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Abstract 

 

Liquids are a condensed and non-crystallized phase of matter and their properties are typically 

governed by many-body effects. The physics and properties of liquids are a mixture of gas and solid 

phases, but quite different from any of them. The application of theoretical models developed for solid 

and gas phases to liquids is difficult and development of theoretical models for liquid is hindered by 

many-body effects. Computer simulation and experimental methods have played a crucial role in 

understanding of liquids. In fact, most of our knowledge about liquids are obtained using computer 

simulation, especially molecular dynamics (MD) and Monte Carlo simulations. MD simulations are 

successful in finding thermodynamic, structural, dynamical, and transport properties of liquids. However, 

MD simulation requires accurate potential parameters to model physical phenomena. It is noteworthy to 

state that with known potential parameters structural properties not only describe local arrangement of 

atoms, but they are enough to calculate various thermodynamic properties such as pressure and isothermal 

compressibility. The more intriguing part about liquids is the relationship between structural properties 

and potential parameters. This question can be seen as the inverse problem of liquid-state theory or as a 

coarse-graining problem, where the objective is to parameterize a force field to reproduce a reference 

structure. In this study, a deep neural network is used for atom-agnostic parametrization of the Lennard-

Jones potential at different thermodynamic states. The DNN demonstrates good performance for two 

cases – parameterization of LJ particles and development of single-bead CG LJ potentials for simple 

multi-atom molecules through transfer learning obtained from LJ particles. The transferability and 

generalizability of the method are investigated by computing the total variation in the radial distribution 

function and Kullback-Leibler divergence for the coarse-grained model development. Our results indicate 

that deep learning can compute the solution to the inverse-problem of liquid-state theory (DeepILST) 

under the assumption of a predetermined pair potential in a coarse-grained model. 
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In a follow-up study, statistical and deep learning-based methods are employed to obtain insights into 

the quasi-universal properties of simple liquids. In the first part, a statistical model is employed to provide 

a probabilistic explanation for the similarity in the structure of simple liquids interacting with different 

pair potential forms, collectively known as simple liquids. The methodology works by sampling the radial 

distribution function and the number of interacting particles within the cut-off distance and it produces the 

probability density function of the net force. We show that matching the probability distribution of the net 

force can be a direct route to parameterize simple liquids pair potentials with a similar structure, as the net 

force is the main component of the Newtonian equations of motion. The statistical model is assessed and 

validated against various cases. The physics and quasi-universality of simple liquids are also studied 

through deep learning by finding structurally-equivalent Lennard-Jones liquids with similar reduced 

RDFs, i.e., isomorphs. Structurally-equivalent Lennard-Jones liquids identify systems with constant order 

parameters in the space of non-dimensional temperature and density of Lennard-Jones liquids consistent 

with the approximate theoretical solution derived in the current study and other theoretical models. 

Considering various investigations performed in this study, we show the successful employment of 

statistical and deep learning approaches and coarse-graining methods in the physics of simple liquids. 

As shown in above examples, MD simulation is a popular and strong computational tool to compute 

microscopic and macroscopic properties of liquids. However, to determine properties of atomic systems 

to a good level of accuracy with minimal noise or fluctuation, MD simulations are performed over a long 

time ranging from a few nanoseconds to several tens to hundreds of nanoseconds depending on the 

system and the properties of interest. There have been attempts to go around this issue with enhanced 

sampling and theoretical models. In this study, by considering simple liquids, we explore the feasibility of 

significantly reducing the MD simulation time to compute various properties of monoatomic systems 

such as the structure, pressure, and isothermal compressibility. A deep denoising autoencoder network is 

trained to obtain structural and thermodynamic properties of Lennard-Jones liquids at various 

thermodynamic states using a single snapshot RDF as input. The algorithm is successful not only in 
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predicting the RDF of a Lennard-Jones pair potential, but also it is generalizable to other simple liquid 

pair potentials such as exponential, Yukawa, and inverse-power-law potentials. In terms of computational 

efficiency, the number of snapshots required from MD simulation to obtain the accuracy of DAE 

predicted RDF is at least hundred snapshots, making the network highly efficient. The pressure and 

isothermal compressibility from DAE based RDFs are also comparable with those obtained from 

longtime MD simulation. 

To expand our frameworks for more complex liquids, we investigate development of coarse-grained 

(CG) models of water, which is far more complex than simple liquids.  In this study, we train a neural 

network-based force field with two- and three-body interactions, which makes the developed force field 

interpretable. Within our framework, the requirement for accurate forces and energies is eliminated by 

using the local search algorithm instead of backpropagation. We successfully develop coarse-grained 

models of both classical and ab initio water models. We also investigate the dependency of the coarse-

grained force field of water on the number of expansions, which shows that the double-well interaction, 

known as a signature of water-like behavior among spherically symmetric pairwise interactions, vanishes 

with the inclusion of three-body interactions. We also notice that the two-body interaction fails to 

reproduce the angular distribution of water, especially over a short range. Based on our findings, we 

conclude that water-like behavior is better captured using the three-body interaction, which is consistent 

with the directional dependency of interactions in water. 

Finally, we employ graph neural network in the phase identification of water. Due to the high 

dimensionality and uninterpretable nature of atomistic simulation data, researchers have developed a wide 

variety of order parameters to reduce dimensionality and connect data with the phase and structural 

properties. Motivated by the importance of water in various areas, water is studied through various order 

parameters such as bond-order parameter (BOP), tetrahedral order parameter, and local-structure index. 

Even though these order parameters are widely adapted in various studies ranging from ice nucleation, 

phase discrimination/identification, free energy calculation, and as collective variables of enhanced 
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sampling simulation, however, they are far from perfect. In several cases, it requires lots of domain 

expertise and effort to combine multiple order parameters to reach conclusive findings. Our phase 

classification works by collecting all the pairwise distances of high dimensional data within a cut-off 

distance, followed by feeding these data into an edge-conditioned convolutional graph neural network. 

The high accuracy and no need for pre-calculation of other order parameters makes our methods more 

rigorous and generalizable for more complex cases such as confined water. 
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CHAPTER 1:     Introduction

 

     1.1 Liquid Physics 

Liquids are a condensed and non-crystallized phase of matter, and their properties are typically governed 

by many-body effects. The physics and properties of liquids is a complex mixture of gas and solid phases, 

but quite different from any of them. For example, liquids particles can move around like gas particles 

and unlike solid particles, but their motion is correlated like solid particles and unlike gas particles.1,2 The 

presence of both gas- and solid-like behaviors limits accuracy of theoretical models developed for the gas 

and solid to liquid. On the other hand, most of the theoretical and analytical methods developed for 

liquids suffer from low accuracy due to complex interplay between entropic and energetic forces. 

Therefore, understanding physics of liquids phase of matter is hindered using theoretical framework. 

Considering that liquids play a crucial role in many physiochemical and biological phenomena such as 

super-capacitor3,4, gas capture,5 lubrication,6,7 protein-folding,8,9 it is of outmost important to 

fundamentally understand the physics and properties of liquids.  

Lacking theoretical and analytical methods to understand liquids, computer simulation and experimental 

methods have played crucial role in understanding of liquids. In fact, most of our knowledge about liquids 

are obtained using computer simulation, especially molecular dynamics (MD) and Monte Carlo 

simulations.10  MD simulations are successful in finding thermodynamic, structural, dynamical, and 

transport properties of liquids.11 MD results also provide initial finding for quasi-universal properties 

among simple liquids.10  However, MD simulation requires accurate potential parameters to model 

physical phenomena. It is noteworthy to state that with known potential parameters structural properties 

not only describe local arrangement of atoms, but they are enough to calculate various thermodynamic 

properties such as pressure and isothermal compressibility.  The more intriguing part about liquid is the 

relationship between structural properties and potential parameters. This question can be seen as the 

inverse problem of liquid-state theory or as a coarse-graining problem, where the objective is to 
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parameterize a force field to reproduce a reference structure.12–15 From theoretical perspective, the answer 

lies in the Henderson theorem, which states that the relationship between the pair potential and radial 

distribution function (RDF) is unique up to a constant at a given thermodynamic state, implying that the 

potential parameters at a specific thermodynamic state can be determined using the RDF.16 The theory has 

been used as a starting point for different studies including design of nanostructure and systematic coarse-

graining.13,17 Both tasks of design of nanostructure and coarse-graining are important, particularly coarse-

graining is essential for many practical systems, such as biological entities, where the number of particles 

(mostly liquid particles) are of the order of several thousands to millions, making all-atom MD (AAMD) 

simulation forbiddingly expensive for a reasonable length scales and timescales.18–20vvM Therefore, 

development of liquid-state theory can be useful for progress in other related areas such as coarse-

graining, biology, etc. 

Development of coarse-grained (CG) models and understanding of liquid-state theory relies on the 

repetitive AAMD and CGMD simulations, leading to repetitive MD simulation of a specific system. As 

most of the MD packages use a specific functional form to describe particles interaction such Lennard-

Jones (LJ) potential, performing MD simulation of the LJ system might seem redundant, but it is the only 

reliable method available to the researchers. Surrogate models circumvent the difficulty associated with 

closed form solution of physical problems consisting of complex and many-body interactions by 

switching to an equation-free framework. It is of great value to apply machine learning and big data tools 

to provide insight into the behavior and physics of liquids.  

       1.2 Structure of the Dissertation 

The current thesis is composed of five studies on the application of deep learning in the inverse liquid-

state theory, coarse-graining, enhanced sampling of liquid properties, quasi-universality of simple liquids, 

as well as coarse-grained force field development for water and phase identification of water. Each 

chapter includes a separate section for introduction, methods, results and discussion, and conclusion of 
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the study. Appendix (A, B, C, D, and E) provides supporting details for the materials discussed in the 

main chapters of the thesis.  

In the second chapter, deep learning methods are applied to find the solution of inverse liquid-state theory 

of Lennard-Jones particles, where finding an analytical solution is not straightforward. The model is used 

to coarse-grain simple multi-atom molecules into a single Lennard-Jones particles. In the third chapter, 

deep denoising autoencoder network is used to facilitate prediction of Lennard-Jones liquid properties 

from a single snapshot of molecular dynamics simulation. The prediction from a single frame after 

denoising outperform brute-force averaging by several order of magnitude more samples. In the fourth 

chapter, we explore quasi-universality of simple liquids, which refers to structural and dynamical 

similarity among simple liquids with different type of pair potential. We employ a statistical model to 

explain this similarity, followed by applying deep learning to find hidden scale physics in simple liquids. 

Additionally, we bridge concepts such as coarse-graining, Henderson theorem, deep learning, and quasi-

universality together. In the fifth chapter, coarse-grained force field are developed to study water using 

neural networks. In the sixth chapter, graph neural network framework is developed alongside a python 

package to train machine learning models to classify different phases of water. The model uses edge-

conditioned convolutional layer to map pairwise distance matrix to the corresponding phase, 

outperforming traditional methods trained over bond-order parameters or other human-engineering order 

parameters.        
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CHAPTER 2: Deep Inverse Liquid State Theory 
 

 

       2.1 Introduction 

 

The Lennard-Jones (LJ) potential form is one of the widely used non-bonded pair potentials to investigate 

molecular scale phenomena. The LJ potential comprises the repulsive and attractive terms, which are 

usually represented using a standard 12-6 potential form with two parameters (𝐶12, 𝐶6).21 The 12-6 LJ 

potential is prominently used in molecular dynamics (MD) simulations to study physical, chemical, 

biological, and mechanical systems.22 Once the underlying potential parameters and the thermodynamic 

state are specified, MD can compute various quantities of interest such as the radial distribution function 

(RDF). However, given a specific RDF, MD cannot directly predict the underlying potential parameters. 

In general, the estimation of potential parameters is a difficult task.23  As per Henderson’s theorem16, the 

relationship between the pair potential and RDF is unique up to a constant at a given thermodynamic 

state, implying that the potential parameters at a specific thermodynamic state can be determined using 

the RDF. In this work, we explore the feasibility of force field development based on the Henderson’s 

theorem using a data-driven approach combined with deep learning. 

The inverse problem of parameterization of the LJ potential to reproduce a given RDF can also be viewed 

as a coarse-graining problem (where the objective is to develop a pair-potential between coarse-grained 

(CG) particles such that the RDF of the original system is reproduced) or as a solution to the inverse-

problem of liquid-state theory.24–27 Different frameworks, such as the fundamental measure theory28,29, 

and integral equations30, have been developed to address this problem. However, accuracy is an issue and 

generalizability to more complex systems is quite involved. An alternative route to reproduce a given 

RDF relies on MD to refine the potential parameters. For example, MD simulation data are either 

integrated with a theoretical framework (e.g. iterative Boltzmann inversion24,31) or used to optimize  
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statistical or empirical errors between the MD-calculated and given RDFs (e.g. relative entropy or the 

simplex minimization method14,32). MD-based approaches require thousands of simulations on a specific 

system of interest and the data is often not reused for other systems with similar mapping and underlying 

potential form (see Figure 1a).33 The main bottleneck in reusing data for parameterization of a new system 

originates from the inherent complexity of physics-based model development as well as storing the data 

for a long period of time. Recent advancements in data-driven approaches can solve the reusability issue 

of MD data as well as obtaining the underlying physics of data, also known as the physics of big data34, 

by surrogate models. Surrogate models circumvent the difficulty associated with closed form solution of 

physical problems consisting of complex and many-body interactions by switching to an equation-free 

framework. As a result, a data-driven approach avoids the development of a brute force, closed form 

analytical solution or repetitive MD simulation of a specific system.  

During the last decade, data driven and machine learning (ML) methods have received enormous 

attention in computational analysis of physical problems.34–37 Even though the usage of ML methods in 

scientific research and discovery dates back to several decades ago, only in the last five years researchers 

have embarked on  using deep learning (DL)38 in modeling and understanding of physical phenomena 

such as data-driven materials discovery39–44, calculating the thermodynamic and ground states in multi-

body systems,45,46 phase transitions,47 classification of phases in strongly correlated fermions,48 quantum 

entanglement,49  and many other applications50. During the last couple of years, researchers have started 

to develop deep neural networks (DNN) for CG model development.51,52 Nevertheless, to the best of our 

knowledge, DL has not been used to solve the inverse problem of liquid-state theory, especially as a 

systematic CG method.  

In this study, we develop a DNN to learn the relation between RDF of LJ particles at various 

thermodynamic states with the potential parameters (𝐶12 and 𝐶6). The dataset is generated using MD 

simulation of 26,000 distinct systems (each MD simulation is performed for 2 ns summing to 52 𝜇𝑠 of 

total simulation time) with uniform sampling over a specific range of temperature, density and potential 
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parameters. Once the training part is complete on the single atom systems (referred to as the purely 

atomistic case), the knowledge acquired from the single atom systems or LJ particles is transferred to 

coarse-grain simple multi-atom molecules, with bonded and non-bonded interactions, into a single LJ 

particle. We refer to the CG model developed through this route as transfer learning based coarse-

graining. DL model performance on parametrization of LJ particles and transfer learning based CG 

models is assessed using different metrics such as the deviation from ground truth potential parameters, 

total variation between predicted and specified RDFs, and Kullback-Leibler divergence (KL). The study 

presented here can also be viewed as a data-driven solution to the inverse problem of liquid-state theory 

(Deep Inverse Liquid-State Theory, DeepILST) for LJ particles and simple multi-atom molecules using 

DL (see Figure 1c for the DL-based methodology developed in the current study, which is also applicable 

to other potential forms as well as for other molecular structures). We show that DeepILST is also able to 

estimate other thermodynamic quantities like pressure and potential energy.  

The rest of the chapter is organized as follows. In the next section, we describe the details of MD 

simulations for both multi-atom and single bead molecules and DNN development, as well as coarse-

graining through transfer learning. In Section 2.3, we present the results of DL training as well as coarse-

graining through transfer learning. Finally, we summarize the findings of this study.  

    2.2 Methods 

        2.2.1 Molecular Dynamics Simulation 

The data for DNN training is generated via MD simulation of 26000 distinct systems with interaction 

potential parameters and thermodynamic states sampled uniformly over the range shown in Table 2.I. The 

LJ potential form is given by, 

𝑢(𝑟) =
𝐶12

𝑟12
−

𝐶6

𝑟6
            

(2.1) 
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where 𝐶12(= 4𝜖𝜎12)  and 𝐶6(= 4𝜖𝜎6) are the interaction potential parameters, and 𝜖 and 𝜎 are the 

energy- and length-scale parameters of the LJ pair potential, respectively. All the MD simulations are 

performed using GROMACS53 using a timestep of 1 fs in the NVT ensemble. The temperature is 

controlled using the Nosé-Hoover thermostat with a time constant of 0.2 ps. Each LJ particle system is 

simulated for 2 ns and the RDF is calculated from the last 1.8 ns of the MD trajectory. RDF, the 

corresponding thermodynamic state, and potential parameters are stored as feature vectors to be fed as 

input data to the input layer of DNN, and the interatomic potential parameters constitute the output layer 

of DNN.  

Three distinct simple multi-atom molecules such as CH4, F2, and CO are simulated to evaluate the 

development of coarse-grained potentials for these multi-atom molecules using the DNN developed for 

LJ particles. The simple multi-atom molecules, shown in Figure 2.1a, are modeled using the GROMOS 

force field54. The interactions between simple multi-atom molecules are described by both bonded and 

nonbonded potentials. The bonded interactions are modeled using GROMOS force field for bond and 

angle potential.54 The nonbonded potential includes the van der Waals potential, described by the LJ 

potential given in Eq. 1, and electrostatic interactions given by the Coulomb potential,   

𝑢𝐶𝑜𝑢𝑙𝑜𝑚𝑏(𝒓; 𝑠) =
𝑞𝑖𝑞𝑗

4𝜋𝜖0𝑟𝑖𝑗
, where 𝜖0 denotes the dielectric permittivity of vacuum, 𝑞𝑖 and 𝑞𝑗 are the point 

charges on atoms i and j, respectively, and 𝑟𝑖𝑗 is the radial distance. The particle mesh Ewald algorithm is 

used to treat the long-range part of the electrostatic interaction.55 Once the initial configuration of atoms is 

generated, energy minimization is performed, followed by 8 ns of production simulation, from which 6 ns 

is used to calculate the center of mass (COM) RDFs. 

        2.2.2 Deep Learning 

In general, the many-body nature of interactions in liquids makes it difficult to develop a closed-form 

analytical relation between the pair-potential and RDF. The complex relationship between the underlying 

potential and RDF can be expressed as, 
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(𝐶12, 𝐶6) = 𝒇(𝑔(𝑟);  𝑇, 𝜌)            (2.2) 

where 𝒇 is a vector valued function, which is a nontrivial function of RDF, and thermodynamic state 

variables, 𝑇 and 𝜌 represent the temperature and density, respectively. 𝑟 is the radial distance between the 

particles, and 𝑔(𝑟) is the RDF between particles. RDF is also related to the potential of mean force (PMF) 

by the expression, 𝑔(𝑟) = exp(−
𝑈𝑃𝑀𝐹(𝑟)

𝑘𝐵𝑇
), where 𝑘𝐵 is the Boltzmann constant. The explicit relation 

between PMF and the pair potential is also nontrivial.  

In this work, we use a feed-forward neural network (FNN) to estimate the function in Eq. 2.2 based on the 

universal approximation theorem, which states that FNN with enough capacity can approximate many 

continuous functions.56 The data of each MD simulation is fed into DNN as, 

𝑥𝑖 = (𝒈𝑖 (𝑟), 𝜌𝑖
1, 𝜌𝑖

2, … , 𝜌𝑖
𝑝

, 𝑇𝑖, 𝑇𝑖
2, … , 𝑇𝑖

𝑝
)

𝑚
                              (2.3)                                                 

where 𝑥𝑖 is the input vector composed of the concatenation of system 𝑖  RDF (size of  𝑛) and 

thermodynamic states (each with size of 𝑝) in the dataset (𝐷) with a total size of 𝑚(= 𝑛 + 2𝑝), and 𝑖 

refers to the i-th LJ system (𝑥𝑖 ∈ 𝐷). The first n elements correspond to the value of RDF discretized 

between its minimum and maximum range, i.e., (𝑥𝑖,𝑙 = 𝑔𝑖(𝑟𝑙 < 𝑟 ≤  𝑟𝑙 + 𝑑𝑟)/ max
i∈D

𝑔𝑖(𝑟) ∀ 𝑙 ∈

{1, 2, … , 𝑛}, where 𝑑𝑟 =
𝑟𝑚𝑎𝑥−𝑟𝑚𝑖𝑛

𝑛−1
 and 𝑟𝑙 = 𝑟𝑚𝑖𝑛 + (𝑙 − 1) 𝑑𝑟 ). The remaining 2p elements of the input 

vector correspond to the different exponents of the scaled density and temperature, e.g., 𝑥𝑖,𝑛+𝑙 = (𝜌𝑖
𝑙 −

min
i∈D

𝜌𝑖
𝑙)/(max

i∈D
𝜌𝑖

𝑙 − min
i∈D

𝜌𝑖
𝑙)  ∀ 𝑙 ∈ {1, 2, … , 𝑝} define the input vector for density. 

The simplest unit of a DNN, denoted as a perceptron or node, receives an input signal and applies a linear 

transformation, followed by a nonlinear activation function resulting in an output signal. Stacking nodes 

in width (within a layer) and in depth (denoted as stacking layers; hidden layers are shown with blue 

circles in Figure 2.1b) results in a multilayer perceptron, which can approximate many continuous 

functions.38,57 With 𝑥𝑖  as the input and the LJ potential parameters as the output, the DNN can be 

mathematically expressed as, 
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(𝐶12,𝑖
𝑓𝑛𝑛

, 𝐶6,𝑖
𝑓𝑛𝑛

) = 𝜙𝑜(𝑾𝑜𝜙𝑛ℎ
(… 𝜙2(𝑾2𝜙1(𝑾1𝑥𝑖 + 𝒃1) + 𝒃2)) + 𝒃𝑜) (2.4) 

where 𝜙𝑘  is the nonlinear activation function of layer 𝑘 given by 𝜙𝑘(𝑥) = 𝜙𝑘(𝑾𝑘𝜙𝑘−1(𝑥) + 𝒃𝑘 ) =

tanh(𝑾𝑘𝜙𝑘−1(𝑥) + 𝒃𝑘  ) + sigmoid(𝑾𝑘𝜙𝑘−1(𝑥) + 𝒃𝑘  ). Layer 𝑘 receives a linear transformation of the 

output of layer 𝑘 − 1, given by 𝜙𝑘−1(𝑥), and applies the activation function 𝜙𝑘 to produce the output of 

layer 𝑘. Each layer, 𝑘, has weights 𝑾𝑘  and bias 𝒃𝑘with dimensions, 𝑾𝑘 ∈ 𝑅𝑑𝑘−1×𝑑𝑘  and 𝒃𝑘 ∈ 𝑅𝑑𝑘, 

where 𝑑𝑘 is the number of nodes in layer k. 𝑛ℎ denotes the number of hidden layers. Summation of the 

tangent hyperbolic and sigmoid nonlinearities (tanh 𝑥 + sigmoid 𝑥) is used between layers, except for the 

output layer (𝜙𝑜) where the sigmoid nonlinearity is used (see the supporting information Eq. A.4-7). 

As shown in Figure 2.1c, once the data generation is complete, the DNN is trained to obtain the near 

optimal weights and biases through minimization of the DNN loss function. The loss function 

minimization is performed with a backpropagation algorithm. The FNN is trained based on the mean 

square loss function where the mean-squared error (MSE) between the ground truth and the predicted 

parameters is optimized. The adaptive moment estimation (Adam) optimizer 58 is used to minimize the 

loss function (𝜖ℒ(𝜃, 𝐷)), which can be expressed as, 

𝜖ℒ(𝜃, 𝐷) =
1

2|𝐷|
∑ ∑ (𝑣𝑗,𝐺𝑇

(𝑖)
− 𝑣𝑗,𝑝

(𝑖)(𝜃, 𝑥𝑖))
2

𝑗∈{𝐶12,𝐶6}𝑖∈𝐷

                              (2.5)                                                 

where 𝜃 represents the free parameters (weights and biases) of DNN.  𝑣𝑗,𝐺𝑇
(𝑖)

 and 𝑣𝑗,𝑝
(𝑖)

(𝜃) are the ground 

truth and DNN-predicted scaled LJ interaction parameters (with respect to the minimum and maximum in 

Table 1) of the 𝑖𝑡ℎ data point in the dataset. |𝐷| denotes the size of the training dataset. The training 

dataset corresponds to about 75 percent of the data obtained from MD simulations, and they are used to 

find optimal weights and biases of the DNN. The validation dataset (about 12.5 percent of the MD 

dataset) is used as a metric during the loss function minimization to monitor network performance, 

avoiding overfitting or underfitting in the learning process, i.e., they are fed into the network to determine 

the value of the loss function, but they do not contribute to the backpropagation. Furthermore, during 
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training, we use the dropout technique for the second hidden layer to avoid overfitting.59 The dropout 

technique drops nodes in layers with a specific probability, therefore, training only a fraction of weights 

(𝑾2) and biases (𝒃2) of the second hidden layer at each training step. In this study, the FNN units are 

dropped randomly with a probability of 0.25. Improvements achieved using the dropout technique are 

mainly due to preventing nodes from undesirable co-adapting and it far outweighs the ones achieved with 

L1 and L2 regularizations.  

The training and design of DNN continues until a good performance is achieved on both the training and 

validation datasets. Once the network is trained, we check its loss function value on the testing dataset 

(the remaining 12.5 percent of MD dataset) to ensure its generalizability. If the network performance 

shows overfitting or underfitting on the validation or training datasets, its architecture involving the 

number of layers, the number of nodes in each layer, and activation functions are changed by trying 

rectified linear unit, sigmoid, or tangent hyperbolic, or a combination of them until a reasonable 

performance is achieved. Based on the network performance on the entire dataset, the network with two 

hidden layers with 48 and 15 nodes is selected, and an exponent of three for the thermodynamic states is 

chosen (𝑝 = 3). All the results presented in the main manuscript are obtained using this network (see the 

supporting information section SII for more details on training).  

 2.2.3 Transfer Learning-Based Coarse-Graining 

Next, we consider coarse-graining simple multi-atom molecules into single beads to preserve the structure 

(RDF) of the multi-atom molecule.  Specifically, a multi-atom molecule is coarse-grained into a single 

bead such that the center of mass (COM) RDF of the multi-atom molecule system is preserved in the 

single bead system. The interactions among the single beads are represented by the 12-6 LJ potential and 

the interaction potential parameters (𝐶6, 𝐶12) are obtained by transferring the DNN knowledge of LJ 

particles – this approach is referred to as transfer learning based coarse-graining. As shown in Figure 2.1c 

(dashed arrows in the figure), the COM RDF and the thermodynamic state of a simple multi-atom 



11 
 

molecule are fed into the DNN as an input. The DNN provides the interatomic potential parameters as an 

output for the single bead representation of the multi-atom molecule. Once the potential parameters are 

available, MD simulations can be performed using the single bead representation of the multi-atom 

molecule to estimate RDF and other properties of the CG multi-atom system. It is important to note that, 

typically, coarse-graining introduces errors in the estimation of various properties of the original multi-

atom system. Here, we estimate the error in the RDF obtained from the DNN predicted potential 

parameters by using two measures: the first is the error in the total variation between CG and AA RDFs 

and the second is the KL divergence.14,33 The error in the total variation between CG and AA RDFs is 

calculated using the expression, 

𝜖𝑟𝑑𝑓 =
∫ |𝑔𝐶𝐺(𝑟) − 𝑔𝐴𝐴(𝑟)

𝑟𝑐𝑓

0
| 𝑟2𝑑𝑟

∫ 𝑔𝐴𝐴(𝑟)𝑟2𝑑𝑟 
𝑟𝑐𝑓

0

 
(2.6) 

where 𝑔𝐶𝐺(𝑟) and 𝑔𝐴𝐴(𝑟) are radial distribution functions of CG and AA models, respectively. The error 

is also estimated using the KL metric using the expression, 

𝜖𝐾𝐿 = 𝛽〈𝑈𝐶𝐺 − 𝑈𝐴𝐴〉𝐴𝐴 − 𝛽〈𝐹𝐶𝐺 − 𝐹𝐴𝐴〉𝐴𝐴 + 〈𝑆𝑚𝑎𝑝〉𝐴𝐴 (2.7) 

where 𝑈(= ∑ 𝑢(𝑟𝑖𝑗)𝑖<𝑗 ) and F are the potential energy and free energy of the system in the AA and CG 

systems, and 〈𝑆𝑚𝑎𝑝〉𝐴𝐴 is the mapping entropy, which is not a function of the potential parameters. 

Appendix A.1 contains mathematical details on KL divergence calculation, as well as its convexity and 

the existence and uniqueness of a global minimum.60,61  

    2.3 Results and Discussions 

We examine the performance of DNN by considering two cases – first, the generalizability and 

transferability of the interatomic potential parameterization for LJ particles (this is in fact the 

development of atomistic force fields for single atom particles) is investigated, and second, transfer 

learning for CG force-field development is considered. Generalizability refers to the use of DNN to 

estimate potential parameters for LJ particles for thermodynamic states that fall within the range of the 
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training dataset, i.e., the thermodynamic state considered to establish generalizability is not part of the 

training dataset, but the thermodynamic state lies within training dataset thermodynamic states that are 

part of the training dataset. Transferability refers to the use of DNN to estimate potential parameters for 

LJ particles for thermodynamic states that fall outside the range of the training dataset, i.e., the 

thermodynamic states considered are not within the range shown in Table 2.1. Transfer learning, as 

discussed in Section 2.4, refers to the use of DNN to estimate potential parameters for CG representation 

of simple multi-atom molecules shown in Figure 1a.  

Case 1. Parameterization of Lennard-Jones Particles 

DNN is trained to reproduce the potential parameters of LJ particles using RDFs and thermodynamic state 

variables. The network architecture (the number of layers and the number of nodes in each layer) is 

optimized based on its performance on both the training and validation datasets (see Figure A.3 for loss 

function minimization during each iteration of training; the total number of iterations for each network is 

about 20,000,000). Generalizability of the network is assessed through its performance on the test dataset, 

which is not seen until the DNN training step is complete.  

One-to-one comparison of the DNN predicted and ground truth potential parameters (parameters used in 

MD simulation) are shown in Figure 2.2. We note that all the points are distributed almost uniformly 

around the one-to-one mapping line, i.e., the line on which the ground truth and DNN predicted 

parameters match exactly. Figure 2.2a and 2.2e show the training dataset results for the prediction of 𝐶12 

and 𝐶6, respectively. While thermodynamic states and RDF vary for each point, the DNN is able to relate 

them correctly to the underlying potential parameters. Similarly, Figure 2.2b and 2.2f show the validation 

dataset results for predictability of 𝐶12  and 𝐶6 , respectively. Validation dataset is used for the design of 

DNN to avoid overfitting and is not part of the dataset used for minimization of the loss function. Figure 

2.2c and 2.2g show the generalizability of DNN for the prediction of 𝐶12  and 𝐶6, respectively, for 

unforeseen data during the training of DNN.  
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The accuracy of the model is measured based on the loss function value of the training dataset (see Eqs. 

A.8-10 for the definition of bandwidth and accuracy, as well as the definition of the mean absolute 

percentage error (MAPE)62, defined as 𝜖𝑴𝑨𝑷𝑬,𝒋 = 100 ×
∑     |𝑣𝑗,𝐷𝑁𝑁

(𝑖)
−𝑣𝑗,𝐺𝑇

(𝑖)
|i∈D

∑ |𝑣
𝑗,𝐺𝑇
(𝑖)

|𝑖∈D

 , where 𝑖 represents the i-th 

data point in the dataset, and 𝑣𝑗 is either 𝐶12 or 𝐶6). The dash-dotted lines, shown in Figure 2.2, are 

parallel to the one-to-one mapping line and at a distance equal to four times the square of the loss function 

value of the training dataset. These lines show the interval in which about 99 percent of DNN prediction 

points are located compared with ground truth of the training dataset. The same accuracy lines are shown 

for the rest of the datasets, which shows that most of the data of validation and testing datasets lies in this 

region (close to 99 percent of points). The MAPE is also shown for each dataset and potential parameters. 

𝐶12 and 𝐶6 of training, validation, and testing datasets have about 1.7 and 4.2 % MAPE, respectively, 

indicating high accuracy of prediction. 

The transferability of DNN to thermodynamic states outside the range of the dataset is also investigated. 

For this, we estimate the potential parameters by considering the temperature range of [200, 500] 𝐾 and 

density range of [1.96, 20.49] 𝑛𝑚−3, excluding the range shown in Table 2.1 (temperature range of [290, 

400] K and density range of [8.0, 19.4] 𝑛𝑚−3). One-to-one comparison (prediction versus ground truth) 

for the transferability dataset is shown in Figure 2.2d and 2.2h, indicating about 8.7 % and 39.8 % MAPE 

for 𝐶12 and 𝐶6, respectively. Similarly, about half of the points of transferability dataset lie in the region 

bounded by the accuracy lines. This result indicates that caution should be exercised in using the DL 

model outside the range of the training data. However, DNN shows clear a correlation between the 

predicted and ground truth parameters (see the supporting information A.2 for discussion on the details of 

the transferability dataset selection).  

To evaluate the performance of DNN for other thermodynamic properties of a given system, MD 

simulations are performed on Argon particles for 121 different thermodynamic states with a uniform 

sampling on the temperature and density ranges shown in Table 1 with each having 11 points. The 
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pressure calculated using the DNN estimated potential parameters (shown in Figure 2.3) has a mean error 

of 17% compared to AA MD pressure for the 121 points used in the dataset. This error is reasonably 

small compared to the pressure fluctuations observed in MD simulations. The comparison between mean 

values of LJ parameters predicted by DNN and ground truth LJ parameters of Argon are shown in Table 

2.2 (the details on the calculation of the thermodynamic quantities including pressure and total energy are 

presented in the supporting information SI). As Table 2 indicates, the network can map all 121 points into 

a single value of LJ parameter with a small deviation, as well as a small error, compared to the MD 

ground truth parameters (6.18 percent for 𝐶12  and 0.16 percent for 𝐶6  relative to the ground truth LJ 

parameters of Argon) 

Case 2. Coarse-graining 

The DNN results for the parameterization of LJ particles exhibit no more than 4.4% MAPE over the 

dataset, which implies that FNN is an efficient approach to solve the inverse problem of the liquid-state 

theory, at least for the LJ particles. To investigate the transferability of knowledge acquired from LJ 

particles as a new coarse-graining route, single bead CG models of simple multi-atom molecules such as 

carbon monoxide, fluorine, and methane are developed. As stated in Section 2.3, the COM RDFs of these 

systems are first obtained using AAMD simulations. Then, the COM RDFs and thermodynamic states 

(midpoint of Table 1) are fed into the DNN (the procedure is shown with dashed line in Figure 2.1c). The 

comparison of the COM RDFs of multi-atom molecules and CG model RDFs is shown in Figure 2.4. 

Figure 2.4 also shows the results of CG RDFs of multi-atom molecules for LJ pair-potential 

parameterized by simplex and relative entropy methods. The results indicate that DNN parameterized 

force fields are indistinguishable from the other two methods. Considering that DNN is a single shot 

method with no iterations, its speed to derive the CG force field is faster compared to the simplex and 

relative entropy methods (see Figures A.11 and A.12 as well as Table A.1 in the supporting information 

for further details and additional case studies). Following the procedure shown in Figure 1c, we assess the 

accuracy of CG models with two additional metrics, i.e., 𝜖𝑟𝑑𝑓 and 𝜖𝐾𝐿. In Figure 2.5a-b,   𝜖𝑟𝑑𝑓 is shown 
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on a mesh discretizing the space of LJ potential parameters. The mesh points have different values of 𝐶12 

and 𝐶6, and using this data, one can find the LJ parameters with a minimum value of 𝜖𝑟𝑑𝑓. The minimum 

point of 𝜖𝑟𝑑𝑓 lies in the vicinity of the LJ parameters predicted by the DNN. Based on Eq. 2.8, 𝜖𝐾𝐿 

between simple multi-atom molecules and the LJ particles is shown in Figure 2.5e-f. Similar to 𝜖𝑟𝑑𝑓, the 

minimum value of 𝜖𝐾𝐿 is close to the DNN predicted parameters. The convexity of  𝜖𝐾𝐿 ensures that the 

local minimum of  𝜖𝐾𝐿 found within the LJ parameter space is a global minimum (for a more detailed 

discussion on KL divergence  and convexity, see Appendix A.1 or reference 14 and references therein).  

Both error metrics show a small deviation from the DNN predicted LJ parameters with a distance less 

than 0.1% of the maximum error in the investigated parameter space. As DNN does not have prior 

knowledge about the information theory (KL metric) or the statistical mechanics metric (error in the total 

variation of the RDF), we can conclude that DL is a good coarse-graining strategy as it performs well on 

both metrics. 

    2.4 Conclusions  

In this study, a deep neural network is used for atom-agnostic parametrization of the Lennard-Jones 

potential at different thermodynamic states. The DNN demonstrates good performance for two cases – 

parameterization of LJ particles and development of single-bead CG LJ potentials for simple multi-atom 

molecules through transfer learning obtained from LJ particles. The transferability and generalizability of 

the method are investigated by computing the total variation in the radial distribution function and 

Kullback-Leibler divergence for the coarse-grained model development. Our results indicate that deep 

learning is able to compute the solution to the inverse-problem of liquid-state theory (DeepILST) under 

the assumption of a predetermined pair potential in a coarse-grained model. 
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    2.5 Figures and Table  

 

 

Figure 2.1. a. AA and CG model representations showing how different AA models are mapped to the 

single bead CG model with different potential parameters.  b. Schematic representation of a deep neural 

network c. Deep learning-based methodology employed in this work to develop an atom agnostic 

framework for inverse liquid state theory. First, MD simulations are performed on a variety of LJ fluids at 

different thermodynamic states to generate RDFs, which are used for training, validation, and testing. 75 

percent of the RDFs (inputs) are subsequently used for training the DNN to generate atom agnostic force 

field parameters (outputs). The DNN loss function is monitored on 12.5 percent of the data, and then tested 

on the rest of the data. The DNN architecture is redesigned (as necessary) until the errors from training, 

testing and validation are within a specific tolerance (the solid lines denote the DL training and inference 

stages.). Once the training and assessment of the network is accomplished, either RDFs obtained from AA 

models or experimental data are used as input to the DNN to predict the force field parameters (transferring 

learning for coarse-graining is shown with dashed lines). Finally, the accuracy of the force field parameters 

is assessed using KL divergence and the total variation in RDFs of AA and CG models. 
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Figure 2.2. Comparison of the pair potential parameters determined from the DNN with the ground truth 

values for training, validation, testing, and transferability datasets. a-d. 𝐶12 parameter from training, 

validation, testing and transferability datasets. e-h. 𝐶6 parameter from training, validation, testing and 

transferability datasets. The mean absolute percentage error is also shown for each dataset (red circles, 

square, pentagon, and diamond points represent training, validation, testing, and transferability datasets, 

respectively, while black solid lines show a one-to-one mapping and black dash-dot lines denote lines 

parallel to the one-to-one mapping line with a distance of four times the square root of loss function of the 

training dataset. 99 percent of the training data are enclosed in this region. The region also encloses about 

99 percent of data of validation and testing datasets).  
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Figure 2.3. Calculation of the bulk pressure of Argon for different thermodynamic states. a. molecular 

dynamics simulations b. deep learning predicted potential parameters-based pressure.  
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Figure 2.4. Comparison of RDFs obtained with DNN-based (solid red line), relative entropy (dotted 

green line), simplex (dash-dot blue line) CG models and AA model. All the three methods show excellent 

match with the AA model results (shown as black circles). a. CO b. F2 c. CH4 
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Figure 2.5. Assessment of the coarse-grained force fields through total variation in RDF (first row) and Kullback-

Leibler divergence (second row) criteria. The parameter space is discretized into a mesh and  𝜖𝑟𝑑𝑓 and 𝜖𝐾𝐿 are 

computed at each mesh point. White cross points are the minimum values obtained from the two metrics, while red 

filled circles are predictions from deep learning. a, d. CO b, e. F2 c, f. CH4 
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Table 2.1. Thermodynamic states and the range of parameters used during MD simulation of single 

bead systems. 

 

Thermodynamic State Parameter Range 

𝜌 [𝑛𝑚−3] 𝑇 [𝐾] 𝐶12 [
𝑘𝐽

𝑚𝑜𝑙. 𝑛𝑚12
] 𝐶6 [

𝑘𝐽

𝑚𝑜𝑙. 𝑛𝑚6
] 

min 8.0 290.0 0.000005     0.00005 

max 19.4 400.0 0.0001   0.01   
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CHAPTER 3: Deep Denoising Autoencoder for Liquid Properties 
 

3.1 Introduction 

 

Molecular dynamics (MD) is a popularly used computational tool to compute microscopic and 

macroscopic properties and understand physics of atomic systems in many areas of science and 

engineering including soft and hard matter.63 The Newtonian equations of motion are solved numerically 

by MD simulation to determine the trajectory of every atom in the system as a function of position and 

time. In the case of liquids, which is the problem considered in this work, the atomic trajectories are used 

to compute properties such as the radial distribution function (RDF), pressure, isothermal compressibility, 

etc. Among these properties, RDF is an important quantity as it not only characterizes the local structure 

of the atomistic system, but it can also be used to calculate thermodynamic properties such as the 

pressure, energy, and isothermal compressibility.64 To estimate these properties, MD simulations are 

performed over very long times (ranging from several nanoseconds to several tens to hundreds of 

nanoseconds depending on the property and system of interest). Once equilibrium of the atomic system is 

attained, physical properties are computed using data from each MD snapshot and averaged over all the 

MD snapshots to minimize fluctuation in the estimated property. Several attempts have been made to 

incorporate signal processing and other statistical concepts with MD simulation to reduce fluctuation and 

noise in estimated properties.65–70 However, signal processing and Fourier series expansion-based 

methods generally suffer from mathematical complexity and poor performance in the context of atomistic 

scale simulation. Reducing the computational time to calculate various properties of atomistic systems 

can not only accelerate fundamental studies on soft- and hard-matter but also accelerate the development 

of bottom-up coarse-grained models33,71–73 where an accurate calculation of structural and thermodynamic 

properties is required and is commonly achieved through long and repetitive MD simulations.  

MD simulations generate a tremendous amount of data, which hasn’t been exploited to a great extent until 
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recently. The advent of concepts such as physics of big data and data-driven methods 34 during the last 

five years has opened up opportunities to address the problem of obtaining accurate RDF (and other 

properties, e.g. thermodynamic properties) from a short MD simulation instead of a long one. 

Furthermore, methods such as hybrid Monte Carlo74,75 for systems with slow relaxation can generate 

extensive datasets with rich physics such as the liquid-liquid phase-transition76,77 and nucleation78. Among 

the various data-driven methods, deep learning is a promising method, which has been successfully 

employed in various fields, including atomic scale simulation.34,38,42,79–84 Various deep neural networks 

have been developed,57 among which, autoencoder networks learn to encode data into a low-dimension 

representation ignoring noise in the data.85 Autoencoder networks map the data into a low-dimension, and 

then they map the low-dimension encoding back to the dimension of the data in an unsupervised manner. 

Recent studies have successfully employed various types of autoencoder networks in atomistic scale 

simulation.86–88 Among the various autoencoder networks, the deep denoising autoencoder (DAE) is an 

autoencoder network in which the input data is intentionally corrupted by adding additional noise, which, 

in turn, improves the robustness of the DAE network training compared with simple autoencoder 

network.89  

In this study, we explore the possibility of using the DAE network to estimate RDF of simple liquids 

using a single snapshot from MD instead of hundreds of snapshots. RDF obtained from a single snapshot 

of MD simulation has large fluctuations, which mimics the noise used in the DAE training. In particular, 

the DAE used in this study learns to map a single snapshot RDF into a temporally averaged RDF 

(obtained through averaging of RDF over a long MD simulation). Note that the fluctuations in a single 

snapshot RDF are inherent features of MD data. To train the DAE network, large-scale MD simulations 

of 12000 Lennard-Jones pair potentials at various thermodynamic states are carried out with a total 

simulation time of 24 𝜇𝑠. The data is generated through calculation of 800 single snapshots and 

corresponding temporally averaged RDFs of 12000 Lennard-Jones systems summing up to 9.6 million 

single snapshot RDFs. Once the data is generated, it is used to train the DAE network through 
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minimization of a loss function between DAE predicted and corresponding temporally averaged RDFs, 

i.e., the DAE learns to map any single snapshot RDF to its corresponding temporally averaged RDF. 

Furthermore, we combine traditional dimension reduction methods, specifically principal component 

analysis,90,91 with the DAE network. The objective of this approach is to take advantage of simplicity of a 

traditional method to reduce the size and training time of DAE network and to increase accuracy of the 

traditional method to the level of deep learning-based method. In this scheme, we change the DAE input 

vector from RDF to values of principle components.  

Once the DAE network is trained, we assess its performance in prediction of RDF of Lennard-Jones 

systems based on a single snapshot RDF of MD simulation. We investigate the generalizability of DAE 

network to other pair potentials describing monoatomic systems belonging to the class of simple liquids. 

In particular, we investigate the exponential,92 inverse-power-law (IPL),93 and Yukawa94 pair potentials. 

The methodology can be extended to other phases of matter as well as to complex systems described by, 

for example, the Stillinger-Weber potential95 with interesting physics such as liquid-liquid phase 

transition.77  

The rest of the chapter is organized as follows. First, we describe the details of MD simulations and DAE 

network. Then, we present results on the DAE network performance for structure and thermodynamic 

properties of Lennard-Jones liquids, followed by assessment of generalizability of DAE to other simple 

liquids. Finally, we summarize the results of this study.  

    3.2 Methods 

        3.2.1 Molecular Dynamics Simulation 

The training data for DAE is obtained through MD simulation of 12000 standard Lennard-Jones pair 

potentials at various thermodynamic states (shown in Table I) for a total simulation time of 24 𝜇𝑠. The 

Lennard-Jones potential form can be expressed as, 
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𝑢(𝑟) =
𝐶12

𝑟12
−

𝐶6

𝑟6
            

 (3.1) 

where 𝐶12(= 4𝜖𝜎12)  and 𝐶6(= 4𝜖𝜎6) are the potential parameters, and 𝜖 and 𝜎 are the energy- and 

length-scale parameters of the Lennard-Jones potential, respectively. Generalizability of the DAE 

network to other simple liquid pair potentials is assessed for IPL, exponential, and Yukawa pair potentials 

given by, 

𝑢𝐼𝑃𝐿(𝑟) =
𝐶𝑝

𝑟𝑝
−

𝐶𝑞

𝑟𝑞
 

(3.2) 

𝑢𝐸𝑋𝑃(𝑟) = 𝐴 exp(−𝑘𝐷𝑟) (3.3) 

𝑢𝑌𝑢𝑘𝑎𝑤𝑎(𝑟) = 𝐴
exp(−𝑘𝐷𝑟)

𝑘𝐷𝑟
 

(3.4) 

where 𝐶𝑝(= 4𝜖𝜎𝑝)  and 𝐶𝑞(= 4𝜖𝜎𝑞) are the repulsive and attractive components of the IPL pair potential 

with exponents 𝑝 and 𝑞(𝑝 > 𝑞), and 𝐴 and 𝑘𝐷 are the strength and inverse screening length parameters of 

EXP and Yukawa pair potentials (potential parameters are given in the Supplementary Information S.2). 

All the MD simulations are performed using GROMACS53 with a timestep of 1 fs in the NVT ensemble 

with the temperature being controlled with a time constant of 0.2 ps using the Nosé-Hoover thermostat. 

800 single snapshot RDFs of each system (for a total of 9.6 million single snapshots) at various times are 

calculated from 2 ns of simulation, where the first 200 ps is discarded. Each RDF is stored as an input 

vector along with its corresponding thermodynamic state, and the DAE output is the temporally averaged 

RDF.  The temporally averaged RDF (𝑔𝑟𝑒𝑓(𝑟)) is calculated using the expression, 

𝑔𝑟𝑒𝑓(𝑟) =
1

𝑁
∑ 𝑔𝑡𝑗

(𝑟)

𝑁

𝑗=1

 

(3.5) 

where 𝑔𝑡𝑗
(𝑟) is the RDF at time 𝑡𝑗 corresponding to snapshot 𝑗, and, 𝑗 proceeds over all snapshots of MD 

trajectory, i.e., 𝑗 ∈ {1, 2, … , 𝑁}.  Once the temporally averaged RDF is obtained, the thermodynamic 
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properties such as pressure (𝑃) and isothermal compressibility (𝒳𝑇) can be calculated using the 

expressions, 

𝑃 = 𝜌𝑘𝐵𝑇 −
2𝜋𝜌2

3
∫

𝜕𝑢

𝜕𝑟
𝑔(𝑟)𝑟3𝑑𝑟

𝑟

0

 
(3.6) 

𝒳𝑇 =
1

𝜌𝑇
[1 + 4𝜋𝜌 ∫ (𝑔(𝑟) − 1)𝑟2𝑑𝑟

∞

0

] 
(3.7) 

where 𝑇 and 𝜌 are the temperature and density, respectively, and 𝑘𝐵 is the Boltzmann constant. In 

practice, the integration for calculation of isothermal compressibility is done for a finite cut-off, which we 

set to 1.5 𝑛𝑚 as the RDF is almost homogeneous beyond this distance.  

The temporally averaged RDF of a system at a given thermodynamic state (𝑇, 𝜌) can also be written as 

the summation of a single snapshot RDF at time 𝑡𝑗 (𝑔𝑡𝑗
(𝑟;  𝑇, 𝜌)) and a distance- and time-dependent 

fluctuation (𝜖𝑡𝑗
(𝑟;  𝑇, 𝜌)) expressed as, 

𝑔𝑟𝑒𝑓(𝑟;  𝑇, 𝜌) = 𝑔𝑡𝑗
(𝑟;  𝑇, 𝜌) + 𝜖𝑡𝑗

(𝑟;  𝑇, 𝜌) (3.8) 

where 𝜖𝑡𝑗
(𝑟;  𝑇, 𝜌) is the fluctuation in the RDF of a single snapshot at time 𝑡𝑗. The DAE in this study 

learns to eliminate the fluctuation term in Eq. 3.8 (discussed in more detail in the next section, see Figure 

3.1a for the workflow of current study).  

The generalizability of the DAE network to various simple liquids with different pair potentials is also 

investigated in terms of RDF error33 expressed as, 

𝜖𝑟𝑑𝑓(𝑔𝑒𝑠𝑡(𝑟), 𝑔𝑟𝑒𝑓(𝑟)) =
∫ |𝑔𝑒𝑠𝑡(𝑟) − 𝑔𝑟𝑒𝑓(𝑟)

𝑟𝑐𝑓

0
| 𝑟2𝑑𝑟

∫ 𝑔𝑟𝑒𝑓(𝑟)𝑟2𝑑𝑟 
𝑟𝑐𝑓

0

 
(3.9) 

where 𝑔𝑒𝑠𝑡(𝑟) and 𝑔𝑟𝑒𝑓(𝑟) are the estimated and reference (longtime averaged MD simulation data) 

RDFs, respectively.  
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        3.2.2 Denoising Autoencoder Network 

Deep neural networks are generally composed of simple units known as a perceptron or node, which are 

stacked in width (referred to as a layer) and in depth (successive layers). Each node receives an input 

signal, applies a linear transformation, followed by a nonlinear activation function resulting in an output 

signal.38,57  A simple autoencoder network has two parts, namely encoder and decoder, both of which are 

usually modeled using deep neural networks. The encoder network receives the input and maps it into a 

low-dimensional (usually smaller than the input dimension) space, also known as a latent space. Then, the 

latent space is fed into the decoder network, which maps it back to a dimension equal to the input data 

dimension. The main difference between a simple autoencoder and a DAE is intentional corruption of the 

input of DAE through noise, which, in turn, enhances the robustness of DAE compared to a simple 

autoencoder (schematic representation of a DAE is shown in Figure 3.1b). 

The DAE network employed in this study learns to map a single snapshot RDF and the corresponding 

thermodynamic state to its temporally averaged (long-time average) RDF of an MD simulation. The DAE 

network is trained over 12000 distinct Lennard-Jones liquids at various thermodynamic states with 9.6 

million single snapshot RDFs. It is important to note that noise is not added to the input RDF as the 

inherent fluctuations in a single snapshot RDF play the role of noise in training the DAE network, i.e., 

each of the 800 RDFs of a given system is a noisy version of the temporally averaged RDF of the same 

system. Mathematically, the DAE network performs the following mapping, 

𝑔𝐷𝐴𝐸;𝜌,𝑇(𝑟) =  𝐷𝐴𝐸(𝑔𝑡𝑗
(𝑟); 𝜌, 𝑇) (3.10) 

where 𝑔𝐷𝐴𝐸;  𝜌,𝑇(𝑟) and 𝑔𝑡𝑗,𝜌,𝑇(𝑟) are temporally averaged RDF predicted by the DAE network and MD 

RDF at time 𝑡𝑗(corresponding to a specific snapshot), respectively. The parameters (weights and biases of 

the encoder and decoder) in the DAE network are optimized to minimize the following expectation, 

min 𝔼 [|𝑔𝑟𝑒𝑓;𝜌,𝑇(𝑟) − 𝑓𝑑 (𝑓𝑒 (𝑔𝑡𝑗
(𝑟); 𝑇, 𝜌)) |] (3.11) 
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where 𝑓𝑒 and 𝑓𝑑 are encoder and decoder functions, respectively. Both functions are selected from a 

flexible class of functions modeled using deep neural network and can be expressed as, 

𝑓𝑒(𝑥𝑖,𝑡𝑗
) = 𝜙𝑜

𝑒[𝑾𝑜
𝑒𝜙𝑛ℎ

𝑒 (… 𝜙2
𝑒[𝑾2

𝑒𝜙1
𝑒 (𝑾1

𝑒𝑥𝑖,𝑡𝑗
+ 𝒃1

𝑒) + 𝒃2
𝑒  ]) + 𝒃𝑜

𝑒] (3.12) 

𝑦𝑖,𝑡𝑗
= 𝜙𝑙(𝑾𝑙𝑓𝑒 (𝑥𝑖,𝑡𝑗

) + 𝑏𝑙) (3.13) 

𝑓𝑑(𝑦𝑖,𝑡𝑗
) = 𝜙𝑜

𝑑[𝑾𝑜
𝑑𝜙𝑛ℎ

𝑑 (… 𝜙2
𝑑[𝑾2

𝑑𝜙1
𝑑 (𝑾1

𝑑𝑦𝑖,𝑡𝑗
+ 𝒃1

𝑑) + 𝒃2
𝑑  ]) + 𝒃𝑜

𝑑] (3.14) 

where 𝑥𝑖,𝑡𝑗
 is the input vector composed of a concatenation of single snapshot RDF at time 𝑡𝑗, 

temperature, and density (𝑥𝑖,𝑡𝑗
= [𝑔𝑖,𝑡𝑗

(𝑟), 𝑇𝑖, 𝜌𝑖]) for the Lennard-Jones system 𝑖, 𝑦𝑖,𝑡𝑗
 is the output of 

encoder, i.e., latent space (𝑦𝑖,𝑡𝑗
= 𝜙𝑙(𝑾𝑙𝑓𝑒 (𝑥𝑖,𝑡𝑗

) + 𝑏𝑙)), and index 𝑖 specifies a specific Lennard-Jones 

system in the dataset (𝐷), and index 𝑗 represents snapshot 𝑗 RDF of system 𝑖 at time 𝑡𝑗 (∈ {𝑇}𝑖 =

{1, 2, … , 𝑇𝑛}𝑖, where  𝑛(= 800) is the total number of snapshots stored from MD simulation of system 𝑖). 

𝑔𝑖,𝑡𝑗
(𝑟) is composed of RDF values at various radial distances with a bin size of 0.005 nm for the RDF 

interval [0.25, 1.5] nm. 𝜙𝑘 is the nonlinear activation function of layer k, which receives a linear 

transformation of output of layer k-1 (𝑾𝑗𝜙𝑘−1 + 𝒃𝑘  ). Each layer has its own weights 𝑾𝑘  and bias 

𝒃𝑘with consistent dimensions corresponding to the output of its previous layer and its number of nodes 

(𝑾𝑘 ∈ 𝑅𝑑𝑘−1×𝑑𝑘  and 𝒃𝑘 ∈ 𝑅𝑑𝑘, where 𝑑𝑘 is the number of nodes in layer k). Optimal DAE used for 

obtaining the results in this study has 𝑡𝑎𝑛ℎ nonlinearity function for all the layers except the decoder 

output layer, which has no nonlinearity. 

In practice, DAE minimizes the following loss function, 

𝜖ℒ𝐷𝐴𝐸 
= 𝜖ℒ𝑅

+ 𝜖ℒ𝑅𝑒𝑔
 (3.15) 

where 𝜖ℒ𝑅
 and 𝜖ℒ𝑅𝑒𝑔

 are the reconstruction and regularization losses, respectively. 𝜖ℒ𝑅
defines the match 

between the output of the DAE network with the ground truth (temporally averaged RDF of MD 
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simulation). In this study, we use the mean absolute error (MAE) (the MAE between output of DAE and 

temporally averaged RDFs) to model the reconstruction loss, i.e., 

𝜖ℒ𝑅
=

1

|𝐷||𝑇|
∑ ∑ |𝑥𝑖;𝑇𝑖,𝜌𝑖

− 𝑓𝑑 (𝑓𝑒 (𝑥𝑖,𝑡𝑗
; 𝑇𝑖 , 𝜌𝑖))|

𝑡∈{𝑇𝑖}𝑖∈{𝐷}

 
(3.16) 

where |𝐷| and |𝑇| are the number of Lennard-Jones systems and snapshots, respectively. The 

regularization loss is defined as, 

𝜖ℒ𝑅𝑒𝑔
= 𝛾 ∑‖𝑾ℎ‖2

ℎ

 
(3.17) 

where 𝑾ℎ  are the weights of hidden layers of both encoders and decoders in Eq. 3.12 and 3.14, and 𝛾 is 

the regularization factor added for stability purpose and preventing over-fitting (𝛾 ∈

{0.001, 0.0005, 0.0001}). The adaptive moment estimation optimizer 58 is employed to minimize the loss 

function (𝜖ℒ𝐷𝐴𝐸 
). In addition to the above regularization procedure, the dropout technique is also applied 

to DAE network layers to avoid overfitting.59 The dropout technique randomly drops nodes in different 

layers with a specific probability, therefore, training only a fraction of weights (𝑾) and biases (𝒃) of each 

layer at each training step. The DAE network nodes are dropped with a probability of 0.25. Various DAE 

architectures are trained in order to find the optimal network with satisfactory performance over both the 

training and validation datasets (we divide the data set of 12000 Lennard-Jones systems into two sets, 

namely training and validation data sets with 9600 and 2400 systems assigned to each set, respectively. 

The simple liquids RDFs play the role of testing data set in this study, see the Appendix B.1). To find 

optimal networks, we perform multiple training with various architectures. Based on the results of initial 

experiments, we guide our architecture selection and narrow down our search space to the three-layer 

networks with 2 different architectures, which are trained extensively.  The optimal network encoder has 

three fully connected layers with dimensions of 250, 200, and 150, respectively. The latent space has a 

dimension of 100, which gets fed into the decoder with three fully connected layers each with a 

dimension of 150, 200, and 250, respectively.  
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Furthermore, we determine the sampling gain (𝑁𝑇) as the minimum number of single snapshot RDFs 

needed in MD such that the average of 𝑁𝑇 RDFs (𝑔𝑀𝐷𝑁𝑇
(𝑟) = (1/𝑁𝑇) ∑ 𝑔𝑡𝑗

(𝑟
𝑁𝑇
𝑗=1 )) has a smaller error, 

𝜖𝑟𝑑𝑓(𝑔𝑀𝐷𝑁
(𝑟)  , 𝑔𝑟𝑒𝑓(𝑟)) compared to the DAE predicted RDF error 𝜖𝑟𝑑𝑓(𝑔𝐷𝐴𝐸(𝑟), 𝑔𝑟𝑒𝑓(𝑟)). As DAE 

requires only one snapshot, the sampling gain can be expressed as, 

𝑁𝑇 = {min 𝑁 ; 𝜖𝑟𝑑𝑓(𝑔𝑀𝐷𝑁
(𝑟)  , 𝑔𝑟𝑒𝑓(𝑟)) < 𝜖𝑟𝑑𝑓(𝑔𝐷𝐴𝐸(𝑟), 𝑔𝑟𝑒𝑓(𝑟))}. (3.18) 

    3.3 Results and Discussions 

Once the DAE network is trained and an optimal architecture is found, we examine the performance of 

DAE by considering two different cases. First, we investigate the performance of DAE on monoatomic 

systems described using the Lennard-Jones pair potential. Then, we investigate its generalizability to 

various simple liquids.  

We present a comparison of DAE with traditional approaches such as the principal component analysis 

and independent component analysis in Supporting Information, B.3. The Supporting Information also 

provides details on why the principal component analysis and independent component analysis are not 

very accurate for denoising of RDFs. The assumptions commonly used in these methods, specifically 

independent and identically distributed Gaussian noise, are assessed for denoising using the departure test 

from normality96 and mutual information97,98. The supporting Information B.4 provides information on 

how to combine principal component analysis with DAE to decrease the number of nodes and size of the 

DAE network.  

        3.3.1 Lennard-Jones Pair Potential  

We feed single snapshot RDFs of three randomly selected Lennard-Jones systems from training and 

validation datasets into the DAE network (potential parameters and thermodynamic states are provided in 

the Supporting Information Section B.2). The predicted average RDFs are shown in Figure 3.2, which 

indicate a good match between DAE predicted and temporally averaged RDFs. The grey region in Figure 
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3.2 shows the fluctuations (𝜖𝑡𝑗
(𝑟; 𝜌, 𝑇)) of single snapshot RDFs around the temporally averaged RDF of 

MD. The insets in Figure 2 show the error distribution of single snapshot RDFs and DAE prediction, i.e., 

𝜖𝑟𝑑𝑓 (𝑔𝑀𝐷𝑡𝑗
(𝑟), 𝑔𝑟𝑒𝑓(𝑟)) and 𝜖𝑟𝑑𝑓(𝑔𝐷𝐴𝐸(𝑟), 𝑔𝑟𝑒𝑓(𝑟)). The error distribution of DAE predicted RDF is 

narrower compared with the error distribution of single snapshot RDFs of MD. The distribution of 

𝜖𝑟𝑑𝑓(𝑔𝐷𝐴𝐸(𝑟), 𝑔𝑟𝑒𝑓(𝑟)) has a smaller mean compared with the mean of 𝜖𝑟𝑑𝑓 (𝑔𝑀𝐷𝑡𝑗
(𝑟), 𝑔𝑟𝑒𝑓(𝑟)) 

distribution, indicating that the error in the DAE predicted RDF is fairly independent of the input (single 

snapshot RDF) and the DAE network predicts the temporally averaged RDF with good accuracy. 

To assess the efficiency of DAE, we estimate the number of single snapshot RDFs required so that the 

average RDF estimated from the single snapshot RDFs is of the same accuracy as the DAE predicted 

RDF, i.e., 𝜖𝑟𝑑𝑓 (𝑔𝑀𝐷𝑁𝑇
(𝑟), 𝑔𝑟𝑒𝑓(𝑟)) ≤ 𝜖𝑟𝑑𝑓(𝑔𝐷𝐴𝐸(𝑟), 𝑔𝑟𝑒𝑓(𝑟)) , where 𝑁𝑇 is the sampling gain defined 

in Eq. 3.17. Figure 3.3 shows the error in RDF (computed using Eq. (3.9)) as a function of the number of 

snapshots. RDF error from DAE is independent of the number of snapshots, i.e., once the DAE is trained, 

it takes a noisy RDF as input and predicts the RDF which is close to temporally averaged RDF. As the 

number of snapshots increase, the averaging gets better in MD and the RDF error decreases. Figure 3 also 

indicates that the number of snapshots required to reach the accuracy of DAE prediction is at least 100 

and in some cases even with 800 snapshots the DAE prediction has a smaller error.  

To further assess the DAE performance, we performed MD simulations on Argon (𝐶12 = 9.70 ×

10−6  [
𝑘𝐽

𝑚𝑜𝑙.𝑛𝑚12] , 𝐶6 = 6.22 × 10−3 [
𝑘𝐽

𝑚𝑜𝑙.𝑛𝑚6]99) at various thermodynamic states. The single snapshot 

(used as input to DAE), DAE predicted, and temporally averaged RDFs are shown in Figure 3.4. The 

error between DAE predicted and temporally averaged RDF (Eq. 3.9) is an order of magnitude smaller 

compared to the error between single snapshot and temporally averaged RDFs.  Table 2 shows the 

relative pressure and isothermal compressibility obtained from MD (averaged over 300 snapshots) and 

DAE (same 300 snapshots are used as inputs and the output is averaged). The pressure and isothermal 
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compressibility are normalized with their corresponding long-time averaged MD data. The mean value of 

pressure and isothermal compressibility is close to 1. However, the standard deviation in isothermal 

compressibility from DAE is an order of magnitude smaller compared to that from MD. These results 

indicate that DAE is a good method to calculate the pressure and isothermal compressibility in addition to 

RDF. Transferability of the DAE network to unforeseen thermodynamic states is also investigated and the 

results are shown in appendix B.1.  

        3.3.2 Simple Liquids 

In order to assess the generalizability of the DAE network, we investigate its performance by considering 

various simple liquids, which are known to obey similar physics with regards to their structure and 

dynamics (potential parameters and thermodynamic states are provided in the Supporting Information 

Section B.2). We feed the single snapshot RDFs obtained from exponential, Yukawa, and two different 

IPLs into the DAE network. The DAE predicted and temporally averaged RDFs, shown in Figure 3.5 are 

in good agreement. The distributions of 𝜖𝑟𝑑𝑓 (𝑔𝑀𝐷𝑡𝑗
(𝑟), 𝑔𝑟𝑒𝑓(𝑟)) and 𝜖𝑟𝑑𝑓(𝑔𝐷𝐴𝐸(𝑟), 𝑔𝑟𝑒𝑓(𝑟)) are also 

similar to the Lennard-Jones systems with the peak of 𝜖𝑟𝑑𝑓 (𝑔𝑀𝐷𝑡𝑗
(𝑟), 𝑔𝑟𝑒𝑓(𝑟)) located further apart from 

zero compared to the DAE 𝜖𝑟𝑑𝑓(𝑔𝐷𝐴𝐸(𝑟), 𝑔𝑟𝑒𝑓(𝑟)). Furthermore, similar to the Lennard-Jones system, 

the DAE error has a narrower distribution compared with the error distribution from MD single snapshot 

RDFs. These results indicate the generalizability of the DAE network to other monoatomic systems, 

especially those belonging to the class of simple liquids. The average error between DAE predicted and 

longtime MD RDF is 0.001, 0.002, 0.002, and 0.002 for exponential, 10-4 IPL, 14-8 IPL, and Yukawa 

pair potential, respectively, Similarly, the average error between single snapshots and longtime MD RDF 

is 0.037, 0.037, 0.042, and 0.033 for exponential, 10-4 IPL, 14-8 IPL, and Yukawa pair potential, 

respectively. The results again indicate that the error in DAE predicted RDFs are one order of magnitude 

smaller compared to the error in single snapshot RDFs. 
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    3.4 Conclusions  

A deep denoising autoencoder network is trained to obtain structural and thermodynamic properties of 

Lennard-Jones liquids at various thermodynamic states using a single snapshot RDF as input. The 

algorithm is successful not only in predicting the RDF of a Lennard-Jones pair potential, but also it is 

generalizable to other simple liquid pair potentials such as exponential, Yukawa, and inverse-power-law 

potentials. For the simple liquids considered in this work, the radial distribution functions (RDFs) 

predicted by the denoising autoencoder network have an order of magnitude lower RDF error compared 

to the errors from using single snapshot RDFs. In terms of computational efficiency, the number of 

snapshots required from MD simulation to obtain the accuracy of DAE predicted RDF is at least hundred 

snapshots, making the network highly efficient. The pressure and isothermal compressibility from DAE 

based RDFs are also comparable with those obtained from longtime MD simulation.  

    3.5 Figures and Table  

 

 

Figure 3.1. a. Schematic representation of workflow of current study. Training (shown with solid lines) is done 

for the Lennard-Jones liquids with various potential parameters and thermodynamic states and generalizability 

(shown with dashed lines) is assessed for various simple liquids. b. Schematic representation of the denoising 

autoencoder (DAE) network (Figure 3.1 (cont.)). 
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Figure 3.2. Assessment of the performance of DAE for prediction of temporally averaged RDF based on 

a single snapshot RDF for six randomly selected Lennard-Jones systems (please see Table B.2). a-c. 

Training dataset d-f. Validation dataset. Solid red lines show the DAE prediction and dashed black lines 

show temporally averaged MD. The grey region shows fluctuations of single snapshot RDFs around the 

temporally averaged RDF. The insets show the distribution of 𝜖𝑟𝑑𝑓(𝑔𝐷𝐴𝐸(𝑟), 𝑔𝑟𝑒𝑓(𝑟)) from various 

single snapshots of MD simulation with red boxes and 𝜖𝑟𝑑𝑓 (𝑔𝑀𝐷𝑡𝑗
(𝑟), 𝑔𝑟𝑒𝑓(𝑟)) of single snapshots 

RDFs with black boxes. 
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Figure 3.3. Error in RDF as a function of the number of snapshots. Error in RDF from DAE is 

independent of the number of snapshots. RDF error from MD decreases as the number of snapshots 

increase. a-c. Training dataset d-f. Validation dataset. 
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Figure 3.4. Comparison between DAE predicted (shown as solid red line) and temporally averaged 

(shown as dashed black line) RDFs for Argon Lennard-Jones system at various thermodynamic states. 

Input RDF (a snapshot from MD) to DAE is shown using grey circles. a. 𝑇 =  300 𝐾, 𝜌 = 10 𝑛𝑚−3 b. 

𝑇 =  300 𝐾, 𝜌 = 18 𝑛𝑚−3  c. 𝑇 =  390 𝐾, 𝜌 = 10 𝑛𝑚−3  d. 𝑇 =  390 𝐾, 𝜌 = 18 𝑛𝑚−3.   
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Figure 3.5. Assessment of the generalizability of DAE for prediction of temporally averaged RDF of 

various simple liquids. a. Exponential pair potential b. IPL pair potential (𝑝, 𝑞) = (10,4) c. IPL pair 

potential (𝑝, 𝑞) = (14,8) d. Yukawa pair potential (please see Table S3 of the Supplementary 

Information Section S.2 for the details of MD simulations). Solid red lines show the DAE predicted RDF, 

and dashed black lines show the temporally averaged RDF of MD simulation. Grey regions show the 

fluctuations in RDFs of MD snapshots around the mean (temporally averaged) RDF. The insets show the 

distribution of 𝜖𝑟𝑑𝑓(𝑔𝐷𝐴𝐸(𝑟), 𝑔𝑟𝑒𝑓(𝑟)) from various single snapshots with red boxes and 

𝜖𝑟𝑑𝑓 (𝑔𝑀𝐷𝑡𝑗
(𝑟), 𝑔𝑟𝑒𝑓(𝑟)) of single snapshots with black boxes. 
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Table 3.1. Mean and standard deviation of pressure and isothermal compressibility from MD (averaged 

over 300 snapshots) and DAE (same 300 snapshots were used as inputs and the outputs are analyzed). Both 

pressure and isothermal compressibility are normalized with their corresponding values from long-time MD 

simulation average. 

S
y

st
em

 

Thermodynamic 

State 

𝑃/𝑃𝑀𝐷 𝒳𝑇/𝒳𝑇,𝑀𝐷 

𝜌 [𝑛𝑚−3] 𝑇 [𝐾] 𝑀𝐷𝐹𝑟𝑎𝑚𝑒 𝐷𝐴𝐸 𝑀𝐷𝐹𝑟𝑎𝑚𝑒 𝐷𝐴𝐸 

1 10.0 300 1.00 ± 0.045 1.00 ± 0.049 1.00 ± 0.0155 1.00 ± 0.0031 

2 18.0 300 1.01 ± 0.028 1.00 ± 0.028 1.00 ± 0.0052 1.00 ± 0.0003 

3 10.0 390 1.00 ± 0.035 1.00 ± 0.034 1.00 ± 0.0134 1.00 ± 0.0024 

4 18.0 390 1.01 ± 0.025 0.99 ± 0.027 1.00 ± 0.0058 1.00 ± 0.0003 
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CHAPTER 4: Quasi-Universality Through Deep and Statistical Learning  
 

    4.1 Introduction 

 

Liquids are a condensed and non-crystallized phase of matter where their properties are typically 

governed by many-body effects. The inherent complexities associated with many-body systems, 

particularly liquids, hinder the development of simplified analytical and theoretical approaches, which, in 

turn, makes it difficult to fundamentally understand the physics of liquids and their properties. On the 

other hand,  atomistic simulations, e.g., molecular dynamics (MD) simulations, have played a crucial role 

in providing fundamental insights into the structure, dynamics, thermodynamics, and transport of 

liquids.100 Computational studies of liquids, for example, have led to the identification of quasi-universal 

(QU) properties 10,101 of simple liquids (SLs), which refer to the class of liquids having approximately the 

same structural (e.g., radial distribution function (RDF)) and dynamical properties.10,64,102–107 The term QU 

is used instead of universality to delineate the fact that systems with distinct pair potentials have different 

properties (e.g., thermodynamic properties), however, they exhibit similar behavior concerning other 

properties (e.g., structural and dynamical properties).16 Formally, SLs are defined either as liquids whose 

first coordinate shell determines the structure and dynamics, i.e., reducing the interatomic potential cut-

off to the first coordinate shell does not affect the structure and dynamics of liquids or liquids exhibiting a 

strong energy-virial correlation. Both definitions are used to understand similarities in the underlying 

physics of SLs with regard to their structure and dynamics.10,108,109 In particular, understanding the quasi-

universality of SLs can be essential to understand the fundamentals of liquid physics as structural 

quantities, such as RDF, can be used to determine the thermodynamic properties such as pressure, energy, 

and compressibility, besides quantifying the local structure of atomistic systems.110  

The structural quasi-universality of SLs only holds in a specific part of the phase diagram of various pair 

potentials such as exponential (EXP), Yukawa, and inverse-power-law (IPL). Among these potentials, the 



40 
 

standard 12-6 Lennard-Jones (LJ) belonging to the IPL pair potential family and the exponential (EXP) 

pair potential have played an important role in the computational and theoretical analysis of liquids.10,111 

The LJ potential93 is composed of repulsive and attractive parts and is widely used in the computational 

analysis of SLs and various other physicochemical and biological systems.112–114 On the other hand, EXP 

potential has been widely used for the theoretical understanding of SLs and recent studies have suggested 

replacing the hard-sphere model115,116 with the EXP model as the building block of liquid physics.10 In 

general, theoretical models indicate the dominant role of repulsive forces in the long and intermediate 

wave vectors of structure factor and attraction in the small wave vectors with dependency on the 

thermodynamic state.117,118 Even though MD simulations and theoretical models of various SLs have 

provided insight into the SLs physics and quasi-universality, many aspects of SLs remain to be 

understood; for example, a method for predicting force distribution without MD simulation.108,117,119,120  

In this study, we approach the physics and quasi-university of SLs using two perspectives: using 

statistical methods in the first part and deep learning methods in the second part. In the first part, we 

develop a simple statistical model to predict the probability distribution function (PDF) of a net force, 

where developing an analytical solution is intractable, even for SLs, and the problem itself is less 

explored.121–123 Our model shows the non-uniqueness of pair potential forms with similar net force PDF 

among SLs and describes the individual pair force cancellation. Furthermore, it provides a route to 

parameterize pair potential forms with a similar PDF of the net force. Therefore, our method has 

applications for coarse-graining and multiscale studies, where both RDF and PDF of forces are available 

from simulation or experiment.  

Before the discussion on the second part of our work, we describe details of the statistical method. We 

start from the definition of net force and formulate it as a statistical problem.  In the statistical 

formulation, the PDF of the net force is obtained by sampling the PDF of radial distance (which is 

directly related to RDF, p(r) = {

g(r)r2

∫ g(r)r2dr
rcf

0

    if r < rcf

0                        if r ≥ rcf

) and the probability mass function (PMF) of the 
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neighbor list size (number of atoms within the cutoff distance from a tagged particle, 𝒩(𝑖) =

{𝑗: ∀ 𝑗 𝑖𝑓 𝑟𝑖𝑗 < 𝑟𝑐𝑓}). The pair potential plays the role of transformation from the PDF of radial distance 

and PMF of neighbor list size to the PDF of the net force. Next, we show that the transformation from a 

given variable to another variable is not unique consistent with the quasi-universality. Similarly, the pair 

potential form should not be unique for a given net force PDF. Furthermore, we show that our statistical 

model can be used to optimize the parameters of various pair potentials to find SL systems with similar 

PDF of a net force, which, in turn, leads to having similar RDF with various pair potentials. We also note 

that like previous approaches,118,121,124 we have few approximations, e.g., mean-field and independence 

between random variables of our statistical model. We verify our model by examining its performance for 

different pair potentials at different thermodynamic states, and we observe good agreement between its 

results and MD ones. Within our model, it is easy to use the information theory-based methods for the 

inverse problem, where the PDF of force is known and not potential parameters i.e., coarse-graining with 

the combination of structure and force. 

In the second part, we use a deep learning-based method to investigate thermodynamic states other than 

the reference simulation, which is a bottleneck for our statistical method. To do so, we connect 

DeepILST, developed in our prior work80, to the study of SLs. We start with finding the structurally-

equivalent LJ liquids, defined as LJ liquids having the same reduced RDF (g̃ = g(ξ), where ξ = rρ1/3). In 

other words, we find isomorphs of LJ liquids, curves with invariant structures. After obtaining various 

structurally-equivalent LJ liquids through the DeepILST, we find constant order-parameter systems in the 

non-dimensional temperature and density space. Then, we assess generalizability of the DeepILST in 

parameterizing structurally-equivalent LJ potential for various pair potential forms.  The formalization of 

deep learning model is based on the Henderson theorem, which states the relation between a given RDF 

and the pair potential is unique up to a constant16,125 (note even though recent studies show that the small 

deviation in the structure can lead to a completely different pair potential,12,126 however, consistent with 

any structure-based coarse-graining methods14,24,31,127, our approach converges to the optimal LJ potential 
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parameters after learning over a large amount of data of LJ potential, especially considering the restriction 

of the pair potential form in our study). Consistent results between DeepILST and theoretical models 

show promising applications and potentials of deep learning models in the physics of SLs similar to its 

success in the other areas of physics of big data34,45,79,82,128–132. The workflow of both parts, namely 

statistical- and deep-learning parts, is shown in Figure 4.1 along with the objectives of each method.  

The rest of the paper is organized as follows. First, we describe the details of MD simulations and 

statistical and deep learning-based methods. Then, we present the results to validate the statistical model, 

followed by the results to assess consistency and applications of the DeepILST with the structural quasi-

universality of SLs, as well as the ability of DeepILST in the study of SLs. Finally, we summarize the 

findings of this study.  

    4.2 Methods  

        4.2.1 Molecular Dynamics Simulation 

The training data for DeepILST is obtained through MD simulation of various 12-6 LJ pair potentials at 

various thermodynamic states with a total simulation time of 52 𝜇𝑠. The LJ potential form can be 

expressed as, 

𝑢𝐿𝐽(𝑟) =
𝐶12

𝑟12
−

𝐶6

𝑟6
 

(4.1) 

where 𝐶12(= 4𝜖𝜎12) and 𝐶6(= 4𝜖𝜎6) are repulsive and attractive parameters of the LJ pair potential, 

respectively. In particular, we study the following QU pair potentials, 

𝑢𝐼𝑃𝐿,𝑝,𝑞(𝑟) =
𝐶𝑝

𝑟𝑝
−

𝐶𝑞

𝑟𝑞
 

(4.2) 

𝑢𝐸𝑋𝑃(𝑟) = 𝐴 exp(−𝑘𝐷𝑟) (4.3) 
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𝑢𝑌𝑢𝑘𝑎𝑤𝑎(𝑟) = 𝐴
exp(−𝑘𝐷𝑟)

𝑘𝐷𝑟
 

(4.4) 

where 𝐶𝑝(= 4𝜖𝜎𝑝)  and 𝐶𝑞(= 4𝜖𝜎𝑞) are the repulsive and attractive parameters of the IPL pair potential 

with an exponent of 𝑝 and 𝑞, respectively. 𝐴 and 𝑘𝐷 are the strength and inverse screening length 

parameters of EXP and Yukawa pair potentials. All the MD simulations are performed using GROMACS 

53 with a timestep of 1 fs in the NVT ensemble with the temperature being controlled by a time constant 

of 0.2 ps using the Nosé-Hoover thermostat (thermodynamic states and potential parameters are provided 

in the Supporting Information Section C.1). Each system is simulated for 2 ns after energy minimization. 

Then, MD trajectories are processed to calculate RDF from the last 1.8 ns. 

     4.2.2 Statistical Model  

A statistical model is employed to obtain the PDF of instantaneous net forces, which governs the motion 

of atoms. The net force on particle 𝑖 can be expressed as the sum of the pair forces exerted by all the 

neighboring particles (denoted by 𝒩(𝑖) = {𝑗: ∀ 𝑗 𝑖𝑓 𝑟𝑖𝑗 < 𝑟𝑐𝑓}, where 𝑟𝑐𝑓 is the cutoff distance and 𝑟𝑖𝑗  is 

the radial distance between particles 𝑖 and 𝑗). Mathematically, the net force can be expressed as, 

𝑭𝑖 = ∑ −
𝜕𝑢

𝜕𝒓
|

𝒓=𝑟𝑖𝑗.𝒆𝑖𝑗𝑗 ∈ 𝒩(𝑖)

= ∑ −𝑢′(𝑟𝑖𝑗)

𝑗 ∈ 𝒩(𝑖)

. 𝒆𝑖𝑗 
(4.5) 

where 𝑭𝑖 is the net force on particle 𝑖. 𝑢′ is the first-order derivative of pair potential, i.e., 𝑢′(𝑟𝑖𝑗) is the 

value of individual pair force. 𝑟𝑖𝑗 and 𝒆𝑖𝑗  (=
𝒓𝑖𝑗

𝑟𝑖𝑗
) denote the distance and unit vector of the radial distance 

vector between particles 𝑖 and 𝑗, respectively. In the statistical model, 𝑟𝑖𝑗 is treated as a random variable 

with its PDF obtained directly from MD simulation. Similarly, the size of the neighbor list, i.e., the 

summation index (𝒩(𝑖)) in Eq. 4.5, is considered as an independent random variable with its PMF 

calculated using MD simulation.  
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The isotropic nature of a pair potential leads to a uniform distribution over components of the unit vector 

of radial distance, i.e., the components of the force are identical. Therefore, the distribution of the unit 

vector can be written as, 

𝒆𝑖𝑗 = √1 − 𝑣2 cos 𝜃 𝒆𝑥 + √1 − 𝑣2 sin 𝜃 𝒆𝑦 + 𝑣 𝒆𝑧 (4.6) 

where 𝑣  and 𝜃 are independent and uniformly distributed random variables representing the orientation 

of unit vector (𝑝(𝜃) =
1

2𝜋
 ∀ 𝜃 ∈ [0, 2𝜋) and 𝑝(𝑣) =

1

2
 ∀ 𝑣 ∈ [−1,1]. Having all the above assumptions 

set, the PDF of force (𝑝(𝐹𝑖) = 𝑝(∑ 𝑢′(|𝑟𝑖𝑗|)𝑗 ∈ 𝒩(𝑖) ) where 𝐹𝑖  represents the Cartesian components of 𝑭𝑖) 

can be determined using the law of total probability as expressed below, 

𝑝(𝐹𝑖) = ∑ 𝑝(|𝒩(𝑖)| = 𝑁)

∀ 𝑁> 0

𝑝( ∑ −𝑢′(𝑟𝑚)

𝑁

𝑚=1

. 𝑒𝑚) 
(4.7) 

where the inner most sum is 𝑁 times convolution of PDF of 𝑢′(𝑟𝑚)𝑒𝑚.  𝑒𝑚 is any component of the unit 

vector, which has a uniform PDF according to Eq. 4.6. 𝑝(−𝑢′(𝑟𝑚)𝒆𝑚) is obtained through statistical 

sampling based on the inverse transform sampling of cumulative distribution function (CDF) of 𝑟𝑚 

(denoted by 𝑐𝑑𝑓(𝑟𝑚) = ∫ 𝑝(𝑟)𝑑𝑟
𝑟𝑚

−∞
, where 𝑝(𝑟) denotes the PDF of 𝑟 and is related to RDF, 𝑝(𝑟) =

{

𝑔(𝑟)𝑟2

∫ 𝑔(𝑟)𝑟2𝑑𝑟
𝑟𝑐𝑓

0

    𝑖𝑓 𝑟 < 𝑟𝑐𝑓

0                           𝑒𝑙𝑠𝑒      

).133 Therefore, PDF of 𝐹𝑖 can be obtained based on the PMF of 𝒩(𝑖) and the PDF 

of 𝑟𝑚. 

Before discussing the implications of Eq. 4.7 on the QU properties of SLs, we examine its consistency 

with the equilibrium condition, i.e., the expected value of force equals zero. The expected value of force 

can be expressed as follows based on Wald’s identity,134 

𝔼[𝐹𝑖] = 𝔼[𝒩(𝑖)]𝔼[−𝑢′(𝑟𝑖𝑗) 𝑒𝑖𝑗]= 𝔼[𝒩(𝑖)] 𝔼[−𝑢′(𝑟𝑖𝑗)]𝔼[𝑒𝑖𝑗] (4.8) 
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For the right-hand side of Eq. 8 to be zero, either 𝔼[−𝑢′(𝑟𝑖𝑗)] or 𝔼[𝒆𝑖𝑗] should be zero (note that the 

system with 𝔼[𝒩(𝑖)] of zero has no physical significance). The first case leads to an exceptional 

condition on the pair potential. On the other hand, 𝔼[𝑒𝑖𝑗] equal to zero is consistent with the isotropic pair 

potential with uniformly distributed force components. 

An important implication of Eq. 4.7 is that it provides statistical evidence for the existence of systems 

with similar structural properties but different pair potential forms.  Various pair potentials exist such that 

the PDF of net force remains statistically identical with another system, and, therefore, their structures 

resemble each other within the Newtonian equations of motion. 

Having the statistical model based on the PDF of radial distance and PMF of the number of neighboring 

particles, we proceed to validate its accuracy in reproducing the PDF of net force from MD simulation, as 

well as finding optimal potential parameters of another QU pair potential at the same thermodynamic 

state. The validation step is done through a comparison between the PDF of net force from the statistical 

model based on Eq. 4.7 with the reference MD simulation. To find optimal parameters of another pair 

potential, we minimize the KL divergence between the PDFs of net force from MD simulation and of a 

statistical model with unknown potential parameters. The objective function for finding optimal 

parameters is expressed as follows, 

min
𝑺

𝐷𝐾𝐿(𝑝𝑀𝐷(𝐹𝑖); 𝑝𝑆𝑡𝑎𝑡(𝐹𝑖; 𝑺)) (4.9) 

where 𝑺 denotes the pair potential parameters, e.g., 𝑺 = (𝐴, 𝑘𝐷) of Yukawa and Exponential pair 

potentials. 𝐷𝐾𝐿(𝑝𝑀𝐷(𝐹𝑖); 𝑝𝑆𝑡𝑎𝑡(𝐹𝑖)) is the KL divergence expressed as follows, 

𝐷𝐾𝐿(𝑝𝑀𝐷(𝐹𝑖); 𝑝𝑆𝑡𝑎𝑡(𝐹𝑖)) = ∫ 𝑝𝑀𝐷(𝐹𝑖) log (
𝑝𝑀𝐷(𝐹𝑖)

𝑝𝑆𝑡𝑎𝑡(𝐹𝑖)
) 𝑑𝐹𝑖

∞

−∞

 
(4.10) 

The above minimization is performed using the particle swarm optimization, a derivative-free algorithm 

in which multiple points of the objective function are evaluated and influence the evaluation of the 
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objective function in the next iterations.135 The total run time of the statistical model calculation for 

simultaneous development of 32 statistical models is in the interval of [1, 3] min on the computing nodes 

of Blue Waters with a single node while using the multiprocessing package python (note that the 

computational cost is far smaller than the direct MD simulation).  

     4.2.3 Deep Learning 

Even though the statistical model developed in this study provides a probabilistic explanation for identical 

behavior of SLs within the framework of Newtonian mechanics, it is, however, limited by the 

thermodynamic state of the reference MD simulation. To circumvent the difficulties associated with the 

thermodynamic states as well as to provide further insight into the SLs, we investigate the consistency 

and capabilities of DeepILST80 in the study of SLs.  

A concise summary of the DeepILST framework is provided here and we refer the reader to Ref. 80 and 

Chapter 1 for further information. The feature vector 𝑥𝑖 of the DeepILST is composed of the 

concatenation of RDF, density, and temperature for system 𝑖, which can be expressed as, 

𝑥𝑖 = (𝒈𝑖 (𝑟), 𝜌𝑖
1, 𝜌𝑖

2, … , 𝜌𝑖
𝑝

, 𝑇𝑖
1, 𝑇𝑖

2, … , 𝑇𝑖
𝑝

)
𝑚

                              (4.11)                                                 

where the index 𝑖 refers to the i-th system in the dataset and 𝑥𝑖 represents the input into the deep neural 

network of DeepILST composed of RDF and thermodynamic states. With the above feature vector and 

based on the universal approximation theorem,56 DeepILST approximates the function in the inverse 

liquid-state theory equation using DNN, 

(𝐶12, 𝐶6) = 𝒇(𝑔(𝑟);  𝑇, 𝜌)            (4.12) 

where 𝒇 is a vector-valued function, which is a nontrivial function of RDF and thermodynamic state 

variables.  

The deep neural network, in this study and in general, is composed of simple units known as perceptron 

or node, which are stacked in width (referred to as a layer) and in depth (successive layers). Each node 
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receives an input signal and applies a linear transformation, followed by a nonlinear activation function 

resulting in an output signal.38,57 With LJ potential parameters as the output of the DeepILST and RDF 

and its corresponding thermodynamic state as the input vector, the deep neural network can be expressed 

as, 

(𝐶12,𝑖, 𝐶6,𝑖) = 𝜙𝑜(𝑾𝑜𝜙𝑛ℎ
(… 𝜙2(𝑾2𝜙1(𝑾1𝑥𝑖 + 𝒃1) + 𝒃2)) + 𝒃𝑜) (4.13) 

where 𝜙𝑘  is the nonlinear activation function of layer 𝑘. Layer 𝑘 receives a linear transformation of the 

output of layer 𝑘 − 1, given by (𝑊𝑘𝜙𝑘−1(𝑥) + 𝑏𝑘), and applies the activation function 𝜙𝑘 to produce the 

output of layer 𝑘 given by 𝜙𝑘(𝑥) = tanh(𝑾𝑘𝜙𝑘−1(𝑥) + 𝒃𝑘  ) + sigmoid(𝑾𝑘𝜙𝑘−1(𝑥) + 𝒃𝑘 ). Each 

layer 𝑘, has weights 𝑾𝑘  and bias 𝒃𝑘with dimensions, 𝑾𝑘 ∈ 𝑅𝑑𝑘−1×𝑑𝑘  and 𝒃𝑘 ∈ 𝑅𝑑𝑘, where 𝑑𝑘 is the 

number of nodes in layer k. 𝑛ℎ denotes the number of hidden layers. Summation of the tangent hyperbolic 

and sigmoid nonlinearities (tanh 𝑥 + sigmoid 𝑥) is used between layers, except for the output layer (𝜙𝑜) 

where the sigmoid nonlinearity is used. See Ref. 80 and its supplementary material for further details 

regarding the training and network selection.. 

To train the deep neural network, the mean-squared loss function, i.e., the mean-squared error between 

the ground truth and the predicted parameters is optimized by the backpropagation algorithm. The 

adaptive moment estimation optimizer 58 is employed to minimize the loss function (𝜖ℒ(𝜃, 𝐷)), which can 

be expressed as, 

𝜖ℒ(𝜃, 𝐷) =
1

2|𝐷|
∑ ∑ (𝑣𝑗,𝐺𝑇

(𝑖)
− 𝑣𝑗,𝐷𝑁𝑁

(𝑖) (𝜃, 𝑥𝑖))
2

𝑗∈{𝐶12,𝐶6}𝑖∈𝐷

                              (4.14)                                                 

where 𝜃 represents the free parameters (weights and biases) of a deep neural network.  𝑣𝑗,𝐺𝑇
(𝑖)

 and 

𝑣𝑗,𝐷𝑁𝑁
(𝑖)

(𝜃) are the ground truth and DeepILST-predicted scaled LJ interaction parameters (with respect to 

the minimum and maximum in Table 1) of the 𝑖𝑡ℎ data point in the dataset. |𝐷| denotes the size of the 

training dataset with the size of about 26000 distinct systems80). The selected network has two hidden 

layers with 48 and 15 nodes with the exponent of thermodynamic states being three, i.e., 𝑝 = 3. 
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        4.2.4 Physics of Data 

Once the DeepILST network is trained, we find systems with constant order parameters in the space of 

non-dimensional temperature and density for 12-6 LJ liquids. The order parameter is given by, 

𝜏 = ∫ |𝑔(𝜉) − 1|
𝜉𝑐𝑓

0

𝜉2𝑑𝜉  
(4.15) 

where 𝜉 is the non-dimensional length-scale (𝜉 = 𝑟𝜌1/3), and 𝜉𝑐𝑓 is the reduced cutoff distance which is 

taken to be 3.5. This order parameter, known as the translation order parameter, measures the deviation of 

RDF from that of an ideal gas.136–138 Note that all the non-dimensional quantities are given for the 12-6 LJ 

pair potential. The algorithm 4.I defines the procedure used to identify constant order parameter systems. 

Algorithm 4.I. Identify structurally equivalent LJ liquids with similar 𝒈(𝝃)   

∀ 𝑖 ∈ 𝐷 

      𝑔𝑖(𝜉) =  𝑔𝑖 (𝑟𝜌
𝑖

1
3;  𝜌𝑖, 𝑇𝑖)  

      𝜏𝑖 = ∫ |𝑔𝑖(𝜉) − 1|
𝜉𝑐𝑓

0

𝜉2𝑑𝜉  

      ∀ 𝜌 ∈ [𝜌𝑖 − 2Δ𝜌: Δ𝜌: 𝜌𝑖 + 2Δ𝜌]  

                  𝜏𝑖
𝜌

= 𝜏𝑖  

                   𝑔𝑖
𝜌(𝜉𝜌) =   𝑔𝑖 (𝑟 (

𝜌𝑖

𝜌
)

1
3

) 

                 𝐶12
𝑄𝑈,𝜌

, 𝐶6
𝑄𝑈,𝜌

= DeepILST( 𝑔𝑖
𝜌(𝑟), 𝜌, 𝑇 )  

 

where index 𝑖 refers to a specific RDF in the dataset (𝐷) with density and temperature of 𝜌𝑖 and 𝑇𝑖, 

respectively. Here, we derive an approximate theoretical solution to assess the accuracy of DeepILST 

prediction. To do so, we make two approximations, namely the high temperature (𝑘𝐵𝑇 ≫ 1) 

approximation and approximating the potential of mean force with the pair potential (𝑢𝑝𝑚𝑓(𝑟)~ 𝑢𝐿𝐽(𝑟)). 
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With these assumptions, we start from the relationship between RDF and the potential of mean force 

given by, 

𝑔(𝑟) = exp(−
𝑢𝑝𝑚𝑓(𝑟)

𝑘𝐵𝑇
)  

(4.16) 

Approximating the potential of mean force with the pair potential, the above equation can be written as,  

𝑔(𝑟)~ exp(−
𝑢𝐿𝐽(𝑟)

𝑘𝐵𝑇
)  

(4.17) 

Applying the high-temperature approximation, the first-order Taylor expansion of the above equation can 

be expressed as, 

𝑔(𝑟)~1 −
𝑢𝐿𝐽(𝑟)

𝑘𝐵𝑇
  

(4.18) 

After a few mathematical steps (see section C.2 of the Supporting Information for details), we arrive at 

the equation,  

𝜏 = 𝑘  
𝜌∗

𝑇∗
 

(4.19) 

where 𝑘 = ∫ | 4 [(
𝜎

𝑟
)

12
− (

𝜎

𝑟
)

6
]| (

𝑟

𝜎
)

2 𝑑𝑟

𝜎
, 𝜌∗(= 𝜌𝜎3) and 𝑇∗ (=

𝑘𝐵𝑇

𝜖
) are non-dimensional density and 

temperature, respectively. This relationship, even though it is simple, is physically consistent in the limit 

of solid and gas phases. For example, assuming a given material with specific potential parameters at a 

specific temperature (𝑇, 𝜖, and 𝜎 are given), the value of  𝜌∗/𝜏 is constant. The solid phase has a long-

range and heterogeneous RDF with a large order parameter (𝜏 ≫ 1), implying that 𝜌∗ ≫ 1, which is 

consistent with the phase diagram of LJ liquids. The gas phase at the same condition has a short-range 

and homogenous RDF with a small order parameter (𝜏 ≪ 1), implying that 𝜌∗ ≪ 1, which again is 

consistent with the phase diagram of LJ liquids.139,140  

We also assess the consistency of our results for the isomorphs of LJ liquids with the theoretical solution 

developed by Ingebrigtsen et al.141 Their theory leads to a simple mathematical expression for the 

isomorphs of LJ liquids, which show good agreement with simulation results. The expression is given by, 
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ℎ(𝜌∗)

𝑇∗
=

𝐴𝜌∗4 − 𝐵𝜌∗2

𝑇∗
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

(4.20) 

To further assess the consistency between DeepILST and the structural quasi-universality of various SLs, 

we provide RDFs of SLs with different pair potentials as input to DeepILST to parameterize QU-

equivalent LJ pair potential. The term QU-equivalent is used instead of structurally-equivalent to 

emphasize that the reference system does not have a 12-6 LJ pair potential form. Next, we quantify the 

error in the structure (RDF) of various SLs and their QU-equivalent LJ potentials based on two measures: 

the first metric is the RDF deviation between LJ and SL models and the second metric is the KL 

divergence.14,33 The RDF deviation between reference and target models is calculated using the following 

expression, 

𝜖𝑟𝑑𝑓 =
∫ |𝑔𝑡𝑔𝑡(𝑟) − 𝑔𝑟𝑒𝑓(𝑟)

𝑟𝑐𝑓

0
| 𝑟2𝑑𝑟

∫ 𝑔𝑟𝑒𝑓(𝑟)𝑟2𝑑𝑟 
𝑟𝑐𝑓

0

 
(4.21) 

where 𝑔𝑡𝑔𝑡(𝑟) and 𝑔𝑟𝑒𝑓(𝑟) are the RDFs of target and reference models, respectively. 𝑟𝑐𝑓 is the cut-off 

distance, which is set to 1.2 nm. The KL error is also estimated using the following expression, 

𝜖𝐾𝐿 = 𝛽〈𝑈𝐿𝐽 − 𝑈𝑆𝐿〉𝑆𝐿 − 𝛽〈𝐹𝐿𝐽 − 𝐹𝑆𝐿〉𝑆𝐿 + 〈𝑆𝑚𝑎𝑝〉𝑆𝐿 (4.22) 

where 𝑈(= ∑ 𝑢(𝑟𝑖𝑗)𝑖<𝑗 ) and F are respectively the potential energy and free energy of the system in the 

SL and LJ systems, and 〈𝑆𝑚𝑎𝑝〉𝑆𝐿 is the mapping entropy. Appendix A contains mathematical details on 

the KL divergence calculation, as well as its convexity and uniqueness of a global minimum.60,61,142  

    4.3 Results and Discussions 

        4.3.1 Statistical Model Assessment 

We first assess the statistical model by generating the PDF of the net force on the particles. To do so, we 

use the PDF of radial distance and the PMF of neighbor list size, both of which are obtained from MD 

simulations of Yukawa potential. The reference Yukawa pair potential is simulated at a density of 
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12.232 𝑛𝑚−3 using LAMMPS143 with 𝐴 and 𝑘𝐷 equal to 1.056 × 105[𝐾𝑐𝑎𝑙/𝑚𝑜𝑙𝑒] and 3.144 [1/𝐴∘]. 

Figure 4.2 a,b show the PMF of neighbor list at 50 and 300 K, respectively.  The RDFs used to obtain the 

PDF of radial distance at 50 K and 300 K are shown in Figures 4.2c,d, respectively. The log of the net 

force PDF is shown in Figure 4.2e,f, which indicates that the PDF of net force between MD and statistical 

model are in good agreement with each other. The KL errors are 0.012 and 0.042 for 50 K and 300 K, 

respectively, indicating the validity of the statistical model when the same pair potential as the MD 

simulation is used. We also observe a linear behavior at the tail of log of the PDF of the net force 

consistent with the Powles and Flower observations,121 which is attributed to the forces exerted by atoms 

in the first coordination shell as they have small distance and therefore large forces.117,122 Note that the 

linear behavior is not universal and may deviate from linear. For instance, the theoretical model by 

Rickayzen et al.122 predicts an exponentially-decaying probability for large forces of a repulsive potential 

with u(r) =
ϵ

rn (P(F ≫ 1)~Fv exp(−αF) with v and α being thermodynamic- and potential-dependent 

quantities). This approximate PDF of force shows an exponential decay (or close to exponential as α =

n/(n + 1) goes toward unity) for large values of the force consistent with our observations and statistical 

model predictions for various pair potentials. It is also noticeable from Figure 4.2 that as temperature 

increases it leads to larger fluctuation of various quantities such as neighbor list size and force, i.e., larger 

standard deviation due to thermal fluctuation.  

        4.3.2 DeepILST and Quasi-Universality 

In the next step, we optimize the parameters of exponential and LJ pair potentials such that each of them 

reproduces the same PDF of net force as the MD results of the Yukawa pair potential at 50 K and 300 K. 

Figure 4.3a-b show the log of PDFs of net force from MD simulation and that of various pair potentials 

from the statistical model, which show a very good agreement. At 50 K, the errors using the KL measure 

are 0.00131 and 0.00980 for the EXP and LJ pair potentials, respectively. The errors at 300 K using the 

KL measure are 0.001884 and 0.00564 for the EXP and LJ pair potentials, respectively. Once the 
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minimization is done, we perform MD simulations of both the EXP and LJ pair potentials. The 

comparison between the RDFs of Yukawa and exponential pair potentials is shown in Figure 4.3c-d. The 

RDF errors (𝜖𝑟𝑑𝑓) are 0.00526 and 0.00876 at 50 K for the EXP and LJ pair potentials, respectively. 

Similarly, the RDF errors are 0.00213 and 0.00282 at 300 K for the EXP and LJ pair potentials, 

respectively. Overall, the results establish the accuracy of the statistical model.  

1. Lennard-Jones Liquids 

We randomly feed six distinct RDFs into DeepILST and apply Algorithm 4.I. The algorithm produces a 

set of structurally-equivalent LJ potentials at various thermodynamic states for each RDF. Using the set of 

structurally-equivalent LJ potentials, we perform MD simulations at the corresponding thermodynamic 

state. As expected, the DeepILST predicted LJ potentials produce almost the same reduced RDF (𝑔(𝜉)) 

for each set of structurally-equivalent LJ potentials as shown in Figure 4.4. The accuracy of DeepILST is 

clear as the reduced RDFs are almost indistinguishable (see Supporting Information Section C.3 for 

further data).   

Now that we have shown that the reduced RDF is similar for each set of structurally-equivalent LJ 

potential, we check the qualitative accuracy of our results with Eq. 4.13. Figure 4.5a shows the non-

dimensional temperature and density of structurally-equivalent LJ potentials with various order 

parameters using circles with the area of the circle being proportional to the order parameter. In other 

words, points with a similar area are selected points from a curve with constant reduced RDF. The trend is 

increasing between non-dimensional temperature and density of given order parameters consistent with 

Eq. 4.13. Furthermore, at a given non-dimensional density the system with larger non-dimensional 

temperature has smaller order parameters (see the inset in Figure 4.5a). To compare the DeepILST-

predicted isomorphs with the theoretical solution in Eq. 4.20, we fit all data into Eq. 4.20. In Figure 4.5b, 

we compare the DeepILST results for isomorphs with the theoretical solution, which shows a good 

agreement as isomorphic LJ liquids have constant values. Additionally, the constant values in the right-
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hand side of Eq. 4.20 show an increasing trend with the increase of order parameters among different 

isomorphs.  

2. Quasi-Universal Liquids 

We now establish a connection between DeepILST based coarse-graining and quasi-universality of SLs 

by determining QU-equivalent LJ pair potentials for various SL pair potentials. Figure 4.6 shows the 

RDFs of reference QU and QU-equivalent LJ pair potentials for four different potentials studied in this 

work (further case studies are provided in Section C.3 of the Supporting Information; note that we only 

show results for the LJ pair potentials for the range shown in Table 2.1 as our prior study80 indicates 

decreased accuracy for regions which are not sampled during the DeepILST training).  The pair potentials 

shown in Figure 4.6 indicate that even though the RDFs of the four reference QU pair potentials are 

similar, the LJ pair potentials vary significantly in each case. The change is especially significant in the 

region where the potential changes from repulsion to attraction (shown in the inset of Figure 4.6).  

Figure 6a-b shows that the repulsive part of both the EXP and Yukawa pair potentials starts at a larger 

radial distance (beyond the cutoff distance, which is set to 1.2 nm) compared to their QU-equivalent LJ 

pair potential forms (at approximately 0.6 nm). This can be attributed to the presence of an attractive part 

in the tail of the LJ pair potential, the effects of which are canceled out with the repulsive part starting at a 

smaller radial distance compared to the EXP and Yukawa potentials. Figure 4.6c-d shows that the QU-

equivalent LJ pair potentials change based on the exponent of the repulsion and attraction parts of the 

reference IPL potential. For IPL with exponents larger than standard LJ potential (12 and 6), the QU-

equivalent LJ pair potential becomes more negative compared to the IPL pair potential implying more 

attraction.  For exponents smaller than the standard 12-6 exponents, the QU-equivalent LJ pair potential 

becomes less negative compared with the IPL pair potential implying less attraction. 

As shown in Figure 4.6, the RDFs from reference QU pair potentials and QU-equivalent LJ potentials are 

nearly indistinguishable. To ensure accuracy, we assess the error between the RDFs using two metrics, 

establishing a connection between coarse-graining and quasi-universality of SLs as well as showing 
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optimality of DeepILST predicted QU-equivalent LJ potentials. The two metrics are the RDF deviation 

( 𝜖𝑟𝑑𝑓) and KL error ( 𝜖𝐾𝐿). Figure 4.7a-d shows 𝜖𝑟𝑑𝑓   for a specific range (see Table 2.1) of the LJ 

parametric space considered in this work. DNN prediction of the potential parameters and the minimum 

value of 𝜖𝑟𝑑𝑓 are also shown in Figure 4.7. We also calculate 𝜖𝐾𝐿, which provides a more rigorous 

measure (shown in Figure 4.7e-h). Again, the optimal point of the KL error and DNN potential 

parameters are close to each other. Furthermore, the DNN-predicted potential parameters are enclosed in 

the region smaller than 0.1 percentile of both error metrics in the investigated parameter space, indicating 

optimality of DNN potential parameters as well as DeepILST consistency with the structural quasi-

universality of the simple liquids. The results, therefore, indicate that DL-based models, particularly 

DeepILST, are accurate to capture physical laws for systems with universal and QU properties, which, in 

turn, opens opportunities to transfer knowledge acquired from one class to other classes of problems with 

similar underlying physics. 

    4.4 Conclusions  

In summary, we propose a statistical model to predict the probability distribution of the net force of 

simple liquids and explain the pair force cancellation, which explains the non-uniqueness of potential 

form for a given net force distribution among simple liquids. In addition to computational efficiency, the 

proposed statistical model is successful in obtaining parameters of various pair potential forms with 

similar net force distribution among them, which within the Newtonian equations of motion translates 

into a similar structure. We have verified the structural similarity among simple liquids with similar net 

force distribution by molecular dynamics simulation.  The physics and quasi-universality of simple 

liquids are also studied through deep learning by finding structurally-equivalent Lennard-Jones liquids 

with similar reduced RDFs, i.e., isomorphs. Structurally-equivalent Lennard-Jones liquids identify 

systems with constant order parameters in the space of non-dimensional temperature and density of 

Lennard-Jones liquids consistent with the approximate theoretical solution derived in the current study 
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and other theoretical models. Furthermore, DeepILST successfully reproduces the structure of various 

non-Lennard-Jones simple liquids by feeding their RDFs, shown for four different quasi-universal pair 

potentials including exponential, Yukawa, and two inverse-power-law pair potentials. The error between 

the RDFs and Kullback-Leibler errors are quantified using two different coarse-graining metrics, which, 

in turn, indicates the consistency between the DeepILST and the structural quasi-universality of simple 

liquids. Considering various investigations performed in this study, we show the successful employment 

of statistical and deep learning approaches and coarse-graining methods in the physics of simple liquids. 

    4.5 Figures  

 

Figure 4.1. Simple liquids are liquids described by different pair potential forms with a similar structure, usually 

quantified in terms of the radial distribution function (RDF) (shown as grey boxes). Even though the structural similarity 

is known among these potentials, the mechanism through which pair force cancellation occurs is not clear. A statistical 

model is developed based on the radial distance and the number of neighboring particle distributions to predict the 

distribution of net force on the particle. The statistical model provides insight into the force cancellation mechanism and 

non-uniqueness of the pair potential form. It also provides a route to convert different pair potential forms into each 

other at a given thermodynamic state, with application in coarse-graining of system with both force and RDF. To solve 

the problem with thermodynamic state-dependency of the statistical model, we use DeepILST to identify structurally 

equivalent LJ liquids over various thermodynamic states as well as converting various simple liquids into LJ liquids. In 

the statistical model box, green circles show the known quantities and yellow ones show the model's predictions. 
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Figure 4.2. Comparison of the net force distribution calculated using the statistical model and the reference MD 

simulation of the Yukawa pair potential at 50 K and 300 K. (a) and (b) probability mass function of neighbor list 

size within the cut-off distance obtained from MD simulation at 50 K and 300 K, respectively. (c) and (d) RDFs 

used to obtain the probability distribution function of radial distance within the cut-off distance obtained from MD 

at 50 K and 300 K, respectively. (e) and (f) comparison between log of probability distribution function of net 

force obtained from MD simulation of Yukawa potential and from statistical model at 50 K and 300 K, 

respectively (SM indicates statistical model in the Figure). 
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Figure 4.3. Pair force cancellation mechanism described by the statistical model allows to parameterize different 

SL pair potentials (EXP and LJ pair potentials) such that the net force distribution is similar to the reference MD 

simulation (Yukawa pair potential at 50 K and 300 K). (a) and (b) comparison between log of probability 

distribution function of net force obtained from MD simulation of Yukawa potential and from the statistical model 

with EXP and LJ pair potential at 50 K and 300 K, respectively (SM indicates the statistical model in the Figure, 

blue circles show MD simulation results with Yukawa pair potential, and red solid and black dot-dashed lines 

represent results of statistical or MD simulations of the EXP and LJ pair potentials, respectively). (c) and (d) 

comparison between the radial distribution function obtained from MD simulation of the reference Yukawa pair 

potential and that of the statistical model-based parameterized EXP and LJ pair potential at 50 K and 300 K, 

respectively. 
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Figure 4.4. Structurally-equivalent LJ liquids obtained using DeepILST based on Algorithm I. The reduced RDFs 

are indistinguishable between LJ systems at different thermodynamic states. Each plot shows 5 different 

thermodynamic states with similar reduced RDF and order parameter. (a)  𝜏 = 0.39, (b) 𝜏 = 1.04 (c) 𝜏 = 1.73, 

(d) 𝜏 = 1.32, (e) 𝜏 = 3.0, (f) 𝜏 = 0.82. 
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Figure 4.5. a. Systems of constant order parameter from Figure 4 in the non-dimensional temperature and 

density space of 12-6 LJ liquids. The inset zooms into a smaller region of non-dimensional temperature and 

density. Consistent with the approximate theoretical solution, the non-dimensional temperature and density are 

linearly related for a given order parameter (reduced RDF). Systems with a larger constant order parameter have 

a smaller non-dimensional temperature at a given non-dimensional density, as seen in the inset. The area of the 

circle is proportional to the order parameter. b. Comparison between the DeepILST predicted isomorph and 

theory (Eq. 20) is fitted to the DeepILST predicted isomorphs. Different isomorphic LJ liquids almost collapse 

onto a single value, and different isomorphs collapse to different constant values with the constant increasing as 

the order parameter increases. Points show the mean values of order parameters and 
ℎ(𝜌∗)

𝑇∗  for each isomorph in 

part a, and lines show deviation from the mean. 
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Figure 4.6. Comparison of reference QU pair potentials, QU-equivalent LJ potentials (obtained using 

DeepILST) as well as their RDFs. The inset shows an enlarged region of the LJ pair potential and its 

comparison to the reference QU pair potential (a) and (e) exponential pair potential as a reference QU pair 

potential (b) and (f) Yukawa pair potential as a reference QU pair potential (c) and (g) IPL ((𝑝, 𝑞) = (14, 8)) 

pair potential as a reference QU pair potential (d) and (h) IPL ((𝑝, 𝑞) = (10, 4)) pair potential as a reference 

QU pair potential.    
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Figure 4.7. Assessment of optimality of QU-equivalent LJ pair potentials (red-filled circles show DeepILST 

predictions and white cross points show the optimal point obtained from RDF deviation and KL measures). The 

first row shows the error using the RDF deviation metric. The second row quantifies the error using the KL 

divergence. a, e. exponential pair potential b, f. Yukawa pair potential c, g. inverse-power-law ((𝑝, 𝑞) = (14, 8)) 

pair potential d, h. inverse-power-law ((𝑝, 𝑞) = (10, 4)) pair potential. 
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CHAPTER 5: Targeting Structural Properties Using Many-body Neural 

Networks 

    5.1 Introduction 
 

Classical molecular dynamics (MD) simulation is a strong computational tool to study various physical, 

chemical, and biological systems22 by allowing researchers to obtain structural and dynamical properties 

of these systems with a computational cost far less than the ab initio molecular dynamics (AIMD) 

simulations and resolution far better than the continuum models. The accuracy of the force fields (FFs) 

used in MD simulations is pivotal to obtain accurate and meaningful results. To date, the most common 

choice for FFs in MD simulations belongs to some predefined analytical forms, known as empirical FFs, 

which limit truthful representation of real interactions.82 The problem is particularly more pronounced in 

coarse-grained FF developments, where due to many lost degrees of freedom, coarse-grained (CG) 

models often have features that are not necessarily present in the reference systems. 

Various strategies have been developed to improve the accuracy of empirical FFs, such as the inclusion of 

higher-body interactions, e.g., three-body interactions. For example, a single bead water model with the 

Stillinger-Weber potential95, known as the mW model144, predicts various properties, such as the melting 

temperature, as accurately as more complex all-atom models. However, such FFs are usually designed 

with various approximations (e.g., analytical form limitation) motivated by physical intuition, making 

their application to other systems difficult, if not impossible. In general, the selection of an analytical 

form and its parameterization requires considerable expertise as well as computer and human time.145 

Motivated by recent progress in the application of machine learning in atomistic-scale simulations41,80,146, 

researchers in FF development have embarked on employing various machine learning methods, such as 

kernel- and neural network-based force fields (NNFFs)147–151. Particularly, NNFFs solve the problem of 

functional form limitation using the universal approximation theorem. 
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Despite recent success in NNFFs, there are still several issues challenging the widespread usage of 

NNFFs, such as the arbitrariness of symmetry functions and state dependency of the NNFFs, as well as 

interoperability. Due to the implementation of NNFFs, they are also less interpretable compared to the 

empirical FF, as forces and energies are only known once the positions of the whole system are set. Most 

of the available NNFFs also require accurate force and energy data, which are not always available or 

measurable. Recent studies have attempted to solve this problem using more interpretable FFs and active 

learning schemes, but there is still a need for accurate forces and energies. 

Recently, researchers started to tackle structure-based coarse-graining methods with machine learning-

based force fields such as NNFFs and kernel-based methods52,152–154. However, in many cases, the FF is 

not interpretable. Motivated by the need to overcome challenges with the interpretability of NNFFs and 

targeting structural properties without energies and forces, we propose a new strategy for developing 

NNFFs. In this study, instead of building a single NNFF, we build our NNFFs by the expansion of 

interactions as separate two-, three-, and n-body interactions. We limit our NNFF to a three-body 

expansion with the possibility of considering higher expansions similarly. Our method, unlike other 

NNFFs52,149,150,155, does not necessarily require forces or energies on the particles to train the network and 

can be trained based on the structural properties of the reference system. This is achieved by replacing 

backpropagation with a local-search algorithm156 to train our FFs. To show the capabilities of our method, 

we study three different models of liquid water, mainly due to the significant importance of water in 

various physicochemical and biological systems. We start with atomistic-scale force field development 

using force matching using the forces and positions of the mW model. Showing the success of our 

method within the force-matching framework, we develop a single bead coarse-grained water model 

targeting the structural properties of SPCE and ab initio water models. The coarse-graining of both the 

SPCE and AIMD water models in our study is motivated by the drastic dependency of CG models on the 

structural properties of the reference systems, especially in our study, where we observe slight differences 

between the location and the value of RDF12. We use the strongly constrained and appropriately normed 
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(SCAN)157 functional coupled with van der Waals corrections at the D3158 level to determine the ab initio 

water properties using AIMD simulations (see the Methods section for more details; note that the SCAN 

functional has shown the ability to produce accurate water properties in close agreement with the 

experimentally measured properties159,160). 

We show that our model can reproduce structural properties such as the radial distribution function and 

angular distribution of both classical and quantum water models. The interpretability of the NNFF in our 

study allows us to provide insights into the role of two- and three-body interactions in water-like 

behavior, especially as most of the past studies have focused on the two-body interaction61,147,161,162. Even 

though the SPCE model is one of the widely implemented water models in the literature, the AIMD 

results slightly differ from the SPCE model in terms of the location of RDF peaks and their values. This 

slight change might seem trivial, but it is worth observing how it can translate into the CG model. 

Additionally, coarse-graining10 has shown that slight differences in RDFs of the two systems can lead to 

drastic changes in the underlying potentials12. Compared with other machine learning-based FFs targeting 

similar problems, e.g., kernel-based methods, our method can handle complex radial and angular 

dependencies in the interactions between particles. For example, a spline three-body interaction or kernel-

based three-body interaction147 capturing the complexity of our model with fewer than 1000 free 

parameters requires at least 109 free parameters (1000 for each of the two radial and angular 

components), which is not possible to train and implement due to its computational and memory costs. 

    5.2 Methods 

        5.2.1 Molecular dynamics simulation 

The MD simulation of the mW model is based on the Stillinger-Weber potential. It is described by 

two- and three-body interactions over pairs and triplets, respectively, as follows: 

𝑢𝑠𝑤
2 (𝑟) = 𝐴𝜖 (𝐵 (

𝜎

𝑟
)

𝑝

− (
𝜎

𝑟
)

𝑞

) exp(
𝜎

𝑟 − 𝑎𝜎
) 

(5.1) 
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where 𝑟 indicates the radial distance between a pair, 𝑟1, 𝑟2, and 𝜃 are the radial distances and the angle 

between the central atom and two other atoms, respectively (see Figure 5.1c). 𝜎(=  2.3925 A°) and 𝜖(=

 6.189 kcal/mol ) are the length and energy scales of the two-body potential, respectively. 𝜆 (= 23.15) is 

the scaling parameter indicating the strength of tetrahedral interactions. 𝐴 = 7.049556277, 𝐵 =

0.6022245584, 𝑝 = 4, and 𝑞 = 0 are parameters giving rise to the form and scale of the potential, and 

the reduced cutoff 𝑎 = 1.8 enforces that all forces and potentials vanish at distances larger than 𝑎𝜎. The 

angular term enforces a tetrahedral angle around 𝜃0 = 109.47°. All MD simulations are performed using 

LAMMPS143 with a timestep of 2 fs in the NVT ensemble. The temperature is controlled using the Nosé-

Hoover thermostat with a time constant of 0.2 ps. 

        5.2.2 Ab initio molecular dynamics simulation 

We performed AIMD simulations using CP2K software163. The optimized norm-conserving Gaussian 

pseudopotentials generated by PBE are used with a double-zeta polarized basis164,165. The exchange-

correlation energies are treated using the SCAN-D3 approach. The SCAN functional was implemented 

using the LIBXC library166. The Grimme D3 method with zero damping is used to correct the van der 

Waals interactions. The simulations were performed using an isothermal-isochoric (NVT) ensemble 

where the constant temperature was controlled using the Nosé-Hoover thermostat167. We consider cubic 

simulation boxes with an edge length of 20.02 Å. Following a 2 ps equilibration time, a production run of 

22 ps trajectories is carried out using a 0.5 fs timestep. The radial and angular distribution functions are 

averaged over the total simulation time with a frequency of 50 fs. 

 

 

𝑢𝑠𝑤
3 (𝑟1, 𝑟2, 𝜃) = 𝜆𝜖(cos 𝜃 − cos 𝜃0)2 exp(

𝛾𝜎

𝑟𝑖𝑗 − 𝑎𝜎
+

𝛾𝜎

𝑟𝑖𝑘 − 𝑎𝜎
) (5.2) 
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        5.2.3 Deep Neural Network 

The NNFF developed in this study is composed of two- and three-body interactions, each described 

by a neural network38,57. Note that while we keep the FF limited to two- and three-body interactions, there 

is no limitation in using higher-order many-body interactions. The two-body term takes the radial distance 

of a pair as input, and the three-body term takes the radial distances and angle between a central atom and 

two other atoms in a triplet. Mathematically, the two- and three-body forces of our NNFF can be written 

as follows: 

where 𝑟𝑐𝑓,2 and 𝑟𝑐𝑓,3  are the cutoff distances of two-body and three-body interactions, respectively. 𝒆𝒓 is 

the unit vector along the radial vector between two atoms (𝒆𝑟 =
𝒓

|𝒓|
).  𝜙2  is the output of the two-body 

neural network with  𝜙2 ∈ ℝ1, and 𝝓3  is the output of the three-body neural network with  𝝓3 ∈ ℝ4. 𝑾 

and 𝒃 are the weights and biases of the neural networks, respectively, and their indices indicate the 

number of expansions, namely, two- and three-body interactions. We use different neural network depths 

and widths to model different interactions; however, we use similar nonlinearities, swish nonlinearity 

(swish(𝑥) =
𝑥

1+exp(−𝑥)
) between the hidden layers and tanh nonlinearity for the output layer. ℰ(𝒆1, 𝒆2) is 

a mapping from ℝ4 to Cartesian coordinates, written as follows: 

where the first two columns of ℰ(𝒆1, 𝒆2) and the first two elements of 𝝓3 determine the contribution of 

force on the central atom from the left particle of a triplet (left, central, right). Similarly, the last two 

columns of ℰ(𝒆1, 𝒆2) and the last two elements of 𝝓3  show contributions from the right atom in a triplet 

𝑓𝑛𝑛
2 (𝒓) = 𝜙2((𝑟𝑐𝑓,2 − 𝑟)/𝑟𝑐𝑓,2; 𝐖2, 𝒃2). 𝒆𝑟 (5.3) 

𝑓𝑛𝑛
3 (𝒓1, 𝒓2, 𝜃) = ℰ(𝒆𝒓1

, 𝒆𝒓2
) 𝝓3((𝑟𝑐𝑓,3 − 𝑟1)/𝑟𝑐𝑓,3, (𝑟𝑐𝑓,3 − 𝑟2)/𝑟𝑐𝑓,3, cos 𝜃 ; 𝑾3,  𝒃3) (5.4) 

ℰ(𝒆1, 𝒆2) = [

𝑒1,𝑥 𝑒2,𝑥
𝑒1,𝑦

𝑒1,𝑧

𝑒2,𝑦

𝑒2,𝑧
 

   𝑒1,𝑥 𝑒2,𝑥

   
𝑒1,𝑦

𝑒1,𝑧

𝑒2,𝑦

𝑒2,𝑧
 
] 

(5.5) 
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(left, central, right). Note that for 𝑛-body interaction within our framework, the following steps are taken: 

Given the position of the central atom, the n-body interaction depends on the position of 𝑛 − 1 particles, 

described by 𝑛(𝑛 − 1)/2 relative distances or angles, and it produces a force vector with a dimension 

of ℝ(𝑛−1)2
, which gets mapped to the Cartesian coordinates through the mapping matrix, 

ℰ(𝒆1, 𝒆2, … , 𝒆𝑛−1). The reaction forces are mapped to the contributing noncentral atom using specific 

columns of ℰ(𝒆1, 𝒆2, … , 𝒆𝑛−1). 

Having the appropriate force calculation method for a particular pair or triplet, we use two different 

schemes to train our NNFF, namely, force-matching and structural-matching methods. The force-

matching method is a simple method without requiring any CGMD simulations. However, it fails to 

reproduce the structure of the coarse-grained model, as the effective forces are not equal to instantaneous 

forces on the CG beads. Additionally, how we map forces on the CG beads changes the FF obtained from 

the force-matching method127. During force matching, one attempts to minimize the variational error 

between the reference and model forces, which implies minimization of the following loss function using 

the backpropagation algorithm: 

𝜖ℒ
𝑓(𝜽, 𝐷) =

1

2|𝐷|
∑ [ 𝒇𝐺𝑇(𝑖) − ∑ 𝒇𝑛𝑛

2 (𝒓)

∀𝑖 ∈𝑃

− ∑ 𝒇𝑛𝑛
3 (𝒓1, 𝒓2)

∀𝑖 ∈ 𝑇

]

2

 

𝑖∈𝐷

 (5.6) 

where 𝜽 indicates the free parameter of NNFF, both weights and biases of two- and three-body 

interactions. 𝐷 is the training data set. 𝒇𝐺𝑇(𝑖) is the ground-truth force on particle 𝑖. 𝑃 and 𝑇 represent all 

the unique pairs and triplets, respectively. Summation over pairs and triplets proceeds over those 

containing atom 𝑖 without duplicate terms. Note that atom 𝑖 can be the left, right, or central atom in a 

triplet, which leads to using the first two, last two, or all the columns of ℰ(𝒆1, 𝒆2), respectively. Note that 

the above procedure for triplet force calculation enforces Newton’s third law of action and reaction. 

During the training of the network, input data, i.e., various pairs and triplets, along with the corresponding 

ground truth forces are fed into the neural networks, which are then used to train through 

backpropagation. Based on our experiments, it is easier to use convolutional neural networks to calculate 
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forces for the above force-matching method and model each of the two- and three-body interactions as 

separate filters over pairs and triplets, respectively. To eliminate the effects due to the particles outside of 

the cutoff distance, we multiply the output of the convolutional neural network with a rectified linear unit 

with linearly transformed radial distance as input (max(0, (𝑟𝑐𝑓 − 𝑟)/𝑟𝑐𝑓)). The Adam optimizer58 is used 

to adjust the weights and biases, and an additional L2 regularization is added to the loss function to avoid 

overfitting. 

Furthermore, we develop a new route to train our NNFF without requiring direct access to forces. We 

apply our method to reproduce the structural properties of reference systems (note that the method is 

general and can be applied to various properties). Our method solves the problem with force matching in 

the reproduction of structural properties and the fact that reference forces are not always target or 

available during FF development. To do so, the backpropagation algorithm, which is used in the force-

matching method, is replaced with the local search algorithm. This is similar to using evolutionary or 

reinforcement learning methods to train NNFF. In other words, MD acts as an environment where the 

policy predicts forces and forces are used for MD simulation168,169. The cost determined at the end of the 

MD simulation is the structural agreement between the CG and reference models73,170. Within the local-

search algorithm, the training for such policy is done through two steps. First, a small fraction of the free 

parameters of NNFF are selected randomly, followed by a perturbation of selected parameters. The 

perturbation is accepted if it improves the loss function. Within structure-based coarse-graining method, 

the loss function is defined as: 

𝜖ℒ
𝑠(𝜃) =

∑ |𝑔𝑟𝑒𝑓(𝑟𝑛) − 𝑔𝑐𝑔(𝑟𝑛)|𝑁
𝑛=1

∑ |𝑔𝑟𝑒𝑓(𝑟𝑛)|𝑁
𝑛=1

+ 𝛼 ∑
∑ |𝑎𝑟𝑒𝑓

(𝑙) (𝜃𝑚) − 𝑎𝑐𝑔
(𝑙)(𝜃𝑚)|𝑀

𝑚=1

𝐿

𝐿

𝑙=1

 

                             

(5.7)  

where 𝑔𝑟𝑒𝑓 and 𝑔𝑐𝑔 represent the radial distribution function (RDF) of the reference and CG models. 𝑎𝑟𝑒𝑓 

and 𝑎𝑐𝑔 show the angular distribution function (ADF) of the reference and CG models. 𝛼 indicates the 

importance of ADF in the structural similarity of the reference and CG models (with only 2-body 

interaction 𝛼 is set to 0). The RDF is discretized into N segments from 0 to the cutoff distance of two-
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body interactions. Similarly, the ADF is discretized into M segments from 0 to 180 degrees. Furthermore, 

ADF is calculated for L different cutoff distances (see the supporting information for more discussion on 

the discretization). Additionally, note that for each iteration of local search training, a short MD 

simulation is performed to obtain the RDF and ADF of CG models and therefore the loss function. 

    5.3 Results and Discussions 

        5.3.1 Force-Matching 

The objective of the force-matching method is to reproduce the ground truth forces. In this study, we use 

force matching to show that our scheme of training NNFF leads to retrieving the ground-truth force field 

of the mW model in the form of NNFF. To do so, we train our NNFF based on forces obtained at multiple 

temperatures. We perform an NPT simulation at 300 K and 1 bar to obtain the correct density, followed 

by a simulation in the NVT ensemble at T = 270, 300, 330 K to obtain the positions and forces of the mW 

model particles. 

Once the data were obtained, we trained our NNFF with a cutoff distance of 4.310, equal to the mW 

model cutoff distance. The two- and three-body interactions in NNFF form are modeled with 3 and 4 

hidden layers, respectively. All the hidden layers except the output layer have swish nonlinearity, and the 

output layer has tanh nonlinearity. We trained the network for approximately 2x106 iterations with a 

batch size of 64. In Figure 5.2a, we compare the RDF between the mW and NNFF models, followed by a 

comparison of the two-body forces of the ground truth mW and NNFF models at different radial 

distances, as shown in Figure 5.2b. Similarly, we compare the ADF of the mW and NNFF models with 

various cutoff distances in Figure 5.3a-b. We also compare the norm of the three-body forces from the 

mW and NNFF models at different angles for the equidistant configurations of neighboring atoms in 

Figure 5.3c. The method shows good agreement in terms of RDF and ADF reproducibility, as well as 

recovering the ground truth forces. 
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        5.3.2 Structure-Matching 

The force-matching scheme is not able to reproduce the structural properties of the reference system. To 

solve this problem, we train different NNFFs pretrained by force-matching or iterative Boltzmann 

inversion methods using the local search method to match the structural properties of the reference 

system. The local-search algorithm is started by randomly picking a small fraction of NNFF parameters, 

followed by adding a random perturbation to the selected parameters. The new candidate NNFF is then 

used for running coarse-grained MD simulations. If the results are improved, then the new candidate 

becomes the best candidate, and additional perturbations are applied to it; otherwise, a new fraction of 

NNFF parameters are selected. The procedure continues until desired results are obtained.156 

In our study, we use two different reference systems, classical water modeled using the SPCE model and 

AIMD water modeled using the SCAN functional. For each reference system, we develop two different 

NNFFs, one with only two-body interactions (NN2) and one with two- and three-body interactions 

(NN3). In addition to the interpretability of both the NN2 and NN3 models, the models allow us to 

understand the role of 2body and 3body interactions in water-like behavior. Both NN2 and NN3 model 

the two-body interaction with a cutoff distance of 0.8 nm, and NN3 models the three-body interaction 

with a cutoff of 0.45 nm. The NN2 model with only two-body interaction has 3 hidden layers with widths 

of 4, 16, and 4. In the NN3 model, the two-body interaction has 3 hidden layers with widths of 6, 12, and 

6, and the three-body interaction has 4 hidden layers with widths of 3, 6, 12, and 8. All the hidden layers 

except the output layer have swish nonlinearity, and the output layer has tanh nonlinearity. Note that both 

RDF and ADF are calculated for the oxygen atoms of water molecules, i.e., the oxygen atom of water 

molecules is the mapped CG model. 

Both NN2 and NN3 reproduce the RDF of oxygen-oxygen with high accuracy with an error of less than 

0.01 (see Figure 5.4a). In Figure 5.4b, we compare the two-body interaction between the NN2 and NN3 

models. As seen in Figure 4b, the NN3 model has a single-well form, while NN2 has a double-well 
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interaction. The double-well interaction observed in the NN2 model is consistent with previous studies 

that used pairwise interactions171,172. The interesting finding is that the double-well potential vanishes for 

the NN3 models. This indicates that the pairwise interaction might not be the best representation of water-

like behavior. This is particularly pronounced in the ADF comparison between the SPCE, NN2, and NN3 

models. In Figure 5.5a-b, we show that NN3 captures the ADF behavior of SPCE water; however, NN2 

fails, especially at shorter distances. Various studies allude to the importance of angular distribution for 

water-like behavior, such as liquid-liquid transition. Therefore, capturing it through the NN3 model is 

significant progress towards deciphering the angular signature of water173. In Figure 5.5c, we show the 

norm of the three-body forces of the NN3 model at different angles for the equidistant configurations of 

neighboring atoms. Figure 5.5c indicates that the three-body forces present in the NN3 model have far 

more complex behavior than those of the mW model, which is limited by its analytical form. 

Although the SPCE model is one of the widely adapted water models in the literature, the AIMD results 

slightly differ from the SPCE model in terms of the location of RDF peaks and their values. This slight 

change might seem trivial, but it is worth observing how it translates into the CG model. Following 

similar training steps as the SPCE-based CG model, we train the NN2 and NN3 models to reproduce the 

structural properties of the AIMD water model. In Figure 5.6a, we compare the RDF of the NN2 and NN3 

models with the AIMD reference with an RDF error less than 0.03 for both cases. In Figure 5.6b, we 

show the two-body interactions of both the NN2 and NN3 models. Similar to CG models of SPCE, we 

observe double-well and single-well interactions for NN2 and NN3, respectively. A one-to-one 

comparison between the NN2 CG models of the AIMD and SPCE water models shows slight differences 

in the location of wells between the NN2 and NN3 models, as well as the transition between the wells. 

We contribute this difference to the differences between the RDFs of the reference systems. In Figures 

5.7a-b, we compare the ADF of the reference AIMD water and CG models. Again, NN2 fails to capture 

the ADF behavior of the reference system, and NN3 captures it. Quantitatively, the ADF error for the 



72 
 

NN3 model lies in the range 0.017 to 0.041, depending on the cutoff distance, and the NN2 ADF error is 

in the range 0.14 to 0.38, which is one order of magnitude larger than the NN3 CG model. 

We briefly recap the water-like behavior of CG NN2 and NN3 CG models. We observe that both the NN2 

and NN3 models can capture the water RDF; however, the NN3 model captures the angular distribution 

of water, and NN2 fails to capture it. We observe a double-well two-well interaction in NN2 CG models; 

however, NN3 only has a single well. The fact that in the presence of a three-body interaction, the double-

well structure of the two-body interaction vanishes shows that waterlike behavior is best described by a 

higher-order expansion of interaction rather than a pairwise interaction with double-well. In particular, 

our NNFF is not limited to a particular form. This is also consistent with the directional dependency of 

hydrogen bonds174,175, which is best described by a three-body interaction rather than a double-well two-

body interaction. 

    5.4 Conclusion 

In this study, we train a neural network-based force field with two- and three-body interactions, which 

makes the developed force field interpretable. Within our framework, the requirement for accurate forces 

and energies is eliminated by using the local search algorithm instead of backpropagation. Therefore, our 

method is suitable for application in structure-based coarse-graining. To show the capability of our 

method, we successfully develop coarse-grained models of both classical and ab initio water models. We 

also investigate the dependency of the coarse-grained force field of water on the number of expansions, 

which shows that the double-well interaction, known as a signature of water-like behavior among 

spherically symmetric pairwise interactions, vanishes with the inclusion of three-body interactions. We 

also notice that the two-body interaction fails to reproduce the angular distribution of water, especially 

over a short range. Based on our findings, we conclude that water-like behavior is better captured using 

the three-body interaction, which is consistent with the directional dependency of interactions in water. 
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 5.5 Figures 

 
Figure 5.1. Neural network-based force-field training. a) Force-field development begins by selection of 𝑛-body 

expansion and initialization of neural network architecture, weights, and biases. Based on the objective of force field 

development and its differentiability, either back-propagation or local-search methods are employed to minimize the 

loss function. Once the loss function is minimized, its generalizability is assessed. If the neural network force field 

did not pass the criteria for its assessment, the cycle repeats. The 𝑛-body term in the neural-network force-field 

depends on the position of 𝑛 − 1 particles, described by  𝑛(𝑛 + 1)/2 relative distances or angles, and it produces a 

force vector with a dimension of ℝ(𝑛−1)2
, which gets mapped to the Cartesian coordinates through the mapping 

matrix, ℰ(𝒆1, 𝒆2, … , 𝒆𝑛−1). b) The two-body term for a tagged particle (red particle) only depends on the radial 

distance (|𝒓1|) of its neighboring particle (green particle) and the mapping is the unit vector between two particles 

(𝒆1 = 𝒓1/|𝒓1|). c) The three-body term depends on the position of three-particles best described by two radial 

distances (|𝒓1| and |𝒓2|) and the angle between them (𝜃). The neural network predicts four values, acting on the 

central red particle, where the first two values, shown with the solid black lines, correspond to action-and-reaction 

from the first neighboring particle and the second two, shown with dashed black lines, correspond to action-and-

reaction from the second neighboring particle. The mapping matrix for a three-body term is described in Eq. 5. 
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Figure 5.2. Radial distribution function and two-body force comparison between neural network force 

field and ground truth mW model. a. Comparison between RDFs of mW and NN-based models b. 

Comparison between 2body force of mW and NN-based models. Black circles show the mW model 

results and red lines show NN-based force field results. 
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Figure 5.3. Angular distribution functions and three-body force comparison between neural network 

force field and ground truth mW model. The agreement between the two models is excellent. a. 

Comparison between ADF mW and NN-based models with cutoff 0.3 nm b. Comparison between ADF 

mW and NN-based models with cutoff 0.43 nm c. Comparison between the norm of 3body force on the 

central particle of mW and NN-based models at different angles in the equidistant radial configuration. 

Black points show the mW model results and red lines show NN-based model results. 
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Figure 5.4. Radial distribution function and two-body force comparison between different neural 

network force fields and SPCE model. Both NN2 and NN3 models have a two-body force field, 

however, NN3 has additional NN modeling its 3-body interaction. Both models produce the RDF 

properties of SPCE models. a. Comparison between RDFs of SPCE model and NN-based models b. 

Comparison between 2body force of NN2 and NN3, NN2 shows the double-well force profile, while 

NN3 has a single well, and it is interaction range is far shorter than the NN2 model. Black circles show 

the SPCE model results and blue solid and red dashed lines show NN2 and NN3 model results, 

respectively. 
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Figure 5.5. Angular distribution functions and three-body force comparison between different neural 

network force fields and SPCE model. NN3 models with three-body interaction capture ADF behavior of 

water far better than the NN2 model. a. Comparison between ADFs of SPCE, NN2, and NN3 models 

within cutoff 0.3 nm b. Comparison between ADFs of SPCE, NN2, and NN3 models within cutoff 0.35 

nm c. Norm of 3body force on the central particle of NN3 models at different angles in the equidistant 

radial configuration. In a and b, black dashed lines show the SPCE model results and dashed blue and 

solid red lines show the NN2 and NN3 models results. All lines in part c show the norm of the force of 

3body interaction. 
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Figure 5.6. Radial distribution function and two-body force comparison between different neural 

network force fields and AIMD model. Both NN2 and NN3 models have a two-body force field, 

however, NN3 has additional NN modeling its 3-body interaction. Both models produce the RDF 

properties of AIMD models. a. Comparison between RDFs of AIMD model and NN-based models b. 

Comparison between 2body force of NN2 and NN3, NN2 shows the double-well force profile, while 

NN3 has a single well, and it is interaction range is far shorter than the NN2 model. Black circles show 

the AIMD model results and blue solid and red dashed lines show NN2 and NN3 models results, 

respectively. 

 

 

 

 

 

 

 

 



79 
 

 

Figure 5.7. Angular distribution functions and three-body force comparison between different neural 

network force fields and AIMD model. NN3 models with three-body interaction capture ADF behavior 

of water far better than the NN2 model. a. Comparison between ADFs of AIMD, NN2, and NN3 

models within cutoff 0.3 nm b. comparison between ADFs of AIMD, NN2, and NN3 models within 

cutoff 0.35 nm c. Norm of 3body force on the central particle of NN3 models at different angles in the 

equidistant radial configuration. In a and b, black dashed lines show the AIMD model results, and 

dashed blue and solid red lines show the NN2 and NN3 model results. All lines in part c show the norm 

of the force of 3body interaction. 
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CHAPTER 6: Graph Neural Network-based Water Phase Identification 
 

        6.1 Introduction 

Water is an indispensable part of many physicochemical and biological phenomena, and its phase can 

significantly alter physicochemical and biological phenomena such as CO2 reduction,176 proton 

transport,177 power generation,178, and water desalination179. Furthermore, the properties of water itself, as 

the liquid sustaining life, depend on its phase such as diffusion coefficient, dielectric permittivity, and 

density as well as structural properties.180 Therefore, it is of great importance to accurately identify 

different water phases. Like most of the other liquids, most of our knowledge about water is obtained 

through computational studies, where atomistic level data about the positions and velocities are 

available.2,11 Therefore, the prediction of water phases from water molecules topology, i.e. configuration 

of other molecules around a tagged water molecule, is a task worth studying and understanding, 

especially for confined systems such as carbon nanotubes (CNTs) due to CNTs technological 

applications.  

Due to the high dimensionality and uninterpretable nature of atomistic simulation data, researchers 

have developed a wide variety of order parameters to reduce dimensionality and predict the phase of a 

system from reduced dimensions. Motivated by the importance of water in various areas, water is studied 

through various order parameters (OPs) such as bond-order parameter (BOP),181,182 tetrahedral order 

parameter173, and local-structure index.137,183 Even though these order parameters are widely adopted in 

various studies ranging from ice nucleation184, phase discrimination/identification,181 liquid-liquid 

transitions,185,186 free energy calculation187, however, they are far away from perfect. In many cases, it 

requires lots of domain expertise and efforts to combine multiple order parameters to reach conclusive 

findings or come up with new order parameters.187,188 The problem is particularly pronounced for 

confined systems as OPs are usually defined for homogenous and bulk systems, which is not the case for 
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confined water. Furthermore, due to the interplay between fluid-fluid and fluid-wall interactions in the 

confined system,189 confined systems have a richer physics accompanied with anomalous behavior in the 

phase transition region, where both continuous and discontinuous phase transition can occur (the 

discontinuous phase transition characterized by a sharp change in the potential energy, enthalpy, or OP of 

the system, while continuous phase transition shows only a critical point).190,191 Various computational 

and experimental studies are performed to investigate and identify phase behavior of confined water;192,193 

however, there are remaining pieces to fundamentally understand confined water phase behavior, one of 

which is the design of a route to predicting the phase of water directly from positional information, 

especially for the confined system. 

Reminiscent of order parameter design in the phase identification task is the kernel and feature 

engineering in the image, speech, and text processing, which required lots of domain expertise and human 

time.38,57,89 During the last decades, however, the process of kernel and feature engineering has been 

revolutionized by deep learning-based methods, which are adapted for a wide variety of applications in 

physics, chemistry, and biology. Particularly, water, as one of the most complex and important liquids, 

has been successfully studied through various deep learning methods in application such as force field 

development and phase-identifications.80,130,149,150,155,194 However, the recent deep-learning method still 

tries to use traditional OPs as a feature for phase-identification of water, which still does not solve the 

issue with their definition.   

The main bottleneck of phase identification stems from the nature of the data obtained from MD 

simulation. The data used for deep learning should pose several properties, permutation, rotational, and 

translational invariance.57 The atomic coordinates obtained from MD simulation do not pose these 

properties, which hinders the application of many conventional deep learning algorithms unless some sort 

of arbitrary transformation is applied. Initial attempts for classification of water phase using deep 

learning-based methods started by the study where multiple features requiring multiple transformations 

are fed into a multilayer-perceptron. However, the method requires arbitrary rotational transformations of 
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the dataset to enforce the rotational invariance. The recent progress in graph neural network (GNN) 

provide a suitable tool to deal with the atomistic data as they are best described in a non-Elucidation 

space.195 In addition to addressing permutation, rotational, and translation invariance, GNN addresses the 

variable size of the data, which is the case for confined water with different numbers of neighbors 

depending on water phase and its distance from the wall. GCIceNet is developed to solve the problem of 

rotational and permutational invariance using GNN. Even though GCIceNet is particularly successful, 

however, GCIce constructs node features using OPs, which is an edge feature (it depends on the distance 

between atoms). Additionally, OPs used as node features are not well-defined for confined systems.  

In this study, we use the latest advances in GNN, particularly edge-conditioned convolutional (ECC) 

graph neural network, to address the problem of phase identification of water in bulk, interface, and 

confined systems in an end-to-end fashion.196 In short, ECC is successfully applied to the point Cloud 

dataset, which mimics the problem of phase identifications in many ways. We formulate the phase-

identification problem as a graph classification task and use the ECC layers to remove the need for 

human-engineered order parameters. To do so, we construct our graphs 𝐺 = {𝑉, 𝐸} by collecting the 

oxygen atoms within the cut-off distance of a tagged oxygen atom, based on the performance and 

computational cost, we keep all the oxygens or several closet oxygen atoms. The oxygen atoms form the 

nodes (𝑉) of our graph, and the pairwise distance between all oxygen atoms (nodes) is the edge feature. 

The node feature (𝑋 ∈ ℝ |𝑉|×2 ) is the one-hot encoded vector {0,1}, where the tagged oxygen atom i.e., 

the water molecule we want to classify its phase has a different node feature compared to its neighboring 

oxygen atoms. We use a full adjacency matrix to classify phases (𝐴 = [1]|𝑉|×|𝑉| − 𝐼|𝑉|). We collect all the 

pairwise distances between all nodes as the edge feature of our graphs. Additionally, we collect 

information regarding the hydrogen bonds between water molecules by determining whether an edge 

corresponds to a donor-acceptor or acceptor-donor hydrogen-bond as well as no-hydrogen-bond. The 

hydrogen bonding is only information incorporated as a feature in neural network training, as nodes 

corresponding to it are coarse-grained in graph representation. The dimension of an edge, therefore, is a 



83 
 

vector of size 4 (𝐸 ∈  ℝ|𝑉|×|𝑉|×4).  The output of the graph classification task for the bulk water is a 

vector of dimension 𝑛𝑐, where 𝑛𝑐 is the number of different water phases in the dataset. Particularly, we 

study 9 different phases of water such as Ih, Ic, II, III, VI, VII, VIII, and IX Ices as well as liquid water. 

For interface and confined systems, we use similar inputs as bulk systems, but our output is a binary value 

indicating whether water is liquid or solid. GNNs are trained to predict whether a particular configuration 

of atoms is liquid-like or solid-like for various CNTs or interface water at various temperatures. We study 

CNT 10x10, inside which both continuous and discontinuous phase transition can occur. Our reference 

solid and liquid systems used for training are picked from temperatures away from phase transition 

temperature. The model successfully shows both sharp and smooth changes in the fraction of liquid-like 

molecules near the phase transition, allowing us to predict phase transition temperature faster than normal 

methods. This is an advantage of our method as previous studies need averaging over lots of trajectories 

to calculate OP or thermodynamic properties to obtain phase transition temperatures.  

The rest of this section is organized as follows. First, we describe the details of MD simulation and 

calculation of order parameters, followed by training of graph neural network and random forest models 

and comparisons between their performance. Finally, we summarize the findings of our study. 

    6.2 Methods 

    6.2.1 Molecular Dynamics Simulation 

Molecular dynamics (MD) simulations of water in bulk and confinement are performed using 

GROMACS package.197 Water is modeled using TIP4P/Ice model as it performs better for phase 

transitions.198 For interface system, we use the interface of Ice h/vapor, which is known as a challenging 

phenomenon, where a quasi-like layer can form due to the missing hydrogen-bonding in the interface. For 

confined cases, carbon-water interactions are modeled using the parameters from the reference199. The 

temperature and pressure of the systems are controlled using the Nose-Hoover thermostat with a time 

constant of 0.2 ps and Parrinello-Rahman barostat with a time constant of 2.0 ps, respectively.200 Initial 
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configurations of the bulk system are generated using GenIce packages.201 After energy minimization 

steps on the initial bulk configurations, MD simulation is performed for 25 ns at corresponding 

temperature and pressure of phase. The data for machine learning models training as well as OPs are 

obtained from the last 10 ns of simulation. For the confined systems, we fill CNTs with reservoir. Later, 

the isolated periodic CNT mimicking an infinite CNT is simulated at different temperatures, by gradually 

decreasing temperature from 390 K to 10 K with the rate of 1 𝐾/𝑛𝑠 . For every 10 K decrease, we 

simulate the system for 20 ns, the last 10 ns are used for post-processing.  

To compare the performance of GNN with conventional machine learning methods as a baseline, we 

calculate OPs including LSI, BOP, and tetrahedral OP. The LSI indicates the translational order of the 

system, and it considers |𝒩(𝑖, 𝑟𝑐𝑓 = 0.37 𝑛𝑚)| neighboring water molecules by ordering them in 

ascending pairwise distances (𝑟𝑗+1 >  𝑟𝑗 ∀ 𝑗 ∈  𝒩(𝑖, 𝑟𝑐𝑓 = 0.37 𝑛𝑚)). Mathematically, it is defined as, 

𝐿𝑆𝐼 =
1

|𝒩(𝑖)|
∑ [Δ(𝑗) − Δ̅]2

𝑗∈𝒩(𝑖)

 
(6.1) 

where Δ(𝑗) is the difference between the pairwise distance of two neighboring water molecules i.e. 

(Δ(𝑗) = 𝑟𝑗+1 − 𝑟𝑗) and Δ̅ is the average value of Δ(𝑗).  

The BOP of order 𝑙 (𝑄𝑙) is the other OP used in the baseline machine learning method, where it is a 

coarse-grained representation of Steinhardt parameter 𝑞𝑙𝑚, which can be expressed as follows, 

𝑞𝑙𝑚(𝑖) =
1

|𝒩(𝑖, 𝑟𝑐𝑓 = 𝑟𝑐𝑓,6)|
∑ 𝑌𝑙𝑚(𝜃𝑖𝑗, 𝜙𝑖𝑗)

𝑗∈𝒩(𝑖)

 
(6.2) 

 

Where 𝑌𝑙𝑚 is the spherical harmonic function of degree 𝑙 and order 𝑚. 𝜃𝑖𝑗 and 𝜙𝑖𝑗 are polar angles. 

The cut-off distance (𝑟𝑐𝑓 = 𝑟𝑐𝑓,6) of the neighbor list is chosen such that |𝒩(𝑖, 𝑟𝑐𝑓 = 𝑟𝑐𝑓,6)| equals 6. 

The BOP of order 𝑙 and degree 𝑚 is defined as, 
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𝑄𝑙𝑚(𝑖) =
1

|𝒩(𝑖, 𝑟𝑐𝑓 = 𝑟𝑐𝑓,6)| + 1
(𝑞𝑙𝑚(𝑖) + ∑ 𝑞𝑙𝑚(𝜃𝑖𝑗, 𝜙𝑖𝑗)

𝑗∈𝒩(𝑖)

) 

(6.3) 

which is coarse-grained by averaging over degree through the following expression,  

𝑄𝑙(𝑖) = √
4𝜋

2𝑙 + 1 
∑ |𝑄𝑙𝑚|2

𝑙

𝑚=−𝑙

 

(6.4) 

The tetrahedral OP is defined based on the four nearest molecules and takes a value between 0 and 1, 

where 0 and 1 correspond to an ideal gas and perfect tetrahedron, respectively. It can be expressed as,  

𝑞𝑡𝑒 = 1 −
3

8
∑ ∑ (cos 𝜓𝑗𝑘 +

1

3
)

4

𝑘=𝑗+1

3

𝑗=1

 

(6.5) 

where 𝜓𝑗𝑘 is the angle formed from the tagged molecule and two of the four closet water molecules. 

BOPs and tetrahedral OP calculated using PyBoo package are used to train the baseline machine learning 

models.202 In this study, we use the random forest as our baseline.203  We also store the pairwise distance 

between atoms within a cut-off distance from a tagged water molecule as an edge feature for GNN 

training along with the presence and type of hydrogen-bonding as a one-hot-encoded vector.   

6.2.2 Machine Learning 

To show the superiority of GNN over other machine learning algorithms, we train a baseline machine 

learning method i.e., random forest (RF). Before going into the details of our training, we describe the 

task and procedure we have taken. We treat the problem as a classification problem, and for the bulk 

system, our output is a one-hot encoded vector of 9 different phases. The task in the confined and 

interface system, however, is simplified to the identification of solid and liquid phases, where the output 

is binary i.e., 0 or 1. The data for classification is selected from multiple temperatures, both above and 

below the melting temperature of TIP4P/Ice models, exposing the model to both liquid and solid phases. 

The performance particularly is interesting for confined systems, where determination of phase transition 

temperature from conventional method (first-order change in order parameters) is not straightforward and 
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requires long simulation. It can also suffer from lots of noise as the timescale of phase transition can be 

large for continuous phase transition. However, the model can still predict phase behavior well (more 

quantitative analyses are provided later). 

 Random Forest  

Random forest algorithm (RF) as an ensemble learning method selects a subset of features (in our 

cases a vector of dimension 7, composed of LSI and tetrahedral order parameters as well as BOPs 

{4,6,8,10,12}. For each selected subset, a decision tree is trained by randomly selecting a subset of 

features and dataset, followed by the construction of decision trees. Once the training of various trees is 

done, a majority vote is taken to determine the class for a given data. We apply grid search with 5-fold 

cross-validation to obtain optimal depth and number of trees for RF.  

 Graph Neural Network 

The graphs in this study are denoted by 𝐺 = {𝑋, 𝐸}, where 𝑋 = {𝑥𝑖 ∈ ℝ2|𝑖 = 1, … , 𝑁} is the set of all 

nodes (oxygen atom of water molecules) with a dimension of 2 corresponding to one-hot-encoding based 

on whether the node is a tagged oxygen atom or a neighboring oxygen atom, and  𝐸 = {𝑒𝑖𝑗 ∈ ℝ4|𝑥𝑖, 𝑥𝑗 ∈

𝑋} is the set of edges with 4 attributes i.e., the pairwise distance and the one-hot-encoding of hydrogen-

bonding corresponding to donor-acceptor, acceptor-donor, or no-hydrogen-bond cases. The graph can 

also be described using the adjacency matrix, a binary matrix of dimension |𝑋|2. Elements of the 

adjacency matrix determine connections between nodes 𝐴 = [𝛿𝑖𝑗]
|𝑋|×|𝑋|

. Note that depending on the 

computational cost and classification performance, we use different numbers of water molecules to form 

the graph (see Figure 6.1 for schematic representations of graph construction). 

In general, most of the GNN methods belong to the message-passing networks, which utilize 

combinations of message, aggregation, and update.195 In this study, we use the ECC layer to build our 

GNN model.196 The hidden representation of nodes ℎ𝑙  at layer 𝑙 is equal to a weighted sum of hidden 
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representation ℎ𝑙−1 in its neighborhood. The weights in the ECC are generated by another network, also 

known as filter generating networks, which is usually modeled with a MLP with trainable parameters. 

Mathematically, the following operations are performed in the l-th layer, 

ℎ𝑙(𝑖) = ℎ𝑙−1(𝑖)𝑊𝑟𝑜𝑜𝑡
𝑙 + ∑ ℎ𝑙−1(𝑗)MLP(𝑒𝑗𝑖, 𝑤𝑙) + 𝑏𝑙

𝑗∈𝑁(𝑖)

 (6.6) 

where 𝑏𝑙 is the l-the layer bias, and 𝑁(𝑖) is the neighborhood of node i (𝑁(𝑖) = {𝑗; (𝑗, 𝑖) ∈ 𝐸}). Note 

that ℎ0 corresponds to input feature 𝑥 and 𝑤𝑙 are learnable parameters of the multi-layer perceptron. After 

3 or 4 ECC layers, we use a pooling function (sum pooling) to find a representation for each graph. The 

role of pooling is to reduce node embeddings of the whole graph into a single vector. Additionally, the 

pooling layer should be invariant to the permutation of nodes, we use sum function as our pooling layer. 

The pooled representation is fed to a multi-layer perceptron with 1 hidden layer. All the layers, except the 

last of multi-layer perceptron, use the ReLU activation function.  

To train the parameter of the GNN we use either binary- or categorical-cross-entropy losses defined 

as, 

ℒ = − ∑ 𝑝𝑖 log 𝑞𝑖

𝑖∈𝑛𝑐

 
(6.7) 

Where 𝑝𝑖 an log 𝑞𝑖 are i-th element of vectors with dimension equal to the number of classes (𝑛𝑐) 

representing one-hot-encoding and GNN predictions, respectively. The Adam optimizer is used to train 

the model with a learning rate of 0.00005 for 100000 epochs with early stopping if the loss is saturated 

for 5 consecutive epochs on the validations dataset (0.2 of the dataset). The batch size of 16, 32, or 64 is 

used depending on the computational cost. Spektral and TensorFlow packages are used to perform GNN 

training, and the top2phase package developed as a python package for broader usage. 
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    6.3 Results and Discussions 

We first perform data-exploratory analysis to examine the sufficiency of BOPs to separate different 

bulk water phases (bulk systems are shown in Figure 6.2a). To do so, we obtain 2D scatter plots of BOPs 

for two sets of degrees, namely (𝑞6, 𝑞8) and (𝑞10, 𝑞12). In Figure 6.2b, we show the results of the analysis, 

where we observe a large overlap between any selected BOPs. Following this step, we train RF methods 

with different numbers of trees and depth and find the optimal RF parameters. The model reaches an 

average accuracy of 89.2 percent. Training the GNN model with the same dataset leads to an average 

accuracy of 99.9 percent. Figure 6.3 shows more quantitative analysis on the accuracy of both GNN and 

RF models based on the confusion matrix. The confusion matrix shows the percentage of dataset 

misclassified for off-diagonal elements, and diagonal elements show the percentage of correctly classified 

samples per class. The GNN confusion matrix (Figure 6.3b) shows far superior behavior as off-diagonal 

elements are far less than their counterparts in the RF confusion matrix (Figure 6.3a). 

Following on the same line, we study Ice h/vapor system, where we simulate system for the 

temperature range of 10 K to 300 K with a 10 K step (see Figure 6.4 for explanatory data analysis as well 

as the schematic representation of waters at different temperatures before and during phase transition). 

The experimental and computational investigation show formation of a quasi-liquid layer at the interface 

of Ice h /vapor. The predicted melting temperature from the experiment and simulation is around 270 ± 5 

K. We select temperatures of [10,140] K and [290, 300] K as our reference solid and liquid systems for 

ML training. After training the model, which shows an accuracy of 99% for GNN and 0.97% for RF, we 

feed the data from other temperatures to predict melting temperature and compare classification results 

obtained from RF and GNN. To do so, we compare the liquid fraction at each temperature using both RF 

and GNN models in Figure 6.5. Additionally, we show the potential energy of the system, which shows a 

sharp change near melting temperature. The GNN predicts a melting temperature of 275 K and RF predict 

it as 275 K, and potential energy indicates a melting temperature of 275.0 ± 2.5 K. The behavior of GNN 
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is monotonic within the temperature range of our study, showing an increasing number of liquid-like 

molecules, while RF shows a non-monotonic and inconsistent behavior with temperature increase. 

Now, we study confined systems, where we simulate water confined inside CNT 10x10 for the 

temperature range of 10 K to 390 K with a 10 K step (see Figure 6.6 for explanatory data analysis as well 

as the schematic representation of waters in liquid and solid phase for water with average densities of 

16.75 𝑛𝑚−3 and 19.14 𝑛𝑚−3). Confined water in general shows more complex behavior compared to 

bulk water, for example with the increase in density phase transition becomes continuous, especially for 

CNTs with a smaller diameter. This phenomenon is usually attributed to the interplay between the 

interactions of interface-water and water-water. As shown in figure 6.6a-d, the solid phase of water inside 

CNT 10x10 show both heptagon and heptagon with single-file water, respectively at densities of 16.75 

𝑛𝑚−3 (low) and 19.14 𝑛𝑚−3 (high) and liquid phase of both CNT looks like each other. The larger 

overlap of scatter plots of BOPs in high-density cases BOPs shown in Figure 6.6e-h, indicates difficulty 

in using BOPs for high-density cases. Note that the high-density case corresponds to a continuous phase 

transition. The predicted melting temperatures for low- and high-density cases are around 270 ± 10 K 

and 290 ± 10, respectively. The trend is consistent with previous computational studies. Like the Ice 

h/vapor case, we select two representative temperatures for both liquid and solid, in this case, we use 

[10,150] K and [310, 380] K as our reference solid and liquid system, respectively. After training the 

model, the GNN model achieves 0.994 and 0.949 accuracy, respectively for low- and high-density cases, 

the accuracy of RF is lower than of GNN, achieving 0.997 and 0.809 accuracies, respectively for low and 

high densities (see SI for confusion matrix and more details on model performance). The GNN 

outperforms RF in the high-density case, which shows the capabilities of GNN in complex environments. 

The lower accuracy of RF is attributed to the large overlap of BOPs as shown in Figure 6.6 e-h. GNN, 

however, learns its featurization based on data and does not face many difficulties in distinguishing solid 

and liquid phases apart. Once the models are trained, we feed the data from other temperatures to predict 

melting temperature and compare the results obtained from RF and GNN. In Figure 6.7a-b, we compare 
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the liquid fraction at each temperature using both RF and GNN models, respectively for low- and high-

density cases. Additionally, we show potential energy and axial diffusion coefficient, which shows a 

sharp change near melting temperature for low density and smooth transition for high density, signatures 

of discontinuous and continuous phase transition, respectively. The predicted melting temperatures are 

close to MD simulation results using both models. However, the behavior of GNN is again more 

monotonic with temperature change as shown in Figure 6.7a-b the fractions of liquid-like molecules are a 

non-decreasing function of liquid-like molecules, while RF shows a non-monotonic and inconsistent 

behavior with temperature increase. We also note that the larger deviation of both GNN and RF for the 

high-density case can be attributed to the difficulty in reaching complete equilibrium in the high density 

as the timescale of relaxation of simulation is large. Overall, the results of the high-density case prove the 

abilities of GNN in more complex environments. 

    6.4 Conclusion 

In this study, we train a graph neural network model to classify different phases of water in bulk, 

interfacial, and confined environments. To address the issue with the definition of order parameters in the 

confined environments, we train the model to learn features from the positional data i.e., the distance 

between the oxygen atom of tagged molecules and all other water molecules oxygen atoms within a cut-

off distance. We augmented the edges features with the hydrogen-boding information (acceptor-donor, 

donor-acceptor, or lack of hydrogen-bonding) as hydrogen atoms are coarse-grained in the graph 

representation. The results show successful employment of model in bulk, interfacial, and confined water 

inside carbon nanotube, especially in terms of its generalization compared to baseline method trained 

using classical order parameters model. Furthermore, the predicted melting temperature and behavior of 

the model in both continuous and discontinuous phase transition inside carbon nanotube were in good 

agreement with the change in the potential energy and dynamics of waters. In summary, the methodology 

and accompanied code provide a robust data-driven tool to classify and study the phase behavior of 

complex systems. 
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    6.5 Figures 

 

Figure 6.1. Schematic representation of water and corresponding graph structure representing the 

structure. a. atomistic configuration b. neighbor list formation based on a tagged water molecular c. 

graph representation with nodes as oxygen atoms, and edges representing connection with blue color. 

Each edge has four dimensions, representing distance and H-bond. Node color represents whether it is 

the tagged molecule or not. 
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Figure 6.2. Explanatory data of analysis of bulk water phases. a. Schematic representation of different 

bulk water phases b. scatter plot of (𝑞10, 𝑞12) and (𝑞6, 𝑞8) of bulk phases of water. 
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Figure 6.3. Confusion matrix for classification of bulk water. a. using RF. b. using GNN.  
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Figure 6.4. Schematic representation of Ice h/Vapor system at different temperature along with 

explanatory data of analysis. a. configuration at 50 K b. configuration at 150 K. c. configuration at 270 K 

d. configuration at 290 K e. scatter plot of (𝑞10, 𝑞12) at different temperatures f. scatter plot of (𝑞6, 𝑞8) at 

different temperatures. Distribution of order parameter pairs show lots of overlap for different 

temperature, which are at different temperatures. 
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Figure 6.5. Phase transition of Ice h/vapor system. The black line with squares shows scaled potential 

energy of water at different temperatures. The red circle and blue cross represent fraction of liquid-like 

molecules at different temperatures obtained using RF and GNN, respectively. Dashed vertical lines 

indicate temperature range at which all Ice-like molecules disappear by temperature increase. 
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Figure 6.6. Schematic representation of confined water inside CNT 10x10 system at different temperat

ures and densities along with explanatory data of analysis. a. liquid water configuration at 350 K and 1

6.75 𝑛𝑚−3. b. solid water configuration at 20 K and 16.75 𝑛𝑚−3. c. liquid water configuration at 350 

K and 19.14 𝑛𝑚−3. d. solid water configuration at 20 K and 19.14 𝑛𝑚−3. e. scatter plot of (𝑞10, 𝑞12) at 

different temperatures and density of 16.75 𝑛𝑚−3.  f. scatter plot of (𝑞6, 𝑞8) at different temperatures an

d density of 16.75 𝑛𝑚−3. g. scatter plot of (𝑞10, 𝑞12) at different temperatures and density of 19.14 𝑛
𝑚−3.  h. scatter plot of (𝑞6, 𝑞8) at different temperatures and density of 19.14 𝑛𝑚−3.  Distribution of or

der parameter pairs show lots of overlap for different phases.   
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Figure 6.7. Phase transition of confined water with discontinuous and continuous phase transition. 

Comparison between the normalized potential energy and diffusion coefficient change at different 

temperatures and two densities.  
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CHAPTER 7: Conclusion 
 

In conclusion, we studied simple liquids and water through statistical and deep learning approaches, 

providing routes to solve liquid-state theory, develop coarse-grained force fields, enhance sampling, 

provide insight into quasi-universal behavior of liquids, and identify phase of water. To do so, we 

employed extensive MD simulation to obtain big data, and train deep neural network to deduce properties 

and potential parameters of liquids. In addition, the quasi-universal properties of liquids are studies using 

statistical and deep learning method providing insight into hidden scale behavior of liquids. Followed by 

investigation into role of water-like behavior in coarse-grained model and phase identification of water 

from pairwise distance matrix. 

In the second chapter, we showed that deep neural network models can learn the solution to inverse 

liquid-state theory, which relates structure to the potential parameters. Followed by application of the 

deep learning model in the coarse-graining, where we observed performance close to conventional coarse-

graining methods with no need for repetitive MD simulations i.e., a single-shot method. In the third 

chapter, we showed applications of deep denoising autoencoder in prediction of liquid structural 

properties from a single snapshot structure, which matches with the accuracy of several hundreds of frame 

average. The model also outperformed other baseline machine learning methods such as principal 

component and independent component methods by huge margin. The model also successfully predicts 

other thermodynamics properties.  In the fourth chapter, we employed statistical learning methods to 

explain statistical similarity among simple liquids with different pair potential forms. We applied the 

DeepILST framework developed in the second chapter to obtain hidden scale physics properties. 

Additionally, mapping among different simple liquid pair potential parameters is provided. The success of 

the model promotes its application to the cases where analytical solution is still obscure.  

In the fifth chapter, we employed local-search method to train neural network-based coarse-grained force 

field targeting structural properties of all-atom and ab initio water model. Unlike previous methods, our 
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method does not accurate force and energies. The water-like behavior is studies in the single bead coarse-

grained water model with two- and three-body interactions, which showed the double well potential in 

water vanishes when a three-body interaction is present. This finding indicates the role of directionality in 

water-like behavior. In the sixth chapter, we investigated the possibility to use modern graph neural 

network architectures to classify different phases of water without any feature design part. The model 

reaches high accuracy without any need to calculate traditional order parameters, and outperform baseline 

ML method, random forest, in the calculation of melting temperature.  
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Appendix A: Supplementary Information for Chapter 2 

 A.1 Thermodynamic Properties 

 

Given that the deep neural network (DNN) obtains the solution to the inverse-problem of liquid-state 

theory, we investigate the estimation of thermodynamic properties of Lennard-Jones particles using the 

DNN and compare them with values obtained from MD simulations of Argon case as discussed in the 

main manuscript (Argon at various temperatures and densities, see Figure A1 for RDFs of Argon at 

various thermodynamic states). For example, pressure of a given molecular system can be calculated 

using, 

𝑃 =
1

𝑉
(

1

3
𝑁𝐷𝑂𝐹𝑘𝐵𝑇+<

1

3
∑ 𝑓𝑖𝑗. 𝑟𝑖𝑗

𝑗>𝑖

>)            (𝐴. 1) 

where 𝑁𝐷𝑂𝐹 is the number of degrees of freedom in the system, and V is the volume of the simulation 

box. The second term in Eq. A.1 is the virial part of the pressure and 𝑓𝑖𝑗 is the force between two beads, 𝑖 

and 𝑗, which can be expressed in terms of the RDF and the pair potential. The pressure can then be 

expressed as, 

𝑃 = 𝜌𝑘𝐵𝑇 −
4𝜋𝜌2

6
∫

𝜕𝑢

𝜕𝑟

𝑟𝑐𝑢𝑡

0

𝑔(𝑟)𝑟3𝑑𝑟       (𝐴. 2) 

In a similar manner, one can calculate the total potential energy of a system based on the radial 

distribution function and the pair potential, as expressed below,  

𝑈 =
𝑁

2
4𝜋𝜌 ∫ 𝑢(𝑟)𝑔(𝑟)𝑟2𝑑𝑟

∞

0

 (𝐴. 3) 

where N is the number of particles in the system. Note that during the calculation, we consider dispersion 

correction for the virial and energy (see Reference )204 in a similar manner to that implemented in 

GROMACS.205 The comparison between pressure and energy predicted using MD and DNN is shown in 
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Figure A2 and A3, respectively. The mean relative error for deep learning is less than 14% and 25% for 

the potential energy and pressure, respectively, with an average relative error of 13% and 17%, indicating 

the ability of the deep learning approach to predict the underlying physics and obtaining the solution to 

the inverse-problem of liquid-state theory for Lennard-Jones particles. 

 

Figure A.1. Radial distribution function of Argon at 121 different thermodynamic states obtained by 

uniformly sampling both temperature and density range shown in Table 1 of the main manuscript. 

 

 

Figure A.2. Bulk pressure of Argon for different thermodynamic states. a. MD results b. deep learning 

results.  



117 
 

 

Figure A.3. Total potential energy of Argon for different thermodynamic states. a. MD results b. deep 

learning results  

 A.2 Training of Deep Learning Model 

  

The mean-squared error is used as the loss function to train the DNN. Optimization is performed 

using the Adam optimizer. The dropout technique is used for the second hidden layer, which resembles 

the regularization algorithm in reducing the overfitting significantly (see reference for more details on the 

dropout technique).59 The dropout technique randomly drops nodes in layers with a specified probability, 

thereby reducing the number of active nodes in that layer. Dropout technique prevents nodes from 

undesirable co-adapting. The key idea in dropout is that in each minimization step of DNN instead of 

training the whole network only a fraction of the active nodes is used in training (see reference 57 for more 

information regarding deep learning). 

We have tested multiple networks with different activation functions and size to select the DNN 

architectures according to Figure 2.1c of the main manuscript. A total of 36 networks are trained to 

choose the best architecture with the smallest loss function and least overfitting. All the networks used 

similar input (material fingerprint) except for the expansion power in temperature and density. Figure A4 
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shows the DL network with the best performance with two hidden layers and 48x15 size and a power of 3 

(𝑝 = 3).  

We also trained networks with 3 hidden layers, but these networks had an overfitting problem, as their 

performance over training and validation datasets diverged, i.e., it has a similar loss function value as the 

2 layers network on the training dataset, but the loss function value is higher for the validation and testing 

datasets, indicating overfitting.  

 

Figure A.4. The loss function value of DL network for both training (black line) and validation (red dash-

dot line) datasets. The value of loss function for testing dataset (blue dash-dash line). a. initial steps of 

training shown in log-scale b. final steps of training. 

The output of FNN with three hidden layers uses the following sequence of equations, 

𝝁1 = tanh(𝐖1𝒙 + 𝒃1) + sigmoid(𝐖1𝒙 + 𝒃1)                              (𝐴. 4)                                                 

𝝁2 = tanh(𝐖2𝝁1 + 𝒃2) + sigmoid(𝐖2𝝁1 + 𝒃2)                              (𝐴. 5)                                                 

𝝁3 = tanh(𝐖3𝝁2 + 𝒃3) + sigmoid(𝐖3𝝁2 + 𝒃3)                              (𝐴. 6)                                                 

𝒗𝑜 = sigmoid(𝐖𝑜𝝁𝟑 + 𝒃𝑜)                              (𝐴. 7)                                                 

The accuracy of DNN is determined using the equation, 

𝒂𝑫𝑵𝑵,𝒋 =
∑ 𝑓𝑖𝑗i∈D

|D|
 

                             (𝐴. 8)                                                 
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where 𝒂𝑫𝑵𝑵,𝒋 is the accuracy of the DNN for the potential parameter j (𝐶6, 𝐶12). |D| is the size of the 

dataset.  𝑓𝑖𝑗 is determined based on how far is the prediction from the ground truth compared to square 

root of the loss function value on the training dataset, i.e., 

𝑓𝑖𝑗 = {
1         if     |𝑣𝑗,𝐷𝑁𝑁

(𝑖)
− 𝑣𝑗,𝐺𝑇

(𝑖)
| ≤ 4𝜖ℒ

0.5

0         otherwise                                   
 

                             (𝐴. 9)                                                 

where 𝜖ℒ  is the loss function value on the training dataset, which shows the interval for which 99 percent 

of DNN predictions are located from one-to-one mapping line, i.e., 𝑓𝑖𝑗 counts the number of data points 

within two parallel lines with the one-to-one mapping line, both of which have an offset of ±4.0𝜖ℒ
0.5.  

The mean absolute percentage error62 (MAPE) used in the main manuscript can be expressed as, 

𝜖𝑴𝑨𝑷𝑬,𝒋 = 100 ×
∑     |𝑣𝑗,𝐷𝑁𝑁

(𝑖)
− 𝑣𝑗,𝐺𝑇

(𝑖)
|i∈D

∑ |𝑣𝑗,𝐺𝑇
(𝑖)

|𝑖∈D

 

                             (𝐴. 10)                                                 

The MSEs during training for both 2 and 3 layer networks are shown in Figure A.5 and A.6.   

 

Size/p 48x15 60x15 75x15 

 

1 

   

(Figure A.5 (cont.)) 
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2 

   

3 

   

4 

   

5 

   

(Figure A.5 (cont.)) 
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6 

   

Figure A.5. Loss function during training of 2 hidden layer networks. First column shows the p (power 

of density and temperature for input) and first row shows the number of nodes in the first and second 

layers, respectively. 

Size (1st, 

2nd, and 

3rd layers) 
48x24x12 60x30x15 80x40x20 

𝑝 

1 

   

2 

   

(Figure A.6 (cont.)) 
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3 

   

4 

   

5 

   

6 

   

Figure A.6. Loss function during training of 3 hidden layer networks. First column shows the p (power 

of density and temperature for input) and first row shows the number of nodes in the first, second, and 

third layers, respectively. 
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 Based on the above results, we have selected three 2-hidden-layer networks (60x15 with power of 

1 and 6 and 48x15 with powers of 3). The performance of all these networks is similar, but the second 

network performs better for the transferability case. Therefore, we used it for all the results shown in the 

main manuscript. Figure A7 and A8 show final values of MSE on each dataset for different network sizes 

and different features, which, in turn, justifies the selection of the aforementioned networks.  

48x15 

 

60x15 

 

75x15 

 

Figure A.7. Final loss function values for training, validation, and testing datasets for various 

exponents (𝑝) of temperature and pressure. 
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48x24x12 

 

60x30x15 

 

80x40x20 

 

Figure A.8. Final loss function values for training, validation, and testing datasets for 

various exponents (𝑝) of temperature and pressure. 
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 The transferability dataset includes data outside the range mentioned in Table A1 of the main 

manuscript. The data shown for the one-to-one mapping of the transferability case are obtained using the 

following steps.  Based on the loss function value of the training dataset, data which are bounded by the 

accuracy line are selected. Then, minimum and maximum of the non-dimensional temperature (𝑇∗ =

𝑘𝐵𝑇

𝐶6,𝑝
2 4𝐶12,𝑝⁄

, 𝑘𝐵 is the Boltzmann constant and subscript p indicates predicted value by DL network) and 

density (𝜌∗ =
𝑁(𝐶12,𝑝 𝐶6,𝑝 ⁄ )

1
2

𝐿3  , L and N are the simulation box length and number of atoms, respectively) 

are determined for the selected data within two accuracy lines in order to obtain criteria to create a 

validity range for the non-dimensional temperature and density. Data points in the transferability dataset, 

which are within the validity range, are shown for each network including the results shown in Figure 

A.2d and A.2h of the main manuscript with non-dimensional temperature and density of [0.42, 39.20] 

and [0.0781, 0.802], respectively. The error distributions of all the three networks are shown in Figure 

A.9. 

A. 

 

(Figure A.9 (cont.)) 
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B. 

 

C. 

 

Figure A.9. The error distribution for three 2-hidden-layer networks. The error for B follows a more 

uniform distribution compared to the other cases. A. 60x15 with Power 1 B. 48x15 with Power 3 C. 

60x15 with Power 6. 

 

Further assessment for the best DNN is performed for randomly selected data points (both potential 

parameters and thermodynamics states) of LJ atomistic particles, shown in Figure A10. We observe that 

DNN predicted potential parameters lead to almost indistinguishable RDFs compared to corresponding 

reference data.  
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Figure A.10. Comparison between RDFs of DNN-based (solid red line) parameterized LJ potential and 

reference MD (dash-dot black line). Points are selected randomly from the dataset. 
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Comparison between DNN based coarse-graining and two other coarse-graining methods, namely, 

relative entropy and simplex, are shown in Figure A11 as well as in Figure A4 of the main manuscript. 

Furthermore, we compare the relative pressure (with respect to the AA reference) from the potentials 

parameterized using various methods, including the additional united-atom (UA)206,207 force field for 

methane (CH4) (see Table A1). Figure A12 shows comparison of RDF between UA, AA and DNN 

models. Even though the pressure obtained using the UA method is closer to AA model compared to the 

DNN method (the pressure of UA and DNN models are 0.84 and 0.72 of AA pressure), the RDF of UA 

model differs in magnitude and location of peak from the AA model. The RDF of DNN model matches 

the magnitude and location of the peaks of the AA model. 

 

Figure A.11. Comparison between DNN-based (solid red line), relative entropy (dotted green line) and 

simplex (dash-dot blue line) coarse-graining models. All the three methods show excellent match with 

the all-atom model results (shown as black circles). 

 

Table A.1. Comparison of the relative pressure obtained with various methods.  

Relative Pressure 𝑃𝐷𝑒𝑒𝑝𝐼𝐿𝑆𝑇/𝑃𝐴𝐴  𝑃𝑆𝑖𝑚𝑝𝑙𝑒𝑥/𝑃𝐴𝐴 𝑃𝑅𝐸/𝑃𝐴𝐴 𝑃𝑈𝐴/𝑃𝐴𝐴 

CO 1.46 1.23 1.29  

F2 1.30 1.49 1.60  

CH4 0.72 0.66 0.80 0.84 
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Figure A.12. Comparison of RDF obtained with DNN (solid red line) and UA (dash-dot blue line) 

models with the all-atom methane (CH4) model (shown with black circles). 

 

 

 

 

 

 

 

 



130 
 

Appendix B: Supplementary Information for Chapter 3 
 

        B.1 Model Selection and Training 

In order to select the deep neural network (DNN) architecture, we have tried various architectures 

both with different nonlinearities and depths. Based on initial experiments, we have pursued full training 

of only six DNNs for almost 6,000,000 steps. The six DNNs are shown in Table B1. The loss function for 

Net 4 is smaller compared with the remaining DNNs, and it has a smaller overfitting as shown in Figure 

B.1. The overfitting is measured as the distance of loss function value on validation and training dataset. 

Note that during training of deterministic networks, data usually gets divided into three sets, namely 

training, validation, and testing.80 However, in the case of generative networks, data is usually divided 

into only two sets, training and validation. In this study, we use data from simulation of other simple 

liquids100 as the test dataset and generalizability assessment.  

Table B1. The DNNs trained for selecting the optimal network. 

 Encoder Latent Space Decoder Regularization factor 

Net 1 250 × 200 × 125  75 125 × 200 × 250  10−5 

Net 2 250 × 200 × 125  75 125 × 200 × 250  5 × 10−5 

Net 3 250 × 200 × 125  75 125 × 200 × 250  10−4 

Net 4 250 × 200 × 150  100 150 × 200 × 250  10−5 

Net 5 250 × 200 × 150  100 150 × 200 × 250  5 × 10−5 

Net 6 250 × 200 × 150  100 150 × 200 × 250  10−4 
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Figure B.1. Loss function for six different DNNs trained for about 6,000,000 iterations. Net 4 is 

selected for obtaining the results in the main manuscript. Blue and orange boxes show loss function of 

training and validation data sets, respectively. 

The loss functions decrease with training steps for the six DNNs as shown in Figure B2. 

 

Figure B.2. Loss function with training steps for six different DNNs. a. Net 1 b. Net 2 c. Net 3 d. Net 

4 e. Net 5 f. Net 6.  
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Here, we also invesigate the transferability of DAE network to unforeseen thermodynamic states. To 

do so, we feed RDF of various Lennard-Jones liquids into frozed DAE network. We observe that the 

performance of DAE detoriates as we explore thermodynamic state far away from dataset 

thermodynamic states (shown in Figure B.3). However, we observe a clear correlation between peak 

radial distance between DAE prediction and MD ground truth RDFs. 

 

 

Figure B.3. Transferability of DAE network for prediction of RDF for unforseen thermodynamic 

states.  

        B.2 Simulation Details 

The potential parameters and thermodynamic states of 6 randomly selected LJ systems studied in the 

main manuscirpt are given in Table B2.  
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Table B.2. Potential parameters and thermodynamic states of LJ systems studied in Figures 3.2-3 of 

the main manuscript. a, b, c, d, e , and f refer to the results with the same alphabetic order. 

System 

Potential Parameters Thermodynamic States 

𝐶12 [
𝑘𝐽

𝑘𝑚𝑜𝑙 𝑛𝑚12
] 𝐶6 [

𝑘𝐽

𝑘𝑚𝑜𝑙 𝑛𝑚6
] 𝑇 [𝐾] 𝜌 [𝑛𝑚−3] 

a 2.215 × 10−5 3.06 × 10−3 385.42 16.05 

b 8.160 × 10−6 7.26 × 10−3 346.45 16.44 

c 2.232 × 10−5 2.03 × 10−3 325.98 13.40 

d 6.190 × 10−5 7.59 × 10−3 399.86 13.53 

e 4.086 × 10−5 3.27 × 10−3 399.86 14.33 

f 2.395 × 10−5 6.74 × 10−3 318.46 11.40 

 

Potential parameters used in MD simulation of simple liquids are given in Table B.3. The 

thermodynamic states of all the simple liquid systems are identical with temperature and density of 

350 𝐾 and 12.23 𝑛𝑚−3, respectively. 
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Table B.3. Potential parameters of simple liquids studied in the main manuscript. 

 Parameters Values 

Exponential Potential 

𝐴 [
𝑘𝐽

𝑘𝑚𝑜𝑙
] 1.34 × 106 

𝑘𝐷 [𝑛𝑚−1]  3.424 × 101 

Yukawa Potential 

𝐴 [
𝑘𝐽

𝑘𝑚𝑜𝑙
] 3.17 × 107 

𝑘𝐷 [𝑛𝑚−1] 3.203 × 101 

Inverse-Power-Law Potential 

(14-8) 

𝐶14 [
𝑘𝐽

𝑘𝑚𝑜𝑙. 𝑛𝑚14
] 

4.142 × 10−6 

𝐶8 [
𝑘𝐽

𝑘𝑚𝑜𝑙. 𝑛𝑚8
] 

6.077 × 10−5 

Inverse-Power-Law Potential 

(10-4) 

𝐶10 [
𝑘𝐽

𝑘𝑚𝑜𝑙. 𝑛𝑚10
] 

2.500 × 10−4 

𝐶4[
𝑘𝐽

𝑘𝑚𝑜𝑙. 𝑛𝑚8
] 

8.521 × 10−2 

 

 

        B.3 Comparison with Baselines  

Principal component analysis (PCA) and independent component analysis (ICA) are dimensionality 

reduction and denoising algorithms in the machine learning for high dimensional and large dataset.90,91 In 

particular, PCA method is developed for data with Gaussian distribution, and further study is in progress 

for non-Gaussian data.91 The denoising performance of PCA also requires additional condition of 

independent and identically distributed (iid) Gaussian noise components. We assess validity of these 

conditions, namely being Gaussian and iid.208 To do so, we test departure from normality with calculation 
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of p-value for null hypothesis of noise being drawn from Gaussian distribution with 𝛼 = 0.05 (the test 

combines skew and kurtosis to assess departure of normality, we use scipy stats package of python to 

perform this test).96 We observe that at various radial distances the null hypothesis is rejected (shown 

below with red circles in Figure B4a). Figure B4b shows the noise distribution of Argon Lennard-Jones 

liquids at radial distance of 0.46 nm, which clearly shows a non-Gaussian distribution.  

 

Figure B.4. a. Non-Guassian noise at various radial distance b. noise distribution at a specific radial 

distance   

 

To check the iid condition of noise components, mutual information97,98 between the noise component at 

each radial distance with the noises at other radial distances is calculated. The mutual information can be 

expressed as, 

𝐼(𝑋, 𝑌) = ∑ ∫ log (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
) 𝑑𝑦

𝑥

 B.1 

where (𝑥, 𝑦) are the data points with underlying probability distribution 𝑝(𝑥, 𝑦). For iid data, mutual 

information is equal to zero, and otherwise its non-zero. The maximum value of estimated mutual 

information at various radial distances are shown at figure below (the test is performed using scikit-learn 

package of python). 

b. a. 
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Figure B.5. Mutual information at various  radial distance. The maximum value of mutual information 

between noise at each radial distance with other radial distances are shown with circles. The non-zero 

circles show dependency with other points. 

 

As shown by the above figure mutual information has a non-zero value, which indicates dependency 

between noises, which again violates the iid condition.  

Even though the conditions for validity of PCA and ICA are not fully-satisfied, we compare performance 

of PCA and ICA with different numbers of component with the DAE method developed in the main 

manuscript. In general, we observe that the DAE method is better than both methods consistent with 

recent studies reporting a better performance for denoising autoencoder compared with PCA in physical 

problems.86,209 The main problem associated with PCA and ICA is unphysical negative values as these 

methods do not guarantee non-negative value for the non-negative dataset. We investigate both methods 

up to 19 components with dataset of 1500 RDFs. For any number of components, the DAE method 

outperforms both methods. RDFs of various system reconstructed by PCA and ICA with number of 

components between 3 and 11 are shown in Figure B6-14. Similar trends are observed for the number of 

components between 12 and 18.  Further increase in the number of components, in fact, deteriorates 
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denoising performance of both PCA and ICA methods as shown in Figure B15 for number of component 

equal to 19.  

PCA with 3 components ICA with 3 components 

  

  

  

Figure B.6. Comparison between DAE, PCA, and ICA (ICA and PCA with 3 components). 
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PCA with 4 components ICA with 4 components 

  

  

  

Figure B.7. Comparison between DAE, PCA, and ICA (ICA and PCA with 4 components). 
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PCA with 5 components ICA with 5 components 

  

  

  

Figure B.8. Comparison between DAE, PCA, and ICA (ICA and PCA with 5 components). 
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PCA with 6 components 

 

ICA with 6 components 

  

  

  

Figure B.9. Comparison between DAE, PCA, and ICA (ICA and PCA with 6 components). 
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PCA with 7 components ICA with 7 components 

  

  

  

Figure B.10. Comparison between DAE, PCA, and ICA (ICA and PCA with 7 components). 
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PCA with 8 components ICA with 8 components 

 
 

 

  

  

Figure B.11. Comparison between DAE, PCA, and ICA (ICA and PCA with 8 components). 
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PCA with 9 components ICA with 9 components 

 
 

 

  

  

Figure B.12. Comparison between DAE, PCA, and ICA (ICA and PCA with 9 components). 
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PCA with 10 components ICA with 10 components 

 
 

 

  

  

Figure B.13. Comparison between DAE, PCA, and ICA (ICA and PCA with 10 components). 
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PCA with 11 components ICA with 11 components 

 
 

 

  

  

Figure B.14. Comparison between DAE, PCA, and ICA (ICA and PCA with 11 components). 
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PCA with 19 components ICA with 19 components 

 
 

 

  

  

Figure B.15. Comparison between DAE, PCA, and ICA (ICA and PCA with 19 components). 

        B.4 DAE with PCA Input-Output 

We employ PCA algorithm with 20 components, which show excellent ability in the dimensionality 

reduction of average temporally averaged RDF, however, it comes at the cost of losing denoising 
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functionality for single snapshot RDF. We augment the denoising deficiency of PCA with large number 

of components by using it as input and output of the DAE network. This methodology, in turn, reduce the 

size of the DAE network. We find PCA free parameter and freeze the PCA model. Once both single 

snapshot and temporally averaged RDFs are dimensionally reduced with PCA, we train a small DAE 

network with two 2 hidden layers (encoder and decoder networks have two hidden layer with 

20x15x10x15x20 architecture for DAE, we don’t go through rigorous optimization of network 

architecture, as the main objective is to show how DAE network can augment traditional method, and in 

return gets smaller combing two methods with each other). Then, the DAE learns to map noisy PCA 

component of single snapshot RDF back to PCA components of temporally averaged RDF. The results 

shown in Figure B16 clearly indicates that DAE combined with PCA outperform PCA denoising ability. 

The loss function of the training of DAE network with PCA input-output is also shown in Figure B17. 

  

 

Figure B.16. DAE with PCA input/output RDF prediction for four randomly selected systems. PCA 
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with 20 components. The dash-dotted blue lines show PCA output for temporally averaged RDF. Solid 

red line show the PCA of a single snapshot RDF, which is feed into DAE network to reproduce DAE 

predicted temporally averaged RDF shown with dash-dot blue lines.   

   

Figure B.17. DAE with PCA input/output loss 

function during training steps.   
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Appendix C: Supplementary Information for Chapter 4 
 

        C.1 Statistical Model 

As mentioned in the main manuscript, to the best of our knowledge, there is no theorem to prove the 

uniqueness of a transformation (function) of random variable such that it transforms the probability 

density function (PDF) of a given random variable into a specific PDF. Here, we provide a few 

counterexamples to establish the non-uniqueness.  

Assume that there exists a theorem stating that there is a unique function transforming the PDF of a given 

random variable into a specific PDF. The theorem should hold for all PDFs; however, we can consider 

random variable X with a uniform PDF in the interval of [-1, 1] (𝑝(𝑋 = 𝑥) = {
1

2
   𝑖𝑓 − 1 < 𝑥 < 1

0                 𝑒𝑙𝑠𝑒       
). Then 

all the following transformations produce the same PDF, 

𝑓(𝑥) = (𝑥 + 1)2 (C.1) 

𝑔(𝑥) = (𝑥 − 1)2 (C.2) 

ℎ(𝑥) = 𝑥2 (C.3) 

Therefore, the non-uniqueness of function is proved. Note that none of the above functions, in general, is 

equal to another one, but they have the same PDF as shown in Figure C1, and expressed below, 

𝑝(𝑌 = 𝑦) = {

1

2√𝑦
          𝑖𝑓 0 < 𝑦 < 1        

0                        𝑒𝑙𝑠𝑒             

 (C.4) 

where 𝑌 can be any of the functions mentioned in Eq. C 1-3.  
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 Figure C.1. Comparison between PDF of 

three different transformations of a uniform 

random variable between -1 and 1, which gets 

mapped to a new random variable Y with the 

same PDF. 

        C.2 Derivation of Relation for Order Parameter 

Eq. 19 in the main manuscript (𝜏 = 𝑘  
𝜌∗

𝑇∗) is obtained through following mathematical manipulation on 

Eq. 18  𝑔(𝑟)~1 −
𝑢𝐿𝐽(𝑟)

𝑘𝐵𝑇
 

𝑔(𝑟) − 1 =  −
4𝜖

𝑘𝐵𝑇
[(

𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

] 
(C.5) 

|𝑔(𝑟) − 1| =  
4𝜖

𝑘𝐵𝑇
| [(

𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

]| 
(C.6) 

𝜌|𝑔(𝑟) − 1|𝑟2𝑑𝑟 = 𝜌 
4𝜖

𝑘𝐵𝑇
| [(

𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

]| 𝑟2𝑑𝑟 
(C.7) 

∫ 𝜌|𝑔(𝑟) − 1|𝑟2𝑑𝑟 = ∫ 𝜌 
4𝜖

𝑘𝐵𝑇
| [(

𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

]| 𝑟2𝑑𝑟 
(C.8) 

𝜏 =   
𝜌𝜎3

𝑇∗
∫ |4 [(

𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

]| (
𝑟

𝜎
)

2 𝑑𝑟

𝜎
 

(C.9) 

𝜏 =
𝜌∗

𝑇∗
  ∫ |4 [(

𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

]| (
𝑟

𝜎
)

2 𝑑𝑟

𝜎
 

 

(C.10) 

Finally, defining 𝑘 as ∫ | 4 [(
𝜎

𝑟
)

12
− (

𝜎

𝑟
)

6
]| (

𝑟

𝜎
)

2 𝑑𝑟

𝜎
 , linear relationship between order parameter and non-

dimensional temperature and density can be written as, 

𝜏 = 𝑘  
𝜌∗

𝑇∗
 

(C.11) 

 

        C.3. Case Studies 

To further understand the consistency between DeepILST80 and structural quasi-universality2, we 

performed calculations on several quasi-universal (QU) pair potentials at various thermodynamic states. 
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In particular, for each QU pair potential, 10 systems with different potential parameters and various 

thermodynamic states are studied.  

        Case.1. Exponential  

 The exponential pair potential with various potential parameters and thermodynamic states is 

simulated. The list of systems and their parameters is provided in Table C1. Comparison between RDFs 

of each system and its QU-equivalent LJ system is shown in Figure C2. From the total deviation in the 

RDFs ( 𝜖𝑟𝑑𝑓~0.0011), we see a very similar structure between the QU pair potential and QU-equivalent 

LJ potential indicating consistency of DeepILST with the structural quasi-universality of simple liquids. 

Note that the results of the 1st system for each pair potential case are not shown in the supplementary as 

these are provided in the main manuscript. 

        Case.2. Yukawa 

RDFs of the Yukawa pair potential, also known as the screened Coulombic pair potential, with 

various potential parameters and thermodynamic states are obtained. The list of systems and the 

parameters in each system are provided in Table C2. Comparison between RDFs of each system and its 

QU-equivalent LJ system is shown in Figure C3. From the total deviation in the RDFs ( 𝜖𝑟𝑑𝑓~0.0009), 

we again see a very similar structure between both systems. 

        Case.3. Inverse-power-law (𝒑, 𝒒) = (𝟏𝟒, 𝟖) 

RDFs of the inverse-power-law (IPL) pair potential with repulsive and attractive exponents of 14 

and 8, respectively, are obtained by considering various potential parameters and thermodynamic states. 

The list of systems and the parameters are provided in Table C3. Comparison between RDFs of each 

system and its QU-equivalent LJ system is shown in Figure C4. With  𝜖𝑟𝑑𝑓~0.002, we observe a similar 

structure between the LJ system and the IPL system. 
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       Case.4. Inverse-power-law (𝒑, 𝒒) = (𝟏𝟎, 𝟒) 

RDFs of the IPL pair potential, with repulsive and attractive exponents of 10 and 4, respectively, are 

obtained by considering various potential parameters and thermodynamic states. The list of systems and 

the parameters are provided in Table C4. Comparison between RDFs of each system and its QU-

equivalent LJ system is shown in Figure C5. The total deviation between RDFs is again small 

( 𝜖𝑟𝑑𝑓~0.0024) implying a similar structure between both systems. 

Table C.1. Exponential pair potential systems with different thermodynamic states and potential parameters 

System Potential Type 𝑇 [𝐾] 𝜌 [𝑛𝑚−3] 
𝐴 [

𝑘𝐽

𝑚𝑜𝑙
] 𝑘𝐷[

1

𝑛𝑚
]  

1 EXP 350.00 12.23 1.34𝑒6 34.24 

2 EXP 394.42 17.23 4.88𝑒4 29.52 

3 EXP 333.00 8.21 1.15𝑒6 31.25 

4 EXP 328.68 17.22 7.62𝑒5 34.79 

5 EXP 386.41 14.00 1.24𝑒6 33.90 

6 EXP 357.52 11.41 8.16𝑒5 33.39 

7 EXP 376.61 10.79 8.16𝑒5 34.60 

8 EXP 352.28 12.17 1.31𝑒6  33.50 

9 EXP 304.23 10.56 7.67𝑒5 34.82 

10 EXP 341.5  10.33 1.50𝑒6 35.83 

 

 

Table C.2. Yukawa pair potential systems with different thermodynamic states and potential parameters 

System Potential Type 𝑇 [𝐾] 𝜌 [𝑛𝑚−3] 𝐴 [
𝑘𝐽

𝑚𝑜𝑙
] 𝑘𝐷[

1

𝑛𝑚
] 

1 Yukawa 350.00 12.23 1.055𝑒5 31.44 

2 Yukawa 364.79 14.86 9.82𝑒4   32.03 

3 Yukawa 373.45 9.32 9.50𝑒4   33.07 

4 Yukawa 367.32 12.80 8.67𝑒4   33.51 

5 Yukawa 326.88 16.18 9.95𝑒4 31.65 

6 Yukawa 386.41 14.00 1.11𝑒5 34.38 

7 Yukawa 328.68 17.22 9.75𝑒4 33.12 

8 Yukawa 305.76 16.41 7.64𝑒4 32.67 

9 Yukawa 344.14 11.35 1.04𝑒5 34.84 

10 Yukawa 399.48 17.97 1.07𝑒5 32.38 
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Table C.3. Inverse-power-law (14,8) pair potential systems with different thermodynamic states and potential 

parameters 

System Potential Type 𝑇 [𝐾] 𝜌 [𝑛𝑚−3] 𝐶14[
𝑘𝐽

𝑚𝑜𝑙. 𝑛𝑚14
] 𝐶8 [

𝑘𝐽

𝑚𝑜𝑙. 𝑛𝑚8
] 

1 IPL (14,8) 350.00 12.23 4.340𝑒−6 6.424𝑒−5 

2 IPL (14,8) 350.00 12.23 3.32𝑒−6   5.16𝑒−5 

3 IPL (14,8) 312.27 9.28 4.14𝑒−6   6.08𝑒−5 

4 IPL (14,8) 360.57 10.20 4.31𝑒−6    4.75𝑒−5 

5 IPL (14,8) 392.82 9.52 5.07𝑒−6   4.71𝑒−5 

6 IPL (14,8) 324.01 8.29 7.46𝑒−6   2.97𝑒−5 

7 IPL (14,8) 350.00 12.23 6.57𝑒−6    3.69𝑒−5 

8 IPL (14,8) 312.27 9.28 8.02𝑒−6   2.64𝑒−5 

9 IPL (14,8) 303.86 12.43 3.26𝑒−6  7.02𝑒−5 

10 IPL (14,8) 333.00 8.21 7.40𝑒−6     4.53𝑒−5 

 

Table C.4. Inverse-power-law (10,4) pair potential systems with different thermodynamic states and potential 

parameters 

System Potential Type 𝑇 [𝐾] 𝜌 [𝑛𝑚−3] 𝐶10 [
𝑘𝐽

𝑚𝑜𝑙. 𝑛𝑚10
] 𝐶4 [

𝑘𝐽

𝑚𝑜𝑙. 𝑛𝑚4
] 

1 IPL (10,4) 350.00 12.23 2.492𝑒−4 6.090𝑒−2 

2 IPL (10,4) 350.00 12.23 1.80𝑒−4 8.28𝑒−2 

3 IPL (10,4) 303.86 12.43 2.47𝑒−4 9.50𝑒−2 

4 IPL (10,4) 344.80 14.99 2.79𝑒−4 8.34𝑒−2 

5 IPL (10,4) 339.18 14.61 2.67𝑒−4 9.97𝑒−2 

6 IPL (10,4) 352.28 12.17 2.79𝑒−4 6.14𝑒−2 

7 IPL (10,4) 322.92 13.69 2.28𝑒−4 8.45𝑒−2 

8 IPL (10,4) 367.32 12.80 2.45𝑒−4 7.34𝑒−2 

9 IPL (10,4) 383.48 11.78 2.50𝑒−4 8.52𝑒−2 

10 IPL (10,4) 386.41 13.40 1.94𝑒−4 6.51𝑒−2 

 

 

 

 

 



154 
 

 

Figure C.2. Consistency between DeepILST and structural quasi-universality for exponential pair 

potentials. RDFs of exponential pair potentials with different potential parameters and thermodynamic 

states. RDFs of QU-equivalent LJ pair potential are shown with a solid red line, while black circles show 

RDFs with the exponential pair potential. 
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Figure C.3. Consistency between DeepILST and structural quasi-universality for Yukawa pair potentials. 

RDFs of Yukawa pair potentials with different potential parameters and thermodynamics states. RDFs of 

QU-equivalent LJ pair potential are shown with a solid red line, while black circles show RDFs with the 

Yukawa pair potential. 
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Figure C.4. Consistency between DeepILST and structural quasi-universality for inverse-power-law (14, 

8) pair potential. RDFs of inverse-power-law (14, 8) pair potentials with different potential parameters 

and thermodynamics states. RDFs of QU-equivalent LJ pair potential are shown with a solid red line, 

while black circles show RDFs with inverse-power-law (14, 8) pair potential. 
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Figure C.5. Consistency between DeepILST and structural quasi-universality for inverse-power-law (10, 

4) pair potentials. RDFs of inverse-power-law (10, 4) pair potentials with different potential parameters 

and thermodynamics states. RDFs of QU-equivalent LJ pair potential are shown with a solid red line, 

while black circles show RDFs with inverse-power-law (10, 4) pair potential. 

 

 


