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Abstract

In modern biomedicine, the role of computation becomes more crucial in light of the

ever-increasing growth of biological data, which requires effective computational methods to

integrate them in a meaningful way and unveil previously undiscovered biological insights.

In this dissertation, we introduce a series of machine learning algorithms for biomedical

discovery. Focused on protein functions in the context of system biology, these machine

learning algorithms learn representations of protein sequences, structures, and networks in

both the small- and large-data scenarios. First, we present a deep learning model that learns

evolutionary contexts integrated representations of protein sequence and assists to discover

protein variants with enhanced functions in protein engineering. Second, we describe a geo-

metric deep learning model that learns representations of protein and compound structures

to inform the prediction of protein-compound binding affinity. Third, we introduce a ma-

chine learning algorithm to integrate heterogeneous networks by learning compact network

representations and to achieve drug repurposing by predicting novel drug-target interaction.

We also present new scientific discoveries enabled by these machine learning algorithms.

Taken together, this dissertation demonstrates the potential of machine learning to address

the small- and large-data challenges of biomedical data and transform data into actionable

insights and new discoveries.
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Chapter 1: Introduction

The rapid development of biotechnology has revolutionized biology and medicine by gen-

erating massive, multi-model datasets. The role of computation becomes even more critical

in light of the ever-increasing growth of those datasets, which requires effective computa-

tional methods to integrate them in a meaningful way and unveil previously undiscovered

biological insights.

Machine learning has emerged as a powerful tool to transform biomedical data into knowl-

edge discovery. However, reasoning over massive biomedical data and translating advanced

machine learning into solutions to key biomedical problems present several fundamental

challenges. On one hand, biomedical data are large-scale, heterogeneous, high-dimensional,

and noisy, and computational methods are needed to operationalize the data to enable

comprehensive analysis. On the other hand, due to the required human efforts and costly

experimental procedures, biomedical data often have limited annotations, which brings a

significant challenge for data-driven methods such as machine learning.

My research aims to address the above large-data and small-data challenges by develop-

ing new machine learning algorithms. Specifically, I have been focusing on several research

questions in system biology. The core principle of my research is to develop machine learning

algorithms to integrate diverse data and knowledge into actionable representations and to

reason over such representations to guide knowledge discovery and reveal new scientific in-

sights. Key contributions of my research include: (i) Inventing algorithms to integrate large-

scale heterogeneous data to disentangle out non-redundant information from data noise and

to represent them in a way amenable to comprehensive analyses; (ii) Developing the domain-

tailored machine learning methods that incorporate domain expertise and prior knowledge

to improve accuracy and generalizability, particularly in low-data regimes; (iii) Designing

computational methods to unlock new synergistic workflows that cannot be realized solely

with existing wet-lab techniques and to accelerate biological discovery and design.

1.1 BACKGROUND AND MOTIVATION

My dissertation research focused on several research problems in system biology, during

which I have identified unique challenges due to the large- or small-scale natures of data in

the problem. In this section, I motivate some of the current challenges in developing machine

learning algorithms for system biology. While there are challenges specific to each problem,

here I try to present the common challenges from a data perspective, i.e., what are the key
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computational challenges posed by either large-scale data or small-scale data.

1.1.1 Large-scale data: heterogeneity, high-dimensionality, and integration

The recent advent of high-throughput experimental techniques has enabled the generation

of large-scale biomedical data, which we want to leverage to interrogate and understand bi-

ological systems. A hallmark of currently available biomedical data is their heterogeneity.

Biomedical data are of various types, ranging from experimental readouts, curated annota-

tions, and metadata, and no single data type is sufficient to characterize the whole biological

system such as a protein-protein interaction (PPI) network. The key challenge here is how

to operationalize and integrate large-scale heterogeneous data in their broadest sense to re-

duce noise and redundancy. The high dimensionality of those datasets further amplifies the

complexity of the problem and requires fundamentally new computational methods.

Later in this dissertation, we will consider a problem where we use PPI network data to

study how proteins and their interactions determine their functions in particular biological

processes, physical or genetic interactions, or disease associations. As it is intractable to

exhaustively characterize proteins through biological experiments, computational hypotheses

that integrate genome-scale interaction networks have garnered great interest. The key

intuition behind such approaches is that proteins that have similar topological roles in the

network are more likely to perform similar functions. Challenges here have been to develop

algorithms to (i) capture the topological similarity relationships between proteins, and (ii)

integrate heterogeneous information (e.g., physical interactions, co-expression, and genetic

interactions) from which separate networks can be constructed.

Challenges in capturing topological roles of proteins. A type of network diffusion

algorithm called random walk with restart (RWR) has been extensively studied to infer

protein functions [1, 2, 3, 4, 5]. The core idea is to propagate information along the network

to exploit both direct and indirect connectivity between proteins. Typically, a distribution is

built for each protein in relation to other proteins in the network, so that one can select the

most related proteins in the distribution or select proteins that share similar distributions.

While having been demonstrated to be useful for inferring protein function, such approaches

are still far from satisfactory, partially due to the fact that biological interactomes are often

noisy and incomplete. For example, even the yeast interactome data, the highest quality

data gathered among all organisms, have a significant portion of false positive and false

negative edges [6].

Challenges in integrating heterogeneous interaction networks. The common way

that most existing methods combine heterogeneous interaction networks (e.g., physical in-
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teraction, co-expression, and genetic interaction networks) has been summarizing multiple

networks into a single network through weighted averaging [7] or Bayesian inference [8, 9, 10].

The issue of those approaches is that network-specific interaction patterns (e.g., tissue-

specific protein modules) may be buried behind edges from other datasets in the final

collapsed network. A simple solution to circumvent this issue is to concatenate all input

networks to preserve all features [1, 7, 11]. However, doing so greatly increase the dimen-

sionality of the input feature space, which often obscures the signals in the data. The noise

in interaction network generated from high-throughput experiments further exacerbates this

issue.

It is imperative to develop algorithms to address the challenges mentioned above. In

this dissertation, I will describe an algorithm to integrate topological features from multiple

heterogeneous interaction networks, while coping with the inherent noise in high-throughput

data.

1.1.2 Small-scale data: auxiliary information, representation, and transferability

Biomedical data are also small in the sense that they are rarely annotated with function

labels, making it difficult to reason the functions and dynamics of a biological system. For

example, only 7% of the human proteome have been explored for therapeutic opportunities

and linked to at least one approved drug [12], more than 95% of the reported human phospho-

rylation sites have no known up-stream kinase or biological function [13], and nearly half of

Gene Ontology terms for humans have fewer than 10 annotations [14]. The primary reasons

for the limited available annotations include i) the space to explore is tremendously large

and infeasible to exhaustively enumerate even with latest biotechnology, ii) the experimen-

tal procedures that generate annotations are often costly and time-consuming, iii) currently

available data such as function labels are biased towards well-characterized proteins, leaving

novel proteins sparsely labeled. Therefore, most biomedical data, while having large data

volumes, often have quite limited information volumes within the dataset and do not readily

transfer to knowledge discovery. This brings a significant challenge for data-driven compu-

tational approaches, especially machine learning algorithms, as those approaches rely on a

sufficient amount of data for model training to offer satisfactory prediction performance and

to reveal scientific insights.

Below, I list three directions, which will be discussed in this dissertation, to mitigate the

data scarcity issue when developing machine learning algorithms for biomedical problems.

Learning contextual representations. Representation learning has been a power-

ful strategy in recent deep learning applications in computer vision and natural language
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processing. Examples include earlier “shallow” representation learning algorithms such as

word2vec [15] and node2vec [16] and, more recently, “deep” representation learning algo-

rithms such as BERT [17] and GPT-3 [18]. Similar ideas have been applied to the biological

domain to learn better representations for protein sequences [19, 20]: instead of representing

protein sequences with the popular one-hot encoding approach as in many traditional ma-

chine learning approaches, these methods represent the sequences with real-valued vectors

learned from massive unlabeled sequence data, which presumably capture the intrinsic syn-

tax and semantics of protein sequence. Recent studies have found that this representation

can substantially improve many protein-related tasks [19, 20, 21, 22, 23].

Improving model transferability. Improving the transferability of machine learning

models is another direction to mitigate the data scarcity issue. There are two main-stream

approaches to develop transferable models. The first one is to employ meta-learning [24]

and few-shot learning [25] strategies. The idea of meta-learning is to train the model on

multiple related tasks so that it learns to capture features or feature interactions that lead

to better transferability. The few-shot learning strategy enforces the model to give accurate

predictions after seeing a few samples as training data. The second paradigm is the “pre-

training and fine-tuning” approach that has become a common strategy in many vision and

language applications. This is also closely related to the representation learning techniques

mentioned above. Typically, a model is pre-trained on large-scale unlabeled data to fill in

masked words in a sentence or missing regions of an image. This pre-training stage is also

called self-supervised training. After that, the model is fine-tuned using the data of our

target task. The rationale is that through the pre-training stage, the model learns a set

of parameters as a good initialization by leveraging the massive unlabeled data, and in the

fine-tuning stage the model can accurately predict for the target task by slightly tuning those

parameters using the labeled data of the target task, instead of re-learning all parameters

from scratch.

Incorporating auxiliary information. Incorporating related data as auxiliary infor-

mation can facilitate the learning process of deep learning. Consider sequence-based protein

contact prediction as an example. Although the goal is to directly predict pairwise residue

contacts by only using the protein sequence as input, it has been found that incorporating

co-evolution information of residues into deep learning models can enhance the prediction

performance [26]. The reason is that pairwise residue contacts often correlate with residue

co-evolution couplings [27, 28, 29, 30, 31, 32, 33]. Therefore, instead of letting the deep learn-

ing model learn to find this correlation from data by itself from scratch, one can incorporate

this information as a prior. In this way, the model will not waste the data power to re-learn

this prior, instead, it can make full use of the data to predict residue contact, which is the
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ultimate goal. In addition to these motivating examples, there are many problems where

auxiliary information can be integrated to enhance the predictive model. For example, in

this dissertation, we will show how to incorporate evolution information to predict protein

function from sequence.

The above three directions represent the approaches I took to tackle the small-data chal-

lenge in biomedical problems. In this dissertation, I will describe in detail how to develop

those ideas into concrete methods in the contexts of specific problems.

1.2 OVERVIEW OF DISSERTATION RESEARCH

My dissertation research studied the integration of large-scale heterogeneous networks and

also focused on addressing the challenges caused by small-scale annotations in problems of

system biology. A unified theme of my work is that they are all centered around learning

better representations (e.g., for protein/DNA sequences, protein structures, and molecule in-

teraction networks) with novel machine learning algorithms. In many cases, my algorithms

have successfully enabled several new discoveries. In this dissertation, I will unify my re-

search projects as representation learning of the a multi-scale hierarchy of protein, namely

sequences, structures, and networks, to study the functions of proteins in biological systems.

My first project [34] focuses on the representation learning of protein sequences, as an

approach for addressing the challenge of data scarcity in protein function prediction. This

project considers the problem of assisting protein engineering with deep learning. The com-

putational question here can be formulated as a regression task: given a protein sequence,

a deep learning model is used to predict the function levels (quantified by a numeric value)

of the input protein. While having a simple setup, this problem presents several unique

challenges: the predictive model needs to capture the non-independent mutational effects

(epistasis) in sequences and should be able to generalize to unseen sequences as well. While

those challenges could be addressed if we train the model using massive training data, in

protein engineering, we often have limited function readouts as it is costly to carry the ex-

periment to generate those labels. Here, we sought to incorporate related data, including

evolutionarily related sequences and large-scale unlabeled sequences, to learn better rep-

resentations of protein sequences. The evolutionary information, in particular, has been

shown to correlate with epistasis of function. Therefore, encoding the evolutionary signal

into the protein sequence representation potentially can inform the supervised learning pro-

cess of function prediction. We used a Markov random field (MRF) to capture the single-site

preference and co-evolution relationships within protein sequences. Learned parameters of

the MRF were used as representations to encode protein sequences. We further integrated
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representations that capture the global semantics of protein sequences by training a protein

language model on millions of protein sequences. We develop ECNet, a deep learning model,

to integrate those two representations to assist protein engineering [34]. We showed that

ECNet predicts the sequence-function relationship more accurately compared to existing

machine learning algorithms by using ∼50 deep mutagenesis scanning and random mutage-

nesis datasets. Moreover, we used ECNet to guide the engineering of TEM-1 β-lactamase

and identified variants with improved ampicillin resistance with high success rates.

My second project [35] pivots into learning representations of protein structures for im-

proving the prediction of kinase-drug binding affinity. Mutations in kinase proteins are

related to many complex human diseases such as cancers and kinases are the primary tar-

gets of a wide range of compounds. However, due to the high structure similarity between

kinases, the specificity of many existing drugs is limited, meaning that a drug may bind to

another kinase that is not the primary target by design. Therefore, inferring the binding

profile of a kinase has important implications in biomedicine. Developing computational

methods for predicting protein-compound binding has been studied for years, especially in

very recent years when deep learning has been making rapid progress. Many deep learn-

ing algorithms have been developed to learn features from raw data representations, such

as protein sequence and molecule SMILES strings, for binding prediction. However, while

the binding activity happens as a process in the 3D space, few methods have considered

exploiting information in 3D structure data of proteins and compounds. Here, we leveraged

state-of-the-art graph neural networks that can model the 3D structure data in an effec-

tive way to develop a deep learning algorithm called KDBNet for predicting binding affinity

from structure data. For example, for protein structures, the graph neural networks capture

the geometric features of the binding pocket, including the dihedral angles of the protein

backbone, the local orientation frame of residues, and the distance and direction between

atoms. By modeling the spatial data, KDBNet learns more informative features to predict

the binding affinity. We further used an ensemble approach to estimate the uncertainty

for every model prediction. Experiment results demonstrated that KDBNet, by integrating

structure data, more accurately predicts the binding affinity than models that did not con-

sider structure data. The uncertainty estimation also enabled KDBNet to prioritize leading

kinase-drug pairs that have strong binding affinities.

My third project [36] aims to integrate large-scale heterogeneous networks using repre-

sentation learning to predict drug-target interactions (DTIs), which is a key question in

accelerating drug discovery with computational methods. The problem is formulated as

a link prediction task in networks, where nodes represent entities such as drugs, proteins,

diseases, and side-effects, and edges represent physical interactions, medical associations, or
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similarity relationships between those entities. As this network data is high dimensional and

noisy, we took a dimensionality reduction approach and used representation learning to ob-

tain a low-dimensional vector to represent each node in the network, such that topologically

similar nodes have similar embedding vectors. We also extended this algorithm to integrate

multiple heterogeneous networks that share the same set of nodes but have different edges in

individual networks. The representation learning algorithm was then coupled with a matrix

completion algorithm to predict the interactions between drugs and target proteins. We

found that this method, called DTINet, has superior integration ability and improves the

prediction accuracy compared to several existing methods [36]. We applied DTINet to pre-

dict interactions that have not been reported in current databases to augment the current

knowledge of DTIs. Furthermore, DTINet identified novel interactions between three drugs

and two COX proteins, which were then been validated in experimental assays. We then

extended DTINet to integrate protein sequence features and chemical structure features us-

ing recurrent neural networks and graph neural networks. A preliminary version of this new

model has been the winning algorithm in the DREAM Challenge for Drug-Kinase Binding

Prediction [37]. Recently, we also extended DTINet to a more comprehensive pipeline to

repurpose potential drugs for SARS-CoV-2 [38].

I have completed a few other research projects during my Ph.D, which were excluded in

this dissertation to keep it succinct and coherent. The excluded projects were also closely re-

lated to the scope of this dissertation, including representation learning for protein and DNA

sequences [39, 40, 41, 42, 43], protein or other molecule structures [44, 45], and biological net-

works [46, 47, 48]. New methods developed in those projects have been applied in important

scientific questions such as drug response prediction [49] and drug repositioning [38].

1.3 BROAD IMPACTS

Building connections between machine learning and biology Broadly, my thesis

research focuses on developing machine learning algorithms for biological problems such as

those related to system biology and human diseases. While machine learning, especially

deep learning, is extensively used to study biology in the past few years, most of the existing

work only applied machine learning as an off-the-shelf toolbox. My research, however, iden-

tifies specific challenges and key issues in problems of interests and develops domain-tailored

machine learning models to address them. Examples include our novel machine learning

algorithms to integrate large-scale heterogeneous data [36] and to incorporate prior knowl-

edge to improve accuracy and generalizability [34]. These projects represent a step towards

closing the gap between what can be solved by existing mahcine learning algorithms and the
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actual challenges and problems in biology.

Learning transferable representations and models A particular focus of my thesis

research is developing algorithms to learn transferable representations and machine learning

models. This is motivated by the fact that labeled data are often expensive to generate in the

laboratory, and that typically there is only limited data to train machine learning models. I

translated the research advances of machine learning into solutions for several protein binding

prediction problems. Those techniques, such as meta-learning and self-supervised learning,

effectively mitigate the data scarcity issues in those protein binding problems. Furthermore,

my solutions have been shown to be generic and applied in other biomedical problems as

well, such as predicting drug response across biological contexts using meta-learning [49].

AI-assisted scientific discovery Some of my research have been applied in real-world

applications to assist scientific discovery. For example, my DTINet algorithm for predicting

drug-target interaction has been used to repurpose potential drugs for inflammatory dis-

eases [36] and COVID-19 [38], and my ECNet algorithm for protein function prediction has

been integrated to a protein engineering pipeline and successfully engineered several variants

of TEM-1 protein with improved function [34].

1.4 ROADMAP OF DISSERTATION

In this dissertation, I will present my research on representation learning of protein se-

quences, structures, and networks, and the scientific discovery enabled by the algorithms I

developed. Chapter 2 introduces a sequence representation learning framework that inte-

grates evolutionary context of protein sequences, which discovered novel protein variants with

enhanced function. Chapter 3 presents a new geometric deep learning algorithm that learns

representations of protein structure data for improving the prediction of protein-compound

binding affinity. Chapter 4 describes a representation learning method for integrating het-

erogeneous networks, which repurposed existing drugs for new targets. Chapter 5 concludes

this dissertation with a brief discussion of future directions.
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Chapter 2: Representation Learning of Protein Sequences

A protein is made up of a linear chain of amino acids. It is widely believed that the

sequence of a protein contains the information that encodes its structure and function, and

many computational methods have been developed to study protein structure and func-

tion using a sequence-first approach. For example, the AlphaFold algorithm predicts the

three-dimensional structure of a protein from its sequence [50]. In this chapter, we focus on

the representation learning of protein sequences. Traditionally, sequence data is represented

using simple encoding strategies such as one-hot encoding in popular machine learning appli-

cations. However, these representations have many limitations in biological problems. The

one-hot encoder puts equal weights on all amino acids, which fails to reflect the unique prop-

erty, e.g., evolutionary conservation, of an individual amino acid at a particular position.

We demonstrate in this chapter how to learn biology-inspired sequence representations using

protein engineering as an example, where the goal is to optimize the function of a protein

by introducing mutations.

2.1 INTRODUCTION

Protein engineering aims to create protein variants with improved or novel functions.

One powerful protein engineering strategy is directed evolution, which consists of iterative

cycles of mutagenesis and high-throughput screening or selection [51, 52, 53]. While directed

evolution is highly successful, the protein sequence space that can be sampled by directed

evolution is limited and developing an effective high-throughput screening or selection can

require a significant experimental effort [54].

To address these limitations, machine learning (ML) algorithms have been developed to

assist directed evolution, which led to many successfully engineered proteins [54, 55, 56, 57,

58, 59]. In ML-assisted directed evolution, a machine learning model is trained to learn the

sequence-function relationship from sequence and screening data. In one round of directed

evolution, the model simulates and predicts the fitness of all possible sequences, and a

restricted list of best-performing variants is used as the starting point for the next round

of directed evolution. In contrast to the classical directed evolution, ML-assisted directed

evolution can escape from the local optimum by learning the entire functional landscape

from data. It takes full advantage of all available sequence and screening data, including

those of unimproved variants, thereby traversing the fitness landscape more efficiently.

A critical component of ML-guided directed evolution is to build a machine learning al-
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gorithm that accurately maps sequence to function. Unlike the qualitative predictions that

group protein sequences into different functional classes [60, 61, 62, 63], in protein engi-

neering, a model is required to distinguish quantitative functional levels of closely related

sequences. For example, in one round of directed evolution, the ML model needs to pre-

dict the fitness of a sequence that differs from the parent sequence by only one or very few

single amino acids. Several ML algorithms have been developed to predict the mutational

effects by leveraging the evolutionary information of homologous sequences [64, 65]. These

methods built generative models to reveal the underlying constraints of the evolutionary

process, which can then be used to infer which mutations are more tolerable or favorable

than others. Because of the unsupervised nature, however, these methods are not able to

leverage the fitness data of tested variants available during the directed evolution process

and thus may have limited accuracy when guiding the protein engineering. More recently,

inspired by the advances in natural language processing [17], an emerging trend is to pre-

train a language model (LM) on large protein sequence datasets to learn the distribution of

protein sequences [21, 22, 23, 63, 66, 67, 68, 69]. The protein sequences observed in nature

today are the results of natural selection by evolution. Out of the possible mutations to

a sequence, evolution samples those that preserve or improve the protein’s fitness, such as

stability, structure, and function. The underlying constraints or factors that determine pro-

tein’s fitness have shaped the distribution of protein sequences. LMs are used to unravel the

‘grammars’ or ‘semantics’ of sequence generation by evolution. By being trained on natural

sequences to predict the likelihood that a particular amino acid appears within a context, the

language model learns representations that are semantically rich and encode structure, evo-

lutionary and biophysical contexts [66]. Several recent studies found that the representations

learned by LMs can be used to predict the sequence-function relationship in an unsupervised

way [70, 71, 72]. It was also found that using the learned representation as the feature input

to fine-tune a supervised model improves fitness prediction on multiple protein mutagenesis

datasets [67]. However, as these models are trained on massive sequences such as those in

UniProt [73] and Pfam [74], the learned representations only capture general context for a

wide spectrum of proteins but may not be specific to the protein to be engineered. Lacking

this specificity in the representation, the prediction model may not be effective in capturing

the underlying mechanism (e.g., epistasis between residues) that determines the fitness of a

protein and is not able to effectively prioritize best-performing variants to assist the directed

evolution.

In this work, we developed ECNet (evolutionary context-integrated neural network), a

deep learning model that guides protein engineering by predicting protein fitness from the

sequence. We constructed a sequence representation that incorporated the local evolutionary
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context specific to the protein to be engineered. This representation explicitly encodes the

residue interdependencies of all residue pairs in the sequence, which informs our prediction

model to quantify the effects of mutations – especially higher-order mutations – in the

sequence. We further incorporated global evolutionary context from an LM model trained

on large sequence databases to model the semantic grammar within protein sequences as well

as other structure and stability relevant contexts. Finally, a recurrent neural network model,

trained on the fitness data of screened variants, is used for the sequence-to-function modeling

with both representations. Through extensive benchmarking experiments, we showed that

ECNet outperforms existing methods on 50 deep mutagenesis datasets. Further experiments

on combinatorial mutagenesis datasets demonstrated that ECNet enables generalization from

low-order mutants to higher-order mutants. Moreover, ECNet was successfully used to

engineer TEM-1 β-lactamase variants with improved resistance to ampicillin.

2.2 ECNET: EVOLUTIONARY CONTEXT-INTEGRATED DEEP SEQUENCE
MODELING FOR PROTEIN ENGINEERING

2.2.1 Residue co-evolution correlates protein functional fitness

Mutations within the protein sequence can affect fitness in a non-independent way, which

is also known as genetic interactions or epistasis. It was found that epistasis interactions,

quantified by deep mutational scanning (DMS) of proteins, can be used to infer protein

contacts and structures [75, 76]. As structurally proximal protein residues are often inferred

from co-variation pairs from sequence evolution historically [77, 78], we hypothesized that

co-evolution information can also be used to infer epistasis or fitness of proteins.

To test this hypothesis, we investigated the relationship between the co-evolution of residue

pairs and the fitness of double mutants. We collected a DMS study that measured the fitness

of double mutants of the human YAP65 WW domain [79]. We also quantified the strength

of pairwise residue dependencies by fitting a direct coupling analysis model [80] to the

homologous sequences of the WW domain (see the “Methods” section). We found that the

strength of pairwise dependencies correlated with the fitness of double mutants (Spearman

correlation 0.35; Fig 2.1a). Similar to a previous study [64], we also used the change of

dependency strength (by contrasting the mutant sequence to the wild-type sequence) to

predict the fitness of protein variants in a set of DMS studies [81]. We found that the

predictions correlated with experimental data with a Spearman correlation ranging from

0.1 to 0.5 (Figure 2.1b). In addition, we observed a trend of increasing correlation score

if a protein has more homologous sequences, presumably because abundant homologous
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sequences lead to a more accurately fitted direct coupling analysis model. Overall, these

results suggested that there are signals in the evolution information that we can leverage to

predict protein fitness. This motivated us to integrate evolutionary information of protein

sequences to empower a supervised model that predicts the fitness of protein variants in

directed evolution.

2.2.2 Sequence-to-function modeling

We built a deep learning sequence-to-function model, ECNet, that learns the mapping from

protein sequences to their respective functional measurements (Figure 2.1c, Supplementary

Figure B.1) from data (e.g., fitness measured by deep mutational scanning). We used the

LSTM neural network architecture and trained protein-specific models using large-scale deep

mutational scanning datasets (“Methods”).

Our model is mainly empowered by two informative protein representations, with one

accounting for residue interdependencies of the specific protein of interest and the other

capturing the general sequence semantics in the protein universe. Existing tools predict

the conservation effects of mutations by considering each amino acid independently (e.g.,

PolyPhen-2 [82] and CADD [83]) while others exploit structure information (e.g., FoldX [84]

and OSPREY [85]). However, the functions of proteins are often driven by the interde-

pendencies between residues (e.g., epistasis) in the protein [86, 87], and not all the protein

structures are solved. We thus explicitly modeled the pairwise interactions of all pairs of sites

in a protein by extracting signals of evolutionary conservation from its homologous sequences

or sequence families. We used a generative graphical model, fitted on the multiple sequence

alignment (MSA) of the homologous sequences, to uncover the underlying constraints or

interdependencies that define the family of homologous sequences. These constraints are the

results of the evolutionary process under natural selection and may reveal clues on which

mutations are more tolerable or favorable than others. The generative model generates a

sequence x = (x1, . . . , xL) with probability p(x) = exp[E(x)]/Z, where E(x) is the ‘energy

function’ of sequence x in the generative model and Z is a normalization constant. We

applied CCMpred [80], which is based on a Markov random field (MRF) specification to

model the residue dependencies in protein sequences. The energy function E(x) of sequence

x is defined as the sum of all pairwise coupling constraints eij and single-site constraints ei,

where i and j are position indices along the protein sequence,

E(x) =
∑
i

ei(xi) +
∑
i 6=j

eij(xi, xj). (2.1)
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Figure 2.1: The motivation and overview of our evolutionary context-integrated se-
quence modeling method for protein engineering. (a) Sequence co-evolution data correlates
with fitness measurements in deep mutational scanning studies. The scatter plot shows the re-
lationship between the fitness measurement of double mutants and the co-variation strength of
residues where the mutations were introduced. Each data point represents a double mutant. The
error band indicates the 95% confidence interval of the regression line. (b) Sequence co-evolution
data can be used to predict protein fitness. The bar plot shows the Spearman correlation between
experimentally measured fitness and strength changes of co-variation. Proteins were sorted by the
number of homologous sequences. c An overview of ECNet, our evolutionary context-integrated
deep learning framework for protein engineering. ECNet integrates global and local evolutionary
contexts to represent the protein sequence of interest. First, a language model is used to learn
global semantic-rich global sequence representations from the protein sequence databases such as
UniProt or Pfam. Next, a direct coupling analysis model is used to capture the dependencies
between residues in protein sequences, which encodes the local evolutionary context. The global
and local evolutionary representations are then combined as sequence representations and used as
the input of a deep learning model that predicts the fitness of proteins. Quantitative fitness data
measured by deep mutational scanning (DMS) are used to supervise the training of the deep learn-
ing model (MSA: multiple sequence alignment; Dim. reduction: dimensionality reduction; LSTM:
long short-term memory network; FC layers: fully-connected layers; Evo. contexts: evolution-
ary contexts; Evo. representations: evolutionary representations; Global/Local rep: global/local
representation).
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When the MRF model is fit to data with proper regularizations, the residue interactions in

protein sequences are explained by the direct coupling terms eij. It has been shown that the

magnitudes of eij terms can accurately predict protein contacts [26] and 3D structures [88].

For a protein sequence with length L, we encoded its i-th amino acid xi by a vector, in

which elements were set to the single-site term ei(xi) and pairwise coupling terms eij(xi, xj)

for j = 1, . . . , L (Figure 2.1c), and then dimensionality reduction techniques were used to

project it into low rank (“Methods”). Encoding the protein sequence in this way directly

incorporates the protein’s evolutionary context, i.e., the effects of pairwise epistasis, which

can inform machine learning models to predict the fitness of a sequence with single or higher-

order combinatorial mutations.

In addition to the evolutionary sequence contexts specific to the protein of interest, global

protein sequence contexts, i.e., those encoding structures and stabilities, can also inform our

prediction model to predict the effects of mutations. For this purpose, we integrated gen-

eral protein sequence representations from unsupervised protein contextual language mod-

els [21, 63, 66, 67]. Using a large corpus of protein sequences such as UniProt and Pfam,

a language model learns to predict the likelihood of a particular amino acid appearing at

a position given all other amino acids surrounding it as context. During the training, the

language model gradually changes its internal dynamics (encoded as hidden state vectors)

to maximize the prediction accuracy. It was found that a wide range of protein-relevant

scientific tasks, including secondary structure prediction, contact prediction, and remote ho-

mology detection, can be improved by using the hidden state vectors of a language model

as input features to fine-tune a supervised model for the specific task [21, 67]. Here, we also

used the language model’s hidden state vectors as another type of protein sequence represen-

tation for our prediction model to capture the global protein sequence context (Figure 2.1c;

“Methods”), which is a complement to our local evolutionary context representation.

The local and global evolutionary representations are jointly used to model the protein

sequence of interest. A deep learning model (recurrent neural network) then takes these

sequence representations as input and learns the sequence-to-function relationship. Quanti-

tative functional measurements (e.g., fitness data measured by DMS) are used to supervise

the training of the deep learning model (Supplementary Figure B.1; “Methods”).

2.3 METHODS

2.3.1 Datasets

We collected multiple large-scale deep mutational scanning (DMS) datasets and random

mutagenesis datasets curated by previous publications.
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Envision dataset. We first collected 12 DMS studies from Gray et al. [81], covering ten

proteins and 28,545 fitness measurements of single amino acid variants. The fitness values

were normalized such that wild-type-like variants have scores of one, and variants that are

more (less) active than the wild type have scores greater (less) than one.

DeepSequence dataset. We also collected a set of DMS datasets compiled by Riesselman et

al. [65]. We excluded a study of RNAs since it is out of the scope of this study. The resulting

set consists of 39 DMS studies across 33 proteins. Most of these studies (37/39) provide

the function values of single amino acid variants, and two studies provide the functional

measurements of higher-order mutants. The functions measured in these studies include

growth rate, enzyme function, protein stability, and peptide binding.

Single and double mutants datasets. To test the ability of ECNet to predict epistasis, we

compiled multiple DMS studies that contain the fitness values of both single and double

amino acid variants. We obtained the DMS data of the GB1 domain, WW domain, RRM

domain, and FOS–JUN heterodimer from Rollins et al. [76], and the prion-like domain of

TDP-43 from Bolognesi et al. [89]. A set of fitness of TEM-1 consecutive double mutants

was also obtained from Gonzalez et al. [90].

Higher-order avGFP mutants dataset. We also collected a higher-order mutant dataset [91]

to assess ECNet’s generalizability to predict the effect of even higher-order variants. This

study systematically assayed the local fitness landscape of the green fluorescent protein from

Aequorea victoria (avGFP) by measuring the fluorescence of 50k derivatives of avGFP, with

each sequence containing 1–15 amino acid substitution mutations.

Inhibitor-resistant TEM-1 variants. We compiled a list of TEM-1 variants that have

been found to be inhibitor-resistant with supporting evidence in previous studies. The

list was downloaded from https://externalwebapps.lahey.org/studies/TEMTable.aspx

(see “Data availability” for accession). We excluded variants for which mutation information

was labeled as “Not yet released”. This resulted in 146 sequences that mostly contained two

to five and up to ten mutations (average 3.3 mutations per sequence). To generate a list of

random candidate variants for enhanced TEM-1 variants prioritization, we enumerated all

combinations of amino acid mutations on all or a subset of the positions where mutations

were introduced in this 146-sequence list. In total, we obtained 18,937 randomly generated

candidate variants for TEM-1 variants prioritization.

Homologous sequences and fitness data of viral proteins. We used the homologous se-

quences of each viral protein collected in Hie et al. [71] as the training data of the unsuper-

vised ECNet, including 44,851 unique influenza A hemagglutinin (HA) amino acid sequences

observed in animal hosts, 57,730 unique HIV-1 Env protein sequences, and 4172 unique Spike

and homologous protein sequences. We used the fitness data collected in Hie et al. [71] to
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validate the unsupervised ECNet. The fitness data includes replication fitness of HA H1

WSN33 mutants from Doud and Bloom [92], replication fitness of six HA H3 strains (Bei89,

Bk78, Bris07, HK68, Mos99, and NDako16) from Wu et al. [93], replication fitness of HIV

Env BF520 and BG505 mutants from Haddox et al. [94], and Kd binding affinities between

SARS-CoV-2 mutants and ACE2 from Starr et al. [95].

2.3.2 Inference of evolutionary couplings from multiple sequence alignments

We first searched homologous protein sequences of a given protein using HHblits available

in the hh-suite [96]. We used the wild-type sequence of the given protein as the query

sequence and searched against the uniclust-30 database (version uniclust30 2018 08) for

three iterations. We used a maximum pairwise sequence identity of 99% and a coverage

cutoff of 50%. Other parameters were set as default. The search results were formatted to

the A3M multiple sequence alignment (MSA) format.

To identify the co-evolutionary residue pairs in a protein, we used a statistical model to

exploit the evolutionary sequence conservation and model all pairwise interdependencies of

residues. The model identifies the evolutionary couplings by learning a generative model

of the MSA of homologous sequences using a Markov random field. Given the MSA of

homologous sequences, the couplings are learned by maximizing the likelihood of observed

sequences in the MSA, which is defined as

L(e) =
1

Z

N∏
n=1

L∏
i=1

[
exp

(
ei(x

n
i ) +

L∑
j=1,j 6=i

eij(x
n
i ,x

n
j )

)]
(2.2)

where the single-site constraints ei and the pairwise coupling constraints eij are parameters

of the model, xni is the i-th amino acid in the n-th sequence, Z is the normalization con-

stant, N is the number of homologous sequences and L is the number of columns in the MSA

(number of amino acids in the query sequence). The direct optimization of this likelihood

is computationally intractable due to the computation of the normalization constant that

increases exponentially—20L sequences need to be considered. It was thus adopted to max-

imize the site-factored pseudo-likelihood of the MSA, which has a running time complexity

O(NL2) where N is the number of sequences in the MSA. We refer the interested readers

to previous studies [80, 97, 98] for the details of the optimization. In this work, we used

CCMPred [80], a GPU-based algorithm maximizing the pseudo-likelihood (plus regulariza-

tion terms), to optimize the generative model. The evolutionary couplings are learned as

parameters of the Markov random field.
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2.3.3 Local evolutionary context representation with evolutionary couplings

By fitting the graphical model to the MSA of homologous sequences of a protein, we ob-

tained the coupling matrix eij that quantifies the co-constraints of all possible 202 amino acid

combinations between positions i and j in the sequence. In particular, the term eij(xi, xj)

is the pairwise emission potential of the Markov random field for amino acid xi occurring at

position i while amino acid xj occurring at position j. We used the site preference vector ei

and the coupling matrix eij to construct a data representation that encodes the co-evolution

information of a protein.

Specifically, the i-th amino acid xj in the protein was represented by an (L+1)-long ‘local

evolutionary representation’:

vi = [ei(xi), ei1(xi, x1), ei2(xi, x2), ..., eiL(xi, xL)] (2.3)

The full representation of a protein sequence was thus obtained by stacking local evolutionary

representations for all positions, resulting in an L by (L+ 1) matrix. As we have shown, the

pairwise potentials in the matrix eij correlated with the fitness measured in DMS experiments

(Figure 2.1a, b). We thus expect that using the local evolutionary representations derived

from ei and eij as a data representation of amino acids will inform the sequence-to-function

prediction model to better capture the residue dependencies and the sequence-to-function

relationship.

The length of the local evolutionary representation is roughly equal to the length of the

protein sequence, which may raise an overfitting issue when the protein length is long while

the number of functional measurements used as training data is low. Therefore, we used a

dimensionality reduction approach to transform the (L + 1)-long vector into a fixed-length

d-dimensional vector (d < L), where d is independent of the length of the protein sequence.

This is done by applying a linear layer in the neural network to reduce the dimensionality

of local evolutionary representations vi. Hereinafter, we will refer to the transformed vector

vi as local evolutionary representation unless otherwise specified.

2.3.4 Pre-trained protein sequence representation model

Very recently, self-supervised models have provided powerful protein sequence representa-

tions that facilitate scientific advances, including protein engineering, structure prediction,

and remote homology detection. These language models [21, 63, 66, 67], without using la-

beled data, are trained on natural sequences from large protein databases such as Pfam [74]

and UniProt [73] to predict the next amino acid character given all previous amino acid
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characters in the protein sequence or predict randomly masked amino acids using the rest as

given context. During the model training, these models progressively adapt their parameters

to maximize the prediction accuracy, resulting in a representation of protein sequences that

capture intrinsic semantics in protein sequences and interdependencies among amino acids.

In this work, we integrated the amino acid representations produced by a transformer

model in TAPE, one of the most powerful self-supervised sequence representation mod-

els [21]. The representations capture the global evolutionary context from the massive pro-

tein sequence data the model was trained on, which is complementary to our evolutionary

representations that capture the local evolutionary context specific to the target protein. The

TAPE model applied a Transformer architecture [99] and was trained on Pfam data to pre-

dict a masked amino acid using the remaining ones as input. We downloaded the pre-trained

weights of the TAPE model from https://github.com/songlab-cal/tape. For an input

sequence, TAPE generates a 768-dimensional vector representation for each amino acid. We

refer to the reprojected TAPE representations as global evolutionary representations.

2.3.5 Sequence-to-function neural network model

Model architecture. We built a deep learning model for the sequence-to-function predic-

tion. The model receives as input features (amino acid characters and evolutionary repre-

sentations) of the protein sequences and produces the predicted functional measurements of

proteins as output. The backbone of our model is a bidirectional long short-term memory

network (BiLSTM) [100] integrated with a two-layer fully-connected neural network. Hyper-

parameters of the model were decided through a grid search in an independent experiment

(see “Training details”). Amino acids in the input sequences were one-hot encoded and

passed through a 20-dimensional embedding layer. The amino acid embeddings were then

concatenated with the evolutionary representations position-wisely before being input to the

LSTM module. We used a single-layer LSTM with a hidden dimension dL as the default

setting in this work. One hidden state vector was produced by the LSTM for every amino

acid in the sequence. To integrate the TAPE representations into our model, we reprojected

them to dp-dimensional vectors using a linear fully-connected layer, which were then con-

catenated with the hidden state vector produced by the LSTM model for each amino acid.

We summarized these concatenated vectors into a single vector using a weighted averaging

approach, where the averaging weights were learned from the data by using a self-attention

layer [99]. This vector was then passed to a top module to predict the functional measure-

ments. The top module is a two-layer fully-connected neural network with tanh activation.

The hidden dimensions of the two layers were set to dh and 1, respectively. To facilitate
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the model training, we added a batch normalization layer [101] before the fully-connected

layers. We also applied a dropout [102] layer after the first fully-connected layer to prevent

overfitting. To improve the model’s robustness and prediction accuracy, we used an ensemble

approach to output the prediction, in which three replicas of ECNet models were trained

using the same hyperparameters and training data, and their output scores were averaged

as the final prediction.

Training details. We cast the task of predicting the functional values of proteins as a

regression problem, and the objective was to minimize the difference between the predicted

and experimentally measured functional values. We trained our deep learning model using

the Adam optimizer [103] with default parameters. Mean squared error (squared L2 norm)

was used as the loss function. To select the hyperparameters of ECNet, we performed a

small-scale grid search using the training data of a protein, such that 7/8 of the training

data was used to train a model with a specific set of hyperparameters, and the remaining

1/8 data was used as the validation set to select the hyperparameters. The test set was not

used for hyperparameter selection. We tested the LSTM’s dimension of dL = 32, 64, and

128, the top layer dimension of dh = 32, 64, and 128, the reprojected embedding dimension

of dp = 128 and 256. In general, we found that dL = 128, dh = 128, and dp = 128 are

reasonably good defaults and can be used for a new protein. Nevertheless, a careful grid

search of hyperparameters for the new protein would further improve the model performance.

Unless otherwise specified, the batch size was set to 128 and the maximum number of training

epochs was set to 2000 with an early stop if the performance has not been improved for 1000

epochs. Model training was performed on an Nvidia TITAN X GPU. The time required to

train a single model depends on the training data size of each protein, ranging from 0.5 to 6

h. For the ensemble model with three replicas, the required time thus ranges from 2 to 20

h.

Auxiliary classification objective. While the prediction of functional measurements is a

regression problem by definition, the skewed distribution of the training data may lead to

a biased predictor. For example, in the Envision dataset [81], only 18% of TEM-1 variants

are more active than the wild-type sequence (positive effects) while the remaining are less

active than the wild-type sequence (negative effects). In this case, a model optimized using a

regression objective (e.g., minimizing the mean squared error) tends to fit the negative effects

more but be less sensitive to the error from the prediction of positive effects. However, the

main goal of machine learning-guided protein engineering is to identify the variants with

an enhanced property than the wild-type sequence. Hence, it is critical to mitigate this

type of bias in the prediction model. We addressed this issue by introducing an auxiliary

classification objective. We binned the functional measurements using their 10-quantiles as
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breakpoints, i.e., grouping the measurements into 10 bins with equal size. In the model

training, we encouraged the model to accurately predict not only the absolute functional

measurement but also which bin the measurement is in. Jointly, the classification objective

forces the model to treat each bin of functional measurements equally and the regression

objective forces the model to predict the measurements as close to the observed values as

possible. In the implementation, we added a second top module into the deep learning model,

which also receives the summarized LSTM hidden state vector as input and its output is

ten numbers indicating the predicted probability that the measurement should fall in each

of the bins. The overall loss function is L = Lr + αLc where Lr is the loss of the regression

objective, Lc is the cross-entropy loss of a ten-class classification, and α is a constant used

to balance the scales of the two losses, which was set as α = 0.1 in this work. We used

this hybrid loss when training the model for prioritizing novel TEM-1 variants and used the

regression loss for other benchmarking experiments.

2.3.6 Unsupervised ECNet based on language model training

While the vanilla ECNet is a supervised model and requires function or fitness data to

train the predictor, we also developed an unsupervised extension of ECNet that does not

need any direct fitness measurements as training data but is still able to produce reasonably

accurate predictions. This unsupervised model is useful when the fitness data of a protein

is unavailable or not sufficient to train an accurate supervised predictor. The predictions of

the unsupervised ECNet can be used as an approximation of fitness and guide the selection

of variants to screen in the first round of directed evolution, after which the experimental

screening data can be used to train a more accurate, supervised ECNet model.

The main idea of the unsupervised ECNet is to train a model that learns the evolutionary

preferences from the homologous sequences of the protein of interest. Those homologous

sequences are the results of long-course evolution and might reveal evolutionary preferences

about which mutations are more viable or tolerable than others. This approach is motivated

by the recent advances of deep learning for human languages, in which algorithms called

language models are developed to learn intrinsic semantics and grammar constraints of

natural languages like English from large text corpora.

The model architecture of the unsupervised ECNet is also based on a bidirectional LSTM

(BiLSTM), as in the supervised ECNet, but with a different training objective. Here, we

use an objective similar to that used in Hie et al. [71] to train a protein language model.

Precisely, we are given a protein sequence x = (x1, . . . , xL), xi ∈ X ,i ∈ [L], where X is the

alphabet of all possible amino acids. Let x̃i denote a point-mutation at position i and the
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mutated sequences as x(x̃i) = (x1, . . . , xi−1, x̃i, xi+1, . . . , xL). The language model aims to

predict the probability of an amino acid appearing at a position considering its surrounding

context, i.e., p(xi|x[L]\{i}), where x[L]\{i} = (x1, . . . , xi−1, xi+1, . . . , xL) represents the sequence

context. The context is encoded using a latent real-valued vector zi = fe(x[L]\{i}), where

fe : X L−1 → RD is an embedding function that maps discrete sequences into a D-dimensional

continuous space. Here the embedding function was instantiated by a bidirectional LSTM

neural network and the outputs of the final LSTM layers were concatenated to form the

embedding vector, i.e.,

zi = [LSTMf (gf (x1, . . . , xi−1)); LSTMr(gr(xi+1, . . . , xL))] (2.4)

where gf is the output of preceding layers that proceed the input in the forward direction,

LSTMf is the final layer of the forward-directed LSTM, and gr and LSTMr are defined

similarly but for the reverse direction. The embedding vector zi is transformed into a

probability through a learner transformation and a softmax function, i.e.,

p(xi|x[L]\{i}) = p(xi|zi) = softmax(Wzi + b) (2.5)

where W and b are learned parameters. We used a two-layer BiLSTM with 256 units in

this work.

We demonstrated the utility of the unsupervised ECNet on viral proteins. We trained three

unsupervised ECNet models for influenza HA, HIV Env, and SARS-CoV-2 Spike proteins

using the unsupervised ECNet model. One epoch in the training consisted of the prediction

of every token at all positions and in all sequences in the training set. The output probability

p(xi|x[L]\{i}) is used as the predicted score and to correlate with the fitness score of a mutant.

If a variant has multiple mutations, the product of the probabilities of the individual point

mutations was used as the predicted score of unsupervised ECNet.

2.3.7 Baseline methods

We compared ECNet against several existing baseline methods, including supervised and

unsupervised models.

Yang et al. (Doc2Vec). Yang et al. [104] proposed a learned protein embedding to rep-

resent a protein sequence in a 64-dimensional vector using a Doc2Vec model [105] trained

on the UniProt database. The representation vector is used as the input feature to fit a

Gaussian process-based regressor to predict the functional measurement. Following a previ-
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ous work [66], we also used the four best-performing models as chosen in Yang et al. [104],

including the original model (k = 3, w = 7), the scrambled model (k = 3, w = 5), the

random model (k = 3, w = 7), and the uniform model (k = 4, w = 1). The pre-trained

models were downloaded from http://cheme.caltech.edu/kkyang/models/ and protein

representation vectors were generated using the code available at https://github.com/

fhalab/embeddings_reproduction. The best performance across the four models was re-

ported as the final performance of the Doc2Vec model.

Envision. Envision is a supervised method proposed in Gray et al. [81] that predicts the

functional measurements of protein variants. Each variant was annotated with 27 biologi-

cal, structural, and physicochemical features, which were used as input to train a gradient

boosting regression model using large-scale mutagenesis data. We downloaded the source

code of Envision from https://github.com/FowlerLab/Envision2017.

EVmutation. EVmutation is an unsupervised statistical model proposed by Hopf et

al. [64]. It explicitly models the co-variations between all pairs of residues in the protein

by fitting a pairwise undirected graphical model to the multiple sequence alignment (MSA)

of all homologous sequences of the protein of interest. The model then quantifies the effect

of single or high-order substitution mutations using the log-ratio of sequence probabilities

between the mutant and wild-type sequences. In this work, we used the workflow imple-

mented in EVcouplings (https://github.com/debbiemarkslab/EVcouplings) to generate

the predictions of EVmutation.

DeepSequence. Similar to EVmutation, DeepSequence [65] is also a generative model that

predicts the effects of mutations in an unsupervised manner. However, unlike EVmutation

explicitly modeling pairwise dependencies, DeepSequence uses a latent model, fitted on the

MSA of homologous sequences of a protein, to capture higher-order dependencies of residues

in the protein. The effects of mutations are also predicted by the log-ratio of mutant likeli-

hood to wild-type likelihood.

Autoregressive model. Generative models of protein sequences such as EVmutation and

DeepSequence are dependent on the alignment of homologous sequences, which may intro-

duce artifacts and lose important information caused by indels in the alignment. A generative

autoregressive model was proposed by Riesselman et al. [106] to predict the mutation effects

in protein sequence, without the requirement of multiple sequence alignment.

TAPE. We used TAPE [21], a language model (LM) trained on Pfam sequences to generate

global context representations of protein sequences. We extracted the hidden state vectors,

one for each amino acid in the sequence, from the TAPE model. We used the same top

module as in our model (i.e., self-attention layer and fully-connected layers) to take the

representations as input and predict the functional measurements.
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UniRep. UniRep [66] first trains an unsupervised protein language model on UniRef50

sequences. The model is then fine-tuned using homologous sequences of a studied protein

(called evotuning). The model is used to generate a vector representation for each protein

sequence. These representations are used as the input of a top supervised model such as a

ridge or LASSO regression to predict the fitness of mutants.

CSCS. CSCS [71] is an unsupervised model that is specifically designed to predict viral

escapes. It also trains a language model on viral protein sequences and computes two

scores to quantify the effect of a mutation, one is the grammaticality of the mutation,

defined as the model predicted probability of an amino acid a position in the sequence, and

the other is the semantic change of the mutation, defined as the L1 distance between the

embeddings of the mutated sequence and the wild-type sequence. In our experiment, we

used the grammaticality of a mutant to correlate its fitness, as this was shown to outperform

the prediction based on semantic changes in the CSCS study.

2.3.8 Benchmarking experiments

To assess ECNet’s performance, we compared ECNet to other baselines using the original

benchmark datasets that these methods were tested on in their publications. We ensured

that the training and test sets are not overlapped in our experiments.

Benchmarks on the Envision dataset. We compared ECNet to the gradient boosting

regression algorithm (denoted as ‘Envision’) proposed in the Envision dataset paper [81].

For each protein, we used 80% of the DMS data to train ECNet or other methods and the

remaining 20% data to evaluate the model’s performance. Spearman correlation was used

as the evaluation metric. We used grid search to optimize the hyperparameters of ECNet.

Note that Envision used 27 biological, structural, and physicochemical features to build the

prediction model while our model only used the protein sequence to predict the functional

measurements. To test the model’s ability to identify variants that are more active than the

wild-type sequence, we also converted the task into a classification problem, in which protein

sequences with a function score greater than the wild-type sequence (with a function score

1) were labeled as positive samples, and the remaining sequences as negative samples. We

used the AUROC score as the metric for this classification evaluation. We also compared

ECNet to the Yang et al. (Doc2Vec) model on this dataset.

Benchmarks on the DeepSequence dataset. We compared ECNet to EVmutation, DeepSe-

quence, and the Autoregressive model on the DeepSequence dataset that these methods have

been tested on. The predictions made by these unsupervised approaches were collected from

previous studies [65, 106]. For ECNet, we performed five-fold cross-validation on this dataset
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and reported the average performance over all the five folds. Hyperparameters of ECNet

were optimized using an inner-loop cross-validation. We used Spearman correlation as the

evaluation metric. We also compared ECNet to supervised models that used global con-

text representations (TAPE) or locally-fine-tuned global context representations (UniRep)

on this dataset.

Evaluation of variants prioritization. We designed a simulation experiment of variants

prioritization to assess how accurate and efficient ECNet is in retrieving high-performing

variants [107]. We collected three large DMS datasets of proteins avGFP [91], GB1 [108],

and Pab1 [109], each with the fitness data of single and high-order mutants. We trained the

model using 90% of the data (randomly sampled) and asked the model to predict the fitness

for the remaining 10% data. For comparison, we ran One-hot encoder, Evmutation, and

UniRep to predict the same test variants. We also included the ideal model, which used the

ground-truth ranking of fitness values to rank variants, and the null model, which ranked

variants with a random order, as references for the evaluation. For each protein, we repeated

the experiments ten times. We calculated the recall as the evaluation metric, which is defined

as the fraction of true top 100 variants the model recovered in its list of top K predictions.

This value of K can be interpreted as the sequencing budget in actual experiments of directed

evolution. We also used the maximum fitness (normalized by rank) observed in the top K

predictions as an additional metric to assess ECNet’s ability in identifying the variants with

the highest possible fitness. To demonstrate the efficiency of ECNet’s prioritization, we

computed its efficiency gain over random sampling as a function of budget K, which was

quantified as the ratio between the recall of ECNet and the recall of the null model.

Benchmarks of unsupervised ECNet. We trained unsupervised ECNet models using the

language model objective on the homologous sequences of three viral proteins, including

influenza HA, HIV Env, and SARS-CoV-2 Spike, respectively. Hyperparameters of ECNet

were optimized using an inner-loop cross-validation. The trained ECNet models were eval-

uated using fitness datasets for mutants of several proteins, including HA H1 WSN33, six

HA H3 strains, BG505 and BF520 HIV Env, and SARS-CoV-2 Spike. The performance was

evaluated using Spearman correlation between the output probability of a mutation given

by unsupervised ECNet and the fitness score of that mutation. As our training objective

followed that of CSCS, a protein language model developed to predict the escape of viral

mutations, we compared our model to CSCS and validated that our model achieved a com-

parable performance as CSCS. For reference, we also trained a supervised ECNet on the viral

proteins using five-fold cross-validation and found that the supervised model substantially

improved the performance.

Effects of training data size. To investigate the effects of training data size, we randomly
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withheld 10% of data of each DMS study in the DeepSequence dataset as the test set.

For the remaining 90% data, we trained two separate ECNet models by using all of them

as training data (denoted as 100%) or randomly sampling 1/4 of them as training data

(denoted as 25%). We also trained an unsupervised ECNet model without using any DMS

data (denoted as 0%). The three models were all evaluated on the same test set.

Comparison to randomly generated TEM-1 variants. We trained an ECNet model and

used it to predict the fitness of 146 TEM-1 inhibitor-resistant variants and a set of randomly

generated variants. For every of the 146 TEM-1 inhibitor-resistant variants, we generate ten

random variants that have the same mutated sites as the inhibitor-resistant variant but the

alternative amino acid at each position is re-sampled uniformly from the 20-amino acid set.

We ensured that the generated random variants do not overlap with any of the 146 variants.

2.3.9 Prioritized high-order TEM-1 variants using ECNet

We trained an ECNet model using DMS data of low-order TEM-1 variants and used the

model to prioritize new high-order variants that were likely to have enhanced fitness. We

sourced the training data from Firnberg et al. [110] and Gonzalez et al. [90], which measured

fitness values of 98.2% (2536/2583) of all possible point mutants and 12.0% (12,374/102,855)

of all possible consecutive double mutants, respectively. In both studies, the fitness of TEM-

1 was defined as its resistance to ampicillin (Amp). We randomly sampled 95% of the

combined datasets to form the training set and used the remains as the validation set. We

used the default hyperparameters mentioned above for ECNet. The model was trained for

2000 epochs with early stopping if its performance on the validation set did not improve for

1000 epochs.

We used the trained model to predict the fitness of variants beyond single and consecutive

double mutants and to identify new variants with improved fitness (as compared to the

wild type). To reduce the exponential search space (20286 sequences) of possible sequences,

we focused on a restricted subspace where the mutations only occur on plausible function-

related sites of TEM-1 documented in the literature. The detailed steps are as below. (1)

We compiled a list of inhibitor-resistant TEM-1 variants supported by evidence in previous

studies (see “Datasets”). The list contains 146 TEM-1 variants, each with 2–11 mutations

with respect to TEM-1 wild-type sequence, covering 72 positions and 99 unique amino

acid (AA) changes. (2) Based on each of the 146 variants, we generated new variants by

considering all subset combinations of mutated positions of this variant and enumerating all

AA changes that have appeared in these positions in the list. (3) From the newly generated

sequences, we removed sequences that are identical to sequences in the 146-variant list,
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resulting in 18,937 sequences that form our restricted search space. We call these sequences

“candidate variants”. (4) We applied the trained ECNet model to predict the fitness for each

of the candidate variants. Variants predicted to have lower fitness than the wild-type fitness

were removed. (5) We used FoldX38 to compute the change of structure stability for each

variant. The PDB structure of wild-type TEM-1 was used as the template (PDB ID: 1XPB)

and refined by the ‘RepairPDB’ function of FoldX. The ‘BuildModel’ procedure of FoldX

was applied to mutate residues and compute the change of stability. Variants with a large

change of stability (|∆∆G| > 3 kcal/mol) were removed. (6) The remaining variants are

sorted based on their predicted fitness, and we refer to those variants as prioritized variants.

To generate prioritized variants for experimental validations, we built two versions of

ECNet models, a base version (ECNet-base) and an ensemble version (ECNet-ensemble).

In ECNet-base, we trained three independent predictors using the default neural network

architecture of ECNet, but each with a different loss objective, namely regression loss, clas-

sification loss, and regression loss with an auxiliary classification loss, respectively. The

intersection of variants prioritized by the three predictors formed the final prioritized vari-

ants of ECNet-base. The use of three loss objectives here follows the intuition that the

regression loss encourages the model to approximate the fitness of all variants and the classi-

fication loss focuses the model on identifying variants with fitness higher than the wild type.

Combining the three predicted lists can prioritize more reliable predictions. We selected

the top 28 variants in the intersected list for experimental validations. In ECNet-ensemble,

we followed the same procedure as in ECNet-base but trained five replicates of predictive

models for each loss objective. The predicted fitness of a variant was averaged over the five

replicates. From the prioritized list by ECNet-ensemble, we selected 9 variants that were

ranked at the top but different from what have been selected from the list predicted by

ECNet-base.

In total, we used ECNet to identify 37 TEM-1 variants that were likely to demonstrate

improved fitness as compared to the wild type. These variants contained two to six mutations

(average 3.02 mutations per sequence), covering 22 positions in the TEM-1 sequence.

2.3.10 Experimental validation of prioritized TEM-1 variants

Materials and general methods. Molecular biology reagents and chemicals were purchased

from Fisher Scientific, Sigma-Aldrich, GOLDBIO, or New England Biolabs, Inc., unless

specified otherwise. Escherichia coli DH5α (New England Biolabs, MA) was cultured in

Luria–Bertani broth. DNA sequencing was performed at ACGT (Wheeling, IL). Primers

were ordered from Integrated DNA Technologies (Coralville, IA) and listed in Supplementary
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Data 1 of Luo et al. [34]. Plasmid pSkunk3-BLA was purchased from Addgene (plasmid

61531). PacBio Barcoded Universal Primers (Part Number: 101-629-100) was purchased

from Pacific Biosciences (Menlo Park, CA).

TEM-1 mutant creation TEM-1 mutants were constructed by overlapping PCR using

primers (Supplementary Data 1 of Luo et al. [34]) carrying targeted single or multiple muta-

tion sites. Briefly, DNA fragments were PCR amplified by primers carrying targeted single

or multiple mutation sites using pSkunk3-BLA plasmid as template and then gel purified.

The purified DNA fragments were further fused by overlapping PCR to provide DNA frag-

ments with complete TEM-1 gene fragments flanked by restriction enzyme (BamH I and

SpeI) digestion sites. After gel purification, the fused DNA fragments and pSkunk3-BLA

plasmid were digested by BamH I and SpeI. The digested TEM-1 gene with mutations and

pSkunk3-BLA plasmid was gel purified and ligated by T4 DNA ligase and then transformed

into Escherichia coli DH5α competent cells. The single colonies from the transformation

plates were picked and cultured overnight at 37 ◦C. The mutation sites of mutants were con-

firmed by DNA sequencing using primers listed in Supplementary Data 1 of Luo et al. [34].

In some cases, the constructed TEM-1 plasmids were used as PCR templates for creating

other variants.

Ampicillin resistance assay of TEM-1 mutants. The plasmids harboring the genes encod-

ing wild-type TEM-1, positive controls, and ECNet’s predicted variants were mixed with

equal concentrations and transformed into Escherichia coli DH5α competent cells (six repli-

cates). After incubation at 37 ◦C overnight, the colonies from each of the transformation

plates were immersed by ice-cold LB medium which was further scratched and pooled, yield-

ing 10 ml cell suspension in LB medium. Inoculated 0.5 mL of the cell suspension into 50

mL LB medium supplemented with streptomycin (50 µg/ml) to allow the OD600 of cultures

to reach 0.5 with shaking at 37 ◦C. The cells were then washed twice by 1 volume of ice-cold

1X PBS and then resuspended in 1 volume of ice-cold 1X PBS. Finally, 100 µL cells were

spread onto each of the freshly prepared LB agar plates with different concentrations of

ampicillin (0, 300, 1500, and 3000 µg/ml), streptomycin (50 µg/ml), and IPTG (0.3 mM).

The plates were incubated at 37 ◦C overnight. The colonies from each plate were then pooled

and miniprepped to provide a plasmid mixture for each plate. The concentrations of the

plasmids were determined by QubitTM 4 Fluorometer (Invitrogen). PCR amplification of

the targeted region with the same amount of total plasmids from each plate as templates by

using target-specific primers tailed with a universal sequence (Supplementary Data 2) and

Phusion Hot Start II High-Fidelity PCR Master Mix (Thermofisher, F-565S) was performed

according to the manufacturer’s instructions. The amplicons were then PCR barcoded by

PacBio Barcoded Universal Primers using Phusion Hot Start II High-Fidelity PCR Master
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Mix. After gel purification, the barcoded amplicons were pooled with equal concentrations

which were further used for SMRTbell library construction with the SMRTbell Express Tem-

plate Prep Kit 2.0. PacBio sequencing with Sequel II System was then performed at the

Roy J. Carver Biotechnology Center at University of Illinois at Urbana-Champaign. About

two million reads with a mean read length of 949 bp were obtained from the sequencing.

The reads were error corrected with circular consensus and demultiplexed. Further bioinfor-

matic analysis revealed read numbers of individual mutants from the corresponding plates

with various concentrations of ampicillin. The fitness of each mutant at a certain ampicillin

concentration was determined based on the ratio of the relative abundance of the mutant to

wild-type TEM-1 in the plate with the related concentration of ampicillin and the relative

abundance of the variant to wild-type TEM-1 in the plate without ampicillin.

Fitness calculation. The PacBio read data was processed using the TADA workflow

(https://github.com/h3abionet/TADA). The fitness of a TEM-1 variant is determined

by the ratio between the relative abundance of variants under the selection of a specific con-

centration and without selection. More precisely, for the fitness value fc(MT) of a variant

MT at concentration c(c = 300, 1500, or 3000 µg/mL) is calculated as

fc(MT) =
Nc(MT)/Nc(WT)

N0(MT)/N0(WT)
, (2.6)

where WT is the wild type and Nc(·) is the read count of a mutant under concentration c.

2.3.11 Data availability

The following datasets generated or curated in previous publications were used: En-

vision dataset (https://doi.org/10.1016/j.cels.2017.11.003); DeepSequence dataset

(https://doi.org/10.1038/s41592-018-0138-4); single and double mutants fitness (https:

//doi.org/10.1038/s41588-019-0432-9, https://doi.org/10.1016/j.jmb.2019.03.020,

https://doi.org/10.1038/s41467-019-12101-z); TEM-1 single-mutation and double-

mutation mutants fitness data (https://doi.org/10.1093/molbev/msu081, https://doi.

org/10.1016/j.jmb.2019.03.020); high-order avGFP fitness (https://doi.org/10.1038/

nature17995); inhibitor-resistant TEM-1 variants (downloaded from https://externalwebapps.

lahey.org/studies/TEMTable.aspx and deposited at https://doi.org/10.6084/m9.figshare.

16516608.v1); homologous sequences and fitness data of viral proteins (https://doi.org/

10.1126/science.abd7331); PDB structure of TEM-1 (PDB ID: 1XPB). The fitness data

of TEM-1 validation experiment is available in Supplementary Data 2 of Luo et al. [34].
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2.3.12 Code availability

The source code of ECNet is available at https://github.com/luoyunan/ECNet and on

Zenodo at https://doi.org/10.5281/zenodo.5294461. ECNet was built on Python 3.7,

PyTorch 1.4.0, Numpy 1.18.5, Scipy 1.4.1, Numba 0.45.1, Bio Python 1.78, SciKit-Learn

0.24.1, Pandas 1.2.3, msgpack-python 0.5.6, and TAPE 0.4.

2.4 RESULTS

2.4.1 Accurate prediction of functional fitness landscape of proteins

To validate the ECNet, we performed multiple benchmarking experiments to assess the

ability of ECNet in predicting the functional fitness from protein sequences.

We first compared our evolutionary context representation to different representation

schemes for protein sequences or mutations. Yang et al. [104] proposed to use a Doc2Vec

model [105], pre-trained on ∼500k UniProt sequences, to map an arbitrary sequence to a

64-dimensional real-valued vector. To directly test the utility of sequence representations, we

used our deep learning model as the predictor for both our representation and the Doc2Vec

representation of Yang et al. We compared the two approaches on the Envision dataset [81],

composed of 12 DMS studies that generated fitness values of single amino acid variants of

ten proteins (“Methods”). We found that ECNet consistently outperformed the approach

of Yang et al on all the 12 datasets, with a relative improvement ranging from 16 to 60% in

terms of the achieved Spearman correlation (Figure 2.2a). Since the Doc2Vec representation

was learned from the UniProt dataset, the information it captured is mostly general protein

properties but not the dependencies in the sequence that determine functions. In contrast,

our evolutionary context representation explicitly models the epistasis of residue pairs in the

sequence, which jointly influence the function in a non-independent way. This fine-grained

information informed the prediction model to learn the sequence-function mapping more

effectively and thus improved the prediction performance. We also compared our evolution-

ary context representation to the Envision model [81], which described a single amino acid

substitution using 27 biological, structural, and physicochemical features. Compared to this

approach, ECNet, without using these features, still improved the Spearman correlation for

most of the proteins (Supplementary Figure B.2; Supplementary Table A.5). As protein

engineering focuses on identifying variants with improved properties than the wild type, we

further evaluated the model performance using a classification metric (AUROC score), in

which variants with higher function measurements than the wild-type sequence are defined
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as positive samples, and the remaining variants as negative samples. We observed similar

improvements in AUROC scores for 11/12 protein DMS datasets (Figure 2.2b; Supplemen-

tary Table A.5). These results suggest that sequence contexts are more informative than

the descriptors of mutated amino acids, which is critical in capturing the interdependencies

between residues to predict the functions.

Figure 2.2: Comparisons to other protein variant representation methods. (a) Compari-
son to the approach from Yang et al. [104] that represents protein sequences with fixed-length vector
representations by training a Doc2Vec model on the UniProt database. Spearman correlation was
used as the evaluation metric. Performances were evaluated using five-fold cross-validation. (b)
Comparison to the Envision model [81] that represents a variant with 27 biological, structural, and
physicochemical descriptors. AUROC (area under the receiver operating characteristics) was used
as the evaluation metric to assess the ability of the model in identifying variants with improved
function compared to the wild type. Relative improvements achieved by ECNet over the Envi-
sion model were shown in the bar plot. Performances were evaluated using ten trials of five-fold
cross-validation. The bar plot represented the mean±SD of the data.

Next, we compared ECNet to other sequence modeling approaches for mutational effects

prediction on a larger set of DMS datasets previously curated [65]. We first compared it

to three unsupervised methods, including EVmutation [78], DeepSequence [65], and Au-

toregressive [106]. These methods trained generative models on homologous sequences and

predicted the mutation effects by calculating the log-ratio of sequence probabilities of mu-

tant and wild-type sequences. As expected, ECNet, predicting the mutation effects using a

supervised predictor, outperformed these methods across almost all proteins (Figure 2.3a),

compared to EVmutation (median difference in Spearman correlation ∆ρ=0.216), DeepSe-

quence (median ∆ρ=0.196), Autoregressive (median ∆ρ=0.165). There were only two pro-

teins on which ECNet did not clearly outperform other unsupervised methods. This is

likely due to the relatively small number of function measurements available that we can

use to train the supervised predictor (1777 and 985 measurements, respectively; median:
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2721 across all proteins). We expect that a more regularized prediction model will achieve

improved prediction performance for proteins with a small set of function measurements.

We also compared ECNet to two supervised methods. One is TAPE that uses the sequence

representations learned by the protein language model [21] as input to train a neural network

that has the identical model architecture as ECNet. The other is UniRep [66], which uses

the output of its own language model to train a top model based on ridge regression. We

found that ECNet, by combining global LM representations, local evolutionary represen-

tations, and the raw sequence as input, achieved higher correlations than TAPE (median

∆ρ=0.089) and UniRep (median ∆ρ=0.109) that used LM representations alone for nearly

all proteins (Figure 2.3b). We also performed an ablation analysis to dissect the performance

of each representation component in our model’s input and found that a model using joint

representations outperformed a model using any individual representation (Supplementary

Figure B.3). Furthermore, we simulated experiments where ECNet was trained on noisy

training data and tested on noise-free data. We found that ECNet was robust against data

noise (Supplementary Figure B.4). For example, ECNet’s test correlation only decreased by

2% when the training data was perturbed by 10%. In contrast, a simple sequence repre-

sentation such as one-hot encoding was impacted severely by data noise. Overall, tested on

a large set of DMS data, ECNet significantly outperformed other sequence modeling meth-

ods, either unsupervised or supervised (Figure 2.3c; one-sided rank-sum test P < 10−5),

demonstrating its superior ability in predicting the fitness landscape of protein variants.

In addition to evaluating ECNet’s performance of predicting fitness across all variants

as shown above, we further designed an experiment to assess ECNet’s ability to prioritize

high-performing variants. To this end, we trained an ECNet model and applied it to predict

and rank all variants in the randomly split test set based on their predicted fitness. We

then calculated the fraction of the true top 100 variants that were ranked in the top K

predictions of ECNet. This experiment simulated the process in directed evolution where

we want to identify and synthesize the most promising variants for screening, given a se-

quencing budget of K variants [107]. On three DMS datasets of avGFP, GB1, and Pab1, we

found that ECNet achieved higher recall (Supplementary Figure B.5a) and more efficiently

discovered the variant with the highest fitness (Supplementary Figure B.5b) than UniRep

and EVmutation. ECNet also achieved a 15–50× efficiency gain over a random sampling

approach (Supplementary Figure B.5c), which is a widely used strategy in current directed

evolution workflows. These results suggest that ECNet is an effective method to retrieve

high-ranking variants for protein engineering and can potentially improve the efficiency of

directed evolution in the laboratory.

As a supervised model, the performance of ECNet can be limited when the available DMS
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Figure 2.3: Comparisons to other sequence modeling approaches for mutation effects
prediction. (a) Comparisons to three unsupervised generative models, EVmutation, DeepSe-
quence, and Autoregressive. (b) Comparisons to two supervised models (UniRep and TAPE) that
use a pre-trained protein language model to learn protein sequence representations and fine-tunes
a supervised predictor using functional measurements. (c) Pairwise comparisons between ECNet
and other methods. Each data point represents the performance on the DMS data of a protein
and the dot size is proportional to the number of homologous sequences of the protein. Spearman
correlation was used as the evaluation metric for all results in this figure. One-sided rank-sum test
was used to test the statistical significance.

data is too scarce to train an accurate predictor. To address this challenge, we further built

an unsupervised version of ECNet model that does not require any DMS data for training but

is able to produce reasonably accurate predictions. Inspired by protein language models, we

built unsupervised ECNet by training it on homologous sequences of the protein of interest

using the language model objective. The predicted probability of an amino acid at a position
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was used as the proxy of fitness prediction (“Methods”). Tested on four DMS studies covering

ten viral protein strains, unsupervised ECNet achieved an average Spearman correlation of

0.37 (Supplementary Figure B.6). This unsupervised variant of ECNet is particularly useful

when the target protein is novel and has very few available DMS data. For example, we

observed that unsupervised ECNet achieved reasonably good performance (mean Spearman

correlation 0.36; Supplementary Figure B.7) on the DeepSequence dataset without using any

DMS data as the supervised signal. In addition, using a small number of DMS data (e.g., 25%

of available data of each protein) to train a supervised ECNet model substantially improved

the prediction performance (mean Spearman correlation 0.54; Supplementary Figure B.7),

and using the full DMS data further boosted the results (mean Spearman correlation 0.71;

Supplementary Figure B.7). We thus expect that unsupervised ECNet can select promising

variants for screening in the first round of directed evolution, after which the screening data

can be used to train a supervised ECNet for later rounds to improve the model accuracy

and prioritize improved variants.

2.4.2 Generalization to higher-order variants from low-order variants data

Construction and screening of higher-order variants can require a significant amount of

experimental effort and time. As a result, fitness measurements of single mutants were more

prevalent in existing DMS studies as compared to those of double or higher-order mutants. It

is thus highly desired in protein engineering that a machine learning model trained on fitness

data of low-order variants can also accurately predict the fitness of higher-order variants.

As such, the model can fully leverage the fitness data of screened low-order variants and

prioritize higher-order variants that are likely to exhibit improved properties for the next

round of directed evolution.

We thus assessed ECNet’s performance on predicting the fitness of higher-order vari-

ants when only lower-order data were used for model training. We collected the fitness

measurements of both single and double mutants of six proteins from previous DMS stud-

ies [79, 89, 90, 108, 109, 111]. We then trained our prediction model using single mutant

data only and tested its performance on double mutants. ECNet achieved Spearman cor-

relations ranging from 0.73 to 0.94 for the six proteins and outperformed the TAPE and

the EVmutation methods (Figure 2.4a), suggesting its generalizability to the prediction of

higher-order variants from low-order variants data. We also observed that the increased

diversity of fitness landscape in the training data improved the prediction performance. For

example, to predict the fitness of quadruple mutants of the avGFP protein53, we trained

separate models using the fitness data of single, double, triple, or all three orders of mutants.
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The test results suggested that a model trained on higher-order mutation data (from single

to triple) achieved an increasing prediction performance, and the union of all-order muta-

tion data further improved the prediction (Figure 2.4b). To further assess ECNet’s ability,

we used orthogonal data containing sequences of 146 TEM-1 variants that are known to be

inhibitor-resistant (“Methods”). Sequences in this data contain two to ten (mean 3.3) amino

acid substitutions compared to the TEM-1 protein. Based on these sequences, we generated

ten times more random variants by enumerating all mutation combinations restricted to

the positions where mutations were introduced in the 146 variants (“Methods”). We then

trained our model on fitness data of TEM-1 single mutants data and used it to predict the

fitness of the 146 TEM-1 variants as well as the randomly generated variants. We found that

ECNet distinguished the inhibitor-resistant variants from the random variant background

(Figure 2.4c; mean predicted fitness 0.79 vs. 0.48; one-sided rank-sum test P < 10−5). This

orthogonal validation further demonstrates the generalizability of ECNet, even trained on

single mutants data, to the prediction for higher-order mutants.

It was shown that mutations within the sequence can have non-independent effects (epis-

tasis) on fitness [86, 112]. The double mutant fitness fij may not always be equal to the

sum of constituent single mutant fitness fi + fj, where f ’s are the (log-transformed) exper-

imentally measured fitness of variants. Epistasis (ε) is quantified as the difference between

the experimentally measured fitness and the expected fitness: ε = fij − (fi + fj). To ana-

lyze whether ECNet captures the interdependencies between mutations, we correlated the

observed epistasis ε with predicted epistasis ε̂, which is defined as ε̂ = f̂ij − (f̂i + f̂j) where

f̂ ’s are predicted fitness. Compared with EVmutation that explicitly models epistasis using

a generative model, the epistasis predicted by ECNet better correlated with the observed

epistasis (Figure 2.4d; one-sided rank-sum test P < 10−5). The epistasis captured by ECNet

was also more accurate or comparable to that of TAPE (Figure 2.4d). These results suggest

that ECNet captured the residue dependencies within sequences more accurately, and thus

resulted in the superior prediction performances reported above.

2.4.3 Engineering of TEM-1 beta-lactamase using ECNet

To experimentally validate its utility in protein engineering, we applied ECNet to priori-

tize new higher-order TEM-1 β-lactamase variants that are likely to have improved fitness

compared to the wild type. We trained ECNet using DMS data reported in previous stud-

ies [90, 110]. The datasets curated the fitness measurements of nearly all point-mutation

variants and 12% of possible consecutive double-mutation variants of TEM-1. We performed

in silico mutagenesis for several function-related sites of TEM-1curated in the literature and
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Figure 2.4: Accurate prediction of higher-order variants using a model trained on
lower-order variants. (a) Prediction of the fitness of double mutants. For supervised meth-
ods (ECNet and TAPE), the prediction models were trained using fitness measurements of single
mutants. (b) Prediction of quadruple mutants of avGFP using models trained on single, double,
triple, and all three types of mutants. (c) The predicted fitness values of inhibitor-resistant TEM-1
variants (n = 146) were significantly higher (one-sided rank-sum test P = 5.1×10−32) than those of
randomly generated background variants (n = 1460). (d) Spearman correlation of experimentally
measured epistasis and predicted epistasis for double-mutation variants of GB1 (n = 4455), RRM
(n = 2700), TDP43 (n = 5166), TEM-1 (n = 841), WW (n = 1680), and FOSJUN (n = 3072).
In comparison to EVmutation, the Spearman correlations achieved by ECNet were significantly
higher for all six proteins (one-sided rank-sum test P values: GB1: 6.7× 10−72, RRM: 4.7× 10−35,
TDP43: 4.0× 10−7, TEM-1: 1.8× 10−18, WW: 6.7× 10−17, FOSJUN: 1.0× 10−80). In comparison
to TAPE, ECNet was comparable for proteins RRM, TEM-1, and WW and achieved significantly
higher correlations for proteins GB1, TDP43, and FOSJUN (one-sided rank-sum test P values
2.4 × 10−19, 4.2 × 10−9, and 2.2 × 10−51, respectively). In box plots, the midline represents the
median, the lower and upper hinges of the boxes correspond to the 25th and 75th percentiles, and
the whiskers extend to 1.5 times the interquartile range from the hinges. The asterisk symbol ?
indicates P values < 10−5.

their higher-order recombinations (“Methods”). We then applied ECNet to predict the fit-

ness for all variants generated from the in silico mutagenesis. After removing structurally

unstable variants, we selected 37 variants that were ranked at the top by either the stan-

dard ECNet model or an ensemble version of ECNet, which averages predictions of multiple

replicates of ECNet models (“Methods”). The 37 top-performers were novel TEM-1 variants
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and did not overlap with any variants in our training data or functional TEM-1 variants we

collected from the literature. Despite that the training data only covered single and con-

secutive double mutants, these 37 variants sampled a diverse combination of mutation sites

and contained higher-order mutants ranging from 2 to 6 mutations (Supplementary Data 2

of Luo et al. [34]).

We created those 37 variants and nine previously reported TEM-1 mutants which had

demonstrated strong resistance against ampicillin to serve as positive controls [90, 110] (Sup-

plementary Data 1 of Luo et al. [34]). We plated the library containing these 37 variants

and positive controls on LB agar plates with ampicillin of various concentrations (300, 1500,

and 3000 µg/mL) to test their resistance capacity against ampicillin. Further, PacBio se-

quencing was performed to determine the relative abundance of these variants before and

after selection, as a proxy of their fitness (Figure 2.5a; “Methods”). The fitness of each mu-

tant at a certain ampicillin concentration was calculated based on the ratio of the relative

abundance of the mutant to wild-type TEM-1 in the plate with the related concentration

of ampicillin and the relative abundance of the mutant to wild-type TEM-1 in the plate

without ampicillin (“Methods” and Supplementary Data 2 of Luo et al. [34]). We observed

that most of the variants prioritized by ECNet demonstrated improved fitness as compared

to the wild type (Figure 2.5b). The improvements were observed at various concentrations

of ampicillin (300, 1500, and 3000 µg/mL) and were reproducible across different replicates.

Notably, ECNet has identified variants that improved the wild-type fitness by up to ∼8-fold,

which was substantially higher than the best performers we had in the training data (positive

controls in Figure 2.5b). We also found that the ensemble model of ECNet achieved robust

predictions, with a mean hit rate (fraction of predicted variants with fitness higher than the

wild type) 0.52, 0.91, and 0.94 for concentrations 300, 1500, and 3000 µg/mL, respectively

(Figure 2.5c).

Despite being trained on the data of single mutants and consecutive double mutants,

ECNet prioritized novel and higher-order TEM-1 mutants that showed improved resistance

against ampicillin. The validation results suggested that the evolutionary contexts enable

ECNet to discover higher-order mutants that have not been observed in the training data.

The results also demonstrate the potential of ECNet to be integrated into the existing protein

engineering workflows to guide the discovery of enhanced variants.

2.5 DISCUSSION

A critical challenge in machine learning-guided protein engineering is the development

of a machine learning model that accurately maps protein sequences to functions for un-
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Figure 2.5: ECNet enables the rapid engineering of TEM-1. (a) The workflow of using
ECNet to predict enhanced TEM-1 variants. The ECNet model was trained on fitness data of
single and consecutive double TEM-1 mutants and applied to prioritized higher-order mutants;
top-ranked TEM-1 variants were constructed and their fitness (resistance against ampicillin) was
measured (DMS: deep mutational scanning; NGS: next-generation sequencing). (b) Fitness values
of predicted TEM-1 variants at different ampicillin concentrations. Results from six replicates
are shown. Fitness values of variants prioritized by an ensemble version of ECNet (averaged
predictions of multiple replicates of ECNet models) are colored separately. Top-performing single
or consecutive double mutants in the training data are labeled as positive controls. The Black
dashed line represents the fitness of wild-type TEM-1. (c) Hit rate (fraction of predicted variants
with fitness higher than the wild type) of the ensemble ECNet model. Each point represents a
replica (n = 6 replicates in total). The midline of box plots represents the median, the lower and
upper hinges of the boxes correspond to the 25th and 75th percentiles, and the whiskers extend to
1.5 times the interquartile range from the hinges.

seen variants. While models have been developed for the qualitative classification of pro-

tein sequences into function classes, such as those in the Critical Assessment of Functional

Annotation (CAFA) challenge [60], in protein engineering prediction models are required

to provide a more fine-grained characterization of protein functions, which distinguishes the

quantitative function levels of closely related sequences (e.g., single-site mutants of wild-type

protein with sequence similarity > 99%). The function prediction in protein engineering is

also different from predicting the deleteriousness [113] or instability [84] of variants—to assist

protein engineering, the machine learning model needs to prioritize variants that are not only

structurally stable and non-deleterious but also with enhanced properties. Furthermore, as

the protein sequence space is tremendous in size, it is desired to have a machine learning
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model that navigates the fitness landscape effectively and can generalize from regions of

low-order variants to regions in the landscape where higher-order variants with improved

function may exist. All these factors render it uniquely challenging to develop a machine

learning model that can be used to guide protein engineering strategies such as directed

evolution and rational design.

In this work, we have presented a high-performance method, ECNet, that predicts protein

function levels from sequence to facilitate the process of protein engineering. Supervised

machine learning models have been explored recently to predict protein sequence-function

relationships [107, 114, 115, 116]. As in those studies, in this work, we mainly focused

on improving the protein function by introducing point mutations, while introducing inser-

tion/deletion was also explored in other work [106]. Our machine learning model uniquely

used a biologically-motivated sequence modeling approach to learn the sequence-function

relationship, leading to superior performances in predicting the fitness of protein variants.

Benchmarked on a large set of deep mutational scanning studies, ECNet outperformed mul-

tiple existing machine learning models for protein engineering. Further, ECNet accurately

captures the epistasis effects of mutations within protein sequences and can be generalized

to predict higher-order mutants’ functions by learning from the data of lower orders. We

applied ECNet to engineer TEM-1 β-lactamase and experimentally validated that it suc-

cessfully identified variants with enhanced ampicillin resistance with high hit rates.

ECNet’s prediction performance is impacted by the MSA characteristics and DMS data

properties. For example, ECNet predicts better for proteins with more homologous se-

quences (Supplementary Figs. 8 and 9a), for sites that are more conserved within a protein

(Supplementary Fig. 9b), and for proteins that have a more complete DMS dataset (Supple-

mentary Fig. 9c-d). In our additional tests that used both a sequence site-wise strategy and

a per-site AA-wise train/test split strategy61 to assess ECNet’s generalizability, we found

that, despite the challenging setting, ECNet still outperformed the DeepSequence when pre-

dicting for new mutation sites (Supplementary Fig. 10). Further investigation revealed

that the exploration-exploitation trade-off of training data also influenced the model perfor-

mance (Supplementary Fig. 11). This implies that the design of more effective training data

should be taken into account when developing ML algorithms to assist protein engineering,

especially when the experimental test budget is limited62.

We expect ECNet to be a practical tool for ML-guided protein engineering. In a round of

directed evolution, the sequence-to-function model can be applied, potentially coupled with

other sequence design algorithms63,64,65, to select the next set of variants to screen. In

addition, given its generalizability to higher-order mutants from lower-order mutants, the

model can fully leverage the screening data of low-order mutants, including that of both
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improved and unimproved variants, generalize to distant regions in the fitness landscape

where higher-order variants with improved properties may exist, and prioritize promising

higher-order mutants to screen in the next round, in which the screened data can be used to

further improve the model, hereby forming an iterative loop of directed evolution to discover

improved variants.
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Chapter 3: Representation Learning of Protein Structures

The amino acid chain of a protein can fold into a structure in the 3D space, which is known

as protein folding and driven by the physicochemical properties of the arranged amino acids.

The 3D shape is important for a protein to fulfill a certain function, such as binding to

a substrate. In this chapter, we present a method for representation learning of protein

structures and show that integrating the 3D structure of proteins improves prediction of

protein binding, for which 3D geometric information better characterizes the activity than

sequence information.

3.1 INTRODUCTION

Proteins serve as drug targets for therapeutic purposes. It was estimated that only 11% of

human proteome can be targeted by drugs or small molecules, leaving a large proportion to

be explored for therapeutic opportunities [12]. A group of proteins called kinase is of partic-

ular interest as drug targets because they are tractable in drug development and have diverse

pharmacological implications in a wide range of diseases, such as cancers and infectious dis-

eases [117, 118]. Protein kinases present high evolutionary conservation in sequence and

structure. Most of the kinase inhibitors, however, bind to conserved ATP-binding pockets

of kinases, thus resulting in extensive target promiscuity [119]. Chemical compounds that

inhibit a single kinase are still rare despite significant research efforts devoted to target-based

drug discovery in recent years [120]. The multi-target activities contribute to therapeutic

responses as well as adverse off-target or toxic consequences. Mapping out the target binding

profiles is therefore critical to uncover new therapeutic effects and to better predict and man-

age possible adverse effects. Unfortunately, even with automated high-throughput profiling

assays, it is still infeasible to exhaustively measure the compound-target binding activities

because of the enormously large chemical space.

Computational approaches, especially machine learning (ML) methods, have emerged as

alternative solutions to accelerate the mapping of compound-protein interaction profiles [42].

Early studies include several bipartite graph-based methods that formulated the prediction

problem as a recommendation system-like task [36, 121, 122, 123, 124]. These methods

computed the similarity between compounds or proteins based on simple features, e.g.,

molecule fingerprints or sequences alignment scores, so as to predict the interaction of new

protein-drugs based on known, similar proteins and drugs. With the rapid advances of

deep learning in recent years, a line of studies [125, 126, 127, 128, 129] leveraged deep neural
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networks to automatically learn features from raw representations of compounds and proteins

in a fully data-driven way, as known as end-to-end learning. The data representations widely

used by deep learning methods are 1D features such as protein sequences and molecule

SMILES strings [125, 126]. Recent approaches suggested that incorporating 2D features,

including molecular graphs and protein contact maps, could clearly boost the prediction

accuracy [127, 128, 129, 130]. While the compound-protein binding, in essence, is a physical

process in the three-dimensional space, there are very few existing studies incorporating 3D

structure information to further improve the protein-drug binding prediction, in part due to

the limited availability of protein structure data, compared to sequence data, and the lack of

predictive models that can effectively utilize 3D data for binding prediction. Fortunately, the

bottleneck of data availability becomes less severe for kinase proteins due to their biological

importance. In fact, kinases are one of the most representative protein families in the Protein

Data Bank (PDB) database [131] and the number of solved kinase structures keeps increasing

at a fast rate [132, 133]. In parallel, the recent progress in graph deep learning offers new

solutions to effectively model 3D data such as the PDB structures of proteins. Jointly,

there are great opportunities and pressing needs to develop new methods that integrate 3D

structure information to improve predictions of kinase-drug binding affinity.

The primary importance of ML approaches for compound-protein binding prediction is to

accelerate the discovery of compounds or targets. With an accurate ML predictive model,

researchers can perform virtual screening by applying the model to generate hypotheses

about binding activities and select candidates with the best-predicted activities for down-

stream validation. However, as data-driven approaches, those methods are largely impacted

by the intrinsic noise and bias in the data and susceptible to pathological failures in out-of-

distribution regimes. To address this issue, a solution would be to quantify the uncertainty

of model predictions as a confidence assessment in support of human decisions, as higher

novelty often comes with a higher risk of failure. Uncertainty estimation started to be rec-

ognized as a critical property of ML algorithms [134, 135, 136], yet the majority of existing

methods of compound-protein binding prediction only provide the point-estimate prediction

of affinity without quantifying the uncertainty [125, 126, 127, 128, 129]. In the context of

compound or target discovery, simply choosing the top candidates for downstream validation

only based on point-estimate predictions may lead to false positives. Hie et al. [130] took

the initiative to introduce uncertainty estimation for prioritizing strong-binding compound-

protein pairs using the Gaussian process, but quantifying uncertainty with more expressive

deep neural networks has not been explored for kinase-drug binding prediction.

Here, we develop KDBNet, a deep learning algorithm that integrates 3D structure informa-

tion for predicting the binding affinity of kinase-drug binding as well as estimating the predic-
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tion uncertainty. KDBNet represents the 3D protein and molecule structure data as graphs

and uses graph neural networks to learn structure representations from binding pocket struc-

tures of proteins and atom coordinates of molecules. Compared to other algorithms that only

consider 1D or 2D representations of proteins and compounds, KDBNet learns more explicit

features from 3D input data directly, which better respects the nature of binding activities

happening in the 3D space. In contrast to recent methods that relied on solved protein-

compound binding complex to predict the binding affinity [137, 138, 139, 140, 141, 142],

KDBNet is more flexible in that it only requires separate structures rather than a binding

complex as input, thus it can be applied to large molecule libraries and a wide range of

proteins for which their binding complex have not been solved. We built KDBNet as an en-

semble model of multiple replicates of individual neural networks, which not only improves

the prediction accuracy and robustness but also allows us to estimate the uncertainties of

model predictions. We further applied an uncertainty recalibration technique to refine the

uncertainty estimates, improving KDBNet’s utility in applications of ML-guided discovery

of proteins and targets. Benchmarking on public datasets of kinase-drug binding affinity

measurements, we observed that KDBNet achieved substantially more accurate predictions

than existing models that only used 1D or 2D representations of proteins and drugs. Ex-

periments also suggested that KDBNet’s uncertainty estimates were largely consistent with

respect to prediction errors, meaning that predictions with lower uncertainty are often more

accurate. Furthermore, we found the uncertainty estimates were also well-calibrated, pro-

viding statistically meaningful confidence intervals of individual predictions. Finally, we ex-

tended KDBNet into a Bayesian optimization framework and demonstrated that it enables

data-efficient active learning and accelerated exploration and exploitation of strong-binding

kinase-drug pairs.

3.2 KDBNET: CALIBRATED DEEP LEARNING FOR KINASE-DRUG BINDING
AFFINITY PREDICTION

In this work, we develop KDBNet (kinase-drug binding neural network), a deep learn-

ing model that integrates 3D structures to predict binding affinities between kinases and

small-molecule compounds. We focus on this particular group of proteins (kinase) due to

its pharmacological implications for therapeutics of many diseases such as cancer [12, 143]

and the availability of comprehensive compound-kinase binding datasets [144, 145]. As an

overview (Figure 3.1), KDBNet receives three-dimensional structures of proteins and com-

pounds and represents them as two graphs, where the graph’s nodes are protein residues

or molecule atoms, and the edges encode residue contacts or atom distance. A set of fea-
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tures, reflecting the spatial or chemical properties of the input protein and compound, are

also derived for each node and edge in the protein and molecule graphs. Next, KDBNet

uses two graph neural networks to learn structure representations of the input kinase and

compound, which are then combined to predict the binding affinity through another fully

connected neural network. We further equip KDBNet’s prediction with uncertainty estima-

tion by training an ensemble of models and estimating the uncertainty using the variance of

individual models’ predictions.

Figure 3.1: Overview of KDBNet. KDBNet is a neural network that integrates protein 3D
structure and compound 3D structure for predicting compound-protein binding affinity. KDBNet
derives a set of features, including sequence, evolutionary representations, and 3D-invariant geo-
metric features, based on the input 3D structure and uses a graph neural network to learn structure-
aware representations of a protein. For the input compound, KDBNet uses a 3D-equivariant graph
neural network to directly learn structure representations from the compound’s coordinates in the
3D space. The representations of the input protein and are then used to predict the binding affinity
as well as the uncertainty of the prediction.

3.3 METHODS

3.3.1 Representation of protein structure

The human genome encodes more than 500 protein kinases that share a similar fold (3D

structure) with a small N-terminal lobe and a large C-terminal lobe, consisting of several

conserved α-helices and β-strands. Connecting the two lobes is a key activation loop formed

by 20-30 residues, typically starting with the DFG motif (Asp-Phe-Gly) and ending with

the APE motif (Ala-Pro-Glu). This activation segment primarily coordinates the substrate-

binding (e.g., to small-molecule compounds) and enzymatic activities of protein kinases.
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Given the crucial role of protein structure in binding activity, we hypothesize that it would

be more informative to incorporate 3D protein structure data to predict kinase-drug binding

affinity, compared to predicting only from protein sequences [125, 129].

The 3D PDB structure of a protein is given as 3D coordinates of the backbone C = {ci ∈
R3}Ni=1, where N is the number of residues and ci is the coordinate of the Cα atom of the

i-th residue. We represent the protein structure as a graph Gp = (Vp, Ep) where nodes Vp are

residues and edges Ep indicate residue contacts. In this work, we defined the residue contact

using a distance cutoff of 8Å between Cα atoms [26].

To make the structure graph representation more informative, we associate every node or

edge in the graph with a feature vector. Intuitively, we want our node and edge features to

be i) invariant to rotation and translation so that the features will not depend on coordi-

nate systems defined in different PDB structure inputs, and ii) informative about the local

structure, as unique structural motifs may lead to distinct binding affinities. Here, we derive

a set of invariant spatial features following a previous study [146]. We further extended

their approach to include other features that encode sequence and evolutionary properties

of residues. The constructions of node and edge features are detailed below.

Node features: For every residue, we build three types of features: i) sequence feature,

ii) geometric feature, and iii) evolutionary feature. The sequence feature is a one-hot rep-

resentation to indicate the amino acid (AA) type (out of the total 20 possible AAs) of the

residue. For geometric features, we computed the three dihedral angles (φi, ψi, ωi) based on

the backbone coordinates of residue i. These angles were encoded as a vector of cosine and

sine values: vi = (sinφi, sinψi, sinωi, cosφi, cosψi, cosωi). Lastly, for evolutionary features,

we ran ESM [67], a recent protein language model trained on 250 million sequences, to gen-

erate the embedding for each residue. The ESM embeddings have been shown to encode

structural, functional, and evolutionary properties of the protein and can improve a wide

range of protein-related prediction tasks, such as function and structure prediction [34, 67].

Those three features are concatenated together as the node feature for a residue.

Edge features: To characterize the local structure surrounding residue i, we create edge

features that describe the spatial relationships between residue i and its neighbors (residues

j’s). In particular, we compute an orientation matrix Oi that defines the local coordinate

frame for residue i:

Oi = [bi,ni, bi × ni], where ui =
ci − ci−1

‖ci − ci−1‖
, bi =

ui − ui+1

‖ui − ui+1‖
, ni =

ui × ui+1

‖ui × ui+1‖
,

(3.1)

where ci ∈ R3 is the coordinates of residue i. For an edge edge (i, j) we consider an edge rep-

resentation that reflects the local distance, direction, orientation, and relative positions [146]:
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eij =

(
RBF(‖cj − ci‖), OT

i

cj − ci
‖cj − ci‖

, q(OT
i Oj), Epos(cj − ci)

)
, (3.2)

The edge features eij has four components: (i) The first part RBF(‖cj −ci‖) is the distance

encoding embedded into radial basis functions (RBFs). We use 16 RBFs with centers evenly

spaced between 0 and 8Å. (ii) The second term is the direction encoding that corresponding

to the relative direction of cj in the local frame of residue i. (iii) The third term is the

orientation encoding of the quaternion representation q(·) of the spatial rotation matrix

OT
i Oj. (iv) The last term Epos(cj − ci) encodes the relative distance and direction between

residues i and j. We used the relative positional encoding [147], an extension of the positional

encoding introduced in the Transformer model [99]. The relative positional embedding

represents the vector pointing to cj from ci through a sinusoidal function. We keep the sign

of the distance vector cj − ci because protein sequence structures are generally asymmetric.

3.3.2 Representation of molecule structure

KDBNet also incorporates the 3D molecular structure of compounds to predict binding

affinities. Similarly, given the 3D coordinates of atoms in the molecule, we represent the

molecule structure as a graph Gd = (Vd, Ed) where nodes Vd are atoms of the molecule

and edges Ed are defined for a pair of atoms if their distance is less than 4.5Å [148]. We

found in local tests that, compared to simply defining edges based on the actual chemical

bonds of the molecule, using the distance cutoff to define edges yielded more expressive

representations and better performance. As molecules do not have a natural backbone as in

proteins, we do not derive the angle, orientation, and direction features for atoms as we did

in the protein graph. Instead, we directly use the 3D coordinates of atoms or edge vectors

as node features and edge features, allowing the graph neural network in KDBNet to learn

meaningful geometric representations of the molecule in a data-driven way. The node and

edge features of the molecule structure are detailed below.

Node features: For every atom, we include a vector-valued feature and a scalar-valued

feature as its node feature. The vector feature is the atom coordinates ci ∈ R3. The scalar

feature is a list of 66 descriptors of chemical properties [128, 129, 141], including the atom

type, bond degree, number of hydrogen bonds, number of implicit hydrogen bonds, and

whether the atom is aromatic (Supplementary Table A.4).

Edge features: For an edge between atoms i and j, we also create a vector feature and

a scalar feature. The vector feature is the unit vector in the direction of cj − ci, and the

scalar feature RBF(‖cj − ci‖) is the pairwise distance embedded into 16 Gaussian RBFs
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with centers evenly spaced between 0 and 4.5Å.

3.3.3 KDBNet model architecture

Now, we introduce the neural network architecture of KDBNet. The major components of

KDBNet are two graph neural networks (GNNs) to learn structure representations from the

input protein and compound, respectively. The representations produced by the two GNNs

are then passed to a fully connected neural network to predict the binding affinity between

the input protein and compound.

Protein graph neural network For the protein GNN, we use Graph Transformer [149],

an effective GNN architecture adapted from the vanilla Transformer model for text data [99],

to model the kinase structure. Given the protein structure graph Gp = {Vp, Ep}, a graph

transformer model builds L graph convolution layers. The i-th layer is a non-linear transfor-

mation function that transforms node i’s embedding h
(`−1)
i ∈ Rd`−1 to h

(`)
i ∈ Rd` for i ∈ [N ],

` ∈ [L], where d` is the embedding’s dimension at layer `, N is the number of nodes in Gp,
and L is the total number of layers in the GNN. In particular, when ` = 0 the embedding

h
(0)
i ∈ Rd0 is just the node feature of residue i. In addition, we have edge features of each

edge (i, j) denoated as eij ∈ Rde .

Formally, in the i-th Graph Transformer layer of the GNN, the hidden representation h
(`)
i

is updated by performing a message passing between node i and its neighbors

h
(`)
i = W

(`)
1 h

(`−1)
i +

∑
j∈N (i)

αi,j(W
(`)
2 h

(`−1)
j + W

(`)
3 eij), (3.3)

where N (i) is the set of neighbor nodes of i in the graph, W
(`)
1 ∈ Rd`−1×d` , W

(`)
2 ∈ Rd`−1×d` ,

and W
(`)
3 ∈ Rde×d` are learnable parameters of the GNN, and αi,j is the attention weight

used to aggregate messages. The weights αi,j are computed using self-attention:

αi,j = softmax
(

[(W
(`)
4 h

(`−1)
i )>(W

(`)
5 h

(`−1)
j + W

(`)
3 eij)]/

√
d`

)
, (3.4)

where W
(`)
4 ∈ Rd`−1×d` and W

(`)
5 ∈ Rd`−1×d` are learnable parameters and d` is the length of

vector h
(`)
i .

We stacked three Graph Transformer layers and used the Leaky ReLU activation func-

tion [150] between two adjacent layers. After the final layer, we use the global add pooling

operation as the readout function to aggregate all node representations into a summary

representation hp ∈ R256 of the input protein: hp = ADD({h(L)
i |i = 1, . . . , N}).

46



Molecule graph neural network Given the molecule structure graph Gd = {Vd, Ed}, we

also use a GNN to learn the representation for the input molecule. Recall that in graph Gd,
we associate each node and edge with both geometric vector features (e.g., 3D coordinates)

and scalar features (e.g., descriptors of chemical properties). We thus use a specialized

layer, named geometric vector perceptrons (GVPs) [151], to build the molecule GNN. The

key advantage of GVP is that it has special consideration for 3D data in design and allows

KDBNet to learn structure representations directly from the raw atom coordinates in R3,

without requiring the construction of features invariant to rotations and translation, such

as relative direction embeddings. In the GNN, the GVP layer can be used as a drop-in

replacement of MLPs (multi-layer perceptrons), such as W
(`)
k in the protein GNN (Eqn. 3.3).

Formally, we use the tuple vi = (vvi ,v
s
i ) to denote the node feature of atom i, where

vvi ∈ Rµ×3 is a list of vector features in R3 and vsi ∈ Rν is a list of scalar features. The edge

feature eij = (evij, e
s
ij) of edge (i, j) has similar meaning. The molecule GNN transforms the

node and edge features through L graph convolution layers to obtain the representation of the

input molecule. Specifically, in the i-th layer, each node aggregates “messages” (embeddings)

from neighboring nodes and edges and then updates its own representations:

h
(`)
i = h

(`−1)
i + g

h
(`−1)
i +

1

|N (i)|
∑
j∈N (i)

m
(`)
ji

 , (3.5)

where g(·) is a sequence of three GVP layers, N (i) is the set of neighbor nodes of i in the

Gd, h(`)
i is the embedding of node i in layer ` (in particular, h

(0)
i = vi is the node feature),

and m
(`)
ji is the “message” passed from node j to node i, computed using another sequence

of GVP layers: m
(`)
ji = g(concat(h

(`−1)
j , eji)). Similar to the protein GNN, after the final

layer of the molecule GNN, we also apply the global add pooling operation to aggregate all

node representations into a scalar representation hd ∈ R128 of the input drug.

Prediction module and training details The two representations of protein and drug,

hp and hd, are first projected to dimension 128 using two fully connected layers with sizes

1024 and 128 and a dropout rate of 0.25. The two projected embeddings are then concate-

nated and passed to a 2-layer fully connected neural network with sizes 1024 and 512 and

a dropout rate of 0.25, followed by a single scalar output as the predicted binding affinity

between the input protein and drug. The training objective of KDBNet is to minimize the

mean squared error (MSE) between the predicted binding affinity and the true affinity value.

The model is trained using the Adam optimizer with a learning rate of 0.0005. Using inner-

loop cross-validation on the training data, we decided to use three layers with sizes 128, 256,
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and 256 for the protein GNN and three layers with uniform size 128 for the molecule GNN,

which were robust across different settings in our experiments. Other hyperparameters, such

as the dimensions of hidden layers, were also selected by performing a small-scale grid search

using nested cross-validation on training data only. We trained all models for 500 epochs.

3.3.4 Uncertainty quantification

From a practical perspective, it is desirable that a machine learning model can also provide

an associated uncertainty, in addition to the predicted affinity, so that researchers are able to

assess how reliable is the hypothesis and how likely it will succeed in experimental validation.

For that reason, we also equipped KDBNet with an uncertainty quantification module. This

was achieved by training an ensemble of M = 8 independent model replicates [134], which

has been widely demonstrated as an effective way to estimate uncertainty [152]. Specifically,

let ŷk(xi) be prediction given by the k-th individual model, where xi represents a kinase-

drug pair. KDBNet’s final prediction of binding affinity µ(xi) and its estimated uncertainty

σ(xi) are given by the mean and standard deviation of the individual model’s predictions:

µ(xi) =
1

M

M∑
k=1

ŷk(xi), σ(xi)
2 =

1

M

M∑
k=1

(ŷk(xi)− µ(xi))
2 (3.6)

KDBNet estimates the uncertainty by computing the standard deviation of predictions

given by individual neural networks in the ensemble. The standard deviation quantifies the

uncertainty within the predictive model, as known as epistemic uncertainty. It is possible

to extend KDBNet to quantify the uncertainty in the data, known as aleatoric uncertainty,

by modeling the affinity measurement as a Gaussian variable and decoupling the Gaussian

variance into epistemic and aleatoric uncertainties [134]. In addition to the miscalibration

area-minimizing approach used in the work, other calibration techniques [153, 154, 155]

for deep learning models can also be combined with KDBNet to calibrate the uncertainty

estimation. One limitation of KDBNet is the additional computation cost incurred due to the

training of multiple independent neural networks for the purpose of uncertainty estimation.

While this can be addressed by exploring the recent uncertainty quantification strategy

that only requires training a single model [156], in our current implementation, we trained

multiple independent neural networks in parallel on multiple GPUs, which has reduced the

training time that would have been required by a sequential training.
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3.3.5 Error curve at various uncertainty cutoffs

One way to evaluate the uncertainty estimation is by considering how well are they con-

sistent with the prediction error. A meaningful uncertainty estimation should produce low

errors on the subset of high-confidence predictions. We followed an evaluation scheme in

previous studies [156, 157] to test whether the estimated uncertainties correlate with pre-

diction errors, we sorted predictions ŷi in an order represented by index {ri}, such that ŷri
has the r-th highest estimated uncertainty (i.e., ŷr1 is the most uncertain prediction while

ŷrn is the most confident prediction with n being the total number of test samples). For

every value i, we computed the cumulative mean squared error (MSE) for the test samples

{yrj : j ≥ i}. This metric evaluates the model’s prediction accuracy at various confidence

cutoffs. For example, setting i = d0.5ne gives the MSE at the 50% confidence cutoff. We

repeated the evaluation with five independent trials and plotted the cumulative MSE as a

function of different confidence cutoffs.

3.3.6 Uncertainty recalibration

There are two mainstream definitions of regression calibration in the literature: confidence

interval-based calibration [153] and error-based calibration [154]. Under confidence-based

calibration, a model is said to be well-calibrated if e% of its predictions fall in the e%

predicted confidence interval (0 ≤ e ≤ 1) [153], while the error-based calibration defines

a well-calibrated model if its uncertainty estimate of a prediction, in expectation, equals

the prediction errors [154]. Several approaches have been proposed to recalibrate regression

models [153, 154, 155]. The general idea is to learn a post hoc transformation function,

which receives the model’s predicted uncertainties as input and outputs the transformed

uncertainty estimates that would be better calibrated. In our method, we used a simple yet

effective scaling approach [154, 158] to recalibrate the uncertainty estimates. Specifically,

we transformed the model’s output (µ(xi), σ(xi)) to (µ(xi), rσ(xi)), where r is the scaling

factor to be learned. Note that the model’s prediction of binding affinity µ(xi) does not

change. To learn the scaling factor r, we introduced an optimization problem where the

objective is to minimize the miscalibration area. The recalibration is a post hoc process,

meaning that the model’s predicted uncertainties are fixed and only r is optimized. As

suggested previously [153], the recalibration was performed on a held-out validation set that

has not been used for model training. We used Brent’s method [159] implemented in the

SciPy package [160] to solve this single-variable optimization.
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3.3.7 Calibration curve and miscalibration area

The ranking-based evaluation mentioned above does not take into account the actual val-

ues of uncertainty estimates. Another important and more strict criterion for uncertainty es-

timation is calibration, which relates to the magnitude of uncertainty estimates and assesses

whether the predicted probability distributions are consistent with the observed empirical

frequencies. The ideal can be illustrated by an intuitive example: if the well-calibrated

model predicts a x% confidence interval, empirically the true data points would fall within

this interval x% of the time. Having data points falling within the interval more or less x%

time corresponds to over- or under-confident uncertainty estimation.

To evaluate the calibration of uncertainty estimates, we followed a widely used procedure

used in previous studies [156, 157, 161]. We interpreted each prediction and its uncertainty as

the mean and variance of a Gaussian distribution. Given a confidence interval of level e, we

computed the x% confidence interval boundaries of each data point xi using the inverse CDF

function F−1
i of Gaussian distribution, i.e., Li = F−1

i (0.5 − e/2) and Ri = F−1
i (0.5 + e/2).

For a calibrated model, we would expect that the fraction of ground truth data points that

fall in that interval is e. To find the empirical or observed fraction, we count the fraction of

ground-truth data points falling in the interval, that is f̂e = |{yi|Li ≤ yi ≤ Ri}|. Plotting

f̂e against e for 0 ≤ e ≤ 1 gives a curve called calibration curve. The calibration curve of a

perfectly calibrated predictive model is the diagonal line. Therefore, to quantify the degree

of uncertainty calibration, we computed the area between the model’s calibration curve and

the parity line, which is called the miscalibration area. We repeated the evaluation with five

independent trials to obtain the mean calibration curve and miscalibration area.

3.3.8 Kinase structure and sequence

We consider both the structure and sequence of a kinase in KDBNet. Most protein kinases

share a common structural fold that consists of two lobes: an N-terminal lobe with five beta-

sheets and a C-helix, and a C-terminal lobe formed by six alpha-helices. Connecting the two

lobes is a flexible region that forms the ATP and substrate binding site. The activation loop

in this region, typically in a length of 20-30 residues, is crucial for binding activity. The same

protein kinase may have different conformations because the loop can fold into catalytically

active and inactive states. Therefore, there are multiple major structure conformations for

a protein kinase in the Protein Data Bank (PDB) database.

We first selected the representative PDB structure for a kinase. In a recent study [162],

Modi and Dunbrack define a classification and nomenclature for the active and inactive states
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of a protein kinase. The authors further released the Kincore database [163] that presents

the conformation classification for kinase structures in the PDB. For each kinase, we then

selected the conformation with the most PDB structures as the representative conformation

of this kinase. If that conformation has multiple PDB structures, we used the one with the

highest resolution and the lowest number of missing residues in the structure.

After selecting the representative PDB structure for each kinase, we obtained the pocket

of each structure by utilizing the KLIFS database [133]. Based on the analysis of 1200

kinase-ligand binding crystal structures, KLIFS defined a pocket formed by 85 residues

that cover the binding sites to a wide range of kinase inhibitors. We extracted the sub-

structure of the pocket from the PDB structure of each kinase. In KDBNet, we only used

this substructure, instead of the entire structure of the kinase, as the structure information

of a kinase to the model, because 1) residues in the pocket directly interact with the drug

molecule, largely determining the binding activity; and 2) structure elements outside the

pocket, i.e., the N- and C-terminal lobes, are relatively conserved across different kinases

and may not directly coordinate the binding as they are relatively far from the binding sites.

In total, we downloaded the pocket structure of 283 kinases.

The sequence of amino acids of the 85 residues in the binding pocket of a kinase was

obtained from its reference protein sequence in UniProt. We did not the associated sequence

in the PDB file because may contain missing or inaccurate residues. To do this, we mapped

the PDB pocket sequence to the full UniProt sequence using pairwise local alignment (score

matrix: BLOSUM62, gap open penalty: 10, and gap extend penalty: 0.5). We successfully

mapped 281 out of 283 structures to the UniProt sequences.

3.3.9 Kinase-compound binding datasets

For evaluation, we used two public datasets of experimental measurements of binding

affinity, Davis [144] and KIBA [145], which were widely used to benchmark previous meth-

ods [124, 125, 128, 129, 130]. The Davis study contains binding affinity measurements (Kd

values ranging from 0.1 to 10,000 nM) of kinase-compound pairs, while the KIBA dataset

derived a score to integrate three bioactivity values, including Ki, Kd, and IC50. We removed

compounds and kinases in both datasets that do not have 3D structures in PDB or Pub-

Chem databases (statistics in Tables A.3a and A.3b). Due to the importance of kinases in

therapeutics, we expect that more kinases will have a solved structure in the near future. We

obtained the Davis [144] and KIBA [145] datasets curated in the Therapeutics Data Com-

mons resource [164]. For kinases that have multiple mutant types in the Davis dataset, we

only keep the minimal Kd values (strongest binding), as suggested by the KIBA study [145].
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Raw Kd values in the Davis dataset were transformed to pKd values pKd = − log10(Kd/109)

to facilitate the model training as suggested by previous studies [125, 141]. For model train-

ing and MSE-based evaluation in this work, we used pKd as the binding affinity labels, but

for the evaluation of top acquisition experiment, we converted the labels back to the original

Kd values, consistent with a similar experiment performed in Hie et al. [130].

We used three train-test split settings to evaluate prediction performance: i) New-protein

split: 20% of kinases were completed withheld as the test set, which simulates the drug

repositioning scenario where the model predicts for unseen proteins; ii) New-Drug split: 20%

of drugs were completed withheld as test set, which simulates the drug discovery scenario

where the model predicts for unseen drugs; iii) Both-new split: 20% of kinases and 20%

drugs were completed withheld as test set, which simulates the scenario where the model

predicts for unseen proteins and drugs.

3.3.10 Baseline methods

We compared KDBNet to the following baseline methods.

DeepDTA. DeepDTA [125] is a deep learning model that receives 1D protein sequences

and 1d compound SMILES strings as inputs and uses two branches of convolutional neural

networks (CNNs) to process the protein and compound input, respectively. Embeddings

produced by the two CNNs are concatenated and passed to a multi-layer fully connected

neural network to predict binding affinity.

GraphDTA. GraphDTA [129] is a deep learning model that represents proteins by 1D se-

quences and compounds by 2D molecule graphs. GraphDTA has a similar model architecture

as DeepDTA but replaces the compound CNN with a graph neural network (GNN).

DGraphDTA. DGraphDTA [128] extends both DeepDTA and GraphDTA in that it uses

2D protein contact maps and 2D molecule graphs as input. For the model architecture,

DGraph uses two GNNs to learn features of the input protein and compound, respectively.

KronRLS. KronRLA [165] is a kernel-based method that predicts kinase-drug binding

affinity based on drug similarity and protein similarity. The drug similarities were computed

based on the Tanimoto distance of pairwise molecule fingerprints. The protein similarities

were computed using the normalized Smith-Waterman alignment score [124].

GP and GP-MLP. Both GP and GP-MLP [130] implement the Gaussian process regression

to predict kinase-drug binding affinity. GP directly uses the Gaussian process to predict the

affinity, while GP-MLP first uses a multi-layer perception (MLP) to fit the affinity and

then the Gaussian process to fit the residuals of MLP prediction. Both GP and GP-MLP

use language model-based protein sequence features [68] and graph neural network-based
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compound features [166] generated by independent pre-trained models.

3.4 RESULTS

We performed several evaluation experiments to show that KDBNet provides accurate

affinity predictions of kinase-drug binding as well as informative and calibrated uncertainty

estimation of the predictions. Furthermore, we demonstrated two applications of KDBNet,

including an active learning for data-efficient learning guided by uncertainties and Bayesian

optimization for accelerated discovery.

3.4.1 Accurate prediction of kinase-drug binding affinity

We first assess KDBNet’s performance in predicting kinase-drug binding affinity using the

Davis and KIBA datasets. We created three five-fold cross-validation settings to simulate

out-of-distribution scenarios where the training and test sets do not share any drugs or

proteins, or both (Figure 3.2a and Methods). We compared KDBNet with several state-of-

the-art methods for predicting kinase-drug binding affinity, including three deep learning-

based methods [125, 128, 129], a Gaussian process (GP)-based method [130], and a kernel-

based method [165]. Those baseline methods do not consider 3D structure information,

rather they only used 1D and 2D representations or pairwise similarities of compounds and

proteins (Methods).

The results of cross-validation experiments (Figures 3.2 and B.12) suggested that KDBNet

was consistently better than other methods in terms of several metrics including Pearson

correlation, Spearman correlation, and mean squared error (one-sided rank-sum test P <

10−3). The improvements achieved by KDBNet were also consistent across different split

settings. For example, on the new-protein test set, KDBNet received a Pearson correlation

of 0.77, in contrast with 0.52 and 0.58 for DGraphDTA and GP, respectively. Compared

with other methods, KDBNet also achieved higher Spearman correlation and lower MSE

in all settings. We had similar observations on the larger KIBA dataset, where KDBNet

still outperformed the baseline methods in three split settings and all metrics (Figure B.14).

The improvements of KDBNet mainly stem from the direct modeling of 3D structures of

protein and molecule in the neural network, confirmed by our ablation study where structure

data was dropped (Figure B.13). The 3D structure data provide more explicit information

related to the binding activity, which might not be fully reflected by the 1D or 2D features

used by the baseline methods. Compared to GP which used fixed feature embeddings,

the improvements of KDBNet also suggested that learning embeddings in an end-to-end
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Figure 3.2: KDBNet achieves accurate prediction of kinase-drug binding affinity. (a)
Three train-test split settings of five-fold cross-validation where the model is evaluated on data
of unseen drugs, proteins, or both. (b) Comparison of prediction performance of KDBNet with
KronRLS, DeepDTA, GraphDTA, DGraphDTA, and GP on the three train-test split settings.
Performances were evaluated using Pearson correlation and mean squared error (MSE) between
predicted and true pKd values.

manner captures the features more effectively. Integrating 3D information also enables

KDBNet to generalize to predictions for unseen proteins and unseen drugs or both. Overall,

these results demonstrated that KDBNet, by incorporating 3D structure data and leveraging

geometry-aware deep learning, had substantial performance improvements in kinase-drug

binding prediction as compared to multiple existing methods.

3.4.2 Informative and calibrated uncertainty estimation

After evaluating the prediction accuracy of KDBNet, we next performed experiments to

demonstrate the uncertainty estimation of KDBNet is accurate and calibrated. First, we

sought to investigate whether KDBNet’s uncertainty estimate is indicative of prediction

accuracy. On the Davis dataset, we ranked all KDBNet’s predictions by their associated
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Figure 3.3: KDBNet provides accurate and calibrated uncertainty estimation. (a)
Prediction errors of KDBNet, GP, and GP-MLP, measured as mean squared error, at different
cutoffs of uncertainty percentiles. The x-axis represents the sorted uncertainty such that the 100%
percentile is the lowest uncertainty (highest confidence). (b) Spearman correlation between the
estimated uncertainty and the prediction error measured in MSE on the both-new test set. (c) An
illustration of the calibration curve. For a confidence interval of confidence level e (0 ≤ e ≤ 1),
the curve shows the expected fraction and the observed fraction of test points that fall within
that interval. The diagonal line corresponds to the calibration curve of a perfectly calibrated
model. The area between a curve and diagonal line (miscalibration area) is used to quantify the
uncertainty calibration, and lower values indicate better calibration. (d) Calibration curves of
KDBNet, KDBNet without recalibration, GP, and GP-MLP on test sets. (e) Miscalibration area
of KDBNet, GP, and GP-MLP on the new-protein test set.

uncertainty estimates (Methods). We observed that there was a clear trend that KDBNet’s

predictions with lower uncertainty had lower prediction errors. The same trend was ob-

served in different train-test split settings (Figure 3.3a). Compared to the two Gaussian

process-based methods, GP and GP-MLP [130] (Methods), KDBNet achieved substantially

lower MSE across different uncertainty percentiles (Figure 3.3a) and higher correlations be-

tween the estimated uncertainty and prediction errors (Figures 3.3b and B.15a). These

results suggested that KDBNet’s uncertainty estimates were correctly ranked with respect

to prediction errors. In the top 10% of predictions where KDBNet had the most confidence

(uncertainty percentile 90%-100%), its average MSE of predictions were 0.03, 0.07, and 0.10

for the new-protein, new-drug, and both-new split settings, respectively, in contrast to the

global average MSEs 0.30, 0.54, and 0.60 for the three splits, respectively. This suggested

that KDBNet’s predictions were very accurate when it has high confidence.
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The above evaluation validated that the ranking of KDBNet’s uncertainty estimates is

indicative. We next proceeded to assess if the magnitude of the uncertainty estimates is

quantitatively similar to the true error. Models that are over-confident or under-confident

usually produce uncertainty estimates that too small or large, and it is difficult to interpret

them as statistically meaningful credible intervals. This issue is known as miscalibration

in uncertainty quantification [153]. Ideally, we hope the model’s uncertainty estimation

is well-calibrated, meaning that, for example, if we predict a 95% confidence interval, we

want the true values to fall within the interval 95% of the time. Following previous stud-

ies [136, 153, 161], we computed calibration curves that compare the observed fraction of

data points falling in a confidence interval with the expected fraction (Methods). To quantify

the degree of uncertainty calibration, we calculated the area between the model’s calibration

curve and the diagonal line corresponding to the perfectly calibrated model (Figure 3.3c),

which is called miscalibration area and a lower value indicating a better calibration. We

observed that KDBNet’s calibration curves were more close to the ideal diagonal curve

(Figure 3.3d), yielding substantially lower miscalibration areas than the GP-based methods

(Figures 3.3e and B.15b). The recalibration technique of KDBNet also led to effective im-

provements, clearly pushing the calibration curves more close to the diagonal and decreasing

the miscalibration area (Figures 3.3d-e and B.15b; rank-sum test P < 10−3). These results

suggested that KDBNet’s uncertainty estimates were calibrated and scaled with errors.

Together, the two sets of experiments demonstrated that the uncertainty estimates of

KDBNet were accurate with respect to prediction errors and well-calibrated. The accurate

quantification of uncertainty has important implications for iterative ML-guided experiment

design, where the uncertainty estimates can be used to guide the data acquisition and can-

didate prioritization, as we will illustrate in the next section.

3.4.3 Uncertainty-guided active learning for data-efficient learning

Having verified that KDBNet provides informative and calibrated uncertainty estimation,

we sought to assess the value of uncertainty in machine learning guided discovery. The

first natural application is active learning, where the objective is to select training samples

intelligently such that better prediction performance could be achieved with less training

data. Active learning simulates the scenario in drug discovery in which researchers repeat

the select-validate cycle to discover promising compounds. In analogous to human experts

relying on intuitive confidence to acquire and test new samples, KDBNet uses its estimated

uncertainty to perform iterative training and selection (Figure 3.4a). Specifically, we started

training KDBNet on a random 1% subset of KIBA training data. At each subsequent round,
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KDBNet predicted binding affinities and uncertainties for the remainder of training data,

and then ranked them based on the score function s(x) = σ(x), where σ(x) is the predicted

uncertainty for sample x (hereinafter referred to as “explore” strategy). We then added the

top T samples with the greatest uncertainties to the training set and retrained KDBNet

with the expanded training set from scratch. Two other types of score functions s(x) were

considered for comparison: i) “greedy”: samples of higher predicted affinity receive higher

scores, s(x) = µ(x); ii) “random”: samples receive random scores, s(x) ∼ U(0, 1). The

performance was evaluated on the “both-new” test set.

We found that KDBNet achieved efficient active learning by using its estimated uncer-

tainty to acquire new training samples, reaching the performance on par with full data

training by using only 50% data (Figrue 3.4b). Noticeably, the KDBNet’s performance

drastically increased in the first few rounds compared to the random selection, suggesting

that the uncertainty-based active learning is more efficient than the brute-force random

search. Furthermore, in contrast to the greedy strategy that kept seeking samples with the

highest affinities, the explore strategy focused on samples that could promote the diversity

of the training set and best address the uncertainties of the model, thereby exhibiting faster

rates of performance improvement and higher efficiency gains (performance improvement

over random selection) across all active learning stages (Figure 3.4b-c). These results sug-

gested that, enabled by uncertainty quantification, KDBNet has achieved sample-efficient

active learning for data acquisition and model training, a highly desired capability in model-

guided experimental design where the naive enumeration of the search space is costly or even

intractable.

3.4.4 Bayesian optimization for accelerated exploration and exploitation

As another application of uncertainty estimation, we integrated KDBNet with Bayesian

optimization for the exploration and exploitation of strong-binding kinase-drug pairs. In

the active learning experiments, new samples were acquired solely based on uncertainty to

promote the diversity of the training set. However, for prioritization or discovery of high-

performing candidates, one can combine the predicted mean values and uncertainties to

guide the data acquisition. A principle framework to achieve this goal is Bayesian optimiza-

tion, which allows us to prioritize candidates in high confidence, high desirability regions

(“exploitation”) or to probe in potentially high desirability regions although with less con-

fidence (“exploration”), as illustrated in Figure 3.4d. In Bayesian optimization, a widely

used way to combine predictive scores and uncertainties is through an acquisition function

called upper confidence bound (UCB) with the form UCB = score + β · uncertainty, where
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Figure 3.4: Leveraging uncertainty for active learning, exploration, and exploitation.
(a) Schematic visualization of the active learning process that consists of multiple rounds of model
training, data acquisition, and model evaluation. (b) Active learning performance in Pearson
correlation on the KIBA both-new test set at different rounds. The explorative sampling is com-
pared to the greedy and random sampling strategies. (c) The efficiency gain of the explorative
and greedy samplings over the random sampling, defined as the relative improvement in Pearson
correlation. (d) Schematic illustration of data acquisition based on KDBNet’s prediction and un-
certainty. One can exploit regions with high-confidence, high-desirability samples, or explore in
potentially high-desirability regions with less model confidence. (e) Exploration using KDBNet
and upper confidence bound (UCB) acquisition function with a Bayesian optimization framework.
Curves represent the performance trajectory, measured by the percentage of top-500 binding affini-
ties found as a function of the number of kinase-compound pairs explored in the Davis dataset. (f)
Exploitation using KDBNet and Bayesian optimization. True Kd values of the top 10 kinase-drug
pairs prioritized by each model are shown. A lower Kd value means a stronger binding affinity.

the constant β controls the tradeoff between exploitation and exploration.

High-recall exploration : We first evaluated KDBNet’s ability in terms of exploration.

We designed an experiment on the Davis dataset where the aim is to identify kinase-

compound pairs with the strongest binding affinity by only observing the ground truth

binding affinities for a small subset of pairs. We initiated the data acquisition process by
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training KDBNet on 1% kinase-compound pairs (∼100 pairs). The subsequent steps were

performed as in the active learning experiments, but with UCB as the score function, defined

as UCB(x) = µ(x) + βσ(x) with β = 1. Intuitively, this score function promotes samples

with high binding affinity and high uncertainties. Since our goal is to identify strong-binding

pairs as many as possible, we want to explore “good” regions that also have some variability

(uncertainty) as this would increase the likelihood of discovering even better samples. We

observed that KDBNet yields substantial improvements over the random exploration base-

line, as measured by the recall of top-500 kinase-compound pairs (top 1%) as a function

of the number of pairs explored. Specifically, KDBNet retrieved 50% of the top-500 pairs

from the pool of 10k pairs after exploring only 1k pairs. KDBNet also outperformed the two

GP-based baselines by a clear margin. This experiment demonstrated the applicability of

KDBNet within the Bayesian optimization framework for accelerating the exploration and

discovery of strong-binding kinase-compound pairs.

High-confidence exploitation : Next, we performed an analysis to evaluate KDBNet’s

ability in terms of exploitation, i.e., how strong are the binding affinities of top kinase-

compound pairs prioritized by KDBNet. This mimics the real scenario of a biological dis-

covery process, where researchers typically focus on only a few top compounds or proteins for

further validation rather than testing the entire unexplored space. To directly test this, we

simulated an experiment on the Davis dataset where a model was asked to prioritize kinase-

compound pairs that have the strongest binding affinity from the test data. For KDBNet,

we defined the UCB score function as UCB(x) = µ(x) + β(−σ(x)) with β = 1. Note that

we added a negation sign before the uncertainty term. Intuitively, this score function en-

couraged KDBNet to prioritize pairs with strong binding affinity and low uncertainty. We

used the greedy score function for baselines without uncertainty estimation and the rank-

based UCB function for GP-based baselines [130]. We showed the binding affinities of the

top 10 kinase-drug pairs acquired by different methods in Kd values in Figure 3.4f, where

lower Kd values indicate stronger binding affinities. We found that KDBNet, on average,

has retrieved pairs with stronger binding affinity, outperforming other baseline methods in

all three split settings. KDBNet successfully prioritized kinase-drug pairs with a mean Kd

value lower than 0.5 µM for both the new-protein and new-drug split settings, and a mean

Kd of 3.5 µM for the most challenging both-new split setting. For reference, a Kd value

lower than 3 µM was considered as a very strong binding in the original stud [144]. In

addition, we observed that uncertainty-based methods (KDBNet, GP, and GP-MLP) had

a clear advantage over the other two no-uncertainty methods in terms of prioritization of

strong-binding kinase-compound pairs. As the binding affinity datasets often contain intrin-

sic noise or imbalanced measurements towards frequent compounds or proteins, ML models
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could be largely impacted by those issues and generate uncertain predictions. Therefore, top

predictions given by uncertainty-agnostic models could be false positive in many cases. In

contrast, the estimated uncertainty provides another dimension of information, in addition

to the mean prediction of affinity, for prioritizing lead candidates that are more likely to

succeed with high confidence.

3.5 DISCUSSION

In this work, we have presented KDBNet, a geometric deep learning algorithm for pre-

dicting protein-drug affinity. KDBNet integrates the 3D structure data of both proteins

and compounds and models them using structure-aware graph neural networks. Experi-

ments have demonstrated that KDBNet is more accurate than several existing deep learning

methods in predicting kinase-drug binding affinity. KDBNet also provides well-calibrated

uncertainties that scale with prediction errors and confidence intervals that are statisti-

cally indicative. We further validated the KDBNet’s utility in active learning and Bayesian

optimization for prioritizing kinase-drug pairs with strong binding affinities. We anticipate

that KDBNet could facilitate the reliable and robust deployment of machine learning-guided

discovery of kinase-drug pairs with novel or enhanced binding activities.

While we focused on the binding activities of kinases, the methodology, in principle, can

be applied for general proteins. We considered kinase-drug binding in this work considering

the pharmacological importance of kinases and the availability of public datasets of binding

affinity measurements. The problem setting in this work was different, and actually less

restrictive, than another line of recent studies on binding affinity prediction based on protein-

compound binding complex [137, 138, 139, 140, 141, 142], in that KDBNet does not require

binding complex structures as input and can be generalized to predict for novel molecules or

targets without solved complex structures. We emphasize that the problem setup considered

in this work is different from that in recent studies on binding affinity prediction based

on protein-compound binding complex [137, 138, 139, 140, 141, 142]. The prerequisite of

those methods is the solved structure of binding complex [167] for every protein-compound

pair, of which the availability is rather limited. Due to the same reason, it is difficult to

apply those methods in active learning or Bayesian optimization frameworks to predict the

binding affinities for novel molecules or targets for which binding complex structures do not

exist. KDBNet is less restricted by data availability than those methods in that it only

requires separate structures as input rather than the binding complex. We note that this

is not a critical limitation of KDBNet. First, the 3D structures s of compounds are largely

available: it is estimated that 92% of compounds available in the PubChem database have

60



3D structure [168]. Second, kinases are one of the most representative protein families in

the Protein Data Bank (PDB) database, and due to their biological and pharmacological

importance, the available solved structures of kinases are keeping increasing in number,

especially for kinases that are widely used as drug targets [133, 163]. Third, AlphaFold has

been shown to predict the 3D protein structure in near experimental resolution [50, 169] and

its structure prediction might serve as a reasonable proxy for less-studied kinases without

solved structures.

KDBNet estimates the uncertainty by computing the standard deviation of predictions

given by individual neural networks in the ensemble. The standard deviation quantifies the

uncertainty within the predictive model, as known as epistemic uncertainty. It is possible

to extend KDBNet to quantify the uncertainty in the data, known as aleatoric uncertainty,

by modeling the affinity measurement as a Gaussian variable and decoupling the Gaussian

variance into epistemic and aleatoric uncertainties [134]. In addition to the miscalibration

area-minimizing approach used in the work, other calibration techniques [153, 154, 155]

for deep learning models can also be combined with KDBNet to calibrate the uncertainty

estimation. One limitation of KDBNet is the additional computation cost incurred due to the

training of multiple independent neural networks for the purpose of uncertainty estimation.

While this can be addressed by exploring the recent uncertainty quantification strategy

that only requires training a single model [156], in our current implementation, we trained

multiple independent neural networks in parallel on multiple GPUs, which has reduced the

training time that would have been required by a sequential training.
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Chapter 4: Representation Learning of Protein Networks

Proteins cooperate with each other to carry out a large number of functions in cells.

For example, kinase proteins form signaling networks to propagate environmental signals

across cells to coordinate cellular processes. In Chapter 2 and Chapter 3, we discussed the

representation learning of protein sequences and structures. In this chapter, we introduce a

representation learning method for protein networks and more broadly biological networks.

We show that network representations not only summarize multi-source information but also

mitigate the noise and incompleteness of individual network data.

4.1 INTRODUCTION

Computational prediction of drug-target interactions (DTIs) has become an important

step in the drug discovery or repositioning process, aiming to identify putative new drugs or

novel targets for existing drugs. Compared to in vivo or biochemical experimental methods

for identifying new DTIs, which can be extremely costly and time-consuming [170], in silico

or computational approaches can efficiently identify potential DTI candidates for guiding in

vivo validation, and thus significantly reduce the time and cost required for drug discovery or

repositioning. Traditional computational methods mainly depend on two strategies, includ-

ing the molecular docking-based approaches [171, 172] and the ligand-based approaches [173].

However, the performance of molecular docking is limited when the 3D structures of target

proteins are not available, while the ligand-based approaches often lead to poor prediction

results when a target has only a small number of known binding ligands.

In the past decade, much effort has been devoted to developing machine learning-based

approaches for computational DTI prediction. A key idea behind these methods is the

“guilt-by-association” assumption, that is, similar drugs may share similar targets and vice

versa. Based on this intuition, DTI prediction is often formulated as a binary classifica-

tion task, which aims to predict whether a drug-target interaction is present or not. A

straightforward classification-based approach is to consider known DTIs as labels and incor-

porate the chemical structures of drugs and primary sequences of targets as input features

(or kernels). Most existing prediction methods mainly focus on exploiting information from

homogeneous networks. For example, Bleakley and Yamanishi [174] applied a support vector

machine (SVM) framework to predict DTIs based on a bipartite local model (BLM). Mei

et al. [175] extended this framework by combining BLM with a neighbor-based interaction-

profile inferring (NII) procedure (called BLMNII), which is able to learn the DTI features
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from neighbors and predict interactions for new drug or target candidates. Xia et al. [176]

proposed a semi-supervised learning method for DTI prediction, called NetLapRLS, which

applies Laplacian regularized least square and incorporates both similarity and interaction

kernels into the prediction framework. van Laarhoven et al. introduced a Gaussian inter-

action profile (GIP) kernel-based approach coupled with regularized least square (RLS) for

DTI prediction [177, 178].

In addition to chemical and genomic data, previous works have incorporated pharma-

cological or phenotypic information, such as side-effect [179, 180], transcriptional response

data [181], drug-disease associations [182], public gene expression data [183] and functional

data [184] for DTI prediction. Heterogeneous data sources provide diverse information and

a multi-view perspective for predicting novel DTIs. For instance, the therapeutic effects of

drugs on diseases can generally reflect their binding activities to the targets (proteins) that

are related to these diseases and thus can also contribute to DTI prediction. Therefore, in-

corporating heterogeneous data sources, e.g., drug-disease associations, can potentially boost

the accuracy of DTI prediction and provide new insights into drug repositioning. Despite

the current availability of heterogeneous data, most existing methods for DTI prediction

are limited to only homogeneous networks or bipartite DTI models, and cannot be directly

extended to take into account heterogeneous nodes or topological information and complex

relations among different data sources.

Several computational strategies have been introduced to integrate heterogeneous data

sources to predict DTIs. A network-based approach for this purpose is to fuse heteroge-

neous information through a network diffusion process and directly use the obtained dif-

fusion distributions to derive the prediction scores of DTIs [182, 185]. A meta-path based

approach has also been proposed to extract the semantic features of DTIs from heteroge-

neous networks [186]. A collaborative matrix factorization has been developed to project the

heterogeneous networks into a common feature space, which enables one to use the aforemen-

tioned homogeneous network-based methods to predict new DTIs from the resulting single

integrated network [187]. However, these approaches generally fail to provide satisfactory

integration paradigms. First, directly using the diffusion states as the features or predic-

tion scores may easily suffer from the bias induced by the noise and high dimensionality

of biological data and thus possibly lead to inaccurate DTI predictions. In addition, the

hand-engineered features, such as meta-paths, often require expert knowledge and intensive

effort in feature engineering and hence prevent the prediction methods from being scaled to

large-scale datasets. Moreover, collapsing multiple individual networks into a single network

may cause substantial loss of network-specific information, since edges from multiple data

sources are mixed without distinction in such an integrated network.
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In this paper, we present DTINet, a novel network integration pipeline for DTI predic-

tion. DTINet not only integrates diverse information from heterogeneous data sources (e.g.,

drugs, proteins, diseases, and side-effects), but also copes with the noisy, incomplete, and

high-dimensional nature of large-scale biological data by learning low-dimensional but infor-

mative vector representations of features for both drugs and proteins. The low-dimensional

feature vectors learned by DTINet capture the context information of individual networks, as

well as the topological properties of nodes (e.g., drugs or proteins) across multiple networks.

Based on these low-dimensional feature vectors, DTINet then finds an optimal projection

from drug space onto target space, which enables the prediction of new DTIs according to

the geometric proximity of the mapped vectors in a unified space. We have demonstrated the

integration capacity of DTINet by unifying multiple networks related to drugs and proteins,

and shown that incorporating additional network information can significantly improve the

prediction accuracy. In addition, through comprehensive tests, we have demonstrated that

DTINet can achieve substantial performance improvement over other state-of-the-art predic-

tion methods. Furthermore, we have experimentally validated the new interactions predicted

by DTINet between three drugs and the cyclooxygenase (COX) proteins that have not been

reported in the literature (to the best of our knowledge), and demonstrated the potential

novel applications of these drugs in preventing inflammatory diseases. All these results

demonstrate that DTINet can offer a practically useful tool to predict unknown DTIs from

complex heterogeneous networks, which may provide new insights into drug discovery or

repositioning and understanding of mechanisms of drug action.

4.2 DTINET: HETEROGENEOUS NETWORK INTEGRATION FOR
DRUG-TARGET INTERACTION USING REPRESENTATION LEARNING

We develop a new computational pipeline, called DTINet, to predict novel drug-target

interactions (DTIs) and thus identify new indications of old drugs from a heterogeneous

network (Supplementary Figure B.16), which is constructed based on the following known

information (Methods): drug-protein interactions, drug-drug interactions, drug-disease as-

sociations, drug-side-effect associations, drug-drug similarities, protein-disease associations,

protein-protein interactions, and protein-protein similarities. DTINet (Figure 4.1) first per-

forms a network diffusion algorithm (e.g., random walk with restart, RWR [188]) on each

network to obtain a distribution (also called ”diffusion state”) of each drug or protein node,

which captures its topological relations to all other nodes in the heterogeneous network

(Methods). Taking both local and global connectivity patterns into account, this step char-

acterizes the underlying topological context and inherent connection profiles of each drug or
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protein node in the network. When the diffusion states of two nodes are close to each other,

it implies that they are in similar positions with respect to other nodes in the network.
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Figure 4.1: The flowchart of the DTINet pipeline. DTINet first integrates a variety of drug-
related information sources to construct a heterogeneous network and applies a compact feature
learning algorithm to obtain a low-dimensional vector representation of the features describing
the topological properties for each node. With the learned compact features X and Y for drugs
and proteins (i.e., each row in X and Y represents the feature vector of a drug and a protein,
respectively), DTINet then finds the best projection from drug space onto protein space, such that
the projected feature vectors of drugs are geometrically close to the feature vectors of their known
interacting proteins. The projection matrix Z is learned to minimize the difference between the
known interaction matrix P and XZY T . After that, DTINet infers new interactions for a drug
by sorting its target candidates based on their geometric proximity to the projected feature vector
of this drug in the projected space. The predicted new drug-target interactions can be further
analyzed and experimentally validated.

A key observation in the above network diffusion algorithm is that the originally com-

puted diffusion states are not entirely accurate, in part due to the noisy, incomplete, and

high-dimensional nature of biological data. To cope with this issue, DTINet further applies

the diffusion component analysis (DCA) method [189, 190] to approximate the obtained

diffusion distribution by constructing a model parameterized by a low-dimensional vector

representation for each drug or protein node (Figure 4.1). These low-dimensional vector rep-

resentations are obtained by minimizing the difference between the diffusion distributions of

individual networks and the corresponding model distributions simultaneously (Figure 4.2).
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Such a process is also called compact feature learning [191] (more details will be described be-

low) and the resulting low-dimensional vector is also called the feature vector. Intuitively, the

low-dimensional feature vector obtained from compact feature learning encodes the relational

properties (e.g., similarity), association information, and topological context of each drug

(or protein) in the heterogeneous network. Akin to principal component analysis (PCA),

which seeks the intrinsic low-dimensional linear structure of the data to best explain the

variance, DCA learns a low-dimensional vector representation for all nodes such that their

connectivity patterns in the heterogeneous network are best interpreted.
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Figure 4.2: Schematic illustration of compact feature learning. The random walk with
restart (RWR) algorithm is first used to compute the diffusion states of individual networks. Then
the low-dimensional representations of feature vectors for individual nodes are obtained by minimiz-
ing the difference between the diffusion states si and the parameterized multinomial logistic models
ŝi. The learned low-dimensional feature vectors encode the relational properties (e.g., similarity),
association information, and topological context of each node in the heterogeneous network.

After obtaining the low-dimensional feature vectors of both drugs and proteins, DTINet

finds the best projection from drug space onto protein space, such that the mapped feature

vectors of drugs are geometrically close to their known interacting targets (Figure 4.1). After

that, DTINet infers new interactions for a drug by ranking its target candidates according to

their proximity to the projected feature vector of this drug. A key insight of this approach is

that the drugs (or proteins) with similar topological properties in the heterogeneous network

are more likely to be functionally correlated. For example, those drugs that are close in the
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directions of their feature vectors are more likely to act on the same target, and vice versa.

This intuition allows us to predict unknown drug-target interactions by fully exploiting our

previous knowledge about known drug-target interactions.

4.3 METHODS

4.3.1 Datasets

A total of four types of nodes and six types of edges, representing diverse drug-related in-

formation, were collected from the public databases and used to construct the heterogeneous

network for our drug-target interaction (DTI) prediction task.

Nodes. We extracted the drug nodes from the DrugBank database (Version 3.0) [192]

and the protein nodes from the HPRD database (Release 9) [193]. The disease nodes were

obtained from the Comparative Toxicogenomics Database [194]. The side-effect nodes were

collected from the SIDER database (Version 2) [195]. In addition, we excluded those isolated

nodes; in other words, we only considered those nodes which had at least one edge (see below)

in the network.

Edges. We imported the known drug-target interactions as well as drug-drug interactions

from DrugBank (Version 3.0) [192]. The protein-protein interactions were downloaded from

the HPRD database (Release 9) [193]. The drug-disease and protein-disease associations

were extracted from the Comparative Toxicogenomics Database [194]. We also included the

drug-side-effect associations from the SIDER database (Version 2) [195].

4.3.2 Construction of a heterogeneous network by integrating diverse drug-related
information

Compiling various curated public drug-related databases, we constructed a heterogeneous

network, which includes 12,015 nodes and 1,895,445 edges in total, for predicting missing

drug-target interactions (Figure 4.1, Supplementary Tables A.1-A.2). The heterogeneous

network integrates four types of nodes (i.e., drugs, proteins, diseases, and side-effects) and

six types of edges (i.e., drug-protein interactions, drug-drug interactions, drug-disease asso-

ciations, drug-side-effect associations, protein-disease associations and protein-protein inter-

actions). Based on chemical structures of drugs and primary sequences of proteins, we also

built up multiple similarity networks to further augment the network heterogeneity, pro-

viding our drug-target prediction task with diverse information and from a multiple-views

perspective.
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4.3.3 Compact feature learning for drugs and targets

DTINet applies diffusion component analysis (DCA) [189], an algorithm that combines

network diffusion (i.e., random walk with restart) with dimensionality reduction, to learn

the low-dimensional vector representations of the drug and target features that capture the

intrinsic topological properties of a heterogeneous network. DCA has been generalized into

Mashup, a new method for integrating multiple heterogeneous interactomes [190].

Random walk with restart revisited. Random walk with restart (RWR), a network diffusion

algorithm, has been extensively applied to analyze the complex biological network data [1, 3,

4, 5, 185]. Different from conventional random walk methods, RWR introduces a pre-defined

restart probability at the initial node for every iteration, which can take into consideration

both local and global topological connectivity patterns within the network to fully exploit the

underlying direct or indirect relations between nodes. Formally, let A denote the weighted

adjacency matrix of a molecular interaction network with n drugs (or targets). We also

define another matrix B, in which each element Bi,j describes the probability of a transition

from node i to node j, that is,

Bi,j =
Ai,j∑
j′ Ai,j′

(4.1)

Next, let sti be an n-dimensional distribution vector in which each element stores the prob-

ability of a node being visited from node i after t iterations in the random walk process.

Then RWR from node i can be defined as:

st+1
i = (1− pr)stiB + prei, (4.2)

where ei stands for an n-dimensional standard basis vector with ei(i) = 1 and ei(j) = 0, ∀j 6=
i, and pr stands for the pre-defined restart probability, which actually controls the relative

influence between local and global topological information in the diffusion process, with

higher values emphasizing more on the local structures in the network. At some fixed point

of the iterating process, we can obtain a stationary distribution s∞i of RWR, which we refer

to as the ”diffusion state” si for node i (i.e., si = s∞i ), being consistent with the notation of

previous work [189]. Intuitively, the jth element of diffusion state, denoted by sij, represents

the probability of RWR starting node i and ending up at node j in equilibrium. When two

nodes have similar diffusion states, it generally implies that they have similar positions with

respect to other nodes in the network, and thus probably share similar functions.

The dimensionality reduction framework. The diffusion states resulting from the afore-

mentioned RWR process may not be entirely accurate, partially due to the low quality and

high dimensionality of biological data. A small number of missing or fake interactions in
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the network can significantly affect the results of the diffusion process [196]. Moreover, it

is generally inconvenient to directly use the high dimensionality of the diffusion states for

the topological features, especially for our heterogeneous network based prediction task.

To address this issue, DTINet employs a dimensionality reduction scheme, called diffusion

component analysis (DCA), to reduce the dimensionality of the feature space and capture

those important topological features from the diffusion states. With the goal of denoise

and dimensionality reduction, DCA approximates each diffusion state si with a multinomial

logistic model based on a latent vector representation whose dimensionality is much lower

than that of the original n-dimensional vector representing the diffusion states. Specifically,

the probability assigned to node j in the diffusion state of node i is now modeled as

ŝij =
exp

(
wT
i xj
)∑

j′ exp (wT
i xj′)

(4.3)

where ∀i, xi,wi ∈ Rd for d � n. We refer to wi as the context feature and xi as the node

feature for node i, both describing the topological properties of the network. If xi and wj

point to a similar direction and thus have a large inner product, it is likely that node j is

frequently visited in a random walk starting from node i. DCA takes a set of the observed

diffusion states S = {s1, . . . , sn} as input and optimizes over w and x for all nodes, using the

Kullback-Leibler (KL) divergence (also called relative entropy) to guide the optimization,

that is,

min
w,x

C(s, ŝ) =
1

n

n∑
i=1

DKL(si ‖ ŝi), (4.4)

where DKL(· ‖ ·) denotes the KL-divergence between two distributions. The DCA framework

uses a standard quasi-Newton method L-BFGS [197] to solve this optimization problem.

Integration of heterogeneous network information. The above dimensionality reduction frame-

work can be naturally extended to integrate multiple network data from heterogeneous

sources. Given K similarity networks in a heterogeneous framework constructed from di-

verse information, DCA first performs RWR on individual networks separately and then

obtains the network-specific diffusion states s
(k)
i for each node i in every network k. After

that, it also constructs a multinomial logistic distribution to model the diffusion states:

ŝ
(k)
ij =

exp
(
w

(k)T
i xj

)
∑

j′ exp
(
w

(k)T
i xj′

) , (4.5)

where each node i is assigned with a network-specific vector representation w
(k)
i , which
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represents the context feature of node i in network k, and the node feature vectors xi are

allowed to be shared globally across all K networks. Finally, DCA optimizes the following

objective function,

min
w,x

C(s, ŝ) =
K∑
k=1

1

n

n∑
i=1

DKL

(
s

(k)
i ‖ ŝ

(k)
i

)
, (4.6)

which can also be solved by the quasi-Newton L-BFGS method [197]. Although the diver-

gence terms of individual networks are given equal weights in the above objective function,

it is possible to weight them differently to emphasize the relative importance of individual

networks.

To make the DCA framework more scalable to large biological networks, DTINet employs

a variant of DCA, called clusDCA [198], which uses an alternative objective function that can

be optimized efficiently based on singular value decomposition (SVD). Briefly, for each drug

or protein, clusDCA is able to learn a low-dimensional vector representation that corresponds

to a solution minimizing the difference between the observed diffusion states and the model

distribution under the L2-norm in log space [198].

In our tests, we observed stable performance of DTINet for different values of the restart

probability pr between 0.5 and 0.8 (Figure B.24a). For all the test results shown in the

Results section, the restart probability pr was set to 0.8. After dimensionality reduction, we

learned an fd-dimensional vector for drugs and an ft-dimensional vectors for targets. We ob-

served robust results over a wide range of choices for the fd and ft parameters (Figure B.23).

In the tests, we set fd = 100 and ft = 400, which were equal to 10-20% of the dimensionality

of the original vectors describing the diffusion states.

4.3.4 The optimization process of DCA

For simplicity, here we only show the optimization process of DCA for a single input

network. The optimization of DCA with multiple networks is a simple extension. To optimize

the following objective function of DCA,

min
w,x

C(s, ŝ) =
1

n

n∑
i=1

DKL(si ‖ ŝi). (4.7)

We first express the formula in terms of w and x based on the definition of KL-divergence
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and ŝ, that is,

C(s, ŝ) =
1

n

n∑
i=1

[
H(si)−

n∑
j=1

sij

(
wT
i xj − log

(
n∑

j′=1

exp{wT
i xj′}

))]
, (4.8)

where H(·) denotes the entropy. Then we compute the gradients of this objective with

respect to the parameters w and x, respectively,

∇wi
C(s, ŝ) =

1

n

n∑
j=1

(ŝij − sij)xj, (4.9)

∇xi
C(s, ŝ) =

1

n

n∑
j=1

(ŝji − sji)wj. (4.10)

This objective function can be solved using a standard quasi-Newton L-BFGS method to

find the low-dimensional vector representations w and x. Throughout our tests, the vectors

w and x were initialized with uniform random values in [−0.05, 0.05].

To make the DCA framework more scalable to large biological networks, we use a more

efficient matrix factorization based approach to decompose the diffusion states and obtain

their low-dimensional vector representations. Based on the definition of ŝij, we have

log ŝij = xTi wj − log
∑
j′

exp{wT
i xj′}. (4.11)

The first term in the above equation corresponds to the low-dimensional approximation of

ŝij, and the second term is a normalization factor, which ensures that ŝi is a well defined

distribution. We relax the constraint that the entries in ŝi must sum to one by dropping the

second term, that is

log ŝij = xTi wj. (4.12)

In addition, instead of minimizing the relative entropy between the original and approxi-

mated diffusion states, we use the sum of squared errors as the objective function:

min
w,x

C(s, ŝ) =
n∑
i=1

n∑
j=1

(xTi wj − log ŝij)
2. (4.13)

This resulting objective function can be optimized by singular value decomposition (SVD).

To avoid taking the logarithm of zero, we add a small positive constant 1
n

to sij and compute
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the logarithm diffusion state matrix L as:

L = log(S + Q)− log(Q), (4.14)

where Q ∈ Rn×n with Qij = 1
n
, ∀i, j, and S ∈ Rn×n is the concatenation of s1, . . . , sn. With

SVD, we decompose L into three matrices:

L = UΣVT . (4.15)

To obtain the low-dimensional vectors wj and xi of d dimensions, we simply choose the first

d singular vectors in Ud, Vd and the first d singular values in Σd. More precisely, let X =

[x1, . . . ,xn]T denote a matrix where each row represents the corresponding low-dimensional

feature vector representation of each node in the network, and let W = [w1, . . . ,wn]T denote

a matrix where each row represents the corresponding vector of the context features. Then,

X and W can be computed as:

X = UdΣ
1/2
d , W = VdΣ

1/2
d . (4.16)

To integrate heterogeneous network data, we extend the above single-network DCA to a

multiple-network case. More specifically, let L = {L1, . . . ,LK} be the set of logarithm

diffusion state matrices based on the set of diffusion states S = {S1, . . . ,SK} from K input

networks. Then, we optimize the following objective function:

min
w,x

C(S, Ŝ) =
n∑
i=1

n∑
j=1

K∑
r=1

(xTi wr
j − log ŝrij)

2, (4.17)

where we assign a network-specific feature wr
i for each node i in network r, and the node

features xi are shared across all K networks. This objective function can also be optimized

by SVD.

4.3.5 Projection from drug space onto target space

We use the low-dimensional vector representations of both drug and protein features ob-

tained from compact feature learning to predict new drug-target interactions. Based on the

intuition that geometric proximity in the feature vector space may reflect the functional

relevance, we apply a matrix completion approach [199] to obtain a projection matrix that

maps the low-dimensional feature vectors from drug space onto protein space, such that
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the projected feature vectors of drugs are geometrically close to the vectors of their known

interacting proteins.

Formally, we use X = [x1, . . . ,xNd
]T , xi ∈ Rfd , i = 1, . . . , Nd to denote the matrix repre-

sentation of the drug features (i.e., each row i represents the corresponding feature vector of

drug i), and Y = [y1, . . . ,yNt ]
T , yi ∈ Rft , i = 1, . . . , Nt, to denote the matrix representation

of the protein features (i.e., each row i represents the corresponding feature vector of protien

i), where Nd and Nt stand for the numbers of drugs and proteins, respectively. Let P be a

drug-target interaction matrix, where each entry Pij = 1 if drug i is known to interact with

protein j, and Pij = 0 otherwise. We set up a bilinear function to learn the projection ma-

trix Z between drug space and target space to predict the unknown drug-target interactions

in P (i.e., those zero-valued entries). In particular, the bilinear function is formulated as:

XZYT ≈ P, (4.18)

where P ∈ RNd×Nt stands for the drug-target interaction matrix, X ∈ RNd×fd , Y ∈ RNt×ft

are obtained from the compact feature learning stage (i.e., the network diffusion and di-

mensionality reduction processes), and Z ∈ Rfd×ft is the projection matrix to be learned.

We then use the formula below to measure the likelihood of the pairwise interaction score

between drug i and protein j:

score(i, j) = xiZyTj , (4.19)

where a larger score(i, j) suggests that drug i is more likely to interact with protein j.

Although the projection matrix Z is of dimension fd × ft, there typically exist significant

correlations between those feature vectors of drugs or proteins that are geometrically close in

space, which can thus greatly reduce the number of effective parameters required to model

drug-target interactions. To take into account this issue, we impose a low-rank constraint on

Z to learn only a small number of latent factors, by considering a low-rank decomposition

of the form Z = GHT , where G ∈ Rfd×fk and H ∈ Rft×fk . This low-rank constraint not

only alleviates the overfitting problem but also computationally benefits the optimization

process [200]. The optimization problem with such a low-rank constraint on the original

projection matrix Z is NP-hard to solve. A standard relaxation of the low-rank constraint is

to minimize the trace norm (i.e., sum of singular values) of the matrix Z = GHT , which is

equivalent to minimize the Frobenius norms 1
2
(‖G‖2

F + ‖H‖2
F ). Therefore, factoring Z into

G and H can be accomplished by solving the following optimization problem:

min
G,H

∑
(i,j)

‖Pij − xiGHTyTj ‖2
2 +

λ

2
(‖G‖2

F + ‖H‖2
F ), (4.20)
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where λ is a regularization parameter, which controls the tradeoff between the minimiza-

tion of the squared loss on known interaction pairs (i, j) and the Frobenius norms. The

optimization problem can be solved by alternating minimization [199]. We evaluated the

prediction performance of DTINet with respect to different choices of the latent dimension-

ality parameter fk and observed stable performance of DTINet over a wide range values of

this parameter (Supplementary Figure B.24b). In our test, we set the value of the latent

dimensionality parameter to fk = 50, which was roughly equal to 50% of the dimension of

the feature vectors of drugs, and 10% of the dimension of the feature vectors of proteins. The

performance of DTINet was also robust to different choices of the regularization parameter

λ. We observed that the performance was not influenced much when varying λ from 10−3

to 102 (Supplementary Figure B.24c). In our test, we did not fine-tune the value of λ and

simply set λ = 1. In principle, we could always further improve the performance by carefully

tuning these parameters using an inner-loop cross-validation on training data.

4.3.6 Time complexity of DTINet

When learning the low-dimensional representations of nodes in a heterogeneous network,

performing the random walk with restart on each single network takes time complexityO(n3),

where n is the number of nodes in the network. Next, the SVD operation on the matrix of

diffusion states takes O(Kn3) time, where K stands for the total number of individual net-

works in the heterogeneous framework. Therefore, the running time for learning the compact

representations of drugs and targets is O(KdN
3
d ) and O(KtN

3
t ), respectively, where Kd and

Kt stand for the total numbers of similarity networks for drugs and targets, respectively, and

Nd and Nt stand for the total numbers of drugs and targets, respectively. The matrix com-

pletion step for learning the projection matrix takes O((q+Ndfd +Ntft)f
2
k ), where q stands

for the number of non-zero entries in the known drug-target interaction matrix, fd and ft

stand for the dimensions of the low-dimensional vector representations of drugs and targets,

respectively, and fk stands for the latent rank parameter of the matrix completion [199].

Thus, the overall time complexity of DTINet is O(KdN
3
d +KtN

3
t + (q+Ndfd +Ntft)f

2
k ). In

practice, Kd, Kt and fk are usually small and can be regarded as constants.

4.3.7 Construction of similarity networks

For the input homogeneous interaction networks (e.g., drug-drug interaction network), we

compute the “diffusion state” of each drug or target by directly running the RWR algorithm

on each of these networks. For the association networks, i.e., drug-side-effect, drug-disease,
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and protein-disease association networks, we construct the corresponding similarity networks

based on the Jaccard similarity coefficient and then run the RWR process on these similarity

networks. Jaccard similarity is a common statistic used to characterize the similarity between

two sets of objects. Taking the drug-side-effect association network as an example, we use

the following formula to measure the similarity between drug i and drug j:

S(i, j) =
|SEi ∩ SEj|
|SEi ∪ SEj|

, (4.21)

where SEi denotes the set of side-effects of drug i. Then we run the RWR procedure on

this similarity network to obtain the diffusion states of drugs. In the same manner, we can

construct the similarity networks of proteins.

In addition to the above interaction or association-based similarity networks, we construct

a drug similarity network based on the chemical structures of drugs, in which the similarity

score between a pair of two drugs is calculated using the Tanimoto coefficient [201] using the

product-graphs of their chemical structures. We also construct a protein similarity network

based on genome sequences, in which the similarity score between a pair of two proteins is

computed using the Smith-Waterman score [202] based on their primary sequences.

Overall, we construct four similarity networks for drugs, based on (i) drug-drug inter-

actions, (ii) drug-disease associations, (iii) drug-side-effect associations, and (iv) chemical

structures. Similarly, we construct three similarity networks for proteins, based on (i)

protein-protein interactions, (ii) protein-disease associations, and (iii) genome sequences.

With these similarity networks, we can learn the low-dimensional feature vector representa-

tions of drugs and proteins, by first performing diffusion separately on individual networks

and then jointly optimizing the feature vectors under the compact feature learning frame-

work.

4.3.8 Baseline Methods

We compare our method against four previously-proposed methods, including the bipartite

local models (BLMNII), the Laplacian regularized least square (NetLapRLS), the heteroge-

neous network model (HNM) and the collaborative matrix factorization (CMF). We briefly

describe these methods below.

1. Bipartite local model with neighbor-based interaction-profile inferring (BLMNII) [175]:

This method is a combination of the bipartite local model (BLM) and the neighbor-

based interaction-profile inferring (NII). The BLM framswork models the drug-target

75



interaction prediction task as a binary classification problem in a bipartite graph.

Suppose that we want to predict whether drug di interacts with target tj. The BLM

method first focuses on drug di and assigns a label +1 to all the known targets that

interact with drug di, and −1 otherwise. Then BLM uses the protein similarity matrix

as a kernel matrix to train a support vector machine (SVM). Such a process is also

performed in a reverse way, that is, BLM also labels each known drug by whether it

interacts with target tj or not, and then trains an SVM based on the drug similarity

matrix. The final prediction of whether drug di interacts with target tj is then derived

based on the average prediction score from both directions. The NII procedure incor-

porates the neighbors interaction profiles into the BLM method to train the model and

enable the prediction for new drugs or targets.

2. Laplacian regularized least square (NetLapRLS) [176]: This method employs a semi-

supervised learning algorithm, i.e., Laplacian regularized least square, for DTI pre-

diction, which utilizes available labeled data of DTI pairs and incorporates similarity

and interaction kernels to improve the prediction. NetLapRLS attempts to estimate

the interaction scores Fd and Ft based on the drug and protein domains, respectively.

For example, the interaction scores Fd are obtained by minimizing the squared loss

between the known DTI matrix P and Fd with a regularized term of Fd and Sd, where

Sd is the similarity network of drugs. The final prediction F is obtained by averaging

the results derived from both Fd and Ft.

3. Heterogeneous network model (HNM) [182]: This method builds a three-layer hetero-

geneous network consisting of three types of nodes: drug, target, and disease nodes.

Then it iteratively propagates interaction or association information in the heteroge-

neous network using random walk with restart. The iterative updating rule is given

by

Wk+1
td = αWk

td × (Wdd ×Wk
ds ×Wss ×WkT

ds ) + (1− α)W0
td, (4.22)

Wk+1
ds = α(WkT

td ×Wtt ×Wk
td ×Wdd)×Wk

ds + (1− α)W0
ds, (4.23)

where Wk
td and Wk

ds stand for the weights on the target-drug and drug-disease associ-

ation links in the kth iteration, respectively; W0
td and W0

ds represent the target-drug

and drug-disease association matrices defined by the input data; Wdd stores both drug

interaction and similarity information, which is basically computed from the averaging

result derived from both of the drug-drug interaction and drug-drug similarity ma-

trices; Wss represents the disease-disease similarity matrix; and Wtt represents the
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protein-protein interaction matrix derived from the input data. The final DTI predic-

tion scores are obtained from matrix Wtd after convergence.

4. Collaborative Matrix factorization (CMF) [187]: This method learns the feature vec-

tor matrices X and Y for drugs and targets, respectively, by minimize the following

objective function:

min
X,Y
‖P−XYT‖2

F + λm(‖X‖2
F + ‖Y‖2

F ) + λd‖Sd−XXT‖2
F + λt‖St−YYT‖2

F , (4.24)

where Sd and St represent the drug and target similarity matrices, respectively, and

λm, λd and λt represent the regularization coefficients.

Here, HNM and CMF are designed to integrate heterogeneous information, while BLMNII

and NetLapRLS mainly focus on solving the DTI prediction problem on a single network.

To make a fair comparison, we first summarized our heterogeneous network into a single

network for both BLMNII and NetLapRLS, using the following integration process. In

particular, we combined multiple networks into a single network by assigning the edge weight

pi,j = 1−
∏

k(1− p
(k)
i,j ), where p

(k)
i,j ∈ [0, 1] is the interaction probability or similarity between

node i and node j in network k ∈ {1, 2, . . . , K}, where K stands for the total number of

networks.

4.3.9 Computational docking analyses

In our structure-based modeling studies, we used the docking program Autodock [172] to

infer the possible binding modes of the new predicted interactions between three drugs (i.e.,

telmisartan, chlorpropamide and alendronate) and the COX proteins. The protein structures

used in our docking studies were downloaded from the Protein Data Bank [203] (PDB IDs

3kk6 and 3qmo for COX-1 and COX-2, respectively). The three-dimensional structures of

the above three drugs were obtained from the ZINC database [204].

4.3.10 Experimental validation

Reagents. LPS (L-2360) and 4% sterile thioglycollate were purchased from Sigma-Aldrich

(St. Louis, MO, USA). IFN-γ(315-05) was purchased from PeproTech (New York, USA).

Chlorpropamide (S4166), telmisartan (S1738), alendronate (S1624) and ibuprofen (S1638)

were purchased from Selleck Chemicals (Houston, TX, USA). COX Fluorescent Activity

Assay Kit (700200), arachidonic acid (90010), indomethacin (70270), human recombinant
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COX-1 and COX-2 enzymes (17616 and 60122) and prostaglandin E2 (PGE 2 ) ELISA

kit (514010) were purchased from Cayman Chemical Company (Ann Arbor, MI, USA).

Cyclooxygenase 2 (ab62331) antibody was obtained from Abcam (Cambridge, MA, USA).

[3H] celecoxib was purchased from Hartmann Analytics (Braunschweig, Germany).

Animals. C57BL/6J mice (10 weeks old) were obtained from Vital River (Beijing, China)

and were housed under controlled temperature (22 ◦C ± 2 ◦C) and humidity (40-60%)

with a 12 h light/dark cycle. For each experiment, three mice were randomly injected

intraperitoneally with 1 ml of 4% sterile thioglycollate and sacrificed 3 days later. All animal

surgery was performed under anesthesia by Avertin (250 mg/Kg), and anesthetized animals

were sacrificed by cervical dislocation at the end of the experiments. All experiments were

performed in accordance with guidelines of the Institute for Laboratory Animal Research

of Tsinghua University. The experimental procedures were approved by the Administrative

Committee of Experimental Animal Care and Use of Tsinghua University, licensed by the

Science and Technology Commission of Beijing Municipality (SYXK-2014-0024), and they

conformed to the National Institute of Health guidelines on the ethical use of animals.

Cell culture. Peritoneal macrophages were isolated from peritoneum by lavage using 20

ml DMEM and seeded into 6 well plates using one hundred million cells/well in DMEM of

10% FBS. Non-adherent cells were removed 6 h later, whereas adherent cells were refed with

DMEM of 10% FBS and allowed to recover overnight. Macrophages were treated with chlor-

propamide, telmisartan and alendronate for 24h and then pre-incubated with DMEM-10%

FBS for 2h before treatment of LPS (10 ng/ml). Macrophages were pre-treated with DuP-

697 and SC-560 for 12 h before treatment with telmisartan, alendronate and chlorpropamide

and then incubated with IFN-γ (10 ng/ml) for 12 h following LPS stimulation (10 ng/ml)

for 6 h. The concentrations of telmisartan, alendronate and chlorpropamide treatment were

determined based on previous research [205, 206, 207], while those of the chemical probe

Dub-697 and the known NSAID ibuprofen were determined according to the indications of

the assay kit and previous binding studies in the literature [208, 209, 210], respectively. Cells

were harvested for subsequent analysis.

COX fluorescent activity. Following stimulation, kidneys were harvested from mice, and

macrophages from the above treatment were homogenized in 5 ml of cold PBS containing

protease inhibitors and centrifuged at 10,000 g for 15 minutes at 4 ◦C. The supernatant was

assayed by the COX fluorescent activity assay kit according to the manufacturer’s instruc-

tions.

Human recombinant enzyme assays. The selectivity of inhibition in vitro for telmisartan,

alendronate and chlorpropamide was evaluated using the recombinant human COX-1 and

COX-2 enzyme assays as previously described in [211]. In particular, the recombinant en-
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zymes were pre-incubated with various concentrations of telmisartan, alendronate and chlor-

propamide for 10 minutes at 25 ◦C. Then the 10 µM arachidonic acid was added to start the

reaction and allowed the process to proceed for 10 minutes. The reaction was terminated by

diluting the reaction into buffer containing 25 µM indomethacin. The final levels of PGE 2

were measured by ELISA.

Radioligand-based binding assays. The binding assays of Hood et al. [212] were used to

assess the direct binding activity to COX-2 by measuring the competitive binding of the

radiolabeled inhibitor [3H] celecoxib to the target enzyme. The murine monoclonal COX-

2-specific antibody was coated onto 96-well Immulon 2HB microtiter plates (Thermo Scien-

tific, Waltham, USA) and incubated overnight at 37 ◦C. The coated plates were washed with

Dulbecco’s phosphate-buffered saline (D-PBS) and blocked by 10% skim milk to avoid non-

specific binding. The recombinant COX-2 enzyme binding buffer was added to plates and

incubated for 2 h at 37 ◦C and these antibody-captured enzyme-coated plates were washed

with D-PBS. To measure the competitive binding activity with celecoxib, compounds at

their IC50 concentrations were incubated with [3H] celecoxib and allowed to compete for the

binding to COX-2 for 2 h. After that, the incubation was halted by aspiration and washed

twice with cold D-PBS. The 50 µl of 10% SDS was added into plates for 1 hour at 37 ◦C.

At last, the COX-2 bound radioligand was transferred into the liquid scintillation vial for

quantitation using the liquid scintillation spectrometry.

Real-time PCR analysis. Total RNA was extracted from the whole-cell lysates using the

Trnzol-A+ reagent (Tiangen, Cat. no. DP421, China). Reverse transcription was performed

using TIANScript RT Kit (Tiangen, Cat. no. KR104-02, China). All real-time PCR reac-

tions were carried out on ABI ViiATM 7 Real-Time System (Life Technologies, USA) using

TransStart Top Green qPCR SuperMix (Transgen, Cat. no. AQ131-03, China). The formula

2−∆∆Ct was used to calculate the relative expression. The expression of the housekeeping

gene GAPDH was used as an internal control.

Statistical analysis . Statistical analyses were performed using GraphPad Prism software

(Version 6.0). Values were presented as mean ± SD. Every analysis was performed for

three independent experiments, each of which was performed with triplicates. Data were

analyzed using a one-way analysis of variance (ANOVA), followed by a Newman–Keuls

multiple comparison test. Statistical significances were calculated and indicated. *: P <

0.05, **: P < 0.01, ***: P < 0.001.

4.3.11 Code and data availability

The source code of DTINet and the input heterogeneous network data can be downloaded

from https://github.com/luoyunan/DTINet.
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4.4 RESULTS

4.4.1 DTINet yields accurate drug-target interaction prediction

We first evaluated the prediction performance of DTINet using a ten-fold cross-validation

procedure, in which a randomly chosen subset of 10% of the known interacting drug-target

pairs and a matching number of randomly sampled non-interacting pairs were held out as

the test set, and the remaining 90% known interactions and a matching number of randomly

sampled non-interacting pairs were used to train the model. We compared DTINet with

four state-of-the-art methods for DTI prediction, including BLMNII [175], NetLapRLS [176],

HNM [182] and CMF [187]. Our comparative results showed that DTINet consistently out-

performed other existing methods, with 5.9% higher AUROC and 5.7% higher AUPR than

the second-best method (Figure 4.3a). Compared to HNM, which predicts DTIs based on

a modified version of random walk in a complete heterogeneous network, DTINet achieved

6.9% higher AUROC (85.51% for HNM) and 5.9% higher AUPR (87.98% for HNM), pre-

sumably because HNM only uses the original diffusion states for prediction, which is not

entirely accurate, while DTINet applies a novel dimensionality reduction on the diffusion

states and thus is able to capture the underlying structural properties of the heterogeneous

network.

To mimic a practical situation in which a drug-target interaction matrix is often sparsely

labeled with only a few known DTIs, we also performed two additional cross-validation

tests, in which the negative set in the test data either contained negative samples nine times

more than the positive ones or all remaining non-interacting drug-target pairs that were not

in the training data (Supplementary Figure B.17). In these two settings with imbalanced

datasets, the known drug-target interactions (i.e., positive samples) composed only 10% and

0.18% of the whole dataset, respectively. In these two tests, although the AUPR scores of

all methods dropped when compared to the previous test (Figure 4.3a), we observed that

DTINet still achieved much higher AUPR than other methods, e.g., about 100% higher

than the second-best method when considering all non-interacting drug-target pairs as the

negative set; Supplementary Figure B.17). As studied in previous works [121, 177, 213],

AUROC is likely to be an overoptimistic metric to evaluate the performance of a prediction

algorithm, especially on highly-skewed data, while AUPR can provide a better assessment in

this scenario. Thus, the noticeable performance improvement of DTINet in terms of AUPR

over other prediction methods demonstrated its superior ability in predicting new DTIs in

sparsely labeled networks.

The originally collected datasets may contain homologous proteins or similar drugs, which
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Figure 4.3: DTINet outperforms other state-of-the-art methods for DTI prediction.
We performed a ten-fold cross-validation procedure to compare the prediction performance of
DTINet to that of four state-of-the-art DTI prediction methods, i.e., HNM, CMF, and the ex-
tended versions of BLMNII and NetLapRLS. Performance of each method was assessed by both
the area under ROC curve (AUROC) and the area under precision-recall curve (AUPRC). (a) All
methods were trained and tested on the original collected dataset (see the main text), without
removing any homologous protein. (b) All methods are trained and tested on a modified dataset,
in which homologous proteins were excluded. A pair of two proteins are said to be homologous if
their sequence identity score is above 40%. All results were summarized over 10 trials and expressed
as mean ± SD.

raised a potential concern that the good performance of prediction methods might result

from easy predictions. To investigate this issue, we performed the following additional

tests (Figure 4.3b and Supplementary Figure B.18): (1) the removal of DTIs involving

homologous proteins (sequence identity scores > 40%); (2) the removal of the DTIs with

similar drugs (Tanimoto coefficients > 60%); (3) the removal of the DTIs with the drugs

sharing similar side-effects (Jaccard similarity scores > 60%); (4) the removal of the DTIs
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with the drugs or proteins associated with similar diseases (Jaccard similarity scores > 60%);

and (5) the removal of the DTIs with either similar drugs (Tanimoto coefficients > 60%)

or homologous proteins (sequence identity scores > 40%). In the above tests, the removal

operations can further reduce the potential redundancy in the DTIs that may cause the

inflated evaluation performance in cross-validation. The test results under the above settings

showed that DTINet was robust against the removal of homologous proteins or similar drugs

in the training data and still consistently outperformed other methods (Figure 4.3b and

Supplementary Figure B.18). We also removed the DTIs with homologous proteins in a

skewed dataset in which the known interacting drug-target pairs composed only 10% of the

whole dataset, and observed similar results (Supplementary Figure B.18e). Other threshold

values for drug similarity scores and protein identity scores were also evaluated, and similar

trends were observed (results not shown). Taken together, these results demonstrated that

DTINet can still achieve decent performance and outperform other prediction methods even

without the presence of similar drugs or targets.

The random split of training and test data in the conventional cross-validation proce-

dure may raise another concern due to ”popular” drugs [199]. Since the drugs that are

well-connected (i.e., with large degrees) to proteins in the drug-target interaction network

tend to be predicted more easily and thus may result in the inflated high recall rates, it is

important to seek a proper evaluation procedure and metric to assess the performance of

prediction methods under more realistic drug repositioning scenarios. To this end, we first

hid all DTIs in which the related drugs have new MOAs (mechanism of actions) discovered

within five years as of the time that the DrugBank database Version 3.0 (which was used

to construct our heterogeneous network) was released. According to this criterion, we held

out 255 DTIs related to 79 drugs as the test set. As in the previous studies [199, 214],

we used ”recall @ top-k” as the evaluation metric, which is defined as the fraction of true

interacting targets that were retrieved in the list of top-k predictions for a drug. The motiva-

tion of using this metric was that a method that can accurately recover the true interacting

targets in the list of top-k predictions is generally desired and useful for the downstream

experimental validation. We found that DTINet achieved much better performance than

other methods in recovering the true interacting targets for a given drug at different values

of rank k (Supplementary Figure B.19a). For example, DTINet recovered 59% of the true

DTIs within the list of top 150 predictions (corresponding to ∼ 10% of the total 1,512 pro-

teins), which was about 34% higher than the second-best method. In the second setting, we

evaluated the prediction performance of different methods on those singleton drugs, which

have only one interacting known target in our dataset. Such a setting can be considered as

a difficult case in computational drug repositioning, in that all these singleton drugs have
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no known interacting targets available in the training data (corresponding to those rows

with no known entries in the drug-target interaction matrix). Thus, there was no redun-

dancy resulting from homologous proteins or similar drugs between training and test data

during the cross-validation procedure. This setting can be used to assess the performance

of prediction methods on those DTIs that are relatively less well studied and characterized.

We observed that DTINet retrieved ∼ 50% of true DTIs for a singleton drug in the list of

top-150 predictions, in contrast to a fraction less than 28% for other methods (Supplemen-

tary Figure B.19b). Overall, the test results under the above two settings demonstrated the

superior ability of DTINet in integrating heterogeneous information into the prediction of

new DTIs in real drug repositioning scenarios, which implied that DTINet can provide a

practically useful tool for computational drug repositioning and drug discovery.

DTINet copes with the noise and incompleteness in the high-dimensional data by learning

the compact representations that capture the most explanatory features. To directly eval-

uate the robustness of DTINet under this setting, we randomly perturbed the topological

structures in the network data. In particular, 10% randomly sampled edges in the hetero-

geneous network were perturbed, by adding new edges or deleting existing interaction (or

association) edges. Compared to NetLapRLS, DTINet achieved more robust performance

against the incompleteness or noise in the network data (Supplementary Figure B.20). This

result demonstrated the robustness of DTINet in extracting the relevant latent topological

patterns even under the setting of noisy network data.

Our further comparative study showed that integrating multiple networks derived from

the feature vectors of drugs or proteins by DTINet can greatly improve the prediction per-

formance over individual single networks (Supplementary Figure B.21). Our comparison

demonstrated that, even without multiple networks integration, DITNet still outperformed

the state-of-the-art single network-based method NetLapRLS on individual similarity net-

works. This result emphasized DTINet’s ability to fully exploit useful topological information

from high-dimensional and noisy network data via a compact learning procedure, even only

given a single network as input. In addition, we observed that DTINet achieved much better

prediction performance than the extended version of NetLapRLS, when integrating multiple

networks into a heterogeneous one. These results indicated that integrating multiple net-

works into DTI prediction is not a trivial task, while the network integration procedure of

DTINet can simultaneously and effectively capture the underlying topological structures of

multiple networks, leading to the improved accuracy of DTI prediction. Moreover, in terms

of time complexity, DTINet runs fast and only takes roughly cubic time.
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4.4.2 DTINet identifies novel drug-target interactions

We also predicted the novel drug-target interactions using the whole heterogeneous net-

work (in which drug and targets have at least one known interacting pair) as training data

and outputted the list of top predictions (Supplementary Data 1 in Luo et al. [36]). We

excluded those easy predictions in which the targets have sequence identity scores above

40% from the homologous proteins in training data. Among the list of top 150 predictions

(Figure 4.4a and Supplementary Data 1 in Luo et al. [36]), we found that many of them can

also be supported by the previous known experimental or clinical evidence in the literature

(Figure 4.4b and Supplementary Data 3 in Luo et al. [36]). For example, new predictions

showed that clozapine can act on the gamma-aminobutyric acid (GABA) receptors, an es-

sential family of channel proteins that modulate cognitive functions (Figure 4.4b). This new

prediction can be supported by the previous studies which showed that clozapine can have a

direct interaction with the GABA B-subtype (GABA-B) receptors [215] and antagonize the

GABA A-subtype (GABA-A) receptors in the cortex [216]. More examples of such novel

predictions which can be supported from the previous studies in the literature can be found

in Supplementary Data 3 of Luo et al. [36].

Next, we focused on those novel drug-target interactions among the list of top 150 predic-

tions from DTINet, for which we rarely found known experimental support in the literature.

Among the list of these top 150 predictions, most of the new predicted DTIs were rele-

vant (i.e., connected) to the previously known interactions except the interactions between

three drugs, including telmisartan, chlorpropamide and alendronate, and the prostaglandin-

endoperoxide synthase (PTGS) proteins, which are also called cyclooxygenase (COX) pro-

teins (Figure 4.4a). COX is a family of enzymes responsible for prostaglandin biosynthe-

sis [217], and mainly includes COX-1 and COX-2 in human, both of which can be inhibited

by nonsteroidal anti-inflammatory drugs (NSAIDs) [218]. Apparently, it was difficult to use

the correlations between nodes within the DTI network to explain the predicted interactions

between these three drugs and the COX proteins. On the other hand, these new DTIs had

relatively high prediction scores in the list of the top 150 predictions (Supplementary Data

1 in Luo et al. [36]). In addition, the COX proteins provide a class of important targets

in a wide range of inflammatory diseases [219]. Despite the existence of numerous known

NSAIDs used as COX inhibitors, many of them are associated with the cardiovascular side-

effects [220, 221]. Thus, it is always important to identify alternative COX inhibitors from

existing drugs with less side-effects. Given these facts, it would be interesting to see whether

the predicted interactions between these three drugs and the COX proteins can be further

validated.
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Figure 4.4: Network visualization of the drug-target interactions predicted by DTINet.
(a) Visualization of the overall drug-target interaction network involving the top 150 predictions
(Supplementary Data 1 in Luo et al. [36]). Target and drugs are shown in purple circles and yellow
boxes, respectively. (b) Network visualization of several examples of novel DTI predictions which
can be supported by known experimental or clinical evidence in the literature. The drugs are
shown in yellow boxes, white different families of their interacting targets are shown in circles with
different colors. In both (a) and (b), known drug-target interactions are marked by grey edges,
while the new predicted interactions are shown by red edges.

Among the aforementioned three drugs, telmisartan has been known as an angiotensin

II receptor antagonist that can be used to treat hypertension [222], chlorpropamide has

been known as a sulfonylurea drug that acts by increasing insulin to treat type 2 diabetes

mellitus [223], and alendronate has been known as a bisphosphonate drug mainly used for

treating bone disease, such as osteoporosis and osteogenesis imperfect [224, 225]. Despite
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our current understanding about the functions of COX-1 and COX-2 proteins and the known

indications of telmisartan, chlorpropamide and alendronate, it still remains largely unknown

whether these three drugs can also interact with the COX proteins. According to the top

150 predictions by DTINet (Figure 4.4a and Supplementary Data 1 in Luo et al. [36]), these

three drugs can act on the COX proteins. We will further present our validation results on

the predicted interactions between these three drugs and COX proteins in the next sections.

4.4.3 Computational docking suggests the binding modes for the predicted drug-target
interactions

Our docking studies (“Methods”) showed that the three drugs (i.e., telmisartan, alen-

dronate and chlorpropamide) were able to dock to the structures of both COX-1 (PDB ID:

3kk6) and COX-2 (PDB ID: 3qmo), and displayed different binding patterns (Figure 4.5).

In particular, all three drugs were fitted into the active sites of both COX-1 and COX-2.

More specifically, chlorpropamide displayed similar configurations when binding to COX-1

and COX-2 (Figures 4.5a and 4.5b), by forming hydrogen bonds with both residues R120

and Y355, which created a conserved pocket as in those for common NSAIDs [226, 227].

On the other hand, the substitution of V119 in COX-1 by S119 in COX-2 allowed the for-

mation of a different hydrogen bond network in the binding pocket. Moreover, telmisartan

and alendronate interacted with residue S530 in addition to residues R120 and Y355 when

docked to COX-1 (Figures 4.5c and 4.5e), while they were both able to bind to residue S119

when docked to COX-2 (Figures 4.5d and 4.5f). Thus, a subtle difference between the bind-

ing pockets of those two enzymes may result in different binding modes even for the same

drug. These docking results may provide important hints for understanding the structural

basis of the predicted drug-target interactions and thus help reveal the underlying molecular

mechanisms of drug action.

4.4.4 Experimental validation of the top-ranked drug-target interactions predicted by
DTINet

We further sought to experimentally validate the bioactivities of the COX inhibitors pre-

dicted by DTINet (“Methods”). First, we tested their inhibitory potencies on the mouse

kidney lysates using the COX fluorescent activity assays. Similar dose-dependent repression

of COX activity was observed for the three drugs (Figures 4.6a-4.6c). The IC50 values of

telmisartan, alendronate and chlorpropamide for COX activity were measured at 56.14 µM,

160.2 µM and 289.5 µM, respectively. The measured IC50 values of the three drugs especially
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Figure 4.5: The docked poses for the predicted interactions between three drugs
(chlorpropamide, alendronate and telmisartan) and the COX proteins (COX-1 and
COX-2). (a) Chlorpromamide vs. COX-1; (b) Chlorpromamide vs. COX-2; (c) Alendronnate vs.
COX-1; (d) Alendronnate vs. COX-2; (e) Telmisartan vs. COX-1; (f) Telmisartan vs. COX-2.
The protein structures of COX-1 and COX-2 were downloaded from the Protein Data Bank (PDB
IDs 3kk6 and 3qmo for COX-1 and COX-2, respectively). The structures of the small molecules
were obtained from the ZINC [204]. The clocking program Autodock [172] was used for the docking
modeling. Hydrogen bonds were computed by PyMOL [228] and represented by the red and yellow
dashed lines in COX-1 and COX-2, respectively.

telmisartan were comparable to those of many common NSAIDs, such as celecoxib (COX-1:

82 µM; COX-2: 6.8 µM), ibuprofen (COX-1: 12 µM, COX-2: 80 µM) and rofecoxib (COX-

1: >100 µM; COX-2: 25 µM) [229, 230]. Probably alendronate and chlorpropamide were

relatively weak inhibitors of COX. It is worth noting that the order of the experimentally

measured IC50 values of these three drugs was consistent with the ranking of prediction

scores in DTINet (Supplementary Data 1 in Luo et al. [36]).

Next, the tissue extracts from the mouse kidney and the peritoneal macrophages were

used for COX selective inhibition assays. Relative inhibition of COX-1 and COX-2 activities

was distinguished using SC-560, a potent and selective COX-1 inhibitor, and Dup-697, a po-
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Figure 4.6: Inhibitory effects of telmisartan, alendronate and chlorpropamide on COX
activity measured by COX inhibition assays. (a)-(c) The inhibition rates of telmisartan, alen-
dronate and chlorpropamide measured by the COX fluorescent activity assays on the mouse kidney
lysates. (d) and (e) The relative COX activity inhibition rates of telmisartan, chlorpropamide and
alendronate on COX-1 and COX-2, measured by the COX fluorescent activity assays on the tissue
extracts from both kidney (d) and macrophage (e) lysates. (f) The results on the competitive
binding of [3H] celecoxib for different COX-2 inhibitors measured by the radioligand-based bind-
ing assays. Control: the radioactivity of the sample with [3H] celecoxib only. *: P < 0.05, **:
P < 0.01, ***: P < 0.001, , Newman-Keuls multiple comparison test. Here, data show the mean
with the standard deviation of three independent experiments, each of which was performed with
triplicates.

tent and time-dependent of COX-2 inhibitor, respectively. Overall, the assays on the tissue

extracts from mouse kidney showed that telmisartan and alendronate had slightly higher

inhibition rates on COX-1 (68% and 64%, respectively) than COX-2 (32% and 36%, respec-

tively), while chlorpropamide had a slightly higher inhibition rate on COX-2 (54%) than on

COX-1 (46%) (Figure 4.6d). Similar patterns of COX inhibition selectivity with these drugs

were also observed in the peritoneal macrophages (Figure 4.6e). To further evaluate the

selectivity of these predicted drugs on COX-1 and COX-2, we also used the human recom-

binant enzyme assays to measure the levels of PGE 2 under COX-1 and COX-2 catalyses,

respectively. The assay results showed that telmisartan, alendronate and chlorpropamide
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had IC50 values of 41.97 µM, 90.73 µM and 223.5 µM for COX-1, respectively, and 91.75

µM, 184.1 µM and 151.9 µM for COX-2, respectively (Supplementary Figures B.22). Such

results were also consistent with the IC50 values measured by the previous selective inhibi-

tion assays (Figure 4.6d-4.6e). These validation results were also in line with the observation

that the predicted scores of these novel DTIs output by DTINet were actually not that far

away (Supplementary Data 1 in Luo et al. [36]). Overall, the above inhibition assays showed

that these three drugs identified by DTINet had a certain level of inhibition affinity and and

may act as non-selective COX inhibitors on the family of COX proteins.

To further validate the predicted drug-target interactions, we also applied the radioactive

isotope labeled with the COX-2 selective inhibitor [3H] celecoxib for the competitive binding

assays. As shown in Figure 4.6f, telmisartan, alendronate, chlorpropamide and DuP-697 (a

standard COX-2 inhibitor) inhibited the binding of [3H] celecoxib to COX-2 by about 48.33%,

40.67%, 14.00% and 61.33% at their IC50 concentrations, respectively. These assay results

provided another piece of evidence to confirm that these drugs may have direct interactions

with the COX proteins.

The COX inhibitors have been extensively used as nonsteroidal anti-inflammatory drugs

(NSAIDs), thus we further tested the effects of the above three drugs on inflammatory re-

sponses and thus examined their potential applications in treating inflammatory diseases.

Lipopolysaccharide (LPS) was used to stimulate the cultured peritoneal macrophages for

the cellular inflammation model. In addition to those three drugs (i.e., telmisartan, chlor-

propamide and alendronate) predicted by DTINet, we also considered the potent COX-2

inhibitor Dup-697 and the well-known NSAID ibuprofen for comparison.

A large number of proinflammatory factors can be generated during the inflammation

process [231]. We consequently tested whether the three drugs can suppress the expression

of various inflammatory factors in response to LPS stimulation (Figure 4.7). For TNF-α

and IL-6, telmisartan exhibited a strong inhibitory effect on the LPS induced expression

(Figures 4.7a and 4.7b). Meanwhile, the induction of the important cytokine IL-1β was

also attenuated by each of the three drugs in the peritoneal macrophages (Figure 4.7c). In

particular, telmisartan displayed the strongest suppression effect on IL-1β among all COX

inhibitors. For IL-12p35, although both alendronate and telmisartan significantly inhibited

its production induced by LPS, telmisartan had a much stronger suppression effect than

other COX inhibitors (Figure 4.7d). The LPS-induced production of the immunological de-

fensive factors such as CXCL-1 and iNOS were significantly restrained by the treatment of

any of these three drugs (Figures 4.7e and 4.7f), which was similar to the results of both

Dup-697 and ibuprofen. In summary, these results showed that telmisartan, chlorpropamide

and alendronate can reduce the expressions proinflammatory factors in mouse peritoneal
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macrophages. The observed anti-inflammation effects of these three drugs further extended

the above inhibition assay studies and demonstrated their potential applications in prevent-

ing inflammatory disease.

Figure 4.7: The real-time PCR (RT-PCR) analyses of the proinflammatory factors
on the LPS-stimulated macrophages. (a)-(f) The RT- PCR analysis of mRNA expressions of
TNFα, IL-6, IL-1β, IL-12p35, CXCL-1 and iNOS normalized relative to that of GAPDH, respec-
tively. Control, macrophages without LPS treatment. *: P < 0.05; **: P < 0.01; ∗∗∗ : P < 0.001,
compared to the samples without LPS treatment. ##: P < 0.01; ### : P < 0.001, compared to
the samples treated with LPS. n=3. Newman-Keuls multiple comparison test was used. Here, data
show the mean with the standard deviation of three independent experiments, each of which was
performed with triplicates. The concentrations of the COX inhibitors were determined according to
the indications of the assay kits and the previous binding studies in the literature (see “Methods”).

Taken together, the above experimental assays validated the novel interactions between
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the three drugs (i.e., telmisartan, alendronate and chlorpropamide) and the COX proteins

predicted by DTINet, which further demonstrated the accuracy of its prediction results and

thus provided strong evidence to support its excellent predictive power. In addition, the

experimentally validated interactions between these three drugs and the COX proteins can

provide great opportunities for drug repositioning, i.e., finding the new functions (i.e., anti-

inflammatory effects) of these drugs, and offer new insights into the understanding of their

molecular mechanisms of drug action or side-effects of these drugs.

4.5 DISCUSSION

Recent advances in large-scale experimental approaches, e.g., mass spectrum-based meth-

ods [232, 233, 234, 235], have made great contributions to drug development and drug target

identification with high throughput and accuracy. Nevertheless, these methods can only

test one chemical at a time to determine the interacting proteins. In addition, they are still

costly even in a high-throughput manner. Compared to these proteomics-based methods,

computational approaches can allow high-throughput prediction for both drugs and targets,

learning their intrinsic features and inferring the interactions between all potential drug-

target pairs simultaneously. Based on the computational methods, we can identify a list of

promising candidates and thus greatly reduce the huge search space of drug-target pairs that

need to be validated by wet-lab experiments.

Previously, Guney et al. [236] showed that the network-based proximity of known drug

targets and disease-associated proteins on the interactome can provide a good indicator for

studying drug-disease associations and drug efficacy. Cheng et al. [237] also developed a

network-based pipeline to predict new indications of existing drugs, which assumed that a

drug can be applied to specific cancer types if the significantly mutated genes are enriched

in those differentially expressed genes induced by the drug. These two methods were mainly

used to study the drug-disease relationships but did not directly provide the information of

new drug-target interactions, which instead was the major goal of our framework. Although

the drug-disease relationships may provide more direct indications of existing drugs, know-

ing the explicit drug-target interactions can shed light on the underlying pharmacological

mechanisms, which are important for understanding both the therapeutic and adverse effects

of the corresponding drugs. In addition, the aforementioned two approaches simply focused

on the distances between the disease-related and drug-related proteins, which would be sen-

sitive to the incompleteness of known targets, disease genes and underlying protein-protein

interactions. On the other hand, based on the systematic integration of heterogeneous net-

work information, in principle, our approach can achieve better and more robust prediction
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performance (e.g., with fewer false positive predictions) by considering diverse information

from various types of network features.

Among the three drugs whose interactions with the COX proteins have been validated

experimentally in our study, telmisartan displayed unique pleiotropic roles in addition to

the renin-angiotensin system (RAS)-inhibition effects as an angiotensin II AT1 receptor an-

tagonist/blocker. It has been reported that telmisartan acts as a selective modulator of the

peroxisome proliferator-activated receptors (PPAR-γ and δ) [238]. Our findings probably

add novel insights into its anti-inflammatory effects as a COX inhibitor. Several studies have

indicated that telmisartan ameliorates the neuronal, airways, and coronary plaque inflam-

matory responses [239, 240]. Our findings provide direct evidence to support its interaction

on the COX proteins. Its inhibitory effects on COX and inflammatory cytokine production

may partially explain its anti-inflammatory indications.

For chlorpropamide, a sulfonylurea to increase the secretion of insulin to treat type 2

diabetes, there are few reports about its anti-inflammatory effects. Our findings indicate

that chlorpropamide can also be a COX inhibitor though with weak binding affinity (IC50

around 300 µM), which may have implications on its adverse drug reactions on hematological

changes, such as thrombocytopenia and granulocytopenia as in the hematologic syndromes

induced by other cox inhibitors [241, 242]. Alendronate, another drug that we have tested,

is a bisphosphonate drug and potent inhibitor of bone resorption used for the treatment

of metabolic bone diseases. Previous studies have shown that alendronate can also sup-

press the production of inflammatory cytokines and matrix metalloproteinases in alveolar

macrophages for its anti-inflammatory effects [243]. Our findings about its COX inhibi-

tion suggest that it may interact with COX for its immunological effects. Overall, we have

combined the computational analysis with experimental validation to discover novel drug-

target interactions. Our findings are particularly helpful for understanding the unknown

pharmacological effects of existing drugs and identifying their potential new applications.

A future direction of our work is to include more heterogeneous network data in our

framework. While we used only four domains (i.e., drugs, proteins, diseases, and side-effects)

of information in this work, we highlight that DTINet is a scalable framework in that more

additional networks can be easily incorporated into the current prediction pipeline. Other

biological entities of different types, such as gene expression, pathways, symptoms, and Gene

Ontology (GO) annotations, can also be integrated into the heterogeneous network for DTI

prediction. Although it was only applied to predict missing DTIs in this work, DTINet is

a versatile approach and definitely can also be applied to various link prediction problems,

e.g., predictions of drug-side-effect associations, drug-drug interactions and protein-disease

associations.

92



Chapter 5: Conclusions and Future Directions

The progress in biotechnology has been enabling the generation of large-scale, multi-model,

holistic data to characterize biological systems. Despite the exciting opportunity, extracting

biologically meaningful signals from noisy, incomplete, high-dimensional high-throughput

data remains challenging. Computational approaches, exemplified by statistical methods

and machine learning algorithms, have great promise of translating biomedical data into

knowledge by processing, integrating, and analyzing them in an effective and efficient way.

In this dissertation, I developed new machine learning algorithms to address unique chal-

lenges in those problems and to assist scientific discovery. In particular, I have focused on

system biology and studied the sequence-structure-function relationship of proteins, which

has important implications for understanding the mechanism of human diseases and for

designing novel therapeutics. I used representation learning as a key technique to exploit

values in biomedical data, including protein sequence datasets, protein and molecule 3D

structures, and heterogeneous networks of biomedical relationships. I first developed a deep

learning framework to learn representations that reflect evolutionary contexts for protein

sequences, and the framework successfully discovered new protein variants with enhanced

drug resistance (Chapter 2). I also developed a geometric deep learning model that learns

representations of protein and compound structures for protein-compound binding affinity,

which is able to prioritize high-confidence, high-affinity binding pairs (Chapter 3). Lastly,

I developed a machine learning algorithm to integrate heterogeneous networks by learning

compact network representations, and that algorithm also enabled the discovery of new tar-

gets for existing drugs (Chapter 4). Taken together, the results presented in this dissertation

demonstrate the potential of machine learning to transform biomedical data into knowledge

discovery.

Machine learning, especially deep learning, has evolved rapidly over the past years and

achieved exciting progress in biology and medicine as well. Remarkable examples include

AlphaFold [50] which predicts highly accurate 3D protein structure from a sequence using

deep learning. As we have seen repeatedly in this dissertation, there are unique challenges

in biological domain problems that do not exist in other popular machine learning applica-

tions such as image classification. Because of this, directly applying off-the-shelf machine

learning algorithms developed for generic purposes or problems in other domains, would only

achieve limited performance or unsatisfactory results, as we have shown in this dissertation.

Therefore, developing domain-tailored methods becomes critical for addressing biomedical

problems using machine learning. Looking forward, I envision many opportunities that
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can harness heterogeneous biological data and leverage intelligent computational models to

improve diagnostics and therapeutics for human diseases, which I outline below.

Transferable machine learning for biomedicine in low-data regimes In many im-

portant biomedical problems, such as those related to protein function and design, disease

mutations studies, and functional genomics, the effective sample sizes are much smaller than

what we expect for popular machine learning applications in vision and natural language. In

some cases, the data are harder and even impossible to obtain due to ethical and practical

reasons, such as the controlled experiments of gene knockdown in humans. These chal-

lenges underscore the importance of developing transferable machine learning models for

data-limited scenarios. The role of transferable learning, including meta-learning, few-shot

learning, and self-supervised training techniques, will be attractive to address small-data

issues and reason about never-before-seen data in important biomedical applications, such

as annotating novel types of single-cells and generating functional protein sequences based

on limited examples.

Human-AI workflows for biological discovery and design Biological discovery and

design (e.g., designing protein sequences or chemical molecules) is a problem of inference

from incomplete and imperfect information, for which artificial intelligence (AI) techniques

are well-suited. It is highly useful to develop human-AI workflows where data-driven AI

models are combined with human knowledge to deliver robust and reliable strategies for

biological discovery and design. Two directions of investigation can be expanded under this

topic. One of them is the biological discovery with domain-tailored machine learning models,

e.g., models to predict sequence-function relationships of proteins or the structure-property

relationships of molecules. These models can be used to prioritize novel protein sequences

or molecule structures that are likely to demonstrate improved properties. In particular,

the models can be combined with techniques such as the Gaussian process to quantify

uncertainty in predictions, which helps focus experimental efforts on hypotheses with a high

likelihood of success or alerts researchers to experiments with greater novelty although also

with a greater risk of failure. The other direction is model-based biological design, in which

a query oracle (e.g., a trained neural network or a lab procedure that predicts/measures

a property) is given and the goal is to design protein sequences or molecule structures

to achieve the desired property. In applications such as protein engineering, most in-lab

protocols of directed evolution create the variants library by introducing random mutations,

which requires iterated rounds of selection to obtain the desired proteins. Computational

solutions that design variants in a more intelligent way would thus greatly facilitate current
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lab techniques in terms of cost and efficiency. For this purpose, one can combine machine

learning models with Bayesian optimization to explore and exploit the search space and

generate promising candidates for synthesis and validation. In both directions, AI models

are expected to be integrated into current lab procedures to form a human-AI workflow (e.g.,

active learning loop) where AI predictions and human efforts iteratively refine the biological

hypotheses.

Trustworthy machine learning for biomedicine In the long term, machine learning

has the potential to support or provide decision-making in biomedicine. Using machine

learning in the decision-making process of biomedicine, with or without human supervi-

sion, requires responsible and trustworthy models. There has been growing interest from

researchers and practitioners to develop machine learning models that are not only accu-

rate, but also explainable, robust, and privacy-preserving. Future directions along this line

include (1) Transparency and explainability: To be accepted into decision-making processes

in biomedicine, models should be designed to explicitly demonstrate their decision process

when possible and to allow for interventions if necessary. (2) Model robustness: To achieve

reliable decision-making, machine learning models and their explanations should be robust

against distribution shifts and missing counterfactuals. (3) Privacy-preserving: Increased

collaborations and data sharing will enhance machine learning models for biomedicine while

posing concerns of individual privacy and intellectual property; fundamentally new algorith-

mic solutions based on techniques such as multi-party computation, differential privacy, and

federated learning can facilitate the sharing of biomedical data without divulging sensitive

privacy. Overall, we hope to move beyond black-box predictions and provide trustworthy

machine learning tools that enable decision-making in biomedicine.
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Jensen, S. Bastuck, B. Dümpelfeld et al., “Proteome survey reveals modularity of the
yeast cell machinery,” Nature, vol. 440, no. 7084, pp. 631–636, 2006.

[7] S. Mostafavi, D. Ray, D. Warde-Farley, C. Grouios, and Q. Morris, “Genemania: a real-
time multiple association network integration algorithm for predicting gene function,”
Genome biology, vol. 9, no. 1, pp. 1–15, 2008.

[8] I. Lee, U. M. Blom, P. I. Wang, J. E. Shim, and E. M. Marcotte, “Prioritizing candidate
disease genes by network-based boosting of genome-wide association data,” Genome
research, vol. 21, no. 7, pp. 1109–1121, 2011.

[9] A. K. Wong, A. Krishnan, V. Yao, A. Tadych, and O. G. Troyanskaya, “Imp 2.0: a
multi-species functional genomics portal for integration, visualization and prediction
of protein functions and networks,” Nucleic acids research, vol. 43, no. W1, pp. W128–
W133, 2015.

[10] D. Szklarczyk, A. L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, M. Si-
monovic, N. T. Doncheva, J. H. Morris, P. Bork et al., “String v11: protein–protein as-
sociation networks with increased coverage, supporting functional discovery in genome-
wide experimental datasets,” Nucleic acids research, vol. 47, no. D1, pp. D607–D613,
2019.

96
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[148] R. J. Townshend, M. Vögele, P. Suriana, A. Derry, A. Powers, Y. Laloudakis, S. Bal-
achandar, B. Jing, B. Anderson, S. Eismann et al., “Atom3d: Tasks on molecules in
three dimensions,” arXiv preprint arXiv:2012.04035, 2020.

[149] Y. Shi, Z. Huang, W. Wang, H. Zhong, S. Feng, and Y. Sun, “Masked label predic-
tion: Unified message passing model for semi-supervised classification,” arXiv preprint
arXiv:2009.03509, 2020.

[150] A. L. Maas, A. Y. Hannun, A. Y. Ng et al., “Rectifier nonlinearities improve neural
network acoustic models,” in Proc. icml, vol. 30. Citeseer, 2013, p. 3.

[151] B. Jing, S. Eismann, P. Suriana, R. J. Townshend, and R. Dror, “Learning from protein
structure with geometric vector perceptrons,” International Conference on Learning
Representations (ICLR), 2021.

[152] A. Ashukha, A. Lyzhov, D. Molchanov, and D. Vetrov, “Pitfalls of in-domain un-
certainty estimation and ensembling in deep learning,” International Conference on
Learning Representations (ICLR), 2020.

[153] V. Kuleshov, N. Fenner, and S. Ermon, “Accurate uncertainties for deep learning using
calibrated regression,” in International Conference on Machine Learning. PMLR,
2018, pp. 2796–2804.

[154] D. Levi, L. Gispan, N. Giladi, and E. Fetaya, “Evaluating and calibrating uncertainty
prediction in regression tasks,” arXiv preprint arXiv:1905.11659, 2019.

[155] H. Song, T. Diethe, M. Kull, and P. Flach, “Distribution calibration for regression,”
in International Conference on Machine Learning. PMLR, 2019, pp. 5897–5906.

[156] A. Amini, W. Schwarting, A. Soleimany, and D. Rus, “Deep evidential regression,” in
Advances in Neural Information Processing Systems, vol. 33, 2020, pp. 14 927–14 937.

108



[157] G. Scalia, C. A. Grambow, B. Pernici, Y.-P. Li, and W. H. Green, “Evaluating scal-
able uncertainty estimation methods for deep learning-based molecular property pre-
diction,” Journal of chemical information and modeling, vol. 60, no. 6, pp. 2697–2717,
2020.

[158] Y. Chung, I. Char, H. Guo, J. Schneider, and W. Neiswanger, “Uncertainty toolbox:
an open-source library for assessing, visualizing, and improving uncertainty quantifi-
cation,” arXiv preprint arXiv:2109.10254, 2021.

[159] R. P. Brent, “An algorithm with guaranteed convergence for finding a zero of a func-
tion,” The Computer Journal, vol. 14, no. 4, pp. 422–425, 1971.

[160] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright et al., “Scipy 1.0: fundamental
algorithms for scientific computing in python,” Nature methods, vol. 17, no. 3, pp.
261–272, 2020.

[161] K. Tran, W. Neiswanger, J. Yoon, Q. Zhang, E. Xing, and Z. W. Ulissi, “Methods
for comparing uncertainty quantifications for material property predictions,” Machine
Learning: Science and Technology, vol. 1, no. 2, p. 025006, 2020.

[162] V. Modi and R. L. Dunbrack, “Defining a new nomenclature for the structures of
active and inactive kinases,” Proceedings of the National Academy of Sciences, vol.
116, no. 14, pp. 6818–6827, 2019.

[163] V. Modi and R. Dunbrack, “Kincore: a web resource for structural classification of
protein kinases and their inhibitors,” bioRxiv, 2021.

[164] K. Huang, T. Fu, W. Gao, Y. Zhao, Y. Roohani, J. Leskovec, C. W. Coley, C. Xiao,
J. Sun, and M. Zitnik, “Therapeutics data commons: Machine learning datasets and
tasks for drug discovery and development,” Proceedings of Neural Information Pro-
cessing Systems, NeurIPS Datasets and Benchmarks, 2021.
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Appendix A: Supplementary Tables

Table A.1: The number of nodes of individual types in the constructed heterogeneous network.

Type of node Count
Drug 708
Protein 1, 512
Disease 5, 603
Side-effect 4, 192
Total 12, 015

Table A.2: The size of individual interaction or association matrices in the constructed heteroge-
neous network.

Type of edge Count
Drug-Protein 1, 923
Drug-Drug 10, 036
Drug-Disease 199, 214
Drug-Side-effect 80, 164
Protein-Protein 7, 363
Protein-Disease 1, 596, 745
Total 1, 895, 445

Table A.3: Statistics of Davis and KIBA datasets. “Raw” refers to the raw dataset and
“Processed” refers to the version with kinases and compounds without 3D structure being removed.

(a) Davis

Proteins Compounds Pairs
Raw 442 68 30,056

Processed 226 68 14,464

(b) KIBA

Proteins Compounds Pairs
Raw 229 2,111 118,254

Processed 160 2,086 8,9957
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Table A.4: Node features of atoms in molecules. Features are encoded using one-hot
encoding.

Index Feature Possible values Dimension

1 Atom type

C, N, O, S, F, Si, P,
Cl, Br, Mg, Na, Ca,

Fe, As, Al, I, B, V, K,
Tl, Yb, Sb, Sn, Ag,

Pd, Co, Se, Ti, Zn, H,
Li, Ge, Cu, Au, Ni,
Cd, In, Mn, Zr, Cr,

Pt, Hg, Pb, unknown

44

2 Atom’s degree 0,1,. . . ,5, ≥ 6 7
3 Number of H bound to the atom 0,1,. . . ,5, ≥ 6 7
4 Number of implicit H bound to the atom 0,1,. . . ,5, ≥ 6 7
5 Whether the atom is aromatic or not True of False 1

Total 66

Table A.5: Raw performance numbers on the Envision dataset. Performances of ECNet
and the Envision model are evaluated using AUROC and Spearman correlation. The mean values
of ten trials of five-fold cross-validation are listed.

AUROC Spearman correlation
Protein ECNet Envision ECNet Envision

BRCA1 (E3 activity) 0.32 0.29 0.41 0.33
BRCA1 (BARD1 binding) 0.54 0.52 0.43 0.38

Ubiquitin (E1) 0.59 0.53 0.72 0.71
UBE4B (U-box) 0.48 0.41 0.52 0.48
PSD95 (pdz3) 0.86 0.82 0.79 0.75

Pab1 0.44 0.36 0.81 0.80
TEM-1 0.59 0.55 0.86 0.87

Ubiquitin 0.73 0.65 0.86 0.82
Yap65 (WW) 0.79 0.74 0.76 0.72

Protein G 0.88 0.83 0.91 0.87
HSP90 0.56 0.52 0.70 0.67
KKA2 0.80 0.88 0.80 0.88
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Appendix B: Supplementary Figures

Figure B.1: The neural network architecture of ECNet. Given the input sequence, the
protein language model is used to generate the global evolutionary contexts while the direct cou-
pling model is used to generate the local evolutionary contexts. One-hot representations and the
local evolutionary contexts are concatenated and passed to an LSTM. Embeddings produced by
the LSTM are concatenated with global evolutionary contexts that have been projected by a lin-
ear dimensionality reduction layer. The top layers are composed of a self-attention layer, which
summarizes the embeddings of all positions into a single embedding, and fully connected layers
that output the final prediction. In the model training, only parameters of LSTM and top layers
are updated, while parameters of the protein language model and direct coupling model are fixed.
(LSTM: long short-term memory network; FC layers: fully-connected layers.)
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Figure B.2: Performance improvements on the Envision dataset. This bar plot shows the
relative improvements of Spearman correlation achieved by ECNet as compared to the Envision
model. Performances were evaluated using ten trials of five-fold cross-validation. The bar plot
represented the mean±SD of the data.

Figure B.3: Comparison of supervised learning with different representations. ECNet
integrated multi-scale sequence representations, including the global evolutionary representation,
the local evolutionary representation, and the one-hot representation of a protein sequence. We per-
formed ablation analysis to compare ECNet to models that used individual sequence representation
using five-fold cross-validation. Spearman correlation was used as the evaluation metric.
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Figure B.4: Evaluation of ECNet on noisy data. (a) Schematic illustration of the evaluation
protocol using simulated noisy data. A random fraction (20%) of the DMS dataset was withheld
as the test set and the remaining variants are used as the training set. For each variant in the
training set, its fitness value is perturbed by a multiplicative random noise α, i.e., the fitness value
fi of variant i became f̂i = αifi, where αi was sampled from the normal distribution N (1, σ).
The trained models were then evaluated on the noise-free test set. (b) Evaluation results for
39 proteins in the DeepSequence dataset for σ = 0.5. Top: data inconsistency caused by the
perturbation for each protein. The inconsistency is defined as the 1− r, where r is the Spearman
correlation between the pre- and post-perturbation fitness values of the training set. Bottom:
ECNet’s performance drop when trained on the noisy training data as compared to when it is
trained on the noise-free training data. The performance was evaluated using Spearman correlation.
(c) Relationship between the training data inconsistency and the performance drop for every protein
in the DeepSequence dataset, at noise levels σ = 0.1, 0.25,and 0.5. (d) Prediction performances of
ECNet, TAPE, and One-hot models on the DeepSequence dataset at noise levels σ = 0, 0.1, 0.25,and
0.5.
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Figure B.5: Simulation results of using ECNet to prioritize high-performing variants
for avGFP, GB1, and Pab1. (a) Recall versus sequence testing budget curves for each method.
The recall is defined as the fraction of the true top-100 variants that were ranked within the top K
predictions of a method, where K is a given testing budget (number of variants to test). ECNet was
compared to i) UniRep, a supervised method, ii) One-hot, a supervised method that uses simple
one-hot sequence representations, iii) EVmutation, an unsupervised method, iv) random model,
which is a null model that assigns a random ranking to test variants, and v) ideal model, which
ranks the variants using the ground-truth fitness score. (b) Maximum normalized fitness rank
observed versus sequence testing budget curves for each method. Fitness scores of variants were
normalized based on their rank into a value between 0 (the lowest fitness score) and 1 (the highest
fitness score). (c) Efficiency gain of ECNet, UniRep, One-hot, and EVmutation over the random
model with the given testing budget. The efficiency gain is defined as the ratio of a method’s recall
divided by the recall of the null model as a function of the testing budget. Error bands in (a) and
(b) depict mean ± SD calculated over 10 independent replicates of the experiments. Curves in (c)
were smoothed using an averaging window of size 50 along the x-axis.
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Figure B.6: Performance of unsupervised and supervised ECNet on viral proteins. The unsuper-
vised ECNet is a model that learns from homologous sequences of the protein of interest to predict
how tolerable or favorable a mutation is at a position, and it does not use any fitness data in the
training process. The supervised ECNet model predicted the fitness value of the input sequence
and was trained using existing fitness data. The performance of supervised ECNet was summarized
as the average of a five-fold cross-validation.

Figure B.7: Effect of DMS training data size on prediction performance. ECNet was
trained in a supervised way with full (100%) or partial (25%) DMS data, or in an unsupervised
way (0% DMS data), and then applied to predict the fitness for a holdout set of variants. The
supervised ECNet model was trained using 100% or 25% DMS data, and three model replicas
are trained on the same data and their predictions were averaged as the final predictions. The
unsupervised ECNet model was trained on homologous sequences of the target protein to predict
the probability of an amino acid showing at a position in the sequence (Methods). Performances
were evaluated on the proteins in the DeepSequence dataset (Methods).
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Figure B.8: Relationships between the number of sequences in MSA and the fitness prediction
accuracy using co-variation.

Figure B.9: Relationships between prediction performance and MSA/DMS data prop-
erties. (a) Correlation between the number of sequences in the MSA of homologous sequences and
ECNet’s prediction performance. Each point represents one protein in the DeepSequence dataset.
(b) Correlation between site entropy in the MSA and ECNet’s prediction performance. Each point
represents one fold experiment, and its x-axis value indicates the average over the entropies of all
sites in the test data in this fold. (c) Correlation between ECNet’s performance improvements
against DeepSequence and the completeness of single-mutation protein DMS data in the DeepSe-
quence dataset. The completeness is defined as the percentage of screened variants among all
possible single-mutation variants for a protein. (d) Same as (c) except that the DMS completeness
is defined for each site.
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Figure B.10: Prediction performance on sequence site-wise and amino acid-wise (AA-
wise) train/test data split. (a-b) Schematic visualizations of train/test split. A DMS dataset
is visualized as a matrix where the x-axis represents the index of position in the sequence and the
y-axis represents the amino acid (AA) types the site mutates to. To split strategies are considered:
(a) Site-wise split: the deep mutational scanning (DMS) dataset was split based on the sequence
position (site) in the sequence. Mutants in 80% of the sites were randomly sampled as training data
and mutants in the remaining sites were used as test data. The partition of train/test sites was only
for the schematic visualization purpose. The actual training sites are randomly sampled and not
necessarily the 80% leftmost sites; (b) AA-wise split: the DMS dataset was split based on AA types
of mutations. For each site, 80% of the mutations were randomly sampled and added to the training
set and the remaining 20% mutations were added to the test set. The partition of train/test AA
types was only for the schematic visualization purpose. The actual training mutations are randomly
sampled and not necessarily the first 80% alphabetically ordered AA types. (c-d) Comparison of
ECNet to DeepSequence on 37 single-mutation DMS datasets for both (c) site-wise split and (d)
AA-wise split settings. The DeepSequence’s performances are the same in (c) and (d) as it is an
unsupervised model. (AA: amino acid; DMS: deep mutational scanning.)
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Figure B.11: The exploration-exploitation trade-off of training data design under a
limited experimental budget. Given the limited experimental budget, we examined the effects
of different training data designs, i.e., screening fewer sites but more mutations on each site, or more
sites but fewer mutations on each site. (a) Schematic visualizations of the exploration-exploitation
trade-off. Given a DMS dataset, 20% of mutations of each site were withheld as test data. The
experimental budget (number of variants that can be tested) was set to 50% of the remaining
variants. The allocation of the budget was controlled by an exploration ratio r, which we defined
as the fraction of sites with at least one mutation being sampled in the training data. We varied the
value of r =0.5, 0.75, and 1.0 but fixed the test budget (i.e., the area of the purple region remains
the same). (b) ECNet’s performance was assessed using 37 single-mutation DMS datasets curated
in the DeepSequence dataset. (c) Pairwise performance comparison between ECNet at different
exploration ratios and the unsupervised ECNet.
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Figure B.12: Prediction performance evaluation on DAVIS dataset. Comparisons of
prediction performance of KDBNet with KronRLS, DeepDTA, GraphDTA, and DGraphDTA on
the DAVIS dataset using three train-test split settings. Performances were evaluated using three
metrics, including Pearson correlation, Spearman correlation, and mean squared error (MSE) be-
tween predicted and true pKd values. Results were averaged over 25 independent trials. The bar
plot represented the mean±SEM of the data. Pearson and MSE results replicate Figure 3.2 for
reference.

Figure B.13: Ablation evaluation of structure data. Comparisons between KDBNet variants
that use or do not use 3D structure data. When protein structure was not used, the sequence was
used as the representation of the input protein, and the protein GNN was replaced by a CNN.
When drug structure is not used, the 2D molecule graph parsed from SMILES string was used as
the representation of the input drug, and no 3D geometric features is used in the molecule GNN.
The full model used both drug and protein structures.
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Figure B.14: Prediction performance evaluation on KIBA dataset. Comparisons of pre-
diction performance of KDBNet with KronRLS, DeepDTA, GraphDTA, and DGraphDTA on the
KIBA dataset using three train-test split settings. Performances were evaluated using three met-
rics, including Pearson correlation, Spearman correlation, and mean squared error (MSE) between
predicted and true pKd values. Results were averaged over 25 independent trials. The bar plot
represented the mean±SEM of the data.

Figure B.15: Evaluation of uncertainty quantification using Spearman rank correlation
and miscalibration area. (a) Spearman correlation between the estimated uncertainty and
the prediction error measured in MSE on the three test sets of different split strategies. Higher
correlations indicate more accurate uncertainty estimations with respect to prediction errors. (b)
Miscalibration areas of KDBNet, GP, and GP-MLP on the three test sets. Lower values indicate
more calibrated uncertainty estimations.
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Figure B.16: The schema of the heterogeneous network constructed based on diverse
data sources for DTINet development. Each edge between different types of nodes represents
the pairwise interactions or associations between two nodes of the corresponding types (e.g., drug-
protein interaction or protein-disease association). Each edge of a homogeneous drug (or protein)
network represents the similarity between two drugs (or proteins) or their interaction.
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Figure B.17: Performance comparisons between DTINet and other state-of-the-art
methods on skewed datasets. (a) The number of randomly chosen non-interacting drug-target
pairs (i.e., negative samples) was 10 times more than the number of known interacting drug-target
pairs (i.e., positive samples). (b) The negative set include all the remaining non-interacting drug-
target pairs that were not in the training data. Here, during the training process, a randomly
chosen subset of 90% known interactions and a matching number of non-interacting pairs were
used to train the models, while during the test process, the remaining 10% known interactions and
all of the non-interacting pairs that were not included in the training set were used to evaluate the
prediction performance. All results were summarized over 10 trials of ten-fold cross-validation and
expressed as mean ± SD.
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Figure B.18: Performance comparisons between different prediction approaches on
the datasets after remaining similar drugs or / and targets. (a) The removal of DTIs
with similar drugs (Tanimoto coefficients > 60%), (b) The removal of DTIs with the drugs that
share similar side-effects (Jaccard similarity scores > 60%), (c) The removal of DTIs with the
drugs or proteins associated with similar diseases (Jaccard similarity scores > 60%), and (d) The
removal of DTIs with either similar drugs (Tanimoto coefficients > 60%) or homologous proteins
(sequence identity scores > 40%). These removal operations reduced the number of DTIs from
1,923 to 1,268, 1265, 1077 and 900 in (a), (b), (c) and (d), respectively. In (a)-(d), a matching
number of randomly chosen non-interacting drug-target pairs (i.e., negative samples) with the
known interacting drug-target pairs (i.e., positive samples) were used as training data. (e) The
removal of the DTIs with homologous proteins (sequence similarity scores > 40%) on a skewed
dataset, in which known interacting drug-target pairs composed only 10% of the whole test data.
All results were summarized over 10 trials of ten-fold cross-validation and expressed as mean ±
SD.
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Figure B.19: The cumulative distributions of recall at top-k with respect to rank k
when withholding the DTIs of (a) new drugs or (b) singleton drugs. The new drugs
were those with new MOAs (mechanism of actions) discovered within the last five years as of the
time that the DrugBank database Version 3.0 (which was used to construct our heterogeneous
network) was released. The singleton drugs meant those with only one known interacting target
in our dataset. The vertical axis, denoted by recall @ top-k, represents the fraction of the true
interacting drug-target pairs that were retrieved in the list of top-k predictions for a drug. The
maximum value of rank k was set to 150, which corresponded to roughly 10% of the total number
of the targets (1,512).
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Figure B.20: Robustness of the prediction performance of DTINet with respect to
the random perturbation of edges in the heterogeneous network. A fraction (10%) of
randomly selected edges in the heterogeneous network were perturbed, by adding new edges or
deleting existing edges. The ground truth drug-target interacting pairs used in the test data were
not perturbed. All results were summarized over 10 trials of ten-fold cross-validation and expressed
as mean ± SD.
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Figure B.21: A comparative study on the prediction performance of DTINet and
NetLapRLS on individual networks and their integration. (a) The test results on individual
similarity networks of drugs and their integration, where Sddrug, S

d
disease, S

d
se and Sdchem represent the

similarity networks in which the similarity score between a pair of drug nodes was computed based
on the profiles of drug-drug interactions, drug-disease associations, drug-side-effect associations
and chemical structures, respectively. (b) Tests on individual similarity networks of proteins and
their integration, where Spprotein, Spdisease and Spseq represent the similarity networks in which the
similarity score between a pair of protein nodes was computed based on the profiles of protein-
protein interactions, protein-disease associations and primary sequences, respectively. An extended
version of NetLapRLS was used to combine all similarity networks to perform DTI prediction. All
results were summarized over 10 trials of ten-fold cross-validation and expressed as mean ± SD.
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Figure B.22: The inhibitory effects of telmisartan (a), alendronate (b), and chlor-
propamide (c) on COX-1 and COX-2 activities, measured by the human recombinant
enzyme assays. The COX-1 (open squares) and COX-2 (closed circles) inhibitions were assessed
by measuring the levels of PGE 2.
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Figure B.23: Robustness of DTINet with respect to the number of dimensions of
feature vectors. We evaluated the sensitivity of the prediction performance of DTINet with
respect to different numbers of dimensions of the feature vectors of drugs (a) and proteins (b).
We tested the dimensions of the feature vectors of drugs (fd) and proteins (ft) in a range that
are roughly equal to 10%-30% of the dimensionality of the original vectors describing the diffusion
states. DTINet had stable prediction performance over a wide range the dimensions of the feature
vectors. Prediction performance was evaluated in terms of both the area under the receiver oper-
ating characteristic curve (ROC) and the area under the precision recall (PR) curve. All results
were summarized over 10 trials of ten-fold cross-validation and expressed as mean ± SD.
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Figure B.24: Robustness of the prediction performance of DTINet with respect to dif-
ferent choices of parameters. We tested the prediction performance of DTINet using different
values of (a) the restart probability, (b) the latent rank of matrix completion, and (c) the regu-
larization parameter. Prediction performance was evaluated in terms of both the area under the
receiver operating characteristic curve (ROC) and the area under the precision recall (PR) curve.
All results were summarized over 10 trials of ten-fold cross-validation and expressed as mean ±
SD.
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