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Abstract

Autonomous robots that are capable of operating safely in the presence of imperfect model knowl-
edge or external disturbances are vital in safety-critical applications. The research presented in this
dissertation aims to enable safe planning and control for nonlinear systems with uncertainties using
robust adaptive control theory. To this end we develop methods that (i) certify the collision-risk
for the planned trajectories of autonomous robots, (ii) ensure guaranteed tracking performance in
the presence of uncertainties, and (iii) learn the uncertainties in the model without sacrificing the
transient performance guarantees, and (iv) learn incremental stability certificates parameterized as
neural networks.

In motion planning problems for autonomous robots, such as self-driving cars, the robot must
ensure that its planned path is not in close proximity to obstacles in the environment. However, the
problem of evaluating the proximity is generally non-convex and serves as a significant computa-
tional bottleneck for motion planning algorithms. In this work, we present methods for a general
class of absolutely continuous parametric curves to compute: the minimum separating distance,
tolerance verification, and collision detection with respect to obstacles in the environment.

A planning algorithm is incomplete if the robot is unable to safely track the planned trajectory.
We introduce a feedback motion planning approach using contraction theory-based L1-adaptive
(CL1) control to certify that planned trajectories of nonlinear systems with matched uncertainties
are tracked with desired performance requirements. We present a planner-agnostic framework to
design and certify invariant tubes around planned trajectories that the robot is always guaranteed
to remain inside. By leveraging recent results in contraction analysis and L1-adaptive control
we present an architecture that induces invariant tubes for nonlinear systems with state and time-
varying uncertainties.

Uncertainties caused by large modeling errors will significantly hinder the performance of any
autonomous system. We adapt the CL1 framework to safely learn the uncertainties while simul-
taneously providing high-probability bounds on the tracking behavior. Any available data is in-
corporated into Gaussian process (GP) models of the uncertainties while the error in the learned
model is quantified and handled by the CL1 controller to ensure that control objectives are met
safely. As learning improves, so does the overall tracking performance of the system. This way,
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the safe operation of the system is always guaranteed, even during the learning transients.
The tracking performance guarantees for nonlinear systems rely on the existence of incremental

stability certificates that are prohibitively difficult to search for. We leverage the function approxi-
mation capabilities of deep neural networks for learning the certificates and the associated control
policies jointly. The incremental stability properties of the closed-loop system are verified using
interval arithmetic. The domain of the system is iteratively refined into a collection of intervals
that certify the satisfaction of the stability properties over the interval regions. Thus, we avoid
entirely rejecting the learned certificates and control policies just because they violate the stability
properties in certain parts of the domain. We provide numerical experimentation on an inverted
pendulum to validate our proposed methodology.
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Notations and Symbols

N Set of natural numbers

Rn Real coordinate space of dimension n ∈ N

Cn Complex coordinate space of dimension n ∈ N

R≥0 Set of non-negative reals

Rn×m Set of real matrices with n ∈ N rows and m ∈ N columns

Sn Set of real symmetric matrices with n ∈ N rows and columns

Sn�0 Set of positive semidefinite symmetric matrices with n ∈ N rows and columns

Sn�0 Set of positive definite symmetric matrices with n ∈ N rows and columns

In Identity matrix with n ∈ N rows and columns

1n Column vector of ones with dimension n ∈ N

·> Transpose operation of a vector or a matrix

[A]S Symmetric component of matrix A ∈ Rn×n given by (A+ A>)

λ(A) Largest eigenvalue of square matrix A ∈ Rn×n

λ(A) Smallest eigenvalue of square matrix A ∈ Rn×n

σ>0(A) Smallest non-zero singular value of matrix A ∈ Rn×m

A⊕ B Minkowski addition between two compact sets A,B ⊂ Rn

A	 B Minkowski difference between two compact sets A,B ⊂ Rn

|·| Absolute value of real scalar

‖·‖ 2-norm of a vectors or a matrix norm induced by vector 2-norm

L∞(S) Space of functions f : S ⊆ R→ Rn which satisfy supy∈S‖f(y)‖ <∞.

‖f‖L∞ L∞ norm of a function L∞(R) 3 f : R→ Rn given by supt≥0‖f(t)‖
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‖f‖[0,τ ]
L∞ TruncatedL∞ norm of a functionL∞([0, τ ]) 3 f : R→ Rn given by supt∈[0,τ ]‖f(t)‖

L1(S) Space of functions f : S ⊆ R→ Rn which satisfy
∫
S
‖f(y)‖ dy <∞.

‖f‖L1 L1 norm of a function L1(R) 3 f : R→ Rn given by
∫∞

0
‖f(t)‖ dt

‖f‖[0,τ ]
L1 Truncated L1 norm of a function L1([0, τ ]) 3 f : R→ Rn given by

∫ τ
0
‖f(t)‖ dt

Ck Space of functions with k continuous derivatives

fi(y) ith element of a function f : Rk → Rn

Ai(y) ith column of a matrix-valued function A(y) : Rk → Rn×m

L[f(t)] Laplace transform of a function f : R≥0 → R

L−1[F (s)] Inverse Laplace transform of a function F : C→ C
df
dy
,∇f Total derivative of a function f : Rn → Rm with respect to y ∈ Rn

∂f
∂y
,∇yf Partial derivative of a function f : Rn → Rm with respect to y ∈ Rk

∂fA(y) Directional derivative of a matrix valued function A : Rk → Rn×m with respect to
y along the direction specified by f : Rk → Rk given by

∑k
i=1(∂A(y)/∂(y))fi(y).

Lfg(y) Lie derivative of a scalar valued function g : Rn → R with respect to the vector
field specified by f : Rn → Rn given by ∇g(y)>f(y).

[a, b] An interval set defined as {x ∈ R : a ≤ x ≤ b}. Matrix and vector interval are
denoted in the same manner. The distinction should be clear from context.
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ALTRO Augmented Lagrangian trajectory optimizer

BIT* Batch informed trees

CBF Control barrier function

CCM Control contraction metric

CLF Control Lyapunov function
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GP Gaussian process
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IES Incremental exponential stability
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Chapter 1

Introduction

1.1 Motivation

Planning and control are among the most critical components of an autonomous system’s oper-
ational capabilities. Self-driving vehicles [1], aerial drones [2], surgical robots [3], warehouse
robots [4], humanoid robots [5], rely on certified planning and control policies to ensure safe be-
havior in real world environments, Fig. 1.1. Moreover, since many of these robots also operate
near or alongside humans, the planning and control modules must adhere to safety-critical design
principles in order to prevent injury or loss of lives.

Uncertainties that are either a result of external factors or simply modeling errors are very com-
mon sources for malfunctions. Collisions with obstacles due to dynamically changing environ-
ments that are inconsistent with the planned trajectory also pose a significant risk to operation of
autonomous systems. Other sources for malfunctions may also cause operational failures such
as noisy sensor measurements, time-delays between subsystems, failure of actuators or computer
hardware, or adversarial human factors. Additionally, the limited on-board computational power
on many of these systems restrict the complexity of the safety critical algorithms that are deployed.

Real world environments are often rapidly changing. For instance, a self-driving car operating
on busy roads would have to plan safe maneuvers that not only avoid collisions with nearby ve-
hicles but also stay clear of pedestrians and bicyclists who share the road. In these situations, the
motion plans must be periodically checked for collisions with obstacles in the environment and
re-planned if necessary. Moreover, since sensing information is usually noisy, collisions must be
checked with a margin for error that accounts for the sensing inaccuracies. However, collision
checking algorithms pose significant computational bottlenecks [6] in motion planning algorithms
and require fast operation times to be viable in real world scenarios.

Environmental uncertainties appear in the form of wind disturbances for aerial drones [9], imper-
fect road conditions for ground robots [10], and uneven surfaces for legged robots [11]. Modeling
errors on the other hand appear as a result of imprecise model parameters, incorrect assumptions
on the model order, or a poor fit during system identification. The typical approaches to address

1



(a) (b) (c)

Figure 1.1: Some examples of safety-critical autonomous systems: (a) Crazyflie quadrotor [7], (b)
Waymo self-driving car [8], and the (b) Atlas bipedal humanoid robot [5].

these issues rely on modern tools from control theory such as robust [12, 13] and adaptive [14, 15]
control. In robust control methods, feedback policies are synthesized by solving an optimization
problem that minimizes the degradation (i.e. performance output) due to the disturbances affecting
the system. In contrast, adaptive control tools focus on directly learning the model parameters
or uncertainties in the model to improve the designed feedback policy in an online-fashion. It is
common [16–18] to utilize principles from both areas of research to design feedback policies that
both provide quantifiable performance guarantees and improve continually over the lifetime of its
operation. However, these approaches require bespoke analysis for every nonlinear robotic system
and in general are not interchangeably applicable.

Tools from machine learning (ML) have also proven to be effective in learning system models for
planning and control applications [19–21]. This area of research is also referred to as model-based
reinforcement learning (MBRL) [22–24]. In MBRL, instead of directly learning the control policy
to stabilize the system as in reinforcement learning (RL), a model is learned using ML techniques
and model predictive control (MPC) approach is used to stabilize the system. However learning
will never be fully accurate due limitations in collected data and assumptions on the structure of
the uncertainty. And a control policy designed without careful consideration to the uncertainties
arising out of errors in the model learning process may result in malfunctions and failures as
previously discussed. Therefore, the safe planning and control policies must also be designed for
safety-critical systems with learned components.

A further challenge is the problem of jointly learning certificates and control policies. The
certificates that prove stability and safety in the presence of disturbances are obtained by solving
prohibitively expensive optimization problems. Moreover, certification procedures [25–27] are
typically solved as a feasibility problem and are not guaranteed to provide a solution unless the
correct set of hyperparameters are selected prior to the computation. However, it would be more
desirable if these procedures report solutions under certain alterations to the hyperparameters of the
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problem. For example, a certificate and controller that are valid in a smaller region of the system’s
state space or converge to the equilibrium at a slower rate than desired will be more useful than
reporting a solution that is determined to be infeasible.

It is evident from the above considerations that the following requirements are important to
designing planning and control modules for safety-critical systems:

• Design real-time collision checking methods to continuously ensure safety along the planned
trajectory and enable faster re-planning in the event that it is necessary;

• Obtain quantifiable tracking error bounds between the planned trajectory and the state of the
system in the presence of bounded disturbances;

• Quantify modeling errors that emerge out of ML-based system identification techniques and
obtain guaranteed performance bounds for the system during learning transients;

• Develop methods that synthesize certificates and control policies that provide the desired
safety guarantees for nonlinear systems.

1.2 General Problem Formulation and Contributions

Consider a dynamical system with the state x ∈ Rn and control u ∈ Rm given by the following
differential equation

ẋ(t) = f(t, x, u) + h(t), x(0) = x0,

where f(t) ∈ Rn is known function representing the nominal vector field of the system and h(t) ∈
Rn denotes the uncertainty in the system. The uncertainty may also depend on the states and the
control input but without loss of generality is represented here as explicitly depending on time.
Additionally, a desired trajectory x?(t) ∈ Rn is obtained from a motion planner [28–31], based on
the nominal model of the system satisfying

ẋ?(t) = f(t, x?, u), x?(0) = x?0.

We proceed to define the problems that are critical to certifying safety for planning and control
approaches in nonlinear systems. For simplicity, we define the problems in their full generality,
however, as we provide solutions to these problems in the forthcoming chapters we bring in further
assumptions to make the problems tractable.

Problem 1.1 (Collision Checking). Let B ⊂ Rn represent obstacles in the environments or state

constraints that the system remains outside of. In order to certify that the desired trajectory is safe,
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the following inequality must hold

‖x?(t)− b‖ < ∆tol, ∀b ∈ B,∀t ∈ [0, τ ],

where ∆tol > 0 is some tolerance that accounts for tracking error and sensing inaccuracies.

In this dissertation, we introduce a family of algorithms to evaluate the minimum separation
distance, tolerance verification, and collision detection queries between trajectories described as
absolutely continuous parametric curves and obstacles. The obstacles are defined as convex poly-
topes, parametric curves, or any other compact set to which minimum distances can be computed.
A main feature of the proposed algorithms is their ability to provide proximity queries for a large
class of parametric curves, more general than ones that have been considered previously [32–36].
This is in part enabled by the efficient computation of convex hulls for parametric curves based on
the arc length for any sub-interval in their domain, and additionally by fast procedures to evaluate
the minimum separating distance, tolerance verification, and collision detection queries using in-
terval branch-and-bound methods. Such queries are useful in scenarios when the motion planner’s
candidate trajectory incurs a distance-based penalty for approaching close to an obstacle, must
maintain a safe distance from an obstacle, or must not intersect with the obstacle’s geometry.

Problem 1.2 (Guaranteed Tracking Performance). Given bounded uncertainty, i.e. ‖h(t)‖ ≤ ∆h

for all t ≥ 0. In order to certify guaranteed tracking performance, a control input u(t) must be

designed so that

‖x(t)− x?(t)‖ ≤ ρ, ∀t ≥ 0,

where ρ > 0 is the desired maximum tracking error bound.

We present an approach for safe feedback motion planning for control-affine nonlinear systems
that relies on contraction theory-based solution for exponential stabilizability around trajectories
and L1-adaptive control for handling uncertainties and providing guarantees for transient perfor-
mance and robustness, which we refer to as the CL1 robust adaptive control framework. We present
a constructive design of feedback strategy for nonlinear systems using control contraction metrics
(CCMs) and L1-adaptive control that provides strong guarantees of transient performance and ro-
bustness for a large class of control-affine nonlinear systems. Furthermore, we show how this
control architecture induces tubes that can be flexibly changed to ensure safety based on the un-
certainty in the system and the environment. In particular, this flexibility is provided by the archi-
tecture of the L1-adaptive control by decoupling the control loop from the estimation loop [15]. In
this way, the width of the certifiable tubes can be adjusted allowing the safe operation of a robot in
tight confines. The proposed control framework is planner-agnostic and is designed to work with
any planner capable of generating desired state and control trajectories using the known (learned
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or nominal) model. This feature enables the framework to be used in conjunction with many pop-
ular planning algorithms such as differential dynamic programming [37], model predictive path
integral control [38], and sampling-based planners [39], among many others [31, 40].

Problem 1.3 (Safe Learning and Control). Given a learned vector field f̂(t, x, u), first quantify the

uncertainty in the system

f̂(t, x, u)− f(t, x, u) ≤ ∆ĥ ∀x ∈ X , u ∈ U , t ≥ 0,

where X and U are compact subsets of the real coordinate space. In order to certify guaranteed

tracking performance, a control input u(t) must be designed so that

‖x(t)− x̂?(t)‖ ≤ ρ, ∀t ≥ 0,

where ρ > 0 is the desired maximum tracking error bound and x̂? is the desired trajectory obtained

based on the learned model.

We propose a learning-based control framework using robust adaptive control theory for nonlin-
ear systems that ensures improvement of optimality and performance while simultaneously guar-
anteeing safety. The safety guarantees are composed of apriori computable transient performance
bounds and robustness margins. We rely on Bayesian learning in the form of Gaussian process
(GP) regression to learn the state and time-dependent model uncertainties from noisy measure-
ments. We use the predictive distribution provided by GP learning to compute high-probability
error bounds for the estimated uncertainties. These estimates are then incorporated within the CL1

robust adaptive control framework. A critical feature of the proposed framework is that it enables
MBRL algorithms to achieve optimality as learning progresses but the safety is guaranteed at all
times regardless of the quality of the learned model. Moreover, the improved model knowledge
and the tighter performance bounds are then incorporated into the planner used by the MBRL
algorithm to generate more optimal but still safe trajectories.

Problem 1.4 (Learning Certificates and Control Policies). Design a certificate V (x, x?) and con-

trol input u(t) so that

‖x(t)− x?(t)‖ ≤ κ(‖x0 − x?0‖, t), ∀x ∈ X , x? ∈ X ? ⊆ X , t ≥ 0,

where κmay belong to classKL function for asymptotic stability, κ(x, t) = Cxe−λt for exponential

stability (with constants C, λ > 0), or represents convergence to an invariant set.

We propose a method of learning certified control policies for nonlinear control systems. We
provide the certification by jointly learning incremental Lyapunov functions (ILFs) and control
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Figure 1.2: An illustration of the safe planning and control pipeline.

policies that prove the incremental exponential stability of the closed-loop systems. The space of
candidate feedback laws and ILFs are parameterized using deep neural networks (DNNs) and are
trained by minimizing the empirical loss that measures the violations of the Lyapunov conditions at
different training points in the state space. Our framework utilizes interval analysis to discover the
regions of the state space where the Lyapunov conditions are guaranteed to hold and we provide
a region of attraction based on the result. This ensures that a viable solution may be recovered
from even poorly trained models of the certificate and controller, albeit with smaller regions of
attraction. We provide similar results for CCMs.

1.3 General Framework

The main focus of the framework proposed in this dissertation is ensuring that different compo-
nents in the planning and control pipeline of an autonomous system are certified to give com-

plete results and ensure predictable behavior. Since these systems form critical components of
autonomous system, a failure of one of these systems might result in the failure of the entire sys-
tem. The completeness of an algorithm ensures that if a property, for example being collision-free,
is in violation then the algorithm must report a violation. This may also include reporting false
negatives, i.e. Typer II errors, however from a safety perspective this is preferable to a true neg-
ative. The predictability of an algorithm, ensures that the true system will behave close to the
intended behavior of the nominal system. The collision checking algorithms and the verification
of Lyapunov functions (LFs) presented in this work are complete, whereas, the proposed control
architectures ensure predictable behavior of the system in the presence of uncertainties. The com-
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bination of these properties ensures that the system remains safe during its operational lifetime.
In Fig. 1.2, we provide an illustration of the proposed safe planning and control framework.

The two main constituents of the controller are a baseline control for trajectory tracking and an
L1-adaptive control augmentation to handle the disturbances [41]. The baseline control ensures
incremental exponential stability (IES) of the nominal system, i.e. without considering uncertain-
ties. The stability of the system is certified by searching for an ILF or a CCM. A controller may
also be jointly searched along with the certificate, otherwise the ILF can also be treated as a control
Lyapunov function (CLF) and a Sontag-like universal formula [42] for the baseline control. We
will present both approaches in this work. The other important component of controller is the L1-
adaptive augmentation for the partial compensation of the uncertainties and providing guarantees
for transient performance and robustness. In the L1 control architecture, estimation is decoupled
from control, thereby allowing for arbitrarily fast adaptation subject only to hardware limitations,
[15]. Both these components together make sure that the system behaves predictably in real world
environments, and closely tracks the desired trajectory designed by the planning module.

Based on the level of uncertainty in the system and the properties of the baseline and adaptive
controllers, we analytically obtain the tracking performance bounds on the system. The perfor-
mance bounds correspond to the maximum deviation of the system away from the desired tra-
jectory, which is directly applicable to collision checking in motion planning scenarios. Typically,
candidate trajectories are not checked for collision detection exactly with the boundary of obstacles
since any inaccuracies in sensing or tracking behavior might cause collisions. In our framework
the planner incorporates the tracking performance bounds as a minimum safety clearance to keep
away from obstacles [43]. These algorithms are both complete and sound, in that they only report
a collision if and only if there is actually a collision along the desired path of the vehicle.

In order to improve the performance of the system during active operation we propose a method-
ology to collect data and learn the unmodeled dynamics in the system [44]. The uncertainties are
learned as non-parametric models using GP regression. However, since the model is trained on
finite data samples with possibly incorrect GP hyper-parameters, the learned representation of the
uncertainty will not exactly match the true uncertainty in the system. We provide a complete al-
gorithm that quantifies the error incurred during learning for the design of the L1-adaptive control
augmentation. Further, the mean dynamics of the uncertainties are used in the planner to design
more optimal trajectories and in the baseline controller to ensure IES of the learned model. This
naturally leads to less conservative designs of the planning and control modules. As the learning
improves, the controller is able to guarantee tighter performance bounds and the planner can utilize
a better model and the tighter bounds to produce more optimal trajectories.
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1.4 Thesis Overview

The dissertation is organized as follows:

• In Chapter 2 we propose computationally efficient techniques for computing distances and
checking feasibility of planned trajectories [43]. We present the problem formulation for the
different types of proximity queries between parametric curves and obstacles in the environ-
ment. The analysis and results for the construction of convex hulls for parametric curves
that provide bounds on the minimum separating distance are provided. The algorithms for
each of the proximity queries are outlined. Additionally, we present numerical examples and
benchmarks to illustrate the efficacy of these methods. The proofs for all the claims in this
chapter are provided in Appendix A.

• In Chapter 3 we present the CL1-framework [41] that certifies guaranteed transient perfor-
mance bounds for nonlinear control-affine systems in the presence of uncertainties. We
present the problem formulation as the design of an L1-adaptive control augmentation to
compensate for uncertainties in the system. The baseline feedback law, designed using con-
traction theory, provides exponential stability guarantees to the nominal system (i.e. without
disturbances). The performance analysis of the closed-loop system is provided along with
simulation examples of nonlinear systems to demonstrate how contraction theory-based L1-
adaptive control can be used in conjunction with traditional motion planning algorithms to
obtain provably safe trajectories. The proofs for all the claims in this chapter are provided in
Appendix B.

• In Chapter 4 we extend the CL1-framework [44] to certify guaranteed transient performance
bounds for nonlinear systems with GP learned components. The CL1 controller ensures that
control objectives are met while providing safety certificates. Furthermore, the controller in-
corporates any available data into GP models of uncertainties, which improves performance
and enables the motion planner to achieve optimality safely. The procedure and analysis
behind the quantification of the uniform bounds on the modeling errors incurred during GP
regression is also presented. We use the CL1-framework to obtain the tracking performance
guarantees for the nonlinear system with the learned uncertainties. We provide illustra-
tive examples that demonstrate the benefits of the performance guarantees provided by our
framework at different episodes of the learning process for a variety of nonlinear systems.

• In Chapter 5 we present a framework to jointly learn ILFs and the associated control policies.
We leverage the function approximation capabilities of DNNs to parameterize and learn the
certificates and the control policies. Our methodology’s main feature is the verification of

8



the validity of the learned certificate and controller using interval arithmetic. The framework
allows for violations in certain regions of the state space and provides the region of attraction
defined by the learned ILF. We provide some illustrative examples that showcase the benefits
of our framework.

• In Chapter 6 we discuss directions for future research and provide concluding remarks.

9



Chapter 2

Fast Proximity Queries for Safe Motion Planning

2.1 Introduction

Autonomous robots often operate in rapidly changing environments, and the ability to accurately
and quickly predict future collisions is crucial for safely meeting task objectives. As proximity
queries serve one of the major bottlenecks in motion planning frameworks [6], algorithms that
efficiently assess the proximity of obstacles relative to the future states of the robot will greatly
improve the run-time performance of the robot while guaranteeing safe operating procedures.

Fast methods for computing proximity queries between polyhedral objects have been widely
studied and developed over the past few decades. The algorithms described in [45, 46] perform
several different types of proximity queries between convex polytopes. Proximity between general
polyhedral objects using hierarchical representations of convex bounding volumes are investigated
in [47] and [48]. In [49], the authors evaluate the proximity queries for polyhedral objects using
convex surface decomposition.

It is challenging to assess the proximity between objects in motion. Recent work has focused on
developing methods for computing continuous collision detection, a type of query that evaluates
the first time of contact between objects in motion. The most practical of these methods is known
as conservative advancement, introduced in [50] and [51], and performs several static proximity
queries between polyhedral or polygon-soup objects to accurately perform such queries. Conserva-
tive advancement has been applied in trajectory refinement algorithms [52] to obtain collision-free
cubic B-spline trajectories. However, in the context of motion planning, such methods are compu-
tationally expensive and lack the ability to evaluate other proximity queries such as the minimum
separating distance or tolerance verification between moving objects. As modern motion planning
and trajectory optimization methods generate candidate paths as rectifiable parametric curves (e.g.
Lagrange polynomials [29], Legendre polynomials [53], Bézier curves [54–56], B-splines [57],
Dubins paths [58], Pythagorean Hodograph curves [59]), the proximity algorithms must be able to
handle such representations.

Generally, proximity to parametric curves is handled by algberaic, interval analysis, or curve

10



(a) (b)

Figure 2.1: Points closest between (a) a convex polygon and a Bézier curve, and (b) an involute of
a circle and a heart-shaped curve.

subdivision methods. Finding multiple intersections between parametric curves by implicitization
and eigenvalue decomposition is discussed in [32]. In [33], the authors present an approach to com-
pute the exact minimum separating distance between differentiably continuous freeform curves by
solving a set of nonlinear equations. Computing the minimum separating distance between Bézier
curves by sweeping a sphere along one of the curves and eliminating sections of the curve which
lie outside of it through subdivision was introduced in [34]. A similar technique [35] was used to
find the closest point on a free form curve to a point in free space. In [36], the authors present an
efficient method for computing the minimum separating distances to Bézier curves using subdivi-
sion methods. The curves are recursively subdivided until the bounds on the minimum separating
distance between the control polygons for each of the curves are within some prescribed accuracy.
However, these methods do not hold in general for parametric curves and lack the computational
efficiency to be used in motion planning algorithms.

In this work, we introduce a family of algorithms to evaluate the (i) minimum separation dis-
tance, (ii) tolerance verification, and (iii) collision detection queries between absolutely continuous
parametric curves and obstacles. The obstacles are defined as convex polytopes, parametric curves,
or any other compact set to which minimum distances can be computed, Fig. 2.1. A main feature of
the proposed algorithms is their ability to provide proximity queries for a large class of parametric
curves, more general than ones that have been considered previously [32–36]. Such queries are
useful in scenarios when the motion planner’s candidate path (i) incurs a distance-based penalty
for approaching close to an obstacle, (ii) must keep a safe distance from an obstacle, or (iii) must
not intersect with the obstacle’s geometry.

11



2.2 Problem Formulation

The parametric equation of a curve is given by a function ψ : I → Rd, where I ⊂ R is a compact
interval such that |I| > 0, and d ∈ N. We define the curve over the closed sub-interval Q ⊆ I
(such that |Q| > 0) as the following compact set

ΨQ = {ψ(t) ∈ Rd : t ∈ Q}. (2.1)

We proceed to define the proximity query problems between a curve ΨI and an object B repre-
sented as a nonempty compact set in Rd under the following assumptions.

Assumption 2.1. The function ψ is absolutely continuous over its entire domain I, i.e., for every

ε > 0 there exists a δ > 0, such that for each n ∈ N, if the collection of mutually disjoint closed

sub-intervals {[αi, βi] | i = 1, . . . , n} satisfies
∑

i |αi − βi| < δ, then
∑

i ‖ψ(αi)− ψ(βi)‖ < ε.

Assumption 2.2. The function ψ is not a constant map over the entire domain I, i.e., ψ(t) 6= y for

all t ∈ I for some y ∈ Rd.

Problem 2.1 (Minimum Separating Distance). The minimum separating distance between the

parametric curve ΨI and the compact set B is defined as

dmin(ΨI ,B) = min
a∈ΨI ,b∈B

‖a− b‖. (2.2)

The points ψ(t∗) ∈ ΨI and b∗ ∈ B that verify

dmin(ΨI ,B) = ‖ψ(t∗)− b∗‖

are the pair of points that lie closest to each other on the respective sets, as shown in Fig. 2.2a. In

addition to considering the minimum separating distance over the entire curve, ΨI , the definition

can be applied to some continuous compact sub-interval,Q ⊆ I, of the curve as well. This section

of the curve is referred to by ΨQ.

Problem 2.2 (Tolerance Verification). Tolerance verification is defined as a predicate function

with three arguments; two objects, ΨI and B, and a tolerance, ∆ > 0. The function evaluates the

inequality

dmin(ΨI ,B) > ∆ (2.3)

and returns either true or false. Fig. 2.2b depicts a scenario, when a curve is separated from a

compact set by a distance greater than ∆.
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(a) (b)

Figure 2.2: (a) The red dashed line shows the segment connecting the pair of closest points
between ΨI and B respectively. (b) The red shaded region specifies the ∆-tolerance afforded to B
when computing the tolerance verification between the two objects.

Problem 2.3 (Collision Detection). The collision detection function is defined as a predicate func-

tion with two arguments. These arguments are two objects, ΨI and B. The function determines the

truth of the following statement:

ΨI ∩ B 6= ∅. (2.4)

Remark 2.1. Notice that the solution of Problem 2.1 implies the solution of Problem 2.2, which

in turn implies the solution of Problem 2.3. Nevertheless, defining each problem by itself is useful

because, as we will see in Section 2.4, the numerical methods can be specifically tailored for each

problem in order to improve their computational efficiency.

2.3 Bounding Methods and Analysis

The problems discussed in Section 2.2 are generally non-convex and difficult to solve1. Addition-
ally, when a feasible solution is found it is still difficult to verify that the solution is indeed the
global minimum. However, methods that rely on branch-and-bound and interval analysis [60] ob-
tain a solution with a certificate of its optimality within some prescribed accuracy. This is achieved
by successively branching the problem into smaller and smaller sub-problems over which bounds

on the optimal solution are computed through relaxation. In this section we present the results and
the analysis behind the relaxation of Problem 2.1 and its sub-problems.

1Non-convex problems are considered to be at least NP-hard.
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2.3.1 Upper Bound on the Length of a Curve

As the presented methods require the computation of the arc length of parametric curves, we will
only consider parametric curves that are rectifiable, i.e. they possess a finite arc length over their
domain. The absolute continuity of ψ over I is a sufficient condition [61] for the curve to be
rectifiable2, and the corresponding arc length function over the interval Q ⊆ I is defined as

sψ(Q) =

∫
Q
‖ψ′(t)‖ dt, (2.5)

where ψ has a finite derivative ψ′ almost everywhere and is Lebesgue integrable.
As branch-and-bound techniques involve repeated calculations on the curve, for reasons having

to do with computational efficiency, it is extremely desirable to have a closed-form expression
for the antiderivative of the square root of the inner product of ψ′. However, the arc length of
rectifiable parametric curves cannot be obtained in general. Even for simple curves described with
polynomial or sinusoidal basis functions, one cannot express the integral in terms of elementary
functions. In the following result, we introduce an upper bound on sψ(Q) in (2.5) that is better
suited to provide a closed-form expression.

Lemma 2.1. Let ψ be an absolutely continuous function and have a derivative ψ′ on the compact

interval I. For any closed Q ⊆ I define the upper bound

uψ(Q) =

√
|Q|
∫
Q
ψ′(t)>ψ′(t) dt, (2.6)

where |Q| is the length of the sub-interval. Then for the arc length function of the curve sψ (from

(2.5)) the following inequality holds

sψ(Q) ≤ uψ(Q).

For common parametric curves with polynomial or trigonometric basis functions, such as the
ones typically employed in trajectory generation methods [57], the antiderivative for the inner
product of ψ′ is readily available, which greatly reduces the computation time. In Table 2.1, notice
the improvement in computation time when the antiderivative is known in closed-form.

2More generally, any function of bounded variation is rectifiable [62], however, the derivatives for such functions
may not exist almost everywhere.
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Parametric Equations Median Time (ns)

sψ(Q) uψ(Q)

(2 cos(t), sin(t)) 1710.70 58.02

((t3 + t), t) 1673.80 44.69

((t+ 1)−1, t) 2102.11 38.43

Table 2.1: Comparison between the median evaluation time for computing sψ(Q) and uψ(Q) for
several different intervals Q ⊆ [0, 1]. For each example presented in the table, the antiderivative
of the integrand in (2.5) is not available in closed form and must be numerically integrated,
whereas the antiderivative of the integrand in (2.6) is available in closed-form. The numerical
integration uses the Gauss-Kronrod quadrature formula procedure over 15 points.

2.3.2 Convex Hull on Sub-intervals of a Curve

The following theorem establishes a convex hull for parametric curves on any sub-interval based
on their upper bound of the arc length from (2.6).

Theorem 2.1 (Convex Hull). Let ψ be an absolutely continuous function defined on the compact

interval I. For any closed interval [α, β] ≡ Q ⊆ I, define the convex compact set

UQ = {x ∈ Rd : ‖ψ(α)− x‖+ ‖x− ψ(β)‖ ≤ uψ(Q)}. (2.7)

Then the curve defined on the interval Q satisfies

ΨQ ⊂ UQ. (2.8)

The convex hull in Theorem 2.1 is a compact interval for curves in R, and is also an ellipsoid
for curves in higher dimensions. This geometric relationship to an ellipsoid is particularly use-
ful because there are several methods [45, 63, 64] to cheaply compute the minimum separating
distance to an ellipsoid. For a convex hull UQ of the function ψ evaluated over a sub-interval
[α, β] ≡ Q ⊆ I, the foci of the ellipse are at ψ(α) and ψ(β). The major axis has a length of
uψ(Q), and the minor axes are of equal lengths

√
uψ(Q)2 − ‖ψ(α)− ψ(β)‖2. This construction

is illustrated in Fig. 2.3.

Remark 2.2. Fat arcs [65, 66] provide tighter bounds with cubic convergence, however, the non-

convexity of the bounding region is problematic when computing proximity queries. Additionally,

they are only useful in the context of planar Bézier curves and spirals. The convergence behavior

of the ellipsoidal bounding region to the curve will be explored in the future.
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Figure 2.3: The blue shaded region shows the convex set UQ, which contains the function ψ
evaluated over the sub-interval [α, β]. The dashed-line is the evaluation of ψ over its entire
domain.

2.3.3 Relaxation of Problem 2.1

Now that since we have enclosed a parametric curve inside a convex hull, Problem 2.1 can be re-
laxed, and a more tractable problem can be solved by computing the minimum separating distance
to the convex hull. The solution to this relaxed problem provides a lower bound to the optimal
solution of the original problem. We define this lower bound on the minimum separating distance
dlb between ΨQ and a compact set B as

dlb(ΨQ,B) = min
x∈UQ,b∈B

‖x− b‖, (2.9)

where UQ is the convex hull corresponding to ΨQ from (2.7). Fig. 2.4a shows the lower bound
between a convex polygon and a parametric curve evaluated over a sub-interval. As one might
expect, if the object B is also a parametric curve, then dlb is computed between the convex sets
constructed from each of the curves (as shown in Fig. 2.4b), as

dlb(ΨQ,ΦR) = min
x∈UQ,y∈VR

‖x− y‖, (2.10)

where ΦR is the parametric curve φ : R ⊃ R → Rd, and VR is the convex hull of ΦR.
In addition to the lower bound, an upper bound on the optimal solution must also be defined in

order to bound the solution in a compact interval. The upper bound on the minimum separating
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(a) (b)

Figure 2.4: Lower bound on minimum separating distance between (a) a parametric curve and a
convex polygon, and (b) two parametric curves.

distance dub between ΨQ and a compact set B is given by

dub(ΨQ, B) = min
b∈B
‖x′(ΨQ)− b‖, (2.11)

such that x′(ΨQ) ∈ ΨQ. Similarly, dub between the two parametric curves ΨQ and ΦR is

dub(ΨQ,ΦR) = ‖x′(ΨQ)− x′′(ΦR)‖, (2.12)

such that x′(ΨQ) ∈ ΨQ and x′′(ΦR) ∈ ΦR. In the numerical implementation as seen in Fig. 2.5,
the functions x′ and x′′ select the middle points of ΨQ and ΦR respectively. Heuristics to select
points in the curve set based on the relative configuration of the objects rather than simply the
midpoints may find tighter bounds, however, this is beyond the scope of the dissertation.

We present analysis on the functions dlb and dub. We show for each interval Q ⊆ I that indeed
these functions bound the optimal solution on that interval, and that the difference in upper and
lower bounds converges uniformly to zero as |Q| → 0. The boundedness and uniform conver-
gence results are necessary in order to guarantee the convergence of interval branch-and-bound
algorithms in finite time.

Theorem 2.2 (Boundedness). Let B be a compact set in Rd, and ΨI be the curve ψ : I → Rd.

Then, for every closed Q ⊆ I, we have

dlb(ΨQ,B) ≤ dmin(ΨQ,B) ≤ dub(ΨQ,B). (2.13)

Theorem 2.3 (Uniform Convergence). Let B be a compact set in Rd, and ΨI be the curve ψ : I →
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(a) (b)

Figure 2.5: Upper bound on minimum separating distance between (a) a parametric curve and a
convex polygon, and (b) two parametric curves.

Rd. For every ε > 0, there exists a δ > 0 such that for all {Q : Q ⊆ I, |Q| < δ}, we satisfy

dub(ΨQ,B)− dlb(ΨQ,B) < ε. (2.14)

Remark 2.3. The minimization problems of (2.9) and (2.11) may also be nonconvex depending

on the geometry of B. We refer readers to [45, 46] for convex polytopes and [47, 48] for more

complex models.

2.4 Proximity Queries

Given the boundedness results of Theorem 2.2 and the convergence results of Theorem 2.3, we
present algorithms that evaluate the solutions to Problems 2.1 to 2.3 within some tolerance. Central
to each of these algorithms is a process of interval subdivision and bounding. First, we present the
methods to compute the minimum separating distance between a parametric curve and a compact
set (or another parametric curve). Later, we highlight the variations of this algorithm for evalu-
ating the tolerance verification and collision detection queries without computing the minimum
separating distance between the objects.

2.4.1 Minimum Separating Distance

Given a parametric function ψ : I → Rd, Algorithm 1 computes the minimum separating distance
between the curve ΨI and a compact set B.
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Algorithm 1 Minimum Separating Distance (ΨI , B)

1: L ← {I}
2: d← dub(ΨI ,B)
3: d← dlb(ΨI ,B)
4: while d− d > ε do
5: X ← arg minQ∈L dlb(ΨQ,B)
6: XL,XR ← split(X )
7: L ← L \ {X}
8: L ← L ∪ {XL,XR}
9: d← minQ∈L dub(ΨQ,B)

10: d← minQ∈L dlb(ΨQ,B)
11: end while
12: return d

We proceed to describe the algorithm. The general structure of the algorithm closely matches
that of a vanilla branch-and-bound method [67]. Consider computing the minimum separating
distance between a curve and a convex polygon as shown in Fig. 2.6a. A collection L, which
stores the intervals over which the bounds on the optimal solution are computed, is initialized
with a single element: the entire domain I. The relaxed problem is solved over the domain I
(Fig. 2.6b), and the upper and lower bound values are stored in the states d and d respectively. If
the difference between the bounds is above a prescribed tolerance, the algorithm proceeds to the
iterative phase. I is split into sub-intervals XR and XL, over which the relaxations of the problems
on the new intervals are solved (Fig. 2.6c). These sub-intervals are added to the collection L,
and the original domain I is removed from the collection. The least upper and lower bounds
on the solution are kept track of by d and d, respectively, on all the sub-intervals present in the
collection L. Each successive iteration sees the sub-interval with the least lower bound chosen
for subdivision. Figures 2.6d and 2.6e show snapshots of the algorithm into the third and seventh
iteration respectively. Notice that the algorithm preferentially selects sub-intervals closer to the
polygon to subdivide because of the best-first search strategy.

Since the minimization problem of (2.2) is over a continuous space, the branch-and-bound
method will repeatedly subdivide infinitely many times (whenever the objects ΨI and B do not col-
lide). However, by setting an absolute tolerance ε > 0 on the solution, we obtain an ε-suboptimal
solution in a finite number of iterations, i.e.

dmin(ΨI ,B) ∈ [d, d+ ε], (2.15)

where d is the lower bound on the solution obtained from the minimum separating distance al-
gorithm. The certificate proving that the global minimum lies in the interval shown in (2.15) can
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(a) (b) (c)

(d) (e) (f)

Figure 2.6: The different stages of Algorithm 1 when computing the minimum distance between a
13th order Bézier curve and a convex polygon.

Figure 2.7: Convergence of d− d for the scenario presented in Fig. 2.6 to ε = 10−10.
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be obtained by examining the collection L. Figure 2.6f highlights the solution, when the bounds
are separated by a magnitude of no more than ε. The convergence of d − d to ε for the example
presented in Fig. 2.6 is shown in Fig. 2.7.

Algorithm 2 describes the procedure to evaluate the minimum distance from ΨI to ΦJ , which is
the trace of φ : J → Rd. As one might expect, structurally very little differs between Algorithms 1
and 2. The collection L stores pairs of sub-intervals over which the bounds on the solution will
be evaluated. The lower and upper bounds are computed using (2.10) and (2.12) respectively.
Figure 2.8 shows the pair of closest points between Bézier curves computed using Algorithm 2.

Algorithm 2 Minimum Separating Distance (ΨI ,ΦJ )

1: L ← {{I,J }}
2: d← dub(ΨI ,ΦJ )
3: d← dlb(ΨI ,ΦJ )
4: while d− d > ε do
5: X ← arg min{Q,R}∈L dlb(ΨQ,ΦR)
6: XL,XR ← split(X )
7: L ← L \ {X}
8: L ← L ∪ {XL,XR}
9: d← min{Q,R}∈L dub(ΨQ,ΦR)

10: d← min{Q,R}∈L dlb(ΨQ,ΦR)
11: end while
12: return d

Remark 2.4. TheXL,XR ← split(X ) operation from (line 6) of Algorithms 1 and 2 returns two

mutually disjoint sets such that XL ∪ XR = X . When X is an interval, the operation must ensure

that both XL and XR are closed, and when X is a collection of two intervals, the operation must

only split the larger interval so as to preserve the uniform convergence property from Theorem 2.3.

In the implementation3, the split(X ) operation bisects the interval X ; however, uneven splitting

techniques may lead to better performance as seen in [36].

2.4.2 Tolerance Verification

In many applications an exact measurement on the minimum separating distance between objects
is not required. A weaker method that verifies if two objects are separated by a distance greater
than ∆ may be preferred for computational reasons. Since the states d and d in Algorithms 1 and 2
keep track of the the bounds on the global optimum, the algorithm will terminate early if either d

3https://github.com/arlk/CurveProximityQueries.jl
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Figure 2.8: Points closest between pairs of characters ’R’, ’S’, ’S’, ’1’, and ’9’ respectively, that
are represented as Bézier curves. The evaluation time for the four minimum separating distance
queries was 1.14 ms.

or d violate the ∆-tolerance, i.e. all the convex hulls formed from the curve evaluated at the sub-
intervals in collection L are separated from the object B by a distance of at least ∆. Algorithm 3
highlights the differences from Algorithm 1.

Algorithm 3 Tolerance Verification (ΨI , B,∆)

...
4: while d−∆ > ε do

...
11: if d > ∆ then return true
12: end while
13: return false

2.4.3 Collision Detection

Sometimes only the detection of intersection between two objects is required. This is a special
case of Algorithm 3, where ∆ = 0. Algorithm 3 highlights the differences from Algorithm 1.

Algorithm 4 Collision Detection (ΨI , B)

...
4: while d > ε do

...
11: if d > 0 then return false
12: end while
13: return true
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2.5 Numerical Results

We present numerical simulations of our approach for several different proximity query problems.
In general, the classes of examples that we consider are categorized as the proximity query be-
tween a parametric curve and a point, a convex polygon, and another parametric curve. In these
numerical problems we only consider proximity queries in R2 for ease of viewing, however, the
algorithm will hold in general as long as there exist methods to compute dlb and dub in the given
dimension. Examples of proximity queries for parametric curves in R3 can be found in the online
repository3. In every problem setting, the execution times for computing the minimum separat-
ing distance, tolerance verification and collision detection between two objects are benchmarked.
Each benchmark result is computed as the median over 10,000 trials of the program. The imple-
mentation4 uses double-precision arithmetic, and we chose the tolerance of ε = 10−10 to be used
in the optimization procedure. For the tolerance verification queries presented in this section, we
choose the value of ∆ as half the minimum separating distance between the objects which they are
querying.

2.5.1 Curve - Point Proximity

We show the performance of computing proximity queries between Bézier curves and a point in
R2 using our approaches and the approach found in [36]. The control points of the curve are
uniformly randomly placed in [0, 1] × [0, 1], and the point to which the proximity is computed is
also randomly placed in the same unit square. Figure 2.9 shows a few examples of the problems
that were considered.

The numerical simulations compute the mean execution time over a range of different order
Bézier curves as shown in Fig. 2.10. Notice that the computational efficiency (Fig. 2.10a) of Al-
gorithm 1 is improved compared to that of the curve subdivision algorithm in [36]. This is in part
because the construction of the bounding region in [36] is the control polygon of the subdivided
curve that is obtained through the expensive De Casteljau’s algorithm [69]. Furthermore, the pa-
rameterizations of the subdivided curves are stored in a queue, which is very memory expensive
for higher order curves as seen in Fig. 2.10b. On the other hand, our methods are very memory
efficient as the priority queue (expressed as the collection L in Algorithm 1 only contains infor-
mation of the intervals. Additionally, computing proximity queries for Bézier curves using our
approach is numerically robust as (2.6) is also a Bézier curve and does not require any change of
basis. Approaches to compute the closed-form expression of (2.6) can be found in [70].

4The algorithms are in implemented in Julia [68], and the benchmarks were conducted on a 2.3 GHz Intel Core i5
machine with 8 Gigabytes of RAM.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.9: The point on a (a) 5th, (b) 10th, (c) 15th, (d) 20th, (e) 25th, (f) 30th, (g) 35th, (h) 40th, and
(h) 45th Bézier curve that is closest to another randomly chosen point.
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Both Algorithms 3 and 4 significantly outperform the other methods. This is a result of the fact
that the algorithms are terminated as soon as the bounds are met on the ∆-tolerance, rather than
proceeding to obtain an ε-suboptimal solution.
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Figure 2.10: The average computational time (a) and allocated memory (b) to evaluate a
proximity query between ten randomly generated Bézier curves and a point. The algorithm
presented in [36] and Algorithm 1 both use a tolerance ε = 10−10. The error bars represent the
standard deviation of the trial runs.

Query Median Time (µs)

(a) (b) (c) (d) (e) (f)

Alg. 1/2 208.22 234.52 150.03 ×103 425.66 1.21 ×103 3.74 ×103

Alg. 3 10.52 80.90 29.70 ×103 49.20 204.68 471.99
Alg. 4 10.38 59.19 17.08 ×103 37.66 116.22 229.25

Table 2.2: The median computational time to evaluate a proximity query between each of the
objects in Fig. 2.11.

2.5.2 Curve - Convex Polygon Proximity

We proceed to discuss the performance of proximity queries between parametric curves and poly-
gons through some examples in Fig. 2.11. We consider the general class of absolutely continuous
parametric curves, and, since not all the curves can be transformed5 to a Bernstein basis, we do not
provide numerical comparisons to [36] here. For the underlying routines that compute the bounds
on the solution, i.e. dlb and dub, we use the GJK-algorithm [45] to compute the distances between

5Even transformations between polynomial bases are numerically unstable for higher order polynomials [74].
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(a) (b) (c)

(d) (e) (f)

Figure 2.11: Points closest between (a) a convex polygon and a heart-shaped curve [71], (b) a
convex polygon and an epicycloid [72], (c) a convex polygon and an Euler spiral, (d) two 10th

order Bézier curves, (e) two involutes of a circle, and (f) a fish curve [73] and a Lissajous curve.

the polygons and the ellipsoidal convex hulls. Figures 2.11a to 2.11c show proximity of curves
with a sinusoidal basis with convex polygons. It should be noted that although the Euler spiral is
defined over R, we consider its trace Fig. 2.11c in the compact subset: [−2π, 2π]. In Table 2.2, the
median execution times for the different problems are enumerated. It should be highlighted that
the reason for the longer run times of the Euler spiral is due to the evaluation of the parametric
function that requires numerical integration.

2.5.3 Curve - Curve Proximity

Similar to above, Table 2.2 also shows the performance for computing the proximity queries for
the problems in Figs. 2.11d to 2.11f. As these problems require simultaneously searching across
dual parameter spaces, it is natural that the proximity queries will have longer run times. This will
be offset if a lower ε-tolerance is chosen in the procedures.

2.5.4 Trajectory Replanning

To demonstrate the benefit of fast collision detection, Figure 2.12 shows a common situation in
path replanning problems. A vehicle is confronted with an obstacle and randomly samples a large
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number of possible trajectories from a distribution to plan a path around the obstacle [75]. For
each of these trajectories, a certificate of collision avoidance and minimum safety distance are
necessary. In this situation, 1000 quintic Bézier curves are generated and, using Algorithm 3, a
tolerance verification query is performed against both the obstacles with a total run time of 11.61
milliseconds. In the simulation, 818 trajectories of the 1000 samples are in collision with at least
one of the two obstacles, 116 trajectories are collision free but violate the minimum safety distance
constraint, and only the remaining 66 trajectories are feasible. This ability to rapidly compute the
feasibility of trajectories allow for a large sample size of trajectories to be validated in a very short
amount of time. In addition, these methods prove beneficial for predicting collisions in dynamic
environments wherein only probabilistic information of the obstacle behavior is available [76] by
computing proximity queries with the boundary of the confidence region of an obstacle’s trajectory.

Figure 2.12: An example scenario of a robot (starting on the left) attempting to replan its
trajectory around obstacles: The blue trajectories represent feasible solutions, the red trajectories
are collision-free, but infeasible because of their close proximity to the obstacles (i.e.≤ ∆), and
the grey trajectories are infeasible, because they collide with the obstacles in the environment.
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Chapter 3

Safe Feedback Motion Planning for Uncertain Systems

3.1 Introduction

Motion planning algorithms generate optimal open-loop trajectories for robots to follow; however,
any uncertainty in the system can potentially drive the robot far away from the desired path. For
instance, quadrotors experience blade-flapping and induced drag forces that are dependent on the
velocity, ground effects that are dependent on the altitude, and external wind effects that are of-
ten unaccounted for by the motion planner, [2]. Accurate modeling of these uncertainty effects
on system dynamics can be very expensive and time-consuming. A widely accepted approach to
account for uncertainty in motion planning is through feedback [28, Chapter 8]. In practice, an-
cillary tracking controllers or model predictive control (MPC) schemes are employed to alleviate
this problem. However, the presence of the uncertainties is not explicitly considered in the control
design process, and instead the performance is achieved with hand-tuned controller parameters and
experimental validation. Without valid safety certificates, the uncertainty might drive the system
unstable and far enough away from the desired trajectory, resulting in collisions with obstacles,
Fig. 3.1a.

Robust trajectory tracking controllers using classical Lyapunov stability theory have been de-
signed for helicopters [77], hovercraft [78], marine vehicles [79], and several other autonomous
robots, which exhibit nonlinear behavior. These approaches rely on backstepping techniques,
sliding-mode control, passivity-based control, or other robust nonlinear control design tools [80,
Chapter 14]. However, the classical methods do not provide a ‘one size fits all’ procedure for the
constructive design of tracking controllers for a large class of nonlinear systems. Unless the prob-
lem has a very specific structure that can be exploited, a control Lyapunov function (CLF) has to
be found which can be prohibitively difficult for general nonlinear systems because the feasibility
conditions do not appear as linear matrix inequalities (LMIs), unlike in case of linear systems.

Advances in computational resources and optimization toolboxes available to autonomous robots
have led to active developments in the field of robust MPC. The two large classes of methods of
interest are min-max MPC [81–83] and tube-based MPC [10, 84–87]. Min-max MPC approaches
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(a) (b) (c)

Figure 3.1: Although the planned path is collision free (purple), the robot’s actual trajectory
(dashed-blue) might lead to a collision with the obstacles (gray) in the environment due to model
discrepancies or external disturbances. (b) A feedback policy ensures that the robot stays inside of
the (orange) tube which is too wide to pass between the obstacles without colliding (c) The safe
feedback controller proposed in this dissertation guarantees that the robot’s trajectory never
escapes the tube, which itself is also collision-free.

consider the worst-case disturbance that can affect the system making them overly conservative.
If the uncertainty is too large or the robot is planning over a long horizon, a min-max MPC based
approach may even render the optimization infeasible. Tube-based MPC methods address these
issues by employing an ancillary controller to attenuate disturbances and ensure that the robot stays
inside of a ‘tube’ around the desired trajectory. However, with the exception of [87], these methods
assume the existence of a stabilizing ancillary controller and its region of attraction along the de-
sired trajectory. Moreover, the resulting tubes are of fixed width, which may be overly conservative
depending on the operating conditions (see Fig. 3.1b). This issue is partly addressed for feedback
linearizable systems in [87] by using sliding-mode boundary layer control to construct tubes of any
desired size during the MPC optimization procedure. Furthermore, unlike classical methods, the
MPC-based approaches while applicable to larger class of systems incur a heavy computational
load and are not always amenable to real-time applications. Another class of corrective meth-
ods that ensure safety is based on control barrier functions (CBFs) [88–91] rely on specialized
functions that ensure set invariance which prevent the system states from reaching unsafe regions.
However, CBFs do not provide tracking error bounds with respect to a desired trajectory which is
critical in evaluating the robot’s performance. Moreover, these approaches require discovering a
CBF and an ancillary controller which are non-trivial to synthesize. In our approach, we provide
an explicit design for the feedback controller with stability and performance guarantees.

Contraction theory-based approaches [92, 93] bridge the gap between classical and optimization-
based methods, and provide a constructive control design procedure for nonlinear systems. In [94],
the authors introduce contraction analysis as tool for studying stability of nonlinear systems using
differential geometry. In particular, the authors show that the ‘contracting’ or convergent nature
of solutions to nonlinear systems can be derived from the differential dynamics of the system.
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Since the differential dynamics for nonlinear systems are of linear-time varying form, all the re-
sults from linear systems theory can be leveraged for nonlinear systems through the contraction
analysis framework. In [92], constructive control design techniques from linear systems theory
can be used to find a control contraction metric (CCM), which is analogous to CLFs in the differ-
ential framework. This is significantly easier than directly finding the CLFs for nonlinear systems,
because the feasibility conditions for CCMs are represented as LMIs. In [95], a design procedure
for synthesizing CCM-based controllers is given, which induces fixed-width tubes in the presence
of bounded external disturbances, excluding modeling uncertainties. However, as discussed be-
fore, fixed-width tubes might result in infeasibility of the problem and result in more work for the
planner to find a more conservative path that produces feasible tubes. Recently, our work in [96]
alleviates this issue by synthesizing CCMs that minimize the differential L∞ gain which results
in tighter tubes around the desired trajectory. In, [97] a model reference control architecture in
conjunction with CCM-based feedback is proposed for handling uncertainties in the system.

In this work, we present an approach for safe feedback motion planning for control-affine nonlin-
ear systems that relies on contraction theory-based solution for exponential stabilizability around
trajectories and L1-adaptive control for handling uncertainties and providing guarantees for tran-
sient performance and robustness. In L1 control architecture, estimation is decoupled from control,
thereby allowing for arbitrarily fast adaptation subject only to hardware limitations, [15]. The L1

control has been successfully implemented on NASA’s AirStar 5.5% subscale generic transport
aircraft model [98], Calspan’s Learjet [99], and unmmaned aerial vehicles [100–104]. In this dis-
sertation, we present a constructive design of feedback strategy for nonlinear systems using CCMs
and L1-adaptive control that provides strong guarantees of transient performance and robustness
for control-affine nonlinear systems. Furthermore, we show how this control architecture induces
tubes that can be flexibly changed to ensure safety based on the uncertainty in the system and the
environment. In particular, this flexibility is provided by the architecture of the L1-adaptive con-
trol by decoupling the control loop from the estimation loop [15]. In this way, the width of the
certifiable tubes can be adjusted allowing the safe operation of a robot in tight confines.

3.2 Problem Formulation

We consider systems for which the evolution of dynamics can be represented as

ẋ(t) =F (x(t), u(t)) (3.1a)

=f(x(t)) +B(x(t))(u(t) + h(t, x(t))), (3.1b)
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with initial condition x(0) = x0, where x(t) ∈ Rn is the system state and u(t) ∈ Rm is the control
input. The functions f(x) ∈ Rn and B(x) ∈ Rn×m are known, and h(t, x) ∈ Rm represents the
uncertainties. The unperturbed/nominal dynamics (h ≡ 0) are therefore represented as

ẋ(t) =F̄ (x(t), u(t)) (3.2a)

=f(x(t)) +B(x(t))u(t), x(0) = x0. (3.2b)

Consider a desired control trajectory u?(t) ∈ Rm and the induced desired state trajectory x?(t) ∈
Rn from any planner based on unperturbed/nominal dynamics

ẋ?(t) = F̄ (x?(t), u?(t)), x?(0) = x?0. (3.3)

Together, (x?(t), u?(t)) is referred to as the desired state-input trajectory pair. The planner ensures
that the desired state-trajectory x?(t) remains in a compact safe set X ⊂ Rn, for all t ≥ 0.

The goal is to design a control input u(t) so that the state x(t) of the uncertain system in (3.1)
remains ‘close’ to the desired trajectory x?(t) while also ensuring x(t) ∈ X , for all t ≥ 0. In order
to rigorously define the notion of ‘closeness’, we need the following definition:

Definition 3.1. Given a positive scalar ρ and the desired state trajectory x?(t), Ω(ρ, x?(t)) denotes

the ρ-norm ball around x?(t), i.e.

Ω(ρ, x?(t)) := {y ∈ Rn | ‖y − x?(t)‖ ≤ ρ}. (3.4)

Clearly Ω(ρ, x?(t)) induces a tube centered around x?(t), where the tube is given by

O(ρ) :=
⋃
t≥0

Ω(ρ, x?(t)), (3.5)

with ρ > 0 as the radius.

The problem under consideration can now be stated as follows: Given the desired trajectory
x?(t) ∈ X and a positive scalar ρ, design a control input u(t) such that the state of the uncertain
system (3.1) satisfies:

x(t) ∈ Ω(ρ, x?(t)) ⊂ X , ∀t ≥ 0.

Note the condition that Ω(ρ, x?(t)) ⊂ X is dependent on the desired trajectory x?(t) (given by
the planner) and the tube width ρ (chosen by the user). To ensure that this control-independent
condition is satisfied, we place the following assumption.
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Assumption 3.1. Given the positive scalar ρ, the desired state trajectory satisfies x?(t) ∈ Xρ, for

all t ≥ 0, where

Xρ = X 	 B(ρ), B(ρ) := {y ∈ Rn | ‖y‖ ≤ ρ}. (3.6)

Remark 3.1. The implication of Assumption 3.1 is that if the state trajectory satisfies x(t)−x?(t) ∈
B(ρ) and x?(t) ∈ Xρ, for all t ≥ 0, then the definition of the Pontryagin set difference implies that

x(t) ∈ Ω(ρ, x?(t)) ⊂ X , for all t ≥ 0.

Assumption 3.2. The desired control/input trajectory satisfies

‖u?(t)‖ ≤ ∆u? , ∀t ≥ 0,

with the upper bound ∆u? known.

Note that the bound ∆u? is obtained from the planner, which provides the desired state-input
trajectory in (3.3). Next, we place assumptions on the boundedness and continuity properties of
the system functions and uncertainties.

Assumption 3.3. The known functions f(x) ∈ Rn and B(x) ∈ Rn×m are bounded and continu-

ously differentiable with bounded derivatives, satisfying

‖f(x)‖ ≤ ∆f ,

∥∥∥∥∂f(x)

∂x

∥∥∥∥ ≤ ∆fx , ‖B(x)‖ ≤ ∆B,
n∑
i=1

∥∥∥∥∂B(x)

∂xi

∥∥∥∥ ≤ ∆Bx ,
m∑
j=1

∥∥∥∥∂bj(x)

∂x

∥∥∥∥ ≤ ∆bx

for all x ∈ O(ρ), where bj(x) is the j th column of B(x) and the bounds are assumed to be known.

Assumption 3.4. The uncertainty h(t, x) is bounded and continuously differentiable in both x and

t with bounded derivatives, satisfying

‖h(t, x)‖ ≤ ∆h,

∥∥∥∥∂h(t, x)

∂x

∥∥∥∥ ≤ ∆hx ,

∥∥∥∥∂h(t, x)

∂t

∥∥∥∥ ≤ ∆ht ,

for all x ∈ O(ρ) and t ≥ 0, where the bounds are assumed to be known.

Assumption 3.5. The input gain matrix B(x) has full column rank. Furthermore, the Moore-

Penrose inverse ofB(x) defined asB†(x) =
(
B>(x)B(x)

)−1
B>(x) satisfies the following bounds

∥∥B†(x)
∥∥ ≤ ∆B† ,

n∑
i=1

∥∥∥∥∂B†(x)

∂xi

∥∥∥∥ ≤ ∆B†x
, ∀x ∈ O(ρ).
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3.3 Preliminaries on Contraction Theory

Contraction theory allows to synthesize feedback laws so that, in the absence of uncertainties, the
state of the unperturbed/nominal dynamics in (3.2) tracks a feasible desired trajectory x?(t). We
begin with the notion of incremental exponential stability (IES).

Definition 3.2 ([95]). Consider a desired state-input trajectory pair (x?(t), u?(t)) satisfying (3.3).
Suppose there exist scalars λ,R > 0 and a feedback operator kc : Rn × Rn → Rm can be

constructed such that the trajectory x(t) of the unperturbed dynamics ẋ(t) = F̄ (x(t), uc(t)) with

control uc(t) = u?(t) + kc(x
?(t), x(t)) satisfies

‖x?(t)− x(t)‖ ≤ Re−λt‖x?(0)− x(0)‖, ∀t ≥ 0.

Then, the system with the unperturbed dynamics is said to be IES with rate λ and overshoot R.

With the notion of IES defined, we now proceed to examine how IES may be established for a
given system. For the compact safe set X ⊂ Rn defined in Section 3.2, let TxX be the tangent
space of X at x ∈ X . Consequently, we denote by TX =

⋃̇
x∈XTxX the tangent bundle of

X , where
⋃̇

denotes the disjoint union. Details on differential geometric notions used in the
manuscript may be found in [105]. The variational dynamics of the unperturbed/nominal system
in (3.2) may be written as [106, Chapter 3]

δ̇x =

(
∂f(x)

∂x
+

m∑
j=1

u[j]
∂bj(x)

∂x

)
δx +B(x)δu, (3.7)

with δx(0) = x0, where we have dropped the temporal dependencies for brevity. Here, δx(t) ∈
Tx(t)X , δu(t) ∈ Tu(t)Rm, u[j](t) is the jth element of the control vector and bj(x) ∈ Rn is the jth

column of B(x).

Definition 3.3. Consider the differential dynamics in (3.7). Suppose there exist positive scalars λ,

α, α, 0 < α < α < ∞, and a smooth1 function M : Rn → Sn such that for all (x, δx) ∈ TX one

has

αIn �M(x) � Inα, (3.8a)

δ>xM(x)B(x) = 0⇒ δ>x

(
∂fM(x)+

[
M(x)

∂f(x)

∂x

]
S

+ 2λM(x)

)
δx ≤ 0, (3.8b)

∂bjM(x) +

[
M(x)

∂bj(x)

∂x

]
S

= 0, j ∈ {1, . . . ,m}. (3.8c)

1Throughout the manuscript, by smooth we mean the class C∞ of functions defined on appropriate domains.
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Then, the function M(x) is defined to be the CCM for the nominal/unperturbed dynamics (3.2).

Theorem 3.1 ([92, 95]). Given positive scalars λ, and α ≤ α < ∞, suppose there exists a

CCM M(x) for the nominal/unperturbed dynamics in (3.2). Then, given any desired state-input

trajectory (x?(t), u?(t)) as in (3.3), there exists a feedback operator kc : Rn × Rn → Rm such

that the trajectory x(t) of the unperturbed dynamics ẋ(t) = F̄ (x(t), uc(t)) with control u(t) =

u?(t) + kc(x
?(t), x(t)) is IES with respect to x?(t) with the overshoot of R = α/α in the sense

of Definition 3.2.

The central idea to this result is that the function V (x, δx) := δ>xM(x)δx can be interpreted as a
differential Lyapunov function (LF) and the conditions in (3.8) ensure that V̇ (x, δx) ≤ −2λV (x, δx)

for all (x, δx) ∈ TX . We place the following assumption on the known/unperturbed dynamics.

Assumption 3.6. The nominal/unperturbed dynamics in (3.2) admit a CCM M(x) for all x ∈ X
with positive scalars λ, α, and α, as in Definition 3.3.

Using Theorem 3.1 it is straightforward to conclude that the consequence of this assumption is
that any desired state-input trajectory can be tracked by the nominal/unperturbed dynamics in the
sense of Definition 3.2 with rate λ and overshootR = α/α. Let Ξ(p, q) be the set of smooth curves
connecting any two points p, q ∈ X . Then using the Riemannian metricM , the length of any curve
γ ∈ Ξ(p, q) is given by the following expression

l(γ) :=

∫ 1

0

√
γs(s)M(γ(s))γs(s) ds, (3.9)

where γs(s) = ∂γ(s)/∂s. By definition, the minimizing geodesic γ : [0, 1] → X satisfies the
following relationship

d(p, q) := l(γ) = inf
γ∈Ξ(p,q)

l(γ), (3.10)

where d(p, q) refers to the Riemannian distance between the two points p and q. Existence of the
minimizing geodesic is guaranteed by the Hopf-Rinow theorem. The Riemannian energy between
the two points is defined using the Riemannian distance as the following quantity

E(p, q) := d(p, q)2. (3.11)

Further details on Riemannian geometry may be found in [107]. A direct and straightforward
consequence of Assumption 3.6 is that

α‖p− q‖2 ≤ E(p, q) ≤ α‖p− q‖2, ∀p, q ∈ X . (3.12)
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The proof for this relationship can be found in Lemma B.3. We will rely on the Riemannian
energy’s interpretation as a CLF for the presented methodology. This interpretation was initially
presented in [92].

3.4 CL1-Adaptive Control

In this section we introduce the structure of the proposed contraction theory-based L1-adaptive
controller, which we refer to as CL1-adaptive control, for the uncertain nonlinear system in (3.1).
Consider the following feedback decomposition

u(t) = uc(t) + ua(t), (3.13)

where uc : R≥0 → Rm is the contraction theory based control designed to guarantee IES (Defi-
nition 3.2) of the nominal dynamics in (3.2), and ua : R≥0 → Rm is the L1 control signal. The
overall architecture of the proposed feedback is illustrated in Fig. 3.2. We refer to the uncertain
system in (3.1) with the feedback law (3.13) as the L1 closed-loop system. Before we proceed with
the description of the individual components of the controller, we introduce the following list of
constants that are of importance for the results and analysis presented in this chapter:

∆Mx := sup
x∈O(ρ)

n∑
i=1

∥∥∥∥∂M∂xi (x)

∥∥∥∥, (3.14)

∆Ψx := 2∆Bx +
∆B∆Mx

α
, (3.15)

∆δu :=
1

2
sup
x∈O(ρ)

(
λ(L−>(x)F (x)L−1(x))

σ>0(B>(x)L−1(x))

)
, (3.16)

∆ẋr := ∆f + ∆B(‖Im − C(s)‖L1∆h + ∆u? + ρ∆δu), (3.17)

∆ẋ := ∆f + ∆B(2∆h + ∆u? + ρ∆δu), (3.18)

∆x̃ :=

√
4λ(P )∆h(∆ht + ∆hx∆ẋ)

λ(P )λ(Q)
+

4∆2
h

λ(P )
, (3.19)

∆η̃ :=
(

∆B†x
∆ẋ + (‖sC(s)‖L1 + ‖Am‖)∆B†

)
∆x̃, (3.20)

∆θ :=
∆Bα∆η̃

λ
, (3.21)

∆Ψ̇ := α

(
∆B∆γ̇s

+
∆B∆Mx∆ẋ√

αα
+ ∆Bx∆ẋ

)
, (3.22)

∆γ̇s
:=

√
α

α

(
∆fx + (∆h + ∆u? + ρ∆δu)∆bx +

(
∆hx +

√
α∆δu√
α

)
∆B

)
, (3.23)
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L1-adaptive controller

CCM Feedback Uncertain System

C(s) State Predictor
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+
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x̂
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−

x

Figure 3.2: Architecture of CL1-adaptive control

where O(ρ) is defined in (3.5); ∆u? is defined in Assumption 3.2; ∆f , ∆fx , ∆B, ∆Bx , ∆bx , are
defined in Assumption 3.3; ∆h, ∆ht , ∆hx are defined in Assumption 3.4; ∆B† and ∆B†x

are defined
in Assumption 3.5; α and α are defined in Assumption 3.6; and F (x) is defined as

F (x) := −∂fW (x) + 2

[
∂f

∂x
(x)W (x)

]
S

+ 2λW (x),

where W (x) = M(x)−1 is referred to as the dual metric and L(x)>L(x) = W (x).

3.4.1 Contraction Theory-Based Control: uc(t)

As mentioned in Section 3.3, under Assumption 3.6, Theorem 3.1 guarantees the existence of
a feedback law which renders the nominal dynamics in (3.2) IES. In particular, we propose the
following law

uc(t) = u?(t) + kc(x
?(t), x(t)), (3.24)

where, for the the feedback term, we use the law constructed in [95, Sec. 5.1], which is the solution
to the following quadratic program:

kc(x
?(t), x(t)) = arg min

k∈Rm
‖k‖2, (3.25a)

s.t. 2γ>s (1, t)M(x(t))ẋk(t)− 2γ>s (0, t)M(x?(t))ẋ?(t) ≤ −2λE(x?(t), x(t)), (3.25b)
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in which M(·) is the CCM (Definition 3.3), γ(s, t), s ∈ [0, 1], is the minimizing geodesic with
γ(1, t) = x(t) and γ(0, t) = x?(t). As previously defined, the desired state-input pair satis-
fies ẋ?(t) = F̄ (x?(t), u?(t)) with the nominal dynamics defined in (3.2). Additionally, ẋk(t) =

F̄ (x(t), u?(t) + k).

Remark 3.2. As explained by the authors in [95, Sec. 5.1], the solution to the quadratic program

in (3.25) has an analytic solution given the minimizing geodesic γ(·, t). Alternatively, one may use

the differential controller proposed in [92].

3.4.2 L1-Adaptive Control: ua(t)

The computation of the signal ua(t) depends on three components illustrated in Fig. 3.2, namely,
the state-predictor, the adaptation law, and a low-pass filter. Similar to [83], we define the state-
predictor as

˙̂x(t) = F̄ (x(t), uc(t) + ua(t) + σ̂(t)) + Amx̃(t), (3.26)

with x̂(0) = x0, and where x̂(t) ∈ Rn is the state of the predictor, x̃(t) = x̂(t) − x(t) is the state
prediction error, and Am ∈ Rn×n is an arbitrary Hurwitz matrix.

The uncertainty estimate σ̂(t) in (3.26) is governed by the following adaptation law

˙̂σ(t) = Γ ProjH(σ̂(t),−B(x)>Px̃(t)), σ̂(0) ∈ H, (3.27)

where Γ > 0 is the adaptation rate, H = {y ∈ Rm | ‖y‖ ≤ ∆h} is the set to which the uncertainty
estimate is restricted to remain in with ∆h defined in Assumption 3.4. Furthermore, Sn 3 P � 0,
is the solution to the Lyapunov equation A>mP + PAm = −Q, for some Sn 3 Q � 0. Moreover,
ProjH(·, ·) is the projection operator standard in adaptive control literature [108], [109].

Finally, the control law ua(t) is defined as the following Laplace transform

ua(s) = −C(s)σ̂(s), (3.28)

where C(s) is a low-pass filter with bandwidth ω and satisfies C(0) = Im. Note that there is an
abuse of notation when we denote both the geodesic interval parameter and the Laplace variable
by s. The delineation between the two is clear from the context.

3.4.3 Filter Bandwidth and Adaptation Rate

The design of the L1-adaptive controller involves the design of a strictly proper and stable low-pass
filter C(s) with C(0) = Im. Let the bandwidth of this filter be ω. In the thesis, for the sake of
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simplicity, we choose C(s) = ω
s+ω

Im. As we will see in Section 3.5, the bandwidth ω of the low-
pass filter C(s) in (3.28) and the adaptation rate Γ in (3.27) are design parameters which can be
thought of as ‘tuning-knobs’. However, these entities need to satisfy a few conditions mentioned
below. The reasoning behind these conditions will be made clear in the subsequent section.

Suppose that Assumption 3.6 holds. Then, for arbitrarily chosen positive scalars ε and ρa, define

ρr =

√
α

α
‖x?0 − x0‖+ ε, (3.29)

ρ = ρr + ρa. (3.30)

Furthermore, suppose that Assumptions 3.1 and 3.5 hold. Define

ζ1(ω) =2ρ∆B
α

α

(
∆h

|2λ− ω|
+

∆ht + ∆hx∆ẋr

2λω

)
, (3.31a)

ζ2(ω) =α∆Ψx

(
∆h

|2λ− ω|
+

∆ht + ∆hx∆ẋr

2λω

)
, (3.31b)

ζ3(ω) =α∆hx

(
4λ∆B + ∆Ψ̇

λω

)
, (3.31c)

where ∆ẋr , ∆Ψx , and ∆Ψ̇, are known positive scalars defined in (3.15), (3.17) and (3.22) respec-
tively. Then, the bandwidth ω of the low-pass filter C(s) and the adaptation rate need to verify the
following conditions

ρ2
r ≥
E(x?0, x0)

α
+ ζ1(ω), (3.32a)

α >ζ2(ω) + ζ3(ω), (3.32b)
√

Γ >
∆θ

ρa(α− ζ2(ω)− ζ3(ω))
, (3.32c)

where ∆θ is another known positive scalar defined in (3.21).

Remark 3.3. Based on the definition of ρr in (3.30) and the bounds on the Riemannian energy

E(x?(t), x(t)) in (3.12), the inequality ρ2
r > E(x?0, x0)/α holds. Furthermore, since ζ1(ω), ζ2(ω),

and ζ3(ω), all converge to zero as ω increases, the bandwidth conditions in (3.32a)-(3.32b) can

always be satisfied by choosing a large enough ω. However, it is important to note that an increased

bandwidth may result in the loss of robustness to model inaccuracies such as time-delays in the

control architecture. Such inaccuracies are commonplace in real world scenarios and may justify

an upper limit on the maximum bandwidth based on the hardware architecture and sensor design,

limiting the ‘flexibility’ of the tube.
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3.5 Performance Analysis

In this section we analyze the performance of the uncertain system in (3.1) with the L1 control
feedback u(t) defined in (3.13). As in [83], to derive the bounds between the desired trajectory
x?(t) and the state x(t) of the uncertain system, we first introduce the following intermediate
system, which we refer to as the reference system:

ẋr(t) =F (xr(t),−ηr(t)) = f(xr(t)) +B(xr(t))(uc,r(t)− ηr(t) + h(t, xr(t))), (3.33a)

uc,r(t) =u?(t) + kc(x
?(t), xr(t)), (3.33b)

ηr(s) =C(s)L[h(t, xr(t))], xr(0) = x0, (3.33c)

where kc is defined in (3.25) using xr in place of x. The main feature of the reference system is
that it defines the the best achievable performance, given the perfect knowledge of uncertainty, i.e.
it reflects that the cancellation of the uncertainty h(t, xr(t)) can happen only within the bandwidth
of the low-pass filter.

The analysis consists of two parts: we first derive bounds between the desired trajectory and
the reference system ‖x?(t) − xr(t)‖. Then we derive the bounds between the states of the ref-
erence system and the actual system ‖xr(t)− x(t)‖. Recall that we refer to the actual system as
the L1 closed loop system, which is given by (3.1) with the control law in (3.13). Finally, the tri-
angle inequality produces the desired bound on ‖x?(t)− x(t)‖. In this way, the reference system
behaves as an ‘anchor system’ for the analysis. These bounds are illustrated in Fig. 3.3. Further-
more, we provide the justification of treating the bandwidth ω of C(s) and the adaptation rate Γ as
tuning-knobs. Indeed, the upcoming analysis will show that we can ensure that x(t) ∈ Ω(ρ, x?(t))

(see (3.4)) for all t ≥ 0.
We begin with the bound between the reference system state and desired state trajectory. This

corresponds to the green tube in Fig. 3.3. The proofs for all the claims in this section are provided
in Appendix B.2.

Lemma 3.1. Let all the assumptions hold and let ρr be given in (3.30). If the conditions in (3.32a)-
(3.32b) hold, then for any desired state trajectory x?(t), the state xr(t) of the reference system

in (3.33) satisfies

xr(t) ∈ Ω(ρr, x
?(t)), ∀t ≥ 0, (3.34)

and is uniformly ultimately bounded as

xr(t) ∈ Ω(µ(ω, T ), x?(t)) ⊂ Ω(ρr, x
?(t)), ∀t ≥ T > 0, (3.35)
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x?(t)
<latexit sha1_base64="jkDMGoyAy5fM2ld3d+TMQQt7l04=">AAACP3icfVBNS8NAEN34bf2sHj0YLIJ6KIkKeizqwYuoYFVsqky203Zxswm7E7GE/guv+l/8Gf4Cb+LVm9s2B79wYJnHmzezMy9MpDDkeS/O0PDI6Nj4xGRhanpmdm6+uHBu4lRzrPJYxvoyBINSKKySIImXiUaIQokX4e1+r35xh9qIWJ1RJ8F6BC0lmoIDWerq/jowBHqN1m/mS17Z64f7G/g5KLE8Tm6KznLQiHkaoSIuwZia7yVUz0CT4BK7hSA1mAC/hRbWLFQQoaln/ZW77qplGm4z1vYpcvvs144MImM6UWiVEVDb/Kz1yL9qtZSau/VMqCQlVHzwUTOVLsVu7363ITRykh0LgGthd3V5GzRwsi4VggO0t2g8snOPE9RAsd7IAtCtCO67WZ7/kwk1kNlsLfV/GvgbnG+W/a2yd7pdquzl5k6wJbbC1pjPdliFHbITVmWcKfbAHtmT8+y8Om/O+0A65OQ9i+xbOB+faZmwHA==</latexit>

⌦(⇢r, x
?(t))

<latexit sha1_base64="Lqc5unmmsPdBXw6nqlZASPoCXoQ="></latexit>

⌦(⇢, x?(t))
<latexit sha1_base64="k4F0USUOYBh9kb1A4QKPc+/QEgI="></latexit>

< kx? � xkL1
<latexit sha1_base64="peo+xMVkODZMw+auEPmCLMfAx8g="></latexit>

< kxr � xkL1<latexit sha1_base64="SJJXgCCCpXuG4qC22GYUE1afC/I="></latexit>

 kx? � xrkL1
<latexit sha1_base64="1vvVeCIvRC8xNFxEIvgAfSwFL7Y=">AAACYHicfVBNb9NAEN24fIQUaEJv9MCqERIgEdm0EhyrwoFDK4pE2krZYI0343TV9draHaNErn9Dfw1X+jt65Zd0k/gALWKk1Ty9eTM785JCK0dheN0K1u7df/Cw/aiz/vjJ041u79mxy0srcShzndvTBBxqZXBIijSeFhYhSzSeJOcfF/WTH2idys03mhc4zmBqVKokkKfi7muhkYuL2XfhCOxbPoutuIgrkQGdSdDVQR0LZVKa13G3Hw7CZfC7IGpAnzVxFPdaL8Qkl2WGhqQG50ZRWNC4AktKaqw7onRYgDyHKY48NJChG1fLm2r+0jMTnubWP0N8yf7ZUUHm3DxLvHKxq7tdW5D/qo1KSj+MK2WKktDI1UdpqTnlfGEQnyiLkvTcA5BW+V25PAMLkryNHfEJ/S0WD/3cLwVaoNy+qQTYaQazumry/2TKrGQ+e0uj2wbeBcfvBtHOIPy629/bb8xtsy22zV6xiL1ne+wzO2JDJtkl+8l+savW76AdbAS9lTRoNT2b7K8Int8A/C26Cw==</latexit>

Figure 3.3: The bounds/tubes for the analysis of the CCM based L1-adaptive controller.

where the ultimate bound is defined as

µ(ω, T ) :=

√
e−2λTE(x?0, x0)

α
+ ζ1(ω). (3.36)

Next, we compute the bounds between the reference system in (3.33) and the L1 closed-loop
system ((3.1) with (3.13)).

Lemma 3.2. Suppose that the stated assumptions and the conditions in (3.32) hold. Additionally,

assume that the trajectory of the L1 closed-loop system satisfies x(t) ∈ Ω(ρ, x?(t)), for all t ∈
[0, τ ], for some τ > 0, with Ω(ρ, x?(t)) and ρ defined in (3.4) and (3.30), respectively. Then,

‖xr − x‖[0,τ ]
L∞ < ρa,

where ρa is given in (3.30).

We now use Lemmas 3.1 and 3.2 to state the main result of the chapter.

Theorem 3.2. Suppose that the stated assumptions and conditions in (3.32) hold. Consider a

desired state trajectory x?(t) as in (3.3) and the state of the L1 closed-loop system defined via (3.1)
and (3.13). Then, the system state satisfies

x(t) ∈ Ω(ρ, x?(t)), ∀t ≥ 0, (3.37)

and is uniformly ultimately bounded as

x(t) ∈ Ω(δ(ω, T ), x?(t)) ⊂ Ω(ρ, x?(t)), ∀t ≥ T > 0. (3.38)

Here, the ultimate bound is defined as

δ(ω, T ) := µ(ω, T ) + ρa, (3.39)

where the positive scalars ρ and ρa are defined in (3.30), and µ(ω, T ) is defined in Lemma 3.1.
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Discussion

A few critical comments are in order for the performance analysis. The main result in Theorem 3.2
provides uniform ultimate bounds. Let us first discuss the implication of the uniform bound ρ

in (3.37). As per the definition in (3.30), ρ = ρr + ρa. It is evident from the definition that ρ
is lower bounded by the initial condition difference ‖x?0 − x0‖ and the positive scalars α and α
which are associated with the CCM M(x) of the nominal dynamics. Furthermore, as per the proof
of Lemma 3.2, since ρa ∝ 1/

√
Γ, the adaptation rate Γ can be increased to the maximum value

allowable by the computation hardware to guarantee the smallest ρa, and thus, the smallest uniform
bound ρ. However, the fact remains that the uniform bound ρ guaranteed by the L1-controller for
the tracking remains lower bounded by ‖x?0 − x0‖. The only way this bound can be further reduced
is if the underlying planner which provides the desired state-input pair (x?(t), u?(t)) can minimize
‖x?0 − x0‖.

Theorem 3.2 also provides the (uniform) ultimate bound via δ(ω, T ) defined in (3.39). As al-
ready mentioned, ρa ∝ 1/

√
Γ. Furthermore, from the definition of ζ1(ω) in (3.31a), it is evi-

dent that by choosing a large enough ω, there will always exist a known 0 < T < ∞ such that
δ(ω, t) ≤ ρ̄, for all t ≥ T , for any chosen δ̄ > 0. Therefore, we can always arbitrarily shrink the
tube O(δ̄) by choosing appropriate bandwidth ω and rate of adaptation Γ. This feature of the CL1-
controller is very advantageous, since, for example, this capability will allow the safe navigation of
a robot through tight and cluttered environments. This improved performance, however, comes at
the cost of reduced robustness. There exists a trade-off between performance and robustness that
should be taken into consideration. As aforementioned, performance (radius of tubes around x?(t))
depends on Γ and ω. The rate of adaptation Γ is obviously limited by the available computational
hardware. More importantly, the role of the low-pass filter C(s) in the L1-control architecture
(Fig. 3.2) is to decouple the control loop from the estimation loop [15]. Thus, increasing the band-
width ω of C(s) in order to get a tighter tube will lead to the ua(t) component of the L1-input to
behave as a high-gain signal, thus possibly sacrificing desired robustness levels [110]. Therefore,
this trade-off must always be taken into account during the planning phase.

3.6 Numerical Results

We provide two illustrative examples. In the first example, we consider the non-feedback lineariz-
able system from [92] and synthesize the controller to ensure safe regulation around the equilibrium
point. We also show the effect of uniform ultimate bounds discussed in the previous section, if the
system were to start far away from the equilibrium. In the second example, we consider the system
from [111] and ensure safety in a motion planning context during trajectory tracking. In particular
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Figure 3.4: Comparison of controller performance between (a) pure CCM-based feedback, and a
(b) CL1 architecture. The green and orange shaded regions signify the induced Ω(ρr, x

?) and
Ω(ρ, x?) tubes respectively. The dashed green and orange lines signify the uniform ultimate
bounds µ(ω, T ) and δ(ω, T ) evaluated at every timestep.

we show how altering the tube parameters affects the choice in the filter bandwidth and adaptation
rate.

3.6.1 Non-feedback Linearizable Systems

Consider the system with the structure defined in (3.1) and the system functions given by

f(x) =

 −x1(t) + x3(t)

x2
1(t)− 2x1(t)x3(t)− x2(t) + x3(t)

−x2(t)

 , B =

0

0

1

 ,
where the state x(t) = [x1(t) x2(t) x3(t)]>. The dual metric W (x) = M(x)−1 satisfying the
conditions in (3.8a) to (3.8c) was found using the sum-of-squares programming toolbox SumOf-
Squares.jl [112], optimization software JuMP [113], and the optimization solver [114], as

W (x) =

 0.2 −0.41x1(t) −0.01

−0.41x1(t) 0.81x1(t)2 + 0.22 0.01x1(t)− 0.01

−0.01 0.01x1(t)− 0.01 0.07x1(t) + 0.22

 .
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(a) ε = 0.6, ρa = 0.01,
ω = 51,Γ = 2× 109
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(c) ε = 0.4, ρa = 0.1,
ω = 90,Γ = 4× 107

Figure 3.5: Relationship between the choice of tube parameters ε and ρa and the controller
parameters ω and Γ through the conditions defined in (3.32). For clarity the initial conditions for
the desired trajectory and the actual system in this illustration are assumed to be the same.

The metric satisfies a convergence rate λ = 1.0 and is uniformly bounded in the set X = {y ∈
R3 | ‖y‖∞ ≤ 0.1} with α = 5.88 and α = 3.85. Now, suppose that the system is experiencing
sinusoidal disturbances of the form: h(t) = 0.1 sin(2t). We chose the initial condition of the
system as x0 = [1 − 1 1]> × 10−2 and the desired state as x? = [0 0 0]>. Incidentally, the desired
state is also the equilibrium point of the system which means that the desired control is u?(t) ≡ 0.

A pure CCM-based feedback strategy produces the oscillatory behavior, seen in Fig. 3.4a. A
CL1-adaptive controller is designed in Fig. 3.4b for tube widths ε = 0.01 and ρa = 0.01. The
filter bandwidth and adaptation rate required to achieve this level of performance were chosen as
ω = 50 and Γ = 5× 106 respectively by satisfying the conditions in (3.32). Notice that the bounds
are far more conservative than the actual behavior of the system. In fact, the error in tracking is
uniformly bounded as ‖x‖L∞ < 0.02. Additionally, notice that the uniform ultimate bounds of the
reference system tube from (3.36) and the actual system tube from (3.39) shrink with time and are
essentially ‘forgetting’ the initial conditions of the system.

3.6.2 Safe Tubes for Motion Planning

Consider the system with the structure defined in (3.1) and the system functions given by

f(x) =

[
−x1(t) + 2x2(t)

−0.25x3
2(t)− 3x1(t) + 4x2(t)

]
, B =

[
0.5

−2

]
,

where the state x(t) = [x1(t) x2(t)]>. Since this particular system is feedback linearizable, it
admits a constant (or flat) dual metric for all x ∈ R2 [93]. The value of the dual metric and the
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Figure 3.6: Comparison of performance and robustness between (a) pure CCM-based feedback,
and (a) CL1 architecture with tube parameters ε = 0.4 and ρa = 0.1. The dashed black line shows
the desired trajectory designed by a planner; the gray polygon is an obstacle, and the orange
shaded region is the safe tube given by Ω(ρ, x?(t)). The behavior of the system under pure
CCM-based feedback has been overlaid as a dashed red line in (b) for clarity.

associated convergence parameter is computed in [111] and provided here for completeness:

W =

[
4.26 −0.93

−0.93 3.77

]
, λ = 1.74.

Similar to [111], we chose the initial condition of the system as x0 = [3.4 − 2.4]> and the target
state as as x? = [0 0]>. The desired state and control trajectory pair was computed using the
iterative LQR solver provided by [115] with the parameters Q = 0.5I2 and R = 1.0. Suppose the
system is affected by uncertainties of the form: h(t, x) = −2 sin(2t) − 0.1‖x(t)‖, consisting of
both time and state dependent terms. Depending on the desired level of tracking performance or
closeness to obstacles in the environment, the user will pick the tube parameters ε and ρa as defined
in (3.30). In Fig. 3.5, we illustrate the trade-offs between choosing a tighter ρa (Fig. 3.5a) versus a
tighter ε (Fig. 3.5c) for this system.

In Fig. 3.6b, we observe the performance and robustness benefits of using CL1-adaptive con-
trol. Not only does the system track the desired trajectory closely, but also avoids colliding with
obstacles (unlike in Fig. 3.6a) through an appropriate choice of tube parameters.
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Chapter 4

Safe Simulataneous Learning and Control

4.1 Introduction

Machine learning (ML) algorithms are potent tools for producing complex and accurate models of
uncertain systems. The accurate representations help model-based reinforcement learning (MBRL)
algorithms achieve performance and optimality [116]. However, model uncertainties can make the
system unstable during learning transients, which can have serious consequences, especially for
safety-critical systems [117]. Control-theoretic approaches based on Lyapunov functions (LFs)
and control invariant sets can offer safety certificates [20, 118, 119]. For instance, control-theoretic
notions like asymptotic stability [120, Chapter 3] are useful to guarantee system behavior in the
limit. However, it is equally important to quantify the system’s behavior during the complete
operation and not just in the limit. More importantly, for learning-based control, the question of
how to quantify and guarantee the system’s safety during learning-transients is crucial.

Learning-based tracking control [121–124] reduces conservatism by using measured data to
improve models. However, several frameworks [125–129] in this domain also require restrictions
on the structure of the dynamics (e.g. strict feedback form, differential flatness, etc.) to ensure
safety in the presence of uncertainties. The authors in [20] use the regularity of the uncertainty and
the sufficient statistics of the learned Gaussian process (GP) models to safely expand the region
of attraction, and improve control performance using LFs. In contrast, our control architecture
actively compensates for the model uncertainties allowing the system states to reach any part of
the operating region safely even when the quality of the learned model is poor. Probabilistic
chance constraint methods, which use uncertainty propagation, have been shown to provide both
asymptotic and transient bounds on the tracking performance [130]. The implementations that rely
on approximate uncertainty propagation offer excellent empirical performance without theoretical
guarantees, shown in [21, 131]. However, uncertainty propagation methods sacrifice long-term
accuracy for computational efficiency, for example by linearization, in order to be more tractable
for real-time applications. Our proposed method avoids uncertainty propagation completely when
considering nonlinear dynamics. Instead, we rely on uniform error bounds for GP predictions to
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(a) (b) (c)

Figure 4.1: Consider a vehicle traversing a race track with some nominal model knowledge.
Depending on the uncertainty and robustness requirements, the control framework guarantees the
safety bounds (blue tubes). As the learning improves, so do the performance and optimality.

apriori guarantee tracking performance with respect to the desired trajectory. This controller is
capable of incorporating the learned dynamics while ensuring safety. This incorporation is based
on both contraction theory [92, 111, 132] and the L1-adaptive control theory [15]. Safe planning
and control using L1-adaptive control theory can be found in [41, 103, 133].

We provide a systematic design of the feedback law u = π(x, xd, ud), such that we can apriori
compute a positive scalar ρ to ensure ‖xd(t)− x(t)‖ ≤ ρ, for all t ∈ [0, Tf ], with high-probability,
where Tf ≤ ∞ is the planning horizon. This guarantee implies the existence of a tube Oxd(ρ) of
radius ρ centered around the trajectory xd, in which the actual state of the system x is guaranteed to
lie in. The control design is based on our recent work in [41]. We then define the notion of safety
as the existence of the apriori quantifiable tubes Oxd(ρ). Any planning algorithm which produces
(xd, ud) w.r.t. F̄ by incorporating the additional constraint Oxd(ρ) /∈ Xobs will thus ensure that the
actual state x /∈ Xobs (obstacle set). This minimal requirement enables the framework to be used
in conjunction with many popular planning algorithms like [31, 37–40, 134].

We define performance as the radius ρ of the tube since a smaller radius ρ implies better tracking
performance and vice-versa. To improve performance, we rely on Bayesian learning (GP regres-
sion) to learn the model uncertainties. We use GP learning’s predictive distribution to compute
high-probability error bounds for the estimated uncertainties. These estimates are then incorpo-
rated within the feedback law u = π(x, xd, ud) to handle the uncertainties as represented by the
variance. The planner can thus operate by only incorporating the mean dynamics. The notion
of performance also includes the desired robustness margins of the closed-loop system. Our re-
cently developed control methodology [41], introduced in the previous section, provides a sensible
approach to balance the trade-off between performance and robustness requirements for safe navi-
gation. However, this trade-off implies a limit on how tight the performance bounds can get for a
specification of robustness margins. This framework addresses this problem by using model learn-
ing to reduce the uncertainty resulting in tighter performance bounds than would be possible with
[41] alone.
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The improved performance, as defined above, implies an improvement in optimality. Using im-
proved performance given guaranteed safety (in the form of reduced radii tubes), a planner can
produce the desired trajectory xd that is optimal in the sense of the total path’s length and the time
taken to traverse the path. We refer to this as performance-dependent optimality. However, there
is an additional notion of optimality w.r.t. to the learned models. MBRL algorithms rely on the
known/learned model F̄ to generate pairs (xd, ud) optimal for F̄ . Therefore, as learning improves,
and thus F̄ → F , the underlying MBRL should produce desired trajectories approaching optimal-
ity w.r.t. the actual dynamics. We refer to this as model-based optimality. Both performance-based
and model-based optimality constitute the overall optimality. It is important to highlight that, as
aforementioned, our control framework is planner agnostic: it enables the improvement of opti-
mality via any planner capable of doing so, rather than guaranteeing it. The proposed framework
provides the planner with improved performance guarantees and learned models; it is up to the
planner to use these to improve optimality. The proposed framework enables the behavior in
Fig. 4.1. Note that this figure does not show the distinction of the aforementioned optimality types
but rather an improvement in the overall cost of the planned trajectory.

4.2 Problem Formulation

We consider the following uncertain control-affine nonlinear dynamics of the form

ẋ(t) =f(x(t)) +B(x(t))(u(t) + h(x(t)), x(0) = x0, (4.1)

where x(t) ∈ Rn, u(t) ∈ Rm, for t ∈ R≥0, represent the system state and control input, respec-
tively. The functions f(x) ∈ Rn and B(x) ∈ Rn×m are the known components of the dynamics,
whereas, h(x) ∈ Rm denotes the model uncertainties. The control-affine systems presented in (4.1)
cover a wide range of physical control systems including, for e.g., nonlinear aircraft models [135],
and quadrotor models [95, 136]. Note that in (4.1), for the clarity of exposition, we place the
assumption that the uncertainties are matched, i.e., g(x) = B(x)h(x) ∈ span{B}. The proposed
method can be extended for uncertainties /∈ span{B} following the work laid out in [95] and [137],
with the expectation that the unmatched uncertainties cannot be fully compensated but instead only
attenuated.

Definition 4.1. We define the known and uncertain model parameter sets as M̄ = {f,B} and

M̂ = {h}, respectively. These sets induce the vector fields F (M̄;x, u) = f(x) + B(x)u and

F (M;x, u) = f(x) + B(x)(u + h), whereM = M̄ ∪ M̂, which define the known and actual
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(uncertain) dynamics respectively as1

ẋ = F (M̄;x, u) = f(x) +B(x)u, ẋ = F (M;x, u) = f(x) +B(x)(u+ h(x)). (4.2)

The following definition is placed for planning.

Definition 4.2. Over a planning horizon [0, Tf ], 0 < Tf ≤ ∞, (x?(t), u?(t)) is a desired state-

input pair if ẋd(t) = F (M̄;x?(t), u?(t)) and x?(t) ∈ X , for all t ∈ [0, Tf ], where X ⊂ Rn is any

compact convex set. Given any ρ > 0, we define

Ω(ρ, x?(t)) := {y ∈ Rn | ‖y − x?(t)‖ ≤ ρ}, Ox?(ρ) = ∪t∈[0,Tf ]Ω(ρ, x?(t)). (4.3)

We refer to Ox?(ρ) as the tube. Here ‖·‖ denotes the Euclidean norm.

SinceF (M̄;x, u) is known, any model-based planner can generate the desired pair (x?(t), u?(t))

satisfying the state-constraints. The following ensures the generation of safe desired trajectories.

Assumption 4.1. Given any tube width ρ > 0 and planning horizon [0, Tf ], 0 < Tf ≤ ∞, the

planner produces a state-input pair (x?(t), u?(t)) (as in Definition 4.2) such that the induced tube

Ox?(ρ) satisfies Ox?(ρ) ∈ X/Xobs, for all t ∈ [0, Tf ], where Xobs represents the obstacles. The

desired control input u?(t) satisfies ‖u?(t)‖ ≤ ∆u? , for all t ∈ [0, Tf ], with the upper bound known.

Problem Statement: Given the learned probabilistic estimates of the uncertainty h(x), any de-
sired state-input pair (x?(t), u?(t)), t ∈ [0, Tf ], designed by a planner using the known dynam-
ics F (M̄;x, u) (Definitions 4.1 and 4.2), and the desired robustness margins, the goal is to de-
sign the control input u(t) that guarantees the existence of an apriori computable tube-width
ρ so that the state of the uncertain dynamics in (4.1) (F (M;x, u) in Definition 4.1) satisfies
x(t) ∈ Ω(ρ, x?(t)) ⊂ Ox?(ρ) with high probability, for all t ≥ 0, from all initial conditions
x0 ∈ X , while satisfying the robustness requirements. Importantly, the existence of the pre-
computable tubes should not depend on the quality of the learned estimates, thus ensuring that
safety remains decoupled from learning. The learning should only affect the performance bounds
and the optimality of the planned trajectory.

We now place the following assumptions on the known and uncertain model parameters.

Assumption 4.2. The functions f(x), B(x), h(x) are continuous, bounded, and Lipschitz, for all

x ∈ D ⊂ Rn, where D is any compact set which can be arbitrarily large. Moreover, the matrix

B(x) has full column rank for all x ∈ D, thus guaranteeing the existence of the Moore-Penrose

inverse B†(x) =
(
B>(x)B(x)

)−1
B>(x).

1We suppress the temporal dependencies for brevity.
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The probabilistic estimates of the uncertainty h(x) in (4.1) are learned using GP regression. For
completeness, we now provide a brief preliminary on GP regression.

4.3 Preliminaries on Gaussian Process Regression

Assumption 4.3. We assume that each of the elements [h]i(x), i ∈ {1, . . . ,m}, are independent.

Moreover, we assume that each element is a sample from a GP [h]i(x) ∼ GP(0, Ki(x, x
′)), where

the kernel functions Ki : Rn×n → R are known. Moreover, the kernels are twice-continuously

differentiable with known constants LKi , ∇xLKi , such that LKi = maxx,x′∈X‖∇xKi(x, x
′)‖, and

∇xLKi = maxx,x′∈X‖∇2
xKi(x, x

′)‖, for i ∈ {1, . . . ,m}.

The assumption is less conservative than requiring the uncertainty to be a member of the repro-
ducing kernel Hilbert space (RKHS) associated with the kernel. For example, sample functions of
GPs with squared-exponential kernels correspond to continuous functions, whereas the associated
RKHS space contains only analytic functions [138]. Moreover, the constants assumed to exist in
Assumption 4.3 are easily computable, for example, for the squared-exponential kernel. However,
it is important to note that the element-wise independence assumption on the uncertainty might be
restrictive in certain scenarios, and we are investigating relaxing this condition in future work.

Assume that we have N measurements of the form yk = h(xk) + κ = B†(xk) (ẋk − f(xk)) −
uk + κ ∈ Rm, k ∈ {1, . . . , N}, where κ ∼ N (0m, σ

2Im) is the measurement noise and 0m ∈ Rm

is a vector of zeros. We set up the data as D = {Y,X}, Y =
[
y1 · · · yN

]
∈ Rm×N ,

X =
[
x1 · · · xN

]
∈ Rn×N . Thus, for each of the constituent functions [h]i, i ∈ {1, . . . ,m}, we

have the data as Di = {[Y]i,·,X}, where [Y]i,· denotes the ith row of Y. Conditioning the prior
in Assumption 4.3 on the measured data D, we obtain the posterior distribution at any test point
xt ∈ X as [139]

R 3 [h]i(xt) ∼ N
(
νi,N(xt), σ

2
i,N(xt)

)
, i ∈ {1, . . . ,m}, (4.4)

with mean νi,N(xt) = Ki(xt,X)> [Ki(X,X) + σ2IN ]
−1

([Y]i,·)
>, and variance σ2

i,N(xt) =

Ki(xt, xt) − Ki(xt,X)> [Ki(X,X) + σ2IN ]
−1
Ki(xt,X). Using the linearity of the differential

operator, we also compute the posterior distributions of the partial derivatives of h(x) as

(∇x[h]i(xt))
> ∼N

(
∇xνi,N(xt)

>,∇xσ
2
i,N(xt)

)
, (4.5)

with mean ∇xνi,N(xt)
> = (∇xKi(xt,X))> [Ki(X,X) + σ2IN ]

−1
([Y]i,·)

> ∈ Rn and variance
∇xσ

2
i,N(xt) = ∇2

x,x′Ki(xt, xt)− (∇xKi(xt,X))> [Ki(X,X) + σ2IN ]
−1∇xKi(xt,X) ∈ Sn.
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4.4 CL1 Control with Gaussian Process Learning

We now present our control framework which brings together contraction theory-basedL1-adaptive
(CL1) control presented in Chapter 3 with GP regression. The detailed description of the frame-
work is illustrated in Fig. 4.2. Given the posterior distribution of the uncertainty in (4.4), we
may update the known and uncertain model parameter sets in (4.2), as M̄ = {f + BνN , B},
M̂ = {h− νN},M = M̄∪M̂, which induce the learned representations of the known and actual
dynamics as

ẋ =F (M̄;x, u) = f(x) +B(x)νN(x) +B(x)u, (4.6a)

ẋ =F (M;x, u) = f(x) +B(x)νN(x) +B(x)(u+ h(x)− νN(x)). (4.6b)

Note that this step simply entails adding and subtracting the mean νN in the control channel.
The control design is driven by the philosophy that the input u compensates for the uncertainty
h(x) − νN(x) as quantified by the variance of the posterior distribution in (4.4). The uncer-
tainty is compensated so that the actual system ẋ = F (M;x, u) behaves like the known/learned
ẋ = F (M̄;x, u) within guaranteed tube bounds presented in Definition 4.2. Then, any underly-
ing planner can generate the desired pair (x?, u?) satisfying the deterministic and uncertainty-free
dynamics ẋ? = F (M̄;x?, u?) safe in the knowledge that the state x of the actual uncertain system
ẋ = F (M;x, u) will remain in the tubeOx?(ρ) centered on x?. Therefore the following sequential
tasks need to be performed: i) quantification of the uncertainty h− νN , and ii) design of the input
u to compensate for the quantified uncertainty.

To quantify the uncertainty, we use the posterior distributions in (4.4) and (4.5) to show that
there exist bounds ∆Ξu , such that for all x ∈ X , with high probability,

‖Ξu(x)‖ ≤ ∆Ξu , (4.7)

where Ξu =
{
h− νN , ∂h−νN∂x

}
. The bounds are presented in the following theorem, which is

presented in a highly condensed form due to space considerations. The expanded version of the
theorem and its proof can be found in [140, Theorem. 3.1].

Theorem 4.1. Let Assumptions 4.2 and 4.3 hold. Consider the posterior distributions in (4.4)
and (4.5) and any scalars δ ∈ (0, 1), τ > 0. Then there exist computable functions ∆h(x, τ) and

∇x∆h(x, τ), so that with ∆h−νN = supx∈X ∆h(x, τ) and ∆ ∂h−νN
∂x

= supx∈X ∇x∆h(x, τ), and the

bounds in (4.7) hold with probability at least 1− δ.

With the bounds on the learned representation of the uncertainty h(x) − νN(x) established in
Theorem 4.1, we proceed with the control design. To reiterate, for any (x?, u?) satisfying the
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Figure 4.2: The proposed safe learning and control architecture.

deterministic learned dynamics ẋd = F (M̄;x?, u?) in (4.6a), we design the input u so that the
state of the actual dynamics ẋ = F (M;x, u) in (4.6b) satisfies ‖x− x?‖ ≤ ρ ⇒ x ∈ Ox?(ρ)

uniformly in time, for some tube-width ρ > 0. The control input, as in Fig. 4.2, is computed as

u(t) = uc(M̄; t) + ua(M̄; t), (4.8)

where uc(M̄; t) is the contraction-theory based input and ua(M̄; t) is the L1-adaptive input. By
Assumption 3.6 in Section 3.3, there exists a control contraction metric (CCM) M(x) for the
original known dynamics ẋ = F (M̄;x, u) ((4.2)). More importantly, by [132, Lemma 1], M(x) is
a CCM for both the learned representations of the known and actual (uncertain) dynamics in (4.6).
This allows us to seamlessly incorporate the learned mean νN and straightforwardly design the
input uc(M̄, t) for the learned representation in (4.6a) using the CCM M(x) as in [95, Sec. 5.1].
The design of the L1-adaptive controller consists of a state-predictor, adaptation-law, and a low-
pass filter C(s) as illustrated in Fig. 4.2. Jointly, the L1 input ua(M̄; t) can be represented as

˙̂x = F (M̄;x, u+ µ̂) +Amx̃, ˙̂µ = ΓProjĤ
(
µ̂,−B>(x)Px̃

)
, ua(M̄; s) = −C(s)µ̂(s), (4.9)

with x̂(0) = x0, µ̂(0) ∈ Ĥ, and s represents the Laplace variable. Here, x̂ is the state of the
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predictor, x̃ = x̂−x, and Am ∈ Rn×n is an arbitrary Hurwitz matrix. The uncertainty estimate µ̂ is
generated by the adaptation law for adaptation rate Γ > 0, with the projection operator ProjĤ(·, ·),
which ensures that µ̂ ∈ Ĥ, Ĥ = {y ∈ Rm | ‖y‖ ≤ ∆h−νN}, and Sn 3 P � 0, which is the solution
to the Lyapunov equation A>mP + PAm = −Q, for any Sn 3 Q � 0. Finally, the low-pass filter
C(s) has a bandwidth ω and satisfies C(0) = Im. The high-level design idea is that the input ua
compensates for the uncertainty h− νN via the estimate µ̂ and within the bandwidth of C(s).

Next, we analyze the uncertain system ẋ = F (M;x, u) in (4.6b) driven by the input (4.8). The
complete details of the analysis can be found in [140]. Given a desired trajectory x? and arbitrarily
chosen positive scalars ρa and ε, define

ρr =

√
ᾱ

α
‖x?(0)− x0‖+ ε, ρ = ρr + ρa, (4.10)

where ᾱ, α are defined in Assumption 3.6. Under Assumptions 3.6 and 4.1, we obtain conditions
on the magnitude of the rate of adaptation Γ and the bandwidth ω of the low-pass filterC(s) in (4.9)
so that we are guaranteed stability and can quantify the performance. Once again, for clarity we
choose not to present the complete definitions of the conditions and the reader is directed to [140]
for details. It is important to note that there always exists an adaptation rate Γ and a bandwidth ω
that satisfy these conditions; see [41] for further discussions. The following theorem establishes
the performance of the closed-loop system and its proof can be found in [140, Theorem. 3.2].

Theorem 4.2. Let Assumptions 4.1 and 4.3 hold and let the bounds in Theorem 4.1 be computed

for some δ ∈ (0, 1) and τ > 0. Suppose the control input in (4.8) is designed so that the conditions

on the rate of adaptation and filter bandwidth as given in [140] are satisfied. Then, given any

desired pair (x?, u?) satisfying the deterministic known dynamics ẋd = F (M̄;x?, u?) in (4.6a),
the state x of the actual (uncertain) dynamics ẋ = F (M;x, u) in (4.6b) driven by the input u

from (4.8) satisfies with probability at least 1− δ

x(t) ∈ Ω(ρ, x?(t)) ⊂ Ox?(ρ), ∀t ≥ 0, (4.11)

where ρ is defined in (4.10). Furthermore, the actual state x is uniformly ultimately bounded, with

probability at least 1− δ, as

x(t) ⊂ Ω(δ̂(ω, T ), x?(t)) ⊂ Ox?(ρ), ∀t ≥ T > 0, (4.12)

where the uniform ultimate bound (UUB) is defined as δ̂(ω, T ) = µ(ω, T ) + ρa with µ(ω, T ) =√
e−2λTE(xd,0, x0)/α + ζ1

(
Ξ{u,k,c}, ω

)
.

Discussion: As the learning improves, the variance of the predictive Gaussian distribution col-

52



lapses, and thus the constants in (4.7) decrease. Therefore, without changing the filter bandwidth ω
and adaptation rate Γ, the UUB in Theorem 4.2 decreases. The decrease in the UUB, and the lack
of a requirement for the re-tuning of the control parameters, is due to the monotonic dependence
of the constants ζi on ∆Ξu in (4.7). Furthermore, as aforementioned, the CCM M(x) does not
need to be re-synthesized as the model is updated using learning. Thus, without re-tuning the pa-
rameters of the control input (M , Γ, and ω), with the control designed using only Assumption 4.2,
the performance improves as a function of learning. Of course the learning is not guaranteed to
improve always, in which case, it will be reflected in the bounds ∆Ξu . In this scenario, we are in
no compulsion to incorporate the learned estimates, since the controller guarantees safety with the
previously learned, or no, estimates. This is the exact reason that the proposed method does not
require a high-rate, or any fixed rate, of model updates. Whenever it is provided with an improved
model, it will be incorporated. The uniform bound in (4.11) is lower-bounded by the initialization
error in (4.10). The size of the terms ε and ρa depends on the value of the adaptation rate Γ and
filter-bandwidth ω. Thus, while in theory we can achieve the lowest-possible tube width, the size of
Γ is limited by the available computation, and ω is limited by the desired robustness margins. Al-
ternatively, instead of the uniform tube, a planner can use the UUB in (4.12), which induces tubes
that exponentially collapse to a fixed radius dependent on ζ1, a term that decreases as the learning
improves. Compared to our initial work in [141], the presented work is much more applicable to
real-world problems. In particular, in [141] we could only consider linear known systems and did
not provide any theoretical guarantees. In the presented work, we are able to explicitly consider
nonlinear systems because of bringing contraction theory within L1 control with theoretical guar-
antees. This further enables the use of learning for performance and optimality improvement with
persistent safety as presented. Also note that since the adaptive control directly compensates for
the uncertainty as quantified by the variance of the posterior distribution, any underlying planner
need only incorporate the deterministic mean and not perform any uncertainty propagation, which
is both approximate and computationally expensive. Finally, note the semi-global nature of the
L1 augmentation. For a given CCM controller uc that renders the known dynamics incrementally
exponentially stable (IES), the L1 augmentation can make any tube, no matter how large, forward
invariant for the actual (uncertain) dynamics. The semi-global nature comes from the fact that, as
is evident in this section, the control design explicitly depends on the size of the set/tube.

4.5 Numerical Results

We demonstrate our approach using two illustrative simulations. In the first example, we consider a
modified Dubin’s car system from [8] and show how our control framework is used to ensure safety
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guarantees during the learning process, while outperforming a purely CCM-based approach. In the
second example, we consider a planar quadrotor model from [95] and show the usefulness of our
control framework in feedback motion planning applications. The CCMs were discovered using
DNNs from [8] in the first example, and using the sum-of-square programming approach from [92]
in the second example. In both scenarios, the dataset is generated by randomly sampling the state
space, but one could also use more sophisticated exploration techniques to safely gather data based
on our framework.

(a)

(b) (c)

Figure 4.3: A Dubin’s car traversing an obstacle forest using (a) CCM-based feedback (b) CL1

control, and (c) our framework. The system trajectories are denoted in blue, the obstacles in gray,
the planned trajectory in dashed black, and the tubes are shown as shaded orange regions. Any
collisions with an obstacle terminate the trajectory immediately and are indicated as red
diamonds.

Dubin’s Car: The vehicle dynamics are described by (px, py, θ, v), where px and py are positions, θ
is the heading angle, and v is the velocity. The system has two control inputs that act on (θ̇, v̇). The
vehicle is tasked with traversing an obstacle forest from positions (0, 0) to (12, 0), and a desired
trajectory is planned using the augmented Lagrangian trajectory optimizer (ALTRO) presented
in [40] while minimizing a quadratic cost on the states and controls. Let the system be randomly
initialized around the origin and experience an unknown parasitic drag force given by 0.1v2. In
Fig. 4a, a CCM-based feedback strategy is applied without concern for the uncertainty affecting the
system. Out of the ten random initial conditions only two trajectories successfully reach the goal
position, whereas in the majority of the simulations the vehicle collides with one of the obstacles
before completing the task. With a conservative knowledge of the bounds on the uncertainty and its
growth, a CL1 control is designed so that the system trajectories can be guaranteed to remain inside
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of a tube computed using the UUB in (4.12), as shown in Fig. 4b. As the uncertainty is learned
following our approach, the bounds on the remainder uncertainty collapse with high probability
as given in Theorem 4.1. Figure 4c shows improved performance certificates in the form of the
tightened tubes. Furthermore, the learned estimates are incorporated into the planner and CL1

architecture through the learned dynamics as (4.6). This example shows the clear improvement
in the performance-dependent optimality and enables model-based optimality by incorporating F̄
into the planner, while ensuring safety.

(a) (b) (c)

Figure 4.4: A planar quadrotor escaping a bug trap using (a) only a deterministic knowledge of
the uncertainty, (b) model learned with N = 25 dataset, (c) model learned with N = 100 dataset.
The blue lines indicate the edges of the random geometric graph constructed by BIT*. The
dashed-black line indicates the lowest cost trajectory found by batch informed trees (BIT*).

Planar Quadrotor: The vehicle dynamics are described by (px, py, vx, vy, θ, θ̇), where px and
py are positions, vx and vy are velocities, and θ and θ̇ are the pitch angle and rate respectively.
The system has two control inputs: the thrust and pitch moment commands that act on (v̇y, θ̇).
The vehicle starts in a room at position (0, 0) and is tasked with planning a trajectory that takes
it to (2, 0) safely. For such problems, complete or probabilistically complete planners are the
algorithms of choice, since other methods typically get stuck at a local minimum and never reach
the goal. We use the popular sampling-based planner BIT* [142], where the two-point boundary
value problem is solved using ALTRO. Similar to the previous example, consider that the system
experiences an unknown parasitic drag force given by−0.1(v2

x+v2
y) and a constant unknown offset

in the thrust command. Planning without taking into account these uncertainties might generate
trajectories that drive the system into regions that are unsafe. However in our framework, the
uniform performance guarantees (4.11), provided by CL1 control, ensure that BIT* only samples
states that lead to provably safe trajectories, Fig. 5a. Figures 5b and 5c show the tightening of
the tubes as the uncertainty is learned batch-wise following our approach. This allows BIT* to
construct a graph of safe trajectories with improved performance guarantees.
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Chapter 5

Certifying Feedback Policies using Interval Analysis

5.1 Introduction

Machine learning (ML) methods have proven effective at learning nonlinear dynamic models and
controllers [143, 144]. Despite the impressive empirical performance of ML-based control, obtain-
ing formal certificates for stability and convergence remains challenging. A further challenge is the
problem of jointly learning certificates and control policies. The lack of quantified safety margins
has relegated the operation of robots with ML-based dynamics and controllers, for the time being,
to controlled environments so that the consequences of failure remain trivial.

Classical control techniques provide means of synthesizing control policies and certificates us-
ing Lyapunov theory [80]. Lyapunov theory establishes the stability and convergence properties of
dynamical systems to an equilibrium point by introducing a Lyapunov function (LF) that acts as a
surrogate for the ‘energy’ of a system. Studying the LF’s dissipation along the descriptive vector
field allows one to conclude the system’s stability properties. A similar approach is used for the
control policy synthesis problem so that the controlled system admits an LF, thus proving its sta-
bility. One can search for LFs and control policies for finite-dimensional linear systems by solving
linear matrix inequalities (LMIs) [13]. However, most robotic platforms evolve as per dynamics
described by nonlinear ordinary differential equations (ODEs). The search for LFs and control
policies for nonlinear systems is a challenging problem, and unlike linear systems, there is a lack
of general methods to achieve the task. When ODEs with polynomial vector fields can describe
the nonlinear systems, sum-of-squares (SOS) optimization has proven to be effective [145–147].
However, in addition to the constraint of requiring polynomial vector fields, SOS methods scale
poorly to high-dimensional systems since they rely on solving underlying semi-definite program-
ming problems [148]. Recent advances in deep learning techniques have enabled more general
approaches wherein one searches for LFs and control policies parameterized by deep neural net-
works (DNNs). In [149], the authors use DNN-parameterized LFs to learn certified safe regions,
and in [27] both LFs and control policies are parameterized by DNNs and used to certify a safe
control policy. However, such DNN-based approaches require the verification of the candidate
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solutions, which can prove problematic due to the ‘deep’ nature of the DNNs used. For example,
in [149] the Lipschitz constants of the DNN-parameterized LF and the dynamics are estimated
and used to verify the solution. Such verification process can prove to be overly conservative and
would not scale very well to high-dimensional problems. Moreover, the estimation of the Lipschitz
constants may not be rigorous leading to insufficient verification procedures. On the other hand,
in [27] the authors use formal verification techniques in the form of satisfiability modulo theories
(SMT) algorithms to verify the LF or report a counter-example if the condition is violated. How-
ever, dedicated SMT solvers have only been able to handle very small networks ([150]), with a
few exceptions like the Reluplex SMT solver, which is applicable only to non-smooth DNNs that
use the rectified linear unit (ReLU) activation functions [151]. Despite the challenges of verifying,
DNN-based approaches remain promising for learning LFs and control policies. A more thorough
review of DNN verification algorithms can be found in [152].

The notion of incremental stability is highly pertinent for robotics applications. As opposed to
the stability of equilibria, incremental stability refers to the stability of trajectories that are realiz-
able by a system [153] with respect to each other. The utility of incremental stability for robotics
is obvious. For example, mobile robotic platforms should be capable of converging to any de-
sired trajectory/path computed by a planner. One can search for control policies that render the
system incrementally stable via either a Lyapunov approach [153] or by using contraction the-
ory [94]. Instead of using energy functions as in Lyapunov analysis, contraction theory verifies the
convergence properties using a differential framework by synthesizing contraction metrics [92].
The contraction metric synthesis problem can be cast as an SOS optimization problem and is thus
amenable to solvability [111]. However, SOS optimization suffers from the drawbacks mentioned
earlier. Very recently, [8] introduced a DNN based framework to search for contraction metrics
and control policies jointly. While the approach proposed by [8] removes the issues of using SOS
optimization, producing theoretical guarantees still requires the verification of DNN candidate so-
lution after the optimization, which remains challenging. Leveraging Lipschitz continuity bounds
can provide theoretical guarantees but suffer from the issues mentioned earlier. Thus, as an alterna-
tive, [8] also provides probabilistic guarantees for the considered deterministic system. In a similar
vein, [154] proposes the use of spectrally-normalized DNNs to establish incremental stability for
a class of stochastic nonlinear systems.

In contrast to methods presented above, we present a verification approach that utilizes interval
arithmetic [155] to certify the trained models of the incremental Lyapunov function (ILF) (or con-
trol contraction metric (CCM)) and the control policy. As the name suggests, interval arithmetic
introduces mathematical operations over real-valued intervals sets. For example, the addition be-
tween the intervals [1, 2] and [−1, 1] encompasses all possible sums of elements from these two
sets given by the interval [0, 3]. Using interval arithmetic, we can compose many such simple in-
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terval operations to produce interval operations over far more complex functions. We present an
algorithm that searches for the interval regions of the state-space where the trained DNN models
are valid by iteratively subdividing the intervals. This way we are able to recover valid regions
of attraction even from poorly trained models of the certificate and controller. Therefore, unlike
previous verification approaches, the trained models are not rejected simply because they are not
valid over the entire domain.

5.2 Problem Formulation

We consider a class of known nonlinear time-invariant systems whose dynamics evolution is gov-
erned by

ẋ(t) = F (x(t), u(t)), x(0) = x0, (5.1)

where the state x(t) ∈ X ⊂ Rn, the control input u(t) ∈ U ⊂ Rm, and the function F (x, u) ∈ Rn.
In certain situations, we may assume that the nonlinear dynamics of the system is control affine
given by

ẋ(t) = F (x(t), u(t)) = f(x(t)) +B(x(t))u(t), x(0) = x0, (5.2)

and we will make the distinction clear whenever necessary. The compact sets X and U are the
state and input spaces, respectively. We place standard regularity assumptions to ensure the well-
posedness of (5.1) [80]. We now state the definition of incremental asymptotic stability (IAS).

Definition 5.1 ([153]). Consider any open-loop state input pair (x?, u?) realizable by (5.1), i.e.,

ẋ? = F (x?, u?). We say that the system (5.1) is IAS (or contracting) if there exists a feedback

law k(t, x) ∈ Rm, such that the state x of (5.1) with the control policy u = k(t, x), i.e., ẋ =

F (x, k(t, x)) satisfies

‖x?(t)− x(t)‖ ≤ κ(‖x?(0)− x(0)‖, t), ∀x(0) ∈ X , t ≥ 0.

The function κ(x, t) belongs to class KL. Note that incremental exponential stability (IES) is

similarly defined if κ(x, t) := Cxe−λt for appropriate C, λ > 0.

One can establish IAS properties of (5.1) by either searching for ILFs and feedback laws jointly
on the ambient Euclidean space or by searching for CCMs and feedback laws jointly on the tangent
bundle of the associated manifold. Here, we add the qualifier ‘ambient’ to identify the space to
which the state of the system belongs to. The main results for both the approaches are summarised
in the propositions below.
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Proposition 5.1 (Ambient Space IAS). Consider any open-loop state-input pair (x?, u?) realizable

by (5.1). Suppose there exists a feedback law k(t, x) and a function V : X × X → R, satisfying

a1‖x− x?‖2 ≤ V (x, x?) ≤ a2‖x− x?‖2, (5.3a)

LF (x,k(t,x))V (x, x?) + LF (x?,u?)V (x, x?) < 0, (5.3b)

for all (x, x?, u?, t) ∈ X ×X ×U ×R≥0 except if x = x? and the constants a1, a2 > 0. Then, V is

an ILF and the control policy u = k(t, x) renders the system (5.1) IAS in the sense of Definition 5.1.

Note that if (5.5b) satisfied with the addition of 2λV (x, x?), then the closed-loop system is IES.

The proof is a trivial extension of [153, Lemma 2.3]. The alternate set of IES conditions ex-
pressed over the differential space is provided next.

Proposition 5.2 (Differential Space IAS). Consider any open-loop state-input pair (x?, u?) real-

izable by the control-affine dynamics in (5.2). Suppose there exists a feedback law k(t, x) and a

function M : X → Sn satisfying

a1In �M(x) � a2In, (5.4a)

∂F (x,k(t,x))M(x) +

[
M(x)

∂F

∂x
(x, k(t, x))

]
S
≺ 0, (5.4b)

for all (x, x?, u?, t) ∈ X × X × U × R≥0, except if x = x? and the constants a1, a2 > 0. Then,

M(x) is a control contraction metric (CCM) and the control policy u = k(t, x) renders the system

(5.2) IAS in the sense of Definition 5.1. Similar to Proposition 5.1, if (5.4b) is satisfied with the

addition of 2λM(x), then the closed-loop system is IES.

The proof can be be found in [92, Theorem 1], and a deeper review of the concepts behind
contraction theory are provided in Section 3.3.

Notice that the property of IAS is only valid if the trajectories that start anywhere in the domain
X converge towards each other. If two trajectories start very far away from each other, one cannot
reasonably expect that they will asymptotically converge to each other regardless of the distance
between them. During regulation to an equilibirum point, it is common to only expect stable
behavior within a region of attraction (ROA) around the equilibrium point [80, Section 8.2]. We
extend this notion to hold for situations with trajectory tracking with the following definition.

Definition 5.2 (Incremental region of attraction (IROA)). Consider a time-varying nonlinear sys-

tem ẋ = f(x, t) where x ∈ X . Suppose X(t, x0) ∈ X defines the trajectory of the system with the

initial condition x0, then we define the IROA as the following set

D := {(x, x?) ∈ X × X : lim
t→∞

X(t, x)→ X(t, x?)}.
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The set essentially defines a tube around any desired trajectory, such that all system trajectories
originating inside the tube asymptotically converge to the desired trajectory. This is less restrictive
that the previous definition of the IAS wherein all trajectories start in a set converge to one another.
We restate the definition of IAS so that only nearby trajectories converge to each other.

Definition 5.3 (Relaxed IAS ). Consider any open-loop state input pair (x?, u?) realizable by (5.1),
i.e., ẋ? = F (x?, u?). We say that the system (5.1) is IAS (or contracting) if there exists a feedback

law k(t, x) ∈ Rm, such that the state x of (5.1) with the control policy u = k(t, x), i.e., ẋ =

F (x, k(t, x)) satisfies

‖x?(t)− x(t)‖ ≤ κ(‖x?(0)− x(0)‖, t),

for all t ≥ 0 and all x(0) ∈ X such that

(x(0), x?(0)) ∈ D.

The function κ(x, t) belongs to class KL. Note that IES is similarly defined if κ(x, t) := Cxe−λt

for appropriate C, λ > 0.

Similarly, the definition of the ILF can be relaxed such that the Lie derivative conditions only
hold over the IROA set D.

Proposition 5.3 (Relaxed Ambient Space IAS). Consider any open-loop state-input pair (x?, u?)

realizable by (5.1). Suppose there exists a feedback law k(t, x) and a function V : X × X → R,

satisfying

a1‖x− x?‖2 ≤ V (x, x?) ≤ a2‖x− x?‖2, (5.5a)

LF (x,k(t,x))V (x, x?) + LF (x?,u?)V (x, x?) < 0, (5.5b)

for all t ≥ 0, u? ∈ U , and

(x, x?) ∈ D,

except if x = x? and the constants a1, a2 > 0. Then, V is an ILF and the control policy u = k(t, x)

renders the system (5.1) IAS in the sense of Definition 5.1. Note that if (5.5b) satisfied with the

addition of 2λV (x, x?), then the closed-loop system is IES.

However, the definition of CCM cannot be extended in a similar fashion because the notion
of distances between trajectories is lost in the differential space. One workaround, that will be
explored in a later section, is utilize a control Lyapunov function (CLF) associated with the CCM
such as the Riemannian energy function such that the CLF is only valid in D.
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Problem Statement: Given the system dynamics (5.1), the goal is to design a feedback law
k(t, x), the associated certificate (ILF or CCM), and the IROA D such that the closed-loop system
is IAS with respect to D, as defined in Definition 5.3.

5.3 Preliminaries on Interval Arithmetic

Interval arithmetic provides a useful mathematical framework to analyze the behavior of functions
over closed intervals. For a, b ∈ R such that a < b, we define an interval [a, b] as the following
compact set

[a, b] = {x ∈ R : a ≤ x ≤ b}.

We can now define operations over these intervals. A binary operation ◦ on two intervals [a, b] and
[c, d] is defined as

[a, b] ◦ [c, d] :=

[
{x ◦ y : x ∈ [a, b], y ∈ [c, d]}

]
,

where [·] denotes an interval enclosure over the set argument. For example, addition and subtrac-
tion over intervals are defined as

[a, b] + [c, d] := [a+ c, b+ d],

[a, b]− [c, d] := [a− d, b− c].

Similarly, we can define interval operations over a function g : R→ R as

g([a, b]) =

[
{g(x) : x ∈ [a, b]}

]
.

For example, the exponential over an interval is defined as

e[a,b] := [ea, eb].

However, not all functions will have such simple representations. The motivation behind interval
arithmetic is that rigorous interval enclosures can be defined for complicated functions by compos-
ing several elementary functions and operations. This enables interval arithmetic to even operate
over discontinuous ranges, e.g. approximations caused by floating-point arithmetic on computer
hardware [156]. However, sometimes the composition over many such functions may cause the
interval enclosure to be overly conservative. In such situations, if the function g ∈ C1, then the
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elementary mean-value form [155] may provide a tighter interval enclosure

g([a, b]) = g

(
a+ b

2

)
+ g′ ([a, b])

([
a− b

2
,
b− a

2

])
, (5.6)

where g′ indicates the derivative of g. For functions with continuity in higher-order derivatives,
elementary Taylor forms [157] may provide even tighter interval enclosures. It is also important to
note that intervals can also be defined at higher dimensions. Consider a, b ∈ Rn such that a < b

element-wise; then we define vector intervals as

[a, b] := {x ∈ Rn : ak ≤ xk ≤ bk, ∀k},

where ·k denotes the kth element of a vector. Matrix intervals for A,B ∈ Rn×m, where A < B

element-wise, are also similarly defined as

[A,B] := {X ∈ Rn×m : Ai,j ≤ Xi,j ≤ Bi,j, ∀i, j},

where ·i,j denotes the element at the (i, j)th index of a matrix. The elementary mean-value and
Taylor forms are also extendable to functions on higher dimensional intervals.

5.4 Certifying Incremental Lyapunov Functions

In this section, we address the problem of synthesizing a feedback law k and an ILF V (x, x?) such
that the induced control policy renders (4.1) IES. As we mentioned previously, a straightforward
approach, in principle, is to directly search for feedback laws and ILF certificates for the system
in (4.1). In this approach, one attempts to solve a feasibility problem: does there exist a feedback
law k and an ILF V such that ẋ = F (x, k) is IES with certificate V ? Of course, the feasibility
problem is not guaranteed to terminate in the affirmative. Moreover, the ability to find a solution
depends on the search space and the search algorithms. Using DNNs, one can generate rich search
spaces and improve the chances of terminating the feasibility problem with a valid solution. In the
literature, most work on jointly searching for feasible feedback laws and certificates with DNNs
terminate with an unverified candidate solution. Therefore, an additional step of verification is
required to check the candidate solutions’ validity, which is not a trivial task. For example, in [27],
the authors use DNNs to produce candidate solutions and then verify them with SMT solvers. If the
solution is invalid, it is added to a counterexample set, and the iterative process is repeated. This
requires multiple runs of DNN optimization and SMT verification. Even so, there is no guarantee
that the feasibility problem admits a solution in the first place, thus rendering the search problem
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ineffectual.
Motivated by these challenges, we propose an alternate approach by constructing regions where

the ILF Lie derivative decrease condition from (5.5b) holds. The valid regions are discovered by
iteratively subdividing interval sets of the state space and validating if interval set does or does not
satisfy (5.5b). We begin by first defining the space of candidate ILFs and feedback laws.

Definition 5.4. A function V : X × X → R is a valid ILF candidate if V ∈ V , where

V =
{
p ∈ C2(X × X ;R) | ∃ a1, a2 > 0 s.t. p satisfies (5.5a)

}
. (5.7)

Similarly, a function k : U × X × X → Rm is a valid feedback law candidate if k ∈ K, where

K =
{
q ∈ C1(U × X × X ;Rm) | x = x? =⇒ q(u?, x?, x) = u?

}
. (5.8)

We require continuity on the derivatives of the candidate ILFs and feedback laws so that we can
employ the mean-value forms (5.6) when computing the interval enclosures of the Lie derivative.
With the candidacy definitions in place, the first step is to parameterize the spaces V and K by
DNNs. For the ILF consider DNN of the form

Vθ(x, x
?) = (αθ(x, x

?)− αθ(x?, x?))2 + a1‖x− x?‖2, (5.9)

where αθ(x, x?) : X × X → R is a feedforward neural network with activation functions at least
in C2 (e.g. tanh, sigmoid, softplus [158], swish [159], mish [160]) and parameters denoted as θ.
This parameterization ensures that Vθ(x?, x?) = 0 and Vθ(x, x?) ≥ a1‖x− x?‖2 for all x, x? ∈ X .
Additionally, since the activation functions of αθ are well behaved, the outputs of the DNN are
bounded for all x ∈ X . This implies that there exists a a2 > 0 such that (5.5a) holds.

Remark 5.1. There are other parameterizations [149, 161] of the LF in literature that also ensure

the positivity condition from (5.5a). In [149], the weights of the DNN are constructed in such a

way to always be full-column rank and no biases are included in the model. In [161], the LFs

are guaranteed to be convex by structuring the DNN to be an input convex neural network [162].

Either forms may be used within our framework, but we introduce our parameterization in (5.9)
because of its relative simplicity in construction.

For the controller consider the DNN of the form

kφ(u?, x?, x) = u? + βφ(x?, x)− βφ(x?, x?), (5.10)

where βφ(x?, x) : X × X → R is a feedforward neural network with at least continuously dif-
ferentiable activation functions and parameters denoted as φ. This parameterization ensures that
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when x = x?, we have kφ(u?, x?, x) = u?. We now proceed with the design of the loss function to
train the networks. Recall that for the closed-loop system to be IES, the condition in (5.5b) must
be satisfied. Therefore, one may wish to minimize the following ambient loss function

LA(θ, φ) = E
(u?,x?,x)∼ρ(B)

ReLU [`(u?, x?, x)] , (5.11)

where ρ(B) is the uniform distribution over the set B = U × X × X , and ` is given by

`(u?, x?, x) = LF (x,k(u?,x?,x))V (x, x?) + LF (x?,u?)V (x, x?). (5.12)

If instead we need IES, then we may instead define ` as

`(u?, x?, x) = LF (x,k(u?,x?,x))V (x, x?) + LF (x?,u?)V (x, x?) + 2λV (x, x?), (5.13)

for some hyperparameter λ > 0. Additional terms in the loss function to capture more desirable
closed-loop behavior, such as data collected from demonstrations or expert controllers, can be
readily used in our framework.

In order to rigorously assess the violation or validation of (5.5b), we construct interval sets in
the control input and state space defined as

[x] = {z ∈ X : x < z < x}, (5.14a)

[x?] = {z ∈ X : x? < z < x?}, (5.14b)

[u?] = {z ∈ U : u? < z < u?}, (5.14c)

where the inequalities hold element-wise and the constants satisfy x < x, x? < x?, and u? < u?.
While (5.12) (or (5.13)) may simply be used to evaluate the interval enclosure over the interval
sets in (5.14a), we observe tighter enclosures with the mean-value form (5.6). For completeness
we provide the mean-value form of ` given by

`([u?], [x?], [x]) = `(u?m, x
?
m, xm) +∇u?`([u

?], [x?], [x])([u?]− u?m)

+∇x?`([u
?], [x?], [x])([x?]− x?m) +∇x`([u

?], [x?], [x])([x]− xm), (5.15)

where [·]m indicates the midpoint value of the interval. The gradients ∇u?`,∇x?`,∇x` can be
easily computed using automatic differentiation methods [163, 164], and the forward pass of these
functions can be computed using interval arithmetic libraries [165, 166]. Now we proceed to
describe our procedure for verifying the ILF, Algorithm 5.

The algorithm takes as input the interval set approximations of X and U . As the output of the
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Algorithm 5 ILF Verification Procedure
1: Input
2: U Operating input space set
3: X Operating state space set
4: Output
5: γroa ROA sublevel set value
6: function ILFVERIFY(U ,X , γinit

roa )
7: queue← {(X ,X )}
8: repeat
9: [x?], [x]← pop(queue)

10: if sup(`(U , [x?], [x])) < 0 or sup(‖[x]− [x?]‖) ≤ ε then . do nothing
11: else
12: ([x?]a, [x]a), ([x?]b, [x]b)← bisect([x?], [x])
13: queue← sortedinsert(queue, ([x?]a, [x]a), inf(Vθ([x]a, [x

?]a))),
14: queue← sortedinsert(queue, ([x?]b, [x]b), inf(Vθ([x]b, [x

?]b))),
15: end if
16: until maximum number of iterations or ([x?], [x]) ∈ ∂(X × X )
17: [x?nearest], [xnearest]← pop(queue)
18: γroa ← inf(Vθ([xnearest], [x

?
nearest]))

19: return γroa

20: end function

verification, the algorithm reports a scalar value γroa, such that Dγroa ⊆ D which forms a subset of
the true IROA given by

Dγroa = {(z, z?) ∈ X × X : V (z, z?) < γroa}. (5.16)

Unlike the traditional ROA, this forms a ROA for every desired point z? ∈ X . Through our
computation we rigorously ensure that for all (z, z?) ∈ Dγroa the condition in (5.5b) holds. At the
beginning of our verification, in line 7 a queue is initialized with the interval region X × X . At
each iteration, the algorithm pops the element at the front of the queue for analysis. If the interval
enclosure over ` is negative or if the interval is inside a small ε-ball around x = x?, then that interval
is considered valid and no longer tracked in the procedure, line 10. If the interval is not valid, then
it is bisected, usually along its longest edge, and inserted back into the queue, lines 12-14. When
inserting the bisected intervals back into the queue, the sorting order must be retained based on
the infimum over the interval enclosure of the ILF computed at those intervals. After either the
maximum number of iterations are reached or an element at the boundary of the set (X × X )
is encountered, the iterations are stopped, line 16. Encountering an element at the boundary of
the set implies that the largest sublevel set of the ILF in the interior X × X has been validated.
Since any larger sublevel sets will exceed the interval boundary the solver interrupts the progress
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of the algorithm and returns the γroa value at this location. On the other hand the iterations may
be stopped if it exceeds some specified time limit or maximum number of iterations. The sorting
order of the queue implies that the first element has to have the smallest under-approximation of
ILF. The minimum between this value and γinit

roa is returned as γroa, line 18.

Remark 5.2. While Algorithm 5 is presented as serial procedure, it can be also evaluated batch-

wise if necessary. On specific computer hardware and low-level routines [167] it may be more

efficient to process the forward-pass of the neural networks in a batch-wise manner.

Remark 5.3. Algorithm 5 does not check in an ε-ball around the region defined by x = x?, because

the strict inequality in (5.5b) is relaxed. This type of check is also perfomed by the SMT-based

verification method presented in [27].

Remark 5.4. The intervals are searched over X × X , which may become cumbersome for high

dimensional systems. In such situations, adding structure to the problem may reduce the computa-

tional burden. For example, one can parameterize the ILF to depend on the error dynamics rather

than x and x? independently.

5.5 Certifying Control Contraction Metrics

In this section, we address the problem of synthesizing a feedback law k and a CCM M(x) such
that the induced control policy renders (5.2) IES. Recall that unlike the previous section where we
considered any general nonlinear system, when searching for CCMs we are restricted to control-
affine systems. We begin by first defining the space of candidate ILFs and feedback laws.

Definition 5.5. A function M : X → Sn�0 is a valid CCM candidate if M ∈M, where

M =
{
p ∈ C2(X ;Sn�0) | ∃ a1, a2 > 0 s.t. p satisfies (5.4a)

}
. (5.17)

The space of feedback laws is defined exactly as (5.8).

With the candidacy definitions in place, the first step is to parameterize the spaceM by DNNs.
We use the parameterization proposed in [8] and present it here for completeness. For the CCM,
consider DNN of the form

Mθ(x, x
?) = αθ(x)>αθ(x) + a1In, (5.18)

where αθ(x) : X × X → Rn×n is a feedforward neural network with activation functions at least
in C2 and parameters denoted as θ. The matrix output of the DNN can be obtained by reshaping a
vector of Rn2 to a matrix. For the feedback law we specify the same parameterization as in (5.10).
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We now proceed with the design of the loss function to train the networks. Recall that for the
closed-loop system to be IES the condition in (5.4b) must be satisfied. Therefore, one may wish to
minimize the following ambient loss function

LD(θ, φ) = E
(u?,x?,x)∼ρ(B)

ReLU
[
λ(`(u?, x?, x))

]
, (5.19)

where ρ(B) is the uniform distribution over the setB = U×X×X , λ denotes the largest eigenvalue,
and ` is given by

`(u?, x?, x) = ∂F (x,k(t,x))M(x) +

[
M(x)

∂F

∂x
(x, k(t, x))

]
S
. (5.20)

If instead we need IES, then we may instead define ` as

`(u?, x?, x) = ∂F (x,k(t,x))M(x) +

[
M(x)

∂F

∂x
(x, k(t, x)) + 2λM(x)

]
S
, (5.21)

for some hyperparameter λ > 0. The losses defined above are the minimum requirements to
adequately train the CCM, but as shown in [8], additional regularization terms improve the training
process.

Similar to the previous section, we use the mean-value form (5.6) to describe the interval enclo-
sures over `, given by (5.15).

However unlike the previous section, we have to solve an eigenvalue problem over interval
matrices. Eigenvalue problems over real symmetric interval matrices are a well studied problem
with algorithms that provide both exact [168] and overapproximate [169] interval enclosures of
possible eigenvalues. In this work we use the results from [169], where it was shown that for a real
symmetric interval matrix [A] the largest eigenvalue is enclosed in the interval

λ([A]) =
[
λ([A]m)− ‖[A]r‖, λ([A]m) + ‖[A]r‖

]
, (5.22)

where [·]m indicates the midpoint value of the interval and [·]r indicates the radius of the interval.
Recall from Section 3.3 that the Riemannian energy is the ILF representation of CCM in the am-
bient space. Using the mean-value form (5.6) and the result from Lemma B.4, we can specify the
interval enclosure over the Riemannian energy as

E([x], [x?]) = E([x]m, [x
?]m)± [a2 sup(‖[x]− [x?]‖)] (‖[x]r‖+ ‖[x?]r‖) , (5.23)

where a2 is the constant from (5.4a). For verifying CCM, we use Algorithm 5 with the following
differences. First, the condition being checked in line 10 is given by λ(`([u?], [x?], [x])). Second,
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instead of computing interval enclosures over the ILF in lines 13,14,18 we compute the interval
enclosures over the Riemannian energy as specified in (5.23). Similar to ceritifying an ILF, the
algorithm reports a scalar value γroa such that Dγroa ⊆ X forms the IROA given by

Dγroa = {(z, z?) ∈ X × X : E(z, z?) < γroa}, (5.24)

where the region is specified using the sublevel sets of the Riemannian energy function.

5.6 Robustness to Disturbances

Suppose that the system in (5.1) is perturbed by some disturbance w ∈ W ⊂ Rw given by

ẋ(t) = F (x(t), u(t), w(t)), x(0) = x0. (5.25)

In such situations, the presented approach for certifying the IROA can also be used to estimate an
incremental robust positively invariant set (RPI) set defined as the compact set Ω ⊂ X × X such
that if (x0, x

?
0) ∈ Ω then the trajectories (X(t, x0), X(t, x?0)) ∈ Ω for all t ≥ 0. The difference

between the RPI set and the IROA is that the system trajectories do not have to converge to each
other but instead only that they must remain close to each other. Similar to IROA, the RPI set can
be under-approximated as

Ωγpi = {(z, z?) ∈ X × X : V (z, z?) < γpi}. (5.26)

The Lie derivative expression for the perturbed system is given by

`(u?, x?, x, w) = LF (x,k(u?,x?,x),w)V (x, x?) + LF (x?,u?)V (x, x?).

When the decrease condition is verified over some intervals of u?, x? and x in line 10 of Algo-
rithm 5, the above condition is checked over all possible disturbancesW defined by an interval set.
The advantage of such a computational analysis is that the formulation works for any deterministic
representation of the uncertainty (e.g. parametric, additive, etc.) without adding any conservatism
that usually appears when such analyses are carried out by hand.
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5.7 Numerical Examples

We now present numerical experimentation results by applying the proposed methodology on a
torque-limited inverted pendulum. The dynamics of the pendulum is given by

θ̈(t) =
mgL sin(θ(t))− µθ̇(t) + u

mL2
,

where m = 0.15kg is the mass, L = 0.5m is the half-length, g = 9.8m/s2 is the gravitational
constant, and µ = 0.1Nms/rad is the friction coefficient. The torque is limited to ±0.6Nm, which
implies that if the pendulum is starting from outside of≈ ±55◦, then no amount of constant torque
will bring the pendulum to its inverted position. Typically such problem requires energy shaping
[170] or trajectory optimization-based solutions.

(a) (b)

Figure 5.1: The learned LF Vθ (a) and the Lie derivative LFVθ (b).

We construct a LF using a DNN with 3 layers and 32 neurons on each hidden layer with softplus
activation functions on each layer except the output layer. The feedback law is a DNN with 2 layers
and 32 neurons on the hidden layer with a tanh activation function. A training dataset of 32768

states was uniformly sampled from [−3, 3] × [−6, 6] with a batch size of 512 states. The ADAM
optimizer was used to train the network parameters with a learning rate of 0.001. The training
process completed in 9 epochs. The learned LF and the Lie derivative of the LF with respect to the
closed-loop system are shown in Fig. 5.1.

We proceed to validate the learned LF over X and obtain the ROA. The computation follows
Algorithm 5 and was carried out for 5000 iterations. The following region of attraction was verified

Dγroa = {z ∈ X : V (z) < 1.58}.
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(a) 0 iterations (b) 1 iteration (c) 10 iterations

(d) 100 iterations (e) 1000 iterations (f) 1500 iterations

(g) 2000 iterations (h) 3000 iterations (i) 5000 iterations

Figure 5.2: A visual representation of the verification process at different iterations overlaid over
the contour plot of the learned LF. The (translucent) white boxes represent the intervals that were
validated according to line 10 in Algorithm 5. The red boxes indicate the intervals that are still in
the queue. The green boundary denotes the boundary of the verified ROA.
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Figure 5.3: All trajectories that start or enter the ROA determined by the green boundary remain
in the region and converge to the equilibrium asymptotically. The black lines denote the
trajectories of the system that are randomly initialized in X .

and is represented as a green ellipse-like region in Fig. 5.2i. In Fig. 5.3 we numerically verify
that the certified ROA is indeed correct by simulating 100 trajectories in X and observing that the
trajectories that enter Dγroa do not leave it and converge asymptotically to the origin.

Suppose that the system is perturbed as

θ̈(t) =
mgL sin(θ(t))− µθ̇(t) + u

mL2
+ w(t),

where w(t) is an additive disturbance such that |w(t)| ≤ 0.2 for all t ≥ 0. Following Section 5.6,
the learned LF can be validated over X andW to obtain the following RPI set:

Dγpi = {z ∈ X : V (z) < 0.56}.

In Fig. 5.4 we numerically verify that the certified RPI set is indeed correct by simulating 100

trajectories in X with the disturbance w(t) = 0.2 sin(5t) and observing that the trajectories that
enter Dγpi do not leave it.

The numerical results presented so far only consider regulation to the equilibrium point. How-
ever, our approach also handles the estimation of the IROA around any reference trajectory. We
obtain a swing-up trajectory of the torque-limited pendulum using the ALTRO solver provided
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Figure 5.4: All trajectories that start or enter the RPI set determined by the red boundary remain
in the region and converge to the equilibrium asymptotically. The green dashed boundary
indicates the ROA obtained without considering the disturbances. The black lines denote the
trajectories of the system that are randomly initialized in X .

by [40] as shown in Fig. 5.5. The swing-up is a necessary maneuver since the limited torque in
the system does not allow the pendulum to become inverted in one motion. The energy is slowly
added to the system by swinging back and forth until there is enough momentum to balance up-
right. Since the trajectory optimization is usually performed over a discretized representation of
the trajectory, we validate the learned ILF over individual points along the trajectory to obtain the
following IROA set:

Dγroa = {(z, z?) ∈ X × X : V (z, z?) < 0.30}.

In Fig. 5.5, we show a projection of the above set on the specified swing-up trajectory. We numeri-
cally verify that the certified IROA is indeed correct by simulating 100 trajectories that start within
the IROA around the desired trajectory and observe that the trajectories asymptotically converge
to the planned swing-up trajectory.
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Figure 5.5: The dashed white line indicates the desired swing-up trajectory from the stable
position [π, 0] to the inverted position [0, 0]. The shaded blue areas denote the projection of the
IROA on to individual points along the desired trajectory. The thin blue lines denote the
trajectories of the system that are randomly initialized in the IROA.
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Chapter 6

Conclusion

In this dissertation we presented a framework for safe planning and control of nonlinear au-
tonomous systems. We provide several algorithms and control design methods that ensure safe
operation of a system by accounting for the uncertainties caused by modeling errors and external
disturbances. The framework is composed of four major components. First, an incremental cer-
tificate of stability and the associated control policy is established for the nominal system. This
ensures that the system is guaranteed to track the desired trajectory if there are no uncertainties
affecting the system. Second, a robust adaptive control augmentation is designed that ensures
guaranteed transient tracking performance in the presence of bounded uncertainties. In particular,
if the uncertainties are matched with the control channel, the framework is capable of tracking with
arbitrary performance limited only by the computer and actuator hardware of the system. Third,
the modeling uncertainties in the system are learned by collecting data during the system’s oper-
ation to gradually improve its performance, while maintaining the safety guarantees. Finally, the
apriori tracking performance bounds are used to plan collision-free paths in the state space; even if
the system is perturbed, the vehicle still remains in the safe regions and away from obstacles and
other robots in the environment.

In Chapter 2, we presented algorithms for proximity queries evaluating minimum distance, tol-
erance verification and collision detection. To our knowledge, this is the first proximity query
method that works on such a large class of parametric curves. In addition, the method shows im-
proved computational speed, even compared to the methods taking advantage of a known curve
basis. The presented proximity query algorithms are built around a branch-and-bound algorithm
that provides ε-suboptimal solutions. Using this approach, computational results are shown for the
evaluation of minimum distance, tolerance verification and collision detection between parametric
curves and obstacles.

In Chapter 3, we presented a control methodology to enable safe and guaranteed feedback mo-
tion planning based on contraction theory and L1-adaptive control, that we refer to as CL1 control
architecture. The proposed controller enables the apriori computation of uniform and ultimate-
bounds which act as safety-certificates. These safety certificates induce ‘tubes’ which can be taken
into account by any planner of choice to enable collision checking that accounts for the tracking
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performance. In this way, the safety of the system is always guaranteed in the presence of model
and environmental uncertainties. Furthermore, by using the control law’s filter bandwidth and rate
of adaptation as tuning knobs, the width of the safety tubes can be adjusted if the uncertainties are
matched with the control channel.

In Chapter 4, we presented a framework that enables safe simultaneous learning and control.
The safety of the method is certified by the tracking error bounds produced by the CL1 controller.
Data is collected and incorporated into a Gaussian process (GP) model of the uncertainty. The
learned GP model is used to generate high probability uniform error bounds on the remainder
uncertainty, which are incorporated into the controller to improve the tracking performance. The
updated tracking error bounds are taken into account by the planner to plan more optimal but still
collision-free paths.

In Chapter 5, we presented an approach for jointly synthesizing certificates and control policies
that guarantee incremental asymptotic stability (IAS) (or incremental exponential stability (IES))
to any realizable desired trajectory. We formulated hypothesis spaces for candidate incremental
Lyapunov functions (ILFs) and feedback laws and provided deep neural network (DNN) parame-
terizations for the functions. Using the candidate ILFs and feedback laws, we were able to extract
an incremental region of attraction which ensures that trajectories that start in this set remain in
this set and converge to each other asymptotically (or exponentially). We showed similar results
when jointly searching for a control contraction metric (CCM) and a feedback law.

6.1 Future Work

While this work attempts to resolve many problems in the way of guaranteeing safety for nonlinear
systems, there are still vast number of problems that have to be solved to truly provide certificates
of safety for real world systems. Here we list some directions of research that extend the work
proposed here:

• Collision checking methods provided in this dissertation are primarily geared towards tra-
jectories of autonomous mobile robots. However, there are a large of class of systems like
manipulators and legged robots, where not just the end-effector but the entire body must re-
main collision free when operating. For example, in the case of a manipulator, the trajecto-
ries must be specified for the position and orientation of each link and checked for collision.
This extension will make the work proposed in Chapter 2 more applicable to general robotic
systems.

• The CL1 framework enables arbitrary tracking performance by compensating for the un-
certainties affecting the system. However, it only compensates for uncertainties that are
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matched with the control channel, whereas other disturbances are attenuated based on the
design of the feedback policy in Chapter 5. However, in most autonomous systems, we
are interested in obtaining improved performance on states outside of the control channel
(e.g. the position states of a quadrotor are not matched with its control inputs). Extending
this framework to handle such uncertainties will enable more useful tracking performance
guarantees.

• The learning proposed in Chapter 4 relies on GP regression. However, since most learning
and control methods rely on DNNs because of their scalability and ease of use, extending
this work to provide guarantees for DNN-learned models will be immensely useful. One
possible approach of finding uniform bounds on the learning error can be handled through
probably approximately correct Bayes guarantees [171].

• Interval analysis methods suffer from scalability issues which may restrict where the ap-
proach presented in Chapter 5 is applicable. Combining these methods with optimization-
based verification methods such as Sherlock [172] may alleviate some of these problems.
Further investigation of conditions under which a non-empty incremental region of attrac-
tion (IROA) is guaranteed to exist would benefit the learning and verification procedure.

• In general the frameworks considered in Chapters 3 to 5 are restricted to state-feedback
systems. While this is a necessary first step towards obtaining safety guarantees, most real
systems do not have access to noise-free measurements of the state. Providing similar guar-
antees in case of output-feedback will be crucial in bringing the safe planning and control
framework presented in this dissertation to implementations on real systems.
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Appendix A

Proofs of Chapter 2

Proof of Lemma 2.1. Consider the arc length function given in (2.5). Expanding the Euclidean
norm and scaling both sides yields

1

|Q|
sψ(Q) =

1

|Q|

∫
Q

√
ψ′(t)>ψ′(t) dt.

Note that ψ′(t)>ψ′(t) is a strictly positive real-valued function and that the square root function is
concave on the interval [0,∞). Using Jensen’s inequality, we have

1

|Q|

∫
Q

√
ψ′(t)>ψ′(t) dt ≤

√
1

|Q|

∫
Q
ψ′(t)>ψ′(t) dt.

Multiplying by |Q| on both sides gives the result.

Proof of Theorem 2.1. It is obvious that the shortest distance between two points in Euclidean
space is the length of the chord joining them. Therefore, for all t ∈ [α, β] the following must hold

‖ψ(α)− ψ(t)‖+ ‖ψ(t)− ψ(β)‖ ≤ sψ([α, t]) + sψ([t, β]).

Then, from the definition of the arc length in (2.5) we have that sψ([α, t]) + sψ([t, β]) is the sum
of integrals on adjacent intervals. Since ψ is rectifiable, the integrals are combined as the total arc
length on Q, implying that

‖ψ(α)− ψ(t)‖+ ‖ψ(t)− ψ(β)‖ ≤ sψ(Q).

Recall that since sψ(Q) ≤ uψ(Q) from Lemma 2.1, then every point on the curve evaluated over
the interval Q is an element of the set UQ, i.e.

ψ(t) ∈ UQ.

From the definition of the curve in (2.1) it follows that ΨQ ⊂ UQ.
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Proof of Theorem 2.2. It is clear that for all t′ ∈ Q ⊆ I

min
t∈Q,b∈B

‖ψ(t)− b‖ ≤ min
b∈B
‖ψ(t′)− b‖,

which proves the result that dmin(ΨQ,B) ≤ dub(ΨQ,B). Recall from Theorem 2.1 that ΨQ ⊂ UQ,
which implies

min
a∈UQ,b∈B

‖a− b‖ ≤ min
a∈ΨQ,b∈B

‖a− b‖.

Thus, dlb(ΨQ,B) ≤ dmin(ΨQ,B), and we have the result.

Proof of Theorem 2.3. For any Q ⊆ I recall that

dub(ΨQ,B)− dlb(ΨQ,B) = min
b∈B
‖x′(ΨQ)− b‖ − ‖x∗ − b∗‖,

such that x∗ ∈ UQ and b∗ ∈ B minimize (2.9). Since minb∈B ‖x′(ΨQ) − b‖ will be bounded from
above by any other element in the set B, we have the following inequality:

dub(ΨQ,B)− dlb(ΨQ,B) ≤ ‖x′(ΨQ)− b∗‖ − ‖x∗ − b∗‖.

From the reverse triangle inequality we have

dub(ΨQ,B)− dlb(ΨQ,B) ≤ ‖x′(ΨQ)− x∗‖.

Then from Theorem 2.1, we know that the largest variation of elements in UQ is bounded by the
upper bound of the arc length, uψ(Q). Since x′(ΨQ) ∈ ΨQ ⊂ UQ and x∗ ∈ UQ, we get

dub(ΨQ,B)− dlb(ΨQ,B) ≤ uψ(Q).

From (2.6), we expand uψ(Q) with the expression

dub(ΨQ,B)− dlb(ΨQ,B) ≤

√
|Q|
∫
Q
ψ′(t)>ψ′(t) dt.

Since ψ is real valued, the inner product of ψ′ is strictly positive. Thus, we further upper bound our
expression by expanding the limits of integration with I ⊇ Q. Define 0 < k =

∫
I ψ
′(t)>ψ′(t) dt.

Then we have
dub(ΨQ,B)− dlb(ΨQ,B) ≤

√
|Q|k.
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Thus, for every ε > 0, choose δ = ε2

k
so that for all Q ⊆ I such that |Q| < δ we get

dub(ΨQ,B)− dlb(ΨQ,B) < ε.
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Appendix B

Proofs of Chapter 3

B.1 Technical Results

Lemma B.1. Consider a scalar system with vector inputs

ż(t) = −az(t) + b(t)>ξ(t), z(0) = 0,

ξ(s) = (Im − C(s))σ(s),

where z(t) ∈ R is the state, σ(t) ∈ Rm is the control input with a column vector of transfer

functions σ(s), a > 0 is a scalar, b(t) ∈ Rm is differentiable, and C(s) is a low-pass filter of the

form ω
s+ω

Im with bandwidth ω > 0. If the following bounds hold

‖b‖[0,τ ]
L∞ ≤ ∆b, ‖σ̇‖[0,τ ]

L∞ ≤ ∆σt ,

for some τ > 0, then the following inequality holds

‖z‖[0,τ ]
L∞ ≤ ∆b

(
‖σ(0)‖
|a− ω|

+
∆σt

aω

)
.

Proof. The scalar system can be equivalently written as

ż(t) = −az(t) + b(t)>ξ(t) z(0) = 0 (B.1)

ξ̇(t) = −ωξ(t) + σ̇(t), ξ(0) = σ(0). (B.2)

The solution to the differential equation in (B.2) is

ξ(λ) = e−ωλσ(0) +

∫ λ

0

e−ω(λ−ν)σ̇(ν) dν,

and the solution to (B.1) is

z(t) =

∫ t

0

e−a(t−λ)b(λ)>ξ(λ) dλ.
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Combining the equations above, we have

‖z(t)‖ ≤ ∆b
‖σ(0)‖(e−ωt − e−at)

a− ω
+ ∆b

∆σt

ω

(
1− e−at

a
− e−ωt − e−at

a− ω

)
, ∀t ∈ [0, τ ].

This expression can be further bounded as

‖z(t)‖ ≤ ∆b

(
‖σ(0)‖
|a− ω|

+
∆σt

aω

)
,

for all t ∈ [0, τ ].

Lemma B.2. Consider a scalar system with vector inputs

ż(t) = −az(t) + b(t)>ξ(t), z(0) = 0,

ξ(s) = (Im − C(s))σ(s),

where z(t) ∈ R is the state, σ(t) ∈ Rm is the control input with a column vector of transfer

functions σ(s), a > 0 is a scalar, b(t) ∈ Rm is differentiable, and C(s) is a low-pass filter of the

form ω
s+ω

Im with bandwidth ω > 0. If the following bounds hold

‖b‖[0,τ ]
L∞ ≤ ∆b, ‖ḃ‖[0,τ ]

L∞ ≤ ∆bt , ‖σ‖[0,τ ]
L∞ ≤ ∆σ,

for some τ > 0, then the following inequality holds

‖z‖[0,τ ]
L∞ ≤ ∆σ

2a∆b + ∆bt

aω
.

Proof. We closely follow the analysis in [83, Lemma 1], but show that the inequality holds for
vector inputs as well. Since the input is bounded in truncation, the norm of the system solution is
bounded as

‖z‖[0,τ ]
L∞ ≤ ‖Y‖

[0,τ ]
L1 ‖σ‖

[0,τ ]
L∞ ,

where Y is the equivalent of a transfer function between σ and z [15, Lemma A.7.1]. The impulse
response y(t) of Y to the Dirac delta function δ(t) is characterized as

y(t) =

∫ t

0

e−a(t−λ)b(λ)>
∫ λ

0

1m(δ(ν)− ωe−ων)δ(λ− ν) dν dλ

=

∫ t

0

e−a(t−λ)b(λ)>1m(δ(λ)− ωe−ωλ) dλ

= e−atb(0)>1m −
∫ t

0

e−a(t−λ)b(λ)>1mωe
−ωλ dλ.
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Integrating the second term by parts we obtain the solution of the system as

y(t) = e−ωtb(t)>1m −
∫ t

0

(
e−a(t−λ)ḃ(λ)− ae−a(t−λ)b(λ)

)>
1me

−ωλ dλ.

The L1 norm of Y is simply the norm of the impulse response, which is given by

Y [0,τ ]
L1 = ‖y‖[0,τ ]

L1 =

∫ τ

0

‖y(t)‖ dt

=

∫ τ

0

∥∥∥∥e−ωtb(t)>1m − ∫ t

0

(
e−a(t−λ)ḃ(λ)− ae−a(t−λ)b(λ)

)>
1me

−ωλ dλ

∥∥∥∥ dt

≤ ∆b
1− e−ωτ

ω
+

∫ τ

0

∥∥∥∥∫ t

0

(
e−a(t−λ)ḃ(λ)− ae−a(t−λ)b(λ)

)>
1me

−ωλ dλ

∥∥∥∥ dt

≤ ∆b
1− e−ωτ

ω
+ (∆bt + a∆b)

∫ τ

0

∫ t

0

e−a(t−λ)e−ωλ dλ dt

≤ ∆b
1− e−ωτ

ω
+ (∆bt + a∆b)

(
1

aω
− ae−ωτ − ωe−aτ

aω(a− ω)

)
.

This expression can be further bounded as

Y [0,τ ]
L1 ≤

2a∆b + ∆bt

aω
.

Therefore, the solution of the system z(t) is bounded as

z(t) ≤ ∆σ
2a∆b + ∆bt

aω
,

for all t ∈ [0, τ ].

Lemma B.3. Consider the Riemannian manifold (X ,M), where the metric satisfies Assump-

tion 3.6, i.e the following uniform bounds hold

αIn �M(x) � αIn, ∀x ∈ X ,

where α ≥ α > 0. Then the Riemannian energy satisfies the following uniform bounds

α‖p− q‖2 ≤ E(p, q) ≤ α‖p− q‖2, ∀p, q ∈ X .

Proof. Let Ξ(p, q) be the set of smooth curves connecting p, q ∈ X . Applying the Cauchy-Schwarz
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inequality to the definition of the length of curve given in (3.9) produces

l(γ)2 ≤
∫ 1

0

γs(s)M(γ(s))γs(s) ds , E(γ), ∀γ ∈ Ξ(p, q). (B.3)

Furthermore, since the minimizing geodesic γ ∈ Ξ(p, q) has the property that
√
γs(s)M(γ(s))γs(s)

is a constant for all s ∈ [0, 1] [173, Lemma 5.5], the application of Cauchy-Schwarz lemma also
produces

l(γ)2 =

∫ 1

0

γs(s)M(γ(s))γs(s) ds = E(γ). (B.4)

Since, by definition γ is a minimizer of l(γ) and l(γ) ≥ 0 always, it is also a minimizer of l2(γ).
Using Eqs. (B.3)-(B.4), we conclude that

inf
γ∈Ξ(p,q)

l(γ)2 = l(γ)2 = E(γ) = inf
γ∈Ξ(p,q)

E(γ).

By the definition of the Riemannian energy given in (3.11), the following chain of equalities are
satisfied

E(p, q) = d(p, q)2 =

(
inf

γ∈Ξ(p,q)
l(γ)

)2

= inf
γ∈Ξ(p,q)

l(γ)2.

Using the previous two equalities, we conclude that

E(p, q) = inf
γ∈Ξ(p,q)

E(γ). (B.5)

Using the bounds on M(x), we further obtain

α inf
γ∈Ξ(p,q)

∫ 1

0

γs(s)
>γs(s) ds ≤ E(p, q) ≤ α inf

γ∈Ξ(p,q)

∫ 1

0

γs(s)
>γs(s) ds. (B.6)

The expression infγ∈Ξ(p,q)

∫ 1

0
γs(s)

>γs(s) ds represents the Riemannian energy over a manifold
with the flat (i.e. constant) metric In. Under the flat metrics, geodesics are straight lines, i.e.,
γ(s) = (1− s)p+ sq, s ∈ [0, 1]. Thus,

inf
γ∈Ξ(p,q)

∫ 1

0

γs(s)
>γs(s) ds = ‖p− q‖2.

Substituting into (B.6) then completes the result.

Lemma B.4. Consider a minimizing geodesic γ : [0, 1] → X under the metric M(x), x ∈ X ,

between points p, q ∈ X such that γ(0) = p and γ(1) = q. If the metric M(x) satisfies Assump-
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tion 3.6, then the following inequalities are satisfied

‖M(γ(s))γs(s)‖ ≤ α‖p− q‖, (B.7)

‖γs(s)‖ ≤
√
α

α
‖p− q‖, (B.8)

for all s ∈ [0, 1], where Θ(x)>Θ(x) = M(x).

Proof. From the proof of Lemma B.3, the Riemannian distance d(p, q) is bounded as

√
α‖p− q‖ ≤ d(p, q) ≤

√
α‖p− q‖,

since the metric M(x) satisfies Assumption 3.6. Geodesics exhibit the special property [173,
Lemma 5.5] that γs(s)>M(γs(s))γs(s) = c > 0 for all s ∈ [0, 1], i.e. they are of constant speed.
Since s ∈ [0, 1], using the proof of Lemma B.3, it can be shown that the speed of a geodesic is also
the length of the geodesic√

γs(s)
>M(γ(s))γs(s) = d(p, q) ≤

√
α‖p− q‖, (B.9)

for all s ∈ [0, 1]. Therefore given the factorization M(x) = Θ(x)>Θ(x), we obtain the following
inequality

‖Θ(γ(s))γs(s)‖ ≤
√
α‖p− q‖.

Since ‖M(γ(s))γs(s)‖ ≤
∥∥Θ(γ(s))>

∥∥‖Θ(γ(s))γs(s)‖ (because of the submultiplicative property
of induced matrix norms and ‖Θ(x)‖ ≤

√
α for all x ∈ X ), we arrive at (B.7). Additionally, since

M(x) is uniformly bounded, the following inequality holds

αγs(s)
>Inγs(s) ≤ γs(s)

>M(γ(s))γs(s),

for all s ∈ [0, 1]. Combining the above inequality with (B.9), we obtain the result in (B.8).

Lemma B.5. Consider two smooth trajectories x0 and x1 such that x0(t), x1(t) ∈ Ω(ρ, x?(t)), for

all t ∈ [0, τ ], for some τ > 0, and a minimizing geodesic γ(·, t) : [0, 1] → X under the metric

M(x) such that γ(0, t) = x0(t) and γ(1, t) = x1(t). Then, if M(x) satisfies Assumption 3.6, we

have

∥∥γs(1, t)>M(γ(1, t))− γs(0, t)>M(γ(0, t))
∥∥ ≤ α

2α
∆Mx‖x0(t)− x1(t)‖2, ∀t ∈ [0, τ ],

where ∆Mx is defined in (3.14).
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Proof. Recall that the differential Lyapunov function is defined as V (x, δx) := δx>M(x)δx. Then,
along the geodesic γ, the differential Lyapunov function can be written as

V (γ(s, t), γs(s, t)) = γs(s, t)
>M(γ(s, t))γs(s, t), s ∈ [0, 1].

Thus, we obtain the expressions

∂V

∂x
(x, δx) =

[
δx> ∂M

∂x1
(x)δx · · · δx> ∂M

∂xn
(x)δx

]
:= δ>x

∂M

∂x
(x)δx ∈ R1×n,

∂V

∂δx
(x, δx) =2δx>M(x) ∈ R1×n,

which evaluated at the geodesic γ are given by

∂V

∂x
(γ(s, t), γs(s, t)) =

[
γs(s, t)

> ∂M
∂x1

(γ(s, t))γs(s, t) · · · γs(s, t)
> ∂M
∂xn

(γ(s, t))γs(s, t)
]

=γs(s, t)
>∂M

∂x
(γ(s, t))γs(s, t), (B.10)

∂V

∂δx
(γ(s, t), γs(s, t)) =2γs(s, t)

>M(γ(s, t)), (B.11)

for s ∈ [0, 1].
Now, γ(s, t) minimizes the energy functional E(γ(s, t)) defined in the proof of Lemma B.3,

where γ(·, t) is any smooth curve connecting x0(t), x1(t) ∈ Ω(ρ, x?(t)) ⊂ X . In other words,
γ(s, t) minimizes the functional∫ 1

0

γs(s, t)
>M(γ(s, t))γs(s, t) ds =

∫ 1

0

V (γ(s, t), γs(s, t)) ds.

Therefore, γ(s, t) satisfies the Euler-Lagrange equations [174, Appendix D] given by

d

ds

∂V

∂δx
(γ(s, t), γs(s, t)) =

∂V

∂x
(γ(s, t), γs(s, t)), s ∈ [0, 1].

Using (B.10)-(B.11), we get

d

ds
γs(s, t)

>M(γ(s, t)) =
1

2
γs(s, t)

>∂M

∂x
(γ(s, t))γs(s, t), s ∈ [0, 1].

Integrating both sides and applying the fundamental theorem of calculus [175, Section 5.3] pro-
duces [

γs(s, t)
>M(γ(s, t))

]s=1

s=0
=

1

2

∫ 1

0

γs(s, t)
>∂M

∂x
(γ(s, t))γs(s, t) ds.
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Component-wise, this expression can be written as

[
γs(s, t)

>M(γ(s, t))
]s=1

s=0
[i] =

1

2

∫ 1

0

γs(s, t)
>∂M

∂xi
(γ(s, t))γs(s, t) ds, i ∈ {1, . . . , n}. (B.12)

From (3.14) and Lemma B.4 the following bounds hold

n∑
i=1

∥∥∥∥∂M∂xi (x)

∥∥∥∥ ≤ ∆Mx , ‖γs(s, t)‖
2 ≤ α

α
‖x0 − x1‖2

for all x(t) ∈ Ω(ρ, x?(t)) ∈ X , t ∈ [0, τ ] and s ∈ [0, 1]. Since γ(s, t) ∈ X , for all s ∈ [0, 1], using
the aforementioned bounds and (B.12), we arrive at the result.

Lemma B.6. Let the state xr(t) of the reference system in (3.33) and the state x(t) of the real

system in (3.1) with control input (3.13) satisfy xr(t), x(t) ∈ Ω(ρ, x?(t)) for all t ∈ [0, τ ], for some

τ > 0. Additionally, let Assumptions 3.2-3.4 and 3.6 hold. Then, the following inequalities are

satisfied

‖ẋr‖[0,τ ]
L∞ ≤ ∆ẋr , (B.13)

‖ẋ‖[0,τ ]
L∞ ≤ ∆ẋ, (B.14)

where ∆ẋr and ∆ẋ are defined in (3.17) and (3.18) respectively.

Proof. Using the dynamics of the reference system in (3.33), we obtain

‖ẋr(t)‖ ≤ ‖f(xr(t))‖+ ‖B(xr(t))‖
(
‖uc,r(t)‖+

∥∥∥h̃(t, xr(t))
∥∥∥) , ∀t ∈ [0, τ ],

where h̃(t, xr(t)) = h(t, xr(t))− ηr(t). Thus, using Assumption 3.3, we obtain

‖ẋr(t)‖ ≤ ∆f + ∆B

(
‖uc,r(t)‖+

∥∥∥h̃(t, xr(t))
∥∥∥) , ∀t ∈ [0, τ ]. (B.15)

Using the definition of uc,r(t) in (3.33) and Assumption 3.2, we get the following bound

‖uc,r(t)‖ ≤ ∆u? + ‖k(x?(t), xr(t))‖, ∀t ∈ [0, τ ].

We can use the bound on the feedback term ‖k(x?(t), xr(t))‖ as in [95, Theorem 5.2 & Eqn. (49)]
to get

‖uc,r(t)‖ ≤ ∆u? + ρ∆δu , ∀t ∈ [0, τ ]. (B.16)

Note that by definition L[h̃(t, xr)] = L[h(t, xr) − ηr(t)] = (Im − C(s))L[h(t, xr)]. Thus, us-
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ing [15, Lemma A.7.1], we have∥∥∥h̃(t, xr(t))
∥∥∥ = ‖h(t, xr(t))− ηr(t)‖ ≤ ‖Im − C(s)‖L1‖h(·, xr(·))‖[0,τ ]

L∞ , ∀t ∈ [0, τ ].

Using the fact that ‖h(t, xr)‖ ≤ ∆h for all xr ∈ Ω(ρ, x?(t) and t ∈ [0, τ ], from Assumption 3.4 we
obtain ∥∥∥h̃(t, xr(t))

∥∥∥ ≤ ‖Im − C(s)‖L1∆h, ∀t ∈ [0, τ ]. (B.17)

Then, substituting (B.16)-(B.17) into (B.15) establishes the inequality in (B.13). Using the similar
line of reasoning, we obtain the following bound on the state of the real system (3.1) with control
input (3.13)

‖ẋ(t)‖ ≤ ∆f + ∆B (∆h + ‖u(t)‖) , ∀t ∈ [0, τ ]. (B.18)

Using the definition of ua(t) in (3.28) and again applying [15, Lemma A.7.1], we get

‖ua(t)‖ ≤ ‖C(s)‖L1‖σ̂‖
[0,τ ]
L∞ , ∀t ∈ [0, τ ].

We have that ‖C(s)‖L1 = 1 for the chosen first-order low-pass filter. Additionally, since σ̂(t) ∈ H
due to the adaptation law defined in (3.27), we conclude that ‖σ̂‖[0,τ ]

L∞ ≤ ∆h. Thus, ‖ua(t)‖ ≤ ∆h

for all t ∈ [0, τ ]. And, since x(t) ∈ Ω(ρ, x?(t)) for all t ∈ [0, τ ], the upperbound on ‖uc(t)‖ is
equivalent to that of (B.16). Therefore,

‖u(t)‖ ≤ ‖uc(t)‖+ ‖ua(t)‖ ≤ ∆?
u + ρ∆δu + ∆h, ∀t ∈ [0, τ ]. (B.19)

Substituting into (B.18) then establishes the inequality in (B.14).

Lemma B.7. Let the state x(t) of the actual system in (3.1) with control input (3.13) satisfy x(t) ∈
Ω(ρ, x?(t)) for all t ∈ [0, τ ], for some τ > 0. Additionally, let Assumptions 3.2-3.5 hold. Then the

state prediction error x̃(t) defined in (3.26) satisfies

‖x̃‖[0,τ ]
L∞ ≤

∆x̃√
Γ
. (B.20)

Define σ̃(t) := σ̂(t)− h(t, x) and η̃(s) := C(s)σ̃(s). Then the following inequality holds

‖η̃‖[0,τ ]
L∞ ≤

∆η̃√
Γ
, (B.21)

where ∆x̃ and ∆η̃ are defined in (3.19) and (3.20) respectively.
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Proof. The state predictor error dynamics are computed using (3.1) and (3.26) as

˙̃x(t) = ˙̂x(t)− ẋ(t) = Amx̃(t) +B(x)σ̃(t), x̃(0) = 0,

where σ̃(t) = σ̂(t)−h(t, x). Consider the Lyapunov function V (x̃, σ̃) = x̃(t)>Px̃(t)+σ̃(t)>Γ−1σ̃(t).
Then its time derivative is given by

V̇ (x̃, σ̃) = −x̃(t)>Qx̃(t) + 2σ̃(t)>B(x)>Px̃(t) + 2σ̃(t)>Γ−1( ˙̂σ(t)− ḣ(t, x)),

where P � 0 and Q � 0 define the adaptation law in (3.27). Combing the adaptation law with the
equation above, we obtain

V̇ (x̃, σ̃) = −x̃(t)>Qx̃(t)+2σ̃(t)>(B(x)>Px̃(t)+ProjH(σ̂(t),−B(x)>Px̃(t))−2σ̃(t)>Γ−1ḣ(t, x).

From [108, Lemma 6], the projection operator ensures that σ̃(t) (ProjH(σ̂(t), y)− y) ≤ 0 for all
y ∈ Rn. Therefore, the equation above reduces to

V̇ (x̃, σ̃) ≤ −x̃(t)>Qx̃(t)− 2σ̃(t)>Γ−1ḣ(t, x).

It is easy to show that ‖σ̃(t)‖ ≤ 2∆h. Since ‖ẋ‖[0,τ ]
L∞ ≤ ∆ẋ from (3.18), we have the following

bound for the time-derivative of the uncertainty∥∥∥ḣ(t, x)
∥∥∥ =

∥∥∥∥∂h∂t (x) +
∂h

∂x
(x)ẋ

∥∥∥∥ ≤ ∆ht + ∆hx∆ẋ,

for all t ∈ [0, τ ]. Combining, these bounds with the equation above results in the following in-
equality

V̇ (x̃, σ̃) ≤ −λ(Q)‖x̃‖2 + 4∆hΓ
−1(∆ht + ∆hx∆ẋ).

Now, if V̇ (x̃(t), σ̃(t)) ≥ 0, then

‖x̃(t)‖2 ≤ 4∆h(∆ht + ∆hx∆ẋ)

Γλ(Q)
, (B.22)

for all t ∈ [0, τ ]. However, the Lyapunov function always remains bounded as

λ(P )‖x̃(t)‖2 ≤ V (x̃(t), σ̃(t)) ≤ λ(P )‖x̃(t)‖2 + 4∆2
hΓ
−1.

Combining the equation above with (B.22), we arrive at the result in (B.21). In order to show that
the inequality in (B.21) holds, we start with the error in the uncertainty estimate from the state
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predictor error dynamics in terms of the Moore-Penrose inverse of B(x) as

σ̃(t) = B†(x) ˙̃x(t)−B†(x)Amx̃(t).

Since η̃(s) = C(s)σ̃(s), we obtain

η̃(s) = C(s)L[B†(x) ˙̃x(t)−B†(x)Amx̃(t)]

= C(s)L

[
d

dt

(
B†(x)x̃(t)

)
− ∂ẋB†(x)x̃(t)−B†(x)Amx̃(t)

]
= C(s)sL

[
B†(x)x̃(t)

]
+ C(s)L

[
−∂ẋB†(x)x̃(t)−B†(x)Amx̃(t)

]
.

Since ‖ẋ‖[0,τ ]
L∞ ≤ ∆ẋ from (3.18), we have that

∥∥∂ẋB†(x)
∥∥ =

∥∥∥∑n
j=0

∂B†(x)
∂xj

ẋj(t)
∥∥∥ ≤ ∆B†x

∆ẋ for all

t ∈ [0, τ ]. Furthermore, from Assumption 3.5 we have that
∥∥B†(x)

∥∥ ≤ ∆B† for all x ∈ Ω(ρ, x?(t))

and t ∈ [0, τ ]. Therefore, using the property from [15, Lemma A.7.1], the following inequality
holds

‖η̃(t)‖ ≤
(
‖C(s)s‖L1∆B† + ‖C(s)‖L1

(
∆B†x

∆ẋ + ∆B†‖Am‖
)) ∆x̃√

Γ
,

for all x ∈ Ω(ρ, x?(t)) and t ∈ [0, τ ]. Since ‖C(s)‖L1 = 1, we arrive at the result.

Lemma B.8. Let the state xr(t) of the reference system in (3.33) and the state x(t) of the real

system in (3.1) with control input (3.13) satisfy xr(t), x(t) ∈ Ω(ρ, x?(t)) for all t ∈ [0, τ ], for

some τ > 0. Additionally, let Assumptions 3.2-3.4 hold. Then, if γ(·, t) : [0, 1] → X is the

minimizing geodesic under the metric M(x) satisfying Assumption 3.6 such that γ(0, t) = x(t)

and γ(1, t) = xr(t), the following inequality is satisfied∥∥∥∥ d

dt

(
B(x)>M(x)γs(0, t)

)∥∥∥∥ ≤ ∆Ψ̇‖xr(t)− x(t)‖, (B.23)

for all t ∈ [0, τ ], where ∆Ψ̇ is defined in (3.22).

Proof. We apply chain rule and triangle inequality to obtain∥∥∥∥ d

dt

(
B(x)>M(x)γs(0, t)

)∥∥∥∥ ≤ ∥∥B(x)>M(x)γ̇s(0, t)
∥∥+

∥∥B(x)>∂ẋ(t)M(x)γs(0, t)
∥∥

+
∥∥∂ẋ(t)B(x)>M(x)γs(0, t)

∥∥. (B.24)

The time-evolution of the velocity of the minimizing geodesic evaluated at s = 0 is given by the
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differential dynamics [95, Theorem 3.2] of the actual system as follows

γ̇s(0, t) =

([
∂f(x)

∂x
+

m∑
j=1

(uj(t) + hj(t, x))
∂bj(x)

∂x

]
+B(x)

∂h(t, x)

∂x

)
γs(0, t) +B(x)δu,

(B.25)
where bj(x) is the j th column of B(x), uj(t) is the j th value in control channel, and hj(t, x) is the
j th value of the uncertainty. Previously, from Assumptions 3.3 and 3.4 we know that∥∥∥∥∂f(x)

∂x

∥∥∥∥ ≤ ∆fx , ‖B(x)‖ ≤ ∆B,
n∑
i=1

∥∥∥∥∂B(x)

∂xi

∥∥∥∥ ≤ ∆Bx ,

m∑
j=1

∥∥∥∥∂bj(x)

∂x

∥∥∥∥ ≤ ∆bx ,

‖h(t, x)‖ ≤ ∆h,

∥∥∥∥∂h(t, x)

∂x

∥∥∥∥ ≤ ∆hx ,

for all x ∈ Ω(ρ, x?(t)) and t ∈ [0, τ ]. Additionally from (B.8), (B.19), and [95, Theorem 5.2], the
following hold

‖u(t)‖ ≤ ∆u? + ρ∆δu + ∆h, ‖γs(1, t)‖ ≤
√
α

α
‖xr(t)− x(t)‖, ‖δu‖ ≤ ∆δu‖xr(t)− x(t)‖

respectively for all x ∈ Ω(ρ, x?(t)) and t ∈ [0, τ ], where ∆δu is defined in (3.16). With these
considerations, the expression in (B.25) is bounded by ∆γ̇s

‖xr(t)− x(t)‖ for all t ∈ [0, τ ]. Fur-
thermore, from Assumption 3.6 we know that αIn � M(x) � αIn � 0 for all x ∈ X , which
implies that

∥∥B(x)>M(x)γ̇s(0, t)
∥∥ ≤ ∆Bα∆γ̇s

‖xr(t)− x(t)‖, ∀t ∈ [0, τ ]. (B.26)

Since, ‖∂ẋM(x)‖ ≤
∥∥∥∑n

i=1
∂M
∂xi
ẋi(t)

∥∥∥ ≤ ∆Mx∆ẋ from (3.14) and (3.18) for all x ∈ Ω(ρ, x?(t))

and t ∈ [0, τ ], we obtain

∥∥B(x)>∂ẋM(x)γs(0, t)
∥∥ ≤ ∆B∆Mx∆ẋ

√
α

α
‖xr(t)− x(t)‖, ∀t ∈ [0, τ ]. (B.27)

Finally, ‖∂ẋB(x)‖ ≤
∥∥∥∑n

i=1
∂B
∂xi
ẋi(t)

∥∥∥ ≤ ∆Bx∆ẋ from Assumption 3.3 and (3.18), and ‖M(x)γs(0, t)‖ ≤
α‖xr(t)− x(t)‖ holds from (B.7). Therefore

∥∥∂ẋB(x)>M(x)γs(0, t)
∥∥ ≤ ∆Bx∆ẋα‖xr(t)− x(t)‖, ∀t ∈ [0, τ ]. (B.28)

Substituting (B.26) to (B.28) in (B.24), we arrive at the main result in (B.23).

90



B.2 Main Results

In this appendix we provide the proofs of the claims in Chapter 3.

Proof of Lemma 3.1. We show that ‖x? − xr‖L∞ < ρr by contradiction. We have ‖x?(0)− xr(0)‖ =

‖x?0 − x0‖ < ρr, since ε > 0 and α
α
≥ 1 from (3.29). Assume that the lemma statement does not

hold; then since xr and x? are continuous, there must exist a τ ? > 0 such that

‖x?(τ ?)− xr(τ ?)‖ = ρr,

‖x?(t)− xr(t)‖ < ρr, t ∈ [0, τ ?).

Consider the minimizing geodesic γ(s, t) such that γ(0, t) = x?(t) and γ(1, t) = xr(t). From [95,
Theorem 3.2], the time derivative of the Riemannian energy satisfies

1

2
Ė(x?, xr) = γs(s, t)

>M(γ(s, t))γ̇(s, t)|s=1
s=0

= γs(1, t)
>M(xr)ẋr(t)− γs(0, t)>M(x?)ẋ?(t).

Substituting the desired and reference system dynamics from (3.2) and (3.33) respectively into the
equation above, we obtain

1

2
Ė(x?, xr) = γs(1, t)

>M(xr) (f(xr) +B(xr)(uc,r(t) + h(t, xr)− ηr(t)))

−γs(0, t)>M(x?) (f(x?) +B(x?)u?(t)).
(B.29)

As shown in [97, Lemma 1], since the uncertainty is matched with the control channel, the metric
M designed for the unperturbed system also satisfies the stronger CCM conditions for the real
system. This implies that the unperturbed part of the reference system is exponentially convergent
with the rate λ, given by the following expression

γs(1, t)
>M(xr) (f(xr) +B(xr)uc,r(t))− γs(0, t)>M(x?) (f(x?) +B(x?)u?(t)) ≤ −λE(x?, xr).

Substituting into (B.29) produces

1

2
Ė(x?, xr) ≤ −λE(x?, xr) + γs(1, t)

>M(xr)B(xr)(h(t, xr)− ηr(t)).

Integrating both sides of the equation above, we have

E(x?, xr) ≤ e−2λtE(x?0, x0) + 2

∫ t

0

e−2λ(t−ν)γs(1, t)
>M(xr)B(xr)(h(ν, xr)− ηr(t)) dν. (B.30)
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The integral term on the right-hand side in the equation above can be expressed as the solution to
the following virtual scalar system

ż(t) = −2λz(t) + γs(1, t)
>M(xr)B(xr)ξ(t), z(0) = 0, (B.31)

ξ(s) = (1− C(s))L[h(t, xr)]. (B.32)

Note that from Lemmas B.4 and B.6 and Assumptions 3.3 and 3.4 the following bounds hold for
all xr(t) ∈ Ω(ρr, x

?(t)) ⊂ Ω(ρ, x?) (since ρr < ρ) and all t ∈ [0, τ ?]:

‖γs(1, t)M(xr)B(xr)‖ ≤ ρα∆B, ‖h(t, xr)‖ ≤ ∆h,∥∥∥ḣ(t, xr)
∥∥∥ =

∥∥∥∥∂h(t, xr)

∂t
+
∂h(t, xr)

∂x
ẋr(t)

∥∥∥∥ ≤ ∆ht + ∆hx∆ẋr .

Then the solution of a linear system of the form in (B.31) and (B.32) satisfies the following norm
bound from Lemma B.1

‖z(t)‖ ≤ ρα∆B

(
∆h

|2λ− ω|
+

∆ht + ∆hx∆ẋr

2λω

)
=

1

2
αζ1(ω),

where ζ1 is defined in (3.31a). Substituting this inequality into (B.30) produces

E(x?, xr) ≤ e−2λtE(x?0, x0) + αζ1(ω)

Moreover, since the metric M satisfies Assumption 3.6, the Riemannian energy satisfies the fol-
lowing lower bound from Lemma B.3

α‖x?(t)− xr(t)‖2 ≤ E(x?, xr) ≤ e−2λtE(x?0, x0) + αζ1(ω).

In our contradiction argument, we had that ‖x?(τ ?)− x(τ ?)‖ = ρr. Therefore the following in-
equality must be satisfied

αρ2
r ≤ e−2λτ?E(x?0, x0) + αζ1(ω) (B.33)

< E(x?0, x0) + αζ1(ω), (B.34)

for some τ ? > 0. However, from (3.32a) the bandwidth is chosen such that

αρ2
r ≥ E(x?0, x0) + αζ1(ω).

This directly contradicts our earlier statement in (B.34). Therefore, ‖xr − x?‖L∞ < ρr. Moreover,
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from (B.33) we also obtain the following uniform ultimate bound

‖x?(t)− xr(t)‖ ≤

√
e−2λTE(x?0, x0)

α
+ ζ1(ω),

for all t ≥ T ≥ 0.

Proof of Lemma 3.2. We prove this lemma by contradiction. Assume that

‖xr − x‖[0,τ ]
L∞ ≥ ρa, (B.35)

for some τ > 0, where ρa is an arbitrary positive scalar used in the definition of ρ in (3.30). Since
xr(0) = x(0), there exists a τ ? ∈ (0, τ ] such that

‖xr(τ ?)− x(τ ?)‖ = ρa,

‖xr(t)− x(t)‖ < ρa, t ∈ [0, τ ?). (B.36)

Let γ(s, t) be the minimizing geodesic between xr and x such that γ(1, t) = xr(t) and γ(0, t) =

x(t). Consider the Riemannian energy E(xr, x) between xr and x. Then, the time derivative of the
Riemannian energy as shown in [95, Theorem 3.2] is given by

1

2
Ė(xr, x) = γs(s, t)

>M(γ(s, t))γ̇(s, t)|s=1
s=0

= γs(1)>M(xr)ẋr − γs(0)M(x)ẋ.

Substituting the reference system dynamics from (3.33) and the actual system dynamics from (3.1)
with the control law from (3.13), we get

1

2
Ė(xr, x) =γs(1)>M(xr) [f(xr) +B(xr)(uc,r(t) + h(t, xr)− ηr(t))]

− γs(0)>M(x) [f(x) +B(x)(uc(t) + h(t, x)− η̂(t))] ,

where η̂(t) = −ua(t). Similar to the reasoning used in Lemma 3.1, the metric M designed for the
ideal system also satisfies the stronger CCM conditions for the real system [97, Lemma 1]. This
implies that the nominal parts of the system are contracting, given by

1

2
Ė(xr, x) ≤ −λE(xr, x) + Ψ(xr)

>(h(t, xr)− ηr(t))−Ψ(x)>(h(t, x)− η̂(t)),

where Ψ(xr) := B(xr)
>M(xr)γs(1, t) and Ψ(x) := B(x)>M(x)γs(0, t) are introduced for clar-

ity. Define η(s) = C(s)L[h(t, x)]; then by adding and subtracting Ψ(x)>(h(t, xr)− ηr(t) + η(t))
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on the right-hand side, we obtain

1

2
Ė(xr, x) ≤ −λE(xr, x) + (Ψ(xr)−Ψ(x))>(h(t, xr)− ηr(t)) + Ψ(x)> (h(t, xr)− ηr(t)− h(t, x) + η(t))

+Ψ(x)> (η̂(t)− η(t)).

Since h(t, xr)−ηr(t) = L−1[(1−C(s))L[h(t, xr)]], h(t, x)−η(t) = L−1[(1−C(s))L[h(t, x)]],
with η̃(t) = η̂(t)− η(t), we rewrite the equation above as

1

2
Ė(xr, x) ≤ −λE(xr, x) + Φ1(xr, x) + Φ2(xr, x) + Φ3(xr, x), (B.37)

where

Φ1(xr, x) := (Ψ(xr)−Ψ(x))>L−1[(1− C(s))L[h(t, xr)]],

Φ2(xr, x) := Ψ(x)>L−1[(1− C(s))L[h(t, xr)− h(t, x)]],

Φ3(xr, x) := Ψ(x)>η̃(t).

Solving the differential equation in (B.37), we obtain

E(xr, x) ≤ E(xr(0), x(0)) + 2

∫ t

0

e−2λ(t−ν)(Φ1(xr, x) + Φ2(xr, x) + Φ3(xr, x)) dν.

Since xr(0) = x(0) =⇒ E(xr(0), x(0)) = 0, the inequality above reduces to

E(xr, x) ≤ 2

∫ t

0

e−2λ(t−ν)(Φ1(xr, x) + Φ2(xr, x) + Φ3(xr, x)) dν. (B.38)

Notice that ‖Ψ(xr)−Ψ(x)‖ satisfies the following bounds

‖Ψ(xr)−Ψ(x)‖ ≤
∥∥B(xr)

>M(xr)γs(1, t)−B(x)M(x)γs(0, t)
∥∥.

Adding and subtracting B(x)M(xr)γs(1, t), from the right hand side of the equation above we
obtain

‖Ψ(xr)−Ψ(x)‖ ≤
∥∥(B(xr)−B(x))>M(xr)γs(1, t) +B(x)>(M(xr)γs(1, t)−M(x)γs(0, t))

∥∥
≤ ‖B(xr)−B(x)‖‖M(xr)γs(1, t)‖+ ‖B(x)‖‖M(xr)γs(1, t)−M(x)γs(0, t)‖.

(B.39)

Since xr(t) ∈ Ω(ρr, x
?(t)) from Lemma 3.1 and x(t) ∈ Ω(ρ, x?(t)) for all t ∈ [0, τ ?] by assump-
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tion in (B.36), the following bounds hold for t ∈ [0, τ ?] as a result of Assumption 3.3:

‖B(xr)−B(x)‖ ≤ ∆Bx‖xr(t)− x(t)‖, ‖B(x)‖ ≤ ∆B.

From Lemmas B.4 and B.5 we obtain the following respectively

‖M(xr)γs(1, t)‖ ≤ α‖xr(t)− x(t)‖, ‖M(xr)γs(1, t)−M(x)γs(0, t)‖ ≤
α

2α
∆Mx‖xr(t)− x(t)‖2,

where ∆Mx is defined in (3.14). Substituting these bounds in (B.39) produces

‖Ψ(xr)−Ψ(x)‖ ≤ 1

2
α∆Ψx‖xr(t)− x(t)‖2, (B.40)

which holds for all t ∈ [0, τ ?], and where ∆Ψx is a scalar defined in (3.15). Additionally, from
Assumption 3.4 we know that the following inequalities hold

‖h(t, xr)‖ ≤ ∆h, ‖h(t, xr)− h(t, x)‖ ≤ ∆hx‖xr(t)− x(t)‖. (B.41)

Since
∥∥∂h
∂t

(t, xr)
∥∥ ≤ ∆ht and

∥∥∂h
∂x

(t, xr)
∥∥ ≤ ∆hx from Assumption 3.4, and ‖ẋr‖L∞ ≤ ∆ẋr from

Lemma B.6, the following inequality is satisfied∥∥∥ḣ(t, xr)
∥∥∥ =

∥∥∥∥∂h∂t (t, xr) +
∂h

∂x
(t, xr)ẋr

∥∥∥∥
≤ ∆ht + ∆hx∆ẋr . (B.42)

Since ‖M(x)γ(0, t)‖ ≤ α‖xr(t)− x(t)‖ from (B.7) for all t ∈ [0, τ ?], the following holds

‖Ψ(x)‖ =
∥∥B(x)>M(x)γ(0, t)

∥∥ ≤ ‖B(x)‖‖M(x)γ(0, t)‖

≤ ∆Bα‖xr(t)− x(t)‖ (B.43)

for all t ∈ [0, τ ?]. From Lemma B.8 we have the following result for all t ∈ [0, τ ?]∥∥∥Ψ̇(x)
∥∥∥ ≤ ∆Ψ̇‖xr(t)− x(t)‖. (B.44)

In order to derive bounds on (B.38), define the following scalar trajectories

z1(t) :=

∫ t

0

e−2λ(t−ν)Φ1(x, xr) dν, z2(t) :=

∫ t

0

e−2λ(t−ν)Φ2(x, xr) dν.
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Then, the functions zi, i ∈ {1, 2}, are the states of the following systems

żi(t) = −2λzi(t) + bi(t)ξi(t), zi(0) = 0, (B.45a)

ξi(s) = (1− C(s))σi(s), (B.45b)

where

b1(t) =Ψ(xr)−Ψ(x), σ1(t) = h(t, xr),

b2(t) =Ψ(x), σ2(t) = h(t, xr)− h(t, x).

From (B.35) we assumed that ‖xr(t)− x(t)‖ ≤ ρa for t ∈ [0, τ ?]. Using Lemma B.1 for the z1(t)

system, Lemma B.2 for the z2(t) system, and the bounds in (B.40) to (B.44), we have the following
inequalities

‖z1(t)‖ ≤ 1

2
ζ2(ω)ρ2

a, ‖z2(t)‖ ≤ 1

2
ζ3(ω)ρ2

a, (B.46)

for all t ∈ [0, τ ?], and where ζ2 and ζ3 are defined in (3.31b) and (3.31c) respectively. Moreover, it
is easy to show from (B.21) that∥∥∥∥∫ t

0

e−2λ(t−ν)Φ3(x, xr)dν

∥∥∥∥ ≤ ∆θρa

2
√

Γ
, (B.47)

for all t ∈ [0, τ ?], where ∆θ is defined in (3.21). Substituting (B.46) and (B.47) into (B.37), we
obtain the following bound on the Riemannian energy

E(xr, x) ≤ ζ2(ω)ρ2
a + ζ3(ω)ρ2

a +
∆θρa√

Γ
,

for all t ∈ [0, τ ?]. Recall from the contradiction argument that ‖xr(τ ?)− x(τ ?)‖ = ρa. Since
E(xr, x) ≥ α‖xr(t)− x(t)‖2 from Lemma B.3, the following inequality must be satisfied at t = τ ?

αρ2
a ≤ ζ2(ω)ρ2

a + ζ3(ω)ρ2
a +

∆θρa√
Γ

=⇒
√

Γ ≤ ∆θ

ρa(α− ζ2(ω)− ζ3(ω))
.

However, from (3.32c) the adaptation rate is chosen such that

√
Γ >

∆θ

ρa(α− ζ2(ω)− ζ3(ω))
.

This directly contradicts our earlier statement, and therefore ‖xr − x‖[0,τ ]
L∞ < ρa.
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Proof of Theorem 3.2. We will prove this by contradiction: assume that

‖x? − x‖L∞ ≥ ρ.

From the definition of ρr in (3.29), we have ‖x?(0)− x(0)‖ < ρr, which implies that ‖x?(0)− x(0)‖ <
ρ. Then there must exist a τ ? > 0 such that

‖x?(τ ?)− x(τ ?)‖ = ρ, (B.48)

‖x?(t)− x(t)‖ < ρ, t ∈ [0, τ ?). (B.49)

According to Lemma 3.1, we have ‖x? − xr‖L∞ < ρr, and from Lemma 3.2 it follows that
‖xr − x‖[0,τ?]

L∞ < ρa. Therefore, from triangle inequality we have ‖x? − x‖[0,τ?]
L∞ < ρr + ρa = ρ,

which implies that ‖x?(τ ?)− x(τ ?)‖ < ρ. This directly contradicts our assumption in (B.48),
and therefore ‖x? − x‖L∞ < ρ. Additionally, from Lemma 3.1 the reference system satisfies
a uniform ultimate bound given by ‖x?(t)− x(t)‖ ≤ ε(ω, T ) for all t ≥ T ≥ 0. Therefore,
‖x?(t)− x(t)‖ < ε(ω, T ) + ρa for all t ≥ T ≥ 0.
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