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ABSTRACT

In the last decade, indoor localization-based smart, innovative services have become very

popular in public spaces (retail spaces, malls, museums, and warehouses). We have state-of-art

RSSI techniques [1, 2, 3] to more accurate CSI techniques [4, 5, 6] to infer indoor location.

Since the past year, the pandemic has raised an important challenge of determining if a pair

of individuals are “social-distancing,” separated by more than 6ft. Most solutions have used

‘presence’—if one device can hear another— which is a poor proxy for distance since devices

can be heard well beyond 6 ft social distancing radius and across aisles and walls. Here we ask

the key question: what needs to be added to our current indoor localization solutions to deploy

them towards scenarios like reliable contact tracing solutions easily. And we identified three

main limitations—deployability, accuracy, and privacy. Location solutions need to deploy on

ubiquitous devices like smartphones. They should be accurate under different environmental

conditions. The solutions need to respect a person’s privacy settings. Our main contributions

are twofold —a new statistical feature for localization, Packet Reception Probability (PRP)

which correlates with distance and is different from other physical measures of distance like

CSI or RSSI. PRP can easily deploy on smartphones (unlike CSI) and is more accurate than

RSSI. Second, we develop a crowd tool to audit the level of location surveillance in space

which is the first step towards achieving privacy.

Specifically, we first solve a location estimation problem in Chapter 3 with the help of

infrastructure devices (mainly Bluetooth Low Energy or BLE devices). BLE has turned

out to be a key contact tracing technology during the pandemic. We have identified three

fundamental limitations with BLE RSSI—biased RSSI Estimates due to packet loss, mean

RSSI de-correlated with distance due to high packet loss in BLE, and well-known multipath

effects. We built the new localization feature, Packet Reception Probability (PRP), to solve

the packet loss problem in RSSI. PRP measures the probability that a receiver successfully

receives packets from the transmitter. We have shown through empirical experiments that

PRP encodes distance. We also incorporated a new stack-based model of multipath in our

framework. We have evaluated B-PRP in two real-world public places, an academic library

setting and a real-world retail store. PRP gives significantly lower errors than RSSI. Fusion

of PRP and RSSI further improves the overall localization accuracy over PRP.

Next, we solved a peer-to-peer distance estimation problem that uses minimal infrastructure

in Chapter 4. Most apps [7, 8, 9] have solved peer-to-peer distances through the presence of

Bluetooth Low-Energy (BLE) signals. Apps that rely on pairwise measurements like RSSI
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suffer from latent factors like device relative positioning on the human body, the orientation

of the people carrying the devices, and the environmental multipath effect. We have proposed

two solutions in this work—using known distances and collaboration to solve distances more

robustly. First, if we have a few infrastructure devices installed at known locations in an

environment, we can make more measurements with the devices. We can also use the known

distances between the devices to constrain the unknown distances in a triangle inequality

framework. Second, in an outdoor environment where we cannot install infrastructure devices,

we can collaborate between people to jointly constrain many unknown distances.

Finally, we solve a collaborative tracking estimation problem in Chapter 5 where people

audit the properties of localization infrastructure. While people want services, they do not

want to be surveilled. Further, people using an indoor location system do not know the

current surveillance level. The granularity of the location information that the system collects

about people depends on the nature of the infrastructure. Our system, the CrowdEstimator,

provides a tool to people to harness their collective power and collect traces for inferring the

level of surveillance. We further propose the insight that surveillance is not a single number,

instead of a spatial map. We introduce active learning algorithms to infer all parts of the

spatial map with uniform accuracy. Auditing the location infrastructure is the first step

towards achieving the bigger goal of declarative privacy, where a person can specify their

comfortable level of surveillance.
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CHAPTER 1: INTRODUCTION

A significant portion of the worldwide population uses smartphones for communication

and information gathering while on the move. At the same time, lower costs of computing,

storage, and communication are transforming physical spaces, with the increasing presence

of Internet of Things (IoT). The combination of smartphones and increased IoT density is

transforming how we imagine and use public spaces. For example, Amazon is experimenting

with retail stores with no checkout lanes [10] so that customers can have an experience similar

to online marketing. Stores [11] are using smart technology to better market to customers.

Smart Museums [12] provide just-in-time information via audio tours, thereby enabling a

more engaging experience with your favorite exhibits. Smart technologies can ensure asset

tracking and security in the enterprises [13], thereby reducing lost assets which can be crucial

for small businesses. IoT in airports like Miami International Airport can provide passengers

with directions based on their location and help them to catch a connecting flight with a

short layover or quickly find different services. Railway stations in India [14] and Hong Kong

[15] have also deployed IoT systems to push notifications to travelers.

To truly transform the use of physical space through innovative services, accurate iden-

tification of the location of an individual is essential. In particular, we are interested in

accurately identifying the location of individuals in indoor spaces, where noise in familiar

Global Positioning System (GPS) signals complicates localization. Stores can figure out items

we browsed based on our location inside the space and offer discount notifications through

their app. Museums can use location information to figure out the exhibit we are standing in

front of, tell us about its history, and recommend related exhibits. Enterprises can figure out

the location of their assets through chips attached to them. Airports and railway stations

can use our location information to suggest nearby restaurants, security checkpoints, and the

shortest path to a gate.

Many state-of-the-art techniques [1, 4, 5, 6, 16, 17, 18] have been developed in the last two

decades to find the location of people in indoor environments. Most works use signals (such

as radio-frequency signals or light signals) exchanged with anchor nodes (known location)

to infer the location of a target. They measure either distance or angle or both from these

known anchor locations and use that to obtain the coordinate point of the target location.

These works have used a wide range of technologies or anchor nodes for localization like WiFi

access points [1, 16, 17], Bluetooth beacons [19, 20, 21], ultra-wide band (UWB) devices [22],

RFID tags [23, 24, 25, 26], light emitters [27, 28, 29, 30] to name a few. The works have

also used a wide range of features for localization starting from the most standard Received
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Signal Strength Indicator or RSSI [1, 16, 17, 31] techniques to the more accurate Channel

State Information or CSI [4, 5, 6, 32, 33] based techniques. While RSSI techniques give errors

2− 3m, CSI gives error in the order of decimeters.

Since the past year, the contact-tracing challenge due to the pandemic has put an urgent,

renewed focus on developing robust indoor localization solutions. COVID-19 mainly spreads

in indoor spaces due to close contact (closer than 6ft for over 15 minutes as per CDC guidelines

[34]) between an infected person and another person. Due to latency in the appearance of

symptoms in many infected people and the presence of potentially asymptomatic people, a

healthy (but infected) person can end up spreading the virus to many vulnerable people in

indoor environments. To stop the rapid spread of the virus, we need automated solutions

that can send alerts to individuals who have been exposed to an infected person. The core

requirement of such automated solutions is a robust distance estimation technique that can

estimate when two people have been closer than 6ft to each other for a significant time.

In the past decade, we have developed a wide array of high-performing indoor localization

solutions that range from using the signal strength of received signals [1, 2, 3] to the channel

state information of signals [4, 5, 6]. However, it is pretty remarkable that despite two

decades of advance in the indoor localization field, most contact tracing apps that were

built last year like Aarogya Setu 1 in India and BlueTrace2 (deployed in Singapore) uses the

presence of signals (i.e., a smartphone that can hear another must be in proximity of the

other.) to infer distance. Presence is coarse-grained information. Bluetooth Low Energy

(BLE) signals transmitted by these apps can be heard long distances and beyond walls and

obstacles. As a result, using only the presence of BLE signals as an indicator leads to many

false positives, i.e., we detect faraway people to be nearby.

This thesis poses the key question— what are the limitations in the existing localization

solutions that impede their deployment towards scenarios like reliable contact tracing solutions?.

We have identified three main limitations—deployability, accuracy, and privacy.

• Deployability: For localization-based digital contact tracing to work reliably, we need all

people nearby to have contact-tracing applications. To deploy our applications at scale

to a wide range of people, we need to use smart devices that are ubiquitous with many

people today. Smartphones are the only such devices today, and they contain sensors like

WiFi and BLE, which enable localization. However, our current state-of-the-art accurate

location finders [4, 5, 6] uses CSI or channel state information. To measure CSI, we require

specialized hardware and firmware support that is not present in today’s smartphones. A

1https://www.mygov.in/aarogya-setu-app/
2https://bluetrace.io
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recent work [35] has enabled CSI for WiFi in some smartphones, but it cannot apply to

other technologies like BLE. Smartphones can only receive signals or packets sent over

WiFi/BLE and measure coarse aggregated information like signal strength or RSSI. How

can we estimate location without using non-deployable information like CSI and only using

readily available aggregate values like RSSI? Trying to use RSSI for localization leads us to

our second limitation.

• Accuracy: For localization-based contact tracing to do a good job in identifying people

in contact, we need our location estimators to be accurate. State-of-the-art RSSI based

location estimators [1, 2, 17] are well known [2] to be less accurate (error over 2m)

and non-robust in their performance in indoor environments. They suffer from a wide

range of effects like path-loss, fading, shadowing, and multi-path effects. For example,

when a signal travels to a receiver, it does so through multiple paths and merges either

in-phase (constructive) or out-of-phase (destructive). The merging that happens controls

the received RSSI value, causing a huge variance for the same transmitter and receiver

location. How can we estimate location accurately using RSSI or other readily available

information from smartphones? Note that here we have a trade-off between deployability

and accuracy. On one end, we have advanced technologies like CSI, which are very accurate

but almost undeployable at scale. On the other end, we have RSSI, which is deployable

but highly inaccurate. Can we find a middle ground where the system is still deployable

and has better accuracy than RSSI (but lower accuracy than CSI)?

• Privacy: For our localization solutions to work reliably, we need more people to trust

and adopt such technologies. For example, according to [36], at least more than 15% of a

population needs to opt into a localization-based covid tracing system for it to have some

decreasing impact on a community’s covid case numbers, hospitalizations, and deaths.

Other studies [37] claim even more higher numbers close to 60%. As found in [38], trust

was an important factor affecting the adaption of contact tracing technologies. People were

not confident that their location data would not serve corporations by building detailed

behavioral profiles on them. For example, a person opting into a contact tracing system in

an airport may not want the airport to learn which vending machine and what items they

browsed at a certain point in time. We need to establish people or customers on the same

level as these indoor location techniques to guide/provide input on their comfortable level

of detection or surveillance. The person in the airport should be able to say—do not locate

which item I am browsing in the vending machine; the system can locate the person’s gate

number at the airport for digital contact tracing.
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In this thesis, we first address the problem of deployability and accuracy by designing a

new feature—Packet Reception Probability (PRP) that can deploy on smartphones.

Packet Reception Probability measures the probability that a receiver successfully receives

packets from the transmitter. RSSI estimators are deployable on smartphones, but they

have low accuracy. A significant challenge with RSSI estimators [1, 39] is the positive bias

present in mean RSSI values due to loss of packets. We only include received packets in

our aggregate RSSI estimates. We solve positive bias by designing this new feature PRP on

negative information—the fraction of packets lost (1− fraction of packets received). We also

introduce a new stack-based model of multi-path. PRP only measures the number of packets

received and hence can easily deploy on smartphones.

Second, now that we have a deployable and accurate localization system let us see how we

can provide a level of anonymity at the same time. We address the question of declarative

location privacy by designing a crowdsourcing system to estimate the level of location

tracking or space anonymity in an environment. In order to achieve a declarative version

of privacy, we first need to know the level of privacy exposure or the tracking that is

happening in a public space. The tracking performance of a space depends on the nature of

the infrastructure installed in that space. For example, an airport that has deployed 1000

devices/anchors in its space will have more data points and better localization than a railway

station of a similar floor area that may have installed only 10 devices. We have designed a

crowdsourcing system where each person collects raw data while interacting with a public

space in their specific way and then contributes that data-trace to a central repository. We

will combine and use the crowdsourced traces to infer the privacy exposure or tracking in

space.

In this dissertation, we demonstrate the efficiency of our approaches in three different

end-to-end systems—a location estimation problem with the help of infrastructure devices

(mainly Bluetooth beacons), a peer-to-peer distance estimation problem that uses minimal

infrastructure, and a collaborative tracking estimation problem where people estimate prop-

erties of localization infrastructure. We deploy these systems in real-world environments

like libraries, retail spaces, and academic departments. We will present our deployment

experiences and insights.

1.1 SYSTEMS DEVELOPED

In the following sections, we shall present the challenges and systems we developed to solve

those challenges towards location estimation, distance estimation, and location surveillance

estimation in public indoor spaces.

4



1.1.1 Location estimation using packet reception probability

During the COVID 19 pandemic, Technological solutions for contact tracing that use

smartphones are an essential complement to normative (e.g., wearing a mask) and policy (e.g.,

stay-at-home) interventions for mitigating effects of the pandemic. Bluetooth Low-Energy

(BLE) is key contact tracing technology used by apps like Aarogya Setu [7]. BLE is preferable

to WiFi for contact-tracing: BLE uses 10× less power than does WiFi; BLE can be easily

used to infer the presence of nearby peers without the presence of WiFi infrastructure. The

newly proposed Exposure Notification Service by Apple-Google3 also relies on BLE beacons

and signal strength measurements.

Bluetooth Low Energy apps for contact tracing rely on RSSI (Received Signal Strength

Indicator) since CSI for BLE is not available on smartphones. BLE RSSI localization suffers

from three fundamental limitations. First, we get biased RSSI Estimates due to Packet

Loss. Since devices only report RSSI for successfully decoded packets, RSSI-based distance

methods suffer from a sampling bias: they only use RSSI from decoded packets. Second,

Packet Losses are higher in low-power protocols like BLE, which makes sampling bias in RSSI

measurements a more significant challenge for localization. Even at a few meter distances

for BLE, the mean RSSI estimate becomes de-correlated with distance and is an unreliable

indicator. Third, RSSI suffers from well-known multipath effects [3, 40] where signals travel

along different paths and merge in different combinations at the receiver giving high variance

in RSSI values for the exact location.

We built a new localization feature, Packet Reception Probability (PRP), which measures

the probability that a receiver successfully receives packets from the transmitter. We have

shown through empirical experiments that PRP encodes distance. Since PRP measures

the fraction of packets received (1− fraction of packets lost), we can extract information

from the absence of packets, thereby countering the positive bias present in RSSI values.

We also incorporated a new model of multipath in our framework. We observed that many

real-world public environments (retail stores, libraries, and warehouses) contain stack-like

structures. Hence, we model public spaces, including retail stores, in a modular manner

comprising open spaces separated by stacks. We explicitly capture the effect of such stacks

by modeling the packet reception in the absence of stacks and the presence of one stack, two

stacks, and so on. Our approach, Bayesian Packet Reception Probability (B-PRP), is a novel

Bayesian framework that incorporates PRP and the new multipath model to deliver robust

and accurate localization.

We evaluated B-PRP in two real-world public places, an academic library setting, and a

3https://www.apple.com/covid19/contacttracing/
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real-world retail store. B-PRP achieves a median localization error of 1.03 m (library) and

1.45 m (retail store). The state of the art Bayesian RSSI system [39] has corresponding errors

of 1.30 m (library, 26.2% more error) and 2.05 m (retail store, 41.3% more error). Fusion of

B-PRP and RSSI further improves the overall localization accuracy over B-PRP.

1.1.2 Distance estimation using minimal infrastructure

During the COVID 19 pandemic, a significant problem is finding peer-to-peer distances

between people in indoor public spaces. These distance estimations can alert people who came

within 6ft (social distancing threshold) of an infected person. Most applications [7, 8, 9] have

solved peer-to-peer distances through Bluetooth Low-Energy (BLE). The apps continuously

broadcast BLE packets, while the receiving apps in the vicinity receive these packets and use

specific properties of the received packets (RSSI in [7], presence in [8]) to measure distance.

BLE apps that rely on pairwise measurements like received signal strength to measure

contact between two people have a well-known shortcoming. Latent factors like device

relative positioning on the human body, the orientation of the people carrying the devices,

and environmental multi-path effect can impact the measured power besides distance. We

can receive the same signal strength value for two people standing 3ft apart facing away from

each other and two people facing each other but standing more than 6ft apart. BLE apps

that use presence suffer higher errors. Presence is a poor proxy for distance since devices can

hear Bluetooth beacons beyond 6 ft social distancing radius and hear them across aisles and

walls.

We have proposed two solutions in this work—using known distances and collaboration to

solve the challenge of estimating distance solely from peer-to-peer measurements. First, if we

have a few infrastructure devices (e.g., Bluetooth beacons) installed at known locations in

an environment, we can make more measurements between a person’s phone and the BLE

beacons. Also, since we install the beacons at known locations, we know the distances between

these beacons. We have used these known distances in a triangle inequality framework to

estimate the unknown distance between two persons. Second, in an outdoor environment

where we cannot install infrastructure devices, we can collaborate between people to solve

distances more accurately. We can impose triangle inequalities between each triplet of people.

More people help us form more of these triplets, leading to more constraints and, hence, a

better localization solution.

We experimented with an infrastructure-based contact tracing solution in the library and

retail store. We get median error of 0.89 m (library) and 1.07 m (retail store) with PRP values.

The corresponding errors with RSSI are 1.36 m (library, 52.8% more error) and 1.34 m (retail
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store, 25.2% more error). Using the covid risk metric proposed in [41], we see that PRP

does 1000X better than RSSI in the library. We have designed the architecture, protocol,

packet structure, iOS, and Android apps to deploy the collaborative contact tracing solution.

However, we learned from empirical experiments that there is high intra-device variance

in RSSI/PRP values due to different smartphone antenna designs. Hence, we need future

research to learn RSSI and PRP models that adapt/generalize to different devices.

1.1.3 Location surveillance estimation using crowdsourcing

Location services raise a fundamental problem—Location surveillance or tracking. While

people want services, they do not want to be surveilled. Tracking can reveal much sensitive

information about a person without taking their explicit consent. A location tracker in an

airport can reveal products that we browsed in a vending machine. It can reveal people we

interacted with within a mall using our location and the location of our acquaintances. The

possibility of such finer level tracking raises doubts in the minds of people about adapting

location services [38, 42].

People using an indoor location system do not know the granularity of the location

information that the system collects about them. The performance of a location system

depends on the nature of the infrastructure. For example, an airport may have better

localization with a dense deployment of devices than a railway station with only a few devices.

One may argue that an indoor location system can reveal the level of tracking that it does in

a particular space to increase goodwill and trust. However, to solidify the claims of tracking

level made by a system, we need to verify this information externally or using a third party.

Here we ask the question—Can we detect the level of location tracking by consuming only the

raw data that the system collects from us?

In this work, we build CrowdEstimator, a crowdsourcing system that harnesses the power

of the crowd to audit the surveillance or level of tracking in space. Each person collects raw

wireless data while interacting with a public space in their specific way and then contributes

that trace to a central repository. We will use the crowdsourced traces to infer the surveillance

in space. The system works under an assumption of data symmetry, i.e., our crowd system

and the infrastructure can access the same wireless raw data on a person’s phone. The

infrastructure has access to additional information (such as the location of devices and

fingerprinting maps) that our crowd system does not. The infrastructure uses this additional

information for location finding.

This work also introduces the insight of location tracking or surveillance as an error radius

that varies across space. This insight is a novel contribution to the best of our knowledge
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since previous works have only thought about tracking accuracy and tried to measure a

single number for the entire space. The reality is that tracking granularity is spatial, and

it depends on the nature of infrastructure in space. For example, we will have finer levels

of granularity in places with a dense deployment of devices than places with lower device

density. We claim that finding a single-valued metric of surveillance for a public space is

insufficient. We propose finding a surveillance map or distribution over the space.

We need to estimate all portions of the surveillance map with a certain accuracy threshold.

The challenge is that we need to collect a sufficient amount of data in all regions of space to

ensure those accuracy thresholds. Some portions of public space are always more frequented

than others, leading to increased accuracy in few regions followed by a high error in others.

Are there spots or regions inside a public space where data collection will lead to a maximal

improvement of our overall estimate of the surveillance map? We have designed active

learning strategies to find such locations. We can then provide cues to people requesting

them to collect data near that region. Our active learning strategies find regions of maximum

uncertainty to collect data based on current surveillance maps and infrastructure properties

estimates.

We did synthetic studies based on models trained by actual data collected from the library

environment. Our studies showed that active learning strategies could more uniformly

determine the location surveillance map over the entire space. With the best performing

strategy, we were able to determine the tracking map with an accuracy of 0.4m and all the

infrastructure device locations with an accuracy of less than 1m.

1.2 CONTRIBUTIONS

In building these systems, this thesis makes the following core contributions:

• Packet Reception Probability (PRP) is a novel contribution in terms of signal measurement.

It is a statistical measurement compared to CSI or RSSI, which are physical measurements

of the signal. PRP uses negative information as a feature to solve the positive bias

present in RSSI values and can achieve accurate localization using low-power BLE on easily

deployable smartphones. PRP also incorporates a new model of multi-path for public

indoor spaces.

• ContactTracer-our distance estimation system uses minimal infrastructure to solve peer-to-

peer distances accurately in the presence of latent factors like orientation and phone location

on the body. We use the known distances between infrastructure devices to constrain

the unknown distances. Due to lack of infrastructure or known distances in outdoor
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environments, we propose using collaboration between people to solve distances robustly.

We constrain many unknown distances at the same time through triangle inequalities.

• CrowdEstimator presents the first crowd tool to estimate the level of surveillance or tracking

by infrastructure in a public indoor space. We also introduce the insight that tracking is

not a single number, rather a spatial distribution. We combine wireless and inertial sensor

data streams to audit the surveillance by a location infrastructure. We introduce active

learning algorithms to estimate all parts of the spatial surveillance map with uniform

accuracy.

1.3 THESIS OUTLINE

The rest of the thesis is organized as follows. In Chapter 2, we shall discuss the prior work

in localization and privacy. In Chapter 3, we will describe our PRP-based localization work.

Chapter 4 describes our contact tracing efforts. Chapter 5 gives details of the crowdsourcing

efforts to find the surveillance or tracking map of a space. We conclude with a discussion of

the lessons learned and a list of possible future directions in Chapter 6.
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CHAPTER 2: LITERATURE REVIEW

We will discuss prior work in the indoor location estimation, contact tracing, and the

privacy landscape. We will first lay out the different state-of-art features and technologies for

indoor location finding. Then we will discuss the contact tracing applications that tried to

solve the indoor proximity estimation problem during the COVID-19 pandemic and contrast

those with the localization works. Next, we will talk about the importance of location privacy

in localization and contact tracing works, focusing on declarative privacy. Finally, we will

talk about crowdsourcing works that audit infrastructure properties. Auditing infrastructure

properties is an important stepping stone towards achieving declarative privacy.

2.1 INDOOR LOCALIZATION

Indoor localization is a well-known problem that has attracted much work in the last two

decades. Most works use signals (radio-frequency signals or light signals) exchanged with

anchor nodes (known location) to infer the location of a target. We can classify indoor location

works using two verticals—technology (anchor nodes or signals) used for localization and the

features of signal communication used for localization. We will compare how the different

technologies and features perform in the context of two essential localization properties that

we outlined in Chapter 1—deployability and accuracy.

The most commonly used features for indoor localization are—RSSI or received signal

strength indicator [1, 16, 31], AoA or angle of arrival [5, 32, 43], ToF or time-of-flight

[33, 44, 45].

2.1.1 RSSI

RSSI stands for received signal strength indicator. We measure signal strength at the

receiver and map that to distance through physical models of wireless transmission. If we

know the distance from multiple devices, we can use trilateration to find the location. These

are mainly two genre of RSSI techniques—model-based [16, 39, 46] and fingerprint-based [1],

[17]. We discuss some state-of-the-art techniques below.

1. Horus [17] is an RSSI fingerprinting-based technique and stores radio maps in a prob-

abilistic distribution fashion to localize. It involves a training phase when it builds the

maps and a localization phase when it uses the maps to localize. The map consists of

states or locations where we store an RSSI distribution for each access point. Horus uses
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the nearest neighbor technique in the signal strength domain to find the nearest state or

location during localization. The accuracy of Horus depends on the number of training

states used and the distance between them.

2. Bayesian RSSI [39] uses the following generative model on RSSI loss to determine

location.

ˆRSSIi ∼ N(wi0 + wi1 logDi, τi), (2.1)

wij ∼ N(wj, τwj
) i ∈ {1, . . . , B}, j ∈ {0, 1}, (2.2)

wj ∼ N(µ, σ) j ∈ {0, 1}, (2.3)

τwj
∼ Γ(α, β) j ∈ {0, 1} (2.4)

where RSSIi is the signal strength from the i-th beacon. We have B beacons in total.

Di is the distance of i-th beacon from the receiver. The coefficients for each beacon wi0

and wi1 are drawn hierarchically from the same normal distribution to capture similarity

in beacon transmission properties. [39] set µ = 0, σ = 10, α = 0.001 and β = 0.001 so

that priors allow for a wide range of values. ˆRSSIi is the averaged RSSI value over all ci,t

packets received from beacon bi in the current time interval t.

3. Bayesian RSSI Fingerprinting (or Bayesian FP) [47] is a Bayesian Fusion technique

applied to a fingerprinting-based method for BLE devices. It stores fingerprints like Horus

but employs a fusion technique to combine current RSSI and prior location information. It

assumes that both follow a Gaussian distribution. It uses simple additive techniques to

fuse these two distributions and gets a joint estimate for the reception location.

RSSI fingerprinting techniques come with a huge training overhead. Other methods

[48, 49, 50, 51] reduce the overhead via crowdsourcing. [52] use a graph-based method for

easy fingerprinting.

2.1.2 AoA

AoA stands for the angle of arrival information of the received signal. WiFi APs with

multiple antennas can support MIMO communications. The basic idea of these systems is to

calculate the AoAs of the multipath signals received at each AP, find the AoA of the direct

path to the target, and then apply triangulation to localize. [4, 5, 32, 43] are well known AoA

techniques which can achieve accuracy in the order of 0.4m. Systems like ArrayTrack [5] are

hard to deploy since they require hardware changes on access points by introducing as high
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as eight antennas. Ubicarse [32] combines AoA information with inertial sensor information

like accelerometer and gyroscopes. However, Ubicarse requires a specific circular motion with

the device to enable localization which may not be feasible in many localization scenarios.

SpotFi [4] can deploy using commercially available access points that contain only three

antennas. However, such AoA techniques require the smartphone to transmit WiFi signals

which will consume energy actively.

2.1.3 ToF

ToF stands for time of flight information of the received signal. If we calculate the

propagation delay (time) that a signal takes to traverse to the receiver, we can multiply

that by the speed of light to obtain distance. [6, 33, 44, 45] are well known ToF techniques.

Besides hardware/firmware modifications to overcome coarse ToF estimates, systems like

Cupid [44], and Sail [33] can achieve localization error in the range of 2m. Besides, these

systems require users to walk around, perform measurements in multiple locations, or intersect

those measurements with accelerometer readings to infer locations. Chronos [6] is a more

accurate ToF system that enables a single WiFi access point to localize clients to within tens

of centimeters.

2.1.4 RSSI vs CSI

AoA and ToF techniques are more broadly clustered as channel state information or CSI

based techniques. While RSSI techniques measure coarse-grained higher-level information

like signal strength, AoA and ToF based techniques have to look at the physical channel to

estimate the direct path of signal transmission. Since a signal can traverse multiple paths to

the receiver while measuring the angle or time (a proxy for distance) to the transmitter, we

need to find the direct path. A reflected path will give us the angle of the reflector and will

include time from the transmitter to the reflector and then the reflector to the receiver. In

order to filter out the direct path, CSI-based techniques need to look at the physical channel

and hence require specialized hardware.

RSSI-based techniques are less accurate than CSI-based techniques. CSI [4, 6] can give

decimeter level accuracy. RSSI give errors over 2m. RSSI is well-known [2] to suffer from

path-loss, fading, shadowing, and multi-path effects. When a signal travels to a receiver, it

does so through multiple paths and merges either in-phase (constructive) or out-of-phase

(destructive). The merging depends on the environment and not distance. It controls the

received RSSI values.
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CSI-based techniques are not deployable on most smartphones. To get CSI accuracy, we

need specialized hardware to monitor the physical channel, which is not available on most

smartphones today. A recent work [35] has enabled CSI for WiFi in some smartphones.

However, CSI is still available on limited smartphones today, and we cannot use it for an

application like location-based contact tracing, which requires wide-scale adaption.

2.1.5 Technologies for localization

The most commonly use technologies for localization are WiFi access points [1] and

Bluetooth beacons [19, 20, 21]. Other technologies or anchor nodes used for localization

are—FM radios [53], Zigbee devices [54], ultra-wide band (UWB) devices [22], RFID tags

[23, 24, 25, 26], ultra-sound emitters [55], light emitters [27, 28, 29, 30],60GHz devices

[56, 57], sub-centimeter sized devices [58]. [22] has shown the promise of low-cost UWB

sensing. However, these technologies are currently not as ubiquitous as commodity WiFi AP

infrastructure or BLE technology used for peer-to-peerc onnection on smartphones.

WiFi and BLE technology are available on most smartphones today, while UWB, RFID

is yet to be adapted on a large scale. We require peer-peer, low power measurements. Can

WiFi accommodate? BLE is well documented in literature [59] to consume 10X less power

than WiFi. If we want localization solutions to run 24 × 7 on a person’s phone, BLE is

a preferred technology. Also, BLE allows for direct peer-to-peer communication between

two smartphones without requiring any infrastructure (like WiFi routers). BLE can enable

peer-to-peer distance estimation in outdoor environments where we cannot install extra

infrastructure. Finally, BLE has been adapted as a key technology by a myriad of contact

tracing apps [7, 8] during the COVID-19 pandemic.

In this thesis, we have focused on developing a technique that can accurately localize

using features of low power BLE that are available on smartphones. CSI with BLE is not

available on smartphones yet. RSSI with BLE is wildly inaccurate and a non-reliable signal

for distance estimation. Due to the low power of BLE signals, RSSI values even at smaller

distances accumulate noise and become decorrelated with distance. This thesis investigates

the challenges with BLE RSSI and proposes a new measurement PRP that covaries with

distance and is different from CSI or signal strength.

2.2 CONTACT TRACING INFRASTRUCTURE

Contact tracing is a significant problem to solve during the COVID 19 pandemic. If we

can automatically infer distance between two people, we can alert people who came within
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6ft (social distancing threshold) of an infected person. Automation can help us solve this

problem at scale. [60, 61] shows the applications have helped curb the spread of the disease.

We will discuss the different contact tracing efforts [62] and how each of these efforts tried to

solve distance. We will compare how the distance solutions position in the context of the

indoor localization algorithms developed over two decades.

The contact tracing apps fall into four broad categories based on the technology they use

to find the proximity of two persons.

1. GPS/Cellular: The apps like ViruSafe [63], Rakning c-19 [64] use GPS or triangulation

from nearby cell towers to find the location of a phone on a person. If two phones have

been in the exact location simultaneously, the apps infer the two people to be in proximity.

Applications relying on GPS or cellular data are less accurate than Bluetooth-based

technologies since they can infer far away people to be in proximity. They are more

privacy-invasive than Bluetooth since they can find the absolute location of people.

2. Bluetooth: The apps like Virusradar [65], Covidradar [66] use Bluetooth in phones to

swap encrypted tokens with any other nearby phones. If a phone receives the Bluetooth

token from another phone, then the two persons owning the phones are inferred to be

close. Apps relying on Bluetooth perform well than GPS on privacy since tokens can be

anonymized. However, Bluetooth packets can reach as far as 30ft and detect faraway

people in proximity.

3. Apple/Google Exposure: Apps like Stopp-corona [67] in Austria, Covid-alert [68] in

Canada, GuideSafe [69] in Alabama USA, and CovidDefense [70] in Louisana rely on the

joint API developed by Apple and Google. The API allows iOS and Android phones to

communicate with each other over Bluetooth.

4. DP-3T: Apps like SwissCovid [71], Coronalert [72] use decentralized privacy-preserving

proximity tracing protocol over Bluetooth. It is an open-source protocol in which an

individual phone’s contact logs are stored locally, so no central authority can know who

has been exposed.

The main limitation of the above apps is that Bluetooth Low Energy (BLE) signals can be

heard at large distances and beyond walls. Using only presence as a feature leads to many

false positives, i.e., we detect far away persons to be in proximity. It is pretty remarkable

that despite the different features like RSSI [1], CSI [4, 6] developed in the last two decades,

none of the contact tracing applications incorporated BLE RSSI or CSI.

BLE CSI is not available on smartphones. BLE RSSI is noisy due to multi-path and other

latent factors like person orientation, phone location on a person’s body besides distance. In
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this thesis, we propose two solutions to the problem— the help of some minimal infrastructure

in the environment to reliably infer distance or collaboration among people and impose

triangle inequalities to solve distances. The main intuition is to use some known distances

to constrain the unknown distances or solve many unknown distances together, which can

constrain each other through triangle inequalities.

2.3 LOCATION SURVEILLANCE

To enable wide-scale adaption of location technologies, people need to trust that such

solutions will not leak their private information. In a Microsoft research study about contact

tracing apps [42], privacy concerns were almost as high on people’s minds as accuracy. 73%

of people said they would only install if the app is private, which is close to the 85% who

demanded accuracy. People want the service, but they do not want to be surveilled. Here,

we will discuss a few privacy-preserving algorithms in indoor localization space and show

how our work is different. Then, we show that our work is similar to auditing the location

tracking infrastructure and outline two important previous works. Finally, we will discuss

some active learning tools that we have utilized to better inference of location surveillance.

2.3.1 Privacy preserving indoor location tracking

There are many proposed solutions for Privacy-Preserving Indoor Localization (PPIL) [73]

using Homomorphic Encryption (HE) such as the Paillier cryptosystem [74] or k-Nearest

Neighbors (k-NN) algorithm [75]. [73] analyzed the privacy issues of WiFi fingerprint-based

localization system and then used the Paillier cryptosystem to protect both the client’s

location privacy and the service provider’s fingerprint data privacy. [75] enables a user to

localize privately through an Indoor Positioning System by making k camouflaged localization

requests. They design a Temporal Vector Map (TVM) algorithm, which guarantees that

the IPS system cannot find a user’s location with a probability higher than a user-defined

preference. These works are specific to WiFi fingerprinting systems where the localization

space is segmented into N discrete points. In our work, we are looking at a continuous

localization space where instead of k-anonymity, a user wants to achieve α-anonymity, i.e.,

do not localize the user to a circle of radius smaller than α. Besides, we also assume that

the user does not have access to any system-side auxiliary information such as fingerprinting

maps and access point locations. The current granularity of location inference is unknown on

the user side. To achieve anonymity, we first need to know the level of location inference or

surveillance that depends on the infrastructure installed in that space. This work focuses on
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inferring the infrastructure properties from the data collected on the user side, which is the

first step towards achieving α-anonymity.

2.3.2 Auditing of location tracking systems

The previous section highlighted that we want to estimate the granularity of location

estimation in a place. To estimate location granularity, we need to audit the location

infrastructure that currently exists in that place. Specifically for RSSI-based location systems,

we need to find information about the number of access points and their locations. For

CSI-based systems, we will need to find extra information like the number and orientation

of antennas. We looked at previous systems like EZ [16], LocBLE [76] and Zee [48] which

inferred properties of the infrastructure.

1. EZ [16] finds the location of WiFi routers as an intermediate step to ultimately finding the

location of people. It uses WiFi RSSI data collected from people, and a few GPS annotated

locations to find the location of WiFi routers. The key idea is that the physics of wireless

propagation constrains all data points from many unknown locations. EZ models these

constraints and then uses a genetic algorithm to solve the WiFi router locations. EZ then

uses the annotated WiFi routers to solve the location of people.

2. LocBLE [76] finds and tracks nearby BLE beacons. It combines RSSI datastream from

BLE and inertial sensor datastream from the accelerometer and gyroscopes to obtain a

more accurate location of BLE beacons in proximity.

3. Zee [48] makes indoor localization easy by enabling the automatic collection of training

data through crowdsourcing. It leverages the inertial sensors (e.g., accelerometer, compass,

gyroscope) present in mobile devices such as smartphones carried by users to track them as

they traverse an indoor environment while simultaneously performing WiFi scans. However,

it also requires a site-specific map input showing the pathways (e.g., hallways) and barriers

(e.g., walls). Zee infers the WiFi fingerprinting of a space.

In this thesis, we are not interested in finding locations like EZ, infrastructure device

locations like LocBLE, or wireless fingerprinting maps like Zee. Instead, our ultimate goal is

to determine the surveillance level, a function of the infrastructure properties.

2.3.3 Active learning

People have mostly studied active learning in the context of classification problems [77]

where labeling a data point comes with the cost of getting a human annotator to label that
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point. In most cases, we need multiple human annotators on a single data point to avoid

personal bias in data labeling. Active learning helps to pick the best data point so that we

can learn more with less cost. In our problem setting, since we will rely on people to collect

RSSI or PRP data (equivalent to labels) to estimate infrastructure properties, it makes

sense to use active learning to collect data to learn more with the same amount of data.

Classification setting assumes having a finite unlabeled set from which they need to choose

the data point. In contrast, in our problem setting, we are faced with a continuous space. In

the current work, we discretize the space into a fine grid and then treat the set of points in

the grid as our unlabeled set. There are different kinds of active learning techniques that

have been proposed—uncertainty sampling [78], expected error reduction [79], information

density framework [80]. In this work, we want to select locations (equivalent to features

in the classification scenario) to collect PRP or RSSI data (equivalent to labels) to reduce

the uncertainty in some objective distributions. The objective distributions can be PRP or

RSSI data distributions for all locations, all infrastructure device locations, or directly the

surveillance level distribution.
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CHAPTER 3: LOCALIZATION

3.1 INTRODUCTION

Indoor positioning is a widely studied problem in academia and industry [4, 6, 17, 27, 81,

82, 83]. Coupled with the high penetration of consumer radio devices (e.g. smartphones),

indoor positioning can re-imagine use of indoor spaces like retail spaces, malls, museums,

and warehouses. Today, the contact-tracing challenge due to the pandemic has put an

urgent, renewed focus on developing a robust, low-cost, scalable, indoor localization solution.

Indoor-localization based contact-tracing1 that helps us determine if a pair of individuals are

“social-distancing,” separated by more than 6ft, offers the possibility of safely re-opening the

world economy.

Technological solutions for contact tracing that use smartphones are an important com-

plement to normative (e.g., wearing a mask) and policy (e.g. stay-at-home) interventions

for mitigating effects of the pandemic. Bluetooth Low-Energy (BLE) is emerging as the key

contact-tracing technology and is being used in contact-tracing apps around the world. For

example, the Aarogya Setu contact-tracing app2 in India, uses BLE and has been downloaded

120M times. The open-source, privacy-preserving contact-tracing framework, BlueTrace3

(deployed in Singapore) uses BLE packets to detect presence (i.e., a smartphone that can

hear another must be in proximity of the other.), not distance. BLE is preferable to WiFi

for contact-tracing: BLE uses 10× less power than does WiFi; BLE can be easily used

to infer the presence of nearby peers without presence of WiFi infrastructure. The newly

proposed Exposure Notification Service by Apple-Google4 also relies on BLE beacons and

signal strength measurements.

Bluetooth Low-Energy based apps for contact-tracing have two well-known shortcomings.

These apps primarily use either RSSI (Received Signal Strength Indicator) or presence to

determine risk to COVID exposure . Prior work [1, 2, 3] demonstrates that RSSI-based

methods experience large errors (order of several meters) in positioning, especially in the

low RSSI-large distance regime. RSSI has an important benefit: it is present on all modern

devices. In contrast, we cannot use CSI (Channel State Information) [4, 5, 6], a recent method

that enables sub-meter accuracy since off-the-shelf devices typically do not report CSI. A

1Contact-tracing requires us to calculate relative distance between individuals. Inferring relative distance
from location is straightforward.

2https://www.mygov.in/aarogya-setu-app/
3https://bluetrace.io
4https://www.apple.com/covid19/contacttracing/
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Figure 3.1: (a) As the mean RSSI decreases, the error in the RSSI estimate increases because
of lost packets. (b) Packet reception in Line-of-Sight (LOS) with -20db transmission power
decreases with distance. (c) Packet Reception Probability(PRP) technique is more accurate
than RSSI [1, 2, 3] and readily deployable on commercial devices as opposed to CSI-based
methods [4, 5, 6].

recent work [35] has enabled CSI for WiFi in some smartphones, but cannot be applied for

BLE. Contact-tracing apps also use ‘presence’—if one device can hear another—to determine

if an individuals is close to another infected person. Presence is a poor proxy for distance

since devices can hear Bluetooth beacons well beyond 6 ft social distancing radius, and also

hear them across aisles and walls.

3.1.1 Overcoming key technological limitations for BLE localization

Establishing the feasibility of a reliable Bluetooth based indoor localization is a key

first step for effective Bluetooth-based contact tracing and thus we ask: Can we develop

robust Bluetooth based indoor localization, with existing measurements, deployed on low-cost

commodity hardware? To do so, we need to overcome three fundamental RSSI limitations:

Biased RSSI Estimates due to Packet Loss: We explain with a conceptual example

in Figure 3.1(a) that shows a Normally distributed RSSI at the receiver, for a fixed transmitter

and receiver. In free space, with increasing distance between the transmitter and the receiver,

the RSSI distribution shifts to the left, implying a decreasing RSSI at the receiver. RSSI-

based methods [1, 39] empirically measure RSSI and use the mean RSSI estimate to infer

distance. However, as the distance between the transmitter and the receiver increases (i.e.,

the RSSI distribution shifts to the left), packet loss increases with almost certain packet

loss at the low-RSSI decoding threshold. Since devices only report RSSI for successfully

decoded packets, RSSI-based distance methods suffer from a sampling bias: they use RSSI
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from decoded packets only. Since they cannot know RSSI values of packets they cannot

decode, these methods introduce systematic error in their mean RSSI estimates. This error

increases with distance, so much so that at large distances (few meters for BLE), as we shall

show in this work, the mean RSSI estimate becomes de-correlated with distance and is an

unreliable indicator. The error is different from the typical reduction in SNR due to increase

in distance. The error stems from a sampling bias fundamental to RSSI measurements.

Packet Losses are higher in BLE: Packet loss is a fundamental problem in a low-power

protocol like Bluetooth Low Energy. Even at distances as small as 1 m, in line of sight, around

10% of the packets get dropped in our empirical evaluation, as shown in Figure 3.1(b). Packet

loss rate increases to 50% at 3 m. Thus, the sampling bias in RSSI measurements is a more

significant challenge for localization using the BLE protocol compared to high-power WiFi

protocol based RSSI methods [1, 16, 17]. As pointed out in [76], BLE limits transmission

power to reduce energy consumption. BLE v4.0, v4.1, and v4.2 defined maximum output

power is 10mW, which is 10× lower than WiFi. Though BLE v5.0 sets the maximum output

power to 100mW, but the high Tx power is designed exclusively for high power devices with

Class 1 BLE chip, and not for BLE beacons.

Multipath Effects: Multi-path effects [3, 40] are well-documented and are the second large

contributor to RSSI measurement errors. Specifically, the error arises due to reflections of

the radio signals by objects in the environment. Thus, the signals from the transmitter travel

along multiple paths and combine at the receiver. This combination can be constructive

(i.e., in-phase) and increase RSSI or destructive (i.e., out of phase) and reduce RSSI. Since

this combination is a function of the environment and not the distance between the devices,

multipath transmission introduces error in distance measurements.

3.1.2 A counter-intuitive approach: exploit packet loss to infer distance

In this work, we ask a counter-intuitive question: Could the loss of a packet be a clue to the

distance between the transmitter and receiver? Specifically, we propose a new metric: Packet

Reception Probability (PRP), which measures the probability that a receiver successfully

receives packets from the transmitter. A simple experiment validates our intuition that PRP

can encode distance. We collected packets from BLE beacons transmitting at -20db power

at increasing distance values between 1 m to 10 m in a line-of-sight (LOS) scenario. We use

maximum likelihood estimates for PRP. We plot the PRP estimate as a function of distance

in Figure 3.1(b). Notice that Figure 3.1(b) shows that the probability of receiving a packet

decreases with distance, implying that PRP encodes distance. We show in this work, that
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for low energy protocols including BLE, PRP is a good indicator of the distance between

communicating devices.

Our approach, Bayesian Packet Reception Probability (B-PRP), is suitable for public

spaces including retail stores or libraries, places that are important to current social distancing

and contact tracing efforts. B-PRP is a PRP-based approach that develops a novel Bayesian

framework to explicitly model multipath reflections in the environment and deliver robust

and accurate localization. The Bayesian framework helps to minimize system deployment

costs. A public environment like a retail store contains obstructing materials in the form

of stacks or shelves. The shelves (including the items placed on them) absorb or reflect the

radio signals directed at them. This leads to a lower packet reception probability at the

receiver. At a fixed distance, the packet reception probability will vary based on the number

and type of obstacles in the signal path. B-PRP must tease apart the effects of distance

from the interference effects of the obstacles, when estimating distance. We observe that we

can model public spaces including retail stores in a modular manner comprising open spaces

separated by stacks. We explicitly capture the effect of such stacks by modeling the packet

reception in absence of stacks and in presence of one stack, two stacks and so on. While we

use stacks to model retail spaces, we believe that the abstraction of modeling a geometric

element is general enough to apply to other large indoor spaces like libraries, warehouses,

factories, etc.

We evaluated B-PRP in two real-world public places, an academic library setting and in a

real-world retail store, and demonstrate the efficacy of our techniques. In both cases, we did

not control for human traffic. Our main results:

Localization Accuracy: B-PRP achieves a median localization error of 1.03 m (library)

and 1.45 m (retail store). The state of the art Bayesian RSSI system [39] has corresponding

errors of 1.30 m (library, 26.2% more error) and 2.05 m (retail store, 41.3% more error)

when trained with the same number of data points and packets per data point.

B-PRP+RSSI Fusion: Fusion of B-PRP and RSSI modestly improves the overall local-

ization accuracy over B-PRP (Table 3.2). We see best fusion results at small distances

(≤2 m). At larger distances (≥2 m), errors in RSSI cause fusion results to be significantly

worse than B-PRP. PRP+RSSI also improves contact tracing accuracy by 6% for both

library and retail store.

Robustness to Multipath: Our multipath model increases the accuracy for PRP from

1.41 m to 1.03 m in the library (a 26.9% improvement) and from 1.60 m to 1.45 m (a 9.3%

improvement) in the retail store.
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Number of Beacons: As beacon density decreases, B-PRP error is always within 2m

while RSSI errors are higher than 3m. With five beacons, B-PRP performs 65% better in

library and 50% better in the retail store.

Low Training Overhead: B-PRP can leverage unknown training data to train the B-

PRP model, thereby reducing the deployment effort. Specifically, B-PRP can achieve 1.08

m median accuracy with just 8 labelled data points and 4 unlabelled data points.

For completeness, we note that the core limitation of a localization method like B-PRP,

a limitation shared with methods including [22, 27, 53, 54] is that it needs deployment of

beacons in the public space to locate individuals. However, BLE beacons are inexpensive,

and our method, B-PRP, provides meter-level accuracy. A peer-to-peer distance estimation is

much more general where we will use devices like smartphones for reception and transmission.

We believe that this tradeoff between some upfront infrastructure expense (multiple beacons)

and increased localization accuracy is worthwhile in highly frequented public spaces.

3.2 CONTRIBUTIONS

Our work makes the following contributions:

Use of Negative Information: To the best of our knowledge, we are the first to build

an indoor positioning system that can extract information from absence of packets. In

contrast, state of the art RSSI based techniques [1, 16, 17], use observed RSSI to infer

distance. We accomplish this through a Bayesian formulation of the packet reception

probability, a metric that we show encodes distance. We develop generic stacking models

of reception to address multipath effects. While we use PRP as a sole indicator of distance

to highlight its benefits, we show that B-PRP when combined with RSSI, improves the

performance of the system at shorter distances. Our finding is significant as it shows for

the first time, how to use BLE to robustly estimate indoor distances, thus opening the

door to reliable BLE based contact-tracing that incorporates distance.

Sampling Bias in RSSI: We show the effect of packet loss on the mean RSSI measure-

ments. Furthermore, we show that with increasing distance, mean RSSI becomes highly

unreliable due to sampling bias. Our finding is significant because the state of the art

RSSI based techniques [1, 16, 17] when applied to BLE, a low-power protocol, are highly

unreliable in the 2 m to 6 m range (Table 3.2). We highlight that 2 m ≈ 6 ft, the social

distancing range.
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Readily Deployable Solution: Our B-PRP framework does not require any hardware,

firmware, or driver-level changes in off-the-shelf devices, and requires minimal deployment

and re-training costs. In contrast, CSI [4, 5, 6], which can deliver sub-meter accuracy,

requires firmware or hardware changes. This is significant: due to the simplicity of the

packet reception framework, we can immediately deploy B-PRP as an application on

off-the-shelf commodity smartphones.

3.3 RELATED WORK

We can classify localization art on different factors— communication signal used for

localization, models to relate distance and signal properties. Most works use signals exchanged

with anchor nodes(known location) to infer location of target. Anchor nodes can be —WiFi

access points [1], Bluetooth beacons [19, 20, 21], FM radios [53], Zigbee devices[54], ultra-wide

band(UWB) devices [22], RFID tags [23, 24, 25, 26], ultra-sound emitters [55], light emitters

[27, 28, 29, 30],60GHz devices [56, 57], sub-centimeter sized devices [58]. In contrast, we use

BLE beacons which offer advantages over the others. WiFi access points and cameras require

continuous power and are more expensive than BLE beacons, which run on long-lasting

batteries (lasting 3 to 5 years). A store can deploy hundreds of BLE beacons at a lower cost

than WiFi access points or video cameras. We can scale BLE-based systems through past

work in opportunistic listening that ensures better channel sharing [84]. WiFi, while widely

available in public spaces such as malls and coffee shops, are often absent in large indoor

retail stores (e.g., Walmart), in part because the presence of WiFi allows individuals in the

store to comparison shop, putting the physical store at a competitive disadvantage. While

[22] shows the promise of low-cost UWB sensing, the solution requires the adoption of UWB

tags to track objects. With BLE, we can track consumers via their Bluetooth smartphones.

The localization techniques use different signal property — RSS or received signal strength[1,

16, 31], CSI or channel state information [85, 86], AoA or angle of arrival [5, 32, 43] , ToF or

time-of-flight [33, 44, 45]. AoA, ToF and CSI systems require hardware level changes on the

receiver side and thus cannot be used by a retail store with customers who use commodity

smartphones. Range free techniques use less accurate proximity information [87, 88, 89]. We

use a new property—packet reception probability which is light weight and can be easily

deployed on commercial smartphones.

Received Signal Strength (RSSI) systems are broadly of two types—model-based and

fingerprint-based. Model-based techniques [16, 39, 46] represent RSSI loss between anchor

and target as a function of distance. Fingerprint-based techniques [1], [17] build a map of

probable RSS values from anchor nodes at sampled locations. Building the fingerprint map is
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a huge training overhead. [48, 49, 50, 51] reduce the overhead via crowdsourcing. [52] use a

graph-based method for easy fingerprinting. Here we use a more robust property and design

an easy-to-configure framework.

In this work, we study tracking for public spaces like retail stores which have attracted

attention due to proximity marketing [90]. [91, 92] look at the problem of inferring item

interaction in stores using wearable sensors. iBILL [20] jointly uses iBeacon RSSI model and

inertial sensors to localize in supermarkets with 90% error less than 3.5m. Tagbooth [93]

, ShopMiner [94] tracks customer interaction with commodities using RFID tags in retail

stores. The closest approach to our work is [95] which counts packets to estimate distance.

But here, we estimate using packet reception probability (PRP). We show PRP as a robust

estimator of distance, study the impacts of device density on PRP estimation, and reduce

beacon set-up and retraining efforts.

3.4 PROBLEM WITH PACKET LOSS

Packet losses can impact the aggregate estimate of a physical signal property that we

measure at the receiver end. Many state-of-art RSSI techniques observe the signal strength

value of each of the received packets and aggregate them into a measure like mean/median.

These aggregated estimates are then used to infer distance. Here we are asking the question—

Does packet loss introduce any bias in the aggregate estimates of RSSI?

First, we identity that packet losses can be mainly attributed to two reasons—random

errors and low signal strength. Errors can occur uniformly at random irrespective of the RSSI

of the packet. As a result, such errors do not introduce any bias in the aggregate estimate of

RSSI. On the other hand, all packets that are received with a signal strength below a certain

decoding threshold get dropped. Since we cannot observe the RSSI values of these low RSSI

packets, and hence cannot include them in our aggregate estimates, we should expect to see

a positive bias introduced in our RSSI measurements.

Now, lets solidify this hypothesis mathematically by considering the simple case that packet

losses are entirely due to low-signal strength. Let us assume that the actual RSSI values at

a certain location follow the Gaussian distribution N (µ, σ2). Lets further assume that the

RSSI decoding threshold is α. Since we drop all packets below the threshold, our aggregate

RSSI estimates will be based on a Normal distribution truncated at α. The new mean of

this truncated normal distribution is given by

µ̂ = µ+
φ(α)

1− Φ(α)
σ, (3.1)
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where, φ(α) is the pdf of normal distribution evaluated at α, φ(α) ≥ 0. Φ(α) is the cdf

value of the normal distribution at α,Φ(α) < 1. Thus the estimate µ̂ that we obtain by

measuring received RSSI values is biased by a positive amount of φ(α)σ
1−Φ(α)

. As we move towards

the lower RSSI regime, µ becomes closer to α. As a result, both φ(α) and Φ(α) increases

with lower RSSI values, which leads to a higher bias in the estimated mean RSSI.

Note that we cannot trivially estimate µ from µ̂ in Equation (3.1) since in practice,

multi-path effects alter the values of the RSSI in the received packets. Thus recovering µ, σ

using say Maximum Likelihood Estimates by assuming a value of α is non-trivial.

In this work, we ask a different question—Can we use the loss of packets as a signature

itself to measure distance? We define a random variable, packet reception probability, prp(b),

for a beacon b whose expected value is defined as:

E(prp(b)) =

∑
i 1i=b

R(tl − tf )
(3.2)

Here, 1 is the indicator function that is 1 if and only if packet i is received from beacon b, R

is the sending rate of the beacon, and where tl and tf are the timestamps of the last and

the first packet received from beacon b. Notice that the right hand side of Equation (3.2) is

just the frequentist estimate of the probability of packet reception from beacon b: number of

packets received divided by the total number of packets sent by beacon b. Notice that while

random errors will affect both PRP and RSSI, packets that are successfully received and

influenced by multipath effects, only impact RSSI mean estimate µ̂ not expected

PRP value E(prp(b)).

From the next section, we will focus largely on the evaluation of PRP to measure distance.

However, note that we can easily combine PRP with other metrics like CSI or RSSI to

measure distance. We evaluate PRP+RSSI in Section 3.9.1.

3.5 PACKET RECEPTION PROBABILITY

In this work, we focus on localizing individuals in indoor public spaces like retail stores,

libraries. In these spaces, indoor positioning using BLE beacons can enable traditional

applications like capturing behavioral data about shoppers, as well as novel applications

like enforcing social distancing and contact-tracing. BLE offers an unique advantage for

localization. Due to its low power budget, it can be turned on frequently and hence, enable

more frequent location updates as compared to high power protocols like Wi-Fi. Recall that

BLE’s maximum transmit power (10 dBm) is 10 times lower than that of Wi-Fi (20 dBm).

This factor, in addition with its ubiquitous presence on off-the-shelf smartphones, has made
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BLE the natural choice for such applications.

We deploy BLE beacons at fixed locations in the indoor environment to aid localization.

We believe that this infrastructure-support is essential for accurate indoor positioning. The

beacons are configured to emit Bluetooth packets, power pt, and a fixed sending rate, R. The

smartphone of an individual navigating the public space listens to these packets and logs

them in the following form:

L = {(b1, t1), (b2, t2), . . . , (bN , tN)} (3.3)

where bi refers to the BLE beacon id heard at time ti. Our goal is to determine a list

of locations of an individual walking around in a store at a fixed time resolution δ (i.e.,

determine location every δ sec.).

We use the packet log, L, to compute packet reception probability, prp(b), for beacon b.

3.5.1 Estimating location using PRP

B×NR

B B

σ

[w]

ci

di

[w]

ci

di

ci

di

l l s

Time t Time t +1

(a) Training parameters [w] (b) Tracking location l over different time slots

Figure 3.2: Graphical model: Shaded nodes are observed, while we need to estimate the
unshaded ones. We use the data on number of received packets ci measured from B beacons
at NR reception locations to train the PRP parameters [w]. During tracking, we use the
trained parameters [w] and ci,t to estimate location lt.
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Recall, in Figure 3.1(b), PRP degrades with distance. In this section, we discuss how

we can model the relationship between PRP and distance, and use this relationship to infer

location. Specifically, PRP (prp) depends on three factors: (a) distance (d), (b) sending rate

(R), and (c) transmission power (pt). In this subsection, we model the relationship in free

space ( Figure 3.3(A)). We will incorporate the effect of multipath in subsequent sections.

We use a Bayesian model to model the relationship between PRP estimates from multiple

beacons and the underlying physical location. Our choice of the Bayesian approach is

motivated by two key design benefits: (a) It allows us to infer not just the location, but also

quantifies the uncertainty in the location estimate. Such estimates are very helpful when the

location is used for higher-layer applications like customer behavior analytics, contact-tracing,

etc. (b) It can be easily extended to scenarios when the beacon loction itself is unknown or

the training set is small. As we show in Section 3.6, this reduces the training and deployment

costs.

We model prp as a function g of the distance d, sending rate R and power p0 of the beacon.

Assume that we receive a packet from beacon (xb, yb) at location (xr, yr). We calculate the

Euclidean distance d between the beacon and receiver. Then, assuming that we know sending

rate R and transmission power p0, we can model the number of packets received c received

at (xr, yr) as drawn from a binomial distribution with parameter prp:

c = Bin (N, prp) , binomial distribution, (3.4)

prp = g(d,R, p0), PRP link function, (3.5)

d =
√

(xb − xr)2 + (yb − yr)2, distance to beacon b. (3.6)

N is the total number of packets sent out by the beacon is proportional to the product of

the sending rate R, and the time spent Tr at location r. The function g(d,R, p0) is a link

function that connects the underlying infrastructure parameters (R, p0) and physical distance

d, to the packet reception probability.

In identifying the right representation of g, we need to keep two considerations in mind:

(a) the value of g has to be between 0 and 1, and (b) g must encapsulate relationship between

d, R and p0, not just their direct effect on prp. Therefore, we model g(d,R, p0) as a logistic

function of quadratic interaction between the parameters.

logit{g(d,R, p0)} = w0 +
∑
i

wiθi +
∑
i,j

wi,jθiθj (3.7)

where, logit(p) = log(p/1− p). And where, θ1, θ2, θ3 correspond to the variables of d,R, p0

respectively. The coefficients [w] = [wi, wi,j ] are drawn from a non-informative prior N(0, σ)—
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a zero mean Normal distribution with variance σ. We choose σ to be large in our system to

allow for a large range of values.

Our Bayesian formulation above is shown in Figure 3.2(a). Our framework operates in

two phases:

Training Phase: During training, we use a data set D collected in an environment

to estimate the underlying parameters. Specifically, we need to estimate the posterior

distribution of the unknown parameters [w] given data D i.e. P ([w] | D). The training set,

D, comprises BLE logs. Specifically, to obtain D, we stand at NR locations in our testing

area and listen to the packets from B beacons. Assume further, that we know the B beacon

locations (xb, yb), b ∈ {1, . . . , B} and NR reception locations (xr, yr), r ∈ {1, . . . , NR}. We

will relax this assumption in Section 3.6.

Test Phase: During test phase, we do not know the reception locations, (xr, yr) r ∈
{1, . . . , NR}. We use the measured prp and the parameters estimated during the training

phase to estimate the receiver location. We use PyMC3 [96] framework to do the inference.

3.5.2 Combating multipath effect

We have assumed a free-space propagation model so far, but real-world environments have

obstacles. We observe that the main contributor to multipath effect in public spaces like

retail stores (or libraries) are the stacks used to list products (or books) and to separate

aisles. In such scenarios, the prp value depends not just on the distance, but also on the

number of stacks the signal has to cross. Crossing one stack is easier than crossing two and

will cause fewer packet drops.

To build on this observation, we explicitly model the number of stacks in our framework.

This allows us to not just estimate the distance between a beacon and a receiver, but also

estimate the number of stacks between them. Estimating this geometric information is useful

for both: combating multipath, and exploiting in higher-layer applications. For instance,

retail store apps need to estimate what aisle a customer is shopping in, contact-tracing apps

want to discount for infection spread if customers are close (but across aisles). To estimate

the stack separation, we divide the store layout in Figure 3.3 into five portions based on

the given beacon—free space(F-S), one stack (1-S), two stacks away (2-S), corridor (C) and

desk (D). In the figure, the packets to receiver 1 in F-S do not have to go through any

obstacles. The packets to receiver 2 in 1-S and 3 in 2-S go through one and two interfering

stacks respectively. Receiver 4 is in a corridor. We limit ourselves to two stacks away in the

model, because we empirically observe that two stacks or more have similar effects on packet

reception (high loss).
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Figure 3.3: Modelling Obstacles and Multipath: In (A), there is no obstruction in the
path of the receiver. In retail layout (B), receiver 1 is in free space with beacon, 2 is one
stack away and 3 is two stacks away. 4 is an open region of the layout, i.e. the corridor. We
segregate the retail layout in (C) into geometric elements based on the relative position of
beacon and receiver.

Then, we parameterize our link function with a variable, γ that denotes the geometric-

element separation. We represent the new link function as gγ(d,R, p0). Now, at training

time, we estimate parameters for the functions—free space gF−S, one stack g1−S, two stack

g2−S and corridor (C) model gC . We use a Bayesian training procedure similar to the

free-space scenario. We segment our training data into the different scenarios, and use the

segment-specific data to learn the parameters in each gγ. For example, the data with one

stack separation is used to train g1−S. During testing, B-PRP uses the maximum likelihood

model to identify the underlying location as well as stack separation.

At first blush, it might seem very complex to identify γ for each of the B beacons. We

exploit the knowledge of the store geometry and beacon arrangements within the store to

significantly reduce the number of unknowns. Assume that beacons a and b are in the same

aisle adjacent to each other. Then, regardless of where the individual is, beacons a and b

must have the same model type γ with respect to the receiver. Similarly, if beacons a and b

are in neighboring aisles, and the model type γ is F − S for a, then γ must be 1− S for b.

Thus, given a location xt, yt, knowledge of store geometry and beacon arrangements help fix

the model type for all beacons, given the model type for any one beacon.

3.5.3 Leveraging human mobility

Finally, to further improve localization accuracy, we leverage the fact that human location

across time is not independent. Humans motion is continuous in space. We update our

Bayesian formulation to incorporate this constraint.Assume that we wish to track individuals

at temporal resolution δ, corresponding to T time intervals. Let the unknown location
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variables be lt = (xt, yt), t ∈ {0, . . . , T−1}. We observe that the locations are not independent

across time. Since we know little about the initial location of the customer, we set the

prior distribution of l0 to drawn uniformly at random from the entire testing area. Let the

unknown speed of the individual when reaching location lt be st. Then:

st ∼ U(0, Smax), speed, (3.8)

x0 ∼ U(0,W ), initial x, (3.9)

y0 ∼ U(0, L), initial y, (3.10)

xt | xt−1 ∼ N (0, st ∗ δ), xt constrained by st × δ, (3.11)

yt | yt−1 ∼ N (0, st ∗ δ), yt constrained by st × δ. (3.12)

Where, Smax, which is a constant in our model denoting maximum movement speed of

a human (similar to [95]); W × L is the tracked area; and the conditional distributions

xt | xt−1 and yt | yt−1 are Normally distributed with zero means and variances equal to st× δ.
Incorporating the speed parameter in our formulation enforces smoothing in our inferred

location estimates.

Recall, our observed data contains the number of packets received ci,t from each beacon

i at each time t, where N = R × δ. We know the location of each beacon (xi, yi), their

sending rate R and power p0. We also know gF−S from training. Thus, during the test phase,

we estimate using our Bayesian framework (c.f. Figure 3.2(b)), the posterior distribution

P ([l, s] | D) of the unknown location and speed parameters [l, s] = {{lt}, {st}} given this

data D.

3.6 SYSTEM DEPLOYMENT AND OPTIMIZATION

To summarize, the B-PRP system operates in following steps:

• Deployment: We deploy BLE beacons at known locations in an environment like a retail

store. The location of the beacons as well as the floor plan is uploaded to a B-PRP server.

The server can reside on the cloud or be an edge device local to each environment.

• Training: A user walks to fixed locations in the store with a smartphone app or another

BLE receiver and measures the PRP values. The PRP values are uploaded to a server.

The server uses these labelled PRP values, the beacon locations, and the floor plan to train

the B-PRP model.
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• Localization: Finally, when new users walk in, they measure PRP for beacons already

deployed in the store. The app on the smartphone uploads the PRP values to the server.

The server uses the trained model to infer location of the users and sends it back to the

user. Note that, this system is centered on the user. If the user chooses not to share the

PRP values with the server, no location estimation and contact tracing can be performed.

Furthermore, the design also conserves power on the smartphone because the user never

has to transmit any BLE packets.

Finally, we transmit beacons using BLE advertising mode. This prevents the need for

making any explicit connection between the user device and the beacon. The user device can

ignore the advertising beacons to avoid localization.

Reducing Deployment Overhead: Deploying the localization infrastructure has two

major overheads—setting up the beacons at exact locations, and training. Knowing the

location for beacons deployed by a large store is labor intensive. Similarly, training involves

standing at multiple known locations inside the layout and collecting data for certain period

of time. We ask two questions—1. Instead of costly human labor, can we infer most beacon

locations from training data? 2. Can we leverage data from unlabeled locations of store

workers to train our model?

As it turns out, we can affirmatively answer both these questions in our formulation. We

can leverage unlabelled data (without location information) that is collected by store workers

as they move around the store to help train the model as well as to infer most beacon

locations. We use data collected by store workers D to solve both problems. D contains

number of packets received from all B beacons at all NR training locations. Let us assume

that we know the locations of a small number b� B primary beacons, with the remaining

B − b beacon locations unknown; Ideally we will like b to be as close to 0 as possible. Also

assume that only a small number r � NR locations are known, with the remaining NR − r
locations unknown. Our goal is to infer B − b beacon and NR − r training locations from D

along with the packet reception model parameters [w].

To enable this, we view the model through a generative process. We initialize the (B − b)
beacon and (NR − r) unknown reception locations from a uniform prior over the testing area

which is of dimension W × L. We want to jointly estimate the distribution of the unknown

beacon locations {lj}, j ∈ {1, . . . , B − b}, {lk}, k ∈ {1, . . . , NR − r} and packet reception

model parameters [w], given data D. In other words, we want to estimate the posterior

distribution P ([lj, lk, w] | D). This can be easily achieved, given the Bayesian nature of

our model. We use standard Markov Chain Monte Carlo (MCMC) based Bayesian

inference techniques to compute the posterior distribution over the unlabelled data points
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and beacons. We use No-U-Turn sampling (NUTS) [97] included with PyMC3 [96]

to perform MCMC sampling. Therefore, B-PRP can leverage unlabeled data as well as

unlabelled beacon locations to improve its estimates and reduce the deployment overhead.

3.7 EXPERIMENTAL SET UP

We evaluate B-PRP in two testbeds—an academic library and a retail store. Both spaces

have shelves segregating the floor space into rectangular regions, i.e. aisles and corridors.

The two environments differ in three main aspects—difference in layout, i.e. arrangement of

rectangular areas and the presence of walls around the space, difference in material of shelves,

and human interference. The retail store had more dynamic customer traffic movement

during the experiments.

Library: We show the layout of the library space, 14m by 8m, in Figure 3.5(a). It has

three wooden shelves (each 11m long & 0.5m wide). The aisles between two stacks are

0.7m wide. We placed two rows of 12 beacons on each stack. We manually measured each

inter-beacon distance. The distance between two adjacent beacons on the same row is 0.91m.

The distance between two devices kept opposite each other on the same shelf, but facing two

different aisles is 0.43m. We carried out our experiments during regular library hours.

Retail Store: Figure 3.5(b) shows a retail store with dimensions: 10m by 10m. The

environment has four steel stacks (1.27m wide each; three are 7.5m long, one is 6m long).

The aisles between two stacks are 1.8m wide. We place two rows of beacons on each stack.

The inter-beacon distance on the same row is 1m. Retail store is a challenging environment

due to the presence of steel structures as well as worker and customer movement during the

experiments.

3.7.1 Devices

We use following devices for our experiments—Bluvision iBeeks [98] , BluFi [99], TI packet

sniffer, a laptop and Android smartphones(Nexus5x, NuuA4L). iBeeks or iBeacons are battery

operated BLE beacons. They support a wide range of broadcasting power from −40dBm

to +5dBm. −40dBm translates to 3m line of sight range, while +5dBm gives us a range of

150m. For our experiments, the beacons send 10 packets per second at -15 dBm power. We

deploy 60 iBeacons in the library and 38 beacons in the retail store. As discussed before, we

do not need to know all of these beacon location a priori.

We use three receiver devices for BLE: Texas Instrument Packet Sniffer (CC2540 dongle),

Nexus 5X smartphone, NuuA4L smartphone. iBeacons broadcast BLE packets in three
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Figure 3.5: Experimental Testbed: We conduct our experiments in a library (a) and
a retail store (b) using devices shown in (c)—Beacon, Blufi, Sniffer, Laptop, Nexus5X and
NuuA4L android smartphone.

channels— 37, 38 and 39. The sniffer can filter out packets from specific channels. We

connect the sniffer to a Windows laptop and use it for packet reception from beacons. For

the Android phones, we built an android app using Altbeacon [100] library to scan BLE

channels.

3.7.2 Baselines

We compare B-PRP against state-of-the-art in RSSI-based positioning:

• Horus [17] is an RSSI fingerprinting technique that was originally tested with WiFi. We

extend it to BLE. For fairness, we use Horus with the same number of training locations

as other baselines—12 for library and 9 for retail store. The inter-state distance is 3.5m

for library and 1.85m for retail store.
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• Bayesian RSSI [39] uses a generative model based on RSSI to determine location. We

set the priors and parameter values following recommendations in [39].

• Bayesian RSSI Fingerprinting (or Bayesian FP) [47] is a Bayesian Fusion technique

applied to a fingerprinting based method for BLE devices. It stores fingerprints like Horus,

but employs fusion technique to combine current RSSI and prior location information.

• MCL [87] is a range-free localization technique and uses proximity rather than ranging

information to localize nodes. It observes whether a packet was received from a device

and infers whether the reception location is inside or outside a threshold distance from the

beacon.

To ensure fair comparison, we use the same training data across all techniques. Furthermore,

for RSSI based techniques, we use mean RSSI values over all packets used by the PRP

technique. That is, if PRP uses k packets at a location, we use the mean RSSI

value over the same k packets. This removes inter-packet RSSI variance at the same

location, improving RSSI localization. RSSI results are significantly worse without averaging.

There is more recent work in CSI-based positioning [4, 5, 81], but CSI data is not available

on most commercial smartphones. Hence, we do not cover these baselines. For reference,

the state-of-the-art CSI-based method achieves a median localization error of 86 cm[101].

However, this work requires CSI data on phones and multi-antenna beacons, both of which

are not mainstream yet, and hence, cannot be deployed at scale for applications like contact

tracing.

3.7.3 Data collection

We collected data for both layouts in two phases—training and localization. We collected

data at stationary spots to train B-PRP and competing baselines. We marked some fixed

places for each layout and stood there for 1 minute to receive data from the beacons. We

used 12 such spots for the library layout and 9 locations for the retail store layout.

We collected data in both test-beds to compare the accuracy of localization and contact

tracing techniques. To track and test on data from a moving person, we asked users to

naturally move inside the layout with the laptop and sniffer in hand. We used fixed movement

paths and marked spots along the path. Each path or trace is a simulated movement carried

out in real time between such marked spots. We stop at each marked place for 10 seconds,

and we move at a normal walking speed of 0.5m/sec between the spots. We can now calculate

the ground truth location at any time within the movement trace. Please note that we
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evaluate our location estimates throughout the movement trajectory. They are

not restricted to the marked fixed spots.

3.8 MICRO BENCHMARK
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Figure 3.6: Microbenchmarks: (left) PRP vs RSSI are not directly related, but follow
an expected trend. (middle) PRP variation is similar across two different android devices—
Nexus5X and NuuA4L. (right) PRP variation is robust to ambient WiFi interference.

We present microbenchmarks to better understand PRP:

Relationship to RSSI: First we ask how PRP varies with RSSI and if packet reception is

directly dependent on RSSI. We plot this relationship in Figure 3.6. As seen in the figure,

there is an expected trend between the two parameters, but there is also significant variance

for each value of PRP. This implies that the relationship between packet reception and RSSI

is not determined by a hard threshold, but is instead more probabilistic. The probability of

packet reception goes down with RSSI but several other factors including random noise come

into play.

Translation across devices: Does the relationship of PRP with distance depend on a

device? To answer, we collect PRP values at the same location with two android smartphones:

Nexus5X and NuuA4L. As shown in Figure 3.6, we see very close trends in PRP vs distance

with minor variations5.

Robustness to interference: Does interference from other in-band transmissions like WiFi

hurt PRP? To understand this, we conduct the following experiment. We setup a WiFi router

on 2.4GHz WiFi band and use two laptops to saturate the link using the iperf utility[102].

We measure the PRP-distance relationship with WiFi interference turned on and off. We see

negligible variation in the relationship between PRP and distance ( Figure 3.6(right)). This

is because the three advertising channels of BLE fall between or outside the main frequencies

used for IEEE 802.11, allowing for better coexistence with WiFi.

5The experiments were conducted on different days for each smartphone
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Does interference from many co-located beacons hurt PRP? BLE beacons send out short

advertising messages in passive mode containing a payload of at most 31 bytes. As pointed

out in [84], the small size of the advertising messages helps in avoiding any significant

collisions of upto 200 or more co-located devices. Similarly, the co-location of many receivers

or scanning devices will not impact PRP. In our set-up, the receiver receives the advertising

message in a passive scanning mode, and does not respond in any way. As a result, many

scanning devices do not lead to any interference.

3.9 RESULTS

We compare the localization performance of baselines against B-PRP in Section 3.9.1. For

these results, we assume that all beacon and reception locations are known (for all methods).

In Section 3.9.2, we evaluate the robustness to the number and placement of beacons. In

Section 3.9.3 and Section 3.9.4, we list the results for B-PRP when we reduce the beacon

set-up costs and the number of labelled training locations. In summary:

• Median error for B-PRP is 1.03m and 1.45m in library and retail store. The corresponding

errors for the best baseline, Bayesian RSSI are 1.3m and 2.05m.

• B-PRP is more robust than RSSI to decreasing number of beacons. With 5 beacons,

B-PRP performance is 65% better in the library and 50% better in the retail store.

• B-PRP performs better than Bayesian RSSI when we use only Non Line-of-Sight(NLOS)

or far away beacons. With beacons placed greater than 6m distance, B-PRP gives error of

1.53m and 2.07m in LOS and NLOS. RSSI errors are 3.85m and 5.15m.

• B-PRP can reduce set-up cost by learning most beacon locations. Given data from 12

training locations, B-PRP needs to know exact location of only 6 beacons and it can infer

the remaining 54 beacon locations while giving an accuracy of 1.05m.

• B-PRP can reduce retraining efforts by leveraging data from unknown locations. Having

data from 12 known locations vs (6 known + 6 unknown) locations gives the same accuracy

level. We can improve accuracy ∼ 40% by adding data from unlabeled spots.

3.9.1 Localization accuracy evaluation

We compare the accuracy of B-PRP against baselines. We use Euclidean distance to

measure the error between actual and estimated locations for each time window. We show

cumulative distribution over errors in Figure 3.7 and median error in Table 3.1.
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Environment B-PRP B-PRP + RSSI Bayesian RSSI [39] Horus [17] Bayesian FP [47] MCL [87]

Library 1.03m 0.91m (↓ 11.6%) 1.3m (↑ 26.2%) 1.83m (↑ 77.6%) 1.93m (↑ 87.4%) 2.26m (↑ 119%)
Retail Store 1.45m 1.46m (↑ 0.6%) 2.05m(↑ 41.4%) 1.85m(↑ 27.6%) 1.95m(↑ 34.5%) 2.93m (↑ 102%)

Table 3.1: Median error (in m) of B-PRP and baselines: B-PRP perfoms best in both
environments followed by Bayesian-RSSI in the library and Horus in retail store. Fusion of
B-PRP and RSSI performs slightly better in the ideal library environment with many beacons
at close distance. Horus and Bayesian FP underperform as they require more training states
for better accuracy. All methods perfom worst in the harsh retail environment.
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Figure 3.7: CDF error distribution for Bayesian PRP and baselines in library and retail
store. For RSSI techniques, we have averaged RSSI value across the same number of packets
that was used by PRP technique.

First, observe that B-PRP achieves a median error of 1.03m and 1.45m in the library and

retail store. The next best method, Bayesian RSSI, achieves errors of 1.3m and 2.05m. The

errors for other methods are higher, so for the rest of the document, we will present detailed

results for Bayesian RSSI. The errors for all methods are higher for the retail store which has

more human traffic than the library. B-PRP can significantly outperform all other baselines

due to two reasons: (a) B-PRP can extract information even from lost packets, and (b) It

incorporates a new multipath-model that can work in the presence of obstacles. The stack

model helps to increase the median accuracy of B-PRP from 1.41m to 1.03m in the library

and from 1.6m to 1.45m in the retail store.

Non-Line of Sight: How does Bayesian RSSI and B-PRP compare in line-of-sight (LoS)

vs non-line-of-sight (NLoS) scenarios? In Figure 3.8, we can see that the median error for

Bayesian RSSI is 2.34m with NLoS beacons in the library, which is far more than 1.3m error

that it achieves using all beacons. B-PRP achieves a better median error of 1.63m with NLoS
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Figure 3.8: CDF of localization errors for B-PRP and RSSI for different scenarios. In
library, B-PRP performs much better when asked to localize with only non-line-of-sight
beacons.

devices. This shows an additional advantage of B-PRP over traditional approaches using

RSSI. It can perform significantly better even when no beacon is in line-of-sight. Note that

this error difference is significant because an additional error of 0.8m can significantly worsen

false-positive and false-negative rates in end user applications.

B-PRP+RSSI: One might wonder if B-PRP can be augmented with RSSI to achieve even

better performance. We augment B-PRP with RSSI to test this hypothesis. As shown in

Figure 3.7, the method works approximately similar to B-PRP. As we demonstrate in the

next subsection, this is because at smaller distances, RSSI experiences little packet loss and

helps our model make better inference. However, at large distances, RSSI experiences larger

sampling bias and consequentially, just acts as noise, thereby hurting the model.

3.9.2 Beacon number and placement

We evaluate the robustness of localization performance of B-PRP against the best per-

forming baseline—Bayesian-RSSI to two factors—the number of beacons and the placement

of beacons.

Beacon Number: In our test beds, we initially set up the beacons at a distance of 1m.

That resulted in 60 beacons in total in the library and 38 beacons in the retail store. A large

retail store will need to place hundreds of beacons to maintain this inter-beacon distance,

which in turn increases the localization infrastructure and configuration cost. So, it’s natural
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Figure 3.9: Variation in median error for B-PRP with beacon number. The error is
within 2m for all cases. With 5 beacons, B-PRP performance is better than Bayesian RSSI:
65% (library) and 50% (retail store).

Line-Of-Sight
Condition

distance < 2m 2m < distance < 6m distance > 6m

B-PRP RSSI B-PRP + RSSI B-PRP RSSI B-PRP +RSSI B-PRP RSSI B-PRP +RSSI

LOS 0.89m 0.5m 0.5m 0.63m 3.57m 0.62m 1.53m 3.85m 1.56m
Non-LOS 0.85m 1.05m 0.57m 5m 5.95m 5.62m 2.07m 5.15m 2.7m

Table 3.2: Robustness To Beacon Placement: Recall, our median error using all beacons
is 1.03m. If we use only beacons that are closer than 2m to the receiver, both PRP and
RSSI errors are low. Fusion of PRP and RSSI gives even lower errors of 0.5m. In this range,
RSSI values have less variance and more distance information. With beacons further than
2m, RSSI variances increase which cause fusion results to be worse. PRP gives high error if
beacons are between 2m and 6m in a Non Line-of-Sight scenario. This is expected because
the variance in the PRP estimates are high in this region. PRP again gives low error if
beacons are further than 6m.

to ask :how do we impact localization accuracy when we decrease the number of beacons?. We

evaluated the accuracy with fewer number of beacons (lower bound is set to three beacons –

the minimum required to localize).

In Figure 3.9, we see B-PRP performance degrades slowly than Bayesian-RSSI to decreasing

beacon density. The median error of localization for B-PRP is always within 2m. For Bayesian-

RSSI, with lower beacons, the error is as high as 3m. With 5 beacons, B-PRP performance is

65% better than Bayesian-RSSI in the library and 50% better in the retail store. Also, note

that just with 5 beacons, B-PRP performs better or equal to Bayesian-RSSI with upto 60

beacons. This, yet again, demonstrates that the errors in RSSI-based positioning cannot be

solved by just additional deployments, but are fundamental (sampling bias and multipath).
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Beacon Placement: How does the placement of a beacon with respect to the receiver

impact the localization accuracy by B-PRP and Bayesian RSSI? If we use only beacons

that are closer than 2m to the reception location, both PRP and RSSI errors are good

(c.f. Table 3.2). In fact, RSSI performs slightly better in Line-of-Sight scenario due to the

less variance in RSSI values and more distance information at very close range. Fusion of

B-PRP and RSSI also yields lower errors. When beacon distances become greater than 2m,

RSSI errors dramatically increase due to variance in RSSI values caused by multi-path and

sampling bias. In comparison, PRP errors are much lower in order of 1.53m and 2.07m

when beacons are more than 6m away from the receiver. Errors in RSSI also cause fusion

results to be worse. Error for all approaches is high when we use only beacons, all of which

are in a Non Line-of-Sight(NLOS) scenario and are at a distance between 2m and 6m from

the receiver. This experiment highlights the importance of PRP. As RSSI estimates suffer

from higher sampling bias with increasing distance, the underlying location information gets

corrupted. This is why at larger distances, both Bayesian RSSI and B-PRP+RSSI do worse.

3.9.3 Minimizing beacon set-up cost

NR b = 60 b = 6 b = 3 b = 1

12 1.03 1.05 1.24 1.38
8 1.05 1.22 1.82 2.15
4 1.05 2.88 3.74 3.48

Table 3.3: B-PRP’s median localization error (in m) with varying number of known beacon
locations b, and number of training locations NR . Error increases as we decrease b (each
row) and decrease NR (each column). For NR = 12, performance is almost same as with
b = 60 and b = 6. Decreasing NR impacts accuracy more than does b.

So far, we have used location information of all B beacons. Now, we will use the

location information for only b � B primary beacons. For the rest of the section,

we use B as total number of beacons and b as the number of beacons with known location

information. We use data to estimate B − b unknown beacon locations. We then use these

estimated values to track a receiver.

We vary the number of primary beacons b = {1, 3, 6, 60}. b = 60 corresponds to when we

know all beacon locations. B-PRP with b = 60 serves as our baseline. We also vary the value

of NR i.e. the total number of training locations. Since we make the beacon locations an

unknown parameter in our framework, we also want to get a sense of the number of training

locations required to efficiently estimate all these unknowns and retain accuracy level. Ideally,
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Figure 3.10: Reducing beacon set-up cost: CDF for comparing localization errors of
B-PRP as we vary the number of known beacon locations(or primary beacons). As we
decrease the number of known beacon locations by order of magnitude from 60 to 6, we
hardly see any increase in error when we have 12 training locations. If we reduce training
locations to 4, we need more primary beacons to retain same accuracy.

we would not like to use a lot of training locations to compensate for the unknown beacon

location, as this adds to the set-up cost.

We show the results in Figure 3.10 and Table 3.3. We highlight three observations. First,

when (NR = {12, 8}) there is negligible difference in the CDF of the tracking errors between

the cases of b = 60 and b = 6. Second, for any value of NR, the errors increase when we

decrease b, with the effects most pronounced for NR = 4. Finally, the figures suggest that

the effect of unknown beacon locations is less significant than the effect of the number of

training locations. B-PRP can give the same level of performance with as low as b = 3

primary beacons when the number of training locations NR is high. If we reduce NR to 8, we

need at least b = 6 known beacons.

These results highlight that B-PRP can be a low-overhead method for public spaces with

little deployment overhead. A retail store operator may just place these beacons across each

aisle, and move around with a smartphone to some known locations. B-PRP can infer the

beacon location on its own (for most beacons) and still achieve competitive performance.

3.9.4 Reducing training efforts

Till now, we have used the location information of all training spots NR while training.

Now, let’s use the information for only r < NR training spots and estimate the

remaining NR − r locations using our framework.

We change the value of known training locations r = {12, 8, 6, 4, 2, 0}, with NR = 12.

Figure 3.11 shows the results. In the leftmost sub-figure, we see that as r decreases, error

increases; but notice that we can cut the known locations in half, from r = 12 to r = 6,
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Figure 3.11: Reducing retraining efforts: CDF for comparing errors of B-PRP when we
train using data from some known and mostly unknown locations. If we have data from 12
known locations vs (6 known + 6 unknown) locations, we get the same accuracy level. In
the right two subfigures, we show that we improved accuracy ∼ 40% by adding data from
unknown spots rather than only using data from known spots.

without appreciable increase in error. This means that we can collect data from 12 spots but

need to annotate only half of those and B-PRP can still maintain the same accuracy level.

One might wonder, do we really gain any performance improvement by adding data from

unknown locations? Figure 3.11 (two right sub-figures) validate that conjecture. Suppose,

our training dataset contains data from 12 training locations in total. Now, 8 of those are

labeled with location information while 4 are unlabeled. If we train PRP parameters using

only 8 labeled data locations, our median error from the trained model is 1.82m. In contrast,

if we use the entire dataset and treat the location of the 4 unlabeled data points as random

variables in our framework, we improve the median error to 1.08m. Similarly, if we have 4

labeled and 8 unlabeled locations, by using all the locations our errors improve from 3.8m to

2.4m. Thus, data from un-labled locations are valuable for training PRP parameters. This

further eases the deployment cost by allowing operators to collect fewer labelled data points.

3.10 DISCUSSION AND LIMITATIONS

Now we discuss few application scenarios and limitations of B-PRP technique.

Applicability to general indoor environments: We design B-PRP with a focus on

public indoor environments like retail stores that have stacked layouts. This layout is

applicable to multiple spaces like libraries, warehouses, pharmacies, etc. and covers an

important application area. While the current multipath-resilience model of B-PRP does

not directly apply to other environments like homes, we believe PRP itself is applicable

to such environments and provides the unique advantage of robustness at large distances.

Furthermore, in such environments, obstacles like walls can be modelled using the approach

followed in B-PRP.
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Access to Layouts: We design the layout requirement for B-PRP to be low-effort. The

layout and stacks can be extracted from the store floorplan, either manually or through an

app. This makes the deployment effort low. Furthermore, B-PRP can apply to store layouts

with more stacks. We may encounter geometric elements like three stacks away (3− S), four

stacks away (4 − S) etc. We do not necessarily need a separate PRP function for each of

these elements. Since PRP becomes very low after certain number of stacks, we can club

these spaces into one geometric element and learn a single model.

Computational complexity: Bayesian MCMC techniques may take more time to infer

location. We ran our computations in python on a MacBook Pro laptop with 2.5GHz Intel

Core i7 processor and 16GB RAM. With 60 beacons, it took us ∼ 3 seconds to find the next

location, within our time resolution (δ = 10s) for localization. We can further speed-up by

using native code and parallelizing the inference.

Scalability to the number of packets: One limitation of B-PRP is that it needs more

than one packet to localize. We can reduce the number of packets used for localization by

changing the advertising frequency. We observe in our experiments that as we lower the

sending rate from 10Hz to 1Hz, while keeping the localization rate to once per 10 seconds,

the median error increases by just 0.2m.

3.11 CONCLUSION

This work establishes the feasibility of using Bluetooth Low-Energy (BLE) to provide

a robust, scalable indoor localization solution using commodity hardware. Demonstrating

the feasibility of BLE based distance estimation technique is particularly important during

the current pandemic, where BLE has emerged as key technology for contact-tracing. BLE-

based distance estimation today relies on either RSSI or just presence, both of which have

publicly documented failure modes. We analyze the fundamental underpinnings of these

failure modes and demonstrate robust localization through the Bayesian formulation of a

new metric—Packet Reception Probability–that exploits the absence of received packets. We

show significant improvements over the state of the art RSSI methods in two typical public

spaces—a retail store and a library. We show that fusing B-PRP with RSSI is beneficial at

short distances (≤2 m). Beyond ≥2 m, fusion is worse than B-PRP, as RSSI based estimates

beyond ≥2 m are effectively de-correlated with distance. Our solution does not require any

hardware, firmware, or driver-level changes to off-the-shelf devices, and involves minimal

deployment and re-training costs. In the next chapters, we extend our framework for peer-to-

peer distance estimations in outdoor settings where we cannot install any beacons, and use

only smartphones to estimate distance.
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CHAPTER 4: CONTACT TRACING WITH MINIMAL
INFRASTRUCTURE

4.1 INTRODUCTION

Infectious diseases spread due to close contact between people. As per CDC guidelines,

COVID-19 can spread from an infected person to another if they are closer than 6ft for

over 15 minutes. An infected person can potentially spread the virus to many other people

before the appearance of any symptoms [103]. A potentially exposed person needs to receive

quick alerts about avoiding contact with other people. Minimizing contact between infected

persons and non-infected people is an essential requirement to curb the spread of the disease

[60, 61]. Current contact tracing approaches mainly rely on manual interviews.

We can enable automated contact tracing through apps deployed on our smartphones.

Bluetooth Low-Energy (BLE) is emerging as the key technology in contact-tracing apps

around the world. These apps continuously broadcast BLE packets, which are received by

surrounding devices. The apps on the receiver side use certain properties of the received

packets to infer distance from the sender. The Aarogya Setu contact-tracing app [7] in India

and PACT program [104] use BLE packet signal strength to infer contact. The open-source,

privacy-preserving contact-tracing framework, BlueTrace [8] (deployed in Singapore), uses

BLE packets to detect the presence of another device. (i.e., a smartphone that can hear

another must be in proximity of the other.)

BLE apps that trivially rely on pairwise measurements like received signal strength to

measure contact between two people have a well-known shortcoming. Latent factors like

device relative positioning on the human body, the orientation of the people carrying the

devices, and environmental multi-path effect can impact the measured power besides distance.

We can receive the same signal strength value for two people standing 3ft apart facing away

from each other and two people facing each other but standing more than 6ft apart. BLE

apps that use presence suffer higher errors. Presence is a poor proxy for distance since devices

can hear Bluetooth beacons beyond 6 ft social distancing radius and hear them across aisles

and walls. In this chapter, depending on the context of the environment, we provide two

solutions to solve challenges with peer-to-peer measurements.

4.1.1 Indoor, minimal infrastructure

First, we ask the question—Can we provide better estimates of contact tracing distances

between two people using minimalistic infrastructure in indoor environments? For example,
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two people are present in a cafe. We are interested in inferring whether or not they are in

contact. Direct BLE measurements between the phones of these two people are prone to

errors due to factors like—are the two people facing each other or away from each other, are

the phones in their pockets or on their tables. Can we provide better estimates of contact

if the cafe had few beacons installed in the environment? We assume that the beacons are

installed at known locations, and we know the distance between these beacons. The phones

will be receiving packets from the beacons. We want to infer the distance between the two

phones based on the properties of received packets from the beacons and using a known

distance value between the beacons.

To solve the challenge with direct peer-to-peer measurements, we make the following

contributions:

Correlated errors in localization-based solution: An easy way to obtain the dis-

tance between two people is through localization: we first estimate locations of two persons

independently and then calculate the Euclidean distance between the two locations. We

identify that this approach is sub-optimal—we are estimating location (a tuple) while we

are interested only in the distance (a scalar). Also, if we have localization errors for a

particular individual, these errors will impact all the distance estimations between this

individual and other nearby persons. In other words, we end up with correlated errors for

distances between different pairs of individuals.

Triangle inequality-based solution: We directly estimate the distance between two

individuals without localization by exploiting the well-known triangle inequality constraints

in Euclidean geometry. We extend our Bayesian framework to estimate distances between

pairs of individuals independently. We form triangles with the known beacons, and we

impose triangle inequalities on these distances to rule out many distance configurations in

the real world. The improvements are significant: we improve our distance estimates by

∼ 10% by moving from a location-based distance estimation to a triangle inequality-based

distance estimation.

We conducted experiments in public spaces: a library and a retail store with known

distances from Bluetooth beacons and made the following findings.

Distance estimation for contact tracing: Our contact tracing distance estimation

framework achieves median error of 0.89 m (library) and 1.07 m (retail store) with PRP

values. The corresponding errors with RSSI are 1.36 m (library, 52.8% more error) and

1.34 m (retail store, 25.2% more error). Using the covid risk metric proposed in [41], we

see that PRP does 1000X better than RSSI in the library.
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Error with decreasing beacon number: With only five beacons, PRP error for con-

tact tracing remains around 1.5 m for both library and retail store.

4.1.2 Outdoor, no centralized infrastructure

Second, we extend our work to outdoor environments where we cannot install extra

infrastructure. Instead, we propose using collaboration to solve distances robustly. Without

installing added infrastructure, we cannot leverage known distances in our triangle inequality

framework. However, we can leverage triangles formed between three or more people in the

vicinity. We constrain the unknown distances using triangle inequality. With more people in

the vicinity, we can form more triangles and constrain the unknown distances further.

In the second part of our work, we make the following contributions:

Collaborative triangle inequality framework: We designed a Bayesian framework

that includes the likelihood function based on pairwise measurements between people and

triangle inequality-based likelihood values.

Android and iOS contact tracing application: We developed Android and iOS ap-

plications to exchange Bluetooth packets for contact tracing.

BLE packet structure: We designed and implemented BLE packet structure and proto-

col to enable collaborative contact tracing between people present in the vicinity.

Our empirical experiments revealed that PRP does well even when there are interfering

∈ [1, 2] human bodies between two phones. In a sample experiment, for one interfering

human body, PRP is 0.6 at 3ft while it is 0.2 at 12ft. With no interference, PRP remains

constant at 0.7 for both 3ft and 12ft, while mean RSSI is −70db at 3ft and −80db at 12ft.

The experiment suggests that PRP and RSSI should be used in conjunction to give better

estimates of the distance across all types of interference. Our experiments also reveal a new

challenge of intra-device variation in PRP and RSSI values due to different kinds of antenna

designs in different phones. To deploy PRP/RSSI-based contact tracing applications at scale

in different phones, we need future research into Model Adaptive Machine Learning to learn

RSSI and PRP models that can be adapted/generalized to different devices.

4.2 RELATED WORK

Several contact tracing applications exist worldwide. [60, 61] shows the applications have

been useful in curbing the spread of the disease. [62] contains a full list. These apps fall into
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four broad categories based on the technology they use to find the proximity of two persons.

1. GPS/Cellular: The apps like ViruSafe [63], Rakning c-19 [64] use GPS or triangulation

from nearby cell towers to find the location of a phone on a person. If two phones have

been in the exact location simultaneously, the apps infer the two people to be in proximity.

Applications relying on GPS or cellular data are less accurate than Bluetooth-based

technologies since they can infer far away people to be in proximity. They are more

privacy-invasive than Bluetooth since they can find the absolute location of people.

2. Bluetooth: The apps like Virusradar [65], Covidradar [66] use Bluetooth in phones to

swap encrypted tokens with any other nearby phones. If a phone receives the Bluetooth

token from another phone, then the two persons owning the phones are inferred to be

close. Apps relying on Bluetooth perform better than GPS on privacy since tokens can

be anonymized. However, Bluetooth packets can reach as far as 30ft and detect faraway

people in proximity.

3. Apple/Google Exposure: Apps like Stopp-corona [67] in Austria, Covid-alert [68] in

Canada, GuideSafe [69] in Alabama USA, CovidDefense [70] in Louisana, etc. rely on

the joint API developed by Apple and Google that allows iOS and Android phones to

communicate with each other over Bluetooth.

4. DP-3T: Apps like SwissCovid [71], Coronalert [72] use decentralized privacy-preserving

proximity tracing protocol over Bluetooth. It’s an open-source protocol in which an

individual phone’s contact logs are only stored locally, so no central authority can know

who has been exposed.

Our work is different in three main aspects—we measure distance based on packet reception

probability of BLE signals, a new metric that we described in Chapter 3. We use minimalistic

infrastructure installed in the environment to improve our contact tracing distance estimates.

We constrain distance estimates using geometric constraints—these constraints sharpen

with an increase in the number of individuals. Next, we will discuss the infrastructure-

assisted contact tracing system, where we will see how we can improve all Bluetooth-based

contact tracing applications by installing few Bluetooth devices in an environment that can

communicate with Bluetooth phones on a person.

4.3 INFRASTRUCTURE ASSISTED CONTACT TRACING

Now, we will discuss the infrastructure-assisted contact tracing system where we install

a few beacons in the environment to estimate contact between people. We will discuss the
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problem statement in Section 4.3.1. We will detail the challenge of trying to get distance

through finding locations in Section 4.3.2 and then propose a Euclidean constraint-based

framework where we can directly infer distance.

4.3.1 Problem statement

In this work, we focus on finding distance between individuals in indoor public spaces. We

will use BLE signals to infer distance. BLE offers a unique advantage for contact tracing.

Due to its low power budget, it can be turned on frequently and hence, enable more frequent

updates as compared to high power protocols like Wi-Fi. Recall that BLE’s maximum

transmit power (10 dBm) is ten times lower than that of Wi-Fi (20 dBm). This factor, in

addition to its ubiquitous presence on off-the-shelf smartphones, has made BLE the natural

choice for such applications.

We deploy few BLE beacons at fixed locations in the indoor environment to aid distance

estimation. We show that some minimal infrastructure support will aid in more accurate

indoor contact tracing. The beacons are configured to emit Bluetooth packets, power pt, and

a fixed sending rate, R. The smartphone of an individual navigating the public space listens

to these packets and logs them in the following form:

L = {(b1, t1), (b2, t2), . . . , (bN , tN)} (4.1)

where bi refers to the BLE beacon id heard at time ti. The phones then upload the log to a

central server. We use packet log L1 and L2 uploaded by two individuals to find the distance

between them.

4.3.2 Solution using Euclidean constraints

We could trivially extend the Bayesian framework discussed in Chapter 3 to estimate the

distance between two individuals using a two-step approach: first, estimate their locations

independently, and second, calculate the Euclidean distance between the two locations. Then,

we could use this distance to ascertain whether two individuals were in contact for contact

tracing. However, this approach is sub-optimal. It requires us to determine four unknowns

— (x, y) for the two devices, while we are only concerned about the final distance estimate

between the two devices. Also, if we make errors in location estimation for an individual,

that impacts all the distance estimations of this individual with other neighboring persons.

In other words, we get correlated errors for independent distances between different pairs of
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individuals. Can we do better?

At a high level, we can improve the distance estimation process using two insights. First,

we don’t need to model individual locations if we just care about distance. Therefore, we

explicitly incorporate the distance between two devices as part of our Bayesian model. This

helps us reduce the number of unknowns in our framework and also helps to model the

distance between each pair of individuals as an independent unknown. Second, we leverage

the triangle inequality. The triangle inequality states that given a triangle, the sum of two

edges has to be greater than or equal to the third edge. This helps us rule out many triangular

distance configurations. We present a detailed formulation of these insights below.

b1

Beacon

b2

Beacon

r1

Receiver

r2

Receiver

Triangle
1

Triangle
2

Figure 4.1: Modeling contact tracing distance optimizing joint likelihood of observed PRP
values and triangle inequalities

Finally, one might wonder: why do we need all this complexity? Why don’t we just use

the direct transmission between two devices to estimate distance—device A transmits to

device B, device B measures PRP, and we convert that to distance? This approach would

create a posterior distribution for distance but with a large variance because interference

by other nearby persons increases the uncertainty in our posterior distance distribution. To

shrink this variance, we need other distance measurements, either to known beacons or many

other peers.

Indoors, we adopt an infrastructure-assisted approach described above to help compute

distances between pairs of individuals. Given that public indoor spaces like retail stores or

restaurants (or even businesses) are more likely to be crowded, the infrastructure-assisted

approach is reasonable in these settings.

Objectives and Data: We have NR people. We are interested in finding the
(
NR

2

)
contact

tracing distances {dR−Ri,j }, i, j ∈ {1, . . . , NR}, i 6= j . For each person r ∈ NR, we have

PRP data to each beacon {dR−Br,b }, b ∈ {1, . . . , B} allowing us to estimate distance to the

beacon. Additionally, we assume that we know the inter-beacon distances {dB−Bi,j }, i, j ∈
{1, . . . , B}, i 6= j. In this problem, we have three types of distances—receiver-to-receiver
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(R−R) which is our final objective, receiver-to-beacon (R−B) which are latent variables

on which we have PRP data, and beacon-to-beacon (B −B) which are known constants in

our framework.

We solve the problem in two phases—first, estimating the latent variables, receiver-to-

beacon distances dR−B by maximizing a joint likelihood function of the observed prp data

and triangle inequalities containing all possible triangles with combinations of two beacons

and one receiver. Second, given the estimated values of the latent variables in the first step,

we estimate the contact tracing distances dR−R by maximizing the likelihood of inequalities

containing all possible triangles with the combination of two receivers and one beacon.

Toy Example: We explain our solution using a toy example (pictorially represented in

Figure 4.1) which contains two beacons b1 , b2 and two receivers r1 , r2. We are interested in

finding the distance dr1,r2 . The latent variables are (db1,r1 , db1,r2 , db2,r1 , db2,r2), on which we

have prp data. db1,b2 is known.

b1

Beacon

b2

Beacon

r1

Receiver

Figure 4.2: Triangle inequality

In the first phase, we construct a joint likelihood function that contains two components—

observed PRP values and triangle inequalities. The first component is similar to PRP based

location estimation where we maximize the likelihood Pr(prpx,y|dx,y), x ∈ {b1, b2}, y ∈ {r1, r2}.
For the second component, recall the geometric property that for any triangle, the sum of

two sides of the triangle must be greater than the third side. Taking the receiver r1 as an

example, we have the triangle (r1, b1, b2) which gives us three triangle inequalities that can

be converted to likelihood values as

PT = Pr(dr1,b1+dr1,b2−db1,b2 > 0)×Pr(dr1,b1+db1,b2−dr1,b2 > 0)×Pr(dr1,b2+db1,b2−dr1,b1 > 0)

(4.2)

For estimating the latent variables involving the receiver r1, we can write down the joint

log likelihood function as:

LPRP = max
(dr1,b1 ,dr1,b2 )

[logPr(prpr1,b1|dr1,b1) + logPr(prpr1,b2|dr1,b2) + logPT ] (4.3)
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Intuitively, if three distances on a geometric plane form a triangle, they should satisfy

Euclidean constraints by default. However, if we solve the distances using PRP values only,

we are solving each distance independently, and the samples drawn for one distance do not

affect the other distance. We need to explicitly enforce the euclidean constraints between

three distances that form a triangle.

Similarly, we can write down the joint likelihood function involving r2. Note that in the

joint log-likelihood for NR receivers and B beacons, we will have NR × B terms for the

observed PRP values, and 3×NR×
(
B
2

)
terms for the triangle inequalities. We apply MCMC

sampling techniques to solve these joint likelihood functions.

In the second phase, we maximize the likelihood of triangle inequalities involving triangles

with two receivers and one beacon. For the distance dr1,r2 , we have two triangles T1 =

(r1, r2, b1) and T2 = (r1, r2, b2). Note that here we maximize the likelihoods given the

latent variables that we inferred in the previous step i.e. (db1,r1 , db1,r2 , db2,r1 , db2,r2). Now, let

A = dr1,r2 , B = dr1,b1 , C = dr2,b1 and ∆A+B−C = Pr(dr1,r2 + dr1,b1 − dr2,b1 > 0)

We can construct the euclidean constraint likelihood function as below:

LT1 = log ∆A+B−C + log ∆A+C−B + log ∆B+C−A (4.4)

Similarly, we can write the euclidean likelihood for triangle T2. We can write the combined

likelihood as

L = max
(dr1,r2 )

[LT1 + LT2|db1,r1 , db1,r2 , db2,r1 , db2,r2 ] (4.5)

Note that in the joint log-likelihood for NR receivers and B beacons, we will have 3×B
terms in the likelihood function for each receiver-to-receiver distances dR−R. We measure the

absolute error between estimated and ground-truth dR−R. In Section 4.4, we compare the

median errors of PRP with baselines that use the same likelihood estimation above, but with

different observed values—RSSI and PRP+RSSI. For RSSI based technique, we write down

Equation (4.3) as:

LRSSI = max
(dr1,b1 ,dr1,b2 )

[logPr(rssir1,b1|dr1,b1) + logPr(rssir1,b2|dr1,b2) + logPT ] (4.6)

The triangle inequality component remains the same, while we use RSSI as observed value in

the first component. Similarly for PRP+RSSI, the formulation becomes:

max
(dr1,b1 ,dr1,b2 )

[LPRP + LRSSI − logPT ] (4.7)

In all three cases, the second phase of the estimation remains the same. The generalization
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to NR receivers and B beacons from Equation (4.6) and Equation (4.7) is straightforward.

4.4 EVALUATING CONTACT TRACING DISTANCE ESTIMATES

We conducted empirical experiments in two testbeds—an academic library and a retail

store. The library has a floor area of 14m by 8m while the retail store dimensions are 10m by

10m. We installed iBeeks or iBeacon in our environment to act as infrastructure devices. We

used Texas Instrument Packet Sniffer (CC2540 dongle) as the receiving device. We collected

data at multiple reception spots throughout the layout. Each reception spot serves as a proxy

for one person. Our goal is to find the contact tracing distance between each pair of people.

In other words, we want to find the distance between each pair of reception spots.
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Figure 4.3: CDF error distribution of contact tracing distance for PRP, RSSI and
PRP+RSSI in library and retail store. PRP and PRP+RSSI gives the best median error in
both environments.

We compare the accuracy of PRP against RSSI and PRP+RSSI in contact tracing distance

estimation. We measure the absolute error between actual and estimated distances for each

pair of person or receivers. We show cumulative distribution over errors in Figure 4.3.

First, observe that PRP achieves a median distance error of 0.89m and 1.07m in the library

and retail store. RSSI achieves distance errors of 1.36m and 1.34m. PRP+RSSI gives median

distance errors of 0.91m and 1.08m.

Now, notice that for a contact tracing application, errors in all distance estimations di,j

between a pair of individuals i, j are not equally important. When the actual distance is
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di,j < 2m (the social distancing range), the errors become more important. When two

individuals are far away from di,j � 2m, errors become less important. We used a standard

risk function described in [41] to map the distance values di,j between a pair of individuals

i, j to a risk metric Ri,j:

Ri,j =
1.0

1 + exp{α(di,j − 2m)} (4.8)

,where, α = 9.17.

Notice that the risk is a sigmoid function that takes high values Ri,j ≈ 1 when di,j < 2m,

and low values Ri,j ≈ 0 when di,j ≥ 2m . We calculate the absolute error between the actual

risk (based on ground truth distance) and predicted risk (based on the estimated distance).

PRP gives a median risk error of 5 × 10−6 and 0.16 × 10−6 in the library and retail store,

while RSSI achieves 4× 10−3 and 0.22× 10−6 respectively. Note that the median risk error

with RSSI in the library is 1000 times larger compared to PRP. PRP+RSSI has risk error of

1.3× 10−6 and 0.06× 10−6. Also, though the risk errors look small, at population scale and

across multiple interactions, the risk is very high.
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Figure 4.4: Variation in median error for contact tracing performance with de-
creasing beacon number. The error is around 1.5m for all cases.

4.5 INDOORS: IMPACT OF BEACON NUMBER

Now, we look at the contact tracing performance when we decrease the number of beacons.

In our test beds, we initially had 60 beacons in the library, and 38 beacons in the retail store.
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Now we evaluate the accuracy with fewer number of beacons.

In Figure 4.4, contact tracing performances degrades slowly with decreasing beacon

number, but always stays around 1.5m.

4.6 OUTDOORS: INFRASTRUCTURE FREE CONTACT TRACING

Till now, we discussed a contact tracing solution where we proposed the installation of a

few BLE beacons in an indoor environment to obtain a robust estimate of distances between

pairs of people. However, the infrastructure-assisted solution will be infeasible for outdoor

environments where we cannot install such infrastructure. Now we discuss an application

that infers contact tracing distances between people without any added infrastructure. Here,

we wish to utilize the measurements made between other people in the vicinity collaboratively

to improve each contact tracing distance estimate.

p3

Person

p1

Person

p2

Person

Triangle

Figure 4.5: Infrastructure free contact tracing: optimizing joint likelihood of observed PRP
values and triangle inequality between peers.

4.6.1 Challenge

One might wonder: why can’t we just use the direct transmission between two devices to

estimate distance—device A transmits to device B, device B measures PRP, and we convert

that to distance? Besides distance, other latent factors impact PRP—orientation of the

people and relative location of the device on a person. Standing at the same distance, if two

people are facing each other Figure 4.6(a), we will measure higher PRP compared to if they

are facing away from each other Figures 4.6(b) and 4.6(c) This is because human bodies act

as interference to signals and cause signal strength attenuation. Similarly, we will get more

PRP when two people have their phones in the palm of their hands vs. they have kept the

phones in their pockets Figure 4.6(d).
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prp1,2 is higher.

Two people facing each other. 

(a)

prp1,2 becomes lower.

One person facing away. 

(b)

prp1,2 is lowest.

Two people facing away. 

(c)

prp1,2 becomes lower.

Two people facing each other, 
but the phone in backpocket. 

(d)

Figure 4.6: (a) 2 people are facing each other and there is a clear line-of-sight between the 2
phones, PRP value is high. (b) When one of the person faces away, there is now a human
body blocking the line-of-sight and prp decreases. (c) If both people face away, there are 2
human bodies blocking the line-of-sight and prp decreases further. (d) When two people face
each other, but one of them is keeping the phone in their backpocket, then also we have a
human body blocking the line-of-sight.

4.6.2 Solution

For each contact tracing edge, we will need to solve a latent variable in addition to

distance—the attenuation/interference factor. If two people are facing each other and have

the phones in their hands, the attenuation factor is low. If they have the phones in their

back pockets, the attenuation value is high. We will use collaboration between people in

the crowd and impose triangle inequality constraints similar to Section 4.3 to jointly solve

distance and attenuation factors on each edge.

We explain our solution using a toy example (pictorially represented in Figure 4.5)

which contains three people p1 , p2 and p3. We are interested in finding the distance

dp1,p2 , dp2,p3 , dp1,p3 .
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Figure 4.7: Contact Tracer Architecture, which includes a fully functioning android and iOS
app, payload structure of the BLE packets that are sent out by our apps, cloud infrastructure
in Azure to receive and store the BLE packet logs through HTTP requests, and the contact
tracer inference engine. The inference engine includes the Bayesian distance estimation model,
the collective triangle inequality model and a mobility based model.

We construct a joint likelihood function that contains two components—observed prp

values and triangle inequalities. We can write down the equations as

LT = logP (dp1,p2 + dp2,p3 − dp1,p3 > 0) + logP (dp1,p2 + dp1,p3 − dp2,p3 > 0) (4.9)

+ logP (dp1,p3 + dp2,p3 − dp1,p2 > 0), (4.10)

max
(dp1,p2 ,dp2,p3 ,dp1,p3 )

[logP (prpp1,p2|dp1,p2) + logP (prpp2,p3|dp2,p3) (4.11)

+ logP (prpp1,p3|dp1,p3) + LT ] (4.12)

As we have more people in the vicinity, we can form more triangles and constrain the

distances further. If we have N people in the vicinity, we can form
(
N
3

)
triangles, giving us

3×
(
N
3

)
triangle inequalities, and

(
N
2

)
prp value to solve the distances and latent factors.

4.7 SYSTEM DEPLOYMENT

We developed an end-to-end system for the contact tracing application from designing

the BLE payload structure, packet transmission protocol, packet transmission applications
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for android and iOS, and finally, creating the Azure storage tables which receive the packet

information through HTTP requests and store them.

4.7.1 Payload structure

We carefully designed the BLE packet structure ( Figure 4.7) to contain the necessary

information required by our contact tracing algorithms. It has the following components—

1-byte packet signature, 2 bytes TxID or transmitter id, 1-byte TxPower or transmitter

power, 2 bytes for the packet sequence number, 2 bytes of ACK ID or acknowledgment id,

and 4 bytes of ACK bitmap or acknowledgment bitmap.

One byte of packet signature is needed to communicate that this is a packet sent by

our contact tracing application and hence contains the required payload structure. Using

this signature, we can easily filter out non-contact tracing packets sent by other Bluetooth

applications. 2 bytes TxID is a random identifier for the transmitter of the packet. One byte

TxPower is the transmitter power used for the packet. For iOS and Android applications,

this value varies from a fixed low value (ULTRA-LOW for android) to a specific high value

(HIGH for android). The transmitter power will help calibrate the signal measurements made

on the receiver, like the received signal strength or RSSI.

We store 2 bytes of a sequence number in each packet which helps to get a detailed log

of received and dropped packets on the receiver end. On the transmitter side, we maintain

a counter which gets incremented before sending out each packet. The sequence number

on the packet contains the current value of the counter. On the receiver end, between the

first and last sequence value received from a specific transmitter, we can easily derive that a

particular packet was dropped if the corresponding sequence number is not present in the

log. Maintaining sequence numbers can help us segment the packet trace into subparts and

extract a time series of PRP values for fine-grained distance estimation and changes in the

distance over time.

In each packet, a transmitter attaches the packet log that it received from another sender.

The sender ID, for which the packet log is being attached or acknowledged, is present in

2 bytes of ACK ID, while the log is present in 4 bytes of ACK bitmap. The packet log

will help in collaborative distance calculation between people in the vicinity. Recall that

in Section 4.6, we mentioned that for accurate distance calculation between two peers, we

would also use the packet exchange information between other peers in the vicinity. Since

each node calculates the distance in a decentralized fashion, the ACK fields in the packet

ensure that the necessary collaborative information is available during distance estimation.

ACK bitmap contains a bitmap of received packets, where bit = 1 indicates that the
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corresponding packet sequence number was received from the source, while bit = 0 indicates

the packet was not received. We used the most significant bit in the bitmap for the most

recent packet. Next, we will describe the packet transmission and reception protocol.

4.7.2 Protocol

Now, we will describe the protocol for sending and receiving packets in our contact tracer

application. Specifically, we will detail how each node creates a log of the packets it receives

from a sender and then creates a bitmap of that log to attach to the transmitted packets.

On the transmitter end, let us assume that our frequency is Tf . We set Tf to be 100ms in

our app. At the beginning of transmission, the packet sequence number is 0. After every Tf

seconds when we send out a new packet, we increment the sequence number. In each new

packet, the transmitter acknowledges another nearby transmitter by attaching the current

packet information that it has received from the other one. If there are many transmitters in

the vicinity, we choose the one which has the oldest unacknowledged packet. We pick up the

bitmap, which contains all the current unacknowledged packets from that transmitter. We

mark all the packets in the bitmap to have been acknowledged.

On the receiver end, we maintain a log of the packets from each transmitter in the vicinity.

For every received packet, we first check if it is a packet from our application based on the

packet signature. If yes, we extract the Tx ID and sequence number of the packet. We add

the sequence number in memory to a log for this Tx ID and also set the status for the current

(Tx ID, sequence number) packet to be unacknowledged.

4.7.3 Android and iOS applications

We developed an app on Android using Java/Kotlin and an app on iOS using Swift that

can transmit and receive Bluetooth packets. We encoded our BLE packet structure inside

the apps. We used non-connectable BLE advertisements to exchange these packets.

We initially designed an experimental version for both Android and iOS apps where we

initiated and stopped BLE packet transmission and reception through the press of a button.

In Android, we set the advertising frequency to be 250ms, while we experimented with

advertising powers from ultra-low to high. In iOS, we used the system’s default advertisement

power of 12dBm and advertisement frequency of 100ms. iOS does not provide the levers to

control these parameters. However, in iOS, we can control the number of packets we send

out by restarting the advertisements at frequent intervals. For example, after sending out

one packet, we can stop the current advertisement and then use a timer to restart after a
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Figure 4.8: Variation of PRP and RSSI with distance. (a) PRP does well with interfering
human bodies. (b) RSSI does well with no interference.

specific time. In the production version of these apps, we can use the restarting technique

to switch to a low frequency and save power when no other transmitter is in the vicinity.

Low-frequency mode can be the default state of the app. Instead of using a button to start

high-frequency advertisement bursts, we will use the reception of BLE packets as a trigger to

switch to the high-frequency mode.

An issue with iOS BLE applications is background transmission and reception. iOS

decreases advertising frequency by default in background mode. Similarly, in background

scanning mode, iOS coalesces multiple packets from the transmitter into one record. We

record a reduced number of received packets in iOS background mode. The reduced number

can make PRP inference a challenge. We have to attribute whether fewer received packets are

due to more considerable distance or background mode. One trivial solution to this problem

is to use RSSI inference instead of PRP, which does not rely on the number of packets. Also,

packets sent in the background mode have a specific format that can distinguish them from

the foreground packets, and we can adjust the expected advertisement frequency accordingly.

4.7.4 Azure storage

Our apps use HTTP transfer protocol to POST the packet information to the azure table

API. Azure table parses and stores data in POST.

4.8 EMPIRICAL BENCHMARK AND CHALLENGES

We experimented with our contact tracing application on iOS and android in an outdoor

environment in our university quad. One person carrying a phone in their hand stood at
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Figure 4.9: Intra-device variation in PRP and RSSI due to different antenna designs. PRP is
lower on the Motorola phone (c) compared to the Nexus phone (a). Similarly, RSSI values
received are also lower on the Motorola phone (d) compared to Nexus phone (b).

a fixed location, while the other person moved with the phone in their hand to various

locations to cover different distance scenarios. We covered distance values from 3ft to 15ft.

Each person stood in different orientations: facing each other or facing away from each

other for each distance value. When both persons are facing each other, there are zero

interfering human bodies between the two phones. When one person faces away, there is one

interfering human body, while when both face away, we have two interfering human bodies.

This experiment setup helps us in analyzing PRP and RSSI values at different distances and

interference values.

We show the results of variance in PRP and RSSI for BLE with distance and interfering

human bodies in outdoor environments in Figure 4.8. We can see that PRP does well with

interference, giving good variations with distance. For interference ∈ [1, 2], PRP can be

easily used to identify between the cases of distance = 3ft and distance = 12ft as seen in
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Figure 4.8(a). However, PRP remains almost constant across distances for the no interference

case. On the other hand, RSSI does well with no interference giving good variations with

distance Figure 4.8(b), while it becomes almost constant with high variance in values for

interference ∈ [1, 2]. The finding reinforces our earlier conclusion that we should augment

PRP with RSSI to get better localization accuracies.

Our empirical experiments revealed a new challenge with deploying ranging-based contact

tracing applications at a large scale. We observed inter-device variations for both PRP and

RSSI, as can be seen in Figure 4.9. We did experiments on two android phones–a Motorola

E6 and a Nexus 5X. We observed that PRP is lower on the Motorola phone Figure 4.9(c)

compared to the Nexus phone Figure 4.9(a). At distance = 3ft and no interference, while

PRP is 0.8 for the Nexus phone, it is only 0.6 for the Motorola phone. Similarly, RSSI values

received are also lower on the Motorola phone Figure 4.9(d) compared to the Nexus phone

Figure 4.9(b). Distance = 3ft and no interference, mean RSSI is −70db on Nexus, while it is

−80db on Motorola.

Based on the empirical experiments, we realize that different antenna designs in different

phones lead to variation in PRP and RSSI values. To implement contact tracing applications

at scale, we need to learn models that generalize well to different devices. However, learning

such generalizable models will require new research.

4.9 CONCLUSION AND FUTURE WORK

This work aims to achieve reliable contact tracing by solving the challenges present in peer-

to-peer Bluetooth measurements. The challenges involve—latent factors like phone orientation

and device location on the person can impact pairwise measurements besides distance. Also,

we have well-known multipath effects that can add high variance to distance measurements

made from a single pairwise observation. We propose two solutions to overcome this problem—

using minimal infrastructure in indoor space and using collaboration in outdoor spaces. Both

infrastructure and collaboration can help us leverage more pairwise measurements made

between other nodes in the vicinity. Getting multiple samples of measurements can help us

in two ways—reduce the variance in estimation caused by multipath. Also, we can constrain

these measurements together through triangle inequalities.

First, our indoor experiments have shown that leveraging known distances between few

beacons in a triangle inequality based likelihood framework can help us achieve a median error

of 0.89 m in a library and 1.22 m in a retail store environment. Even with just five beacons in

a 100sqm area, we achieve a median error of 1.5 m. We have improve our distance estimates

by ∼ 10% by moving from a location-based distance estimation to a triangle inequality-based
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distance estimation.

Second, in the absence of infrastructure, we can use many unknown distances in collabora-

tion and constrain them through triangle inequalities to better solve distances. We designed

the contact tracer application that will run on smartphones to transmit and receive packets.

We conducted empirical benchmarking experiments to see how PRP and RSSI vary with

distance and human interference. PRP does better for high interference giving good variation

with distance. RSSI captures better distance variation at low interference when PRP almost

remains constant. The analysis exemplifies the complementary nature of PRP to RSSI and

its potential to further indoor location art by using it in combination with RSSI.

However, our empirical experiments also revealed the challenge of intra-device variation

in PRP and RSSI values, making it challenging to deploy contact tracing applications that

measure PRP or RSSI at scale across many devices. Future research needs to learn RSSI

and PRP models that can adapt/generalize to different devices. Specifically, we will need

to investigate Model Adaptive Machine Learning techniques to learn device generalizable

models.
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CHAPTER 5: CROWDSOURCED ESTIMATE OF SPACE ANONYMITY

5.1 INTRODUCTION

Indoor positioning has led to a wide array of intelligent location-based services in public

spaces. The omnipresence of sensor-rich mobile phones has led to applications like in-building

guidance and navigation in malls, inventory management in warehouses, easy wayfinding,

and discount notifications in public places such as airports, railway stations. More recently,

location services have helped automate digital contact tracing in these spaces where the

COVID-19 virus is known to spread faster.

Location services have raised a fundamental problem— more granular level Location

surveillance or tracking. While people want services, they do not want to be surveilled.

Location applications can collect data at different gradations or granularities. For example,

an airport may be collecting location information in the range of ∼ 10m to do contact tracing

at the level of gate number. A mall can be localizing in grids of ∼ 5m to find which shops

are more crowded at different times of the day. However, the airport location system can

also localize in ∼ 1m grids to find if a person browsed a vending machine. Similarly, a mall

can localize in < 1m range to automatically find our acquaintances based on similar patterns

in the location signature. More granular level tracking can reveal much sensitive information

about a person without taking their explicit consent. The possibility of such information

leakage raises doubts in the minds of people about adapting location services.

People using an indoor location system do not know the granularity of the location

information that the system collects about them. Lack of transparency on location granularity

leads to privacy invasion or widespread distrust of all location technologies. However, the

performance of a system highly depends on the nature of infrastructure installment in the

environment. For example, an airport may have better localization with a dense device

deployment than a railway station with only a few devices. The airport may be targeting more

detailed information about a traveler, like browsing items in a particular vending machine,

while the railway station may be collecting only coarse information for digital contact tracing

like which platform or region a traveler was in at a particular time. While the airport system

can meet the definition of privacy invasion for many people, most people will also like to use

the railway system to keep themselves safe. The above examples show that the solutions

at both ends of the spectrum—implementing and adapting location technologies without

thinking about privacy concerns or discarding location technologies altogether comes with

their own set of limitations. Instead, if people know the level of location tracking in a space,
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they can decide whether to use it based on their personal privacy-benefits trade-off. We

are interested in auditing the level of location tracking in a space, not in developing a new

privacy-preserving protocol.

One may argue that an indoor location system can reveal the level of tracking that it

does in a particular space to increase goodwill and trust. However, to solidify the claims

of tracking level made by a system, we need to verify this information externally or using

a third party. Here we ask the question—Can we detect the level of location tracking by

consuming only the raw data that the system collects from us?

This work introduces the insight of location tracking or surveillance as an error radius that

varies across space. This insight is a novel contribution to the best of our knowledge since

previous works have only thought about tracking accuracy and tried to measure a single

number for the entire space. The reality is that tracking granularity is spatial, and we want

to find the tracking error or uncertainty specific to a certain point in an environment. To

clarify, we are not interested in tracking a person at a certain point. Instead, we want to

know—given a location estimator, what is the error or uncertainty in tracking a person at

that point.

We observe that surveillance levels may vary over different regions of the same space and

claim that finding a single-valued metric of surveillance for a public space is insufficient. We

propose finding a surveillance map or distribution over the space. Let us take a railway

station as an example. Say the station wants to localize people more accurately near its

ticketing counters which are more visited. At the same time, it is okay to have a coarser

granularity localization in a specific platform that is less used. From empirical studies in the

wireless localization domain, we know that more devices (such as WiFi APs and Bluetooth

beacons) help better location finding as we can add more data while finding our unknowns.

Accordingly, the station has installed many devices near its ticketing counters and only a

few devices on the platform. Finding a single number for the level of surveillance, in this

case, will be erroneous. That will either underestimate the surveillance level for regions near

ticketing counters or over-estimate for the platform region. We need to capture variance in

surveillance levels across a space.

In this work, we develop a framework for the crowd to audit the surveillance characteristics

of public space. We make some assumptions around technology, data capture, and information

symmetry. We focus on location technologies like RSSI that can deploy on a commercial

device like a smartphone that most people carry today. An application on the person’s phone

communicates with the other infrastructure installed in the space through a wireless medium

(such as WiFi and Bluetooth) and collects data. We assume that the infrastructure is the

transmitter, as can be seen in many localization works like [16, 48, 76] and the person’s phone
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is the receiver that captures the data. We further assume that both the infrastructure and

our framework use this same raw data collected on a person’s smartphone. The infrastructure

combines this data with other auxiliary information (such as the location of infrastructure

devices, position and orientation of antennas on devices, a wireless transmission model, or a

fingerprinting map) to find the person’s location. The auxiliary information is not available

to the crowd framework. The current approach cannot guarantee surveillance findings if

there is an information asymmetry in the raw wireless data, e.g., our system collects RSSI

data, and the infrastructure uses CSI data for localization. Under these assumptions, we

propose that each person collects raw wireless data while interacting with a public space in

their specific way and then contributes that trace to a central repository. We will use the

crowdsourced traces to infer the surveillance in space.

We designed active learning strategies to find the location surveillance map with uniform

accuracy all over the space. Since we are interested in finding a map over the space rather

than a single number, we need to make sure that we estimate all map portions with certain

desired accuracy levels. We need to collect a sufficient amount of data in all regions of space

to ensure those accuracy levels. Continuing our example from the previous paragraph, we

can see that the more frequented region near the ticketing counter of the railway station

will have more crowdsourced data. At the same time, we will get less data for the platform.

The natural movement of people inside a public space leads to the creation of such data

hotspots in few regions, while we have sparse data in others. Here we ask the question—Can

we find a spot or region inside a public space where data collection will lead to maximal

improvement of our estimate of the surveillance map? We can then provide cues to people

requesting them to collect data near that region. Our active learning strategies find regions

of maximum uncertainty to collect data based on the current estimates of surveillance maps

and infrastructure properties.

Our simulation studies based on actual-world data show that the active learning strategies

can more uniformly determine the location surveillance map over the entire space. The best

active learning strategy based on received data uncertainty can detect location surveillance

with an error of 0.4m and all beacon locations with less than 1m error for RSSI-based location

estimator.

Overall, our work suggests a new research direction— auditing the location surveillance

capabilities of a location finding infrastructure. We believe this line of work is essential for

establishing trust among people to use location-based services in public spaces. It is also the

first step towards future work of achieving declarative privacy where people can specify their

comfortable level of surveillance. Specifically, we make the following contributions.
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• CrowdEstimator: We build a crowdsourcing system that harnesses the power of the

crowd to audit the nature of the infrastructure and estimate the surveillance or level of

tracking in space.

• Location surveillance is not a single number, rather spatial. All previous works

have only thought about tracking accuracy and tried to measure a single number for the

entire space. However we want to estimate a spatial map.

• Active Learning to learn spatial map with uniform accuracy. We have designed

active learning strategies to pick up regions inside a public space where data collection will

lead to a maximal improvement of the estimate of the overall surveillance map, not just

specific regions.

5.2 RELATED WORK

This section will talk briefly about indoor location state-of-art systems and then focus

on a few privacy-preserving algorithms in indoor localization space. We will then outline

two important previous works that have audited location tracking infrastructure towards

achieving different goals. Finally, we will discuss some active learning tools that we have

utilized in our work.

• Indoor location tracking: Majority of indoor location systems use WiFi access points

[1, 17] for localization. Recently, there has been much interest in Bluetooth-based indoor

localization [19, 20, 21] as well to achieve digital contact tracing [62]. Most indoor location

systems use some properties of signals exchanged with access points to infer the location of

a target. Most widely used properties are RSSI or received signal strength [1, 16, 31], and

CSI or channel state information [85, 86]. The granularity and accuracy of the location

information depend on the type of signal properties used. While we can get decimeter-level

accuracy with CSI property, we need to make hardware changes on commercially available

smartphones to access this information. In this work, we have focussed on RSSI and PRP

systems that can be accessible to many people today through smartphones.

• Privacy Preserving Indoor location tracking: There are many proposed solutions

for Privacy-Preserving Indoor Localization (PPIL) [73] using Homomorphic Encryption

(HE) such as the Paillier cryptosystem [74] or k-Nearest Neighbors (k-NN) algorithm [75].

[73] analyzed the privacy issues of WiFi fingerprint-based localization system and then

used the Paillier cryptosystem to protect both the client’s location privacy and the service
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provider’s fingerprint data privacy. [75] enables a user to localize privately through an

Indoor Positioning System by making k camouflaged localization requests. They design a

Temporal Vector Map (TVM) algorithm, which guarantees that the IPS system cannot

find a user’s location with a probability higher than a user-defined preference. These works

are specific to WiFi fingerprinting systems where the localization space is segmented into

N discrete points. In our work, we are looking at a continuous localization space where

instead of k-anonymity, a user wants to achieve α-anonymity, i.e., do not localize the user

to a circle of radius smaller than α. Besides, we also assume that the user does not have

access to any system-side auxiliary information such as fingerprinting maps and access

point locations. The current granularity of location inference is unknown on the user side.

To achieve anonymity, we first need to know the level of location inference or surveillance

that depends on the infrastructure installed in that space. This work focuses on inferring

the infrastructure properties from the data collected on the user side, which is the first

step towards achieving α-anonymity.

• Auditing of location tracking systems: The previous bullet highlighted that we

want to estimate the granularity of location estimation in a place. To estimate location

granularity, we need to audit the location infrastructure that currently exists in that

place. Specifically for RSSI-based location systems, we need to find information about the

number of access points and their locations. For CSI-based systems, we will need to find

extra information like the number and orientation of antennas. We looked at previous

systems like EZ [16], and LocBLE [76] which inferred properties of the infrastructure. EZ

aims to achieve indoor localization without any pain or less manual overhead. To that

end, they estimated the location of WiFi access points from RSSI data and few GPS

labels rather than requiring manual labeling of those locations. LocBLE wanted to locate

nearby BLE beacons. They combined BLE RSSI data with inertial sensor data to find the

beacon locations. While the goal of these works was to get an accurate estimate of the

infrastructure properties, our goal is to accurately estimate surveillance level, which is a

function of the infrastructure properties.

• Active Learning: People have mostly studied active learning in the context of classifica-

tion problems [77] where labeling a data point comes with the cost of getting a human

annotator to label that point. In most cases, we need multiple human annotators on a

single data point to avoid personal bias in data labeling. Active learning helps to pick

the best data point so that we can learn more with less cost. In our problem setting,

since we will rely on people to collect RSSI or PRP data (equivalent to labels) to estimate

infrastructure properties, it makes sense to use active learning to collect data to learn more
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with the same amount of data. Classification setting assumes having a finite unlabeled set

from which they need to choose the data point. In contrast, in our problem setting, we

are faced with a continuous space. In the current work, we discretize the space into a fine

grid and then treat the set of points in the grid as our unlabeled set. There are different

kinds of active learning techniques that have been proposed—uncertainty sampling [78],

expected error reduction [79], information density framework [80]. In this work, we want

to select locations (equivalent to features in the classification scenario) to collect PRP or

RSSI data (equivalent to labels) to reduce the uncertainty in some objective distributions.

The objective distributions can be PRP or RSSI data distributions for all locations, all

infrastructure device locations, or directly the surveillance level distribution.

5.3 MOTIVATION

r1 r2

r3
r4r5

r6

1Central Repository

Figure 5.1: Figuring out Location Surveillance has 2 components—how much (the radius)
and where (the distribution). We use crowdsourcing to estimate the location surveillance
map of public spaces like airports, malls, railway stations etc.

We have seen much work in the last two decades in the indoor localization domain

[1, 4, 5, 6, 16, 17, 18] that tracks people in indoor spaces. The objective of such works was
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to increase the accuracy with which they track people. They measure tracking accuracy

through a median error in location estimation that they observe over a certain space. For

example, RSSI estimators [1, 16, 17] have achieved median errors of 2m while CSI estimators

[4, 5, 6] have achieved median errors in decimeters.

This work aims not to decrease tracking error or increase accuracy but rather to measure

tracking error in an indoor space given that a localization infrastructure exists in that

environment (on which we do not have any control) and the absence of any well-calibrated

training data. We assume that the infrastructure already exists in an indoor space, and we,

as a third party, are interested in measuring the tracking possible with this infrastructure.

We also assume that we are not privy to any calibration information like the number of

devices (such as WiFi APs and Bluetooth beacons) present in the infrastructure, locations of

such devices, or properties of wireless propagation in that environment.

Reporting a single number like the median error is not enough to measure tracking error

for a space. We need to estimate a map or a spatial distribution. Tracking error in a certain

location depends on multiple factors such as the number of infrastructure devices present in

the vicinity, distance to such devices, the number, position, and material of reflectors present

nearby. We need to determine a number for tracking errors for each location in space. In

other words, we estimate localization error l̂e(x, y) as a function of x, y such that

|l̂e(x, y)− le(x, y)| < δ ∀x, y (5.1)

where le(x, y) is the ground truth error. We can have different definitions for le(x, y) such

as median localization error if we collect large number of data points at (x, y), or theoretical

bounds on location estimation variance at (x, y) as we will discuss in Section 5.4.2. We want

to estimate tracking error map with uniform accuracy δ over the space.

5.4 SYSTEM DESIGN

In this work, we propose an end-to-end system called CrowdEstimator that crowdsources

data from many users and estimates location surveillance distribution over the layout of

public space as shown in Figure 5.2. Our system currently makes a few design choices

or assumptions about the localization infrastructure of public space( Section 5.4.1) and

a formal definition of surveillance ( Section 5.4.2). It incorporates a Bayesian framework

( Section 5.4.3) that combines wireless and inertial sensor data-streams to obtain location

surveillance estimates. Finally, it includes active learning algorithms ( Section 5.4.4) that

can find out better data collection locations for surveillance estimation.
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Figure 5.2: Our system CrowdEstimator collects data from many users, updates and builds a
distribution of location surveillance over the space.

5.4.1 A few design choices

Location surveillance in a space depends on the localization system’s infrastructure and

wireless signal properties. The infrastructure can use different types of devices like WiFi

access points or Bluetooth beacons. Location is inferred by extracting signal properties

from the communication between a device on the person and infrastructure devices. An

infrastructure can use different signal properties for localization like signal strength or RSSI,

angle-of-arrival or AoA, time-of-flight, or ToF. AoA and ToF techniques are more broadly

called Channel State information or CSI-based techniques. Most state-of-art localization

techniques [4, 6, 17] use either RSSI or CSI based properties. In this work, we make a few

assumptions about the localization system.

Assumption about technology: In this work, we focus on location surveillance with

signal properties available on ubiquitously available technology like smartphones. Local-

ization on a large scale can be made available today only through signal properties like

RSSI since they are available on smartphones. Though CSI is a more accurate feature

for localization, it is not available on most smartphones today. However, we can extend

our insights and algorithms to CSI-based location systems. For CSI, we will need to infer

additional properties like antennae orientation from the crowdsourced data besides device

locations.

Assumption about data capture: We assume that smartphones scan wireless packets

sent out by a localization infrastructure installed in a public space. The phones upload

scanned packets to our central server. The same algorithms can be trivially applied to the

reverse scenario when phones broadcast packets and infrastructure devices receive them.
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However, instead of crowdsourcing data from each person, now the infrastructure needs to

send the scanned data stream to our server for location surveillance estimation. We can

imagine an audit scenario where infrastructure submits its collected data to a third party

(our server in this case) who can independently verify its claims on the level of surveillance

they are conducting.

Assumption about information symmetry: We assume that our system uses the

same raw data that the infrastructure is collecting for location estimation. Both the

infrastructure and our system obtain this data from the smartphones of each user. It does

not access any other auxiliary information (such as device location or antennas orientation)

present with the infrastructure. The current approach cannot guarantee surveillance

estimation if there is an information asymmetry, e.g., our system collects RSSI data while

infrastructure uses CSI data for localization.

Our system uses the scanned wireless packets for location surveillance level estimation,

while the infrastructure uses the wireless packets along with other auxiliary information

for location estimation. The auxiliary information can be the exact location of its devices,

parameters for relationships between signal properties and distance, or fingerprinting

maps across its space. Infrastructure may have used extensive training mechanisms to

generate such auxiliary information for accurate localization. Our system does not use

these auxiliary pieces of information.

5.4.2 Defining location surveillance

Location surveillance in a space depends on the infrastructure (number of beacons/WiFi

routers, their locations) and wireless signal property (RSSI or CSI) used for localization.

However, other dynamic factors like reflectors (walls, ceiling, or glass), multi-path effects,

signal-to-noise ratio (SNR) also dynamically impact the received signal properties, affecting

the surveillance performance.

It is hard to quantify environmental factors like SNR for every region within a space. SNR

has a complicated relationship with many attributes like nearby reflectors, area, number of

reflectors, the material of reflectors, distance to reflectors. Crowdsourcing data to accurately

measure each of these attributes for all regions in space will involve a considerable overload.

One can try to collect data at all regions in space and empirically measure the SNR in each

region. However, SNR may vary over time due to changes in the environment.

In this work, we make a simplifying assumption: we assume that SNR is constant across

the space (same SNR impacts surveillance in all regions), and we define location surveillance
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as a Cramer-Rao-based theoretical lower bound or CRB[105]. We believe CRB is a good

starting point for location auditing work since it captures the impact of infrastructure devices

and incorporates a constant SNR into its framework. Note that our system can be trivially

extended to other definitions of location surveillance as well.

We can write the Cramer-Rao Bound (CRB) on the covariance matrix of any unbiased

estimator θ̂ as cov(θ̂) ≥ F−1
θ where the Fisher information matrix (FIM) Fθ is defined as

Fθ = −E∇θ(∇θf(X; θ))T (5.2)

Since we care about location estimators deployed on smartphones, and RSSI is the state-of-

art localization feature on smartphones, we define location surveillance as CRB of RSSI-based

estimator. A standard log-normal RSSI model can be defined as P (dBm) = 10 log10 P where

P is the measured RSSI in milliWatts. P (dBm) is Gaussian.

P (dBm) ∼ N (P̄ (dBm), σ2
dB) (5.3)

P̄ (dBm) = P0(dBm)− 10ηp log10(
d

d0

) (5.4)

where P̄ (dBm) is the mean power in decibel milliwatts, σdB is the variance of shadowing,

P0(dBm) is the received power in decibel milliwatts at a reference distance d0. The path loss

exponent ηp is a function of the environment and captures the SNR (signal-to-noise ratio)

effects in the environment. For a standard log normal RSSI model, [105] derived the CRB as

CRB =
1

b

∑m+1
i=2 d−2

1,i∑m
i=2

∑m+1
j=i+1(

d1⊥i,jdi,j
d21,id

2
1,j

)2
(5.5)

where we assume that the infrastructure has m devices installed in a public space. The

locations of these devices are given as (xi, yi), i ∈ [2, . . . ,m+ 1]. (x1, y1) is the target location

to find the CRB or surveillance level. d1,i is the distance from the target location to the

device i. di,j is the distance between two devices i and j. d1⊥i,j is the shortest distance from

target location to the line connecting devices i and j. b captures the SNR effects present in

the space. Currently, the CRB formula assumes that SNR effects remain the same over the

entire space. However, in future iterations, we can extend the CRB derivation to consider

that SNR varies across space or try to capture the variation in SNR from empirical data.

b =

(
10ηp

σdB log 10

)2

(5.6)
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Figure 5.3: Cramer-Rao Bound (CRB) for RSSI location estimators. The red stars denote
the location of the devices. CRB is low near devices, high far away from them. CRB is
high when close to only one device. CRB is high along the line joining two devices because
dilution of precision is high in those regions.

Let us look at the geometric interpretation of the CRB formula through two sample

placements of four devices in an environment in Figure 5.3. The first figure shows that CRB

is lower when we are close to devices and higher when far away from them. This observation

is intuitive since RSSI values are more accurate when we are close to a device, and the

values start accumulating noise as we move far away from devices. The second figure shows

that CRB is also high if we are close to only one device while further away from all others.

Accurate RSSI from a single anchor device can only identify the distance or radius around

that device, but not both x and y locations. Specifically, CRB is higher close to the straight

line joining two anchor devices because the dilution of precision is higher in these regions.

Minor errors in RSSI values lead to more extensive regions of uncertainty.

CRB values help in obtaining a lower bound on the surveillance levels. A high value of the
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lower bound for public space will encourage more people towards using its location services

since the space may be only doing coarse-grained localization for essential applications like

digital contact tracing. However, since CRB depends only on anchor device locations and does

not consider environmental factors like multi-path, we may obtain lower values of surveillance

in a region than is realistically possible. As future work, we want to incorporate multi-path

effects in our definition of location surveillance.

To summarize, we defined location surveillance as Cramer-Rao Bound or CRB. CRB is a

function of the target location, and hence we obtain a CRB distribution or map over the

space. CRB depends on the device locations. Next, we estimate the device locations from

crowdsourced data.

5.4.3 Estimating location surveillance

Device 1 Location Unknown: Device 2 Location Unknown: Device 3 Location

Data Data Data Data

Distance Distance
Unknown: model parameters

Unknown: User Locations

Known  Displacement 

Origin = (0,0)

2

Known  Displacement Known  Displacement 

Figure 5.4: Surveillance Estimation System: We crowdsource raw wireless traces col-
lected in a person’s phone, and also the displacement data obtained through inertial sensors.
We fix one of the device locations as the origin of our co-ordinate system across all traces.
We estimate three unknowns—device locations, user locations and model parameters that
connect wireless properties (like RSSI) with distance.

We pointed out in Section 5.4.2 that CRB-based location surveillance for RSSI localizers

is a function of the location of the infrastructure devices. To estimate CRB for RSSI, we

need to solve three types of unknowns—device locations, user locations, and data reception

model parameters. We have only one data stream—wireless interaction data between users

and infrastructure devices. We incorporate inertial sensor data with wireless data to solve

the unknowns.
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Trying to estimate three unknowns—device locations, user locations, and model parameters

solely from the crowdsourced wireless data can lead to translation and scaling problems. The

crowdsourced data is a function of the distance between the user and device locations, which

are unknown to us. The function between wireless data and distance is also unknown due

to a lack of training. As a result, the same data can fit different configurations of devices

and user locations. For example, a possible device and user location configuration can be

translated in space due to a lack of fixed origin to get many solutions. Also, in our solutions,

we can scale up distances between devices and users by a particular factor while scaling down

the function parameters by the same factor, again leading to many solutions.

We have provided two key insights to solve the problem of too many unknowns—first, we

solve the scaling problem by making ground truth measurements of physical scale through

inertial sensors. Inertial sensors like accelerometers and gyroscopes are available on almost all

smartphones and can provide displacement data (δx, δy) between two locations of the same

person. The displacement data can constrain the user locations and thereby helps to get rid

of the scaling problem. Also, we fix an arbitrarily chosen device location to be origin (0, 0)

across all data points, thereby eliminating the axes translation problems. For example, in

Figure 5.4, we are interested in finding the location of the three devices. Other unknowns are

the four locations of the person who has collected the data and the model parameters that

capture the relation between data and distance. To solve the unknowns, we use the three

displacement data between the consecutive locations of the person available from inertial

sensors. We also fix the location of the first device to be (0, 0), i.e., origin across all data.

Second, we observe that wireless transmission or packet transfer physics remains the same

across an environment at a particular time. We can use multiple data points collected from

multiple people to constrain and solve the same wireless transmission model parameters.

For example, in Figure 5.4, the relationship between the data received by the person at 4

locations and distance is captured by the same set of model parameters. As the number of

locations increases, the data points increase, but we still need to solve the same number of

model parameters.

We use a Bayesian model Figure 5.5 to estimate the posterior distribution of our unknown

parameters. Let us assume that the infrastructure has B devices in the environment, whose

locations are {(x1, y1), . . . , (xB, yB)}. The locations are unknown to the crowd but known to

the system infrastructure. Say we have N users, and each of these users measures the space

ri, i ∈ 1, . . . , N where ri is a sequence of the form

{x1, y1, q1}, {x2, y2, q2}, . . . , {xM , yM , qM} (5.7)

75



Individual i first visits (x1, y1) and takes the measurement q1, then visits (x2, y2) and takes

the measurement q2 etc. Individual locations {(x1, y1), . . . , (xM , yM )} are also unknown to us.

We know the displacement between consecutive user locations {(δx1, δy1), . . . , (δxM−1, δyM−1)}
from the inertial sensors, where

δx1 = x2 − x1 (5.8)

δy1 = y2 − y1 (5.9)

Each measurement qj that the individual i makes looks of the format

qj = {qj,1, . . . , qj,B} (5.10)

i.e. there is one measurement made for each infrastructure device.

For the individual i, we can relate the j − th measurement made for the k − th device qj,k

to the unknowns in the following manner

qj,k = f(dj,k), (5.11)

dj,k =
√

(xj − xk)2 + (yj − yk)2, (5.12)

xj ∼ N (xj−1 + δxj−1, ε), ε = inertial sensors error, (5.13)

yj ∼ N (yj−1 + δyj−1, ε). (5.14)

Each measurement qj,k is either a PRP or RSSI value. The function f that related q to

distance is the standard log normal rssi model or the prp model described in Chapter 3. The

same f and device locations (xk, yk) impacts all measurements made by an user. The more

measurements we add, the more number of constraints we can put on the unknowns. Also

we draw each user location (xj, yj) based on a normal distribution that centers around the

previous location (xj−1, yj−1) added to the displacement data (δxj−1, δyj−1). We use the ε

parameter to capture the noise in displacement data.

To summarize, in our model, we have as unknowns: B infrastructure device locations,

N ×M user locations (one for each user and each measurement), and parameters in model

function f . Our knowns are N ×M × B measurement data points made by each user at

different locations for each infrastructure device, and N × (M − 1) displacement data points

between each consecutive location of the same person. We use Bayesian MCMC inference

engine encoded in PyMC3 [96] framework to do the inference.
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Figure 5.5: Graphical model: Shaded nodes are observed, while we need to estimate the
unshaded ones. We use the data on number of received packets ci measured from B beacons
to estimate the PRP parameters [w] and beacon locations li, i ∈ {1, . . . , B}. We assume that
we know the displacement data between two consecutive locations of the same person.

5.4.4 Active learning location surveillance

s1

s2

s3

s4

s5
s6

6
Figure 5.6: We will use active learning to ask a person to go to location si that maximizes
score for certain Active Learning strategy functions.

We pointed out in Section 5.3 that estimating location surveillance in space is not about

finding a single number, rather a distribution over space. Based on the nature of installation

in a local region of space, we may have high or low surveillance. To estimate a location

surveillance distribution, we need to solve the challenge of obtaining uniform accuracy in
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estimation all over the space. We incorporate active learning algorithms to get better

estimations of surveillance all over the space.

Imagine that all N traces were not informed (i.e., independent) by each other and past

traces. Why might independent traces be a problem? The convergence rate to the final

distribution will be slow since the estimates will be non-uniform. Some hotspots within each

public region get more visits and have better estimates, while others will have more erroneous

estimates. Thus we need an active learning strategy where the previous N traces inform the

trace of the (N + 1)-th person.

Our key idea to solve the problem is to use active learning to guide people to the best

locations for data collection. In addition to people moving around in the space in their way,

we can provide visual cues to people requesting them to move to locations which will help

us to better estimate location surveillance. If certain people choose to do so, then we can

better improve our location surveillance estimates. For example, in Figure 5.6, the person

has six possible candidate locations they can move to, and we want to rank them based on

some active learning strategy. Instead of providing cues at each step, we could also use active

learning to specify the entire sequence of movement (x1, y1), . . . , (xk, yk) for a person.

We will now elaborate on active learning algorithms that can estimate location surveillance

with better accuracy over the entire space. We have designed three different strategies—

choosing locations close to uncertain devices, choosing locations with high data uncertainty,

and choosing locations that reduce data uncertainty over the entire space.

High Data Reception Uncertainty: In this strategy, we score locations based on the

current uncertainty or entropy in the distribution of data values that we can receive at a

location from infrastructure devices. We calculate the entropy of data distribution at a

location k through the following observations:

1. In Chapter 3 for a device i, we modeled the PRP value through a binomial distribution

and RSSI value through a log normal distribution. For both these distributions, the

entropy is proportional to the log of the variance of the current distribution at location k

i.e log{σdata(k,i)}, where σ is the variance of distribution data(k, i).

2. The total entropy at a location will be the sum of the entropies for each device since each

device observation is made independently of the others.

We estimate the current data distribution at location k for device i, i.e., data(k, i) from the

estimates of device location i and model f that we have obtained through the measurements
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(a) (b) (c)

Figure 5.7: The stars represent the ground truth beacon locations. The triangles represent
the initial locations chosen for cold-starting the active learning strategies. The red circle
indicates the location picked by the strategy. (a) The blue region indicates where data
reception uncertainty is high, and the red dot indicates the point selected by the strategy.
(b) When we try to reduce uncertainty over the entire space by including representativeness
to unsampled points, the red dot moves more towards the right or center of the space. (c)
The red circle is next to the device (red star) with the highest uncertainty in its location
estimate for the high device location uncertainty strategy.

.

made by the users so far. For each candidate location k, we generate a score as:

sk =
1

B

B∑
i=1

log{σdata(k,i)} (5.15)

data(k, i) = f̂(d̂k,i) (5.16)

d̂k,i =
√

(x̂i − xk)2 + (ŷi − yk)2 (5.17)

where f̂ is the current posterior for the model parameters, (x̂i, ŷi) is the current posterior for

i-th device location. σdata(k,i) is the current variance of the posterior distribution of possible

data values at location k for device i. We choose candidate location k with the highest score

sk. For example, in Figure 5.7(a), the ground truth locations of the beacons or devices are

marked by stars. The triangles indicate ground truth locations from where we have already

collected data. Now we want to pick the next best possible location. Blue regions indicate

where data reception uncertainty is high and red dot indicates our selected point.

Reduce Reception Uncertainty over entire space: In this strategy, we will choose a

location that can maximally reduce entropy in reception data distribution over the entire
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layout. Similar to the expected error reduction technique discussed in [77], we can generate a

score for each candidate location k as:

sk = Edata(sk)[
K∑
i=1

V ar+sk(datasi)] (5.18)

sk =
1

M

M∑
i=1

[
K∑
i=1

V ar+sk,m(datasi)] (5.19)

We want to know that if we add a data observation (+sk) from a location k, how that

will reduce the data reception uncertainty for all K points in our layout. However, we

have not observed location k yet, and we want to do this computation before the actual

measurement. We use the expected data distribution data(sk) at location k instead, where

data(sk) is calculated based on the current distribution estimate of beacon locations and

model parameters. Once we generate scores sk, k ∈ [1, . . . , K] for each of K locations, we

will choose the location with lowest sk i.e. lowest expected variance after data addition. We

will make a real measurement at that location, add those real measurements to our existing

data, and re-train the model to obtain new estimates.

Since our data distributions are continuous, we can use Monte Carlo sampling to generate

M samples and calculate the score for each location. For each sample sk,m in a location k, we

add the sample (+sk,m) to current data, retrain the model, and re-estimate the variance at

each location. Then, we take the average across all M samples to finally estimate the overall

variance if we were to add a data point from location k. The process is computationally

expensive and would need many samples M to generate the score accurately. We propose a

heuristic approximation to the computationally expensive uncertainty reduction technique.

We score a location based on its current data uncertainty and its representation of unsampled

points in space. For each candidate location k, we generate a score as:

sk =

[
1

B

B∑
i=1

log{σdata(k,i)}
]
×

 1

K

K∑
i=1,di,S>α

1.0

1.0 + dk,i

β (5.20)

dk,i =
√

(xi − xk)2 + (yi − yk)2

In Equation (5.20), the left component measures the uncertainty in data values similar to

the previous strategy. The right component measures the similarity of the location to other

unsampled points in the layout, i.e., we focus on points where we have not collected data yet.

We calculate the similarity as the inverse of the euclidean distance between two points. We

consider points unsampled if they are a threshold distance α away from the already sampled
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Figure 5.8: Heat map generated by Data Reception Uncertainty strategy over multiple
iterations. The stars represent the ground truth beacon locations. The triangles represent
the initial locations chosen for cold-starting the strategy. The black circles are the points
sampled by the strategy. (a) denotes the initiation with only one point, while (d) denotes
the final iteration. The points are well distributed over space. It gives reasonable estimates
of all the CRB patterns present over the entire space.

.

regions S. β acts as a hyperparameter that controls the weight of the two components in the

score. As we can see in Figure 5.7(b), when we add representativeness to unsampled regions,

our selected point marked by a red dot moves towards the right or center of the space.

High Device Location Uncertainty: Here we try to reduce the device location uncertainty

directly rather than the received data uncertainty. From empirical experiments, we have seen

that collecting data close to a device helps to reduce its location uncertainty maximally. Based

on the above observations, we designed a heuristic strategy to pick the location closest to

the most uncertain beacon. We measure the beacon uncertainty by variance in its estimated

location distribution from the current model. For example, in Figure 5.7(c), the red triangle

indicates the estimated location of the beacon for which there is currently high uncertainty,

and we collect data from the location closest to it.

Next we will describe our experimental set-up for testing out the active learning strategies.

5.5 EXPERIMENTAL SET-UP

In this work, we experimented with Bluetooth beacons as infrastructure devices. Our

testbed is an academic library with three wooden shelves (each 11m long & 0.5m wide). We
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Figure 5.9: Heat map generated by Device Location Uncertainty strategy over multiple
iterations. The stars represent the ground truth beacon locations. The triangles represent
the initial locations chosen for cold-starting the strategy. The black circles are the points
sampled by the strategy. (a) is the initial iteration, while (d) is the final iteration. The points
are clustered in lower region of the space where it thinks the most uncertain beacon might
be. It gives reasonable estimates of CRB patterns only in the lower region of the space.

placed 60 beacons in the space with an inter-beacon distance of 1m. We collected data at 61

stationary locations through the layout.

To cold start our active learning strategies, we picked a few locations initially at random.

We used data from the initial points to obtain an initial estimate of our models. Now out

active learning strategies, based on initial model estimates, pick one additional location at

each time step, adds data from that point to the existing data, and re-estimate the models.

We repeated the experiment for different random initiations.

Active learning strategies got limited by the discretization of continuous space into 61

discrete points. Since we had actual world data from few discrete points in ample continuous

space, the active learning strategies had to sample from those points. However, the most

favorable location for data collection may be separate from those points. We needed a finer

grid of data collection.

We could not collect data on a finer grid due to the onset of the pandemic, which made our

testbed inaccessible. Instead, we used the collected data and the known device locations to

train ground truth models, which could then simulate data for us over the entire continuous

space. We used the same simulated data at a particular location across all strategies.
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5.6 RESULTS

We compare the active learning strategies with a baseline strategy where we randomly

sample points from the space. Note that these results are based on simulations. We used

the empirical data collected from a university library space to train a model and then used

that model to simulate data over the library space. While calculating location surveillance

errors, we use the ground truth CRB values based on the ground truth locations of the

Bluetooth beacons. We have shown the ground truth CRB map in Figure 5.10(a) and the

final CRB-based location surveillance map generated by different strategies for one sample run

in Figure 5.10. We show the aggregate errors over different random iterations in Figure 5.11.

First, lets take a detailed look at multiple iterations of Data Reception Uncertainty

strategy( Figure 5.8) and Device Location Uncertainty strategy( Figure 5.9). As we can see

in Figure 5.9(a) and Figure 5.8(a), both strategies started with similar estimates of the

CRB map. However, as iterations progressed, Data Reception Uncertainty sampled points all

over the space, while Device Location Uncertainty sampled points only in the lower region of

the space. Hence, we observed that Device Location Uncertainty gives a good CRB map

only in the lower region Figure 5.9(d). In contrast, Data Reception Uncertainty gives an

overall better CRB map Figure 5.8(d).

Now lets look at the final CRB map generated by the Data Reception Uncertainty

( Figure 5.10(b)) and Device Location Uncertainty( Figure 5.10(c)) with the ground truth

CRB map ( Figure 5.10(a)) for one sample run. The red stars in the ground truth map are

actual beacon locations. The black triangles indicate the initiation points chosen for this

sample run. The initiation points are the same across both strategies. The black circles

indicate the points that the two strategies added over multiple iterations. We can see that

the map generated by Data Reception Uncertainty better estimates the ground truth. We

get good estimates of the dark blue regions present in the ground truth map, while Device

Location Uncertainty only estimates the blue region at the bottom. Similarly, the Data

Reception Uncertainty strategy also better infer the white spaces around the dark blue

regions.

In Figure 5.11(a), we plot the median absolute error in CRB estimation over iterations.

Note that for each iteration, we aggregate the results across multiple runs for multiple

initializations. Main observations—The random and device location-based strategy performs

the worst, followed by high data reception uncertainty and reduce reception uncertainty

strategies. For the best strategy, CRB errors fall below 0.4m in the final iteration. For the

best strategy, the variance in error also decreases over iterations.

In Figure 5.11(b), we directly look at the median errors in estimated device locations.
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(a) (b) (c)

Figure 5.10: The stars represent the ground truth beacon locations. The triangles represent
the initial locations chosen for cold-starting the active learning strategies. The black circles
are the points sampled by the active learning strategy. (a) Ground Truth CRB-based Location
Surveillance Map. We use ground truth device locations(red stars) to calculate this map. (b)
Location Surveillance map estimated by Reception Data Uncertainty strategy. The sampled
points(black circles) distribute well over the space and estimate a closer map to the ground
truth. (c) Location Surveillance map estimated by Device Location-based strategy. Sampled
points cluster near the uncertain device location and estimate a map that is better only in
that region of the space

.

Similar to CRB results, the baseline performed the worst, and Data reception uncertainty

performed the best. We can see that beacon error reduces over time from 3m to less than 1m

with data reception.

5.7 CONCLUSION

This work introduces the idea of estimating location surveillance in a public space to

increase people’s trust towards location-finding technologies. Estimating the current level of
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Figure 5.11: (a) Median absolute error in surveillance over iterations. The baseline random
and Device location strategy performs the worst, while reception data uncertainty strategies
perform best. (b) Median error in estimated device locations. Reception data uncertainty
strategies again perform better.

.

surveillance is an essential first step towards achieving declarative privacy where people can

dictate their comfortable level of location surveillance. To estimate location surveillance, this

work focuses on auditing the localization infrastructure installed in a particular environment

and not on developing a new privacy-preserving protocol.

We propose two key insights in this work—location surveillance is a distribution (rather than

a single number), and we will use the crowd to estimate that distribution. Our crowdsourcing

framework uses a Bayesian model to aggregate data points collected by several people and

estimates a single surveillance map for the space. Our active learning strategies can select

good data collection points in the space to better estimate the surveillance map. We did

studies based on actual-world data collected from an academic library. We saw that the best

active learning strategy could detect location surveillance with an error of 0.4m for RSSI

based location estimator.
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CHAPTER 6: CONCLUSION AND FUTURE WORK

This thesis takes a practical approach towards indoor localization—what are the limitations

in the existing localization solutions that impede their deployment towards scenarios like

reliable contact tracing solutions? Despite 20 years of advance in indoor localization that

led to the development of advanced features like RSSI [1, 16, 17] and CSI [4, 5, 6], why we

could not use these features in contact tracing apps like Aarogya Setu and BlueTrace? We

have identified three main limitations—deployability, accuracy, and privacy. We demonstrate

these requirements in three different end-to-end problems—an infrastructure-based location

estimation problem, a peer-to-peer distance estimation problem that uses minimal infrastruc-

ture, and a collaborative tracking estimation problem where people estimate properties of

localization infrastructure.

6.1 RESEARCH CONTRIBUTIONS

We now present a summary of the work done in this thesis. We begin by summarizing our

approach to location estimation.

6.1.1 Location estimation using packet reception probability

We built a new localization feature, Packet Reception Probability (PRP), which measures

the probability that a receiver successfully receives packets from the transmitter. PRP is a

statistical measure different from other traditional correlates of distance like RSSI or CSI,

which are physical measurements. We have shown through empirical experiments that PRP

encodes distance. Traditional measures like RSSI are highly erroneous on low power protocols

like BLE. RSSI suffers from a sampling bias: they only use RSSI from decoded packets.

Packet Reception Probability (PRP) uses negative information as a feature to solve the

positive bias present in RSSI values and can achieve accurate localization using low-power

BLE on easily deployable smartphones. RSSI also suffers from well-known multipath effects

[3, 40] where signals travel along different paths and merge in different combinations at the

receiver giving high variance in RSSI values for the exact location. PRP incorporates a new

model of multipath for public indoor spaces. We have shown with actual-world experiments

that PRP can achieve accuracies around ∼ 1m. PRP is more ubiquitously deployable than

CSI and more accurate than RSSI. Fusion of PRP and RSSI further improves the overall

localization accuracy over PRP.
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6.1.2 Distance estimation using minimal infrastructure

During the COVID 19 pandemic, a significant problem is finding peer-to-peer distances

between people in indoor public spaces. These distance estimations can alert people who

came within 6ft (social distancing threshold) of an infected person. BLE apps that rely on

pairwise measurements like received signal strength to measure contact between two people

suffer from the impact of latent factors like device relative positioning on the human body,

the orientation of the people carrying the devices, and environmental multi-path. We built

ContactTracer that can fight against latent factors in two ways—using known distances with

minimal infrastructure in indoor environments and using a collaboration of unknown distances

in outdoor environments. First, if we have a few infrastructure devices (e.g., Bluetooth

beacons) installed at known locations in an environment, we can make more measurements

between a person’s phone and the BLE beacons. Also, since we install the beacons at known

locations, we know the distances between these beacons. We have used these known distances

in a triangle inequality framework to estimate the unknown distance between two persons.

Second, in an outdoor environment where we cannot install infrastructure devices, we can

collaborate between people to solve distances more accurately. We can impose triangle

inequalities between each triplet of people. More people help us form more of these triplets,

leading to more constraints and, hence, a better localization solution. We experimented with

an infrastructure-based contact tracing solution in the library and retail store. We get median

error of 0.89 m (library) and 1.07 m (retail store) with PRP values. The corresponding errors

with RSSI are 1.36 m (library, 52.8% more error) and 1.34 m (retail store, 25.2% more error).

We have also designed the architecture, protocol, packet structure, iOS and Android apps to

deploy the collaborative contact tracing solution.

6.1.3 Location surveillance estimation using crowdsourcing

Location services raise a fundamental problem—Location surveillance or tracking. While

people want services, they do not want to be surveilled. Furthermore, people using an

indoor location system do not know the granularity of the location information that the

system collects about them. The performance of a location system depends on the nature

of the infrastructure. In this work, we build CrowdEstimator, a crowdsourcing system that

harnesses the power of the crowd to audit the nature of the infrastructure and estimate the

surveillance or level of tracking in space. We leverage the power of the crowd to collect many

individual traces and consolidate them in a central repository. This work also introduces

the insight of location tracking or surveillance as an error radius that varies across space.
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This insight is a novel contribution to the best of our knowledge since previous works have

only thought about tracking accuracy and tried to measure a single number for the entire

space. The reality is that tracking granularity is spatial. We need to estimate all portions

of the spatial surveillance map with a certain accuracy threshold. We have designed active

learning strategies to pick up spots or regions inside a public space where data collection will

lead to a maximal improvement of our overall estimate surveillance map. We did synthetic

studies based on models trained by actual data collected from the library environment. Our

studies showed that active learning strategies could more uniformly determine the location

surveillance map over the entire space. With the best performing strategy, we were able

to determine the tracking map with an accuracy of 0.4m and all the infrastructure device

locations with an accuracy of less than 1m.

6.2 FUTURE DIRECTIONS

Our work has taken the first step towards achieving two important goals besides accuracy

that we identified for localization solutions—deployability on smartphones and privacy. Going

forward, we will need to solve the following research directions to achieve those goals fully.

6.2.1 Device adaptive models for wireless transmission

Our empirical experiments with contact tracing applications observed inter-device variation

in received wireless properties like RSSI or PRP. The different types of antenna designs in

different smartphones lead to such variations. To measure location or distance accurately

using smartphones, we need to use the correct model for wireless reception. If we try to

use a model trained with smartphone A to localize using smartphone B, we will have high

errors. Training an individual model for each smartphone is not scalable, given the wide

range of phones available today. We need to invest in techniques like model adaptive machine

learning [106] that can learn a general model using training data from some device and adapt

well/quickly to other devices. Learning wireless models that can easily adapt to many devices

will be crucial for the universal application of location-based services.

6.2.2 Capturing dynamic environmental effects in location surveillance

In our definition of location surveillance, we made a simplistic assumption that SNR (signal-

to-noise ratio) is constant across space. The assumption helped us to define surveillance

in terms of a theoretical lower bound. However, real-world spaces suffer from complicated
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interactions of environmental factors like nearby reflectors, area, number of reflectors, the

material of reflectors, and distance to reflectors. Such effects are not captured in the theoretical

lower bound formula. Hence, we often end up with a very loose lower bound for specific

regions, which location estimators cannot achieve in reality. In future work, we need to

investigate other location surveillance definitions that better encode these environmental

factors.

6.2.3 Extending location surveillance estimation to CSI techniques

Our current work of location surveillance estimation focuses on signal properties like RSSI

or PRP that are available on ubiquitous technology like smartphones. While this work helps

us to concentrate on technologies that can deploy to people today, we have started seeing some

work [35] that can enable CSI on selected smartphones in the future. Our current definition

of location surveillance uses Cramer-Rao Bound (CRB) [105] as a theoretical lower bound

for RSSI-based estimators. CRB for RSSI estimators depends only on the location of the

infrastructure devices. We know that for CSI estimators, the number and the orientation of

the antennas on the device are essential to estimate the angle of the received signal. Location

surveillance bounds for CSI estimators need to consider antenna properties like the number,

location, and orientation. Some works [107] have tried to find CRB bound for CSI-based

estimators. In future work, we need to investigate definitions of location surveillance for CSI

estimators and then come up with algorithms to estimate CSI surveillance.

6.2.4 Handling information asymmetry in location surveillance estimation

Our current work makes a strong assumption on information symmetry, i.e., our system

uses the same raw data that the infrastructure is collecting for location estimation. Both the

infrastructure and our system obtain this data from the smartphones of each user. We make

a strong assumption about the goodwill of the infrastructure that they will reveal the same

technology they are using for localization to a third-party crowd app. What happens if the

infrastructure is malicious? For example, they reveal that they are using RSSI estimators,

and our crowd app collects RSSI traces from smartphones. However, the infrastructure is

also measuring CSI on their access points. Lower bounds obtained from RSSI CRB can give

users a false sense of privacy, while CSI measurements help the infrastructure track people

more accurately. The current approach cannot guarantee surveillance estimation in such

cases of information asymmetry. We need to investigate if we can get proxies for CSI-based

surveillance using the RSSI traces that we collect from smartphones in future work. Can we
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use RSSI or other data traces from smartphones to obtain a universal lower bound across all

possible location estimators (RSSI, CSI, or PRP)?

6.2.5 Declarative privacy

Achieving a declarative definition of privacy is an essential requirement for the wide-scale

adaption of localization solutions. We need to establish people or customers on the same

level as these indoor location techniques to guide/provide input on their comfortable level of

detection or surveillance. For example, a person in the airport should say,– do not locate

which item the person is browsing in the vending machine. The system can locate the

person’s gate number at the airport for digital contact tracing. Detecting the level of location

surveillance was an essential first step towards achieving privacy. Once we know the level of

surveillance, we need to investigate appropriate hiding techniques that can enforce people’s

comfortable level of privacy.
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