RelGCN-C

NeXtAlign

(b) 20% training data.

Figure 3.27: Ablation study on model architecture.

Ablation study on sampling strategies. To demonstrate that our proposed sampling method

is indeed beneficial, we compare our proposed method with different variants by changing

the sampling strategies. Specifically, we compare with the model variants that for an anchor

node-x, (1 - uniform) uniformly at random sample negative context pairs and alignment

pairs, (2 - degree) sample negative pairs based on the node degree (e.g., pn(v|x) ∝ d
3/4
v

and pnc(u|x) ∝ d
3/4
u), and (3 - positive) sample nodes by the distribution which is pos-

itively correlated to the inner product among node embeddings (e.g., pn(v|x) ∝ σ(v′x)

and pnc(u|x) ∝ σ(u′x)). The results are summarized in Table 3.14. We observe that the

98

ACM-DBLP Foursquare-Twitter Phone-Email
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

H
it
s
@

1
0

Proposed scoring

Inner product

ACM-DBLP Foursquare-Twitter Phone-Email
0

0.2

0.4

0.6

0.8

1

H
it
s
@

3
0

Proposed scoring

Inner product

Figure 3.28: Ablation study on the scoring function.

10
0

10
1

10
2

Number of negative samples

0

0.2

0.4

0.6

0.8

1

H
it
s
@

3
0

ACM-DBLP

Foursquare-Twitter

Phone-Email

(a) 10% training data.

10
0

10
1

10
2

Number of negative samples

0

0.2

0.4

0.6

0.8

1

H
it
s
@

3
0

ACM-DBLP

Foursquare-Twitter

Phone-Email

(b) 20% training data.

Figure 3.29: Hits@30 with different sizes of negative samples.

pre-defined sampling strategies perform the worst. While using positively correlation helps

improve the alignment performance against the pre-defined distributions, our proposed sam-

pling strategy still performs the best. This validates the benefits of using both negative

correlation and positive correlation.

Ablation study on Eq. (3.134). Here, we compare the alignment performance with the model

variant by replacing the scoring function Eq. (3.134) with inner product using 20% training

data. As we can see in Figure 3.28, using Eq. (3.134) indeed boosts the performance.

Parameter study on the number of negative samples. We analyze how alignment performance

varies with different number of negative samples k = [1, 5, 10, 20, 50, 100, 500] on different

datasets. The comparisons are shown in Figure 3.29. As we can see, the alignment per-

formance is stable under different settings of sampling size k. In addition, using a relative

small size of negative samples (i.e., k ∈ [5, 20]) achieves a good overall performance.

99

CHAPTER 4: VERACITY IN BIG NETWORK ALIGNMENT

Many real-world networks are intrinsically incomplete with missing edges due to the diffi-

culties in data collections, and often have noise on the network structures. In this chapter,

we present our works to handle the challenges related to the veracity characteristic, includ-

ing (1) incomplete network alignment that jointly solves network alignment and network

completion tasks [10, 16] and (2) the robustness analysis of our proposed attributed network

alignment algorithm [9] against the structural noise [12].

4.1 INCOMPLETE NETWORK ALIGNMENT

Networks are prevalent and naturally appear in many areas. More often than not, in the

big data era, networks in many high-impact applications are collected from multiple sources

(i.e., variety), such as social networks from different social platforms, protein-protein inter-

action (PPI) networks from multiple tissues, transaction networks from multiple financial

institutes, etc. In order to integrate the considerable information associated with multiple

networks, network alignment is of key importance to find the node correspondence across

networks. For example, by aligning the same users in different transaction networks, the

transaction patterns of users can be comprehended to enhance the financial fraud detection.

However, real-world networks are often incomplete (i.e., veracity) due to, for instance, the

difficulties in data collections. As such, network completion (e.g., to infer the missing links)

has become another key task which benefits many graph mining applications by providing

higher-quality networks if handled properly.

Although the multi-sourced and incomplete characteristics often co-exist in many real

networks, the state-of-the-arts have been largely addressing network alignment and network

completion problems in parallel. For example, most of the prior network alignment methods

based on topological consistency have implicitly assumed that the topology of the input

networks for alignment are perfectly known a priori [6, 18]. On the other hand, the prior

network completion methods aim to infer the missing links in either a single network (e.g.,

by matrix completion [37]) or multiple networks that are aligned beforehand (e.g., by tensor

completion [163]). How can we align two input incomplete networks with missing edges?

A natural choice could be completion-then-alignment. That is, we first separately com-

plete the missing edges in the input networks by some prior network completion methods,

followed by the alignment across the resulting complete networks. However, there exist

some fundamental limits of this strategy on the alignment performance. First (alignment

100

accuracy), the promise of this strategy lies in that by inferring the missing links of each

input network, it would provide higher-quality input networks for the alignment task. How-

ever, the completion task itself might introduce noise (e.g., truly nonexistent edges), which

might compromise, or even prevail the benefits of the correctly inferred missing links for

the alignment task. Second (alignment efficiency), the network alignment alone is already

computationally costly. Most of the prior methods (even with approximation, such as [9])

have a time/space complexity at least O(n2), where n is the number of nodes of the input

networks, mainly due to the computation/storage of the alignment matrix and the sparse

matrix-matrix multiplication between the input adjacency matrices and the alignment ma-

trix1. Yet, network completion would make each input network even denser by adding the

missing edges. As a result, if we simply conduct the network alignment task on such densified

networks, it might make the computation even more intensive.

To address these limitations, we hypothesize that network alignment and network com-

pletion can inherently complement each other due to the following reasons. First, (H1)

alignment helps completion. Intuitively, when many nodes in one network share similar con-

nectivity patterns with their corresponding aligned nodes (e.g., connecting to the similar

sets of nodes) in another network, the knowledge about the existence or absence of links in

one network could help inferring the missing links in another network via alignment if we

can find such node correspondences across networks. Second, (H2) completion helps align-

ment. As introduced before, network completion could potentially improve the qualities of

input networks, leading to the enhancement of the alignment accuracy. Moreover, network

completion itself implicitly assumes a low-rank structure on the input networks, which, if

harnessed appropriately, will actually accelerate the alignment process.

Armed with these hypotheses, we jointly address network alignment and network comple-

tion problems so that the two tasks could mutually benefit from each other. To be specific,

in order to leverage alignment for the completion task, we impose the low-rank structure on

the underlying (true) network, which matches not only the observed links of the correspond-

ing network, but also the auxiliary observations from the other network via the alignment

matrix. Second, in order to leverage the network completion for the alignment, we recast

the network alignment problem via the low-rank structures of the complete networks, which

not only improves the alignment accuracy, but also speeds up the alignment process. We

formulate them into a joint optimization problem and develop an effective algorithm. The

main contributions of this work are summarized as:

• Problem Definition. To our best knowledge, we are the first to jointly address the

1Although the empirical run-time of some prior methods (e.g., BigAlign [18]) is near-linear, the big-O
time complexity of these methods is still quadratic.

101

network alignment and network completion tasks in an optimization framework.

• Algorithm and Analysis. We develop an effective algorithm (iNeat) based on the mul-

tiplicative update to solve the optimization. We also analyze its correctness, conver-

gence and complexity. We prove that the low-rank structure of the complete networks

guarantees a low-rank structure of the alignment matrix, which in turn reduces the

time complexity of each iterative update to be linear. To our best knowledge, this is

the first known network alignment algorithm with a provable linear time complexity.

• Experiments. We evaluate the effectiveness and efficiency of the proposed algorithm

by extensive experiments. The experimental results demonstrate that (1) network

alignment and network completion can indeed benefit from each other in terms of

alignment accuracy and missing edges recovery rate, (2) our algorithm iNeat achieves

a better alignment and completion quality, and meanwhile is faster than most of the

baseline methods, and (3) our algorithm is only linear w.r.t. the number of nodes.

4.1.1 Problem Definition

Table 4.1 summarizes the main symbols and notations used throughout this work. We use

bold uppercase letters for matrices (e.g., A), bold lowercase letters for vectors (e.g., s), and

lowercase letters (e.g., α) for scalars. We use A(i, j) to denote the entry at the intersection

of the i-th row and j-th column of the matrix A. We denote the transpose of a matrix by a

superscript prime (e.g., A′ is the transpose of A). The vectorization of a matrix is denoted

by vec(·), and the result vector is denoted by the corresponding bold lowercase letter (e.g.,

s = vec(S)). Equivalently, the transformation of a vector to its corresponding matrix is

denoted by a de-vectorization operator mat(·) (e.g., S = mat(s)). The trace of a matrix is

denoted by Tr(·), and the diagonal matrix of a vector is denoted by diag(·).
Many real-world networks are incomplete with missing edges. Although some incomplete-

ness scenarios may be possible (e.g., with the probabilities whether edges exist known a

priori), in this work, we only consider the network incompleteness where we only have the

knowledge about the existence (i.e., a value of 1) or the absence (i.e., a value of 0) of certain

entries (denoted by the set Ω) of its adjacency matrix. For the rest entries in the adjacency

matrix, we do not know if the corresponding links exist or not, and hence are represented as

the question mark ?. Figure 4.1 presents an illustrative example. All solid lines represent the

observed existing edges. As we can see in Figure 4.1 (a), the set of nodes (1, 2, 3, 4) in the first

incomplete network have similar topology to the nodes (6′, 7′, 8′, 9′), possibly leading to a

wrong alignment result that these two sets of nodes are aligned within each other. However,

102

Table 4.1: Symbols and notations.

Symbols Definition
G1, G2 incomplete networks
A1,A2 two adjacency matrices of G1 and G2

n1, n2 # of nodes in G1 and G2

m1, m2 # of nodes in G1 and G2

S an n1 × n2 alignment matrix between G1 and G2

PΩ(·), PΩ̄(·) an operator to project only to observed (unobserved) entries
U1,V1,U2,V2 low rank factorizations of A1 and A2

PΩ1 ,PΩ2 projection matrix, all 1s at all observed entries
11,12 1s vectors of length n1 and n2 respectively
λ, γ, β parameters
Tr[·] trace operator

diag(·) diagonal matrix of a vector
vec(·), mat(·) vectorization and de-vectorization operator

rank(·) the rank of a matrix
eig(·) eigenvalues of a matrix

the complete networks in Figure 4.1 (b) (by filling all the red lines) are identical, such as the

cliques formed by nodes (1, 2, 3, 4) and (1′, 2′, 3′, 4′). Thus, the set of nodes (1, 2, 3, 4) can

be aligned to nodes (1′, 2′, 3′, 4′) respectively, so can the rest of nodes. On the other hand,

by completing two networks separately, noisy edges might be incorrectly added (e.g., edge

(4, 6)) and the true network structure would fail to be recovered. The incorrectly recovered

networks may further mislead the alignment results. Therefore, how to align the incomplete

networks while completing them is the key challenge this work aims to address.

Problem 4.1. Incomplete Network Alignment.

Given: (1) incomplete adjacency matrices A1, A2 of two undirected networks G1,G2, and

(2-optional) a prior node similarity matrix L across networks.

Output: (1) the n1×n2 alignment/similarity matrix S, where S(a, x) represents to what

extent node-a in G1 is aligned with node-x in G2, and (2) complete adjacency matrices A∗1,A
∗
2.

Preliminaries. In this part, we introduce the necessary preliminaries for this study.

A - Network Alignment. Most prior network alignment algorithms, explicitly or implicitly,

are based on the topology consistency principle. Take FINAL as an example, the topology

consistency principle can be stated as follows2. Given two pairs of nodes, say (1) node-a in G1

and node-x in G2 and (2) node-b in G1 and node-y in G2, if nodes a and b are close neighbors

2In [9], we generalize the topology consistency principle to further accommodate the additional node/edge
attribute information, which is outside the scope of this work.

103

Figure 4.1: An illustrative example. (a) shows the input incomplete networks and (b) shows
part of the alignment across two complete networks.

and nodes x and y are also close neighbors, the topology consistency principle assumes the

similarity between a and x, and that between their respective close neighbors b and y to be

consistent, i.e., small [Ŝ(a, x) − Ŝ(b, y)]2A1(a, b)A2(x, y), where Ŝ is the similarity matrix.

Mathematically, this naturally leads to the following optimization problem:

min
ŝ

αŝ′(D−A2 ⊗A1)ŝ + (1− α)‖D
1
2 (ŝ− l)‖2

F (4.1)

where ŝ, l are the vectorization of the similarity matrix Ŝ and the prior similarity matrix L

respectively. D = D2⊗D1 and D1,D2 are the diagonal degree matrix of A1,A2 respectively.

Note that instead of using Ŝ to infer the alignment as in [9], we use the scaled similarity

matrix S as the ‘soft’ alignment matrix throughout this work where S is the matrix form

of s = Dŝ (i.e., S = mat(Dŝ)). In other words, the entries in the alignment matrix S

measure to what extent the two corresponding nodes are aligned together. Besides, the

second regularization term in Eq. (4.1) is to avoid trivial solutions, such as a zero matrix Ŝ.

In order to solve the network alignment problem in Eq. (4.1), we can either use an iterative

algorithm with a time complexity of O(nm) and a space complexity O(n2), or resort to its

closed-form solution whose time complexity could be as high as O(n6) where we assume that

the two networks have a comparable number of edges and nodes, i.e., O(m) = O(m1) =

O(m2) and O(n) = O(n1) = O(n2). In [9], we approximate the closed-form solution via

eigenvalue decomposition. But it is still quadratic in both time and space.

B - Network Completion. As mentioned earlier, incomplete networks might have many

unobserved missing edges, which could significantly change the true network structure and

hence mislead the topology-based network alignment. One straightforward way to address

this issue is by using matrix completion. Most of the prior matrix completion methods

104

are centered around minimizing the nuclear norm of the matrix [164]. However, since real-

world networks are usually very large, it is very costly to directly minimize the nuclear

norm of the adjacency matrices. In [165], the authors show that the nuclear norm ‖A1‖∗ =

min
U1,V1

1
2
(‖U1‖2

F +‖V1‖2
F) where A1 = U1V

′
1, which allows the factorization-based completion

methods. To be specific, we minimize the following objective function

J1(U1,V1,U2,V2) =
1

2
‖PΩ1(A1 −U1V

′
1)‖2

F +
λ

2
(‖U1‖2

F + ‖V1‖2
F)︸ ︷︷ ︸

network completion on A1

+
1

2
‖PΩ2(A2 −U2V

′
2)‖2

F +
λ

2
(‖U2‖2

F + ‖V2‖2
F)︸ ︷︷ ︸

network completion on A2

(4.2)

where the operator PΩ1 projects values to the observed set Ω1 of A1, e.g., PΩ1((U1V
′
1)(i, j)) =

(U1V
′
1)(i, j) for any (i, j) ∈ Ω1, otherwise 0; and operator PΩ2 is defined similarly.

4.1.2 iNeat: Optimization Formulation

In this part, we first present how to formulate the alignment task in the form of two

complete networks. A key contribution here is that we prove that the low-rank structure of

the complete networks guarantees a low-rank structure of the alignment matrix. Then we

present how to leverage the alignment matrix to infer missing edges across networks.

Network Completion Helps Network Alignment. By performing the network com-

pletion on both incomplete networks, the structure of the underlying networks could be

recovered so that we can perform the alignment task across higher-quality networks. We use

the factorization-based network completion (i.e., Eq (4.2)) and denote these two complete

networks by A∗1 = U1V
′
1 and A∗2 = U2V

′
2, where Ui and Vi (i = 1, 2) are the factorization

matrices of rank-r. We adopt Eq. (4.1) to perform the network alignment task. Note that in

general, we cannot guarantee the recovered adjacency matrices (A∗1 and A∗2) to be symmetric

because V1 (V2) may not be identical to U1 (U2). This leads to a slightly different objec-

tive function from Eq. (4.1) to align directed networks. Specifically, based on the topology

consistency in two directed networks, the optimization problem is formulated as

min
ŝ

αŝ′(D̂−A∗2 ⊗A∗1)ŝ + (1− α)‖D̂
1
2 (ŝ− l)‖2

F (4.3)

where D̂ = D2⊗D1+D̂2⊗D̂1

2
, D1 = diag(U1V

′
111) and D̂1 = diag(1′1U1V

′
1) are the outdegree

matrix and indegree matrix of A∗1, respectively. D2 and D̂2 are defined in a similar way.

105

However, directly solving the above problem requires at least O(n2) time complexity.

To address this issue, we give the following lemma, which states the alignment matrix S

intrinsically consists of a low-rank structure, thanks to the low rank of adjacency matrices.

Lemma 4.1. Low-Rank Structure of the Alignment Matrix S. Let ŝ be the solution of

Eq. (4.3) where A∗1 = U1V
′
1 and A∗2 = U2V

′
2 are two complete rank-r adjacency matrices.

Let the alignment matrix S be the scaled similarity matrix S = mat(D̂ŝ) and L be the

prior similarity matrix, then if α < 0.5, the alignment matrix can be expressed as S =

αU1MU2 + (1− α)L where M is an r1 × r2 matrix and r1, r2 are the ranks of A∗1 and A∗2.

Proof. By Woodbury matrix identity [108], the closed-form solution of Ŝ can be computed

by

ŝ = (1− α)D̂−1l + α(1− α)D̂−1UΛ−1V′D̂−1l (4.4)

where U = U2 ⊗U1, V = V2 ⊗V1, Λ = I− αV′D̂−1U.

First, we rewrite Λ−1 as follows. Since for any two matrices X,Y, the eigenvalues of their

product satisfies eig(XY) = eig(YX) [108], we obtain

|eig(αV′D̂−1U)| ≤ |eig(2αUV′(D2 ⊗D1)−1)|

= 2α|eig((U2V
′
2D
−1
2)⊗ (U1V

′
1D
−1
1))|

(4.5)

Here, the term U1V
′
1D
−1
1 represents a weighted directed network whose adjacency matrix

has eigenvalues within (−1, 1), so as the term U2V
′
2D
−1
2 . Thus, if α < 0.5, according to the

spectrum property of Kronecker product, we have 2α|eig((U2V
′
2D
−1
2) ⊗ (U1V

′
1D
−1
1))| < 1.

Then, we can use Neumann expansion on Λ−1 as

Λ−1 =
∞∑
k=0

(2α)k[V′(2D̂)−1U]k (4.6)

Next, we rewrite (2D̂)−1 as follows. Denote D̄1 = D1 + D̂1 and D̄2 = D2 + D̂2, we have

(2D̂)−1 = (D2 ⊗D1 + D̂2 ⊗ D̂1)−1

= [(D̄2 ⊗ D̄1)[I− (D̄−1
2 ⊗ D̄−1

1)(D2 ⊗ D̂1 + D̂2 ⊗D1)]]−1

= [I− (D̄−1
2 ⊗ D̄−1

1)(D2 ⊗ D̂1 + D̂2 ⊗D1)]−1(D̄−1
2 ⊗ D̄−1

1)

=
∞∑
j=0

[(D̄−1
2 D2)⊗ (D̄−1

1 D̂1) + (D̄−1
2 D̂2)⊗ (D̄−1

1 D1)]j(D̄−1
2 ⊗ D̄−1

1)

=
∞∑
j=0

j∑
i=0

(
j

i

)
[(D̄−1

2 D2)i(D̄−1
2 D̂2)j−iD̄−1

2]⊗ [(D̄−1
1 D̂1)i(D̄−1

1 D1)j−iD̄−1
1]

(4.7)

106

By substituting the above equation into Eq. (4.6), the matrix Λ−1 can be derived as

Λ−1 =
∞∑
k=0

∞∑
j=0

j∑
i=0

(2α)k
(
j

i

)k
[V′2(D̄−1

2 D2)i(D̄−1
2 D̂2)j−iD̄−1

2 U2]k

⊗ [V′1(D̄−1
1 D̂1)i(D̄−1

1 D1)j−iD̄−1
1 U1]k

(4.8)

Denote s = D̂ŝ and l̂ = D̂−1l. Armed with the Kronecker product property vec(ABC) =

(C′ ⊗A)vec(B), by substituting Eq. (4.8) into Eq. (4.4), we obtain the alignment matrix

S = mat(D̂ŝ) as

S = αU1MU′2 + (1− α)L (4.9)

where M is an r1 × r2 matrix and is computed by

M = (1− α)
∞∑
k=0

∞∑
j=0

j∑
i=0

2kαk
(
j

i

)k
[V′1(D̄−1

1 D̂1)i(D̄−1
1 D1)j−iD̄−1

1 U1]kV′1L̂V2

× [U′2(D̄−1
2 D2)i(D̄−1

2 D̂2)j−iD̄−1
2 V2]k

(4.10)

This completes the proof. QED.

Remarks. Eq. (4.9) suggests that the alignment matrix S consists of two parts, including

a low-rank structure and an additive term L to reflect the prior knowledge and is a convex

combination of these two parts. Such a convex optimization follows Eq. (4.3) where a

regularization term is added to minimize the inconsistency between the alignment result

and the prior information. Note that other types of regularization in Eq. (4.3) can lead to

more complex combinations with the prior knowledge which may utilize both the reliable

and the unreliable prior information in a better way. However, we only consider Eq. (4.3)

and Eq. (4.9) in this work and leave the more complex combinations to future works.

In practice, the prior knowledge matrix L is either low-rank (e.g., a rank-one uniform

matrix) or very sparse. Having this in mind, we will mainly focus on how to learn the

true low-rank structure part of S (i.e., U1MU′2) from the input incomplete networks. This

naturally leads to the following effective strategy. First, we temporarily treat the low-rank

structure part as the alignment matrix to be solved in the optimization problems (i.e.,

S ≈ U1MU′2). After U1,M,U2 are obtained, we can then calibrate the result by averaging

between the learned S and the prior knowledge L to further emphasize the importance of

the prior knowledge, i.e., S← (1− α)L + αS. As we will show in the next section, a direct

benefit of this strategy is that we can reduce the overall complexity (for both space and time

cost) to be linear.

107

Figure 4.2: Network completion via the alignment.

To take advantages of the low-rank structure of S under the above strategy, instead of

minimizing Eq. (4.3) regarding the similarity matrix Ŝ, we alternatively optimize the topol-

ogy consistency on the low-rank structure of alignment matrix S = U1MU′2 without the

second regularization term. Given A∗1 = U1V
′
1, A∗2 = U2V

′
2, by using the properties

vec(A)′vec(B) = Tr(A′B) and vec(ABC) = (C′ ⊗A)vec(B), network alignment across the

complete networks can be formulated as minimizing the following objective function

J2(U1,V1,U2,V2,M) =
γ

2
s′vec(D1SD2 + D̂1SD̂2)− γs′vec(U1V

′
1SV2U

′
2)

=
γ

2
Tr(D1U1MU′2D2U2M

′U′1 + D̂1U1MU′2D̂2U2M
′U′1)︸ ︷︷ ︸

alignment across complete networks

− γTr(U1V
′
1U1MU′2V2U

′
2U2M

′U′1)︸ ︷︷ ︸
alignment across complete networks

.

(4.11)

Network Alignment Helps Network Completion. Despite the effectiveness of the

factorization-based network completion methods (i.e., Eq. (4.2)), in some applications, the

information of a single network alone might be insufficient to correctly infer the missing

edges. Meanwhile, the alignment across the two networks may provide extra hints of how

to infer the missing edges. To be specific, since the aligned nodes are likely to share similar

connectivity patterns, the observed existing edges in one network could potentially help

recover the missing edges in the other network via the alignment matrix. Figure 4.2 presents

an illustrative example. Here, node-a in G1 and node-x in G2 are aligned together, and the

neighbor of x (say node-y) is aligned with the neighbor of a (e.g., node-b), which is not

observed to connect with a. If we perform the completion solely based on the observed

108

information of G1, we might probably conclude that the edge between a and b does not exist.

However, the facts that (1) a and x are aligned, (2) b and y are aligned, and (3) there is an

edge between x and y might provide an auxiliary confidence about the existence of the edge

between a and b. In general, we can estimate such auxiliary confidence of the existence of

the edge between a and b in G1 as

A∗1(a, b) ≈
n2∑
x,y

S(a, x)S(b, y)A2(x, y) = (SA2S
′)(a, b) (4.12)

where S = U1MU′2 is the alignment matrix learned from the topology consistency.

In the experiments, we find that such auxiliary confidence is most powerful to estimate the

existence/absence of an edge (a, b) when such an edge itself is not observed in G1 (i.e.,(a, b) ∈
Ω̄1). Mathematically, this can be formulated as the following objective function.

J3(U1,V1,U2,V2,M) =
β

2
‖PΩ̄1

(U1V
′
1 −U1MU′2A2U2M

′U′1)‖2
F︸ ︷︷ ︸

completion of G1 based on the observed edges in G2

+
β

2
‖PΩ̄2

(U2V
′
2 −U2M

′U′1A1U1MU′2)‖2
F︸ ︷︷ ︸

completion of G2 based on the observed edges in G1

(4.13)

where Ω̄1 and Ω̄2 are the unobserved set of A1 and A2.

Overall Objective Function. We impose the non-negativity constraints on all the vari-

ables U1,V1,U2,V2,M to guarantee that all the entries in matrices A∗1,A
∗
2,S to be non-

negative. The overall optimization problem is formulated as

min
U1,V1,U2,V2,M

J(U1,V1,U2,V2,M) = J1 + J2 + J3

s.t U1,U2,V1,V2,M ≥ 0
(4.14)

4.1.3 iNeat: Optimization Algorithm

We first present the proposed algorithm to solve the optimization problem Eq. (4.14).

Then, we analyze the algorithm in terms of the correctness, convergence and complexity.

Optimization Algorithm. Since the overall objective function Eq. (4.14) is not jointly

convex, we optimize it by block coordinate descent. That is, the objective function is alter-

natively minimized with respect to one variable group (e.g., U1) while fixing the others once

at a time. For the sake of conciseness, we only show the minimization procedures over U1

109

and M in this section. Other variables such as V1,U2,V2 can be solved in a similar way

and we omit the details. One can refer to the details in [16].

First, we show the update algorithm over U1. The gradient of Eq. (4.2) with respect to

U1 is computed by ∂J1
∂U1

= P1 −Q1 where

P1 = [PΩ1 � (U1V
′
1)]V1 + λU1 (4.15)

Q1 = (PΩ1 �A1)V1 (4.16)

and PΩ1(i, j) = 1 for (i, j) ∈ Ω1, otherwise PΩ1(i, j) = 0.

As for Eq. (4.11), note that D1 = diag(U1V
′
111) and D̂1 = diag(1′1U1V

′
1) are also in

terms of U1, thus the partial gradient is computed by ∂J2
∂U1

= P2 −Q2 where

P2 =
γ

2
[(U1MU′2D2U2M

′)�U1]1r11
′
1V1 +

γ

2
111

′
r1

[(MU′2D̂2U2M
′U′1)�U′1]V1

+ γ(D1U1MU′2D2U2M
′ + D̂1U1MU′2D̂2U2M

′) (4.17)

Q2 = γV1U
′
1U1MU′2U2V

′
2U2M

′ + γU1MU′2U2V
′
2U2M

′U′1V1

+ γU1V
′
1U1MU′2V2U

′
2U2M

′ (4.18)

And the gradient of Eq. (4.13) over U1 is ∂J3
∂U1

= P3 −Q3 where

P3 = 2β[PΩ̄1
� (U1MU′2A2U2M

′U′1)]U1MU′2A2U2M
′ + β[PΩ̄1

� (U1V
′
1)]V1

+ 2βA1U1MU′2[PΩ̄2
� (U2M

′U′1A1U1MU′2)]U2M
′ (4.19)

Q3 = β[PΩ̄1
� (U1MU′2A2U2M

′U′1)]V1 + β[PΩ̄1
� (U1V

′
1 + V1U

′
1)]U1MU′2A2U2M

′

+ βA1U1MU′2[PΩ̄2
� (U2V

′
2 + V2U

′
2)]U2M

′ (4.20)

and matrix PΩ̄2
(i, j) = 1 for any (i, j) /∈ Ω2.

A fixed-point solution of ∂J
∂U1

= 0 under the non-negativity constraint of U1 leads to the

following multiplicative update rule

U1(p, q)← U1(p, q) 4

√
Q1(p, q) + Q2(p, q) + Q3(p, q)

P1(p, q) + P2(p, q) + P3(p, q)
(4.21)

Second, the optimization algorithm over M is given as below. The gradient of Eq. (4.11)

w.r.t M can be derived as ∂J2
M

= P4 −Q4 where

P4 = γU′1D1U1MU′2D2U2 + γU′1D̂1U1MU′2D̂2U2 (4.22)

Q4 = γU′1U1V
′
1U1MU′2V2U

′
2U2 + γU′1V1U

′
1U1MU′2U2V

′
2U2 (4.23)

110

And the gradient of Eq. (4.13) w.r.t M is computed by ∂J3
M

= P5 −Q5 where

P5 = βU′1A1U1MU′2[PΩ̄2
� (U2V

′
2 + V2U

′
2)]U2

+ βU′1[PΩ̄1
� (U1V

′
1 + V1U

′
1)]U1MU′2U

′
2A2U2 (4.24)

Q5 = 2βU′1A1U1MU′2[PΩ̄2
� (U2M

′U′1A1U1MU′2)]U2

+ 2βU′1[PΩ̄1
� (U1MU′2A2U2M

′U′1)]U1MU′2A2U2 (4.25)

Consequently, the fixed-point solution of ∂J
∂M

= 0 under the non-negative constraint leads

to the following update rule

M(p, q)←M(p, q) 4

√
Q4(p, q) + Q5(p, q)

P4(p, q) + P5(p, q)
(4.26)

Initialization. Since the optimization problem in Eq. (4.14) is not a joint convex problem, a

good initialization of each variable group could play an important role of obtaining a good

final solution. For U1 and U2, we initialize them by solving the symmetric non-negative

matrix factorization of A1 and A2, e.g., minimizing ‖A1 −U1U
′
1‖2
F over U1 ≥ 0. Same as

[166], we use the following multiplicative update rule to obtain the solution

U1 ← U1 � [1− ε+ ε
A1U1

U1(U′1U1)
] (4.27)

where ε is suggested to be set to 0.5 in practice. Then we set V1 = U1 due to the symmetry

of A1 and initialize U2,V2 similarly. As for the variable M, given the initial U1 = V1,U2 =

V2, we can simplify the computation of Eq. (4.10) and initialize M as

M = (1− α)
K∑
k=0

αk+1(U′1D
−1
1 U1)kU′1D

−1
1 LD−1

2 U2(U′2D
−1
2 U2)k (4.28)

where the constant K can be set to a relatively large number, e.g., 100.

Overall, the proposed algorithm is summarized in Algorithm 4.1. First, it initializes each

variable as line 1. Then, the algorithm alternatively updates each variable group one by

one (line 3-7) until it converges or the maximum iteration number tmax is reached. The

algorithm outputs the complete networks A∗1,A
∗
2 (line 10), and the alignment matrix S.

Proof and Analysis. In this part, we provide the theoretical analysis of the updating rule

of U1. We first prove that the fixed-point solution of Eq. (4.21) satisfies the KKT condition.

Then we analyze its convergence, as well as its time and space complexity. The analyses and

111

Algorithm 4.1: iNeat: Incomplete Network Alignment.

Input : (1) the adjacency matrices A1, A2 of the incomplete networks G1, G2, (2)
the optional prior alignment preference L, (3) the rank sizes r1, r2, (3) the
parameters α, λ, γ, β, and (4) the maximum iteration number tmax.

Output: (1) the alignment matrix S between G1 and G2, and (2) the complete
adjacency matrices A∗1,A

∗
2.

Initialize U1,V1,U2,V2 by Eq. (4.27), M by Eq. (4.28), t = 1;
while not converge and t ≤ tmax do

Update U1 by Eq. (4.21);
Update V1;
Update U2;
Update V2;
Update M by Eq. (4.26);
Set t← t+ 1;

end
A∗1 = U1V

′
1 and A∗2 = U2V

′
2;

S = αU1MU′2 + (1− α)L.

proofs for other variables are similar and are omitted for brevity.

Theorem 4.1. Correctness of Eq. (4.21). At convergence, the fixed-point solution of Eq.

(4.21) satisfies the KKT condition.

Proof. Let Σ ∈ Rn1×r1 be the Lagrangian multiplier and the Lagrangian function of Eq.

(4.14) be L(U1) = J(U1)−Tr(Σ′U1). By setting the gradient of L w.r.t U1 to 0, we obtain

Σ = P1 + P2 + P3 −Q1 −Q2 −Q3 (4.29)

The KKT complementary condition for the non-negativity of U1 gives

(X1 + X2 + X3 −Y1 −Y2 −Y3)�U1 = 0 (4.30)

According to the updating rule Eq. (4.21), at convergence, we have for ∀p, q,

U1(p, q) = U1(p, q) 4

√
Q1 + Q2 + Q3

P1 + P2 + P3

(4.31)

which is equivalent to

(P1 + P2 + P3 −Q1 −Q2 −Q3)� (U1)4 = 0 (4.32)

Eq. (4.30) and Eq. (4.32) are equivalent, so the KKT condition is satisfied. QED.

112

Then, we show the convergence of updating U1 under Eq. (4.21). First, the following

lemma gives the auxiliary function for the objective function Eq. (4.14) w.r.t U1.

Lemma 4.2. Auxiliary function of J(U1). Let J(U1) denote all the terms in Eq. (4.14)

that contains U1, then the following function Z(U1, Ũ1)

Z(U1, Ũ1) =
1

4

∑
p,q

[(PΩ1 � (Ũ1V
′
1))V1](p, q)

U4
1(p, q) + Ũ4

1(p, q)

Ũ3
1(p, q)︸ ︷︷ ︸

T ′1

−
∑
p,q

[(PΩ1 �A1)V1](p, q)Ũ1(p, q)(1 + log
U1(p, q)

Ũ1(p, q)
)︸ ︷︷ ︸

T ′2

+
λ

4

∑
p,q

U4
1(p, q) + Ũ4

1(p, q)

Ũ2
1(p, q)︸ ︷︷ ︸

T ′3

+
γ

12

∑
p,q

Z1(p, q)
3U4

1(p, q) + Ũ4
1(p, q)

Ũ3
1(p, q)︸ ︷︷ ︸

T ′4

+ γT ′5 +
β

4

∑
p,q

[(PΩ̄1
� (Ũ1V

′
1))V1](p, q)

U4
1(p, q) + Ũ4

1(p, q)

Ũ3
1(p, q)︸ ︷︷ ︸

T ′6

+
β

2

∑
p,q

Z2(p, q)
U4

1(p, q)

Ũ3
1(p, q)︸ ︷︷ ︸

T ′7

+
β

2

∑
p,q

Z3(p, q)
U4

1(p, q)

Ũ3
1(p, q)︸ ︷︷ ︸

T ′8

+βT ′9 + βT ′10

(4.33)

where

Z1 =
1

2
[(Ũ1MU′2D2U2M

′)� Ũ1]1r11
′
1V1 +

1

2
111

′
r1

[(MU′2D̂2U2M
′Ũ1)� Ũ1]V1

+ diag(Ũ1V
′
111)Ũ1MU′2D2U2M

′ + diag(V1U
′
111)Ũ1MU′2D̂2U2M

′ (4.34)

Z2 = [PΩ̄1
� (Ũ1MU′2A2U2M

′Ũ′1)]Ũ1MU′2A2U2M
′ (4.35)

Z3 = A1Ũ1MU′2[PΩ̄2
� (U2M

′Ũ′1A1Ũ1MU′2]U2M
′ (4.36)

T ′5 = −
∑

o,p,q,r,s

(MU′2U2V
′
2U2M

′)(o, q)V1(p, r)Ũ1(s, r)Ũ1(s, o)× Ũ1(p, q)

(1 + log
U1(p, q)U1(s, r)U1(s, o)

Ũ1(p, q)Ũ1(s, r)Ũ1(s, o)
) (4.37)

T ′9 = −
∑

o,p,q,r,s

PΩ̄1
(p, o)V1(o, q)(MU′2A2U2M

′)(s, r)Ũ1(o, s)× Ũ1(p, r)Ũ1(p, q)

(1 + log
U1(p, q)U1(o, s)U1(p, r)

Ũ1(p, q)Ũ1(o, s)Ũ1(p, r)
) (4.38)

113

T ′10 = −
∑

o,p,q,r,s,t

PΩ̄2
(p, q)(U2V

′
2)(p, q)(U2M

′)(p, r)Ũ1(s, r)A1(s, t)Ũ1(t, o)(MU′2)(o, q)

× (1 + log
U1(s, r)U1(t, o)

Ũ1(s, r)Ũ1(t, o)
) (4.39)

is an auxiliary function of J(U1) for any U1, Ũ1 ≥ 0 after removing some constant terms

such that Z(U1, Ũ1) ≥ J(U1) and Z(U1,U1) = J(U1). And it is also a convex function

w.r.t U1 and its global minima is

U1(p, q) = Ũ1(p, q) 4

√
Q̃1(p, q) + Q̃2(p, q) + Q̃3(p, q)

P̃1(p, q) + P̃2(p, q) + P̃3(p, q)
(4.40)

where P̃i, Q̃i are all in terms of Ũ1 while sharing the same formulas with Pi,Qi, i = 1, 2, 3.

Proof. Refer the proof to Appendix B in [16]. QED.

Next, we show the convergence of updating U1 by Eq. (4.21) in the following theorem.

Theorem 4.2. Convergence of Eq. (4.21). When other variables are fixed, under the

updating rule Eq. (4.21), the objective function w.r.t. U1 monotonically non-increases.

Proof. Denote U1 at iteration t as U
(t)
1 . According to Lemma 4.2, the global minima U

(t+1)
1

of the auxiliary function is achieved by minimizing Z(U1,U
(t)
1) over U1, which leads to

Z(U
(t+1)
1 ,U

(t)
1) ≤ Z(U

(t)
1 ,U

(t)
1) = J(U

(t)
1) (4.41)

Besides, based on Lemma 4.2, J(U
(t+1)
1) ≤ Z(U

(t+1)
1 ,U

(t)
1) and therefore J(U

(t+1)
1) ≤ J(U

(t)
1)

which means the objective function w.r.t. U1 is monotonically non-increasing. QED.

The time and space complexities of each updating iteration in Algorithm 4.1 are summa-

rized in Lemma 4.3. Note that by exploring the low-rank structure of the alignment matrix,

the time complexity is reduced to linear.

Lemma 4.3. Complexity of iNeat. The time complexity of each update iteration in

Algorithm 4.1 is O(nr2 + min{|Ω̄|, |Ω|}r), and the space complexity is O(nr+ min{|Ω̄|, |Ω|})
where n, |Ω|, |Ω̄| are the number of nodes, the number of observed and unobserved entries in

two incomplete networks respectively. And r denotes the rank of networks.

Proof. For time complexity, calculating the term P1,Q1,P3 and Q3 in each iteration has

O(nr2 +mr + min{|Ω̄|, |Ω|}r) time complexity and O(m+ nr) space complexity. Note that

PΩ1 + PΩ̄1
= 1n1×n1 . In this way, for example, P1 can be computed from either PΩ1 or

114

PΩ̄1
. Thus, we use min{|Ω̄|, |Ω|} for the complexity analysis. For terms X2 and Q2, it takes

O(nr2) time complexity and O(nr) space complexity. For other variables V1,U2,V2 and

M, since the analyses are similar, we omit the analyses for brevity. Overall, we can obtain

the time and space complexity in the above lemma. QED.

We remark that the linear complexity is obtained in each updating iteration of Algorithm

4.1. If we carry out line 10-11 in a straightforward way, it will incur an additional O(n2) cost

due to the multiplications between low-rank matrices (e.g., U1V
′
1, U1MU′2, etc.) as well as

the need to store the potentially dense matrices (e.g., A∗1, S, etc). To address this issue,

we can store the resulting A∗1, A∗2 and S in a compact way by the corresponding low-rank

matrices. Then when we access a certain entry of the matrix (e.g. A∗1), we perform the

vector-vector inner product between the corresponding rows of U1 and V1.

4.1.4 Experimental Evaluations

In this part, we evaluate the proposed algorithm iNeat in the following two aspects:

• Effectiveness: How accurate is our algorithm for aligning incomplete networks? How

effective is our algorithm to recover missing edges by leveraging the alignment result?

• Efficiency: How fast and scalable is our algorithm?

Experimental Setup. We first introduce the experimental setups as follows3.

Datasets. We evaluate the proposed algorithm on three types of real-world networks, includ-

ing the collaboration network, infrastructure network and social networks. The statistics of

all the datasets are summarized in Table 4.2.

• Collaboration Network : We use the collaboration network in the general relativity and

quantum cosmology (Gr-Qc) area from the e-print arXiv [112]. Each node represents

an author and there exists an edge if two authors have co-authored at least one paper.

• Infrastructure Network : This dataset is a network of Autonomous Systems (AS) in-

ferred from Oregon route-view [112]. In the network, nodes are the routers, and edges

represent the peering information among routers.

• Social Network : We use the social network collected from Google+ [167]. In the

network, nodes are the users and an edge denotes that one user has the other user in

3The code can be found in https://github.com/sizhang92/iNeat-ICDM17.

115

Table 4.2: Data statistics.

Category Network # of Nodes # of Edges
Collaboration Gr-Qc 5,241 14,484
Infrastructure Oregon 7,352 15,665

Social Google+ 23,628 39,194
Social Youtube 1,134,890 2,987,624

Communication Phone 1,000 41,191
Communication Email 1,003 4,627

her circles. We also use the Youtube network [168] where nodes are the Youtube users

and edges represent the friendship among users.

• Contact Networks : This dataset contains communication networks via different chan-

nels. In particular, we aim to align the communication networks via phone (Channel

1) and emails (Channel 2). Each node in both networks represents a person. An edge

in Channel 1 network indicates two people contact each other through phone whereas

each edge in Channel 2 network represents two people send an email. There are 1,000

common nodes in both networks that are used as the alignment ground-truth.

Based on these datasets except Contact dataset, we construct four pairs of incomplete

networks for alignment evaluations by the following steps. For each dataset, we first generate

a random permutation matrix and use it to construct the second (permuted) network. Then,

in each of these two networks, we remove 0.1%, 0.5%, 1%, 5%, 10%, 15%, 20% of the total

number of edges uniformly at random to generate the unobserved edges. For the Contact

dataset (Channel 1 and Channel 2), we first compute the edge betweenness score for each

edge, which is sum of the fraction of all pairs of shortest paths through the edge [169]. Then

we normalize the edge betweenness scores such that they sum to 1, i.e.,
∑

(u,v)∈G1 sb((u, v)) =

1 where sb((u, v)) is the edge betweenness score of edge (u, v) and then we use the normalized

scores as the probabilities to remove the corresponding edge as an unobserved edge. We run

our algorithm and other comparison methods in all the pairs of incomplete networks.

Comparison Methods. We compare iNeat with the following baseline methods.

• Alignment. To evaluate the alignment performance of our proposed algorithm iNeat,

we compare it with the following prior network alignment algorithms, including (1)

NetAlign [5], (2) IsoRank [3], (3) FINAL-P+ [9]. Besides, in order to validate whether

alignment and imputation are mutually beneficial from each other, we use the low-

rank networks completed solely by Eq. (4.2) as the input networks for FINAL-P+.

116

1.0% 5.0% 10% 15% 20%

of unobserved edges

0

0.2

0.4

0.6

0.8

1
a
lig

n
m

e
n
t
a
c
c
u
ra

c
y

iNEAT

NetAlign

IsoRank

FINAL-P+

FINAL-IMP

DegSim

(a) Gr-Qc collaboration
networks.

1% 5% 10% 15% 20%

of unobserved edges

0

0.2

0.4

0.6

0.8

1

a
lig

n
m

e
n

t
a

c
c
u

ra
c
y

iNEAT

NetAlign

IsoRank

FINAL-P+

FINAL-IMP

DegSim

(b) Oregon infrastruc-
ture networks.

1.0% 5.0% 10% 15% 20%

of unobserved edges

0

0.2

0.4

0.6

0.8

1

a
lig

n
m

e
n
t
a
c
c
u
ra

c
y

iNEAT

NetAlign

IsoRank

FINAL-P+

FINAL-IMP

DegSim

(c) Google+ social net-
works.

1% 5% 10% 15% 20%

of unobserved edges

0.5

0.6

0.7

0.8

0.9

1

a
lig

n
m

e
n
t
a
c
c
u
ra

c
y

iNEAT

NetAlign

IsoRank

FINAL-P+

FINAL-IMP

DegSim

(d) Contact channel 1
vs. channel 2.

Figure 4.3: (Higher is better.) Alignment accuracy vs. the number of unobserved edges.

We name this method as FINAL-IMP. We also show the alignment results by the

degree similarity (DegSim), which is also used as the prior knowledge matrix L.

• Completion. To evaluate the completion performance, we compare our algorithm with

the existing matrix completion methods which are for the single network completion

task, including (1) a matrix factorization method based on Eq. (4.2) (NMF-IMP), (2)

an accelerated proximal gradient based nuclear norm minimization method (NNLS)

[42], (3) a Riemannian trust-region based matrix completion method (RTRMC) [40].

Machines. All experiments are performed on a Windows machine with four 3.6GHz Intel

Cores and 32G RAM. The algorithms are programmed with MATLAB using a single thread.

Effectiveness Analysis. We first evaluate the alignment accuracy with different numbers

of unobserved edges in the incomplete networks. We use a heuristic greedy matching algo-

rithm as the post processing step on the alignment matrix to obtain the one-to-one mapping

matrix between two input networks, then compute the alignment accuracy with respect to

the ground-truth (i.e., the permutation matrix). The results are summarized in Figure 4.3.

We have the following observations. First, we observe that iNeat outperforms the baseline

methods with different numbers of unobserved edges. To be specific, our method achieves

an up to 30% alignment accuracy improvement, compared with the baseline methods that

directly align across two incomplete networks (i.e., NetAlign, IsoRank, FINAL-P+). Sec-

ond, the degree similarity (i.e., L) alone gives a very poor performance on the alignment

accuracy, whereas by averaging L and U1MU′2, the alignment matrix (i.e., results of iNeat)

provides a much better accuracy. This verifies the effectiveness of our strategy combining

the low-rank structure of alignment matrix and prior knowledge L. Third, the accuracy of

iNeat is higher than that of FINAL-IMP, which indicates that solving the alignment and

imputation tasks simultaneously indeed achieves a better performance than the completion-

then-alignment strategy. Specifically, as Figure 4.3 (a) and Figure 4.3 (b) show, in some

117

0.1% 0.5% 1% 5% 10% 15% 20%

of unobserved edges

0

0.2

0.4

0.6

0.8

1

re
c
o

v
e

ry
 r

a
te

iNEAT

NMF-IMP

NNLS

RTRMC

(a) Gr-Qc collaboration network.

0.1% 0.5% 1% 5% 10% 15% 20%

of unobserved edges

0

0.1

0.2

0.3

0.4

0.5

0.6

re
c
o

v
e

ry
 r

a
te

iNEAT

NMF-IMP

NNLS

RTRMC

(b) Google+ social network.

Figure 4.4: (Higher is better.) Recovery rate vs. the number of unobserved edges.

cases, the pure completion may introduce too much noise in the incomplete networks and

hence lead to an even worse alignment result than that of other alignment baseline methods

(those without performing network completion at all).

Second, to evaluate the effectiveness of iNeat for network completion, we assume the

missing edges are recovered if the corresponding entries of the completed adjacency matrix

are larger than a certain threshold (e.g., set to be 0.3 in this work). Then, we calculate

the recovery rate over the total number of missing edges. In addition, as the algorithms

of network completion may achieve different performance with different initializations, we

repeat the algorithms for 20 runs and present the mean edge recovery rates and variances.

The results are shown in Figure 4.4. As we can see, iNeat has a higher recovery rate than

other baseline methods, indicating that the completion performance is indeed improved by

leveraging the alignment across two networks. Besides, the network completion performance

of our algorithms are not sensitive to the algorithm initializations. For NNLS and RTRMC

baseline methods, we did not observe any variances.

Third, we study how different parameters affect the alignment accuracy. In our exper-

iments, we mainly study three parameters, including (1) γ which controls the importance

of alignment task, (2) β which controls the importance of cross-network completion task,

and (3) r which is the rank of the complete network. The results are shown in Figure 4.5.

As we can see, the alignment accuracy is stable within a wide range of parameter settings.

Besides, Figure 4.5 (c) suggests that a relatively small rank might be sufficient to achieve a

satisfactory alignment performance. We also observe in Figure 4.5 (d) that (1) by leveraging

the combination of both U1MU′2 and the prior information L can significantly improve the

118

0.01 0.1 1 10 100
0.1

0.2

0.3

0.4

0.5

0.6
a

lig
n

m
e

n
t

a
c
c
u

ra
c
y

r=50, =1

r=50, =10

r=20, =1

(a) Alignment accuracy
vs. γ.

0.01 0.1 1 10 100
0.1

0.2

0.3

0.4

0.5

0.6

a
lig

n
m

e
n

t
a

c
c
u

ra
c
y

r=50, =1

r=50, =10

r=20, =1

(b) Alignment accuracy
vs. β.

10 20 40 60 80 100
r

0.1

0.2

0.3

0.4

0.5

0.6

a
lig

n
m

e
n

t
a

c
c
u

ra
c
y

=10, =10

=1, =1

=10, =1

(c) Alignment accuracy
vs. rank r.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

a
lig

n
m

e
n
t
a
c
c
u
ra

c
y

=10, =10

=1, =1

=10, =1

(d) Alignment accuracy
vs. α.

Figure 4.5: Parameter study on collaboration networks with 5% unobserved edges: study
the effect of the parameters γ, β, rank r and α in terms of alignment accuracy.

0 250 1,000 2,000 3,000

running time (second)

0

0.1

0.2

0.3

0.4

0.5

0.6

a
lig

n
m

e
n
t
a
c
c
u
ra

c
y

iNEAT

NetAlign

IsoRank

FINAL-P

FINAL-IMP

DegSim

(a) Balance between running time and align-
ment accuracy.

200 400 600 800

running time (second)

0.4

0.45

0.5

0.55

0.6

re
c
o
v
e
ry

 r
a
te

iNEAT

NMF-IMP

NNLS

RTRMC

(b) Balance between running time and recov-
ery rate.

Figure 4.6: Quality-speed results on the collaboration network with 10% unobserved edges.

alignment performance, and (2) α = 0.5 leads to better results in most cases.

Efficiency Analysis. In order to evaluate the trade-off between the effectiveness and

efficiency of our method, we measure the quality from two aspects, including the quality

of alignment and that of network completion. Here, we show the trade-off results on the

collaboration network with 10% unobserved edges in Figure 4.6. As we can see in Figure 4.6

(a), the running time of our method iNeat is slightly higher than IsoRank and FINAL-P+,

but it achieves a 15%-25% alignment accuracy improvement across the incomplete networks.

Meanwhile, our method is much faster than NetAlign.

Moreover, to evaluate the quality of network completion, note that the running time is

the time for completing two incomplete networks. As Figure 4.6 (b) shows, iNeat obtains a

better recovery rate and less running time. To be specific, compared with NMF-IMP, iNeat

119

2 4 6 8 10

of nodes 10
4

0

2000

4000

6000

8000

10000

ru
n
n
in

g
 t
im

e
 (

s
e
c
)

r=5

r=10

r=20

r=30

r=50

Figure 4.7: Running time vs. the number of nodes in the networks.

can recover 10% more missing edges with a similar running time. Besides, iNeat achieves

a slightly better recovery rate and a much faster speed than NNLS and RTRMC.

Scalability. We use the largest dataset (Youtube) to study the scalability of our proposed

method iNeat (i.e., running time vs. size of the network). Here, we use the same method

to extract and construct several pairs of incomplete subgraphs with different sizes from the

entire network. As we can see from Figure 4.7, the running time of the algorithm is linear

w.r.t. the number of nodes in the networks which is consistent with time complexity analysis.

4.2 ROBUSTNESS ANALYSIS OF NETWORK ALIGNMENT

In this section, we present the robustness analysis of the algorithm FINAL-NE [9] and

the analysis on other variants can be easily derived. Given that many real-world networks

are often noisy, this analysis assists to perceive how robust our proposed algorithms [12] are

to the noise/perturbations. Since the alignment vector s is the solution to the linear system

(I−αW̃)s = (1−α)l, the robustness is equivalent to that of the corresponding linear system.

We first provide the lemma as follows.

Lemma 4.4. Robustness of FINAL. If the perturbation on the input networks δ =

max{‖∆A1‖F , ‖∆A2‖F} satisfies the following the conditions

δ ≤

√√√√min

{
εnA

αB − εn2A
,

√
εnA2

2α
+
C2

4
− C

2
,

εn2A2

αA+ αnB + εn3A

}
+
D2

4
− D

2
(4.42)

120

and

min
i
{di} ≤

α‖E� (A2 ⊗A1)‖F
εn2

(4.43)

where di = D(i, i), A = min
i
{di}, B = ‖A1‖F‖A2‖F , C = 1

2
(B + A

n
− εn2A

α
), D = ‖A1‖F +

‖A2‖F , and 0 < ε < 1−α
(1+α)n2 is a constant, the relative error of the system due to the

perturbation is bounded by

‖ŝ− s‖2

‖s‖2

≤ 2ε

1− r
κF (I− αW̃) <

2ε(1 + α)n2

1− α− ε(1 + α)n2
(4.44)

where κF (·) is the condition number in the Frobenius norm.

To prove the above Lemma 4.4, it is equivalent to proving the stability analysis of the

linear systems corresponding to the non-perturbed and perturbed linear systems:

(I− αW̃)s = (1− α)l (4.45)

(I− α(W̃ + ∆W))ŝ = (1− α)l (4.46)

where W̃ = D−
1
2 N[E � (A2 ⊗ A1)]ND−

1
2 and D = N[E � (A2 ⊗ A1)]N1. ∆W is the

perturbation on W̃. Besides, s, ŝ are the alignment vectors before and after perturbation,

respectively. Before we show the stability analysis of linear systems, we present several

propositions to pave the way for our final result.

Denote P = E� (A2 ⊗A1) and P̂ = P + ∆P = E� [(A2 + ∆A2)⊗ (A1 + ∆A1)]. Then

∆P = E� (A2 ⊗∆A1 + ∆A2 ⊗A1 + ∆A2 ⊗∆A1) (4.47)

where ∆A1 and ∆A2 are the perturbation on the input networks A1 and A2, respectively.

And denote di = D(i, i) and d̂i = D̂(i, i) where D̂ = N(P + ∆P)N1.

Our first proposition shows max
1≤i,j≤n2

{| 1√
d̂id̂j
− 1√

didj
|} can be upper bounded.

Proposition 4.1. Let ∆1 = max
1≤i,j≤n2

{| 1√
d̂id̂j
− 1√

didj
|}, then ∆1 is upper-bounded by

∆1 ≤ max

{
1

min
i
{di}

− 1

min
i
{di}+ n‖∆P‖F

,
1

min
i
{di} − n‖∆P‖F

− 1

min
i
{di}

}
(4.48)

Proof. Let C1 = max
1≤i,j≤n2

{ 1√
didj
− 1√

d̂id̂j
} and C2 = max

1≤i,j≤n2
{ 1√

d̂id̂j
− 1√

didj
}. Apparently,

∆1 = max{C1, C2}. By denoting Ni = N(i, i), since d̂i = di + Ni

∑
p

∆P(i, p)Np and

similarly for d̂j, we have the following inequalities:

121

C1 ≤ max
1≤i,j≤n2

{ 1√
didj
− 1√(

di +Ni

∑
p |∆P(i, p)|Np

)(
dj +Nj

∑
q |∆P(j, q)|Nq

)}
≤ max

1≤i,j≤n2
{ 1√

didj
− 1√

(di + ‖∆P‖∞)(dj + ‖∆P‖∞)
}

≤ max
1≤i,j≤n2

{ 1√
didj
− 1√

(di + n‖∆P‖F)(dj + n‖∆P‖F)
}

(4.49)

Note that the second line above takes the equality when all perturbations are non-negative,

i.e., ∆P ≥ 0. We generalize the r.h.s. of the last inequality above by the function f(x, y) =
1√
xy
− 1√

(x+c)(y+c)
where c is any positive constant. And the function f(x, y) has the property

that it decreases as either x or y increases. This can be shown by:

∂f(x, y)

∂x
=

1

2(x+ c)
√

(x+ c)(y + c)
− 1

2x
√
xy

< 0 (4.50)

Similarly, we can show ∂f(x,y)
∂y

< 0. Thus, C1 can be further upper bounded by

C1 ≤
1

min
i
{di}

− 1

min
i
{di}+ n‖∆P‖F

(4.51)

Next, we give an upperbound for C2. Similarly to C1, we have the following inequalities:

C2 ≤ max
1≤i,j≤n2

{ 1√
di −Ni

∑
p |∆P(i, p)|Np

1√
dj −Nj

∑
q |∆P(j, q)|Nq

− 1√
didj
}

≤ max
1≤i,j≤n2

{ 1√
(di − ‖∆P‖∞)(dj − ‖∆P‖∞)

− 1√
didj
}

≤ max
1≤i,j≤n2

{ 1√
(di − n‖∆P‖F)(dj − n‖∆P‖F)

− 1√
didj
}

(4.52)

Note that the second line above takes the equality when all perturbations are non-positive,

i.e., ∆P ≤ 0. Then we generalize the last inequality above by the function g(x, y) =
1√

(x+b)(y+b)
− 1√

xy
where b is any negative constant. And we can easily show it monotonically

decreases as either x or y increases by its derivative ∂g(x,y)
∂x

< 0 and ∂g(x,y)
∂y

< 0. In this way,

C2 is further upper bounded by

C2 ≤
1

min
i
{di} − n‖∆P‖F

− 1

min
i
{di}

(4.53)

122

Thus, ∆1 can be upper bounded by

∆1 ≤ max

{
1

min
i
{di}

− 1

min
i
{di}+ n‖∆P‖F

,
1

min
i
{di} − n‖∆P‖F

− 1

min
i
{di}

}
(4.54)

This completes the proof. QED.

Next, our second lemma shows that max
1≤i,j≤n2

{
1√
d̂id̂j

}
can be upper bounded.

Proposition 4.2. Let ∆2 = max
1≤i,j≤n2

{
1√
d̂id̂j

}
, then ∆2 is upper bounded by

∆2 ≤
1

min
i
{di} − n‖∆P‖F

(4.55)

Furthermore, when ∆1 is upper bounded by 1
min
i
{di} −

1
min
i
{di}+n‖∆P‖F

, a tighter bound of ∆2

is

∆2 ≤
2

min
i
{di}

− 1

min
i
{di}+ n‖∆P‖F

(4.56)

Proof. Obviously, the value of 1√
d̂id̂j

increases as either d̂i or d̂j decreases. Followed by the

conclusion of Eq. (4.53), we know that min
i
{d̂i} ≥ min

i
{di} − n‖∆P‖F . Thus, we have

∆2 ≤
1

min
i
{d̂i}

≤ 1

min
i
{di} − n‖∆P‖F

(4.57)

When ∆1 is upper bounded by 1
min
i
{di} −

1
min
i
{di}+n‖∆P‖F

, it means for any indices p, q which

satisfy d̂pd̂q ≤ dpdq,

1√
d̂pd̂q

− 1√
dpdq

≤ 1

min
i
{di}

− 1

min
i
{di}+ n‖∆P‖F

(4.58)

That is, for these p, q,

max
p,q
{ 1√

d̂pd̂q

} ≤ 1

min
i
{di}

− 1

min
i
{di}+ n‖∆P‖F

+
1√
dpdq

≤ 2

min
i
{di}

− 1

min
i
{di}+ n‖∆P‖F

(4.59)

123

For those indices k, l where d̂kd̂l ≥ dkdl, we have

max
k,l
{ 1√

d̂kd̂l
} ≤ max

k,l
{ 1√

dkdl
} ≤ 1

min
i
{di}

(4.60)

Since 1
min
i
{di} ≤

2
min
i
{di} −

1
min
i
{di}+n‖∆P‖F

≤ 1
min
i
{di}−n‖∆P‖F

, ∆2 is more tightly bounded by

∆2 ≤
2

min
i
{di}

− 1

min
i
{di}+ n‖∆P‖F

(4.61)

And this finishes the proof. QED.

Armed with the above upperbounds, we give the bound for δ = max{‖∆A1‖F , ‖∆A2‖F}
to guarantee ‖∆W‖F ≤ ε

α
‖I− αW̃‖F .

Proposition 4.3. If min
i
{di} ≤ α‖E�(A2⊗A1)‖F

εn2 , and the maximum perturbation on the input

networks δ satisfies

δ ≤

√√√√min

{
εnA

αB − εn2A
,

√
εnA2

2α
+
C2

4
− C

2
,

εn2A2

αA+ αnB + εn3A

}
+
D2

4
− D

2
(4.62)

where A = min
i
{di}, B = ‖A1‖F‖A2‖F , C = 1

2
(B + A

n
− εn2A

α
), D = ‖A1‖F + ‖A2‖F , and

ε > 0 is a constant, then the following is guaranteed:

‖∆W‖F ≤
ε

α
‖I− αW̃‖F . (4.63)

Proof. We can easily have the following inequalities:

‖∆W‖F = ‖D̂−
1
2 N(P + ∆P)ND̂−

1
2 −D−

1
2 NPND−

1
2‖F

≤ ‖D̂−
1
2 NPND̂−

1
2 −D−

1
2 NPND−

1
2‖F + ‖D̂−

1
2 N∆PND̂−

1
2‖F

≤ max
i
{N(i, i)}2(‖D̂−

1
2 PD̂−

1
2 −D−

1
2 PD−

1
2‖F + ‖D̂−

1
2 ∆PD̂−

1
2‖F)

≤ ‖D̂−
1
2 PD̂−

1
2 −D−

1
2 PD−

1
2‖F + ‖D̂−

1
2 ∆PD̂−

1
2‖F

=

√√√√√ n2∑
i,j=1

(
1√
d̂id̂j

− 1√
didj

)2(P(i, j))2 +

√√√√√ n2∑
i,j=1

(
1√
d̂id̂j

)2(∆P(i, j))2

≤ ∆1‖P‖F + ∆2‖∆P‖F

(4.64)

Meanwhile, ‖I − αW̃‖F =
√
n4 + α2‖W̃‖2

F ≥ n2. In this way, to guarantee ‖∆W‖F ≤

124

ε
α
‖I− αW̃‖F , we need

∆2‖∆P‖F ≤
εn2

α
−∆1‖P‖F . (4.65)

Next, we divide the following proof into two cases, depending on the upper bound of ∆1.

Case 1. Based on Eq. (4.48) and Eq. (4.56), when ∆1 is upper bounded by 1
min
i
{di} −

1
min
i
{di}+n‖∆P‖F

, ∆2 is upper bounded by 2
min
i
{di} −

1
min
i
{di}+n‖∆P‖F

. In order to make sense on

‖∆P‖F , we first need to satisfy εn2

α
−∆1‖P‖F ≥ 0. Thus, we have

∆1 ≤
1

min
i
{di}

− 1

min
i
{di}+ n‖∆P‖F

≤ εn2

α‖E� (A2 ⊗A1)‖F
(4.66)

By solving the above inequality, we have

‖∆P‖F ≤
εnmin

i
{di}

α‖E� (A2 ⊗A1)‖F − εn2 min
i
{di}

(4.67)

min
i
{di} ≤

α‖E� (A2 ⊗A1)‖F
εn2

(4.68)

Among others, Eq. (4.68) is to make the r.h.s. of Eq. (4.67) greater than or equal to 0.

Moreover, by substituting the upperbound of ∆1 and ∆2 (i.e., Eq. (4.48) and Eq. (4.56))

into Eq. (4.65), we have

εn2

α
≥ (

1

min
i
{di}

− 1

min
i
{di}+ n‖∆P‖F

)‖A1‖F‖A2‖F

+ (
2

min
i
{di}

− 1

min
i
{di}+ n‖∆P‖F

)‖∆P‖F
(4.69)

which can be solved by

‖∆P‖F ≤

√
εnmin

i
{di}2

α
+
C2

4
− C

2
(4.70)

where C = 1
2
(‖A1‖F‖A2‖F +

min
i
{di}

n
−

εn2 min
i
{di}

α
).

Then based on Eq. (4.47), since ‖∆P‖F ≤ δ2 + (‖A1‖F + ‖A2‖F)δ combined with Eq.

(4.67) and Eq. (4.70), we have

δ ≤ min

√

εnA

αB − εn2A
+
D2

4
,

√√
εnA2

α
+
C2

4
− C

2
+
D2

4

− D

2
(4.71)

125

where A = min
i
{di}, B = ‖A1‖F‖A2‖F and D = (‖A1‖F + ‖A2‖F) / 2.

Case 2. When ∆1 is upper bounded by 1
min
i
{di}−n‖∆P‖F

− 1
min
i
{di} , by substituting Eq. (4.48)

and Eq. (4.55) into Eq. (4.65), we have the following inequality:

εn2

α
≥ (

1

min
i
{di} − n‖∆P‖F

− 1

min
i
{di}

)‖A1‖F‖A2‖F +
‖∆P‖F

min
i
{di} − n‖∆P‖F

(4.72)

which can be solved by

‖∆P‖F ≤
εn2A2

αnB + αA+ εn3A
(4.73)

Moreover, since we need to guarantee ∆1 ≤ εn2

α‖E�(A2⊗A1)‖F
, we have another bound for

‖∆P‖F in this case as below:

‖∆P‖F ≤
εnA2

εn2A+ α‖E� (A2 ⊗A1)‖F
(4.74)

Because the r.h.s in Eq. (4.74) is greater than that in Eq. (4.73), the upper bound of

Eq. (4.73) naturally guarantee ‖∆P‖F has a meaningful solution. Then, similarly, given

‖∆P‖F ≤ δ2 + (‖A1‖F + ‖A2‖F)δ, we obtain the upper bound of δ in this case as following:

δ ≤
√

εn2A2

αnB + αA+ εn3A
+
D2

4
− D

2
(4.75)

In word, by combining Eq. (4.71) and Eq. (4.75), we have

δ ≤

√√√√min

{
εnA

αB − εn2A
,

√
εnA2

2α
+
C2

4
− C

2
,

εn2A2

αA+ αnB + εn3A

}
+
D2

4
− D

2
(4.76)

which finishes the proof. QED.

With all these ingredients, we now prove Lemma 4.4 by using the stability analysis of

the linear systems in Eq. (4.45). Specifically, based on the well-known sensitivity analysis

of linear system [170], if the linear systems in Eq. (4.45) satisfy that: (1) α‖∆W‖F ≤
ε‖I− αW̃‖F , and (2) r = εκF (I− αW̃) < 1, then

‖ŝ− s‖F
‖s‖F

≤ 2ε

1− r
κF (I− αW̃) (4.77)

The first condition can be satisfied by Eq. (4.42) and Eq. (4.68). For the second condition,

126

given that

κF (I− αW̃) ≤ n2κ2(I− αW̃) <
(1 + α)n2

1− α
(4.78)

we need the constant ε < 1−α
(1+α)n2 . Then we can have

‖ŝ− s‖F
‖s‖F

≤ 2ε

1− r
κF (I− αW̃) <

2ε(1 + α)n2

1− α− ε(1 + α)n2
(4.79)

which finishes the proof.

127

CHAPTER 5: VELOCITY IN BIG NETWORK ALIGNMENT

Real-world networks are often dynamically changing over time. In addition to the struc-

tural and attribute information accompanied with networks, the dynamic changes naturally

embrace the extra temporal information that may help with network alignment. To align

multiple networks, we model networks by a classic multi-graph model, i.e., network of net-

works such that the alignment inference across multiple networks can be reformulated as a

common node prediction problem across domain-specific networks. To this end, we address

dynamic network alignment by learning node representations on dynamic network of net-

works, based on which we further infer node alignments. In this chapter, we propose a novel

node representation learning model on dynamic network of networks and evaluate it in the

task of dynamic network alignment.

5.1 MOTIVATIONS

Multiple networks, each of which models the complicated relationships among entities in

a certain domain, naturally emerge in a plethora of applications, such as social analysis,

bioinformatics and team optimization. Despite the capability of capturing the relational in-

formation within each domain of network, the classic multi-network models (e.g., multiplex

networks) might fail to model the intrinsic graph-level relationships among networks. Net-

work of networks (NoN) model [103, 171], which composes of a main network whose nodes

represent a set of domain-specific networks and edges indicate the relations among them,

embraces the abilities to leverage both the domain-specific structural information of nodes

(i.e., at fine granularity) and the structure of main network (i.e., at coarse granularity). For

example, in Figure 5.1, each project-oriented team can be considered as a domain-specific

network that models the collaborations among the team members, while different teams are

also connected by a main network indicating to what extent different projects are related.

Graph convolutional networks (GCN) have been extensively studied to learn node repre-

sentations that incorporate node structural and attribute information. Most of the existing

GCN models focus on a single network by aggregating node hidden representations from the

neighborhood [122, 123, 172], while other methods learn node representations on multiplex

networks [173, 174] by integrating multiple layers/views through the set of common nodes.

However, these methods inevitably ignore the graph-level relations (e.g., graph similarities)

among multiple networks. On the other hand, graph convolutional networks can be used to

learn graph similarities among networks by modeling graph-graph interactions with neural

128

Infrastructure

AdsResearch

0.7
0.5

0.6

Tom

Jack

Tom

Jack

Jessie

Ryan

Ann Taylor
Taylor

Bob

Figure 5.1: An example of network of team networks.

tensor networks on graph representations [175], while overlooking the set of common nodes

across different networks.

In the meanwhile, as networks often evolve over time, it is of key importance to leverage

the temporal information to learn dynamic node representations. Classic dynamic network

embedding methods encode the temporal information by either modeling snapshot networks

[70, 71] or explicitly modeling temporal evolution [176, 177]. With the advances of deep

learning, neural networks are designed to capture the dynamic changes of network struc-

tures, including recurrent neural networks based models [73, 178, 179] and attention based

models [75, 180]. Specifically, Pareja et al. propose to encode network structural changes by

treating the parameter matrix of GCN as a dynamical system [73]. Sankar at al. propose

an attentive aggregation along the temporal dimension to capture the temporal dependence

across snapshots [75]. These methods can be used to model the dynamics such as node/edge

insertions/deletions in a single network.

Nevertheless, these dynamic graph neural networks still bear the following limitations.

First (domain correlations), different domain-specific networks often correlate with each

other through the edges of main network at the macro level and the set of common nodes

shared across different domains at the micro level. However, it is unclear how to encode such

correlations into node representation learning even in the static setting. Second (complex

dynamics), the dynamic evolution underlying each network is sophisticated and the correla-

tion among different domain-specific networks would make the dynamic patterns underlying

129

network of networks more complex. For example, nodes shared across different domains may

be added or deleted over time, which might influence the representation learning of other do-

mains by imposing more or less cross-network correlations respectively. Yet, it is nontrivial

to assimilate such dynamics into node representations in dynamic network of networks.

In this work, we address these limitations by developing a dynamic graph neural networks

model DraNoN on dynamic network of networks. Specifically, we design a message passing

scheme in the static setting which naturally embodies both within-network and cross-network

consistency behind node representations inspired by the predict-then-propagate strategy. To

model the complex dynamics, the key ideas are two-fold. First, we apply a gated recurrent

unit (GRU) to rivet on the dynamics behind the sequence of common nodes’ representations,

whereas the dynamics of non-overlapped nodes is only captured by propagating the hidden

representations of common nodes. To better model the dynamics, we further utilize a self-

attention based model along temporal dimension such that the dependence with historical

representations can be captured. The main contributions are summarized as follows:

• Problem definition. To our best knowledge, we are the first to study the representation

learning on a dynamic network of networks.

• Model design. We first develop DraNoN-S to learn node representations on static

network of networks. Then we extend it to DraNoN by applying a GRU and self-

attention to model the complex dynamics behind the dynamic network of networks.

• Experiments. We evaluate the designed model DraNoN in the task of dynamic net-

work alignment. Extensive experiments demonstrate the significant improvements of

DraNoN compared to the state-of-the-arts.

5.2 PROBLEM DEFINITION

Table 5.1 summarizes the main notations. We use bold uppercase letters for matrices (e.g.,

A), bold lowercase letters for vectors (e.g., x), lowercase plain letters (e.g., α) for scalars

and uppercase calligraphic letters (e.g., I) for sets. We use A(i, j) to denote the entry at the

intersection of the i-th row and the j-th column of the matrix A. We denote the transpose

by a superscript prime (e.g., x′ as the transpose of x).

5.2.1 Representation Learning on Dynamic NoN

We denote an undirected weighted network by G = {V ,A} where V represent the node

set of network G and A is the adjacency matrix of G where A(i, j) > 0 indicates the weight

130

Table 5.1: Symbols and notations.

Symbols Definitions
G dynamic network of networks
Gt0 main network at snapshot t
At

0 adjacency matrix of main network at snapshot t
Gtl domain-specific network of the l-th domain at snapshot t
At
l adjacency matrix of Gtl at snapshot t

xtl,i node representation of node-i in Gtl
Itkl the common nodes between Gtk and Gtl
g number of domain-specific networks
ntl number of nodes in Gtl
ntc number of common nodes among all domain networks
nt number of nodes in all networks at snapshot t

[·‖·] vertical concatenation
� Hadamard product

⋯⋯
: edge insertion
: edge deletion
: node insertion

: node deletion
𝑡 = 1 𝑡 = 2 𝑡 = 𝑇

Figure 5.2: An illustrative example of dynamic network of networks with T snapshots. Edge
insertions/deletions occur in both domain-specific networks and main network, while node
insertions/deletions only happen in the domain-specific networks.

of edge (i, j). A network of networks is composed of a main network whose nodes represent

a set of domain-specific networks. We provide the definition of network of networks [103].

Definition 5.1. Network of networks. Given a g × g main network G0 = {V0,A0},
each node represents a unique domain-specific network, i.e., V0 = {G1, · · · ,Gg} where Gl =

{Vl,Al}, l = 1, · · · , g. Here, A0(k, l) measures the relation between Gk and Gl. For domain-

specific network Gl, Al(i, j) indicates the weight of edge (i, j).

In this work, we consider a network of networks whose domain-specific networks have a

set of common nodes. We define the common nodes between Gk and Gl by Ikl, i.e., Ikl =

Vk ∩Vl, k, l = 1, · · · , g. Given the fact that many networks often evolve over time, dynamic

changes (e.g., nodes/edges insertions/deletions) also happen in the network of networks.

Note that we do not consider node insertion and deletion in the main network. In other

131

words, the main network has g nodes throughout the time span. Take Figure 5.2 as an

example. Structural changes occur on the main network over time, such as the changes on

edge weights of main network at t = 2 and the edge deletion (denoted by brown dashed line)

between domains Infrastructure and Research at t = T . As for domain-specific networks,

edges are added (denoted by red solid lines) in the Research team network and an edge is

removed in the Infrastructure team network at t = 2. At the last snapshot t = T , Jessie

leaves the Infrastructure team and Ann joins in the Ads team due to project demands. More

formally, we define the dynamic network of networks as below.

Definition 5.2. Dynamic network of networks. Given a set of g × g main networks

G = {G1
0 , · · · ,GT0 } where Gt0 = {V t0,At

0} represents the main network at snapshot t, nodes of

main network Gt0 denote the domain-specific networks at snapshot t, i.e., V t0 = {Gt1, · · · ,Gtg}
where each domain-specific network is Gtl = {V tl ,At

l}, l = 1, · · · , g. The adjacency matrix

At
0(k, l) indicates the correlation between domain-specific networks Gtk and Gtl , and At

l(i, j) >

0 represents the weight of edge (i, j) at snapshot t.

Here we use G to denote dynamic network of networks for clarity. In addition, Itkl denotes

common nodes between Gtk and Gtl (i.e., Itkl = V tk ∩ V tl) and |V tl | = ntl denotes the number

of nodes in the domain-specific network Gl at snapshot t. Given the above notations and

definitions, our goal is to learn dynamic node representations in the domain-specific networks.

Formally, we define the dynamic NoN representation learning problem as follows.

Problem 5.1. Representation Learning on Dynamic NoN.

Given: the dynamic network of networks G = {G1
0 , · · · ,GT0 },

Output: node embeddings Xt
l ∈ Rnt

l×d, ∀l = 1, · · · , g where Xt
l(i, :) = xtl,i represents the

representation of node-i in the domain-specific network Gtl at snapshot t = 1, · · · , T .

5.2.2 Preliminaries: Ranking on NoN

Given a set of query vectors el, l = 1, · · · , g, a classic ranking algorithm on network

of networks is attributed to CrossRank [103] whose key ideas are to (1) minimize the dif-

ference of ranking scores between neighboring nodes in each domain-specific network (i.e.,

within-network smoothness), (2) minimize the difference between the ranking vectors and the

corresponding query vectors to encode the personalization of the query nodes (i.e., query per-

sonalization), and (3) minimize the ranking score differences of the common nodes that are

shared by two highly-correlated domain-specific networks (i.e., cross-network consistency).

Mathematically, these are formulated into a single optimization problem as

132

J(r1, · · · , rg) = c

g∑
l=1

r′l(Inl
− Ãl)rl + (1− c)

g∑
l=1

‖rl − el‖2
2

+ a

g∑
l=1

g∑
k=1

‖ rl(Ikl)√
D0(l, l)

− rk(Ikl)√
D0(k, k)

‖2
2A0(k, l)

(5.1)

where rl denotes the ranking scores of nodes in the domain-specific network Gl, Ãl denotes

the symmetrical normalization of Al, and D0 is the degree matrix of the main network G0,

i.e., D0(l, l) =
∑g

k=1 A0(l, k). Ikl = Vk ∩ Vl denotes the common nodes shared between Gk
and Gl. In addition, a, c control the importance of different terms. By taking the derivative

of Eq. (5.1) to zero, a fixed-point solution is proposed to minimize Eq. (5.1) [103]

r = (
c

1 + 2a
Ã +

2a

1 + 2a
Ỹ)r +

1− c
1 + 2a

e (5.2)

where r = [r1‖ · · · ‖rg] and e = [e1‖ · · · ‖eg]. Ã = diag(Ã1, · · · , Ãg) is a g × g block diag-

onal matrix. By letting O be a block matrix whose (k, l)-th block is A0(k, l)Okl where

the indicator matrix Okl(i, j) = 1 if node-i in Gk represents the same node as node-

j in Gl, the matrix Ỹ is the symmetric normalization of Y = O + DT where DT =

diag(D0(1, 1)In1 , · · · ,D0(g, g)Ing) −DO and DO is the degree matrix of O. This iterative

approach converges to a closed-form solution

r =
1− c

1 + 2a
(I− c

1 + 2a
Ã− 2a

1 + 2a
Ỹ)−1e. (5.3)

5.3 THE DESIGNED DRANON MODEL

5.3.1 Model Overview

The overall architecture of the model is shown in Figure 5.3. The key challenges of learning

node representations on dynamic network of networks include: (1) how to design graph

convolutional network model that can learn informative node representations on static NoN,

and (2) how to extend the static model to the dynamic setting such that the whole model can

effectively capture he complex dynamic patterns underlying the dynamic NoN. To address

the first challenge, we aim to design a message passing scheme that can preserve the within-

network smoothness in the node’s local neighborhood and the cross-network consistency. To

be more specific, inspired by the predict-then-propagate strategy for single network [181], we

133

⋯⋯

𝑡 = 1 𝑡 = 2 𝑡 = 𝑇

DraNoN-S 1

Initial embedding 𝑾𝑐
1 ⋯

GRU GRU GRU

𝒙𝑒,1,1
1

𝒙𝑒,1,1
2 𝒙𝑒,1,1

𝑇

DraNoN-S 2

Initial embedding 𝑾𝑐
2

DraNoN-S 𝑇

Initial embedding 𝑾𝑐
𝑇

DraNoN-S w/ shared initial embedding 𝑾𝑐

ഥ𝒙1,1
1 ഥ𝒙1,1

2 ഥ𝒙1,1
𝑇

Temporal attention layer

𝒙𝑠,1,1
1 𝒙𝑠,1,1

2 𝒙𝑠,1,1
𝑇

Concatenate ⋯ ⋯

𝒙𝑒,1,1
1 𝒙𝑠,1,1

1

𝒙𝑒,1,1
𝑇 𝒙𝑠,1,1

𝑇

Linear layer ⋯

𝒙1,1
1

𝒙1,1
𝑇

Figure 5.3: Model overview of DraNoN. For clarity, we denote the node representations of
Tom in Infrastructure team network at snapshot t by xt1,1 as an example.

compute the influence matrix between any two nodes in all domain-specific networks based

on the closed-form solution of the ranking scores (i.e., Eq. (5.3)). This influence matrix

can be viewed as a one-time propagation matrix. In the prediction step, different from

[181] which learns a neural network that generates initial node classification by input node

features, we instead propose to learn the initial node representations of the common nodes

shared across domains in our model. Then to efficiently compute the propagation procedure,

we approximate the one-time propagation (i.e., Eq. (5.3)) by a P -step iterative propagation.

As aforementioned, the dynamics of the common nodes (e.g., Ikl) play a crucial role in

correlating different domain-specific networks and adjusting the cross-network consistency of

node representations. In this way, we first resort to a GRU based architecture to effectively

model the dynamics behind the common nodes. Moreover, we propose to use the self-

attention mechanism along the temporal dimension to capture the dependence on node’s

historical representations.

5.3.2 DraNoN-S: Embedding on Static NoN

Let us first revisit the closed-form solution to the ranking problem on NoN. Given a query

node-i in Gl (i.e., i ∈ Vl) such that ∃k, i ∈ Ikl, the corresponding ranking vector is

r =
1− c

1 + 2a
(I− c

1 + 2a
Ã− 2a

1 + 2a
Ỹ)−1el,i

=
1− c

1 + 2a

∞∑
p=0

(
c

1 + 2a
Ã +

2a

1 + 2a
Ỹ)pel,i

(5.4)

134

where el,i(
∑l−1

q=1 nq + i) = 1 and 0 elsewhere, and nq denotes the number of nodes in Gq. We

can see that the ranking score of node-j in Gk r(
∑k−1

q=1 nq + j) > 0 if and only if there exists

a p such that [Ã + Ỹ]p(
∑k−1

q=1 nq + j,
∑l−1

q=1 nq + i) > 0, i.e., node-j in Gk is reachable from

node-i in Gl by p walks along both edges in the domain-specific networks and the edges in

the main network. In this way, node-i can influence the nodes in the same domain as node-i

and those in other domains. By horizontally concatenating the query vectors corresponding

to all the common nodes, we achieve the following matrix-form ranking scores

R =
1− c

1 + 2a
(I− c

1 + 2a
Ã− 2a

1 + 2a
Ỹ)−1E (5.5)

where R ∈ Rn×nc , n =
∑g

p=1 np denotes the total number of nodes in all domain-specific

networks and nc = |
⋃g
k,l=1 Ikl| is the total number of common nodes across each two domain-

specific networks. E ∈ Rn×nc is the indicator matrix of the common nodes, e.g., E(
∑l−1

q=1 nq+

i, u) = 1 if node-i in Gl is the u-th common nodes.

To adapt the ranking algorithm to learning node representations, we propose to feed Eq.

(5.5) into a linear layer without bias, i.e.,

X = RW =
1− c

1 + 2a
(I− c

1 + 2a
Ã− 2a

1 + 2a
Ỹ)−1Wc (5.6)

where Wc = EW ∈ Rn×d is the parameter matrix and Wc(
∑l−1

q=1 nq + i, :) = 0 if node-i

in the domain-specific network Gl is not shared with any other domains. In other words,

the learnable parameters correspond to the initial embedding lookup table of the common

nodes. Equivalently, we can understand Wc as the prediction step in [181] where we aim to

‘predict’ the representations of common nodes instead of predicting the node labels by input

node features. The propagation step is done by (I − c
1+2a

Ã − 2a
1+2a

Ỹ)−1, which requires an

O(n3) computational complexity. To approximate the propagation step, as the eigenvalues

of c
1+2a

Ã + 2a
1+2a

Ỹ lie in (−1, 1) [103], we apply a finite order of Taylor expansion as

X(0) =
1− c

1 + 2a
Wc

X(p) =
c

1 + 2a
ÃX(p−1) +

2a

1 + 2a
ỸX(p−1) + X(0)

X = X(P)

(5.7)

whose time complexity is O(mAdP + mY dP) where mA,mY denote the number of nonzero

elements in Ã, Ỹ . The whole process is essentially to learn node representations by propa-

gating the initial representations Wc of common nodes to their P -hop neighborhood.

135

5.3.3 DraNoN: Embedding on Dynamic NoN

When networks evolve over time, we are given a dynamic network of networks G =

{G1
0 , · · · ,GT0 } where Gt0 = {V t0,At

0} is the main network and V t0 = {Gt1, · · · ,Gtg} represents

domain-specific networks at snapshot t. We extend the static model by two components,

each of which aims to capture different aspects of temporal evolution. In particular, we

propose to use a GRU to capture the dynamics on the common nodes at different snapshots

(i.e., Wt
c) and a self-attention based module that learns how networks evolve by adaptively

weighting the historical node representations.

Dynamics on Common Nodes. First, to model the dynamics behind the common nodes

Itkl, k, l = 1, · · · , g, we consider the initial representations of these nodes Wt
c as a dynamical

system and use GRU to encode both the current input node features Et and the historical

common node representations Wt−1
c . By denoting Nc =

⋃T
t=1

⋃g
k,l=1 |Itkl|, i.e., the number of

unique common nodes across all snapshots, we denote Ŵt
c ∈ RNc×d as the representations

of the common nodes at snapshot t such that Wt
c(
∑l−1

q=1 nq + i, :) = Ŵt
c(u, :) if the node-i

in Gl essentially corresponds to the u-th common node. Thus, we alternatively capture the

dynamics by Ŵt
c with GRU formulated as

Ŵt
c = GRU(Et,Ŵt−1

c). (5.8)

where we expand Et ∈ Rn×nt
c to Et ∈ Rn×Nc by inserting zero columns. The GRU cell is

Zt = σ(WZHt + UZŴt−1
c + BZ)

Rt = σ(WRHt + URŴt−1
c + BR)

W̄t
c = σt(WHHt + UH(Rt � Ŵt−1

c) + BH)

Ŵt
c = (1− Zt)� Ŵt−1

c + Zt � W̄t
c

(5.9)

where WZ ,WR,WH ,UZ ,UR,UH ∈ RNc×Nc and BZ ,BR,BH ∈ RNc×d. σ, σt represent the

sigmoid and tangent activation functions. Ht is the summarization of the input node features

Et, which we compute by self-attention based node importance [144]:

zt = (
c

1 + 2a
Ã +

2a

1 + 2a
Ỹ)Etws

It = top-indices(zt, d)

H = [Et � σt(zt)](It, :)

Ht = H′

(5.10)

136

With the updated Wt
c, the representations of nodes that appear at snapshot t are

Xt
(0) =

1− c
1 + 2a

Wt
c

Xt
(p) =

c

1 + 2a
ÃtXt

(p−1) +
2a

1 + 2a
ỸtXt

(p−1) + Xt
(0)

Xt
e = Xt

(P)

(5.11)

However, by propagating the dynamic representations of common nodes to the rest of

the nodes (i.e., Eq. (5.11), the dynamics behind them mainly reply on the dynamics of the

common nodes. Thus, we need to additionally design a module that models the dynamics

of nodes based on their own historical representations.

Dynamics based on Self-Attention. This component aims to capture the dynamics

behind all the nodes in the domain-specific networks. In particular, given the success of

attention based sequential learning, we consider a sequence of the representations of a certain

node at different snapshots as the input to the temporal attention layer, similar to [75].

These input representations need to capture the structural information of nodes at different

snapshots. In this work, we use Eq. (5.7) with a shared parameter matrix Wc across all

snapshots to capture such structural information, i.e.,

X̄t
(p) =

c

1 + 2a
ÃtXt

(p−1) +
2a

1 + 2a
ỸtXt

(p−1) + Xt
(0) (5.12)

where Xt
(0) = 1−c

1+2a
Wc, ∀t = 1, · · · , T and the output representations at snapshot t are

denoted by X̄t = Xt
(P). Then the sequence of representations for node-i in Gl is packed into

an embedding matrix Ȳl,i ∈ RT×d where Ȳl,i(t, :) = X̄t(
∑l−1

p=1 np + i, :).

This temporal attention layer aims to learn the weights that aggregate the historical node

representations. These weights are learned by the scaled dot-product form of attention [75].

In this way, the temporal self-attention layer is

Yl,i = βl,i(Ȳl,iWv) (5.13)

where the attention weights βl,i ∈ RT×T can be computed by

βl,i(t1, t2) =
exp(αl,i(t1, t2))∑T
t3=1 exp(αl,i(t1, t3))

αl,i(t1, t2) =

(
Ȳl,iWq)(Ȳl,iWk)

′) (t1, t2)
√
d

+ M(t1, t2)

(5.14)

137

Here M is a mask matrix that ensures only representations from past snapshots contribute

to the current snapshot. It is set as M(t1, t2) = 0 if t1 ≤ t2 and M(t1, t2) = −∞ otherwise.

Then we construct the output node representations Xt
s of this self-attention based temporal

layer by Xt
s(
∑l−1

p=1 np + i, :) = Yl,i(t, :), ∀t = 1, · · · , T .

Entire Dynamic Model. In order to compute final output node representations, we apply

a linear layer upon the concatenation of Xt
e and Xt

s at snapshot t, i.e.,

Xt = [(Xt
e)
′‖(Xt

s)
′]′W + b (5.15)

where W ∈ R2d×d denotes the parameter matrix of the linear layer.

5.3.4 Model Training

In this work, we apply the proposed model DraNoN to the task of dynamic network

alignment. The dynamic network alignment problem can be reformulated as the problem in

the context of dynamic NoN as following. At each snapshot t, we are given a set of known

common nodes (i.e., anchor nodes that are known a priori), and we aim to predict the rest of

common nodes (i.e., unknown node alignments across each two domain-specific networks).

Specifically, given a set of anchor nodes Itkl, ∀k, l = 1, · · · , g between networks Gtk and Gtl ,
we minimize the following binary cross-entropy loss

J = −
T∑
t=1

g∑
l=2

l−1∑
k=1

∑
u∈Itkl

2 log(σ(f(xtl,i,x
t
k,j)))

+
N∑
v=1

log(−σ(f(xtl,i,x
t
k,jv))) + log(−σ(f(xtl,iv ,x

t
k,j)))

(5.16)

where node-i in Gtl and node-j in Gtk represent the same entity u. In addition, node-iv in

Gtl and node-jv in Gtk are the cross-network negative samples for anchor node-j in Gtk and

anchor node-i in Gtl , respectively and N denotes the number of negative samples. The scoring

function f is defined as f(xtl,i,x
t
k,j) = −‖xtl,i − xtk,j‖1. For an anchor node, the negative

samples are generated by selecting nodes with the top-N scores excluding the anchor node

itself [32].

Implementation details. To further improve the model capability of aligning nodes at

different snapshots, we propose to use pseudo labelling to augment labels (i.e., anchor links)

at snapshot t based on the node pairs that are aligned with highest confidence at previous

snapshots. In practice, we select 10% node pairs that have highest scores defined by f(·, ·)
as the pseudo labels for future snapshots. Moreover, since the computations of attention

138

coefficients (Eq. (5.14)) could be memory consuming, we carefully implement the temporal

attention layer by using sparse matrices to improve the efficiency.

5.4 EXPERIMENTAL EVALUATIONS

We evaluate the proposed DraNoN in the task of dynamic network alignment. Specifi-

cally, we evaluate it in the following aspects:

• Q1: How accurate is it for dynamic network alignment?

• Q2: To what extent does the proposed method benefit from different components of

the model?

5.4.1 Experimental Setup

Datasets. We evaluate dynamic network alignment in three scenarios whose dataset statis-

tics are summarized in Table 5.2. Note that due to the difficulties in exploring data, we

consider pairwise network alignment (i.e., g = 2) and we set A0(1, 2) = 1. The datasets that

we use in the experiments include:

• ACM co-author networks. The ACM citation dataset was collected in 2017 including

2,385,022 papers with the author and venue information of each paper [150]. We

extract papers published in the areas of data mining, database and information retrieval

during the years 2000-2013. We construct the dynamic co-author networks by using

the collaborations among authors who published papers in a certain year as the edges

at the corresponding snapshot. Accordingly, the nodes of the networks represent the

authors.

• DBLP co-author networks. The DBLP citation dataset was collected in 2017 including

3,680,007 papers with the author and venue information of each paper [150]. We

construct the dynamic DBLP co-author networks in a similar way to the ACM co-

author networks.

• UCI communication networks. This dataset [182] includes the messages sent among

students in University of California, Irvine on its online social network platform. The

edges of the networks indicate that one student sends a message to the other. Each

edge is associated with a timestamp, based on which we slide the entire dataset into

13 snapshots [75].

139

Table 5.2: Data statistics.

ACM DBLP UCI UCI-N AS AS-N
of nodes 17,695 17,022 1,809 1,809 6,506 6,506
of edges 45,920 44,080 13,228 20,807 13,466 27,375
of snapshots 14 14 13 13 20 20
of alignments 13,726 1,796 6,394

• Autonomous system networks. The dataset contains 733 daily instances which range

from November 8th, 1997 to January 2nd, 2000 [183]. Nodes of the networks represent

autonomous systems and there exists an edge in the networks if one autonomous system

(AS) exchanges traffic flows with the other. In the experiments, we select 20 of all

instances as the snapshot networks.

With the above datasets, we build three alignment scenarios:

• ACM vs.DBLP. The ACM co-author networks and DBLP co-author networks share

13,726 nodes (i.e., ground-truth node alignments). We randomly select 20% common

nodes (i.e., anchor nodes) as the training data and test on the rest of 11,582 alignment

pairs. Note that at each snapshot, only part of these alignments are available.

• UCI vs. UCI-N. Given the dynamic UCI communication networks, we generate their

noisy permuted counterpart by randomly rewiring edges and changing the timestamps

associated with edges. The detailed process can be referred to [67]. Note that this

process could lead to node deletions in the noisy counterparts. There exist 1,796

ground-truth alignments. We use 20% of them as the training data.

• AS vs. AS-N. It is constructed similarly as the above scenario.

Baseline Methods. We compare our proposed DraNoN method with the following static

network alignment methods, including: (1) FINAL-P [9], (2) IONE [8], (3) NetTrans [14],

Bright [32], and (4) DraNoN-S, the static variant of our proposed model.

Evaluation Metrics. We evaluate the effectiveness by Hits@K. Given the test node align-

ments (e.g., node-i in G1 and node-j in G2), if f(x1,i,x2,j) is among the highest top-K values

within the nodes in G2, then we say there is a hit. We count the number of hits, divided by

the total number of test node alignment.

Machine. Our proposed model is implemented by PyTorch. We use Nvidia V100 with 32G

memory as GPU to run the graph neural network based methods. We set a = 1.0, c =

0.85, P = 10 and the dimension of node representations as d = 128. The hyperparameters

of the baseline methods are set as default.

140

0 20 40 60 80 100

K

0

0.2

0.4

0.6

0.8
H

it
s
@

K

DraNoN

DraNoN-S

Bright

NetTrans

IONE

FINAL-P

(a) ACM vs. DBLP networks.

0 20 40 60 80 100

K

0

0.2

0.4

0.6

0.8

1

H
it
s
@

K

DraNoN

DraNoN-S

Bright

NetTrans

IONE

FINAL-P

(b) UCI vs. UCI-N networks.

0 20 40 60 80 100

K

0

0.2

0.4

0.6

0.8

1

H
it
s
@

K

DraNoN

DraNoN-S

Bright

NetTrans

IONE

FINAL-P

(c) AS vs. AS-N networks.

Figure 5.4: Results of aligning among all nodes.

5.4.2 Dynamic Network Alignment

We compare our proposed method DraNoN with baseline methods from two perspec-

tives. First, we want to measure how effective the methods are in aligning networks at

each snapshot. That is, at each time snapshot t, we find node alignments between V t1 and

V t2. The results are shown in Figure 5.6. We have the following observations. First, our

proposed method DraNoN outperforms all the baseline methods, which indicates that the

dynamic information can indeed assist the alignment at each snapshot. Specifically, com-

pared with the best competitor (e.g., NetTrans [14] and Bright [32]), our proposed method

achieves an up to 5.6%, 14% and 2.5% improvement in Hits@30 on the three alignment

scenarios, respectively. Second, the comparisons between DraNoN and DraNoN-S also

demonstrate the necessity of the dynamic module for more accurate alignment inference on

dynamic networks. Third, even at the early snapshots (e.g., t = 1), we can still observe

the improvements of DraNoN over other static methods, which could be because learning

GRU over the entire time span advances in learning the parameter matrix W1
c and hence

better node representations for alignment inference. Last, our proposed static model variant

DraNoN-S can achieve a better alignment performance in most alignment scenarios, which

validates its effectiveness in the static setting.

Furthermore, we also want to measure the performance of aligning nodes among the

entire set of nodes. That is, we align nodes between the entire node sets of two networks

throughout the time span, i.e., aligning
⋃T
t=1 V t1 with

⋃T
t=1 V t2. Here, the static alignment

methods are conducted on the static networks by merging all snapshot networks. The results

are summarized in Figure 5.4. As one can see, our proposed method DraNoN achieves a

better performance of Hits@K for K = 1, 10, 30, 50, 100 than other baseline methods. For

instance, our proposed method improves the state-of-the-arts by at least 3% in Hits@30.

From this perspective, this also demonstrates the importance of leveraging the temporal

141

information behind dynamic networks.

ACM vs. DBLP UCI vs. UCI-N AS vs. AS-N
0

0.2

0.4

0.6

0.8

1

H
it
s
@

1

DraNoN-S

DraNoN-E

DraNoN-T

DraNoN

Figure 5.5: Ablation study on model design.

Ablation study on model design. We conduct ablation studies on different model vari-

ants of our proposed DraNoN. Specifically, we compare the full model DraNoN with the

following variants, including: (1) DraNoN-S which is the static variant without using any

temporal information, (2) DraNoN-E which merely uses the GRU to capture the dynamics

behind common nodes, and (3) DraNoN-T which only applies the temporal attention layer.

We evaluate the performance by Hits@1 when aligning
⋃T
t=1 V t1 with

⋃T
t=1 V t2. The results are

shown in Figure 5.5. As we can observe, DraNoN-E achieves a better performance than

the static variant DraNoN-S, demonstrating the effectiveness of capturing the dynamics

behind the known common nodes (i.e., anchor nodes). In addition, although DraNoN-T

may slightly improve the performance on certain datasets, it sometimes hurts the alignment

performance. Last, the full model DraNoN consistently outperforms all the other model

variants, validating the necessity of all the components.

142

2 4 6 8 10 12 14
Snapshot

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

H
it
s
@

1

2 4 6 8 10 12 14
Snapshot

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H
it
s
@

1
0

2 4 6 8 10 12 14
Snapshot

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H
it
s
@

3
0

FINAL-P IONE NetTrans Bright DraNoN-S DraNoN

(a) Results on ACM vs. DBLP co-author networks.

1 3 5 7 9 11 13

Snapshot

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

H
it
s
@

1

1 3 5 7 9 11 13

Snapshot

0

0.2

0.4

0.6

0.8

1

H
it
s
@

1
0

1 3 5 7 9 11 13

Snapshot

0

0.2

0.4

0.6

0.8

1

H
it
s
@

3
0

(b) Results on UCI vs. UCI-N communication networks.

5 10 15 20
Snapshot

0

0.1

0.2

0.3

0.4

0.5

H
it
s
@

1

5 10 15 20
Snapshot

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H
it
s
@

1
0

5 10 15 20
Snapshot

0

0.2

0.4

0.6

0.8

H
it
s
@

3
0

(c) Results on AS vs. AS-N networks.

Figure 5.6: Results of aligning different snapshot networks.

143

CHAPTER 6: CONCLUSION AND FUTURE DIRECTIONS

In this chapter, we summarize our key research contributions and discuss the future re-

search directions in network alignment.

6.1 CONCLUSION

In this thesis, we study the network alignment problem on big networks and develop several

works to address the challenges associated with the 4Vs characteristics of big data, including

variety, veracity, velocity and volume. Note that we consider volume as a fundamental factor

such that the designed methods have an at least comparable efficiency with prior works.

Task 1 - Variety in Network Alignment. Attributes of Networks. To leverage the at-

tribute information, we develop an attributed network alignment method, whose key idea is

formulate the alignment consistency principle that includes topological consistency and at-

tribute consistency into an optimization problem. We develop a family of iterative fixed-point

algorithms named FINAL to efficiently solve this optimization problem. We theoretically

prove that the FINAL algorithms converge to the global optimal solution. The experiments

demonstrate the algorithms FINAL achieve an up to 30% alignment accuracy improvement

compared with the structure-only based alignment methods and their variants using at-

tributes heuristically. In addition, we also leverage low-rank approximation techniques and

multiresolution matrix factorization to further scale up FINAL.

Disparity behind Networks. To mitigate the disparity issues among different networks, we

first develop a semi-supervised alignment method named ORIGIN to address the embedding

space disparity issue of different networks. Specifically, ORIGIN learns a non-rigid displace-

ment function that can move the node embeddings of one network towards the embeddings

of another network. We conduct experiments that validate the better performance of ORI-

GIN than the baseline methods. We also visualize the node embeddings of two networks

before and after applying the non-rigid displacement function, which visually demonstrates

the space disparity issue can be mitigated.

Second, we design an end-to-end model NetTrans to solve the cross-network transforma-

tion problem. We do not explicitly assume the alignment consistency principle but instead

use the learned cross-network transformation functions to encode the network disparity.

The key idea is to coarsen the input source network via pooling layers and hierarchically

reconstruct the target network by unpooling layers. We conduct extensive experiments on

144

network alignment, which show that NetTrans outperforms other state-of-the-arts consis-

tency based methods and embedding based methods by up to 6.5% in terms of Hits@30.

Third, we also study how to strike a balance between alignment consistency and alignment

disparity. In particular, we design a relational graph convolutional layer whose output node

embeddings can infer node alignments while preserving alignment consistency in a similar

way as FINAL. We then develop a novel negative sampling strategy to impose alignment

disparity. By integrating these components, the developed algorithm NeXtAlign achieves

significant improvements compared with other state-of-the-arts methods.

Task 2 - Veracity in Network Alignment. To handle the incompleteness of networks,

we propose to jointly solve network alignment and network completion problems such that

they can mutually benefit each other. To efficiently compute the alignment matrix, we the-

oretically uncover the low-rank structure of the alignment matrix. Based on the low-rank

characteristic of networks, we develop a multiplicative update algorithm iNeatẆe conduct

extensive experiments which show that iNeat achieves an up to 30% improvement in align-

ment accuracy and a higher missing edge recovery rate than the baseline methods. More-

over, we also theoretically study how robust the proposed FINAL algorithms are against

the structural perturbations. Specifically, we present the error bound between the alignment

matrix given the perturbed adjacency matrices and that given the original networks. The

key idea is to consider the closed-form solution of FINAL as a linear system and hence

utilize the stability analysis of linear systems.

Task 3 - Velocity in Network Alignment. For this task, we study the dynamic network

alignment problem where the input networks dynamically change over time. To be more

specific, the goal is to leverage the temporal information to boost the alignment performance.

We first model multiple dynamic networks to be aligned into dynamic network of networks,

and then the dynamic network alignment problem can be reformulated as a common node

prediction problem in dynamic network of networks. To solve this problem, we design a

graph neural network model DraNoN composed of a GRU and a temporal attention layer

to learn dynamic node representations. Experiments demonstrate that DraNoN achieves

a much better performance than static alignment methods.

6.2 FUTURE DIRECTIONS

Despite the extensive research, network alignment still remains an active area of explo-

rations. We present several promising research directions as follows.

145

Seed Selection in Network Alignment. The goal of this direction is to select a set of

node pairs that can boost the performance of network alignment. It is of great necessity in

unsupervised network alignment and active network alignment problems.

In the unsupervised setting, many existing alignment methods assimilate the prior node

similarity matrix into the algorithm. For example, network alignment methods often com-

putes the prior similarity matrix by BLAST scores [3], graphlet-based similarity scores [184],

degree-based similarities [9], etc. These similarity matrices can be considered as a soft

seed matrix (i.e., prior many-to-many alignments) used in the alignment algorithm. Thus,

whether or not good (soft) seed alignment pairs can be selected could largely determine

the performance of the entire unsupervised alignment algorithms. In addition to exploring

external similarity matrix which often requires domain knowledge, one possible direction is

to utilize pre-training techniques to learn node embeddings. By measuring the similarities

among these embeddings, a set of (soft) seed alignments can be selected. Yet, it is chal-

lenging to design the pre-training model that can learn comparable node embeddings across

different networks.

Another setting is when a human annotator could tell a correct alignment given some

query node and this new alignment pair will be used as the anchor link (i.e., seed) to aid the

subsequent learning process. This is known as active network alignment. Existing methods

use distribution based method and influence function based method to select query nodes for

the human annotator. However, given the complex patterns underlying multiple networks,

how to effectively design active learning method for network alignment is an interesting yet

nontrivial direction to discover.

Adversarial Network Alignment. Adversarial graph learning has been recently studied

and applied to many downstream tasks, including node classification, graph classification,

link prediction, fraud detection and so on. Nevertheless, few works apply adversarial learn-

ing to network alignment. In general, adversarial learning can be divided into two directions:

adversarial attacks and adversarial defense. The goal of adversarial attacks on network align-

ment is to attack the structure and/or attributes of one or multiple networks such that the

performance of the alignment algorithms decreases. Existing works mainly focus on attack-

ing a single network. However, attacks on multiple networks could become more complicated

as one attack on a network might influence both the network itself and other networks. From

this perspective, adversarial attack on network alignment is still an under-explored research

topic. In the meanwhile, adversarial defense on network alignment, which aims to develop

resilient techniques to improve the robustness of the model against adversarial attacks, is

another meaningful research problem to study.

146

Online Network Alignment. Since networks often change over time and existing net-

work alignment methods are often costly, it is of great interests to efficiently update the

alignment matrix once the input network structure changes. For example, given two social

networks (e.g., Facebook and Twitter), suppose the alignment matrix at time t = t0 is al-

ready obtained, then how can we compute the alignment matrix at time t = t1, t2, · · · ? The

most straightforward way is to calculate the alignment matrix by some existing approach

from scratch, which however is computationally expensive and unnecessary. In this way, how

to efficiently update the alignment matrix (e.g., by updating only a certain portion of the

matrix) is still an open question.

Integrated Network Alignment. Network alignment can be integrated with many other

classic machine learning tasks, such as fairness, interpretability, etc. However, this direction

is still overlooked. First, many real-world networks follow a power-law degree distribution

such that the majority of nodes have low degrees. These low-degree nodes could be a group

of underrepresented users in social networks. However, in the task of network alignment,

the alignments on low-degree nodes are often misleading possibly due to the fact that low-

degree nodes have similar and somewhat indistinguishable structural patterns. Despite some

existing works on fair graph learning [185, 186, 187], they focus on tasks on a single network,

while leaving fairness on multiple networks blank. In this way, by studying fair network

alignment, both the fairness and alignment accuracy can be improved.

Second, most, if not all, of the existing network alignment methods seek for a better

alignment performance, while not attempting to explain why nodes are aligned. The in-

terpretibility is an important factor that should be valued especially in many industrial

applications. For example, by interpreting why entities are aligned across two knowledge

graphs, one can evaluate the confidence of two nodes being the same/similar entities (e.g.,

objects, concepts, etc.). In the application of security (e.g., fraud detection, modeling adver-

sarial activities, etc.), it is indeed important provide clues of identifying the fraudsters across

multi-sourced networks, but explaining why they are aligned could be even more crucial for

security department to take actions. As a result, interpretable network alignment is another

interesting research direction.

Beyond Network Alignment. In contrast to network alignment which aims to merge

networks into a world-view network based on the common nodes across networks, a reverse

direction is to split a network into multiple pieces. Instances of network splitting include

graph partitioning, clustering, subgraph pattern mining, community detection, etc. To be

more specific, overlapped community detection divides a network into multiple communities

147

with overlapped nodes. From this perspective, overlapped community detection also shares

the commonality with network alignment, i.e., both explicitly or implicitly identifying the

shared nodes across different pieces/networks. Given these differences and commonalities

between network alignment and network splitting, a natural research question is when to

align networks and when to split networks. In addition, a future direction is to think about

whether there exists any room to utilize both network merging and network splitting to

benefit certain applications.

148

REFERENCES

[1] Q. Zhan, J. Zhang, S. Wang, S. Y. Philip, and J. Xie, “Influence maximization across
partially aligned heterogenous social networks,” in Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining. Springer, 2015, pp. 58–69.

[2] F. E. Faisal, L. Meng, J. Crawford, and T. Milenković, “The post-genomic era of biolog-
ical network alignment,” EURASIP Journal on Bioinformatics and Systems Biology,
vol. 2015, no. 1, pp. 1–19, 2015.

[3] R. Singh, J. Xu, and B. Berger, “Global alignment of multiple protein interaction net-
works with application to functional orthology detection,” Proceedings of the National
Academy of Sciences, vol. 105, no. 35, pp. 12 763–12 768, 2008.

[4] J. Xu, H. Tong, T.-C. Lu, J. He, and N. Bliss, “Gta3 2018: Workshop on graph
techniques for adversarial activity analytics,” in Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining, 2018, pp. 803–803.

[5] M. Bayati, M. Gerritsen, D. F. Gleich, A. Saberi, and Y. Wang, “Algorithms for large,
sparse network alignment problems,” in 2009 Ninth IEEE International Conference
on Data Mining. IEEE, 2009, pp. 705–710.

[6] J. Zhang and S. Y. Philip, “Multiple anonymized social networks alignment,” in 2015
IEEE International Conference on Data Mining. IEEE, 2015, pp. 599–608.

[7] Y. Zhang, J. Tang, Z. Yang, J. Pei, and P. S. Yu, “Cosnet: Connecting heterogeneous
social networks with local and global consistency,” in Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining, 2015, pp.
1485–1494.

[8] L. Liu, W. K. Cheung, X. Li, and L. Liao, “Aligning users across social networks using
network embedding.” in Ijcai, 2016, pp. 1774–1780.

[9] S. Zhang and H. Tong, “Final: Fast attributed network alignment,” in Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2016, pp. 1345–1354.

[10] S. Zhang, H. Tong, J. Tang, J. Xu, and W. Fan, “ineat: Incomplete network align-
ment,” in 2017 IEEE International Conference on Data Mining (ICDM). IEEE, 2017,
pp. 1189–1194.

[11] S. Zhang, H. Tong, R. Maciejewski, and T. Eliassi-Rad, “Multilevel network align-
ment,” in The World Wide Web Conference, 2019, pp. 2344–2354.

149

[12] S. Zhang and H. Tong, “Attributed network alignment: Problem definitions and fast
solutions,” IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 9, pp.
1680–1692, 2018.

[13] S. Zhang, H. Tong, J. Xu, Y. Hu, and R. Maciejewski, “Origin: Non-rigid network
alignment,” in 2019 IEEE International Conference on Big Data (Big Data). IEEE,
2019, pp. 998–1007.

[14] S. Zhang, H. Tong, Y. Xia, L. Xiong, and J. Xu, “Nettrans: Neural cross-network
transformation,” in Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 2020, pp. 986–996.

[15] S. Zhang, H. Tong, L. Jin, Y. Xia, and Y. Guo, “Balancing consistency and dispar-
ity in network alignment,” in Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, 2021, pp. 2212–2222.

[16] S. Zhang, H. Tong, J. Tang, J. Xu, and W. Fan, “Incomplete network alignment:
Problem definitions and fast solutions,” ACM Transactions on Knowledge Discovery
from Data (TKDD), vol. 14, no. 4, pp. 1–26, 2020.

[17] C.-S. Liao, K. Lu, M. Baym, R. Singh, and B. Berger, “Isorankn: spectral methods
for global alignment of multiple protein networks,” Bioinformatics, vol. 25, no. 12, pp.
i253–i258, 2009.

[18] D. Koutra, H. Tong, and D. Lubensky, “Big-align: Fast bipartite graph alignment,” in
2013 IEEE 13th international conference on data mining. IEEE, 2013, pp. 389–398.

[19] V. Saraph and T. Milenković, “Magna: maximizing accuracy in global network align-
ment,” Bioinformatics, vol. 30, no. 20, pp. 2931–2940, 2014.

[20] V. Vijayan, V. Saraph, and T. Milenković, “Magna++: maximizing accuracy in global
network alignment via both node and edge conservation,” Bioinformatics, vol. 31,
no. 14, pp. 2409–2411, 2015.

[21] S. Umeyama, “An eigendecomposition approach to weighted graph matching prob-
lems,” IEEE transactions on pattern analysis and machine intelligence, vol. 10, no. 5,
pp. 695–703, 1988.

[22] B. Luo and E. R. Hancock, “Structural graph matching using the em algorithm and
singular value decomposition,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 23, no. 10, pp. 1120–1136, 2001.

[23] C. Ding, T. Li, and M. I. Jordan, “Nonnegative matrix factorization for combinatorial
optimization: Spectral clustering, graph matching, and clique finding,” in 2008 Eighth
IEEE International Conference on Data Mining. IEEE, 2008, pp. 183–192.

[24] T. Man, H. Shen, S. Liu, X. Jin, and X. Cheng, “Predict anchor links across social
networks via an embedding approach.” in Ijcai, vol. 16, 2016, pp. 1823–1829.

150

[25] F. Zhou, L. Liu, K. Zhang, G. Trajcevski, J. Wu, and T. Zhong, “Deeplink: A deep
learning approach for user identity linkage,” in IEEE INFOCOM 2018-IEEE Confer-
ence on Computer Communications. IEEE, 2018, pp. 1313–1321.

[26] H. Xu, D. Luo, H. Zha, and L. C. Duke, “Gromov-wasserstein learning for graph match-
ing and node embedding,” in International conference on machine learning. PMLR,
2019, pp. 6932–6941.

[27] X. Chu, X. Fan, D. Yao, Z. Zhu, J. Huang, and J. Bi, “Cross-network embedding for
multi-network alignment,” in The world wide web conference, 2019, pp. 273–284.

[28] X. Chen, M. Heimann, F. Vahedian, and D. Koutra, “Cone-align: Consistent net-
work alignment with proximity-preserving node embedding,” in Proceedings of the
29th ACM International Conference on Information & Knowledge Management, 2020,
pp. 1985–1988.

[29] M. Heimann, H. Shen, T. Safavi, and D. Koutra, “Regal: Representation learning-
based graph alignment,” in Proceedings of the 27th ACM international conference on
information and knowledge management, 2018, pp. 117–126.

[30] J. Zhang, B. Chen, X. Wang, H. Chen, C. Li, F. Jin, G. Song, and Y. Zhang,
“Mego2vec: Embedding matched ego networks for user alignment across social net-
works,” in Proceedings of the 27th ACM International Conference on Information and
Knowledge Management, 2018, pp. 327–336.

[31] F. Zhou, C. Cao, G. Trajcevski, K. Zhang, T. Zhong, and J. Geng, “Fast network
alignment via graph meta-learning,” in IEEE INFOCOM 2020-IEEE Conference on
Computer Communications. IEEE, 2020, pp. 686–695.

[32] Y. Yan, S. Zhang, and H. Tong, “Bright: A bridging algorithm for network alignment,”
in Proceedings of the Web Conference 2021, 2021, pp. 3907–3917.

[33] F. Zhou and F. De la Torre, “Factorized graph matching,” in 2012 IEEE Conference
on Computer Vision and Pattern Recognition. IEEE, 2012, pp. 127–134.

[34] F. Zhou and F. De la Torre, “Deformable graph matching,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2013, pp. 2922–2929.

[35] A. Zanfir and C. Sminchisescu, “Deep learning of graph matching,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2018, pp. 2684–2693.

[36] M. Kim and J. Leskovec, “The network completion problem: Inferring missing nodes
and edges in networks,” in Proceedings of the 2011 SIAM International Conference on
Data Mining. SIAM, 2011, pp. 47–58.

[37] F. Masrour, I. Barjesteh, R. Forsati, A.-H. Esfahanian, and H. Radha, “Network com-
pletion with node similarity: A matrix completion approach with provable guaran-
tees,” in 2015 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM). IEEE, 2015, pp. 302–307.

151

[38] D. Rafailidis and F. Crestani, “Network completion via joint node clustering and sim-
ilarity learning,” in 2016 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM). IEEE, 2016, pp. 63–68.

[39] S. Soundarajan, T. Eliassi-Rad, B. Gallagher, and A. Pinar, “Maxreach: Reducing net-
work incompleteness through node probes,” in 2016 IEEE/ACM International Con-
ference on Advances in Social Networks Analysis and Mining (ASONAM). IEEE,
2016, pp. 152–157.

[40] N. Boumal and P.-a. Absil, “Rtrmc: A riemannian trust-region method for low-rank
matrix completion,” in Advances in neural information processing systems, 2011, pp.
406–414.

[41] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding algorithm for
matrix completion,” SIAM Journal on optimization, vol. 20, no. 4, pp. 1956–1982,
2010.

[42] K.-C. Toh and S. Yun, “An accelerated proximal gradient algorithm for nuclear norm
regularized linear least squares problems,” Pacific Journal of optimization, vol. 6, no.
615-640, p. 15, 2010.

[43] E. J. Candes and Y. Plan, “Matrix completion with noise,” Proceedings of the IEEE,
vol. 98, no. 6, pp. 925–936, 2010.

[44] M. Al Hasan, V. Chaoji, S. Salem, and M. Zaki, “Link prediction using super-
vised learning,” in SDM06: workshop on link analysis, counter-terrorism and security,
vol. 30, 2006, pp. 798–805.

[45] W. Cukierski, B. Hamner, and B. Yang, “Graph-based features for supervised link
prediction,” in The 2011 International Joint Conference on Neural Networks. IEEE,
2011, pp. 1237–1244.

[46] A. K. Menon and C. Elkan, “Link prediction via matrix factorization,” in Joint euro-
pean conference on machine learning and knowledge discovery in databases. Springer,
2011, pp. 437–452.

[47] R. Raymond and H. Kashima, “Fast and scalable algorithms for semi-supervised link
prediction on static and dynamic graphs,” in Joint european conference on machine
learning and knowledge discovery in databases. Springer, 2010, pp. 131–147.

[48] H. Kashima, T. Kato, Y. Yamanishi, M. Sugiyama, and K. Tsuda, “Link propagation:
A fast semi-supervised learning algorithm for link prediction,” in Proceedings of the
2009 SIAM international conference on data mining. SIAM, 2009, pp. 1100–1111.

[49] T.-T. Kuo, R. Yan, Y.-Y. Huang, P.-H. Kung, and S.-D. Lin, “Unsupervised link pre-
diction using aggregative statistics on heterogeneous social networks,” in Proceedings
of the 19th ACM SIGKDD international conference on Knowledge discovery and data
mining, 2013, pp. 775–783.

152

[50] R.-H. Li, J. X. Yu, and J. Liu, “Link prediction: the power of maximal entropy random
walk,” in Proceedings of the 20th ACM international conference on Information and
knowledge management, 2011, pp. 1147–1156.

[51] X. Du, J. Yan, and H. Zha, “Joint link prediction and network alignment via cross-
graph embedding.” in IJCAI, 2019, pp. 2251–2257.

[52] L. H. Phuc, K. Takeuchi, M. Yamada, and H. Kashima, “Simultaneous link predic-
tion on unaligned networks using graph embedding and optimal transport,” in 2020
IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA).
IEEE, 2020, pp. 245–254.

[53] J. Zhang, J. Chen, S. Zhi, Y. Chang, S. Y. Philip, and J. Han, “Link prediction across
aligned networks with sparse and low rank matrix estimation,” in 2017 IEEE 33rd
International Conference on Data Engineering (ICDE). IEEE, 2017, pp. 971–982.

[54] F. Zhou, C. Li, Z. Wen, T. Zhong, G. Trajcevski, and A. Khokhar, “Uncertainty-aware
network alignment,” International Journal of Intelligent Systems, 2021.

[55] A. Bojchevski and S. Günnemann, “Deep gaussian embedding of graphs: Unsupervised
inductive learning via ranking,” arXiv preprint arXiv:1707.03815, 2017.

[56] D. Zhu, P. Cui, D. Wang, and W. Zhu, “Deep variational network embedding in
wasserstein space,” in Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 2018, pp. 2827–2836.

[57] Z. Kang, H. Pan, S. C. Hoi, and Z. Xu, “Robust graph learning from noisy data,”
IEEE transactions on cybernetics, vol. 50, no. 5, pp. 1833–1843, 2019.

[58] J. Wang, Z. Li, Q. Long, W. Zhang, G. Song, and C. Shi, “Learning node representa-
tions from noisy graph structures,” in 2020 IEEE International Conference on Data
Mining (ICDM). IEEE, 2020, pp. 1310–1315.

[59] Q. Zhou, L. Li, N. Cao, L. Ying, and H. Tong, “Admiring: Adversarial multi-network
mining,” in 2019 IEEE International Conference on Data Mining (ICDM). IEEE,
2019, pp. 1522–1527.

[60] Z. Zhang, Z. Zhang, Y. Zhou, Y. Shen, R. Jin, and D. Dou, “Adversarial attacks on
deep graph matching,” Advances in Neural Information Processing Systems, vol. 33,
2020.

[61] Y. Zhou, Z. Zhang, S. Wu, V. Sheng, X. Han, Z. Zhang, and R. Jin, “Robust net-
work alignment via attack signal scaling and adversarial perturbation elimination,” in
Proceedings of the Web Conference 2021, 2021, pp. 3884–3895.

[62] J. Ren, Z. Zhang, J. Jin, X. Zhao, S. Wu, Y. Zhou, Y. Shen, T. Che, R. Jin, and
D. Dou, “Integrated defense for resilient graph matching,” in International Conference
on Machine Learning. PMLR, 2021, pp. 8982–8997.

153

[63] J. Ren, Y. Zhou, R. Jin, Z. Zhang, D. Dou, and P. Wang, “Dual adversarial learning
based network alignment,” in 2019 IEEE International Conference on Data Mining
(ICDM). IEEE, 2019, pp. 1288–1293.

[64] H. Hong, X. Li, Y. Pan, and I. Tsang, “Domain-adversarial network alignment,” IEEE
Transactions on Knowledge and Data Engineering, 2020.

[65] J. Gao, X. Huang, and J. Li, “Unsupervised graph alignment with wasserstein distance
discriminator,” in Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, 2021, pp. 426–435.

[66] V. Vijayan, D. Critchlow, and T. Milenković, “Alignment of dynamic networks,” Bioin-
formatics, vol. 33, no. 14, pp. i180–i189, 2017.

[67] D. Apaŕıcio, P. Ribeiro, T. Milenković, and F. Silva, “Got-wave: Temporal network
alignment using graphlet-orbit transitions,” arXiv preprint arXiv:1808.08195, 2018.

[68] Y. Sun, J. Crawford, J. Tang, and T. Milenković, “Simultaneous optimization of both
node and edge conservation in network alignment via wave,” in International Workshop
on Algorithms in Bioinformatics. Springer, 2015, pp. 16–39.

[69] L. Sun, Z. Zhang, P. Ji, J. Wen, S. Su, and S. Y. Philip, “Dna: Dynamic social network
alignment,” in 2019 IEEE International Conference on Big Data (Big Data). IEEE,
2019, pp. 1224–1231.

[70] L.-k. Zhou, Y. Yang, X. Ren, F. Wu, and Y. Zhuang, “Dynamic network embedding
by modeling triadic closure process.” in AAAI, 2018, pp. 571–578.

[71] L. Du, Y. Wang, G. Song, Z. Lu, and J. Wang, “Dynamic network embedding: An
extended approach for skip-gram based network embedding.” in IJCAI, 2018, pp.
2086–2092.

[72] P. Goyal, N. Kamra, X. He, and Y. Liu, “Dyngem: Deep embedding method for
dynamic graphs,” arXiv preprint arXiv:1805.11273, 2018.

[73] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi, T. Kaler, T. B.
Schardl, and C. E. Leiserson, “Evolvegcn: Evolving graph convolutional networks for
dynamic graphs.” in AAAI, 2020, pp. 5363–5370.

[74] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, “Structured sequence mod-
eling with graph convolutional recurrent networks,” in International Conference on
Neural Information Processing. Springer, 2018, pp. 362–373.

[75] A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang, “Dysat: Deep neural represen-
tation learning on dynamic graphs via self-attention networks,” in Proceedings of the
13th International Conference on Web Search and Data Mining, 2020, pp. 519–527.

154

[76] Y. Yan, L. Liu, Y. Ban, B. Jing, and H. Tong, “Dynamic knowledge graph alignment,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 5, 2021,
pp. 4564–4572.

[77] L. Li, H. Tong, Y. Xiao, and W. Fan, “Cheetah: fast graph kernel tracking on dynamic
graphs,” in Proceedings of the 2015 SIAM International Conference on Data Mining.
SIAM, 2015, pp. 280–288.

[78] G. Kollias, S. Mohammadi, and A. Grama, “Network similarity decomposition (nsd):
A fast and scalable approach to network alignment,” IEEE Transactions on Knowledge
and Data Engineering, vol. 24, no. 12, pp. 2232–2243, 2011.

[79] S. Feizi, G. Quon, M. Medard, M. Kellis, and A. Jadbabaie, “Spectral alignment of
networks,” 2015.

[80] H. Nassar, N. Veldt, S. Mohammadi, A. Grama, and D. F. Gleich, “Low rank spectral
network alignment,” in Proceedings of the 2018 World Wide Web Conference, 2018,
pp. 619–628.

[81] Z. Chen, X. Yu, B. Song, J. Gao, X. Hu, and W.-S. Yang, “Community-based net-
work alignment for large attributed network,” in Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management, 2017, pp. 587–596.

[82] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt, “Graph
kernels,” The Journal of Machine Learning Research, vol. 11, pp. 1201–1242, 2010.

[83] B. Du and H. Tong, “Fasten: Fast sylvester equation solver for graph mining,” in Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, 2018, pp. 1339–1347.

[84] A. Yasar and Ü. V. Çatalyürek, “An iterative global structure-assisted labeled net-
work aligner,” in Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2018, pp. 2614–2623.

[85] K. K. Qin, F. D. Salim, Y. Ren, W. Shao, M. Heimann, and D. Koutra, “G-crewe:
Graph compression with embedding for network alignment,” in Proceedings of the 29th
ACM International Conference on Information & Knowledge Management, 2020, pp.
1255–1264.

[86] R. Zafarani and H. Liu, “Connecting users across social media sites: a behavioral-
modeling approach,” in Proceedings of the 19th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, 2013, pp. 41–49.

[87] S. Liu, S. Wang, F. Zhu, J. Zhang, and R. Krishnan, “Hydra: Large-scale social
identity linkage via heterogeneous behavior modeling,” in Proceedings of the 2014 ACM
SIGMOD international conference on Management of data, 2014, pp. 51–62.

155

[88] X. Kong, J. Zhang, and P. S. Yu, “Inferring anchor links across multiple heteroge-
neous social networks,” in Proceedings of the 22nd ACM international conference on
Information & Knowledge Management, 2013, pp. 179–188.

[89] K. Shu, S. Wang, J. Tang, R. Zafarani, and H. Liu, “User identity linkage across online
social networks: A review,” Acm Sigkdd Explorations Newsletter, vol. 18, no. 2, pp.
5–17, 2017.

[90] M. Yan, J. Sang, T. Mei, and C. Xu, “Friend transfer: Cold-start friend recommenda-
tion with cross-platform transfer learning of social knowledge,” in 2013 IEEE Inter-
national Conference on Multimedia and Expo (ICME). IEEE, 2013, pp. 1–6.

[91] A. R. Nelakurthi and J. He, “Finding cut from the same cloth: Cross network link
recommendation via joint matrix factorization,” in Thirty-First AAAI Conference on
Artificial Intelligence, 2017.

[92] X. Cao, H. Chen, X. Wang, W. Zhang, and Y. Yu, “Neural link prediction over aligned
networks,” in Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[93] X. Du, J. Yan, R. Zhang, and H. Zha, “Cross-network skip-gram embedding for joint
network alignment and link prediction,” IEEE Transactions on Knowledge and Data
Engineering, 2020.

[94] X. Cao and Y. Yu, “Joint user modeling across aligned heterogeneous sites using
neural networks,” in Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, 2017, pp. 799–815.

[95] Z. Zhu, J. Cao, T. Zhou, and B. Liu, “Understanding user topic preferences across
multiple social networks,” arXiv preprint arXiv:2103.07654, 2021.

[96] O. Kuchaiev, T. Milenković, V. Memǐsević, W. Hayes, and N. Pržulj, “Topological
network alignment uncovers biological function and phylogeny,” Journal of the Royal
Society Interface, vol. 7, no. 50, pp. 1341–1354, 2010.

[97] Y. Sun, W. Wang, N. Wu, W. Yu, and X. Chen, “Anomaly subgraph detection with
feature transfer,” in Proceedings of the 29th ACM International Conference on Infor-
mation & Knowledge Management, 2020, pp. 1415–1424.

[98] P. Bindu, P. S. Thilagam, and D. Ahuja, “Discovering suspicious behavior in multilayer
social networks,” Computers in Human Behavior, vol. 73, pp. 568–582, 2017.

[99] H. Zhu, R. Xie, Z. Liu, and M. Sun, “Iterative entity alignment via knowledge embed-
dings,” in Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), 2017.

[100] Z. Sun, W. Hu, Q. Zhang, and Y. Qu, “Bootstrapping entity alignment with knowledge
graph embedding.” in IJCAI, vol. 18, 2018, pp. 4396–4402.

156

[101] Z. Wang, Q. Lv, X. Lan, and Y. Zhang, “Cross-lingual knowledge graph alignment via
graph convolutional networks,” in Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, 2018, pp. 349–357.

[102] Y. Cao, Z. Liu, C. Li, J. Li, and T.-S. Chua, “Multi-channel graph neural network for
entity alignment,” arXiv preprint arXiv:1908.09898, 2019.

[103] J. Ni, H. Tong, W. Fan, and X. Zhang, “Inside the atoms: ranking on a network
of networks,” in Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2014, pp. 1356–1365.

[104] V. Van Vlasselaer, C. Bravo, O. Caelen, T. Eliassi-Rad, L. Akoglu, M. Snoeck, and
B. Baesens, “Apate: A novel approach for automated credit card transaction fraud
detection using network-based extensions,” Decision Support Systems, vol. 75, pp. 38–
48, 2015.

[105] G. W. Klau, “A new graph-based method for pairwise global network alignment,”
BMC bioinformatics, vol. 10, no. 1, p. S59, 2009.

[106] C. Li, J. Han, G. He, X. Jin, Y. Sun, Y. Yu, and T. Wu, “Fast computation of simrank
for static and dynamic information networks,” in Proceedings of the 13th International
Conference on Extending Database Technology, 2010, pp. 465–476.

[107] H. Tong, C. Faloutsos, and J.-Y. Pan, “Fast random walk with restart and its appli-
cations,” in Sixth international conference on data mining (ICDM’06). IEEE, 2006,
pp. 613–622.

[108] K. B. Petersen, M. S. Pedersen et al., “The matrix cookbook,” Technical University
of Denmark, vol. 7, no. 15, p. 510, 2008.

[109] R. Kondor, N. Teneva, and V. Garg, “Multiresolution matrix factorization,” in Inter-
national Conference on Machine Learning. PMLR, 2014, pp. 1620–1628.

[110] A. Prado, M. Plantevit, C. Robardet, and J.-F. Boulicaut, “Mining graph topologi-
cal patterns: Finding covariations among vertex descriptors,” IEEE Transactions on
Knowledge and Data Engineering, vol. 25, no. 9, pp. 2090–2104, 2013.

[111] E. Zhong, W. Fan, J. Wang, L. Xiao, and Y. Li, “Comsoc: adaptive transfer of user
behaviors over composite social network,” in Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 2012, pp.
696–704.

[112] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Densification and
shrinking diameters,” ACM Transactions on Knowledge Discovery from Data (TKDD),
vol. 1, no. 1, p. 2, 2007.

[113] W. Cohen, P. Ravikumar, and S. Fienberg, “A comparison of string metrics for match-
ing names and records,” in Kdd workshop on data cleaning and object consolidation,
vol. 3, 2003, pp. 73–78.

157

[114] S. Hashemifar and J. Xu, “Hubalign: an accurate and efficient method for global
alignment of protein–protein interaction networks,” Bioinformatics, vol. 30, no. 17,
pp. i438–i444, 2014.

[115] M. Cho, J. Lee, and K. M. Lee, “Reweighted random walks for graph matching,” in
European conference on Computer vision. Springer, 2010, pp. 492–505.

[116] G. Kollias, S. Mohammadi, and A. Grama, “Network similarity decomposition (nsd):
A fast and scalable approach to network alignment,” IEEE Transactions on Knowledge
and Data Engineering, vol. 24, no. 12, pp. 2232–2243, 2012.

[117] S. Hashemifar, J. Ma, H. Naveed, S. Canzar, and J. Xu, “Modulealign: module-based
global alignment of protein–protein interaction networks,” Bioinformatics, vol. 32,
no. 17, pp. i658–i664, 2016.

[118] R. Trivedi, B. Sisman, J. Ma, C. Faloutsos, H. Zha, and X. L. Dong, “Linknbed: Multi-
graph representation learning with entity linkage,” arXiv preprint arXiv:1807.08447,
2018.

[119] T. C. Koopmans and M. Beckmann, “Assignment problems and the location of eco-
nomic activities,” Econometrica: journal of the Econometric Society, pp. 53–76, 1957.

[120] A. Myronenko and X. Song, “Point set registration: Coherent point drift,” IEEE
transactions on pattern analysis and machine intelligence, vol. 32, no. 12, pp. 2262–
2275, 2010.

[121] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The
emerging field of signal processing on graphs: Extending high-dimensional data analy-
sis to networks and other irregular domains,” IEEE signal processing magazine, vol. 30,
no. 3, pp. 83–98, 2013.

[122] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” arXiv preprint arXiv:1609.02907, 2016.

[123] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on large
graphs,” in Proceedings of the 31st International Conference on Neural Information
Processing Systems, 2017, pp. 1025–1035.

[124] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed repre-
sentations of words and phrases and their compositionality,” in Advances in neural
information processing systems, 2013, pp. 3111–3119.

[125] V. Sindhwani and D. S. Rosenberg, “An rkhs for multi-view learning and manifold
co-regularization,” in Proceedings of the 25th international conference on Machine
learning, 2008, pp. 976–983.

[126] B. Schölkopf, R. Herbrich, and A. J. Smola, “A generalized representer theorem,”
in International conference on computational learning theory. Springer, 2001, pp.
416–426.

158

[127] R. I. Kondor and J. Lafferty, “Diffusion kernels on graphs and other discrete struc-
tures,” in Proceedings of the 19th international conference on machine learning, vol.
2002, 2002, pp. 315–322.

[128] A. J. Smola and R. Kondor, “Kernels and regularization on graphs,” in Learning theory
and kernel machines. Springer, 2003, pp. 144–158.

[129] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka, “Representation
learning on graphs with jumping knowledge networks,” in International Conference on
Machine Learning. PMLR, 2018, pp. 5453–5462.

[130] J. Zhang and S. Y. Philip, “Integrated anchor and social link predictions across social
networks,” in Twenty-Fourth International Joint Conference on Artificial Intelligence,
2015.

[131] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard et al., “Tensorflow: A system for large-scale machine learning,” in
12th {USENIX} symposium on operating systems design and implementation ({OSDI}
16), 2016, pp. 265–283.

[132] C. Chen, H. Tong, L. Xie, L. Ying, and Q. He, “Fascinate: fast cross-layer dependency
inference on multi-layered networks,” in Proceedings of the 22nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, 2016, pp. 765–774.

[133] Y. Yao, H. Tong, G. Yan, F. Xu, X. Zhang, B. K. Szymanski, and J. Lu, “Dual-
regularized one-class collaborative filtering,” in Proceedings of the 23rd ACM Interna-
tional Conference on Conference on Information and Knowledge Management, 2014,
pp. 759–768.

[134] Q. Liu, C. Chen, A. Gao, H. H. Tong, and L. Xie, “Varifunnet, an integrated multiscale
modeling framework to study the effects of rare non-coding variants in genome-wide
association studies: Applied to alzheimer’s disease,” in 2017 IEEE International Con-
ference on Bioinformatics and Biomedicine (BIBM). IEEE, 2017, pp. 2177–2182.

[135] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender
systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.

[136] B. Yang, Y. Lei, J. Liu, and W. Li, “Social collaborative filtering by trust,” IEEE
transactions on pattern analysis and machine intelligence, vol. 39, no. 8, pp. 1633–
1647, 2016.

[137] J. Li, C. Chen, H. Tong, and H. Liu, “Multi-layered network embedding,” in Proceed-
ings of the 2018 SIAM International Conference on Data Mining. SIAM, 2018, pp.
684–692.

[138] B. Du and H. Tong, “Mrmine: Multi-resolution multi-network embedding,” in Pro-
ceedings of the 28th ACM International Conference on Information and Knowledge
Management, 2019, pp. 479–488.

159

[139] W. Jin, K. Yang, R. Barzilay, and T. Jaakkola, “Learning multimodal graph-to-graph
translation for molecular optimization,” arXiv preprint arXiv:1812.01070, 2018.

[140] X. Guo, L. Zhao, C. Nowzari, S. Rafatirad, H. Homayoun, and S. M. P. Dinakarrao,
“Deep multi-attributed graph translation with node-edge co-evolution,” in 2019 IEEE
International Conference on Data Mining (ICDM). IEEE, 2019, pp. 250–259.

[141] D. Ron, I. Safro, and A. Brandt, “Relaxation-based coarsening and multiscale graph
organization,” Multiscale Modeling & Simulation, vol. 9, no. 1, pp. 407–423, 2011.

[142] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec, “Hier-
archical graph representation learning with differentiable pooling,” arXiv preprint
arXiv:1806.08804, 2018.

[143] H. Gao and S. Ji, “Graph u-nets,” in international conference on machine learning.
PMLR, 2019, pp. 2083–2092.

[144] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” in International Conference
on Machine Learning. PMLR, 2019, pp. 3734–3743.

[145] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph
attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[146] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-softmax,”
arXiv preprint arXiv:1611.01144, 2016.

[147] M. Fey and J. E. Lenssen, “Fast graph representation learning with pytorch geometric,”
arXiv preprint arXiv:1903.02428, 2019.

[148] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr: Bayesian
personalized ranking from implicit feedback,” arXiv preprint arXiv:1205.2618, 2012.

[149] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting semi-supervised learning
with graph embeddings,” arXiv preprint arXiv:1603.08861, 2016.

[150] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer: extraction
and mining of academic social networks,” in Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, 2008, pp. 990–998.

[151] J. Tang, H. Gao, and H. Liu, “mtrust: discerning multi-faceted trust in a connected
world,” in Proceedings of the fifth ACM international conference on Web search and
data mining, 2012, pp. 93–102.

[152] Q. Le and T. Mikolov, “Distributed representations of sentences and documents,” in
International conference on machine learning, 2014, pp. 1188–1196.

[153] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural graph collaborative
filtering,” in Proceedings of the 42nd international ACM SIGIR conference on Research
and development in Information Retrieval, 2019, pp. 165–174.

160

[154] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph neural networks
for social recommendation,” in The World Wide Web Conference, 2019, pp. 417–426.

[155] J. Chen, C. Wang, S. Zhou, Q. Shi, Y. Feng, and C. Chen, “Samwalker: Social recom-
mendation with informative sampling strategy,” in The World Wide Web Conference,
2019, pp. 228–239.

[156] Z. Yang, M. Ding, C. Zhou, H. Yang, J. Zhou, and J. Tang, “Understanding negative
sampling in graph representation learning,” in Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 2020, pp. 1666–
1676.

[157] M. Armandpour, P. Ding, J. Huang, and X. Hu, “Robust negative sampling for network
embedding,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
no. 01, 2019, pp. 3191–3198.

[158] M. Maruf and A. Karpatne, “Maximizing cohesion and separation in graph repre-
sentation learning: A distance-aware negative sampling approach,” in Proceedings of
the 2021 SIAM International Conference on Data Mining (SDM). SIAM, 2021, pp.
271–279.

[159] Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional networks for
semi-supervised learning,” in Thirty-Second AAAI conference on artificial intelligence,
2018.

[160] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social repre-
sentations,” in Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2014, pp. 701–710.

[161] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in Pro-
ceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery
and data mining, 2016, pp. 855–864.

[162] S. Rendle and C. Freudenthaler, “Improving pairwise learning for item recommenda-
tion from implicit feedback,” in Proceedings of the 7th ACM international conference
on Web search and data mining, 2014, pp. 273–282.

[163] Y. Liu, F. Shang, H. Cheng, J. Cheng, and H. Tong, “Factor matrix trace norm
minimization for low-rank tensor completion,” in Proceedings of the 2014 SIAM Inter-
national Conference on Data Mining. SIAM, 2014, pp. 866–874.

[164] B. Recht, “A simpler approach to matrix completion.” Journal of Machine Learning
Research, vol. 12, no. 12, 2011.

[165] J. D. Rennie and N. Srebro, “Fast maximum margin matrix factorization for collab-
orative prediction,” in Proceedings of the 22nd international conference on Machine
learning, 2005, pp. 713–719.

161

[166] C. Ding, X. He, and H. D. Simon, “On the equivalence of nonnegative matrix fac-
torization and spectral clustering,” in Proceedings of the 2005 SIAM International
Conference on Data Mining. SIAM, 2005, pp. 606–610.

[167] J. J. McAuley and J. Leskovec, “Learning to discover social circles in ego networks.”
in NIPS, vol. 2012. Citeseer, 2012, pp. 548–56.

[168] J. Yang and J. Leskovec, “Defining and evaluating network communities based on
ground-truth,” Knowledge and Information Systems, vol. 42, no. 1, pp. 181–213, 2015.

[169] U. Brandes, “On variants of shortest-path betweenness centrality and their generic
computation,” Social Networks, vol. 30, no. 2, pp. 136–145, 2008.

[170] G. H. Golub and C. F. Van Loan, Matrix computations. JHU Press, 2012, vol. 3.

[171] Z. Xu, S. Zhang, Y. Xia, L. Xiong, and H. Tong, “Ranking on network of hetero-
geneous information networks,” in 2020 IEEE International Conference on Big Data
(Big Data). IEEE, 2020, pp. 848–857.

[172] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Simplifying graph
convolutional networks,” in International conference on machine learning. PMLR,
2019, pp. 6861–6871.

[173] M. R. Khan and J. E. Blumenstock, “Multi-gcn: Graph convolutional networks for
multi-view networks, with applications to global poverty,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp. 606–613.

[174] C. Park, J. Han, and H. Yu, “Deep multiplex graph infomax: Attentive multiplex
network embedding using global information,” Knowledge-Based Systems, vol. 197, p.
105861, 2020.

[175] Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang, “Simgnn: A neural network
approach to fast graph similarity computation,” in Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining, 2019, pp. 384–392.

[176] Y. Zuo, G. Liu, H. Lin, J. Guo, X. Hu, and J. Wu, “Embedding temporal network
via neighborhood formation,” in Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining, 2018, pp. 2857–2866.

[177] Y. Lu, X. Wang, C. Shi, P. S. Yu, and Y. Ye, “Temporal network embedding with
micro-and macro-dynamics,” in Proceedings of the 28th ACM international conference
on information and knowledge management, 2019, pp. 469–478.

[178] X. Chang, X. Liu, J. Wen, S. Li, Y. Fang, L. Song, and Y. Qi, “Continuous-time
dynamic graph learning via neural interaction processes,” in Proceedings of the 29th
ACM International Conference on Information & Knowledge Management, 2020, pp.
145–154.

162

[179] F. Manessi, A. Rozza, and M. Manzo, “Dynamic graph convolutional networks,” Pat-
tern Recognition, vol. 97, p. 107000, 2020.

[180] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bronstein,
“Temporal graph networks for deep learning on dynamic graphs,” arXiv preprint
arXiv:2006.10637, 2020.

[181] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then propagate: Graph neural
networks meet personalized pagerank,” arXiv preprint arXiv:1810.05997, 2018.

[182] P. Panzarasa, T. Opsahl, and K. M. Carley, “Patterns and dynamics of users’ behavior
and interaction: Network analysis of an online community,” Journal of the American
Society for Information Science and Technology, vol. 60, no. 5, pp. 911–932, 2009.

[183] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time: densification laws,
shrinking diameters and possible explanations,” in Proceedings of the eleventh ACM
SIGKDD international conference on Knowledge discovery in data mining, 2005, pp.
177–187.

[184] N. Malod-Dognin and N. Pržulj, “L-graal: Lagrangian graphlet-based network
aligner,” Bioinformatics, vol. 31, no. 13, pp. 2182–2189, 2015.

[185] J. Kang, J. He, R. Maciejewski, and H. Tong, “Inform: Individual fairness on
graph mining,” in Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 2020, pp. 379–389.

[186] P. Li, Y. Wang, H. Zhao, P. Hong, and H. Liu, “On dyadic fairness: Exploring and
mitigating bias in graph connections,” in International Conference on Learning Rep-
resentations, 2020.

[187] Y. Dong, J. Kang, H. Tong, and J. Li, “Individual fairness for graph neural networks:
A ranking based approach,” in Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, 2021, pp. 300–310.

163

